
VAX/VMS
Debugger Reference
Manual

Order Number: AA-Z411C-TE

April 1986

This manual explains the features of the VAX/VMS Debugger for
programmers in high-level languages and assembly language.

Revision/Update Information: This revised document supersedes
the VAX/VMS Symbolic Debugger
Reference Manual Version 4.2

Software Version: VAX/VMS Version 4.4

digital equipment corporation maynard, massachusetts

April 1986

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM—20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

EHSDEO
ZK-3031

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

CANADA INTERNATIONAL

Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager
100 Herzberg Road c/o Digital's local subsidiary
Kanata, Ontario K2K 2A6 or approved distributor
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-7 54-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

USA & PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by T^X, the typesetting system developed by Donald
E. Knuth at Stanford University. T5X is a trademark of the American Mathematical Society.

Contents

PREFACE

SUMMARY OF TECHNICAL CHANGES

PART I USING THE VAX/VMS DEBUGGER

CHAPTER 1 INTRODUCTION TO THE VAX/VMS DEBUGGER 11

OVERVIEW OF THE DEBUGGER
1.1.1 Functional Features

1-1
1-1

1.1.2 Ease of Use Features 1-3

1.2 GETTING STARTED 1-4

1.2.1 Starting and Terminating a Debugging Session _ 1 -5

1.2.2 Entering Debugger Commands _ 1-6

1.2.3 Viewing your Source Code _ 1 -7
1.2.3.1 Screen Mode • 1-8

1.2.3.2 Noscreen Mode • 1-9

1.2.4 Controlling and Monitoring Program Execution _ 1-9
1.2.4.1 Starting and Resuming Program Execution • 1-9

1.2.4.2 Stepping Through the Program's Code • 1-10

1.2.4.3 Determining the Current Location of the Program
Counter • 1-11

1.2.4.4 Suspending Program Execution *1-12

1.2.4.5 Tracing Program Execution • 1-13

1.2.4.6 Monitoring Changes in Variables • 1-14

1.2.5 Examining and Manipulating Data _ 1-14
1.2.5.1 Displaying the Values of Variables • 1-15
1.2.5.2 Changing the Values of Variables • 1-16
1.2.5.3 Evaluating Expressions • 1-16

1.2.6 Controlling Symbol References _ 1-17
1.2.6.1 Module Setting • 1-17

1.2.6.2 Resolving Multiply-Defined Symbols • 1-18

1.2.7 A Sample Debugging Session _ 1-19

DEBUGGER COMMAND SUMMARY
1.3.1 Startina and Terminatina a Debuaaina Session

1-21
1-22

1.3.2 Controlling and Monitoring Program Execution 1-22
1.3.3 Examining and Manipulating Data 1-23

iii

Contents

1.3.4 Controlling Type Selection and Symbolization _ 1 -23

1.3.5 Controlling Symbol Lookup _ 1-23

1.3.6 Displaying Source Code _ 1-24

1.3.7 Screen Mode _ 1-24

1.3.8 Source Editing _ 1-24

1.3.9 Defining Symbols _ 1 -25

1.3.10 Keypad Mode _ 1-25

1.3.11 Command Procedures and Log Files _ 1-25

1.3.12 Control Structures _ 1-25

1.3.13 Debugging Special Cases - 1-26

CHAPTER 2 CONTROLLING THE DEBUGGING ENVIRONMENT 2-1

2.1 CONTROLLING SYMBOL INFORMATION 2-1

2.1.1 Compiling with the /DEBUG and the /TRACE Command
Qualifiers _ 2-2

2.1.2 Linking with the /DEBUG and the /TRACE Command
Qualifiers _ 2-2

2.2 OPTIONS FOR RUNNING YOUR PROGRAM 2-2

2.2.1 Using the RUN/[NO]DEBUG Command _ 2-2

2.2.2 Using the DEBUG Command _ 2-3

2.3 DEBUGGER ACTIVATION 2-4

2.4 DEBUGGER INITIALIZATION FILES 2-5

2.5 LANGUAGE-DEPENDENT AND INDEPENDENT PARAMETERS 2-6

2.5.1 Language-Dependent Debugging Parameters _ 2-6

2.5.2 Language-Independent Debugging Parameters _ 2-7

2.6 LOG FILES 2-7
2.6.1 The SET OUTPUT and SHOW OUTPUT Commands 2-8
2.6.2 The SET LOG and SHOW LOG Commands _ 2-9

2.7 COMMAND PROCEDURES 2-10

2.7.1 Editor-Created Command Procedures _ 2-11
2.7.2 Using Log Files as Command Procedures _ 2-12

2.8 INTERRUPTING A DEBUGGING SESSION 2-12

2.8.1 CTRL/Y and CTRL/C _ 2-13

IV

Contents

2.8.2 Options After Interruption _ 2-13

2.8.3 The SPAWN and ATTACH Commands _ 2-14

CHAPTER 3 CONTROLLING PROGRAM EXECUTION 3-1

3.1 STARTING PROGRAM EXECUTION 3-1

3.1.1 The STEP Command _ 3-1
3.1.1.1 The SET STEP and SHOW STEP Commands • 3-3

3.1.2 The GO Command _ 3-5

3.1.3 The CALL Command _ 3-5

3.2 SUSPENDING PROGRAM EXECUTION 3-6

3.2.1 Breakpoints _ 3-6
3.2.1.1 Command Sequence at Breakpoint • 3-9

3.2.2 Exception Breakpoints _ 3-10

3.2.3 Watchpoints _ 3-12
3.2.3.1 Watchpoint Restrictions • 3-14

3.3 MONITORING PROGRAM EXECUTION 3-15

3.3.1 Tracepoints _ 3-15
3.3.1.1 Opcode Tracing *3-16

3.3.2 The SHOW CALLS Command _ 3-19

3.4 RELATED QUALIFIER FUNCTIONS 3-20

3.4.1 Qualifiers That Indicate Location _ 3-21

3.4.2 Qualifiers That Affect Output _ 3-22

3.5 EXIT HANDLERS 3-22
3.5.1 Sequence of Exit Handler Execution _ 3-22

3.5.2 Debugging Exit Handlers _ 3-23
3.5.3 Identifying Exit Handlers _ 3-23

CHAPTER 4 SYMBOL REFERENCES AND THEIR
INTERPRETATION 4-1

4.1 SYMBOLIC DEBUGGING 4-1

4.2 SYMBOL TABLES USED BY THE DEBUGGER 4-2

4.2.1 Debug Symbol Table _ 4-2
4.2.2 Global Symbol Table _ 4-3

v

Contents

4.2.3 Run-Time Symbol Table _ 4-3

4.3 KINDS OF SYMBOLS 4-5
4.3.1 Debugger Permanent Symbols _ 4-5

4.3.2 Symbols Created by the DEFINE Command _ 4-6

4.3.3 Program Symbols _ 4-6
4.3.3.1 Simple Symbols • 4-7
4.3.3.2 Subscript-Qualified Symbols • 4-7
4.3.3.3 Structure-Qualified Symbols • 4-8
4.3.3.4 Pointer-Qualified Symbols • 4-9

4.4 SYMBOL RESOLUTION IN THE SOURCE LANGUAGE 4-9
4.4.1 Program Context of Symbol Declarations _ 4-9

4.4.2 Global Symbols _ 4-10

4.5 SYMBOL RESOLUTION IN THE DEBUGGER 4-11

4.5.1 Specifying Path names _ 4-13
4.5.1.1 Path Name Examples • 4-14
4.5.1.2 Path Name Completion • 4-15
4.5.1.3 Invocation Numbers • 4-16

4.5.2 The SET, SHOW, and CANCEL MODULE Commands _ 4-19

4.5.3 The SET, SHOW, and CANCEL SCOPE Commands _ 4-20

4.5.4 The SHOW SYMBOL Command _ 4-22

4.6 DEBUGGING SHAREABLE IMAGES 4-23

CHAPTER 5 REFERENCING PROGRAM LOCATIONS 5 1

5.1 TYPE 5-1
5.1.1 The Type Associated with Address Expressions _ 5-3

5.2 SIMPLE ADDRESSES 5-3
5.2.1 Symbolic References _ 5-4
5.2.2 Line Numbers _ 5-4

5.2.3 Statement Numbers _ 5-5
5.2.4 Numeric Labels _ 5-5

5.2.5 Numeric Literals _ 5-6

5.2.6 Current Entity Symbol _ 5-7
5.2.7 Logical Predecessor Symbols _ 5-7
5.2.8 Logical Successor Symbols _ 5-8

5.3 ADDRESS EXPRESSIONS 5-9

VI

Contents

5.3.1 Operands _ 5-9

5.3.2 Operators _ 5-10

5.3.3 Precedence _ 5-11

5.3.4 The EVALUATE/ADDRESS Command _ 5-11

CHAPTER 6 EXAMINING AND DEPOSITING DATA 6 1

6.1 MODES 6-1

6.1.1 Radix Modes _ 6-2
6.1.1.1 Radix Operators • 6-3

6.1.2 Symbolic and Nonsymbolic Modes _ 6-5

6.2 THE EXAMINE COMMAND 6-5

6.2.1 Command Qualifiers _ 6-6

6.2.2 Examining Instructions _ 6-7

6.2.3 Examining Lists _ 6-8

6.2.4 Examining Ranges _ 6-8

6.2.5 Examining Successive Entities _ 6-9

6.2.6 Examining Values in Registers _ 6-10
6.2.6.1 The Processor Status Longword • 6-11

6.3 THE DEPOSIT COMMAND 6-11

6.3.1 Depositing ASCII Strings _ 6-12

6.3.2 Depositing Numeric Data _ 6-13

6.3.3 Depositing and Replacing VAX Instructions _ 6-13

6.3.4 Depositing in Different Radixes _ 6-15

6.3.5 Depositing Values in Registers _ 6-15
6.3.5.1 The Processor Status Longword *6-16

6.4 THE EVALUATE COMMAND 6-18

CHAPTER 7 DISPLAYING SOURCE CODE 7 1

7.1 LOCATION OF SOURCE FILES 7-1
7.1.1 SET, SHOW, and CANCEL SOURCE Commands _ 7-2

7.2 DISPLAY BY LINE NUMBER 7-5

7.3 DISPLAY BY ADDRESS EXPRESSION 7-5

VII

Contents

7.4 DISPLAY DURING PROGRAM EXECUTION 7-7

7.5 DISPLAY BY SEARCH STRING 7-10

7.6 SOURCE DISPLAY PARAMETERS 7-13

7.6.1 Margin Parameters _ 7-14
7.6.2 Maximum Source Files Parameter _ 7-16

7.7 DIFFERENCES BETWEEN SOURCE AND OBJECT CODE DUE TO
OPTIMIZATION 7-17

CHAPTER 8 SCREEN MODE 8-1

8.1 CONCEPTS AND TERMINOLOGY 8-2

8.2 THE PREDEFINED DISPLAYS 8-3

8.2.1 The Predefined Source Display SRC _ 8-4

8.2.2 The Predefined Output Display OUT _ 8-5

8.2.3 The Predefined Prompt Display PROMPT _ 8-5

8.2.4 The Predefined Instruction Display INST _ 8-6

8.2.5 The Predefined Register Display REG _ 8-7

8.3 MANIPULATING EXISTING DISPLAYS 8-7

8.3.1 Scrolling a Display _ 8-8

8.3.2 Showing, Hiding, Removing, and Canceling a Display _ 8-8

8.3.3 Moving a Display Across the Screen _ 8-9

8.3.4 Expanding or Contracting a Display _ 8-9

8.4 CREATING A NEW DISPLAY 8-10

8.5 SPECIFYING A DISPLAY WINDOW 8-10
8.5.1 Specifying a Window in Terms of Lines and Columns _ 8-11
8.5.2 The Predefined Windows _ 8-11

8.5.3 Creating a New Window Definition _ 8-11

8.6 SPECIFYING THE DISPLAY KIND 8-11

8.6.1 DO (command-list) Display Kind _ 8-13

8.6.2 INSTRUCTION Display Kind _ 8-13
8.6.3 INSTRUCTION (command) Display Kind _ 8-13

8.6.4 OUTPUT Display Kind _ 8-14

viii

Contents

8.6.5 REGISTER Display Kind

8.6.6 SOURCE Display Kind
8.6.7 SOURCE (command) Display Kind

8-14

8-15
8-15

8.6.8 PROGRAM Display Kind 8-15

8.7 ASSIGNING DISPLAY ATTRIBUTES 8-16

8.8 A SAMPLE DISPLAY CONFIGURATION 8-18

8.9 SAVING DISPLAYS AND THE SCREEN STATE 8-18

8.10 CHANGING THE SCREEN HEIGHT AND WIDTH 8-19

CHAPTER 9 TAILORING THE DEBUGGER 9-1

9.1 ALLOCATING ADDITIONAL MEMORY 9-1

9.1.1 The ALLOCATE Command _ 9-1

9.1.2 The SET MODULE/ALLOCATE Command _ 9-2

9.2 USING CONTROL STRUCTURES
9.2.1 The FOR Command

9-4
9-5

9.2.2 The IF Command 8-6

9.2.3 The WHILE Command 9-6

9.3 DECLARING PARAMETERS TO COMMAND PROCEDURES 9-7

9.4 DEFINING AND UNDEFINING COMMANDS 9-8

9.5 DEFINING AND UNDEFINING KEYS

9.5.1 Assigning Key Definitions

9-9

9-9

9.5.2 Using Debugger-Defined Key Definitions 9-11

9.5.3 Showing Key Definitions 9-11

9.5.4 Deleting Key Definitions 9-12

Contents

PART II DEBUGGER COMMAND
DICTIONARY

CD.1 DEBUGGER COMMAND FORMAT CD-I

CD.2 ENTERING AND TERMINATING COMMANDS

CD.2.1 At the Terminal _

CD.2.2 In a Command Procedure _

ALLOCATE CD-3

@FILE-SPEC CD-4

ATTACH CD-6

CALL CD-7

CANCEL ALL CD-10

CANCEL BREAK CD-11

CANCEL DISPLAY CD-13

CANCEL EXCEPTION BREAK CD-14

CANCEL IMAGE CD-15

CANCEL MODE CD-16

CANCEL MODULE CD-17

CANCEL RADIX CD-19

CANCEL SCOPE CD-20

CANCEL SOURCE CD-21

CANCEL TRACE CD-23

CANCEL TYPE/OVERRIDE CD-25

CANCEL WATCH CD-26

CANCEL WINDOW CD-27

CTRL/C, CTRL/W, CTRL/Y, CTRL/Z CD-28

DECLARE CD-30

DEFINE CD-32

DEFINE/KEY CD-34

DELETE CD-37

DELETE/KEY CD-38

DEPOSIT CD-40

DISABLE AST CD-45
DISPLAY CD-46
EDIT CD-50
ENABLE AST CD-52

EVALUATE CD-53

EVALUATE/ADDRESS CD-55
EXAMINE CD-57
EXIT CD-62

EXITLOOP CD-63
EXPAND CD-64

CD-2

CD-2

CD-2

x

Contents

EXTRACT CD-66
FOR CD-68
GO CD-70
HELP CD-71
IF CD-73
MOVE CD-74
QUIT CD-76
REPEAT CD-77
SAVE CD-78
SCROLL CD-79
SEARCH CD-81
SELECT CD-84

SET ATSIGN CD-87
SET BREAK CD-88
SET DEFINE CD-93
SET DISPLAY CD-94
SET EDITOR CD-98
SET EVENT-FACILITY CD-100
SET EXCEPTION BREAK CD-101
SET IMAGE CD-102
SET KEY CD-103
SET LANGUAGE CD-104
SET LOG CD-105
SET MARGINS CD-106
SET MAX_SOURCE_FILES CD-108
SET MODE CD-109
SET MODULE CD-111
SET OUTPUT CD-114

SET PROMPT CD-116
SET RADIX CD-117
SET SCOPE CD-119
SET SEARCH CD-122
SET SOURCE CD-124

SET STEP CD-126
SET TASK CD-129
SET TERMINAL CD-132
SET TRACE CD-134
SET TYPE CD-139
SET WATCH CD-142
SET WINDOW CD-145
SHOW AST CD-147
SHOW ATSIGN CD-148
SHOW BREAK CD-149

SHOW CALLS CD-150
SHOW DEFINE CD-151
SHOW DISPLAY CD-152

xi

Contents

PART III

SHOW EDITOR CD-153

SHOW EVENT-FACILITY CD-154

SHOW EXIT-HANDLERS CD-155

SHOW IMAGE CD-156
SHOW KEY CD-157

SHOW LANGUAGE CD-159

SHOW LOG CD-160

SHOW MARGINS CD-161

SHOW MAX_SOURCE_FILES CD-162

SHOW MODE CD-163

SHOW MODULE CD-164

SHOW OUTPUT CD-166

SHOW RADIX CD-167

SHOW SCOPE CD-168

SHOW SEARCH CD-169
SHOW SELECT CD-170
SHOW SOURCE CD-172

SHOW STACK CD-174

SHOW STEP CD-175
SHOW SYMBOL CD-176
SHOW TASK CD-178

SHOW TERMINAL CD-181
SHOW TRACE CD-182

SHOW TYPE CD-183
SHOW WATCH CD-184

SHOW WINDOW CD-185
SPAWN CD-186
STEP CD-188
SYMBOLIZE CD-192
TYPE CD-193
UNDEFINE CD-195
UNDEFINE/KEY CD-196
WHILE CD-197

APPENDIXES

APPENDIX A COMMAND DEFAULTS A-1

Contents

APPENDIX B PREDEFINED KEY FUNCTIONS B-1

EM DEFAULT, GOLD, AND BLUE FUNCTIONS EM

H! KEY DEFINITIONS SPECIFIC TO LK201 KEYBOARDS B^2

[Ti KEYS THAT SCROLL, MOVE, EXPAND, AND CONTRACT
DISPLAYS B-3

BA ONLINE KEYPAD KEY DIAGRAMS 5^4

Hi DEBUGGER KEY DEFINITIONS ITi

APPENDIX C SCREEN-MODE REFERENCE INFORMATION C l

c!l DISPLAY KINDS C^T

(02 DISPLAY ATTRIBUTES (02

C03 PREDEFINED DISPLAYS (03

C.3.1 SRC (Source Display) _ C-4

C.3.2 OUT (Output Display) _ C-4

C.3.3 PROMPT (Prompt Display) _ C-4

C.3.4 INST (Instruction Display) _ C-5

C.3.5 REG (Register Display) _ C-5

04 SCREEN-RELATED BUILT-IN SYMBOLS (05

C.4.1 Terminal Height and Width _ C-6
C.4.2 Pseudo-Display Names _ C-6

05 SCREEN DIMENSIONS AND PREDEFINED WINDOWS C^7

Contents

APPENDIX D BUILT-IN SYMBOLS AND LOGICAL NAMES D-1

D.1 SS$_DEBUG CONDITION D-1

D.2 LOGICAL NAMES D-1
D.2.1 Using DBGSINPUT and DBGSOUTPUT _ D-2

D.3 BUILT-IN SYMBOLS D-3
D.3.1 Specifying the VAX Registers _ D-3

D.3.2 Constructing Identifiers _ D-4

D.3.3 Counting Parameters Passed to Command Procedures D-4

D.3.4 Controlling Radix _ D-4

D.3.5 Specifying Program Locations and the Current Value of an
Entity - D-5

D.3.6 Using Operators in Address Expressions _ D-6
D.3.7 Obtaining Information About Exceptions _ D-7

D.3.8 Specifying Ada Tasks _ D-8

APPENDIX E SUMMARY OF DEBUGGER SUPPORT FOR
LANGUAGES El

E.1 DEBUGGER SUPPORT FOR LANGUAGE ADA E-1

E.1.1 Supported ADA Operators in Language Expressions _ E-1

E.1.2 Supported Constructs in Language and Address Expressions for
ADA _ E-2

E.1.3 Supported ADA Data Types _ E-2

E.1.4 Supported ADA Predefined Attributes _ E-3

E.1.5 Support for ADA Tasking Programs and Events _ E-4
E. 1.5.1 Task States • E-4

E.1.5.2 Task Substates • E-5
E.1.5.3 Supported ADA Events • E-5

E.2 DEBUGGER SUPPORT FOR BASIC E-6

E.2.1 Supported BASIC Operators in Language Expressions _ E-7
E.2.2 Supported Constructs in Language and Address Expressions for

BASIC _ E-7
E.2.3 Supported BASIC Data Types _ E-7

E.3 DEBUGGER SUPPORT FOR BLISS E-8
E.3.1 Supported BLISS Operators in Language Expressions _ E-8
E.3.2 Supported Constructs in Language and Address Expressions for

BLISS _ E-9
E.3.3 Supported BLISS Data Types _ E-9

XIV

Contents

E.4 DEBUGGER SUPPORT FOR LANGUAGE C E-10

E.4.1 Supported C Operators in Language Expressions _ E-10

E.4.2 Supported Constructs in Language and Address Expressions
for C _ E-11

E.4.3 Supported C Data Types _ E-11

E.5 DEBUGGER SUPPORT FOR LANGUAGE COBOL E-12

E.5.1 Supported COBOL Operators in Language Expressions . E-12
E.5.2 Supported Constructs in Language and Address Expressions

for COBOL _ E-13

E.5.3 Supported COBOL Data Types _ E-13

E.6 DEBUGGER SUPPORT FOR LANGUAGE DIBOL E-14

E.6.1 Supported DIBOL Operators in Language Expressions _ E-14

E.6.2 Supported Constructs in Language and Address Expressions
for DIBOL _ E-14

E.6.3 Supported DIBOL Data Types _ E-14

E.7 DEBUGGER SUPPORT FOR LANGUAGE FORTRAN E-15

E.7.1 Supported FORTRAN Operators in Language
Expressions _ E-15

E.7.2 Supported Constructs in Language and Address Expressions
for FORTRAN _ E-16

E.7.3 Supported FORTRAN Predefined Symbols _ E-16

E.7.4 Supported FORTRAN Data Types _ E-16

E.8 DEBUGGER SUPPORT FOR LANGUAGE MACRO E-17

E.8.1 Supported Operators in Language Expressions _ E-17

E.8.2 Supported Constructs in Language and Address Expressions
for MACRO _ E-18

E.8.3 Supported MACRO Data Types _ E-18

E.9 DEBUGGER SUPPORT FOR LANGUAGE PASCAL E-18
E.9.1 Supported PASCAL Operators in Language

Expressions _ E-19

E.9.2 Supported Constructs in Language and Address Expressions
for PASCAL _ E-19

E.9.3 Supported PASCAL Predefined Symbols _ E-19
E.9.4 Supported PASCAL Built-In Functions _ E-20

E.9.5 Supported PASCAL Data Types _ E-20

E.10 DEBUGGER SUPPORT FOR LANGUAGE PL/I E-21

E.10.1 Supported PL/I Operators in Language Expressions _ E-21
E.10.2 Supported Constructs in Language and Address Expressions

for PL/I _ E-21

xv

Contents

E.10.3 Supported PL/I Data Types _ E-21

E.11 DEBUGGER SUPPORT FOR LANGUAGE RPG E-22

E.11.1 Supported RPG Operators in Language Expressions - E-22

E.11.2 Supported Constructs in Language and Address Expressions
for RPG _ E-23

E.11.3 Supported RPG Data Types - E-23

E.12 DEBUGGER SUPPORT FOR SCAN E-23
E.12.1 Supported SCAN Operators in Language Expressions _ E-24

E.12.2 Supported Constructs in Language and Address Expressions
for SCAN _ E-24

E.12.3 Supported SCAN Data Types - E-24

E.12.4 Supported SCAN Events - E-25

E.13 DEBUGGER SUPPORT FOR LANGUAGE UNKNOWN E-26

E.13.1 Supported Operators in Language Expressions _ E-26
E.13.2 Supported Constructs in Language and Address Expressions

for UNKNOWN _ E-26
E.13.3 Supported UNKNOWN Data Types _ E-27

INDEX

EXAMPLES
2- 1 Using the SET/SHOW LOG and SET/SHOW OUTPUT

Commands - 2-10

3- 2 Using the SET/SHOW STEP Commands - 3-4

3—3 Setting, Showing, and Canceling Eventpoints - 3-8

3—4 Using SET BREAK in a DO Clause _ 3-10
3-5 Using the SET/SHOW/CANCEL WATCH Commands _ 3-14

3—6 Using the SET/SHOW/CANCEL TRACE Commands _ 3-16

3—7 Using the /CALL and /BRANCH Qualifiers with SET TRACE _ 3-18

3- 8 Using the SHOW CALLS Command _ 3-21

4— 9 Traceback Information _ 4-1
4- 10 Using the SET/SHOW/CANCEL MODULE Commands _ 4-21

5— 11 Line Numbers and Numeric Labels _ 5-6
5—12 Examining the Current Entity _ 5-7
5—13 Using the Logical Predecessor Symbol _ 5-8

5—14 Using the Logical Successor Symbol - 5-9
5— 15 Using the EVALUATE/ADDRESS Command _ 5-12

6— 16 Using Radix Mode _ 6-4
6—17 Using Mode and Type Qualifiers with the EXAMINE Command 6-7

XVI

t r
r
tt

t
s
i

O
)

(J
1

^

CO

N
)

Contents

6-18 Examining Ranges of Program Locations _ 6-9

6—19 Examining Successive Entities _ 6-9

6—20 Examining Values in VAX Registers _ 6-10

6—21 Examining and Modifying the PSL _ 6-11

6—22 Depositing ASCII Strings _ 6-13

6—23 Depositing Numeric Data _ 6-14

6—24 Depositing VAX Instructions _ 6-15

6—25 Replacing VAX Instructions ___ 6-16

6—26 Depositing in Different Radixes _ 6-16

6—27 Examining and Depositing Values in VAX Registers _ 6-17
6—28 Examining and Modifying the PSL _ 6-18

6— 29 Using the EVALUATE Command _ 6-19

7— 30 Using the TYPE Command _ 7-6

7-31 Using the EXAMINE/SOURCE Command _ 7-7

7-32 Displaying Source Code During Program Execution _ 7-9

7-33 Using the SEARCH and SET/SHOW SEARCH Commands _ 7-12
7-34 Using the SET/SHOW MARGINS Commands _ 7-15

7-35 Using the SET/SHOW MAX_SOURCE_FILES Commands _ 7-17
9-36 Using the ALLOCATE, the SET MODULE/ALLOCATE, the SET

MODULE/ALL. and the SHOW MODULE Commands _ 9-3

9—37 Using the FOR command _ 9-5

9—38 Using the IF Command _ 9-6

9—39 Using the WHILE Command _ 9-7

9-40 Using the DECLARE Command in a Command Procedure _ 9-8
9—41 Defining Debugger Commands _ 9-9

9-42 Using the DEFINE/KEY Command _ 9-10

9—43 Using the SHOW KEY Command _ 9-11

9-44 Using the DELETE/KEY and UNDEFINE/KEY Commands _ 9-12

FIGURES
1— 1 Keypad Key Functions Predefined by the Debugger _ 1-7

2— 1 Process Address Space Layout _ 2-5

Scope of Symbol Declarations _ 4-10
Global Symbol X _ 4-11

Path Names and Scope _ 4-14

Symbol Declaration in the Innermost Routine _ 4-17
Symbol Declaration in a Contained Block _ 4-18

Symbol Declaration in a Containing Program Unit _ 4-19
B—1 Keypad Key Functions Predefined by the Debugger _ B-2

Contents

TABLES

2—1 The /DEBUG Qualifier and Symbolic Debugging _ 2-3
6-2 PSL Modification Values _ 6-17

B—1 Key Definitions Specific to LK201 Keyboards _ B-3
B-2 Keys that Change the Key State _ B-3
B—3 Keys that Invoke Online Help to Display Keypad Diagrams _ B-4
B—4 Debugger Key Definitions _ B-5

xviii

Preface

Intended Audience
Programmers at all levels of experience can use this manual effectively.

New users should start with Chapter 1 (Introduction to the VAX/VMS
Debugger). It contains an overview of debugger features, a brief interactive
tutorial on the debugger, and a summary of debugger commands.

The debugger can be used with most VAX/VMS supported languages
(language support is summarized in Appendix E). This manual emphasizes
usage that is common to all or most languages. For additional information
that is specific to a particular language, you should also refer to the
documentation furnished with that language.

Note that you can use the VAX/VMS debugger only to debug code in user
mode. You cannot debug any code in supervisor, executive, or kernel modes.
If you need to debug code in other than user mode, refer to the VAX/VMS
Delta/XDelta Utility Reference Manual, which describes the VAX/VMS DELTA
/XDELTA Utility.

Structure of This Document
This manual is organized in three parts:

• Chapters 1 through 9 present task-oriented and conceptual information
about the debugger.

• Part II, which follows Chapter 9, is the Debugger Command Dictionary.
It lists all debugger commands alphabetically and provides complete
information on command format, parameters, and qualifiers, as well as
examples of each command's use.

• Part III, which follows the Command Dictionary, consists of appendices.
These provide reference information on various topics such as predefined
keypad-key functions, debugger support of specific languages, and so on.

Associated Documents
Information on compiling and debugging in a particular language may be
found in the documentation furnished with that language.

Information on the linking of programs and on shareable images may be
found in the VAX/VMS Linker Reference Manual.

Preface

Conventions Used in This Document

Convention Meaning

[ret] A symbol with a one- to three-character
abbreviation indicates that you press a key on
the terminal, for example, 1 ret| .

ICTRL/xl The phrase CTRL/x indicates that you must press
the key labeled CTRL while you simultaneously
press another key, for example, CTRL/C, CTRL/Y,
CTRL/O.

$ SHOW TIME
05-JUN-1985 1 1:55:22

Command examples show all output lines or
prompting characters that the system prints
or displays in black letters. All user-entered
commands are shown in red letters.

[expression] Square brackets indicate that the enclosed item
is optional. (Square brackets are not, however,
optional in the syntax of a directory name in a file
specification.)

file-spec, . . . Horizontal ellipsis within command syntax indicates
that additional parameters, values, or information
can be entered.

$ TYPE MYFILE.DAT Vertical series of periods, or ellipsis, means either
that not all the data that the system would display
in response to the particular command is shown or
that not all the data a user would enter is shown.

quotation marks
apostrophes

The term quotation marks is used to refer to
double quotation marks ("). The term apostrophe
(') is used to refer to a single quotation mark.

XX

Summary of Technical Changes

The following technical changes have been made to the VAX/VMS Debugger
since VAX/VMS Version 4.2.

The debugger now supports VAX DIBOL and VAX SCAN. Appendix E
contains a summary of debugger support for these languages. Refer to the
DIBOL and SCAN documentation for complete information.

In addition, the following debugger features and commands have been added
and are fully documented in this manual.

Several enhancements have been made to screen mode (see Chapter 8 and
Appendix C):

• There are four new display attributes to be used with the SELECT
command: /INPUT, /ERROR, /PROGRAM, and /PROMPT. These give
you the option of mixing various types of debugger output in a display,
or directing different types of output to separate displays.

• There is a new PROMPT built-in display. PROMPT shows the debugger
prompt and your input and may be manipulated like other displays,
within certain restrictions.

• You can now divide display windows vertically. The SET WINDOW, SET
DISPLAY, and DISPLAY commands have been changed accordingly.

• There are some new built-in window definitions. In addition to the
full height and width of the screen, the predefined windows include all
possible regions that result from dividing the screen vertically into halves,
thirds, quarters, and sixths, and horizontally into left and right halves.

• The built-in symbols %PAGE and %WIDTH have been added. These
specify the current screen height and width of the terminal.

• A new MOVE command lets you move displays across the screen.

• A new EXPAND command lets you expand and contract displays.

• A new EXTRACT command lets you save screen displays into a file, or
create a file with all the DEBUG commands necessary to re-create the
current screen state at a later time.

• All displays, except for register displays, are now dynamic by default.
This means that, if you change the terminal screen height or width,
display windows will be resized in proportion to maintain their relative
dimensions. The new qualifier /[NOjDYNAMIC lets you control this
feature when using the DISPLAY and SET DISPLAY commands.

• The /[NOJPOP and /[NOJPUSH qualifiers have been added to the
DISPLAY and SET DISPLAY commands. These qualifiers give you the
option of either popping or pushing a display to the top or bottom of the
display "pasteboard", to show or hide that display when you issue those
commands.

Summary of Technical Changes

• The SHOW DISPLAY and SHOW WINDOW commands have been
enhanced. You can now specify a list of parameters, wildcards, and the
/ALL qualifier with these commands.

• There are some new and changed keypad key definitions associated with
screen mode (see Appendix B).

Other new features and commands are as follows:

• You can now debug shareable images. The SET IMAGE, SHOW IMAGE,
and CANCEL IMAGE commands have been added.

• The new SET ATSIGN command lets you establish a default file
specification that the debugger will use when searching for command
procedures. There is also a new SHOW ATSIGN command.

• The new SET EDITOR command lets you establish an editor of your
choice to be invoked by the EDIT command. There is also a new SHOW
EDITOR command.

• The new SHOW STACK command provides detailed information about
the current call stack.

• The /[NOJSHARE and /[NOJJSB qualifiers have been added to the
SET BREAK, SET TRACE, and STEP commands. The [NOJSHARE
and [NOJJSB parameter keywords have been added to the SET STEP
command. These features let you qualify breakpoints, tracepoints, and
the STEP mode.

• The /TYPE qualifier has been added to the EXAMINE and DEPOSIT
commands. The TYPE parameter keyword has been added to the
SET TYPE command. This feature lets you influence the debugger's
interpretation of data in untyped locations.

• When the debugger searches for symbols, it now uses the default scope
search list of 0,1,2,3, . . . n (see the description of the SET SCOPE
command).

• You can now invoke the debugger from your program by signalling the
condition SS$_DEBUG (see Appendix D).

Part I Using the VAX/VMS Debugger

1 Introduction to the VAX/VMS Debugger

This chapter introduces new users to the VAX/VMS Debugger. Section 1.1
summarizes the debugger's features. Section 1.2 gets you started using the
basic functions and commands. Section 1.3 orients you to the debugger
commands by grouping them in general categories, along with short
descriptions.

1.1 Overview of the Debugger

Suppose you have compiled and linked your program successfully. You
now run the program and discover some error. For example, the program
terminates prematurely, or goes into an infinite loop, or gives incorrect output.
The VAX/VMS Debugger helps you locate such run-time programming or
logic errors, also known as bugs.

The debugger lets you observe and manipulate your program interactively as
it executes. By issuing debugger commands at the terminal, you can

• start, stop, and resume the program's execution

• trace the execution path of the program

• monitor selected locations, variables, or events

• examine and modify the contents of variables, or force events to occur.

• in some cases, test the effect of modifications without having to edit the
source code, recompile, and relink

These are the basic debugging techniques at your disposal. Once you are
satisfied that you have found the error in the program, you can edit the
source code and compile, link, and execute the corrected version.

As you use the debugger and its documentation, you will discover variations
on the basic techniques. You will also find that you can tailor the debugger
to your own debugging style. The features of the debugger are summarized
below.

1.1.1 Functional Features
Programming Language Support

You can use the debugger with the following VAX/VMS supported languages:
Ada, BASIC, BLISS, C, COBOL, DIBOL, FORTRAN, MACRO-32, PASCAL,
PL/I, RPG, and SCAN. The debugger recognizes the syntax, expressions, data
typing, and other constructs of a given language. If your program is written
in more than one language, you can change from one language to another in
the course of a debugging session.

1-1

Introduction to the VAX/VMS Debugger

Symbolic Debugging

The VAX/VMS Debugger is a symbolic debugger. You can refer to program
locations by the symbols you used for them in your program (the names
of variables, routines, labels, and so on). You do not have to use virtual
addresses to refer to memory locations.

Support for All Data Types

The debugger understands all language data types, such as integer, floating
point, enumeration, record, array, and so on. It displays program variables
according to their declared type.

Flexible Data Format

The debugger permits a variety of data forms and types for entry and display.
By default, the source language of the program determines the format used
for the entry and display of data. You can also impose other formats. For
example, the contents of a program location may be entered or displayed in
ASCII, hexadecimal, octal, or decimal notation.

Starting and Resuming Program Execution

You start and resume program execution with the GO or STEP commands.
The GO command causes the program to execute until a breakpoint is
reached, a watchpoint is modified, an exception condition occurs, or the
program terminates. The STEP command lets you execute a specified number
of lines or instructions, or up to the next instruction of a specified class.

Breakpoints

By setting breakpoints with the SET BREAK command, you can suspend
program execution at specified locations and check the current status of your
program. Rather than specify a location, you can also suspend execution on
certain classes of instructions or on every source line. Also you can suspend
execution on certain types of events, such as exceptions and Ada tasking
events.

Tracepoints

By setting tracepoints with the SET TRACE command, you can monitor the
path of program execution through specified locations. When a tracepoint
is triggered, the debugger reports that the tracepoint was reached and then
continues execution. As with the SET BREAK command, you can also trace
through classes of instructions and monitor events.

Watchpoints

By setting a watchpoint with the SET WATCH command, you can cause
execution to stop whenever a particular variable or other memory area has
been modified. When a watchpoint is triggered, the debugger suspends
execution at that point and reports the old and new values of the variable.

Manipulation of Variables and Program Locations

With the EXAMINE command, you can determine the value of a variable or
program location. The DEPOSIT command lets you change that value. You
can then continue execution to see the effect of the change, without having to
recompile, relink, and rerun the program.

1-2

Introduction to the VAX/VMS Debugger

Evaluation of Expressions

With the EVALUATE command, you can compute the value of a source-
language expression or an address expression. You can specify expressions
and operators in the syntax of the language to which the debugger is currently
set.

Control Structures

You can use logical control structures (FOR, IF, REPEAT, WHILE) in
commands to control the execution of other commands.

Shareable Image Debugging

You can debug shareable images (images that are not directly executable).
The SET IMAGE command makes it possible for you to reference the symbols
declared in a shareable image.

Terminal Support

The debugger supports all VT-series terminals and Micro VAX workstations.

1.1.2 Ease of Use Features
Online HELP

Online HELP is available during a debugging session. Typing HELP at the
debugger prompt lists all of the debugger commands and selected topics for
which detailed online HELP is available.

Source Code Display

In all supported languages except MACRO, the debugger lets you display
lines of source code during a debugging session. For MACRO, the
code stream of the executing routine is decoded into assembly language
instructions.

Screen Mode

In screen mode, you can display and capture various kinds of information
in scrollable windows that can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are available.
You can selectively direct debugger input, output, and diagnostic messages to
displays. You can also create "DO" displays that capture the output of specific
command sequences.

Keypad Mode

When you invoke the debugger, several commonly used debugger command
sequences are assigned by default to the keys of the numeric keypad. Thus,
you can enter these commands with fewer keystrokes than if you were to
type them at the keyboard. You can also create your own key definitions.

Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. You specify the
editor you wish with the SET EDITOR command. If you use the VAX
Language-Sensitive Editor, the editing cursor is automatically positioned
within the source file whose code appears in the screen-mode source display.

1-3

Introduction to the VAX/VMS Debugger

Command Procedures

You can direct the debugger to execute a command procedure (a file of
debugger commands) to recreate a debugging session, to continue a previous
session, or to avoid typing the same debugger commands many times during
a debugging session. You can pass parameters to command procedures.

Initialization Files

You can create an initialization file containing commands to set your default
debugging modes, screen display definitions, keypad key definitions, symbol
definitions, and so on. When you invoke the debugger, those commands will
be executed automatically to tailor your debugging environment.

Log Files

You can record in a log file the commands you enter during a debugging
session and the debugger's responses to those commands. You can use
log files to keep track of your debugging efforts, or you can use them as
command procedures in subsequent debugging sessions.

Symbol Definitions

You can define your own symbols to represent commands, address
expressions, or values.

1.2 Getting Started
The way you use the debugger depends on several factors: the kind of
program you are working on, the kinds of errors you are looking for, and
your own personal style and experience with the debugger. This section
explains the basic functions that apply to most situations. Additional details
have been purposely left out so you can quickly get started.

The following subjects are covered:

• Starting and terminating a debugging session

• Entering debugger commands and getting online HELP

• Viewing your source code in screen mode and with the TYPE command

• Controlling program execution with the GO, STEP, and SET BREAK
commands, and monitoring execution with the SHOW CALLS, SET
TRACE, and SET WATCH commands

• Examining and manipulating data with the EXAMINE, DEPOSIT, and
EVALUATE commands

• Controlling symbol references with path names and the SET MODULE
and SET SCOPE commands

At the end of this section, a sample debugging session with a simple program
illustrates how to locate an error and correct it.

Language-specific examples are in FORTRAN, COBOL, or Ada. However, the
general concepts are readily adaptable to other languages.

1-4

Introduction to the VAX/VMS Debugger

1.2.1 Starting and Terminating a Debugging Session
To execute a program with the debugger, you first compile and link the
program with the /DEBUG command qualifier. The following example shows
how to use the /DEBUG qualifier with a COBOL program consisting of a
single compilation unit named INVENTORY.

$ COBOL/DEBUG/NOOPTIMIZE INVENTORY

$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the compiler command (COBOL in this case) causes
the compiler to write the symbol records associated with INVENTORY into
the object module, INVENTORY.OBJ. These records will permit you to use,
in debugger commands, the names of variables and other symbols declared
in INVENTORY. (If your program has several compilation units, you need to
compile each unit that you wish to debug with the /DEBUG qualifier).

Depending on the default behavior of the compiler command, the resulting
object code may be optimized to reduce the size of the program and make
it run faster. This may cause the contents of some program locations to
be inconsistent with what you might expect from the source code. So,
when using the debugger, it is best to compile your program with the
/NOOPTIMIZE as well as /DEBUG qualifiers.

The /DEBUG qualifier on the LINK command causes the linker to include
in the executable image all symbol information that is contained in
INVENTORY.OBJ. The qualifier also causes the VAX/VMS image activator
to start the debugger at run time. (Again, if your program has several object
modules, you may need to specify other modules in the LINK command).

You can now invoke the debugger by issuing the DCL RUN command. The
following example shows how the debugger identifies itself after you invoke
it:

$ RUN INVENTORY

VAX DEBUG Version 4.4

•/.DEBUG-1-INITIAL, language is COBOL, module set to ’INVENTORY’
DBG>

The "INITIAL" message indicates that the debugger is initialized for a COBOL
program and that the name of the main program is INVENTORY. The
initialization sets up any language-dependent debugger parameters. The
prompt (DBG>) indicates that you can now enter debugger commands.

To terminate a debugging session any time DBG> is displayed, type EXIT or
press CTRL/Z:

DBG> EXIT

$

The dollar sign ($) prompt indicates that you are at DCL command level.

If you need to interrupt a debugging session for any reason, press CTRL/Y
to return to DCL level. This may be necessary if, for example, your program
loops or otherwise fails to complete execution, or if you need to interrupt
a debugger command that is still in progress. From DCL level, if you then
type the CONTINUE command, you return to where you interrupted the
debugging session.

1-5

Introduction to the VAX/VMS Debugger

If you interrupted because of an infinite loop, type the DCL DEBUG
command instead. This will return you to the debugger prompt so that
you can enter another command. For example:

DBG> GO

(infinite loop)

|CTRL/y!

Interrupt

$ DEBUG
DBG>

The following message, displayed during a debugging session, indicates that
your program has completed normally:

•/.DEBUG-I--EXITSTATUS, is ’'/.SYSTEM-S-NORMAL, normal successful completion’

DBG>

1.2.2 Entering Debugger Commands
You can enter debugger commands any time you see the debugger prompt
(DBG>). To enter a command, type it at the keyboard and press RETURN.
You can enter several commands on a line by separating the command strings
with semicolons (;). As with DCL commands, you can continue a command
string on a new line by ending the line with a hyphen (-), and you can
abbreviate debugger commands and qualifiers to unique characters. Also,
you can use the up-arrow and down-arrow keys to recall commands lines,
and the left-arrow and right-arrow keys to position the cursor for editing the
command line.

Typing HELP gives online HELP on debugger commands and selected
topics. For example, if you type HELP STEP, help on the STEP command is
displayed.

When you invoke the debugger, a few commonly used command sequences
are automatically assigned to the keys on the numeric keypad (to the right of
the main keyboard). By pressing keypad keys, you can enter these commands
with fewer key strokes. The predefined key functions are identified in
Figure 1-1. In addition to the STEP, GO, SHOW CALLS, and EXAMINE
commands, several functions that manipulate screen-mode displays are bound
to the keys. You can also redefine key functions with the DEFINE/KEY
command.

Most keypad keys have three predefined functions—DEFAULT, GOLD, and
BLUE. To obtain the DEFAULT function, simply press the key. To obtain the
GOLD function, first press the PF1 key then the given key. To obtain the
BLUE function, first press the PF4 key, then the given key. In Figure 1-1, the
DEFAULT, GOLD, and BLUE functions are listed within each key's outline,
from top to bottom respectively. For example, pressing keypad key 0 enters
the command STEP (DEFAULT function); pressing key PF1 and then key 0
enters the command STEP/INTO (GOLD function); pressing key PF4 and
then key 0 enters the command STEP/OVER (BLUE function).

Normally, keys 2, 4, 6, and 8 let you scroll screen displays down, left, right,
or up, respectively. By putting the keypad in the MOVE, EXPAND, or
CONTRACT state (as indicated in Figure 1-1), you can also use these keys to
move, expand, or contract displays in four directions. Type HELP Keypad to
get HELP on the keypad key definitions.

1-6

Introduction to the VAX/VMS Debugger

Figure 1-1 Keypad Key Functions Predefined by the Debugger

r

v

F17 1
FI 8 FI 9 F20 ^

DEFAULT MOVE EXPAND CONTRACT

(SCROLL) (EXPAND ♦) (EXPAND -)

J J
f PF1 PF2 PF3 PF4 ^

GOLD HELP DEFAULT SET MODE SCREEN BLUE

GOLD HELP GOLD SET MODE NOSCR BLUE

GOLD HELP BLUE DISP'GENERATE BLUE

7 00

9 —

DISP SRC.INSTOUT SCROLL/UP DISPLAY next DISP next at FS

DISP INST.REG.OUT SCROLL TOP

SCROLL/UP DISP SRC. OUT

^ J
/. ^ 5 rr >

5

SCROLLLEFT EX SOU 0\%PC SCROLL/RIGHT GO

SCROLL/LEFT 255 SHOW CALLS SCROLL/RIGHT255

SCROLL/LEFT SHOW CALLS 3 SCROLL/RIGHT SEL/INST next

V J L J
1 3 ENTER

EXAMINE SCROLL/DOWN SEL SCROLL next

EXAM~(prev) SCROLL/BOTTOM SEL OUTPUT next

SCROLL/DOWN SEL SOURCE next

L J
0 ■ ENTER

STEP RESET

STEP INTO RESET

STEP OVER RESET

j

r-\
"MOVE"

-

MOVE/UP

MOVE/UP 999

MOVE/UP 5

^ J
4 6

MOVE/LEFT MOVE/RIGHT
MOVE/LEFT 999 MOVE/RIGHT 999
MOVE/LEFT 10 MOVE/RIGHT 10

V J C J
2

MOVE/DOWN

MOVE/DOWN 999

MOVE/DOWN 5

_/

-'\

"EXPAND"

r

EXPAND/UP

EXPAND/UP 999

EXPAND/UP 5

6

EXPAND/LEFT

EXPAND/LEFT 999

EXPAND/LEFT 10

J
r

EXPAND/RIGHT

EXPAND/RIGHT 999

EXPAND/RIGHT 10

J

EXPAND/DOWN

EXPAND/DOWN 999

EXPAND/DOWN 5

V_/

LK201 Keyboard:

Press

FI 7

F18

F19

F20

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

r-"\
CONTRACT"

r

EXPAND/UP -1

EX PAN D/UP-999

EXPAND/UP-5

6

VT-100 Keyboard:

Type

SET KEY/STATE=DEFAULT

SET KEY/STATE=M0VE

SET KEY/STATE=EXPAND

SET KEY/STATE=CONTRACT

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

EXPAND/LEFT -1

EXPAND/LEFT -999

EXPAND/LEFT -10

EXPAND/RIGHT -1

EXPAND/RIGHT -999

EXPAND/RIGHT -10

EXPAND/DOWN -1

EXPAND/DOWN -999

EXPAND/DOWN -5

V_/ ZK-4774-85

1.2.3 Viewing your Source Code
The easiest way to view your source code while debugging is to invoke screen
mode, as described below. By default, when you invoke the debugger, you
are in "noscreen" mode, which provides other techniques for viewing source
code. Noscreen mode is described at the end of this section.

1-7

Introduction to the VAX/VMS Debugger

1.2.3.1 Screen Mode
You invoke screen mode by pressing keypad key PF3 (or by typing SET
MODE SCREEN). In screen mode, by default the debugger splits the screen
into three displays named SRC, OUT, and PROMPT, as illustrated below:

- SRC: module SWAP.ROUTINES -scroll-source-
2: with TEXT.IO; use TEXT.IO;
3: package body SWAP.ROUTINES is
4: procedure SWAP1 (A,B: in out INTEGER) is
5: TEMP: INTEGER;
6: begin
7: TEMP := A;

-> 8: A := B;
9: B := TEMP;

10: end;
11:

12: procedure SWAP2 (A,B: in out COLOR) is

13: TEMP: COLOR;
- OUT -output-
stepped to SWAP .ROUT INES. SWAP 1.‘/.LINE 8

SWAP.ROUTINES.SWAP1.A: 35

- PROMPT -error-program-prompt-

DBG> STEP
DBG> EXAMINE A

DBG>

The SRC display shows the source code of the module (compilation unit) that
is currently executing. An arrow in the left column points to the source line
corresponding to the current location of the program counter (PC). The line
numbers, which are assigned by the compiler, match those in a listing file.
As you execute the program, the arrow moves down and the source code is
scrolled vertically to center the arrow in the display.

The OUT display captures debugger output from the commands that you
enter. The PROMPT display shows the debugger prompt, your input,
debugger diagnostic messages, and program output.

Both SRC and OUT are scrollable so you can see whatever information may
scroll beyond the display window's edge. Use keypad key 3 to select the
display to be scrolled. Use keypad key 8 to scroll up and keypad key 2 to
scroll down. Scrolling a display does not affect program execution.

If the debugger cannot locate source lines for the currently executing module,
it tries to display source lines in the next module down on the call stack for
which source lines are available and issues the following message:

'/.DEBUG-I-SOURCESCOPE, Source lines not available for . 0\y,PC.

Displaying source in a caller of the current routine.

Source lines may not be available for a variety of reasons:

• The PC is within a system routine, or a shareable image routine for which
no source code is available.

• The PC is within a routine which was compiled without the /DEBUG
compiler command qualifier (or with /NODEBUG).

• The source file was moved to a different directory after it was compiled
(the location of source files is embedded in the object modules).

1—8

Introduction to the VAX/VMS Debugger

1.2.3.2 Noscreen Mode
"Noscreen" mode is the default, line-oriented mode of displaying input and
output. To get into noscreen mode from screen mode, press the keypad
key sequence GOLD-PF3 (or type SET MODE NOSCREEN). In that mode,
you can use the TYPE command to display one or more source lines. For
example, the following command displays line 7 of the module that is
currently executing:

DBG> TYPE 7
7: TEMP := A;
DBG>

The display of source lines is independent of program execution. You can use
the TYPE command to display source code from a module other than the one
currently executing. In that case, you need to use a "path name" to specify
the module. For example, the following command displays lines 16 through
21 of module TEST:

DBG> TYPE TEST\16:21

Path names are discussed in more detail in the next section, in relation to the
STEP command.

1.2.4 Controlling and Monitoring Program Execution
This section covers the following topics:

• Starting and resuming program execution with the GO command

• Stepping through the program's code with the STEP command

• Determining the current location of the program counter (PC) with the
SHOW CALLS command

• Suspending program execution with breakpoints

• Tracing program execution with tracepoints

• Monitoring changes in variables with watchpoints

With this information you will be able to pick program locations where you
can test and manipulate the contents of variables as described in Section 1.2.5.

1.2.4.1 Starting and Resuming Program Execution
There are two commands for starting or resuming program execution—GO
and STEP. GO simply starts execution. STEP (discussed in the next section)
lets you execute a specified number of source lines or instructions. You use
one or the other command according to the circumstances.

One possible use of the GO command is immediately after you invoke
the debugger. With most programming languages, execution is suspended
directly at the start of the main program. For example (the main program is
INVENTORY in this case):

$ RUN INVENTORY

VAX DEBUG Version 4.4

%DEBUG-I-INITIAL, language is COBOL, module set to ’INVENTORY’
DBG>

1-9

Introduction to the VAX/VMS Debugger

In some cases, however, the debugger suspends execution before the start of
the main program, so that you can choose to execute some initialization code
under debugger control. This occurs, for example, with all Ada programs
and with FORTRAN programs compiled with the /CHECK=UNDERFLOW
qualifier. The debugger indicates these cases with a "NOTATMAIN" message.
For example:

$ RUN HOTEL

VAX DEBUG Version 4.4

‘/.DEBUG-1-INITIAL, language is ADA. module set to ’HOTEL’
•/.DEBUG-I-NOTATMAIN, type GO to get to start of main program

DBG>

Typing GO will then get you to the start of the main program.

You will probably use the GO command most often in conjunction with
breakpoints, tracepoints, and watchpoints (described later in this section). If
you set a breakpoint in the path of execution and then type GO, execution
will be suspended at that breakpoint. Similarly, if you set a tracepoint,
execution will be monitored as it passes through that tracepoint. And if
you set a watchpoint, execution will be suspended when the value of the
"watched" variable changes.

The GO command is also useful if you want to test for an exception condition
or an infinite loop. If an exception condition that is not handled by your
program occurs, the debugger will take over and display the DBG> prompt
so that you can issue commands. If you are using screen mode, the pointer in
the source display will indicate where execution stopped. The SHOW CALLS
command (also explained later in this section) is useful at this point because
it identifies the currently active routine calls (the call stack).

In the case of an infinite loop, the program will not terminate, so the debugger
prompt will not reappear. To obtain the prompt, interrupt the program with
CTRL/Y and then issue the DCL DEBUG command. You can then look at
the source display and a SHOW CALLS display to locate the PC.

1.2.4.2 Stepping Through the Program's Code
The STEP command is useful when you want to execute a specified number
of source lines or instructions, or if you want to execute the program to the
next instruction of a particular kind, for example to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In the
following example, the STEP command executes one line, reports the action
("stepped to . . . "), and displays the line number (27) and source code of the
next line to be executed:

DBG> STEP
stepped to TEST\COUNT*/.LINE 27

27: X := X + 1;
DBG>

The PC is now at the first machine code instruction for line 27 of module
TEST; line 27 is in COUNT, a routine within module TEST.

When displaying a program symbol (for example, a line number, routine
name, or variable name), the debugger always uses a path name. A path
name consists of the symbol plus a prefix that identifies the symbol's location.
In the preceding example, the path name is TEST\COUNT\%LINE 27. The
leftmost element of a path name is the module name. Moving toward the
right, the path name lists any successively nested routines and blocks that
enclose the symbol. A backslash character (\) is used to separate elements

1-10

Introduction to the VAX/VMS Debugger

(except when the language is Ada, where a period is used, to parallel Ada
syntax).

A path name uniquely identifies a symbol of your program to the debugger.
But in general, you need to use path names in commands only if the debugger
tells you that a symbol you have specified is not unique (see Section 1.2.6.2).
(Usually the debugger can figure out the symbol you mean from its context).

Let us now return to the STEP command. You can specify a number of
lines for the STEP command to execute. In the following example, the STEP
command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were generated
by the compiler are recognized as executable lines by the debugger. The
debugger skips over any other lines—for example, comment lines.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). Also, by default, the
debugger steps "over" called routines—execution is not suspended within
a called routine, although the routine is executed. By issuing the SET STEP
INTO command, you tell the debugger to suspend execution within called
routines as well as within the currently executing module. (SET STEP OVER
is the default mode).

1.2.4.3 Determining the Current Location of the Program Counter
The SHOW CALLS command is useful when you are unsure about the
current location of the PC (for example, after returning to the debugger
following a CTRL/Y interrupt). The command shows a traceback that lists
the sequence of calls leading to the currently executing routine. For example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC

♦TEST PRODUCT 18 00000009 0000063C
♦TEST COUNT 47 00000009 00000647

♦MY.PROG MY.PROG 21 0000000D 00000653
DBG>

For each routine (beginning with the currently executing routine), the
debugger displays the following information: the name of the module that
contains the routine, the name of the routine, the line number at which the
call was made (or at which execution is suspended, in the case of the current
routine), and the corresponding PC addresses (the relative PC address from
the start of the routine, and the absolute PC address of the program). This
example indicates that execution is currently at line 18 of routine PRODUCT
(in module TEST), which was called from line 47 of routine COUNT (in
module TEST), which was called from line 21 of routine MY_PROG (in
module MY_PROG).

1-11

Introduction to the VAX/VMS Debugger

1.2.4.4 Suspending Program Execution
The SET BREAK command lets you select locations for program suspension
(breakpoints), where you can issue commands to check the call stack, examine
the current values of variables, and so on.

A typical use of the SET BREAK command is illustrated in the following
example:

DBG> SET BREAK COUNT
DBG> GO

break at PR0G2\C0UNT
54: procedure COUNT(X,Y:INTEGER);

DBG>

In the example, the SET BREAK command sets a breakpoint on routine
COUNT (at the start of the routine's code); the GO command starts execution;
when routine COUNT is encountered, execution is suspended, the debugger
announces that the breakpoint at COUNT has been reached ("break at . . . "),
displays the source line (54) where execution is suspended, and prompts
for another command. At this breakpoint, you could STEP through routine
COUNT and then use the EXAMINE command (discussed further on) to
check on the values of X and Y.

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers, routine
names, instructions, virtual memory addresses, byte offsets). With high level
languages, you typically use routine names, labels, or line numbers, possibly
with path names to ensure uniqueness.

Routine names and labels should be specified as they appear in the source
code. Line numbers may be derived from either a source code display or a
listing file. When specifying a line number, use the prefix %LINE. Otherwise
the debugger will interpret the line number as a memory location. For
example, the next command sets a breakpoint at line 41 of the currently
executing module: the debugger will suspend execution when the PC is at
the start of line 41.

DBG> SET BREAK ‘/.LINE 41

Note that you can set breakpoints only on lines that resulted in machine code
instructions. The debugger warns you if you try to do otherwise (for example
on a comment line). If you want to pick a line number in a module other
than the one currently executing, you need to specify the module's name in a
path name. For example:

DBG> SET BREAK SCREEN.IOV/.LINE 58

You do not always have to specify a particular program location, such as
line 58 or COUNT, to set a breakpoint. You can also use the SET BREAK
command with a qualifier, but no parameter, to break on every line, or on
every CALL instruction, and so on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

Also, you can set breakpoints on events, such as exceptions, or state
transitions in Ada tasking programs.

1-12

Introduction to the VAX/VMS Debugger

You can conditionalize a breakpoint (with a "WHEN" clause) or specify that
a list of commands be executed at the breakpoint (with a "DO" clause). For
example, the next command sets a breakpoint on the label LOOP3. The
debugger DO clause displays the value of the variable TEMP whenever the
breakpoint is triggered.

DBG> SET BREAK L00P3 DO (EXAMINE TEMP)
DBG> GO

break at C0UNTER\L00P3
37: L00P3: FOR I = 1 TO 10 DO

COUNTER\TEMP: 284.19

DBG>

To display the currently active breakpoints, type SHOW BREAK:

DBG> SHOW BREAK
breakpoint at SCREEN.IOY/.LINE 58
breakpoint at PR0G2\L00P3

do (EXAMINE TEMP)

DBG>

To cancel a breakpoint, type CANCEL BREAK, specifying the program
location exactly as you did when setting the breakpoint. CANCEL BREAK
/ALL cancels all breakpoints.

1.2.4.5 Tracing Program Execution
The SET TRACE command lets you select locations for tracing the execution
of your program (tracepoints), without stopping its execution. After setting a
tracepoint, you can start execution with the GO command and then monitor
the PC's path, checking for unexpected behavior. By setting a tracepoint on a
routine, you can also monitor the number of times it is called.

As with breakpoints, every time a tracepoint is reached, the debugger issues
a message and displays the source line. But the program continues executing,
and the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNT
DBG> GO

trace at PR0G2\C0UNT
54: procedure C0UNT(X,Y:INTEGER);

This is the only difference between a breakpoint and a tracepoint. When
using the SET TRACE command, you specify address expressions, qualifiers,
and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE command to trace every line and
is a convenient means of checking the execution path. By default, lines are
traced within all called routines as well as the currently executing routine. If
you do not want to trace system routines or routines in shareable images, use
the /NOSYSTEM or /NOSHARE qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

1-13

Introduction to the VAX/VMS Debugger

The /SILENT qualifier suppresses the trace message and source code display.
This is useful when you want to use the SET TRACE command simply to
execute a debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT ‘/.LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\CLEAR\STATUS: OFF

1.2.4.6 Monitoring Changes in Variables
The SET WATCH command lets you specify program variables that the
debugger will monitor as your program executes. This process is called
setting watchpoints. If the program modifies the value of a "watched"
variable, the debugger suspends execution and displays information. The
debugger monitors watchpoints continuously during program execution.
(Note that the SET WATCH command may also be used to monitor arbitrary
program locations, not just variables).

To set a watchpoint on a variable, specify the variable's name with the SET
WATCH command. For example, the following command sets a watchpoint
on the variable TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered.

The next example shows what happens when your program modifies the
contents of a watched variable.

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTALV/.LINE 13

13: TOTAL := TOTAL + 1;

old value: 16

new value: 17
break at SCREEN.IO.‘/.LINE 14

14: POP(TOTAL);

DBG>

In this example, a watchpoint is set on the variable TOTAL and execution
is started. When the value of TOTAL changes, execution is suspended. The
debugger announces the event ("watch of . . . "), identifying where TOTAL
changed (the start of line 13) and the associated source line. The debugger
then displays the old and new values and announces that execution has been
suspended at the start of the next line (14). Finally, the debugger prompts for
another command. Note that when a change in a variable occurs at a point
other than the start of a source line, the debugger gives the line number plus
the byte offset from the start of the line.

1.2.5 Examining and Manipulating Data
This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE
commands to display and modify the contents of variables and evaluate
expressions.

n-14

Introduction to the VAX/VMS Debugger

1.2.5.1 Displaying the Values of Variables
To display the value of a variable, use the EXAMINE command as follows:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the variable
you specify and retrieves and formats the data accordingly. The following
examples illustrate how to use the EXAMINE command.

Examine a string variable:

dbg> examine employee.name

PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"

DBG>

Examine three integer variables:

dbg> examine width, length, area

SIZEXWIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of real numbers (three per dimension):

dbg> examine real.array

PR0G2\REAL_ARRAY
(1.1) : 27.01000
(1.2) : 31.00000
(1.3) : 12.48000
(2.1) : 15.08000
(2.2) : 22.30000

(2.3) : 18.73000

DBG>

Examine element 4 of a one-dimensional array of characters:

dbg> examine char.array(4)

PR0G2\CHAR_ARRAY(4): ’m’

DBG>

Examine a record variable (COBOL example):

dbg> examine part

INVENTORY\PART:

ITEM: "WF-1247"
PRICE: 49.95
IN-STOCK: 24

DBG>

Examine a record component (COBOL example):

dbg> examine in-stock of part

INVENTORY\IN-STOCK of PART:
IN-STOCK: 24

DBG>

Note that the EXAMINE command may be used with any kind of address
expression (not just a variable name) to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations if
you want the data to be interpreted and displayed in some other data format.

1-15

Introduction to the VAX/VMS Debugger

1.2.5.2 Changing the Values of Variables
To change the value of a variable, use the DEPOSIT command as follows:

DEPOSIT variable-name = value

The DEPOSIT command is like an assignment statement in most
programming languages.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which may
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit a string value (it must be enclosed in quote characters or
apostrophes):

DBG> DEPOSIT PART-NUMBER = "WG-7619.3-84"

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT.WIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) ’K’

Deposit a record component (you cannot deposit an entire record aggregate
with a single DEPOSIT command, only a component):

DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172

Deposit an out-of-bounds value (X was declared as a positive integer):

DBG> DEPOSIT X * -14

7.DEBUG-I-IVAL0UTBNDS, value assigned is out of bounds at or near ’DEPOSIT’

As with the EXAMINE command, you can specify any kind of address
expression (not just a variable name) with the DEPOSIT command. You can
override the defaults for typed and untyped locations if you want the data to
be interpreted in some other data format.

1.2.5.3 Evaluating Expressions
To evaluate a language expression, use the EVALUATE command as follows:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the currently
set language. In the following example, the value 45 is assigned to the
integer variable WIDTH; the EVALUATE command then obtains the sum of
the current value of WIDTH and 7:

DBG> DEPOSIT WIDTH := 45
DBG> EVALUATE WIDTH + 7

52
DBG>

In the next example, the values TRUE and FALSE are assigned to the boolean
variables WILLING and ABLE, respectively; the EVALUATE command then
obtains the logical conjunction of these values:

DBG> DEPOSIT WILLING := TRUE
DBG> DEPOSIT ABLE := FALSE
DBG> EVALUATE WILLING AND ABLE

False
DBG>

1-16

Introduction to the VAX/VMS Debugger

1.2.6 Controlling Symbol References
In most cases, the manner in which the debugger handles the symbols
(variable names, and so on) that you reference in debugger commands should
be transparent to you. However, two areas deserve mention because they
may require some intervention on your part:

• Module setting

• Multiply-defined symbols

1.2.6.1 Module Setting
To facilitate symbol searches, the debugger loads symbol records from the
executable image into a run-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
execution. The loading process is called module setting, because all of the
symbol records of a given module are loaded into the RST at one time.

At debugger start up, only the module containing the image transfer address
is set. As your program executes, whenever the debugger interrupts execution
it sets the module surrounding the current PC location. This lets you
reference the symbols that should be visible at the current PC location.

If you try to reference a symbol in a module that has not been set, the
debugger will warn you that the symbol is not in the RST. For example:

DBG> EXAMINE K

7.DEBUG-W-NOSYMBOL, symbol ’K’ is not in symbol table
DBG>

You must then use the SET MODULE command to set the module containing
that symbol manually:

DBG> SET MODULE M0D3

DBG> EXAMINE K

M0D3\R0UT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies which modules are set.

Note that dynamic module setting may slow the debugger down as more and
more modules are set. If performance becomes a problem, you can use the
CANCEL MODULE command to reduce the number of set modules, or you
can disable dynamic module setting by issuing the SET MODE NODYNAMIC
command (SET MODE DYNAMIC enables dynamic module setting).

1-17

Introduction to the VAX/VMS Debugger

1.2.6.2 Resolving Multiply-Defined Symbols
The debugger finds the symbols that you reference in commands according
to the scope and visibility rules of the currently set language. In general, the
debugger first looks for a symbol within the block or routine surrounding
the current PC location; if the symbol is not found in that scope region, the
debugger searches the nesting program unit, then its nesting unit, and so on.
(The precise manner depends on the currently set language and guarantees
that the proper declaration of a multiply-defined symbol is selected.)

The debugger must let you reference symbols throughout your program,
not just those that are visible at the current PC location, to allow you to
set breakpoints in arbitrary areas or examine arbitrary variables, and so
on. Therefore, if the symbol is not visible at the current PC location, the
debugger also searches other scope regions. First, it looks within the currently
executing routine, then the caller of that routine, then its caller, and so on.
Symbolically, this search list is denoted 0,2,2, . . . ,n, where n is the number
of calls in the call stack. Within each of these scope regions, the debugger
uses the visibility rules of the language to locate a symbol. If the symbol is
not found, the debugger then searches the rest of the run-time symbol table.

If the debugger cannot resolve a multiply-defined symbol, it issues a message.
For example:

DBG> EXAMINE Y
‘/.DEBUG-W-NOUNIQUE, symbol »Y* is not unique

DBG>

In that case, you can use a path-name prefix to uniquely specify a declaration
of the given symbol. First, use the SHOW SYMBOL command to identify
all path names associated with the given symbol; then use the desired path
name when referencing the symbol. For example:

DBG> SHOW SYMBOL Y
data M0D7\R0UT3\BL0CK1\Y
data M0D4\R0UT2\Y
DBG> EXAMINE M0D4\R0UT2\Y
M0D4\R0UT2\Y: 12
DBG>

If you need to refer to a particular declaration of Y repeatedly, use the SET
SCOPE command to establish a new default scope for symbol lookup. Then,
references to Y without a path-name prefix will specify the declaration of Y
that is visible in the new scope region. For example:

DBG> SET SCOPE M0D4\R0UT2
DBG> EXAMINE Y
M0D4\R0UT2\Y: 12

DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the CANCEL SCOPE command.

1—18

Introduction to the VAX/VMS Debugger

1.2.7 A Sample Debugging Session

This section goes through a debugging session with a simple FORTRAN
program that contains a logic error:

1: INTEGER INARR(20), 0UTARR(20)
2: C
3: C -Read the input array from the data file.

4: OPEN(UNIT=8, FILE=’DATAFILE.DAT’, STATUS= * OLD *)
5: READ(8,*) N. (INARR(I), 1=1,N)
6: C

7: C -Square all non-zero elements and store in OUTARR.
8: K = 0
9: DO 10 I = 1, N

10: IF(INARRU) .NE. 0) THEN
11: OUTARR(K) = INARR(I)**2
12: ENDIF

13: 10 CONTINUE
14: C

15: C -Print the squared output values. Then stop.
16: PRINT 20. K
17: 20 FORMAT(* Number of non-zero elements is’,14)
18: DO 40 I = 1, K
19: PRINT 30, I, OUTARR(I)
20: 30 FORMAT(’ Element*,14,’ has value’,16)
21: 40 CONTINUE
22: END

As you read on, you can refer back to this code to identify source lines. The
program reads a sequence of integer numbers from a data file (lines 4 and 5)
and saves these numbers in the array INARR. The program then enters a loop
(lines 8 through 13) where it copies the square of each nonzero integer into
another array OUTARR. Finally, it prints the number of nonzero elements in
the original sequence and the square of each such element (lines 16 through
21).

The error in the program occurs when variable K, which keeps track of the
current index into OUTARR, is not incremented in the loop on lines 9 through
13. The statement K = K + 1 should be inserted just before line 11.

To find this error, first compile, link, and run the program:

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES

$ RUN SQUARES

VAX DEBUG Version 4.4

'/.DEBUG-1-INITIAL, language is FORTRAN, module set to ’ SQUARES$MAIN ’
DBG>

You can now enter debugger commands. To step forward 4 lines, enter this
command:

DBG> STEP 4

stepped to SQUARES$MAIN\'/.LINE 9
DBG>

To check the current values of variables N and K, enter this command:

DBG> EXAM N, K

SQUARES$MAIN\N: 9
SQUARES$MAIN\K: 0
DBG>

1-19

Introduction to the VAX/VMS Debugger

The values of N and K are both correct at this point in the execution. Now
enter the command STEP 2 to enter the loop that copies and squares all
nonzero elements of INARR into OUTARR.

DBG> STEP 2
stepped to SQUARES$MAIN*/.LINE 11

DBG>

To see if I and K have the expected values, enter EXAM I, K.

DBG> EXAM I,K
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 0
DBG>

I has the expected value (namely 1), but K has the value zero, which is not
the expected value. Now you can see the error in the program: K should
be incremented in the loop just before it is used in line 11. To check this
hypothesis, "repair" the program with the following debugger commands:

DBG> DEPOSIT K * 1
DBG> SET TRACE/SILENT ‘/.LINE 11 DO (DEPOSIT K = K + 1)

DBG>

The first command gives K the value it should have now, namely 1. The
second command specifies that the debugger should perform the debugger
command DEPOSIT K = K + 1 each time line 11 is reached in the execution.
The /SILENT qualifier suppresses the "trace at" message that would otherwise
be announced each time line 11 is executed. The net effect is that the program
has been "patched" to perform correctly by the SET TRACE command.

Line 22 is a suitable location for a breakpoint that will stop program execution
after testing the correctness of your "patch." Set a breakpoint as follows:

DBG> SET BREAK '/.LINE 22

DBG>

You now want to run your program to test your patch. Enter GO to execute
the program until it hits the breakpoint at line 22.

DBG> GO
Number of non-zero elements is 6
Element 1 has value 16
Element 2 has value 36
Element 3 has value 9
Element 4 has value 49
Element 5 has value 81
Element 6 has value 1

break at SQUARES$MAIN\7,LINE 22
22: END

DBG>

The program output shows that the program seems to work properly with the
DEPOSIT K = K + 1 patch. You can now use the EDIT command to invoke
the VAX Language Sensitive Editor, or another editor previously established
with the SET EDITOR command:

DBG> EDIT

The editor positions the cursor at the same line that is marked by the pointer
in the debugger's source display.

1—20

Introduction to the VAX/VMS Debugger

The corrected portion of the source code follows.

8: K = 0
9: DO 10 I = 1. N

10: IF(INARR(I) .NE. 0) THEN
11: K = K + 1

12: OUTARR(K) = INARR(I)**2
13: ENDIF
14: 10 CONTINUE

Now you can compile, link, and run the program again under debugger
control, to check that it behaves correctly:

$ FORTRAN/DEBUG/NOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES
$ RUN SQUARES

To set a breakpoint at line 12 where the values of I and K will be displayed
automatically, enter this command (the subsequent GO command starts
execution):

DBG> SET BREAK ’/.LINE 12 DO (EXAMINE I,K)

DBG> GO

SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 1
DBG> GO

SQUARES$MAIN\I: 2
SQUARES$MAIN\K: 2
DBG> GO

SQUARES$MAIN\I: 4
SQUARES$MAIN\K: 3

At the first breakpoint, the value of K is 1, indicating that the program is
behaving correctly so far. Each additional GO command will show the
current values of I and K. After two GO commands, K is now 3, as expected,
but note that I is 4. This indicates that one of the INARR elements was
zero so that lines 11 and 12 were not executed (and K not incremented) on
one iteration of the DO loop. This confirms that the program is behaving
correctly.

1.3 Debugger Command Summary

The following sections list all of the debugger commands and any related
DCL commands in functional groupings, along with brief descriptions.

1—21

Introduction to the VAX/VMS Debugger

1.3.1 Starting and Terminating a Debugging Session

($) RUN1

($) RUN/INOJDEBUG1

EXIT, CTRL/Z

QUIT

CTRL/Y

CTRL/C

($) CONTINUE1

($) DEBUG1

ATTACH

SPAWN

Invokes the debugger if LINK/DEBUG was used

Controls whether the debugger is invoked when the
program is executed

Ends a debugging session, executing all exit handlers

Ends a debugging session without executing any exit
handlers declared in the program

Interrupts a debugging session, returning you to DCL
level

Like CTRL/Y, unless the program has a CTRL/C
service routine

Resumes a debugging session after CTRL/Y
interruption

Resumes a debugging session after CTRL/Y
interruption but returns you to the debugger prompt

Passes control of your terminal from the current
process to another process (like $ ATTACH)

Creates a subprocess. Lets you issue DCL commands
without interrupting your debugging context (like $
SPAWN)

^his is a DCL command, not a debugger command.

1.3.2 Controlling and Monitoring Program Execution

GO

STEP

(SET,SHOW) STEP

(SET,SHOW,CANCEL) BREAK

(SET,SHOW,CANCEL) TRACE

(SET,SHOW,CANCEL) WATCH

(SET,CANCEL) EXCEPTION BREAK

SHOW CALLS

Starts or resumes program execution

Executes the program up to the next
line, instruction, or specified instruction

(Establishes, displays) the default
qualifiers for the STEP command

(Sets, displays, cancels) breakpoints

(Sets, displays, cancels) tracepoints

(Sets, displays, cancels) watchpoints

(Sets, cancels) exception breakpoints

Identifies the currently active routine
calls

1-22

Introduction to the VAX/VMS Debugger

SHOW STACK

CALL

Gives additional information about the
currently active routine calls

Calls a routine

1.3.3 Examining and Manipulating Data

EXAMINE Displays the value of a variable or the contents of a program
location

DEPOSIT Changes the value of a variable or the contents of a program
location

EVALUATE Evaluates a language or address expression

1.3.4 Controlling Type Selection and Symbolization

(SET,SHOW,CANCEL) RADIX

(SET,SHOW,CANCEL) TYPE

SET MODE [NO]G_FLOAT

(Establishes, displays, restores) the radix for data
entry and display

(Establishes, displays, restores) the type to be
associated with untyped program locations

Controls whether double-precision floating-point
constants are interpreted as G—FLOAT or D_
FLOAT

SET MODE [NOJLINE Controls whether code locations are displayed
in terms of line numbers or routine-name + byte
offset

SET MODE [NOJSYMBOLIC

SYMBOLIZE

Controls whether code locations are displayed
symbolically or in terms of numeric addresses

Converts a virtual address to a symbolic address

1.3.5 Controlling Symbol Lookup

SHOW SYMBOL

(SET,SHOW,CANCEL) MODULE

(SET,SHOW,CANCEL) IMAGE

SET MODE [NO]DYNAMIC

ALLOCATE

(SET,SHOW,CANCEL) SCOPE

Displays symbols in your program

"Sets" a module by loading its symbol
records into the debugger's symbol table,
identifies, cancels a "set" module

"Sets" a shareable image by loading data
structures into the debugger's symbol table,
identifies, cancels a "set" image

Controls whether or not modules are "set"
automatically when the debugger interrupts
execution

Expands the debugger's memory pool to let
you "set" more modules

(Establishes, displays, restores) the scope for
symbol lookup

1-23

Introduction to the VAX/VMS Debugger

1.3.6 Displaying Source Code

TYPE

EXAMINE/SOURCE

(SET,SHOW,CANCEL) SOURCE

SEARCH

(SET,SHOW) SEARCH

(SET,SHOW) MAX _SOURCE_
FILES

(SET,SHOW) MARGINS

Displays lines of source code

Displays the source code at the location
specified by the address expression

(Creates, displays, cancels) a source
directory search list

Searches the source code for the specified
string

(Establishes, displays) the default qualifiers
for the SEARCH command

(Establishes, displays) the maximum number
of source files that may be kept open at
one time

(Establishes, displays) the left and right
margin settings for displaying source code

1.3.7 Screen Mode

SET MODE [NOJSCREEN

SET MODE [NOJSCROLL

DISPLAY

(SET,SHOW,CANCEL) DISPLAY

(SET,SHOW,CANCEL)
WINDOW

SELECT

SHOW SELECT

SCROLL

SAVE

EXTRACT

Enables/disables screen mode

Controls whether an output display is updated
line by line or once per command

Modifies an existing display

(Creates, identifies, deletes) a display

(Creates, identifies, deletes) a window
definition

Selects a display for a display attribute

Identifies the displays selected for each of the
display attributes

Scrolls a display

Saves the current contents of a display into
another display

Saves a display or the current screen state
into a file

EXPAND

MOVE

(SET,SHOW) TERMINAL

CTRL/W,DISPLAY/REFRESH

Expands or contracts a display

Moves a display across the screen

(Establishes, displays) the height and width of
the screen

Refreshes the screen

1.3.8 Source Editing

EDIT

(SET,SHOW) EDITOR

1-24

Invokes an editor during a debugging session

(Establishes, identifies) the editor invoked by the EDIT
command

Introduction to the VAX/VMS Debugger

1.3.9 Defining Symbols

Defines a symbol as an address, command, or value

Deletes symbol definitions

(Establishes, displays) the default qualifier for the
DEFINE command

Identifies symbols that have been defined

DEFINE

DELETE (UNDEFINE)

(SET,SHOW) DEFINE

SHOW SYMBOL/DEFINED

1.3.10 Keypad Mode

SET MODE [NO]KEYPAD

DEFINE/KEY

DELETE/KEY (UNDEFINE/KEY)

SET KEY

SHOW KEY

Enables/disables keypad mode

Creates key definitions

Deletes key definitions

Establishes the key definition state

Displays key definitions

1.3.11 Command Procedures and Log Files

DECLARE

(SET,SHOW) LOG

SET OUTPUT [NO]LOG

SET OUTPUT [NO]SCREEN_LOG

SET OUTPUT [NO]VERIFY

SHOW OUTPUT

(SET,SHOW) ATSIGN

@file-spec

Defines parameters to be passed to
command procedures

(Specifies, identifies) the debugger log file

Controls whether a debugging session is
logged

Controls whether, in screen mode, the
screen contents are logged as the screen is
updated

Controls whether debugger commands
are displayed as a command procedure is
executed

Displays the current output options
established by the SET OUTPUT command

(Establishes, displays) the default file
specification that the debugger uses to
search for command procedures

Executes a command procedure

1.3.12 Control Structures

Executes a list of commands conditionally

Executes a list of commands repetitively

Executes a list of commands repetitively

IF

FOR

REPEAT

1-25

Introduction to the VAX/VMS Debugger

WHILE Executes a list of commands conditionally

EXITLOOP Exits an enclosing WHILE, REPEAT, or FOR loop

1.3.13 Debugging Special Cases

SET OUTPUT [NO]TERMINAL

(SET,SHOW) LANGUAGE

(SET,SHOW) EVENT_FACILITY

SHOW EXIT_HANDLERS

(SET,SHOW) TASK

(DISABLE,ENABLE,SHOW) AST

Controls whether debugger output, except
for diagnostic messages, is displayed or
suppressed

(Establishes, displays) the current language

(Establishes, identifies) the current run-time
facility for language-specific events

Identifies the exit handlers declared in the
program

Modifies the tasking environment, displays
task information

(Disables, enables) the delivery of ASTs in the
program, identifies whether delivery is enabled
or disabled

1-26

2 Controlling the Debugging Environment

The following subjects are discussed in this chapter:

• Controlling what symbolic information is available to you during a
debugging session.

• Options for running your program.

• Debugger activation.

• Debugger initialization files.

• Language-dependent and -independent parameters.

• Log files.

• Command procedures.

• Interrupting a debugging session.

2.1 Controlling Symbol Information
When you run your program under debugger control, you can debug your
program symbolically, using the symbols you used in your source program.

Symbolic debugging is possible because the debugger uses a symbol table
which it stores in the executable image file (EXE) that you run. Part of the
symbol table—the debugger symbol table (DST)—is created by the compiler
or the assembler. Another part—the global symbol table (GST)—is created
by the linker. When you specify the /DEBUG command qualifier on both the
compile and the LINK commands, you are controlling the creation of these
symbol tables.

In general, if you intend to debug your program, you should both compile
and link your program using the /DEBUG command qualifier. The symbol
table information generated by the compiler is processed by the linker, so you
can obtain the full range of symbol table information at run time.

The example below shows how to start a debugging session during which
you can use all the symbolic information in the program MEANSUB.

$ BASIC/DEBUG MEANSUB

$ LINK/DEBUG MEANSUB

$ RUN MEANSUB

VAX-ii DEBUG Version *****

•/.DEBUG-1-INITIAL, language is BASIC, module set to ’MEANSUB$MAIN*

DBG>

Note that you do not have to specify RUN/DEBUG if you specify LINK
/DEBUG. If, however, you specified the /DEBUG command qualifier when
you linked your program but you want your program to run without debugger
control, you can specify the /NODEBUG command qualifier at run time.

Once you have debugged your program, you may want to recompile and
relink it without creating symbol table information. In this way, you can
reduce the size of both your object (OBJ) and image (EXE) files.

2-1

Controlling the Debugging Environment

2.1.1 Compiling with the /DEBUG and the /TRACE Command Qualifiers
You can specify the /DEBUG command qualifier on a compile command, the
LINK command, and the RUN command.

When you specify the /DEBUG qualifier on a compile command, the compiler
then creates a symbol table (the DST) containing information both about the
names you used in your program as well as about line numbers. For this
reason, you should always use the /DEBUG qualifier when you compile any
program that you intend to debug.

If you do not specify the /DEBUG command qualifier on the compile
command, information about names of local variables are not included in
the symbol table. However, the compiler still includes information about
routine names and line numbers so it can give a symbolic traceback if your
program terminates with a severe error.

If you do not want any symbol table (including the traceback information)
to be created, you can specify the /DEBUG=NONE qualifier on the compiler
command. For language-specific details, refer to the user's guide for the
language you are using.

2.1.2 Linking with the /DEBUG and the /TRACE Command Qualifiers
When you specify the /DEBUG command qualifier with the LINK command,
the linker creates a global symbol table (the GST) with the names of all
your global data. The linker includes all the symbol tables that have been
generated by the compiler. In addition, the linker sets a flag in the image
file which causes your program to run under debugger control when it is
executed.

If you do not specify the /DEBUG qualifier with the LINK command, then
the linker includes only the symbol table information that is necessary for a
symbolic traceback. The linker also does not set the flag in the image file that
indicates debugger control.

You can direct the linker to generate no symbol tables (including the traceback
information) by specifying the /NOTRACE qualifier with the LINK command.
As a result, you cannot debug your program using the debugger.

2.2 Options for Running Your Program
Use of the DCL commands RUN/[NO]DEBUG and DEBUG are explained in
this section.

2.2.1 Using the RUN/[NO]DEBUG Command
You can use the /DEBUG and /NODEBUG command qualifiers on the RUN
command to control whether your program runs under debugger control.

If you did not specify the /DEBUG qualifier when you linked your program,
then you must specify RUN/DEBUG if you want the debugger to receive
control. In this case, however, you cannot debug your program using local
symbols.

2-2

Controlling the Debugging Environment

If you linked your program with the /DEBUG command qualifier, you can
specify the /NODEBUG qualifier if you do not want your program to run
under debugger control.

Table 2-1 summarizes what symbolic information is available in the
executable image when you specify the /DEBUG command qualifier with
the compiler command, the LINK command, and the RUN command.

