cryptiib

Security Toolkit

Version 3.2.2

Copyright Peter Gutmann 1992-2005

September 2005

cryptlib Overview

INTRODUCTION

cryptlib Overview
cryptlib features

Architecture

SIMIME

PGP/OpenPGP

Secure Sessions

Plug-and-play PKI

Certificate Management

CA Operations

Crypto Devices and Smart Card Support
Certificate Store Interface

User Interface

Security Features

Embedded Systems

Performance

Cryptographic Random Number Management
Programming Interface

Documentation

Algorithm Support

Standards Compliance

Y 2K Compliance

Configuration Options

cryptlib Applications

Encryption Code Example

Secure Session Code Example
Certificate Management Code Example

Document conventions

Recommended Reading

INSTALLATION

AMX

BeOS
ChorusOS
DOS

DOS32

eCOS
uC/OSHI
Embedded Linux
UITRON
Macintosh OS X
MVS

032

PalmOS

QNX Neutrino
RTEMS
Tandem
uClinux

Unix
VM/CMS
VxWorks
Windows 3.x

Windows 95/98/M E and Windows NT/2000/XP

Windows CE / Pocket PC / SmartPhone
Xilinx XMK

Other Systems

Key Database Setup

Customised and Cut-down cryptlib Versions
Debug vs. Release Versions of cryptlib

COOOORDMNDWWNN -

i Introduction

cryptlib Version Information
Support for Vendor-specific Algorithms

CRYPTLIB BASICS

Programming I nterfaces
Container Object Interface
Mid-level Interface
Action Object Interface

Objectsand Interfaces
Objectsand Attributes

Interfacing with cryptlib
Initialisation
C/C++
C#/ .NET
Delphi
Java
Python
Tcl
Visual Basic
Return Codes
Working with Object Attributes
Attribute Types
Attribute Lists and Attribute Groups
Attribute Cursor Management

Object Security

Role-based Access Control
Managing User Roles
Creating and Destroying Users and Roles

Miscellaneous | ssues
Multi-threaded cryptlib Operation
Interaction with External Events

SECURITY AND USABILITY

Security Usability Fundamentals
Theoretical vs. Effective Security
User Conditioning
Security at Layers8and 9

Ease of Use
Automation vs. Explicitness
Safe Defaults
Interaction with other Systems

M atching Users’ Mental Models
Activity-Based Planning
Use of Familiar Metaphors
Speaking the User’s Language
Use of Visua Cues

Usability Testing
Pre-implementation Testing
Post-implementation Testing
Post-delivery Reviews

DATA ENVELOPING

Creating/Destroying Envelopes

The Data Enveloping Process
Data Size Considerations
Basic Data Enveloping
Compressed Data Enveloping

25
25

26

27
27
27
27

27
28

29
29
30
30
30
31
32
32
32
32

33
35
37
38

41

43
43

45
45
46

47

47
47
47
48

49
49
50
51

51
52
53
54
55

56
56
57
59

60
60

61
63
64
65

cryptlib Overview

Password-based Encryption Enveloping
Conventional Encryption Enveloping
De-enveloping Mixed Data

De-enveloping with a Large Envelope Buffer
Obtaining Envel ope Security Parameters

Enveloping Large Data Quantities
Alternative Processing Techniques
Enveloping with Many Enveloping Attributes

ADVANCED ENVELOPING

Public-K ey Encrypted Enveloping

Digitally Signed Enveloping

Enveloping with Multiple Attributes
Processing Multiple De-enveloping Attributes

Nested Envelopes

SIMIME

SMIME Enveloping
Encrypted Enveloping
Digitally Signed Enveloping
Detached Signatures
Alternative Detached Signature Processing
Extra Signature Information

Timestamping

PGP

PGP Enveloping
Encrypted Enveloping
Digitally Signed Enveloping
Detached Signatures

FROM ENVELOPES TO EMAIL

SMIME email
Data
Signed Data
Detached Signature
Encrypted Data
Nested Content

PGP email

Implementing SMIME and PGP email using cryptlib

c-client/IMAP4

Eudora

MAPI

Windows 95/98/ME and NT/2000/XP Shell

SECURE SESSIONS
Creating/Destroying Session Objects
Client vs. Server Sessions

Server Names/URLS

Server Private Keys
Establishing a Session

Persistent Connections
SSH Sessions

SSH Client Sessions

SSH Server Sessions

SSH Channdl's

SSH Subsystems
SSH Port Forwarding

66
68
69
70
70

71
72
73

75
75
79

81
82

84

86

86
87
89
90
91
92

93

95

95
95
97
97

100

100
100
100
100
101
101

101

102
102
103
103
103

105
105

107
107
108

109
109

110
110
111
113
114
115

iv Introduction

SSH Multiple Channels

SSL/TL S Sessions
SSL/TLS Client Sessions
SSL/TLS with Shared Keys
SSL/TLS with Client Certificates
SSL/TLS Server Sessions
SSL/TLS Servers with Shared Keys
SSL/TLS Servers with Client Certificates

Request/Response Protocol Sessions
RTCS Server Sessions
OCSP Server Sessions
TSP Server Sessions

Obtaining Session Status Infor mation
Obtaining Session Security Parameters
Authenticating the Host with Key Fingerprints
Authenticating the Host or Client using Certificates
Authenticating the Client via Port and Address

Exchanging Data
Network |ssues
Secure Sessions with Proxies

Network Timeouts
Managing your Own Network Connections and 1/0

KEY GENERATION

Creating/Destroying Encryption Contexts

Generating a Key into an Encryption Context
Asynchronous Key Generation

KEY STORAGE
Keyset Types
Creating/Destroying K eyset Objects
File Keysets
HTTP Keysets

Database Keysets
LDAP Keysets

Reading a Key from a K eyset
Obtaining aKey for aUser
Genera Keyset Queries
Handling Multiple Certificates with the Same Name
Key Group Management
Writing a Key to a Keyset
Changing a Private Key Password

Deleting a Key

CERTIFICATES AND CERTIFICATE MANAGEMENT

High-level vs. Low-level Certificate Operations
Plug-and-play PKI
Mid-level Certificate Management
Low-level Certificate Management

Certificatesand Keys
Using Separate Signature and Encryption Certificates

Plug-and-play PKI
Simple Certificate Creation
The Certification Process

Obtaining Certificatesusing CMP
CMP Certificate Requests

116

117
118
119
119
120
120
121

122
122
123
123

124
124
124
124
125

125

127
127
127
128

131
131

131
132

133
133

134
135
136
137
139

141
141
143
145
145

146
147

148

149

149
149
149
149

150
150

151
152
154

157
158

cryptlib Overview \Y

CMP Operation Types 159
CMP Sessions 160
Obtaining Certificates using SCEP 162
SCEP Certificate Requests 162
SCEP Sessions 162
Certificate Status Checking using RTCS 164
Basic RTCS Queries 164
Creating an RTCS Request 165
Communicating with an RTCS Responder 166
Advanced RTCS Queries 167
Certificate Revocation Checking using OCSP 168
Basic OCSP Queries 168
Creating an OCSP Reguest 168
Communicating with an OCSP Responder 169
Advanced OCSP Queries 170
MANAGING A CERTIFICATION AUTHORITY 171
Creating the Top-level (Root) CA Key 171
Initialising PK1 User Information 173
Other PKI User Information 174
PKI User IDs 175
Managing a CA using CMP or SCEP 176
Making Certificates Available Online 177
Managing a CA Directly 179
Recording Incoming Requests 179
Retrieving Stored Requests 179
CA Management Operations 180
Issuing and revoking a Certificate 181
Issuing a CRL 181
Expiring Certificates 181
Recovering after a Restart 181
ENCRYPTION AND DECRYPTION 183
Creating/Destroying Encryption Contexts 183
Generating a Key into an Encryption Context 184
Deriving a Key into an Encryption Context 185
Loading a Keysinto an Encryption Context 186
Working with Initialisation Vectors 186
L oading Public/Private Keys 187
Loading Multibyte Integers 187
Querying Encryption Contexts 189
Using Encryption Contextsto Process Data 189
Conventional Encryption 190
Public-key Encryption 191
Hashing 191
EXCHANGING KEYS 193
Exporting aKey 193
Exporting using Conventional Encryption 194
Importing aKey 195
Importing using Conventiona Encryption 195
Querying an Exported Key Object 196
Extended Key Export/Ilmport 196
Key Agreement 197

SIGNING DATA 199

Vi Introduction

Querying a Signatur e Obj ect 200
Extended Signature Creation/Checking 200
CERTIFICATES IN DETAIL 203
Overview of Certificates 203
Certificates and Standards Compliance 203
Certificate Compliance Level Checking 204
The Certification Process 206
Creating/Destroying Certificate Objects 206
Working with Certificate Attributes 207
Certificate Structures 207
Attribute Certificate Structure 208
Certificate Structure 209
Certification Request Structure 211
CRL Structure 211
Basic Certificate Management 212
Certificate | dentification I nformation 214
DN Structure for Business Use 215
DN Structure for Private Use 215
DN Structure for Use with aWeb Server 216
Other DN Structures 216
Working with Distinguished Names 216
Creating Customised DNs 217
Extended Certificate I dentification Information 219
Working with GeneralName Components 220
Certificate Fingerprints 220
Importing/Exporting Certificates 221
Signing/Verifying Certificates 223
Certificate Chains 225
Working with Certificate Chains 225
Signing Certificate Chains 226
Checking Certificate Chains 227
Exporting Certificate Chains 228
Certificate Revocation using CRL s 228
Working with CRLs 228
Creating CRLs 229
Advanced CRL Creation 229
Checking Certificatesagainst CRLs 230
Automated CRL Checking 231
Certificate Trust Management 231
Controlling Certificate Usage 231
Implicitly Trusted Certificates 232
Working with Trust Settings 232
CERTIFICATE EXTENSIONS 234
Extension Structure 234
Working with Extension Attributes 234
Extension Cursor Management 235
Composite Extension Attributes 237
X.509 Extensions 238
Alternative Names 238
Basic Constraints 238
Certificate Policies, Policy Mappings, and Policy Constraints, and Policy Inhibiting 239
CRL Distribution Points/Freshest CRL and Subject/Authority Information Access 240
Directory Attributes 241

Key Usage, Extended Key Usage, and Netscape certificate type 241

cryptlib Overview

vii

Name Constraints
Private Key Usage Period
Subject and Authority Key Identifiers

CRL Extensions
CRL Reasons, CRL Numbers, Delta CRL Indicators
Hold Instruction Code
Invalidity Date
Issuing Distribution Point and Certificate | ssuer

Digital Signature L egidation Extensions
Certificate Generation Date
Other Restrictions
Reliance Limit
Signature Delegation

Qualified Certificate Extensions
Biometric Info
QC Statements

SET Extensions
SET Card Required and Merchant Data
SET Certificate Type, Hashed Root Key, and Tunnelling

Application-specific Extensions
OCSP Extensions

Vendor -specific Extensions
Netscape Certificate Extensions
Thawte Certificate Extensions

Generic Extensions

OTHER CERTIFICATE OBJECT EXTENSIONS

CMS/SMIME Attributes
Content Type
Countersignature
Message Digest
Signing Description
Signing Time
Extended CM SISMIME Attributes
AuthentiCode Attributes
Content Hints
DOMSEC Attributes
Mail List Expansion History
Nonce
Receipt Request
SCEP Attributes
Security Label, Equivalent Label
Signature Policy
S/MIME Capahilities
Signing Certificate
OCSP Attributes

CRYPTLIB USER INTERFACE COMPONENTS
Displaying Certificates
Key/Certificate Generation

ENCRYPTION DEVICES AND MODULES
Creating/Destroying Device Objects
Activating and Controlling Cryptographic Devices
Device Initialisation
User Authentication
Device Zeroisation

244
245
245

245
245
246
247
247

248
248
248
248
248

249
249
249

249
249
250

251
251

251
251
252

252

253

253
253
254
254
254
254

254
255
256
256
256
257
257
257
258
259
260
260

261

262
262
262

265
265

266
266
267
268

viii Introduction

Working with Device Objects
Key Storage in Crypto Devices
Querying Device Information
Considerations when Working with Devices

Fortezza Cards

PK CS#11 Devices
Installing New PKCS#11 Modules
Accessing PKCS #11 Devices

CryptoAPI

MISCELLANEOUS TOPICS
Querying cryptlib’s Capabilities
Working with Configuration Options

Querying/Setting Configuration Options

Saving Configuration Options
Obtaining Information About Cryptlib
Random Numbers

Gathering Random Information
Obtaining Random Numbers

Working with Newer Versionsof cryptlib

ERROR HANDLING
Extended Error Reporting

EMBEDDED SYSTEMS

Embedded OS Types
AMX
ChorusOS
eCOS
pHC/OSHI
Embedded Linux
UITRON
Palm OS
OQNX Neutrino
RTEMS
uClinux
Windows CE
VxWorks
Xilinx XMK

Embedded cryptlib Configuration Options
Debugging with Embedded cryptlib
Porting to Deviceswithout a Filesystem

Porting to Devices without Dynamic Memory Allocation
Memory Allocation Strategy
cryptlib Memory Usage
Tracking Memory Usage

Porting to Devices without Randomness/Entropy Sour ces

DATABASE AND NETWORKING PLUGINS

The Database Plugin Interface
Database Plugin Functions

The Network Plugin Interface
Network Plugin Functions

The Crypto Plugin Interface

ALGORITHMS
AES

268
269
269
270

271

271
271
272

272

274
274

274
277
278

278

279
279
280

280

282
284

287

287
287
288
288
288
288
288
288
289
289
289
289
289
289

290
291
291

291
292
292
293

293

295

295
296

299
299

300

302
302

cryptlib Overview iX

Blowfish 302
CAST-128 302
DES 302
Triple DES 302
DiffieeHellman 302
DSA 303
Elgamal 303
HMAC-MD5 303
HMAC-SHA1 303
HMAC-RIPEM D-160 303
IDEA 303
MD2 304
MD4 304
MD5 304
RC2 304
RC4 304
RC5 304
RIPEM D-160 305
RSA 305
SHA 305
Skipjack 305
DATA TYPES AND CONSTANTS 306
CRYPT_ALGO_TYPE 306
CRYPT_ATTRIBUTE_TYPE 307
CRYPT_CERTFORMAT_TYPE 307
CRYPT_CERTTYPE_TYPE 308
CRYPT_DEVICE_TYPE 308
CRYPT_FORMAT_TYPE 308
CRYPT_KEYID_TYPE 309
CRYPT_KEYOPT_TYPE 309
CRYPT_KEYSET_TYPE 309
CRYPT_MODE_TYPE 310
CRYPT_OBJECT_TYPE 310
CRYPT_SESSION_TYPE 310
Data Size Constants 311
Miscellaneous Constants 311
DATA STRUCTURES 313
CRYPT_OBJECT_INFO Structure 313
CRYPT_PKCINFO_xxx Structures 313
CRYPT_QUERY_INFO Structure 314
FUNCTION REFERENCE 315
cryptAddCertExtension 315
cryptAddPrivateK ey 315
cryptAddPublicK ey 315
cryptAddRandom 316
cryptAsyncCancel 316

cryptAsyncQuery 316

X

Introduction

cryptCAAddItem
cryptCACertM anagement
cryptCAGetltem
cryptCheckCert
cryptCheckSignature
cryptCheckSignatur eEx
cryptCreateCert
cryptCreateContext
cryptCreateEnvelope
cryptCreateSession
cryptCreateSignature
cryptCreateSignatur eEx
cryptDecrypt
cryptDeleteAttribute
cryptDeleteCertExtension
cryptDeleteK ey
cryptDestroyCert
cryptDestroyContext
cryptDestroyEnvelope
cryptDestroyObject
cryptDestroySession
cryptDeviceClose
cryptDeviceCreateContext
cryptDeviceOpen

cryptDeviceQueryCapability

cryptEncrypt
cryptEnd
cryptExportCert
cryptExportKey
cryptExportKeyEx
cryptFlushData
cryptGenerateKey
cryptGenerateKeyAsync
cryptGetAttribute
cryptGetAttributeString
cryptGetCertExtension
cryptGetPrivateK ey
cryptGetPublicK ey
cryptimportCert
cryptimportKey
cryptinit
cryptKeysetClose
cryptKeysetOpen
cryptPopData
cryptPushData
cryptQueryCapability
cryptQueryObject
cryptSetAttribute

316
317
317
318
318
318
319
319
319
320
320
320
321
321
322
322
322
323
323
323
323
323
324
324
324
325
325
325
326
326
327
327
328
328
328
329
329
330
330
331
331
331
331
332
332
333
333
333

cryptlib Overview Xi

cryptSetAttributeString 334
cryptSignCert 334
cryptUl DisplayCert 334
cryptUl GenerateK ey 335
STANDARDS CONFORMANCE 336
AES 336
Blowfish 336
CAST-128 336
DES 336
Triple DES 337
Diffie-Hellman 337
DSA 337
Elgamal 338
HMAC-MD5 338
HMAC-SHA1 338
IDEA 338
MD2 338
MD4 338
MD5 339
RC2 339
RC4 339
RC5 339
RIPEMD-160 339
RSA 340
SHA/SHA1 340
SHA2/SHA-256/SHA-384/SHA-512 340
Skipjack 340

ACKNOWLEDGEMENTS 341

cryptlib Overview 1

Introduction

The information age has seen the devel opment of electronic pathways that carry vast
amounts of valuable commercial, scientific, and educational information between
financial ingtitutions, companies, individuals, and government organisations.
Unfortunately the unprecedented levels of access provided by systems like the
Internet also expose this data to breaches of confidentiality, disruption of service, and
outright theft. Asaresult, thereisan enormous (and still growing) demand for the
means to secure these online transactions. One report by the Computer Systems
Policy Project (a consortium of virtually every large US computer company,
including Apple, AT&T, Compaq, Digital, IBM, Silicon Graphics, Sun, and Unisys)
estimated that the potentia revenue arising from these security requirementsin the
US aone could be as much as US$30-60 hillion in the next few years, and the
potential exposure to global users from alack of this security is projected to reach
between US$320 and 640 billion.

Unfortunately the security systems required to protect data are generally extremely
difficult to design and implement, and even when available tend to require
considerable understanding of the underlying principlesin order to be used. Thishas
lead to a proliferation of “snake oil” products that offer only illusionary security, or to
organisations holding back from deploying online information systems because the
means to secure them aren’t readily available, or because they employed weak, easily
broken security that was unacceptable to users.

The cryptlib security toolkit provides the answer to this problem. A complete
description of the capabilities provided by cryptlib is given below.

cryptlib Overview

cryptlib is a powerful security toolkit that allows even inexperienced crypto
programmers to easily add encryption and authentication services to their software.
The high-level interface provides anyone with the ability to add strong security
capabilities to an application in aslittle as half an hour, without needing to know any
of the low-level details that make the encryption or authentication work. Because of
this, cryptlib dramatically reduces the cost involved in adding security to new or
existing applications.

At the highest level, cryptlib provides implementations of complete security services
such as SSMIME and PGP/OpenPGP secure enveloping, SSL/TLS and SSH secure
sessions, CA services such as CMP, SCEP, RTCS, and OCSP, and other security
operations such as secure timestamping (TSP). Since cryptlib uses industry-standard
X.509, SSMIME, PGP/OpenPGP, and SSH/SSL/TL S data formats, the resulting
encrypted or signed data can be easily transported to other systems and processed
there, and cryptlib itself runs on virtually any operating system — cryptlib doesn’t tie
you to asingle platform. Thisallows email, files, and EDI transactionsto be
authenticated with digital signatures and encrypted in an industry-standard format.

cryptlib provides an extensive range of other capabilities including full X.509/PKI1X
certificate handling (all X.509 versions from X.509v1 to X.509v4) with additional
support for SET, Microsoft AuthentiCode, Identrus, SigG, SMIME, SSL, and
Qualified certificates, PK CS#7 certificate chains, handling of certification requests
and CRLsincluding automated checking of certificates against CRLs and online
checking using RTCS and OCSP, and issuing and revoking certificates using CMP
and SCEP. In addition cryptlib implements afull range of certification authority
(CA) functions, aswell as providing complete CMP, SCEP, RTCS, and OCSP server
implementations to handle online certificate enrolment/issue/revocation and
certificate status checking. Alongside the certificate handling, cryptlib provides a
sophisticated key storage interface that allows the use of awide range of key database
types ranging from PKCS #11 devices, PKCS #15 key files, and PGP/OpenPGP key
rings through to commercial-grade RDBMS’ and LDAP directories with optional
SSL protection.

2 Introduction

In addition to its built-in capabilities, cryptlib can make use of the crypto capabilities
of avariety of externa crypto devices such as hardware crypto accelerators, Fortezza
cards, PKCS #11 devices, hardware security modules (HSMs), and crypto smart
cards. For particularly demanding applications cryptlib can be used with avariety of
crypto devices that have received appropriate FIPS 140 or | TSEC/Common Criteria
certification. The crypto device interface also provides a convenient general -purpose
plug-in capability for adding new functionality that will be automatically used by
cryptlib.

cryptlib is supplied as source code for AMX, BeOS, ChorusOS, DOS, DOS32, eCOS,
HC/OS-1, embedded Linux, IBM MVS, uITRON, Macintosh/OS X, OS2, PalmOS,
RTEMS, Tandem, avariety of Unix versions (including Al X, Digital Unix, DGUX,
FreeBSD/NetBSD/OpenBSD, HP-UX, IRIX, Linux, MP-RAS, OSF/1, QNX,
SCO/UnixWare, Solaris, SunOS, Ultrix, and UT$4), uClinux, VM/CMS, VxWorks,
Windows 3.x, Windows 95/98/M E, Windows CE/PocketPC/SmartPhone, Windows
NT/2000/XP, and Xilinx XMK. cryptlib’s highly portable nature meansthat it is also
being used in avariety of custom embedded system environments. In addition,
cryptlib is available as a standard Windows DLL and an ActiveX control.. cryptlib
comes with language bindings for C / C++, C#/ .NET, Delphi, Java, Python, and
Visual Basic (VB).

cryptlib features

cryptlib provides a standardised interface to a number of popular encryption
agorithms, aswell as providing a high-level interface that hides most of the
implementation detail s and uses operating-system-independent encoding methods that
make it easy to transfer secured data from one operating environment to another.
Although use of the high-level interface is recommended, experienced programmers
can directly access the lower-level encryption routines for implementing custom
encryption protocols or methods not directly provided by cryptlib.

Architecture

cryptlib consists of a set of layered security services and associated programming
interfaces that provide an integrated set of information and communications security
capabilities. Much like the network reference model, cryptlib contains a series of
layers that provide each level of abstraction, with higher layers building on the
capabilities provided by the lower layers.

At the lowest level are basic components such as core encryption and authentication
routines, which are usually implemented in software but may also be implemented in
hardware (due to the speed of the software components used in cryptlib, the software
isusually faster than dedicated hardware). At the next level are components that
wrap up the specialised and often quite complex core componentsin alayer that
provides abstract functionality and ensures compl ete cross-platform portability of
data. These functionstypically cover areas such as “create a digital signature” or
“exchange an encryption key”. At the highest level are extremely powerful and easy-
to-use functions such as “encrypt a message”, “sign a message”, “open a secure link”,
and “create a digital certificate” that require no knowledge of encryption techniques,
and that take care of complex issues such as key management, data encoding,
en/decryption, and digital signature processing.

cryptlib features 3

SIMIME

High-level interface

Secure data Secure communications Certificate
enveloping sessions management
Security services interface
Key .D'g'tal Key_ Key management
exchange signature generation

Encryption services interface | : |

Key store interface

Adaptation Adaptation Adaptation
Native layer layer Native layer
encryp tion Third-party Third-party datat_)ase Third-party
services - - services
encryption encryption database
services services services

cryptlib’s powerful object management interface provides the ability to add
encryption and authentication capabilities to an application without needing to know
all the low-level details that make the encryption or authentication work. The
automatic object-management routines take care of encoding issues and cross-
platform portability problems, so that a handful of function calls is all that’s needed to
wrap up datain signed or encrypted form with all of the associated information and
parameters needed to recreate it on the other side of a communications channel. This
provides a considerable advantage over other encryption toolkits that often require
hundreds of lines of code and the manipulation of complex encryption data structures
to perform the same task.

cryptlib employs the |ETF-standardised Cryptographic Message Syntax (CMSS,
formerly called PKCS #7) format asits native dataformat. CM Sis the underlying
format used in the SSMIME secure mail standard, as well as a number of other
standards covering secure EDI and related systems like HL7 medical messaging and
the Session Initiation Protocol (SIP) for services such as Internet telephony and
instant messaging. Asan example of its usein secure EDI, cryptlib provides security
services for the Symphonia EDI messaging toolkit which is used to communicate
medical lab reports, patient data, drug prescription information, and similar
information requiring a high level of security.

The S/MIME implementation uses cryptlib’s enveloping interface which allows
simple, rapid integration of strong encryption and authentication capabilities into
existing email agents and messaging software. The resulting signed enveloped data
format provides message integrity and origin authentication services, the encrypted
enveloped data format provides confidentiality. In addition cryptlib’s S'MIME
implementation allows external services such as trusted timestamping authorities
(TSAS) to be used when a signed message is created, providing externally-certified
proof of the time of message creation. The complexity of the S'MIME format means
that the few other toolkits that are available require a high level of programmer
knowledge of S/MIME processing issues. In contrast cryptlib’s enveloping interface
makes the process as simple as pushing raw datainto an envelope and popping the
processed data back out, atotal of three function calls, plus one more cal to add the
appropriate encryption or signature key.

PGP/OpenPGP

Alongside the PKCS #7/CM SSMIME formats, cryptlib supports the PGP/OpenPGP
message format, allowing it to be used to send and receive PGP-encrypted email and

4 Introduction

data. As with the S/MIME implementation, the PGP implementation uses cryptlib’s
enveloping interface to alow simple, rapid integration of strong encryption and
authentication capabilitiesinto existing email agents and messaging software. Since
the enveloping interface is universal, the process involved in creating PGP and
S/MIME messagesisidentical except for the envelope format specifier, allowing a
one-off development effort to handle any secure message format.

Secure Sessions

cryptlib secure sessions can include SSH, SSL, and TL S sessions, and genera
communications sessions can include protocol s such as the certificate management
protocol (CMP), simple certificate enrolment protocol (SCEP), real-time certificate
status protocol (RTCS), online certificate status protocol (OCSP), and timestamping
(TSP). Aswith envelopes, cryptlib takes care of the session details for you so that all
you need to do is provide basic communications information such as the name of the
server or host to connect to and any other information required for the session such as
apassword or certificate. cryptlib takes care of establishing the session and
managing the details of the communications channel and its security parameters.

cryptlib provides both client and server implementations of all session types. By
tying akey or certificate store to the session, you can let cryptlib take care of any key
management issues for you. For example, with an SSH, SSL or TLS server session
cryptlib will use the key/certificate store to authenticate incoming connections, and
with a CMP or SCEP server session cryptlib will use the certificate store to handle the
certificate management process. In thisway a complete CMP-based CA that handles
enrolment, certificate update and renewal, and certificate revocation, can be
implemented with only a handful of function calls.

Plug-and-play PKI

Working with certificates can be complex and painful, requiring the use of a number
of arcane and difficult-to-use mechanisms to perform even the simplest operations.
To eliminate this problem, cryptlib provides a plug-and-play PKI interface that
manages al certificate processing and management operations for you, requiring no
specia knowledge of certificate formats, protocols, or operations. Using the plug-
and-play PKI interface with an appropriately-configured CA meansthat cryptlib will
automatically and transparently handle key generation, certificate enrolment, securely
obtaining trusted CA certificates, and certifying the newly-generated keys for the
user, dl in asingle operation. Similarly, certificate validity checking can be
performed using an online real-time status check that avoids the complexity and
delayed status information provided by mechanisms such as CRLs. The plug-and-
play PKI interface removes most of the complexity and difficulty involved in
working with certificates, making it easier to use certificates than with any of the
conventional certificate management mechanisms.

Certificate Management

cryptlib implements full X.509 certificate support, including all X.509 version 3 and
X.509 version 4 extensions as well as extensions defined in the IETF PKIX certificate
profile. cryptlib also supports additional certificate types and extensions including
SET certificates, Microsoft AuthentiCode and Netscape and Microsoft server-gated
crypto certificates, |dentrus certificates, qualified certificates, SMIME and SSL

client and server certificates, SigG extensions, and various vendor-specific extensions
such as Netscape certificate types and the Thawte secure extranet.

In addition to certificate handling, cryptlib alows the generation of certification
requests suitable for submission to certification authorities (CAs) in order to obtain a
certificate. Since cryptlib isitself capable of processing certification requests into
certificates, it is aso possible to use cryptlib to provide full CA services. cryptlib
also supports the creating and handling of the certificate chains required for SMIME,
SSL, and other applications, and the creation of certificate revocation lists (CRLS)
with the capability to check certificates against existing or new CRLs either
automatically or under programmer control. In addition to CRL-based revocation

cryptlib features 5

checking, cryptlib also supports online status protocols such as RTCS and OCSP.
cryptlib also implements the CMP protocol which fully automates the management of
certificates, allowing online certificate enrolment, issue, update/replacement, and
revocation of certificates, and the SCEP protocol, which automates the certificate
issue process. Using CMP removes from the user any need for technical knowledge
of certificate management, since all details are managed by the CA.

cryptlib can import and export certification requests, certificates, certificate chains,
and CRLs, covering the mgjority of certificate transport formats used by awide
variety of software such asweb browsers and servers. The certificate typesthat are
supported include:

e Basic X.509 version 1 and 2 certificates

e Extended X.509 version 3 and 4 certificates

e Certificates conformant to the IETF PKIX profile
e SSL/TLS server and client certificates

e S/MIME email certificates

e SET certificates

e SigG certificate extensions

e AuthentiCode code signing certificates

e Identrus certificates

e Quadlified certificates

o |Psec server, client, end-user, and tunnelling certificates
e Server-gated crypto certificates

e Timestamping certificates

In addition cryptlib supports X.509v3, X.509v4, IETF, SMIME, SET, and SigG
certificate extensions and many vendor-specific extensions including ones covering
public and private key usage, certificate policies, path and name constraints, policy
constraints and mappings, and alternative names and other identifiers. This
comprehensive coverage makes cryptlib a single solution for almost al certificate
processing requirements.

The diagram below shows atypical cryptlib application, in which it provides the full
functionality of both a CA (processing certification requests, storing the issued
certificates locally in a certificate database, and optionally publishing the certificates
on the web or in an LDAP directory) and an end entity (generating certification
requests, submitting them to a CA, and retrieving the result from the web or a
directory service).

6 Introduction

CA
repository
Web
» server SSL
cryptlib CA p Server LDAP
directory
Y Publish
Cert request/
retrieve
A 4
User <
) Retrieve
Local
certificate
repository

To handle certificate trust and revocation issues, cryptlib includes a certificate trust
manager that can be used to automatically manage CA trust settings. For example a
CA can be designated as atrusted issuer that will allow cryptlib to automatically
evaluate trust along certificate chains. Similarly, cryptlib can automatically check
certificates against RTCS and OCSP responders and CRLs published by CAs,
removing from the user the need to perform complex manual checking.

CA Operations

cryptlib includes a scalabl e, flexible Certificate Authority (CA) engine built on the
transaction-processing capabilities of a number of proven, industria -strength
relational databases running on a variety of hardware platforms. The CA facility
provides an automated means of handling certificate i ssuance without dealing directly
with the details of processing request, signing certificates, saving the resulting
certificatesin keys stores, and assembling CRLs. This constitutes a complete CA
system for issuance and management of certificates and CRLs. A typical cryptlib CA
configuration is shown below.

cryptlib features 7

Smart
card
A
v
Certificate Status
client client

CMP/SCEP/ RTCS/
PKCS #10 OCSP
7'y 7'y

A A 4

cryptlib CA <--» HSM

A
A 4
Certificate

store

LDAP (&>

Certificates/CRLs

Available CA operationsinclude:
e Certificate enrolment/initialisation operations
e Certificateissue
e Certificate update/key update
o Certificate expiry management
e Revocation request processing
e CRLissue

All CA operations are recorded to an event log using cryptlib’s built-in CA
logging/auditing facility, which provides a full account of certificate requests,
certificates issued or renewed, revocations requested and issued, certificates expired,
and general CA management operations. The logs may be queried for information on
al events or a specified subset of events, for example al certificates that were issued
on acertain day.

cryptlib contains afull implementation of a CMP server (to handle online certificate
management), and SCEP server (to handle online certificate issue), a RTCS server (to
handle real-time certificate status checking), and an OCSP server (to handle
revocation checking). All of these servers are fully automated, requiring little user
intervention beyond the initial enrolment processin which user eligibility for a
certificate is established. These services make it easier than ever to manage your own
CA. Certificate expiration and revocation are handled automatically by the CA
engine. Expired certificates are removed from the certificate store, and CRLs are
assembled from previously processed certificate revocation requests. These
operations are handled with asingle function call.

The CA keys can optionally be generated and held in tamper-resistant hardware
security modules, with certificate signing being performed by the hardware module.
Issued certificates can be stored on smart cards or similar crypto devices in addition
to being managed using software-only implementations. The CA facility supportsthe
simultaneous operation of multiple CAs, for example to manage users served through

8 Introduction

divisiona CAs certified by aroot CA. Each CA can issue multiple certificates to
users, allowing the use of separate keys bound to signature and encryption
certificates.

Crypto Devices and Smart Card Support

In addition to its built-in capabilities, cryptlib can make use of the crypto capabilities
of avariety of external crypto devices such as:

e Hardware crypto accelerators

e Fortezzacards

e PKCS#11 devices

e Crypto smart cards

e Hardware security modules (HSMs)
e PCI crypto cards

e DadllasiButtons

o DatakeydiKeys

e PCMCIA crypto tokens

e USB tokens

These devices will be used by cryptlib to handle functions such as key generation and
storage, certificate creation, digital signatures, and message en- and decryption.
Typical applicationsinclude:

e Running a certification authority inside tamper-resistant hardware
e Smart-card based digital signatures
e Message encryption/decryption in secure hardware

cryptlib manages any device-specific interfacing requirements so that the
programming interface for any crypto device is identical to cryptlib’s native interface,
allowing existing applications that use cryptlib to be easily and transparently migrated
to using crypto devices. The ability to mix and match crypto devices and the
software-only implementation allows appropriate tradeoffs to be chosen between
flexibility, cost, and security.

Certificate Store Interface

cryptlib utilizes commercial -strength RDBMS’ to store keys in the internationally
standardised X.509 format. The certificate store integrates seamlessly into existing
databases and can be managed using existing tools. For example a key database
stored on an MS SQL Server might be managed using Visual Basic or MS Access; a
key database stored on an Oracle server might be managed through SQL* Plus.

In addition to standard certificate stores, cryptlib supports the storage and retrieval of
certificatesin LDAP directories, HTTP access for keys accessible via the web, and
external flat-file key collections such as PK CS #15 soft-tokens and PGP/OpenPGP
key rings. The key collections may be freely mixed (so for example a private key
could be stored in a PK CS #15 soft-token, a PGP/OpenPGP key ring or on a smart
card with the corresponding X.509 certificate being stored in a certificate store, an
LDAP directory, or on the web).

Private keys may be stored on disk encrypted with an algorithm such astriple DES or
AES (selectable by the user), with the password processed using several thousand
iterations of a hashing algorithm such as SHA-1 (also selectable by the user). Where
the operating system supportsit, cryptlib will apply system security features such as
ACLs under Windows NT/2000/XP and file permissions under Unix to the private
key file to further restrict access.

cryptlib features 9

User Interface

In addition to its general security functionality, cryptlib includes a number of user
interface components that simplify the task of working with keys and certificates.
Components such as the certificate viewer shown below allow usersto browse the
contents of certificates, certificate chains, requests, and other certificate objects. The
key generation wizard simplifies the task of key and certificate generation by
handling most of the details of the process automatically, producing a complete
public/private key pair and certificate request suitable for submissionto aCA, or a
self-signed certificate for immediate use. These user interface components remove
much of the complexity of the key and certificate management process, allowing
devel opers to concentrate on applying the completed keys and certificates towards
securing data, email, or communications sessions rather than on the process needed to
create them.

Certificate =]

Getieral | Detais |

Cartificate Information

- CA Certificate
- Key: 1024-bit RSA

- This certificate is intended for:
o' Signing Key Certificates
o Signing Certificats Revocation Lists

Issued to: Eqiif e
Issued by: EquilFas:
Yalid from 22{3f1998 to Zfaf201E

Security Features

cryptlib is built around a security kernel with Orange Book B3-level security features
to implement its security mechanisms. Thiskernel provides the interface between the
outside world and the architecture’s objects (intra-object security) and between the
objects themselves (inter-object security). The security kernel isthe basis of the
entire cryptlib architecture — all objects are accessed and controlled through it, and
all object attributes are manipulated through it. The kernel isimplemented as an
interface layer that sits on top of the objects, monitoring all accesses and handling all
protection functions.

Each cryptlib object is contained entirely within the security perimeter, so that data
and control information can only flow in and out in a very tightly-controlled manner,
and objects are isolated from each other within the perimeter by the security kernel.
For example once keying information has been sent to an object, it can’t be retrieved

10

Introduction

by the user except under tightly-controlled conditions. In general keying information
isn’t even visible to the user, since it’s generated inside the object itself and never
|eaves the security perimeter. This design isideally matched to hardware
implementations that perform strict red/black separation, since sensitive information
can never leave the hardware.

Associated with each object is a set of mandatory ACLs that determine who can
access a particular object and under which conditions the accessis allowed. If the
operating system supportsit, al sensitive information used will be page-locked to
ensure that it’s never swapped to disk from where it could be recovered using a disk
editor. All memory corresponding to security-related datais managed by cryptlib and
will be automatically sanitised and freed when cryptlib shuts down even if the caling
program forgets to release the memory itself.

Where the operating system supportsit, cryptlib will apply operating system security
features to any objectsthat it creates or manages. For example under Windows
NT/2000/XP cryptlib private key fileswill be created with an access control list
(ACL) that allows only the key owner accessto the file; under Unix the file
permissions will be set to achieve the same result.

Embedded Systems

cryptlib’s high level of portability and configurability makes it ideal for use in
embedded systems with limited resources or specialised requirements, including ones
based on ARM7, ARM9, ARM TDMI, Fujitsu FR-V, Hitachi SuperH, MIPS1V,
MIPSV, Motorola ColdFire, NEC V8xx series, NEC VRxxxx series,
Panasonic/Matsushita AM33/AM34, PowerPC, Samsung CalmRISC, SH3, SH4,
SPARC, SPARCIite, StrongArm, TI OMAP, and Intel XScale processors. cryptlib
doesn’t perform any floating-point operations and runs directly on processors without
an FPU.

The codeis fully independent of any underlying storage or 1/0O mechanisms, and
works just as easily with abstractions such as named memory segmentsin flash
memory as it does with standard key files on disk. It has been deployed on embedded
systems without any conventional 1/0O capabilities (stdio) or dynamic memory
alocation facilities, with proprietary operating system architectures and services
including ATMs, printers, web-enabled devices, POS systems, embedded device
controllers, and similar environments, and even in devices with no operating system
at all (cryptlib runs on the bare metal). It can also run independent of any form of
operating system, and has been run on the bare metal in environments with minimal
available resources, in effect functioning as a complete crypto operating system for
the underlying hardware.

Because cryptlib functions identically across all supported environments, it’s possible
to perform application development in afull-featured development environment such
as Windows or Unix and only when the application is complete and tested move it to
the embedded system. Thisflexibility saves countless hours of development time,
greatly reducing the amount of time that needs to be spent with embedded systems
debuggers or in-circuit emulators since most of the development and code testing can
be done on the host system of choice.

If required the cryptlib devel opers can provide assistance in moving the code to any
new or unusua environments.

Performance

cryptlib is re-entrant and completely thread-safe, allowing it to be used with
multithreaded applications under BeOS, 0S/2, Windows 95/98/M E, Windows
NT/2000/XP, Windows CE, and Unix systems that support threads. Becauseit is
thread-safe, lengthy cryptlib operations can be run in the background if required
while other processing is performed in the foreground. In addition cryptlib itself is
multithreaded so that computationally intensive internal operations take placein the
background without impacting the performance of the calling application.

cryptlib features 11

Most of the core algorithms used in cryptlib have been implemented in assembly
language in order to provide the maximum possible performance, and will take
advantage of crypto hardware accel eration facilities present in some CPUs such asthe
ViaC3family. These routines provide an unprecedented level of performance, in
most cases running faster than expensive, specialised encryption hardware designed
to perform the same task. This means that cryptlib can be used for high-bandwidth
applications such as video/audio encryption and online network and disk encryption
without the need to resort to expensive, specialised encryption hardware.

Cryptographic Random Number Management

cryptlib contains an interna secure random data management system that provides
the cryptographically strong random data used to generate session keys and
public/private keys, in public-key encryption operations, and in various other areas
that require secure random data. The random data pool is updated with unpredictable
process-specific information as well as system-wide data such as current disk 1/0 and
paging statistics, network, assorted client/server network protocol traffic, packet filter
statistics, multiprocessor statistics, process information, users, VM statistics, process
statigtics, battery/power usage statistics, system therma management data, open files,
inodes, terminal s, vector processors, streams, and loaded code, objectsin the global
heap, loaded modules, running threads, process, and tasks, and an equally large
number of system performance-related statistics covering virtually every aspect of the
operation of the system.

The exact data collected depends on the hardware and operating system, but generally
includes extremely detailed and constantly changing operating statistics and
information. In addition if a/ dev/ r andom EGD, or PRNGD-style style
randomness driver (which continually accumulates random data from the system) is
available, cryptlib will use this as a source of randomness. Finally, cryptlib supports
anumber of cryptographically strong hardware random number generators, either
built into the CPU or system chipset or available as external crypto devices, that can
be used to supplement the internal generator. As a post-processing stage, cryptlib
employs an ANS| X9.17/X9.31 generator for additional security and for FIPS 140
compliance. Thislevel of secure random number management ensures that security
problems such as those present in Netscape’s web browser (which allowed encryption
keys to be predicted without breaking the encryption because the “random” data
wasn’t at all random) can’t occur with cryptlib.

Programming Interface

The application programming interface (API) serves as an interface to a range of
plug-in encryption modules that allow encryption agorithmsto be added in afairly
transparent manner, so that adding a new algorithm or replacing an existing software
implementation with custom encryption hardware can be done without any trouble.
The standardised API allows any of the agorithms and modes supported by cryptlib
to be used with aminimum of coding effort. In addition the easy-to-use high-level
routines alow for the exchange of encrypted or signed messages or the establishment
of secure communications channels with a minimum of programming overhead.
Language bindings are available for C/ C++, C#/ .NET, Delphi, Java, Python, Tcl,
and Visua Basic (VB).

cryptlib has been written to be as foolproof as possible. On initialisation it performs
extensive self-testing against test data from encryption standards documents, and the
APIs check each parameter and function call for errors before any actions are
performed, with error reporting down to the level of individual parameters. In
addition logical errors such as, for example, akey exchange function being called in
the wrong sequence, are checked for and identified.

Documentation

cryptlib comes with extensive documentation in the form of a 310-page user manual
and a 320-page technical reference manual. The user manual isintended for
everyday cryptlib use and contains detailed documentation on every aspect of

12 Introduction

cryptlib’s functionality. In most cases the code needed to secure an application can
be cut and pasted directly from the appropriate section of the manual, avoiding the
need to learn yet another programming API. The user manual concludes with a
reference section covering the various cryptlib API functions, constants, and data
types.

The technica reference manual covers the design and internals of cryptlib itself,
including the cryptlib security model and security mechanisms that protect every part
of cryptlib’s operation. In addition the technical manual provides a wealth of
background information to help users understand the security foundations on which
cryptlib is built.

Algorithm Support

Included as core cryptlib components are implementations of the most popular
encryption and authentication algorithms, AES, Blowfish, CAST, DES, triple DES,
IDEA, RC2, RC4, RC5, and Skipjack, conventional encryption, MD2, MD4, MD5,
RIPEMD-160, SHA-1, and SHA-2 hash agorithms, HMAC-MD5, HMAC-SHA, and
HMAC-RIPEMD-160 agorithms, and Diffie-Hellman, DSA, Elgamal, and RSA
public-key encryption, with eliptic-curve encryption under development. The
algorithm parameters are summarised below:

Algorithm Key size Block size

AES 128/192/256 128
Blowfish 448 64
CAST-128 128 64
DES 56 64
Triple DES 112/168 64
IDEA 128 64
RC2 1024 64
RC4 2048 8

RC5 832 64
Skipjack 80 64
MD2 128
MD4 128
MD5 128
RIPEMD-160 — 160
SHA-1 — 160
SHA-2 / SHA-256 — 256
HMAC-MD5 128 128
HMAC-SHA 160 160
HMAC-RIPEMD-160 160 160
Diffie-Hellman 4096 —
DSA 4096" -
Elgamal 4096 —
RSA 4096 —

Standards Compliance

All agorithms, security methods, and data encoding systemsin cryptlib either comply
with one or more national and international banking and security standards, or are
implemented and tested to conform to a reference implementation of a particular
agorithm or security system. Compliance with national and international security
standards is automatically provided when cryptlib isintegrated into an application.
These standards include ANS| X3.92, ANSI X3.106, ANSI X9.9, ANSI X9.17, ANSI
X9.30-1, ANSI X9.30-2, ANSI X9.31-1, ANSI X9.42, ANS| X9.52, ETSI TS 101
733,ETSI TS101 861, ETSI TS 101 862, ETSI TS 102, FIPS PUB 46-2, FIPS PUB
46-3, FIPS PUB 74, FIPS PUB 81, FIPS PUB 113, FIPS PUB 180, FIPS PUB 180-1,
FIPS PUB 186, FIPS PUB 198, ISO/IEC 8372, ISO/IEC 8731 ISO/IEC 8732,

! The DSA standard only defines key sizes from 512 to 1024 bits, cryptlib supports longer keys but there is no
extra security to be gained from using these keys.

cryptlib features 13

ISO/IEC 8824/ITU-T X.680, ISO/IEC 8825/ITU-T X.690, ISO/IEC 9797, ISO/IEC
10116, ISO/IEC 10118, ITU-T X.842, ITU-T X.843, PKCS#1, PKCS#3, PKCS#5,
PKCS#7, PKCS#9, PKCS#10, PKCS#11, PKCS#15, RFC 1319, RFC 1320, RFC
1321, RFC 1750, RFC 1991, RFC 2040, RFC 2104, RFC 2144, RFC 2202, RFC
2246, RFC 2268, RFC 2311 (cryptography-related portions), RFC 2312, RFC 2313,
RFC 2314, RFC 2315, RFC 2437, RFC 2440, RFC 2459, RFC 2510, RFC 2511, RFC
2528, RFC 2560, RFC 2585, RFC 2630, RFC 2631, RFC 2632, RFC 2633
(cryptography-related portions), RFC 2634, RFC 2785, RFC 2876, RFC 2898, RFC
2984, RFC 2985, RFC 2986, RFC 3039, RFC 3058, RFC 3114, RFC 3126, RFC
3161, RFC 3174, RFC 3183, RFC 3211, RFC 3218, RFC 3261 (cryptography-related
portions), RFC 3268, RFC 3274, RFC 3279, RFC 3280, RFC 3281, RFC 3369, RFC
3370, RFC 3447, RFC 3546, and RFC 3565. Because of the use of internationaly
recognised and standardised security algorithms, cryptlib users will avoid the
problems caused by home-grown, proprietary algorithms and security techniques that
often fail to provide any protection against attackers, resulting in embarrassing bad
publicity and expensive product recalls.

Y2K Compliance

cryptlib handles al date information using the ANSI/ISO C time format, which does
not suffer from Y 2K problems. Although earlier versions of the X.509 certificate
format do have Y 2K problems, cryptlib transparently converts the dates encoded in
certificates to and from the ANSI/ISO format, so cryptlib users will never see this.
cryptlib’s own time/date format is not affected by any Y2K problems, and cryptlib
itself conforms to the requirements in the British Standards Institution’s DISC
PD2000-1:1998 Y 2K compliance standard.

Configuration Options

cryptlib works with a configuration database that can be used to tune its operation for
different environments. This allows a system administrator to set a consistent
security policy which is then automatically applied by cryptlib to operations such as
key generation and data encryption and signing, although they can be overridden on a
per-application or per-user basisif required.

cryptlib Applications

The security services provided by cryptlib can be used in virtually any situation that
requires the protection or authentication of sensitive data. Some areasin which
cryptlib is currently used include:

e Protection of medical records transmitted over electronic links.
e Protection of financial information transmitted between branches of banks.
e Trangparent disk encryption.

e Strong security services added to web browsers with weak, exportable
security.

e RunningaCA.

e Encrypted electronic mail.

e Fileencryption.

e Protecting content on Internet servers.
e Digitally signed electronic forms.

e S/MIME mail gateway.

e Secure database access.

e Protection of credit card information.

14 Introduction

Encryption Code Example

The best way to illustrate what cryptlib can do iswith an example. The following
code encrypts a message using public-key encryption.

/* Create an envelope for the nessage */
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME);

/* Push in the nessage recipient's name */
crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO REC! Pl ENT,
reci pi ent Nare, reci pi ent NaneLength);

/* Push in the nmessage data and pop out the signed and encrypted
result */

crypt PushDat a(crypt Envel ope, nessage, nessageSi ze, &bytesln);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, encryptedMessage, encryptedSi ze,
&ytesQut);

/* Clean up */

crypt Dest royEnvel ope(crypt Envel ope);
This performs the same task as a program like PGP using just 6 function calls (to
create a PGP/OpenPGP message, just change the CRY PT_FORMAT_SMIME to
CRYPT_FORMAT_PGP). All data management is handled automatically by
cryptlib, so there’s no need to worry about encryption modes and algorithms and key
lengths and key types and initialisation vectors and other details (although cryptlib
provides the ability to specify al thisif you feel the need).

The code shown above results in cryptlib performing the following actions:

e Generate arandom session key for the default encryption algorithm (usually
triple DES or AES).

e Look up the recipient’s public key in a key database.

e Encrypt the session key using the recipient’s public key.
e Encrypt the signed data with the session key.

e Passthe result back to the user.

However unless you want to call cryptlib using the low-level interface, you never
need to know about any of this. cryptlib will automatically know what to do with the
data based on the resources you add to the envelope — if you add a signature key it
will sign the data, if you add an encryption key it will encrypt the data, and so on.

Secure Session Code Example

Establishing a secure session using SSL/TLS issimilarly easy:
CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSL);

/* Add the server nane and activate the session */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
server Nanme, serverNaneLength);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

If you prefer SSH to SSL, just change the CRY PT_SESSION_SSL to CRYPT_-
SESSION_SSH and add a user name and password to log on. Aswith the encryption
code exampl e above, cryptlib provides asingle unified interface to its secure session
mechanisms, so you don’t have to invest a lot of effort in adding special-case
handling for different security protocols and mechanisms.

The corresponding SSL/TLS (or SSH if you prefer) server is:

Document conventions 15

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSI ON SSL_SERVER

)

/* Add the server key/certificate and activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY, privateKey

)
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

As with the secure enveloping example, cryptlib is performing alarge amount of
work in the background, but again there’s no need to know about this since it’s all
taken care of automatically.

Certificate Management Code Example

The following code illustrates cryptlib’s plug-and-play PKI interface:
CRYPT_SESSI ON crypt Sessi on;

/* Create the CMP session and add the server name/address */

crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION CWP);

crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO SERVER, server,
serverlLength);

/* Add the usernane, password, and smart card */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO USERNAME,
user Nane, user NanmeLength);

crypt Set AttributeString(crypt Session, CRYPT_SESS|I NFO PASSWORD,
password, passwordLength);

crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO CMP_PRI VKEYSET,
crypt Device);

/* Activate the session */
crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO ACTI VE, TRUE);

This code takes a smart card and generates separate encryption and signing keysiniit,
requests a signature certificate from the CA for the signing key, uses that to obtain a
certificate for the encryption key, obtains any further certificates that may be needed
from the CA (for example for SMIME signing or SSL server operation), and stores
everything in the smart card. Compare thisto the hundreds or even thousands of lines
of code required to do the same thing using other toolkits.

Oh yes, and cryptlib provides the CA-side functionality as well — there’s no heed to
pay an expensive commercial CA for your certificates, since cryptlib can perform the
same function.

Document conventions

This manual uses the following document conventions:

Example Description

cryptlib.h Thisfont is used for filenames.

cryptCreateContext Bold type indicates cryptlib function names.

Value Words or portions of wordsin italicsindicate
placeholders for information that you need to
supply.

if(i ==0) Thisfont is used for sample code and operating

system commands.

Recommended Reading

One of the best books to help you understand how to use cryptlib is Network Security
by Charlie Kaufman, Radia Perlman, and Mike Speciner, which covers general
security principles, encryption techniques, and a number of potential cryptlib
applications such as X.400/X.500 security, PEM/S/IMIME/PGP, Kerberos, and
various other security, authentication, and encryption techniques. The book aso

16

Introduction

contains awealth of practical advice for anyone considering implementing a
cryptographic security system. Security Engineering: A Guide to Building
Dependabl e Distributed Systems by Ross Anderson also contains alarge amount of
useful information and advice on engineering secure systems. Building Secure
Software by John Viega and Gary McGraw and Writing Secure Software by Michagl
Howard and David LeBlanc contain a wealth of information on safe programming
techniques and related security issues.

Cryptographic Security Architecture Design and Verification by Peter Gutmann is the
technical documentation for cryptlib and complements the cryptlib user manual. It
contains full details of the architectural and security features of cryptlib, aswell asa
wealth of background material to help you understand the security foundations on
which cryptlib is built.

A tutoria in 8 partstotalling over 700 slides and covering all aspects of encryption
and general network security, including encryption and security basics, algorithms,
key management and certificates, CAs, certificate profiles and policies, PEM, PGP,
S/MIME, SSL, SSH, SET, smart cards, and awide variety of related topics, is
availablefrom ht t p: / / www. cs. auckl and. ac. nz/ ~pgut 001/ tutorial /. If
you want to do anything with certificates, you should definitely read Everything you
Never Wanted to Know about PKI but were Forced to Find Out, available from
http://ww. cs. auckl and. ac. nz/ ~pgut 001/ pubs/ -

pki tut ori al . pdf, to find out what you’re in for if you have to work with
certificates.

In addition to this, there are a number of excellent books available that will help you
in understanding the cryptography used in cryptlib. The foremost of these are
Applied Cryptography by Bruce Schneier and the Handbook of Applied Cryptography
by Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Applied Cryptography
provides an easy-to-read overview while the Handbook of Applied Cryptography
provides extremely comprehensive, in-depth coverage of the field.

For general coverage of computer security issues, Security in Computing by Charles
Pfleeger provides agood overview of security, access control, and secure operating
systems and databases, and also goesinto a number of other areas such as ethical
issues that aren’t covered by most books on computer security. Computer Security:
Art and Science by Matt Bishop provides in-depth coverage of all aspects of
computer security modelling and design, with a particular emphasis on access control
and security models and high-assurance systems.

Recommended Reading 17

Installation

AMX

BeOS

ChorusOS

DOS

DOS32

eCOS

This chapter describes how to install cryptlib for avariety of operating systems.

The AMX Multitasking Executive is areal-time OS (RTOS) with devel opment
hosted under Unix or Windows. Y ou can build cryptlib for AMX using the cross-
compilation capabilities of the standard makefile, see the entry for Unix on page 20
for more details on working with the makefile. The maketarget for AMX is

t ar get - anx, so you’d build cryptlib with make target-amx. Details on building
and using cryptlib for AMX, and on embedded cryptlib in general, are givenin
“Embedded Systems” on page 287.

The BeOS version of cryptlib can be built using a procedure which isidentical to that
given for Unix on page 20. Any current version of BeOS can build the code directly
from the Unix makefile. Old versions of BeOS using the Be devel opment
environment will require that you edit the Unix makefile dightly by un-commenting
the marked lines at the start of thefile.

ChorusOS s an embedded OS with development hosted under Unix. Y ou can build
cryptlib for ChorusOS using the cross-compilation capabilities of the standard
makefile, see the entry for Unix on page 20 for more details on working with the
makefile. The maketarget for ChorusOSist ar get - chor us, so you’d build
cryptlib with make target-chorus. Details on building and using cryptlib for
ChorusOS, and on embedded cryptlib in general, are given in “Embedded Systems”
on page 287.

The 16-bit DOS version of cryptlib can be built from the same files as the 16-bit
Windows version, so no separate makefile is provided. Any attempt to use high-level
routines that require random data will fail witha CRYPT_ERROR_RANDOM error
codeunlessa/ dev/ r andomstyle driver is available because there isn’t any way to
reliably obtain random data under DOS. Y ou can however treat DOS as an
embedded systems environment and use the random seeding capability described in
“Porting to Devices without Randomness/Entropy Sources” on page 293.

The 32-bit DOS version of cryptlib can be built using the supplied makefile, which
requires the djgpp compiler. The DOS32 version of cryptlib uses the same 32-bit
assembly language code used by the Win32 and 80x86 Unix versions, so it runs
significantly faster than the 16-bit DOS version. Like the 16-bit DOS version, any
attempt to use the high-level key export routines will fail witha CRYPT_ERROR _-
RANDOM error code unlessa/ dev/ r andomstyle driver is available because there
isn’t any way to reliably obtain random data under DOS. You can however treat
DOS as an embedded systems environment and use the random seeding capability
described in “Porting to Devices without Randomness/Entropy Sources” on page 293.

eCOS is an embedded/real-time OS (RTOS) with development hosted under Unix or
Windows. You can build cryptlib for eCOS using the cross-compilation capabilities
of the standard makefile, see the entry for Unix on page 20 for more details on
working with the makefile. The make target for eCOSist ar get - ecos, so you’d
build cryptlib with make target-ecos. Details on building and using cryptlib for
eCOS, and on embedded cryptlib in general, are given in “Embedded Systems” on
page 287.

18 Installation

HC/OS-II

HC/OS-1 is an embedded/red -time OS (RTOS) with development usually hosted
under Windows. Y ou can build cryptlib for uC/OS-11 using the cross-compilation
capabilities of the standard makefile, see the entry for Unix on page 20 for more
details on working with the makefile. The make target for uC/OS-I1 ist ar get -
ucos, so you’d build cryptlib with make target-ucos. Detailson building and
using cryptlib for uC/OS-11, and on embedded cryptlib in general, are givenin
“Embedded Systems” on page 287.

Embedded Linux

HITRON

The embedded Linux version of cryptlib can be built using the standard Linux
development tools. Since this environment isidentical to the generic Unix one, the
installation instructions for Unix on page 20 apply here.

MITRON isan embedded/real-time OS (RTOS) with development usually hosted
under Unix or aUnix-like OS. You can build cryptlib for uITRON using the cross-
compilation capabilities of the standard makefile, see the entry for Unix on page 20
for more details on working with the makefile. The make target for pITRON is
target-itron,soyou’dbuild cryptlib with make target-itron. Detailson
building and using cryptlib for WITRON, and on embedded cryptlib in general, are
given in “Embedded Systems” on page 287.

Macintosh OS X

MVS

0S2

The standard Macintosh build environment uses Apple’s Mac OS X Developer Tools,
driven by the standard makefile, for which the instructions in the section on building
cryptlib for Unix on page 20 apply. Alternatively, you can build cryptlib using
Metroworks’ Codewarrior with the Mac.mcp project file. This can build cryptlib
either as a static or shared library for both 68K and PowerPC Macs, athough since
this isn’t the primary build environment the project file may apply to a slightly older
cryptlib release and require a little updating to match the current configuration (the
standard makefile will always be current). In addition it’s possible to build it using
Apple’s free MrC compiler, with the same caveat about updating of configuration
files.

The MV Sversion of cryptlib can be built using the standard IBM C/C++ compiler
and accompanying tools. Since this environment is very similar to the Unix one, the
installation instructions for Unix on page 20 apply here also. Note that PTF
UQ50384 (which fixes abug in the macro version of the st r cat function as
described in APAR PQ43130) is required if you’re using the V2R10 C/C++ compiler.

Y ou can control the use of ddnames with the DDNAME_IO define. If DDNAME_IO
is defined when building the code, cryptlib will use ddnames for al 1/0, and user
optionswill be saved in dynamically allocated datasets userid. CRYPTLIB.filename.
If DDNAME_IO is not defined when building the code, cryptlib will use HFS for al
1/0, and user optionswill be saved in $HOME/.cryptlib.

After you’ve built cryptlib, you should run the self-test program to make sure that
everything isworking OK. Y ou can use the ussalloc USS shell script to allocate
MV S data setsfor testlib, and the usscopy shell script to copy the filesin the test
directory to the MV S data sets allocated with ussalloc. testlib.jcl isthe JCL needed
to execute testlib.

The OS2 version of cryptlib can be built using the command-line version of the IBM
compiler. The supplied makefile will build the DLL version of cryptlib, and can also
build the cryptlib self-test program, which is a console application. Y ou should run

Recommended Reading 19

PalmOS

the self-test program after you’ve built cryptlib to make sure that everything is
working OK.

If you’re using the IBM OS/2 compiler you should set enumerated types to always be
32-bit values because the compiler by default uses variable-length types depending on
the enum range (so one enum could be an 8-bit type and another 32). cryptlibis
immune to this “feature”, and function calls from your code to cryptlib should also be
unaffected because of type promotion to 32-bit integers, but the variable-range enums
may cause problemsin your code if you try to work with them under the assumption
that they have afixed type.

PalmOS is the operating system for the Palm series of PDAs, with devel opment
hosted under Unix or Windows. Y ou can build cryptlib for PAdmOS using the
PalmOS 6 SDK and the cross-compilation capabilities of the standard makefile, see
the entry for Unix on page 20 for more details on working with the makefile. The
make target for the PAAmOS SDK ist ar get - pal nos and for the alternative PRC
development toolsist ar get - pal nmos- pr ¢, so you’d build cryptlib with make
target-palmos or make target-palmos-prc. Detailson building and using cryptlib
for PAIMOS, and on embedded cryptlib in general, are given in “Embedded Systems”
on page 287.

QNX Neutrino

RTEMS

Tandem

uClinux

The QNX Neutrino version of cryptlib can be built using the standard QNX
development tools. Since this environment isidentical to the generic Unix one, the
installation instructions for Unix on page 20 apply here.

The Real-Time Operating System for Multiprocessor Systems (RTEMS) isareal -
time OS (RTOS) with development hosted under Unix or Windows. Y ou can build
cryptlib for RTEMSS using the cross-compilation capabilities of the standard makefile,
see the entry for Unix on page 20 for more details on working with the makefile. The
make target for RTEMSist ar get - rt ens, so you’d build cryptlib with make
target-rtems. Details on building and using cryptlib for RTEMS, and on embedded
cryptlib in general, are given in “Embedded Systems” on page 287.

The Tandem version of cryptlib can be built using the standard c89 compiler and
accompanying tools under the OSS environment. Since this environment is very
similar to the Unix one, the installation instructions for Unix on page 20 apply here
also. The default target is Tandem OSS, you can re-target the built for NSK using the
-Wyst ype=guar di an directive in the makefile.

The Guardian sockets implementation changed in newer releases of the OS. Older
releases required the use of nonstandard nowait sockets handled via AWAITIOX()
instead of the standard BSD sockets interface. If you’re running an older version of
the OS and need to use any of the secure networking protocols such as SSL/TLS,
SSH, CMP, SCEP, RTCS, or OCSP, you’ll need to use cryptlib’s alternative network
data-handling strategy described in “Network Issues” on page 127.

uClinux is areal-mode/embedded version of Linux with development hosted under
Unix. You can build cryptlib for uClinux using the cross-compilation capabilities of
the standard makefile, see the entry for Unix on page 20 for more details on working
with the makefile. The maketarget for uClinux ist ar get - ucl i nux, so you’d
build cryptlib with make target-uclinux. Details on building and using cryptlib for
uClinux, and on embedded cryptlib in general, are given in “Embedded Systems” on
page 287.

20 Installation

Unix

VM/CMS

To unzip the code under Unix use the - a option to ensure that the text files are
converted to the Unix format. The makefile by default will build the statically-linked
library when you invoke it with make. To build the shared library, use make

shar ed. Once cryptlib has been built, use make t est | i b to build the cryptlib
self-test program testlib, or make st est | i b to build the shared-library self-test
program stestlib. Thiswill run fairly extensive self-tests of cryptlib that you can run
after you’ve built it to make sure that everything isworking OK. testlib needsto be
run from the cryptlib root directory (the one that the main datafiles arein) since it
uses alarge number of pre-generated datafiles that are located in a subdirectory
below this one. Depending on your system setup and privileges you may need to
either copy the shared library to/ usr /i b or setthe LD LI BRARY_PATH
environment variable (or an OS-specific equivalent) to make sure that the shared
library is used.

If you’re using the statically-linked form of cryptlib in your application rather than
the shared library, you’ll probably need to link in additional (system-specific) static
libraries to handle threads, network access, and system-specific odds and ends. The
makefile contains alist of the needed additional libraries, ordered by system type and
version. The shared-library version of cryptlib doesn’t require these additional
libraries to be linked in, since the references are automatically resolved by the OS.

If your system doesn’t come pre-configured with a/ dev/ r andom EGD, or
PRNGD-style style randomness driver (which continually accumulates random data
from the system), you may want to download one and install it, since cryptlib will
make use of it for gathering entropy. cryptlib has a built-in randomness polling
subsystem so it will function without an externa randomness driver, but it never hurts
to have one present to supplement the internal entropy polling.

If you’re using a key database or certificate store, you need to enable the use of the
appropriate interface module for the database backend. Details are given in “Key
Database Setup” on page 23. For the cryptlib self-test code you can define the
database libraries using the TESTLI BS setting at the start of the makefile. If you
don’t enable the use of a database interface, the self-test code will issue awarning
that no key databaseis present and continue without testing the database interface.

If you’re using an LDAP directory, you need to install the required LDAP client
library on your system, enable the use of LDAP using the USE_L DAP define before
you build cryptlib, and link the LDAP client library into your executable. If you
don’t enable the use of an LDAP directory interface, the self-test code will issue a
warning that no LDAP directory interface is present and continue without testing the
LDAP interface.

If you’re using special encryption hardware or an external encryption device such as a
PCMCIA card or smart card, you need to install the required device drivers on your
system and enable their use when you build cryptlib by linking in the required
interface libraries. If you don’t enable the use of a crypto device, the self-test code
will issue awarning that no devices are present and continue without testing the
crypto device interface.

For any common Unix system, cryptlib will build without any problems, but in some
rare cases you may need to edit random/unix.c and possibly ioffile.h and io/tcp.h if
you’re running an unusual Unix variant that putsinclude filesin strange places or has
broken Posix or sockets support.

The VM/CMS version of cryptlib can be built using the standard C/370 compiler and
accompanying tools. The supplied EXEC2 file VMBUILD EXEC will build cryptlib
asa TXTLIB and then build the self-test program as an executable MODULE file.
Since VM sitestypically have different system configurations, thisfile and possibly
portions of the source code may require tuning in order to adjust it to suit the build
process normally used at your site.

Recommended Reading 21

VxWorks

VxWorks is an embedded/real-time OS (RTOS) with development hosted under Unix
or Windows. You can build cryptlib for VxWorks using the cross-compilation
capabilities of the standard makefile, see the entry for Unix on page 20 for more
details on working with the makefile. The make target for VxWorksist ar get -
vxwor ks, so you’d build cryptlib with make target-vxworks. Details on building
and using cryptlib for VxWorks, and on embedded cryptlib in general, are givenin
“Embedded Systems” on page 287.

Windows 3.x

The 16-bit cryptlib DLL can be built using the cl16.mak makefile, which isfor
version 1.5x of the Visual C++ compiler. The mixed C/assembly language
encryption and hashing code will give a number of warnings, the remaining code
should compile without warnings. Once the DLL has been built, test.mak will build
the cryptlib self-test program, which is a console application. Y ou can run this after
you’ve built cryptlib to make sure that everything is working OK.

If you’re using a key database or certificate store, you need to set up an ODBC data
source for this. Details are given in “Key Database Setup” on page 23.

Windows 95/98/ME and Windows NT/2000/XP

The 32-bit cryptlib DLL can be built using the crypt32 project file, which isfor
Visual C++ 6 and Visual C++ .NET. Oncethe DLL has been built, the test32
project file will build the cryptlib self-test program test32, which isa console
application. You can run this after you’ve built cryptlib to make sure that everything
isworking OK. test32 needsto be run from the cryptlib root directory (the one that
the main datafilesarein) since it uses alarge number of pre-generated data files that
are located in a subdirectory below this one. If you’ll be using the cryptlib user
interface components you need to install the cryptlib user interface library cl32ui.dll
aongside cryptlib itself.

If you’re using an older version of Visual C++ NET, a bug in its version 6 project
fileimport processresultsin files having the $(Nol nheri t) property set, so that a
define made at the project level won’t be passed down to other files. If you want to
enable options based on global defines, you need to disable this property before the
defines will propagate down to other files.

If you’re using a key database or certificate store, you need to set up an ODBC data
source for this. Details are given in “Key Database Setup” on page 23.

If you’re using an LDAP directory, you may need to install the required LDAP client
DLL onyour system. By default cryptlib will use Windows’ built-in LDAP client,
however some rather old versions of Windows don’t contain this and you’ll need to
use the Netscape LDAP client DLL which is available for download from the
Netscape web site. To use this client instead of the Windows one, you need to define
NETSCAPE_CLIENT when you build cryptlib. If you don’t have the Windows
LDAP client present and don’t use the Netscape one, the self-test code will issue a
warning that no LDAP directory interface is present and continue without testing the
LDAP interface.

If you’re using special encryption hardware or an external encryption device such as a
PCMCIA card or smart card, you need to install the required device drivers on your
system, and if you’re using a generic PKCS #11 device you need to configure the
appropriate driver for it as described in “Encryption Devices and Modules” on page
265. cryptlib will automatically detect and use any devices that it recognises and that
have drivers present. If you don’t enable the use of a crypto device, the self-test code
will issue awarning that no devices are present and continue without testing the
crypto device interface.

Personal firewall products from some vendors can interfere with network operations
for devices other than standard web browsers and mail clients. If you’re experiencing
odd behaviour when using cryptlib for network operations (for example you can

22 Installation

connect but can’t exchange data, or you get strange error messages when you
connect), you can try temporarily disabling the persona firewall to seeif this fixes
the problem. If it does, you should contact the personal firewall vendor to fix their
product, or switch to a different product.

If you’re using Borland C++ rather than Visual C++, you’ll need to set up the .def
and .lib files for use with the Borland compiler. To do this, run the following
commands in the cryptlib directory:

i mpdef cl 32 cl 32
implib cl32 cl32. def

Thefirst one will produce a Borland-specific .def file from the DLL, the second one
will produce a Borland-specific .lib file from the DLL and .def file.

To ingall the ActiveX control, put the cryptlib DLL and the ActiveX wrapper
clcom.dll into the Windows system directory and register the ActiveX wrapper with:

regsvr32 clcomdl |

To use the ActiveX control with Visual Basic, use Project | Reference to add
clcom.dll, after which VB will recognise the presence of the ActiveX wrapper.

Windows CE / Pocket PC / SmartPhone

Xilinx XMK

The 32-bit cryptlib DLL for Windows CE/PocketPC can be built using the crypt32ce
project file, which isfor version 3 or 4 of the eMbedded Visual C++ compiler. Once
the DLL has been built, the test32ce project file will build the cryptlib self-test
program test32ce, which is a (pseudo-)consol e application that produces its output
on the debug console. You can run this after you’ve built cryptlib to make sure that
everything isworking OK. test32ce needs to be run from the cryptlib root directory
(the one that the main datafiles arein) since it uses alarge number of pre-generated
datafilesthat are located in a subdirectory below this one.

The cryptlib Windows CE self-test uses the ‘Storage Card’ pseudo-folder to access
the files needed for the self-test. Depending on the system setup, you need to either
copy the filesto the storage card or (the easier alternative) use folder sharing to
access the directory containing the test files. From the Windows CE menu, select
Folder Sharing and share the testdata subdirectory, which will appear as\\Storage
Card\ on the Windows CE device.

Windows CE is a Unicode environment, which means that all text strings are passed
to and from cryptlib as Unicode strings. For simplicity the examplesin this manual
are presented using the standard char datatype used on most systems, however
under Windows CE all character types and strings are Unicode in line with standard
Windows CE practice. When you’re using the examples, you should treat any
occurrence of characters and strings as standard Unicode data types.

A few older versions of eVC++ for some platforms don’t include the ANSI/ISO C
standard time.h header, which isarequired file for a conforming ANSI/ISO C
compiler. If you have a version of eVC++ that doesn’t include this standard header,
you need to add it from another source, for example an eV C++ distribution that does
include it or the standard (non-embedded) V C++ distribution.

The Xilinx Microkernel (XMK) isareal-time OS (RTOS) with development hosted
under Unix or Windows. Y ou can build cryptlib for XMK using the cross-
compilation capabilities of the standard makefile, see the entry for Unix on page 20
for more details on working with the makefile. The make target for XMK is

t ar get - xnk- b for the MicroBlaze coreand t ar get - xnk- ppc for the
PowerPC core, so you’d build cryptlib with make target-xmk-mb or make target-
xmk-ppc. Detailson building and using cryptlib for XMK, and on embedded
cryptlib in general, are given in “Embedded Systems” on page 287.

Recommended Reading 23

Other Systems

cryptlib should be fairly portable to other systems, the only part that needs special
attention is the randomness-gathering in random/os_name.c (cryptlib won’t work
without this, the code will produce alink error). Theidea behind the randomness-
gathering codeis to perform a comprehensive poll of every possible entropy sourcein
the system in a separate thread or background task (“slowPoll”), as well as providing
aless useful but much faster poll of quick-response sources (“fastPoll”). In addition
the filesystem 1/O code in io/file.c may need system-specific code and definitions
added to it if the system you’re running on doesn’t use a standard form of file I/O, for
example a system that hasits own file I/O layer that isn’t compatible with standard
models or one that doesn’t have file I/O at all such as an embedded device that uses
flash memory for storage.

To find out what to compile, look at the Unix makefile, which contains all of the
necessary source files (the gr oup_name_0OBJ S dependencies) and compiler
options. Link al of these into alibrary (as the makefile does) and then compile and
link the modulesin the test subdirectory with the library to create the self-test
program. Thereis additional assembly-language code included that will lead to
noticeable speedups on some systems, you should modify your build options as
appropriate to use these if possible.

Depending on your compiler you may get afew warnings about some of the
encryption and hashing code (one or two) and the bignum code (one or two). This
code mostly relates to the use of C as a high-level assembler and changing things
around to remove the warnings on one system could cause the code to break on
another system.

Key Database Setup

If you want to work with a key database or certificate store, you need to configure a
database for cryptlib to use. Under Windows, go to the Control Panel and click on
the ODBC/ODBC32 item. Click on “Add” and select the ODBC data source (that is,
the database type) that you want to use. Ifit’s on the local machine, this will
probably be an Access database, if it’s a centralised database on a network this will
probably be SQL Server. Once you’ve selected the data source type, you need to give
it aname for cryptlib to use. “Public Keys” is a good choice (the self-test code uses
two sources called testkeys and testcertstore during the self-test procedure, and
will create theseitself if possible). In addition you may need to set up other
parameters like the server that the databaseis located on and other access
information. Once the data sourceis set up, you can accessit asa CRYPT_-
KEYSET _ODBC keyset using the name that you’ve assigned to it.

Under Unix or similar systems the best way to work with akey database or certificate
storeisto use the ODBC interface, either viaalayered driver such as unixODBC or
iODBC, or directly viainterfaces such asMyODBC. Alternatively, you can usethe
cryptlib generic database interface to compile database-specific support code directly
into cryptlib, or the database network plugin capability to make a network connection
to adatabase server such asIBM DB2, Informix, Ingres, Oracle, Postgres, or Sybase.

The easiest interface to use is the ODBC one, which hides al of the low-level
database interface details. The ODBC configuration process follows the same pattern
as the one given above for ODBC under Windows, with OS-specific variations
depending on the platform that you’re running it under. You can enable the use of the
ODBC interface using the USE_ODBC define before you build cryptlib, and if you’re
not using Windows (which uses dynamic binding to the ODBC interface) you need to
link the ODBC client library into your executable.

For Unix and Unix-like systems the two most common ODBC implementations are
unixODBC and iODBC, although a variety of other products are also available, and
some databases have native ODBC support, examples being MySQL (viaMyODBC)
and IBM DB2. These interfaces support awide range of commercia database
including AdabasD, IBM DB2, Informix, Ingres, Interbase, MySQL, Oracle,
Postgres, and Sybase. unixODBC uses the ODBCConfig GUI application to

24 Installation

configure data sources and driversin a manner identical to the standard Windows
interface, and also provides the odbcinst CL1 utility to configure data sources and
drivers. odbcinst can be used to automatically install and configure database drivers
for ODBC using template files that contain information about the driver such asthe
location of the driver binaries, usually somewhere under /usr/local. For example to
configure the Oracle drivers for ODBC using a prepared template file you’d use:

odbcinst -i -d -f oracle.tnpl

iODBC provides drivers as platform-specific binaries that are installed using the
iODBC ingtdlation shell scripts. See the documentation for the particular ODBC
interface that you’re using for more information on installation and configuration
issues.

If you don’t want to use the ODBC interface, you can either compile database-
specific interface code directly into cryptlib or use the database network plugin
capability to make a network connection to a database server. To use cryptlib’s
generic database interface you need to define USE_DATABASE when you build
cryptlib and add the appropriate interface code to communicate with the database
back-end of your choice, as described in “Database and Networking Plugins” on page
295. In addition you need to link the database library or libraries (for example
libmysqgl.a) into your executable.

To use the database plugin capability to make a network connection to a database
server such as Informix, Ingres, Oracle, Postgres, or Sybase, you need to create the
appropriate plugin for your server as described in “Database and Networking
Plugins” on page 295.

If you need to use a database keyset on an embedded system, you can use a system
like the SQLite embedded database engine, http://sqlite.org/. SQLiteisaself-
contained, embeddable, zero-configuration SQL database engine that provides all of
the capabilities needed by cryptlib database keysets.

Customised and Cut-down cryptlib Versions

In some cases you may want to customise the cryptlib build or create a cut-down
version that omits certain capabilitiesin order to reduce code size for constrained
environments. You can do this by editing the configuration build file cryptini.h,
which allows almost every part of cryptlib’s functionality to be selectively enabled or
disabled (some functionality is used by all of cryptlib and can’t be disabled). Each
portion of functionality is controlled by a USE_name define, by undefining the value
before you build cryptlib the named functionality will be removed. For example,
undefining USE_SSH1 would disable the use of SSHv1 (thisis disabled by default,
since it’s been superseded by SSHv2); undefining USE_SKIPJACK would disable
the use of the Skipjack algorithm. In addition you can use the build file to disable the
use of the two patented algorithms IDEA and RCS5 (see “Algorithms” on page 302 for
more information on whether these two patents affect your use of cryptlib) by
undefining USE_ PATENTED ALGORITHMS. More details on tuning cryptlib’s
size and capabilities (particularly for use in embedded systems) isgivenin
“Embedded Systems” on page 287.

Debug vs. Release Versions of cryptlib

cryptlib can be built in one of two forms, a debug version and arelease version. The
main difference between the two is that the release version is built with the NDEBUG
value defined, which disables the large number of internal consistency checksthat are
present in the debug build of cryptlib. These consistency checks are used to catch
conditions such asinappropriate error codes being returned from internal functions,
invalid data values being passed to functions inside cryptlib, configuration errors, and
general sanity checks that ensure that everything is operating asit should. If one of
these internal checksistriggered, cryptlib will throw an exception and display an
error message indicating that an assertion in the code has failed. These assertions are
useful for tracking down areas of code that may need revision in later rel eases.

Recommended Reading 25

If you don’t want to see these diagnostic messages, you should build cryptlib with the
NDEBUG value defined (thisis the default under Unix and is done automatically
under Windows when you build arelease version of the code with Visual C++).
Building aversion in this manner will disable the extra consistency checks that are
present in the debug version so that, for example, error conditions will be indicated
by cryptlib returning an error code for afunction call rather than throwing an
exception. This will have the slight downside that it’ll make tracking the exact
location of a problem a bit more complex, since the error code which is returned
probably won’t be checked until the flow of execution has progressed along way
from where the problem was detected. On the other hand the release version of the
codeis significantly smaller than the debug version.

As always, if you’re working with a debug build of the code and perform an
operation that triggers an internal consistency check you should report the details and
the code necessary to recreate it to the cryptlib developersin order to allow the
exception condition to be analysed and corrected.

cryptlib Version Information

cryptlib uses 3-digit version numbers, available at runtime through the configuration
options CRYPT_OPTION_INFO_MAJORVERSION, CRYPT_OPTION_INFO _-
MINORVERSION, and CRYPT_OPTION_INFO_STEPPING, and at compiletime
through the define CRYPTLIB_VERSION. CRYPTLIB_VERSION contains the
current version as a 3-digit decimal value with thefirst digit being the major version
number (currently 3), the second digit being the minor version number, and the third
digit being the update or stepping number. For example, cryptlib version 3.2.1 would
have a CRYPTLIB_VERSION value of 321.

All cryptlib releases with the same stepping version number are binary-compatible.
Thismeansthat if you move from (for example) cryptlib version 3.2.1 to 3.2.2, all
you need to do is replace the cryptlib DLL or shared library to take advantage of new
cryptlib features and updates. All cryptlib releases with the same minor version
number as source-compatible, so that if you move from (for example) 3.2.1 to 3.3.5,
you need to recompile your application to match new featuresin cryptlib.

Support for Vendor-specific Algorithms

cryptlib supports the use of vendor-specific algorithm types with the predefined
values CRYPT_ALGO_VENDOR1, CRYPT_ALGO_VENDOR?2, and
CRYPT_ALGO_VENDORS3. For each of the algorithms you use, you need to add a
call to initialise the algorithm capability information to device/system.c alongside
the existing algorithm initialisation, and then provide your implementation of the
algorithm to compile and link into cryptlib. When you rebuild cryptlib with the
preprocessor define USE_VENDOR_ALGOS set, the new a gorithm types will be
included in cryptlib’s capabilities.

For exampleif you wanted to add support for the Foo256 cipher to cryptlib you
would create the file vendalgo.c containing the capability definitions and then
rebuild cryptlib with USE_VENDOR_ALGOS defined. The Foo256 algorithm
would then become available as algorithm type CRYPT_ALGO_VENDORLI.

26

cryptlib Basics

cryptlib Basics

cryptlib works with two classes of objects, container objects and action objects. A
container object is an object that contains one or more items such as data, keys or
certificates. An action object is an object which is used to perform an action such as
encrypting or signing data. The container types used in cryptlib are envel opes (for
data), sessions (for communications sessions), keysets (for keys), and certificates (for
attributes such as key usage restrictions and signature information). Container
objects can have items such as data or public/private keys placed in them and
retrieved from them. In addition to containing data or keys, container objects can
also contain other objects that affect the behaviour of the container object. For
example pushing an encryption object into an envelope container object will result in
al datawhich is pushed into the envelope being encrypted or decrypted using the
encryption object.

Encryption contexts are the action objects used by cryptlib. Action objects are used
to act on data, for example to encrypt or decrypt a piece of dataor to digitally sign or
check the signature on a piece of data.

The usual mechanism for processing datais to use an envelope or session container
object. The process of pushing datainto an envelope and popping the processed data
back out is known as enveloping the data. The reverse process is known as de-
enveloping the data. Session objects work in a similar manner, but are used to
encapsul ate a secure session with aremote client or server rather than alocal data
transformation. The first section of this manual covers the basics of enveloping data,
which introduces the envel oping mechanism and covers various aspects of the
enveloping process such as processing data streams of unknown length and handling
errors. Once you have the code to perform basic enveloping in place, you can add
extra functionality such as password-based data encryption to the processing. After
the basic concepts behind envel oping have been explained, more advanced techniques
such as public-key based enveloping and digital signature enveloping for SMIME
and PGP are covered.

Session objects are very similar to envelope objects except that they represent a
communi cations session with a remote client or server. The next section coversthe
use of session objects for protocols such as SSL, TLS, and SSH to secure
communications or work with protocols such as CMS, SCEP, RTCS, OCSP, and TSP
that handle functions such as certificate status information and timestamping.

The use of public keys for enveloping requires the use of key management functions,
and the next section covers key generation and storing and retrieving keys from
keyset objects and crypto devices. The public portions of public/private key pairs are
typicaly managed using X.509 certificates and certificate revocation lists. The next
sections cover the management of certificates including certificate issue, certificate
status checking, and certificate revocation list (CRL) creation and checking, as well
asthe full CA management process. This coversthe full key life cycle from creation
through certification to revocation and/or destruction.

So far all the objects that have been covered are container objects. The next section
covers the creation of action objects that you can either push into a container object or
apply directly to data, including the various ways of 1oading or generating keysinto
them. The next sections explain how to apply the action objects to data and cover the
process of encryption, key exchange, and signature generation and verification,
working at amuch lower level than the encryption or session interface.

The next sections cover certificates and certificate-like objects in more detail than the
earlier ones, covering such topics as DN structures, certificate chains, trust
management, and certificate extensions. This deals with certificates at a very low
level at which they’re rather harder to manage than with the high-level certificate
management functions.

The next section covers the use of encryption devices such as smart cards, crypto
devices, HSMs, and Fortezza cards, and explains how to use them to perform many of

Programming Interfaces 27

the tasks covered in previous sections. Finally, the last sections cover miscellaneous
topics such as random number management, the cryptlib configuration database,
database and network plugins, and use in embedded systems.

Programming Interfaces

cryptlib provides three levels of interface, of which the highest-level oneisthe easiest
to use and therefore the recommended one. At thisleve cryptlib works with
envelope and session container objects, an abstract object into which you can insert
and remove data which is processed as required whileit isin the object. Using
envelopes and session objects requires no knowledge of encryption or digital
signature techniques. At an intermediate level, cryptlib works with encryption action
objects, and requires some knowledge of encryption techniques. In addition you will
need to handle some of the management of the encryption objects yourself. At the
very lowest level cryptlib works directly with the encryption action objects and
requires you to know about algorithm details and key and data management methods.

Before you begin you should decide which interface you want to use, as each one has
its own distinct advantages and disadvantages. The three interfaces are:

Container Object Interface

Thisinterface requires no knowledge of encryption and digital signature techniques,
and is easiest for use with languages like Visual Basic and Java that don’t interface to
C data structures very well. The container object interface provides servicesto create
and destroy envelopes and secure sessions, to add security attributes such as
encryption information and signature keysto a container object, and to move data
into and out of a container. Because of its simplicity and ease of use, it’s strongly
recommended that you use thisinterface if at all possible.

Mid-level Interface

Thisinterface requires some knowledge of encryption and digital signature
techniques. Because it handles encoding of things like session keys and digital
signatures but not of the data itself, it’s better suited for applications that require high-
speed data encryption, or encryption of many small data packets (such asan
encrypted terminal session). The mid-level interface provides services such as
routines to export and import encrypted keys and to create and check digital
signatures. The container object interface is built on top of thisinterface.

Action Object Interface

Thisinterface requires quite a bit of knowledge of encryption and digital signature
techniques. It provides a direct interface to the raw encryption capabilities of
cryptlib. The only reason for using these low-level routinesis if you need them as
building blocks for your own custom encryption protocol. Note though that cryptlib
is designed to benefit the application of encryption in standard protocols and not the
raw use of crypto in home-made protocols. Getting such security protocolsright is
very difficult, with many “obvious” and “simple” approaches being quite vulnerable
to attack. Thisiswhy cryptlib encourages the use of vetted security protocols, and
does not encourage roll-your-own security mechanisms. In particular if you don’t
know what PKCS #1 padding is, what CBC does, or why you need an 1V, you
shouldn’t be using this interface.

The low-level interface serves as an interface to arange of plug-in encryption
modules that allow encryption algorithms to be added in afairly transparent manner,
with a standardised interface allowing any of the algorithms and modes supported by
cryptlib to be used with a minimum of coding effort. As such the main function of
the action object interface is to provide a standard, portable interface between the
underlying encryption routines and the user software. The mid-level interfaceis built
on top of thisinterface.

Objects and Interfaces

The cryptlib object types are as follows:

28 cryptlib Basics

Type Description

CRYPT_CERTIFICATE A key certificate objects that usualy contain a
key certificate for an individual or organisation
but can a so contain other information such as
certificate chains or digital signature attributes.

CRYPT_CONTEXT A encryption context objects that contain
encryption, digital signature, hash, or MAC
information.

CRYPT_DEVICE A device object that provide a mechanism for

working with crypto devices such as crypto
hardware accelerators and PCMCIA and smart
cards.

CRYPT_ENVELOPE An envelope container object that provide an
abstract container for performing encryption,
signing, and other security-related operations on
an item of data.

CRYPT_KEYSET A key collection container object that contain
collections of public or private keys.

CRYPT_SESSION A secure session object that manage a secure
session with a server or client.

These objects are referred to via arbitrary integer values, or handles, which have no
meaning outside of cryptlib. All data pertaining to an object is managed internally by
cryptlib, with no outside access to security-related information being possible. There
isalso a generic object handle of type CRYPT_HANDLE which isused in cases
where the exact type of an object isnot important. For example most cryptlib
functions that require keys can work with either encryption contexts or key certificate
objects, so the abjects they use have a generic CRYPT_HANDLE which is equivalent
to either aCRYPT_CONTEXT or aCRYPT_CERTIFICATE.

Objects and Attributes

Each cryptlib object has a number of attributes of type CRYPT_ATTRIBUTE_TYPE
that you can get, set, and in some cases delete. For example an encryption context
would have akey attribute, a certificate would have issuer name and validity
attributes, and an envelope would have attributes such as passwords or signature
information, depending on the type of the envelope. Most cryptlib objects are
controlled by manipulating these attributes.

The attribute classes are as follows:

Type Description
CRYPT_ATTRIBUTE_name Generic attributes that apply to all objects.
CRYPT_CERTINFO name Certificate object attributes.
CRYPT_CTXINFO_name Encryption context attributes.
CRYPT_DEVINFO_name Crypto device attributes.
CRYPT_ENVINFO_name Envelope attributes.
CRYPT_KEYINFO_name Keyset attributes.

CRYPT_OPTION_name cryptlib-wide configuration options.
CRYPT_PROPERTY name Object properties.
CRYPT_SESSINFO_name Session attributes.

Some of the attributes apply only to a particular object type but others may apply
across multiple objects. For example a certificate contains a public key, so the key
size attribute, which is normally associated with a context, would also apply to a

Interfacing with cryptlib 29

certificate. To determine the key size for the key in a certificate, you would read its
key size attribute asif it were an encryption context.

Attribute datais either a single numeric value or variabl e-length data consisting of a
(data, length) pair. Numeric attribute values are used for objects, boolean values and
integers. Variable-length data attribute values are used for text strings, binary data
blobs, and representations of time using the ANSI/ISO standard seconds-since-1970
format.

Interfacing with cryptlib

All necessary constants, types, structures, and function prototypes are defined in a
language-specific header file as described below. Y ou need to use these filesfor each
module that makes use of cryptlib. Although many of the examples givenin this
manua are for C/C++ (the more widely-used ones are given for other languages as
well), they apply equally for the other languages.

All language bindings for cryptlib are provided in the bindings subdirectory. Before
you can use a specific language interface, you may need to copy the file(s) for the
language that you’re using into the cryptlib main directory or the directory containing
the application that you’re building. Alternatively, you can refer to the file(s) in the
bindings directory by the absolute pathname.

Initialisation

Before you can use any of the cryptlib functions, you need to call the cryptlnit
function to initialise cryptlib. Y ou also need to call its companion function cryptEnd
at the end of your program after you’ve finished using cryptlib. cryptlnit initialises
cryptlib for use, and cryptEnd performs various cleanup functions including
automatic garbage collection of any objects you may have forgotten to destroy. You
don’t have to worry about inadvertently calling cryptlnit multiple times (for example
if you’re calling it from multiple threads), it will handle the initialisation correctly.
However you should only call cryptEnd once when you’ve finished using cryptlib.

If you call cryptEnd and there are till objectsin existence, it will return CRYPT_-
ERROR_INCOMPLETE to inform you that there were | eftover objects present.
cryptlib can tell this because it keeps track of each object so that it can erase any
sensitive data that may be present in the object (cryptEnd will return a CRYPT _-
ERROR_INCOMPLETE error to warn you, but will nevertheless clean up and free
each object for you).

To make the use of cryptEnd in aC or C++ program easier, you may want to use the
Catexit () functionor add acall to cryptEnd to a C++ destructor in order to have
cryptEnd called automatically when your program exits.

If you’re going to be doing something that needs encryption keys (which is pretty
much everything), you should also perform arandomness poll fairly early on to give
cryptlib enough random datato create keys:

crypt AddRandon{ NULL, CRYPT_RANDOM SLOAPQOLL);

Randomness polls are described in more detail in “Random Numbers” on page 279.
The randomness poll executes asynchronously, so it won’t stall the rest of your code
while it’s running. The one possible exception to this polling on startup is when
you’re using cryptlib as part of a larger application where you’re not certain that
cryptlib will actually be used. For example a PHP script that’s run repeatedly from
the command line may only use the encryption functionality on rare occasions (or not
at all), so that it’s better to perform the slow poll only when it’s actually needed rather
than unconditionally every time the script isinvoked. Thisisasomewhat specia

case though, and normally it’s better practice to always perform the slow poll on
startup.

As the text above mentioned, you should initialise cryptlib when your program first
starts and shut it down when your program is about to exit, rather than repeatedly
starting cryptlib up and shutting it down again each time you useit. Since cryptlib

30 cryptlib Basics

C/C++

C#/ .NET

Delphi

consists of acomplete crypto operating system with extensive initialisation, internal
security self-tests, and full resource management, repeatedly starting and stopping it
will unnecessarily consume resources such as processor time during each
initialisation and shutdown. It can aso tie up host operating system resourcesif the
host contains subsystems that leak memory or handles (under Windows, ODBC and
LDAP are particularly bad, with ODBC leaking memory and LDAP leaking handles.
DNSisalso rather leaky — thisis one of the reasons why programs like web
browsers and FTP clients consume memory and handles without bounds). To avoid
this problem, you should avoid repeatedly starting up and shutting down cryptlib:

Right Wrong
cryptlinit(); server Loop:
server Loop: cryptlinit();
process dat a; process dat a;
crypt End(); crypt End();

To use cryptlib from C or C++ you would use:
#i nclude "cryptlib. h"

cryptlnit();
/* Calls to cryptlib routines */

crypt End() ;

To use cryptlib from C#/ .NET, add cryptlib.cs to your .NET project and the cryptlib
DLL to your path, and then use:

using cryptlib;

crypt.lnit();

/1 Calls to cryptlib routines
crypt. End();

If you’re using a .NET language other than C# (for example VB.NET), you’ll need to
build cryptlib.cs asaclass library first. From Visua Studio, create anew C# project
of type Class Library, add cryptlib.cs to it, and compileit to createaDLL. Now go
to your VB project and add the DLL as a Reference. The cryptlib classes and
methods will be available natively using VB (or whatever .NET language you’re
using).

All cryptlib functions are placed inthe cr ypt class, so that standard cryptlib
functions like:
crypt Set Attribute(cryptContext, CRYPT_CTXINFO KEYSIZE, 1024 / 8);

become:
crypt.Set Attribute(cryptContext, crypt.CTXI NFO KEYSI ZE, 1024 / 8);

In general when calling cryptlib functions you can use Strings wherever the cryptlib
interface requires a null-terminated C string, and byte arrays wherever the cryptlib
interface requires binary data.

Instead of returning a status value like the native C interface, the .NET version throws
Crypt Except i on for error status returns, and returns integer or string data return
values asthe return value:

value = crypt. GetAttribute(cryptContext, crypt.CIXINFO ALGO);

stringValue = crypt. GetAttributeString(cryptContext,
crypt. CTXI NFO_ALGO NAME);

To use cryptlib from Delphi, add the cryptlib DLL to your path and then use:

Interfacing with cryptlib 31

i mpl enent ati on
uses cryptlib;

cryptlnit;
{ Calls to cryptlib routines }

crypt End;
end;

The Delphi interface to cryptlib is otherwise mostly identical to the standard C/C++
one.

Java

To build the INI version of cryptlib, uncomment the USE_JAVA define in cryptini.h
(see “Customised and Cut-down cryptlib Versions” on page 24) or define it when you
invoke the build command, and build cryptlib. You’ll need to have the JDK include
directories set in your compiler’s settings, and will need at least JDK 1.4. Once this
is done, you can put cryptlib.jar on your classpath and use Syst em -

LoadLi brary() toloadthe cryptlib shared library. To use cryptlib with Javayou
can then use:

import cryptlib.*;
class Cryptlib

public static void main(String[] args)

{
System | oadLi brary("cl"); /1 cryptlib library nane

try
{ .
crypt.lnit();
//Calls to cryptlib routines
crypt. End();
catch(Crypt Exception e)

/1 cryptlib returned an error
e.printStackTrace();
}
}
¥
All cryptlib functions are placed inthe cr ypt class, so that standard cryptlib
functionslike:

crypt Set Attribute(cryptContext, CRYPT_CTXINFO KEYSIZE, 1024 / 8);
become:
crypt.Set Attribute(cryptContext, crypt.CTXI NFO KEYSI ZE, 1024 / 8);

In general when calling cryptlib functions you can use Java strings wherever the
cryptlib interface requires a null-terminated C string, and Java byte arrays wherever
the cryptlib interface requires binary data. In addition as of JDK 1.4 thereisa

ni 0. Byt eBuf f er class that can be “direct”, which provides a more efficient
alternative to standard byte arrays since there’s no need to perform any copying.

Instead of returning a status value like the native C interface, the NI version throws
Crypt Except i on for error status returns, and returns integer or string data return
values asthe return value:

value = crypt. GetAttribute(cryptContext, crypt.CITXINFO ALGO);

stringValue = crypt. GetAttributeString(cryptContext,
crypt. CTXI NFO_ALGO NAME) ;

32 cryptlib Basics

Python

Tcl

Visual Basic

To build the Python interface to cryptlib, run pyt hon setup. py install to
build and install the python.c extension module. On a Unix platform you may need
to create a symlink from cl to the actual shared library before you do this. Once
you’ve done this you can use:

fromcryptlib_py inport *

cryptlnit()

Calls to cryptlib routines

crypt End()

To use cryptlib from Tcl, you use the Cryptkit extension. Cryptkit isa stubs-enabled
extension that can be used with any modern Tcl interpreter (at least, Tcl 8.4 or later).
To build Cryptkit you’ll need a copy of Tcl that can interpret Starkits, either Tclkit,
the single file Tcl/Tk executable available from

http://ww. equi 4. coni pub/t k, or ActiveTcl from

http://ww. activestate.com You’ll also need to download the Critcl
Starkit fromhtt p: // mi ni . net/ sdarchi ve/critcl.kit,andmakesure
that the current directory contains cryptlib.h and a copy of the cryptlib static library,
named libcl_$platfom.a, where $platform isthe current platform name as provided
by the Critcl platform command. For example under x86 Linux the library would be
called libcl_Linux-x86.a. Then run the following Critcl command:

critcl -pkg cryptkit

Thiswill leave you with alib directory containing the information ready for usein
any Tcl application. Once you’ve done this you can use:

package require Cryptkit
cryptlnit

Calls to cryptlib routines
crypt End

Since Tcl objects aready contain length information, there’s no need to pass length
parameters to cryptlib function calls. This appliesfor the AddCertExtension,
CheckSignature, CheckSignatureEx, CreateSignature, CreateSignatureEx, Decrypt,
Encrypt, ExportCert, ExportKey, ExportKeyEx, GetCertExtension, ImportKey,
PushData, and SetAttributeString functions.

To use cryptlib from Visua Basic you would use:
' Add cryptlib.bas to your project

cryptlinit
Calls to cryptlib routines
crypt End

The Visua Basic interface to cryptlib is otherwise mostly identical to the standard
C/C++ one.

Return Codes

Every cryptlib function returns a status code to tell you whether it succeeded or
failed. If afunction executes successfully, it returns CRYPT_OK. If it fails, it
returns one of the status values detailed in “Error Handling” on page 282. The
sample code used in this manual omits the checking of status values for clarity, but
when using cryptlib you should check return values, particularly for critical functions

Working with Object Attributes 33

such as any that perform active crypto operations like processing datain envelopes,
activating and using secure sessions, signing and checking certificates, and
encryption and signing in general.

The previous initialisation code, rewritten to include checking for returned status
values, is:

int status;

status = cryptlnit();
if(status !'= CRYPT_K)
/[* cryptlib initialisation failed */;

/* Calls to cryptlib routines */

status = crypt End();
if(status !'= CRYPT_K)
/* cryptlib shutdown failed */;

The C/C++ versions of cryptlib providethe cr ypt St at usOK() and
crypt St at usError () macrosto make checking of these status values easier.
The C#, Java, and Python versions throw exceptions of type Cr ypt Excepti on
instead of returning error codes. These objects contain both the status code and an
English error message. In C#the Cr ypt Except i on class has Status and Message
properties:
try
{
crypt.lnit();
crypt. End();
catch(CryptException e)
{

int status = e. Status;
String nessage = e. Message;

}

In Javathe Cr ypt Except i on classhasget St at us() and get Message()
accessors:

try
{
crypt.lnit();
crypt. End();
catch(CryptException e)
{

int status = e.getStatus();
String message = e.get Message();

}
In Python the exception value is a tuple containing the status code, then the message:

try:
cryptlnit()

crypt End()
except CryptException, e:
status, nessage = e

Working with Object Attributes

All object attributes are read, written, and deleted using a common set of functions:
cryptGetAttribute/cryptGetAttributeString to get the value of an attribute,
cryptSetAttribute/cryptSetAttributeString to set the value of an attribute, and
cryptDeleteAttribute to delete an attribute. Attribute deletion is only valid for a
small subset of attributes for which it makes sense, for example you can delete the
validity date attribute from a certificate before the certificate is signed but not after
it’s signed, and you can never delete the algorithm-type attribute from an encryption
context.

34

cryptlib Basics

cryptGetAttribute and cryptSetAttribute take as argument an integer value or a
pointer to alocation to receive an integer value:

int keySize;

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO PUBLI CKEY, cryptKey);
cryptGet Attribute(cryptContext, CRYPT_CTXINFO KEYSI ZE, &keySize);

cryptGetAttributeString and cryptSetAttributeString take as argument a pointer
to the data value to get or set and alength value or pointer to alocation to receive the
length value:

char email Address[128]
int enumil AddressLengt h;

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
"1234", 4);

cryptGet AttributeString(cryptCertificate, CRYPT_CERTI NFO RFC822NAME,
emai | Addr ess, &emmi | AddressLength);

Thisleadsto asmall problem: How do you know how big to make the buffer? The
answer isto use cryptGetAttributeString to tell you. If you passin anull pointer
for the data value, the function will set the length value to the size of the data, but not
do anything else. Y ou can then use code like:

char *emmi | Addr ess;
int enmil AddressLengt h;

cryptGet AttributeString(cryptCertificate, CRYPT_CERTI NFO RFC822NAME,
NULL, &email AddressLength);

emai | Address = mal | oc(emai | AddressLength);

cryptGet AttributeString(cryptCertificate, CRYPT_CERTI NFO RFC822NAME,
emai | Addr ess, &enmi | AddressLength);

to obtain the datavalue. In most cases this two-step process isn’t necessary, the
standards that cryptlib conformsto generally place limits on the size of most
attributes so that cryptlib will never return more data than the fixed limit. For
example most strings in certificates are limited to a maximum length set by the
CRYPT_MAX_TEXTSIZE constant. More information on these sizesis given with
the descriptions of the different attributes.

The Visud Basic versionis:

Di m enni | Address as String
Di m enmi | AddressLength as | nt eger

cryptGet AttributeString cryptCertificate, CRYPT_CERTI NFO RFC822NAME,
0, enmil AddresslLength

emai | Address = String(email AddressLength, vbNull Char)

cryptGetAttributeString cryptCertificate, CRYPT_CERTI NFO RFC822NAME,
emai | Addr ess, emai | AddressLengt h

In Python you can use cryptGetAttributeString and cryptSetAttributeString as
usud, or use a shortcut syntax to make accessing attributes less verbose. The normal
syntax follows the C form but migrates the integer output values (the length from
cryptGetAttributeString or the output value from cryptGetAttribute) to return
values, and doesn’t require a length for cryptSetAttributeString:

fromarray inport *
emai | Address = array('c', 'x' * 128)

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
"1234")

emai | AddressLength = crypt GetAttributeString(cryptCertificate,
CRYPT_CERTI NFO_RFC822NAME, enmi | Address)

The shortcut syntax allows you to get/set attributes as if they were integer and string
members of the object (without the CRY PT _ prefix):

crypt Envel ope. ENVI NFO_PASSWORD = "1234"
emai | Address = cryptCertificate. CERTI NFO_RFC822NAMVE

Working with Object Attributes 35

Just as with Python, C# and Java also migrate returned data to return values. Inthe
C# and Java cases the string functions take byte arrays or Strings. When passing a
byte array, you can optionally specify an offset following it for
cryptGetAttributeString and an offset and length following it for
cryptSetAttributeString. Thereisalso aspecial version of
cryptGetAttributeString that returns Strings for convenience:
crypt.Set AttributeString(cryptEnvel ope, crypt.ENVI NFO_PASSWORD,
"1234");
String emmil Address = crypt.GetAttributeString(cryptCertificate,
crypt. CERTI NFO_RFC822NAME) ;

Finaly, cryptDeleteAttribute lets you delete an attribute in the cases where that’s
possible:

cryptDel eteAttribute(cryptCertificate, CRYPT_CERTI NFO VAL|I DFROM);

All access to objects and object attributes is enforced by cryptlib’s security kernel. If
you try to access or manipulate an attribute in amanner that isn’t allowed (for
example by trying to read awrite-only attribute, trying to assign a string value to a
numeric attribute, trying to delete an attribute that can’t be deleted, trying to set a
certificate-specific attribute for an envelope, or some similar action) cryptlib will
return an error code to tell you that this type of access is invalid. If there’s a problem
with the object that you’re trying to manipulate, cryptlib will return CRYPT -
ERROR_PARAML1 to tell you that the object handle parameter passed to the function
is invalid. If there’s a problem with the attribute type (typically because it’s invalid
for this object type) cryptlib will return CRYPT _ERROR_PARAM?2. If there’s a
problem with the attribute value, cryptlib will return CRYPT_ERROR_PARAMS,
and if there’s a problem with the length (for the functions that take a length
parameter) cryptlib will return CRY PT_ERROR_PARAMA4. If you try to perform an
attribute access which is disallowed (reading an attribute that can’t be read, writing to
or deleting aread-only attribute, or something similar) cryptlib will return
CRYPT_ERROR_PERMISSION.

Finally, if you try to access an attribute that hasn’t been initialised or isn’t present,
cryptlib will return CRYPT_ERROR_NOTINITED or CRYPT_ERROR_-
NOTFOUND, the only real distinction between the two isthat the former istypically
returned for fixed attributes that haven’t had a value assigned to them yet while the
latter is returned for optional attributes that aren’t present in the object.

Attribute Types

Attribute values can be boolean or numeric values, cryptlib objects, time values, text
strings, or binary data:

Type Description
Binary A binary data string that can contain almost anything.
Boolean Flags that can be set to ‘true’ (any nonzero value) or ‘false’ (a

zero value), and control whether a certain option or operation
isenabled or not. For example the CRYPT_CERTINFO_CA
attribute in a certificate controls whether a certificate is
marked as being a CA certificate or not. Notethat cryptlib
uses the value 1 to represent ‘true’, some languages may
represent this by the value -1.

Numeric A numeric constant such as an integer value or a bitflag. For
examplethe CRYPT_CTXINFO_KEY SIZE attribute specifies
the size of akey (in bytes) and the CRYPT_CERTINFO -
CRLREASON attribute specifies a bitflag that indicates why a
CRL wasissued.

Object A handleto acryptlib object. For example the CRYPT _-
CERTINFO_SUBJECTPUBLICKEYINFO attribute specifies
the public key to be added to a certificate.

36

cryptlib Basics

Type Description

String A text string that contains information such as a name,
message, email address, or URL. Strings are encoded using
the standard system local character set, usually ASCII or
latin-1 or UTF-8 (depending on the system), however under
Windows CE, which is a Unicode environment, these are
Unicode strings. In (very rare) cases where the standard
system character set doesn’t support the characters used in the
string (for example when encoding Asian characters), the
characters used will be Unicode or widechars. For all intents
and purposes you can assume that al strings are encoded in
the standard character set that you’d normally use, cryptlib
will perform all conversionsfor you.

An example string attribute is CRYPT_CTXINFO_LABEL,
which contains a human-readabl e label used to identify private

keys.

The most frequently used text string components are those that
make up a certificate’s distinguished name, which identifies
the certificate owner. Most of these components are limited to
amaximum of 64 characters by the X.500 standard that covers
certificates and their components, and cryptlib provides the
CRYPT_MAX_TEXTSIZE constant for use with these
components (this value is also used for most other strings such
askey labels). Sincethisvalueis specified in characters rather
than bytes, Unicode strings can be several times as long as this
value when their length is expressed in bytes, depending on
which data type the system uses to represent Unicode
characters.

Time The ANSI/ISO C standard time value containing the local time
expressed as seconds since 1970. Thisisabinary (rather than
numeric) field, with the data being the time value (in C and
C++thisisati me_t , usualy asigned long integer).

Due to the vagaries of international time zones and daylight
savings time adjustments, it isn’t possible to accurately
compare two local times from different time zones, or made
across a DST switch (consider for example a country
switching to DST, which has two 2am times while another
country only has one). Because of thisambiguity, times read
from objects such as certificates may appear to be out by an
hour or two.

Since most text strings have a fixed maximum length, you can use code like:

char commonNane[CRYPT_MAX TEXTSIZE + 1];
i nt commonNareLengt h;

/* Retrieve the conponent and null-termnate it */

cryptGet AttributeString(cryptCertificate, CRYPT_CERTI NFO COVMONNAME,
comonNane, &commonNanelLength);

comonNane[commonNaneLength] = '"\0';

to read the value, in this case the common name of a certificate owner.

Note the explicit addition of the terminating null character, since the text strings
returned aren’t null-terminated.

