DIGITAL Semiconductor
EBSA-285 Evaluation Board

Reference Manual

Order Number: EC-R6M5B-TE

The EBSA-285 is an evaluation board for the SA-110 StrongARM®
microprocessor and the 21285 Core Logic controller. The evaluation
board is a PCI card that can be used in various configurations.

This manual is the single point offeeence for all users of the

EBSA-285. It describes how to install the card and power it up for the first
time. It also acts as a configuration guide, a programmer’s guide, and a
technical reference.

Revision/Update Information: This is a revised document. It super-
cedes thé®|GITAL Semiconductor
EBSA-285 Evaluation Board Reference
Manual, EC-R6M5A-TE.

Digital Equipment Corporation
Maynard, Massachusetts

http://Iwww.digital.com/semiconductor

October 1997

While DIGITAL believes the information included in this publication is correct as of the date of publication, it is
subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its productsin the manner described in this
publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Warning!
ThisisaClass A product. In a domestic environment this product may cause radio interference in which case the
user may be required to take adequate measures.

Achtung!
Dieses ist ein Gerat der Funkstérgrenzwertklasse A. In Wohnbereichen kénnen bei Betrieb dieses Gerates Rundfunk-
stérungen auftreten, in welchen Féllen der Benutzer fur entsprechende Gegenmafnahmen verantwortlich ist.

Attention!
Ceci est un produit de Classe A. Dans un environnement domestique, ce produit risque de créer des interférences
radioélectriques, il appartiendra alors a I'utilisateur de prendre les mesures spécifiques appropriées.

This equipment generates, uses, and may emit radio frequency energy. The equipment has been type tested and
found to comply with the limits for a Class A digital device pursuant to Part 15 of FCC rules, which are designed to
provide reasonable protection against such radio frequency interference.

Operation of this equipment in a residential area may cause interference in which case the user at his own expense
will be required to take whatever measures may be required to correct the interference.

Any modifications to this device - unless expressly approved by the manufacturer - can void the user’s authority to
operate this equipment under part 15 of the FCC rules.

©Digital Equipment Corporation 1997. All rights reserved.
Printed in U.S.A.

DIGITAL, DIGITAL Semiconductor, and the DIGITAL logo are trademarks of Digital Equipment Corporation.
DIGITAL Semiconductor is a Digital Equipment Corporation business.

ARM is a registered trademark and StrongARM is a trademark of Advanced RISC Machines Ltd.
Cypress is a trademark of Cypress Semiconductor Corporation.

Intel and Pentium Pro are registered trademarks of Intel Corporation.

PostScript is a registered trademark of Adobe Systems Incorporated.

PROMJet is a registered trademark of EmuTec Inc.

QuickSwitch is a registered trademark of Quality Semiconductors, Inc.

Samsung is a trademark of Samsung Electronics America, Inc.

Viewlogic is a registered trademark of Viewlogic Systems, Inc.

Windows is a registered trademark of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

Preface

1 Getting Started

1.1
1.2
13
131
132
133
134
1.4
15
1.6
1.7
1.7.1
1.7.2
1.7.3
174
1.75

cContents

Physical DesCriptiono
Unpackingthe Card e
Understanding the Different Modes i,

Add-iN Card

Host Bridge

Example Installation.
Other Configuration Options i

Powering Up for

the First Time e

Running the Onboard Diagnostics i
Using the ARM SDT with your EBSA-285. i
Support for Angel Over the Ethernet.

Description

Low-Level Angel Interface

Initialization
Host/Client

INteraction e

Areas of Difference

2 Functional Specification

21
2.2
2.3
231
232
233
234
2.4

21285

The Memory Subsystem e

SDRAM ..
Flash ROM

EPROM EMUIALOr e
Memory-Map Switching

I/O Subsystem

11
1-2
1-3
1-4
1-5
1-5
1-6
1-7
1-8

1-9
1-10
1-11
1-11
1-11
1-12

2-1
2-2
2-3
2-3
2-4

2-5

2.5
2.6
2.7
2.8
29
2.10
211
2.12
2.13
2.14

INterrupts. . ..o oot
PClinterface...............
PCIBus Arbiter.

Expansion............
ClocKS . . oo
ReESetS. . ..
Power Requirements
Onboard Power Generation
Onboard Software.

Programmer’s Guide

3.1
3.2
3.3
3.4
3.5
3.6
3.7

FlashMemory
SDRAMMEMOry. ...
X-Bus Memory-Map
Interrupt Assignment.
Timer Assignment.
Soft Input/Output Register
The Reset State of the System............

Software Configuration and Initialization

4.1
4.2
421
422
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

Disabling the Flash ROM Alias
Accessing the FlashROM
Programming the Flash from the SA-110

Programming the Flash from the PCl Interface

Determining the Card Configuration
Initializingthe X-Bus
Initializing the PCI Bus Arbiter
Setting the INITIALIZE_COMPLETE Bit.
Initializing the SDRAM
Re-initializing the SDRAM.
Initializing the PCl Interface
Initializing the 21285 UART
Configuring Cacheable/Non-Cacheable Space

3-1
3-2
3-2
3-2
3-3
3-3

41
4-2
4-2
4-2
4-3

4-3
4-3
4-4
4-6

4-8
4-9

Software Development Environment

5.1 Loadable Debuggable Images
511 Building
5.1.2 Run-Time Environment
5.1.2.1 Memory Map.o
5.1.2.2 ARM C Library Support
5.1.2.3 Exception Vectors.
5124 Accesstol/ODevices ...,
5.2 Standalone FlashImages
5.21 Building
5.2.2 Run-Time Environment
5221 Memory Map.o
5.22.2 CLibrary Support
5.2.2.3 Exception Vectors.
5224 Accesstol/ODevices ...

Onboard Software

6.1 Primary Boot Loader.
6.2 Format of ImagesinFlashROM.
6.3 Angel. . e
6.4 Diagnostics
6.4.1 Preparing to Run the Diagnostics
6.4.2 Descriptionof Tests. i

Flash Management Utility

7.1 Usingthe FMU i
7.11 When to Specify the Block Number.
7.1.2 When to Specify the ‘NoBoot' Option

Theory of Operation/Hardware Design

8.1 General.
8.2 An Introduction to the Schematics
8.3 Voltage DOmains.o
8.4 Interfacing Techniques i
8.5 Principal BUSES
8.6 CPU .
8.7 20285 .

5-1
5-1

5-2
5-2
5-2
5-2
5-3
5-3
5-4

5-4
5-4
5-4

6-1
6-2
6-4
6-4
6-4
6-5

7-1

7-5

8-1

8-2
8-3
8-3
8-4

Vi

8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8.8.7
8.9

8.10
8.10.1
8.10.2
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.171
8.171.1
8.17.1.2
8.17.1.3
8.17.1.4
8.17.1.5
8.17.2
8.17.2.1
8.17.2.2
8.18
8.18.1
8.18.2
8.18.3
8.19
8.20
8.21
8.22
8.23

SDRAM Interface. . .

Multiplexed Address BuS o
Bank Address BUS

DataBus

Chip Selects. . ..
SDRAM Clocks .

X-Bus Expansion
The Serial Port
Interrupts.
PCl Interface

Host Bridge

Headers. e

Power-On Reset. e

Switch Reset

JTAG Connector Reset
Watch Dog TimerReset. e

PCl Reset. .
Add-inCard

2.0-V Generation

Power Sequencing.

Decoupling

Jumpers and TeSt POINESt e
Expanding the EBSA-285
The Printed Circuit Board e

Design Improvements

8-6
8-6

8-6

8-7

8-7

8-7

8-9
8-10
8-10
8-11
8-11
8-12
8-12
8-13
8-14
8-14
8-15
8-15
8-16
8-16
8-16
8-17
8-17
8-17
8-17
8-17
8-18
8-18
8-19
8-19
8-19
8-19
8-20
8-20
8-21

A Configuration Guide

Al Default Configuration
A2 Description of Jumpers and Connectors. i
A21 X-Bus Expansion Headers.
A2.2 Configuration JUMPEIS.ttt
A221 CPU Core Clock Frequency Selection
A2.2.2 Arbiter/X-Bus Selection
A2.2.3 Flash/EPROM Selection. i
A224 Selection of the 21285 as the Central Function
A225 Reserved Mode
A2.2.6 BootImage Selection
A227 SA-110 Clock Probe Connection
A.2.2.8 Test POINtS
A3 CONNECIOIS .« . oo it
A3.1 Serial Port CoNNECIOr i e
A3.2 JTAG CONNECIOro e e e e e e e
A.3.3 Power Connector. e
A4 Cables for External Connection,
A4.1 Serial Port e
A4.2 JTAG PoOrt ..
A5 Upgrading the SDRAM DIMMS e

B The Design Database

B.1 Hardware Material.
B.2 Software Material e

C Support, Products, and Documentation

Index

A-2
A-5

A-7

A-7

A-9
A-10
A-11
A-12
A-12
A-12
A-13
A-13
A-13
A-13
A-14
A-14
A-14
A-15
A-16

vii

Figures

viii

A-10

EBSA-285 . . 1-2
Example Configuration in an EBSA-BPL-5V or EBSA-BPL-3V3 Backplane. 1-6
Angel Communication OVEIVIEW.ttt e e 1-10
EBSA-285 Block Diagram.o 2-2
ReSEt CirCUILS . . . oot e 8-15
Jumper and Connector Locations. A-2
Primary Jumper Settings. A-3
EBSA-285 Configured as an Add-inCard. A-4
EBSA-285 Configured as aHostBridge A-4
X-Bus Headers PinOUt i A-6
J17 Pinout Showing Default Jumper Configuration. A-8
J17 Core Clock Selection JUMPers.ttt e A-8
J1A/JA5 PINOUL . . .o e A-9
Serial Port Connector Detail A-13
JTAG Connector J1 PiNOUL.t e A-14

Tables

A-3

A7

A-10
A-11
A-12
A-13
A-14
A-15
A-16

TAP IDC Connector Pinout.
Signalsonthe TAP
JTAG Registers.
JTAGCommands
Interrupt Assignment.

Bit Assignment of Soft Input/Output Register
21285 Baud Rate Divisors for 50 MHz fclk_in.,

Boot Image Selection
Flash Image Header
SDRAM Array Configuration: 2-Array
SDRAM Array Configuration: 4-Array
Use of Reserved PCIPins

Part
Part

General Information on EBSA-285 Jumpers and Connectors

X-Bus ConnectorJ3
X-Bus Connectors J4/J5
X-Bus ConnectorJ6
X-Bus ConnectorJ8
Arbiter/X-Bus Selection Jumpers . ..
Flash/EPROM Socket Selection

Flash/EPROM Socket Selection (J16)
Jumper Combinations for ROM Selection.

Selection of Central Function

Jumper Settings for Selection of Central Function

Description of Test Points.
Null-Modem Cable
Sun Null-Modem Cable...........
JTAGCable
DIMMs For Use With The EBSA-285

2-6
2-7

2-8
3-2
3-4
4-8
6-2
6-3
8-8

8-13
A-5
A-6
A-6

A-7

A-9
A-10
A-11
A-11
A-11
A-12
A-13
A-15
A-15
A-16
A-17

Preface

Introduction

The EBSA-285 is an evaluation board for DIGITAL Semiconductor’s SA-110 micro-
processor and 21285 Core Logic controller. It is designed to:

Provide a software test and debug environment.
Allow benchmarking of prototype software algorithms.
Act as areference platform for operating system ports.

Demonstrate the performance of the 21285’s P@riate, memory corttler
and internal functional blocks.

Provide a building block that can be used to build software-accurate models of
target applications.

Act as aproven hardware design that can be modified for use in other applica
tions.

Allow &l the major features of the 21285 to be demonstrated and tested.

xi

This document is a single point-of -reference both for configuring and using the
board and for engineers wishing to copy parts of its design. As such, it hasthe
following scope:

» Functional specification
» Theory of operation (to be read in conjunction with the circuit schematics)
« Configuration guide (memory options, speed options, jumper and link options)

« Programmers’ guide (memory maps, boot proces$starces to programmable
I/O devices on the board)

This document aims not to duplicate material that can be found elsewhere.
Specifically, it does not duplicate material that can be found in vendor data sheets for
components used in the design, nor does it document the ARM software
development environment.

How to Use This Document

Xii

All readers should turn to Chapter 1 for information about how to connect and power
on the board, how to verify that it is working oectly, and how to connect it to a ter-
minal or host system.

All readers are advised to read Chapter 2 to get an understanding oéthk ov
functionality of the board. Subsequent chapters assume a familiarity with the
material in that chapter.

Thereafter, software engineeardll probably want torefer to the dllowing chapters:

» Chapter 3isaguide to the memory map of the board and the address decoding of
al I/O devices.

« Chapter 4 isaguide to configuration of the memory and other devices on the
board.

« Chapter 5isabrief introduction to the software devel opment environment.

» Chapter 6 describes the onboard software, including the power-on sequence of
the board, and the power-on diagnostics.

« Chapter 7 describes the Flash Management Utility that is provided with the
EBSA-285.

Hardware engineers will probably want to refer to the following chapters:

« Chapter 8 isadetailed technical description of the hardware of the card, includ-
ing the theory of operation.

A number of appendixes provide general reference material:

« Appendix A describesall of the link and jumper options present on the card, and
all of the cables that may be required for connection to the card.

« Appendix B describes the machine-readabl e design databases for the EBSA-285
hardware and software.

« Appendix C identifies other relevant documents and services that are available
from DIGITAL and its partners.

Notation

All numbers are shown in decimal unless otherwise stated.

All hexadecimal numbers have an Ox prefix. 32-bit hex values have dots for ease of
reading. Examples are: 0xfe0b.3004, 0xfb.

All binary number have an Ob prefix; long numbers include dots for ease of reading.
Examples are: 0b00, 0b0000.0000.1010.0000.

This document refers to an 8-bit data unit as a byte, a 16-bit data unit as a half-word
and a 32-bit data unit as alongword.

Electrical signal names are shown thus: cpu_wait_I. An _| at the end of asigna
name indicates that the signal is asserted (active) when it islow (closeto OV).

Displayed messages are printed in 9-point Courier format. For example:

Test Passed

References

This section provides a selective bibliography and a reference to relevant
manufacturers’ data sheets. ARM-specific and SA-110-specific informatiofers re
enced in Appendix C.

1 Standard ARM notation is to use the terms byte, half-word and word, respectively.
DIGITAL's convention is to use the terms byte, word and longword. Therefore, this
document avoids use of the term ‘word’, which is ambiguousftereint aidiences.

Xiii

1. High-Speed Digital Design - a handbook of black magic. (Howard W
Johnson, Martin Graham, 1993 Prentice Hall ISBN 0-13-395724-1)

Intel 28F008 data sheet (visit http://devel oper.intel.com)
Samsung 1996 16M Sync DRAM databook

Xiv

1

Getting Started

The EBSA-285 is supplied as a plug-in card. This chapter provides a physical
description of the card and then describes:

* How to unpack the card and giveit avisual inspection
* Thedifferent modes that the card can be used in

* How to configure the card to suit your application

* How to power up the card for the first time

* How to connect the card to ahost system and run its onboard diagnostics

1.1 Physical Description

The physical layout of the EBSA-285 is shown in Figure 1-1. It is a single-board
computer with the fornfiactor of a PCI add-in card.

The EBSA-285 contains processor, system controller, memory and input/output
devices. There are a number of header blocks on the card that accept 2-pin jumpers,
allowing the card to be configured irfférent ways, so that all of the major features

of the 21285 can be used.

The bulkhead mounting bracket of the EBSA-285 holds a female 9-way D-type con-
nector, three LED indicators and a rotary switch. The D-type connector provides an
RS232 terminal connection to a host system. The LEDs provide status information
during power up and self-test. The rotary switch is used by onboard software to allow
a particular image stored on the board to be executed automatically at power up.

Getting Started 1-1

Unpacking the Card

Figure 1-1 EBSA-285

Header

blocks DIMM sockets JIAG
conpector
___________________ £ I |
|
Fosh fl EEED . e ;
o fmege | e
E(O): selector :| SA- !
110
: Daughter board
: = i} B
° / ! (if fitted) -
LEDs : :
(] 21285 | =TI :
Serial port
COMO N PC/AT-style
EPROM Universall power connector g
\ / socket PCl-slot fingers (bench-test mode) 8

1.2 Unpacking the Card

Caution: The EBSA-285 contains el ectronic components that are susceptible to
permanent damage from electrostatic discharge (static electricity). To
prevent electrostatic damage it is supplied in an antistatic bag. When
handling the card, risk of damage can be alleviated by following afew
simple precautions:

* Do not remove the card from the bag unless you are working on an
antistatic, earthed surface and wearing an earthed antistatic wrist strap.

» Keep the antistatic bag that the card was supplied in; if you remove the
card from a system, store it back in the bag.

The EBSA-285 is normally supplied with a single, 168-pin plug-in DIMM module
containing 16 MB of SDRAM memory. If the DIMM is not fitted when you receive
your EBSA-285, install it by following these steps:

1. Identify the DIMM socket closest to the edge of the EBSA-285.

1-2 Getting Started

Understanding the Different Modes

2. Slidethe DIMM into the socket taking account of the polarity slots. Do not touch
the gold contacts. You can see that there are two polarization slots cut in the
DIMM; this ensures that the DIMM is oriented correctly.

3. Support the underside of the EBSA-285 and press the DIMM down into the
socket. It should mate with a gentle ‘click’.

Before you install and power up your EBSA-285, you should perform a quick visual
inspection:

1. Inspect the card for physical damage.

2. Ensure that each of the 2-pin jumpers is pushed down firmly onto its mounting
posts. If you remove any of the jumpers, refer to Appendix A to ensure they are
replaced correctly.

3. Ensure that one DIMM is fitted, in the socket closest to the edge of the card, and
that the main portion of the gold contacts on the DIMM has disappeared into the
socket along the whole length of the DIMM.

4. Check the position of the Flash Image selector switch. There is a dot or an arrow
on the switch showing which image is selected. If necessary, use a small screw-
driver to rotate the switch so that image 0 is selected.

1.3 Understanding the Different Modes

There ara@wo distinct ways in which the EBSA-285 can be configured. In order to
understand the differences between them, it is necessary to review some aspects of
the architecture of a PCl-based system.

The PCI bus has a multi-master capability, allowing any PCI master in the system
peer-to-peer access to any other PCI master/target.

In general, the PCI bus is symmetrical, so that any device on the bus can have the
same set of capabilities as any other device. However, one device in the system is
responsible for gearating a software-driven initialization and configuration of all
devices on the bus after power up or reset.

Initialization and configuration isgeformed using Coiduration Cycles on the PCI

bus and the device that interfaces to the PCI bus to perform these cycles is called the
Host Bridge. The processor that accesses the PCI bus through the Host Bridge is
called the host processor, or simply the host.

In this document, all devices on the PCI other than the Host Bridge areetefo as
PCI devices or add-in cards, or agents.

Getting Started 1-3

Understanding the Different Modes

In amotherboard-based system like a PC, the host processor and the Host Bridge are
built onto the motherboard. The motherboard may also contain some PCI devices
(for example, an Ethernet network interface) and further PCI add-in cards may be
plugged into PCI expansion connectors on the motherboard.

The EBSA-285 can act either as a Host Bridge (in which case the EBSA-285's
SA-110 processor is the host processor) or as an add-in card (in which case the
SA-110 processor would normally be termed a co-processor).

The 21285 is configured in a mode called ‘Central Function’ (CFN) mode when it is
acting as the Host Bridge for a system.

In addition to the generation of PCI configuration cycles, there are a number of other
functions that are normally associated with the Host Bridge:

* Busarbitration

* PCI clock generation

* Interrupt controller

* Reset generation

* The provision of pullups or ‘keepers’ on some bus signals

Some of these functions ameferred to in the PCI specifi¢ah as ‘Central Resource
Functions’.

1.3.1 Add-in Card

This is the default mode for the card. When you receive a new EBSA-285, the jump-
ers on the card will be configured for this mode.

If you already own a PC with a PCI expansion bus then using this mode is the sim-
plest way to power up and use the EBSA-285.

When the EBSA-285 is configured in this mode it can be plugged into an existing PC
motherboard or into a PCI backplane which already contains a Host Bridge. The
EBSA-285 is supplied with power, reset and PCI clock from the PCI connector. The
motherboard or PCI backplane provides bus arbitration, interrupt controller and pul-
lups for the system.

When the host system is powered up, software running on the host processor will
read the configuration registers of the 21285 on the EBSA-285 and allocate system
resources for it accordingly. On a standard PC, this function is performed by the
BIOS.

1-4 Getting Started

Understanding the Different Modes

1.3.2 Host Bridge

Thisis not the default mode for the card. When you receive anew EBSA-285, refer
to Appendix A to configure the jumpers on the card for correct operation in this
mode.

