A

RT-11
System Reference Manual

Order No. DEC-11-ORUGA-C-D, DN1, DN2

»

digital equipment corporation - maynard. massachusetts

First Printing, September 1973
Revised: October 1974
June 1975

July 1975

January 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL. :

Copyright<:>l973,1974,1975,1976by[ﬁgita1 Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

4/77-14

CONTENTS

Page
PREFACE xxi
CHAPTER 1 RT-11 OVERVIEW 1-1
1.1 PROGRAM DEVELOPMENT 1-2
1.2 SYSTEM SOFTWARE COMPONENTS 1-3
1.3 SYSTEM HARDWARE COMPONENTS 1-5
1.4 USING THE RT-11 SYSTEM 1-7
1.4.1 RT-11 Single-Job Monitor 1-7
1.4.2 RT-11 Foreground/Background Monitor 1-7
1.4.3 Facilities Available Only in RT-11 F/B 1-8
CHAPTER 2 SYSTEM COMMUNICATION 2-1
2.1 START PROCEDURE 2-1
2.2 SYSTEM CONVENTIONS 2-3
2.2.1 Data Formats 2-3
2.2,2 Prompting Characters 2-4
2.2.3 Physical Device Names 2-4
2.2.4 File Names and Extensions 2-5
2,2.5 Device Structures 2-7
2.3 MONITOR SOFTWARE COMPONENTS 2-7.1
2.3.1 Resident Monitor (RMON) 2-7.1
2.3.2 Keyboard Monitor (KMON) 2-7.1
2.3.3 User Service Routine (USR) 2-7.1
2.3.4 Device Handlers 2-8
2.4 GENERAL MEMORY LAYOUT 2-8
2.4.1 Component Sizes 2-9
2.5 ENTERING COMMAND INFORMATION 2-10
2.6 KEYBOARD COMMUNICATION (KMON) 2-11
2.6.1 Foreground/Background Terminal I/0 2-13
2.6.2 Type-Ahead 2-14
2.7 KEYBOARD COMMANDS 2-14
2.7.1 Commands to Control Terminal I/0 2-15
(GT ON and GT OFF)
2.7.2 Commands to Allocate System Resources 2-16
2.7.2.1 DATE Command 2-16
2.7.2.2 TIME Command 2-17
2.7.2.3 INITIALIZE Command 2-18
2.7.2.4 ASSIGN Command 2-18

iii January 197¢

2.7.2.5 CLOSE Command 2-20
2.7.2.6 LOAD Command 2-20
2.7.2.7 UNLOAD Command 2-21
2.7.2.8 SET Command 2-23
2.7.3 Commands to Manipulate Memory Images 2-28
2.7.3.1 GET Command 2-28
2.7.3.2 Base Command 2-29
2.7.3.3 Examine Command 2-30
2.7.3.4 Deposit Command 2-30
2,7.3.5 SAVE Command 2-31
2.7.4 Commands to Start a Program 2-33
2.7.4.1 RUN Command 2-33
2.7.4.2 R Command 2-34
2.7.4.3 START Command 2-34
2.7.4.4 REENTER Command 2-35
2.7.5 Commands Used Only in a 2-35
Foreground/Background Environment
2.7.5.1 FRUN Command 2-36
2.7.5.2 SUSPEND Command 2-37
2.7.5.3 RSUME Command 2-38
2.8 MONITOR ERROR MESSAGES 2-38
2.8.1 Monitor HALTS 2-41
CHAPTER 3 TEXT EDITOR 3-1
3.1 CALLING AND USING EDIT 3-1
3.2 MODES OF OPERATION 3-2
3.3 SPECIAL KEY COMMANDS 3-2
3.4 COMMAND STRUCTURE 3-3
3.4.1 Arguments 3-4
3.4.2 Command Strings 3-5
3.4.3 The Current Location Pointer 3-6
3.4.4 Character- and Line-Oriented 3-6
Command Properties
3.4.5 Command Repetition 3-8
3.5 MEMORY USAGE 3-9
3.6 EDITING COMMANDS - 3=10
3.6.1 Input/Output Commands 3-10
3.6.1.1 Edit Read 3-10
3.6.1.2 Edit Write 3-11
3.6.1.3 Edit Backup 3-11
3.6.1.4 Read 3-12
3.6.1.5 Write 3-13
3.6.1.6 Next 3-14
3.6.1.7 List 3-14
3.6.1.8 Verify 3-15
3.6.1.9 End File 3-15
3.6.1.10 Exit 3-15
3.6.2 Pointer Relocation Commands 3-16
3.6.2.1 Beginning 3-16
3.6.2.2 Jump 3-17
3.6.2.3 Advance 3-17
3.6.3 Search Commands 3-18
3.6.3.1 Get 3-18
3.6.3.2 Find 3-19

January 1976 iv

3.6.3.3 Position 3-20
3.6.4 Text Modification Commands 3-20
3.6.4.1 Insert 3-20
3.6.4.2 Delete 3-21
3.6.4.3 Kill 3-22
3.6.4.4 Change 3=-22
3.6.4.5 Exchange 3-23
3.6.5 Utility Commands 3-24
3.6.5.1 Save 3-24
3.6.5.2 Unsave 3-25
3.6.5.3 Macro 3~25
3.6.5.4 Execute Macro 3-26
3.6.5.5 Edit Version 3-27
3.6.5.6 Upper- and Lower-Case Commands 3-27
3.7 THE DISPLAY EDITOR 3-28
3.7.1 Using the Display Editor 3~29
3.7.2 Setting the Editor to Immediate Mode 3-30
3.8 EDIT EXAMPLE 3-32
3.9 EDIT ERROR MESSAGES 3-33
‘CHAPTER 4 PERIPHERAL INTERCHANGE PROGRAM (PIP) 4-1
4.1 CALLING AND USING PIP 4-1
4.1.1 Using the "Wild Card" Construction 4-1
4.2 PIP SWITCHES 4-2
4.2.1 Operations Involving Magtape or Cassette 4-4
4,2.2 Copy Operations 4-9
4.2.3 Multiple Copy Operations 4-1
4.2.4 The Extend and Delete Operations 4-1
4.2.5 The Rename Operation 4-15
4.2.6 Directory List Operations 4-15
4.2.7 The Directory Initialization Operation 4-18
4.2.8 The Compress Operation 4-19
4.2.9 The Bootstrap Copy Operation 4-20
4.2.10 The Boot Operation 4-20
4.2.11 The Version Switch 4-21
4.2,12 Bad Block Scan (/K) 4-21
4,2.12.1 Recovery from Bad Blocks 4-21
4.3 PIP ERROR MESSAGES 4-24
CHAPTER 5 MACRO ASSEMBLER 5~-1
5.1 SOURCE PROGRAM FORMAT 5=2
5.1.1 Statement Format 5 2
5.1.1.1 Label Field 5-3
5.1.1.2 Operator Field 5-3
5.1.1.3 Operand Field 5-4
5.1.1.4 Comment Field 5-4
5.1.2 Format Control 5-5
5.2 SYMBOLS AND EXPRESSIONS 5-5
5.2.1 Character Set 5=5
5.2.1.1 Separating and Delimiting Characters 5-6
5.2.1.2 Illegal Characters 5-7
5.2.1.3 Operator Characters 5-8
5.2.2 Symbols 5-9

v January 1976

5.2.2.1 Permanent Symbols 5-9

5.2.2.2 User-Defined and Macro Symbols 5-9

5.2.3 Direct Assignment 5-10
5.2.4 Register Symbols 5 11
5.2.5 Local Symbols 5-12
5.2.6 Assembly Location Counter 5-14
5.2.7 Numbers 5-17
5.2.8 Terms 5-17
5.2.9 Expressions 5-18
5.3 RELOCATION AND LINKING 5-19
5.4 ADDRESSING MODES 5-20
5.4.1 Register Mode 5-21
5.4.2 Register Deferred Mode 5-21
5.4.3 Autoincrement Mode 5-21
5.4.4 Autoincrement Deferred Mode 5-22
5.4.5 Autodecrement Mode 5-23
5.4.6 Autodecrement Deferred Mode 5-23
5.4.7 Index Mode 5-23
5.4.8 Index Deferred Mode 5-23
5.4.9 Immediate Mode 5-24
5.4.10 Absolute Mode 5-24
5.4.11 Relative Mode 5-24
5.4.12 Relative Deferred Mode 5-25
5.4.13 Table of Mode Forms and Codes 5-25
5.4.14 Branch Instruction Addressing 5-26
5.4.15 EMT and TRAP Addressing 5-27
5.5 ASSEMBLER DIRECTIVES 5-27
5.5.1 Listing Control Directives 5=27
5.5.1.1 .LIST and .NLIST 5-27
5.5.1.2 Page Headings 5-34
5.5.1.3 .TITLE 5-34
5.5.1.4 .SBTTL 5-34
5.5.1.5 . IDENT 5-36
5.5.1.6 Page Ejection 5~36
5.5.2 Functions: .ENABL and .DSABL Directives 5-36
5.5.3 Data Storage Directives 5-37
5.5.3.1 .BYTE 5-38
5.5.3.2 .WORD 5-39
5.5.3.3 ASCII Conversion of One or Two Characters 5-40
5.5.3.4 .ASCII 5-41
5.5.3.5 +ASCIZ 5-42
5.5.3.6 .RADS0 5-43
5.5.4 Radix Control 5-44
5.5.4.1 .RADIX 5-44
5.5.4.2 Temporary Radix Control: "D, "0, and "B 5-45
5.5.5 Location Counter Control 5-46
5.5.5.1 .EVEN 5-46
5.5.5.2 .0DD 5-46
5.5.5.3 .BLKB and .BLKW 5-47
5.5.6 Numeric Control 5-47
5.5.6.1 .FLT2 and .FLT4 5-48
5.5.6.2 Temporary Numeric Control: °F and "C 5-49
5.5.7 Terminating Directives 5-50
5.5.7.1 .END 5-50
5.5.7.2 .EOT 5=-51
5.5.8 Program Boundaries Directive: .LIMIT 5-51
5.5.9 Program Section Directives 5-51
5.5.10 Symbol Control: .GLOBL 5-54

January 1976 vi

-

PP AR P

5.5.11 Conditional Assembly Directives 5-55
5.5.11.1 Subconditionals 5=-57
5.5.11.2 Immediate Conditionals 5-58
5.5.11.3 PAL-11R and PAL-11S Conditional 5-59
Assembly Directives
5.6 MACRO DIRECTIVES 5-60
5.6.1 Macro Definition 5-60
5.6.1.1 «MACRO 5-60
5.6.1.2 . ENDM 5-60
5.6.1.3 .MEXIT 5-61
5.6.1.4 MACRO Definition Formatting 5-61
5.6.2 Macro Calls 5-62
5.6.3 Arguments to Macro Calls and Definitions 5-62
5.6.3.1 Macro Nesting 5-63
5.6.3.2 Special Characters 5-64
5.6.3.3 Numeric Arguments Passed as Symbols 5-64
5.6.3.4 Number of Arguments 5-66
5.6.3.5 Automatically Created Symbols Within 5-66
User-Defined Macros
5.6.3.6 Concatenation 5-67
5.6.4 .NARG, .NCHR, and .NTYPE 5-68
5.6.5 .ERROR and .PRINT 5-70
5.6.6 Indefinite Repeat Block: .IRP and .IRPC 5-71
5.6.7 Repeat Block: .REPT 5-73
5.6.8 Macro Libraries: .MCALL 5-74
5.7 CALLING AND USING MACRO 5~-74
5.7.1 Switches 5-76
5.7.1.1 Listing Control Switches 5-76
5.7.1.2 Function Switches 5=77
5.7.1.3 Cross Reference Table Generation (CREF) 5-78
5.8 MACRO ERROR MESSAGES 5-84
CHAPTER 6 LINKER : 6-1
6.1 INTRODUCTION 6-1
6.2 CALLING AND USING THE LINKER 6-2
6.2.1 Command String 6-2
6.2.2 Switches 6-3
6.3 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS 6-4
6.4 GLOBAL SYMBOLS 6-5
6.5 INPUT AND OUTPUT 6-5
6.5.1 Object Modules 6-5
6.5.2 Load Module 6-5
6.5.3 Load Map 6-7
6.5.4 Library Files 6-8
6.6 USING OVERLAYS 6-10
6.7 USING LIBRARIES 6-15
6.7.1 User Library Searches 6-16
6.8 SWITCH DESCRIPTION 6-18
6.8.1 Alphabetize Switch 6-18
6.8.2 Bottom Address Switch 6-18

vii January 1976

== 000~ W

« & & o o e 2 s »
G0 G0 0 Co0 G0 0 0O 0
e & & o & 2 s e o
o

o [=a N e B e W W W W Y

~J
.
(¥

CHAPTER

RN ND —
. . . . - . L] . [] - .
RPN NDNDN

~} SNNNGUNNNSNNNN- ~
» L] . . L) .] . . L] . L]
» o o & & o s o &
WONAAUVE WM -

CHAPTER

oo
L] L] L] . -
XY R Sy
L] . »
— N

e O O JRAUT D WD

€O GO O GO OO O O O O 00 W M o @ @
N~ O

WWWwwwwuwwwwwww

-~ s

January 1976

Continue Switch

Default FORTRAN Library Switch
Include Switch

LDA Format Switch

Modify Stack Address

Overlay Switch

REL Format Switch

Symbol Table Switch

Transfer Address Switch

LINKER ERROR HANDLING AND MESSAGES
LIBRARIAN
CALLING AND USING LIBR

USER SWITCH COMMANDS AND FUNCTIONS
Command Syntax

LIBR Switch Commands

Command Continuation Switch
Creating a Library File

Inserting Modules Into a Library
Replace Switch

Delete Switch

Delete Global Switch

Update Switch

Listing the Directory of a Library File
Merging Library Files

COMBINING LIBRARY SWITCH FUNCTIONS

FORMAT OF LIBRARY FILES

Library Header

Entry Point Table (Library Directory)
Object Modules

Library End Trailer

LIBR ERROR MESSAGES
ON-LINE DEBUGGING TECHNIQUE

CALLING AND USING ODT
Return to Monitor, CTRL C
Terminate Search, CTRL U

RELOCATION
Relocatable Expressions

COMMANDS AND FUNCTIONS

Printout Formats

Opening, Changing and Closing Locations
Accessing General Registers (-7
Accessing Internal Registers

Radix 50 Mode, X

Breakpoints

Running the Program, r;G and r;P
Single Instruction Mode

Searches

The Constant Register, r;C

Memory Block Initialization, ;F and ;I
Calculating Offsets, r;0O

viii

6-23
6-23
6-24

6-24

~J ~J
| |

L [}
- HOWOWIOAUBWNON [l Ld

~ NN NN ONNNNN NN
1
o

-

~N~J
)

'—"—J
(¥ N

7-13
7-14
7-14

7-14

(0 1
W

[}
>

8.3.13 Relocation Register Commands, r;nR, ;nR, ;R 8-17
8.3.14 The Relocation Calculators, nR and n! 8-18
8.3.15 ODT Priority Level, $P 8-19
8.3.16 ASCII Input and Output, r;nA 8-20
8.4 PROGRAMMING CONSIDERATIONS 8-20
8.4.1 Functional Organization 8-20
8.4.2 Breakpoints 8-21
8.4.3 Searches 8-24
8.4.4 Terminal Interrupt 8-24
8.5 ODT ERROR DETECTION 8-25
CHAPTER 9 PROGRAMMED REQUESTS 9-1
9.1 FORMAT OF A PROGRAMMED REQUEST 9-2
9.2 SYSTEM CONCEPTS 9-5
9.2.1 Channel Number (chan) 9-5
9.2.2 Device Block (dblk) 9-5
9.2.3 EMT Argument Blocks 9-5
9.2.4 Important Memory Areas 9-6
9.2.4.1 Vector Addresses 9-6
9.2.4.2 Resident Monitor 9-7
9.2.4.3 System Communication Area 9-17
9.2.5 Swapping Algorithm 9-9
9.2.6 Offset Words 9-11
9.2.7 File Structure 9-13
9.2.8 Completion Routines 9-13
9.2.9 Using The System Macro Library 9-14
9.3 TYPES OF PROGRAMMED REQUESTS 9-14
9.3.1 System Macros 9-20
9.3.1.1 .DATE 9-20
9.3.1.2 <« INTEN : 9-21
9.3.1.3 .MFPS/.MTPS 9-21.1
9.3.1.4 .REGDEF 9-22
9.3.1.5 .SYNCH 9-22
9.3.1.6 V1l /. .V2,. 9-24
9.4 PROGRAMMED REQUEST USAGE 9-25
9.4.1 .CDFN 9-26
9.4.2 .CHAIN : 9-27
9.4.3 .CHCOPY 9-28
9.4.4 .CLOSE 9-30
9.4.5 . CMKT 9-31
9.4.6 .CNTXSW 9-32
9.4.7 .CSIGEN 9-33
9.4.8 .CSISPC 9-36
9.4.8.1 Passing Switch Information 9-3¢
9.4.9 .CSTAT 9-41
9.4.10 .DELETE 9-42
9.4.11 .DEVICE 9-44
9.4.12 .DSTATUS 9-45
9.4.13 .ENTER 9-47
9.4.14 LEXIT 9-49
9.4.15 .FETCH 9-50
9.4.16 .GTIM 9-51
9.4.17 .GTJB 9-52
9.4.18 .HERR/ .SERR 9-53
9.4.19 .HRESET 9-55
9.4.20 .LOCK/ .UNLOCK 9-56

ix January 1976

CHAPTER

CHAPTER

CHAPTER

January

9.4.21
9.4.22
9.4.23
9.4.24
9.4.25
9.4.26
9.4.27
9.4.28
9.4.29
9.4.30
9.4.31
9.4.32
9.4.33
9.4.34
9.4.35
9.4.36
9.4.37
9.4.38
9.4.39
9.4.40
9.4.41
9.4.42
9.4.43
9.4.44
9.4.45
9.4.46
9.4.47
9.5
9.5.1
9.5.2
10
10.1
10.2
10.3
10.4
11
11.1
11.2
12
12.1
12.1.1
12.1.2
12,2
12.2.1
12.2.1.1
12.2.1.2
12.2.2
12.2.2.1
1976

. LOOKUP

«MRKT

«MWAIT

« PRINT

« PROTECT

+ PURGE

.QSET

« RCTRLO
«RCVD/.RCVDC/ . RCVDW
.READ/.READC/ .READW
. RELEAS

. RENAME

- REOPEN

.SAVESTATUS

.SDAT/ .SDATC/ .SDATW
«.SETTOP

.SFPA

.SPFUN

.SPND/ .RSUM

«SRESET

. TLOCK

.TRPSET
.TTYIN/.TTINR

. TTYOUT/.TTOUTR
.TWAIT

.WAIT

.WRITE/ .WRITC/ .WRITW

CONVERTING VERSION 1 MACRO CALLS
TO VERSION 2

Macro Calls Requiring No Conversion
Macro Calls Which May Be Converted
EXPAND UTILITY PROGRAM

LANGUAGE

RESTRICTIONS

CALLING AND USING EXPAND

EXPAND ERROR MESSAGES

ASEMBL, THE BK ASSEMBLER

CALLING AND USING ASEMBL

ASEMBL ERROR MESSAGES

BATCH

INTRODUCTION TO RT-11 BATCH
Hardware Requirements to Run BATCH
Software Requirements to Run BATCH
BATCH CONTROL STATEMENT FORMAT
Command Fields

Command Names

Command Field Switches

Specification Fields
Physical Device Names

9-58
9-60
9-62
9-63
9-64
9-65
9-65
9-67
9-68
9-71
9-74
9-75
9-77
9-77
9-80
9-82
9-84
9-85
9-87
9-90
9-91
9-92
9-93
9-95
9-98
9-99
9-100

9-108

9-108
9-108

10-1
10-1

11-1
11-7
12-1

12-1
12-1
12-2

12-2
12-2
12-2
12-3
12-5
12-6

o

—
[NF X
L] .

e b b b b B W

ot
N
.

12,

[urpren
NN
.

12,
12.4.9

12.4.10
12.4.11
12.4.12
12.4.13
12.4.14
12.4.15
12.4.16
12.4.17
12.4.18
12.4.19
12.4.20
12.4.21

12.4.22
12.4.23

ORI WN

12.5
12.5.1
12.5.2

12.9

APPENDIX A

File Specifications

Wild Card Construction
Specification Field Switches
Comment Fields

BATCH Character Set
Temporary Files

GENERAL RULES AND CONVENTIONS

BATCH COMMANDS
$BASIC
SCALL
SCHAIN
$COPY
SCREATE
$SDATA
S$DELETE
$DIRECTORY
SDISMOUNT
SEOD

SEOJ
$FORTRAN
$JOB
SLIBRARY
SLINK
$MACRO
$MESSAGE
$MOUNT
$SPRINT
$RT11
SRUN

$SEQUENCE
Example BATCH Stream

RT-11 MODE

Running RT-11 System Programs
Creating RT-11 Mode BATCH Programs
Labels

Variables

Terminal I/0 Control

Other Control Characters

Comments

RT-11 Mode Examples

CREATING BATCH PROGRAMS ON PUNCHED CARDS
Terminating BATCH Jobs on Cards

OPERATING PROCEDURES

Loading BATCH

Running BATCH

Communicating with BATCH Jobs
Terminating BATCH

DIFFERENCES BETWEEN RT-11 BATCH AND
RSX-11D BATCH

ERROR MESSAGES

ASSEMBLY, LINK, AND BUILD INSTRUCTIONS

12-6
12-7
12-7
12-8
12-8
12-10

12-11

12-12
12-13
12-14
12-15
12-16
12-18
12-19
12-20
12-2¢0
12-21
12-22
12-23
12-23
12-25
12-27
12-27
12-29
12-31
12-32
12-34
12-35
12-35
12-36
12-36

12-38
12-39
12-39
12-39
12-40
12-42
12-42
12-43
12-43

12-44
12-45

12-45
12-45
12-47
12-49
12-52

12-52

12-53

xi January 1976

APPENDIX B

.
. e
N -

.
NN [o
* s e

T Wwowowwww oo w
L[] @ & & e e
0~ OV U WA

.
[

L[] . . .
~~) N N (6, ¢,) L3 w W
o
[

.
e

ww o w o w w o w

.
[

APPENDIX C

January 1976

COMMAND AND SWITCH SUMMARIES

KEYBOARD MONITOR
Command Summary
Special Function Keys

EDITOR

Command Arguments

Input and Output Commands
Pointer’ Relocation Commands
Search Commands

Text Modification Commands
Utility Commands

Immediate Mode Commands

Key Commands

PIP
Switch Summary

MACRO/CREF

LINKER
Switch Summary

LIBRARIAN
Switch Summary

ODT
Command Summary

PROGRAMMED REQUESTS
BATCH

Switch Summary
Command Summary

DUMP
Switch Summary

FILEX
Switch Summary

SRCCOM
SWITCH SUMMARY

PATCH
Command Summary

PATCHO
Command Summary

MACRO ASSEMBLER, INSTRUCTION, AND
CHARACTER CODE SUMMARIES

ASCII CHARACTER SET

RADIX-50 CHARACTER SET

MACRO SPECIAL CHARACTERS

ADDRESS MODE SYNTAX

xii

w
| !
—

oww
UL [}
[e

mwwmuluwwww
W~V UL

w l?Jl‘I.
(= O W

o

i
[uryn
(-

B-14
B-14
B-17

B-18
B-18

B-18
B-18

B-19
B-19

B-20
B-20

B-21
B-21

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

* e e e % » e & e
(SRS N N, N RN N RS NS, RS R, N, N N]

.
(=2}

. e
N
.

o 0 [eNeNeKe (@] QOOOOO0O0O00O00000000
o]

L[] L] L] - » . . L] . .
HEFEFRFEHEOOIAU R WK -
N WwhoH+HO

w N

INSTRUCTIONS

Double Operand Instructions
Single Operand Instructions
Rotate/Shift

Operate Instructions

Trap Instructions

Branch Instructions
Register Destination
Register-Offset

Subroutine Return
Source-Register
Floating-Point Source Double Register
Source-Double Register
Double Register-Destination
Number

Priority

ASSEMBLER DIRECTIVES
MACRO/CREF SWITCHES
Listing Control Switches
Function Control Switches
CREF Switches
OCTAL/DECIMAL CONVERSIONS
SYSTEM MACRO FILE
PROGRAMMED REQUEST SUMMARY
PARAMETERS

REQUEST SUMMARY
BASIC/RT-11 LANGUAGE SUMMARY
BASIC/RT-11 STATEMENTS
BASIC/RT-11 COMMANDS
BASIC/RT-11 FUNCTIONS
BASIC/RT~11 ERROR MESSAGES

FORTRAN LANGUAGE SUMMARY

]]
= bt i e el e e b AD QO OO N
N R W

I
b
~

o<?r)Ofdr)nc?r)nr)O<1r)ntw
-
0

Cc-19

C-23
C-23
C-23
C-24

C-25

RUNNING A FORTRAN PROGRAM IN THE FOREGROUND G-1

FORTRAN CHARACTER SET

EXPRESSION OPERATORS

SUMMARY OF FORTRAN STATEMENTS
COMPILER ERROR DIAGNOSTICS

F/B PROGRAMMING AND DEVICE HANDLERS
F/B PROGRAMMING IN RT-11, VERSION 2
Interrupt Priorities

Interrupt Service Routine
Return from Interrupt Service

Issuing Programmed Requests at the Interrupt

Level

xiii

G-2
G-3

G-4

January 1976

NN DN Laadll o Ll
* L[] .
wN =

T I Dooonmommmnm mm o
Vb bW

.
[w

APPENDIX I

APPENDIX

APPENDIX K

APPENDIX L

January 1976

Setting Up Interrupt Vectors

Using .ASECT Directives in Relocatable
Image Files

Using .SETTOP

Making Device Handlers Resident

DEVICE HANDLERS

PR

TT

CR

MT/CT

General Characteristics

Handler Functions

Magtape and Cassette End-of-File Detection
DX

EXAMPLE DEVICE HANDLERS
DEC 026/DEC 029 CARD CODE CONVERSION TABLE
DUMP

CALLING AND USING DUMP
DUMP Switches
Examples

DUMP ERROR MESSAGES
FILEX

FILEX OVERVIEW
File Formats

CALLING AND USING FILEX

FILEX Switch Options

Transferring Files Between RT-11
and DOS/BATCH (or RSTS)

Transferring Files to RT-11 from
DECsystem-10

Listing Directories

Deleting Files from DOS/BATCH (RSTS)
DECtapes

FILEX ERROR MESSAGES
SOURCE COMPARE (SRCCOM)
CALLING AND USING SRCCOM
Extensions

Switches

OUTPUT FORMAT

SRCCOM ERROR MESSAGES
PATCH

CALLING AND USING PATCH
PATCH COMMANDS

Patch a New File

Exit from PATCH
Examine, Change Locations in the File

xiv

]
[}
w

:ﬂ:‘f:ﬁ

.
o

|
Hooooonumhuiw www

::::::m:::a;::nn:mm

NN
©® N O W N e e

|
=

= F'Q T?fﬂ = =]
w N NN -

[l [
[} []]
-

X
NN

L-3

5
w

L.2.4 Set Bottom Address L-4
L.2.5 Set Relocation Registers L-4
L.3 EXAMPLES USING PATCH L-4
L.4 PATCH ERROR MESSAGES L-7
APPENDIX M PATCHO M-1
M.1 CALLING AND USING PATCHO M-1
M.2 PATCHO COMMANDS M-1
M.2.1 OPEN Command M-1
M.2.2 POINT Command M-2
M.2.3 WORD Command M-2
M.2.4 BYTE Command M-3
M.2.5 DUMP Command M-4
M.2.6 LIST Command M-4
M.2.7 EXIT Command M-4
M.2.8 DEC Command M-5
M.2.9 HELP Command M-5
M.3 PATCHO LIMITATIONS M-5
M.4 EXAMPLES M-6
M.5 PATCHO ERROR MESSAGES M-7
M.5.1 Run-Time Error messages M-8
APPENDIX N DISPLAY FILE HANDLER N-1
N.1l DESCRIPTION N-1
N.1l.1 Assembly Language Display Support N-1
N.1l.2 Monitor Display Support N-2
N.2 DESCRIPTION OF GRAPHICS MACROS N-3
N.2.1 . BLANK N-3
N.2.2 .CLEAR N-4
N.2.3 « INSRT N-5
N.2.4 « LNKRT N-5
N.2.5 . LPEN N-7
N.2.6 . NAME N-9
N.2.7 « REMOV N-9
N.2.8 .RESTR N-9
N.2.9 .SCROL N-10
N.2.10 «START N-10
N.2.11 .STAT N-10
N.2.12 .STOP N-11
N.2.13 .SYNC/ .NOSYN N-11
N.2.14 .TRACK N-12
N.2.15 . UNLNK N-13
N.3 EXTENDED DISPLAY INSTRUCTIONS N-13
N.3.1 DJSR Subroutine Call Instruction N-13
N.3.2 DRET Subroutine Return Instruction N-14
N.3.3 DSTAT Display Status Instruction N-14
N.3.4 DHALT Display Halt Instruction N-14
N.3.5 DNAME Load Name Register Instruction N-15
N.4 USING THE DISPLAY FILE HANDLER N-16
N.4.1 Assembling Graphics Programs N-16
N.4.2 Linking Graphics Programs N-16

XV January 1976

?!ZE:Z

o 00 @ o o & ~ o

» o e o o e a

* e e & 0
U W N~

» .
Ld 0
(=]

APPENDIX

00 O zZ2 2Z2 zZzZzzZZz Z2 =

L . L] .
=
. . L]

» .
Ut W=

OCO0OO0O0OO0 0000

WWWWWwWwwWwWwwwwwWwwwwwwwwwwwwww LY S XN SN XY XX

® s & & 4 8 e & 2 e 2 & e 6 & 2 s ° a4 & s e e @

* & & 8 = e s P 2 2 e 6 ¢ ¥ e ° & ° & s 6 »

NNNRONN b b e e bl = b O~ OV b W N

OC000000000000O0O0O00OO0O0OO0OOOOO 00O
NMEBWNHFHOWVENOAUBWNHO

January 1976

DISPLAY FILE STRUCTURE
Subroutine Calls

Main File/Subroutine Structure
BASIC/GT Subroutine Structure

SUMMARY OF GRAPHICS MACRO CALLS
DISPLAY PROCESSOR MNEMONICS

ASSEMBLY INSTRUCTIONS
General Instructions
VTBASE

VTCALl - VTCAL4
VTHDLR

Building VTLIB.OBJ

VTMAC

EXAMPLES USING GTON

SYSTEM SUBROUTINE LIBRARY
INTRODUCTION

Conventions and Restrictions

Calling SYSLIB Subprograms
Using SYSLIB with MACRO

Running a FORTRAN Program in the Foreground

Linking with SYSLIB

TYPES OF SYSLIB SERVICES
Completion Routines
Channel-Oriented Operations
INTEGER*4 Support Functions
Character String Functions