Table 2-1 The /DEBUG Qualifier and Symbolic Debugging

Compile (or Assembly)
Command Qualifier

LINK Command
Qualifier

RUN Command
Qualifier

Symbolic
Information

None None /DEBUG Traceback

/DEBUG
or

/DEBUG=ALL

None /DEBUG Traceback

/NODEBUG
or

/DEBUG=NONE

None /DEBUG None

/DEBUG=TRACEBACK
or

=(TRACEBACK,NOSYMBOLS)

None /DEBUG Traceback

None /DEBUG None Traceback
global symbols

/DEBUG
or

/DEBUG=ALL

/DEBUG None Local symbols
global symbols
traceback

/NODEBUG
or

/DEBUG=NONE

/DEBUG None Global symbols

/DEBUG=TRACEBACK
or

=(TRACEBACK,NOSYMBOLS)

/DEBUG None Traceback
global symbols

2.2.2 Using the DEBUG Command

If your program is running without debugger control and you want to invoke
the debugger, you must

1 Interrupt the running program by entering CTRL/Y

2 Issue the DEBUG command

After you enter the DEBUG command, the debugger displays an
informational message and the DBG> prompt, indicating that it is ready
to accept a debugger command.

To use this feature, you must, as a minimum, have linked your program with
the /TRACE qualifier. To reference your program's symbols, you must have
linked with the /DEBUG qualifier. Note that, under these conditions, you
must then use the DCL command RUN/NODEBUG to execute the program
without the debugger.

2-3

Controlling the Debugging Environment

You will find the DEBUG command particularly useful when

• Your program is in an infinite loop. After interrupting your program and
entering the DEBUG command, you can debug your program to find the
cause of the infinite loop.

• You have entered the RUN/NODEBUG command but later decide that
you want debugger control.

• You have not specified the /DEBUG command qualifier at compile time,
link time, or run time but want to debug your running program. Note
that in this situation, most symbolic information is unavailable to the
debugger; you must use virtual memory addresses and not symbols to
refer to program and data locations.

After you interrupt your running program and enter the DEBUG command,
you will not know at which instruction your program was interrupted. To
find out, issue the SHOW CALLS command.

Note that you may enter certain DCL commands after you interrupt your
program and still be able to start the debugger by subsequently entering the
DEBUG command. See Section 2.7.2 for more information.

The following example demonstrates how to interrupt your program and start
the debugger using the DEBUG command. Note that CTRL/Y is echoed as
"Interrupt" in reverse video.

$ RUN PROG

1 CTRL/Y I

Interrupt

$ DEBUG

VAX-11 DEBUG Version *****

‘/.DEBUG-1-INITIAL, language is COBOL, module set to ’INVENTORY’
DBG>

2.3 Debugger Activation
The debugger is a shareable image that the VAX/VMS operating system
maps into the address space of a user process when SYS$IMGSTA is the
first entry in the transfer address array. SYS$IMGSTA is the first entry when
you specify any one of the following combinations of DCL commands in the
process of program development:

• LINK/DEBUG and not RUN/NODEBUG

• RUN/DEBUG (unless LINK/NOTRACEBACK)

• DEBUG following program interruption (unless LINK/NOTRACEBACK)

When the /NOTRACEBACK qualifier is specified at link time, the linker does
not generate a debug symbol table (DST). Since a DST must be available at
run time in order for the debugger to execute, specifying /NOTRACEBACK
at link time inhibits the debugging of that image regardless of what other
qualifiers are or are not specified at link or run time.

2-4

Controlling the Debugging Environment

At run time, then, given any of the previously mentioned combinations of
DCL commands, SYS$IMGSTA, a VAX/VMS component maps the debugger
(that is, the shareable image DEBUG.EXE) into the highest-addressed portion
of PO space adjacent to the user image and passes control to the debugger.

When the debugger receives control, it initializes a portion of the address
space adjacent to the debugger image with three symbol tables—the DST,
the GST, and the RST. See Sections 4.2.1, 4.2.2, and 4.2.3 for a description of
these symbol tables and how the debugger uses them.

Figure 2-1 depicts the layout of the virtual address space of a process that is
running a program under debugger control.

Figure 2-1 Process Address Space Layout

lower
addresses

higher
addresses

USER PROGRAM

(PROG.EXE)

DEBUGGER CODE

(DEBUG.EXE)

DEBUG SYMBOL TABLE

(DST)

GLOBAL SYMBOL TABLE

(GST)

RUN TIME SYMBOL TABLE

(RST)

ZK-573-81

2.4 Debugger Initialization Files
Debugger initialization files contain commands you always issue after you
enter the debugger. Then, every time you invoke the debugger, those
commands are automatically executed.

For example, you might have a file DEBUG.INI containing the following
commands:

SET SOURCE DISK$
SET STEP LINE, SOURCE
SET MODULE/ALL
SET OUTPUT LOG.VER
SET LOG LINK.LOG
DEFINE/COMMAND W = "OWALK_LINK_LIST.COM"

To make this file a debug initialization file, use the DCL command DEFINE:

$ DEFINE DBGIINIT [JONES.DBGDIR]DEBUG.INI

2-5

Controlling the Debugging Environment

The debugger will execute the commands in this file before it issues the
DBG> prompt, as follows:

VAX-11 DEBUG Version *****

•/.DEBUG-1-INITIAL, language is BASIC, module set to ’MEANSUB$MAIN’

SET LOG LINK.LOG
DEFINE/COMMAND W = "(8WALK_LINK_LIST.COM''

•/.DEBUG-I-VERIFYICF, exiting indirect command file "DBG$INIT"

DBG>

2.5 Language-Dependent and Independent Parameters
At start up, the debugger displays an informational message in the following
format:

VAX-11 DEBUG Version Number

•/.DEBUG-1-INITIAL, language is xxx, module set to yyy

DBG>

The first line of this message identifies the debugger's software version
number. The second line contains initialization information that identifies the
current language and program module. The third line contains the debugger
prompt DBG> .

2.5.1 Language-Dependent Debugging Parameters
Debugging parameters influence how the debugger interprets commands and
how it displays the results of command execution.

At start up, the debugger sets a default value for each debugging parameter.
These values may be displayed using the appropriate SHOW command, may
be altered using the appropriate SET command, and, in some cases, may be
canceled using the appropriate CANCEL command.

The default values of some debugging parameters may vary, depending on
the current language; that is, a particular parameter may have one default
value if the current language is BASIC and another default value if the
current language is MACRO. Such parameters are called language-dependent
debugging parameters.

The following parameters are language-dependent debugging parameters:

• MODE

• RADIX

• STEP

• TYPE

When you change the current language by the SET LANGUAGE command,
the default values for language-dependent debugging parameters may change.

To find out what the current language is, issue the SHOW LANGUAGE
command.

2—6

Controlling the Debugging Environment

2.5.2 Language-Independent Debugging Parameters

At start up, the default values of two debugging parameters are established
independently of the current language setting:

• MODULE

• SCOPE

The module parameter allows for the insertion of a module's symbol
information into the run-time symbol table (RST). At start up, the debugger
inserts, into the RST, symbol records for the module containing the transfer
address. The name of this module and the name of the language in which
the module is written appears in the debugger informational message.

The transfer address is the location within the compiled code specified by the
keyword(s) in the source language that signal the beginning of a program.
For example, in VAX PASCAL the transfer address is the location within the
compiled code specified by the keyword PROGRAM.

The scope parameter influences the debugger's interpretation of symbols.

When you start the debugger with the RUN command, the value of the scope
parameter is the module that contains the transfer address. When you start
the debugger with the DEBUG command, the value of the scope parameter is
the module in which program execution was interrupted.

Chapter 4 contains a full description of how the module and scope parameters
affect the debugger's interpretation of symbols.

You can direct the debugger to keep a record of a debugging session by
creating a log file. You can also direct the debugger to execute debugger
commands listed in an external file. Such a file, when executed, is called a
command procedure. Further, you can direct the debugger to execute a log
file as a command procedure. This section discusses these topics.

2.6 Log Files
A debugger log file is a file containing every debugger command you
issue during a particular debugging session, together with a display of the
debugger's response to those commands.

In a debugger log file, any command you issue in response to the debugger
prompt (DBG>) begins a line, but the debugger prompt itself is not recorded.
The debugger's response to the command appears on the following line or
lines and, except for an exclamation point at the beginning of each line of
response, is identical to what you see at your terminal.

The following is an example of a debugger log file. Note the absence of
debugger prompts and the presence of exclamation points at the beginning of
each line of debugger response.

SHOW OUTPUT
!output: noverify, terminal, logging to _DB2: [GMF]EV.LOG;1
SHOW TRACE
!'/.DEBUG-1-NOTRACES, no tracepoints are set, no opcode tracing
SET TRACE '/.LINE 30
SET BREAK '/.LINE 60
SHOW TRACE

2-7

Controlling the Debugging Environment

Itracepoint at MEANSUB$MAIN '/.LINE 30

GO
!routine start at MEANSUB$MAIN
! trace at MEANSUB$MAIN\'/,LINE 30
! break at MEANSUB$MAIN\'/,LINE 60

SET TRACE ‘/.LINE 40
SHOW TRACE
Itracepoint at MEANSUB$MAIN\'/,LINE 40
Itracepoint at MEANSUB$MAIN*/,LINE 30

GO ’/.LINE 20
! start at MEANSUB$MAIN\'/,LINE 30
! trace at MEANSUB$MAIN\'/,LINE 30
•trace at MEANSUB$MAIN\'/,LINE 40
! break at MEANSUB$MAIN\'/.LINE 60

To create a debugger log file, use the SET OUTPUT command. To name a
debugger log file, use the SET LOG command. The following subsections
discuss these commands.

2.6.1 The SET OUTPUT and SHOW OUTPUT Commands
The SET OUTPUT command controls the debugger's current output
configuration; that is, it controls the way in which the debugger's responses
to commands you issue are displayed and recorded.

The format of the SET OUTPUT command is

SET OUTPUT parameter [.parameter...]

The following is a list of output parameters that you may specify in the SET
OUTPUT command.

LOG

NOLOG

TERMINAL

NOTERMINAL

VERIFY

NOVERIFY

Writes debugger output to a log file. If you have not used the
SET LOG command to name a log file, the debugger uses the
default file name DEBUG.LOG.

Does not write debugger output to a log file. This output
parameter is a default; the debugger does not write output to
a log file unless you explicitly request it.

Displays debugger output at the terminal. This output
parameter is a default; the debugger displays output on
the terminal unless you explicitly request it not to do so.

Does not display debugger output, except for diagnostic
messages, at the terminal.

Causes the debugger to include in its output each input
command string in any command procedure or DO clause that
it is executing; that is, the debugger not only displays the
results of executing each command in a command procedure
or DO clause but also displays the commands that caused

execution.

Causes the debugger not to include as output each input
command string that it executes from a command procedure
or from a DO clause.

This output parameter is a default; the debugger does not
display commands that it executes from command procedures
or DO clauses unless you explicitly direct it to do so.

2—8

To see which output parameters are currently in effect, issue the SHOW
OUTPUT command.

Controlling the Debugging Environment

2.6.2 The SET LOG and SHOW LOG Commands
If the output parameter LOG is in effect (by SET OUTPUT LOG), you can
direct the debugger to write output to a specified file by issuing the SET LOG
command in the following format:

SET LOG file-spec

The file-spec parameter is the file specification of the file to which you want
the debugger to write its output.

If the output parameter LOG is in effect but you have not issued the SET
LOG command to name a log file, the debugger writes output to a file with
the default name DEBUG.LOG.

If the output parameter LOG is not in effect, the debugger does not write
its output to the file specified in the SET LOG command. However, if you
subsequently issue a SET OUTPUT LOG command, the debugger begins
writing output to the file specified in the SET LOG command.

If the file-spec parameter in the SET LOG command includes both a file name
and a file type, the debugger writes to the file so specified.

If the file-spec parameter in the SET LOG command does not include a file
type, the debugger uses the default file type of LOG.

To find out the name of the current log file, issue the command SHOW LOG.

Example 2-1 demonstrates the SET LOG, SHOW LOG, SET OUTPUT, and
SHOW OUTPUT commands.

2-9

Controlling the Debugging Environment

Example 2-1 Using the SET/SHOW LOG and SET/SHOW
OUTPUT Commands

DBG>SET LOG FILE IName a log file.

DBG>SET OUTPUT LOG !Write output to the log

!file.

DBG>SHOW OUTPUT
output: noverify, terminal, logging to _DB2:[GMF]FILE.LOG;1

!Display current output
!configuration.

DBG>SH0W LOG !Display name of current

logging to _DB2:[GMF]FILE.LOG;1 'log file.

DBG>SET OUTPUT NOTERMINAL,NOLOG
•/.DEBUG-I-OUTPUTLOST, output being lost, both NOTERMINAL and NOLOG

are in effect

DBG>SH0W LOG
not logging to _DB2:[GMF]FILE.LOG;1

DBG>SET LOG TERT.EEE !Name a new log file.

DBG>SH0W LOG !Not logging to TERT.EEE
not logging to _DB2:[GMF]TERT.EEE;1 !because output is set

!to NOLOG.

DBG>SET OUTPUT LOG)!Change current output)
!configuration.

DBG>SH0W LOG
logging to _DB2:[GMF]TERT.EEE;1

output: noverify, noterminal, logging to _DB2:[GMF]TERT.EEE;1
!Display current output
!configuration.

2.7 Command Procedures
A command procedure is a file containing one or more debugger commands.
You can cause the debugger to execute debugger commands from a file
by prefixing the file specification of that file with the at sign (@), in the
following format:

©file-spec

If the file specification includes a file name but not a file type, the debugger
assumes the default file type COM.

The @file-spec command may be issued from the terminal, from within a DO
clause, or from within another command procedure.

If the @file-spec command is issued from the terminal, the debugger begins
with the execution of the first command in the file and displays its prompt
after all commands in the file have been executed.

If the @file-spec command is one of the commands in a DO clause, the
debugger begins execution of the first command in the file upon reaching the
@ file-spec command in the DO clause. After execution of all commands in
the file, the debugger resumes execution of any remaining commands in the
DO clause and then issues its prompt.

2-10

Controlling the Debugging Environment

If the @file-spec command is one of the commands in another (calling)
command procedure, the debugger begins execution of the commands in
the called command procedure when it reaches the @file-spec command.
It resumes execution of any remaining commands in the calling command
procedure after all commands in the called command procedure have been
executed.

If the syntax of a command in a command procedure is incorrect, the
debugger issues an error message and continues execution with the next
command in the command procedure.

When the default output parameter NO VERIFY is in effect (see Section 2.5.1),
the debugger does not display—either on the terminal or in a log file—the
commands in a command procedure. The debugger simply executes the
commands and displays the resulting output.

If you want the debugger to display the commands in a command procedure
as it executes them, you must set the output parameter to VERIFY (see
Section 2.5.1).

2.7.1 Editor-Created Command Procedures
You can use an editor to create a command procedure. You do this by
creating a file and then entering debugger commands into the file.

For example, the following debugger commands make up the file whose file
specification is BREAK.EDT:

SET BREAK/AFTER:3 ‘/.LINE 120 DO (EXAMINE K,N,J,X(K); GO)
SET BREAK/AFTER:3 ‘/.LINE 160 DO (EXAMINE K,N, J,X(K) ,S; GO)
SET BREAK 7.LINE 90

The purpose of the commands in this command procedure is to set
breakpoints at three different program locations. Thus, whenever the
command @BREAK.EDT is issued in the debugging session, the debugger
sets the breakpoints specified in the command procedure.

The following example is a log file BREAK.LOG that records the use of the
command procedure BREAK.EDT in a debugging session.

©BREAK.EDT

SHOW BREAK
!breakpoint
!breakpoint
X(K),S; GO)
!breakpoint
X(K); GO)

!Cause command procedure to be

!executed.
IShow breakpoints set by ©BREAK.EDT.

at MEANSUB$MAIN\7.LINE 90
/after:3 at MEANSUB$MAIN*/,LINE 160 DO (EX K,N,J,

/after:3 at MEANSUB$MAIN\'/,LINE 120 DO (EX K,N,J,

GO !Begin program execution.
!routine start at MEANSUB$MAIN\MEANSUB$MAIN
! break at MEANSUB$MAIN\MEANSUB$MAIN ‘/.LINE 120
!MEANSUB$MAIN\MEANSUB$MAIN\K: 3.000000
!MEANSUB$MAIN\MEANSUB$MAIN\N: 3.000000
!MEANSUB$MAIN\MEANSUB$MAIN\J: 1.000000
!MEANSUB$MAIN\MEANSUB$MAIN\X(3): 93.00000
! start at MEANSUB$MAIN\MEANSUB$MAIN\7.LINE 120
! break at MEANSUB$MAIN\MEANSUB$MAIN*/,LINE 160

2-11

Controlling the Debugging Environment

!MEANSUB$MAIN\MEANSUB$MAIN\K: 3.000000

!MEANSUB$MAIN\MEANSUB$MAIN\N: 3.000000
!MEANSUB$MAIN\MEANSUB$MAIN\J: 1.000000

!MEANSUB$MAIN\MEANSUB$MAIN\X(3): 93.00000
!MEANSUB$MAIN\MEANSUB$MAIN\S: 252.0000
! start at MEANSUB$MAIN\MEANSUB$MAIN\y.LINE 160
! break at MEANSUB$MAIN\MEANSUB$MAIN\'/,LINE 90
CANCEL BREAK/ALL !Cancel all breakpoints.

2.7.2 Using Log Files as Command Procedures
You can use a debugger log file as a command procedure. A debugger log file
contains debugger commands and debugger output; however, the debugger
output is always preceded on the line by an exclamation point, which signals
the debugger to ignore the line.

The exclamation point is called the comment delimiter because it is used to
delimit comments within the command string. The debugger's use of the
comment delimiter on its own output in log files makes possible the direct
use, without modification, of debugger log files as command procedures.

You request that the debugger execute commands from a log file by specifying
that file as a command procedure, as follows:

DBG>®file-spec

Thus, the log file BREAK.LOG shown in Section 2.6.1 may be used
as a command procedure in another debugging session by issuing the
@BREAK.LOG command. When you issue this command in a subsequent
debugging session, the following debugger commands are executed:

• @BREAK.EDT

• SHOW BREAK

• GO

• CANCEL BREAK/ALL

Thus, you can reexecute a previous debugging session by using a log file
as a command procedure. This feature is helpful if you want to continue
debugging from where you left off at a previous session. You can also use the
log file as a command procedure in another program or in a modified version
of the same program.

2.8 Interrupting a Debugging Session
Since the debugger is itself an image within the context of the VAX/VMS
operating system, it reacts to interruption like other images running in user
mode; for instance, the image is interrupted (but unchanged), the terminal
type-ahead buffer is purged, and the DCL command interpreter receives
control. To interrupt a debugging session, enter CTRL/Y (echoed as *Y) as
follows:

DBG> j CTRL/Y 1
Interrupt

After you press CTRL/Y, the DCL command interpreter takes control.

2-12

Controlling the Debugging Environment

If you run your program without debugger control, interrupt it, and start the
debugger with the DEBUG command, the debugger informational message
indicates the name of the module that contains the program location at which
program execution was interrupted and the name of the language in which
that module was written.

If you run your program with debugger control, you may still need to
interrupt it by pressing CTRL/Y and then giving the DEBUG command.
For instance, if your program goes into an infinite loop after you issue the GO
command, your only option is to press CTRL/Y. In this case, the CTRL/Y-
DEBUG command sequence brings you back to the DBG> prompt, leaving
all your debugging parameters as they were.

You may also need to interrupt a debugger command which is taking too
long to complete or is generating a large amount of output. In this case,
the CTRL/Y-DEBUG command sequence causes the debugger to abort the
current command when all of the data structures are in a consistent state.

2.8.1 CTRL/Y and CTRL/C
The effect of issuing CTRL/Y or CTRL/C is the same unless your system or
application program contains a routine coded to intercept CTRL/C.

If such a CTRL/C handling routine exists, entering CTRL/C causes control to
be passed to the handling routine rather than to the command interpreter.

If a CTRL/C handling routine does not exist, both CTRL/Y and CTRL/C
interrupt the debugging session and cause control to be passed to the DCL
command interpreter, which signals with the DCL prompt.

When the DCL prompt is displayed, you can enter any DCL command.
Section 2.7.2 discusses the effect of some of these commands in relation to
restarting a debugging session.

2.8.2 Options After Interruption
After interruption of a debugging session by CTRL/Y or CTRL/C and the
resulting display of the DCL prompt, you may want to enter any of the
following DCL commands:

• DEBUG—See Section 2.1.4.

• CONTINUE—Passes control back to the debugger or to the program,
whichever had control at the time of interruption.

• STOP—Causes abnormal termination of the debugger. The debugger exit
handler is not given control.

• EXIT—Causes normal termination of the debugger. The debugger exit
handler is given control.

• Commands that are performed within the DCL command interpreter—
These commands may be entered and executed without causing
termination of the debugger image. For example, after interruption of
the debugger by CTRL/Y, if you enter the SHOW DAYTIME command
and follow it with the DEBUG command, control will pass back to the
debugger.

• Any other DCL command—Causes termination of the debugger. The
debugger exit handler is executed.

2-13

Controlling the Debugging Environment

• The SPAWN and ATTACH commands—Allows you to create a
subprocess or attach to a detached process. See Section 2.7.3.

2.8.3 The SPAWN and ATTACH Commands
The debugger provides two commands—SPAWN and ATTACH—that allow
you to interrupt your debugging session without ending it.

The debugger command SPAWN acts like the DCL command SPAWN. It
provides a way of temporarily leaving the debugger for the DCL command
interpreter. You can also specify SPAWN/NOWAIT with a DCL command.
This command allows you to continue your debugging session without
waiting for the spawned subprocess to complete.

However, if you plan to spawn several times during one debugging session,
you should use the ATTACH command instead. The ATTACH command
allows you to go back and forth between a debugging session and the DCL
command interpreter, or between two debugging sessions. First, you must
spawn a subprocess; then you can attach to it whenever you want. To return
to your orginal process, use another ATTACH command. Since you are not
creating a new subprocess every time you leave the debugger, you are more
efficiently using system resources.

2-14

3 Controlling Program Execution

This chapter explains how to start, suspend, and monitor program execution,
and how to display the current program status. It also discusses how to
debug exit handlers.

You can control and monitor program execution by means of all the
commands discussed in this chapter: STEP, GO, CALL, SHOW CALLS, SET
BREAK, SET TRACE, and SET WATCH. Refer to the Command Dictionary
for detailed descriptions of each of these commands.

3.1 Starting Program Execution
To begin program execution at debugger start up or to continue program
execution after interruption, issue the STEP, GO, or CALL command. The
following sections discuss each of these in turn.

3.1.1 The STEP Command
By means of the STEP command, you can control the execution of your
program. When you issue a STEP command, the debugger responds as
follows:

1 It executes one or more instructions.

2 It reports the line or instruction that follows the last instruction executed.

3 It reports the source line corresponding to the line or instruction that
follows the last instruction executed only if the SOURCE parameter is
in effect by virtue of STEP/SOURCE or SET STEP SOURCE and source
lines are available.

4 It issues the DBG> prompt.

The format of the STEP command is

STEP [/qualifier...] [integer]

The decimal integer is an optional parameter that indicates how many lines or
instructions are to be executed. If the decimal integer is omitted, the debugger
uses a default value of 1.

The STEP command qualifiers specify whether the debugger

• Steps by line or by instruction

• Steps "into" or "over" called routines in the user program space (user-
written routines)

• Steps "into" or "over" called routines in system space

• Steps to the next branch instruction, call instruction, return instruction, or
exception condition

• Displays the messages associated with the step command

3-1

Controlling Program Execution

• Displays lines of source code as it steps

If STEP command qualifiers are not specified with the STEP command, the
debugger uses STEP parameters established by the SET STEP command (see
Section 3.1.1.1, or STEP parameters associated by default with the current
language.

The following list describes the effects of the STEP command qualifiers:

/BRANCH

/CALL

/EXCEPTION

/INSTRUCTION

/INSTRUCTION=opcode

Steps to the next branch instruction.

Steps to the next call instruction.

Steps to the next exception condition.

Steps to the next instruction.

Steps to the instruction whose opcode you specify
with the code parameter.

/INTO Steps "into" called routines in the user program
space (and "into" called routines in system space if
/SYSTEM is also specified); that is, the debugger
does not differentiate between instructions (or lines)
within a called routine and those outside of the
routine as it executes steps. Thus, the execution
of a STEP command may result in suspension
of execution within the called routine, in which
case subsequent step commands will execute the
instructions (or lines) within that routine.

/LINE

/OVER

Steps to the next line.

Steps "over" called routines in the user program
space and in system space; that is, the debugger
considers any instructions executed as the result
of a CALL instruction, up to and including the
corresponding RETURN instruction, to be part of a
single step.

/NOSILENT Overrides the effect of /SILENT. In other words, the
"start at" and "stepped to" resume display.

/NOSOURCE Specifies that the debugger not display the line of
source code that corresponds to the instruction(s)
being executed. This qualifier does not apply to all
languages. See Section 3.7 for more information.

/NOSYSTEM Steps "over" called routines in system space. That
is, the debugger considers any instructions executed
as the result of a CALL instruction to a routine in
system space, up to and including the corresponding
RETURN instruction, to be part of a single step.

/RETURN Causes the debugger to step to the return
instruction that returns from the current routine.
It is valid for CALLS and CALLG routines only.

/SILENT Specifies that the "stepped to" message associated
with the STEP command not be displayed. The
/SILENT qualifier is most useful in command
procedures or in DO clauses when you do not
want the customary output from a STEP command.

3-2

Controlling Program Execution

Specifies that the debugger display the line of
source code that corresponds to the instruction(s)
being executed. This qualifier does not apply to all
languages. See Section 3.7 for more information.

Steps "into" called routines in system space,
provided that /INTO is also specified; that is,
the debugger, in its execution of steps, does not
differentiate between instructions (or lines) within a
called routine in system space and those outside of
system space. Thus, execution of a STEP command
may result in suspension of execution in system
space.

When a qualifier is specified with the STEP command, it temporarily overrides
the STEP parameter established by the SET STEP command or the default
STEP parameter associated with the current language.

3.1.1.1 The SET STEP and SHOW STEP Commands
The SET STEP command sets the default step parameters; that is, it
establishes the STEP parameters that the debugger uses whenever a STEP
command is issued without a STEP command qualifier.

When a STEP parameter is specified as a qualifier in the STEP command, it
overrides, for the duration of the command, any step parameters established
by the SET STEP command or any step parameters associated with the
current language.

As described in Section 3.3.1, step parameters may be any of the
following: BRANCH, CALL, EXCEPTION, LINE, INSTRUCTION,
INSTRUCTION=opcode, INTO, OVER, NOSILENT, NOSOURCE,
NOSYSTEM, RETURN, SILENT, SOURCE, or SYSTEM. Note, however,
that a step parameter is not prefixed with a slash unless it is used as a STEP
command qualifier.

The following is the format of the SET STEP command:

SET STEP step-parameter [.step-parameter...]

Note that default step parameters are associated with each language. Thus,
when you change languages by using the SET LANGUAGE command, the
default step parameters may also change.

To display the current step parameters, issue the SHOW STEP command.

At the assembly level, program locations are often specified by virtual
addresses or by offsets from program labels, rather than by symbols. Thus, it
is common to use virtual addresses as parameters in commands such as STEP
that affect program execution.

So, if you are debugging assembly-level code, you may find it useful to
set the STEP parameter to INSTRUCTION. Then, whenever you issue a
STEP command, you will advance by one instruction or by the number of
instructions you specify as a parameter in the STEP command. By single
stepping, you can literally read your program's source code at the assembly
level as VAX instructions.

Further, you may want to set STEP parameters to INTO to enable you to
step through the called routines in your program. Then whenever program
execution reaches a routine call, you can follow program flow through the
called routine (a single instruction at a time or by lines).

/SOURCE

/SYSTEM

3-3

Controlling Program Execution

Example 3-2 demonstrates the use of the STEP command.

Example 3-2 Using the SET/SHOW STEP Commands

DBG>SH0W STEP ‘Display current step parameters,
step type: nosystem, source, nosilent, over routine calls, by line

DBG>SH0W MODE !Display current modes,
modes: symbolic, d_float, noscreen, nokeypad

input radix : decimal
output radix: decimal

DBG>SET STEP INSTRUCTION, INTO, NOSOURCE !Set STEP parameters.

DBG>SH0W STEP !Display current step parameters,
step type: nosystem, nosource, nosilent, into routine calls, by instruction

DBG>STEP
stepped to CIRCLE '/.LINE 2 : PUSHAL L~512

IStep through the program.

DBG>STEP
stepped to CIRCLE '/.LINE 2 +6: MNEGL #2,-(SP)

DBG>STEP
stepped to CIRCLE %LINE 2 +9: CALLS #2,L~F0R$WRITE_SF

DBG>STEP
stepped to F0R$WRITE_SF+2: JMP L~56758 IStep into a called routine

!named FOR$WRITE_SF.
lOnce the 2-byte entry mask is
!stepped by, the debugger
!references instructions by
!their virtual address; this
lis because FOR$WRITE_SF is
Inot in the run-time symbol
!table.

DBG>STEP
stepped to 56758: MOVZBL #1,R0

DBG>STEP
stepped to 56761: BRW 56870

DBG>STEP/RETURN
stepped to 58561: RET

DBG>STEP
stepped to CIRCLE '/.LINE 4 : PUSHAL L~535

DBG>STEP
stepped to CIRCLE '/.LINE 4 +6: MNEGL #3,-(SP)

DBG>STEP
stepped to CIRCLE 7.LINE 4 +9: CALLS #2, L~FOR$READ_SF

DBG>STEP
stepped to F0R$READ_SF+2: JMP L~56646 IStep into the called

I routine FOR$READ_SF.

DBG>STEP
stepped to 56646: MOVZBL #2,R0

DBG>STEP
stepped to 56649: BRW 56870

I Return from FOR$WRITE_SF.

I Begin executing main program.

DBG>G0
'/.DEBUG-I-EXITSTATUS, is *'/.SYSTEM-S-NORMAL, normal successful completion*

3—4

Controlling Program Execution

3.1.2 The GO Command
You can use the GO command under three circumstances:

• To begin execution of your program at debugger start up, in which case
execution begins from the transfer address

• To resume execution at the instruction following the last instruction
executed, in which case you do not specify an address expression as a
parameter in the GO command

• To resume execution at a specified program location, in which case you
specify the corresponding address expression as a parameter in the GO
command

Unlike the STEP command, which suspends execution after a specified
number of instructions or lines have been executed, the GO command will
cause your program to continue executing until one of the following occurs:

• The program terminates.

• A breakpoint is reached.

• A watchpoint is activated.

• An exception occurs.

• The program is interrupted by CTRL/Y or CTRL/C.

The following is the format of the GO command:

GO [addres8-expression]

If an address expression is specified as a parameter in the GO command, the
debugger begins program execution at the location specified by the address
expression.

Using an address expression as a parameter in the GO command may be
helpful when you want to reexecute sections of your program but do not
want to start all over again. Note, however, that when you specify an
address-expression parameter in the GO command, the program state at the
location denoted by the address expression must be identical to the program
state at the time you issue the GO command; otherwise, results may be
unpredictable.

See Section 3.2.1.1 for examples of how to use the GO command.

3.1.3 The CALL Command
The CALL command is useful in debugging routines in your program.

When you issue a CALL command, the debugger takes the following action:

1 Saves the current values of the general registers

2 Constructs an argument list

3 Executes a call to the routine specified in the command and passes any
arguments

4 Executes the routine

5 Displays the value returned by the routine in RO

3-5

Controlling Program Execution

6 Restores the values of the general registers to the values they had just
previous to the CALL command

7 Issues its prompt

The debugger executes a routine called by the CALL command whether
or not your program actually includes a call to that routine, so long as the
routine was linked with your program.

You can also debug unrelated routines by linking them with a dummy main
module that has a transfer address and then using the CALL command to
execute them.

The following is the format of the CALL command:

CALL routine-name [(argument1[.argument2...])]

Note that any arguments must be enclosed in parentheses.

3.2 Suspending Program Execution
The following sections discuss how to suspend program execution by setting
breakpoints, exception breakpoints, and watchpoints.

3.2.1 Breakpoints
A breakpoint is a program location at which the debugger performs the
following actions:

1 Suspends program execution

2 Checks the AFTER count and resumes program execution if the specified
number of breakpoint activations has not yet been reached

3 Evaluates the WHEN clause (if it is present) and resumes execution if it
evaluates as FALSE in the current language

4 Displays the name or the virtual address of the location at which
execution has been suspended

5 Executes commands in a DO clause if one was specified in the SET
BREAK command

6 Issues the DBG> prompt

To set a breakpoint, issue the SET BREAK command in the following format.

SET BREAK [/qualifier...] [address-expression -
[.address-expression,...]] [WHEN (expression)] -
[DO (command [;command...])]

When you specify an address expression on the SET BREAK command, the
breakpoint is then associated with the given program location. Specifying a
list of address expressions is equivalent to setting more than one breakpoint
(one for each location in the list). When the debugger breaks at the given
address, it suspends execution before executing the instruction at that location

3—6

Controlling Program Execution

Some of the command qualifiers (/BRANCH, /CALL, /EXCEPTION,
/INSTRUCTION[=opcode], and /LINE) indicate classes of conditions on
which the breakpoint should be taken. For example, SET BREAK/CALL tells
the debugger to break at every call to a subroutine. If you specify one of
these qualifiers, you should not specify an address expression.

The /RETURN qualifier specifies that the break is to be taken not at the
given address but rather at the return statement of the routine containing the
address. In other words, "SET BREAK/RETURN routine" breaks at the return
from the routine rather than at the entry to the routine.

Other qualifiers on the SET BREAK command include /AFTER:n, /SILENT,
/SOURCE, and /TEMPORARY. These qualifiers generally affect what output
you see at the breakpoint or whether the breakpoint is taken. See the SET
BREAK command in the Command Dictionary for more details.

If you specify a WHEN clause, the debugger evaluates it; if the expression
in a WHEN clause evaluates as TRUE in the current language, break action
occurs. However, if the clause evaluates as FALSE, break action does not
occur, the commands specified in the DO command list are not executed, and
program execution is continued.

If you specify a DO clause, the debugger executes commands in the DO
clause when the breakpoint is activated. See Section 3.2.1.1.

If you use a virtual memory address or an address expression whose value
is not a symbolic location as a parameter in the SET BREAK command, you
should check that an instruction actually begins at the byte of memory so
indicated. If an instruction does not begin at this byte, a run-time error may
occur when an instruction including that byte is executed. Note that when
the breakpoint is set, the debugger does not verify that the location specified
marks the beginning of an instruction.

When a routine name is the parameter in a SET BREAK command, the
debugger notes this fact when the breakpoint is activated by issuing the
following message:

routine break at routine name

Routine breakpoints are special cases because the breakpoint is actually set at
the memory address 2 bytes greater than the memory address of the routine
name itself (called the entry point). This is done so that the breakpoint is
not set on the 2-byte entry mask of the routine, but is set instead at the first
instruction in the routine, which begins directly following the entry mask.

Note that the command

DBG>EXAMINE routine-name

does not skip over the routine entry mask. Therefore, to examine the first
instruction in the routine, you must issue the command

DBOEXAMINE routine-name + 2

To see what breakpoints are in effect, issue the SHOW BREAK command.

Once set, a breakpoint remains active for the duration of the debugging
session unless you cancel it with the CANCEL BREAK command or set
another breakpoint, watchpoint, or tracepoint at that program location. In
that case the old breakpoint specification is overwritten.

3-7

Controlling Program Execution

To cancel one or more breakpoints, issue the CANCEL BREAK command in
the following format:

CANCEL BREAK [/qualifier] [address-expression -
[.address-expression,...]]

If you specify an address-expression parameter, the breakpoint at the location
denoted by the address expression is canceled. In this case, you cannot also
specify a command qualifier.

If you specify the /ALL command qualifier, all breakpoints are canceled. In
this case, you cannot also specify an address-expression parameter.

Example 3-3 shows how breakpoints and watchpoints may be set, canceled,
and overwritten.

Example 3-3 Setting, Showing, and Canceling Eventpoints

DBG>SET BREAK '/.LINE 15 !Set breakpoint.

DBOSHOW BREAK

breakpoint at TOYV/.LINE 15
!Show breakpoint.

DBOCANCEL BREAK '/.LINE 15 !Cancel breakpoint.

DBOSHOW BREAK

y.DEBUG-1-NOBREAKS, no breakpoints are set

DBOSET BREAK '/.LINE 15 !Set breakpoint.

DBOSET WATCH y,LINE 15 !Set watchpoint at

!same location.

DBOSHOW BREAK

y.DEBUG-1-NOBREAKS, no breakpoints are set
!Breakpoint is
•overwritten.

DBOSHOW WATCH

watchpoint at T0Y\y,LINE 15 for 4. bytes.
!Watchpoint set.

DBOSET BREAK '/.LINE 15 !Set breakpoint.

DBOSET BREAK/AFTER: 5 '/.LINE 15 !Set modified
!breakpoint at
!same location.

DBOSHOW BREAK

breakpoint /after:5 at T0YV/.LINE 15
!Previous breakpoint
!overwritten.

Note that the following commands overwrite one another when they contain
identical address-expression parameters:

• SET BREAK (in all its forms)

• SET TRACE

• SET WATCH

3-8

Controlling Program Execution

3.2.1.1 Command Sequence at Breakpoint
If you want the debugger to execute one or more debugger commands
immediately after a breakpoint has been reached, you specify these
commands in a DO clause as shown in the following format:

SET BREAK address-expression DO (command [;command...])

Whether the DO clause includes one or more commands or invokes a
command procedure, parentheses are required delimiters, as shown in the
format above. If the DO clause includes a list of commands, you must
separate commands with a semicolon.

The debugger executes commands in a DO clause in the order in which
they are listed. If one of the commands is a command procedure (see
Section 2.6), the debugger begins execution of the commands in that file
when it reaches the command file specification (@file-spec) in the DO clause.
After the debugger has executed each command in the command procedure,
it continues executing commands in the DO clause until it exhausts them or
until it reaches another command file specification.

The DO clause may contain commands that resume program execution. For
example, a typical DO clause might contain several EXAMINE commands
followed by a GO command.

Note that the debugger does not check the syntax of the commands within
a DO clause after you issue the SET BREAK command containing that
DO clause; the debugger checks for syntax when it actually executes the
commands in the DO clause at breakpoint activation.

Any debugger command, including a SET BREAK command with a DO
clause, may appear in a DO clause. Nesting of DO clauses is permissible to
any level, so long as syntax rules have not been violated.

You are not limited in the number and type of debugger commands you can
include in a DO clause. If all the commands you want to include in the clause
do not fit on a single input line, specify the line continuation character (-)
at the end of the input line and then press RETURN. In this way, you can
continue entering commands within the same DO clause.

If you want the commands in the DO clause to be executed conditionally,
include a WHEN clause in the SET BREAK command, as follows:

SET BREAK address-expression WHEN (expression) -

DO (command [;command...])

The WHEN clause specifies any expression in the currently set language
that you want logically evaluated every time the breakpoint occurs. If the
expression is true, break action occurs. If it is false, break action does not
occur, and the command specified by the DO command list is not executed.

Example 3-4 demonstrates the power and versatility of the DO clause at
breakpoint.

3-9

Controlling Program Execution

Example 3-4 Using SET BREAK in a DO Clause

DBG>SET BREAK '/.LINE 16 DO (EXAMINE I; EXAMINE R; STEP)

dbg>go

routine start at TOY
break at T0YV/.LINE 16

T0Y\I: 1
TOY\R: 0.0000000E+00
start at T0YV/.LINE 16
stepped to TOYV/.LINE 17

DBG>SET BREAK ‘/.LINE 16 DO (EXAM

!Start at routine.
!Break at line 16.
!EXAMINE I in DO clause.
!EXAMINE R in DO clause.

!STEP in DO clause.

I; EXAM R; GO '/.LINE 15)

!This command causes the
!execution of an infinite
Hoop once the breakpoint
!at line 16 is activated.

DBG>G0 ‘/.LINE 15

start at T0YY/.LINE 15
break at TOYY/.LINE 16

T0Y\I: 1
T0Y\R: 0.0000000E+00
start at TOYY/.LINE 15
break at T0YY/.LINE 16
T0Y\I: 1
T0Y\R: 0.0000000E+00
start at T0YY/.LINE 15
break at T0YV/.LINE 16

TOY\I: 1
T0Y\R: 0.0000000E+00
start at T0Y\'/,LINE 15
break at T0Y\7.LINE 16

| CTRL/Y |

Interrupt

$

!Begin execution.

!Breakpoint activated.
!EXAMINE I.
!EXAMINE R.
! GO '/.LINE 15.
!Breakpoint activated.
{EXAMINE I.
{EXAMINE R.
! GO ‘/.LINE 15.
{Breakpoint activated.
!and so on.

{Interrupt by CTRL/Y.

3.2.2 Exception Breakpoints
An event arising within the context of an executing program may require the
execution of software outside that program's explicit flow of control. The
notification of such an event is called an exception, and the presence of an
exception indicates that a "condition" exists. Exception conditions range in
severity and vary in the way they affect an executing program. The following
are examples of exception conditions:

• An arithmetic overflow or underflow

• A memory access violation

• An invalid operation code

• A division by zero

You direct the debugger to treat an exception generated by your program as
a breakpoint by issuing the SET BREAK/EXCEPTION command. Specifying
the command SET EXCEPTION BREAK has the same effect. As a result of
this command, whenever your program generates an exception condition, the
debugger responds by suspending program execution, reporting the exception
condition, and prompting you for input.

3-10

Controlling Program Execution

Whenever an exception breakpoint is activated, therefore, you have the
opportunity to issue debugger commands. When you want to continue
program execution, you can specify one of the following commands:

• A GO command without an address-expression parameter—In this
case, the debugger fields and resignals the exception, thus allowing any
user-declared exception handlers to execute.

• A GO command with an address-expression parameter—In this case, the
debugger allows program execution to continue at the specified location,
thus inhibiting the execution of any user-declared exception handlers.

Note that you cannot issue a STEP command to resume program execution
after breakpoint activation. The STEP command is illegal in this context and,
if issued, will result in a warning message.

If you do not specify an exception breakpoint with the SET BREAK
/EXCEPTION command or if you cancel an exception breakpoint with
the CANCEL BREAK/EXCEPTION command, exception conditions generated
by your program are handled in the following way:

1 The debugger fields and resignals the exception.

2 If you have defined a condition handler in your program, it is executed.

3 If you have not defined a condition handler or if a condition handler that
you have defined resignals the exception condition, a diagnostic message
is issued and control is returned to the debugger, which then displays its
prompt.

Note that an exception handler executes until one of the following occurs:

• The exception handler "handles" the condition, thus allowing the program
to continue execution.

• The exception handler resignals the exception condition.

• The exception handler encounters a breakpoint or watchpoint.

• The exception handler generates its own exception.

• The exception handler exits, thus terminating program execution.

You cancel the SET BREAK/EXCEPTION command by issuing the CANCEL
BREAK/EXCEPTION command.

When debugging exceptions, you can use the following four built-in symbols
which provide a means of qualifying exception breakpoints.

• %EXC_FACILITY

• %EXC_NAME

• %EXC_NUMBER

• %EXC_SE VERITY

The %EXC_FACILITY built-in symbol returns the facility of the current
exception. For example:

DBG> EVALUATE 7.EXC_FACILITY
"SYSTEM"
DBG> SET BREAK/EXCEPTION WHEN C/.EXC_FACILITY * "SYSTEM")

3-11

Controlling Program Execution

The %EXC_NAME built-in symbol returns the name of the current exception.
For example:

DBG> EVALUATE 7.EXC.NAME

"FLTDIV.F"
DBG> SET BREAK/EXCEPTION WHEN (*/,EXC_NAME = "FLTDIV.F")

The %EXC_NUMBER built-in symbol returns the current exception number.
For example:

DBG> EVALUATE ‘/.EXC_ NUMBER

12
DBG> EVALUATE/CONDITION.VALUE */.EXC_NUMBER

%SYSTEM-F-ACCVIO, access violation at PC virtual address
DBG> SET BREAK/EXCEPTION WHEN (*/.EXC_NUMBER = 12)

The %EXC_SEVERITY built-in symbol returns the severity code of the
current exception. For example:

DBG> EVALUATE 7.EXC.SEVERITY
tipM

DBG> SET BREAK/EXCEPTION WHEN C/.EXCL SEVERITY = "F")

For more information on exceptions, consult any of the following sources: the
VAX Architecture Handbook, the VAX/VMS System Services Reference Manual,
or the VAX/VMS Run-Time Library Routines Reference Manual.

3.2.3 Watchpoints
You can direct the debugger to watch an entity and notify you if its value
is modified. To do this, you specify as a parameter in the SET WATCH
command an address expression that identifies the location where the entity
resides. The format of the SET WATCH command is

SET WATCH [/qualifier] address-expression -
[.address-expression,...] [WHEN (expression)] -
[DO (commancLlist)]

As a result of the SET WATCH command, the debugger sets a watchpoint at
the program location specified by the address expression.

If the entity has a compiler-generated type, the debugger uses the length
in bytes associated with that type to determine the length in bytes of the
watched location. If the entity does not have a compiler-generated type, the
debugger watches 4 bytes of virtual memory, beginning at the byte identified
by the address expression.

The SET WATCH qualifiers include /AFTER:n, /SILENT, /SOURCE, and
/TEMPORARY. For detailed information about these qualifiers, see the
Command Dictionary.

If you specify a WHEN clause, the debugger evaluates it; if the expression
in WHEN clause evaluates as TRUE in the current language, watch action
occurs. However, if the clause evaluates as FALSE, watch action does not
occur, the commands specified in the DO command list are not executed, and
program execution is continued.

If you specify a DO clause, the debugger executes commands in the DO
clause when the watchpoint is activated. See Section 3.2.1.1.

3-12

Controlling Program Execution

Whenever an instruction causes the modification of a watched entity, the
debugger performs the following operations:

1 Suspends program execution after that instruction has completed
execution

2 Checks the AFTER count and resumes program execution if the specified
number of breakpoint activations has not yet been reached

3 Evaluates the WHEN clause (if it is present) and resumes execution if it
evaluates as FALSE in the current language

4 Displays the name or the virtual address of the location at which
execution has been suspended

5 Executes commands in a DO clause if one was specified in the SET
WATCH command

6 Identifies the instruction that modified the entity

7 Reports the old value of the entity

8 Reports the new (modified) value of the entity

9 Issues the DBG > prompt

To display watchpoints currently in effect, issue the command SHOW
WATCH.

To cancel a watchpoint, issue the CANCEL WATCH command in the
following format:

CANCEL WATCH [/qualifier] [address-expression -
[.address-expression,...]]

If you specify an address-expression parameter, the watchpoint at the location
denoted by the address expression is canceled. In this case, you cannot also
specify a command qualifier.

If you specify the /ALL command qualifier, all watchpoints are canceled. In
this case, you cannot also specify an address-expression parameter.

You can set watchpoints on aggregates (that is, entire arrays or records). A
watchpoint set on an array or record will trigger if any element of the array
or record changes. Thus, you do not need to set watchpoints on individual
array elements or record components. Note, however, that you cannot set an
aggregate watchpoint on a variant record.

Example 3-5 demonstrates the SET WATCH, SHOW WATCH, and CANCEL
WATCH commands.

3-13

Controlling Program Execution

Example 3-5 Using the SET/SHOW/CANCEL WATCH
Commands

DBG>SET WATCH RESULT !Set watchpoint at
•RESULT.

DBG>SH0W WATCH

watchpoint of TOTAL\RESULT

dbg>go

start at T0TAL\START+O2
write to TOTAL\RESULT at PC T0TAL\G03
old value = 0000000
new value = 00000A66

!Display watch-
!points. There are
!4 bytes watched
!beginning at
!TOTAL\RESULT.

!Notification of
!watchpoint modifi-
!cation. Note that
!T0TAL\G03 identi¬
fies the location
!of the instruction
{that caused the
{modification of
{RESULT.

DBG>SH0W MODE

modes: symbolic, d_float, noscreen, nokeypad
input radix : hexadecimal
output radix: hexadecimal

{Values are
{displayed in hexa-
!decimal. Addre s s
{expressions are
{displayed symboli¬
cally where possi¬
ble.

DBG>SH0W WATCH {Watchpoint still in

watchpoint at TOTAL\RESULT for 4. bytes. {effect.

DBG>CANCEL WATCH RESULT {Cancel the watch-
!point.

DBG>SH0W WATCH {Show current watch-

'/.DEBUG-1-NOWATCHES, no watchpoints are set {points.

DBG> SET WATCH ARR

DBG> GO
watch of SUBR\ARR at SUBRY/.LINE 12+8

old value:

(1) : 7
(2) : 12

(3) : 3
(4) : 0

!Set watchpoint on
{array ARR.

{Watchpoint triggers
{when any element
!of ARR changes.
!Here, the third
{element changed.

new value:

(1) : 7
(2) : 12

(3) : 28
(4) : 0

break at SUBRY/.LINE 14

3.2.3.1 Watchpoint Restrictions
The mechanism for implementing watchpoints is to establish write protection
for the page of memory that contains the watchpoint; consequently, when a
write operation to that page is attempted, an exception occurs. The debugger
handles the exception. It temporarily unprotects the page to allow the
instruction to complete and then it determines whether the watched variable
was modified.

3—14

Controlling Program Execution

Because problems would arise if the stack were write protected, currently you
cannot set watchpoints on variables that are allocated on the stack.

3.3 Monitoring Program Execution
This section discusses how to monitor program execution by tracing the flow
of program control and by displaying the current state of procedure calls.

3.3.1 Tracepoints
By setting tracepoints, you can monitor the sequence in which instructions
in your program are executed and thereby check for unexpected control
transfers. Moreover, tracepoints do not interrupt or otherwise disturb program
execution.

When a tracepoint is activated, the debugger performs the following steps:

1 Suspends program execution

2 Checks the AFTER count and resumes program execution if the specified
number of tracepoint activations has not yet been reached

3 Evaluates the WHEN clause (if it is present) and resumes execution if it
evaluates as FALSE in the current language

4 Displays the name or the virtual address of the location at which
execution has been suspended

5 Executes commands in a DO clause if one was specified in the SET
TRACE command

6 Reports that execution has reached the traced location

7 Resumes execution at the point of suspension

To set a tracepoint, issue the SET TRACE command in the following format:

SET TRACE [/qualifier] [address-expression -
[.address-expression,...]] [WHEN (expression)] -
[DO (command-list)]

A tracepoint has the same effect as a breakpoint except that program
execution resumes immediately after a tracepoint has been taken. The syntax
of the SET TRACE command and the SET BREAK command is the same.
Also, the command qualifiers and their meanings are the same for the two
commands.

If you specify the /CALL or the /BRANCH command qualifier, the debugger
sets tracepoints at all instructions that are members of the family of CALL
or BRANCH instructions, respectively (see Section 3.3.1.1). In this case,
you cannot also specify an address-expression parameter. SET TRACE
/INSTRUCTION will trace every instruction that gets executed.

To see what tracepoints are in effect, issue the command SHOW TRACE.

To cancel one or more tracepoints, issue the CANCEL TRACE command in
the following format:

CANCEL TRACE [/qualifier] [address-expression -
[address-expression,...]]

3-15

Controlling Program Execution

If you specify an address-expression parameter, the debugger cancels the
tracepoint at the location denoted by the address expression. In this case, you
cannot also specify a command qualifier.

If you specify the /CALL or the /BRANCH command qualifier, the debugger
cancels tracepoints at all instructions that are members of the family of CALL
or BRANCH instructions, respectively. In this case, you cannot also specify
an address-expression parameter.

If you specify the /ALL command qualifier, the debugger cancels all
tracepoints. In this case, you cannot also specify an address-expression
parameter.

Example 3-6 demonstrates the use of the SET, SHOW, and CANCEL TRACE
commands.

Example 3-6 Using the SET/SHOW/CANCEL TRACE
Commands

DBOSHOW TRACE
'/.DEBUG-1-NOTRACES, no tracepoints are set, no opcode tracing

IShow tracepoints in
!effect.

DBG>SET TRACE '/.LINE 30 !Set tracepoint at '/.LINE

!30.

DBG>SET BREAK '/.LINE 60 !Set breakpoint at '/.LINE
!60.

DBOSHOW TRACE IShow tracepoints in
tracepoint at MEANSUB$MAIN\'/.LINE 30 !effect.

DBG>G0
routine start at MEANSUB$MAIN
trace at MEANSUB$MAIN\'/.LINE 30
break at MEANSUB$MAIN\'/,LINE 60

!Begin program execution.
!Start of program.
!Tracepoint reached.
!Breakpoint reached.

DBG> SET TRACE '/.LINE 40 !Set another tracepoint.

DBOSHOW TRACE
tracepoint at MEANSUB$MAIN\'/,LINE 40
tracepoint at MEANSUB$MAIN\'/,LINE 30

DBOGO '/.LINE 20
start at MEANSUB$MAIN\'/,LINE 20
trace at MEANSUB$MAIN\'/.LINE 30
trace at MEANSUB$MAIN\'/.LINE 40
break at MEANSUB$MAIN\'/,LINE 60

IShow tracepoints in
!effect.

!Resume execution at
! '/.LINE 20.
!Tracepoint reached.
!Tracepoint reached.
{Breakpoint reached.

DBG>CANCEL TRACE '/.LINE 40 !Cancel one tracepoint.

DBOSHOW TRACE IShow tracepoints in
tracepoint at MEANSUB$MAIN\'/,LINE 30 I effect.

DBG>CANCEL TRACE/ALL I Cancel all tracepoints.

DBOSHOW TRACE

'/.DEBUG-1-NOTRACES, no tracepoints are set, no opcode tracing
IShow tracepoints in
I effect.

3.3.1.1 Opcode Tracing
Opcode tracing is the tracing of all instructions or the tracing of a family of
instructions.

3-16

Controlling Program Execution

When you issue SET TRACE/INSTRUCTION, the debugger traces all
instructions. When you issue the command SET TRACE/CALL, the debugger
traces any of the following instructions: CALLS, CALLG, BSBW, BSBB, JSB,
RSB, RET.

If you issue the command SET TRACE/BRANCH, the debugger traces any of
the following instructions:

ACBB BBSS BNEQ

ACBL BBSSI BRB

ACBQ BEQL BRW

ACBD BGEQ BVC

ACBG BGEQU BVS

ACBH BGTR CASEB

AOBLEQ BGTRU CASEL

AOBLSS BLBC CASEW

BBC BLBS JMP

BBCC BLSS SOBGEQ

BBCCI BLSSU SOBGTR

BBCS BLEQ

BBS BLEQU

Note that you can also trace general lists of opcodes. For instance, SET
TRACE/INSTRUCTIONSADDL3,MULL3) traces all ADDL3 and MULL3
instructions.

To see the tracepoints currently in effect, issue the command SHOW TRACE.

To cancel tracepoints at CALL or BRANCH instructions, use the CANCEL
TRACE command with the appropriate qualifier, as follows:

DBG>CANCEL TRACE/CALL

DBOCANCEL TRACE/BRANCH

Note that opcode tracing noticeably slows program execution.

Example 3-7 demonstrates the use of the /CALL and /BRANCH qualifiers in
the SET, SHOW, and CANCEL TRACE commands.

3-17

Controlling Program Execution

Example 3-7 Using the /CALL and /BRANCH Qualifiers with SET TRACE

DBG>SET TRACE/CALL !Trace call instructions.

DBOSHOW TRACE IShow tracepoints in effect,

tracing /CALL instructions: CALLS, CALLG, BSBW, BSBB, JSB, RSB and RET

DBG>G0 ‘/.LINE 20

MEANSUB$MAINV/.LINE 20

MEANSUB$MAINV/.LINE 30 +9:

24566: JSB <8B~4(AP)

MEANSUB$MAIN\%LINE 200 +7

24918: CALLS #4,W~24987

25003: JSB L~8352

8407: JSB L~94721

94877: RSB

8492: RSB

25190: JSB L~34295

34333: RSB

start at ME/

trace at PC

trace at PC

trace at PC

trace at PC

trace at PC

trace at PC

trace at PC

trace at PC

trace at PC

trace at PC

!Begin program execution.

CALLS \#1,L~BAS$INIT_GOSUB

CALLS \#1,L~BAS$PRINT

DBOSHOW TRACE

tracing /CALL instructions:

IShow tracepoints in effect.

CALLS, CALLG, BSBW, BSBB. JSB, RSB and RET

DBOSET TRACE/BRANCH !Trace all branch

!instructions.

DBOSHOW TRACE IShow tracepoints in effect,

tracing /CALL instructions: CALLS, CALLG, BSBW, BSBB, JSB, RSB and RET

tracing /BRANCH instructions: BNEQ, BEQL, BGTR, BLEQ, BGEQ,

BLSS, BGTRU,

BLEQU, BVC, BVS, BGEQU, BLSSU, BRB, BRW, JMP, BBS, BBC.

BBSS, BBCS,

BBSC, BBCC, BBSSI, BBCCI, BLBS, BLBC, ACBB, ACBW, ACBL,

ACBF, ACBD,

ACBG, ACBH, AOBLEQ, AOBLSS, SOBGEQ, SOBGTR, CASEB, CASEW

said CASEL

(Continued on next page)

3-18

Controlling Program Execution

Example 3-7 (Cont.) Using the /CALL and /BRANCH Qualifiers with SET TRACE

DBG>G0 '/.LINE 20 ! Resume program execution

start at MEANSUB$MAIN\'/.LINE 20 ! at '/.LINE 20.
trace at PC MEANSUB$MAIN\'/.LINE 30 +9: CALLS \#1 ,L~BAS$INIT_GOSUB
routine trace at PC BAS$INIT_G0SUB: JMP L~24510
trace at PC 24552: BBC #11,B~-26(R0),24559
trace at PC 24566: JSB «B~4(AP)
trace at PC MEANSUB$MAIN\'/,LINE 200 +7: CALLS \#1 ,L~BAS$PRINT
routine trace at PC BAS$PRINT: JMP L "'24896
trace at PC 24906: BNEQ 24913
trace at PC 24911: BRB 24916
trace at PC 24918: CALLS #4,VT24987
trace at PC 25003: JSB 1~8352
trace at PC 8359: BGTR 8366
trace at PC 8364: BGEQ 8377
trace at PC 8391: BEQL 8407
trace at PC 8407: JSB L~94721
trace at PC 94728: BLBS L~103336,94740

R2,L~104364,94762
94790
94817

94829
B~4(SP),94869

trace at PC 94752:
trace at PC 94772:
trace at PC 94804:
trace at PC 94815:
trace at PC 94860:
trace at PC 94877:
trace at PC 8413:

BBCS
BEQL
BEQL
BRB
BLBC
RSB

CASEL RO,#1,#2
8431,
8431,
8458

trace at PC 8437: BNEQ 8444

DBG>CANCEL TRACE/ALL !Cancel all tracepoints.

DBG>SH0W TRACE IShow tracepoints in effect.

'/.DEBUG-1-NOTRACES, no tracepoints are set, no opcode tracing

3.3.2 The SHOW CALLS Command
When procedure A calls procedure B (by means of a CALL instruction),
the VAX/VMS operating system preserves information about the program
state of procedure A at the time that control is transferred to procedure B.
This information is stored on the stack in a call frame for procedure B. The
execution of a CALL instruction, therefore, results in the construction of a call
frame for the called routine; this call frame contains information about the
calling routine.

If procedure B calls procedure C, VAX/VMS builds a call frame for procedure
C. The call frame for procedure C is built on top of the call frame for
procedure B. In other words, the call frame for the most recently called
procedure is on the top of the stack.

When a routine returns to its caller, the call frame for that routine is removed
from the stack. Thus when procedure C finishes and control is returned to
procedure B, the call frame for procedure C is removed from the stack.

The SHOW CALLS command provides information about the sequence of
currently active procedure calls or the number of call frames on the stack. For
example, if your program contains a recursive routine, you can use a SHOW
CALLS command to examine the chain of recursion.

3-19

Controlling Program Execution

The format of the SHOW CALLS command is

SHOW CALLS [n]

The optional parameter n specifies the call count, or the number of call frames
to be displayed, by a decimal integer in the range 0 through 32,767. If you do
not specify the parameter n, then information on all call frames is displayed.
If the call count represented by n exceeds the current number of call frames,
information on all call frames is displayed. If the call count is 0, the command
is accepted but no information is displayed. Otherwise, the number of call
frames specified by the parameter n is displayed.

For each call frame, the debugger displays one line of information. The
first line displayed contains information about the top call frame (the one
representing the most recently called procedure); the next line contains
information on the next most recently called procedure, and so on.

Each line of information displayed by the debugger contains

• The name of the module that contains the called routine. The debugger
places an asterisk to the left of the module name if the module is set.

• The name of the called routine.

• The line number of the call (in line-oriented languages only).

• The value of the PC in the calling routine at the time that control was
transferred to the called routine. Note that this value is the location of
the instruction following the call. The value of the PC is expressed in two
ways: as an absolute virtual address and as a virtual address relative to
the virtual address of the name of the routine.

Note that even if your program contains no procedure calls, the debugger
displays an active call when you issue the SHOW CALLS command. The
reason for this is that your program has a stack frame built for it when it is
first activated.

Thus, if the debugger responds that there are no active calls when you issue
a SHOW CALLS command, either your program has terminated or the stack
has been corrupted.

Example 3-8 demonstrates the use of the SHOW CALLS command.

3.4 Related Qualifier Functions

Many of the qualifiers that affect the SET BREAK, SET TRACE, SET STEP,
SET WATCH, and STEP commands have the same functions. They can
be divided into two broad categories: qualifiers that indicate location, and
qualifiers that affect output.

Controlling Program Execution

Example 3-8 Using the SHOW CALLS Command

DBOSTEP

start at SUB2V/.LINE 15
stepped to SUB2V/.LINE 16

DBOSHOW CALLS !Display procedure calls.

module name routine name line rel PC abs PC

SUB2 SUB2
♦SUB1 SUB1
♦MAIN MAIN

00000002 0000085A
5 00000014 00000854

10 0000002C 0000082C

ISUB2 is the procedure that is
!currently executing. SUB2 was
!called by SUB1, and SUB1 was
Icalled by MAIN.

DBG>G0

start at 19351
‘/.DEBUG-1 -EXITSTATUS,
completion*

{Continue program execution,

is ’7.SYSTEM-S-NORMAL, normal successful

DBOSHOW CALLS

•/.DEBUG-W-NOCALLS, no active call frames
!Program has terminated.

3.4.1 Qualifiers That Indicate Location
This section describes a set of qualifiers that are common to SET BREAK, SET
TRACE, and STEP. The qualifiers follow:

/BRANCH
/CALL
/EXCEPTION
/INSTRUCTION
/INSTRUCTION=opcode
/LINE
/RETURN address

When these qualifiers are used with the SET BREAK and SET TRACE
commands, they tell the debugger where to break; and therefore take the
place of an address expression. For example, the command SET BREAK
/INSTRUCTION=ADDL3 breaks at every ADDL3 instruction.

When these qualifiers are used with the STEP command, they tell the
debugger where to step. For example, STEP/INSTRUCTION=ADDL3 tells
the debugger to step to the next ADDL3 instruction.

The seven qualifiers (or parameters) form a mutually exclusive set. For
instance, if you issue the command SET STEP CALL but later issue the
command SET STEP LINE, the LINE setting replaces the CALL setting as the
default STEP condition.

3-21

Controlling Program Execution

3.4.2 Qualifiers That Affect Output
This section describes another set of qualifiers that are common to the SET
BREAK, SET TRACE, SET WATCH, and STEP commands. These qualifiers
are:

/SILENT
/NOSILENT
/SOURCE
/NOSOURCE

The /SILENT qualifier suppresses debugger output when the breakpoint,
tracepoint, or watchpoint is taken. This feature is particularly useful with a
DO clause on a SET BREAK, SET TRACE, or SET WATCH command. For
example, you might set up a DO clause on a SET TRACE command to count
the number of times your program accesses a given location. You can specify
the /SILENT qualifier so you do not have to see the "trace at ... " message
every time the tracepoint takes effect.

DBG>DEFINE/VALUE C0UNT=0
DBG>SET TRA/SIL '/.LINE 10 DO (DEF/VAL C0UNT=C0UNT+1)

The /SOURCE qualifier controls whether you see the source code. If you
issue the SET STEP SOURCE command, the debugger displays the source
code at every step, breakpoint, tracepoint, and watchpoint.

You can, however, override the default STEP setting by specifying a qualifier.
For instance, if you want to see the source code at a particular breakpoint but
the default setting is NOSOURCE, you can issue the command SET BREAK
/SOURCE.

3.5 Exit Handlers

Exit handlers are procedures that are called whenever an image requests the
$EXIT system service. A user program may declare one or more exit handlers.
The debugger always declares its own exit handler.

This section discusses the sequence in which exit handlers are executed and
explains how to debug them.

3.5.1 Sequence of Exit Handler Execution
At program termination, exit handlers are executed in last-in/first-out order
(LIFO); that is, the most recently declared exit handler is executed first, then
the next most recently declared exit handler, and so on.

The debugger exit handler is the first in and therefore the last out.
Consequently, at program termination, the debugger exit handler executes
after all user-declared exit handlers have executed.

3-22

Controlling Program Execution

3.5.2 Debugging Exit Handlers
To debug an exit handler, you must first set a breakpoint in that exit handler.
Then, you must cause that exit handler to execute either by including in your
program an instruction that invokes the exit handler or by allowing your
program to terminate. (At program termination, the system begins executing
exit handlers in last-in/first-out order.) When the exit handler executes, the
breakpoint will be activated and control returned to the debugger, which will
display its prompt. You can then enter debugger commands.

3.5.3 Identifying Exit Handlers
The SHOW EXIT-HANDLERS command gives a display of the exit handlers
that your program has declared. The exit handler routines are displayed in
the order that they will be called (that is, last in, first out). The routine name
is displayed symbolically, if possible. Otherwise its address is displayed. The
debugger's exit handlers are not displayed.

For example:

DBG> SHOW EXITJHANDLERS

exit handler at STACKS\CLEANUP

3-23

4 Symbol References and Their Interpretation

In the context of debugging, symbols are strings of characters that represent
files, program modules, routines, program locations, variables, arrays, or any
other definable units. This chapter explains what you need to know about
symbols to debug your program.

4.1 Symbolic Debugging
Symbolic debugging means debugging using symbols, instead of virtual
addresses, to refer to memory locations.

For the debugger to interpret symbols, information about them (in the form
of symbol records) must be present in the executable image at run time.

You control which symbol records are available at run time by using the
/DEBUG command qualifier with the compile and LINK commands.

By default, symbol records for traceback information are available at run time.
Traceback information consists of symbol records that describe module names,
routine names, and compiler-assigned line numbers. Traceback information is
used both by the debugger and by the traceback utility. The traceback utility
uses these symbol records to display the call stack when a program terminates
abnormally.

Example 4-9 shows a traceback display of the call stack.

Example 4-9 Traceback Information

7.PAS-F-ERRACCFIL, error in accessing file PAS$OUTPUT
7.P AS - F - ERRQPECRE, error opening/creating file
7.RMS-F-FNM, error in file name
7.TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC

PAS$IO_BASIC _PAS$CODE 00000192 0000ICED

PAS$IO_BASIC _PAS$C0DE 0000054D 000020A8

PAS$IO_BASIC _PAS$CODE 0000028B 00001DE6

EIGHTQUEENS EIGHTQUEENS 59 00000020 000005A1

To prevent the inclusion of symbol records for traceback information in the
executable image, you can specify /NODEBUG with the compile command
or /NOTRACEBACK with the LINK command. Note however that specifying
/NOTRACEBACK also disables the debugger. In general, if you intend
to debug your program, you want to include traceback information in the
executable image. On the other hand, when your program is fully debugged,
you might want to prevent the inclusion of traceback information in the
executable image in order to reduce the size of the executable image file.

Sections 4.2.1 and 4.2.2 describe how to use the /DEBUG command qualifier
to include symbol records in the executable image. Section 4.2 describes the
symbol tables that contain these records.

4-1

Symbol References and Their Interpretation

However, even if the required symbol records are present in the executable
image at run time, the debugger will be able to access them only if they are
present in its run-time symbol table (RST). To put symbol records in the RST,
you use the SET MODULE command. Section 4.5.2 describes how to use
these commands.

Finally, given that the required symbol records are present in the RST, it
might also be necessary to specify the program region (or scope) in which a
particular symbol is to be interpreted. For example, symbols with the same
name, but with declarations in different routines, must be differentiated from
one another. In this case, you must prefix the symbol name with a path name
or use the SET SCOPE command to define the scope. Section 4.4 discusses
these topics.

4.2 Symbol Tables Used by the Debugger

Symbol tables contain symbol records that the debugger uses to associate a
symbol with a program location (that is, a virtual address). In addition, by
means of some symbol records, the debugger can associate attributes with a
program location, such as the length of that location and its data type.

The debugger uses the following three symbol tables, which are described in
the following sections.

4.2.1 Debug Symbol Table
When the linker creates an executable image, it creates a debug symbol table
(DST) unless you specify the /NOTRACEBACK qualifier with the LINK
command. The linker includes the DST in the executable image.

If you specify the /DEBUG qualifier with the LINK command, the linker
includes in the DST all symbol records that are present in the object
module(s) from which it creates the executable image. Thus, if symbol
records for local symbols are present in the object module(s) (because you
specified /DEBUG at compile time), the DST will contain symbol records for
local symbols and for traceback information.

If you do not specify the /DEBUG qualifier with the LINK command, the
linker includes only symbol records for traceback information. Thus, even if
symbol records for local symbols are present in the object module(s), they are
not included in the executable image.

A DST symbol record typically contains the name of a symbol, its type, its
length, and its value or address. The type information may simply mark the
symbol as a routine or a label, or it may define a more or less complex data
type. Similarly, the address information may be a simple virtual address or
value, or it may specify a more or less complex way of computing the symbol
address.

At run time, the debugger uses the symbol records in the DST to build the
run-time symbol table (RST). For more information on the RST, refer to
Section 4.2.3.

4-2

Symbol References and Their Interpretation

4.2.2 Global Symbol Table
When the linker creates an executable image, it creates a global symbol
table (GST). The linker includes the GST in the executable image only if the
/DEBUG qualifier is specified with the LINK command.

The linker creates the GST from its own internal symbol table. As a result,
symbol records in the GST contain no more information than the linker needs
to do its job. Symbol records in the GST describe all global symbols in the
image, such as routine names, procedure entry points, and global data names.
Symbol records for these global symbols associate symbol names with virtual
addresses or values, but they do not contain information about data types.
See the description of the VAX/VMS Linker in the VAX/VMS Linker Reference
Manual for information on the content and format of these symbol records.

The debugger uses the GST only if it cannot locate needed information in
the DST. If a symbol is represented in both the DST and the GST, the DST
symbol record usually contains more information about the symbol than the
GST symbol record.

4.2.3 Run-Time Symbol Table
When the debugger is activated at run time, it uses available symbol records
in the DST and GST to generate symbol entries for the run-time symbol table
(RST).

The RST allows the debugger random access to symbols during a debugging
session. Its purpose is to allow efficient access to symbol records contained in
the DST and GST. Whenever you mention a symbol in a debugger command,
the debugger checks the RST for the information it needs to interpret that
symbol. If there is no entry for a symbol in the RST, you cannot access that
symbol.

When the debugger is initialized at run time, it allocates enough memory
to allow the RST to contain symbol records for the six largest modules in
the program, approximately. However, VAX/VMS does not allow memory
allocation for the RST if such allocation causes the process to exceed its virtual
address quota as established by system parameters.

At debugger start up, symbol records for all modules are not automatically
included in the RST. Instead, if the debugger is activated by the RUN
command, symbol records for the module containing the transfer address are
included in the RST. If the debugger is activated by the DEBUG command,
symbol records for the module containing the current PC are included in the
RST.

Symbol records for all other modules are included in the RST by setting the
module. Module setting is the process by which all the symbol records of a
particular module are included in the RST. Module setting makes the symbols
of a module accessible to debugger commands and is accomplished in two
ways: automatically, by using dynamic module setting; and manually by
using the SET MODULE command.

Dynamic module setting is initially enabled by default when you invoke
the debugger. In dynamic module setting, the debugger sets certain modules
automatically for you: whenever the debugger prompt is displayed (whenever
the debugger interrupts execution), the debugger automatically sets the

4-3

Symbol References and Their Interpretation

module enclosing the PC location and issues an informational message. If the
module is already set, dynamic module setting has no effect. For example,
suppose you are at a call of routine SUBR and decide to step into SUBR:

DBG> STEP/INTO

stepped to routine SUBR
%DEBUG-I-DYNMODSET, setting module SUBR

Dynamic module setting, by setting the module surrounding the current
PC location, makes all the symbols of that module accessible to debugger
commands.

If you want to set a module that has not been set dynamically (to access
symbols declared in arbitrary modules) you need to use the SET MODULE
command. For example:

DBG> EXAMINE X
y,DEBUG-W-NOSYMBOL, symbol ’X’ is not in the symbol table

DBG> SET MODULE SWAP
DBG> EXAMINE X
SWAP\X: 17

Symbol records can be removed from the RST by means of the CANCEL
MODULE command; removing symbol records from one or more modules
makes room in the RST for the symbol records of other modules.

Note that dynamic module setting makes the debugger easier to use;
however, it may slow the debugger down as more and more modules are
set. The debugger does not cancel modules for you. If performance becomes
a problem, you can use the CANCEL MODULE command selectively,
or you can turn off dynamic module setting by issuing the SET MODE
NODYNAMIC command. You can reenable dynamic module setting with the
SET MODE DYNAMIC command.

If the debugger cannot find the information it needs to interpret a symbol,
one of the following conditions exists:

• The symbol reference is incorrect. In this case, you can check the symbol
reference for spelling and syntax errors, and then correct them.

• The symbol refers to more than one entity. In this case, you can make
the symbol reference unique by specifying the symbol with a path-name
prefix or by using the SET SCOPE command.

• Symbol records for the module containing that symbol are not present
in the RST. In this case, you can issue the SET MODULE command to
include the symbol records for that module.

• Symbol records for the symbol are not present in the executable image.
In this case, you will not be able to use the symbol during the debugging
session. To use the symbol, you will have to compile, link, and run the
program again, taking care to specify the /DEBUG command qualifier.
See Sections 4.2.1 and 4.2.2 for information on using the /DEBUG
command qualifier.

Symbol References and Their Interpretation

4.3 Kinds of Symbols
Symbols differ from one another not only in what they represent but also in
the contexts in which they can be interpreted.

This section describes

• Symbols that can always be interpreted in a debugging session

• Symbols that can be interpreted in a debugging session if you define them
during the session

• Symbols whose interpretation depends on many factors, such as whether
the /DEBUG qualifier was specified at compile time and which modules'
symbols are in the RST

4.3.1 Debugger Permanent Symbols
Debugger permanent symbols are symbols that are known to the debugger in
any debugging context. Thus, you can use them at any time in a debugging
session. The following are the debugger permanent symbols and their
referents:

• The characters %R followed by a numeral from 0 through 11 represent
the corresponding VAX general purpose registers, such as %R0, %R1,
%R2, %R3, %R4, %R5, . . . %R11. In general, these symbols are
debugger permanent symbols.

• %PC represents the program counter and is a debugger permanent
symbol.

• %PSL represents the processor status longword and is a debugger
permanent symbol.

• %SP represents the stack pointer and is a debugger permanent symbol.

• %AP represents the argument pointer and is a debugger permanent
symbol.

• %FP represents the frame pointer and is a debugger permanent symbol.

• The period represents the current entity; you can also use %CURLOC.
You may use them to refer to the program location last referenced
by an EXAMINE or DEPOSIT command. See Section 5.2.6 for more
information.

• The circumflex (*) represents the logical predecessor of the current entity;
you can also use %PREVLOC.

• The backslash (\) represents the value last displayed by an EVALUATE,
EXAMINE, or DEPOSIT command; you can also use %CURVAL.

• <RET> represents the next location; you can also use %NEXTLOC.

You can use %CURLOC, %PREVLOC, %CURVAL, and %NEXTLOC when
you cannot use the symbols they represent because the symbols would
be ambiguous or because you cannot use <RET> in the middle of an
expression.

4-5

Symbol References and Their Interpretation

You may leave out the percent sign in a reference to a register (for example,
abbreviate %R0 as RO). However, if you do not use the percent sign, the
debugger may interpret these symbols as program variables you have defined,
not as debugger permanent symbols. The debugger interprets these symbols
as debugger permanent symbols only if your program does not contain
variables of the same names.

4.3.2 Symbols Created by the DEFINE Command
During a debugging session, you can use the DEFINE command to create a
new symbol or to change the value of a currently existing symbol.

For example, if you find yourself frequently referencing a difficult-to-
remember, nonsymbolic program location, you can define a symbol to
represent that program location. Then, for the remainder of the debugging
session, you can refer to that program location by the symbol that represents
it.

Symbols created with the DEFINE command are deleted when you end the
debugging session.

As a result of the following command, MINI may be specified during a
debugging session instead of PROGRAM\ROUTINEA\BLOCKB\MINIM+20:

DBODEFINE MINI = PR0GRAM\R0UTINEA\BL0CKB\MINIM+2O

See the Command Dictionary for a full description of the DEFINE command.

4.3.3 Program Symbols
Program symbols (also called identifiers) are the symbols you use when you
write your program.

A program symbol is interpreted according to how and where it is declared
and where it is used.

A declaration of a symbol specifies attributes permanently associated with the
symbol, such as the data type, how much storage is allocated, and so on. The
symbol is interpreted by means of these attributes.

Program symbols fall into one of two categories:

• Data names, which identify data operated on by the program's executable
statements

• Program unit labels and program location labels, which identify or name
programs, procedures, lines, or statements

The following sections discuss the syntactic and semantic differences among
program symbols. Syntactically speaking, symbols range from simple
characters or names to complex entities composed of several names separated
by various delimiting characters.

The following subsections present the basic types of program symbols in
order to demonstrate the debugger's capacity to interpret the full range of
language-specific symbol syntax.

4—6

Symbol References and Their Interpretation

For those readers who are already familiar with the varieties of program
symbols, it may be enough to know that the debugger interprets program
symbols in the source-language syntax. Thus, in general, if a symbol is legal
in the source language, the debugger is capable of interpreting it.

4.3.3.1 Simple Symbols
The debugger interprets simple symbols according to the syntactic rules of the
source language.

A simple symbol is a program symbol that does not contain symbolic prefixes
or suffixes that further qualify the data item represented by the symbol.

A simple symbol may refer to an individual data item or to an entire range of
data items.

A simple symbol may be a data name that represents, for example, a numeric
constant (X), an array (ARR), or a character string (A5$).

If a symbol is legal in the source language, the debugger is generally able
to interpret it. For example, if language is set to VAX BASIC, the debugger
interprets the symbol T$ as a legal symbol representing a character string.

However, in some languages, symbol names may exist that are not considered
identifiers in the syntax of the currently set language. For instance, in
COBOL, sections and paragraphs can have numeric names such as "12."
In BLISS, the compiler generates names of the form "P.xxx" for PLITs, even
though the period is not a valid character in BLISS identifiers.

The %NAME built-in symbol causes the debugger to interpret its argument as
a name, whether or not it appears to be a name. It has either of the following
forms:

•/.NAME id-char-string

•/.NAME ’any-char-string’

The quotes are only needed for one of the following reasons:

• If the name has a semicolon (;) (which would ordinarily terminate the
command)

• If the name has lower-case alphabetics (which would ordinarily be
uppercased)

Examples follow:

DBG> SET BREAK ‘/.NAME 12

DBG> EXAMINE ‘/.NAME ’P.AAA’

4.3.3.2 Subscript-Qualified Symbols
The debugger interprets subscript-qualified (or subscripted) symbols in the
source language syntax.

A subscripted symbol is a symbol used to refer to a data item in an array.

Because an array consists of an ordered set of data items, you can identify an
array item by specifying the array name and the item's position in the array.
The position of an array item is indicated by one or more subscripts. For
example, (1+2) is a valid subscript in the subscripted symbol ARR(I+2).

4-7

Symbol References and Their Interpretation

The syntax of the subscripted symbol depends on the language that is
currently set. If, for instance, you want to examine the first item in the
array ARR and the currently set language is FORTRAN, you would give
the command EXAMINE ARR(l). However, a similar command in PASCAL
would look like this: EXAMINE ARR[1].

The number of subscripts used to identify a data item in an array indicates
the dimensions of the array. Thus, the third member of a one-dimensional
array named ARR is identified by the subscripted symbol ARR(3), and the
array member located in the third row, second column of a two-dimensional
array named TAB is identified by the subscripted symbol TAB(3,2).

You can, however, specify or examine an array slice instead of only one item
in the array. This capability allows you to see the items in the array as a
whole. You specify array slices much the same way you specify ordinary
subscripted symbols. For example, the symbol ARR(1,2:4,6) is a valid
FORTRAN array slice. It would produce an array slice made up of the
items ARR(1,4), ARR(1,5), ARR(1,6), ARR(2,4), ARR(2,5), and ARR(2,6).

In effect, an array slice is simply an array that is a subset of the parent array.

4.3.3.3 Structure-Qualified Symbols
The debugger interprets symbols that identify members of data aggregates
according to the syntactic rules of the source language.

A data aggregate that consists of data items of different types is called a data
structure or a record. Records contain data items that may contain subitems
that may contain sub-subitems, and so on.

For example, the following display is a declaration, in VAX PASCAL, of a
record Person:

TYPE PERSON = RECORD
NAME : PACKED ARRAY[1..20] OF CHAR;
AGE : INTEGER;
SEX : (MALE,FEMALE);
SALARY : INTEGER
END;

VAR COURTNEY : PERSON;

In most languages, to reference a field in a record, you must use a structure-
qualified symbol containing the name of the desired field and the names of
all other fields that contain that field.

For example, if you wanted to reference the field Age in the record above,
you would use the structure-qualified symbol COURTNEY.AGE.

The period is a delimiter used to separate field and record names.

Note that in those languages that permit the nesting of arrays and records,
symbolic references to fields within those records are a combination of
subscripted symbol and structure-qualified symbol.

Generally, a legal symbol in the source language is capable of being
interpretated by the debugger.

You can also specify or examine an entire aggregate, which means all the
items that make up the aggregate. You do not have to specify each of the
items individually. The aggregate output from a record shows the name and
value of each item in the record. Similarly, the aggregate output from an
array shows the subscript and value of each array item.

4-8

Symbol References and Their Interpretation

4.3.3.4 Pointer-Qualified Symbols
Some languages use pointer-qualified symbols to reference data items that
are not bound by the compiler to specific memory addresses. As with other
source-language symbols, the debugger interprets pointer-qualified symbols
in the syntax of the source language.

For example, to indicate a pointer type in VAX PASCAL, you specify the
name of the base type preceded by a circumflex (~). Thus, if the record
PERSON in Section 4.3.3.3 is the base type, the pointer variable P is declared
as

VAR P : ^PERSON;

To access the entire record, the pointer-qualified symbol P* is used.

To access a field within the record, include the name of the field, as shown
below.

P~ .SALARY

4.4 Symbol Resolution in the Source Language
The recognition or resolution of a symbol during a debugging session depends
on the resolution of the symbol in the source language and on the debugger
context in which the symbol is mentioned.

This section discusses the factors that influence the resolution of a symbol
within the source language. These factors are the context in which the
symbol declaration occurs and the presence or absence of a global attribute in
the symbol declaration.

4.4.1 Program Context of Symbol Declarations
Typically, programs contain symbol declarations. A symbol declaration
associates a symbol to an entity and associates with that entity certain
properties (such as type or storage allocation). Declarations may be implicit;
however, this discussion does not distinguish between implicit and explicit
declarations.

The scope of a declaration is the set of program locations wherein the symbol
is interpreted as representing the entity bound to it in that declaration.

The same symbol may be declared more than once. Declarations of the same
symbol have disjoint or nonoverlapping scopes, and each declaration binds
the symbol to a different entity (unless the symbol is global).

If a declaration occurs in a program unit that does not contain other program
units, the scope of the declaration is the program unit in which it occurs. If
a declaration occurs in a program unit that contains other (nested) program
units, the scope of the declaration is the program unit in which the declaration
occurs and all other nested program units that do not themselves contain
declarations of the same symbol.

Figure 4-2 shows nested program units containing several symbol
declarations. The symbol X is declared in two program units. The scope
of X declared in A is A, B, and D, but not C, because X is redeclared in C.
The scope of X declared in C is C; the scope of Y is B and C; and the scope of
Z is D.

4-9

Symbol References and Their Interpretation

Figure 4-2 Scope of Symbol Declarations

A:
DECLARE X

D:

DECLARE Z

ZK-011-81

4.4.2 Global Symbols
A global symbol is a symbol whose declaration contains a global attribute.

The presence or absence of a global attribute in a declaration influences the
resolution of that symbol.

Global symbols make possible references to the same entity by program units
that do not contain one another (nonnested program units). To accomplish
this, each program unit declares the symbol with the global attribute, though
not necessarily with all other attributes identical.

Thus, a global symbol is bound by several declarations to the same entity.
This contrasts with multiple declarations of the same local (or nonglobal)
symbol where each declaration associates the symbol with a different entity.

Strictly speaking, the scope of the declaration of a global symbol is no
different from the scope of the declaration of a nonglobal symbol; however,
the entity referred to by that symbol may be capable of interpretation outside
of the scope of its declaration in any one program unit, namely, in those other
program units that also declare it.

Figure 4-3 depicts declarations of global symbol X in two nonnested program
units. Both program units also make references to X. Because X is declared
with the global attribute in both program units, references to X in either
program unit are references to an identical memory location, the entity
represented by X.

4-10

Symbol References and Their Interpretation

4.5

Figure 4-3 Global Symbol X

PROGRAM
UNIT

A

PROGRAM
UNIT

B

DECLARE X GLOBAL

... X ...

... X ...

DECLARE X GLOBAL

... X ...

ZK-012-81

Symbol Resolution in the Debugger
As described in Section 4.4.1, a symbol in the source language is interpreted
as representing the entity associated with it in that declaration within whose
scope the symbol occurs.

In debugging, however, wherein random access to symbols anywhere in
the program may be necessary, you use path names to distinguish multiple
declarations of the same symbol.