When the EBSA-285 is configured in this mode it must be plugged into aspecial dot

(the ‘System’ or ‘Host’ slot) in a PCI backplane. DIGITAL can supply the EBSA-
BPL-5V and EBSA-BPL-3V3 as suitable backplanes. The EBSA-285 acts as the
Host Bridge and also provides the PCI interrupt controller for the system. It is sup-
plied with power and PCI clock from the backplane. The EBSA-BPL backplane also
provides PCI bus arbitration and pullups.

If you wish to use a PCI backplane other than the EBSA-BPL-5V/EBSA-BPL-3V3,
refer toDIGITAL Semiconductors EBSA-BPL Reference Matwednfirm that the
backplane is suitable before powering up for the first time.

1.3.3 Example Installation

Figure 1-2 shows an advanced installation using the EBSA-285 and one of the
DIGITAL Semiconductor PCI Development Backplanes.

In this arrangement there are two EBSA-285 cards, a PCI network card and a PCI
video card. The EBSA-285 in the backplane’s System slot is configured as a Host
Bridge and the other EBSA-285 is configured as an add-in card.

Getting Started 1-5

Understanding the Different Modes

Figure 1-2 Example Configuration in an EBSA-BPL-5V or EBSA-BPL-3V3 Backplane

1.3.4 Other Configuration Options

The EBSA-285 also supports configuration options that are beyond the scope of this
introductory section. These include:

e Setting the SA-110 processor core frequency

* Using the 21285 internal PCI arbiter instead of the backplane arbiter (only appli-
cablein Host Bridge mode)

* Allowing aplug-in EPROM emulator to be used in place of the onboard flash
ROM

1-6 Getting Started

Powering Up for the First Time

* Holding the SA-110 processor in reset so that a new image can be programmed
into the onboard flash ROM (only applicable in add-in card mode)

Refer to Appendix A for details on selecting and using these modes.

1.4 Powering Up for the First Time

Use Section 1.3 to decide which mode to use your card in, and use Appendix A to
ensure the jumpers are set appropriately. If you need more details on how to install
the card or attach a power supply, refer to Appendix C.

Use an RS232 null-modem cable to attach the COMO port on the EBSA-285 to an
RS232 port on aterminal or terminal emulator. For example, you could connect to a
PC running Windows and use the Windows Termina or Hyperterminal application.
Configure the terminal to operate at 9600 baud, 8-bit data, 1 stop bit, no parity, no
flow control. If you need more details on choosing an appropriate cable, refer to
Appendix A.

Note: If you are using the card as an add-in card, you cannot use a terminal
emulator running on the host for thisinitial test because the card will
have issued messages before the host has booted.

Identify the group of three LEDs on the bulkhead mounting bracket of the
EBSA-285. Power-cycle the system and watch the LEDs.

The LEDs should all be illuminated initially and then be extinguished after about
half asecond. At the sametime, the terminal screen should display a message smilar
to this:

Angel Debug Monitor for EBSA 285 (FIQ, MW off, dock Swtching on (serial)
1.00 (Advanced R SC Machines 2.11) rebuilt on Jun 9 1997 at 23:57:00

If you fail to see the behavior described then use this checklist to identify the prob-
lem:

* |If you have configured the EBSA-285 as an add-in card and it stops the host PC
from booting correctly, verify the jumper settings on the card.

* If the LEDs behave correctly but the terminal doesn’t produce any output, check
the terminal cable and terminal settings. You can test the cable by connecting it
between two PC COM ports and running terminal emulation on each port; if the
cable is correctly wired you will be able to type characters on either terminal
emulator and display them on the other.

Getting Started 1-7

Running the Onboard Diagnostics

* |f neither the LEDs nor the terminal behaves correctly then check that the jump-
ers are set correctly and that the flash image selector switch is set to 0.

* Attempt to run the onboard diagnostics by following the instructions in the next
section.

1.5 Running the Onboard Diagnostics

You can get an additional level of confidence that the card isworking correctly by
running the onboard diagnostics that are programmed into the flash ROM.

Before starting the diagnostics:
1. Attach the card to aterminal as described in Section 1.4.

2. Useasmall screwdriver to rotate the Flash Image selector switch so that the dot
or arrow on the switch points to the number 1. This selects the image that, by
default, contains the onboard diagnostics.

3. Power-cyclethe system. The diagnostics should start up automatically and report
progress on the terminal. The first thing that the diagnostics do is to flash all
three LEDs once.

Chapter 6 describes the output that the diagnostics should produce and describes
what to do if the diagnostics fail.

1.6 Using the ARM SDT with your EBSA-285

The ARM Software Development Toolkit (SDT) includes a remote debugger. When
running the remote debugger, one part runs on the host (this part includes the user
interface) and the other part runs on the target (the EBSA-285). The host and target
communicate across a communications channel. By default, the EBSA-285 uses its
COMO0 RS232 port to communicate with the host.

The software that runs on the Target is called the remote debug agent or remote
debug stub. By default, the remote debug agent used with the EBSA-285 is a pro-
gram called Angel.

Use an RS232 null-modem cabl e between the COMO port on the EBSA-285 and the
RS232 port on the machine on which the SDT has been installed.

If you are using the EBSA-285 as an add-in card, the SDT can run on the same host.
This requires COMO to be connected to one of the COM ports on the host.

Start up the ARM debugger in the SDT. Use the ‘remote_a’ option from the options
menu to select remote debagross a serial port.

1-8 Getting Started

Support for Angel Over the Ethernet

For more details on using the SDT, refer to the ARM Software Devel opment Toolkit
Reference Manual. Chapter 6 describes how to use the SDT to build images that can
be executed and debugged on the EBSA-285.

1.7 Support for Angel Over the Ethernet

A TCP/IP Ethernet stack has been added to the Angel debugger for faster downloads
and debugging of programs targeted for the EBSA-285. The system requires a Bootp
server to be running on the Ethernet to which the EBSA-285 is connected, for it to
resolve its own | P address. Beyond this the differences, other than download speed,
between using the ARM debugger over serial and Ethernet are largely transparent.

For a description of |P stacks and the general terminology please refer to, Internet-
working with TCP/IP, Principles, Protocols and Architecture. Author: Douglas
Comer. ISBN: 0-13-470188-7

Getting Started 1-9

Support for Angel Over the Ethernet

1.7.1 Description

Figure 1-3 Angel Communication Overview

Angel Programs

Channels Layer

(interrupt driven) (polled)
Serial Layer Ethernet Layer
~ ~
-~ -~
~ ~
-~ -~
~ ~
-~ -~
~ ~
Socket Layer BOOTP
UDP Layer
IP Layer
ARP Layer

Ethernet Driver Abstraction Layer

Ethernet Device Driver

Hardware (21x4x)

Figure 1-3 shows the layers involved with communications over the Ethernet, and
how Angel and user program relate. The program communicates its print/read state-
ments and semi-hosting commands via Angel, just as for serial. The channels layer

1-10 Getting Started

Support for Angel Over the Ethernet

within Angel then decides which is the active device and uses that device to send the
message to the debugging host. The stack isaminimal implementation to satisfy the
needs of Angel only.

1.7.2 Low-Level Angel Interface

The area of interaction between Angel and the stack is via a socket layer interface.
Thisis aminimal implementation of a socket layer, allowing use of:

Socket - Initialize a socket

bind - Bind socket to a port

sendto - Send to a specific address

recv - Receive

recvirom - Recelve and indicate source of data
close - Close the socket

All of the options and flags in these functions are ignored.

1.7.3 Initialization

Upon initialization the stack will attempt to find out its own | P address using the
bootp protocol. It will send out four bootp requests, approximately one to two sec-
onds apart, but will stop whenit receivesavalid reply. If no bootp request is received
then only serial will be usable. A broadcast message is sent to indicate that the
debugger isready to connect when the bootp is compl ete.

Note: During this bootp period it will not be possible to connect to the
debugger.

1.7.4 Host/Client Interaction

Angel will now poll the Ethernet stack and listen for the host debugger trying to con-

nect. The communications occur over UDP/IP, the Angel connect happens on a

known port. When a packet with a ‘magic’ word is received on this known UDP port
it initiates a negotiation of other communication channels and various Angel param-
eters. The host may also connect via serial, in which case the Ethernet stack is no
longer polled.

Angel can now communicate with the host over the negotiated channels. The ARM
remote debugger usage from this point should be the same as for serial debugging.
However, it should be noted that Angel must be allowed to run occasionally in order

Getting Started 1-11

Support for Angel Over the Ethernet

for it to examine the Ethernet stack — this is entirely dependent upon the application
that is being run calling ‘angel_yield’ from time to time. This is not necessary for
serial because serial uses interrupts to transfer data so is able to halt the application
in the foreground. It is not detrimental to yield when serial is being used. Although
there is a method built into Angel to start the polling mechanism, polling is always
controlled by the program.

Packet transmission via Ethernet is immediate.
1.7.5 Areas of Difference

The stack requirements ardfdient. Angel uses more stack because of the layered
approach to IP - see devconf.h for the sizes.

1-12 Getting Started

2

Functional Specification

This chapter describes each functional e ement of the EBSA-285. More detailed
information describing how the board works and how to program it can be found in

later chapters of this document. Figure 2—1 is a basic block diagram of the board,
showing how the major elements interconnect.

2.1 CPU

The EBSA-285 uses the SA-110 microprocessor as its CPU. The board allows the
processor to be operated at any one of its 16 core clock frequencies (between

88.3 MHz and 287 MHz with the upper limit determined by the speed grade of the
CPU fitted) at a fixed core voltage of 2.0 V.

The CPU is packaged in a 144-pin thin quad flat pack (TQFP).
2.2 21285

The 21285 is a Core Logic controller for the SA-110 microprocessor. The 21285 per-
forms all of the control functions on the EBSA-285.

The 21285 is packaged in a 256-point plastic ball grid array (BGA).

Functional Specification 2-1

The Memory Subsystem

Figure 2-1 EBSA-285 Block Diagram

EPROM
Socket
(Byte
wide)

—

Flash

RAM
(32-hit
wide)

+12V J

——
> Buf >
En” SDRAM
DIMM
MA[13:0] >)
Buf
CMDE> —

K D[31:0] N
SA-110 IW :> 21285 K PCl-bus >
StrongARM
JTAG J COMO
T 1\ RS232 (_)|:|
Clk Clk I/Face
I 9-way
N\ D-type
Buffer Buffer Buffer En Flash image
En
selector
VAN e —! switch
Buf [
Q
& JTAG
= En
N i
+3.3V | Latch_
+5V —>
—>{ Regulator VA VA LEDs
+2V : X-bus Expansion < En Softo

Headers

2.3 The Memory Subsystem

The EBSA-285 provides synchronous DRAM (SDRAM) for its main memory and
flash ROM for its boot path and non-volatile storage. It also supports the use of a
plug-in ROM emulator to aid software debug.

2-2

Functional Specification

The Memory Subsystem

2.3.1 SDRAM

SDRAM chips usualy contain multiple logical banks of memory (typicaly 2 or 4)
within asingle chip. The existence of these multiple banksisinvisible to software but
allows the memory controller to extract greater performance from the memories. To
avoid confusion with these internal banks, the term array is used to describe a physi-
cal group of memory devices that share a common chip select and provide a

32-hit data path.

The 21285 supports four SDRAM arrays.

The EBSA-285 has sockets for two 168-pin 64-bit SDRAM DIMMs. The 64-bit data
path of the DIMM istreated as two separate arrays (since the 21285 requires a 32-bit
data path).

One of the sockets can accommodate a DIMM of up to four arrays, the other can
accommodate a DIMM of up to two arrays.

The standard configuration of the EBSA-285 contains asingle 2-array DIMM, pro-
viding atotal of 16 MB of memory.

Section A.5 explains how to choose suitable DIMM s with which to upgrade the
EBSA-285.

2.3.2 Flash ROM

Non-volatile storage is provided by four byte-wide 1-MB flash ROMs, arranged to
provide a 32-bit ROM path. This provides atotal of 4 MB of ROM.

The ROM is used for two purposes:
* Inall configurations of the EBSA-285 it provides the boot code for the SA-110.

* When the EBSA-285 is used as an add-in card, the SA-110 software can make a
region of the ROM visible onthe PCI bus so that it appearsin PCI space asa PCI
expansion ROM. The expansion ROM makes code available to the host proces-
sor that can be executed for device-specific initialization and, possibly, a system
boot function.

The 21285 supports 8-bit, 16-bit and 32-bit ROMs, but the EBSA-285 design only
allows the 32-bit mode to be used for accesses to the flash ROM.

Theflash ROM isdivided into a number of separate blocks, which can be erased and
reprogrammed independently. The EBSA-285 is supplied with code programmed
into some of the flash blocks. In particular, block 0 of the flash contains the bootstrap
code for the SA-110, including the remote debug agent.

Functional Specification 2-3

The Memory Subsystem

If block 0 becomes corrupt, the SA-110 will be unable to execute code after a reset.
In this situation, the flash can be reprogrammed using one of these techniques:

* Select the 21285%lank ROM programming mode via a jumper on the
EBSA-285 and plug the board into an Intel PC, then reprogram block 0 across
the PCI bus.

* Program the flash ROM viathe 21285 JTAG port.

The EBSA-285 is supplied with a software utility that allows images to be pro-
grammed into flash ROM either across the PCI bus, as described above, or under the
control of the ARM toolkit's remote debugger. This utility, the Flash Management
Utility (FMU), is described in Chapter 7.

Software for reprogramming flash ROM via the 21285 JTAG port may be provided
in future releases of the EBSA-285 software.

2.3.3 EPROM Emulator

2-4

An EPROM emulator is a debugging tool that connects to a target as though it were
an EPROM but allows fast download and modification of code.

The EBSA-285 has a 32-pin 0.6-inch DIL socket that can be used to connect a byte-
wide 512-KB EPROM emulator head.

A conventional EPROMannot be fitted to this socket. This is because the socket
provides 3.3-V power, andvsE line (not found on EPROMS). Similarly, only 3.3-V
EPROM emulators can be used.

Warning: Fitting a 5-V emulator may result in damage to your EBSA-285.

Jumpers on the EBSA-285 are used to reconfigure the ROM width and disable the
flash ROM in this mode; access to the flash ROM and the EPROM emulator socket
are mutually exclusive.

When the EBSA-285 is configured correctly, the 21285 makes SA-110 and PCI
accesses to the EPROM emulator appear as 32-bit accesses.

The PROMJet™ EPROM emulator, from EmuTec, has been used successfully on the
EBSA-285. Details from:

Telephone number in the United States of America: +1 425 267 9604
The company web page: http://www.emutec.com

Functional Specification

I/O Subsystem

2.3.4 Memory-Map Switching

Immediately after reset, the 21285 decodes the flash ROM at two locations; at its
normal base address in high memory and also at an alias of 0. Decoding at this alias
allows the SA-110 to fetch its reset vector. The alias is disabled by the first store
(write) instruction executed by the SA-110.

2.4 1/0O Subsystem

All local 1/0O (within the EBSA-285 module) is performed as programmed 1/O under
the control of the SA-110. The 1/O subsystem provides the following resources:

* AnRS-232 console port (data leads only) accessed viaa 9-way D-type on the
bulkhead. Thisisreferred to as COMO.

e An8-hit I/O port used to control LEDs and read the state of jumpers and a
switch.

The only other 1/0 facilities on the board are those provided by the 21285 itself.

2.5 Interrupts

When the EBSA-285 is used as a Host Bridge (21285 configured as Central
Function), logic in the 21285 acts as an interrupt controller for interrupts generated
locally (on the module and within the 21285) and for interrupts generated by other
devices on the PCI.

When the EBSA-285 is used as an add-in card, logic in the 21285 acts as an interrupt
controller for interrupts generated locally (on the module and within the 21285). In
this mode, the SA-110 can generate an interrupt to the Host Bridge (across the PCI
bus) under software control. The interrupt is routed out of the EBSA-285 as INTA#.

2.6 PCI Interface

The EBSA-285 has a 32-bit PCI interface that is compliant with Revision 2.1 of the
PCI Local Bus specification. It supports both 3.3-V and 5-V signalling.

The EBSA-285 has the capability either to generate or to respond to configuration
cycles on the PCI bus. These cycles are normally performed by a Host Bridge, how-
ever, they can be generated by an add-in card, for example, to determine the PCI
access to system memory.

Functional Specification 2-5

PCI Bus Arbiter

2.7 PCIl Bus Arbiter

The 21285 contains a PCI bus arbiter. When the EBSA-285 is configured as a Host
Bridge, and plugged into a suitable backplane, the EBSA-285 can provide arbitration
for the 21285 itself plus up to four devices on the PCI.

The PCI Bus Arbiter cannot be used at the same time as the X-Bus (since they share
signal pins on the 21285). A set of jumpers on the EBSA-285 enables one or the

other.
Note: When the PCI Bus Arbiter is enabled the X-Busis disabled, so the
EBSA-285 LEDs and flash image selector switch cannot be used.
2.8 JTAG

The SA-110 and the 21285 both contain JTAG ports that allow test access to the
1/0 pins of the device.

The EBSA-285 daisy-chains the two JTAG ports and provides access to the port
through a 7x2 0.1-inch pitch header connector.

It is recommended that all ROM communications performed by the programming
software tool, be done through the DS21285 JTAG Boundary Scan chain. The micro-
processor should be held in the reset state by asserting nRESET signal low, so asto
grant access to address and data buses.

The Test Access Port (TAP) is buffered from the connecting source device by a stan-
dard 74ACT244 device. The physical connection to the TAP is made to the board by
a 14 way IDC connector. Table 2—1 shows the IDC connector pinout.

Table 2—1 TAP IDC Connector Pinout

Pin Type Use Polarity

1 - 33Rto+5V -

2 - GND -

3 Input to board TRST_L Active low
4 - NC -

5 Input to board TDI Normal

6 - GND -

7 Input to board T™MS Normal

2-6 Functional Specification

JTAG

Table 2—1 TAP IDC Connector Pinout

Pin Type Use Polarity

8 - GND -

9 Input to board TCK Normal

10 - GND -

11 Output fromboard TDO Normal

12 Input to board SRST_L —Boardreset Active low
13 — Connected to pinl —

14 - GND -

This pinout is compatible with ARM PCBs and microprocessors.

Table 2-2 shows the signals on Test Access Ports (TAPS).

Table 2—2 Signals on the TAP

Sampled/Updated on

Signal Name Pull-up Clock Transitions From-to Optional
Test Dataln (TDI) Yes Low to high No
Test DataOut (TDO) No High to low No
Test Clock input (TCK) No - No
Test Mode Signal (TMS) Yes Low to high No
Test Reset input (TRST) Yes Asynchronous Yes

The JTAG registers available are shown in Table 2-3.

Table 2-3 JTAG Registers

Register Purpose

Instruction register Holds the current instruction op-code value for the following task.

Boundary scan Reads and writes data to physical device connection pins.

Functional Specification 2-7

JTAG

Table 2-3 JTAG Registers

Register

Purpose

Bypass

Device ID

Design specific test
dataregister

Shortcuts the route of the JTAG daisy chain. Register isone cell

long per device.

Read out a preprogrammed compounded device information num-

ber.

Test data register used by 1C manufacturers

The JTAG commands available are shown in Table

Table 2—4 JTAG Commands

Command Nature Op-Code 285 Value
EXTEST Public All 0's 0000
SAMPLE Public User defined 0001
BYPASS Public All 1's 1111
INTEST Public User defined

RUNBIST Public User defined

IDCODE Public User defined 0100
USERCODE Public User defined

CLAMP Public User defined 0011
HIGHZ Public User defined 0010

2-8 Functional Specification

Expansion

2.9 Expansion

The 1/O capabilities of the EBSA-285 can be expanded in two ways:
* ThePCl interface.

* Theexpansion headers of the buffered 21285 X-Bus. These allow asmall mezza-
nine PCB to be attached for connection to the X-Bus. The X-Bus providesa sim-
ple way of providing access to |ow-performance I/0.

2.10 Clocks

The EBSA-285 uses these oscillators:

* 3.6864 MHz oscillator: This oscillator is used for two purposes. Firstly, it is used
to drive the SA-110 phase-locked loop (PLL) input, from which the SA-110 gen-
erates its core clock. Secondly, it is used to provide afixed frequency input to
one of the timersin the 21285.

* 50 MHz oscillator: This oscillator provides the osc input clock for the 21285.
The 21285 buffers and redrives this clock to generate the SA-110 bus clock, the
SDRAM clocks and the 21285 feedback clock, fclk. The local buses and the
majority of the 21285’s internal logic run synchronously at this cfoeduency.

e When the EBSA-285 is plugged into a backplane (either as an add-in card or a
Host Bridge) it receives PCI clock from the backplane.

