
TPC Benchmark B
Full Disclosure Report

for the
DECsystem 5000 Model 25

Using
ULTRIX 4.2A and INFORMIX-OnLine 4.10

Submitted for Review: 4/23/92

Company
 Name

System
 Name

Database
Software

Operating System
 Software

Digital Equipment
 Corporation

INFORMIX-
OnLine 4.10

ULTRIX 4.2A

Total System Cost TPC-B Throughput Price Performance

-Hardware
-Software
-5 years Maintenance

Sustained maximum through-
put of system running TPC
Benchmark B expressed in
transactions per second.

Total system cost/
 TPC-B throughput

 ($65,096/23.8 tpsB)

$65,096 23.8 tpsB $2,735 per tpsB

DECsystem 5000
 Model 25

d
TM

First Printing April 1992

Digital Equipment Corporation believes that the information in this document is accurate as of its publi­
cation date. The information in this document is subject to change without notice. Digital Equipment Cor­
poration assumes no responsibility for any errors that may appear in this document.

The pricing information in this document accurately reflects prices in effect on the indicated dates. How­
ever, Digital Equipment Corporation provides no warranty on the pricing information in this document.

The performance information in this document is for guidance only. System performance is highly depend­
ent on many factors including system hardware, system and user software, and user application charac­
teristics. Customer applications must be carefully evaluated before estimating performance. Digital
Equipment Corporation does not warrant or represent that a user can or will achieve similar performance
expressed in transactions per second (TPS) or normalized price/performance (K$/TPS). No warranty on
system performance or price/performance is expressed or implied in this document.

Copyright ©1992 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

DEC, DECsystem, ULTRIX, and the DIGITAL Logo are trademarks of Digital Equipment Corporation.

Informix is a registered trademark of Informix Software, Inc.
TPC Benchmark and TPC­B are trademarks of the Transaction Processing Performance Council.

Digital Equipment TPC-B Rev. 1.1

Report Date: 23 Apr 1992

Total System Cost TPC-B Throughput Price/Performance

$65,096 23.8 tpsB $2,735 per tpsB

Processors Database Manager Operating System Other Software

1 DECsystem 5000
INFORMIX-OnLine

ULTRIX 4.2A

Priced System Configuration

(Relational)

Corporation

 V4.10
INFORMIX-ESQL/C

 9

DECsystem 5000 Model 25

DECsystem 5000
 Model 25

 SCSI
controller

TZK10

 RZ58

 rrz0c rrz1c rrz2c rrz3c rrz4c rrz5c
 1.38 GB 426 MB 426 MB 426 MB 426 MB 426 MB

 log archive rootdbs mirror physdbs account account
 account account account account teller
 branch
 hist (active)

rmt0h

 RZ25 RZ25 RZ25 RZ25 RZ25

 CPU

 Model 25
 V4.10

Concurrency
 Level

 System Components Qty Description

Processors 1 DECsystem 5000 Model 25
Memory 40 MB of main memory
Disk Controllers 1 SCSI controller

 Disk Drives 1 1.38 GB RZ58 SCSI Disk
5 426 MB RZ25 SCSI Disks

 Total GB of Disk Storage 3.51 GB
Tapes Drive 1 TLZ04 525 MB Quarter-Inch Cartridge Tape Drive

Digital Equipment DECsystem 5000 Model 25
TPC-B Rev. 1.1

Report Date: 23 Apr 1992Corporation

UNIT EXTENDED YRS. 2-5 TOTAL

DESCRIPTION MODEL # PRICE* QTY PRICE* MAINTEN. 5 YR COST

Host and Database

Hardware (24 MARCH 1992):
DECsystem 5000 Model 25, 24 MB PM319-RX $12,659.00 1 $12,659.00 $0.00 $12,659.00
Warranty Upgrade to DS9 FM-DECUP-12 $132.00 1 $132.00 $8,304.00 $8,436.00
Additional 16 MB Memory MS01-CA $3,200.00 1 $3,200.00 $0.00 $3,200.00
2 RZ25 426 MB Disks SZ12G-GA $5,600.00 2 $11,200.00 $4,800.00 $16,000.00
1 1.38 GB RZ58 Disk, TLZ04 SZ12J-EA $9,284.00 1 $9,284.00 $3,936.00 $13,220.00

Software:
ULTRIX ULTRIX 4.2 $0.00 1 $0.00 $0.00 $0.00
UX-32 Media & Doc. QA-VYVAA-H5 $1,315.00 1 $1,315.00 $0.00 $1,315.00

Digital SUB TOTAL $37,790.00 $17,040.00 $54,830.00
Years 2-5 Warranty Adder = 5.3725% $915.47 $915.47

Digital SUB TOTAL $37,790.00 $17,955.47 $55,745.47
Prepayment Maintenance Discount = 25% ($4,488,87) ($4,488.87)

Digital TOTAL $37,790.00 $13,466.60 $51,256.60

Informix

INFORMIX Software (Class "D" License) (1 AUGUST 1991):
INFORMIX-OnLine 4.10 (16U) Full Dev./Run T $6,700.00 1 $6,700.00 $4,840.00 $11,540.00
INFORMIX-ESQL/C 4.10 (16U) Full Dev./Run T $1,340.00 1 $1,340.00 $960.00 $2,300.00

Informix TOTAL $8,040.00 $5,800.00 $13,840.00

CONFIGURATION TOTALS $45,830.00 $19,266.60 $65,096.60

tpsB & $/tpsB 23.8 $2,735

*Includes 1 year warranty

v

Abstract

This report documents the compliance of testing performed on a DECsystem
5000 Model 25 server running INFORMIX­OnLine 4.10, in conformance with
Revision 1.1 of the Transaction Processing Performance Council’s TPC
Benchmark B Standard Specification.

Two standard metrics, transactions per second (TPS) and price per TPS
(K$/TPS), are reported. Throughout this report, TPS refers to the tpsB
performance metric, in accordance with the TPC Benchmark B Standard.

The benchmark’s methodology, results, and $/tpsB calculations were
internally audited by Digital Equipment Corporation and Informix Software
Inc.

vii

Table of Contents

Preface .. xi

TPC Benchmark B Full Disclosure 1

1 - General Items ..1

1.1 Sponsor ... 1

1.2 Application Code and Definition Statements ... 1

1.3 Parameter Settings .. 2

1.4 Configuration Diagrams ... 2

2 - Clause 2 Related Items ...5

2.1 Atomicity Tests .. 5

2.2 Consistency Tests ... 6

2.3 Isolation Tests .. 7

2.4 Durability Tests .. 8

3 - Clause 3 Related Items ...9

3.1 ABTH Data Storage Distribution ... 9

3.1.1 History Storage and Recovery ... 12

3.2 Database Contents and Method of Population ... 15

3.3 Type of Database .. 15

4 - Clause 4 Related Items ...15

5 - Clause 5 Related Items ...15

5.1 Method of Verification of Random Number Generator ... 15

5.2 Horizontal Partitioning Disclosure ... 15

5.3 Transaction Distribution ... 16

6 - Clause 6 Related Items ...16

7 - Clause 7 Related Items ...18

7.1 Determining Steady State ... 18

7.2 Work Performed During Steady State .. 19

7.3 Determining Reproducibility ... 21

viii

7.4 Duration of Measurement Period ... 21

8 - Clause 8 Related Items ...22

8.1 Description of the Driver ... 22

9 - Clause 9 Related Items ...23

9.1 Hardware and Software Components ... 23

9.1.1 Priced System Configuration Tables ... 23

9.1.2 Availability Status ... 23

9.1.3 Package Pricing ... 23

9.2 Total Price of System Configuration .. 24

9.2.1 Hardware Pricing ... 24

9.2.2 Software Pricing .. 24

9.2.3 Price Discounts .. 25

9.2.4 System Pricing Summary .. 26

9.3 Performance and Price/Performance .. 27

10 - Clause 10 Related Items ..27

Appendix A Application Code ... A-1

A.1 tpc.ec Source Code ... A-1

A.2 createdb.ec Source Code .. A-6

A.3 createhist.ec Source Code .. A-8

A.4 createruns.ec Source Code ... A-10

A.5 createidx.ec Source Code ... A-13

A.6 config.scr Source Code .. A-14

A.7 bench.h code ... A-15

Appendix B Database Definitions ... B-1

Appendix C Code to Populate Database ... C-1

C.1 Database Population Program .. C-1

C.1.1 load_db.ec Source Code .. C-1

C.1.2 load_act.ec Source code .. C-6

Appendix D Database Contents Samples .. D-1

D.1 Branch Table .. D-1

D.2 Teller Table .. D-1

D.3 History Table .. D-2

ix

D.4 Account Table .. D-2

Appendix E Device Configurations ... E-1

Appendix F System Parameter Settings ... F-1

F.1 System Parameters ..F-1

F.2 IPC Semaphore Facility ..F-4

xi

Preface

This report documents the compliance of the Digital TPC Benchmark B testing on a
DECsystem 5000 Model 25 with the TPC Benchmark B Standard Specification1. The
TPC Benchmark B Standard represents an effort by Digital Equipment Corporation,
Informix Software Inc., and other members of the Transaction Processing Performance
Council (TPC) to create an industry­wide benchmark for evaluating the performance and
price/performance of transaction processing systems.

These tests were run using the INFORMIX­OnLine relational database running under
the Digital ULTRIX operating system.

Document Structure

The TPC Benchmark B Full Disclosure Report is organized as follows:

• The main body of the document lists each item in Clause 10 of the TPC Benchmark B
Standard and explains how each specification is satisfied.

• Appendix A contains the source code of the application program used to implement
the TPC Benchmark B transaction and related programs and scripts.

• Appendix B contains the INFORMIX­OnLine database definitions.

• Appendix C contains the source code used to populate the database.

• Appendix D contains samples of contents of the database files used in the tests.

• Appendix E contains a description of the physical disk partitions.

• Appendix F contains the operating system parameters and options.

Additional Copies

To request additional copies of this report, write to the following address:

Administrator, TPC Benchmark Reports
Software Performance Group
Digital Equipment Corporation
151 Taylor Street (TAY1)
Littleton, MA 01460­1407
U.S.A.
FAX number: (508) 952­4197

1 TPC Benchmark B Standard Specification, Transaction Processing Performance Council, March 1, 1992, Ver­
sion 1.1.

TPC Benchmark B Full Disclosure 1

TPC Benchmark B Full Disclosure

The TPC Benchmark B Standard Specification requires test sponsors to publish,
and make available to the public, a full disclosure report in order for the results to be
considered compliant with the standard. The required contents of the full disclosure
report are specified in Clause 10.

This report is intended to satisfy the TPC Benchmark B standard’s requirement for
full disclosure. It documents the compliance of the benchmark tests with each item
listed in Clause 10 of the TPC Benchmark B Standard Specification.

In the TPC Benchmark B Standard Specification, the main headings in Clause 10
are keyed to the other standard clauses. The headings in this report use the same
sequence, so that they correspond to the titles or subjects referred to in Clause 10.

Each section in this report begins with the text of the corresponding item from
Clause 10 of the TPC Benchmark B Standard Specification, printed in italic type.
The plain type text that follows explains how the tests comply with the TPC Bench­
mark B requirement. In sections where Clause 10 requires extensive listings, the sec­
tion refers to the appropriate appendix at the end of this report.

1 - General Items

1.1 Sponsor

A statement identifying the sponsor of the benchmark and any other companies who
have participated.

This benchmark test was sponsored by both Digital Equipment Corporation and
Informix Software, Inc.

1.2 Application Code and Definition Statements

Program listing of application code and definition language statements for
files/tables. If the application environment contains software that routes or organizes
the execution of transactions (e.g., a transaction processing monitor) the software must
be a generally available commercial product that is fully supported as defined in
Clause 9.