Allocating Character String Variables

Passing Strings to Subprograms
Using Quoted-String Literals

LIBRARY FUNCTIONS AND SUBROUTINES

AJFLT
CHAIN
CLOSEC
CONCAT
CVTTIM
DEVICE
DJFLT
GETSTR
GTIM
GTJB
IADDR
IAJFLT
IASIGN
ICDFN
ICHCPY
ICMKT
ICSI
ICSTAT
IDELET
IDJFLT
IDSTAT
IENTER
IFETCH
IFREEC
IGETC

xvi

N-17
N-18
N-19
N-20

N-21
N-23

N-24
N-24
N~24
N-25
N-25
N-25

N-25

0-17
0-18
0-19
0-20
0-21

0-21
0-21

0-22
©0-23

0-24
0-25
0-26
0-27
0-28
0-29
0-29
0-30
0-31
0-32
0-34
0-35
0-36
0-37
0-39
0-40
0-41
0-42
0-43
0-44
0-45
0-46

Bk BB WWWWWWWWWLWWhODON

(SN, I
HOWVWO-NOAUMBEWNFHOWVONOAVBWNRFROWLWOYdO®

un
[8]

[\ QS ME. NC NS WS NE NS, |
oCwooJdoUba W

OV O©
N =

AN
U b

AN
(Ve Jo JEN o))

WWWWWWWWwWWwWwWwWWwwWwWwWwwWwWwWwWwWwwWwwwwwwwwiwiwiwwwwwwwwwwwwwwwwwuwwwwwwuwwwwww w

O SNSNNNNN
oOVvwoONAOANBWNKEFO

L] - L] »
=]
=

@ 0 ® o
N W N

feXeXoXeReXeXoRoXoleXeRoRoRoXeReNoNoRoNoNoRoNoNoNoNoNoNoXeloRoJo Yo NoRoN oo NoNoNoNoYoRoNe o NoRoNoRoNo oo No e RoN o N oo No o Ne/

w©
[=)]

IJCVT

ILUN

INDEX

INSERT

INTSET

IPEEK

IPOKE

IQSET

IRADS0
IRCVD/IRCVDC/IRCVDF/IRCVDW
IREAD/IREADC/IREADF/IREADW
IREMAN

IREOPN

ISAVES

ISCHED
ISDAT/ISDAC/ISDATF/ISDATW
ISLEEP
ISPFN/ISPFNC/ISPFNF/ISPFNW
ISPY

ITIMER

ITLOCK

ITTINR

ITTOUR

ITWAIT

IUNITL

IWAIT

IWRITC/IWRITE/IWRITF/IWRITW

JADD
JAFIX
JCMP
JDFIX
JDIV
JICVT
JJCVT
JMOV
JMUL
JSUB
JTIME
LEN
LOCK
LOOKUP
MRKT
MWAIT
PRINT
PURGE
PUTSTR
R50ASC
RADS0
RCHAIN
RCTRLO
REPEAT
RESUME
SCOoMP
SCOPY
SECNDS
STRPAD
SUBSTR
SUSPND
TIMASC
TIME
TRANSL

xvii

0-47
0-47
0-48
0-49
0-50
0-52
0-52
0-53
0-54
0-55
0-58
0-63
0-64
0-65
0-66
0-68
0-71
0-72
0-76
0-77
0-79
0-79
0-81
0-82
0-83
0-84
0-84
0-88
0-88
0-89
0-90
0-91
0-92
0-92
0-93
0-94
0-95
0-96
0-97
0-97
0-99
0-100
0-101
0-102
0-103
0-103
0-104
0-105
0-105
0-106
0-107
0-108
0-108
0-109
0-110
0-111
0-112
0-113
0-114
0-115
0-116

January 1976

APPENDIX
GLOSSARY

INDEX

Number

1-1

o W N -~ Vb W N =

-9
[] [} { | I
W M =

O WO moot:.o ~ o ut
!
N =~

—
—
)
[

12-1
12-2
12-3
12-4
12-5
12-6
12-7

I-1
J-1

87 TRIM
88 UNLOCK
89 VERIFY

ERROR MESSAGE SUMMARY

TABLES

RT-11 Hardware Components

Prompting Characters
Permanent Device Names
File Name Extensions
Special Function Keys
SET Command Options

EDIT Key Commands

Command Arguments

Immediate Mode Commands

PIP Switches

Legal Separating Characters
Linker Switches

LIBR Switches

Forms of Relocatable Expressions
Internal Registers

Radix 50 Terminators

Summary of Programmed Requests
Requests Requiring the USR

Directives not Available in ASEMBL

Command Field Switches

File Name Extensions
Specification Field Switches
Character Interpretation
BATCH Commands

Operator Directives to BATCH Run-Time Handler
Differences Between RT-11 and RSX-11D BATCH

Card Code Conversions
DUMP Switches

FITLEX Switch Options

January 1976 xviii

0-118
0-118
0-119
P-1
GLOSSARY-1

INDEX~1

Page

[
1
jea

N NN
U |
w N

1
w wun N = YU b

L W ww
J
—

o oo o ~J ('h w
T

HHUO W W o

[=]

-V}
|

o
o !

11-2

12-3
12-7
12-8
12-9
12-12
12-50
12-53

H-23

I-2

K-1
L-1
N-1

0-1
0-2

SRCCOM Switches

PATCH Commands

Description of Display Status Words

Summary of SYSLIB Subprograms
Special Function Codes

FIGURES

Number Page

W NN

wm w;
| ' |

|
[&, 0 -1 (VSR SN W~ W »n [- N

AN N OVN [E NS S T NS,
I

oW N

—
N
|

1

RT-11 System Memory Maps
RT-11 Memory Map (GT40)

Display Editor Format

Assembly Source Listing of MACRO
Code Showing Local Symbol Blocks
Example of MACRO Line Printer
Listing (132-column Line Printer)
Example of Page Heading From
MACRO 80-column Line Printer
Symbol Table

Assembly Listing Table of Contents
.IRP and .IRPC Example

MACRO Source Code

CREF Listing Output

Linker Load Map for Background Job
Overlay Scheme

Memory Diagram Showing BASIC

Link with Overlay Regions

Run-Time Overlay Handler

Library Searches

Alphabetized Load Map for a Background Job

General Library File Format
Library Header Format
Format of Entry Point Table
Library End Trailer

EOF Card

xix

K-2

N-8

0-17
0-73

6-10
6-11

6-12
6-17
6-19
7-12
7-13
7-13
7-14

12-45

January 1976

PREFACE

This manual describes the use of the RT-11 Operating System. It
assumes the reader is familiar with computer software fundamentals and
has had some exposure to assembly language programs. The section
"Additional and Reference Material" later in this Preface lists
documents that may prove helpful in reviewing those areas. The
Glossary provides definitions of technical terms used in the manual.

The user who is unfamiliar with RT-11 should first read those chapters
of interest (see "Chapter Summary" below) to become familiar with
system conventions. Having gained familiarity with RT-11, the wuser
can then reread the manual for specific information,.

Chapter Summary

Chapter 1 discusses system hardware and software requirements. It
describes general system operations and lists specific components
available under RT-11.

Chapter 2 introduces the user to system conventions and monitor/memory
layout. It describes in detail the keyboard commands for controlling
jobs and implementing user programs.

Chapters 3 through 8 describe the system utility programs EDIT, PIP,
MACRO, LINK, LIBR, and ODT, respectively. These programs (a text
editor, file transfer program, assembler, linker, 1librarian, and
debugging program) aid the user in creating text files and producing
assembly-language programs.

Chapter 9, which describes programmed reguests, is of particular
interest to the experienced programmer. It describes call seguences
that allow the user to access system monitor services from within
assembly-language programs.

Chapters 10 and 11 describe the 8K Assembler and EXPAND programs,
respectively. These programs are useful in RT-11 installations with
minimum memory configurations.

Chapter 12 describes the BATCH command language for RT-11. In BATCH
mode, the RT-11 system can be left to run unattended for long periods
of time.

The appendixes summarize the contents of the manual and describe
additional system wutility programs that can be used for extended
system operations. These programs include SRCCOM (a source file
comparison program); FILEX (a file translation program that allows

xxi January 1976

Preface

transfer of files between RT-11 and other DIGITAL operating systems);
PATCH and PATCHO (patching programs); DUMP (a file dump program);
and SYSLIB (a library of programmed requests for FORTRAN users).

Version History

The current RT-11 system (monitor) is Version 2C (V2C). Each system
component (monitors and utilities) is assigned a software
identification number in the form Vxx-xx. Current identification
numbers for V2C are listed in the RT-11 System Release Notes
(DEC-11-ORNRA-A-D). To determine whether the correct version of a
component is in use, examine its identification number and compare it
with the list. (The procedure for examining the version number
varies. Most system programs provide a special command; others print
the version number when an output listing is requested. Consult the
approiate chapter or appendix of this manual for each component.)

NOTE

Throughout this manual, any references
to V2 or V2B of RT-11 will pertain also
to V2C. The RT-11 System Release Notes
contain a comprehensive list of
differences between V2C and previous
versions of RT-11 (V2B, V2, V1).

Change bars and asterisks in the outermost margins of the manual are
used to denote changes made to the text since the Version 2 release
(DEC-11-ORUGA-B-D). The date July 1975 in the lower outside corner of
a page indicates that the page was changed as a result of a
release-independent update that occurred in July, 1975. The date
January 1976 in the lower outside corner of the page indicates that
the page was changed specifically as a result of the V2C update.

The user who is already familiar with the Version 2B RT-11 System
Reference Manual (DEC-11-ORUGA-C-D,DN1) should first read the RT-11
System Release Notes document to note the major differences between
V2B and V2C, and then read those pages of the RT-11 System Reference
Manual that have changed as a result of the V2C update (identified by
the date January 1976) . The RT~11 System Generation Manual
(DEC-11-ORGMA-A-D) should also be read if customization for special
devices and features is required. '

The user who is familiar with only the Version 2 RT-11 System
Reference Manual (DEC-11-ORUGA-B-D) should read the following 1in
addition to those items mentioned in the preceding paragraph:

Chapter 2 (System Communication) - Tables 2-2, 2-3, and 2-5
Chapter 3 (Text Editor) - Section 3.6.5.6
Chapter 9 (Programmed Requests) - Sections 9.1 and 9.1.3.6
Chapter 12 (BATCH) - Entire Chapter
Appendix H (F/B Programming

And Device Handlers) - Sections H.2.4 and H.2.5
Appendix O (SYSLIB) - Entire Appendix

Finally, the user familiar with only the Version 1 RT-11 System
Reference Manual (DEC-11-ORUGA-A-D) should read this entire manual
with these exceptions:

January 1976 oeii

Preface

Chapter 3 (Text Editor) - note Section 3.7

Chapter 5 (MACRO Assembler) - note Section 5.7

Chapter 8 (0DT) - note restrictions in Section
8.1

Chapter 10 (EXPAND)
Chapter 11 (ASEMBL)
Appendix L (PATCH)

While knowledge of Versions 2 and 2B is sufficient for use of V2C,

knowledge of Version 1 is not; the user with Version 1 knowledge only
should carefully read the manual.

Additional and Reference Material

The following manuals provide an introduction to the PDP-11 computer
family and the basic PDP-11 instruction set:

PDP-11 Paper Tape Software Programming Handbook**
(DEC-11-XPTSA-B-D)

PDP-11 Processor Handbook*

PDP-11 Peripherals Handbook*

The following manual provides an introduction to the use of RT-11 by
presenting a simple demonstration of basic operating procedures:

RT-11 System Generation Manual* (DEC-11-ORGMA-A-D)

These manuals describe the capabilities of the optional high-level
language components:

BASIC/RT-11 Language Reference Manual** (DEC-11-LBACA-D-D)
PDP-11 FORTRAN Language Reference Manual** (DEC-11-LFLRA-B-D)
RT-11/RSTS/E FORTRAN IV User's Guide** (DEC-11-LRRUA-A-D)

Summaries of the features provided by each 1language appear in this
manual in Appendixes F and G respectively.

Two PDP-11 system manuals are helpful when using FILEX (Appendix J) to
convert programs between DOS, RSTS, and RT-11 formats:

PDP-11 Resource Sharing Time-Sharing System User's Guide#**
(DEC-11-ORSUA-D-D)
DOS/BATCH Handbook** (DEC-11-ODBHA-A-D)

Users of display hardware may wish to refer to the appropriate
hardware manual:

GT40/42 User's Guide*** (39H150)

GT44 User's Guide*** (39H250)

VT1ll Graphic Display Processor Manual*** (79H650)
DECscope User's Manual*** (EK-VT50-0P)

The experienced programmer will want to read the following manual:

RT-11 Software Support Manual* (DEC-11-ORPGA-B-D)

*Included in the RT-11 Software Kit
**May be ordered from the DIGITAL Software Distribution Center
***May be ordered from DIGITAL Communication Services

xxiii January 1976

Preface

Consult the following for a list of all manuals available in the RT-11
software documentation set:

RT-11 Documentation Directory* (DEC-11-ORDDA-A-D)

Documentation Conventions

Conventions used throughout this manual include the following:

1. Actual computer output is used in examples wherever possible.
When necessary, computer output is underlined to
differentiate from user responses.

2. A line feed (character or key) is represented in the text as
<LF>; a carriage return (character or key) is represented as
<CR>. Unless otherwise indicated, all commands and command
strings are terminated by a carriage return.

3. Terminal, console terminal, and teleprinter are general terms
used throughout all RT-11 documentation to represent any
terminal device, including DECwriters, displays, and
Teletypes****, RP(02 is a generic term used to represent both
the RP11C/RP02 and RP11E/RPR02 disks.

4. Several characters in system commands are produced by typing
a combination of keys concurrently; for example, the CTRL
key is held down while typing an O to produce a command which
causes suppression of teleprinter output. Key combinations
such as this are documented as CTRL O, CTRL C, SHIFT N, and
so forth.

*Included in the RT-11 Software Kit
****Teletype is a registered trademark of the Teletype Corporation.

January 1976 wiv

CHAPTER 1

RT-11 OVERVIEW

RT-11 is a single-user programming and operating system designed for
the PDP-1l series of computers. This system permits the use of a wide
range of peripherals and up to 28K of either solid state or core
memory (hereafter referred to as memory).

RT-11 provides two operating environments: Single-Job operation, and
a powerful Foreground/Background (F/B) capability(l).

Single-Job operation allows only one program to reside in memory at
any time; execution of the program continues until either it is
completed or it is physically interrupted by the user at the
console. ’

In a Foreground/Background environment, two independent programs may
reside in memory. The foreground program is given priority and
executes until it relinquishes control to the background program; the
background program is allowed to execute until control is again
required by the foreground program, and so on., This sharing of system
resources greatly increases the efficiency of processor usage.

To handle both operating environments, RT=-11 offers two completely
compatible and versatile monitors (Single-job and F/B); either monitor
provides complete user control of the system from the console terminal
keyboard. Monitor commands which allow the user to direct single-job,
foreground, and background operations are described in Chapter 2,

In addition to the monitor facilities, RT-1l1l offers a full complement
of system programs; these allow program development using high level
languages such as FORTRAN IV and BASIC or assembly language (MACRO or
EXPAND/ASEMBL), System programs are summarized in Section 1.2 and are
discussed in detail in individual chapters and appendixes of this
manual,

(1) The uses and advantages of each environment are outlined later in
this chapter,

RT-11 Overview

1.1 PROGRAM DEVELOPMENT

Computer systems such as RT-11 are often used extensively for program
development, The programmer makes use of the programming *"tools"”
available on his system to develop programs which will perform
functions specific to his needs. The number and type of “"tools"
available on any given system depend on a good many factors--the size
of the system, its application and its cost, to name a few. Most
DIGITAL systems, however, provide several basic program development
aids: these generally include an editor, assembler, linker, debugger,
and often a librarian; a high level language (such as FORTRAN IV or
BASIC) is also usually available.

An editor is used to create and modify textual material. Text may be
the lines of code which make up a source program written in some
programming language, or it may be data; text may be reports, or
memos, or in fact may consist of any subject matter the user wishes.
In this respect using an editor is analogous to using a
typewriter--the user sits at a keyboard and types text. But the
advantages of an editor far exceed those of a typewriter because once
text has been created, it can be modified, relocated, replaced,
merged, or deleted--all by means of simple editing commands. When the
user is satisfied with his text, he can save it on a storage device
where it is available for later reference,

If the editor is used for the purpogse of writing a source program,
development does not stop with the creation of this program. Since
the computer cannot understand any language but machine language
(which is a set of binary command codes), an intermediary program is
necessary which will convert source code into the instructions the
computer can execute. This is the function of an assembler,

The assembler accepts alphanumeric representations of PDP-11 coding
instructions (i.e., mnemonics), interprets the code, and produces as
output the appropriate object code. The user can direct the assembler
to generate a 1listing of both the source code and binary output, as
well as more specific listings which are helpful during the program
debugging process. In addition, the assembler is capable of detecting
certain common coding errors and of issuing appropriate warnings.

The output produced by the assembler is called object output because
it is composed of object (or binary) code. oOn PDP~11 systems, the
object output is called a module and containg the user's source
program in the binary language which is acceptable to a PDP=-11
computer, .

Source programs may be complete and functional by themselves;
however, some programs are written in such a way that they must be
used in conjunction with other programs (or modules) in order to form
a complete and logical flow of instructions. For this reason the

The linker combines and relocates Separately assembled object
programs, The output produced by the 1linker consists of a load
module, which is the final linked pProgram ready for execution. The
user can, at his option, request a load map which displays all
addresses assigned by the linker,

1-2:

RT-11 Overview

Very rarely is a program created which does not contain at 1least one
unintentional error, either in the 1logic of the program or in its
coding. Errors may be discovered by the programmer while he is
editing his program, or the assembler may find errors during the
assembly process and inform the programmer by means of error codes.
The linker may also catch certain errors and issue appropriate
messages, Often, however, it is not until execution that the user
discovers his program is not working properly. Programming errors may
be extremely difficult to find, and for this reason a debugging tool
is usually available to aid the programmer in determining the cause of
his error.

A debugging program allows the wuser to interactively control the
execution of his program, With it, he can examine the contents of.
individual locations, search for specific bit patterns, set designated
stopping points during execution, change the contents of locations,
continue execution, and test the results, all without the need of
re-editing and re-assembling,

When programs are successfully written and executed, they may be
useful to other programmers. Often routines which are common to many
programs (such as XI/0 routines) or sections of code which are used
over and over again, are more useful if they are placed in a library
where they can be retrieved by any interested user, A librarian
provides such a service by allowing creation of a library file, Once
created, the library can be expanded, updated, or listed.

High level languages simplify the programmer's work by providing an
alternate means of writing a source program other than assembly
language mnemonics. Generally, high 1level languages are easy ¢to
learn--a single command may cause the computer to perform many machine
language instructions. The user does not need to know about the
mechanics of the computer to use a high level language., In addition,
some high level languages (like BASIC) offer a special immediate mode
which allows the user to solve equations and formulas as though he
were using a calculator, Assembling and linking are done
automatically so that the user can concentrate on solving the problem
rather than using the system,

These are a few of the programming tools offered by most computer
systems., The next section summarizes specific programming aids
available to the user of RT-11l.

1.2 SYSTEMASOFTWARE COMPONENTS
The following is a brief summary of the RT-1ll system programs:

l. The Text Editor (EDIT, described in Chapter 3) is wused to
create or modify source files for use as input to language
processing programs such as the assembler or FORTRAN, EDIT
contains powerful text manipulation commands for quick and
easy editing of a text file, EDIT also allows use of a VTI1l
display processor (such as the GT44), if one is part of the
hardware configuration (see Section 1.3).

2. The MACRO Assembler (Chapter 5) brings the capabilities of
macros to the RT-1l1] system with 12K (or more) memory.
(Macros are instructions in a source or command language
which are equivalent to a specified sequence of machine

1-3

RT-11 Overview

3.
4.

5.
6,

8.

9.

i
i 10.
|
|
|
\

instructions or commands.) The assembler accepts source files
written in the MACRO language and generates a relocatable
object module to be processed by the Linker before 1loading
and execution. Cross reference 1listings of assembled
programs may be produced using CREF in conjunction with the
MACRO Assembler.

EXPAND (Chapter 10) is used in an 8K F/B job area or 8K
systems (or in larger systems with programs of great size) to
expand macros in an assembly language program into macro-free
source code, thus allowing the program to be assembled in 8K
using ASEMBL,

ASEMBL (Chapter 11) is an assembler designed for use in an 8K
RT-11 system, an 8K F/B job area, or larger systems where
symbol table space is a factor. ASEMBL is a subset of
MACRO-11 with more limited features. (CREF is not available
under ASEMBL.,)

The Linker (LINK, described in Chapter 6) fixes (i.e., makes
absolute) the values of relocatable symbols and converts the
relocatable object modules of compiled or assembled programs
and subroutines into a load module which can be loaded and
executed by RT-11, LINK can automatically search library
files for specified modules and entry points; it can produce
a load map (which lists the assigned absolute addresses) and
can provide automatic overlay capabilities to very large
programs. The Linker can also produce files suitable for
running in the foreground,

The Librarian (LIBR, see Chapter 7) allows the user to create
and maintain his own 1library of functions and routines.
These routines are stored on a random access device as
library files, where they can be referenced by the Linker.

The Peripheral Interchange Program (PIP, see Chapter 4) is
the RT-1l1 file maintenance and utility program., It is used
to transfer files between all devices which are part of the
RT-11 system, to rename or delete files, and to obtain
directory listings.

SRCCOM (Source Compare, described in Appendix K) allows the
user to perform a character-by-character comparison of two or
more text files. Differences can be listed in an output file
or directly on the line printer or terminal, thus providing a
fast method of determining, for example, if all edits to a
file have been correctly made,

FILEX (Appendix J) allows file transfers to occur between
DECtapes used under the DECsystem=10 or PDP-11 RSTS system,
and DECtape and disk used under the DOS/BATCH system, and any
RT=11 device,

The PATCH utility program (Appendix L) is used to make minor
modifications to memory image files (output files produced by
the Linker); it is used on files which do or do not have
overlays. PATCHO (Appendix M) is wused to make minor
modifications to files in object format {output files
produced by the FORTRAN compiler and the Librarian, or MACRO
and ASEMBL assemblers),

1-4

RT=11 Overview

11, ODT (On-line Debugging Technique, described in Chapter 8)
aids in debugging assembled and linked object programs. It
can print the contents of specified locations, execute all or
part of the object program, single step through the object
program, and search the object program for bit patterns.

12, DUMP (Appendix I) is used to print for examination all or any
part of a file in octal words, octal bytes, ASCII and/or
RAD50 characters (see Chapter 5).

13. BATCH (Chapter 12) is a complete job control language that
allows RT-11 to operate unattended. The BATCH stream may be
composed of RT-1l monitor commands or system-independent
BATCH jobs (jobs that will run on any DIGITAL system
supporting the BATCH standard; currently RT-11 and RSX-11D).
BATCH streams can be executed under the Single-Job Monitor
or in the background under the F/B Monitor.

14. The RT-11 FORTRAN System Subroutine Library (SYSLIB, Appendix
0) is a collection of FORTRAN callable routines that make the
programmed requests and various utility functions available
to the FORTRAN programmer. SYSLIB also provides a complete
string manipulation package and two-word integer package for
RT-11 FORTRAN.

BASIC and FORTRAN IV are two high 1level 1languages available under
RT-11, Summaries of their language features and commands are provided
in Appendixes F and G of this manual.

1.3 SYSTEM HARDWARE COMPONENTS

The minimum RT-11 system (that is, one that does not use the F/B
capability) requires a PDP-11 series computer with at least 8K of
memory, a random-access device, and a console terminal. The F/B
capability requires at least 16K of memory and a line frequencv clock.
For specific hardware/software interdependent requirements, refer to
the RT-1]1 System Release Notes.

Devices supported by RT-11 are 1listed in Table 1-1. The third
(middle) column lists devices for which support is initially provided
in the system as distributed; these devices can be used with no
modification (to either the monitor tables or the handlers) necessarv.
The aevices in the fourth column are supported after simple
modifications to the monitor tables or handlers. The system
customization section of the RT-11 System Generation Manual describes
how to make these modifications. The F1fth column 1ists devices for
which no support is provided, but which may be interfaced by the user.
Currently, the kS64 disk is the only device in this category, and
instructions for its interface are provided in the RT-11 Software
Support Manual.

Consult the RT-11 System Generation Manual for modifications that may
be made to existing system devices (for example, varying the baud rate
of a terminal).

1-5 January 1976

RT-11 Overview

Table 1-1
RT-11 Hardware Components
Devices Re-
System-Installed quiring System User-Installed
Category Controller Devices Modification Devices
DISK
DECpack RK11 RKOS
Cartridge
Fixed-head RF11 RS11
RC11 RS64
RH11 RJSO3 RIS04
Removable RP11 RP0O2 RPO3
Pack
Diskette RX11 RX01 RX01 (second
controller)
DECTAPE TCl1 TUS6
MAGTAPE TM11/TMA11l TU10,TS03
RH11 TJULl6
CASSETTE TAll TU60
HIGH-SPEED PC1ll1 PCll (both)
PAPER TAPE PR11 PR11 (reader only)
READER/PUNCH
LINE PRINTER Ls11 LS1l, LAl80
LV1l LV1l (printer only)
LP1ll all LP11l controiled
printers
CARD READER CR11 CR11
CM11 CM11
TERMINAL DL11 LT33, LT3S
LA30P, LA36, LA30S
VvT50, VT52,
VTOS
DISPLAY VT11l VR14-L,VR17-L
PROCESSOR
CLOCK KW1l-L
January 1976 1-6

3

)!

RT=-11 Overview

RT-11 operates in environments ranging from 8K to 28K words of memory.
Reconfiguration for different memory sizes is unnecessary--the same
system device operates on any PDP-11 processor with 8K to 28K of
memory and makes use of all memory available,

1.4 USING THE RT=1l SYSTEM

As mentioned earlier in the chapter, the RT-1l1 system offers two
complete operating environments. Each is controlled by a single user
from the console terminal keyboard by means of an appropriate
monitor--Single-Job or Foreground/Background, Both monitors are
completely compatible and allow full user interaction with all
features which are a part of the operating environment in use,

The choice of which environment to use, and, consequently, which
monitor to run, depends upon the needs of the user, The next two
sections provide information useful in determining which monitor is
more suitable for certain applications.

l1.4.1 RT-11 Single-Job Monitor

The RT-11 Single~Job Monitor provides a single-user, single-program
system which can operate in as little as 8K of memory. Since the
Single-Job Monitor itself requires approximately one-half the memory
space needed by the Foreground/Background Monitor, this system is
ideal for extensive program development work; a much larger area of
memory is available for the user program and its buffers and tables.
Programs requiring extremely high data rates are best run in the
Single-Job environment, since interrupts can be serviced at a much
higher rate.

All system programs (listed in Section 1l.2) can be used under the
Single=Job Monitor, and many of the features of the
Foreground/Background Monitor (i.e., KMON commands and programmed
requests not used to control foreground jobs) are supported.

In effect, the Single~Job Monitor is much smaller and slightly faster
than the Foreground/Background Monitor; it can best be used when
program size is the important factor.

1.4.2 RT-11 Foreground/Background Monitor

Quite often the central processor of a computer system may spend a
large percentage of time waiting for some external event to occur, the
most common event being the completion of an I/O transfer (this is
particularly true of real time jobs). Many users would like to take
advantage of this unused capacity to accomplish other lower-priority
tasks such as further program development or complex data analysis.
The Foreground/Background system provides this capability.

In a Foreground/Background system the foreground job is the
time-critical, on-line job, and is given top priority; whenever
possible the processor runs the foreground job. However, when the
foreground job reaches a state in which no more processing can be done

-~

AR S I e 1

RT=11 Overview

until some external event occurs, the monitor will try to run the
lower priority background job. The background job then runs until the
foreground job is again in a runnable state, at which point the
processor will interrupt the background job and resume the foreground
job.

In general, the RT-11 Foreground/Background System is designed to
allow a time=critical job to run in the foreground, while the
background does non-time-critical jobs, such as program development.
(All RT-1l system programs run as the background job in a F/B system.)
Thus, the user can run FORTRAN, BASIC, MACRO, etc. in the background
while the foreground may be collecting data and storing and/or
analyzing it,

Most user programs written for an RT-11l System can be 1linked (using
the Linker described in Chapter 6) to run as the foreground job.
There are a few coding restrictions, and these are explained in
Appendix H, F/B Programming and Device Handlers. A foreground program
has access to all of the features available to the background job
(opening and closing files, reading and writing data, etc.). In
addition, the F/B System gives the user the ability to set timer
routines, suspend and resume F/B jobs, and send data and messages
between the two jobs.

1,4,3 PFacilities Available Only in RT-11 F/B

As mentioned previously, RT=-1l1 F/B allows the user to write and
execute two independent programs. Some features which are available
only to the F/B user include:

l. Mark Time--~This facility allows user programs to set clock
timers to run for specified amounts of time., When the timer
runs out, a routine specified by the user is entered, There
may be as many mark time requests as desired, providing
system queue space is reserved (see .QSET, Chapter 9).

2, Timed Wait--This feature allows the user program to “sleep”
until the specified time increment elapses, Typically, a
program may need to sample data every few seconds or even
minutes, While the program is idle, the other job can run,
The timed wait accomplishes this; when the time has elapsed,
the issuing job is again runnable (see ,TWAIT, Chapter 9).

3. Send Data/Receive Data--It is possible, under RT-1l1] F/B, to
have the foreground and background programs communicate with
one another, This is accomplished with the send/receive data
functions, Using this facility, one program sends messages
(or data) in variable size blocks to the other job. This can
be used, for example, to pass data from a foreground
collection program directly to a background analysis program
(see .SDAT/.RCVD, Chapter 9).

CHAPTER 2
SYSTEM COMMUNICATION

The monitor is the hub of RT-1l system communications; it provides
access to system and user programs, performs input and output
functions, and enables control of background and foreground jobs.