2.11 Resets

There are three sources of reset on the EBSA-285:
* Power-on reset

* Reset from PCI

* Reset from the 21285 watchdog timer

Power-on reset is generated automatically when power is applied to the EBSA-285.
It can a'so be initiated by:

* A push-button switch attached to a 2-pole 0.1-inch pitch connector on the board
e Circuitry connected to the JTAG test connector
Resets generated by any of these methods are equivaent and indistinguishable.

Functional Specification 2-9

Power Requirements

When the EBSA-285 isrun in Central Function mode, the circuitry on the board is
reset by power-on reset and the 21285 generates PCI reset output under software
control.

In Central Function mode, the 21285 watchdog timer can be used to reset the whole
system in away that is equivalent to a power-on reset.

When the EBSA-285 is run in non-Central Function mode, it receives reset from the
PCI and this reset is used to reset all of the circuitry on the board.

2.12 Power Requirements

The EBSA-285 has the following power requirements:
* +5V +/-5% @10A
o +12-V +/-5%, @ 250 mA

When the EBSA-285 is plugged into a backplane (either as a Host Bridge or an add-
in card), it draws power from the PCI edge connector.

The EBSA-285 will function without the + 12-V supply; that supply rail is only used
to alow reprogramming of the flash ROMs.

2.13 Onboard Power Generation

The EBSA-285 generates + 3.3-V and + 2-V using onboard circuitry.

The +3.3V is generated from + 5-V using a dc-dc converter. The + 3.3-V isused to
supply the flash, the SDRAMSs, the 21285 and various data and address buffers.

The +2V is generated from + 3.3-V using alinear regulator. The + 2V is used to sup-
ply the core voltage for the SA-110.

Note: Although the EBSA-285 supports both + 3.3-V and + 5-V signalling on
the PCI bus, it never draws + 3.3-V power from a PCI connector; it
alwaysrequires + 5-V.

2.14 Onboard Software

The EBSA-285 onboard software is programmed into the flash ROM. The flash
ROM can contain a number of independent images. At a minimum, the flash ROM
contains a program called the Primary Boot Loader (PBL). The PBL can load and

2-10 Functional Specification

Onboard Software

start a specific image that is stored in flash ROM and selected using the rotary flash
image selector switch on the bulkhead mounting bracket. By default, the PBL starts
up the ARM remote debug agent.

An onboard diagnostic suite is also programmed into flash ROM and can a so be
selected by means of the rotary switch.

Functional Specification 2-11

3

Programmer’s Guide

Much of the functionality on the EBSA-285 isfixed by the design of the 21285. This
chapter describes the facilities that are specific to the EBSA-285. These are:

* Theflash memory

* The SDRAM memory

* The X-Bus memory-map

* Interrupt assignment

* Timer assgnment

e The soft input/output port

* Thereset state of the system

This chapter, in conjunction with the 21285 Data Sheet, should act as a complete ref-
erence for programmers of the EBSA-285.

3.1 Flash Memory

Non-volatile code storage is provided by four 1-MB flash ROMs. These are Intel
28F008 parts. They are arranged to provide a 32-bit boot path for the SA-110.

Each flash ROM provides sixteen 64-KB blocks of memory. The blocks are contigu-
ous but can be erased and programmed separately. Because the flash is arranged as
32-bit memory, it can be treated as sixteen 256-KB blocks decoded at addresses
0x4100.0000 - 0x413F.FFFF.

A new EBSA-285 contains debugger and self-test images in the first two blocks of
the flash ROM. User code can be programmed into other blocks. A utility for manag-
ing imagesin flash ROM is described in Chapter 7.

Programmer’s Guide 3-1

SDRAM Memory

The EBSA-285 can be configured to accommodate an 8-bit ROM emulator, which
attaches via a 32-pin 0.6-inch DIL socket on the board. Refer to Section 2.3.3 for
information on choosing and using a ROM emulator.

3.2 SDRAM Memory

The EBSA-285 can accommodate two 168-pin 3.3-V SDRAM DIMMs. The stan-
dard configuration isto fit asingle 16-MB DIMM, which appears astwo 8-MB
arrays decoded at addresses 0x0 - OxFF.FFFF. Section A.5 describes how to upgrade
or change the configuration of the DIMM. Section 4.7 describes how to initialize the
21285's memory controller to enable access to the SDRAM.

3.3 X-Bus Memory-Map

The X-Bus is used for accesses to external low-speed 1/O devices. There are four
separate address spaces. On the EBSA-285 the only address space that is used is the
XCS2 address space, 0x4001.2000 - 0x4001.2FFF. All accesses in this region alias to
the soft input/output register, which is described in Section 3.6. The remaining

X-Bus address regions could be used by a mezzanine @acayt attached to the
EBSA-285.

Initialization of the X-Bus is described in Section 4.4.
3.4 Interrupt Assignment

The 21285 allows some of its external pins to be used as interrupt inputs. The assign-
ment of these signals on the EBSA-285 is shown in Table 3-1.

Table 3—-1 Interrupt Assignment

Bit in IRQ

Signal Status Assignment

pci_irq_|l 18 When the EBSA-285 is configured as the Host Bridge and
plugged into a PCI backplane, this bit supplies INTA# from the
PCI.

xcs 1[2] 14 This bit would never normally be enabled as an interrupt on the
EBSA-285.

xcs [1] 13 This bit isunassigned on the EBSA-285. It could be used on an
X-Bus daughtercard.

xcs 1[0] 12 This bit isunassigned on the EBSA-285. It could be used on an

X-Bus daughtercard.

3-2 Programmer’s Guide

Timer Assignment

Table 3—-1 Interrupt Assignment

Bit in IRQ

Signal Status Assignment

irg_in_I[3] 11 When the EBSA-285 is configured as the Host Bridge and
plugged into a PCI backplane, this bit supplies INTD# from the
PCI.

irg_in_I[2] 10 Thisinput is driven from afixed 3.68-MHz oscillator. It is nor-
mally used to increment Timer 3, as described in Section 3.5. It
would never normally be enabled as an interrupt.

irg_in_I[1] 9 When the EBSA-285 is configured as the Host Bridge and
plugged into a PCI backplane, this bit supplies INTC# from the
PCI.

irg_in_I[0] 8 When the EBSA-285 is configured as the Host Bridge and
plugged into a PCI backplane, this bit supplies INTB# from the
PCI.

Each of these interrupts has programmable polarity.

3.5 Timer Assignment

The 21285 has four internal timers. These can be incremented by clocks internal to
the 21285 or by an external input.

If timer 3 is configured to increment from an external input, it will be clocked from
the SA-110 PLL input oscillator, and will count at a rate of 3.68 MHz. Thisisthe
only independent fixed oscillator frequency on the board and it can be used to infer
the system bus speed, the PCI clock speed, and the SA-110 core clock speed.

3.6 Soft Input/Output Register

The bulkhead mounting bracket of the EBSA-285 holds three LED indicators (one
each red, amber and green) and a 16-position switch. The soft input/output port
allows software to control the state of the LEDs and read the state of the switch. Soft-
ware can aso read the state of three onboard jumpers. The bit assignment of this reg-
ister is shown in Table 3-2.

Programmer’s Guide 3-3

Soft Input/Output Register

Table 3—2 Bit Assignment of Soft Input/Output Register

Bit Name Type

Description

7 TOGGLE Read/Write

6:3 Unused Write-only
2 RED_L Write-only

1 GREEN_L Write-only

0 AMBER_L Write-only

6 IBUF6 Read-only
5 IBUF5 Read-only
4 IBUF4 Read-only

3:0 SWITCH_L Read-only

This bit acts as a read/write bit and has no other
effect. Itsintention isto provide a bit that can be tog-
gled under software control to provide some indica-
tion that the X-Bus can be accessed successfully.

These bits are unused on writes; data is don't-care.

Write a O to illuminate the red LED, write a 1 to
extinguish the red LED.

Write a O to illuminate the green LED, write a 1 to
extinguish the green LED.

Write a 0 to illuminate the amber LED, write a 1 to
extinguish the amber LED.

Read the state of jumper J17 pins 9-10. Read ‘1’ if
the jumper is removed, ‘0’ if the jumper is fitted. This
bit is used by the supplied initialization software to
determine whether or not the EBSA-285 should per-
mit access to PCI. PCl accesses are enabled when fit-
ted.

Read the state of jumper J17 pins 11-12. Read ‘1’ if
the jumper is removed, ‘0’ if the jumper is fitted.

Read the state of jumper J17 pins 13-14. Read ‘1’ if
the jumper is removed, ‘0’ if the jumper is fitted.

Read the state of the 16-position switch. The data is
the inverse of the value selected on the switch, so that
this nibble will read 0xf when the switch is set to ‘0’,
Oxe when the switch is set to ‘1’, and so forth.

Onboard software adopts a consistent policy for the use of the LEDs, therotary
switch and the jumpers. Thisis described in Chapter 6.

3-4 Programmer’s Guide

The Reset State of the System

3.7 The Reset State of the System

After reset, the 21285 SDRAM controller and the X-Bus are disabled. The 21285

decodes the flash ROM at two locations; at its normal base address and also at an
alias of 0.

Since the 21285 SDRAM controller is disabled by reset, SDRAM contentsis
UNDEFINED after reset.

Programmer’s Guide 3-5

A

Software Configuration and Initialization

Software must initialize the system hardware after a power up or reset. This chapter
provides guidelines for the various initialization steps that need to be taken.

The software that is loaded into the system by the Primary Boot Loader or by a
remote debug agent such as Angel can make assumptions about what in the system
has already been configured. The state of the run-time environment in these different
situations is described in Chapter 6.

The correct sequence for the initialization steps required after reset is:
Disable the flash ROM alias at address 0.

Determine the board configuration.

Initialize the X-Bus or PCI bus arbiter.

Initialize the SDRAM.

Configure the 21285 UART (optional).

Configure the PCI interface (optional).

N o g M wDd PP

Configure the SA-110 memory-management unit (MMU), turning on virtual
memory, clock switching and caches (optional).

4.1 Disabling the Flash ROM Alias

After reset, the 21285 decodes the flash ROM at two locations; at its normal base
address of 0x4100.0000 and also at an alias of 0. Decoding at this aias allows the
SA-110 to start executing from the normal reset vector address of 0. Once the first
write operation has been executed by the SA-110, the aliasis disabled.

Software should branch to the high-order alias of the flash ROM before executing the
first write operation.

Software Configuration and Initialization 4-1

Accessing the Flash ROM

4.2 Accessing the Flash ROM

After reset and in normal operation, the flash ROM appears as a 32-bit read-only
device. Itis actualy implemented using four, 8-bit devices that are accessed in paral-
lel. Flash operations other than simple ROM operations are selected by writing spe-
cific commands into the Command User I nterface. Refer to the Intel 28FO08SA data
sheet for details of the commands.

The four flash parts can be accessed individually or simultaneously, depending upon
whether commands are sent to al parts simultaneoudly or to asubset of the parts. For
example, programming aflash location is achieved by writing 0x40 to a byte location
followed by writing a data byte to the same location. A write of 0x40404040 to any
EBSA-285 flash location followed by awrite of Oxabed.ef01 to the same location
will result in Oxabcd.ef01 being programmed into the location (one byte pro-
grammed into each of the four flash devices). However, awrite of 0x40000040 to an
EBSA-285 flash location followed by awrite of Oxabcd.ef01 to the same location
will result in the Oxab and 0x01 bytes being programmed and the other two bytes of
the longword being unchanged.

4.2.1 Programming the Flash from the SA-110

The SA-110 must not be executing from flash ROM when it executes a flash pro-
gramming algorithm. The reason for thisis that flash programming requires a
defined sequence of reads and writes to the flash. Code fetches would disrupt the
sequence.

The Angel debug monitor relocatesitself into SDRAM after power-up. The standard
flash management utility also executes from RAM, thus avoiding any code fetches
when programming flash.

4.2.2 Programming the Flash from the PCI Interface

Before programming the flash from the PCI interface, the 21285 ROM Wite Byte
Address Register must be set to 0.

The 21285 alowsthe flash to be reprogrammed from the PCI interface while the SA-

110 is running (though thiswill only work correctly if the SA-110 is not accessing

the flash). However, the 21285 also provides a special mechanism for reprogram-

ming flash, called ‘Blank ROM Mode’. On the EBSA-285, this mode is selected by
moving a jumper on J15 (refer to Section A.2.2.3 for details).

4-2 Software Configuration and Initialization

Determining the Card Configuration

4.3 Determining the Card Configuration

The EBSA-285 can be used in various modes, all selected by jumper, and it may be
necessary for software running on the board to behave differently in the different
modes. Two bits identify the configuration of the board:

Bit 23 of the 21285 X-Bus Cycle/Arbiter Register — the X-Bus/Arbiter bit:

The 21285 is configured, at power up, to enaftleer its X-Busor its internal

PCI bus arbiter. Depending upon which mode is selected, aeftshald ini-

tialize the appropriate registers, as described in Section 4.4 and Section 4.5. If
the X-Bus is disabled, the soft input/output register described in Section 3.6 can-
not be used.

Bit 31 of the 21285 SA-110 Control Register — the CFN bit:
The 21285 is configured, at power up, to act either as a Host Bridge (CFN
asserted) or an add-in card.

4.4 Initializing the X-Bus

If the X-Bus is enabled, it should be configured by writing to the 22X2B&s Cycle/
Arbiter Register andX-Bus I/0O Strobe Mask Register. TheX-Bus I/O Strobe Mask

Regigter is also used to set the polarity of some of the 21285 interrupt inputs. A suit-
able initialization sequence for the EBSA-285 is:

1.
2.
3.

Write 0x1000.16db to the 21285Bus Cycle/Arbiter Register.
Write Oxfcfc.fcfc to the21285X-Bus I/0 Strobe Mask Register.

Write 0x6000.0000 to the 2128B-110 Control Register (to enable X-Bus chip
selects 2 and 1).

4.5 Initializing the PCI Bus Arbiter

If the PCI bus arbiter is enabled, it may be configured by writing to the 2¢:-BRE6
Cycle/Arbiter Register. The arbiter will work correctly with the default (power up)
values in this register.

4.6 Setting the INITIALIZE_COMPLETE Bit

If the EBSA-285 is configured as an add-in card, plugged into a PC, the PC will
attempt to access the EBSA-285’s PCI configuration registers as part of the PC’s
power up self-test (POST) sequence. After reset, the 21285 will cause a PClI retry in
response to a PCI configuration cycle. Unless software on the EBSA-285 configures

Software Configuration and Initialization — 4-3

Initializing the SDRAM

the PCI interface, this will cause the PC to retry forever, so that it appears to ‘hang’.
The minimum initialization required to avoid this is to set bit O
(INITIALIZE_COMPLETE) in the 2128%A-110 Control Register. A more sophis-
ticated initialization is described in Section 4.9.

4.7 Initializing the SDRAM

Two sets of operations are required in order to allow access to the SDRAM:
* Configure the 21285 memory controller registers.
* Configure the mode registersin the SDRAM arrays.

This section provides a sample configuration, coded in ARM assembler. The code
assumes that all four SDRAM arrays are populated with 2Mx8 parts that can run
with alatency of 2.

1. Start with aset of equates for registers and register values.

CSR _BASE EQU &42000000
SDRAM TI M NG EQU &10C
SDRAM ADDR SIZE 0 EQU &110
SDRAMADDR SIZE 1 EQJ &114
SDRAM ALDR SI ZE 2 BEQU &118
SDRAM ALDR SI ZE 3 EQU &11C
OMD DR VE EQU &300
PAR TY_ENABLE EQU &1000
Tref _mn EQU &010000
Tref _norm EQU &1A0000
Trp EQJ &l

Tdal EQU &4

Trcd EQU &20
Tcas EQU &30

Trc EQU &300

4-4 Software Configuration and Initialization

Initializing the SDRAM

2. After reset, the SDRAM arrays are in an unknown state. To put theminto a
known state, force an all-banks precharge to each of the four possible arrays. You
must accessall four arraysfor thiseven if al four are not fitted. Thisis necessary
because the 21285 counts these precharge accesses, and inhibits access to the
SDRAM until all four have been completed. Failure to perform four precharge
accesses will result in unpredictable operation. An al-banks prechargeis
initiated by a read from any address in the mode register address space.

| dr r0, =8&40000008 ; SDRAMarray O

| dr ro, [ro]
| dr r0, =8&40004008 ; array 1
| dr ro, [rQ]
| dr r0, =8&40008008 ; array 2
| dr ro,[rQ]
| dr ro, =84000Q008 ; array 3
| dr ro,[r0]

3. Write to the SDRAM Mode Register in the SDRAMSs. This requires one write
operation for each SDRAM array. The address is important, not the data. The
offset from the start of the mode space for each SDRAM array controls what
dataiswritten to the SDRAM mode register. The mode register should be con-
figured for a burst size of 4 and for linear addressing.

| dr r 0, =840000008: CR Tcas

str ro, [ro]
| dr r 0, =&40004008: CR Tcas
str ro, [rQ]
| dr r 0, =&40008008: CR Tcas
str ro,[r0]
| dr r 0, =&40000008: CR Tcas
str ro,[r0]

4. Writetothe SDRAM Timing Register in the 21285. Set the refresh interval to the
minimum because we have to wait for 8 refresh cyclesto complete before we can
rely on the SDRAM s operating normally.

| dr ri1, =CSR _BASE

| dr ro, =Trp: R Tdal : CR Trcd: OR Tcas: CR
Trc.ORCMD DRIVECR Tref _nin

str ro,[ri, #SDRAM TI M NG

5. Wait for 8 refresh cyclesto complete. The minimum refresh interval is 32 cycles
and we are currently running with the Icache off, so the complete process will
take 256 cycles.

Software Configuration and Initialization 4-5

Re-initializing the SDRAM

| dr r0, =&100
wai t subs r0,r0,#1
bgt wai t

6. Write to the four 21285 SDRAM Address and Sze Registers. This simple code
assumes four arrays are fitted and that they are all the same size and type. More
sophisticated code would automatically detect and size each array.

| dr ro, =&14

str ro, [r1, #SDRAM ADDR S| ZE 0]
| dr r0, =&300014

str ro, [r1, #SDRAM ADDR Sl ZE 1]
| dr r0, =&1000014

str ro, [r1, #SDRAM ADDR S| ZE 2]
| dr r0, =&1c00014

str ro, [r1, #SDRAM ADDR S| ZE 3]

7. Finally, reset the refresh interval to asensible value. Continuing to run with a
very short interval would waste memory bandwidth. The refresh interval is cal-
culated to refresh 4096 rowsin 64ms.

| dr ro, =Trp: R Tdal : CR Trcd: OR Tcas: CR
Trc: R OMD DRI VE CR Tref _norm
str ro, [r1, #SDRAM TI M NG

4.8 Re-initializing the SDRAM

The 21285 only alows SDRAM mode writes to be performed when refresh is dis-
abled. Therefore, the initialization sequence shown in the previous section cannot be
re-executed. Either of the following two modifications will allow the code to bere-
executed:

* Atthestart of the sequence, read the 21285 SDRAM Timing Register and check
whether refresh is enabled (refresh interval set to anon-zero value). If itis
enabled, you can infer that the SDRAM initialization has aready been per-
formed and that no further action is needed. If refresh is not enabled, you can
execute theinitialization sequence described in Section 4.7.

* Atthestart of the sequence, disable refresh by setting the refresh interval to 0O,
then wait for 15 bus clock cycles to ensure that any pending or in-progress
refresh completes successfully. You can then execute the initialization sequence
described in Section 4.7.

4-6 Software Configuration and Initialization

Initializing the PCI Interface

4.9 Initializing the PCI Interface
This section describes the minimum set of PCI registers that must be configured to
allow the PCI interface to be used.
1. Start by setting some important registers to aknown state as follows:

* Write Oxcinthe 21285 Outbound Interrupt Mask Register (disable outbound
interrupts).

e Write Ox0 in the 21285 Doorbell PCI Mask Register (clear doorbell inter-
rupts to PCI).

e Write 0x0 in the 21285 Doorbell SA-110 Mask Register (clear doorbell inter-
rupts to the SA-110).

e Write Ox0 in the 21285 PCI Address Extension Register (set it to aknown
state).

e Write Ox1 in the 21285 Interrupt Line Register (some PCl systems do not
correctly recognise an interrupt 1D of 0).

2. Negate the PCI reset signal (thisonly has an effect if the EBSA-285 isthe Host
Bridge - it isignored otherwise):

e Set bit 9 (PCI not reset) in the 21285 SA-110 Control Register.

3. Open up awindow from PCl memory space into the EBSA-285 SDRAM
address space. If the EBSA-285 is configured as an add-in card, configuring this
window will allow the host PC to allocate PCI memory address space for the
EBSA-285 when it performsits POST. To create an 8-MB window:

e Write 0x007¢.0000 to the 21285 SDRAM Base Address Mask Register.

4. The next step must only be performed if the CFN bit is set and the bench test bit
is clear (refer to Section 4.3):

e Write Ox0 to the 21285 Command Register. This stops the 21285 from
responding to any PCI transactions.