InVisua Basic thisis:

Di m coomonName As String
Di m conmonNaneLengt h As Long

Working with Object Attributes 37

comonNane = String(CRYPT_MAX TEXTSIZE + 1 , vbNull Char)

cryptGet AttributeString cryptCertificate, CRYPT_CERTI NFO COMMONNAME, _
comonNane, commonNanelLengt h

comonNanme = Left(commonNane, |nStr(conmonNanme, vbNull Char) - 1)

The description above assumes that the common name is expressed in a single-byte
character set. Sincethe values passed to cryptGetAttributeString and
cryptSetAttributeString are untyped, their length is given in bytesand not in
characters (which may not be byte-sized). For Unicode strings, you need to multiply
the size of the buffer by the size of a Unicode character on your system to get the
actual sizeto passto the function, or divide by the size of a Unicode character to get
the number of characters returned. For example to perform the same operation as
above in a Unicode environment you’d use:

wchar _t conmonNane[CRYPT_MAX TEXTSIZE + 1];
i nt commonNareLengt h;

/* Retrieve the conponent and null-termnate it */

cryptGet AttributeString(cryptCertificate, CRYPT_CERTI NFO COVMONNANE,
comonNane, &commonNanelLength);

commonNane[commonNanelLength / sizeof(wchar_t)] = L'\0';

Attribute Lists and Attribute Groups

Several of the container object types (certificates, envelopes, and sessions) contain
large collections of attributesthat you can process as a list rather than having to
access each attribute individually by type. Thelist of attributesis managed through
the use of an attribute cursor that cryptlib maintains for each container object. You
can set or move the cursor either to an absolute position in the list of attributes or
relative to the current position.

Object attributes are usually grouped into collections of related attributes. For
example an envelope object may contain a group of attributes consisting of a
signature, the key that generated the signature, associated signing attributes such as
the time and data type being signed, and even atimestamp on the signature itself.
Similarly, a session object may have a group of attributes consisting of a server name,
server port, and server key. So instead of astraight linear list of attributes:

Object Attr Attr Attr —— Attr

the attributes are arranged by group:

Object

Group Attr Attr Attr
Group —— Attr

Group Attr Attr

Some objects may contain multiple instances of attribute groups, each of which
contains its own set of attributes. For example an envelope could contain several
signature attribute groups, and each attribute group will contain its own signing keys,
certificates, signature information such as the signing time, and so on. One particular
instance of the abstract group/attribute view shown above would be:

38 cryptlib Basics

Envelope

Signature Key Isnl% —;gnrﬁp
Signature —— Key

Signature Key ﬁq‘}%

In order to navigate across attribute groups, and across attributes within a group,
cryptlib provides the attribute cursor functionality described in the section that
follows. Aswell as moving the cursor back and forth across attribute groups and
attributes within the group, you can also position it directly on agroup or attribute. In
the common case where only a single attribute group is present, for example an
envelope object that contains a single signature or a session object that contains user
information for asingle user:

Signature Signature

Envelope —— Key Info

you can treat the attributes asa single flat list of attributes and not worry about the
hierarchical arrangement into groups.

Attribute Cursor Management

Y ou can move the attribute cursor by setting an attribute that tells cryptlib where to
moveit to. Thisattribute, either CRYPT_ATTRIBUTE_CURRENT_GROUP when
moving by attribute group or CRYPT_ATTRIBUTE_CURRENT when moving by
attribute within the current group, takes as value a cursor movement code that moves
the cursor either to an absolute position (the first or last group or attribute in the list)
or relative to its current position. The movement codes are;

Code Description

CRYPT_CURSOR_FIRST Move the cursor to the first group or attribute.
CRYPT_CURSOR_LAST Move the cursor to the last group or attribute.
CRYPT_CURSOR_NEXT Move the cursor to the next group or attribute.

CRYPT_CURSOR_PREV Move the cursor to the previous group or
attribute.

Moving by attribute group or attribute then works as follows:

Object

Group —» Attr —» Attr —» Attr

Group —» Attr

Group —» Attr —» Attr

CRYPT_ATTRIBUTE_CURRENT_GROUP
—» CRYPT_ATTRIBUTE_CURRENT

Working with Object Attributes 39

Note that CRYPT_ATTRIBUTE_CURRENT only moves the cursor within the
current group. Once you get to the start or end of the group, you need to use
CRYPT_ATTRIBUTE_CURRENT_GROUP to move on to the next one. Moving
the cursor from one group to another will reset the cursor position to the first attribute
within the group if it’s been previously moved to some other attribute within the
group. For example to move the cursor to the start of the first attribute group in a
certificate, you would use:

cryptSet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_CURRENT_GROUP,
CRYPT_CURSOR_FI RST);

To advance the cursor to the start of the next group, you would use:

cryptSet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_CURRENT_GROUP,
CRYPT_CURSOR_NEXT) ;

To advance the cursor to the next attribute in the current group, you would use:

cryptSet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_CURRENT,
CRYPT_CURSOR_NEXT) ;

In some cases multiple instances of the same attribute can be present, in which case
you can use athird level of cursor movement, handled viathe CRY PT_-
ATTRIBUTE_CURRENT _INSTANCE attribute, and relative cursor movement to
step through the different instances of the attribute. Since the use of multi-valued
attributes is rare, it’s safe to assume one value per attribute in most cases, so that
stepping through multiple attribute instances is unnecessary.

Once you’ve set the cursor position, you can work with the attribute group or attribute
at that position in the usual manner. To obtain the group or attribute type at the
current position, you would use;

CRYPT_ATTRI BUTE_TYPE gr oupl D;

cryptGet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_CURRENT_GROUP,
&groupl D);

This example obtains the attribute group type, to obtain the attribute type you would
substitute CRYPT_ATTRIBUTE_CURRENT in place of CRYPT_ATTRIBUTE -
CURRENT_GROUP. Attribute accesses are relative to the currently selected group,
so for example if you move the cursor in an envelope to a signature attribute group
and then read the signature key/certificate or signing time, it’ll be the one for the
currently-selected signature attribute group. Since there can be multiple signatures
present in an envelope, you can use this mechanism to read the signing information
for each of the onesthat are present.

To delete the attribute group at the current cursor position you would use:

cryptDel eteAttribute(cryptCertificate,
CRYPT_ATTRI BUTE_CURRENT_GROUP) ;

Deleting the attribute group at the cursor position will move the cursor to the start of
the group that follows the deleted one, or to the start of the previous group if the one
being deleted was the last one present. This means that you can del ete every attribute
group simply by repeatedly deleting the one under the cursor.

The attribute cursor provides a convenient mechanism for stepping through every
attribute group and attribute which is present in an object. For exampleto iterate
through every attribute group you would use:

if(cryptSetAttribute(cryptCertificate,

CRYPT_ATTRI BUTE_CURRENT_GROUP, CRYPT_CURSOR _FI RST) == CRYPT_K)
do

{
CRYPT_ATTRI BUTE_TYPE groupl D;
/* Get the ID of the attribute group under the cursor */

cryptGet Attribute(cryptCertificate,
CRYPT_ATTRI BUTE_CURRENT_GROUP, &groupl D);

40 cryptlib Basics

/* Handle the attribute if required */
[* ...
}

while(cryptSetAttribute(cryptCertificate,

CRYPT_ATTRI BUTE_CURRENT_GROUP, CRYPT_CURSOR NEXT) ==
CRYPT_X) ;

The Visua Basic equivalent is:
Di m groupl D As CRYPT_ATTRI BUTE_TYPE

If cryptSetAttribute(cryptCertificate, _
CRYPT_ATTRI BUTE_CURRENT_GROUP, CRYPT_CURSOR FI RST) == CRYPT_XK
Then
Do
Get the type of the attribute group under the cursor
cryptGet Attribute cryptCertificate, CRYPT_ATTRI BUTE_CURRENT,

groupl D

Handl e the attribute if required

Loop V\hl le cryptSet Attribute(cryptCertificate, _
CRYPT_ATTRI BUTE_CURRENT_GROUP, CRYPT_CURSOR _NEXT) == CRYPT_K
End | f

To extend this a stage further and iterate through every attribute in every group in the
object, you would use:

if(cryptSetAttribute(cryptCertificate,
CRYPT_ATTRI BUTE_CURRENT_GROUP, CRYPT_CURSOR FIRST) == CRYPT_(X)

do

{
do

CRYPT_ATTRI BUTE_TYPE attri butel D;

/* Get the ID of the attribute under the cursor */

cryptGet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_CURRENT,
&attributelD);

}

while(cryptSetAttribute(cryptCertificate,
CRYPT_ATTRI BUTE_CURRENT, CRYPT_CURSOR NEXT) == CRYPT_CX);

}
whil e(cryptSetAttribute(cryptCertificate,
CRYPT_ATTRI BUTE_CURRENT_GROUP, CRYPT_CURSOR _NEXT) ==
CRYPT_X);
Note that iterating attribute by attribute works within the current attribute group, but
as mentioned earlier won’t jump from one group to the next — to do that, you need to
iterate by group.

Y ou can also position the attribute cursor directly by telling cryptlib which attribute
you want to move the cursor to. For example to move the cursor in a certificate
object to the extended key usage attribute group you would use:

cryptSet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_CURRENT_GROUP,
CRYPT_CERTI NFO_EXTKEYUSAGE) ;

Usually the absolute cursor-positioning capability is only useful for certificate objects
where you know that certain attributes will be present, for envel ope and session
objects you generally can’t tell this in advance and will need to use the attribute
cursor to walk the list to see what’s there.

Using this absolute cursor positioning in a variation of the attribute enumeration
operation given earlier, you can enumerate only the attributes of a single attribute
group (rather than al groups) by first selecting the group and then stepping through
the attributes in it. For example to read all of a certificate’s extended key usage types
you would use;
if(cryptSetAttribute(cryptCertificate,
CRYPT_ATTRI BUTE_CURRENT_GROUP, CRYPT_CERTI NFO_EXTKEYUSAGE) ==

CRYPT_X)
do

{
CRYPT_ATTRI BUTE_TYPE attri butel D

Object Security 41

/* Get the ID of the attribute under the cursor */
cryptGet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_CURRENT,
&attributelD);

}
while(cryptSetAttribute(cryptCertificate,
CRYPT_ATTRI BUTE_CURRENT, CRYPT_CURSOR NEXT) == CRYPT_CX);

Object Security

Each cryptlib object hasits own security settings that affect the way you can use the
object. You can set these attributes, identified by CRY PT_PROPERTY _name, after
you create an object to provide enhanced control over how it isused. For example on
a system that supports threads you can bind an object to an individual thread within a
process so that only the thread that owns the object can seeit. For any other thread in
the process, the object handle isinvalid.

Y ou can get and set an object’s properties using cryptGetAttribute and
cryptSetAttribute, passing as arguments the object whose property attribute you
want to change, the type of property attribute to change, and the attribute value or a
pointer to alocation to receive the attribute’s value. The object property attributes

that you can get or set are:
Property/Description Type
CRYPT_PROPERTY_FORWARDCOUNT Numeric

The number of times an object can be forwarded (that is, the number of
times the ownership of the object can be changed). Each time the object’s
ownership is changed, the forwarding count decreases by one; once it
reaches zero, the object can’t be forwarded any further. For example if you
set this attribute’s value to 1 then you can forward the object to another
thread, but that thread can’t forward it further.

After you set this attribute (and any other security-related attributes), you
should set the CRYPT_PROPERTY _L OCKED attribute to ensure that it
can’t be changed later.

CRYPT_PROPERTY_HIGHSECURITY Boolean
Thisisacomposite value that sets all general security-related attributes to
their highest security setting. Setting this value will make an object owned,
non-exportable (if appropriate), non-forwardable, and locked. Sincethisisa
composite value representing a number of separate attributes, its value can’t
be read or unset after being set.

CRYPT_PROPERTY_LOCKED Boolean

Locks the security-related object attributes so that they can no longer be
changed. You should set this attribute once you’ve set other security-rel ated
attributes such as CRY PT_PROPERTY_FORWARDCOUNT.

This attribute is awrite-once attribute, once you’ve set it can’t be reset.

CRYPT_PROPERTY_NONEXPORTABLE Boolean

Whether akey in an encryption action object can be exported from the object
in encrypted form. Normally only session keys can be exported, and only in
encrypted form, however in some cases private keys are also exported in
encrypted form when they can are saved to akeyset. By setting this attribute
you can make them non-exportable in any form (some keys, such as those
held in crypto devices, are non-exportable by default).

This attribute is awrite-once attribute, once you’ve set it can’t be reset.

CRYPT_PROPERTY_OWNER Numeric
Theidentity of the thread that owns the object. The thread’s identity is
specified using a value that depends on the operating system, but is usualy a
thread handle or thread ID. For example under Windows 95/98/ME,
NT/2000/XP, and Windows CE the thread ID isthe value returned by the
Get Cur r ent Thr eadl D function, which returns a system-wide unique

42

cryptlib Basics

Property/Description Type

handle for the current thread.

You can aso passin avaue of CRYPT_UNUSED, which unbinds the
object from the thread and makes it accessible to all threads in the process.

CRYPT_PROPERTY_USAGECOUNT Numeric

The number of times an action object can be used before it deletesitself and
becomes unusable. Every time an action object is used (for example when a
signature encryption object is used to create a signature), its usage count is
decremented; once the usage count reaches zero, the object can’t be used to
perform any further actions (although you can still perform non-action
operations such as reading its attributes).

This attribute is useful when you want to restrict the number of times an
object can be used by other code. For example, before you change the
ownership of asignature object to allow it to be used by another thread, you
would set the usage count to 1 to ensure that it can’t be used to sign arbitrary
numbers of messages or transactions. This eliminates a troubling security
problem with objects such as smart cards where, once a user has
authenticated themselves to the card, the software can ask the card to sign
arbitrary numbers of (unauthorised) transactions a ongside the authorised
ones.

This attribute isawrite-once attribute, once you’ve set it can’t be reset.

For example to create atriple DES encryption context in one thread and transfer
ownership of the context to another thread you would use:

CRYPT_CONTEXT crypt Cont ext ;

/* Create a context and claimit for exclusive use */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO 3DES);
crypt Set Attribute(cryptContext, CRYPT_PROPERTY_OW\ER, threadlD);

/* Generate a key into the context */
crypt Gener at eKey(crypt Context);

/* Transfer ownership to another thread */
crypt Set Attribute(cryptContext, CRYPT_PROPERTY_OMNER,
ot her Threadl D);

The other thread now has exclusive ownership of the context containing the loaded
key. If you wanted to prevent the other thread from transferring the context further,
you would also have to set the CRYPT_PROPERTY_FORWARDCOUNT property
to 1 (to dlow you to transfer it) and then set the CRYPT_PROPERTY _LOCKED
attribute (to prevent the other thread from changing the attributes you’ve set).

Note that in the above code the object is claimed as soon as it’s created (and before
any sensitive data is loaded into it) to ensure that another thread isn’t given a chance
to use it when it contains sensitive data. The use of this type of object binding is
recommended when working with sensitive information under Windows 95/98/ME,
Windows NT/2000/XP, and Windows CE, since the Win32 API provides several
security holes whereby any process in the system may interfere with resources owned
by any other processin the system. The checking for object ownership whichis
performed typically adds afew microseconds to each call, so in extremely time-
critical applications you may want to avoid binding an object to athread. On the
other hand for valuabl e resources such as private keys, you should always consider
binding them to athread, since the small overhead becomesinsignificant compared to
the cost of the public-key operation.

Although the example shown above isfor encryption contexts, the same applies to
other types of objects such as keysets and envelopes (although in that case the
information they contain isn’t as sensitive as it is for encryption contexts). For
container objects that can themselves contain objects (for example keysets), if the
container is bound to a thread then any objects that are retrieved from it are al'so
bound to the thread. For example if you’re reading a private key from a keyset, you

Role-based Access Control 43

should bind the keyset to the current thread after you open it (but before you read any
keys) so that any keys read from it will also automatically be bound to the current
thread. In addition if a key which is used to generate another key (for example the
key that imports a session key) is bound, then the resulting generated key will also be
bound.

On non-multithreaded systems, CRYPT_PROPERTY_OWNER and CRYPT_-
PROPERTY_FORWARDCOUNT have no effect, so you can include them in your
code for any type of system.

Role-based Access Control

cryptlib implements a form of access control called role-based access control or
RBAC in which operations specific to a certain user role can’t be performed by a user
acting in adifferent role. For example in many organisations a cheque can only be
issued by an accountant and can only be signed by a manager, which prevents a
dishonest accountant or manager from both issuing a chegue to themselves and then
signing it aswell. This security measureis referred to as separation of duty, in which
it takes at least two people to perform acritical operation. Similarly, cryptlib uses
RBAC to enforce a strong separation of duty between various roles, providing the
same effect as the corporate accounting controls that prevent an individual from
writing themselves cheques.

cryptlib recognises a variety of user typesor roles. The default user type has access
to most of the standard functions in cryptlib but can’t perform CA management
operations or specialised administrative functions that are used to manage certain
aspects of cryptlib’s operation. When you use cryptlib in the role of a standard user,
it functions as a normal crypto/security toolkit.

In addition to the standard user role, it’s also possible to use cryptlib in the role of a
security officer (SO), a special administrative user who can create new users and
perform other administrative functions but can’t perform general crypto operations
like anormal user. This provides aclear separation of duty between administrative
and end-user functionality.

Another role recognised by cryptlib is that of a certification authority that can make
use of cryptlib’s certificate management functionality but can’t perform general
administrative functions or non-CA-related crypto operations. Again, this providesa
clear separation of duty between the role of the CA and the role of ageneral user or
SO.

Managing User Roles

When acryptlib object is created, it is associated with a user role which is specified at
creation time and can’t be accessed by any other user. For example if a private key is
created by a CA for signing certificates, it can’t be accessed by a normal user because
it’s only visible to the user acting in the role of the CA. Similarly, although a normal
user may be able to see a certificate store, only a CA user can use it for the purpose of
issuing certificates. The use of RBAC therefore protects objects from misuse by
unauthorised users.

The identity of the user who owns the object is specified as a parameter for the object
creation function. Throughout the rest of the cryptlib documentation this parameter is
denoted through the use of the cr ypt User variable. Usually this parameter is set to
CRYPT_UNUSED to indicate that the user is acting in the role of anormal user and
doesn’t care about role-based controls. This is typically used in cases where there’s
only one cryptlib user, for example where cryptlib is running on an end-user PC (e.g.
Windows, Macintosh) or amulti-user system that provides each user with theillusion
of being on a single-user machine (e.g. Unix). In almost all cases therefore you’d
passin CRYPT_UNUSED as the user identity parameter.

In afew specialised cases where the user is acting in arole other than that of a normal
user the default user role isn’t enough. For example when you want to access a CA
certificate store you can’t use the role of anormal user to perform the access because

44

cryptlib Basics

only a CA can manipulate a certificate store. This prevents anormal user from
issuing themselves certificates in the name of the CA and assorted other mischief
such as revoking another user’s certificate.

When acting in adifferent role than that of the default, normal user, you specify the
identity of the user whose role you’re acting in as a parameter of the object creation
function as before, this time passing in the handle of the user identity instead of
CRYPT_UNUSED. When the object is created, it is associated with the given user
and role instead of the default user. The creation and use of user objectsis covered in
the next section.

Creating and Destroying Users and Roles

The following section is provided purely for forwards compatibility with functionality
included in future versions of cryptlib. For the current version of cryptlib the user
identity parameter should always be CRYPT_UNUSED since user object

management isn’t enabled in this version.

User objects can only be created and destroyed by an SO user, this being one of the
special administrative functions mentioned earlier that can only be performed by an
SO. You create a user object with cryptCreateUser, specifying the identity of the
SO who is creating the user object, type of user role that the object is associated with,
the name of the user, and a password that protects access to the user object:

CRYPT_USER crypt User;
crypt Creat eUser (&crypt User, cryptSO, type, nane, password);
The available user types or roles are:

Role Description

CRYPT_USER CA A certification authority who can perform CA
management functions but can’t perform
general-purpose crypto operations.

CRYPT_USER_NORMAL A standard cryptlib user.

CRYPT_USER SO A security officer who can perform
administrative functions such as creating or
deleting users but who can’t perform any other
type of operation.

For example to create a normal user object for “John Doe” with the password
“password” and a CA user object for “John’s Certificate Authority” with the
password “CA password” you would use:

CRYPT_USER crypt User, crypt CAUser;

crypt Creat eUser (&crypt User, crypt SO, CRYPT_USER NORMAL, "John Doe",
"password");

crypt Creat eUser (&crypt User, crypt SO, CRYPT_USER CA, "John's
Certification Authority", "CA password");

Once a user object is created it can’t be used immediately because it’s still under the
nominal control of the SO who created it rather than the user it’s intended for. Before
it can be used, control over the object needs to be handed over to the user that it’s
intended for. After the object is created by the SO, it issaid to bein the SO initiaised
state. Any attempt to use an object when it’s in the SO initialised state will result in
cryptlib returning CRYPT_ERROR_NOTINITED.

To move the newly-created object into a usable state, it’s necessary to change its
password from theinitial one set by the SO to one chosen by the user. Once this
change occurs, the object is moved into the user initialised state and is ready for use.
Y ou can change the password from the initial one set by the SO to a user-chosen one
with cryptChangePasswor d:

crypt ChangePassword(crypt User, ol dPassword, newPassword);

Miscellaneous | ssues 45

When the password has been changed from the one set by the SO to the one chosen
by the user, the user object isready for use.

User objects can also be destroyed by the SO who created them:
crypt Del et eUser (crypt User, "John Doe");

Miscellaneous Issues

This section contains additional information that may be useful when working with
cryptlib.

Multi-threaded cryptlib Operation

cryptlib is re-entrant and completely thread-safe (the threading model used is
sometimes known as the free-threading model), allowing it to be used with
multithreaded applications in systems that support threading. When you use cryptlib
in amultithreaded application, you should take standard precautions to ensure that a
single resource shared across multiple threads doesn’t become a bottleneck, with all
threads being forced to wait on a single shared object. For example if you’re
timestamping large numbers of messages then creating a single timestamping session
object (see “Secure Sessions” on page 105) and using that for all timestamping
services will result in all of the operations waiting on a single session object, which
can often take several seconds to turn around a transaction with aremote server. A
better option in this case would be to create a pool of timestamping session objects
and use the next free one when required.

A similar situation occurs with other objects such as crypto devices and keysets that
may be shared across multiple threads. For example cryptlib provides afacility for
automatically fetching a decryption key from a keyset in order to decrypt data (see
“Public-Key Encrypted Enveloping” on page 75). Thisis convenient when handling
one or two messages since cryptlib will automatically take care of al of the
processing for you, however if you’re processing large numbers of messages then the
need to read and decrypt the same private key for each message is very inefficient,
not only in terms of CPU overhead but also because every message must wait for
each of the previous messages to be processed beforeit getsitsturn at the keyset.

A better aternative in this case is to read the private key from the keyset just once
and then use it with each envelope, rather than having each envel ope read and decrypt
the key itself. Extending this even further, if you’re using a very large private key,
running on a slower processor, or processing large numbers of transactions, you may
want to instantiate multiple copies of the private-key object to avoid the single private
key again becoming a bottleneck.

In general most private-key operations, when performed on modern processors, are
fairly quick, so there’s no need to create large numbers of private-key objects for fear
of them becoming a bottleneck. In this case the primary bottleneck is the need to read
and decrypt the key for each message processed. However, when run on amultiple-
CPU system, you should make some attempt to match objects to CPUs — creating a
single private-key object on afour-CPU system guarantees that the overall
performance will be no better than that of a single-CPU system, since the single
object instance acts as amutex that can only be acquired by one CPU at atime.
Standard programming practice for efficient utilisation of resources on multiprocessor
systems appliesto cryptlib just asit does for other applications. Creating a pool of
objectsthat can be picked up and used as required would be one standard approach to
this problem. Some operating systems provide special support for this with functions
for thread pooling management. For example, Windows 2000 and XP provide the
QueueUser Wir kI t emfunction, which submits awork item to athread pool for
execution when the next thread becomes available.

In order to protect against potential deadl ocks when multiple threads are waiting on a
single object, cryptlib includes a watchdog timer that triggers after a certain amount
of time has been spent waiting on the abject. Once this occurs, cryptlib will return
CRYPT_ERROR_TIMEOUT to indicate that an object is still in use after waiting for
it to become available. If you experience timeouts of this kind, you should check

46

cryptlib Basics

your code to seeif there are any bottlenecks due to a single object with along
response time being shared by several fast-response-time objects. Note that timeouts
are also possible with normal cryptlib object use, for example when communicating
dataover aslow or stalled network link, so aCRYPT_ERROR_TIMEOUT status
doesn’t automatically mean that the watchdog timer signalled a problem.

To help diagnose situations of this kind, the debug build of cryptlib will display on
the console output an indication that it waited on a particular object, along with the
object type that it waited on. Y ou can use thisinformation to identify potential
bottlenecks in your application.

Linux has a somewhat unusual threading implementation built around the cl one()
system call that can lead to unexpected behaviour with some kernel and/or glibc
versions. Two common symptoms of glibc/kernel threading problems are phantom
processes (which are actually glibc-internal threads created viacl one()) being left
behind when you application exits, and cryptlib’s internal consistency-checking
throwing an exception in the debug build when it detects an problem with threading.
If you run into either of these situations, you can try different glibc and/or kernel
versionsto find a combination that works. Searching Internet newsgroups will
provide awealth of information and advice on problems with glibc and Linux
threads.

Interaction with External Events

Internaly, cryptlib consists of a number of security-related objects, some of which
can be controlled by the user through handles to the objects. These objects may also
be acted on by external forces such as information coming from encryption and
system hardware, which will result in a message related to the external action being
sent to any affected cryptlib objects. An example of such an event is the withdrawal
of asmart card from a card reader, which would result in a card removal message
being sent to all cryptlib objects that were created using information stored on the
card. Thiscan affect quite anumber of objects.

Typically, the affected cryptlib objects will destroy any sensitive information held in
memory and disable themselves from further use. If you try to use any of the objects,
cryptlib will return CRYPT_ERROR_SIGNALLED to indicate that an external event
has caused a change in the state of the object.

After an object has entered the signalled state, the only remaining operation you can
perform with the object isto destroy it using the appropriate function.

Security Usability Fundamentals 47

Security and Usability

An important consideration when you’re building an application is the usability of the
security features that you’ll be employing. Security experts frequently lament that
security has been bolted onto applications as an afterthought, however the security
community has committed the exact same sin in reverse, placing usability
considerations in second place behind security, if they were considered at all. Asa
result, we spent the 1990s building and deploying security that wasn’t really needed,
and now that we’re experiencing widespread phishing attacks with viruses and worms
running rampant and the security is actually needed, we’re finding that no-one can
useit.

This section provides guidance on security usability principles for your application,
covering everything from theinitial design stages through to final pre-release
usability testing.

Security Usability Fundamentals

To understand the problem, it’s necessary to go back to the basic definition of
functionality and security. An application exhibits functionality if thingsthat are
supposed to happen, do happen. Similarly, an application exhibits security if things
that aren’t supposed to happen, don’t happen. Security developers are interested in
the latter (marketers tend to be more interested in the former).

Ensuring that things that aren’t supposed to happen don’t happen can be approached
from both the application side and from the user side. From the application side, the
application should behave in a safe manner, defaulting to behaviour that protects the
user from harm. From the user side, the application should act in amanner in which
the user’s expectation of a safe user experience are met. The following sections
provide various guidelines on ways of achieving this goal.

Theoretical vs. Effective Security

There can be a significant difference between theoretical and effective security. In
theory, we should all be using smart cards and PK| for authentication. However,
these measures are so painful to deploy and use that they’re almost never employed,
making them far less effectively secure than basic usernames and passwords. Security
experts tend to focus exclusively on the measures that provide the best (theoretical)
security, however sometimes these measures provide very little effective security
because they end up being misused, or turned off, or bypassed.

A lot of this comes from security’s origin in the government crypto community. For
cryptographers, the security must be perfect — anything less than perfect security
would be inconceivable. In the past this haslead to all-or-nothing attempts at
implanting security such as the US DoD’s “C2 in ‘92” initiative (a more modern form
of this might be “PKI or Bust”), which resulted in nothing in *92 or at any other date.
As security god Butler Lampson has observed, “The best is the enemy of the good”
— aproduct that offers generally effective (but less than perfect) security will be
panned by security experts, who would prefer to see atheoretically perfect, but
practically unattainable or unusable product instead. Don’t be afraid to use simple
but effective security measures, even if they’re not the theoretical best that’s
available.

Y ou should however be careful not to use effective (as opposed to theoretically
perfect) security as an excuse for weak security. Using weak or homebrew
encryption mechanisms when proven, industry-standard ones are available isn’t
effective security, it’s weak security. Using appropriately secured passwords instead
of PKI isjustifiable, effective security.

User Conditioning

It’s often claimed that the way to address security issues is through better user
education. As it turns out, we’re been educating users for years about security,
although unfortunately it’s entirely the wrong kind of education. “Conditioning”

48

Security and Usability

might be a better term for what’s been happening. Whenever users go online, they’re
subjected to a constant barrage of error messages, warnings, and popups. DNS errors,
transient network outages, ASP errors, Javascript problems, missing plugins,
temporary server outages, incorrect certificates, and awhole host of other issues. The
fix for all of these problems is to click “OK” or “Cancel” as appropriate if these
options are available, or to try again later if they aren’t. Any user who has used the
Internet for any amount of time has become deeply conditioned to applying this
solution to all Internet/network problems.

When certificates are used to secure hetwork communications, a genuine attack
displaysidentical symptomsto the dozens of other transient problems that users have
been conditioned to ignore. In other words we’re trying to detect attacks using
certificates when an astronomical false positive rate (endless dialogs and warnings
crying wolf) has conditioned users to ignore any warnings coming from the certificate
layer. In order to be effective, the fal se positive rate must be close to zero to have
any impact on the user.

An example of this effect of user conditioning was revealed in arecent case where a
large bank accidentally used an invalid certificate for its online banking services. An
analysis of site access logsindicated that of the approximately 300 users who
accessed the site, just one single user turned back when faced with the invalid
certificate. Although privacy concerns prevented afull-scale study of users’ reactions
from being carried out, an informal survey indicated that users were treating this as
yet another transient problem to be sidestepped. For example one user commented
that “Hotmail does this a lot, you just wait awhile and it works again”. In a similar
case, thistime with a government site used to pay multi-thousand dollar property
taxes, usersignored alarge red cross and warning text that the certificate wasinvalid
for over two months before a security expert notified that site administrators that they
needed to fix the certificate.

These real-life examples, taken from amajor banking site and alarge government
site, indicate that certificates, when deployed into a high-fal se-positive environment,
are completely ineffective in performing their intended task of preventing man-in-the-
middle attacks.

This user conditioning presents a somewhat difficult problem. Probably the best
solution for the purposes of securing network sessions is to use TLS’ password-based
authentication (see the section on ease of use below), which provides automatic
mutual authentication of client and server without any need for certificates, and
without any chance of false positives. The TLS handshake either succeeds with both
sides fully authenticated, or it fails.

Security at Layers 8 and 9

Usersare in general unmotivated and will choose the path of |east resistance if
possible, even if they know that it’s less secure. For example, students at Dartmouth
College in the US preferred using passwords on public PCs even though far more
secure USB tokens had been made freely available by the college, because passwords
were more convenient. In general, users didlike being forced to use a particular
interface, with one Gartner group survey finding that although users claimed they
wanted more security, when it came down to it they really wanted to stick with
passwords rather than going to more secure solutions like smart cards and RSA keys.

A similar situation occurs with providers of security services. Most US banking sites
are still using completely insecure, unprotected logins to online banking services
because they want to put advertising on their home pages (low-interest home loans,
pre-approved credit cards, and so on) and using SSL to secure them would make their
pages load more slowly than their competitors. In contrast, the use of un-secured
online banking loginsis amost unheard of outside the US, when banks are more
conscious of customer security. In some countries there were concerted efforts by all
banks to ensure that they had a single, consistent, secure interface to al of their online
banking services, although even there it occasionally lead to intense debate over
whether security should be allowed to override advertising potential. When you’re

Ease of Use 49

planning your security measures, you should be aware of the conflicting requirements
that business and politics will throw up, often requiring solutions at the same business
or political level.

Ease of Use

Users hate configuring things, especially complex security technology that they don’t
understand. One usability study of a PKI (In Search of Usable Security: Five Lessons
fromthe Field) found that a group of highly technical users, most with PhDsin
computer science, took over two hours to set up a certificate for their own use, and
rated it as the most difficult computer task they’d ever been asked to perform. In
practice, security experts are terrible at estimating how long atask will take for a
typica user. The assumptionisthat if the expert can do it in ten minutes then anyone
can do it in ten minutes, when in fact atypical user may still not be able to do it after
ten hours.

To avoid problems like this, your application should auto-configure itself as much as
possible, leaving only aminimal set of familiar operations for the user. For example
anetwork server can automatically generate a self-signed certificate on installation
and use that to secure communicationsto it, avoiding the complexity and expense of
obtaining a certificate from an external CA. Even if you consider thisto be a
lowering of theoretical security, it’s raising its effective security because now it’ll
actually be used.

On the client side, your application can use cryptlib’s plug-and-play PKI facility to
automatically locate and communicate with a CA server, requiring that the user enter
nothing more than a name and password to authenticate themselves (this process
takes less than a minute, and doesn’t require a PhD in computer science to
understand). For embedded devices, the operation can occur automatically when the
deviceis configured at the time of manufacture.

Since al users are quite used to entering passwords, your application can use the
traditional user name and password (tunnelled over a secure channel such as
SSL/TLS or SSH) rather than more complex mechanisms like PKI1, which in most
casesisjust an awkward form of user name and password (the user name and
password unlock the private key, which is then used to authenticate the user). Many
users choose poor passwords, so protocols like TLS’ password-based authentication,
which never transmit the password even over the secured link, should be preferred to
ones that do. An additional benefit of TLS’ password-based authentication is that it
performs mutual authentication of both parties, identifying not only the client to the
server but also the server to the client, without any of the expense, overhead, or
complexity of certificates and a PKI.

Automation vs. Explicitness

When you’re planning the level of automation that you want to provide for users,
consider the relative tradeoffs between making things invisible and automated vs.
obvious but obtrusive. Userswill act to minimise or €liminate monotonous computer
tasksif they can, since humanstend to dislike repetitive tasks and will take shortcuts
wherever possible. The morethat users have to perform operations like signing and
encryption, the more they want shortcuts to doing so, which means either making it
mostly (or completely) automated, with a concomitant drop in security, or having
them avoid signing/encrypting altogether. So a mechanism that requires the use of a
smart card and PIN or biometrics will inevitably end up being rarely-used, while one
that automatically processes anything that floats by will be. You’ll need to decide
where the best tradeoff point lies — see the section on theoretical vs. effective
security above for more guidance on this.

There are however cases where obtrusive security measures are warranted, such as
when the user is being asked to make important security decisions. In situations like
this, the user should be required to explicitly authorise an action before the action can
proceed. In other words any security-relevant action that’s taken should represent a
conscious expression of the will of the user. Silently signing a message behind the

50

Security and Usability

user’s back is not only bad practice (it’s the equivalent of having them sign a contract
without reading it), but is aso unlikely to stand up in a court of law, thus voiding the
reason usually given for signing a document.

If the user is being asked to make a security-relevant decision of this kind, make sure
that the action of proceeding really does represents an informed, conscious decision
on their part. Clear the mouse and keyboard buffers to make sure that a keystroke or
mouse click still present from earlier on doesn’t get accepted as a response for the
current decision. Don’t assign any buttons as the default action, since something as
trivial as bumping the space bar will, with most GUIs, trigger the default action and
cause the user to inadvertently sign the document (in this case the secure default isto
do nothing, rather than allowing the user to accidentally create asignature). |If
necessary, consult with alawyer about requirements for the wording and presentation
of requests for security-related decisions that may end up being challenged in court.
The section on user conditioning contains additional guidance on avoiding problems
inthisarea

Safe Defaults

Y our application should provide sensible security defaults, and in particular ensure
that the default/most obvious action is the safest one. In other wordsiif the user
chooses to click “OK” for every action (as most users will do), they should be kept
from harming themselves or others. Remember that if you present the user with a
dialog box that asks “A possible security problem has been detected, do you want to
continue [Yes/No]”, what the user will read is “Do you want this message to go away
[Yes/No]” (or more directly “Do you want to continue doing your job [Yes/No]”).
Ensuring that the Y es option is the safe one hel ps prevent the user from harming
themselves (and others) when they click it automatically.

cryptlib already enforces this secure-by-default rule by always choosing safe settings
for security options, algorithms, and mechanisms, but you should carefully check
your application to ensure that any actionsthat it takes (either implicitly, or explicitly
when the user chooses the default action in response to a query) are the safest ones.
The use of safe defaultsis also preferable to endless dialogs asking users to confirm
every action that needs to be taken, which rapidly becomes annoying and trains users
to dismiss them without reading them.

One very effective method of avoiding the “Click OK to make this message go away”
problem isto change the question from a basic yes/no one to a multi-choice one. In
one real-world test, about athird of usersfell prey to attacks when the system used a
simple yes/no check for a security property such as a verification code or key
fingerprint, but this dropped to zero when users were asked to choose the correct
verification code from a selection of five (one of which was “None of the above”).
The reason for this was that users either didn’t think about the yes/no question at all,
or rationalised any irregularities away as being transient errors, while the need to
choose the correct value from a selection of several actually forced them to think
about the problem.

The shareware WinZip program uses a similar technique for the message that it
displays when an unregistered copy is run, swapping the buttons around so that users
are actually forced to stop and read the text and think about what they’re doing rather
than automatically clicking “Cancel” without thinking about it. Similarly, the
immigration form used by New Zealand Customs swaps some of the yes/no questions
so that it’s not possible to simply check every box in the same column without
reading the questions.

Techniques such as this, which present aroadblock to muscle memory, are extremely
effective in ensuring that users pay proper attention when they’re making security-
relevant decisions.

Don’t rely on user education to try and solve problems with your security user
interface. Computer security is simply too complicated, and the motivation for most
usersto learn itsintricacies too low, for this strategy to ever work. Attackerswill
then take advantage of this complexity to sidestep the security measures. For

Matching Users” Mental Models 51

example when users, after several years of effort, finally learned that clicking on
random email attachments was dangerous, attackers made sure that the messages
appeared to come from colleagues, friends, trading partners, or family, completely
defeating the “Don’t click on attachments from someone you don’t know”
conditioning. In addition to this problem, a modern electronic office can’t function
without users clicking on attachments, rendering much of this user education effort
useless.

A better use of the time and effort involved would have been to concentrate on
making the types of documents that are sent as attachments purely passive (unableto
cause any action on the destination machine), or only allowing them to be viewed in a
special least-privileges context from which they couldn’t cause any damage, or a
variety of other basic security measures dating back to the 1960s and 70s. For
example most operating systems provide a means of dropping privileges, allowing the
attachment to be viewed in a context in which they’re incapable of causing any
damage.

Don’t assume that some sort of user education can make a complex user interface
provide security — it’ll only work until the bad guys use its complexity against it, or
anew crop of non-educated (for that particular interface) users appears.

Interaction with other Systems

Secure systems don’t exist in a vacuum, but need to interact not only with users but
also with other, possibly insecure systems. What assumptionsis your design making
about these other systems? Which ones does it trust, and what happens if that trust is
violated, either deliberately (it’s compromised by an attacker) or accidentally (it’s
running buggy software)? For example a number of SSH implementations assumed
that when the other system had successfully completed an SSH handshake this
congtituted proof that it would only behave in afriendly manner, and were completely
vulnerable to any malicious action taken by the other system. On asimilar note, there
is more spam coming from compromised “good” systems than “bad” ones. Trust but
verify — adigitally signed virusis still avirus, even if it hasavalid digital signature
attached.

Going beyond the obvious “trust nobody” approach, your application can also
provide different levels of functionality under different conditions. Just as many file
servers will allow read-only access or accessto alimited subset of files under alow
level of user authentication and more extensive access or write/update access only
under a higher level of authentication, so your application can change its functionality
based on how safe (or unsafe) it considers the situation to be. So instead of simply
disallowing all communications to a server whose authentication key has changed (or,
more likely, connecting anyway to avoid user complaints), you can run in a “safe
mode” that disallows uploads of (potentially sensitive) data to the possibly-
compromised server and is more cautious about information coming from the server
than usual.

Matching Users’ Mental Models

In order to be understandable to users, it’s essential that your application match the
user’s mental model of how something should work, and that it follow the flow of the
users’ conception of how a task should be performed. If you don’t do this, users will
find it very difficult to accomplish what they want to do when they sit down in front
of your application.

Consider the process of generating a public/private key pair. If you’re sitting at a
Unix command line, you fire up a copy of gpg or openssl, feed it along string of
command-line options, optionally get prompted for further pieces of input, and at the
end of the process have a public/private key pair stored somewhere asindicated by
one of the command-line options.

This CLI-style design has been carried over to equivalent GUI interfaces that are used
to perform the same operation. - k keysi ze has become a drop-down combobox.
-aal gorit hmisaset of checkboxes, and so on. Overdl, it’s just a big graphical

52 Security and Usability

CLI-equivalent, with each command-line option replaced by a GUI element, often
spread over several screens for good measure (one large public CA requires usersto
fill out eleven pages of such information in order to be allowed to generate their
public/private key pair).

The problem with this style of interface is that while it may cater quite well to people
moving over from the command-line interface, it’s very difficult to comprehend for
the average user without this level of background knowledge, who will find it a
considerable struggle to accomplish their desired goal of generating akey to protect
their email or web browsing. Rather than focusing on the nuts and bolts of the key
generation process, the interface should instead focus on the activity that the user is
trying to perform, and concentrate on making thistask as easy as possible. Microsoft
has espoused this user interface design principle in the form of Activity-Based
Planning, which instead of giving the user a pile of atomic operations and forcing
them to hunt through menus and dialogs to piece al the bits and pieces together to
achieve their intended goal, creates alist of things that a user might want to do (see
the section on pre-implementation testing further on) and then builds the user
interface around those tasks.

Activity-Based Planning

Activity-based planning matches users’ natural way of thinking about their activities,
which focus on goals such as “I want my medical records kept private” or “I want to
be sure that the person/organisation that I’m talking to really is who they claim to
be”, rather than focusing on technology such as “I want to use an X.509 certificate in
conjunction with triple-DES encryption to secure my communications”. Your
application should therefore present the task involving security in terms of the users’
goalsrather than of the underlying security technology, and in terms that the users
can understand (most users won’t speak security jargon). This both makes it possible
for users to understand what it is they’re doing, and encourages them to make use of
the security mechanismsthat are available.

Using the key generation example from earlier, the two activities mentioned were
generating a key to protect email, and generating a key to protect web browsing (in
other words, for an SSL web server). Thisleads naturally to an interface in which the
user is first asked which of the two tasks they want to accomplish, and once they’ve
made their choice, asked for their name and email address (for the email protection
key) or their web server address (for the SSL/web browsing key). An even better
option would be to try and determine the details automatically, for example by
reading the email address information from the user’s mail application configuration,
and merely asking the user to confirm the details. The user shouldn’t be bothered
with anything else, since the application is perfectly capable of managing that for
them. Again, see the section on pre-implementation testing for a discussion of how to
work out details such as where to store the generated key.

There are three additional considerations that you need to take into account when
you’re using Activity-Based Planning to design your user interface. First, you need
to be careful to plan the activities correctly, so that you cover the majority of typica
use cases and don’t alienate users by forcing them down paths that they don’t want to
take, or having to try and mentally reverse-engineer the flow to try and guess which
path they have to take to get to their desired goal (think of atypical top-level phone
menu, for which there are usually several initial choices that might lead to any desired
god).

Secondly, you should always provide an opt-out capability to accommodate users
who don’t want to perform an action that matches one of your pre-generated ones.
Thiswould be handled in the key-generation interface by the addition of athird
option to generate some other (user-defined) type of key, the equivalent of the ‘“Press
0 to talk to an operator” option in a phone menu.

Finally, you should provide the option to select an alternative interface, usually
presented as an expert or advanced mode, for users who prefer the nuts-and-bolts
style interface in which they can specify every little detail themselves. Although the

Matching Users” Mental Models 53

subgroup of users who prefer thislevel of configurability for their optionsis
relatively small, it tends to be arather vocal minority who will complain loudly about
the inability to specify their favourite obscure algorithm or select abnormally large
key sizes.

Use of Familiar Metaphors

Many users are reluctant to activate security measures because the difficulty of
configuring them is greater than any perceived benefits. Using a metaphor that’s
familiar to the user can help significantly in overcoming this reluctance to deal with
security issues. For example most users are familiar with the use of keys as security
tools, making a key-like device an ideal mechanism for propagating security
parameters from one system to another. Instead of a conventional key, the device
used to initialise security parametersis a USB memory key that the user takes to each
device that’s being initialised. This mechanism is used in Microsoft’s Windows
Network Smart Key (WNSK), in which Windows stores WiFi/802.11 encryption
keys and other configuration details onto a standard USB memory key, which isthen
inserted into the other wireless devices that need to be configured.

Since the USB drives can store amounts of information that would be impossible for
humans to carry from one device to another (the typical WNSK file size is around
100KB), it’s possible to fully automate the setup using full-strength security
parameters and configuration information that would be impossible for humans to
manage. In addition to the automated setup process, for compatibility with non-
WNSK systems it’s also possible to print out the configuration parameters, although
the manual data entry processis rather painful. Using the familiar metaphor of
inserting akey into an object in order to provide security greatly increases the
chances that it’ll actually be used, since it requires almost no effort on the part of the
user.

Thistype of security mechanism is known as alocation-limited channel, one in which
the user’s credentials are proven by the fact that they have physical access to the
device(s) being configured. If the threat model involves attackers coming in over a
network, such alocation-limited channel is more secure than any fancy (and
complex) use of devices such as smart cards and certificates, since the one thing that
a network attacker can’t do is plug a physical token into the device that’s being
configured.

A similar type of mechanism, which is often combined with alocation-limited
channel, is atime-limited channel in which two devices have to complete a secure
initialisation within avery small time window. An example of mechanismisonein
which the user simultaneously presses secure initialisation buttons on both devices
being configured. The device being initialised would then assume that anything that
responded at that exact timepoint would be its intended peer device. This mechanism
combines both location-limited channels (the user is demonstrating their authorisation
by being able to activate the secure initialisation process) and a time-limited channel
(the setup process has to be carried out within a precise time window in order to be
successful).

These types of security mechanisms provide both the ease of use that’s necessary in
order to ensure that they’re actually used, and a high degree of security from outside
attackers, since only an authorised user with physical accessto the system is capable
of performing the initialisation steps.

Note though that you have to exercise a little bit of care when you’re designing your
location-limited channel. The Bluetooth folks, for example, allowed anyone (not just
authorised users) to perform this secure initialisation (forced re-pairing in Bluetooth
terminology), leading to the sport of blugjacking, in which a hostile party hijacks
someone else’s Bluetooth device. A good rule of thumb for these types of security
measures is to look at what Bluetooth does for its “security” and then make sure that
you don’t do anything like it.

54 Security and Usability

Speaking the User’s Language

When interacting with the user, particularly over atopic as complex as computer
security, it’s important to speak their language. Developers who spend their lives
immersed in the technology that they’re creating often find it hard to step back and
view it from anon-technical user’s point of view, with the result that the user
interface that they create assumes a high degree of technical knowledge in the end
USer.

The easiest way to determine how to speak the user’s language when your application
communicates with them is to ask the users what they’d expect to see in the interface.
Studies of users have shown however that there are so many different waysto
describe the same sorts of things that using the results from just one or two users
would invariably lead to difficulties when other users expecting different terms or
different ways of explaining concepts use the interface.

A better alternative isto let users vote on terminology chosen from alist of user-
suggested text and then select the option that garners the most votes. A real-world
evaluation of this approach found that users of the interface with the highest-polling
terminology made between two and five times less mistakes than when they used the
same interface with the original technical terminology, the interface style that’s
currently found in most security applications.

The same study found that after prolonged use, error rates were about the same for
both interfaces, indicating that, given enough time, users can eventually learn more or
less anything ... until an anomalous condition occurs, at which point they’ll be
completely lost with the technical interface.

Consider how requests for security-related information are presented to the user. For
example many applications, when connecting to a server whose key (which is usually
tied to its identity) has changed will present the user with either too little information
(“The key has changed, continue?”’), too much information (a pile of
incomprehensible X.509 technobabble, in one PKI usability study not a single user
was able to make any sense of the certificate information that Windows displayed to
them), or the wrong kind of information (“The sky is falling, run away”).

Look at the problem from the point of view of the user. They’re connecting to a
server that they’ve connected to many times in the past and that they need to get to
now in order to do their job. Their natural inclination will be to do whatever it takes
to get rid of the warning and connect anyway, making it another instance of the “Do
you want this message to go away” problem presented earlier.

An additional problem is caused by the fact that security warnings presented to the
user often come with no supporting context. Since web browsers implicitly and
invisibly trust alarge number of CAs, and by extension a vast number of certificates,
users have no ideawhat a certificate is when an error message mentioning one
appears. One user survey found that many users assumed that it represented some
form of notice on the wall of the establishment, like a health inspection noticein a
restaurant or a Better Business Bureau certificate, a piece of paper that indicates
nothing more than that the owner has paid for it (which indeed is the case for most
SSL certificates). Users were therefore dismissive of “trusted” certificates, and as an
extension cared equally little about “untrusted” ones. Further examples of this
problem are given in the section on user conditioning above.

Y our user interface should therefore explain the problem to them, for example “The
server’s identification has changed since the last time that you connected to it. This
may be afake server pretending to be the real thing, or it could just mean that the
server software has been reinstalled”. Depending on the severity of the consequences
of connecting to afake server, you can then allow them to connect anyway, connect
in areduced-functionality “safe” mode such as one that disallows uploads of
(potentially sensitive) data to the possibly-compromised server and is more cautious
about information coming from the server than usual, or perhaps even require that
they first verify the server’s authenticity by checking it with the administrator who
runs it. If you like, you can also include an “Advanced” option that displays the usual

Matching Users” Mental Models 55

X.509 gobbledigook. Remember though to make the simplest, most straightforward
interface configuration the default one, since studies have shown that casual users
don’t customise their interfaces (typically for fear of “breaking something”) even
when a configuration capability is available.

The ability to select basic and advanced versions of the user interface helps reduce
usability problems by giving most users a set of sensible (and safe) defaults without
overloading them with complexity while still allowing power usersto tweak settings
to their heart’s content. For example certificate enrolment using cryptlib’s plug-and-
play PKI facility can be done with nothing more than a user name and password, or
with dozens of dialog boxes for choosing the algorithm type, key size, X.500
distinguished name components, certificate attributes, key file name, storage location,
and so on and so on, for advanced users that really require this.

Use of Visual Cues

The use of colour can play animportant role in alerting users to safe/unsafe
situations. For this reason, Mozilla-based web browsers updated their SSL indication
mechanism from the original easily-overlooked tiny padlock at the bottom of the
screen to changing the background colour of the browser’s location bar when SSL is
active and the certificate is verified. Changing the background colour or border of the
object that the user islooking at or working with is an extremely effective way of
communicating security information to them, since they don’t have to remember to
explicitly look elsewhere to try and find the information. The colour change also
makes it very explicit that something special has occurred with the object that’s being
highlighted (one usability study found that the number of users who were ableto
avoid a security problem doubled when different colours were used to explicitly
highlight security properties).

If you decide to use colour or similar highlighting methods in your application,
remember that the user has to be aware of the significance of the different coloursin
order to be able to make a decision based on them, that some users may be colour-
blind to particular colour differences, and that colours have different meanings across
different cultures. For example the colour red won’t automatically be interpreted to
indicate danger in all parts of the world, or its meaning as a danger/stop signal may
work differently in different countries. In the UK, heavy machinery is started with a
green button (go) and stopped with ared button (stop). Acrossthe channel in France,
it’s started with a red button (a dangerous condition is being created) and stopped
with a green button (it’s being rendered safe). When it comes to colour-blindness,
about 8% of the population will be affected, with the most common type being partial
or complete red-green colour-blindness. Ensuring that your interface also works
without the use of colour, or at least making the colour settings configurable, is one
way of avoiding these problems.

Visual cues can also be used to provide an indication of the absence of security,
although how to effectively indicate the absence of a property is on general a hard
problem to solve. For example password-entry fields in dialog boxes and web pages
always blank out the typed password (typically with asterisks or circles) to give the
impression that the password is secret and/or protected in some manner. Even if the
password is sent in the clear without any protection (which is the case for many web
pages), it’s still blanked out in the user display. Conversely, information such as
credit card numbers, which are usually sent encrypted over SSL connections, are
displayed to the user. By not blanking the password field when there’s no protection
being used, you’re providing instant, unmistakeable feedback to the user that there’s
no security active.

The fact that their password is being shown in the clear will no doubt make many
users nervous, because they’ve been conditioned to seeing it masked out. However,
making users nervous is exactly what this measure is meant to do: a password
displayed in this manner may now be vulnerable to shoulder surfing, but it’s even
more vulnerable to network sniffing and similar attacks (thisis disregarding the
question of why a user would be accessing sensitive information in a password-

56

Security and Usability

protected account in an environment that’s vulnerable to shoulder-surfing in the first
place).

Displaying the password in the clear makes real and present what the user cannot see,
that there is no security active to protect either their password or any sensitive
information that the password will unlock. To avoid adverse user reaction, you
should add a tooltip “Why is my password showing” to the password-entry box when
the password isn’t masked, explaining to users what’s going on and the potential
consequences of their actions. This combination of measures provides both
appropriate warning and enough information for the user to make an informed
decision about what to do next.

When you use measures like this, make sure that you display the security statein a
manner where it can’t be spoofed by an attacker. For example web browsers are
vulnerable to many levels of user interface spoofing using methods such asHTML to
change the appearance of the browser or web page, or Javascript or XUL to modify or
over-draw browser Ul elements. To protect against these types of attack, you should
ensure that your security-status display mechanism can’t be spoofed or overridden by
external means.

Usability Testing

Usability testing is a two-phase process, pre-implementation testing (trying to figure
out what you want to build) and post-implementation testing (verifying that what you
eventually built — which given the usual software devel opment process could be
quite different from what was planned — is actually the right thing). This section
covers both pre- and post-implementation testing of the security usability of an
application.

Pre-implementation Testing

Testing at the design stage (before you even begin implementation, for example using
amockup on paper or a GUI development kit) can be enormously useful in assessing
the users’ reactions to the interface and as a driver for further design effort (Carolyn
Snyder’s book Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces provides further guidance in thisarea). Consider having the
designers/developers play the part of the computer when interacting with test users, to
alow them to see what their planned interface needsto cope with. Although users
aren’t professional user interface designers, they are very good at reacting to designs
that they don’t like, or that won’t work in practice.

Another useful pre-implementation testing technique isto imagine a stereotypical end
user (or several types of stereotypical usersif this applies) and think about how
they’d use the software. What sort of things would they want to do with it? How
well would they cope with the security mechanisms? How would they react to
security warnings? The important thing here is that you shouldn’t just add a pile of
features that you think are cool and then try and figure out how to justify their use by
the end user, but that you look at it from the user’s point of view and add only those
features that they’ll actually need and be able to understand.

Note though that you should never employ the technique of stereotypical usersasa
substitute for studying real usersif such accessis available. An amazing amount of
timeiswasted at the design stage of many projects as various contributors argue over
what users might in theory do if they were to use the system, rather than simply going
to the users and seeing what they actually do.

All too frequently, user interfaces go against the user’s natural expectations of how
something is supposed to work. For example a survey of arange of users from
different backgrounds on how they expected public keys and certificates to be
managed (PKI Technology Survey and Blueprint) produced results that were very,
very different from how X.509 saysit should be done, suggesting at least one reason
for X.509’s failure to achieve any real penetration.

Usability Testing 57

Asking users how they think that something should work is therefore an extremely
useful design technique. Consider the question of storing users’ private keys. Should
they be stored in one big file on disk? Multiplefiles? Intheregistry (if the program
is running under Windows)? On aUSB token? Intheir home directory? In ahidden
directory underneath their home directory? What happensif users click on one of
thesefiles? What if they want to move a particular key to another machine? How
about all of their keys? What happens when they stop using the machine or account
where the keys are stored? How are the keys protected? How are they backed up?
Should they even be backed up?

All of these questions can be debated infinitely, but there’s a far simpler (and more
effective) way to resolve things. Go and ask the users how they would expect them to
be done. Many users won’t know, or won’t care, but eventually you’ll see some sort
of common model for key use and handling start to appear. This model will be the
one that most clearly matches the user’s natural expectations of how things are
supposed to work, and therefore the one that they’ll find the easiest to use. This style
of testing has been in use for some years when developing new user interface
features. For example in the early 1980s whenever a new interface feature was
implemented for the Apple Lisa, Apple developer Larry Tesler would collar an Apple
employee to try it out. If they couldn’t figure it out, the feature was redesigned or
removed.

Another advantage of asking users what they want is that they frequently come up
with issues that the developers haven’t even dreamed about. If you do this though,
make sure that you occasionally refresh your user pool, because as users spend more
and more time with your interface they become less and | ess representative of the
typical user, and therefore less able to pick up potential usability problems.

Post-implementation Testing

Once you’ve finished your application, take a few non-technical people, sit themina
room with a copy of the software running, and see how they handleit. Which parts
take them the longest? At what points do they have to refer to the manual, or even
ask for help? Did they manage to get the task done in a secure manner, meaning that
their expectations of security (not just yours) were met? Can a section that caused
them problems be redesigned or even eliminated by using a safe default setting? Real
testing before deployment (rather than shipping a version provisionally tagged asa
beta release and waiting for user complaints) is an important part of the security
usability eval uation process.

Logging of users’ actions during this process can help show up problem areas, either
because users take along time to do something or because their actions generate
many error messages. Logging also has the major advantage that (except for privacy
concerns) it’s totally non-invasive, so that users can ignore the logging and just get on
with what they’re doing.

As an example of the conflict between user expectations and security design, security
usability studies have shown that email userstypically aren’t aware that (a) messages
can be modified as they move across the Internet, (b) encrypting a message doesn’t
provide any protection against such modification, and (c) signing a message does
protect it. The users had assumed that encrypting a message provided integrity
protection but signing it simply appended the equivalent of a pen-and-paper signature
to the end of it. Real-world testing and user feedback is required to identify these
issues so that they can be addressed, for example by explaining signing as protecting
the message from tampering rather than the easily-misunderstood “signing”.
Similarly, the fact that encryption doesn’t provide integrity protection can be
addressed either at the user interface level by warning the user that the encrypted
message isn’t protected from modification, or at the technical level by adding a MDC
(modification detection code) inside the encryption layer or aMAC (message
authentication code) outside it. Of these two, the latter is the better option since it
“fixes” the encryption to do what users expect without additionally burdening the
user.

58

Security and Usability

Post-implementation testing can often turn up highly surprising results arising from
issues that would never have occurred to implementers. For example the developers
of the Tor anonymity system found that Tor users were mailing out their private keys
to other Tor users, despite the fact that they were supposed to know not to do this.
Changing the key filename to include a secret_ prefix at the front solved the problem
by making it explicit to users that this was something that shouldn’t be shared. PGP
solves the problem in asimilar manner by only allowing the public key components
to be exported from a PGP keyring, even if the user specifies that the PGP private
keyring be used as the source for the export. Conversely, Windows/PKCS #12 takes
exactly the opposite approach, blurring any distinction between the two in the form of
a single “digital identity” or PKCS #12/PFX file, so that users are unaware that
they’re handing over their private keys as part of their digital identity (one paper
likens this practice to “pouring weedkiller into a fruit juice bottle and storing it on an
easily accessible shelf in the kitchen cupboard”).

User interface design is usually ahighly iterative process, so that the standard

{ design, implement, test } cycle described above probably won’t be enough to shake
out all potentia problems, particularly in the case of something as complex and hard
to predict as security user interface design. Instead of asingle cycle, you may need to
use multiple cycles of user testing, starting with arelatively generic design
(sometimes known as low-fi prototyping) and then refining it based on user feedback
and experience.

This testing process needn’t be complex or expensive. Usability expert Jakob Nielsen
has shown that once you go beyond about five users tested, you’re not getting much
more information in terms of usability results. This phenomenon occurs because as
you add more and more users, there’s increasing overlap in what they do, so that you
learn less and less from each new user that you add. So if you have (say) 20 test
users, it’s better to use them in four different sets of tests (perhaps on different
versions of the interface) than to commit al 20 to asingletest. A variation of this
situation occurs when a single group contains highly distinct subgroups of users, such
as one where half the users are technical and the other half are non-technical. In this
case you should treat each subgroup as a separate unit for 5-user test purposes, since
they’re likely to produce very different test results.

A useful tool to employ during thisiterative design processis to encourage usersto
think out loud as they’re using the software. This verbalisation of users’ thoughts

helps track not just what users are doing but why they’re doing it, allowing you to
locate potential stumbling blocks and areas that cause confusion. Make sure though
that you actually analyse a user’s comments about potential problems. If a user
misses an item in adialog or misreads a message, they may end up in trouble at some
point further down the road, and come up with complex rationalisations about why
the application is broken at the point where they realise that they’re in trouble, rather
than at the point where they originally made the error.

Note also that the very act of verbalising (and having to provide an explanation for)
their actions can make a user think much more about what they’re doing, and as a
result change their behaviour. Tests with users have shown that they’re much better
at performing a user interface task when they’re required to think out loud about what
they’re doing.

To get around this, you can allow the user to perform less thinking out loud, and
instead prompt them at various points for thoughts on what they’re doing. Asking
questions like “What do you expect will happen if you do this?” or “Is that what you
expected would happen?” are excellent ways of turning up flawed assumptionsin
your design.

A variation of thinking out loud is constructive interaction, in which two users use a
system together and comment on each other’s actions (imagine your parents sitting in
front of their PC trying to figure out how to send a photo attachment via their Hotmail
account). Thistype of feedback-gathering is somewhat more natural than thinking
out loud, so there’s less chance of experimental bias being introduced.

Usability Testing 59

Post-delivery Reviews

A final stage of testing is the post-delivery review, sometimes referred to as a
retrospective. Most advocates of this process suggest that 3-12 months after release
isthe best time to carry out this type of review, this being the point at which users
have become sufficiently familiar with the software to locate problem areas, and at
which point the software has had sufficient exposure to the real world to revea any
flawsin the design or its underlying assumptions.

Post-delivery reviews are important for shaking out emergent properties unanticipated
by the designers that even post-implementation testing with users can’t locate. For
example when the folks who wrote RFC 1738 provided for URLSs of the form

user @ost name, they never considered that an opponent could use thisto
construct URLslike ht t p: / / www. bankof aneri ca. com@l 234567/ , which
points to a server whose numeric | P address is 1234567 while appearing to users to be
a legitimate bank server’s address. Testing in a hostile environment (the real world)
provides additional feedback on secure user interface design. Although it’s unlikely
that attackers will cooperate in performing this type of testing for you, over the years
alarge body of knowledge has been established that you can use to ensure that your
application doesn’t suffer from the same weaknesses. Books on secure programming
like Building Secure Software by John Viegaand Gary McGraw and Writing Secure
Software by Michael Howard and David LeBlanc contain in-depth discussions of
“features” to avoid when you create an application that needs to process or display
security-relevant information.

60

Data Enveloping

Data Enveloping

Encryption envelopes are the easiest way to use cryptlib. An envelopeisacontainer
object whose behaviour is modified by the data and resources that you push into it.
To use an envelope, you add to it other container and action objects and resources
such as passwords that control the actions performed by the envel ope, and then push
in data and pop out data which is processed according to the resources you’ve pushed
in. cryptlib takes care of the rest. For example to encrypt the message “This is a
secret” with the password “Secret password” you would do the following:

create the envel ope;

add the password attribute "Secret password" to the envel ope;
push data "This is a secret" into the envel ope;

pop encrypted data fromthe envel ope;

destroy the envel ope;

That’s all that’s necessary. Since you’ve added a password attribute, cryptlib knows
that you want to encrypt the data in the envelope with the password, so it encrypts the
dataand returnsit to you. This processisreferred to as enveloping the data.

The opposite, de-enveloping process consists of :

create the envel ope;

push encrypted data into the envel ope;

add the password attribute "Secret password" to the envel ope;
pop decrypted data fromthe envel ope;

destroy the envel ope;

cryptlib knows the type of encrypted data that it’s working with (it can inform you
that you need to push in a password if you don’t know that in advance), decrypts it
with the provided password, and returns the result to you.

This exampleillustrates a feature of the de-enveloping process that may at first seem
dlightly unusual: Y ou have to push in some encrypted data before you can add the
password attribute needed to decrypt it. Thisis because cryptlib will automatically
determine what to do with the data you giveit, so if you added a password before you
pushed in the encrypted data cryptlib wouldn’t know what to do with the password.

Signing datais almost identical, except that you add a signature key attribute instead
of apassword. Y ou can also add a number of other encryption attributes depending
on the type of functionality you want. Since all of these require further knowledge of
cryptlib’s capabilities, only basic data, compressed-data, and password-based
enveloping will be covered in this section.

Due to constraints in the underlying data formats that cryptlib supports, you can’t
perform more than one of compression, encryption, or signing using asingle
envelope (the resulting data stream can’t be encoded using most of the common data
formats supported by cryptlib). If you want to perform more than one of these
operations, you need to use multiple envelopes, one for each of the processing steps
you want to perform. If you try and add an encryption attribute to an envelope which
isset up for signing, or a signing attribute to an envelope which is set up for
encryption, or some other conflicting combination, cryptlib will return a parameter
error to indicate that the attribute type isinvalid for this envelope since it is aready
being used for a different purpose.

Creating/Destroying Envelopes

Envel opes are accessed through envel ope objects that work in the same general
manner as the other container objects used by cryptlib. Before you can envelope or
de-envelope data you need to create the appropriate type of envelope for the job. |If
you want to envelope some data, you would create the envel ope with
cryptCreateEnvelope, specifying the user who isto own the device object or
CRYPT_UNUSED for the default, normal user, and the format for the enveloped data
(for now you should use CRYPT_FORMAT_CRYPTLIB, the default format):

The Data Envel oping Process 61

CRYPT_ENVELOPE cr ypt Envel ope;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

/* Perform envel opi ng */
crypt Dest royEnvel ope(crypt Envel ope);

The Visual Basic versionis:
Di m crypt Envel ope As Long

crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORMAT_CRYPTLIB
Per f orm envel opi ng
crypt Dest royEnvel ope crypt Evel ope

The C#, Java, and Python versions (here as el sewhere) migrate the output value to the
return value, and return errors by throwing exceptions. The Python versionis:

crypt Envel ope = crypt Creat eEnvel ope(crypt User,
CRYPT_FORMAT_CRYPTLI B)

The C# and Javaversionis:

i nt crypt Envel ope;

crypt Envel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORMAT_CRYPTLI B);

If you want to de-envel ope the result of the previous enveloping process, you would
create the envelope with format CRYPT_FORMAT_AUTO, which tells cryptlib to
automatically detect and use the appropriate format to process the data:

CRYPT_ENVELOPE cr ypt Envel ope;
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);
/* Perform de-envel opi ng */

crypt Dest royEnvel ope(crypt Envel ope);

Note that the CRYPT_ENVELOPE is passed to the cryptCreateEnvel ope by
reference as the function modifies it when it creates the envelope. In all other
routines in cryptlib, CRYPT_ENVELOPE is passed by value.

Sometimes when you’re processing data in an envelope, you may not be able to add
all of the data in an envelope, for example when you’re trying to de-envelope a
message that has been truncated due to a transmission error, or when you don’t
retrieve all of the processed datain the envelope before destroying it. When you
destroy the envelope cryptlib will return CRYPT_ERROR_INCOMPLETE asa
warning that not all of the data has been processed. The envelope will be destroyed
as usual, but the warning is returned to indicate that you should have added further
data or retrieved processed data before destroying the envelope.

The Data Enveloping Process

Although this section only covers basic data and password-based enveloping, the
conceptsit covers apply to al the other types of enveloping as well, so you should
familiarise yourself with this section even if you’re only planning to use the more
advanced types of enveloping such as digitally signed data enveloping. The general
model for enveloping datais:

add any attributes such as passwords or keys

push in data
pop out processed data

To de-envel ope data:

62

Data Enveloping

push in data

(cryptlib will informyou what resource(s) it needs to process the
dat a)

add the required attribute such as a password or key

pop out processed data

The envel oping/de-envel oping functions perform alot of work in the background.
For example when you add a password attribute to an envelope and follow it with
some data, the function hashes the variable-length password down to create a fixed-
length key for the appropriate encryption agorithm, generates atemporary session
key to use to encrypt the data you’ll be pushing into the envelope, uses the fixed-
length key to encrypt the session key, encrypts the data (taking into account the fact
that most encryption modes can’t encrypt individual bytes but require data to be
present in fixed-length blocks), and then cleans up by erasing any keys and other
sensitive information still in memory. This is why it’s recommended that you use the
envelope interface rather than trying to do the same thing yourself.

The cryptPushData and cryptPopData functions are used to push datainto and pop
data out of an envelope. For example to push the message “Hello world” into an
envelope, you would use:

crypt PushDat a(envel ope, "Hello world", 11, &bytesCopied);

The same operation in C# and Javais.
int bytesCopi ed = crypt.PushData(envel ope, "Hello world");

In Python thisis:
byt esCopi ed = crypt PushDat a(envel ope, "Hello world")

The function will return an indication of how many bytes were copied into the
envelopein byt esCopi ed. Usualy thisisthe same as the number of bytesyou
pushed in, but if the envelope is almost full or you’re trying to push in a very large
amount of data, only some of the datamay be copiedin. Thisis useful when you
want to process alarge quantity of datain multiple sections, which is explained
further on.

Popping data works similarly to pushing data:
crypt PopDat a(envel ope, buffer, bufferSize, &bytesCopied);

In this case you supply abuffer to copy the data to, and an indication of how many
bytes you want to accept, and the function will return the number of bytes actually
copiedin byt esCopi ed. Thiscould be anything from zero up to the full buffer
size, depending on how much dataiis present in the envel ope.

Once you’ve pushed the entire quantity of data that you want to processinto an
envelope, you need to use cryptFlushData to tell the envelope object to wrap up the
data processing. If you try to push in any more data after this point, cryptlib will
return a CRYPT_ERROR_COMPLETE error to indicate that processing of the data
in the envel ope has been completed and no more data can be added. Since the
enveloped data contains al the information necessary to de-envelope it, it isn’t
necessary to perform the final flush during de-enveloping.

Y ou can add enveloping and de-envel oping attributes to an envelope in the usua
manner with cryptSetAttribute and cryptSetAttributeString. For example to add
the password “password” to an envelope, you would set the CRYPT ENVINFO -
PASSWORD éttribute:

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO PASSWORD,
"password", 8);

The same operation in Visual Basicis:

crypt Set AttributeString crypt Envel ope, CRYPT_ENVI NFO_PASSWORD, _
"password", 8

The various types of attributes that you can add are explained in more detail further
on.

The Data Envel oping Process 63

Data Size Considerations

When you add data to an envelope, cryptlib processes and encodesit in amanner that
allows arbitrary amounts of datato be added. If cryptlib knows in advance how much
datawill be pushed into the envelope, it can use a more efficient encoding method
since it doesn’t have to take into account an indefinitely long data stream. You can
notify cryptlib of the overall data size by setting the CRYPT_ENVINFO_DATASIZE
attribute:

crypt Set Attri bute(envel ope, CRYPT_ENVI NFO DATASI ZE, dat aSi ze);

Thistells cryptlib how much datawill be added, and allowsiit to use the more
efficient encoding format. If you push in more data than this before you wrap up the
processing with cryptFlushData, cryptlib will return CRYPT_ERROR_-
OVERFLOW; if you pushin less, it will return CRYPT_ERROR_UNDERFLOW.

There is one exception to this rule which occurs when you’re using the
PGP/OpenPGP data format. PGP requires that the length be indicated at the start of
every message, so you always have to set the CRYPT_ENVINFO _DATASIZE
attribute when you perform PGP enveloping. If you try and push datainto a PGP
envelope without setting the data size, cryptlib will return CRYPT_ERROR_-
NOTINITED to tell you that it can’t envelope the data without knowing its overall
size in advance. PGP/OpenPGP enveloping is explained in more detail in “PGP” on

page 95.

The amount of data popped out of an envelope never matches the amount pushed in,
because the envel oping process adds encryption headers, digital signature
information, and assorted other paraphernaliawhich is required to process a message.
In many cases the overhead involved in wrapping up a block of datain an envelope
can be noticeable, so you should always push and pop as much data at once into and
out of an envelope as you can. For exampleif you have a 100-byte message and push
itin as 10 lots of 10 bytes, thisis much slower than pushing asingle lot of 100 bytes.
This behaviour isidentical to the behaviour in applications like disk or network 1/0,
where writing asingle big fileto disk isalot more efficient than writing 10 smaller
files, and writing a single big network data packet is more efficient than writing 10
smaller data packets.

Push and popping unnecessarily small blocks of data when thetotal datasizeis
unknown can also affect the overall enveloped data size. If you haven’t told cryptlib
how much data you plan to process with CRY PT_ENVINFO_DATASIZE then each
time you pop ablock of datafrom an envelope, cryptlib hasto wrap up the current
block and add header information to it to alow it to be de-enveloped later on.
Because this encoding overhead consumes extra space, you should again try to push
and pop asingle large data block rather than many small ones (to prevent worst-case
behaviour, cryptlib will coalesce adjacent small blocks into a minimum block size of
10 bytes, so it won’t return an individual block containing less than 10 bytes unless
it’s the last block in the envelope). Thisisagain like disk data storage or network
1/0, where many small files or data packets lead to greater fragmentation and wasted
storage space or network overhead than asingle large file or packet.

By default the envelope object which is created will have a 16K data buffer on DOS
and 16-bit Windows systems, and a 32K buffer elsewhere. The size of the internal
buffer affects the amount of extra processing that cryptlib needs to perform; alarge
buffer will reduce the amount of copying to and from the buffer, but will consume
more memory (the ideal situation to aim for is one in which the data fits completely
within the buffer, which means that it can be processed in a single operation). Since
the process of encrypting and/or signing the data can increase its overall size, you
should make the buffer 1-2K larger than the total data size if you want to process the
datain one go. The minimum buffer sizeis 4K, and on 16-bit systems the maximum
buffer sizeis 32K-1.

If want to use a buffer which is smaller or larger than the default size, you can specify
itssizeusing the CRYPT_ATTRIBUTE_BUFFERSIZE attribute after the envelope
has been created. For example if you knew you were going to be processing asingle

64

Data Enveloping

80K message on a 32-hit system (you can’t process more than 32K-1 bytes at once on
a 16-hit system) you would use:

CRYPT_ENVELOPE cr ypt Envel ope;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ATTRI BUTE_BUFFERSI ZE,
90000L);

/* Perform envel opi ng */
crypt Dest royEnvel ope(crypt Envel ope);

(the extra 10K provides a generous safety margin for message expansion due to the
enveloping process). When you specify the size of the buffer, you should try and
make it aslarge as possible, unless you’re pretty certain you’ll only be seeing
messages up to a certain size. Remember, the larger the buffer, the less processing
overhead isinvolved in handling data. However, if you make the buffer excessively
largeit increases the probability that the data in it will be swapped out to disk, so it’s
a good idea not to go overboard on buffer size. You don’t have to process the entire
message at once, cryptlib provides the ability to envelope or de-envelope datain
multiple sections to allow processing of arbitrary amounts of data even on systems
with only small amounts of memory available.

Basic Data Enveloping

In the simplest case the entire message you want to process will fit into the
envelope’s internal buffer. The simplest type of enveloping does nothing to the data
at all, but just wrapsit and unwrapsit:

CRYPT_ENVELOPE crypt Envel ope;
i nt bytesCopi ed;

/* Create the envel ope */
crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLIB) ;

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf ferSi ze,
&byt esCopi ed);

/* Destroy the envel ope */
crypt Dest royEnvel ope(crypt Envel ope);

The Visua Basic equivaentis:

Di m crypt Envel ope As Long
Di m byt esCopi ed As Long

Create the envel ope
crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORMAT_CRYPTLI B
' Add the data size information and data, wap up the processing, and
pop out the processed data
crypt Set Attri bute cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE, nessagelength
crypt PushDat a crypt Envel ope, nessage, nessagelLength, bytesCopied
crypt Fl ushDat a crypt Envel ope
crypt PopDat a crypt Envel ope, envel opedData, envel opedDat aBufferSi ze,

byt esCopi ed

' Destroy the envel ope
crypt Dest royEnvel ope crypt Envel ope

The Python version is:

Create the envel ope
crypt Envel ope = crypt Creat eEnvel ope(crypt User,
CRYPT_FORMAT_CRYPTLI B)

The Data Envel oping Process 65

Add the data size information and data, wap up the processing, and
pop out the processed data
crypt Envel ope. ENVI NFO_DATASI ZE = | en(nmessage)
byt esCopi ed = crypt PushDat a(crypt Envel ope, nessage)
crypt Fl ushDat a(crypt Envel ope)
byt esCopi ed = crypt PopDat a(crypt Envel ope, envel opedDat a,
envel opedDat aBuf f er Si ze)

Destroy the envel ope
crypt DestroyEnvel ope(crypt Envel ope)

The C#or Javaversionis:
i nt bytesCopi ed;

/'l Create the envel ope
crypt Envel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORVAT_CRYPTLI B);

/1 Add the data size infornation and data, wap up the processing, and
/1 pop out the processed data

crypt.Set Attribute(cryptEnvel ope, crypt.ENVI NFO DATASI ZE,
nessage. Length);

byt esCopi ed = crypt. PushDat a(crypt Envel ope, nessage);

crypt. FlushDat a(crypt Envel ope);

byt esCopi ed = crypt. PopDat a(cryptEnvel ope, envel opedDat a,
envel opedDat aBuf f er Si ze) ;

/1 Destroy the envel ope
crypt. DestroyEnvel ope(crypt Envel ope);

(the above codeis for C#, the Javaversion is virtually identical except that the
nmessage. Lengt h of aC#bytearray ismessage. | engt h in Java).

To de-envelope the resulting data you would use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

/* Create the envel ope */
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

/* Push in the envel oped data and pop out the recovered nessage */
crypt PushDat a(crypt Envel ope, envel opedData, envel opedDataSi ze,
&byt esCopi ed) ;
crypt Fl ushDat a(crypt Envel ope);
crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize,
&byt esCopi ed) ;

/* Destroy the envel ope */
crypt Dest royEnvel ope(crypt Envel ope);

The Visua Basic formis:

Di m crypt Envel ope As Long
Di m byt esCopi ed As Long

Create the envel ope
crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORVAT_AUTO

Push in the envel oped data and pop out the recovered nessage
crypt PushDat a crypt Envel ope, envel opedDat a, envel opedDat aSi ze,
byt esCopi ed
crypt Fl ushDat a crypt Envel ope
crypt PopDat a crypt Envel ope, nessage, nessageBufferSize, bytesCopied

Destroy the envel ope
crypt Dest royEnvel ope crypt Envel ope

This type of enveloping isn’t terribly useful, but it does demonstrate how the
envel oping process works.

Compressed Data Enveloping

A variation of basic data enveloping is compressed data envel oping which
compresses or decompresses data during the enveloping process. Compressing data

66

Data Enveloping

before signing or encryption improves the overall enveloping throughput
(compressing data and encrypting the compressed data is faster than just encrypting
the larger, uncompressed data), increases security by removing known patternsin the
data, and saves storage space and network bandwidth.

To tell cryptlib to compress data that you add to an envelope, you should set the
CRYPT_ENVINFO_COMPRESSION attribute before you add the data. This
attribute doesn’t take a value, so you should set it to CRYPT _UNUSED. The code to
compress a message is then:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

/* Tell cryptlib to conpress the data */
cryptSet Attribute (cryptEnvel ope, CRYPT_ENVI NFO COVWPRESSI ON,
CRYPT_UNUSED) ;

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf ferSi ze,
&byt esCopi ed) ;

crypt Dest royEnvel ope(crypt Envel ope);

De-envel oping compressed data works exactly like decompressing normal data,
cryptlib will transparently decompress the data for you and return the decompressed
result when you call cryptPopData.

The compression/decompression process can cause alarge change in data size
between what you push and what you pop back out, so you typically end up pushing
much more than you pop or popping much more than you push. In particular, you
may end up pushing multiple lots of databefore you can pop any compressed data
out, or pushing asingle lot of compressed data and having to pop multiple lots of
decompressed data. This applies particularly to the final stages of enveloping when
you flush through any remaining data, which signal s the compressor to wrap up
processing and move any remaining datainto the envelope. This means that the flush
can return CRYPT_ERROR_OVERFLOW to indicate that there is more data to be
flushed, requiring multiple iterations of flushing and copying out data:

[* .. %

/* Flush out any remaining data */
do

{
crypt Fl ushDat a(crypt Envel ope);
crypt PopDat a(crypt Envel ope, outBuffer, BUFFER_SIZE, &byt esCopied
}
whi | e(byt esCopied);

To handle thisin amore general manner, you should use the processing techniques
described in “Enveloping Large Data Quantities” on page 71.

Password-based Encryption Enveloping

To do something useful (security-wise) to the data, you need to add a container or
action object or other type of attribute to tell the envelope to secure the datain some
way. For exampleif you wanted to encrypt a message with a password you would
use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLIB);

The Data Envel oping Process 67

/* Add the password */
crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO PASSWORD,
password, passwordLength);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed) ;

crypt Dest royEnvel ope(crypt Envel ope);

The same operation in Java (for C# replace the . | engt h with. Lengt h) is:

int cryptEnvel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORMAT_CRYPTLI B);

/* Add the password */
crypt.Set AttributeString(cryptEnvel ope, crypt.ENVI NFO_PASSWORD,
password);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt.Set Attribute(cryptEnvel ope, crypt.ENVI NFO DATASI ZE,
nmessage. |l ength);

int bytesCopi ed = crypt. PushDat a(crypt Envel ope, message);

crypt. FlushDat a(crypt Envel ope);

byt esCopi ed = crypt. PopDat a(crypt Envel ope, envel opedDat a,
envel opedDat a. |l ength);

crypt. DestroyEnvel ope(crypt Envel ope);

To de-envelope the resulting data you would use:

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

/* Push in the envel oped data and the password required to de-envel ope
it, and pop out the recovered nessage */

crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,
&byt esCopi ed);

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
password, passwordLength);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize,
&byt esCopi ed) ;

crypt DestroyEnvel ope(crypt Envel ope);

The de-enveloping processin Javais:

int cryptEnvel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORVAT_AUTO) ;
i nt bytesCopi ed;

/1 Push in the envel oped data and the password required to
/1 de-envelope it, and pop out the recovered nessage

try {
byt esCopi ed = crypt. PushDat a(crypt Envel ope, envel opedData);

catch (Crypt Exception e)
if(e.getStatus() != crypt. ENVELOPE_ RESOURCE)
throw e;

crypt. Set AttributeString(cryptEnvel ope, crypt.ENVI NFO_PASSWORD,
password);

crypt. FlushDat a(crypt Envel ope);

crypt. PopDat a(crypt Envel ope, nessageBuffer, nessageBuffer.length);

/1 Destroy the envel ope
crypt. DestroyEnvel ope(crypt Envel ope);

68

Data Enveloping

The Visua Basic equivaent is:

Di m crypt Envel ope As Long
Di m byt esCopi ed As Long

crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORVAT_AUTO

Push in the envel oped data and the password required to
' de-envelope it, and pop out the recovered nessage
crypt PushDat a crypt Envel ope, envel opedDat a, envel opedDat aSi ze,
byt esCopi ed
crypt Set AttributeString crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
password, Len(password)
crypt Fl ushDat a crypt Envel ope
crypt PopDat a crypt Envel ope, nessage, nessageBufferSize, bytesCopied

' Destroy the envel ope
crypt Dest royEnvel ope crypt Envel ope

If you add the wrong password, cryptlib will return a CRYPT_ERROR_-

WRONGKEY error. You can use thisto request a new password from the user and
try again. For example to give the user the traditiona three attempts at getting the

password right you would replace the code to add the password with:

for(i =0; i <3; i++)
{
password = ...;

i f(cryptSetAt t ributeString(envel ope, CRYPT_ENVI NFO_PASSWORD,
password, passwordLength) == CRYPT_K)
br eak;

}

Conventional Encryption Enveloping

In addition to encrypting enveloped data with a password, it’s possible to bypass the
password step and encrypt the data directly using an encryption context. This context
can either be used to encrypt the data directly (CRYPT_ENVINFO_SESSIONKEY)
or indirectly by wrapping up asession key (CRYPT_ENVINFO_KEY). For example

to encrypt data directly using IDEA with araw session key you would do the
following:

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_CONTEXT crypt Cont ext ;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

/* Create the session key context and add it */

crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO | DEA);

crypt Set AttributeString(cryptContext, CRYPT_CTX NFO _KEY,
"0123456789ABCDEF", 16);

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO _SESSI ONKEY,
crypt Context);

crypt DestroyCont ext (crypt Context);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf ferSi ze,
&byt esCopi ed) ;

crypt DestroyEnvel ope(crypt Envel ope);

To de-envelope the resulting data you would use:

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_CONTEXT crypt Cont ext ;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

The Data Envel oping Process 69

/* Push in the envel oped data and the session key context required to
de-envel ope it, and pop out the recovered nessage */

crypt PushDat a(crypt Envel ope, envel opedDat a, envel opedDat aLengt h,
&byt esCopi ed) ;

crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO | DEA);

crypt Set Attri buteString(cryptContext, CRYPT_CTX NFO _KEY,
"0123456789ABCDEF", 16);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO _SESSI ONKEY,
crypt Cont ext);

crypt DestroyCont ext (crypt Context);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize,
&byt esCopi ed) ;

crypt Dest royEnvel ope(crypt Envel ope);

Encrypting the data directly by using the context to wrap up the session key and then
encrypting the data with that functions identically, except that the context is added as
CRYPT_ENVINFO_KEY rather than CRYPT_ENVINFO_SESSIONKEY. The
only real difference between the two is the underlying data format that cryptlib
generates.

Raw session-key based enveloping isn’t recommended since it bypasses much of the
automated key management which is performed by the enveloping code, and requires
the direct use of low-level encryption contexts. If al you want to do is change the
underlying encryption algorithm used from the default triple DES, it’s easier to do
this by setting the CRYPT_OPTION_ENCR_AL GO attribute for the envelope as
described in “Working with Configuration Options” on page 274.

De-enveloping Mixed Data

Sometimes you won’t know exactly what type of processing has been applied to the
data you’re trying to de-envelope, so you can let cryptlib tell you what to do. When
cryptlib needs some sort of resource (such as a password or an encryption key) to
process the data that you’ve pushed into an envelope, it will return a CRYPT _-
ENVELOPE_RESOURCE error if you try and push in any more data or pop out the
processed data. Thiserror codeis returned as soon as cryptlib knows enough about
the data you’re pushing into the envelope to be able to process it properly. Typically,
as soon as you start pushing in encrypted, signed, or otherwise processed data,
cryptPushData will return CRYPT_ENVELOPE_RESOURCE to tell you that it
needs some sort of resource in order to continue.

If you knew that the data you were processing was either plain, unencrypted or
compressed data or password-encrypted data created using the code shown earlier,
you could de-envelope it with:

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed, status;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

/* Push in the envel oped data and pop out the recovered nessage */
status = crypt PushDat a(crypt Envel ope, envel opedDat a,
envel opedDat aLengt h, &byt esCopied);
i f(status == CRYPT_ENVELOPE_RESOURCE)
crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO PASSWORD,
password, passwordLength);
crypt Fl ushDat a(crypt Envel ope);
crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize, &bytesCopied

crypt DestroyEnvel ope(crypt Envel ope);

If the datais enveloped without any processing or is compressed data, cryptlib will
de-envelope it without requiring any extrainput. If the datais enveloped using
password-based encryption, cryptlib will return CRYPT_ENVELOPE_RESOURCE
to indicate that it needs a password before it can continue.

Thisillustrates the manner in which the envel oped data contains enough information
to alow cryptlib to process it automatically. If the data had been enveloped using

70 Data Enveloping

some other form of processing (for example public-key encryption or digital
signatures), cryptlib would ask you for the private decryption key or the signature
check key at this time (it’s actually slightly more complex than this, the details are
explained in “Enveloping with Multiple Attributes” on page 81).

De-enveloping with a Large Envelope Buffer

If you’ve increased the envelope buffer size to allow the processing of large data
guantities, the de-enveloping process may be dightly different. When de-enveloping
data, cryptlib only reads an initia fixed amount of data before stopping and asking for
user input such as the password or private key which is required to process the data.
Thisisto avoid the situation where an envel ope absorbs megabytes or even gigabytes
of data only to report that it can’t even begin to process it for lack of a decryption
key. Inthiscase the envelope will return CRYPT_ERROR_RESOURCE to indicate
that it requires further information in order to continue. Once you’ve added the
necessary de-enveloping attribute(s), you can either pop what’s already been
processed and continue as normal (see “Enveloping Large Data Quantities” on page
71) or, for asufficiently large envelope buffer, push in the remaining data before
popping it al at once:

CRYPT_ENVELOPE cr ypt Envel ope;

int bytesCopi ed, status;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

/* Push in the envel oped data and see if we need any special handling
*/

status = crypt PushDat a(crypt Envel ope, envel opedDat a,
envel opedDat aLengt h, &byt esCopied);

i f(status == CRYPT_ENVELOPE_RESOURCE)

/* Add the necessary de-envel oping attributes */
[* .00

/* 1f only some of the data was accepted because the envel ope
stopped to request further instructions, push in the rest now */
i f(bytesCopi ed < envel opedDat aLength)
{

int remai ni ngByt esCopi ed;

status = cryptPushDat a(crypt Envel ope, envel opedData + bytesln,
envel opedDat aLength - bytesln, & enmini ngBytesCopied);

byt esln += remai ni ngByt esCopi ed;

}

}

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize, &bytesCopied
)

crypt Dest royEnvel ope(crypt Envel ope);

This code checks whether the envel ope has absorbed all of the enveloped data and, if
not, pushes the remainder after adding the attribute(s) necessary for processing it.
Once dl the data has been pushed, it pops the result as usual.

Obtaining Envelope Security Parameters

If you want to know the details of the encryption mechanism which is being used to
protect the envel oped data, you can read various CRY PT_CTXINFO_xxx attributes
from the envelope object which will return information from the encryption
context(s) that are being used to secure the data. For example if you’re encrypting or
decrypting data you can get the encryption algorithm and mode and the key size
being used with:

CRYPT_ALGO TYPE crypt Al go;

CRYPT_MODE_TYPE crypt Mode;
int keySize;

cryptGet Attribute(cryptEnvel ope, CRYPT_CTXI NFO ALGO, &cryptAlgo);
cryptGet Attribute(cryptEnvel ope, CRYPT_CTXI NFO MODE, &cryptMde);
cryptGet Attribute(cryptEnvel ope, CRYPT_CTXI NFO KEYSI ZE, &keySize);

Enveloping Large Data Quantities 71

Enveloping Large Data Quantities

Sometimes, amessage may be too big to process in one go or may not be availablein
its entirety, an example being data which is being sent or received over a network
interface where only the currently transmitted or received portion is available.
Although it’s much easier to process a message in one go, it’s also possible to
envelope and de-envelope it a piece at atime (bearing in mind the earlier comment
that the enveloping is most efficient when you push and pop data a single large block
at atime rather than in many small blocks). With unknown amounts of datato be
processed it generally isn’t possible to use CRYPT _ENVINFO_DATASIZE, so in
the sample code below thisis omitted.

There are several strategies for processing datain multiple parts. The simplest one
simply pushes and pops a fixed amount of data each time:

| oop
push data
pop data

Since there’s a little overhead added by the enveloping process, you should always
push in dightly less data than the envelope buffer size. Alternatively, you can usethe
CRYPT_ATTRIBUTE_BUFFERSIZE to specify an envelope buffer which is dlightly
larger than the data block size you want to use. The following code uses the first
technique to password-encrypt afilein blocks of BUFFER_SIZE — 4K bytes:

CRYPT_ENVELOPE cr ypt Envel ope;
void *buffer;
i nt bufferCount;

/* Create the envelope with a buffer of size BUFFER S| ZE and add the
password attribute */

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

crypt Set Attribute(cryptEnvel ope, CRYPT_ATTRI BUTE_BUFFERSI ZE,
BUFFER_SI ZE) ;

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
password, passwordLength);

/* Allocate a buffer for file I/O */
buffer = mall oc(BUFFER S| ZE);

/* Process the entire file */
while('endOFile(inputFile))

{
i nt bytesCopi ed;

/* Read a (BUFFER _SIZE - 4K) bl ock fromthe input file, envel ope
it, and wite the result to the output file */

buf ferCount = readFile(inputFile, buffer, BUFFER SIZE - 4096);

crypt PushDat a(crypt Envel ope, buffer, bufferCount, &bytesCopied);

crypt PopDat a(crypt Envel ope, buffer, BUFFER _SIZE, &bytesCopied);

witeFile(outputFile, buffer, bytesCopied);

}

/* Flush the last |ot of data out of the envel ope */
crypt Fl ushDat a(crypt Envel ope);
crypt PopDat a(crypt Envel ope, buffer, BUFFER _SIZE, &bytesCopied);
i f(bytesCopied)
witeFile(outputFile, buffer, bytesCopied);
free(buffer);

crypt Dest royEnvel ope(crypt Envel ope);

The Visua Basic versionis:

Di m crypt Envel ope As Long
Dimbuffer() As Byte

Di m buf f er Count As | nteger
Di m byt esCopi ed As Long

72 Data Enveloping

Create the envelope with a buffer of size BUFFER S| ZE and add the
password attri bute
crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORMAT_CRYPTLIB
crypt Set Attri bute cryptEnvel ope, CRYPT_ATTRI BUTE_BUFFERSI ZE, _
BUFFER_SI ZE
crypt Set AttributeString crypt Envel ope, CRYPT_ENVI NFO_PASSWORD, _
password, Len(password)

Al'locate a buffer for file I/O
buffer = String(BUFFER_SI ZE, vbNull Char)

Do While Not EndOFFile(inputFile)
Read a (BUFFER_SI ZE - 4K) block fromthe input file, envel ope
it, and wite the result to an output file
buf ferCount = ReadFile inputFile, buffer, BUFFERSIZE - 4096
crypt PushDat a crypt Envel ope, buffer, bufferCount, bytesCopied
crypt PopDat a crypt Envel ope, buffer, BUFFER_SIZE, byt esCopi ed
WiteFile outputFile, buffer, bytesCopied
Loop
crypt FlushDat a crypt Envel ope, buffer, BUFFER_SI ZE, bytesCopi ed
I f bytesCopied > 0 Then WiteFile outputFile, buffer, bytesCopied

crypt Dest royEnvel ope crypt Envel ope

The code alocatesa BUFFER_SIZE byte I/O buffer, reads up to BUFFER_SIZE —
4K bytes from the input file, and pushesit into the envelope. It then tells cryptlib to
pop up to BUFFER_SIZE bytes of enveloped data back out into the buffer, takes
whatever is popped out, and writes it to the output file. When it has processed the
entirefile, it pushesin the usual zero-length data block to flush any remaining data
out of the buffer.

Note that the upper limit on BUFFER SIZE depends on the system you’re running
the code on. If you need to run it on a 16-bit system, BUFFER_SIZE islimited to
32K-1 bytes because of the length limit imposed by 16-bit integers, and the default
envelope buffer sizeis 16K bytes unless you specify alarger default size using the
CRYPT_ATTRIBUTE_BUFFERSIZE attribute.

Going to alot of effort to exactly match a certain data size such as a power of two
when pushing and popping data isn’t really worthwhile, since the overhead added by
the envel ope encoding will always change the final encoded data length.

When you’re performing compressed data enveloping or de-enveloping, the
processing usually resultsin alarge change in data size, in which case you may need
to use the technique described below that can handle arbitrarily-sized input and
output quantities.

Alternative Processing Techniques

A dlightly more complex technique is to always stuff the envelope asfull as possible
before trying to pop anything out of it:

| oop
do
push data
whi | e push status != CRYPT_ERROR_OVERFLOW
pop data

This results in the most efficient use of the envelope’s internal buffer, but is probably
overkill for the amount of code complexity required:

CRYPT_ENVELOPE cr ypt Envel ope;
void *inBuffer, *outBuffer;
int bytesCopi edln, bytesCopi edCut, bufferCount;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
password, passwordLength);

/* Allocate input and output buffers */
i nBuf fer = mal |l oc(BUFFER_SI ZE);
out Buffer = nall oc(BUFFER_SI ZE);

Enveloping Large Data Quantities 73

/* Process the entire file */
while('endOFile(inputFile))

int offset = 0;

/* Read a buffer full of data fromthe file and push and pop it
to/fromthe envel ope */

buf ferCount = readFile(inputFile, inBuffer, BUFFER SIZE);

whi | e(bufferCount)

/* Push as much as we can into the envel ope */

crypt PushDat a(crypt Envel ope, inBuffer + offset, bufferCount,
&byt esCopi edln);

of fset += byt esCopi edl n;

buf f er Count -= byt esCopi edl n;

/* 1f we couldn't push everything in, the envelope is full, so
we enpty a buffers worth out */
i f(bufferCount)

{
crypt PopDat a(crypt Envel ope, outBuffer, BUFFER_SI ZE,
&byt esCopi edQut);
witeFile(outputFile, outBuffer, bytesCopiedCQut);
}
}
}

/* Flush out any remaining data */
do

{

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, outBuffer, BUFFER Sl ZE,
&byt esCopi edQut) ;

i f(bytesCopi edQut)
witeFile(outputFile, outBuffer bytesCopiedQut);

}
whi | e(byt esCopi edQut) ;
free(inBuffer);
free(outBuffer);

crypt DestroyEnvel ope(crypt Envel ope);

Running the code to fill/empty the envelope in aloop is useful when atransformation
such as data compression, which dramatically changes the length of the

envel oped/de-enveloped data, is being applied. In this case it’s not possible to tell
how much data can still be pushed into or popped out of the envelope because the
length is transformed by the compression operation. It’s also generally good practice
to not write code that makes assumptions about the amount of internal buffer space
available in the envelope, the above code will make optimal use of the envelope
buffer no matter what its size.

Enveloping with Many Enveloping Attributes

There may be a specia -case condition when you begin the envel oping that occurs if
you have added alarge number of password, encryption, or keying attributes to the
envelope so that the header prepended to the enveloped datais particularly large. For
example if you encrypt a message with different keys or passwords for several dozen
recipients, the header information for all the keys could become large enough that it
occupies a noticeable portion of the envelope’s buffer. In this caseyou can pushin a
small amount of data to flush out the header information, and then push and pop data
asusud:

add many password/ encryption/keying attributes;
push a small anopunt of data;
pop dat a;
| oop
push dat a;
pop dat a;

If you use this strategy then you can trim the difference between the envelope buffer
size and the amount of data you push in at once down to about 1K; the 4K difference

74 Data Enveloping

shown earlier took into account the fact that alittle extra data would be generated the
first time data was pushed due to the overhead of adding the envel ope header:

CRYPT_ENVELOPE cr ypt Envel ope;
void *buffer;
i nt bufferCount;

/* Create the envel ope and add many passwords */

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
passwordl, passwordllLength);
[* .0 0%

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
passwor d100, password100Length);

buffer = mall oc(BUFFER Sl ZE);

/* Read up to 100 bytes fromthe input file, push it into the envel ope
to flush out the header data, and wite all the data in the
envel ope to the output file */
buf ferCount = readFile(inputFile, buffer, 100);
crypt PushDat a(crypt Envel ope, buffer, bufferCount, &bytesCopied);
crypt PopDat a(crypt Envel ope, buffer, BUFFER _SIZE, &bytesCopied);
witeFile(outputFile, buffer, bytesCopied);

/* Process the entire file */
while('endOFile(inputFile))

{
i nt bytesCopi ed;

/* Read a BUFFER_SI ZE bl ock fromthe input file, envelope it, and
wite the result to the output file */

buf ferCount = readFile(inputFile, buffer, BUFFER SIZE);

crypt PushDat a(crypt Envel ope, buffer, bufferCount, &bytesCopied);

crypt PopDat a(crypt Envel ope, buffer, BUFFER _SIZE, &bytesCopied);

witeFile(outputFile, buffer, bytesCopied);

}

/* Flush the last lot of data out of the envel ope */
crypt Fl ushDat a(crypt Envel ope);
crypt PopDat a(crypt Envel ope, buffer, BUFFER SI ZE, &bytesCopied);
i f(bytesCopied)
witeFile(outputFile, buffer, bytesCopied);
free(buffer);

crypt DestroyEnvel ope(crypt Envel ope);

In the most extreme case (hundreds or thousands of passwords, encryption, or keying
attributes added to an envelope), the header could fill the entire envelope buffer, and
you would need to pop theinitial datain multiple sections before you could process
any more data using the usual push/pop loop. If you plan to use this many resources,
it’s better to specify the use of a larger envelope buffer using
CRYPT_ATTRIBUTE_BUFFERSIZE in order to eiminate the need for such
special-case processing for the header.

De-envel oping data that has been envel oped with multiple keying resources also has
special requirements and is covered in the next section.

Public-Key Encrypted Enveloping 75

Advanced Enveloping

The previous chapter covered basic envel oping concepts and simple password-based
enveloping. Extending beyond these basic forms of enveloping, you can also
envelope data using public-key encryption or digitally sign the contents of the
envelope. These types of enveloping require the use of public and private keys that
are explained in various other chapters that cover key generation, key databases, and
certificates.

cryptlib automatically manages objects such as public and private keys and keysets,
so0 you can destroy them as soon as you’ve pushed them into the envelope. Although
the object will appear to have been destroyed, the envel ope maintainsits own
reference to it which it can continue to use for encryption or signing. This means that
instead of the obvious:

create the key object;

create the envel ope;

add the key object to the envel ope;
push data into the envel ope;

pop encrypted data fromthe envel ope;
destroy the envel ope;

destroy the key object;

it’s also quite safe to use something like:

create the envel ope;

create the key object;

add the key object to the envel ope;
destroy the key object;

push data into the envel ope;

pop encrypted data fromthe envel ope;
destroy the envel ope;

Keeping an object active for the shortest possible time makes it much easier to track,
it’s a lot easier to let cryptlib manage these things for you by handing them off to the
envelope.

Public-Key Encrypted Enveloping

Public-key based envel oping works just like password-based enveloping except that
instead of adding a password attribute you add a public key or certificate (when
encrypting) or a private decryption key (when decrypting). For exampleif you
wanted to encrypt data using a public key contained in pubKeyCont ext , you
would use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLIB);

/* Add the public key */
crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO PUBLI CKEY,
pubKeyCont ext);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf ferSi ze,
&byt esCopi ed) ;

crypt DestroyEnvel ope(crypt Envel ope);

Y ou can aso use acertificate in place of the public key, the envelope will handle both
in the sameway. The certificate istypically obtained by reading it from a keyset,
either directly using cryptGetPublicK ey as described in “Reading a Key from a
Keyset” on page 141, or by setting the CRY PT_ENVINFO_RECIPIENT attribute as
described in “SIMIME Enveloping” on page 86. Using the CRYPT_ENVINFO_-

76

Advanced Enveloping

RECIPIENT attribute is the preferred option since it lets cryptlib handle a number of
the complications that arise from reading keys for you.

When cryptlib encrypts the datain the envelope, it will use the algorithm specified
with the CRYPT_OPTION_ENCR_ALGO option. If you want to change the
encryption algorithm which is used, you can set the CRYPT_OPTION_ENCR_-
ALGO attribute for the envelope (or as aglobal configuration option) to the algorithm
type you want, as described in “Working with Configuration Options” on page 274.
Alternatively, you can push araw session-key context into the envelope before you
push in apublic key, in which case cryptlib will use the context to encrypt the data
rather than generating one itself.

The same operation in Java (for C# replacethe . | engt h with. Lengt h) is:

int cryptEnvel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORVMAT_CRYPTLI B);

/* Add the public key */
crypt.Set Attribute(cryptEnvel ope, crypt.ENVI NFO PUBLI CKEY,
pubKeyCont ext);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt.Set Attribute(cryptEnvel ope, crypt.ENVI NFO DATASI ZE,
nessage. |l ength);

int bytesCopied = crypt. PushDat a(crypt Envel ope, message);

crypt. FlushDat a(crypt Envel ope);

byt esCopi ed = crypt. PopDat a(cryptEnvel ope, envel opedDat a,
envel opedDat a. | ength);

crypt. DestroyEnvel ope(crypt Envel ope);

De-enveloping is slightly more complex since, unlike password-based enveloping,
there are different keys used for enveloping and de-enveloping. In the simplest case
if you know in advance which private decryption key is required to decrypt the data,
you can add it to the envelope in the same way as with password-based enveloping:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

/* Push in the envel oped data and the private decryption key required
to de-envelope it, and pop out the recovered nessage */

crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,
&byt esCopi ed);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO PRI VATEKEY,
privKeyCont ext);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize, &bytesCopied
)

crypt Dest royEnvel ope(crypt Envel ope);

Although this leads to very simple code, it’s somewhat awkward since you may not
know in advance which private key is required to decrypt a message. To make the
private key handling process easier, cryptlib provides the ability to automatically
fetch decryption keys from a private key keyset for you, so that instead of adding a
private key, you add a private key keyset object and cryptlib takes care of obtaining
the key for you. Alternatively, you can use a crypto device such as a smart card or
Fortezza card to perform the decryption.

Using a private key from akeyset is slightly more complex than pushing in the
private key directly since the private key stored in the keyset is usually encrypted or
PIN-protected and will require a password or PIN supplied by the user to accessit.
This means that you have to supply a password to the envel ope before the private key
can be used to decrypt the datain it. Thisworks asfollows:

Public-Key Encrypted Enveloping 77

create the envel ope;
add the decryption keyset;
push encrypted data into the envel ope;
if(required resource = private key)

add password to decrypt the private key;
pop decrypted data fromthe envel ope;
destroy the envel ope;

When you add the password, cryptlib will useit to try to recover the private key
stored in the keyset you added previously. If the password isincorrect, cryptlib will
return CRYPT_ERROR_WRONGKEY, otherwise it will recover the private key and
then use that to decrypt the data. The full code to decrypt public-key enveloped data
istherefore;

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_ATTRI BUTE_TYPE requiredAttribute;
int bytesCopi ed, status;

/* Create the envel ope and add the private key keyset and data */

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET DECRYPT,
privKeyKeyset);

crypt PushDat a(crypt Envel ope, envel opedDat a, envel opedDat aLengt h,
&byt esCopi ed) ;

/* Find out what we need to continue and, if it's a private key, add
the password to recover it fromthe keyset */

cryptGet Attri bute(cryptEnvel ope, CRYPT_ATTRI BUTE_CURRENT,
& equiredAttribute);

if(requiredAttribute !'= CRYPT_ENVI NFO_PRI VATEKEY)
/* Error */;

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
password, passwordLength);

crypt Fl ushDat a(crypt Envel ope);

/* Pop the data and clean up */
crypt PopDat a(crypt Envel ope, nessage, nessagelLength, &bytesCopied);
crypt DestroyEnvel ope(crypt Envel ope);

The Visua Basic equivaentis:

Di m crypt Envel ope As Long

Di mrequiredAttri bute As CRYPT_ATTRI BUTE_TYPE
Di m byt esCopi ed As Long

Dim status As Long

Create the envel ope and add the private key and data
crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORVAT_AUTO
crypt Set Attri bute crypt Envel ope, CRYPT_ENVI NFO KEYSET_DECRYPT,
privat eKeyset
crypt PushDat a crypt Envel ope, envel opedDat a, envel opedDat aLengt h,
byt esCopi ed
' Find out what we need to continue, and if it's a private key,
add the password to recover it fromthe keyset
cryptGet Attri bute cryptEnvel ope, CRYPT_ATTRI BUTE_CURRENT,
requiredAttribute
If (requredAttribute <> CRYPT_ENVI NFO_PRI VATEKEY) Then
Error
End |f
crypt Set AttributeString crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
password, |en(password)
crypt Fl ushDat a crypt Envel ope

Pop the data and cl ean up
crypt PopDat a crypt Envel ope, nessage, nessagelength, bytesCopied
crypt Dest royEnvel ope crypt Envel ope

In the unusual case where the private key isn’t protected by a password or PIN,
there’s no need to add the password since cryptlib will use the private key as soon as
you access the attribute information by reading it using cryptGetAttribute.

In order to ask the user for a password, it can be useful to know the name or label
attached to the private key so you can display it as part of the password request

78

Advanced Enveloping

message. Y ou can obtain the label for the required private key by reading the
envelope’s CRYPT ENVINFO PRIVATEKEY LABEL attribute:

char | abel [CRYPT_MAX_TEXTSIZE + 1];
i nt | abel Lengt h;

cryptGet AttributeString(cryptEnvel ope,
CRYPT_ENVI NFO_PRI VATEKEY_LABEL, |abel, & abel Length);
| abel [| abel Length] = "\0';

Y ou can then use the key label when you ask the user for the password for the key.

Using a crypto device to perform the decryption is somewhat simpler since the PIN
will already have been entered after cryptDeviceOpen was called, so there’s no need
to supply it as CRYPT_ENVINFO_PASSWORD. To use acrypto device, you add
the device in place of the private key keyset:

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_ATTRI BUTE_TYPE requiredAttribute;
int bytesCopi ed, status;

/* Create the envel ope and add the crypto device and data */

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET_DECRYPT,
crypt Device);

crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,
&byt esCopi ed) ;

/* Find out what we need to continue. Since we've told the envel ope

to use a crypto device, it'll performthe decryption as soon as we
ask it to using the device, so we shouldn't have to supply anything
el se */

cryptGet Attri bute(crypt Envel ope, CRYPT_ATTRI BUTE_CURRENT,
&requi redAttribute);

if(requiredAttribute != CRYPT_ATTRI BUTE_NONE)
/* Error */;

crypt Fl ushDat a(crypt Envel ope);

/* Pop the data and clean up */
crypt PopDat a(crypt Envel ope, nessage, nessagelLength, &bytesCopied);
crypt Dest royEnvel ope(crypt Envel ope);

Note how cryptGetAttribute now reports that there’s nothing further required (since
the envel ope has used the private key in the crypto device to performed the
decryption), and you can continue with the de-enveloping process.