The user communicates with the monitor through programmed requests and
keyboard commands. The keyboard commands (described in Section 2.7)
are used to load and run programs, start or restart programs at
specific addresses, modify the contents of memory, and assign and
deassign alternate device names.,

Programmed requests (described in detail in Chapter 9) are source
program instructions which pass arguments to the monitor and request
monitor services, These instructions allow user assembly language
programs to utilize the available monitor features,

2.1 START PROCEDURE

After the system has been built (see the RT-11 System Generation
Manual), the monitor can be loaded into memory from disk or DECtape as

follows:

1. Press HALT.

2. Mount the system device on unit 0 {(or the appropriate unit if
a unit other than 0 is to be used).

3. WRITE PROTECT the system unit.

If the hardware configuration includes a hardware bootstrap capable of
booting the system device,

1. Set the switch register to the appropriate address and press
LOAD ADRS.

2. If a second address is required, set the switch register to
that address.

3. Press START.

2-1 January 1976

System Communication

If a hardware bootstrap is not available, or if an RK disk unit
other than 0 is to be used as the system device, one of the following
bootstraps must be entered manually using the Switch Register. First
set the Switch Register to 1000 and press the LOAD ADRS switch. Then
set the Switch Register to the first value shown for the appropriate
bootstrap and raise the DEPosit switch, Continue depositing the
values shown.

Disk
DECtape (RK Disk other
(RK11,RK05) than Unit 0) (RF11) (RJS03/4) (RP11/RP02) (RX11/RX01)

12700 12700 12700 12700 12705 12705 12702
177344 177406 177406 177466 172044 176716 1002n7++

12710 12710 12760 5010 12745 12715 12701

177400 177400 xXXXXX * 5040 177400 177400 177170

12740 12740 4 12740 12745 12745 130211

4002 5 12700 177400 71 5 1776

5710 105710 177406 12740 32715 105715 112703

100376 100376 12710 5 100200 100376 7

12710 5007 177400 105710 1775 5007 10100

3 12740 100376 100762 10220

105710 5 5007 5007 402

100376 105710 12710

12710 100376 1

5 5007 6203

105710 103402

100376 * xxxxxx = 20000 for unit 1 112711

5007 40000 for unit 2 111023

60000 for unit 3 30211

100000 for unit 4 1776

120000 for unit 5 100756

140000 for unit 6 103766

160000 for unit 7 105711

100771

5000

22710

240

** n = 4 for unit 0 1347

6 for unit 1 122702

247

5500

5007

When all the values have been entered, set the switches to 1000 and
press the LOAD ADRS and START switches.

The monitor loads into memory and prints one of the following
identification messages followed by a dot (.) on the terminal:

RT-118J V02C-xx
RT-11FB V02C-xx

The message printed indicates which monitor (Single=Job or F/B) has

been 1loaded; the user may determine which is to be loaded during the
system build operation.

After the message has printed, the system device should be WRITE
ENABLED. The monitor is ready to accept keyboard commands.

January 1976 2-2

GYend

i%wf

System Communication

To bring up an alternate monitor while under control of the one
currently running (in this case, F/B), run PIP to perform the following
operations:

1. Preserve the running monitor by renaming it to yyyyyy.SYS
(the actual name yyyyyy is not significant, although it is
suggested that yyMNSJ for Single-Job and yyMNFB for Fore-
ground/Background be used to be consistent with system con-
verntions; yy in this case represents the disk type):

.R PIP
#RKO . RKMNFB. SYS=RKB:MONITR. SYS/R/'Y
2REBOOT?

2. Rename the desired monitor to MONITR.SYS:

*RKB :MONITR. S5YS=RKO :RKNMNSJ. SYS/R,Y
2REBOOT?

3. Write the new bootstrap from the new MONITR.SYS file
(using the PIP /U option; A is a dummy filename, which
must be present in the command line):

#2RKB:A=RKO:HONITR. SY5/U

4. Reboot the system.
*RK8:/0

RT-115J Ya2l-8:2

Refer to the RT-11 System Generation Manual for an example of switching
monitors.

2-2.1 January 1976

This page intentionally blank.

3

™~

-~ .

System Communication

2,2 SYSTEM CONVENTIONS

Special character commands, file naming procedures and other
conventions that are standard for the RT-1l system are described in
this section. The user should be familiar with these conventions
before running the system,

2.2.1 Data Formats

The RT-1ll system makes use of five types of data formats: ASCII,
object, memory image, relocatable image, and load image.

Files in ASCII format conform to the American National Standard Code
for Information Interchange, in which each character is represented by
a 7-bit code., Files in ASCII format include program source files
created by the Editor, listing and map files created by various system
programs, and data files consisting of alphanumeric characters. A
chart containing ASCII character codes appears in Appendix C,

Files in object format consist of data and PDP-11 machine language
code. Object files are those output by the assembler or FORTRAN
compiler and are used as input to the Linker,

The Linker can output files in memory image format (.SAV), relocatable
image format (.REL), or load image format (,LDA),

A memory image file (.SAV) is a *picture' of what memory will 1look
like when a program is loaded. The file itself requires the same
number of disk blocks as the corresponding number of 256-word memory
blocks.

A relocatable image file (.REL) is one which can be run in the
foreground. It differs from a memory image file in that the file is
linked as though its bottom address were 0. When the program is called
(using the monitor FRUN command), the file is relocated as it is
loaded into memory. (A memory image €£file requires no such
relocation.)

2-3 January 1976

L1 TS e s et ¥ TN N BT A b AT M e o e S 0 et

System Communication

A load image (or .LDA) file may be produced for compatibility with the
PDP-11 Paper Tape System and is loaded by the absolute binary loader.
LDA files can be loaded and executed in stand-alone environments
without relocation.

2,2.2 Prompting Characters

The following table summarizes the characters typed by RT-1l1 to
indicate to the user either that the system is awaiting user response
or to specify which 3job (foreground or background) is producing
output:

Table 2-1
Prompting Characters
Character Meaning
o The Keyboard Monitor is waiting for a command (see

Section 2.3.2).

* The Command String Interpreter is waiting for a
command string specification as explained in
Sections 2.,3.3 and 2.5.

t When the console terminal is being used as an
input file, the uparrow prompts the user to enter
information from the keyboard. If the input is
entered under EDIT or BASIC (or any program that
accepts input in special terminal mode as
described in Chapter 9), the characters entered
are not echoed, Typing a CTRL Z marks the
end-of-file.

> The > character is used (under the F/B Monitor and
only if a foreground job is active) to identify
which job, foreground or background, is producing
the output currently appearing on the console
terminal., Each time output from the background
job is to appear, B> is printed first, followed by
the output., If the foregqround job 1is to print
output, F)> 1is typed first, B> and F> are also
printed as a result of the CTRL B and CTRL F
commands described in Table 2-4,

2.2.3 Physical Device Names

Devices are referenced by means of a standard two-character device
name. Table 2-2 lists each name and its related device. If no unit
number is specified for devices which have more than one unit, unit 0
is assumed,

~

System Communication

Table 2-2
Permanent Device Names
Permaﬁent Name I/0 Device
CR: Card Reader (CR1l/CMll). .
CTn: TAll cassette (n is the unit number, 0 or 1l).
DK3 The default logical storage device for all files.

DK is initially the same as SY: (see below), but the
assignment (as a logical device name) can be changed
with the ASSIGN Command (Section 2.7.2.4).

DKn: The specified unit of the same device type as DK.

DPn: RP02 disk (n is an integer in the range 0-7).

DSn: RJS03/4 fixed-head disks (n is in the range 0-7).

DTn: DECtape n, where n is a unit number (an integer in
the range 0 to 7, inclusive).

DXn: RX01 Floppy disk (n is 0 or 1).

LP: Line printer,

MMn : TJUl6 magtape (n is in the range 0-7).

MTn: TM11l (industry compatible) magtape (n is an integer
between 0 and 7, inclusive).

PP: High-speed paper tape punch.

PR: High~-speed paper tape reader,

RF: RF1l fixed-head disk drive.

RKn RK disk cartridge drive n (n is in the range 0 to
7 inclusive).

SY: System device; the device and unit from which the
system is bootstrapped, (RT-11 allows
bootstrapping from any KK unit; refer to Section
2.1.) The assignment as a logical device name car.

S¥n: The specified unit of the same device type as that
from which the system was hootstrapped.

TT: Terminal keyboard and printer,

In addition to the fixed names shown in Table 2-2, devices can be
assigned logical names. A logical name takes pracedence over a
physical name and thus provides device independence., With this
feature a program that is coded to use a specific device does not need
to be rewritten if the device is unavailable., Refer to Section
2.7.2.4 for instructions on assigning logical names to devices.

2.2.4 File Names and Extensions

Files are referenced symbolically by a name of one to six alphanumeric
characters followed, optionally, by a period and an extension of up to
three alphanumeric characters. (Excess characters in a filename may
cause an error message.) The extension to a filename generally
indicates the format of a file. It is a good practice to conform to

2-5 January 1976

be changed with the ASSIGN command (Section 2.7.2.4).

System Communication

the standard filename extensions for RT-11l, If an extension is not
specified for an input or output file, most system programs assign
appropriate default extensions. Table 2=-3 1lists the standard
extensions used in RT-11l,

Table 2-3
File Name Extensions
Extension Meaning
«BAD Files with bad (unreadable) blocks; this

extension can be assigned by the user
whenever bad areas occur on a device, The
«BAD extension makes the file permanent in
that area, preventing other files from using
it and consequently becoming unreadable,

«BAK Editor backup file.

BAS BASIC source file (BASIC input).

.BAT BATCH command file.

.CTL BATCH control file generated by the
BATCH compiler.,

-CTT BATCH internal temporary file.

«DAT BASIC or FORTRAN data file.

.DIR Directory listing file

«DMP DUMP output file,

.FOR FORTRAN IV source file (FORTRAN input).

.LDA Absolute binary file {(optional Linker
output) .,

+LLD Library listing file.

.LOG BATCH log file.

JLST Listing file (MACRO or FORTRAN output).

+MAC MACRO or EXPAND source file (MACRO, EXPAND,
SRCCOM input),

+«MAP Map file (Linker output),

+OBJ Relocatable binary file (MACRO, ASEMBL,

FORTRAN IV output, Linker input, LIBR input
and output).

+PAL Output file of EXPAND (the MACRO expander
program), input file of ASEMBL.

<REL Foreground job relocatable image (Linker
output, default for monitor FRUN command).

+SAV Memory image or SAVE file; default for R,
RUN, SAVE and GET Keyboard Monitor commands;
also default for output of Linker.

Temporary source file generated by BATCH.
«SYS System files and handlers.

«.SOu

2~-6

System Communication

If a filename with a blank extension is to be used in a command line
in which a default extension is assumed (by either the monitor or a
system program), the user must insert a period after the filename to
indicate that there is8 no extension, For example, to run the file
TEST, types

. RUN TEST.

If the period after the filename is not given, the monitor assumes the
+SAV extension and attempts to run a file named TEST,SAV,

2.2.5 Device Structures

RT-11 devices are categorized by the physical structure of the device
and the way in which the device allows information to be processed.

All RT-11 devices are either random-access or sequential-access devices.
Random-access devices allow blocks of data to be processed in a random
order -- that is, independent of the data's physical location on the
device or its location relative to any other information. All disks
and DECtape fall into this category. Random-access devices are some-
times also called block-replaceable devices, because individual data
blocks can be manipulated (rewritten) without affecting other data
blocks on the device. Sequential-access devices require that data be
processed sequentially; the order of processing data must be the same
as the physical order of the data. RT-11 devices that are considered
sequential devices are magtape, cassette, paper tape, card reader,
line printer, and terminal.

File-structured devices are those devices that allow the storage of
data under assigned filenames. RT-1l1l devices that are file-structured
include all disks, DECtape, magtape, and cassette. Nonfile-structured
devices, on the other hand, are those used to contain a single logical
collection of data. These devices are used generally for reading and
listing information, and include line printer, card reader, terminal,
and paper tape devices.

Finally, file-structured devices are classified further as RT-11 direc-
tory-structured devices if they provide a standard RT-11 directory at
the beginning of the device (the standard RT-11 directory is defined

in the RT-11 Software Support Manual). The directory contains informa-
tion about all files stored on the device and is updated each time a
file is moved, added, or deleted from the device. RT-11 directory-
structured devices include all disks and DECtapes. NonRT-1l directory-
structured devices are file-structured devices that do not have the
standard RT-11 directory structure at their beginning. For example,
some devices, such as magtape and cassette, have directory-type infor-
mation stored at the beginning of each file; the device must be read
sequentially to obtain all information about all files.

It is possible to interface a device to the RT-11 system with a user-
defined directory structure; procedures are explained in the RT-11
Software Support Manual.

2-7 January 1976

System Communication

2.3 MONITOR SOFTWARE COMPONENTS
The main RT-11 monitor software components ares
Resident Monitor (RMON)
Keyboard Monitor (KMON)
User Service Routine (USR) and Command String Interpreter (CSI)
Device Handlers

The reader may find Figure 2-1 helpful while reading the following
descriptions,

2,3.1 Resident Monitor (RMON)

The Resident Monitor is the only permanently memory-resident part of
RT=11l, The programmed requests for all services of RT-11 are handled
by RMON. RMON also contains the console terminal service, error
processor, system device handler, EMT processor, and system tables.

2.3.2 Keyhoard Monitor (KMON)

The Keyboard Monitor provides communication between the user at the
console and the RT-1ll system, Monitor commands allow the user to
assign logical names to devices, run programs, load device handlers,
and control F/B operations. A dot at the left margin of the console
terminal page indicates that the Keyboard Monitor is in memory and is
waiting for a user command.

2.3.3 User Service Routine (USR)

The User Service Routine provides support for the RT-11 file
structure, It loads device handlers, opens files for read or write
operations, deletes and renames files, and creates new files. The
Command String Interpreter (the use of which is described in Section
2.5) is part of the USR and can be accessed by any program to
interpret device and file I/0 information.

January 1976 2-7.1

——

h

o

This page intentionally blank.

System Communication

2.3.4 Device Handlers

Device handlers for the RT-1l system perform the actual transfer of
data to and from peripheral devices. New handlers can be added to the
system as files on the system device and can be interfaced to the
system by modifying a few monitor tables (see the RT=-ll Software
Support Manual, DEC~-11-ORPGA-B-D for instructions on how to interface
a new handler to the RT-=11 monitor).

2.4 GENERAL MEMORY LAYOUT

When the RT-1l System is first bootstrapped from the system device,
memory is arranged as shown in the left diagram of Figure 2-1 (this is
the case for either the Single-Job or Foreground/Background Monitor,
since no foreground job exists yet). The background job is the RT-11
module KMON,

When an RT-11 foreground job is initiated (via the monitor FRUN
command, Section 2,7.5.1), room is created for the foreground job to
be loaded by decreasing the amount of space available to the
background job. The memory maps in Figure 2-1 illustrate the system
layout before and after a foreground job is loaded. (Refer also to
Chapter 6, Section 6.5,)

RMON RMON
USR HANDLERS
KMON FJOB
BEFORE
LOADING USR AFTER
FOREGRO! L%E HIGH LT?@DNG
Ul KMON
JoB | ADDRESSES FOREGROUND
| JOB
1]
| 5 | :
|
|] '
0 0
Figure 2-1

RT-11 System Memory Maps

As shown in the figures, the process of loading a foreground job
requires that the USR and KMON be physically moved. Once a foreground
job is running, it is possible to communicate with either the
background or foreground job via special commands (described in
Section 2.7). All of the terminal support functions described in
Section 2,6 are available under both the Single-job and F/B Monitors.

In addition to FRUN, other monitor commands can alter the memory map;
these are LOAD, UNLOAD, GT ON, and GT OFF. LOAD causes device
handlers to be made resident until an UNLOAD command is performed.
UNLOAD deletes handlers which have been loaded. GT ON and GT OFF
cause terminal service to utilize the VT-11 display hardware. Figure
2-2 1illustrates the placement of display modules and device handlers
in memory following the GT ON, LOAD, and FRUN commandss

2~-8

pa——

System Communication

RMON
GT40 (GT ON GT Off)

HANDLERS

F JOB
HIGH
USR ADDRESSES

KMON

I

Figure 2-2
RT=-11 Memory Map (GT40)

RT-11 maintains a free memory list to manage memory. Thus, when a

handler is unloaded, the space the handler occupied is returned to the
free memory list and is reclaimed by the background.

2.,4.1 Component Sizes

Following are the approximate sizes (in words) of the components for
RT-11, Version 2C (sizes reflect RK).

F/B Single-job
RMON 3575(10) 1703(10)
USR 2050(10) 2050(10)
KMON 1800(10) 1540(10)

In the F/B system, the background area must always be large enough to
hold KMON and USR (3.9K words). The following list indicates the total
space available for the loaded device handlers, the foreground job,
and the display handler., Note that the low memory area from 0-477 is
never used for executable programs. (These sizes also allow room for
the 3.5K RMON).

Machine size (words) Space available (words)
16K 8.5K
24K 16.5K
28K 20.5K

With the Single-Job Monitor, RMON requires only l1.67K. The following
list shows the amount of space available to users with the Single-Job
Monitor:

2-9 January 1976

System Communication

Machine size (words) Program space available (words)
8K 6K
16K 14K
24K 22K
28K 26K

2.5 ENTERING COMMAND INFORMATION

Once either monitor has been loaded and a system program started, the
user must enter the appropriate command information before any opera-
tion can be performed.

In most cases, the Command String Interpreter immediately prints an
asterisk at the left margin. The user must then type a command string
in the general format:

OUTPUT=INPUT/SWITCH

(A few system programs =-- EDIT, PATCH, PATCHO -- require that this com-

mand information be entered in a slightly different format. Complete
instructions are provided in the appropriate chapter.)

In all cases, the format for OUTPUT is:

dev:filnam.ext(n],...devifilnam.ext [n]

INPUT is:

dev:filnam.ext,...devsfilnam,ext

and SWITCH is:

/s:oval or /sldval

where:

dev:

filnam.ext

{n]

/s:oval or
/sldval

January 1976

in each case is an optional two to three-character
name from Table 2-2 whose usage conforms to the
NOTE below.

in each case is the name of a file (consisting of
one to six alphanumeric characters followed
optionally by a dot and a zero to three~character
extension). As many as three output and six input
files may be allowed.

is an optional declaration of the number of blocks
(n) desired for an output file. n is a decimal
number (<65,535) enclosed in square brackets
immediately following the output filnam.ext to
which it applies,

is one or more optional switches whose functions
vary according to the program in use (refer to the
switch option table in the appropriate chapter) .
oval is either an octal number or one to three
alphanumeric characters (the first of which must
be alphabetic) which will be converted to radix-50
(see section 5,5.4 of the MACRO chapter). dval is
a decimal value preceded by an exclamation point.

2-10

—

-

t

System Communication

Throughout this manual, the /sioval construction
is used; however, the /sldval format is always
valid, Generally, these switches and their
associated values, 41f any, should follow the
device and filename to which they apply.

If the same switch is to be repeated several times
with different values (e.g., /L:MEB/L3$TTM/L:$CND to
MACRO) the line may Dbe abbreviated as
/LsMEB 3 TTMsCND} octal, RAD50, and decimal values
may be mixed.

= if required, is a delimiter that separates the out-
put and input fields. The < sign may be used in
place of the = sign. The separator can be omitted
entirely if there are no output files.

NOTE

As illustrated in the general format of
a command line, the command 1line
consists of an output list, a separator
(= or <), and an input list.
Omission of a device specification in
either the input or output list is han-
dled as follows:

DK: is assumed if the first file in a
list has no explicit device. DK (or the
device amsociated with the first file)
is default until another device is
indicated; that device then becomes
default until a new one is used, and so
on, If the following command is
entered, for example, to MACRO:

*DT1:FIRST. OBJ, LP:=TASK. 1, RK1:TASK. &, TASK. 3

it is interpreted as though all devices
had been indicated as follows:

*DT1:FIRST. OBJ, LP:=DK:TASK. 1, RK1:TRSK. 2, RK1:TASK. I

2,6 KEYBOARD COMMUNICATION (KMON)

Special function keys and keyboard commands allow the user to
communicate with the RT-11 monitor and allocate system
resources, manipulate memory images, start programs, and use
foreground/background services.,

The special functions of certain terminal keys used for communication
with the Keyboard Monitor are explained in Table 2-4. Note that in the
F/B system, the Keyboard Monitor always runs as a background job.

CTRL commands are entered by holding the CTRL key down while typing
the appropriate letter,

2-11 January 1976

System Communication

Table 2-4
Special PFunction Keys

Key

Function

CTRL A

CTRL B

CTRL E

CTRL F

Valid when the monitor GT ON command has been typed and
the display is in use. The command does not echo on
the terminal, It is used after a CTRL S has been typed
to effectively page output. Console output is
permitted to resume until the screen is completely
filled; text previously displayed is scrolled upward
off the screen. CTRL A has no special meaning if GT ON
is not in effect or if a SET TTY NOPAGE command has
been given (see Section 2.,7.2,.8).

Under the F/B Monitor echoes B> on the terminal (unless
output is already coming from the background job) and
causes all keyboard input to be directed to the
background job. At least one line of output will be
taken from the background job (the foreground 3job has
priority, and control will revert to it if it has
output), All typed input will be directed to the
background job until control is redirected to the
foreground job (via CTRL F). CTRL B has no special
meaning when used under a Single-Job Monitor or when a
SET TTY NOFB command has been issued (see Section
2,7.2.8).,

CTRL C echoes as “C on the terminal and 1is used to
interrupt program execution and return control to the
keyboard monitor. If the program to be interrupted is
waiting for terminal input, or is using the TT handler
for input, typing one CTRL C is sufficient to interrupt
execution; in all other cases, two CTRL Cs are neces-
sary. Note that under the F/B Monitor, the job which is
currently receiving input will be the job that is stopped
(determined by whether a CTRL F or CTRL B was most re-
cently typed). To ensure that the command is directed
to the proper job, type CTRL B or CTRL F before typing
CTRL C,

Valid when the monitor GT ON command has been typed and
the display is in use. The command does not echo on
the terminal, but causes all terminal output to appear
on both the display 8creen and the console terminal
simultaneously, A second CTRL E disables console
terminal output. CTRL E has no special meaning if
GT ON is not in effect.

Under the F/B Monitor echoes F) on the terminal and
instructs that all keyboard input be directed to the
foreground job and all output be taken from the
foreground job. If no foreground job exists, F? is
printed and control is directed to the background job.
Otherwise, control remains with the foreground job
until redirected to the background job (via CTRL B) or
until the foreground job terminates, CTRL F has no
special meaning when used under a Single-Job Monitor,
or when a SET TTY NOFB command has been used (see
Section 2,.,7.2.8).

2-12

System Communication

Table 2-4 (Cont.)
Special Function Keys

Key Function

CTRL © Echoes t0 on the terminal and causes suppression of
teleprinter output while continuing program execution.
Teleprinter output is re-enabled when one of the
following occurs:

1. A second CTRL O is typed,
2. A return to the monitor occurs, or

3. The running program issues a « RCTRLO
directive (see Chapter 9). (RT-1l1l systen
programs reset CTRL O to the echoing state
each time a new command string is entered.)

CTRL Q Does not echo, Resumes printing characters on the
terminal from the ©point at which printing was
previously stopped (via CTRL S). CTRL Q has no special
meaning if a SET TTY NOPAGE command has been used (see
Section 2,7.2,.8).

CTRL S Does not echo. Temporarily suspends output to the
terminal wuntil a CTRL Q is typed. If GT ON is in
effect, each subsequent CTRL A causes output to proceed
until the screen has been refilled once. This feature
allows users with high-speed terminals to £ill the
display screen, stop output with CTRL §, read the
screen, and then continue with CTRL Q or CTRL A,
(Typing CTRL C in this case also continues output.)
Under the F/B Monitor, CTRL S has no special meaning if
a SET TTY NOPAGE has been used,

CTRL U Deletes the current input 1line and echoes as 11U
followed by a carriage return at the terminal. (The
current line is defined to be all characters back to,
but not including, the most recent line feed, CTRL C or
CTRL Z.)

CTRL 2 Echoes tZ on the terminal and terminates input when
used with the terminal device handler (TT). The CTRL 2
itself does not appear in the input buffer. If TT is
not being used, CTRL Z has no special meaning.

RUBOUT Deletes the last character from the current 1line and
echoes a backslash plus the character deleted. Each
succeeding RUBOUT deletes and echoes another character,
An enclosing backslash is printed when a key other than
RUBOUT is typed. This erasure is done right to left up
to the beginning of the current line.

2.6.1 Foreground/Background Terminal I/0

It is important to note that console input and output under F/B are
independent functions; input can be typed to one job while output is
printed by another. The user may be in the process of typing input to
one job when the other job is ready to print on the terminal, In
this case, the job which is ready to print interrupts the user
and prints the message on the terminal; input control is not re-
directed to this job, however, unless a CTRL B or CTRL F is explicitly
typed. If input is typed to one job while the other has output
2-13

System Communication

control, echo of the input is suppressed until the job accepting input
gains output control; at this point all accumulated input is echoed.

If the foreground job and background job are both ready to print
output at the same time, the foreground job has priority. Output from
the foreground job prints until a line feed is encountered, at which
point output from the background 3job prints until a line feed is
encountered, and so forth.

When the foreground job terminates, control reverts automatically to
the background job.

 The monitor has a type-ahead feature which allows terminal input to be
entered while a program is executing. For example:

.k FIF

*DT1 :TRFE=FR:

DT1:/L

*13-FEB-74

TAPE 78 13-FEE-74
43¢ FREE BLOCKS

While the first command line is executing, the second line (DTl:/L) is
entered by the user. This terminal input is stored in a buffer and
used when the first operation has completed.

If a single CTRL C is typed while in this mode, it is put into the
buffer, The program currently executing exits when a terminal input
request needs to be satisfied, A double CTRL C returns control to the
monitor immediately.

If type-ahead input exceeds 80 characters, the terminal bell rings and
no characters are accepted until part of the type—ahead buffer is used
by a program or characters are deleted. No input is lost. Type-ahead
is particularly useful in specifying multiple command lines to system
programs, as shown in the preceding example. If a job is terminated
by typing two CTRL C's, any unprocessed type-ahead is discarded.

NOTE

If type-ahead is used in conjunction
with EDIT or BASIC, there is no terminal
echo of the characters but they are
stored in the buffer until a new command
is needed. The characters are echoed
only when actually used by the program,

2.7 KEYBOARD COMMANDS

Keyboard commands allow the user to communicate with the monitor.
Keyboard commands can be abbreviated; optional characters in a
command are delimited (in this section only) by braces. Keyboard
commands require at least one space between the command and the first
argument, All command lines are terminated by a carriage return.

2-14

System Communication

All commands, with the exception of those described in Section 2.7.5,
may be used under either the Single-Job or F/B Monitor. The commands
described in Section 2.7.5 apply only to the F/B Monitor.

HOTE

Any reference made to "the background
job"™ applies as well to the Single-=Job
Monitor, since the background job in a
F/B system is equivalent to the
single=job environment in its normal
state.

2.7.1 Commands to Control Terminal I/O (GT ON and GT OFF)

GT ON/GT OFF

The GT ON and GT OFF commands are used to enable and disable the
scroller (VIr-1ll display hardware). GT ON causes the display screen to
replace the console as the terminal output device. Switch options
allow the user to control the number of lines to appear on the screen
and to position the first line vertically. Output appears on the
display in the same format as it would on the console (i.e., output,
text, and commands are displayed in the order in which they occur).
GT ON is not permitted in an 8K configuration.

The form of the GT ON command is:
GT on{/LG}{/'r:n}

where:

/Lzn represents an optional switch setting indicating the
number of lines of text to display; the suggested
range is:

12" screen 1<{=n¢{=37 octal (31 decimal)
(GT40, DEClab)

17* screen 1{=n{=50 octal (40 decimal)
(GT44)

/Tin represents an optional switch setting indicating the
top position of the scroll display; the suggested
range is:

12" screen ' 1¢(=n¢=1350 octal (744 decimal)

(GT40, DEClab)

2-15

System Communication

17" screen 1¢{=n{=1750 octal (1000
(GT44) decimal)

If no switches are specified, a test for the screen size is performed
and default values are automatically assigned as follows:

12" screen /L237 (31 decimal)
(GT40, DEClab) /T:1350 (744 decimal)

17" screen /L150 (40 decimal)
(GT44) /T31750 (1000 decimal)

Line length is always set to 72 for 12" screen and 80 for 17" screen.
Once the display has been activated with the GT ON command, CTRL A,
CTRL S, CTRL E and CTRL Q can be used to control scrolling behavior.
These commands are described in Section 2.6.

NOTE

ODT is one exception to the use of GT
ON, This system program has its own
terminal handler and cannot make use of
the display; output will appear only on
the console terminal whenever ODT is
running.

The GT OFF command clears the display and resumes output on the
teleprinter. The command format is:

GT OFF

If GT ON and GT OFF are used when no display hardware exists or when a
foreground job is active, the ?ILL CMD? message is printed. .

2.7.2 Commands to Allocate System Resources

DATE

2.7.2.1 DATE Command - The DATE command enters the indicated date to
the systen, This date is then assigned to newly created files, new
device directory entries (which may be listed with PIP), and listing
output until a new DATE command is issued.

The form of the command is:
DAT{E} {dd-mmm—yy}

where dd~mmm-yy is the day, month and year to be entered. dd is a
decimal number in the range 1-31; mmm is the first three characters of
the name of the month, and yy is a decimal number in the range 73-99,
If no argument is given, the current date is printed.

January 1976 2-16

—

System Communication

Exampless
.DRTE 21-FEE-?4 Enter the date 21-FEB-74 as the current
system date.
. DRT Print the current date.
21-FEB-74

If the date is entered in an incorrect format, the ?DAT? error
message is printed.

TIME

2,7.2.2 TIME Command - The TIME command allows the user to find out
the current time of day kept by RT=1l1l or to enter a new time of day.
If no KWll-L clock is present on the system, the ?NO CLOCK? error
message is generated, If the time is entered in an incorrect format,
the ?TIM? message is printed.

The form of the command is:
TIM {E} {hh :mm:ss}

where hh:mm:ss represents the hour, minute, and second. Time is
represented as hours, minutes, and seconds past midnight in 24-hour
format (e.g., 1:25:00 P.M. is entered as 13:25:00). If any of the
arguments are omitted, 0 is assumed. If no argument is given, the
current time of day is output,

Examples:
LTIM £:15:23 Sets the time of day to 8 hours, 15
minutes and 23 seconds.,
. TIN Approximately 10 minutes later, the
8g:25:27 TIME command outputs this time.

. TIME 1&:5S Sets the time of day to 18:05:00,

Under the F/B Monitor, after the time reaches 24:00, the time and date
will be reset when the user next issues a TIME command (or .GTIM pro-
grammed request). Time and date are not reset under the Single-Job
Monitor. Month and year are not updated under either monitor.

The clock rate is initially set to 60-cycle. Consult the RT-11 System
Generation Manual if conversion to a 50-cycle rate is necessary.