* Write 0x4000.0000 to the 21285 CSR Memory Base Address Register.
e Write Oxf0O0O to the 21285 CSR I/O Base Address Register.
* Write Ox0 to the 21285 SDRAM Base Address Register.

* Write Ox17 to the 21285 Command Register. Thisenables the 21285 as abus
master and allows it to respond to 1/0O space and memory space transactions
astarget.

Software Configuration and Initialization 4-7

Initializing the 21285 UART

5. Finally, set bit O (INITIALIZE_COMPLETE) in the 21285 SA-110 Control Reg-
ister. Thiswill allow the EBSA-285 to respond to PCI configuration cycles, as
described in Section 4.6.

4.10 Initializing the 21285 UART

The EBSA-285 runs with an fclk_in frequency of 50 MHz. The frequency of fclk_in
determines what divisors are appropriate when configuring the 21285'’s internal
UART. Table 4-1 shows baud rate divisors for this bus frequency.

Table 4-1 21285 Baud Rate Divisors for 50 MHz fclk_in

Baud Rate Divisor Error

50 15624 0.00%
75 10416 0.00%
110 7101 0.00%
134.5 5808 0.01%
150 5207 -0.01%
300 2603 -0.01%
600 1301 -0.01%
1200 650 -0.01%
1800 433 -0.01%
2000 390 0.10%
2400 325 0.15%
3600 216 -0.01%
4800 162 0.15%
7200 108 0.45%
9600 80 -0.47%
19200 40 0.76%
38400 19 -1,73%
56000 13 0.35%
128000 5 -1.73%

4-8 Software Configuration and Initialization

Configuring Cacheable/Non-Cacheable Space

4.11 Configuring Cacheable/Non-Cacheable Space

To get maximum performance from the SA-110 you must enable clock switching
and turn on the internal |cache and Dcache. The Dcache can only be enabled when
the MMU is enabled. The page-tables used by the MMU control, on a page-by-page
basis, whether or not the contents of the memory page is Dcacheable and whether or
not writes to the page can use the SA-110 write buffer. Refer to the SA-110 Micro-
processor Technical Reference Manual for more details.

For correct operation, the following rules must be followed:

* The SDRAM addressregion may be marked | cacheable, Dcacheable,
Bufferable.

* Theflash ROM address region may be marked | cacheable and Dcacheable for
reads. During writes to flash ROM (reprogramming) the Dcache and write buffer
should be disabled.

* Someregions of 1/O space may be marked as bufferable, non-cacheable, which
will improve the performance of write operations. The PCI memory spacein par-
ticular (0x8000.0000 - OxFFFF.FFFF) should be marked as bufferable, non-
cacheable. Thiswill allow SA-110 writes to this region to be merged within the
21285 resulting in write bursts on the PCl whenever possible.

* The 21285 CSR address region should be marked non-cacheable, non-buffer-
able.

If you implement the Software Dcache Flush Algorithm described in Chapter 6 of

the SA-110 Microprocessor Technical Reference Manual you can use accesses to the
21285's SA-110 Cache Flush region (0x5000.0000 - 50FF.FFFF). Read accesses to
this region complete in the minimum amount of time and return dummy data. This
minimizes the time it takes to flush the caches.

Software Configuration and Initialization 4-9

5

Software Development Environment

This chapter describes the types of image that may be built for the EBSA-285, and
how to use ARM'’s software development toolkit to build the images. The toolkit
itself is described in thARM Software Devel opment Tool kit Reference Manual.

Two types of image are described:

* Loadable debuggable images
* Standalone flash images

Flash images may be programmed into flash using the FM U utility described in
Chapter 7.

Note: This chapter assumes the EBSA-285 is using the Angel debug agent.

5.1 Loadable Debuggable Images

These images are run under the control of the Angel debug agent held in flash ROM,
communicating with either the ARM command line Symbolic Debugger (armsd) or
the ARM Windowing Debugger.

5.1.1 Building

Debuggable images can be written in either C or assembler. Aswell as describing the
target CPU as StrongARM (-cpu StrongARM 1), you should assemble or compile
with the -g option. This adds symbolic information to the executable image file. If
your program uses any standard C library calls, for example printf(), you should link
with the Angel (semi-hosted) C library. As symbolic debug information isincluded
in the default, there is no need to use any extra options when linking debuggable
images. Images should be linked using either the -AlF or the -AIF -BIN options.
Images linked with the -BIN option can still be debugged at the machine code level.

Software Development Environment 5-1

Loadable Debuggable Images

Images that are to be loaded across the serial line using the debugger’s load com-
mand may be linked to use any base address in SDRAM except addresses that are
below 0x8000. Addresses 0 - 0x8000 are used by Angel for context, stacks and so on.

5.1.2 Run-Time Environment
5.1.2.1 Memory Map

All SDRAM except address range 0 to 0x8000 is available to the program. The
X-Bus and SDRAM will have been initialized before entry to the program. The
SA-110 MMU, write buffer, and caches will not have been initialized unless you
have done this by running a previous program or by writing to the system coproces-
sor using debugger commands.

The C heap will be placed directly above the text segment of the program. By
default, Angel runs with the Dcache and the writédyudisabled but with clock
switching and the Icache enabled. The @dibinitialization functions will place the
user stack at the top of SDRAM.

5.1.2.2 ARM C Library Support

The ARM C library is described in the toolkit manual. All standard C functions are
supported. All réerence to files (inading rekerences to standardpat and output)
refers to these files on the host. This means that, for example, amahttfg) prints

a string to the host that is running the debugger.

5.1.2.3 Exception Vectors

The Angel debug monitor uses the Undef, SWI and FIQ exception vector entries.
The program can safely modify any other exception vector to jump to its own excep-
tion handlers. The program can also install its own handlers using
SWI_InstallHandler. This is described in the Angel documentation.

5.1.2.4 Access to I/O Devices

Angel uses the COMO serial port. The program must not access this device. All
other devices may be used by the program.

5-2 Software Development Environment

Standalone Flash Images

5.2 Standalone Flash Images

These areimages that are written into one or more consecutive flash ROM blocks. At
boot time the Primary Boot |oader selects the image to run and then transfers control
to it. Flash images can either execute in place or from memory. If the flashed image
isto be executed from memory, the Primary Boot L oader first initializes the memory
and then copies the image into memory before passing contral to it.

Asaside effect of initializing the X-Bus, the Primary Boot L oader always disables
the flash ROM alias at address 0x0 and executes from the high-order dias.
5.2.1 Building

Images may be written in C or assembler. No special options are needed when
assembling or compiling. As well as providing startup code to swap the initial mem-
ory map and so on, you must supply the code of any library functions used (refer to
Section 5.2.2.2). There are two ways of linking such images:

* -AIF-BIN-BASEnN

— Ifthe base address is outside of the address range of the flash ROM, the PBL
will copy the image to its base address in system SDRAM (removing the
header in the process) and execute it from its entry point; the image will exe-
cute from SDRAM.

In this case, the image may occupy non-contiguous blocks in flash ROM.

— If the base address is equal to the flash block address + 0xc0, the PBL will
execute the image by branching to its entry point; the image will execute
from flash ROM (for example, use address 0x410C00CO for an image that
will execute out of flash block 3).

In this case, the image must occupy contiguous blocks in flash.

— If the address does not meet either of these requirements, the FMU wiill
report an error and will not program the image into flash.

Images linked with this option may use any base address in SDRAM.
e -AIF-BASEnN

The image will execute from flash ROM. Requirements are:

— The image must occupy contiguous blocks in flash ROM

— The image must not contain any writable initialized data

Software Development Environment 5-3

Standalone Flash Images

— The address of the first flash block to be used for the image must be known
at link time

— The base ‘n’ must be the address of the flash block + 0x40 (for example,
0x410C0040 for flash block 3)

In this case, the image is started by branching to the BL instruction that is the
first longword of the AIF header. The FMU does not validate the entry point.

This option should normally be avoided (except for programs that relocate them-
selves to SDRAM during initialization) since accesses to flash ROM are much
slower than access to SDRAM.

5.2.2 Run-Time Environment
5.2.2.1 Memory Map

All of SDRAM is available to the program. If the program is run from SDRAM,
then SDRAM will have been initialized before entry to the program. If it is run
directly from flash, then the X-Bus has been initialized and the initial memory map
has been swapped. The boot time memory map will still be in use although the PC
will be in the first alias above 4100.0000 of the flash block (not in a low alias). The
MMU and caches will not have been initialized. The C library initialization functions
place the user stack at the top of SDRAM.

5.2.2.2 C Library Support

ARM'’s software development toolkit includes soes and pding information for
two run-time libraries; a minimum standalone library and an ANSI C library.
EBSA-285 ports of these liiries may beupplied as part of the firmware database
in the hardware del@per’s kit

5.2.2.3 Exception Vectors
The program may modify and use the exception vectors without restriction.
5.2.2.4 Access to I/O Devices

If a C library is used, it will provide routines to access some devices (for example,
the COMO serial port) and it will expect exclusive access to the associated underly-
ing hardware. Other than this, the program may access any device.

1 Early versions of the HDK are unlikely to provide this.

5-4 Software Development Environment

6

Onboard Software

The EBSA-285 is shipped with the following programs blown into its flash ROM:
* Primary Boot Loader (PBL)

* Angel remote debug agent

* Diagnostics

When the EBSA-285 isreset or powered up, code execution commences with afetch
from the reset vector at location 0, the first image in flash. Thiswill start execution of
the PBL.

6.1 Primary Boot Loader

The Primary Boot Loader (PBL) is part of aspecial Angel image that is programmed
into the first block (block 0) of theflash. The PBL isthefirst code executed when the
EBSA-285 comes out of reset.

The flash can contain a number of different images; the main function of the PBL is
to determine which image to execute and then to execute it. If necessary, the PBL
will load the selected image from flash into system memory.

Images are programmed into flash ROM using the Flash Management Utility (FMU)
described in Chapter 7. The format of the images in flash is described in
Section 6.2.

When the PBL is executed, it performs these tasks:

* Readsthe value of the flash image selector switch to determine which image to
branch to after initial boot (see Table 6-1)

Onboard Software 6-1

Format of Images in Flash ROM

Table 6-1 Boot Image Selection

Selection Contents Action

0 Image O: Enters ARM/Angel remote debug stub within PBL image
1 Image 1 Contains diagnostics image when board first supplied
2toF Images2to F Availablefor user programs

* If Image O isselected, entersthe ARM/Angel remote debug stub within the PBL
image

If any other image is selected:
Switches the memory map
Searches for the image in flash, and verifies that the checksum is correct.

If image is not found or is corrupt (bad checksum), behaves as though the
selected image isimage 0.

w np e

4. If theimageisin executable AlF format, jumps to the image (the system mem-
ory map has not been changed and the DRAM has not been initialized).

5. If theimageisin non-executable AlF format, then:
a. If theimage executes from SDRAM, then it:
i. Initializes DRAM
ii. Loads the image into memory at the addresses defined in the AlF header
b. Jumps to the image’s entry point

6.2 Format of Images in Flash ROM

The flash ROM is in four 1-MB parts, organized to provide 16 256-KB, 32 bit wide,
blocks. Block 0 (at address 0x0000.0000, after reset) is reserved for the PBL/Angel.
The remaining 15 blocks can be used to hold other images.

Each image, apart from the PBL/Angel, has an image header that allows it to be
stored across non-contiguous blocks. Only the first block used by the image has an
image header. Any individual block is only used by one image or no image. Any
block that is not in use will be in ievyased state.

6-2 Onboard Software

Format of Images in Flash ROM

The format of an image stored in the flash ROM isbasically AIF (ARM Image For-
mat), with a few additional bytes prepended. The format is shown in Table 6-2.

When the FMU is used to program an image into flash, the FMU will create and
prepend the header information onto the image.

Note: You may write an alternative flash programming utility, but it should fol-
low the defined flash structure so that the PBL can load the image.

Table 6-2 Flash Image Header

Offset

(bytes) Size (bytes) Name Description

0 4 Type BL to AIF header (for executable AIF) or BL to image
entry point (for non-executable AIF on image to be exe-
cuted from flash) or NOP (for non-executable AIF exe-
cuted from RAM).

4 1 Number Unique image number (0 to Oxff).

Sig 0x55 Oxaa 0x00.

8 4 Map Allocation map. Bit O represents block 0, bit 31 repre-
sents block 31 (only bits 15:0 are required for the current
flash part).

12 4 Checksum Checksum of image including headers, using the algo-
rithm described bel ow.

16 4 Length Image length (including all headers) - used to determine
what gets checksummed.

20 16 Name ASCII string identifying name of image. Unused charac-
ters should be set to 0x20 (ASCI| space).

36 4 Bootflags Bit 0 isNoBoot. When set for an image, the PBL wiill
load the image but then pass control to the ARM remote
debug stub within the PBL.

40 24 Reserved Reserved for future use.

64 128 AlIF header AIF header for image.

The headers use a total of 192 bytes. The first free byte is at offset 192 (0xcO0).

Onboard Software 6-3

Angel

The checksum is formed by taking the 2's complement of the 32-bit sum (ignoring
carry) of all longwords of the header and image, excluding the checksum itself, as
specified by the length field. If the length is not an integral number of longwords, the
‘missing’ bytes are set to Oxff (the unprogrammed state of bytes in flash ROM).

When the checksum is correct, a 32-bit sum (ignoring carry) tdradlvords of the
header and image, including any bytes required to round the length up to an integral
number of longwords, will be O.

Block 0 of the flash will always contain image 0, the PBL/Angel image. It is not
defined whether this image contains an image header.

Images can have an image number between 0 and Oxff, but the PBL/Angel can only
load and start image numbers O-F.

Software that deletes an image in flash ROM should erase all the blocks used by that
image. Software that programs an image in flash ROM should determine which
blocks are free by chking each block for an image header and then ORing the allo-
cation maps of all the valid image headers.

6.3 Angel

The version of Angel used on the EBSA-285 is a part of ARM’s code. The full
source code of Angel is supplied as part of ARM’s SDT. The EBSA-285-specific
source code is supplied on disk with the EBSA-285, along with the files needed to
rebuild Angel from source. The standard version of Angel programmed into flash
block 0 enables the SA-110 Icache and clock switching. Read the README.TXT
file on the disk provided with the EBSA-285 for a description of the images sup-
plied.

6.4 Diagnostics

These perform dgnostic tests that check that the system is operatimgatty: The
onboard diagnostics are normally programmed into flash block 1 and executed when
image 1 is selected.

6.4.1 Preparing to Run the Diagnostics

The diagnostics expect to output results to the COMO port, so this must be set up cor-
rectly. Set it to 9600 baud, 8 data bits, 1 stop bit, no parity and no flow control.
Select image 1 and then reset or power-cycle the system.

6-4 Onboard Software

Diagnostics

6.4.2 Description of Tests

The diagnostics test a series of system functions and, when complete, print a sum-
mary of thetestsrun and their results. If any testsfail, thered LED islit. If all of the
tests are successful, the green LED islit.

The tests run through the following steps:

1

Theinitial state at power up of the LEDsisall on. The diagnostic tests turn them
all off, on and then off again with a short pause between. This proves that the |/O
path through the X-Busisworking. After the tests, either the red LED will belit
to show that an error occurred or the green LED will belit to show that the tests
were successful.

A banner iswritten to the COM port announcing that the tests have started. This
demonstrates that the COM port is working.

EBSA285 Power On Sel ftests

Clock switching and the | cache are now turned on. At this point the diagnostics
are running from flash; enabling clock switching and turning on the Icache will
allow the diagnostics to run as quickly as possible.

Enabl i ng d ock Switching...Done
Enabl i ng | - Cache. . . Done

The diagnostics now initialize memory. If memory cannot beinitialized, the red
LED islit and the tests halt.

*** |nitialising DRAM***

Now that the memory is initialized, it can be tested:
*** Starting DRAMtests ***

Wrd wite each word’'s address to itself

Test Passed

Wrd wite each word's address to its top hal fwrd
Test Passed

Byte wite and read each byte; contents of each byte shoul d be address
nod 255

Test Passed

Wrd read the data witten by the previous test

Onboard Software 6-5

Diagnostics

6-6

Test Passed

Store miltiple tests starting
Test Passed

Load multiple tests starting
Test Passed

*** DRAMtests conplete ***

Up to this point, diagnostic tests have been run using registers only, but now that
the memory has been initialized and tested, it is available for use by test soft-
ware. For this reason, the rest of the diagnosticsis mostly writtenin C rather than
in assembler. This part of the diagnostics is actualy a separate image designed
to be run from main memory:

DRAM si ze is 0x800000

EBSA285 Stub Code

Copyi ng 0x13b8 bytes, from 0x410409b4 to 0x200000
HHHHHHHRH

Junpi ng to C code. ..

EBSA285 Power On Sel ftests (built Jun 06 1997, at 10:08:02)

We are now running the C based diagnostic tests from memory and using a
region of memory to hold the test results.

Wsing menory at 0x700000 for results

The diagnostics now run through a series of tests, each testing a different aspect
of the system. Thefirst test checks that the 21285’'s on board timers are
functioning:

Onboard Software

Diagnostics

The next test checks that the flash ROM part isfunctioning correctly. It selectsan
unused flash block and writes a test pattern to it. It then reads back the test pat-
tern to check that it was correctly written.

Flash Tests [v1.0]

Searching for flash device

Flash found at 0x41000000 (O0x10 bl ocks of size 0x10000
Scanni ng Fl ash bl ocks for usage

Listing Fl ash B ocks

0x0 * 0Oxeb00002e 0xaa5500 Ox1 Oxbfea8f6b Boot | oader
0x1 * O0xeb00002e 0xaa5501 O0x2 0x95a7bd94 post

0x2 * 0xeb00002e O0xaa5502 O0x4 0x929c9fed Angel
0x3 0x3020100 0x7060504 0xb0a0908 Oxf 0eOdOc
Ox4 Oxffffffff Oxffffffff Oxffffffff OxFfffffff
0x5 0x3020100 0x7060504 0xb0a0908 Oxf 0e0dOc
0x6 Oxffffffff Oxffffffff Oxffffffff OxFfffffff
Ox7 Oxffffffff Oxffffffff Oxffffffff OxFfffffff
0x8 Oxffffffff Oxffffffff Oxffffffff OxFfffffff
0x9 Oxffffffff Oxffffffff Oxffffffff OxFfffffff
Oxa Oxffffffff Oxffffffff Oxffffffff OxFfffffff
Oxb Oxffffffff Oxffffffff Oxffffffff OxFfffffff
Oxc Oxffffffff Oxffffffff Oxffffffff OxFfffffff
Oxd 0x3020100 0x7060504 0xb0a0908 Oxf 0eOdOc
Oxe Oxffffffff Oxffffffff Oxffffffff OxFfffffff
Oxf 0x3020100 0x7060504 0xb0a0908 Oxf 0eOdOc
Testing Block 0x3

Witing test pattern

Readi ng test pattern

Fl ash test worked

Onboard Software 6-7

Diagnostics

10. Thefinal test confirmsthat the COM port can receive characters as well as print
them:

QM Port Tests [v1.0]
Type sone characters followed by R
This is a test string
D d you see the characters echoed correctly? [yY/nN? y
Done
11. Finaly thetest results and information about the system are printed. If any of the

tests have failed, the red LED will be lit. If all tests were successful, the green
LED will belit.

EBSA285 Power On Sel ftests (built Jun 06 1997, at 10:08:02)

Mermory size is 0x800000, CPUid is 0x4401al03
21285 device id is 0x1065, 21285 revision is 0x0
CPU Frequency is 228.1 Mz
Central Function Mdde, PO disabl ed
Flags: J17 pins 9-10 not fitted, J17 pins 11-12 not fitted,
J17 pins 13-14 not fitted

Fl ash device at 0x41000000, 0x10 of size 0x10000
Image switch is 0Ox4
Test Results Summary

Menory tests Successf ul

Timer tests Successf ul

Fl ash tests Successf ul

QOM Port tests Successful

Sel ftests conpl ete, change boot sel ection before rebooting

6-8 Onboard Software

v

Flash Management Utility

This chapter describes the Flash Management Utility (FMU). This program is sup-
plied in source form and as both an ARM Image Format (AlF) file and aDOS exe-
cutablefile.

7.1 Using the FMU

Images are programmed into flash using the Flash Management Utility (FMU).
There are two versions of the FMU; an Angel remote debugger |oadable version
(fmu.aif) and a DOS executable version (fmu.exe).

* TheAngel loadable version uses the ARM debugger 1/0 servicesto provide a
command-line interface.

* TheDOS |loadable FMU uses PCI BIOS services to access the EBSA-285
onboard flash device. During this access, the SA-110 must be held in blank pro-
gramming mode (jumper on J15 pins 5-6).