Code that can handle the use of either a private key keyset or a crypto device for the
decryption is a straightforward extension of the above:

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_ATTRI BUTE_TYPE requiredAttribute;
int bytesCopi ed, status;

/* Create the envel ope and add the keyset or crypto device and data */
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);
crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET_DECRYPT,

crypt Keyset Or Devi ce);
crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,

&byt esCopi ed) ;

/* Find out what we need to continue. |f what we added was a crypto
device, the decryption will occur once we query the envelope. |If
what we added was a keyset, we need to supply a password for the
decryption to happen */

cryptGet Attribute(crypt Envel ope, CRYPT_ATTRI BUTE_CURRENT,

&requi redAttribute);
if(requiredAttribute != CRYPT_ATTRI BUTE_NONE)

char | abel [CRYPT_MAX_TEXTSIZE + 1];
int |abel Length;

if(requiredAttribute != CRYPT_ENVI NFO PASSWORD)
/* Error */;

Digitally Signed Enveloping 79

/* Get the label for the private key and obtain the required
password fromthe user */

cryptGet AttributeString(cryptEnvel ope,
CRYPT_ENVI NFO_PRI VATEKEY_LABEL, | abel, & abel Length);

| abel [| abel Length] = "\0';

get Password(| abel, password, &passwordLength);

/* Add the password required to decrypt the private key */
crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO PASSWORD,
password, passwordLength);

}
crypt Fl ushDat a(crypt Envel ope);

/* Pop the data and clean up */
crypt PopDat a(crypt Envel ope, nessage, nessagelLength, &bytesCopied);
crypt Dest royEnvel ope(crypt Envel ope);

Digitally Signed Enveloping

Digitally signed envel oping works much like the other envel oping types except that
instead of adding an encryption or decryption attribute you supply a private signature
key (when enveloping) or a public key or certificate (when de-enveloping). For
exampleif you wanted to sign data using a private signature key contained in

si gKeyCont ext , you would use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLI B);

/* Add the signing key */
crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO_ S| GNATURE,
si gKeyCont ext);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, nmessagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf ferSi ze,
&byt esCopi ed) ;

crypt Dest royEnvel ope(crypt Envel ope);

The signature key could be a native cryptlib key, but it could also be akey from a
crypto device such as a smart card or Fortezza card. They both work in the same way
for signing data.

The Javaversion of the signed enveloping process (for C# replace the . | engt h with
. Lengt h)is:

int cryptEnvel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORMAT_CRYPTLI B);

/* Add the public key */
crypt. Set Attribute(cryptEnvel ope, crypt.ENVI NFO S| GNATURE,
si gKeyCont ext);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt.Set Attribute(cryptEnvel ope, crypt.ENVI NFO DATASI ZE,
nmessage. |l ength);

int bytesCopi ed = crypt. PushDat a(crypt Envel ope, message);

crypt. FlushDat a(crypt Envel ope);

byt esCopi ed = crypt. PopDat a(crypt Envel ope, envel opedDat a,
envel opedDat a. |l ength);

crypt. DestroyEnvel ope(crypt Envel ope);

The Visua Basic equivalent is:
crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORMAT_CRYPTLI B

80

Advanced Enveloping

Add the signing key
crypt Set Attri bute cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE, _
si gKeyCont ext

Add the data size information and data, wap up the processing,
and pop out the processed data
crypt Set Attri bute crypt Envel ope, CRYPT_ENVI NFO DATASI ZE, nessagelength
crypt PushDat a crypt Envel ope, nessage, nessagelLength, bytesCopied
crypt Fl ushDat a crypt Envel ope
crypt PopDat a crypt Envel ope, envel opedData, envel opedDat aBufferSize, _
byt esCopi ed

crypt Dest royEnvel ope crypt Envel ope

When cryptlib signs the datain the envelope, it will hash it with the algorithm
specified with the CRYPT_OPTION_ENCR_HASH option. If you want to change
the hashing algorithm which is used, you can set the CRYPT_OPTION_ENCR_-
HASH attribute for the envelope (or asaglobal configuration option) to the algorithm
type you want, as described in “Working with Configuration Options” on page 274.
Alternatively, you can push a hash context into the envel ope before you push in a
signature key, in which case cryptlib will associate the signature key with the last
hash context you pushed in.

If you’re worried about some obscure (and rather unlikely) attacks on private keys,
you can enable the CRYPT_OPTION_MISC_SIDECHANNELPROTECTION
option as explained in “Working with Configuration Options” on page 274. Note that
enabling this option will slow down all private-key operations by up to 10%.

Aswith public-key based enveloping, verifying the signed data requires a different
key for this part of the operation, in this case a public key or key certificate. Inthe
simplest case if you know in advance which public key is required to verify the
signature, you can add it to the envelope in the same way as with the other envelope

types:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

/* Add the envel oped data and the signature check key required to
verify the signature, and pop out the recovered nessage */

crypt PushDat a(crypt Envel ope, envel opedDat a, envel opedDat aLengt h,
&byt esCopi ed) ;

crypt Fl ushDat a(crypt Envel ope);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE,
si gCheckKeyCont ext);

crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize, &bytesCopied
)

crypt Dest royEnvel ope(crypt Envel ope);

Although this leads to very simple code, it’s somewhat awkward since you may not
know in advance which public key or key certificate is required to verify the
signature on the message. To make the signature verification process easier, cryptlib
provides the ability to automatically fetch signature verification keys from apublic-
key keyset for you, so that instead of supplying a public key or key certificate, you
add a public-key keyset object before you start de-enveloping and cryptlib will take
care of obtaining the key for you. This option works as follows:

create the envel ope;

add the signature check keyset;

push signed data into the envel ope;

pop plain data fromthe envel ope;

if(required resource = signature check key)
read signature verification result;

Thefull code to verify signed datais therefore;

Enveloping with Multiple Attributes 81

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed, signatureResult, status;

/* Create the envel ope and add the signature check keyset */
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);
crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO _KEYSET_SI GCHECK,

si gCheckKeyset);

/* Push in the signed data and pop out the recovered nessage */
crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,
&byt esCopi ed) ;
crypt Fl ushDat a(crypt Envel ope);
crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize,
&byt esCopi ed);

/* Determine the result of the signature check */
cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE_RESULT,
&signatureResult);

The same processin Java (for C# replacethe . | engt h with. Lengt h) is:

/* Create the envel ope and add the signature check keyset */

int cryptEnvel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORVAT_AUTO);

crypt. Set Attribute(cryptEnvel ope, crypt. ENVI NFO KEYSET_SI GCHECK,
si gCheckKeyset);

/* Push in the signed data and pop out the recovered nessage */

int bytesCopied = crypt. PushData(cryptEnvel ope, envel opedData);
crypt. Fl ushDat a(crypt Envel ope);

byt esCopi ed = crypt. PopDat a(crypt Envel ope, nessage, nessage.length);

/* Determine the result of the signature check */
int signatureResult = crypt.GetAttribute(cryptEnvel ope,
crypt. ENVI NFO_SI GNATURE_RESULT) ;

The Visud Basic versionis:

Di m signatureResult As Long

Create the envel ope and add the signature check keyset
crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORVAT_AUTO
crypt Set Attri bute crypt Envel ope, CRYPT_ENVI NFO KEYSET_SI GCHECK,
si gCheckKeyset

Push in the signed data and pop out the recovered message
crypt PushDat a crypt Envel ope, envel opedDat a, envel opedDat aLengt h,
byt esCopi ed
crypt PopDat a crypt Envel ope, nessage, nessageBufferSize, bytesCopied

Determ ne the result of the signature check
cryptGet Attri bute cryptEnvel ope, CRYPT_ENVI NFO_ S| GNATURE_RESULT,
si gnat ur eResul t

The signature result will typically be CRYPT_OK (the signature verified), CRYPT_-
ERROR_SIGNATURE (the signature did not verify), or CRYPT_ERROR -
NOTFOUND (the key needed to check the signature wasn’t found in the keyset).

Most signed datain use today uses aformat popularised in SIMIME that includes the
signature verification key with the data being signed as a certificate chain. For this
type of data you don’t need to provide a signature verification key, since it’s already
included with the signed data. Details on creating and processing datain this format
is given in “SIMIME Enveloping” on page 86.

Enveloping with Multiple Attributes

Sometimes envel oped data can have multiple sets of attributes applied to it, for
example encrypted data might be encrypted with two different passwords to alow it
to be decrypted by two different people:

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLIB);

82

Advanced Enveloping

/* Add two different passwords to the envel ope */

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO PASSWORD,
passwordl, passwordllLength);

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO PASSWORD,
password2, password2Length);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed) ;

crypt DestroyEnvel ope(crypt Envel ope);

In this case either of the two passwords can be used to decrypt the data. This can be
extended indefinitely, so that 5, 10, 50, or 100 passwords could be used (of course
with 100 different passwords able to decrypt the data, it’s questionable whether it’s
worth the effort of encrypting it at all, however this sort of multi-user encryption
could be useful for public-key encrypting messages sent to collections of people such
asmailing lists). The same appliesfor public-key enveloping, in fact the various
encryption types can be mixed if required so that (for example) either a private
decryption key or a password could be used to decrypt data.

Similarly, an envelope can have multiple signatures applied to it:

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed

crypt Creat eEnvel ope(&crypt Envel ope, crypt User,
CRYPT_FORMAT_CRYPTLIB);

/* Add two different signing keys to the envel ope */

cryptSet Attribute (cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE,
crypt Si gkeyl);

cryptSet Attribute (cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE,
crypt Si gkey2);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, nmessagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf ferSi ze,
&byt esCopi ed) ;

crypt DestroyEnvel ope(crypt Envel ope);

In this case the envelope will be signed by both keys. Aswith password-based
enveloping, this can also be extended indefinitely to allow additional signatures on
the data, although it would be somewhat unusual to place more than one or two
signatures on a piece of data.

When de-envel oping data that has been envel oped with a choice of multiple
attributes, cryptlib builds alist of the attributes required to decrypt or verify the
signature on the data, and allows you to query the required attribute information and
choose the one you want to work with.

Processing Multiple De-enveloping Attributes

The attributes required for de-envel oping are managed through the use of an attribute
cursor as described in “Attribute Listsand ” on page 37. Y ou can use the attribute
cursor to determine which attribute is required for the de-envel oping process. Once
you’re iterating through the attributes, all that’s left to do is to plug in the appropriate
handler routines to manage each attribute requirement that could be encountered. As
soon as one of the attributes required to continue is added to the envelope, cryptlib
will delete the required-attribute list and continue, so the attempt to move the cursor
to the next entry in the list will fail and the program will drop out of the processing

Enveloping with Multiple Attributes 83

loop. For example to try a password against all of the possible passwords that might
decrypt the message that was envel oped above, you would use:

int status

/* Get the decryption password fromthe user */
password = ...;

if(cryptSetAttribute(envel ope, CRYPT_ATTRI BUTE_CURRENT_GROUP,
CRYPT_CURSOR_FI RST) == CRYPT_OX)
do

CRYPT_ATTRI BUTE_TYPE requi redAttri bute;

/* Get the type of the required attribute at the cursor position
*/

crypt Get Attri bute(envel ope, CRYPT_ATTRI BUTE_CURRENT,
& equiredAttribute);

/* Make sure we really do require a password resource */
if(requiredAttribute !'= CRYPT_ENVI NFO PASSWORD)
/* Error */;

/* Try the password. |If everything is OK we'll drop out of the
| oop */

status = cryptSet AttributeString(envel ope,
CRYPT_ENVI NFO_PASSWORD, password, passwordlLength);

}
whi | e(status == CRYPT_WRONGKEY && \
crypt Set Attri bute(envel ope, CRYPT_ATTRI BUTE_CURRENT_GROUP,
CRYPT_CURSOR_NEXT) == CRYPT_X);

This steps through each required attribute in turn and tries the supplied password to
seeif it matches. As soon asthe password matches, the data can be decrypted, and
we drop out of the loop and continue the de-envel oping process.

To extend this a bit further, let’s assume that the data could be enveloped using a
password or a public key (requiring a private decryption key to decrypt it, either one
from akeyset or a crypto device such as a smart card or Fortezza card). The code
inside the loop above then becomes:

CRYPT_ATTRI BUTE_TYPE requiredAttribute;

/* Get the type of the required resource at the cursor position */
crypt Get Attribute(envel ope, CRYPT_ATTRI BUTE_CURRENT,
&requi redAttribute);

/* 1f the decryption is being handled via a crypto device, we don't
need to take any further action, the data has already been
decrypted */

if(requiredAttribute != CRYPT_ATTRI BUTE_NONE)

/* Make sure we really do require a password attribute */
if(requiredAttribute !'= CRYPT_ENVI NFO_PASSWORD && \
requiredAttri bute ! = CRYPT_ENVI NFO_PRI VATEKEY)
/* Error */;

/* Try the password. |f everything is OK we'll drop out of the
| oop */

status = cryptSet AttributeString(envel ope, CRYPT_ENVI NFO PASSWORD,
password, passwordLength);

}

If what’s required is a CRYPT _ENVINFO PASSWORD, cryptlib will apply it
directly to decrypt the data. If what’s required is a CRYPT _ENVINFO _-
PRIVATEKEY, cryptlib will either use the crypto device to decrypt the data if it’s
available, or otherwise use the password to try to recover the private key from the
keyset and then use that to decrypt the data.

Iterating through each required signature attribute when de-enveloping signed datais
similar, but instead of trying to provide the necessary decryption information you
would provide the necessary signature check information (if requested, many
envelopes carry their own signature verification keys with them) and display the

84 Advanced Enveloping

resulting signature information. Unlike encryption de-envel oping attributes, cryptlib
won’t delete the signature information once it has been processed, so you can re-read
the information multiple times:

int status

if(cryptSetAttribute(envel ope, CRYPT_ATTRI BUTE_CURRENT_GROUP,
CRYPT_CURSOR_FI RST) == CRYPT_OX)
do

{
CRYPT_ATTRI BUTE_TYPE requi redAttri bute;
int sigResult;

/* Get the type of the required attribute at the cursor position
*/

crypt Get Attri bute(envel ope, CRYPT_ATTRI BUTE_CURRENT,
& equiredAttribute);

/* Make sure we really do have signature */
if(requiredAttribute !'= CRYPT_ENVI NFO S| GNATURE)
/* Error */;

/* Get the signature result */
status = cryptSet Attribute(envel ope,
CRYPT_ENVI NFO_SI GNATURE_RESULT, & sigResult);

}
while(cryptStatusOK(status) && \
crypt Set Attri bute(envel ope, CRYPT_ATTRI BUTE_CURRENT_GROUP,
CRYPT_CURSOR_NEXT) == CRYPT_CK);

This steps through each signature in turn and reads the result of the signature
verification for that signature, stopping when an invalid signature is found or when all
signatures are processed.

Nested Envelopes

Sometimes it may be necessary to apply multiple levels of processing to data, for
example you may want to both sign and encrypt data. cryptlib allows enveloped data
to be arbitrarily nested, with each nested content type being either further enveloped
dataor (finally) the raw data payload. For example to sigh and encrypt data you
would do the following:

create the envel ope;
add the signature key;
push in the raw dat a;
pop out the signed data;
destroy the envel ope;

create the envel ope;

add the encryption key;

push in the previously signed data;
pop out the signed, encrypted data;
destroy the envel ope;

This nesting process can be extended arbitrarily with any of the cryptlib content
types.

Since cryptlib’s enveloping isn’t sensitive to the content type (that is, you can push in
any type of data and it’ll be enveloped in the same way), you need to notify cryptlib
of the actual content type being enveloped if you’re using nested envelopes. You can
set the content type being envel oped using the CRYPT_ENVINFO _-

CONTENTTY PE attribute, giving as value the appropriate CRYPT_CONTENT _-
type. For exampleto specify that the data being envel oped is signed data, you would
usel

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO CONTENTTYPE,
CRYPT_CONTENT_SI GNEDDATA) ;

The default content type is plain data, so if you don’t explicitly set a content type
cryptlib will assume it’s just raw data. The other content types are described in
“Other Certificate Object Extensions” on page 253.

Nested Envelopes 85

Using the nested enveloping example shown above, the full enveloping procedure
would be:

create the envel ope;

add the signature key;

(cryptlib sets the content type to the default 'plain data')
push in the raw dat a;

pop out the signed data;

destroy the envel ope;

create the envel ope;

set the content type to 'signed data';
add the encryption key;

push in the previously signed data;
pop out the signed, encrypted data;
destroy the envel ope;

Thiswill mark the innermost content as plain data (the default), the next level as
signed data, and the outermost level as encrypted data.

Unwrapping nested enveloped data is the opposite of the enveloping process. For
each level of enveloped data, you can obtain its type (once you’ve pushed enough of
it into the envelope to allow cryptlib to decode it) by reading the
CRYPT_ENVINFO_CONTENTTY PE attribute:

CRYPT_ATTRI BUTE_TYPE cont ent Type;

cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO CONTENTTYPE,
&cont ent Type);

Processing nested enveloped data therefore invol ves unwrapping successive layers of
data until you finally reach the raw data content type.

86 S/MIME

S/MIME

S/MIME is a standard format for transferring signed, encrypted, or otherwise
processed data as a MM E-encoded message (for example as email or embedded in a
web page). The MIME-encoding is only used to make the result palatable to mailers,
it’s also possible to process the data without the MIME encoding.

The exact data formatting and terminology used requires a bit of further explanation.
In the beginning there was PKCS #7, a standard format for signed, encrypted, or
otherwise processed data. When the earlier PEM secure mail standard failed to take
off, PKCS #7 was wrapped up in MIME encoding and christened SIMIME version 2.
Eventually PKCS #7 was extended to become the Cryptographic Message Syntax
(CMS), and when that’s wrapped in MIME it’s called S/MIME version 3.

In practice it’s somewhat more complicated than this since there’s significant blurring
between SIMIME version 2 and 3 (and PKCS #7 and CMS). The main effective
difference between the two isthat PKCS #7/SMIME version 2 is completely tied to
X.509 certificates, certification authorities, certificate chains, and other paraphernalia,
CMS can be used without requiring all these extras if necessary, and SIMIME version
3restricts CM S back to requiring X.509 for SSMIME version 2 compatibility.

The cryptlib native format is CMS used in the configuration that doesn’t tie it to the
use of certificates (so it’ll work with PGP/OpenPGP keys, raw public/private keys,
and other keying information as well aswith X.509 certificates). In addition to this
format, cryptlib also supportsthe SSMIME format which istied to X.509 — thisis
just the cryptlib native format restricted so that the full range of key management
options aren’t available. If you want to interoperate with other implementations, you
should use this format since many implementations can’t work with the newer key
management options that were added in CMS.

Y ou can specify the use of the restricted CMS/'SMIME format when you create an
envelope with the formatting specifier CRY PT_FORMAT_CMSor CRYPT_-
FORMAT_ SMIME (they’re almost identical, the few minor differences are explained
in “Extra Signature Information” on page 92), which tells cryptlib to use the restricted
CMS/SMIME rather than the (default) unrestricted CMSformat. You can also use
the format specifiers with cryptExportK eyEx and cryptCreateSignatur eEx (which
take as their third argument the format specifier) as explained in “Exchanging Keys”
on page 193, and “Signing Data” on page 199.

S/MIME Enveloping

Although it’s possible to use the S/MIME format directly with the mid-level signature
and encryption functions, SIMIME requires a considerable amount of extra
processing above and beyond that required by cryptlib’s default format, so it’s easiest
to let cryptlib take care of this extrawork for you by using the enveloping functions
to process SIMIME data.

To create an envel ope that uses the SMIME format, call cryptCreateEnvelope as
usua but specify aformat type of CRYPT_FORMAT_SMIME instead of the usual
CRYPT_FORMAT_CRYPTLIB:

CRYPT_ENVELOPE crypt Envel ope;
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME);
/* Perform envel opi ng */

crypt DestroyEnvel ope(crypt Envel ope);

Creating the envelope in this way restricts cryptlib to using the standard X.509-based
S/IMIME data format instead of the more flexible data format which is used for
envelopes by default.

S/MIME Enveloping 87

Encrypted Enveloping

S/MIME supports password-based enveloping in the same way as ordinary cryptlib
envelopes (in fact the two formats are identical). Public-key encrypted enveloping is
supported only when the public key is held in an X.509 certificate. Because of this
restriction the private decryption key must also have a certificate attached to it. Apart
from these restrictions, public-key based S'MIME enveloping works the same way as
standard cryptlib enveloping. For example to encrypt data using the key contained in
an X.509 certificate you would use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME);

/* Add the certificate */
crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO PUBLI CKEY,
certificate);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, nmessagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed);

crypt DestroyEnvel ope(crypt Envel ope);

Since the certificate will originally come from a keyset, a simpler alternative to
reading the certificate yourself and explicitly adding it to the envelopeisto let
cryptlib do it for you by first adding the keyset to the envelope and then specifying
the email address of the recipient or recipients of the message with the CRYPT_-
ENVINFO_RECIPIENT attribute:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME);

/* Add the encryption keyset and recipient email address */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET ENCRYPT,
crypt Keyset);

crypt Set AttributeString(cryptEnvel ope, CRYPT_ENVI NFO REC! Pl ENT,
"person@onpany. cont', 18);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed) ;

crypt Dest royEnvel ope(crypt Envel ope);

The same thing in Java (for C# replacethe . | engt h with. Lengt h) is:

int cryptEnvel ope = crypt. Creat eEnvel ope(crypt User,
crypt. FORMAT_SM ME) ;

/* Add the encryption keyset and recipient email address */

crypt.Set Attribute(cryptEnvel ope, crypt.ENVI NFO KEYSET ENCRYPT,
crypt Keyset);

crypt.Set AttributeString(cryptEnvel ope, crypt.ENVI NFO RECI Pl ENT,
"per son@onpany. cont');

88

SMIME

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt.Set Attribute(cryptEnvel ope, crypt.ENVI NFO DATASI ZE,
nmessage. |l ength);

int bytesCopi ed = crypt. PushData(crypt Envel ope, message);

crypt. FlushDat a(crypt Envel ope);

byt esCopi ed = crypt. PopDat a(crypt Envel ope, envel opedDat a,
envel opedDat a. |l ength);

crypt. DestroyEnvel ope(crypt Envel ope);

The Visua Basic equivalent is:
crypt Creat eEnvel ope crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME

Add the encryption keyset and recipient enail address
crypt Set Attri bute crypt Envel ope, CRYPT_ENVI NFO _KEYSET_ENCRYPT,
crypt Keyset
crypt Set AttributeString crypt Envel ope, CRYPT_ENVI NFOR_REC! Pl ENT,
"per son@onpany. cont', 18

Add the data size information and data, wap up the processing,
' and pop out the processed data
crypt Set Attri bute crypt Envel ope, CRYPT_ENVI NFO DATASI ZE, nessagelength
crypt PushDat a crypt Envel ope, nessage, nessagelLength, bytesCopied
crypt Fl ushDat a crypt Envel ope
crypt PopDat a crypt Envel ope, envel opedData, envel opedDat aBufferSize,
byt esCopi ed

crypt Dest royEnvel ope crypt Envel ope

For each message recipient that you add, cryptlib will ook up the key in the
encryption keyset and add the appropriate information to the envel ope to encrypt the
message to that person. Thisisthe recommended way of handling public-key
encrypted enveloping, since it lets cryptlib handle the certificate details for you and
makes it possible to manage problem areas such as cases where the same email
addressis present in multiple certificates of which only oneisvalid for message
encryption. If you want to handle this case yourself, you have to use a keyset query
to search the duplicate certificates and select the appropriate one as described in
“Handling Multiple Certificates with the Same Name” on page 145.

The encryption keyset doesn’t have to be local. If you use an HTTP keyset as
described in “HTTP Keysets” on page 136, cryptlib will fetch the required certificate
directly from the remote CA, saving you the effort of having to maintain and update a
local set of certificates. Thisuse of HTTP keysets makes it very easy to distribute
certificates over the Internet.

De-enveloping works as for standard envel oping:

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_ATTRI BUTE_TYPE requiredAttribute;
int bytesCopi ed, status;

/* Create the envel ope and add the private key keyset and data */

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET DECRYPT,
privKeyKeyset);

crypt PushDat a(crypt Envel ope, envel opedDat a, envel opedDat aLengt h,
&byt esCopi ed) ;

/* Find out what we need to continue and, if it's a private key, add
the password to recover it */

crypt Get Attri bute(cryptEnvel ope, CRYPT_ATTRI BUTE_CURRENT,
& equiredAttribute);

if(requiredAttribute != CRYPT_ENVI NFO PRI VATEKEY)
/[* Error */;

crypt Set AttributeString(cryptEnvel ope, CRYPT_ENVI NFO_PASSWORD,
password, passwordLength);

crypt Fl ushDat a(crypt Envel ope);

/* Pop the data and clean up */
crypt PopDat a(crypt Envel ope, nessage, nessagelLength, &bytesCopied);
crypt DestroyEnvel ope(crypt Envel ope);

S/MIME Enveloping 89

More information on public-key encrypted enveloping, including its use with crypto
devices such as smart cards and Fortezza cards, is given in “Public-Key Encrypted
Enveloping” on page 75.

Digitally Signed Enveloping

S/MIME digitally signed envel oping works just like standard envel oping except that
the signing key isrestricted to one that has afull chain of X.509 certificates (or at
least asingle certificate) attached to it. For exampleif you wanted to sign data using
aprivate key contained in si gKey Cont ext , you would use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME);

/* Add the signing key */
crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO S| GNATURE,
si gKeyCont ext);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, nmessagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed) ;

crypt Dest royEnvel ope(crypt Envel ope);

When you sign data in this manner, cryptlib includes any certificates attached to the
signing key alongside the message. Although you can sign a message using a key
with a single certificate attached to it, it’s safer to use one that has a full certificate
chain associated with it because including only the key certificate with the message
requires that the recipient locate any other certificates that are required to verify the
signature. Since there’s no easy way to do this, signing a message using only a
standalone certificate can cause problems when the recipient tries to verify the
signature.

Verifying the signature on the data works dightly differently from the normal
signature verification process since the signed data already carries with it the
complete certificate chain required for verification. This means that you don’t have
to push a signature verification keyset or key into the envelope because the required
certificate is already included with the data:

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed, sigCheckStat us;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

/* Push in the envel oped data and pop out the recovered nessage */

crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,
&byt esCopi ed);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize, &bytesCopied

/* Determine the result of the signature check */
cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE_RESULT,
&si gCheckStatus);

crypt DestroyEnvel ope(crypt Envel ope);

Since the certificate isincluded with the data, anyone could alter the data, re-sign it
with their own certificate, and then attach their certificate to the data. To avoid this
problem, cryptlib provides the ability to verify the chain of certificates, which works
in combination with cryptlib’s certificate trust manager. You can obtain the
certificate object containing the signing certificate chain with:

90

SMIME

CRYPT_CERTI FI CATE crypt Cert Chai n;

crypt Get Attri bute(cryptEnvel ope, CRYPT_ENVI NFO_ S| GNATURE,
&crypt Cert Chain);

Y ou can work with this certificate chain as usual, for example you may want to
display the certificates and any related information to the user. At the least, you
should verify the chain using cryptCheckCert. You may also want to perform a
validity check using RTCS, revocation checking using CRLs or OCSP, and any other
certificate checks that you consider necessary. More details on working with
certificate chains are given in “Certificate Chains” on page 225, details on basic
signed enveloping (including its use with crypto devices like smart cards and
Fortezza cards) are given in “Digitally Signed Enveloping” on page 79, detailson
validity checking with RTCS are given in “Certificate Status Checking using RTCS”
on page 162, and details on revocation checking with OCSP are given in “Certificate
Revocation Checking using OCSP” on page 167.

Detached Signatures

So far, the signature for the signed data has always been included with the data itself,
alowing it to be processed asasingle blob. cryptlib aso provides the ability to
create detached signatures in which the signature is held separate from the data. This
|eaves the data being signed unchanged and produces a standalone signature as the
result of the encoding process.

To specify that an envelope should produce a detached signature rather than standard
signed data, you should set the envelope’s CRYPT _ENVINFO_DETACHED-
SIGNATURE attribute to ‘true’ (any nonzero value) before you push in any data

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO DETACHEDS| GNATURE,
1);

Apart from that, the creation of detached signatures works just like the creation of
standard signed data, with the result of the enveloping process being the standalone
signature (without the data attached):

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME);

/* Add the signing key and specify that we're using a detached
signature */

crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO_SI GNATURE,
si gKeyCont ext);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DETACHEDS| GNATURE,
1);

/* Add the data size infornation and data, wap up the processing, and
pop out the detached signature */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, detachedSi gnature,
det achedSi gnat ur eBuf f er Si ze, &byt esCopi ed);

crypt Dest royEnvel ope(crypt Envel ope);

Verifying a detached signature requires an extra processing step since the signatureis
no longer bundled with the data. First, you need to push in the detached signature (to
tell cryptlib what to do with any following data). After you’ve pushed in the
signature and followed it up with the usual cryptFlushData to wrap up the
processing, you need to push in the data that was signed by the detached signature as
the second processing step:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed, sigCheckStatus;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

S/MIME Enveloping 91

/* Push in the detached signature */

crypt PushDat a(crypt Envel ope, detachedSi gnature, detachedSi gLength,
&byt esCopi ed);

crypt PushDat a(crypt Envel ope, NULL, O, NULL);

/* Push in the data */
crypt PushDat a(crypt Envel ope, data, datalength, NULL);
crypt Fl ushDat a(crypt Envel ope);

/* Determine the result of the signature check */
cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE_RESULT,
&si gCheckStatus);

crypt Dest royEnvel ope(crypt Envel ope);

Since the data wasn’t enveloped to begin with, there’s nothing to de-envelope, which
means there’s nothing to pop out of the envelope apart from the signing certificate
chain that you can obtain as before by reading the CRYPT_ENVINFO_SIGNATURE
attribute.

In case you’re not sure whether a signature includes data or not, you can query its
status by checking the value of the CRYPT_ENVINFO_DETACHEDSIGNATURE
attribute after you’ve pushed in the signature:

int isDetachedSi gnature;

/* Push in the signed envel oped data */
crypt PushDat a(crypt Envel ope, signedData, signedDatalength,
&byt esCopi ed) ;

/* Check the signed data type */

cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO DETACHEDS| GNATURE,
& sDet achedSi gnature);

i f(isDetachedSi gnature)
/* Detached signature */;

el se
/* Signed data + signature */;

Alternative Detached Signature Processing

Besides the method described above there is a second way to verify a detached
signature which involves hashing the data yourself and then adding the hash to the
envelope rather than pushing the data into the envelope and having it hashed for you.
Thisisuseful in situations where the signed data is present separate from the
signature, or isin anon-standard format (for example an AuthentiCode signed file)
that can’t be recognised by the enveloping code.

Verifying a detached signature in this manner is a dight variation of the standard
detached signature verification process in which you first add to the envel ope the
hash value for the signed data and then push in the detached signature:

CRYPT_CONTEXT hashCont ext ;
CRYPT_ENVELOPE crypt Envel ope;
int bytesCopi ed, sigCheckSt at us;

/* Create the hash context and hash the signed data */

crypt Creat eCont ext (&ashCont ext, cryptUser, CRYPT_ALGO SHA);
crypt Encrypt (hashCont ext, signedData, datalLength);

crypt Encrypt (hashCont ext, signedData, 0);

/* Create the envel ope and add the hash */

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);
crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO HASH, hashContext);
crypt Dest royCont ext (hashContext);

/* Add the detached signature */

crypt PushDat a(crypt Envel ope, signatureData, signatureDatalength,
&byt esCopi ed) ;

crypt Fl ushDat a(crypt Envel ope);

/* Determine the result of the signature check */
cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE_RESULT,
&si gCheckStatus);

92

SMIME

crypt Dest royEnvel ope(crypt Envel ope);

When you push in the detached signature cryptlib will verify that the hash
information in the signature matches the hash that you’ve supplied. If the two don’t
match, cryptlib will return CRY PT_ERROR_SIGNATURE to indicate that the
signature can’t be verified using the given values. Because of this check, you must
add the hash before you push in the detached signature.

Extra Signature Information

S/MIME signatures can include with them extra information such asthetime at
which the message was signed. Normally cryptlib will add and verify this
information for you automatically, with the details of what’s added based on the
setting of the CRYPT_OPTION_CMS_DEFAULTATTRIBUTES option as
described in “Working with Configuration Options” on page 274. If thisoption is set
to false (zero), cryptlib won’t add any additional signature information, which
minimises the size of the resulting signature. If this option is set to true (any nonzero
value), cryptlib will add default signing attributes such as the signing time for you.

Y ou can aso handle the extra signing information yourself if you require extra
control over what’s included with the signature. The extra information is specified as
aCRYPT_CERTTYPE_CMS ATTRIBUTES certificate object. To include this
information with the signature you should add it to the envelope alongside the signing
key as CRYPT_ENVINFO_SIGNATURE_EXTRADATA:

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_CERTI FI CATE cnsAttri butes;

/* Create the CMS attribute object */

cryptCreateCert(&cnsAttributes, cryptUser,
CRYPT_CERTTYPE_CMS_ATTRI BUTES) ;

/> .0 %

/* Create the envel ope and add the signing key and signature
information */

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_CMS);

crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO_ S| GNATURE,
si gKeyCont ext);

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE EXTRADATA,
cnsAttributes);

crypt DestroyCert(cnsAttributes);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed);

crypt Dest royEnvel ope(crypt Envel ope);

Y ou can aso use thisfacility to extend or overwrite the attributes added by cryptlib.
For example if you wanted to add a security label to the data being signed, you would
add it to the CM S attribute object and add that to the envelope. cryptlib will then add
any additional required information (for example the signing time) and finally
generate the signature using the combined collection of attributes. This means that
you can fill in whatever attributes you want, and cryptlib till take care of the rest for
you.

Verifying a signature that includes this extra information works just like standard
signature verification since cryptlib handlesit all for you. Just asyou can obtain a
certificate chain from a signature, you can also obtain the extra signature information
from the envelope:

CRYPT_CERTI FI CATE cnsAttri butes;

cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE _EXTRADATA,
&cnsAttributes);

Timestamping 93

Y ou can now work with the signing attributes as in the same manner as standard
certificate attributes, for example you may want to display any relevant information
to the user. More details on working with these attributes are given in “Certificate
Extensions” on page 234, and the attributes themselves are covered in “Other
Certificate Object Extensions” on page 253.

The example above created a CRY PT_FORMAT_CMS envel ope, which means that
cryptlib will add certain default signing attributes to the signature when it createsiit.
If the envelopeis created with CRYPT_FORMAT_SMIME instead of
CRYPT_FORMAT_CMS, cryptlib will add an extra set of S'MIME-specific
attributes that indicate the preferred encryption agorithms for use when an SSMIME
enabled mailer is used to send mail to the signer. Thisinformation is used for
backwards-compatibility reasons because many SIMIME mailers will quietly default
to using very weak 40-bit keys if they’re not explicitly told to use proper encryption
such astriple DES or AES (cryptlib will never use weakened encryption since it
doesn’t even provide this capability).

Because of this default-to-insecure encryption problem, cryptlib includes with a
CRYPT_FORMAT_SMIME signature additional information to indicate that the
sender should use a non-weakened a gorithm such astriple DES, AES, CAST-128, or
IDEA. WithaCRYPT_FORMAT_CMS signature this additional SMIM E-specific
information isn’t needed so cryptlib doesn’t include it.

Timestamping

In addition to the standard signature information which is provided by the signer,
cryptlib aso supports the use of a message timestamp which is provided by an
external timestamp authority (TSA). Timestamping signed datain an envelopeis
very simple and requires only the addition of a CRYPT_ENVINFO_TIMESTAMP
attribute to tell cryptlib which TSA to obtain the timestamp from. The TSA is
specified as a TSP session object as described in “Secure Sessions” on page 105. For
exampleto specify aTSA located at ht t p: / / wwww. t i mest anp. cont -

t sa/ request . cgi , you would create the TSP session with:

CRYPT_SESSI ON crypt Sessi on;

/* Create the TSP session and add the server name */

crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION TSP);

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
"http://ww.timestanp. conltsal/request.cgi", 40);

Y ou can aso specify additional session information in the usual manner for cryptlib
sessions, after which you add the session to the envelope. Once you’ve added it, you
can destroy it since it’s now managed by the envelope:

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO Tl MESTAMP,

crypt Session);
crypt DestroySessi on(crypt Session);

When cryptlib signsthe datain the envelope, it will communicate with the TSA to
obtain atimestamp on the signature, which is then included with the other signed
data. Thistimestamp can be verified at alater date to prove that the envelope was
indeed signed at the indicated time.

Since communicating with a TSA over a network can be a slow process, the signature
generation may take somewhat longer than usual. When the timestamp is created
cryptlib doesn’t communicate any part of the message or any indication of its
contents to the TSA, it merely sends it the message signature information which is
then countersigned by the TSA. In thisway no confidential or sensitive information
isleaked to the outside world through the timestamping process.

A time-stamped message appears the same as a standard signed message, with the
exception that the timestamp datais present as additional signature information of
type CRYPT_ENVINFO_TIMESTAMP. You can read the timestamp datain the
same way that you read other extra signature information:

94 SMIME

CRYPT_ENVELOPE ti neSt anp;

crypt Get Attri bute(cryptEnvel ope, CRYPT_ENVI NFO Tl MESTAMP,
&t inestanp);

The returned timestamp is a standard signed envelope object that you can check in the
usual manner, for example by verifying the signature on the timestamp data and
checking the certificates used for the timestamp signature.

PGP Enveloping 95

PGP

PGP is a standard format for encrypting, signing, and compressing data. The original
format, PGP 2.x or PGP classic, has since been superseded by OpenPGP, partially
implemented in PGP 5.0 and later fully in NAI PGP, GPG, and various variations
such asthe ckt builds. cryptlib can read both the PGP 2.x and OpenPGP formats,
including handling for assorted variations and peculiarities of different
implementations. Asoutput cryptlib produces data in the OpenPGP format, which
can be read by any recent PGP implementation. Note that PGP 2.x used the patented
IDEA encryption algorithm (see “Algorithms” on page 302 for details), if you’re
using the code for commercia purposes you need to either obtain alicense for IDEA
or use only the OpenPGP format (which cryptlib does by default anyway, so this
usually isn’t a concern).

Y ou can specify the use of the PGP format when you create an envelope with the
formatting specifier CRY PT_FORMAT_PGP, which tells cryptlib to use the PGP
format rather than the (default) CMS format. cryptlib doesn’t restrict the use of PGP
envelopesto PGP keys. Any type of keys, including standard cryptlib keys and
X.5009 certificates, can be used with PGP envelopes. By extension it’s also possible
to use smart cards, crypto accelerators, and Fortezza cards with PGP envel opes (as an
extreme example, it’s possible to use a Fortezza card to create a PGP envelope).

PGP Enveloping

To create an envel ope that uses the PGP format, call cryptCreateEnvel ope as usual
but specify aformat type of CRYPT_FORMAT_PGP instead of the usual
CRYPT_FORMAT_CRYPTLIB:

CRYPT_ENVELOPE cr ypt Envel ope;
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_ PGP);
/* Perform envel opi ng */

crypt DestroyEnvel ope(crypt Envel ope);

Creating the envelope in this way restricts cryptlib to using the PGP data format
instead of the more flexible data format which is used for envelopes by default. This
imposes a number of restrictions on the use of envelopes that are described in more
detail in the sections that cover individual PGP enveloping types. One restriction that
appliesto all enveloping typesisthat PGP requires the presence of the
CRYPT_ENVINFO_DATASIZE attribute before data can be enveloped. This
attribute is described in more detail in “Data Size Considerations” on page 63. If you
try to push datainto an envelope without setting the CRYPT_ENVINFO_-
DATASIZE attribute, cryptlib will return CRYPT_ERROR_NOTINITED to indicate
that you haven’t provided the information which is needed for the enveloping to
proceed.

Encrypted Enveloping

PGP supports password-based enveloping in the same general way as ordinary
cryptlib envelopes. However, due to constraints imposed by the PGP format, it’s not
possible to mix password- and public-key-based key exchange actions in the same
envelope. In addition it’s not possible to specify more than one password for an
envelope. If you try to add more than one password, or try to add a password when
you’ve already added a public key or vice versa, cryptlib will return
CRYPT_ERROR_INITED to indicate that the key exchange action has already been
Set.

Public-key based PGP enveloping works the same way as standard cryptlib
enveloping. For exampleto encrypt data using the a public key you would use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_PGP);

96 PGP

/* Add the public key */
crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO PUBLI CKEY,
publicKey);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed) ;

crypt Dest royEnvel ope(crypt Envel ope);

Since the key will originally have come from a keyset, asimpler aternative to
reading the key yourself and explicitly adding it to the envelopeisto let cryptlib do it
for you by first adding the keyset to the envelope and then specifying the email
address of the recipient or recipients of the message with the CRYPT_ENVINFO_-
RECIPIENT attribute:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_PGP);

/* Add the encryption keyset and recipient email address */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET ENCRYPT,
crypt Keyset);

crypt Set AttributeString(cryptEnvel ope, CRYPT_ENVI NFO REC! Pl ENT,
"person@onpany. cont', 18);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf fer Si ze,
&byt esCopi ed) ;

crypt DestroyEnvel ope(crypt Envel ope);

For each message recipient that you add, cryptlib will ook up the key in the
encryption keyset and add the appropriate information to the envel ope to encrypt the
message to that person. Thisisthe recommended way of handling public-key
encrypted enveloping, since it lets cryptlib handle the key details for you and makes it
possible to manage problem areas such as cases where the same email addressis
present for multiple keys of which only oneis valid for message encryption.

De-enveloping works as for standard envel oping:

CRYPT_ENVELOPE cr ypt Envel ope;
CRYPT_ATTRI BUTE_TYPE requiredAttribute;
int bytesCopi ed, status;

/* Create the envel ope and add the private key keyset and data */

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET_DECRYPT,
privKeyKeyset);

crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,
&byt esCopi ed);

/* Find out what we need to continue and, if it's a private key, add
the password to recover it */

cryptGet Attribute(crypt Envel ope, CRYPT_ATTRI BUTE_CURRENT,
&requi redAttribute);

if(requiredAttribute != CRYPT_ENVI NFO PRI VATEKEY)
/[* Error */;

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO_PASSWORD,
password, passwordLength);

crypt Fl ushDat a(crypt Envel ope);

PGP Enveloping 97

/* Pop the data and clean up */
crypt PopDat a(crypt Envel ope, nessage, nessagelLength, &bytesCopied);
crypt Dest royEnvel ope(crypt Envel ope);

More information on public-key encrypted enveloping, including its use with crypto
devices such as smart cards, is given in “Public-Key Encrypted Enveloping” on page
75.

Digitally Signed Enveloping

PGP digitally signed enveloping works just like standard enveloping. For exampleiif
you wanted to sign data using a private key contained in si gKey Cont ext , you
would use:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_PGP);

/* Add the signing key */
crypt Set Attri bute(crypt Envel ope, CRYPT_ENVI NFO_ S| GNATURE,
si gKeyCont ext);

/* Add the data size infornation and data, wap up the processing, and
pop out the processed data */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &bytesCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBufferSi ze,
&byt esCopi ed);

crypt Dest royEnvel ope(crypt Envel ope);

Verifying the signature works in the usual way:

CRYPT_ENVELOPE crypt Envel ope;
int bytesCopi ed, signatureResult, status;

/* Create the envel ope and add the signature check keyset */
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);
crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET_SI GCHECK,

si gCheckKeyset);

/* Push in the signed data and pop out the recovered nessage */
crypt PushDat a(crypt Envel ope, envel opedData, envel opedDatalLengt h,
&byt esCopi ed) ;
crypt Fl ushDat a(crypt Envel ope);
crypt PopDat a(crypt Envel ope, nessage, nessageBufferSize,
&byt esCopi ed);

/* Determine the result of the signature check */
cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE_RESULT,
&si gnatureResult);

The signature result will typically be CRYPT_OK (the signature verified), CRYPT _-
ERROR_SIGNATURE (the signature did not verify), or CRYPT_ERROR _-
NOTFOUND (the key needed to check the signature wasn’t found in the keyset).

When you sign datain the PGP format, the nested content type is always set to plain
data. Thisisalimitation of the PGP format that always signs data as the innermost
step, so that what’s signed is always plain data. In addition to this restriction, it’s not
possible to have more than one signer per envelope. Multiple signers requires the use
of nested envelopes, however it’s necessary to intersperse a layer of encryption or
compression between each signature pass since PGP can’t easily distinguish which
signature belongs to which signature pass. In general it’s best not to try to apply
multiple signatures to a piece of data.

Detached Signatures

So far, the signature for the signed data has aways been included with the data itself,
allowing it to be processed asasingle blob. cryptlib aso provides the ability to
create detached signatures in which the signature is held separate from the data. This

98

PGP

leaves the data being signed unchanged and produces a standalone signature as the
result of the encoding process.

To specify that an envelope should produce a detached signature rather than standard
signed data, you should set the envelope’s CRYPT ENVINFO DETACHED-
SIGNATURE attribute to ‘true’ (any nonzero value) before you push in any data

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO DETACHEDS| GNATURE, 1
)

Apart from that, the creation of detached signatures works just like the creation of
standard signed data, with the result of the enveloping process being the standalone
signature (without the data attached):

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_PGP);

/* Add the signing key and specify that we're using a detached
signature */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO_ S| GNATURE,
si gKeyCont ext);

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO DETACHEDS| GNATURE, 1
)

/* Add the data size information and data, wap up the processing, and
pop out the detached signature */

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, detachedSi gnature,
det achedSi gnat ur eBuf f er Si ze, &byt esCopi ed);

crypt Dest royEnvel ope(crypt Envel ope);

Verifying a detached signature works somewhat differently from standard cryptlib
detached signature processing since the PGP format doesn’t differentiate between
standard and detached signatures. Because of this lack of differentiation, it’s not
possible for cryptlib to automatically determine whether a signature should have data
associated with it or not. Normally, cryptlib assumes that a signature is associated
with the data being signed, which is the most common case. When verifying a
detached signature, you need to use the alternative signature processing technique
that involves hashing the data yourself and then adding the hash to the envelope
rather than pushing the data into the envelope and having it hashed for you. Since
PGP hashes further information after hashing the data to be signed, you shouldn’t
compl ete the hashing before you push the hash context into the envelope. Thisisin
contrast to standard cryptlib detached signature processing which requires that you
compl ete the hashing before pushing the context into the envel ope:

CRYPT_CONTEXT hashCont ext ;

CRYPT_ENVELOPE cr ypt Envel ope;
int bytesCopi ed, sigCheckStat us;

/* Create the hash context and hash the signed data wi thout conpleting
t he hashing */

crypt Creat eCont ext (&ashContext, cryptUser, CRYPT_ALGO SHA);

crypt Encrypt (hashCont ext, data, datalLength);

/* Create the envel ope and add the signature check keyset */
crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_AUTO);
crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO _KEYSET_SI GCHECK,

si gCheckKeyset);

/* Add the hash and follow it with the detached signature */

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO HASH, hashContext);
crypt PushDat a(crypt Envel ope, data, datalLength, &bytesCopied);
crypt Fl ushDat a(crypt Envel ope);

crypt Dest royCont ext (hashContext);

PGP Enveloping 99

/* Determine the result of the signature check */

cryptGet Attribute(cryptEnvel ope, CRYPT_ENVI NFO S| GNATURE_RESULT,
&si gCheckStatus);

crypt Dest royEnvel ope(crypt Envel ope);

When you push in the detached signature cryptlib will verify that the hash
information in the signature matches the hash that you’ve supplied. If the two don’t
match, cryptlib will return CRY PT_ERROR_SIGNATURE to indicate that the
signature can’t be verified using the given values. Because of this check, you must
add the hash before you push in the detached signature.

100 From Envelopesto email

From Envelopes to email

The enveloping process produces binary data as output that then needs to be wrapped
up in the appropriate MIME headers and formatting before it can really be called
S/MIME or PGP mail. The exact mechanisms used depend on the mailer code or
software interface to the mail system you’re using. General guidelines for the
different enveloped data types are given below.

Note that cryptlib is a security toolkit and not amail client or server. Although
cryptlib provides all the crypto functionality needed to implement S'MIME and PGP,
it cannot send or receive email, process MIME message parts or base64 or PGP
ASCII encoding, or otherwise act as amail agent. These functions are performed y
mail-handling software. For mail-processing operations you need to combine it with
mail-handling software of the kind described further on.

S/MIME emall

MIME isthe Internet standard for communicating complex data types via email, and
provides for tagging of message contents and safe encoding of datato allow it to pass
over data paths that would otherwise damage or ater the message contents. Each
MIME message has a top-level type, subtype, and optional parameters. The top-level
typesareappl i cati on,audi o,i mage, nessage, mul ti part,text,and

vi deo.

Most of the SSMIME secured types have a content type of appl i cat i on/ pkcs7-
m e, except for detached signatures that have a content type of

appl i cati on/ pkcs7-si gnat ur e. The content type usualy also includes an
additional sni ne- t ype parameter whose value depends on the SSMIME type and is
described in further detail below. In addition it’s usual to include a content-
disposition field whose value is al so explained below.

Since MIME messages are commonly transferred via email and this doesn’t handle
the binary data produced by cryptlib’s enveloping, MIME also defines a means of
encoding binary dataastext. Thisisknown as content-transfer-encoding.

Data

The innermost, plain data content should be converted to canonical MIME format and
have a standard MIME header which is appropriate to the data content, with optional
encoding as required. For the most common type of content (plain text), the header
would have a content-type of t ext / pl ai n, and possibly optional extrainformation
such as a content transfer encoding (in this case quot ed- pri nt abl e), content
disposition, and whatever other MIME headers are appropriate. Thisformattingis
normally handled for you by the mailer code or software interface to the mail system
you’re using.

Signed Data

For signed datathe MIME typeisappl i cat i on/ pkcs7- m ne, the smime-type
parameter issi ghed- dat a, and the extensions for filenames specified as
parametersis. p7m A typical MIME header for signed datais therefore:
Content - Type: application/ pkcs7-m me; smime-type=si gned-dat a;
nanme=sm ne. p7m

Cont ent - Transf er - Encodi ng: base64
Content-Di sposition: attachment; fil ename=sm ne.p7m

encoded si gned data
Detached Signature

Detached signatures represent a specia instance of signed datain which the data to be
signed is carried as one MIME body part and the signature is carried as another body
part. The messageis encoded as amultipart MIME message with the overall message
having a content type of nul ti part/ si gned and aprotocol parameter of

PGP email 101

appl i cati on/ pkcs7-si gnat ur e, and the signature part having a content type
of appl i cati on/ pkcs7-si gnature.

Since the data precedes the signature, it’s useful to include the hash algorithm used
for the data as a parameter with the content type (cryptlib processes the signature
before the data so it doesn’t require it, but other implementations may not be able to
do this). The hash algorithm parameter isgiven by mi cal g=shal or

m cal g=nd5 as appropriate. When receiving SMIME messages you can ignore
this value since cryptlib will automatically use the correct type based on the
signature.

A typical MIME header for a detached signature is therefore:

Content- Type: multipart/signed; protocol =application/pkcs7-signature;
m cal g=shal; boundary=boundary

- -boundary
Content - Type: text/plain Content-Transfer-Encodi ng: quoted-printable

si gned text

- - boundary

Cont ent - Type: application/ pkcs7-si gnature; nane=sm ne. p7s
Cont ent - Transf er - Encodi ng: base64

Content-Di sposition: attachment; fil ename=sm ne. p7s

encoded signature
- - boundar y—
Encrypted Data

For encrypted datathe MIME typeisappl i cati on/ pkcs7-ni e, the smime-
type parameter isenvel oped- dat a, and the extension for filenames specified as
parametersis. p7m A typical MIME header for encrypted data s therefore:
Cont ent - Type: application/ pkcs7-m me; sminme-type=envel oped- dat a;
name=sm ne. p7m
Cont ent - Tr ansf er - Encodi ng: base64
Content-Di sposition: attachnent; fil ename=sm ne. p7m

encoded encrypted data

Nested Content

Unlike straight CM S nested content, S'MIME nested content requires a new level of
MIME encoding for each nesting level. For the minimum level of nesting (straight
signed or encrypted data) you need to first MIM E-encode the plain data, then
envelope it to create CM S signed or encrypted data, and then MIME-encode it again.
For the typical case of signed, encrypted data you need to MIME-encode, sign,

MIM E-encode again, encrypt, and then MIME-encode yet again (rumours that
S/MIME was designed by a consortium of network bandwidth vendors and disk drive
manufacturers are probably unfounded).

Since the nesting information is contained in the MIME headers, you don’t have to
specify the nested content type using CRYPT_ENVINO_CONTENTTY PE as you do
with straight CM S envel oped data (this is one of the few actual differences between
CRYPT_FORMAT_CMSand CRYPT_FORMAT_SMIME), cryptlib will
automatically set the correct content type for you. Conversely, you need to use the
MIME header information rather than CRYPT_ENVINFO_CONTENTTY PE when
de-enveloping data (this will normally be handled for you by the mailer code or
software interface to the mail system you’re using).

PGP email

Traditionally, PGP has employed its own email encapsulation format that predates
MIME and isn’t directly compatible with it. A PGP message is delimited with the
string - - - - - BEG N PGP MESSAGE- - - - - and----- END PGP MESSAGE- -
- - -, with the (binary) message body present in base64-encoded format between the

102

From Envelopes to email

delimiters. The body isfollowed by abase64-encoded CRC24 checksum cal culated
on the message body before base64-encoding. In addition the body may be preceded
by one or more lines of type-and-value pairs containing additional information such
as software version information, and separated from the body by ablank line. More
details on the format are given in the PGP standards documents.

An example of a PGP email messageis:

----- BEG N PGP MESSAGE-- - - -
Version: cryptlib 3.1

base64- encoded nessage body
base64- encoded CRC24 checksum
————— END PGP MESSAGE-----

Signed data with a detached signature is delimited with - - - - - BEG N PGP
SI GNED MESSAGE- - - - - at the start of the message, followed by - - - - - BEG N
PGP SI GNATURE- - - - - and----- END PGP Sl GNATURE- - - - - around the

signature that follows. The signature follows the standard PGP message-encoding
rules given above:

----- BEG N PGP S| GNED MESSAGE- - - - -
Hash: SHAl

nessage body
----- BEG N PGP S| GNATURE- - - - -
Version: cryptlib 3.1

base64- encoded si gnature
base64- encoded CRC24 checksum
----- END PGP S| GNATURE- - - - -

The example above shows another use for the type-and-value lines, in this case to
indicate the hashing algorithm used in the signature to alow one-pass processing of

the message.

In addition to the traditional PGP format, there exists a mechanism for encapsulating
the traditional PGP format in an additional layer of MIME wrapping. This isn’t true
MIME message handling since it merely wraps MIME headers around the existing
PGP email encapsulation rather than using the full MIME capabilities directly as does
S/MIME. Thisformat isamost never used, with software expected to use the
traditional PGP format instead. If you need more information about PGP/MIME, you
can find it in the PGP standards documentation.

Implementing S/IMIME and PGP email using cryptlib

Most of the MIME processing and encoding issues described above will be handled
for you by the mail software that cryptlib isused with. To use cryptlib to handle
S/MIME and PGP email messages, you would typically register the various MIME
types with the mail software and, when they are encountered, the mailer will hand the
message content (the data that remains after the MIME wrapper has been removed) to
cryptlib. cryptlib can then process the data and hand the processed result back to the
mailer. The same appliesfor generating SMIME and PGP email messages.

Note that cryptlib is a security toolkit and not amail client or server. Although
cryptlib provides all the crypto functionality needed to implement SMIME and PGP,
it cannot send or receive email, process MIME message parts, or otherwise act asa
mail agent. For mail-processing operations you need to combine it with mail-
handling software of the kind described below.

c-client/IMAP4

c-client is a portable Swiss army chainsaw interface to awide variety of mail and
news handling systems. One of the servicesit providesis full handling of MIME
message parts which involves breaking a message down into a sequence of BODY
structures each of which contains one MIME body part. Thet ype member contains
the content type (typically TYPEMULTIPART or TYPEAPPLICATION for the
types used in SMIME or PGP), the subt ype member contains the MIME subtype,

Implementing YMIME and PGP email using cryptlib 103

the par anet er list containsany required parameters, and the

cont ent s. bi nary member contains outgoing binary data straight from the
cryptlib envelope (c-client will perform any necessary encoding such as base64 if
required). All of thisinformation is converted into an appropriately-formatted MIME
message by c-client before transmission.

Since IMAP supports the fetching of individual MIME body parts from a server,
cont ent s. bi nary can’t be used to access incoming message data since only the
header information may have been fetched, with the actual content still residing on
the server. To fetch aparticular body part, you heedtouse mai | _f et chbody. If
the body part is base64-encoded (denoted by the encodi ng member of the BODY
having the value ENCBA SE64) then you also needto call r f c822_base64 to
decode the data so cryptlib can processit. In the unlikely event that the binary datais
encoded as quoted-printable (denoted by ENCQUOTEDPRINTABLE, at least one
broken mailer occasionally doesthis) you needto call r f c822_gpri nt instead. In
either case the output can be pushed straight into a cryptlib envelope.

Eudora

Eudora handles MIME content types through plug-in trandators that are called
through two functions, ems_can_transl ateandens_transl ate file.
Eudoracallsens_can_t r ansl at e withanensM MEt ype parameter that
contains information on the MIME type contained in the message. If thisisan
S/MIME or PGP type (for example appl i cat i on/ pkcs7- m ne) the function
should return EMSR_NOWto indicate that it can process this MIME type, otherwise is
returns EMSR_CANT_TRANSLATE.

Oncethetrandator hasindicated that it can process a message, Eudora calls
ems_transl ate_fil e withinput and output filesto read the data from and write
the processed result to. The trandation isjust the standard cryptlib enveloping or de-
envel oping process depending on whether the translator is an on-arrival or on-display
one (used for de-envel oping incoming messages) or a Q4-transmission or Q4-
completion one (used for envel oping outgoing messages).

MAPI

MAPI (Microsoft’s mail API) defines two types of mailer extensions that allow
cryptlib-based SSMIME and PGP functionality to be added to Windows mail
applications. Thefirst typeisaspooler hook or hook provider, which can be called
on delivery of incoming messages and on transmission of outgoing messages. The
second typeis a preprocessor, which isless useful and operates on outgoing messages
only. The major difference between the two in terms of implementation compl exity
isthat hook providers are full (although simple) MAPI service providers while pre-
processors are extensions to transport providers (that is, if you’ve already written a
transport provider you can add the preprocessor without too much effort; if you don’t
have a transport provider available, it’s quite a bit more work). In general it’s
probably easiest to use a single spooler hook to handle inbound and outbound
messages. Y ou can do this by setting both the HOOK_INBOUND and

HOOK_ OUTBOUND flags in the hook’s PR RESOURCE_FLAGS value.

Messages are passed to hooksvial Spool er Hook: : Qut boundMsgHook (for
outgoing messages) and | Spool er Hook: : | nboundMsgHook (for incoming
messages). The hook implementation itself is contained in aDLL that contains the
HPPr ovi der | ni t entry point and optional further entry points used to configure it,
for example a message service entry point for program-based configuration and a

W ZARDENTRY for user-based configuration.

Windows 95/98/ME and NT/2000/XP Shell

Windows allows a given MIME content type to be associated with an application to
processit. You can set up this association by calling M MEAssoci at i onDi al og
and setting the MIMEASSOCDLG_FL_REGISTER_ASSOC flag in the

dwl nFl ags parameter, which will (provided the user approvesit) create an

104 From Envelopesto email

association between the content type you specify inthe pcszM MECont ent Type
parameter and the application chosen by the user. This provides a somewhat crude

but easy to set up mechanism for processing SMIME and PGP data using a cryptlib-
based application.

Creating/Destroying Session Objects 105

Secure Sessions

cryptlib’s secure session interface provides a session-oriented equivalent to envelope
objects that can be used to secure a communications link with a host or server or
otherwise communicate with another system over a network. Secure sessions can
include SSH, SSL, and TL S sessions, general request/response-style communications
sessions can include protocols such as the certificate management protocol (CMP),
simple certificate enrolment protocol (SCEP), real-time certificate status protocol
(RTCS), online certificate status protocol (OCSP), and timestamping protocol (TSP).
Aswith envelopes, cryptlib takes care of all of the session details for you so that all
you need to do is provide basic communications information such as the name of the
server or host to connect to and any other information required for the session such as
apassword or certificate. cryptlib takes care of establishing the session and
managing the details of the communications channel and its security parameters.

Secure sessions are very similar to envelopes, with the main difference being that
while an envelope is a pure data object into which you can push data and pop the
processed form of the same data, a session is a communications object into which you
push data and then pop data that constitutes a response from aremove server or
client. Thismeans that a session object can be viewed as a bottomless envelope
through which you can push or pop as much data as the other side can accept or
provide.

Aswith an envelope, you use a session object by adding to it action objects and
resources such as user names and passwords that control the interaction with the
remote server or client and then push in data intended for the remote system and pop
out data coming from the remote system. For example to connect to a server using
SSH and obtain adirectory of files using the Is command you would do the
following:

create the session;

add the server nane, user nane, and password;

activate the session;

push data "Is";

pop the result of the I's command,
destroy the session

That’s all that’s necessary. Since you’ve added a user name and password, cryptlib
knows that it should establish an encrypted session with the remote server and log on
using the given user name and password. From then on al data which is exchanged
with the server is encrypted and authenticated using the SSH protocol.

Creating an SSH server session isequaly simple. In this case all you need isthe
server key:

create the session;

add the server key;

activate the session;

pop client data;

push server response;
destroy the session

When you activate the session, cryptlib will listen for an incoming connection from a
client and return once a secure connection has been negotiated, at which point
communication proceeds as before.

Creating/Destroying Session Objects

Secure sessions are accessed as session objects that work in the same general manner
as other cryptlib objects. You create a session using cryptCr eateSession, specifying
the user who isto own the session object or CRY PT_UNUSED for the defaullt,
normal user, and the type of session that you want to create. This creates a session
object ready for use in securing a communications link or otherwise communicating
with a remote server or client. Once you’ve finished with the session, you use
cryptDestroySession to end the session and destroy the session object:

106

Secure Sessions

CRYPT_SESSI ON crypt Sessi on;
crypt Creat eSessi on(&crypt Sessi on, cryptUser, sessionType);
/* Communi cate with the renpte server or client */
crypt DestroySessi on(crypt Session);
The available session types are:

Session Description

CRYPT_SESSION_CMP Certificate management protocol (CMP).
CRYPT_SESSION_OCSP Online certificate status protocol (OCSP).
CRYPT_SESSION_RTCS Real-time certificate status protocol (RTCS).
CRYPT_SESSION_SCEP Simple certificate enrolment protocol (SCEP).
CRYPT_SESSION_SSH Secure shell (SSH).

CRYPT_SESSION_SSL Secure sockets layer (SSL and TLS).
CRYPT_SESSION_TSP Timestamping protocol (TSP).

This section will mainly cover the secure communications session types such as SSH,
SSL, and TLS. CMP, SCEP, RTCS, and OCSP client sessions are certificate
management services that are covered in “Obtaining Certificates usng CMP”,
“Obtaining Certificates using SCEP”, “Certificate Status Checking using RTCS”, and
“Certificate Revocation Checking using OCSP” on pages 167, 162, 162, and 168, and
a TSP client session is an S/MIME service which is covered in “Timestamping” on
page 93. RTCS, OCSP and TSP server sessions are standard session types and are
also covered here. CMP and SCEP server sessions are somewhat more complex and
are covered in “Managing a CA using CMP or SCEP” on page 176. The generd
principles covering sessions apply to all of these session types, so you should
familiarise yourself with the operation of session objects and associated issues such
as network proxies and timeouts before trying to work with these other session types.

By default the secure communications session object which is created will have an
internal buffer whose size is appropriate for the type of security protocol whichis
being employed. The size of the buffer may affect the amount of extra processing
that cryptlib needs to perform, so that alarge buffer can reduce the amount of
copying to and from the buffer, but will consume more memory. If want to use a
buffer for a secure communications session which islarger than the default size, you
can specify its size using the CRY PT_ATTRIBUTE_BUFFERSI ZE attribute after
you’ve created the session. For example if you wanted to set the buffer for an SSH
session to 64 kB you would use:

CRYPT_SESSI ON crypt Sessi on;

crypt Creat eSessi on(&crypt Sessi on, cryptUser, CRYPT_SESSION SSH);
crypt Set Attribute(cryptSession, CRYPT_ATTRI BUTE _BUFFERSI ZE, 65536L);

/* Communi cate with the renpte server or client */
crypt DestroySessi on(crypt Session);

Since cryptlib streams data through the session object, the internal buffer size doesn’t
limit how much data you can push and pop (for example you could push 1 MB of
data into a session object with a 32 kB internal buffer), the only reason you’d want to
change the size isto provide tighter control over memory usage by session objects.
Unless you’re absolutely certain that the other side will only send very small data
quantities, you shouldn’t shrink the buffer below the default size set by cryptlib since
the protocols that cryptlib implements have certain fixed bounds on packet sizes that
need to be met, making the buffer too small would make it impossible to process data
being sent by the other side.

Client vs. Server Sessions 107

Note that the CRYPT_SESSION is passed to cryptCreateSession by reference asthe
function modifies it when it creates the session. In al other routinesin cryptlib,
CRYPT_SESSION is passed by value.

Client vs. Server Sessions

cryptlib distinguishes between two types of session objects, client sessions and server
sessions. Client sessions establish a connection to aremote server while server
sessions wait for incoming communications from aremote client. To distinguish
between client and server objects, you use a session type endingin _ SERVER when
you create the session object. For exampleto create an SSL/TL S server object
instead of an SSL/TLS client you would specify its type on creation as CRYPT_-
SESSION_SSL_SERVER instead of CRYPT_SESSION_SSL.

Because server sessions wait for an incoming connection regquest to arrive, you need
to run each onein its own thread if you want to handle multiple connections
simultaneously (cryptlib is fully thread-safe so there’s no problem with having
multiple threads processing incoming connections). For example to handle up to 10
connections at once you would do the following:

for i =1 to 10 do
start_thread(server_thread);

wheretheserver threadis.

| oop
create the session;
add required information to the session;
activate the session;
process client request(s);
destroy the session;

More information on using cryptlib with multiple threads is given in “Multi-threaded
cryptlib Operation” on page 45.

Binding to the default ports used by the various session protocols may require specia
privileges on some systems that don’t allow normal usersto bind to ports below 1024.
If you need to bind to a reserved port you should consult your operating system’s
documentation for details on any restrictions that may apply, and may need to take
special precautions if binding to one of these ports requires the use of elevated
security privileges. Alternatively, you can bind to a non-default port outside the
reserved range by specifying the port using the CRYPT_SESSINFO_SERVER -
PORT attribute. Y ou can aso specify which interface you want to bind to if the
system has more than one by using the CRYPT_SESSINFO_SERVER _NAME
attribute. If you’re testing code before deploying it, it’s a good idea to specify that
you want to bind to localhost to avoid listening on arbitrary externally-visible
interfaces. For exampleto listen on local port 2000 you would use:

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,

"l ocal host", 9);
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SERVER PORT, 2000);

Server Names/URLs

Server names can be given using | P addresses (in dotted-decimal form for IPv4 or
colon-delimited form for IPv6), DNS names, or full URLS, with optional ports and
other information provided in the usual manner. Y ou can specify the server name or
URL using the CRYPT_SESSINFO_SERVER_NAME attribute and the port (if
you’re not using the default port fro the protocol and it isn’t already specified in the
URL) using the CRYPT_SESSINFO_SERVER_PORT attribute. For example to
specify a connection to the server www.server.com on port 80 you would use:
crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,

"www. server.com', 14);
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SERVER PORT, 80);

Alternatively, you could specify both in the same name:

crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO SERVER NAME,
"www. server.com 80", 17);

108

Secure Sessions

Since thisis aweb server for which port 80 isthe default port, you could also use the
more common:

crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO SERVER NAME,
"http://ww.server.conl', 20);

SSL and TLS use a predefined port and are often used in conjunction with HTTP, so
you can specify these URLs with or without theht t p: // orhtt ps:// schema
prefixes. SSH similarly uses a predefined port and can be used with or without the
ssh://,scp://,orsftp:// schemaprefixes. All of these protocols allow you
to specify user information before the host name, separated with an ‘@’ sign. For
example to connect as “user” to the SSH server ssh.server.com you could use:

crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO SERVER NAME,
"ssh://user @sh. server.conl', 25);

which saves having to explicitly specify the user name with the CRYPT_-
SESSINFO_USERNAME attribute.

All of the PKI protocols use HTTP as their transport mechanism, so cryptlib will
automatically default to using HTTP transport whether you includethe ht t p: / /
schema specifier or not. The CMP and TSP protocols aso have aternative,
deprecated transport mechanismsidentified by cmp: / /... (for CMP) and tcp:/ /..
(for TSP) instead of ht t p: //.... These are occasionally used by CAs or timestamp
servers, you may need to use these instead of the HTTP defaullt.

Server Private Keys

Most server sessions require the use of a private key in one form or another to decrypt
datafrom the client or sign responses returned to the client. The server key is
typically stored in aprivate key file, but for extra security may be held in a crypto
device such as a crypto coprocessor or accelerator. In addition, for most session

types the server key needs to be associated with a certificate or certificate chain
leading up to a trusted root certificate, so that you can’t use just a raw private key as
the server key. You can obtain the required certificate or certificate chain by creating
it yourself using cryptlib or by obtaining it from a commercial CA (it’s generally
much cheaper and easier to create it yourself than to obtain one from a third-party
CA).

When you create or obtain the certificate for your server, you may need to specify the
server name in the common name field of the certificate (the intricacies of certificate
names and how to create your own certificates are explained in “Certificates” on page
203). For example if your server was www.companyname.com then the certificate
for the server would contain this as its common name component (you can actually
put in anything you like as the common name component, but thiswill result in some
web browsers that use your server displaying a warning message when they connect).

SSH server sessionsrequire araw RSA (or optionally DSA for SSHv2) key, although
you can aso use one with a certificate or certificate chain attached. All other session
types require one with certificate(s) attached. Y ou add the server key asthe
CRYPT_SESSINFO_PRIVATEKEY attribute, for example to use a private key held
in acrypto device asthe server key you would use:

CRYPT_CONTEXT pri vat eKey;

crypt Get Pri vat eKey(cryptDevice, &privateKey, CRYPT_KEYI D_NAME,
server KeyNane, NULL);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
privateKey);

crypt DestroyCont ext (privat eKey);

Note that, as with envelopes, the private key object can be destroyed as soon as it’s
added to the session, since the session maintains its own copy of the object internaly.

If you’re worried about some obscure (and rather unlikely) attacks on private keys,
you can enable the CRYPT_OPTION_MISC_SIDECHANNELPROTECTION
option as explained in “Working with Configuration Options” on page 274. Note that
enabling this option will slow down all private-key operations by up to 10%.

Establishing a Session 109

Establishing a Session

Much of the secure session processisidentical to the enveloping process, so you
should familiarise yourself with the general concept of enveloping as described in
“Data Enveloping” on page 60 if you haven’t already done so. The secure session
establishment process involves adding the information which is required to connect to
the remote server as aclient or to establish a server, and then activating the session to
establish the secure session or wait for incoming connections. This process of
activating the session has no real equivalent for envel opes because envelopes are
activated automatically the first time datais pushed into them.

Client sessions can aso be activated automatically, however the initial handshake
process which is required to activate a session with aremote server is usually lengthy
and complex so it’s generally better to explicitly activate the session under controlled
conditions and have the ability to react to errorsin an appropriate manner rather than
to have the session auto-activate itself the first time that datais pushed. Server
sessions that wait for an incoming connection must be explicitly activated, which
causes them to wait for a client connection.

Y ou can activate a session by setting its CRYPT_SESSINFO_ACTIVE attribute to
true (any nonzero value). Y ou can aso determine the activation state of a session by
reading this attribute, if it’s set to true then the session is active, otherwise it’s not
active.

Persistent Connections

Some cryptlib session types such as CMP, SCEP, RTCS, OCSP, and TSP provide
request/response protocols rather than continuous secure sessions like SSH and
SSL/TLS. In many cases it’s possible to perform more than one request/response
transaction per session, avoiding the overhead of creating a new connection for each
transaction. To handle persistent connections for client sessions, cryptlib usesthe
CRYPT_SESSINFO_CONNECTIONACTIVE attribute to indicate that the
connection is still active and is ready to accept further transactions. Transactions
after the initial one are handled in exactly the same way as the first one, except that
there’s no need to create a new session object for them:

CRYPT_SESSI ON crypt Sessi on;
i nt connectionActive;

/* Create the session and add the server nane */

crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSI ON xxx);

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
server Nanme, serverNaneLength);

/* Performthe first transaction */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO REQUEST,
crypt Requestl);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

crypt Get Attribute(cryptSession, CRYPT_SESSI NFO RESPONSE,
&crypt Responsel);

/* Check whether the session connection is still open */

cryptGet Attribute(cryptSession, CRYPT_SESSI NFO CONNECTI ONACTI VE,
&connecti onActive);

i f(!connectionActive)
/* The other side has closed the connection, exit */;

/* Performthe second transaction */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO REQUEST,
crypt Request2);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

cryptGet Attribute(cryptSession, CRYPT_SESSI NFO RESPONSE,
&crypt Response?2);

Note the check of the CRY PT_SESSINFO_CONNECTIONACTIVE attribute. Since
not all servers support persistent connections or may time out and close the
connection after aperiod of inactivity, it’s a good idea to check that the connection is
still open before trying to submit further transactions. Note also that there’s no need
to explicitly delete the request from the first activation of the session, cryptlib

110 Secure Sessions

automatically does thisfor you once the session activation has completed. This does
mean, however, that if you want to repeat the session transaction using the same data
as before (which would be somewhat unusual), you need to re-add the request to the
session, since the previous activation will have cleared it in preparation for the next
activation.

The process on the server sideis similar, after a successfully-completed client
transaction you can either destroy the session or, if you want to support persistent
connections, recycle the connection as for the client-side example above.

SSH Sessions

SSH isa secure data transfer protocol that provides confidentiality, integrity-
protection, protection against replay attacks, and a variety of other services. The SSH
server is authenticated via the server’s public key and the client is authenticated either
viaauser name and password or (less frequently) a public key-based digital

signature. cryptlib supports both versions 1 and 2 of the SSH protocol, although the
obsolete version 1 is disabled by defaullt.

The SSH protocol exhibits adesign flaw (informally known as the SSH performance
handbrake) that can lead to poor performance when transferring data, which is
particularly noticeable with applications such as SFTP. Although cryptlib avoidsthe
handbrake, many other implementations don’t, restricting data transfer rates to as
little as one tenth of the network link speed (the actua slowdown depends on the link
characteristics and varies from one situation to another). In order to obtain the
maximum performance from SSH, you need to either use cryptlib at both ends of the
link (that is, both the client and server must be ones that avoid the performance
handbrake), or use another protocol like SSL that doesn’t have the handbrake.

SSH Client Sessions

Establishing a session with an SSH server requires adding the server name or |P
address, an optional port number if it isn’t using the standard SSH port, and the user
name and password which is needed to log on to the server viathe CRYPT _-
SESSINFO_USERNAME and CRY PT_SESSINFO_PASSWORD attributes
(occasionally the server will use public-key based authentication instead of a
password, which is covered later). Once you’ve added this information, you can
activate the session and establish the connection:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSH);

/* Add the server name, user nane, and password */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
server Nanme, serverNaneLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO USERNANMNE,
user nane, usernanmelLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password, passwordLength);

/* Activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

The equivalent operation in Javaor C#is:

/* Create the session */
int cryptSession = crypt.CreateSession(cryptUser,
crypt. SESSI ON_SSH) ;

/* Add the server name, user nane, and password */

crypt.Set AttributeString(cryptSession, crypt.SESSI NFO SERVER NAME,
server Nane);

crypt.Set AttributeString(cryptSession, crypt.SESSI NFO USERNAME,
usernane);

crypt.Set AttributeString(cryptSession, crypt.SESSI NFO PASSWORD,
password);

SSH Sessions 111

/* Activate the session */
crypt. Set Attribute(cryptSession, crypt.SESSINFO ACTIVE, 1);

InVisua Basicthisis:
Di m crypt Sessi on As Long

Create the session
crypt Creat eSessi on crypt Sessi on, cryptUser, CRYPT_SESSI ON SSH

Add the server nane, user nanme, and password

crypt Set AttributeString crypt Sessi on, CRYPT_SESSI NFO SERVER_NAME, _
server Nane, Len(serverNane)

crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO USERNAME,
user Nane, Len(userNane)

crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO PASSWORD, _
password, Len(password)

Activate the session
crypt Set Attri bute crypt Sessi on, CRYPT_SESSI NFO ACTI VE, 1

When it connects, cryptlib will automatically negotiate the highest protocol version
supported by the server and use that to secure the session. Y ou can determine which
version isin use once the session has been established by reading the CRYPT _-
SESSINFO_VERSION attribute, avalue of 1 indicates SSH version 1 and a value of
2 indicates SSH version 2. Y ou can also force the use of aparticular version
(typically you’d want to ensure that SSHv2 is used) by setting the protocol version
attribute before you activate the connection.

Activating a session resultsin cryptlib performing alot of work in the background.
For example when activating the SSH session shown above cryptlib will connect to
the remote host, read the host and server keys used for authentication and encryption,
generate a secret data value to exchange with the host using its host and server keys,
create the appropriate encryption contexts and load keys based on the secret data
value into them, negotiate general session parameters, and log on over the encrypted
link using the given user name and password.

If the server that you’re connecting to requires public-key authentication instead of
password authentication, you need to provide a private key viathe CRYPT_-
SESSINFO_PRIVATEKEY attribute to authenticate yourself to the server before you
activate the session. The private key could be a native cryptlib key, but it could also
be akey from a crypto device such as a smart card or Fortezza card:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSH);

/* Add the server nanme, user name, and client key and activate the
session */

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO SERVER_NAME,
server Nanme, serverNaneLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO USERNANME,
user nane, usernamelLength);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
crypt PrivateKey);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

When cryptlib connects to the server, it will use the provided private key as part of
the SSH handshake to authenticate the client to the server, with the private key taking
the place of the more usual password. If you’re not sure which of the two options
you need, you can provide both and cryptlib will use the appropriate one when it
connects to the server.

SSH Server Sessions

Establishing an SSH server session requires specifying that the session is a server
session and adding the SSH server key. Once you’ve added this information you can
activate the session and wait for incoming connections:

112

Secure Sessions

CRYPT_SESSI ON crypt Sessi on;
i nt bytesCopi ed;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_SSH_SERVER) ;

/* Add the server key and activate the session */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
privateKey);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

/* Process any renaining control nessages fromthe client */
crypt PopDat a(crypt Session, buffer, bufferSize, &bytesCopied);

The Visud Basic formis:

Di m crypt Sessi on As Long
Di m byt esCopi ed as Long

Create the session
crypt Creat eSessi on crypt Sessi on, cryptUser, _
CRYPT_SESSI ON_SSH_SERVER

Add the server key and activate the session
crypt Set Attri bute crypt Sessi on, CRYPT_SESSI NFO PRI VATEKEY, privateKey
crypt Set Attri bute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Process any renmining control messages fromthe client
crypt PopDat a crypt Session, buffer, bufferSize, bytesCopied

Note the use of the data pop call after the activation has been completed. SSH clients
often send additional session control information such as channel requests or port
forwarding information after the session has been activated. Telling cryptlib to try
and read any additional messages that may have arrived from the client allowsit to
process these requests and respond to them as appropriate. In particular, your server
shouldn’t send data to the client immediately after the session has been established
without first performing a data pop to respond to client requests, since the client may
interpret the data that you send as an (incorrect) response to its request.

cryptlib supports both SSH version 1 and 2 (although the obsolete version 1 is
disabled by default) and by default will function asaversion 2 server. If you want to
use the (obsolete) SSH version 1 protocol, you need to enable SSHv1 in the build and
then set the CRYPT_SESSINFO_VERSION attribute to 1 to have the server respond
asaversion 1 rather than version 2 server.

Once you activate the session, cryptlib will block until an incoming client connection
arrives, at which point it will negotiate a secure connection with the client. When the
client connects, cryptlib will ask for a user name and password before it allows the
connection to proceed. The handling of the user authentication process is controlled
by the CRYPT_SESSINFO_AUTHRESPONSE attribute, by default cryptlib will
return a CRYPT_ENVELOPE_RESOURCE status when it receives the user name
and password, allowing you to verify the information before continuing. If it’s valid,
you should set the CRYPT_SESSINFO_AUTHRESPONSE attribute to true and
resume the session activation by setting the CRYPT_SESSINFO_ACTIVE response
totrue again. If not, you can either set the CRYPT_SESSINFO_AUTHRESPONSE
attribute to false and resume the session activation (which will give the user another
chance to authenticate themselves), or close the session:

int status;

status = cryptSet Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);
i f(status == CRYPT_ENVELOPE_RESOURCE)

{

char usernane][CRYPT_MAX TEXTSIZE + 1];

char password[CRYPT_MAX TEXTSIZE + 1];

i nt usernaneLength, passwordLength

SSH Sessions 113

/* Get the user nane and password */

cryptGet AttributeString(cryptSession, CRYPT_SESSI NFO USERNAME,
user nane, &usernanelLength);

cryptGet AttributeString(cryptSession, CRYPT_SESS|I NFO PASSWORD,
password, &passwordLength);

user nane[usernanmelLength] "\0';

password[passwordLength] ‘\0';

/* Check the user details and all ow or deny the response as
appropriate */
i f(checkUser(usernane, password))
crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO AUTHRESPONSE,
1);
el se
crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO AUTHRESPONSE,
0);

/* Resume the session activation, sending the authentication
response to the client and conpl eting the handshake */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

To give the user the traditional three attempts at getting their name and password
right, you would run the session activation code in aloop:

int status;
for(i =0; i <3; i++)
{st atus = cryptSetAttribute(cryptSession, CRYPT_SESSI NFO ACTI VE,
if(lc)r;/ptStatustJ((status))
br eak; /* User authenticated, exit */

i f(status == CRYPT_ENVELOPE_RESOURCE)

/* Perform password check as before */;
el se

br eak; /* Some other type of error, exit */
}

Alternatively, you can set the CRY PT_SESSINFO_AUTHRESPONSE attribute to
true before you activate the session and cryptlib will automatically allow the access
and complete the activation, so you’ll never need to handle the CRYPT -
ENVELOPE_RESOURCE response. In this case you need to check the user details
after the session has been activated and shut it down if the authorisation check fails.

SSH Channels

By default, cryptlib provides the most frequently-used SSH service, a direct
encrypted connection from client to server. When you establish the SSH connection,
cryptlib creates an SSH communications channel that’s used to exchange data. This
process is entirely transparent, and you don’t have to worry about it if you don’t want
to — just treat the SSH session as a secure data pipe from one system to another.

There are however cases where you may need to explicitly deal with SSH channels,
and that’s when you’re using special-purpose SSH facilities such as port forwarding,
subsystems, or even user-defined channel types. In this case you need to explicitly
create the special -purpose channel and add information describing its use before the
channel can be activated. This process consists of three steps, creating the channel
using the CRYPT_SESSINFO_SSH_CHANNEL attribute, specifying its type using
the CRYPT_SESSINFO_SSH_CHANNEL_TY PE attribute, and finally specifying
any optional channel arguments using the CRYPT_SESSINFO _SSH CHANNEL_-
ARGl and CRYPT_SESSINFO_SSH_CHANNEL_ARG?2 attributes. For exampleto
create a channel of the default type (which is normally done automatically by
cryptlib, and that has no optional arguments) you would use:

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,

CRYPT_UNUSED) ;

crypt Set AttributeString(crypt Session,
CRYPT_SESSI NFO_SSH CHANNEL_TYPE, "session", 7);

Setting the CRY PT_SESSINFO_SSH_CHANNEL attribute to CRYPT_UNUSED
tells cryptlib to create anew channel (rather than trying to select an existing one,

114 Secure Sessions

which iswhat the attribute is normally used for), and the CRY PT_SESSINFO_SSH_ -
CHANNEL TYPE attribute specifies its type. Once you’ve created a new channel in
this manner you can read back the CRYPT_SESSINFO_SSH CHANNEL attribute to
get the channdl ID that was assigned for the newly-created channel:

i nt channel | D,

cryptGet Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
&channel I D);

Thisvaueis used to uniquely identify a particular channel, but it’s only needed in the
presence of multiple channels, which are described in “SSH Multiple Channels” on
page 116.

On the server side, reading the details of a channel that’s been opened by the client
works similarly:
char channel Type[CRYPT_MAX TEXTSI ZE + 1];

char channel Argl] CRYPT_MAX_TEXTSIZE + 1];
int channel I D, channel TypeLength, channel ArglLength, status;

/* Get the channel 1D and type */
cryptGet Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
&channel I D);
cryptGet AttributeString(cryptSession,
CRYPT_SESSI NFO_SSH_CHANNEL_TYPE, channel Type, &channel TypelLength);
channel Type[channel TypeLength] = '\0";

/* Get the optional channel argument */
status = cryptGet AttributeString(cryptSession,

CRYPT_SESSI NFO_SSH_CHANNEL_ARGL, channel Argl, &channel ArglLength);
if(cryptStatusOK(status))

channel Argl[channel ArglLength] = '\0";

If you don’t specify otherwise, cryptlib will open a channel of the default type when
it connects. If you want to instead use a specia-purpose SSH facility, you should
provide the information necessary for creating it before you activate the connection.
Y ou can aso open further channels after the connection has been compl eted, the
process is described in “SSH Multiple Channels” on page 116. If you try to specify
the use of more than one channel before the session has been activated, cryptlib will
return CRYPT_ERROR_INITED when you try to create any channel after the first
one, since it’s only possible to request further channels once the initial channel has
been successfully established.

SSH Subsystems

Alongside the default encrypted link service, SSH provides additional services such
as SFTP, an application-level file transfer protocol tunnelled over the SSH link viaa
subsystem channel. If you plan to use SFTP, note the comment about the SSH
performance handbrake at the start of this section. Although cryptlib avoids this
problem, non-cryptlib implementations frequently don’t, so that the performance of
SFTP can be quite poor (as much as ten times slower than the network link speed) in
some cases.

You can specify the use of a subsystem by setting the channel type to “subsystem”
and the first channel argument to the subsystem name, in this case “sftp”:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSH);

/* Add the server name, user nane, and password */

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO SERVER_ NAME,
server Nanme, serverNaneLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO USERNANME,
user nane, usernamelLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password, passwordLength);

SSH Sessions 115

/* Request the creation of the subsystem channel */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
CRYPT_UNUSED) ;

crypt Set AttributeString(crypt Session,
CRYPT_SESSI NFO_SSH CHANNEL_TYPE, "subsystent, 9);

crypt Set AttributeString(crypt Session,
CRYPT_SESSI NFO_SSH CHANNEL_ARGL, "sftp", 4);

/* Activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

Note that SFTP isnot apart of the SSH protocol (it can also be run over SSL or
IPsec, or directly over raw sockets), but simply an RPC mechanism for the Posix
filesystem API. The handling of this RPC mechanism, and support for features such
astrangdlation of filenames, types, attributes, and operations to and from the Posix
interface, is an application-specific issue outside the scope of cryptlib.

SSH Port Forwarding

Alongside standard SSH connections and SSH subsystems, it’s also possible to
perform port-forwarding using SSH channels. Port forwarding allows you to tunnel
an arbitrary network connection over SSH to avoid having the data being sent over
the network in the clear. For example you could use thisto tunnel mail (SMTP to
send, POP3 or IMAP to receive) over SSH to and from aremote host. SSH provides
two types of port forwarding, forwarding from the client to the server, identified by a
channel type of “direct-tcpip”, and forwarding from the server to the client, identified
by a channel type of “tcpip-forward”. The only one that’s normally used is client-to-
server forwarding.

For client-to-server forwarding with a channel type of “direct-tcpip”, the first channel
argument is the remote host and port that you want to forward to. For exampleif you
wanted to tunnel SMTP mail traffic to mailserver.com with SMTP being on port 25
(so the forwarding string would be mailserver.com:25), you would use:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSH);

/* Add the server name, user nane, and password */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
server Nane, serverNaneLength);

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO USERNAME,
user nane, usernanelLength);

crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO PASSWORD,
password, passwordLength);

/* Request the creation of the port-forwardi ng channel */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
CRYPT_UNUSED) ;
crypt Set AttributeString(crypt Session,
CRYPT_SESSI NFO_SSH_CHANNEL_TYPE, "direct-tcpip", 12);
crypt Set AttributeString(crypt Session,
CRYPT_SESSI NFO_SSH_CHANNEL_ARGL, "nmmil server.com 25", 17);

/* Activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

When cryptlib activates the connection, it will indicate to the remote SSH server that
it should forward data sent over the SSH link to port 25 on mailserver.com. You
can now either push data directly into the session to tunnel it to the remote server, or
create a socket to listen on port 25 on the local machine and push data received on it
into the session, creating alocal to remote system port forwarding over the SSH
channdl.

Before you forward the data on the server as requested by the client, you should
check to make sure that the requested forwarding is in fact permitted. For example a
malicious user could use port forwarding to attack a machine inside your firewall by
forwarding connections through the firewall over an SSH tunnel. Because of this,
cryptlib will never open aforwarded connection by itself, but requires that you

116

Secure Sessions

explicitly forward the data. In other words it will indicate that port forwarding has
been requested, but will never of its own volition open and/or forward arbitrary ports
just because a client has requested it.

If you don’t want to allow the port forwarding, all you need to do is ignore the port-
forwarding channel. cryptlib’s default action is to not allow forwarded connections,
making it impossible for a client to remotely access internal machines or ports unless
you explicitly alow it.

SSH Multiple Channels

Although SSH is usually used to provide a straightforward secure link from one
system to another, it’s also possible to use it to multiplex multiple virtual sessions
acrossasinglelogical session. Thisisdone by tunnelling multiple data channels
across the SSH link.

SSH implements this using in-band signalling, which means that control information
and data share the same link. With a single data channel (the standard case) this isn’t
aproblem, but with multiple data channels control information for one channel can be
impeded by data being sent or received on another channel. For example if you need
to send or receive control information (channel close/channel open/status
information) and there’s a data transfer in progress on another channel, the control
information can’t be sent or received until the data transfer has been completed. This
iswhy virtually all networking protocols use out-of-band signalling, with a separate
mechanism for control signalling that can’t be impeded by data transfers on the link.

Because of the in-band signalling problem, there are a number of special-case
considerations that you need to take into account when using multiple SSH data
channels. The primary one is: Don’t do it. Unless you really have a strong need to
run with multiple channels, just stick to a single channel and everything will be OK.

If you really need to use multiple channels, your code will need to take some extra
steps to handle the problems caused by SSH’s in-band signalling. The standard
approach to this problem is to run the SSH implementation as a standalone service or
daemon, with afull-time thread or task dedicated to nothing but handling any control
messages that may arrive. These standal one applications are capable of opening ports
to local and remote systems, logging on users, initiating data transfers, and so on.
Since it’s probably not a good idea for cryptlib to open arbitrary ports or transfer files
without any additional checking, your application needs to explicitly manage these
control messages. This requires doing the following:

e Tryand open al channels and send all control messages right after the connect,
before any data transfers are initiated. This means that the control signalling
won’t be stalled behind data signalling.

e Avoid using the session in non-blocking mode or with avery small timeout.
Using a very short timeout increases the chances of some data remaining
unwritten or unread, which will cause control information to become stalled
behind it.

e Periodically try and pop datato handle any new control messages that may have
arrived on other channels. In standalone SSH implementations that run as
services or daemons, thisis handled by having afull-time thread or task
dedicated to thisfunction. If you want to take this approach in your application,
you can use a user-supplied socket that you can wait on in your application as
described in “Network Issues” on page 127.

e Trying to perform channel control actions can result inaCRYPT_ERROR_-
INCOMPLETE status if there’s data still waiting to be read or written. This
occurs because it’s not possible to send or receive control information for another
channel until the data for the current channel has been cleared. Since new data
can arrive after you’ve cleared the existing data but before you can send the
control message, you may need to run this portion of your code in aloop to
ensure that the channel is clear so that you can send the control information.

SSL/TLS Sessions 117

Note that both the send and receive sides of the channel have to be cleared to
allow the control message to be sent and a response received.

If you’ve decided that you really do need to use multiple SSH channels, you can
manage them using the CRY PT_SESSINFO_SSH_CHANNEL attribute, which
contains an integer value that uniquely identifies each channel. Y ou can select the
channel to send on by setting this attribute before you push data, and determine the
channdl that datais being received on by reading it before you pop data:

int recei veChannel | D, byt esCopi ed;

/* Send data over a given channel */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
sendChannel I D);

crypt PushDat a(crypt Session, data, dataSize, &bytesCopied);

/* Receive data sent over a channel */
cryptGet Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
& ecei veChannel I D);
crypt PopDat a(crypt Session, buffer, bufferSize, &bytesCopied);

Read and write channels are distinct, so setting the write channel doesn’t change the
read channel, which is specified in incoming data messages that arrive.

If you’re opening additional channels after the session handshake has completed, you
need to tell cryptlib when to activate the newly-created channel. To do this, you set
its CRYPT_SESSINFO_SSH _CHANNEL_ACTIVE attribute to true, which activates
the channel by sending the details to the remote system. Using the previous example
of a port-forwarding channel, if you wanted to open this additional channel after the
session had aready been established you would use:

/* Request the creation of the port-forwardi ng channel */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
CRYPT_UNUSED) ;
crypt Set AttributeString(cryptSession,
CRYPT_SESSI NFO_SSH CHANNEL_TYPE, "direct-tcpip", 12);
crypt Set AttributeString(cryptSession,
CRYPT_SESSI NFO_SSH CHANNEL_ARGL, "mail server.com 25", 17);

/* Activate the new y-created channel */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL_ACTI VE,
1);

If you want to close one of the additional channels, you can select it in the usual

manner and then deactivate it by setting its CRYPT_SESSINFO_SSH_ CHANNEL _-
ACTIVE attribute to false;

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL,
channel I D);
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO SSH CHANNEL_ACTI VE,
0);
If you try to deactivate the last remaining channel, which corresponds to the session
itself, cryptlib will return a CRY PT_ERROR_PERMISSION status. To close the
final channel, you need to close the overall session.

SSL/TLS Sessions

SSL/TLSisasecure data transfer protocol that provides confidentiality, integrity-
protection, protection against replay attacks, and a variety of other services. The SSL
server is authenticated via a certificate, and the client isn’t authenticated (in rare
circumstances client certificates may be used, but these are usualy avoided due to the
high degree of difficulty involved in working with them). Alternatively, the client
and server may be mutually authenticated via a secret-key mechanism such as a user
name and password, which avoids the need for certificates altogether. cryptlib
supports SSL version 3, TLS version 1.0 (ak.aSSL version 3.1), and TLS version 1.1
(ak.aSSL version 3.2).

SSL and TLS are actually variations of the same protocol, the protocol known by the
genericterm SSL isSSL v3.0and TLSisSSL v3.1. A newer revisionof TLS, TLS
version 1.1, is SSL v3.2. cryptlib will automatically negotiate the highest protocol

118 Secure Sessions

version supported by the other side and use that to secure the session. You can
determine which version isin use once the session has been established by reading
the CRYPT_SESSINFO_VERSION attribute, a value of 0 indicates version 3.0 or
SSL, avalue of 1 indicatesversion 3.1 or TLS, and avalue of 2 indicates version 3.2
or TLSversion 1.1. You can also force the use of a particular version by setting the
protocol version attribute before you activate the connection, for example you can
have cryptlib function as an SSL-only server by setting the CRY PT_SESSINFO_-
VERSION to 0 to indicate the use of SSL version 3.0 rather than TLSversion 3.1. A
(fortunately) small number of buggy serverswill fail the SSL handshake if the
protocol versionis advertised as TLS, if you receive a handshake failure aert when
you try to activate the session (asindicated by the CRYPT_ATTRIBUTE_INT -
ERRORMESSAGE attribute) you can try forcing the use of SSL to seeif the server
can handle a connect using only the older protocol version.

Because TLSv1.1isrelatively new and not widely supported yet (meaning that some
clients and servers will break if they encounter a server or client that advertises this
protocol version), cryptlib by default advertises TLS v1.0 asits highest protocol level.
If you want to explicitly advertise TLSv1.1, you can set the CRYPT_SESSINFO_-
VERSION attribute to 2 before you activate the session to indicate the use of SSL
v3.20r TLSv1.1.

SSL/TLS Client Sessions

Establishing a session with an SSL/TL S server requires adding the server name or |P
address and an optional port number if it isn’t using the standard SSL/TLS port.
Once you’ve added this information, you can activate the session and establish the
connection:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSL);

/* Add the server nane and activate the session */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
server Nanme, serverNaneLength);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

The same operation in Javaor C# is:

/* Create the session */
int cryptSession = crypt.CreateSession(cryptUser,
crypt.SESSI ON_SSL);

/* Add the server nane and activate the session */

crypt.Set AttributeString(cryptSession, crypt.SESSI NFO SERVER NAME,
server Nane);

crypt.Set Attribute(cryptSession, crypt.SESSINFO ACTIVE, 1);

The Visua Basic form of the codeis:
Di m crypt Sessi on As Long

Create the session
crypt Creat eSessi on crypt Sessi on, cryptUser, CRYPT_SESSI ON_SSL

Add the server nane and activate the session

crypt Set AttributeString crypt Sessi on, CRYPT_SESSI ONFO SERVER NAME, _
server Nane, Len(serverNane)

crypt Set Attri bute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Activating a session resultsin cryptlib performing alot of work in the background.
For example when activating the SSL/TLS session shown above cryptlib will connect
to the remote host, read the server’s certificate, generate a secret data value to
exchange with the server using the key contained in the certificate, create the
appropriate encryption contexts and load keys based on the secret data value into
them, negotiate general session parameters, and complete negotiating the encrypted
link with the server.

SSL/TLS Sessions 119

SSL/TLS with Shared Keys

Note: The use of SSL/TLS sessions using shared keysis based on a draft standard
from the TLSworking group that may be subject to further changes before the final
standard is adopted. You should avoid deploying solutions based on this mechanism
until the standard has been finalised by the TLSworking group.

If the server you’re connecting to uses shared keys (for example a user name and
password), you need to provide thisinformation viathe CRY PT_SESSINFO_-
USERNAME and CRY PT_SESSINFO_PASSWORD attributes to authenticate
yourself to the server before you activate the connection:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSL);

/* Add the server name, user nane, and password */

crypt Set AttributeString(cryptSessi on, CRYPT_SESS|I NFO SERVER_NAME,
server Nanme, serverNaneLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESS|I NFO USERNANME,
user nane, usernanelLength);

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO PASSWORD,
password, passwordLength);

/* Activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

The equivalent operation in Javaor C#is:

/* Create the session */
int cryptSession = crypt.CreateSession(cryptUser,
crypt. SESSI ON_SSL) ;

/* Add the server name, user nane, and password */

crypt. Set AttributeString(cryptSession, crypt.SESSI NFO SERVER NAME,
server Nane);

crypt. Set AttributeString(cryptSession, crypt.SESSI NFO USERNAME,
usernane);

crypt.Set AttributeString(cryptSession, crypt.SESSI NFO PASSWORD,
password);

/* Activate the session */
crypt. Set Attribute(cryptSession, crypt.SESSINFO ACTIVE, 1);

InVisua Basicthisis:
Di m crypt Sessi on As Long

Create the session
crypt Creat eSessi on crypt Sessi on, cryptUser, CRYPT_SESSI ON_SSL

' Add the server nane, user nanme, and password

crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO SERVER_NAME,
server Nane, Len(serverNane)

crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO _USERNANE,
user Nane, Len(userNane)

crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password, Len(password)

' Activate the session
crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Authenticating yourself using shared keys avoids the need for both server and client
certificates, providing mutual authentication for both client and server (conventiona
SSL only authenticates the server using a server certificate). This type of key
management also avoids the high CPU overhead of public-key encryption, making it
ideal for use in resource-constrained environments or ones where you’re charged for
CPU usage.

SSL/TLS with Client Certificates

If the server you’re connecting to requires a client certificate, you need to provide a
private key with an attached signing certificate viathe CRYPT_SESSINFO_-

120

Secure Sessions

PRIVATEKEY attribute to authenticate yourself to the server before you activate the
session. The private key could be a native cryptlib key, but it could also be akey

from a crypto device such as a smart card or Fortezza card. They both work in the

same way for client authentication:
CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION SSL);

/* Add the server name and client key/certificate and activate the
session */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
server Nane, server NaneLength);

crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
crypt PrivateKey);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

When cryptlib connects to the server, it will use the provided private key and
certificate as part of the SSL/TL S handshake to authenticate the client to the server.
If the server doesn’t require the use of a client certificate, cryptlib won’t do anything
with the private key, so it’s OK to add this even if you’re not sure whether it’ll be
needed or not.

Note that client certificates are very rarely used in practice because of the high level
of difficulty involved in working with them. If you require client authentication, afar
better solution isto either use atraditional authentication mechanism such as sending
an authenticator like a password over the SSL connection, or to use SSL with shared
keys, which provides mutual authentication of both client and server.

SSL/TLS Server Sessions

Establishing an SSL/TLS server session requires adding the server key/certificate,
activating the session, and waiting for incoming connections:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_SSL_SERVER) ;

/* Add the server key/certificate and activate the session */

crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
privateKey);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

The same procedurein Visual Basicis:
Di m crypt Sessi on As Long

Create the session
crypt Creat eSessi on crypt Sessi on, cryptUser, _
CRYPT_SESSI ON_SSL_SERVER

Add the server key/certificate and activate the session
crypt Set Attri bute crypt Sessi on, CRYPT_SESSI ONFO PRI VATEKEY, pri vat eKey
crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Once you activate the session, cryptlib will block until an incoming client connection
arrives, at which point it will negotiate a secure connection with the client.

SSL/TLS Servers with Shared Keys

Note: The use of SSL/TLS sessions using shared keysis based on a draft standard
from the TLSworking group that may be subject to further changes before the final
standard is adopted. You should avoid deploying solutions based on this mechanism
until the standard has been finalised by the TLSworking group.

If you’re using shared keys (for example a user name and password) to provide
security, you need to provide thisinformation viathe CRYPT_SESSINFO_-
USERNAME and CRY PT_SESSINFO_PASSWORD attributes. For exampleif you
have a server that allows one of three users/clients to connect to it you would use:

SSL/TLS Sessions 121

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_SSL_SERVER) ;

/* Add the user nanes and passwords */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO USERNAME,
user nanel, usernanellength);

crypt Set AttributeString(crypt Session, CRYPT_SESSI NFO PASSWORD,
passwordl, passwordllLength);

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO USERNAME,
user nane2, usernane2length);

crypt Set AttributeString(crypt Session, CRYPT_SESS|I NFO PASSWORD,
password2, password2Length);

crypt Set AttributeString(crypt Session, CRYPT_SESSI NFO USERNAME,
user nane3, usernane3lLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password3, password3Length);

/* Activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

Using shared keys in this manner avoids the need for both server and client
certificates, providing mutual authentication for both client and server (conventional
SSL only authenticates the server via a server certificate). Thistype of key
management also avoids the high CPU overhead of public-key encryption, making it
ideal for use in resource-constrained environments or ones where you’re charged for
CPU usage.

If you have clients who need to connect without providing a user name and password,
you can still provide a server certificate in the usual manner using the CRYPT _-
SESSINFO _PRIVATEKEY attribute, and clients who don’t provide a user name and
password will connect using public-key encryption. Note though that a client that
uses the server certificate rather than a user name and password | oses the benefits of
mutual client/server authentication, as well asincurring a higher CPU overhead due
to the use of public-key encryption.

Once aclient has authenticated themsel ves using a shared key, you can determine
their identity by reading back the CRY PT_SESSINFO_USERNAME attribute:

char usernane[CRYPT_MAX TEXTSIZE + 1];
i nt usernaneLength

/* Get the user nane */

cryptGet AttributeString(cryptSession, CRYPT_SESS|I NFO USERNAME,
user nane, &usernanelLength);

usernane[usernanmeLength] = '\0";

If the attempt by the client to connect fails (typically dueto the use of an incorrect
password), the password information for that user will be reset to prevent password-
guessing attacks in which an attacker repeatedly reconnects using every possible
password until they succeed. If the password isreset, you need to re-add the user and
password to the session before that particular user can connect again. In order to
protect against password-guessing attacks you should employ standard precautions
such as alowing a maximum of three incorrect attempts or inserting atime delay
before another connect attempt is allowed.

SSL/TLS Servers with Client Certificates

If you want to use client certificates to authenticate incoming connections, you need
to provide a public-key keyset or certificate store for cryptlib to use to check
certificates provided by client connections. When aclient triesto establish a
connection, cryptlib will check that their certificate is present in the keyset. If it isn’t
present, the connection isn’t permitted. This provides a very fine-grained level of
access control through which individual end users can be permitted or denied access
to the host. Since cryptlib uses the keyset to verify incoming connections, you can
control who is allowed in by adding or removing their certificate to or from the
keyset. Note that you must provide a public-key keyset that stores certificates (not a

122 Secure Sessions

private-key keyset) to the session since SSL/TL S uses certificates for the access
control functionality.

Y ou can specify the public-key keyset to use for checking incoming connections with
the CRYPT_SESSINFO_KEY SET attribute:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_SSL_SERVER) ;

/* Add the server key and public-key keyset and activate the
session */
crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
privateKey);
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO KEYSET, cryptKeyset);
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

When you set this attribute for a server session, cryptlib will require the use of client
certificates for connections to the server, and won’t allow connections from clients
that aren’t able to authenticate themselves using a certificate that was previously
added to the keyset.

Request/Response Protocol Sessions

cryptlib supports a variety of request/response protocols including protocols such as
the certificate management protocol (CMP), simple certificate enrolment protocol
(SCEP), real-time certificate status protocol (RTCS), online certificate status protocol
(OCSP), and timestamping protocol (TSP). CMP, SCEP, RTCS, and OCSP client
sessions are certificate management services that are covered in “Obtaining
Certificates usng CMP”, “Obtaining Certificates using SCEP”, “Certificate Status
Checking using RTCS”, and “Certificate Revocation Checking using OCSP” on
pages 167, 162, 162, and 168, and a TSP client session isan SMIME service which
is covered in “Timestamping” on page 93. RTCS, OCSP and TSP server sessions are
standard session types and are also covered here, CMP and SCEP server sessions are
somewhat more complex and are covered in “Managing a CA using CMP or SCEP”
on page 176.

RTCS Server Sessions

An RTCS server session is a protocol -specific session type that returns areal-time
certificate statusto aclient. RTCS client sessions are used for certificate status
checks and are described in “Certificate Status Checking using RTCS” on page 162.

Establishing an RTCS server session requires adding a certificate store that cryptlib
can query for certificate status information, specified asthe CRYPT_SESSINFO_-
KEY SET attribute, and an optional RTCS responder key/certificate if you want
cryptlib to sign the responses it provides. Certificate stores are described in more
detail in “Managing a Certification Authority” on page 171. Once you’ve added this
information you can activate the session and wait for incoming connections:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_RTCS_SERVER) ;

/* Add the certificate store and activate the session */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO KEYSET,
cryptCertStore);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

Once you activate the session, cryptlib will block until an incoming client connection
arrives, at which point it will read the RTCS request from the client and return a
response optionally signed with the RTCS responder key.

Request/Response Protocol Sessions 123

OCSP Server Sessions

An OCSP server session is a protocol-specific session type that returns certificate
revocation information to aclient. OCSP client sessions are used for certificate
revocation checks and are described in “Certificate Revocation Checking using
OCSP” on page 162.

The difference between RTCS and OCSP isthat RTCS provides real -time, live
certificate status information while OCSP provides delayed revocation information,
usually based on CRLs. In other words RTCS answers the question “Isthis
certificate OK to use right now?”” while OCSP answers the question “Was this
certificate revoked at some point in the past?”. OCSP can’t return true validity
information, so that if fed a freshly-issued certificate and asked “Is this a valid
certificate”, it can't say “Yes” (a CRL can only answer “revoked”), and if fed a forged
certificate it can't say “No” (it won’t be present in any CRL). In addition OCSP will
often return a status result drawn from stale information hours or even days old, while
RTCS (as the name implies) will aways return real -time information. Finally, OCSP
uses a peculiar means of identifying certificates that some implementations disagree
over, with the result that a certificate may be regarded as valid even if it isn’t because
client and server are talking about different things. In contrast RTCS returns an
unambiguous yes-or-no response drawn from live certificate data. For these reasons
RTCSisthe cryptlib preferred certificate status protocol.

Establishing an OCSP server session requires adding the OCSP responder
key/certificate and a certificate store that cryptlib can query for certificate status
information, specified asthe CRYPT_SESSINFO_KEY SET attribute. Certificate
stores are described in more detail in “Managing a Certification Authority” on page
171. Once you’ve added this information you can activate the session and wait for
incoming connections:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_OCSP_SERVER) ;

/* Add the OCSP responder key/certificate and certificate store and
activate the session */

crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
privateKey);

crypt Set Attribute(crypt Session, CRYPT_SESSI NFO KEYSET,
cryptCertStore);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

Once you activate the session, cryptlib will block until an incoming client connection
arrives, at which point it will read the OCSP request from the client and return a
response signed with the OCSP responder key.

TSP Server Sessions

A TSP server session is a protocol -specific session type that returns timestamp
information to aclient. TSP client sessions are used with SMIME and are described
in “Timestamping” on page 93. Establishing a TSP server session requires adding the
timestamping authority (TSA) key/certificate, activating the session, and waiting for
incoming connections:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_TSP_SERVER) ;

/* Add the TSA key/certificate and activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY, privateKey

)
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

The TSA certificate must be one that hasthe CRYPT_CERTINFO _EXTKEY _-
TIMESTAMPING extended key usage attribute set to indicate that it can be used for

124

Secure Sessions

generating timestamps. Extended key usage attributes are described in “Key Usage,
Extended Key Usage, and Netscape certificate type” on page 241. If you add a
key/certificate without this attribute, cryptlib will return CRYPT_ERROR_PARAM3
to indicate that the key parameter isinvalid.

Once you activate the session, cryptlib will block until an incoming client connection
arrives, at which point it will read the timestamp request from the client and return a
timestamp signed with the TSA key.

Obtaining Session Status Information

When asession is established alot of state information is exchanged between the
client and server and status information is generated by both sides. After the session
has been activated you can query the session object for information such asthe
session status, which security parameters are being used, the identity of the remote
client that connected to your server (the identity of the remote server is aready
known if you’re the client), and authentication and identification information that was
obtained from the client or server during the session establishment process.