2-17 January 1976

System Communication

INITIALIZE

2,7.2.3 INITIALIZE Command - The INITIALIZE command is used to reset
several background system tables and do a general “"clean-up" of the
background area; it has no effect on the foreground job. In
particular, this command makes non-resident those handlers which were
not loaded (via LOAD), purges the background's I/0 channels, disables
CTRL O, performs a hard reset, clears locations 40-53, resets the KMON
stack pointer, and under the F/B monitor performs an .UNLOCK.

Under the Single-Job Monitor a RESET instruction is done (see Chapter
9). Under the F/B Monitor, I/O is stopped by entering each busy de-
vice handler at a special abort entry point.

The form of the command is:

IN{ITIALIZE}
The INITIALIZE command can be used prior to running a user program, or
when the accumulated results of previously issued GET commands (see
Section 2,7.3.1) are to be discarded.
Example:

.IN Initializes system background job

A) -
-«
a3
c
(=]

ASSIGN

2,7.2.4 ASSIGN Command - The ASSIGN command assigns a user-defined
(logical) name as an alternate name for a physical device. This is
especially useful when a program refers to a device which 4{s not
available on a certain system. Using the ASSIGN command, I/0 can be
redirected to a device which is available. Only one logical name can
be assigned per ASSIGN command, but several ASSIGN commands (14
maximum) can be used to assign different names to the same device.
This command is also used to assign FORTRAN logical units to device
names.

January 1976 2-18

System Communication

The form of the command is:

ASS { 16N} {{aev}:udev}

where:

dev

udev

is any standard RT-ll (physical) device name
(refer to Table 2-2) with the exception of DK and
SY'

is a 1-3 character alphanumeric (logical) name to
be used in a program to represent dev (if more
than three characters are given, only the tirst
three are actually used). DK and SY may be used
as logical device names.

is a delimiter character (can be a colon, equal
sign, and, if separating physical and logical
devices, space).

The placement of the delimiter 4is very important in the ASSIGN
command; it must be placed exactly as shown in the following

examples:

ASSIGN DT1 INP Physical device DT1 is assigned the

logical device name INP, Whenever a
reference to INP: is encountered,
device DT1: is used.

.RSSIGN DT3:DK Physical device name DT3 is assigried the

default device name DK. Whenever DK is
reterenced or defaulted to, DT3 is used.
(Note that the initial assignment of DK
is thus changed.)

.RSSIGN LP=9 FORTRAN 1logical unit 9 becomes the

physical device name LP, All references
to unit 9 wuse the 1line printer for
output.

Assignment of logical names to logical names is not allowed.

If only a logical device name is indicated in the command 1line, that
particular assignment (only) is removed. Thus:

. ASSI1GN

. ASSIGN

:9 Deassigns the logical name 9 from its

physical device (LP, in the case above).

=DK Removes assignment of logical name DK

from 4its physical device (DT3, in the
case above),

If neither a physical device name nor a logical device name is
indicated, all assignments to all devices are removed,

. ASSIGN

All previous logical device assignments
are removed.

2-19 January 1976

System Communication

CLOSE

2.7.2.5 CLOSE Command = The CLOSE command causes all currently open
output files in the background job to become permanent files. If a
tentative open file is not made permanent, it will eventually be
deleted., The CLOSE command is most often used after CTRL C has been
typed to abort a background job and to preserve any new files that job
had open prior to the CTRL Cjy it has no effect on a foreground job.

The form of the command is:

CLO{SE}
The CLOSE command makes temporary directory entries permanent.
Example:
R EDIT The Editor has a temporary
+EWNTEXTS$$ file open (TEXT), which is
*IAECDES preserved by .CLOSE.
* 7
CLOSE
LOAD

2,7.2,6 LOAD Command -~ The LOAD command is used to make a device
handler resident for use with background and foreground jobs.
Execution is faster when a handler is resident, although memory area
for the handler must be allocated. Any device handler to be used by a
foreground job must be loaded before it can be used.

The form of the command is:

LOA {D} dev{ ,dev=B} {',dev-r-', . }

where:
dev represents any legal RT-1l1l device name,
= represents a delimiter, denoting device ownership.
B represents the background job.
F represents the foreground job.

The dev=F (and dev=B) construction is valid only wunder the
Foreground/Background system. When used under the Single-Job Monitor,
the ?ILL EV? error message occurs,

2-20

S

System Communication

A device may be owned exclusively by either the foreground or
background job. This may be used, for example, to prevent the I/0 of
two different 3jobs from being intermixed on the same non-file
structured device. For example:

A.0A0 PR=RyFPRyLF=F The papertape punch belongs to the
background job while the paper tape
reader is available for use by
either the background or foreground
job; the line printer is owned by
the foreground job. All three
handlers are made resident in
memory.

Different units of the same random-access device controller may be owned
by different jobs. Thus, for example, DTl may belong to the background
while DTS5 may belong to the foregrouna job. If no ownership is
indicated, the device is available for public use.

To change ownership of a device, another LOAD command may be used; it
is not necessary to first UNLOAD the device. For example, if RK1 has
been assigned to the foreground job as in the example above, the
command

 LOA RK1=R
reassigns it to the background job.
The system unit of the system device cannot be assigned ownership, and
attempts to do so will be ignored. Other units of the same type as
the system device, however, can be assigned ownership,
LOAD is valid for use with user-assigned names. For example:

SASSIGN RK2 XY

LOA XY=F

If the Single-Job, DECtape-based Monitor is being used, loading the
necessary device handlers into memory can significantly improve the
throughput of the system, since no handlers need to be loaded
dynamically (in other words, they need not be loaded, as required,
from the DECtape).

UNLOAD

2,7.2.7 UNLOAD Command - The UNLOAD command is used to make handlers
th:t were previously LOADed non-resident, freeing the memory they were
using.

2=-21 January 1976

System Communication

The form of the command is:
UNL{OAD} dev {,dev, .e }
where:
dev represents any legal RT-11 device name.

UNLOAD clears ownership for all units of an indicated device type.
For example, typings

. UNL RK2

clears all units of RK, (A request to unload the system device
handler clears ownership for any assigned units for that device, but
the handler remains resident.)

Any memory freed is returned to a free memory 1list and eventually
reclaimed for the background job after the UNLOAD command is given.
UNLOAD is not permitted if the foreground job is running. Such an
action might cause a handler which is needed by the foreground job to
become non-resident.

Example:

. UNLORD LP, PP The 1lineprinter and paper tape
punch handlers are released and the
area which they used is freed.

A special function of this command is to remove a terminated
foreground job and reclaim memory, since the space occupied by the
foreground job is not automatically returned to the free memory 1list
when it finishes. In this instance, the device name FG is used to
specify the foreground job. For example:

. UNL FG

FG can be mixed with other device names.

However, if, for example, DT2 has been assigned the name FG and loaded
into memory as follows:

SASSLGN DT2IFG
LLOAD FG

the command:
SUNLOAD FG

causes the foreground job, not DT2, to be unloaded. To wunload DT2,
this command must be typed:

. UNLORD DTZ2

2-22

System Communication

SET

2.7.2.8 SET Command - The SET command is used to change device
handler characteristics and certain system configuration parameters.

The form of the command is:

SET dev:{NO}option-value2,{N0}option=value,...}

where:
dev: represents any legal RT-1l physical device
name (and in addition, TTY and USR).
{No}option is ' the feature or characteristic to Dbe
altered,
=value is a decimal number required in some cases.,

A space may be used in place of or in.addition to the colon, equal
sign, or comma. Note that the device indicated (with the exception of

TTY and USR) must be a physical device name and is not affected by logical

device name assignments which may be active, The name of the
characteristic or feature to be altered must be 1legal for the
indicated device (see Table 2-5) and may not be abbreviated.

The SET command locates the file SY:dev,SYS and permanently modifies
it. No modification is done if the command entered is not completely
valid. If a handler has already been loaded when a SET command 1is
issued for it, the modifications will not take effect until the
handler is unloaded and a fresh copy called in from the system device.

Table 2-5 lists the system characteristics and parameters which may be
altered (those modes designated as "normal" are the modes as set in the
distribution copies of the drivers):

Table 2-5
SET Command Options
Device Option Alteration
LP CR Allows carriage returns to be sent to the

printer. The CR option should be set for any
FORTRAN program using formatted I/0, to allow
the overstriking capability for any line print-
er, and when using the LS1ll or LPO5 line print-
ers (since the last line in the buffer mav

otherwise be lost). This is the normal mode.

LP NOCR Inhibits sending carriage returns to the line

Lp

CTRL

printer. The line printer controller causes a
line feed to perform the functions of a carriage
return, so using this option produces a signi-
ficant increase in printing speed on LPll print-
ers.

Causes all characters, including nonprinting con-
trol characters, to be passed to the line printer.
This mode may be used for LS11 line printers.
(Other line printers will print space for control
characters.)

(continued on next page)
2-23 January 1976

System Communication

Table 2-5 (Cont.)
SET Command Options

Device Option Alteration

Lp NOCTRL Ignores nonprinting control characters. This is
the normal mode.

LP FORMO Causes a form feed to be 4issued before a
request to print block 2zero. This is the
normal mode.

LP NOFORMO Turns off FORMO mode.

Lp HANG Causes the handler to wait for user
correction if the line printer is not ready
or becomes not ready during printing. This
is the normal mode,

New users should note that when expecting
output from the line printer and it appears
as though the system is not responding or is
in an idle state, the line printer should be
checked to see if it is on and ready to
print,

LP NOHANG Generates an immediate error if the line
printer is not ready.

LP LC Allows lower case characters to be sent to
the printer, This option should be used if
the printer has a lower case character set.

LP NOLC Causes lower case characters to be translated
to upper case before printing, This is the
normal mode.

LP WIDTH=an Sets the line printer width to n, where n is
a number between 30 and 255. Any characters
printed past column n are ignored. The NO
modifier is not permitted.

CR CODE=n Modifies the card reader handler to use
either the DEC 026 or the DEC 029 card codes
(refer to Appendix H). n must be either 26 or
29, The NO modifier is not permitted.

CR CRLF Causes a carriage return/line feed to be
appended to each card image. This is the
normal mode,

CR NOCRLF Transfers each card image without appending a
carriage return/line feed.

CR HANG Causes the handler to walit for user
correction if the reader is not ready at the
start of a transfer. This 4is the normal
mode.,

CR NOHANG Generates an immediate error if the device is
not ready at the start of a transfer. Note
that the handler will wait regardless of how
the option is set if the reader becomes "not
ready® during a transfer (i.e., the input
hopper is empty, but an end-of-file card has
not yet been read).

January 1976 2-24 (continued on next page)

System Communication

rable 2-5 (Cont.)
SFET Command Options

Device Ontion Alteration

CR IMAGE Causes each card column to be stored as a
12-bit binary number, one column per word,
The CODE option has no effect in IMAGE mode.
The format of the 12-bit binary number is:
PDP-11 WORD

15 14 13 12 1 10 ¢ 8 7 [] 5 4 3 2 1 0
UNUSED [ALWAYS 0) ZONE | ZONE | ZONE [ZONE | ZONE |ZONE [ZONE|ZONE | ZONE | ZONE | ZONE] ZONE

12 " 0 1 2 3 4 5 6 7 8 9

This format allows binary card images to be
read and is especially useful if a special
encoding of punch combinations is to be used.
Mark-sense cards may be read in IMAGE mode.

CR NOIMAGE Allows the normal translation (as specified
by the CODE option) to take place; data is
packed one column per byte. Invalid punch
combinations are translated into the error
character, ASCII "\" (backslash), which is
octal code 134, This is the normal mode.

CR TRIM Causes trailing blanks to be removed from
each card read. It is not recommended that
TRIM and NOCRLF be used together since card
boundaries will be difficult to find. This
is the normal mode.,

CR NOTRIM Transfers a full 80 characters per card.

CcT RAW Causes the cassette handler to perform a
read-after~-write check for every record
written, and retry if an output error
occurred, If three retries fail, an output
error is detected.

CcT NORAW Causes the cassette handler to write every
record directly without reading it back for
verification. This significantly increases
transfer rates at the risk of increased error
rates, Normal mode is NORAW,

The following options, with the exception of HOLD/NOHOLD and
COPY/NOCOPY, are available in the Foreground/Background System only;
HOLD/NOHOLD and COPY/NOCOPY are available in both systems. These
options are not permanent, and must be reissued whenever the monitor
is re-bootstrapped. They can be made permanent by modifying the moni-
tor as described in Chapter 2 of the RT-11 Software Support Manual.
(Note that the device specification is TTY, not TT, because the hand-
| ler itself is not changed.)

TTY COPY Enables use of the auto-print mode of the
VT50 copier option, if present. The com=
mand is a no-op for any terminal other than
the VT50, but a "] " character may be printed
on the terminal. Consult the VT50 Video Ter-

minal Programmer's Manua for more infor-
mation. »
™Y NOCOPY Disables use of the auto-print mode of the

VT50 copier option, if present. The command
is a no-op for any terminal other than the
VT50, but a """ character may be printed on
the terminal. This is the normal mode.

2-25 (continued on next page)
January 1976

System Communication

Table 2-5 (Cont.)
SET Command Options

Device

Option

Alteration

TTY

TTY

TTY

CRLF

NOCRLF

FB

NOFB

FORM

NOFORM

HOLD

NOHOLD

PAGE

Causes the monitor to 4issue a carriage
return/line feed on the console terminal
whenever it attempts to type past the right
margin (as set by the WIDTH option), This is
the normal mode,

Causes no special action to be taken at the
right margin,

Causes the monitor to treat CTRL B and CTRL F
characters as background and foreground
program control characters and does not
transmit them to the user program. This is
the normal mode.

Causes CTRL B and CTRL F to have no special
meaning.

NOTE

SET TTY NOFB is issued to KMON,
(which runs as a background job)
and disables all communication with
the foreground job. To enable
communication with the foreground
job, issue the command SET TTY FB.

Indicates that the console terminal is
capable of executing hardware form feeds.

Causes the monitor to simulate form feeds by
typing eight line feeds. This is the normal
mode. '

Enables use of the hold screen mode of op-
eration for the VT50 terminal. The command
is a no-op for any terminal other than the
VT50, but a "[® character may be printed on
on the terminal., The command is valid for
F/B and Single-Job Monitors. Consult the
VT50 Video Terminal Programmer's Manual for
more information.

Disables use of the hold screen mode of op~-
eration for the VTS50 terminal. The command
is a no-op for any terminal other than the
VT50, but a "\" character may be printed on
the terminal, This is the normal mode.

Causes the monitor to treat CTRL S and CTRL Q
characters as terminal output hold and unhold
flags, and does not transmit them to the user
program., This is the normal mode.

(continued on next page)

2-26

e

System Communication

Table 2-5 (Cont.)
SET Command Options

Device Option Alteration

TTY NOPAGE Causes CTRL § and CTRL Q to have no special
meaning.

TTY SCOPE Causes the monitor to echo RUBOUTs as

backspace-space-backspace. This mode should
be used when the console is a VT05/VTS50 or
when GT ON is in effect.

TTY NOSCOPE Causes the monitor to echo RUBOUTs as
backslash followed by the character deleted.
This is the normal mode.

TTY TAB Indicates that the console terminal is
: capable of .executing hardware tabs.

TTY NOTAB Causes the monitor to simulate tab stops
every eight positions. The normal mode is
NOTAB, VTO05/VT50 terminals generally have
hardware tabs.

TTY WIDTH:=n Sets the width of the console terminal to n
positions, for the use of the CRLF option, n
must be in the range 30-255 (decimal), The
width is initially set to 72,

The following variant of the SET command is used to prevent the
background job from ever placing the USR in a swapping state (note
that USR replaces a device specification in the command line)s

SET USR {NO} SWAP

This is useful when running on a DECtape based system, or when running
a foreground job which requires the USR but has no memory allocated
into which to read it. When the monitor is bootstrapped, it is in the
SWAP condition, i.e.,, the background may place the USR in a swapping
state via a SETTOP.

The Single-Job Monitor behaves as though the following options are
set: NOTAB, NOFORM, PAGE, NOCRLF, NOSCOPE, NOHOLD.

2-217

system Communication

2,7.3 Commands to Manipulate Memory Images

GET

2.7.3.1 GET Command - The GET command ' (valid for use with a
background job only) loads the specified memory image file (not ASCII
or object) into memory from the indicated device.

The form of the GET command is:

GE {-r} dev:filnam.ext

wheres
devs represents any legal RT-1l1 device name. If a
device is not specified, DK: is assumed. Note
that devices MT and CT are not block-replaceable
devices and therefore cannot be used in a GET
command .
filnam.ext represents a valid RT-11 filename and extension.

If an extension is not specified, the extension
+SAV is assumed.

The GET command is typically used to load a program into memory for
modification and/or debugging. The GET command can also be used in
conjunction with the Base, Examine, Deposit, and START commands to
test patches, and can be used with SAVE to make patches permanent.
Multiple GETs can be used to combine programs. Thus:

Loads ODT into memory
. GET ODT. SAVY

Loads PROG,.SAV into
. GET PROG memory with ODT

. START (ODTs starting address) Starts execution with ODT
(see Chapter 8).

The GET command cannot be used to load overlay segments of programs;
it may only be used to load the root segment (that part which will not
be overlaid; refer to Chapter 6, Linker).

Multiple GETs can be used to build a memory image of several programs,
If identical locations are required by any of the programs, the later
programs overlay the previous ones.

Examples:

GET DT3:FILE1l. SARY Loads the file FILEl.SAV into memory
from DECtape unit 3.

GET NAME1 Loads the file NAMEl,SAV from device DK.

January 1976 2-28

e

System Communication

BASE

2.7.3.2 Base Command - The B command sets a relocation base. This
relocation base is added to the address specified in subsequent
Examine or Deposit commands to obtain the address of the 1location to
be referenced., This command is useful when referencing linked modules
with the Examine and Deposit commands, The base address can be set to
the address where the module of interest is loaded. The form of the
command is:

B {location}

where:

location represents an octal address used as a base address for
subsequent Examine and Deposit commands.

NOTE
A space must follow the B command
even if an address is not specified
(the B<space)> command is equivalent
to B 0)0

Any non-octal digit terminates an address. If location
is odd, it is rounded down by one to an even address.

The base is cleared whenever user program execution is initiated.

Exampless
_BA Sets hase to 0 (A represents space).
. B 268 Sets base to 200.
. B 2e1 Sets base to 200.

2=29 January 1976

System Communication

EXAMINE

2.7.3,3 Examine Command - The E command prints the contents of the
specified location(s) in octal on the console terminal., The form of
the Examine command is:

E location m{-location n}

where:

location represents an octal address which is added to the
relocation base value (the value set by the B Command)
to get the actual address examined. Any non-octal
digit terminates an address. An odd address is
truncated to become an even address.

If more than one location is specified (location m=location n), the
contents of location m through location n inclusive are printed., The
second location specified (location n) must not be less than the first
location specified, otherwise an error message is printed. 1If no
location is 3pecified, the contents of location 0 are printed.
Examination of locations outside the background area is illegal,

Examples:

.E 1p0@ , Prints contents of location 1000 (added

127401 to the base value if other than 0).

.E 1881-1012

127481 807624 127400 PDCOO0 00PDDE QQAGOE
Prints the contents of locations 1000
(pPlus the base value if other than 0)
through 1013.

DEPOSIT

2.7.3.4 Deposit Command - The Deposit command deposits the specified
value(s) starting at the location given,

The form of the command is:

) location-valuel{valuez,...valuen}

January 1976 2-=30

System Communication

where:

location represents an octal address which is added to the
relocation base value to get the actual address where
the values are deposited. Any non-octal digit is
accepted as a terminator of an address.

value represents the new contents of the location. 0 is
assumed if a value is not indicated.

If multiple values are specified (valuel,...,valuen), they are
deposited beginning at the location specified. The DEPOSIT command
accepts word or byte addresses but executes the command as though a
word address was specified, An odd address is truncated by one to an
even address. All values are stored as word quantities,

Any character that is not an octal digit may be used to separate the

locations and values in a DEPOSIT command. However, two (or more)
non-octal separators cause 0's to be deposited at the location
specified (and those following). For example:

.D 56,,, Deposits 0's in locations 56, 60, and 62.
The user should be aware of situations like the above, which causes

system failure since the terminal vector (location 60) is zeroed.

An error results when the address specified references a location
outside the background job's area.

Examples: _
. D 1888=3785 Deposits 3705 into location 1000
.B 10600 Sets relocation base to 1000
.D 1500=2563 Puts 2503 into location 2500
.B @8 Resets base to 0

SAVE

2,7.3.5 SAVE Command - The SAVE command writes specified user memory
areas to a named file and device in save image format. Memory is
written from location 0 to the highest memory address specified by the
parameter list or to the program high limit (location 50 in the system
communication area).

The SAVE command does not write the overlay segments of programs; it
saves only the root segment (refer to Chapter 6, Linker).

The form of the command is:

saw{z} devs:filnam.ext {parameters}

wheres
dev: represents one of the standard RT=11 block-replaceable
device names., If no device 1is specified, DK is
assumed.
2-31

January 1976

System Communication

file.ext represents the name to be assigned to the file being
saved, If the file name is omitted, an error message
is output. If no extension is specified, the extension
«SAV is used.

parameters represent memory locations to be saved. RT-11 transfers
memory in 256-word blocks beginning on boundaries that
are multiples of 256 (decimal). If the locations speci-
fied make a block of less than 256 words, enough addi-

tional locations are transferred to make a 256~word block.

Parameters can be specified in the following format:

areal,area2-arean
wheres
areal represent an octal number (or numbers
area2-arean separated by dashes). If more than one number

is specified, the second number must be
greater than the first,

The start address and the Job Status Word are given the default value
0 and the stack is set to 1000, If the user wants to change these or
any of the following addresses, he must first use the DEPOSIT command
to alter them and then SAVE the correct areas:

Area Location
Start address 40
Stack 42
JSW 44
USR address 46
High address 50
Fill characters 56

If the values of the addresses are changed, it is the user's
responsibility to reset them to their default values. See Chapter 9
for more information concerning these addresses.

Examples:

«.5AVE FILE1l 18000-110008, 14000-14100

Saves locations 10000(8) through
11777(8) (11000 starts the first word of
a new block, therefore the whole block,
up to 12000, is stored) and 14000(8)
through 14777(8) on DK with the name
FILEl.SAV,

.SAVE DT1:NAM. NER 18000
Saves locations 10000 through 10777 on

DTl: with the name NAM,NEW,
.D 44:28000

. SAY SY:.PRAM 18008-5777

Sets the reenter bit in the JsSW anh
saves locations 1000 through 5777.

January 1976 2-32

-

o B e e e Ml il A 4 he v b Wt s et

System Communication

2,7.4 Commands to Start a Program

RUN

2.7.4.1 RUN Command - The RUN command (valid for use with a
background job only) loads the specified memory image file into memory
and starts execution at the start address specified in location 40.
Under the F/B system, 10 words of user stack area are required to
start a user program, and the stack address (location 42) must be
initialized to some part of memory where these 10 words will not
modify it.

The form of the command is:
RU{N} devifilnam.ext
wheres

dev: is any standard device name specifying a
block-replaceable device. If dev: 1is not specified,
the device is assumed to be DK. Note that devices MT
and CT are not block-replaceable devices and
therefore cannot be used in a RUN command.

filnam.ext is the file to be executed, If an extension is not
specified, the extension .SAV is assumed.

The RUN command is equivalent to a GET command followed by a START
command (with no address specified).

NOTE

If a file containing overlays is to be RUN from
a device other than the system device, the handler
for that device must be loaded (see Section 2.7.2.6)
bafore the RUN command is issued.

Examples:

.RUN DT4:SRCH. 5AY Loads and executes the file SRCH,SAV

from DT1.

. RUN PROG Loads PROG.SAV from DK and executes the
progran,

. GET PROG1 Loads PROGl1.,SAV from device DK without
executing it. Then combines PROGl and

. RUN PROG2 PROG2.SAV in memory and begins execution

at the starting address for PROG2.

2-33

System Communication

2,7.4.2 R Command - This command (valid for use with the background
job only) is similar to the RUN command except that the file specified
must be on the system device (SYs).
The form of the command is:

R filnam.ext

No device may be specified. If an extension 1is not given, the
extension .SAV is assumed,

Examples:
.R Xv2.5AV Loads and executes XYZ.SAV from SY,

.R SRC Loads and executes SRC,.SAV from SY,

START

2,7.4.3 START Command - The START command begins execution of the
program currently in memory (i.e., loaded via the GET command) at the
specified address. START does not clear or reset memory areas.

The form of the command is:
sw{m} {address}
wheres
address is an octal number representing any 16=bit
address. If the address is omitted, or if 0 is
given, the starting address in location 40 will be
used,
If the address given does not exist or is not an even address, a trap
to location 4 occurs. In this case a monitor error message appears.

If no address is given, the program's start address from location 40
is used.

July 1975 2-34

-~

System Communication

Examples :

«GET FILE.1 Loads FILE,l into memory and starts execution
.START 1000 at location 1000, '

+GET FILEA Loads FILEA,SAV, then combines FILEA.SAV with
FILEB.SAV and starts execution at FILEB's
+GET FILER start address.
8T
REENTER

2.7.4.4 REENTER Command - The REENTER command starts the program at
its reentry address (the start address minus two). REENTER does not
clear or reset any memory areas and is generally used to avoid
reloading the same program for repetitive execution. It can be used
to return to a program vhose execution was stopped with a CTRL C.

The form of the command is:
mz{nmn}

If the reenter bit (bit 13) in the Job Status Word (location 44) is
not set, the REENTER command is illegal.

For most system programs, the REENTER command restarts the program at
the command level.

If desired, the reentry point in a user program can branch to a
routine which initializes the tables and stack, fetches device
handlers etc., and then continue normal operation.

Exanmple:
.R PIF CTRL C interrupts the PIP
®/F directory listing and transfers
MONITR. SYS control to the monitor level.
{directory prints] REENTER returns control to PIP,

* ,tC ..
: (tc typed)

REENTER
*

2.7.5 Commands Used Only in a Foreground/Background Environment
It is important to note that in order to control execution of a

foreground job, the commands in this section must be typed to KMON,
which is running as the background job., Thus, for example, to SUSPEND

2-35

System Communication

the foreground job, the user must be sure he is directing input to
KMON as follows:

F> Foreground job is running. Control

(tB typed) is redirected to the background job

B> and PIP is called (the foreground

R PIF is still active). CTRL C stops PIP

*~C and starts KMON, The foreground

« SUSFEND jog is)suspended. (See Section
2,7.5.2,

FRUN

2,7.5.1 FRUN Command -~ The FRUN command is used to initiate
foreground jobs, FRUN will only run relocatable files produced with
the Linker /R switch (using the Linker supplied with RT-1l, Version
2) . Any handlers used by a foreground job must be in memory.

The form of the command is:
FRU{N} dev:file.ext {/N:n} {/S :n} {/P}

where:
dev: represents a block replaceable RT-11 davice. If
dev: 1is not specified, DK: is assumed.
file.ext represents the job to be executed. The default

extension for a foreground job is ,REL.

/Nsn or /Nin represents an optional switch used to allocate n
words (not bytes) over and above the actual
program size. (If running a FORTRAN program, a
special formula is used to determine n. Refer to
Appendix G for this information.)

/S3n or /Sin represents an optional switch used to allocate n
words (not bytes) for stack space. Normally,
stack space is set by default to 128 words and 1is
placed in memory below the program. To change the
stack size, use /Sin; the stack is still placed in
memory under the program, To relocate the stack
area, use an ,ASECT (see Chapter 5) to define the
start of the user stack in location 42, This
overrides the /S switch.)

/P represents an optional switch (at the end of the
FRUN command) for debugging purposes. When the
carriage return is typed, FRUN prints the load
address of the program, but does not start the

2-36

System Communication

program. The foreground job must be explicitly
started with the RSUME command (see - Section
2,7.5.3). For examples

. FRUN DATA/P
LOADED AT 125444

If ODT is8 used with the foreground 3job, this
feature provides the means for determining where
the job actually was loaded.

The program is started when the RSUME command is
given, allowing the programmer to examine or
modify the program before starting it.

If another foreground job is active when the FRUN command is given, an
error message is printed. If a terminated foreground job is occupying
memory, that region is first reclaimed, Then if the file indicated is
found and will f£it in memory, the Jjob 1is installed and started
immediately. FRUN destroys the background job's memory image.

Examples:
«FRUN F1 Runs program Fl,REL stored on device DK.
«FRU DT1:F2 Runs F2,.REL which is on DT1.
SUSPEND

2,7.5.2 BSUSPEND Command ~ The SUSPEND command is used to stop
execution of the foreground job.

The form of the command is:

sus{pzuo}
No arguments are required. Foreground I/0 transfers in progress will
be allowed to complete; however, no new I/0 requests will be issued
and no completion routines will be entered (see Chapter 9 for a
discussion of completion =routines). Execution of the 3job can be
resumed only from the keyboard.
Example:

. SUSPEND Suspends execution of the foreground job currently
running,

2-37

System Communication

RSUME

2,7.5.3 RSUME Command - The RSUME command is used to resume execution
of the foreground job where it was suspended. Any completion routines
which were scheduled while the foreground was suspended are entered at

this time,

The form of the command is:

RSU{ME}
No arguments are required.
Example:
. RSU Resumes execution of the foreground job currently
suspended,

2.8 MONITOR ERROR MESSAGES

The following exror messages indicate fatal conditions that can occur

during system boot:

Message

?B-I/0 ERROR
?B-NO BOOT ON VOLUME
?B-NO MONITR.SYS

?B-NOT ENOUGH CORE

Meaning
An I/0 error occurred during system boot.
No bootstrap has been written on volume.
No monitor exists on volume being booted.
There is not enough memory for the system

being booted (e.g., attempting to boot
F/B into 8K).

The following error messages are output by the Keyboard Monitor.

Message
¢AUDR?

?DAT?

?ER RD OQVLY?

F?

?F ACTIVE?

?FIL NOT FND?

?FILE?
January 1976

Meaning
Address out of range in E or D command.

The DATE command argument was illegal,
or no argument was given and the date
has not yet been set.

An I/O error occurred while reading a
KMON overlay to process the ocurrent
command, This 1is a serious error,
indicating that the system file
MONITR,SYS is unreadable.

A CTRL F was typed under the F/B monitor
and no foreground job exists.

Neither FRUN nor UNLOAD may be used when
a foreground job already exists and is
active,

File specified in R, RUN, GET, or FRUN
command not found.