When the FMU is started, it checks for the presence of aflash ROM, issues a start-up

message and then prompts for user input:

D gital EBSA-285 F ash Managerment Wility [1.2] (Angel)
Searching for flash device

Flash found at 0x41000000 (16 bl ocks of size 0x40000)
Scanni ng Fl ash bl ocks for usage

FMU>

The FMU provides these commands:

* Help — List all of the available commands

FMJB hel p

FMJ command sunmary:

Li st - List inages in flash

Li st Bl ocks - List how each Flash bl ock is being used

Flash Management Utility — 7-1

Using the FMU

Test Bl ock <bl ock- nunber >
- Wite a test pattern to a particular flash bl ock
Del et e <i mage- nunber >
- Delete an image in flash
Del et eBl ock <bl ock- nunber >
- Deletes a block that appears not to be in an inage
Del et eAl | - Deletes all blocks except block O
Progr am <i mage- nunber > <i mage- name> <fi | e- nane> [<bl ock- nurber >] [NoBoot]
- Programthe given inage into flash
Qi t - Qit
Hel p - Print this help text

e List — List the images in flash. For example:

FMB | st

Listing i mages in H ash

Image 0 “Bootld “ Length 45232 bytes, Map 0x00000001
Image 1 “Post “Length 536 bytes, Map 0x00000002

— You supply the image number and name when you program the image
— The length shown is the size of the image including all headers

— The map is a bit map showing which blocks of the flash are occupied by the
image; bit 0 of the map corresponds to block 0 of the flash, and the image’s
header is in the lowest block occupied by the image

— You optionally supply the NoBoot option when you program the image

* ListBlocks — List how each flash block is being used. The first few bytes of the
flash block are listed. If the block contains an image, its image number is given.
For example:

FMJ> | i st bl ocks

: (I'mage 0) Ox2e 0x00 0x00 Oxeb Ox00 Ox55 Oxaa 0x00
(I'mage 1) 0x02 Ox00 0x00 Ox00 OxeO Oxdd O0x21 Oxc6
(I'mage 2) Oxd8 0Ox10 Ox01 Ox00 0x65 0x46 O0x6f 0x72
(I'mage 2) Ox4c OxOa Ox00 O0x40 0x10 0x03 0x00 0x00
(Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
(Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
(Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
(Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
(Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
: (Unhused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
10: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
11: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
12: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
13: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff

CoNoAR®W®NREO

7-2 Flash Management Utility

Using the FMU

14: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff
15: (Unused) Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff

TestBlock <block-number> — Test a particular flash block by writing a test pat-
tern to the block and then verifying it. For example:

FMJB testbl ock 15

Do you really want to do this (y/N?y
Witing test pattern to block 15

Readi ng test pattern fromblock 15
Flash test of bl ock 15 worked

Delete <image-number> — Delete an image in flash. You cannot normally delete
the flash image that starts in flash block O (the primary boot loader). The only
time that the FMU utility permits you to do this is if the ARM remote debugger
stub is executing from EPROM rather than flash. For example:

FMJ> delete 3

Do you really want to do this (y/N? vy
Del eting flash bl ocks: 4

Scanni ng Fl ash bl ocks for usage

FMU>

FMJ> delete O

WARNING Del eting flash boot bl ock

Do you really want to do this (y/N? vy
Del eting flash bl ocks: 0

Scanni ng Fl ash bl ocks for usage

If you are running an ARM remote debugger stub from an image other than
image 0, you can delete that image, but the FMU will be terminated during the
delete. If you restart the system, it will execute the PBL and run correctly.

DeleteBlock <block-number> — Delete a block that is not part of an image. This
may be used to clean out corrupt blocks, or blocks that have been programmed
by the TestBlock command. The FMU will not allow you to delete a block that is
part of a valid image. For example:

FMJ> del et ebl ock 15

Do you really want to do this (y/N? vy
Del ete flash bl ock 15

Scanni ng Fl ash bl ocks for usage

DeleteAll — Delete all blocks except blocks 0 and 1.

Program <image-number> <image-name> <file-name> [<block-number>]
[NoBoot] — Program the image with name <image-name> into the flash as image
number <image-number>. The image is read from the host from file <file-name>

Flash Management Utility — 7-3

Using the FMU

(which may include a directory name). Refer to Section 7.1.1 for details of the
block-number option and to Section 7.1.2 for details of the NoBoot option. The
Program command will fail with an error if:

— The image number is already in use.

— There is insufficient free space in the flash.
— The specified blocks are naoté.

— The file does not exist or cannot be opened.

For example:

FMJ> program 3 | edl oop2 d:\ user s\ crook\ | edl oop. ai f noboot

Witing d:\users\crook\ledl oop.aif into flash bl ock 4

Del eting bl ocks ready to program

Del eting bl ock 4

Cal cul ati ng checksum

Witing flash i mage header

I mage i s non-executable AIF file

The boot| oader will copy this image to 200000 before executing it
Witing image file

Scanni ng Fl ash bl ocks for usage

¢ Quit — exit from the FMU. When this command is executed, the FMU will return
control to the debugger.

* Exit — a synonym for Quit.

7.1.1 When to Specify the Block Number

7-4

By default, the FMU ‘Program’ command will program an image into flash using
any free blocks allocated in asckng block order. This can result in an image occu-
pying non-contiguous blocks within the flash.

When an image is a non-executable image (an image that will be loaded into system
memory by the PBL prior to execution) the PBL will load an image from non-contig-
uous flash blocks into contiguous system memory. Therefore, allowing an image to
occupy non-contiguous flash blocks makes efficient use of the flash by avoiding
fragmentation problems.

When an image is an executable image, it must occupy contiguous blocks within the
flash. In general, it must also have been linked to execute from a specific address
(and therefore block) in the flash. Therefore, when using the FMU to program an
executable image, you must specify the block-number when you issue the ‘Program’
command.

Flash Management Utility

Using the FMU

When a block-number is specified, the FMU will program the image into contiguous
flash blocks, starting from the specified block. The command will fail if insufficient
unused contiguous blocks are available.

Refer to Section 6.1 for information on the PBL, and to Section 5.2 for information
on building images that can be executed from flash.

7.1.2 When to Specify the ‘NoBoot’ Option

The usual reason to program an image into flash is so that it can be automatically
executed after reset or power up. If theimage number isless than OxF, the flash
image select switch can be set so that the PBL will load and execute the image after a
reset or power up.

Sometimes, it is desirable to have the PBL load the image into system memory but
then drop into the ARM remote debug stub. This process alows the image to be
started up under the control of the debugger, to use the I/O facilities of the debugger
and ultimately to pass control back to the debugger when the image terminates.

If you use the NoBoot option when programming an image into flash, the PBL will
load the image into system memory but will not execute it; instead, control will pass
to the ARM remote debug stub within image 0.

There is no way to change the state of the NoBoot flag for an image once it has been
programmed; you must delete the image and reprogram it with the NoBoot flag
changed.

Refer to Section 6.1 for information on the PBL and the flash image select switch.

Flash Management Utility = 7-5

8

Theory of Operation/Hardware Design

8.1 General

This chapter provides a technical description of the EBSA-285 hardware and
explains various trade-offs made in the design. It should be read in conjunction with
the 21285 data sheet and the EBSA -285 schematic set (the schematic set is provided
as part of the EBSA-285 design database - refer to Appendix B). You should read
this chapter if you wish to gain a detailed understanding of the operation of the card
or if you wish to design a board based on the 21285. You are assumed to:

* Have abackground in high-speed digital design

* Have somefamiliarity with the ARM architecture, the SA-110 bus interface and
the 21285 data sheet

¢ Have access to the manufacturer’s data sheets for the flash, SDRAM and other
components used on the card

This chapter is organized so that each hardware-relatédrse€the Functional
Specification (Chapter 2) has a corresponding section here in which the topic is cov-
ered in more detail. In addition, this chapter includes:

* A topic-by-topic tour of the EBSA-285 schematics, including a description of
the principal buses

* A discussion of how an expansion card could be designed for the EBSA-285
* A summary of the design rules used for the PCB layup and routing
8.2 An Introduction to the Schematics

Specific sheets of the schematic set are referenced by sheet number (for example,
SHT6). The sheet number is shown in the bottom right corner of the schematic.

Theory of Operation/Hardware Design 8-1

Voltage Domains

Thefirst sheet of the schematics (SHT1) is an index to the remaining sheets. The

block diagram (SHT2 of the schematics, (simplified in the body of the manua as

Figure 2—1) shows all the major components of the design, and provides aefross-
erence to the location of any particular functional block within the schematic set.

On the schematics, every signal has a three-letédixp that indicates the origin
(driver) of the signal. For bi-directional signals, the ‘most important’ driver of the
signal determines the prefix.

8.3 Voltage Domains

The integrated circuits on the EBSA-285 use a mixture of 5-V and 3.3-V switching
levels.

The parts of the circuitry requiring 3.3 V are:

* SA-110(SHT3)

e SDRAM DIMMs (SHT11, 12)

* EPROM emulator socket (SHT8)

The parts of the circuitry requiring 3.3 V but are 5-V-tolerant are:
e 21285 (SHT5)

This alowsthe 21285 to be used on universa cards and the oscillator to be inter-
faced directly.

e Flash ROM (SHT8)

* LVT buffers (SHT6, 7)

The parts of the circuitry requiring 5V are:
* Ogcillators (SHT3, 5 13)

e JTAG (SHT18)

* PCI(SHT14)

e X-Bus Expansion (SHT4)

* Reset Circuitry (SHT18)

Signalsthat are generated with 5-V switching levels must be level converted before
they can be used as inputs to the SA-110. This affects the following signals:

1 There are afew exceptions, but they should not cause confusion.

8-2 Theory of Operation/Hardware Design

Interfacing Techniques

JTAG port (3v3_tdi, 3v3_tms, 3v3_trst_I, 3v3_tck)
SA-110 oscillator (un_3v3_osc3)
Reset (flash_rst_I)

The level conversion is performed using a QuickSwitch™ QS3384 (SHT3).

8.4 Interfacing Techniques

The following interfacing techniques are used on the card:

74LVT devices are used as level converters, these parts have a3.3-V supply but
are 5-V-tolerant. Their output switching range is within the TTL switching
threshold, hencethey can drivethe TTL level devices powered from the 5-V rail.

Output signals from 3.3-V devices can be used to drive TTL directly. This
method is used for the bus control logic and on the X-Bus header control logic.

A Quality Semiconductors ‘QuickSwitch™’ device is used for level conversion
(equivalent pin-compatible devices are available from Texas Instruments and
National Semiconductors). The QS3384 acts as a set of bi-directional FET
switches. It introduces negligible delay (250ps). Since the FET switches saturate,
the switching level can be controlled by controlling the saturation (supply rail)
voltage. With the QS3384 powered at 4.3 V, the driven output will be limited to
3.3V, even under light loading.

8.5 Principal Buses

The principal internal buses in the EBSA-285 design are:

cpu_a[31:2] — CPU Address bus

This bus connects the SA-110 to the 21285 and also connects to the flash ROM.
A sub-set of this bus is Hared to generate the X-Bus address. The SA-110

uses this bus to drive addresses for all of its accesses (to SDRAM, flash ROM,
X-Bus and the 21285). The 21285 uses this bus to drive addresses for PCI
accesses to the flash ROM. Byte resolution is provided by the byte lane enables
cpu_be[3:0] (SHT3) for CPU accesses. This bus has 3.3-V switching levels and
is not 5-V-tolerant (because the SA-110 pins are not 5-V-tolerant).

buf_a[11:2] — X-Bus address
This bus is generated froopu_a[11:2] via a 74LVT16244 (SHT6). The Har
is permanently enabled. This bus has 3.3-V switching levels but is 5-V-tolerant.

Theory of Operation/Hardware Design 8-3

CPU

8.6

84

e cpu_d[31:0] - CPU data bus
This bus is connected to the SA-110, the 21285 and the flash ROM. This bus is
buffered to generate the SDRAM and X-Bus data bugss.bus has 3.3-V
switching levels and is not 5-V-tolerant.

e buf_d[31:0] — Buffered Data bus
This bus is generated froopu_d[31:0] via a 74LVT16245 (SHT6). The buffer
has the output permanently enabled with the direction of flow governed by
fbg_dwren_l. The direction pin on the 74LVT16245 has the A-B data path
active when the signal is high. This means the CPU data bus must connect to the
‘B’ side becausébg_dwren_l is an active-low signal. This bus has 3.3-V
switching levels but is 5-V-tolerant.

e xbuf_buf_d[15:0] — Buffered X-Bus Data bus
This bus is generated froopu_d[15:0] via a 74LVT16245 (SHT7). The buffer
has the output permanently enabled with the direction of flow governed by
fbg_xd_wren_|. The direction pin on the 74LVT16245 has the A-B data path
active when the signal is high. This means the CPU data bus must connect to the
‘B’ side becausébg_xd_wren_| is an active-low signal. This bus has 3.3-V
switching levels but is 5-V-tolerant.

* fbg_ma[12:0] - SDRAM address bus
This bus is driven by the 21285 to provide addresses for all SDRAM accesses. At
power up some of these signals act as inputs to the 21285 to allow configuration
information to be latched by the 21285. The signals have 3.3-V switching levels
and arenot 5-V-tolerant. This bus is Hered before driing the SDRAM arrays.

e buf_ma[12:0] — Buffered SDRAM address bus
This bus is generated froffag_ma[12:0] via a 74LVT16244 (SHT6). The buffer
is permanently enabled. The signals have 3.3-V switching levels and are not 5-V-
tolerant (because the SDRAM pins are not 5\é#taht). This bus drives the two
SDRAM DIMM sockets.

CPU

The EBSA-285 uses the SA-110 microprocessor (SHT3)caldallows the pro-

cessor to be operated at any one of its 16 core clock frequencies (between 88.3 MHz
and 287 MHz with the upper limit determined by the speed grade of the CPU fitted)
at a fixed core voltage of 2.0 V. Core frequency is selected by a series of jumpers
(SHT17).

Theory of Operation/Hardware Design

21285

The SA-110 has 3.3-V /O but is not 5-V-tolerant so requires that any 5-V signals be
level shifted. The SA-110 isused in the following modes:

* Asynchronous bus mode (SnA low and MCLK as input)

* Enhanced bus mode (CONFIG high)

* APE high mode (Non-Fastbus mode)

The CPU is packaged in a 144-pin thin quad flat pack (TQFP).

8.7 21285

The 21285 (SHT5) isa 3.3-V devicein a 256-pin plastic BGA package, it has 3.3-V
switching levels but has 5-V-tolerant inputs. It interfaces to the PCI, SA-110,
SDRAM and X-Bus, providing control signals for buffer control for SDRAM and
X-Bus accesses and control signals for CPU accesses to flash ROM or EPROM emu-
lator. Dueto the large number of outputs with high speed edgesthe 21285 is sensitive
to the amount of power plane decoupling it receives. The EBSA-285 uses

eighteen 0.1uF, two 47uF, one 10uF and seven 0.01uF decoupling capacitors. These
are arranged as close as possible to the 21285 on the bottom side of the EBSA-285
PCB.

8.8 SDRAM Interface

The SDRAM interface consists of :
* Multiplexed address bus

e Databus

e CMD interface
e Chipselects

* Bank selects

* Byteselects
* Clocks

All these signals have relatively high switching frequencies with fast rise and fall
times, and each signal drives anumber of devices. To ensure that the maximum num-
ber of devices (32 SDRAMs on two DIMMSs) can be driven while maintaining the
integrity of the signals, each of the signalsis buffered and has a 33.2 Ohm series ter-

Theory of Operation/Hardware Design 8-5

SDRAM Interface

mination resistor (SHT20). The series termination resistors are placed close to the
output of the driver (so that thereislessthan 3cm of etch between the output of the
buffer and the resistor).

8.8.1 Multiplexed Address Bus

The multiplexed address bus provides the SDRAMs with multiplexed row and col-
umn data. A 13-bit busis provided by the 21285 ma[12:0] , each DIMM

(SHT11, 12) has a 14-bit bus ma[13:0] so the most significant bit istied to ground
viaapull-down resistor (SHT11). The busisbuffered by a74LVT16244 (SHT6) and
has a 33.2 Ohm series termination resistor on each line (SHT20).

8.8.2 Bank Address Bus

Each SDRAM DIMM can have multiple arrays, each comprising two or four banks.
The 21285 can address four banks of SDRAM by using the Bank Address bus
fbg_ba[1:0]. Both signals can be used on the primary DIMM socket J12, so this
socket can contain a four bank DIMM . The secondary DIMM socket only uses
fbg_ba[1], so can only contain atwo bank DIMM, and only if there is not afour
bank DIMM in the primary socket.

8.8.3 Data Bus

The data busis the buffered CPU databus buf_d[31:0] (SHT6). The data busis not
series-terminated because it is a bi-directional bus.

8.8.4 CMD

8-6

The CMD outputs from the 21285 generate command information to the SDRAMSs.
Each lineis buffered viaa 74LV T16244 (SHT7) and has a 33.2 Ohm series termina-
tion resistor (SHT20).

buf_cmdO : Thislineis connected to /WE on the DIMMs.
buf_cmd1: Thislineisconnected to /CAS on the DIMMSs.
buf_cmd2: Thislineis connected to /RAS on the DIMMSs.

The 21285 defines the CM D signalsto be active-high, but their behaviour is such that
they can connect to the SDRAM /WE, /RAS and /CAS signalsdirectly (no inversion
is required).

Theory of Operation/Hardware Design

SDRAM Interface

8.8.5 Chip Selects

There are four chip selects, buf_cg[3:0], each is buffered viaa 74LV T16244 (SHT7)
and has a 33.2 Ohm series termination resistor (SHT20). Each chip select is used to
select asingle SDRAM array, so amaximum of four arrays may be used in a system.
Byte Selectsbuf_dgm][3:0] are used to provide byte lane information to an SDRAM
array. These signals allow each byte within a 32-bit longword to be accessed, either
individually or together. Each signal isbuffered viaa 74LVT16244 (SHT7) and hasa
33.2 Ohm series termination resistor (SHT20).

8.8.6 SDRAM Clocks

All the SDRAM clocks, fbg_sdclk[3:0], have matched lengths and impedances with
each other and with the 21285 SDRAM clock reference net, fbg_fclk_o. The overall
length of the nets have been kept as short as possible to maintain signal integrity. The
clock reference net is used to minimize the effect of skew on the SDRAM clock nets,
to give the 21285 areference for all SDRAM transactions. Each of the lines has
series termination of 33.2 Ohms. An active-high clock enable signal is provided for
each pair of clocks. These pins should be used to enable the SDRAM clocks going to
used SDRAM arrays and to disable the clocks going to unused or missing arrays.

The 21285 SDRAM clock outputs have high-current drivers and must not be buff-
ered externally; thiswould introduce too much skew into the SDRAM timing.

8.8.7 DIMMs

The EBSA-285 uses 168-pin 64-bit DIMMSs. The 64-bit memory on the DIMM is
used to provide two arrays of 32-bit wide memory. Thisleads to an unorthodox wir-
ing scheme for the DIMMs.

The DIMM sockets are physically large and need to be near the 21285 because of the
high speed signalling between them. The sockets are placed along the top edge of the
EBSA-285 as a compromise between space and signalling constraints.

The serial presence detect, which normally uses the I°C bus, is not used on this
design. The unused I2C signals are tied high and the IC address lines, SA[2:0], are
tied low.

The DIMMsthat are fitted must use 3.3-V switching levels.

The 4Mx64 part contains four arrays of 32-bit memory and can only be placed in the
first DIMM socket. The 2Mx64 part contains two arrays of 32-bit memory and may
be placed in either of the 2 DIMM sockets.

Theory of Operation/Hardware Design 8-7

SDRAM Interface

An array consists of the parts that make up a 32-bit wide section of memory selected

by a single chip select signal. Each array must use asingle chip select linethat is

unique to that array. Table 8—1 and Table 8—-2 show the relationship between the chip
select lines, the DQM lines, clk lines and the data byte for that combination.

Table 8-1 SDRAM Array Configuration: 2-Array Part

Array Byte CS DQM DQ CLK
1 DQO-DQ7
DQ8-DQ15
DQ32-DQ39
DQ40-DQ47
DQ16-DQ23
DQ24-DQ31
DQ48-DQ55
DQ56-DQ63

W N P O W N B O
N N N N O O O O
N o O wN o O
W N P O W N P O

Table 8—2 SDRAM Array Configuration: 4-Array Part

Array Byte CS DQM DQ CLK

Arrays1and 2 are as shown in Table 8-1.