Obtaining Session Security Parameters

If you want to know the details of the encryption mechanism which is being used to

protect the session, you can read various CRY PT_CTXINFO_xxx attributes from the

session object, which will return information from the encryption context(s) that are

being used to secure the session. For example once you’ve activated the session you

can get the encryption agorithm, mode, and the key size being used with:
CRYPT_ALGO TYPE crypt Al go;

CRYPT_MODE_TYPE crypt Mode;
int keySize;

cryptGet Attribute(cryptSession, CRYPT_CTXINFO ALGO, &cryptAl go);
cryptGet Attribute(cryptSession, CRYPT_CTXI NFO MODE, &cryptMde);
cryptGet Attribute(cryptSession, CRYPT_CTXI NFO KEYSI ZE, &keySize);

Authenticating the Host with Key Fingerprints

Once you’ve connected to a server, you can verify the server’s certificate or key
fingerprint by reading the CRYPT_SESSINFO_SERVER_FINGERPRINT attribute,
which contains a fingerprint value that uniquely identifies the server’s certificate or
key. You can compare thisto a stored copy of the fingerprint, or format it for display
to the user.

If you set the CRYPT_SESSINFO_SERVER_FINGERPRINT attribute before you
connect to the server, cryptlib will verify it against the server key when it connects
and break off the connection attempt with a CRYPT_ERROR_WRONGKEY status if
the server’s certificate or key doesn’t match the fingerprint you’ve specified. This
allows you to filter out bogus servers and/or keys before you try to send any sensitive
information to them.

To determine the server’s key fingerprint (without having to connect to it first), you
can read the CRY PT_SESSINFO_SERVER_FINGERPRINT attribute from the SSH
server session after you’ve added the server’s private key, and the CRYPT -
CERTINFO_FINGERPRINT attribute from the SSL/TLS server certificate.

Using fingerprints for authentication is the most reliable of the methods covered here,
since it provides a guaranteed match to a known key that can’t be spoofed or forged.

Authenticating the Host or Client using Certificates

In addition to providing integrity and privacy protection for a communications
$ession, some session protocols also provide a means of verifying that the host or
client you’re connecting to really is who they claim to be. For everything but the
SSH protocol this authentication is performed by having the host supply a certificate
or certificate chain signed by atrusted CA which is used during the protocol
initialisation phase to establish the session. The general ideaisthat the certificate
contains the name of the host that you’re connecting to or the name of the entity

Exchanging Data 125

which is providing a particular service (for example an RTCS responder), so you can
use the returned certificate to verify that you really are communicating with this host
and not amachine that has been set up by an attacker to masquerade as the host. In
addition if you’re using SSL or TLS with client certificates, you can use the
certificate provided by the client when they connect to verify their identity, and if
you’re using SSL or TLS with shared keys you already have mutual authentication of
client and server without the need for certificates.

In practice due to factors such as outsourcing of web hosting services and the
relocation of servers, the host certificate frequently doesn’t correspond to the server
you’re supposed to be connecting to (which is why most browsers only display a
warning and then connect anyway, or don’t even warn). cryptlib doesn’t place any
restrictions on what it will and won’t connect to or accept responses from, leaving it
up to you to determine whether you want to continue the session if the server doesn’t
match what’s given in the host certificate or expected by the client.

Once the session has been activated, you can read the host or client’s certificate chain
asthe CRYPT_SESSINFO_RESPONSE attribute:

CRYPT_CERTI FI CATE cryptCertificate;

cryptGet Attribute(cryptSession, CRYPT_SESSI NFO RESPONSE,
&cryptCertificate);

Y ou can then work with the certificate chain as usual, for example you can verify it
using cryptCheckCert or fetch the subject name information as explained in
“Certificate |dentification Information” on page 214.

Authenticating the Client via Port and Address

In addition to the stronger fingerprint and certificate authentication mechanisms, you
can also determine the IP address and port that a client is connecting from if you’re
running as a server (if you’re the client, you already known which server and port
you’re connecting to). You can obtain this information by reading the CRYPT -
SESSINFO_CLIENT_NAME and CRYPT_SESSINFO_CLIENT_PORT attributes,
which work in asimilar manner to the CRYPT_SESSINFO_SERVER NAME and
CRYPT_SESSINFO_SERVER_PORT attributes:

char name[CRYPT_MAX TEXTSIZE + 1];
int naneLength, port

cryptGet AttributeString(cryptSession, CRYPT_SESSI NFO CLI ENT_NAME,
nanme, &nanelLength);

name[nanmelLength] = '\0";

cryptGet Attribute(cryptSession, CRYPT_SESSI NFO CLI ENT_PORT, &port);

The same operation in Visual Basicis:

Di m nane as String
Di m naneLength as Long
Di m port as Long

name = String(CRYPT_MAX_TEXTSI ZE, vbNull Char);

cryptGet AttributeString cryptSessi on, CRYPT_SESSI NFO CLI ENT_NAME, _
name, nanelLength

name = Left(nane, nanelLength)

cryptGet Attribute cryptSession, CRYPT_SESSI NFO CLI ENT_PORT, port

Note that cryptlib returns the client’s IP address in dotted-decimal form (for 1Pv4) or
colon-delimited form (for IPv6) rather than its full name, since asingle IP address can
be aiased to multiple names and may require complex name resolution strategies. If
you require a full name rather than an IP address you’ll need to resolve it yourself,
taking into account the multiple hostname issue, the fact that the client may be using
NAT, and the possibility of DNS spoofing.

Exchanging Data

Once a general -purpose secure communications session has been established, you can
exchange data with the remote client or server over the encrypted, authenticated link
that it provides. Thisworks exactly like pushing and popping data to and from an

126

Secure Sessions

envelope, except that the session is effectively a bottomless envel ope that can accept
or return (depending on the remote system) an endless stream of data. In many cases
the overhead involved in wrapping up a block of data and exchanging it with aremote
client or server can be noticeable, so you should always push and pop as much data at
onceinto and out of a session asyou can. For exampleif you have a 100-byte
message and communicate it to the remote host as 10 lots of 10 bytes, thisis much
slower than sending asingle lot of 100 bytes. This behaviour isidentical to the
behaviour in applications like disk 1/0, where writing asingle big fileto disk isalot
more efficient than writing 10 smaller files.

cryptlib helps to eliminate this problem as much as possible by not wrapping up and
dispatching session data until you explicitly tell it to by flushing the data through just
as you would with an envel ope:

crypt PushDat a(crypt Session, data, dataSize, &bytesCopied);
crypt Fl ushDat a(crypt Sessi on);

InVisua Basic thisis:

crypt PushDat a crypt Sessi on, data, dataSize, bytesCopied
crypt Fl ushDat a crypt Sessi on

Thismeansthat cryptlib will accumulate as much data as possible in the session’s
internal buffer before encrypting and integrity-protecting it and sending it through to
the remote system, avoiding the inefficiency of processing and sending many small
blocks of data. Note that you only need to flush data through in this manner when
you explicitly want to force all of the datain the session buffer to be sent to the
remote system. If you don’t force a flush cryptlib handles this automatically in the
most efficient manner possible using its built-in buffering mechanisms.

When you close a session, cryptlib will immediately shut down the session asiis,
without flushing datain internal session buffers. Thisis done to handle cases where a
session is aborted (for example because the user cancels the transaction or because of
anetwork error), and it becomes necessary to exit without sending further data. If
you want to send any remaining data before destroying the session, you need to
explicitly flush the data through before you destroy the session object (remember to
check the return status of the final flush to make sure that all of your data was indeed
sent).

Reading the response from the remote client or server worksin a similar manner:
crypt PopDat a(crypt Session, buffer, bufferSize, &bytesCopied);

Unless you specify otherwise, all of cryptlib’s network operations are non-blocking
and near-asynchronous, waiting only the minimum amount of time for data to be sent
or received before returning to the caller (you can make this fully asynchronous if
you want, see the next section). cryptlib will provide whatever datais available from
the remote client or server or write whatever is possible to the remote client or server
and then return, which is particularly important for interactive sessions where small
amounts of data are flowing back and forth simultaneously. The amount of data
which is returned isindicated by the byt esCopi ed parameter. If thisvalueiszero
then no data is available or was written at the current time. Since the interface is non-
blocking, your application can perform other processing while it waitsfor data to
arrive.

If you’d prefer to have cryptlib not block at all or block for a longer amount of time
when waiting for data to arrive or be sent, you can enable this behaviour as described
in “Network Issues” on page 127. With blocking network operations enabled,
cryptlib will wait for a user-defined amount of time for data to arrive before returning
tothecaller. If dataarrivesor is sent during the timeout interval, cryptlib returns
immediately. With non-blocking behaviour it will return immediately without
waiting for data to become available.

Since cryptlib reads and writes are asynchronous, you shouldn’t assume that all the
data you’ve requested has been transferred when the push or pop returns. cryptlib
will only transfer as much dataasit can before the timeout, which may be less than

Network |ssues 127

thetotal amount. In particular if datais flowing in both directions at once (that is,
both sides are writing data and not reading it), the network buffers will eventualy fill
up, resulting in no more data being written. If this happens you need to occasionally
interleave a read with the writes to drain the buffers and allow further datato be
transferred.

Network Issues

Sometimes a machine won’t connect directly to the Internet but has to access it
through a proxy. cryptlib supports common proxy servers such as socks, and aso
supports HTTP proxies if the protocol being used isHTTP-based. In addition it may
be necessary to adjust other network-related parameters such as timeout valuesin
order to accommodate slow or congested network links or slow clients or servers.
The following sections explain how to work with the various network-related options
to handle these situations.

Secure Sessions with Proxies

Using a socks proxy requiresthat you tell cryptlib the name of the socks server and
an optional user name (most servers don’t bother with the user name). You can set
the socks server name with the CRY PT_OPTION_NET_SOCKS SERVER attribute
and the optional socks user name with the CRYPT_OPTION_NET_SOCKS -
USERNAME attribute. For example to set the socks proxy server to the host called
socks (whichisthe name traditionally given to socks servers) you would use:

cryptSet AttributeString(CRYPT_UNUSED, CRYPT_OPTI ON_NET_SOCKS_SERVER,
"socks", 5);

before activating the session. When you activate the session, cryptlib will
communicate with the proxy using the socks protocol.

Using an HTTP proxy works in a similar manner, with the name of the proxy being
specified with the CRYPT_OPTION_NET_HTTP_PROXY attribute. Note that
HTTP proxiesrequire that the protocol being used employs HTTP as its transport
mechanism, so they’re not used with any other protocol type.

However, it’s also possible to move SSL/TLS traffic through most types of HTTP
proxies, since SSL is frequently used to carry HTTP data. |f you enable the use of an
HTTP proxy, cryptlib will also useit for SSL/TLS sessions.

Under Windows, cryptlib provides automatic proxy discovery and support. Y ou can
enable this by setting the proxy server to Autodetect:

crypt Set AttributeString(CRYPT_UNUSED, CRYPT_OPTI ON_HTTP_PROXY,
"Aut odetect", 10);

which instructs cryptlib to automatically detect and use whatever proxy is being
employed. Since the proxy-discovery process can take a few seconds, you should
only enable autodetection if you’re sure that a proxy is actually present. Enabling it
unconditionally will result in cryptlib spending alot of time trying to find a proxy that
may not exist, which slows down the network connection setup process.

Network Timeouts

When connecting to a server and carrying out other portions of a protocol such as
security parameter and session key negotiation (for which cryptlib knows that a
response must arrive within a certain time) cryptlib sets an interval timer and reports
aconnect or read error if no response arrives within that timeinterval. This means
that if there’s a network problem such as a host being down or a network outage,
cryptlib won’t hang forever but will give up after a certain amount of time, defaulting
to 30 seconds. Y ou can change the connect timeout value using the CRY PT_-
OPTION_NET_CONNECTTIMEOUT attribute, which specifies the connect timeout
delay in seconds. For example to set alonger timeout for aremote host or client
whichisslow in responding you would use:

crypt Set Attri but e(CRYPT_UNUSED, CRYPT_OPTI ON_NET_CONNECTTI MEOUT,
60);

128

Secure Sessions

to set a one minute timeout when activating the session. If you want to set the
connect timeout for a specific session rather than system-wide for all sessions, you
can set the attribute only for the session object in question:

crypt Set Attribute(cryptSession, CRYPT_OPTI ON_NET_CONNECTTI MEQUT,
60);

In addition to the connect timeout cryptlib has a separate timeout setting for network
communications, specified using the CRYPT_OPTION_NET_READTIMEOUT and
CRYPT_OPTION_NET_WRITETIMEOUT attributes. Since cryptlib session
objects normally use non-blocking 1/0O once the session has been established and data
is being exchanged, the read and write timeouts are set to minimal values during any
general data exchanges that occur after the connection negotiation process has
completed. Thismeansthat al communications after that point are near-
asynchronous and non-blocking, however by changing the read/write timeout settings
you can make cryptlib wait for a certain amount of time for datato arrive or be
written before returning. For example to wait up to 30 seconds for data to arrive you
would use:

cryptSet Attribute(CRYPT_UNUSED, CRYPT_OPTI ON_NET_READTI MEQUT, 30);

If data arrives during the wait interval, cryptlib will return as soon as the data
becomes available, otherwise it’ll wait for up to 30 seconds for data to arrive.

Aswith the connect timeout, you can also apply these options directly to session
objects, which means that they’ll only apply to that particular session rather than
being a system-wide setting for all session objects:

crypt Set Attribute(cryptSession, CRYPT_OPTI ON_NET_READTI MEQUT, 30);

If you need the quickest possible response (usualy only interactive sessions need
this), you can set network read/write timeouts of zero, which will result in cryptlib
returning immediately if no data can be read or written. The downside to using a zero
timeout isthat it reduces data transfers to polled 1/O, requiring repeated read or write
attempts to transfer data. For write timeouts it’s better to set at least a small non-zero
timeout rather than a zero timeout to ensure that the data is successfully written. In
amost all cases the write will complete immediately even with a non-zero timeout,
only in very rare cases such as when network congestion occurs will it be necessary
to wait for datato be sent. In other words during aread wait the session is frequently
just idling waiting for something to happen, but during a write wait it’s actively trying
to move the data out, so setting a non-zero timeout will increase the chances of the
network layer moving the data out during the current write attempt rather than having
to retry the write later.

A second problem with very short timeouts occurs when you close a session. Since
writes are fully asynchronous, the network session can be closed before al of the data
is written. Although the network stack tries to flush the data through, if there’s an
error during transmission there’s no way to indicate this since the session has already
been closed. cryptlib triesto mitigate this by setting a minimum (non-zero) network
timeout when it closes a session, but there’s no way to guarantee that everything will
be sent during the timeout interval (in genera thisis an unsolveable problem, for
example if an intermediate router crashes and is rebooted or the routing protocols
hunt around for an aternative route, the transfer will eventually complete, but it could
take several minutes for this to happen, which would require an excessively long
timeout setting).

To avoid thisissue, you should avoid writing alarge amount of data with avery small
network timeout setting and then immediately closing the session. Y ou can do this by
writing data at a measured pace (with a non-zero timeout) during the session or by
setting a reasonable write timeout before you flush the last |ot of data through and
close the session.

Managing your Own Network Connections and I/0O

Instead of having cryptlib automatically manage network connections, it’s possible
for you to manage them yourself. This can be useful when you want to customise

Network |ssues 129

session establishment and connection management, for example to handle a
STARTTLS upgrade during an SMTP or IMAP session, an STLS upgrade during a
POP session, or an AUTH TLS upgrade during an FTP session. Y ou can also usethis
facility if you want to use any high-performance 1/O capabilities provided by your
system, for example asynchronous 1/O or hardware-accelerated I/O in which a
dedicated subsystem manages all network transfers and posts a completion
notification to your application when the transfer is complete. This allows you to use
your own connection-management/socket-multiplexing/read-write code rather than
using the facilities provided by cryptlib.

The following discussion refers to network sockets because thisis the most common
abstraction that’s used for network I/O, however cryptlib will work with any network
1/O identifier that can be represented by an integer value or handle. If your network
abstraction requires more than a straightforward handle, you can passin areference
or index to an array of whatever data structures your system requires to handle
network /0.

Y ou can handle your own network connections by adding them to a cryptlib session
asthe CRYPT_SESSINFO_NETWORKSOCKET attribute before you activate the
session. When you activate the session, cryptlib will use the socket that you’ve
supplied rather than opening its own connection. Once you shut down the session,
you can continue to use the socket or close it as required:

i nt socket;

/* Connect the network socket */
socket = ...;

/* Add the socket to the session and activate the session */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO NETWORKSOCKET,
socket);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

Before you hand the socket over to cryptlib, you should disable Nagle’s algorithm,
since cryptlib providesits own optimised packet management. cryptlib leaves this
task to the caller to ensure that it doesn’t have to make any changes to the socket
settingsitself. In other words, it will leave the socket exactly asit found it. In
addition if you’re running under Windows you need to use a blocking socket to avoid
false reports of the other side closing the connection. Thisis due to bugsin some
versions of Winsock, cryptlib doesits own timeout handling and doesn’t need non-
blocking sockets. Note that if you use certain Winsock functions such as
WBAAsyncSel ect and WSAEvent Sel ect on the socket, Windows will quietly
switch the socket back to non-blocking mode, so you need to be careful about
inadvertently changing the state of a socket behind cryptlib’s back.

In addition to managing the connection process, you can also use externally-supplied
sockets to handle network reads and writes. There are two general mechanisms used
for external network 1/0, the Berkeley socketssel ect () -style mechanism:

select(...);
read(...):

and the posted-read/posted-write mechanism used by high-performance and
hardware-accel erated 1/O subsystems:

read_async(...);
;)(/ait_con'pl etion(...);

An example of the latter is Windows’ I/O completion ports, which allow a central
dispatcher to initiate I/Os and a pool of client threads to manage them as required
whenever a request completes. The equivalent under Unix (although it’s less attuned
towards high-performance server operation, being targeted mainly at file I/O) is Posix
asynchronous 1/0. Other operating systems provide similar facilities, for example
Tandem NSK has the RECV_NW and AWAITIOX callsto perform posted reads and
writes.

130

Secure Sessions

The more widely-used 1/0 model, using the sel ect () -style mechanism, would
wait until datais available to be read on the socket and then call cryptPopData:

/* Wait for data to becone avail able */
select(...);

/* Read data fromthe session */
crypt PopDat a(cryptSession, ...);

The posted-read/posted-write mechanism would have aread or write initiated by a
central dispatcher (in the example below thisisillustrated with Windows-style 1/0
handling):

/* Create an |/ O conpletion port associated with the socket */
hConpl eti onPort = Createl OConpl eti onPort(hSocket, ...);

/* Initiate the read request */
ReadFi |l e(hSocket, ...);

Once the read request has been completed by the underlying 1/0 system, athread
from the thread pool that’s waiting on the completion port is woken up and handles
the result:

/* Wait for data to arrive */
Get QueuedConpl eti onSt atus(hConpl etionPort, ...);

/* Read data fromthe session */
crypt PopDat a(cryptSession, ...);

The Windows kernel contains a number of specia optimisationsto provide the best
possible performance for this type of I/O. If you’re running a high-performance
server, you should consider using this style of 1/O instead of the standard sockets
interface for better performance. In fact this style of I/O is the one that’s used by
servers like 1S to maximise performance.

The Unix equivalent would be:

/* Initiate the read request */
ai o_read(&aiochb);

/* Wait for data to arrive */
ai o_suspend(&aiocb, ...);

/* Read data fromthe session */
crypt PopDat a(cryptSession, ...);

Unix asynchronous 1/0 is often used for high-performance I/O when the overhead of
the standard BSD sel ect () isunacceptable. A typica select implementation, for
example, hasto first copy and validate the socket descriptor masks for read, write,
and exception conditions, then call the underlying device’s poll routine for each
socket descriptor in each mask to |et the device know that an |/O operation is being
requested for that descriptor, and finally wait for a notification on any of the
descriptors from the lower-level device drivers. There’s additional overhead created
by the fact that the kernel can’t afford to lock out I/O while all of this polling is
taking place, so the select code has to be able to handle the case of 1/0 occurring
during the polling process, usualy by restarting the poll.

Asynchronous I/0O, on the other hand, avoids all of this overhead by simply posting a
read or write and then waiting for the kernel to notify it that the operation has
completed. It therefore provides much better performance than an equivalent select-
based implementation.

If you supply the network socket yourself and the socket is a server socket, you can
no longer read the CRYPT_SESSINFO_CLIENT_NAME and CRYPT_SESSINFO_-
CLIENT_PORT attributes, since these are recorded when the incoming client
connection is established, and won’t be present with a user-supplied socket.

Creating/Destroying Encryption Contexts 131

Key Generation

The previous sections on envel oping and secure sessions mentioned the use of
encryption contexts containing public and private keys. The creation and generation
of public/private keysin encryption contextsis covered in this section. More
advanced uses of contexts such as the direct loading of key data and conventional
encryption and hashing are covered in “Encryption and Decryption” on page 183.

Creating/Destroying Encryption Contexts

To create an encryption context, you must specify the user who is to own the object
or CRYPT_UNUSED for the default, normal user, and the algorithm you want to use
for that context. The available public-key algorithms are given in “Algorithms” on
page 295. For example, to create and destroy an RSA context you would use:

CRYPT_CONTEXT crypt Cont ext ;
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO RSA);
/* Load key, perform en/decryption */

crypt DestroyCont ext (crypt Context);

Note that the CRYPT_CONTEXT is passed to cryptCreateContext by reference, as
cryptCreateContext modifiesit when it creates the encryption context. In amost al
other cryptlib routines, CRYPT_CONTEXT is passed by value. The contexts that
will be created are standard cryptlib contexts, to create a context which is handled via
acrypto device such as a smart card or Fortezza card, you should use
cryptDeviceCreateContext, which tells cryptlib to create a context in acrypto
device. The use of crypto devices is explained in “Encryption Devices and Modules”
on page 265.

Generating a Key into an Encryption Context

Once you’ve created an encryption context the next step is to generate a key into it.
Before you can generate the key you need to set the CRYPT_CTXINFO_LABEL
attribute which is later used to identify the key when it’s written to or read from a
keyset or a crypto device such as a smart card or a Fortezza card using functions like
cryptAddPrivateK ey and cryptGetPrivateKey. If you try to generate akey into a
context without first setting the key label, cryptlib will return CRYPT_ERROR_-
NOTINITED to indicate that the label hasn’t been set yet. The process of generating
apublic/private key pair is then:

CRYPT_CONTEXT pri vKeyCont ext ;

crypt Creat eCont ext (&pri vKeyCont ext, cryptUser, CRYPT_ALGO RSA);

crypt Set AttributeString(privKeyContext, CRYPT_CTXI NFO LABEL, | abel,
| abel Length);

crypt Gener at eKey(privKeyContext);

To do thisin Java or C# you would use:

int privKeyContext = crypt.CreateContext(cryptUser, crypt.ALGO RSA);
crypt.SetAttributeString(privKeyContext, crypt.CTXl NFO LABEL,

| abel);
crypt. Generat eKey(privKeyContext);

The Visua Basic equivalent is:
Di m pri vKeyCont ext As Long

crypt Creat eCont ext privKeyContext, cryptUser, CRYPT_ALGO RSA

crypt Set AttributeString privKeyContext, CRYPT_CTXINFO LABEL, |abel, _
Len(| abel)

crypt Gener at eKey pri vKeyCont ext

If you want to generate a key of a particular length, you can set the CRYPT _-
CTXINFO_KEY SIZE attribute before calling cryptGenerateKey. For exampleto
generate a 1536-bit (192-byte) key you would use:

132 Key Generation

CRYPT_CONTEXT pri vKeyCont ext ;

crypt Creat eCont ext (&pri vKeyCont ext, cryptUser, CRYPT_ALGO RSA);

crypt Set AttributeString(privKeyContext, CRYPT_CTXI NFO LABEL, | abel,
| abel Length);

crypt Set Attribute(cryptContext, CRYPT_CTXINFO KEYSIZE, 1536 / 8);

crypt Gener at eKey(crypt Context);

Y ou can a'so change the default encryption and signature key sizes using the cryptlib
configuration options CRYPT_OPTION_PKC_KEY SIZE and CRYPT_OPTION_-
SIG_KEYSIZE as explained in “Working with Configuration Options” on page 274.

Once a key is generated into a context, you can’t load or generate a new key over the
top of it. If you try to do this, cryptlib will return CRY PT_ERROR_INITED to
indicate that akey is already loaded into the context.

Although cryptlib can work directly with public/private keys, other formats like
X.509 certificates, SMIME messages, and SSL require complex and convoluted
naming and identification schemes for their keys. Because of this, you can’t
immediately use a newly-generated private key with these formats for anything other
than signing a certification request or a self-signed certificate. To useit for any other
purpose, you need to obtain an X.509 certificate that identifies the key and then store
the certificate alongside the private key in a cryptlib private key file or crypto device.
The process of obtaining a certificate and updating a keyset or device with it is
covered in more detail in “Certificates and Certificate Management” on page 149.
Once you’ve obtained the certificate, you can add it to the keyset or device in which
the key is stored, and cryptlib will automatically associate it with the key when you
read the key.

Asynchronous Key Generation

Because the generation of larger public/private keys may take sometime, cryptlib
provides an asynchronous key generation capability that allows the key to be
generated as a background task or thread on those systems that provide this
capability. You can generate akey asynchronously with cryptGenerateK eyAsync,
which worksin the same way as cryptGenerateKey. You can check the status of an
asynchronous key generation with cryptAsyncQuery, which will return
CRYPT_ERROR_TIMEOUT if the key generation operation isin progress or
CRYPT_OK if the operation has completed. Any attempt to use the context while the
key generation operation is still in progress will also return CRYPT_ERROR _-
TIMEOUT:

crypt Gener at eKeyAsync(privKeyContext);
do

/* Performother task(s) */
[* .00 %

}
whi | e(crypt AsyncQuery(privKeyContext) == CRYPT_ERROR TI MEQOUT);
Y ou can cancel the asynchronous key generation using cryptAsyncCancel.

Since the background key generation depends on how the operating system schedules
threads, you shouldn’t call cryptAsyncQuery immediately after calling
cryptGenerateK eyAsync because the thread that performs the key generation may
not have had time to run yet. The code example given above (which performs other
work before querying the key generation progress) avoids any OS thread scheduling
issues by performing another task while the OS starts the key generation thread in the
background.

In general generating a (weak) 512-bit key isinstantaneous, generating a 1024 bit key
typicaly takes a second or two, and generating a 2048 bit key takes anywhere from
seconds to minutes depending on the algorithm type and machine speed.

Keyset Types 133

Key Storage

The most practical way of working with public and private keysisto generate themin
the context and then store them in a keyset, an abstract container that can hold one or
more keys. In practice a keyset might be a cryptlib key file, a PGP/OpenPGP key
ring, adatabase, an LDAP directory, or a URL accessed viaHTTP. cryptlib accesses
al of these keyset types using a uniform interface that hides all of the background
details of the underlying keyset implementations. In addition you can generate and
store keysin crypto devices such as smart cards, crypto accelerators, and Fortezza
cards. Crypto devices are explained in more detail in “Encryption Devices and
Modules” on page 265.

Keyset Types

cryptlib supports awide variety of keyset types. Most of these are public-key
keysets, which means that you can only store X.509 certificates (and by extension the
public keys associated with them) in them, but not private keys. These keyset types
include database keysets (the cryptlib native format for storing certificates), LDAP
directories, and web pages accessed viaHTTP.

In addition to the public-key keysets, cryptlib also supports the storage of private
keysin cryptlib private key files (which use the PKCS #15 crypto token format) and
crypto devices such as smart cards, Fortezza cards, and hardware crypto accelerators.
cryptlib keysets can also be used to store certificates, but only those that already have
a corresponding private key stored in the keyset. cryptlib private key keysets can’t be
used as general-purpose public-key or certificate stores, they can only store
certificates associated with an existing private key.

The following table summarises the different keyset types and the operations that are
possible with each one. Unless you have a strong reason not to do so, it’s
recommended that you use cryptlib private key files to store private keys and their
associated certificates and database keysets to store standalone certificates.

Type Access Allowed

cryptlib Read/write access to public/private keys and any associated
certificates stored in afile using the PKCS #15 crypto token
format, with the private key portion encrypted. Thisisthe
cryptlib native keyset format for private keys.

Crypto Read access to public/private keys and read/write access to

device certificates stored in the device. Devices aren’t general-
purpose keysets but can act like them for keys contained
within them. More information on crypto devices and on
generating private keys in them is given in “Encryption
Devices and Modules” on page 265.

Database Read/write access to X.509 certificates stored in a database.
Thisisthe cryptlib native keyset format for public keys and
certificates and provides afast, scalable key storage
mechanism. The exact database format used depends on the
platform, but would typically include any ODBC database
under Windows, and Informix, Ingres, Oracle, Postgres, and
Sybase databases under other platforms.

HTTP Read access to X.509 certificates and CRLS accessed via
URLs.

LDAP Read/write access to X.509 certificates and CRLs stored in an
LDAP directory.

PGP Read access to PGP/OpenPGP key rings.

The recommended method for certificate storage isto use a database keyset, which
usually outperforms the other keyset types by alarge margin, is highly scalable, and

134 Key Storage

iswell suited for usein cases where data is already administered through existing
database servers.

Creating/Destroying Keyset Objects

Keysets are accessed as keyset objects that work in the same general manner asthe
other container objects used by cryptlib. You create a keyset object with
cryptKeysetOpen, specifying the user who isto own the device object or
CRYPT_UNUSED for the default, normal user, the type of keyset you want to attach
it to, the location of the keyset, and any special options you want to apply for the
keyset. This opens a connection to the keyset. Once you’ve finished with the keyset,
you use cryptK eysetClose to sever the connection and destroy the keyset object:

CRYPT_KEYSET crypt Keyset ;

crypt Keyset Open(&crypt Keyset, cryptUser, keysetType, keysetLocati on,
keyset Options);

/* Load/store keys */
crypt Keyset G ose(cryptKeyset);
The available keyset types are:
Keyset Type Description

CRYPT_KEYSET_FILE A flat-file keyset, either acryptlib
private key file or a PGP/-
OpenPGP key ring.

CRYPT_KEYSET HTTP URL specifying the location of a
certificate or CRL.
CRYPT_KEYSET_LDAP LDAP directory.
CRYPT_KEYSET_PLUGIN Generic RDBM S accessed via the
database network plugin interface
CRYPT_KEYSET_DATABASE Generic RDBM Sinterface.
CRYPT_KEYSET_ODBC Generic ODBC RDBM S
interface.
CRYPT_KEYSET_DATABASE - Asfor the basic keyset types, but
STORE representing a certificate store for

CRYPT_KEYSET_PLUGIN_STORE useby aCA rather than asimple

CRYPT_KEYSET_ODBC_STORE keyset. The user who creates and
updates these keyset types must
be aCA user.

These keyset types and any special conditions and restrictions on their use are
covered in more detail below.

The keyset location varies depending on the keyset type and is explained in more
detail below. Notethat the CRYPT_KEY SET is passed to cryptK eysetOpen by
reference, as the function modifies it when it creates the keyset abject. In all other
routines, CRYPT_KEY SET is passed by value.

The keyset options are:

Keyset Option Description
CRYPT_KEYOPT _- Create anew keyset. Thisoptionisonly valid
CREATE for writeable keyset types, which includes
keysets implemented as databases and cryptlib
key files.

CRYPT_KEYOPT_NONE No specia access options (this option implies
read/write access).

CRYPT_KEYOPT_- Read-only keyset access. Thisoptionis

Creating/Destroying Keyset Objects 135

Keyset Option Description
READONLY automatically enabled by cryptlib for keyset
types that have read-only restrictions enforced
by the nature of the keyset, the operating
system, or user access rights.

Unless you specifically require write access to
the keyset, you should use this option since it
alows cryptlib to optimise its buffering and
access strategies for the keyset.

These options are also covered in more detail below.

File Keysets

For cryptlib private key files and PGP/OpenPGP key rings, the keyset location is the
path to the disk file. For example to open a connection to a cryptlib key file key.p15
located in /users/dave/, you would use:

CRYPT_KEYSET crypt Keyset ;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FILE,
"/ users/dave/ keys. p15", CRYPT_KEYOPT_READONLY);

cryptlib will automatically determine the file type and access it in the appropriate
manner. Since cryptlib usesthe PKCS #15 crypto token format to store private keys,
thefiles are given a.pl5 extension or an appropriate equivalent as dictated by the
operating system being used. As another example, to open a connection to acryptlib
private key file located in the Keys share on the Windows server FileServer, you
would use:

CRYPT_KEYSET crypt Keyset;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FI LE,
"\\ Fi |l eServer\ Keys\ key. p15", CRYPT_KEYOPT_READONLY);

The same operation in Visual Basicis.
Di m crypt Keyset As Long

crypt Keyset Open crypt Keyset, cryptUser, CRYPT_KEYSET_FILE, _
"\\ Fi | eServer\ Keys\ key. p15", CRYPT_KEYOPT_ READONLY

When you open a PGP/OpenPGP keyset, cryptlib will automatically set the access
mode to read-only even if you don’t specify the CRYPT KEYOPT READONLY
option, since writes to this keyset type aren’t supported. If you try to write a key to
this keyset type, cryptlib will return CRYPT_ERROR_PERMISSION to indicate that
you don’t have permission to write to the file. The only file keyset type that can be
written to isa cryptlib private key file. This keyset contains one or more encrypted
private keys and any associated certificates. To create anew cryptlib keyset you
would use:

CRYPT_KEYSET crypt Keyset;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FI LE,
"Private key file.pl5", CRYPT_KEYOPT_CREATE);

The equivalent in Javaor C#is:

int cryptKeyset = crypt.Keyset Open(cryptUser, crypt.KEYSET_FILE,
"Private key file.pl5", crypt.KEYOPT_CREATE);

If acryptlib keyset of the given name already exists and you open it with CRYPT_-
KEYOPT_CREATE, cryptlib will erase it before creating anew oneinitsplace. The
erasure process involves overwriting the original keyset with random data and
committing the write to disk to ensure that the data really is overwritten, truncating its
length to 0 bytes, resetting the file timestamp and attributes, and deleting the file to
ensure that no trace of the previous key remains. The new keyset isthen created in its
place.

136

Key Storage

For security reasons, cryptlib won’t write to a file if it isn’t a normal file (for example
if it’s a hard or symbolic link, if it’s a device name, or if it has other unusual
properties such as having astream f at t ach() ’d to it).

Where the operating system supportsit, cryptlib will set the security options on the
keyset so that only the person who created it (and, in some cases, the system
administrator) can accessit. For example under Unix the file access bits are set to
alow only the file owner to access the file, and under Windows NT/2000/XP the
file’s access control list is set so that only the user who owns the file can access or
changeit. Since not even the system administrator can access the keyset under
Windows NT/2000/XP, you may need to manually enable access for othersto allow
thefile to be backed up or copied.

If your application is running as another user (for exampleif it’s running as a demon
under Unix or a service under Windows), the keyset will be owned by the deamon or
service that createsit, following standard security practice. If you want to make the
keyset accessible to standard users, you need to either change the security options to
alow the required user access (for example by changing the file access permissions
or running in the context of the intended user when you create it), or provide an
interface to your deamon/service to allow access to the keyset. The latter is generaly
the preferred option, since it alows your deamon/service to control exactly what the
user can do with the keyset.

In addition if you’re installing or configuring cryptlib as one user for use by another
user, you’ll need to adjust the access for any filesthat are created during the install or
configuration process to allow access by the target user. For exampleif you install
and configure cryptlib as a Windows administrator to run as a system service, you’ll
need to change the ownership of any key and configuration files to the system
account:

cacls filenane /e /g systemf

If you don’t do this then the service (running under the system account) can’t access
the key/configuration files created under the administrator account.

When you open a keyset that contains private keys, you should bind it to the current
thread for added security to ensure that no other threads can access the file or the keys
read from it:

CRYPT_KEYSET crypt Keyset;

/* Open a keyset and claimit for exclusive use */

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FILE,
"Private key file.pl5", CRYPT_KEYOPT_READONLY);

crypt Set Attribute(cryptKeyset, CRYPT_PROPERTY_OMER, threadlD);

You can find out more about binding objects to threads in “Object Security” on page
41.

HTTP Keysets

For keys accessed viaan HTTP URL, the keyset name is the URL.:
CRYPT_KEYSET crypt Keyset ;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET _HTTP, url,
CRYPT_KEYOPT_READONLY) ;

HTTP keysets normally behave just like any other keysets, however if you’re reading
akey from afixed URL (with no per-key ID) you need to use the specia 1D [hone]
to indicate that the keyset URL points directly at the certificate. For example to read
acertificate from the static URL ht t p: / / www. server . conf cert. der you
would use:

Creating/Destroying Keyset Objects 137

CRYPT_KEYSET crypt Keyset ;
CRYPT_HANDLE publ i cKey;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_HTTP,
"http://ww. server.conmcert.der", CRYPT_KEYOPT_READONLY);

crypt Get Publ i cKey(cryptKeyset, &cryptCertificate, CRYPT_KEYI D_NAME,
"[nonel");

The CRLs provided by some CAs can become quite large, so you may need to play
with timeouts in order to alow the entire CRL to be downloaded if the link is slow or
congested.

If you want to publish certificates online, the best way to do thisiswith an HTTP
keyset. The server side of HTTP certificate access is handled as a standard cryptlib
session, and is covered in “Making Certificates Available Online” on page 177.

Database Keysets

For keys (strictly speaking, X.509 certificates) that are stored in a database, the keyset
location is the access path to the database. The nature of the access path depends on
the database type, and ranges from an alias or label that identifies the database (for
example an ODBC data source) through to a complex combination of the name or
address of the server that contains the database, the name of the database on the
server, and the user name and password required to access the database.

The exact keyset type also depends on the operating system with which cryptlib is
being used. Under Windows, all database keyset types are accessed as ODBC data
sources with the keyset type CRYPT_KEY SET_ODBC. The ODBC interfaceisalso
available for most database types under Unix through various Unix ODBC drivers.
For the few system that don’t provide a vendor-independent database access system,
database keysets are accessed either directly or via a generic network plugin interface
that allows cryptlib to communicate with any type of database backend. The direct
database interface, which compiles the database interface into cryptlib, has a keyset
type CRYPT_KEYSET_DATABASE. All other databases are accessed through an
RPC mechanism specified using a keyset type of CRYPT_KEYSET_PLUGIN. With
some systems that don’t support any type of database access (for example some
embedded systems have no database capability), cryptlib can’t be used with a
database keyset and is restricted to the simpler keyset types such as cryptlib private
key files.

The simplest type of keyset to accessisalocal database that requires no extra
parameters such as a user name or password. An example of thisisan ODBC data
source on the local machine. For example if the keyset is stored in a database such as
Ingres, MySQL, Oracle, SQL Server, Sybase, or Postgres, which is accessed through
the “PublicKeys” data source, you would access it with:

CRYPT_KEYSET crypt Keyset ;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_ODBC,
"Publ i cKeys", CRYPT_KEYOPT_READONLY);

The same operation in Visual Basicis:
Di m crypt Keyset As Long

crypt Keyset Open crypt Keyset, cryptUser, CRYPT_KEYSET_CDBC,
"Publ i cKeys", CRYPT_KEYOPT_READONLY

The second type of database keyset is one which is accessed through a plugin that
converts cryptlib data accesses to the format used by the database backend. The
generic plugin interface takes as parameters the name of the server that cryptlib isto
connect to and an optional port number separated by a colon. For example if the
database ran on the server keyserver.company.com, the keyset would be accessed
with:

CRYPT_KEYSET crypt Keyset ;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_PLUG N,
"keyserver. conpany. coni', CRYPT_KEYOPT_READONLY);

138

Key Storage

Through the use of the plugin interface, cryptlib can access any type of database
across any OS platform. Details on writing the required plugin are given in
“Database and Networking Plugins” on page 295.

The database name parameter used above was a simple ODBC data source or
database name, but this can also contain a user name, password, and server name, in
theformat user : pass@er ver. For example, you can specify a combination of
database user name and password asuser : pass, and auser name and server as
user @er ver . Other, database-specific combinations and parameters may also be
possible, depending on the database backend you’re using.

In the exampl es shown above, the keyset was opened with the CRY PT_KEYOPT _-
READONLY option. The use of this option is recommended when you’ll use the
keyset to retrieve a certificate but not store one (which is usually the case) since it
allows cryptlib to optimise its transaction management with the database backend.
This can lead to significant performance improvements due to the different data
buffering and locking strategies that can be employed if the back-end knows that the
database won’t be updated. If you try to write a certificate to a keyset that has been
opened in read-only mode, cryptlib will return CRYPT_ERROR_PERMISSION to
indicate that you don’t have permission to write to the database.

To create a new certificate database, you can use the CRYPT_KEYOPT_CREATE
option. If akeyset of the given name aready exists, cryptlib will return CRYPT _-

ERROR_DUPLICATE, otherwise it will create a new certificate database ready to
have certificates added to it.

Database keysets can a so be used as certificate stores, an extended type of keyset
which isrequired in order to perform CA operations such as issuing certificates and
CRLs. In order to create thistype of keyset instead of a conventional one you must
be a CA user and you need to specify itstype as CRYPT_KEYSET _DATABASE -
STORE, CRYPT_KEYSET_ODBC_STORE, or CRYPT_KEYSET_PLUGIN_-
STORE instead of the basic database keyset type. Certificate stores have a higher
overhead than normal keysets because they meet a number of special CA-specific
requirements, so you should only create one if you areusing it to run aCA. In
addition, certificates and CRLs can’t be directly added to or deleted from a certificate
store but have to be processed using cryptlib’s certificate management functionality.
More information on certificate stores and their use is given in “Managing a
Certification Authority” on page 171.

In order to create or open a certificate store, you must be aCA user. If youtry to
access a certificate store and aren’t a CA user, cryptlib will return

CRYPT_ERROR PARAM2 to indicate that the user type isn’t valid for accessing
this type of keyset. Normal users can’t update a certificate store in any way, however
they can access them in read-only mode as normal database keysets. For example
while a CA could open a certificate store as:

CRYPT_KEYSET crypt Keyset;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_PLUG N_STORE,
"certstore. conpany. conf', CRYPT_KEYOPT_NONE);

and perform updates on the store, a non-CA user could only accessit in read-only
mode as a standard database keyset:

CRYPT_KEYSET crypt Keyset;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_PLUG N,
"certstore. conpany. conf', CRYPT_KEYOPT_READONLY);

When opened in this manner the certificate store appears as a standard database
keyset rather than as afull certificate store.

To provide additional security alongside the precautions taken by cryptlib, you should
apply standard database security measures to ensure that all database keyset accesses
are carried out with least privileges. For exampleif your application only needs read
access to a keyset, you can use the SQL GRANT/REV OKE mechanism to alow

Creating/Destroying Keyset Objects 139

read-only access of the appropriate kind for the application. An SQL statement like
REVOKE ALL ON certificates FROM user; GRANT SELECT ON certificates TO

user would allow only read accesses to the certificate keyset. You can aso use
server-specific security measures such as accessing the keyset through SQL Server’s
built-in db_datareader account, which only allows read access to tables, and the
ability to run the application under a dedicated |ow-privilege account (a standard
feature of Unix systems).

LDAP Keysets

For keys stored in an LDAP directory, the keyset location isthe name of the LDAP
server, with an optional port if accessisviaanon-standard port. For example if the
LDAP server wascaled di rect ory. | dapser ver . com you would accessthe
keyset with:

CRYPT_KEYSET crypt Keyset ;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_LDAP,
"directory. | dapserver. conl, CRYPT_KEYOPT_READONLY);

If the server is configured to allow access on anon-standard port, you can append the
port to the server name in the usual manner for URL’s. For example if the server
mentioned above listened on port 8389 instead of the usual 389 you would use:

CRYPT_KEYSET crypt Keyset ;

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_LDAP,
"directory. | dapserver.com 8389", CRYPT_KEYOPT_READONLY);

Y ou can aso optionally include the | dap: // protocol specifier in the URL, thisis
ignored by cryptlib.

The storage of certificatesin LDAP directories is haphazard and vendor-dependent,
and you may need to adjust cryptlib’s LDAP configuration options to work with a
particular vendor’s idea of how certificates and CRLs should be stored on a server.
In order to make it easier to adapt cryptlib to work with different vendor’s ways of
storing information in a directory, cryptlib provides various LDAP-rel ated
configuration options that allow you to specify the X.500 objects and attributes used
for certificate storage. These options are:

Configuration Option Description
CRYPT_OPTION_KEYS - The X.500 attribute that certificates are stored
LDAP_CERTNAME as. For some reason certificates belonging to

CRYPT_OPTION_KEYS - certification authorities (CAs) are stored
LDAP_CACERTNAME under their own attribute type, so if asearch

for a certificate fails cryptlib will try again
using the CA certificate attribute (there’s no
easy way to tell in advance how a certificate
will be stored, so it’s necessary to do it this
way). In addition a number of other attribute
types have been invented to hide certificates
under, it may require abit of experimentation
to determine how the server you’re using
stores things.

The default settings for these options are
userCertificate; binary and
cACertificate;binary, avariety of other
choicesaso exist. Notethe use of the

bi nary qualifier, thisisrequired for a
number of directories that would otherwise
try and encode the returned information as
text rather than returning the raw certificate.

CRYPT_OPTION_KEYS - The X.500 attribute that certificate revocation
lists (CRLS) are stored as, defaulting to

140

Key Storage

Configuration Option Description

LDAP_CRLNAME certificateRevocationList;binary.

CRYPT_OPTION_KEYS - The X.500 attribute that email addresses are
LDAP_EMAILNAME stored as, defaulting to mai | . Since X.500

never defined an email address attribute,
various groups defined their own ones, mai |
isthe most common one but there are a
number of other alternatives around,
including emai | Addr ess, r f c822Nane,
rfc822Mai | Box,andenai | . Asusual,
some experimentation will be necessary to
find out what works.,

CRYPT_OPTION_KEYS - Thefilter used to selected returned LDAP
LDAP _FILTER attributes during a query, defaulting to
(obj ect cl ass=*) . Experimentation will
be necessary to determine what’s required for
thisvalue.

CRYPT_OPTION_KEYS - The X.500 object class, defaulting to
LDAP_OBJECTCLASS inet OrgPerson. Again, thereisno
consistency among servers, the usua amount
of guesswork will be required to find out
what works.

CRYPT_OPTION_KEYS - The object type to fetch, defaulting to
LDAP_OBJECTTYPE CRYPT_CERTTYPE_NONE to fetch all
object types. Setting thisto CRYPT_-
CERTTYPE_CERTIFICATE or CRYPT_-
CERTTYPE_CRL will fetch only certificates
or CRLs.

These configuration options apply to all LDAP keysets, you can also apply them to an
individual keyset object rather than as ageneral configuration option, which means
that they’ll affect only the one LDAP keyset object.

There is no consistency in the configuration of LDAP directories, and since the query
used to retrieve a certificate depends on how the directory is configured, it’s often
impossible to tell what to submit without asking the directory administrators for the
correct formula. Since the actual values depend on the server configuration, thereis
no way that cryptlib can determine which onesto use for a given server.

Two examples of magic formulae that are required by different CAsrunning LDAP
directories are “searchDN = CN=Norway Post Organizational CA, O=CA, C=NO,
filter = (& (objectclass=*)(pssSubjectDNString=CN=RTV EDI-server 2, O=RTV,
C=NO0)), attributes = certificateRevocationList;binary” and “(&(|(&(objectclass=-
inetorgperson)(objectclass=organi zationa person)) (objectClass=Strong-
AuthenticationUser))(usercertificate; bi nary=*)(|(commonname=name)(rfc822-
mailbox=email address)))”. In order to handle some of these combinations you will
have to set a selection of the CRYPT_OPTION_KEY SET_LDAP_xxx attributes as
well as modifying the key 1D you use when you actually read a key.

To alow even more flexibility in specifying LDAP access parameters, cryptlib will
also accept RFC 1959 LDAP URLs as key IDs (see “Obtaining a Key for aUser” on
page 141). These have the general form | dap: // host : port/ dn?-
attributes?scope?filter,andcanbe used to specify arbitrarily complex
combinations of DN components (see RFC 1485), search scope, and filter (see RFC
1558). For example to specify the Norway post magic formula above asakey ID the
LDAP URL would bel dap: // / CN=Nor way %20Post %20-

Or gani zat i onal %20CA, %200=CA, %20C=NO?certi fi cat e-

Revocati onLi st ; bi nary??(& obj ect cl ass=*) (pssSubj ect DN-
Stri ng=%20CN=RTVY%20EDI - ser ver %202, %200=RTV, %20C=NO)) . Note

Reading a Key from a Keyset 141

that the ability to use an LDAP URL for lookup in this manner may not be available
in some LDAP client implementations.

The default settings used by cryptlib have been chosen to provide the best chance of
working, however given that everyone who stores certificatesin an LDAP server
configures it differently it’s almost guaranteed that trying to use LDAP to store
certificates will require reconfiguration of the client, the server, the certificates being
stored, or several of the abovein order to function. In effect the LDAP configuration
acts as aform of access control mechanism that makes it impossible to access
certificates or CRLs until the CA revealsthe correct magic formula. For this reason
the use of LDAP is not recommended for storing certificates.

Reading a Key from a Keyset

Once you’ve set up a connection to a keyset, you can read one or more keys from it.
Some keysets such as HTTP URLSs can contain only one key, whereas cryptlib private
key files, PGP/OpenPGP key rings, databases, and LDAP keysets may contain
multiple keys.

Y ou can aso use acrypto device such as a smart card, Fortezza card, or crypto
hardware accelerator as akeyset. Reading a key from a device creates an encryption
context which is handled via the crypto device, so that although it looks just like any
other encryption context it uses the device to perform any encryption or signing.

The two functions that are used to read keys are cryptGetPublicK ey and
cryptGetPrivateK ey, which get a public and private key respectively. The key to be
read isidentified through akey identifier, either the name or the email address of the
key’s owner, specified as CRYPT KEYID NAME and CRYPT KEYID EMAIL, or
the label assigned to the key as the CRYPT CTXINFO LABEL attribute when it’s
generated or loaded into a context, also specified as CRYPT_KEYID_NAME.

cryptGetPublicK ey returns ageneric CRYPT_HANDLE that can be either a
CRYPT_CONTEXT or aCRYPT_CERTIFICATE depending on the keyset type.
Most public-key keysets will return an X.509 certificate, but some keysets (like
PGP/OpenPGP key rings) don’t store the full certificate information and will return
only an encryption context rather than a certificate. You don’t have to worry about
the difference between the two, they are interchangeable in most cryptlib functions.

Obtaining a Key for a User

The rules used to match the key ID to akey depend on the keyset type, and are as
follows:

Type User 1D Handling

Cryptlib Thekey ID isalabel attached to the key viathe CRYPT_-
CTXINFO_LABEL attribute when it’s generated or loaded
into the context, and is specified using CRYPT_KEYID_-
NAME. Alternatively, if acertificate is associated with the
key, the key ID can also be the name or email address
indicated in the certificate.

Crypto
device

The key ID is matched in full in a case-insensitive manner.

Database The key ID is either the name or the email address of the key
owner, and is matched in full in a case-insensitive manner.

HTTP The key ID is either the name or the email address of the key
owner, and is matched in full in a case-sensitive manner. The
one exception is when the location is specified by a static
URL, in which case the key ID hasthe specia value[none] .

LDAP The key ID isan X.500 distinguished name (DN), which is
neither a name nor an email address but a peculiar
construction that (in theory) uniquely identifiesakey in the
X.500 directory. Since a DN isn’t really a name or an email

142

Key Storage

Type User 1D Handling

address, it’s possible to match an entry using either
CRYPT_KEYID_NAME or CRYPT_KEYID_EMAIL.

The key 1D is matched in a manner which is controlled by the
way the LDAP server is configured (usually the match is case-
insensitive).

Y ou can aso specify an LDAP URL asthekey ID as
described in “LDAP Keysets” on page 139.

PGP The key ID isaname with an optional email addresswhichis
usualy given inside angle brackets. Since PGP keys usually
combine the key owner’s name and email address into a single

value, it’s possible to match an email address using
CRYPT_KEYID_NAME, and vice versa.

The key ID is matched as a substring of any of the names and
email addresses attached to the key, with the match being
performed in a case-insensitive manner. Thisisthe same as
the matching performed by PGP.

Note that, like PGP, thiswill return the first key in the keyset
for which the name or email address matches the given key
ID. Thismay result in unexpected matches if the key 1D that
you’re using is a substring of a number of names or email
addresses that are present in the key ring. Since email
addresses are more likely to be unique than names, it’s a good
ideato specify the email addressto guarantee a correct match.

Assuming that you wanted to read Noki Crow’s public key from a keyset, you would
use:
CRYPT_HANDLE publ i cKey;

crypt Get Publ i cKey(crypt Keyset, &publicKey, CRYPT_KEYI D_NAME,
"Noki S.Crow');

In Javaor C#thisis:

int publicKey = crypt. GetPublicKey(cryptKeyset, crypt.KEYl D_NAME,
"Noki S.Crow');

In Visual Basic the operationiis:
Di m publ i cKey As Long

crypt Get Publ i cKey crypt Keyset, publicKey, CRYPT_KEYI D NAME, _
"Noki S. Crow'

Note that the CRYPT_HANDLE is passed to cryptGetPublicK ey by reference, as
the function modifiesit when it creates the public key context. Reading akey from a
crypto device worksin an identical fashion:

CRYPT_HANDLE publ i cKey;

crypt Get Publ i cKey(cryptDevice, &publicKey, CRYPT_KEYI D_NAME,
"Noki S.Crow');

Theonly real differenceisthat any encryption performed with the key is handled via
the crypto device, although cryptlib hides all of the details so that the key looks and
functions just like any other encryption context.

Y ou can use cryptGetPublicK ey not only on straight public-key keysets but also on
private key keysets, in which case it will return the public portion of the private key
or the certificate associated with the key.

The other function which is used to obtain akey is cryptGetPrivateK ey, which
differsfrom cryptGetPublicK ey in that it expects a password alongside the user ID
if the key isbeing read from akeyset. Thisisrequired because private keys are
usudly stored encrypted and the function needs a password to decrypt the key. If the

Reading a Key from a Keyset 143

key isheld in a crypto device (which requires a PIN or password when you open a
session with it, but not when you read a key), you can passin anull pointer in place
of the password. For example if Noki Crow’s email address was noki @r ow. com
and you wanted to read their private key, protected by the password “Password”,
from akeyset, you would use:

CRYPT_CONTEXT pri vKeyCont ext ;

crypt Get Pri vat eKey(cryptKeyset, &privKeyContext, CRYPT_KEYID EMAI L,
"noki @row. conf, "Password");

The same operation in Visua Basicis:
Di m privKeyCont ext As Long

crypt Get Pri vat eKey crypt Keyset, privKeyContext, CRYPT_KEYID EMAIL, _
"noki @row. cont', "Password"

If you supply the wrong password to cryptGetPrivateK ey, it will return CRYPT_-
ERROR_WRONGKEY. You can use thisto automatically handle the case where the
key might not be protected by a password (for example if it’s stored in a crypto
device or anon-cryptlib keyset that doesn’t protect private keys) by first trying the
call without a password and then retrying it with a password if the first attempt fails
with CRYPT_ERROR_WRONGKEY. cryptlib caches key reads, so the overhead of
the second key access attempt is negligible:

CRYPT_CONTEXT pri vKeyCont ext ;

/* Try to read the key w thout a password */
if(cryptGetPrivateKey(cryptKeyset, &privKeyContext,
CRYPT_KEYI D_NAME, nane, NULL) == CRYPT_ERROR_V\RONGKEY)

/* Ask the user for the keys' password and retry the read */

password = ...;

crypt Get Pri vat eKey(cryptKeyset, &privKeyContext, CRYPT_KEYI D_NAME,
nanme, password);

}

cryptGetPrivateK ey always returns an encryption context.

General Keyset Queries

Where the keyset isimplemented as a standard database, you can use cryptlib to
perform general queries to obtain one or more certificates that fit a given match
criterion. For example you could retrieve alist of all the keys that are set to expire
within the next fortnight (to warn their owners that they need to renew them), or that
belong to a company or a division within acompany. You can aso perform more
complex queries such asretrieving al certificates from a division within a company
that are set to expire within the next fortnight. cryptlib will return all certificates that
match the query you provide, finally returning CRYPT_ERROR_COMPLETE once
all matching certificates have been obtained.

The general strategy for performing queriesis asfollows:

submit query
r epeat
read query result
whil e query status != CRYPT_COWLETE

Y ou can cancel aquery in progress at any time by submitting a new query consisting
of the command “cancel”.

Queries are submitted by setting the CRYPT_KEYINFO_QUERY attribute for a

keyset, which tells it how to perform the query. Let’s look at avery simple query
which is equivalent to astraight cryptGetPublicK ey:

144 Key Storage

CRYPT_CERTI FI CATE certificate;

crypt Set AttributeString(keyset, CRYPT_KEYI NFO_QUERY,
"$enmi | =' noki @row. com ", 22);
do
status = crypt Get Publ i cKey(keyset, &certificate, CRYPT_KEYI D_NONE,
NULL);
whil e(cryptStatusOK(status));

Thiswill read each certificate corresponding to the given email address from the
database. Notethat the key ID is unused because the keys that are returned are
selected by theinitial query and not by the key identifier.

This example is an artificially simple one, it’s possible to submit queries of arbitrary
complexity in the form of full SQL queries. Since the key databases that are being
queried can have arbitrary names for the certificate attributes (corresponding to
database columns), cryptlib provides a mapping from certificate attribute to database
field names. An example of this mapping is shown in the code above, in which
$enmai | isused to specify the email address attribute, which may have a completely
different name once it reaches the database backend. The certificate attribute names

are asfollows:

Attribute Field

$C, $SP, $L, $O, Certificate country, state or province, locdlity,

$OU, $CN organisation, organisational unit, and common name.
$date Certificate expiry date

$email Certificate email address

Y ou can use these attributes to build arbitrarily complex queriesto retrieve particular
groups of certificates from akey database. For exampleto retrieve all certificates
issued for US users (obviously thisis only practical with small databases) you would
use:

cryptSetAttributeString(keyset, CRYPT_KEYINFO QUERY, "$C='US'", 7);

Extending this one stage further, you could retrieve all certificates issued to
Californian users with:

cryptSetAttributeString(keyset, CRYPT_KEYI NFO QUERY, "$C='US' AND
$SP="CA' ", 20);

Going another step beyond this, you could retrieve all certificatesissued to usersin
San Francisco:

cryptSet AttributeString(keyset, CRYPT_KEYI NFO QUERY, "$C='US' AND
$SP=' CA' AND $L=' San Francisco'", 43);

Going even further than this, you could retrieve all certificates issued to usersin San
Francisco whose names begin with an ‘a’:

crypt Set AttributeString(keyset, CRYPT_KEYI NFO QUERY, "$C='US AND
$SP=" CA' AND $L=' San Franci sco' AND $CN LIKE 'A% ", 61);

These queries will return the certificates in whatever order the underlying database
returnsthem in. You can also specify that they be returned in a given order, for
exampleto order the certificates in the previous query by user name you would use:

cryptSetAttributeString(keyset, CRYPT_KEYI NFO QUERY, "$C='US' AND
$SP=' CA' AND $L=' San Franci sco’ ORDER BY $CN', 56);

To return them in reverse order, you would use:

cryptSetAttributeString(keyset, CRYPT_KEYI NFO QUERY, "$C='US' AND
$SP=' CA' AND $L=' San Franci sco’ ORDER BY $CN DESCENDI NG', 67);

The ability to selectively extract collections of certificates provides a convenient
mechanism for implementing a hierarchical certificate database browsing capability.
Y ou can aso useit to perform general -purposes queries and certificate extractions,
for example to return all certificates that will expire within the next week (and that
therefore need to be replaced or renewed), you would use;

Reading a Key from a Keyset 145

crypt Set AttributeString(keyset, CRYPT_KEYI NFO QUERY, "$date < today +
1 week", length);

To sort the results in order of urgency of replacement, you would use:

crypt Set AttributeString(keyset, CRYPT_KEYI NFO QUERY, "$date < today +
1 week ORDER BY $date", length);

Toretrieve all certificates that don’t need replacement within the next week, you
could negate the previous query to give:

cryptSet AttributeString(keyset, CRYPT_KEYI NFO QUERY, "NOT $date <
today + 1 week", length);

As these examples show, cryptlib’s keyset query capability provides the ability to
perform arbitrary general-purpose queries on keysets.

Once a query has begun running, it can return a considerable number of certificates.
If you try to initiate another query while the first one isin progress or perform a
standard read, write, or delete operation, cryptlib will return a CRYPT_ERROR_-
INCOMPLETE error to indicate that the query is still active. Y ou can cancel the
currently active query at any point by setting the CRY PT_KEYINFO_QUERY
attribute to “cancel”:

crypt Set AttributeString(keyset, CRYPT_KEYI NFO QUERY, "cancel", 6);

Thiswill clear the current query and prepare the keyset for another query or an
alternative operation such as akey read, write, or delete.

Handling Multiple Certificates with the Same Name

Sometimes a keyset may contain multiple certificates issued to the same person.
Whether this situation will occur varies by CA, some CAs won’t issue multiple
certificates with the same name, some will, and some may modify the name to
eliminate conflicts, for example by adding unique ID valuesto the name or using
middleinitials to disambiguate names. If multiple certificates exist, you can perform
akeyset query to read each in turn and try and find one that matches your
requirements, for example you might be able to filter them based on key usage or
some other parameter held in the certificate. The general ideaisto issue aquery
based on the name and then read each certificate that matches the query until you find
an appropriate one:

cryptSet AttributeString(keyset, CRYPT KEYINFO QUERY, "..", ..);

while(cryptGetPublicKey(&certificate, keyset, ..) == CRYPT OK && \

certificate doesn't match required usage)
/* Continue */;

crypt Set AttributeString(keyset, CRYPT_KEYI NFO QUERY, "cancel", 6);
This use of general queries allows the maximum flexibility in selecting certificatesin
cases when multiple choices are present.

Key Group Management

Sometimes it may be desirable to treat a group of keysin the same way. For example
if acollection of servers use keys to protect their communications with each other
then compromise of one key may require the revocation of all keysin the group and
the issuance of a new group of keys. The easiest way to handle key groupsis by
assigning acommon identifier to al the keysin the group when you issue certificates
for them, and then replacing all keys with that identifier when it comes time to update
the key group.

Thefirst part of the processinvolves assigning a key group identifier to certificates.
The easiest way to do thisisto specify it as part of the PKI user information that’s
used with the CMP and SCEP protocols. For exampleto specify that a PKI user
belongs to the remote access users key group using the organisational unit portion of
the user DN, you would use;

146 Key Storage

[* .. %

/* Add PKI user identification information */

crypt Set AttributeString(crypt PKI User, CRYPT_CERTI NFO_ COUNTRYNANME,
countryName, 2);

crypt Set AttributeString(cryptPKl User,
CRYPT_CERTI NFO_ORGANI ZATI ONNAME, or gani zat i onNane,
organi zati onNameLength);

crypt Set AttributeString(cryptPKl User,
CRYPT_CERTI NFO_ORGANI ZATI ONALUNI TNAME, "Renote access key group",
23);

cryptSet AttributeString(crypt PKI User, CRYPT_CERTI NFO_ COMMONNAME,
comonNane, commonNanelLength);

[* .0 %

When the user requests their certificate, the key group will be given as the
organisational unit component (alongside the other components such as the
organisation name and country) in their DN. More information on working with PKI
users is given in “Initialising PKI User Information” on page 173. Alternatively, you
can manually set the key group identifier when you issue a certificate to someone in
the key group if you’re manually issuing certificates rather than using an automated
mechanism like CMP or SCEP.

The second part of the processinvolvesidentifying al of the certificatesin akey
group that need to be revoked or replaced. This is handled through cryptlib’s keyset
query capability, retrieving each certificate in the group in turn:

CRYPT_CERTI FI CATE certificate;

crypt Set AttributeString(keyset, CRYPT_KEYI NFO QUERY, "$QOU=' Renpote

access key group'", 30);
do
status = crypt Get Publ i cKey(keyset, &certificate, CRYPT_KEYI D_NONE,
NULL);

whil e(cryptStatusOK(status));

Once the certificate has been fetched, you can revoke it or notify the owner that they
need to replace it asrequired. More information on keyset queriesisgivenin
“General Keyset Queries” on page 143.

Writing a Key to a Keyset

Writing a key to a keyset isn’t as complex as reading it since there’s no need to
specify the key identification information which is needed to read a key, however
there are some restrictions on the type of key you can write to a keyset. Public-key
keysets such as database and LDAP keysets store full certificates, so the object that
you write to these keysets must be a CRYPT_CERTIFICATE and not just a
CRYPT_CONTEXT. In contrast, keysets such as cryptlib private key files primarily
store public/private key pairs but can aso store the certificate or certificates that are
associated with the private key. If you try to write the incorrect type of object to a
keyset (for example a private key to a certificate keyset), cryptlib will return a
CRYPT_ERROR_PARAM?2 error to indicate that the object you aretrying to add is
of the incorrect type for this keyset.

If you try to write akey to aread-only keyset, cryptlib will return CRYPT_ERROR_-
PERMISSION to indicate that you can’t write to the keyset. If you try to writea
certificate to a cryptlib private key file or a crypto device that doesn’t already have a
corresponding private key present, cryptlib will return CRYPT_ERROR_PARAM?2
to indicate that you can’t add this type of object if there isn’t already a matching
private key present. If you just want to write a certificate to afile, you can use
cryptExportCert to obtain the certificate and then write that to afile.

Y ou can write a certificate to a public key keyset with cryptAddPublicK ey, which
takes as parameters the keyset and the key certificate to write:

crypt AddPubl i cKey(crypt Keyset, cryptCertificate);

Since all identification information is contained in the certificate, there’s no need to
specify any extra data such as the certificate owner’s name or email address.

Writing aKey to aKeyset 147

Writing a private key requires one extra parameter, the password which is used to
encrypt the private key components. cryptlib will use the default encryption method
(usualy three-key triple DES) to encrypt the key with the given password. If you’re
writing the private key to a crypto device, the password parameter should be set to
NULL since the device provides its own protection for the key (not all devices
support direct key loading, some require the key to be generated inside the device).

To write a private key to a keyset you would use the corresponding
cryptAddPrivateK ey function:

crypt AddPri vat eKey(cryptKeyset, privKeyContext, password);

If the certificate you are trying to write is already present in the keyset, cryptlib will
return CRYPT_ERROR_DUPLICATE. If the keyset isa public-key keyset, you can
use cryptDeleteK ey to delete the existing certificate so you can write the new onein
itsplace. If the keyset isacryptlib key file or crypto device, thiswould delete both
the certificate and the key it corresponds to. Finally, certificate stores can’t be
directly manipulated by adding or deleting certificates and CRLs but must be
managed using cryptlib’s certificate management functionality. If you try to directly
insert or delete a certificate or CRL, cryptlib will return CRY PT_ERROR_-
PERMISSION to indicate that this operation isn’t allowed.

There is one instance in which it’s possible to add a new certificate to a cryptlib
private key file when there’s already an existing certificate present, and that’s when
the new certificate updates the existing one. For example some CAs will re-issue a
certificate with a newer expiry date (rather than using a new key and certificate), if
you add this new certificate to the keyset cryptlib will replace the existing, older
certificate with the newer one and use the newer onein all future operations.

You can’t create a key inside a standard cryptlib context and then move it to the
device later on since the security features of the device won’t allow this, and you
can’t take a key created via a crypto device and write it to a keyset, because it can’t
be exported from the device. By using crypto hardware to handle your keys you’re
guaranteeing that the key is never exposed outside the hardware, keeping it safe from
any malicious code that might be present in your system.

Although cryptlib can work directly with private keys, other formats like X.509
certificates, SMIME messages, and SSL require complex and convol uted naming
and identification schemes for their keys. Because of this, you can’t immediately use
anewly-generated private key with these formats for anything other than signing a
certification request or a self-signed certificate. To useit for any other purpose, you
need to abtain an X.509 certificate that identifies the key and then store the certificate
alongside the private key in a cryptlib private key file or crypto device. The process
of obtaining a certificate and updating a keyset or device with it is covered in more
detail in “Certificates and Certificate Management” on page 149. Once you’ve
obtained the certificate, you can add it to the keyset or device and cryptlib will
automatically associate it with the key when you read the key.

If you are working with a database keyset, you can also add a certificate revocation
list (CRL) to the keyset. Since a CRL isn’t an actual key, you can’t read it back out
of the keyset (there’s nothing to read), but you can use it to check the revocation state
of certificates. CRLs and their uses are explained in more detail in “Certificate
Revocation using CRLS” on page 228.

Changing a Private Key Password

Changing the password on a private key file involves reading the key from a keyset
using the old password, deleting the key from the keyset, and writing the in-memory
copy back again using the new password:

read key from keyset using ol d password;

del ete key from keyset;
re-wite key to keyset using new password;

All cryptlib key file updates are atomic all-or-nothing operations, which means that if
the computer crashes between deleting the old key and writing the new one, the old

148 Key Storage

key will still be present when the machine is rebooted (specifically, all changes are
committed when the keyset is closed, which minimises the risk of losing datadueto a
system crash or power outage in the middle of along sequence of update operations).

To update a private key with a new password, you would use:

CRYPT_KEYSET crypt Keyset;
CRYPT_CONTEXT crypt Key;

/* Read the key fromthe keyset using the old password */

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FI LE,
keyset Name, CRYPT_KEYOPT_NONE);

crypt Get Pri vat eKey(cryptKeyset, &cryptKey, CRYPT_KEYI D_NAME, | abel,
ol dPassword);

/* Delete the current copy of the key fromthe keyset */
crypt Del et eKey(crypt Keyset, [|abel);

/* Wite the key back to the keyset using the new password */
crypt AddPri vat eKey(cryptKeyset, cryptKey, newPassword);
crypt Keyset G ose(cryptKeyset);

The same operation in Visual Basicis:

Di m crypt Keyset As Long
Di m crypt Key As Long

' Read the key fromthe keyset using the old password

crypt Keyset Open crypt Keyset, cryptUser, CRYPT_KEYSET_FILE, keyset Naneg,
CRYPT_KEYOPT_NONE

crypt Get Pri vat eKey crypt Keyset, cryptKey, CRYPT_KEYlI D _NAME, | abel,
ol dPassword

' Delete the current copy of the key fromthe keyset
crypt Del et eKey crypt Keyset, | abel

' Wite the key back to the keyset using the new password
crypt AddPri vat eKey crypt Keyset, cryptKey, newPassword
crypt Keyset d ose crypt Keyset

Deleting a Key

Deleting a key with cryptDeleteK ey works in the same manner as reading a key,
with the key to delete being identified by akey ID in the usual manner. For example
if you wanted to delete S.Crow’s key from a keyset, you would use:

crypt Del et eKey(crypt Keyset, CRYPT_KEYI D NAME, "S.Crow');

Deleting akey from acrypto deviceisidentical:
crypt Del et eKey(crypt Device, CRYPT_KEYI D NAME, "S.Crow');

In the case of an LDAP directory, thiswill delete the entire entry, not just the
certificate attribute or attributes for the entry. In the case of acryptlib private key file
or crypto device, thiswill delete the key and any certificates that may be associated
withit. If you try to delete akey from aread-only keyset, cryptlib will return
CRYPT ERROR PERMISSION. If the key you’re trying to delete isn’t present in
the keyset, cryptlib will return CRY PT_ERROR_NOTFOUND.

High-level vs. Low-level Certificate Operations 149

Certificates and Certificate Management

Although cryptlib can work directly with private keys, other formats like X.509
certificates, SMIME messages, and SSL require complex and convoluted naming
and identification schemes for their keys. Because of this, you can’t immediately use
anewly-generated private key with these formats for anything other than signing a
certification request or a self-signed certificate. To useit for any other purpose, you
need to obtain an X.509 certificate that identifies the key. Once you’ve obtained the
certificate, you can update the keyset or device that contains the basic public/private
key datawith additional certificate information. This additional information can be a
standalone certificate or afull certificate chain from atrusted root CA down to the
end user certificate. This chapter covers the details of obtaining a certificate or
certificate chain and attaching it to a private key.

The certificate management message exchange is usually carried out viaHTTP or
email or through some other unspecified mechanism, however cryptlib also supports
the Certificate Management Protocol (CMP) and Simple Certificate Enrolment
Protocol (SCEP), which define a mechanism for communicating with a CA to obtain
certificates and request the revocation of existing certificates. This chapter explains
how to use CMP and SCEP to obtain a certificate or request arevocation from a CA.
In order to check a certificate’s status, you can use the real-time certificate status
protocol (RTCS) to perform acertificate status check, or the online certificate status
protocol (OCSP) to perform a certificate revocation check only. The RTCS and
OCSP checking processes are also covered in this chapter.

High-level vs. Low-level Certificate Operations

Aswith the general cryptlib programming interface, cryptlib supports certificate
management operations at three levels:

Plug-and-play PKI

The highest level is the plug-and-play PKI level, which isthe easiest one to use and
therefore the recommended one. At thislevel, cryptlib handles all certificate
processing and management operations for you, requiring no specia knowledge of
certificate formats, protocols, or operations. Because of its simplicity and ease of use,
it’s strongly recommended that you use this interface if at all possible.

Mid-level Certificate Management

The intermediate level requires some knowledge of key generation procedures and
certificate management operations. Thislevel involves the use of CMP and SCEP to
obtain certificates and manage a CA, and RTCS and OCSP for certificate status
checking. Most of the details of certificate management are taken care of for you by
cryptlib, but you’ll need to perform some manual handling of certificate management
operations.

Low-level Certificate Management

The lowest level involves manually managing certificates and certificate revocations,
and requires dealing with an entire range of arcane, difficult-to-use, and largely
dysfunctiona mechanisms such as Distinguished Names, X.500 directories,
certificate revocation lists, and assorted other paraphernalia. Working with
certificates at thislevel is extraordinarily difficult, and you should be absolutely
certain that you’re prepared for the large amount of effort that will be required to
make anything work. At a minimum, you should read through and understand the
certificate tutorials mentioned in “Recommended Reading” on page 15 before trying
to do anything with low-level certificate operations.

If you’re absolutely certain that you must work with certificates at alow level, and
that you understand just how much effort will be involved, you can find out more
about low-level certificate operations in “Certificatesin Detail” on page 203 and
“Certificate Extensions” on page 234.

150

Certificates and Certificate Management

Certificates and Keys

Once apublic/private key pair is saved to a private key keyset, cryptlib allows extra
certificate information to be added to the keyset. For example the process of creating
a keyset containing a certificate and private key is:

generate public/private key pair;

wite key pair to keyset;

submit certification request to CA;

receive certificate from CA
updat e keyset to include certificate;

If the certificate is a self-signed CA certificate, there’s no need to obtain the
certificate from an external CA and you can add it directly to the keyset after you
createit. If the key pair is being generated in a crypto device such as a smart card or
Fortezza card, this processis:

generate public/private key pair;

subnit certification request to CA;

receive certificate from CA;
update device to include certificate;

This example assumes that the certificate isimmediately available from a CA, which
isnot awaysthe case. The full range of possibilities are covered in more detail
further on.

Once you’ve updated the private key with a certificate (which is the only time you
can write a public key certificate to a private key keyset), cryptlib will automatically
associate the certificate with the private key so that when you read it with
cryptGetPrivateK ey cryptlib will recreate the certificate alongside the key and
attach it to the key. Y ou can then use the combined certificate and key to perform
operations that require the use of certificates such as certificate signing, SMIME
email decryption and signing, and user authentication. If you update the private key
with a complete certificate chain instead of just asingle certificate, cryptlib will
attach the full certificate chain to the key when you read it with

cryptGetPrivateK ey.

The update process involves adding the certificate information to the keyset or
device, which updates it with the certificate object (either a certificate or a certificate
chain):

crypt AddPubl i cKey(crypt Keyset, cryptCertificate);

The certificate object which is being written must match a private key stored in the
keyset or device. If it doesn’t match an existing private key, cryptlib will return a
CRYPT_ERROR_PARAM?2 error to indicate that the information in the certificate
object being added is incorrect. If there’s already a certificate for this key present,
cryptlib will return a CRYPT_ERROR_DUPLICATE error to indicate that one key
can’t have two different certificates associated with it. See “WritingaKey to a
Keyset” on page 146 for more on writing keys to keysets.

Using Separate Signature and Encryption Certificates

It’s good security practice to use different keys for signing and encryption, and most
digital signature laws contain some requirement that the two capabilities be
implemented with separate keys. cryptlib supports the use of two (or more) keys
belonging to a single user, the only issue to be aware of isthat you should give each
key adistinct label to allow it to be selected with cryptGetPrivateKey. For example
the process of creating akeyset containing separate signature and encryption keys
with the signature key labelled “My signature key” and the encryption key labelled
“My encryption key” would be:

Plug-and-play PKI 151

set key label to "Signature key";

generate public/private signature key pair;
set key label to "Encryption key";

generate public/private encryption key pair;
wite key pairs to keyset;

subnit certification requests to CA;

receive signature certificate from CA;
receive encryption certificate from CA;
updat e keyset to include certificates;

When you want to sign data, you would call cryptGetPrivateK ey specifying the use
of “Signature key”; when you want to decrypt data you would call
cryptGetPrivateK ey specifying the use of “Encryption key” (or cryptlib’s automatic
key management will find it for you if you’re using it with a cryptlib envelope).

Plug-and-play PKI

The easiest way to set up keys and certificates is through cryptlib’s plug-and-play
PK1 facility, which performs the operations described above for you. To set up keys
and certificates in this manner, cryptlib requires a private-key keyset or crypto token
such as a smart card or Fortezza card to store keys and certificatesin, the URL of a
plug-and-play PKI-capable CA, and a user name and password to authorise the
issuing of the certificates. The session type for the plug-and-play PK1 isCRYPT -
SESSION_CMP, the same type as a standard CM P session except that cryptlib
manages everything for you. The private-key keyset or crypto token is specified as
CRYPT_SESSINFO_CMP_PRIVKEY SET, and the user name and password to
authorise the operation are provided as the CRYPT_SESSINFO_USERNAME and
CRYPT_SESSINFO_PASSWORD:

CRYPT_SESSI ON crypt Sessi on;
CRYPT_KEYSET crypt Keyset;

/* Create the CMP session and private-key keyset */

crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION CWP);

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FI LE,
keyset Name, CRYPT_KEYOPT_CREATE);

/* Add the server nane/address */
crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO SERVER, server,
serverlLength);

/* Add the usernane, password, and private-key keyset */

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO USERNANME,
user Nane, user NameLength);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password, passwordLength);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO CMP_PRI VKEYSET,
crypt Keyset);

/* Activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTI VE, TRUE);

The same operation in Visua Basicis:

Di m crypt Sessi on As Long
Di m crypt Keyset As Long

Create the CWP session and private-key keyset
crypt Creat eSessi on crypt Sessi on, cryptUser, CRYPT_SESSI ON CWP
crypt Keyset Open crypt Keyset, cryptUser, CRYPT_KEYSET_FI LE,
keyset Nane, CRYPT_KEYOPT_CREATE

Add the server nane/address
crypt Set AttributeString crypt Sessi on CRYPT_SESSI NFO_SERVER,
server, Len(server)

Add the usernane, password, and private-key keyset
crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO USERNAME,
user Nane, Len(userNane)
crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password, Len(password)
crypt Set Attri bute crypt Sessi on, CRYPT_SESSI NFO CVP_PRI VKEYSET,
crypt Keyset

152

Certificates and Certificate Management

' Activate the session
crypt Set Attri bute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Once this process has been completed, the private-key keyset or crypto token that you
provided will contain a signature key identified by the label “Signature key”, and an
encryption key identified by the label “Encryption key” if the public-key algorithm
being used is capable of encryption, along with any additional certificates and CA
certificates that are required to use the keys. Both keyswill be protected using the
password that you provided to authenticate the certification process. If you want to
change the password for either of the keys you can do so as described in “Changing a
Private Key Password” on page 147 before you close the keyset and commit the data
to disk. Alternatively, if you want to retain the password that you used for the
certificate issue to protect the keys and certificates, you can close the keyset
immediately after you add it to the session and cryptlib will manage it for you.

If the CA isissuing you a CA certificate of your own, the keyset or crypto token will
contain a single CA signing key identified by the label “Signature key”. Since CA
keys can’t be used for encryption or general-purpose signing but only for signing
other certificates, only the single CA signing key is created.

In addition to returning your own certificates, the plug-and-play PKI mechanism also
performs a PKIBoot certificate bootstrap operation that downloads an initia trusted
certificate set for you to use. Thistrusted certificate set only contains a small number
of known-good certificates trusted by the CA that provided you with your own
certificates, rather than the 100+ certificates that you’d be forced to automatically
trust when you use aweb browser (some of these browser certificates have weak 512-
bit keys, or are owned by CAs that have gone out of business, or whose private keys
have been on-sold to third parties when the original owner went bankrupt, sometimes
passing through multiple owners). The PKIBoot operation allows an end user,
starting with nothing more than the user name and password used for the plug-and-
play PKI operation to acquire all of the information necessary to use the PKI, without
having to manually download and install certificates, or being forced to trust alarge
collection of certificates from unknown CAs.

Once the PKIBoot process has completed, the trusted certificates will be present in
memory as standard cryptlib trusted certificates (see “Certificate Trust Management”
on page 231). To commit them to permanent storage and make them available for
future cryptlib sessions, you need to save the cryptlib configuration data as explained
in “Working with Trust Settings” on page 232:

crypt Set Attri bute(CRYPT_UNUSED, CRYPT_OPTI ON_CONFI GCHANGED, FALSE);

If you don’t want to rely on the PKIBoot trusted certificates, don’t commit the
configuration data to permanent storage and they’ll be deleted from memory the next
time cryptlib is restarted.

At this point the keys are ready for use for encryption, signing, email protection,
authentication, and so on. Because of the ease of use provided by the plug-and-play
PKI facility, it’s strongly recommended that you use this in place of any other
certificate management process, since the alternatives require significantly larger
amounts of effort in order to do more or less the same thing.

Simple Certificate Creation

The process of creating a certificate is arather complicated task that can be somewhat
daunting when all you want to do is exchange a public key with someone. In order to
simplify the process, cryptlib provides afacility to create simplified certificates that
don’t require you to go through all of the steps outlined in the following sections.
These simplified certificates are valid for any type of usage (including encryption,
signing, usein SSL servers and SIMIME, and issuing other certificates and CRLS)
and have along enough lifetime that you don’t have to worry about them expiring or
becoming invalid while you’re still using them.

Simple Certificate Creation 153

To create one of these simplified certificates, you set the CRYPT_CERTINFO_-
XYZzY attribute after creating the certificate object to tell cryptlib to create a
simplified certificate, add a name viathe CRYPT_CERTINFO_COMMONNAME
attribute (and an email address viathe CRYPT_CERTINFO_RFC822NAME
attribute if you plan to use the certificate for email purposes), and signit. The name
isusually the name of the certificate owner, but if you want to use it with an SSL
server then it’s the name of the SSL server. For example to create a simplified
certificate for Dave Smith you would use:

CRYPT_CERTI FI CATE cryptCertificate;

/* Create a sinplified certificate */

cryptCreateCert(&cryptCertificate, cryptUser,
CRYPT_CERTTYPE_CERTI FI CATE) ;

cryptSet Attribute(cryptCertificate, CRYPT_CERTINFO XYZZY, 1);

/* Add the public key and certificate owner nane and sign the
certificate with the private key */

crypt Set Attribute(cryptCertificate,
CRYPT_CERTI NFO_SUBJECTPUBLI CKEYI NFO, pubKeyCont ext);

cryptSet AttributeString(cryptCertificate, CRYPT_CERTI NFO COVMONNANE,
"Dave Smith", 10);

crypt SignCert(cryptCertificate, cryptContext);

To create asimplified certificate for the SSL server www.sslserver.com you would
go through the same steps but give the server name instead of the user’s name:

[* .00 %

cryptSet AttributeString(cryptCertificate, CRYPT_CERTI NFO COVMONNANE,
"www. ssl server. cont, 17);

[* .0 0%

Finaly, if you wanted to use the certificate for email purposes you also need to add
the certificate owner’s email address:

[* .00 %

cryptSet AttributeString(cryptCertificate, CRYPT_CERTI NFO RFC822NAME,
"dave@m th.con', 14);

[* .0 0%

The same operation in Javaor C#is:

/* Create a sinplified certificate */
int cryptCertificate = crypt.CreateCert(cryptUser,
crypt. CERTTYPE_CERTI FI CATE) ;
crypt.SetAttribute(cryptCertificate, crypt.CERTI NFO XYZZY, 1);

/* Add the public key and certificate owner nane and sign the
certificate with the private key */

crypt.SetAttribute(cryptCertificate,
crypt . CERTI NFO_SUBJECTPUBLI CKEYI NFO, pubKeyCont ext);

crypt.SetAttributeString(cryptCertificate, crypt.CERTI NFO_COVMONNANME,
"Dave Smith");

crypt.SignCert(cryptCertificate, cryptContext);

The Visua Basic versionis:
DimcryptCertificate As Long

' Create a sinplified certificate

cryptCreateCert cryptCertificate, cryptUser,
CRYPT_CERTTYPE_CERTI FI CATE

cryptSet Attribute cryptCertificate, CRYPT_CERTINFO XYZZY, 1

Add the public key and certificate owner nane and

sign the certificate with the private key

crypt Set Attribute cryptCertificate,
CRYPT_CERTI NFO_SUBJECTPUBLI CKEYI NFO, _ pubKeyCont ext

cryptSet AttributeString cryptCertificate, CRYPT_CERTI NFO COMMONNAMNE,
"Dave Smith", 10

crypt SignCert cryptCertificate, cryptContext

Since these certificates can be used for any purpose and (effectively) never expire,
you can use them without having to worry about certificate requests, communicating
with (and paying money to) a CA, proof of possession protocols, X.500 distinguished

154 Certificates and Certificate Management

names, key usages, certificate extensions, and all the other paraphernalia that comes
with X.509 certificates.

In order to distinguish these simplified certificates from normal certificates, cryptlib
indicates that they were issued under a simplified-certificate policy using the
certificatePolicies attribute, which is described in more detail in “Certificate Policies,
Policy Mappings, and Policy Constraints” on page 239.

The Certification Process

Creating a private key and an associated certificate involves two separate processes.
generating the public/private key pair, and obtaining a certificate for the public key
which is then attached to the public/private key. The key generation processis:

generate public/private key pair;
wite key pair to keyset;

For a crypto device such as asmart card or Fortezza card, the key is generated inside
the device, so this step simplifiesto:

generate public/private key pair;

The generated key is already stored inside the device, so there’s no need to explicitly
writeit to any storage media.

The certification process varies somewhat, atypica case has aready been presented
earlier:

create certification request;

submit certification request to CA;

receive certificate from CA

updat e keyset or device to include certificate;

Now that the general outline has been covered, we can look at the individua stepsin
more detail. Generating a public/private key pair and saving it to a keyset is
relatively simple:

CRYPT_CONTEXT crypt Cont ext ;
CRYPT_KEYSET crypt Keyset;

/* Create an RSA public/private key context, set a label for it, and
generate a key into it */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO RSA);
crypt Set AttributeString(cryptContext, CRYPT_CTX NFO_LABEL,
"Private key", 11);
crypt Gener at eKey(crypt Context);

/* Save the generated public/private key pair to a keyset */

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FILE, fil eNaneg,
CRYPT_KEYOPT_CREATE) ;

crypt AddPri vat eKey(cryptKeyset, cryptContext, password);

crypt Keyset G ose(cryptKeyset);

/* Clean up */
crypt DestroyCont ext (crypt Context);

The same operation in Javaor C# is:

/* Create an RSA public/private key context, set a label for it, and
generate a key into it */

int cryptContext = crypt.CreateContext(cryptUser, crypt.ALGO RSA);

crypt.Set AttributeString(cryptContext, crypt.CITXINFO LABEL, "Private
key"):

crypt. Gener at eKey(crypt Context);

/* Save the generated public/private key pair to a keyset */

int cryptKeyset = crypt.Keyset Open(cryptUser, crypt.KEYSET_FILE,
fil eName, crypt. KEYOPT_CREATE);

crypt. AddPrivat eKey(crypt Keyset, cryptContext, password);

crypt. Keyset O ose(crypt Keyset);

/* Clean up */
crypt. DestroyCont ext (crypt Context);

The Visua Basic equivalent is:

The Certification Process 155

Di m crypt Cont ext As Long
Di m crypt Keyset As Long

' Create an RSA public/private key context, set a label for it,
and generate a key into it

crypt Creat eCont ext crypt Context, cryptUser, CRYPT_ALGO RSA

crypt Set AttributeString cryptContext, CRYPT_CTX NFO _LABEL,
"Private key", 11

crypt Gener at eKey crypt Cont ext

Save the generated public/private key pair to a keyset
crypt Keyset Open crypt Keyset, cryptUser, CRYPT_KEYSET_FILE, filenane,
CRYPT_KEYOPT_CREATE
crypt AddPri vat eKey crypt Keyset, cryptContext, password

' Cean up
crypt Keyset C ose crypt Keyset
crypt DestroyCont ext crypt Cont ext

The process for acrypto deviceisidentica except that the keyset write is omitted,
since the key is already held inside the device.

In practice you’d probably use cryptGener ateK eyAsync o that the user can perform
other actions while the key is being generated, although for typical key sizeson a
modern PC the key generation is practically instantaneous. |f you want to use
cryptGenerateKeyAsync, you’d run the key generation and the certification request
creation in parallel so that by the time the certificate details have been filled in the
key isready for use.

At the same time that you create and save the public/private key pair, you would
create a certification request:

CRYPT_CERTI FI CATE crypt Cer t Request ;

/* Create a certification request */
crypt CreateCert(&cryptCert Request, cryptUser,
CRYPT_CERTTYPE_CERTREQUEST) ;

/* Fill in the certification request details */
[* .0 %

/* Sign the request */
crypt SignCert (cryptCertRequest, cryptContext);

The equivalent in Visual Basicis:
Di m crypt Cert Request As Long

' Create a certification request
cryptCreateCert crypt Cert Request, cryptUser,
CRYPT_CERTTYPE_CERTREQUEST

" Fill in the certification request details

Si gn the request
crypt SignCert cryptCertRequest, cryptContext

The next step depends on the speed with which the certification request can be turned
into a certificate. If the CA’s turnaround time is very quick (for example if it’s
operated in-house) then you can submit the request directly to the CA to convert it
into acertificate. In thiscase you can keep the keyset that you wrote the key to open
and update it immediately with the certificate:

CRYPT_CERTI FI CATE cryptCertificate;

/* Send the certification request to the CA and obtain the returned
certificate */
/> .0 %

/* Import the certificate and check its validity */
cryptlmportCert(cert, certlLength, cryptUser, &cryptCertificate);
crypt CheckCert(cryptCertificate, caCertificate);

156

Certificates and Certificate Management

/* Update the still-open keyset with the certificate */
crypt AddPubl i cKey(crypt Keyset, cryptCertificate);

/* Clean up */
crypt Keyset d ose(crypt Keyset);
crypt DestroyCert(cryptCertificate);

Again, the Visual Basic equivaent for thisis:
DimcryptCertificate As Long

Send the certification request to the CA and obtain the
" returned certificate

Inport the certificate and check its validity
cryptlmportCert cert, certlLength, cryptUser, cryptCertificate
crypt CheckCert cryptCertificate, caCertificate

Update the still-open keyset with the certificate
crypt AddPubl i cKey cryptKeyset, cryptCertificate

' Clean up
crypt Keyset d ose crypt Keyset
crypt DestroyCert cryptCertificate

Since adevice acts just like akeyset for certificate updates, you can write a certificate
to adevice in the same manner.

If, aswill usually be the case, the certification turnaround time is somewhat longer,
you will need to wait awhile to receive the certificate back from the CA. Oncethe
certificate arrives from the CA, you update the keyset as before:

CRYPT_CERTI FI CATE cryptCertificate;
CRYPT_KEYSET crypt Keyset;

/* Cbtain the returned certificate fromthe CA */
[* ... %]

/* Import the certificate and check its validity */
cryptlmportCert(cert, certlLength, cryptUser, &cryptCertificate);
crypt CheckCert(cryptCertificate, caCertificate);

/* Open the keyset for update and add the certificate */

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET_FILE, fil eNane,
CRYPT_KEYOPT_NONE) ;

crypt AddPubl i cKey(crypt Keyset, cryptCertificate);

crypt Keyset O ose(cryptKeyset);

/* Clean up */
crypt DestroyCert(cryptCertificate);

The Visua Basic equivalent is:

DimcryptCertificate As Long
Di m crypt Keyset As Long

(btain the returned certificate fromthe CA

" Inport the certificate and check its validity
cryptlmportCert cert, certlLength, cryptUser, cryptCertificate
crypt CheckCert cryptCertificate, caCertificate

' Open the keyset for update and add the certificate

crypt Keyset Open crypt Keyset, cryptUser, CRYPT_KEYSET_FILE, fileNane,
CRYPT_KEYOPT_NONE

crypt AddPubl i cKey cryptKeyset, cryptCertificate

crypt Keyset C ose crypt Keyset

' Clean up
crypt DestroyCert cryptCertificate

Again, device updates work in the same manner.

A fina case involves self-signed certificates that are typically CA root certificates.
Since self-signed CA certificates can be created on the spot, you can immediately

Obtaining Certificatesusng CMP 157

update the still-open keyset with the self-signed certificate without any need to go

through the usual certification process. When you create a CA certificate you need to
set the CRYPT_CERTINFO_CA attribute to true (any nonzero value) to indicate that
the certificate (and by extension the private key associated with it) isa CA certificate.
If you don’t do this and then try to sigh a certificate using the key, cryptlib will return
CRYPT_ERROR_INVALID to indicate that the key can’t sign certificates because it
isn’t a CA key. To create a self-signed CA certificate you would do the following:

CRYPT_CERTI FI CATE cryptCertificate;

/* Create a self-signed CA certificate */
cryptCreateCert(&cryptCertificate, cryptUser,
CRYPT_CERTTYPE_CERTI FI CATE) ;
crypt Set Attribute(cryptCertificate, CRYPT_CERTINFO SELFSIGNED, 1);
cryptSet Attribute(cryptCertificate, CRYPT_CERTINFO CA, 1);
[* .0 0%

/* Sign the certificate with the private key and update the still-open
keyset with it*/

cryptSignCert(cryptCertificate, cryptContext);

crypt AddPubl i cKey(crypt Keyset, cryptCertificate);

/* Clean up */
crypt Keyset C ose(cryptKeyset);
crypt DestroyCert(cryptCertificate);

When you sign a certificate for which the CRYPT_CERTINFO_CA attribute has
been set, cryptlib will enable the key usages CRYPT_KEYUSAGE _KEYCERTSIGN
and CRYPT_KEYUSAGE_CRLSIGN to indicate that the key can be used to sign
certificatesand CRLs. Sincethisisa CA key it will by default only be usable for
these purposes and not for any other purpose such as encryption or general -purpose
signing. You can override this by setting the key usage yourself, however CA keys
shouldn’t really be used for a purpose other than one or both of certificate and/or
CRL signing.

Obtaining Certificates using CMP

The discussion so far has covered the means of communicating with the CA in very
general terms. Typically the message exchangeis carried out via HTTP or email or
through some other, unspecified mechanism. In addition to these very flexible
communications options, cryptlib also supports the Certificate Mismanagement
Protocol (CMP), which defines a mechanism for communicating with a CA to obtain
certificates and request the revocation of existing certificates. CMP makes use of
session objects as described in “Secure Sessions” on page 105, the following
description assumes that you’re familiar with the operation and use of cryptlib session
objects.

The general process involved in a CMP session is atwo-step one of which the first
step is creating the appropriate request, for example arequest for a new, updated, or
additional certificate or arevocation of an existing certificate, and the second step is
submitting it to a CA for processing. The result of the processing (typically asigned
certificate) isreturned at the end of the session:

create a CMP request;
fill in the request details;
sign the request;

create a CWP session;

add the CMWP server address and request type;
add user nane and password or signature key;
add the issuing CA's certificate;

add the CWP request;

activate the CWP session;

obtain the result fromthe CMP session;
destroy the CWVP sessi on;

The processinvolved in creating arequest for usein CMP ismostly identical to
creating anormal certification request (although the formats are incompatible cryptlib
hides the details so the programming interface isidentical) and is covered below.

158 Certificates and Certificate Management

cryptlib also implements afull CMP server that allows you to issue certificates using
CMP. This process is described in “Managing a CA using CMP or SCEP” on page
176.

CMP Certificate Requests

CMP uses a generic certificate request object to handle requests for new certificates
and certificate renewal s and updates. The creation of a CMP certificate request of
type CRYPT_CERTTYPE_REQUEST_CERT isasfollows:

CRYPT_CERTI FI CATE crypt CMPRequest ;

/* Create a certification request */
crypt CreateCert (&crypt CMPRequest, crypt User,
CRYPT_CERTTYPE_REQUEST_CERT) ;

/* Fill in the standard certification request details */
[* .0 0%

/* Sign the request */
crypt SignCert(crypt CMPRequest, cryptContext);

If you’re requesting a new certificate, you generally only need to provide the public
key to be certified. Since cryptlib will only copy across the appropriate key
components, there’s no need to have a separate public and private key context, you
can add the same private key context that you’ll be using to sign the certification
request to supply the CRYPT_CERTINFO_SUBJECTPUBLICKEYINFO
information and cryptlib will use the appropriate data from it. If the CA doesn’t
handle the certificate identification information for you, you’ll also need to provide
that. This is rather more complex, and is explained in “Certificate |dentification
Information” on page 214.

If you’re requesting an update of an existing certificate, you can add information

from the existing certificate to the request for use in the new certificate. If you want
to renew only the public key in the existing certificate, you should add it as
CRYPT_CERTINFO_SUBJECTPUBLICKEYINFO, if you want to renew the entire
certificate you should add it asa CRYPT_CERTINFO_CERTIFICATE. For example
to renew an entire certificate you would use:

CRYPT_CERTI FI CATE crypt CMPRequest ;

/* Create a certification request and add the existing certificate
details */

crypt CreateCert(&crypt CMPRequest, crypt User,
CRYPT_CERTTYPE_REQUEST_CERT);

crypt Set Attribute(crypt CVWRequest, CRYPT_CERTI NFO_CERTI FI CATE,
cryptCertificate);

/* Sign the request */
crypt SignCert (crypt CMPRequest, cryptContext);

When you add a CRY PT_CERTINFO_CERTIFICATE cryptlib only copies across
the public key and certificate owner DN, but not any other attributes such as key
usage information (if everything was copied across then the new certificate would be
identical to the existing one). This alows you to configure the new certificatein
whichever manner you choose, for exampleto set new or different options from those
present in the original certificate.

Requesting the revocation of an existing certificate is very similar to requesting a
certificate using a CMP request, the only difference being that the request type is now
CRYPT_CERTTYPE_REQUEST_REVOCATION. Creating arevocation request
involves adding the certificate to be revoked to the request and adding any extra
information such as the revocation reason that must be present in the CRL which is
issued by the CA:

CRYPT_CERTI FI CATE crypt CMPRequest ;
/* Create a revocation request */

crypt CreateCert (&crypt CMPRequest, crypt User,
CRYPT_CERTTYPE_REQUEST_REVOCATI ON) ;

Obtaining Certificatesusng CMP 159

/* Fill in the revocation request details */

crypt Set Attri bute(crypt CMPRequest CRYPT_CERTI NFO_CERTI FI CATE,
cert ToRevoke);

crypt Set Attribute(crypt CMPRequest, CRYPT_CERTI NFO_CRLREASON,
revocati onReason);

Note that a revocation request isn’t signed since the key required to sign it may not be
available any more (loss of the corresponding private key is one of the reasons for
revoking a certificate). Once the revocation request has been completed you can
submit it to the CA asusudl.

CMP Operation Types

The CMP protocol provides for a confusing variety of certificate issue operations
with in some cases no clear distinction as to which request type is appropriate for
which situation. Because of this, cryptlib will always generate the most generic
request type possible, as with other certificate operations it may be necessary to
experiment with request typesin order to determine the type which is being expected
by a CA (some CAs may behave differently for different request types even if the
request datais otherwise identical). Since the same uncertainty over which CMP
request type to use exists among CAs, it’s quite likely that the CAs you’ll be
interacting with will also accept a variety of requests for a particular situation, so that
the generic type generated by cryptlib should work in most cases.

The different CMP certificate request operations are:

Operation Description

CRYPT_REQUESTTYPE - Initia request to a CA, protected by a user
INITIALISATION name and password supplied by the CA.

CRYPT_REQUESTTYPE_- Subsequent requests to the CA, protected by
CERTIFICATE asignature created with an existing CA-

CRYPT_REQUESTTYPE_- certified key. The message contents for these
KEYUPDATE two request types are identical, the only

differenceisthat oneis called a certificate
request and the other a key update request.

CRYPT_REQUESTTYPE_- Request for revocation of an existing
REVOCATION certificate, protected either by a password
supplied by the CA or by a signature created
with an existing CA certified key.

When you submit a CMP request, you need to specify the request type before you
activate the session. Ifit’s an initialisation or (for some CAs) revocation request the
session is authenticated using a user name and password that was previoudy obtained
from the CA. Ifit’s a certificate or key update or (for some CAS) revocation request,
the session is authenticated using a signature created with a key that was previoudy
certified by the CA.

Note that some CAswill treat the password which is used during the initialisation
stage as a one-time password, so that al subsequent requests have to be signed
certificate or key update requests. In addition some CAs require the DN used in
subsequent certificates to be the same as the one used in the initialisation request
while others don’t, some CAs allow a user-specified DN while others require the use
of afixed DN or set it themselves (overriding the user-supplied value), and some CAs
require revocation requests to be protected by a signature rather than a password,
which means that if no signature certificate is available (for example you want to
revoke a certificate because you’ve lost the private key, or you have an encryption-
only certificate), the certificate can’t be revoked. CAs will also perform CA policy-
specific operations during the certificate issue process, for example some CAs will
automatically revoke a certificate which is superseded by a new one via an update
request to prevent a situation in which two otherwise identical certificates exist at the
sametime.

160 Certificates and Certificate Management

CMP Sessions

Once a CMP request has been prepared, it’s ready for submission to the CA. This is
done via a CMP session object, which manages the details of communicating with the
CA, authenticating the user, and verifying the data being exchanged. Y ou need to
provide the CA server using the CRYPT_SESSINFO_SERVER attribute and either a
user name and password using the CRYPT_SESSINFO_USERNAME and CRYPT_-
SESSINFO_PASSWORD attributes (for an initialisation or revocation request) or a
private signing key using the CRYPT_SESSINFO_PRIVATEKEY attribute (for a
certificate or key update or revocation request). Finally, you need to provide the
certificate of the issuing CA and the request type and data. Once all of thisis done,
you can activate the session to request the certificate or revocation.

Y ou can submit an initialisation request and obtain an initial certificate from a CA as
follows:

CRYPT_SESSI ON crypt Sessi on;

/* Create the CVMP session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION CWVP);

/* Add the server nanme/address and request type */

crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO SERVER, server,
serverlLength);

crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO CMP_REQUESTTYPE,
CRYPT_REQUESTTYPE_I| NI Tl ALI SATION) ;

/* Add the usernane and password or private signing key. Since this
is an initialisation request, we add the user nane and password */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO USERNAME,
user Nane, user NanmeLength);

crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO PASSWORD,
password, passwordLength);

/* Add the certificate of the CA who is to issue the certificate or
revocation and the request itself */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO CACERTI FI CATE,
crypt CACert);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO REQUEST,

crypt CnpRequest) ;

/* Activate the session */
crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTI VE, TRUE);

The same operation in Visua Basicis:
Di m crypt Sessi on As Long

' Create the CWMP session
crypt Creat eSessi on crypt Sessi on, cryptUser, CRYPT_SESSI ON CWP

Add the server nane/address and request type
crypt Set AttributeString crypt Sessi on CRYPT_SESSI NFO_SERVER,
server, Len(server)
crypt Set Attri bute cryptSessi on CRYPT_SESSI NFO CMP_REQUESTTYPE,
CRYPT_REQUESTTYPE_I NI TI ALI ZATI ON

Add the usernane and password or private signing key. Since this
'is an initialisation request, we add the user nanme and password.
crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO USERNANME,

user Nane, Len(userNane)
crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password, Len(password)

' Add the certificate of the CA who is to issue the certificate or
revocation and the request itself
crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO _CACERTI FI CATE,
crypt CACert
crypt Set Attri bute crypt Session, CRYPT_SESSI NFO REQUEST,

crypt CmpRequest

' Activate the session
crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Obtaining Certificatesusng CMP 161

If the server that you’re communicating with is a cryptlib CMP server, the username
and password contain a built-in checksum mechanism which is used by cryptlib to
check for data entry errors. If cryptlib returnsa CRYPT_ERROR_BADDATA when
you set the CRYPT_SESSINFO_USERNAME or CRYPT_SESSINFO_-
PASSWORD attributes then the user has made a mistake when they entered the name
or password. More details on the format and error checking process used for user
names and passwords is given in “PKI User IDS” on page 175.

Y ou can submit subsequent certificate or key update requests to obtain further
certificates from a CA asfollows:

CRYPT_SESSI ON crypt Sessi on;

/* Create the CMP session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSION CWP);

/* Add the server nanme/address and request type */

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO SERVER, server,
serverlLength);

crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO CMP_REQUESTTYPE,
CRYPT_REQUESTTYPE_CERTI FI CATE) ;

/* Add the usernane and password or private signing key. Since this
is a certification request, we add the private key */

cryptSet Attribute (cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
privateKey);

/* Add the certificate of the CA who is to issue the certificate or
revocation and the request itself */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO CACERTI FI CATE,
crypt CACert);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO REQUEST,

crypt CmpRequest) ;

/* Activate the session */
crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO ACTI VE, TRUE);

The Javaor C# equivaent is:

/* Create the CVMP session */
int cryptSession = crypt.CreateSession(cryptUser,
crypt. SESSI ON_CWP) ;

/* Add the server nanme/address and request type */

crypt.Set AttributeString(cryptSession, crypt.SESSI NFO SERVER,
server);

crypt.Set Attribute(cryptSession, crypt.SESSI NFO CMP_REQUESTTYPE,
crypt . REQUESTTYPE_CERTI FI CATE) ;

/* Add the usernane and password or private signing key. Since this is
a certification request, we add the private key */

crypt.SetAttribute (cryptSession, crypt.SESSI NFO PRI VATEKEY,
privateKey);

/* Add the certificate of the CAwho is to issue the certificate or
revocation and the request itself */

crypt. Set Attribute(cryptSession, crypt.SESSI NFO CACERTI FI CATE,
crypt CACert);

crypt.Set Attribute(cryptSession, crypt.SESSI NFO REQUEST,

crypt CrpRequest);

/* Activate the session */
crypt. Set Attribute(cryptSession, crypt.SESSINFO ACTIVE, 1);

Submitting arequest for a certificate revocation works in an identical manner, with
authentication being performed using a user name and password asit isfor an
initialisation request or a private key asit is for a certification request.

If the session is successfully activated the CMP object will contain the response from
the CA, typically anewly-issued certificate. Revocation requests return no data
except the status code resulting from the activation of the session. If you’re
requesting a certificate you can read it from the session asa CRY PT_SESSINFO_-
RESPONSE attribute:

162

Certificates and Certificate Management

CRYPT_CERTI FI CATE cryptCertificate;
int status;

/* Activate the session */

status = crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTI VE,
TRUE);

if(cryptStatusError(status))
/* Couldn't obtain certificate fromCA */;

/* Get the returned certificate */
cryptGet Attribute(cryptSession, CRYPT_SESSI NFO RESPONSE,
&cryptCertificate);

Once you’ve obtained the certificate, you should save it with the private key it’s
associated with as described in “Certificates and Keys” on page 150. Because CMP
isacomplex protocol with alarge number of variations and options, it can fail for a
variety of reasons. The error-handling techniques described in “Secure Sessions” on
page 105 may be useful in determining the exact nature of the problem.

Obtaining Certificates using SCEP

Obtaining a certificate using the Simple Certificate Enrolment Protocol (SCEP)
works much like it doesfor CMP. The general processinvolved in an SCEP session
is atwo-step one of which thefirst step is creating a certification request and the
second step is submitting it to a CA for processing. The result of the processing
(typically asigned certificate) isreturned at the end of the session. SCEP makes use
of session objects as described in “Secure Sessions” on page 105, the following
description assumes that you’re familiar with the operation and use of cryptlib session
objects:

create a PKCS #10 request;
fill in the request details;

create an SCEP session;

add the SCEP server address;

add user nane and password;

add the issuing CA's certificate;

add the PKCS #10 request;

add the private key matching the PKCS #10 request;
activate the SCEP session;

obtain the result fromthe SCEP session;

destroy the SCEP session;

The processinvolved in creating arequest for use in SCEP is mostly identical to the
onefor CMP, with afew differences as noted below. cryptlib also implements afull
SCEP server that alows you to issue certificates using SCEP. This processis
described in “Managing a CA using CMP or SCEP” on page 176.

SCEP Certificate Requests

SCEP uses a PKCS #10 certificate request object to handle requests for certificates.
The creation of a PKCS #10 certificate request of type CRYPT_CERTTYPE -
CERTREQUEST isasfollows:

CRYPT_CERTI FI CATE crypt Cer t Request ;

/* Create a certification request */
crypt CreateCert(&cryptCert Request, cryptUser,
CRYPT_CERTTYPE_CERTREQUEST) ;

/* Fill in the standard certification request details */

[* o0 %
Note that, unlike CMP requests, the SCEP request isn’t signed. This is because
cryptlib hasto fill in further detailsin the request as part of the SCEP message
exchange process.