• Appendix A contains the C source code of the application program used to imple­
ment the TPC Benchmark B transaction and related programs and scripts.

• Appendix B contains the INFORMIX­OnLine database definitions.

• Appendix C contains the source code used to populate the database.

• Appendix D contains samples of contents of the database files used in the test.

• Appendix E contains a description of the physical disk partitions.

• Appendix F contains the operating system parameters and options.

2 TPC Benchmark B Full Disclosure

General Items

1.3 Parameter Settings

Settings for all customer­tunable parameters and options that have been changed
from the defaults found in actual products; including but not limited to:

• Database options

• Recovery/commit options

• Consistency/locking options

• System parameters, application parameters, and configuration parameters

Test sponsors may optionally provide a full list of all parameters and options.

A listing of all parameters and options is provided.

Appendixes A, B, E, and F contain the application, database configuration, partition,
and operating system parameters used in the TPC Benchmark B tests.

1.4 Configuration Diagrams

Configuration diagrams of both benchmark configuration and the priced system, and
a description of the differences.

The configurations used for the benchmark and the priced system were the same.

The configuration consisted of a DECsystem 5000 Model 25 with 40 Megabytes (MB)
of main memory and one embedded SCSI controller supporting one 1.38 Gigabytes
(GB) RZ58 disk drive and five 426 MB RZ25 disk drives.

We enabled continuous archiving of the logical logs. The logical logs were backed up
to an archive device. A 1.38 GB RZ58 disk drive was used for this purpose. This disk
drive provided the necessary storage capacity so that eight hours of log data could be
kept on­line. Informix transaction logging was at all times set to unbuffered mode.

TPC Benchmark B Full Disclosure 3

General Items

Benchmark Configuration

The diagram that follows represents the benchmark configuration.

DECsystem 5000
 Model 25

 SCSI
controller

TZK10

 RZ58

 rrz0c rrz1c rrz2c rrz3c rrz4c rrz5c
 1.38 GB 426 MB 426 MB 426 MB 426 MB 426 MB

 log archive rootdbs mirror physdbs account account
 account account account account teller
 branch
 hist (active)

rmt0h

 RZ25 RZ25 RZ25 RZ25 RZ25

 CPU

4 TPC Benchmark B Full Disclosure

General Items

Priced System Configuration

The diagram that follows represents the priced system configuration.

DECsystem 5000
 Model 25

 SCSI
controller

TZK10

 RZ58

 rrz0c rrz1c rrz2c rrz3c rrz4c rrz5c
 1.38 GB 426 MB 426 MB 426 MB 426 MB 426 MB

 log archive rootdbs mirror physdbs account account
 account account account account teller hist
 hist hist hist hist branch
 hist (active)

rmt0h

 RZ25 RZ25 RZ25 RZ25 RZ25

 CPU

 hist

TPC Benchmark B Full Disclosure 5

Clause 2 Related Items

2 - Clause 2 Related Items

ACID Properties
Results of the ACIDity test (specified in Clause 2) must describe how the requirements
were met. If a database different from that which is measured is used for durability
tests, the sponsor must include a statement that durability works on the fully loaded
and fully scaled database.

Clause 2 of the TPC Benchmark B Standard Specification lists specific tests to en­
sure the atomicity, consistency, isolation, and durability (ACID) properties of the
SUT (System Under Test). The following subsections show how the tests required in
Clause 2 were performed. All mechanisms needed to ensure full ACID properties
were enabled during both the measurement and test periods. A fully­scaled, 24 TPS
database was used for the atomicity, consistency, isolation, and instantaneous inter­
ruption and memory loss durability tests. A database sized for 3 TPS was used for
durable media failure tests.

2.1 Atomicity Tests

Atomicity of Completed Transaction
Perform the standard TPC Benchmark B transaction for a randomly selected account
and verify that the appropriate records have been changed in the Account, Branch,
Teller, and History files/tables.

The following test was performed and verified the atomicity of completed transac­
tions:

1. Select a random Branch record.

2. Select a random Teller record.

3. Select a random Account record.

4. For the selected Account record, count the History records and sum their delta
values.

5. Using the randomly selected records, perform the following steps:

A. Update the Branch record.

B. Update the Teller record.

C. Update the Account record.

D. Insert the History record.

E. Commit the transaction.

F. Select the Branch record.

G. Select the Teller record.

H. Select the Account record.

6. For the selected Account record, count the History records and sum their delta
values. Verify that the History record count and delta sum reflect the committed

6 TPC Benchmark B Full Disclosure

Clause 2 Related Items

transaction.

Atomicity of Aborted Transaction
Perform the standard TPC Benchmark B transaction for a randomly selected account,
substituting an ABORT of the transaction account for the COMMIT of the transac­
tion. Verify that the appropriate records have not been changed in the Account,
Branch, Teller, and History files/tables.

The following test was performed, and verified the atomicity of aborted transactions:

1. Select a random Branch record.

2. Select a random Teller record.

3. Select a random Account record.

4. For the selected Account record, count the History records and sum their delta
values.

5. Using the randomly selected Branch, Teller and Account records from above, do
the following:

A. Update the Branch record.

B. Update the Teller record.

C. Update the Account record.

D. Insert the History record.

E. Abort the transaction and perform a rollback recovery.

F. Select the Branch record.

G. Select the Teller record.

H. Select the Account record.

6. For the selected Account record, count the History records and sum their delta
values. Verify that the History record count and delta sum have not changed.

2.2 Consistency Tests

Consistency is the property of the application that requires any execution of the trans­
action to take the database from one consistent state to another.

The following tests were performed and verified the consistency property of transac­
tions:

1. Consistency of Branch and Teller records before transactions

A. Select Branch balances for each Branch record.

B. Select the sum of Teller balances for each Branch record.

C. Verify that the balance for each Branch record is equal to the balance of its
Teller records.

2. Consistency of Branch and Teller records after transactions

TPC Benchmark B Full Disclosure 7

Clause 2 Related Items

A. For the entire History file, count the History records and sum their delta val­
ues.

B. Perform the standard TPC Benchmark B test and record the number of com­
mitted transactions.

C. Repeat step 1.

3. Consistency of History files

A. For the entire History file, count the History records and sum their delta val­
ues.

B. Verify that this History record count equals the sum of History record count
taken in step 2A plus the number of committed transactions.

C. Verify that the difference between the final History delta sum and the initial
History delta sum equals the difference between the final and initial Branch
record balances.

2.3 Isolation Tests

Operations of concurrent transactions must yield results which are indistinguishable
from the results which would be obtained by forcing each transaction to be serially
executed to completion in some order.

The following tests were performed and verified the isolation property of the transac­
tions for conventional locking used by the database system:

Isolation of Completed Transactions
1. Select the Branch balance for a Branch record (Branch B).

2. Start transaction 1.

A. Update the Branch B record with delta(1).

B. Stop just prior to committing transaction 1.

3. Start transaction 2.

A. Attempt to update Branch B with delta(2).

B. Transaction 2 hangs.

4. Resume transaction 1.

A. Update the Teller record.

B. Update the Account record.

C. Insert the History record.

D. Commit transaction 1.

5. Resume transaction 2.

A. Update the Teller record.

B. Update the Account record.

8 TPC Benchmark B Full Disclosure

Clause 2 Related Items

C. Insert the History record.

D. Commit transaction 2.

6. Select the Branch balance for Branch B. The balance should equal the previous
balance plus delta(1) and delta(2).

Isolation of Aborted Transactions
1. Start transaction 1.

A. Update Branch B with delta(3).

B. Stop just prior to committing transaction 1.

2. Start transaction 2.

A. Attempt to update Branch B with delta(4).

B. Transaction 2 hangs.

3. Resume transaction 1.

A. Update the Teller record.

B. Update the Account record.

C. Insert the History record.

D. Abort transaction 1 and perform a rollback recovery.

4. Resume transaction 2.

A. Update the Teller record.

B. Update the Account record.

C. Insert the History record.

D. Commit transaction 2.

5. Select the Branch balance for Branch B. The balance should equal the previous
balance plus delta(4).

The preceding isolation tests were repeated for Teller and Account files (that is, by
generating a conflict on a Teller and then an Account record).

2.4 Durability Tests

The tested system must guarantee the ability to preserve the effects of committed trans­
actions and ensure database consistency after recovery from any one of the failures
listed below:

• Permanent irrecoverable failure of any single durable medium containing data­
base, ABTH (Accounts, Branch, Teller, and History) files/tables, or recovery log
data.

• Instantaneous interruption (system crash/system hang) in processing which re­
quires system reboot to recover.

• Failure of all or part of memory (loss of contents).

TPC Benchmark B Full Disclosure 9

Clause 3 Related Items

The following test was performed for each of the preceding types of failures to verify
the durability property of the SUT:

• For the entire History file, count the History records.

• Perform the standard TPC Benchmark B test and record the committed transac­
tions in the success file.

• Cause one of the preceding types of failure.

• Restart the system under test for this failure as required in Clause 2.5.3.

• Verify that every record in the success file has a corresponding record in the His­
tory file.

• For the entire History file, count the History records. Verify that the number of
records in the History file is greater than or equal to the original count obtained
in step 1 plus the number of records in the success file. If they are different, the
new History file must contain additional records and the difference must be less
than or equal to the number of terminals (tellers) simulated.

In addition, the test sponsors must guarantee that, to the best of their knowledge, a
fully­loaded system would pass the durability tests.

To the best of the test sponsor’s knowledge, a fully­loaded and fully­scaled system
would pass the durability tests.

3 - Clause 3 Related Items

3.1 ABTH Data Storage Distribution

The distribution across storage media of ABTH (Accounts, Branch, Teller, and His­
tory) files/tables and all logs must be explicitly depicted.

The following diagram shows how the databases were distributed on disk media on
the DECsystem 5000 Model 25 test system for both the benchmark and priced system
configurations.

The physical log was placed on a 426 MB RZ25 disk drive and used 130 MB. The
rootdbs space containing the logical logs and catalog were located on another 426 MB
RZ25 disk drive and used 230 MB for the partition. The rootdbs mirror (logical log)
was located on another 426 MB RZ25.