A path name consists of one or more program location labels that serve to
specify a program location or range of program locations. Hence, a path name
is used to "locate" a symbol within the scope of the declaration that binds it
to the entity you want to reference. Of course, the program location(s)
indicated by the path name must be within the scope of some declaration of
the symbol; otherwise the symbol cannot be interpreted at all.

Thus, when you are debugging a program containing multiple declarations of
the same symbol and you want to indicate to the debugger that you wish the
symbol to be interpreted as representing one of several possible entities, you
simply specify a path name with the symbol. The debugger then interprets
the symbol as representing the entity associated with it in the declaration
whose scope includes the program location(s) denoted by the path name.

If you specify a path name as a parameter in the SET SCOPE command, you
are in effect establishing that path name as a default path-name prefix, to be
used in all symbol references that do not already contain a path-name prefix.
See Section 4.5.3 for more information on the SET SCOPE command.

4-11

Symbol References and Their Interpretation

You may specify as many path-name parameters as you like in the SET
SCOPE command; the debugger attempts to interpret the symbol using
the first path name listed. If that fails, the debugger uses the second path
name and continues in this manner until it finds a path name that identifies
a program location within the scope of a declaration of the symbol. The
debugger then interprets the symbol as representing the entity identified in
the declaration.

If you do not specify a path-name prefix when you use a symbol in a
debugger command and you have not specified default path names using
the SET SCOPE command, the debugger looks up a symbol according to
the following default scope. By default, the debugger looks up a symbol
according to the scope search list 0,2,2, . . . ,N, where N is the number of
calls in the call stack. This scope search list is based on your current PC and
changes dynamically as your program executes. The default scope means that
a symbol lookup such as "EXAMINE X" first looks for X in the routine that is
currently executing (scope 0); if no X is visible there, the debugger looks in
the caller of that routine (scope 1), and so on down the call stack; if X is not
found in scope N, the debugger searches the rest of the run-time symbol table
(RST), then searches the global symbol table (GST), if necessary.

When you use a symbol X in a debugger command, you may or may not use
a path-name prefix. If you use a path-name prefix, the debugger interprets X
as if it appeared in the program location(s) defined by that path name. The
debugger issues an error message if there is no declaration of X whose scope
includes the program location(s) defined by the path name. If you do not use
a path-name prefix, the debugger attempts to interpret X using default path
name(s), either (1) path name(s) you specified in the SET SCOPE command,
or (2) if you have not specified a path name, the path name indicated by the
program location containing the current PC.

For example, assume you enter the following commands:

DBG>SET SCOPE A\B,C
DBOEXAMINE X

You have not specified a path-name prefix in the EXAMINE command.
Consequently, the debugger uses A\B\ as a path-name prefix and attempts to
locate a declaration of X whose scope includes the program location identified
by the path name A\B\. If the debugger finds such a declaration of X, it uses
that declaration to interpret X in the EXAMINE command. If it does not find
such a declaration of X, the debugger then repeats the procedure using C\ as
a path-name prefix.

If the debugger fails to find a declaration of X whose scope includes the
program locations identified by the default path names, it searches the
entire run-time symbol table (RST) for a declaration of X. If the debugger
locates one, it resolves X using that declaration. If it locates more than one
declaration of X, it issues an error message to the effect that an ambiguous
reference has been made.

If the debugger does not find a declaration of X in the RST, it searches the
global symbol table (GST). If the debugger does not find a declaration of X in
the GST, it displays a message indicating that the symbol could not be found.
See Section 4.2.3 for information on what to do.

To utilize fully the debugger's capacity for distinguishing among multiple
declarations of the same symbol, you must be thoroughly familiar with how
path names are specified.

4-12

Symbol References and Their Interpretation

4.5.1 Specifying Path names
A path name is a string of program location labels that identifies a program
location or a range of program locations. A path name is used in two
contexts:

• As a prefix to a symbol in a debugger command

• As a parameter in the SET SCOPE command

The labels in a path name are strung together so that each label designates
a program unit that contains the program unit designated by any label to its
right. Thus, if PROG is a label appearing in a path name, labels to the left
designate "containing" program units, and the labels to the right designate
"contained" program units.

The backslash character (\) is used both to separate path-name elements from
one another and to separate the entire path name from the symbol to which it
is prefixed. Note that if the path name is specified as a parameter in the SET
SCOPE command, it is not followed by a symbol; therefore, the rightmost
path-name element in the path name is not followed by a backslash. On the
other hand, if the same path name is used to prefix a particular symbol in
a command, the rightmost path-name element is followed by a backslash to
separate it from the symbol.

The kinds of labels used in a path name vary somewhat from language to
language; however, in general, a path name always includes a module name
and usually includes one or more of the following elements:

• Routine name(s)

• Block name(s)

• Invocation number

• Line number

• Numeric label

A routine is a separately invocable program unit, that is, a program unit that
may be activated by a call. A block is a program unit that is activated in
normal execution sequence (inline); it is not separately in vocable. A routine
may contain one or more blocks and routines. A block may contain one or
more routines and blocks; that is, there may be nesting of blocks and routines.

The following is a typical path name consisting of module, block, and routine
names:

INV\PARTS\AUTO\

In languages that use line numbers, the %LINE path-name element specifies
the source-code line. The following is a path name that uses the %LINE
element:

MEDIANV/.LINE 330\

In languages that allow recursion, an invocation number is used in a path
name to distinquish among multiple invocations of the same program unit
(and therefore among multiple generations of symbols). An invocation
number is always associated with a routine name, never a block name; one or
more spaces must separate a routine name from an invocation number. (See

4-13

Symbol References and Their Interpretation

Section 4.5.1.2 on invocation numbers for more information.) The following
is a path name that specifies an invocation number:

M0D\R0UT 1\BLK\

Figure 4-4 shows a program containing nested routines and blocks with
declarations of the symbol X. Examples 1 through 4 refer to Figure 4-4.
In these examples, path names are used as prefixes of the symbol X in the
EXAMINE command and as parameters in the SET SCOPE command.

Figure 4-4 Path Names and Scope

4.5.1.1 Path Name Examples
This section contains four examples of path names.

dbg>examine a\x

The path-name prefix A\ identifies the range of program locations defined
by the program unit A. The debugger attempts to locate a declaration of
X whose scope includes A. Since such a declaration of X appears in A, the
debugger interprets X as representing the entity declared in A. The debugger
then examines the value of X.

The scope of the declaration of X in A consists both of those locations in A
that are not also in other blocks and of B. C and the unnamed (anonymous)
block are not in the scope of the declaration of X in A because they also
contain declarations of X.

DBG>EXAMINE A\B\C\X

4-14

Symbol References and Their Interpretation

The path-name prefix A\B\C\ identifies program unit C. The debugger
searches for a declaration of X whose scope includes C. It finds such a
declaration in C and interprets X as representing the entity declared in C. The
debugger then examines the value of X.

Remember that a symbol redeclared in a contained program unit is interpreted
according to the declaration in that unit, not the declaration in the outer unit.
Thus, the symbol X in C has a different meaning (as declared) than the
symbol X that is declared in A.

DBG>EXAMINE AV/.LINE 110\X

The path name A\%LINE 110\ identifies a program location within the
anonymous block because line number 110 is contained in the anonymous
block.

The debugger searches for a declaration of X whose scope includes line
number 110. It finds such a declaration in the anonymous block and
interprets X as representing the entity declared therein. The debugger then
examines the value of X.

Note that only by means of the %LINE path-name element is it possible to
identify program locations in an anonymous block. Thus, in this example,
without using the %LINE path-name element, it would be impossible to
reference the entity represented by X as declared in the anonymous block.

DBG>SET SCOPE A\B
DBG>EXAMINE X

Since no path-name prefix is used in the EXAMINE command, the default
path-name prefix A\B\ is attached to X. The debugger searches for a
declaration of X whose scope includes B, the range of locations specified
by A\B\. It locates such a declaration in A and interprets X as representing
the entity declared in A. The debugger then examines the value of X.

4.5.1.2 Path Name Completion
In programs where deep nesting of program units occurs, the naming of
every containing program unit in a path name can be burdensome. To make
it easier for you to specify path names, the debugger supports path name
completion.

A complete path name is a path name that mentions every path-name
element: all routines and blocks, as well as label and line numbers, if
applicable. An incomplete or abbreviated path name is a path name that
does not mention every path-name element in the specification.

When the debugger encounters a path name, it first determines whether the
path name is complete or incomplete. If it is complete, the debugger uses the
path name to resolve the symbol reference. If it is incomplete, the debugger
determines whether it is an abbreviation for a complete path name and, if so,
whether it is an unambiguous abbreviation.

An incomplete path name is an abbreviation for a complete path name if

• The path-name elements in the incomplete path name appear in the
complete path name in the same order.

• The rightmost element in the complete path name is the rightmost
element in the incomplete path name.

4-15

Symbol References and Their Interpretation

For example, the incomplete path name

RUGV/.LINE 784\

is an abbreviation for the complete path name

MAT\CLR1\RUG\%LINE 784\

because (1) RUG\ and %LINE 784\ in the incomplete path name are in the
same order as in the complete path name and (2) the rightmost element
%LINE 784\ in the complete path name is the rightmost element in the
incomplete path name.

The abbreviated path name is unambiguous if there is not more than one
complete path name for which it is an abbreviation.

For example, let us assume that two different subroutines, both named
SUB, are declared in program units PROG and QUAR, respectively. The
incomplete path name SUB is ambiguous because there are two complete
path names, PROG\SUB and QUAR\SUB, for which it is an abbreviation.

An incomplete path name is acceptable to the debugger so long as it is an
abbreviation (according to the definition above) for one (and not more than
one) complete path name.

Unique symbols can always be specified without path-name qualification.

Global symbols may be specified by preceding the symbol with a backslash
(\). For example, \X indicates that X is a global symbol.

4.5.1.3 Invocation Numbers
Routines are separately invocable program units; that is, they are activated
by calls, rather than by inline execution. Thus during the execution of a
program, there may be several simultaneous invocations of a routine or none
at all.

If a symbol representing a dynamic entity is declared in a routine or in a block
within a routine, the entity represented by that symbol is generated anew
each time the routine is invoked. For each invocation of the routine, there
is a corresponding generation of the entity. Invocation numbers are used
in path names to denote particular routine invocations (and thus particular
generations of an entity).

Invocation numbers are nonnegative decimal integers inserted in the path
name following the name of the rightmost routine in the complete path name.
The number zero (0) denotes the most recent invocation of the innermost
(most deeply nested) routine; the number one (1) denotes the invocation
before that; and so on.

For example, if a module MOD contains a routine ROUT that contains a block
BLK, then the path name that identifies the generation of BLK that resulted
from the most recent invocation of ROUT is

MODXROUT 0\BLK

The path name that identifies the generation of BLK that resulted from the
previous invocation of ROUT is

MOD\ROUT 1\BLK

4-16

Symbol References and Their Interpretation

Every complete path name that contains the name of a separately invocable
entity has an invocation number. When an invocation number is not present
in a path name that contains the name of a routine, the debugger implicitly
assumes the most recent invocation of the routine and supplies the default
invocation value zero (0).

Every path name containing the name of more than one routine specifies an
invocation of the innermost routine. In a path name, invocation numbers
cannot be associated with a routine name that appears to the left of another
routine name.

How you use a path name with an invocation number to specify a particular
generation of a dynamic entity depends on the relative positions of the
innermost routine and the program unit containing the declaration of the
entity. The symbol bound to the dynamic entity you want to reference may
be declared in any of the following:

• The innermost routine

• A block contained in the innermost routine

• A program unit that contains the innermost routine

These three possibilities give rise to the three program situations illustrated in
Figures 4-5, 4-6, and 4-7.

Figure 4-5 Symbol Declaration in the Innermost Routine

INNERMOST ROUTINE

DECLARE X

LOCATION(S)

IDENTIFIED

BY PATHNAME

ZK-014-81

If the symbol is declared in the innermost routine, the debugger references
the generation of the entity corresponding to the invocation of the routine (if
there is one) denoted by the path name. Figure 4-6 illustrates this program
situation.

4-17

Symbol References and Their Interpretation

Figure 4-6 Symbol Declaration in a Contained Block

INNERMOST ROUTINE

BLOCK

DECLARE X

LOCATION(S)
IDENTIFIED BY
PATHNAME

ZK-015-81

If the symbol is declared in a block contained in the innermost routine and if
program execution has reached that block, then the debugger references the
generation of the entity corresponding to that block activation.

However, if program execution has not reached the block containing the
declaration (as would be the case, for example, if you set a breakpoint at a
location in the routine before the location that marks the beginning of the
block), then the generation of the symbol specified by the path name does
not exist, and the debugger issues an error message to that effect. Figure 4-7
illustrates this program situation.

4-18

Symbol References and Their Interpretation

Figure 4-7 Symbol Declaration in a Containing Program Unit

PROGRAM UNIT

DECLARE X

INNERMOST ROUTINE

LOCATION(S)

IDENTIFIED BY

PATHNAME

ZK-016-81

Some invocation of a program unit provides the context for the invocation of
the innermost routine denoted by the path name. The debugger references
the generation of the entity corresponding to that invocation of the program
unit. Figure 4-7 illustrates this program situation.

Note that when you specify an invocation number, you must leave one or
more spaces or tabs between it and the separately invocable routine.

4.5.2 The SET, SHOW, and CANCEL MODULE Commands
The SHOW MODULE command displays the following information about
one or more modules in your program:

• The module name

• The presence (or absence) of symbol records for that module in the RST

• The language in which the module is written

• The approximate space (in bytes) required in the RST for symbols in that
module

• The total number of modules selected for display

• The number of unused bytes in the space allocated for the RST

The SHOW MODULE command has the following format:

SHOW MODULE [/SHARE] [module-name [_]]

The /SHARE qualifier controls whether the debugger includes, in the SHOW
MODULE display, any shareable images that have been linked with your
program but are external to your program. These shareable images are
primarily Run-Time Library images, but they also include any shareable

4-19

Symbol References and Their Interpretation

images called by your program. By default (/NOSHARE), no shareable
images are selected for display.

To insert symbol records for one, several, or all modules in the RST, you use
the SET MODULE command. It has the following format:

SET MODULE [/qualifier] [module-name [,module-name...]]

To include symbol records for one or several modules, specify the module
name(s) in the SET MODULE command. In this case, do not specify a
command qualifier.

To include symbol records for all modules, specify the /ALL command
qualifier in the SET MODULE command. In this case, do not specify a
module name or names.

Note that if a parameter in the SET SCOPE command designates a program
location in a module whose symbol records are not already in the RST, the
debugger copies symbol records of that module into the RST when the SET
SCOPE command is executed.

When all the memory space allocated for the RST is occupied by symbol
records and you want to include additional symbol records, you have
two alternatives. You can either allocate more memory with either the
ALLOCATE or the SET MODULE/ALLOC ATE command, or you must issue
the CANCEL MODULE command in the following format:

CANCEL MODULE [/qualifier] [module-name [.module-name...]]

To delete symbol records of one or several modules, specify the module name
or names in the CANCEL MODULE command. In this case, do not specify a
command qualifier.

To delete symbol records of all modules, specify the /ALL command qualifier
in the CANCEL MODULE command. In this case, do not specify a module
name or names.

Example 4-10 demonstrates the SHOW, SET, and CANCEL MODULE
commands.

4.5.3 The SET, SHOW, and CANCEL SCOPE Commands
The purpose of the SET SCOPE command is to indicate one or more path¬
name prefixes to be used in the interpretation of symbols without path-name
prefixes.

The numbers 0, 1, 2, and so on, which appear in path names as invocation
numbers, may also be used as parameters in the SET SCOPE command. Used
in this way, these numbers are numeric path names.

The numeric path name 0 specifies that symbols without path-name prefixes
are to be interpreted as if they appeared in the currently active routine;
numeric path name 1, in the program unit that contains the call to the
currently active routine; numeric path name 2, in the program unit that
contains the call to the program unit that contains the call to the currently
active routine; and so on.

If you do not issue a SET SCOPE command, the debugger exhibits a default
behavior equivalent to the following SET SCOPE command (here, n is the
number of calls in the call stack):

SET SCOPE 0,1,2, .. . n

4-20

Symbol References and Their Interpretation

Example 4-10 Using the SET/SHOW/CANCEL MODULE
Commands

VAX-11 DEBUG Version 3.0-3

'/.DEBUG-1-INITIAL, , language is BASIC, module set to "MEANSUB$MAIN

dbg>show MODULE

module name symbols language size
BAS$MSGDEF no BLISS 68
BAS$ST0P no BLISS 284
MEANSUB$MAIN yes BASIC 172
0TS$LINKAGE no MACRO 176
total modules: 4.

dbg>set MODULE otsilinkage

remaining size: 60784.

DBG>SH0W MODULE
module name symbols language size
BASIMSGDEF no BLISS 68
BAS$ST0P no BLISS 284
MEANSUB$MAIN yes BASIC 172
OTS$LINKAGE yes MACRO 100
total modules: 4. remaining size: 60676.

DBG>CANCEL MODULE MEANSUB$MAIN

dbg>show MODULE

module name symbols language size

BAS$MSGDEF no BLISS 68
BAS$ST0P no BLISS 284
MEANSUB$MAIN no BASIC 172
0TS$LINKAGE yes MACRO 100
total modules: 4. remaining size: 60856.

dbg>set MODULE/ALL

dbg>show MODULE

module name symbols language i Bize
BAS$MGSDEF yes BLISS 36

BASSSTOP yes BLISS 172
MEANSUBSMAIN yes BASIC 172
OTS$LINKAGE yes MACRO 100
total modules: 4. remaining si:

dbg> show module foo,MAIN,SUB*

module name symbols language size

FOO yes MACRO 432

MAIN no FORTRAN 280

SUB1 no FORTRAN 164

SUB2 no FORTRAN 204

total modules: 4. remaining size: <

60452.

60720.

This scope search list is based on your current PC and changes dynamically
as your program executes. The default scope means that, when you do not
specify a path name, a symbol lookup such as "EXAMINE X" first looks for
X in the routine that is currently executing (scope 0); if no X is visible there,
the debugger looks in the caller of that routine (scope 1), and so on down the
call stack; if X is not found in scope N, the debugger searches the rest of the
run-time symbol table (RST), then searches the global symbol table (GST), if
necessary.

You can set up a symbol scope search list by specifying more than one
parameter in the SET SCOPE command. The debugger uses the first
parameter specified as a path-name prefix to interpret a symbol without a
path-name prefix. If this interpretation fails, the debugger uses the next
parameter listed in the SET SCOPE command in a similar fashion and

4-21

Symbol References and Their Interpretation

continues until it successfully interprets the symbol or until it exhausts the
parameters specified in the SET SCOPE command.

The acceptable parameters to the SET SCOPE command are described below.

MODULE\ROUTINE\BLOCK This is a legal path name. Path names may be
complete or incomplete. Note that there may be
one or more routines and/or blocks.

0, 1, 2, 3, . . . These numbers are numeric path names. The
numeric path name 0 specifies that symbols
without path-name prefixes are to be interpreted
as if they appeared in the currently active routine;
numeric path name 1, in the program unit that
contains the call to the currently active routine;
numeric path name 2, in the program unit that
contains the call to the program unit that contains
the call to the currently active routine; and so on.

Backslash (\) The backslash (\) specifies that a symbol without
a path-name prefix is to be interpreted as a global
symbol.

The following is an example of the SET SCOPE command:

DBG>SET SCOPE 1, MODB, \

This command establishes a symbol scope search list. As a result of this
command, the debugger attempts to interpret a symbol without a path-name
prefix as if (1) it appeared in the program unit that contains the call to
the currently active routine, (2) it appeared in MODB, (3) it were a global
symbol.

If you want to examine the current parameters in effect, issue the SHOW
SCOPE command.

If you want to change the existing scope search list, issue a SET SCOPE
command specifying the desired parameters.

If you want to cancel the existing scope search list, issue the CANCEL SCOPE
command.

The CANCEL SCOPE command has the same effect as the SET SCOPE 0
command.

4.5.4 The SHOW SYMBOL Command
You can use the SHOW SYMBOL command to ask the debugger for
information that it has in its symbol table. You can request information
about a single symbol or about all symbols (by using wildcards).

The following example shows how an attempt to examine X fails because
there are two X's in the program. SHOW SYMBOL displays the two instances
of X.

DBG> EXAM X

‘/.DEBUG-W-NOUNIQUE, X is not unique
DBG> SHOW SYMBOL X
data F00\X
data FUM\X
DBG> EXAMINE F00\X
F00

4-22

Symbol References and Their Interpretation

To display type and address information about all the symbols in the RST,
enter the following command string:

DBG> SHOW SYMBOL/TYPE/ADDRESS *

The asterisk (*) is the wildcard character. It matches all symbols.

For more information about SHOW SYMBOL, see the Command Dictionary.

4.6 Debugging Shareable Images
A shareable image is an image that is not directly executable. Shareable
images are included in the linking of executable images, and then the
shareable image is loaded at run-time when the executable image is run.
A shareable image contains "universal symbols" that are visible from the
executable image. See the VAX/VMS Linker Reference Manual for more
information on shareable images.

You debug a shareable image in much the same way as any other image.
You first compile and link the shareable image with the /DEBUG qualifier.
You need not install the shareable image to debug it. Instead, you can debug
your own private copy by pointing a logical name to it. You will be using the
debugger's SET IMAGE and SHOW IMAGE commands.

The following is a simple example to illustrate the above points. Suppose
MAIN.FOR is the source file for your main image, and SFLARE.FOR is the
source file for the shareable image that you want to debug. Assume that
SHARE.FOR has a single universal symbol, SHARED-ROUTINE, which is a
routine called from the main program MAIN.FOR.

To debug SHARE.FOR, first compile and link the shareable image with the
/DEBUG option:

$ FORTRAN/DEBUG/NOOPT SHARE
$ LINK/SHARE/DEBUG SHARE.SYS$INPUT/OPTION

UNIVERSAL=SHARED_ROUTINE ICTRL/Zl

You have now built the shareable image SHARE.EXE in your current
directory. Since it is a shareable image, you cannot run SHARE.EXE directly.
Instead, you have to link your main image against it, then point the logical
SHARE to your copy of SHARE.EXE, and then run the main image:

$ FORTRAN/DEBUG/NOOPT MAIN
$ LINK/DEBUG MAIN,SYS$INPUT/OPTION
SHARE.EXE/SHARE |CTRL/Z|
$ DEFINE SHARE SYS$DISK:[]SHARE.EXE
$ RUN MAIN

VAX DEBUG Version 4.4

‘ADEBUG-1 - INITIAL, ...
DBG>

Now, suppose you want to set a breakpoint on SHARED—ROUTINE, the
routine in your shareable image. To do that, you "set" the shareable image
SHARE to bring in its symbol table. The symbol SHARED—ROUTINE is then
available to the debugger, and you can set a breakpoint on it:

DBG> SET BREAK SHARED.ROUTINE
•/.DEBUG-W-NOSYMBOL, symbol ’ SHARED_ROUTINE’ not found
DBG> SHOW IMAGE

set base address end address image name

♦MAIN
SHARE

yes
no

00000200
0000i000

000009FF
00001FFF

4-23

Symbol References and Their Interpretation

total images: 2
DBG> SET IMAGE SHARE
DBG> SHOW IMAGE

image name

MAIN
♦SHARE

total images: 2
DBG> SET MODULE/ALL
DBG> SET BREAK SHARED.ROUTINE

DBG> GO
break at routine SHARED.ROUTINE
10: subroutine shared_routine(a,b)
DBG>

Now that you have set image SHARE and all its modules and have reached
the breakpoint at SHARED_ROUTINE, you can debug it in the normal
fashion (for example, step through the routine, examine variables, and so on).

remaining size: 32856

set base address end address

yes 00000200 000009FF
yes 00001000 00001FFF

remaining size: 32856

4-24

5 Referencing Program Locations

In debugging, you make references to program locations in order to stop
program execution, to examine and deposit values, and to set breakpoints,
watchpoints, and tracepoints.

All references to program locations are called address expressions. An address
expression may be a simple address or an expression consisting of one or
more simple addresses, operators, and delimiters.

Generally, when the debugger interprets an address expression, the results
are a program location and a type that is associated with the contents of that
location.

The first part of this chapter contains a discussion of type; the second part, a
description of various simple addresses; and the third part, a discussion of the
use of operators and delimiters to form expressions.

5.1 Type
When a symbol is declared in the source language, the language compiler
associates a type with the entity that the symbol represents. Thereafter, the
entity is interpreted in that language-dependent (or compiler-generated) type.
In general, the debugger understands language-dependent types that are
associated with entities by declaration in the source language.

However, because all references are not symbolic, an entity may not have
a compiler-generated type. In this case, the entity is interpreted using a
debugger default type. The default type is used only when the entity has no
type associated with it already.

The following are the debugger types:

ASCILn

ASCIC

ASCID

ASCIW

ASCIZ

BYTE

DATE_TIME

D-FLOAT

FLOAT

G-FLOAT

Designates the ASCII character string type (length n bytes)

Designates the counted ASCII character string type

Designates a string descriptor pointing to an ASCII string

Designates a varying ASCII character string

Designates a zero-terminated ASCII character string

Designates the byte integer type (length 1 byte)

Designates the 64-bit VMS representation of date and time.

Designates the D_floating type (length 8 bytes), whose value
range is the same as the F_floating type but with approximately
16 decimal digits precision

Designates the F_floating type (length 4 bytes), whose values
may range from .29*10 38 to 1.7*1038 with approximately 7
decimal digits precision

Designates the G_floating type (length 8 bytes), whose values
may range from .56* 10--308 to .9*10308 with approximately
15 decimal digits precision

5-1

Referencing Program Locations

H_FLOAT

INSTRUCTION

LONGWORD

OCTAWORD

PACKED:n

QUADWORD

WORD

Designates the H_floating type (length 16 bytes), whose
values may range from .84*10—4932 to .59* 104932 with
approximately 33 decimal digits precision

Designates the VAX instruction type (variable length)

Designates the longword integer type (length 4 bytes)

Designates the octaword integer type (length 16 bytes), whose
values are signed integers in the range -2127 to 2127 -1

Designates a packed decimal type (length n digits).

Designates the quadword integer type (length 8 bytes), whose
values are signed integers in the range -263 to 263 -1

Designates the word integer type (length 2 bytes)

To change the default type, specify the desired type as a parameter in the
SET TYPE command.

For example, the following command changes the default type to 6-byte
ASCII string:

DBG>SET TYPE ASCII:6

As a result of this command, the debugger interprets any entity without a
compiler-generated type as a 6-byte ASCII string.

To see what the current default type is, issue the SHOW TYPE command.

If you want all entities, even those with compiler-generated types, to be
interpreted in one of the above types, you establish an override type by
specifying the desired type as a parameter in the SET TYPE/OVERRIDE
command.

For example, the following command directs the debugger to interpret all
entities, even those with compiler-generated types, as VAX instructions:

DBG>SET TYPE/OVERRIDE INSTRUCTION

To see what override type is in effect, issue the SHOW TYPE/OVERRIDE
command.

To cancel an override type, issue the CANCEL TYPE/OVERRIDE command.

If you want the debugger to interpret an entity in one of the above types, but
only for the duration of the command that mentions the entity, specify the
desired type as a command qualifier. A type specified as a command qualifier
is a command override type. For example, the following command directs the
debugger to interpret the entity RADIUS as a byte integer:

DBG>EXAMINE/BYTE RADIUS

As a result of this command, any associated compiler-generated type or
current override type established by the SET TYPE/OVERRIDE command is
overridden for the duration of the command.

To sum up, you can control the type used by the debugger to interpret an
entity in three ways. In increasing order of power, these are

• Setting the default type by the SET TYPE command

• Setting an override type by the SET TYPE/OVERRIDE command

• Specifying a command override type by using a type command qualifier

5-2

Referencing Program Locations

Thus, a command override type overrides any compiler-generated type,
default type, or override type; an override type overrides any compiler¬
generated type or default type; a compiler-generated type overrides the
default type; and the default type, being the weakest type, overrides no other
type.

See Chapter 6 for examples of how these types are used in debugging.

5.1.1 The Type Associated with Address Expressions
The type associated with an address expression depends on the current
default type, any override types currently in effect, and on the address
expression itself.

The debugger associates a type with an address expression in the following
way:

1 If an address expression is found in a command that contains a type
command qualifier, then the type specified by the qualifier is associated
with the address expression.

2 If an address expression is found in a command that does not contain a
type command qualifier, then any override type established by the SET
TYPE/OVERRIDE command is associated with the address expression.

3 If a type is not associated with the address expression in one of the above
ways, then the type associated with the address expression depends on
the address expression itself.

• An address expression that consists of a single, symbolic reference
has the type associated with that reference by the source language
(the compiler-generated type).

• The debugger symbols for current entity, logical predecessor, and
logical successor have the type associated with the address expression
for which they are an abbreviation.

4 If a type is not associated with the address expression in one of the above
ways, then the address expression is given the default type.

5.2 Simple Addresses
You can make references to program locations using symbolic notation
present in your program, as well as other notation generated by the language
compiler and notation peculiar to the debugger itself. Taken as a whole, these
forms of notation are called simple addresses.

This section presents each form of simple address and explains how the
debugger interprets it.

5-3

Referencing Program Locations

5.2.1 Symbolic References
Symbolic references are program location references that use program
symbols, with or without path-name prefixes.

A symbolic reference may be a source-language symbol or a symbol created
with the debugger DEFINE command.

In the following examples, the symbolic references DAT1 and
ROUTINE\BLOCK\DATl are simple addresses in the debugger EXAMINE
command:

DBG>EXAMINE DAT1

DBG>EXAMINE R0UTINE\BL0CK\DAT1

Both commands direct the debugger to display the value of DAT1 in its
compiler-generated type.

5.2.2 Line Numbers
Some language compilers generate line numbers so that references to program
locations can be found more easily.

In a debugging session, you can use these line numbers to refer to lines of
code in your program. When the debugger encounters the %LINE symbol, it
interprets the number that follows as a compiler-generated line number and
uses it as a simple address to reference that location.

The following example shows how the %LINE symbol, together with a line
number, is used as a simple address:

DBG>SET BREAK ‘/.LINE 232

If you want to use line numbers as simple addresses, you might find that
having a compiler listing is helpful because it lists, among other things, each
line of code with its corresponding line number. For more information on
obtaining a compiler listing, refer to the user's guide for the language you are
using.

You may also use line numbers with path-name qualification as simple
addresses. The path name precedes the entire line number notation, as
follows:

MODULE\%LINE 30

The %LINE symbol can be used to identify anonymous blocks. See
Section 4.5.1 for an example of the %LINE symbol used in this way and
for more information about the %LINE symbol.

5—4

Referencing Program Locations

5.2.3 Statement Numbers
In those languages that allow more than one statement on a line, statement
numbers are used to differentiate among statements on the same line.

A statement number consists of a line number, followed by a period and a
number indicating the statement. The format follows:

•/.LINE xxx.yy

In this format, xxx is the line number and yy is a number specifying the
statement. The number one (1) represents the first statement that begins on
the line; the number two (2), the second; and so on.

For example, in VAX BASIC, the second statement on line 500 is expressed as
follows:

‘/.LINE 500.2

You may also use statement numbers with path-name qualification as simple
addresses. The path name precedes the entire statement number, as follows:

M0DULEX7.LINE 30.3

5.2.4 Numeric Labels
In some languages, numeric labels are used to label lines of source code in a
program. You can use these labels to reference lines of code in a debugging
session by prefixing them with the %LABEL symbol.

The format of a reference to a numeric label in the debugger syntax is

•/.LABEL xxx

Here, xxx is a user-defined numeric label.

For example, in VAX FORTRAN, a numeric label is a number you place in a
designated column of your program at an important program location so that
you can reference that location. In debugging your program, you must prefix
a reference to a numeric label with the % LABEL symbol.

Example 5-11 shows part of a compiler listing of a VAX FORTRAN program.
The numbers in the leftmost column are line numbers; you refer to them in a
debugging session using the %LINE prefix. The numbers in the next column
to the right are numeric labels; you refer to them in a debugging session using
the %LABEL prefix.

The following debugger command halts program execution at numeric label
20 in the VAX FORTRAN program shown in Example 5-11:

dbg>set BREAK '/.LABEL 20

Note that program execution is stopped at the same program location if the
following command is issued:

DBG>SET BREAK '/.LINE 12

You can use a numeric label with path-name qualification as a simple address.
The path name precedes the entire line numeric label, as follows:

CIRCLEV/.LABEL 10

5-5

Referencing Program Locations

Example 5-11 Line Numbers and Numeric Labels

C PROGRAM TO FIND THE AREA
C OF A CIRCLE

0002 1
0003 5
0004

0005 10

0001 PROGRAM CIRCLE
TYPE 5
FORMAT (’ ENTER RADIUS VALUE ’)
ACCEPT 10,RADIUS

0006
0007
0008
0009

FORMAT (F6.2)
IF (RADIUS .LE.0) GO TO 20

PI = 3.1415927
AREA = PI*RADIUS**2
TYPE 15,AREA

0010 15
0011
0012 20
0013 25
0014
0015 30
0016

FORMAT (’ AREA OF CIRCLE EQUALS \F10.3)

GO TO 30
TYPE 25
FORMAT (’ PLEASE TYPE A POSITIVE NUMBER’)

GO TO 1
STOP

END

5.2.5 Numeric Literals
A numeric literal is any character string in the source language that is a
constant but not a symbol. The debugger can interpret numeric literals in a
variety of ways.

If you use a numeric literal in a simple address, the debugger interprets it as a
virtual memory address. On the other hand, a literal in an address expression
is treated as an offset from a program location. Positive and negative numbers
indicate offset direction.

In the following example, the debugger interprets the numeric literal 5032 as
a virtual memory address:

DBG>EXAMINE 5032

In the example below, the literal 4 is treated as a 4-byte offset from the
memory address represented by OPT. This debugger command deposits the
value of X, which is interpreted as a byte integer, in the program location
specified by the address expression OPT+4.

dbg>deposit/byte OPT+4 = X

In the evaluation of an address expression containing a literal of a type other
than integer (such as floating point, bit string, or complex), the debugger
attempts to convert that literal into integer form in the semantics of the source
language. If the source language supports such conversion, the debugger uses
the resulting integer value. However, if the conversion is not supported, the
debugger issues an error message.

In addition, you can use radix operators with any legal, source-language
numeric literal. They cause the debugger to interpret your input in the radix
you have specified. Legal radix operators are listed below.

%BIN Causes the debugger to interpret the number in binary radix

%DEC Causes the debugger to interpret the number in decimal radix

%HEX Causes the debugger to interpret the number in hexadecimal radix

%OCT Causes the debugger to interpret the number in octal radix

5-6

Referencing Program Locations

5.2.6 Current Entity Symbol

The two current entity symbols are the period and the debugger permanent
symbol %CURLOC. You may use them to make a reference to the program
location last referenced by an EXAMINE or DEPOSIT command.

In other words, whenever either of the commands below is executed, the
value of the current entity is set equal to the value of the address-expression
in that command.

• EXAMINE address-expression

• DEPOSIT address-expression = value

Further, the debugger interprets the value of the current entity in the
type associated with the address-expression in the EXAMINE or DEPOSIT
command that set the current entity.

In Example 5-12, EXAMINE RADIUS sets the current entity. The command
"EXAMINE results in a display of the name of the current entity
(CIRCLE\RADIUS) and the value of the current entity in the floating point
type.

Example 5-12 Examining the Current Entity

DBG>EXAMINE RADIUS ISets current entity
CIRCLEXRADIUS: 0.0000000E+00 !symbol.

DBG> EXAMINE . !Current entity is
CIRCLEXRADIUS: 0.0000000E+00 !RADIUS. Display type

fused is the type
!of RADIUS.

DBG>DEPOSIT PI = 3.141593 ISets current entity.
!symbol.

DBG> EXAMINE ‘/.CURLOC
CIRCLEXPI: 3.141593 !Current entity is PI.

5.2.7 Logical Predecessor Symbols
The two logical predecessor symbols are the circumflex (*) and the debugger
permanent symbol %PREVLOC. When the current entity symbol refers to
an entity in an aggregate such as an array, you may use either of the logical
predecessor symbols to refer to that entity in the aggregate that is logically
prior to the current entity.

The logical predecessor of an entity may not be its physical predecessor; that
is, the logical predecessor may not occupy the region of physical storage
directly preceding that of the current entity. Such is the case, for example,
when the current entity refers to the cell of a disconnected array A(2) whose
logical predecessor A(l) is not stored physically adjacent to A(2) in memory.
On the other hand, the logical predecessor of an entity may also be its
physical predecessor. For instance, in a connected array, A(l) is both the
logical and physical predecessor of A(2).

In some cases the current entity may not have a logical predecessor. For
instance, the first cell of an array A(l) has no logical predecessor, and hence
its physical predecessor is logically unrelated to it.

5-7

Referencing Program Locations

As with the current entity, the debugger uses type and symbolic information
associated with the logical predecessor.

Example 5-13 demonstrates how to use the logical predecessor symbol to
examine the cells of an array.

Example 5-13 Using the Logical Predecessor Symbol

DBODEPOSIT CHAR(l) = ’1234567890’ ISets current entity
!symbol.

DBODEPOSIT CHAR(2) = ’ABCDEFGHIJ’ ISets current entity
!symbol.

DBODEPOSIT CHAR(3) = ’abcdefghij’ ISets current entity
I symbol.

DBOEXAMINE .
M0D\CHAR(3): abcdefghij

I Examines current entity
I which is CHAR(3).

DBOEXAMINE ~
M0D\CHAR(2): ABCDEFGHIJ

{Logical predecessor is
I previous array member
ICHARC2).

DBOEXAMINE ‘/.PREVLOC
M0D\CHAR(1): 1234567890

I Logical predecessor is
I previous array member
I CHAR(1).

5.2.8 Logical Successor Symbols
The logical successor symbols are the RETURN key and the debugger
permanent symbol %NEXTLOC. You may use them to make a reference
to the program location that logically follows the current entity. To examine
the logical successor of the current entity with the RETURN key, for instance,
you enter the EXAMINE command without an operand and then press
RETURN.

The logical successor of an entity may not be its physical successor; that is,
the logical successor may not occupy the region of physical storage directly
following that of the current entity. Such is the case, for example, when the
current entity refers to the cell of a disconnected array A(2) whose logical
successor A(3) is not stored physically adjacent to A(2) in memory. On
the other hand, the logical successor of an entity may also be its physical
successor. For instance, in a connected array, A(3) is both the logical and
physical successor of A(2).

In some cases the current entity may not have a logical successor. For
instance, the last cell of an array has no logical successor, and hence its
physical successor is logically unrelated to it.

As with both the current entity and logical predecessor, the debugger uses
type and symbolic information associated with the logical successor.

Example 5-14 demonstrates how the logical successor symbol may be used to
examine succeeding cells in an array.

5-8

Referencing Program Locations

Example 5-14 Using the Logical Successor Symbol

DBG>DEPOSIT CHAR(l) = ’1234567890’

DBG>DEPOSIT CHAR(2) = ’ABCDEFGHIJ’

DBG>DEPOSIT CHAR(3) = ’abcdefghij’

DBG>EXAMINE CHAR(l)
M0D\CHAR(1): 1234567890

'Sets current entity
!symbol.

DBG>EXAMINE 1 RET 1
M0D\CHAR(2): ABCDEFGHIJ

{Logical successor is
!CHAR(2).

DBG>EXAMINE 7.NEXTL0C
M0D\CHAR(3): abcdefghij

SNext logical successor
Sis CHAR(3).

5.3 Address Expressions
An address expression specifies a (possibly) typed program location. It may
consist of a single operand (a simple address) or of many operands together
with operators and delimiters.

The debugger evaluates an address expression according to its own rules,
which are similar to those used to evaluate an expression in a programming
language. Both an expression and an address expression may include
operators and delimiters, and both are evaluated according to rules of
precedence. The result of the evaluation of an address expression is a 32-bit
longword integer that represents a program location.

In an address expression, an operand may be one of the following:

• A simple address

• A unary operator with an operand

• A binary operator with two operands

• An address expression surrounded by parentheses

5.3.1 Operands
Operands in address expressions may be simple addresses, as defined in
Section 5.2, or subexpressions, where a subexpression is an expression within
an expression. The operands in a subexpression may be simple addresses or
other subexpressions.

In the following example, the simple address %LINE 40 is used as an operand
in an address expression that also contains the literal 2 as an operand, a
multiplication operator, and delimiters.

DBG>EXAMINE (‘/.LINE 40) *2

This command displays the value at the program location whose address is
twice that of %LINE 40.

In the next example, the address expression (X+4)*2 consists of two operands:
the subexpression (X+4) and the literal 2.

DBG>EVALUATE/ADDRESS (X+4)*2

This command calculates the virtual memory address denoted by the address
expression (X+4)*2.

5-9

Referencing Program Locations

In the next example, the address expression ((X-8)*2)+4 contains two
subexpressions. The larger subexpression ((X-8)*2) is delimited so as to be
one operand for the addition operator, the other operand being the literal 4.
The smaller subexpression (X-8) is contained within the larger subexpression
and is one of the operands for the multiplication operator, the other operand
being the literal 2.

DBODEPOSIT ((X-8)*2)+4 = Q

This command deposits the value Q in the location represented by the address
expression ((X-8)*2)+4.

5.3.2 Operators
An operator with one operand is called a unary operator; an operator with
two operands is called a binary operator.

Legal operators are listed below.

Plus sign (+)

Minus sign (-)

Multiplication sign (*)

Division sign (/)

At sign (@)
Period (.)

Can be either a unary or binary operator. As a unary
operator, the plus sign indicates the unchanged
value of its operand. As a binary operator, the plus
sign adds the preceding operand and succeeding
operand together.

Can be either a unary or binary operator. As a unary
operator, the minus sign indicates the negation of
the value of its operand. As a binary operator, the
minus sign subtracts the succeeding operand from
the preceding operand.

Is a binary operator. It multiplies the preceding
operand by the succeeding operand.

Is a binary operator. It divides the preceding
operand by the succeeding operand.

Are both unary operators. The at sign (@) and the
period function as "contents" (of) operators. The
"contents of" operator causes its operand to be
interpreted as a virtual address and thus requests
the "contents of" (or value residing at) that address.

For example, assume that the value of pointer
variable PTR is 7FF00000 hexadecimal, the virtual
address of an entity that you want to examine.
Assume further that the value of this entity is
3FF00000 hexadecimal. The following command
demonstrates how the "contents of" operator is
used to examine the entity:

DBG> EXAMINE/LONG .PTR

7FF00000: 3FF00000

5-10

Referencing Program Locations

Bit field <p,s,e> Is a unary operator. You can apply bit field selection
to an address-expression. To select a bit field,
you must supply a bit offset (P), a bit length (S),
and a sign extension bit (E), which is optional. For
example, to examine the address-expression X_
NAME starting at bit 3 with a length of 4 bits and
no sign extension, you would issue the command as
follows:

DBG> EXAMINE X.NAME <3,4,0>

5.3.3 Precedence
Rules of precedence determine the sequence in which the operations of an
expression are carried out. Although the debugger evaluates expressions
according to its own rules of precedence, which are language independent, its
rules are identical to those of most programming languages.

The order in which the operations within an address expression are carried
out is determined by the following three factors, listed in decreasing order of
precedence (first listed have higher precedence):

1 The use of delimiters (usually parentheses or brackets) to group operands
with particular operators

2 The assignment of relative priority to each operator

3 Left-to-right priority of operators

The following are the legal debugger operators, listed in decreasing order of
precedence.

1 Unary operators ((.), (@), (+), (-))

2 Multiplication and division operators ((*), (/))

3 Addition and subtraction operators ((+), (-))

For example, in the evaluation of the following address expression, the
debugger first adds the operands within parentheses, then divides the result
by 4, then subtracts the result from 5.

5-(T+5)/4

5.3.4 The EVALUATE/ADDRESS Command
The debugger interprets the operand of an EVALUATE/ADDRESS command
as a language-independent address expression, evaluates the address
expression using its own rules for expression evaluation (which are similar to
those of most languages), and displays the value of the address expression as
a virtual address.

The format of the EVALUATE/ADDRESS command is

EVALUATE/ADDRESS address-expression [.address-expression...]

If you specify a radix mode command qualifier, the debugger displays the
value of the address expression as a virtual address in that radix.

5-11

Referencing Program Locations

You can evaluate more than one address expression in a single EVALUATE
/ADDRESS command by separating address expressions with a comma.

Any address expression, as discussed in this section, may be used with the
EVALUATE/ADDRESS command.

The EVALUATE/ADDRESS command is useful in determining the virtual
addresses of symbols and of expressions that either contain or do not contain
symbols. Example 5-15 shows how this command is used.

Example 5-15 Using the EVALUATE/ADDRESS Command

DBG>EVALUATE/ADDRESS RADIUS !For determining the
1024 laddress of a symbol.

DBG>EVALUATE/ADDRESS 1024 + 40 !For performing address
1064 !arithmetic.

DBG>EVALUATE/ADDRESS (RADIUS + 4)/2
514

5-12

6 Examining and Depositing Data

This chapter explains how to use the EXAMINE, DEPOSIT, and EVALUATE
commands, and how to control the modes and types used by the debugger.
The first part of this chapter discusses the modes you can use to control
the interpretation of address expressions and language expressions. For
information on types, see Section 5.1.

6.1 Modes
The SET MODE command and SET RADIX command let you control how
the debugger interprets information you enter in debugger commands, as well
as how it displays the results of command execution. A command summary
follows. Note that the SET MODE command is also used to control functions
that are not related to the interpretation of data or addresses.

D_floating
G—floating

Radix

The SET MODE [NO]G_FLOATING command specifies
that all double-precision constants you enter in
expressions should be interpreted as G_floating constants
or D_floating constants.

Radix influences the interpretation of numeric literals and,
under certain circumstances, the display of data. Radix
may be established by three methods:

• A command qualifier specifying the radix

• The SET RADIX/OVERRIDE command

• The SET RADIX command

A SET RADIX/OVERRIDE command overrides the effect
of a SET RADIX command, and both commands can
be overridden by a radix qualifier on the EXAMINE and
EVALUATE commands.

Keywords are BINARY, DECIMAL, HEXADECIMAL, and
OCTAL. They can be used either as parameters to the
SET RADIX/OVERRIDE and SET RADIX commands or as
command qualifiers on certain commands.

Symbolic The SET MODE [NO]SYMBOL command influences the
Nonsymbolic amount of symbolization the debugger performs.

To display the current modes, issue the SHOW MODE command.

The following sections discuss radix mode and symbolic mode in more detail.

6-1

Examining and Depositing Data

6.1.1 Radix Modes
You can direct the debugger to interpret and display numbers in any one of
four radixes: BINARY, DECIMAL, HEXADECIMAL, and OCTAL. DECIMAL
is the default radix for most languages. For BLISS and MACRO, however, the
default radix is HEXADECIMAL.

You can set radix in one of the following three ways:

A Command Qualifier

For certain commands, you can override the current radix mode for the
duration of a command by using a radix mode command qualifier. The radix
mode that you specify overrides all other radix modes. The qualifiers are
/BINARY, /DECIMAL, /HEXADECIMAL, and /OCTAL. For example, if the
radix mode is set to decimal (the default) but you want to have the value of
a program location STATSBLK displayed in binary, you specify the command
qualifier as follows:

DBG>EXAMINE/BIN STATSBLK

This command causes the debugger to display STATSBLK as a binary integer
regardless of any other radix information the debugger currently has.

A radix mode command qualifier controls output radix only; it does not
control the input radix. You can, however, set the input radix for an
expression with four radix operators:

%BIN Indicates that the debugger should treat the input radix as binary

%DEC Indicates that the debugger should treat the input radix as decimal

%HEX Indicates that the debugger should treat the input radix as hexadecimal

%OCT Indicates that the debugger should treat the input radix as octal

The SET RADIX/OVERRIDE Command

The next most powerful way to establish radix mode is with the SET RADIX
/OVERRIDE command. Keywords are BINARY, DECIMAL, HEXADECIMAL,
and OCTAL. For example, the command sequence

DBG>SET RADIX/OVERRIDE OCT
DBG>EXAMINE STATSBLK

displays STATSBLK as an octal integer, overriding any type information the
debugger currently has about STATSBLK. To cancel the radix override, issue
the CANCEL RADIX/OVERRIDE command.

The SET RADIX Command

The weakest way to establish radix mode is with the SET RADIX command.
It causes the debugger to display any integer values (including addresses)
using the radix you specified on the SET RADIX command. However, other
values (such as floating or enumeration type values) are to be displayed as
they normally would. For example, the command sequence

DBG>SET RADIX HEX
DBG>EXAMINE 1000
DBG>EXAMINE STATSBLK

displays the integer value 1000 as a hexadecimal integer. However, the
variable STATSBLK is displayed according to its type.

6-2

Examining and Depositing Data

When the debugger evaluates a source-language expression or an address
expression, it interprets numeric literals within that expression in the current
input radix mode.

When the debugger evaluates an address expression or a source-language
expression, it displays the result in the current output radix mode unless a
radix mode command qualifier is specified. In that case, the debugger displays
the result in the mode specified by the command qualifier.

Note that when you enter a hexadecimal value that begins with a letter,
you must prefix that value with a zero; otherwise the debugger attempts to
interpret the entry as a symbol.

The radix mode specified by a command qualifier overrides both the other
ways to establish radix mode. Likewise, the radix mode specified with the
SET RADIX/OVERRIDE command overrides any radix mode specified with
the SET RADIX command.

Although the SET RADIX command has the same effect as a SET MODE
command, the SET RADIX command is the preferred way to specify radix
information.

To cancel modes established by the SET MODE command, issue the CANCEL
MODE command.

After the debugger executes the CANCEL MODE command, default modes
are in effect.

Example 6-16 shows how radix modes are used in EXAMINE, EVALUATE,
and EVALUATE/ADDRESS commands.

6.1.1.1 Radix Operators
By using a radix operator, you can direct the debugger to interpret a numeric
literal in binary (%BIN), decimal (%DEC), octal (%OCT), or hexadecimal
(%HEX) radix, provided that the numeric literal is legal for that radix.

Radix operators are useful when you want to enter several numeric literals
of different radixes in a single debugger command. By using radix operators,
you can specify the radix for each individual numeric literal.

Radix operators are also useful when you want to convert a number in one
radix to another radix. For example, if you want to see what a decimal 1000
is in hexadecimal, you can use the command

dbg>ev/hex '/.dec 1000
000003E8

A radix operator has higher precedence than any other operator. For instance,
the expression %HEX 20 + 33 treats 20 as a hexadecimal integer and 33 as a
decimal integer (assuming that decimal is the default radix). However, the
expression %HEX(20 + 33) treats both 20 and 33 as hexadecimal integers.

You can also nest radix operators. For instance, %HEX(20 + %OCT 10 + 33)
interprets 20 and 33 hexadecimal radix and 10 in octal radix.

For example, assume you want to deposit a VAX instruction into a memory
location denoted by an address expression that is a hexadecimal literal.
Further, assume that one operand of the instruction is a decimal literal.
You want the debugger to interpret these two numeric literals in their
corresponding radixes. In this situation, you cannot use radix command
qualifiers since they are not legal qualifiers for the DEPOSIT command.
One way to do this operation is to use the %HEX radix operator (to affect
the address expression) and a decimal (%DEC) radix operator (to affect the

6-3

Examining and Depositing Data

instruction operand). The following example demonstrates such a situation in
VAX MACRO:

DBODEPO SIT/INSTRUCT I ON '/.HEX 5432 = ’MOVL ~0'/.DEC 222, R1 ’

In this command, the debugger interprets the literal 5432 in hexadecimal
radix and the literal 222 in decimal radix.

Example 6-16 Using Radix Mode

DBOSHOW RADIX
input radix: decimal
output radix: decimal

DBG>EVALUATE 10
10

! "10" is in decimal

! for both input and
! output

DBG>EVALUATE/HEX 10
0A

! /HEX affects output only

DBG>SET RADIX/OUTPUT HEX
DBOSHOW RADIX
input radix: decimal
output radix: hex

DBOEVALUATE 10
0A

! Input radix is decimal,
! output radix is hex

DBOSHOW MODE !Display default modes,
modes: symbolic, noscreen, nokeypad
input radix : decimal
output radix: decimal

DBOEXAMINE '/.LINE 14
T0Y$MAIN\%LINE 14: CALLG W~128(R11), <BL~T0Y$MAIN+596

•Default type of 7.LINE
!is instruction.

DBOE/HEX. !Hex representation of
(instruction at

1591: 00 000214FF 0080CBFA ! '/.LINE 14. Instruction
(operands are in
(hexadecimal radix.

DBG>E PSL (Display PSL in

T0Y$MAIN\%PSL: (decimal radix.
CMP TP FPD IS CURM0D PRVM0D IPL DV FU IV T N Z V C

0 0 0 0 USER USER 0 0 0 100000

DBOE/HEX PSL
TOY$MAIN\y,PSL:

(Display PSL in
03C000020 (hexadecimal radix.

DBOSET RADIX HEX (Set default radix mode
(to hexadecimal.

DBOEXAMINE STATSBLK
T0Y$MAIN\STATSBLK

(1) : 00000004
(2) : 00000012
(3) : 0000009A
(4) : 00000173
(5) : 00000C93

(Examine the array
(STATSBLK in hexadecimal
(radix.

(Continued on next page)

6—4

Examining and Depositing Data

Example 6-16 (Cont.) Using Radix Mode

DBG>SH0W RADIX !Display the current

input radix : hexadecimal {default radixes.

output radix: hexadecimal

DBG>EXAMINE/BIN STATSBLK {Examine STATSBLK

CONV_EX$MAIN\STATSBLK
(1): 00000000 00000000
(2): 00000000 00000000
(3) : 00000000 00000000
(4) : 00000000 00000000
(5) : 00000000 00000000

!in binary radix.
00000000 00000100
00000000 00010010
00000000 10011010
00000001 01110011
00001100 10010011

6.1.2 Symbolic and Nonsymbolic Modes
In symbolic mode, which is the default, the debugger attempts to display all
addresses symbolically. In nonsymbolic mode, the debugger does not attempt
to symbolize addresses. This may increase the speed of command processing.
An example follows:

DBG>EVALUATE/ADDRESS X

512
DBG>EXAMINE 512

F00\X:0
DBG>EXAMINE/NOSYMBOL 512

512:0

/NOSYMBOL also affects the display of instructions. An example follows:

dbg>show mode

modes: symbolic, noscreen, nokeypad

input radix : decimal
output radix: decimal

dbg>examine/instruction OUT

DRAW\0UT: CMPB B~DRAW\C0L,#0

DBG>EXAMINE/INSTRUCTION/NOSYMBOL out

DRAWXOUT: CMPB B~3599,#0

{Display the new
{default mode.

Display OUT as an
{instruction using
!the default symbolic
{mode. Note that the
{instruction operand
!DRAW\C0L is shown
!symbolically.

{Specify nonsymbolic
{mode. Note that the
{instruction operand
!DRAW\C0L is now
{expressed numeri-
!cally.

6.2 The EXAMINE Command
You use the EXAMINE command in the following format to display the value
of one or more program entities:

EXAMINE [/qualifier...] [address-expression-
[:address-expression] [,address-expression-
[:address-expression]...]]

If you specify a single address-expression parameter in the EXAMINE
command, the debugger displays the value of the entity at the location
denoted by the address expression in the type associated with that location.

6-5

Examining and Depositing Data

You can examine more than one entity (a list) in a single EXAMINE command
by entering more than one address expression and separating each with a
comma.

You can examine a range of entities in a single EXAMINE command by
entering the address expression that denotes the first entity in the range, a
colon, and the address expression that denotes the last entity in the range. A
range is a contiguous sequence of program entities.

You can also examine a list of ranges of entities in a single EXAMINE
command by separating each range with a comma.

When you examine the PSL, the debugger displays its contents in a formatted
arrangement.

Address expressions may take any of the forms discussed in Chapter 5. See
Section 5.1.1 for a complete description of how the debugger associates types
with address expressions.

The following sections discuss the use of command qualifiers in the EXAMINE
command, the examining of lists, the examining of ranges, and the examining
of successive entities.

6.2.1 Command Qualifiers
If you specify a type command qualifier in the EXAMINE command, the
entity specified by the address expression is displayed in that type. The type
command qualifiers follow:

/ASCIC

/ASCID

/ASCILn

/ASCIW

/ASCIZ

/BYTE

/CONDITION—VALUE

/D-FLOAT

/DATE-TIME

/FLOAT

/G-FLOAT

/H-FLOAT

/INSTRUCTION

/LONGWORD

/QUADWORD

/OCTAWORD

/PACKED

/PSL

/PSW

/SOURCE

/WORD

You may also specify the radix mode command qualifiers (/BINARY,
/DECIMAL, /HEXADECIMAL, and /OCTAL) as well as the symbolic and
nonsymbolic mode command qualifiers (/SYMBOL and /NOSYMBOL). See
Section 6.1 for further information on the effects of specifying these mode
command qualifiers.

You can specify a type qualifier, a radix mode qualifier, and a symbolic
/nonsymbolic mode qualifier in a single EXAMINE command.

Example 6-17 demonstrates the use of these mode and type command
qualifiers in the EXAMINE command.

6—6

Examining and Depositing Data

Example 6-17 Using Mode and Type Qualifiers with the
EXAMINE Command

#1,B~44(R11)

DBG> SET LANGUAGE FORTRAN

DBG> SHOW MODE
modes: nosymbolic, noscreen, nokeypad
input radix : decimal
output radix: decimal

DBG>SHOW TYPE

type: long integer

DBG>EXAMINE ‘/.LINE 15

T0YV/.LINE 15 : MOVL

DBG>EXAMINE/BYTE .

T0YY/.LINE 15 : -48

DBG>EXAMINE/WORD .

T0YY/.LINE 15 : 464

DBG>EXAMINE/LONG .

TOYY/.LINE 15 : 749404624

DBG> E/QUAD .

T0YV.LINE 15

DBG>E/OCTAWORD

T0Y'/,LINE 15 :

DBG>E/FLOAT .

T0Y7.LINE 15 :

dbg>e/d_float .

T0Y7.LINE 15 :

DBG>E/G_FLOAT .

TOY'/,LINE 15 :

DBG>E/H_FLOAT .

T0Y7.LINE 15 :

+0130653502894178768

!Set language to FORTRAN.

!Display the current
!default modes.

!Display default type.

!Display '/.LINE 15 in default
!modes and type.

!Type is byte integer.

!Type is word integer.

!Type is long integer.

!Type is quadword integer.

!Type is octaword integer,
f5244643179280247008686078241046481

1.9117807E-38

1.9117807293306393E-38

1.509506018605227E-300

!Type is F_floating.

!Type is D_floating.

!Type is G_floating.

!Type is H_floating.
2.351187242166315296772081991217048E-4793

DBG>EXAMINE/INSTRUCTION .

T0YY/.LINE 15 : MOVL #1,B~44(R11)

DBG>EXAMINE/ASCII .

T0YV/.LINE 15 : " . . "

DBG>EXAMINE/OCTAL .

T0YY/.LINE 15 : 05452600720

DBG>EXAMINE/DECIMAL .

T0Y\'/.LINE 15 : 749404624

DBG>EXAMINE/BYTE/HEX .

T0YY/.LINE 15 : 0D0

DBG>EXAMINE/BYTE/OCT .

T0Y\'/.LINE 15 : 320

DBG>EXAMINE/INSTRUCTION/BYTE .

T0YV/.LINE 15 : -48

!Type is VAX instruction.

!Type is ASCII string.

IRadix mode is octal.
{Default type is longword.

{Radix mode is decimal.
{Default type is longword.

{Type is byte. Radix mode is
{hexadecimal.

{Type is byte. Radix mode is
{octal.

{When two types are speci¬
fied, the last overrides the

{first.

6.2.2 Examining Instructions
EXAMINE/INSTRUCTION will cause the debugger to display the examined
location as an assembly language instruction.

Note that "EXAMINE .PC" will display the instruction you are about to
execute. The /INSTRUCTION qualifier is not needed in this case because the
debugger knows that ".PC" is of type instruction.

6-7

Examining and Depositing Data

Also note that subsequent EXAMINE commands will display succeeding
instructions and subsequent EXAMINE ~ commands will display preceding
instructions. The ability to examine backwards in the instruction stream is
new with Version 4.0 of VAX/VMS. It is accomplished in a reliable way by
backing up to a point we know about, such as the beginning of a line, and
decoding forward from there.

You may want to use these features in conjunction with the SET STEP
INSTRUCTION command.

6.2.3 Examining Lists
You can examine any number of program locations using a single EXAMINE
command by separating parameters in the command string with a comma.
The format follows:

EXAMINE address-expression, address-expression, ...

The example below shows how you examine a list of three variables with a
single EXAMINE command.

DBOEXAMINE I,K,R
T0Y\I: 0
T0Y\K: 0
T0Y\R: 0.0000000E+00

6.2.4 Examining Ranges
You can examine a range of successive program locations using a single
EXAMINE command by specifying the first and last program locations in the
range, in the following format:

EXAMINE address-expressioni : address-expression2

Address-expression 1 must have a smaller virtual memory address than
address-expression2. Otherwise, the debugger issues an error message.

As a result of this command, the debugger displays the entity specified
by address-expressioni, the logical successor of address-expressioni, the
next logical successor, and so on, until it displays the entity specified by
address-expression2.

The debugger associates a type with address-expressioni according to the
rules described in Section 5.1.1.

Note that you can use a single EXAMINE command to examine more than
one range of program locations (in other words, a list of ranges) by separating
ranges with a comma. The following is the format for specifying a list of
ranges:

EXAMINE address-expressioni : address-expression2, -
addres8-expression3 : address-expression4, ...

Note that the hyphen, which is the line continuation character, is used to
continue the command string on a new line.

Example 6-18 demonstrates the examination of ranges of program locations.

6—8

Examining and Depositing Data

6.2.5

Example 6-18 Examining Ranges of Program Locations

DBOEXAMINE R: I !R has a

'/.DEBUG-W-EXARANGE, invalid range of addresses !larger address
!than I.

DBOEXAMINE I:R

T0Y\I: 555
T0Y\J: 0
T0Y\R: 0.0000000E+00

!Modes are the defaults

!symbolic and decimal.
{Logical successor of I is
!J. Logical successor of J
!is R. I and J have the
{type longword. R has the
{floating type.

DBOEXAMINE/BYTE I: R

T0Y\I: 43
T0Y\I+1: 2
T0Y\I+2: 0

T0Y\I+3: 0
T0Y\J: 0
TOYXJ+l: 0
TOYXJ+2: 0
TOYYJ+3: 0
T0Y\R: 0

{Byte is the override type.
{The range of locations is
{displayed as a series of
{bytes.

DBOEXAMINE/BYTE/NOSYMBOL I :R

708: 43
709: 2
710: 0
711: 0
712: 0
713: 0
714: 0
715: 0
716: 0

{Nonsymbolic mode causes
!the location of each byte
!to be displayed as a virtual
{address, not as a
!symbol.

Example 6-19 Examining Successive Entities

DBOEXAMINE I

T0Y\I: 555
{Default type is longword.

DBOEXAMINE 1 RET |

T0Y\J: 0
{Display logical successor

! of I.

DBOEXAMINE '/.NEXTLOC

T0Y\R: 0.0000000E+00
{Display the next logical
{successor of J.

DBOEXAMINE I RET |

T0Y\K: 0
{Display the next logical

!successor of R.

DBOEXAMINE VECTOR(1)

TOYXVECTOR(1): 0.0000000E+00
{Display value of VECTOR(1).

DBG>E 1 RET|

TOYXVECTOR(2): 0.0000000E+00

{Display logical successor.

Examining Successive Entities
You can examine the value of successive entities by using either the logical
successor symbol RETURN or the debugger permanent symbol %NEXTLOC
The debugger uses the type and mode associated with the current entity to
interpret logical successors.

Example 6-19 demonstrates how to examine successive entities using the
logical successor symbols RETURN and %NEXTLOC:

6-9

Examining and Depositing Data

6.2.6 Examining Values in Registers
VAX provides 16 general purpose registers, some of which are used for
temporary address and data storage. You can examine the contents of any
register by specifying that register in an EXAMINE command, and you can
deposit values into any register by specifying that register as the address-
expression in a DEPOSIT command. For more information on depositing
value in registers, see Section 6.3.5.

The following symbols denote the 16 VAX registers.

• The letter %R followed by a numeral from 0 through 11 represents the
corresponding VAX general purpose registers, such as %R0, %R1, %R2,
%R3, %R4, %R5, . . . %R11. In general, these symbols are debugger
permanent symbols.

• %PC represents the program counter and is a debugger permanent
symbol.

• %SP represents the stack pointer and is a debugger permanent symbol.

• %AP represents the argument pointer and is a debugger permanent
symbol.

• %FP represents the frame pointer and is a debugger permanent symbol.

You may abbreviate registers by leaving out the percent sign (for example,
RO instead of %R0). However, if you do not use the percent character, the
debugger may interpret these symbols as program variables you have defined,
not as debugger permanent symbols. The debugger interprets these symbols
as debugger permanent symbols only if your program does not contain
variables of the same names.

Example 6-20 demonstrates how to examine values in the VAX registers.

Example 6-20 Examining Values in VAX Registers

DBG>SH0W MODE !Display the current

modes: nosymbolic, noscreen, nokeypad !default modes.
input radix : decimal
output radix: decimal

DBG>SH0W TYPE

type: long integer

dbg>examine SP

SP: 2147278720

DBG>DEP0SIT .SP = 33
dbg>examine .

214727870: 33

dbg>examine Rll

Rll: 1024

!Display current type.

!Examine value of the stack
!pointer.

!Deposit 33 into .SP.
!Check the value of .SP.

!Examine contents of Rll.

DBG>DEP0SIT Rll = 444 {Deposit new value into Rll.

DBG>EXAMINE Rll {Check the value of Rll.

Rll: 444

6-10

Examining and Depositing Data

6.2.6.1 The Processor Status Long word
The PSL is a 32-bit VAX register whose value represents a number of
processor state variables. The first 16 bits of the PSL (referred to separately
as the processor status word, or PSW) contains unprivileged information
about the current processor state; the values of these bits may be controlled
by a user program. The latter 16 bits of the PSL, bits 16 through 31, contain
privileged information and should not be altered by the user process.

To examine the contents of the PSL, issue the command

DBG>EXAMINE PSL

The debugger displays the 32-bit PSL in the following format:

PSL: CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
n n n n mode mode lv n n nnnnnn

In this display, "n" may be 0 or 1; "mode" may be either KERN, EXEC, SUPR,
or USER; and "lv," the interrupt priority level, may be a hexadecimal number
from 0 through IF.

You can also say EXAMINE/PSL to display any location in PSL format. This
is useful for examining saved PSLs on the stack.

For more information about the PSL, refer to Section 6.3.5.1.

Example 6-21 demonstrates how to examine and modify the PSL.

Example 6-21 Examining and Modifying the PSL

DBOSHOW MODE !Display the current
modes: nosymbolic, noscreen, nokeypad !default modes,
input radix : decimal
output radix: decimal

DBOSHOW TYPE !Display current type,
type: long integer

DBODEPOSIT/WORD PSL = 0 !Disable all conditions in
!PSL. In other words,
!clear bits 0 thru 15.

DBOEXAMINE PSL
PSL: CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV TN Z V C

0 0 0 0 USER USER 0 0 0 100000

!Display formatted PSL.

!A11 bits are cleared.

6.3 The DEPOSIT Command
You use the DEPOSIT command to deposit values in program locations.
In the command format below, the expression designates the value to be
deposited, and the address expression designates the program location into
which the value is to be deposited.

DEPOSIT [/qualifier] address-expression = expression [.expression...]

The expression is evaluated in the syntax of the source language and in the
default radix mode to yield a value. The address expression is evaluated to
yield a program location with an associated type.

6-11

Examining and Depositing Data

When the debugger executes the DEPOSIT command, it converts the value of
the expression to the type associated with the address expression and deposits
the value at the location designated by the address expression.

You may specify a type command qualifier in the DEPOSIT command to
associate a type with the program location denoted by the address expression.

The following subsections discuss the depositing of numeric data, ASCII
strings, and VAX instructions, as well as the use of radix and mode qualifiers
in the DEPOSIT command.

6.3.1 Depositing ASCII Strings
You can deposit an ASCII string into a program location only if that location
is denoted by an address expression with an associated ASCII type.

Delimiters may be either apostrophes or quotation marks. However, the
delimiter used cannot appear within the string itself.

In all cases, if the length of the string to be deposited exceeds the length of
the program location into which it is deposited, the debugger truncates the
string to the length of the program location. On the other hand, if the length
of the string is less than the length of the program location, the debugger
inserts ASCII blanks in the remaining bytes of memory to the right of the last
character in the string.

The following sections discuss the depositing of ASCII strings into program
locations denoted by address expressions that have an ASCII type, have a
non-ASCII type, and have no type.

Depositing with an ASCII type

To deposit an ASCII string into a program location denoted by an address
expression of ASCII type, issue the DEPOSIT command in the following
format:

DEPOSIT address-expression = "ASCII string"

Depositing with a Non-ASCI I type

If the program location is denoted by an address expression of a type other
than ASCII, you can override that type by using the command SET TYPE
/OVERRIDE ASCII:n. This procedure is especially useful when you intend to
issue several DEPOSIT commands.

You can also use the /ASCII:n command qualifier with the DEPOSIT
command to override any associated type only for the duration of the
command. This procedure is especially useful when you are issuing a single
DEPOSIT command.

The following command format demonstrates the use of the /ASCII:n
command qualifier with the DEPOSIT command:

DEPOSIT/ASCII:n address-expression « "ASCII string of length n"

Note that the value n used in the command qualifier should normally
correspond to the number of ASCII characters to be deposited, that is, to
the length of the ASCII string.

Example 6-22 demonstrates how to deposit ASCII strings.

6-12

Examining and Depositing Data

Example 6-22 Depositing ASCII Strings

DBODEPOSIT I = "GOOD"

‘/.DEBUG - W -1N VNUMBER, invalid numeric string ’GOOD’

DBG>DEPOSIT/ASCII I = "GOOD"

DBG>EXAMINE .

T0Y\I: 1146048327

DBOEXAMINE/ASCII .
T0Y\I: "GOOD"

DBG>SET TYPE/OVERRIDE ASCII

DBODEPOSIT I = "GOOD"

DBOEXAMINE I

T0Y\I: "GOOD"

DBOCANCEL TYPE/OVERRIDE

DBOEXAMINE I

T0Y\I: 1146048327

!Debugger is expecting a
Inumber because I has an
!associated numeric type.
!Override that type.

!Use ASCII override type.
{Debugger deposits the string.

!Display in default type.

•Specify ASCII display.

!Specify ASCII override
!type.

!Display in ASCII override
!type.

I Cancel ASCII override type.

!Compiler-generated type
!overrides the default ASCII
!type.

6.3.2 Depositing Numeric Data
Example 6-23 demonstrates how you can deposit three integer values into
three memory locations. It also shows how to use the byte, word, and
longword type command qualifiers on the DEPOSIT command.

6.3.3 Depositing and Replacing VAX Instructions
To deposit VAX instructions, the following command format may be used:

DEPOSIT/INSTRUCTION address-expression = "VAX instruction"

You must enclose the instruction in either apostrophes or quotation marks.
Either delimiter may be used so long as it does not appear within the
instruction string. The first and last delimiter must be the same.

You must tell the debugger to interpret the delimited string as an
instruction and not as an ASCII string. You do this either with the
DEPOSIT/INSTRUCTION command or with the SET TYPE/OVERRIDE
INSTRUCTION followed by any number of DEPOSIT commands (to execute
the command repeatedly).

Depositing VAX instructions is simple when you are depositing into successive
memory locations because you can use the logical successor symbol to locate
the address where the next instruction is to be deposited. Example 6-24
demonstrates this technique.

6-13

Examining and Depositing Data

Example 6-23 Depositing Numeric Data

DBG>SHOW MODE !Display the current
modes: nosymbolic, noscreen, nokeypad !default modes.
input radix : decimal
output radix: decimal

DBODEPOSIT J = 333
DBODEPOSIT R = 444
DBODEPOSIT K = 555

DBOEXAMINE .
T0Y\K: 555

DBOEXAMINE J
T0Y\J: 333

DBOEXAMINE |RETj
T0Y\R: 444.0000

DBOEXAMINE [RET!
T0Y\K: 555

DBOSHOW TYPE
type: long integer

DBOEVALU/ADDR .
724

DBODEPOSIT/BYTE . = 1

DBG>E .
724: 1280461057

DBOE/BYTE .
724: 1

DBODEPOSIT/WORD . = 2

DBOE/WORD .
724: 2

DBODEPOSIT/LONG 724 = 9999

DBOE/LONG 724
724: 9999

!Deposit data in J, R, K.

!Current entity is location
Hast deposited into.

!The value 333 is deposited
!in J.

!The value 444 is deposited

!into the logical successor
!of J, which is R. The type
lassociated with R is used
Sin display, not the default
!type.

SThe value 555 is deposited
Sinto the logical successor
!of R, which is K.

!Display the default type.

!Current location is 724.

!Deposit the value 1 into
Sthe byte of memory whose
Saddress is 724.

!Because the default type is
Slong integer, 4 bytes are
!examined.

!Examine one byte only.

!Deposit the value 2 into
Sthe first two bytes (word)
Sof the current entity.

!Examine a word of the
!current entity.

!Deposit the value 9999 into
!4 bytes (a longword) begin-
Sning at virtual address 724.

!Examine 4 bytes (longword)
!beginning at virtual
Saddress 724.

Replacing one or more VAX instructions with new ones involves keeping
track of the length of each instruction, which varies depending on the type of
instruction and the number of operands.

When you replace an instruction, you must ensure that the new instruction is
the same length in bytes as the old instruction.

If the new instruction is longer than the old instruction, you cannot deposit it
without overwriting, and thereby destroying, the subsequent instruction.

6—14

Examining and Depositing Data

Example 6-24 Depositing VAX Instructions

DBG>SET TYPE INSTRUCTION

DBODEPOSIT 730 = "MOVB #77, R1

DBOEXAMINE
730: MOVB #77, R1

DBOEXAMINE
734: HALT

[RETl

DBODEPOSIT . = "MOVB #66, R2"

DBOEXAMINE
734: MOVB #66,R2

DBOEXAMINE
738: HALT

[RETl

DBODEPOSIT . = "MOVB #55. R3"

DBOEXAMINE
738: MOVB #55,R3

!Set default type to
!instruction.

!Deposit the instruction
!beginning at virtual
!address 730.

!Examine current entity.

!Make current entity the
{logical successor of
{virtual address 730.

!Deposit next instruction

{Examine current entity.

{Make current entity the
{logical successor of
{virtual address 734.

{Deposit next instruction

{Examine current entity.

If the new instruction occupies fewer bytes of memory than the old
instruction, it can be deposited without overwriting previous or subsequent
instructions; however, you must deposit NOP instructions (instructions
that cause "no operation") in bytes of memory left unoccupied after the
replacement.

The debugger does not warn you if an instruction you are depositing will
overwrite a subsequent instruction, nor does it remind you to fill in vacant
bytes of memory with NOPs. Therefore, careful calculation of instruction
length is required in replacing instructions.

Example 6-25 demonstrates the replacing of an instruction with an instruction
of equal length.

6.3.4 Depositing in Different Radixes
Literals in source-language expressions are interpreted by the debugger in the
current radix mode or in the radix specified by a radix operator. Example 6-26
demonstrates how to deposit literals in binary, decimal, hexadecimal, or octal
radix.

6.3.5 Depositing Values in Registers
The rules for referring to registers are the same for both the DEPOSIT
command and the EXAMINE command. See Section 6.2.6 for detailed
information.

Example 6-27 demonstrates how to examine and deposit values into the VAX
registers.

6-15

Examining and Depositing Data

6.3.5.1

Example 6-25 Replacing VAX Instructions

DBG>SET STEP INSTRUCTION !Set step unit to instruc¬
tion.

DBG>STEP
stepped to 1584: PUSHAL (Rll)

{Step by instruction.

DBG>STEP
stepped to 1586: CALLS #1,L~2224

!Step by instruction.
{Replace this instruction.

DBG>EXAMINE .PC
1586: CALLS #1.L~2224

DBG>EXAMINE |RET|
1593: CALLS #0,L~2216 •Subsequent instruction

{begins at 1593.

DBG>DEPOSIT/INSTRUCTION : L586 = "CALLS #2,L~2224"
{Deposit new instruction.

DBG>EXAMINE .
1586: CALLS #2,L~2224 !New instruction is

{deposited.

dbg>examine 1 ret)
1593: CALLS #0,L~2216 {Subsequent instruction is

!unchanged.

Example 6-26 Depositing in Different Radixes

DBG>SHOW MODE
modes: nosymbolic, noscreen, nokeypad

input radix : decimal
output radix: decimal

{Display the current
{default modes.

DBG>SH0W TYPE
type: long integer

{Display default type.

dboexamine j
T0Y\J: 234567890

{Display J in default
{modes and type.

DBODEPOSIT J = ‘/.OCT 7777777 !Deposit an octal value.

DBOEXAMINE .
T0Y\J: 2097151

{Display in compiler-generated
{type and default radix
!(decimal).

dboexamine/octal .
T0Y\J: 00007777777

{Display in compiler-generated
{type and octal radix.

DBODEPOSIT J = '/.HEX 7777777 {Deposit a hexadecimal
!value.

DBOEXAMINE .
T0Y\J: 125269879

{Display in type
{associated with J and in
{default radix (decimal).

dboexamine/hex .
T0Y\J: 07777777

{Display in hexadecimal.

The Processor Status Longword
When you deposit into the PSL, your purpose is to enable or disable certain
processor state conditions. Table 6-2 in Section 6.2.6.1 contains a list of the
processor state conditions that you can manipulate. For more information on
the PSL, refer to Section 6.2.6.1.

6-16

Examining and Depositing Data

Example 6-27 Examining and Depositing Values in VAX
Registers

DBOSHOW MODE

modes: nosymbolic, noscreen, nokeypad
input radix : decimal
output radix: decimal

{Display the current
{default modes.

DBOSHOW TYPE

type: long integer
{Display current type.

DBOEXAMINE SP

SP: 2147278720
{Examine value of the stack
{pointer.

DBODEPOSIT SP = 33 !Deposit 33 into SP.

DBOEXAMINE .

SP: 33
{Check the value of SP.

DBOEXAMINE Rll

Rll: 1024
{Examine contents of Rll.

DBODEPOSIT Rll = 444 !Deposit new value into Rll

DBOEXAMINE Rll
Rll: 444

{Check the value of Rll.

Table 6-2 PSL Modification Values

Bit Key
Key Number
(Hex) Description

15 0 Must be zero

14 0 Must be zero

13 0 Must be zero

12 0 Must be zero

11 0 Must be zero

10 0 Must be zero

9 0 Must be zero

8 0 Must be zero

7 DV 80 Decimal overflow trap enable

6 FU 40 Floating underflow trap enable

5 IV 20 Integer overflow trap enable

4 T 10 Trace trap condition code

3 N 8 Negative condition code

2 Z 4 Zero condition code

1 V 2 Overflow condition code

0 c 1 Carry condition code

6-17

Examining and Depositing Data

To deposit a value into the PSL, determine which bits you want set; add their
corresponding key numbers together; and use the sum as the "expression" in
the command below:

DBG>DEPOSIT/WORD PSL = '/.HEX (expression)

Note: If you deposit into the high word of the PSL, bits 16 through 31, a
reserved operand fault is generated when control is returned to your
program by a STEP or GO command.

Example 6-28 demonstrates how to examine and modify the PSL:

Example 6-28 Examining and Modifying the PSL

DBG>SHOW MODE !Display the current
modes: nosymbolic, noscreen, nokeypad !default modes,
input radix : decimal
output radix: decimal

DBG>SH0W TYPE !Display current type,
type: long integer

DBG>DEPOSIT/WORD PSL = 0 !Disable all conditions in
!PSL. In other words,
!clear bits 0 thru 15.

DBG>EXAMINE PSL
PSL: CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV TN Z V C

0 0 0 0 USER USER 0 0 0 100000

!Display formatted PSL.
!A11 bits are cleared.

DBG>DEP0SIT/WORD PSL = '/.HEX 80 !Key-number 80 from
!Table 6--2 enables the
!decimal overflow trap;
!this is key "DV" in
•the formatted display.

DBG>EXAMINE PSL
PSL: CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV TN Z V C

0 0 0 0 USER USER 0 1 0 100000

!Verify that the
!DV bit is set.

6.4 The EVALUATE Command
The debugger interprets the operand of an EVALUATE command as a source-
language expression, evaluates it in the semantics of the source language, and
displays its value as a literal in the source language.

The format of the EVALUATE command is

EVALUATE [/qualifier] expression [.expression...]

See Appendix A for detailed information about supported operators in
language expressions for various languages. You can also obtain information
by typing "HELP languages."

If you specify a radix mode command qualifier, the debugger interprets
any integer literals in the expression (or expressions) in the current radix.
However, it displays the value of the expression (or expressions) in radix you
specified with the command qualifier.

6-18

Examining and Depositing Data

If you specify a radix operator, the debugger interprets integer literals in the
expression (or expressions) in that radix. However, it displays the value of
the expression (or expressions) in the current radix.

If an expression contains symbols with different compiler-generated types, the
debugger uses the type-conversion rules of the current language to evaluate
the expression.

You can evaluate more than one expression in a single EVALUATE command
by separating expressions with a comma.

Using the EVALUATE command, you can perform arithmetic calculations that
may or may not be related to your program. You may also perform radix
conversions by using radix mode command qualifiers or radix operators.

Example 6-29 demonstrates how to use the EVALUATE command (language
is set to FORTRAN).

Example 6-29 Using the EVALUATE Command

DBG>DEPOSIT R = 5.35E3

DBOEVALUATE R
5350.000

DBOEXAMINE R
T0Y\R: 5350.000

DBOEVALUATE R*50
267500.0

DBOEVALUATE (R*50)/(540-40)
535.0000

DBODEPOSIT I = 22222

DBOEVALUATE I
22222

DBOEVALUATE R/I
0.2407524

DBOEVALUATE 2.5*35
87.50000

DBOEVALUATE/OCTAL 17/2
00000000010

DBOEV ‘/.OCT 17/2
00000000007

DBOEVALUATE/HEX 17/2
00000008

DBOEV '/.HEX 17/2
DBG>11

DBOEVALUATE/HEX ‘/.HEX 17/2
0000000B

!R is of type floating point.

!Gives the value of R.

!The EXAMINE command is
•similar. Note that symbolic
!address of R is displayed.

!Perform arithmetic
!calculation.

!Perform arithmetic
!calculation.

!Deposit value in I.

!Note that I is of type
!integer.

!Expression is evaluated
!in floating point.

!Perform an arithmetic
!calculation.

!Octal qualifier affects
!output, not input.

!Octal operator affects

!input, not output.

!Hex qualifier affects
!output, not input.

!Hex operator affects
!input, not output.

!Both input and output
!are interpreted in hex.

6-19

7 Displaying Source Code

This chapter describes a source-language display feature that makes it possible
(in some languages only) to display programming statements in the language
in which the program was written. Such programming statements are referred
to as source code.

The debugger identifies a line of source code (a source line) by the line
number assigned to it by the compiler. The compiler assigns a line number to
each line of source code in the program in sequential order from the first to
the last line. Line numbers appear on a compiler listing, which the compiler
generates when the /LIST command qualifier is specified at compile time.

The display of source lines is independent of program execution; that is,
you may display source lines from any region of your program without such
display affecting the value of the program counter (PC) or processor status
longword (PSL).

You can display source code by specifying any of the following forms of input
parameter:

• A compiler-assigned line number

• An address expression that denotes a program location that has a
corresponding line number

• A source code string that identifies a source line by its appearance on that
line

It is also possible to display source lines along with other debugger display
such as that resulting from the execution of a STEP command, a breakpoint
hit, or a watchpoint hit.

Section 7.1 describes how the debugger locates source files; it also describes
how to direct the debugger to locate source files that have been moved to a
different directory since being compiled. Sections 7.2 through 7.5 describe
how to display source lines in each of the ways mentioned above. Section 7.6
describes how to establish parameters that govern the display of source lines.

7.1 Location of Source Files

A source file is a file containing statements in a programming language. A
compiler processes source files to generate object modules. If the /DEBUG
qualifier is specified at compile time, the compiler generates source-line
correlation records for inclusion in the debug symbol table (DST).

Source-line correlation records contain the full file specification (that is, device
name, directory name, file name, file type, and version number) of each
source file that contributes to each object module, and they specify which
source record in which source file corresponds to which line number in the
object module. Source-line correlation records are passed to the linker and
made available to the debugger at run time.

7-1

Displaying Source Code

During a debugging session, therefore, the debugger need only refer to its
DST to locate, for any object module, the source file containing the source
lines that you want to display.

However, if a source file has been moved to another directory since being
compiled, the full file specification of the source file as listed in the DST
record will no longer be correct, and the debugger will not be able to locate
the source file using the DST record. In this case, you must direct the
debugger to the current location of the source file by means of the SET
SOURCE command.

The availability of long filenames in Version 4.0 of VAX/VMS creates a
problem with the "Declare Source File" command in the source correlation
DST record. Both the DST record and the command within the record have
byte fields to hold the length. However, a file specification can be as long
as 252 characters, and together with the 20 bytes of other information in the
DST record, this exceeds what can be stored in a byte length. In order to
obtain source display, restrict the full file specification of the source file to 231
characters. You can work around this problem by using the SET SOURCE
command. For example, if you define a logical name "X" to expand to your
long file specification, the "SET SOURCE X" will show the source display.

7.1.1 SET, SHOW, and CANCEL SOURCE Commands
If you have moved a source file to another directory, issue the SET SOURCE
command in the following format:

SET SOURCE[/M0DULE=modname] dirname[,dirname...]

If you specify the optional /MODULE=modname command qualifier, the
debugger looks in the specified directory or directories only when it is locating
the source file(s) for the specified module.

If you issue a SET SOURCE command without the /MODULE=modname
command qualifier, the debugger looks in the specified directory or directories
when it is locating the source file(s) for any module not mentioned in a
previous SET SOURCE/MODULE=modname command.