SCEP Sessions

Once a PKCS #10 request has been prepared, it’s ready for submission to the CA.
Thisis done viaa SCEP session object, which manages the details of communicating

Obtaining Certificatesusing SCEP 163

with the CA, authenticating the user, and verifying the data being exchanged. You
need to specify the CA server and a user name and password using the CRYPT_-
SESSINFO_SERVER, CRYPT_SESSINFO_USERNAME and CRYPT_-
SESSINFO_PASSWORD attributes in the usual manner. In addition you need to
supply the private key that was used to create the request using the CRYPT _-
SESSINFO_PRIVATEKEY attribute. The private key is never sent to the server, but
is used to for signing and encryption purposes by the SCEP client. Finally, you need
to provide the certificate of theissuing CA and the request data. Once al of thisis
done, you can activate the session to obtain the certificate:

CRYPT_SESSI ON crypt Sessi on;

/* Create the SCEP session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser, CRYPT_SESSI ON _SCEP);

/* Add the server nanme/address */
crypt Set AttributeString(cryptSession, CRYPT_SESSI NFO SERVER, server,
serverlLength);

/* Add the usernane, password, and private key */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO USERNAME,
user Nane, user NanmeLength);

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO PASSWORD,
password, passwordLength);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY, privateKey

)

/* Add the certificate of the CAwho is to issue the certificate and
the request itself */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO CACERTI FI CATE,
crypt CACert);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO REQUEST, cryptRequest

)

/* Activate the session */
crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO ACTI VE, TRUE);

The same operation in Visual Basicis:
Di m crypt Sessi on As Long

' Create the SCEP session
crypt Creat eSessi on crypt Sessi on, cryptUser, CRYPT_SESSI ON _SCEP

Add the server nane/address
crypt Set AttributeString crypt Sessi on CRYPT_SESSI NFO_SERVER,
server, Len(server)

' Add the usernane, password, and private key.

crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO _USERNAME,
user Nane, Len(userNane)

crypt Set AttributeString cryptSessi on, CRYPT_SESSI NFO PASSWORD,
password, Len(password)

crypt Set Attri bute cryptSessi on, CRYPT_SESSI NFO PRI VATEKEY,
privat eKey

' Add the certificate of the CA who is to issue the certificate and
the request itself

crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO _CACERTI FI CATE,
crypt CACert

crypt Set Attribute crypt Session, CRYPT_SESSI NFO REQUEST,
crypt Request

Activate the session
crypt Set Attri bute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

If the server that you’re communicating with is a cryptlib SCEP server, the username
and password contain a built-in checksum mechanism which is used by cryptlib to
check for data entry errors. If cryptlib returnsa CRY PT_ERROR_BADDATA when
you set the CRYPT_SESSINFO_USERNAME or CRYPT_SESSINFO _-
PASSWORD attributes then the user has made a mistake when they entered the name
or password. More details on the format and error checking process used for user

164 Certificates and Certificate Management

names and passwords is given in “Managing a CA using CMP or SCEP” on page
176.

Unlike CMP, SCEP only recognises a basic certification request for a new certificate,
so there’s no need to specify a request type before you activate the session. In
addition, SCEP can only certify keys capable of both encryption and signing, which
means that you can only certify RSA keys with no usage restrictions that would limit
them to being used only for encryption or only for signing. The returned certificate
will contain a combined key usage allowing both encryption and signing.

The SCEP CA certificate must also be capable of encryption and signing, which isn’t
normally done with a CA certificate but is required by the SCEP protocol. If you add
a CA certificate or private key that isn’t capable of both encryption and signing,
cryptlib will return a CRYPT_ERROR_PARAMS3 to indicate that the CA certificate
or key can’t be used for SCEP.

If the session is successfully activated the SCEP object will contain the response from
the CA, which will be a newly-issued certificate that you can read from the session as
aCRYPT_SESSINFO_RESPONSE attribute:

CRYPT_CERTI FI CATE cryptCertificate;
int status;

/* Activate the session */
status = cryptSet Attribute(cryptSession, CRYPT_SESSI NFO ACTI VE, TRUE

if(’cryptStatusError(status))
/* Couldn't obtain certificate fromCA */;

/* Get the returned certificate */
cryptGet Attribute(cryptSession, CRYPT_SESSI NFO RESPONSE,
&cryptCertificate);

Once you’ve obtained the certificate, you should save it with the private key it’s
associated with as described in “Certificates and Keys” on page 150. Because SCEP
isacomplex protocol with alarge number of variations and options, it can fail for a
variety of reasons. The error-handling techniques described in “Secure Sessions” on
page 105 may be useful in determining the exact nature of the problem.

Certificate Status Checking using RTCS

In order to check the validity of a certificate, cryptlib supports the real -time certificate
status protocol (RTCS). The simplest way to use RTCSiswith cryptCheckCert,
which returns a straightforward valid/not valid status and is described in the next
section. More complex RTCS usage, including obtaining detailed status information
and querying the status of multiple certificates at once is covered in the sections that
follow.

Basic RTCS Queries

The simplest way to work with RTCSisto useit with cryptCheckCert to check the
validity of a certificate. Since RTCSis an online protocol, communicating with the
responder requires the use of a cryptlib session object which is described in more
detail in “Secure Sessions” on page 105, the following description assumes that
you’re familiar with the operation and use of cryptlib session objects. Establishing an
RTCS client session requires adding the RTCS responder name or |P address and an
optional port number if it isn’t using the standard port. Once this is done, you can
check the certificate using cryptCheck Cert, with the second parameter being the
RTCS responder.

CRYPT_SESSI ON crypt Sessi on;
int status;

/* Create the RTCS session and add the responder nane */

crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSI ON _RTCS);

crypt Set AttributeString(cryptSessi on, CRYPT_SESSI NFO SERVER_NAME,
server Nanme, serverNaneLength);

Certificate Status Checking using RTCS 165

/* Check the certificate */
status = crypt CheckCert(cryptCertificate, cryptSession);
if(cryptStatusOK(status))

/* Certificate is OK */;

/* Clean up the session object */
crypt DestroySessi on(crypt Session);

Note that the RTCS session isn’t activated in the usual manner by setting the
CRYPT_SESSINFO_ACTIVE attribute to true, since thisis done by
cryptCheckCert when it performs the validity check.

If cryptCheckCert returns OK this means that the certificate is valid right now. If it
returns CRYPT ERROR INVALID (or some other error) the certificate isn’t valid,
either because it has expired, has been revoked, is aforged certificate, or for some
other reason. Usually all that matters is whether a certificate is OK to use or not, but
if you require detailed information as to why a certificate isn’t OK to use you need to
perform amanua RTCS check without the help of cryptCheckCert, as described
below.

Creating an RTCS Request

Performing an RTCS status check without the help of cryptCheckCert involves
creating an RTCS request object, adding a copy of the certificate to be checked to the
request, submitting the request to the RTCS responder and receiving the responder’s
reply, and finally checking the certificate’s status in the RTCS reply:

create RTCS request;

add certificate to be checked to request;
exchange data with RTCS responder;

check certificate using RTCS response;

An RTCS request is a standard certificate object of type CRYPT_CERTTYPE -
RTCS REQUEST. You create thisin the usual manner and add the certificate asa
CRYPT_CERTINFO_CERTIFICATE attribute. Since RTCS queries don’t have to
be signed, there’s no need to perform any further operations on the request object,
and it’s ready for submission to the responder:

CRYPT_CERTI FI CATE crypt RTCSRequest ;

/* Create the RTCS request */
crypt CreateCert (&crypt RTCSRequest, crypt User,
CRYPT_CERTTYPE_RTCS_REQUEST) ;

/* Add the certificate to be queried to the request */
crypt Set Attri bute(crypt RTCSRequest, CRYPT_CERTI NFO_CERTI FI CATE,
cryptCertificate);

Sometimes a user’s certificate will contain the information required for cryptlib to
communicate with the responder, but often thisis missing or incorrect. You can
check for the presence of RTCS information in the certificate by checking for the
existence of the CRYPT_CERTINFO_AUTHORITY INFO_RTCS attribute, which
contains information about the RTCS responder, usually in the form of aURL. If you
want to read the location of the responder, you can obtain it by reading the
CRYPT_CERTINFO_UNIFORMRESOURCEIDENTIFIER attribute from within
the RTCS information. Since the RTCS attribute is a composite GeneralName field,
you need to first select it and then read the URL from within the General Name:

char url[CRYPT_MAX TEXTSIZE + 1];
int urlLength;

cryptSet Attribute(cryptCertificate,

CRYPT_CERTI NFO_AUTHOR!I TYI NFO_RTCS, CRYPT_UNUSED) ;
cryptGet AttributeString(cryptCertificate,

CRYPT_CERTI NFO_UNI FORVMRESOURCEI DENTI FI ER, url, &urllLength);
url[urlLength] ="'\0";

If the RTCS responder location isn’t present or is incorrect, you’ll need to add the
responder URL manually before you can submit the request, as explained in the next
section.

166

Certificates and Certificate Management

Communicating with an RTCS Responder

Since RTCSis an online protocol, communicating with the responder requires the use
of a cryptlib session object which is described in more detail in “Secure Sessions” on
page 105, the following description assumes that you’re familiar with the operation
and use of cryptlib session objects. If the name of the RTCS responder is specified in
the certificate which is being checked you can directly submit the request to an RTCS
session object asa CRY PT_SESSINFO_REQUEST attribute without requiring any
further setup of the session object. If the responder isn’t specified in the certificate,
you’ll have to specify it yourself as described further on. In either case cryptlib will
contact the responder, submit the status query, and obtain the response from the
responder. If the query was successful, the session object will contain the RTCS
response object in the form of a CRYPT_SESSINFO_RESPONSE that contains the
reply from the server:

CRYPT_SESSI ON crypt Sessi on;
CRYPT_CERTI FI CATE crypt RTCSResponse,;
int status;

/* Create the RTCS session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSI ON _RTCS);

/* Add the RTCS request and activate the session with the RTCS
responder */

crypt Set Attribute(crypt Session, CRYPT_SESSI NFO REQUEST,
crypt RTCSRequest) ;

status = crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTI VE,
TRUE);

if(cryptStatusError(status))
/* Couldn't establish session with RTCS responder */;

/* Clean up the RTCS request object, which isn't needed any nore */
crypt DestroyCert(crypt RTCSRequest);

/* Obtain the response information */

status = cryptGet Attribute(cryptSession, CRYPT_SESSI NFO RESPONSE,
&cr ypt RTCSResponse) ;

if(cryptStatusError(status))
/* No response avail able from responder */;

/* Clean up the session object */
crypt DestroySessi on(crypt Session);

Once you’ve got the response from the server, you can get the certificate status from
it by reading the CRYPT_CERTINFO_CERTSTATUS attribute:

int certStatus;

crypt Get Attribute(crypt RTCSResponse, CRYPT_CERTI NFO CERTSTATUS,
&cert Status);

if(certStatus == CRYPT_CERTSTATUS VALID)
/* Certificate is valid */;

/* Clean up the RTCS response */
crypt DestroyCert(crypt RTCSResponse);

The possible certificate status values are CRY PT_CERTSTATUS VALID,
CRYPT_CERTSTATUS NOTVALID, and CRYPT_CERTSTATUS UNKNOWN,
with obvious meanings.

As mentioned above, you may need to set the RTCS responder URL if it isn’t present
in the certificate or if the value given in the certificate isincorrect. You can set the
responder URL asthe CRYPT_SESSINFO_SERVER_NAME:

CRYPT_SESSI ON crypt Sessi on;

/* Create the RTCS session */
crypt Creat eSessi on(&crypt Session, cryptUser, CRYPT_SESSI ON _RTCS);

Certificate Status Checking using RTCS 167

/* Add the responder URL and RTCS request and activate the session
with the RTCS responder */

crypt Set AttributeString(cryptSession, CRYPT_SESS|I NFO SERVER_NAME,
server Nanme, serverNaneLength);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO REQUEST,
crypt RTCSRequest) ;

[* .0 0%

Advanced RTCS Queries

In addition to querying the status of individual certificates, you can query the status of
anumber of certificates at once by adding more than one certificate to the RTCS
request. The response will contain information for each certificate in the query,
which you can use to verify each certificate using cryptCheckCert. If the response
information indicates that the certificate isinvalid, cryptlib will return CRYPT _-
ERROR_INVALID and leave the entry for the certificate in the RTCS response as
the selected one, allowing you to obtain further information about the certificate if
any isavailable:

CRYPT_CERTI FI CATE crypt RTCSResponse,;

time_t revocationTi nme;
i nt revocati onReason;

/* Check the certificate against the RTCS response */
crypt CheckCert (cryptCertificate, cryptRTCSResponse);
if(status == CRYPT_ERROR | NVALID)

{

int revocationTi meLengt h;

/* The certificate has been revoked, get the revocation tinme and
reason */

cryptGet AttributeString(crypt RTCSResponse,
CRYPT_CERTI NFO_REVOCATI ONDATE, &r evocati onTi e,
& evocati onTi meLength);

cryptGet Attribute(crypt RTCSResponse, CRYPT_CERTI NFO_CRLREASCN,
& evocat i onReason);

}

If all you’re interested in is an overall validity indication for a collection of
certificates then an alternative technique that doesn’t require calling cryptCheckCert
for each certificate is to step through the responses using the extension cursor
management, checking the status for each certificate and recording whether any one
indicates that the certificate isinvalid:

int certsvValid = TRUE;

crypt Set Attri bute(crypt RTCSResponse,
CRYPT_CERTI NFO_CURRENT_CERTI FI CATE, CRYPT_CURSOR FI RST);
do

int certStatus;

/* Check the status of the currently selected certificate */
crypt Get Attribute(crypt RTCSResponse, CRYPT_CERTI NFO CERTSTATUS,
&cert Status);
if(certStatus != CRYPT_CERTSTATUS VALID)
certsValid = FALSE;

}
while(certsValid &&
crypt Set Attri bute(crypt RTCSResponse,
CRYPT_CERTI NFO_CURRENT_CERTI FI CATE, CRYPT_CURSOR _NEXT) ==
CRYPT_X);

if(!certsvalid)
/* At least one certificate is invalid */;
Thiswill step through al of the responses checking for an indication that a certificate
isinvalid. Once theloop terminates, thecert sVal i d variable will contain the
composite status of the complete set of certificates.

168 Certificates and Certificate Management

Certificate Revocation Checking using OCSP

In order to check whether a certificateis present in a CRL, cryptlib supports the
online certificate status protocol (OCSP). The simplest way to use OCSP iswith
cryptCheckCert, which returns a straightforward revoked/not revoked status
corresponding to a certificate’s presence in a CRL, and is described in the next
section. More complex OCSP usage, including obtaining detailed status information
and querying the status of multiple certificates at once is covered in the sections that
follow. Note that OCSP can only return an approximate certificate status (it can’t
truly determine whether a certificate isreally valid), and will often return aresponse
based on out-of-date CRL information. If you require atrue online certificate validity
check, you should use the real-time certificate status protocol (RTCS) as described in
“Certificate Status Checking using RTCS” on page 162.

Basic OCSP Queries

The simplest way to work with OCSP isto useit with cryptCheckCert to check the
revocation status of a certificate. The processisidentical to the one used for the
RTCS status check described in “Certificate Status Checking using RTCS” on page
162, except that the session type is CRY PT_SESSION_OCSP instead of
CRYPT_SESSION RTCS.

If cryptCheckCert returns CRYPT OK this means that the certificate hasn’t been
revoked. Thisdoesn’t mean the same as saying that the certificate is OK, a bogus
certificate that exists but isn’t recognised by the CA as having been issued, or an
expired certificate, or a certificate which is invalid for some other reason or isn’t even
acertificate (for example an Excel spreadsheet) would also be given a status of “not
revoked” since that’s all that the responder is capable of saying about it. In addition
OCSP responders are often fed from stale CRL information, so a not-revoked
response doesn’t necessarily mean that the certificate is really not revoked, merely
that at the time the information was last updated it hadn’t been revoked. OCSP is
purely an online CRL query mechanism, not a general -purpose certificate validity
checker.

Creating an OCSP Request

OCSP requests work just like RTCS requests described in “Creating an RTCS
Reqguest” on page 165, except that the request typeis CRYPT_CERTTYPE_OCSP_-
REQUEST instead of CRYPT_CERTTYPE_RTCS REQUEST, however in addition
to the certificate being queried an OCSP request a so needs to have the CA certificate
that issued the certificate being queried added to the request before the certificate
itself isadded. The CA certificateis added asa CRYPT_CERTINFO _-
CACERTIFICATE attribute:

CRYPT_CERTI FI CATE cr ypt OCSPRequest ;

/* Create the OCSP request */
crypt CreateCert(&crypt OCSPRequest, cryptUser,
CRYPT_CERTTYPE_OCSP_REQUEST) ;

/* Add the certificate to be queried and the CA certificate that
issued it to the request */

crypt Set Attri bute(crypt OCSPRequest, CRYPT_CERTI NFO_CACERTI FI CATE,
crypt CACert);

crypt Set Attri bute(crypt OCSPRequest, CRYPT_CERTI NFO_CERTI FI CATE,
cryptCertificate);

Aswith RTCS requests, the certificate being queried may contain responder detailsin
the CRYPT_CERTINFO_AUTHORITYINFO_OCSP attribute, or you may need to
add them manually as explained in “Creating an RTCS Reguest” on page 165.

OCSP requests can also be signed, if you’re working with a CA that usesthis
capability then you can sign the request before submitting it in the standard way using
cryptSignCert:

Certificate Revocation Checking using OCSP 169

CRYPT_CERTI FI CATE cr ypt OCSPRequest ;

/* Create the OCSP request */
crypt CreateCert(&crypt OCSPRequest, cryptUser,
CRYPT_CERTTYPE_OCSP_REQUEST) ;

/* Add the certificate to be queried to the request and sign it */

crypt Set Attri bute(crypt OCSPRequest, CRYPT_CERTI NFO_CERTI FI CATE,
cryptCertificate);

crypt SignCert(crypt OCSPRequest, privateKey);

OCSP requests can a so include signing certificates alongsi de the signature, you can
specify the amount of additional information to include with the signature by setting
the CRYPT_CERTINFO_SIGNATURELEVEL attribute as described in
“Signing/Verifying Certificates” on page 223.

Communicating with an OCSP Responder

Communicating with an OCSP responder works in exactly the same way as
communicating with an RTCS responder described in “Communicating with an
RTCS Responder” on page 166, except that the session typeis CRYPT_SESSION_ -
OCSP rather than CRYPT_SESSION_RTCS. Once you’ve successfully activated the
session, you can read the certificate revocation status from the returned OCSP
response by reading the CRYPT_CERTINFO_REVOCATIONSTATUS attribute:

int revocationStatus;

crypt Get Attri bute(crypt OCSPResponse, CRYPT_CERTI NFO_REVOCATI ONSTATUS,
& evocationStatus);

i f(revocationStatus == CRYPT_OCSPSTATUS_NOTREVCKED)
/* Certificate hasn't been revoked */;

/* Clean up the OCSP response */
crypt DestroyCert(crypt OCSPResponse);

The possible certificate status values are CRY PT_OCSPSTATUS NOTREVOKED,
CRYPT_OCSPSTATUS _REVOKED, and CRYPT_OCSPSTATUS_UNKNOWN.
Note that since OCSP is purely arevocation checking protocol, CRYPT _-
OCSPSTATUS_NOTREVOKED means exactly that, that the certificate hasn’t been
revoked. This doesn’t mean the same as saying that the certificate is OK, a bogus
certificate that exists but isn’t recognised by the CA as having been issued (for
example aforged certificate created by an attacker), or an expired certificate, or a
certificate which is invalid for some other reason or isn’t even a certificate (for
example an Excel spreadsheet) would also be given a status of “not revoked” since
that’s all that the responder is capable of saying about it. In addition OCSP
responders are often fed from stale CRL information, so a not-revoked response
doesn’t necessarily mean that the certificate is really not revoked, merely that at the
time the information was last updated it hadn’t been revoked. OCSP is purely an
online CRL query mechanism, not a general-purpose certificate validity checker.

In addition to the certificate status, the OCSP response also contains information
relating to the CRL that the responder used to create the response, including
CRYPT_CERTINFO_THISUPDATE, the time of the current CRL, an optional
CRYPT_CERTINFO_NEXTUPDATE, the time of the next CRL, and CRYPT_-
CERTINFO_REVOCATIONDATE, the time at which the certificate was revoked. |If
the OCSP responder is using a direct query of a certificate store rather than
assembling the information indirectly using CRLs then the current CRL time will
usually be set to the current time even if it’s assembled from stale information hours
or daysold. In addition the next update time may be set to the current time, or to a
future time. None of these fields are particularly useful and different CAs assign
different meanings to them, so they can be ignored in most circumstances, they relate
mainly to the CRL-based origins of certain portions of OCSP. In addition, while
RTCS usestimes relative to the local system time, OCSP uses the absolute time on
the responder, so time values will vary based on time differences between the OCSP
responder and the local machine.

170 Certificates and Certificate Management

Advanced OCSP Queries

Some OCSP responders can resolve multiple certificate status queriesin asingle
request, however because of the data format used in OCSP this doesn’t work properly
for OCSP version 1 responders so it’s better to submit a number of separate queries
rather than trying to query the status of a set of certificatesin asingle request. In
addition some responders can’t handle multiple certificates, or will ignore all but the
first certificate, making it even more advisable to restrict queriesto asingle
certificate. Although aplanned future revision of OCSP may not have this problem,
it’s still prudent to only query a single certificate per request unless you’re sure that
the responder you’re using will handle multi-certificate queries correctly.

If you submit a query containing multiple certificates, the response from the
responder constitutes amini-CRL that contains revocation information only for the
certificates submitted in the query (assuming that the responder can handle multiple
certificatesin a query). Because of thisyou can treat the response asif it were a
normal CRL and check the certificates you submitted against it with cryptCheckCert
just likea CRL. If the certificate has been revoked, cryptlib will return
CRYPT_ERROR _INVALID and leave the certificate’s revocation entry in the OCSP
response as the selected one, allowing you to obtain further information on the
revocation (for example the revocation date or reason):

CRYPT_CERTI FI CATE cr ypt OCSPResponse;
time_t revocationTi nme;
int revocati onReason;

/* Check the certificate agai nst the OCSP response */
crypt CheckCert (cryptCertificate, cryptOCSPResponse);
if(status == CRYPT_ERROR | NVALID)

{

int revocationTi meLengt h;

/* The certificate has been revoked, get the revocation tinme and
reason */

cryptGet AttributeString(crypt OCSPResponse,
CRYPT_CERTI NFO_REVOCATI ONDATE, &r evocati onTi e,
& evocati onTi meLength);

cryptGet Attri bute(crypt OCSPResponse, CRYPT_CERTI NFO_CRLREASCN,
& evocat i onReason);

}

Note that, as with standard CRLSs, the revocation reason is an optional component and
may not be present in the OCSP response. If the revocation reason isn’t present,
cryptlib will return CRYPT_ERROR_NOTFOUND. If all you’re interested in is a
revoked/not revoked status for a collection of certificates then you can step through
the responses checking the status for each onein turn in the same way asfor RTCS.

Creating the Top-level (Root) CA Key 171

Managing a Certification Authority

Although it’s possible to manually manage the operation of a CA and issue
certificates and CRLs using cryptSignCert, it’s much easier to use cryptlib’s built-in
CA management capabilitiesto do thisfor you. In order to use the CA management
capabilities you need to create a certificate store as explained in “Creating/Destroying
Keyseat Objects” on page 134. The keyset type for a certificate store can only be
CRYPT_KEYSET_DATABASE_STORE, CRYPT_KEYSET_ODBC_STORE, or
CRYPT_KEYSET_PLUGIN_STORE, since cryptlib requires afull relational
database with transaction processing capabilities in order to manage the CA
operations. The use of atransaction-capable certificate store resultsin a high degree
of scalability and providesthe level of reliability, availability, and error recovery
required of such an application and stipulated in anumber of standards that cover CA
operation.

Once you’ve created a certificate store, you can open a connection to it like a normal
keyset. Since all accesses that open the keyset for write access are logged, it’s better
to open the connection to the keyset once and then leave it open for ongoing
operations than to open and close it for each operation, since thiswould lead to an
excessive number of log entries.

A certificate store doesn’t work like a standard keyset in which it’s possible to insert
and delete certificates and CRLs at random. Instead, it’s used in combination with
various certificate management functions that use the certificate store as amechanism
for managing the operations performed by a CA. The CA operations consist of
recording incoming certificate requests, converting them into certificates, and issuing
CRLsfor revoked certificates. All of these operations are managed automatically for
you by cryptlib using the transaction processing capabilities of the certificate store to
handle the data storage, reliability, and auditing requirements of the CA.

There are two ways in which you can run aCA. The easiest option isto use
cryptlib’s built-in CMP or SCEP serversto handle all CA operations. The more
complex option is to use cryptlib’s CA management functions to handle the CA
operations yourself. Of the two CA management protocols, CMP isthe more
complete, allowing you to request new certificates, update/replace existing ones, and
revoke existing certificates, works with special -purpose certificates such as signing-
only or encryption-only types, and provides flexibility in the authorisation
mechanisms used, with the request authorised either with a user name and password
or signed with an existing certificate. SCEP on the other hand isarelatively ssmple
protocol that allows for asingle type of operation, issuing a new certificate, and a
single certificate type, an RSA certificate capable of both encryption and signing,
with the request authorised with a user name and password.

Before you begin you’ll need to decide which of the two best meets your needs.
Usually it’ll be CMP, which is more flexible than SCEP. Alternatively, you can run
both a CMP and SCEP server, although you’ll have to run them on different ports
since both protocols use HTTP for their communications.

Creating the Top-level (Root) CA Key

Thefirst thing that you need to do when you set up your CA isto create your top-
level (root) CA key. Thisinvolves creating the public/private key pair, adding
identification information to it, signing it to create the CA root certificate, and
optionally storing it to disk it you’re not holding it in a crypto token such as a smart
card or hardware security module (HSM). Y ou can generate the root CA key as
follows:

172

Managing a Certification Authority

CRYPT_CONTEXT crypt Cont ext ;

/* Create an RSA public/private key context, set a label for it, and
generate a key into it */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO RSA);
crypt Set AttributeString(cryptContext, CRYPT_CTX NFO_LABEL,
"Private key", 11);
crypt Gener at eKey(crypt Context);

More details on keys and key generation are given in “Key Generation” on page 131.

Once you’ve generated the key, you can create the root CA certificate and add the
CA’s identification information to it, which usually consists of the country,
organisation hame, organisational unit name, and finally the actual CA name, referred
to as the common name in PK1 terminology:

CRYPT_CERTI FI CATE cryptCertificate;

/* Create the CA certificate */
cryptCreateCert(&cryptCertificate, cryptUser,
CRYPT_CERTTYPE_CERTI FI CATE) ;

/* Add identification infornation */

cryptSet AttributeString(cryptCertificate, CRYPT_CERTI NFO COUNTRYNAME,
countryName, 2);

crypt Set AttributeString(cryptCertificate,
CRYPT_CERTI NFO_ORGANI ZATI ONNAME, or gani zat i onNane,
organi zati onNameLength);

cryptSet AttributeString(cryptCertificate,
CRYPT_CERTI NFO_ORGANI ZATI ONALUNI TNAME, or gani zat i onal Uni t Nane,
or gani zat i onal Uni t NaneLength);

cryptSet AttributeString(cryptCertificate, CRYPT_CERTI NFO COVMONNAME,
comonNane, commonNanelLength);

More details on certificate naming are given in “Certificate |dentification
Information” on page 214.

Oncethe CA nameis set, you need to mark the certificate as a self-signed CA
certificate:

crypt Set Attribute(cryptCertificate, CRYPT_CERTINFO SELFSI GNED, 1);
cryptSet Attribute(cryptCertificate, CRYPT_CERTINFO CA 1);

Finally, you may want to add two URL s that indicate to users where further CA
services may befound, in particular CRYPT_CERTINFO_AUTHORITYINFO_-
CERTSTORE to tell users where to go to find further certificates and CRYPT_-
CERTINFO_AUTHORITYINFO_RTCSto tell users where to go for real-time
certificate status information: Since these attributes are a composite GeneralName
field, you need to first select them and then add the URL asa CRYPT_CERTINFO_-
UNIFORMRESOURCEIDENTIFIER attribute within the GeneralName:

crypt Set Attribute(cryptCertificate,
CRYPT_CERTI NFO_AUTHORI TYI NFO_CERTSTORE, CRYPT_UNUSED) ;
cryptSet AttributeString(cryptCertificate,
CRYPT_CERTI NFO_UNI FORMRESOURCEI DENTI FI ER, certstoreUrl,
certstoreUrlLength);
cryptSet Attribute(cryptCertificate,
CRYPT_CERTI NFO_AUTHORI TYI NFO_RTCS, CRYPT_UNUSED);
cryptSet AttributeString(cryptCertificate,
CRYPT_CERTI NFO_UNI FORMRESOURCEI DENTI FI ER, rtcsUrl, rtcsUrl Length);

With the URLSs present in the resulting certificate, users will automatically know
where to go to obtain further certificate-related information.

You can aso set these URLSs on a per-user basis when you set up each user’s
information, although putting it in the CA certificate allows you to set it just once
without having to set it up for each user (cryptlib will automatically propagate it from
the CA certificate to the user certificates when they’re issued). More details on
certificate store access are given in “HTTP Keysets” on page 136, and details on real-
time certificate status checking are given in “Certificate Status Checking using
RTCS” on page 164.

Y our root CA certificate is now ready to be signed:

Initialising PK1 User Information 173

crypt SignCert(cryptCertificate, cryptContext);

If you’re storing the CA information on disk, you now need to save the keys and
certificates to a password-protected private-key file:

CRYPT_KEYSET crypt Keyset;

/* Save the generated public/private key pair to a keyset */

crypt Keyset Open(&crypt Keyset, cryptUser, CRYPT_KEYSET FILE, fil eNaneg,
CRYPT_KEYOPT_CREATE) ;

crypt AddPri vat eKey(cryptKeyset, cryptContext, password);

crypt AddPubl i cKey(crypt Keyset, cryptCertificate);

crypt Keyset d ose(crypt Keyset);

/* Clean up */
crypt DestroyCont ext (crypt Context);
crypt DestroyCert(cryptCertificate);

If you’re storing the information in a crypto device, the keys will already be in the
device, and all you need to do is update it with the newly-created certificate:

crypt AddPubl i cKey(cryptDevice, cryptCertificate);

/* Clean up */
crypt DestroyCert(cryptCertificate);

At this point your root CA key is ready to use for issuing certificates.
Initialising PKI User Information

In order to be able to issue certificates to an end user (called a PK1 user in CMP
terminology), cryptlib first needs to know various pieces of information about them.
Y ou supply thisinformation via a PKI user certificate object, providing a partial or
complete DN for the issued certificate, as well as any other information that’s
required for the certificate such as an email address or URL, an indication as to
whether the user isa CA capable of issuing their own certificates, and so on. Once
you’ve provided the information for the PKI user, you add it to the certificate store
that will be used by the CMP or SCEP CA session, after which the CA server will
consult the certificate store when it needs to issue a certificate. cryptlib will
automatically generate the user ID and password for you when you’ve finished
creating the PK1 user object.

When you add the DN information to the PKI user object, you can specify either a
complete DN or a partial DN that omits the user’s common name. The PKI user
object acts both as a template for the DN in the user’s certificate and as a constraint
on the actual DN that a user can choose, preventing them from choosing an arbitrary
DN for their certificate. It’s strongly recommended that you specify the user’s full
DN in the PKI user object, so that they aren’t required to know the DN but can
simply submit arequest and have the CA take care of assigning a DN for them.

Alternatively, you can specify all DN components except the common name and let
the user specify the common name in the request. The least preferable option, since it
both requires that the user know their full DN and specify it in the request, and allows
them to request any type of DN, isto omit setting a DN in the PKI user object, which
allows the user to specify any DN value. However, omitting the DN from the PKI
user template can lead to problems later if you want to read the PKI1 user object back
from the certificate store, since there’s no name present to identify it.

Taking the simplest option, in which the CA supplies the full DN and the user doesn’t
need to know any DN details, you would use:

CRYPT_CERTI FI CATE crypt PKI User ;

/* Create the PKI user */
crypt CreateCert(&cryptPKl User, cryptUser, CRYPT_CERTTYPE PKI USER);

174

Managing a Certification Authority

/* Add identification infornation */

crypt Set AttributeString(crypt PKI User, CRYPT_CERTI NFO_ COUNTRYNANME,
countryName, 2);

crypt Set AttributeString(cryptPKl User,
CRYPT_CERTI NFO_ORGANI ZATI ONNAME, or gani zat i onNane,
organi zati onNameLength);

crypt Set AttributeString(cryptPKl User,
CRYPT_CERTI NFO_ORGANI ZATI ONALUNI TNAME, or gani zat i onal Uni t Nane,
or gani zat i onal Uni t NaneLength);

crypt Set AttributeString(crypt PKI User, CRYPT_CERTI NFO_ COVMONNAME,
comonNane, commonNanelLength);

/* Add the user information to the certificate store */
crypt CAAddI ten{ cryptCertStore, cryptPKI User);

/* Clean up */
crypt DestroyCert(cryptPKl User);

The same operation in Visual Basicis:
Di m crypt PKI User As Long

' Create the PKI user
cryptCreateCert cryptPKI User, cryptUser, CRYPT_CERTTYPE_PKI USER

Add identification infornation

cryptSet AttributeString crypt PKI User, CRYPT_CERTI NFO_COUNTRYNAME,
countryName, 2

crypt Set AttributeString crypt PKI User, _
CRYPT_CERTI NFO_ORGANI ZATI ONNAME, or gani zati onNane, _
or gani zati onNameLengt h

crypt Set AttributeString crypt PKI User, _
CRYPT_CERTI NFO_ORGANI ZATI ONALUNI TNAME, or gani zati onal Uni t Name, _
or gani zati onal Uni t NaneLengt h

crypt Set AttributeString crypt PKI User, CRYPT_CERTI NFO COVMONNANME,
comonNane, commonNanelLengt h

' Add the user information to the certificate store
crypt CAAddl tem crypt Cert Store, crypt PKl User

Cl ean up
crypt DestroyCert cryptPKI User

A simple way to handle thistype of operation isto automatically populate the
certificate store with information from a source such as a personnel database
containing all of the required user information.

Other PKI User Information

In addition to the user DN, you can may also want to add further information to alow
the user to automatically locate resources such as further certificates issued by the CA
and RTCS responders. By adding these URLs to the PKI user information (which
ensures that it’ll be present in the certificate once it’s issued), anyone using the
certificate can automatically determine where to go to find further certificates and
certificate status information without requiring any manual configuration.

The easiest way to get thisinformation into user certificatesisto add it to the issuing
CA’s certificate, from which it’ll be automatically propagated into any certificates
that the CA issues. You can however also add this information on a per-user basis as
the CRYPT_CERTINFO_AUTHORITYINFO_CERTSTORE and CRYPT_-
CERTINFO_AUTHORITYINFO_RTCS attributes, which contain information about
the location of the certificate store and RTCS responder, usually in the form of a
URL. Since these attributes are composite GeneralName fields, you need to first
select them and then add the URL asa CRY PT_CERTINFO _-
UNIFORMRESOURCEIDENTIFIER attribute within the GeneralName:

Initialising PK1 User Information 175

crypt Set Attribute(cryptPKl User,
CRYPT_CERTI NFO_AUTHORI TYI NFO_CERTSTORE, CRYPT_UNUSED);

crypt Set AttributeString(cryptPKl User,
CRYPT_CERTI NFO_UNI FORMRESOURCEI DENTI FI ER, certstoreUrl,
certstoreUrlLength);

cryptSet Attribute(cryptPKIUser, CRYPT_CERTI NFO AUTHORI TYI NFO_RTCS,
CRYPT_UNUSED) ;

crypt Set AttributeString(cryptPKl User,
CRYPT_CERTI NFO_UNI FORMRESOURCEI DENTI FI ER, rtcsUrl, rtcsUrl Length);

With the URL present in the resulting certificate, users will automatically know
where to go to obtain further certificates and certificate status information.

In addition to the CA-related information, you can a so specify additional user
information that will appear in the issued certificate. The most common additional
information would be an email address that’s used to identify the user alongside their
DN:

cryptSet AttributeString(crypt PKI User, CRYPT_CERTI NFO _RFC822NAME,
emi | Addr, email AddrLength);

although since this may change over time you may want to let the user specify it in
their certificate request. A downside of thisflexibility isthat the user can then
request a certificate with any email address they want rather than the one that you’ve
got recorded for them.

In addition to the standard identification information, you can also specify other
information that should appear in all certificates issued to this particular user. One
piece of certificate information that can only be specified in the PKI user datais
whether the user isto bea CA or not. To create a CA user, you set the CA flag for
the user:

crypt Set Attribute(cryptPKIUser, CRYPT_CERTINFO CA 1);

Thisisthe only way in which a CA certificate can be issued, since allowing a user to
specify theissuing of a CA certificate in a user request would allow any user to make
themselvesa CA. If cryptlib receives arequest from auser for the creation of a CA
certificate it will either reject the request, since the CA capability can only be
permitted by the issuing CA and not the requesting user.

Because a CA-enabled user has special privileges, you should take extracarein
managing passwords and related information for them, and may want to delete the
user after their CA certificate has been issued to prevent them from being re-used to
obtain further CA certificates. This makes the sub-CA creation capability a one-shot
process that requires explicit manual intervention by the issuing CA every time a sub-
CA iscreated.

PKI User IDs

Certificate initialisation requests are identified through a user ID (to locate the
appropriate PKI user information) and a password (to authenticate the request). Once
the user information has been entered into the certificate store, you can read back the
PK1 user ID, identified by CRYPT_CERTINFO_PKIUSER_ID, the password used to
authenticate the initialisation operation, identified by CRYPT_CERTINFO_-
PKIUSER_ISSUEPASSWORD, and the password used to authenticate certificate
revocation (if you’re using CMP), CRYPT CERTINFO_PKIUSER -
REVPASSWORD. Use of the revocation password is optional, the CA may use
signed revocation requests rather than password-protected ones:

char user| D[CRYPT_MAX TEXTSIZE + 1];

char issuePW CRYPT_MAX TEXTSIZE + 1];

char revPW CRYPT_MAX TEXTSIZE + 1];

int userlD ength, issuePWength, revPWength;

cryptGet AttributeString(crypt PKI User, CRYPT_CERTI NFO_PKI USER I D,
user| D, &userl D ength);
user| D[userlDiength] ="'\0";
cryptGet AttributeString(cryptPKl User,
CRYPT_CERTI NFO_PKI USER_| SSUEPASSWORD, i ssuePW & ssuePWength);
i ssuePW issuePWength] ‘\0';

176

Managing a Certification Authority

cryptGet AttributeString(cryptPKl User,
CRYPT_CERTI NFO_PKI USER_REVPASSWORD, revPW &revPWength);
revPW revPWength] = '\0';

The CA needs to communicate thisinformation to the user via some out-of-band
means, typically through the use of a PIN mailer or via some other direct
communication means during the certificate sign-up process. Once thisinformation
is communicated, the user can use it to obtain their initia certificate. Any further
certificates are typically obtained by signing the request with theinitial certificate or
with subsequently-obtained certificates.

cryptlib uses a standard format for the user 1D and password that follows the style
used for software registration codes and serial numbers. The user ID isin theform
XXX XX-XXXXX-XXXXX and the password isin the form XXXXX-XXXXX-
XXXXX-XXXXX. Characters that might cause confusion (for example Oand O or 1
and 1) aren’t present, and the data contains a checksum which is used to catch typing
errors when the user enters the information. An example of auser ID and password
is:

user | D = 293XU- NZMSN- DC5J3

password = G3DKZ- DR79M L6AGY- X6H6X

If the user enters either of these incorrectly, the cryptlib client will return
CRYPT_ERROR_BADDATA when you try to set the user name or password
attribute for the CMP or SCEP client session.

Managing a CA using CMP or SCEP

CMP and SCEP serversthat allow you to issue certificates to a CMP or SCEP client
make use of session objects as described in “Secure Sessions” on page 105, the
following description assumes that you’re familiar with the operation and use of
cryptlib session objects. Once the PKI user information has been set up for each user,
there isn’t anything further that needs to be done. Because the CA management
process is completely automated and entirely handled by cryptlib, the CA more or
lessrunsitself. The only operations that you still need to perform yourself are
periodic ones such as expiring old certificates with CRY PT_CERTACTION_-
EXPIRE_CERT, issuing CRLswith CRYPT_CERTACTION_ISSUE_CRL
(assuming you’re not using the much more sensible option of allowing online queries
of the certificate store which is used by the CA), and handling restart recoveries with
CRYPT_CERTACTION_CLEANUP (the manual certificate management operations
are described in “CA Management Operations” on page 180). All other operations
are handled for you by the CMP or SCEP server.

Establishing a CMP or SCEP server session requires adding the CA certificate store
and CA server key/certificate asthe CRYPT_SESSINFO_KEY SET and CRYPT_-
SESSINFO_PRIVATEKEY attributes, activating the session, and waiting for
incoming connections. The CMP server session is denoted by CRYPT_SESSION_-
CMP_SERVER, the SCEP server session is denoted by CRY PT_SESSION_SCEP_-
SERVER:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_CMP_SERVER) ;

/* Add the CA certificate store and CA server key and activate the
session */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO KEYSET,
cryptCertStore);

crypt Set Attri bute(cryptSession, CRYPT_SESSI NFO PRI VATEKEY,
privateKey);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

The same operation in Javaor C# is.

Making Certificates Available Online 177

/* Create the session */
int cryptSession = crypt.CreateSession(cryptUser,
crypt. SESSI ON_CMP_SERVER) ;

/* Add the CA certificate store and CA server key and activate the
session */

crypt.Set Attribute(cryptSession, crypt.SESSI NFO KEYSET,
cryptCertStore);

crypt.Set Attribute(cryptSession, crypt.SESSI NFO PRI VATEKEY,
privateKey);

crypt.Set Attribute(cryptSession, crypt.SESSINFO ACTIVE, 1);

The Visua Basic equivaent is:

Create the session
crypt Creat eSessi on crypt Sessi on, cryptUser, CRYPT_SESSI ON CMP_SERVER

Add the CA certificate store and CA server key and activate the
session
crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO KEYSET, cryptCertStore
crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO PRI VATEKEY, pri vateKey
crypt Set Attribute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Once you activate the session, cryptlib will block until an incoming client connection
arrives, at which point it will negotiate the certificate issue or revocation process with
the client. All checking and certificate processing operations are taken care of by
cryptlib. There isno need for you to perform any further processing operations when
running a CA in thisway, athough you may want to occasionally perform some of
the maintenance operations described in “Managing a CA Directly” on page 179.

If you plan to use the PKIBoot certificate bootstrap mechanism to communicate
trusted certificates to the user, you need to mark the certificates that you want cryptlib
to supply to the user as trusted certificates as described in “Certificate Trust
Management” on page 231. At aminimum, you should mark your CA’s certificates
astrusted to ensure that the user will get the CA certificates alongside their own
certificates when they have a certificate issued for them. In addition you can supply
additional certificates (for example ones for certificate status responders or timestamp
servers) to the user by marking them as trusted by the CA.

The cryptlib CMP and SCEP implementations run on top of a certificate store that
implements consistent transactions (as far as the underlying software and hardware
alowsit), so that any incomplete CA transaction which is aborted by a software or
hardware failure or network error will be either cleanly rolled back if it hasn’t been
confirmed yet (for example a certificate issue request for which no acknowledgement
was received from the user) or completed if it was confirmed (for example a
revocation request that has been validated by cryptlib). This meansthat if (for
example) the server on which the CA is running crashes halfway through arevocation
operation, the revocation will be cleanly completed after the server isrestarted. This
behaviour may differ from the behaviour exhibited by other CAs, which (depending
on CA policy) may simply abort all incomplete transactions, or may try and complete
some transactions.

In addition to ensuring transactional integrity, cryptlib also enforces certificate status
integrity constraints, which means that if it receives and successfully processes an
update request for a certificate, it will revoke the certificate that was being updated to
prevent two otherwise identical certificates from existing at the same time. Aswith
the other transaction types, the replacement operation is atomic so that either the new
certificate will cleanly replace the old one, or no overall change will take place.

Making Certificates Available Online

Once you’ve issued a certificate, you can make it available online using a standard
HTTP keyset. Thisallows usersto fetch certificates over the Internet by performing a
standard keyset access. Although the interface is to a keyset, it’s handled as a
cryptlib session of type CRYPT_SESSION_CERTSTORE_SERVER because it
works with a variety of session interfaces and attributes that aren’t normally used
with keysets.

178 Managing a Certification Authority

Since a cert store session doesn’t perform any crypto operations like the other session
types, al that you need to add before you activate the session isthe cert store keyset:

CRYPT_SESSI ON crypt Sessi on;

/* Create the session */
crypt Creat eSessi on(&crypt Sessi on, cryptUser,
CRYPT_SESSI ON_CERTSTORE_SERVER) ;

/* Add the CA certificate store and activate the session */

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO KEYSET,
cryptCertStore);

crypt Set Attribute(cryptSession, CRYPT_SESSI NFO ACTIVE, 1);

The Visua Basic equivaentis:

Create the session
crypt Creat eSessi on crypt Sessi on, cryptUser, _
CRYPT_SESSI ON_CERTSTORE_SERVER

Add the CA certificate store and activate the

session
crypt Set Attri bute cryptSessi on, CRYPT_SESSI NFO KEYSET, cryptCertStore
crypt Set Attri bute cryptSessi on, CRYPT_SESSI NFO ACTI VE, 1

Since the client-side of this session is a standard HTTP keyset, you can use it directly
in crypto operations like signed or encrypted enveloping:

CRYPT_ENVELOPE cr ypt Envel ope;
i nt bytesCopi ed;

crypt Creat eEnvel ope(&crypt Envel ope, cryptUser, CRYPT_FORMAT_SM ME);

/* Add the encryption keyset and recipient email address */

crypt Set Attri bute(cryptEnvel ope, CRYPT_ENVI NFO KEYSET ENCRYPT,
crypt Keyset);

crypt Set AttributeString(crypt Envel ope, CRYPT_ENVI NFO REC! Pl ENT,
"person@onpany. cont', 18);

/* Add the data size information and data, wap up the processing, and
pop out the processed data */

crypt Set Attribute(cryptEnvel ope, CRYPT_ENVI NFO DATASI ZE,
nmessagelLength);

crypt PushDat a(crypt Envel ope, nessage, messagelength, &byt esCopied);

crypt Fl ushDat a(crypt Envel ope);

crypt PopDat a(crypt Envel ope, envel opedDat a, envel opedDat aBuf ferSi ze,
&byt esCopi ed);

crypt DestroyEnvel ope(crypt Envel ope);

Although the interface isidentical to the standard envel oping interface with alocal
keyset, in this case cryptlib is fetching the certificate that’s required for encryption
from the remote CA. Having the keyset available online and managed directly by the
CA avoids requiring each user to manage their own individual store of certificates,
and allows a single consistent certificate collection to be maintained at a central
location.

For both security and performance reasons, you should always open the keyset in
read-only mode and accessit as a genera certificate keyset (CRYPT_KEYSET_-
DATABASE, CRYPT_KEYSET_ODBC, or CRYPT_KEYSET_PLUGIN) rather
than a CA certificate store (CRYPT_KEYSET_DATABASE_STORE, CRYPT_-
KEYSET_ODBC_STORE, or CRYPT_KEYSET_PLUGIN_STORE). cryptlib will
check to make sure that it’s a read-only standard keyset when you add it to the
session, and return a CRYPT_ERROR_PARAMS3 error if it’s of the incorrect type.

For additional security, you can apply standard database security measures to protect
the certificate database against (potentially malicious) access. Some ways of doing
thisinclude using the database’s REVOKE/GRANT capability to allow only
SELECT access (read-only, no write or update capability), and accessing the database
as alow-privilege user with only read access. cryptlib will automatically use the
lowest level of access available to perform the task, in this case minimal read-only
access combined with basic SELECT point queries (no views, joins, or other

Managing a CA Directly 179

complexity). Finally, cryptlib both filtersits input data and uses parameterised
queries/bound query data to prevent hostile users from inserting malicious escape
sequences into the query.

The CRYPT_SESSION_CERTSTORE_SERVER server type employs cryptlib as
little more than aweb interface to a certificate store. Since most databases are web-
enabled, asimpler option isto use the database itself to provide certificate access to
users — it’s just a straight HTTP query of the database. This means that you can
create standalone HT TP certificate store servers using nothing more than the database
engine that you use to store the certificates.

Managing a CA Directly

In addition to the mostly-automated process of running a CA via CMP or SCEP,
cryptlib also lets you manage a CA directly using various certificate management
operations. This process isn’t as convenient as using CMP or SCEP since alot of the
automation provided by cryptlib’s automated CA handling is lost by working at this
lower level.

A CA issues certificates and certificate revocations in response to requests from
users, so that when an incoming request arrives the first thing you need to do is store
it in the certificate store so that cryptlib can work with it. After that you can usethe
CA management functions to convert the request into a certificate or revocation and
optionally return the result of the operation to the user.

Recording Incoming Requests

To store an incoming request you use cryptCAAddItem, which takes the request and
addsiit to the store, updating the audit log and performing any other necessary
management operations. Once it’s stored, cryptlib generates a log entry recording the
arrival of the request and can use it to recover the request or any subsequent data such
as certificates created from it even in the event of a system crash or failure, so that no
information will be lost onceit has entered the store:

CRYPT_CERTI FI CATE crypt Cer t Request ;

/* Obtain the cert request fromthe user */
crypt Cert Request = ...;

/* Verify that the request is in order */
[* .0 %

/* Add the request to the cert store */
crypt CAAddI ten{ cryptCertStore, cryptCertRequest);

Once this process has been completed the request has been entered into the store and
will be subject to the CA management operations provided by cryptlib. This step
must be completed before the certificate management process can be applied to the
request, even if it’ll immediately be used to generate a certificate or revocation, since
it’s needed to ensure that the operation of the CA can be recovered and continued in
the event of a software or system failure.

Retrieving Stored Requests

Once arequest has been recorded in the store, some time may elapse before it can be
processed, during which time the certificate object that contains the request may be
destroyed. When the certificate is ready for issue, you can recreate the request by
retrieving it from the store using cryptCAGetltem in the same way that you can use
cryptGetPublicK ey to obtain a certificate from a standard certificate store:

CRYPT_CERTI FI CATE crypt Cer t Request;

/* Obtain the cert request fromthe user */
crypt Cert Request = ...;

/* Verify that the request is in order */
[* .0 0%

180 Managing a Certification Authority

/* Add the request to the cert store and destroy it */
crypt CAAddI ten{ cryptCertStore, cryptCertRequest);
crypt DestroyCert(cryptCertRequest);

/* Perform other operations */
[* .0 %

/* Recreate the request so that it can be processed */

crypt CAGetIten{ cryptCertStore, &cryptCertRequest,
CRYPT_CERTTYPE_REQUEST_CERT, CRYPT_CERTI NFO_CRYPT_KEYI D_NAME,
name);

Once the request has been recreated, you can subject it to the CA management
process in the usual manner.

CA Management Operations

cryptlib provides awide variety of CA management operations that include issuing
and revoking certificates and creating CRLSs, aswell as general management
operations such as clearing up expired certificates and CRL entries. All of these
operations are performed by cryptlib using crypt CACertM anagement with no
further input necessary from the user. The general concept of the certificate
management function is:

CRYPT_CERTI FI CATE cryptCertificate;

crypt CACert Managenent (&ryptCertificate, action, cryptCertStore,
crypt CAKey, crypt Cert Request);

with some of the parameters being optional depending on the type of action being
performed. The certificate management actions that can be performed are:

Cert Management Action Description

CRYPT_CERTACTION_ - Remove all expired certificates from the active
EXPIRE_CERT certificate collection and remove all expired
CRL entries from the active CRL entry
collection in the certificate store.

CRYPT_CERTACTION_- Perform certificate store cleanup/recovery
CLEANUP actions after arestart (for example a system
crash), processing or deleting any leftover
incomplete actions as appropriate.

CRYPT_CERTACTION_- Issue acertificate by signing a certificate

ISSUE_CERT request with the given CA key, updating the
certificate store to contain the newly-issued
certificate.

CRYPT_CERTACTION - IssueaCRL for the CA indicated by the given

ISSUE_CRL CA key.

CRYPT_CERTACTION_- Revoke the certificate indicated in the

REVOKE_CERT revocation request. Since submitting the

corresponding revocation request requires
interaction with the CMP protocol this action
can’t be performed directly but is initiated in
conjunction with CMP.

Thefirst parameter for the function can optionally return the newly-issued certificate
or CRL, if you don’t want to do anything with this at the current time you can set it to
null and read it later with cryptGetPublicKey. Inall casescryptlib will carry out the
operations in a safe, all-or-nothing manner that leaves the certificate storein a
consistent state after the operation has completed. This guaranteesthe reliable
operation of the CA even in the presence of hardware or software failuresin the
underlying components.

The details of each type of CA management operation are given in the following
sections.

Managing a CA Directly 181

Issuing and revoking a Certificate

The process of issuing a certificate converts a previously stored certificate request
into a certificate viathe certificate store. To issue a certificate, you need to provide a
certificate store, a CA key to useto sign the certificate, and a copy of the (previously
stored) certificate request:

CRYPT_CERTI FI CATE cryptCertificate;

crypt CACer t Managenent (&rypt Certificate, CRYPT_CERTACTI ON_| SSUE CERT,
cryptCertStore, cryptCAKey, cryptCertRequest);

Once the operation has completed, the new certificate will be available as the
cryptCertificate vaue

Revoking a certificate works in a similar manner, except that it takes a revocation
request rather than a certificate request. Since this operation updates the certificate
store without creating any kind of certificate object, the first parameter is set to null:

crypt CACer t Managerent (NULL, CRYPT_CERTACTI ON_REVOKE_CERT,
cryptCert Store, crypt CAKey, cryptRevocati onRequest);

This operation requires the use of arevocation request that can only be processed as
part of the CMP protocol, so it’s not possible to directly submit a revocation request
to the store.

Issuing a CRL

The process of issuing a CRL takes the revocation information held in the certificate
store and turnsit into afinished CRL. To issue a CRL, you heed to provide a
certificate store and a CA key (specifically, one capable of signing CRLS) to useto
sign the CRL. Since there’s no request involved, the request parameter is set to
CRYPT_UNUSED. If you try to use a CA key that can’t sign CRLs, cryptlib will
return CRYPT_ERROR_PARAMA4 to indicate that the key isinvalid for issuing
CRLs:

CRYPT_CERTI FI CATE crypt CRL;

crypt CACer t Managenent (&crypt CRL, CRYPT_CERTACTI ON_| SSUE_CRL,
cryptCertStore, cryptCAKey, CRYPT_UNUSED);

The CA key must be the one that issued the certificates that are in the CRL (thisisa
requirement of the way certificatesin CRLs areidentified). If you try and use akey
from adifferent CA, the resulting CRL will either be empty (since no revocation
entries for the other CA will be present) or will contain only entries for the other CA
(if both CAs are sharing the same certificate store, and entries from the other CA are
present in it).

Expiring Certificates

Expiring certificatesis a passive process that doesn’t create or destroy any certificate
objects, but merely updates the certificate store state information so that expired
certificates are no longer considered active. Y ou can run this as a background or low-
priority operation at periodic intervals to keep the certificate store up to date:

crypt CACer t Managenent (&crypt CRL, CRYPT_CERTACTI ON_EXPI RE_CERT,
crypt Cert Store, CRYPT_UNUSED, CRYPT_UNUSED);

Thiswill remove any expired certificates from the store and also removes any CRL
entries for certificates that have expired anyway. Depending on your CA’s policy on
expiry you can run this frequently to ensure only current certificates and CRL entries
are present or less frequently in case there’s some reason to keep expired certificates
around.

Recovering after a Restart

Sometimes the machine on which you’re running your CA may go down due to
problems like a hardware failure or a system crash. cryptlib carries out all operations
in a manner that ensures the certificate store won’t be left in an inconsistent state, but
having the machine die in the middle of an update can leave some requestsin an

182

Managing a Certification Authority

incomplete state (for example if an incoming request is received and system power is
lost before the corresponding certificate is issued, the unprocessed request will be left
in the certificate store). In order to clean up any leftover requests you can tell cryptlib
to clean up the state of the certificate store by removing or processing any leftover
requests as appropriate:
crypt CACer t Managenent (&crypt CRL, CRYPT_CERTACTI ON_CLEANUP,
crypt Cert Store, CRYPT_UNUSED, CRYPT_UNUSED);

If a pending request hasn’t been approved yet, it will be rolled back; if a request has
been approved but wasn’t fully processed, it will be completed.

In general it’s a good ideato perform this action when you start your CA (if you shut
it down for any reason), and you should do it if there’s a system failure or other
problem that causes the CA to shut down without cleaning up. Note that you should
never perform this operation while the CA is running, since it’ll clean up any
currently un-processed requests and operations, including ones that may currently be
awaiting processing by the CA.

Creating/Destroying Encryption Contexts 183

Encryption and Decryption

Although envelope, session, and keyset container objects provide an easy way to
work with encrypted data, it’s sometimes desirable to work at a lower level, either
because it provides more control over encryption parameters or because it’s more
efficient than the use of the higher-level functions. The objects that you use for
lower-level encryption functionality are encryption contexts. Internally, more
complex objects such as envelope, session, and certificate objects also use encryption
contexts, although these are hidden and not accessible from the outside.

Once you’ve generated a public/private key pair, you probably want to communicate
the public key to others. To do this, you need to encode the key componentsin a
standard form that other applications can understand. The standard form for public
keysisacertificate, described in “Certificates and Certificate Management” on page
149. If all you want to do is communicate public key data and you don’t care about
the other certificate details, you can use a simplified certificate as described in
“Simple Certificate Creation” on page 152. This encodes the key in auniversal
certificate format, but without the management overhead of having to deal with
certificates.

Alongside the portable, universal certificate format, there exist a number of non-
portable, often proprietary formats that various vendors have invented for encoding
keys. If you want to use one of these non-portable, non-standard formats, you need to
contact the vendor that created it to determine the format details and what’s required
to convert akey to and from that format.

Creating/Destroying Encryption Contexts

To create an encryption context, you must specify the user who is to own the object
or CRYPT_UNUSED for the default, normal user, the encryption algorithm, and
optionally the encryption mode you want to use for that context. The available
encryption algorithms and modes are given in “Algorithms” on page 295. For
example, to create and destroy an encryption context for DES you would use the
following code:

CRYPT_CONTEXT crypt Cont ext ;

crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO DES);
/* Load key, perform en/decryption */

crypt DestroyCont ext (crypt Context);

The context will use the default encryption mode of CBC, which is the most secure
and efficient encryption mode. If you want to use a different mode, you can set the
context’s CRYPT _CTXINFO_MODE attribute to specify the mode to use. For
example to change the encryption mode used from CBC to CFB you would use:

crypt Set Attribute(cryptContext, CRYPT_CTXI NFO MODE, CRYPT_MODE_CFB);

In general you shouldn’t need to change the encryption mode, the other cryptlib
functions will automatically handle the mode choice for you. Public-key, hash, and
MAC contexts work in the same way, except that they don’t have different modes of
use so the CRYPT CTXINFO_MODE attribute isn’t present for these types of
contexts. The availability of certain algorithms and encryption modesin cryptlib
does not mean that their use is recommended. Some are only present because they
are needed for certain protocols or required by some standards.

Note that the CRYPT_CONTEXT is passed to cryptCreateContext by reference, as
cryptCreateContext modifiesit when it creates the encryption context. In almost all
other cryptlib routines, CRYPT_CONTEXT is passed by value. The contexts that
will be created are standard cryptlib contexts, to create a context which is handled via
a crypto device such as a smart card or Fortezza card, you should use
cryptDeviceCreateContext, which tells cryptlib to create a context in acrypto

184

Encryption and Decryption

device. The use of crypto devices is explained in “Encryption Devices and Modules”
on page 265.

cryptDestroyContext has a generic equivalent function cryptDestr oyObject that
takes a CRY PT_HANDLE parameter instead of a CRYPT_CONTEXT. Thisis
intended for use with objectsthat are referred to using generic handles, but can aso
be used to specifically destroy encryption contexts — cryptlib’s object management
routines will automatically sort out what to do with the handle or object.

Generating a Key into an Encryption Context

Once you’ve created an encryption context, the next step isto generate akey into it.
These keyswill typically be either one-off session keysthat are discarded after use, or
long-term storage keys that are used to protect fixed data such asfiles or private keys.
Y ou can generate akey with cryptGenerateK ey:

crypt Gener at eKey(crypt Context);

which will generate a key of a size which is appropriate for the encryption a gorithm.
If you want to generate akey of a particular length, you can set the CRYPT _-
CTXINFO_KEY SIZE attribute before calling cryptGenerateK ey. For example to
generate a 256-hit (32-byte) key you would use:

crypt Set Attribute(cryptContext, CRYPT_CTXINFO KEYSIZE, 256 / 8);
crypt Gener at eKey(crypt Context);

Keys generated by cryptlib are useful when used with cryptExportK ey/
cryptimportKey. Since cryptExportK ey usualy encrypts the generated key using
public-key encryption, you shouldn’t make it too long or it’ll be too big to be
encrypted. Unless there’s a specific reason for choosing the key length you should
use the cryptGener ateK ey function and let cryptlib choose the correct key length for
you.

The only time when you may need to explicitly specify a key length is when you’re
using very short (in the vicinity of 512 bits) public keysto export Blowfish, RC2,
RC4, or RC5 keys. In this case the public key isn’t large enough to export the full-
length keys for these algorithms, and cryptExportK ey will return the error code
CRYPT_ERROR_OVERFLOW to indicate that there’s too much data to export. The
solution isto either specify a shorter key length using the CRYPT_CTXINFO_-

KEY SIZE attribute or, preferably, to use alonger public key. Thisisonly aproblem
with very short public keys, when using the minimum recommended public key size
of 1024 bits this situation will never occur.

Cdlling cryptGenerateK ey only makes sense for conventional, public-key, or MAC
contexts and will return the error code CRYPT_ERROR_NOTAVAIL for ahash
context to indicate that this operation is not available for hash algorithms. The
generation of public/private key pairs has special requirements and is covered in
“Key Generation” on page 131.

To summarise the steps so far, you can set up an encryption context in its smplest
form so that it’s ready to encrypt data with:

CRYPT_CONTEXT crypt Cont ext ;

crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO 3DES);
crypt Gener at eKey(crypt Context);

/* Encrypt data */

crypt DestroyCont ext (crypt Context);

Once akey is generated into a context, you can’t load or generate a new key over the
top of it or change the encryption mode (for conventional encryption contexts). If
you try to do this, cryptlib will return CRYPT_ERROR_INITED to indicate that a
key is already loaded into the context.

Deriving aKey into an Encryption Context 185

Deriving a Key into an Encryption Context

Sometimes you will need to obtain afixed-format encryption key for a context from a
variable-length password or passphrase, or from any generic keying material. You
can do this by deriving akey into a context rather than loading it directly. Deriving a
key converts arbitrary-format keying information into the particular form required by
the context, as well as providing extra protection against password-guessing attacks
and other attacks that might take advantage of knowledge of the keying materials’
format.

The key derivation process takes two sets of input data, the keying material itself
(typically a password), and a salt value which is combined with the password to
ensure that the key is different each time (so even if you reuse the same password
multiple times, the key obtained from it will change each time). This ensures that
even if one password-based key is compromised, all the others remain secure.

The salt attribute isidentified by CRYPT_CTXINFO_KEYING_SALT and rangesin
length from 64 bits (8 bytes) up to CRYPT_MAX_HASHSIZE. Using an 8-byte salt
isagood choice. The keying information attribute isidentified by CRYPT_-
CTXINFO_KEYING_VALUE and can be of any length. To derive akey into a
context you would use:

crypt Set AttributeString(cryptContext, CRYPT_CTXH NFO KEYI NG SALT,
salt, saltLength);

crypt Set AttributeString(cryptContext, CRYPT_CTXH NFO _KEYI NG VALUE,
passPhrase, passPhraselength);

which takes the supplied passphrase and salt and converts them into an encryption
key in aformat suitable for use with the encryption context. Use of the key
derivation capability is strongly recommended over loading keys directly into an
encryption context by setting the CRYPT_CTXINFO_KEY attribute since this often
requires intimate knowledge of algorithm details such as how keys of different
lengths are handled, how key bits are used, specia considerations for key material,
and so on.

Note that you have to set a salt value before you set the keying information attribute.
If you don’t supply a salt, cryptlib will return CRYPT _ERROR_NOTINITED when
you try to supply the keying information to indicate that the salt hasn’t been set yet.

If you don’t want to manage a unique salt value per key, you can set the salt to afixed
value (for example 64 bits of zeroes), although thisis strongly discouraged since it
means each use of the password will produce the same encryption key.

By default the key derivation process will repeatedly hash the input salt and keying
information with the HMAC-SHA1 MAC function to generate the key, and will
iterate the hashing process 500 times to make a passphrase-guessing attack more
difficult®. If you want to change these values you can set the CRYPT_CTXINFO -
KEYING_ALGO and CRYPT_CTXINFO_KEYING_ITERATIONS attributesfor
the context before setting the salt and keying information attributes. For example to
change the number of iterations to 1000 for extra security before setting the salt and
key you would use:

crypt Set Attribute(cryptContext, CRYPT_CTXI NFO_KEYI NG | TERATI ONS,
1000);

crypt Set AttributeString(cryptContext, CRYPT_CTXH NFO _KEYI NG SALT,
salt, saltLength);

crypt Set AttributeString(cryptContext, CRYPT_CTXH NFO _KEYI NG VALUE,
passPhrase, passPhraselLength);

cryptlib will then use this value when deriving the key. Y ou can aso change the
default hash algorithm and iteration count using the cryptlib configuration options
CRYPT_OPTION_KEYING_ALGO and CRYPT_OPTION_KEYING_-
ITERATIONS as explained in “Working with Configuration Options” on page 274.

21t actually does a lot more than just hashing the passphrase, including performing processing steps designed to
defeat various sophisticated attacks on the key-hashing process.

186 Encryption and Decryption

To summarise the steps so far, you can set up an encryption context in its simplest
form so that it’s ready to encrypt data with:

CRYPT_CONTEXT crypt Cont ext ;

crypt Creat eCont ext (&crypt Context, cryptUser, CRYPT_ALGO 3DES);

crypt Set AttributeString(cryptContext, CRYPT_CTXH NFO KEYI NG SALT,
salt, saltLength);

crypt Set AttributeString(cryptContext, CRYPT_CTXH NFO _KEYI NG VALUE,
passPhrase, strlen(passPhrase));

/* Encrypt data */
crypt DestroyCont ext (crypt Context);

Since public-key encryption uses a different type of key than other context types, you
can’t derive a key into a public or private key context.

Once a key is derived into a context, you can’t load or generate a new key over the
top of it or change the encryption mode (for conventional encryption contexts). |If
you try to do this, cryptlib will return CRYPT_ERROR_INITED to indicate that a
key is aready loaded into the context.

Loading a Keys into an Encryption Context

If necessary you can also manually load araw key into an encryption context by
setting the CRYPT_CTXINFO_KEY attribute. For example to load araw 128-bit
key “0123456789ABCDEF” into an IDEA conventional encryption context you
would use:

crypt Set AttributeString(cryptContext, CRYPT_CTX NFO _KEY,
"0123456789ABCDEF", 16);

Unless you need to perform low-level key management yourself, you should avoid
loading keys directly in this manner. The previous key load should really have been
done by setting the CRYPT_CTXINFO_KEYING_SALT and CRYPT_CTXINFO_-
KEYING_VALUE attributesto derive the key into the context.

For public-key encryption a key will typicaly have anumber of components so you
can’t set the key directly. More information on working with CRYPT PKCINFO
data structures is given in “Loading Public/Private Keys” on page 187.

Once a key is loaded into a context, you can’t load or generate a new key over the top
of it or change the encryption mode (for conventional encryption contexts). If you try
to do this, cryptlib will return CRYPT_ERROR_INITED to indicate that akey is
aready loaded into the context.

If you need to reserve space for conventional and public/private keys, you can use the
CRYPT_MAX_KEYSIZE and CRYPT_MAX_PKCSIZE defines to determine the
mount of memory you need. No key used by cryptlib will ever need more storage
than the settings given in these defines. Note that the CRYPT_MAX_PKCSIZE
value specifies the maximum size of an individual key component. Since
public/private keys are usually composed of a number of components the overall size
islarger than this.

Working with Initialisation Vectors

For conventional-key encryption contexts you can also load an initialisation vector
(IV) into the context if the encryption mode being used supports an IV, athough
when you’re using a context to encrypt data you can leave this to cryptlib to perform
automatically when you call cryptEncrypt for thefirst time. 1Vsare required for the
CBC, CFB, and OFB encryption modes. Toload an |V you set the
CRYPT_CTXINFO_1V attribute:

crypt Set AttributeString(cryptContext, CRYPT_CTXINFO IV, iv, ivSize);

To retrieve the 1V that you have loaded or that has been generated for you by cryptlib
you read the value of the attribute:

Loading Public/Private Keys 187

unsi gned char iv[CRYPT_MAX | VSIZE];
int ivSize,;

cryptGet AttributeString(cryptContext, CRYPT_CTXINFO IV, iv,
& vSize);
Trying to get or set the value of this attribute will return the error code CRYPT_-
ERROR_NOTAVAIL for ahash, MAC, or public key encryption context or
conventional encryption context with an encryption mode that doesn’t use an IV to
indicate that these operations are not available for this type of context.

If you need to reserve space for IVs, you can use the CRYPT_MAX_IVSIZE define
to determine the mount of memory you need. No IV used by cryptlib will ever need
more storage than the setting given in this define.

Loading Public/Private Keys

Since public/private keys typically have multiple components, you can’t Set them
directly asaCRYPT_CTXINFO_KEY attribute. Instead, you load them into a
CRYPT_PKCINFO structure and then set that asa CRYPT_CTXINFO_KEY _-
COMPONENTS attribute. There are several CRY PT_PKCINFO structures, one for
each class of public-key algorithm supported by cryptlib. The CRYPT_PKCINFO
structures are described in “CRY PT_PKCINFO_xxx Structures” on page 313.

Aswith public/private key pair generation, you need to set the CRYPT_CTXINFO_-
LABEL attribute to aunique value used to identify the key before you can load a key
value. If you try to load a key into a context without first setting the key label,
cryptlib will return CRYPT _ERROR_NOTINITED to indicate that the label hasn’t
been set yet.

Once a key is loaded into a context, you can’t load or generate a new key over the top
of it. If you try to do this, cryptlib will return CRYPT_ERROR_INITED to indicate
that akey is aready loaded into the context.

If you need to reserve space for public/private key components, you can use the
CRYPT_MAX_PKCSIZE define to determine the mount of memory you need. No
key used by cryptlib will ever need more storage than the settings given in these
defines. Notethat the CRYPT_MAX_ PKCSIZE value specifies the maximum size
of an individua key component, Since public/private keys are usualy composed of a
number of components the overall sizeislarger than this.

Unless you explicitly need to load raw public/private key componentsinto an
encryption context, you should avoid loading keys directly in this manner and should
instead either generate the key inside the context or use the key database access
functions to load the key for you. These operations are described in “Key
Generation” on page 131 and “Key Storage” on page 133.

In addition, because the public key component manipul ation functions need to
perform low-level accessto the CRY PT_PKCINFO data structures, they are
implemented as C preprocessor macros and can’t be translated into other languages
such as Visual Basic and Delphi. If you’re programming in a language other than C
or C++, you should aways use key generation or keyset objects to load and store
keys rather than trying to load them using CRYPT_CTXINFO_KEY_-
COMPONENTS.

Loading Multibyte Integers

The multibyte integer strings that make up public and private keys are stored in big-
endian format with the most significant digit first:

0000000000000000000000000000000XXXXXXXXXXXXXXXXXXX
For example the number 123456789 would be stored in big-endian format as:
000123456789

(with the remainder of the value padded with zeroes). In practice the numbers won’t
be stored with excessively long precision as they are in the above examples, so

188

Encryption and Decryption

instead of being stored with 50 digits of precision of which 41 bytes contain zero
padding, they would be stored with 9 digits of precision:

123456789

A multibyte integer therefore consists of two parameters, the dataitself and the
precision to which it is stored, specified in bits. When you load multibyte integer
components into a CRY PT_PKCINFO structure you need to specify both of these
parameters.

Before you can use the CRY PT_PKCINFO structure, you need to initialise it with
crypt | ni t Conponent s() , which takes as parameters a pointer to the
CRYPT_PKCINFO structure and the type of the key, either CRYPT_KEYTYPE -
PRIVATE or CRYPT_KEYTYPE_PUBLIC:

CRYPT_PKCI NFO_RSA r saKey;
crypt | nit Conponents(&rsaKey, CRYPT_KEYTYPE_ PRI VATE);

Now you can load the multibyte integer strings by using cr ypt Set Conponent (),
specifying a pointer to the value to be loaded, the multibyte integer data, and the
integer length in bits:

crypt Set Conponent ((& saKey)->n, nodulus, 1024);

crypt Set Conponent ((& saKey)->e, pubExponent, 17);
crypt Set Conponent ((& saKey)->d, privExponent, 1024);

Sincecr ypt Set Conponent () takes as parameter a pointer to the valueto be
loaded, it’s necessary to pass in the address as shown above when the

CRYPT PKCINFO structure is declared statically. If it’s dynamically allocated as in
the example below, this extra step isn’t necessary.

Once al the parameters are set up, you can use the result asthe CRYPT_CTXINFO_-
KEY_COMPONENTS as explained above. Once you’ve finished working with the
CRYPT_PKCINFO information, use cr ypt Dest r oyConponent s to destroy the
information:

crypt Dest royConponent s(& saKey);

The Diffie-Hellman, DSA, and Elgamal a gorithms share the same key format and al
use the CRYPT_PKCINFO_DLP structure to store their key components. DLPis
short for Discrete Logarithm Problem, the common underlying mathematical
operation for the three cryptosystems.

When loading key components, cryptlib performs avalidity check on the datato
detect invalid or suspicious key values. These can be used to compromise the
security of the key, for example to leak the private key in signatures made with it. If
cryptlib detects suspicious key components, it will return CRYPT_ERROR _-
PARAMS3 to indicate that the key components are invalid.

To summarise the steps so far, you would load a public key into aDSA context with:

CRYPT_CONTEXT crypt Cont ext ;
CRYPT_PKCI NFO_DLP *dI pKey;

crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO DSA);

crypt Set AttributeString(cryptContext, CRYPT_CTXH NFO LABEL, "DSA key",
7);

dl pKey = malloc(sizeof (CRYPT_PKCINFO DLP));

crypt|nit Conponents(dl pKey, CRYPT_KEYTYPE_PUBLIC);

crypt Set Conponent (dl pKey->p, ...);

crypt Set Conponent (dl pKey- >g,

crypt Set Conponent (dl pKey->q, ...

crypt Set Conponent (dl pKey->y, ...);

cryptSet AttributeString (cryptContext, CRYPT_CTXI NFO KEY_ COVPONENTS,
dl pKey, sizeof(CRYPT_PKCINFO DLP));

crypt Dest r oyConponent s(dl pKey);

— |

The context is now ready to be used to verify a DSA signature on a piece of data. If
you wanted to load a DSA private key (which consists of one extra component), you
would add:

Querying Encryption Contexts 189

crypt Set Conponent (dl pKey->x, ...);
after they component isloaded. This context can then be used to sign a piece of data.

Querying Encryption Contexts

A context has a number of attributes whose values you can get to obtain information
about it. These attributes contain details such as the algorithm type and name, the key
size (if appropriate), the key label (if this has been set), and various other details. The
information attributes are:

Value Type Description

CRYPT_CTXINFO_ALGO N Algorithm and mode
CRYPT_CTXINFO_MODE

CRYPT_CTXINFO_BLOCKSIZE N Cipher block size in bytes

CRYPT_CTXINFO_IVSIZE N Cipher IV sizein bytes
CRYPT_CTXINFO_KEYING_- N/S The agorithm and number of
ALGO iterations used to transform a
CRYPT_CTXINFO_KEYING_- user-supplied key or password
ITERATIONS into an agorithm-specific key for
CRYPT_CTXINFO_KEYING_- the context, and the salt value
SALT used in the transformation process
CRYPT_CTXINFO_KEYSIZE N Key sizein bytes

CRYPT_CTXINFO_LABEL Key label

CRYPT_CTXINFO_NAME_ALGO S Algorithm and mode name
CRYPT_CTXINFO_NAME_MODE

(2]

For example to obtain the algorithm and mode used by an encryption context, you
would use:

CRYPT_ALGO TYPE crypt Al go;
CRYPT_MODE_TYPE crypt Mode;

cryptGet Attribute(cryptContext, CRYPT_CTXINFO ALGD &cryptAl go);
cryptGet Attribute(cryptContext, CRYPT_CTXI NFO MODE, &cryptMode);

Although these attributes are listed as context attributes, they also apply to anything
else that can act as a context action object, for example you can obtain agorithm,
mode, and key size values from a certificate since it can be used to encrypt or sign
just like a context:

CRYPT_ALGO TYPE crypt Al go;
CRYPT_MODE_TYPE crypt Mode;

cryptGet Attribute(cryptCertificate, CRYPT_CTXI NFO ALGO, &cryptAlgo);
cryptGet Attribute(cryptCertificate, CRYPT_CTXH NFO MODE, &crypt Mode);

If any of the user-supplied attributes haven’t been set and you try to read their value,
cryptlib will return CRYPT_ERROR_NOTINITED.

Using Encryption Contexts to Process Data

To encrypt or decrypt ablock of data using an encryption context action object you
use:

crypt Encrypt(cryptContext, buffer, length);
and:
crypt Decrypt (cryptContext, buffer, length);

The datais encrypted in place, so that plaintext datais replaced by encrypted data and
vice versa. If the encryption context doesn’t support the operation you are trying to
perform (for example calling cryptEncrypt with a DSA public key), the function will
return CRYPT_ERROR_NOTAVAIL to indicate that this functionality is not

190 Encryption and Decryption

available. If the key loaded into an encryption context doesn’t allow the operation
you are trying to perform (for example calling cryptDecr ypt with an encrypt-only
key), the function will return CRYPT_ERROR_PERMISSION to indicate that the
context doesn’t have the required key permissions to perform the requested operation.

Conventional Encryption

If you’re using a block cipher in ECB or CBC mode, the encrypted data length must
be amultiple of the block size. If the encrypted data length is not a multiple of the
block size, the function will return CRY PT_ERROR_PARAM3 to indicate that the
length isinvalid. To encrypt abyte at atime you should use a stream encryption
mode such as CFB or OFB, or better yet use an envel ope which avoids the need to
handle a gorithm-specific details.

If an IV is required for the decryption and you haven’t loaded one into the context by
setting the CRYPT_CTXINFO_IV attribute, cryptDecrypt will return CRYPT _-
ERROR_NOTINITED to indicate that you need to load an IV before you can decrypt
the data. If the first 8 bytes of decrypted data are corrupted then you haven’t set up
the IV properly for the decryption. More information on setting up IVsisgivenin
“Working with Initialisation VVectors” on page 186. The general concept behind
using 1Vs (in this case with automatic IV generation) is:

unsi gned char iv[CRYPT_MAX_|VSIZE];
int ivSize;

/* Encrypt data */
crypt Encrypt (cryptContext, data, datalength);
cryptGet AttributeString(cryptContext, CRYPT_CTXINFO IV, iv, & vSize

)

/* Conmuni cate the encrypted data and |V to the recipient */
[* .0 0*

/* Decrypt data */
crypt Set AttributeString(cryptContext, CRYPT_CTXINFO IV, iv, ivSize);
crypt Decrypt (cryptContext, data, datalLength)

Once an encryption context isset up, it can only be used for processing asingle data
stream in an operation such as encrypting data, decrypting data, or hashing a
message. A context can’t be reused to encrypt a second message after the first one
has been encrypted, or to decrypt data after having encrypted data. Thisis because
theinternal state of the context is determined by the operation being performed with
it, and performing two different operations with the same context causes the state
from the first operation to affect the second operation. For exampleif you use an
encryption context to encrypt two different files, cryptlib will see a single continuous
data stream (since it doesn’t know or care about the structure of the data being
encrypted). Asaresult the second fileistreated as a continuation of the first one, and
can’t be decrypted unless the context is used to decrypt the first file before decrypting
the second one. Because of this you should aways create a new encryption context
for each discrete data stream you will be processing, and never reuse contexts to
perform different operations. The one exception to this rule is when you’re using
cryptlib envelopes (described in “Data Enveloping” on page 60), where you can push
asingle encryption context into as many envelopes asyou like. Thisisbecause an
envelope takes its own copy of the encryption context, leaving the origina

untouched.

In practice this isn’t strictly accurate, you can encrypt multiple independent data
streams with a single context by loading anew |V for each new stream using the
CRYPT_CTXINFO_V attribute:

/* Set an IV and encrypt data */

crypt Set AttributeString(cryptContext, CRYPT_CTXI NFO IV, ivl,
iviLength);

crypt Encrypt (crypt Context, datal, datallength);

Using Encryption Contextsto ProcessData 191

/* Set a new |V and encrypt nore data */

crypt Set AttributeString(cryptContext, CRYPT_CTXI NFO IV, iv2,
iv2Length);

crypt Encrypt (cryptContext, data2, data2lLength);

If you don’t understand how this would work then it’s probably best to use a new
context for each data stream.

Public-key Encryption

Hashing

The public-key a gorithms encrypt a single block of data equal in length to the size of
the public key being used. For example if you are using a 1024-bit public key then
the length of the datato be encrypted should be 128 bytes. If the encrypted data
length isn’t the same as the key size, the function will return CRYPT_ERROR_-
PARAMa3 to indicate that the length isinvalid. Preparation of the block of datato be
encrypted requires specia care and is covered in appropriate security standards. |If
cryptlib detects that it’s being passed incorrectly-formatted input data, it will return
CRYPT_ERROR_BADDATA to indicate that the data being passed to the
en/decryption function isinvalid. Ingeneral you should use high-level functions such
as cryptExportKey/ cryptimportK ey and cryptCreateSignatur e/
cryptCheckSignatur e rather than cryptEncrypt and cryptDecrypt when working
with public-key algorithms.

If you’re using a public or private key context which is tied to a certificate or crypto
device, the direct use of cryptEncrypt and cryptDecrypt could be used to bypass
security constraints placed on the context (for example by changing the data
formatting used with an encryption-only RSA private key context it’s possible to
misuse it to generate signatures even if the context is specifically intended for non-
signature use). Because of this, if a context istied to a certificate or a crypto device,
it can’t be used directly with these low-level functions but only with a higher-level
function like cryptCreateSignatur e or with the enveloping code, which guarantee
that a context can’t be misused for a disallowed purpose. If you try to use a
constrained context of thistype directly, the function will return CRYPT_ERROR _-
PERMISSION to indicate that the context doesn’t have the required permissions to
perform the requested operation.

Hash and MAC algorithms don’t actually encrypt the data being hashed and can be
called viacryptEncrypt or cryptDecrypt. They require afinal call with the length
set to 0 as a courtesy call to indicate to the hash or MAC function that thisisthe last
datablock and that the function should take whatever special action is necessary for
this case:

crypt Encrypt (hashContext, buffer, length);
crypt Encrypt (hashContext, buffer, 0);

If you call cryptEncrypt or cryptDecrypt after making the final call with the length
set to O, the function will return CRYPT_ERROR_COMPLETE to indicate that the
hashing has completed and cannot be continued. Once the hashing is complete, the
hash value is made available asthe CRYPT_CTXINFO_HASHVALUE attribute that
you can read in the usual manner:

unsi gned char hash[CRYPT_MAX_ HASHSI ZE];
i nt hashLengt h;

cryptGet AttributeString(cryptContext, CRYPT_CTXI NFO HASHVALUE, hash,
&hashLength);

Y ou can reset a hash or MAC context by deleting the CRYPT_CERTINFO _-
HASHVALUE attribute, which allows you to reuse the context to generate another
hash or MAC value. Reusing a context in this manner avoids the overhead of
creating a context, and in the case of a MAC context the somewhat complex key
processing which is required when the context isfirst used:

192 Encryption and Decryption

unsi gned char hashl[CRYPT_MAX_ HASHSI ZE];
unsi gned char hash2[CRYPT_MAX_HASHSI ZE];
int hashlLength, hash2Lengt h;

/* Hash or MAC data */

[* .0 %

cryptGet AttributeString(cryptContext, CRYPT_CTXI NFO HASHVALUE, hashil,
&hashllLength);

/* Delete the attribute to allow the context to be reused */
crypt Del eteAttribute(cryptContext, CRYPT_CTXI NFO HASHVALUE);

/* Hash or MAC nore data */

[* .00*

cryptGet AttributeString(cryptContext, CRYPT_CTXH NFO HASHVALUE, hash2,
&hash2Length);

Exporting aKey 193

Exchanging Keys
Although you can encrypt/decrypt or MAC data with an encryption context, the key
you’re using is locked inside the context and (if you used cryptGenerateK ey to
create it) won’t be known to you or the person you’re trying to communicate with.
To share the key with another party, you need to export it from the context in a secure
manner and the other party needs to import it into an encryption context of their own.
Because the key is a very sensitive and valuable resource, you can’t just read it out of
the context, but need to take special stepsto protect the key once it leaves the context.
Thisistaken care of by the key export/import functions.

These functions deal only with the export and import of keys for conventional
encryption or MAC contexts. Public/private keys have specialised requirements and
can’t be exported directly in the same manner as conventional encryption or MAC
keys. Public keys, which are composite values consisting of multiple components,
must be converted into certificates in order to be shared with another party.
Certificates are covered in “Certificates and Certificate Management” on page 149.
Private keys can’t be exported as such, but can only be stored in keysets or crypto
devices. Keysets are covered in “Key Storage” on page 133, and crypto devices are
covered in “Encryption Devices and Modules” on page 265.

Exporting a Key

To exchange a conventional encryption or MAC key with another party, you use the
cryptExportKey and cryptlmportK ey functionsin combination with a conventional
or public-key encryption context or public key certificate. Let’s say you’ve created a
key in an encryption context cr ypt Cont ext and want to send it to someone whose
public key isin the encryption context pubKey Cont ext (you can also passina
private key if you want, cryptExportKey will only use the public key components).
To do this you’d use:

CRYPT_CONTEXT pubKeyCont ext, crypt Context;

voi d *encrypt edKey;
i nt encrypt edKeyLengt h;

/* Generate a key */
crypt Creat eCont ext (&crypt Context, cryptUser, CRYPT_ALGO 3DES);
crypt Gener at eKey(crypt Context);

/* Allocate menory for the encrypted key */
encryptedKey = mall oc(encrypt edKeyMaxLength);

/* Export the key using a public-key encrypted blob */
crypt Export Key(encrypt edKey, encryptedKeyMaxLength,
&encrypt edKeyLengt h, pubKeyContext, cryptContext);

The resulting public-key encrypted blaob is placed in the memory buffer pointed to by
encr ypt edKey of maximum sizeencr ypt edKeyMaxLengt h, and the actual
lengthisstored in encr ypt edKeyLengt h. Thisleadsto asmall problem: How do
you know how big to make the buffer? The answer isto use cryptExportKey totell
you. If you passin anull pointer for encr ypt edKey, the function will set
encr ypt edKeyLengt h to the size of the resulting blob, but not do anything el se.
Y ou can then use code like:

crypt Export Key(NULL, 0O, &encryptedKeyMaxLength, pubKeyContext,

crypt Context);
encryptedKey = mall oc(encrypt edKeyMaxLength);

crypt Export Key(encrypt edKey, encryptedKeyMaxLength,
&encrypt edKeyLengt h, pubKeyContext, cryptContext);

to create the exported key blob. Note that due to encoding issues for some algorithms
the final exported blob may be one or two bytes smaller than the size which is
initially reported, since the true size can’t be determined until the key is actually
exported. Alternatively, you can just reserve areasonably sized block of memory and
use that to hold the encrypted key. ‘“Reasonably sized” means a few Kb, a 4K block

194 Exchanging Keys

is plenty (an encrypted key blob for a 1024-bit public key is only about 200 bytes
long).

Y ou can aso use apublic key certificate to export akey. If, instead of apublic key
context, you had akey certificate contained in the certificate object
cryptCertificat e, thecodefor the previous example would become;

CRYPT_CERTI FI CATE cryptCertificate;
CRYPT_CONTEXT crypt Cont ext ;

voi d *encrypt edKey;

int encrypt edKeylLengt h;

/* Generate a key */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO 3DES);
crypt Gener at eKey(crypt Context);

/* Allocate menory for the encrypted key */
encryptedKey = mall oc(encrypt edkeyMaxLength);

/* Export the key using a public-key encrypted blob */
crypt Export Key(encryptedKey, encryptedKeyMaxLength,
&encrypt edKeyLength, cryptCertificate, cryptContext);

The use of key certificates is explained in “Certificates and Certificate Management”
on page 149.

If the encryption context contains too much data to encode using the given public key
(for example trying to export an encryption context with a 600-bit key using a 512-bit
public key) the function will return CRY PT_ERROR_OVERFLOW. Asarule of
thumb a 1024-bit public key should be large enough to export the default key sizes
for any encryption context.

If the public key is stored in an encryption context with a certificate associated with it
or in akey certificate, there may be constraints on the key usage that are imposed by
the certificate. If the key can’t be used for the export operation, the function will
return CRYPT _ERROR_PERMISSION to indicate that the key isn’t valid for this
operation, you can find out more about the exact nature of the problem by reading the
error-related attributes as explained in “Extended Error Reporting” on page 284.

Exporting using Conventional Encryption

You don’t need to use public-key encryption to export a key blob, it’s also possible to
use a conventional encryption context to export the key from another conventional
encryption context. For exampleif you were using the key derived from the
passphrase “This is a secret key” (which was also known to the other party) in an
encryption context key Cont ext you would use:

CRYPT_CONTEXT sharedCont ext, keyContext;
voi d *encrypt edKey;
int encrypt edKeyLengt h;

/* Derive the export key into an encryption context */

crypt Creat eCont ext (&eyContext, cryptUser, CRYPT_ALGO 3DES);

crypt Set AttributeString(keyContext, CRYPT_CTXH NFO KEYI NG SALT, salt,
sal tLength);

crypt Set AttributeString(keyContext, CRYPT_CTXH NFO KEYI NG VALUE, "This
is a secret key", 20);

/* Generate a key */
crypt Creat eCont ext (&crypt Context, cryptUser, CRYPT_ALGO 3DES);
crypt Gener at eKey(crypt Context);

/* Allocate menory for the encrypted key */
encryptedKey = mall oc(encrypt edkeyMaxLength);

/* Export the key using a conventionally encrypted blob */
crypt Export Key(encryptedKey, encryptedKeyMaxLength,
&encrypt edKeyLengt h, keyContext, cryptContext);

You don’t need to use a derived key to export the session key, you could have loaded
the context in some other manner (for example from a crypt device such as a smart

Importing aKey 195

card), but the sample code shown above, and further on for the key import phase,
assumes that you’ll be deriving the export/import key from a password.

This kind of key export isn’t as convenient as using public keys since it requires that
both sides know the encryption key in key Cont ext (or at least know how to derive
it from some other keying material). One case where it’s useful is when you want to
encrypt data such as adisk file that will be decrypted later by the same person who
originally encrypted it. By prepending the key blob to the start of the encrypted file,
you can ensure that each file is encrypted with a different session key (thisis exactly
what the cryptlib enveloping functions do). It also meansyou can change the
password on the file by changing the exported key blob, without needing to decrypt
and re-encrypt the entire file.

Importing a Key

Now that you’ve exported the conventional encryption or MAC key, the other party
needs to import it. Thisis done using the cryptlmportKey function and the private
key corresponding to the public key used by the sender:

CRYPT_CONTEXT pri vKeyCont ext, cryptContext;

/* Create a context for the inported key */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO 3DES);

/* Import the key fromthe public-key encrypted blob */
crypt | mport Key(encryptedKey, encryptedKeylLength, privKeyContext,
crypt Cont ext);

Note the use of CRYPT_ALGO_3DES when creating the context for the imported
key, this assumes that both sides have agreed in advance on the use of a common
encryption algorithm to use (in this case triple DES). If the algorithm information
isn’t available, you’ll have to negotiate the details in some other way. This is
normally done for you by cryptlib’s enveloping code but isn’t available when
operating at this lower level.

To summarise, sharing an encryption context between two parties using public-key
encryption involves the following steps:
/* Party A creates the required encryption context and generates a key
intoit */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO 3DES);
crypt Gener at eKey(crypt Context);

/* Party A exports the key using party B's public key */
crypt Export Key(encrypt edKey, encryptedKeyMaxLength,
&encrypt edKeyLengt h, pubKeyContext, cryptContext);

/* Party B creates the encryption context to inport the key into */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO 3DES);

/* Party B inmports the key using their private key */
crypt | mport Key(encryptedKey, encryptedKeylLength, privKeyContext,
crypt Context);

If the public key is stored in an encryption context with a certificate associated with it
or in akey certificate, there may be constraints on the key usage that are imposed by
the certificate. If the key can’t be used for the import operation, the function will
return CRYPT _ERROR_PERMISSION to indicate that the key isn’t valid for this
operation. You can find out more about the exact nature of the problem by reading
the error-related attributes as explained in “Extended Error Reporting” on page 284.

Importing using Conventional Encryption

If the key has been exported using conventional encryption, you can again use
conventional encryption to import it. Using the same key derived from the
passphrase “This is a secret key” that was used in the key export example, you would
use:

196 Exchanging Keys

CRYPT_CONTEXT keyCont ext, crypt Context;

/* Derive the inport key into an encryption context */

crypt Creat eCont ext (&eyContext, cryptUser, CRYPT_ALGO 3DES);

crypt Set AttributeString(keyContext, CRYPT_CTXI NFO KEYI NG SALT, salt,
sal tLength);

crypt Set AttributeString(keyContext, CRYPT_CTXI NFO KEYI NG VALUE, "This
is a secret key", 20);

/* Create a context for the inported key */
crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO 3DES);

/* Import the key fromthe conventionally encrypted blob */
crypt | mport Key(encryptedKey, encryptedKeylLength, keyContext,
crypt Cont ext);

Since the salt is a random value that changes for each key you derive, you won’t
know it in advance so you’ll have to obtain it by querying the exported key object as
explained below. Once you’ve queried the object, you can use the salt which is
returned with the query information to derive the import key as shown in the above
code.

Querying an Exported Key Object

So far it’s been assumed that you know what’s required to import the exported key
blob you’re given (that is, you know which type of processing to use to create the
encryption context needed to import a conventionally encrypted blob). However
sometimes you may not know thisin advance, which is where the cryptQueryObject
function comesin. cryptQueryObject isused to obtain information on the exported
key blob that might be required to import it. You can also use cryptQueryObject to
obtain information on signature blobs, as explained in “Querying a Signature Object”
on page 200.

The function takes as parameters the object you want to query, and a pointer to a
CRYPT_OBJECT_INFO structure which is described in “CRYPT_OBJECT_INFO
Structure” on page 313. The object type will be either a CRYPT_OBJECT _-
ENCRYPTED_KEY for aconventionally encrypted exported key, a CRYPT_-
OBJECT_PKCENCRYPTED_KEY for apublic-key encrypted exported key, or a
CRYPT_OBJECT_KEYAGREEMENT for a key-agreement key. If you were given
an arbitrary object of an unknown type you’d use the following code to handle it:

CRYPT_OBJECT_I NFO crypt Obj ect | nf o;

crypt QueryCbj ect (obj ect, objectLength, &cryptObjectinfo);
i f(cryptjectlnfo.objectType == CRYPT_OBJECT_ENCRYPTED KEY)
/* lInmport the key using conventional encryption */;
el se
i f(cryptQjectlnfo.object Type == CRYPT_OBJECT_PKCENCRYPTED_ KEY | |
crypt Obj ect I nf 0. obj ect Type == CRYPT_OBJECT_KEYAGREEMENT)
/* Inport the key using public-key encryption */;
el se
/* Error */;

Any CRYPT _OBJECT INFO fields that aren’t relevant for this type of object are set
to null or zero as appropriate.

Once you’ve found out what type of object you have, you can use the other
information returned by cryptQueryObject to process the object. For both
conventional and public-key encrypted exported objects you can find out which
encryption algorithm and mode were used to export the key usingthe cr ypt Al go
and cr ypt Mode fields. For conventionally encrypted exported objects you can
obtain the salt needed to derive the import key fromthesal t andsal t Si ze fields.

Extended Key Export/Import

The cryptExportK ey and cryptlmportK ey functions described above export and
import conventional encryption or MAC keys in the cryptlib default format (which,
for the technically inclined, is the Cryptographic Message Syntax format with key
identifiers used to denote public keys). The default cryptlib format has been chosen

Key Agreement 197

to be independent of the underlying key format, so that it works equally well with any
key type including X.509 certificates, PGP/OpenPGP keys, and any other key storage
format.

Alongside the default format, cryptlib supports the export and import of keysin other
formats using cryptExpor tKeyEx. cryptExportK eyEx works like cryptExportK ey
but takes an extra parameter that specifies the format to use for the exported keys.

The formats are:
Format Description
CRYPT_FORMAT_CMS These are variations of the Cryptographic

CRYPT_FORMAT_SMIME Message Syntax and are also known as
S/MIME version 2 or 3 and PKCS#7.
Thisformat only allows public-key-based
export, and the public key must be stored
as an X.509 certificate.

CRYPT_FORMAT_CRYPTLIB Thisisthe default cryptlib format and can
be used with any type of key. When used
for public-key based key export, this
format is also known as a newer variation
of SSMIME version 3.

CRYPT_FORMAT_PGP Thisisthe OpenPGP format and can be
used with any type of key.

cryptimportK eyEx takes one extra parameter, a pointer to the imported key, which
isrequired for OpenPGP key import. For al other formatsthisvalueis set to NULL,
for OpenPGP the imported key parameter is set to CRYPT_UNUSED and the key is
returned in the extra parameter:

/* lmport a non-PGP format key */

crypt | mport KeyEx(encrypt edKey, encryptedKeylLength, inport Context,
crypt Context, NULL);

/* lmport a PGP-format key */
crypt | mport KeyEx(encrypt edKey, encryptedKeylLength, inport Context,
CRYPT_UNUSED, &crypt Context);

Thisis required because PGP’s handling of keys differs somewhat from that used
with other formats.

Key Agreement

The Diffie-Hellman key agreement capability is currently disabled since, unlike RSA
and conventional key exchange, there’s no widely-accepted standard format for it
(SSL/TLSand SSHv2 are handled internally by cryptlib and CMSis never used by
anything). If a widely-accepted standard emerges, cryptlib will use that format.
Previous versions of cryptlib used a combination of PKCS#3, PKCS#5, and PKCS
#7 formats and mechanisms to handle DH key agreement.

cryptlib supports a third kind of key export/import that doesn’t actually export or
import akey but merely provides a means of agreeing on a shared secret key with
another party. You don’t have to explicitly load of generate a session key for this one
since the act of performing the key exchange will create arandom, secret shared key.
To use thisform of key exchange, both parties call cryptExportKey to generate the
blob to send to the other party, and then both in turn call cryptlmportKey to import
the blob sent by the other party.

The use of cryptExportKey/cryptlmportKey for key agreement rather than key
exchange isindicated by the use of akey agreement algorithm for the context that
would normally be used to export the key. The key agreement algorithm used by
cryptlib is the Diffie-Hellman (DH) key exchange algorithm, CRYPT_ALGO_DH.
In the following code the resulting Diffie-Hellman context is referred to as
dhCont ext .

198

Exchanging Keys

Since there’s a two-way exchange of messages, both parties must create an identical
“template” encryption context so cryptExportKey knows what kind of key to export.
Lets assume that both sides know they’ll be using Blowfish in CFB mode. The first
step of the key exchange is therefore:

/* Create the key tenplate */

crypt Creat eCont ext (&crypt Context, cryptUser, CRYPT_ALGO BLOWFI SH);
crypt Set Attri bute(cryptContext, CRYPT_CTXI NFO MODE, CRYPT_MODE CFB);

/* Export the key using the tenplate */

crypt Export Key(encryptedKey, encryptedKeyMaxLength,
&encrypt edKeyLengt h, dhContext, cryptContext);

crypt DestroyCont ext (crypt Context);

Note that there’s no need to load a key into the template, since this is generated
automatically as part of the export/import process. In addition thetemplateis
destroyed once the key has been exported, since there’s no further use for it — it
merely acts as atemplate to tell cryptExportK ey what to do.

Both parties now exchange encr ypt edKey blabs, and then use:

crypt | mport Key(encryptedKey, encryptedKeylLength, dhContext,
crypt Context);

to create the cr ypt Cont ext containing the shared key.

The agreement process requires that both sides export their own encr ypt edKey
blobs before they import the other sidesencr ypt edKey blob. A side-effect of this
isthat it allows additional checking on the key agreement process to be performed to
guard against things like triple DES turning into 40-bit RC4 during transmission. If
you try to import another party’s encr ypt edKey blob without having first exported
your own encr ypt edKey blob, cryptlmportKey will return
CRYPT_ERROR_NOTINITED.

Key Agreement 199

Signing Data
Most public-key encryption a gorithms can be used to generate digital signatureson
data. A digital signatureis created by signing the contents of a hash context with a
private key to create a signature blob, and verified by checking the signature blob
with the corresponding public key.

To do this, you use the cryptCreateSignatur e and cryptCheck Signatur e functions

in combination with a public-key encryption context. Let’s say you’ve hashed some

datawith an SHA-1 hash context hashCont ext and want to sign it with your

private key in the encryption context si gkey Cont ext . To do this you’d use:
CRYPT_CONTEXT si gKeyCont ext, hashCont ext;

voi d *signature;
i nt signaturelLength;

/* Create a hash context */
crypt Creat eCont ext (&ashContext, cryptUser, CRYPT_ALGO SHA);

/* Hash the data */
crypt Encrypt (hashContext, data, datalLength);
crypt Encrypt (hashContext, data, 0);

/* Allocate menory for the signature */
signature = nalloc(signatureMaxLength);

/* Sign the hash to create a signature blob */

crypt Creat eSi gnature(signature, signatureMaxLength, &signaturelLength,
si gKeyCont ext, hashContext);

crypt Dest royCont ext (hashContext);

The resulting signature blob is placed in the memory buffer pointed to by
si gnat ur e of maximum size si gnat ur eMaxLengt h, and the actua length is
stored in si gnat ur eLengt h. Thisleads to the same problem with allocating the
buffer that was described for cryptExportK ey, and the solution is again the same:
Y ou use cryptCreateSignatur e to tell you how big to make the buffer. If you passin
anull pointer for si gnat ur e, the function will set si gnat ur eLengt h tothesize
of the resulting blob, but not do anything else. Y ou can then use code like:

crypt Creat eSi gnature(NULL, O, &signatureMaxLength, sigKeyContext,

hashCont ext);
signature = nalloc(signatureMaxLength);

crypt Creat eSi gnature(signature, signatureMaxLength, &signaturelLength,
si gKeyCont ext, hashContext);

to create the signature blob. Note that due to encoding issues for some algorithmsthe
final exported blob may be one or two bytes smaller than the size which isinitially
reported, since the true size can’t be determined until the signature is actually
generated. Alternatively, you can just allocate areasonably sized block of memory
and use that to hold the signature. “Reasonably sized” means a few Kb, a 4K block is
plenty (a signature blob for a 1024-bit public key is only about 200 bytes long).

Now that you’ve created the signature, the other party needsto check it. Thisisdone
using the cryptCheck Signatur e function and the public key or key certificate
corresponding to the private key used to create the signature (you can also passin a
private key if you want, cryptCheckSignatur e will only use the public key
components, although it’s not clear why you’d be in possession of someone else’s
private key). To perform the check using a public key context you’d use:

CRYPT_CONTEXT si gCheckCont ext, hashCont ext ;

/* Create a hash context */
crypt Creat eCont ext (&ashCont ext, cryptUser, CRYPT_ALGO SHA);

/* Hash the data */
crypt Encrypt (hashCont ext, data, datalLength);
crypt Encrypt (hashContext, data, 0);

200

Signing Data

/* Check the signature using the signature blob */

crypt CheckSi gnature(signature, signaturelLength, sigCheckContext,
hashCont ext);

crypt Dest royCont ext (hashContext);

If the signature isinvalid, cryptlib will return CRYPT_ERROR_SIGNATURE. A
signature check using akey certificateis similar, except that it uses a public key
certificate object rather than a public key context. The use of certificatesis explained
in “Certificates and Certificate Management” on page 149.

If the public key is stored in an encryption context with a certificate associated with it
or in akey certificate, there may be congtraints on the key usage that are imposed by
the certificate. If the key can’t be used for the signature or signature check operation,
the function will return CRY PT_ERROR_PERMISSION to indicate that the key isn’t
valid for this operation, you can find out more about the exact nature of the problem
by reading the error-related attributes as explained in “Extended Error Reporting” on
page 284. Note that the entire physical universe, including cryptlib, may one day
collapse back into an infinitely small space. Should another universe subsequently
re-emerge, the integrity of cryptlib signaturesin that universe cannot be guaranteed.

Querying a Signature Object

Just as you can query exported key blobs, you can also query signature blobs using
cryptQueryObject, which is used to obtain information on the signature. Y ou can
also use cryptQueryObject to obtain information on exported key blobs as explained
in “Querying an Exported Key Object” on page 196.

The function takes as parameters the object you want to query, and a pointer to a
CRYPT_OBJECT_INFO structure which is described in “CRYPT_OBJECT_INFO
Structure” on page 313. The object type will bea CRYPT_OBJECT_SIGNATURE
for asignature object. If you were given an arbitrary object of an unknown type
you’d use the following code to handle it:

CRYPT_OBJECT_I NFO crypt Obj ect | nf o;

crypt QueryCbj ect (obj ect, objectLength, &cryptObjectinfo);
i f(cryptQjectlnfo.object Type == CRYPT_OBJECT_SI GNATURE)
/* Check the signature */;
el se
/* Error */;

Any CRYPT _OBIJECT INFO fields that aren’t relevant for this type of object are set
to null or zero as appropriate.

Once you’ve found out what type of object you have, you can use the other
information returned by cryptQueryObject to process the object. The information
that you need to obtain from the blob is the hash algorithm that was used to hash the
signed data, which is contained in the hashAl go field. To hash apiece of data
before checking the signature on it you would use:

CRYPT_CONTEXT hashCont ext ;

/* Create the hash context fromthe query info */
crypt Creat eCont ext (&ashCont ext, crypt User,
crypt Obj ect | nfo. hashAl go);

/* Hash the data */
crypt Encrypt (hashCont ext, data, datalLength);
crypt Encrypt (hashContext, data, 0);

Extended Signature Creation/Checking

The cryptCreateSignatur eEx and cryptCheck Signatur eEx functions described
above create and verify signatures in the cryptlib default format (which, for the
technically inclined, is the Cryptographic Message Syntax format with key identifiers
used to denote public keys). The default cryptlib format has been chosen to be
independent of the underlying key format, so that it works equally well with any key
type including raw keys, X.509 certificates, PGP/OpenPGP keys, and any other key
storage format.

Extended Signature Creation/Checking 201

Alongside the default format, cryptlib supports the generation and checking of
signatures in other formats using cryptCr eateSignatur eEx and

cryptCheck Signatur eEx. cryptCreateSignatur eEx works like
cryptCreateSignatur e but takes two extra parameters, the first of which specifiesthe
format to use for the signature. The formats are:

Format Description

CRYPT_FORMAT_CMS These are variations of the Cryptographic

CRYPT_FORMAT_SMIME Message Syntax and are also known as
SIMIME version 2 or 3 and PKCS#7.
The key used for signing must have an
associated X.509 certificate in order to
generate this type of signature.

CRYPT_FORMAT_CRYPTLIB Thisisthe default cryptlib format and can
be used with any type of key. Thisformat
is aso known as a newer variation of
SMIME version 3.

CRYPT_FORMAT_PGP Thisis the OpenPGP format and can be
used with any type of key.

The second extra parameter required by cryptCreateSignatur eEx depends on the
signature format being used. With CRYPT_FORMAT_CRYPTLIB and

CRYPT FORMAT PGP this parameter isn’t used and should be set to CRYPT _-
UNUSED. With CRYPT_FORMAT_CMS/CRYPT_FORMAT_SMIME, this
parameter specifies optional additional information which isincluded with the
signature. The only real difference between the CRYPT_FORMAT_CMS and
CRYPT_FORMAT_SMIME signature format isthat CRYPT_FORMAT_SMIME
adds afew extra SIMIME-specific attributes that aren’t added by CRYPT -
FORMAT_CMS. Thisadditional information includes things like the type of data
being signed (so that the signed content can’t be interpreted the wrong way), the
signing time (so that an old signed message can’t be reused), and any other
information that the signer might consider worth including.

The easiest way to handle this extrainformation isto let cryptlib add it for you. If
you set the parameter to CRYPT_USE_DEFAULT, cryptlib will generate and add the
extrainformation for you:

voi d *signature;
i nt signatureMaxLength, signaturelLength;

crypt Creat eSi gnat ur eEx(NULL, 0, &signatureMaxLength,
CRYPT_FORMAT_CMS, si gKeyCont ext, hashCont ext, CRYPT_USE_DEFAULT);

signature = nmall oc(signatureMaxLength);

crypt Creat eSi gnat ureEx(si gnature, signatureMaxLength,
&si gnat ur eLengt h, CRYPT_FORMAT_CMS, si gKeyContext, hashCont ext,
CRYPT_USE_DEFAULT) ;

If you need more precise control over the extra information, you can specify it
yourself in the form of aCRYPT_CERTTYPE_CMS ATTRIBUTES certificate
object, which is described in more detail in “CMSSMIME Attributes” on page 253.
By default cryptlib will include the default signature attributes CRYPT_-
CERTINFO_CMS _SIGNINGTIME and CRYPT_CERTINFO_CMS -
CONTENTTYPE for you if you don’t specify it yourself, and for S/MIME signatures
it will dsoinclude CRYPT_CERTINFO_CMS SMIMECAPABILITIES. Youcan
disable this automatic including with the cryptlib configuration option CRYPT _-
OPTION_CMS_DEFAULTATTRIBUTES/CRYPT_OPTION_SMIME_-
DEFAULTATTRIBUTES as explained in “Working with Configuration Options” on
page 274, thiswill simplify the signature somewhat and reduce its size and
processing overhead:

202

Signing Data

CRYPT_CERTI FI CATE si gnat ureAttri butes;
voi d *signature;
i nt signatureMaxLength, signaturelLength;

/* Create the signature attribute object */

cryptCreateCert(&signatureAttributes, cryptUser,
CRYPT_CERTTYPE_CMS_ATTRI BUTES) ;

[* .00*

/* Create the signature including the attributes as extra information
*/

crypt Creat eSi gnat ureEx(NULL, 0, &signatureMaxLength,

CRYPT_FORMAT_CMS, si gKeyCont ext, hashCont ext, signatureAttributes

)

signature = mall oc(signatureMaxLength);

crypt Creat eSi gnat ureEx(si gnature, signatureMaxLength,
&si gnat ureLengt h, CRYPT_FORMAT_CMS, sigKeyContext, hashContext,
signatureAttributes);

crypt DestroyCert(signatureAttributes);

In general if you’re sending signed data to a recipient who is also using cryptlib-
based software, you should use the default cryptlib signature format which is more
flexible in terms of key handling and far more space-efficient (CMS/'SMIME
signatures are typically ten times the size of the default cryptlib format while
providing little extrainformation, and have a much higher processing overhead than
cryptlib signatures).