10 TPC Benchmark B Full Disclosure

Clause 3 Related Items

ABTH Data Storage Distribution Diagram - Benchmark Configuration

 Mbytes Percent of
 Partition File/ Data Used Data

rrz1c rootdbs (logical logs) 224.6 100.0%

rrz3c physical log 127 100.0%

rrz5h account 49.8 16.6%

 rrz2c mirror rootdbs (logical logs) 224.6 100.0%

rrz0c account 49.8 16.6%
rrz0h logical log archive 837.4 100.0%

 account 49.8 16.6%

 account 49.8 16.6%

 account 49.8 16.6%

rrz4c account 49.8 16.6%
 teller .024 100.0%
 branch .0024 100.0%
 history (active) 127 100.0%

DECsystem
5000

 rrz5a /root 9.8
 rrz5b swap, dump 64
 rrz5g /usr 134.8

RZ25

RZ58

RZ25

RZ25

RZ25

RZ25

Model 25

TPC Benchmark B Full Disclosure 11

Clause 3 Related Items

ABTH Data Storage Distribution Diagram - Priced System Configuration

RZ58

 Mbytes Percent of
 Partition File/ Data Used Data

rrz1c rootdbs (logical logs) 24.6 100.0%

rrz3c physical log 127 100.0%

rrz5h account 49.8 16.6%

rrz2c mirror rootdbs (logical logs) 224.6 100.0%

 account 49.8 16.6%
rrz0c logical log archive 1060.3 100.0%

 account 49.8 16.6%

 account 49.8 16.6%

rrz3c account 49.8 16.6%

rrz4c account 49.8 16.6%
 teller .024 100.0%
 branch .0024 100.0%

DECsystem
5000

 rrz5a /root 9.8
 rrz5b swap, dump 64
 rrz5g /usr 134.8

 history (active) 127 100.0%

 history 179.9 18.8%

 history 131.6 13.7%

 history 131.6 13.7%

 history 229.2 23.9%

rrz5h history 57 5.9%

Model 25

RZ25

RZ25

RZ25

RZ25

RZ25

 history 229.2 23.9%

12 TPC Benchmark B Full Disclosure

Clause 3 Related Items

The distribution of the database is further evidenced and illustrated by the Informix
tbstat utility, tbstat_d.

tbstat_d Listing

RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 02:13:28 ­­ 12288 Kbytes

Dbspaces
address number flags fchunk nchunks flags owner name

80b47c 1 2 1 1 M informix rootdbs
80b4ac 2 1 2 1 N informix physdbs
80b4dc 3 1 3 1 N informix tbhdbs
80b50c 4 1 4 6 N informix acctdbs
 4 active, 10 total

Chunks
address chk/dbs offset size free bpages flags pathname
8084fc 1 1 85000 115000 37678 PO- /dev/rrz1c
809cbc 1 1 85000 115000 0 MO- /dev/rrz2c
808594 2 2 135000 65000 9342 PO- /dev/rrz3c
80862c 3 3 135000 65000 62630 PO- /dev/rrz4c
8086c4 4 4 500 25500 237 PO- /dev/rrz5h
80875c 5 4 200000 25500 497 PO- /dev/rrz0c
8087f4 6 4 50000 25500 497 PO- /dev/rrz2c
80888c 7 4 100000 25500 497 PO- /dev/rrz3c
808924 8 4 100000 25500 497 PO- /dev/rrz4c
8089bc 9 4 50000 25500 1997 PO- /dev/rrz1c
 9 active, 40 total

3.1.1 History Storage and Recovery

Within the priced system, there must be sufficient on­line storage to support any ex­
panding system files and durable history records/rows for 30 eight­hour days at the
published tpsB rate (i.e., 30 x 8 x 60 x 60 = 864,000 records/rows per tpsB).

The history and log file storage calculations are shown below:

History File Storage

The following calculations were used to determine the aggregate size of the history
file.

INFORMIX­OnLine Page Size 2048 bytes
Overhead per Page 28 bytes
Overhead per Row 4 bytes
History Table Row Size 50 bytes

History Rows per Page = (Page Size ­ Page Overhead)/(Row Size + Row Overhead)
 truncated to next lowest integer value = 37 History Rows per Page

History Rows Needed = (tpsB * 3600 * 8 * 30) = 20,563,200 Rows

History Space = (Rows Needed/37) * 2048 = 1,138,200,909 Bytes

TPC Benchmark B Full Disclosure 13

Clause 3 Related Items

Logfile Storage

During the benchmark run, the Informix logical logs were mirrored. In addition, the
inactive logfile segments were archived to disk using INFORMIX­OnLine Continuous
Archiving. In all cases, unbuffered logging was used. Two disk drives were used; one
for the logical logs and one for the mirror.

The Informix tbstat utility (tbstat_l) was used to record write data and logfile data
production rates. In the audited reported run, the values were

Number of Writes 25,150
Pages/Write 1.2

The run had a two minute (120 seconds) ramp­up and a 26 minute measurement win­
dow. Although the number of writes occurred over the entire 28 minute period, only
the steady state portion of the interval should be used for calculation because during
ramp­up the log write rate would have been less. As a result, logfile space needed
was as follows:

Total logfile storage required/8 hours=
 25,150 writes/26 minutes * 1.2 pages/write * 2048 bytes/page ==>
 2,377,255 bytes/minute * 8 hours * 60 minutes/hour ==>
 1,141,082,585 bytes

Total Logfile Space Needed: 1,141,082,585 bytes
Active Log Space Supplied ­ 153,600,000 bytes

 ­­­­­­­­­­­­­­­­­­
 987,482,585 bytes

Additional 8­hour log space was required. We used a 1.38 Gbyte drive to accommo­
date this requirement.

In addition, because INFORMIX­OnLine records a timestamp for every completed
logical log archived, we used the timestamp to calculate the average time to archive
one logical log during the steady state run. The average time to fill a 50000 Kbyte
logical log was approximately 1560 seconds. This equates to an 8­hour logfile re­
quirement of 945,230,769 bytes.

Because the earlier calculation showed worst case condition, we used those figures.
We supplied 1,265,405,132 bytes for logical log and archive.

Informix tbstat output for the logical logs and part of the message log follow.

14 TPC Benchmark B Full Disclosure

Clause 3 Related Items

tbstat_l listing

RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 02:13:28 ­­ 12288 Kbytes

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
P-1 5 128 39364 308 127.81

 phybegin physize phypos phyused %used
 200292 55000 50424 6661 12.11

Logical Logging Buffer
bufused bufsize numrecs numpages numwrits recs/pages pages/io
0 16 363757 31025 25150 11.7 1.2

address number flags uniqid begin size used %used
855934 1 F------ 0 100b02 25000 0 0.00
855950 2 F------ 0 106caa 25000 0 0.00
85596c 3 U---C-L 12 10ce52 25000 6026 24.10

Message Log File Listing

RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 02:13:28 ­­ 12288 Kbytes

Message Log File: /usr/informix/online.log
09:32:45 Checkpoint Completed
09:44:11 Logical Log 103 Complete
09:46:02 Checkpoint Completed
09:47:51 Logical Log 103 Backed Up
09:59:21 Checkpoint Completed
10:00:06 Logical Log 104 Complete
10:00:07 Checkpoint Completed
10:00:44 Logical Log 104 Backed Up
10:13:45 Checkpoint Completed
10:26:06 Logical Log 105 Complete
10:27:11 Checkpoint Completed
10:30:28 Logical Log 105 Backed Up
10:40:27 Checkpoint Completed
10:43:57 Logical Log 106 Complete
10:43:58 Checkpoint Completed
10:44:16 Logical Log 106 Backed Up
10:57:32 Checkpoint Completed
11:09:24 Logical Log 107 Complete
11:10:50 Checkpoint Completed
11:13:29 Logical Log 107 Backed Up

Appendix E contains a complete listing of the disk devices used to support the test.

TPC Benchmark B Full Disclosure 15

Clause 4 Related Items

3.2 Database Contents and Method of Population

A description of how the database was populated, along with sample contents of each
ABTH file/table to meet the requirements described in Clause 3.

Appendix C contains the database population program and Appendix D contains
samples of the contents of the database files used in the tests.

3.3 Type of Database

A statement of the type of database utilized, e.g., relational, Codasyl, flat file, etc.

These TPC Benchmark B tests used INFORMIX­OnLine, a relational database man­
agement system.

4 - Clause 4 Related Items
There are no Clause 4 Related Items in the checklist for TPC­B.

5 - Clause 5 Related Items

5.1 Method of Verification of Random Number Generator

The method of verification of the random number generator should be described.

Branch, Teller, and Account IDs were generated by the random number generation
routines, random() and srandom() in the bench.h code. Random()/srandom() use a
non­linear additive feedback random number generator, employing a default table
size of 31 long integers to return successive random numbers in the range from 0 to
(2**31)­1. These routines produce a more random sequence than earlier subroutines
such as rand(). Random() and srandom() are well known random number generation
routines. Randomness of the generated values are further verified by observing the
85/15 distribution rule, which showed that approximately 85% of the transactions
submitted to a Branch had the Account belong to that Branch.

5.2 Horizontal Partitioning Disclosure

Vendors must clearly disclose if horizontal partitioning is used. Specifically, vendors
must:

• Describe textually the extent of transparency of the implementation

• Which tables/files were accessed using partitioning

• How partitioned tables/files were accessed

The intent of this clause is that details of non­transparent partitioning be disclosed in
a manner understandable to non­programmer individuals (through use of flow charts,
pseudo code, etc.).

Horizontal partitioning, i.e., the partitioning of a table among different devices, was
used. The account relation records were evenly distributed over six disk drives. A
single history table was used.

16 TPC Benchmark B Full Disclosure

Clause 6 Related Items

5.3 Transaction Distribution

The sponsor must disclose percentage of remote and home transactions, percentage of
remote and foreign transactions, if applicable, and the actual distribution of accounts
across the nodes, if applicable.

The measured percentage of remote transactions for the test was 15%. This was
done by querying the history records using the SQL script "RANDVERIFY.SQL"
which verified that approximately 15% of the accounts were from a different branch
as required by the TPC Benchmark B Standard.

6 - Clause 6 Related Items
Report all the data specified in Clause 6.6, including maximum and average residence
time, as well as performance curves for number of transactions vs. residence time (see
Clause 6.6.1) and throughput vs. level of concurrency for three data points (see Clause
6.6.5). Also, the sponsor must include the percentage of home and remote transac­
tions, the number and percentage of in­process transactions, and the percentage of re­
mote and foreign transactions, if applicable.

The graphs and tables in this section show the residence time performance results as
well as the percentage of home and remote transactions, and in­process transactions.
There are no foreign transactions.

Please note that for all performance runs the database was scaled for 25 TPS.

Residence Time Frequency Distribution for All Transactions

16000

0

2000

4000

6000

8000

10000

12000

14000

5.000.00 1.00 2.00 3.00 4.00

Number of
Transactions

Average Residence Time: 0.44 seconds

Maximum Residence Time: 12.70 seconds

Residence Time (seconds)

90% Percentile Residence Time: 0.63 seconds

TPC Benchmark B Full Disclosure 17

Clause 6 Related Items

Throughput Versus Level of Concurrency

Concurrency Legend

30

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

TPS

Level of Concurrency

C C CL R H

Measured Points

Level of

Concurrency TPS

Average Residence

Time (seconds)

CL 6.8 23.7 0.29

CR 9.0 23.8 0.38

CH 10.9 23.7 0.46

18 TPC Benchmark B Full Disclosure

Clause 7 Related Items

Profile of Executed Transactions

7 - Clause 7 Related Items

7.1 Determining Steady State

The method used to determine that the SUT had reached a steady state prior to com­
mencing the measurement interval should be described.

Confirmation that the SUT has reached steady state prior to the beginning of the
data collection measurement interval is based on a visual inspection of the plot of
TPS versus time.

The design of the benchmark driver program was such that all processes wait to be
signaled to commence ramp­up work. During ramp­up, the processes begin execut­
ing identical TPC­B transactions as they do during the steady state run.

During the ramp­up, which lasted for 120 seconds, all processes began executing the
identical TPC­B transaction that they do during the timed steady state run. At the
end of the ramp­up period, each process independently kept track of the numbers and
characteristics of its committed transactions that started during the steady state in­
terval. The audited benchmark steady state period lasted for 26 minutes. When the
run was completed, the processes individually and independently reported their accu­
mulated transactions and residence time results. The driver then calculated the re­
quired numbers to report.

To confirm that steady state was reached, the history table was examined. The
graph titled "TPS Versus Time" indicates the number of transactions completed in

15.00%

85.00%

0.02%

9

37,199

0.38 seconds

Remote Transactions (see Clause 6.6.2)

Home Transactions

Transactions started and not completed during measure­
ment interval (see Clause 6.6.3)

Number of transaction started but not completed

Total number of transactions

Average residence time for all transactions

ResultDescription

99.95Percent of all transactions qualified within 2 second
response time constraint

12.70 secondsMaximum residence time for all transactions

23.8 tpsBMaximum qualified throughput

TPC Benchmark B Full Disclosure 19

Clause 7 Related Items

each 10 second interval. The steady state portion is labeled on the graph. Note the
pronounced dips (checkpoints) in transaction rate that occurred two times during the
steady state for the run.