In sum, the SET SOURCE/MODULE command tells the debugger where to
find source files for a particular module, whereas the SET SOURCE command
tells the debugger where to find source files for modules that were not
mentioned explicitly in SET SOURCE/MODULE commands.

The dirname parameter may consist of one, several, or all fields in a full file
specification, though usually it is only a directory name. The following is the
format of a full file specification:

node::device:[directory]file-name.file-type;version-number

When specifying any of these fields, you must include the punctuation
for that field, as shown in the above format. For example, to specify the
relocation of source files to the directory NEWDIR on the disk NEWDISK,
issue the following command:

DBG>SET SOURCE NEWDISK:[NEWDIR]

The debugger processes the dirname parameter by inserting the specified
fields in the file specification of the source file as it appears in the DST. In
this way, the debugger creates a new file specification, which it then uses to
locate the source file.

7-2

Displaying Source Code

When a source file is moved to another directory, the version number of the
source file may change. Hence, to locate the correct version of the source
file in the event that a version number was not specified in the dirname
parameter, the debugger inserts the match-all wildcard character (*) in the
version number field of the new file specification. As a result, all versions of
the moved source file are searched until the correct version is located. The
correct version of the source file is the version that has the same revision
date and time, the same file size, the same record format, and the same file
organization as the original compile-time source file.

You can specify more than one dirname parameter in a single SET SOURCE
command by separating each dirname parameter with a comma. In this case,
the debugger constructs a new file specification for each dirname parameter
specified and uses this list of file specifications to locate source files for the
object module. Since the dirname parameter is most often a directory name,
when you specify more than one dirname parameter in a single SET SOURCE
command, you establish a source directory search list.

When a source directory search list has been established for a module or
modules, the debugger locates the source files for the designated modules by
searching the first directory on the list, then the next, and so on, until it either
locates the source file or exhausts the list. Using a source directory search list
is particularly helpful when relocated source files are in several directories.

The SHOW SOURCE command displays the source directory search lists
currently in effect. The format of the SHOW SOURCE command is SHOW
SOURCE.

If a source directory search list has been established for all modules, the
SHOW SOURCE command indicates the name(s) of each directory specified
and indicates that the list applies to all modules.

If a source directory search list has been established for one or more modules,
the SHOW SOURCE command displays the name(s) of each directory
specified and displays the name(s) of the module(s) to which the directory
search list applies.

If no source directory search list has been established, the SHOW SOURCE
command indicates that no such list is currently in effect.

The CANCEL SOURCE command cancels the effects of previous SET
SOURCE commands. The format of the CANCEL SOURCE command is

CANCEL SOURCE [/MODULE=modname]

The CANCEL SOURCE command, without the /MODULE=modname
command qualifier, cancels the effect of a previous SET SOURCE
command, but does not cancel the effect of any previous SET SOURCE
/MODULE=modname command.

The CANCEL SOURCE/MODULE=modname command cancels the effect of
a previous SET SOURCE/MODULE=modname command in which the same
module name was specified; it does not cancel the effect of a previous SET
SOURCE command or of a SET SOURCE/MODULE=modname command in
which a different module name was specified.

In all cases, when a source directory search list has been canceled, the
debugger again expects the source files corresponding to the designated
modules to be in the same directories they were in at compile time.

7-3

Displaying Source Code

Assume that you write a VAX COBOL program with the file name
TEST.COB;8 and that this program contains two modules MODA and MODB.
Assume further that your default disk is DB4 and that, when you compile this
program, your default is set to [ME.COBPROG], a subdirectory in which you
always keep COBOL programs. At compile time, then, your source file has
the full file specification

DB4:[ME.COBPROG]TEST.COB;8

Assume that you link your program with a VAX FORTRAN program,
consisting of a single module CHECK, and that the full file specification
of this program at compile time is

DB4:[ME.FORPROG]CHECK.FOR;2

When you run the program and want to display source lines, the
debugger looks for the source lines of modules MODA and MODB in
DB4:[ME.COBPROG]TEST.COB;8 and for the source lines of module CHECK
in DB4:[ME.FORPROG]CHECK.FOR;2.

Assume that you move TEST.COB to a new subdirectory [ME.TEST]. Now
when you run the program and request the debugger to display source lines
from MODA, the debugger looks in DB4:[ME.COBPROG]TEST.COB;8 but
does not find the source file.

To direct the debugger to the correct directories, you can establish a source
directory search list by issuing the command

DBG>SET SOURCE [ME.TEST],[ME.FORPROG]

The debugger processes this command by substituting the directory
name [ME.TEST] in the compile-time file specifications of the source files
corresponding to MODA, MODB, and CHECK. As a result, the debugger
would successfully locate the source files for modules MODA and MODB
(because they were moved to this directory) but would not locate the source
file for module CHECK (because it was not moved from its compile-time
directory [ME.FORPROG]). However, after failing to find the source file for
module CHECK in the directory [ME.TEST], the debugger would substitute
the next directory in the source directory search list ([ME.FORPROG]) and
would then successfully locate the source file there.

Another way to direct the debugger to the correct directories is to issue the
following two commands:

DBG>SET S0URCE/M0DULE=M0DA [ME.TEST]
DBG>SET S0URCE/M0DULE=M0DB [ME.TEST]

The debugger processes these commands by inserting the directory
name [ME.TEST] in the compile-time file specifications of the source files
corresponding to MODA and MODB. Now whenever you request a display
of source lines from MODA or MODB, the debugger locates the source file in
DB4:[ME.TEST]TEST.COB.

In this example, it is necessary to issue two SET SOURCE
/MODULE=modname commands, rather than a single SET SOURCE
command, because the program contains another module CHECK whose
corresponding source file was not moved to the directory [ME.TEST]. As a
result, the debugger continues to look in the original compile-time directory
DB4:[ME.FORPROG]CHECK.FOR;2 when displaying source lines for module
CHECK.

7-4

Displaying Source Code

7.2 Display by Line Number

The TYPE command allows you to display one or more source lines by
specifying one or more compiler-assigned line numbers, where each line
number designates a line of source code.

The following is the format of the TYPE command:

TYPE [[modname\][line-number[:line-number] -

[,[modname\]line-number[:line-number]...]]

If you specify a single line number, the debugger displays the source line
corresponding to that line number.

If you specify a list of line numbers, separating each with a comma, the
debugger displays the source line corresponding to each of the line numbers.

If you specify a range of line numbers, separating the starting and ending line
numbers in the range with a colon, the debugger displays the source lines
corresponding to that range of line numbers.

You can read through all the source language statements in your program by
specifying a range of line numbers starting from 1 and ending at a number
equal to or greater than the largest line number in the program listing.

After displaying a source line, you can display the next line by issuing a
TYPE command without a line number, that is, by issuing a TYPE command
and then pressing the RETURN key. You can then display the next line and
successive lines by repeating this sequence, in this way reading through your
source program one line at a time.

You can specify a module name with the line numbers to indicate that the
lines are located in that module. In this case, you enter the module name, a
backslash (), and the line numbers, without intervening spaces.

If you do not specify a module name with the line numbers, the debugger
uses the current scope setting to determine which module to use. In this
case, the current scope is either the first module designated in a SET
SCOPE command or, if a SET SCOPE command was not issued, the module
containing the current PC.

Example 7-30 demonstrates how to use the TYPE command.

7.3 Display by Address Expression

By specifying the /SOURCE qualifier in the EXAMINE command, you can
display the source line(s) corresponding to the location(s) designated by one
or more address expressions.

The debugger evaluates each address expression to derive a virtual address,
determines which compiler-assigned line number corresponds to each virtual
address, and then displays the source line(s) designated by the line number(s).

The format of the EXAMINE command is

EXAMINE[/qualifier[/qualifier]] -
[address-expression[:address-expression]-
[,address-expression[:address-expression] ...]]

The format of the EXAMINE command allows you to specify

• A single address-expression parameter

7—5

Displaying Source Code

Example 7-30 Using the TYPE Command

DBOTYPE 160
module COBOLTEST

160: START-IT-PARA.

!Display the source line
!designated by line
!number 160.

DBOTYPE I RET 1
module COBOLTEST

{Display the source line
’ {following the last
MOVE SCI TO ESO. {displayed source line. 161:

DBG>T 160:163
module COBOLTEST

161
162
163

160: START-IT-PARA.
MOVE SCI TO ESO.
DISPLAY ESO.
MOVE SCI TO ESI.

{Display the range of source
{lines corresponding to the
{range of specified line

{numbers.

DBOTYPE C0B0LTEST\160,22:24 {Display a single line
{and a range of lines of
{source code in a specified
!module.

module COBOLTEST
160: START-IT-PARA.

module COBOLTEST
22: 02 SC2V2 PIC S99V99
23: 02 SC2V2N PIC S99V99
24: 02 CPP2 PIC PP99

COMP VALUE 22.33.
COMP VALUE -22.33.
COMP VALUE 0.0012.

• A list of address-expression parameters

• A range of address-expression parameters

• A list of ranges of address-expression parameters

In each case, when you specify the /SOURCE qualifier, the debugger
evaluates any specified address expression to determine its corresponding
source line.

If you specify a single address expression, the debugger evaluates the
address expression to derive a virtual address, determines what line number
corresponds to that virtual address, and then (as in the TYPE command)
displays the source line designated by that line number.

If you specify more than one address expression (that is, a list), with a
comma separating each address expression, the debugger evaluates each
address expression as described above and displays, for each specified address
expression, a corresponding source line.

If you specify two address expressions, separated by a colon, the debugger
evaluates each address expression to derive a range of virtual addresses,
determines which line numbers correspond to the range of addresses, and
then displays the source lines designated by the line numbers. In this case,
both addresses in the range must correspond to line numbers in the same
module, and the first of the two line numbers must be less than or equal to
the second.

Example 7-31 demonstrates how to use the EXAMINE/SOURCE command.

7—6

Displaying Source Code

Example 7-31 Using the EXAMINE/SOURCE Command

dbg>ex/source /.pc

! '/.DEBUG-W-NOSRCLIN, no source line for address 7FFF005C

DBOEX/SOURCE .'/.PC

module COBOLTEST
162: DISPLAY ESO.

DBG>EX/S0U 2150

module COBOLTEST
165: MOVE SCI TO ES2.

DBOEX/SOURCE 2150:2200

module COBOLTEST
165: MOVE SCI TO ES2.
166: DISPLAY ES2.
167: MOVE SC2V2 TO ESO.

168: DISPLAY ESO.
169: MOVE SC2V2 TO ESI.

I The address expression '/.PC
!designates the address at
!which the contents of the PC
!is stored. There is no
!source line corresponding to
!this address. To get the
!desired result, you must
!specify the "contents of"
!operator, the period (.),
las shown in the following
!command.

IThis command displays the

!source line corresponding
!to the line containing
!the PC. In effect, it
!displays the source line
{currently being executed.

IThis command displays
!the source line corresponding
!to the virtual address 2150.

IThis command displays the
!range of lines of source
I code that correspond
•to the range of specified
!virtual addresses.

DBOEX/SOURCE 2100:2120,2150:2175

module COBOLTEST
161: MOVE SCI TO ESO.
162: DISPLAY ESO.

163: MOVE SCI TO ESI.
module COBOLTEST

165: MOVE SCI TO ES2.
166: DISPLAY ES2.

167: MOVE SC2V2 TO ESO.

IThis command displays the
Hist of ranges of source
llines corresponding to
I the list of ranges of

!specified virtual addresses.

7.4 Display During Program Execution
When you specify either the SET STEP SOURCE command (the default) or
the STEP/SOURCE command, the debugger displays source lines when any
one of the following events occur:

• You issue a STEP command and do not specify the /NOSOURCE
qualifier. In this case, the debugger displays the source line following
the last line or instruction executed.

• A breakpoint or tracepoint is activated; in this case, the debugger displays
the source line at the location of the eventpoint.

• A watchpoint is activated; in this case, the debugger displays the
source line corresponding to the instruction that caused the watchpoint
activation.

When you have given the SET STEP NOSOURCE command, the debugger
does not display source lines when STEP commands are executed or when
eventpoints are activated.

7-7

Displaying Source Code

When you specify the /SOURCE or /NOSOURCE qualifiers on the STEP
command, they override, for the duration of that STEP command, any
specified or default source parameter currently in effect. However, as
command qualifiers, /SOURCE and /NOSOURCE do not affect whether
or not the debugger displays source lines when an eventpoint is being
evaluated; they only affect whether or not the debugger displays source lines
when STEP commands are executed.

Thus, when the SOURCE parameter is in effect, specifying the /NOSOURCE
command qualifier on the STEP command suppresses the display of source
line(s) for the duration of that STEP command. The debugger continues to
display source lines when eventpoints are activated or when subsequent STEP
commands are executed (unless the /NOSOURCE command qualifier is again
specified).

Also, when the NOSOURCE parameter is in effect (whether by default or
by an explicit SET STEP NOSOURCE command), specifying the /SOURCE
command qualifier on the STEP command causes the debugger to display
source line(s) for the duration of that STEP command. The debugger does
not display source lines when eventpoints are activated or when subsequent
STEP commands are executed (unless the /SOURCE command qualifier is
again specified).

However, you can specify the /SOURCE or /NOSOURCE command
qualifiers on the SET BREAK, SET TRACE, and SET WATCH commands.
These qualifiers override the current step setting while the eventpoint is
evaluated; they do not permanently change the step setting.

Example 7-32 demonstrates how to display lines of source code during
program execution.

7—8

Displaying Source Code

Example 7-32 Displaying Source Code During Program
Execution

DBG>STEP
stepped to COBOLTEST\START-IT

161: MOVE SCI TO ESO.

DBG>SET BREAK ‘/.LINE 163

{Execute a line of code.
{Since the default SOURCE
{parameter is in effect, the
{debugger displays the source
{line.

{Set a breakpoint at
{line number 163.

DBG>GO
break at COBOLTEST\START-IT\START-IT-PARA\7,LINE 163

163: MOVE SCI TO ESI.

DBG>SET BREAK/NOSOURCE ‘/.LINE 164

{Begin execution at the
{current location. Source
{line display occurs when
{the breakpoint is reached

!Set a breakpoint at
{line number 164. Specify
{that the source lines are
Snot to be displayed.

DBG>G0
break at COBOLTEST\START-IT\START- IT-PARAV/.LINE 164

{Begin execution at the

{current location. The
{source code is not dis¬
played although SOURCE
{is the current step setting.

DBG>SET BREAK ’/.LINE 165

DBG>SET STEP NOSOURCE

!Set a breakpoint at
{line number 165.

{Specify that source lines
!not be displayed when STEP
{commands are executed or
{when breakpoints or

{watchpoints are activated.

DBG>G0
break at COBOLTEST\START-IT\START

DBG>STEP/SOURCE
stepped to COBOLTESTV/.LINE 166

166: DISPLAY ES2.

DBG>STEP
stepped to COBOLTESTV/.LINE 167

IT-PARA\y,LINE 167

{Begin execution at the
{current location. Note that
!a source line is not
{displayed at breakpoint

{activation because NOSOURCE
!is in effect.

{Execute a line of code and
'.display the source line
{following the line executed.
!The NOSOURCE parameter is
{overriden for the duration
!of the STEP command.

{Execute a line of code.
{Note that no source code
{is displayed because the
!SET STEP NOSOURCE command
!was issued and the /SOURCE
{qualifier was not specified
!in the STEP command.

7-9

Displaying Source Code

7.5 Display by Search String
The SEARCH command directs the debugger to search the source code
for a specified string and to display the source line or lines containing an
occurrence of the string.

The format of the SEARCH command is

SEARCH [/qualifier,...] range string

The range parameter limits the debugger's search for occurrences of the string
to specified regions of the source code. These regions may be specified in any
of the following formats:

MODNAME Indicates a search of the specified module
from line number 0 to the end of the
module.

MODNAME\LINE-NUM Indicates a search of the specified module
from the specified line number to the end of
the module.

Indicates a search of the specified module
beginning at the line number specified to
the left of the colon and ending at the line
number specified to the right of the colon.

Indicates a search of the module designated
by the current scope setting from the
specified line number to the end of the
module.

Indicates a search of the module designated
by the current scope setting beginning at
the line number specified to the left of the
colon and ending at the line number to the
right of the colon.

Indicates a search of the same module as
that from which a source line was most
recently displayed (as a result of a SEARCH,
TYPE, or EXAMINE/SOURCE command),
beginning at the first line following the line
most recently displayed and continuing to
the end of the module.

The string parameter specifies the source code characters for which to search.
If the string parameter is not specified, the debugger uses the last specified
search string, that is, the string parameter specified in the last SEARCH
command. If there was no previous search string, an error message results.
The string parameter may be enclosed in quotation marks or in apostrophes
or may be specified without delimiters.

If the string contains a quotation mark and you want to delimit the string
with quotation marks, use double quotation marks to indicate the quotation
mark that is part of the string. Likewise, if the string contains an apostrophe
and you want to delimit the string with apostrophes, use double apostrophes
to indicate the apostrophe that is part of the string.

UNE-NUM:LINE-NUIVI

NULL

MODNAME\LINE-NUM:LINE-NUM

LINE-NUM

7-10

Displaying Source Code

A delimited string may contain spaces, tabs, or special characters. Specifying
an undelimited string is more convenient because it saves keystrokes, but an
undelimited string is subject to certain restrictions:

• It must have no leading or trailing blanks or tabs.

• It must have no embedded semicolon (;).

• The range parameter must not be null; that is, an explicit range must be
specified.

The /ALL command qualifier directs the debugger to search for all
occurrences of the string in the specified range and display every line
containing an occurrence of the string.

The /NEXT command qualifier directs the debugger to search for the first
occurrence of the string in the specified range and to display only the line
containing this occurrence. Subsequent lines in the specified range that
contain the search string are not displayed. /NEXT is the default.

The /IDENTIFIER command qualifier directs the debugger to search for an
occurrence of the string in the specified range but to display the string only if
it is bounded on either side by a character that cannot be part of an identifier
in the current language. (An identifier is the name associated with a data or
program entity.)

Specifying /IDENTIFIER is useful when you are searching for an identifier
but want to eliminate extraneous occurrences of the character(s) composing
that identifier. For example, suppose you want to display all occurrences
of the identifier X, but your program also contains identifiers XT and EXP.
Obviously, you do not want every occurrence of XT and EXP to be displayed
just because it contains the character X. So you specify the /IDENTIFIER
command qualifier to direct the debugger to disregard occurrences of XT and
EXP. The debugger disregards them because the X in both XT and EXP is
bounded on at least one side by a character (a letter of the alphabet) that can
be part of an identifier in the current language.

The /STRING command qualifier directs the debugger to search for and
display the string as specified, and not to interpret the context surrounding an
occurrence of the string, as it does in the case of /IDENTIFIER. /STRING is
the default.

The SET SEARCF1 command establishes current SEARCH parameters for the
debugger to use whenever a SEARCH command qualifier is not specified
in a SEARCH command. The following is the format of the SET SEARCH
command:

SET SEARCH parameter[.parameter]

SEARCH parameters determine whether the debugger searches for all
occurrences (ALL) of the string or only the next occurrence (NEXT) of the
string, and whether the debugger displays any occurrence of the string
(STRING) or only those occurrences in which the string is not bounded on
either side by a character that can be part of an identifier in the current
language (IDENTIFIER).

If you do not specify SEARCH parameters with the SET SEARCH command,
the debugger uses the default values NEXT and STRING.

You can override current SEARCH parameters for the duration of a single
SEARCH command by specifying other SEARCH parameters as command
qualifiers in the SEARCH command.

7-11

Displaying Source Code

You can specify more than one SEARCH parameter in a single SET SEARCH
by separating parameters with a comma.

The SHOW SEARCH command displays the current SEARCH parameters.

Example 7-33 demonstrates how to use the SEARCH, SET SEARCH, and
SHOW SEARCH commands:

Example 7-33 Using the SEARCH and SET/SHOW SEARCH
Commands

DBG>SHOW search

search settings: search for next occurrence, as a string
!Display current SEARCH
!parameters.

DBG>SEARCH/STRING/ALL 40:50 D

module C0B0LTEST
40: 02 D2N COMP-2 VALUE -234560000000.
41: 02 D COMP-2 VALUE 222222.33.
42: 02 DN COMP-2 VALUE -222222.333333.
47: 02 DRO COMP-2 VALUE 0.1.
48: 02 DR5 COMP-2 VALUE 0.000001.
49: 02 DR10 COMP-2 VALUE 0.00000000001.
50: 02 DR15 COMP-2 VALUE 0.0000000000000001

!Display all source lines
!in the range of line numbers
!40 to 50 that contain an
!occurrence of the letter D.

DBG>SEARCH/IDENTIFIER/ALL 40:50 D

module C0B0LTEST
41: 02 D COMP-2 VALUE 222222.33.

!Display a line containing D
lonly if D is bounded on
Iboth sides by a character
Ithat cannot be part of an
!identifier in the current
!language.

DBG>SEARCH/NEXT 40:50 D

module COBOLTEST
40: 02 D2N COMP-2 VALUE -234560000000.

!Display the first occurrence
!of D in the range.

dbg>search/next

module COBOLTEST
41: 02 D COMP-2 VALUE 222222.33.

!Display the first occurrence
!of D (the previous search)
!string in the range begin¬
ning at the line following
!the last line displayed
!(line 40 in the above com-)
!mand and ending at the end
!of the current module.

(Continued on next page)

7-12

Displaying Source Code

Example 7-33 (Cont.) Using the SEARCH and SET/SHOW
SEARCH Commands

DBG>SEA 80:90

module C0B0LTEST

80: 02 LS10 PIC S9(10) LEADING SEPARATE VALUE

-: 1234567890.

!Display all occurrences of D

!(the previous search string)

!in the range 80:90. Note

!that the line wraps.

DBG>SEA C0B0LTEST\17O ’D’
module COBOLTEST

170: DISPLAY ESI.

!Display the first occurrence

!of D in the module COBOLTEST

!in the range beginning at

!line 170 and ending at the

lend of the module.

DBG>SEA C0B0LTEST\15O * E’

module COBOLTEST

161: MOVE SCI TO ESO.

!Display the first occurrence

!of the delimited string in

!the module COBOLTEST in the

!range beginning at line 150

land ending at the end of

Ithe module.

DBG>SEARCH/NEXT IV"

module COBOLTEST

2: PROGRAM-ID. COBOLTEST.

1 Display the first occurrence

lof the delimited string in

Ithe module COBOLTEST in the

1 range beginning at line 1

land ending at the end of

Ithe module.

DBG>SET SEARCH IDENT ISet the current SEARCH

1 parameter to IDENTIFIER.

DBG>SH0W SEARCH

search settings: search for next occurrence, as an identifier

{Display current SEARCH

1 parameters

DBG>SET SE AL ISet the current SEARCH

1 parameter to ALL.

DBG>SH SEA
search settings: search for all occurences, as an identifier

{Display current SEARCH

{parameters.

7.6 Source Display Parameters
This section describes parameters to set margins on the display of source code
and to limit the number of source files that the debugger may keep open at
any one time.

7-13

Displaying Source Code

7.6.1 Margin Parameters
The SET MARGINS command specifies the leftmost source-line character
position at which to begin display of a source line (the left margin) and/or
the rightmost character position at which to end display of a source line.

By default, the debugger displays a source line beginning at character position
1 of the source line. Source-line character position 1 is actually character
position 9 on your terminal screen. The first eight character positions on the
terminal screen are occupied by the line number and cannot be manipulated
by the SET MARGINS command.

Increasing the left margin setting (from its default value of 1) is particularly
useful when the source code is deeply indented; by eliminating the display of
empty space, more space is available on the terminal line for the display of
source code.

Decreasing the right margin setting from its default value of 255 prevents
wrapping of long lines by truncating them. Since a wrapped line of source
code requires two lines on the terminal, eliminating wrapping allows more
lines of source code to be displayed on the terminal screen.

The SET MARGINS command affects only the display of source lines, that is,
the display resulting from commands such as TYPE and EX AMINE/SOURCE.
The SET MARGINS command does not affect the display resulting from
commands (such as EXAMINE, EVALUATE, SHOW MODE, and so on) that
do not display source code. If a command displays source code together with
other information—as, for example, STEP/SOURCE does—the display
of source code is affected by the current margin settings but the other
information is not.

The following is the format of the SET MARGINS command:

rm

SET MARGINS lm:rm
lm:

:rm

If you specify a single number, the debugger sets the left margin to 1 and the
right margin to the number specified.

If you specify two numbers, separated with a colon, the debugger sets the left
margin to the number specified to the left of the colon and the right margin
to the number specified to the right of the colon.

If you specify a single number followed by a colon, the debugger sets the left
margin to the number specified and leaves the right margin unchanged.

If you specify a colon followed by a single number, the debugger sets the
right margin to the number specified and leaves the left margin unchanged.

The SHOW MARGINS command displays the current margin settings for the
display of source lines.

Example 7-34 demonstrates how to use the SET MARGINS and SHOW
MARGINS commands.

7-14

Displaying Source Code

Example 7-34 Using the SET/SHOW MARGINS Commands

DBG>SH0W MARGINS
left margin: 1 , right margin: 255

•Display current margin

!settings.

DBG>TYPE 116
module COBOLTEST

116: 02 RA26 PIC A(26) JUST RIGHT VALUE

-: "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

DBG>SET MARGINS 50

DBG>SHOW MARGINS
left margin: 1 , right margin: 50

DBG>TY 116
module COBOLTEST

116: 02 RA26 PIC A(26)

DBG> SET MARGINS 10:60

DBG>TY 116

module COBOLTEST

116: A26 PIC A(26)

DBG>SET MARGINS :100

!Display source line 116.

INote that the line wraps,

Ithus requiring two terminal

Hines for its display.

!Set the left margin to 1

land the right margin to 50.

!Display current margin

!settings.

JUST RIGHT VALUE

•With a right margin of 50,

!characters on source line 116

!at positions greater than 50

lare not displayed. As a

!result, line 116 does not

!wrap.

!Set left margin to 10 and

!right margin to 60.

JUST RIGHT VALUE "ABCDEFGHI

!Characters on source line 116

!at positions less than 10 or

!greater than 60 are not

!displayed.

ISet right margin to 100 and

!leave left margin unchanged.

(Continued on next page)

7-15

Displaying Source Code

Example 7-34 (Cont.) Using the SET/SHOW MARGINS
Commands

DBOSHOW MARGINS
left margin: 10 , right margin: 100

!Display current margin
!settings.

DBG>SET MARGINS 5: !Set left margin to 5 and
Heave right margin unchanged.

DBOSHOW MARGINS
left margin: 5 , right margin: 100

{Display current margin
!settings.

7.6.2 Maximum Source Files Parameter
The SET MAX—SOURCE—FILES command specifies the maximum number
of source files that the debugger may keep open at any one time.

The format of the SET MAX—SOURCE—FILES command is

SET MAX.SOURCE.FILES n

The parameter n is a decimal integer whose value designates the maximum
number of source files that the debugger may keep open at any one time.
The value of n may not exceed 20. The default value is 5.

Opening a source file requires the use of an I/O channel, which is a limited
system resource. Both the program and the debugger use I/O channels. To
ensure that the debugger does not use all available I/O channels and thus
cause the user program to fail (for lack of an available I/O channel), you
can issue the SET MAX—SOURCE—FILES command to specify the maximum
number of source files (and thus source file I/O channels) that the debugger
may use at any one time.

Note that the value of MAX—SOURCE—FILES does not limit the number
of source files that the debugger can open; rather, it limits the number that
may be kept open at any one time. Thus, if the debugger reaches this limit, it
must close a file in order to open another one.

Note too that setting MAX—SOURCE—FILES to a very small number can
make the debugger's use of source files inefficient.

The SHOW MAX—SOURCE—FILES command displays the number of source
files that the debugger may keep open at any one time.

Example 7-35 demonstrates how to use the SET MAX—SOURCE—FILES and
SHOW MAX-SOURCE-FILES commands.

7—16

Displaying Source Code

Example 7-35 Using the SET/SHOW MAX_SOURCE_FILES
Commands

DBOSHOW MAX.SOURCE.FILES
max.source.files: 5

DBG>SET MAX.SOURCE.FILES 8

DBOSHOW MAX.SOURCE.FILES
max.source.files: 8

!Display the number of source
Ifiles that the debugger may
!keep open at the present
!time.

!Set the number of source
Ifiles that the debugger may
Ikeep open at any one time
!to 8.

!Verify the change.

7.7 Differences Between Source and Object Code Due to
Optimization

When debugging with source code, you should keep in mind that, in general,
there is no precise one-to-one correspondence between your source code and
the compiler-generated object code.

Most compilers optimize the object code they produce so that the program
will execute faster. One method of optimizing object code is to perform
operations in a sequence different from the sequence specified in the source
code.

As a result, the source code displayed by the debugger will not correspond
exactly to the actual object code being executed. This is important to keep in
mind, especially when using the SET STEP SOURCE, STEP/SOURCE, and
EXAMINE/SOURCE commands.

To illustrate, the following example depicts a segment of source code from
a FORTRAN program as it would appear on a compiler listing. This code
segment sets the first ten elements of array A to the value 1 /X.

line source code

5 DO 100 1=1,10
6 A(I) = 1/X
7 100 CONTINUE

As the compiler processes the source program, it determines that the
reciprocal of X need only be computed once, not ten times as the source
code specifies, since the value of X never changes in the DO-loop. The
compiler thus generates optimized object code equivalent to the following
code segment:

line object code equivalent

5 T = 1/X
DO 100 1=1,10

6 A(I) = T
7 100 CONTINUE

In the optimized object code, the value of 1/X is computed once, saved in
a temporary location, and then assigned to each A(I). The object code now
executes faster, but it no longer corresponds exactly to the source code.

7-17

Displaying Source Code

In this example, if you step to line 5 by issuing STEP/SOURCE (or SET
STEP SOURCE followed by STEP), the debugger displays the source line as
it appears in the source file, not the optimized object code equivalent that it is
actually executing.

stepped to PROG_V/,LINE 5
5: DO 100 1=1,10

At this point, if you issue another STEP command to execute line 5, the
debugger executes line 5 of the optimized object code, not line 5 of the
displayed source code. Thus, the program computes the reciprocal of X and
sets up the DO loop, whereas the source display indicates only that the DO
loop is set up.

This discrepancy is not obvious from looking at the displayed source line.
Furthermore, if the computation of 1/X were to fail because X is zero, it
would appear from inspecting the source display that a division by zero had
occurred on a source line that contains no division at all.

This kind of apparent mismatch between source code and object code should
be expected from time to time when debugging optimized programs. It can be
caused not only by "code motions" out of loops, as in the above example, but
by a number of other optimization methods as well. Optimization can cause
segments of object code to move long distances from their original source
code locations.

If you should encounter a program segment where source and object code
do not seem to match, you can inspect the object code itself by using
the EXAMINE/INSTRUCTION or STEP/INSTRUCTION commands.
Alternatively, you can inspect a compiler-generated machine code listing.
Using either of these methods, you should be able to determine what is
happening at the object code level and thereby resolve the discrepancy
between source line display and program behavior.

In addition, most languages allow you to specify the /NOOPTIMIZE
command qualifier at compile time. Specifying this qualifier inhibits compiler
optimization, thereby eliminating discrepancies between source code and
object code caused by optimization.

7-18

Screen Mode

Screen mode lets you see more information more conveniently than the
default, line-oriented, display mode. In screen mode, you display different
types of data in separate areas of the screen. You might, for example, display
your source code in the top left half of the screen, the contents of the VAX
registers in the top right half, debugger output in the middle, and diagnostic
messages at the bottom, near your interactive input.

To enable screen mode, press keypad key PF3 (or type the command SET
MODE SCREEN). To return to line-oriented debugging, press GOLD-PF3 (or
type the command SET MODE NOSCREEN).

Screen mode output is best displayed on VT100 or VT200 series terminals and
Micro VAX workstations. The ability to have many displays on the screen for
different purposes is particularly useful with the larger screen of Micro VAX
workstations. You can use screen mode with VT52 terminals, but they are
less suited to the formatted screen displays since they do not support the
scrolling regions used in screen mode.

This chapter covers the following topics:

• Section 8.1 introduces screen mode concepts and terminology used
throughout the chapter.

• Section 8.2 describes the predefined displays SRC, OUT, PROMPT, INST,
and REG, which are automatically available when you enter screen mode.

• Section 8.3 describes how to scroll, hide, delete, move, and resize a
display.

• Section 8.4 explains how to create a new display.

• Section 8.5 explains how to specify a display window.

• Section 8.6 describes the different kinds of displays and how to use them.

• Section 8.7 explains how to direct various types of debugger output to
different displays by assigning display attributes.

• Section 8.8 gives an example of a display configuration to illustrate a
possible use of screen mode.

• Section 8.9 explains how to save the current state of your screen displays.

• Section 8.10 explains how to change your terminal screen's height and
width during a debugging session and describes how display windows
behave when you change the height or width.

Many screen mode commands are bound to keypad keys. See Appendix B
for key definitions. Also, Appendix C contains screen mode information in
summary reference format.

8-1

Screen Mode

8.1 Concepts and Terminology

A display is a group of text lines. The text may be lines from a source file,
assembly language instructions, the values contained in registers, your input
to the debugger, various types of debugger output, or program input and
output.

You view a display through its window, which may occupy any rectangular
area of the screen. Because a display's window is typically smaller than
the display, you can scroll the window up, down, right, and left across the
display text to view any part of the display.

The following example of screen mode shows three displays. The name of
each display (SRC, OUT, and PROMPT) appears at the top left comer of its
window. It serves both as a tag on the display itself and as a name for future
reference in commands.

• Display SRC is a source code display (displaying FORTRAN code in this
example). SRC's current window is the upper half of the screen. Like
other display windows, SRC's window may be changed to accommodate
different display layouts. The name of the module whose source code is
displayed, FORSQUARE$MAIN, is to the right of the display name.

• Display OUT, located in a window directly below SRC, shows the output
of debugger commands.

• Display PROMPT, at the bottom of the screen, shows the debugger
prompt and debugger input.

SRC, OUT, and PROMPT are three of the five predefined displays that the
debugger provides by default when you enter screen mode. You can create
additional displays.

- SRC: module
7: C
8:
9:

10:
-> 11:

12:
13: 10
14: C
15: C

FORSQUARE$MAIN -scroll-source
-Square all non-zero elements and store in output array

K s 0
DO 10 I = 1, N
IFUNARR(I) .NE. 0) THEN

OUTARR(K) = INARR(I)**2

ENDIF
CONTINUE

-Print the squared output values. Then stop.

- OUT -output-
stepped to FORSQUARE$MAIN*/,LINE 9

9: DO 10 I = 1. N
FORSQUARE$MAIN\N: 9
FORSQUARE$MAIN\K: 0
stepped to FORSQUARE$MAIN\%LINE 11

- PROMPT -error-program-prompt

DBG> EXAM N. K
DBG> STEP 2

DBG>

Every display has a memory buffer, whose size is independent of the
window size and may be adjusted. Displays that hold source code or
assembly language instructions let you see all of the lines of source code
of the associated module or all of the instructions of the associated routine,
regardless of the size of the memory buffer. This is because the necessary
information is paged into the buffer as needed. For other displays, such as

8-2

Screen Mode

display OUT, the buffer size defines how much text the display will hold. If
you add more text to the display, the oldest text lines are discarded to make
room for the new text.

Conceptually, displays are placed on the screen as on a pasteboard. The
display that is most recently referenced in a command is put on top of the
pasteboard, by default. Therefore, depending on the window locations, the
displays that you have referenced recently may overlay or hide other displays
(as on a pasteboard).

The debugger maintains a display list, which is the pasting order of displays.
Several keypad key definitions use the display list to cycle through the
displays currently on the pasteboard.

Every display belongs to a display kind. The display kind determines what
type of information the display can capture and/or display; for example,
source code, assembly language instructions, debugger output of various
types. The display kind also determines how the contents of the display are
generated.

In general, there are two ways in which the contents of a display are
generated. Some displays are automatically updated. Their definition
includes a command list that is executed whenever the debugger gains
control from the program. The output of the command list forms the contents
of those displays. Display SRC belongs to that category: the source display
is automatically updated so that an arrow centered in the window shows the
current location of the program counter.

Other displays, for example display OUT, derive their contents from
commands you issue interactively. If you create a display of this general
category, you must first select it (with the SELECT command) as the target
display for one or more types of output before anything can be written to it.
This is also known as assigning one or more attributes to a display.

The names of any attributes assigned to a display appear to the right of
the display name, in lowercase letters. In the preceding example, SRC has
the source and scroll attributes (SRC is the current source display and the
current scrolling display), OUT has the output attribute (it is the current output
display), and so on. Note that, although SRC is automatically updated by its
own built-in command, it can also receive the output of certain interactive
commands (such as EXAMINE/SOURCE) because it has the source attribute.

The concepts introduced in this section are developed in more detail in the
rest of this chapter.

8.2 The Predefined Displays

The debugger provides the following predefined displays by default:

• A source display named "SRC"

• An output display named "OUT"

• A prompt display named "PROMPT"

• An assembly-language instruction display named "INST"

• A register display named "REG"

8-3

Screen Mode

When you enter screen mode and the language is set to any language except
MACRO, the debugger puts SRC in the top half of the screen, PROMPT in
the bottom sixth, and OUT between SRC and PROMPT, as illustrated in
Section 8.1.

Each of the predefined displays is discussed in the next sections.

8.2.1 The Predefined Source Display SRC

Note: The debugger does not provide source line display for MACRO. If the
language is set to MACRO, SRC is marked as removed (see Section 8.3.2)
from the display pasteboard and is not visible. The INST display is put
in its place.

The predefined source display SRC displays the source code of the module
being debugged, if that source code is available. The arrow in the leftmost
column indicates the current PC location. Each time the debugger gains
control from your program, the arrow position is updated, and the source text
scrolls as needed so that the display is centered around the PC location.

By default, SRC has the source attribute and, therefore, also shows the output
of a TYPE or EXAMINE/SOURCE command (the source text is scrolled as
needed to reveal the source line output).

If source lines are not available for the currently executing routine (because,
for example, the routine is a run-time library routine), the debugger attempts
to display source lines in the caller of that routine (scope 1). If source lines
are also not available at that level, the debugger tries scope 2, and so on.
When displaying source lines that are not associated with the executing
module, the debugger displays a message to that effect:

'/.DEBUG -1 - SOURCESCOPE, Source lines not available for .OV/.PC.
Displaying source in a caller of the current routine.

The following example illustrates this feature. In the source display, the
arrow indicates that the PC is at a call of routine TYPE. TYPE corresponds
to a FORTRAN run-time library procedure. No source lines are available for
that code, so the debugger displays lines in the caller of that routine. The
output of a SHOW CALLS command, shown in the output display, identifies
the currently executing module and the call sequence.

8-4

Screen Mode

- SRC: module TEST -scroll-source-I
'/.DEBUG-1 - SOURCESCOPE, Source lines not available for .OV/.PC I

Displaying source in a caller of the current routine I

3: CHARACTER*(*) ARRAYX I
-> 4: TYPE *. ARRAYX I

5: RETURN I

6: END I

- OUT --output-
stepped to SHARE$F0RRTL+810
module name routine name line rel PC abs PC

SHARE$FORRTL SHARE$FORRTL 0000032A 00000B2A

♦TEST TEST 4 000000IE 00000436

*A A 3 00000011 00000411

- PROMPT -error-program-prompt

DBG> STEP
DBG> SHOW CALLS

DBG>

8.2.2 The Predefined Output Display OUT
By default, the predefined display OUT has the output attribute and therefore
displays any debugger output that is not directed to the source display SRC
or the instruction display INST. By default, OUT does not display debugger
diagnostic messages (these appear in the PROMPT display).

The preceding examples illustrate some typical debugger output in display
OUT. You can assign attributes to OUT so it will capture debugger input and
diagnostics as well as normal output (see Section 8.7).

8.2.3 The Predefined Prompt Display PROMPT
The predefined display PROMPT is where the debugger prompts for input.
The preceding examples show PROMPT in its default location, the bottom
sixth of the screen.

By default, PROMPT has the program and error attributes, in addition to the
prompt attribute. Therefore, the debugger forces program output to PROMPT
and prints diagnostic messages to that display.

PROMPT has different properties and restrictions than other displays. This is
to eliminate possible confusion when manipulating that display:

• The debugger always keeps PROMPT on top of the display pasteboard
so it cannot be hidden by another display. You cannot hide PROMPT
(with the DISPLAY/HIDE command), or remove PROMPT from the
pasteboard (with the DISPLAY/REMOVE command), or permanently
delete PROMPT (with the CANCEL DISPLAY command).

• PROMPT can have the scroll attribute, so that it can be made the default
target display for the MOVE and EXPAND commands. But you cannot
scroll PROMPT.

8-5

Screen Mode

• You can move PROMPT anywhere on the screen, expand it to fill the
full screen height, and contract it down to two lines. But PROMPT must
always occupy the full width of the screen. Therefore, you cannot move,
expand, or contract PROMPT horizontally.

The debugger alerts you if you try to move or expand a display where it will
be hidden by PROMPT.

8.2.4 The Predefined Instruction Display INST
The predefined assembly-language instruction display INST displays the
instruction stream of the routine being debugged (see the example that
follows). The instructions displayed are decoded from the image being
debugged. The numbers to the left of the instructions are line numbers. The
arrow points to the instruction at your current PC. Each time the debugger
gains control from your program, the arrow position is updated and the
display is centered around the PC location.

If the language is set to a language other than MACRO, INST is marked as
removed (see Section 8.3.2) from the display pasteboard and is not visible.
You need to use the DISPLAY command (or keypad keys 7 or GOLD-7) to
show the INST display in such cases. If the language is set to MACRO, the
INST display takes the place of the SRC display and is shown by default.

If you assign the instruction attribute to INST with the command SELECT
/INSTRUCTION INST, then the output of an EXAMINE/INSTRUCTION
command will be directed to the instruction display.

I- INST: routine FORSQUARE$MAIN.I

1 BLEQ FORSQUARE$MAIN\'/.LINE 16

(Line 10 MOVL B~4(R11),R0

1 TSTL W~-164(R11)[RO]

1 BEQL FORSQUARE$MAIN*/,LINE 13

1 ->ne 11 MOVL B~12(R11),R1

1 MOVL B~4(R11).RO

1 MULL3 VT-164(R11)[RO],W~-164(R11)[RO],B~-84(R11)[Rl]
iLine 13 AOBLEQ B~16(R11) ,B~4(R11) ,FORSQUARE$MAINV/.LINE 10
iLine
1- OUT

16
-out]

PUSHAL
5Ut-

L~525

I stepped to F0RSQUARE$MAIN\7,LINE 9
I 9: DO 10 I = 1. N
IFORSQUARE$MAIN\N: 3
IFORSQUARE$MAIN\K: 0
I stepped to FORSQUARE$MAIN\'/,LINE 11
IFORSQUARE$MAIN\I: 1
IFORSQUARE$MAIN\K: 0

I
I
I - PROMPT -error-program-prompt-

|DBG> STEP
IDG> EXAMINE I.K
|DBG>

8-6

Screen Mode

8.2.5 The Predefined Register Display REG
The predefined register display REG automatically shows the current values
of all VAX machine registers (see the example that follows). REG also shows
the four condition code bits (C,V, Z, and N) of the processor status longword
(PSL), plus the top several values on the stack and on the current argument
list. The values in this display are highlighted when they change as you
execute the program.

REG is initially marked as removed (see Section 8.3.2) from the display
pasteboard and is not visible. You need to use the DISPLAY command (or
the keypad key sequence GOLD-7) to show the REG display.

- SRC: module FORSQUAREfMAIN -scroll-sou-*-- REG -..
RIO:7FFEDDD4
Rll:000004A0

AP :7FF4A1CC
FP :7FF4A180
SP :7FF4A180
PC :0000064D
(DAP: 00000006

+4:7FFE6440
-*■8: 7FF9F4EB

+12:7FFE640C
V:0 C:0

I - OUT -output-+-
I stepped to FORSQUARE$MAIN\'/,LINE 4
I stepped to FORSQUARE$MAIN\'/,LINE 5
I stepped to F0RSQUARE$MAIN\7.LINE 8
IFORSQUAREIMAINXI: 5
IFORSQUARE$MAIN\K: 0
IF0RSQUARE$MAIN\N: 4

I
I - PROMPT -error-program-prompt-

|DBG> STEP
|DBG> EXAMINE I,K,N
DBG>

I 3
4

5
6
7
8
9

10
11
12
13

C -Read the input array IRO:00000000
OPEN(UNIT=8, FILE=’DATAFIR1:00000008

READ(8,*) N, (INARR(I), |R2:00000000
C |R3:7FF4A194
C -Square all non-zero eIR4:00000000

K = 0 IR5:00000000
DO 10 I = 1. N |R6:7FF49E49
IF(INARR(I) .NE. 0) THEN IR7:8001E4DD

K = K + 1 IR8:7FFED052
OUTARR(K) = INARIR9:7FFED25A

END IF | N:0 Z:0

.I
(DSP: 000000001

+4:080000001

+8:7FF4A1CCI
+12:7FF4A1B8I
+16:000196C8|
+20:7FFE33DCI
+24:000009FFI
+28:000000051
+32:000006001
+36:000000001
+40:000000011

.I
I

I
I
I
I

I
I
I

8.3 Manipulating Existing Displays

This section explains how to

• Use the SELECT and SCROLL commands to scroll a display
(Section 8.3.1).

• Use the DISPLAY command to show, hide, or remove a display; the
CANCEL DISPLAY command to permanently delete a display; and the
SHOW DISPLAY command to identify the displays that currently exist
and their order in the display list (Section 8.3.2).

• Use the MOVE command to move a display across the screen
(Section 8.3.3).

• Use the EXPAND command to expand or contract a display
(Section 8.3.4).

8-7

Screen Mode

8.3.1 Scrolling a Display

A display usually has more lines of text (and possibly longer lines) than can
be seen through its window. The SCROLL command lets you view text that
is hidden beyond a window's border. You can scroll through all displays
except for the PROMPT display.

The easiest way to scroll displays is with keypad keys, as described later in
this section. First, use of the relevant commands will be explained.

You can specify a display explicitly with the SCROLL command. Typically,
however, you first use the SELECT/SCROLL command to select the current
scrolling display. This display then has the scroll attribute and is the default
display for the SCROLL command. You can then use the SCROLL command
with no parameter to scroll that display up or down by a specified number of
lines, or to the right or left by a specified number of columns. The direction
and distance scrolled are specified with the command qualifiers (/UP:n,
/RIGHT:n, and so on).

In the following example, the SELECT command selects display OUT as the
current scrolling display (/SCROLL may be omitted because it is the default
qualifier); the SCROLL command then scrolls OUT to reveal text 18 lines
down:

dbg> select out
DBG> SCROLL/DOWN:18

Several useful SELECT and SCROLL command lines are assigned to keypad
keys (see Appendix B for the keypad diagram):

• Pressing key 3 assigns the scroll attribute to the next display in the
display list after the current scrolling dipslay. So, to select a display as
the current scrolling display, press key 3 repeatedly until the word "scroll"
appears on the top line of that display.

• Press key 8, 2, 6, or 4 to scroll up, down, right, or left, respectively. The
amount of scroll depends on which key state you use (DEFAULT, GOLD,
or BLUE).

8.3.2 Showing, Hiding, Removing, and Canceling a Display
The DISPLAY command is the most versatile command for manipulating
existing displays. The basic syntax is:

DISPLAY display-name [AT window-specification] [display-kind]

The display name must be that of an existing display. The other parameters
let you change the window specification and the display kind (see Sections 8.5
and 8.6 for information on how to specify windows and display kinds).

When used without a qualifier or any parameters, the DISPLAY command
simply puts a display on top of the pasteboard where it appears through its
current window. For example, the following command shows the display
INST through its current window:

DBG> DISPLAY INST

Keypad key 9, which is bound to the command DISPLAY %NEXTDISP,
lets you achieve this effect for each display in the display list. The built-
in function %NEXTDISP signifies the next display in the list (Appendix D
identifies all screen-related built-in functions). Each time you press key 9, the
next display is put on top of the pasteboard, in its current window. Note that.

8-8

Screen Mode

by default, the top line of display OUT (which identifies the display) coincides
with the bottom line of display SRC. If SRC is on top of the pasteboard, its
bottom line will hide the top line of OUT (keep this in mind when using the
DISPLAY command and associated keypad keys to put various displays on
top of the pasteboard).

To hide a display at the bottom of the pasteboard, use the DISPLAY/HIDE
command. This command simply changes the order of that display in the
display list.

To remove a display from the pasteboard so that it is no longer seen (yet is
not permanently deleted), use the DISPLAY/REMOVE command. To put a
removed display back on the pasteboard, use the DISPLAY command.

To delete a display permanently, use the CANCEL DISPLAY command. To
recreate the display, use the SET DISPLAY command, which is described in
Section 8.4.

Note that you cannot hide, remove, or delete the PROMPT display.

To identify the displays that currently exist, use the SHOW DISPLAY
command. They are listed according to their order on the display list. The
display that is on top of the pasteboard is listed last.

See the Command Dictionary for information on the various options provided
by the DISPLAY command qualifiers.

8.3.3 Moving a Display Across the Screen
The MOVE command lets you move a display across the screen. The
qualifiers /UP:n, /DOWN:n, /RIGHT:n, and /LEFT.n specify the direction
and the number of lines or columns by which to move the display. If you do
not specify a display, the current scrolling display is moved.

The easiest way to move a display is by using keypad keys:

• Press key 3 repeatedly as needed to select the current scrolling display.

• Put the keypad in the MOVE state, then use keys 8, 2, 4, or 6 to move
the display up, down, left, or right, respectively (see Appendix B).

8.3.4 Expanding or Contracting a Display

The EXPAND command lets you expand or contract a display. The qualifiers
/UP:n, /DOWN:n, /RIGHT:n, and /LEFT:n specify the direction and the
number of lines or columns by which to expand or contract the display (to
contract a display, specify negative integer values with these qualifiers). If
you do not specify a display, the current scrolling display is expanded or
contracted.

The easiest way to expand or contract a display is by using keypad keys.

• Press key 3 repeatedly as needed to select the current scrolling display.

• Put the keypad in the EXPAND or CONTRACT state, then use keys 8,
2, 4, or 6 to expand or contract the display vertically or horizontally (see
Appendix B).

Note that the PROMPT display cannot be contracted (or expanded)
horizontally. Also, it cannot be contracted vertically to less than two lines.

8-9

Screen Mode

8.4 Creating a New Display

To create a new screen display, use the SET DISPLAY command. The basic
syntax is:

SET DISPLAY display-name [AT window-specification] [display-kind]

The display name can be any name that is not already used to name a
display. When you create a new display, it is placed on top of the pasteboard,
on top of any existing displays (except for the predefined PROMPT display,
which cannot be hidden). The display name appears at the top left comer of
the display window.

Section 8.5 explains the options you have for specifying windows. If you do
not provide a window specification, the display is positioned in the upper or
lower half of the screen, alternating between these locations as you create
new displays.

Section 8.6 explains the options you have for specifying display kinds. If you
do not specify a display kind, an output display is created.

For example, the following command creates a new output display named
OUT2. The window associated with OUT2 is either the top or bottom half of
the screen.

DBG> SET DISPLAY 0UT2

The following command creates a new "DO" display named EXAM_XY that
is located in the right third quarter (RQ3) of the screen. This display shows
the current value of variables X and Y and is updated whenever the debugger
gains control from the program.

DBG> set DISPLAY EXAM.XY AT RQ3 DO (EXAMINE X.Y)

See the Command Dictionary for information on the various options provided
by the SET DISPLAY command qualifiers.

8.5 Specifying a Display Window

Display windows may occupy any rectangular portion of the screen.

You can specify a display window when creating a display with the SET
DISPLAY command. You can also change the window currently associated
with a display by specifying a new window with the DISPLAY command.
You have the following options:

• Specify a window in terms of lines and columns.

• Use the name of a predefined window, such as HI.

• Use the name of a window definition previously established with the SET
WINDOW command.

Each of these techniques is described in the next sections. When specifying
windows, keep in mind that the PROMPT display always remains on top
of the display pasteboard and, therefore, will occlude any part of another
display that shares the same region of the screen.

Display windows, regardless of how specified, are dynamic. This means that,
if you use a SET TERMINAL command to change the screen height or width,
the window associated with a display will expand or contract in proportion to
the new screen height or width.

8-10

Screen Mode

8.5.1 Specifying a Window in Terms of Lines and Columns

The general form of a window specification is (start-line ,line-count[fstart-
column,column-count]). For example, the following command creates the
output display CALLS and specifies that its window be 7 lines deep starting
at line 10, and 30 columns wide starting at column 50:

DBG> SET DISPLAY CALLS AT (10,7,50,30)

If you do not specify start-column or column-count, the window occupies the
full width of the screen.

8.5.2 The Predefined Windows

The debugger provides many predefined windows. These have short
symbolic names that you can use in the SET DISPLAY and DISPLAY
commands instead of having to specify lines and columns. For example,
the following command creates the output display ZIP and specifies that its
window be RH1 (the top right half of the screen).

DBG> SET DISPLAY ZIP AT RH1

The predefined windows are all identified in Appendix C. The SHOW
WINDOW command also displays these definitions.

8.5.3 Creating a New Window Definition

Although the predefined windows should be adequate for most situations,
you can create a new window definition with the SET WINDOW command.
This command, which has the following form, associates a window name
with a window specification:

SET WINDOW window-name AT (start-line,line-count[,start-col,col-count])

After creating a window definition, you can simply use its name (like that
of a predefined window) in a SET DISPLAY or DISPLAY command. In the
following example, the window definition MIDDLE is established. That
definition is then used to display OUT through the window MIDDLE.

DBG> SET WINDOW MIDDLE AT (9,4,30,20)
dbg> display out at middle

To identify all current window definitions, use the SHOW WINDOW
command. To delete a window definition, use the CANCEL WINDOW
command.

8.6 Specifying the Display Kind

Every display has a display kind. The display kind determines the type of
information a display contains and how that information is generated.

Typically, you specify a display kind when using the SET DISPLAY command
to create a new display (if you do not specify a display kind, an output
display is created). You can also specify a display kind when using the
DISPLAY command to change a display kind. The keywords and associated
parameters with which you specify a display kind are listed below. Each of

8-11

Screen Mode

these options is explained in the sections that follow (refer also to the displays
illustrated in Section 8.2).

DO (command-list)
INSTRUCTION
INSTRUCTION (command)
OUTPUT
REGISTER
SOURCE
SOURCE (command)

The contents of a register display are generated and updated automatically
by the debugger. The contents of other kinds of displays are generated by
commands, and these display kinds fall into two general groups.

A display that belongs to one of the following display kinds has its contents
updated automatically according to the command or command list you supply
when defining that display.

DO (command-list)
INSTRUCTION (command)
SOURCE (command)

The command list specified is executed each time the debugger gains control
from your program, provided the display is not marked as removed. The
output of the commands forms the new contents of the display. If the display
is marked as removed, the debugger does not execute the command list until
you view that display (marking that display as unremoved).

A display that belongs to one of the following display kinds derives its
contents from commands that you issue interactively:

INSTRUCTION
OUTPUT
SOURCE

To direct debugger output to a specific display in this group, you must first
select it with the SELECT command. The technique is explained in the next
sections and, in further detail, in Section 8.7. Once a display is selected for a
certain type of output, the output from your commands forms the contents of
the display.

The default size of the memory buffer associated with any newly created
display is 64 lines. For source and instruction displays, the size of the buffer
only affects performance. In the case of a source display, source files will
be paged in as necessary as you scroll through the module. In the case of
an instruction display, the instructions will be decoded from the image as
necessary as you scroll through the routine.

For output and DO displays, the buffer size defines how many lines of text
the display will hold. If you add more text to the display, the oldest lines are
discarded to make room for the new text. You can use the /SIZE qualifier on
the SET DISPLAY and DISPLAY commands to change the buffer size.

a-i2

Screen Mode

8.6.1 DO (command-list) Display Kind
A "DO" display is an automatically updated display. The commands in the
command list are executed each time the debugger gains control from your
program. Their output forms the content of the display, erasing any previous
content.

For example, the following command creates the DO display CALLS at
window Q3. Each time the debugger gains control from the program, the
SHOW CALLS command is executed and the output is displayed in CALLS,
replacing any previous contents.

DBG> SET DISPLAY CALLS AT Q3 DO (SHOW CALLS)

8.6.2 INSTRUCTION Display Kind
An instruction display shows the output of an EXAMINE/INSTRUCTION
command within the assembly-language instruction code of the routine being
debugged (the instructions displayed are decoded from the image being
debugged). One line is devoted to each instruction. Source line numbers
corresponding to the instructions are displayed in the left column. The
instruction at the location being examined is centered in the display and is
marked by an arrow in the left column.

Note that, before anything can be written to an instruction display, you must
select it as the current instruction display with the SELECT/INSTRUCTION
command.

In the following example, the SET DISPLAY command creates the
instruction display INST2 at RH1. The SELECT/INSTRUCTION
command then selects INST2 as the current instruction display. When
the EXAMINE/INSTRUCTION X command is executed, window RH1 fills
with the instruction code surrounding the location X. The arrow points to the
instruction at location X, which is centered in the display.

DBG> SET DISPLAY INST2 AT RH1 INSTRUCTION
DBG> SELECT/INSTRUCTION INST2

dbg> examine/instruction X

Each subsequent EXAMINE/INSTRUCTION command will update the
display.

8.6.3 INSTRUCTION (command) Display Kind
This is an instruction display that is automatically updated with the
output of the command specified. That command, which must be an
EXAMINE/INSTRUCTION command, is executed each time the debugger
gains control from your program.

For example, the following command creates the instruction display INST3
at window RS45. Each time the debugger gains control, the command
EXAMINE/INSTRUCTION .0\%PC is executed (it displays the instruction at
the current PC location), updating the display.

DBG> SET DISPLAY INST3 AT RS45 INSTRUCTION (EX/INST .0\y.PC)

This command creates a display that functions like the predefined display
INST.

8-13

Screen Mode

If an automatically updated instruction display is selected as the current
instruction display, it will be updated like a simple instruction display by
an interactive EXAMINE/INSTRUCTION command (in addition to being
updated by its built-in command).

8.6.4 OUTPUT Display Kind
An output display shows any debugger output that is not directed to some
other display. New output is appended to the previous contents of the
display.

Note that, before anything can be written to an output display, it must be
selected as the current output display with the SELECT/OUTPUT command,
or as the current error display with the SELECT/ERROR command, or as the
current input display with the SELECT/INPUT command. See Section 8.7 for
more information on using the SELECT command with output displays.

In the following example, the SET DISPLAY command creates the output
display OUT2 at window T2 (the display kind OUTPUT could have been
omitted from this example, since it is the default kind). The SELECT
/OUTPUT command then selects OUT2 as the current output display. These
two commands create a display that functions like the predefined display
OUT.

DBG> set DISPLAY 0UT2 AT T2 OUTPUT
DBG> SELECT/OUTPUT 0UT2

OUT2 will now collect any debugger output that is not directed to another
display. For example:

• The output of a SHOW CALLS command will go to OUT2.

• If no instruction display has been selected as the current instruction
display, the output of an EXAMINE/INSTRUCTION command will go to
OUT2.

• By default, debugger diagnostic messages are directed to the PROMPT
display. They may be directed to OUT2 with the SELECT/ERROR
command.

8.6.5 REGISTER Display Kind
A register display is an automatically updated display that shows the current
contents of all VAX machine registers, the four condition code bits (C, V, Z,
and N) of the processor status longword (PSL), and the top several values
on the stack and on the current argument list. The display is updated each
time the debugger gains control from your program. Any values that have
changed are highlighted.

As opposed to other display kinds, a register display is not dynamic by
default. It does not change its window dimensions in proportion if you
change the terminal screen height or width.

8-14

Screen Mode

8.6.6 SOURCE Display Kind
A source display shows the output of a TYPE or EXAMINE/SOURCE
command within the source code of the module being debugged, if that
source code is available. Source line numbers are displayed in the left
column. The source line that is the output of the command is centered in the
display and is marked by an arrow in the left column. If a range of lines is
specified with the TYPE command, the lines are centered in the display, but
no arrow is shown.

Note that, before anything can be written to a source display, you must select
it as the current source display with the SELECT/SOURCE command.

In the following example, the SET DISPLAY command creates the source
display SRC2 at Q2. The SELECT/SOURCE command then selects SRC2 as
the current source display. When the TYPE 34 command is executed, window
RH1 fills with the source code surrounding line 34 of the module being
debugged. The arrow points to line 34, which is centered in the display.

DBG> SET DISPLAY SRC2 AT Q2 SOURCE
DBG> SELECT/SOURCE SRC2

DBG> TYPE 34

Each subsequent TYPE or EXAMINE/SOURCE command will update the
display.

8.6.7 SOURCE (command) Display Kind
This is a source display that is automatically updated with the output of the
command specified. That command, which must be an EXAMINE/SOURCE
or TYPE command, is executed each time the debugger gains control from
your program.

For example, the following command creates a source display SRC3 at
window RS45. Each time the debugger gains control, the command
EXAMINE/SOURCE .%SOURCE_SCOPE\%PC is executed, updating the
display.

DBG> SET DISPLAY SRC3 AT RS45 SOURCE (EX/SOURCE . #/.S0URCE_SC0PE\7.PC)

This command creates a display that functions like the predefined display
SRC. %SOURCE_SCOPE is a built-in scope that signifies scope 0 when
source lines are available for scope 0. Otherwise, it signifies scope N, where
N is the first level down the call stack for which source lines are available.

If an automatically updated source display is selected as the current source
display, it will be updated like a simple source display by an interactive
EXAMINE/SOURCE or TYPE command (in addition to being updated by its
built-in command).

8.6.8 PROGRAM Display Kind
The PROMPT display belongs to the special display kind "program." Note
that PROMPT is the only display of that kind. You cannot specify that
display kind in a SET DISPLAY or DISPLAY command.

To avoid possible confusion, the PROMPT display has several restrictions (see
Section 8.2.3).

8-15

Screen Mode

8.7 Assigning Display Attributes
In screen mode, the output from commands you issue interactively is directed
to various displays according to the type of output and the attributes assigned
to these displays. For example, debugger diagnostic messages go to the
display that has the error attribute (the current error display). By assigning
one or more attributes to a display, you can mix or isolate different kinds of
information.

The attributes have the following names: error, input, instruction, output,
program, prompt, scroll, and source. When a display is assigned an attribute,
the name of that attribute appears in lowercase letters on the top border of its
window, to the right of the display name. Note that the scroll attribute does
not affect debugger output but is used to control the default display for the
SCROLL, MOVE, and EXPAND commands.

By default, attributes are assigned to the predefined displays as follows:

• For all languages except MACRO, SRC has the source and scroll
attributes.

• For MACRO, INST has the instruction and scroll attributes.

• OUT has the output attribute.

• PROMPT has the prompt, program, and error attributes.

To assign an attribute to a display, use the SELECT command with the
qualifier of the same name as the attribute. In the following example, the SET
DISPLAY command creates the output display ZIP. The SELECT/OUTPUT
command then selects ZIP as the current output display—the display that has
the output attribute. After this command is executed, the word "output" will
disappear from the top border of the predefined output display OUT and will
appear instead on display ZIP, and all debugger output formerly directed to
OUT will now be directed to ZIP.

DBG> SET DISPLAY ZIP OUTPUT
DBG> SELECT/OUTPUT ZIP

Specific attributes may be assigned only to certain display kinds. The
following list identifies each of the SELECT command qualifiers, its effect,
and the display kinds to which you can assign that attribute.

SELECT
Qualifier Description

/ERROR Selects the specified display as the current error display.

Directs any subsequent debugger diagnostic message to that

display. It must be either an output display or the PROMPT

display. If no display is specified, selects the PROMPT
display as the current error display.

/INPUT Selects the specified display as the current input display.
Echoes any subsequent debugger input in that display.

It must be an output display. If no display is specified,

unselects the current input display: debugger input is not

echoed to any display.

8-16

Screen Mode

SELECT
Qualifier Description

/INSTRUCTION Selects the specified display as the current instruction
display. Directs the output of any subsequent EXAMINE
/INSTRUCTION command to that display. It must be an
instruction display. Keypad key sequence BLUE-COMMA
selects the next instruction display in the display list as
the current instruction display. If no display is specified,
unselects the current instruction display: no display has the
instruction attribute.

/OUTPUT Selects the specified display as the current output display.
Directs any subsequent debugger output to that display,
except where a particular type of output is being directed
to another display (such as diagnostic messages going to
the current error display). The specified display must be
either an output display or the PROMPT display. Keypad
key sequence GOLD-3 selects the next output display in the
display list as the current output display. If no display is
specified, selects the PROMPT display as the current output
display.

/PROGRAM Selects the specified display as the current program display.
Tries to force any subsequent program input or output to
that display. Currently, only the PROMPT display may be
specified. If no display is specified, unselects the current
program display: program output is no longer forced to the
PROMPT display.

/PROMPT Selects the specified display as the current prompt display,
where the debugger prompts for input. Currently, only the
PROMPT display may be specified. You cannot unselect the
PROMPT display.

/SCROLL Selects the specified display as the current scrolling display.
Makes that display the default display for any subsequent
SCROLL, MOVE, or EXPAND command. You can specify
any display (however, note that the PROMPT display cannot
be scrolled). /SCROLL is the default if you do not specify a
qualifier with the SELECT command. Key 3 selects as the
current scrolling display the next display in the display list
after the current scrolling display. If no display is specified,
unselects the current scrolling display: no display has the
scroll attribute.

/SOURCE Selects the specified display as the current source display.
Directs the output of any subsequent TYPE or EXAMINE
/SOURCE command to that display. It must be a source
display. Keypad key sequence BLUE-3 selects the next
source display in the display list as the current source
display. If no display is specified, unselects the current
source display: no display has the source attribute.

Subject to the restrictions listed, a display can have several attributes. In the
preceding example, ZIP was selected as the current output display. In the
next example, ZIP is further selected as the current input, error, and scrolling
display. After these commands are executed, debugger input, output, and
diagnostics will be logged in ZIP in the proper sequence as they occur, and
ZIP will be the current scrolling display.

dbg> select/input/error/scroll zip

8-17

Screen Mode

To identify the displays currently selected for each of the display attributes,
use the SHOW SELECT command.

If you use the SELECT command with a particular qualifier but without
specifying a display name, the effect is typically to de-assign that attribute (to
"unselect" the display that had the attribute). The exact effect depends on the
attribute, as described in the preceding list.

8.8 A Sample Display Configuration
How to best use screen mode depends on your personal style and on what
type of bug you are looking for. You may be satisfied to simply use the
predefined displays. On the other hand, especially if you have access to
a larger screen, you may want to create additional displays for various
purposes. The following example may give you some ideas.

Assume you are debugging in a high-level language and are interested in
tracing the execution of your program through several routine calls.

First set up the default screen configuration—that is, SRC in HI, OUT in
S45, and PROMPT in S6 (the keypad key sequence BLUE-MINUS gives this
configuration). SRC will show the source code of the currently executing
module.

The next command creates a source display named SRC2 in RH1 that shows
the PC location at scope 1 (one level down the call stack, at the call to the
currently executing module):

DBG> set DISPLAY SRC2 AT RH1 SOURCE (EXAMINE/SOURCE . 1V/.PC)

Thus the left half of your screen shows the currently executing routine,
whereas the right half shows the caller of that routine.

The next command creates a DO display named CALLS at S4 that executes
the SHOW CALLS command each time the debugger gains control from the
program:

DBG> set DISPLAY CALLS AT S4 DO (SHOW CALLS)

Since the top half of OUT is now hidden by CALLS, make OUT's window
smaller:

dbg> display OUT AT S5

You can create a similar display configuration with instruction displays
instead of source displays.

8.9 Saving Displays and the Screen State
The SAVE command lets you make a "snapshot" of an existing display and
save that copy as a new display. This is useful if, for example, you later want
to refer to the current contents of an automatically updated display (such as a
DO display).

In the following example, the SAVE command saves the current contents of
display CALLS into display CALLS4, which is created by the command:

DBG> SAVE CALLS AS CALLS4

8-18

Screen Mode

The new display is removed from the pasteboard. So, to view its contents use
the DISPLAY command:

DBG> DISPLAY CALLS4

The EXTRACT command has two uses. First, it lets you save the contents
of a display in a text file. For example, the following command extracts
the contents of display CALLS, appending the resulting text to the file
COB34.TXT:

DBG> EXTRACT/APPEND CALLS C0B34

Second, the EXTRACT/SCREEN—LAYOUT command lets you create a
command procedure that may later be invoked during a debugging session
to re-create the previous state of the screen. In the following example, the
EXTRACT/SCREEN— LAYOUT command creates a command procedure with
the default specification SYS$DISK:[]DBGSCREEN.COM. The file contains all
the commands needed to recreate the current state of the screen.

DBG> EXTRACT/SCREEN.LAYOUT

DBG> ODBGSCREEN

Note that you cannot save the PROMPT display as another display, or extract
it into a file.

8.10 Changing the Screen Height and Width
During a debugging session, you may want to change the height or width
of your terminal screen. One reason may be to accommodate long lines that
would wrap if displayed across 80 columns. Or, if you are using a Micro VAX
workstation, you may want to reformat your debugger window relative to
other windows.

To change the screen height or width, use the SET TERMINAL command.
The general effect of the command is the same whether you are at a VT-series
terminal or at a Micro VAX workstation.

In this example, assume you are using a workstation in its default emulated
VTlOO-screen mode, with a screen size of 24 lines by 80 columns. You have
invoked the debugger and are using it in screen mode. You now want to
take advantage of the larger screen. The following command increases the
screen height and width of the debugger window to 35 lines and 110 columns
respectively:

DBG> SET TERMINAL/PAGE:35/WIDTH:110

By default, all displays except for register displays are "dynamic/ A dynamic
display automatically adjusts its window dimensions in proportion when
a SET TERMINAL command changes the screen height or width. This
means that, when using the SET TERMINAL command, you preserve the
relative positions of your displays. The /[NOJDYNAMIC qualifier on the
DISPLAY and SET DISPLAY commands lets you control whether or not a
display, including a register display, is dynamic. If a display is not dynamic,
it does not change its window coordinates after you issue a SET TERMINAL
command (you can then use the DISPLAY, MOVE, or EXPAND commands,
or various keypad key combinations, to move or resize a display).

To see the current terminal width and height being used by the debugger, use
the SHOW TERMINAL command.

8—19

Screen Mode

Note that the debugger's SET TERMINAL command does not affect the
terminal screen size at DCL level. When you exit the debugger, the original
screen size is maintained.

8-20

9 Tailoring the Debugger

The debugger has certain specialized features that allow you to tailor your
debugging sessions to the design of your particular program as well as your
own individual needs. These features allow you to

• Allocate additional memory

• Use control structures

• Declare parameters to command procedures

• Define and undefine commands

• Define and undefine keys

9.1 Allocating Additional Memory
The debugger has an internal memory pool from which it provides both
temporary and permanent memory. The data structures the debugger builds
when it processes a command need only temporary memory. Since these data
structures are discarded as soon as the command is processed, the memory
they occupy can be reused for other processing. On the other hand, data
structures (such as breakpoints) which remain during the debugging session
need permanent memory.

Most of the memory pool is used to store the run-time symbol table (RST) for
the modules that you have set with the SET MODULE command. Typically,
the debugger memory pool allows you to set your six largest modules.

However, your program may have many large modules that you want to set
all at the same time, and the normal memory allocation may not be adequate
to include all these symbols in the RST. To solve this problem, you can
allocate additional memory with either the ALLOCATE or the SET
MODULE/ALLOC ATE command.

9.1.1 The ALLOCATE Command
The ALLOCATE command gives you explicit control over the size of the
debugger memory pool. It allows you to increase the virtual address
space allotted to the debugger. This is the space that the debugger uses
to store symbol table and eventpoint information, for instance. You can use
this command if you get the "NOFREE" error message indicating that the
debugger has run out of free virtual memory. The command has the form

ALLOCATE byte-count

The byte-count parameter specifies the number of bytes you want to add
to the debugger memory pool. You must request at least 1000 bytes. You
can find out the size of the memory pool by giving the command SHOW
MODULE. The size is shown in the "remaining size:" line. This number
represents the number of free bytes that are still in the pool.

9-1

Tailoring the Debugger

The SHOW MODULE command also tells how many bytes are needed to
set each module in your program. You can use these size requirements as a
guideline for deciding how many bytes to allocate.

You should allocate extra memory only at the beginning of your debugging
session. You can, however, allocate additional memory in the middle of
a debugging session, but memory allocation within your program may be
affected if your program calls LIB$GET_VM. Since the debugger also uses
LIB$GET_VM (to increase the size of memory pool), the memory your
program allocates may be interleaved with that allocated by the debugger.
This is usually not a problem, but in some cases, the behavior of your
program may be affected.

For more information, see the ALLOCATE command in the Command
Dictionary.

9.1.2 The SET MODULE/ALLOCATE Command
The /ALLOCATE qualifier on SET MODULE tells the debugger to allocate
extra storage if necessary in order to complete the SET MODULE command.

Normally the debugger tries to allocate all its storage at the beginning of the
debugging session, before your program has run. So, any SET MODULE
command that is issued before you execute a STEP or GO command will
allocate storage if necessary, whether or not you specify /ALLOCATE.

After your program has run, the debugger will not allocate memory because
the debugger memory may be interleaved with your program's memory and
this may affect the behavior of the program. Therefore, after your program
has run, if you need extra memory allocation during a SET MODULE, you
must explicitly ask for it by using SET MODULE/ALLOC ATE.

The following example shows how to use the ALLOCATE command, the SET
MODULE/ALLOCATE and the SHOW MODULE command.

9-2

Tailoring the Debugger

Example 9-36 Using the ALLOCATE, the SET MODULE/ALLOCATE, the SET
MODULE/ALL, and the SHOW MODULE Commands

DBOSHOW MODULE {Display module names and sizes.

module name symbols language size

DISTANCE$MAIN yes FORTRAN 15600

DIST no FORTRAN 5420

SUB1 no FORTRAN 10000
SUB 2 no FORTRAN 5260

SHARElFORRTL no Image 0

SHARE$LIBRTL no Image 0

SHARE$MTHRTL no Image 0

SHAREIDEBUG no Image 0

SHARElLBRSHR no Image 0

SHARE$PLIRTL no Image 0
SHARE$SCRSHR no Image 0

SHARE$SMGSHR no Image 0

total modules: 12. remaining size: 46260.

DBG>SET MODULE/ALL !Set all modules at the beginning

!of the debugging session.

DBOSHOW MODULE {Display all set modules. Note that

!no shareable image is set.

module name symbols language size

DISTANCElMAIN yes FORTRAN 15600

DIST yes FORTRAN 5420

SUB1 yes FORTRAN 10000

SUB 2 yes FORTRAN 5260

SHARE$FORRTL no Image 0

SHARElLIBRTL no Image 0

SHARElMTHRTL no Image 0

SHAREIDEBUG no Image 0

SHAREILBRSHR no Image 0

SHAREIPLIRTL no Image 0

SHAREISCRSHR no Image 0

SHAREISMGSHR no Image 0

total modules: 12. remaining size: 20000.

(Continued on next page)

9-3

Tailoring the Debugger

9.2

Example 9-36 (Cont.) Using the ALLOCATE, the SET MODULE/ALLOCATE, the SET
MODULE/ALL, and the SHOW MODULE Commands

DBG>SET MODULE/ALLOCATE SHARE$FORRTL
!Explicitly request that the
!shareable image be set, regardless
!of size.

DBG>SHOW MODULE IDisplay set modules. Note that
!SHARE$FORRTL is now set.

module name symbols language size

DISTANCEIMAIN yes FORTRAN 15600

DIST yes FORTRAN 5420

SUB1 yes FORTRAN 10000

SUB2 yes FORTRAN 5260

SHAREIFORRTL yes Image 11600

SHARElLIBRTL no Image 0

SHAREIMTHRTL no Image 0

SHAREIDEBUG no Image 0

SHAREILBRSHR no Image 0

SHAREIPLIRTL no Image 0

SHAREISCRSHR no Image 0

SHARElSMGSHR no Image 0

total modules: 10. remaining size: 8400.

DBG>SET MODULE SHARElLIBRTL !Try to set smother module.
y,DEBUG-E-NOFREE, no tree storage available

DBG>ALLOCATE 15000 !Explicitly expand the memory pool
!by 15000 bytes. Alternately, you
!could have used the command
!SET MODULE/ALLOCATE.

DBG>SET MODULE SHARElLIBRTL !Try to set the module again.

DBG>SHOW MODULE IDisplay all modules.

module name symbols language size

DISTANCEIMAIN yes FORTRAN 15600

DIST yes FORTRAN 5420

SUB1 yes FORTRAN 10000
SUB2 yes FORTRAN 5260

SHAREIFORRTL yes Image 11600

SHARElLIBRTL yes Image 19652

SHAREIMTHRTL no Image 0

SHAREIDEBUG no Image 0

SHAREILBRSHR no Image 0
SHAREIPLIRTL no Image 0

SHAREISCRSHR no Image 0

SHAREISMGSHR no Image 0

total modules: 12. remaining size: 4200.

For more information.
Dictionary.

see the SET MODULE command in the Command

Using Control Structures
The debugger's command language is a specialized programming language
that consists primarily of primitive operations, or simple commands, such as
EXAMINE and SET BREAK. However, as in other programming languages,
the effectiveness and flexibility of these simple commands are enhanced by
conditional or looping constructs. The debugger presently includes three such
control structures: the FOR, IF, REPEAT, and WHILE commands.

9-4

Tailoring the Debugger

9.2.1 The FOR Command
The FOR command allows a debugger command list to be executed iteratively
for a specified number of times. It has the form

FOR name = expressionl TO expression2 [BY expressions] DO (command-list)

The behavior of the FOR command depends on the values of the expression3
parameter. If expression3 is positive, name is incremented from the value of
expressionl by the value of expression3 until it is greater than the value of
expression2.

If expression3 is negative, name is decremented from the value of expressionl
by the value of expression3 until it is less than the value of expression2.

If expression3 is zero, the debugger returns an error message.

If expression3 is left out entirely, the debugger assumes it to have the value
+1.

Example 9-37 shows how to use the FOR command (FORTRAN example).

Example 9-37 Using the FOR command

DBG>FOR COUNT s 1 TO 4 DO (STEP) !Set up a loop that
DBG>stepped to DISTANCE$MAIN\'/,LINE 5 ! steps to the next

5: STATUS=LIB$GET_LUN(L0G_UNIT) Ifour lines,

stepped to DISTANCE$MAIN\7.LINE 6
6: OPEN (UNIT=LOG_UNIT,FILE=’FOR.DAT *,STATUS= * OLD *)

stepped to DISTANCE$MAIN\7.LINE 7
7: DO WHILE (XI .NE. -9.9)

stepped to DISTANCE$MAIN\7.LINE 8
8: READ (UNIT=LOG_UNIT.FMT=100) X1.X2.Y1.Y2

DBG>SHOW SYMBOL COUNT !Display symbol COUNT

defined COUNT

DBG>EVALUATE COUNT !Display current value
4 !of COUNT

DBG>REPEAT 4 DO (STEP) !Another way of iterating
stepped to DISTANCE$MAIN\7.LINE 10 !a debugger command

10: D = DIST(X1,X2,Y1,Y2)
stepped to DISTANCE$MAIN\7.LINE 16

16: TYPE 200,XI
stepped to DI STAN CE$MA IN \ '/.LI NE 17

17: TYPE 201,X2
stepped to DISTANCE$MAIN\7.LINE 18

18: TYPE 202,Y1

For more information, see the FOR command in the Command Dictionary.

9-5

Tailoring the Debugger

9.2.2 The IF Command
The IF command allows a debugger command list to be executed
conditionally if a language expression is evaluated as TRUE. It has the
form

IF boolean-expression THEN (command-list) [ELSE (command-list)]

The IF command evaluates a language-specific boolean-expression. If the
value is TRUE (as defined in the current language), the debugger command
list in the THEN clause is executed. If the expression is FALSE, the command
list in the ELSE clause is executed (if it is present).

Example 9-38 shows how to use the IF command (FORTRAN example).

Example 9-38 Using the IF Command

DBG>IF XI .NE. -9.9 THEN (EXAMINE X2) ELSE (EX Yl)
DISTANCE$MAIN\X2: 0.OOOOOOO

!Examine the variable

!X2 if XI is not equal
1-9.9; otherwise,
{examine the variable
! Yl.

DBG>F0R
stepped

19:
stepped

20:
stepped

21:
stepped

7:

COUNT = 1 TO 4 DO (IF XI .NE. -9.9 THEN (STEP))
to DISTANCE$MAIN\%LINE 19

TYPE 203,Y2
to DISTANCE$MAIN\%LINE 20

TYPE 204,D
to DISTANCE$MAINV/,LINE 21

END DO
to DISTANCE$MAINV/.LINE 7

!Set up a control
{structure to step
{four lines as long
!as XI does not equal
! -9.9

DO WHILE (XI .NE. -9.9)

For more information, see the IF command in the Command Dictionary.

9.2.3 The WHILE Command
The WHILE command allows the debugger command lists to be executed
iteratively until the language expression you have specified evaluates as
FALSE. It has the form

WHILE boolean-expression DO (command-list)

If the value is TRUE (as defined in the current language), the debugger
command list in the DO clause is executed. The command then repeats
the sequence specified by the DO command-list, reevaluating the boolean-
expression and executing the command-list until the expression is evaluated
as FALSE.

If the boolean-expression is FALSE, the WHILE command terminates.

Example 9-39 shows how to use the WHILE command (FORTRAN example).

For more information, see the WHILE command in the Command Dictionary.

9-6

Tailoring the Debugger

Example 9-39 Using the WHILE Command

DBG>WHILE X2 .LE. XI DO (EX X2;STEP)
DISTANCE$MAIN\X2: 5.500000
stepped to DISTANCE$MAIN\%LINE 8

8: READ (UNIT=LOG_UNIT,FMT=100) X1,X2,Y1,Y2
DISTANCE$MAIN\X2: 5.500000
stepped to DISTANCE$MAIN\%LINE 10

10: D = DIST(X1,X2,Y1,Y2)
DISTANCE$MAIN\X2: 5.000000
stepped to DISTANCE$MAIN\%LINE 16

16: TYPE 200,XI
DISTANCE$MAIN\X2: 5.000000
stepped to DISTANCE$MAIN\%LINE 17

17: TYPE 201,X2
DISTANCE$MAIN\X2: 5.000000

!Examine the variable
!X2 and then step
!to the next line
!while it is less
!than the variable

!X1.

9.3 Declaring Parameters to Command Procedures
Another special feature of the debugger, the DECLARE command, allows you
to pass parameters to command procedures. You can use this command only
in a debugger command procedure.

Each parameter declaration has the same effect as a DEFINE command: it
binds a name (the formal parameter) to a value or other construct (the actual
parameter).

The format of the DECLARE command is

DECLARE fname:pkind [.fnarne:pkind [,...]]

The fnarne parameter specifies the formal parameter name. The pkind
parameter may take the types below.

ADDRESS Causes the actual parameter to be interpreted as an address
expression. It has the same effect as the command DEFINE
/ADDRESS fnarne = actual-parameter.

VALUE Causes the actual parameter to be interpreted as a language
expression. It has the same effect as the command DEFINE
/VALUE fnarne = actual-parameter.

COMMAND Causes the actual parameter to be interpreted as a command
string. It has the same effect as the command DEFINE/COMMAND
fnarne = actual-parameter.

You can specify more than one fname:pkind pair with a single DECLARE
command. Each fname:pkind pair acts like a separate DECLARE command,
and each pair binds one parameter. So, for instance, if you want to pass
five parameters to a command procedure, you need five corresponding
fnarne:pkind pairs in the command procedure itself. The pairs are always
processed in the order in which you specify them.

The %PARCNT symbol specifies the number of actual parameters to the
current command procedure. For example, suppose the command file ABC
is invoked with the command @ABC 111,222,333. Inside ABC, %PARCNT
then has the value 3 because there are three parameters on this particular call
to ABC. %PARCNT is used in command procedures that can take a variable
number of actual parameters. %PARCNT can only be used inside command
files; it is not defined when commands are entered from the terminal.

9-7

Tailoring the Debugger

A sample format follows:

EVALUATE y,PARCNT

FOR I * 1 TO 7.PARCNT DO (DECLARE X:VALUE; EVALUATE X)

The following example shows a command procedure containing a DECLARE
command and how it is used during a debugging session.

Example 9-40 Using the DECLARE Command in a Command
Procedure

DBG>SET OUTPUT VERIFY {Turn on VERIFY so the
•command in the command
{procedure will echo.

DBGX8EXAM OPTIONS {Execute the procedure.
%DEBUG-I-VERIFYICF, entering indirect command file "EXAM.COM"

DECLARE PI:ADDRESS
EXAMINE PI

C0NV_EX$MAIN\0PTI0NS

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

(15)
(16)
(17)
(18)
(19)

18
1
0
1
0
0
1
2
0
0
0
0
0
0
0
0
0
1
0

{OPTIONS is passed to
!the procedure as PI.
{Examine OPTIONS.

7.DEBUG-1 - VERIFYICF, exiting indirect command file "EXAM.COM"

9.4 Defining and Undefining Commands

The debugger has yet another special feature that allows you to define your
own commands. With the DEFINE/COMMAND command, you can assign
character strings to symbolic names. When the symbolic name appears at
the start of a subsequent debugger command, the name is replaced by the
string it represents. As a result, the symbolic name acts like a new debugger
command.

To define complex commands, you may need to use indirect command
files with parameters (for example, DEFINE/COMMAND DUMP =
"@DUMP.COM"). For more information on declaring parameters to
command files, see the Section 9.9.3.

The DEFINE/COMMAND command provides essentially the same
capabilities as the DCL command "symboli^arameter."

Example 9-41 shows how to define your own debugger commands.

9-8

Tailoring the Debugger

Example 9-41 Defining Debugger Commands

"EXAMINE '/.NEXTLOC"
!Define the command EXN.
!Display that it has

!been defined.