Aswith encrypted key export, PGP handles signing somewhat differently to any other
format. In particular, when you hash the data you can’t complete the processing by
hashing a zero-length value as with normal signatures, since PGP needs to hash in
assorted other data before it writes the signature. The same holds for signature
verification.

Extended signature checking follows the same pattern as extended signature
generation, with the extra parameter to the function being a pointer to the location
that receives the additiona information included with the signature. With the
CRYPT FORMAT_ CRYPTLIB format type, there’s no extra information present
and the parameter should be set to null. With CRYPT_FORMAT _CMY

CRYPT FORMAT SMIME, you can also set the parameter to null if you’re not
interested in the additional information, and cryptlib will discard it after using it as
part of the signature checking process. If you are interested in the additional
information, you should set the parameter to a pointer to a CRY PT_CERTIFICATE
object that cryptlib will create for you and populate with the additional signature
information. If the signature check succeeds, you can work with the resulting
information as described in “Other Certificate Object Extensions” on page 253:

CRYPT_CERTI FI CATE si gnat ureAttri butes;
int status;

status = crypt CheckSi gnat ureEx(signature, signaturelength,
si gCheckCertificate, hashContext, &signatureAttributes);
if(cryptStatusOK(status))
{

/* Work with extra signature information in signatureAttributes */
[* .0 0%

/* Clean up */
crypt DestroyCert(signatureAttributes);

Overview of Certificates 203

Certificates in Detail

Although a public/private key context can be used to store basic key components, it’s
not capable of storing any additional information such as the key owner’s name,
usage restrictions, and key validity information. Thistype of information is stored in
akey certificate, which is encoded according to the X.509 standard and sundry
amendments, corrections, extensions, profiles, and related standards. A certificate
consists of the encoded public key, information to identify the owner of the
certificate, other data such as usage and validity information, and adigital signature
that binds al thisinformation to the key.

There are anumber of different types of certificate objects, including actual
certificates, certification requests, certificate revocation lists (CRLS), certification
authority (CA) certificates, certificate chains, attribute certificates, and others. For
simplicity the following text refersto al of these items using the general term
“certificate”. Only where a specific type of item such asa CA certificate or a
certification request is required will the actual name be used.

cryptlib stores all of these itemsin ageneric CRYPT_CERTIFICATE container
object into which you can insert various items such as identification information and
key attributes, as well as public-key encryption contexts or other certificate objects.
Once everything has been added, you can fix the state of the certificate by signing it,
after which you can’t change it except by starting again with a fresh certificate object.

Working with certificates at the level described in this and the following chaptersis
extraordinarily difficult and painful. Before you decide to work with certificates at
this level, you should read “High-level vs. Low-level Certificate Operations” on page
149 to make absolutely certain you don’t want to use cryptlib’s high-level certificate
management capabilities instead.

Overview of Certificates

Public key certificates are objects that bind information about the owner of a public
key to the key itself. The binding is achieved by having the information in the
certificate signed by a certification authority (CA) that protects the integrity of the
certificate information and allows it to be distributed over untrusted channels and
stored on untrusted systems.

Y ou can request a certificate from a CA with a certification request, which encodes a
public key and identification information and binds them together for processing by
the CA. The CA responds to a certificate request with a signed certificate.

In addition to creating certificates, you may occasionally need to revoke them.
Revoked keys are handled via certificate revocation lists (CRLS), which work like
1970’s-vintage credit card blacklists by providing users with alist of certificates that
shouldn’t be honoured any more. In practice the blacklist approach was never
practical (it wasfor this reason that it was abandoned by credit card vendors twenty
years ago), has little support in actual implementations, and is typically handled by
going through the motions of a CRL check for form’s sake without really taking it
seriously. Revocations can only be issued by a CA, so to revoke a certificate you
either have to be a CA or have the co-operation of a CA. This chapter covers the
details of creating and issuing CRLSs.

Certificates and Standards Compliance

The key certificates used by most software today were originally specified in the
CCITT (now 1TU) X.509 standard, and have been extended via assorted SO, ANSI,
ITU, IETF, and national standards (generally referred to as “X.509 profiles™), along
with sundry amendments, meeting notes, draft standards, committee drafts, working
drafts, and other work-in-progress documents. X.509 version 1 (X.509v1) defined
the original, very basic certificate format, the latest version of the standard is version
4 (X.509v4), which defines all manner of extensions and additions and is till in the
process of being finalised and profiled. Compliance with the various certificate

204

Certificates in Detail

standards varies greatly. Most implementations manage to get the decade-old
X.509v1 more or less correct, and cryptlib includes specia codeto allow it to process
many incorrectly-formatted X.509v1-style certificates aswell as all correctly
formatted ones. However compliance with X.509v3 and X.509v4 profilesis
extremely patchy. Because of this, it is strongly recommended that you test the
certificates you plan to produce with cryptlib against any other software you want to
interoperate with. Although cryptlib produces certificates that comply fully with
X.509v3 and X.509v4 and related standards and recommendations, many other
programs (including several common web browsers and servers) either can’t process
these certificates or will process them incorrectly. Note that even if the other
software loads your certificate, it frequently won’t process the information contained
in it correctly, so you should verify that it’s handling it in the way you expect it to.

If you need to interoperate with a variety of other programs, you may need to find the
lowest common denominator that all programs can accept, which isusually X.509v1,
sometimes with one or two basic X.509v3 extensions. Alternatively, you can issue
different certificates for different software, atechnique which is currently used by
some CAsthat have a different certificate issuing process for Netscape, MSIE, and
everything else.

Much current certificate management software produces an amazing collection of
garbled, invalid, and just plain broken certificates that will be rejected by cryptlib as
not complying with the relevant security standards. To bypass this problem, it’s
possible to disable various portions of the certificate checking code in order to allow
these certificates to be processed. If acertificate failsto load you can try disabling
more and more certificate checking in cryptlib until the certificate can be loaded,
although disabling these checks will also void any guarantees about correct certificate
handling.

Finally, implementations are free to stuff anything they feel like into certain areas of
the certificate. cryptlib goes to some lengths to take thisinto account and process the
certificate no matter what data it findsin there, however sometimesit may find
something that it can’t handle. If you require support for special certificate
components (either to generate them or to process them), please contact the cryptlib
developers.

Certificate Compliance Level Checking

In order to allow cryptlib to process broken certificates, you can vary the level of
standards compliance checking that it performs on certificates. The level of checking
is controlled by the CRYPT_OPTION_CERT_COMPLIANCELEVEL configuration
option, with configuration options being explained in more detail in “Working with
Configuration Options” on page 274. This option can be set to one of the following
values:

Compliance L evel Description

CRYPT - Full compliance with X.509 and PK1X
COMPLIANCELEVEL_ standards. This checks and enforces all PKIX
PKIX_FULL extensions and requirements (note the warning

further down about what this entails). Thislevel
of checking will reject a significant number of
certificated/certificate chains in use today.

Overview of Certificates 205

CRYPT_- Reduced level of compliance with X.509 and
COMPLIANCELEVEL_ PKIX standards. Thisomits handling of
PKIX_PARTIAL problematic extensions such as name and policy

constraints, whose semantics no-one can quite
agree on, and a few other problematic
extensions defined in various certificate
standards, but checks and enforces all other
PKIX requirements. Aswith CRYPT_-
COMLPIANCELEVEL_PKIX_FULL, this
level of checking will reject a number of
certificatesin use today.

CRYPT_- Moderate level of checking equivaent to that
COMPLIANCELEVEL_ performed by most software in use today. Many
STANDARD of the more complex and/or obscure extensions

are ignored, which makes it possible to process
certificates generated by other software that
similarly ignores them. In addition many X.509
and PKIX compliance requirements are
significantly relaxed, so that (for example) the
mandatory key usage extension, if absent, may
be synthesised from other information present in

the certificate.
CRYPT - Minimal level of checking required to handle
COMPLIANCELEVEL _ severely broken certificates. All extensions
REDUCED except the ones controlling certificate and

certificate key usage are ignored, allowing
certificates with invalid or garbled contents to

be processed.
CRYPT_- No checking of certificate contents except for a
COMPLIANCELEVEL_ minimal check of the certificate key usage. This
OBLIVIOUS level of checking merely confirms that the

object looks vaguely like a certificate, and that
its signature verifies. This allows expired and
otherwise invalid certificates to be processed.

These reduced levels of checking are required in order to successfully process
certificates generated by other software. Although cryptlib-generated certificates can
be processed at the CRYPT_COMPLIANCELEVEL_ PKIX_FULL compliance level,
it may be necessary to lower the level al the way down to CRYPT_-
COMPLIANCELEVEL_OBLIVIOUS in order to handle certificates from other
applications. If you encounter a certificate that can’t be processed at agiven
compliance level, for example one that generates a CRY PT_ERROR_BADDATA on
import or aCRYPT_ERROR_INVALID when checked, you can either request that
the originator of the certificate fix it (thisis unlikely to happen) or lower the
compliance level until the certificate can be imported/checked.

At reduced compliance levels, cryptlib skips potentially problematic certificate
extensions, so that these will seem to disappear from the certificate as the compliance
level islowered. For example, the name constraints extension will be decoded at
CRYPT_COMPLIANCELEVEL_PKIX_FULL, but not a any lower level, so that
unlessthe certificate is processed at that level the extension will appear to be absent.
In some rare cases CAs may place the user’s email addressin the subject altName
instead of the subject DN. Setting the compliance level to one where this extension is
skipped will cause the email address to appear to vanish from the certificate, which
you need to take into account when you add the certificate to a keyset, since you’ll no
longer be able to fetch it from the keyset based on the email address. Conversely,
extra extensions that were skipped at lower levels may appear as the compliance level
isincreased and they are processed by cryptlib.

206

Certificates in Detail

One significant difference between CRYPT_COMPLIANCELEVEL_PKIX_FULL
and the levelsbelow it is that this level implements every quirk and peculiarity
required by the standard. Asaresult, the levels below this one process certificatesin
a straightforward, consistent manner, while CRYPT_COMPLIANCELEVEL -
PKIX_FULL can produce apparently inconsistent and illogical results when the more
unusual and peculiar requirements of the standard are applied. Compliance levels
below the highest one aren’t fully compliant with the standard but will never produce
unexpected results, while the highest compliance level isfully compliant but will
produce unexpected results where the standard mandates odd behaviour in handling
certain types of extensions or certificate paths.

The Certification Process

Obtaining a public key certificate involves generating a public key, creating a
certificate request from it, transmitting it to a CA who converts the certification
request into a certificate and signsit, and finaly retrieving the completed certificate
from the CA:

User CA
Generate Convert certificate
certificate request request to certificate
Verify new Add (optional) attributes
certificate and sign certificate

These steps can be broken down into a number of individual operations. Thefirst
step, generating a certification request, involves the following:

generate public/private key pair;

create certificate object;

add public key to certificate object;

add identification information to certificate object;
sign certificate object with private key;

export certification request for transm ssion to CA;
destroy certificate object;

The CA receives the certification request and turnsit into a certificate as follows:

import certification request;

check validity and signature on certification request;

create certificate object;

add certification request to certificate object;

add any extra infornation (e.g. key usage constraints) to certificate
obj ect ;

sign certificate object;

export certificate for transmi ssion to user;

destroy certificate objects;

Finally, the user receives the signed certificate from the CA and processesit as
required, typically writing it to a public key keyset or updating a private key keyset:
import certificate;
check validity and signature on certificate;

wite certificate to keyset;
destroy certificate object;

The details on performing these operations are covered in the following sections.

Creating/Destroying Certificate Objects

Certificates are accessed as certificate objects that work in the same general manner
as the other container objects used by cryptlib. Y ou create the certificate object with
cryptCreateCert, specifying the user who isto own the device object or
CRYPT_UNUSED for the default, normal user, the type of certificate you want to

Working with Certificate Attributes 207

create. Once you’ve finished with the object, you use cryptDestroyCert to destroy
it:

CRYPT_CERTI FI CATE cryptCertificate;

cryptCreateCert(&cryptCertificate, cryptUser, certificateType);

/* Work with the certificate */

crypt DestroyCert(cryptCertificate);
The available certificate types are:
Certificate Type Description
CRYPT_CERTTYPE_ATTRCERT Attribute certificate.
CRYPT_CERTTYPE_CERTCHAIN Certificate chain
CRYPT_CERTTYPE_CERTIFICATE Certificate or CA certificate.
CRYPT_CERTTYPE_CERTREQUEST Certification request
CRYPT_CERTTYPE_CRL Certificate revocation.

Note that the CRYPT_CERTIFICATE is passed to cryptCreateCert by reference, as
the function modifiesit when it creates the certificate object. In all other routines,
CRYPT_CERTIFICATE is passed by value.

Y ou can aso create a certificate object by reading a certificate from a public key
database, as explained in “Reading a Key from a Keyset” on page 141. Unlike
cryptCreateCert, thiswill read a complete certificate into a certificate object, while
cryptCreateCert only creates a certificate template that still needs various details
such as the public key and key owner’s name filled in.

A third way to create a certificate object isto import an encoded certificate using
cryptimportCert, which is explained in more detail in “Importing/Exporting
Certificates” on page 221. Like the public key read functions, thisimports a
complete certificate into a certificate object.

Working with Certificate Attributes

Certificate objects contain a number of basic attributes and an optional collection of
often complex data structures and components. cryptlib provides a variety of
mechanisms for working with them. The attributes in a certificate object can be
broken up into three basic types:

1. Basic certificate attributes such as the public key and timestamp/validity
information.

2. ldentification information such as the certificate subject and issuer name.

3. Certificate extensionsthat can contain almost anything. These are covered in
“Certificate Extensions” on page 234.

Although cryptlib provides the ability to manipulate al of these attributes, in practice
you only need to handle a small subset of them yourself. The rest will be set to
sensible defaults by cryptlib.

Apart from this, certificate attributes are handled in the standard way described in
“Working with Object Attributes” on page 33.

Certificate Structures

Certificates, attribute certificates, certification requests, and CRLs have their own,
often complex, structures that are encoded and decoded for you by cryptlib.
Although cryptlib provides the ability to control the details of each certificate object
in great detail if you require this, in practice you should leave the certificate
management to cryptlib. If you don’t fill in the non-mandatory fields, cryptlib will fill
them in for you with default values when you sign the certificate object.

208 Certificatesin Detail

Certificate chains are composite objects that contain within them one or more
complete certificates. These are covered in more detail in “Certificate Chains” on
page 225.

Attribute Certificate Structure
An X.509 attribute certificate has the following structure;
Field Description

Version The version number defines the attribute certificate
version and isfilled in automatically by cryptlib when
the certificate is signed.

HolderName The holder name identifies the holder of the attribute
certificate and is explained in more detail further on. If
you add a certificate request using CRY PT_-
CERTINFO_CERTREQUEST or acertificate using
CRYPT_CERTINFO_CERTIFICATE, thisfield will
befilled in for you.

Thisisacompositefield that you must fill in yourself
unlessit has already been filled in from a certification
request or certificate.

IssuerName Theissuer name identifies the attribute certificate
signer (usually an authority, the attribute-certificate
version of aCA), and isfilled in automatically by
cryptlib when the certificate is signed.

SignatureAlgorithm The signature algorithm identifies the algorithm used to
sign the attribute certificate, and isfilled in
automatically by cryptlib when the certificate is signed.

Serial Number The serial number is unique for each attribute
certificate issued by an authority, and isfilled in
automatically by cryptlib when the certificate is signed.
Y ou can obtain the value of thisfield with
CRYPT_CERTINFO_SERIALNUMBER, but you
can’t set it. If you try to set it, cryptlib will return
CRYPT_ERROR_PERMISSION to indicate that you
don’t have permission to set this field. The serial
number is returned as a binary string and not asa
numeric value, sinceit is often 15-20 bytes long.

cryptlib doesn’t use strict sequential numbering for the
certificates it issues since thiswould make it very easy
for athird party to determine how many certificates a
CA isissuing at any time.

Validity The validity period defines the period of time over
which an attribute certificateisvalid. CRYPT _-
CERTINFO_VALIDFROM specifiesthe validity start
period, and CRYPT_CERTINFO_VALIDTO specifies
the validity end period. If you don’t set these, cryptlib
will set them for you when the attribute certificate is
signed so that the certificate validity starts on the day of
issue and ends one year later. You can change the
default validity period using the cryptlib configuration
option CRYPT_OPTION_CERT_VALIDITY as
explained in “Working with Configuration Options” on
page 274.

cryptlib enforces validity period nesting when
generating an attribute certificate, so that the validity
period of an attribute certificate will be constrained to

Certificate Structures

209

Field

Description

Attributes

IssuerUniquel D

Extensions

Certificate Structure

lie within the validity period of the authority certificate
that signed it. If this isn’t done, some software will
treat the certificate as being invalid, or will regard it as
having expired once the authority certificate that signed
it expires.

Due to the vagaries of international time zones and
daylight savings time adjustments, it isn’t possible to
accurately compare two local times from different time
zones, or made across a DST switch (consider for
example a country switching to DST, which has two
2am times while another country only has one).
Because of this ambiguity, times read from objects
such as certificates may be out by an hour or two.

The attributes field contains a collection of attributes
for the certificate owner. Since no standard attributes
had been defined at the time of the last X.509 attribute
certificate committee draft, cryptlib doesn’t currently
support attributesin thisfield. When attributes are
defined, cryptlib will support them.

The issuer unique ID was added in X.509v2, but its use
has been discontinued. If thisstring field is present in
existing attribute certificates you can obtain its value
using CRYPT_CERTINFO_ISSUERUNIQUEID, but
you can’t set it. If you try to set it, cryptlib will return
CRYPT_ERROR_PERMISSION to indicate that you
have no permission to set thisfield.

Certificate extensions allow almost anything to be
added to an attribute certificate and are covered in more
detail in “Certificate Extensions” on page 234.

An X.509 certificate has the following structure:

Field

Description

Version

Serial Number

SignatureAlgorithm

The version number defines the certificate version and
isfilled in automatically by cryptlib when the
certificate issigned. It isused mainly for marketing
purposes to claim that software is X.509v3 compliant
(even when it isn’t).

The serial number is unique for each certificate issued
by aCA, and isfilled in automatically by cryptlib when
the certificate is signed. Y ou can obtain the value of
thisfield with CRYPT_CERTINFO_-
SERIALNUMBER, but you can’t set it. If you try to
set it, cryptlib will return CRYPT_ERROR_-
PERMISSION to indicate that you don’t have
permission to set thisfield. The serial number is
returned as a binary string and not as a numeric value,
sinceit is often 15-20 bytes long.

cryptlib doesn’t use strict sequential numbering for the
certificates it issues since thiswould make it very easy
for athird party to determine how many certificates a
CA isissuing at any time.

The signature algorithm identifies the algorithm used to
sign the certificate, and isfilled in automatically by

210

Certificates in Detail

Field

Description

IssuerName

Validity

SubjectName

SubjectPublicK ey-
Info

IssuerUniquel D
SubjectUniquel D

cryptlib when the certificate is signed.

The issuer name identifies the certificate signer
(usualy aCA), and isfilled in automatically by
cryptlib when the certificate is signed.

The validity period defines the period of time over
which a certificateisvalid. CRYPT_CERTINFO_-
VALIDFROM specifies the validity start period, and
CRYPT_CERTINFO_VALIDTO specifies the validity
end period. If you don’t set these, cryptlib will set
them for you when the certificate is signed so that the
certificate validity starts on the day of issue and ends
oneyear later. You can change the default validity
period using the cryptlib configuration option
CRYPT_OPTION_CERT_VALIDITY asexplainedin
“Working with Configuration Options” on page 274.

cryptlib enforces validity period nesting when
generating a certificate, so that the validity period of a
certificate will be constrained to lie within the validity
period of the CA certificate that signed it. If this isn’t
done, some software will treat the certificate as being
invalid, or will regard it as having expired once the CA
certificate that signed it expires.

Dueto the vagaries of international time zones and
daylight savings time adjustments, it isn’t possible to
accurately compare two local times from different time
zones, or made across a DST switch (consider for
example a country switching to DST, which has two
2am times while another country only has one).
Because of this ambiguity, times read from objects
such as certificates may be out by an hour or two.

The subject name identifies the owner of the certificate
and is explained in more detail further on. If you add
the subject public key info from a certification request
using CRYPT_CERTINFO_CERTREQUEST, this
field will befilled in for you.

Thisisacomposite field that you must fill in yourself
unlessit has aready been filled in from a certification
request.

The subject public key info contains the public key for
this certificate. Y ou can specify the public key with
CRYPT_CERTINFO_SUBJECTPUBLICKEYINFO,
and provide either an encryption context or a certificate
object that contains apublic key. You can aso add a
certification request with CRYPT_CERTINFO_-
CERTREQUEST, which fillsin the subject public key
info, subject name, and possibly some certificate
extensions.

Thisisanumeric field that you must fill in yourself.

The issuer and subject unique ID were added in
X.509v2, but their use has been discontinued. If these
string fields are present in existing certificates you can
obtain their values using CRY PT_CERTINFO_-
ISSUERUNIQUEID and CRYPT_CERTINFO_-
SUBJECTUNIQUEID, but you can’t set them. If you

Certificate Structures

211

Field Description
try to set them, cryptlib will return CRYPT_ERROR_-
PERMISSION to indicate that you have no permission
to set thesefields.

Extensions Certificate extensions were added in X.509v3.

Extensions allow almost anything to be added to a
certificate and are covered in more detail in “Certificate
Extensions” on page 234.

Certification Request Structure
PKCS #10 and CRMF certification requests have the following structure:

Field Description

Version The version number defines the certification request
version and isfilled in automatically by cryptlib when
the request is signed.

SubjectName The subject name identifies the owner of the

SubjectPublicK ey-
Info

Extensions

CRL Structure

certification request and is explained in more detail
further on.

Thisisacompositefield that you must fill in yourself.

The subject public key info contains the public key for
this certification request. Y ou can specify the public
key with CRYPT_CERTINFO_-
SUBJECTPUBLICKEYINFO, and provide either an
encryption context or a certificate object that contains a
public key.

Thisisacompositefield that you must fill in yourself.

Extensions allow almost anything to be added to a
certification request and are covered in more detail in
“Certificate Extensions” on page 234.

An X.509 CRL has the following structure:

Field

Description

Version

SignatureAlgorithm

IssuerName

ThisUpdate
NextUpdate

The version number definesthe CRL version and is
filled in automatically by cryptlib when the CRL is
signed.

The signature algorithm identifies the algorithm used to
sign the CRL, and isfilled in automatically by cryptlib
when the CRL is signed.

The issuer name identifies the CRL signer, and isfilled
in automatically by cryptlib when the CRL is signed.

The update time specifies when the CRL wasissued,
and the next update time specifies when the next CRL
will beissued. CRYPT_CERTINFO_THISUPDATE
specifies the current CRL issuetime, and
CRYPT_CERTINFO_NEXTUPDATE specifiesthe
next CRL issue time. If you don’t set these, cryptlib
will set them for you when the CRL is signed so that
theissue timeisthe day of issue and the next update
timeis 90 dayslater. You can change the default
update interval using the cryptlib configuration option
CRYPT_OPTION_CERT_UPDATEINTERVAL as

212 Certificatesin Detail

Field Description
explained in “Working with Configuration Options” on
page 274.

Dueto the vagaries of international time zones and
daylight savings time adjustments, it isn’t possible to
accurately compare two local times from different time
zones, or made across a DST switch (consider for
example a country switching to DST, which has two
2am times while another country only has one).
Because of this ambiguity, times read from objects
such as certificates may be out by an hour or two.

UserCertificate The user certificate identifies the certificates that are
being revoked in this CRL. The certificates must be
onesthat were issued using the CA certificate which is
being used to issuethe CRL. If youtry to revokea
certificate that was issued using adifferent CA
certificate, cryptlib will return aCRYPT_ERROR_-
INVALID error when you add the certificate or sign
the CRL to indicate that the certificate can’t be revoked
using this CRL. Y ou can specify the certificates to be
revoked with CRYPT_CERTINFO_CERTIFICATE.

Thisisanumeric field, and the only one that you must
fill in yourself.

RevocationDate The revocation date identifies the date on which a
certificate was revoked. Y ou can specify the
revocation date with CRYPT_CERTINFO_-
REVOCATIONDATE. If you don’t set it, cryptlib will
set it for you to the date on which the CRL was sighed.

The revocation date you specify applies to the last
certificate added to the list of revoked certificates. If
no certificates have been added yet, it will be used asa
default date that appliesto al certificates for which no
revocation dateis explicitly set.

Dueto the vagaries of international time zones and
daylight savings time adjustments, it isn’t possible to
accurately compare two local times from different time
zones, or made across a DST switch (consider for
example a country switching to DST, which has two
2am times while another country only has one).
Because of this ambiguity, times read from objects
such as certificates may be out by an hour or two.

Basic Certificate Management

With the information from the previous section, it’s now possible to start creating
basic certificate objects. To create a PKCS #10 certification request, you would do
the following:

CRYPT_CERTI FI CATE crypt Cert Request ;
voi d *cert Request;
int cert Request MaxLengt h, certRequestLengt h;

/* Create a certification request and add the public key to it */
crypt CreateCert(&cryptCert Request, cryptUser,
CRYPT_CERTTYPE_CERTREQUEST) ;
crypt Set Attribute(cryptCertRequest,
CRYPT_CERTI NFO_SUBJECTPUBLI CKEYI NFO, pubKeyCont ext);

/* Add identification information */
[* ...

Basic Certificate Management 213

/* Sign the certification request with the private key and export it
*/

crypt SignCert(cryptCertRequest, privKeyContext);

crypt ExportCert(NULL, 0, &certRequest MaxLengt h,
CRYPT_CERTFORVMAT_CERTI FI CATE, crypt Cert Request);

cert Request = mall oc(certRequest MaxLength);

crypt ExportCert(certRequest, certRequestMaxLength,
&cert Request Lengt h, CRYPT_CERTFORMAT_CERTI FI CATE, crypt Cert Request

)

/* Destroy the certification request */
crypt DestroyCert(cryptCertRequest);

This simply takes a public key, adds some identification information to it (the details
of thiswill be covered later), signsit, and exports the encoded certification request
for transmission to aCA. Since cryptlib will only copy across the appropriate key
components, there’s no need to have a separate public and private key context, you
can add the same private key context that you’ll be using to sign the certification
request to supply the CRY PT_CERTINFO_SUBJECTPUBLICKEYINFO
information and cryptlib will use the appropriate data from it.

To process the certification request and convert it into a certificate, the CA doesthe
following:

CRYPT_CERTI FI CATE cryptCertificate, cryptCertRequest;
void *cert;
int certMaxLength, certlength;

/* Import the certification request and check its validity */

cryptlmportCert(certRequest, certRequestlLength, cryptUser,
&crypt Cert Request) ;

crypt CheckCert (crypt Cert Request, CRYPT_UNUSED);

/* Create a certificate and add the information fromthe certification
request to it */

cryptCreateCert(&cryptCertificate, cryptUser,
CRYPT_CERTTYPE_CERTI FI CATE) ;

cryptSet Attribute(cryptCertificate, CRYPT_CERTI NFO CERTREQUEST,
crypt Cert Request);

/* Sign the certificate with the CA’s private key and export it */
crypt SignCert(cryptCertificate, caPrivateKey);
crypt Export Cert(NULL, 0, &certMaxLengt h,
CRYPT_CERTFORVMAT_CERTI FI CATE, cryptCertificate);
cert = malloc(certMuxLength);
crypt ExportCert(cert, certMaxLength, &certlLength,
CRYPT_CERTFORVAT_CERTI FI CATE, cryptCertificate);

/* Destroy the certificate and certification request */
crypt DestroyCert(cryptCertificate);
crypt DestroyCert(cryptCertRequest);

In this case the CA has put together aminimal certificate that can be processed by
most software but which is rather limited in the amount of control that the CA and
end user has over the certificate, since no specific control information has been added
to the certificate. By default cryptlib adds the necessary fields for afull X.509v3
certificate, but this won’t contain all the information that would be available if the CA
explicitly handles the fields for the certificate itself. Creating full X.509v3
certificates involves the use of certificate extensions and is covered in more detail
|ater.

To check the signed certificate returned from the CA and add it to a keyset, the user
does the following:
CRYPT_CERTI FI CATE cryptCertificate;

/* Import the certificate and check its validity */
cryptlmportCert(cert, certlLength, cryptUser, &cryptCertificate);
crypt CheckCert(cryptCertificate, caCertificate);

/* Add the certificate to a keyset */
[* .0 0%

214 Certificatesin Detail

/* Destroy the certificate */
crypt DestroyCert(cryptCertificate);

To obtain information about the key contained in a certificate you can read the
appropriate attributes just like an encryption context, for example
CRYPT_CTXINFO_ALGO will return the encryption/signature algorithm type,
CRYPT_CTXINFO_NAME_ALGO will return the algorithm name, and
CRYPT_CTXINFO_KEY SIZE will return the key size.

Certificate Identification Information

Traditionally, certificate objects have been identified by a construct called an X.500
Distinguished Name (DN). In 1SO/ITU terminology, the DN defines a path through
an X.500 directory information tree (DIT) viaa sequence of Relative Distinguished
Name (RDN) components which in turn consist of a set of one or more Attribute
Vaue Assertions (AVAS) per RDN. The description then goes on in this manner for
another hundred-odd pages, and includes diagrams that are best understood when
held upside down in front of amirror.

To keep things manageable, cryptlib goes to some lengths to hide the complexity
involved by handling the processing of DNsfor you. A cryptlib DN can contain the
following text string components:

Component Description

CountryName (C) The two-letter international country code (specified
in 1SO 3166 in case you ever need to look it up).
Examples of country codes are ‘US’ and ‘NZ’. You
can specify the country with
CRYPT_CERTINFO_COUNTRYNAME.

Thisisafield that you must fill in.

Organization (O) The organisation for which the certificate will be
issued. Examples of organisations are ‘Microsoft
Corporation’ and “Verisign, Inc’. You can specify
the organisation with CRYPT_CERTINFO_-
ORGANIZATIONNAME.

Organisationa Unit- The division of the organisation for which the
Name (OU) certificate will be issued. Examples of
organisational units are ‘Sales and Marketing’ and
‘Purchasing’. You can specify the organisational
unit with CRYPT_CERTINFO_-
ORGANIZATIONALUNITNAME.

StateOrProvinceName The state or province in which the certificate owner
(SP) islocated. Examples of state or province names are
‘Utah’, ‘Steyrmark’, and ‘Puy de Dome’. You can
specify the state or province with CRYPT _-
CERTINFO_STATEORPROVINCENAME.

LocalityName (L) Thelocality in which the certificate owner is
located. Examples of localities are ‘San Jose’,
‘Seydisfjordur’, and ‘Monchengladbach’. You can
specify the locality with CRYPT_CERTINFO_-
LOCALITYNAME.

CommonName (CN) The name of the certificate owner, which can be
either a person such as ‘John Doe’, a business role
such as ‘Accounts Manager’, or even an entity like
‘Laser Printer #6°. You can specify the common
name with CRYPT_CERTINFO_-
COMMONNAME.

Certificate Identification Information 215

Component Description
Thisisafield that you must fill in.

All DN components except the country name are limited to a maximum of 64
characters (thisis a requirement of the X.500 standard that defines the certificate
format and use). cryptlib providesthe CRYPT_MAX_TEXTSIZE constant for this
limit. Note that this defines the number of characters and not the number of bytes, so
that a Unicode string could be several times aslong in bytesasit would bein
characters, depending on which data type the system uses to represent Unicode
characters.

The complete DN can be used for a personal key used for private purposes (for
example to perform home banking or send private email) or for akey used for
business purposes (for example to sign business agreements). The difference
between the two key typesisthat a personal key will identify someone as a private
individual, whereas a business key will identify someone terms of the organisation for
which they work.

A DN must always contain a country name and a common name, and should
generally also contain one or more of the other components. If a DN doesn’t contain
at least the two minimum components, cryptlib will return CRYPT_ERROR_-
NOTINITED with an extended error indicating the missing component when you try
to sign the certificate object.

Realising that DNs are too complex and specialised to handle many types of current
certificate usage, more recent revisions of the X.509 standard were extended to
include a more generalised name format called a GeneralName, which isexplained in
more detail in “Extended Certificate Identification Information” on page 219.

DN Structure for Business Use

For business use, the DN should include the country code, the organisation name, an
optional organisational unit name, and the common name. An example of aDN
structured for business use would be;

Cc=Us

O = Cognitive Cybernetics Incorporated
OU = Research and Development

CN = Paul Johnson

Thisisakey which isused by an individual within an organisation. It might also
describe arole within the organisation, in this case a class of certificate issuer in a
CA:

C=DE
O = Kommunikationsnetz Franken e.V. Certification Authority
CN=Class1CA

It might even describe an entity with no direct organisational role:

C=AT
O = Erste Allgemeine Verunsicherung
CN = Mail Gateway

In thislast case the certificate might be used by the mail gateway machine to
authenticate data transmitted through it.

DN Structure for Private Use

For private, non-business use, the DN should include the country code, an optional
state or province name, the locality name, and the common name. An example of a
DN structured for private use would be;

C=USs

SP = Cdlifornia

L = El Cerrito

CN = Dave Taylor

216

Certificates in Detail

DN Structure for Use with a Web Server

For use with aweb server the DN should include whatever is appropriate for the
country and state, province, or organisation, and the domain name of the web server
as the common name. An example of aDN for aweb server certificate for the server
www.servername.com, used by the organisation given in the earlier example,
would be:

C=US

O = Cognitive Cybernetics Incorporated
OU = Research and Development

CN = www.servername.com

Other DN Structures

It’s also possible to combine components of the above DN structures, for example if
an organisation has divisions in multiple states you might want to include the state or
province name component in the DN:

Cc=USs

SP = Michigan

O = Last National Bank
CN = Personnel Manager

Another example would be;

C=US

L = Area51

O =Hanger 18

OU = X.500 Standards Designers
CN = John Doe

Working with Distinguished Names

Now that the details of DNs have been covered, you can use them to add
identification information to certification requests and certificates. For example to
add the business DN shown earlier to a certification request you would use:

CRYPT_CERTI FI CATE crypt Cer t Request ;

/* Create certification request and add ot her conponents */
[* .0 %

/* Add identification infornmation */

crypt Set AttributeString(cryptCertRequest, CRYPT_CERTI NFO _COUNTRYNAME,
"UsT, 2);

crypt Set AttributeString(cryptCertRequest,
CRYPT_CERTI NFO_ORGANI ZATI ONNAME, " Cogni tive Cybernetics
I ncorporated", 34);

crypt Set AttributeString(cryptCertRequest,
CRYPT_CERTI NFO_ORGANI ZATI ONALUNI TNAME, "Research and Devel opnent ",
24);

crypt Set AttributeString(cryptCertRequest, CRYPT_CERTI NFO COVMONNANE,
"Paul Johnson", 12);

/* Sign certification request and transmt to CA */

I* 0%
The same process applies for adding other types of identification information to a
certification request or certificates. Note that cryptlib sortsthe DN components into
the correct order when it creates the certification request or certificate, so there’s no
need to specify them in strict order asin the above code.

By default, cryptlib will work with the subject name, if you want to access the issuer
name you need to select it first so that DN components can be read from it instead of
the subject name (issuer names are only present in some certificate object types, for
example the certification request above doesn’t contain an issuer name). To tell
cryptlib to use the issuer name, you set the currently active DN attribute to the issuer
name;

Certificate Identification Information 217

cryptSet Attribute(certificate, CRYPT_CERTI NFO | SSUERNANE,
CRYPT_UNUSED) ;

Since there are no arguments to this selection attribute, the value that you supply is
set to CRYPT _UNUSED. Once you’ve selected a different DN in this manner, it
remains selected until you select adifferent one, so if you wanted to move back to
working with the subject name you’d need to use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO_SUBJECTNAMNE,
CRYPT_UNUSED) ;

otherwise attempts to query further DN attributes will apply to the selected issuer
name attribute instead of the subject name.

Creating Customised DNs

Although the DN-handling mechanisms provided by cryptlib are extremely flexible,
they enforce afew restrictions on the format of the DN to ensure that the resulting
value can be processed properly by other applications. Sometimesit may be
necessary to create customised, non-standard DNs for certain applications that require
an unusual DN structure or the use of odd DN components. cryptlib alows the
creation of arbitrary DNs by specifying them as a string representation of the
complete DN, identified by CRYPT_CERTINFO_DN. The following section is
intended for advanced users and assumes some knowledge of X.500 terminology.

Complete DNs are specified using the LDAP-style string representation of the DN
that contains one or more “label = value” pairs specifying a DN component and its
value, for example the DN:

C=Us

O = Cognitive Cybernetics Incorporated
OU = Research and Development

CN = Paul Johnson

that was used earlier would be represented in string form as “cn=Paul Johnson,
ou=Research and Devel opment, o=Cognitive Cybernetics Incorporated, c=US”, with
each RDN being separated by acomma. Note that the encoding of the RDNsin the
string is backwards, thisis arequirement of the LDAP DN string format. To set the
DN for the previous certificate request in one step using a DN string you would use:

CRYPT_CERTI FI CATE crypt Cer t Request ;

/* Create certification request and add ot her conponents */
[* .0 %

/* Add identification infornmation */

crypt Set AttributeString(cryptCertRequest, CRYPT_CERTI NFO DN, "cn=Paul
Johnson, ou=Research and Devel opment, o=Cognitive Cybernetics
I ncor porated, c=US", 88);

/* Sign certification request and transmt to CA */

I* .0 %
This setsthe entire DN at once rather than setting it component by component. Once
you’ve set the DN in this manner you can’t modify or delete any components because
cryptlib preserves the exact ordering and format of the DN components, an ordering
that would be destroyed with some of the more complex DNs that will be presented
further down. Y ou can also obtain the complete DN in string form by reading the
value of this attribute.

The string DN form contains a number of special-case characters that are used to
break up the RDNs and AVAs, if you want to use these in a DN component you need
to escape them with ‘\” so that for example ‘cn=a = b’ would be specified as ‘cn=a \=
b’. cryptlib will automatically add these escape sequences to the DN components if
required when you read the attribute value.

The example shown above will result in the creation of a DN which is no different to
one created in the usual manner, however since the DN string can contain arbitrary
numbers of RDNs in arbitrary order, it’s possible to create DNs that wouldn’t be

218

Certificates in Detail

possible in the usual manner. For example to add a second OU “Al Lab” to the DN
given above you would specify the DN as “cn=Paul Johnson, ou=Research and
Development, ou=Al Lab, o=Cognitive Cybernetics Incorporated, c=US”. Note
again the backwards encoding, which means that “Al Lab” occurs higher up in the
hierarchy than “Research and Development” even though it comes after it in the DN
string.

It’s also possible to group multiple AVAs into an RDN by connecting them with a ‘+’
instead of the usual comma, for example to add Paul Johnson’s serial number to the
above DN you would use “cn=Paul Johnson + sn=12345678, ou=Research and
Development, 0=Cognitive Cybernetics Incorporated, c=US”. Once encoded in the
certificate, the final RDN will contain two AV As, one with the common name and
the other with the serial number.

The labels that are used to identify DN components are:

L abel Component

Bc businessCategory

C countryName

cn commonName

D Description

dc domainComponent

email emailAddress (PKCS #9)

G givenName

I Initials

isdn international [SDNNumber

L Locality

O organisationName

ou organisational UnitName

S Surname

sn serial Number

p stateOrProvinceName
streetAddress

T Title

There exist many more DN components beyond those shown in the table above, but
labels for them were never defined and it’s necessary to refer to them by object
identifier with the prefix oi d. to denote the use of an OID rather than atext label.
The remaining DN components and their OID labels are aliasObjectName,

oi d. 2. 5. 4. 1, communicationsNetwork oi d. 2. 5. 4. 67,
communicationsService oi d. 2. 5. 4. 66, destinationIndicator, oi d. 2. 5. 4. 27,
distinguishedName, oi d. 2. 5. 4. 49, dnQuadlifier, oi d. 2. 5. 4. 46,
facsimileTelephoneNumber, oi d. 2. 5. 4. 23, generationQualifier,

0i d. 2. 5. 4. 44, houseldentifier, oi d. 2. 5. 4. 51, knowledgel nformation,
0id.2.5.4.2, member,oid.2.5.4. 31, name, 0i d. 2. 5. 4. 41,
nameDistinguisher, oi d. 0. 2. 262. 1. 10. 7. 20, owner, 0i d. 2. 5. 4. 32,
physicalDeliveryOfficeName, oi d. 2. 5. 4. 19, postalAddress, oi d. 2. 5. 4. 16,
postalCode, oi d. 2. 5. 4. 17, postOfficeBox, oi d. 2. 5. 4. 18,
preferredDeliveryMethod, oi d. 2. 5. 4. 28, presentationAddress,

0i d. 2.5. 4. 29, pseudonym oi d. 2. 5. 4. 65, registeredAddress,

oi d. 2. 5. 4. 26, rfc822Mailbox, oi d. 0. 9. 2342. 19200300. 100. 1. 3,
roleOccupant, oi d. 2. 5. 4. 33, searchGuide, oi d. 2. 5. 4. 14, seeAlso,

Extended Certificate |dentification Information 219

0i d. 2. 5. 4. 34, supportedApplicationContext, oi d. 2. 5. 4. 30, telephone-
Number, oi d. 2. 5. 4. 20, telexNumber, oi d. 2. 5. 4. 21, teletexTerminal-
Identifier, oi d. 2. 5. 4. 22, uniqueldentifier, oi d. 2. 5. 4. 45, uniqueMember,
oi d. 2. 5. 4. 50, userid, 0i d. 0. 9. 2342. 19200300. 100. 1. 1, and
x121Address, 0i d. 2. 5. 4. 24,

Note that a number of different and often incompatible naming schemes for X.500
attributes exist. X.500 only defined a handful of names, and as a result many other
standards and implementations invented their own, a number of which conflict with
each other, and several of which conflict with the original X.500 names. cryptlib uses
the names that are most widely used with certificates. Since many of the names used
by different standards conflict, it’s not possible to have cryptlib handle multiple
aliases for the same attribute, however if you require custom names to conform to a
particular standard or interpretation of a standard, you can change the valuesin the
code to reflect whatever names you want.

The CRYPT_CERTINFO_DN provides a powerful means of creating completely
custom DNSs, note though that this can result in DNs that can’t be correctly processed
or displayed by many applications, so you should only create non-standard DNsin
this manner where it’s absolutely necessary.

Extended Certificate Identification Information

In the early to mid 1990°s when it became clear that the Internet was going to be the
driving force behind certificate technology, X.509 was amended to allow a more
general-purpose type of identification than the complex and specialised DN. This
new form was called the General Name, since it provided far more flexibility than the
original DN. A GeneralName can contain an email address, a URL, an IP address, an
alternative DN that doesn’t follow the strict rules for the main certificate DN (it could
for example contain a postal or street address), less useful components like X.400 and
EDI addressing information, and even user-defined information that might be used in
a certificate, for example medical patient, taxpayer, or social security ID’s.

Aswith DNs, cryptlib goes to some lengths to hide the complexity involved in
handling GeneralNames (recall the previous technical description of a DN, and then
consider that this constitutes only a small portion of the entire GeneralName). Likea
DN, a GeneralName can contain a number of components. Unless otherwise noted,
the components are all text strings.

Component Description

DirectoryName A DN that can contain supplementary information
that doesn’t fit easily into the main certificate DN.
Y ou can specify this value with CRYPT _-
CERTINFO_DIRECTORYNAME.

DNSName An Internet host’s fully-qualified domain name.
Y ou can specify thisvalue with CRYPT _-
CERTINFO_DNSNAME.

EDIPartyName.Name- An EDI assigner-and-value pair with the EDI name

Assigner assigner specified by CRYPT_CERTINFO_-
EDIPartyName.Party- EDIPARTYNAME_NAMEASSIGNER and the
Name party name specified by CRYPT_CERTINFO_-
EDIPARTYNAME_PARTYNAME.
IPAddress An IP address as per RFC 791, containing a 4-byte

binary string in network byte order. You can
specify thisvalue with CRYPT_CERTINFO -
IPADDRESS.

OtherName.Typel D A user-defined type-and-value pair with the type

OtherName.Vaue specified by CRYPT_CERTINFO _-
OTHERNAME_TY PEID and the value specified
by CRYPT_CERTINFO_OTHERNAME_VALUE.

220 Certificatesin Detail

Component Description
The typeisan SO object identifier and the
corresponding value is a binary string that can
contain anything, identified by the object identifier
(if you know what thisisthen you should aso know
how to obtain one).

RegisteredID An object identifier (again, if you know what thisis
then you should know how to obtain one). You can
specify thisvalue with CRYPT_CERTINFO _-
REGISTEREDID.

RFC822Name An email address. Y ou can specify this value with
CRYPT_CERTINFO_RFC822NAME. For
compatibility with the older (obsolete) PKCS #9
email Address attribute, cryptlib will also accept
CRYPT_CERTINFO_EMAIL to specify thisfield.

UniformResource- A URL for either FTP, HTTP, or LDAP access as
Identifier per RFC 1738. Y ou can specify this value with
CRYPT_CERTINFO _-
UNIFORMRESOURCEIDENTIFIER.

Of the above Genera Name components, the most useful ones are the RFC822Name
(to specify an email address), the DNSName (to specify a server address), and the
UniformResourcel dentifier (to specify aweb page or FTP server). Somewhat less
useful isthe DirectoryName, which can specify additional information that doesn’t fit
easily into the main certificate DN. The other components should be avoided unless
you have a good reason to require them (that is, don’t use them just because they’re
there).

Working with GeneralName Components

Now that the details of GeneralNames have been covered, you can use them to add
additional identification information to certificate requests and certificates. For
example to add an email address and home page URL to the certification request
shown earlier you would use:

CRYPT_CERTI FI CATE crypt Cer t Request ;

/* Create certification request and add ot her conponents */
[* .0 0%

/* Add identification information */
[* ...

/* Add additional identification information */

crypt Set AttributeString(cryptCertRequest, CRYPT_CERTI NFO RFC822NAME,
"paul @ci.cont', 12);

crypt Set AttributeString(cryptCertRequest,
CRYPT_CERTI NFO_UNI FORMRESOURCEI DENTI FI ER,
“http://ww.cci.com ~paul ", 23);

/* Sign certification request and transmt to CA */

I* .0 %
Although GeneralNames are commonly used to identify a certificates owner just like
aDN, they arein fact a certificate extension rather than abasic attribute. Each
certificate can contain multiple extensions that contain GeneralNames. The various
extensions that can contain GeneralNames are covered in “Certificate Extensions” on
page 234, and the details of working with them are explained in “Composite
Extension Attributes” on page 237.

Certificate Fingerprints

Certificates are sometimes identified through “fingerprints” that constitute either an
MD5 or SHA-1 hash of the certificate data (the most common form is an MD5 hash).
Y ou can obtain a certificate’s fingerprint by reading its CRYPT _CERTINFO -

Importing/Exporting Certificates 221

FINGERPRINT attribute, which yields the default (MD5) fingerprint for the
certificate. You can also explicitly query a particular fingerprint type with CRYPT _-
CERTINFO_FINGERPRINT_MD5 and CRYPT_CERTINFO_FINGERPRINT_-
SHA:

unsi gned char fingerprint][CRYPT_MAX HASHSI ZE]
int fingerprintSize;

cryptGet AttributeString(certificate, CRYPT_CERTI NFO_FI NGERPRI NT,
& ingerprint, & ingerprintSize);

Thiswill return the certificate fingerprint.

Importing/Exporting Certificates

If you have an encoded certificate that was obtained elsewhere, you can import it into
a certificate object using cryptl mportCert. There are more than a dozen mostly
incompatible formats for communicating certificates, of which cryptlib will handle all
the generally useful and known ones. Thisincludes straight binary certification
requests, certificates, attribute certificates, and CRLs (usually stored with a .der file
extension when they are saved to disk), PKCS #7 certificate chains, and Netscape
certificate sequences. Certificates can aso be protected with base64 armouring and
BEGIN/END CERTIFICATE delimiters, which is the format used by some web
browsers and other applications. When transferred via HTTP using the Netscape-
specific format, certificates, certificate chains, and Netscape certificate sequences are
identified with have the MIME content typesappl i cat i on/ x- x509- user -
cert,application/x-x509-ca-cert,andapplication/x-x509-

enai | - cert, depending on the certificate type (cryptlib doesn’t use the MIME
content type since the certificate itself provides afar more reliable indication of its
intended use than the easily-altered MIME content type).. Finally, certification
requests and certificate chains can be encoded with the MIME / SIMIME content
typesappl i cati on/ pkcs- si gned- dat a, appl i cati on/ x- pkcs-

si gned- dat a,appl i cati on/ pkcs-certs-only,application/x-
pkcs-certs-only,application/pkcsl0,orapplication/x-pkcslO.
These are usually stored with a.p7c extension (for pure certificate chains), a.p7s
extension (for signatures containing a certificate chain), or a.p10 extension (for
certification requests) when they are saved to disk.

cryptlib will import any of the previoudly described certificate formatsif they are
encoded in thismanner. To import a certificate object you would use:

CRYPT_CERTI FI CATE cryptCertificate;

/* Import the certificate object fromthe encoded certificate */
cryptlmportCert(cert, certlLength, cryptUser, &cryptCertificate);

Note that the CRYPT_CERTIFICATE is passed to cryptlmportCert by reference, as
the function modifiesit when it creates the certificate object.

Some certificate objects may contain unrecognised critical extensions (certificate
extensions are covered in “Certificate Extensions” on page 234) which require that
the certificate be rejected by cryptlib. If a certificate contains an unrecognised critical
extension, cryptlib will return aCRY PT_ERROR_PERMISSION error to indicate
that you have no permission to use this object.

All the parameters and information needed to create the certificate object are a part of
the certificate, and cryptlmportCert takes care of initialising the certificate object
and setting up the attributes and information inside it. The act of importing a
certificate simply decodes the information and initialises a certificate object, it
doesn’t check the signature on the certificate. To check the certificate’s signature you
need to use cryptCheckCert, which is explained in “Signing/V erifying Certificates”
on page 223.

There may be instances in which you’re not exactly certain of the type of certificate
object you have imported (for example importing afile with a.der or .cer extension
could create a certificate request, a certificate, an attribute certificate, or a certificate

222 Certificatesin Detail

chain object depending on thefile contents). In order to determine the exact type of
the object, you can read its CRY PT_CERTINFO_CERTTY PE attribute:

CRYPT_CERTTYPE_TYPE cert Type;
cryptGet Attribute(certificate, CRYPT_CERTINFO CERTTYPE, &certType);
Thiswill return the type of the imported object.

Y ou can export a signed certificate from a certificate object using cryptExportCert:

CRYPT_CERTI FI CATE cryptCertificate;
void *certificate;
int certlLength

/* Allocate nmenory for the encoded certificate */
certificate = malloc(certMaxLength);

/* Export the encoded certificate fromthe certificate object */
crypt ExportCert(certificate, certMaxLength, &certlength,
cert Format Type, cryptCertificate);

cryptlib will export certificatesin any of the formats in which it can import them.
Theavailablecer t For mat typesare:

Format Type Description

CRYPT_CERTFORMAT_- A certificate encoded as a PKCS #7
CERTCHAIN certificate chain.

CRYPT_CERTFORMAT - A certification request, certificate, or CRL in
CERTIFICATE binary dataformat. The certificate object is

encoded according to the ASN.1
distinguished encoding rules. Thisisthe
normal certificate encoding format.

CRYPT_CERTFORMAT_- AsCRYPT_CERTFORMAT_CERTCHAIN
TEXT_CERTCHAIN but with base64 armouring of the binary
data.

CRYPT_CERTFORMAT_- AsCRYPT_CERTFORMAT_-
TEXT_CERTIFICATE CERTIFICATE but with base64 armouring
of the binary data.

If the object that you’re exporting is a complete certificate chain rather than an
individual certificate then these options work somewhat differently. The details of
exporting certificate chains are covered in “Exporting Certificate Chains” on page
228.

The resulting encoded certificate is placed in the memory buffer pointed to by
certificateof mximumsizecertifi cat eMaxLengt h, and the actua
lengthisstored in cer t Lengt h. Thisleadsto asmall problem: How do you know
how big to make the buffer? The answer isto use cryptExportCert to tell you. If
you passinanull pointer forcerti fi cat e, thefunctionwill set cert Lengt h to
the size of the resulting encoded certificate, but not do anything else. You can then
use code like:

crypt ExportCert(NULL, 0, &certMaxLength, cert Format Type,

cryptCertificate);
certificate = malloc(certMaxLength);

crypt ExportCert(certificate, certMaxLength, &certlength,
cert Format Type, cryptCertificate);

to create the encoded certificate.

Alternatively, you can just reserve a reasonably sized block of memory and use that
to hold the encoded certificate. “Reasonably sized” means a few Kb, a 4K block is
plenty (acertificate for a 1024-bit key without certificate extensionsis typically about
700 byteslong if encoded using any of the binary formats, or 900 byteslong if
encoded using any of the text formats).

Signing/Verifying Certificates 223

If the certificate is one that you’ve created yourself rather than importing it from an
external source, you need to add various data items to the certificate and then sign it
before you can export it. If you try to export an incompletely prepared certificate
such as a certificate in which some required fields haven’t been filled in or one that
hasn’t been signed, cryptExportCert will return the error CRYPT_ERROR_-
NOTINITED to tell you that the certificate information hasn’t been completely set

up.
Signing/Verifying Certificates

Once a certificate object contains all the information you want to add to it, you need
tosignitin order to transform it into itsfinal state in which the datain it can be
written to a keyset (if the object’s final state is a key certificate or CA certificate) or
exported from the object. Before you sign the certificate, the information within it
exists only in avery generic and indeterminate state. After signing it, the information
isturned into afixed certificate, CA certificate, certification request, or CRL, and no
further changes can be made to it.

Y ou can sign the information in a certificate object with cryptSignCert:
CRYPT_CONTEXT pri vKeyCont ext ;

/* Sign the certificate object */
cryptSignCert(cryptCertificate, privKeyContext);

There are some restrictions on the types of keys that can be used to sign certificate
objects. These restrictions are imposed by the way in which certificates and
certificate-related items are encoded, and are asfollows:

Certificate Can be Signed By
Type

Attribute Private key associated with an authority certificate.
certificate

Certificate Private key associated with a CA certificate. Thiscan aso
be a self-signed (non-CA) certificate, but some software will
then decide that the resulting certificate is a CA certificate
even though it isn’t.

CA certificate Private key associated with a CA certificate (when one CA
certifies another) or the private key from which the
certificate being signed was created (when the CA certifies

itself).
Certification Private key associated with the certification request.
request
Certificate Private key associated with a CA certificate.
chain
CRL Private key associated with the CA certificate that was used

to issue the certificates that are being revoked.

OCSP request/ Private key associated with a certificate and authorised or
response trusted to sign requests/responses.

In order to sign any type of certificate object other than a self-signed one, you must
use a private key belonging to a CA. This means that the certificate associated with
the signing key must have its CRYPT_CERTINFO_CA attribute set to true (a
nonzero value) and must have akey usage value that indicates that it’s valid for
signing certificates (or CRLs if the object being signed isa CRL). If you try to sign
an object other than a self-signed certificate or cert request with anon-CA key,
cryptlib will return an error status indicating the nature of the problem. If the statusis
CRYPT ERROR PARAM?2, the private key you’re using doesn’t have a certificate
associated with it (that is, you’re trying to sign the certificate with a raw private key
without an associated CA certificate). If the statusis CRYPT_ERROR_INVALID,

224

Certificates in Detail

the key you’re using doesn’t have the ability to sign certificates, for example because
itisn’t a CA key or because it doesn’t contain a key usage value that indicates that it’s
valid for signing certificates or CRLs. In the latter case you can read the CRYPT _-
ATTRIBUTE_ERRORTYPE and CRYPT_ATTRIBUTE_ERRORLOCUS attributes
to get more information about the nature of the problem as described in “Error
Handling” on page 282.

Some certificate objects (for example OCSP requests and responses) can have signing
certificate information included with the object, although by default only the
signatureitself isincluded. Y ou can specify the amount of information which is
included using the CRYPT_CERTINFO_SIGNATURELEVEL attribute. Setting this
to CRYPT_SIGNATURELEVEL_NONE (the default) includes only the signature,
setting it to CRYPT_SIGNATURELEVEL_SIGNERCERT includes the immediate
signing certificate, and setting it to CRYPT_SIGNATURELEVEL_ALL includes all
relevant information, for example the complete certificate chain. Y ou should always
use the default signing level unless you specifically know that you need to provide
extrainformation such as signing certificates or a certificate chain.

Once acertificate item has been signed, it can no longer be modified or updated using
the usual certificate manipulation functions, and any attempt to update information in
it will return CRYPT_ERROR_PERMISSION to indicate that you have no
permission to modify the object. If you want to add or delete data to or from the
certificate item, you have to start again with a new certificate object. You can
determine whether a certificate item has been signed and can therefore no longer be
changed by reading its CRY PT_CERTINFO_IMMUTABLE attribute:

int islmmutable;

cryptGet Attribute(certificate, CRYPT_CERTI NFO | MMUTABLE,
& sl mutable);

If theresult is set to true (anonzero value), the certificate item can no longer be
changed.

If you’re creating a self-signed certificate signed by araw private key with no
certificate information associated with it, you need to set the CRYPT_CERTINFO_-
SEL FSIGNED attribute before you sign it otherwise cryptlib will flag the attempt to
sign using a non-certificate key as an error. Non-certificate private keys can only be
used to create self-signed certificates (if CRYPT_CERTINFO_SELFSIGNED is set)
or certification requests.

If the object being signed contains unrecognised extensions, cryptlib will not include
them in the signed object (signing extensions of unknown significanceis arisky
practice for a CA, which in some jurisdictions can be held liable for any arising
problems). If you want to be able to sign unrecognised extensions, you can enable
this with the cryptlib configuration option CRYPT_OPTION_CERT _-
SIGNUNRECOGNISEDATTRIBUTES as explained in “Working with
Configuration Options” on page 274.

Y ou can verify the signature on a certificate object using cryptCheckCert and the
public key or certificate corresponding to the private key that was used to sign the
certificate (you can also passin aprivate key if you want, cryptCheckCert will only
use the public key components, although you shouldn’t really be in possession of
someone else’s private key). To perform the check using a public key context you’d
use:

CRYPT_CONTEXT pubKeyCont ext ;

/* Check the signature on the certificate object information using the
public key */
crypt CheckCert (cryptCertificate, pubKeyContext);
A signature check using a certificate is similar, except that it uses a certificate object
rather than a public key context.

If the certificate object is self-signed, you can passin CRYPT_UNUSED asthe
second parameter and cryptCheckCert will use the key contained in the certificate

Certificate Chains 225

object to check itsvalidity. Y ou can determine whether a certificate object is self-
signed by reading its CRY PT_CERTINFO_SELFSIGNED attribute. Certification
requests are always self-signed, and certificate chains count as self-signed if they
contain a self-signed top-level certificate that can be used to recursively check the rest
of the chain. If the certificate object isa CA certificate which is signing itself (in
other words if it’s a self-signed certificate), you can also pass the certificate as the
second parameter in place of CRY PT_UNUSED, this has the same effect since the
certificate is both the signed and signing object.

If the certificateisinvalid (for example because it has expired or because some
certificate usage constraint hasn’t been met), cryptlib will return CRYPT_ERROR -
INVALID to indicate that the certificate isn’t valid. This value is returned regardless
of whether the signature check succeeds or fails. Y ou can find out the exact nature of
the problem by reading the extended error attributes as explained in “Error Handling”
on page 282.

If the signing/signature check key is stored in an encryption context with a certificate
associated with it or in a certificate, there may be constraints on the key usage that are
imposed by the certificate. If the key can’t be used for the signature or signature
check operation, the function will return CRY PT_ERROR_INVALID to indicate that
the key isn’t valid for this operation. You can find out more about the exact nature of
the problem by reading the extended error attributes as explained in “Error Handling”
on page 282.

If you’re acting as a CA and issuing significant numbers of certificates then a much
easier alternative to signing each certificate yourself using cryptSignCert isto use
cryptlib’s certificate management capabilities as described in “Managing a
Certification Authority” on page 171.

Certificate Chains

Because of the lack of availability of a general-purpose certificate directory, many
security protocols (most notable SIMIME and SSL) transmit not individual
certificates but entire certificate chains that contain a complete certificate path from
the end user’s certificate up to some widely-trusted CA certificate (referred to asa
root CA certificate if it’s a self-signed CA certificate) whose trust will be handled for
you by cryptlib’s trust manager. cryptlib supports the creation, import, export, and
checking of certificate chainsas CRYPT_CERTTYPE_CERTCHAIN objects, with
individual certificatesin the chain being accessed as if they were standard certificates
contained in aCRYPT_CERTTYPE_CERTIFICATE object.

Working with Certificate Chains

Individua certificatesin a chain are addressed through a certificate cursor that
functions in the same way as the attribute cursor discussed in “Attribute Listsand
on page 37. Although a certificate chain object appears as a single object, it consists
internally of a collection of certificates of which the first in the chain is the end user’s
certificate and the last isaroot CA certificate or at least an implicitly trusted CA
certificate.

Y ou can move the certificate cursor using the CRYPT_CERTINFO_CURRENT _-
CERTIFICATE attribute and the standard cursor movement codes. For example to
move the cursor to the first (end-user) certificate in the chain, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_CERTI FI CATE,
CRYPT_CURSOR_FI RST) ;

To advance the cursor to the next certificate, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_CERTI FI CATE,
CRYPT_CURSOR_NEXT) ;

The certificate cursor and the extension/extension attribute cursor are two completely
independent objects, so moving the certificate cursor from one certificate to another
doesn’t affect the extension cursor setting for each certificate. If you select a
particular extension in a certificate, then move to adifferent certificate and select an

226 Certificatesin Detail

extension in that, and then move back to thefirst certificate, the original extension
will still be selected.

Once you’ve selected a particular certificate in the chain, you can work with it asif it
were the only certificate contained in the certificate object. Theinitialy selected
certificate is the end user’s certificate at the start of the chain. For example to read
the commonName from the subject name for the end user’s certificate and for the
next certificate in the chain you would use:

char commonNane[CRYPT_MAX TEXTSIZE + 1];
i nt commonNareLengt h;

/* Retrieve the commonNane fromthe end user's certificate */

cryptGet AttributeString(cryptCertChain, CRYPT_CERTI NFO _COMMONNAME,
comonNane, &commonNanelLength);

commonNane[commonNaneLength] = '"\0';

/* Move to the next certificate in the chain */
crypt Set Attribute(cryptCertChain, CRYPT_CERTI NFO CURRENT_CERTI FI CATE,
CRYPT_CURSOR_NEXT) ;

/* Retrieve the commonNane fromthe next certificate */

cryptGet AttributeString(cryptCertChain, CRYPT_CERTI NFO COMMONNAME,
comonNane, &commonNanelLength);

commonNane[commonNanelLength] = '"\0';

Apart from this, certificate chains work just like certificates— you can import them,
export them, verify the signatures on them (which verifies the entire chain of
certificates until atrusted certificate is reached), and write them to and read them
from akeyset in exactly the same manner as an individua certificate.

Signing Certificate Chains

When you sign a single subject certificate using cryptSignCert, a small amount of
information is copied from the signing certificate (the issuer cert) to the subject
certificate as part of the signing process, and the result isa single, signed subject
certificate. In contrast signing a single subject certificate contained in a certificate
chain object resultsin the signing certificates (either asingle issuer certificate or an
entire chain of certificates) being copied over to the certificate chain object so that the
signed certificate ends up as part of a complete chain. The exact details are as

follows:

Object tosign Signing object Result

Certificate Certificate Certificate

Certificate Certificate chain Certificate

Certificate chain Certificate Certificate chain, length = 2

Certificate chain Certificate chain Certificate chain, length =
length of signing chain + 1

For example the following code produces a single signed certificate:
CRYPT_CERTI FI CATE cryptCertificate;

/* Build a certificate froma cert request */

cryptCreateCert(&cryptCertificate, cryptUser,
CRYPT_CERTTYPE_CERTI FI CATE) ;

cryptSet Attribute(cryptCertificate, CRYPT_CERTI NFO CERTREQUEST,
crypt Cert Request);

/* Read a private key with cert chain froma private key keyset */
/> .0 %

/* Sign the certificate */
crypt SignCert(cryptCertificate, caPrivateKey);

In contrast the following code produces a complete certificate chain, since the object
being created isa CRYPT_CERTTYPE_CERTCHAIN (which can hold a complete

Certificate Chains 227

chain) rather than a CRYPT_CERTTY PE_CERTIFICATE (which only holds asingle
certificate):

CRYPT_CERTI FI CATE crypt Cert Chai n;

/* Build a certificate froma cert request */

crypt CreateCert(&cryptCert Chain, cryptUser,
CRYPT_CERTTYPE_CERTCHAI N) ;

crypt Set Attribute(cryptCertChain, CRYPT_CERTI NFO CERTREQUEST,
crypt Cert Request);

/* Read a private key with cert chain froma private key keyset */
[* .0 0%

/* Sign the certificate chain */
crypt SignCert(cryptCertChain, caPrivateKey);

By specifying the object type to be signed, you can choose between creating asingle
signed certificate or a complete certificate chain.

Checking Certificate Chains

When verifying a certificate chain with cryptCheckCert, you don’t have to supply
an issuer certificate since the chain should contain al the issuer certificates up to one
which istrusted by cryptlib:

CRYPT_CERTI FI CATE crypt Cert Chai n;

/* Verify an entire cert chain */
crypt CheckCert (crypt Cert Chain, CRYPT_UNUSED);

Aswith self-signed certificates, you can also passin the certificate chain asthe
signing certificate instead of using CRY PT_UNUSED, this has the same effect since
the certificate chain is both the signed and signing object.

If acertificatein the chainisinvalid or the chain doesn’t contain a trusted certificate
at some point in the chain, cryptlib will return an appropriate error code and leave the
invalid certificate as the currently selected one, allowing you to obtain information
about the nature of the problem by reading the extended error attributes as explained
in “Error Handling” on page 282.

If the error encountered is the fact that the chain doesn’t contain a trusted certificate
somewhere along the line, cryptlib will either mark the top-level certificate as having
a missing CRYPT CERTINFO_TRUSTED IMPLICIT attribute if it’s a CA root
certificate (that is, there’s a root certificate present but it isn’t trusted) or mark the
chain as awhole as having a missing certificate if there’s no CA root certificate
present and no trusted certificate present either. Certificate trust management is
explained in more detail in “Certificate Trust Management” on page 231.

Certificate chain validation is an extremely complex process that takes into account
an enormous amount of validation information that may be spread across an entire
certificate chain. For examplein achain of 10 certificates, the 3" certificate from the
root may place a constraint that doesn’t take effect until the 7" certificate from the
root is reached. Because of this, a reported validation problem isn’t necessary related
to agiven certificate and itsimmediate i ssuing certificate, but may have been caused
by adifferent certificate a number of steps further along the chain.

Some certificate chains contain CA certificates that specify certificate policies. By
default cryptlib requires that a policy that’s set by a CA is matched by the certificates
that the CA issues (in other words the CA sets policies for certificates further down
the chain). If you want to allow policies to change going down the chain once the CA
has set them, you can set the CRYPT_OPTION_CERT_REQUIREPOLICY option to
false (0). When it’s set to this value cryptlib won’t verify that policies match up as it
goes down the chain. You wouldn’t normally need to use this configuration option,
it’s used to provide an optional capability that’s covered in some certificate standards
documents.

Some certificate chains may not contain or be signed by atrusted CA certificate, but
may end in aroot CA certificate with an unknown trust level. Since the cryptlib trust

228 Certificatesin Detail

manager can’t provide any information about this certificate, it won’t be possible to
verify the chain. If you want to trust the root CA certificate you can use the cryptlib
trust management mechanisms to handle this, as explained in “Certificate Trust
Management” on page 231.

Exporting Certificate Chains

Asisthe case when signing certificates and certificate chains, cryptlib gives you a
high degree of control over what part of the chain you want to export. By specifying
an export format of CRYPT_CERTFORMAT_CERTIFICATE or CRYPT_-
CERTFORMAT_CERTCHAIN, you can control whether asingle certificate or an
entire chain is exported. The exact details are as follows:

Object type Export format Result

Certificate Certificate Certificate

Certificate Certificate chain Certificate chain, length =1

Certificate chain Certificate Currently selected certificatein
the chain

Certificate chain Certificate chain Certificate chain

For example the following code exports the currently selected certificate in the chain
asasingle certificate:
CRYPT_CERTI FI CATE crypt Cert Chai n;

void *certificate;
int certificatelLength;

/* Allocate nmenory for the encoded certificate */
certificate = malloc(certificateMaxLength);

/* Export the currently selected certificate fromthe certificate
chain */

crypt ExportCert(certificate, certificateMaxLength,
&certificateLength, CRYPT_CERTFORMAT_CERTI FI CATE, cryptCertChain);

In contrast the following code exports the entire certificate chain:

CRYPT_CERTI FI CATE crypt Cert Chai n;
voi d *cert Chain;
int certChai nLengt h;

/* Allocate menory for the encoded certificate chain */
certChain = nalloc(certChai nMaxLength);

/* Export the entire certificate chain */
crypt Export Cert(certChain, certChai nMaxLength, &cert Chai nLengt h,
CRYPT_CERTFORMAT_CERTCHAI N, cryptCertChain);

Certificate Revocation using CRLs

Once a certificate has been issued, you may need to revoke it before its expiry date if
the private key it corresponds to islost or stolen, or if the details given in the
certificate (for example your job role or company affiliation) change. Certificate
revocation is done through a certificate revocation list (CRL) that contains references
to one or more certificates that have been revoked by a CA. cryptlib supports the
creation, import, export, and checking of CRLsas CRYPT_CERTTYPE_CRL
objects, with individual revocation entries accessed as if they were standard
certificate components. Note that these entries are merely references to revoked
certificates and not the certificates themselves, so al they contain is a certificate
reference, the date of revocation, and possibly various optional extras such asthe
reason for the revocation.

Working with CRLs

Individual revocation entriesin a CRL are addressed through a certificate cursor that
functionsin the same way as the attribute cursor discussed in “Attribute Listsand ”
on page 37. Although a CRL appears asa single object, it consistsinternally of a

CreatingCRLs 229

collection of certificate revocation entries that you can move through using the
standard cursor movement codes. For example to move the cursor to the first entry in
the CRL, you would use:

crypt Set Attribute(crypt CRL, CRYPT_CERTI NFO CURRENT_CERTI FI CATE,
CRYPT_CURSOR_FI RST) ;

To advance the cursor to the next entry, you would use:

crypt Set Attribute(crypt CRL, CRYPT_CERTI NFO CURRENT_CERTI FI CATE,
CRYPT_CURSOR_NEXT) ;

Since each revocation entry can have its own attributes, moving the entry cursor from
one entry to another can change the attributes that are visible. This meansthat if
you’re working with a particular entry, the attributes for that entry will be visible, but
attributes for other entries won’t be. To complicate this further, CRLs can also
contain global attributes that apply to, and are visible for, al entriesin the CRL.
cryptlib will automatically handle these for you, allowing access to al attributes (both
per-entry and global) that apply to the currently selected revocation entry.

Creating CRLs

To create a CRL, you first create the CRL certificate object as usual and then push
one or more certificates to be revoked into it.

CRYPT_CERTI FI CATE crypt CRL;

/* Create the (enpty) CRL */
cryptCreateCert(&ryptCRL, cryptUser, CRYPT_CERTTYPE CRL);

/* Add the certificates to be revoked */

crypt Set Attribute(crypt CRL, CRYPT_CERTI NFO_CERTI FI CATE,
revokedCertl);

crypt Set Attribute(crypt CRL, CRYPT_CERTI NFO_CERTI FI CATE,
revokedCert2);

[* .0 %

crypt Set Attribute(crypt CRL, CRYPT_CERTI NFO _CERTI FI CATE,
revokedCertN);

/* Sign the CRL */

cryptSignCertificate(cryptCRL, caPrivateKey);
As has already been mentioned, you must be a CA in order to issue a CRL, and you
can only revoke certificates that you have issued using the certificate used to sign the
CRL (you can’t, for example, revoke a certificate issued by another CA, or revoke a
certificate issued with one CA certificate using a different CA certificate). If you try
to add certificates issued by multiple CAsto aCRL, or try to sign a CRL with aCA
certificate that differs from the one that signed the certificatesin the CRL, cryptlib
will return aCRYPT_ERROR_INVALID error to indicate that the certificate you are
trying to add to the CRL or sign the CRL with is from thewrong CA. To reiterate:
Every certificate in agiven CRL must have been issued using the CA certificate
whichisused to sign the CRL. If your CA uses multiple certificates (for example a
Class 1 certificate, a Class 2 certificate, and a Class 3 certificate) then it must issue
one CRL for each certificate class. cryptlib will perform the necessary checking for
you to ensure you don’t issue an invalid CRL.

If you’re acting as a CA and issuing CRLs for certificates then a much easier way to
handle this is to use cryptlib’s certificate management capabilities as described in
“lssuing a CRL” on page 181, since this takes care of al of these details for you.

Advanced CRL Creation

The code shown above creates arelatively straightforward, simple CRL with no extra
information included with the revocation. Y ou can aso include extra attributes such
asthe time of the revocation (which may differ from the time the CRL was issued, if
you don’t specify a time then cryptlib will use the CRL issuing time), the reason for
the revocation, and the various other CRL-specific information as described in “CRL
Extensions” on page 245.

230

Certificates in Detail

If you set arevocation time with no revoked certificates present in the CRL, cryptlib
will use thistime for any certificates you add to the CRL for which you don’t
explicitly set the revocation time so you can use thisto set a default revocation time
for any certificates you add. If you set arevocation time and there are revoked
certificates present in the CRL, cryptlib will set the time for the currently selected
certificate, which will be either the last one added or the one selected with the
certificate cursor commands.

For example to revoke alist of certificates, setting the revocation date for each one
individually, you would use:

CRYPT_CERTI FI CATE crypt CRL;
whil e(nmoreCerts)

{
CRYPT_CERTI FI CATE r evokedCert;
time_t revocationTi nme;

/* Get the certificate to revoke and its revocation tine */
revokedCert = ...;
revocationTime = ...;

/* Add themto the CRL */

crypt Set Attribute(crypt CRL, CRYPT_CERTI NFO _CERTI FI CATE,
revokedCert);

crypt Set AttributeString(crypt CRL, CRYPT_CERTI NFO REVOCATI ONDATE,
& evocationTi me, sizeof(tine_t));

/* Clean up */
crypt DestroyCert(revokedCert);
}

Y ou can aso add additional attributes such as the reason for the revocation to each
revoked certificate, a number of standards recommend that areason is given for each
revocation. The revocation codes are specified in “CRL Extensions” on page 245.

CRLs can be signed, verified, imported, and exported just like other certificate
objects.

Checking Certificates against CRLs

Verifying a certificate against a CRL with cryptCheckCert works just like a
standard certificate check, with the second parameter being the CRL that the
certificate is being checked against:

CRYPT_CERTI FI CATE crypt CRL;

/* Check the certificate against the CRL */
crypt CheckCert (cryptCertificate, cryptCRL);

If the certificate has been revoked, cryptlib will return CRYPT_ERROR_INVALID.
If the certificate has not been revoked (in other words if it is not on the CRL), cryptlib
will return CRY PT_OK. Note that the only thing a CRL can say with certainty is
“revoked”, so it can’t provide a true validity check for a certificate. For example, if
you perform a CRL check on an Excel spreadsheet, a CRL will report it asbeing a
valid certificate, since it’s not listed in the CRL. Similarly, a forged certificate can’t
be handled by a CRL since it can’t be handled through a blacklist mechanism such as
aCRL. If you require atrue certificate validity check, you need to use aaternative
mechanism such as RTCS.

If the certificate is revoked, the certificate’s revocation entry in the CRL will be left
as the selected one, allowing you to obtain further information on the revocation (for
exampl e the revocation date or reason):

tinme_t revocationTi nme;
int revocati onReason;

status = crypt CheckCert(cryptCertificate, cryptCRL);
if(status == CRYPT_ERROR | NVALID)

{

int revocationTi meLengt h;

Certificate Trust Management 231

/* The certificate has been revoked, get the revocation tine and
reason */

cryptGet AttributeString(crypt CRL, CRYPT_CERTI NFO REVOCATI ONDATE,
& evocati onTi me, &revocationTi meLength);

cryptGet Attribute(crypt CRL, CRYPT_CERTI NFO_CRLREASCN,
& evocat i onReason);

}

Note that the revocation reason is an optional CRL component, so this may not be

present in the CRL. If the revocation reason isn’t present, cryptlib will return
CRYPT_ERROR_NOTFOUND.

Automated CRL Checking

Asyou can see from the description of the revocation checking process above, it
quickly becomes unmanageabl e as the number of CRLs and the size of each CRL
increases, since what should be a simple certificate validation check now involves
checking the certificate against any number of CRLs (CRLs are generally regarded as
a rather unsatisfactory solution to the problem of certificate revocation, but we’re
stuck with them for the foreseeable future).

In order to ease this complex and long-winded checking process, cryptlib provides the
ahility to automatically check a certificate against CRLs stored in a cryptlib database
keyset. To do thisyou first need to write the CRL or CRLsto the keyset asif they
were normal certificates, as explained in “Writing a Key to a Keyset” on page 146.
cryptlib will take each complete CRL and record al of the individual revocations
contained in it for later use.

Once you have a keyset containing revocation information, you can use it to check
the validity of acertificate using cryptCheckCert, giving the keyset as the second
parameter:

CRYPT_KEYSET crypt Keyset;

/* Check the certificate using the keyset */
crypt CheckCert (cryptCertificate, cryptKeyset);

Aswith the check against a CRL, cryptlib will return CRYPT_ERROR_INVALID if
the certificate has been revoked.

This form of automated checking considerably simplifies the otherwise arbitrarily
complex CRL checking process since cryptlib can handle the check with asimple
keyset query rather than having to locate and search large numbers of CRLs.

Certificate Trust Management

In order to provide extended control over certificate usage, cryptlib allows you to
both further restrict the usage given in the certificate’s CRYPT CERTINFO -
KEYUSAGE attribute and to specify whether a given certificate should be implicitly
trusted, avoiding the requirement to process a (potentially large) chain of certificates
in order to determine the certificate’s validity.

Controlling Certificate Usage

Y ou can control the way a certificate can be used by setting its CRYPT _-
CERTINFO_TRUSTED_USAGE attribute, which provides extended control over the
usage typesthat a certificate istrusted for. This attribute works by further restricting
the usage specified by the CRY PT_CERTINFO_KEYUSAGE attribute, acting asa
mask for the standard key usage so that a given usage is only permitted if it’s allowed
by both the key usage and trusted usage attributes. If the trusted usage attribute isn’t
present (which is the default setting) then all usage types specified in the key usage
attribute are allowed.

For example assume a certificate’s key usage attribute is set to CRYPT -
KEYUSAGE_DIGITALSIGNATURE and CRYPT_KEYUSAGE_-
KEYENCIPHERMENT. By setting the trusted usage attribute to CRYPT _-
KEYUSAGE_DIGITALSIGNATURE only, you can tell cryptlib that you only trust

232 Certificatesin Detail

the certificate to be used for signatures, even though the certificate’s standard usage
would also alow encryption. This meansthat you can control precisely how a
certificate isused at alevel beyond that provided by the certificate itself.

Implicitly Trusted Certificates

To handle certificate validation trust issues, cryptlib has a built-in trust manager that
records whether a given CA’s or end user’s certificate is implicitly trusted. When
cryptlib gets to atrusted certificate during the certificate validation process (for
example as it’s validating the certificates in a certificate chain), it knows that it
doesn’t have to go any further in trying to get to an ultimately trusted certificate. If
you installed the default cryptlib certificates when you installed cryptlib itself then
you’ll have a collection of top-level certificates from the world’s largest CAs already
present and marked as trusted by cryptlib, so that if cryptlib is asked to process a
certificate chain ending in one of these trusted CA certificates, the cryptlib trust
manager will determine that the top-level certificateisimplicitly trusted and use it to
verify the lower-level certificatesin the chain.

The trust manager provides a convenient mechanism for managing not only CA
certificates but also any certificates that you decide you can trust implicitly. For
example if you’ve obtained a certificate from a trusted source such as direct
communication with the owner or from atrusted referrer, you can mark the certificate
as trusted even if it doesn’t have a full chain of CA certificates in tow. This is a
natural certificate handling model in many situations (for example trading partners
with an existing trust relationship), and avoids the compl exity and expense of using
an external CA to verify something that both parties know aready. When scaed up
to thousands of users (and certificates), this can provide a considerable savings both
in terms of managing the certification process and in the cost of obtaining and
renewing huge numbers of certificates each year.

Working with Trust Settings

You can get and set a certificate’s trusted usage using CRYPT CERTINFO _-
TRUSTED_USAGE, which takes as value the key usage(s) for which the certificate
istrusted. To mark acertificate as trusted only for encryption, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO TRUSTED USAGE,
CRYPT_KEYUSAGE_KEYENCI PHERVENT) ;

This setting will now be applied automatically to the certificate’s usage permissions,
so that even if its CRYPT_CERTINFO_KEY USAGE attribute allowed signing and
encryption, the CRYPT_CERTINFO_TRUSTED_USAGE attribute would restrict
thisto only alow encryption.

To remove any restrictions and allow all usages specified by CRYPT_CERTINFO_-
KEYUSAGE, delete the CRYPT_CERTINFO_TRUSTED_USAGE attribute, which
allows the full range of usage types that are present in CRYPT_CERTINFO_-
KEYUSAGE:

cryptDel eteAttribute(cryptCertificate, CRYPT_CERTI NFO TRUSTED USAGE
)
You can get and set a certificate’s implicitly trusted status using the CRYPT_-
CERTINFO_TRUSTED_IMPLICIT attribute, which takes as value a boolean flag
that indicates whether the certificate isimplicitly trusted or not. To mark a certificate
astrusted, you would use:

cryptSet Attribute(certificate, CRYPT_CERTINFO TRUSTED IMPLICIT, 1);

Be careful when marking certificate chains (rather than individual certificates) as
implicitly trusted. Since achain usually contains multiple certificates, setting the
CRYPT_CERTINFO_TRUSTED_IMPLICIT attribute affects the currently selected
certificate in the chain. Typically you want to trust the root CA, while the certificate
which isnormally active when the chain is used is the end-user/leaf certificate. In
order to select the root CA certificate, you should move the certificate cursor to it
using the CRYPT_CURSOR_LAST movement code before marking the chain as

Certificate Trust Management 233

trusted. Thiswill explicitly make the top-level CA certificate trusted, rather than
some arbitrary certificate in the chain.

To check whether a certificate is trusted you would use:

int isTrusted;

cryptGet Attribute(certificate, CRYPT_CERTINFO TRUSTED | MPLICIT,
& sTrusted);

Since the trust of a CA propagates down to the certificates it issues, the trust setting in
this case applies to the whole chain rather than just one certificate in it. In other
wordsif the chain is signed by atrusted CA, the entire chain beyond that point will be
regarded as trusted.

If theresult is set to true (anonzero value) then the certificate isimplicitly trusted by
cryptlib. In practice you won’t need to bother with this checking, since cryptlib will
do it for you when it verifies certificate chains.

The certificate trust settings are part of cryptlib’s configuration options, which are
explained in more detail in “Working with Configuration Options” on page 274. Like
all configuration options, changes to the trust settings only remain in effect during the
current session with cryptlib unless you explicitly force them to be committed to
permanent storage by resetting the configuration changed flag. For exampleif you
change the trust settings for various certificates and want the new trust values to be
applied when you use cryptlib in the future, you would use code like:

/* Mark various certificates as trusted and one as untrusted */

cryptSet Attribute(certificatel, CRYPT_CERTINFO TRUSTED | MPLICIT,
cryptSet Attribute(certificate2, CRYPT_CERTINFO TRUSTED | MPLICI T,
cryptSet Attribute(certificate3, CRYPT_CERTINFO TRUSTED | MPLICIT,
cryptSet Attribute(certificate4, CRYPT_CERTINFO TRUSTED | MPLICIT,

oORr kLR
————

/* Save the new settings to permanent storage */
cryptSet Attribute(CRYPT_UNUSED, CRYPT_OPTI ON_CONFI GCHANGED, FALSE);

Marking a certificate as untrusted doesn’t mean that it can never be trusted, but
merely that its actual trust statusis currently unknown. If the untrusted certificateis
signed by atrusted CA certificate (possibly several levels up a certificate chain) then
the certificate will be regarded as trusted when cryptlib checks the certificate chain.
In practice an untrusted certificate is really a certificate whose precise trust level has
yet to be determined rather than a certificate which is explicitly not trusted. 1f you
want to explicitly not trust a certificate for one or more types of usage, you can do
thisusing the CRYPT_CERTINFO_TRUSTED_USAGE attribute.

234 Certificate Extensions

Certificate Extensions

Extension

Certificate extensions form by far the most complicated portion of certificates. By
default, cryptlib will add appropriate certificate extension attributes to certificates for
you if you don’t add any, but sometimes you may want to add or change these
yourself. cryptlib supports extensionsin two ways, through the usual add/get/delete
attribute mechanism for extensions that it recognises, and through
cryptAddCertExtension, cryptGetCertExtension, and cryptDeleteCertExtension
for general extensions that it doesn’t recognise. The general extension handling
mechanism allows you to add, query, and delete any kind of extension to a certificate,
including ones that you define yourself.

Structure

X.509 version 3 introduced a mechanism by which additional information could be
added to certificates through the use of certificate extensions. The X.509 standard
defined a number of extensions, and over time other standards organi sations defined
their own additions and amendments to these extensions. In addition private
organisations, businesses, and individuals have all defined their own extensions, some
of which (for example the extensions from Netscape and Microsoft) have seen a
reasonably wide amount of use. An extension contains three main pieces of
information:

Field Description

Type The extension type, aunique identifier called an object
identifier. Thisisgiven as a sequence of numbers that trace
a path through an object identifier tree. For example the
object identifier for the keyUsage extensionis2 5 29 15.
The object identifier for cryptlibis136 14 13029 32.

Critical Flag A flag that defines whether the extension isimportant
enough that it must be processed by an application. If the
critical flag is set and an application doesn’t recognise the
extension, it will reject the certificate.

Since some standards (including X.509 itself) allow
implementations to selectively ignore non-critical extensions,
and support for extensions is often haphazard, it may be
necessary to mark an extension as critical in order to ensure
that other implementations processit. Asusual, you should
check to see whether your intended target correctly processes
the extensions that you plan to use.

Vaue The extension data, corresponding to a cryptlib attribute
group for more complex composite extensions, or asingle
cryptlib attribute for afew very simple extensions.

For the extensions that cryptlib recognises, the handling of the critical flagis
automatic. For extensions that cryptlib doesn’t handle itself, you need to set the
critical flag yourself when you add the extension data using
cryptAddCertExtension.

Working with Extension Attributes

Certificate extensions correspond to cryptlib attribute groups, with individual
components of each certificate extension being represented by attributes within the
group. Since this section applies specifically to certificates, the certificate-specific
terminology referring to extensions rather than the general term attribute group will
be used here.

cryptlib can identify attributes in extensiong/attribute groups in one of three ways:

Working with Extension Attributes 235

1. Through an extension identifier that denotes the entire extension/attribute group.
For example CRY PT_CERTINFO_CERTPOLICIES denotes the
certificatePolicies extension/attribute group.

2. Through an attribute identifier that denotes a particular attribute within an
extension/attribute group. For example CRY PT_CERTINFO_CERTPOLICY
denotes the policyldentifier attribute contained within the certificatePolicies
extension/attribute group.

Some extensions/groups only contain a single attribute, in which case the
extension identifier is the same as the attribute identifier. For example the
CRYPT_CERTINFO_KEY USAGE extension contains a single attribute which is
also identified by CRYPT_CERTINFO_KEYUSAGE.

3. Through the attribute cursor mechanism that allows you to step through a set of
extensions extension by extension or attribute by attribute. Attribute cursor
management is explained in more detail in “Attribute Lists and ” on page 37.

Y ou can use the extension/group identifier to determine whether a particular
extension is present with cryptGetAttribute (it will return CRYPT_ERROR_-
NOTFOUND if the extension isn’t present), to delete an entire extension with
cryptDeleteAttribute, and to position the extension cursor at a particular extension.

Attributes within extensions/group are handled in the usual manner, for exampleto
retrieve the value of the basicConstraints CA attribute (which determines whether a
certificateisa CA certificate) you would use:

int isCA
cryptGet Attribute(certificate, CRYPT_CERTINFO CA, & sCA);

To determine whether the entire basicConstraints extension is present, you would use:

i nt basi cConstraintsPresent;

status = cryptGet Attribute(certificate,

CRYPT_CERTI NFO_BASI CCONSTAI NTS, &basi cConstrai ntsPresent);
if(cryptStatusOK(status))

/* basicConstraints extension is present */;

You don’t have to worry about the structure of individual extensions since cryptlib
will handle thisfor you. For example to make a certificate a CA certificate, al that
youneedtodois

cryptSet Attribute(certificate, CRYPT_CERTINFO CA 1);

and cryptlib will construct the basicConstraints extension for you and set up the CA
attribute asrequired. Because the basicConstraints extension is afundamental
X.509v3 extension, cryptlib will in fact always add this by default even if you don’t
explicitly specify it.

Extension Cursor Management

Note: Sarting with cryptlib 3.2, all cryptlib objects will have a unified cursor
management system. At this point the certificate-specific cursor attributes will be
moved to CRYPT_ATTRIBUTE_CURRENT_GROUP, CRYPT_ATTRIBUTE_-
CURRENT, and CRYPT_ATTRIBUTE_CURRENT _INSTANCE, in place of the
current CRYPT_CERTINFO_CURRENT_EXTENSION, CRYPT_CERTINFO_-
CURRENT_FIELD, and CRYPT_CERTINFO_CURRENT_COMPONENT. The new
attributes are already present in the current release, so you should plan to move
existing code to using the new names (this can be done with a simple search and
replace), and use the new attribute names in any new code that you write.

Extensions and extension attributes can aso be managed through the use of an
extension cursor that works just like the attribute cursor discussed in “Attribute Lists
and ” on page 37. Since certificates are significantly more complex than other
cryptlib objects, the cursor is handled through three levels of attributes instead of the
usud one. These attributes are CRY PT_CERTINFO_CURRENT_EXTENSION for
the extension, CRYPT_CERTINFO_CURRENT _FIELD for the attribute within the

236

Certificate Extensions

extension, and CRYPT_CERTINFO_CURRENT_COMPONENT for the component
within the attribute if the attribute can contain more than one value (for example an
atName can contain one or more email addresses, URLS, and other information).
When you set the attribute values, this moves the cursor to the particular extension or
attribute. The attribute value that you specify is the extension or extension attribute
that you want to move the cursor to. For example:

cryptSet Attribute(certificate, CRYPT_CERTI NFO_ CURRENT_EXTENSI ON,
CRYPT_CERTI NFO CA) ;

would move the extension cursor to the start of the extension containing the given
attribute (in this case the start of the basicConstraints extension). In contrast:

cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_FI ELD,
CRYPT_CERTI NFO CA) ;

would move the cursor to the extension attribute (in this case the CA attribute in the
basicConstraints extension). Setting the CRYPT_CERTINFO_CURRENT _-
COMPONENT attribute isidentical to setting the CRYPT_CERTINFO_-
CURRENT_FIELD except inthe special case of using attribute cursor movement
codes, where it can be used to access sub-components within an attribute.

Y ou can a'so position the cursor using the standard attribute cursor movement codes.
For example to move the cursor to the start of the first extension, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_EXTENSI ON,
CRYPT_CURSOR_FI RST) ;

To advance the cursor to the start of the next extension, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_EXTENSI ON,
CRYPT_CURSOR_NEXT) ;

To advance the cursor to the next attribute in the extension, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_FI ELD,
CRYPT_CURSOR_NEXT) ;

In some cases multiple instances of the same attribute can be present, in which case
you can use the CRYPT_CERTINFO_CURRENT_COMPONENT attribute and
relative cursor movement to step through the different instances of the attribute.
Since the use of multi-valued attributes is rare, it’s safe to assume one value per
attribute in most cases, so that stepping through multiple attribute instances is
unnecessary.

Once you’ve set the cursor position, you can work with the extension or attribute at
the cursor position in the usual manner. For example to delete the entire extension at
the current cursor position you would use:

cryptDel eteAttribute(certificate, CRYPT_CERTI NFO CURRENT_EXTENSI ON);

Deleting the extension at the cursor position will move the cursor to the start of the
extension that follows the deleted one, or to the start of the previous extension if the
one being deleted was the last one present. This means that you can delete every
extension simply by repeatedly deleting the one under the cursor.

To obtain the extension or attribute type at the current cursor position, you would use:
CRYPT_ATTRI BUTE_TYPE ext ensi onAttri butel D,

cryptGet Attribute(certificate, CRYPT_CERTI NFO CURRENT_EXTENSI ON,
&ext ensi onAttributel D);

This example obtains the extension, to obtain the attribute type you would substitute
CRYPT_CERTINFO_CURRENT_FIELD in place of CRYPT_CERTINFO_-
CURRENT_EXTENSION.

The attribute cursor provides a convenient mechanism for stepping through every
extension which is present in a certificate object. For example to iterate through
every extension you would use:

Working with Extension Attributes 237

if(cryptSetAttribute(certificate, CRYPT_CERTI NFO CURRENT_ EXTENSI ON,
CRYPT_CURSOR_FI RST) == CRYPT_OX)
do

{
CRYPT_ATTRI BUTE_TYPE ext ensi onl D;

/* Get the ID of the extension under the cursor */
cryptGet Attribute(certificate,
CRYPT_CERTI NFO_CURRENT_EXTENSI ON, &extensionlD);

}

whil e(cryptSetAttribute(certificate,
CRYPT_CERTI NFO_CURRENT_EXTENSI ON, CRYPT_CURSOR_NEXT) ==
CRYPT_X);

To extend this a stage further and iterate through every attribute in every extension in
the certificate object, you would use:

if(cryptSetAttribute(certificate, CRYPT_CERTI NFO CURRENT_EXTENSI ON,
CRYPT_CURSOR_FI RST) == CRYPT_(XK)
do

{
do

CRYPT_ATTRI BUTE_TYPE ext ensi onAttri butel D,

/* Get the ID of the extension attribute under the cursor */

cryptGet Attribute(certificate, CRYPT_CERTI NFO CURRENT_FI ELD,
&ext ensi onAttributel D);

}

while(cryptSetAttribute(certificate,
CRYPT_CERTI NFO_CURRENT_FI ELD, CRYPT_CURSOR NEXT) == CRYPT_OK
)i

}

while(cryptSetAttribute(certificate,
CRYPT_CERTI NFO_CURRENT_EXTENSI ON, CRYPT_CURSOR NEXT) ==
CRYPT_K);

Note that iterating attribute by attribute works within the current extension, but won’t
jump from one extension to the next — to do that, you need to iterate by extension.

To restrict the above operation slightly so that only the attributes of a single extension
(rather than all extensions) are enumerated, you first select the extension and then
step through the attributesin it. For exampleto read all extended key usage types you
would use:

if(cryptSetAttribute(certificate, CRYPT_CERTI NFO CURRENT_ EXTENSI ON,
CRYPT_CERTI NFO_EXTKEYUSAGE) == CRYPT_K)
do

CRYPT_ATTRI BUTE_TYPE ext ensi onAttri butel D

/* Get the ID of the extension attribute under the cursor */
cryptGet Attribute(certificate, CRYPT_CERTI NFO CURRENT_FI ELD,
&ext ensi onAttributel D);

while(cryptSetAttribute(certificate,
CRYPT_CERTI NFO_CURRENT_FI ELD, CRYPT_CURSOR NEXT) == CRYPT_CK);

Composite Extension Attributes

Attributes that contain complete General Names and/or DNs are composite attributes
that have further items within them. These are handled in the standard way using the
attribute cursor: Y ou first move the cursor to the attribute that contains the
GeneralName or DN that you want to work with and then get, set, or delete attributes
within it:
cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_FI ELD,
CRYPT_CERTI NFO_PERM TTEDSUBTREES) ;

cryptSet AttributeString(certificate, CRYPT_CERTI NFO RFC822NAME,
rfc822Nanme, rfc822NaneLength);

cryptSet AttributeString(certificate, CRYPT_CERTI NFO DNSNAME, dnsNane,
dnsNaneLength);

This code first moves the cursor to the nameConstraints permittedSubtrees
GeneralName and then sets the GeneralName attributes asusua. Since a

238

Certificate Extensions

General Name contains its own DN, moving the attribute cursor onto a GeneralName
means that any DN accesses will now refer to the DN in the General Name rather than
the certificate subject or issuer name:

/* Sel ect the permttedSubtrees General Nane */

cryptSet Attribute(certificate, CRYPT_CERTI NFO CURRENT_FI ELD,
CRYPT_CERTI NFO_PERM TTEDSUBTREES) ;

/* Set the DN conponents within the General Name */

cryptSet AttributeString(certificate, CRYPT_CERTI NFO_COUNTRYNAME,
countryName, countryNaneLength);

cryptSet AttributeString(certificate, CRYPT_CERTI NFO LOCALI TYNAME,
| ocal i tyNanme, |ocalityNaneLength);

This codefirst identifies the nameConstraints permittedSubtrees GeneralName as the
one to be modified and then setsthe DN components asusual. cryptlib usesthis
mechanism to access al DNs and General Names, although thisis usually hidden
from you — when you modify a certificate object’s DN, cryptlib automatically uses
the subject DN if you don’t explicitly specify it, and when you modify the
GeneralName cryptlib uses the subject altName if you don’t explicitly specify it. In
this way you can work with subject names and altNames without having to know
about the DN and GeneralName selection mechanism.

Once you’ve selected a different GeneralName and/or DN, it remains selected until
you select a different one or move the attribute cursor off it, so if you wanted to move
back to working with the subject name after performing the operations shown above
you’d need to use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO_SUBJECTNAMNE,
CRYPT_UNUSED) ;

otherwise attempts to add, delete, or query further DN (or General Name) attributes
will apply to the selected nameConstraints excludedSubtrees attribute instead of the
subject name. Conversely, if you move the attribute cursor off the GeneralName that
you’re working with, subsequent attempts to work with GeneralName or DN fields
will fail with a CRYPT _ERROR_NOTFOUND, since there’s no GeneralName
currently selected.

X.509 Extensions

X.509 version 3 and assorted additional standards and revisions specify alarge
number of extensions, al of which are handled by cryptlib. In addition there are a
number of proprietary and vendor-specific extensions that are also handled by
cryptlib.

In the following descriptions only the generally useful attributes have been described.
The full range of attributesis enormous, requires several hundred pages of standards
specifications to describe them all, and will probably never be used inreal life. These
attributes are marked with “See certificate standards documents” to indicate that you
should refer to other documents to obtain information about their usage (thisisaso a
good indication that you shouldn’t really be using this attribute).

Alternative Names

The subject and issuer altNames are used to specify all the things that aren’t suitable
for the main certificate DNs. Theissuer atNameisidentified by CRYPT -
CERTINFO_ISSUERALTNAME and the subject altName is identified by CRYPT_-
CERTINFO_SUBJECTALTNAME. Both consist of a single GeneralName whose
use is explained in “Extended Certificate |dentification Information” on page 219.
Thisextension isvalid in certificates, certification requests, and CRLs, and can
contain one of each type of General Name component.

Basic Constraints

Thisisastandard extension identified by CRYPT_CERTINFO_-
BASICCONSTRAINTS and is used to specify whether a certificateisa CA
certificate or not. If you don’t set this extension, cryptlib will set it for you and mark

X.509 Extensions 239

the certificate as anon-CA certificate. Thisextensionisvalid in certificates, attribute
certificates, and certification requests, and has the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CA Boolean
Whether the certificateisa CA certificate or not. When used with attribute
certificates, the CA iscalled an authority, so cryptlib will aso accept the
dternative CRYPT_CERTINFO_AUTHORITY, which hasthe same
meaning as CRYPT _CERTINFO_CA. If this attribute isn’t set, the
certificate is treated as a non-CA certificate.

CRYPT_CERTINFO PATHLENCONSTRAINT Numeric
See certificate standards documents.

For example to mark a certificate as a CA certificate you would use:
cryptSet Attribute(certificate, CRYPT_CERTINFO CA, 1);

Certificate Policies, Policy Mappings, and Policy Constraints, and Policy

Inhibiting

The certificate policy extensions allow a CA to provide information on the policies
governing a certificate, and to control the way in which a certificate can be used. For
exampleit allows you to check that each certificate in a certificate chain was issued
under apolicy you feel comfortable with (certain security precautions taken, vetting
of employees, physical security of the premises, and so on). The certificate policies
attributeisidentified by CRYPT_CERTINFO_CERTIFICATEPOLICIES and is
valid in certificates.

The certificate policies attribute is a complex extension that allows for all sorts of
qudifiers and additional modifiers. In general you should only use the
policyldentifier attribute in this extension, since the other attributes are difficult to
support in user software and are ignored by many implementations:

Attribute/Description Type

CRYPT_CERTINFO_CERTPOLICYID String
The object identifier that identifies the policy under which this certificate
was issued.

CRYPT_CERTINFO_CERTPOLICY_CPSURI String
The URL for the certificate practice statement (CPS) for this certificate

policy.

CRYPT_CERTINFO_CERTPOLICY_ORGANIZATION String
CRYPT_CERTINFO_CERTPOLICY_NOTICENUMBERS Numeric
CRYPT_CERTINFO_CERTPOLICY_EXPLICITTEXT String
These attributes contain further qualifiers, modifiers, and text information
that amend the certificate policy information. Refer to certificate standards
documents for more information on these attributes.

Since various CAs that would like to accept each other’s certificates may have
differing palicies, there is an extension that allows a CA to map its policies to those
of another CA. The policyMappings extension provides a means of mapping one
policy to another (that is, for a CA to indicate that policy A, under which it isissuing
acertificate, is equivalent to policy B, which isrequired by the certificate user). This
extension isidentified by CRYPT_CERTINFO_POLICYMAPPINGSandisvalidin
certificates:

Attribute/Description Type
CRYPT_CERTINFO_ISSUERDOMAINPOLICY String
The object identifier for the source (issuer) policy.

CRYPT_CERTINFO_SUBJECTDOMAINPOLICY String

The object identifier for the destination (subject) policy.

240 Certificate Extensions

A CA can also specify acceptable policy constraints for usein certificate chain
validation. The policyConstraints extension isidentified by CRYPT_CERTINFO_-
POLICY CONSTRAINTS and isvalid in certificates:

Attribute/Description Type
CRYPT_CERTINFO_REQUIREEXPLICITPOLICY Numeric
See certificate standards documents.
CRYPT_CERTINFO_INHIBITPOLICYMAPPING Numeric

See certificate standards documents.

Finally, a CA can inhibit the use of the special-case anyPolicy policy. The
inhibitAnyPolicy extension isidentified by CRYPT_CERTINFO_-
INHIBITANYPOLICY andisvalid in certificates:

Attribute/Description Type

CRYPT_CERTINFO_INHIBITANYPOLICY Numeric
See certificate standards documents.

CRL Distribution Points/Freshest CRL and Subject/Authority Information

Access

These extensions specify how to obtain CRL information and information on the CA
that issued a certificate. The cRLDistributionPoint extension isvalid in certificates
and isidentified by CRYPT_CERTINFO_CRLDISTRIBUTIONPOINT:

Attribute/Description Type

CRYPT_CERTINFO_CRLDIST_FULLNAME GeneralName
The location at which CRLs may be obtained. Y ou should use the URL
component of the GeneralName for this, avoiding the other possihilities.

CRYPT_CERTINFO_CRLDIST_REASONS Numeric
CRYPT_CERTINFO_CRLDIST_CRLISSUER GeneralName
See certificate standards documents.

Note that the CRYPT_CERTINFO_CRLDIST REASONS attribute has the same
alowable set of values as the cRLReasons reasonCode, but in this caseisgiven asa
series of bit flags rather than the reasonCode numeric val ue (because X.509 says so,
that’s why). Because of this you must use CRYPT CRLREASONFLAGS name
instead of CRYPT_CRLREASON_name when getting and setting these values.

If you plan to use this extension, you should be aware of the fact that it exists solely
as akludge created to work around problemsinvolved in finding CRLs in X.500
directories, and thus presents a rather poor mechanism for distributing and obtaining
revocation information. Unless it’s absolutely imperative that you use this extension,
it’s better to use RTCS or OCSP as explained in “Certificate Status Checking using
RTCS” on page 162, “RTCS Server Sessions” on page 122, “Certificate Revocation
Checking using OCSP” on page 162, and “OCSP Server Sessions” on page 122.

The freshestCRL extension isvalid in certificates and isidentified by CRYPT _-
CERTINFO_FRESHESTCRL. The structureisidentica to cRLDistributionPoint,
with the subfields named with FRESHESTCRL instead of CRLDIST. Aswith
cRLDistributionPoint, thisis a kludge used to work with delta CRLs.

The subjectinfoAccess extensionisvalid in certificates and isidentified by
CRYPT_CERTINFO_SUBJECTINFOACCESS:

Attribute/Description Type

CRYPT_CERTINFO_SUBJECTINFO_CAREPOSITORY GeneralName
The location at which the CA publishes certificates and CRLs, if the
certificateisfor aCA. You should use the URL component of the
GeneralName for this, avoiding the other possibilities.

CRYPT_CERTINFO_SUBJECTINFO_TIMESTAMPING GeneralName

X.509 Extensions 241

The location at which timestamping services using the timestamp protocol
(TSP) are available. Y ou should use the URL component of the
GeneralName for this, avoiding the other possibilities.

The authoritylnfoAccess extension is valid in certificates and CRLs and is identified
by CRYPT_CERTINFO_AUTHORITYINFOACCESS:

Attribute/Description Type
CRYPT_CERTINFO_AUTHORITYINFO_CAISSUERS GeneralName
The location at which information on CAs located above the CA that issued
this certificate can be obtained. Y ou should use the URL component of the
GeneralName for this, avoiding the other possibilities.

CRYPT_CERTINFO_AUTHORITYINFO_CERTSTORE GeneralName
The location at which further certificates issued by the CAsthat issued this
certificate can be obtained. Y ou should use the URL component of the
GeneralName for this, avoiding the other possibilities.

CRYPT_CERTINFO_AUTHORITYINFO_CRLS GeneralName
The location at which further certificates issued by the CAsthat issued this
certificate can be obtained. Y ou should use the URL component of the
GeneralName for this, avoiding the other possibilities.

CRYPT_CERTINFO_AUTHORITYINFO_OCSP GeneralName
The location at which certificate revocation information can be obtained.

Y ou should use the URL component of the General Name for this, avoiding
the other possibilities.

CRYPT_CERTINFO_AUTHORITYINFO_RTCS GeneralName
The location at which certificate validity information can be obtained. You
should use the URL component of the GeneralName for this, avoiding the
other possihilities.

Directory Attributes

This extension, identified by CRYPT_CERTINFO_SUBJECTDIRECTORY -
ATTRIBUTES, allows additional X.500 directory attributes to be specified for a
certificate. Thisextension isvalid in certificates, and has the following attributes:

Attribute/Description Type
CRYPT_CERTINFO_SUBJECTDIR_TYPE String
The object identifier that identifies the type of the directory attribute.

CRYPT_CERTINFO_SUBJECTDIR_VALUES String

The value of the directory attribute.

Key Usage, Extended Key Usage, and Netscape certificate type

These extensions specify the allowed usage for the key contained in this certificate.
The keyUsage attribute is a standard extension identified by CRYPT_CERTINFO_-
KEYUSAGE and is used to specify general -purpose key usages such as key
encryption, digital signatures, and certificate signing. If you don’t set this attribute,
cryptlib will set it for you to avalue appropriate for the key type (for example akey
for asignature-only algorithm such as DSA will be marked as a signature key).

The extKeyUsage attribute isidentified by CRYPT_CERTINFO_EXTKEYUSAGE
and is used to specify additional special-case usage such as code signing and SSL
server authentication.

The Netscape certificate type attribute is a vendor-specific attribute identified by
CRYPT_CERTINFO_NS CERTTY PE and was used to specify certain types of web
browser-specific certificate usage before the extK eyUsage attribute was fully
specified. This attribute has now been superseded by extKeyUsage, but is still found
in anumber of certificates.

242

Certificate Extensions

The keyUsage extension has a single numeric attribute with the same identifier asthe
extension itself (CRYPT_CERTINFO_KEYUSAGE). Thisextensionisvalidin
certificates and certification requests, and contains a bit flag that can contain any of
the following values:

Value Description

CRYPT_KEYUSAGE - The key can be used for dataencryption. This
DATAENCIPHERMENT implies using public-key encryption for bulk
data encryption, which is almost never done.

CRYPT_KEYUSAGE - The key can be used for digital signature
DIGITALSIGNATURE generation and verification. Thisisthe
standard flag to set for digital signature use.

CRYPT_KEYUSAGE_- These flags modify the keyAgreement flag to
ENCIPHERONLY alow the key to be used for only one part of

CRYPT_KEYUSAGE - the key agreement process.
DECIPHERONLY

CRYPT_KEYUSAGE_- The key can be used for key agreement. This
KEYAGREEMENT isthe standard flag to set for key-agreement
agorithms such as Diffie-Hellman.

CRYPT_KEYUSAGE_- The key can be used to sign certificates and

KEYCERTSIGN CRLs. Using these flags requiresthe
CRYPT_KEYUSAGE - basicConstraint CA value to be set.
CRLSIGN

CRYPT_KEYUSAGE - The key can be used for key encryption/key
KEYENCIPHERMENT transport. Thisisthe standard flag to set for
encryption use.

CRYPT_KEYUSAGE_- The key can be used for nonrepudiation
NONREPUDIATION purposes. Note that thisuseis usualy
different to CRYPT_KEYUSAGE_-
DIGITALSIGNATURE and isinterpreted in
various incompatible ways by different
standards and profiles.

For example to mark the key in a certificate as being usable for digital signatures and
encryption you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO KEYUSAGE,
CRYPT_KEYUSAGE_DI G TALSI GNATURE | CRYPT_KEYUSAGE_KEYENCI PHERMVENT) ;

The extKeyUsage attribute contains a collection of one or more values that specify a
specific type of extended usage that extends beyond the general keyUsage.

This extension is used by applications to determine whether a certificate is meant for
aparticular purpose such as timestamping or code signing. The extensionisvalidin
certificates and certification requests and can contain any of the following values:

Value Usedin

CRYPT_CERTINFO_EXTKEY_- Code-signing certificate.
CODESIGNING

CRYPT_CERTINFO_EXTKEY _- Directory service certificate.
DIRECTORY SERVICE

CRYPT_CERTINFO_EXTKEY _- email encryption/signing

EMAILPROTECTION certificate.