TPS Versus Time

7.2 Work Performed During Steady State

A description of how the work normally performed during a sustained test (for exam­
ple, checkpointing, writing redo/undo log records, etc., as required by Clause 7.2), ac­
tually occurred during the measurement interval.

When INFORMIX­OnLine receives a SQL statement from the application, it deter­
mines how to best access the data. Using an index (B­tree), INFORMIX­OnLine de­
termines the page number from the database that the record is located on, and
searches for the page in shared memory.

If the page is not in shared memory, INFORMIX­OnLine chooses a LRU Buffer in
shared memory and reads the page from the database into the buffer. Typically this
will take two disk reads. The first read acquires the bottom level of the B­tree index,
the second disk read actually acquires the data.

When a transaction starts, a BEGIN WORK is written to the logical log buffers.
When the application issues a SQL UPDATE statement (Account, Teller, and
Branch) to modify a record, the copy of the record, if it is already in shared memory,
is locked and updated. A transaction record is written to the logical log buffer.

At the same time, if the page in shared memory has not previously been written to, a
copy of the before image of the page is written to the physical log buffer in shared
memory. In addition, the before and after images of the record are written to the
logical log buffer in shared memory. So, the physical log buffer contains a copy of the
page that a record is on, as it looked prior to making any modification.

30

0

5

10

15

20

25

300 5 10 15 20 25

TPS

Time (minutes)

(10 second
intervals)

Steady State (26 minutes)

20 TPC Benchmark B Full Disclosure

Clause 7 Related Items

When the application issues a SQL COMMIT WORK statement, the logical log buffer
is flushed from shared memory to the logical log on disk in a single I/O. The data­
base pages remain in shared memory and are not written to the database at that
time. Any locks that were placed by the transaction are released. This means that
when an application commits a transaction to the database, the logical log buffer is
written to a corresponding logical log on disk with a single I/O, and successful com­
pletion code is returned to the application.

Periodically INFORMIX­OnLine will automatically write all modified pages in
shared memory to their appropriate locations in the database during a checkpoint. A
checkpoint is preceded by a write of the physical log buffer to the physical log on disk.
Checkpoints occur periodically during the run. With INFORMIX­OnLine there are
several ways of controlling when a checkpoint occurs. For our benchmark,
checkpointing occurs every time INFORMIX­OnLine starts the last logical log. We
configured INFORMIX­OnLine with three logical logs. Thus, every time two logs
were filled and the third started, a checkpoint occurred. In our benchmark run of 26
minutes, 2 checkpoints occurred.

When the checkpoint occurs, one or more background processes called page cleaners
"wake up" and write all the modified pages from shared memory to the database on
disk. A checkpoint record is written to the logical log buffer. A checkpoint message
is written to the message log.

The page reading and writing activity to the individual chunk partitions in the data­
base are reflected in the Informix utility tbstat_D and tbstat_p.

tbstat_D

RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 02:13:28 ­­ 12288 Kbytes

Dbspaces
address number flags fchunk nchunks flags owner name
80b47c 1 2 1 1 M informix rootdbs
80b4ac 2 1 2 1 N informix physdbs
80b4dc 3 1 3 1 N informix tbhdbs
80b50c 4 1 4 6 N informix acctdbs
 4 active, 10 total

Chunks
address chk/dbs offset page Rd page Wr pathname
8084fc 1 1 85000 25003 31029 /dev/rrz1c
809cbc 1 1 85000 0 31029 /dev/rrz2c
808594 2 2 135000 0 39360 /dev/rrz3c
80862c 3 3 135000 1514 1096 /dev/rrz4c
8086c4 4 4 500 13188 6308 /dev/rrz5h
80875c 5 4 200000 13068 6297 /dev/rrz0c
8087f4 6 4 50000 13275 6324 /dev/rrz2c
80888c 7 4 100000 13057 6249 /dev/rrz3c
808924 8 4 100000 12724 6095 /dev/rrz4c
8089bc 9 4 50000 11999 5745 /dev/rrz1c
 9 active, 40 total

TPC Benchmark B Full Disclosure 21

Clause 7 Related Items

tbstat_p

RSAM Version 4.10.UE1P1 ­­ On­Line ­­ Up 02:13:28 ­­ 12288 Kbytes

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
80619 103830 1176960 93.15 88449 139529 163913 46.04

isamtot open start read write rewrite delete commit rollbk
1491997 55 121276 121487 40434 121217 0 40572 0

ovtbls ovlock ovuser ovbuff usercpu syscpu numckpts flushes
0 0 0 0 919.98 471.60 2 4

bufwaits lokwaits lockreqs deadlks dltouts lchwaits ckpwaits compress
3857 5035 945369 0 0 19086 18 1

7.3 Determining Reproducibility

A description of the method used to determine the reproducibility of the measurement
results.

Experiments were repeated at least 3 times at the maximum targeted TPS level to
ensure reproducibility. The results are shown in the following table. The variation
in TPS was less than 1%.

DECsystem 5000 Model 25 TPC-B Benchmark Runs

Percent db

Run # Processes CPUs tpsB < 2 sec. Transactions Size Duration

1 9 1 23.8 99.95 37,199 25 tps 26.0 mins
2 9 1 23.6 99.95 36,918 25 tps 26.0 mins
3 9 1 23.8 99.95 37,193 25 tps 26.0 mins

7.4 Duration of Measurement Period

A statement of the duration of the measurement period for the reported tpsB (it should
be at least 15 minutes and no longer than 1 hour).

Each experiment used a measurement period of 26 minutes and began approximately

22 TPC Benchmark B Full Disclosure

Clause 8 Related Items

2 minutes after all servers had begun executing transactions.

8 - Clause 8 Related Items

8.1 Description of the Driver

If the driver is commercially available, then its inputs should be specified. Otherwise,
a description of the driver should be supplied.

The driver used was an "internal driver" (i.e., the driver software resides on the sys­
tem under test, not on a remote driver machine) that controls transaction processing
and performance data collection for the TPC Benchmark B runs. The driver was
comprised of two parts: a control csh script and a set of identical ESQL/C transaction
programs that submitted the TPC Benchmark B transactions for execution.

The control script performs the following operations:

1. forks and execs the desired number of transaction programs, passing ramp­up
and measurement interval parameters as command line arguments.

2. waits for a short period of time (30 seconds) to ensure that each driver has
started up and opened the test database.

3. sends a SIGUSR1 signal to each transaction process to synchronize the start of
transaction processing.

4. waits until all transaction processes have completed the benchmark run.

5. invokes a program called sumrun to sum the performance statistics collected by
the transaction processes involved in the benchmark run.

After each transaction program completes a benchmark run, the transaction pro­
gram stores residence time counts, incomplete transaction counts, and other per­
formance statistics in a database table named "results". The sumrun program
sums all "results" records for a run and inserts aggregate run values into a table
named "runs".

Each transaction program performs the following operations:

1. examines its command line arguments to determine the ramp­up and measure­
ment intervals to use.

2. waits until it receives a SIGUSR1 signal before initiating transaction processing.

3. continuously submits TPC­B transactions, with 0 sleep time. The transaction
program collects response time statistics in internal program data structures, but
does not begin collecting them until the ramp­up period has completed.

4. inserts its collected performance statistics into a "results" table record once the
measurement interval has completed. It is the contents of these "results" records
that are summed by the sumrun program.

"Success files" were implemented through the tpc.ec application program by writing
synchronously using fsync() and flushing the confirmation of transactions to stan­

TPC Benchmark B Full Disclosure 23

Clause 9 Related Items

dard output. This was captured into a file nohup.out running under the Korn shell.

9 - Clause 9 Related Items

9.1 Hardware and Software Components

A detailed list of hardware and software used in the priced system. Each item must
have vendor part number, description, and release/revision level, and either general
availability status or committed delivery date. If package pricing is used, contents of
the package must be disclosed.

9.1.1 Priced System Configuration Tables

The following table shows the hardware and software components in the priced
DECsystem 5000 Model 25 system:

9.1.2 Availability Status

All hardware and software components used in the tested and priced systems are
available now.

9.1.3 Package Pricing
Package Description Model #
DECsystem 5000 Model 25 PM319­RX
Server System Kernel
120 Volt or 240 Volt
24 MB, 4 Mbit DRAMS, 25 Mhz CPU
425 MB RZ25 Disk Drive
SCSI Controller
Thickwire Ethernet
Includes SCSI Cable, Terminal Cable
Hardware Documentation
Includes Software Licenses: ULTRIX 1­4 user, UWS server support

Component

Processor

QuantityProduct

1DECsystem 5000 Model 25

Memory 40 Megabytes

Tape drive 1TZK10

Disk controller 1SCSI

Disks 1RZ58

Operating system ULTRIX 4.2A

Database INFORMIX­OnLine V4.10

INFORMIX ESQL/C

 5RZ25

24 TPC Benchmark B Full Disclosure

Clause 9 Related Items

Package Description Model #
Two RZ25 426MB Disk/BA42 120V SZ12G­GA

Package Description Model #
1.38 RZ58 Disk Drive, TZK10 Quarter­Inch Cartridge (QIC) SZ12J­EA
Tape Device

9.2 Total Price of System Configuration

The total price of the entire configuration is required including: hardware, software
and maintenance charges. Separate component pricing is recommended. The basis of
all discounts used shall be disclosed.

This section lists the separate components in the priced system and their associated
purchase and maintenance costs. All items are currently available. All prices were
taken from the Digital Standard Pricing System (DSPS) on March 24, 1992. A de­
scription of the packages used in the pricing is contained in Section 9.1.2.

Informix prices were taken from Informix price list, titled "America’s Price List, Ad­
vance Products, Release 4.0 or Greater, Class D", dated August 1, 1991.

9.2.1 Hardware Pricing

The Digital TPC Benchmark B DECsystem 5000 Model 25 test used packaged hard­
ware systems whenever possible to simplify configurations to the fewest number of
line items. Disks were connected using SCSI controller. The system used a TZK10
tape drive to load the software and back up the database.

The purchase price of all systems includes one year of hardware warranty service.
Post­warranty hardware service is configured for an additional four years.

The following levels of post­warranty hardware service are used in the system pric­
ing:

• DECsystem Support 9x5 (DS9) and 2­4 hours response time.

• Basic Monthly Charge (BMC) warranty level is the same as the DS9 to which the
hardware is directly attached.

• Basic System Support (BSS) with a warranty upgrade to DS9.

9.2.2 Software Pricing

The priced system uses the following software products:

• ULTRIX V4.2A operating system

• INFORMIX­OnLine relational database management system

• INFORMIX­ESQL/C

The ULTRIX license purchase includes one year of warranty service. Post­warranty
service is configured for an additional four years. The software warranty and service
level are the same as the service level for the hardware system on which the software
operates. The level of post­warranty service is Software Support Service (SSS).

TPC Benchmark B Full Disclosure 25

Clause 9 Related Items

9.2.3 Price Discounts

Digital’s five (5) years warranty pricing is as follows:

• the unit price carries one (1) year warranty.

• the price of year 2­5 warranty adder is calculated according to this formula:

­ (warranty/month)*12*(1+1+1.07+(1.07)²)=(1.053725*48*(warranty/month))

The pre­payment maintenance (warranty) discount is calculated at 25% of the year
2­5 warranty price.

Informix’s five­year prepaid maintenance option consists of five years of maintenance
for four times the price of standard maintenance.

