[

N

Software
Product
Description

PRODUCT NAME: VAX BASIC, version 3.3

DESCRIPTION

VAX BASIC is an interactive, shareable language
processor for the VMS Operating System. VAX BASIC
takes full advantage of the VAX fioating point, doclmal
and character instructions.

VAX BASIC provides a high-performance program devel-
opment environment for both applications development
and timesharing, by generating in-line VMS native mode
instructions. It combines the power of a structured
programming language with the interactivity of the BASIC
environment and the convenience of easy-to-use graph-
ics statements. VAX BASIC is also integrated with
various programming productivity tools and with key
components of the VAX Information Architecture.

In addition to elementary BASIC features, VAX BASIC
provides:

e Support for the following Programming Productivity
Tools:

— VMS Symbolic Debugger

— VAX Language-Sensitive Editor

— VAX Source Code Analyzer

-—— VAX Performance and Coverage Analyzer
® Access to the VAX Information Architecture

— RECORD structure for user-defined data types
(similar to PASCAL record types)

— RECORD structure retrieval from the Common
Data Dictionary

¢ Structured Programming Constructs
— Line numbers completely optional

— DECLARE statement removes requirement for (%)
and ($) suffixes

— IF..THEN...ELSE...END IF conditional blocks

— SELECT...CASE...END SELECT muiti-way deci-
sion blocks

— OTHERWISE out-of-range clause for ON GOTO
and ON GOSUB statements

— Structured exception handling (WHEN blocks) for
main and subprograms

ortare

SPD 25.36.19

— Statement modifiers to control the execution of a
single statement

— PROGRAM, SUB, FUNCTION and PICTURE
statements to declare program modules

— END and EXIT PROGRAM statements to return a
status to DCL

Modern Programming Language Features
— 31 character alphanumeric statement labels

— 31 character variable names, allowing ($), ()
and (.)

— Explicit declarations provide access to many VAX
data types

— OPTION statement specifies compiler defaults
within source modules

Program segmentation

— SUB, FUNCTION and PICTURE subprograms as
individually-compiled modules

— Ability to pass parameters BY VALUE, REFerence,
or DESCriptor

— Up to 254 actual arguments per call on external
modules

— Ability to invoke EXTERNAL function procedures
from BASIC

— Recursive CALL/function invocation

— Ability to invoke all VMS System Service and
Run-Time Library routines

— Subprograms and function programs written in
other VMS native mode languages can be invoked
from VAX BASIC

— VAX BASIC program modules can be invoked by
other VMS languages

— Ability to pass optional arguments to non-BASIC
procedures

— Single and multi-line user-defined functions using
DEF

— COMMON and MAP statements for creating static
storage areas for communication between program
modules

June 1988
AE-J848T-TE

VAX BASIC, Version 3.3

Graphics
— Statements modeled after ANSI BASIC Graphics

— Implemented using VAX:GKS to provide device
independence

— Graphic output primitives include points, lines,
areas and text

— Graphic input types include points, menu choice,
value selection, and text

— Ability to adjust the range of coordinate values to
suit the application

— SET and ASK statements to speclfy and retrieve
graphic attribute values

— Graphic procedures (PICTURE subprograms) for
building complex objects

— Ability to apply transformations to PICTURE
procedures

Full access to VAX Record Management Services
(VAX RMS)

— Sequential 1/O

- Relative /O
— Multi-key Indexed 1/O operations, including support
for integer (WORD, LONGWORD and

QUADWORD), string, segmented string keys,
packed decimal keys and descending keys.

— Random access to sequential fixed files
— Virtual Arrays (arrays mapped onto disk structures)

— Record File Address (RFA) access for direct
access to records

Extended Report Formatting Capabilities

— Suppression of zero fields

— Zero fill, blank fill, or asterisk fill numeric fields
— Commas in large numeric value

—CR (crédit) or DR (debit) indicators

— Floating currency symbol for numeric fields

— Currency and decimal symbols can be changed for
foreign usage

— FORMAT$ function accepts full PRINT USING
editing syntax

Implicit or Explicit storage declarations

— Specification of data types permitted on
COMMON, DECLARE, DEF, DIMENSION,
EXTERNAL, FUNCTION, MAP, PICTURE,

RECORD and SUB statements

— Default data allocation rules can be specified with
DCL qualifiers, BASIC commands, or by the
OPTION statement in program text

— By default all declarations are implicit, however, the
option TYPE= EXPLICIT can be used to require
explicit declaration of all |variables

SPD 25.36.19

— Default constant types can be. specified with the
OPTION CONSTANT TYPE statement

— Integer data type allows:

BYTE with range of -128 to +127
(8 bit)

WORD
(16 bit)

LONG
(32 bit)

with range of -32768 to +32767

with range of 2147483848 to +2147483647

— Real data type allows:

SINGLE
(6 digits)

DOUBLE - with range of .20x10**-38 - to 1.70x10**38
(16 digits)

GFLOAT = with range of 56x10“308 to .90x10**308
(15 digits)

HFLOAT with range of 84x10' 4932 t0.59x10**4932
(33 digits)

with range of .20x10™-38 to 1.70x10"38

'— Packed DECIMAL type supports up o 31 digits

— STRING data type, allowing both static (in MAP or
COMMON statements) and dynamic lengths

— Creation of user-defined named constants through

DECLARE CONSTANT

— Dynamic record definition and variable alloéation
via MAP DYNAMIC

® BASIC Programming Support Environment

— RUN command for immediate execution of BASIC
programs

— EDIT command can invoke a user-selected editor
directly

— HELP for on-line assistance

— SEQUENCE command for generating line
numbers ’
— RESEQUENCE command for renumbering

program lines

— Direct execution of BASIC statements (immedlate
mode)

— Direct execution of DEC Command Language
(DCL) statements

— Optional Line-by-Line syntax checking

— Dynamic linking (LOAD) of separately-compiled
BASIC modules for use with-the RUN command

— User-created libraries can be searched automati-
cally when using RUN

® Compile-Time Directives

— Text inclusion through %INCLUDE, %INCLUDE
%FROM %CDD and %INCLUDE from a text library

— Conditional compilation (%lF)

— Listing and cross-reference
(%NOLIST, %LIST, %CROSS)

output control

f)

VAX BASIC, Version 3.3

e EXTERNAL statement, which allows access to global

variables, functions, and constants, and allows data

typing of parameters to aid in minimizing run-time
mismatches

Language Subsets and Subset Flaggers

— BASIC-PLUS-2 Subset Flagger for cross-system
development

— Declining ~ Feature for

maintenance/conversion

— Qualifier for ANSI Minimal BASIC conforming
program execution

Multi-line Statements and Multi-statement Lines
Extensive array handling capabilities

Flagger program

- Each array may have up to 32 dimensions

— Each dimension may specify both a lower and
upper bound -

— Array bounds can be specified at compile-time or
run-time

— Matrix handling statements allow manipulation of
matrices, including matrix multiplication

Compatibility with key RSTS/E BASIC-PLUS and
BASIC-PLUS-2 features including:

— ON ERROR GOTO exception handling

— FIELD Statement

— CVT and SWAP% functions

— Virtual arrays

— Selected nonprivileged SYS calls

— Statement modifiers for conditionals and loops

VAX BASIC uses the full printable ASCIl character set,
and 8-bit character codes within constants and IO
operations.

Standard Conformance ,
ANSI Minimal BASIC Validated, December 1986
HARDWARE REQUIREMENTS

VAX, MicroVAX, or VAXstation configuration as specified
in the System Support Addendum (SSA 25.36.19-x).

SOFTWARE REQUIREMENTS*
VMS Operating System

For VAXstation Systems:

VMS Workstation Software

SPD 25.36.19

OPTIONAL SOFTWARE*
To use %INCLUDE %FROM %CDD:
VAX Common Data Dictionary (CDD) is required.

To use the %REPORT %DEPENDENCY directive and
the /DEPENDENCY_DATA qualifier:

VAX Common Data Dictionary/Plus (CDD/Plus) is
required.

To use the /DIAGNOSTICS qualifier:

VAX Language-Sensitive Editor is required.

To use graphlcs. statements:

VAX GKS Development or Run-time License is required.
To use the /ANALYSIS_DATA qualifier:

VAX Source Code Analyzer (SCA) is required.

* Refer to the System Support Addendum for avalilabil-
ity and required versions of Required/Optional soft-
ware (SSA 25.36.19-x).

ORDERING INFORMATION

Software Licenses: QL-095A*-**
Software Media: QA-095A*-**

Software Documentation: QA-095AA-GZ
Software Product Services: QT-095A*-**

* Denotes variant fields. For additional information on
avallable licenses, services and media, refer to the
appropriate price book.

SOFTWARE WARRANTY

Warranty for this software product is provided by
DIGITAL with the purchase of a license for the product
as defined in the Software Warranty Addendum of this
SPD.

SOFTWARE LICENSING

This software is furnished under the licensing provisions
of DIGITAL's Standard Terms and Conditions. For more
information about DIGITAL's licensing terms and policies,
contact your local DIGITAL office.

LICENSE MANAGEMENT FACILITY

This product incorporates support for the License
Management Facility (LMF) found in VMS. For more
information, refer to the documentation for this layered
product or the VMS documentation. License units for this
product are allocated on a per-CPU basis.

SOFTWARE PRODUCT SERVICES

A variety of service options are available from DIGITAL .
For more information contact your local DIGITAL office.

¢r