X.509 Extensions

243

CRYPT_CERTINFO_EXTKEY _-
IPSECENDSY STEM

CRYPT_CERTINFO_EXTKEY_-
IPSECTUNNEL

CRYPT_CERTINFO_EXTKEY_-
IPSECUSER

CRYPT_CERTINFO_EXTKEY _-
MS_CERTTRUSTLISTSIGNING

CRYPT_CERTINFO_EXTKEY _-
MS_TIMESTAMPSIGNING

CRYPT_CERTINFO_EXTKEY_-
MS_ENCRYPTEDFILESY STEM

CRYPT_CERTINFO_EXTKEY_-

MS_INDIVIDUALCODESIGNING

CRYPT_CERTINFO_EXTKEY_-

MS_COMMERCIALCODESIGNING

CRYPT_CERTINFO_EXTKEY_-
MS_SERVERGATEDCRYPTO

CRYPT_CERTINFO_EXTKEY_-
NS SERVERGATEDCRYPTO

CRYPT_CERTINFO_EXTKEY _-
SERVERAUTH

CRYPT_CERTINFO_EXTKEY_-
CLIENTAUTH

CRYPT_CERTINFO_EXTKEY_-
TIMESTAMPING

CRYPT_CERTINFO_EXTKEY _-

VS SERVERGATEDCRYPTO_CA

Various |PSEC certificates.

Microsoft certificate trust list
signing and timestamping
certificate, used for AuthentiCode
signing.

Microsoft encrypted file system
certificate.

Microsoft individual and
commercia code-signing
certificate, used for AuthentiCode
signing.

Microsoft server-gated crypto
(SGC) certificate, used to enable

strong encryption on non-US
servers.

Netscape server-gated crypto
(SGC) certificate, used to enable
strong encryption on non-US
servers.

SSL server and client
authentication certificate.

Timestamping certificate.

Verisign server-gated crypto CA
certificate, used to sign SGC
certificates.

For example to mark the key in a certificate as being used for SSL server

authentication you would use:

crypt Set Attribute(certificate,

CRYPT_UNUSED) ;

Like the keyUsage extension, the Netscape certificate type extension hasa single

CRYPT_CERTI NFO_EXTKEY_SERVERAUTH,

numeric attribute with the same identifier as the extension itself (CRYPT_-
CERTINFO_NS CERTTYPE). Thisextensionisvalid in certificates and

certification requests and contains a bit flag that can contain any of the following

values:
Value

Used in

CRYPT_NS CERTTYPE_-
OBJECTSIGNING

Object signing certificate (equivalent to
Microsoft’s AuthentiCode use).

CRYPT_NS _CERTTYPE._-
SMIME

CRYPT_NS CERTTYPE -
SSLCLIENT

CRYPT_NS_CERTTYPE._-
SSLSERVER

S/MIME email encryption/signing
certificate.

SSL client and server certificate.

244 Certificate Extensions

CRYPT_NS CERTTYPE_- CA certificates corresponding to the above

SSLCA certificate types. Using these flags requires
CRYPT_NS CERTTYPE - thebasicConstraint CA valueto be set.
SMIMECA

CRYPT_NS _CERTTYPE._-
OBJECTSIGNINGCA

This extension is obsolete and is supported as a read-only attribute by cryptlib. 1f you
try to set this extension cryptlib will return CRYPT_ERROR_PERMISSION to
indicate that you can’t set this attribute value.

Name Constraints

The nameConstraints extension is used to constrain the certificate’s subjectName and
subject altName to lie inside or outside a particular DN subtree or substring, with the
excludedSubtrees attribute taking precedence over the permittedSubtrees attribute.
The principal use for this extension isto alow control of the certificate namespace, so
that a CA can restrict the ability of any CAsit certifies to issue certificates outside a
very restricted domain (for example corporate headquarters might constrain a
divisiona CA to only issue certificates for its own business division). This extension
isidentified by CRYPT_CERTINFO_NAMECONSTRAINTS, andisvalidin

certificates:
Attribute/Description Type
CRYPT_CERTINFO_PERMITTEDSUBTREES GeneralName

The subtree within which the subjectName and subject altName of any
issued certificates must lie.

CRYPT_CERTINFO_EXCLUDEDSUBTREES GeneralName
The subtree within which the subjectName and subject altName of any
issued certificates must not lie.

Due to ambiguitiesin the encoding rules for strings contained in DNs, it is possible to
avoid the excludedSubtrees for DNs by choosing unusual (but perfectly valid) string
encodings that don’t appear to match the excludedSubtrees. Because of thisyou
should rely on permittedSubtrees rather than excludedSubtrees for DN constraint
enforcement.

The nameConstraints are applied to both the certificate subject name and the subject

atName. For exampleif a CA run by Cognitive Cybernetics Incorporated wanted to
issue a certificate to a subsidiary CA that was only permitted to issue certificates for

Cognitive Cybernetics’ marketing division, it would set DN name constraints with:

cryptSet Attribute(certificate, CRYPT_CERTI NFO PERM TTEDSUBTREES,
CRYPT_UNUSED) ;

cryptSet Attribute(certificate, CRYPT_CERTI NFO DI RECTORYNAME,
CRYPT_UNUSED) ;

cryptSet AttributeString(certificate, CRYPT_CERTI NFO COUNTRYNAME,
"ust, 2,

cryptSet AttributeString(certificate, CRYPT_CERTI NFO ORGANI ZATI ONNANME,
"Cognitive Cybernetics Incorporated", 32);

cryptSet AttributeString(certificate,
CRYPT_CERTI NFO_ORGANI ZATI ONALUNI TNAVE, " Marketing", 9);

This means that the subsidiary CA can only issue certificates to employees of the
marketing division. Note that since the excludedSubtrees attribute is a GeneralName,
the DN is selected through atwo-level process, first to select the excludedSubtrees
GeneralName and then to select the DN within the GeneralName.

GeneralName components that have a flat structure (for example email addresses) can
have constraints specified through the ‘*’ wildcard. For example to extend the above
constraint to also include email addresses, the issuing CA would set a name constraint
with:
cryptSet Attribute(certificate, CRYPT_CERTI NFO_PERM TTEDSUBTREES,
CRYPT_UNUSED) ;

cryptSet AttributeString(certificate, CRYPT_CERTI NFO RFC822NAME,
"*@rar keti ng.cci.cont, 19);

CRL Extensions 245

This means that the subsidiary CA can only issue certificates with email addresses
within the marketing division. Note again the selection of the excludedSubtrees
GeneralName followed by the setting of the email address (if the GeneralName s still
selected from the earlier code, there’s no need to re-select it at this point).

Private Key Usage Period

This extensions specifies the date on which the private key for this certificate expires.
Thisextension isidentified by CRYPT_CERTINFO_-
PRIVATEKEYUSAGEPERIOD and isvalid in certificates. Thisisuseful wherea
certificate needs to have a much longer lifetime than the private key it corresponds to,
for example along-term signature might have a lifetime of 10-20 years, but the
private key used to generate it should never be retained for such along period. The
privateK eyUsagePeriod extension is used to specify a (relatively) short lifetime for
the private key while allowing for avery long lifetime for the signatures it generates:

Attribute/Description Type
CRYPT_CERTINFO_PRIVATEKEY_NOTBEFORE Time
CRYPT_CERTINFO_PRIVATEKEY_NOTAFTER Time

The private key usage period defines the period of time over which the
private key for a certificate object isvalid. CRYPT_CERTINFO_-
PRIVATEKEY NOTBEFORE specifiesthe validity start period, and
CRYPT_CERTINFO_PRIVATEKEY_NOTAFTER specifiesthe validity
end period.

Subject and Authority Key ldentifiers

These extensions are used to provide additional identification information for a
certificate, and are usually generated automatically by certificate management code.
For this reason the extensions are marked as read-only.

The authorityKeyldentifier isidentified by CRYPT_CERTINFO_-
AUTHORITYKEY IDENTIFIER and has the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_AUTHORITY_KEYIDENTIFIER Binary data
Binary dataidentifying the public key in the certificate that was used to sign

this certificate.
CRYPT_CERTINFO _AUTHORITY_CERTISSUER GeneralName
CRYPT_CERTINFO AUTHORITY _- Binary data

CERTSERIALNUMBER
The issuer name and serial number for the certificate that was used to sign
this certificate. The serial number istreated as abinary string and not as a
numeric value, sinceit is often 15-20 bytes long.

The subjectKeyldentifier isidentified by CRYPT_CERTINFO_-
SUBJECTKEYIDENTIFIER and contains binary data identifying the public key in
the certificate.

CRL Extensions
CRLs have a number of CRL-specific extensions that are described below.

CRL Reasons, CRL Numbers, Delta CRL Indicators

These extensions specify various pieces of information about CRLs. The reasonCode
extension is used to indicate why a certificate was revoked. The cRLNumber
extension provides a serial number for CRLs. The deltaCRLIndicator indicates a
delta CRL that contains changes between abase CRL and adelta-CRL (thisisused to
reduce the overall size of CRLS).

The reasonCode extension isidentified by CRYPT_CERTINFO_CRLREASON and
isvalidin CRLs. The extension has a single numeric attribute with the same

246

Certificate Extensions

identifier as the extension itself (CRY PT_CERTINFO_CRLREASON) which
contains a bit flag that can contain one of the following values:

Value Description

CRYPT_CRLREASON - The affiliation of the certificate owner
AFFILIATIONCHANGED has changed, so that the subjectName or
subject altName is no longer valid.

CRYPT_CRLREASON - The CA or attribute authority that issued
CACOMPROMISE the certificate was compromised.

CRYPTCRLREASON_-
AACOMPROMISE

CRYPT_CRLREASON - The certificate is to be placed on hold
CERTIFICATEHOLD pending further communication from the

CA (the further communication may be
provided by the holdl nstructionCode

extension).
CRYPT_CRLREASON - The certificate owner has ceased to
CESSATIONOFOPERATION operate in the role that requires the use of
the certificate.
CRYPT_CRLREASON_- The key for the certificate was
KEY COMPROMISE compromised.
CRYPT_CRLREASON_- The privilege granted in an attribute
PRIVILEGEWITHDRAWN certificate isno longer valid.
CRYPT_CRLREASON_- The certificate should be removed from
REMOVEFROMCRL the certificate revocation list.
CRYPT_CRLREASON _- The certificate has been superseded.
SUPERSEDED
CRYPT_CRLREASON - No reason for the CRL. Y ou should
UNSPECIFIED avoid including areasonCode at all rather

than using this code.

To indicate that a certificate is being revoked because the key it corresponds to has
been compromised, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO CRLREASON,
CRYPT_CRLREASON_KEYCOWPROM SE) ;

The cRLNumber extension isidentified by CRYPT_CERTINFO_CRLNUMBER and
isvalid in CRLs. The extension has a single attribute with the same identifier asthe
extension itself (CRYPT_CERTINFO_CRLNUMBER) which contains a
monotonically increasing sequence number for each CRL issued. Thisallowsan
application to check that it has received and processed each CRL that was issued.

The deltaCRL Indicator extension isidentified by CRYPT_CERTINFO_-
DELTACRLINDICATOR andisvalidin CRLs. The extension has asingle attribute
with the same identifier asthe extension itself (CRY PT_CERTINFO_-
DELTACRLINDICATOR) which contains the cRLNumber of the base CRL from
which this delta CRL is being constructed (see certificate standards documents for
more information on delta CRLYS).

Hold Instruction Code

This extension contains a code that specifies what to do with a certificate that has
been placed on hold through a CRL (that is, its revocation reasonCode is
CRYPT_CRLREASON_CERTIFICATEHOLD). The extension isidentified by
CRYPT_CERTINFO_HOLDINSTRUCTIONCODE, isvalid in CRLS, and can
contain one of the following values:

CRL Extensions 247

Value Description
CRYPT_HOLDINSTRUCTION_- Cdll the certificate issuer for
CALLISSUER details on the certificate hold.

CRYPT_HOLDINSTRUCTION_NONE No hold ingtruction code. Y ou
should avoid including a
holdinstructionCode at all rather
than using this code.

CRYPT_HOLDINSTRUCTION_- Reject the transaction that the
REJECT revoked/held certificate was to be
used for.

Asthe hold code descriptionsindicate, this extension was devel oped mainly for use
in the financial industry. To indicate that someone should call the certificate issuer
for further information on a certificate hold, you would use:

cryptSet Attribute(certificate, CRYPT_CERTI NFO HOLDI NSTRUCTI ONCODE,
CRYPT_HOLDI NSTRUCTI ON_CALLI SSUER) ;

You shouldn’t use this extension (or the CRYPT CRLREASON -
CERTIFICATEHOLD reasonCode) unless you really need to because although a
mechanism was defined for placing a certificate on hold, no-one ever defined one for
removing it from this state, so once it’s on hold it’s revoked no matter what the
reasonCode says.

Invalidity Date

This extension contains the date on which the private key for a certificate became
invalid. The extension isidentified by CRYPT_CERTINFO_INVALIDITYDATE
andisvaidin CRLs:

Attribute/Description Type

CRYPT_CERTINFO_INVALIDITYDATE Time
The date on which the key identified in a CRL became invalid.

Note that a CRL contains both its own date and a date for each revoked certificate, so
this extension is only useful if there’s some reason for communicating the fact that a
key compromise occurred at atime other than the CRL issue time or the certificate
revocation time.

Issuing Distribution Point and Certificate Issuer

These extensions specify the CRL distribution point for a CRL and provide various
pieces of additional information about the distribution point. The

i ssuingDistributionPoint specifies the distribution point for a CRL, and the
certificatel ssuer specifies the issuer for an indirect CRL asindicated by the
issuingDistributionPoint extension.

The issuingDistributionPoint extension isidentified by CRYPT_CERTINFO_-
ISSUINGDISTRIBUTIONPOINT andisvalidin CRLs:

Attribute/Description Type

CRYPT_CERTINFO_ISSUINGDIST_FULLNAME GeneralName
The location at which CRLs may be obtained. Y ou should use the URL
component of the GeneralName for this, avoiding the other possihilities.

CRYPT_CERTINFO_ISSUINGDIST_USERCERTSONLY Boolean

CRYPT_CERTINFO_ISSUINGDIST_CACERTSONLY Boolean
CRYPT_CERTINFO_ISSUINGDIST_SOMEREASONSONLY Numeric
CRYPT_CERTINFO_ISSUINGDIST_INDIRECTCRL Boolean

See certificate standards documents.

Note that the CRYPT_CERTINFO_ISSUINGDIST_SOMEREASONSONLY
attribute has the same allowabl e set of values as the cRL Reasons reasonCode, but in
this caseis given as a series of bit flags rather than the reasonCode numeric value

248 Certificate Extensions

(because X.509 says so, that’s why). Because of this you must use CRYPT -
CRLREASONFLAGS nameinstead of CRY PT_CRLREASON_name when getting
and setting these values.

The certificatel ssuer extension contains the certificate issuer for an indirect CRL.
The extension isidentified by CRYPT_CERTINFO_CERTIFICATEISSUER and is

validin CRLs:
Attribute/Description Type
CRYPT_CERTINFO_CERTIFICATEISSUER GeneralName

See certificate standards documents.

Digital Signature Legislation Extensions

Various digital signature laws specify extensions beyond the X.509v3 and X.509v4
ones that are described below.

Certificate Generation Date

The German signature law specifies an extension containing the date at which the
certificate was generated. Thisis necessary for post-dated certificates to avoid
problems if the CA’s key is compromised between the time the certificate is issued
and thetime it takes effect. The extension isidentified by CRYPT_CERTINFO_-
SIGG_DATEOFCERTGEN and contains the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_SIGG_DATEOFCERTGEN Time
The date on which the certificate was issued.

Other Restrictions

The German signature law specifies an extension containing any other general free-
form restrictions that may be imposed on the certificate. The extension isidentified
by CRYPT_CERTINFO_SIGG_RESTRICTION and contains the following

attributes:
Attribute/Description Type
CRYPT_CERTINFO_SIGG_RESTRICTION String

Text containing any further restrictions not already handled via certificate
policies or constraints.

Reliance Limit

The German signature law specifies an extension containing areliance limit for the
certificate, which specifies the (recommended) monetary reliance limit for the
certificate. The extension isidentified by CRYPT_CERTINFO_SIGG_-
MONETARYLIMIT and contains the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_SIGG_MONETARY_CURRENCY String
The three-letter currency code.

CRYPT_CERTINFO_SIGG_MONETARY_AMOUNT Integer
The amount, specified as an integer in the range 1...200.

CRYPT_CERTINFO_SIGG_MONETARY_EXPONENT Integer
The exponent for the amount, specified as an integer 1...200, so that the
actual value is amount x 10",

Signature Delegation

The German signature law specifies an extension containing details about signature
delegation, in which one party may sign on behalf of another (for example someone’s

Qualified Certificate Extensions 249

secretary signing correspondence on their behalf). The extensionisidentified by
CRYPT_CERTINFO_SIGG_PROCURATION and contains the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_SIGG_PROCURE_- String
TYPEOFSUBSTITUTION

The type of signature delegation being performed (for example “Signed on

behalf of™).

CRYPT_CERTINFO_SIGG_PROCURE_SIGNINGFOR GeneralName
The identity of the person or organisation the signer is signing on behalf of.

Qualified Certificate Extensions

Qualified certificates contain additional extensions beyond the X.509v3 ones that are
described below.

Biometric Info

The biometriclnfo extension contains biometric information in the form of a hash of a
biometric template. The extension isidentified by CRYPT_CERTINFO_-
BIOMETRICINFO and isvalid in certificates and certification requests:

Attribute/Description Type

CRYPT_CERTINFO_BIOMETRICINFO_TYPE Numeric
The type of the biometric data, see certificate standards documents.

CRYPT_CERTINFO_BIOMETRICINFO_HASHALGO String
The object identifier for the hash agorithm used to hash the biometric

template.

CRYPT_CERTINFO_BIOMETRICINFO_HASH String
The hash of the biometric template.
CRYPT_CERTINFO_BIOMETRICINFO_URL String

An optional URL at which the biometric data may be found.

QC Statements

The gcStatements extension contains defined statements for a qualified certificate.
The extension isidentified by CRYPT_CERTINFO_QCSTATEMENT and isvalid in
certificates and certification requests:

Attribute/Description Type

CRYPT_CERTINFO_QCSTATEMENT_SEMANTICS String
An object identifier identifying the defined statement for this certificate.

CRYPT_CERTINFO_QCSTATEMENT _- String
REGISTRATIONAUTHORITY
See certificate standards documents.

SET Extensions

SET specifies a number of extensions beyond the X.509v3 ones that are described
below.

SET Card Required and Merchant Data

These extensions specify various pieces of general information used in the SET
electronic payment protocol.

The cardRequired extension contains a flag indicating whether a card isrequired for a
transaction. The extension isidentified by CRYPT_CERTINFO_SET -
CERTCARDREQUIRED, and isvalid in certificates and certification requests. The
extension contains a single boolean attribute with the same identifier as the extension

250

Certificate Extensions

itself (CRYPT_CERTINFO_SET_CARDREQUIRED) which isexplained in the SET
standards documents.

The merchantData extension contains further information on a merchant. The
extensionisidentified by CRYPT_CERTINFO_SET MERCHANTDATA andis
valid in certificates and certification requests:

Attribute/Description Type
CRYPT_CERTINFO_SET_MERACQUIRERBIN String
CRYPT_CERTINFO_SET_MERAUTHFLAG Boolean
CRYPT_CERTINFO_SET_MERCOUNTRY Numeric
CRYPT_CERTINFO_SET_MERID String

Merchant’s 6-digit BIN, authorisation flag, 1SO country code, and merchant
ID.

CRYPT_CERTINFO_SET_MERCHANTCITY String
CRYPT_CERTINFO_SET_MERCHANTCOUNTRYNAME String
CRYPT_CERTINFO_SET_MERCHANTLANGUAGE String
CRYPT_CERTINFO_SET_MERCHANTNAME String

CRYPT_CERTINFO_SET_MERCHANTPOSTALCODE String
CRYPT_CERTINFO_SET_MERCHANTSTATEPROVINCE String
Merchant’s language, name, city, state or province, postal code, and country
name.

SET Certificate Type, Hashed Root Key, and Tunnelling

These extensions specify various pieces of certificate management information used
in the SET electronic payment protocol.

The certificateType extension contains the SET certificate type. The extension is
identified by CRYPT_CERTINFO_SET_CERTIFICATETYPE andisvalid in
certificates and certification requests. The extension contains a single bit flag
attribute with the same identifier as the extension itself (CRYPT_CERTINFO_SET_-
CERTIFICATETYPE) and can contain any of the following values that are explained
in the SET standards documentation:

Value

CRYPT_SET_CERTTYPE_ACQ
CRYPT_SET_CERTTYPE _BCA
CRYPT_SET_CERTTYPE_CARD
CRYPT_SET_CERTTYPE_CCA
CRYPT_SET_CERTTYPE_GCA
CRYPT_SET_CERTTYPE_MCA
CRYPT_SET_CERTTYPE_MER
CRYPT_SET_CERTTYPE_PCA
CRYPT_SET_CERTTYPE_PGWY
CRYPT_SET_CERTTYPE_RCA

The hashedRootK ey extension contains athumbprint (SET-speak for a hash) of a
SET root key. The extensionisidentified by CRYPT_CERTINFO_SET -
HASHEDROOTKEY and isvalid in certificates and certification requests. The
extension contains a single attribute:

Attribute/Description Type

CRYPT_CERTINFO_SET_ROOTKEYTHUMBPRINT Binary data
Binary string containing the root key thumbprint (see the SET standards
documents).

Application-specific Extensions 251

Y ou can obtain the key hash which isrequired for the thumbprint from another
certificate by reading its CRY PT_CERTINFO_SUBJECTKEY IDENTIFIER attribute
and then adding it to the certificate you’re working with as the CRYPT _-
CERTINFO_SET_ROOTKEYTHUMBPRINT attribute. cryptlib will perform the
further work required to convert this attribute into the root key thumbprint.

The tunnelling extension contains a tunnelling indicator and algorithm identifier. The
extension isidentified by CRYPT_CERTINFO_SET TUNNELING andisvalidin
certificates and certification requests.

Attribute/Description Type
CRYPT_CERTINFO_SET TUNNELINGFLAG Boolean
CRYPT_CERTINFO_SET_TUNNELINGALGID String
See SET standards documents.

Application-specific Extensions

Various applications such as certificate management protocols have their own
extensions that extend or complement the X.509 ones. These are described below.

OCSP Extensions

These extensions specify various pieces of certificate management information used
in the OCSP certificate management protocol.

The noCheck extension indicates that the certificate should be automatically trusted
when used to sign OCSP responses. The extension isidentified by CRYPT _-
CERTINFO_OCSP_NOCHECK andisvalid in certificates and certification requests.
The extension contains a numeric attribute with the sasme identifier as the extension
itself (CRYPT_CERTINFO_OCSP_NOCHECK) which is always set to
CRYPT_UNUSED sinceit has no inherent value associated with it.

Attribute/Description Type
CRYPT_CERTINFO_OCSP_NOCHECK Numeric
See OCSP standards documents.

Vendor-specific Extensions

A number of vendors have defined their own extensions that extend or complement
the X.509 ones. These are described below.

Netscape Certificate Extensions

Netscape defined a number of extensions that mostly predate the various X.509v3
extensions that now provide the same functionality. The various Netscape certificate

extensions are:
Extension/Description Type
CRYPT_CERTINFO_NS BASEURL String

A base URL which, if present, is added to all partial URL’s in Netscape
extensionsto create afull URL.

CRYPT_CERTINFO_NS CAPOLICYURL String
The URL at which the certificate policy under which this certificate was
issued can be found.

CRYPT_CERTINFO_NS CAREVOCATIONURL String
The URL at which the revocation status of a CA certificate can be checked.

CRYPT_CERTINFO_NS CERTRENEWALURL String
The URL at which aform allowing renewal of this certificate can be found.

CRYPT_CERTINFO_NS COMMENT String
A comment which should be displayed when the certificate is viewed.

252

Certificate Extensions

CRYPT_CERTINFO NS REVOCATIONURL String
The URL at which the revocation status of a server certificate can be
checked.

CRYPT_CERTINFO_NS_SSL SERVERNAME String
A wildcard string containing a shell expression that matches the hosthame of
the SSL server using this certificate.

Note that each of these entries represent a separate extension containing a single text
string, they have merely been listed in a single table for readability. You should
avoid using these extensions if possible and instead use one of the standard X.509v3
extensions.

Thawte Certificate Extensions

Thawte Consulting have defined an extension that allows the use of certificates with
secure extranets. Thisextension isidentified by CRYPT_CERTINFO_-
STRONGEXTRANET and isvalid in certificates and certification requests:

Attribute/Description Type
CRYPT_CERTINFO_STRONGEXTRANET_ZONE Numeric
CRYPT_CERTINFO_STRONGEXTRANET _ID Binary data

Extranet zone and ID.

Generic Extensions

Beyond the standardised extensions listed above there exist any number of obscure or
non-standard certificate extensions. cryptlib alows you to work with these
extensions using cryptAddCertExtension, cryptGetCertExtension, and
cryptDeleteCertExtension, which allow you to add, retrieve, or delete a complete
encoded extension identified by its ASN.1 object identifier. The extension data must
be a complete DER-encoded ASN.1 object without the OCTET STRING wrapper
whichisused for al extensions (cryptlib will add thisitself). For exampleif you
wanted to add a 4-byte UTF8 string as an extension the datawould be 0C 04 xx
XX XX XxX. If you passin extension datato cryptAddCertExtension that isn’t a
valid ASN.1-encoded object, cryptlib will return CRYPT_ERROR_PARAMA4 to
indicate that the dataisin an invalid format.

If a certificate object contains a non-standard extension, cryptlib won’t include it in
the object when you sign it unless you set the CRYPT_OPTION_CERT -
SIGNUNRECOGNISEDATTRIBUTES option to true. Thisisto avoid problems
where a CA could end up signing arbitrary datain an unrecognised certificate
extension.

If the extension you are trying to add is already handled as a standard extension,
cryptlib will return CRYPT_ERROR_PERMISSION to indicate that you can’t add
the extension in this manner but have to add it using cryptSetAttribute/
cryptSetAttributeString.

CMS/SMIME Attributes 253

Other Certificate Object Extensions

Certificate objects other than certificates and CRLs can also contain extensions. In
the following descriptions only the generally useful attributes have been described.
The full range of attributesis enormous and will probably never be used in real life.
These attributes are marked with “See standards documents” to indicate that you
should refer to other documents to obtain information about their usage (thisisalso a
good indication that you shouldn’t really be using this attribute).

CMS/SMIME Attributes

The CMS and SIMIME standards specify various attributes that can be included with
signatures. In addition there are avariety of proprietary and vendor-specific
attributes that are also handled by cryptlib. In the following description only the
generally useful attributes have been described, the full range of attributesis
enormous and requires a number of standards specifications (often followed by cries
for help on mailing lists) to interpret them. These attributes are marked with “See
S/MIME standards documents” to indicate that you should refer to other documents
to obtain information about their use (this is also a good indication that you shouldn’t

really be using this attribute).
Content Type

Thisisastandard CM S attribute identified by CRYPT_CERTINFO_CMS -
CONTENTTYPE and is used to specify the type of datawhich isbeing signed. This
is used because some signed information could be interpreted in different ways
depending on the data type it’s supposed to represent (for example something viewed
as encrypted data could be interpreted quite differently if viewed as plain data). If
you don’t set this attribute, cryptlib will set it for you and mark the signed content as

plain data.

The content-type CM S attribute can contain one of the following CRYPT _-

CONTENT_TYPE vaues:

Value Description
CRYPT_CONTENT_DATA Plain data.
CRYPT_CONTENT _- Signed data.

SIGNEDDATA

CRYPT_CONTENT -
ENVELOPEDDATA

CRYPT_CONTENT -
SIGNEDANDENVELOPED-
DATA

CRYPT_CONTENT -
DIGESTEDDATA

CRYPT_CONTENT -
ENCRYPTEDDATA

CRYPT_CONTENT -
COMPRESSEDDATA

CRYPT_CONTENT_TSTINFO

CRYPT_CONTENT -
SPCINDIRECTDATA-
CONTEXT

Data encrypted using a password or
public-key or conventional encryption.

Datawhich is both signed and enveloped
(thisis an obsol ete composite content
type that shouldn’t be used).

Hashed data.

Data encrypted directly with a session
key.
Compressed data.

Timestamp token generated by a
timestamp authority (TSA).

Indirectly signed dataused in
Authenticode signatures.

The digtinction between the different types arises from the way they are specified in
the standards documents, as arule of thumb if the data being signed is encrypted then
use CRYPT_CONTENT_ENVELOPEDDATA (rather than CRYPT_CONTENT_-

254 Other Certificate Object Extensions

ENCRYPTEDDATA, which is slightly different), if it’s signed then use CRYPT -
CONTENT _SIGNEDDATA, and if it’s anything else then use CRYPT_-
CONTENT _DATA. For example to identify the data you’re signing as encrypted
data, you would use:

cryptSet Attribute(cnsAttributes, CRYPT_CERTI NFO CMS_CONTENTTYPE,
CRYPT_CONTENT_ENVELOPEDDATA) ;

If you’re generating the signature viathe cryptlib enveloping code then cryptlib will
set the correct type for you so there’s no need to set it yourself.

Countersignature

This CM S attribute contains a second signature that countersigns one of the
signatures on the data (that is, it signs the other signature rather than the data). The
attribute isidentified by CRYPT_CERTINFO_CMS_COUNTERSIGNATURE:

Attribute/Description Type

CRYPT_CERTINFO _CMS COUNTERSIGNATURE Binary data
See SIMIME standards documents.

Message Digest

Thisread-only CMS attribute is used as part of the signing process and is generated
automatically by cryptlib. The attribute isidentified by CRYPT_CERTINFO _-
CMS MESSAGEDIGEST:

Attribute/Description Type

CRYPT_CERTINFO_CMS_MESSAGEDIGEST Binary data
The hash of the content being signed.

Signing Description

This CM S attribute contains a short text message with an additional description of the
databeing signed. For exampleif the signed message was a response to a received
signed message, the sighing description might contain an indication of the type of
message it’s being sent in response to. Note that CMS has a number of special-
purpose signing attributes such as message receipt information that allow automated
processing of messages that contain them, so you should only use this free-form
human-readable attribute for cases that aren’t covered by special-case attributes
designed for the purpose.

The attributeisidentified by CRYPT_CERTINFO_CMS_SIGNINGDESCRIPTION:
Attribute/Description Type

CRYPT_CERTINFO_CMS SIGNINGDESCRIPTION String
Free-form text annotation for the message being signed.

Signing Time

Thisisastandard CM S attribute identified by CRYPT_CERTINFO_CMS -
SIGNINGTIME and is used to specify the time at which the signature was generated.
If you don’t set this attribute, cryptlib will set it for you.

Attribute/Description Type

CRYPT_CERTINFO_CMS _ SIGNINGTIME Time
The time at which the signature was generated.

Extended CMS/SMIME Attributes

The attributes given above are the standard CM S attributes. Extending beyond this
are further attributes that are defined in additional standards documents and that apply
mostly to SIMIME messages, as well as vendor-specific and proprietary attributes.

Extended CMS/SMIME Attributes 255

Before you use these additional attributes you should ensure that any software you
plan to interoperate with can process them, since currently almost nothing will
recognise them (for example it’s not a good idea to put a security label on your data
and expect other software to handleit correctly).

AuthentiCode Attributes

Authenti Code code-signing uses a number of attributes that apply to signed
executable content. These attributes are listed below.

The agency information CM S attribute, identified by CRYPT_CERTINFO_CMS -
SPCAGENCYINFO, isused to provide extrainformation about the signer of the data
and has the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS_SPCAGENCYURL String
The URL of aweb page containing more information about the signer.

The statement type CM S attribute, identified by CRYPT_CERTINFO_CMS -
SPCSTATEMENTTYPE, is used to identify whether the content was signed by an
individual or acommercia organisation, and has the following attributes:

Attribute/Description Type
CRYPT_CERTINFO_CMS_SPCSTMT_INDIVIDUAL- Numeric
CODESIGNING

The data was signed by an individual.

CRYPT_CERTINFO_CMS_SPCSTMT_COMMERCIAL- Numeric
CODESIGNING
The data was signed by a commercial organisation.

The opusinfo CM S attribute, identified by CRYPT_CERTINFO_CMS -
SPCOPUSINFO, is used to identify program details for AuthentiCode use, and has
the following attributes:

Attribute/Description Type
CRYPT_CERTINFO_CMS_SPCOPUSINFO_NAME String
Program name/version.

CRYPT_CERTINFO_CMS_SPCOPUSINFO_URL String

AuthentiCode information URL.

Note that the CRYPT_CERTINFO_CMS_SPCOPUSINFO_NAME attributeisa
Unicode string, as used by Windows NT/2000/XP and Windows CE.

For example to indicate that the data was signed by an individual, you would use:

crypt Set Attribute(cnsAttributes,
CRYPT_CERTI NFO_CMS_SPCSTMI_COMVERCI ALCCODESI GNI NG, CRYPT_UNUSED) ;

For example to create an AuthentiCode signature as a commercial organisation you
would use:

CRYPT_CERTI FI CATE cnsAttri butes;

/* Create the CMS attribute object and add the Authenti Code attributes
*/
cryptCreateCert(&cnsAttributes, cryptUser,
CRYPT_CERTTYPE_CMS_ATTRI BUTES) ;
crypt Set AttributeString(cnsAttributes,
CRYPT_CERTI NFO_CMS_SPCAGENCYURL,
"http://honepage. organi sati on. cont', 32);
crypt Set Attribute(cnsAttributes,
CRYPT_CERTI NFO_CMS_SPCSTMI_ COMVERCI ALCODESI GNI NG, CRYPT_UNUSED) ;

/* Add the content-type required for Authenti Code data */
cryptSet Attribute(cnsAttributes, CRYPT_CERTI NFO CMS_CONTENTTYPE,
CRYPT_CONTENT_SPCI NDI RECTDATACONTEXT) ;

256 Other Certificate Object Extensions

/* Sign the data with the attributes included */
crypt CreateSignatureEx(...);

crypt DestroyCert(cnsAttributes);

The other attributes used when signing are standard attributes that will be added
automatically for you by cryptlib.

Content Hints

This CM S attribute can be supplied in the outer layer of a multi-layer message to
provide information on what the innermost layer of the message contains. The
attribute isidentified by CRYPT_CERTINFO_CMS_CONTENTHINTS and has the
following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS_CONTENTHINT_- String
DESCRIPTION

A human-readabl e description that may be useful when processing the

content.

CRYPT_CERTINFO_CMS CONTENTHINT_TYPE Numeric

The type of the innermost content, specified asa CRYPT_CONTENT _-
content-type val ue.

DOMSEC Attributes

The domain security (DOM SEC) attributes are used to handle delegated signing by
systems such as mail gateways. The signature type CM S attribute, identified by
CRYPT_CERTINFO_CMS _SIGTYPEIDENTIFIER, is used to identify the signature
type, and has the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS SIGTYPEID_- Numeric
ADDITIONALATTRIBUTES
Additional attributes for a domain signature.

CRYPT_CERTINFO_CMS_SIGTYPEID_DOMAINSIG Numeric
Domain signature by a gateway on behalf of auser.

CRYPT_CERTINFO_CMS_SIGTYPEID_ORIGINATORSIG Numeric
Indication that the signer is the originator of the message. This attribute isn’t
normally used, since it corresponds to a standard (non-DOM SEC) signature..

CRYPT_CERTINFO_CMS _SIGTYPEID_REVIEWSIG Numeric
Review signature to indicate that the domain signer has reviewed the

message.

Mail List Expansion History

This CM S attribute contains information on what happened to a message when it was
processed by mailing list software. Itisidentified by CRYPT_CERTINFO_CMS -
MLEXPANSIONHISTORY and contains the fol lowing attributes:

Extended CMS/SMIME Attributes 257

Attribute/Description Type

CRYPT_CERTINFO _CMS MLEXP _ENTITYIDENTIFIER Binary data
See S/IMIME standards documents.

CRYPT_CERTINFO_CMS MLEXP_TIME Time
The time at which the mailing-list software processed the message.

CRYPT_CERTINFO_CMS MLEXP_NONE —
CRYPT_CERTINFO_CMS MLEXP_INSTEADOF General-
CRYPT_CERTINFO_CMS MLEXP_INADDITIONTO Name
This attribute can have one of the three values specified above, and is used
to indicate areceipt policy that overrides the one given in the original
message. See the SSMIME standards documents for more information.

Nonce

This CM S attribute nonceis used to prevent replay attacks. The attribute isidentified
by CRYPT_CERTINFO_CMS_NONCE:

Attribute/Description Type

CRYPT_CERTINFO_CMS _NONCE Binary data
Nonce to prevent replay attacks.

Receipt Request

This CMS attribute is used to request a receipt from the recipient of amessage and is
identified by CRYPT_CERTINFO_CMS RECEIPT_REQUEST. Aswiththe
security label attribute, you shouldn’t rely on the recipient of amessage being able to
do anything with this information, which consists of the following attributes:

Attribute/Description Type

CRYPT_CERTINFO_CMS RECEIPT_- Binary data
CONTENTIDENTIFIER

A magic value used to identify a message, see the SSMIME standards

documents for more information.

CRYPT_CERTINFO_CMS RECEIPT_FROM Numeric
CRYPT_CERTINFO_CMS RECEIPT _TO General-
Name

An indication of who receipts should come from and who they should go to,
see the S'MIME standards documents for more information.

SCEP Attributes

The Simple Certificate Enrolment Protocol uses a variety of protocol -specific
attributes that are attached to CM S signed data and are used to manage the operation
of the protocol. These attributes are not normally used with CM S but are provided
for use by cryptlib’s SCEP implementation. The SCEP attributes are:

258 Other Certificate Object Extensions

Attribute/Description Type
CRYPT_CERTINFO_SCEP_MESSAGETYPE String
The SCEP message type.

CRYPT_CERTINFO_SCEP_PKISTATUS String
The processing status of an SCEP request.
CRYPT_CERTINFO_SCEP_FAILINFO String

Extended error information if the SCEP processing status indicates that an
error occurred.

CRYPT_CERTINFO_SCEP_SENDERNONCE Binary data
CRYPT_CERTINFO_SCEP_RECIPIENTNONCE

Nonce values used to protect against message replay attacks. Note that these
values duplicate the more usual CRYPT_CERTINFO_CMS_NONCE
attribute, which should be used in place of these attributes unless they’re
specifically being used for SCEP.

CRYPT_CERTINFO_SCEP_TRANSACTIONID String
A value that uniquely identifies the entity requesting a certificate.

In addition to these attributes, SCEP also uses an additional attribute which is added
to PKCS #10 requests even though it’s a CMS attribute. It therefore acts as a
certificate attribute rather than a CM S attribute. The attribute isidentified by
CRYPT_CERTINFO_CHALLENGEPASSWORD:

Attribute/Description Type

CRYPT_CERTINFO_CHALLENGEPASSWORD String
Password used to authorise certificate issue requests.

Security Label, Equivalent Label

These CM S attributes specify security information for the content contained in the
message, allowing recipients to decide how they should processit. For example an
implementation could refuse to display a message to a recipient who isn’t cleared to
seeit (this assumes that the recipient software isimplemented at least in part using
tamper-resi stant hardware, since a pure software implementation could be set up to
ignore the security label). These attributes originate (in theory) in X.400 and (in
practice) in DMS, the US DoD secure email system, and virtually no implementations
outside this area understand them so you shouldn’t rely on them to ensure proper
processing of a message.

The basic security label on amessageisidentified by CRYPT_CERTINFO_CMS -
SECURITYLABEL. Since different organisations have different ways of handling
security policies, their 1abelling schemes may differ, so the equivalent labels CMS
attribute, identified by CRYPT_CERTINFO_CMS _EQUIVALENTLABEL, can be
used to map from one to the other. These contain the following attributes:

Extended CMS/SMIME Attributes 259

Attribute/Description Type
CRYPT_CERTINFO_CMS_SECLABEL_POLICY String
The object identifier for the security policy that the security label isissued
under.

CRYPT_CERTINFO_CMS_SECLABEL_- Numeric

CLASSIFICATION
The security classification for the content identified relative to the security
policy being used. There are six standard classifications (described bel ow)
and an extended number of user-defined classifications, for more
information see the SIMIME standards documents and X.411.

CRYPT_CERTINFO_CMS _SECLABEL_PRIVACYMARK Numeric

A privacy mark value that unlike the security classification isn’t used for
access control to the message contents. See SIMIME standards documents
for more information.

CRYPT_CERTINFO CMS SECLABEL_CATTYPE String
CRYPT_CERTINFO CMS SECLABEL_CATVALUE Binary data
See SIMIME standards documents.

The security classification can have one of the following predefined values (which
are relative to the security policy and whose interpretation can vary from one
organisation to another), or policy-specific, user-defined values that lie outside this
range:

Value
CRYPT_CLASSIFICATION_UNMARKED
CRYPT_CLASSIFICATION_UNCLASSIFIED
CRYPT_CLASSIFICATION_RESTRICTED
CRYPT_CLASSIFICATION_CONFIDENTIAL
CRYPT_CLASSIFICATION_SECRET
CRYPT_CLASSIFICATION_TOP_SECRET

Signature Policy

This CMS attribute is used to identify the policy under which a signature was
generated, and isidentified by CRYPT_CERTINFO_CMS -
SIGNATUREPOLICYID. The signature policies extension allows a signer to
provide information on the policies governing a signature, and to control the way in
which a signature can be interpreted. For exampleit allows you to check that a
signature was issued under a policy you feel comfortable with (certain security
precautions taken, vetting of employees, physical security of the premises, and so on).

The certificate policies attribute is a complex extension that allows for all sorts of
qudifiers and additional modifiers (several of them exist only because this extension
was acut & paste of asimilar-looking extension that’s used with certificates). In
general you should only use the policyldentifier attribute in this extension, since the
other attributes are difficult to support in user software and are ignored by many
implementations:

Attribute/Description Type
CRYPT_CERTINFO_CMS _SIGPOLICYID String

The object identifier that identifies the policy under which this certificate
was issued.

CRYPT_CERTINFO_CMS SIGPOLICYHASH Binary data

The hash algorithm identifier and hash of the signature policy, see signature
standards documents.

260 Other Certificate Object Extensions

CRYPT_CERTINFO_CMS_SIGPOLICY_CPSURI String

The URL for the certificate practice statement (CPS) for this signature

policy.

CRYPT_CERTINFO_CMS_SIGPOLICY_ORGANIZATION String

CRYPT_CERTINFO_CMS SIGPOLICY_- Numeric
NOTICENUMBERS String

CRYPT_CERTINFO_CMS_SIGPOLICY_EXPLICITTEXT

These attributes contain further qualifiers, modifiers, and text information
that amend the signature policy information. Refer to signature standards
documents for more information on these attributes.

S/MIME Capabilities

This CM S attribute provides additional information about the capabilities and
preferences of the sender of a message, allowing them to indicate their preferred
encryption algorithm(s) and . The attribute isidentified by CRYPT_CERTINFO_-
CMS_SMIMECAPABILITIES and can contains any of the following values:

Value Description
CRYPT_CERTINFO_CMS - The sender supports the use of these
SMIMECAP_3DES algorithms. When encoding them,
CRYPT_CERTINFO_CMS - cryptlib will order them by algorithm
SMIMECAP_AES strength so that triple DES will be
CRYPT_CERTINFO_CMS - preferred over Skipjack which will be
SMIMECAP_CAST128 preferred over DES.

CRYPT_CERTINFO_CMS -
SMIMECAP_DES
CRYPT_CERTINFO_CMS -
SMIMECAP_IDEA
CRYPT_CERTINFO_CMS -
SMIMECAP_RC2
CRYPT_CERTINFO_CMS -
SMIMECAP_RC5
CRYPT_CERTINFO_CMS -
SMIMECAP_SKIPJACK

CRYPT_CERTINFO_CMS - The sender would prefer to be sent
SMIMECAP_- signed data.
PREFERSIGNEDDATA

CRYPT_CERTINFO_CMS - The sender can’t handle any form of
SMIMECAP_- encrypted data.
CANNOTDECRYPTANY

To indicate that you can support messages encrypted with triple DES and Cast-128,
you would use;
cryptSet Attribute(certificate, CRYPT_CERTI NFO CM5_SM MECAP_3DES,
CRYPT_UNUSED) ;

crypt Set Attribute(certificate, CRYPT_CERTI NFO CM5_SM MECAP_CAST128,
CRYPT_UNUSED) ;

If you’re using CRYPT_FORMAT SMIME data, cryptlib will automatically add the
appropriate attributes for you so there’s no need to set these attributes yourself.
Signing Certificate

This CM S attribute provides additional information about the certificate used to sign
amessage, isidentified by CRYPT_CERTINFO_SIGNINGCERTIFICATE, and
contains the following attributes:

OCSP Attributes 261

Attribute/Description Type

CRYPT_CERTINFO_CMS SIGNINGCERT_ESSCERTID Binary data
See SIMIME standards documents.

CRYPT_CERTINFO_CMS SIGNINGCERT_POLICIES String
The object identifier for the policy that applies to the signing certificate.

OCSP Attributes

Like certificates, OCSP requests and responses can contain extensions that contain
additional information relating to the request or response. The ocspNonce extension
is used to prevent replay attacks on OCSP requests and is set automatically by
cryptlib. The ocspArchiveCutoff extension indicates the time limit to which an
OCSP responder will store revocation information for a certificate. The
ocspResponseType extension indicates the type of response you’d like to receive
from aresponder.

The ocspNonce extension isidentified by CRYPT_CERTINFO_OCSP_NONCE and
isvalid in OCSP reguests and responses. The extension has a single binary data
attribute with the same identifier as the extension itself (CRYPT_CERTINFO_-
OCSP_NONCE). Since cryptlib sets this value automatically, you can’t set it

yourself:

Attribute/Description Type
CRYPT_CERTINFO_OCSP_NONCE Binary data
Nonceto prevent replay attacks.

The ocspArchiveCutoff extension isidentified by CRYPT_CERTINFO_OCSP_-
ARCHIVECUTOFF and is valid in OCSP responses.

Attribute/Description Type
CRYPT_CERTINFO_OCSP_ARCHIVECUTOFF Time

The date beyond which revocation information will no longer be archived by
the responder.

The ocspResponseType extension isidentified by CRYPT_CERTINFO _-
OCSP_RESPONSE and isvalid in OCSP requests. This extension contains a
collection of one or more values that indicate the type of response which isbeing
requested from the OCSP responder. The values are:

Value Description
CRYPT_CERTINFO_OCSP_- OCSP response containing only
RESPONSE_OCSP revocation information but no actual

certificate status.
CRYPT_CERTINFO _OCSP - RTCS response containing OK/not OK

RESPONSE_RTCS certificate status.
CRYPT_CERTINFO_OCSP - Extended RTCS response containing
RESPONSE_RTCS - certificate status and additional
EXTENDED information such as revocation
information.

In addition to OCSP-specific attributes, OCSP responses can also contain the CRL
attributes reasonCode, holdlinstructionCode, invalidityDate, and certificatel ssuer,
which are described in “CRL Extensions” on page 245.

262

cryptlib User Interface Components

cryptlib User Interface Components

Under Win32 cryptlib provides user interface functionality viathe cryptlib user
interface library cryptui.dll, which contains functions to display certificate objects
and to generate keys and obtain information needed to create or obtain a certificate.
The certificate display function takes the contents of a certificate object and displays
the various fields to the user in a standard resizeable, tabbed dialog, adjusting the
format and contents as required by the certificate object. For example a certificate
chain would be displayed as a collection of certificates, where each certificate hasits
contents broken down and displayed as described above.

Displaying Certificates

To display a certificate object, you use cryptUI DisplayCert, passing in the handle of
the certificate object to display and the handle of the owner window, or NULL if the
window has no owner:

crypt U Di splayCert(cryptCertificate, hWwd);
A certificate might look as follows when displayed by cryptUI DisplayCert:

Certificate x|

General | Datalk |

Certificate Infarmation

- CA Certificate
- Key: 1024-bit RSA

- This certificate is intended for:
o' Signing Key Certificates
o-Signing iCertificate Revoration Lisks

Issued to: Equiif ae
Issued by: Equifas
Yalid from 22{alle9s to Zzfafz0iy

If you set the certificate parameter for cryptUIDisplayCert to CRYPT_UNUSED, it
will allow the user to choose a certificate file to load with a standard file open dialog:

crypt U Di splayCert(CRYPT_UNUSED, hWd);

Key/Certificate Generation

The key generation function is a powerful operation that encompasses much of the
functionality covered in the chapters on key and certificate management, alowing the
generation of keysfor the full range of public-key algorithms supported by cryptlib,
with support for the use of crypto devices such as smart cards and Fortezza cards. In

Key/Certificate Generation 263

addition this function obtains from the user all the information needed to create a
certificate or certification request ready for submission to a CA for signing.

The user interface is a standard wizard that takes the user through the steps of
choosing an algorithm, key size, password, and various identification components
needed for a certificate such as a name and email address. The general idea behind
using thewizard is:

create a certificate object to contain the certificate infornmation;

add any fixed certificate details if required;

call the key generation w zard;

make any required changes to the certificate contents;

use the returned key to sign the certificate object;

store the key and/or certificate in a keyset using the returned

passwor d;

One stage in the cryptUl Gener ateK ey key generation process might look as follows:

Key Generation Wizard [

Identification Details

Iy orcles bor identif your’ Jegy yau need fo provide 2 few details which
yill allowy cihers b ecagnisewha the kep beiongs to.

Thesedetats inchida the-colnin vou-aie located in) the omarization
OU &8 @ part |:|j “aht] thie busingss unit within the: otganization [leave
it fishd empity ifyiou doss not anply (o youl.

Marpis:: ||ma Pesudanum

Businges unit {Financial Elutiation Services

Drganization; iHYZ Irreestment Brank]

E'ﬁ.hm.t-"’" i Liechtensten :]

< Back | et EBFJE:E!{ I EIEL] i

In the simplest case, which involves generating a key with a certificate request ready
for submission to a CA, you’d do the following:
CRYPT_CERTI FI CATE crypt Cer t Request ;

CRYPT_CONTEXT crypt Cont ext ;
password[CRYPT_MAX TEXTSIZE + 1];

/* Generate the cert request */
crypt CreateCert (&crypt Cert Request, CRYPT_UNUSED,
CRYPT_CERTTYPE_CERTREQUEST) ;

/* Generate the key and fill in the cert request via the key
generation w zard */

crypt U Gener at eKey(CRYPT_UNUSED, &crypt Context, cryptCertRequest,
password, hwid);

/* Sign the cert request */
crypt SignCert(cryptCertRequest, cryptContext);

Once the key has been generated by cryptlib it needsto be saved to a private key
keyset as described in “Certificates and Certificate Management” on page 149. The
key can aso be generated using a smart card or other crypto device, in which case the
first parameter is the handle to the device object:

crypt U Gener at eKey(cryptDevice, &cryptContext, cryptCertRequest,
password, hwid);

Since the key isin this case generated and securely stored in the crypto device,
there’s no need (or indeed possibility) to storeit in akeyset.

264 cryptlib User Interface Components

The code presented so far has assumed that the user will befillingin all of the
certificate request details such as the country, location, and organisation. If you want
to use pre-set values for any of the certificate object components, you can fill thesein
before calling cryptUl GenerateK ey. For example to default to using the company
name Foo Corporation located in Canada with the certificate object you would use:

CRYPT_CERTI FI CATE crypt Cer t Request ;
CRYPT_CONTEXT crypt Cont ext ;
password[CRYPT_MAX TEXTSIZE + 1];

/* Generate the cert request and fill in pre-set values */

crypt CreateCert(&cryptCert Request, cryptUser,
CRYPT_CERTTYPE_CERTREQUEST) ;

crypt Set AttributeString(cryptCertRequest,
CRYPT_CERTI NFO_ORGANI SATI ONNAME, "Foo Cor poration", 15);

crypt Set AttributeString(cryptCertRequest, CRYPT_CERTI NFO _COUNTRYNAME,
"CAT, 2);

/* Generate the key and fill in the cert request via the key
generation wi zard using the pre-set organi sation and country nane
*/

crypt U Gener at eKey(CRYPT_UNUSED, &crypt Context, cryptCertRequest,
password, hwWd);

/* Sign the cert request */
crypt SignCert(cryptCertRequest, cryptContext);

In addition to a certification request it’s possible to use other types of certificate
objects like CMP or SCEP requests and standard certificates with

cryptUl GenerateKey. For exampleif you wanted to create a self-signed CA
certificate you would create aCRYPT_CERTTYPE_CERTIFICATE object instead
of aCRYPT_CERTTYPE_CERTREQUEST one and set the CRYPT_CERTINFO_-
CA attribute to true to indicate that thisis a CA certificate. Once the key has been
generated and the other certificate details filled in, you can sign the certificate in the
same manner as a cert request and save the result to a cryptlib private key keyset as
described in “Certificates” on page 149.

Creating/Destroying Device Objects 265

Encryption Devices and Modules

cryptlib’s standard cryptographic functionality is provided through its built-in
implementations of the required algorithms and mechanisms, however in some cases
it may be desirable to use external implementations contained in cryptographic
hardware or portable cryptographic devices like smart cards or PCMCIA cards.
Examples of external implementations are:

e Cryptographic hardware accelerators

e PCMCIA crypto cards such as Fortezza cards
e Cryptographic smart cards

o Datakeys

o PKCS#11 crypto tokens

e DadllasiButtons

o Software encryption modules

The most common use for an external implementation is one where the hardware
provides secure key storage and management functions, or where it provides specific
algorithms or performance that may not be available in software.

Using an external implementation involves conceptually plugging in the external
hardware or software alongside the built-in capabilities provided by cryptlib and then
creating cryptlib objects (for example encryption contexts) via the device. The
external cryptographic implementation is viewed as alogical device, athough the
“device” may be just another software implementation.

Note that the crypto device interface isintended for use with fairly complete crypto
modules and devices capable of performing their own key and data storage, key
management, and handling of crypto mechanisms. If al you want to doisreplace
one (or more) of cryptlib’s built-in encryption, signing, or hash algorithms with
crypto hardware, a native crypto core, or your own implementation, you’re better off
using the crypto plugin capability described in “The Crypto Plugin Interface” on page
300. At that level all you need to do is unplug the built-in algorithm implementation
and plug in your own replacement, which is much simpler than working with the
device-level interface.

Creating/Destroying Device Objects

Devices are accessed as device objects that work in the same general manner as other
cryptlib objects. Y ou open aconnection to adevice using cryptDeviceOpen,
specifying the user who isto own the device object or CRY PT_UNUSED for the
default, normal user, the type of device you want to use and the name of the particular
device if required or null of there’s only one device type possible. This opens a
connection to the device. Once you’ve finished with the device, you use
cryptDeviceClose to sever the connection and destroy the device object:

CRYPT_DEVI CE crypt Devi ce;
crypt Devi ceOpen(&crypt Devi ce, cryptUser, deviceType, deviceNane);
/* Use the services provided by the device */
crypt Devi ced ose(cryptDevice);
The available device types are;

Device Description
CRYPT_DEVICE_FORTEZZA Fortezza PCMCIA card.
CRYPT_DEVICE _PKCS11 PKCS#11 crypto token. These devices

are accessed viatheir names, see the

266 Encryption Devices and Modules

Activating

Device Description

section on PKCS #11 devices for more
details.

Most of the devices are identified implicitly so there’s no need to specify a device
name and you can pass null as the name parameter (the exception is PKCS #11
devices, which are covered in more detail further on). Once you’ve finished with the
device, you use cryptDeviceClose to deactivate it and destroy the device object. For
example to work with a Fortezza card you would use:

CRYPT_DEVI CE crypt Devi ce;

crypt Devi ceOpen(&crypt Devi ce, cryptUser, CRYPT_DEVI CE_FORTEZZA,
NULL);

/* Use the services provided by the device */

crypt Devi ced ose(cryptDevice);

If the device can’t be accessed, cryptlib will return CRYPT ERROR_OPEN to
indicate that it couldn’t establish a connection and activate the device. Note that the
CRYPT_DEVICE is passed to cryptDeviceOpen by reference, asit modifiesit when
it activatesthe device. In all other routinesin cryptlib, CRYPT_DEVICE is passed
by value.

Some devices have built-in real-time clocks, if cryptlib detects that the device hasa
built-in clock it’1l use the device clock to obtain the time for operations such as
creating signed timestamps. Since device clocks can drift over time, cryptlib will
perform a consistency check of the device time against the system time and will fall
back to using the system time if the device timeistoo far out of step. In addition the
debug build will throw an exception if it detects a problem with the device time.

and Controlling Cryptographic Devices

Once cryptlib has established a connection to the device, you may need to
authenticate yourself to it or perform some other control function with it before it will
alow itself to be used. You can do this by setting various device attributes,
specifying the type of action you want to perform on the device and any additional
information that may be required. In the case of user authentication, the additional
information will consist of a PIN or password that enables access. Many devices
recognise two types of access code, a user-level code that provides standard access
(for example for encryption or signing) and a supervisor-level code that provides
extended access to device control functions, for example key generation and loading.
An example of someone who may require supervisor-level accessis asite security
officer (SSO) who can load new keys into a device or re-enable its use after auser has
been locked out.

Device Initialisation

By setting the CRYPT_DEVINFO_INITIALISE attribute, you can initidise the
device. Thisclears keysand other information in the device and preparesit for use.
In devices that support supervisor access you need to supply theinitialisation or
initial supervisor PIN when you call this function:

cryptSet AttributeString(cryptDevice, CRYPT_DEVINFO I N TIALI SE,

initialPin, initialPinLength);

Once you’ve initialised the device, you may need to set the supervisor PIN if the
device uses adigtinct initiaisation PIN:

crypt Set AttributeString(cryptDevice,

CRYPT_DEVI NFO_SET_AUTHENT_SUPERVI SOR, supervi sorPin,
super vi sor Pi nLength);

At this point you can carry out device-specific initialisation actions while the device
is still in the supervisor state. For example if you’re working with a Fortezza card,
you would load the CA root (PAA) certificate at this point, since it can only be |oaded
when the card isfirst moved into the supervisor-initialised state. Sincethisisthe

Activating and Controlling Cryptographic Devices 267

ultimately-trusted certificate in the card, it can only be loaded when the card isin this
state.

Once you’ve finished performing any optional further initialisation, you need to set a
user PIN, unless the device uses a combined user/supervisor role:

crypt Set AttributeString(cryptDevice, CRYPT_DEVI NFO SET_AUTHENT_USER,
user Pin, userPinLength);

Finally, you’ll need to log on as a user with the PIN you’ve just set if the device
doesn’t do this automatically when you initially set the PIN:

crypt Set AttributeString(cryptDevice, CRYPT_DEVI NFO AUTHENT_USER,
user Pin, userPinLength);

The exact initialisation details vary from device to device and driver to driver. Some
devices don’t distinguish between supervisor and user roles and so only have asingle
roleand PIN. Some devicesrequire aPIN to initialise the device and then set the
supervisor PIN using a separate call, others set the supervisor PIN as part of the
initialisation call. Some deviceswill automatically switch over to user mode when
you set the user PIN while others require you to explicitly log on in user mode after
setting the user PIN. Finally, some devices can’t be initialised through PKCS #11 but
require proprietary vendor software to initialise them.

When the deviceisinitialised, it usually moves through a number of states going
from uninitialised to supervisor initialised to user initialised, with strict restrictions on
what can be donein each state. For example once a supervisor has set the user PIN,
they can usually no longer change it, since the supervisor isn’t supposed to be able to
take on the user role and manipulate the device. Thisiswhy some devices
automatically log the supervisor out once the user PIN has been set. In addition some
maintenance operations such as loading initial trusted certificates can only be
performed after the device has been initialised and is still in theinitia supervisor-
initialised state. Again, this prevents modification of trusted keys after the user has
been given access to the device.

A general rule of thumb isthat when you go through an initialisation you have to
perform all of the steps in sequence without logging out in between, and once you’ve
initialised the device you usually can’t change any settings without re-initialising it
and starting from scratch. Individual devices may diverge from thisin places, but in
general you shouldn’t assume that you can go back later and change things once
you’ve set them.

User Authentication

Before you can use the device you generally need to authenticate yourself to it with a
PIN or password. To authenticate yourself as supervisor, set the CRYPT_-
DEVINFO_AUTHENT_SUPERVISOR attribute; to authenticate yourself as user, set
the CRYPT_DEVINFO_AUTHENT_USER attribute. For example to authenticate
yourself to the device using a PIN as a normal user you would use:

crypt Set AttributeString(cryptDevice, CRYPT_DEVI NFO AUTHENT_ USER, pin,
pi nLength);

To authenticate yourself to the device using a PIN for supervisor-level access you
would use:

crypt Set AttributeString(cryptDevice,
CRYPT_DEVI NFO_AUTHENT_SUPERVI SOR, pin, pinLength);

If the PIN or password that you’ve supplied is incorrect, cryptlib will return
CRYPT_ERROR_WRONGKEY. Ifthe device doesn’t support this type of access, it
will return CRYPT_ERROR_PARAM?2. Note that, asistraditiona for most PIN and
password checking systems, some devices may only allow alimited number of access
attempts before locking out the user, requiring CRY PT_DEVINFO_AUTHENT _-
SUPERVISOR access to re-enable user access.

268 Encryption Devices and Modules

Device Zeroisation

The CRYPT_DEVINFO_ZEROISE attribute works much like CRYPT_DEVINFO_-
INITIALISE except that its specific goal isto clear any sensitive information such as
encryption keys from the device (it’s often the same as device initialisation, but
sometimes will only specifically erase the keys and in some cases may even disable
the device). In some devices you may need to supply a zeroisation PIN or the initial
supervisor PIN when you call this function, otherwise you should set the data value to
an empty string:

crypt Set AttributeString(cryptDevice, CRYPT_DEVINFO ZERO SE, "", 0);

Working with Device Objects

With the device activated and the user authenticated, you can use its cryptographic
capabilitiesin encryption contexts asif it were a standard part of cryptlib. In order to
specify the use of the cryptographic device rather than cryptlib’s built-in
functionality, cryptlib provides the cryptDeviceCreateContext and
cryptDeviceQueryCapability functions that are identical to cryptCreateContext
and cryptQueryCapability but take as an additional argument the handle to the
device. For example to create a standard RSA encryption context you would use:

crypt Creat eCont ext (&crypt Context, cryptUser, CRYPT_ALGO RSA);

To create an RSA encryption context using an external cryptographic device you
would use:

crypt Devi ceCr eat eCont ext (crypt Devi ce, &crypt Cont ext,
CRYPT_ALGO RSA);

After this you can use the encryption context as usual, both will functionin an
identical manner with cryptlib keeping track of whether the implementation isviathe
built-in functionality or the external device. In thisway the use of any form of
external hardware for encryption is completely transparent after the initial step of
activating and initialising the hardware.

Note that, unlike the other functions that create cryptlib objects,
cryptDeviceCreateContext doesn’t require you to specify the identity of the user
who isto own the context which is being created. Thisis because the deviceis
aready associated with a user, so there’s no need to specify this again when creating
an object withinit.

For an example of how you might utilise external hardware, let’s use a generic
DES/triple DES hardware accelerator (identified by the label “DES/3DES
accelerator”) accessed as a PKS #11 device. To use the triple DES hardware instead
of cryptlib’s built-in triple DES implementation you would use:

CRYPT_DEVI CE crypt Devi ce;
CRYPT_CONTEXT crypt Cont ext ;

/* Activate the DES hardware and create a context in it */

crypt Devi ceOpen(&crypt Devi ce, cryptUser, CRYPT_DEVI CE_PKCS11,
"DES/ 3DES accel erator");

crypt Devi ceCr eat eCont ext (crypt Devi ce, &crypt Cont ext,
CRYPT_ALGO 3DES);

/* Generate a key in the DES hardware */
crypt Gener at eKey(crypt Context);

/* Encrypt data using the hardware */
crypt Encrypt (cryptContext, data, datalLength);

/* Destroy the context and shut down the DES hardware */
crypt DestroyCont ext (crypt Context);
crypt Devi ceC ose(cryptDevice);

After the context has been created with cryptDeviceCreateContext, the use of the
context isidentical to a standard encryption context. Thereis no other (perceptual)
difference between the use of abuilt-in implementation and an external
implementation.

Working with Device Objects 269

Key Storage in Crypto Devices

When you create a normal public-key context and load or generate akey into it, the
context goes away when you destroy it or shut down cryptlib. If the context is
created in a crypto device, the public and private keys from the context don’t go away
when the context is destroyed but are stored inside the device for later use. You can
later recreate the context using the key stored in the device by treating the device asa
keyset containing a stored key. For example to create an RSA key in adevice you
would use:

CRYPT_CONTEXT pri vKeyCont ext ;

/* Create the RSA context, set a |label for the key, and generate a key
intoit */

crypt Creat eCont ext (&pri vKeyCont ext, cryptUser, CRYPT_ALGO RSA);

crypt Set AttributeString(privKeyContext, CRYPT_CTXI NFO LABEL, | abel,
| abel Length);

crypt Gener at eKey(privKeyContext);

/* Destroy the context */
crypt DestroyCont ext (pri vKeyCont ext);

Although the context has been destroyed, the key itself is still held inside the device.
To recreate the context at alater date, you can treat the device asif it were akeyset,
using the label asthe key ID:

CRYPT_CONTEXT pri vKeyCont ext ;

crypt Get Pri vat eKey(cryptDevice, &privKeyContext, CRYPT_KEYI D_NAME,
| abel, NULL);

Since you’ve already authenticated yourself to the device, you don’t need to specify a
password.

Key storage is crypto devices has additional special considerations that are covered in
“Considerations when Working with Devices” on page 270. The most notable of
these is that many devices don’t allow direct key loads into devices, and virtualy all
don’t allow them to be extracted, so that the key has to be generated inside the device
(as the example code given earlier shows) and can’t leave the device except (for
conventional encryption keys) in encrypted form.

Querying Device Information

Crypto devices come in awide range of configurations and with varying capabilities,
which can include facilities that bypass the normal device-handling operations
described here. For example a device may have abuilt-in keypad or other
authentication mechanism that bypasses the need to provide aPIN or password from
software. In this case it’s not necessary to log in to the device because the login
processis handled via an external mechanism. Y ou can determine whether adevice
is already logged in, or doesn’t require a login, by reading the CRYPT DEVINFO -
LOGGEDIN attribute. If thisis set to true (any nonzero value) then the device is
aready logged in, otherwise you need to provide a PIN or password to log in to the
device:

i nt devi ceLoggedl n;

/* Check whether we're logged in to the device and if not, log in */
cryptGet Attribute(cryptDevice, CRYPT_DEVI NFO _LOGGEDI N,

&devi ceLoggedlin);
i f(!devicelLoggedln)

/* Get PIN fromuser and log in */;

Since some devices represent removable tokens such as smart cards, it’s possible for
the user to unplug one token and plug in anew onein its place. To help you
determine which token was plugged in at the time it was accessed with
cryptDeviceOpen, you can read the device’s CRYPT_DEVINFO_LABEL attribute,
which returns the label or name of the token which is accessible via the device:

270

Encryption Devices and Modules

char | abel [CRYPT_MAX_ TEXTSI ZE];
int |abel Length;

cryptGet AttributeString(cryptDevice, CRYPT_DEVINFO LABEL, | abel,
&l abel Length);
| abel [| abel Length] = "\0";

Once you’ve read the label you can use it to determine whether the required crypto
token is available via the device.

Some readers and device interfaces aren’t very good at detecting the removal of a
crypto token, or the removal of atoken and insertion of anew one. For example,
many smart card readers only have a simple sensor to detect whether there’s
something present in the reader, but can’t tell whether what’s present is the original
smart card or a piece of cardboard. In addition some low-level reader drivers can’t
report the presence (or absence) of a card to the higher-level code. cryptlib will try to
contact the crypto token to check whether it’s still present and active, but can only go
asfar asthe underlying hardware and software will let it.

Considerations when Working with Devices

There are several considerations to be taken into account when using crypto devices,
the major one being that requiring that crypto hardware be present in a system
automatically limits the flexibility of your application. There are some cases where
the use of certain types of hardware (for example Fortezza cards) may be required,
but in many instances the reliance on specialised hardware can be a drawback.

The use of crypto devices can also complicate key management, since keys generated
or loaded into the device usually can’t be extracted again afterwards. This is a
security feature that makes external accessto the key impossible, and works in the
same way as cryptlib’s own storing of keys inside it’s security perimeter. This means
that if you have a crypto device that supports (say) DES and RSA encryption, then to
export an encrypted DES key from a context stored in the device, you need to use an
RSA context also stored inside the device, since a context located outside the device
won’t have access to the DES context’s key.

Another consideration that needs to be taken into account is the data processing speed
of the device. In most cases it’s preferable to use cryptlib’s built-in implementation
of an algorithm rather than the one provided by the device because the built-in
implementation will be much faster. For example when hashing data prior to signing
it, cryptlib’s built-in hashing capabilities should be used in preference to any provided
by the device, since cryptlib can process data at the full memory bandwidth using a
processor clocked at several gigahertz while a crypto device has to move data over a
slow /O bus to be processed by a processor typically clocked at tens of megahertz or
even a few megahertz. In addition when encrypting or decrypting data it’s generally
preferable to use cryptlib’s high-speed encryption capabilities, particularly with
devices such as smart cards and to alesser extent PCMCIA cards, which are severely
limited by their slow 1/0 throughput. Asageneral rule of thumb, if your system
processor is running at 500 MHz or higher then it’s always faster to perform the
crypto in software rather than using crypto hardware. Because of this it’s usual to
only perform private-key operations in the crypto device.

A fina consideration concerns the limitations of the encryption engine in the device
itself. Although cryptlib provides agreat deal of flexibility in its software crypto
implementations, most hardware devices have only a single encryption engine
through which all data must pass (possibly augmented by the ability to store multiple
encryption keysin the device). What this meansisthat each time adifferent key is
used, it has to be loaded into the device’s encryption engine before it can be used to
encrypt or decrypt data, a potentially time-consuming process. For example if two
encryption contexts are created via a device and both are used alternately to encrypt
data, the key corresponding to each context has to be loaded by the device into its
encryption engine before the encryption can begin (while most devices can store
multiple keys, few can keep more than one at atime ready for use in their encryption
engine).

Fortezza Cards 271

Asaresult of this, although cryptlib will allow you to create as many contextsviaa
device as the hardware allows, it’s generally not a good idea to have more than a
single context of each type in use at any onetime. For example you could have a
single conventional encryption context (using the device’s crypto engine), a single
digital signature context (using the device’s public-key engine), and asingle hash
context (using the device’s CPU or hash engine, or preferably cryptlib itself) active,
but not two conventional encryption contexts (which would have to share the
encryption engine) or two digital signature contexts (which would have to share the
public-key engine).

Fortezza Cards

cryptlib provides complete Fortezza card management capabilities, allowing you to
initialise and program a card, generate or load keysinto it, add certificates for the
generated/|oaded keys, update and change PINs, and perform other management
functions. This provides full certificate authority workstation (CAW) capabilities.

The stepsinvolved in programming a blank Fortezza card are given in “Activating
and Controlling Cryptographic Devices” on page 266. Once the card isin the SSO
initialised state (after you’ve set the SSO PIN), you should install the CA root (PAA)
certificate in the card, since this operation is only permitted in the SSO initialised
state. The use of PAA certificates is somewhat specific to the use of Fortezza’s by
the US Government, you may want to simply load adummy certificate at this point
and use standard CA certificates with any keys that you’ll be storing on the card.

Note that the Fortezza control firmware requires that all of the stepsin the
initialisation/programming process be performed in a continuous sequence of
operations, without removing the card or closing the device. If you interrupt the
process halfway through, you’ll need to start again.

After the above programming process has completed, you can generate further keys
into the device, load certificates, and so on. This provides the same functionality asa
Fortezza CAW.

PKCS #11 Devices

Although most of the devicesthat cryptlib interfaces with have speciaised, single-
purpose interfaces, PK CS #11 provides a general -purpose interface that can be used
with awide selection of parameters and in avariety of ways. The following section
coversthe installation of PKCS #11 modules and documents the way in which
cryptlib interfaces to PKCS #11 modules.

Installing New PKCS #11 Modules

You can install new PKCS #11 modules by setting the names of the driversin
cryptlib’s configuration database. The module names are specified using the
configuration options CRYPT_OPTION_DEVICE PKCS11 DVRO1 ...
CRYPT_OPTION_DEVICE_PKCS11 DVRO5, cryptlib will step through thelist and
load each module in turn. Once you’ve specified the module name, you need to
commit the changes in order for cryptlib to use them the next time it’s loaded. For
example to use the Gemplus GemSAFE driver, you would use:

crypt Set AttributeString(CRYPT_UNUSED,

CRYPT_OPTI ON_DEVI CE_PKCS11_DVRO1, "w32pk2ig.dll", 12);
cryptSet Attribute(CRYPT_UNUSED, CRYPT_OPTI ON_CONFI GCHANGED, FALSE);

Thefirst line of code updates the configuration information to point to the PKCS #11
driver DLL, and the second line makes the changes permanent by flushing the
configuration information to disk.

Since the drivers are dynamically loaded on start-up by cryptlib, specifying a driver
as a configuration option won’t immediately make it available for use. To make the
driver available, you have to restart cryptlib or the application using it so that cryptlib
can load the driver on start-up, whereupon cryptlib will 1oad the specified modules
and make them available as CRY PT_DEVICE_PKCS11 devices. When the module

272 Encryption Devices and Modules

isloaded, cryptlib will query each module for the device name, this is the name that
you should use to access it using cryptDeviceOpen.

Some devices don’t implement all of their crypto functionality in the device but
instead emulate it in software on the host PC. If you have a PKCS #11 module that
does then it’s better to use cryptlib’s native crypto capabilities because they’ll be
more efficient than those in the driver and possibly more secure as well, depending on
how carefully the driver has been written. In order to use only the rea device
capabilities (rather than those emulated on the host PC), you can set the configuration
option CRYPT_OPTION_DEVICE_PKCS11 HARDWAREONLY to true (any
nonzero value) as explained in “Working with Configuration Options” on page 274.

If thisoption is set, cryptlib will only use capabilities that are provided by the crypto
token any not any that are emulated in software.

Accessing PKCS #11 Devices

PKCS#11 devices are identified by the device name, for example the Litronix PKCS
#11 driver identifies itself as “Litronix CryptOki Interface” so you would create a
device object of thistype with:

CRYPT_DEVI CE crypt Devi ce;

crypt Devi ceQpen(&crypt Devi ce, cryptUser, CRYPT_DEVI CE_PKCS11,
"Litronix CryptCki Interface");

If you don’t know the device name or there’s only one device present, you can use the
specia device name[Aut odet ect] to have cryptlib auto-detect the device for you.
If there’s more than one device present, cryptlib will use the first oneit finds:

CRYPT_DEVI CE crypt Devi ce;

crypt Devi ceOpen(&crypt Devi ce, cryptUser, CRYPT_DEVI CE_PKCS11,
"[Aut odetect]");

Some PKCS #11 devices allow the use of multiple physical or logical crypto tokens
as part of asingle device, for example a smart card reader device might have two
dots that can each contain a smart card, or the reader itself might function as a crypto
token alongside the smart card which isinserted into it. To identify a particular token
in adevice, you can specify its name after the device name, separated with a double
colon. For example if the Litronix reader given in the example above contained two
smart cards, you would access the one called “Signing smart card” with:

CRYPT_DEVI CE crypt Devi ce;

crypt Devi ceOpen(&crypt Devi ce, cryptUser, CRYPT_DEVI CE_PKCS11,
"Litronix Cryptki Interface::Signing smart card ");

Some PKCS #11 devices and drivers have special -case requirements that need to be
taken into account when you use them. For example some removeable tokens may
reguire special handling for token changes if the reader doesn’t support automatic
insertion detection, some drivers may have problemsiif the application forks (under
Unix), and so on. Y ou should consult the vendor documentation for the crypto device
and driversthat you’ll be using to check for any special requirements that you need to
meet when you use the device.

CryptoAPI

The following section is intended for forwards-compatibility with future versions of
cryptlib. Although some portions of thisinterface may be implemented, they should
not be relied upon in applications.

The CryptoAPI interface provides access to the encryption, signature, and hashing
capabilities of the underlying CryptoAPI implementation. All of these facilities are
aready provided by cryptlib, so it’s primary purpose is to provide access to PKCS
#12/PFX private keys and certificates held in Windows’ internal (proprietary) key
store, and by extension keys imported to it from other applications. Using the
CryptoAPI interface provides full accessto all keys generated by and stored inside

CryptoAPI 273

Windows, while still allowing the use of all standard cryptlib functionality and
facilities.

Since CryptoAPI is a software implementation managed entirely by the host
operating system, there is no need to perform any initialisation, user authentication, or
other operations like zeroisation, when using a CryptoAPI device. Initialisation was
performed when the operating system was installed, and authentication is performed
when the user logs in or the daamon or service that usesthe keysisactivated. This
means that using the CryptoAPI device consists of no more than creating the device
object and then utilising it in subsequent crypto operations. All keys and certificates
that are accessed through the device will be ones stored in CryptoAPI, giving cryptlib
full access to the host operating system’s keys and crypto capabilities.

274

Miscellaneous Topics

Miscellaneous Topics

This chapter covers various miscellaneous topics not covered in other chapters such
as how to obtain information about the encryption capabilities provided by cryptlib,
how to obtain information about a particular encryption context, and how to ensure
that your code takes advantage of new encryption capabilities provided with future

versions of cryptlib.

Querying cryptlib’s Capabilities

cryptlib provides two functions to query encryption capabilities, one of which returns
information about a given algorithm and mode and the other which returns
information on the algorithm and mode used in an encryption context. In both cases
the information returned isin the form of a CRYPT_QUERY _INFO structure, which
is described in “CRYPT_QUERY _INFO Structure” on page 314.

Y ou can interrogate cryptlib about the details of a particular encryption agorithm and
mode using cryptQueryCapability:

CRYPT_QUERY_I NFO crypt Queryl nf o;
crypt QueryCapability(al gorithm &cryptQerylnfo);

If you just want to check whether a particular algorithm is available (without
obtaining further information on them), you can set the query information parameter
to null:

crypt QueryCapabi lity(al gorithm NULL);

Thiswill simply return a status val ue without trying to return algorithm information.

Working with Configuration Options

In order to allow extensive control over its security and operational parameters,
cryptlib provides a configuration database that can be used to tune its operation for
different environments using portable configuration files that function similarly to
Unix .rc files. Thisallows cryptlib to be customised on a per-user basis (for example
it can remember which key the user usually uses to sign messages and offer to use
this key by default), allows a system administrator or manager to set a consistent
security policy (for example mandating the use of 1024-or 2048 bit public keyson a
company-wide basis instead of unsafe 512-bit keys), and provides information on the
use of optional features such as smart card readers, encryption hardware, and
cryptographically strong random number generators. The configuration options that
affect encryption parameter settings are automatically applied by cryptlib to
operations such as key generation and data encryption and signing.

The configuration database can be used to tune the way cryptlib works, with options
ranging from algorithms and key sizes through to preferred public/private keysto use
for signing and encryption and what to do when certain unusua conditions are
encountered. The available options are listed below, with the data type associated
with each value being either aboolean (B), numeric (N), or string (S) value:

Value Type Description

CRYPT_OPTION_CERT _- B Whether to sign a certificate
SIGNUNRECOGNISED- containing unrecognised
ATTRIBUTES attributes. If thisoptionis set to

false, the attributes will be omitted
from the certificate when it is
signed. Default =false.

Working with Configuration Options 275

Value Type Description
CRYPT_OPTION_CERT_- N Theamount of checking for
COMPLIANCELEVEL standards-compliance to apply to
certificates, certificate requests,
and other certificate objects.
Default = CRYPT_-
COMPLIANCELEVEL _-
STANDARD,
CRYPT_OPTION_CERT - B Whether to require matching
REQUIREPOLICY certificate policies for certificates
in acert chain once aCA setsa
policy. Default = true.
CRYPT_OPTION_CERT - N The updateinterval in daysfor
UPDATEINTERVAL CRLs. Default = 90.
CRYPT_OPTION_CERT_- N Thevalidity period in days for
VALIDITY certificates. Default = 365.
CRYPT_OPTION_CMS - B Whether to add the default CM S/
DEFAULTATTRIBUTES S/MIME attributes to signatures
CRYPT_OPTION_SMIME - (these are dternative names for
DEFAULTATTRIBUTES the same option, since SSMIME
uses CMS as the underlying
format). Default = true.
CRYPT_OPTION_- B Whether any configuration
CONFIGCHANGED options have been changed from
their original settings (see note
below).
CRYPT_OPTION_DEVICE - S The module names of any PKCS
PKCS11 DVRO1 #11 driversthat cryptlib should
load on start-up.
CRYPT_OPTION_DEVICE_-
PKCS11 DVRO05
CRYPT_OPTION_DEVICE - B Whether cryptlib should use only
PKCS11 HARDWAREONLY the hardware capabilities of the
device and not capabilities
emulated in software on the host
PC by the PKCS #11 driver.
Default = false.
CRYPT_OPTION_ENCR_ALGO N Encryption algorithm given asa
conventional-encryption
CRYPT_ALGO_TYPE. Default
=CRYPT_ALGO_3DES.
CRYPT_OPTION_ENCR_HASH N Hash agorithm given as a hash
CRYPT_ALGO_TYPE. Default
=CRYPT_ALGO_SHA.
CRYPT_OPTION_ENCR_HASH N MAC agorithm givenasaMAC
CRYPT_ALGO_TYPE. Default
=CRYPT_ALGO_HMAC_SHA.
CRYPT_OPTION_INFO_- S cryptlib copyright notice.

COPYRIGHT

Miscellaneous Topics

Value Type Description
CRYPT_OPTION_INFO_- S cryptlib description.
DESCRIPTION
CRYPT_OPTION_INFO - N cryptlib mgjor and minor version
MAJORVERSION numbers and stepping number.
CRYPT_OPTION_INFO -
MINORVERSION
CRYPT_OPTION_INFO -
STEPPING
CRYPT_OPTION_KEYING ALGO N Key processing algorithm given as
ahash CRYPT_ALGO_TYPE.
Default = CRYPT_ALGO_SHA.
CRYPT_OPTION_KEYING_- N Number of timesto iterate the
ITERATIONS key-processing algorithm. Note
that key processing when used for
private-key encryption uses a
much higher value than this
general-purpose value. Default =
500.
CRYPT_OPTION_KEYS LDAP_- S Thenames of various LDAP
CACERTNAME attributes and object classes used
CRYPT_OPTION_KEYS LDAP - for certificate storage/retrieval.
CERTNAME
CRYPT_OPTION_KEYS LDAP._-
CRLNAME
CRYPT_OPTION_KEYS LDAP._-
EMAILNAME
CRYPT_OPTION_KEYS LDAP._-
FILTER
CRYPT_OPTION_KEYS LDAP._-
OBJECTCLASS
CRYPT_OPTION_MISC - B Whether to bind in various drivers
ASYNCINIT asynchronously when cryptlib is
initialised. This performsthe
initialisation in a background
thread rather than blocking on
start-up until the initiaisation has
completed. Default = true.
CRYPT_OPTION_MISC - B Whether to perform additiona
SIDECHANNELPROTECTION operations that add protection
against some obscure (and rather
unlikely) side-channel attacks on
private keys. Enabling this option
will slow down all private-key
operations by up to 10%. Default
=false
CRYPT_OPTION_NET_HTTP - S HTTP proxy used for accessing
PROXY web pages. Default = none.
CRYPT_OPTION_NET_SOCKS - S Socks server and user name used

SERVER
CRYPT_OPTION_NET_SOCKS -
USERNAME

for Internet access. Default =
none.

Working with Configuration Options 277

Value Type Description
CRYPT_OPTION_NET_- N Timeout in seconds when
CONNECTTIMEOUT connecting to aremote server and
CRYPT_OPTION_NET _- when transferring data after a
READTIMEOUT connection has been established.
CRYPT_OPTION_NET _- Default = 30 seconds for the
WRITETIMEOUT connect timeout, 0 seconds for the
read timeout, 2 seconds for the
write timeout.
CRYPT_OPTION_PKC_ALGO N Public-key encryption algorithm

given as a public-key
CRYPT_ALGO_TYPE. Default
= CRYPT_ALGO_RSA.

CRYPT_OPTION_PKC_KEYSIZE N Public-key encryption key sizein
bytes. Default = 128 (1024 bits).

CRYPT_OPTION_SELFTESTOK N The current algorithm self-test
status (see note below).

CRYPT_OPTION_SIG_ALGO N Signature algorithm given asa
public-key encryption
CRYPT_ALGO_TYPE. Default
= CRYPT_ALGO_RSA.

CRYPT_OPTION_SIG_KEYSIZE N Signature key sizein bytes.
Default = 128 (1024 bits).

CRYPT_OPTION_CONFIGCHANGED has special significancein that it contains
the current state of the configuration options. If thisvalueis FALSE, the current in-
memory configuration options are still set to the same value that they had when
cryptlib was started. If set to TRUE, one or more options have been changed and
they no longer match the val ues saved in permanent storage such as a hard disk or
flash memory. Writing this value back to FAL SE forces the current in-memory
values to be committed to permanent storage so that the two match up again.

CRYPT_OPTION_SELFTEST also has special significance, controlling cryptlib’s
built-in self-test functionality. If you want to perform a self-test of any cryptlib
algorithm, you can set this attribute to the agorithm that you want to test. If the self-
test succeeds, cryptlib will return an OK status, otherwise it’ll return a failure error
code. For example to perform the internal self-test of the DSA implementation you’d
use:

crypt Set Attri bute(cryptEnvel ope, CRYPT_OPTI ON_SELFTESTCK,

CRYPT_ALGO DSA);

To test al of the implementations, you can set the attribute to CRYPT_USE_-
DEFAULT. If one (or more) of the algorithm self-tests fails, you can use the per-
algorithm test to determine which algorithm(s) failed the self-test.

In addition to these manually-triggered self-tests, cryptlib automatically tests its built-
in SHA-1 and DES/3DES implementation and random number generator every time
it starts, and won’t start if there’s a problem with any of them.

Querying/Setting Configuration Options

Y ou can manipul ate the configuration options by getting or setting the appropriate
attribute values. Since these apply to al of cryptlib rather than to any specific object,
you should set the object handle to CRYPT_UNUSED. For example to query the
current default encryption agorithm you would use:

CRYPT_ALGO TYPE crypt Al go;

cryptGet Attribut e(CRYPT_UNUSED, CRYPT_OPTI ON_ENCR ALGO, &cryptAl go);

278

Miscellaneous Topics

To set the default encryption algorithm to CAST-128, you would use:

cryptSet Attri but e(CRYPT_UNUSED, CRYPT_OPTI ON_ENCR ALGO,
CRYPT_ALGO _CAST);

Some configuration options which contain values that apply to individual objects can
also be set for that one object type rather than as a global setting. These options
include timeouts for session objects, key size and key setup parameters for encryption
contexts, and encryption and hash agorithmsfor envelopes. For example to set the
encryption algorithm to be used when envel oping data in one particular envelope to
IDEA, you would use;

crypt Set Attri bute(cryptEnvel ope, CRYPT_OPTI ON_ENCR_ALGO,
CRYPT_ALGO | DEA);

A few of the options are used internally by cryptlib and are read-only (thisis
indicated in the options’ description). These will return CRYPT ERROR -

PERMISSION if you try to modify them to indicate that you don’t have permission to
change this option.

Saving Configuration Options

The changes you make to the configuration options only last while your program is
running or while cryptlib isloaded. In order to make the changes permanent, you can
save them to a permanent storage medium such as a hard disk by setting the
CRYPT_OPTION_CONFIGCHANGED option to FALSE, indicating that the in-
memory settings will be synced to disk so that the two match up. cryptlib will
automatically rel oad the saved options when it starts.

The location of the saved configuration options depend on the system type on which
cryptlib isrunning:

System L ocation

BeOS $(HOME)/.cryptlib/cryptlib.p15
Unix

DOS Jeryptlib.p15

0s/2

MVS CRYPTLIB P15

VM/CMS

Tandem $system.system.cryptlib

Windows3.x Windows/cryptlib/cryptlib.p15

Windows 95/- \Documents and Settings\user_name\Application

98/ME Data\cryptlib\cryptlib.p15 or \Windows\All
Windows NT/- Users\Application Data\cryptlib\cryptlib.p15 or
2000/XP \Windows\Profiles\user_name\Application

Windows CE Data\cryptlib.p15 (this varies depending on the OS type
and version, and is determined by the Windows
application data CSIDL)

Where the operating system supportsit, cryptlib will set the security options on the
configuration information so that only the person who created it (and, usually, the
system administrator) can accessit. For example under Unix the file access bits are
set to alow only the file owner (and, by extension, the superuser) to access thefile,
and under Windows NT/2000/XP with NTFS the file ACLs are set so that only the
user who ownsiit can access or changeit.

Obtaining Information About Cryptlib

cryptlib provides a number of read-only configuration options that you can use to
obtain information about the version of cryptlib that you’re working with.

These options are:

Random Numbers 279

Value Type Description

CRYPT_OPTION_INFO - N The cryptlib magjor and minor
MAJORVERSION version numbers and release

CRYPT_OPTION_INFO _- stepping. For cryptlib 3.1 the
MINORVERSION major version number is 3 and the

CRYPT_OPTION_INFO_- minor version number is1. For
STEPPING betarelease 2 the stepping is 2.

CRYPT_OPTION_INFO_- S A text string containing a
DESCRIPTION description of cryptlib.

CRYPT_OPTION_INFO - S Thecryptlib copyright notice.
COPYRIGHT

Random Numbers

Several cryptlib functions require access to a source of cryptographically strong
random numbers. The random-data-gathering operation is controlled with the
cryptAddRandom function, which can be used to either inject your own random
information into the internal randomness pool or to tell cryptlib to poll the system for
random information. To add your own random data (such as keystroke timings when
the user enters a password) to the pool, use:

crypt AddRandon{ buffer, bufferLength);

In addition to user-supplied and built-in randomness sources, cryptlib will check for a
/ dev/ r andom EGD, or PRNGD-style style randomness driver (which continually
accumul ates random data from the system) and will use this as a source of
randomness. If running on a system with a hardware random number source
(provided by some CPUs and chipsets), cryptlib will also make use of the hardware
random number source. cryptlib can also make use of additional entropy seeding
information on embedded systems without inherent entropy sources, see “Porting to
Devices without Randomness/Entropy Sources” on page 293 for more information.

cryptlib includesin its built-in generator an ANSI X9.17 / ANSI X9.31 generator for
FIPS 140 certification purposes. Full technical details of the generator are given in
the reference in “Recommended Reading” on page 15.

Gathering Random Information

cryptlib can aso gather its own random data by polling the system for random
information. There are two polling methods you can use, afast poll that returns
immediately and retrieves a moderate amount of random information, and a slow poll
that may take some time but that retrieves much larger amounts of random
information. A fast poll is performed with:

crypt AddRandon{ NULL, CRYPT_RANDOM FASTPOLL);

In general you should sprinkle these throughout your code to build up the amount of
randomnessin the pool.

A slow poll is performed with:
crypt AddRandon{ NULL, CRYPT_RANDOM SLOAPQOLL);

The effect of this call varies depending on the operating system. Under DOS the call
returnsimmediately (see below). Under Windows 3.x the call will get al the
information it can in about a second, then return (there is usually more information
present in the system than can be obtained in a second). Under BeOS, OS/2, and on
the Macintosh, the call will get all the information it can and then return. Under
Unix, Windows 95/98/ME, Windows NT/2000/XP, and Windows CE the call will
Spawn one or more separate processes or threads to perform the polling and will
return immediately while the poll continues in the background.

Before the first use of a high-level function such as envelopes, secure sessions, or
calling cryptGenerateK ey or cryptExportK ey you must perform at least one slow

280 Miscellaneous Topics

poll (or, in some cases, several fast polls— see below) in order to accumulate enough
random information for use by cryptlib. On most systems cryptlib will perform a
non-blocking randomness poll, so you can usually do this by calling the slow poll
routine when your program starts. This ensures that the random information will
have accumulated by the time you need it:

/* Program start-up */

crypt AddRandon{ NULL, CRYPT_RANDOM SLOAPOLL);

/* OQther code, slow poll runs in the background */
crypt Gener at eKey(crypt Context);

If you forget to perform a slow poll beforehand, the high-level function will block
until the slow poll completes. The fact that the call isblocking is usualy fairly
obvious, because your program will stop for the duration of the randomness poll. If
no reliable random data is available then the high-level function that requiresit will
return the error CRYPT_ERROR_RANDOM.

Obtaining Random Numbers

Y ou can obtain random data from cryptlib by using an encryption context with an
algorithm that produces byte-oriented output (for example a stream cipher or a block
cipher employed in a stream mode like CFB or OFB). To obtain random data, create
acontext, generate akey into it, and use the context to generate the required quantity
of output by encrypting the contents of abuffer. Since the encryption output is
random, it doesn’t matter what the buffer initially contains. For example you can use
the RC4 algorithm (a stream cipher) to generate random data with:

CRYPT_CONTEXT crypt Cont ext ;

crypt Creat eCont ext (&crypt Cont ext, cryptUser, CRYPT_ALGO R4);
crypt Gener at eKey(crypt Cont ext)

crypt Encrypt (crypt Context, randonDataBuffer, randonDatalLength);
crypt DestroyCont ext (crypt Context);

Thiswill fill the data buffer with the required number of random bytes.

Working with Newer Versions of cryptlib

Y our software can automatically support new encryption algorithms as they are added
to cryptlib if you check for the range of supported algorithms instead of hard-coding
in the values that existed when you wrote the program. In order to support this,
cryptlib predefines the values CRYPT_ALGO_FIRST_CONVENTIONAL and
CRYPT_ALGO_LAST_CONVENTIONAL for thefirst and last possible
conventional encryption agorithms, CRYPT_ALGO_FIRST_PKC and
CRYPT_ALGO _LAST_PKC for thefirst and last possible public-key encryption
algorithms, CRYPT_ALGO_FIRST_HASH and CRYPT_ALGO_LAST_HASH for
thefirst and last possible hash algorithms, and CRYPT_ALGO_FIRST _MAC and
CRYPT_ALGO LAST_MAC for thefirst and last possible MAC agorithms. By
checking each possible a gorithm value within this range using
cryptQueryCapability, your software can automatically incorporate any new
algorithms asthey are added. For example to scan for all available conventiona
encryption algorithms you would use:

CRYPT_ALGO TYPE crypt Al go;

for(cryptAlgo = CRYPT_ALGO Fl RST_CONVENTI ONAL;
crypt Al go <= CRYPT_ALGO LAST_CONVENTI ONAL;
crypt Al go++)
if(cryptStatusOK(crypt QeryCapability(cryptAlgo, NULL))
/* Performaction using algorithm*/;

The action you would perform would typicaly be building alist of available
algorithms and allowing the user to choose the one they preferred. The same can be
done for the public-key, hash, and MAC agorithms.

Working with Newer Versions of cryptlib 281

If your code follows these guidelines, it will automatically handle any new encryption
algorithms that are added in newer versions of cryptlib. If you are using the shared
library or DLL form of cryptlib, your software’s encryption capabilities will be
automatically upgraded every time cryptlib is upgraded.

282

Error Handling

Error Handling

Each function in cryptlib performs extensive parameter and error checking (although
monitoring of error codes has been omitted in the code samples for readability). In
addition each of the built-in encryption algorithms can perform a self-test procedure
that checks the implementation using standard test vectors and methods given with
the algorithm specification (typically FIPS publications, ANSI or IETF standards, or
standard reference implementations). This self-test is used to verify that each
encryption algorithm is performing as required.

Themacroscrypt St at usError () andcrypt St at usOK() can beused to
determine whether areturn value denotes an error condition, for example:

CRYPT_CONTEXT crypt Cont ext ;
int status;

status = crypt Creat eCont ext (&crypt Cont ext, cryptUser,
CRYPT_ALGO | DEA) ;

if(cryptStatusError(status))
/* Performerror processing */;

The error codes that can be returned are grouped into a number of classes that cover
areas such as function parameter errors, resource errors, and data access errors.

The first group contains a single member, the “no error” value:

Error code Description

CRYPT_OK No error.

The next group contains parameter error codes that identify erroneous parameters
passed to cryptlib functions:

Error code Description
CRYPT_ERROR _- There is aproblem with a parameter passed to a
PARAMI... cryptlib function. The exact code depends on the
CRYPT_ERROR - parameter in error.
PARAM7

The next group contains resource-related errors such as a certain resource not being
available or initialised:

Error code Description

CRYPT_ERROR - The operation, for example a public-key encryption or
FAILED decryption, failed.

CRYPT_ERROR _- The object or attribute that you have tried to initialise
INITED has aready been initialised previously.

CRYPT_ERROR - Thereis not enough memory available to perform this
MEMORY operation.

CRYPT_NOSECURE cryptlib cannot perform an operation at the requested
security level (for example allocated pages can’t be
locked into memory to prevent them from being

swapped to disk, or an LDAP connection can’t be
established using SSL).

CRYPT_ERROR_- The object or attribute that you have tried to use hasn’t
NOTINITED been initialised yet, or aresource which is required
isn’t available.
CRYPT_ERROR - Not enough random datais available for cryptlib to

RANDOM perform the requested operation.

Working with Newer Versions of cryptlib 283

The next group contains cryptlib security violations such as an attempt to use the
wrong object for an operation or to use an object for which you don’t have access

permission:
Error code Description
CRYPT_ERROR - An operation that consists of multiple steps (such asa
COMPLETE message hash) is complete and cannot be continued.
CRYPT_ERROR _- An operation that consists of multiple steps (such asa
INCOMPLETE message hash) is still in progress and requires further
steps before it can be regarded as having compl eted.
CRYPT_ERROR - The public/private key context or certificate object or
INVALID attribute isinvalid for this type of operation.
CRYPT_ERROR - The requested operation is not available for this object
NOTAVAIL (for example an attempt to load an encryption key into
a hash context, or to decrypt a Diffie-Hellman shared
integer with an RSA key).
CRYPT_ERROR_- You don’t have permission to perform this type of
PERMISSION operation (for example an encrypt-only key being used
for a decrypt operation, or an attempt to modify aread-
only attribute).
CRYPT_ERROR _- An external event such asasignal from a hardware
SIGNALLED device caused a change in the state of the object. For
example if asmart card isremoved from a card reader,
all the objects that had been loaded or derived from the
dataon the smart card would return CRYPT_ERROR_-
SIGNALLED if you tried to use them.
Once an object has entered this state, the only available
option isto destroy it, typicaly using
cryptDestroyObject.
CRYPT_ERROR _- The operation timed out, either because of a genera
TIMEOUT timeout while accessing an object such as a network
connection or datafile, or because the object wasin use
for another operation such as asynchronous key
generation or a key database lookup operation.
CRYPT_ERROR - The key being used to decrypt or verify the signature
WRONGKEY on apiece of dataisincorrect.

The next group contains errors related to the higher-level encryption functions such
as enveloping, secure session, and key export/import and signature
generation/checking functions:

Error code Description
CRYPT_ERROR - The dataitem (typically encrypted or signed data, or a
BADDATA key certificate) was corrupt, or not al of the datawas
present, and it can’t be processed.
CRYPT_ERROR _- There istoo much datafor this function to work with.
OVERFLOW For an enveloping function, you need to call

cryptPopData before you can add any more data to the
envelope.

For a certificate function this means the amount of data
you have supplied is more than what is allowed for the
field you are trying to storeit in.

For apublic-key encryption or signature function this
means there is too much data for this public/private key
to encrypt/sign. Y ou should either use alarger

284 Error Handling

Error code Description
public/private key (in general a 1024-bit or larger key
should be sufficient for most purposes) or less data (for
example by reducing the key size in the encryption
context passed to cryptExportK ey).

CRYPT_ERROR_- The signature or integrity check value didn’t match the
SIGNATURE data.
CRYPT_ERROR - Thereistoo little datain the envelope or session for
UNDERFLOW cryptlib to process (for example only a portion of adata
item may be present, which isn’t enough for cryptlib to
work with).

The next group contains datalinformation access errors, usually arising from keyset,
certificate, or device container object accesses:

Error code Description

CRYPT_ERROR _- The given item is already present in the container
DUPLICATE object.

CRYPT_ERROR - The requested item (for example akey being read from
NOTFOUND akey database or a certificate component being

extracted from a certificate) isn’t present in the
container object.

CRYPT_ERROR - The container object (for example akeyset or
OPEN configuration database) couldn’t be opened, either
because it wasn’t found or because the open operation
failed.
CRYPT_ERROR - The requested item couldn’t be read from the container
READ object.
CRYPT_ERROR - The item couldn’t be written to the container object or
WRITE the data object couldn’t be updated (for example a key
couldn’t be written to a keyset, or couldn’t be deleted
from a keyset).
The next group contains errors related to data envel oping:
Error code Description
CRYPT_ENVELOPE__ A resource such as an encryption key or password
RESOURCE needs to be added to the envel ope before cryptlib can

continue processing the dataiin it.

Extended Error Reporting

Sometimes the standard cryptlib error codes aren’t capable of returning full details on
the large variety of possible error conditionsthat can be encountered. Thisis
particularly true for complex objects such as certificates or ones that are tied to other
software or hardware which is outside cryptlib’s control. These objects include
database or directory keyset objects, crypto devices, and secure sessions. For

example if thereis a problem checking a certificate object, cryptlib will return a
generic CRYPT_ERROR_INVALID status. If thereisamissing object attribute that
must be set before an object can be used, cryptlib will return aCRYPT _-
ERROR_NOTINITED status.

In order to obtain more information on the problem you can read the CRYPT _-
ATTRIBUTE_ERRORLOCUS attribute to obtain the locus of the error (the attribute
that caused the problem) and the CRYPT_ATTRIBUTE_ERRORTY PE attribute to
identify the type of problem that occurred. These error attributes are present in all
objects and can often provide more extensive information on why an operation with
the object failed, for example if afunction returns CRY PT_ERROR_NOTINITED

Extended Error Reporting 285

then the CRYPT_ATTRIBUTE_ERRORLOCUS attribute will tell you which object
attribute hasn’t been initialised.

The error types are:

Error Type Description

CRYPT_ERRTYPE_- The attributeis required but not present in the
ATTR_ABSENT object.

CRYPT_ERRTYPE - The attribute is already present in the object, or
ATTR_PRESENT present but not permitted for this type of object.

CRYPT_ERRTYPE - The attribute is smaller than the minimum
ATTR_SIZE alowable or larger than the maximum alowable

size.

CRYPT_ERRORTYPE_- Theattributeisset to aninvalid value.
ATTR_VALUE

CRYPT_ERRTYPE_- The attribute violates some constraint for the
CONSTRAINT object, or represents a constraint which is being
violated, for example avalidity period or key
usage or certificate policy constraint.

CRYPT_ERRTYPE_- The attribute violates a constraint set by an
ISSUER_CONSTRAINT issuer certificate, for example the issuer may set
aname constraint which isviolated by the
certificate object’s subjectName or subject
altName.

For example to obtain more information on why an attempt to sign a certificate failed
you would use;

CRYPT_ATTRI BUTE_TYPE error Locus;
CRYPT_ERRTYPE_TYPE error Type,

status = cryptSignCert(cryptCertificate, cryptCAKey);
if(cryptStatusError(status))
{

cryptGet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_ERRORLOCUS,
&errorlLocus);

cryptGet Attribute(cryptCertificate, CRYPT_ATTRI BUTE_ERRORTYPE,
&errorType);

}

The error type and locus information comes from cryptlib itself, and relates to errors
with object usage identified by cryptlib. In addition to the cryptlib error information,
keyset and session objects and objects tied to devices often provide internal error
information which is passed to them from the underlying software, hardware, or a
remote client or server application. The object-specific error code and message are
accessible asthe CRYPT_ATTRIBUTE_INT_ERRORCODE and CRYPT_-
ATTRIBUTE_INT_ERRORMESSAGE attributes. For example to obtain more
information on why an attempt to read a key from an SQL Server database failed you
would use:

CRYPT_KEYSET crypt Keyset;
CRYPT_HANDLE publ i cKey
int status;

status = crypt Get Publ | cKey(&cryptKeyset, &publicKey,
CRYPT_KEYI D_NAME, "John Doe");

if(cryptStatusError(status))
{

int errorCode, errorStringlLength;
char *errorString;

errorString = malloc(...);
cryptGet Attribute(cryptKeyset, CRYPT_ATTRI BUTE_ | NT_ERRORCODE,
&error Code);

286 Error Handling

cryptGet AttributeString(cryptKeyset,
CRYPT_ATTRI BUTE_I NT_ERRORMESSAGE, errorString,
&errorStringlLength);

}

Note that the error information being returned is passed through by cryptlib from the
underlying software or hardware, and will be specific to the implementation. For
exampleif the software that underlies a keyset database is SQL Server then the data
returned will be the SQL Server error code and message. Since the returned datais
low-level, internal error information coming from the underlying software and will
often be information provided by athird-party or remote client or server application,
the contents of the error code and message can vary somewhat but the error message
will typically contain some indication of what the problem is.

In some cases the access attempt will be blocked by the cryptlib security kernel, and
never getsto the object itself. Thistypically occurs when cryptlib returnsa CRYPT _-
ERROR_PERMISSION error, in which the kernel has prevented a disallowed access
type. In this case neither the extended error information nor the interna error code
and string will be set, since the object never saw the access attempt.

Embedded OS Types 287

Embedded Systems

cryptlib has been designed to be usable in embedded designs that lack many facilities
that are normally found on standard systems, both in terms of resources (memory,
network 1/0) and in system functionality (afilesystem, dynamic memory allocation).
If you’re running in a resource-constrained environment such as an embedded
system, you first need to decide what cryptlib services you require and disable any
unnecessary options, as described in “Customised and Cut-down cryptlib Versions”
on page 24. Thiswill reduce the cryptlib code footprint to the minimum required for
your particular situation.

As a general rule of thumb if you’re on a resource-constrained system you should
turn off anything that uses networking, which includes secure sessions (USE_-
SESSIONS), and HTTP and LDAP keyset access (USE_HTTP, USE_LDAP). You
probably also want to turn off crypto devices, (USE_PKCS11 and USE -
FORTEZZA), since the embedded system is unlikely to have PKCS #11 crypto
hardware attached to it. You probably won’t be using database keysets (USE -
DBMS), and unless you’re using PGP keyrings you can turn that off as well (USE_-
PGPKEYS). PGP keyrings are particularly problematic because their structure
requires that they be processed via a lookahead buffer because it’s not possible to
determine how much more data associated with the key is to follow. If you’re
running in a memory-constrained environment and are thinking of using PGP keys,
you should consider using the PKCS #15 format (the cryptlib native keyset type)
instead, since this doesn’t have this problem.

For envelopes, you probably want to turn off compressed enveloping (USE_-
COMPRESSION) since zlib needs to allocate a series of fairly sizeable buffersin
order to operate (256K B for compression, 32KB for decompression, compared to
only 8KB used for the envelope buffer itself). If you’re not using PGP, you can turn
that off aswell (USE_PGP). Finally, there are a considerable range of other options
that you can turn off to save memory and space, see cryptini.h for more details.

In addition to the code size tuning and if you’re targeting a new embedded system
that isn’t already supported by cryptlib, you need to make any necessary system-
specific adaptations to cryptlib to match the characteristics of the embedded device
that you’re working with. These adaptations are described following the discussion
of supported systems below.

Embedded OS Types

AMX

Many embedded OSes, and in particular real-time OSes (RTOSes) are highly
modular, and can be heavily customised to suit particular applications. Because of
this high degree of customisability, it’s not possible for cryptlib to automatically
assume that a given OS capability will be available. Asaresult, the default cryptlib
build for a particular embedded OS/RTOS uses afairly minimal set of OS capabilities
that should work in most configurations. If you have extended OS facilities available,
you can use the cryptlib configuration file cryptini.h to enable any additional
capabilities that you may need. It’s a good idea to contact the cryptlib developers
before you build cryptlib on one of the more modular, configurable embedded OSes
like AMX, eCOS, uC/OS-I1, uITRON, VxWorks, or XMK. Notesfor individua
OSes are given below.

AMX isahighly configurable kernel with most functionality set to the minimum
level in the default build in order to conserve space. To run cryptlib you need to
enable the time/date manager (so that cryptlib can check datestamps on the data that
it’s processing), and time-slicing if you’re running multiple tasks within cryptlib. For
task synchronisation cryptlib uses AMX semaphores, but doesn’t require any further
AMX facilities like mailboxes, event groups, or buffer pools.

288 Embedded Systems

ChorusOS

eCOS

HC/OS-I]

ChorusOS provides a standard Posix file APl and BSD sockets networking API that
matches the one used by cryptlib’s generic Unix configuration. No special
operationa considerations are required for cryptlib in this environment.

Unlike most other embedded OSes, eCOS requiresthat al data structures used by the
kernel be statically allocated by the user. This meansthat cryptlib hasto allocate
storage for all semaphores, mutexes, tasks, and other eCOS objects either at compile
time or (at the latest) when it’s loaded/initialised. This entails allocating the storage
required by eCOS for each abject when cryptlib allocates its kernel object table,
rather than allocating the storage on-demand when an object is created. |f memory is
at a premium, you should shrink the object table (via CONFIG_CONSERVE -
MEMORY and/or CONFIG_NUM_OBJECTYS) to the smallest size that you can work
with, since each object entry has to include space for eCOS kernel data.

Typical eCOS configurationsinclude afull TCP/IP stack and file 1/0O services.
cryptlib uses the Posix section 5/6 file 1/0O layer, the universal low-level 1/0 layer
that’s supported by all filesystem drivers. The TCP/IP stack is a standard BSD-
derived stack and it’s use is enabled by default in the eCOS build.

To run cryptlib under uC/OS-11 you need to enable mutexes (OS_MJTEX_ENand
OS_MUTEX_DEL_EN) for task synchronisation and tasks (OS_TASK_CREATE_EN
and OS_TASK_DEL _EN) if you’re running multiple tasks within cryptlib. pnC/OS-I1
makes a task’s priority do double duty as the task ID, so there’s no way to uniquely
identify a task over the long term. If you change a task’s priority using
OSTaskChangePri o(), you’ll also change its task ID. This means that if you’ve
bound a cryptlib object to a task for access control purposes (see “Object Security” on
page 41), it’1l no longer be accessible once the task priority change changes its task
ID. If your tasks change their IDs in this manner, you shouldn’t bind objects to
particular task IDs.

Embedded Linux

HITRON

Palm OS

Embedded Linux is a standard Unix environment. No special operational
considerations are required for cryptlib in this environment.