No file named where one is expected.
2-38

N
.
s . '

Lm—

e s e i etk o s Mt e 1 e L e

System Communication

Message Meaning
?ILL CMD? Illegal Keyboard Monitor command or

cormand line too long,

?ILL DEV? Illegal or nonexistent device, or an
attempt was made to make a device
handler resident for use with a
foreground job (dev=F) when the
Single-Job Monitor was running.

?NO CLOCK? No KW1lL clock is available for the TIME
command.

?NO FG? A SUSPEND, RSUME, or UNLOAD FG command
was given, but no foreground job was in
memory .

?0VR COR? Attempt to GET or RUN a file that is too
big.

?PARAMS 7 Bad parameters were typed to the SAVE
command,

?REL FIL I/O ER? Either the program requested is not a

REL file or a hardware error was
encountered trying to read or write the
file.

2?8V FIL 1/0 ER? I/0 error on ,SAV f£ile in SAVE (output)
or R, RUN, or GET (input) command. Pos-
sible errors include end-of-file, hard
error, and channel not open.

?28Y 1/0 ER? I/0 error on system device (usually
reading or writing swap area).

2TIM? The TIME command argument was illegal,

The following messages are output by the RT-1ll Resident Monitor when
an unrecoverable error has occurred. Control passes to the Keyboard
Monitor. The program in which the error occurred cannot be restarted
with ;he RE command. To execute the program again, use the R or RUN
command,

The format for fatal monitor erxror messages is:

?M=-text PC : where PC 18 the address+2 of the
location where the error occurred,

Note that ?M errors can be inhibited in certain cases by the use of
the .SERR macro; see Chapter 9 for details,

Message Meaning
?M=-BAD FETCH Either an error occurred while reading

in a device handler from SY, or the
address at which the handler was to be
loaded was illegal,

2-39 January 1976

System Communication

?M=DIR IO ERR

?M=-DIR OVFLO

?M=DIR UNSAFE

?M=-FP TRAP

?M=ILL ADDR

?M=ILL CHAN

?M=-ILL EMT

?M-ILL USR

?M-NO DEV

?M=0VLY ERR

?M=-SWAP ERR

?M-SYS ERR

January 1976

An error occurred doing I/0 in the
directory of a device (e.g., .ENTER on a
write-locked device).

No more directory segments were
available for expansion (occurs during
file creation (.ENTER)).

In F/B only, this message may appear in
addition to any of the other diagnostics
liated in this section, It indicates
that the error occurred while the USR
was updating a device directory. One or
more files on that device may be lost,

A floating=-point exception trap
occurred, and the user program had no
+SFPA exception routine active (see
Chapter 9).

Under the F/B Monitor, an address
specified in a monitor call was odd or
was not within the job's limits,

A channel number was specified which was
too large.

An EMT was executed which did not exist;
i.e., the function code was out of
bounds.

The USR was called from a completion
routine, This error does not have a
soft return (i.e., .SERR will not
inhibit this measage; see Chapter 9),

A READ/WRITE operation was tried but no
device handler was in memory for it,

A user program with overlays failed ¢to
successfully read an overlay.

A hard I/0 error occurred while the
system was attempting to write a user
program to the system swap blocks.

This is usually caused by a write-
locked system device. Under the Single-
Job Monitor, this may cause the system
to halt.

An I/0 error occurred while trying to
read KMON/USR into memory, indicating
that the monitor file is situated on the
system device in an area that has
developed one or more bad blocks. The
monitor prints the message and loops
trying to read KMON. The message is a
warning that the system device is bad.

2-40

——

System Communication

1f, after several seconds, it is
apparent that attempts to read KMON are
failing, halt the processor. It may be
impossible to boot the volume because of
the bad area in the monitor file. Use
another system device to verify the bad
blocks and follow the recovery procedures
described in section 4.2.12.1 of Chapter

4.
?M=-TRAP TO 4 The job has referenced illegal memory
?M=-TRAP TO 10 or device registers, an illegal instruc-

tion was used, stack overflow occurred,

a word instruction was executed with an
odd address, or a hardware problem caused
bus time-out traps through location 4.

If CSI errors occur and input was from the console terminal, an error
message is printed on the terminal.

Message Meaning
?DEV FUL? Output file will not fit.
?FIL NOT FND? Input file was not found.,
?ILL CMD? Syntax error.
?ILL DEV? Device specified does not exist,

2,8.1 Monitor HALTS

There are two HALT instructions in the RT-11 V02 monitors, one each in
F/B and Single-Job. The Single-Job Monitor will halt only if I/0
errors occur during swap operations to the system device, If the S/J
Monitor halts, look for a write-locked system device,

The F/B Monitor will halt if a trap to location 4 occurs or if 1/0
occurs while the system is performing critical operations from which
it cannot recover, If the F/B Monitor halts, look for use of
non-existent devices, traps from interrupt service routines, or
user-corrupted queue elements,

The monitor halts can be detected by their address, which is high in
memory, above the resident base address (location 54).

When a monitor halt occurs, do not attempt to restart the system by
pressing CONTinue on the processor; the system must be rebooted.

2-41 January 1976

Painun

CHAPTER 3

TEXT EDITOR

The Text Editor (EDIT) is used to create and modify ASCII source files
so that these files can be used as input to other system programs such
as the assembler or BASIC. Controlled by user commands from the
keyboard, EDIT reads ASCII files from a storage device, makes
specified changes and writes ASCII files to a storage device or 1lists
them on the line printer or console terminal, EDIT allows efficient
use of VT-11 display hardware, if this 4is part of the system
configuration.

The Editor considers a file to be divided into logical units called
pages. A page of text is generally 50-60 lines long (delimited by
form feed characters) and corresponds approximately to a physical page
of a program listing, The Editor reads one page of text at a time
from the input file into its internal buffers where the page becomes
available for editing. Editing commands are then used to:

Locate text to be changed,
Execute and verify the changes,
Output a page of text to the output file,

List an edited page on the line printer or console terminal.

3.1 CALLING AND USING EDIT

To call EDIT from the system device type:
R EDIT

and the RETURN key in response to the dot (.) printed by the monitor.
EDIT responds with an asterisk (*) indicating it is in command mode
and awaiting a user command string.

Type CTRL C to halt the Editor at any time and return control to the
monitor. To restart the Editor type .R EDIT or the ,REENTER command
in response to the monitor's dot. The contents of the buffers are
lost when the Editor is restarted.

Text Editor

3.2 MODES OF OPERATION

Under normal usage, the Editor operates in one of two different modes:
Command Mode or Text Mode. In Command Mode all input typed on the
keyboard is interpreted as commands instructing the Editor to perform
some operation, In Text Mode all typed input is interpreted as text
to replace, be inserted into, or be appended to the contents of the
Text Buffer.

Immediately after being loaded into memory and started, the Editor is
in Command Mode. An asterisk is printed at the left margin of the
console terminal page indicating that the Editor is waiting for the
user to type a command. All commands are terminated by pressing the
ALTMODE key twice in succession. Execution of commands proceeds from
left to right. Should an error be encountered during execution of a
command string, the Editor prints an error message followed by an
asterisk at the beginning of a new line indicating that it is still in
Command Mode and awaiting a legal command, The command in error (and
any succeeding commands) is not executed and must be corrected and
retyped.

Text mode is entered whenever the user types a command which must be
followed by a text string. These commands insert, replace, exchange,
or otherwise manipulate text; after such a command has been typed,
all succeeding characters are considered part of the text string until
an ALTMODE is typed. The ALTMODE terminates the text string and
causes the Editor to reenter Command Mode, at which point all
characters are considered commands again.

A special editing mode, called Immediate Mode, can be wused whenever
the VT-11 display hardware is running. This mode is described in
Section 3.7.2.

3.3 SPECIAL KEY COMMANDS

The EDIT key commands are listed in Table 3-1. Control commands are
typed by holding down the CTRL key while typing the appropriate
character.

Table 3-1
EDIT Key Commands
Key Explanation
ALTMODE Echoes $. A single ALTMODE terminates a text

string. A double ALTMODE executes the command
string. For example,

*GMOV R, B$-10%$

CTRL C Echoes at the terminal as tC and a carriage
return. Terminates execution of EDIT commands,
and returns to monitor Command Mode. A double
CTRL C is necessary when 1/0 is in progress. The
REENTER command may be used to restart the Editor,
but the contents of the text buffers are lost.

(continued on next page)

Text Editor

Table 3-1 (cont.)
EDIT Key Commands

Key

Explanation

CTRL O

RUBOUT

TAB

CTRL X

Echoes 10 and a carriage return. Inhibits
printing on the terminal until completion of the
current command string. Typing a second CTRL O
resumes output.

Echoes tU and a carriage return, Deletes all the
characters on the current terminal input line.
(Equivalent to typing RUBOUT back to the beginning
of the line,)

Deletes character from the current line; echoes a
backslash followed by the character deleted. Each
succeeding RUBOUT typed by the user deletes and
echoes another character. An enclosing backslash
is printed when a key other than RUBOUT is typed.
This erasure is done right to left up to the last
carriage return/line feed combination. RUBOUT may
be used in both Command and Text Modes.

Spaces to the next tab stop. Tab stops are
positioned every eight spaces on the terminal;
typing the TAB key causes the carriage to advance
to the next tab position.

Echoes tX and a carriage return, CTRL X causes
the Editor to ignore the entire command string
currently being entered. The Editor prints a
{CR>LF> and an asterisk to indicate that the user
may enter another command., For example:

*1ABCD
EFGH™H
*

A CTRL U would only cause deletion of EFGH;
CTRL X erases the entire command.

3.4 COMMAND STRUCTURE

EDIT commands fall into six general categories:

Category Commands Section
Input/Output Edit Backup 3.6.1.3
Edit Read 3,6.1.1

Edit Write 3.6.1.2

End File 3.6.1.9
Exit 3.6.1.10

List 3.6.1.7

Next 3.6.1.6

Read 3.6.1.4

Verify 3.6.1.8

' Write 3.6.1.5
Pointer location Advance 3.6.2.3
Beginning 3.6.2,1

Jump 3.,6.,2,2

3-3

Text Editor

Search Find
Get
Position

Text modification Change
Delete
eXchange
Insert
Kill

NNNNGNN AR NN AR [- XN -,
WHWUVN& Wk nN

MNNNONNN [GES N RUNE NONE N O LW www

Utility Edit Console
Edit Display
Edit Lower
Edit Upper
Edit Version
Execute Macro
Macro
Save
Unsave

o @
e 8 0 o o+ o
N Wa it oy

ALTMODE
Immediate Mode CTRL D
CTRL G
CTRL N
CTRL V
RUBOUT

WhWwWwwww WWWwWwwwwww wwwww wWww

The general format for the first five categories of EDIT commands is:

nCtext$
or
nC$

where n represents one of the legal arguments listed in Table 3-2, C
is a one- or two-letter command, and text is a string of successive
ASCII characters.

As a rule, commands are separated from one another by a single
ALTMODE}; however, if the command requires no text, the separating
ALTMODE is not necessary. Commands are terminated by a single
ALTMODE; typing a second ALTMODE begins execution., (ALTMODE is used
differently when Immediate Mode is in effect; Section 3.7.2 details
its use in this case.)

The format of Display Editor commands is somewhat different from the
normal editing command format, and is described in Section 3.7.

3.4.1 Arqguments

An argument is positioned before a command letter and is used either
to specify the particular portion of text to be affected by the
command or to indicate the number of times the command should be
performed, With some commands, this specification is implicit and no
arguments are needed; other editing commands require an argument,
Table 3-2 lists the formats of arguments which are used by commands of
this second type.

3-4

Text Editor

Table 3=2
Command Arguments

Format Meaning

n n stands for any integer in the range =16383 to
: +16383 and may, except where noted, be preceded by
a + or -, If no sign precedes n, it is assumed to
be a positive number. Whenever an argument is
acceptable in a command, its absence implies an
argument of 1 (or -1 if only the - is present).

0 refers to the beginning of the current line.

/ / refers to the end of text in the current Text
Buffer,
= = is used with the J, D and C commands only and

represents =-n, where n is equal to the length of
the last text argument used.

The roles of all arguments are explained more specifically in
following sections,

3.4.2 Command Strings

All EDIT command strings are terminated by two successive ALTMODE
characters. Spaces, carriage returns and line feeds within a command
string may be used freely to increase command readability but are
ignored unless they appear in a text string. Commands used to insert
text can contain text strings that are several lines long. Each line
is terminated with a <(CR)>LF> and the entire command is terminated
with a double ALTMODE.

Several commands can be strung together and executed in sequence. For
example,

text object text object
—

*BGMOV PC, RBS$-Z2CR1$SKGCLR @RZ$S
second third fifth
command command command

first command ‘fourth

command

Execution of a command string begins when the double ALTMODE is typed
and proceeds from left to right. Except when they are part of a text
string, spaces, carriage return, line feed, and single ALTMODES are
ignored. For example:

*BGMOV RBS$=CCLR R1$SAVSES

Text Editor

Table 3-2
Command Arguments

Format Meaning

n n stands for any integer in the range <~16383 to
+16383 and may, except where noted, be preceded by
a + or -, If no sign precedes n, it is assumed to
be a positive number, Whenever an argument is
acceptable in a command, its absence implies an
argument of 1 (or -1 if only the - is present).

0 0 refers to the beginning of the current line.

/ / refers to the end of text in the current Text
Buffer.,

= = is used with the J, D and C commands only and

represents -n, where n is equal to the length of
the last text argument used.

The roles of all arguments are explained more specifically in
following sections,

3.4.2 Command Strings

All EDIT command strings are terminated by two successive ALTMODE
characters. Spaces, carriage returns and line feeds within a command
string may be used freely to increase command readability but are
ignored unless they appear in a text string. Commands used to insert
text can contain text strings that are several lines long. Each 1line
is terminated with a <CR)LF)> and the entire command is terminated
with a double ALTMODE,

Several commands can be strung together and executed in sequence. For
example,

text object text object
——

*BGMOY PC,RO$-2CR1$SKGCLR @RZSS
second third £ifth
command command command

first command fourth

command

Execution of a command string begins when the double ALTMODE is typed
and proceeds from left to right. Except when they are part of a text
string, spaces, carriage return, line feed, and single ALTMODES are
ignored. For example:

*BGMOY RO$=CCLR R1SRAVSS

3-5

Text Editor

may be typed as:

*B$ GMOY ROS
=CCLR R1s$
R$ Vss

with equivalent execution,

3.4.3 The Current Location Pointer

Most EDIT commands function with respect to a movable reference
pointer which is normally located between the most recent character
operated upon and the next character in the buffer., At any given time
during the editing procedure, this pointer can be thought of as
representing the current position of the Editor in the text. Most
commands use this pointer as an implied argument. Commands are
available for moving the pointer anywhere in the text, thereby
redefining the current location and allowing greater facility in the
use of other commands.

3.4.4 Character~ and Line~Oriented Command Properties

Edit commands are line-oriented or character-oriented depending on the
arguments they accept. Line-oriented commands operate on entire lines
of text. Character-oriented commands operate on individual characters
independent of what or where they are.

When using character-oriented commands, a numeric argument specifies
the number of characters that are involved in the operation., Positive
arguments represent the number of characters in a forward direction
(in relation to the pointer), negative arguments the number of
characters in a backward direction, Carriage return and 1line feed
characters are treated the same as any other character. For example,
assume the pointer is positioned as indicated in the following text (¢t
represents the current position of the pointer):

MOV $VECT ,R2(CR><LF>;
CLR @R2(CR>CLF)>

The EDIT command -2J backs the pointer by two characters.

Mov #VECT ,R2{CR><LF>
CLR @R2{CR><LF>

The command 10J advances the pointer forward by ten characters and
places it between the CR and LF characters at the end of the second
line.

MOV #VECT,R2{CR)<LF>
CLR @R2{CR)XLF>

Finally, to place the pointer after the "C" in the first line, a -14J
command is used. The J (Jump) command is explained in Section 3.6.2.2,

MOV #VEGT,R2(CR)<LF>
CLR @R2(CR>{LF>

3-6

Text Editor

When using line-oriented commands, a numeric argument represents the
number of lines involved in the operation., The Editor recognizes a
line of text as a unit when it detects a <(CR>XLF)> combination in the
text. When the user types a carriage return, the Editor automatically
inserts a line feed. Positive arguments represent the number of lines
forward (in relation to the pointer); this is accomplished by counting
carriage return/line feed combinations beginning at the pointer. So,
if the pointer is at the beginning of a line, a line-oriented command
argument of +1 represents the entire line between the current pointer
and the terminating line feed. If the current pointer is in the
middle of the line, an argument of +1 represents only the portion of
the line between the pointer and the terminating line feed.

For example, assume a buffer of:

MOV 4PC,R1(CR)(LF)
MOV #VECT , R2{CR>{LF>

CLR @R2{CRXXLF>

The command to advance the pointer one line (lA) causes the following
change:

MOV PC,R1{CR><LF>
MOV #VECT,R2<CR><LF>
CLR @R2<CR>XLF>

The command 2A moves the pointer over 2 (CR>LF) combinations:

MOV PC,RL(CRY<LF>

ADD #DRIV-. ,RL(CR><LF>

MOV #VECT, R2{CR><LF>
4CLR @R2{CR)<LF>

Negative line arguments reference lines in a backward direction (in
relation to the pointer). Consequently, if the pointer is at the
beginning of the line, a line argument of =1 means "the previous line"
(moving backward past the first <CR><LF> and up to but not including
the second (CR)XLF>; 1f the printer is in the middle of a line, an
argument of -1 means the preceding 1 1/2 lines. Assume the burfer
contains:

MOV PC,R1<{CR>XLF>

MOV #VECT,R2{CR><LF>

CLR @R2<{(CR>XLF>

A command of =-1A backs the pointer by 1 1/2 lines.

MOV PC,RIKCR){LF>

4ADD 4DRIV=-.,RL(CRX(LF)
MOV #VECT,R2{CR><LF)>
CLR @R2{CR)>{LF>

Text Editor

Now a command of =lA backs it by only 1 line.

+sMOV PC,R1(CR><LF»
ADD #DRIV=-, ,RL(CRY{LF>
MOV #VECT, R2<{CR><LF>
CLR @R2{CRY<LF>

3.4.5 Command Repetition

Portions of a command string may be executed more than once by
enclosing the desired portion in angle brackets (<)) and preceding the
left angle bracket with the number of iterations desired, The
structure is:

C13C2$n<{C3$C4$>C588

where Cl, C2,,..C5 represent commands and n represents an iteration
argument, Commands Cl and C2 are each executed once, then commands C3
and C4 are executed n times, Finally command C5 is executed once and
the command 1line is finished., The iteration argument (n) must be a
positive number (1 to 16,383), and if not specified is assumed to be
l, If the number is negative or too large, an error message is
printed. Iteration brackets may be nested up to 20 1levels, Command
lines are checked to make certain the brackets are correctly used and
match prior to execution.

Essentially, enclosing a portion of a command string in iteration
brackets and preceding it with an iteration argument (n) is equivalent
to typing that portion of the string n times, For example:
*BGARARS$3IC-DIBS-JoVSS
is equivalent to typing:
*BGAARS-DIBS$-J-DIBS-J-DIBS-JVSES
and:
*B3C2CAD>VO$$
is equivalent to typing:
*BADRDVYADADVARDARDOVSS

The following bracket structures are examples of legal usage:

<IKLLEHEIDD
LI 0

The following bracket structures are examples of illegal combinations
which will cause an error message since the brackets are not properly
matched:

L4
<K<

During command repetition, execution proceeds from left to right until
a right bracket is encountered, EDIT then returns to the last left

3-8

L

N

Text Editor

bracket encountered, decrements the iteration counter and executes the
commands within the brackets. When the counter is decremented to 0,
EDIT looks for the next iteration count to the left and repeats the
same procedures. The overall effect is that EDIT works its way to the
innermost brackets and then works its way back again. The most common
use for iteration brackets is found in commands such as Unsave, that
do not accept repeat counts. For example:

*3{U>s¢

Assume a file called SAMP (stored on device DK) is to be read and the
first four occurrences of the instruction MOV $#200,R0 on each of the
first five pages are to be changed to MOV #244,R4. The following
command line is entered:

*EBSAMP$S<NI<EGMOY #2080, RO$=TJEI(GO$=C4$>>DEXSS
—
\\ c_ J
T
B

el
A
The command line contains three sets of iteration loops (A,B,C) and is
executed as follows:

Execution initially proceeds from left to right; the file SAMP is
opened for input, and the first page is read into memory. The pointer
is moved to the beginning of the buffer and a search is initiated for
the character string MOV $#200,R0., When the string is found, the
pointer is positioned at the end of the string, but the =J command
moves . the pointer back so that it is positioned immediately preceding
the string. At this point, execution has passed through each of the
first two sets of iteration loops (A,B) once. The innermost loop (C)
is next executed three times, changing the 08 to 4s. Control now
moves back to pick up the second iteration of loop B, and again moves
from left to right. When loop C has executed three times, control
again moves back to loop B. When loop B has executed a total of 4
times, control moves back to the second iteration of loop A, and so
forth until all iterations have been satisfied,

3.5 MEMORY USAGE

The memory area used by the Editor is divided into four 1logical
buffers as follows:

MACRO BUFFER

High Memory
SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

Low Memory
TEXT BUFFER

3-9

Text Editor

The Text Buffer contains the current page of text being edited, and
the Command Input Buffer holds the command currently being typed at
the terminal. If a command currently being entered by the user is
within 10 characters of exceeding the space available in the Command
Buffer, the message:

* CB ALMOST FULL +*

is printed. If the command can be completed within 10 characters, the
user may finish entering the command; otherwise he should type the
ALTMODE key twice to execute that portion of the command line already
completed. The message is printed each time a character is entered in
one of the last 10 spaces,

If the user attempts to enter more than 10 characters the message:
?CB FULL?

is printed and all commands typed within the last 10 characters are
ignored. The user again has 10 characters of available space in which
to correct the condition,

The Save Buffer contains text stored with the Save (S) command, and
the Macro Buffer contains the command string macro entered with the
Macro (M) command. (Both commands are explained in Section 3.6.5.)

The Macro and Save Buffers are not allocated space until an M or S
command is executed., Once an M or S command is executed, a OM or 0U
(Unsave) command must be executed to return that space to the free
area.

The size of each buffer automatically expands and contracts to
accommodate the text being entered; if there is not enough space
available to accommodate required expansion of any of the buffers, a
"2*NO ROOM*?" error message is typed,

3,6 EDITING COMMANDS

3.6.,1 Input/Output Commands

Input commands are used to create files and read them into the Text
Buffer where they become available for editing or listing. Output
commands cause text to be listed on the console terminal or line-
printer or written out to a storage device. Some commands are
specifically designed for either input or output functions, while a
few commands serve both purposes.

Once editing is completed and the page currently in the Text Buffer is
written to the output file, that page of text is unavailable for
further editing until the file is closed and reopened,

3.6,1,1 Edit Read = The Edit Read command opens an existing file for
input and prepares it for editing. Only one file can be open for input
at a time,

3-10

N

Text Editor

The form of the command is:
ERdev:filnam.ext$

The. string argument (dev:filnam.,ext) is limited to 19 characters and
specifies the file to be opened. If no device is specified, DK: is
assumed. If a file is currently open for input, that file is closed;
any edits made to the file are preserved.

Edit Read does not input a page of text nor does it affect the
contents of the other user buffers (see Section 3.5.)

Edit Read can be used on a file which is already open to close that
file for input and reposition EDIT at its beginning. The first Read
command following any Edit Read command inputs the first page of the
file,

Examples
#ERDT1:SARMP. MACS$$ Opens SAMP.MAC on device DT1l: for input.

*ERSOURCESS Opens SOURCE on device DK: for input.

3,6.1.2 Edit Write - The Edit Write command sets up a file for
output of newly created or edited text., However, no text is output .
and the contents of the user buffers are not affected. Only one file
can be open for output at a time. Any current output files are closed

The form of the command is:
EWdevsi:filnam.ext[n])$

The string argument (dev:filnam.ext([n)) is limited to 19 characters
and is the name to be assigned to the output file being opened. If
dev: 1is not specified, DK: is assumed. [n] is optional and
represents the length of the file to be opened. If not specified, one
half the largest available space is used; if this is not adequate for
the output file size, the EF and EX commands will not close the output
file, and all edits will be lost. It is thus recommended that the [n]
construction be used whenever there is doubt as to whether enough space
is available on the device for the output file.

If a file with the same name already exists on the device, the old file
is deleted when an EXit, End File or another Edit Write command is
executed.

Examples:

*EWDK : TEST. MRCS$ Opens the file TEST.MAC on device DK:
for output,

«EWFILE. BASL111$$ Opens the file FILE.BAS (allocating 11
blocks) on the device DK: for output.

3.6.1.3 Edit Backup - The Edit Backup command is used to open an
existing file for editing and at the same time create a backup version
of the file. Any currently open file will be closed. No text is read
or written with this command.

3-11 January 1976

e

e S —— it

Text Editor
The form of the command is:

EBdev:filnam.ext[n]$

The device designation, filename and extension are 1limited to 19
characters. If dev: is not specified, DK: is assumed. [n) is
optional and represents the length of the file to be opened; if not
specified, one-half the largest available space is used. ,

The file indicated in the command 1line must already exist on the
device designated since text will be read from this file as input. At
the same time, an output file is opened under the same filename and
extension. After an EB command has been successfully executed, the
original file (used as input) is renamed with the current filename and
a .BAK extension; any previous file with this filename and a .BAK
extension is deleted. The new output file is closed and assigned the
name as specified in the EB command. This renaming of files takes
place whenever an Exit, End File, Edit Read, Edit Write or Edit Backup
command is executed.

Examples:

*EBSY :BAS1. MACSS Opens BAS1.MAC on SY, When editing is
complete, the old BAS1.MAC becomes
BAS1.BAK and the new file becomes
BAS1.MAC, Any previous version of
BAS1.BAK is deleted.

*EBBAS2. BRSL 1518$ Opens BAS2,BAS on DK (allocating 15
blocks), When editing is complete, the
old BAS2.BAS is labeled BAS2.BAK and the
new file becomes BAS2.BAS, Any previous
version of BAS2,BAK is deleted.

In EB, ER and EW commands, leading spaces between the command and the
filename are illegal (the filename is considered to be a text string).
All dev:file.ext specifications for EB, ER and EW commands conform to
the RT-11 conventions for file naming and are identical to filenames
entered in command strings used with other system programs.

3.6.1.4 Read - The Read command (R) causes a page of text to be read
from the input file (previously specified in an ER or EB command) and
appended to the current contents, if any, of the Text Buffer.
The form of the command is:

R

No arguments are used with the R command and the pointer is not moved.
Text is input until one of the following conditions is met:

1. A form feed character, signifying the end of the page, is

encountered, At this point, the form feed will be the last
character in the buffer; or

3-12

v

~ -

Text Editor

2. The Text Buffer is within 500 characters of being full.
(Wwhen this condition occurs, Read inputs up to the next
{CR>¢LF> combination, then returns to Command Mode. An
asterisk is printed as though the Read were complete, but
text will not have been fully input); or

3. An end-of-file condition is detected, (the *EOF* message is
printed when all text in the file has been read into memory
and no more input is available).

The maximum number of characters which can be brought into memory with
an R command is approximately 6,000 for an 8K system, Each additional
4K of memory allows approximately 8,000 additional characters to be
input. An error message is printed if the Read exceeds the memory
available or if no input is available.

3,6.1.5 Write - The Write command (W) moves lines of text from the
Text Buffer to the output file (as specified in the EW or EB command).
The format of the command is:

nW Write all characters beginning at the pointer and
ending at the nth <(CR>{LF> to the output file,

-nW Write all characters beginning on the =-nth line and
terminating at the pointer to the output file,

OW Write the text from the beginning of the current 1line
to the pointer.

/W Write the text from the pointer to the end of the
buffer.

The pointer is not moved and the contents of the buffer are not
affected. If the buffer is empty when the Write is executed, no
characters are output.

Examples :

*5U$$ Writes the next 5 lines of text starting
at the pointer, to the current output
file.

*-2W$$ Writes the previous 2 1lines of text,

ending at the pointer, to the current
output file.

*B/HSS Writes the entire Text Buffer to the
current output file,

Text Editor

3.6.1.6 Next ~ The Next command acts as both an input and output
command since it performs both functions. First it writes the current
Text Buffer to the output file, then clears the buffer, and finally
reads in the next page of the input file, The Next command can be
repeated n times by specifying an argument before the command. The
command format is:

nN

Next accepts only positive arguments (n) and leaves the pointer at the
beginning of the buffer, If fewer than n pages are available in the
input file, all available pages are input to the buffer, output to the
current file, and deleted from the buffer; the pointer is left
positioned at the beginning of an empty buffer, and an error message
is printed. This command is equivalent to a combination of the
Beginning, Write, Delete and Read commands (B/W/DR). Next can be used
to space forward, in page increments, through the input file,

Example:

*2N$$ Writes the contents of the current Text
: Buffer to the output file., Read and
write the next page of text. Clear the

buffer and then read in another page.

3.6.1.7 List - The List command prints the specified number of lines
on the console terminal., The format of the command is:

nL Print all characters beginning at the
pointer and ending with = the nth
{CR><{LF>.

-nL Print all characters beginning with the

first character on the =-nth line and
terminating at the pointer.

oL Print from the beginning of the current
line up to the pointer.

/L ‘ Print from the pointer to the end of the
buffero

The pointer is not moved after the command is executed.

Examples:

*-20L 88 Prints all characters starting at the
second preceding line and ending at the
pointer,

*4L$$ Prints all characters beginning at the
pointer and terminating at the 4th
{CR><LF>,

Assuming the pointer location is:

MOVB 5(Rl),@R2
ADDQ Rll(R2)+

3-14

Text Editor

The command:

*-1L4$
Prints the previous 1 1/2 lines up to the pointer:

MOVB 5(R1),€R2
ADD

3.6.,1.8 Verify - The Verify command prints the current text 1line
(the 1line containing the pointer) on the terminal., The position of
the pointer within the line has no effect and the pointer does not
move, The command format is:

v

No arguments are used. The V command is equivalent to a OLL (List)
command, '

Example:

*VES The command causes the current line of
RDD R1, (R2)+ text to be printed.

3.6.1.9 End File - The End File command closes the current output
file. This command does no input/output operations and does not move
the pointer., The buffer contents are not affected. The output file
is closed, containing only the text previously output.

The form of the command is:
EF

No arguments are used. Note that an implied EF command is included in
EW and EB commands,

3.6.1.10 EXit - The EXit command is used to terminate editing, copy
the text buffer and the remainder of the input file to the output file,
close input and output files, and return control to the monitor. It

performs consecutive Next commands until the end of the input file is
reached, then closes both the input and output files.