9.2.4 System Pricing Summary

 ­­­

DECsystem 5000 Model 25 TPC-B = 23.8 tpsB

US LIST UNIT PRICE TOTAL SERVICE MAIN. 2-5 YRS PRICE+SRVC
DESCRIPTION MODEL # 1 YR WARR QTY PRICE LEVEL $/MO. # MO MAIN. PRICE 5 YR COST
--
Digital Price (24 March 1992):

Hardware

DECsystem 5000 Model 25 (24 MB) PM319-RX $12,659.00 1 $12,659.00 BSS $0.00 48 $0.00 $12,659.00
Warranty Upgrade to DS9 FM-DECUP-12 $132.00 1 $132.00 DS9 $173.00 48 $8,304.00 $8,436.00
16 MB Memory Units MS01-CA $3,200.00 1 $3,200.00 DS9/BMC $0.00 48 $0.00 $3,200.00
Two 426 MB RZ25 Disks SZ12G-GA $5,600.00 2 $11,200.00 DS9/BMC $50.00 48 $4,800.00 $16,000.00
One 1.38 GB RZ58, TLZ04 Tape Drive SZ12J-EA $9,284.00 1 $9,284.00 DS9/BMC $82.00 48 $3,936.00 $13,220.00

Software

ULTRIX ULTRIX V4.2 $0.00 1 $0.00 NA $0.00 48 $0.00 $0.00
UX-32 Media & Documentation QA-VYVAA-H5 $1,315.00 1 $1,315.00 NA $0.00 48 $0.00 $1,315.00

$37,790.00 $17,040.00 $54,830.00
Years 2-5 Warranty Adder = 5.3725% $915.47 $915.47
Digital Sub Total $37,790.00 $17,955.47 $55,745.47

Prepayment Maintenance Discount = (25%) ($4,488.87) ($4,488.87)

Digital Total $37,790.00 $13,466.60 $51,256.60

Informix Class "D" License (1 AUGUST 1991):
Database System $/YR YR

INFORMIX-OnLine (16U) FULL DEV./RUN T $6,700.00 1 $6,700.00 SSS $1,210.00 4 $4,840.00 $11,540.00
INFORMIX-ESQL/C (16U) FULL DEV./RUN T $1,340.00 1 $1,340.00 SSS $240.00 4 $960.00 $2,300.00

Informix Total $8,040.00 $5,800.00 $13,840.00

Configuration Totals $45,830.00 $19,266.60 $65,096.60

tpsB 23.8
$/tpsB $2,735

TPC Benchmark B Full Disclosure 27

Clause 10 Related Items

9.3 Performance and Price/Performance

A statement of the measured tpsB, and the calculated price/tpsB.

The following table shows measured tpsB and price/tpsB results for the tested
system:

10 - Clause 10 Related Items

None.

CPU Model Software

ULTRIX 4.2A and
INFORMIX-OnLine
4.10

 (tpsB) ($/tpsB)

 TPS Price per TPS

 23.8 $2,735DECsystem 5000
Model 25

TPC Benchmark B Full Disclosure A-1

Appendix A

Application Code

This appendix contains the source code of the application programs that implement
the TPC Benchmark B transaction.

A.1 tpc.ec Source Code

#include <stdio.h>
#include <sys/signal.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <math.h>
$include sqlca ;
#include "bench.h"

$long acct_bal, cntr, seconds, intvl, startsec, tot_response ;
$int branch_num, teller_num, acct_num, delta, acct_branch, run, procnum ;
$int notdone, tmslot[BUCKETS+1] ;
int rampup, runtime, timing, thru, measure, bucketval, transactions, verbose ;
int longest_tran;

settimer() { timing = ~timing ; }

setmeasure()
{

intvl = (measure) ? rampup : runtime ;
thru++ ;
measure = ~measure ;
 startsec = time(0) ;

}

main(argc,argv)
int argc ;
char **argv ;

{
int i, *rnum, do_trans() ;

 runtime = rampup = intvl = 0 ;
transactions = -1 ;
procnum = atoi(argv[1]) ;
i = 1 ;

 while (++i < argc) {
if (strcmp(argv[i], "-s") == 0)
runtime += atoi(argv[++i]) ;
else if (strcmp(argv[i], "-m") == 0)
runtime += (60 * atoi(argv[++i])) ;
else if (strcmp(argv[i], "-h") == 0)
runtime += (3600 * atoi(argv[++i])) ;

A-2 TPC Benchmark B Full Disclosure

Appendix A Application Code

else if (strcmp(argv[i], "-t") == 0)
transactions = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-r") == 0)
rampup = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-v") == 0)
verbose = 1 ;
else {

fprintf(stderr,"usage: tp1 <proc #> [-t <n>] [-r <n>]
[-h <n> -m <n> -s <n>]\n") ;

exit(1) ;
}

 }

 RandSeed(getpid()) ;

 if (runtime == 0)
runtime = (transactions == -1) ? 300 : 30000 ;

printf("process %d: procnum=%03d runtime=%d seconds / %d transac
tions\n", getpid(),procnum,runtime,transactions) ;

 cntr = tot_response = run = measure = timing = thru = intvl = notdone = 0 ;
for (i=0; i < 50; i++)
 tmslot[i] = 0 ;

 $ database tpc ;
 SqlErr("attach to database") ;

 $ select max(number) into $run from results ;
 SqlErr("select from results") ;
if (run < 0)

run = 0 ;
 ++run ;

 do_prepare() ;

 bucketval = RPTINTVL * 1000 / BUCKETS ;
intvl = rampup ;
signal(SIGUSR1,settimer) ;
sigpause(0) ;

 printf("%d starting\n",procnum) ; do_trans() ; testend() ;

}

do_prepare()
{

$char s[512];

 sprintf(s,"%s %s %s%d%s %s commit work",
"update account set balance = balance + ? where current of sel_acct;",
"update teller set balance = balance + ? where number = ?;",
"insert into history",procnum % HISTORY,
" values(?,?,?,?,CURRENT YEAR TO SECOND,’the rest is history’);",
"update branch set balance = balance + ? where number = ?;") ;

TPC Benchmark B Full Disclosure A-3

Appendix A Application Code

 $ prepare tpc_trans from $s;
 SqlErr("prepare updall");

 $ prepare bwork from "begin work" ;
 SqlErr("prepare begin work") ;

 $ declare sel_acct cursor for
select balance into $acct_bal from account

where number = $acct_num
for update of balance ;

 SqlErr("declare cursor") ;

 $ set isolation to cursor stability ;
 SqlErr("set isolation") ;

 $ set lock mode to wait;
 SqlErr("set lock mode");

}

do_trans()
{

long timediff ;
char s[100] ;
struct timeb clk_beg,clk_end ;

 startsec = time(0) ;
if (rampup == 0)

setmeasure() ;
 else

thru++ ;

 while (timing && (cntr != transactions)) {

/*
 * select a random branch, a random teller at that branch, and
 * 85% of the time a random account at that branch, and 15% of
 * the time a random acccount at a different branch.
 */

teller_num = RandVal() % T_RECS ;
branch_num = teller_num / T_PERB ;
acct_num = RandVal() % A_PERB ;

if ((RandVal() % 100) < 85)
 acct_branch = branch_num ;
else {
 do /* endless loop when TPS_SIZE=1 */

acct_branch = RandVal() % B_RECS ;
 while (acct_branch == branch_num) ;

}

acct_num = acct_branch * A_PERB + acct_num ;
delta = RandVal() % 1999999 - 999999 ;
if (measure)

 notdone++ ;

A-4 TPC Benchmark B Full Disclosure

Appendix A Application Code

ftime(&clk_beg) ;

$ execute bwork ;

$ open sel_acct ;
 SqlErr("open cursor") ;

$ fetch sel_acct ;
 SqlErr("fetch cursor") ;

if (sqlca.sqlcode == 0) {
 $ execute tpc_trans using

$delta,
$delta, $teller_num,
$acct_num, $teller_num, $branch_num, $delta,
$delta, $branch_num ;

}

ftime(&clk_end) ;

if (sqlca.sqlcode != 0) {
 sprintf(s,"in transaction %d acc#: %d branch#: %d teller#: %d",

cntr, acct_num, branch_num, teller_num) ;
 SqlFatal(s) ;
 /*
 $ rollback work ;
 */
}

timediff = clk_end.time - startsec ;
if (timediff > intvl) {
 if (thru == 2)

settimer() ;
 else

setmeasure() ;
}

if (measure) {
timediff = (clk_end.time - clk_beg.time) * 1000

+ clk_end.millitm - clk_beg.millitm ;
 if(timediff > longest_tran)

longest_tran = timediff;
 tot_response += timediff ;
 timediff /= bucketval ; /* 0-.124, .125-0.249, etc. seconds */
 if (timediff > BUCKETS)

 timediff = BUCKETS ;
 tmslot[timediff]++ ;
 cntr++ ;
 if(verbose)
 {

printf("procnum %3d: tran %d completed!\n",procnum,cntr);
fflush(stdout);
fsync(1);

 }

TPC Benchmark B Full Disclosure A-5

Appendix A Application Code

 notdone-- ;
}

 }

 seconds = (transactions > 0) ? (time(0)-startsec) : runtime ;

}

testend()
{

int hrs, min, sec ;

hrs = seconds / 3600 ;
min = (seconds - hrs * 3600) / 60 ;
sec = seconds - hrs * 3600 - min * 60 ;
printf("procnum %3d completed %6d transactions in %4d:%02d:%02d, long-

est=%d msec.\n",
procnum, cntr, hrs, min, sec, longest_tran) ;

 $ insert into results values(
 $run, $procnum, $seconds, $cntr, $notdone, $tot_response,

 $tmslot[0],$tmslot[1],$tmslot[2],$tmslot[3],$tmslot[4],
 $tmslot[5],$tmslot[6],$tmslot[7],$tmslot[8],$tmslot[9],
 $tmslot[10],$tmslot[11],$tmslot[12],$tmslot[13],$tmslot[14],
 $tmslot[15],$tmslot[16],$tmslot[17],$tmslot[18],$tmslot[19],
 $tmslot[20],$tmslot[21],$tmslot[22],$tmslot[23],$tmslot[24],
 $tmslot[25],$tmslot[26],$tmslot[27],$tmslot[28],$tmslot[29],
 $tmslot[30],$tmslot[31],$tmslot[32],$tmslot[33],$tmslot[34],
 $tmslot[35],$tmslot[36],$tmslot[37],$tmslot[38],$tmslot[39],
 $tmslot[40]) ;
 SqlErr("insert into results") ;

 $ close database ;
 SqlErr("close database") ;

 }

A-6 TPC Benchmark B Full Disclosure

Appendix A Application Code

A.2 createdb.ec Source Code

#include <stdio.h>
#include "bench.h"
 $include sqlca ;

/*
* FILE: createdb.ec (for OnLine)
*
* Creates the database and related tables, except result-consolidation
* tables. It is possible to place the tables on different drives by
* adding location options to the CREATE TABLE statements.
*
* You can also decide to place logging on the database by adding it
* to the CREATE DATABASE statement. However, the loading programs
* provided assume no transaction logging, so you should turn on logging
* afterward via archiving and changing the database logging mode.
*
* The configuration here accommodates scaling to 100 TPS.
*
*/

main()
{

 $ create database tpc in TBHDBS ;
 SqlErr("create database") ;

 $ grant dba to public ;
 SqlErr("grant dba") ;

 printf("Database created, permission granted\n") ;

 $ create table branch (
number numeric(2,0),
balance numeric(10,0),
fillstr char(92)

)
lock mode row
;

 SqlErr("create branch") ;
printf("Branch created\n") ;

 $ create table teller
(

number numeric(4,0),
balance numeric(10,0),
branch numeric(2,0),
fillstr char(89)

)
extent size 200
next size 100
lock mode row

TPC Benchmark B Full Disclosure A-7

Appendix A Application Code

;
 SqlErr("create teller") ;

printf("Teller created\n") ;

$ create table account (
number numeric(8,0),
balance numeric(10,0),
branch numeric(2,0),
fillstr char(87)
)
in acctdbs
extent size 5000
next size 1000
;
 SqlErr("create account") ;
printf("Account created\n") ;