DBG> DEFINE/COMMAND EXN =
DBG> SHOW SYM/DEFINED EXN
defined EXN

bound to: "EXAMINE ‘/.NEXTLOC"
was defined /command

DBG> EX XI
DISTANCE$MAIN\X1: 0.OOOOOOO

DBG> EXN
DISTANCE$MAIN\X2: 0.OOOOOOO
DBG> EXN
DISTANCE$MAIN\Y1: 0.OOOOOOO

!Examine a location.

!Use the defined symbol EXN
!to examine the next
!locations.

9.5 Defining and Undefining Keys
The debugger allows you to modify the functions of the keypad keys to suit
your individual needs. With the DEFINE/KEY, SHOW KEY, and DELETE
/KEY (or UNDEFINE/KEY) commands, you can set, show, and delete key
definitions, respectively. Before you can use this feature, keypad mode must
be enabled with the SET MODE KEYPAD command (keypad mode is enabled
by default). Keypad mode also lets you use the predefined functions of the
keypad keys.

However, most of the keypad functions are associated with screen mode
commands. If you want to use all the predefined functions of the keypad
keys, you must first set the mode to screen mode with the SET MODE
SCREEN command.

9.5.1 Assigning Key Definitions
The DEFINE/KEY command allows you to assign your own definitions to the
numeric keypad keys. When you press the appropriate keypad key, the string
associated with that key is inserted into the command line. You can also
use qualifiers with the DEFINE/KEY command to associate certain attributes
with the performance of the key. You must set mode to keypad to use this
command.

The DEFINE/KEY command has the form

DEFINE/KEY key-name "equiv-string"

The key-name parameter specifies the name of the key that you are defining.
In addition, for single words without special symbols, you do not need to
enclose the equivalence string in quotation marks.

The standard definable key names are listed below.

Key-name LK201 VT100-type VT52-type

PF1 PF1 PF1 Blue

PF2 PF2 PF2 Red

PF3 PF3 PF3 Black

PF4 PF4 PF4

9-9

Tailoring the Debugger

Key-name LK201 VT100-type VT52-type

KPO, KP1, . . . ,KP9 Keypad 0, ... ,9 Keypad 0, ... ,9 Keypad 0, ... ,9

PERIOD Keypad period (.) Keypad period (.)

COMMA Keypad comma (,) Keypad comma (,)

MINUS Keypad minus (-) Keypad minus (-)

ENTER ENTER ENTER ENTER

El Find

E2 Insert Here

E3 Remove

E4 Select

E5 Prev Screen

E6 Next Screen

HELP Help

DO Do

F6, F7 , F20 F6, F7.F20

The ability to define keys can save both time and keystrokes. If, for instance,
you use a particular debugger command (or set of commands) repetitively,
you can define one of the keypad keys as that command. Then when you
press the defined key, the key definition is treated as a debugger command.

The DEFINE/KEY command provides the same capabilities as the DCL
command DEFINE/KEY.

For additional information on defining keys, refer to the DEFINE/KEY
command in the Command Dictionary as well as in the VAX/VMS DCL
Dictionary.

Example 9-42 shows how to define the keypad keys with debugger
commands.

Example 9-42 Using the DEFINE/KEY Command

DBG>SET MODE KEYPAD !Set the mode the keypad.

DBG>DEFINE/KEY PF1 "SET STEP/INSTRUCTION"
y,DEBUG-1-DEFKEY, DEFAULT key PF1 has been defined

!Define the PF1 key.
!The definition is
!echoed because /LOG
!i8 the default.

DBG>DEFINE/KEY/TERMINATE PF3 "SET OUTPUT LOG"
yj)EBUG-I-DEFKEY, DEFAULT key PF3 has been defined

!Define the PF3 key.
!When you press this
!key, the command will
!execute automatically
'.because of the
!/TERMINATE qualifier.

9-10

Tailoring the Debugger

9.5.2 Using Debugger-Defined Key Definitions
The debugger provides a number of predefined command definitions for
the numeric keypad keys. Although most of these definitions apply only to
screen mode functions, you can still use some of the keypad definitions while
you are using the regular line-oriented debugger.

These keys and their functions are identified in Appendix B.

9.5.3 Showing Key Definitions
You can see the key definitions you have created with the SHOW KEY
command.

The command has the form

SHOW KEY [key-name]

The key-name parameter specifies the name of the key whose definition
you want to see. This command provides the same capabilities of the DCL
command SHOW KEY.

If you want to see all key definitions, use the command SHOW KEY/ALL.

Example 9-43 shows how to show the definitions associated with each
keypad key.

Example 9-43 Using the SHOW KEY Command

DBG> SHOW KEY PF1

DEFAULT keypad definitions:
PF2 = "SET STEP/INSTRUCTION" (echo.noterminate,nolock)

!Display the command you
lhave associated with
!the PF1 key.

DBG> SHOW KEY PF3

DEFAULT keypad definitions:
PF3 ■ "SET OUTPUT LOG" (echo.terminate.nolock)

!Display the command you

lhave associated with
Ithe PF3 key.

DBG> SHOW KEY KP3

DEFAULT keypad definitions:
KP3 = "Select/Source '/.Nextsource" (noecho. terminate .nolock)

!Display the default
'.debugger command associated
Iwith the PF3 key.

For additional information on displaying key definitions, refer to the SHOW
KEY command in the Command Dictionary as well as in the VAX/VMS DCL
Dictionary.

9-11

Tailoring the Debugger

9.5.4 Deleting Key Definitions
To delete key definitions you have established with the DEFINE/KEY
command, use either the DELETE/KEY or the UNDEFINE/KEY command.

They have the forms

DELETE/KEY [key-name]

UNDEFINE/KEY [key-name]

The key-name parameter specifies the name of the key whose definition you
want to delete.

Both commands provide the same capabilities of the DCL command DELETE
/KEY.

Example 9-44 shows how to use, how to delete or undefine the numeric
keypad keys.

Example 9-44 Using the DELETE/KEY and UNDEFINE/KEY
Commands

DBOSET MODE KEYPAD ! Set mode to keypad.

DBG>DELETE/KEY PF1 !Delete the PF1 key.

‘/.DEBUG -1- DELKEY, DEFAULT key PF1 has been deleted

DBG>UNDEFINE/KEY/NOLOG PF3

!Undefine the PF3 key.
!The debugger does not
!display a message that
!the key has been

{undefined because of

!the /LOG qualifier.

For more information on deleting key definition, see either the DELETE/KEY
or the UNDEFINE/KEY commands in the Command Dictionary.

9-12

Part II Debugger Command Dictionary

The Debugger Command Dictionary describes each of the debugger
commands in detail. The following information is provided for each
command:

• Command description

• Command format

• Command parameters

• Command qualifiers

• One or more examples

Refer to the Preface for documentation conventions.

CD.1 Debugger Command Format

A command string is the complete specification of a debugger command.
Although you can continue a command on more than one line, the term
command string is used to define an entire command that is passed to the
debugger.

A debugger command string consists of a verb and, possibly, parameters and
qualifiers.

The verb specifies the command to be executed. Some debugger command
strings may consist of only a verb or a verb pair. For example:

DBG> GO
DBG> SHOW IMAGE

A parameter specifies what the verb acts on (for example, a file specification).
A qualifier describes or modifies the action taken by the verb. Some
command strings may include one or more parameters or qualifiers. In
the following examples, COUNT, I, J, and K, and PROG4 are parameters;
/SCROLL and /OUTPUT are qualifiers.

DBG> SET WATCH COUNT
DBG> EXAMINE I.J.K
DBG> SELECT/SCROLL/OUTPUT PR0G4

Some commands accept optional WHEN or DO clauses. A WHEN clause
consists of the keyword WHEN followed by a conditional expression (within
parentheses) that evaluates to TRUE or FALSE in the current language. A
DO clause consists of the keyword DO followed by one or more command
strings (within parentheses) that are to be executed. Multiple command
strings should be separated by semicolons (;). These points are illustrated in
the next example.

The following command string sets a breakpoint on routine SWAP that will
be triggered whenever the value of J equals 4 during execution. When the
breakpoint is triggered, the debugger executes the two command strings
SHOW CALLS and EXAMINE I,K, in the order indicated.

DBG> SET BREAK SWAP WHEN (J = 4) DO (SHOW CALLS; EXAMINE I.K)

DO clauses are also used in some screen display definitions.

CD-I

CD.2 Entering and Terminating Commands
You can enter debugger commands interactively at the terminal or store
them within a command procedure to be invoked later with the @file-spec
command. The conventions are described for each mode of operation.

CD.2.1 At the Terminal
When entering a command interactively, you can abbreviate a keyword (verb,
qualifier, parameter) to as few characters as are needed to make it unique
within the set of all keywords. However, some commonly used commands
(for example, EXAMINE, DEPOSIT, GO, STEP) can be abbreviated to their
first characters. Also, in some cases, the debugger interprets nonunique
abbreviations correctly on the basis of context.

Pressing the RETURN key terminates the current line, causing the debugger
to process it. To continue a long command string on another line, type a
hyphen (-) before pressing RETURN. The debugger prompt will be prefixed
with an underline character (_DBG>), indicating that the command string is
still being accepted.

You can enter more than one command string on one line by separating them
with a semicolon (;).

The command line editing functions that are available at the DCL prompt
are also available at the debugger prompt, including command recall with
the up-arrow and down-arrow keys. For example, pressing the left-arrow
and right-arrow keys moves the cursor one character to the left and right,
respectively; pressing CTRL/H and CTRL/E moves the cursor to the start and
end of the line respectively; pressing CTRL/U deletes all the characters to the
left of the cursor, and so on.

To interrupt a command that is in progress, press CTRL/Y. This will put you
at DCL level. You can then type either CONTINUE or DEBUG to return to
the debugging session. (See the description of CTRL/Y in the Command
Dictionary.)

CD.2.2 In a Command Procedure
To maximize legibility, it is best to not abbreviate command keywords in a
command procedure. In any case, as with DCL commands, do not abbreviate
command keywords to less than four significant characters (not counting the
negation /NO . . .), to avoid potential conflicts in future releases.

In a command procedure, the start of a new line terminates the previous line.
To continue a command string on another line, type a hyphen (-) before
starting the new line.

You can enter more than one command string on one line by separating them
with a semicolon (;).

A comment is a string that is preceded by an exclamation point (!).
Comments do not affect the execution of debugger commands.

CD-2

ALLOCATE

ALLOCATE

Expands the debugger memory pool.

FORMAT ALLOCATE byte-count

PARAMETERS byte-count
Specifies the number of bytes by which you want to expand the debugger
memory pool. The byte-count must be at least 1000; if it is not, you will
receive an error message. You will also receive an error message if the system
is unable to allocate the memory you requested.

QUALIFIERS None.

DESCRIPTION Module setting, the process by which symbol records are loaded into the
debugger's run-time symbol table, requires memory to be allocated. By
default, dynamic module setting is enabled and the debugger automatically
allocates memory as it sets modules. If you issue the SET MODE
NODYNAMIC command to disable dynamic module setting, you will have to
set modules yourself. In that case, memory is not allocated automatically, and
you may need to use the ALLOCATE command in order to set more modules.
The SHOW MODULE command tells you how much space is required to set
each module as well as how much space is available.

When you use the ALLOCATE command, the debugger calls $EXPREG
to provide the extra memory. If your program also allocates memory
dynamically, the location of the allocated memory in your program may
be affected.

Related commands: (SET, CANCEL, SHOW) MODULE, SET MODE
[NO]DYNAMIC.

EXAMPLE

DBG> ALLOCATE 20000

This command increases the size of the memory pool by an additional 20000
bytes.

CD—3

^file-spec

@file-spec

Executes debugger commands contained in the specified command
procedure.

FORMAT @file-spec[PI [,P2, . . . ,Pn]]

PARAMETERS file-spec
Specifies the command procedure to be executed. For any part of the full
file specification that is not provided, the debugger uses the file specification
established with the last SET ATSIGN command, if any. If the missing part
of the file specification was not established by a SET ATSIGN command, the
debugger assumes SYS$DISK:[JDEBUG.COM as the default file specification.

p
Specifies a parameter that is declared inside the command procedure. Note
that, unlike with DCL, parameters must be separated by commas. For
more information on declaring parameters to command procedures, see the
DECLARE command description.

QUALIFIERS None.

DESCRIPTION A command procedure can contain any debugger commands, including
another @file-spec command. The debugger executes commands from the
command procedure until it reaches an EXIT or QUIT command or the end
of the file. At that point, the debugger returns control to the command
stream that invoked the command procedure. A command stream can be the
terminal, an outer (containing) command procedure, a DO clause in a SET
BREAK, SET TRACE, or SET WATCH command, or a DO clause in a screen
display definition.

If you enter SET OUTPUT VERIFY, all commands read from a command
procedure are echoed on the current output device, as specified by
DBG$OUTPUT (the default output device is SYS$OUTPUT, the terminal).

Related commands: (SET, SHOW) ATSIGN.

CD-4

^file-spec

EXAMPLE
DBG> SET ATSIGN USER:[JONES.DEBUG].DBG

DBG> SET OUTPUT VERIFY

DBG> <BMAIN

%DEBUG-I-VERIFYICF, entering indirect command file "MAIN"

SET MODULE/ALL

SET BREAK SUB1

GO

breads at routine MAIN\SUB1

EXAMINE/WORD SUB1

SUB1\SUB1: 4800

EXAMINE/INST

SUBl\SUBl+02: MOVAL L~SUB1\Y,R11

EXIT

7.DEBUG-I-VERIFYICF, exiting indirect command file "MAIN"

DBG>

The SET ATSIGN command establishes that debugger command procedures
reside, by default, in USER:[JONES.DEBUG] and have a file type of DBG. The
SET OUTPUT VERIFY command causes all commands to echo at the terminal
before they execute. The @MAIN command causes the command procedure
USER:[JONES.DEBUG]MAIN.DBG to be executed.

CD-5

ATTACH

ATTACH

Passes control of your terminal from the current process to another
process.

FORMAT ATTACH process-name

PARAMETERS process-name
Specifies the process to which your terminal is to be attached. The process
must already exist before you try to attach to it. If the process name contains
non-alphanumeric characters or spaces, you must enclose it in quotation
marks ("").

QUALIFIERS None.

DESCRIPTION The ATTACH command allows you to go back and forth between a
debugging session and your command interpreter, or between two debugging
sessions. To do so, you must first spawn a subprocess (see the description
of the SPAWN command); you can then attach to it whenever you want. To
return to your original process with minimal system overhead, use another
ATTACH command.

Related commands: SPAWN.

EXAMPLES
Q DBG> SPAWN

$ ATTACH JONES

'/.DEBUG-1-RETURNED, control returned to process JONES
DBG> ATTACH JONES. 1

$

This series of commands spawns a subprocess named JONES—l from the
debugger (currently running in the process JONES) and then attaches to that
subprocess.

Q DBG> ATTACH "Alpha One"

$

This example illustrates use of quotation marks to enclose a process name
that contains a space.

CD-6

CALL

CALL

Calls a routine that was linked with your program

FORMAT CALL routine-name [(argument[, ...])]

PARAMETERS routine-name
Specifies the name or the virtual address of the routine to be called.

argument
Specifies an argument that is required by the routine. Arguments can be
passed by address (the default), by descriptor, by reference, and by value, as
described below.

%ADDR Passes the argument by address. This is the default. The format is
the following:

CALL routine-name C/.ADDR address-expression)

%DESCR

The debugger evaluates the address expression and passes that
address to the routine specified. For simple variables (such as X), the
address of X is passed into the routine. This passing mechanism
is how FORTRAN implements ROUTINE(X). In other words, for
named variables, using %ADDR corresponds to a call by reference
in FORTRAN. For other expressions, however, you must use the %REF
function to call by reference.

Passes the argument by descriptor. The format is the following:

CALL routine-name (%DESCR language-expression)

%REF

The debugger evaluates the language expression and builds a VAX-
standard descriptor to describe the value. The descriptor is then
passed to the routine you named. You would use this technique to
pass strings to a FORTRAN routine.

Passes the argument by reference. The format is the following:

CALL routine-name (%REF language-expression)

%VAL

The debugger evaluates the language expression and passes a
pointer to the value, into the called routine. This passing mechanism
corresponds to the way FORTRAN passes the result of an expression.

Passes the argument by value. The format is the following:

CALL routine-name C/.VAL language-expression)

The debugger evaluates the language expression and passes the value
directly to the called routine.

CD-7

CALL

QUALIFIERS /[NOJAST
Controls whether aynchronous system traps (ASTs) are enabled or disabled
during the execution of the called routine. /AST specifies that ASTs be
enabled (can be delivered). /NOAST specifies that ASTs be disabled (cannot
be delivered). If you do not specify /AST or /NOAST, ASTs will be enabled
in the called routine if, and only if, they were currently enabled at the time of
the call.

DESCRIPTION The CALL command is one of four debugger commands that execute code
(the others are GO, STEP, and EXIT). You can use the CALL command to
call a routine and debug it independently of the rest of the program. You
can also use the command to call user-written routines that dump debugging
information.

The CALL command executes a routine whether or not your program actually
includes a call to that routine, so long as the routine was linked with your
program. You can debug unrelated routines by linking them with a dummy
main program that has a transfer address, and then using the CALL command
to execute them.

When you issue a CALL command, the debugger takes the following action:

1 Saves the current values of the general registers

2 Constructs an argument list

3 Executes a call to the routine specified in the command and passes any
arguments

4 Executes the routine

5 Displays the value returned by the routine in RO

6 Restores the values of the general registers to the values they had just
before the CALL command was executed

7 Issues the DBG> prompt

The debugger assumes that the called routine conforms to the VAX/VMS
procedure calling standard (see the VAX Architecture Handbook). However,
note that the debugger does not know about all the argument-passing
mechanisms for all supported languages. You therefore may need to specify
how to pass parameters—for example, use CALL SUB1(%VAL X) rather
than CALL SUB1(X). Also, routines may not be called correctly if you are
using complicated arguments such as arrays or records. See your language
documentation for complete information on how arguments are passed to
routines.

EXAMPLES
Q DBG> CALL SUBl(X)

value returned is 19

This command calls the routine SUB1, passing "X" as the required parameter.

CD-8

CALL

0 DBG> CALL SUB (‘/.REF 1)

value returned is 1

This command passes a pointer to a memory location containing the numeric
literal 1, into the routine SUB.

CD-9

CANCEL ALL

CANCEL ALL

Cancels all breakpoints, tracepoints, and watchpoints. Restores any
modes established with the SET MODE command to their default
values. Restores the scope and type to their default values.

FORMAT CANCEL ALL

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The CANCEL ALL command does the following:

• Cancels all eventpoints (breakpoints, tracepoints, watchpoints). This
is equivalent to issuing the CANCEL BREAK, CANCEL TRACE, and
CANCEL WATCH commands.

• Restores the scope search list to its default value (0,1,2, . . . ,n). This is
equivalent to issuing the CANCEL SCOPE command.

• Restores the data type associated with a typed memory location to the
compiler generated type. Restores the type associated with untyped
memory locations to "longword integer". This is equivalent to issuing the
CANCEL TYPE/OVERRIDE and SET TYPE LONGWORD commands.

• Restores the modes established with the SET MODE command to their
default values. This is equivalent to issuing the following command:

DBG> SET MODE KEYPAD,NOSCREEN,DYNAMIC,LINE,SYMBOLIC,N0G_FL0AT,SCROLL

The CANCEL ALL command does not affect the current language setting or
modules included in the run-time symbol table (SET MODULE).

Related commands: CANCEL BREAK, CANCEL TRACE, CANCEL WATCH,
CANCEL SCOPE, CANCEL TYPE/OVERRIDE, (SET, CANCEL) MODE.

EXAMPLE
DBG> CANCEL ALL

This command cancels all the eventpoints you have set previously. It also
restores scope, modes and types to their default values.

CD-10

CANCEL BREAK

CANCEL BREAK
Cancels breakpoints.

FORMAT CANCEL BREAK [address-expressionf, . . .]]

PARAMETERS address-expression
Specifies a breakpoint to be canceled. Do not use the wildcard character (*).
Do not specify an address expression when using any of the qualifiers except
for /EVENT.

QUALIFIERS /ALL
Cancels all breakpoints. Do not use the wildcard character (*). When using
/ALL, do not specify an address expression.

/BRANCH
Cancels the effect of a previous SET BREAK/BRANCH command. Do not
specify an address expression with /BRANCH.

/CALL
Cancels the effect of a previous SET BREAK/CALL command. Do not specify
an address expression with /CALL.

/EVENT=event-name

Note: /EVENT applies only to Ada and SCAN. See the VAX Ada and VAX
SCAN documentation for complete information.

Cancels the effect of a previous SET BREAK/EVENT=event-name command.
The effect of CANCEL BREAK/EVENT=event-name is symmetrical with the
effect of SET BREAK/EVENT=event-name. To cancel a breakpoint, specify
the event name and address expression (if any) exactly as you did with the
SET BREAK/EVENT command, excluding any WHEN or DO clauses. Event
names depend on the run-time facility and are identified in Appendix E for
Ada and SCAN. You can also display the event names associated with the
current run-time facility by issuing the SHOW EVENT-FACILITY command.

/EXCEPTION
Cancels the effect of a previous SET BREAK/EXCEPTION command. Do not
specify an address expression with /EXCEPTION.

/INSTRUCTION
Cancels the effect of a previous SET BREAK/INSTRUCTION command. Do
not specify an address expression with /INSTRUCTION.

CD-11

CANCEL BREAK

/LINE
Cancels the effect of a previous SET BREAK/LINE command. Do not specify
an address expression with /LINE.

DESCRIPTION The effect of the CANCEL BREAK command is symmetrical with the effect of
the SET BREAK command.

To cancel a breakpoint that was established at a specific location with
the SET BREAK command, specify that same location with the CANCEL
BREAK command. To cancel breakpoints that were established on a class
of instructions or events by using a qualifier with the SET BREAK command
(/CALL, /LINE, /EXCEPTION, /EVENT, and so on), specify that same
qualifier with the CANCEL BREAK command.

Generally, you must specify either an address expression or a qualifier,
but not both. The only exception is with the /EVENT qualifier, which
requires that you specify an event name and lets you also specify an address
expression for certain event names.

Note that the command CANCEL ALL also cancels all breakpoints.

Related commands: (SET, SHOW) BREAK, (SET, CANCEL) EXCEPTION
BREAK, (SET, SHOW, CANCEL) TRACE, CANCEL ALL.

EXAMPLES
Q DBG> CANCEL BREAK MAIN\L00P+10

This command cancels the breakpoint set at the address expression
M AIN\LOOP+l 0.

Q DBG> CANCEL BREAK/ALL

This command cancels all breakpoints you have set previously.

CD-12

CANCEL DISPLAY

CANCEL DISPLAY

Permanently deletes a screen display.

FORMAT CANCEL DISPLAY [disp-name[, ... 77

PARAMETERS disp-name
Specifies the name of a display to be canceled. Do not specify the PROMPT
display, which cannot be canceled. Do not use the wildcard character (*).
When using /ALL, do not specify a display name.

QUALIFIERS /ALL
Cancels all displays, except for the PROMPT display. When using /ALL, do
not specify a display name.

DESCRIPTION When a display is canceled, its contents are permanently lost, it is removed
from the display list, and all the memory that was allocated to it is released.

You cannot cancel the PROMPT display.

Related commands: (SET, SHOW) DISPLAY, (SET, SHOW, CANCEL)
WINDOW.

EXAMPLE
DBG> CANCEL DISPLAY SRC2

This command permanently deletes display SRC2.

DBG> CANCEL DISPLAY/ALL

This command permanently deletes all displays, except for the PROMPT
display.

CD-13

CANCEL EXCEPTION BREAK

CANCEL EXCEPTION BREAK

Cancels exception breakpoints.

FORMAT CANCEL EXCEPTION BREAK

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The command CANCEL EXCEPTION BREAK cancels the effect of the
command SET EXCEPTION BREAK. As a result of the cancellation, exception
conditions generated by your program are handled in the following way:

• The debugger fields and resignals the exception.

• Any exception handlers you have defined in your program are executed.

• If you have not defined an exception handler or if an exception handler
that you have defined resignals the exception, a diagnostic message is
issued and control is returned to the debugger, which then displays its
prompt.

Related commands: SET EXCEPTION BREAK, (SET, CANCEL) BREAK
/EXCEPTION, CANCEL ALL.

EXAMPLE
DBG> CANCEL EXCEPTION BREAK

This command cancels the effect of a previous SET EXCEPTION BREAK
command.

CD-14

CANCEL IMAGE

CANCEL IMAGE

Removes run-time symbol table information for a shareable image.

FORMAT CANCEL IMAGE [image-name[, ... 77

PARAMETERS image-name
Specifies a previously set shareable image that is to be canceled. Do not
specify the main image, which cannot be canceled. Do not use the wildcard
character (*). When using /ALL, do not specify an image name.

QUALIFIERS /ALL
Specifies that all shareable images except the main image are to be canceled.
When using /ALL, do not specify an image name.

DESCRIPTION The CANCEL IMAGE command deallocates the data structures previously
built to debug a shareable image by a SET IMAGE command. The CANCEL
IMAGE command can be used when the run-time symbol table is full and
debugger performance is slowed down.

If the current image (the image last set with the SET IMAGE command) is
canceled, the main image becomes the current image.

Related commands: (SET, SHOW) IMAGE, (SET, SHOW, CANCEL)
MODULE.

EXAMPLES
Q DBG> CANCEL IMAGE SHARE2, SHARE3

The CANCEL IMAGE command cancels shareable images SHARE2 and
SHARE3. If either of these was the current image, the main image becomes
the current image.

CD-15

CANCEL MODE

CANCEL MODE

Restores all modes controlled by the SET MODE command to their
default values. Also restores the default input/output radix.

FORMAT CANCEL MODE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The effect of the CANCEL MODE command is equivalent to issuing the
following commands:

DBG> SET MODE KEYPAD.NOSCREEN,DYNAMIC,LINE,SYMBOLIC,NOG.FLOAT,SCROLL
DBG> CANCEL RADIX

Note that, although the same default modes apply to all languages, the
default radix is hexadecimal for BLISS and MACRO and decimal for all other
languages.

Related commands: (SET, SHOW) MODE, (SET, SHOW, CANCEL) RADIX.

EXAMPLE
DBG> CANCEL MODE

This command restores the default radix mode and all default mode values.

CD-16

CANCEL MODULE

CANCEL MODULE

Deletes the symbol records of a module from the run-time symbol
table (RST).

FORMAT CANCEL MODULE [modnamef, . . .]]

PARAMETERS modname
Specifies the name of a module whose symbol records are to be deleted from
the RST. Do not use the wildcard character (*). When using /ALL, do not
specify a module name.

QUALIFIERS /ALL
Deletes the symbol records of all modules from the RST. When using /ALL,
do not specify a module name.

/[NOJRELATED

Note: /[NOJRELATED applies only to Ada programs.

Controls whether the debugger deletes from the RST the symbol records of a
module that is related to a specified module through a with-clause or subunit
relationship.

CANCEL MODULE/RELATED (default) deletes symbol records for related
modules as well as for those specified, but not for any module that is also
related to another set module. The effect of CANCEL MODULE/RELATED
is consistent with Ada's scope and visibility rules and depends on the actual
relationship between modules. CANCEL MODULE/NORELATED deletes
symbol records only for modules that are specified (no symbol records are
deleted for related modules).

DESCRIPTION
Note: The (SET, SHOW, CANCEL) MODULE commands operate on modules in

the current image. This is either the main image (by default) or the image
established as the current image by a previous SET IMAGE command.

The CANCEL MODULE command is useful under two general conditions:

• If dynamic module setting is enabled (this is the default condition) and
performance becomes a problem as the debugger sets more and more
modules dynamically.

• If dynamic module setting is disabled and you cannot use the SET
MODULE command (because the RST is full), but do not want to use the
ALLOCATE command to increase the debugger memory pool.

Related commands: (SET, SHOW) MODULE, SET MODE [NOJDYNAMIC,
ALLOCATE, (SET, SHOW, CANCEL) IMAGE.

CD-17

CANCEL MODULE

EXAMPLES
Q DBG> CANCEL MODULE SUB1

This command removes the symbols of module SUB1 from the run-time
symbol table.

Q DBG> CANCEL MODULE/ALL

This command removes the symbols of all modules from the run-time symbol
table (RST).

CD-18

CANCEL RADIX

CANCEL RADIX

Restores the default radix for the entry and display of integers.

FORMAT CANCEL RADIX

PARAMETERS None.

QUALIFIERS /OVERRIDE
Cancels the override radix established by a previous SET RADIX/OVERRIDE
command. This sets the current override radix to "none" and restores the
output radix mode to the value established with a previous SET RADIX or
SET RADIX/OUTPUT command. If you did not change the radix mode
with a SET RADIX or SET RADIX/OUTPUT command, the CANCEL
RADIX/OVERRIDE command restores the radix mode to its default value
(hexadecimal for BLISS and MACRO, decimal for other languages).

DESCRIPTION The CANCEL RADIX command cancels the effect of any previous SET
RADIX and SET RADIX/OVERRIDE commands. It restores the input and
output radix to their default value (hexadecimal for BLISS and MACRO,
decimal for other languages).

The effect of the CANCEL RADIX/OVERRIDE command is more limited and
is explained in the description of the /OVERRIDE qualifier.

Related commands: (SET, SHOW) RADIX.

EXAMPLE
dbg> cancel radix

This command restores the default input and output radix.

dbg> cancel radix/override

This command cancels any override radix you may have set with the SET
RADIX/OVERRIDE command.

CD-19

CANCEL SCOPE

CANCEL SCOPE

Restores the default scope for symbol lookup.

FORMAT CANCELSCOPE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The CANCEL SCOPE command cancels the current scope search list
established by a previous SET SCOPE command and restores the default
scope search list, namely 0,1,2, ... ,N, where N is the number of calls in the
call stack.

The default scope means that, for a symbol without a path-name prefix, a
symbol lookup such as "EXAMINE X" first looks for X in the routine that is
currently executing (scope 0); if no X is visible there, the debugger looks in
the caller of that routine (scope 1), and so on down the call stack; if X is not
found in scope N, the debugger searches the rest of the run-time symbol table
(RST), then searches the global symbol table (GST), if necessary.

Related commands: (SET, SHOW) SCOPE.

EXAMPLE
DBG> CANCEL SCOPE

This command cancels the current scope.

CD-20

CANCEL SOURCE

CANCEL SOURCE

Cancels a source directory search list established by a previous SET
SOURCE command.

FORMAT CANCELSOURCE

PARAMETERS None.

QUALIFIERS /EDIT

Note: /EDIT applies mainly to Ada programs.

Cancels the effect of a previous SET SOURCE/EDIT command. As a result,
when you use the EDIT command, the debugger searches for a source file in
the same directory that it was in at compile time. The CANCEL SOURCE
/EDIT command does not cancel the effect of a previous SET SOURCE
command.

/MODULE=module-name
Cancels the effect of a previous SET SOURCE/MODULE=module-name
command in which the same module name was specified. (module-name
specifies a module for which a source directory search list is to be canceled).
As a result, the debugger searches for the source file of the specified module
in the same directory that it was in at compile time. The CANCEL SOURCE
/MODULE=module-name command does not cancel the effect of a previous
SET SOURCE command, or of a SET SOURCE/MODULE=module-name
command in which a different module name was specified.

DESCRIPTION When used without a qualifier, the CANCEL SOURCE command cancels
the effect of a previous SET SOURCE command used without a qualifier.
CANCEL SOURCE does not cancel the effect of a previous SET SOURCE
/EDIT or SET SOURCE/MODULE=module-name commands.

See the qualifier descriptions for an explanation of their effects.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT command.
This is the case with Ada programs. For Ada programs, the (SET, SHOW,
CANCEL) SOURCE commands affect the search of files used for source
display (the "copied" source files in Ada program libraries); the (SET, SHOW,
CANCEL) SOURCE/EDIT commands affect the search of the source files that
you edit when using the EDIT command. If you use /MODULE with /EDIT,
the effect of /EDIT is further qualified by /MODULE.

Related commands: (SET, SHOW) SOURCE, (SET, SHOW) MAX_SOURCE_
FILES.

CD-21

CANCEL SOURCE

EXAMPLE

DBG> SHOW SOURCE
source directory search list for COBOLTEST:

SYSTEM::DEVICE:[PROJD]
[014,015]

source directory search list for all other modules:
[PROJA]
[PROJB]
[PETER.PROJC]

DBG> CANCEL SOURCE
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

SYSTEM::DEVICE:[PROJD]
[014,015]

DBG> CANCEL SOURCE/MODULE=COBOLTEST
DBG> SHOW SOURCE
no directory search list in effect

The CANCEL SOURCE command cancels the effect of a previous SET
SOURCE command. It does not cancel any source directory search lists
for specific modules. But the CANCEL SOURCE/MODULE=module-name
(in this case, COBOLTEST) cancels the source directory search list for that
module.

CD-22

CANCEL TRACE

CANCEL TRACE

Deletes tracepoints.

FORMAT CANCEL TRACE [address-expressionf, ... 77

PARAMETERS address-expression
Specifies a tracepoint to be canceled. Do not use the wildcard character (*).
Do not specify an address expression when using any of the qualifiers except
for /EVENT.

QUALIFIERS /ALL
Cancels all tracepoints. When using /ALL, do not specify an address
expression.

/BRANCH
Cancels the effect of a previous SET TRACE/BRANCH command. Do not
specify an address expression with /BRANCH.

/CALL
Cancels the effect of a previous SET TRACE/CALL command. Do not specify
an address expression with /CALL.

/EVENT=event-name

Note: /EVENT applies only to Ada and SCAN. See the VAX Ada and VAX
SCAN documentation for complete information.

Cancels the effect of a previous SET TRACE/E VENT=event-name command.
The effect of CANCEL TRACE/EVENT=event-name is symmetrical with the
effect of SET TRACE/EVENT=event-name. To cancel a tracepoint, specify
the event name and address expression (if any) exactly as you did with the
SET TRACE/EVENT command, excluding any WHEN or DO clauses. Event
names depend on the run-time facility and are identified in Appendix E for
Ada and SCAN. You can also display the event names associated with the
current run-time facility by issuing the SHOW EVENT-FACILITY command.

/EXCEPTION
Cancels the effect of a previous SET TRACE/EXCEPTION command. Do not
specify an address expression with /EXCEPTION.

/INSTRUCTION
Cancels the effect of a previous SET TRACE/INSTRUCTION command. Do
not specify an address expression with /INSTRUCTION.

CD-23

CANCEL TRACE

/LINE
Cancels the effect of a previous SET TRACE/LINE command. Do not specify
an address expression with /LINE.

DESCRIPTION The effect of the CANCEL TRACE command is symmetrical with the effect of
the SET TRACE command.

To cancel a tracepoint that was established at a specific location with the
SET TRACE command, specify that same location with the CANCEL
TRACE command. To cancel tracepoints that were established on a class
of instructions or events by using a qualifier with the SET TRACE command
(/CALL, /LINE, /EXCEPTION, /EVENT, and so on), specify that same
qualifier with the CANCEL TRACE command.

Generally, you must specify either an address expression or a qualifier,
but not both. The only exception is with the /EVENT qualifier, which
requires that you specify an event name and lets you also specify an address
expression for certain event names.

Note that the command CANCEL ALL also cancels all tracepoints.

Related commands: (SET, SHOW) TRACE, (SET, SHOW, CANCEL) BREAK,
CANCEL ALL.

EXAMPLES
Q DBG> CANCEL TRACE MAIN\L00P+10

This command cancels the tracepoint at the location MAIN\LOOP+10.

g DBG> CANCEL TRACE/ALL

This command cancels all tracepoints you have set.

CD-24

CANCEL TYPE/OVERRIDE

CANCEL TYPE/OVERRIDE

Cancels the override type established by a previous SET TYPE
/OVERRIDE command.

FORMAT CANCEL TYPE/OVERRIDE

PARAMETERS None.

QUALIFIERS /OVERRIDE
This qualifier must be specified.

DESCRIPTION The CANCEL TYPE/OVERRIDE command sets the current override type to
"none". As a result, a program location associated with a compiler-generated
type will be interpreted according to that type.

Related commands: (SET, SHOW) TYPE/OVERRIDE.

EXAMPLE

DBG> CANCEL TYPE/OVERR

This command cancels the effect of a previous SET TYPE/OVERRIDE
command.

CD-25

CANCEL WATCH

CANCEL WATCH

Cancels watchpoints.

FORMAT CANCEL WATCH [address-expressionf, . . .]]

PARAMETERS address-expression
Specifies a watchpoint to be canceled. With high-level languages, this is
typically the name of a variable. Do not use the wildcard character (*).
When using /ALL, do not specify an address expression.

QUALIFIERS /ALL
Cancels all watchpoints. When using /ALL, do not specify an address
expression.

DESCRIPTION The effect of the CANCEL WATCH command is symmetrical with the effect
of the SET WATCH command. To cancel a watchpoint that was established
at a specific location with the SET WATCH command, specify that same
location with the CANCEL WATCH command. Thus, to cancel a watchpoint
that was set on an entire aggregate, specify the aggregate in the CANCEL
WATCH command; to cancel a watchpoint that was set on one element of an
aggregate, specify that element in the CANCEL WATCH command.

Generally, you must specify either an address expression or a qualifier,
but not both. The only exception is with the /EVENT qualifier, which
requires that you specify an event name and lets you also specify an address
expression for certain event names.

Note that the CANCEL ALL command also cancels all watchpoints.

Related commands: (SET, SHOW) WATCH, (SET, SHOW, CANCEL) BREAK,
(SET, SHOW, CANCEL) TRACE, CANCEL ALL.

EXAMPLES
□ DBG> CANCEL WATCH SUB2\T0TAL

This command cancels the watchpoint at variable TOTAL in module SUB2.

0 DBG> CANCEL WATCH/ALL

This command cancels all watchpoints you have set.

CD-26

CANCEL WINDOW

CANCEL WINDOW

Permanently deletes a screen window definition.

FORMAT CANCEL WINDOW [wname[, ... 77

PARAMETERS wname
Specifies the name of a screen window definition to be canceled. Do not
use the wildcard character (*). When using /ALL, do not specify a window
definition name.

QUALIFIERS /ALL
Cancels all predefined and user-defined window definitions. When using
/ALL, do not specify a window definition name.

DESCRIPTION When a window definition is canceled, you may no longer use its name in
DISPLAY or SET DISPLAY commands. The command does not affect any
displays.

Related commands: (SET, SHOW) WINDOW, (SET, SHOW, CANCEL)
DISPLAY.

EXAMPLE
DBG> CANCEL WINDOW MIDDLE

This command permanently removes the screen window definition MIDDLE.

CD-27

CTRL/C, CTRL/W, CTRL/Y, CTRL/Z

CTRL/C, CTRL/W, CTRL/Y, CTRL/Z

CTRL/Y interrupts a debugging session. CTRL/C is like CTRL/Y
unless the program has a CTRL/C service routine. CTRL/Z ends
a debugging session (like EXIT). CTRL/W refreshes the screen in
screen mode (like DISPLAY/REFRESH).

FORMAT | CTRL/C |

| CTRL/W |

| CTRL/Y |

| CTRL/Z |

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION For an explanation of the CTRL/W and CTRL/Z commands, see the
descriptions of the DISPLAY/REFRESH and EXIT commands, respectively.

Unless the system or the user program has defined a CTRL/C service routine,
CTRL/Y and CTRL/C have the same effect: the image is interrupted but
unchanged, the terminal type-ahead buffer is purged, and the command
interpreter receives control.

You can use the CTRL/Y command to (1) interrupt a debugging session or
(2) interrupt an executing program in order to then invoke the debugger.

Interrupting a Debugging Session

Pressing CTRL/Y interrupts a debugging session and is useful when the
program is executing an infinite loop that does not have a breakpoint, or
when you want to interrupt a debugger command that takes a long time
to complete. You are then at DCL command level. If you then type the
DCL command DEBUG, control passes to the debugger: you return to the
debugging session, but execution is suspended and the debugger prompt is
displayed. You can then issue debugger commands.

If you type the DCL command CONTINUE after a CTRL/Y interrupt, you
simply return to the debugging session at the same point in execution where
you interrupted it.

Interrupting an Executing Program

Interrupting program execution with CTRL/Y is useful if your program is
running without the debugger and you want to invoke the debugger.

To use this feature, you must, as a minimum, have linked your program with
the /TRACE qualifier. To reference your program's symbols, you must have
compiled and linked with the /DEBUG qualifier (in that case, you would use
the DCL command RUN/NODEBUG to execute the program without the
debugger).

CD-28

CTRL/C, CTRL/W, CTRL/Y, CTRL/Z

Related commands: ($) DEBUG, ($) CONTINUE, EXIT, QUIT, DISPLAY
/REFRESH.

EXAMPLE
DBG> GO

DBG> ICTRL/Yl

Interrupt

$ DEBUG

DBG>

A debugging session is interrupted with CTRL/Y and resumed with the DCL
command DEBUG. The debugger prompt indicates that debugger commands
may now be entered.

CD-29

DECLARE

DECLARE
Lets you pass parameters to command procedures

FORMAT DECLARE fnameipkind[,fname:pkind, ... 7

PARAMETERS fname
Specifies the formal parameter name. A formal parameter is associated
with an actual parameter in the order in which the debugger processes the
parameter declaration. If you specify several formal parameters on a single
DECLARE command, the leftmost formal parameter is associated with the
first actual parameter, the next formal parameter is associated with the second,
and so on. If you use a DECLARE command in a loop, the formal parameter
is associated with the first actual parameter on the first iteration of the loop;
the same formal parameter is associated with the second actual parameter on
the next iteration, and so on.

Do not specify a null parameter (represented either by two consecutive
commas or by a comma at the end of the command).

pkind
Specifies the parameter type. Valid keywords are:

ADDRESS Specifies an address expression. It has the same effect as a
DEFINE/ADDRESS fname = . . . command.

VALUE Specifies an expression in the current language. It has the same
effect as a DEFINE/VALUE fname = . . . command.

COMMAND Specifies a quoted character string. It has the same effect as a
DEFINE/COMMAND fname = . . . command.

QUALIFIERS None.

DESCRIPTION The DECLARE command can be used only within a command procedure.
The command associates actual parameters (those on the command line
following the "(a)") with formal parameters (names inside the command
procedure).

Each parameter declaration acts like a DEFINE command: it associates a
parameter name with a value or other construct. The parameters themselves
are consistent with those accepted by the DEFINE command and may in fact
be removed from the symbol table with the DELETE command. For more
information, see the descriptions of the DEFINE and DELETE commands.

Related commands: @file-spec, DEFINE, DELETE.

CD-30

DECLARE

EXAMPLES
□ $ CREATE DISPLAY.COM

DECLARE PI:ADDRESS

EXAMINE PI:PI + 100

$ RUN PROG

DBG> ODISPLAY X

X

X+4

X+8

X+100

The DECLARE command associates the parameter PI with an address within
the command procedure DISPLAY.COM. When DISPLAY.COM is invoked
during the debugging session, address X is examined (as the PI parameter) as
specified by the EXAMINE P1:P1+100 command.

Q DBG> FOR I ■ 1 TO V.PARCNT DO (DECLARE X:VALUE; EVALUATE X)

The DECLARE command is used in a loop. The built-in symbol %PARCNT
specifies the number of actual parameters passed to the command procedure.
The DECLARE command associates each parameter with a value and the
EVALUATE command obtains that value.

CD-31

DEFINE

DEFINE

Defines one or more symbols for the duration of the debugging
session.

FORMAT DEFINE symbohparameter[,symbohparameter,...]

PARAMETERS symbol
Specifies the name of a symbol to be defined. Symbols can be composed of
alphanumeric characters and underscores. The debugger converts lowercase
alphabetic characters to uppercase. The first character must not be a number.
The symbol must be no more than 31 characters long.

parameter
Depends on the qualifier specified.

QUALIFIERS /ADDRESS
Specifies that the defined symbol is an abbreviation for an address expression.
In this case, parameter is an address expression. DEFINE/ADDRESS is the
default.

/COMMAND
Specifies that the defined symbol is to be treated as a new debugger
command. In this case, parameter is a quoted character string. This qualifier
provides, in simple cases, essentially the same capability as the DCL
command "symbol^string." To define complex commands, you may need
to use command procedures with formal parameters. For more information
on declaring parameters to command files (or procedures), see the description
of the DECLARE command.

/LOCAL
Specifies that the definition remain local to the command procedure in which
the DEFINE command is issued. The defined symbol is not visible at the
debugger command level. By default, a symbol defined within a command
procedure is visible outside that procedure.

/VALUE
Specifies that the defined symbol is an abbreviation for a value. In this case,
parameter is a language expression in the current language.

DESCRIPTION The DEFINE/ADDRESS command lets you define a symbol to refer to
an address in your program. For example, you can define a symbol for a
nonsymbolic program location or for a symbolic program location having a
long path-name prefix. Then, you can refer to that program location by the
newly defined symbol. /ADDRESS is the default definition qualifier.

CD-32

DEFINE

The DEFINE/COMMAND command lets you define abbreviations for
debugger commands or even define new commands, either from the debugger
command level or from command procedures.

The DEFINE/VALUE command lets you assign a symbolic name to a value
(or the result of evaluating a language expression).

Use the /LOCAL qualifier to confine symbol definitions to command
procedures. By default, defined symbols are global (visible outside the
command procedure).

If you plan to issue several DEFINE commands with the same qualifier, you
can first use the SET DEFINE command to establish a new default qualifier
(for example, SET DEFINE COMMAND makes the DEFINE command behave
like DEFINE/COMMAND). Then you do not have to use that qualifier with
the DEFINE command. You can override the current default qualifier for the
duration of a single DEFINE command by specifying another qualifier.

In symbol translation, the debugger searches symbols you define during
the debugging session first. So if you define a symbol that already exists in
your program, the debugger translates the symbol according to its defined
definition, unless you specify a path-name prefix.

When a symbol is redefined, the previous definition is canceled, even if
different qualifiers were used with the DEFINE command. If you use the
SET IMAGE command to establish a new current image, all definitions
created with the DEFINE/ADDRESS and DEFINE/VALUE commands are
deleted (definitions created with the DEFINE/COMMAND and DEFINE/KEY
commands are retained, however).

Use the SHOW SYMBOL/DEFINED * command to determine the equivalence
value of a symbol.

Use the DELETE command to cancel a symbol definition.

Related commands: SHOW DEFINE, SHOW SYMBOL/DEFINED, DELETE,
SET IMAGE.

EXAMPLES
Q DBG> DEFINE CHK=MAIN\L00P+10

This command assigns the symbol CHK to the address MAIN\LOOP+10.

Q DBG> DEFINE/VALUE C0UNTER=0
DBG> SET TRACE/SILENT R DO (DEFINE/VALUE COUNTER = COUNTER+1)

The first command assigns a value of 0 to the symbol COUNTER. The second
command tells the debugger to increment the value of the symbol COUNTER
by 1 every time address R is encountered. In other words, this example tells
the debugger to count the number of calls to R.

0 DBG> DEFINE/COMMAND BRE = "SET BREAK"

This command assigns the symbol BRE to the debugger command SET
BREAK.

CD-33

DEFINE/KEY

DEFINE/KEY

Assigns a string to a function key.

FORMAT DEFINE/KEY key-name "equiv-string

PARAMETERS key-name
Specifies a function key to be assigned a string. Valid key names are the
following:

Key-name LK201 VTIOO-type VT52-type

PF1 PF1 PF1 Blue

PF2 PF2 PF2 Red

PF3 PF3 PF3 Black

PF4 PF4 PF4

KPO, KP1, . . . ,KP9 Keypad 0, ... ,9 Keypad 0, ... ,9 Keypad 0, ... ,9

PERIOD Keypad period (.) Keypad period (.)

COMMA Keypad comma (,) Keypad comma (,)

MINUS Keypad minus (-) Keypad minus (-)

ENTER ENTER ENTER ENTER

El Find

E2 Insert Here

E3 Remove

E4 Select

E5 Prev Screen

E6 Next Screen

HELP Help

DO Do

F6, F7, . . . , F20 F6, F7.F20

equiv-string
Specifies the string to be processed when the specified key is pressed.
Typically, this is one or more debugger commands. If the string includes any
spaces or non-alphanumeric characters (for example, a semicolon separating
two commands) enclose the string in quotation marks.

QUALIFIERS /[NOJECHO
Controls whether the command line is displayed after the key has
been pressed. The default is /ECHO. Do not use /NOECHO with
/NOTERMINATE.

CD-34

DEFINE/KEY

/[NO]IF_STATE=(state-name[, . . .])
Specifies one or more states to which a key definition applies. /IF_STATE
assigns the key definition to the specified states. You may specify predefined
states, such as DEFAULT and GOLD, or user-defined states. A state name
can be any appropriate alphanumeric string. /NOIF_STATE (default) assigns
the key definition to the current state.

/[NOJLOCK—STATE
Controls how long the state set by /SET_STATE remains in effect after the
specified key is pressed. /LOCK —STATE causes the state to remain in effect
until it is changed explicitly (for example, with a SET KEY/STATE command).
/NOLOCK—STATE (default) causes the state to remain in effect only until
the next terminator character is typed, or until the next defined function key
is pressed.

/[NO]LOG
Controls whether a message is displayed indicating that the key definition has
been successfully created. /LOG (default) displays the message.

/[NOJSET—S TATE=sta te-name
Controls whether pressing the key changes the current key state. /SET-
STATE causes the current state to change to the specified state when you
press the key. /NOSET—STATE (default) causes the current state to remain in
effect.

/[NOJTERMINATE
Controls whether the specified string is to be terminated (processed) when
the key is pressed. /TERMINATE causes the string to be terminated when
the key is pressed. /NOTERMINATE (default) allows you to press other keys
before terminating the string by pressing the RETURN key.

DESCRIPTION Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

The DEFINE/KEY command lets you assign a string to a function key,
overriding any predefined function that was bound to that key (the predefined
key functions are listed in Appendix B). When you then press the key, the
debugger enters the currently associated string into your command line. The
DEFINE/KEY command is like the DCL DEFINE/KEY command.

On VT52 and VTlOO-series terminals, the function keys you can use include
all of the numeric keypad keys. VT-200 series terminals and Micro VAX
workstations have the LK201 keyboard. On LK201 keyboards, the function
keys you can use include all of the numeric keypad keys, the non-arrow keys
of the editing keypad (Find, Insert Here, and so on), and keys F6 through F20
at the top of the keyboard.

A key definition remains in effect until you redefine the key, issue the
DELETE/KEY command for that key, or exit the debugger. You can include
key definitions in a command procedure, such as your debugger initialization
file.

The /IF— STATE qualifier lets you increase the number of key definitions
available on your terminal. The same key can be assigned any number of
definitions as long as each definition is associated with a different state.

CD-35

DEFINE/KEY

By default, the current key state is the "DEFAULT" state. The current state
may be changed with the SET KEY/STATE command, or by pressing a key
that causes a state change (a key that was defined with the DEFINE/KEY
/LOCK—STATE/STATE qualifier combination).

Related commands: DELETE/KEY, SHOW KEY, SET KEY.

EXAMPLES
□ DBG> SET KEY/STATE=GOLD

7.DEBUG-I-SETKEY, keypad state has been set to GOLD

DBG> DEFINE/KEY/TERMINATE KP9 "SET RADIX/OVERRIDE HEX"
XDEBUG-I-DEFKEY, GOLD key KP9 has been defined

The SET KEY command establishes GOLD as the current key state. The
DEFINE/KEY command assigns the SET RADIX/OVERRIDE HEX command
to keypad key 9 for the current state (GOLD). The command is processed
when key is pressed.

S DBG> DEFINE/KEY/IF_STATE=BLUE KP9 "SET BREAK '/.LINE "
XDEBUG-I-DEFKEY, BLUE key KP9 has been defined

This command assigns the unterminated command string "SET BREAK
%LINE " to keypad key 9, for the BLUE state. After pressing keypad key 9,
you can enter a line number and then press the RETURN key to process the
SET BREAK command.

E DBG> SET KEY/STATE=DEFAULT
%DEBUG-I-SETKEY, keypad state has been set to DEFAULT

DBG> DEFINE/KEY/SET_STATE=RED/LOCK_STATE F12 ""
'/.DEBUG -1 - DEFKEY, DEFAULT key F12 has been defined

The SET KEY command establishes DEFAULT as the current state. The
DEFINE/KEY command makes key F12 (LK201 keyboard) a state key.
Pressing FI2 while in the DEFAULT state causes the current state to become
RED. The key definition is not terminated and has no other effect (a null
string is assigned to FI2). After pressing FI2, you can issue "RED" commands
by pressing keys that have definitions associated with the RED state.

CD-36

DELETE

DELETE

Deletes a symbol definition from the DEFINE symbol table.

FORMAT DELETE [symbol-name[, ... 77

PARAMETERS symbol-name
Specifies a symbol whose definition is to be deleted from the DEFINE symbol
table. Do not use the wildcard character (*). When using /ALL, do not
specify a symbol name. If you use /LOCAL, the symbol specified must have
been previously defined with the DEFINE/LOCAL command. If you do not
specify /LOCAL, the symbol specified must have been previously defined
with the DEFINE command without the /LOCAL qualifier.

QUALIFIERS /ALL
Deletes all global DEFINE definitions. If you also specify /LOCAL, deletes
all local DEFINE definitions associated with the current command procedure
(but not the global DEFINE definitions). When using /ALL, do not specify a
symbol name.

/LOCAL
Deletes the (local) definition of the specified symbol from the current
command procedure. The symbol must have been previously defined with
the DEFINE/LOCAL command.

DESCRIPTION The DELETE command deletes either a global DEFINE symbol or a local
DEFINE symbol. A global DEFINE symbol is a symbol defined with the
DEFINE command without the /LOCAL qualifier. A local DEFINE symbol
is a symbol defined in a debugger command procedure with the DEFINE
/LOCAL command, so that its definition is confined to that command
procedure. The DELETE command is identical to the UNDEFINE command.

Related commands: DEFINE.

EXAMPLE
DBG> DEFINE X = INARR, Y =
DBG> DELETE X.Y

OUTARR

The DEFINE command defines X and Y as global symbols corresponding to
INARR and OUTARR, respectively. The DELETE command deletes these two
symbol definitions from the global symbol table.

DBG> DELETE/ALL/LOCAL

The DELETE/ALL/LOCAL commmand deletes all local symbol definitions
from the current command procedure.

CD-37

DELETE/KEY

DELETE/KEY

Deletes key definitions that have been established with the DEFINE
/KEY command.

FORMAT DELETE/KEY [key-name]

PARAMETERS key-name
Specifies a key whose definition is to be deleted. Do not use the wildcard
character (*). When using /ALL, do not specify a key name. Valid key
names are:

Key-name LK201 VT100-type VT52-type

PF1 PF1 PF1 Blue

PF2 PF2 PF2 Red

PF3 PF3 PF3 Black

PF4 PF4 PF4

KPO, KP1,. . . ,KP9 Keypad 0, ... ,9 Keypad 0, ... ,9 Keypad 0, ... ,9

PERIOD Keypad period (.) Keypad period (.)

COMMA Keypad comma (,) Keypad comma (,)

MINUS Keypad minus (-) Keypad minus (-)

ENTER ENTER ENTER ENTER

El Find

E2 Insert Here

E3 Remove

E4 Select

E5 Prev Screen

E6 Next Screen

HELP Help

DO Do

F6, F7, . . . , F20 F6, F7.F20

QUALIFIERS /ALL
Deletes all key definitions in the specified state. When using /ALL, do not
specify a key name. If you do not specify a state, all key definitions in the
current state are deleted. Use the /STATE qualifier to specify one or more
states.

CD-38

/[NOJLOG
Controls whether a message is displayed indicating that the specified key
definitions have been deleted. /LOG (default) displays the message.

DELETE/KEY

/[NO]STATE=(state-name [, . . .])
Selects one or more states for which a key definition is to be deleted. /STATE
deletes key definitions for the specified states. You may specify predefined
key states, such as DEFAULT and GOLD, or user-defined states. A state
name can be any appropriate alphanumeric string. /NOSTATE (default)
deletes the key definition for the current state only.

By default, the current key state is the "DEFAULT" state. The current state
may be changed with the SET KEY/STATE command, or by pressing a key
that causes a state change (a key that was defined with the DEFINE/KEY
/LOCK_STATE/STATE qualifier combination).

DESCRIPTION Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

The DELETE/KEY command is like the DCL DELETE/KEY command and
has the same effect as the (debugger) UNDEFINE/KEY command.

Related commands: DEFINE/KEY, SHOW KEY, SET KEY.

EXAMPLES
□ DBG> DELETE/KEY KP4

‘/.DEBUG -1-DELKEY, DEFAULT key KP4 has been deleted

This command deletes the key definition for keypad key KP4 in the state last
set by the SET KEY command (by default, this is the DEFAULT state).

Q DBG> DELETE/KEY/STATE=(BLUE,RED) COMMA
‘/.DEBUG-1-DELKEY, BLUE key COMMA has been deleted
‘/.DEBUG-I-DELKEY, RED key COMMA has been deleted

This command deletes the key definition for keypad key COMMA in the
BLUE and RED states.

CD-39

DEPOSIT

DEPOSIT

Changes the value of a variable or the contents of a program
location.

FORMAT DEPOSIT address-expression = language-expression

PARAMETERS address-expression
Specifies the location into which the value of the language expression is to be
deposited. With high-level languages, address-expression is typically the name
of a variable.

language-expression
Specifies the value to be deposited. You may specify any source language
expression in the currently set language.

When the DEPOSIT command is executed, the expression is evaluated in the
syntax of the source language. The value of the expression is then converted
to the type associated with the address expression and placed at the location
denoted by the address expression.

If the expression is an ASCII string or a VAX/VMS assembly-language
instruction, you must enclose it in quotation marks or apostrophes.

QUALIFIERS /ASCIC
Deposits a counted ASCII string with a 1-byte count into the specified
location. This is an ASCII string preceded by a 1-byte count field that gives
the length of the string. /AC is also accepted.

/ASCID
Deposits an ASCII string into the address given by a string descriptor that is
at the specified location. The expression on the right-hand side of the equal
sign must be a string. The specified location must contain a string descriptor.
If the string lengths do not match, the string is either truncated on the right
or padded with blanks on the right. /AD is also accepted.

/ASCII.n
Deposits n bytes of a string into the specified location. The expression on the
right-hand side of the equal sign must be a string. If its length is not n, the
string is truncated or padded with blanks on the right. If n is omitted, the
actual length of the data item at the specified location is used.

/ASCIW
Deposits a counted ASCII string with a 1-word count into the specified
location. This is an ASCII string preceded by a 2-byte count field that gives
the length of the string. /AW is also accepted.

CD—40

DEPOSIT

/ASCIZ
Deposits a zero-terminated ASCII string into the specified location. The
expression on the right-hand side of the equal sign must be a string.
The string is deposited into the specified location followed by a zero byte
indicating the end of the string. /AZ is also accepted.

/BYTE
Deposits a 1-byte integer into the specified location.

/D—FLOAT
Converts the expression on the right-hand side of the equal sign to the
D_floating type (length 8 bytes) and deposits the result into the specified

location. Values of type D_floating may range from .29*10~38 to l.7*1038 with
approximately 16 decimal digits precision.

/DATE-TIME
Converts a string representing a date and time (for example, 31-MAR-1985
21:08:47.15) to the VAX/VMS internal format for date and time and deposits
that quadword into the specified location.

/FLOAT
Converts the expression on the right-hand side of the equal sign to the
F_floating type (length 4 bytes) and deposits the result into the specified

location. Values of type F__floating may range from .29*10~38 to 1.7*1(P8 with
approximately 7 decimal digits precision.

/G-FLOAT
Converts the expression on the right-hand side of the equal sign to the
G —floating type (length 8 bytes) and deposits the result into the specified

location. Values of type G_floating may range from .56*10~308 to .9#10308
with approximately 15 decimal digits precision.

/H—FLOAT
Converts the expression on the right-hand side of the equal sign to the
H —floating type (length 16 bytes) and deposits the result into the specified

location. Values of type H_floating may range from .84*10~4932 to .59*104932
with approximately 33 decimal digits precision.

/INSTRUCTION
Deposits a VAX/VMS assembly-language instruction into the specified
location. The expression on the right-hand side of the equal sign must be
a string representing a VAX/VMS instruction.

/LONGWORD
Deposits a longword integer (length 4 bytes) into the specified location.

/OCTAWORD
Deposits an octaword integer (length 16 bytes) into the specified location.

CD-41

DEPOSIT

/PACKED.n
Converts the expression on the right-hand side of the equal sign to a packed
decimal representation (length n nibbles) and deposits the resulting value into
the specified location.

/QUADWORD
Deposits a quadword integer (length 8 bytes) into the specified location.

/TASK

Note: /TASK applies only to Ada programs.

Deposits an Ada task value (a task name, or a task ID such as %TASK 3) into
the specified location.

/TYPE= (type-expression)
Converts the expression to be deposited to the type denoted by type-
expression (the name of a variable or data type), then deposits the resulting
value into the specified location.

/WORD
Deposits a word integer (length 2 bytes) into the specified location.

DESCRIPTION In general, the DEPOSIT command may be used to change the contents of
any memory location in your program. Typically, the command is used to
change the value of a program variable.

The DEPOSIT command is like an assignment statement in most
programming languages. The value specified to the right of the equal sign is
deposited into the location specified to the left of the equal sign (note that for
Ada and PASCAL, you can use instead of in the command syntax).
Type conversion, if necessary, is done according to the rules of the currently
set language.

The debugger knows the compiler-generated type of a variable (whether it is
an integer, real, string, array, record, and so on), as well as any dimensional
constraints that apply to that variable. When you use the DEPOSIT
command, the debugger checks that the value assigned to a variable is
consistent with the data type and dimensional constraints of the variable.

By using qualifiers with the DEPOSIT command, you can override the type
associated with a program location in order to deposit data of a different type.

The DEPOSIT command sets the current entity built-in symbols %CURLOC
and period (.) to the location denoted by the address expression specified.
Logical predecessors (%PREVLOC and circumflex (~)) and successors
(%NEXTLOC and pressing the RETURN key) are based on the value of
the current entity symbol.

Related commands: EXAMINE, EVALUATE, (SET, SHOW, CANCEL) RADIX,
(SET, SHOW) TYPE, CANCEL TYPE/OVERRIDE.

CD-42

DEPOSIT

EXAMPLES
Q DBG> DEPOSIT 1=7

This command deposits the value 7 into the integer variable I.

B DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 24.80

This command deposits the value of the expression CURRENT-WIDTH +
24.80 into the real variable WIDTH.

g DBG> DEPOSIT STATUS = FALSE

This command deposits the value FALSE into the boolean variable STATUS.

Q DBG> DEPOSIT PART.NUMBER = "WG-7619.3-84"

This command deposits the string WG-7619.3-84 into the string variable
PART-NUMBER.

g DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172

This command deposits the value 02172 into component ZIPCODE of record
EMPLOYEE.

2 DBG> DEPOSIT ARR(8) = 35
DBG> DEPOSIT “ = 14

The first DEPOSIT command deposits the value 35 into element 8 of array
ARR. As a result, element 8 becomes the current entity. The second command
deposits the value 14 into the logical predecessor of element 8, namely
element 7.

Q DBG> FOR I = 1 TO 4 DO (DEPOSIT ARR(I) = 0)

This command deposits the value 0 into elements 1 through 4 of array ARR.

[j] DBG> DEPOSIT COLOR = 3
'/.DEBUG-E-0PTN0TALL0W, operator "DEPOSIT" not allowed on given data type

The debugger alerts you when you try to deposit data of the wrong type (in
this case, an integer) into a variable. The E (error) message severity indicates
that the debugger does not make the assignment.

g DBG> DEPOSIT VOLUME = - 100
'/.DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near

The debugger alerts you when you try to deposit an out-of-bounds value
into a variable (in this case a negative value). The I (informational) message
severity indicates that the debugger does make the assignment.

EE DBG> DEPOSIT/BYTE WORK = '/.HEX 212

This command deposits the expression %HEX 212 into location WORK and
converts it to a byte integer.

ED DBG> DEP0SIT/0CTAW0RD BIGINT = 111222333444555

This command deposits the expression 111222333444555 into location
BIGINT and converts it to an octaword integer.

CD-43

DEPOSIT

EE DBG> DEPOSIT/FLOAT BIGFLT = 1.11949*10**35

This command converts 1.11949*10**35 to an F_floating type value and
deposits it into location BIGFLT.

EE DBG> DEPOSIT/ASCII:10 W0RK+20 * ’abcdefghij’

This command deposits the string abcdefghij into location WORK+20.

EE DBG> DEPOSIT/INSTR SUB2+2 = ’MOVL #20A,R0’

This command deposits the instruction MOVL #20A,R0' into location
SUB2+2.

EE DBG> DEPOSIT/TASK VAR = ‘/.TASK 2
DBG> EXAMINE/HEX VAR
SAMPLE.VAR: 0016A040
DBG> EXAMINE/TASK VAR

SAMPLE.VAR: XTASK 2

The DEPOSIT command deposits the Ada task value %TASK 2 into location
VAR. The subsequent EXAMINE commands display the contents of VAR in
hexadecimal format and as a task value, respectively.

CD-44

DISABLE AST

DISABLE AST

Disables the delivery of ASTs (asynchronous system traps) in your
program.

FORMAT DISABLE AST

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The DISABLE AST command prevents interrupts from occurring while
the debugger is running. Note that this does not prevent interrupts from
occurring while the program is running. The ENABLE AST command re¬
enables the delivery of ASTs, including any pending ASTs (ASTs waiting to
be delivered).

Related commands: (ENABLE, SHOW) AST.

EXAMPLE
DBG> DISABLE AST
DBG> SHOW AST
ASTs are disabled

The DISABLE AST disables the delivery of ASTs, as confirmed with the
SHOW AST command.

CD-45

DISPLAY

DISPLAY

Modifies an existing screen display.

FORMAT DISPLAY [disp-name [AT wspec][dkind]][, .

PARAMETERS disp-name
Specifies a screen display to be displayed. You may specify any of the
following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

You must specify this parameter unless you use /GENERATE (parameter
optional), or /REFRESH (parameter not allowed).

You may specify more than one display, each with an optional window
specification (wspec) and display kind (dkind).

wspec
Specifies the screen window at which the display is to be positioned if you
want to change the position. You may specify any of the following:

• A predefined window. For example, RH1 (right top half). See
Appendix C.

• A window definition previously established with the SET WINDOW
command.

• A window specification of the form (start-line, line-count [,start-column,
column-count]). The specification can include expressions which may
be based on the built-in symbols %PAGE and % WIDTH (for example,
% WIDTH/4).

If you omit the wspec parameter, the screen position of the display is not
changed.

CD-46

DISPLAY

QUALIFIERS

dkind
Specifies the new display kind if you want to change the kind of display.
Valid keywords are the following:

DO (cmd-list) Specifies an automatically updated output display.
The commands in cmd-list are executed each
time the debugger gains control. Their output
forms the contents of the display.

INSTRUCTION Specifies an instruction display. If selected as
the current instruction display with the SELECT
/INSTRUCTION command, it will display the
output from subsequent EXAMINE/INSTRUCTION
commands.

Specifies an automatically updated instruction
display. The command specified must be
an EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

Specifies an output display. If selected as the
current output display with the SELECT/OUTPUT
command, it will display any debugger output
that is not directed to another display. If selected
as the current input display with the SELECT
/INPUT command, it will echo debugger input.
If selected as the current error display with
the SELECT/ERROR command, it will display
debugger diagnostic messages.

Specifies an automatically updated register
display. The display is updated each time the
debugger gains control.

Specifies a source display. If selected as
the current source display with the SELECT
/SOURCE command, it will display the output
from subsequent TYPE or EXAMINE/SOURCE
commands.

SOURCE (command) Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source
display is updated each time the debugger gains
control.

You cannot change the display kind of the PROMPT display.

INSTRUCTION (command)

OUTPUT

REGISTER

SOURCE

/CLEAR
Erases the entire contents of a specified display.

/[NOJDYNAMIC
Controls whether a display automatically adjusts its window dimensions
proportionally when a SET TERMINAL command is issued. By default
(/DYNAMIC), all user-defined and predefined displays, except register
displays, adjust their dimensions automatically. A register display maintains
its window dimensions and location when the screen height or width are
changed.

CD-47

/GENERATE
Regenerates the contents of a specified display. Only automatically generated
displays are regenerated. These include DO displays, register displays,
source (cmd-list) displays, and instruction (cmd-list) displays. The debugger
automatically regenerates all these kinds of displays before each prompt. If
no display is specified, regenerates the contents of all automatically generated
displays.

/HIDE
Places a specified display at the bottom of the display pasteboard. This makes
visible any display previously hidden by the specified display. It also hides
the specified display behind any other displays that share the same region of
the screen. You cannot hide the PROMPT display.

/HIDE has the same effect as /PUSH.

/[NOJMARK—CHANGE
Controls whether the lines that change in a DO display each time it is
automatically updated are marked. When you use /MARK—CHANGE, any
lines in which some contents have changed since the last time the display
was updated are highlighted in reverse video. This qualifier is particularly
useful when you want any variables in an automatically updated display to
be highlighted when they change.

/NOMARK—CHANGE (default) specifies that any lines that change in DO
displays are not to be marked. This qualifier cancels the effect of a previously
issued /MARK-CHANGE qualifier on the specified display.

This qualifier is not applicable to other kinds of displays.

/[NO]POP
Controls whether a specified display is placed at the top of the display
pasteboard, ahead of any other displays but behind the PROMPT display. By
default (/POP), the display is placed at the top of the pasteboard and hides
any other displays that share the same region of the screen, except for the
PROMPT display. This is the default action of the DISPLAY command.

/NOPOP preserves the order of all displays on the pasteboard (same effect as
/NOPUSH).

/[NOJPUSH
/PUSH has the same effect as /HIDE. /NOPUSH preserves the order of all
displays on the pasteboard (same effect as /NOPOP).

/REFRESH
Refreshes the terminal screen. If you use this qualifier, do not use any
command parameters.

DISPLAY

/REMOVE
Marks the display as being removed from the display pasteboard, so it will
not be shown on the screen unless you explicitly request it with another
DISPLAY command. Although a removed display is not visible on the screen,
it still exists and its contents are preserved. You cannot remove the PROMPT
display.

/SIZE:n
Changes the maximum size of a display to n lines. If more than n lines are
written to the display, the oldest lines are lost as the new lines are added. If
you omit this qualifier, the maximum size is not changed.

For an output or DO display, /SIZE:n specifies that the display should
hold the n most recent lines of output. For a source or instruction display,
n gives the number of source lines or lines of instructions that can be
placed in the memory buffer at any one time. However, you can scroll a
source display over the entire source code of the module whose code is
displayed (source lines are paged into the buffer as needed). Similarly, you
can scroll an instruction display over all of the instructions of the routine
whose instructions are displayed (instructions are decoded from the image as
needed).

DESCRIPTION The DISPLAY command performs a variety of functions. Its major function
is to show the display you have requested. The display is placed on top of
the display pasteboard, ahead of the other displays but behind the PROMPT
display, which cannot be hidden. The specified display thus becomes visible,
and the portions of any displays that share the same region of the screen are
hidden (although these displays still exist).

With certain qualifiers, you can use this command to remove displays from
the terminal screen or to refresh the entire screen. You can also use this
command to change the display's screen window, to change its maximum size
in lines, or to change its kind or debug command list.

See Appendix B for keypad-key definitions associated with the DISPLAY
command.

Related commands: (SET, SHOW, CANCEL) DISPLAY, (SET, SHOW,
CANCEL) WINDOW, SELECT, EXPAND, MOVE, (SET, SHOW) TERMINAL.

EXAMPLES
Q DBG> DISPLAY REG

This command shows the predefined register display, REG, at its current
window location.

2 DBG> DISPLAY NEWDISP AT RT2
DBG> SELECT/INPUT NEWDISP

The DISPLAY command shows the user-defined display NEWDISP at the
right middle third of the screen. The SELECT/INPUT command selects
NEWDISP as the current input display. NEWDISP will echo debugger input.

CD-49

EDIT

EDIT

Invokes the editor established with the SET EDITOR command. If
no SET EDITOR command was issued, invokes the VAX Language-
Sensitive Editor, if that editor is installed on your system.

FORMAT EDIT [[module-name \] line-number]

PARAMETERS module-name
Specifies the name of the module whose source file is to be edited. If you
specify a module name, you must also specify a line number. If you omit the
module name parameter, the source file whose code appears in the current
source display is chosen for editing.

line-number
A positive integer that specifies the source line on which the editor's cursor
is to be initially placed. If you omit this parameter, the cursor is initially
positioned at the start of the source line that is centered in the debugger's
current source display, or at the start of line 1 if the editor was set to
/NOSTART—POSITION (see the SET EDITOR command description).

QUALIFIERS /[NOJEXIT
Controls whether you end the debugging session prior to invoking the
debugger. If you specify /EXIT, the debugging session is terminated and the
editor is then invoked. If you specify /NOEXIT (default), the editing session
is spawned in a subprocess and you return to your debugging session after
exiting from the editor.

DESCRIPTION If you have not specified an editor with the SET EDITOR command, the
EDIT command invokes the VAX Language-Sensitive Editor in a spawned
subprocess (if the VAX Language-Sensitive Editor is installed on your system).
The typical (default) way to use the EDIT command is not to specify any
parameters. In this case, the editing cursor is initially positioned at the start
of the line that is centered in the currently selected debugger source display
(the current source display).

The SET EDITOR command provides options for invoking different editors,
either in a subprocess or through a callable interface.

Related commands: (SET, SHOW) EDITOR, (SET, SHOW, CANCEL)
SOURCE.

CD-50

EDIT

EXAMPLES
Q DBG> EDIT

The EDIT command spawns the VAX Language-Sensitive Editor in a
subprocess to edit the source file whose code appears in the current source
display. The editing cursor will be positioned at the start of the line that was
centered in the source display.

E DBG> EDIT SWAP\12

The EDIT command spawns the VAX Language-Sensitive Editor in a
subprocess to edit the source file containing the module SWAP. The editing
cursor will be positioned at the start of source line 12.

E DBG> SET EDITOR/CALLABLE.EDT
DBG> EDIT

The SET EDITOR/CALLABLE _EDT command establishes that EDT is the
default editor and is invoked through its callable interface (rather than
spawned in a subprocess). The EDIT command invokes EDT to edit the
source file whose code appears in the current source display. The editing
cursor will be positioned at the start of source line 1, because the default
qualifier /NOSTART_POSITION applies to EDT.

CD—51

ENABLE AST

ENABLE AST
Enables the delivery of asynchronous system traps (ASTs) in your
program.

FORMAT ENABLE AST

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The ENABLE AST command enables the delivery of asynchronous system
traps (ASTs) while the debugger is running, including any pending ASTs
(ASTs waiting to be delivered). Delivery of ASTs is initially enabled by
default.

Related commands: (DISABLE, SHOW) AST.

EXAMPLE
DBG> ENABLE AST

DBG> SHOW AST

ASTs are enabled

The ENABLE AST command enables the delivery of ASTs, as confirmed with
the SHOW AST command.

CD-52

EVALUATE

EVALUATE

Evaluates a language expression in the currently set language.

FORMAT EVALUATE !anguage-expression[f ... 7

PARAMETERS expression
Specifies any valid expression in the source language.

QUALIFIERS /CONDITION-VALUE
Specifies that the expression be interpreted as a VAX/VMS condition value
(the kind of condition value you would specify using the condition-handling
mechanism). The message text corresponding to that condition value is then
displayed. The specified value must be an integer value.

/BINARY
Specifies that the result be displayed in binary radix.

/DECIMAL
Specifies that the result be displayed in decimal radix.

/HEXADECIMAL
Specifies that the result be displayed in hexadecimal radix.

/OCTAL
Specifies that the result be displayed in octal radix.

DESCRIPTION The debugger interprets the parameter specified in an EVALUATE command
as a source-language expression, evaluates it in the syntax of the source
language, and displays its value as a literal in the source language.

If an expression contains symbols with different compiler-generated types, the
debugger uses the type-conversion rules of the current language to evaluate
the expression.

If you specify a radix command qualifier, the debugger displays the value of
the expression as a literal in that radix. A radix command qualifier does not,
however, affect how the debugger interprets a literal.

Debugger support for language-specific operators and constructs is described
in Appendix E.

Related commands: EVALUATE/ADDRESS, (SET, SHOW, CANCEL) RADIX,
(SET, SHOW, CANCEL) TYPE, SHOW SYMBOL.

CD-53

EVALUATE

EXAMPLES
Q DBG> EVALUATE 100.34 * (14.2 + 7.9)

2217.514

This command uses the debugger as a calculator by multiplying 100.34 by
(14.2 + 7.9).

Q DBG> EVALUATE/OCTAL X
00000001512

This command evaluates the symbol X and displays the result in octal radix.

gj DBG> EVALUATE TOTAL + CURR.AMOUNT
8247.20

This command evaluates the sum of the values of two real variables, TOTAL
and CURR-AMOUNT.

Q DBG> DEPOSIT WILLING = TRUE
DBG> DEPOSIT ABLE = FALSE

DBG> EVALUATE WILLING AND ABLE
False

The EVALUATE command evaluates the logical AND of the current values of
two boolean variables, WILLING and ABLE.

g DBG> EVALUATE COLOR’FIRST
RED

(Ada example). This command evaluates the first element of the enumeration
type COLOR.

CD-54

EVALUATE/ADDRESS

EVALUATE/ADDRESS

Evaluates an address expression and displays the result as a virtual
memory address.

FORMAT EVALUATE/ADDRESS address-expressionf, ... 7

PARAMETERS address-expression
Specifies an address expression of any valid form (for example, a routine
name, a variable name, a label, a line number, and so on).

QUALIFIERS /BINARY
Specifies that the result be displayed in binary radix.

/DECIMAL
Specifies that the result be displayed in decimal radix.

/HEXADECIMAL
Specifies that the result be displayed in hexadecimal radix.

/OCTAL
Specifies that the result be displayed in octal radix.

DESCRIPTION The EVALUATE/ADDRESS command lets you determine the virtual address
designated by an address expression.

By default, the address is displayed in hexadecimal radix for BLISS and
MACRO and decimal radix for other languages. You can use a radix
command qualifier to display address values in some other radix.

If a variable is stored in a register instead of virtual memory, the EVALUATE
/ADDRESS command returns the name of the register.

Related commands: EVALUATE, (SET, SHOW, CANCEL) RADIX, SHOW
SYMBOL /ADDRESS.

EXAMPLES
Q DBG> EVALUATE/ADDRESS MODNAMEV/.LINE 110

3942

This command determines the value of the address expression
MODNAME\%LINE 110.

Q DBG> EVALUATE/ADDRESS/HEX TOTAL

0000020E

This command determines the value of the address expression TOTAL and
displays the result in hexadecimal radix.

CD—55

EVALUATE / ADDRESS

0 DBG> EVALUATE/ADDRESS/HEX A,B.C

000004A4

000004AC

000004A0

This command determines the values of the address expressions A, B, and C
and displays these values in hexadecimal radix.

CD-56

EXAMINE

EXAMINE

Displays the current value of a variable.

FORMAT EXAM 1N E [address-expression[:address-expression]]

I---]

PARAMETERS address-expression
Specifies an entity to be examined. This is typically a variable name.
including the name of an aggregate (array or record). More generally, an
address expression may be composed of numbers and symbols, as well as one
or more operators, operands, or delimiters.

If a range of entities is to be examined, the value of the address expression
that denotes the first entity in the range must be less than the value of the
address expression that denotes the last entity in the range.

QUALIFIERS /ASCIC
Interprets each examined entity as a counted ASCII string with a 1-byte count
field. This is an ASCII string preceded by a 1-byte count field that gives the
length of the string to be displayed. /AC is also accepted.

/ASCID
Interprets each examined entity as the address of a string descriptor pointing
to an ASCII string. The CLASS and DTYPE fields of the descriptor are not
checked, but the LENGTH and POINTER fields provide the character length
and address of the ASCII string. The string is then displayed. /AD is also
accepted.

/ASCII.n
Interprets and displays each examined entity as an ASCII string of length n
bytes (n characters). If n is omitted, the debugger attempts to determine a
length from the type of the address expression.

/ASCIW
Interprets each examined entity as a counted ASCII string with a 1-word
count field. This is an ASCII string preceded by a 2-byte count field that
gives the length of the string to be displayed. /AW is also accepted.

/ASCIZ
Interprets and displays each examined entity as a zero-terminated ASCII
string. This is an ASCII string followed by a zero byte, to indicate the end of
the string. /AZ is also accepted.

/BINARY
Displays each examined entity as a binary integer.

CD-57

EXAMINE

/BYTE
Displays each examined entity in the byte integer type (length 1 byte).

/CONDITION-VALUE
Interprets each examined entity (usually register RO in this case) as a
condition-value return status and displays the message associated with
that return status.

/D—FLOAT
Displays each examined entity in the D_floating type (length 8 bytes). Values

of type D_floating may range from .29*10~38 to 2.7*2038 with approximately
16 decimal digits precision.

/DATE-TIME
Interprets each examined entity as a quadword integer (64 bits) containing
the internal VAX/VMS representation of date-time. Displays the value in the
format dd-mmm-yyyy hh:mm:ss.xx.

/DECIMAL
Displays each examined entity as a decimal integer.

/DEFAULT
Displays each examined entity in the default radix.

/FLOAT
Displays each examined entity in the F_floating type (length 4 bytes). Values

of type F_floating may range from .29*10~38 to 1.7+1038 with approximately 7
decimal digits precision.

/G-FLOAT
Displays each examined entity in the G—floating type (length 8 bytes). Values

of type G_floating may range from .56*20" 308 to .9*l(fi08 with approximately
15 decimal digits precision.

/H—FLOAT
Displays each examined entity in the H_floating type (length 16 bytes).

Values of type H_floating may range from .84*10~4932 to .59*104932 with
approximately 33 decimal digits precision.

/HEXADECIMAL
Displays each examined entity as a hexadecimal integer.

/INSTRUCTION
Displays each examined entity as a VAX assembly-language instruction
(variable length).

/[NOJLINE
Controls whether code locations are displayed in terms of line numbers
(%LINE x) or in terms of routine + byte-offset. By default (/LINE), the
debugger symbolizes code locations in terms of line numbers.

CD-58

EXAMINE

/LONGWORD
Displays each examined

/OCTAL
Displays each examined

/OCTAWORD
Displays each examined

entity in the longword integer type (length 4 bytes),

entity as an octal integer.

entity in the octaword integer type (length 16 bytes).

/PACKED:n
Interprets each examined entity as a "packed" decimal number of length n
nibbles.

/PSL
Displays each examined entity in PSL (processor status longword) format.

/PSW
Displays each examined entity in PSW (processor status word) format. /PSW
is like /PSL except that only the low order word (16 bits) is displayed.

/QUADWORD
Displays each examined entity in the quadword integer type (length 8 bytes).

/SOURCE
Displays the source line corresponding to the location of each examined
entity.

/[NO]S YMBOL
Controls whether symbolization occurs. By default (/SYMBOL), the debugger
symbolizes all addresses, if possible; that is, it converts numeric addresses
into their symbolic representation. If you specify /NOSYMBOL, the debugger
suppresses symbolization. You can use /NOSYMBOL to increase the speed
of command processing.

/TASK

Note: /TASK applies only to Ada programs.

Interprets each examined entity as an Ada task object and displays the task
value (the name or task ID) of that task object.

/TYPE=(type-expression)
Interprets the data type of each examined entity according to the type
specified by type-expression. You may use this qualifier when examining
the contents of an untyped location, such as a virtual address.

/WORD
Displays each examined entity in the type word integer (length 2 bytes).

CD-59

EXAMINE

DESCRIPTION The EXAMINE command displays the entity at the location denoted by an
address expression, in the type associated with that location.

The most common use of the EXAMINE command is to obtain the current
value of variables in your program. The debugger lets you specify the
variable name in the same way it is specified in the program. Moreover, the
debugger knows the compiler-generated type of a variable (whether it is an
integer, real, string, array, record, and so on) and displays the variable's value
accordingly. This is the default behavior of the EXAMINE command.

In general, the EXAMINE command lets you obtain the contents of any
program location. You can use the various qualifiers to override the default
behavior and specify another format, data type, or radix.

Examination of an aggregate (a composite data structure such as an array or
a record structure) displays the entire aggregate in terms of all its individual
components. You do not need to specify individual elements of the aggregate.
The aggregate output of an array shows the subscript and value of each array
element. Similarly, the aggregate output of a record shows the name and
value of each record component.

You can examine array slices by specifying a range of subscripts (use colons
to separate the lower and upper bounds).

The EXAMINE command sets the current entity built-in symbols %CURLOC
and period (.) to the location denoted by the address expression specified.
Logical predecessors (%PREVLOC and circumflex (")) and successors
(%NEXTLOC and pressing the RETURN key) are based on the value of
the current entity symbol.

Related Commands: DEPOSIT, EVALUATE, (SET, SHOW, CANCEL) RADIX,
(SET, SHOW) TYPE, CANCEL TYPE/OVERRIDE.

EXAMPLES
Q DBG> EXAMINE COUNT

SUB2XC0UNT: 27

This command displays the value of the integer variable COUNT, in module
SUB2.

Q DBG> EXAMINE PART.NUMBER
INVENTORY\PART_NUMBER: "LP-3592.6-84"

This command displays the value of the string variable PART-NUMBER.

E DBG> EXAMINE SUB1\ARR3
SUB1XARR3

(1.1) : 27.01000
(1.2) : 31.01000
(1.3) : 12.48000
(2.1) : 15.08000
(2.2) : 22.30000
(2.3) : 18.73000

This command displays the value of all elements in array ARR3, in module
SUB1. ARR3 is a 2 by 3 element array of real numbers.