The command format is:
EX

No arguments are used, Essentially, Exit is used to copy the
remainder of the input file into the output file and return to the
monitor., Exit is legal only when there is an output file open., If an
output file is not open and it is desired to terminate the editing
session, return to the monitor with CTRL C.

Text Editor

NOTE

An EF or EX command is necessary in
order to make an output file permanent,
If CTRL C is wused to return to the
monitor without a prior execution of an
EF command, the current output file is
not saved, (It can however, be made
permanent using the monitor CLOSE
command; see Section 2,7.2.5.)

An example of the contrasting uses of the EF and EX commands follows.
Assume an input file, SAMPLE, contains several pages of text. The
user wishes to make the first and second pages of the file into
separate files called SAM1 and SAM2, respectively; the remaining
pages of text will then make up the file SAMPLE. This can be done
using these commands:

*ENSAMLSS
*ERSAMPLESS
*RNEFS
*EWSAMZSS

*NEF $¢
*EWSAMPLESEXSS

The user might note that the EF commands are not necessary in this
example since the EW command closes a currently open output file
before opening another,

3.6.2 Pointer Relocation Commands

Pointer relocation commands allow the current location pointer to be
moved within the Text Buffer.

3.6.2.1 Beginning - The Beginning command moves the current location
pointer to the beginning of the Text Buffer.

The command format is:
B

There are no arguments,

For example, assume the buffer contains:
MOVB 5(R1),@R2
ADD R1l, (R2)+

CLR @r2
MOVB (R1) ,€R2

3-16

Text Editor

The B command:

*B$$
moves the pointer to the beginning of the Text Buffer:
4+ MOVB 5(R1),@R2
ADD Rl,(R2)+

CLR @Rr2
MOVB 6 (R1),@R2

3.6.2,2 Jump = The Jump command moves the pointer over the specified
number of characters in the Text Buffer,

The form of the command is:

(+ or =) nJ Move the pointer (backward or forward) n
characters.
0J Move the pointer to the beginning of the current

line (equivalent to 0a).

/J Move the pointer to the end of the Text Buffer
(equivalent to /a).

=J Move the pointer backward n characters, where n
equals the length of the last text argument used.

Negative arguments move the pointer toward the beginning of the
buffer, positive arguments toward the end, Jump treats carriage
return, line feed, and form feed characters the same as any other
character, counting one buffer position for each.

Examples:
#3J$8% Moves the pointer ahead three
characters,
#-4J88% Moves the pointer back four characters.
*BSGAEC$=J$S Move the pointer so that it immediately

precedes the first occurrence of 'ABC'
in the buffer.

3.6.2.,3 Advance - The Advance command is similar to the Jump command
except that it moves the pointer a specified number of lines (rather
than single characters) and leaves it positioned at the beginning of
the 1line.

The form of the command is:

nA Advance the pointer forward n lines and
position it at the beginning of the nth
line.

3-17

Text Editor

-nA Move the pointer backward past n
<CR>{LF> combinations and position it at
the beginning of the =nth- line.

0A Advance the pointer to the beginning of
the current line (equivalent to 0J).

/A Advance the pointer to the end of the
Text Buffer (equivalent to /J).

Examples:
*3A%$ Moves the pointer ahead three lines.,
Assuming the buffer contains:
CLR @R2
+|
The command:

*GR$S

Moves the pointer to:

+CLR @Rr2

3.6.3 Search Commands

Search commands are used to locate specific characters or strings of
characters within the Text Buffer.

3.6.3.1 Get - The Get command starts at the pointer and searches the
current Text Buffer for the nth occurrence of a specified text string.
If the search is successful, the pointer is left immediately following
the nth occurrence of the text string. If the search fails, an error
message is printed and the pointer is left at the end of the Text
Buffer, The format of the command is:

nGtexts$

The argument (n) must be positive and is assumed to be 1 if not
otherwise specified. The text string may be any 1length and
immediately follows the G command. The search is made on the portion
of the text between the pointer and the end of the buffer.

Example:
Assuming the buffer contains:

j MOV PC,R1

ADD #DRIV-. ,R1
MOV #VECT,R2
CLR @RrR2

MOVB 5(R1) ,@R2
ADD Rl,(R2)+
CLR @R2

MOVB 6 (R1) ,@R2

3-18

Text Editor

The command:
*GADDS$S
positions the pointer at:
ADD. #DRIV=-.,Rl
The command:

*3GOR2$S
positions the pointer at:

ADD Ri,(R2)+
CLR €Rr2,

After search commands, the pointer is left immediately following the
text object. Using a search command in combination with =J will place
the pointer before the text object, as follows:

*GTEST$=J$$

This command combination places the pointer before °'TEST',

3.6.3.2 Find - The Find command starts at the current pointer and
searches the entire input file for the nth occurrence of the text
string., If the nth occurrence of the text string is not found in the
current buffer, a Next command is automatically performed and the
search is continued on the new text in the buffer. When the search is
successful, the pointer is 1left immediately following the nth
occurrence of the text string. If the search fails (i.e., the
end-of-file is detected for the input file and the nth occurrence of
the text string has not been found), an error message is printed and
the pointer is left at the beginning of an empty Text Buffer,

The form of the command is:
nFtext$

The argument (n) must be positive and is assumed' to be 1 if not
otherwise specified.

By deliberately specifying a nonexistent sgearch string, the user can
close out his file; that is, he can copy all remaining text from the
input file to the output file,

Find is a combination of the Get and Next commands.
Example:
*2FMOVB G6(R1)>, BRZ2SS Searches the entire input file for
the second occurrence of the text
string MOVE 6(Rl) ,€R2, Each

unsuccessfully searched buffer is
written to the output file,

3-19

Text Editor

3.6.3.3 Position - The Position command searches the input file for
the nth occurrence of the text string. If the desired text string is
not found in the current buffer, the buffer is cleared and a new page
is read from the input file, The format of the command is:

nPtext$

The argument (n) must be positive, and is assumed to be 1 if not
otherwise specified. When a P command 1is executed the current
contents of the buffer are searched from the location of the pointer
to the end of the buffer. If the search is unsuccessful, the buffer
is cleared and a new page of text is read and the cycle is continued,

If the search is successful, the pointer is positioned after the nth
occurrence of the text, If it is not, the pointer is left at the
beginning of an empty Text Buffer.

The Position command is a combination of the Get, Delete and Read
commands; it is most useful as a means of placing the location
pointer in the input file. For example, if the aim of the editing
session is to create a new file from the second half of the input
file, a Position search will save time.

The difference between the Find and Position commands is that Find
writes the contents of the searched buffer to the output file while
Position deletes the contents of the buffer after it is searched.

Example:

*PADD R1, (R2)+$% Searches the entire input file for the
specified string ignoring the
unsuccessfully searched buffers.

3.6.4 Text Modification Commands

The following commands are used to insert, relocate, and delete text
in the Text Buffer.

3.6.4.1 1Insert - The Insert command causes the Editor to enter Text
Mode and allows text to be inserted immediately following the pointer.
Text is ingserted until an ALTMODE is typed and the pointer is
positioned immediately after the last character of the insert. The
command format is:

Itext$
No arguments are used with the Insert command, and the text string is
limited only by the size of the Text Buffer and the space available,
All characters except ALTMODE are legal in the text string, ALTMODE
terminates the text string.
NOTE
Forgetting to type the I command will

cause the text entered to be executed as
commands.

3-20

Text Editor

EDIT automatically protects against overflowing the Text Buffer during
an Insert, If the I command is the first command in a multiple
command line, EDIT ensures that there will be enough space for the
Ingsert to be executed at least once. If repetition of the command
exceeds the available memory, an error message is printed.

Example:
*IMOV #BUFF., R2 Inserts the specified text at
mov #LINE. K1 the current location of the:
MOYE -1(R2), RASsS pointer and leaves the pointer
* positioned after RO.

3.6.4.2 Delete - 7The Delete command removes a specified number of
characters from the Text Buffer. Characters are deleted starting at
the pointer; upon completion, the pointer is positioned at the first
character following the deleted text.

The form of the command is:

(+ or =) nD Delete n characters (forward or backward
from the pointer).

0D Delete from beginning of current line to
the pointer (equivalent to 0K).

/D Delete from pointer to end of Text
Buffer (equivalent to /K).

=D Delete ~-n characters, where n equals the
length of the last text argument used.

Examples:

*-208§$ Deletes the two characters immediately
preceding the pointer.

«B¢FMOV R1$=D$ Deletes the text string °'MOV Rl', (=D
used in combination with a search
command will delete the indicated text
string).

Assuming a buffer of:

ADD R1, (R2) +
CLR 4€R2

the command:
*QDs$S
leaves the buffer with:

ADD R1l,(R2)+
4€R2

3-21

Text Editor

3.6.4.3 Kill - The Kill command removes n lines from the Text
Buffer, Lines are deleted starting at the location pointer; upon
completion of the command, the pointer is positioned at -the beginning
of the line following the deleted text. The command format is:

nK Delete lines beginning at the pointer
and ending at the nth <(CRY<LF).

=-nK Delete lines beginning with the first
character in the =-nth line and ending at
the pointer.

0K Delete from the beginning of the current
line to the pointer (equivalent to 0D).

/K Delete from the pointer to the end of
the Text Buffer (equivalent to /D).

Example:

*ZKS$S Delete lines starting at the current
location pointer and ending at the 2nd
<CR>LF>.

Assuming a buffer of:

ADD R1l,(R2)+
CLRy @R2
MOVB 6 (R1) ,@R2

the command:
*'KES
alters the contents of the buffer to:

ADD Rl, (R2)+
CLR;

Kill and Delete commands perform the same function, except that Kill
is line-oriented and Delete is character-oriented,

3.6.4.4 Change = The Change command replaces n characters, starting
at the pointer, with the specified text string and leaves the pointer
positioned immediately following the changed text.

The form of the command is:

(+ or =) nCtext$ Replace n characters (forward or backward from the
pointer) with the specified text.

OCtexts$ Replace the characters from the beginning of the

line up to the pointer with the specified text
(equivalent to 0X).

/Ctexts$ Replace the characters from the pointer to the end

of /t?e buffer with the specified text (equivalent
to /X).

3-22

Text Editor

=Ctext$ Replace =n characters with the indicated text
string, where n represents the length of the last
text argument used. :

The size of the text is limited only by the size of the Text Buffer
and the space available. All characters are legal except ALTMODE
which terminates the text string.

If the C command is to be executed more than once (i.e,, it is
enclosed in angle brackets) and if there is enough space available so
that the command can be entered, it will be executed at 1least once
(provided it appears first in the command string). If repetition of
the command exceeds the available memory, an error message is printed.
The Change command is identical to executing a Delete command followed
by an Insert (nDItext$).

Examples:

*SCHVECTSS Replaces the five characters to the
right of the pointer with #VECT.

Assuming a buffer of:

CLR €Rr2
MOV, 5(R1) ,€R2

The command:
*WCARDDEBSS
leaves the buffer with:

CLR @RrR2
ADDB4 5(R1) ,@R2

=C can be used in conjunction with a search command to replace a
specific text string as follows:

*GFIFTY:$=CFIVE:¥ Pind the occurrence of the text string
FIFTY: and replace it with the text
string FIVE:.

3.6.4.5 Exchange - The Exchange command exchanges n lines, beginning
at the pointer, with the indicated text string and leaves the pointer
positioned after the changed text,

The form of the command is:

nXtext$ Exchange all characters beginning at the pointer
and ending at the nth <CR)LF)> with the indicated
text.

=nXtext$ Exchange all characters beginning with the first
character on the =nth 1line and ending at the
pointer with the indicated text.

OXtext$ Exchange the current line from the beginning to
th? pointer with the specified text (equivalent to
oc).

3-23

Text Editor

/Xtext§ Exchange the lines from the pointer to the end of
;he buffer with the specifed text (equivalent to
C).

All characters are legal in the text string except ALTMODE which
terminates the text,

The Exchange command is identical to a Kill command followed by an
Insert (nKitext$), and accepts all legal line-oriented arguments.

If the X command is enclosed within angle brackets so that it will be
executed more than once, and if there is enough memory space available
g0 that the X command can be entered, it will be executed at least
once (provided it is first in the command string). If repetition of
the command exceeds the available memory, an error message is printed,

Example:
*2XADD R1, (R2)+ Exchanges the two lines to
CLR @R2 the right of the pointer location
$s with the text string.

*

3.6.5 Utility Commands

3,6.5.1 Save - The Save command starts at the pointer and copies the
specified number of lines into the Save Buffer (described previously
in Section 3.5).

The form of the command is:

ns
The argument (n) must be positive, The pointer position does not
change and the contents of the Text Buffer are not altered. Each time
a Save is executed, the previous contents of the Save Buffer, if any,
are destroyed. If the Save command causes an overflow of the Save
Buffer, an error message is printed.
Example:

Agsume the Text Buffer contains the following assembly language
subroutine:

3-24

“we

-\

Text Editor

;SUBROUTINE MSGTYP

$WHEN CALLED, EXPECTS RO TO POINT TO AN

;ASCII MESSAGE THAT ENDS IN A ZERO BYTE,
;TYPES THAT MESSAGE ON THE USER TERMINAL

+ASECT
«=1000

MSGTYP: TSTB (%0) s DONE?
BEQ MDONE ; YES-RETURN

MLOOP: TSTB €#177564 ;NO-IS TERMINAL READY?
BPL MLOOP s NO-WAIT
MOVB (%0)+,@#177566 ;YES PRINT CHARACTER
BR MSGTYP s LOOP

MDONE : RTS %7 s RETURN

The command:

*145%$

stores the entire subroutine in the Save Buffer; it may then be
inserted in a program wherever needed by using the U command.

3.6.5.2 Unsave - The Unsave command inserts the entire contents of
the Save Buffer into the Text Buffer at the pointer location and
leaves the pointer positioned following the inserted text.

The form of the command is:

U Insert in the Text Buffer the contents of the Save
Buffer.

ou Clear the Save Buffer and reclaim the area for text.
Zero is the only legal argument to the U command,

The contents of the Save Buffer are not destroyed by the Unsave
command (only by the 0U command) and may be Unsaved as many times as
desired.

If there is no text in the Save Buffer and the U command is given, the
?*NO TEXT*? error message is printed., If the Unsave command causes
an overflow of the Text Buffer, the ?*NO ROOM*? error message 1is
displayed.

3.6.5.3 Macro - The Macro command inserts a command string into the
EDIT Macro Buffer. The Macro command is of the form:

M/command string/ Store the command string in the Macro
Buffer,

oM Clear the Macro Buffer and reclaim the
or area for text.

M//

/ represents the delimiter character. The delimiter is always the
first character following the M command, and may be any character
which does not appear in the Macro command string itself,

3~25

Text Editor

Starting with the character following the delimiter, EDIT places the
Macro command string characters into its internal Macro Buffer until
the delimiter is encountered again. At this point, EDIT returns to
Command Mode. The Macro command does not execute the Macro string;
it merely stores the command string so that it can be executed 1later
by the Execute Macro (EM) command. Macro does not affect the contents
of the Text or Save Buffers.

All characters except the delimiter are 1legal Macro command string
characters, including single ALTMODEs to terminate text commands.
All commands, except the M and EM commands, are legal in a command
string macro,

In addition to the OM command, typing the M command immediately
followed by two identical characters (assumed to be delimiters) and
two ALTMODE characters also clears the Macro Buffer.

Examples:
*MS 8 E Clears the Macro Buffer

*M/GRO$-CLE/$¢ Stores a Macro to change R0 to Rl.

NOTE

Be careful to choose infrequently used
characters as macro delimiters; use of
frequently used characters can 1lead to
inadvertent errors. For example,

*M GMOY RO$=CROD R1$ $3
?*NO FILE*?

In this case, it was intended that the
macrxo be GMOV RO$=CADD R1$ but since the
delimiter character (the character
following the M) is a space, the space
following MOV is used as the second
delimiter, terminating the macro. EDIT
then returns an error when the R0O$=
becomes an illegal command structure.

3.6.5.4 Execute Macro - The Execute Macro command executes the
command string specified in the last Macro command,

The form of the command is:
nEM

The argument (n) must be positive. The macro is executed n times and
returns control to the next command in the original command string.

3-26

~——

e

Text Editor

Examples:
*M/BGROS-C1$/$$.
*B1BOBENSS . Exacutes the MACRO stored in
?*SRCH FAIL IN MRCRO*? the previous example. An error
* message is returned when the
end of buffer is reached,

(This macro effectivelychangés
all occurrences of RO in the
Text Buffer to Rl,)

*IMOV PC, R1$SZEMICLR GRZS$$ In a new program, inserts

* MOV PC,R1 then executes the
command in the Macro Buffer
twice before inserting CLR
€@Rr2,

3.6.5.5 Edit Version - The Edit Version command displays the version
number of the Editor in use on the console terminal.

The form of the command is:
EVS
Example:

*EVSS
vez-o1

3.6.5.6 Upper~ and Lower-Case Commands - Users who have any upper/
lower-case terminal as part of their hardware configuration may take
advantage of the upper- and lower-case capability of this terminal.
Two editing commands, EL and EU, permit this.

When the Editor is first called (R EDIT), upper-case mode is assumed;
all characters typed are automatically translated to upper case. To
allow processing of both upper- and lower-case characters, the Edit
Lower command is entered:

XEL$e
*¥i Text and commands can be entered in UFFER and lower case.$$

X
The Editor now accepts and echoes upper- and lower-case characters
received from the keyboard, and outputs text on the teleprinter in
upper- and lower-case.
To return to upper-case mode, the Edit Upper command is used:
XEUSS

Control also reverts to upper-case mode upon exit from the Editor (via
EF, EX, or CRTL C).

3-27

Text Editor

Note that when an EL command has peen issued, Edit commands can be en-
tered in either upper- or lower-case. Thus, the following two commands
are equivalent:

XGTEXTS$=Cnew text$Vss
XdTEXT$=cnew textéves

The Editor automatically translates (internally) all commands to upper-
case independent of EL or EU.

3.7 THE DISPLAY EDITOR

In addition to all functions and commands mentioned thus far, the
Editor has additional capabilities to allow efficient use of VI-1l1l
display hardware which may be part of the system configuration (GT40,
GT44, DECLAB 11/40).

The most apparent feature is the ability to use the display screen
rather than the console terminal as a window into the Text Buffer for
printout of all textual input and output. When all the features of
the display Editor are in use, a 12" screen displays text as shown in
Figure 3-1:

“GET AN [NPUT LINE

TFCNT. RO TANY RESERVED TF°S?
THQ

10 PRECEDING ié’mcugnT 1VES. UPDATL PAGL NUMBER
0 01 PAG
LINES OF TEXT LIP‘INE: . “INIT NEW CRET SEGUENCE
FFINT
CURSOR . WINDOW
(CURRENT LINE) INTO THE

TEXT BUFFER

AND 9 FOLLOWING i eomL

LINES OF TEXT g SHLENT
CEHDC o

LIF HOF pacER

SEPARATION LINE

3 PRECEDING SIBSCOPE.PICHS
COMMAND LINES s
e

CURRENT COMMAND
LINE

Figure 3-1
Display Editor Format

January 1976 3-28

Text Editor

The major advantage is that the user can now see immediately where the.
pointer is. The pointer appears between characters on the screen as a
bright blinking L-shaped cursor and can be detected easily and
quickly. Note that if the pointer is placed between a carriage return
and line feed, it appears in an inverted position at the beginning of
the next line.

In addition to displaying the current line (the 1line containing the
cursor), the 10 1lines of text preceding the current line and the 9
lines following it are also in view. Each time a command string is
executed (via a double ALTMODE) this portion of the screen is
refreshed so that it reflects the results of the commands just
performed.

The lower section of the screen contains 4 lines of editing commands.
The command line currently being entered is last, preceded by the
three most recent command lines., This section is separated from the
text portion of the screen by a horizontal line of dashes. As new
command lines are entered, previous command lines are scrolled upward
off the command section so that only four command lines are ever in
view.

A 17" screen displays 30 lines of text and 8 command lines.

3.7.1 Using the Display Editor

The display features of the Editor are automatically invoked whenever
the system scroller is in use and the user types:

.R EDIT

However, if the system does not contain VTr-11 display hardware, the
display features are not enabled.

Providing that the system does contain VT-1ll display hardware and that
the user wishes to employ the screen during the editing session, he
may activate it in one of two ways (all editing commands and functions
previously discussed in this chapter are valid for use):

1, If the scroller is in use (i.e., the GT ON monitor command
has been typed prior to calling the Editor), EDIT recognizes
this and automatically continues using the screen for display
of text and commands. However, it rearranges the scroller so
that a "window" into the Text Buffer appears in the top
two/thirds of the screen, while the bottom third is used to
display command lines. This arrangement is shown in Figure
3-1,

The Edit Console command can be used to return the scroller
to its normal mode 8o that text and commands appear as
described in Chapter 2, Section 2,7.1 (i.e., using the full
screen for display of command 1lines, and eliminating the
window). The form of the command is:

EC

3-29 January 1976

Texc Editor

For example:

*BREC2LSS The second and third 1lines of the
current buffer are listed on the screen;
there is no window into the Text Buffer
at this point.

Subsequent EC commands are ignored if the window into the
Text Buffer is not being displayed.

To recall the window, the Edit Display command is used:
ED
The screen is again arranged as shown in Figure 3-1,

2. Assume the: scroller is not in use (i.e., the GT ON command
has not been typed, or the monitor GT OFF command has been
typed prior to calling the Editor). When the user calls EDIT,
an asterisk appears on the console terminal as described in
Section 3.1. Using the ED command at this time provides the
window into the Text Buffer; however, commands continue to
be echoed to the console terminal,

When ED is used in this case, it must be the first command
issued; otherwise, it becomes an illegal command (since the
memory used by the display buffer and code, amounting to over
600 words, is reclaimed as working space). The display cannot
be used again until a fresh copy of EDIT is loaded.

While the display of the text window is active, ED commands
are ignored.

Typing the EC command clears the screen and returns all
output to the console terminal,

NOTE

Under the Single-Job Monitor only, after
the editing session is over, it |is
recommended that the screen be cleared
by either ¢typing the EC command, or
returning to the monitor and using the
monitor INITIALIZE command, Failure to
do this may cause unpredictable results.

3.7.2 Setting the Editor to Immediate Mode

An additional mode is available in EDIT to provide an easier and
faster degree of interaction during the editing session. This mode is
called Immediate Mode and combines the most-used functions of the Text
and Command Modes--namely, to reposition the pointer and to delete and
insert characters.

Immediate Mode may be used only when the VT-1l display hardware 1is
active and the Editor is running; it is entered by typing two
ALTMODES (only) in response to the Command Mode asterisk:

*$$

3-30

Text Editor

The Editor responds by echoing an exclamation point on the screen.
The exclamation character remains on the screen as long as control
remains in Immediate Mode.

Once Immediate Mode has been entered, only the commands in Table 3-3
are ueed. None of these commands echoes, but the text appearing on the
screen is constantly refreshed and updated during the editing process.
Note that no EDIT commands other than those in Table 3-3 may be used
while control remains in Immediate Mode.

To return control to the display Editor's normal Command Mode at any
time while in Immediate Mode, type a single ALTMODE. The Editor
responds with an asterisk and the user may proceed using all normal
Editing commands. (Immediate Mode commands typed at this time will be
accepted as Command Mode input characters.) To return control to the
monitor while in Immediate Mode, type CTRL C.

Table 3-~3
Immediate Mode Commands

Command Meaning

CTRL N Advance the pointer (cursor) to the
beginning of the next line (equivalent
to a).

CTRL G Move the pointer (cursor) to the

beginning of the previous line
{(equivalent to =-a).

CTRL D Move the pointer (cursor) forward by one
character (equivalent to J),.

CTRL V Move the pointer (cursor) back by one
character (equivalent to =J).

RUBOUT Delete the character immediately
preceding the pointer (cursor)
{(equivalent to =D).

CTRL C Return control to the monitor.

ALTMODE (one only) Return control to Command Mode.

(two) Direct control to Immediate Mode.
Any other character Insert the character as text positioned
than those above immediately before the pointer (cursor)

(equivalent to I).

3-31

Text Editor

3.8 EDIT EXAMPLE

The following example illustrates the use of some of the EDIT commands
to change a program stored on the device DK. Sections of the terminal
outpu§ are coded by letter and corresponding explanations follow the
example,

. R EDIT
A *ERDK: TEST1. MACS$
*EWDK : TEST2. MACSS

*R$$
FrILSS
;i TEST PROGRAM
START: MOV #1800, %6 i INITIRLIZE STRCK
MOV #MSG, %8 ; FOINT R@ TO MESSAGE
Bﬂ JSR %7yMSGTYF i FRINT IT
HRLT ; STOP
MSG : _RSCII/ZIT WORKS/
_BYTE 15
_BYTE 12
L _BYTE @
C {*B 1J 5DSS
*GPROGRAMSS
D({ *0Lss

CPROGRAM*I TO TEST SUBROUTINE MSGTYF. TYFES
E{ ;"THE TEST PROGRAM WORKS"
JUN THE TEMINIM\RMINALSS
XF. ASCII/$$
F{ «8CTHE TEST PROGRAM WORKSSS
*P. BYTE"X
G{ *F. BYTE @Vss
_BYTE @
=3
_END
B/LS
.PROGRAM TO TEST SUBROUTINE MSGTYF. TYFES
C"THE TEST PROGRAM WORKS"
;ON THE TERMINAL

START: MOV #1008, X6 s INITIALIZE STHCK

H< MOY #MSK, Z@ ; POINT RO TO MESSHGE
JER X7+ MSGTYF s PRINT IT
HRLT ; STOP .
MSG: .RSCII/THE TEST PROGRRM WORKS/
. BYTE 15 '
.BYTE 12
.BYTE 8
. END

r—

| *EXS

3-32

Text Editor

A The EDIT program is called and prints an *, The input - file is
TEST1.MAC; the output file is TEST2.MAC and the first page of
input is read.

B The buffer contents are listed.,

o Be sure the pointer is at the beginning of the buffer, Advance
pointer one character (past the ;) and delete the "TEST ".

D Position pointer after PROGRAM and verify the position by listipg
up to the pointer.

E Insert text. RUBOUT used to correct typing error.

F Search for .ASCII/ and change "IT WORKS"™ to "THE TEST PROGRAM
WORKS",

G CTRL X typed to cancel P command. Search for ".,BYTE 0" and
verify location of pointer with V command.

H Ingert text. Return pointer to beginning of buffer and 1list
entire contents of buffer,

I Close input and output files after copying the current text
buffer as well as the rest of input file into output file. EDIT
returns control to the monitor. .

3.9 EDIT ERROR MESSAGES

The Editor prints an error message whenever one of the error
conditions listed next occurs. Prior to executing any commands, the
Editor first scans the entire command string for errors in command
format (illegal arguments, illegal combinations of commands, etc.). If
an error of this type is found, an error message of the form:

?ERROR MSG?

is printed and no commands are executed. The user must retype the
command,

If the command string is syntactically correct, execution is started.
Execution errors are still possible, however (buffer overflow, 1/0
errors, etc.), and if such an error occurs, a message of the form:

2*ERROR MSG*?
is printed. In this case, all commands preceding the one in error are
executed, while the command in error and those following are not

executed, Most errors will generally be of the syntax type and can be
corrected before execution.

3-33

Text Editor

wWhen an error occurs during execution of a Macro, the message format
is:

?message IN MACRO?

or

?*message IN MACRO*?

Message

CB ALMOST FULL

?2CB FULL?

2*DIR FULL*?

?*EOF*?

?*FILE FULL*?

?*FILE NOT FND*?
?2*HDW ERR*?

?ILL ARG?

?ILL CMD?

?2*ILL DEV*?

?2ILL MAC?

depending on when it is detected.

Explanation

The command currently being entered is within
10 characters of exceeding the space
available in the Command Buffer,

Command exceeds the space allowed for a
command string in the Command Buffer,

No room in device directory for output file.

Attempted a Read, Next or file searching
command and no data was available,

Available space for an output file is full,
Type a CTRL C and the CLOSE monitor command
to save the data already written,

Attempted to open a nonexisting file for
editing.

A hardware error occurred during I/0. May bhe
caused by WRITE LOCKed device. Try again,

The argument specified is illegar for the
command used. A negative argument was
specified where a positive one was expected
or argument exceeds the range + or - 16,383,

EDIT does not recognize the command
specified; ED was not the first command
issued when used to activate the display
hardware., _

Attempted to open a file on an \illegal
device, or attempted to use display hardware
when none was available (it may be in use by
the other job).

Delimiters were improperly used, or an
attempt was made to enter an M command during
execution of a Macro or an EM command while
an EM was in progress,

3-34

ot

Text Editor
Message
2*ILL NAME*?

2*NO FILE*?

2*NO ROOM*?

2*NO TEXT*?

?*SRCH FAIL*?

2"<{>"ERR?

Explanation

File name specified in EB, EW, or ER is
illegal, '

Attempted to read or write when no file is
open.

Attempted to Insert, Save, Unsave, Read,
Next, Change or Exchange when there was not
enough room in the appropriate buffer,
Delete unwanted buffers to create more room
or write text to the output file,

Attempted to call in text from the Save
Buffer when there was no text available.

The text string specified in a Get, Find or
Position command was not found in the
available data,

Iteration brackets are nested too deeply or
used illegally or brackets are not matched.

3-35

CHAPTER 4
PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) 4is the file transfer and
maintenance utility for RT-1l. PIP is used to transfer files between
any of the RT-1l1l devices (listed in Table 2-2), merge and delete files
from these devices, and list, zero, and compress device directories.

4.1 CALLING AND USING PIP
To call PIP from the system device type:
R PIP

in response to the dot printed by the Keyboard Monitor. The Command
String Interpreter prints an asterisk at the 1left margin of the
terminal and waits to receive a 1line of filenames and command
switches, PIP accepts up to six input filenames and three output
filenames; command switches are generally placed at the end of the
command string but may follow any filename in the string. There is no
limit to the number of switches which may be indicated in a command
line, as long as only one operation (insertion, deletion, etc.) is
represented.

Since PIP performs file transfers for all RT-11 data formats (ASCII,
object, and image) there are no assumed extensions for either input or
output files; all extensions, where present, must be explicitly
specified.

Following completion of a PIP operation, the Command String
Interpreter prints an asterisk at the left margin of the teleprinter
and waits for another PIP command line. Typing CTRL C at any time
returns control to the Keyboard Monitor. To restart PIP, type R PIP
or the REENTER command in response to the monitor's dot.

4.1.1 Using the "Wild Card" Construction

PIP follows the standard file specification syntax explained in
Section 2.5 (Chapter 2) with one exception: the asterisk character
can be used in a command string to represent filenames or extensions.
The asterisk (called the "wild card®") in a file specification means
all". For instance, ",MAC" means all files with the extension .MAC.