3 0 1 0 DQO-DQ7 0
1 1 1 DQ8-DQ15 1
2 1 4 DQ32-DQ39 2
3 1 5 DQ40-DQ47 3
4 0 3 2 DQ16-DQ23 0
1 3 3 DQ24-DQ31 1
2 3 6 DQ48-DQ55 2
3 3 7 DQ56-DQ63 3

8-8 Theory of Operation/Hardware Design

Flash ROM Interface

The SDRAM drawsalarge amount of operating and refresh current (300 to 400 mA)
at switching frequencies of up to 55 MHz. Thisrequiresthat careful consideration is
paid to the decoupling capacitors around the DIMMs. Each DIMM has local decou-
pling on the DIMM . Four 22uF capacitors placed close to each DIMM socket pro-
vide decoupling on the EBSA-285.

8.9 Flash ROM Interface

The EBSA-285 uses four Intel TSOPII 28F008 flash ROM parts (SHT8). The PCB
footprint is designed so that they could also accommodate the larger 28F016 partsiif
desired. The flash ROMs are 8-bit devices, arranged to provide a 32-bit data path.

Flash ROM s are connected directly to the unbuffered CPU address and data buses
(cpu_a[22:2] and cpu_d[31:0]). During all ROM accesses, the 21285 drives output-
enable on cpu_a30 and write-enable on cpu_a31, so these address lines are wired to
the appropriate signals on the flash ROMs. When the 21285 is accessing the flash
ROM the CPU address bus drivers are placed in ahigh impedance state by the 21285
asserting the ABE signal.

A 12-V supply isrequired for programming the flash ROM. Thisis the only place
that 12 V isused on the board, and it is only used during programming of the flash. If
programming of the flash ROM is not required, the EBSA-285 can be powered with-
out12V.

Theflash ROM requires 3.3-V switching levels.

The socket is provided to allow an EPROM emulator to be connected to the card for
rapid program development. It isasingle 32-pin DIL part. Writing to this memory
areais permitted (the write enable signal, cpu_a31, isrouted to the socket) but the
emulator must support this mode. The EPROM socket is wired to provide a byte
wide memory; cpu_a[18:2] are wired to the socket lines a[18:2] and cpu_a[29:28]
arewired to a[1:0].

The 512 KB of the EPROM socket is mapped in place of the flash ROM but is byte
wide rather than 32-bit wide. The socket should not be used in half-word or long-
word modes and it cannot be used when the flash ROM is active.

Two jumpers (SHT17) control the selection of flash or the EPROM socket.

e J15 pins 22/23/24 route fbg_rom_ce_| to either the flash or EPROM (see Sec-
tion A.2.2.3). The unselected signal line is held high by apull-up resistor.

e J157/8/9 either pull fbg_ma4 up (flash) or down (EPROM socket).

Theory of Operation/Hardware Design 8-9

X-Bus Interface

Both sets of jumpers must be changed together. To effect the new selection, the
board must then be power-cycled.

When the EBSA-285 isreset the flash ROM isalso reset. This placestheflashina
known state at reset or power up. Resetting the flash halts any automated write/erase
cycles that the flash is performing. This avoids a read being made from flash during
an automated cycle. If that were to occur, the flash would provide status information.
Thiswould prevent the CPU from booting correctly. Flash reset iscovered in Section
8.17.

8.10 X-Bus Interface

The X-Businterface alows the connection of low speed ISA style peripheralsto the
EBSA-285. It provides a 16-bit data bus, xbuf_buf_d[15:0], and 10-bit address bus,
buf_a[11:2]. Control signals are provided for reset, read and write strobes, buffer
direction control and chip selects. The busis unclocked and does not provide a
means to stall the bus.

8.10.1 Soft I/O

The 21285 XCS2 region is used to decode the onboard soft 1/O. This (see SHT7)
consists of an 8-bit output latch, 74ABT377 and an 8-bit input port, 74ABT541.
Thesigna levelsare5 V.

The assignment of the input and output port is described in Section 3.6. Writing to
anywhere within the XCS2 area on a 32-bit boundary will write to the 74ABT377.
Reading from anywhere from within the XCS2 area on a 32-bit boundary will read
from the 74ABT541.

With the clock enable signal active, the outputs of the 74ABT377 are latched on the
trailing (rising) edge of the clock pulse. The clock enable pinisdriven by fbg_xcs2_|
and the clock pin isdriven by the write strobe fbg_xiow_|. The latched states of
obuf_d[2:0] drive the three, bulkhead LEDs, while obuf_d7 islooped back to the
input port for diagnostic test of the soft 1/0.

The 74ABT541 used for input is an octal buffer with 3-state outputs and two output
enable signals. Both enables must be asserted for the buffer to drive its outputs. The
output enable signalsare wired to thefbg_xcs2 | and fbg_xior_1 lines. In addition to
the output monitoring function of obuf_d7, input linesInk_soft[13:10] hold the state
of the flash image selector switch, while ibuf_d[6:4] monitor jumpers on J17.

8-10 Theory of Operation/Hardware Design

The Serial Port

8.10.2 X-Bus Expansion Headers

The X-Bus expansion provides the X-Bus data, address and control signalsto 5 2 x8
0.1-inch pitch headers (SHT4). It aso provides 5V and ground to the header. This
expansion option isintended to provide an interface for additional low performance
PC-AT type, 8 or 16-bit peripherals. The signals provided are:

e buf_a[10:2]

e buf_be[1:0]

e xbuf_buf_d[15:0]
e flash rst

e flash_rst_|

e xd_wren_|

o fbg_xior_|

o fbg_xiow_|

* fbg_xcs2

e xbus xcsl |

e Xxbus xcs0_irg_|
e vdd (5V)

* gnd (0V)

The pinout of the connectors is shown in Section A.2.1.

8.11 The Serial Port

COMO (SHT21) isaminimal serial port with just Rx and Tx lines. The data signals
are shifted between RS232 and internal (5 V) signal levelsby aMAX211 RS232
driver/receiver.

EMC radiation is inhibited by a 220pF capacitor between the Tx line (con_tx) and
ground.

Theory of Operation/Hardware Design 8-11

Interrupts

8.12 Interrupts

The EBSA-285 is designed to work in anumber of modes so that all major modes of
the 21285 can be evaluated. This means there are a number of different sources of
interrupt depending upon which mode the card is placed in:

Central function mode requires that system wide interrupts be handled by the
EBSA-285, which means that four interrupt lines (to service PCI interrupts d:a)
are required when in this mode.

The 21285 has four general-purpose interrupt pins (IRQ_IN[3:0]) and asingle
interrupt pin (PCI_IRQ) that is an input in central function mode and an output
in non-central function mode. To service the four PCI interrupts, pci_int[d:b]_|
arerouted to IRQ_IN3, 1 and 0, and pci_irqg_| performs the function of
PCI_INTA#.

When the 21285 is not the central function it must request an interrupt from the
central function on the request line, pci_irg_| (the PCI_IRQ pin is an output in
this mode).

In both central function and non-central function modes the EBSA-285 must
handle:

— Aninterrupt from a fixed frequency timer (to provide ticks of fixed period
for calibration)

To provide the required timing reference, the 3.68MHz oscillator signal
(fbg_timer) is connected to the IRQ_IN2 pin, this is used to clock timer 3 of
the 21285.

— Interrupts from the X-Bus expansion interface

The X-Bus chip select pins, XCS[2:0], can be configured as interrupt inputs.
XCSO0 (connected tobus_xcsO_reg_l) should be used as a com port inter-
rupt. Software should be written so that this line is used as an input and not
as a chip select line. The @ntupt outputs from both COM1 and COM2
should be OR’d together and wired to this pin on any expansion cards that
provide serial communication ports.

8.13 PCl Interface

The PCI bus is a full revision 2.1, 32-bit, 33 MHz compliant interface. The bus is
provided on a standard set of PCB fingers to allow it to be used as a plug-in card in a
standard PCI socket. The connector is of the universal type so can be plugged into
both a 3.3-V system and 5-V system. Signalling levels used are 3.3 V but the logic is

8-12 Theory of Operation/Hardware Design

PCI Bus Arbiter

5-V-tolerant. When used as a plug-in card the EBSA-285 will draw power from the
PCI socket on the 5-V fingers. High speed decoupling (12 x 0.01uF) is provided on
the unused 3-V supply fingersto provide agood 3-V signal return path.

When the card is used as a central function, anumber of the reserved pins are used to
provide the four sets of interrupt, request and grant pins required. The use of these
pins follows that proposed by the PICM G standard. The PCI pins are used as shown

in Table 8-3.

Table 8—-3 Use of Reserved PCI Pins

Pin Not Central Function Central Function
B9 PRSNT #1 pci_reqg3 |

B10 Reserved pci_reql |

B11 PRSNT #2 pci_gnt3_|

B18 pci_req | fbg_pci_reg_|
A6 pci_irg | (Output) pci_inta_| (Input)
Al4 Reserved pci_gntl |

Al7 fbg_pci_gnt | fbg_pci_gnt0_|
A19 Reserved pci_reg2 |

A26 idsel pci_gnt2 |

A15 pci_rst_| (Input) pci_rst_| (Output)

When the card is not acting as PCI-Bus arbiter it must be set in the X-Bus mode by
setting the appropriate jumpers (SHT17).

8.14 PCI Bus Arbiter

The PCI arbiter can be used when the EBSA-285 is configured as the central func-
tion in a system. It interfaces via the PCI ifdee gving four system wide ietrrupts
and four pairs of request and grant lines. For further details see Section 8.13.

Theory of Operation/Hardware Design 8-13

JTAG

8.15 JTAG

The JTAG port (SHT18) provides a connection for the JTAG interface. Thisis used
for boundary scan testing of the SA-110 and the 21285, velnectonnected in the
TDO/TDI ring. It can also be used to program flash memory. A systemgsesel,
allows the system to be reset by a device connected to the JTAG port.

A pair of 74ACT244 buffers isolate the logic from direct connection to JTAG signals
(except forsrst_|, which is not btfered). TheTTL outputs from the buffers are
level-shifted to 3.3 V by a QS3384 (SHT3).

8.16 Clocks

The EBSA-285 uses the following oscillators:

* 3.6864 MHz TTL compatible oscillator (SHT3): The oscillator islevel converted
to 3.3V (SHT3) then drives the SA-110 PLL input and atimer in the 21285
through apair of series termination resistors (SHT20). These series termination
resistors should have impedance matched etch lengths. The PLL on the SA-110
generatesthe core clocks according to the settings on the CCCFG[3:0] links. The
21285 timer can be used to provide timer ticks to an operating system.

e 24MHz TTL compatible oscillator (SHT13): When used in a backplane the link
connecting this oscillator to pci_clk must be removed.

e 50MHz TTL compatible oscillator (SHT5): This drivesthe 21285 core clock via
aseriesresistor (SHT20). Provision has been made in the etch for a 50 Ohm ter-
mination resistor to allow replacement of the oscillator with a frequency genera-
tor during device verification.

* The 21285 generates six clock outputs for driving FCLK (fbg_fclk_o), MCLK
(fbg_mclk) and four SDRAM arrays (fbg_sdclk_[3:0]). The impedance and
etch length of al these signalsisidentical, providing minimum skew for clock
equalization.

— FCLK is loopedto FCLK_IN .

— MCLK on the 21285 drives MCLK on the SA-110. The 21285 stops the
clock in the high state in order to introduce stalls in SA-110 cycles.

— The SDCLK]3:0] pins areannected to CK[3:0] on the SDRAMSs. All have
matched lengths and loads, each signal being terminated by a series resistor
of 33.2 Ohms. SDCLK3 is used to clock the onboardya(parity orunbuf-
fered memory depending on build option) and one of the DIMM arrays.

8-14 Theory of Operation/Hardware Design

8.17 Reset

Reset

There are anumber of sources of reset (see Figure 8-1) on the EBSA-285. Depend-
ing upon the mode of the card, resets behave differently.

Figure 8-1 Reset Circuits

+3.3V
R153
LNK_PCI_CFN

|

ur:
GND
ITAG SRST_L
J9 LNK_RST_L
GND

2

8
+3.3V o
)
(9]
R177
21285 SA-110
PCI_RST_L
PCI_RST
PCI_CFN
NRESET
MST_RST_L NRESET
PCI_RST_L 4§77 i MST_RST_L
J10
Power-on 5V to 3.3V
FLASH_RST_L R To X-bus
and de- level - FLASHRST.L -hd Flash
bounce logic converter

8.17.1 Host Bridge

In this mode, the 21285 is configured to be central function; the EBSA-285 is
responsible for providing the system wide reset. All resources on the EBSA-285
must be reset and the PCI bus must be reset by asserting pci_rst_|. The resourcesto
be reset on the EBSA-285 are:

e GSA-110
s 21285
* Flash ROM

e X-Businterface

4| >o—> FLASH_RST To X-bus

Theory of Operation/Hardware Design 8-15

Reset

The sources of reset in this mode are

e Automatically at power on (SHT18)

* By apush button (SHT17 and 18)

* Under remote control, by a debug box attached to the JTAG connector (SHT18)
* PCI reset under software control

* By the 21285: to reset the complete system viapci_rst_|

* Onatime-out from the watchdog timer, WDT

8.17.1.1 Power-On Reset

The power on reset circuitry isused to ensure agraceful power up for the EBSA-285.

It is generated from an R-C network and schmidt trigger arrangement. When power

is applied to the EBSA-285, VDD is ‘soft started’ and de-bounced by the R-C net-
work and schmidt triggers to generate a 5-V active-low sigwmdlash_rst_|. This
signal is then level converted to 3.3 V by the QS3384 (SHT3) to beftasherst_|.

This signal, in central function mode, will becomet_rst_| via a jumper (SHT17).

mst_rst_| is the master reset for the EBSA-285 in central function mode. It is used to
reset the SA-110 (SHT3) and the 21285 (SHT5).

The flash is reset bijash_rst_|I.

The X-Bus expansion uses an active-high versidtash_rst_| which is generated
(SHT3) by using an inverting schmidtfier. This is a 5-V level part so the active-
high versionflash_rst has 5-V signalling levels. This is necessaggduise some
Super I/O chips have an active-high reset pin as a legacy from the ISA bus.

8.17.1.2 Switch Reset

A 2-pole 0.1-inch pitch connector is provided to allow an external normally-open
switch to be added to gener&d_rst_I. In a lab environment a reset can be gener-
ated by shorting the two poles. The signal is de-bounced by the same circuitry as the
power up reset to ensure a clean reset pulse.

8.17.1.3 JTAG Connector Reset

The signabrst_| comes from an external device via the JTAG port. Unlike the stan-
dard JTAG signals, it is not buffered. This signal uses the same de-bounce circuitry
as the switch reset.

8-16 Theory of Operation/Hardware Design

Reset

8.17.1.4 Watch Dog Timer Reset

If the WDT times out and causes a reset, there needs to be a system wide reset. A
WDT reset occurs when the WDT is enabled in the 21285 and the CPU allowsthe
timer to time out, which should only happen during a software failure.

OnaWDT reset the 21285 assertsmst_rst_I. In central function mode thiswill reset
the SA-110 and reset the flash ROM viathe jumper by asserting flash_rst_|. This
signal will beinverted by aschmidt trigger and will reset any active-high peripherals
on the X-Bus expansion headers.

The QS3384 output acts as an open drain output and so will not back-drive the reset
circuitry.

8.17.1.5 PCI Reset

On power up the 21285 holds pci_rst_| asserted so holding the system, with the
exception of the EBSA-285, inreset. To de-assert pci_rst_| the SA-110 must set a bit
in a21285 contral register.

8.17.2 Add-in Card

8.17.2.1

8.17.2.2

In this mode the 21285 is configured to run in non-central-function mode; an exter-
nal host bridge provides the system wide reset. The EBSA-285 resources must be
reset on an assertion of pci_rst_I. The 21285, flash ROM and X-Bus interface are
reset directly by pci_rst_| but the SA-110 isreset by amst_rst_| generated by the
21285. This can be used to hold the CPU in reset while the flash ROM is being pro-
grammed.

PCIl Master Reset

When a PCI master asserts reset the EBSA-285 should be held in reset. In this mode
pci_rst_| isaninput to the 21285. When it is asserted the 21285 assertsmst_rst_|
which resets the SA-110. The flash ROM and X-Bus arereset by pci_rst_I, whichis
wired to the local flash_r<t and flash_rst_| by jumper JIO(SHT17).

Blank Programming Mode

When the EBSA-285 is placed in blank programming mode the CPU isheld in reset
by mst_rst_I, which is generated by the 21285, while the system programs the flash
ROM with an image. When the programming is compl ete the system needs to be
powered down and changed from blank programming mode.

Theory of Operation/Hardware Design 8-17

Power

8.18 Power

The EBSA-285 requires 5V and 12 V from an external source. Power comes onto
the card either through a PC-style 12-way connector (SHT13) or through the PCI fin-
gers. The EBSA-285 never draws power from the 3.3-V PCI fingers, even wheniitis
plugged into a3.3-V PCI connector. Onboard regulators generate 3.3V and 2 V from
5V.

Most of the devices on the card use 3.3 V, which is the main power plane on the
EBSA-285. 3.3V is generated by a Maxim MAX767 regulator, providing 3A at
3.3V.

5V isused by the soft I/0 and the oscillators.

The current requirement from the 3.3-V rail isasfollows:
* SA-110 (worst case 430mA)

The 21285

* SDRAM (worst case all refresh @ 3x480mA)

Flash ROM (operating current @ 4x50mA)

7 LVT buffers (7x5mA)

8.18.1 3.3-V Generation

The 3.3-V rail isregulated from the 5-V rail by aMaxim MAX767 (SHT15), which
isa5-V to 3.3-V synchronous step-down power supply controller.

The 3.3-V output of the MAX 767 is generated by an internal, current mode, pulse
width modulation (PWM) step-down regulator. The PWM regulator is configured to
operate at 200 kHz, which provides maximum conversion efficiency for the
MAX767. The MAX767 also hasa3.3-V, 5SmA reference voltage on pin 8. Fault pro-
tection circuitry shuts off the output should the reference lose regulation or the input
voltage go below anominal 4 V.

The MAX767 requires afew external components to convert the 5-V supply into an
accurate, regulated 3.3-V output. External components include two N-channel MOS-
FETs, arectifier, and an LC output filter. The gate drive signal for the high side
MOSFET, which must not exceed the input voltage, is provided by a boost circuit
that uses a 0.1uF capacitor. The synchronous rectifier keeps efficiency high by

8-18 Theory of Operation/Hardware Design

Decoupling

clamping the voltage across the rectifier diode. An external low-value current sense
resistor sets the maximum current limit. An external capacitor of 0.01uF setsthe pro-
grammable soft start, reducing in-rush surge currents upon start up.

8.18.2 2.0-V Generation

The 2-V power is used to power the SA-110 core. 2 V isregulated from the 3.3-V rail
by aLinear Technology LT1086 (SHT15). The LT1086 isalow dropout regulator
with an adjustable output. The output voltageis set to 2 V by R166 and R178.

8.18.3 Power Sequencing

The SA-110 requires two voltage supplies; a 3.3-V supply to power its primary
input/output buffers and a 2.0-V supply to power its core. The 3.3-V supply must be
stable earlier than the core voltage. This requirement prevents any latch-up within
parasitic structures on the SA-110, and is satisfied by deriving the core voltage from
the 3.3-V supply. Thisisthe only power sequencing restriction.

8.19 Decoupling

The EBSA-285 uses tantalum el ectrolytic capacitors for bulk decoupling of the
power rails, and ceramic capacitors for decoupling of individual 1Cs. The bulk
decoupling capacitors, which are a mixture of 10uF and 47uF parts, are evenly dis-
tributed around the card. The individual decoupling capacitors are 0.1uF and are
located close to the power and ground pins of the ICs that they decouple.

The 21285 high speed clocks and the PCI connector have local high speed decou-
pling in the form of 0.01uF capacitors.

Each SDRAM DIMM has four 22uF decoupling capacitors as well as the on-DIMM
decoupling and bulk decoupling.

There are twelve 0.01uF decoupling capacitors between the PCI 3.3-V fingers and
ground. Thisisto provide an ac return and is required even though the 3.3-V fingers
are not used to supply power.

8.20 Jumpers and Test Points
A range of jumpers and test points provide for configuration and monitoring of the

EBSA-285. Details are supplied in Appendix A, and on SHT17 of the circuit dia-
grams.

Theory of Operation/Hardware Design 8-19

Expanding the EBSA-285

8.21 Expanding the EBSA-285

The buffered X-Businterface provides al the X-Bus signals from the 21285, a buff-
ered version of the data bus, a buffered subset of the address bus A[11:2], plus
ground rails and 5 V for the expansion card. The format of the connectors allows the
use of a mezzanine card that plugs into the 8x2 0.1-inch headers. The interface can
be used for PC type ISA-style peripherals. Address lines may be used for self-decod-
ing devices and to decode internal register access. There is enough address informa-
tion to place a PC style Super /O chip on the expansion bus.

An X-Bus chip select, fbg_xcs2_| isused to decode the onboard Soft I/O. Chip select
xbus xcs0_irq_| isavailable asaninterrupt for any COM ports placed on the X-
Bus, while xbus _xcsl | isprogrammed as a disable/enable line for self decoding
devices.