CD-60

EXAMINE

Q DBG> EXAMINE SUB1\ARR3(2.1:3)
SUB1\ARR3

(2.1) : 15.08000
(2.2) : 22.30000
(2.3) : 18.73000

This command displays the value of the elements in a slice of array
SUB1\ARR3. The slice includes "columns" 1 through 3 of "row" 2.

B DBG> EXAMINE VALVES.INTAKE.STATUS
M0NIT0RWALVES . INTAKE. STATUS: OFF

This command displays the value of the nested record component
VALVES.INTAKE.STATUS in module MONITOR.

B DBG> EXAMINE/SOURCE SWAP
MAIN\SWAP

47: procedure SWAP(X,Y: in out INTEGER) is

This command displays the source line on which routine SWAP is declared
(the location of routine SWAP).

Q DBG> EXAMINE/ASC W0RK+20
DETAT\W0RK+2O: "abed"

This command displays the value of the entity in location WORK+20 as an
ASCII string (abed).

B DBG> EXAMINE/INST MAIN+2
MAIN\MAIN+02: MOVAL L~MAINA,R11

This command displays the instruction MOVAL from the location MAIN+2.

B DBG> examine/nosym workdata
0000086F: 03020100

This command displays the value of the address WORKDATA (0000086F) as
a virtual memory address (03020100).

EE dbg> examine/hex fidblk
FDEX1$MAIN\FIDBLK

(1): 00000008

(2): 00000100

(3): 000000AB

This command displays the value of the array variable FIDBLK in
hexadecimal radix.

ED DBG> EXAMINE/DECIMAL/WORD NEWDATA:NEWDATA+6
SUB2XNEWDATA: 256
SUB2\NEWDATA+2: 770
SUB2\NEWDATA+4: 1284
SUB2XNEWDATA+6: 1798

This command displays, in decimal radix, the values of word integer entities
(2-byte entities) that are in the range of locations denoted by NEWDATA
through NEWDATA + 6 bytes.

EE dbg> examine/task alpha
SAMPLE.ALPHA: ‘/.TASK 2

This command interprets ALPHA to be the address of an Ada task object and
displays the task value %TASK 2 associated with that task object.

CD—61

EXIT

EXIT

Ends the debugging session, or ends the execution of commands in
a command procedure or DO clause.

FORMAT EXIT

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION When you issue the EXIT command at the terminal, you cause orderly
termination of the debugging session: your program's exit handlers (if any)
are run, the debugger exit handler is executed (closing log files, restoring the
screen and keypad states, and so on), exit status information is displayed, and
control is returned to the command interpreter. You cannot then continue to
debug your program by issuing the DCL commands DEBUG or CONTINUE.
To restart the debugger, you must run the program again.

Note that, since EXIT runs your exit handlers, you can set breakpoints in your
exit handlers and they will be activated upon typing EXIT. EXIT can thus be
used to debug your exit handlers.

If you want to terminate your debugging session without running your exit
handlers, use the QUIT command instead of EXIT.

When the debugger executes an EXIT command in a command procedure,
control returns to the command stream that invoked the command procedure.
A command stream can be the terminal, an outer (containing) command
procedure, a DO clause in a SET BREAK, SET TRACE, or SET WATCH
command, or a DO clause in a screen display definition. For example, if the
command procedure was invoked from within a DO clause, control returns
to that DO clause, where the debugger executes the next command (if any
remain in the command sequence).

When the debugger executes an EXIT command in a DO clause, it ignores
any remaining commands in that clause and displays its prompt.

Related commands: CTRL/Z, QUIT, CTRL/Y, CTRL/C, @file-spec.

EXAMPLE
DBG> EXIT

$

This command ends the debugging session and returns you to the DCL
command level.

CD-62

EXITLOOP

EXITLOOP

Exits an enclosing FOR, REPEAT, or WHILE loop.

FORMAT EXITLOOP [n]

PARAMETERS n
An integer that specifies the number of levels of nested loops to exit from.
The default is 1.

QUALIFIERS None.

DESCRIPTION Use the EXITLOOP command to exit an enclosing FOR, REPEAT, or WHILE
loop.

Related commands: FOR, REPEAT, WHILE.

EXAMPLE
DBG> WHILE 1 DO (STEP; IF X .GT. 3 THEN EXITLOOP)

The WHILE 1 command generates an endless loop that executes a STEP
command with each iteration. After each STEP, the value of X is tested. If X
is greater than 3, the EXITLOOP command terminates the loop.

CD-63

EXPAND

EXPAND

Expands or contracts the window associated with a screen display.

FORMAT EXPAND [disp-name[, ... 77

PARAMETERS disp-name
Specifies a display to be expanded or contracted. You may specify any of the
following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, % NEXT OUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by
the SELECT command, is chosen.

QUALIFIERS You must specify at least one qualifier.

/DOWI\l[:n]
Moves the bottom border of the display down by n lines (if n is positive) or
up by n lines (if n is negative). If n is omitted, the border is moved down by
1 line.

/LEFT[:n]
Moves the left border of the display to the left by n lines (if n is positive) or
to the right by n lines (if n is negative). If n is omitted, the border is moved
to the left by 1 line.

/RIGHT[:n]
Moves the right border of the display to the right by n lines (if n is positive)
or to the left by n lines (if n is negative). If n is omitted, the border is moved
to the right by 1 line.

/UP[:n]
Moves the top border of the display up by n lines (if n is positive) or down
by n lines (if n is negative). If n is omitted, the border is moved up by 1 line.

DESCRIPTION The EXPAND command moves one or more display-window borders
according to the qualifiers specified (/UP:[n], /DOWN:[n], RIGHT:[n],
/LEFT:[n]).

The EXPAND command does not affect the order of a display on the display
pasteboard. Depending on the relative order of displays, the EXPAND
command may cause the specified display to hide or uncover another display
or be hidden by another display, partially or totally.

CD-64

EXPAND

Except for the PROMPT display, any display can be contracted to the point
where it disappears (at which point it is marked as "removed"). It can then
be expanded from that point. Contracting a display to the point where it
disappears will cause it to lose any attributes that were selected for it. The
PROMPT display cannot be contracted or expanded horizontally but can be
contracted vertically to a height of 2 lines.

A window border can be expanded only up to the edge of the screen. The
left and top window borders cannot be expanded beyond the left and top
edges of the display, respectively. The right border can be expanded up to
255 columns from the left display edge. The bottom border of a source or
instruction display can be expanded down only to the bottom edge of the
display (to the end of the source module or routine's instructions). A register
display cannot be expanded beyond its full size.

See Appendix B for keypad-key definitions associated with the EXPAND
command.

Related commands: MOVE, DISPLAY, SELECT/SCROLL, (SET, SHOW)
TERMINAL.

EXAMPLES
□ DBG> EXPAND/RIGHT:6

The EXPAND command moves the right border of the current scrolling
display to the right by 6 columns.

S DBG> EXPAND/UP/RIGHT:-12 0UT2

The EXPAND command moves the top border of display OUT2 up by 1 line,
and the right border to the left by 12 columns.

0 DBG> EXPAND/DOWN:99 SRC

The EXPAND command moves the bottom border of display SRC down to
the bottom edge of the screen.

CD-65

EXTRACT

EXTRACT

Saves the contents of screen displays in a file or creates a file with
all of the debugger commands necessary to re-create the current
screen state at a later time.

FORMAT EXTRACT [disp-name[, . . .]] [file-spec]

PARAMETERS disp-name
Specifies a display to be extracted. You can use the wildcard character (») in
a display name. When using /ALL, do not specify a display name.

file-spec
Specifies the file to which the information will be written. You can specify a
logical name.

If you specify /SCREEN—LAYOUT, the default specification for the file
is SYS$DISK:[JDBGSCREEN.COM. Otherwise, the default specification is
SYS$DISK:[JDEBUG.TXT.

QUALIFIERS /ALL
Extracts all displays. If /ALL is used, do not specify a display name. Do not
specify /SCREEN-LAYOUT with /ALL.

/APPEND
Appends the information at the end of the file, rather than creating a new file.
By default, a new file is created. Do not specify /SCREEN—LAYOUT with
/APPEND.

/SCREEN-LAYOUT
Writes a file that contains the debugger commands describing the current
state of the screen. This information includes the screen height and width,
and the position, display kind, and display attributes of every existing display.
This file can then be executed with the @file-spec command to reconstruct
the screen at a later time.

DESCRIPTION When you use the EXTRACT command to save the contents of a display into
a file, only those lines that are currently stored in the display's memory buffer
(as determined by the /SIZE qualifier on the DISPLAY or SET DISPLAY
command) are written to the file.

You cannot extract the PROMPT display into a file.

Related commands: SAVE, DISPLAY.

CD-66

EXTRACT

EXAMPLES
Q DBG> EXTRACT SRC

This command writes all the lines in display SRC into file
SYS$DISK:[JDEBUG.TXT.

Q DBG> EXTRACT/APPEND OUT [JONES.WORK]MYFILE

This command appends all the lines in display OUT to the end of file
[JONES.WORKJMYFILE.TXT.

B DBG> E1XTRACT/SCREEN .LAYOUT

This command writes the debugger commands needed to reconstruct the
screen into file SYS$DISK:[]DBGSCREEN.COM.

CD-67

FOR

FOR

Executes a sequence of commands repetitively a specified number
of times.

FORMAT FOR name=expression 7 TO expression2 [BY
expression3] DO (commandf; . . .])

PARAMETERS name
Specifies the name of a count variable.

expression 1
Specifies an integer or enumeration type value. The expression1 and
expression2 parameters must always be of the same type.

expression2
Specifies an integer or enumeration type value. The expressionl and
expression2 parameters must always be of the same type.

expression3
Specifies an integer.

command
Specifies a debugger command. If you specify more than one command, they
must be separated by semicolons.

QUALIFIERS None.

DESCRIPTION The behavior of the FOR command depends on the value of the expressions
parameter. If expressions is positive, name is incremented from the value of
expressionl by the value of expressions until it is greater than the value of
expression.

If expressions is negative, name is decremented from the value of expressionl
by the value of expressions until it is less than the value of expression.

If expressions is zero, the debugger returns an error message.

If expressions is left out entirely, the debugger assumes it to have the
value +1.

Related commands: REPEAT, WHILE, EXITLOOP.

CD-68

FOR

EXAMPLES
Q DBG> FOR I = 10 TO 1 BY -1 DO (EXAMINE A(I))

This example examines an array backwards.

2 DBG> FOR I = 1 TO 10 DO (DEPOSIT A(I) = 0)

This example initializes an array to zero.

CD-69

GO

GO

Starts or resumes program execution.

FORMAT GO [address-expression]

PARAMETERS address-expression
Specifies that program execution resume at the location denoted by the
address expression. If you do not specify an address expression, execution
resumes at the point of suspension or, in the case of debugger start up, at the
transfer address.

QUALIFIERS None.

DESCRIPTION Note that specifying an address expression with the GO command can
produce unexpected results because it alters the normal control flow of your
program. For example, static storage may not be initialized, and so on.

Related commands: STEP, SET STEP, SET BREAK, SET TRACE, SET
WATCH.

EXAMPLES
Q DBG> GO

7.DEBUG-I-EXITSTATUS, is ’‘/.SYSTEM-S-NORMAL, normal successful completion

Q DBG> GO

This command starts program execution, which then completes successfully.

break at INVENTORY\RESTORE
137: procedure RESTORE;

This command starts program execution, which is then suspended at a

a DBG> GO ‘/.LINE 42

breakpoint on routine RESTORE in module INVENTORY.

This command resumes program execution at line 42 of the currently
executing module.

CD-70

HELP

HELP

Displays online help on debugger commands and selected topics.

FORMAT HELP help-topic[subtopic[... 77

PARAMETERS help-topic
Specifies the name of a debugger command or topic about which you need
help. You can specify the wildcard character (*), either singly or within a
name.

subtopic
Specifies a subtopic, command qualifier, or command parameter about which
you want further information. You can specify *, either singly or within a
name.

QUALIFIERS None.

DESCRIPTION The debugger's online help facility provides the following information
about any debugger command: a description of the command, format of
the command, parameters that may be specified with the command, and
qualifiers that may be specified with the command.

To obtain information about a particular qualifier or parameter, specify it
as a subtopic. If you want information about all command qualifiers, specify
"qualifier" as a subtopic. If you want information about all parameters, specify
"parameter" as a subtopic. If you want information about all parameters,
qualifiers, and any other subtopics related to a command, specify * as a
subtopic.

In addition to help on commands, you can get online help on various topics
such as screen features, keypad mode, and so on. Topic keywords are listed
along with the commands when you type HELP.

Type HELP Release-Notes for information about any incompatibilities
between the current release of the debugger and previous releases. Type
HELP New_Features for summary information on new features with this
release of the debugger.

For help on the keypad predefined keys, see Appendix B.

CD-71

HELP

EXAMPLE
DBG> HELP DEFINE

DEFINE

Defines one or more symbols and assigns them specified
addresses for the duration of the debugging session.

Format:

DEFINE Bymbol=expression [,symbol=expression ...]

Additional information available:

Parameters

This command displays help for the DEFINE command.

CD-72

IF

IF

Executes a sequence of commands conditionally.

FORMAT IF boolean-expression THEN (commandf; ■■■])[
ELSE (commandf; ■..])]

PARAMETERS boolean-expression
Specifies a language expression that evaluates as a Boolean value (TRUE or
FALSE) in the currently set language.

command
Specifies a debugger command. If you specify more than one command, you
must separate them with semicolons.

QUALIFIERS None.

DESCRIPTION The IF command evaluates a boolean-expression. If the value is TRUE (as
defined in the current language), the debugger command list in the THEN
clause is executed. If the expression is FALSE, the command list in the ELSE
clause is executed (if it is present).

Related commands: FOR, REPEAT, WHILE, EXITLOOP.

EXAMPLE
DBG> SET BREAK R DO (IF X .LT.5 THEN (GO) ELSE (EXAMINE X))

This command tells the debugger to suspend program execution at location
R (a breakpoint) and then resume program execution if the value of X is less
than 5 (FORTRAN example). If the value of X is 5 or more, the value of X is
displayed.

CD-73

MOVE

MOVE

Moves a screen display vertically and/or horizontally across the
screen.

FORMAT MOVE [disp-name[, ... 77

PARAMETERS disp-name
Specifies a display to be moved. You may specify any of the following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by
the SELECT command, is chosen.

QUALIFIERS You must specify at least one qualifier.

/DOWI\l[:n]
Moves the display down by n lines (if n is positive) or up by n lines (if n is
negative). If n is omitted, the display is moved down by 1 line.

/LEFT[:n]
Moves the display to the left by n lines (if n is positive) or right by n lines (if
n is negative). If n is omitted, the display is moved to the left by 1 line.

/R!GHT[:n]
Moves the display to the right by n lines (if n is positive) or left by n lines (if
n is negative). If n is omitted, the display is moved to the right by 1 line.

/UP[:n]
Moves the display up by n lines (if n is positive) or down by n lines (if n is
negative). If n is omitted, the display is moved up by 1 line.

DESCRIPTION For each display specified, the MOVE command simply creates a window
of the same dimensions elsewhere on the screen and maps the display to it,
while maintaining the relative position of the text within the window.

The MOVE command does not change the order of a display on the display
pasteboard. Depending on the relative order of displays, the MOVE
command may cause the display to hide or uncover another display or be
hidden by another display, partially or totally.

A display can be moved only up to the edge of the screen.

CD-74

MOVE

See Appendix B for keypad-key definitions associated with the MOVE
command.

Related commands: EXPAND, DISPLAY, SELECT/SCROLL, (SET, SHOW)
TERMINAL.

EXAMPLES
Q DBG> MOVE/LEFT

The MOVE command moves the current scrolling display to the left by 1
column.

Q DBG> MOVE/UP:3/RIGHT:5 NEW.OUT

The MOVE command moves display NEW_OUT up by 3 lines and to the
right by 5 columns.

CD-75

QUIT

QUIT

Ends the debugging session, or ends the execution of commands in
a command procedure or DO clause (analogous to EXIT). Does not
execute any exit handlers you have declared.

FORMAT QUIT

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION When you issue the QUIT command at the terminal, you cause orderly
termination of the debugging session: the debugger exit handler is executed
(closing log files, restoring the screen and keypad states, and so on), exit
status information is displayed, and control is returned to the command
interpreter. You cannot then continue to debug your program by issuing the
DCL commands DEBUG or CONTINUE. To restart the debugger, you must
run the program again.

Note that, in contrast to the EXIT command, the QUIT command does not
execute any exit handlers that you may have declared.

When the debugger executes a QUIT command in a command procedure,
control returns to the command stream that invoked the command procedure.
A command stream can be the terminal, an outer (containing) command
procedure, a DO clause in a SET BREAK, SET TRACE, or SET WATCH
command, or a DO clause in a screen display definition. For example, if the
command procedure was invoked from within a DO clause, control returns
to that DO clause, where the debugger executes the next command (if any
remain in the command sequence).

When the debugger executes a QUIT command in a DO clause, it ignores any
remaining commands in that clause and displays its prompt.

Related commands: EXIT, CTRL/Z, CTRL/Y, CTRL/C, @file-spec.

EXAMPLE
DBG> QUIT

$

This command, when issued from the DBG> prompt, ends the debugging
session and returns you to DCL command level.

CD-76

REPEAT

REPEAT

Executes a sequence of commands repetitively a specified number
of times.

FORMAT REPEAT lang-exp DO (command[; . . .])

PARAMETERS lang-exp
Denotes any expression in the currently set language that evaluates to a
positive integer.

command
Specifies a debugger command. If you specify more than one command, they
must be separated by semicolons.

DESCRIPTION The REPEAT command is a simple form of the FOR command. The REPEAT
command executes a sequence of commands repetitively a specified number
of times, without providing the options for establishing count parameters that
the FOR command does.

Related commands: FOR, WHILE, EXITLOOP.

EXAMPLE
DBG> REPEAT 10 DO (STEP)

This command causes the debugger to STEP 10 times.

CD-77

SAVE

SAVE

Preserves the contents of an existing screen display in a new
display.

FORMAT SAVE old-disp AS new-disp [, ... 7

PARAMETERS old-disp
Specifies the display whose contents you want to save.

new-disp
Specifies the name of the new display to be created. This new display then
receives the contents of the old-disp display.

QUALIFIERS None.

DESCRIPTION The SAVE command permits a "snapshot" of an existing display to be saved
in a new display for later reference. The new display is created with the same
text contents as the existing display. In general, the new display is given all
the attributes or characteristics of the old display except that it is removed
from the screen and is never automatically updated. You can later recall the
saved display to the terminal screen with the DISPLAY command.

When you use the SAVE command, only those lines that are currently stored
in the display's memory buffer (as determined by the /SIZE qualifier on
the DISPLAY or SET DISPLAY command) are stored in the saved display.
However, in the case of a saved source or instruction display, the debugger
also lets you see any other source lines associated with that module or any
other instructions associated with that routine (by scrolling the saved display).

You cannot save the PROMPT display.

Related commands: EXTRACT, DISPLAY.

EXAMPLE
DBG> save REG AS OLDREG

This command saves the contents of the display named REG into the newly
created display named OLDREG.

CD-78

SCROLL

SCROLL

Scrolls a screen display to make other parts of the text visible
through the display window.

FORMAT SCROLL [disp-name]

PARAMETERS disp-name
Specifies a display to be scrolled. You may specify any of the following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by
the SELECT command, is chosen.

QUALIFIERS /BOTTOM
Scrolls down to the bottom of the display's text.

/DOWN:[n]
Scrolls down over the display's text by n lines to reveal text further down in
the display. If n is omitted, the display is scrolled by approximately 3/4 of its
window height.

/LEFT:[n]
Scrolls left over the display's text by n columns to reveal text beyond the left
window border. You cannot scroll past column 1. If n is omitted, the display
is scrolled left by 8 columns.

/RIGHT[:n]
Scrolls right over the display's text by n columns to reveal text beyond the
right window border. You cannot scroll past column 255. If n is omitted, the
display is scrolled right by 8 columns.

/TOP
Scrolls up to the top of the display's text.

/UP[:n]
Scrolls up over the display's text by n lines to reveal text further up in the
display. If n is omitted, the display is scrolled by approximately 3/4 of its
window height.

CD-79

SCROLL

DESCRIPTION The SCROLL command moves a display up, down, right, or left relative to its
window so that various parts of the display text can be made visible through
the window.

Use the SELECT/SCROLL command to select the target display for the
SCROLL command (the current scrolling display).

See Appendix B for keypad-key definitions associated with the SCROLL
command.

Related commands: SELECT.

EXAMPLES

□

E

dbg> scroll/left

This command scrolls the current scrolling display to the left by 8 columns.

DBG> SCROLL/UP:4 ALPHA

This command scrolls display ALPHA 4 lines up.

CD-80

SEARCH

SEARCH

Searches the source code for a specified string and displays source
lines that contain an occurrence of the string.

FORMAT SEARCH [range] [string]

PARAMETERS range
Specifies a program region to be searched. Use any of the following formats:

mod-name Searches the specified module from line 0
to the end of the module.

mod-name\line-num Searches the specified module from the
specified line number to the end of the
module.

Searches the specified module from the line
number specified on the left of the colon to
the line number specified on the right.

Searches the module designated by the
current scope setting, from the specified
line number to the end of the module.

Searches the module designated by the
current scope setting from the line number
specified on the left of the colon to the line
number specified on the right.

Searches the same module as that from
which a source line was most recently
displayed (as a result of a TYPE, EXAMINE
/SOURCE, or SEARCH command, for
example), beginning at the first line
following the line most recently displayed
and continuing to the end of the module.

mod-name\line-num:line-num

line-num

line-num:line-num

null (no entry)

string
Specifies the source code characters for which to search. If you do not specify
a string, the string specified in the last SEARCH command, if any, is used.

You must enclose the string in quotation marks or apostrophes if

• The string has any leading or trailing space or tab characters

• The string contains an embedded semicolon

• The range parameter is null

If the string is enclosed in quotation marks, use a double quotation mark
("") to indicate an enclosed quotation mark. If the string is enclosed in
apostrophes, use a double apostrophe (") to indicate an enclosed apostrophe.

CD-81

SEARCH

QUALIFIERS /ALL
Specifies that the debugger search for all occurrences of the string in the
specified range and display every line containing an occurrence of the string.

/IDENTIFIER
Specifies that the debugger search for an occurrence of the string in the
specified range but display the string only if it is not bounded on either side
by a character that can be part of an identifier in the current language.

/NEXT
Specifies that the debugger search for the first occurrence of the string in the
specified range and display only the line containing this occurrence. This is
the default.

/STRING
Specifies that the debugger search for and display the string as specified, and
not interpret the context surrounding an occurrence of the string, as it does in
the case of /IDENTIFIER. This is the default.

DESCRIPTION SEARCH command qualifiers determine whether the debugger: (1) searches
for all occurrences (/ALL) of the string or only the next occurrence (/NEXT);
and (2) displays any occurrence of the string (/STRING) or only those
occurrences in which the string is not bounded on either side by a character
that can be part of an identifier in the current language (/IDENTIFIER).

Note that a module in which a search is to take place must be set. Use the
SHOW MODULE command to determine whether a particular module is set.
Then use the SET MODULE command, if necessary.

If you plan to issue several SEARCH commands with the same qualifier, you
can first use the SET SEARCH command to establish a new default qualifier
(for example, SET SEARCH ALL makes the SEARCH command behave like
SEARCH/ALL). Then you do not have to use that qualifier with the SEARCH
command. You can override the current default qualifiers for the duration of
a single SEARCH command by specifying other qualifiers.

Related commands: (SET, SHOW) SEARCH, (SET, SHOW) LANGUAGE,
(SET, SHOW) SCOPE, (SET, SHOW) MODULE.

EXAMPLES
Q DBG> SEARCH/STRING/ALL 40:50 D

module C0B0LTEST
40: 02 D2N COMP-2 VALUE -234560000000.
41: 02 D COMP-2 VALUE 222222.33.
42: 02 DN COMP-2 VALUE -222222.333333.
47: 02 DR0 COMP-2 VALUE 0.1.
48: 02 DR5 COMP-2 VALUE 0.000001.
49: 02 DR10 COMP-2 VALUE 0.00000000001.
50: 02 DR15 COMP-2 VALUE 0.0000000000000001

This command searches for all occurrences of the letter D in lines 40 through
50 of the module COBOLTEST.

CD-82

SEARCH

Q DBG> SEARCH/IDENTIFIER/ALL 40:50 D
module COBOLTEST

41: 02 D COMP-2 VALUE 222222.33.

This command searches for all occurrences of the letter D in lines 40 through
50 of the module COBOLTEST. The debugger displays the only line where
the letter D (the search string) is not bounded on either side by a character
that can be part of an identifier in the current language.

S DBG> SEARCH/NEXT 40:50 D
module COBOLTEST

40: 02 D2N COMP-2 VALUE -234560000000.

This command searches for the next occurrence of the letter D in lines 40 to
50 of the module COBOLTEST.

Q DBG> SEARCH/NEXT
module COBOLTEST

41: 02 D COMP-2 VALUE 222222.33.

This command searches for the next occurrence of the letter D. The debugger
assumes D to be the search string because D was the last one entered and no
other search string was specified.

CD-83

SELECT

SELECT

Selects a screen display as the current error, input, instruction,
output, program, prompt, scrolling, or source display.

FORMAT SELECT [disp-name]

PARAMETERS disp-name
Specifies the display to be selected. You may specify any one of the
following, with the restrictions noted in the qualifier descriptions:

• A predefined display (SRC, OUT, INST, REG, and PROMPT).

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you omit this parameter and do not specify a qualifier, you "unselect"
the current scrolling display (no display then has the scrolling attribute). If
you omit this parameter but specify a qualifier (/INPUT, /SOURCE, and
so on), you unselect the current display with that attribute (see the qualifier
descriptions).

QUALIFIERS /ERROR
If you specify a display, selects it as the current error display. This causes all
debugger diagnostic messages to go to that display. The display specified
must be either an output display or the PROMPT display.

If you do not specify a display, the PROMPT display is selected as the current
error display.

By default, the PROMPT display has the error attribute.

/INPUT
If you specify a display, selects it as the current input display. This causes
that display to echo debugger input (which always appears in the PROMPT
display). The display specified must be an output display.

If you do not specify a display, the current input display is unselected and
debugger input is not echoed to any display (debugger input appears only in
the PROMPT display).

By default, no display has the input attribute.

/INSTRUCTION
If you specify a display, selects it as the current instruction display. This
causes the output of all EXAMINE/INSTRUCTION commands to go to that
display. The display specified must be an instruction display.

If you do not specify a display, the current instruction display is unselected
and no display has the instruction attribute.

CD-84

SELECT

By default, for all languages except MACRO, no display has the instruction
attribute. If the language is set to MACRO, the INST display has the
instruction attribute by default.

/OUTPUT
If you specify a display, selects it as the current output display. This causes
debugger output that is not already directed to another display to go to
that display. The display specified must be either an output display or the
PROMPT display.

If you do not specify a display, the PROMPT display is selected as the current
output display.

By default, the OUT display has the output attribute.

/PROGRAM
If you specify a display, selects it as the current program display. This causes
the debugger to try to force program input and output to that display.
Currently, only the PROMPT display may be specified.

If you do not specify a display, the current program display is unselected and
program input and output are no longer forced to the specified display.

By default, the PROMPT display has the program attribute, except on
Micro VAX workstations, where the program attribute is unselected.

/PROMPT
Selects the specified display as the current prompt display. This is where the
debugger prompts for input. Currently, only the PROMPT display may be
specified. Moreover, you cannot unselect the PROMPT display (the PROMPT
display always has the prompt attribute).

/SCROLL
If you specify a display, selects it as the current scrolling display. This is the
default display for the SCROLL, MOVE, and EXPAND commands. Although
any display may have the scroll attribute, note that you can use only the
MOVE and EXPAND commands (not the SCROLL command) with the
PROMPT display.

If you do not specify a display, the current scrolling display is unselected and
no display has the scroll attribute.

By default, for all languages except MACRO, the SRC display has the scroll
attribute. If the language is set to MACRO, the INST display has the scroll
attribute by default.

Note: If no qualifier is specified, /SCROLL is assumed by default.

/SOURCE
If you specify a display, selects it as the current source display. This causes the
output of all TYPE and EXAMINE/SOURCE commands to go to that display.
The display specified must be a source display.

If you do not specify a display, the current source display is unselected and
no display has the source attribute.

By default, for all languages except MACRO, the SRC display has the source
attribute. If the language is set to MACRO, no display has the source attribute
by default.

CD-85

SELECT

DESCRIPTION Attributes are used to select the current scrolling display and to direct various
types of debugger output to particular displays. This gives you the option
of mixing or isolating different types of information, such as debugger input,
output, diagnostic messages, and so on in scrollable displays.

You use the SELECT command with one or more qualifiers (/ERROR,
/SOURCE, and so on) to assign one or more corresponding attributes to a
display. If you do not specify a qualifier, the /SCROLL qualifier is assumed
by default.

If you use the SELECT command without specifying a display name, in
general the attribute assignment indicated by the command qualifier is
canceled ("unselected"). To reassign display attributes you must use another
SELECT command. See the individual qualifier descriptions for details.

See Appendix B for keypad-key definitions associated with the SELECT
command.

Related commands: SHOW SELECT, SCROLL, MOVE, EXPAND, DISPLAY,
SET DISPLAY.

EXAMPLES

□ DBG> SELECT/SOURCE/SCROLL SRC2

The SELECT/SOURCE/SCROLL command selects display SRC2 as the
current source and scrolling display.

0 DBG> SELECT/INPUT/ERROR OUT

The SELECT/INPUT/ERROR command selects display OUT as the current
input and error display. This causes debugger input, debugger output
(assuming OUT is the current output display), and debugger diagnostic
messages to be logged in the OUT display in the correct sequence.

E DBG> SELECT/SOURCE

The SELECT/SOURCE command unselects (removes the source attribute
from) the currently selected source display. The output of a TYPE or
EXAMINE/SOURCE command will then go to the currently selected output
display.

CD-86

SET ATSIGN

SET ATSIGN

Establishes the default file specification that the debugger uses
when searching for command procedures.

FORMAT SET ATSIGN file-spec

PARAMETERS file-spec
Specifies any part of a VAX/VMS file specification (for example, a directory
name or a file type) that the debugger is to use by default when searching
for a command procedure. If you do not supply a full file specification, the
debugger assumes SYS$DISK:[]DEBUG.COM as the default file specification
for any missing field.

You may specify a logical name that translates to a search list. In this case,
the debugger processes the file specifications in the order they appear in the
search list until the command procedure is found.

QUALIFIERS None.

DESCRIPTION When you invoke a command procedure during a debugging
session, the debugger, by default, assumes that its file specification is
SYS$DISK:[]DEBUG.COM. The SET ATSIGN command lets you override
this default.

Related commands: @file-spec, SHOW ATSIGN.

EXAMPLES

□ DBG> SET ATSIGN USER:[JONES.DEBUG].DBG
DBG> (DTEST

When you invoke @TEST, the debugger looks for the file TEST.DBG in
USER:[JONES.DEBUG].

CD—87

SET BREAK

SET BREAK

Establishes a breakpoint at the location denoted by an address-
expression, or at instructions of a particular class.

FORMAT SET BREAK [addr-expr[, . . .]][WHEN(cond-expr)]
[DO(command[; ...])]

PARAMETERS addr-expr
Specifies an address expression (a program location) at which a breakpoint
is to be set. In general, this may be a line number, a routine name, a label,
or a location in memory. However, the /MODIFY and /RETURN qualifiers
are used with specific kinds of address expressions. Do not use the wildcard
character (*). Do not use an address expression when specifying /BRANCH,
/CALL, /EXCEPTION, /INSTRUCTION[=(opcode-list)], /INTO, /[NO]JSB,
/LINE, /OVER, /[NO]SHARE, or /[NO]SYSTEM.

command
Specifies a debugger command that is to be executed as part of the DO clause
when break action is taken.

cond-expr
Specifies a conditional expression in the currently set language that is to be
evaluated every time the breakpoint occurs. If the expression is TRUE, break
action occurs, and the debugger reports that a break has occurred. If the
expression is FALSE, break action does not occur. In this case, a report is
not issued, the commands specified by the DO clause are not executed, and
program execution is continued.

QUALIFIERS /AFTER:n
Specifies that break action not be taken until the nth time the designated
breakpoint is encountered (n is a decimal integer). Thereafter, the breakpoint
occurs every time it is encountered provided that conditions in the WHEN
clause are TRUE. The command SET BREAK/AFTER:1 has the same effect as
the SET BREAK command.

/BRANCH
Causes the debugger to break on every branch instruction encountered
(including BEQL, BGTR, BLEQ, BGEQ, BLSS, BGTRU, BLEQU, BVC, BVS,
BGEQU, BLSSU, BRB, BRW, JMP, BBS, BBC, BBSS, BBCS, BBSC, BBCC,
BBSSI, BBCCI, BLBS, BLBC, ACBB, ACBW, ACBL, ACBF, ACBD, ACBG,
ACBH, AOBLEQ, AOBLSS, SOBGEQ, SOBGTR, CASEB, CASEW, CASEL)
during execution. Do not specify an address expression with this qualifier.
See also /INTO, /OVER.

CD-88

SET BREAK

/CALL
Causes the debugger to break on every call instruction (including the CALLS,
CALLG, BSBW, BSBB, JSB, RSB, and RET instructions) encountered during
execution. Do not specify an address expression with this qualifier. See also
/INTO, /OVER.

/EVENT=event-name

Note: /EVENT applies only to Ada and SCAN. See the VAX Ada and VAX
SCAN documentation for complete information.

Causes the debugger to break every time the specified event occurs (if that
event is defined and detected by the run-time system). If you specify an
address expression with /EVENT, causes the debugger to break every time
the specified event occurs for that address expression. Event names depend
on the run-time facility and are identified in Appendix E for Ada and SCAN.
Note that you cannot specify an address expression with certain event names.

/EXCEPTION
Causes the debugger to break every time an exception is signaled. The break
action occurs before any user-written exception handlers are invoked. SET
BREAK/EXCEPTION is the same as SET EXCEPTION BREAK. Do not specify
an address expression with this qualifier.

/INSTRUCTION
Causes the debugger to break on every instruction executed. Do not specify
an address expression with this qualifier. See also /INTO, /OVER.

/INSTRUCTION=(opcode[, . . .])
Causes the debugger to break on every instruction whose opcode is in the
list. Do not specify an address expression with this qualifier. See also /INTO,
/OVER.

/INTO
Sets breakpoints within called routines (as well as within the main program)
when /BRANCH, /CALL, /INSTRUCTION=[(opcode-list)], or /LINE is
specified; that is, when an address expression is not explicitly specified.
/INTO is the default behavior and is the opposite of /OVER. When
using /INTO, you can further qualify the breakpoints with the /[NO]JSB,
/[NO]SHARE, and /[NO]SYSTEM qualifiers.

/[NO]JSB
Qualifies /INTO. Use /[NO]JSB with /INTO and one of these qualifiers:
/BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or /LINE. /JSB is
the default for all languages except DIBOL. /JSB lets the debugger break
within routines that are called by the JSB or CALL instruction. /NOJSB
(the DIBOL default) specifies that breakpoints not be set within routines
called by JSB instructions. In DIBOL, user-written routines are called by the
CALL instruction and DIBOL run-time library routines are called by the JSB
instruction. Do not specify an address expression with this qualifier.

/LINE
Causes the debugger to break at the start of each new line. Do not specify an
address expression with this qualifier. See also /INTO, /OVER.

CD-89

SET BREAK

/MODIFY
Causes a break at every instruction that writes to and modifies the value of
the location indicated by the address expression. The address expression is
typically a variable name.

The SET BREAK/MODIFY command acts exactly like a SET WATCH
command and operates under the same restrictions.

If you specify an absolute address for the address expression, the debugger
may not be able to associate the address with a particular data object. In
this case, the debugger uses a default length of 4 bytes. You can change this
length, however, by setting the type to either WORD (which changes the
default length to 2 bytes) or BYTE (which changes the default length to 1
byte).

/OVER
Sets breakpoints only within the main program (not within called routines)
when /BRANCH, /CALL, /INSTRUCTION=[(opcode-list)], or /LINE is
specified; that is, when an address expression is not explicitly specified.
/OVER is the opposite of /INTO.

/RETURN
Sets a breakpoint on the RETURN (RET) instruction from an indicated
routine. This qualifier can only be applied to routines called with a CALLS or
CALLG instruction; it cannot be used with JSB routines. Breaking on the RET
instruction also allows you to inspect the local environment before the RET
instruction removes the routine's call frame from the call stack.

For this qualifier, the address-expression parameter is an instruction address
within a CALLS or CALLG routine. It may simply be a routine name, in
which case it specifies the routine start address. However, you can also
specify another location in a routine, so you can see only those returns that
are taken after a certain code path is followed.

/[NOJSHARE
Qualifies /INTO. Use /[NOJSHARE with /INTO and one of these qualifiers:
BRANCH, /CALL, /INSTRUCTION[=(opcode-list)J, or /LINE. /SHARE
(default) lets the debugger break within shareable image routines as well
as other routines. /NOSHARE specifies that breakpoints not be set within
shareable images. Do not specify an address expression with this qualifier.

/[NOJSILENT
Controls whether or not the "break ..." message (and source code) is
displayed when break action is taken. /NOSILENT (default) specifies that the
message be displayed. /SILENT specifies that no message or source code be
displayed. /SILENT overrides /SOURCE.

/[NOJSOURCE
Controls whether or not the source code is displayed when break action
is taken. /SOURCE (default) specifies that the source code be displayed.
/NOSOURCE specifies that no source code be displayed. /SILENT overrides
/SOURCE.

CD-90

SET BREAK

/[,NOJSYSTEM
Qualifies /INTO. Use /[NOJSYSTEM with /INTO and one of these qualifiers:
/BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or /LINE. /SYSTEM
(default) lets the debugger break within system routines (PI space) as well
as other routines. /NOSYSTEM specifies that breakpoints not be set within
system routines. Do not specify an address expression with this qualifier.

/TEMPORARY
Causes the breakpoint to disappear after it is activated (the breakpoint does
not remain permanently set).

DESCRIPTION When a breakpoint is activated, the debugger takes the following action:

1 Suspends program execution at the breakpoint location.

2 Evaluates the expression in a WHEN clause, if one was specified when
the breakpoint was set. If the value of the expression is FALSE, execution
continues and the debugger does not perform the next three steps.

3 Displays the location of the breakpoint. Also, displays the line of source
code corresponding to that instruction if the SOURCE parameter is in
effect by virtue of a previous SET STEP SOURCE command.

4 Executes the commands in a DO clause, if one was specified when the
breakpoint was set. If the DO clause contains a GO command, execution
continues and the debugger does not perform the next step.

5 Issues the DBG> prompt.

The following qualifiers affect what output is seen when a breakpoint is
reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of breakpoints:

/AFTER:n
/TEMPORARY

Breakpoints may be set on classes of instructions or events by using one of
the following qualifiers:

/BRANCH
/CALL
/EVENT=event-name
/EXCEPTION
/INSTRUCTION
/INSTRUCTION=(opcode-list)
/LINE
/RETURN

The following qualifiers affect what happens at a routine call:

/INTO
/[NO]JSB
/OVER
/[NO]SHARE

CD-91

SET BREAK

/[NO]SYSTEM

The /MODIFY qualifier is used to monitor changes at program locations
(typically changes in the values of variables).

Related commands: (SHOW, CANCEL) BREAK, CANCEL ALL, SET TRACE,
SET WATCH, GO, STEP, (SET, SHOW) EVENT-FACILITY.

EXAMPLES
Q DBG> SET BREAK SWAPV/.LINE 12

This command sets a breakpoint on line 12 of module SWAP.

Q DBG> SET BREAK/AFTER:3 SUB2

This command sets a breakpoint that will trigger on the third and subsequent
times that SUB2 (a routine) is executed.

B DBG> SET BREAK L00P1 DO (EXAMINE D; STEP; EXAMINE Y; GO)

This command sets a breakpoint at location LOOP1. When the breakpoint is
reached, the following commands are executed:

EXAMINE D
STEP
EXAMINE Y
GO

Q DBG> SET BREAK/TEMPORARY 1440

dbg> SHOW break

breakpoint at 1440 [temporary]

This command sets a temporary breakpoint at location 1440. After that
breakpoint is activated, it disappears.

CD-92

SET DEFINE

SET DEFINE

Establishes a default qualifier (/ADDRESS, /COMMAND, or /VALUE)
for the DEFINE command.

FORMAT S ET D E F1N E define-default

PARAMETERS define-default
Specifies the default to be established for the DEFINE command. Valid
keywords (which correspond to DEFINE command qualifiers) are the
following:

ADDRESS Subsequent DEFINE commands will be treated as DEFINE
/ADDRESS. This is the default.

COMMAND Subsequent DEFINE commands will be treated as DEFINE
/COMMAND.

VALUE Subsequent DEFINE commands will be treated as DEFINE/VALUE.

QUALIFIERS None.

DESCRIPTION The SET DEFINE command establishes a default qualifier for subsequent
DEFINE commands. The parameters that you specify in the SET DEFINE
command have the same names as the DEFINE command qualifiers. DEFINE
command qualifiers determine whether the DEFINE command binds a symbol
to an address, a command string, or a value.

You can override the current DEFINE default for the duration of a single
DEFINE command by specifying another qualifier. Use the SFIOW DEFINE
command to identify the current DEFINE defaults.

Related commands: SHOW DEFINE, DEFINE, DELETE, SHOW SYMBOL
/DEFINED.

EXAMPLE
dbg> set define value

The SET DEFINE VALUE command specifies that subsequent DEFINE
commands are to be treated as DEFINE/VALUE.

CD-93

SET DISPLAY

SET DISPLAY

Creates a new screen display.

FORMAT SET DISPLAY disp-name [AT wspec][dkind]
[<■■■]

PARAMETERS disp-name
Specifies the name of the display you are defining. If a display by the same
name already exists, you must cancel the first display before you can define
the new display.

You may specify more than one display, each with an optional window
specification (wspec) and display kind (dkind).

wspec
Specifies the screen window at which the display is to be positioned. You
may specify any of the following:

• A predefined window. For example, RH1 (right top half). See
Appendix C.

• A window definition previously established with the SET WINDOW
command.

• A window specification of the form (start-line, line-count [,start-column,
column-count]). The specification can include expressions which may
be based on the built-in symbols %PAGE and % WIDTH (for example,
% WIDTH/4).

If you omit the wspec parameter, the display is positioned at window HI
or H2 by default, alternating between HI and H2 with each SET DISPLAY
command.

dkind
Specifies the display kind. Valid keywords are the following:

DO (cmd-list) Specifies an automatically updated output display.
The commands in cmd-list are executed each
time the debugger gains control. Their output
forms the contents of the display.

INSTRUCTION Specifies an instruction display. If selected as
the current instruction display with the SELECT
/INSTRUCTION command, it will display the
output from subsequent EXAMINE/INSTRUCTION
commands.

CD-94

SET DISPLAY

QUALIFIERS

INSTRUCTION (command) Specifies an automatically updated instruction
display. The command specified must be
an EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

OUTPUT Specifies an output display. If selected as the
current output display with the SELECT/OUTPUT
command, it will display any debugger output
that is not directed to another display. If selected
as the current input display with the SELECT
/INPUT command, it will echo debugger input.
If selected as the current error display with
the SELECT/ERROR command, it will display
debugger diagnostic messages.

REGISTER Specifies an automatically updated register
display. The display is updated each time the
debugger gains control.

SOURCE Specifies a source display. If selected as
the current source display with the SELECT
/SOURCE command, it will display the output
from subsequent TYPE or EXAMINE/SOURCE
commands.

SOURCE (command) Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source
display is updated each time the debugger gains
control.

If you omit the dkind parameter, an OUTPUT display is created.

/[NOJDYNAMIC
Controls whether a display automatically adjusts its window dimensions in
proportion when a SET TERMINAL command is issued. By default
(/DYNAMIC) all newly created displays adjust their window dimensions
automatically, except for register displays. A register display maintains its
window dimensions when the screen height or width are changed.

/HIDE
Places a newly created display at the bottom of the display pasteboard. This
hides the new display behind any previously existing displays that share the
same region of the screen.

/HIDE has the same effect as /PUSH.

/MARK-CHANGE
Marks the lines that change in a DO(cmd-list) display each time the display
is automatically updated. Any lines in which the contents have changed
since the last time the display was updated are highlighted with reverse
video. This qualifier is particularly useful when you want any variables in an
automatically updated display to be highlighted when they change.

This qualifier is not applicable to other kinds of displays.

CD-95

SET DISPLAY

/POP
Places a newly created display at the top of the display pasteboard, ahead of
any other displays except the PROMPT display. The new display then hides
any other displays that share the same region of the screen, except for the
PROMPT display. This is the default action of the SET DISPLAY command.

/PUSH
Has the same effect as /HIDE.

/REMOVE
Specifies that the display not be shown on the screen unless you explicitly
request it with the DISPLAY command. The display is then marked as being
removed from the display pasteboard, although it still exists.

/SIZE:n
Sets the maximum size of a display to be n lines. If more than n lines are
written to the display, the oldest lines are lost as new lines are added. If
you omit this qualifier, the default size is 64 lines, except for the predefined
display OUT (100 lines).

For an output or DO display, /SIZE:n specifies that the display should
hold the n most recent lines of output. For a source or instruction display,
n gives the number of source lines or lines of instructions that can be
placed in the memory buffer at any one time. However, you can scroll a
source display over the entire source code of the module whose code is
displayed (source lines are paged into the buffer as needed). Similarly, you
can scroll an instruction display over all of the instructions of the routine
whose instructions are displayed (instructions are decoded from the image as
needed).

DESCRIPTION The SET DISPLAY command is used to create a new display. The command
lets you specify the name, window, and display kind. By default, an output
display is created, and it is placed on top of the display pasteboard, ahead of
any existing displays but behind the PROMPT display. You can also hide a
newly created display at the bottom of the pasteboard, so it will not conceal
existing displays. And you can create a new "removed" display.

Related commands: (SHOW, CANCEL) DISPLAY, DISPLAY, (SET, SHOW,
CANCEL) WINDOW, SELECT, (SET, SHOW) TERMINAL.

EXAMPLES
Q DBG> SET DISPLAY DISP2 AT RS45

DBG> SELECT/OUTPUT DISP2

The SET DISPLAY command creates a new display named DISP2 essentially
at the right bottom half of the screen, above the PROMPT display, which is
located at S6. This is an output display by default. The SELECT/OUTPUT
command then selects DISP2 as the current output display.

CD—96

SET DISPLAY

Q DBG> SET WINDOW TOP AT (1,8,45,30)
DBG> SET DISPLAY NEWINST AT TOP INSTRUCTION
DBG> SELECT/INST NEWINST

The SET WINDOW command creates a window named TOP starting at line
1 and column 45, and extending down for 8 lines and to the right for 30
columns. The SET DISPLAY command creates an instruction display named
NEWINST to be displayed through TOP. The SELECT/INST command
selects NEWINST as the current instruction display.

CD-97

SET EDITOR

SET EDITOR

Establishes the editor that will be invoked by the EDIT command.

FORMAT SET EDITOR [command-line]

PARAMETERS command-line
Specifies a command line to invoke a particular editor on your system when
you use the EDIT command.

You must specify a command line unless you use the /CALLABLE _EDT,
/CALLABLE—LSEDIT, or /CALLABLE_TPU qualifiers. If you do not use
one of these qualifiers, the editor specified in the SET EDITOR command line
is spawned to a subprocess when you issue the EDIT command.

You may specify a command line with the /CALLABLE—LSEDIT and
/CALLABLE_TPU qualifiers, but not with the /CALLABLE_EDT qualifier.

QUALIFIERS /CALLABLE-EDT
Specifies that the callable version of the EDT editor is to be invoked
when you use the EDIT command. Do not specify a command line with
/CALLABLE_EDT (a command line of "EDT" is used).

/CALLABLE—LSEDIT
Specifies that the callable version of the VAX Language-Sensitive Editor
(LSEDIT) is to be invoked when you use the EDIT command. If you also
specify a command line, it is passed to callable LSEDIT. If you do not specify
a command line, the default command line is "LSEDIT".

/CALLABLE—TPU
Specifies that the callable version of the VAX Text Processing Utility
(VAXTPU) is to be invoked when you use the EDIT command. If you
also specify a command line, it is passed to callable VAXTPU. If you do not
specify a command line, the default command line is "EDIT/TPU".

/[NOJSTART—POSITION

Note: Currently, only the VAX Language-Sensitive Editor (specified either as
LSEDIT or /CALLABLE—LSEDIT) supports this qualifier.

Controls whether the /START-POSITION qualifier is appended to the
specified or default command line when the EDIT command is used.
This qualifier affects the initial position of the editor's cursor. By default,
(/NOSTART—POSITION), the editor's cursor is placed at the start of source
line 1, regardless of which line is centered in debugger's source display
or whether a line number is specified in the EDIT command. If /START-
POSITION is specified, the cursor is placed either on the line whose number
is specified in the EDIT command, or (if no line number is specified) on the
line that is centered in the current source display.

CD-98

SET EDITOR

DESCRIPTION The SET EDITOR command may be used to specify any editor that is installed
on your system. In general, the command line specified as parameter to the
SET EDITOR command is spawned and executed in a subprocess. However,
if you use EDT, LSEDIT, or VAXTPU, you have the option of invoking these
editors in a more efficient way. You can specify the /CALLABLE _EDT,
/CALLABLE—LSEDIT, or /CALLABLE _TPU qualifiers, which cause the
callable versions of EDT, LSEDIT, and VAXTPU, respectively, to be invoked
by the EDIT command. In the case of LSEDIT and VAXTPU, you may also
specify a command line that will be executed by the callable editor.

Related commands: SHOW EDITOR, EDIT, (SET, SHOW, CANCEL)
SOURCE.

EXAMPLES

□
DBG> SET EDITOR ’QMAIL$EDIT

The SET EDITOR command causes the EDIT command to spawn the
command line '@MAIL$EDIT which invokes the same editor as you
use in MAIL.

s

a

DBG> SET EDITOR/CALLABLE.TPU

The SET EDITOR command causes the EDIT command to invoke callable
VAXTPU with the default command line of EDIT/TPU.

DBG> SET EDITOR/CALLABLE_TPU EDIT/TPU/SECTION=MYSECINI.TPU$SECTION

a

The SET EDITOR command causes the EDIT command to
invoke callable VAXTPU with the command line EDIT/TPU
/SECTION=MYSECINI.TPU$SECTION.

DBG> SET EDITOR/CALLABLE_LSEDIT/START_POSITION

The SET EDITOR command causes the EDIT command to invoke callable
LSEDIT with the default command line of LSEDIT. Also the /START-
POSITION qualifier will be appended to the command line, so that the
editing session will start on the source line that is centered in the debugger's
current source display.

CD-99

SET EVENT-FACILITY

SET EVENT-FACILITY

Establishes the run-time library facility for eventpoints that are set
with the SET BREAK/EVENT and SET TRACE/EVENT commands.

Note: The SET EVENT-FACILITY command currently applies only to Ada and
SCAN. See the VAX Ada and VAX SCAN documentation for complete
information.

FORMAT SET EVENT-FACILITY facility-name

PARAMETERS facility-name
Specifies a run-time library facility for eventpoints. Valid keywords are the
following:

ADA Enables recognition of Ada-specific events when you use the (SET,
CANCEL) BREAK/EVENT and (SET, CANCEL) TRACE/EVENT commands.
Valid Ada event names are identified in Appendix E.

SCAN Enables recognition of SCAN-specific events when you use the (SET,
CANCEL) BREAK/EVENT and (SET, CANCEL) TRACE/EVENT commands.
Valid SCAN event names are identified in Appendix E.

QUALIFIERS None.

DESCRIPTION The Ada event facility lets you set breakpoints and tracepoints on tasking
events and exception events. The SCAN event facility lets you set breakpoints
and tracepoints on pattern-matching events.

Use the SHOW EVENT-FACILITY command to identify the events applicable
to the currently set language.

Related commands: SHOW EVENT-FACILITY, (SET, CANCEL) BREAK
/EVENT, SHOW BREAK, (SET, CANCEL) TRACE/EVENT, SHOW TRACE.

EXAMPLES
Q DBG> SET EVENT-FACILITY ADA

This command establishes Ada as the current run-time library facility.

CD-100

SET EXCEPTION BREAK

SET EXCEPTION BREAK

Causes the debugger to treat any exception condition generated by
your program as a breakpoint.

FORMAT SET EXCEPTION BREAK

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The SET EXCEPTION BREAK command has the same effect as the SET
BREAK/EXCEPTION command.

As a result of this command, whenever your program generates an
exception condition, the debugger suspends program execution, reports
the exception condition, and prompts you for input. Thus, whenever an
exception breakpoint is activated, you have the opportunity to issue debugger
commands. When you want to continue program execution, you can issue
one of the following GO commands:

• A GO command without an address-expression parameter. In this case,
the debugger fields and resignals the exception, thus allowing any user-
declared exception handlers to execute.

• A GO command with an address-expression parameter. In this case, the
debugger allows program execution to continue at the specified location,
thus inhibiting the execution of any user-declared exception handlers.

Note that you cannot issue a STEP or CALL command to continue program
execution after an exception breakpoint is activated. The debugger issues
a warning message because the STEP or CALL command is illegal in this
context.

Related commands: CANCEL EXCEPTION BREAK, (SET, CANCEL) BREAK
/EXCEPTION.

EXAMPLE
DBG> SET EXCEPTION BREAK

This command tells the debugger to treat an exception condition as a
breakpoint. This allows you to issue debugger commands when your program
generates an exception condition.

CD-101

SET IMAGE

SET IMAGE

Loads the run-time symbol table (RST) for one or more shareable
images and establishes the current image.

FORMAT SET IMAGE [image-name[, ... 77

PARAMETERS image-name
Specifies a shareable image that is to be "set" (that is, loaded into the RST).
Do not use the wildcard character (*). When using /ALL, do not specify an
image name.

QUALIFIERS /ALL
Specifies that all shareable images are to be set. When using /ALL, do not
specify an image.

DESCRIPTION The "current" image is the current debugging context: a SHOW MODULE
command identifies the modules of the current image. If only one image is
specified with the SET IMAGE command, that image becomes the current
image. If a list of images is specified, the last one in the list becomes the
current image. If /ALL is specified, the current image is unchanged.

Before an image can be set with the SET IMAGE command, it must have been
linked with the /DEBUG or /TRACE qualifier on the LINK command. If an
image was linked /NOTRACE, no symbol information is available for that
image and you cannot specify it with the SET IMAGE command.

Note that when you use the SET IMAGE command to establish a new
current image, all definitions created with the DEFINE/ADDRESS and
DEFINE/VALUE commands are deleted (definitions created with the DEFINE
/COMMAND and DEFINE/KEY commands are retained, however).

Related commands: (SHOW, CANCEL) IMAGE, (SET, SHOW, CANCEL)
MODULE.

EXAMPLES
Q DBG> SET IMAGE SHARE1

DBG> SET MODULE SUBR
DBG> SET BREAK SUBR

This sequence of commands shows how to set a breakpoint on routine SUBR
in module SUBR of shareable image SHARE 1. The SET IMAGE command
sets the debugging context to SHARE 1. The SET MODULE command loads
the symbol records of module SUBR into the RST. The SET BREAK command
sets a breakpoint on routine SUBR.

CD-102

SET KEY

SET KEY

Establishes the current key state.

FORMAT SET KEY

PARAMETERS None.

QUALIFIERS /[l\IO]LOG
Controls whether a message is displayed indicating that the key state has
been set. /LOG (default) displays the message.

/[NO]STATE[=state-name]
Specifies a key state to be established as the current state. You may specify
a predefined key state, such as GOLD, or a user-defined state. A state name
can be any appropriate alphanumeric string. /NOSTATE (default) leaves the
current state unchanged.

DESCRIPTION Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

By default, the current key state is the "DEFAULT" state. When you define
function keys using the DEFINE/KEY command, you can use the /IF_STATE
qualifier of that command to assign a specific state name to the key definition.
If that state is not set when you press the key, the definition will not be
processed. The SET KEY/STATE command lets you change the current state
to the appropriate state.

You can also change the current state by pressing a key that causes a state
change (a key that was defined with the DEFINE/KEY/LOCK_STATE/SET_
STATE qualifier combination).

Related commands: DEFINE/KEY, DELETE/KEY, SHOW KEY.

EXAMPLE

DBG> SET KEY/STATE=PR0G3

The SET KEY command changes the key state to the PROG3 state. You can
now use the key definitions that are associated with this state.

CD-103

SET LANGUAGE

SET LANGUAGE

Establishes the current language.

FORMAT SET LANGUAGE language-name

PARAMETERS language-name
Specifies a language. Valid keywords are the following: ADA, BASIC, BLISS,
C, COBOL, DIBOL, FORTRAN, MACRO, PASCAL, PLI, RPG, SCAN, and
UNKNOWN.

QUALIFIERS None.

DESCRIPTION At debugger start up, the debugger sets the current language to that in which
the module containing the transfer address (the main program) is written. If
you want to debug a module written in a different source language from that
of the main program, you can change the language with the SET LANGUAGE
command.

The current language influences several debugger default parameters, namely,
those of type, radix, and step values. In addition, languages differ on such
matters as type conversions; the evaluation of expressions; and acceptable
syntax, special characters, and symbols.

The SET LANGUAGE UNKNOWN command may be used when debugging
a program that is written in an unsupported language. To maximize the
useability of the debugger with unsupported languages, the SET LANGUAGE
UNKNOWN command allows the debugger to accept data formats that match
those of any supported language.

Related commands: SHOW LANGUAGE, SET TYPE, SET RADIX, SET
MODE.

EXAMPLES
Q DBG> SET LANG COBOL

This command establishes COBOL as the current language.

g DBG> SET LANG PASCAL

This command establishes PASCAL as the current language.

CD-104

SET LOG

SET LOG
Specifies a log file to which the debugger writes after a SET
OUTPUT LOG command has been issued.

FORMAT SET LOG file-spec

PARAMETERS file-spec
Denotes the file specification of the log file. If you do not supply a full file
specification, the debugger assumes SYS$DISK:[]DEBUG.LOG as the default
file specification for any missing field.

If you specify a version number and that version of the file already exists,
the debugger writes to the file specified, appending the log of the debugging
session onto the end of that file.

QUALIFIERS None.

DESCRIPTION Note that the SET LOG command only determines the name of a log file; it
does not cause the debugger to create or write to the specified file. The SET
OUTPUT LOG command accomplishes that.

If you have issued a SET OUTPUT LOG command but no SET LOG
command, the debugger writes to the file SYS$DISK:[JDEBUG.LOG by
default.

If the debugger is writing to a log file and you specify another log file with
the SET LOG command, the debugger closes the former file and begins
writing to the file specified in the SET LOG command.

Related commands: SET OUTPUT LOG, SET OUTPUT SCREEN-LOG.

EXAMPLES
□ DBG> SET LOG CALC

DBG> SET OUTPUT LOG

The SET LOG command specifies the debugger log file to be
SYS$DISK:[JCALC.LOG. The SET OUTPUT command causes your input
and debugger output to be logged to that file.

Q DBG> SET LOG "[CODEPROJ]FEB29.TMP"

DBG> SET OUTPUT LOG

The SET LOG command specifies the debugger log file to be
[CODEPROJ]FEB29.TMP. The SET OUTPUT command causes your input
and debugger output to be logged to that file.

CD-105

SET MARGINS

SET MARGINS

Specifies the leftmost source-line character position at which
to begin display of a source line and/or the rightmost character
position at which to end display of a source line.

FORMAT SET MARGINS rm
lm:rm
Im:
:rm

PARAMETERS Im
The source-line character position at which to begin display of the line of
source code (the left margin).

rm
The source-line character position at which to end display of the line of
source code (the right margin).

QUALIFIERS None.

DESCRIPTION By default, the debugger displays a source line beginning at character position
1 of the source line. This is actually character position 9 on your terminal
screen. The first eight character positions on the screen are reserved for the
line number and cannot be manipulated by the SET MARGINS command.

If you specify a single number, the debugger sets the left margin to 1 and the
right margin to the number specified.

If you specify two numbers, separated with a colon, the debugger sets the
left margin to the number on the left of the colon and the right margin to the
number on the right.

If you specify a single number followed by a colon, the debugger sets the left
margin to that number and leaves the right margin unchanged.

If you specify a colon followed by a single number, the debugger sets the
right margin to that number and leaves the left margin unchanged.

Increasing the left margin setting is useful when the source code is deeply
indented. Decreasing the right margin setting (from its default value of 255)
prevents the wrapping of long lines by truncating them.

The SET MARGINS command affects only the display of source lines, that is,
the display resulting from commands such as TYPE and EXAMINE/SOURCE.
The SET MARGINS command does not affect the display resulting from
commands (such as EXAMINE, EVALUATE, SHOW MODE, and so on) that
do not display source code. If a command displays source code together with
other information—as, for example, STEP/SOURCE does—the display

CD-106

SET MARGINS

of source code is affected by the current margin settings but the other
information is not.

Related commands: SHOW MARGINS.

EXAMPLES
Q DBG> SHOW MARGINS

left margin: 1 , right margin: 255

DBG> TYPE 14
module FORARRAY

14: DIMENSION IARRAY(4:5,5), VECTOR(10), I3D(3,3,4)

This example displays the default margin settings for a line of source code (1
and 255).

Q DBG> SET MARGINS 39
DBG> SHOW MARGINS
left margin: 1 . right margin: 39

DBG> TYPE 14
module FORARRAY

14: DIMENSION IARRAY(4:5,5), VECTOR

This example shows how the display of a line of source code changes when
you change the right margin setting from 255 to 39.

g DBG> SET MARGINS 10:45

DBG> SHOW MARGINS
left margin: 10 , right margin: 45

DBG> TYPE 14
module FORARRAY

14: IMENSION IARRAY(4:5,5), VECTOR(10),

This example shows the display of the same line of source code after both
margins are changed.

Q DBG> SET MARGINS :100
DBG> SHOW MARGINS
left margin: 10 , right margin: 100

This example shows how to change the right margin setting while retaining
the previous left margin setting.

g DBG> SET MARGINS 5:
DBG> SHOW MARGINS
left margin: 5 , right margin: 100

This example shows how to change the left margin setting while retaining the
previous right margin setting.

CD-107

SET MAX_SOURCE_FILES

SET MAX_SOURCE-FILES

Specifies the maximum number of source files that the debugger
may keep open at any one time.

FORMAT SET MAX_SOURCE_FILES n

PARAMETERS n
Specifies the maximum number of source files that the debugger may keep
open at any one time. The value of n may not exceed 20. The default value
is 5.

QUALIFIERS None.

DESCRIPTION By default, the debugger may keep five source files open at any one time.

Opening a source file requires the use of an I/O channel, which is a limited
system resource. Both the program and the debugger use I/O channels. To
ensure that the debugger does not use all available I/O channels and thus
cause the program to fail (for lack of an available I/O channel), you can issue
the SET MAX—SOURCE—FILES command to specify the maximum number
of source files (and thus source file I/O channels) that the debugger may use
at any one time.

Note that the value of MAX—SOURCE—FILES does not limit the number
of source files that the debugger can open; rather, it limits the number that
may be kept open at any one time. Thus, if the debugger reaches this limit, it
must close a file in order to open another one.

Note too that setting MAX—SOURCE—FILES to a very small number can
make the debugger's use of source files inefficient.

Related commands: SHOW MAX-SOURCE-FILES, (SET, SHOW, CANCEL)
SOURCE.

EXAMPLE
DBG> SHOW MAX.SOURCE.FILES
max_Bourco_files: 5

DBG> SET MAX.SOURCE.FILES 8
DBG> SHOW MAX_SOURCE_FILES
max.source.liles: 8

The SET MAX—SOURCE—FILES 8 command enables the debugger to keep a
maximum of eight files open at any one time.

CD-108

SET MODE

SET MODE

Enables or disables a debugger mode.

FORMAT SET MODE mode[, . . .]

PARAMETERS mode
Specifies a debugger mode to be enabled or disabled. Valid keywords are the
following:

DYNAMIC

NODYNAMIC

G—FLOAT

NOG_FLOAT

KEYPAD

NOKEYPAD

LINE

Enables dynamic module setting. In dynamic module setting,
the debugger sets certain modules automatically during
program execution so that you do not have to issue the
SET MODULE command for these modules. Whenever
the debugger prompt is displayed (whenever the debugger
interrupts execution), the debugger automatically sets the
module enclosing the PC location and issues an informational
message. If the module is already set, dynamic module
setting has no effect. SET MODE DYNAMIC is the default.

Disables dynamic module setting. This may be desirable if
performance becomes a problem as more and more modules
are set. When dynamic module setting is disabled, you must
set modules yourself with the SET MODULE command.

Specifies that the debugger interpret double-precision
floating-point constants entered in expressions as G_FLOAT
(does not affect the interpretation of variables declared
in your program). EXAMINE/D—FLOAT and DEPOSIT/D—
FLOAT may be used to override SET MODE G_FLOAT for
the duration of an EXAMINE or DEPOSIT command.

Specifies that the debugger interpret double-precision
floating-point constants entered in expressions as D_FLOAT
(does not affect the interpretation of variables declared
in your program). EXAMINE/G—FLOAT and DEPOSIT/G-
FLOAT may be used to override SET MODE NOG_FLOAT
for the duration of an EXAMINE or DEPOSIT command. SET
MODE NOG_FLOAT is the default.

Enables keypad mode. When keypad mode is enabled,
you can use the keys on the numeric keypad to perform
certain predefined functions. Several debugger commands,
especially useful in screen mode, are bound to the keypad
keys (see Appendix B). You can also redefine the key
functions with the DEFINE/KEY command. SET MODE
KEYPAD is the default.

Disables keypad mode. When keypad mode is disabled,
the keys on the numeric keypad do not have predefined
functions, nor can you assign debugger functions to those
keys with the DEFINE/KEY command.

Specifies that the debugger display code locations in terms
of line numbers, if possible. SET MODE LINE is the default.

CD-109

SET MODE

NOLINE

SCREEN

NOSCREEN

SCROLL

NOSCROLL

SYMBOLIC

NOSYMBOLIC

Specifies that the debugger display code locations in terms
of routine + byte-offset rather than in terms of line numbers.

Enables screen mode. When screen mode is enabled, you
can divide the terminal screen into rectangular regions, so
different data can be displayed in different regions. Screen
mode lets you view more information more conveniently
than the default, line-oriented, noscreen mode. You can use
the predefined displays, or you can define your own.

Disables screen mode. SET MODE NOSCREEN is the default.

Enables scroll mode. When scroll mode is enabled, a screen¬
mode output or DO display is updated by scrolling the output
line by line, as it is generated. SET MODE SCROLL is the
default.

Disables scroll mode. When scroll mode is disabled, a
screen-mode output or DO display is updated only once per
command, instead of line by line as it is generated. Disabling
scroll mode reduces the amount of screen updating that
takes place and may be useful with slow terminals.

Enables symbolic mode. When symbolic mode is enabled,
the debugger displays the locations denoted by address
expressions symbolically (if possible) and displays instruction
operands symbolically (if possible). EXAMINE/NOSYMBOLIC
may be used to override SET MODE SYMBOLIC for the
duration of an EXAMINE command. SET MODE SYMBOLIC
is the default.

Disables symbolic mode. When symbolic mode is disabled,
the debugger does not attempt to symbolize numeric
addresses (it does not cause the debugger to convert names
to numbers). This may speed up command processing.
Numeric addresses are displayed in decimal radix by default.
The SET RADIX command may be used to specify a different
radix. EXAMINE/SYMBOLIC may be used to override SET
MODE NOSYMBOLIC for the duration of an EXAMINE
command.

QUALIFIERS None.

DESCRIPTION The default values of these modes are the same for all languages.

Related commands: (SHOW, CANCEL) MODE, EXAMINE, DEPOSIT, (SET,
SHOW, CANCEL) RADIX.

EXAMPLE
DBG> SET MODE SCREEN

This command puts the debugger in screen mode.

CD-110

SET MODULE

SET MODULE

Loads the symbol records of a module into the debugger's run-time
symbol table (RST).

FORMAT SET MODULE [module-name[, . . .]]

PARAMETERS module-name
Specifies a module whose symbol records are to be loaded into the RST.
Do not use the wildcard character (*). When using /ALL, do not specify a
module name.

QUALIFIERS /ALL
Specifies that the symbol records of all modules in the current image be
loaded into the RST. When using /ALL, do not specify a module name.

/ALLOCATE

Note: Since memory is allocated automatically during dynamic module setting,
you need to use /ALLOCATE only when dynamic module setting is
disabled (SET MODE NODYNAMIC).

Expands the debugger memory pool. The debugger will then expand its
memory pool by some increment of PO space each time its internal memory
pool is exhausted. The debugger allocates additional memory by calling
$EXPREG. If your program also allocates memory dynamically, the location
of the allocated memory may be affected. In this case, you may want to avoid
the /ALLOCATE qualifier.

/[NO]RELATED

Note: /[NOJRELATED applies only to Ada programs.

Controls whether the debugger loads into the RST the symbol records of a
module that is related to a specified module through a with-clause or subunit
relationship.

SET MODULE/RELATED (default) loads symbol records for related modules
as well as for those specified. This makes names declared in related modules
visible so you can reference them in debugger commands as you could
reference them within the Ada source code. SET MODULE/NORELATED
loads symbol records only for modules that are specified (no symbol records
are loaded for related modules).

CD-111

SET MODULE

DESCRIPTION

Note: The (SET, SHOW, CANCEL) MODULE commands operate on modules in
the current image. This is either the main image (by default) or the image
established as the current image by a previous SET IMAGE command.

Symbol records must be present in the RST if the debugger is to recognize
and properly interpret the symbols declared in your program. The process
by which the symbol records of a module are loaded into the RST is called
setting a module.

At debugger start up, the debugger sets the module containing the transfer
address (the main program). By default, dynamic module setting is enabled
(SET MODE DYNAMIC). Therefore, the debugger sets modules automatically
as the program executes so that you can reference symbols as you need them.
Specifically, whenever execution is suspended, the debugger sets the module
containing the currently executing routine. In the case of Ada programs, as a
module is set dynamically, its related modules are also set automatically, by
default, to make the appropriate symbols accessible (visible).

Dynamic module setting makes accessible most of the symbols you might
need to reference. If you need to reference a symbol in an arbitrary module
that is not already set, use the SET MODULE command.

If dynamic module setting is disabled (SET MODE NODYNAMIC), only the
module containing the transfer address is set for you. You need to set other
modules yourself with the SET MODULE command.

When dynamic module setting is enabled, memory is allocated automatically
to accommodate the increasing size of the RST. If dynamic module setting
is disabled, the debugger may not let you set more modules unless you
either allocate more memory (with the ALLOCATE or SET MODULE
/ALLOCATE command) or reduce the number of set modules (with the
CANCEL MODULE command). Whether dynamic module setting is enabled
or disabled, if performance becomes a problem as more modules are set, use
the CANCEL MODULE command to reduce the number of set modules.

If a parameter in the SET SCOPE command designates a program location in
a module that is not already set, the SET SCOPE command sets that module.

Related commands: (SHOW, CANCEL) MODULE, SET MODE
[NOjDYNAMIC, (SET, SHOW, CANCEL) IMAGE, ALLOCATE.

EXAMPLES
Q DBG> SET MODULE SUB1

This command sets module SUB1 (loads the symbol records of module SUB1
into the RST).

2 DBG> SET MODULE/ALL
y.DEBUG-W-NOFREE, no free storage available

DBG> SET MODULE/ALL/ALLOCATE

The SET MODULE/ALL command attempts to set all of the modules in the
current image. The debugger responds that there is not sufficient memory.
The SET MODULE/ALL/ALLOC ATE expands the memory pool as needed
to accommodate all of the modules.

CD-112

SET MODULE

0 DBG> SET IMAGE SHARE3
DBG> SET MODULE MATH
DBG> SET BREAK %LINE 31

The SET IMAGE command makes shareable image SHARE3 the current
image. The SET MODULE command sets module MATH in image SHARE3.
The SET BREAK command sets a breakpoint on line 31 of module MATH.

CD-113

SET OUTPUT

SET OUTPUT

Enables or disables a debugger output option.

FORMAT SET OUTPUT output-optionf, ... 7

PARAMETERS output-option
Specifies an output option to be enabled or disabled. Valid keywords are the
following:

LOG Specifies that debugger input and output be recorded in a
log file. If you specify the log file by the SET LOG command,
the debugger writes to that file; otherwise, by default the
debugger writes to SYS$DISK[]:DEBUG.LOG.

NOLOG Specifies that debugger input and output not be recorded in
a log file. NOLOG is the default.

SCREEN-LOG Specifies that, while in screen mode, the screen contents be
recorded in a log file as the screen is updated. To log the
screen contents you must also specify SET OUTPUT LOG.
See the description of the LOG option regarding specifying
the log file.

NOSCREEN-LOG Specifies that the screen contents, while in screen mode,
not be recorded in a log file. NOSCREEN—LOG is the default.

TERMINAL Specifies that debugger output be displayed at the terminal.
TERMINAL is the default.

NOTERMINAL Specifies that debugger output, except for diagnostic
messages, not be displayed at the terminal.

VERIFY Specifies that the debugger echo, on the current output
device, each input command string that it is executing from
a command procedure or DO clause. The current output
device is by default SYS$OUTPUT, the terminal, but may be
redefined with the logical name DBGSOUTPUT.

NOVERIFY Specifies that the debugger not display each input command
string that it is executing from a command procedure or DO
clause. NOVERIFY is the default.

QUALIFIERS None.

DESCRIPTION Debugger output options control the way in which debugger responses to
commands are displayed and recorded.

Related commands: SHOW OUTPUT, (SET, SHOW) LOG, SET MODE
SCREEN, @file-spec, (SET, SHOW) ATSIGN.

CD-114

SET OUTPUT

EXAMPLE
DBG> SET OUTPUT VERIFY.LOG,NOTERMINAL

This command specifies that the debugger do the following:

• Output each command string that it is executing from a command
procedure or DO clause.

• Record debugger output and user input in a log file.

• Not display output at the terminal (except for diagnostic messages).

CD-115

SET PROMPT

SET PROMPT

Lets you change the debugger prompt string from DBG> to a string
of your choice.

FORMAT SET PROMPT string

PARAMETERS string
Specifies the string which is to become the new prompt. If the string contains
blanks, semicolons, or lowercase characters, you must enclose it in single or
double quotation marks.

QUALIFIERS None.

EXAMPLE
DBG> SET PROMPT "
$ SET PROMPT "dbg: "
d b g : SET PROMPT "DBG>

DBG>

n

The successive SET PROMPT commands change the debugger prompt from
"DBG> " to to "d b g then back to "DBG>

CD-116

SET RADIX

SET RADIX

Establishes the default radix for the entry and/or display of integer
data. When used with /OVERRIDE, causes all data to be displayed
as integer data of the specified radix.

FORMAT SET RADIX radix

PARAMETERS radix
Specifies the default radix to be established. Valid keywords are the
following:

BINARY Sets the default radix to binary.

DECIMAL Sets the default radix to decimal. This is the default for all
languages except BLISS and MACRO.

DEFAULT Sets the default radix to the language default.

OCTAL Sets the default radix to octal.

HEXADECIMAL Sets the defaut radix to hexadecimal. This is the default for
BLISS and MACRO.

QUALIFIERS /INPUT
Sets only the input radix to the specified radix.

/OUTPUT
Sets only the output radix to the specified radix.

/OVERRIDE
Causes all data to be displayed as integer data of the specified radix.

DESCRIPTION When you use the EXAMINE, DEPOSIT, or EVALUATE commands, the
default radix influences how integer data is interpreted and displayed. By
default, the radix is hexadecimal for BLISS and MACRO and decimal for
other languages.

The SET RADIX command lets you change the default radix for the entry
and/or display of integer data (the input radix and output radix, respectively).
The debugger will interpret and display integer data in the new radix.
However, other values (such as floating or enumeration type values) will
be interpreted and displayed as they normally would be.

The SET RADIX/OVERRIDE command causes all data (not just data that
was originally typed as integer data) to be displayed as integer data of the
specified radix.

Note that the EVALUATE, EXAMINE, and DEPOSIT commands have radix
qualifiers that let you further override, for the duration of that command,
any default radix previously established with the SET RADIX or SET RADIX
/OVERRIDE command.

CD-117

SET RADIX

Related commands: (SHOW, CANCEL) RADIX, (SET, SHOW, CANCEL)
MODE, EVALUATE, EXAMINE, DEPOSIT.

EXAMPLES
□ DBG> SET RADIX HEX

This command sets the default radix to hexadecimal. This means that, by
default, integer data will be interpreted and displayed in hexadecimal radix.

S DBG> SET RADIX/INPUT OCT

This command sets the default radix for input to octal. This means that, by
default, integer data that is entered will be interpreted in octal radix.

0 DBG> SET RADIX/OUTPUT BIN

This command sets the default radix for output to binary. This means that,
by default, integer data will be displayed in binary radix.

Q DBG> SET RADIX/OVERRIDE DECIMAL

This command sets the override radix to decimal. This means that, by default,
all data will be displayed as decimal integer data.

CD-118

SET SCOPE

SET SCOPE

Establishes how the debugger looks up symbols when a path-name
prefix is not specified.

FORMAT SET SCOPE location[, ... 7

PARAMETERS location
Denotes a program region to be used for the interpretation of symbols that do
not have a path-name prefix. A location may be any of the following:

path-name prefix Specifies the scope region denoted by the path-name
prefix. A path-name prefix consists of the names
of one or more nesting program elements (module,
routine, block, and so on), with each name separated
by a backslash character (\). When a path-name
prefix consists of more than one name, list a nesting
element to the left of the \ and a nested element to the
right of the \. A common path-name prefix format is
module\routine\block\.

If you specify only a module name and that name is
the same as the name of a routine, use the /MODULE
qualifier; otherwise, the debugger assumes that you are
specifying the routine.

n Specifies the scope region denoted by the routine which
is n levels down the call stack (n is a decimal integer). A
scope region specified by an integer changes dynamically
as the program executes. The value 0 denotes the routine
that is currently executing, the value 1 denotes the caller
of that routine, and so on down the call stack. The
default scope is 0,1,2, . . . ,N, where N is the number of
calls in the call stack.

\ Specifies the global scope region—that is, the set of all
program locations in which a global symbol is known.
The definition of a global symbol and the way it is
declared depends on the language.

When you specify more than one location parameter, you establish a scope
search list. If the debugger cannot interpret the symbol using the first
parameter, it uses the next parameter, and continues using parameters in
order of their specification until it successfully interprets the symbol or until it
exhausts the parameters specified.

QUALIFIERS /MODULE
Indicates that the name specified is the name of a module and not of a
routine. You need to use /MODULE only when you specify a module name
as the scope region, and that module name is the same as the name of a
nested routine.

CD-119

SET SCOPE

DESCRIPTION By default, the debugger looks up a symbol specified without a path-name
prefix according to the scope search list 0,2,2, . . . ,N, where N is the number
of calls in the call stack. This scope search list is based on your current PC
and changes dynamically as your program executes. The default scope means
that a symbol lookup such as "EXAMINE X" first looks for X in the routine
that is currently executing (scope 0); if no X is visible there, the debugger
looks in the caller of that routine (scope 1), and so on down the call stack;
if X is not found in scope N, the debugger searches the rest of the run-time
symbol table (RST), then searches the global symbol table (GST), if necessary.

The SET SCOPE command lets you change this default symbol lookup. This
is useful if, for example, you need to use a path name repeatedly to access
a multiply-defined symbol. By specifying that path-name prefix in the SET
SCOPE command, you establish a new default scope for symbol lookup. You
can then reference the symbol without using a path-name prefix. Note that,
when you use the SET SCOPE command, the debugger searches only the
program locations you specify explicitly.

If you specify a module name in a SET SCOPE command, the debugger "sets"
that module if it is not already set. However, if all you want to do is set a
module, it is best to use the SET MODULE command rather than disturb the
current scope search list with the SET SCOPE command.

If a name you specify is the name of both a module and a nested routine,
the debugger sets the scope to the routine, unless you use the /MODULE
qualifier to indicate that you want to set the scope to the module.

To restore the default scope, use the CANCEL SCOPE command.

Related commands: (SHOW, CANCEL) SCOPE, SET MODULE.

EXAMPLES
Q DBG> EXAMINE Y

%DEBUG-W-NOUNIQUE, symbol ’Y’ is not unique
DBG> SHOW SYMBOL Y

data CHECK_IN\Y
data INVENT0RY\C0UNT\Y

DBG> SET SCOPE INVENT0RY\C0UNT

DBG> EXAMINE Y

INVENT0RY\C0UNT\Y: 347.15

The first EXAMINE Y command indicates that symbol Y is multiply defined
and cannot be resolved from the current scope search list. The SHOW
SYMBOL command displays the different declarations of symbol Y. The
SET SCOPE command tells the debugger to look for symbols without path¬
name prefixes in routine COUNT of module INVENTORY. The subsequent
EXAMINE command can now interpret Y unambiguously.

@ DBG> SET SCOPE 1

This command tells the debugger to look for symbols without path-name
prefixes in scope 1, which is the caller of the routine that is currently
executing. If the debugger cannot find a symbol in scope 1, it looks no
further.

CD-120

SCOPE

gj DBG> SHOW SYMBOL X

data ALPHAXX ! global X
data ALPHA\BETA\X ! local X
data X (global) ! same as ALPHA\X
DBG> SHOW SCOPE

scope: 0 [= ALPHA\BETA]
DBG> SYMBOLIZE X

address ALPHA\BETA\7.R0:
ALPHA\BETA\X

DBG> SET SCOPE \
DBG> SYMBOLIZE X

address 00000200:
ALPHAXX

address 00000200: (global)
X

The SHOW SYMBOL command indicates that there are two declarations
of the symbol X—a global ALPHA\X (shown twice) and a local
ALPHA\BETA\X. Within the current scope, the local declaration of X
(ALPHA\BETA\X) is visible. After the scope is set to the global scope (SET
SCOPE \), the global declaration of X is made visible.

CD-121

SET SEARCH

SET SEARCH

Establishes default qualifiers (/ALL or /NEXT, /IDENTIFIER or
/STRING) for the SEARCH command.

FORMAT SET SEARCH search-defaultf, ... 7

PARAMETERS search-default
Specifies a default to be established for the SEARCH command. Valid
keywords (which correspond to SEARCH command qualifiers) are the
following:

ALL Subsequent SEARCH commands will be treated as SEARCH/ALL,
rather than SEARCH/NEXT.

IDENTIFIER Subsequent SEARCH commands will be treated as SEARCH
/IDENTIFIER, rather than SEARCH/STRING.

NEXT Subsequent SEARCH commands will be treated as SEARCH
/NEXT, rather than SEARCH/ALL. This is the default.

STRING Subsequent SEARCH commands will be treated as SEARCH
/STRING, rather than SEARCH/IDENTIFIER. This is the default.

QUALIFIERS None.

DESCRIPTION The SET SEARCH command establishes default qualifiers for subsequent
SEARCH commands. The parameters that you specify in the SET SEARCH
command have the same names as the SEARCH command qualifiers.
SEARCH command qualifiers determine whether the SEARCH command:
(1) searches for all occurrences (ALL) of a string or only the next occurrence
(NEXT); and (2) displays any occurrence of the string (STRING) or only those
occurrences in which the string is not bounded on either side by a character
that can be part of an identifier in the current language (IDENTIFIER).

You can override the current SEARCH default for the duration of a single
SEARCH command by specifying other qualifiers. Use the SHOW SEARCH
command to identify the current SEARCH defaults.

Related commands: SEARCH, SHOW SEARCH, (SET, SHOW) LANGUAGE.

CD-122

SET SEARCH

EXAMPLE

DBG> SHOW SEARCH

search settings: search for next occurrence, as a string

DBG> SET SEARCH IDENTIFIER

DBG> SHOW SEARCH

search settings: search for next occurrence, as an identifier

DBG> SET SEARCH ALL

DBG> SHOW SEARCH

search settings: search for all occurrences, as an identifier

The SET SEARCH IDENTIFIER command tells the debugger to search for an
occurrence of the string in the specified range but display the string only if it
is not bounded on either side by a character that can be part of an identifier
in the current language.

The SET SEARCH ALL command tells the debugger to search for (and
display) all occurrences of the string in the specified range.

CD-123

SET SOURCE

SET SOURCE

Specifies where the debugger is to search for source files.

FORMAT SET SOURCE directory-spec[, ... 7

PARAMETERS directory-spec
Specifies any part of a VAX/VMS file specification (typically a device
/directory) that the debugger is to use by default when searching for a
source file. For any part of a full file specification that you do not supply, the
debugger uses the file specification stored in the module's symbol record—
that is, the file specification that the source file had at compile time.

If you specify more than one directory in a single SET SOURCE command,
separating each directory name with a comma, you create a source directory
search list (you may also specify a search list logical name that is defined at
your process level). The debugger handles a source directory search list by
searching the first directory specified to locate the source file for a module,
then the second directory specified, then the next, and so on, until it either
locates the source file or exhausts the list of directories.

QUALIFIERS /EDIT

Note: /EDIT applies mainly to Ada programs,

Specifies that the directory search list will be used to locate source files for
editing when you use the EDIT command.

/MODULE=module-name
Specifies that the directory search list will be used to locate source files only
for the specified module.

DESCRIPTION By default, the debugger expects a source file to be in the same directory
it was in at compile time (the debugger also checks that the creation and
revision date and time of a source file match the information in the debugger's
symbol table). If a source file has been moved to a different directory since
compile time, you can use the SET SOURCE command to specify a source
directory search list.

If you issue the SET SOURCE command without the /MODULE=module-
name qualifier, the debugger uses the specified directory search list to locate
source files for all modules that were not mentioned in a previous SET
SOURCE/MODULE=module-name command.

See the qualifier descriptions for an explanation of their effects.