Peripheral Interchange Program

regardless of filename. "FORTN.*" means all files with the filename
FORTN regardless of extension., "*.*" means all files, regardless of
name or extension.

The wild card character is legal in the following cases only (switches
are explained in the next section):

l. Input file specification for the copy and multiple copy
operations (i.e., no switch, /I, /B, and /A).

2, File specification for the delete operation (/D).

3. Input and output file specifications for the rename operation
(/R).

4, Input and output file specifications for the multiple copy
operation (/X).

5. Input file specifications for the directory 1list operations
(/L, /E, /F).

Operations on files implied by the wild card asterisk are performed in
the order in which the files appear in the directory. System files
with the extension .SYS and files with bad blocks and the extension
.BAD are ignored when the wild card character is used unless the /Y
switch is specified.

Exampless

*% BAKAD Causes all files with the extension .BAK
' (regardless of their filenames) to be
deleted from the device DK,

#% TST=# BARKAR Renames all files with a .BAK extension
(regardless of filenames) so that these
files now have a «TST extension
(maintaining the same filenames).

KRKL K K/XA YK oK Transfers all files, including system
files, (regardless of filename or
extension) from device DK to device RKl,

KK MAC % ORI/L. Lists all files with MAC and LOBJ
extensions.

4.2 PIP SWITCHES

The various operations which can be performed by PIP are summarized in
Table 4-1, If no switch is specified, PIP assumes the operation is a
file transfer in image (/I) mode. Detailed explanations of the
switches follow the table.

" S’

Peripheral Interchange Program

Table 4-1
PIP Switches

Switch

Section

Explanation

/A

/B

/C

/D

/F

/G

/I or no
switch

/K

/L

/M:n

/N:n

/0

4.2,2

4.2,2
4.2,2

4,2.4

4.,2,6

4.2,.1

4.2,7

4,2,10

Copies file(s) in ASCII mode; ignores nulls and
rubouts; converts to 7-bit ASCII; CTRL Z (32 octal)

treated as logical end~of-file on input.
Copies files in formatted binary mode.

May be used in conjunction with another switch to
cause only files with current date (as designated
using the monitor DATE command) to be included in
the specified operation.

Deletes file(s) from specified device.

Lists the device directory including unused spaces
and their sizes. An empty space on a cassette or
magtape directory represents a deleted file,
Sequence numbers are listed for cassettes.
Prints a short directory (filenames only) of the
specified device.

Ignores any input errors which occur during a file
transfer and continues copying.

Copies file(s) in image mode (byte by byte). This
is the default switch.

Scans the specified device and types the absolute
block numbers (in octal) of any bad blocks on the
device,

Lists the directory of the specified device,
including the number of files, their dates, and
the number of blocks used by each file, Sequence
numbers are listed for cassettes,

Used when 1/0 transfers involve either cassette or
magtape. n represents the numeric position of the
file to be accessed in relation to the physical
position of the cassette or magtape on the drive.
If n is positive, the tape spaces forward from its
current position until either the filename or the
nth file is found; 4if n is negative, the tape is
rewound first, and then it spaces forward until
either the filename or the nth file is found. If
n is 0 (or not indicated) the tape is rewound and
searched for the filename. For wild card
operations, specification of /M with a positive
argument will prevent the tape from rewinding
between each file involved in the operation.

Used with /Z to specify the number of directory
segments (n) to allocate to the directory.

Bootstraps the specified device (DTO, RKn, RF, DPn,
DSn, DXn only).

4-3 (continued on next page)

Peripheral Interchange Program

Table 4-1 (Cont.)
PIP Switches

Switch Section Explanation

/Q 4.2,2 When used in conjunction with another PIP
operation, causes PIP to type each filename which
is eligible for a wild card operation and to ask
for a confirmation of 4its inclusion in the
operation. Typing a "Y" causes the named file to
be included in the operation; typing anything
else excludes the file. The command line is not
processed until the user has confirmed each file
in the operation,

/R 4,2.5 Renames the specified file.

/S 4,2,.8 Compresses the files on the specified directory
device 8o that free blocks are combined into one
area,

/T 4,2.4 Extends number of blocks allocated for a file,

/U 4.2.9 Copies the bootstrap from the specified file into
absolute blocks 0 and 2 of the specified device.

/v 4,2.11 | Types the version number of the PIP program being
used.

/W 4,2.6 Includes the absolute starting block and any extra

directory words in the directory listing for each
file on the device (numbers in octal). Used with
/F' /L, or /Eo

/X 4,2.3 Copies files individually (without concatenation).

/Y 4.2,2 Causes system files and .BAD files to be operated
on by the command specified. Attempted
modifications or deletions of .SYS or .BAD files
without /Y are not done and cause the message ?NO
SYS ACTION? to be printed.

/Z:n 4.2.7 Zeroes (initializes) the directory of the
specified device; n is used to allocate extra
words per directory entry. When used with /N, the
number of directory segments for entries may be
specified. When used with cassette, /2 writes a
sentinel file at the beginning of the tape; with
magtape, /Z writes a volume label followed by a
dummy file followed by double tape marks
indicating logical end-of-tape.

4,2.1 Operations Involving Magtape or Cassette

PIP operations involving cassette and magtape devices are handled
somewhat differently than other RT=-11 devices, because of the
sequential nature of these devices., The last file on a cassette or
magtape (the logical end-of-tape) is specially formatted so that it
marks the end of current data and indicates where new data may begin
(double end-of-file for magtape, sentinel file or physical end-of-tape
for cassette). Therefore, operations which designate specific block
lengths (such as /T and /N) are meaningless, and unused spaces on the
tape (resulting from file deletions) cannot be filled.

4-4

Peripheral Interchange Program

PIP operations which are legal using cassette and magtape (including
the bootable magtape on which the system may have been distributed)
include the following: /A, /B, /D, /E, /F, /G, /I, /L, /M, /Q, /V,
/M, /X, /¥, and /Z. Usually the device (CT or MT) is rewound each
time an operation is performed. Since there is no inclusive directory
at the beginning of the tape the only way to access a file is to
search the tape from the beginning until it is found. However, the
/M:n switch is available for situations where it is not necessary or
desirable to rewind the tape before each operation. If the argument
(n) is positive, the operation indicated will not rewind the tape
first, but will space forward until it finds either the nth file, the
filename indicated in the command line, or the logical end-of-tape,
whichever occurs first. If the argument is negative, the cassette or
magtape will be rewound first and then spaced forward until the file-
name (or nth file, or logical end-of-tape) is found. Thus:

/M:1 means suppress rewind, begin operation at
current position.

/M:=1 means rewind tape and access the first £file
on it,

Remember that when /M:n is used, n is interpreted as an octal number.
/Min must be used if it is intended that n represent a decimal number.

For example, assume the directory of a cassette on unit 1 is:

17-JUL~74

FILE .1 @ S-MAY-74
FILE .2 @ 5-MAY-T74
FILE 3 ! 13-MAY-74
FILE .4 1 28-JUN-74
FILE .5 2 17-JUL-74

5 FILES, 2 BLOCKS
*

and the last PIP operation involved FILE.4, leaving the cassette
positioned at the end of FILE,4, To access FILE,2, the next operation
(for example, deleting FILE.2) could use the /M construction:

*CT1:DUMAM: -2/D

In this case, the cassette rewinds first, then spaces forward from its
current position to the second file in sequence and deletes it, (In a
delete operation, the dummy filename is necessary; otherwise, a
non~-£file structured delete is performed and the tape is zeroed. See
Section 4.2.4).

Another useful application of the /M gswitch involves a case where a
number of files are to be created on a magtape or cassette. Using the
construction:

*MT ok #/¥=FILE. 1, FILE. 2.../M:1000

prevents a rewind from occurring before each new file is created on
the tape. Normal operation (when creating a new file on magtape or
cassette) is to rewind, then search the tape for the logical end. If
a file with the same name as the one being created is encountered, it
is deleted and the new file is opened at the logical end of the tape.
The /M:1000 command first causes the tape to space forward until it
reaches the logical end-of-tape, (assuming less than 1000 (octal)
files on the tape), at which point the next file is entered, and so
on. If the tape were already positioned at the end of the tape, an

4-5 _ January 1976

Peripheral Interchange Program

/M:1 would suffice to cause the new file to be written there. Nota
that creation of a new file with the /M switch can result in several
files with the same name on the same tape; those files occurring
before the tape position are not searched for duplication prior to the
creation of the new file,

RT-11 magtapes sometimes contain a dummy file at the beginning of the
tape, which is written when the tape is initialized with the /2
switch, This file shows up in extended directories (/E) as an
{UNUSED> entry 1in the first file position. Deleted files on magtape
or cassette do not show up in /F or /L directory 1listings, but must
always be considered when the /M:n switch is used, Care must always
be taken to use a /E directory when counting file position prior to
using that position as an /M:n argument; <(UNUSED) files must be
counted as files on the tape,

For example:

.R PIF

*MTO: A E Extended directory: shows
11-SEP-74 absolute file positions.
< UNUSED > 5]

A . MARC 48 11-SEFP-74

B . MAC. 15 11-SEP-74

< UNUSED > 2

D . Mac 2 11-SEP-74

3 FILES, 57 BLOCKS

*MTB: /L Normal directory; does
11-SEP-74 not accurately display
A .. MAC 46 11-SEF-74 file positions,

& . MRC 15 11-SEP-74

D . MRC 2 11-SEFP-74

3 FILES., 57 BLOCKS

If the user wished to access file A,MAC on the magtape in the example
above, /M3~2 must be used (/Mi-l would access the first empty file).
Likewise, B,MAC is accessed with /M:-3. Rewind can also be suppressed
for cassette and magtape as input devices by specifying a very large
numbexr in conjunction with wild card transfers from magtape or
cassette,

sk, k=MTh ok, * /M 200078

This transfers all files from MTO0: to DK: without rewinding between
each file, The argument 2000 is an arbitrarily large number; any
number larger than the actual number of £files on the tape will
suffice. ‘

The most common method for spacing to the end of the tape is:

*DUMMY=MTO : DUMMY /N : 2000
PFIL NOT FND?

where DUMMY is a file name which does not exist on the . tape, Note
that an error message is printed when the end of the tape is reached.

July 1975 4-6

o !

—

Peripheral Interchange Program

Directory listings of magtapes include the length of each file in
256 (decimal) word blocks. In cassette directories, however, sequence
numbers rather than block numbers are printed. Sequence numbers
indicate the sequential ordering of a file in cases where it has been
continued on more than one cassette. In the example cassette
directory 1listing (at the beginning of this section), the numbers in
the middle column represent sequence numbers; both FILE.3 and FILE.4
are the second segments of continued files. All files on cassette are
initially assigned a sequence number of 0 (meaning this is the first
segment of the cassette file, not that the file has no length). The
sequence number is automatically updated whenever the file must be con-
tinued as a result of a full cassette.

During I/0 transfer operations involving cassette, if the cassette is
full before the transfer has finished, the message:

CTn: PUSH REWIND OR MOUNT NEW VOLUME

is printed; n represents the number of the drive (0 or 1) on which
the current cassette is mounted., If the cassette rewind button is
subsequently pushed, an error message is typed (IN or OUT ERR) and the
tape is rewound.

To continue an output operation, mount a new cassette (which has been
properly formatted as described in Section 4.2.7) on the same drive.
The new cassette is rewound automatically and a file is opened on it
under the same name and extension; the sequence number in its
directory is updated to reflect the continuation, and the transfer
continues,

If the message occurs during an input operation, mount the cassette
containing the continued portion of the file on the drive; the
cassette is rewound first. PIP then looks for a file with the same
name and extension and the proper sequence number and continues the
inpug operation. The message is repeated if the next segment is not
found.

For example:

*CTO:FILE. AGA=DT1:ASC. MAC, DK : BALOR. MAC /A
CTo: PUSH REWIND OR MOUNT NEW YOLUME

This copies in ASCII mode the file ASC.MAC from DECtape 1 and
BALOR.MAC from device DK and combines them under the name FILE.AGA on
CT0. The cassette runs out of room and requests that a new one be
mounted, The operation continues automatically when the second
cassette has been mounted.

A directory of the second cassette in the above operation is next
requested; note that the sequence number of FILE.AGA is 1, signifying
it is the second part of a continued file.

*CT@: /L

23-MAY-74

TRA «BIN @ 16-FEB-74
FILE .AGA 1 23-MAY-=74

2 FILES, 1 BLOCKS

*
(The number of blocks in a cassette directory simply represents the
total of sequence numbers in the directory.)

Any cassette mounted in response to a continuation message MUST have
been previously initialized at some time as described in Section
4.2.7.

4-7 January 1976

Peripheral Interchange Program

If 2 full cassette is mounted or an attempt is made to access some
file on it that does not exist, the con@inuation. message recurs.
The operation may be continued by mounting another cassette.

Note that if an attempt is made to access a file which has.a non-zero
sequence number (during some operation which is not a continuation of
an operation), the file will not be found.

To copy multiple files to a cassette using a wild card command, use
the following:

CTn: . *=DEV:*, */X/M:1 (rewind is inhibited)

Continue to mount new cassettes in response to the PUSH REWIND OR
MOUNT NEW VOLUME message. Do not ahort the process at any time (using
two CTRL Cs) since continuation files may not be completed and no sen-
tinel file will be written on the cassette.

To read multiple files from a cassette, use the following:
DEV: *=CTn:*,*/X/M:1000 (rewind is inhibited)

Whenever a continued volume is detected, the PUSH REWIND OR MOUNT NEW
VOLUME message will appear, until the entire file has been copied (as-
suming that each sequential cassette is mounted in response to each oc-
currence of the message). Whenever PIP has copied the final section

of a continued file, it will return to command level. To copy the
remaining files on that cassette, reissue the command:

DEV:.*=CTn:*.*/X/M:1000

Repeat the process as often as necessary to copy all files. Do not
abort the process at any time (using two CTRL Cs) since continuation
files may not be completed.

If the end of a tape is reached during a magtape I/0 operation, an IN
or OUT ERR message is printed. 1In the case of an output operation,
the magtape backspaces and deletes the partial file by writing logical
end of tape over the file's header label. The operation must then be
repeated using another magtape.

If CTRL C is typed during any output operation to cassette or magtape,
an end-of-tape or sentinel file is not written on the tape first.
Consequently, no future enters may occur to the tape unless one of two
recovery procedures is followeds:

1. Transfer all good files from the bad tape to another tape and
zero the bad tape in the following manner:

devl:,*/X=devO:filel, file2,...filen/M:1000

*dev0:/2
dev0:/Z ARE YOU SURE ?

This causes a logical end-of-tape to bae written onto the bad
tape and makes it again available for use,

January 1976 4-8

Peripheral Interchange Program

2, Determine the sequential number of the file which was
interrupted and use the /M construction to enter a
replacement file (either a new file or a dummy file).
Assuming the bad file is the 4th file on the tape, use a
command line of this construction:

*dev0:file.new=£file.dum/Ms~4

A logical end-of-tape now exists on the tape, making it
available for use.

Since magtapes and cassettes are not random access devices, each unit
can have only one file accessed at a time. Avoid PIP command strings
which specify the same unit number for both input and output, since a
loss of information can occur. For example:

*CT@: FILEI.MAC=CTQA:FILE] «MAC
?FIL NOT FND?
*

The result of this operation is to delete FILE1.MAC before the error
message is printed, and the tape label structure may be destroyed.

Recovery procedures for errors caused by bad tapes are described in
RT-11 Software Support Manual.

4-8.1 January 1976

This page intentionally blank.

Peripheral Interchange Program
4.2,2 Copy Operations

A command line without a switch causes files to be copied onto the
destination device in image mode (byte by byte). This operation is
used to transfer memory image (save format) files and any files other
than ASCII or formatted binary. For example:

*ABC{XY2 Makes a copy of Sﬁe file named XYZ on
device DK and ‘assigns the name ABC,
(Both files exisf on device DK following
the operation). !

*5Y:BACK. BIN=FR:/1 Copies a tape from the papertape reader
to the system device in image mode and
assigns it the name BACK.BIN.

The /A switch is used to copy file(s) in ASCIY mode as follows:

*DT1:.FALF2/RA Copies F2 from device DK onto device DTl
in ASCII mode and assigns the name F1.

Nulls and rubouts are ignored in an ASCII mode file transfer. CTRL 2
(32 octal) is treated as logical end-of-file if encountered in the
input file. :

The /B switch {8 used to ¢transfer formatted binary £files. The
formatted binary copy switch should be used for .0BJ files produced by
the assembler or FORTRAN and for ,LDA files produced by the Linker.
For example:

*DK:FILE. OBJ<FR:/B fTransfers a formatted binary file from
the papertape reader to device DK and
assigns the name FILE,.OBJ,

When performing formatted binary transfers, PIP verifies checksums and
prints the message ?CHK SUM? if a checksum error occurs.,

If neither /A nor /B is used in a copy operation that involves a paper
tape device, the size of the output file in the operation depends upon
the memory size of the system. The transfer mode defaults to image
mode and PIP attempts to do a single read to fill its input buffer.
When a read from the paper tape reader encounters end-of-tape, no count
of words transferred can be returned; .PIP assumes its input buffer is
full and copies it to the output device. The output file size thus
depends upon the input buffer size, which is determined by the memory
size of the system. The output file will have several blocks of zeroes
after the end of the paper tape image. If copying to the punch, large
amounts of blank tape will be punched after the input tape image is
output. The extra length is harmless, but can be avoided by use of /A
or /B. Image mode files (for example, .SAV files) cannot reliably be
transferred to or from paper tape.

To combine more than one file into a single file, use the following
format:

*DK:AAR<DTL:EBB, CC, DD/
‘ Transfers files BB, CC and DD to device
DK as one file and assigns this file the
name AA,

4-9 January 1976

Peripheral Interchange Program

*DT3:MERGE=DT2 . FILEZ,FILEZAR
Merges ASCII files FILE2 and FILE3 on
DT2 into one ASCII file named MERGE on
device DT3. ,

Errors which occur during the copy operation (such as a parity error)
cause PIP to output an error message and return for another command

string.

The /G switch is used to copy files but ignore all input errors, For
example:

*AEC<DTL:TOPAG Copies file TOP in image mode from
device DTl to device DK and assigns the
name ABC. Any errors during the copy
operation are ignored.

January 1976 4-9.1

-

This page intentionally blank.

Peripheral Interchange Program

*DT2 . COME{DTL :FL, FE2 A/G
Coplies files F1 and F2 in ASCII mode
from device DTl to device DT2 as one
file with the name COMB, Ignores input
errors.

The wild card construction may be used for input file specifications
during copy operations. Be sure to use the /Y switch if system files
(.SYS) are to be copied. For example:

XOT1IPROGLX . MAC Copies, in image mode, all files with a
.MAC extension from device DK to device
DT1 and combines them under the name
PROG1.

XK. k=DT3:X,. %/G/Y/X Copies to device DK, in image mode, all
files (including .SYS files) from device
DT3; ignores any input errors,

If only files with the current date are to be copied (using the wild
card construction), the /C switch must also be used in the command
line, For example:

*DT2 NNZ=ITEML. »/C, ITEMZAA
Copies, in ASCII mode, all files having
the filename ITEM1 and the current date,
{the date entered using the monitor DATE
command) and copies ITEM2 (regardless of
its date) from device DK to device DT2
and combines them under the name NN3,

*DTI %, k=% * 0% Copies all files with the current date
from DK to DT3, Note that commands of
this nature are an efficient way to
backup all new files after a session at
the computer.

The /Q switch is used in conjunction with another PIP operation and
the wild card construction to list all files and allow the user the
opportunity to confirm individually which of these files should be
processed during the wild card expansion. Typing a "Y" causes the
“named file to be processed; typing anything else excludes the file.
For example:

XK ORJDTL IR OBJ/Q/X

FIRST LOBJ?Y Copies the files FIRST.OBJ and
GETR .OBJ? CARJ.OBJ to the disk in

RORDN L OBJ? image mode from DECtape 1

CARJ LOBJ?Y and ignores the others,

The file allocation scheme for RT-1l normally allows half the entire
largest available space or the second largest space, or a maximum size
{(a constant which may be patched in the RT-11 monitor; see the RT-11
System Generation Manual), whichever is largest, for a new file. The
user can, using the |n] construction explained in Chapter 2, force
RT-11 to allow the entire largest possible space by setting n=177777.
If n is set equal to any other value (other than 0 which is default
and gives the normal allocation described first above), that size will
be allocated for the file.

January 1976 4-10

S -

Peripheral Interchange Program

Therefore, assume that the directory for a given device shows a free
area of 200 blocks and that PIP returns an ?20UT ER? message when a
transfer is attempted to that device with a file which is longer than
100 blocks but less than 200 blocks. Transfers in this situation can
be accomplished in either of two ways:

1, Use the [n] construction on the output file to specify the
desired length (refer to Chapter 2, Section 2.5 for an
explanation of the [n] construction).

2, Use the /X switch during the transfer to force PIP to
allocate the correct number of blocks for the output file,
This procedure will operate correctly if the input device is
DECtape or disk.

For example, assume that file A is 150 blocks 1long and that a
directory 1listing shows that there is a 200 block <unused> space on
DT1:

.R PIF
*DT1:AR=A
20UT ER? File longer than 100 blocks.
*DT1:RI156 1=R

or Either command causes a correct
*DT1:A=A/X transfer.

4,.2,3 Multiple Copy Operations

The /X switch allows the transfer of several files at a time onto the
destination device as individual files. The /A, /G, /C, /Q, /B and /Y
switches can be used with /X. If /X is not indicated, all output files
but the first will be ignored.

Examples:

XFILELyFILEZyFILEZDTLIFILEAYFILERYyFILECSX
Copies, in image mode, FILEA, FILEB and
FILEC from device DTl to device DK as
separate files called FILEl, FILE2 and
FILE3, respectively.,

*DT2:F1 *=F2 */X Copies, in image mode, all files named

?N0 SYS ACTION? F2 (except files with .SY¥YS or .BAD

* extensions) from device DK to device
DT2, Each file is assigned the filename
Fl but retains its original extension.

XKDTLIK k=DT2i%.%x/X Coplies, in dimage mode, all files on
TNO SYS ACTION? device DT2 to device DT1 (except files
‘ with .SYS or .BAD extensions); the files
are copied separately and retain the

same names and extensions.

*DT1 :FILEL, FILE2<FILER. ¥/R/G/X
This command line assumes there are two
files with the filename FILEA (and any
extension excluding «SYS or «BAD
extensions) and copies these files in

4-11

Peripheral Interchange Program

ASCII mode to device DT1., The files are
transferred in the order they are found
in the directory; the first file found
is copied and assigned the name FILEl,
and the second is assigned PFILE2, 1If
there 1s a third, it is ignored and a
fourth causes an ?0UT FIL? error.

*DTO . % SYS=% SYS/K/Y
Copies all asystem files from device DK
to device DTO,

File transfers performed via normal operations place the new file in
the largest available area on the disk. The /X switch, however,
places the copied files in the firat free place large enough to
accommodate it. Therefore, the /X switch should be used whenever
possible (i.e., when no concatenation is desired) as an aid to
reducing disk fragmentation,

*A=B
and
*R=E/X

perform the same operationy; however, using the second construction
whenever possible increases the system disk-usage efficiency.

For example, assume the directory of DTl is:

9-MAY-74
MONITR. SYS 32 OS-MRY-74)
< UNUSED > 2
PR . SYE 2 S-MAY-74

< UNUSED > 528
2 FILES, 24 BLOCKS
938 FREE BLOCKS

To copy the file PP.SYS (2 blocks long) from DK to DT1l, the command:

*DT1:PP. SYS=PP. SYS/Y
can be entered, and the new directory is:)

9-MAY-74

MONITR. S¥S 32 OS5-MAY-T4
{ UNUSED > 2

PR . SYSs 2 J-MRY-74
PP . 5v¥S 2 9-MRY-74
¢ UNUSED > 526

3 FILES, 36 BLOCKS

328 FREE BLOCKS

If the command:
#DT1:PP. SYS=PP. SYS/¥Y/X

had been entered, the new directory would appear:

4-12

210

Peripheral Interchange Program 7
9-MAY-74
MONITR. S¥S 32 S-MAY-74
PP . SYS 2 9-MAY-74
PR . SYS 2 S-MARY-74

{ UNUSED > 528
3 FILES, 36 BLOCKS
528 FREE BLOCKS

4.2.4 The Extend and Delete Operations

The /T switch is used to increase the number of blocks allocated for
the specified file. The file associated with the /T switch must be
followed by a numeric argument of the form {n] where n is a decimal
number indicating the number of blocks to be allocated to the file at
the completion of the extend operation.

The format of the /T switch is:
dev:filnam,ext [n]=/T

A file can be extended in this manner only if it is followed by an
unused area of sufficient size (on whichever device it is located) to
accommodate the additional length of the extended file. It may be
necessary to create this space by moving other files on the device
using the /X switch. :

Specifying the /T switch in conjunction with a file that does not
currently exist creates a file of the designated length.

Error messages are printed if the /T command makes the specified €file
smaller (?EXT NEG?) or if there is insufficient space following the
file (?ROOM?).

Examples:

*ABCL 260 1=/T Assigns 200 blocks to file ABC on device
DK.

*DT1:XY2010081</T Assigns 100 blocks to the file named XYZ
on device DT1.

The /D switch is used to delete one or more files from the specified
device. The wild card character (*) can be used in conjunction with
this command,

Only six files can be specified in a delete operation if each file to
be deleted is individually named (i.e., if the wild card character is
not used).

A cassette or magtape may be initialized by indicating the /D switch
and omitting any filenames. For example:

*MT . /D
*CT: /D

Both devices are zeroed. This is not the case with the other RT=-11
devices, where omission of a filename causes no action to occur,

4~13

Peripheral Interchange Program

When a file is deleted on block-replaceable devices, the information
is not destroyed. The file name is merely removed from the directory.
If a file has been deleted but not overwritten, it can be recovered
with the /T switch by specifying a command of the form:

filena.ext{n]=/T

where filena.ext is the name desired and n is the length of the
deleted file, For example:

*DT1:/E

4-JUN-74

A . MAC 18 3-JUN-?74
B . MAC 17 3-JUN-74
[. MAC 19 X-JUN-74

< UNUSED > S18@
3 FILES, 54 BLOCKS
518 FREE BLOCKS

*DT1:B. MRC/D

*DT1:./E

4-JUN-74

A . MAC 18 3-JUN-74
< UNUSED > 17

c . MRC 19 3-JUN-74
< UNUSED > 518

2 FILES, 37 BLOCKS

527 FREE BLOCKS
File B.MAC could now be recovered by:

*DT1:B. MARCL 17 1=/T

The /T switch 1looks for the first unused area large enough to
accommodate the requested file length., If the file to be recovered is
in the first area large enough to accommodate the size specified, the
preceding command is sufficient. If not, all larger unused spaces
preceding the desired file must be given dummy names before the
recovery can be made,

For instance, assume the previous example with the exception that
A.MAC has a 33 block unused file before it, so that the directory
looks like:

*DT1:/E

4-JUN-?4

< UNUSED > 33

A . MAC 18 3-JUN-74
. UNUSED > 17

c . MRC 18 2-JUN-74
< UNUSED > 477

2 FILES, 37 BLOCKS

527 FREE BLOCKS

A recovery of B,MAC would require:

*DT1:DUMNYL 33 1=/T
*DT1:B. MARCL 17 1=/T

4-14

e

—

Peripheral Interchange Program

If the 33 block unused area was not named prior to B.MAC, the first 17
blocks of the 33 block area would become B,MAC, Note that magtape and
cagssette files cannot be recovered once deleted, ’

Examples:
*FILE1. SAV/D Deletes FILEl.SAV from device DK,

*DT4: % */D Deletes all files from device DTl except
those with a .SYS or .BAD extension. If
there is a file with a .SY¥S or .BAD
extension, the message ?NO SYS ACTION?
is printed to remind the user that these
files have not been deleted,

*%_ MAC/D Deletes all files with a .MAC extension
from device DK,

*DT1:B4, DTZ2:R1, DTZ:AR/D
Deletes the files specified from the
associated devices,

KRK13K . k/D/Y Deletes all files from device RKl.

4,2.5 The Rename Operation

The /R switch is used (in a manner similar to the multiple copy
command described in Section 4.2.3) to rename a file given as input
with the associated name given in the output specification. There
must be an equal number of input and output files and they must reside
on the same device, or an error message will be printed. The /Y
switch must be used in conjunction with /R if ,SYS files are to be
renamed,

The Rename command is particularly useful when a file on disk or
DECtape contains bad blocks, By renaming the file with a .BAD
extension, the file permanently resides in that area of the device so
that no other attempts to use the bad area will occur. Once a file is
given a ,BAD extension it cannot be moved during a compress operation.
«BAD files are not renamed in wild card operations unless /Y is used.

Examples:

*DT1:F1, X1<0T1:F0, X8/R Renames FO to Fl1 and X0 to X1 on
: device DT1,

*FILEL. *<FILE2. */R Renames all files on device DK with
the name FILE2 (except files with
.SYS or .BAD extension) to FILEl,
retaining the original extensions.

/R cannot be used with magtape or cassette.

4,2,6 Directory List Operations

The /L switch lists the directory of the specified device. The
listing contains the current date, all files with their associated
creation dates, total free blocks on the device if disk or DECtape,
the number of files 1listed, and number of blocks used by the files

4-15 July 1975

Peripheral Interchange Program

{sequence number for cassette)., File lengths, number of blocks and
number of files are indicated as decimal values., If no output device
is specified, the directory is output to the terminal (TT:).

Examples:
*DT1:/L Outputs complete directory of
1-RUG-74 device DT1 to the terminal.

MONITR. 5YS 32 5-MAY-74

PP .SYS 2 9-MAY-74

PR . 5YS 2 J-MAY-74

F2 . REL 15

MERGE 2

COMB P-4

6 FILES, 55 BLOCKS
S89 FREE BLOCKS

XDIRECT=DT3: /L. Outputs complete directory of
device DT3 to a file, DIRECT,
on the device DK.

*%. MAC/L Lists on the terminal a
1-AUG-74 directory of files on device
VTMAC . MAC 7 22-JUL-74 DK with the extension .,MAC,

FILEZ . MAC i
2 FILES, 8 BLOCKS

3728 FREE BLOCKS
*

*CT1: /L Lists all files on cassette
10-SEP-74 drive 1. For cassette only,
PRTL . FOR @ 16-SEFP-74 the third column represents
PAT2 . FOR 0 16-SEFP-74 the sequence number. In
ImuL . o0BJ @ 18-SEF-74 this example, the first seg-
SQRT . FTN @ 10-SEP-74 ment of each file is on this
4 FILES, @ BLOCKS cassette. (See Section
4.2.1.)