 $ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

A-8 TPC Benchmark B Full Disclosure

Appendix A Application Code

A.3 createhist.ec Source Code

#include <stdio.h>
#include "bench.h"
 $include sqlca ;

/*
* FILE: createhist.ec (for OnLine)
*
* Creates the history tables. Number of tables is HISTORY in "bench.h".
*
* The configuration here accommodates scaling to 100 TPS.
*
*/

main()
{

$char dstr[200] ;
$int cnt, i ;

 $ database tpc ;
 SqlErr("connect to database") ;

 $ select count(*) into $cnt from systables
 where tabname matches "hist" ;

 SqlErr("test for history tables") ;

 $ select count(*) into $cnt from systables
where tabname matches "hist*" ;

 SqlErr("test for history tables") ;

 if (cnt) {
printf("Dropping History tables...\n") ;
for (i=0; i < cnt; i++) {

 sprintf(dstr,"drop table history%d",i) ;
 $ prepare drop_tab from $dstr ;
 SqlErr("prepare drop") ;
 $ execute drop_tab ;
 SqlErr(dstr) ;

}
 }

 for (i=0; i < HISTORY; i++) {

sprintf(dstr, "%s%d (%s,%s,%s,%s,%s,%s) %s %s %s",
 "create table history", i,

"account integer",
"teller integer",
"branch integer",
"delta char(11)",
"tstamp datetime year to second",
"fillstr char(19)",
"extent size 1000",
"next size 1000",

TPC Benchmark B Full Disclosure A-9

Appendix A Application Code

"lock mode row"
) ;

$ prepare make_tab from $dstr ;
 SqlErr("prepare create") ;
$ execute make_tab ;
 SqlErr("execute history") ;
printf("History%d table created\n",i) ;

 }

 $ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

A-10 TPC Benchmark B Full Disclosure

Appendix A Application Code

A.4 createruns.ec Source Code

#include <stdio.h>
#include "bench.h"
$include sqlca ;

/*
 * FILE: createruns.ec
 *
 * Creates the results tables for cumulative reporting
 *
 */

main()
{
 $int cnt ;

 $ database tpc ;
 SqlErr("open database") ;

 $ select count(*) into $cnt from systables
 where tabname = "runs" ;

 SqlErr("test for runs table") ;

 if (cnt) {
 $ drop table runs ;

 SqlErr("drop table runs") ;
 }

 $ select count(*) into $cnt from systables
 where tabname = "results" ;

 SqlErr("test for results table") ;

 if (cnt) {
 $ drop table results ;

 SqlErr("drop table results") ;
 }

 $ create table runs
(
 num serial,
 numprocs integer,
 test_intvl integer,
 total_xact integer,
 total_inc integer,
 resp_time integer,
 cpus integer,
 test_size integer,
 tslot01 integer,
 tslot02 integer,
 tslot03 integer,
 tslot04 integer,
 tslot05 integer,
 tslot06 integer,

TPC Benchmark B Full Disclosure A-11

Appendix A Application Code

 tslot07 integer,
 tslot08 integer,
 tslot09 integer,
 tslot10 integer,
 tslot11 integer,
 tslot12 integer,
 tslot13 integer,
 tslot14 integer,
 tslot15 integer,
 tslot16 integer,
 tslot17 integer,
 tslot18 integer,
 tslot19 integer,
 tslot20 integer,
 tslot21 integer,
 tslot22 integer,
 tslot23 integer,
 tslot24 integer,
 tslot25 integer,
 tslot26 integer,
 tslot27 integer,
 tslot28 integer,
 tslot29 integer,
 tslot30 integer,
 tslot31 integer,
 tslot32 integer,
 tslot33 integer,
 tslot34 integer,
 tslot35 integer,
 tslot36 integer,
 tslot37 integer,
 tslot38 integer,
 tslot39 integer,
 tslot40 integer,
 tslot41 integer
) ;

 SqlErr("create runs") ;
printf("Runs table created\n") ;

 $ create table results (
 number integer,
 procnum integer,
 seconds integer,
 xactcnt integer,
 notdone integer,
 response integer,
 tslot01 integer,
 tslot02 integer,
 tslot03 integer,
 tslot04 integer,

A-12 TPC Benchmark B Full Disclosure

Appendix A Application Code

 tslot05 integer,
 tslot06 integer,
 tslot07 integer,
 tslot08 integer,
 tslot09 integer,
 tslot10 integer,
 tslot11 integer,
 tslot12 integer,
 tslot13 integer,
 tslot14 integer,
 tslot15 integer,
 tslot16 integer,
 tslot17 integer,
 tslot18 integer,
 tslot19 integer,
 tslot20 integer,
 tslot21 integer,
 tslot22 integer,
 tslot23 integer,
 tslot24 integer,
 tslot25 integer,
 tslot26 integer,
 tslot27 integer,
 tslot28 integer,
 tslot29 integer,
 tslot30 integer,
 tslot31 integer,
 tslot32 integer,
 tslot33 integer,
 tslot34 integer,
 tslot35 integer,
 tslot36 integer,
 tslot37 integer,
 tslot38 integer,
 tslot39 integer,
 tslot40 integer,
 tslot41 integer
) ;

 SqlErr("create results") ;
 printf("Results table created\n") ;

 $ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

TPC Benchmark B Full Disclosure A-13

Appendix A Application Code

A.5 createidx.ec Source Code

#include <stdio.h>
#include "bench.h"
$include sqlca ;

/*
 * FILE: createidx.ec
 *
 * Creates the indices for the main database tables. This is a separate
 * process in case loads without indices are desired.
 *
 */

main()
 {

 $ database tpc ;
 SqlErr("open database") ;

$ create unique index ibranch on branch(number) ;
 SqlErr("create branch index") ; printf("Branch index created\n") ;

 $ create unique index iteller on teller(number) ;
 SqlErr("create teller index") ; printf("Teller index created\n") ;

 $ create unique index iaccount on account(number) ;
 SqlErr("create account index") ;
 printf("Account index created\n") ;

$ close database ;
 SqlErr("close database") ;

 exit(0) ;
}

A-14 TPC Benchmark B Full Disclosure

Appendix A Application Code

A.6 config.scr Source Code

echo Going into Quiescent mode
tbmode -uy
echo Creating physdbs...
tbspaces -c -d physdbs -p /dev/rrz3c -o 270000 -s 130000
echo Creating tbhdbs...
tbspaces -c -d tbhdbs -p /dev/rrz4c -o 270000 -s 130000
echo Creating acctdbs...
tbspaces -c -d acctdbs -p /dev/rrz5h -o 1000 -s 51000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz0c -o 400000 -s 51000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz2c -o 100000 -s 51000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz3c -o 200000 -s 51000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz4c -o 200000 -s 51000
echo Adding chunk to acctdbs...
tbspaces -a acctdbs -p /dev/rrz1c -o 100000 -s 51000
echo Moving Physical Log
tbparams -p -s 110000 -d physdbs -y
echo Going back On-Line
tbmode -m
 echo Configuration done

TPC Benchmark B Full Disclosure A-15

Appendix A Application Code

A.7 bench.h code

*
 PURPOSE: to set up the sizing of the TPC database
*
* the scale factors for TPC per 1 TPS are:
 * 1 Branch, 10 Tellers, 100000 Accounts
 *
* Modify the TPS_SIZE to the desired rating.
* DO NOT modify any but the first 4 lines. *
*/

#define TPS_SIZE 25
#define HISTORY 1
#define RandVal random
#define RandSeed srandom
#define BUCKETS 40
#define RPTINTVL 5

#define T_PERB 10
#define A_PERB 100000

#define B_RECS TPS_SIZE
#define T_RECS (T_PERB * B_RECS)
#define A_RECS (A_PERB * B_RECS)

#define IsqlCode sqlca.sqlcode
#define IsamCode sqlca.sqlerrd[1]
#define SqlErr(x) if (IsqlCode) Sqlmsg(x)
#define SqlErrNF(x) if (IsqlCode && IsqlCode != SQLNOTFOUND) Sqlmsg(x)

TPC Benchmark B Full Disclosure B-1

Appendix B

Database Definitions

#**

INFORMIX SOFTWARE, INC.

Title: tbconfig.std
Sccsid: @(#)tbconfig.std 7.2 11/20/90 11:06:55
#Description: INFORMIX-OnLine Configuration Parameters

#**

Root Dbspace Configuration

ROOTNAME rootdbs # Root dbspace name
ROOTPATH /dev/rrz1c # Path for device containing root dbspace
ROOTOFFSET 170000 # Offset of root dbspace into device (Kbytes)
ROOTSIZE 230000 # Size of root dbspace (Kbytes)

Disk Mirroring Configuration Parameters

MIRROR 1 # Mirroring flag (Yes = 1, No = 0)
MIRRORPATH /dev/rrz2c # Path for device containing mirrored root
MIRROROFFSET 170000 # Offset into mirrored device (Kbytes)

Physical Log Configuration

PHYSDBS physdbs # Location (dbspace) of physical log
PHYSFILE 110000 # Physical log file size (Kbytes)

Logical Log Configuration

LOGFILES 3 # Number of logical log files
LOGSIZE 50000 # Logical log size (Kbytes)

Message Files

MSGPATH /usr/informix/online.log # System message log file path
CONSOLE /usr/informix/console.log # System console message path

System Archive Tape Device

TAPEDEV /dev/null # Tape device path
TAPEBLK 16 # Tape block size (Kbytes)
TAPESIZE 90000 # Maximum amount of data to put on tape

(Kbytes)

B-2 TPC Benchmark B Full Disclosure

Appendix B Database Definitions

Log Archive Tape Device

LTAPEDEV /dev/rrz0h # Log tape device path
LTAPEBLK 16 # Log tape block size (Bytes)
LTAPESIZE 1000472 # Max amount of data to put on log tape (Kbytes)

System Configuration

SERVERNUM 0 # Unique id corresponding to an OnLine instance
SERVERNAME dectpc #
DEADLOCK_TIMEOUT 30 # max time to wait of lock in distributed env.
RESIDENT 0 # Forced residency flag (Yes = 1, No = 0)

Shared Memory Parameters

USERS 50 # Maximum number of concurrent users (proc
esses)

LOCKS 5000 # Maximum number of locks
BUFFERS 5000 # Maximum number of shared buffers
TBLSPACES 500 # Maximum number of open tblspaces
CHUNKS 40 # Maximum number of chunks
DBSPACES 10 # Maximum number of dbspaces
PHYSBUFF 256 # Physical log buffer size (Kbytes)
LOGBUFF 32 # Logical log buffer size (Kbytes)
LOGSMAX 5 # Maximum number of logical log files
CLEANERS 8 # Number of buffer cleaner processes
SHMBASE 0x800000 # Shared memory base address
CKPTINTVL 780 # Check point interval (in sec)

System Page Size

BUFFSIZE 2048 # Page size (do not change!)

TPC Benchmark B Full Disclosure C-1

Appendix C

Code to Populate Database

This appendix contains the program used to populate the database used in the TPC
Benchmark B tests.

C.1 Database Population Program

The following programs were used to populate the database.