The X-Bus does not have a clock, so if a peripheral requires a clock then one should
be provided on the expansion card.

8.22 The Printed Circuit Board

The printed circuit board isan 8-layer board with six signalling layers, a3.3-V power
plane and a ground plane. It isrouted using 0.005-inch track and gap ruleswith a
nomina etch impedance of 88 Ohm for the outer layers and 58 Ohm for the inner
layers.

The power planeis not split despite the different power requirements of the compo-
nents. This was done to maintain signal integrity. Power other than 3.3 V was routed
asasignal but with the largest copper area as possible, so ignoring the track sizing
of other signals.

During layout, the critical components were placed first. The 21285 needed to be
near the PCI fingers to satisfy the etch length requirements of the PCI specification.
The SA-110 was placed close to the 21285 due to the large number of signals passing
between the two components. The pinout of the 21285 is such that thereis alogical
flow of signals between the two devices.

The buffers for the main buses and control signals were placed as close to the 21285
and SA-110 as possible. Thisis because the signals are unterminated and should,
therefore, be kept as short as possible to maintain signal integrity. Where series ter-
mination resistors were needed, they were placed as close to the outputs of these
buffers as possible. The address, data and SDRAM buffers were placed first.

8-20 Theory of Operation/Hardware Design

Design Improvements

The SDRAM DIMMs had to be placed along the top edge of the card because of
their physical size.

The oscillators were placed as close to the output destination as possible, so the
50 MHz crystal was placed near the 21285 and the 3.68 MHz crystal as close to the
SA-110 as possible.

The switch mode power supply was placed as close to the PCI fingers as possible so
that the 5V from the PCI did not need to be routed too far. The power connector for
an off card PC style power supply was then placed as close to the switch mode
supply as possible. The placement of the components for the switch mode power
supply followed the recommendations made in the data sheet for the Maxim

MAX 767 part.

LEDs, image selection switch and serial port, which must be accessible to the user,
were placed along the bulkhead edge so that they could be accessed from outside a
PC style chassis.

The remaining components were placed where they were most convenient.

Thefirst netsto be routed were the various clocks, SDRAM and the SA-110, making
sure that they were impedance and length matched. Any test points that were to be
placed on these nets were placed as large vias at appropriate points. Test point etch
lengths were kept to a minimum.

The oscillator outputs were series terminated at source and then routed to keep the
etch length to a minimum.

The signals between SA-110 and 21285, and the signals between the 21285 and PCI
fingers were routed next as they were short, and simple to route.

Next to be routed were the other high speed SDRAM signals, buf_dgm][3:0],
buf_cmd[2:0], buf_c9[3:0] and buf_ma[12:0].

The power signals, 2 V, 12V and Vdd, were placed on the outer layers and had the
copper area used as large as possible.

All un-terminated signals were kept as short as possible, placing the termination
resistors within 3cm of the output of the signal driver.

8.23 Design Improvements

A new design that was done with reference to the lessons learnt from the EBSA-285
would have a number of changes.

Theory of Operation/Hardware Design 8-21

Design Improvements

The most fundamental change would be to use only 3.3 V, with the exception of the
SA-110 core. The areas of the design affected would be the soft 1/0O and oscillators.
The oscillators could be replaced by a 3.3-V variant and the soft 1/O latches and buff-
ers could also be changed for equivalentsin 3.3-V families such asthe LCX or LV X
from Nationa Semiconductor, which have 5-V-tolerant inputs and outputs.

The buffers for the SDRAM control and address lines (SHT7) could probably be
omitted, the other buffers are required to either control flow or provide signal level
conversion.

The decoupling on the EBSA-285 was conservative, providing more decoupling than
was required to ensure correct function in all possible modes.

The series termination was also conservative, with the result that the termination
resistors for the SDRAM control and address lines could probably be omitted.

Any design that did not need to provide the flexibility of the EBSA-285 could
remove all the jumpers with the possible exception of the one that enables blank pro-
gramming mode.

More Vdd lines should be routed to the X-Bus expansion headers.

A 3.3-V supply should also be routed to the X-Bus expansion headers. This would
alow 3.3-V peripheralsto be attached without requiring the 3.3 V to be generated on
the expansion card.

Known limitations of the card/21285 are:

* X-Bus peripherals and the internal PCI arbiter are mutually exclusive functions
(functions implemented with pin sharing on the 21285).

* The3.3-V power rail will always be derived from a5-V source (backplane or
connector). The EBSA-285 cannot supply its 3.3V rail from the 3.3-V pinson
the PCI connector.

* The EBSA-285 cannot program flash ROM viathe PCI when in system mode.
e flash_rstisab-V signal and flash_rst_| isa3.3-V signal.

8-22 Theory of Operation/Hardware Design

A

Configuration Guide

This appendix describes:

* Thedefault configuration of the board

* Thesettings for al links and jumpers

* Thepinouts of all connectors

* Themeaning of al LEDs.

* Thecablesrequired for connection to the board
* How to upgrade the SDRAM DIMMs

Locations of all jumpers and connections are shown in Figure A-1. Table A-1 pro-
vides a brief description of each jumper and connector.

Configuration Guide A-1

Figure A—1 Jumper and Connector Locations

J16

22[e o o o o o o © 1
J]5 2/4|e o o o o o o |3
23[0 0 o o 0 0 o ofy J20 J12 J5
22[6 o o o ® o o o 1
J14 24| o o o o o e |3 J8 J‘l‘l
23 e O o o o o o o 2
|
[¥ |
| —)\
J19 ' i] /.
(OtoF) |:| S
] ! Ja
[
I
g i = I
: :
/D \\:I—x—l ________ :
J18 I3
J6 2
L 99 97 J10
Q
Key: Option selector S
w

Pin 1
Fixed connector >

A.l1 Default Configuration

This section covers configuration of the EBSA-285 for its major functions. The
rational e behind the jumper settings for these functions is shown graphically in Fig-

ure A—-2. Snapshots of jumper settings for each of the relevant functions are provided
in:

* Add-in card: Figure A-3 (X-bus enabled)
* Host bridge: Figure A—4 (X-bus enabled)

A-2 Configuration Guide

Figure A—2 Primary Jumper Settings

-

J15

Flash

J14 EI 2-3
socket 12
Central) D
function
socket
'''''''''''''''''''''''''''''''''''' Js e
Not J10 J9 J14 :
cenfal =3 (I soctet LIRE
function
1
S TTLITT I
program m 23 8
o
o
Configuration Guide A-3

Figure A-3 EBSA-285 Configured as an Add-in Card

Figure A-4 EBSA-285 Configured as a Host Bridge

A-4 Configuration Guide

£10PP

j410ele]

A.2 Description of Jumpers and Connectors

While reading this section, it may be useful to refer to the EBSA-285 schematic set.
Table A-1 provides a brief description of all jumpers and connectors, and indicates
where the relevant circuit detail is to be found.

Table A—1 General Information on EBSA-285 Jumpers and Connectors

Ref Schematics Description

Jl Sheet 18 JTAG connector

J2 Sheet13 Power connector (bench test)

J3 Sheet4 X-Bus expansion header

JA Sheet4 X-Bus expansion header

JB5 Sheet4 X-Bus expansion header

J6 Sheet4 X-Bus expansion header

J7 Sheets9& 13 Onboard PCI clock (Reserved - DO NOT FIT)

J8 Sheet4 X-Bus expansion header

J9 Sheets9& 17 Selection of central function mode

JI0 Sheets9& 17 Selection of flash reset source

J11 Sheet 12 Secondary SDRAM DIMM socket (for 2-array DIMMs only)
J12 Sheet 11 Primary SDRAM DIMM socket (for 2/4-array DIMMS)

J14 Sheets9 & 17 Arbiter/X-Bus selection headers
J15 Sheets9 & 17 21285 mode-configuration

J16 Sheet 17 Flash EPROM selection

J17 Sheet 17 Core clock frequency selection and software flags

J18 Sheet 21 COMO serial port connector

J19 Sheet 17 Bulkhead hex switch for flash image selection

J20 Sheet4 Logic analyzer test point for SA-110 bus interface clock (fbg_mclk)

A.2.1 X-Bus Expansion Headers

Figure A-5 shows the pinout of the X-Bus expansion headers J3, J4, J5, J6 and J8.
Signals are listed in Table A-2 to Table A-5.

Configuration Guide A-5

Figure A-5 X-Bus Headers Pinout

2 H B B B R EEBN 16
LI LN L LN I 9:;

Table A—2 X-Bus Connector J3

Pin Signal Function

2 xbus_xcsl | Chip select for daughter card device

4 fbg_xcs2 | Chip select for daughter card device

6 xbus_xcs0 _irqg_| Interrupt request from daughter card device

8 nc

10 nc

12 nc

14 flash_rst For daughter-board chips that require a high level reset signal
16 flash_rst_| For daughter-board chips that require alow level reset signal
Table A—3 X-Bus Connectors J4/J5

Pin Signal Function

xbuf_buf_d0/d8 Buffered X-Bus data

4 xbuf_buf_d1/d9
xbuf_buf_d2/d10
8 xbuf_buf_d3/d11
10 xbuf_buf_d4/d12
12 xbuf_buf_d5/d13 Buffered X-Bus data
14 xbuf_buf_d6/d14
16 xbuf_buf_d7/d15

A-6 Configuration Guide

Table A—4 X-Bus Connector J6

Pin Signal Function
2 fbg_xd_wren_| X-Bus data write enable (from 21285 [Footbridge])
4 fbg_xior_| X-Bus read strobe
fbg_xiow_| X-Bus write strobe
8 vdd
10 buf_a2 Buffered X-Bus address
12 buf_a3
14 buf_a4
16 buf_ab

Table A-5 X-Bus Connector J8

Pin Signal Function
2 buf_a6 Buffered X-Bus address
4 buf_a7
buf_a8
8 buf_a9
10 buf_al0
12 buf_be0 Buffered X-Bus enable signal
14 buf_bel Buffered X-Bus enable signal
16 buf all Buffered X-Bus address

A.2.2 Configuration Jumpers

A.2.2.1 CPU Core Clock Frequency Selection

The header links that determine the SA-110 core clock frequency are shown in
Figure A—6. Selection of speciffeequencies is explained in Figure A-7.

Configuration Guide A-7

Figure A—6 J17 Pinout Showing Default Jumper Configuration

IBUF6* LNK_CCCFGO Y 5A-110 core
IBUF5 LNK_CCCFG1 | clock frequency

IBUF4 LNK_CCCFG2 | select

S LNK_cccFas | (HMkin=0)
LNK_RST_L -~
(Connection

for reset switch) e I o1 i
Y
* IBUF® link fitted for software 16 E EEEERN [] o §
access to PCI (see Section 3.6,
Soft Input/Output Register) N B I GND
Figure A—7 J17 Core Clock Selection Jumpers
T TR mmmco)l
I I I I Fcore = 88.3MHz I I I - Fcore = 191.3MHz
— 2 —J2
n n a
. I I I Fcore = 95.6MHz . I I - Fcore = 202.4MHz
| | | | a
I I I Fcore = 99.4MHz I I Fcore = 213.4MHz
| | | | | |
| I | | I | a
I I Fcore = 106.7MHz I Fcore = 228.1MHz
15 LD (default)
n m O
I . I Fcore = 143.5MHz . Fcore = 242.8MHz
n n n m O
I I Fcore = 150.9MHz I Fcore = 257.6MHz
n n n | N |
[B | RO
I I Fcore = 161.9MHz I Fcore = 276.0MHz
| I | | I B
Q
'R " mEO 2
I Fcore = 169.3MHz Fcore = 287.0MHz N
| B B | | B I
Note: SA-110 microprocessors operate at any one of 16 core clock frequencies

between 88.3 MHz and 287 MHz, with the upper limit determined by
the speed grade of the CPU fitted. The EBSA-285 fits a 233 MHz part,
thereby limiting the maximum freguency of the core clock to

228.1 MHz. The card is delivered with this frequency selected.

A-8 Configuration Guide

A.2.2.2 Arbiter/X-Bus Selection

Selection of the 21285’s internal arbiter or the X-Bus is made by jumpering pins 1-3
or 2-3 on J15. Jumpers on J14, and pins 17-24 on J15, reroute the signal paths for the
selected configuration.

In X-Bus mode, chip selects, write-enable and read and write strobes are directed to
the X-Bus, and the X-Bus interrupt request is connected to the 21285.

In arbiter mode, PCI arbitration request and grant paths are made between the PCI
bus and the 21285.

Jumper settings and theiffect aregiven in Table A—6.

Note: The aforementioned links operate as a block; all must be set to arbiter
mode or all to X-Bus mode.

Figure A—8 J14/J15 Pinout

220 @ © @ © o e o1
24| o o o o o o o3
23 e © o o o o o o 2
Table A—6 Arbiter/X-Bus Selection Jumpers
Ref Link Direction Signal/function
Ji5 23 Input fbg_ma7 (Select X-Bus[ma7=1])
J4 2-3 Input pci_gnt_I (grant of 21285 bus master request)

5-6 Output pci_reg_l (21285 bus master request to PCI bus)

8-9 Input xbus_xcs0_irg_| (XCSO configured as X-Bus interrupt input)
11-12 Output xbus_xcsl | (X-Bus chip select)

14-15 Output fbg_xcs2_| (soft I/O enable)

17-18 Output fbg_xd_wren_| (X-Bus data buffer direction control)

20-21 Output fbg_xior_| (X-Bus Read strobe)

23-24 Output fbg_xior_| (X-Bus Write strobe)

Configuration Guide A-9

Table A—6 Arbiter/X-Bus Selection Jumpers

Ref Link Direction Signal/function
Ji5 1-3 Input fbg_ma7 (Select the 21285's internal PCI arbiter [ma7=0])
Ji4 1-3 Output pci_gntO_| (bus grant 0 to PCI bus [conn. A17])
Y 46 1/0 fbg_pci_req_| (self-grant todbg_pci_gnt_| on 21285)
“ 79 Input pci_reg_| (bus master request 0 from PCI bus [conn. B18])
“ 10-12 Input pci_reql | (bus master request 1 from PCI bus [conn. B10])
“ 13-15 Input pci_reg2 | (bus master request 2 from PCI bus [conn. A19])
“ 16-18 Output pci_gntl | (bus grant 1 to PCI bus [conn. Al4])
“ 19-21 Output pci_idsel_gnt2_| (bus grant 2 to PCI bus [conn. A26])
“ 22-24 Output pci_gnt3 | (bus grant 3 to PCI bus [conn. B11])
J15 17-18 PRSNT 1 Power requirement detection when add-in board (tied to 0V)
“ 20-21 PRSNT 2 “
“ 23-24 IDSEL Connected to PCI fingers
J15 16-18 PCI-REQ3 When arbiter selected
“ 19-21 PCI-GNT3 When arbiter selected
‘o 22-24 Connects GNT2 to IDSEL on PCI fingers

A.2.2.3 Flash/EPROM Selection

J15 is also used to configure the functionality as outlined in Table A-7.

Table A—7 Flash/EPROM Socket Selection

Ref Link Option
J15 4-6 Normal operation of flash ROM (ma6 = 1)
“ 5-6 Blank ROM mode (ma6 = 0)
“ 7-9 8-bit Emulator socket (ma4 = 1)
“ 8-9 32-bit flash ROM (ma4 = 0)
“ 10-12 DIGITAL reserved test modes (ma3 =1)

A-10 Configuration Guide

Table A—7 Flash/EPROM Socket Selection

Ref Link Option
“ 11-12 “ (ma3 =0)
“ 13-15 “ (ma2 =1)
“ 14-15 “ (ma2 = 0)

J16 is used to route the chip select to the emulator socket or flash block, as shown in
Table A-8.

Table A-8 Flash/EPROM Socket Selection (J16)

Ref Link Option
J16 1-2 Emulator socket
“ 2-3 Flash

Table A-9 shows the links that should be jumpered to enable tkeeediffmodes.

Table A-9 Jumper Combinations for ROM Selection

For this mode Jumper these links and these links
32-hit flash ROM J15, 4-6, and 8-9, J16, 2-3
Blank flash ROM J15, 5-6, and 8-9, J16, 2-3
8-bit emulator J15, 4-6, and 7-9, J16, 1-2

A.2.2.4 Selection of the 21285 as the Central Function

Table A-10 shows the configuration of the two jumperseffatt the seleain of
Central Function. J9 controls the CFN signal to the 21285. J10 is used to route the
reset signal awectly for the selected mode.

Table A—10 Selection of Central Function

Header Jumper Action

Jo In Ink_pci_cfn is negated at power up. 21285 isNOT Central Function.

Configuration Guide A-11

Table A—10 Selection of Central Function

Header Jumper Action

J9 Out Ink_pci_cfn is asserted. 21285 is Central Function.
J10 1-2 pci_rst_| supplies reset (reset from PCI).
J10 2-3 mst_rst_| supplies reset (reset from power up, SWitdiTAG connec-

tor, or watchdog timer).

1 Viaajumper or reset switch attached to J17. See Figure A—6.

Thelegal combinations for J9 and J10 are given in Table A-11.

Table A-11 Jumper Settings for Selection of Central Function

Mode J9 J10
Host Bridge Out 2-3
Add-in card In 1-2

A.2.2.5 Reserved Mode

When not plugged into a PCI backplane, the EBSA-285 must supply the PCI clock it
would otherwise have picked up from the PCI slot. When fitted, J7 connects an
onboard 24 MHz oscillator to the PCI clock line. This is required in manufacture
when the board is powered up in isolation.

A.2.2.6 Boot Image Selection

Boot image selector J19 on the bulkhead provides a hexadecimal code that is read
from the X-Bus at power up. Boot image selection iseced in Chapter 7.

A.2.2.7 SA-110 Clock Probe Connection

Two pin header J20 provides a logic analyzer test point for monittismanclk.

A-12 Configuration Guide

A.2.2.8 Test Points

Table A-12 provides a description of test points provided for monitoring the
EBSA-285.

Table A—12 Description of Test Points

Ref Schematics Description

TP1 Sheet 15 +3.3V level

TP2 Sheet 15 +2V leve

TP3 Sheet4 cpu_write (thisisthe nR/W signal from the SA-110 or 21285)
TP4 Sheet4 21285 clock signal fbg_fclk_0

TP5 Sheet4 SDRAM clock signal fbg_sdclkO

TP6 Sheet 4 cpu_nrsto (the N(RESET_OUT signal from the SA-110)

A.3 Connectors

A.3.1 Serial Port Connector

COMO RS232 port is connected to a 9-way male D-type connector on the bulkhead.
Pinout is shown in Figure A-9.

Figure A-9 Serial Port Connector Detalil

A.3.2 JTAG Connector

o) ne

RxD

nc

nc
D
nc
nc
nc
GND

6108®

The pinout of the JTAG connector is shown in Figure A-10.

Configuration Guide A-13

Figure A-10 JTAG Connector J1 Pinout

12

+5V GND

TRST_L nc

DI GND

™S GND

TCK GND

TDO SRST_L .
GND 8

A.3.3 Power Connector

J2 isthe standard PC/AT 12-pin male connector for power.

A-14 Configuration Guide

A.4 Cables for External Connection

A.4.1 Serial Port

COMOiswired asaDTE (Data Termina Equipment) port with TxD, RxD and GND
only. Use anull-modem cable to connect aterminal or host system to this port. Wir-
ing detail for suitable standard null-modem cablesis given in Table A—13 and Table
A-14, but note that none of the handshake signals are required.

Table A—13 Null-Modem Cable

9-way 25-way 9-way

Connector A Connector B Connector B

Pin Pin Pin Description

5 7 5 GND - GND

3 3 2 TxD - RxD

7 5 8 RTS-CTS

6,1! 20 4 DSR, DCD - DTR

2 2 3 RxD - TxD

8t 4 7 CTS-RTS

4t 6,8 6,1 DTR - DSR, DCD
1 Not required on EBSA-285

Table A-14 Sun Null-Modem Cable

9-way Connector A 25-way Connector B

Pin Pin Description

2 2 RxD - TxD

3 3 TxD - RxD

5 7 GND - GND

7-8 - RTS-CTS

- 4-5 RTS-CTS

4-6-1 - DTR-DSR-DCD

- 20-6-8 DTR-DSR-DCD

Configuration Guide A-15

A.4.2 JTAG Port

The wiring of the JTAG port isgiven in Table A—15. The JTAG port operates at 5-V
TTL levels.