The /E switch lists the entire directory including the unused areas
and their sizes 1in blocks (decimal)y; an empty space appears in
cassette and magtape directories to designate a deleted file.

Examples:
X/E Outputs to the terminal a
Y- BEF~74 complete directory of the
BATCH JHLF 2 23-AUG-74 device DK including the size
CHESS ,5AV 20 23-AUG-74 of unused areas. ’
FAT1 LFOR 10 23-AUG-74
IRADGO . MAC 8 23-AUG-74

+

.

January 1976 4-16

Pt N
4 .

Peripheral Interchange Program

< UNUSED =)
TRIG .ORJ 2 b6-GER~74
STF +ORJ 2 6-5EF-74
BAC NN 2 6~SEF-74
< UNUSED 20

*

LIBR1 ORI 137 6&6-SEF-74

DIRECT 1 9-8EF-74

< UNUSED = 230
254 FILES, 4280 BRLOCKS

498 FREE RLOCKS
*LP:=CT1:/E Outputs to the 1line printer
11e8EPeT4 a complete directory of
A oMAC ? 11eSEP=TA cassette drive 1. 0's
A JMAC P 1je3EPe?a represent segment numbers,

8 JMAC ? 11e8EPa74

3 FILES, @ BLOCKS

The /F switch lists only filenames, omitting the file 1lengths and
associated dates.

Examples:

*DT8: /F Outputs a filename directory

TRACE . MAC of the device DTO0 to the

CRRGO . REL terminal,

BMAP . 0BJ

RRA

*LP:=CT1:/F Outputs a filename directory
of the device CT1 to the line
printer,

A <MAC

A WMAC

a8 +MAC

The /L, /E and /F commands have no effect on the files of the speci-
fied device. 1If the /W switch is used in conjunction with the /L or

/E switches, the absolute starting block of the file and extra words

(in octal) will be included in the listing (for all but cassette and

magtape). For example:

XRRL:/1L./7W

10-8EF-74

DSRRT ORJ 1 10-8EF-74 16 0
MAIN JOERJ 1 10-SEF-74 17 O
BASICR.ORJ 11 10-8EF-~74 20 0
0TSsV2 0ORJ 3 10-8EF-74 33 o

The first three columns indicate the filename and extension, block
length, and date. The fourth column shows the absolute starting block
{(in octal), and the fifth column shows the contents of each extra word
per directory entry (in octal). (This is allocated using the /Z:n
switch; see Section 4.2.7.) ’

4-17 January 1976

Peripheral Interchange Program

Using the /L, /E, or /F switch in conjunction with a device and
filename causes the filename, and optionally the date and file length,
to be output rather than a directory of the entire device. For
example:

*F1. SAY/L
causes:
4-JUN-74
F1 . SAY 18 4-JUN-74

3718 FREE BLOCKS
*

to be output, providing the file exists on device DK.

Directories are made up of segments which are two blocks long. Full
directory 1listings with multiple segments contain blank lines as
segment boundaries.

4.2.7 The Directory Initialization Operation

The /Z switch clears and initializes the directory of an RT-11 direc-
tory-structured device and writes logical end-of-file to a cassette
or magtape device. The /Z operation must always be the first opera-
tion performed on a new (that is, previously unused) device. The
form of the switch is:

/Z:n

where n is an optional octal number to increase the size of each direc-
tory entry on a directory-structured device. If n is not specified,

each entry is 7 words long (for filename and file length information)

and 70 entries can be made in a directory segment. When extra words

are allocated, the number of entries per directory segment decreases. The
formula for determining the number of entries per directory segment is:

507/ ((# of extra words)+7)

For example, if the switch /Z:1 is used, 63 entries can be made per
segment,

More information concerning the format of directory entries is supplied
in Chapter 3 of the RT-1ll Software Support Manual.

When /Z is used, PIP responds as follows:
device/Z ARE YOU SURE ?
For example:

*DT1:/2
0T1:/2 ARE YOU SURE ?

Answer Y and a carriage return to perform the initialization. An
answer beginning with a character other than Y is considered to be no.

Examples
. *DTi : /Z
DT1:/2 RRE YOU SURE ?Y<CR>
* Zeroes the directory on device DTl and
allocates no extra words for the
directory.

January 1976 4-18

[f

Peripheral Interchange Program

The /N switch is used with /Z to specify the number of directory seg-
ments for entries in the directory. The form of the switch is:

/N:n

where n is an octal number less than or equal to 37. Initially RT-11
allocates four directory segments, each two blocks (512 words) long.

Refer to Chapter 3 of the RT-1l1 Software Support Manual for more in-

formation.

Example:

KRKL3/7Z12/N6 Zeroes the directory on device RK1l, al-
locates two extra words per directory
entry and allocates six directory seg-
ments.

4.2.8 The Compress Operation

The /S switch is used to compress the directory and files on the speci-
fied device, condensing all the free (unused) blocks into one area.
Input errors are reported on the console terminal unless the /G switch
is used; output errors are always reported. 1In either case, the com-
press continues. /S can also be used to copy DECtapes and disks.

When DT, DP, or RK devices are copied, /S serves to both initialize
the volume and to copy directory and files. When DX disks are copied,
however, the output diskette must first be initialized using /2 to
write the appropriate volume identification. (It is important to

note that the /S switch destroys any previous directory on the output
device. The new directory on the output device has the same number

of segments as the directory on the input device.) /S does not copy
the bootstrap onto the volume.

To increase the numher of directory blocks in a two-volume compress
(that 1is, from one volume to another rather than from one wvolume to
itself), use the /Nin switch in conjunction with the /S switch (any
attempts to decrease the directory size are ignored).

/S does not move files with the .BAD extension. This feature provides
protection against reusing bad blocks which may occur on a disk.
Files containing bad blocks can be renamed with the .BAD extension and
are then left in place when a /S is executed.

If a compress operation is performed on the system device, the
messages

?REBOOT?

is printed to indicate that it may be necessary to reboot the system.
If .SYS files were not moved during the compress operation, it is not
necessary to reboot the system.

NOTE

Rebooting the system in response to the
?REBOOT? warning message should ONLY be
done AFTER the operation which generated
the message is complete, ?REBOOT? does
not signify that the system should be

4-19 January 1976

Peripheral Interchange Program

rebooted immediately; the user should
wait for the "*" gignifying that PIP is
ready for another command before
rebooting,

If the command attempts to compress a large device to a smaller one,
an error results and the directory of the smaller device is zeroed.
If a device is being compressed in place, input and output errors are
reported on the terminal and the operation continues to completion.

Examples:

*SY: S Compresses the files on the system
?REBOOT? device SY3

*DT1:ACDT2: /S Transfers and compresses the files from
device DT2 to device DT1l, Device DT2 is
not changed, The filename A is a dummy
specification required by the Command
String Interpreter.

/S cannot be used when a foreground job is present; a ?FG PRESENT?
error message results if this is attempted,

4.2,9 The Bootstrap Copy Operation

The bootstrap copy switch (/U) copies the bhootstrap portion of the
specified file into absolute blocks 0 and 2 of the specified device.

Examples:

*DK:A<DK :MONITR. SYS/U
Writes the bootstrap file MONITR.SYS in
blocks 0 and 2 of the device DK, A is a
dumnmy f£ilename,

AKOTIMONITR.SYS/X/Y=RKIDTHNS].5YS
AKNT 1 A=RKIDTMNSJ.5YS5/U

Writes the Single~Job DECtape Monitor
to device DT0 and then writes the boot-
strap into blocks 0 and 2 (the bootstrap
is written from disk rather than DECtape
because disk is faster).

4,2,10 The Boot Operation

The boot switch reboots the system, reinitializing monitor tables and
returning the system to the monitor level. The boot switch performs
the same operation as a hardware bootstrap.

Examples

‘*DN:/O Reboots the device DK.

4-20

Peripheral Interchange Program ,

If a boot switch is specified on an illegal device, the message:
TBAD BOOT?

is printed. Legal devices are DT0, RKO-RK7, RF, SY, DK, DP0O-DP7,

DX0-DX1l, and DS0-DS7. Note that /O is illegal if a foreground job

is present; the ?FG PRESENT? error message results. The user must
abort the foreground job and unload it before using /O.

4.,2.11 The Version Switch

The Version switch (/V) outputs a version number message (representing
the version of PIP in use) to the terminal using the form:

PIP V02-XX

The rest of the command line, if any, is ignored.

4,2,12 Bad Block Scan (/K)

The bad block switch (/K) scans the specified device and types the
absolute block numbers of those blocks on the device which return
hardware errors. The block numbers typed are octal; the first block
on a device is 0(8). Note that if no errors occur, nothing will be
output. A complete scan of a disk pack takes several minutes,

Example:
KRKZ2 /K Scan disk drive 2 for bad blocks.
BLOCK 140 15 RBA
KR /K Scan drive 0. No blocks are bad.

X

4,2.12.1 Recovery from Bad Blocks

As a disk ages, the recording surface wears. Eventually unrecoverable
I/0 errors occur during attempts to read or write a bad disk block.
PIP protects against usage of bad disk areas by ignoring files with a
.BAD extension (unless the /Y switch is used). Once a bad block is
uncovered in an I/0 operation, it can be located using the /K switch
and a .BAD file can be created which encompasses the bad block.

When a hardware I/O error is detected, the recovery procedure is as
follows: '

1. Use the PIP /K switch to scan the device and print on the
terminal the absolute block numbers (in octal) of the bad
blocks. For example:

R PIF
*RK1: /K
BLOCK 7722 1S BRD
*

4-21 January 1976

Peripheral Interchange Program

2.

3.

5.

Obtain an extended directory with the /W switch, showing the
starting block numbers of all the files on the disk.

If a bad block occurs in a file with valuable information,
copy the file to another file using the /G switch. 1In most
cases, only 1 bit (charagter) of the file is affected.

If the file is small, it can then be renamed with a .BAD
extension to prevent further use of that disk area.

If the file is large or the bad block occurs in an empty
area, a l-block .BAD file can be created using the /T switch
as follows:

a. Delete the bad file (if any).

b. If the bad block is at block n of the free area, create a
file of 1length n-1 with the /T switch. Remember that
there must be no spaces larger than n-l blocks before the
desired one (refer to Section 4,2,.,4). Also note that the
block numbers printed in the /K and /W operations are
octal, while the argument to the /T operation is decimal.

c. Create a l-block .BAD file with the /T switch to cover
the bad block.

d. Delete any temporary files created during the operation.

For example, assume the extended directory is:

NEWSRC,BAT 8 11~SEP=T4 6203

RTTEMP,BAT 27 1i{e8EPeT4 6213

PIP «MAC 150 12-8EPe74 6246

<« UNUSED » 154

VERIPY, S8AV 3 6726

<« UNUSED » 3uo

PIP «08J 15 12eSEP=74 T40%

MKPIP ,CT{ { {2e«8EPeT4 Y424

MKVERK,CTL 4 |2=8EPeT74 7425

VTLIB ,08) 10 12=SEPe74 743}

¢ UNUSED » 152

A 4 12=8EP=74 TeT4

PIP bST 300 3-8EPeT4 7675 Block 7723 (octal) of

. PIP.LST is bad.

and a bad block is detected at block 7723 (octal) of the file PIP.LST.
To recover, make a copy, ignoring the error, and delete the bad file:

*RK1:PIFR. LST=RK1:FPIF. LST/G
*RK1:PIP. LST/D

The directory now reads:

[]

L]
NEWSRC,BAT 8 11=8EP=74 6203
RYTEMP,BAT 27 131=8EP=74 6213
PIP «MAC 150 12-SEP-T4 6246

4-22

AR

Peripheral Interchange Program

< UNUSED > 154
VERIFY, SAV 3 6726
PIPA ,LST 300 18eSEP=74 673}
PIP ,08J 1S {2e8EP=74 7405
MKPIP ,CTL { 12=SEP=74 7424
MKV2RK,CTL 4 12=3EPeT74 7425
VTLIB ,0BJ 10 12«8EP=T74 743}
<« UNUSED > 150
A 4 12=SEP=T4 767}
]
[]

An unused area following A contains block 7723 (octal), which
is bad. Continuing in PIP:

*RK1:TEMF. 0620154 1=/T
#RK1:TEMP. 862[15@1=/T
*RK1:TEMF. 8040 221=/T

This £fills the unused areas with temporary files, Specifying
TEMP.004 with a length of 22 blocks makes the file just long
enough to precede the bad block (i.e,, 7675 (octal) and 22
(decimal) equal 7723, which would be the starting block
number of the next file created). The directory now contains:

NEWSRC,BATY 8 11=SEP=T74 6203
RYTEMP,BAT 27 11=SEP=T4 6213
PIP «MAC 150 12=SEP=T74 6246
TEMP 002 154 18=SEP=74 6474
VERIFY, SAV 3 6726
PIPA ,LST 300 18=8EP=T4 6731
PIP «08J 15 12-85EP=74 7405
MKPIP ,CTL 1 12=SEP=T74 7424
MKV2RK,CTL U 12-SEP=74 7425
VTLIB ,0BJ 180 12~SEP=74 7431
TEMP ,003 150 18<SEP=74 7443
A 4 12=SEP=T74 7671
TEMP ,004 22 18=SEP=T74 7675

Continuing with PIP:
*RK1:FILE. BADL11=/Y/T Create a bad file.

The directory now contains:
L]

NEWSRC,BAT 8 11=-SEP=74 62083
RTTEMP,BAT 27 11=SEP=T74 6213
PIP «MAC 150 {2=SEP=T4 6246
TEMP ,002 154 18=SEP=T74 6474
VERIFY,SAV 3 6726
PIPA ,LST 300 18=SEP=T4 6731
PIP .08J 15 12eS5EP=74 7405
MKPIP ,CTL 1 12«SEP=74 7424
MKV2RK,CTL 4 12=SEP=T74 7425
vyTLIiB ,08J 19 {2=SEP=T4 74314
TEMP ,003 150 {8=-SEP=74 7443
A 4 12=SEP=74 7671

4-23

Peripheral Interchange Program

Next delete
PIP.LST.

TEMP 004
FILE .BAD
[]

NEWSRC,BAT
RTTEMP,BAT
PIP ,MAC
< UNUSED >
VERIFY,SAV
PIP ,LST
PIP ,08J
MKPIP ,CTL
MKV2RK. CTL
VTLIB ,08J
< UNUSED >
A

< UNUSED >
FILE ,84AD

22 18=SEP=T4 7675
| 18=SEP=74 7723

Bad block is here.

all temporary files and rename PIPA,LST to
The final directory now contains:

8 {1=SEP=T74 6203

27 131=SEP=74 6213
150 {2-SEP=T74 6246
154

3 6726

300 18+=SEP=74 6731
1S {2-SEP=T4 7405
{ 12=SEP=T4 7424

4 12=SEP=T74 7425
10 12=SEP=74 7434
150

4 12=8EP=T4 7671
22

1 18=SEP=T4 7723

Disks with many bad blocks can often be reused by
reformatting them, First copy all desired files, since
reformatting destroys all information contained on a volume.

4.3 PIP ERROR MESSAGES

The following error messages are output on the terminal when PIP is
used incorrectly:

Errors

?BAD BOOT?
?BOOT COPY?
?CHK SUM?
?COR OVR?
?DEV FUL?
?ER RD DIR?

?ER WR DIR?

?EXT NEG?

?FG PRESENT?

?FIL NOT FND?

January 1976

Meaning

A boot switch was specified on an illegal
device.

An error occurred during an attempt to write
bootstrap with /U switch.

A checksum error occurred in a formatted
binary transfer,

Memory overflow--too many devices and/or file
specifications (usually *.* operations) and
no room for buffers,

No room on device for file,

Unrecoverable error reading directory. Check
volume for off-line or write-locked condition
and try the operation again.

Unrecoverable error writing directory. Try
again,

A /T command attempted to make file smaller.

An attempt was made to use /0 or /S while a
foreground job was still in memory. Unload
it if it is no longer desired.

File not found during a delete, copy, or re-
name operation, or no input files with the
expected name or extension were found during
a *.* expansion.

4-24

¥y

b

Peripheral Interchange Program

?ILL CMD?

?2ILL DEV?
?ILL DIR?

?ILL REN?

?2ILL SWT?
?IN ER?

?0UT ER?

?20UT FIL?

2ROOM?

The command specified was not syntactically
correct; a device name is missing which
should be specified, a switch argument is too
large, a filename is specified where one is
inappropriate, or a nonfile-structured device
is specified for a file-structured operation.

Illegal or nonexistent device.

The device did not contain a properly ini-
tialized directory structure (EOT file on

magtape and cassette; empty file directory
on other devices). Use /Z.

Illegal rename operation. Usually caused by
different device names on the input and out-
put sides of the command string.

Illegal switch or switch combination.

Unrecoverable error reading file. Try again
(this error is ignored during /G operation).

Unrecoverable error writing file. Perhaps a
hardware or checksum error; try recopying
file. Also may be caused by an attempt to
compress a larger device to a smaller one or
by not enough room when creating a file. The
system takes the largest space available and
divides it in half before attempting to in-
sert the file. Try the [n] construction or
/X switch.

Illegal output file specification or missing
output file.

Insufficient space following file specified
with a /T switch.

The following warning messages are output by PIP:
CTn: PUSH REWIND OR MOUNT NEW VOLUME

?NO .SYS/.BAD
ACTION?

?REBOOT?

A new cassette must be mounted on drive n to
allow continuation of an I/0 operation. The
operation is continued automatically as soon
as the new cassette is mounted.

The /Y switch was not included with a command
specified on a .SYS or .BAD file. The com-
mand is executed for all but the .SYS and
.BAD files. A *.* transfer is most likely

to cause this message.

.SYS files have been transferred, renamed,
compressed or deleted from the system device.
It may be necessary to reboot the system.

NOTE

The message is typed immediately
after execution of the relevant
command has begun, but the actual
reboot operation must not be per-
formed until PIP returns with the
prompting asterisk for the next
command. If the system is halted
and rebooted before the prompting
asterisk returns, disk information
may be lost.

4-25 January 1976

Peripheral Interchange Program

If any of the ,SYS files in use by the
current system (MONITR,SYS and handler files)
have been physically moved on the system
device, it is necessary to reboot the system
immediately. If not, this message can be
ignored, If the cause of the message was a
/S operation, the system need be rebooted
only 1if there was an empty space before any
of the .SYS files or if the /N:n switch was
used to increase the number of directory
segments. The need to reboot can be
permanently avoided by placing all ,SYS files
at the beginning of the system device, then
avoiding their involvements in PIP operations
by not using the /Y switch.

dev:/Z ARE YOU SURE?

January 1976

Confirmation must be given by the user before
a device can be zeroced.

4-26

\.\,

CHAPTER 5

MACRO ASSEMBLER

MACRO is a 2-pass macro assembler requiring an RT-11 system
configuration (or background partitior) of 12K or more. Macros are
instructions in a source or command language which are equivalent to a
specified sequence of machine instructions or commands. Users with
minimum memory configurations must use ASEMBL and EXPAND and should
read this chapter and Chapters 10 and 11 before assembling any
programs. (The macro features not supported by ASEMBL are indicated
in this chapter; many of the features not available in ASEMBIL are
supported by EXPAND,)

Some notable features of MACRO are:

l. Program control of assembly functions

2, Device and file name specifications for input and outpht
files

3. Error listing on command output device

4. Alphabetized, formatted symbol table listing

5. Relocatable object modules

6. Global symbols declaration for linking among object modules
7. Conditional assembly directives

8. Program sectioning direactives

9. User defined macros

10. Comprehensive set of system macros
l1l. Extensive listing control, inclﬁding cross reference listing

Operating instructions for the MACRO assembler appear in Section 5.7.

5~1

MACRO Assembler

5.1 SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines; each
source line contains a single assembly language statement followed by
a statement terminator. A terminator may be either a 1line feed
character (which increments the 1line count by 1) or a form feed
character (which resets the line count and increments the page
count by 1).

NOTE

EDIT automatically appends a 1line feed
to every carriage return encountered in
a source program. For 1listing format,
MACRO automatically inserts a carriage
return before any line feed or form feed
not already preceded by one,

An assembly language line can contain up to 132(decimal) characters
(exclusive of the statement terminator). Beyond this limit, excess
characters are ignored and generate an error flag.

5.1.1 Statement Format

A statement can contain up to four fields which are identified by
order of appearance and by specified terminating characters. The
general format of a MACRO assembly language statement is:

label: operator operand(s) ;comments

The label and comment fields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other, ' ‘

The assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words or performing
an assembly process. A statement contains one of these fields and may
contain all four types. Blank lines are legal.

Some statements have one operand, for example:

CLR (T
while others have two:

MoV #344,R2
An assembly language statement must be complete on one source lin.,
No continuation 1lines are allowed., (If a continuation is attempt.d
with a line feed, the assembler interprets this as the statement

terminator.)

MACRO source statements may be formatted with EDIT so that use of the
TAB character causes the statement fields to be aligned., For example:

MACRO Assembler

Label Operator Operand Comment
Field Field Field Field
CHECK: BIT #1,R0 1IS NUMBER ODD?
BEQ EVEN sNO, IT'S EVEN
MOV #-1 ,0DDFLG sELSE SET FLAG
EVEN: RTS PC s RETURN

5.1.1.1 Label Field - A label is a user-~defined symbol that is
unique within the first six characters and is assigned the value of
the current location counter and entered into the user-defined symbol
table. The value of the label may be either absolute (fixed in memory
independently of the position of the program) or relocatable (not
fixed in memory), depending on whether the location counter value (see
Section 5,2,6) is currently absolute or relocatable.

A label is a symbolic means of referring to a specific location within
a program., If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current 1location
is absolute 100 (octal), the statement:

ABCD: MOV A,B

assigns the value 100(octal) to the label ABCD. Subsequent reference
to ABCD references 1location 1100(octal). In this example if the
location counter was declared relocatable within the section, the
final value of ABCD would be 100(octal) plus a value assigned by LINK
when it relocates the code, called the relocation constant. (The
final value of ABCD would therefore not be known until link-time.
This is discussed later in this chapter and in Chapter 6.)

More than one label may appear within a single label field, in which
case each label within the field is assigned the same value. For
example, if the current location counter is 100(octal), the multiple
labels in the statement:

ABCH ERREXt MasSK1 MOV A8

cause each of the three labels--ABC, ERREX, and MASK--to be equated to
the value 100 (octal).

A symbol used as a label may not be redefined within the user progran.
An attempt to redefine a label results: in an error flag in the
assembly listing.

5.1.1.2 Operator Field - An operator field follows the label field
in a statement and may contain a macro call, an instruction mnemonic,
or an assembler directive, The operator may be preceded by zero, one
or more labels and may be followed by one or more operands and/or a
comment., Leading and trailing spaces and tabs are ignored.

When the operator is a macro call, the assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the instruction to be generated and
the action to be performed on any operand(s) which follow. When the
operator is an asscmbler directive, it specifies’ a certain function or
action to be performed during assembly,

5-3

MACRO Assembler

An operator 1is legally terminated by a space, tab, or any
non-alphanumeric character (symbol component).

Consider the folilowing examples:

MOV A,8 (space terminates the operator MOV)
MOVeA,B (¢ terminates the operator MOV)

when the statement line does not contain an operand or comment, the
operator is terminated by a carriage return followed by a line feed or
form feed character.,

A blank operator field is interpreted as a .WORD assembler directive
(See Section 5.5.3.2).

5.1.1.3 Operand Field - An operand is that part of a statement which
is manipulated by the operator. Operands may be expressions, numbers,
or symbolic or macro arguments {(within the context of the operation).
When nultiple operands appear within a statement, each is separated
from the next by one of the following characters: comma, tab, space,
or paired angle brackets around one or more operands (see Section
5.2.1.1). Multiple delimiters separating operands are not legal (with
the exception of spaces and tabs--any combination of spaces and/ox
tabs represents a single delimiter). An operand may be preceded by an
operator, a iabel or another operand and followed by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement. For example:

LABEL: MOV a,B ICONM‘!NT

The space between MUV and A terminates the operatér field and begins
the operand field; a comma separates the operands A and B; a
semicolon terminates the operand field and beging the comment field.,

5.1,1.4 Comment Field - The comment field is optional and may
contain any ASCII characters except null, rubout, carriage return,
line feed, vertical tab or form feed. All other characters, even
special characters with defined usage, are ignored by the assembler
when appearing in the comment field.

The comment field may be preceded by one, any, none or all of the
other three field types., Comments must begin with the semicolon
character and end with a statement terminator.

WONRPRTIE v e W)

MACRO Assembler

Comments do not affect assembly processing or program execution, but
are useful in source listings for later analysis, debugging, or
documentation purposes.

5.1.2 Format Control

Horizontal or line formatting of the source program is controlled by
the space and tab characters., These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII text; or unless they are used as the operator field terminator.
Thus, these characters can be used to provide an orderly source
program. A statement can be written:

LABELIMOV(SP)¢,TAG)POP VALUE OFF SYACK
or, using formatting characters, it can be written:

LABELE MOV (SP)+,TAG JPOP VALUE OFF S8TACK
which is easier to read in the context of a source program listing.

Vertical formatting, i.e., page size, is controlled by the form feed
character, A page of n lines is created by inserting a form feed
(CTRL FORM) after the nth line, (See also Section 5.5.1.6 for a
description of page formatting with respect to macros and Section
5.5.1.2 for a description of assembly listing output.)

5.2 SYMBOLS AND EXPRESSIONS

This section describes the various components of legal MACRO
expressions: the assembler character set, symbol construction,
numbers, operators, terms and expressions.

5.2,1 Character Set
The following characters are legal in MACRO source programs:

1. The letters A through 2. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case letters., Lower-case letters can only
be output by sending their ASCII values to the output device.

This conversion is not true for .ASCII, L.ASCIZ, ' (single
quote) or " (double quote) statements if .ENABL LC is in
effect. .

2. The digits 0 through 9.

3. The characters . (period or dot) and § (dollar sign) which
are reserved for use in system program symbols (with the
exception of local symbols; see Section 5.2.5).

4. The following special characters:

MACRO Assembler

Character Designation Function)
carriage return formatting character
line feed
form feed source statement terminators

vertical tab

3 colon label terminator

= equal sign direct assignment indicator -

3 percent sign register term indicator

tab item or field terminator

space item or field terminator

] number sign immediate expression indicator

a at sign deferred addressing indicator

{ left parenthesis initial register indicator

) right parenthesis terminal register indicator

’ comma operand field separator

H semicolon comment field indicator

4 left angle bracket initial argument or expression
indicator

? right angle bracket terminal argument or expression
indicator

+ plus sign arithmetic addition operator or
auto increment indicator

- minus sign arithmetic subtraction operator
or auto decrement indicator

* asterisk arithmetic multiplication
operator

/ slash arithmetic division operator

& ampersand logical AND operator)

1 exclamation logical inclusive OR operator

. double quote double ASCII character indicator

! single quote single ASCII character indicator

t uparrow . universal ‘unary operator,
argument indicator

\

backslash macro numeric argument indicator
. (not available in ASEMBL)

5.2.1.1 Separating and Delimiting Characters - Reference is made in
the remainder of the chapter to legal separating characters and macro
argument delimiters, These terms are defined in Table 5-1 and

following.
Table S5~-1
Legal Separating Characters
Character Definition] . Usage
space one or more spaces A space 1is a legal separator

_.._1]-. f’-.‘-.. __..,.‘"—.-..A. -_-a-z_a_ —

CHAPTER 6
LINKER

6.1 INTRODUCTION

The RT-1l Linker converts object modules produced by either one of the
RT-11 assemblers or FORTRAN IV into a format suitable for loading and
execution. This allows the user to separately assemble a main program
and each of its subroutines without assigning an absolute load address
at assembly time. The object modules of the main program and
subroutines are processed by the Linker to:

1. Relocate each object module and assign absolute addresses

2. Link the modules by correlating global symbols defined in one
module and referenced in another module

3. Create the initial control block for the linked program

4. Create an overlay structure if specified and include the
necessary run-time overlay handlers and tables

5. Search user specified libraries to locate unresolved globals

6. Optionally produce a load map showing the layout of the load
module

The RT-1l Linker requires two or three passes over the input modules.,
During the firat pass it constructs the global symbol table, including
all control section names and global symbols in the input modules. If
library files are to be linked with input modules, an intermediate
pass is needed to force the modules resolved from the library file
into the root segment (that part of the program which is never
overlaid). During the final pass, the Linker reads the object modules,
performs most of the functions 1listed above, and produces a load
module (.LDA for use with the Absolute Loader, save image (.SAV) for a
Single~job system or for the background job of an F/B System, and
relocatable (.REL) format for the foreground job of an F/B System).

The Linker runs in a minimal RT-11 system of 8K; any additional memory
is used to facilitate efficient linking and to extend the symbol table.
Input is accepted from any random-access device on the system; there
must be at least one random-access device (disk or DECtape) for save
image or relocatable format output.

6-1 January 1976

Linker

6.2 CALLING AND USING THE LINKER
To call the Linker, type the command:
R LINK

and the RETURN key in response to the Keyboard monitor's dot. The
Linker prints an asterisk and awaits a command string.

Type CTRL C to halt the Linker at any time and return control to the
monitor. To restart the Linker, type R LINK or the REENTER command in
response to the monitor's dot. The Linker outputs an extra line feed
character when it is restarted with REENTER or after an error in the
first command line. When the Linker is finished linking, control
returns to the CSI automatically. An extra line feed character
precedaes the asterisk printed by the CSI. '

' 6.2,1 Command String

The first command string entered in response to the Linker's asterisk
has the following format:

*dev:binout,dev:mapout=deviobjl,deviobi2,.../s8l1/82/83
wheres

dev: is a random-access device for all files except
dev:mapout, which can be any legal output de-
vice. If dev: is not specified, DK is assumed.
If the output is to be LDA format (that is,
the /L switch was used), the output file need
not be on a random-access device.

binout is the nama to be assigned to the Linker's
save image, LDA format, or REL format output
file. This file is optional; if not
specified, no binary output is produced.
(Save image is -the assumed output format
unless the /L or /R switches are used.)

mapout is the optional load map file.

objl,eee are files of one or more object modules to be
input to the Linker (these may be library
files).

/8l/82/83 are switches as explained in Table 6-1 and

Section 6.8.
If the /C switch is given, subsequent command lines may be entered as:
*obim,0bjn,.../81/82
The /C switch is necessary only if the command string will not f£it on
one line or if the overlay structure is used. If an error occurs in a

continued command line (e.g., ?FILE NOT FND?), only the line in error
need bas retyped.

January 1976 6-2

Fig

4