C.1.1 load_db.ec Source Code

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "bench.h"
$include sqlca ;
/*
 * FILE: load_db.ec
 *
 * PURPOSE: load the Branch and Teller tables, and kick off the Account
 * table load procedures. The Account table is loaded by
 * dividing the key range into equal parts (according to the
 * number of load processes), and the "load_act" program is
 * forked off for each process. The program then waits for
 * them to finish and reports the total load time.
 *
 * NOTE: The type "pid_t" may be system-dependent. Under Ultrix it’s
 * equivalent to an "int".
 *
 */

FILE *flog,*fopen() ;
int logfile ;

main(argc,argv)
 int argc ;
 char *argv[] ;
{

int i, load_procs, skip, freespace ;
char begnum[15], endnum[15], log_fname[40], rpt_str[80] ;
long load_accts, startacct, acct_hunk, beg_time, end_time, totsecs ;
pid_t pid ;
union wait wait_status ;

 $int branch, teller, branch_idx ;
$char filler[100] ;

C-2 TPC Benchmark B Full Disclosure

Appendix C Code to Populate Database

 RandSeed(getpid()) ;
load_procs = 1 ;
i = logfile = skip = freespace = branch_idx = 0 ;

 while (++i < argc) {
if (strcmp(argv[i], "-p") == 0)

 load_procs = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-s") == 0)

skip = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-f") == 0)

freespace = atoi(argv[++i]) ;
else if (strcmp(argv[i], "-l") == 0) {

strcpy(log_fname,argv[++i]) ;
logfile = 1 ;

}
else {

printf("usage: load_db -p <#> -s <#> -
f <#> -l <file>\n") ;

exit(0) ;
}

 }

 if (load_procs && ((A_PERB % load_procs) != 0)) {
printf("Cannot split up load of accounts evenly. Try

again.\n") ;
exit(0) ;

 }

load_accts = (B_RECS - skip) * A_PERB ;
if (load_procs) acct_hunk = load_accts /

load_procs ;
 for (i=0; i < 10; i++)

bycopy("1234567890",&filler[i*10],10) ;
 if (logfile) { if ((flog=fopen(log_fname,"w")) == NULL) {

perror("on opening log file") ;
logfile = 0 ;

}
 }

 $ database tpc ;
 SqlErr("database open") ;

 if (freespace) {
$ select count(*) into $branch_idx from sysindexes

where idxname = "ibranch" ;
 SqlErr("load_db -- select branch index") ;
if (branch_idx) {

 $ drop index ibranch ;
 SqlErr("load_db -- delete branch index") ;

}
 }

 for (branch=skip; branch < B_RECS; branch++) {

TPC Benchmark B Full Disclosure C-3

Appendix C Code to Populate Database

$ insert into branch values($branch, 0, $filler) ;
 SqlErr("load_db -- branch insert") ;
for (i=0; i < freespace; i++) {

 $ insert into branch values(0, -1, $filler) ;
 SqlErr("load_db -- branch free insert") ;

}
 }

 if (freespace) {
$ delete from branch where balance < 0 ;
 SqlErr("load_db -- delete branch records") ;

 }
if (branch_idx) {
 $ create unique index ibranch on branch(number) ;

 SqlErr("load_db -- create branch index") ;
 }

 print_log("branch table loaded") ;

 for (teller=T_PERB*skip; teller < T_RECS; teller++) {
branch = teller / T_PERB ;
$ insert into teller values($teller, 0, $branch, $filler) ;
 SqlErr("load_db -- insert into teller") ;

 }

 print_log("teller table loaded") ;

 $ update statistics for table branch ;
 SqlErr("load_db -- update stats on branch") ;

 $ update statistics for table teller ;
 SqlErr("load_db -- update stats on teller") ;

 $ close database ;
 SqlErr("load_db -- close database") ;

 sqlexit() ;

 if (load_procs) {
beg_time = time(0) ;
startacct = skip * A_PERB ;
for (i=0; i < load_procs; i++) {

sprintf(begnum,"%d",startacct) ;
 startacct += acct_hunk ;

sprintf(endnum,"%d",startacct-1) ;
pid = fork() ;
 if (pid == -1) {

perror("on fork of loadact process") ;
exit(1) ;

}
if (pid == 0)
if (logfile)
 execl("load_act","load_act",begnum,endnum,"1",log_fname,0) ;
else

C-4 TPC Benchmark B Full Disclosure

Appendix C Code to Populate Database

 execl("load_act","load_act",begnum,endnum,"0"," ",0) ;
}

while (i--) {
pid = wait(&wait_status) ;
if (pid == -1) {

perror("on return from loadact") ;
exit(1) ;

}
end_time = time(0) ;
totsecs = end_time - beg_time ;
sprintf(rpt_str,"\nprocess %d completed in ",pid) ;
report_time(rpt_str,totsecs) ;
if (i > 0)

sprintf(rpt_str,"%s; %d procs still
working",rpt_str,i) ;

 print_log(rpt_str) ;
}

sprintf(rpt_str,"\nAll processes finished at
%s",ctime(&end_time)) ;

print_log(rpt_str) ;
sprintf(rpt_str,"loaded %d account records in ",load_accts) ;
report_time(rpt_str,totsecs) ;
sprintf(rpt_str,"%s = %d rows/sec\n",rpt_str,load_accts/totsecs)

;
print_log(rpt_str) ;

$ database tpc ;
 SqlErr("Open Database") ;
$ update statistics for table account ;
 SqlErr("Update Statistics on account") ;
$ close database ;
 SqlErr("Close Database") ;

 }

 if (logfile) fclose(flog) ;

 exit(0) ;
}

report_time(s,secs)
char s[] ;
long secs ;

{
int hrs, mins, slen ;

hrs = secs / 3600 ;
secs = secs % 3600 ;
mins = secs / 60 ;
secs = secs % 60 ;
slen = strlen(s) ;
sprintf(&s[slen],"%2d:%02d:%02d",hrs,mins,secs) ;

TPC Benchmark B Full Disclosure C-5

Appendix C Code to Populate Database

}

print_log(s)
char *s ;

{
if (logfile) {

fprintf(flog,"%s\n",s) ;
fflush(flog) ;

 }
else {

printf("%s\n",s) ;
fflush(stdout) ;

 }
}

C-6 TPC Benchmark B Full Disclosure

Appendix C Code to Populate Database

C.1.2 load_act.ec Source code

#include <stdio.h>
#include <sys/time.h>
#include <sys/signal.h>
#include <math.h>
#include "bench.h"
$include sqlca ;

/*
* FILE: load_act.ec
*
* PURPOSE: multi-process load of the Account table; the key range of
* the accounts to load is passed.
 *
*/

FILE *flog,*fopen() ;
int logfile, kill_ld ;

main(argc,argv)
int argc ;
char *argv[] ;

{
int i, setstop() ;
long begnum, endnum, firstlog, loginterval, logcnt, to_go, done ;
long begsecs, endsecs ;
float rate, last_rate, slow_down ;
char log_fname[40], rpt_str[100], time_str[30] ;
$int branch ;
$long account ;
$char filler[100] ;

 rstol(argv[1],&begnum) ;
rstol(argv[2],&endnum) ;
logfile = atoi(argv[3]) ;
strcpy(log_fname,argv[4]) ;

 for (i=0; i < 10; i++)
bycopy("1234567890",&filler[i*10],10) ;

if (logfile) {
if ((flog=fopen(log_fname,"a")) == NULL) {

perror("on opening log file") ;
logfile = 0 ;

}
 }

/*
* try to keep processes from reporting at the same time, report
* 7-10 times, report fairly soon for initial rate
*/

TPC Benchmark B Full Disclosure C-7

Appendix C Code to Populate Database

 last_rate = 0.0 ;
slow_down = 1.0 ;
to_go = endnum - begnum + 1 ;
loginterval = to_go / (7 + getpid() % 4) ;
 rate = 20.0 + (getpid() % 6) * 10.0 ;
firstlog = begnum + loginterval * rate / 100 ;
sprintf(rpt_str,"proc %d: loading records %d - %d, reporting every %d",

getpid(),begnum,endnum,loginterval) ;
 print_log(rpt_str) ;

 kill_ld = 0 ;
signal(SIGUSR1,setstop) ; /* in case you need to kill_load */

 $ database tpc ;
 SqlErr("database open") ;

 $ declare ins_acct cursor for
insert into account values($account, $branch, 0, $filler) ;

 SqlErr("declare cursor") ;

 $ open ins_acct ;
 SqlErr("first open") ;

 begsecs = time(0) ;
logcnt = 0 ;

 for (account=begnum; account <= endnum && !kill_ld; account++) {

branch = account / A_PERB ;
$ put ins_acct ;
 SqlErr("put into account") ;

if ((account % 500) == 0) {
$ close ins_acct ;
 SqlErr("periodic close of cursor") ;
$ open ins_acct ;
 SqlErr("periodic open of cursor") ;

}

if (++logcnt == loginterval || account == firstlog) {
 endsecs = time(0) ;
 done = account - begnum + 1 ;
 to_go = endnum - account ;
 strcpy(time_str,ctime(&endsecs)) ;
 time_str[24] = 0 ;
 sprintf(rpt_str,"\nproc %d: completed %d rows on %s",

getpid(),done,time_str) ;
 print_log(rpt_str) ;
 rate = 1.0 * (endsecs - begsecs) ;

rate = done / rate ;
 if (last_rate > 0.0)

slow_down = rate / last_rate ;
 last_rate = rate ;
 endsecs = endsecs + (to_go / rate / slow_down) ;

C-8 TPC Benchmark B Full Disclosure

Appendix C Code to Populate Database

 strcpy(time_str,ctime(&endsecs)) ;
 time_str[24] = 0 ;
 sprintf(rpt_str,"proc %d: rate is now %.1f rows/sec, e.t.c. is %s",

getpid(),rate,time_str) ;
 print_log(rpt_str) ;
 if (logcnt == loginterval)

logcnt = 0 ;
}

 }

 $ close ins_acct ; SqlErr("final close of cursor") ;

 $ close database ; SqlErr("close database on account") ;

 if (logfile)
fclose(flog) ;

 exit(0) ;
}

setstop()
{

kill_ld = 1 ;
}

report_time(s,secs)
char s[] ;
long secs ;

{
int hrs, mins, slen ;

 hrs = secs / 3600 ;
secs = secs % 3600 ;
mins = secs / 60 ;
secs = secs % 60 ;
slen = strlen(s) ; sprintf(&s[slen],"%2d:%02d:%02d",hrs,mins,secs) ;

}

print_log(s)
char *s ;
{

if (logfile) {
fprintf(flog,"%s\n",s) ;
fflush(flog) ;

 }
else {

printf("%s\n",s) ;
fflush(stdout) ;

 }
}

TPC Benchmark B Full Disclosure D-1

Appendix D

Database Contents Samples

This appendix contains the database contents samples for the TPC Benchmark B run
on the DECsystem 5000 Model 25.

D.1 Branch Table

Following is a sample of the Branch table contents:

number 3
balance -51355309
fillstr 123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012

number 4
balance -20818451
fillstr 123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012

number 5
balance 89491712
fillstr 123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012

D.2 Teller Table

Following is a sample of the Teller table contents:

number 8
balance -10125134
branch 0
fillstr 123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789

number 9
balance -3469726
branch 0
fillstr 123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789

number 10
balance 15177678
branch 1
fillstr 123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789

D-2 TPC Benchmark B Full Disclosure

Appendix D Database Contents Samples

D.3 History Table

Following is a sample of the History table contents:

account 976082
teller 39
branch 3
delta 942596
tstamp 1992-03-28 03:49:22
 fillstr the rest is history

account 2478956
teller 244
branch 24
delta 690436
tstamp 1992-03-28 03:49:22
fillstr the rest is history

account 1435695
teller 142
branch 14
delta -329829
tstamp 1992-03-28 03:49:22
fillstr the rest is history

D.4 Account Table

Following is a sample of the Account table contents:

number 8
balance 0
branch 0
fillstr 123456789012345678901234567890123456789012345678901234567890
12345678912345678901234567

number 9
balance 0
branch 0
fillstr 123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567

number 10
balance 0
branch 0
fillstr 123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567

TPC Benchmark B Full Disclosure E-1

Appendix E

Device Configurations

This appendix contains a description of the physical disk configurations tested for the
DECsystem 5000 Model 25 configuration.