Table A-15 JTAG Cable

Pin Type Description

- Pulled up to 5 V by a 33R resistor
- GND

Input TRST_L

- Not connected

Input TDI

- GND

Input TMS

- GND

Input TCK

GND

Output TDO

Input SRST_L - when 21285 is CFN, asserting this signal resets the board

© 0O N O 0o~ W N PP

e i
w N P O
1 1

Connected to pin 1
14 - GND

A.5 Upgrading the SDRAM DIMMs

The EBSA-285 requires 168-pin 64-bit unbuffered SDRAM DIMMs. It can support
a maximum of four, 32-bit arrays. 64-bit DIMMs typically provide either two or four
32-bit arrays. If a four-array DIMM is used, it must be fitted in J12, and J11 must be

A-16 Configuration Guide

left empty. If two-array DIMMs are used, either one or two may be fitted but J12
must be populated first. Table A-16 lists DIMMSs that are known to work with the
EBSA-285.

Table A—-16 DIMMs For Use With The EBSA-285

Manufacturer Part Number Size Arrays Mode
Samsung KMM366S203BTN-G2 16Mbyte 2x8Mbyte 1
Samsung KMM366S403BTN-G2 32Mbyte 4x8Mbyte 1
IBM 13N1649NCC-10T 8Mbyte 2x4Mbyte 1
IBM 13N2649JCC-10T 16Mbyte 2x8Mbyte 1
IBM 13N4649JCC-10T 32Mbyte 4x8Mbyte 1
IBM 13N4649CCC-10T 32Mbyte 2x16Mbyte 1
Hitachi 526C464EN-10IN/C 32Mbyte 4x8Mbyte 1
Hitachi 526C264EN-10IN/C 16Mbyte 2x8Mbyte 1
Micron MT8LSDT264AG-66CL2 16Mbyte 2x8Mbyte 1
Micron MT16L SDT464AG-66CL 2 32Mbyte 4x8Mbyte 1
*Kingston KTC-2428/32 32Mbyte 4x8Mbyte 1
*Kingston KTC-2428/64 64Mbyte 2x32Mbyte 4
*Kingston KTC-2428/128 128Mbyte 4x32Mbyte 4

* Limited test time as DIMMs had to be returned.

Configuration Guide A-17

B

The Design Database

If you received this Reference Manual as part of the SA-110/21285 Evaluation
Board Kit (21A85-01) or as part of the SA-110/21285 Design Kit (QR-21A85-11)
you will also have received machine-readable media, either on CDROM or 3.5-inch
floppy disk, containing hardware and software design databases for the EBSA-285.

This appendix gives an overview of the material supplied on the first release of the
disks. The disks themselves include other relevant documentation. Later rel eases of
the disks may include additional information and you should check the README
files and release notes for details.

B.1 Hardware Material

The hardware design database includes:

EBSA-285 schematics (PostScript and PDF formats)

EBSA-285 board assembly drawings (PostScript and PDF formats)
EBSA-285 board mechanical drawings (PostScript and PDF formats)
EBSA-285 board layer plots (PostScript and PDF formats)

EBSA-285 netlist (ASCII text format)

EBSA-285 parts list (ASCII text format)

EBSA-285 design database for VIEWIlogic™ CAE systems (tar file)
EBSA-285 reference manual (PostScript and PDF versions of this document)

The Design Database B-1

B.2 Software Material

B-2

There are two sets of software material for the EBSA-285. The first isthe firmware
tree for the EBSA-285 onboard software and Flash Management Utility. The second
isthe uUHAL software portability library.

All of the software requiresan ARM 2.1 (or later) SDT to build. It can be built either
using ARM’s V2.1 Project Manager or using GNU make. Key images are supplied
pre-built.

The EBSA-285 firmware tree consists of these components:

* Flash Management Utility (FMU) - sources for building 8-, 16- and 32-bit mode
flash utilities that can either be run from DOS or loaded and run viathe ARM
remote debugger.

* Angel remote debug stub. The incremental sourcesto ARM’s official released
Angel source tree. These sourceswill migrateinto an ARM release and will be
superseded by such arelease. The EBSA-285 Angel sourcesinclude the Primary
Boot Loader (PBL). A variant of Angel is built with the PBL code embedded in
it.

* Onboard self-tests. The sources for the onboard self-test. This code performs a
number of self tests (for example, memory and flash tests).

e Standard include files (including assembler macros for functions such as
memory initiaization) for all of the above code.

Thefollowing tested, pre-built Angel images are included:

* Angel (‘PBL variant). This variant of Angel is built for flash block 0 and con-
tains the PBL. If flash block 0 is selected as the boot image or if a corrupt or non-
existent image is chosen as the boot image then the PBL will default to running
this version of Angel. This Angel variant enables clock switching and the
Echoic.

* Angel (‘Block 2’ variant). This variant of Angel is built for flash block 2 and
can be started by the PBL if image 2 is selected. It turns on clock switching and
Echoic.

* Onboard self-test: Thisimage runs from flash block 1.

The Design Database

Thefollowing tested, pre-built FMU images are included:

* fmu.exe. ThisisaDOS executable image which can be used to program images
into the EBSA-285's flash ROM when the EBSA-285 is plugged into a PCI slot
inaPC

e fmu.axf. Thisversion of the FMU can be loaded and run viathe ARM remote
debugger

uHAL isaportability library that builds for a number of StrongARM -based boards.
uHAL 0.5 has been ported to EBSA-285 and will build images that can either be
loaded and run using Angel or that can be blown into flash and run directly from
there. The uHAL source tree includes anumber of example images:

* Benchmarking code. There are several benchmarks, for example, a bubble-sort.

* ‘“hello world”. There are se&vral very simple programs, ineling one that
prints “hello world” and another that shows the system timer running.

* UuC/OS. uHAL contains aport of uC/OS as an example of an OS ported to run
against the uHAL API.

UHAL 0.5 hasits own documentation. Thisincludes a description of the APl and a
FAQ (Frequently Asked Questions) which includes board-specific information.

The Design Database B-3

C

Support, Products, and Documentation

If you need technical support, a DIGITAL Semiconductor Product Catalog, or help
deciding which documentation best meets your needs, visit the DIGITAL Semicon-

ductor World Wide Web Internet site:

http://www.digital.com/semiconductor

You can also cal the DIGITAL Semiconductor Information Line or the DIGITAL
Semiconductor Customer Technology Center. Please use the following information

lines for support.

For documentation and general information:

DIGITAL Semiconductor Information Line

United States and Canada: 1-800-332-2717

Europe: +44-118-920-3972
Other Countries: 1-510-490-4753
Electronic mail address: semiconductor@digital.com

For technical support:

DIGITAL Semiconductor Customer Technology Center
Phone (U.S. and international): 1-978-568-7474
Fax: 1-978-568-6698

Electronic mail address: ctc@hlo.mts.dec.com

Support, Products, and Documentation

C-1

DIGITAL Semiconductor Products

Cc-2

To order StrongARM-related or other DIGITAL Semiconductor products, contact
your local distributor. The following tables list some of the semiconductor products
available from DIGITAL Semiconductor.

Note: The following products and order numbers might have been revised. For the
latest versions contact your local distributor.

Chips Order Number
DIGITAL Semiconductor 21285 SA-110 core logic chip 21285-AA
DIGITAL Semiconductor SA-110 Microprocessor 21281—xx

Evaluation board kitsinclude an evaluation board, and can include a complete design
kit, an installation kit, or an accessories kit.

Evaluation Board Kits Order Number
EBSA-285 (SA-110/21285) evaluation board kit 21A85-01
EBSA-BPL-5V PCI development backplane - 5-V signalling 21A85-02
EBSA-BPL-3V3 PCI development backplane - 3.3-V signalling 21A85-03

Design kitsinclude full documentation and schematics. They do not include evalua-
tion boards or related hardware.

Design Kits Order Number

SA-110/21285 Design Kit QR-21A85-11

Support, Products, and Documentation

DIGITAL Semiconductor Documentation

Thefollowing table lists some available DIGITAL Semiconductor documentation.

Title Order Number

DIGITAL Semiconductor 21285 Core Logic for SA-110 EC-R4CHA-TE
Microprocessor Data Sheet

DIGITAL Semiconductor SA-110 Microprocessor Technical EC-QPWLC-TE
Reference Manual

The StrongARM/ARM Technical Document Kit (includes QR-ARMKT-TE
the SA-110 Technical Reference Manual and the ARM Architecture
Reference Manu3)

Application Note: Memory Management on the StrongARM EC-R4AWCA-TE
SA-110

Application Note: SA-110 Microprocessor Instruction Timing EC-R6M6A-TE

1 Also available from independent booksellers: publisher, Prentice-Hall:
ISBN 0 13 736299 4

Third—Party Documentation

You can order the following third-party documentation directly from the vendor.

Title Vendor

PCI Local Bus Specification, Revision 2.1 PCI Special Interest Group
PCI Multimedia Design Guide, Revision 1.0 uU.S. 1-800-433-5177
PCI System Design Guide International 1-503-797-4207
PCI-to-PCI Bridge Architecture Specification, Fax 1-503-234-6762
Revision 1.0

PCI BIOS Specification, Revision 2.1

Support, Products, and Documentation C-3

Index

Numerics C
21285 2-1, 8-5 C library support 5-4
initializing the UART 4-8 Cables

internal timers 3-3
UART timing 4-8

A

Add-in Card 8-17, A-2, A-4
Add-incard 1-4
Angel 1-8, 6-4
Antistatic precautions 1-2
Arbiter 8-13

overview 2-6
ARM Image Format (AIF) 5-1
ARM SDT

using with EBSA-285 1-8
Associated documentation C-1

B

Binary Image (BIN) 5-1
Boot image selection

image 0 6-2

images other than 0 6-2
Bus arbiter 8-13

overview 2-6

JTAG port A-15
null-modem 1-7, A-14
serial port A-14
Cacheing
Flash 4-9
1/0 4-9
SDRAM 4-9
software Dcache flush agorithm 4-9
the CSR 4-9
Clock
sources 2-9, 8-14
Configuration
default A-2
jumper locations A-2
jumper settings A-3, A-4
of aterminal 1-7
of the serial port 6-4
options 1-6
Configuring cacheable/non-cacheable space 4-9
Connectors
JTAG A-13
power A-14
serial port A-13
CPU 2-1, 84

Index-1

CSR
cacheing 4-9

D

Debug
Angel 1-8, 6-4
Decoupling 8-19
Design database B-1
Design improvements 8-21
Diagnostics 6-4
description of tests 6-5
DIMMs 1-2, 8-7
organization 8-7
upgrading A-16
Disabling the flash ROM dlias 4-1

E

EBSA-285
block diagram 2-2
facilities 3-1
EPROM socket 8-9
Expansion 2-9

F

Flash
accessing 4-2
as shipped 3-1
block addresses 3-1
cacheing 4-9
contents 2-10
disabling the alias 4-1
executable image 7-4
image building 5-1
image format 6-2
image header 6-3
image selection 1-8
non-executable image 7-4

Index—2

organization 3-1, 8-9
programming 7-1, 8-9
Flash ROM interface 8-9
FMU 7-1
when to specify the ‘NoBoot’ option-5
when to specify the block numb@&r4
Functional Specificatio2-1

H

Host Bridge8-15, A-2, A-4

110
cacheingd-9
serial port2-5, 6-4, 8-11
soft I/0 2-5, 3-3, 8-10
subsysten®-5
Images
building 5-1, 5-3
run-time environmenb-2, 5-4
Installation
examplel-5
Interfacing of logic level8-3
Interrupts
assignmen8-2
overview2-5
sources 08-12

J

JTAG 2-6, 8-14

L

LEDs
driving 3-3
sequence at power up7
Loadable debuggable images
building 5-1

run-time environment 5-2

M

Memory
EPROM emulator 2-4
flash ROM 2-3
SDRAM 2-3
Memory-map
SDRAM 3-2, 5-2, 5-4
switching 2-5
X-Bus 3-2
Modes of operation 1-3
Add-incard 1-4

O

Ordering products C-1

P

PCl interface
connector 8-12
use of reserved pins 8-13
Physical Description 1-1
Power
2.0-V generation 2-10, 8-19
3.3-V generation 2-10, 8-18
current requirement 8-18
onboard generation 2-10
requirements 2-10
Power sequencing 8-19
Power up
LED sequence 1-7
Primary Boot Loader (PBL) 6-1
Principal Buses 8-3
Printed circuit board 8-20
Programmer’s Guid8-1

R

Reset
circuit 8-15
sequence aftet-1
sources of-9, 8-15
state afte3-5

S

SA-1102-1, 8-4
modes of operatioB-5
SDRAM 8-5
address bu8-6
array configuratior8-9
cacheingd-9
clocks8-7
control signals8-6
data bus3-6
interface signal8-5
memory-map3-2
upgradingA-16
Soft 10
bit assignmen8-3
Standalone flash imagés3
building 5-3
run time environmen$-4
Support service€-1

T

Timer
assignmen8-3
reference3-3

U

UART
baud rate divisord-8
initializing 4-8

Index-3

Unpacking 1-2

Vv

Visual inspection 1-3
Voltage Domains 8-2

X

X-Bus

memory map 3-2
X-Bus expansion 8-11, 8-20
X-Bus interface 8-10

Index—4

	Contents
	1
	2
	3
	4
	5
	6
	7
	8
	A
	B
	C

	Figures
	Tables
	Preface
	Getting Started
	1.1� Physical Description
	Figure 1–1� EBSA-285

	1.2� Unpacking the Card
	1.3� Understanding the Different Modes
	1.3.1� Add-in Card
	1.3.2� Host Bridge
	1.3.3� Example Installation
	Figure 1–2� Example Configuration in an EBSA-BPL-5...

	1.3.4� Other Configuration Options

	1.4� Powering Up for the First Time
	1.5� Running the Onboard Diagnostics
	1.6� Using the ARM SDT with your EBSA-285
	1.7� Support for Angel Over the Ethernet
	1.7.1� Description
	Figure 1–3� Angel Communication Overview

	1.7.2� Low-Level Angel Interface
	1.7.3� Initialization
	1.7.4� Host/Client Interaction
	1.7.5� Areas of Difference

	Functional Specification
	2.1� CPU
	2.2� 21285
	Figure 2–1� EBSA-285 Block Diagram

	2.3� The Memory Subsystem
	2.3.1� SDRAM
	2.3.2� Flash ROM
	2.3.3� EPROM Emulator
	2.3.4� Memory-Map Switching

	2.4� I/O Subsystem
	2.5� Interrupts
	2.6� PCI Interface
	2.7� PCI Bus Arbiter
	2.8� JTAG
	Table 2–1� TAP IDC Connector Pinout
	Table 2–2� Signals on the TAP
	Table 2–3� JTAG Registers
	Table 2–4� JTAG Commands

	2.9� Expansion
	2.10� Clocks
	2.11� Resets
	2.12� Power Requirements
	2.13� Onboard Power Generation
	2.14� Onboard Software

	Programmer’s Guide
	3.1� Flash Memory
	3.2� SDRAM Memory
	3.3� X-Bus Memory-Map
	3.4� Interrupt Assignment
	Table 3–1� Interrupt Assignment

	3.5� Timer Assignment
	3.6� Soft Input/Output Register
	Table 3–2� Bit Assignment of Soft Input/Output Reg...

	3.7� The Reset State of the System

	Software Configuration and Initialization
	4.1� Disabling the Flash ROM Alias
	4.2� Accessing the Flash ROM
	4.2.1� Programming the Flash from the SA-110
	4.2.2� Programming the Flash from the PCI Interfac...

	4.3� Determining the Card Configuration
	4.4� Initializing the X-Bus
	4.5� Initializing the PCI Bus Arbiter
	4.6� Setting the INITIALIZE_COMPLETE Bit
	4.7� Initializing the SDRAM
	4.8� Re-initializing the SDRAM
	4.9� Initializing the PCI Interface
	4.10� Initializing the 21285 UART
	Table 4–1� 21285 Baud Rate Divisors for 50 MHz fcl...

	4.11� Configuring Cacheable/Non-Cacheable Space

	Software Development Environment
	5.1� Loadable Debuggable Images
	5.1.1� Building
	5.1.2� Run-Time Environment
	5.1.2.1� Memory Map
	5.1.2.2� ARM C Library Support
	5.1.2.3� Exception Vectors
	5.1.2.4� Access to I/O Devices

	5.2� Standalone Flash Images
	5.2.1� Building
	5.2.2� Run-Time Environment
	5.2.2.1� Memory Map
	5.2.2.2� C Library Support
	5.2.2.3� Exception Vectors
	5.2.2.4� Access to I/O Devices

	Onboard Software
	6.1� Primary Boot Loader
	Table 6–1� Boot Image Selection

	6.2� Format of Images in Flash ROM
	Table 6–2� Flash Image Header

	6.3� Angel
	6.4� Diagnostics
	6.4.1� Preparing to Run the Diagnostics
	6.4.2� Description of Tests

	Flash Management Utility
	7.1� Using the FMU
	7.1.1� When to Specify the Block Number
	7.1.2� When to Specify the ‘NoBoot’ Option

	Theory of Operation/Hardware Design
	8.1� General
	8.2� An Introduction to the Schematics
	8.3� Voltage Domains
	8.4� Interfacing Techniques
	8.5� Principal Buses
	8.6� CPU
	8.7� 21285
	8.8� SDRAM Interface
	8.8.1� Multiplexed Address Bus
	8.8.2� Bank Address Bus
	8.8.3� Data Bus
	8.8.4� CMD
	8.8.5� Chip Selects
	8.8.6� SDRAM Clocks
	8.8.7� DIMMs
	Table 8–1� SDRAM Array Configuration: 2-Array Part...
	Table 8–2� SDRAM Array Configuration: 4-Array Part...

	8.9� Flash ROM Interface
	8.10� X-Bus Interface
	8.10.1� Soft I/O
	8.10.2� X-Bus Expansion Headers

	8.11� The Serial Port
	8.12� Interrupts
	8.13� PCI Interface
	Table 8–3� Use of Reserved PCI Pins

	8.14� PCI Bus Arbiter
	8.15� JTAG
	8.16� Clocks
	8.17� Reset
	Figure 8–1� Reset Circuits
	8.17.1� Host Bridge
	8.17.1.1� Power-On Reset
	8.17.1.2� Switch Reset
	8.17.1.3� JTAG Connector Reset
	8.17.1.4� Watch Dog Timer Reset
	8.17.1.5� PCI Reset

	8.17.2� Add-in Card
	8.17.2.1� PCI Master Reset
	8.17.2.2� Blank Programming Mode

	8.18� Power
	8.18.1� 3.3-V Generation
	8.18.2� 2.0-V Generation
	8.18.3� Power Sequencing

	8.19� Decoupling
	8.20� Jumpers and Test Points
	8.21� Expanding the EBSA-285
	8.22� The Printed Circuit Board
	8.23� Design Improvements

	Configuration Guide
	Figure A–1� Jumper and Connector Locations
	A.1� Default Configuration
	Figure A–2� Primary Jumper Settings
	Figure A–3� EBSA-285 Configured as an Add-in Card
	Figure A–4� EBSA-285 Configured as a Host Bridge

	A.2� Description of Jumpers and Connectors
	Table A–1� General Information on EBSA-285 Jumpers...
	A.2.1� X-Bus Expansion Headers
	Figure A–5� X-Bus Headers Pinout
	Table A–2� X-Bus Connector J3
	Table A–3� X-Bus Connectors J4/J5
	Table A–4� X-Bus Connector J6
	Table A–5� X-Bus Connector J8

	A.2.2� Configuration Jumpers
	A.2.2.1� CPU Core Clock Frequency Selection
	Figure A–6� J17 Pinout Showing Default Jumper Conf...
	Figure A–7� J17 Core Clock Selection Jumpers

	A.2.2.2� Arbiter/X-Bus Selection
	Figure A–8� J14/J15 Pinout
	Table A–6� Arbiter/X-Bus Selection Jumpers

	A.2.2.3� Flash/EPROM Selection
	Table A–7� Flash/EPROM Socket Selection
	Table A–8� Flash/EPROM Socket Selection (J16)
	Table A–9� Jumper Combinations for ROM Selection

	A.2.2.4� Selection of the 21285 as the Central Fun...
	Table A–10� Selection of Central Function
	Table A–11� Jumper Settings for Selection of Centr...

	A.2.2.5� Reserved Mode
	A.2.2.6� Boot Image Selection
	A.2.2.7� SA-110 Clock Probe Connection
	A.2.2.8� Test Points
	Table A–12� Description of Test Points

	A.3� Connectors
	A.3.1� Serial Port Connector
	Figure A–9� Serial Port Connector Detail

	A.3.2� JTAG Connector
	Figure A–10� JTAG Connector J1 Pinout

	A.3.3� Power Connector

	A.4� Cables for External Connection
	A.4.1� Serial Port
	Table A–13� Null-Modem Cable
	Table A–14� Sun Null-Modem Cable

	A.4.2� JTAG Port
	Table A–15� JTAG Cable

	A.5� Upgrading the SDRAM DIMMs
	Table A–16� DIMMs For Use With The EBSA–285

	The Design Database
	B.1� Hardware Material
	B.2� Software Material

	Support, Products, and Documentation
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	X