MITRON has afile interface (ITRON/FILE) derived from the BTRON persistent
object store interface, but the only documentation for this is for BTRON and it’s only
available in Japanese. Because of theinability to obtain either documentation or an
implementation to code againgt, cryptlib only contains stubs for file 1/O functionality.
If your WITRON system provides thisfile interface, please contact the cryptlib
developers.

LITRON also has a TCP/IP interface, but it doesn’t seem to be widely used and the
only documentation available isin Japanese. Because of thisthe use of TCP/IP under
MITRON isdisabled by default in cryptini.h, if you have apll TRON TCP/IP
implementation you can use it to replace the existing TCP/IP interface in io/tcp.c.

When you install the PAlmOS SDK, the include path for the PalmOS compiler may
not cover the directory containing the standard ANSI/ISO C headers. These headers
are found in the posix subdirectory of the standard PaAlmOS include directory, you
can either configure the include path to include this directory or specify it in the
makefile with the -1 compiler option.

If you’re building cryptlib using the PalmOS SDK compiler, all compiler warning
messages are enabled by default and can’t be reset to a more normal level. Because

Embedded OS Types 289

of this maximum warning level, you’ll get a stream of compiler messages when you
build cryptlib, in particular erroneous used-before-initialised messages. Thisis
normal, and can be ignored.

If you’re building cryptlib using the PRC toolchain, the PalmOS headers contain gcc-
specific directives that try to pull in gcc headers that lie outside the PAlmOS SDK
path. If the path to these additional headers isn’t configured, you can either configure
the include path to include the directories needed by gcc or specify it in the makefile
withthe-i di r af t er compiler option.

QNX Neutrino

RTEMS

uClinux

OQNX Neutrino is astandard Unix environment, and in general no special operational
considerations are required for cryptlib in this environment. The one exceptionisin
the choice of networking environments. QNX Neutrino provides three network stack
configurations, the standard TCP/IP stack, the enhanced TCF/IP stack, and alow-
resource version of the standard stack. cryptlib workswith all of these stacks, and
will try and use the most sophisticated features provided by the system. If you’re
using one of the more restricted networking stacks (for example the tiny TCP/IP stack
with no IPv6 support) you may need to change the settings in io/tcp.h to reflect this.

RTEMS provides a standard Posix file APl and BSD sockets networking API that
matches the one used by cryptlib’s generic Unix configuration. No special
operationa considerations are required for cryptlib in this environment.

uClinux is an embedded OS intended for use on hardware without memory
protection, allowing it to be run on systems that couldn’t otherwise run a standard
Linux build. To conserve memory, you may want to configure uClinux to use the
page_al | oc2/kmal | oc2 allocator instead of the somewhat wasteful standard
power-of-two Linux allocator, which isintended for use on systems with virtual
memory support. cryptlib’s memory allocation strategy fits neatly with the
page_al | oc2 alocator to minimise memory usage.

By default the uClinux tool chains tend to allocate extremely small stacks of only
4K B, which isinadequate for all but the most trivial applications. To provide an
adequate stack, you need to either set FLTFLAGS=-s st acksi ze and export
FLTFLAGS to the makefile before building your application, or run flthdrs —s
stacksize on your executable after building it.

Windows CE

VxWorks

Xilinx XMK

Windows CE is a standard Windows environment. No special operational
considerations are required for cryptlib in this environment.

VxWorks includes a TCP/IP stack and file 1/0 services. cryptlib usestheioLib file
1/0 mechanisms, the universal low-level 1/0 layer that’s supported by all filesystem
drivers. The VxWorks TCP/IP stack has changed somewhat over timeand is
sometimes replaced by more functional third-party alternatives or may not be present
at al if VxWorks has been configured without it. Because of this, the use of TCP/IP
services isn’t enabled by default. If you need networking services, you can enable
them in cryptini.h, and may need to perform VxWorks-specific network initialisation
(for example calling sel ect | ni t) if your application doesn’t already do so.

XMK is highly configurable kernel with several functions disabled in the default
build. To run cryptlib you need to enable mutexes (conf i g_pt hr ead_rut ex)
for thread synchronisation, the yield interface (conf i g_yi el d) for thread
management, and timers (conf i g_t i me) for time handling. In addition if you’re

290

Embedded Systems

starting threads within cryptlib, you need to either increase the default thread stack
size(pt hr ead_st ack_si ze) or set alarger stack size when you start the internal
thread.

Xilinkx XMK provides an emulated Posix filesystem API, however in order to reduce
code size cryptlib uses the native XMK memory filesystem (MFS) interface to access
stored datain RAM, ROM, or flash memory. If you need to store data such as
configuration options or private keys, you need to enable MFS support in your XMK
build.

XMK includes aminimal network stack (LibXilNet), however this only provides
server functionality (so it’s not possible to implement a network client) and doesn’t
support timers, so that each send or receive will block forever until data arrivesor is
sent. Because of these limitations, you need to use a third-party network stack in
order to use cryptlib’s networking capabilities under XMK.

Embedded cryptlib Configuration Options

Y ou can use the standard cryptlib makefile to cross-compile the code for any of the
embedded targets. If you’re building for a new target type, you first need to add the
new target type at the end of the makefile in the “Embedded Systems” section. The
cryptlib naming convention for preprocessor symbols used to identify targetsisto use
__target_name__, which then enables system-specific behaviour in the code. For
exampleif you were adding a new target type to build the code for an Atmel TDMI
ARM core, you’d use —-D__ ATMEL___as the necessary compile option (some
compilers will define the necessary symbols automatically).

The cryptlib makefile and source code auto-detect various system parameters at
compile time, if you’re cross-compiling for a new target type that you’ve defined
yourself you’ll need to override this so that you’re building with the parameters for
your target rather than for the host system. In addition you can enable various build
options for systems with limited resources as described earlier. The values that you
may need to define to handle these system-specific options are:

Option

Description

__target name__

CONFIG_LITTLE_ENDIAN
CONFIG_BIG_ENDIAN

CONFIG_CONSERVE._-
MEMORY

CONFIG_DEBUG_MALLOC

CONFIG_NO_DYNALLOC

CONFIG_NO_ERRORMSG

CONFIG_NO_STDIO

CONFIG_NUM_OBJECTS=n

The target type that you’re building for.

The CPU endianness of the target
system.

Define if the target has limited memory
available to reduce the default sizes of
buffers and data structures. “Limited”
means |l ess than about 256K B of RAM.

Define to dump memory usage
diagnosticsto the console. You
generally wouldn’t use this option on the
target system, but only on the host during
development.

Define to change cryptlib’s handling of
on-demand memory allocation as
described in “Porting to Devices without
Dynamic Memory Allocation” on page
291.

Don’t include long descriptive error
messages in the code, which reduces
codesize.

Define if the target has no
filesystem/stdio support.

The number of objects that cryptlib

Debugging with Embedded cryptlib 291

Option Description

reserves room for, defaulting to 1024
without CONFIG_CONSERVE_-
MEMORY defined or 128 with.

CONFIG_RANDSEED Define to use external random seed data.
CONFIG_RANDSEED _- Define to set the value of the random
QUALITY seed data, as a percentage figure from 10-
100 percent.

Finaly, cryptlib includes a considerable amount of other configurability that you can
take advantage of if you need to use it in an environment that imposes particul ar
restrictions on resource usage. If you’re working with an embedded system, you
should contact the cryptlib devel opers with more details on any specific requirements
that you may have.

Onceyou’ve got the necessary options set up, you can build the code. If you’re
building for acompletely new target, cryptlib will detect thisand print messages at
the various locations in the code where you need to add system-specific adaptations
such as support for reading/writing to flash memory segmentsin ioffile.c.
Alternatively, you can edit ioffile.c before you try to build the code, look for all the
locations where CONFIG_NO_STDIO is referenced, and add the necessary support
there rather than having cryptlib warn you about it during the build process.

Debugging with Embedded cryptlib

Porting to

Porting to

Since you’ll be using the same code on your host system as you will in the target, by
far the easiest way to develop and debug your application isto do it on the host using
your preferred development tools. By enabling the same build options as you would
on the target (except for the CPU endianness override) you can exactly duplicate the
conditions on the target embedded system and perform all of your application
development on the host rather than having to cross-compile, upload code, and work
with the target’s debugging facilities (if there are any).

Devices without a Filesystem

If the device you’re working with lacks a filesystem, you’ll need to work with
io/file.c to add an adaptation layer to handle the underlying storage abstraction that
you’re using. In embedded devices this usually consists of blocks of flash memory or
occasionally battery-backed RAM, identified either by name/label or an integer value
or tag. cryptlib supports the use of named/tagged memory segments if you build it
with the CONFIG_NO_STDIO option, and will assemble in-memory (RAM) pseudo-
fileson which it performsall I/O until the fileis committed to backing store,
whereupon it’1l perform an atomic transfer of the pseudo-file to flash to minimise
wear on the flash memory cells. It’s thus possible to manipulate these (pseudo-)files
arbitrarily without causing excessive wear on the underlying storage medium.

Devices without Dynamic Memory Allocation

If your system lacks dynamic memory allocation, or has so little memory that it’s
necessary to conserve it as much as possible, you first need to build cryptlib with the
CONFIG_CONSERVE_MEMORY option. Thisreducesthe default sizes of some
buffers, and sets the initial size of cryptlib’s internal object table to 128 objects
instead of the usual 1024. Y ou can further tune the amount of memory used by the
system object table by setting the CONFIG_NUM_OBJECTS setting to the
maximum number of objects that you’ll need. This value must be a power of 2, and
can’t be less than 8. For single-purpose use in an embedded device (for example
when used specifically for enveloping messages rather than as a general -purpose tool
where anything is possibl€), you can usually get by with 32 or even 16 objects.
Depending on other options such as whether you use certificate trust settings or not
and whether your system has a 16- or 32-bit word size, the cryptlib kernel and built-in
system objects consume between 6 and 12 KB of memory.

292 Embedded Systems

Asarough rule of thumb, each non-public-key encryption context consumes around
200 bytes (along with any extra memory needed by the algorithm’s expanded
encryption key), each public-key encryption context consumes around 1500 bytes
(depending again on algorithm-specific parameters such as the algorithm type and
key size), file keysets (which are buffered in memory as mentioned earlier) consume
600 bytes plus the size of the keyset file (usually around 1.3 KB for a standard 1024-
bit RSA key and accompanying certificate and 3 KB for the key and a 3-certificate
chain), envelopes consume 1.2KB plus 16 KB for enveloping and 8K B for de-
enveloping (the extra size is due to the built-in envelope buffer), and certificates
consume an amount of memory that isn’t easily predictable in advance since they
consist of an arbitrary number of arbitrarily-sized objects. This makesit very
difficult to estimate their eventual memory usage, but arule of thumb is about 2 KB
used for atypical certificate. Note that the certificate object consumption has very
little to do with the key size, but is mostly dependent on the number and size of al the
other X.509 components that are present in the certificate.

Memory Allocation Strategy

cryptlib allocates memory in strict FIFO manner, so that creating an object and then
destroying it again rolls back memory to the exact state it was in before the object
was created. This ensures that it’s possible to run cryptlib on a system without
dynamic memory allocation by using a simple high-water-mark pointer that tracks the
last memory position used, and falls back to its earlier position when the memory is
“freed”. Because of this memory usage strategy, cryptlib, although it does acquire
memory as required, doesn’t need real dynamic memory allocation and can function
perfectly well if given asingle fixed block of memory and told to use that.

cryptlib allocates either very little or no memory during its normal operation. That is,
memory is allocated once at object creation or activation, after which cryptlib stays
within the already-allocated bounds unless it encounters some object that it needsto
storefor later use. For example if it finds a certificate while processing SMIME data
it’ll need to acquire a block of memory to store the certificate for later access by the
caller.

cryptlib Memory Usage

Almost al of the information that cryptlib processes has the potential to include
arbitrary-length data, and occasionally arbitrary amounts of arbitrary-length data.
Certificates are a particular example of this, as mentioned earlier. cryptlib’s strategy
for handling these situations is to use stack memory to handle the data if possible, but
if the item being processed exceeds a certain size, to temporarily grab alarger block
of memory from the heap to allow the item to be processed, freeing it again
immediately after use.

In normal use this overflow handling is never invoked, however since cryptlib can
aways run into data items of unusual size (constructed either accidentally or
malicioudly), you need to decide whether you want to allow this behaviour or not.
Allowing it means that you can process unusua dataitems, but may make you
vulnerable to deliberate resource-starvation attacks. Conversely, denying it makes
you immune to excessive memory usage when trying to process data maliciously
constructed to require extramemory to process, but will also make it impossible to
process data that just happensto have unusual characteristics. In general, cryptlib
will be ableto process any nhormal data without requiring dynamically allocated
memory, so if you know in advance which types of data you’ll be processing and are
concerned about possible resource-starvation attacks, you can disable the
opportunistic alocation of larger working areas by using the
CONFIG_NO_DYNALLOC build option.

cryptlib includes a number of internal lookup tables used for certificate decoding,
agorithm information lookup, error parsing, and so on. These are all declared
stati c const totell thecompiler to place them in the read-only code segment
(held in ROM) rather than the initialised data segment (held in RAM). If your

Porting to Devices without Randomness/Entropy Sources 293

compiler doesn’t automatically do this for you (almost all do), you’ll need to play
with compiler options to ensure that the tables are stored in ROM rather than RAM.

Many cryptlib functions store detailed error information as descriptive text strings
that can be retrieved through the CRYPT_ATTRIBUTE_INT_ERRORMESSAGE
attribute. Since storage for these detailed text messages consumes ROM space, you
may want to disable them to save space, or only enable them in the debug build but
not the release build. To disable descriptive error messages (only error codes will be
returned), define CONFIG_NO_ERRORMSG.

Tracking Memory Usage

Porting to

In order to track memory usage and determine what’1l be required on your target
system, you can use the CONFIG_DEBUG_MALLOC option to dump diagnostics
about memory usage to the console. Thiswill alow you to see approximately how
much memory a certain operation will require, and let you play with rearranging
operations to reduce memory consumption. For example having two objects active
simultaneously rather than using them one after the other will result in atotal memory
consumption equal to the sum of their sizes rather than only the size of the larger of
the two objects.

The memory usage diagnostics will reveal the FIFO nature of the memory allocation
that cryptlib usesto try to minimiseits overall footprint. Y ou can use the sequence
numbers after each alocate and free to track the order in which things are used.

Devices without Randomness/Entropy Sources

cryptlib requires a source (or more generally multiple sources) of randomness/entropy
for the generation of encryption keys and similar data, as described in “Random
Numbers” on page 279. On some embedded systems there may not be enough
entropy available to safely generate these keys. Y ou can provide this additional
entropy yourself through the use of the CONFIG_RANDSEED option, which enables
the use of stored random data that contains additional random seed material. Thisis
stored in the same location as the cryptlib configuration data (see “Working with
Configuration Options” on page 274 for more details), and isn’t necessarily a file but
can be ablock of datain flash memory, datain battery-backed RAM, or whatever
other mechanism your system uses for persistent storage. If you define CONFIG_-
RANDSEED, cryptlib will try and read the random seed data and use it as additional
input to the internal randomness pool. This seed data should be at least 128 bits (16
bytes) long, something like 128 or 256 bytesis a better value. The source of the data
is determined by your system configuration, if there’s a file system available it’ll be
stored in afile called randseed.dat, if not it’ll be accessed via whatever persistent
storage mechanism is configured for your system in ioffile.c. When you build your
embedded system, you should install the seed datafrom an external source, for
example a hardware random number generator or a copy of cryptlib running on a
secure system with a good source of randomness (the use of cryptlib to generate
random data is covered in “Random Numbers” on page 279).

Since a significant portion of the input data for crypto key generation will be
determined by the seed data if there are no other randomness sources available
(cryptlib will always get at least some randomness from the environment, so the value
will change each time it’s used), you should take as much care as possible to protect
the seed data. Obvioudly you should use different seed data on each system, to
prevent a compromise of one system from affecting any others. In addition if your
system provides any protection mechanisms you should apply them to the seed data
to try and safeguard it as much as possible. Finally, you should use the ability to add
user-supplied randomness described in “Random Numbers” on page 279 to
periodically add any situation-specific data that you may have available. For example
if your embedded device is being used for voice or video transmission you can add
segments of the compressed audio or video data, and if your device performs a
sensor/monitoring function you can add the sensor data. Since most embedded
devices have at least some interaction with the surrounding environment, there’s
usually a source of additional randomness available.

294 Embedded Systems

Once you have your seed data set up, you need to decide how much overall
randomness it contributes to the system. Y ou can set this value as a percentage
between 10 and 100 percent viathe CONFIG_RANDSEED_QUALITY
configuration option. If you don’t set a value, cryptlib will assume a figure of 80%,
meaning that it needs to obtain an additional 20% of randomness from the
environment before it’1l generate keys. Note that this setting is merely a safety level,
it doesn’t mean that cryptlib will gather randomness until it reaches 100% and then
stop (it never stops gathering randomness), merely that it won’t generate keys when
the randomness value is below 100%.

The Database Plugin Interface 295

Database and Networking Plugins

In order to communicate with databases that are used as certificate stores and with
different network types, cryptlib uses a plugin interface that allows it to talk to any
type of database back-end and network protocol. The database plugin provides five
functions that are used to interface to the back-end, two functions to open and close
the connection to the back-end, two to send data to and read data from it, and oneto
fetch extended error information if a problem occurs. The plugin typicaly runsas a
Unix daemon which is accessed via an RPC mechanism, however for the ODBC and
generic database interfaces the code is compiled directly into cryptlib. If you prefer
to have your plugin as part of cryptlib you can compileit in as a generic database
interface. The advantage of using an RPC mechanism instead of compiling the
plugin code directly into cryptlib is that cryptlib itself (and the machine that cryptlib
isrunning on) don’t need to contain any database interface code, since everything can
be done on the database server.

The network plugin interface also provides five functions, two to initialise and shut
down the connection, two to read and write data, and one to check that the
networking interface provided by the interface has been correctly initialised. The
network plugin alows cryptlib to use any kind of network interface, either a
customised form of the built-in BSD sockets interface or acompletely different
network mechanism such as SNA or X.25.

The crypto plugin interface is slightly different, and provides direct accessto
cryptlib’s internal encryption capability interface. Replacing a built-in software
encryption capability with (say) a hardware crypto core involves unplugging the
built-in software implementation and replacing it with the corresponding hardware
core interface.

The Database Plugin Interface

The database plugin interface is used when cryptlib receives a user request to access a
database of type CRYPT_KEYSET_PLUGIN or CRYPT_KEYSET_PLUGIN_-
STORE (and by extension for the various CRYPT_KEYSET_ODBC and CRYPT _-
KEYSET DATABASE types as well, although these are preconfigured and don’t
require any further setup). The first thing that cryptlib doesis call the

i ni t DoxSessi on() functionin keyset/dbms.c, which connects the generic
database type to the actual database plugin (for example an Oracle, Sybase, or
PostgreSQL interface). There are three standard plugin types defined, one for ODBC,
one for generic built-in databases, and a skeleton generic database network plugin
that can communicate with a stub server that talks to the actual database. If you need
any other plugin type for a particular database, you can create it as required.

The structure of the plugin is as follows:
#i ncl ude "keyset/keyset. h"

/* Plugin functions: openDatabase(), closeDatabase(), perfornipdate(),
perfornQuery(), perfornErrorQery() */

int initD spatchDat abase(DBMS_| NFO *dbnsl nfo)
{

dbnsl nf o- >openDat abaseBackend = openbDat abase;

dbrsl nf o- >cl oseDat abaseBackend = cl oseDat abase;

dbrsl| nf o- >per f or mpdat eBackend = per for mJpdat e;

dbrs| nf o- >per f or mQuer yBackend = perfor nQuery;

dbnsl nf o- >per f or mEr r or Quer yBackend = perf ornkrror Query;

return(CRYPT_OK);
}

keyset.h contains the keyset-related defines that are used in the code, and the
dispatcher initialisation function sets up function pointers to the database access
routines, which are explained in more detail below. State information about a session
with the database is contained in the DBMS_STATE_INFO structure which is
defined in keyset.h. This contains both shared information such as the last error

296

Database and Networking Plugins

code and the status of the session, and back-end -specific information such as
connection handles and temporary data areas. When you create a plugin for a new
database type, you should add any variables that you need to the database-specific
section of the DBMS_STATE_INFO structure. When cryptlib cals your plugin
functions, it will passinthe DBMS _STATE_INFO that you can use to store state
information.

Database Plugin Functions

The database plugin functions that you need to provide are as follows:

static int openDatabase(DBMS_STATE | NFO *dbnsl nfo, const char *nane,
const int options, int *featureFlags)

Thisfunction is called to open a session with the database. The parameters are the
name of the database to open the session to and a set of option flags that apply to the
session. The name parameter is a composite value that depends on the underlying
database being used, usualy thisis simply the database name, but it can also contain
a complete user name and password in the format user : pass@er ver . Other
combinations are user : pass (only adatabase user name and password) or

user @er ver (only auser name and server).

The option flags will be set to either CRYPT_KEYOPT_NONE or CRYPT_-
KEYOPT_READONLY, many servers can optimise accesses if they know that no
updates will be performed so your code should try and communicate thisto the server
if possible. The function should return a set of database feature flags indicating its
capabilitiesin the featureFlags parameter. These will be either DBMS HAS -
BINARYBLOBSIf the database can store binary data blobs rather than requiring that
data be base64-encoded, and DBMS HAS NONE if it has no special capabilities.
The plugin should provide binary blob accessif the database supports this (almost all
do) since this increases data handling efficiency and reduces storage requirements.

static void cl oseDat abase(DBMS_STATE_I NFO *dbnsl nfo)

Thisfunction is called to shut down the session with the database.

static int perfornlpdate(DBMS_STATE | NFO *dbnsl nfo, const char
*conmand, const void *boundData, const int boundDatalength, const
time_t boundDate, const DBMS_UPDATE_TYPE updat eType)

Thisfunction is called to send data to the database. The parameters are an SQL
command, optiona binary blob data and a date, and an update type indicator that
indicates which type of update is being performed. If the boundDat a valueis non-
null then this parameter and the boundDat aLengt h contain a binary blob whichis
to be added as part of the SQL command. If the boundDat e valueis nonzero then
this parameter contains the date and time which is to be added as part of the SQL
command as an SQL DATETIME value. For example the function can be called
with:
performlpdate(.., "'INSERT INTO certificates VALUES ('..', '.', ..
t.')", NULL, 0, 0);
performUpdate (.., "INSERT INTO certificates VALUES ('..", '.', .. 2?2)",
data, length, 0);

performUpdate (.., "I NSERT INTO certificates VALUES (?, '.', .. 2)",
data, length, date);

Inthefirst case al datais contained in the SQL command. In the second case thereis
abinary data blob associated with the SQL command whose position is indicated by
the “?” placeholder. After sending the SQL command to the database, you also need
to send the (data, length) value. In the third case there isabinary data blob and a
date value associated with the SQL command, with the positions again indicated by
the *?” placeholders. The date value is always first in the sequence of placeholders,
and the data blob is always second (even if the data blob parameter appears before the
date parameter in the list of function parameters). After sending the SQL command
to the database, you also need to send the date and then the (data, length) values.
The date value needs to be converted into whatever format the database expectsfor a

The Database Plugin Interface 297

DATETIME value. The exact format depends on the database back-end, which is
why it’s not present in the SQL command.

The update types are as follows:

Update Type Description

DBMS UPDATE_ - Abort atransaction. This state is communicated to the
ABORT database through an SQL statement such as ABORT
TRANSACTION or ROLLBACK or ABORT, or viaa
function call that indicates that the transaction begun
earlier should be aborted or rolled back.

DBMS UPDATE_ - Begin atransaction. This state is communicated to the
BEGIN database through an SQL statement such as BEGIN
TRANSACTION or BEGIN WORK or BEGIN, or via
afunction call that indicates that transaction semantics
arein effect for the following SQL statements.

DBMS UPDATE_- Commit atransaction. This state is communicated to
COMMIT the database through an SQL statement such as END
TRANSACTION or COMMIT WORK or COMMIT,
or viaafunction call that indicates that the transaction
should be committed and that transaction semantics are
no longer in effect after the statement has been

submitted.
DBMS UPDATE_- Continue an ongoing transaction.
CONTINUE
DBMS UPDATE - Standard data update.
NORMAL

The DBMS_UPDATE_BEGIN/CONTINUE/COMMIT combination is used to
perform an atomic update on the database. The sequence of callsis asfollows:

performUpdate (.., "INSERT INTO certificates VALUES (..)",
certificate, certlLength, certDate, DBMS_UPDATE BEG N);

performUpdate (.., "I NSERT I NTO certlLog VALUES (..)", certificate,
certlLength, currentDate, DBMS_UPDATE_CONTI NUE);

performUpdate (.., "DELETE FROM cert Requests WHERE keyl D = keyl D',

NULL, O, 0, DBMS_UPDATE COWM T);

Thefirst call begins the transaction and submits the initial portion, the ongoing calls
submit successive portions of the transaction, and the final call submits the last
portion and commits the transaction. If there’s a problem, the last call in the
transaction will use an update type of DBMS UPDATE_ABORT. Note that it’s
important to ensure that per f or mpdat e itself is atomic, for example if there’s an
error inside the function then it needs to back out of the transaction (if oneisin
progress) rather than simply returning immediately to the caller. This requires careful
tracking of the state of the transaction and handling of error conditions.
static int performuery(DBMS_STATE_I NFO *dbnsl nfo, const char
*command, char *data, int *datalength, const char *boundData, const

i nt boundDatalLength, tine_t boundDate, const DBM5_CACHEDQUERY_TYPE
queryEntry, const DBMS_QUERY_TYPE queryType)

Thisfunction is called to fetch data from the database. The parameters are an SQL
command, an optional buffer to store the result, optional bound query data and date
parameters, a query cacheing indicator (explained further on) and a query type
indicator that indicates which type of query is being performed. The query types are
asfollows:

Query Type Description

DBMS QUERY_- Cancel an ongoing query. This terminates an ongoing
CANCEL query begun by sendingaDBMS_QUERY_START

query.

298

Database and Networking Plugins

Query Type Description
DBMS QUERY_- Cancel an ongoing query. Thisterminates an ongoing
CANCEL query begun by sendingaDBMS_QUERY_START
query.
DBMS QUERY_- Perform apresence check that ssimply returns a
CHECK present/not present indication without returning any

data. Thisallowsthe query to be optimised since
there’s no need to actually fetch any data from the
back-end. All that’s necessary is that a status
indication be returned that indicates whether the
requested datais available to be fetched or not.

DBMS QUERY_- Continue aprevious ongoing query. Thisreturnsthe
CONTINUE next entry in the result set generated by sending a
DBMS QUERY_START query.

DBMS QUERY_- Standard datafetch.

NORMAL
DBMS QUERY_- Beginanongoing query. Thissubmitsaquery to the
START back-end without returning any data. Theresult setis

read one entry at atime by sending
DBMS QUERY_CONTINUE messages.

The DBMS QUERY_START/CONTINUE/CANCEL combination isused to fetch a
collection of entries from the database. The sequence of callsis asfollows:

performQuery(.., "SELECT certData FROM certificates WHERE key = 2",
NULL, NULL, boundData, boundDatalLength, 0, DBMS_CACHEDQUERY_NONE
DBMS_QUERY_START)

do
status = performQuery(.., NULL, buffer, &length, NULL, O, O,
DBMS_CACHEDQUERY_NONE, DBMS_QUERY_CONTI NUE) ;
whil e(cryptStatusOK(status));

Thefirst call submits the query and the ongoing calls fetch successive entriesin the
result set until an error statusis returned (usually thisis CRYPT_ERROR_-
COMPLETE to indicate that there are no more entriesin the result set).

In order to alow for more efficient execution of common queries, cryptlib allows
them to be cached by the database back-end for re-use in the future. Thisalowsthe
back-end to perform the task of SQL parsing and validation against the system
catalog, query optimisation, and access plan generation just once when the first query
is executed rather than having to re-do it for each query. cryptlib provides hints about
cached queries by specifying a cache entry number when it submits the query.
Uncached queries are given an entry number of DBMS_CACHEDQUERY_NONE
(these will belittle-used query types that it’s not worth cacheing), queries where
cacheing are worthwhile are given an entry number from 1to 5. The submitted SQL
for these queries will never change over subsequent calls, so it’s only necessary to
perform the parsing and processing once when the query is submitted for the first
time. Any subsequent requests can be satisfied using the previously parsed query
held at the back-end. In the above example, if the query were submitted with a
cacheing indicator of DBMS_CACHEDQUERY _URI, you could prepare a query for
"SELECT certData FROM certificates WHERE uri = ?" thefirst
time that the query is submitted and then re-use the prepared query every time
another query with the cacheing indicator DBMS_CACHEDQUERY _URI is used.

Note that some databases may return a (potentialy large) result set in response to a
query for asingle result usng DBMS QUERY_NORMAL, for example by returning
further results after the first one isread or by disallowing further queries until all
results have been processed. In thiscaseit will be necessary to limit the query
response size either by setting a size limit before submitting the query or by explicitly
cancelling aquery if more than one result is returned. In addition since cryptlib
expects al datato be SQL text strings (or binary datafor certificatesif the database

The Network Plugin Interface 299

supports it) you may need to convert some data types such as integer values to text
equivalents when returning them in response to a query.

static void perfornErrorQery(DBMS_STATE | NFO *dbnsl nfo, int
*error Code, char *errorMessage)

Thisfunction is called to return extended error information when an error occurs.
Whenever either per f or mQuer y() Of perf or mpdat e() return an error status, this
function will be called to obtain further information. The information returned is
specific to the database back-end and can include the back-end-specific error code
and a text string describing the error. If this information isn’t available, you should
leave it empty.

An example of a plugin interface is keyset/odbc.c, which implements the full
functionality required by cryptlib, a somewhat simpler interface for a database that
doesn’t support binary blobs is keyset/mysql.c. In addition to the standard functions
included below, you may also need to include an SQL rewrite function that changes
the contents of SQL queries to match the SQL dialect used by your database. Thisis
asimple function that just substitutes one text string in the query for another. The
most common conversion changes the name of the binary blob type (if the database
supports it) from the built-in “BLOB” to whatever value is required by the database.
Again, see keyset/odbc.c or keyset/mysql.c for an example of the SQL rewrite
process.

The Network Plugin Interface

The network plugin interface is used to provide a transport-layer service to the
higher-level cryptlib protocols that require network access capabilities. Network
management is handled by the cryptlib 1/0 streams module stream.c. The stream
1/0 system implements a multi-layer architecture with the transport-layer servicein
the lowest layer, optional 1/0 buffering layered above that, optional application-layer
handling (for example HTTP) above that, and finaly the cryptlib protocols such as
CMP, RTCS, SCEP, OCSP and TSP above that. Other protocols such as SSH and
SSL, which don’t require any of the intermediate layers, talk directly to the transport
layer.

By replacing the transport-layer interface, you can run cryptlib communications over
any type of transport interface. Currently cryptlib provides two types of built-in
transport provider, a generic BSD sockets provider and a provider that uses a cryptlib
session as the transport layer, making it possible to run (for example) RTCS over SSL
or CMP over SSH. You can also use the plugin functionality to provide custom I/O
handling that goes beyond that provided by the standard sockets-based interface. For
example if you need to use event-based 1/0 or OS-specific mechanisms such as1/O
completion ports, you can provide this capability through the use of custom 1/0
handlersin the network plugin interface.

The network plugin interface is handled through function pointers to the various
transport-layer functions. By setting these to point to functionsin the appropriate
plugins, it’s possible to use any type of networking or communications interface for
the transport layer. To set these pointers, the cryptlib 1/0 stream system calls

set AccessMet hodXXX() , which in the case of BSD socketsis

set AccessMet hodTCP() .

When calling atransport-layer interface function, cryptlib passesin a STREAM
structure which is defined in stream.h. This contains information which is required
by the transport layer such as socket handles and network communications timeout
information.

Network Plugin Functions

The network plugin functions that you need to provide are as follows:
static BOOLEAN transport OKFunction(void)

Thisfunction is called before using any transport-layer functions to query whether the
transport layer is OK. It should return TRUE if it’s safe to call the other transport-

300 Database and Networking Plugins

layer functions or FAL SE otherwise, for example because the requested network
interface drivers aren’t loaded.

static int transportConnectFuncti on(STREAM *stream const char
*server, const int port)

Thisfunctionsis called to established a connection, either by connecting to aremote
system or by waiting for a connection from a remote system (the exact type depends
on whether the stream is acting as a client or server stream). The ser ver parameter
isthe name of the local interface or remote server, and the por t parameter isthe port
number to listen on or connect to.

static void transportDi sconnect Function(STREAM *stream)

Thisfunction is called to shut down a connection with a remote client or server.

static int transportReadFunction(STREAM *stream BYTE *buffer, const
int length, const int flags)

Thisfunction is called to read data from aremote client or server. The behaviour of
this function differs slightly depending on read timeout handling. For blocking reads,
it should read as many bytes as are indicated in the length parameter, returning an
error if less bytes are read. For nonblocking reads it should read as many bytes as are
available (which may be zero) and return. In either case if the read succeedsiit returns
abyte count.

Normally the read should wait for data to appear for the number of seconds indicated
by the timeout value stored in the stream /O structure. However, it’s possible to
override thiswiththef | ags parameter, which can contain the following flags:

Flag Description
TRANSPORT_FLAG - Perform anonblocking read, overriding the
NONBLOCKING timeout value in the stream 1/O structure if
necessary.
TRANSPORT_FLAG - Perform ablocking read, overriding the timeout
BLOCKING value in the stream |/O structure if necessary.

These flags are used in cases where it’s known that a certain number of bytes must be
read in order to continue, or when the higher-level stream buffering functions want to
perform a speculative read-ahead.

static int transportWiteFunction(STREAM *stream const BYTE *buffer,
const int length, const int flags)

Thisfunction is used to write datato aremote client or server. The flags parameter is
currently unused and should be set to TRANSPORT_FLAG_NONE.

The Crypto Plugin Interface

The crypto plugin interface is used to replace or supplement cryptlib’s built-in
encryption capabilities with external implementations such as crypto hardware or
dedicated crypto cores. When cryptlib initialises itself, it calls a sequence of
encryption capability initialisation functions declared in device/system.c, which
return information on each encryption capability available to cryptlib. This capability
information isreturned in a CAPABILITY _INFO structure, defined in
device/capabil.h, that contains details such as the algorithm name, block size, key
size details, and a set of function pointers to the interface for the algorithm. For
example one of these would point to the function to load akey (if the algorithm uses
keys), one to the function to encrypt data (if it’s an encryption algorithm), and so on.
For a software implementation, the encryption function would simply constitute the
encryption algorithm. For a hardware implementation, the encryption function would
pass the data on to the encryption hardware for processing.

The get-capability function isthe only externally visible interface to an encryption
capability. The easiest way to understand the interface is by looking at an example.
If you look in the context directory you’ll find the implementations for all of
cryptlib’s built-in capabilities. Take as an example the DES capability

The Crypto Plugin Interface 301

implementation, implemented in context/ctx_des.c. Theget DESCapabi | i ty()
function simply returns a pointer to theinitialised CAPABILITY _INFO structure
containing a gorithm information and function pointers for each of the DES
capabilities. Thisisthe simplest case, in more sophisticated implementations you
could (for example) check for the presence of encryption hardware and return an
appropriate CAPABILITY _INFO structure for the hardware instead of the software
implementation, or vary the algorithm parameters based on what your implementation
is capable of. You can even implement completely new (and/or proprietary)
agorithmsin this manner.

To add support for your own implementation, it’s easiest to use one of the
context/ctx_xxx.c modules as atemplate for your implementation, and replace the
code in the module with your own code or the interface to the crypto hardware or
crypto core. If you’re replacing a built-in algorithm (rather than adding a new one),
you can retain some of the existing functions such asthe sel f Test () function,
since these function independently of the underlying implementation.

302 Algorithms

Algorithms

This chapter describes the characteristics of each agorithm used in cryptlib and any
known restrictions on their use. Since cryptlib originates in a country that doesn’t
allow software patents, there are no patent restrictions on the code in its country of
origin. Known restrictions in other countries are listed below and all possible care
has been taken to ensure that no other infringing technology is incorporated into the
code, however since the author is a cryptographer and not an IP lawyer users are
urged to consult IP lawyers in the country of intended use if they have any concerns
over potential restrictions.

AES

AESisa128-hit block cipher with a 128-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_AES.

Blowfish

Blowfishisa64-bit block cipher with a 448-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_BLOWFISH.

CAST-128

CAST-128 isa64-bit block cipher with a 128-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_CAST.

DES

DESisa64-hit block cipher with a 56-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_DES. Note that thisalgorithm is no longer considered
secure and should not be used. It ispresent in cryptlib only for compatibility with
legacy applications.

Although cryptlib uses 64-bit DES keys, only 56 bits of the key are actually used.
The least significant bit in each byte is used as a parity bit (cryptlib will set the
correct parity values for you, so you don’t have to worry about this). You can treat
the algorithm as having a 64-bit key, but bear in mind that only the high 7 bits of each
byte are actually used as keying material.

Loading akey will return a CRY PT_ERROR_PARAMS error if the key isaweak
key. cryptExportKey will export the correct parity-adjusted version of the key.

Triple DES

Triple DESis a 64-bit block cipher with a 112/168-hit key and has the cryptlib
algorithm identifier CRYPT_ALGO_3DES.

Although cryptlib uses 128, or 192-bit DES keys (depending on whether two- or
three-key triple DES is being used), only 112 or 168 bits of the key are actually used.
The least significant bit in each byte is used as a parity bit (cryptlib will set the
correct parity values for you, so you don’t have to worry about this). You can treat
the algorithm as having a 128 or 192-bit key, but bear in mind that only the high 7
bits of each byte are actually used as keying material.

Loading akey will return a CRY PT_ERROR_PARAMS error if the key isaweak
key. cryptExportKey will export the correct parity-adjusted version of the key.

Diffie-Hellman

Diffie-Hellman is a key exchange algorithm with a key size of up to 4096 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_DH.

Diffie-Hellman was formerly covered by a patent in the US, this has now expired.

DSA 303

DSA

Elgamal

DSA isadigital signature algorithm with akey size of up to 1024 bits and has the
cryptlib algorithm identifier CRYPT_ALGO_DSA.

DSA is covered by US patent 5,231,668, with the patent held by the US government.
This patent has been made available royalty-free to all users world-wide. The US
Department of Commerce is not aware of any other patents that would be infringed
by the DSA. US patent 4,995,082, “Method for identifying subscribers and for
generating and verifying electronic signatures in a data exchange system” (“the
Schnorr patent”) relates to the DSA algorithm but only applies to a very restricted set
of smart-card based applications and does not affect the DSA implementation in
cryptlib.

Elgamal is apublic-key encryption/digital signature algorithm with akey size of up to
4096 bits and hasthe cryptlib algorithm identifier CRYPT_ALGO_ELGAMAL.

Elgamal was formerly covered (indirectly) by a patent in the US, this has now
expired.

HMAC-MD5
HMAC-SHA1
HMAC-RIPEMD-160

IDEA

HMAC-MD5, HMAC-SHA1, and HMAC-RIPEMD-160 are MAC agorithms with a
key size of up to 1024 bits and have the cryptlib agorithm identifiers
CRYPT_ALGO_HMAC_MD5, CRYPT_ALGO_HMAC_SHA, and
CRYPT_ALGO_HMAC_RIPEMD160.

IDEA isa64-bit block cipher with a 128-bit key and has the cryptlib algorithm
identifier CRYPT_ALGO_|DEA.

IDEA is covered by patentsin Austria, France, Germany, Italy, Japan, the
Netherlands, Spain, Sweden, Switzerland, the UK, and the US. A statement from the
patent ownersisincluded below.

| DEA Patent Notice

IDEA is protected by International copyright law and in addition has been patented
inthe USA, several countriesin Europe (Austria, France, Germany, Italy,
Netherlands, Spain, Sweden, Switzerland, United Kingdom), and filed in Japan.

Ascom Systec Ltd., 5506 Mé&genwil, Switzerland, holds the patent rights.
MediaCrypt AG, 8005 Zurich, Switzerland holds all the relevant rights from Ascom
related to the worldwide licensing of the IDEA algorithm.

Any use of the algorithm for Commercia Purposesis subject to alicense from
MediaCrypt AG and any misuse of the algorithm will be prosecuted.

Commercia Purposes shall mean any revenue generating purpose including but not
limited to

() using the algorithm for company internal purposes

(i) incorporating an application software containing the algorithm into any
hardware and/ or software and distributing such hardware and/or software and/or
providing services related thereto to others

(iii) using aproduct containing an application software that uses the algorithm
not covered by an IDEA license

Free usefor private purposes:

304 Algorithms

MD2

MD4

MD5

RC2

RC4

RC5

The free use of software and/or hardware containing the algorithm is strictly limited
to non revenue generating data transfer between private individuals, i.e., not serving
commercia purposes. Requests by freeware developers to obtain aroyalty-free
license to spread an application program containing the algorithm not for
commercial purposes must be directed to MediaCrypt.

Special offer for shareware developers:

Selling any software and/or hardware containing the algorithm is subject to a
product license. However, there is a special waiver for shareware developers. Such
waiver eliminates the up front fees aswell asroyaltiesfor the first USD 10,000
gross sales of the product containing the algorithm, if and only if:

1) The product is being sold for a minimum of USD 10.00 and a maximum of
USD 50.00.

2) The source code for the shareware product is available to the public. Beyond
USD 10,000 gross sales from the shareware product the standard terms and
conditions for product licenses shall apply.

MD2 is amessage digest/hash algorithm with a digest/hash size of 128 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_MD2. Although no weaknesses
have been found in this algorithm, it should not be used any more except for legacy
application support.

MD4 is amessage digest/hash algorithm with a digest/hash size of 128 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_MD4. Note that this agorithm isno
longer considered secure and should not be used. It is present in cryptlib only for
compatibility with legacy applications.

MD5 is a message digest/hash algorithm with a digest/hash size of 128 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_MD5. Note that this agorithmisno
longer considered secure and should not be used. It ispresent in cryptlib only for
compatibility with legacy applications.

RC2 is a 64-bit block cipher with a 1024-hit key and has the cryptlib algorithm
identifier CRYPT_ALGO_RC2. Although no weaknesses have been found in this
algorithm, it should not be used any more except for legacy application support.

The term “RC2” is trademarked in the US. It may be necessary to refer to it as “an
algorithm compatible with RC2” in products that use RC2 and are distributed in the
usS.

RC4 is an 8-hit stream cipher with akey of up to 1024 bits and has the cryptlib
algorithm identifier CRYPT_ALGO_RCA4.

The term “RC4” is trademarked in the US. It may be necessary to refer to it as “an
algorithm compatible with RC4” in products that use RC4 and are distributed in the
US. Common practiceisto refer to it as ArcFour.

RC5 is a64-bit block cipher with an 832-hit key and has the cryptlib agorithm
identifier CRYPT_ALGO_RCES.

RCS5 is covered by US patent 5,724,428, “Block Encryption Algorithm with Data-
Dependent Rotation”, issued 3 March 1998. The patent is held by RSA Data Security

RIPEMD-160 305

Inc. 100 Marine Parkway, Redwood City, California 94065, ph.+1 415 595-8782, fax
+1 415 595-1873, and the algorithm cannot be used commercially in the US without a
license.

RIPEMD-160

RIPEMD-160 is a message digest/hash algorithm with a digest/hash size of 160 bits
and has the cryptlib algorithm identifier CRYPT_ALGO_RIPEMD160.

RSA
RSA isapublic-key encryption/digital signature algorithm with akey size of up to
4096 bits and hasthe cryptlib algorithm identifier CRY PT_ALGO_RSA.
RSA was formerly covered by a patent in the US, this has now expired.

SHA
SHA is a message digest/hash algorithm with a digest/hash size of 160 bits and has
the cryptlib algorithm identifier CRYPT_ALGO_SHA.

Skipjack

Skipjack isa64-bit block cipher with an 80-bit key and has the cryptlib agorithm
identifier CRYPT_ALGO_SKIPJACK. Although no weaknesses have been found in
this algorithm, it should not be used any more except for legacy application support.

Data Types and Constants

Data Types and Constants

This section describes the data types and constants used by cryptlib.

CRYPT_ALGO_TYPE

The CRYPT_ALGO _TYPE isused to identify a particular encryption algorithm.
More information on the individual agorithm types can be found in “Algorithms” on

page 282.

Value Description
CRYPT_ALGO_AES AES
CRYPT_ALGO_BLOWFISH Blowfish
CRYPT_ALGO_CAST CAST-128

CRYPT_ALGO_DES

CRYPT_ALGO_3DES
CRYPT_ALGO_IDEA
CRYPT_ALGO _RC2

CRYPT_ALGO_RC4
CRYPT_ALGO_RC5
CRYPT_ALGO_SKIPJACK

DES. Thisalgorithm is no longer
considered secure and should not
be used except for legacy
application support.

Triple DES
IDEA

RC2. Although no weaknesses
have been found in this algorithm,
it should not be used any more
except for legacy application
support.

RC4
RC5

Skipjack. Although no
weaknesses have been found in
this algorithm, it should not be
used any more except for legacy
application support.

CRYPT_ALGO_DH
CRYPT_ALGO DSA
CRYPT_ALGO_ELGAMAL
CRYPT_ALGO_RSA

Diffie-Hellman
DSA

Elgamal

RSA

CRYPT_ALGO_MD2

CRYPT_ALGO_MD4

CRYPT_ALGO_MD5

MD2. Although no weaknesses
have been found in this algorithm,
it should not be used any more
except for legacy application
support.

MD4. Thisalgorithmisno longer
considered secure and should not
be used except for legacy
application support.

MDS5. Thisalgorithmis no longer
considered secure and should not
be used except for legacy
application support.

CRYPT_ATTRIBUTE_TYPE 307

Value Description
CRYPT_ALGO_RIPEMD160 RIPE-MD 160
CRYPT_ALGO_SHA SHA/SHA-1
CRYPT_ALGO_SHA2 SHA2/SHA-256/SHA-384/SHA-
512
CRYPT_ALGO_HMAC_MD5 HMAC-MD5
CRYPT_ALGO_HMAC RIPEMD160 HMAC-RIPEMD-160
CRYPT_ALGO_HMAC_SHA HMAC-SHA

CRYPT_ALGO_VENDOR1
CRYPT_ALGO_VENDOR?2
CRYPT_ALGO_VENDOR3

Optional vendor-defined
algorithms.

CRYPT_ALGO_FIRST -
CONVENTIONAL
CRYPT_ALGO_LAST -
CONVENTIONAL

CRYPT_ALGO_FIRST_PKC
CRYPT_ALGO _LAST PKC

CRYPT_ALGO_FIRST_HASH
CRYPT_ALGO_LAST_HASH

CRYPT_ALGO_FIRST_MAC
CRYPT_ALGO_LAST_MAC

CRYPT_ATTRIBUTE_TYPE

First and last possible
conventional encryption algorithm

type.

First and last possible public-key
algorithm type.

First and last possible hash
agorithm type.

First and last possible MAC
agorithm type.

The CRYPT_ATTRIBUTE_TYPE isused to identify the attribute associated with a
cryptlib object. Object attributes are introduced in “Working with Object Attributes”
on page 33 and are used extensively throughout this manual.

CRYPT_CERTFORMAT_TYPE

The CRYPT_CERTFORMAT _TYPE isused to specify the format for exported
certificate objects. Moreinformation on exporting certificate objectsis givenin
“Importing/Exporting Certificates” on page 221.

Value Description
CRYPT_CERTFORMAT _- Certificate object encoded asa PKCS
CERTCHAIN #7 certificate chain. Thisencodingis

CRYPT_CERTFORMAT -
CERTIFICATE

CRYPT_CERTFORMAT_TEXT_-
CERTCHAIN

CRYPT_CERTFORMAT TEXT -
CERTIFICATE

only possible for objects that are
certificates or certificate chains.

Certificate object encoded according
to the ASN.1 distinguished encoding
rules (DER).

Base64-encoded text format. The
certificate object is encoded as for the
basic CRYPT_CERTFORMAT _type
format, and an extralayer of base64
encoding with BEGIN/END
CERTIFICATE tagsisadded. This
format is required by some web
browsers and applications.

308

Data Types and Constants

CRYPT_CERTTYPE_TYPE

The CRYPT_CERTTYPE_TYPE is used to specify the type of a certificate object
when used with cryptCreateCert. More information on certificates and certificate
objects is given in “Certificates and Certificate Management” on page 149.

Value

Description

CRYPT_CERTTYPE -
ATTRIBUTE_CERT

CRYPT_CERTTYPE_CERTCHAIN

CRYPT_CERTTYPE -
CERTIFICATE

CRYPT_CERTTYPE -
CERTREQUEST

CRYPT_CERTTYPE_CMS -
ATTRIBUTES

CRYPT_CERTTYPE_CRL

CRYPT_CERTTYPE_OCSP -
REQUEST

CRYPT_CERTTYPE_OCSP -
RESPONSE

CRYPT_CERTTYPE_RTCS -
REQUEST

CRYPT_CERTTYPE_RTCS -
RESPONSE

CRYPT_CERTTYPE_PKIUSER

CRYPT_CERTTYPE_REQUEST -
CERT

CRYPT_CERTTYPE_REQUEST -
REVOCATION

CRYPT_DEVICE_TYPE

The CRYPT_DEVICE_TYPE is used to specify encryption hardware or an
encryption device such asa PCMCIA or smart card. More information on encryption
devices is given in “Encryption Devices and Modules” on page 265.

Attribute certificate.

PK CS #7 certificate chain.
Certificate.

PKCS #10 certification request.

PKCS #7/CMS éttributes.

CRL
OCSP request and response.

RTCS request and response.

PKI user information.

CRMF certificate request/revocation
request.

Value Description
CRYPT_DEVICE_FORTEZZA Fortezza card.
CRYPT_DEVICE_PKCS11 PKCS#11 crypto token.

CRYPT_FORMAT_TYPE

The CRYPT_FORMAT_TYPE is used to identify a data format type for exported
keys, signatures, and encryption envelopes. Of the formats supported by cryptlib, the
cryptlib native format is the most flexible and is the recommended format unless you
require compatibility with a specific security standard. More information on the
different formatsis given in “Data Enveloping” on page 60, “Exchanging Keys” on
page 193, and “Signing Data” on page 199.

Value

Description

CRYPT_FORMAT_CRYPTLIB
CRYPT_FORMAT_PGP

cryptlib native format.
PGP format.

CRYPT_KEYID_TYPE 309

Value Description
CRYPT_FORMAT_CMS PKCS#7/CMS format.
CRYPT_FORMAT_PKCS7

CRYPT_FORMAT_SMIME As CMS but with SSMIME-

specific behaviour.

CRYPT_KEYID_TYPE

The CRYPT_KEYID_TYPE isused to identify the type of key identifier which is
being passed to cryptGetPublicK ey or cryptGetPrivateKey. More information on
using these functions to read keys from keysets is given in “Reading a Key from a
Keyset” on page 141

Value Description

CRYPT_KEYID_NAME The name of the key owner.

CRYPT_KEYID_EMAIL The email address of the key
owner.

CRYPT_KEYOPT_TYPE

The CRYPT_KEYOPT_TYPE isused to contain keyset option flags passed to
cryptKeysetOpen. The keyset options may be used to optimise access to keysets by
enabling cryptlib to perform enhanced transaction management in cases where, for
example, read-only access to a database is desired. Because this can improve
performance when accessing the keyset, you should always specify whether you will
be using the keyset in arestricted access mode when you call cryptK eysetOpen.
More information on using these options when opening a connection to akeyset is
given in “Creating/Destroying Keyset Objects” on page 134

Value Description

CRYPT_KEYOPT_CREATE Create anew keyset. Thisoptionisonly
valid for writeable keyset types, which
includes keysets implemented as
databases and cryptlib key files.

CRYPT_KEYOPT_NONE No specia access options (this option
implies read/write access).

CRYPT_KEYOPT_READONLY Read-only keyset access. Thisoptionis
automatically enabled by cryptlib for
keyset types that have read-only
restrictions enforced by the nature of the
keyset, the operating system, or user
access rights.

Unless you specifically require write
access to the keyset, you should use this
option sinceit alows cryptlib to optimise
its buffering and access strategies for the
keyset.

CRYPT_KEYSET_TYPE

The CRYPT_KEY SET_TYPE isused to identify akeyset type (or, more specificaly,
the format and access method used to access a keyset) when used with

cryptK eysetOpen. Some keyset types may be unavailable on some systems. More
information on keyset types is given in “Keyset Types” on page 133.

Data Types and Constants

Value

Description

CRYPT_KEYSET_FILE

CRYPT_KEYSET_HTTP

CRYPT_KEYSET_LDAP

CRYPT_KEYSET_PLUGIN
CRYPT_KEYSET_DATABASE
CRYPT_KEYSET_ODBC

CRYPT_KEYSET_DATABASE -
STORE

CRYPT_KEYSET_ODBC_STORE

CRYPT_KEYSET_PLUGIN_STORE

CRYPT_MODE_TYPE

A flat-file keyset, either a cryptlib
key file or a PGP/OpenPGP key
ring.

URL specifying the location of a
certificate or CRL.

LDAP directory service.

Generic database network plugin.
Generic RDBMS interface.
Generic ODBC interface.

Asfor the basic keyset types, but
representing a certificate store for
use by a CA rather than asimple
keyset. The user who creates and
updates these keyset types must
be aCA user.

The CRYPT_MODE_TYPE isused to identify a particular conventional encryption
mode. More information on the individual modes can be found in “Algorithms” on

page 282.

Value Description
CRYPT_MODE_ECB ECB
CRYPT_MODE_CBC CBC
CRYPT_MODE_CFB CFB
CRYPT_MODE_OFB OFB

CRYPT_OBJECT TYPE

The CRYPT_OBJECT_TYPE is used to identify the type of an exported key or
signature object that has been created with cryptExportK ey or
cryptCreateSignature. More information on working with these objectsis givenin
“Querying an Exported Key Object” on page 196, and “Querying a Signature Object”

on page 200.
Value

Description

CRYPT_OBJECT_ENCRYPTED_KEY Conventionally exported key

object.

CRYPT_OBJECT_KEYAGREEMENT Key agreement object.
CRYPT_OBJECT_PKCENCRYPTED_- Public-key exported key object.

KEY
CRYPT_OBJECT_SIGNATURE

CRYPT_SESSION_TYPE

Signature object.

The CRYPT_SESSION_TY PE is used to identify a secure session type when used
with cryptCreateSession. More information on sessions is given in “Secure

Sessions” on page 105.
Value

Description

CRYPT_SESSION_CMP
CRYPT_SESSION_CMP_SERVER

CMP client/server session.

Data Size Constants 311

Value

Description

CRYPT_SESSION_CMP

CMP client/server session.

CRYPT_SESSION_CMP_SERVER

CRYPT_SESSION_OCSP

OCSP client/server session.

CRYPT_SESSION_OCSP_SERVER

CRYPT_SESSION_RTCS

RTCS client/server session.

CRYPT_SESSION_RTCS SERVER

CRYPT_SESSION_SCEP

SCEP client/server session.

CRYPT_SESSION_SCEP_SERVER

CRYPT_SESSION_SSH

SSH client/server session.

CRYPT_SESSION_SSH_SERVER

CRYPT_SESSION_SSL

SSL client/server session.

CRYPT_SESSION_SSL_SERVER

CRYPT_SESSION_TSP

TSP client/server session.

CRYPT_SESSION_TSP_SERVER

Data Size Constants

The following values define various maximum lengths for data objects that are used
in cryptlib. These can be used for alocating memory to contain the objects, or asa
check to ensure that an object isn’t larger than the maximum size allowed by cryptlib.

Constant

Description

CRYPT_MAX_HASHSIZE
CRYPT_MAX_IVSIZE
CRYPT_MAX_KEYSIZE

CRYPT_MAX_PKCSIZE

CRYPT_MAX_TEXTSIZE

Miscellaneous Constants

Maximum hash sizein bytes.
Maximum initialisation vector size in bytes.

M aximum conventional -encryption key size
in bytes.

Maximum public-key component sizein
bytes. This value specifies the maximum
size of individual components, since
public/private keys are usually composed of
anumber of components the overall sizeis
larger than this.

Maximum size of atext string (e.g. apublic
or private key owner name) in characters.
This defines the string size in characters
rather than bytes, so a Unicode string of size
CRYPT_MAX_TEXTSIZE could be twice
aslong asan ASCII string of size
CRYPT_MAX_TEXTSIZE. Thisvalue
does not include the terminating null
character in C strings.

The following values are used for various purposes by cryptlib, for example to
specify that default parameter values are to be used, that the given parameter is
unused and can be ignored, or that a special action should be taken in response to

seeing this parameter.

Constant

Description

CRYPT_KEYTYPE_PRIVATE

CRYPT_KEYTYPE_PUBLIC

Whether the key being passed to
crypt | ni t Conponents()/
crypt Set Conponent () isa

312 DataTypes and Constants

Constant

Description

CRYPT_RANDOM_FASTPOLL
CRYPT_RANDOM_SLOWPOLL

CRYPT_UNUSED

CRYPT_USE_DEFAULT

public or private key.

The type of polling to perform to
update the internal random data pool.

A value indicating that this parameter
is unused and can be ignored.

A valueindicating that the default
setting for this parameter should be
used.

CRYPT_OBJECT_INFO Structure 313

Data Structures

This section describes the data structures used by cryptlib.

CRYPT_OBJECT_INFO Structure

The CRYPT_OBJECT_INFO structure is used with cryptQueryObject to return
information about a data object created with cryptExportKey or
cryptCreateSignature. Some of the fields are only valid for certain algorithm and
mode combinations, or for some types of data objects. If they don’t apply to the
given algorithm and mode or context, they will be set to CRYPT_ERROR, null, or
filled with zeroes as appropriate.

Field Description

CRYPT_OBJECT_TYPE objectType Data object type.
CRYPT_ALGO_TYPE cryptAlgo Encryption/signature algorithm.
CRYPT_MODE_TYPE cryptMode Encryption/signature mode.

CRYPT_ALGO_TYPE hashAlgo The hash agorithm used to hash the
dataif the data object is a signature

object.
unsigned char saltf CRYPT_MAX - The salt used to derive the
HASHSIZE] export/import key if the object isa
int saltLength conventionally encrypted key object

CRYPT_PKCINFO_xxx Structures

The CRYPT_PKCINFO_xxx structures are used to load public and private keys
(which contain multiple key components) into encryption contexts by setting them as
the CRYPT_CTXINFO_KEY_COMPONENTS attribute. All fields are multi-
precision integer values that are set using the cr ypt Set Conponent () macro.

The CRYPT_PKCINFO_DLP structure is used to load keys for algorithms based on
the discrete logarithm problem, which includes keys for Diffie-Hellman, DSA, and
Elgamal. The structure contains the following fields:

Field Description
p Prime modulus.
q Prime divisor. Some DH and Elgamal keys don’t use

this parameter, in which case you should set it to an all-
zero value of the appropriate size. Note that omitting
the q parameter means that cryptlib can’t perform
certain key validity checksthat it otherwise performs
when q is present.

g Element of order g mod p.
X Private random integer.
y Public random integer, gX mod p.

The CRYPT_PKCINFO_RSA structure is used to load RSA public-key encryption
keys and contains the following fields:

Field Description
n Modulus.
e Public exponent.

Private exponent. Some keys don’t include this
parameter, in which case you should set it to an al-zero
value of the appropriate size. Notethat if thed

314 Data Structures

Field

Description

q
u
el
€2

parameter is absent then the el and e2 values must be
present.

Prime factor 1.

Prime factor 2.

CRT coefficient X mod p.

Private exponent 1 (PKCS #1), d mod (p-1).
Private exponent 2 (PKCS #1), d mod (g-1).

The el and e2 components of CRY PT_PKCINFO_RSA may not be present in some
keys. cryptlib will make use of them if they are present, but can aso work without
them. The loading of private keys is slightly slower if these values aren’t present
since cryptlib needs to generate them itself.

CRYPT_QUERY_INFO Structure

The CRYPT_QUERY _INFO structure is used with cryptQueryCapability to return
information about an encryption algorithm or an encryption context or key-related
certificate object (for example a public-key certificate or certification request). Some
of the fields are only valid for certain algorithm types, or for some types of
encryption contexts. If they don’t apply to the given algorithm or context, they will
be set to CRYPT_ERROR, null, or filled with zeroes as appropriate.

Field Description
char algopNamel CRYPT_MAX_- Algorithm name.
TEXTSIZE]
int blockSize Algorithm block size in bytes.
int minKeySize The minimum, recommended, and
int keySize maximum key size in bytes (if the

int maxKeySize

algorithm uses a key).

cryptAddCertExtenson 315

Function Reference

cryptAddCertExtension

The cryptAddCertExtension function is used to add a generic blob-type certificate
extension to a certificate object.

int cryptAddCertExtension(const CRYPT_CERTIFICATE certificate, const char *oid, const int
criticalFlag, const void *extension, const int extensionLength);

Parameters certificate
The certificate object to which to add the extension.
oid
The object identifier value for the extension being added, specified as a sequence of
integers.

criticalFlag
The critical flag for the extension being added.

extension
The address of the extension data.

extensionLength
The length in bytes of the extension data.

Remarks cryptlib directly supports extensions from X.509, PKIX, SET, SigG, and various
vendors itself, so you shouldn’t use this function for anything other than unknown,
proprietary extensions.

See also cryptGetCertExtension, cryptDeleteCertExtension.

cryptAddPrivateKey

The cryptAddPrivateK ey function is used to add a user’s private key to a keyset.

int cryptAddPrivateKey(const CRYPT_KEYSET keyset, const CRYPT_HANDLE cryptKey,
const char *password);

Parameters keyset
The keyset object to which to write the key.

cryptkey
The private key to write to the keyset.

password
The password used to encrypt the private key.

Remarks The use of a password to encrypt the private key is required when storing a private
key to akeyset, but not to a crypto device such as asmart card or Fortezza card, since
these provide their own protection for the key data.

See also cryptAddPublicK ey, cryptDeleteK ey, cryptGetPrivateK ey, cryptGetPublicK ey.

cryptAddPublicKey

The cryptAddPublicK ey function is used to add a user’s public key or certificate to
akeyset.

int cryptAddPublicKey(const CRYPT_KEYSET keyset, const CRYPT_CERTIFICATE
certificate);

Parameters keyset
The keyset object to which to write the key.

316 Function Reference

certificate
The certificate to add to the keyset.

Remarks This function requires a key certificate object rather than an encryption context, since
the certificate contains additional identification information which is used when the
certificate is written to the keyset.

See also cryptAddPrivateK ey, cryptDeleteK ey, cryptGetPrivateK ey, cryptGetPublicK ey.

cryptAddRandom

The cryptAddRandom function is used to add random data to the internal random
data pool maintained by cryptlib, or to tell cryptlib to poll the system for random
information. The random data pool is used to generate session keys and
public/private keys, and by several of the high-level cryptlib functions.

int cryptAddRandom(const void *randomData, const int randomDatal ength);

Parameters randomData
The address of the random data to be added, or null if cryptlib should poll the
system for random information.

randomDatal ength
The length of the random data being added, or CRY PT_RANDOM_SLOWPOLL
to perform an in-depth, slow poll or CRYPT_RANDOM_FASTPOLL to perform a
less thorough but faster poll for random information.

cryptAsyncCancel

The cryptAsyncCancel function is used to cancel an asynchronous operation on an
object.

int cryptAsyncCancel(const CRYPT_HANDLE cryptObject);

Parameters cryptObject
The object on which an asynchronous operation is to be cancelled.

Remarks Because of the asynchronous nature of the operation being performed the cancel may
not take effect immediately. Inthe worst case it may take a second or two for the
cancel command to be processed by the object.

See also cryptAsyncQuery, cryptGenerateK eyAsync.

cryptAsyncQuery

The cryptAsyncQuery function is used to obtain the status of an asynchronous
operation on an object.

int cryptAsyncQuery(const CRYPT_HANDLE cryptObject);

Parameters cryptObject
The object to be queried.

Remarks cryptAsyncQuery will return CRYPT_ERROR_TIMEOUT if an asynchronous
operation isin progress and the object is unavailable for use until the operation
completes.

See also cryptAsyncCancel, cryptGener ateK eyAsync.

cryptCAAddItem

The cryptCAAddItem function is used to add a certificate object to a certificate
store. Usually thiswould be a standard certificate, however this function can be used
by CAsto add special items such as certificate requests and PK1 user information.

cryptCACertManagement 317

int cryptCAAddlItem(const CRYPT_KEYSET keyset, const CRYPT_CERTIFICATE certificate
)i

Parameters keyset
The certificate store to which the item will be added.

certificate
The item to add to the certificate store.

See also cryptCACertManagement, cryptCAGetltem.

cryptCACertManagement

The cryptCACertManagement function is used to perform a CA certificate
management operation such as a certificate issue, revocation, CRL issue, certificate
expiry, or other operation with a certificate store.

int cryptCACertManagement(CRYPT_CERTIFICATE *cryptCert, const
CRYPT_CERTACTION_TYPE action, const CRYPT_KEYSET keyset, const
CRYPT_CONTEXT caKey, const CRYPT_CERTIFICATE certRequest);

Parameters cryptCert
The address of the certificate object to be created.

action
The certificate management operation to perform.

keyset
The certificate store to use to perform the action.
caKey

The CA key to use when performing the action, or CRYPT_UNUSED if no key is
necessary for this action.

certRequest
The certificate request to use when performing the action, or CRYPT_UNUSED if
no request is necessary for this action.

See also cryptCAAddlItem, cryptCAGetltem.

cryptCAGetltem

The cryptCAGetltem function is used to read a certificate object from a certificate
store. Usually thiswould be a standard certificate, however this function can be used
by CAsto obtain special items such as certificate requests and PKI user information.
The item to be fetched isidentified either through the key owner’s name or their
email address.

int cryptCAGetltem(const CRYPT_KEYSET keyset, CRYPT_CERTIFICATE *certificate, const
CRYPT_CERTTYPE_TYPE certType, const CRYPT_KEYID_TYPE
keylDtype, const void *keylD);

Parameters keyset
The certificate store from which to obtain the item.

certificate
The address of the certificate object to be fetched.

certType
The item type.

keylDtype
Thetype of thekey ID, either CRYPT_KEYID_NAME for the name or key label,
or CRYPT_KEYID_EMAIL for the email address.

keylD
The key 1D of the item to read.

318 Function Reference

See also cryptCACertManagement, cryptCAAddI tem.

cryptCheckCert

The cryptCheckCert function is used to check the signature on a certificate object,
or to verify acertificate object against a CRL or akeyset containing a CRL.

int cryptCheckCert(const CRYPT_CERTIFICATE certificate, const CRYPT_HANDLE
sigCheckKey);

Parameters certificate
The certificate container object that contains the certificate item to check.

sigCheckKey
A public-key context or key certificate object containing the public key used to
verify the signature, or alternatively CRYPT_UNUSED if the certificate item is
self-signed. If the certificate isto be verified against a CRL, this should be a
certificate object or keyset containing the CRL. If the certificateisto be verified
online, this should be a session object for the server used to verify the certificate.

See also cryptSignCert.

cryptCheckSignature

The cryptCheck Signatur e function is used to check the digital signature on a piece
of data.

int cryptCheck Signatur e(const void *signature, const int signatureLength, const
CRYPT_HANDLE sigCheckKey, const CRYPT_CONTEXT hashContext);

Parameters signature
The address of a buffer that contains the signature.

signaturelLength
The length in bytes of the signature data.

sigCheckKey
A public-key context or key certificate object containing the public key used to
verify the signature.

hashContext
A hash context containing the hash of the data.

See also cryptCheckSignatureEx, cryptCreateSignature, cryptCreateSignatur eEx,
cryptQueryObject.

cryptCheckSignatureEx

The cryptCheckSignatur eEx function is used to check the digital signature on a
piece of data with extended control over the signature information.

int cryptCheck Signatur eEx(const void *signature, const int signaturelength, const
CRYPT_HANDLE sigCheckKey, const CRYPT_CONTEXT hashContext,
CRYPT_HANDLE *extraData);

Parameters signature
The address of a buffer that contains the signature.

signaturelength
The length in bytes of the signature data.

sigCheckKey
A public-key context or key certificate object containing the public key used to
verify the signature.

cryptCreateCert 319

hashContext
A hash context containing the hash of the data.

extraData
The address of a certificate object containing extra information which isincluded
with the signature, or null if you don’t require this information.

See also cryptCheckSignature, cryptCreateSignatur e, cryptCreateSignatur eEx,
cryptQueryObject.

cryptCreateCert

The cryptCreateCert function is used to create a certificate object that contains a
certificate, certification request, certificate chain, CRL, or other certificate-like
object.

int cryptCreateCert(CRYPT_CERTIFICATE *cryptCert, const CRYPT_USER cryptUser, const
CRYPT_CERTTYPE_TYPE certType);

Parameters cryptCert
The address of the certificate object to be created.

cryptUser
The user who isto own the certificate object or CRYPT_UNUSED for the defaullt,
normal user.

certType
The type of certificate item that will be created in the certificate object.

See also cryptDestroyCert.

cryptCreateContext

The cryptCreateContext function is used to create an encryption context for agiven
encryption algorithm.

int cryptCreateContext(CRYPT_CONTEXT *cryptContext, const CRYPT_USER cryptUser,
const CRYPT_ALGO_TYPE cryptAlgo);

Parameters cryptContext
The address of the encryption context to be created.

cryptUser
The user who isto own the encryption context or CRY PT_UNUSED for the
default, normal user.

cryptAlgo
The encryption algorithm to be used in the context.

See also cryptDestroyContext, cryptDeviceCreateContext.

cryptCreateEnvelope

The cryptCreateEnvelope function is used to create an envel ope object for
encrypting or decrypting, signing or signature checking, compressing or
decompressing, or otherwise processing data.

int cryptCreateEnvelope(CRYPT_ENVEL OPE *cryptEnvelope, const CRYPT_USER cryptUser,
const CRYPT_FORMAT _TYPE formatType);

Parameters cryptEnvelope
The address of the envelope to be created.

cryptUser
The user who isto own the envelope object or CRYPT_UNUSED for the default,
normal user.

320 Function Reference

formatType
The dataformat for the enveloped data.

See also cryptDestroyEnvelope.

cryptCreateSession

The cryptCreateSession function is used to create a secure session object for usein
securing a communications link or otherwise communicating with a remote server or
client.

int cryptCreateSession(CRYPT_SESSION *cryptSession, const CRYPT_USER cryptUser, const
CRYPT_SESSION_TYPE sessionType);

Parameters cryptSession
The address of the session to be created.

cryptUser
The user who isto own the session object or CRY PT_UNUSED for the default,
normal user.

sessionType
The type of the secure session.

See also cryptDestroySession.

cryptCreateSignature

The cryptCreateSignatur e function digitally signs a piece of data. The signatureis
placed in a buffer in a portable format that allows it to be checked using
cryptCheckSignature.

int cryptCreateSignature(void *signature, const int signatureMaxLength, int * signatureLength,
const CRYPT_CONTEXT signContext, const CRYPT_CONTEXT hashContext

)i
Parameters signature
The address of a buffer to contain the signature. If you set this parameter to null,

cryptCreateSignature will return the length of the signature in signatureLength
without actually generating the signature.

signatureMaxLength
The maximum size in bytes of the buffer to contain the signature data.

signatureLength
The address of the signature length.

signContext
A public-key encryption or signature context containing the private key used to sign
the data.

hashContext
A hash context containing the hash of the datato sign.

See also cryptCheckSignature, cryptCheck Signatur eEx, cryptCreateSignatur eEx,
cryptQueryObject.

cryptCreateSignaturekEx

The cryptCreateSignatur eEx function digitally signs a piece of data with extended
control over the signature format. The signatureis placed in a buffer in a portable
format that allowsiit to be checked using cryptCheck Signatur eEx.

int cryptCreateSignatur eEx(void *signature, const int signatureMaxLength, int *signatureLength,
const CRYPT_FORMAT_TYPE formatType, const CRYPT_CONTEXT

cryptDecrypt 321

signContext, const CRYPT_CONTEXT hashContext, const
CRYPT_CERTIFICATE extraData);

Parameters signature
The address of a buffer to contain the signature. If you set this parameter to null,
cryptCreateSignature will return the length of the signature in signatureLength
without actually generating the signature.

signatureMaxLength
The maximum size in bytes of the buffer to contain the signature data.

signaturelLength
The address of the signature length.

formatType
The format of the signature to create.

signContext
A public-key encryption or signature context containing the private key used to sign
the data.

hashContext
A hash context containing the hash of the datato sign.

extraData
Extrainformation to include with the signature or CRYPT_UNUSED if the format
is the default signature format (which doesn’t use the extra data) or
CRYPT USE DEFAULT if the signature isn’t the default format and you want to
use the default extrainformation.

See also cryptCheckSignature, cryptCheck Signatur eEx, cryptCreateSignature,
cryptQueryObject.

cryptDecrypt

The cryptDecrypt function is used to decrypt or hash data.
int cryptDecrypt(const CRYPT_CONTEXT cryptContext, void * buffer, const int length);

Parameters cryptContext
The encryption context to use to decrypt or hash the data.

buffer
The address of the data to be decrypted or hashed.

length
The length in bytes of the data to be decrypted or hashed.

Remarks Public-key encryption and signature algorithms have special data formatting
requirements that need to be taken into account when thisfunction iscalled. You
shouldn’t use this function with these algorithm types, but instead should use the
higher-level functions cryptCreateSignature, cryptCheckSignature,
cryptExportKey, and cryptimportKey.

See also cryptEncrypt.

cryptDeleteAttribute

The cryptDeleteAttribute function is used to delete an attribute from an object.

int cryptDeleteAttribute(const CRYPT_HANDLE cryptObject, const
CRYPT_ATTRIBUTE_TYPE attributeType);

Parameters certificate
The object from which to delete the attribute.

322 Function Reference

attributeType
The attribute to delete.

Remarks Most attributes are always present and can’t be deleted, in general only certificate
attributes are deletable.
See also cryptGetAttribute, cryptGetAttributeString, cryptSetAttribute,

cryptSetAttributeString.

cryptDeleteCertExtension

The cryptDeleteCertExtension function is used to delete a generic blob-type
certificate extension from a certificate object.

int cryptDeleteCertExtension(const CRYPT_CERTIFICATE certificate, const char *oid);

Parameters certificate
The certificate object from which to delete the extension.

oid
The object identifier value for the extension being deleted, specified as a sequence
of integers.

Remarks cryptlib directly supports extensions from X.509, PKIX, SET, SigG, and various
vendors itself, so you shouldn’t use this function for anything other than unknown,
proprietary extensions.

See also cryptAddCertExtension, cryptGetCertExtension.

cryptDeleteKey

The cryptDeleteK ey function is used to delete a key or certificate from akeyset or
device. The key to delete is identified either through the key owner’s name or their
email address.

int cryptDeleteK ey(const CRYPT_HANDLE cryptObject, const CRYPT_KEYID _TYPE
keyl Dtype, const void *keylD);

Parameters cryptObject
The keyset or device object from which to del ete the key.

keyl Dtype
The type of the key ID, either CRYPT_KEYID_NAME for the name or key label,
or CRYPT_KEYID_EMAIL for the email address.

keylD
The key ID of the key to delete.

See also cryptAddPrivateK ey, cryptAddPublicK ey, cryptGetPrivateK ey,
cryptGetPublicK ey.

cryptDestroyCert

The cryptDestroyCert function is used to destroy a certificate object after use. This
erases all keying and security information used by the object and frees up any
memory it uses.

int cryptDestroyCert(const CRYPT_CERTIFICATE cryptCert);

Parameters cryptCert
The certificate object to be destroyed.

See also cryptCreateCert.

cryptDestroyContext 323

cryptDestroyContext

The cryptDestroyContext function is used to destroy an encryption context after use.
This erases all keying and security information used by the context and frees up any
memory it uses.

int cryptDestroyContext(const CRYPT_CONTEXT cryptContext);

Parameters cryptContext
The encryption context to be destroyed.

See also cryptCreateContext, cryptDeviceCreateContext.

cryptDestroyEnvelope

The cryptDestr oyEnvelope function is used to destroy an envelope after use. This
erases all keying and security information used by the envelope and frees up any
memory it uses.

int cryptDestroyEnvelope(const CRYPT_ENVEL OPE cryptEnvelope);

Parameters cryptEnvelope

The envel ope to be destroyed.
See also cryptCreateEnvelope.
cryptDestroyObject

The cryptDestroyObject function is used to destroy a cryptlib object after use. This
erases all security information used by the object, closes any open data sources, and
frees up any memory it uses.

int cryptDestroyObject(const CRYPT_HANDLE cryptObject);

Parameters cryptObject
The object to be destroyed.

Remarks Thisfunction is ageneric form of the specialised functions that destroy/close specific
cryptlib object types such as encryption contexts and certificate and keyset objects.
In some cases it may not be possible to determine the exact type of an object (for
example the keyset access functions may return a key certificate object or only an
encryption context depending on the keyset type), cryptDestroyObject can be used
to destroy an object of an unknown type.

See also cryptDestroyContext, cryptDestroyCert, cryptDestroyEnvelope,
cryptDestroySession, cryptK eysetClose.

cryptDestroySession

The cryptDestroySession function is used to destroy a session object after use. This
close thelink to the client or server, erases all keying and security information used
by the session, and frees up any memory it uses.

int cryptDestroySession(const CRYPT_SESSION cryptSession);

Parameters cryptSession
The session to be destroyed.

See also cryptCreateSession.

cryptDeviceClose

The cryptDeviceClose function is used to destroy a device object after use. This
closes the connection to the device and frees up any memory it uses.

324 Function Reference

int cryptDeviceClose(const CRYPT_DEVICE device);

Parameters device
The device object to be destroyed.

See also cryptDeviceOpen.

cryptDeviceCreateContext

The cryptDeviceCreateContext function is used to create an encryption context for a
given encryption algorithm via an encryption device.

int cryptDeviceCreateContext(const CRYPT_DEVICE cryptDevice, CRYPT_CONTEXT
*cryptContext, const CRYPT_ALGO_TYPE cryptAlgo);

Parameters cryptDevice
The device object used to create the encryption context.

cryptContext
The address of the encryption context to be created.

cryptAlgo
The encryption algorithm to be used in the context.

See also cryptCreateContext, cryptDestroyContext.

cryptDeviceOpen

The cryptDeviceOpen function is used to establish a connection to a crypto device
such as a crypto hardware accelerator or a PCMCIA card or smart card.

int cryptDeviceOpen(CRYPT_DEVICE *device, const CRYPT_USER cryptUser, const
CRYPT_DEVICE_TYPE deviceType, const char *name);

Parameters device
The address of the device object to be created.

cryptUser
The user who isto own the device object or CRY PT_UNUSED for the defaullt,
normal user.

deviceType
The device type to be used.

name
The name of the device, or null if a name isn’t required.

See also cryptDeviceClose.

cryptDeviceQueryCapability

The cryptDeviceQueryCapability function is used to obtain information about the
characteristics of a particular encryption algorithm provided by an encryption device.
Theinformation returned covers the algorithm’s key size, data block size, and other
algorithm-specific information.

int cryptDeviceQueryCapability(const CRYPT_DEVICE cryptDevice, const
CRYPT_ALGO_TYPE cryptAlgo, CRYPT_QUERY _INFO *cryptQuerylnfo);

Parameters cryptDevice
The encryption device to be queried.

cryptAlgo
The encryption algorithm to be queried.

cryptQuerylnfo
The address of aCRYPT_QUERY _INFO structure which isfilled with the

cryptEncrypt 325

information on the requested algorithm and mode, or null if thisinformation isn’t
required.

Remarks Any fieldsin the CRYPT_QUERY _INFO structure that don’t apply to the algorithm
being queried are set to CRY PT_ERROR, null or zero as appropriate. To determine
whether an algorithm is available (without returning information on them), set the
guery information pointer to null.

See also cryptQueryCapability.

cryptEncrypt

The cryptEncrypt function is used to encrypt or hash data.
int cryptEncrypt(const CRYPT_CONTEXT cryptContext, void *buffer, const int length);

Parameters cryptContext
The encryption context to use to encrypt or hash the data.

buffer
The address of the data to be encrypted or hashed.

length
The length in bytes of the data to be encrypted or hashed.

Remarks Public-key encryption and signature algorithms have special data formatting
requirements that need to be taken into account when thisfunction iscalled. You
shouldn’t use this function with these algorithm types, but instead should use the
higher-level functions cryptCreateSignature, cryptCheckSignature,
cryptExportKey, and cryptlmportKey.

See also cryptDecrypt.

cryptEnd

The cryptEnd function is used to shut down cryptlib after use. This function should
be called after you have finished using cryptlib.

int cryptEnd(void);
Parameters None

See also cryptinit.

cryptExportCert

The cryptExportCert function is used to export an encoded signed public key
certificate, certification request, CRL, or other certificate-related item from a
certificate container object.

int cryptExportCert(void *certObject, const int certObjectMaxLength, int * certObjectLength, const
CRYPT_CERTFORMAT_TYPE certFormatType, const
CRYPT_CERTIFICATE certificate);

Parameters certObject
The address of a buffer to contain the encoded certificate.

certObjectMaxLength
The maximum size in bytes of the buffer to contain the exported certificate.

certObjectLength
The address of the exported certificate length.

certFormatType
The encoding format for the exported certificate object.

326 Function Reference

Remarks

See also

certificate
The address of the certificate object to be exported.

The certificate object needsto have all the required fields filled in and must then be
signed using cryptSignCert beforeit can be exported.

cryptimportCert.

cryptExportKey

The cryptExportKey function is used to share a session key between two parties by
either exporting a session key from a context in a secure manner or by establishing a
new shared key. The exported/shared key is placed in abuffer in a portable format
that allows it to be imported back into a context using cryptl mportKey.

If an existing session key isto be shared, it can be exported using either a public key
or key certificate or a conventional encryption key. If anew session key isto be
established, it can be done using a Diffie-Hellman encryption context.

int cryptExportKey(void *encryptedKey, const int encryptedKeyMaxLength, int

Parameters

Remarks

See also

*encryptedKeyLength, const CRYPT_HANDL E exportKey, const
CRYPT_CONTEXT sessionKeyContext);

encryptedKey
The address of a buffer to contain the exported key. If you set this parameter to
null, cryptExportK ey will return the length of the exported key in
encryptedKeyLength without actually exporting the key.

encryptedkeyMaxLength
The maximum size in bytes of the buffer to contain the exported key.

encryptedKeyLength
The address of the exported key length.

exportKey
A public-key or conventional encryption context or key certificate object containing
the public or conventional key used to export the session key.

sessionKeyContext
An encryption context containing the session key to export (if the key isto be
shared) or an empty context with no key loaded (if the key isto be established).

A session key can be shared in one of two ways, either by one party exporting an
existing key and the other party importing it, or by both parties agreeing on akey to
use. The export/import process requires an existing session key and a public/private
or conventional encryption context or key certificate object to export/import it with.
The key agreement process requires a Diffie-Hellman context and an empty session
key context (with no key loaded) that the new shared session key is generated into.

cryptExportKeyEx, cryptimportKey, cryptQueryObject.

cryptExportKeyEx

The cryptExportK eyEx function is used to share a session key between two parties
by either exporting a session key from a context in a secure manner or by establishing
anew shared key, with extended control over the exported key format. The
exported/shared key is placed in abuffer in aportable format that allows it to be
imported back into a context using cryptlmportKey.

If an existing session key isto be shared, it can be exported using either a public key
or key certificate or a conventional encryption key. If anew session key isto be
established, it can be done using a Diffie-Hellman encryption context.

cryptFlushData 327

int cryptExportK eyEx(void *encryptedKey, const int encryptedKeyMaxLength, int
*encryptedKeyLength, const CRYPT_FORMAT _TY PE formatType, const
CRYPT_HANDLE exportKey, const CRYPT_CONTEXT sessionKeyContext);

Parameters encryptedKey
The address of a buffer to contain the exported key. If you set this parameter to
null, cryptExportK eyEx will return the length of the exported key in
encryptedKeyLength without actually exporting the key.

encryptedKeyMaxLength
The maximum size in bytes of the buffer to contain the exported key.

encryptedKeyLength
The address of the exported key length.

formatType
The format for the exported key.

exportkey
A public-key or conventional encryption context or key certificate object containing
the public or conventional key used to export the session key.

sessionKeyContext
An encryption context containing the session key to export (if the key isto be
shared) or an empty context with no key loaded (if the key isto be established).

Remarks A session key can be shared in one of two ways, either by one party exporting an
existing key and the other party importing it, or by both parties agreeing on akey to
use. The export/import process requires an existing session key and a public/private
or conventional encryption context or key certificate object to export/import it with.
The key agreement process requires a Diffie-Hellman context and an empty session
key context (with no key loaded) that the new shared session key is generated into.

See also cryptExportKey, cryptimportKey, cryptQueryObject.

cryptFlushData

The cryptFlushData function is used to flush data through an envelope or session
object, completing processing and (for session objects) sending the data to the remote
client or server.

int cryptFlushData(const CRYPT_HANDLE cryptHandle);

Parameters cryptHandle
The envelope or session object to flush the data through.

See also cryptPopData, cryptPushData.

cryptGenerateKey
The cryptGenerateK ey function is used to generate a new key into an encryption
context.

int cryptGenerateK ey(const CRYPT_CONTEXT cryptContext);

Parameters cryptContext
The encryption context into which the key isto be generated.

Remarks Hash contexts don’t require keys, so an attempt to generate a key into a hash context
will return CRY PT_ERROR_NOTAVAIL.

cryptGenerateK ey will generate akey of alength appropriate for the algorithm
being used into an encryption context. If you want to specify the generation of akey
of aparticular length, you should set the CRYPT_CTXINFO_KEY SIZE attribute
before calling this function.

328 Function Reference

The generation of large public-key encryption or digital signature keys can take quite
sometime. If the environment you are working in supports background processing,
you should use cryptGener ateK eyAsync to generate the key instead.

See also cryptGenerateKeyAsync.

cryptGenerateKeyAsync

The cryptGenerateK eyAsync function is used to asynchronoudy generate a new key
into an encryption context.

int cryptGenerateK eyAsync(const CRYPT_CONTEXT cryptContext);

Parameters cryptContext
The encryption context into which the key isto be generated.

Remarks Hash contexts don’t require keys, so an attempt to generate a key into a hash context
will return CRY PT_ERROR_NOTAVAIL.

cryptGenerateK eyAsync will generate akey of alength appropriate for the
algorithm being used into an encryption context. If you want to specify the
generation of akey of aparticular length, you should set the CRYPT_CTXINFO_-
KEY SIZE attribute before calling this function.

See also cryptAsyncCancel, cryptAsyncQuery.

cryptGetAttribute

The cryptGetAttribute function is used to obtain a boolean or numeric value, status
information, or object from acryptlib object.

int cryptGetAttribute(const CRYPT_HANDLE cryptObject, const CRYPT_ATTRIBUTE_TYPE
attributeType, int *value);

Parameters cryptObject
The object from which to read the boolean or numeric value, status information, or
object.

attributeType
The attribute which is being read.

value
The boolean or numeric value, status information, or object.

See also cryptDeleteAttribute, cryptGetAttributeString, cryptSetAttribute,
cryptSetAttributeString.

cryptGetAttributeString

The cryptGetAttributeString function is used to obtain text or binary strings or time
values from a cryptlib object.

int cryptGetAttributeString(const CRYPT_HANDL E cryptObject, const
CRYPT_ATTRIBUTE_TYPE attributeType, void *value, int *valueLength);

Parameters cryptObject
The object from which to read the text or binary string or time value.

attributeType
The attribute which is being read.

value
The address of a buffer to contain the data. If you set this parameter to null,
cryptGetAttributeString will return the length of the datain attributeLength
without returning the data itself.

cryptGetCertExtension 329

valueLength
The length of the datain bytes.

See also cryptDeleteAttribute, cryptGetAttribute, cryptSetAttribute,
cryptSetAttributeString.

cryptGetCertExtension

The cryptGetCertExtension function is used to obtain a generic blob-type certificate
extension from a certificate object or public or private key with an attached
certificate.

int cryptGetCertExtension(const CRYPT_CERTIFICATE certificate, const char *oid, int
*criticalFlag, void *extension, const int extensionMaxLength, int
*extensionLength);

Parameters cryptObject
The certificate or public/private key object from which to read the extension.
oid
The object identifier value for the extension being queried, specified as a sequence
of integers.

criticalFlag
The critical flag for the extension being read.

extension
The address of a buffer to contain the data. If you set this parameter to null,
cryptGetCertExtension will return the length of the datain extensionLength
without returning the data itself.

extensionMaxLength
The maximum size in bytes of the buffer to contain the extension data.

extensionLength
The length in bytes of the extension data.

Remarks cryptlib directly supports extensions from X.509, PKIX, SET, SigG, and various
vendors itself, so you shouldn’t use this function for anything other than unknown,
proprietary extensions.

See also cryptAddCertExtension, cryptDeleteCertExtension.

cryptGetPrivateKey

The cryptGetPrivateK ey function is used to create an encryption context from a
private key in akeyset or crypto device. The private key isidentified either through
the key owner’s name or their email address.

int cryptGetPrivateK ey(const CRYPT_HANDLE cryptHandle, CRYPT_CONTEXT
*cryptContext, const CRYPT_KEYID_TY PE keyl Dtype, const void *keylD,
const char *password);

Parameters cryptHandle
The keyset or device from which to obtain the key.

cryptContext
The address of the context to be fetched.

keyl Dtype
Thetype of the key ID, either CRYPT_KEYID_NAME for the name or key label,
or CRYPT_KEYID_EMAIL for the email address.

keylD
The key ID of the key to read.

330 Function Reference

password
The password required to decrypt the private key, or null if no password is required.

Remarks cryptGetPrivateK ey will return CRY PT_ERROR_WRONGKEY if an incorrect
password is supplied. This can be used to determine whether a password is necessary
by first calling the function with anull password and then retrying the read with a
user-supplied password if the first call returns with CRY PT_ERROR_WRONGKEY..

See also cryptAddPrivateK ey, cryptAddPublicK ey, cryptDeleteK ey, cryptGetPublicK ey.

cryptGetPublicKey

The cryptGetPublicK ey function is used to create an encryption context from a
public key in akeyset or crypto device. The public key isidentified either through
the key owner’s name or their email address.

int cryptGetPublicKkey(const CRYPT_HANDLE cryptObject, CRYPT_HANDLE *publicKey,
const CRYPT_KEYID_TYPE keylDtype, const void *keylD);

Parameters cryptObject
The keyset or device from which to obtain the key.

publicKey
The address of the context or certificate to be fetched.

keylDtype
Thetype of thekey ID, either CRYPT_KEYID_NAME for the name or key label,
or CRYPT_KEYID_EMAIL for the email address.

keylD
The key 1D of the key to read.

Remarks The type of object in which the key is returned depends on the keyset or device from
which it isbeing read. Most sourceswill provide akey certificate object, but some
will return only an encryption context containing the key. Both types of object can be
used with cryptlib functions.

See also cryptAddPrivateK ey, cryptAddPublicK ey, cryptDeleteK ey,
cryptGetPrivateK ey.

cryptimportCert

The cryptimportCert function is used to import an encoded certificate, certification
request, CRL, or other certificate-related item into a certificate container object.

int cryptimportCert(const void *certObject, const int certObjectLength, const CRYPT_USER
cryptUser, CRYPT_CERTIFICATE *certificate);

Parameters certObject
The address of a buffer that contains the encoded certificate.

certObjectLength
The encoded certificate length.

cryptUser
The user who isto own the imported object or CRY PT_UNUSED for the default,
normal user.

certificate
The certificate object to be created using the imported certificate data.

See also cryptExportCert.

cryptimportKey 331

cryptimportKey

The cryptimportKey function is used to share a session key between two parties by
importing an encrypted session key that was previousy exported with
cryptExportK ey into an encryption context.

If an existing session key being shared, it can be imported using either a private key
or aconventional encryption key. If anew session key is being established, it can be
done using a Diffie-Hellman encryption context.

int cryptlmportKey(const void *encryptedKey, const int encryptedKeyLength, const
CRYPT_CONTEXT importContext, const CRYPT_CONTEXT
sessionKeyContext);

Parameters encryptedKey
The address of a buffer that contains the exported key created by cryptExportKey.

encryptedKeyLength
The length in bytes of the encrypted key data.

importContext
A public-key or conventional encryption context containing the private or
conventional key required to import the session key.

sessionKeyContext
The context used to contain the imported session key.

Remarks A session key can be shared in one of two ways, either by one party exporting an
existing key and the other party importing it, or by both parties agreeing on akey to
use. The export/import process requires an existing session key and a public/private
or conventional encryption context or key certificate object to export/import it with.
The key agreement process requires a Diffie-Hellman context and an empty session
key context (with no key loaded) that the new shared session key is generated into.

See also cryptExportKey, cryptExportKeyEx, cryptlmportKey, cryptQueryObject.

cryptlnit

The cryptlnit function isused to initialise cryptlib before use. This function should
be called before any other cryptlib function is called.

int cryptlnit(void);
Parameters None

See also cryptEnd.

cryptKeysetClose

The cryptK eysetClose function is used to destroy a keyset object after use. This
closes the connection to the key collection or keyset and frees up any memory it uses.

int cryptKeysetClose(const CRYPT_KEYSET keyset);
Parameters keyset

The keyset object to be destroyed.
See also cryptK eysetOpen.
cryptKeysetOpen

The cryptK eysetOpen function is used to establish a connection to akey collection
or keyset.

332 Function Reference

int cryptKeysetOpen(CRYPT_KEYSET *keyset, const CRYPT_USER cryptUser, const
CRYPT_KEYSET_TYPE keysetType, const char *name, const
CRYPT_KEYOPT_TYPE options);

Parameters keyset
The address of the keyset object to be created.

cryptUser
The user who isto own the keyset object or CRYPT_UNUSED for the defaullt,
normal user.

keysetType
The keyset type to be used.

name
The name of the keyset.

options
Option flags to apply when opening or accessing the keyset.

See also cryptkKeysetClose.

cryptPopData

The cryptPopData function is used to remove data from an envelope or session
object.

int cryptPopData(const CRYPT_HANDL E envelope, void *buffer, const int length, int
*bytesCopied);

Parameters envelope
The envelope or session object from which to remove the data.

buffer
The address of the datato remove.

length
The length of the data to remove.

bytesCopied
The address of the number of bytes copied from the envel ope.

See also cryptPushData.

cryptPushData

The cryptPushData function is used to add data to an envelope or session object.

int cryptPushData(const CRYPT_HANDL E envelope, const void *buffer, const int length, int
*bytesCopied);

Parameters envelope
The envelope or session object to which to add the data.

buffer
The address of the datato add.

length
The length of the data to add.

bytesCopied
The address of the number of bytes copied into the envelope.

See also cryptPopData.

cryptQueryCapability 333

cryptQueryCapability

The cryptQueryCapability function is used to obtain information about the
characteristics of a particular encryption algorithm. The information returned covers
the algorithm’s key size, data block size, and other algorithm-specific information.

int cryptQueryCapability(const CRYPT_ALGO_TYPE cryptAlgo, CRYPT_QUERY_INFO
*cryptQuerylnfo);

Parameters cryptAlgo
The encryption agorithm to be queried.

cryptQuerylnfo
The address of aCRYPT_QUERY _INFO structure which isfilled with the
information on the requested algorithm and mode, or null if thisinformation isn’t
required.

Remarks Any fieldsin the CRYPT_QUERY _INFO structure that don’t apply to the algorithm
being queried are set to CRYPT_ERROR, null or zero as appropriate. To determine
whether an algorithm is available (without returning information on it), set the query
information pointer to null.

See also cryptDeviceQueryCapability.

cryptQueryObject

The cryptQueryObject function is used to obtain information about an exported key
object created with cryptExportK ey or a signature object created with
cryptCreateSignature. It returnsinformation such as the type and a gorithms used
by the object.

int cryptQueryObject(const void *objectData, const int objectDatalength,
CRYPT_OBJECT_INFO *cryptObjectinfo);

Parameters objectData
The address of abuffer that contains the object created by cryptExportKey or
cryptCreateSignature.

objectDatal ength
The length in bytes of the object data.

cryptObjectinfo
The address of a CRYPT_OBJECT _INFO structure that contains information on
the exported key or signature.

Remarks Any fieldsin the CRYPT_OBJECT_INFO structure that don’t apply to the object
being queried are set to CRYPT_ERROR, null or zero as appropriate.

See also cryptCheckSignature, cryptCreateSignature, cryptExportKey, cryptlmportKey.

cryptSetAttribute

The cryptSetAttribute function is used to add boolean or numeric information,
command codes, and objects to a cryptlib object.

int cryptSetAttribute(const CRYPT_HANDLE cryptObject, const CRYPT_ATTRIBUTE_TYPE
attributeType, const int value);

Parameters cryptObject
The object to which to add the value.

attributeType
The attribute which is being added.

value
The boolean or numeric value, command code, or object which is being added.

334 Function Reference

See also cryptDeleteAttribute, cryptGetAttribute, cryptGetAttributeString,
cryptSetAttributeString.

cryptSetAttributeString

The cryptSetAttributeString function is used to add text or binary strings or time
values to an object.

int cryptSetAttributeString(const CRYPT_HANDLE cryptObject, const
CRYPT_ATTRIBUTE_TYPE attributeType, const void *value, const int
valueLength);

Parameters cryptObject
The object to which to add the text or binary string or time value.

attributeType
The attribute which is being added.

value
The address of the data being added.

valueLength
The length in bytes of the data being added.

See also cryptDeleteAttribute, cryptGetAttribute, cryptGetAttributeString,
cryptSetAttribute.

cryptSignCert

The cryptSignCert function is used to digitally sign apublic key certificate, CA
certificate, certification request, CRL, or other certificate-related item held in a
certificate container object.

int cryptSignCert(const CRYPT_CERTIFICATE certificate, const CRYPT_CONTEXT
signContext);

Parameters certificate
The certificate container object that contains the certificate item to sign.

signContext
A public-key encryption or signature context containing the private key used to sign
the certificate.

Remarks Once acertificate item has been signed, it can no longer be modified or updated using
the usual certificate manipulation functions. If you want to add further data to the
certificate item, you have to start again with anew certificate object.

See also cryptCheckCert.

cryptUIDisplayCert

The cryptUI DisplayCert function displays a certificate object such as a certificate or
certificate chain to the user.

int cryptUIDisplayCert(const CRYPT_CERTIFICATE certificate, const HWND hwhd);

Parameters certificate
The certificate object to display.

hwnd
The handle of the owner window, or NULL if the certificate viewer dialog has no
owner.

See also cryptUl GenerateK ey.

cryptUlGenerateKey 335

cryptUlGenerateKey

The cryptUIl Gener ateK ey function is used to generate a new key into an encryption
context and obtain from the user the information required to create or obtain a
certificate from a CA. Thisfunction presents the user with a key generation wizard
that takes them through the key generation process and obtains the information
needed for certificate creation.

int cryptUl GenerateK ey(const CRYPT_DEVICE device, CRYPT_CONTEXT *cryptContext,

Parameters

See also

const CRYPT_CERTIFICATE certificate, char *password, const HWND hwWhd
)i
device

The crypto device in which the key is to be generated, or CRYPT_UNUSED if no
crypto device is being used.

cryptContext
The address of the encryption context into which the key isto be generated.

certificate
The certificate object that will be filled in with the user's details.

password
The password selected by the user.

hwhd

The handle of the owner window, or NULL if the certificate viewer dialog has no
owner.

cryptUI DisplayCert.

336 Standards Conformance

Standards Conformance

AES

Blowfish

CAST-128

DES

All algorithms, security methods, and data encoding systems used in cryptlib either
comply with one or more national and international banking and security standards,
or are implemented and tested to conform to a reference implementation of a
particular algorithm or security system. Compliance with national and international
security standards is automatically provided when cryptlib isintegrated into an
application. The agorithm standards that cryptlib follows are listed below. A further
list of non-algorithm-related standards that cryptlib complies with are given at the
start of this document.

AES has been implemented as per:
FIPS PUB 197, “Advanced Encryption Standard”, 2001.

The AES code has been validated against the test vectors given in:
FIPS PUB 197, “Advanced Encryption Standard”, 2001.

Blowfish has been implemented as per:

“Description of a New Variable-Length Key, 64-bit Block Cipher (Blowfish)”,
Bruce Schneier, “Fast Software Encryption”, Lecture Notesin Computer Science
No. 809, Springer-Verlag 1994.

The Blowfish modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques— Modes
of operation for an n-bit block cipher algorithm”.

The Blowfish code has been validated against the Blowfish reference implementation
test vectors.

CAST-128 has been implemented as per:
RFC 2144, “The CAST-128 Encryption Algorithm”, Carlisle Adams, May 1997.
The CAST-128 modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The CAST-128 code has been validated against the RFC 2144 reference
implementation test vectors.

DES has been implemented as per:
ANSI X3.92, “American National Standard, Data Encryption Algorithm”, 1981.
FIPS PUB 46-2, “Data Encryption Standard”, 1994.

FIPS PUB 74, “Guidelines for Implementing and Using the NBS Data Encryption
Standard”, 1981.

ISO/IEC 8731:1987, “Banking — Approved Algorithms for Message
Authentication — Part 1. Data Encryption Algorithm (DEA)”.

cryptUlGenerateKey 337

Triple DES

The DES modes of operation are given in:

ANSI X3.106, “American National Standard, Information Systems — Data
Encryption Algorithm — Modes of Operation”, 1983.

FIPS PUB 81, “DES Modes of Operation”, 1980.

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The DESMAC modeisgivenin:
ANSI X9.9, “Financial Institution Message Authentication (Wholesale)”, 1986.
FIPS PUB 113, “Computer Data Authentication”, 1984.

ISO/IEC 9797:1994, “Information technology — Security techniques— Data
integrity mechanism using a cryptographic check function employing a block
cipher algorithm”.

The DES code has been validated against the test vectors given in:

NIST Specia Publication 500-20, “Validating the Correctness of Hardware
Implementations of the NBS Data Encryption Standard”.

Triple DES has been implemented as per:

ANSI X9.17, “American National Standard, Financial Institution Key
Management (Wholesale)”, 1985.

ANSI X9.52, “Triple Data Encryption Algorithm Modes of Operation”, 1999.
FIPS 46-3, “Data Encryption Standard (DES)”, 1999.
ISO/IEC 8732:1987, “Banking — Key Management (Wholesale)”.

The triple DES modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The DES code has been validated against the test vectors given in:

NIST Special Publication 800-20, “Modes of Operation Validation System for the
Triple Data Encryption Algorithm”.

Diffie-Hellman

DSA

DH has been implemented as per:
PKCS #3, “Diffie-Hellman Key Agreement Standard”, 1991.

ANSI X9.42, “Public Key Cryptography for the Financial Services Industry —
Agreement of Symmetric Keys Using Diffie-Hellman and MQV Algorithms”,
2000.

DSA has been implemented as per:

ANSI X9.30-1, “American National Standard, Public-Key Cryptography Using
Irreversible Algorithms for the Financial Services Industry”, 1993.

FIPS PUB 186, “Digital Signature Standard”, 1994.

338 Standards Conformance

Elgamal
Elgamal has been implemented as per
“A public-key cryptosystem based on discrete logarithms”, Taher Elgamal, |EEE
Transactions on Information Theory, Vol.31, No.4 (1985), p.469.
HMAC-MD5

HMAC-MD5 has been implemented as per:

RFC 2104, “HMAC: Keyed-Hashing for Message Authentication”, Hugo
Krawczyk, Mihir Bellare, and Ran Canetti, February 1997.

The HMAC-MD?5 code has been validated against the test vectors given in:

“Test Cases for HMAC-MD5 and HMAC-SHA-1”, Pau-Chen Cheng and Robert
Glenn, March 1997.

HMAC-SHA1
HMAC-SHA1 has been implemented as per:

FIPS PUB 198, “The Keyed-Hash Message Authentication Code (HMAC)”,
2002.

RFC 2104, “HMAC: Keyed-Hashing for Message Authentication”, Hugo
Krawczyk, Mihir Bellare, and Ran Canetti, February 1997.

The HMAC-SHA1 code has been validated against the test vectors given in:

“Test Cases for HMAC-MD5 and HMAC-SHA-1”, Pau-Chen Cheng and Robert
Glenn, March 1997.

IDEA
IDEA has been implemented as per:
“Device for the Conversion of a Digital Block and the Use Thereof”, James
Massey and XugjiaLai, International Patent PCT/CH91/00117, 1991.
“Device for the Conversion of a Digital Block and Use of Same”, James Massey
and XugjiaLai, US Patent #5,214,703, 1993.
“On the Design and Security of Block Ciphers”, Xuejia Lai, ETH Series in
Information Processing, Vol.1, Hartung-Gorre Verlag, 1992.
ISO/IEC 9979, “Data Cryptographic Techniques — Procedures for the
Registration of Cryptographic Algorithms”.
The IDEA modes of operation are given in:
ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.
ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.
The IDEA code has been validated against the ETH reference implementation test
vectors.
MD2
MD2 has been implemented as per:
RFC 1319, “The MD2 Message Digest Algorithm”, Burt Kaliski, 1992.
The MD2 code has been validated against the RFC 1319 reference implementation
test vectors.
MD4

MD4 has been implemented as per:

cryptUlGenerateKey 339

MD5

RC2

RC4

RC5

RIPEMD-160

RFC 1320, “The MD4 Message Digest Algorithm”, Ronald Rivest, 1992.

The MD4 code has been validated against the RFC 1320 reference implementation
test vectors.

M D5 has been implemented as per:
RFC 1321, “The MD5 Message Digest Algorithm”, Ronald Rivest, 1992.

The MD5 code has been validated against the RFC 1321 reference implementation
test vectors.

The RC2 code isimplemented as per:
“The RC2 Encryption Algorithm”, Ronald Rivest, RSA Data Security Inc, 1992.

RFC 2268, “A Description of the RC2 Encryption Algorithm”, Ronald Rivest,
1998.

The RC2 modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The RC2 code has been validated against RSADS| BSAFE test vectors.

The RC4 code isimplemented as per:
“The RC4 Encryption Algorithm”, Ronald Rivest, RSA Data Security Inc, 1992.

The RC4 code has been validated against RSADS| BSAFE and US Department of
Commerce test vectors.

The RC5 code isimplemented as per:

“The RC5 Encryption Algorithm”, Ronald Rivest, “Fast Software Encryption II”,
Lecture Notesin Computer Science N0.1008, Springer-Verlag 1995.

RFC 2040, “The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms”,
Robert Baldwin and Ronald Rivest, October 1996.

The RC5 modes of operation are given in:

ISO/IEC 8372:1987, “Information Technology — Modes of Operation for a 64-
bit Block Cipher Algorithm”.

ISO/IEC 10116:1997, “Information technology — Security techniques — Modes
of operation for an n-bit block cipher algorithm”.

The RC5 code has been validated against the RC5 reference implementation test
vectors.

The RIPEMD-160 code has been implemented as per:

“RIPEMD-160: A strengthened version of RIPEMD”, Hans Dobbertin, Antoon
Bosselaers, and Bart Preneel, “Fast Software Encryption 111, Lecture Notesin
Computer Science No.1008, Springer-Verlag 1995.

ISO/IEC 10118-3:1997, “Information Technology — Security Techniques —
Hash functions — Part 3: Dedicated hash functions”.

340 Standards Conformance

The RIPEMD-160 code has been validated against the RIPEMD-160 reference
implementation test vectors.

RSA
The RSA code isimplemented as per:

ANSI X9.31-1, “American National Standard, Public-Key Cryptography Using
Reversible Algorithms for the Financial Services Industry”, 1993.

SO IEC 9594-8/ITU-T X.509, “Information Technology — Open Systems
Interconnection — The Directory: Authentication Framework”.

PKCS #1, “RSA Encryption Standard”, 1991.
SHA/SHA1

The SHA code has been implemented as per:

ANSI X9.30-2, “American National Standard, Public-Key Cryptography Using
Irreversible Algorithms for the Financial Services Industry”, 1993.

FIPS PUB 180, “Secure Hash Standard”, 1993.
FIPS PUB 180-1, “Secure Hash Standard”, 1994.

ISO/IEC 10118-3:1997, “Information Technology — Security Techniques —
Hash functions — Part 3: Dedicated hash functions”.

RFC 3174, “US Secure Hash Algorithm 1 (SHA1)”, 2001
The SHA code has been validated against the test vectors given in:
FIPS PUB 180, “Secure Hash Standard”, 1993.
The SHA1 code has been validated against the test vectors given in:
FIPS PUB 180-1, “Secure Hash Standard”, 1994.
SHA2/SHA-256/SHA-384/SHA-512
The SHA2 code has been implemented as per:
FIPS PUB 180-2, “Secure Hash Standard”, 2002.
The SHA2 code has been validated against the test vectors given in:
FIPS PUB 180-2, “Secure Hash Standard”, 2002.
Skipjack
The Skipjack code has been implemented as per:

“Skipjack and KEA Algorithm Specifications, Version 2.0”, National Security
Agency, 28 May 1998.

“Capstone (MYK-80) Specifications”, R21 Informal Technical Report, R21-
TECH-30-95, National Security Agency, 14 August 1995.

cryptUlGenerateKey 341

Acknowledgements

Alexey Kirichenko provided information on NtQuerySysteminfo for randomness-
gathering under WinNT/Win2K to avoid the need to access the buggy Windows
registry performance counters.

Brian Gladman wrote the AES code.

Chris Wedgwood and Paul Kendall helped write the Unix random data gathering
routines.

endergone Zwiebeltiite hel ped debug the SSL/TLS implementation.

Eric Y oung and the OpenSSL team wrote the conventional encryption and hashing
code and bignum library.

Jean-Loup Gailly and Mark Adler wrote the zlib compression code.
Joerg Plate did the Amiga port.
Markus F.X.J. Oberhumer did the 32-bit DOS port.

Matt Thomlinson and Blake Coverett helped fix up and debug the Win32 random
data gathering routines.

Matthijs van Duin, Sascha Kratky, and Jeff Lamarche did the Macintosh port.
Nathan Hammond did the MV S port.

Osma Ahvenlampi did the PPC BeOS port.

Sami Tolvanen implemented the cryptlib GUI interface.

Sriram Ramachandran did the Cygwin port.

Steve Landers provided the Tcl bindings, with financial support from Eolas
Technologies.

Stuart Woolford and Mario Korva did the OS/2 port.
Trevor Perrin did the C#, Java, and Python bindings.

Wolfgang Gothier did the Delphi and Visual Basic bindings and tracked down a
number of really obscure probl*H "H*"H"H"Hundocumented features.