CD-I24

SET SOURCE

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT command.
This is the case with Ada programs. For Ada programs, the (SET, SHOW,
CANCEL) SOURCE commands affect the search of files used for source
display (the "copied" source files in Ada program libraries); the (SET, SHOW,
CANCEL) SOURCE/EDIT commands affect the search of the source files you
edit when using the EDIT command. If you use /MODULE with /EDIT, the
effect of /EDIT is further qualified by /MODULE.

Related commands: (CANCEL, SHOW) SOURCE, (CANCEL, SHOW) MAX_
SOURCE—FILES.

EXAMPLES
Q DBG> SHOW SOURCE

no directory search list in effect
DBG> SET SOURCE [PROJA],[PROJB],USER#:[PETER.PROJC]

DBG> SHOW SOURCE

source directory search list for all modules:
[PROJA]
[PROJB]
USER$:[PETER.PROJC]

The SET SOURCE command specifies that the debugger should search
directories [PROJA], [PROJB], and USER$:[PETER.PROJC] for source files.

Q DBG> SET SOURCE/MODULE*COBOLTEST DISK$2:[PROJD].[014,016]

DBG> SHOW SOURCE

source directory search list for COBOLTEST:
DISK$2:[PROJD]
[014,015]

source directory search list for all other modules:
[PROJA]
[PROJB]
USERS:[PETER.PROJC]

The SET SOURCE command specifies that the debugger should search
directories DISKS2:[PROJD] and [014,015]) for source files to use with the
module COBOLTEST. The SHOW SOURCE command displays the search
lists established in examples 1 and 2.

CD-125

SET STEP

SET STEP

Establishes default qualifiers (/LINE, /INTO, and so on) for the STEP
command.

FORMAT SET STEP step-default[, . . .

PARAMETERS step-default
Specifies a default to be established for the STEP command. Valid keywords
(which correspond to STEP command qualifiers) are the following:

BRANCH Subsequent STEP commands will be treated as STEP/BRANCH

CALL

(step to the next branch instruction).

Subsequent STEP commands will be treated as STEP/CALL
(step to the next call instruction).

EXCEPTION Subsequent STEP commands will be treated as STEP
/EXCEPTION (step to the next exception condition).

INSTRUCTION Subsequent STEP commands will be treated as STEP
/INSTRUCTION (step to the next instruction). This is the default
for MACRO. You can also specify one or more instructions
(INSTRUCTION=(opcode-list)). The debugger will then step to
the next instruction that is in the specified list.

INTO Subsequent STEP commands will be treated as STEP/INTO
(step into called routines) rather than STEP/OVER (step over
called routines). When INTO is in effect, you can qualify
the types of routines to step into by means of the [NO]JSB,
[NO]SHARE, and [NO]SYSTEM parameters, or by using the
STEP/[NO]JSB, STEP/[NO]SHARE, and STEP/[NO]SYSTEM
command/qualifier combinations (the latter three take effect
only for the immediate STEP command).

JSB If INTO is in effect, subsequent STEP commands will be
treated as STEP/INTO/JSB (step into routines called by a JSB
instruction as well as those called by a CALL instruction). This
is the default for all languages except DIBOL.

NOJSB If INTO is in effect, subsequent STEP commands will be treated
as STEP/INTO/NOJSB (step over routines called by a JSB
instruction, but step into routines called by a CALL instruction).
This is the default for DIBOL.

LINE Subsequent STEP commands will be treated as STEP/LINE
(step to the next line). This is the default for all languages
except MACRO.

OVER Subsequent STEP commands will be treated as STEP/OVER
(step over all called routines) rather than STEP/INTO (step into
called routines). SET STEP OVER is the default.

RETURN Subsequent STEP commands will be treated as STEP/RETURN
(step to the RETURN instruction of the current routine). Thus,
STEP/RETURN n will take you up n levels of the call stack.

CD-126

SET STEP

SHARE If INTO is in effect, subsequent STEP commands will be treated
as STEP/INTO/SHARE (step into called routines in shareable
images as well as into other called routines). This is the default.

NOSHARE

SILENT

NOSILENT

SOURCE

NOSOURCE

SYSTEM

NOSYSTEM

If INTO is in effect, subsequent STEP commands will be treated
as STEP/INTO/NOSHARE (step over called routines in shareable
images, but step into other routines).

Subsequent STEP commands will be treated as STEP/SILENT
(suppress the "stepped to ... message as well as other
debugger output).

Subsequent STEP commands will be treated as STEP
/NOSILENT (display the "stepped to ... " message as well
as other output). This is the default.

Subsequent STEP commands will be treated as STEP/SOURCE
(display source code after a step as well as when a breakpoint
or watchpoint is activated). This is the default.

Subsequent STEP commands will be treated as STEP
/NOSOURCE (do not display source code after a step or
when a breakpoint or watchpoint is activated).

If INTO is in effect, subsequent STEP commands will be treated
as STEP/INTO/SYSTEM (step into called routines in system
space (PI space) as well as into other called routines). This is
the default.

If INTO is in effect, subsequent STEP commands will be treated
as STEP/INTO/NOSYSTEM (step over called routines in system
space, but step into other routines).

QUALIFIERS None.

DESCRIPTION The SET STEP command establishes default qualifiers for subsequent STEP
commands. The parameters that you specify in the SET STEP command have
the same names as the STEP command qualifiers. The following parameters
affect the locations to which you step:

SET STEP
SET STEP
SET STEP
SET STEP
SET STEP
SET STEP
SET STEP

BRANCH
CALL
EXCEPTION
INSTRUCTION
INSTRUCTION=(opcode-list)
LINE
RETURN

The following parameters affect what output is seen when a STEP command
is executed:

SET STEP [NO]SILENT
SET STEP [NO]SOURCE

The following parameters affect what happens at a routine call:

SET STEP INTO
SET STEP [NO]JSB
SET STEP OVER
SET STEP [NO]SHARE

CD-127

SET STEP

SET STEP [NOJSYSTEM

Each language establishes certain defaults for the STEP command. When you
change the current language, STEP defaults are set to those specified in that
language.

You can override the current STEP defaults for the duration of a single STEP
command by specifying other qualifiers. Use the SHOW STEP command to
identify the current STEP defaults.

Related commands: STEP, SHOW STEP, (SET, SHOW) LANGUAGE.

EXAMPLES
Q DBG> SET STEP INSTRUCTION,NOSOURCE

This command tells the debugger to step by instruction when a STEP
command is issued, and to not display lines of source code with each STEP
command.

B DBG> SET STEP LINE,INTO.NOSYSTEM,NOSHARE

This command tells the debugger to step by line when a STEP command is
issued, and to step into called routines in user space only. The debugger will
step over routines in system space and in shareable images.

CD-128

SET TASK

SET TASK

Modifies characteristics of one or more tasks or of the entire tasking
system.

Note: The SET TASK command currently applies only to Ada programs. See
the VAX Ada documentation for complete information.

FORMAT SET TASK [task-expressionf, ... 77

PARAMETERS task-expression
Specifies a task value. A task expression may be:

• An Ada language expression for a task value—for example, a task object
name. You can use a path name.

• The task ID (for example, %TASK 2), as indicated in a SHOW TASK
display.

• A pseudo-task name (% ACTIVE _TASK, % CALLER _TASK, %NEXT_
TASK, or % VISIBLE—TASK).

Do not use the wildcard character (*). See the qualifier descriptions for
details on how to specify tasks with particular qualifiers.

QUALIFIERS /ABORT
Aborts the specified tasks. If no task is specified, aborts the visible task. Note
that the task is marked for termination but is not immediately terminated.
The effect is identical to executing the Ada statement abort task-name, and
causes the specified tasks to become abnormal.

/ACTIVE
Makes the specified task the active task—the task that will run when a STEP
or GO command is executed. Causes a task switch to the new active task
and makes the new active task the visible task. The specified task must be
in either the RUNNING or READY state. When using /ACTIVE, you must
specify one, and only one, task.

/ALL
Applies the SET TASK command to all tasks. When you specify /ALL,
you cannot specify a task, nor can you specify the /ACTIVE, /VISIBLE, or
/TIME-SLICE qualifiers.

/[NOJHOLD
Controls whether or not a specified task is placed on HOLD. /HOLD places a
specified task on HOLD. If no task is specified, /HOLD places the visible task
on HOLD.

Placing a task on HOLD prevents a task from entering the RUNNING
state. A task placed on HOLD is allowed to make other state transitions; in
particular, it may change from the SUSPENDED to the READY state.

CD-129

SET TASK

A task that is already in the RUNNING state (the active task) can continue to
execute as long as it remains in the RUNNING state, even though it is placed
on HOLD. If the task leaves the RUNNING state for any reason (including
expiration of a time slice, if timeslicing is enabled), it may not return to the
RUNNING state until the HOLD is removed. You can force a task into the
RUNNING state with the SET TASK/ACTIVE command even if the task is
on HOLD.

/NOHOLD removes a specified task from HOLD. If no task is specified,
/NOHOLD removes the visible task from HOLD.

/PR I OR I TY=n
Sets the priority of a specified task to n, where n is a decimal integer from 0
to 15 inclusive. If no task is specified, sets the priority of the visible task to n.
Note that this does not prevent the task's priority from later changing in the
course of execution, for example, while executing a rendezvous.

/RESTORE
Causes the priority of a specified task to be restored to the value specified in
pragma PRIORITY. If pragma PRIORITY was not specified, the default value
of 7 is used. If no task is specified, causes the priority of the visible task to be
restored.

/TIME_SLICE=t
Sets the duration otherwise specified by pragma TIME—SLICE to the value
t, where t is a decimal integer or fixed-point value representing seconds. The
SET TASK/TIME—SLICE=0.0 command disables time slicing.

/VISIBLE
Makes the specified task the visible task—the task whose stack and register
set are the current context for looking up names, calls, and so on (commands
such as EXAMINE are directed at the visible task). When using /VISIBLE,
you must specify one, and only one, task.

Note: If no qualifier is specified, /VISIBLE is assumed by default.

DESCRIPTION The possible task states are RUNNING, READY, SUSPENDED, and
TERMINATED.

All of the SET TASK command qualifiers except for /ALL provide a means
of controlling the tasking environment, by directly or indirectly causing task
state transitions. The /ALL qualifier is used to apply the SET TASK command
to all tasks.

Task switching can often be confusing when you are trying to debug a
program. The SET TASK/TIME-SLICE and SET TASK/HOLD commands
give you several ways of controlling task switching.

Related commands: SHOW TASK, SET BREAK/EVENT, SET TRACE
/EVENT, EXAMINE/TASK, DEPOSIT/TASK.

CD-130

SET TASK

EXAMPLES
Q DBG> SET TASK/ACTIVE ‘/.TASK 3

This command makes the task whose task ID is %TASK 3 the active task.

Q DBG> SET TASK/HOLD/ALL

DBG> SET TASK/ACTIVE ‘/.TASK 1

DBG> GO

DBG> SET TASK/ACTIVE '/.TASK 3

DBG> STEP

The SET TASK/HOLD/ALL command freezes the state of all tasks except the
active task. The SET TASK/ACTIVE command is then used selectively (along
with the GO command) to observe the behavior of one or more specified
tasks in isolation.

CD-131

SET TERMINAL

SET TERMINAL
Sets the terminal screen width and/or height that the debugger uses
when it formats screen and other output.

FORMAT SET TERMINAL

PARAMETERS None.

QUALIFIERS You must specify at least one qualifier, either /PAGE or /WIDTH. You can
specify both /PAGE and /WIDTH. You must specify a value for each qualifier
used.

/PAGE.n
Specifies that the terminal screen height should be set to n lines. You may
use any value from 18 to 100.

/WIDTH.n
Specifies that the terminal screen width should be set to n columns. You may
use any value from 20 to 255. For a VT100 or VT200 series terminal, n is
typically either 80 or 132.

DESCRIPTION The SET TERMINAL command lets you define the portion of the screen that
the debugger has available for formatting screen output. This command is
particularly useful with VT100 or VT200 series terminals, where you may
set the screen width to typically 80 or 132 columns. It is also useful with
Micro VAX workstations, where you can increase the screen size beyond the
default 24-line by 80-column DEBUG window.

When you issue the SET TERMINAL command, all screen window definitions
(including those created by the user) are automatically adjusted for the new
screen dimensions. For example, RH1 will change dimensions proportionally
to remain the top right half of the screen.

Similarly, all "dynamic" displays are automatically adjusted to maintain their
relative dimensions. By default, all predefined and user-defined displays are
dynamic, except for register displays. If you have specified /NODYNAMIC
in a SET DISPLAY or DISPLAY command, the display is no longer dynamic.
In that case, the display will not automatically change dimensions with a
SET TERMINAL command. However, you can always use the DISPLAY
command to redisplay the display within any window definition (you can
also use keypad-key combinations, such as BLUE-MINUS, to enter predefined
DISPLAY commands).

Related commands: SHOW TERMINAL, DISPLAY/[NOjDYNAMIC, SET
DISPLAY/[NOJDYNAMIC, (SET, SHOW, CANCEL) WINDOW, EXPAND.

CD-132

SET TERMINAL

EXAMPLE
DBG> set TERMINAL/WIDTH:132

This command specifies that the terminal screen width be set to 132 columns.

CD-133

SET TRACE

SET TRACE

Establishes a tracepoint at the location denoted by an address-
expression, or at instructions of a particular class.

FORMAT SET TRACE [addr-expr[, . . .]] [WHEN (con d-expr)]
[DO(commandf; ...])]

PARAMETERS addr-expr
Specifies an address expression (a program location) at which a tracepoint
is to be set. In general, this may be a line number, a routine name, a label,
or a location in memory. However, the /MODIFY and /RETURN qualifiers
are used with specific kinds of address expressions. Do not use the wildcard
character (*). Do not use an address expression when specifying /BRANCH,
/CALL, /EXCEPTION, /INSTRUCTION[=(opcode-list)], /INTO, /[NO]JSB,
/LINE, /OVER, /[NOjSHARE, or /[NO]SYSTEM.

command
Specifies a debugger command that is to be executed as part of the DO clause
when trace action is taken.

cond-expr
Specifies a conditional expression in the currently set language that is to be
evaluated every time the tracepoint occurs. If the expression is TRUE, trace
action occurs, and the debugger reports that a tracepoint has been reached. If
the expression is FALSE, trace action does not occur. In this case, a report is
not issued, the commands specified by the DO clause are not executed, and
program execution is continued.

QUALIFIERS /AFTERm
Specifies that trace action not be taken until the nth time the designated
tracepoint is encountered (n is a decimal integer). Thereafter, the tracepoint
occurs every time it is encountered provided that conditions in the WHEN
clause are TRUE. The command SET TRACE/AFTER:1 has the same effect as
the SET TRACE command.

/BRANCH
Causes the debugger to trace every branch instruction encountered (including
BEQL, BGTR, BLEQ, BGEQ, BLSS, BGTRU, BLEQU, BVC, BVS, BGEQU,
BLSSU, BRB, BRW, JMP, BBS, BBC, BBSS, BBCS, BBSC, BBCC, BBSSI, BBCCI,
BLBS, BLBC, ACBB, ACBW, ACBL, ACBF, ACBD, ACBG, ACBH, AOBLEQ,
AOBLSS, SOBGEQ, SOBGTR, CASEB, CASEW, CASEL) during execution.
Do not specify an address expression with this qualifier. See also /INTO,
/OVER.

CD-134

SET TRACE

/CALL
Causes the debugger to trace every call instruction (including the CALLS,
CALLG, BSBW, BSBB, JSB, RSB, and RET instructions) encountered during
execution. Do not specify an address expression with this qualifier. See also
/INTO, /OVER.

/EVENT=event-name

Note: /EVENT applies only to Ada and SCAN. See the VAX Ada and VAX
SCAN documentation for complete information.

Causes the debugger to trace every time the specified event occurs (if that
event is defined and detected by the run-time system). If you specify an
address expression with /EVENT, causes the debugger to trace every time
the specified event occurs for that address expression. Event names depend
on the run-time facility and are identified in Appendix E for Ada and SCAN.
Note that you cannot specify an address expression with certain event names.

/EXCEPTION
Causes the debugger to trace every exception that is signaled. The trace
action occurs before any user-written exception handlers are invoked. Do not
specify an address expression with this qualifier.

/INSTRUCTION
Causes the debugger to trace every instruction executed. Do not specify an
address expression with this qualifier. See also /INTO, /OVER.

/INSTRUCTION=(opcode[r . . .])
Causes the debugger to trace every instruction whose opcode is in the list.
Do not specify an address expression with this qualifier. See also /INTO,
/OVER.

/INTO
Sets tracepoints within called routines (as well as within the main program)
when /BRANCH, /CALL, /INSTRUCTION=[(opcode-list)], or /LINE is
specified; that is, when an address expression is not explicitly specified.
/INTO is the default behavior and is the opposite of /OVER. When
using /INTO, you can further qualify the tracepoints with the /[NO]JSB,
/[NO]SHARE, and /[NO]SYSTEM qualifiers.

/[NOJJSB
Qualifies /INTO. Use /[NO]JSB with /INTO and one of these qualifiers:
/BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or /LINE. /JSB is the
default for all languages except DIBOL. /JSB lets the debugger set tracepoints
within routines that are called by the JSB or CALL instruction. /NOJSB
(the DIBOL default) specifies that tracepoints not be set within routines
called by JSB instructions. In DIBOL, user-written routines are called by the
CALL instruction and DIBOL run-time library routines are called by the JSB
instruction. Do not specify an address expression with this qualifier.

/LINE
Causes the debugger to trace the start of each new line. Do not specify an
address expression with this qualifier. See also /INTO, /OVER.

CD—135

SET TRACE

/MODIFY
Causes the debugger to report a tracepoint whenever an instruction writes
to and modifies the value of a location indicated by a specified address
expression. The address expression is typically a variable name.

The SET TRACE/MODIFY command acts like a SET WATCH command
followed by a GO command. It operates under the same restrictions as the
SET WATCH command.

If you specify an absolute address for the address expression, the debugger
may not be able to associate the address with a particular data object. In
this case, the debugger uses a default length of 4 bytes. You can change this
length, however, by setting the type to either WORD (which changes the
default length to 2 bytes) or BYTE (which changes the default length to 1
byte).

/OVER
Sets tracepoints only within the main program (not within called routines)
when /BRANCH, /CALL, /INSTRUCTION=[(opcode-list)], or /LINE is
specified; that is, when an address expression is not explicitly specified.
/OVER is the opposite of /INTO.

/RETURN
Sets a tracepoint on the RETURN (RET) instruction from an indicated routine.
This qualifier can only be applied to routines called with a CALLS or CALLG
instruction; it cannot be used with JSB routines.

For this qualifier, the address-expression parameter is an instruction address
within a CALLS or CALLG routine. It may simply be a routine name, in
which case it specifies the routine start address. However, you can also
specify another location in a routine, so you can see only those returns that
are taken after a certain code path is followed.

/[NOJSHARE
Qualifies /INTO. Use /[NOjSHARE with /INTO and one of these qualifiers:
BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or /LINE. /SHARE
(default) lets the debugger set a tracepoint within shareable image routines
as well as other routines. /NOSHARE specifies that tracepoints not be set
within shareable images. Do not specify an address expression with this
qualifier.

/[l\IO]SILEI\IT
Controls whether or not the "trace ..." message (and source code) is
displayed when trace action is taken. /NOSILENT (default) specifies that
the message be displayed. /SILENT specifies that no message or source code
be displayed. /SILENT overrides /SOURCE.

/[NOJSOURCE
Controls whether or not the source code is displayed when trace action
is taken. /SOURCE (default) specifies that the source code be displayed.
/NOSOURCE specifies that no source code be displayed. /SILENT overrides
/SOURCE.

CD-136

SET TRACE

/[NOJSYSTEM
Qualifies /INTO. Use /[NOJSYSTEM with /INTO and one of these qualifiers:
/BRANCH, /CALL, /INSTRUCTION[=(opcode-list)J, or /LINE. /SYSTEM
(default) lets the debugger set tracepoint within system routines (PI space)
as well as other routines. /NOSYSTEM specifies that tracepoints not be
set within system routines. Do not specify an address expression with this
qualifier.

/TEMPORARY
Causes the tracepoint to disappear after it is activated (the tracepoint does not
remain permanently set).

DESCRIPTION When a tracepoint is activated, the debugger takes the following action:

1 Suspends program execution at the tracepoint location.

2 Evaluates the expression in a WHEN clause, if one was specified when
the tracepoint was set. If the value of the expression is FALSE, execution
continues and the debugger does not perform the next two steps.

3 Reports that execution has reached the tracepoint location, unless
/SILENT was specified.

4 Executes the commands in a DO clause, if one was specified when the
tracepoint was set.

5 Resumes execution.

The following qualifiers affect what output is seen when a tracepoint is
reached:

/[NOJSILENT
/[NOJSOURCE

The following qualifiers affect the timing and duration of tracepoints:

/AFTER:n
/TEMPORARY

Tracepoints may be set on classes of instructions by using one of the
following qualifiers:

/BRANCH
/CALL
/EVENT=event-name
/EXCEPTION
/INSTRUCTION
/INSTRUCTION=(opcode-list)
/LINE
/RETURN

The following qualifiers affect what happens at a routine call:

/INTO
/[NOJJSB
/OVER
/[NOJSHARE
/[NOJSYSTEM

CD-137

SET TRACE

The /MODIFY qualifier is used to monitor changes at program locations
(typically changes in the values of variables).

Related commands: (SHOW, CANCEL) TRACE, CANCEL ALL, SET BREAK,
SET WATCH, GO, (SET, SHOW) EVENT-FACILITY.

EXAMPLES
Q DBG> SET TRACE SUB1

This command sets a tracepoint at location (routine) SUB1.

B DBG> SET TRACE/SILENT COUNTER WHEN (A = B) DO (EXAMINE Y)

This command sets a tracepoint on routine COUNTER that will trigger only
when A equals B. When the tracepoint is triggered, variable Y is examined.
The /SILENT qualifier suppress the "trace ..." message.

E DBG> SET TRACE/BRANCH

This command causes the debugger to trace every branch instruction.

Q DBG> SET TRACE/LINE/INTO/NOSHARE/NOSYSTEM

This command causes the debugger to trace every line, including lines in
called routines, but not in shareable image routines or system routines.

CD-138

SET TYPE

SET TYPE

Establishes the default type to be associated with program locations
that do not have a compiler generated type. When used with
/OVERRIDE, establishes the default type to be associated with all
locations, overriding any compiler generated types.

FORMAT SET TYPE type-keyword

PARAMETERS type-keyword
Specifies the default type to be established. Valid keywords are the following:

ASCIC

ASCID

ASCILn

ASCIW

ASCIZ

BYTE

DATE-TIME

D-FLOAT

FLOAT

G-FLOAT

Sets the default type to counted ASCII string. AC is
also accepted as a keyword.

Sets the default type to ASCII string descriptor. The
CLASS and DTYPE fields of the descriptor are not
checked, but the LENGTH and POINTER fields provide
the character length and address of the ASCII string.
The string is then displayed. AD is also accepted as a
keyword.

Sets the default type to ASCII character string (length n
bytes). The length indicates both the number of bytes
of memory to be examined and the number of ASCII
characters to be displayed. If you do not specify a
value for n, the debugger uses the default value of 4
bytes. The value n is interpreted in decimal radix.

Sets the default type to ASCII varying string (a 2-byte
length field immediately followed by an ASCII string
of that length). This data type occurs in PASCAL and
PL/I. AW is also accepted as a keyword.

Sets the default type to zero-terminated ASCII string.
AZ is also accepted as a keyword.

Sets the default type to byte integer (length 1 byte).

Sets the default type to date-time: a quadword integer
(length 64 bits) containing the internal VAX/VMS
representation of date-time.

Sets the default type to D_floating (length 8 bytes).
Values of type D_floating may range from .29*10~38
to 1.7*1038 with approximately 16 decimal digits
precision.

Sets the default type to F_floating (length 4 bytes).
Values of type F_floating may range from .29*10~38 to
l.7*1038 with approximately 7 decimal digits precision.

Sets the default type to G_floating (length 8 bytes).
Values of type G_floating may range from .56*10~308
to .9*10308 with approximately 15 decimal digits
precision.

CD-139

SET TYPE

H _FLOAT

INSTRUCTION

LONGWORD

OCTAWORD

PACKED:n

QUADWORD

TYPE=(expression)

WORD

Sets the default type to H_floating (length 16 bytes).
Values of type H_floating may range from .84*10~4932
to .59*104932 with approximately 33 decimal digits
precision.

Sets the default type to VAX instruction (variable
length, depending on the number of instruction
operands and the kind of addressing modes used).

Sets the default type to longword integer (length 4
bytes). This the default for all languages.

Sets the default type to octaword integer (length 16
bytes).

Sets the default type to packed decimal (length 4n
bits).

Sets the default type to quadword integer (length 8
bytes).

Sets the default type to the type denoted by
expression. Expression may be the name of an existing
program variable or data type.

Sets the default type to word integer (length 2 bytes).

QUALIFIERS /OVERRIDE
Associates the type specified with all program locations, not just those that
have a compiler-generated type.

□ ASCRIPTION When you use the EXAMINE, DEPOSIT, or EVALUATE commands, the
default types associated with address expressions influence how program
entities are interpreted and displayed.

The debugger recognizes any compiler generated types associated with
program locations and interprets and displays the contents of these locations
accordingly. For program locations that do not have a compiler generated
type, the default type in all languages is longword integer.

The SET TYPE command lets you change the default type associated with
untyped program locations. The SET TYPE/OVERRIDE command lets you
set a default type for all program locations, not just untyped locations.

Note that the EXAMINE and DEPOSIT commands have type qualifiers
that let you further override, for the duration of that command, any
type previously established with the SET TYPE or SET TYPE/OVERRIDE
command.

Related commands: SHOW TYPE, CANCEL TYPE/OVERRIDE, (SET,
SHOW, CANCEL) RADIX, (SET, SHOW, CANCEL) MODE.

EXAMPLES
Q DBG> SET TYPE ASC:8

This command establishes 8-byte ASCII character string as the default type
associated with untyped program locations.

CD-140

SET TYPE

B DBG> set type/override longword

This command establishes longword integer as the default type associated
with both untyped program locations and program locations that have
compiler-generated types.

0 DBG> SET TYPE D.FLOAT

This command establishes D__Floating as the default type associated with
untyped program locations.

Q DBG> SET TYPE TYPE*(S_ARRAY)

This command establishes the type of the variable S—ARRAY as the default
type associated with untyped program locations.

CD-141

SET WATCH

SET WATCH

Establishes a watchpoint at the location denoted by an address-
expression.

FORMAT SET WATCH [addr-expr[, ...]][
WH E N(cond-expr)] [
DO(command[; ...])]

PARAMETERS addr-expr
Specifies an address expression (a program location) at which a watchpoint is
to be set. For high-level languages, this is typically the name of a variable.
Do not use the wildcard character (*).

command
Specifies a debugger command that is to be executed as part of the DO clause
when watch action is taken.

cond-expr
Specifies a conditional expression in the currently set language that is to be
evaluated every time the watchpoint occurs. If the expression is TRUE, watch
action occurs, and the debugger reports that a watchpoint has been triggered.
If the expression is FALSE, watch action does not occur. In this case, a report
is not issued, the commands specified by the DO clause are not executed, and
program execution is continued.

QUALIFIERS /AFTER :n
Specifies that watch action not be taken until the nth time the designated
watchpoint is encountered (n is a decimal integer). Thereafter, the watchpoint
occurs every time it is encountered provided that conditions in the WHEN
clause are TRUE. The command SET WATCH/AFTER:1 has the same effect
as the SET WATCH command.

/[NOJSILENT
Controls whether or not the "watch ..." message (and source code) is
displayed when watch action is taken. /NOSILENT (default) specifies that
the message be displayed. /SILENT specifies that no message or source code
be displayed. /SILENT overrides /SOURCE.

/[NOJSOURCE
Controls whether or not the source code is displayed when watch action
is taken. /SOURCE (default) specifies that the source code be displayed.
/NOSOURCE specifies that no source code be displayed. /SILENT overrides
/SOURCE.

CD-142

SET WATCH

/TEMPORARY
Causes the watchpoint to disappear after it is activated (the watchpoint does
not remain permanently set).

DESCRIPTION Whenever an instruction causes the modification of a watched location, the
debugger takes the following action:

1 Suspends program execution after that instruction has completed
execution.

2 Evaluates the expression in a WHEN clause, if one was specified when
the watchpoint was set. If the value of the expression is FALSE, execution
continues and the debugger does not perform the following steps.

3 Reports that execution has reached the watchpoint location, unless
/SILENT was specified.

4 Reports the value at the watched location before modification.

5 Reports the new or modified value at the watched location.

6 Identifies the instruction that modified the watched location. Also,
displays the line of source code corresponding to that instruction if
the SOURCE parameter is in effect by virtue of a previous SET STEP
SOURCE command.

7 Executes the commands in a DO clause, if one was specified when the
watchpoint was set. If the DO clause contains a GO command, execution
continues and the debugger does not perform the next step.

8 Issues the DBG> prompt.

If the watched location has a compiler-generated type, the debugger uses the
length in bytes associated with that type to determine the length in bytes
of the watched location. If the watched location does not have a compiler¬
generated type, the debugger watches four bytes of virtual memory beginning
at the byte identified by the address expression.

You can set watchpoints on aggregates (that is, entire arrays or records). A
watchpoint set on an array or record will trigger if any element of the array
or record changes. Thus, you do not need to set watchpoints on individual
array elements or record components. Note, however, that you cannot set an
aggregate watchpoint on a variant record.

You cannot set a watchpoint on a variable that is on the stack or that is
allocated to a register.

Related commands: (SHOW, CANCEL) WATCH, SET BREAK, SET TRACE.

EXAMPLES
□ DBG> SET WATCH MAXCOUNT

This command establishes a watchpoint at location MAXCOUNT.

CD—143

SET WATCH

Q DBG> SET WATCH ARR

DBG> GO

watch of SUBR\ARR at SUBR\7.LINE 12+8
old value:

(1) 7
(2) 12

(3) 3

new value:

(1) 7
(2) 12

(3) 28

break at SUBRV/.LINE 14

In this example, the SET WATCH command sets a watchpoint on the
three-element integer array, ARR. Execution is then resumed with the GO
command. The watchpoint is triggered whenever any array element changes.
In this case the third element changed.

CD-144

SET WINDOW

SET WINDOW

Creates a screen window definition.

FORMAT SET WINDOW wname AT (start-line,line-count
[, start-col, col-count])

PARAMETERS wname
Specifies the name of the window you are defining. If a window definition
with that name already exists, it is canceled in favor of the new definition.

start-line
Specifies the starting line number of the window. This line displays the
window title, or header line. The top line of the screen is line 1.

line-count
Specifies the number of text lines in the window, not counting the header
line. Line-count must be at least 1. The sum of start-line and line-count must
not exceed the current screen height.

start-col
Specifies the starting column number of the window. This is the column
at which the first character of the window will be displayed. The leftmost
column of the screen is column 1.

col-count
Specifies the number of characters per line in the window. Col-count must
be at least 1. The sum of start-col and col-count must not exceed the current
screen width.

QUALIFIERS None.

DESCRIPTION A screen window is a rectangular region on the terminal screen through
which you may view a display. The SET WINDOW command establishes a
window definition by associating a window name with a screen region. You
specify the screen region in terms of a starting line and height (line count)
and, optionally, a starting column and width (column count). If you do not
specify the starting column and column count, they default to column 1 and
the current screen width.

You can specify a window region in terms of expressions that use the built-in
symbols %PAGE and %WIDTH.

You can use the names of any windows you have defined with the SET
WINDOW command in DISPLAY and SET DISPLAY commands to position
displays on the screen.

CD-145

SET WINDOW

Window definitions are "dynamic"—that is, window dimensions expand and
contract proportionally when a SET TERMINAL command changes the screen
width or height.

Related commands: (SHOW, CANCEL) WINDOW, (SET SHOW, CANCEL)
DISPLAY, DISPLAY, (SET, SHOW) TERMINAL.

EXAMPLES
Q DBG> SET WINDOW ONELINE AT (1.1)

This command defines a window named ONELINE at the top of the screen.
The window is one line deep and, by default, spans the width of the screen.

0 DBG> SET WINDOW MIDDLE AT (9,4,30,20)

This command defines a window named MIDDLE at the middle of the screen.
The window is 4 lines deep starting at line 9, and 20 columns wide starting at
column 30.

0 DBG> SET WINDOW FLEX AT (7.PAGE/4,*/.PAGE/2,y.WIDTH/4,y.WIDTH/2)

This command defines a window named FLEX that occupies a region around
the middle of the screen and is defined in terms of the current screen height
(%PAGE) and width (%WIDTH).

CD-I 46

SHOW AST

SHOW AST

Indicates whether delivery of ASTs is enabled or disabled.

FORMAT SHOW AST

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The SHOW AST command indicates whether delivery of ASTs is enabled or
disabled. Note that the command does not identify an AST whose delivery is
pending. The delivery of ASTs is enabled by default and with the ENABLE
AST command. The delivery of ASTs is disabled with the DISABLE AST
command.

Related commands: (ENABLE, DISABLE) AST.

EXAMPLE
DBG> SHOW AST
ASTs are enabled

DBG> DISABLE AST

DBG> SHOW AST
ASTs are disabled

DBG>

The SHOW AST command indicates whether the delivery of ASTs is enabled.

CD-147

SHOW ATSIGN

SHOW ATSIGN

Identifies the default file specification established with the last SET
ATSIGN command. The debugger uses this file specification when
processing the @file-spec command.

FORMAT SHOW ATSIGN

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION Related commands: SET ATSIGN, @file-spec.

EXAMPLES
Q DBG> SHOW ATSIGN

No indirect command file default in effect, using DEBUG.COM

If the SET ATSIGN command was not used, the debugger assumes
that command procedures have the default file specification
SYS$DISK:[]DEBUG.COM.

Q DBG> SET ATSIGN USER:[JONES.DEBUG].DBG

DBG> SHOW ATSIGN

Indirect command file default is USER:[JONES.DEBUG].DBG

The SHOW ATSIGN command indicates the default file specification for
command procedures, as previously established with the SET ATSIGN
command.

CD-148

SHOW BREAK

SHOW BREAK

Displays information about all breakpoints established by the SET
BREAK command, including WHEN and DO clauses and /AFTER
counts.

FORMAT SHOW BREAK

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The debugger displays all information about each breakpoint that is currently
set, including any optional WHEN and DO clauses.

If you established a breakpoint using the /AFTER:n command qualifier with
the SET BREAK command, the SHOW BREAK command displays the current
value of the decimal integer n, that is, the originally specified integer value
minus one for each time the breakpoint location was reached. (The debugger
decrements n each time the breakpoint location is reached until the value of n
is zero, at which time the debugger takes break action.)

Related commands: (SET, CANCEL) BREAK.

EXAMPLE

DBG> SHOW BREAK
breakpoint at SUB1\L00P
breakpoint at MAIN\MAIN+1F

do (EX SUB1\D ; EX/SYMBOL PSL; GO)

breakpoint at routine SUB2\SUB2

/after: 2

This command displays information about the three breakpoints currently set,
SUBl\LOOP, MAIN\MAIN, and SUB2\SUB2.

CD-149

SHOW CALLS

SHOW CALLS

Identifies the currently active routine calls (the call stack).

FORMAT SHOW CALLS [n]

PARAMETERS n
Specifies the number of call frames to be identified. If n is omitted, all
currently active call frames are identified.

QUALIFIERS None.

DESCRIPTION The SHOW CALLS command shows a traceback that lists the sequence
of routine calls leading to the currently executing routine. One line of
information is displayed for each call frame, starting with the most recent
call. The top line identifies the currently executing routine, the next line
identifies its caller, the following line identifies the caller of the caller, and so
on.

The following information is provided for each call frame:

• The name of the enclosing module.

• The name of the calling routine, provided the module is set (the first line
shows the currently executing routine).

• The line number where the call was made in that routine, provided the
module is set (the first line shows the line number where execution is
suspended).

• The value of the PC in the calling routine at the time that control was
transferred to the called routine. The PC value is shown as a virtual
address relative to the virtual address of the name of the routine and also
as an absolute virtual address.

Related commands: SHOW STACK, SHOW SCOPE.

EXAMPLE
DBG> SHOW CALLS

module name routine name line rel PC abs PC

SUB2 SUB2 00000002 0000085A
♦SUB1 SUB1 5 00000014 00000854
♦MAIN MAIN 10 0000002C 0000082C

This command displays information about the sequence of currently active
procedure calls.

An asterisk next to a module name indicates that the module is set.

CD-150

SHOW DEFINE

SHOW DEFINE

Identifies the default qualifier (/ADDRESS, /COMMAND, or /VALUE)
currently in effect for the DEFINE command.

FORMAT SHOW DEFINE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The default qualifier for the DEFINE command is the default qualifier last
established with the SET DEFINE command. If no SET DEFINE command
was issued, the default qualifier is /ADDRESS.

To identify a symbol defined with the DEFINE command, use the SHOW
SYMBOL/DEFINED command.

Related commands: SET DEFINE, DEFINE, DELETE, SHOW SYMBOL
/DEFINED.

EXAMPLE
DBG> SHOW DEFINE
Current setting is: DEFINE/ADDRESS

DBG>

The SHOW DEFINE command indicates that the DEFINE command is set for
definition by address.

CD-I 51

SHOW DISPLAY

SHOW DISPLAY

Identifies one or more existing screen displays.

FORMAT SHOW DISPLAY [disp-name[, ... 77

PARAMETERS disp-name
Specifies the name of a display. If you do not specify a name, or if you
specify the wildcard character (*) by itself, all display definitions are listed.
You can use * within a display name. When using /ALL, do not specify a
display name.

QUALIFIERS /ALL
Lists all display definitions. When using /ALL, do not specify a display
name.

DESCRIPTION The SHOW DISPLAY command lists all displays according to their order in
the display list. The most hidden display is listed first, and the display that is
on top of the display pasteboard is listed last.

For each display, the SHOW DISPLAY command lists its name, maximum
size, screen window, and display kind (including any debug command list). It
also identifies whether or not the display is removed from the pasteboard or
is dynamic (a dynamic display automatically adjusts its window dimensions if
the screen size is changed with the SET TERMINAL command).

Related commands: (SET, CANCEL) DISPLAY, DISPLAY, (SET, CANCEL,
SHOW WINDOW), SHOW SELECT, EXTRACT/SCREEN-LAYOUT.

EXAMPLE
DBG> SHOW DISPLAY

display SRC at HI, size = 64, dynamic
kind = SOURCE (EXAMINE/SOURCE . y,SOURCE_SCOPE\7.PC)

display INST at HI, size = 64, removed, dynamic
kind = INSTRUCTION (EXAMINE/INSTRUCTION .0\7.PC)

display REG at RH1, size = 64, removed, not dynamic, kind = REGISTER
display OUT at S46, size = 100, dynamic, kind = OUTPUT
display EXSUM at Q3, size - 64, dynamic, kind = DO (EXAMINE SUM)
display PROMPT at S6, size = 64, dynamic, kind = PROGRAM

The SHOW DISPLAY command lists all displays currently defined. These
include the five predefined displays (SRC, INST, REG, OUT, and PROMPT),
and the user-defined DO display EXSUM. Displays INST and REG are
removed from the display pasteboard: the DISPLAY command must be used
in order to display them on the screen.

CD-I 52

SHOW EDITOR

SHOW EDITOR

Indicates the action taken by the EDIT command, as established by
the SET EDITOR command.

FORMAT SHOW EDITOR

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION Related commands: SET EDITOR, EDIT.

EXAMPLES
Q DBG> SHOW EDITOR

The editor is SPAWNed, with command line ',LSEDIT/START_POSITION=(n,1)"

The SHOW EDITOR command indicates that, when you issue the EDIT
command, you will spawn the VAX Language-Sensitive Editor in a
subprocess. The /START-POSITION qualifier that is appended to the
command line indicates that the editing cursor will be initially positioned at
the start of the line that is cented in the debugger's current source display.

Q DBG> SET EDITOR/CALLABLE.TPU
DBG> SHOW EDITOR
The editor is CALLABLE_TPU, with command line "TPU"

The SHOW EDITOR command indicates that, when you issue the EDIT
command, you will invoke the callable version of the VAX Text Processing
Utility (VAXTPU). The editing cursor will be initially positioned at the start of
source line 1.

CD—153

SHOW EVENT-FACILITY

SHOW EVENT-FACILITY

Identifies the current run-time facility for eventpoints and the
associated event names.

Note: The SHOW EVENT—FACILITY command currently applies only to
Ada and SCAN. See the VAX Ada and VAX SCAN documentation for
complete information.

FORMAT SHOW EVENT-FACILITY

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The SHOW EVENT-FACILITY command is meaningful only with Ada or
SCAN programs. The command identifies the current run-time facility and
lists the associated event names that may be used with the SET BREAK
/EVENT and SET TRACE/EVENT commands. The event names associated
with the Ada and SCAN run-time facilities are identified in Appendix E.

Related commands: SET EVENT-FACILITY, (SET, CANCEL) BREAK
/EVENT, SHOW BREAK, (SET, CANCEL) TRACE/EVENT, SHOW TRACE.

EXAMPLES
Q DBG> SHOW EVENT-FACILITY

event facility is ADA

This command identifies the current event facility to be Ada and lists the
associated event names that may be used with a SET BREAK/EVENT or SET
TRACE/EVENT command.

CD-154

SHOW EXIT-HANDLERS

SHOW EXIT-HANDLERS

Identifies the exit handlers that have been declared in your program.

FORMAT SHOW EXIT-HANDLERS

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The exit handler routines are displayed in the order that they will be called
(that is, last in, first out). The routine name is displayed symbolically, if
possible. Otherwise, its address is displayed. The debugger's exit handlers
are not displayed.

EXAMPLE
DBG> SHOW EXIT-HANDLERS
exit handler at STACKS\CLEANUP

The SHOW EXIT-HANDLERS command identifies the exit handler routine
CLEANUP, which is declared in module STACKS.

CD-I 55

SHOW IMAGE

SHOW IMAGE

Displays information about one or more shareable images that are
part of your running program.

FORMAT SHOW IMAGE [image-name]

PARAMETERS image-name
Specifies the name of a shareable image to be included in the display. If you
do not specify a name, or if you specify the wildcard character (*) by itself,
all images are listed. You can use * within an image name.

QUALIFIERS None.

DESCRIPTION The SHOW IMAGE command displays the following information:

• The name of the shareable image

• The start and end addresses of the image

• Whether the image has been "set" with the SET IMAGE command (loaded
into the RST)

• The current image that is your debugging context (marked with an
asterisk)

• The total number of images selected in the display

Related commands: (SET, CANCEL) IMAGE, (SET, SHOW, CANCEL)
MODULE.

EXAMPLES
Q DBG> SHOW IMAGE SHARE*

image name set base address end address

♦SHARE yes 00000200 00000FFF
SHARE1 no 00001000 000017FF
SHARE2 yes 00018C00 00019IFF
SHARE3 no 00019200 000195FF
SHARE4 no 00019600 0001B7FF

total images: 5 remaining size: 33032

This SHOW IMAGE command identifies all of the shareable images whose
names start with "SHARE" and which are associated with the program.
Images SHARE and SHARE2 are set. The asterisk identifies SHARE as the
current image.

CD-I 56

SHOW KEY

SHOW KEY

Displays the key definitions created by the DEFINE/KEY command.

FORMAT SHOW KEY [key-name]

PARAMETERS key-name
Specifies a function key whose definition is to be displayed. Do not use the
wildcard character (*). When using /ALL, do not specify a key name. Valid
key names are the following:

Keyname LK201 VT100-type VT52-type

PF1 PF1 PF1 Blue

PF2 PF2 PF2 Red

PF3 PF3 PF3 Black

PF4 PF4 PF4

KPO, KP1,. . . ,KP9 Keypad 0, ... ,9 Keypad 0, ... ,9 Keypad 0, ... ,9

PERIOD Keypad period (.) Keypad period (.)

COMMA Keypad comma (,) Keypad comma (,)

MINUS Keypad minus (-) Keypad minus (-)

ENTER ENTER ENTER ENTER

El Find

E2 Insert Here

E3 Remove

E4 Select

E5 Prev Screen

E6 Next Screen

HELP Help

DO Do

F6, F7, . . . , F20 F6, F7.F20

QUALIFIERS /ALL
Displays all key definitions for the current state, by default, or for the states
specified with the /STATE qualifier. When using /ALL, do not specify a key
name.

/BRIEF
Displays only the key definitions (by default, all the qualifiers associated with
a key definition are also shown, including any specified state)

CD-I 57

SHOW KEY

/DIRECTORY
Displays the names of all the states for which keys have been defined. Do
not specify other qualifiers with /DIRECTORY.

/[NO]STATE=(state-name [, . . .])
Selects one or more states for which a key definition is to be displayed.
/STATE displays key definitions for the specified states. You may specify
predefined key states, such as DEFAULT and GOLD, or user-defined states.
A state name can be any appropriate alphanumeric string. /NOSTATE
(default) displays key definitions for the current state only.

DESCRIPTION Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

By default, the current key state is the "DEFAULT" state. The current state
may be changed with the SET KEY/STATE command, or by pressing a key
that causes a state change (a key that was defined with the DEFINE/KEY
/LOCK—STATE/STATE qualifier combination).

Related commands: DEFINE/KEY, DELETE/KEY, SET KEY.

EXAMPLES
Q DBG> SHOW KEY/ALL

This example shows how to display all the keys currently defined in the
current state.

g DBG> SHOW KEY/STATE=BLUE KP8

GOLD keypad definitions:
KP8 = "Scroll/Top" (noecho,terminate.nolock)

This example shows how to display the definition for keypad key 8.

0 DBG> SHOW KEY/BRIEF KP8

DEFAULT keypad definitions:

KP8 = "Scroll/Up"

This example shows how to display the definition for keypad key 8 without
any associated qualifiers or states.

Q DBG> SHOW KEY/DIRECTORY

MOVE.GOLD

MOVE.BLUE

MOVE

GOLD
EXPAND.GOLD
EXPAND_BLUE
EXPAND
DEFAULT
CONTRACT.GOLD
CONTRACT.BLUE
CONTRACT
BLUE

This command displays the names of the states for which keys have been
defined.

CD-I 58

SHOW LANGUAGE

SHOW LANGUAGE

Identifies the current language.

FORMAT SHOW LANGUAGE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current language is the language last established with the SET
LANGUAGE command. If no SET LANGUAGE command was issued,
the current language is, by default, the language established at debugger start
up (the language of the module containing the transfer address).

Related commands: SET LANGUAGE.

EXAMPLE
DBG> SHOW LANGUAGE
language: BASIC

This command displays the name of the current language as BASIC.

CD-I 59

SHOW LOG

SHOW LOG

Identifies the current log file and reports whether the debugger is
writing to that file.

FORMAT SHOW LOG

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current log file is the log file last established by a SET LOG command.
If no SET LOG command was issued, the current log file is the file
SYS$DISK:[]DEBUG.LOG, by default.

Related commands: SET LOG, SET OUTPUT [NO]LOG, SET OUTPUT
[NO]SCREEN_LOG.

EXAMPLES
Q DBG> SHOW LOG

not logging to DEBUG.LOG

This command displays the name of the current log file as DEBUG.LOG (the
default log file) and reports that the debugger is not writing to it.

g DBG> SET LOG PR0G4
DBG> SET OUTPUT LOG
DBG> SHOW LOG

logging to USER$:[JONES.WORK]PR0G4.LOG

The SET LOG command establishes that the current log file is PROG4.LOG
(in the current default directory). The SET OUTPUT LOG command
causes the debugger to log debugger input and output into that file. The
SHOW LOG command confirms that the debugger is writing to the log file
PROG4.COM in the current default directory.

CD-I60

SHOW MARGINS

SHOW MARGINS

Displays the current source-line margin settings for the display of
source code.

FORMAT SHOW MARGINS

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current margin settings are the margin settings last established with the
SET MARGINS command. If no SET MARGINS command was issued, the
left margin is set to 1 and the right margin is set to 255 by default.

Related commands: SET MARGINS.

EXAMPLES
Q DBG> SHOW MARGINS

left margin: 1 , right margin: 255

This command displays the default margin settings of 1 and 255.

0 DBG> SET MARGINS 50
DBG> SHOW MARGINS
left margin: 1 , right margin: 50

This command displays the default left margin setting of 1 and the modified
right margin setting of 50.

0 DBG> SET MARGINS 10:60

DBG> SHOW MARGINS
left margin: 10 . right margin: 60

This command displays both margin settings modified to 10 and 60.

CD-161

SHOW MAX—SOURCE—FILES

SHOW MAX—SOURCE-FILES

Displays the maximum number of source files that the debugger may
keep open at any one time.

FORMAT SHOW MAX_SOURCE_FILES

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The maximum number of source files that the debugger may keep open
at any one time may be specified using the SET MAX—SOURCE—FILES
command. If no SET MAX—SOURCE—FILES command was issued, the
maximum number of files is 5, by default.

Related commands: SET MAX-SOURCE-FILES, (SET, SHOW, CANCEL)
SOURCE.

EXAMPLE
DBG> SHOW MAX_SOURCE_FILES

max_Bource_files: 7

This command shows that the debugger may keep a maximum of 7 source
files open at any one time.

CD-162

SHOW MODE

SHOW MODE

Identifies the current debugger modes (screen or no screen, keypad
or nokeypad, and so on) and the current radix.

FORMAT SHOW MODE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current debugger modes are the modes last established with the SET
MODE command. If no SET MODE command was issued, the current
modes are, by default: DYNAMIC, NOG-FLOAT (d_float), KEYPAD, LINE,
NOSCREEN, SCROLL, SYMBOLIC.

Related commands: (SET, CANCEL) MODE, (SET, SHOW, CANCEL)
RADIX.

EXAMPLE
DBG> SHOW MODE
modes: symbolic, line, d_float, screen, scroll, keypad, dynamic

input radix :decimal
output radix:decimal

The SHOW MODE command displays the current modes and current input
and output radix.

SHOW MODULE

SHOW MODULE

Displays information about one or more modules in your program.

FORMAT SHOW MODULE [module-name]

PARAMETERS module-name
Specifies the name of a module to be included in the display. If you do
not specify a name, or if you specify the wildcard character (*) by itself, all
modules are listed. You can use * within a module name. Shareable image
modules are selected only if the /SHARE qualifier is specified.

QUALIFIERS /[NO]RELATED

Note: /[NOJRELATED applies only to Ada programs.

Controls whether the debugger includes, in the SHOW MODULE display,
any module that is related to a specified module through a with-clause or
subunit relationship.

SHOW MODULE/RELATED displays related modules as well as those
specified. The display identifies the exact relationship. By default (
/NORELATED), no related modules are selected for display (only the
modules specified are selected).

/[NOJSHARE
Controls whether the debugger includes, in the SHOW MODULE display,
any shareable image modules that have been linked with your program but
are external to your program. These shareable images are primarily run-time
library images, but they also include any shareable images called by your
program.

Dummy modules whose names have the prefix "SHARES" are created for
each shareable image in your program. SHOW MODULE/SHARE displays
these shareable image modules, as well as modules in the main image. By
default (/NOSHARE) no shareable image modules are selected for display.

Setting a shareable image module loads the universal symbols for that image
into the run-time symbol table. Note that this feature overlaps the effect of
the newer SET IMAGE and SHOW IMAGE commands.

DESCRIPTION

Note: The (SET, SHOW, CANCEL) MODULE commands operate on modules in
the current image. This is either the main image (by default) or the image
established as the current image by a previous SET IMAGE command.

CD-164

SHOW MODULE

The SHOW MODULE command displays the following information about
one or more modules selected for display:

• The module name

• The language in which the module is written

• Whether or not the symbol records of the module have been loaded into
the debugger's run-time symbol table (RST)

• The space (in bytes) required in the RST for symbol records in that
module

• The total number of modules selected in the display

• The number of unused bytes in the space allocated for the RST

Related commands: (SET, CANCEL) MODULE, (SET, SHOW, CANCEL)
IMAGE, SET MODE [NO]DYNAMIC, SHOW SYMBOL, (SET, SHOW,
CANCEL) SCOPE.

EXAMPLE
DBG> SHOW MODULE
module name

FOO,MAIN,SUB*
symbols language size

FOO yes MACRO 432

MAIN no FORTRAN 280

SUB1 no FORTRAN 164

SUB 2 no FORTRAN 204

total modules: 4 remaining size: 60720

The SHOW MODULE command displays information about the modules
FOO and MAIN, and all modules having the prefix SUB.

CD-165

SHOW OUTPUT

SHOW OUTPUT

Displays the current output options.

FORMAT SHOW OUTPUT

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current output options are the options last established with the SET
OUTPUT command. If no SET OUTPUT command was issued, the
output options are, by default: NOLOG, NOSCREEN—LOG, TERMINAL,
NOVERIFY.

Related commands: SET OUTPUT, SET LOG, SET MODE SCREEN.

EXAMPLE
DBG> SHOW OUTPUT
noverify, terminal, screen_log, logging to USER$:[JONES.WORK]DEBUG.LOG;9

This command shows that the debugger is not displaying input command
strings as it executes command procedures and commands in DO clauses;
is displaying output on the terminal; is writing output to the log file
USER$:[JONES.WORK]DEBUG.LOG;9; and is logging the screen contents
as they are updated in screen mode.

CD-166

SHOW RADIX

SHOW RADIX

Displays the current radix for the entry and display of integer data
or, if the /OVERRIDE command qualifier is specified, the current
override radix.

FORMAT SHOW RADIX

PARAMETERS None.

QUALIFIERS /OVERRIDE
Identifies the current override radix.

DESCRIPTION The current radix for the entry and display of integer data is the radix last
established with the SET RADIX command. If no SET RADIX command was
issued, the radix for both input and output is hexadecimal for BLISS and
MACRO and decimal for other languages.

The current override radix for the display of all data is the override radix last
established with the SET RADIX/OVERRIDE command. If no SET RADIX
/OVERRIDE command was issued, the override radix is "none".

Related commands: (SET, CANCEL) RADIX.

EXAMPLES
Q DBG> SHOW RADIX

input radix: decimal

output radix: decimal

This command identifies the input radix and output radix as decimal.

2 DBG> SET RADIX/OVERRIDE HEX
DBG> SHOW RADIX/OVERRIDE
output override radix: hexadecimal

The SET RADIX/OVERRIDE command sets the override radix to hexadecimal
and the SHOW RADIX/OVERRIDE command indicates the override radix.
This means that all data will be displayed as hexadecimal integer data in
commands such as EXAMINE and so on.

CD-I 67

SHOW SCOPE

SHOW SCOPE

Displays the current scope search list for symbol lookup.

FORMAT SHOW SCOPE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current scope search list designates one or more program locations
(specified by path names and/or other special characters) to be used in the
interpretation of symbols that are specified without path-name prefixes in
debugger commands.

The current scope search list is the scope search list last established with the
SET SCOPE command. If no SET SCOPE command was issued, the current
scope search list is 0,2,2, . . . ,N, by default.

The default scope means that, for a symbol without a path-name prefix, a
symbol lookup such as "EXAMINE X" first looks for X in the routine that is
currently executing (scope 0); if no X is visible there, the debugger looks in
the caller of that routine (scope 1), and so on down the call stack; if X is not
found in scope N, the debugger searches the rest of the run-time symbol table
(RST), then searches the global symbol table (GST), if necessary.

If you have used a decimal integer in the SET SCOPE command to represent
a routine in the call stack, the SHOW SCOPE command displays the name of
the routine represented by the integer, if possible.

Related commands: (SET, CANCEL) SCOPE.

EXAMPLE
DBG> SHOW SCOPE

scope: MAIN. SUB1, 0[=SUB2],\

This example shows how to search for a symbol X (EXAMINE X) in MAIN,
then in SUB1, then in the routine that contains the current PC, and finally
globally.

CD-I 68

SHOW SEARCH

SHOW SEARCH

Identifies the default qualifiers (/ALL or /NEXT, /IDENTIFIER or
/STRING) currently in effect for the SEARCH command.

FORMAT SHOW SEARCH

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The default qualifiers for the SEARCH command are the default qualifiers last
established with the SET SEARCH command. If no SET SEARCH command
was issued, the default qualifiers are /NEXT and /STRING.

Related commands: SET SEARCH, SEARCH, (SET, SHOW) LANGUAGE.

EXAMPLE
DBG> SHOW SEARCH
search settings: search for next occurrence, as a string

DBG> SET SEARCH IDENT
DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier

DBG> SET SEARCH ALL
DBG> SHOW SEARCH
search settings: search for all occurrences, as an identifier

The first SHOW SEARCH command displays the default settings for the SET
SEARCH command. By default, the debugger searches for and displays the
next occurrence of the string.

The second SHOW SEARCH command indicates that the debugger will
search for the next occurrence of the string, but will only display the string if
it is not bounded on either side by a character that can be part of an identifier
in the current language.

The third SHOW SEARCH command indicates that the debugger will search
for all occurrences of the string, but will only display the strings if they are
not bounded on either side by a character that can be part of an identifier in
the current language.

CD-169

SHOW SELECT

SHOW SELECT

Identifies the displays currently selected for each of the display
attributes: error, input, instruction, output, program, prompt, scroll,
and source.

FORMAT SHOW SELECT

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The display attributes have the following properties:

• A display that has the error attribute displays debugger diagnostic
messages.

• A display that has the input attribute echoes your debugger input.

• A display that has the instruction attribute displays the decoded assembly
language instruction stream of the routine being debugged. The display is
updated when you enter an EXAMINE/INSTRUCTION command.

• A display that has the output attribute displays any debugger output that
is not directed to another display.

• A display that has the program attribute displays program input and
output. Currently only the PROMPT display can have the program
attribute.

• A display that has the prompt attribute is where the debugger prompts
for input. Currently, only the PROMPT display can have the PROMPT
attribute.

• A display that has the scroll attribute is the default display for the
SCROLL, MOVE, and EXPAND commands.

• A display that has the source attribute displays the source code of the
module being debugged, if available. The display is updated when you
enter a TYPE or EXAMINE/SOURCE command.

Related commands: SELECT, SHOW DISPLAY.

CD-I 70

SHOW SELECT

EXAMPLE
DBG> SHOW SELECT
display selections:

scroll = SRC
input = none
output = OUT
error = PROMPT
source = SRC
instruction = none
program - PROMPT
prompt = PROMPT

The SHOW SELECT command identifies the displays currently selected for
each of the display attributes. The display selections shown are the default
selections for all languages except MACRO.

CD-171

SHOW SOURCE

SHOW SOURCE

Displays the source directory search lists currently in effect.

FORMAT SHOW SOURCE

PARAMETERS None.

QUALIFIERS /EDIT

Note: /EDIT applies mainly to Ada programs,

Identifies the search list for source files to be edited when you use the EDIT
command.

DESCRIPTION If a source directory search list has not been established by means of the SET
SOURCE or SET SOURCE/MODULE=module-name commands, the SHOW
SOURCE command indicates that no directory search list is currently in effect.
In this case, the debugger expects each source file to be in the same directory
that it was in at compile time (the debugger also checks that the creation date
and time of a source file match the information in the debugger's symbol
table).

The SET SOURCE/MODULE=module-name command establishes a source
directory search list for a particular module. The SET SOURCE command
establishes a source directory search list for all modules not explicitly
mentioned in a SET SOURCE/MODULE=module-name command. When
those commands have been used, the SHOW SOURCE command identifies
the source directory search list associated with each search categories.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT command.
This is the case with Ada programs. For Ada programs, the SHOW SOURCE
command identifies the search list of files used for source display (the "copied"
source files in Ada program libraries); the SHOW SOURCE/EDIT command
identifies the search list for the source files you edit when using the EDIT
command.

Related commands: (SET, CANCEL) SOURCE, (SET, SHOW) MAX_
SOURCE—FILES.

CD-172

SHOW SOURCE

EXAMPLES
Q DBG> SHOW SOURCE

no directory search list in effect
DBG> SET SOURCE [PROJA],[PROJB].DISK:[PETER.PROJC]

DBG> SHOW SOURCE

source directory search list for all modules:
[PROJA]
[PROJB]

DISK:[PETER.PROJC]

This example shows how the SET SOURCE command tells the debugger to
search the directories [PROJA],[PROJB], and DISK:[PETER.PROJC].

2 DBG> SET SOURCE/MODULE=COBOLTEST DISK$2:[PROJD].[014,015]

DBG> SHOW SOURCE

source directory search list for COBOLTEST:
DISK$2: [PROJD]

[014,015]
source directory search list for all other modules:

[PROJA]
[PROJB]
DISK:[PETER.PROJC]

This example shows how the SET SOURCE command tells the debugger to
search the directories DEVICE:[PROJD] and [014,015]) for source files to use
with the module COBOLTEST.

CD-173

SHOW STACK

SHOW STACK

Displays information from the current call stack.

FORMAT SHOW STACK [n]

PARAMETERS n
Specifies the number of frames to display. If n is omitted, information about
all stack frames is displayed.

QUALIFIERS None.

DESCRIPTION For each call frame, the SHOW STACK command displays information such
as the condition handler, saved register values, and the argument list, if any.
The latter is the list of arguments passed to the subroutine with that call. In
some cases the argument list may contain the addresses of actual arguments.
In such cases, "DBG> EXAMINE address" will return the values of these
arguments.

Related commands: SHOW CALLS.

EXAMPLES
Q DBG> SHOW STACK

stack frame 0 (2146814812)

condition handler: 0
SPA: 0
S: 0
mask: ~M<R2>
PSW: 0000 (hexadecimal)

saved AP: 7
saved FP: 2146814852
saved PC: EIGHTQUEENS
saved R2: 0
argument list:(l) EIGHTQUEENS

stack frame 1 (2146814852)

condition handler: SHARE$PASRTL+888
SPA: 0
S: 0
mask: none saved
PSW: 0000 (hexadecimal)

saved AP: 2146814924
saved FP: 2146814904
saved PC: SHARE$DEBUG+667

The SHOW STACK command displays information about all stack frames at
the current PC location.

CD-174

SHOW STEP

SHOW STEP

Identifies the default qualifiers (/INTO, /INSTRUCTION, /NOSILENT
and so on) currently in effect for the STEP command.

FORMAT SHOW STEP

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The default qualifiers for the STEP command are the default qualifiers last
established by the SET STEP command. If no SET STEP command was
issued, the default qualifiers are those established by the current language.

Related commands: SET STEP, STEP, (SET, SHOW) LANGUAGE.

EXAMPLE
DBG> SET STEP INTO,NOSYSTEM,NOSHARE,INSTRUCTION,NOSOURCE
DBG SHOW STEP

step type: nosystem, noshare, nosource, nosilent, into routine calls, by instruction

This SHOW STEP command indicates that the debugger will:

• Step into called routines, but not those in system space or in shareable
images

• Step by instruction

• Not display lines of source code while stepping

CD-175

SHOW SYMBOL

SHOW SYMBOL

Displays symbols in the debugger's run-time symbol table.

FORMAT SHOW SYMBOL symbol-name[\N scope[, ... 77
[,symbol-name[IN scope[, ... 77

PARAMETERS symbol-name
Specifies a symbol to be identified. A valid symbol name is a single identifier
or a label name of the form %LABEL n, where n is an integer. Compound
names such as RECORD.FIELD or ARRAY[1,2] are not valid. If you specify
the wildcard character (*) by itself, all symbols are listed. You can use *
within a display name.

scope
Specifies the name of a module, routine, or lexical block, or a numeric scope.
It has the same syntax as the scope specification in a SET SCOPE command
and may include path-name qualification. All specified scopes must be in set
modules.

The SHOW SYMBOL command displays only those symbols in the RST that
both match the specified name and are declared within the lexical entity
specified by the scope parameter. If the scope parameter is omitted, all set
modules and the GST (global symbol table) are searched for symbols that
match the name specified by the namespec parameter.

QUALIFIERS /ADDRESS
Displays the address specification for each selected symbol. The address
specification is the method of computing the symbol's address. It may
merely be the symbol's virtual address, but it may also involve indirection or
an offset from a register value. Some symbols have address specifications
too complicated to present in any understandable way. These address
specifications are labeled "complex address specifications."

/DEFINED
Displays symbols you have defined with the DEFINE command.

/DIRECT
Displays only those symbols that are declared directly in the scope parameter.
Symbols declared in lexical entities nested within the scope specified by the
scope parameters will not be shown.

/LOCAL
Displays symbols that are defined with the DEFINE/LOCAL command.

/TYPE
Displays data type information for each selected symbol.

CD-176

SHOW SYMBOL

/USE-CLAUSE

Note: /USE—CLAUSE applies only to Ada programs.

Identifies any Ada package that a specified block, subprogram, or package
names in a use clause. If the symbol specified is a package, also identifies
any block, subprogram, package, and so on that names the specified symbol
in a use clause.

DESCRIPTION The SHOW SYMBOL command displays information that the debugger has
about a given symbol. This information may not be the same as what the
compiler had or even what you see in your source code. Nonetheless, it is
useful for understanding why the debugger may act as it does when handling
symbols.

Related commands: DEFINE, SYMBOLIZE.

EXAMPLES
Q DBG> SHOW SYMBOL I

data FORARRAYXI

This command shows that symbol I is located in module FORARRAY.

g DBG> SHOW SYMBOL INTARRAY1

data FORARRAY\INTARRAY1

This command shows that symbol INTARRAY1 is located in module
FORARRAY.

0 DBG> SHOW SYMBOL/ADDRESS INTARRAY1

data F0RARRAYXINTARRAY1
descriptor address: 0009DE8B

This command shows that symbol INTARRAY1 is located in module
FORARRAY and has a virtual address of 0009DE8B.

2 DBG> SHOW SYMBOL *tarr*

data FORARRAYXINTARRAY1

data F0RARRAYXINTARRAY2

data FORARRAYXINTARRAY3

This command displays all the symbol names containing the string "tarr" and
their locations in module FORARRAY.

0 DBG> SHOW SYMBOL/TYPE/ADDRESS *

This command displays all information about all symbols.

0 DBG> DEFINE/COMMAND SB=SET BREAK
dbg> show SYMBOL/DEFINED SB

defined SB
bound to: SET BREAK
was defined /command

The DEFINE/COMMAND command defines SB as a symbol for the
command SET BREAK. The SHOW SYMBOL/DEFINED command displays
that definition.

CD-I 77

SHOW TASK

SHOW TASK

Displays information about the tasks of a tasking program.

Note: The SHOW TASK command currently applies only to Ada programs. See
the VAX Ada documentation for complete information.

FORMAT SHOW TASK [task-expression^, . . .]]

PARAMETERS task-expression
Specifies a task value. A task expression may be:

• An Ada language expression for a task value—for example, a task object
name. You can use a path name.

• The task ID (for example, %TASK 2), as indicated in a SHOW TASK
display.

• A pseudo-task name (% ACTIVE _TASK, % CALLER—TASK, %NEXT_
TASK, or % VISIBLE-TASK).

Do not use the wildcard character (*). See the qualifier descriptions for
details on how to specify tasks with particular qualifiers.

QUALIFIERS /ALL
Selects all tasks that currently exist in the program for display. Do not specify
a task with /ALL.

/CALLS[=n]
Performs a SHOW CALLS command for each task selected for display. You
can use the SHOW CALLS command to obtain the current PC of a task.

/FULL
Displays additional information about each task selected for display. /FULL
provides additional information if used either by itself, or with the /CALLS
or /STATISTICS qualifier.

/[I\IOJHOLD
Selects either tasks that are on HOLD, or tasks that are not on HOLD for
display.

If you do not specify a task, /HOLD selects all tasks that are on HOLD. If
you specify a task list, /HOLD selects the tasks in the task list that are on
HOLD.

If you do not specify a task, /NOHOLD selects all tasks that are not on
HOLD. If you specify a task list, /NOHOLD selects the tasks in the task list
that are not on HOLD.

CD-178

SHOW TASK

/PRIORITY=(n[, . . .])
If you do not specify a task, selects all tasks that have any of the specified
priorities, n, where n is a decimal integer from 0 to 15 inclusive. If you
specify a task list, selects the tasks in the task list that have any of the
priorities specified.

/STATE=(state[, . . .])
If you do not specify a task, selects all tasks that are in any of the specified
states (the possible states are RUNNING, READY, SUSPENDED, or
TERMINATED). If you specify a task list, selects the tasks in the task list
that are in any of the states specified.

/STATISTICS
Displays tasking statistics for the entire tasking system. You can use this
information to measure the performance of your tasking program. The larger
the number of total schedulings (also known as context switches), the more
tasking overhead there is. When you specify /STATISTICS, the only other
permissible qualifier is /FULL.

/TIME-SLICE
Displays the current value of pragma TIME—SLICE.

DESCRIPTION You can select tasks for display with the SHOW TASK command by
specifying any of the following:

• A task list—that is, a list of task expressions.

• Task selection qualifiers: /ALL, /[NOJHOLD, /PRIORITY, /STATE.

• Both a task list and task selection qualifiers. Only the tasks that satisfy all
specified criteria are selected for display.

If no task parameters or task selection qualifiers are given, the SHOW TASK
command displays summary information about the visible task.

Related commands: SET TASK, SET BREAK/EVENT, SET TRACE/EVENT,
EXAMINE/TASK, DEPOSIT/TASK.

EXAMPLES
Q DBG> SHOW TASK/ALL

task id pri hold state substate
* ‘/.TASK 1 7 RUN

•/.TASK 2 7 HOLD SUSP Accept
7.TASK 3 6 READY Entry call

task object
122624
TASK.EXAMPLE.MONITOR
TASK.EXAMPLE.CHECK.IN

The SHOW TASK/ALL command provides basic information on all the tasks
of a program that are currently in existence—namely, tasks that have been
created and whose master has not yet terminated. One line is devoted to
each task. The active task is marked with an asterisk and is always the task
that is in the RUN state.

0 DBG> SHOW TASK %ACTIVE_TASK,'/.TASK 3,MONITOR

This command selects the active task, %TASK 3, and task MONITOR for
display.

CD—179

SHOW TASK

E DBG> SHOW TASK/PRI0RITY=6

This command selects all tasks with priority 6 for display.

E DBG> SHOW TASK/STATE*(RUN,SUSP)

This command selects all tasks that are either running or suspended for
display.

E DBG> SHOW TASK/STATE=SUSP/NOHOLD

This command selects all tasks that are both suspended and not on hold for
display.

E DBG> SHOW TASK/STATE*(RUN,SUSP)/PRI0*7 %VISIBLE_TASK,y,TASK 3

This command selects for display those tasks among the visible task and
%TASK 3 that are in either the RUNNING or SUSPENDED STATE, and have
priority 7.

CD-180

SHOW TERMINAL

SHOW TERMINAL

Displays the current terminal screen height (page) and width being
used to format output.

FORMAT SHOW TERMINAL

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current terminal screen height and width are the height and width
last established by the SET TERMINAL command. If no SET TERMINAL
command was issued, the current height and width are, by default, the height
and width known to the VAX/VMS terminal driver, as displayed by the DCL
command SHOW TERMINAL (usually 24 lines and 80 columns, respectively,
for VT-series terminals).

Related commands: SET TERMINAL, SHOW DISPLAY, SHOW WINDOW.

EXAMPLE
DBG> SHOW TERMINAL

terminal width: 80
page: 24

This command displays the current terminal screen width and height (page)
as 80 columns and 24 lines, respectively.

CD-181

SHOW TRACE

SHOW TRACE

Displays information about all tracepoints established by the SET
TRACE command, including WHEN and DO clauses and /AFTER
counts.

FORMAT SHOW TRACE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The debugger displays all information about each tracepoint that is currently
set, including any optional WHEN and DO clauses.

If you established a tracepoint using the /AFTER:n command qualifier with
the SET TRACE command, the SHOW TRACE command displays the current
value of the decimal integer n, that is, the originally specified integer value
minus one for each time the tracepoint location was reached. (The debugger
decrements n each time the tracepoint location is reached until the value of n
is zero, at which time the debugger takes trace action.)

Related commands: (SET, CANCEL) TRACE.

EXAMPLE
DBG> SHOW TRACE
tracepoint at CALC\MULT

tracing /CALL instructions: CALLS, CALLG, BSBW, BSBB, JSB, RSB
and RET

When the debugger encounters routine MULT in module CALC, or one of the
instructions CALLS, CALLG, BSBW, BSBB, JSB, RSB, or RET, it will suspend
program execution, report a message announcing its arrival at the tracepoint,
and resume program execution.

CD-182

SHOW TYPE

SHOW TYPE

Displays the current type for program locations that do not have a
compiler-generated type or, if the /OVERRIDE command qualifier is
specified, the current override type.

FORMAT SHOW TYPE

PARAMETERS None.

QUALIFIERS /OVERRIDE
Identifies the current override type.

DESCRIPTION The current type for program locations that do not have a compiler-generated
type is the type last established by the SET TYPE command. If no SET TYPE
command was issued, the type for those locations is longword integer.

The current override type for all program locations is the override type
last established by the SET TYPE/OVERRIDE command. If no SET TYPE
/OVERRIDE command was issued, the override type is "none".

Related commands: SET TYPE, CANCEL TYPE/OVERRIDE.

EXAMPLES
Q DBG> SET TYPE QUADWORD

dbg> show type

type: quadword integer

The SET TYPE command sets the type for locations that do not have a
compiler generated type to quadword. The SHOW TYPE command displays
the current default type for those locations as quadword integer. This means
that the debugger will interpret and display entities at those locations as
quadword integers unless you specify otherwise (for example with a type
qualifier on the EXAMINE command).

Q DBG> SHOW TYPE/OVERRIDE

type/override: none

This command indicates that no override type has been defined.

CD-183

SHOW WATCH

SHOW WATCH

Displays information about all watchpoints established by the SET
WATCH command, including WHEN and DO clauses and /AFTER
counts.

FORMAT SHOW WATCH

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The debugger displays all information about each watchpoint that is currently
set, including any optional WHEN and DO clauses.

If you established a watchpoint using the /AFTER:n command qualifier with
the SET WATCH command, the SHOW WATCH command displays the
current value of the decimal integer n, that is, the originally specified integer
value minus one for each time the watchpoint location was reached. (The
debugger decrements n each time the watchpoint location is reached until the
value of n is zero, at which time the debugger takes watch action.)

Related commands: (SET, CANCEL) WATCH.

EXAMPLE

DBG> SHOW WATCH

watchpoint of MAIN\ALPHA

watchpoint of SUB2\TABLE+20

This command displays two watchpoints, one at location MAIN\ALPHA and
the other at location SUB2\TABLE+20.

CD-I84

SHOW WINDOW

SHOW WINDOW

Displays the name and screen position of predefined and user-
defined windows.

FORMAT SHOW WINDOW [wname[, . . .]]

PARAMETERS vjname
Specifies the name of a window. If you do not specify a name, or if you
specify the wildcard character (*) by itself, all window definitions are listed.
You can use * within a window name. When using /ALL, do not specify a
window name.

QUALIFIERS /ALL
Lists all window definitions. Do not specify a window definition name with
/ALL.

DESCRIPTION Related commands: (SET, CANCEL) WINDOW, (SET, SHOW, CANCEL)
DISPLAY, SHOW SELECT, (SET, SHOW) TERMINAL.

EXAMPLE
dbg> show window lh*,rh*

window LH1 at (1,11,1,40)
window LH12 at (1,23,1,40)
window LH2 at (13,11,1,40)
window RH1 at (1,11,42,39)
window RH12 at (1,23,42,39)
window RH2 at (13,11,42,39)

This command displays the name and screen position of all screen window
definitions whose names starts with LH or RH.

CD-185

SPAWN

SPAWN

Lets you execute DCL commands without terminating a debugging
session or losing the current debugging context.

FORMAT SPAWN [dcl-command]

PARAMETERS dcl-command
Specifies a DCL command. If you specify a DCL command, the command is
executed in a subprocess. Control is returned to the debugging session when
the DCL command terminates.

If you do not specify a DCL command, a subprocess is created and you can
then enter DCL commands. Either logging out of the spawned process or
attaching to the parent process (with the DCL ATTACH comand) will allow
you to continue your debugging session.

If the DCL command contains a semicolon, you must enclose the command
in quotation marks. Otherwise the semicolon is interpreted as a debugger
command separator. To include a quotation mark inside the string, enter two
consecutive quotation marks.

QUALIFIERS /NOWAIT
Executes the subprocess in parallel with the debugging session. You can issue
debugger commands while the subprocess is running. If you use /NOWAIT,
you should specify a DCL command with the SPAWN command; the DCL
command is executed in the subprocess.

DESCRIPTION The SPAWN command acts exactly like the DCL SPAWN command. You
can edit files, compile programs, read mail, and so on without ending your
debugging session or losing your current debugging context.

In addition, you can spawn a DCL SPAWN command. DCL picks up the
second SPAWN command and interprets the qualifier.

Related commands: ATTACH.

EXAMPLES
Q DBG> SPAWN

$

The SPAWN command with no parameter specified spawns a subprocess at
DCL level. You can now enter DCL commands. Log out to return to the
debugger prompt.

CD-186

SPAWN

0 DBG> SPAWN/NOWAIT SPAWN/OUT=MYCOM.LOG OMYCOM
DBG>

The SPAWN/NOWAIT command spawns a subprocess that is executed in
parallel with the debugging session. This subprocess spawns the execution of
the command procedure MYCOM.COM. The output from that operation is
written to the file MYCOM.LOG.

CD-187

STEP

STEP

Causes the debugger to execute your program by line, by
instruction, or by some other step unit. The step behavior depends
on the step mode previously established by a SET STEP command
and on the qualifier used with the STEP command.

FORMAT STEP [n]

PARAMETERS n
Specifies the number of lines or instructions to be executed by the STEP
command. If you do not specify the parameter n, the debugger executes one
line or one instruction. The parameter n is always interpreted as a decimal
integer.

QUALIFIERS /BRANCH
Causes the debugger to step to the next branch instruction. STEP/BRANCH
does the same as SET BREAK/BRANCH;GO except that it does not create a
permanent breakpoint.

/CALL
Causes the debugger to step to the next call or return instruction. STEP
/CALL does the same as SET BREAK/CALL;GO except that it does not
create a permanent breakpoint.

/EXCEPTION
Causes the debugger to step to the next exception condition. STEP
/EXCEPTION does the same as SET BREAK/EXCEPTION;GO except that it
does not create a permanent breakpoint.

/INSTRUCTION
Causes the debugger to step a single machine instruction. STEP
/INSTRUCTION does the same as SET BREAK/TEMPORARY
/INSTRUCTION;GO. This is the default behavior for language MACRO.

/INSTRUCTION=(opcode[, . . .])
Causes the debugger to step to the next machine instruction whose opcode is
specified in the list. STEP/INSTRUCTION=(opcode[, . . .]) does the same as
SET BREAK/TEMPORARY/INSTRUCTION=(opcode[, . . .]);GO.

/INTO
If you are at a call to a routine, causes the debugger to step into that routine.
Otherwise, has the same effect as STEP without a qualifier.

CD-188

STEP

The STEP/INTO behavior may be qualified as follows:

• If SET STEP NOJSB was previously specified, or if you specify STEP
/INTO/NOJSB, you step over a routine that was called by a JSB
instruction (see the description of the /OVER qualifier).

• If SET STEP NOSHARE was previously specified, or if you specify STEP
/INTO/NOSHARE, you step over a routine that is in a shareable image.

• If SET STEP NOSYSTEM was previously specified, or if you specify STEP
/INTO/NOSYSTEM you step over a routine that is in system (PI) space.

/[NO]JSB
/[NO]JSB qualifies a previous SET STEP INTO command or a current STEP
/INTO command. If you are at a routine call, /JSB lets the debugger step into
the routine, whether it is called by a CALL instruction or by a JSB instruction.
This is the default for all languages except DIBOL. /NOJSB lets the debugger
step into a routine called by a CALL instruction but causes the debugger to
step over a routine called by a JSB instruction (see description of /OVER
qualifier). In DIBOL, user-written routines are called by the CALL instruction
and DIBOL run-time library routines are called by the JSB instruction.

/LINE
Causes the debugger to step to the next line of your program. This is the
default behavior for all languages except MACRO.

/OVER
If you are at a call to a routine, causes the debugger to step over the routine.
The routine is executed. However, any code executed in the routine, up to
and including the corresponding RETURN instruction, is considered part of a
single STEP. This is the default behavior.

/RETURN
Causes the debugger to step to the return instruction of the routine you are
now in. Thus, STEP/RETURN n will take you up n levels of the call stack.)

/[NOJSHARE
/[NOJSHARE qualifies a previous SET STEP INTO command or a current
STEP/INTO command. If you are at a call to a shareable image routine,
/SHARE lets the debugger step into that routine. This is the default.
/NOSHARE causes the debugger to step over that shareable image routine
(see description of /OVER qualifier).

/[NOJSILENT
Controls whether the "stepped to ... " message and other output associated
with the STEP command is displayed. /SILENT specifies that no message or
other output be displayed. /NOSILENT is the default and specifies that the
step message and other output be displayed.

/[NOJSOURCE
Controls whether the source code corresponding to the current program
location is displayed after the STEP command is executed. /SOURCE is the
default and specifies that source code be displayed. /NOSOURCE specifies
that no source code be displayed.

CD-I89

STEP

/[.NOJSYSTEM
/[NO]SYSTEM qualifies a previous SET STEP INTO command or a current
STEP/INTO command. If you are at a call to a system routine (in PI space),
/SYSTEM lets the debugger step into that routine. This is the default.
/NOSYSTEM causes the debugger to step over that system routine (see
description of /OVER qualifier).

DESCRIPTION STEP command qualifiers determine the exact stepping behavior. In general,
when you issue a STEP command, the debugger takes the following action:

1 Executes an instruction or a set of instructions.

2 Reports the instruction or line that follows the last instruction executed.

3 Reports the source line corresponding to the line or instruction that
follows the last instruction executed (but only if the SOURCE parameter
is in effect by virtue of STEP/SOURCE or SET STEP SOURCE and source
lines are available).

4 Issues the DBG> prompt.

The following qualifiers affect the location to which you step:

/BRANCH
/CALL
/EXCEPTION
/INSTRUCTION
/INSTRUCTION=(opcode-list)
/LINE
/RETURN

The following qualifiers affect what output is seen on a step:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect what happens at a routine call:

/INTO
/[NO]JSB
/OVER
/[NO]SHARE
/[NOJSYSTEM

Each language establishes default STEP conditions (use the SHOW STEP
command to identify these). If you plan to issue several STEP commands
with the same qualifiers, you can first use the SET STEP command to
establish new default qualifiers (for example, SET STEP INTO NOSYSTEM
makes the STEP command behave like STEP/INTO/NOSYSTEM). Then
you do not have to use those qualifiers with the STEP command. You can
override the current default qualifiers for the duration of a single STEP
command by specifying other qualifiers.

Related commands: (SET, SHOW) STEP, GO, (SET, SHOW) LANGUAGE.

CD-I90

STEP

EXAMPLES
Q DBG> STEP

stepped to FORSQUARE$MAIN*/.LINE 4

4: OPEN(UNIT=8, FILE=’DATAFILE.DAT’, STATUS=’OLD *)

This command tells the debugger to execute the next line (by default). The
PC is then positioned at the beginning of line 4.

E DBG> STEP/INSTRUCTION
stepped to MAIN\MAIN+14: MOVL 222,RO

This command tells the debugger to execute the next instruction. The PC is
then positioned at instruction MOVL, located at MAIN\MAIN+14.

E DBG> STEP/INTO
stepped to routine SUBi: MOVAL L~0000060C,R11

This command tells the debugger to step into the routine that is being called
at the current PC location. The PC is then positioned at routine SUBI.

CD-191

SYMBOLIZE

SYMBOLIZE
Converts a virtual address to a symbolic representation.

FORMAT SYMBOLIZE address-expressionf, ... 7

PARAMETERS address-expression
Specifies an address expression to be symbolized. Do not use the wildcard
character (*).

QUALIFIERS None.

DESCRIPTION If the address is a static address, it is symbolized as the nearest preceding
symbol name, plus an offset. If the address is also a code address, the line
number is included in the symbolization if a line number can be found that
covers the address.

If the address is a register address, the debugger displays all symbols in all
SET modules that are bound to that register. The full path name of each such
symbol is displayed. The register name itself ("%R5," for example) is also
displayed.

If the address is a stack location in the call frame of a routine in a SET
module, the debugger searches for all symbols in that routine whose
addresses are relative to the Frame Pointer (FP) or the Stack Pointer (SP).
The closest preceding symbol name plus an offset is displayed as the
symbolization of the address. A symbol whose address specification is
too complex is ignored.

If the debugger can find no symbolization for the address, a message is
displayed.

Related commands: SET MODE [NO]SYMBOLIC, SET MODE [NO]LINE.

EXAMPLE

DBG> SYMBOLIZE %R5

address PR0GV/.R5:

PROG\X

This example shows that the local variable X in routine PROG is located in
register R5.

CD-192

TYPE

TYPE

Displays lines of source code.

FORMAT TYPE [[mod-nam\]lin-num[:lin-num]
[,[mod-nam\]lin-num[:lin-num][, . . .]]

PARAMETERS mod-nam
Specifies the module that contains the source lines to be displayed. If you
specify a module name along with the line numbers, use standard path-name
notation: insert a backslash (\) between the module name and the line
numbers.

If you do not specify a module name, the debugger uses the current scope
search list (as established by a previous SET SCOPE command, or the default
scope search list 0,1, ... ,N if no SET SCOPE command was issued) to
find source lines for display. The debugger looks for the source lines of the
module associated with each successive scope region in the search list until
source lines are found.

lin-num
Specifies a compiler-generated line number (a number used to label a source
language statement or statements).

If you specify a single line number, the debugger displays the source code
corresponding to that line number.

If you specify a list of line numbers, separating each with a comma, the
debugger displays the source code corresponding to each of the line numbers.

If you specify a range of line numbers, separating the starting and ending line
numbers in the range with a colon, the debugger displays the source code
corresponding to that range of line numbers.

You can read through all the source language statements in your program by
specifying a range of line numbers starting from 1 and ending at a number
equal to or greater than the largest line number in the program listing.

QUALIFIERS None.