/dev/rrz0a
No partition table found in superblock...
using default table from device driver.
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c
 b 32768 163839 131072 c
 c 0 2698060 2698061 a,b,d,e,f,g,h
 d 163841 1008640 844800 c,g,h
 e 1008641 1853440 844800 c,h
 f 1853441 2698060 844620 c,h
 g 163841 983040 819200 c,d
 h 983042 2698060 1715019 c,d,e,f

/dev/rrz1a
No partition table found in superblock...
using default table from device driver.
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,h
 b 32768 163839 131072 c
 c 0 832526 832527 a,b,d,e,f,g,h
 d 163840 386735 222896 c,g
 e 386736 609631 222896 c,g
 f 609632 832526 222895 c,g
 g 163840 832526 668687 c,d,e,f
 h 0 0 0 a,c

/dev/rrz2a
No partition table found in superblock...
using default table from device driver.
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,h
 b 32768 163839 131072 c
 c 0 832526 832527 a,b,d,e,f,g,h
 d 163840 386735 222896 c,g
 e 386736 609631 222896 c,g
 f 609632 832526 222895 c,g
 g 163840 832526 668687 c,d,e,f
 h 0 0 0 a,c

E-2 TPC Benchmark B Full Disclosure

Appendix E Device Configurations

/dev/rrz3a
No partition table found in superblock...
using default table from device driver.
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,h
 b 32768 163839 131072 c
 c 0 832526 832527 a,b,d,e,f,g,h
 d 163840 386735 222896 c,g
 e 386736 609631 222896 c,g
 f 609632 832526 222895 c,g
 g 163840 832526 668687 c,d,e,f
 h 0 0 0 a,c

/dev/rrz4a
No partition table found in superblock...
using default table from device driver.
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c,h
 b 32768 163839 131072 c
 c 0 832526 832527 a,b,d,e,f,g,h
 d 163840 386735 222896 c,g
 e 386736 609631 222896 c,g
 f 609632 832526 222895 c,g
 g 163840 832526 668687 c,d,e,f
 h 0 0 0 a,c

/dev/rrz5a
Current partition table:
partition bottom top size overlap
 a 0 32767 32768 c
 b 32768 163839 131072 c
 c 0 832526 832527 a,b,d,e,f,g,h
 d 163840 386735 222896 c,g
 e 386736 609631 222896 c,g
 f 609632 832526 222895 c,g,h
 g 163840 613839 450000 c,d,e,f
 h 613840 832526 218687 c,f

TPC Benchmark B Full Disclosure F-1

Appendix F

System Parameter Settings

This appendix contains the operating system parameters and database options in the
TPC Benchmark B test system.

F.1 System Parameters

ULTRIX version 4.2 system parameters were configured as shown below. In all in­
stances default values were used except for

• MAXUSERS was set to 1024

• MAXUPRC was set to 1024

• SMMAX was set to 1024

• SMSEG was set to 256

Additionally, two semaphore constant values were changed in the ULTRIX IPC
Semaphore Facility sem.h (/usr/sys/h/sem.h). The value SEMMNI, the number of
semaphore identifiers, was set to 80, and the SEMMNS, the number of semaphores
in the system, was set to 300. A copy of sem.h appears in this appendix.

The following operating system parameters were used for the test system.

ident "HAMMRD"
machine mips
cpu "DSPERSONAL_DECSTATION"
maxusers 1024
processors 1
maxuprc 1024
smmax 1024
smseg 256
physmem 40
timezone 5 dst 1

options QUOTA
options INET
options NFS
options RPC
options LAT
options DLI
options UFS
options NETMAN

makeoptions ENDIAN="-EL"

config vmunix root on rz5a swap on rz5b dumps on rz5b

F-2 TPC Benchmark B Full Disclosure

Appendix F System Parameter Settings

adapter ibus0 at nexus?
adapter ibus1 at nexus?
adapter ibus3 at nexus?
controller asc0 at ibus? vector ascintr
disk rz0 at asc0 drive 0
disk rz1 at asc0 drive 1
disk rz2 at asc0 drive 2
disk rz3 at asc0 drive 3
disk rz4 at asc0 drive 4
disk rz5 at asc0 drive 5
disk rz6 at asc0 drive 6
disk rz7 at asc0 drive 7
tape tz0 at asc0 drive 0
tape tz1 at asc0 drive 1
tape tz2 at asc0 drive 2
tape tz3 at asc0 drive 3
tape tz4 at asc0 drive 4
tape tz5 at asc0 drive 5
tape tz6 at asc0 drive 6
tape tz7 at asc0 drive 7
controller asc1 at ibus? vector ascintr
disk rz8 at asc1 drive 0
disk rz9 at asc1 drive 1
disk rz10 at asc1 drive 2
disk rz11 at asc1 drive 3
disk rz12 at asc1 drive 4
disk rz13 at asc1 drive 5
disk rz14 at asc1 drive 6
disk rz15 at asc1 drive 7
tape tz8 at asc1 drive 0
tape tz9 at asc1 drive 1
tape tz10 at asc1 drive 2
tape tz11 at asc1 drive 3
tape tz12 at asc1 drive 4
tape tz13 at asc1 drive 5
tape tz14 at asc1 drive 6
tape tz15 at asc1 drive 7
controller asc2 at ibus? vector ascintr
disk rz16 at asc2 drive 0
disk rz17 at asc2 drive 1
disk rz18 at asc2 drive 2
disk rz19 at asc2 drive 3
disk rz20 at asc2 drive 4
disk rz21 at asc2 drive 5
disk rz22 at asc2 drive 6
disk rz23 at asc2 drive 7
tape tz16 at asc2 drive 0
tape tz17 at asc2 drive 1
tape tz18 at asc2 drive 2
tape tz19 at asc2 drive 3

TPC Benchmark B Full Disclosure F-3

Appendix F System Parameter Settings

tape tz20 at asc2 drive 4
tape tz21 at asc2 drive 5
tape tz22 at asc2 drive 6
tape tz23 at asc2 drive 7
device fd0 at ibus? vector fdintr
device dti0 at ibus? vector dtiintr
device ln0 at ibus? vector lnintr
device scc0 at ibus? vector sccintr

scs_sysid 1

pseudo-device pty
pseudo-device nfs
pseudo-device rpc
pseudo-device loop
pseudo-device lta
pseudo-device lat
pseudo-device dli
pseudo-device ether
pseudo-device ufs
pseudo-device netman
pseudo-device inet

pseudo-device tc

F-4 TPC Benchmark B Full Disclosure

Appendix F System Parameter Settings

F.2 IPC Semaphore Facility

/* @(#)sem.h 4.1 (ULTRIX) 7/2/90 */

/**
 * *
 * Copyright (c) 1986, 1988 by *
 * Digital Equipment Corporation, Maynard, MA *
 * All rights reserved. *
 * *
 * This software is furnished under a license and may be used and *
 * copied only in accordance with the terms of such license and *
 * with the inclusion of the above copyright notice. This *
 * software or any other copies thereof may not be provided or *
 * otherwise made available to any other person. No title to and *
 * ownership of the software is hereby transferred. *
 * *
 * This software is derived from software received from the *
 * University of California, Berkeley, and from Bell *
 * Laboratories. Use, duplication, or disclosure is subject to *
 * restrictions under license agreements with University of *
 * California and with AT&T. *
 * *
 * The information in this software is subject to change without *
 * notice and should not be construed as a commitment by Digital *
 * Equipment Corporation. *
 * *
 * Digital assumes no responsibility for the use or reliability *
 * of its software on equipment which is not supplied by Digital. *
 * *
 **/
/* * * Modification history:
 *
 * 19 Mar 90 -- burns
 * Added ifdef kernel around SMP lock imbedded in
 * a user visable data structure (msqid_ds).
 *
 * 13 Dec 89 -- scott
 * xpg compliance changes
 *
 * 16 Aug 88 -- miche
 * Add support for SMP
 *
 * 02 Apr 86 -- depp
 * Moved sizing constants from /sys/h/param.h to here.
 *
 * 01 Mar 85 -- depp * New file derived from System V IPC

TPC Benchmark B Full Disclosure F-5

Appendix F System Parameter Settings

 *
 */

/*
 ** IPC Semaphore Facility.
*/

#ifndef KERNEL
#include <sys/smp_lock.h>
extern int semctl();
extern int semget();
extern int semop();
#endif /* KERNEL */

#if !defined(_POSIX_SOURCE)
/*
** Implementation Constants.
*/

#define PSEMN (PZERO + 3) /* sleep priority waiting for greater value */
#define PSEMZ (PZERO + 2) /* sleep priority waiting for zero */

/*
** Permission Definitions.
*/

#define SEM_A 0200 /* alter permission */
#define SEM_R 0400 /* read permission */

#endif /* !defined(_POSIX_SOURCE) */
/*
** Semaphore Operation Flags.
*/

#define SEM_UNDO010000 /* set up adjust on exit entry */

/*
** Semctl Command Definitions.
*/

#define GETNCNT 3 /* get semncnt */
#define GETPID 4 /* get sempid */
#define GETVAL 5 /* get semval */
#define GETALL 6 /* get all semval’s */
#define GETZCNT 7 /* get semzcnt */
#define SETVAL 8 /* set semval */
#define SETALL 9 /* set all semval’s */

/*
** Structure Definitions.
*/

/*
** There is one semaphore id data structure for each set of semaphores
** in the system. The ipc_perm structure must be first and

F-6 TPC Benchmark B Full Disclosure

Appendix F System Parameter Settings

** the lock must be last.
*/

struct semid_ds {
struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* ptr to first semaphore in set */
unsigned short sem_nsems;/* # of semaphores in set */
time_t sem_otime; /* last semop time */
time_t sem_ctime; /* last change time */

#ifdef KERNEL
struct __lock_t sem_lk; /* SMP lock for the semaphore queue */

#endif /* KERNEL */ };

/*
** There is one semaphore structure for each semaphore in the system.
*/

struct sem {
unsigned short semval; /* semaphore text map address */
pid_t sempid; /* pid of last operation */
unsigned short semncnt; /* # awaiting semval > cval */
unsigned short semzcnt; /* # awaiting semval = 0 */
unsigned short semnwakup;/* wake up those waiting on semncnt */

};

#if !defined(_POSIX_SOURCE)

/*
** There is one undo structure per process in the system.
*/

struct sem_undo {
struct sem_undo *un_np; /* ptr to next active undo structure */
short un_cnt; /* # of active entries */
struct undo {

short un_aoe; /* adjust on exit values */
short un_num; /* semaphore # */
int un_id; /* semid */

} un_ent[1]; /* undo entries (one minimum) */
};

/*
** semaphore information structure
*/
struct seminfo {

int semmap, /* # of entries in semaphore map */
semmni, /* # of semaphore identifiers */
semmns, /* # of semaphores in system */
semmnu, /* # of undo structures in system */
semmsl, /* max # of semaphores per id */
semopm, /* max # of operations per semop call */
semume, /* max # of undo entries per process */
semusz, /* size in bytes of undo structure */

TPC Benchmark B Full Disclosure F-7

Appendix F System Parameter Settings

semvmx, /* semaphore maximum value */
semaem; /* adjust on exit max value */

};

/*
** User semaphore template for semop system calls.
*/

struct sembuf {
unsigned short sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

/*
 * Sizing constants
 */

#define SEMMAP 10
#define SEMMNI 80
#define SEMMNS 300
#define SEMMNU 30
#define SEMMSL 25
#define SEMOPM 10
#define SEMUME 10
#define SEMVMX 32767
#define SEMAEM 16384

#endif /* !defined(_POSIX_SOURCE) */