DESCRIPTION The TYPE command displays the lines of source code that correspond to the
specified line numbers. The line numbers used by the debugger to identify
lines of source code are generated by the compiler and appear in the compiler
listing.

After displaying a single line of source code, you can display the next line by
issuing a TYPE command without a line number, that is, by issuing a TYPE
command and then pressing the RETURN key. You can then display the next
line and successive lines by repeating this sequence, in effect, reading through
your source program one line at a time.

CD-193

TYPE

Related commands: SET MODE [NOJSCREEN, EXAMINE/SOURCE, SET
STEP [NOJSOURCE, STEP/[NO]SOURCE, SET (BREAK, TRACE, WATCH)
/[NOJSOURCE.

EXAMPLES
Q DBG> TYPE 160

module C0B0LTEST
160: START-IT-PARA.

DBG> TYPE

module COBOLTEST
161: MOVE SCI TO ESO.

a DBG> TYPE 160:163

The first TYPE command displays line 160 of the source code and the second
TYPE command displays the next line.

module COBOLTEST
160: START-IT-PARA.

161: MOVE SCI TO ESO.
162: DISPLAY ESO.

163: MOVE SCI TO ESI.

E

This command displays lines 160 through 163 of the source code.

DBG> TYPE COBOLTEST\160,22:24

module COBOLTEST

160: START-IT-PARA.

module COBOLTEST

22: 02 SC2V2 PIC S99V99
23: 02 SC2V2N PIC S99V99

24: 02 CPP2 PIC PP99

COMP VALUE 22.33.

COMP VALUE -22.33.

COMP VALUE 0.0012

This command displays lines 160 and lines 22 through 24 in the module
COBOLTEST.

CD-194

UNDEFINE

UNDEFINE

The UNDEFINE command is identical to the DELETE command. See
the description of the DELETE command.

CD-195

UNDEFINE/KEY

UNDEFINE/KEY

The UNDEFINE/KEY command is identical to the DELETE/KEY
command. See the description of the DELETE/KEY command.

CD-196

WHILE

WHILE

Executes a sequence of commands conditionally.

FORMAT WHILE boolean-expression DO (command[; . . .])

PARAMETERS boolean-expression
Specifies a language expression that evaluates as a Boolean value (TRUE or
FALSE) in the currently set language.

command
Specifies a debugger command. If you specify more than one command,
separate them with semicolons.

QUALIFIERS None.

DESCRIPTION The WHILE command evaluates a boolean expression in the current language.
If the value is TRUE, the command list in the DO clause is executed. The
command then repeats the sequence, reevaluating the boolean-expression and
executing the command-list until the expression is evaluated as FALSE.

If the boolean-expression is FALSE, the WHILE command terminates.

Related commands: FOR, REPEAT, EXITLOOP.

EXAMPLE
DBG> WHILE (X.EQ.O) DO (STEP/SILENT)

This command tells the debugger to keep stepping through the program until
X no longer equals 0 (FORTRAN example).

CD-197

Partlll Appendixes

1

Command Defaults

This appendix identifies the defaults associated with debugger commands.

Command Default

@file-spec For any field of the file specification that is not
specified, the default is SYS$DISK:[]DEBUG.COM.
This may be changed with a SET ATSIGN
command.

CALL Arguments are passed by address (%ADDR).

DEFINE DEFINE/ADDRESS

DEFINE/KEY DEFINE/KEY/ECHO/NOIF_ST ATE/NOLOCK_
ST ATE/LOG/NOSET_ST ATE/NOTERMIN ATE

DELETE/KEY

DEPOSIT

DELETE/KEY/LOG/NOSTATE

Language expressions and address expressions are
interpreted according to the currently set language.

DISPLAY DISPLAY/D YNAMIC/NOMARK_CHANGE/POP.
The current display kind, window, and size remain
unchanged.

EDIT EDIT/NOEXIT. The default is to SPAWN the VAX
Language Sensitive Editor. This may be changed
with a SET EDITOR command. The default source
file to be edited is the file whose source code
appears in the current source display. The default
position of the editing cursor is either the start
of the line that is centered in the current source
display, or the start of line 1 if the editor was set
to /NOSTART_POSITION.

ENABLE (DISABLE) AST

EVALUATE

ENABLE AST

Language expressions are interpreted according to
the currently set language.

EXAMINE Address expressions are interpreted according to
the currently set language.

EXPAND EXPAND/DOWN, /UP: 1 line. EXPAND/LEFT,
RIGHT: 1 column.

EXTRACT If you specify /SCREEN—LAYOUT, the
default specification for the output file is
SYS$DISK:[JDBGSCREEN.COM. Otherwise,
the default specification for the output file is
SYS$DISK:[JDEBUG.TXT.

MOVE MOVE/DOWN, /UP: 1 line. MOVE/LEFT, RIGHT: 1
column.

SCROLL SCROLL/DOWN, /UP: 3/4 of window height.
SCROLL/LEFT, /RIGHT: 8 columns.

SEARCH SEARCH/NEXT/STRING

A—1

Command Defaults

Command Default

SELECT

SET ATSIGN

SET BREAK

SET DEFINE

SET DISPLAY

SET EDITOR

SET IMAGE

SET KEY

SET LANGUAGE

SET LOG

SET MARGINS

SET MAX—SOURCE_FILES

SET MODE

SET OUTPUT

SET PROMPT

SET RADIX

SET SCOPE

SET SEARCH

SET SOURCE

SET STEP

SET TERMINAL

SET TRACE

SELECT/SCROLL

SET ATSIGN SYS$DISK:[]DEBUG.COM

SET BREAK/INTO/JSB/SHARE/SYSTEM
/NOSILENT/SOURCE

SET DEFINE ADDRESS

SET DISPLAY/DYNAMIC/POP/SIZE:64. The
default window is either HI or H2, alternating
between these two with each newly created
display. The default display kind is "output".

SET EDITOR/NOSTART-POSITION.

The current image is the main image.

SET KEY/STATE=DEFAULT

The default language is the language of the module
that contains the image transfer address (main
program).

SET LOG SYS$DISK:[JDEBUG.LOG

SET MARGINS 1:255 (left margin: 1, right margin:
255)

SET MAX_SOURCE_FILES 5

SET MODE DYNAMIC, NOG-FLOAT, KEYPAD,
LINE, NOSCREEN, SCROLL, SYMBOLIC

SET OUTPUT NOLOG, NOSCREEN-LOG,
TERMINAL, NOVERIFY

SET PROMPT 'DBG>

For BLISS and MACRO: SET RADIX
HEXADECIMAL. For all other languages: SET
RADIX DECIMAL

The debugger looks up a symbol specified without
a path-name prefix according to the scope search
list 0,1, ... ,N (where N is the number of calls
in the call stack). If the symbol is not found, the
debugger searches the run-time symbol table, then
the global symbol table if necessary.

SET SEARCH NEXT,STRING

The debugger looks for a source debugger's
symbol table.

For MACRO: SET STEP SOURCE, NOSILENT,
OVER, INSTRUCTION. For all other languages: SET
STEP SOURCE, NOSILENT, OVER, LINE.

The values of /PAGE and /WIDTH default to those
set at DCL level (see the VAX/VMS DCL Dictionary
or type the DCL command HELP SET TERMINAL).

SET TRACE/INTO/JSB/SHARE/SYSTEM
/NOSILENT/SOURCE

A—2

i

Command Defaults

Command Default

SET TYPE The default type for typed locations is the
compiler-generated type. The default type for
other locations is long integer.

STEP For MACRO: STEP/OVER/INSTRUCTION. For all
other languages: STEP/OVER/LINE.

TYPE If a module name is specified, source lines in that
module are displayed, if available. If no module
name is specified, the debugger uses the current
scope search list (as established by a previous
SET SCOPE command, or the default scope search
list 0,1, ... ,N if no SET SCOPE command was
issued) to find source lines for display. The
debugger looks for the source lines of the module
associated with each successive scope region in
the search list until source lines are found. Also,
if no line is specified after a single source line has
been displayed with the TYPE command, the next
line is displayed by default.

A—3

B Predefined Key Functions

When you invoke the debugger, certain predefined functions (commands,
sequences of commands, and command terminators) are assigned to keys
on the numeric keypad, to the right of the main keyboard. By using these
keys you can issue certain commands with fewer keystrokes than if you were
to type them out at the keyboard. For example, pressing the COMMA
(,) keypad key is equivalent to typing out GO and then pressing the
RETURN key. Terminals and workstations that have an LK201 keyboard
have additional programmable keys compared to those on VT100 keyboards
(for example, "Help" or "Remove"), and some of these keys are also assigned
debugger functions.

Use of the function keys requires that keypad mode be enabled (SET MODE
KEYPAD). Keypad mode is enabled when you invoke the debugger. If
you do not want keypad mode enabled, perhaps because the program being
debugged uses the keypad for itself, you can disable keypad mode by entering
the SET MODE NOKEYPAD command.

The keypad key functions that are predefined when you invoke the debugger
are identified in summary form in Figure B-l. Tables B-l through B-4
identify all key definitions in detail. Most keys are used for manipulating
screen displays in screen mode. To use screen mode commands, you must
first enable screen mode: press keypad key PF3 (SET MODE SCREEN).

B.1 DEFAULT, GOLD, and BLUE Functions
A given key typically has three predefined functions:

• One function is entered by pressing the given key by itself. This is the
DEFAULT function.

• A second function is entered by pressing the PF1 key and then the given
key. This is the GOLD function, because PF1 is also called the GOLD
key.

• A third function is entered by pressing the PF4 key and then the given
key. This is the BLUE function, because PF4 is also called the BLUE key.

In Figure B-l, the DEFAULT, GOLD, and BLUE functions are listed within
each key's outline, from top to bottom respectively. For example, pressing
keypad key 0 enters the command STEP (DEFAULT function); pressing key
PF1 and then key 0 enters the command STEP/INTO (GOLD function);
pressing key PF4 and then key 0 enters the command STEP/OVER (BLUE
function).

All command sequences assigned to keypad keys are terminated (executed
immediately) except for the BLUE functions of keys 2, 4, 6, and 8. These
unterminated commands are symbolized with a trailing ellipsis (...) in
Figure B-l. To terminate the command, supply a parameter and then press
RETURN. For example, to scroll down 12 lines, press key PF4, then press
keypad key 2, then type :12 at the keyboard, then press RETURN.

B—1

Predefined Key Functions

Figure B—1 Keypad Key Functions Predefined by the Debugger

F17 N F18 F19 F20 ^

DEFAULT MOVE EXPAND CONTRACT

(SCROLL) (EXPAND •) (EXPAND -)

V_J J
/%fT PF2 PF3 PF4 ^

GOLD HELP DEFAULT SET MODE SCREEN BLUE

GOLD HELP GOLD SET MODE NOSCR BLUE

GOLD HELP BLUE DISP GENERATE BLUE

7 0 9 —

DISP SRC.INST,OUT SCROLL UP DISPLAY next DISP next at FS

DISP INSTREG OUT SCROLL TOP

SCROLL/UP DISP SRC OUT

^ J
c ^

5 0 ^ J

SCROLL LEFT EX SOU 0\%PC SCROLL/RIGHT GO

SCROLL/LEFT 255 SHOW CALLS SCROLL/RIGHT 255

SCROLL/LEFT SHOW CALLS 3 SCROLL/RIGHT SEL INST next

V J L j
, f, > 3 ENTER

EXAMINE SCROLL/DOWN SEL SCROLL next

EXAM~(prev) SCROLL/BOTTOM SEL OUTPUT next

SCROLL/DOWN SEL SOURCE next

L J
0 a ENTER

STEP RESET

STEP INTO RESET

STEP OVER RESET

V

"MOVE" MOVE/UP

MOVE/UP 999

MOVE/UP 5

^ J
r ^

4

MOVE/LEFT

MOVE/LEFT 999

MOVE/LEFT 10

V J

f \
6

MOVE/RIGHT

MOVE/RIGHT 999

MOVE/RIGHT 10

^ J r >
2

MOVE/DOWN

MOVE/DOWN 999

MOVE/DOWN 5

r. ^
"EXPAND"

r

EXPAND/UP

EXPAND/UP 999

EXPAND/UP 5

6

EXPAND/LEFT

EXPAND/LEFT 999

EXPAND/LEFT 10

2

EXPAND/RIGHT

EXPAND RIGHT 999

EXPAND'RIGHT 10

EXPAND/DOWN

EXPAND/DOWN 999

EXPAND/DOWN 5

V_/

LK201 Keyboard:

Press

F1 7

F18

F19

F20

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

VT-100 Keyboard:

Type

SET KEY/STATE=DEFAULT

SET KEY/STATE=MOVE

SET KEY/STATE=EXPAND

SET KEY/STATE=CONTRACT

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

"CONTRACT" EXPAND/UP -1

EXPAND UP -999

EXPAND UP -5

V J

4

EXPAND/LEFT -1

6

EXPAND/RIGHT -1

EXPAND/LEFT -999 EXPAND/RIGHT -999

EXPAND/LEFT -10 EXPAND/RIGHT -10

v_y C J
f2 ^
EXPAND/DOWN -1

EXPAND DOWN -999

EXPAND/DOWN -5

i y ZK 4774 85

B.2 Key Definitions Specific to LK201 Keyboards
Table B-l lists keys that are specific to LK201 keyboards and do not appear
on VT100 keyboards. For each key, the table identifies the equivalent
command and, for some keys, an equivalent keypad key that you may
use if you do not have an LK201 keyboard.

B—2

Predefined Key Functions

B.3

Table B-1 Key Definitions Specific to LK201 Keyboards

LK201 Key Command Sequence Invoked
Equivalent
Keypad Key

F17 SET KEY/STATE=DEFAULT None

F18 SET KEY/STATE=MOVE None

F19 SET KEY/STATE=EXPAND None

F20 SET KEY/STATE=CONTRACT None

Help HELP KEYPAD SUMMARY None

Next Screen SCROLL/DOWN 2

Prev Screen SCROLL/UP 8

Remove DISPLAY/REMOVE %CURSCROLL None

Select SELECT/SCROLL %NEXTSCROLL 3

Keys that Scroll, Move, Expand, and Contract Displays

By default, keypad keys 2, 4, 6, and 8 scroll the current scrolling display.
Each key controls a direction (down, left, right, and up, respectively). By
pressing keys F18, F19, or F20, you can place the keypad in the MOVE,
EXPAND, or CONTRACT states. When the keypad is in the MOVE state,
keys 2, 4, 6, and 8 may be used to move the current scrolling display down,
left, and so on. Similarly, in the EXPAND and CONTRACT states, the four
keys may be used to expand or contract the current scrolling display. (See
Figure B-1 and Table B-2. Alternative key definitions for VT100 keyboards
are described later in this section.)

To scroll, move, expand, or contract a display, proceed as follows:

1 Press key 3 repeatedly, as needed, to select the current scrolling display
from the display list.

2 Press key F17, F18, F19, or F20 to put the keypad in the DEFAULT
(scroll), MOVE, EXPAND, or CONTRACT state, respectively.

3 Press keys 2, 4, 6, and 8 to perform the desired function. Use the PF1
(GOLD) and PF4 (BLUE) keys to control the amount of scrolling or
movement.

Table B—2 Keys that Change the Key State

Key Description

PF1 Invokes the GOLD function of the next key you press.

PF4 Invokes the BLUE function of the next key you press.

FI7 Puts the keypad in the DEFAULT state, enabling the scroll-display
functions of keys 2, 4, 6, and 8. The keypad is in the DEFAULT state
when you invoke the debugger.

FI8 Puts the keypad in the MOVE state, enabling the move-display
functions of keys 2, 4, 6, and 8.

B—3

Predefined Key Functions

Table B—2 (Cont.) Keys that Change the Key State

Key Description

FI9 Puts the keypad in the EXPAND state, enabling the expand-display
functions of keys 2, 4, 6, and 8.

F20 Puts the keypad in the CONTRACT state, enabling the contract-display
functions of keys 2, 4, 6, and 8.

If you have a VT100 keyboard, you can simulate the effect of LK201 keys
FI7 through F20 by defining the key sequences GOLD-KP9 and BLUE-KP9
(currently undefined) as shown below. With these definitions, pressing
GOLD-KP9 will put the keypad in the DEFAULT (scroll) state; pressing
BLUE-KP9 will cycle the keypad through the DEFAULT, MOVE, EXPAND,
and CONTRACT states (like cycling through keys FI 7 through F20). You
may want to store these key definitions in a command procedure, such as
your debugger initialization file.

DEFINE/KEY/IF_STATE=(GOLD,MOVE.GOLD.EXPAND.GOLD,CONTRACT.GOLD)/TERMINATE KP9 "Set Key/State=DEFAULT/Nolog"
DEFINE/KEY/IF_STATE=(BLUE)/TERMINATE KP9 "Set Key/State=MOVE/Nolog"

DEFINE/KEY/IF_STATE=(MOVE_BLUE)/TERMINATE KP9 "Set Key/State=EXPAND/Nolog"
DEFINE/KEY/IF_STATE=(EXPANDJBLUE)/TERMINATE KP9 "Set Key/State=CONTRACT/Nolog"
DEFINE/KEY/IF_STATE=(CONTRACT_BLUE)/TERMINATE KP9 "Set Key/State=DEFAULT/Nolog"

B.4 Online Keypad Key Diagrams

Online HELP for the keypad keys is available by pressing the Help key and
also the PF2 key, either by itself or with other keys (see Table B-3). You can
also use the SHOW KEY command to identify key definitions.

Table B-3 Keys that Invoke Online Help to Display Keypad Diagrams

Key or
Key Sequence Command Sequence Invoked Description

Help HELP KEYPAD SUMMARY

PF2 HELP KEYPAD DEFAULT

PF1-PF2 HELP KEYPAD GOLD

PF4-PF2 HELP KEYPAD BLUE

F18-PF2 HELP KEYPAD MOVE—DEFAULT

F18-PF1-PF2 HELP KEYPAD MOVE_GOLD

F18-PF4-PF2 HELP KEYPAD MOVE-BLUE

F19-PF2 HELP KEYPAD EXPAND-DEFAULT

Shows a diagram of the keypad keys and
summarizes each key's function.

Shows a diagram of the keypad keys and their
DEFAULT functions.

Shows a diagram of the keypad keys and their
GOLD functions.

Shows a diagram of the keypad keys and their
BLUE functions.

Shows a diagram of the keypad keys and their
MOVE DEFAULT functions.

Shows a diagram of the keypad keys and their
MOVE GOLD functions.

Shows a diagram of the keypad keys and their
MOVE BLUE functions.

Shows a diagram of the keypad keys and their
EXPAND DEFAULT functions.

B—4

Predefined Key Functions

Table B-3 (Cont.) Keys that Invoke Online Help to Display Keypad Diagrams

Key or
Key Sequence Command Sequence Invoked Description

F19-PF1-PF2

F19-PF4-PF2

F20-PF2

F20-PF1-PF2

F20-PF4-PF2

HELP KEYPAD EXPAND_GOLD

HELP KEYPAD EXPAND_BLUE

HELP KEYPAD CONTRACT_DEFAULT

HELP KEYPAD CONTRACT_GOLD

HELP KEYPAD CONTRACT_BLUE

Shows a diagram of the keypad keys and their
EXPAND GOLD functions.

Shows a diagram of the keypad keys and their
EXPAND BLUE functions.

Shows a diagram of the keypad keys and their
CONTRACT DEFAULT functions.

Shows a diagram of the keypad keys and their
CONTRACT GOLD functions.

Shows a diagram of the keypad keys and their
CONTRACT BLUE functions.

B.5 Debugger Key Definitions

Table B-4 identifies all key definitions.

Table B-4 Debugger Key Definitions

Key State Commands Invoked or Function

0 DEFAULT STEP

GOLD STEP/INTO

BLUE STEP/OVER

1 DEFAULT EXAMINE. Examines the logical successor of
the current entity, if one is defined (the next
location).

GOLD EXAMINE \ Lets you examine the logical
predecessor of the current entity, if one is
defined (the previous location).

BLUE Undefined

2 DEFAULT SCROLL/DOWN

GOLD SCROLL/BOTTOM

BLUE SCROLL/DOWN (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE MOVE/DOWN

MOVE-GOLD MOVE/DOWN :999

MOVE-BLUE MOVE/DOWN: 5

EXPAND EXPAND/DOWN

EXPAND-GOLD EXPAND/DOWN:999

EXPAND-BLUE EXPAND/DOWN: 5

CONTRACT EXPAND/DOWN:-1

CONTRACT-GOLD EXPAND/DOWN :-999

B—5

Predefined Key Functions

Table B-4 (Cont.) Debugger Key Definitions

Key State Commands Invoked or Function

CONTRACT_BLUE EXPAND/DOWN:-5

3 DEFAULT SELECT/SCROLL %NEXTSCROLL. Selects as
the current scrolling display the next display in
the display list after the current scrolling display.

GOLD SELECT/OUTPUT %NEXTOUTPUT. Selects the
next output display in the display list as the
current output display.

BLUE SELECT/SOURCE %NEXTSOURCE. Selects the
next source display in the display list as the
current source display.

4 DEFAULT SCROLL/LEFT

GOLD SCROLL/LEFT :255

BLUE SCROLL/LEFT (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE MOVE/LEFT

MOVE-GOLD MOVE/LEFT :999

MOVE-BLUE MOVE/LEFT: 10

EXPAND EXPAND/LEFT

EXPAND-GOLD EXPAND/LEFT :999

EXPAND-BLUE EXPAND/LEFT: 10

CONTRACT EXPAND/LEFT:-1

CONTRACT-GOLD EXPAND/LEFT :-999

CONTRACT-BLUE EXPAND/LEFT:-10

5 DEFAULT EXAM/SOURCE .%SOURCE_SCOPE\%PC;
EXAM/INST .0\%PC. In line (noscreen) mode,
lets you see the source line or instruction to
be executed next. In screen mode, centers the
current source display on the next source line to
be executed, and the current instruction display
on the next instruction to be executed.

GOLD SHOW CALLS

BLUE SHOW CALLS 3

6 DEFAULT SCROLL/RIGHT

GOLD SCROLL/RIGHT :255

BLUE SCROLL/RIGHT (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE MOVE/RIGHT

MOVE-GOLD MOVE/RIGHT :999

MOVE-BLUE MOVE/RIGHT: 10

EXPAND EXPAND/RIGHT

B—6

Predefined Key Functions

Table B-4 (Cont.) Debugger Key Definitions

Key State Commands Invoked or Function

EXPAND_GOLD EXPAND/RIGHT :999

EXPAND_BLUE EXPAND/RIGHT: 10

CONTRACT EXPAND/RIGHT :-1

CONTRACT_GOLD EXPAND/RIGHT :-999

CONTRACT_BLUE EXPAND/RIGHT10

7 DEFAULT DISPLAY SRC AT LH1, INST AT RH1, OUT
AT S45, PROMPT AT S6; SELECT/SCROLL
/SOURCE SRC; SELECT/INST INST; SELECT
/OUT OUT. Displays the SRC, INST, OUT, and
PROMPT displays with the proper attributes.

GOLD DISPLAY INST AT LH1, REG AT RH1, OUT AT
S45, PROMPT AT S6; SELECT/SCROLL/INST
INST; SELECT/OUT OUT. Displays the INST,
REG, OUT, and PROMPT displays with the
proper attributes. Useful for MACRO.

BLUE Undefined

8 DEFAULT SCROLL/UP

GOLD SCROLL/TOP

BLUE SCROLL/UP (not terminated). To terminate the
command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE MOVE/UP

MOVE-GOLD MOVE/UP:999

MOVE-BLUE MOVE/UP:5

EXPAND EXPAND/UP

EXPAND-GOLD EXP AND/UP: 999

EXPAND-BLUE EXPAND/UP:5

CONTRACT EXPAND/UP:-1

CONTRACT-GOLD EXPAND/UP:-999

CONTRACT-BLUE EXPAND/UP:-5

9 DEFAULT DISPLAY %NEXTDISP. Displays the next display
in the display list through its current window
(removed displays are not included).

GOLD Undefined

BLUE Undefined

PF1 See Table B-2.

PF2 See Table B-3.

PF3 DEFAULT SET MODE SCREEN; SET STEP NOSOURCE.
Enables screen mode and suppresses the output
of source lines that would normally appear in the
output display (since that output is redundant
when the source display is present).

B—7

Predefined Key Functions

Table B-4 (Cont.) Debugger Key Definitions

Key State Commands Invoked or Function

GOLD SET MODE NOSCREEN; SET STEP SOURCE.
Disables screen mode and restores the output
of source lines.

BLUE DISPLAY/GENERATE. Regenerates the contents
of all automatically updated displays.

PF4 See Table B-2.

COMMA DEFAULT GO

GOLD Undefined

BLUE SELECT/INSTRUCTION %NEXTINST. Selects
the next instruction display in the display list as
the current instruction display.

MINUS DEFAULT DISPLAY %NEXTDISP AT SI2345, PROMPT
AT S6; SELECT/SCROLL %CURDISP. Displays
the next display in the display list at essentially
full screen (top of screen to top of PROMPT
display). Selects that display as the current
scrolling display.

GOLD Undefined

BLUE DISPLAY SRC AT HI, OUT AT S45, PROMPT
AT S6; SELECT/SCROLL/SOURCE SRC; SELECT
/OUT OUT. Displays the SRC, OUT, and
PROMPT displays with the proper attributes.
This is the default display configuration for all
languages except MACRO.

ENTER Lets you enter (terminate) a command. Same
effect as RETURN.

PERIOD Cancels the effect of pressing state keys which
do not lock the state, such as GOLD and BLUE.
Does not affect the operation of state keys
which lock the state, such as MOVE, EXPAND,
and CONTRACT.

Next SCROLL/DOWN
Screen

Prev SCROLL/UP
Screen

Remove DISPLAY/REMOVE %CURSCROLL. Removes the
current scrolling display from the display list.

Select SELECT/SCROLL %NEXTSCROLL. Selects as
the current scrolling display the next display in
the display list after the current scrolling display.

F17 See Table B-2.

F18 See Table B-2.

F19 See Table B-2.

B—8

Predefined Key Functions

Table B-4 (Cont.) Debugger Key Definitions

Key State Commands Invoked or Function

F20 See Table B—2.

CTRL/W DISPLAY/REFRESH

B—9

c Screen-Mode Reference Information

This appendix contains summarized reference information related to screen
mode. The following topics are covered:

• Display kinds

• Display attributes

• Predefined displays

• Screen-related built-in symbols

• Screen dimensions and predefined windows

C.1 Display Kinds
The SET DISPLAY and DISPLAY commands accept these display-kind
keywords and parameters:

DO (cmd-list) Specifies an automatically updated output display.
The commands in cmd-list are executed each
time the debugger gains control. Their output
forms the contents of the display.

INSTRUCTION Specifies an instruction display. If selected as
the current instruction display with the SELECT
/INSTRUCTION command, it will display the
output from subsequent EXAMINE/INSTRUCTION
commands.

INSTRUCTION (command) Specifies an automatically updated instruction
display. The command specified must be
an EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

Specifies an output display. If selected as the
current output display with the SELECT/OUTPUT
command, it will display any debugger output
that is not directed to another display. If selected
as the current input display with the SELECT
/INPUT command, it will echo debugger input.
If selected as the current error display with
the SELECT/ERROR command, it will display
debugger diagnostic messages.

Specifies an automatically updated register
display. The display is updated each time the
debugger gains control.

Specifies a source display. If selected as
the current source display with the SELECT
/SOURCE command, it will display the output
from subsequent TYPE or EXAMINE/SOURCE
commands.

OUTPUT

REGISTER

SOURCE

C-1

Screen-Mode Reference Information

SOURCE (command) Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source
display is updated each time the debugger gains
control.

C.2 Display Attributes
The SELECT command assigns an attribute to a display according to the
qualifier used with that command. The following list identifies each of the
SELECT command qualifiers, its effect, and the display kinds to which you
can assign that attribute.

SELECT
Qualifier Description

/ERROR Selects the specified display as the current error display.
Directs any subsequent debugger diagnostic message to that
display. It must be either an output display or the PROMPT
display. If no display is specified, selects the PROMPT
display as the current error display.

/INPUT Selects the specified display as the current input display.
Echoes any subsequent debugger input in that display.
It must be an output display. If no display is specified,
unselects the current input display: debugger input is not
echoed to any display.

/INSTRUCTION Selects the specified display as the current instruction
display. Directs the output of any subsequent EXAMINE
/INSTRUCTION command to that display. It must be an
instruction display. Keypad key sequence BLUE-COMMA
selects the next instruction display in the display list as
the current instruction display. If no display is specified,
unselects the current instruction display: no display has the
instruction attribute.

/OUTPUT Selects the specified display as the current output display.
Directs any subsequent debugger output to that display,
except where a particular type of output is being directed
to another display (such as diagnostic messages going to
the current error display). The specified display must be
either an output display or the PROMPT display. Keypad
key sequence GOLD-3 selects the next output display in the
display list as the current output display. If no display is
specified, selects the PROMPT display as the current output
display.

/PROGRAM Selects the specified display as the current program display.
Tries to force any subsequent program input or output to
that display. Currently, only the PROMPT display may be
specified. If no display is specified, unselects the current
program display: program output is no longer forced to the
PROMPT display.

C—2

Screen-Mode Reference Information

SELECT
Qualifier Description

/PROMPT Selects the specified display as the current prompt display,
where the debugger prompts for input. Currently, only the
PROMPT display may be specified. You cannot unselect the
PROMPT display.

/SCROLL Selects the specified display as the current scrolling display.
Makes that display the default display for any subsequent
SCROLL, MOVE, or EXPAND command. You can specify
any display (however, note that the PROMPT display cannot
be scrolled). /SCROLL is the default if you do not specify a
qualifier with the SELECT command. Key 3 selects as the
current scrolling display the next display in the display list
after the current scrolling display. If no display is specified,
unselects the current scrolling display: no display has the
scroll attribute.

/SOURCE Selects the specified display as the current source display.
Directs the output of any subsequent TYPE or EXAMINE
/SOURCE command to that display. It must be a source
display. Keypad key sequence BLUE-3 selects the next
source display in the display list as the current source
display. If no display is specified, unselects the current
source display: no display has the source attribute.

By default, when you invoke screen mode, the predefined displays are
selected for attributes as follows:

Attribute Predefined Display

Error PROMPT

Input no display selected

Instruction INST (for MACRO only)

Output OUT

Program PROMPT

Prompt PROMPT

Scroll SRC for all languages except MACRO, INST for MACRO

Source SRC for all languages except MACRO

C.3 Predefined Displays
Properties of the predefined displays SRC, OUT, PROMPT, INST and REG
are summarized in this section.

C—3

Screen-Mode Reference Information

C.3.1 SRC (Source Display)

Note: The debugger does not provide source line display for MACRO. If the
language is set to MACRO, SRC is marked as removed from the display
pasteboard. The INST display is put in its place.

SRC is an automatically updated source display. It shows the source code of
the module being debugged, if that source code is available. The arrow points
to the source line corresponding to the current PC location.

The default characteristics of the SRC display are the following:

Display kind

Attributes

Position

Size

Dynamic

source (examine/source .%source_scope\%pc)

scroll, source for all languages except MACRO

HI (removed for MACRO)

64 lines

Yes

% SOURCE—SCOPE is a built-in scope that signifies scope 0 when source
lines are available for scope 0. Otherwise, % SOURCE —SCOPE signifies
scope N, where N is the first level down the call stack where source lines are
available. Thus, when source lines are available for the currently executing
module, the SRC display is centered on the PC location. If source lines are
not available for that module, the debugger attempts to display source lines
in the caller of that module (scope 1). If source lines are also not available
at that level, the debugger tries scope 2, and so on. If no source lines are
available for any scope, the debugger issues a diagnostic message.

C.3.2 OUT (Output Display)

OUT shows all debugger output that is not directed to another display.

The default characteristics of the OUT display are the following:

Display kind output

Attribute output

Position S45

Size 100 lines

Dynamic Yes

C.3.3 PROMPT (Prompt Display)

PROMPT is where the debugger prompts for input and, by default, forces
program output and prints debugger diagnostic messages.

PROMPT has different properties and restrictions than other displays. This is
to eliminate possible confusion when manipulating that display:

• You cannot hide, remove, permanently delete, or scroll PROMPT.

• You can contract PROMPT down to 2 lines. You cannot contract
PROMPT horizontally.

C—4

Screen-Mode Reference Information

The default characteristics of the PROMPT display are the following:

Display kind

Attributes

Position

Size

Dynamic

program

error, prompt, program (no other display may have the prompt
or program attributes)

S6

Not applicable (PROMPT is not scrollable)

Yes

C.3.4 INST (Instruction Display)

INST is an automatically updated instruction display. It shows the instruction
stream of the routine being debugged. The instructions displayed are decoded
from the image being debugged. The arrow points to the instruction at your
current PC.

The default characteristics of the INST display are the following:

Display kind

Attributes

Position

Size

Dynamic

instruction (examine/instruction .0\%pc)

instruction, scroll (for MACRO only)

HI, removed for all languages except MACRO

64 lines

Yes

C.3.5 REG (Register Display)

REG automatically shows the current values of all VAX machine registers,
the four condition code bits (C,V, Z, and N) of the processor status longword
(PSL), and the top several values on the stack and on the current argument
list. Values in this display are highlighted when they change as you execute
the program.

The default characteristics of the REG display are the following:

Display kind

Attribute

Position

Size

Dynamic

register

none

RH1, removed

64 lines

No

C.4 Screen-Related Built-in Symbols

The following built-in symbols are available for specifying displays and screen
parameters in language expressions:

• %SOURCE—SCOPE—Used to display source code. %SOURCE-SCOPE
is described in Section 3.1.

• %PAGE, %WIDTH—Used to specify the current screen height and width.

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST,
%NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE—Pseudo-display
names, used to specify displays in the display list.

C—5

Screen-Mode Reference Information

C.4.1 Terminal Height and Width

The built-in symbols %PAGE and %WIDTH return, respectively, the current
height and width of the terminal screen. These symbols may be used in
various expression, such as for window specifications. For example, the
following command defines a window named MIDDLE that occupies a region
around the middle of the screen:

DBG> SET WINDOW MIDDLE AT (7.PAGE/4,7.PAGE/2,7.WIDTH/4,*/.WIDTH/2)

C.4.2 Pseudo-Display Names

Each time you refer to a specific display with a DISPLAY or SET DISPLAY
command, the display list is updated and reordered, if necessary. The most
recently referenced display is put at the tail of the display list since that
display is pasted last on the pasteboard (the display list may be identified by
issuing a SHOW DISPLAY command).

The debugger accepts seven pseudo-display names that refer to displays
relative to their positions in the display list. These names, listed below,
let you refer to displays by their relative positions in the list instead of by
their explicit names. Pseudo-display names are used mainly in keypad or
command definitions.

Pseudo-display names treat the display list as a circular list. Therefore, you
can issue any commands that use pseudo-display names to cycle through the
display list until you reach the display you want.

%CURDISP

%CURSCROLL

%NEXTDISP

%NEXTINST

%NEXTOUTPUT

%NEXTSCROLL

%NEXTSOURCE

Refers to the current display. This is the display most recently
referenced with a DISPLAY or SET DISPLAY command—the
least occluded display.

Refers to the current scrolling display. This is the default
display for the SCROLL, MOVE, and EXPAND commands, as
well as for the associated keypad keys (2, 4, 6, and 8).

Refers to the next display in the list after the current display.
The next display is the display that follows the topmost
display. Because the display list is circular, this is the display
at the bottom of the pasteboard—the most occluded display.

Refers to the next instruction display in the display list after
the current instruction display. The current instruction display
is the display which receives the output from EXAMINE
/INSTRUCTION commands.

Refers to the next output display in the display list after the
current output display. An output display receives debugger
output that is not already directed to another display.

Refers to the next display in the display list after the current
scrolling display.

Refers to the next source display in the display list after the
current source display. The current source display is the
display which receives the output from TYPE and EXAMINE
/SOURCE commands.

C—6

Screen-Mode Reference Information

C.5 Screen Dimensions and Predefined Windows

On a VT-series terminal, the screen consists of 24 lines by 80 or 132 columns.
On a Micro VAX workstation, the screen is larger in both height and width.
The debugger can accommodate screen sizes up to 100 lines by 255 columns.

All of the debugger predefined windows are identified in this section. The
window names apply to all screen sizes; however, the lines and columns
specified apply only to VT-series terminals whose width is set at 80 columns.
In windows occupying the left or right half of the screen (columns 1-40 and
42-80, respectively), column 41 is reserved as a border.

In addition to the full height and width of the screen, the predefined windows
include all possible regions that result from dividing the screen vertically into
halves, thirds, quarters, and sixths, and horizontally into left and right halves.

The following conventions apply to the names of predefined windows: the
prefixes L and R denote left and right windows, respectively; other letters
denote the full screen (FS) or fractions of the screen height (H: half, T: third,
Q: quarter, S: sixth); the trailing numbers denote specific fractions of the
screen height, starting from the top (for example, Tl, T2, and T3 are the top,
middle and bottom third).

Window Start-lin,Lin-count, Window
Name Start-col,Col-count Location

Full screen

Top half

Full screen

Bottom half

FS (1,23,1,80)

HI (1,11,1,80)

H12 (1,23,1,80)

H2 (13,11,1,80)

LFS (1,23,1,40)

LH1 (1,11,1,40)

LH12 (1,23,1,40)

LH2 (13,1 1,1,40)

LQ1 (1,5,1,40)

LQ12 (1,11,1,40)

LQ123 (1,17,1,40)

LQ1234 (1,23,1,40)

LQ2 (7,5,1,40)

LQ23 (7,1 1,1,40)

LQ234 (7,17,1,40)

LQ3 (13,5,1,40)

LQ34 (13,11,1,40)

LQ4 (19,5,1,40)

LSI (1,3,1,40)

LSI 2 (1,7,1,40)

LSI 23 (1,11,1,40)

LSI234 (1,15,1,40)

LSI 2345 (1,19,1,40)

Left full screen

Left half

Left full screen

Left bottom half

Left top quarter

Left top half

Left top three quarters

Left full screen

Left second quarter

Left middle two quarters

Left bottom three quarters

Left third quarter

Left bottom half

Left bottom quarter

Left top sixth

Left top third

Left top half

Left top two thirds

Left top five sixths

C—7

Screen-Mode Reference Information

Window
Name

Start-lin,Lin-count,
Start-col,Col-count

Window
Location

LSI 23456 (1,23,1,40) Left half

LS2 (5,3,1,40) Left second sixth

LS23 (5,7,1,40) Left second and third sixths

LS234 (5,1 1,1,40) Left second, third, and fourth sixths

LS2345 (5,15,1,40) Left second, third, fourth, and fifth sixths

LS23456 (5,19,1,40) Left bottom five sixths

LS3 (9,3,1,40) Left third sixth

LS34 (9,7,1,40) Left middle third

LS345 (9,11,1,40) Left third, fourth, and fifth sixths

LS3456 (9,15,1,40) Left bottom two thirds

LS4 (13,3,1,40) Left fourth sixth

LS45 (13,7,1,40) Left fourth and fifth sixths

LS456 (13,11,1,40) Left bottom half

LS5 (17,3,1,40) Left fifth sixth

LS56 (17,7,1,40) Left bottom third

LS6 (21,3,1,40) Left bottom sixth

LT1 (1,7,1,40) Left top third

LT12 (1,15,1,40) Left top two thirds

LT123 (1,23,1,40) Left half

LT2 (9,7,1,40) Left middle third

LT23 (9,15,1,40) Left bottom two thirds

LT3 (17,7,1,40) Left bottom third

Q1 (1,5,1,80) Top quarter

Q12 (1,11,1,80) Top half

Q123 (1,17,1,80) Top three quarters

Q1234 (1,23,1,80) Full screen

Q2 (7,5,1,80) Second quarter

Q23 (7,11,1,80) Middle two quarters

Q234 (7,17,1,80) Bottom three quarters

Q3 (13,5,1,80) Third quarter

Q34 (13,1 1,1,80) Bottom half

Q4 (19,5,1,80) Bottom quarter

RFS (1,23,42,39) Right full screen

RH1 (1,1 1,42,39) Right top half

RH12 (1,23,42,39) Right full screen

RH2 (13,11,42,39) Right bottom half

RQ1 (1,5,42,39) Right top quarter

RQ12 (1,11,42,39) Right top half

RQ123 (1,17,42,39) Right top three quarters

C—8

Screen-Mode Reference Information

Window
Name

Start-lin,Lin-count,
Start-col. Col-count

Window
Location

RQ1234 (1,23,42,39) Right half

RQ2 (7,5,42,39) Right second quarter

RQ23 (7,11,42,39) Right middle two quarters

RQ234 (7,17,42,39) Right bottom three quarters

RQ3 (13,5,42,39) Right third quarter

RQ34 (13,11,42,39) Right bottom half

RQ4 (19,5,42,39) Right bottom quarter

RSI (1,3,42,39) Right top sixth

RSI 2 (1,7,42,39) Right top third

RSI 23 (1,11,42,39) Right top half

RSI 234 (1,15,42,39) Right top two thirds

RSI 2345 (1,19,42,39) Right top five sixths

RSI 23456 (1,23,42,39) Right full screen

RS2 (5,3,42,39) Right second sixth

RS23 (5,7,42,39) Right second and third sixths

RS234 (5,11,42,39) Right second, third, and fourth sixths

RS2345 (5,15,42,39) Right second, third, fourth, and fifth sixths

RS23456 (5,19,42,39) Right bottom five sixths

RS3 (9,3,42,39) Right third sixth

RS34 (9,7,42,39) Right middle third

RS345 (9,1 1,42,39) Right third, fourth, and fifth sixths

RS3456 (9,15,42,39) Right bottom two thirds

RS4 (13,3,42,39) Right fourth sixth

RS45 (13,7,42,39) Right fourth and fifth sixth

RS456 (13,11,42,39) Right bottom half

RS5 (17,3,42,39) Right fifth sixth

RS56 (17,7,42,39) Right bottom third

RS6 (21,3,42,39) Right bottom sixth

RT1 (1,7,42,39) Right top third

RT12 (1,15,42,39) Right top two thirds

RT 123 (1,23,42,39) Right full screen

RT2 (9,7,42,39) Right middle third

RT23 (9,15,42,39) Right bottom two thirds

RT3 (17,7,42,39) Right bottom third

SI (1,3,1,80) Top sixth

S12 (1,7,1,80) Top third

SI 23 (1,1 1,1,80) Top half

SI 234 (1,15,1,80) Top four sixths

SI 2345 (1,19,1,80) Top five sixths

C—9

Screen-Mode Reference Information

Window
Name

Start-lin,Lin-count,
Start-col,Col-count

Window
Location

SI23456 (1,23,1,80) Full screen

S2 (5,3,1,80) Top second sixth

S23 (5,7,1,80) Second and third sixths

S234 (5,11,1,80) Second, third, and fourth sixths

S2345 (5,15,1,80) Second, third, fourth, and fifth sixths

S23456 (5,19,1,80) Bottom five sixths

S3 (9,3,1,80) Third sixth

S34 (9,7,1,80) Middle third

S345 (9,1 1,1,80) Third, fourth, and fifth sixths

S3456 (9,15,1,80) Bottom two thirds

S4 (13,3,1,80) Fourth sixth

S45 (13,7,1,80) Fourth and fifth sixths

S456 (13,11,1,80) Bottom half

S5 (17,3,1,80) Fifth sixth

S56 (17,7,1,80) Bottom third

S6 (21,3,1,80) Bottom sixth

T1 (1,7,1,80) Top third

T12 (1,15,1,80) Top two thirds

T123 (1,23,1,80) Full screen

T2 (9,7,1,80) Middle third

T23 (9,15,1,80) Bottom two thirds

T3 (17,7,1,80) Bottom third

C-10

Built-in Symbols and Logical Names

This appendix identifies all of the debugger built-in symbols and logical
names.

D.1 SS$_DEBUG Condition

SS$_DEBUG (defined in SYS$LIBRARY:STARLET.OLB) is a condition you
can signal from your program to invoke the debugger. Signalling SS$_
DEBUG from your program is equivalent to typing CTRL/Y followed by the
DCL command DEBUG at that point.

You can pass commands to the debugger at the time you signal it with
SS$_DEBUG. The commands you wish the debugger to execute should
be specified as you would enter them at the DBG> prompt. Multiple
commands should be separated by semicolons. The commands should be
passed by reference as an ASCIC string. See your language documentation
for details on constructing an ASCIC string.

For example, to invoke the debugger and issue a SHOW CALLS command at
a given point in your program, you could insert the following code in your
program (BLISS example):

LIB$SIGNAL (SS$_DEBUG, 1, UPLIT BYTE ('/.ASCIC ’SHOW CALLS’));

You can obtain the definition of SS$_DEBUG at compile time from
the appropriate STARLET or SYSDEF file for your language (for
example STARLET.L32 for BLISS or FORSYSDEF.TLB for FORTRAN).
You can also obtain the definition of SS$_DEBUG at link time in
SYS$LIBRARY:STARLET.OLB (this method is less desirable).

D.2 Logical Names

The following list identifies debugger-specific process logical names.

Logical
Name Description

LIBSDEBUG Points to the current debugger. Default:
SYSSSH ARE DEBUG.EXE

DBGSHELP Points to the debugger online-Help library file. Default:
SYS$HELP:DEBUGHLP.HLB.

DBGSINIT Points to your debugger initialization file. Default: no debugger
initialization file.

DBGSINPUT Points to your input device. Default: SYSSlNPUT.

DBGSOUTPUT Points to your output device. Default: SYSSOUTPUT.

You can use the DCL command ASSIGN or DEFINE to assign values to these
logical names. For example, the following command tells the debugger the
location of your debugger initialization file:

D—1

Built-in Symbols and Logical Names

$ DEFINE DBG$INIT DISK$:[JONES.COMFILES]DEBUGINIT.COM

Note that LIB$DEBUG, DBG$HELP, and DBG$INIT accept a full or partial
VAX/VMS file specification, as well as a search list.

D.2.1 Using DBG$INPUT and DBG$OUTPUT

DBG$INPUT and DBG$OUTPUT are useful when, for example, you are
debugging a screen-oriented program. You can assign DBG$INPUT and
DBG$OUTPUT to one terminal line (for example, TTD1:). Another terminal
line (for example, TTD2:) can be devoted to the program's input and output.
Then, you can

• Enter debugger commands and observe debugger output at TTD1:.

• Enter program input and observe program output at TTD2:.

Note that, on a properly secured system, terminals are protected so that you
can log in but you cannot allocate a terminal. Use the following command to
determine the owner UIC of TTD1:

$ SHOW DEVICE/FULL TTD1:

Typically, you will need to ask your system manager (or a suitably privileged
person) to provide you with read access to the terminal. For example:

$ SET PROTECTION=WORLD:READ/DEVICE/OWNER=[SYSTEM] TTD1:

The above technique provides world read access and, therefore, allows other
users to also allocate and perform I/O to TTD1:. The following technique is
preferred because it uses an access control list (ACL). Assume that your UIC
is [DEVEL,JONES]. Then the system manager can restrict device access to you
alone as follows:

$ SET DEVICE/ACL*(IDENT*[DEVEL,JONES],ACCESS=READ) TTD1:

Another method is for you to enable SYSPRIV privilege in your own process
so that you can allocate TTD1: without allowing the world to allocate it.
However, note that it is risky to debug an erroneous program with SYSPRIV
enabled.

Once you have read access to the terminal, you can allocate it so that you
have exclusive access to it:

$ ALLOCATE TTD1:

Now you can assign DBG$INPUT and DBG$OUTPUT:

$ DEFINE DBG$INPUT TTD1:
$ DEFINE DBGIOUTPUT TTD1:

The remaining step is to make sure that the terminal type is known to the
system. Use the following command:

$ SHOW DEVICE/FULL TTD1:

If the device type is "unknown", make it known to the system as follows
(assuming the terminal is a VT100):

$ SET TERMINAL/PERMANENT/DEVICE=VT100 TTD1:

Now you can run your program and observe debugger input and output at
TTD1. When finished, deallocate TTD1: as follows:

$ DEALLOCATE TTD1:

D—2

Built-in Symbols and Logical Names

D.3 Built-in Symbols

The debugger's built-in symbols provide options for specifying entities in
your program and let you control the debugger's scanning of language
expressions. Most of the debugger built-in symbols have a percent sign (%)
prefix. Descriptions of these symbols are organized as follows in the next
sections:

• %R0 through %R11, %PC, %PSL, %SP, %AP, %FP—Used to specify the
VAX registers.

• %NAME—Used to construct identifiers.

• %PARCNT—Used in command procedures to count parameters passed.

• %BIN, %DEC, %HEX, %OCT—Used to control radix.

• Period (.), RETURN key, circumflex (~), backslash (\), %CURLOC,
%NEXTLOC, %PREVLOC, %CURVAL, % LABEL, %LINE—Used to
specify program locations and the current value of an entity.

• Plus sign (+), minus sign (-), multiplication sign (*), division sign (/),
at sign ((a)), period (.), bit field operator (<p,s,e>)—Used as operators
in address expressions.

• %ADAEXC_NAME, %EXC_FACILITY, %EXC_NAME, %EXC_
NUMBER, %EXC_SEVERITY—Used to obtain information about
exceptions.

• % ACTIVE _TASK, % C ALLER _TASK, %NEXT_TASK, %TASK,
% VISIBLE—TASK—Used to specify tasks in Ada tasking programs.

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST,
%NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE—Used in screen
mode to specify displays in the display list (these built-in symbols are
described in Appendix C).

• %PAGE, % WIDTH, %SOURCE-SCOPE—Used to specify the current
terminal-screen height and width, and to display source code in screen
mode (these built-in symbols are described in Appendix C).

D.3.1 Specifying the VAX Registers

The debugger built-in symbol for a VAX register is the register name preceded
by the percent sign (%). These symbols are identified in the following list.

Symbol Description

%R0 . . . %R 11 General purpose registers RO . . . R1 1

%PC Program counter

%PSL Processor status longword

%SP Stack pointer

%AP Argument pointer

%FP Frame pointer

D—3

Built-in Symbols and Logical Names

For example, the following EXAMINE command obtains the contents of the
PC (the address contained in the PC):

DBG> EXAMINE ‘/.PC
M0DV/.PC: 1553

D.3.2 Constructing Identifiers

The %NAME built-in symbol lets you construct identifiers that are not
ordinarily legal in the current language. The syntax is as follows:

•/.NAME ’character-string’

In the following example, the variable with the name '12' is examined:

DBG> EXAMINE ‘/.NAME ’12’

In the following example, the compiler-generated label P.AAA is examined:

DBG> EXAMINE ‘/.NAME ’P.AAA’

D.3.3 Counting Parameters Passed to Command Procedures

The %PARCNT built-in symbol may be used within a command procedure
that accepts a variable number of actual parameters (%PARCNT is defined
only within a debugger command procedure).

%PARCNT specifies the number of actual parameters passed to the current
command procedure. In the following example, command procedure
ABC.COM is invoked and three parameters are passed:

DBG> ©ABC 111,222,333

Within ABC.COM, %PARCNT now has the value 3. %PARCNT is then used
as a loop counter to obtain the value of each parameter passed to ABC.COM:

DBG> FOR I = 1 TO 7.PARCNT DO (DECLARE X:VALUE; EVALUATE X)

D.3.4 Controlling Radix

The built-in symbols %BIN, %DEC, %HEX, and %OCT are used to
specify that a numeric literal that follows (or all numeric literals in a
parenthesized expression that follows) should be interpreted in binary,
decimal, hexadecimal, or octal radix, respectively.

For example:

DBG> EVALUATE/DEC '/.HEX 10
16

DBG> EVALUATE/DEC ‘/.HEX (10 + 10)
32

DBG> EVALUATE/DEC '/.BIN 10
2

DBG> EVALUATE/DEC '/.OCT (10 + 10)
16
DBG> EVALUATE/HEX '/.DEC 10
OA

D—4

Built-in Symbols and Logical Names

D.3.5 Specifying Program Locations and the Current Value of an Entity

The following built-in symbols let you specify program locations and the
current value of an entity.

Symbol Description

%CURLOC
. (period)

Current logical entity—the program location last referenced by
an EXAMINE or DEPOSIT command.

%NEXTLOC
RETURN key

Logical successor of the current entity—the program location
that logically follows the location last referenced by an
EXAMINE or DEPOSIT command. Because the RETURN key is
a command terminator, it can be used only where a command
terminator is appropriate (for example, immediately after
EXAMINE, but not immediately after DEPOSIT).

%PREVLOC
* (circumflex)

Logical predecessor of current entity—the program location
that logically precedes the location last referenced by an
EXAMINE or DEPOSIT command.

%CURVAL
\ (backslash)

Value last displayed by an EVALUATE or EXAMINE command,
or deposited by a DEPOSIT command.

%LABEL Specifies that the numeric literal that follows is a program
label (for languages like FORTRAN that have numeric program
labels). You can qualify the label with a path-name prefix that
specifies the containing module.

%LINE Specifies that the numeric literal that follows is a line number
in your program. You can qualify the line number with a
path-name prefix that specifies the containing module.

In the following example, the variable WIDTH is examined; the value 12
is then deposited into the current location (WIDTH); this is verified by
examining the current location:

DBG> EXAMINE WIDTH
MOD\WIDTH: 7

DBG> DEPOSIT . = 12
DBG> EXAMINE .
M0D\WIDTH: 12

DBG> EXAMINE ‘/.CURLOC
MODNWIDTH: 12

In the next example, the next and previous locations in an array are examined:

DBG> EXAMINE PRIMES(4)
MOD\PRIMES(4): 7
DBG> EXAMINE ‘/.NEXTLOC
M0D\PRIMES(5): 11
DBG> EXAMINE IRET1 ! Examine next location

M0D\PRIMES(6): 13

DBG> EXAMINE ‘/.PREVLOC
M0D\PRIMES(5): 11
DBG> EXAMINE *
MOD\PRIMES(4): 7

Note that using the RETURN key to signify the logical successor does not
apply to all contexts. For example, you cannot press the RETURN key after
typing the command DEPOSIT to indicate the next location, whereas you can
always use the symbol %NEXTLOC for that purpose.

In the next example, a breakpoint is set at label 10 of module MOD4:

DBG> SET BREAK M0D4V/.LABEL 10

D—5

Built-in Symbols and Logical Names

D.3.6 Using Operators in Address Expressions
The operators that may be used in address expressions are listed below. A
unary operator has one operand. A binary operator has two operands.

Symbol Description

Plus sign (+) Unary or binary operator. As a unary operator,
indicates the unchanged value of its operand. As
a binary operator, adds the preceding operand and
succeeding operand together.

Minus sign (-) Unary or binary operator. As a unary operator,
indicates the negation of the value of its operand. As
a binary operator, subtracts the succeeding operand
from the preceding operand.

Multiplication sign (*) Binary operator. Multiplies the preceding operand by
the succeeding operand.

Division sign (/) Binary operator. Divides the preceding operand by
the succeeding operand.

At sign (@)
Period (.)

Unary operators. In an address expression, the at
sign (@) and period (.) each function as a "contents-
of" operator. The "contents-of" operator causes its
operand to be interpreted as a virtual address and
thus requests the contents of (or value residing at)
that address.

Bit field <p,s,e> Unary operator. You can apply bit field selection
to an address-expression. To select a bit field, you
supply a bit offset (p), a bit length (s), and a sign
extension bit (e), which is optional.

In the following example, the value contained in the virtual memory location
X + 4 bytes is obtained:

EXAMINE X + 4

The remaining examples illustrate use of the "contents-of" operator. In the
next example, the instruction at the current PC is obtained (the instruction
whose address is contained in the PC and which is about to execute):

DBG> EXAMINE .‘/.PC
MODV/.LINE 5: PUSHL S~#8

In the next example, the source line at the PC location one level down the
call stack is obtained (at the call to routine SWAP):

DBG> EXAMINE/SOURCE .1\%PC

MAIN\SWAP\7.LINE 28: SWAP (X. Y) ;

For the next example, assume that the value of pointer variable PTR is
7FF00000 hexadecimal, the virtual address of an entity that you want
to examine. Assume further that the value of this entity is 3FF00000
hexadecimal. The following command shows how to examine entity:

DBG> EXAMINE/LONG .PTR

7FF00000: 3FF00000

D-6

Built-in Symbols and Logical Names

In the next example, the contents-of operator (at sign or period) is used
with the current location operator (period) to examine a linked list of three
quadword-integer pointer variables (identified as LI, L2, and L3 in the
illustration that follows). P is a pointer to the start of the list. The low
longword of each pointer variable contains the address of the next variable;
the high longword of each variable contains its integer value (8, 6, and 12
respectively).

P: I 9B40 I--+ LI L2 L2
+ | +-+ +-+ +-+

+-->| 9BDA I--->| 9BF4 |--->| 0000 I
|-, |-| |.|

I8| I6| I 12 I

DBG> SET TYPE QUADWORD; SET
DBG> EXAMINE .P

00009BC2: 00000008 00009BDA

DBG> EXAMINE ®.

00009BDA: 00000006 00009BF4

DBG> EXAMINE ..

00009BF4: 0000000C 00000000

RADIX HEX
! Examine the entity whose address
! is contained in P
! High word has value 8, low word
! has address of next entity (9BDA)
! Examine the entity whose address

! is contained in the current entity
! High word has value 6, low word
! has address of next entity (9BF4)
! Examine the entity whose address
! is contained in the current entity
! High word has value 12 (dec.), low word
! has address 0 (end of list)

The next example shows how to use the bit-field operator. To examine the
address expression X_NAME starting at bit 3 with a length of 4 bits and no
sign extension, you would issue the following command:

DBG> EXAMINE X.NAME <3,4t0>

D.3.7 Obtaining Information About Exceptions
The following built-in symbols let you obtain information about the current
exception and use that information to qualify breakpoints.

Symbol Description

%ADAEXC_
NAME

Ada exception name of current exception (for Ada programs
only)

%EXC_FACILITY Name of facility of current exception

%EXC_NAME Name of current exception

%EXC_NUMBER Number of current exception

%EXC_SE VERITY Severity code of current exception

For example:

DBG> EVALUATE 7,EXC_NAME
"FLTDIV.F"

DBG> SET BREAK/EXCEPTION WHEN (7.EXC.NAME = MFLTDIV_F")

DBG> EVALUATE 7.EXC.NUMBER
12

DBG> EVALUATE/C0NDITI0N.VALUE */.EXC_NUMBER
V.SYSTEM-F-ACCVIO, access violation at PC !XL, virtual address !XL

DBG> SET BREAK/EXCEPTION WHEN (*/,EXC_NUMBER = 12)

D—7

Built-in Symbols and Logical Names

D.3.8 Specifying Ada Tasks
The following built-in symbols may be used to specify the tasks of an Ada
tasking program in debugger commands (these built-in symbols apply only to
Ada tasking programs).

Symbol Description

% ACTIVE-TASK Currently active task—the task that will execute when a GO
or STEP command is issued.

%CALLER_T ASK Task that is the entry caller of the active task during a task
rendezvous.

%NEXT_TASK Next task on debugger's task list after the task that is
currently visible.

%TASKn Specifies a task by means of its task ID (n is a decimal
integer assigned by the VAX Ada run-time library to each
task as it is created).

% VISIBLE-TASK Currently visible task—the task that is the context for an
EXAMINE command, for example.

Two examples follow. See the VAX Ada documentation for additional details.

DBG> EXAMINE MONITOR.TASK
M0D\M0NIT0R_TASK: '/.TASK 2

DBG> WHILE '/.NEXT NEQ '/.ACTIVE DO (SET TASK '/.NEXT; SHOW CALLS)

D—8

E Summary of Debugger Support for
Languages

The debugger supports most of the VAX/VMS-supported languages.
Debugger support is summarized in this chapter for the following language
keywords (used with the SET LANGUAGE command): ADA, BASIC, BLISS,
C, COBOL, DIBOL, FORTRAN, MACRO, PASCAL, PLI, RPG, SCAN, and
UNKNOWN. For each language, the following information is provided:

• Supported operators in language expressions

• Supported constructs in language expressions

• Supported data types

• Any other language-specific features (for example, event keywords in the
case of ADA and SCAN).

For further information, refer to the documentation furnished with a particular
language.

E. 1 Debugger Support for Language ADA
This section includes information about debugger support for ADA.

E. 1.1 Supported ADA Operators in Language Expressions
Supported ADA operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus (identity)

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix « Multiplication

Infix / Division

Infix MOD Modulus

Infix REM Remainder

Infix «* Exponentiation

Prefix ABS Absolute value

Infix & Concatenation (only string types)

Infix = Equality (only scalar and string types)

Infix /= Inequality (only scalar and string types)

Infix > Greater than (only scalar and string types)

Infix > = Greater than or equal (only scalar and string types)

E—1

Summary of Debugger Support for Languages

Kind Symbol Function

Infix < Less than (only scalar and string types)

Infix <= Less than or equal (only scalar and string types)

Prefix NOT Logical NOT

Infix AND Logical AND (not for bit arrays)

Infix OR Logical OR (not for bit arrays)

Infix XOR Logical exclusive OR (not for bit arrays)

Notes

1 The debugger does not support:

• Operations on entire arrays or records.

• The short-circuit control forms: and then, or else.

• The membership tests: in, not in.

2 The debugger does not support user-defined operators.

E.1.2 Supported Constructs in Language and Address Expressions for
ADA

Supported constructs in language and address expressions for ADA follow.

Symbol Construct

< > Subscripting

Record component selection

.ALL Pointer dereferencing

E. 1.3 Supported ADA Data Types
Supported ADA data types follow.

ADA Type

INTEGER

SHORT_INTEGER

SHORT_SHORT_INTEGER

SYSTEM. UNSIGNED_QUADWORD

SYSTEM. UNSIGNED_LONGWORD

SYSTEM. UNSIGNED_WORD

SYSTEM.UNSIGNED_BYTE

FLOAT

SYSTEM.F_FLOAT

SYSTEM. D_FLOAT

VAX Type Name

Longword Integer (L)

Word Integer (W)

Byte Integer (B)

Quadword Unsigned (QU)

Longword Unsigned (LU)

Word Unsigned (WU)

Byte Unsigned (BU)

F_Floating (F)

F_Floating (F)

D_Floating (D)

E—2

Summary of Debugger Support for Languages

ADA Type VAX Type Name

LONG_FLOAT D_Floating (D), if pragma LONG_FLOAT(D_
FLOAT) is in effect. G_Floating (G), if
pragma LONG_FLOAT(G_FLOAT) is in
effect.

SYSTEM. G_FLOAT G_Floating (G)

SYSTEM.H_FLOAT H—Floating (H)

LONG_LONG_FLOAT H_Floating (H)

Fixed (None)

STRING ASCII Text (T)

BOOLEAN Aligned Bit String (V)

BOOLEAN Unaligned Bit String (VU)

Enumeration For any enumeration type whose value
fits into an unsigned byte or word: Byte
Unsigned (BU) or Word Unsigned (WU),
respectively. Otherwise: No corresponding
VAX data type.

Arrays (None)

Records (None)

Access (pointers) (None)

Tasks (None)

E. 1.4 Supported ADA Predefined Attributes
Supported ADA predefined attributes follow.

Attribute Debugger Support

P'CONSTRAINED For a prefix P that denotes a record object with
discriminants. The value of P'CONSTRAINED reflects the
current state of P (constrained or unconstrained).

P'FIRST For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the lower bound of P.

P'FIRST For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound
of the first index range.

P'FIRST(N) For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound
of the N-th index range.

P'LAST For a prefix P that denotes an enumeration type, or a
subtype of an enumeration type. Yields the upper bound of
P.

P'LAST For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper
bound of the first index range.

E—3

Summary of Debugger Support for Languages

Attribute Debugger Support

P'LAST(N) For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper
bound of the N-th index range.

P'LENGTH For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the number of
values of the first index range (zero for a null range).

P'LENGTH(N) For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the number of
values of the N-th index range (zero for a null range).

P'POS(X) For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the position number of the
value X. The first position is 0.

P'PRED(X) For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which
has a position number one less than that of X.

P'SIZE For a prefix P that denotes an object. Yields the number of
bits allocated to hold the object.

P'SUCC(X) For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which
has a position number one more than that of X.

P'VAL(N) For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which
has the position number N. The first position is 0.

E.1.5 Support for ADA Tasking Programs and Events

E. 1.5.1 Task States
The following task-state keywords may be used with the SHOW TASK
/STATE command:

Task State Description

RUNNING Currently running on the processor. This is the active task.

READY Eligible to execute and waiting for the processor to be made
available.

SUSPENDED Suspended—that is, waiting for an event rather than for the
availability of the processor. For example, when a task is
created, it remains in the suspended state until it is activated.

TERMINATED Terminated.

E—4

Summary of Debugger Support for Languages

E.1.5.2 Task Substates
The following task-substate keywords may appear in a SHOW TASK display:

Task Substate Description

Abnormal Task has been aborted.

Accept Task is waiting at an accept statement that is not inside
a select statement.

Activating Task is elaborating its declarative part.

Activating tasks Task is waiting for tasks it has created to finish
activating.

Completed [abn] Task is completed due to an abort statement, but is not
yet terminated. In Ada, a task awaiting dependent tasks
at its "end" is called "completed". After the dependent
tasks are terminated, the state changes to terminated.

Completed [exc] Task is completed due to an unhandled exception, but is
not yet terminated. In Ada, a task awaiting dependent
tasks at its "end" is called "completed". After the
dependent tasks are terminated, the state changes to
terminated.

Completed Task is completed. No abort statement was issued, and
no unhandled exception occurred.

Delay Task is waiting at a delay statement.

Dependents Task is waiting for dependent tasks to terminate.

Dependents [exc] Task is waiting for dependent tasks to allow an
unhandled exception to propagate.

Entry call Task is waiting for its entry call to be accepted.

Invalid state There is a bug in the VAX Ada run-time library.

I/O or AST Task is waiting for I/O completion or some AST.

Not yet activated Task is waiting to be activated by the task that created
it.

Select or delay Task is waiting at a select statement with a delay
alternative.

Select or term. Task is waiting at a select statement with a terminate
alternative.

Select Task is waiting at a select statement with neither an
else, delay, or terminate alternative.

Shared resource Task is waiting for an internal shared resource.

Terminated [abn] Task was terminated by an abort.

Terminated [exc] Task was terminated because of an unhandled
exception.

Terminated Task terminated normally.

Timed entry call Task is waiting in a timed entry call.

E.1.5.3 Supported ADA Events
The following ADA event keywords may be used with the /EVENT qualifier
of the SET BREAK, SET TRACE, CANCEL BREAK, and CANCEL TRACE
commands. You can also display these event keywords with the SHOW
EVENT-FACILITY command.

E—5

Summary of Debugger Support for Languages

Exception-Related Events

Event Name Description

HANDLED Triggers when an exception is about to be handled
in some Ada exception handler, including an others
handler (see Chapter 7).

HANDLED_OTHERS Triggers only when an exception is about to be
handled in an others Ada exception handler (see
Chapter 7).

Task Exception-Related Events

Event Name Description

RENDEZVOUS-EXCEPTION Triggers when an exception begins to propagate
out of a rendezvous.

DEPENDENTS—EXCEPTION Triggers when an exception causes a task to
wait for dependent tasks in some scope. Often
immediately precedes a deadlock.

Task Termination Events

Event Name Description

TERMINATED Triggers when a task is terminating, whether
normally, by abort, or by exception.

EXCEPTION-TERMINATED Triggers when a task is terminating due to an
exception.

ABORT-TERMINATED Triggers when a task is terminating due to an
abort.

Low-Level Task Scheduling Events

Event Name Description

RUN Triggers when a task is about to run.

PREEMPTED Triggers when a task is being preempted from the
RUN state.

ACTIVATING Triggers when a task is about to begin its
activation (that is, at the beginning of the
elaboration of the declarative part of its task
body).

SUSPENDED Triggers when a task is about to be suspended.

E.2 Debugger Support for BASIC

This section includes information about debugger support for BASIC.

E—6

Summary of Debugger Support for Languages

E.2.1 Supported BASIC Operators in Language Expressions
Supported BASIC operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition, String concatenation

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix ** Exponentiation

Infix * Exponentiation

Infix = Equal to

Infix <> Not equal to

Infix > < Not equal to

Infix > Greater than

Infix > = Greater than or equal to

Infix => Greater than or equal to

Infix < Less than

Infix O Less than or equal to

Infix = < Less than or equal to

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix IMP Bit-wise implication

Infix EQV Bit-wise equivalence

E.2.2 Supported Constructs in Language and Address Expressions for
BASIC

Supported constructs in language and address expressions for BASIC follow.

Symbol Construct

< > Subscripting

Record component selection

E.2.3 Supported BASIC Data Types
Supported BASIC data types follow.

E—7

Summary of Debugger Support for Languages

BASIC Type VAX Type Name

BYTE Byte Integer (B)

WORD Word Integer (W)

LONG Longword Integer (L)

SINGLE F_Floating (F)

DOUBLE D_Floating (D)

GFLOAT G_Floating (G)

HFLOAT H—Floating (H)

DECIMAL Packed Decimal (P)

STRING ASCII Text (T)

RFA (None)

Arrays (None)

Records (None)

Notes

1 Expressions that overflow in the BASIC language will not necessarily
overflow when evaluated by the debugger. The debugger will try to
compute a numerically correct result, even when the BASIC rules call
for overflows. This difference is particularly likely to affect DECIMAL
computations.

2 BASIC constants of the forms [radix]"numeric-string"[type] (such as
"12.34"GFLOAT) or n% (such as 25% for integer 25) are not supported in
debugger expressions.

E.3 Debugger Support for BLISS

This section includes information about debugger support for BLISS.

E.3.1 Supported BLISS Operators in Language Expressions
Supported BLISS operators in language expressions follow.

Kind Symbol Function

Prefix Indirection

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix MOD Remainder

Infix Left shift

Infix EQL Equal to

E—8

Summary of Debugger Support for Languages

Kind Symbol Function

Infix EQLU Equal to

Infix EQLA Equal to

Infix NEQ Not equal to

Infix NEQU Not equal to

Infix NEQA Not equal to

Infix GTR Greater than

Infix GTRU Greater than unsigned

Infix GTRA Greater than unsigned

Infix GEQ Greater than or equal to

Infix GEQU Greater than or equal to unsigned

Infix GEQA Greater than or equal to unsigned

Infix LSS Less than

Infix LSSU Less than unsigned

Infix LSSA Less than unsigned

Infix LEQ Less than or equal to

Infix LEQU Less than or equal to unsigned

Infix LEQA Less than or equal to unsigned

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix EQV Bit-wise equivalence

E.3.2 Supported Constructs in Language and Address Expressions for
BLISS

Supported constructs in language and address expressions for BLISS follow.

Symbol Construct

M Subscripting

[fldname] Field selection

<p,s,e> Bit field selection

E.3.3 Supported BLISS Data Types
Supported BLISS data types follow.

E—9

Summary of Debugger Support for Languages

BLISS Type VAX Type Name

BYTE Byte Integer (B)

WORD Word Integer (W)

LONG Longword Integer (L)

BYTE UNSIGNED Byte Unsigned (BU)

WORD UNSIGNED Word Unsigned (WU)

LONG UNSIGNED Longword Unsigned (LU)

VECTOR (None)

BITVECTOR (None)

BLOCK (None)

BLOCKVECTOR (None)

REF VECTOR (None)

REF BITVECTOR (None)

REF BLOCK (None)

REF BLOCKVECTOR (None)

E.4 Debugger Support for Language C

This section includes information about debugger support for C.

E.4.1 Supported C Operators in Language Expressions
Supported C operators in language expressions follow.

Kind Symbol Function

Prefix * Indirection

Prefix & Address of

Prefix SIZEOF Size of

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix % Remainder

Infix < < Left shift

Infix > > Right shift

Infix == Equal to

Infix != Not equal to

Infix > Greater than

Infix > = Greater than or equal to

Infix < Less than

E—10

Summary of Debugger Support for Languages

Kind Symbol Function

Infix <= Less than or equal to

Prefix (tilde) Bit-wise NOT

Infix & Bit-wise AND

Infix 1 Bit-wise OR

Infix - Bit-wise exclusive OR

Prefix ! Logical NOT

Infix && Logical AND

Infix II Logical OR

Supported Constructs in Language and Address Expressions for C
Supported constructs in language and address expressions for C follow.

Symbol Construct

[] Subscripting

Structure component selection

-> Pointer dereferencing

Supported C Data Types
Supported C data types follow.

C Type VAX Type Name

INT Longword Integer (L)

UNSIGNED INT Longword Unsigned (LU)

SHORT INT Word Integer (W)

UNSIGNED SHORT INT Word Unsigned (WU)

CHAR Byte Integer (B)

UNSIGNED CHAR Byte Unsigned (BU)

FLOAT F_Floating (F)

DOUBLE D_Floating (D)

ENUM (None)

STRUCT (None)

UNION (None)

Pointers (None)

Arrays (None)

Notes

1 Symbol names are case-sensitive for language C, meaning that uppercase
and lowercase letters are treated as different characters.

E—11

Summary of Debugger Support for Languages

2 Since the exclamation point (!) is an operator in C, it cannot be used
as the comment delimiter. When the language is set to C, the debugger
instead accepts /* as the comment delimiter. The comment continues
to the end of the current line. (A matching */ is neither needed nor
recognized.) To permit debugger log files to be used as debugger input,
the debugger still recognizes ! as a comment delimiter if it is the first
non-blank character on a line.

3 The debugger accepts the prefix asterisk (*) as an indirection operator
in both C language expressions and debugger address expressions. In
address expressions, prefix is synonymous to prefix or "(a)" when
the language is set to C.

4 The debugger does not support any of the assignment operators in C (or
any other language) in order to prevent unintended modifications to the
program being debugged. Hence such operators as =, +=, -=, ++, and—are
not recognized. If you wish to alter the contents of a memory location,
you must do so with an explicit DEPOSIT command.

E.5 Debugger Support for Language COBOL

This section includes information about debugger support for COBOL.

E.5.1 Supported COBOL Operators in Language Expressions
Supported COBOL operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix ** Exponentiation

Infix = Equal to

Infix NOT = Not equal to

Infix > Greater than

Infix NOT < Greater than or equal to

Infix < Less than

Infix NOT > Less than or equal to

Infix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

E—12

Summary of Debugger Support for Languages

E.5.2 Supported Constructs in Language and Address Expressions for
COBOL

Supported constructs in language and address expressions for COBOL follow.

Symbol Construct

() Subscripting

OF Record component selection

IN Record component selection

E.5.3 Supported COBOL Data Types
Supported COBOL data types follow.

COBOL Type VAX Type Name

COMP Longword Integer (L,LU)

COMP Word Integer (W,WU)

COMP Byte Integer (B,BU)

COMP Quadword Integer (Q,QU)

COMP-1 F_Floating (F)

COMP-2 D_Floating (D)

COMP-3 Packed Decimal (P)

INDEX Longword Integer (L)

Alphanumeric ASCII Text (T)

Records (None)

Numeric Unsigned (NU) (None)

Leading Separate Sign (NL) (None)

Leading Overpunched Sign (NLO) (None)

Trailing Separate Sign (NR) (None)

Trailing Overpunched Sign (NRO) (None)

Notes

1 The debugger can show source text included in a program with the COPY
or COPY REPLACING verb. However, when COPY REPLACING is
used, the debugger always shows the original source text as it appeared
before text replacement. In other words, the original source file is shown
instead of the modified source text generated by the COPY REPLACING
verb.

2 The debugger cannot show the original source lines associated with the
code for a REPORT section. You can see the DATA SECTION source
lines associated with a REPORT, but no source lines are associated with
the compiled code that generates the report.

E—13

Summary of Debugger Support for Languages

E.6 Debugger Support for Language DIBOL
This section includes information about debugger support for DIBOL.

E.6.1 Supported DIBOL Operators in Language Expressions
Supported DIBOL operators in language expressions follow.

Kind Symbol Function

Prefix # Round

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix // Division with fractional result

Infix .EQ. Equal to

Infix .NE. Not equal to

Infix .GT. Greater than

Infix .GE. Greater than or equal to

Infix .LT. Less than

Infix .LE. Less than or equal to

Infix .NOT. Logical NOT

Infix .AND. Logical AND

Infix .OR. Logical OR

Infix .XOR. Exclusive OR

E.6.2 Supported Constructs in Language and Address Expressions for
DIBOL

Supported constructs in language and address expressions for DIBOL follow.

Symbol Construct

< > Substring

N Subscripting

Record component selection

E.6.3 Supported DIBOL Data Types
Supported DIBOL data types follow.

E—14

Summary of Debugger Support for Languages

DIBOL Type VAX Type Name

11 Byte Integer (B)

12 Word Integer (W)

14 Longword Integer (L)

Pn Packed Decimal String (P)

Pn.m Packed Decimal String (P)

Dn Numeric String, Zoned Sign (NZ)

Dn.m Numeric String, Zoned Sign (NZ)

An ASCII Text (T)

Arrays (None)

Records (None)

E.7 Debugger Support for Language FORTRAN
This section includes information about debugger support for FORTRAN.

E.7.1 Supported FORTRAN Operators in Language Expressions
Supported FORTRAN operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix ** Exponentiation

Infix // Concatenation

Infix .EQ. Equal to

Infix .NE. Not equal to

Infix .GT. Greater than

Infix GE. Greater than or equal to

Infix .LT. Less than

Infix .LE. Less than or equal to

Prefix .NOT. Logical NOT

Infix .AND. Logical AND

Infix .OR. Logical OR

Infix XOR. Exclusive OR

Infix .EQV. Equivalence

Infix .NEQV. Exclusive OR

E—15

Summary of Debugger Support for Languages

E.7.2 Supported Constructs in Language and Address Expressions for
FORTRAN

Supported constructs in language and address expressions for FORTRAN
follow.

Symbol Construct

() Subscripting

Record component selection

E.7.3 Supported FORTRAN Predefined Symbols
Supported FORTRAN predefined symbols follow.

Symbol Description

.TRUE. Logical True

.FALSE. Logical False

E.7.4 Supported FORTRAN Data Types
Supported FORTRAN data types follow.

FORTRAN Type VAX Type Name

LOGICAL* 1 Byte Unsigned (BU)

LOGICAL*2 Word Unsigned (WU)

LOGICAL*4 Longword Unsigned (LU)

INTEGER*2 Word Integer (W)

INTEGER*4 Longword Integer (L)

REAL*4 F_Floating (F)

REAL*8 D_Floating (D)

REAL*8 G_Floating (G)

REAL* 16 H_Floating (H)

COMPLEX*8 F_Complex (FC)

COMPLEX* 16 D_Complex (DC)

COMPLEX* 16 G_Complex (GC)

CHARACTER ASCII Text (T)

Arrays (None)

Records (None)

Notes

1 Even though the VAX type codes for unsigned integers (BU, WU, LU) are
used internally to describe the LOGICAL data types, the debugger (like
the compiler) treats LOGICAL variables and values as being signed when
used in language expressions.

E—16

Summary of Debugger Support for Languages

2 The debugger prints the numeric values of LOGICAL variables or
expressions instead of TRUE or FALSE. Normally, only the low-order
bit of a LOGICAL variable or value is significant (0 is FALSE and 1 is
TRUE). However, VAX FORTRAN does allow all bits in a LOGICAL
value to be manipulated and LOGICAL values can be used in integer
expressions. For this reason, it is at times necessary to see the entire
integer value of a LOGICAL variable or expression, and that is what the
debugger shows.

3 COMPLEX constants such as (1.0,2.0) are not supported in debugger
expressions.

E.8 Debugger Support for Language MACRO

This section includes information about debugger support for MACRO.

E.8.1 Supported Operators in Language Expressions

Language MACRO does not have expressions in the same sense as high-
level languages. Only assembly-time expressions and only a limited set
of operators are accepted. To permit the MACRO programmer to use
expressions at debug-time as freely as in other languages, the debugger
accepts a number of operators in MACRO language expressions that are not
found in MACRO itself. In particular, the debugger accepts a complete set of
comparison and boolean operators modeled after BLISS. It also accepts the
indirection operator and the normal arithmetic operators.

Kind Symbol Function

Prefix @ Indirection

Prefix Indirection

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix MOD Remainder

Infix @ Left shift

Infix EQL Equal to

Infix EQLU Equal to

Infix NEQ Not equal to

Infix NEQU Not equal to

Infix GTR Greater than

Infix GTRU Greater than unsigned

Infix GEQ Greater than or equal to

Infix GEQU Greater than or equal to unsigned

Infix LSS Less than

E—17

Summary of Debugger Support for Languages

Kind Symbol Function

Infix LSSU Less than unsigned

Infix LEQ Less than or equal to

Infix LEQU Less than or equal to unsigned

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix EQV Bit-wise equivalence

E.8.2 Supported Constructs in Language and Address Expressions for
MACRO

Supported constructs in language and address expressions for MACRO follow.

Symbol Construct

<p/s/e> Bitfield selection as in BLISS

E.8.3 Supported MACRO Data Types
Supported MACRO data types follow.

MACRO Type VAX Type Name

(Not applicable) Byte Unsigned (BU)

(Not applicable) Word Unsigned (WU)

(Not applicable) Longword Unsigned (LU)

(Not applicable) Byte Integer (B)

(Not applicable) Word Integer (W)

(Not applicable) Longword Integer (L)

E.9 Debugger Support for Language PASCAL
This section includes information about debugger support for PASCAL.

E—18

Summary of Debugger Support for Languages

E.9.1 Supported PASCAL Operators in Language Expressions
Supported PASCAL operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition, concatenation

Infix - Subtraction

Infix * Multiplication

Infix / Real division

Infix DIV Integer division

Infix MOD Modulus

Infix REM Remainder

Infix ** Exponentiation

Infix IN Set membership

Infix = Equal to

Infix <> Not equal to

Infix > Greater than

Infix > = Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Prefix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

E.9.2 Supported Constructs in Language and Address Expressions for
PASCAL

Supported constructs in language and address expressions for PASCAL
follow.

Symbol Construct

[] Subscripting

Record component selection

Pointer dereferencing

E.9.3 Supported PASCAL Predefined Symbols
Supported PASCAL predefined symbols follow.

E—19

Summary of Debugger Support for Languages

Symbol Meaning

TRUE Boolean True

FALSE Boolean False

NIL Nil pointer

E.9.4 Supported PASCAL Built-In Functions
Supported PASCAL built-in functions follow.

Symbol Meaning

SUCC Logical successor

PRED Logical predecessor

E.9.5 Supported PASCAL Data Types
Supported PASCAL data types follow.

PASCAL Type VAX Type Name

INTEGER

INTEGER

INTEGER

UNSIGNED

UNSIGNED

UNSIGNED

SINGLE

DOUBLE

DOUBLE

QUADRUPLE

BOOLEAN

CHAR

VARYING OF CHAR

SET

FILE

Enumerations

Subranges

Typed Pointers

Arrays

Records

Variant records

Longword Integer (L)

Word Integer (W,WU)

Byte Integer (B,BU)

Longword Unsigned (LU)

Word Unsigned (WU)

Byte Unsigned (BU)

F_Floating (F)

D_Floating (D)

G_Floating (G)

H—Floating (H)

(None)

ASCII Text (T)

Varying Text (VT)

(None)

(None)

(None)

(None)

(None)

(None)

(None)

(None)

E—20

Note

The debugger accepts PASCAL set constants such as [1,2,5,8..10] or [RED,
BLUE] in PASCAL language expressions.

Summary of Debugger Support for Languages

E. 10 Debugger Support for Language PL/1
This section includes information about debugger support for PL/I.

E.10.1 Supported PL/I Operators in Language Expressions
Supported PL/I operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix ** Exponentiation

Infix II Concatenation

Infix = Equal to

Infix Not equal to

Infix > Greater than

Infix > = Greater than or equal to

Infix " < Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Infix Less than or equal to

Prefix - Bit-wise NOT

Infix & Bit-wise AND

Infix 1 Bit-wise OR

E.10.2 Supported Constructs in Language and Address Expressions for
PL/I

Supported constructs in language and address expressions for PL/I follow.

Symbol Construct

0 Subscripting

Structure component selection

-> Pointer dereferencing

E.10.3 Supported PL/I Data Types
Supported PL/I data types follow.

E—21

Summary of Debugger Support for Languages

PL/I Type VAX Type Name

FIXED BINARY

FIXED DECIMAL

FLOAT BINARY

FLOAT DECIMAL

FLOAT BIN/DEC

FLOAT BIN/DEC

FLOAT BIN/DEC

BIT

BIT

CHARACTER

CHARACTER VARYING

FILE

Labels

Pointers

Arrays

Structures

Longword Integer (L)

Packed Decimal (P)

F_Floating (F)

F_Floating (F)

D_Floating (D)

G_Floating (G)

H_Floating (H)

Bit (V)

Bit Unaligned (VU)

ASCII Text (T)

Varying Text (VT)

(None)

(None)

(None)

(None)

(None)

Note

The debugger treats all numeric constants of the form n or n.n in PL/I
language expressions as packed decimal constants, not integer or floating¬
point constants, in order to conform to PL/I language rules. The internal
representation of 10 is therefore 0C01 hexadecimal, not 0A hexadecimal. You
can enter floating-point constants using the syntax nEn or n.nEn. There is no
PL/I syntax for entering constants whose internal representation is Longword
Integer. This limitation is not normally significant when debugging since the
debugger supports the PL/I type conversion rules. However, it is possible to
enter integer constants by using the debugger's %HEX, %OCT, and %BIN
operators.

E. 11 Debugger Support for Language RPG

This section includes information about debugger support for RPG.

E. 11.1 Supported RPG Operators in Language Expressions

Supported RPG operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix • Multiplication

E—22

Summary of Debugger Support for Languages

Kind Symbol Function

Infix /

Infix

Infix NOT =

Infix >

Infix NOT <

Infix <

Infix NOT >

Prefix NOT

Infix AND

Infix OR

Division

Equal to

Not equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Logical NOT

Logical AND

Logical OR

E.11.2 Supported Constructs in Language and Address Expressions for
RPG

Supported constructs in language and address expressions for RPG follow.

Symbol Construct

(i Subscripting

E.11.3 Supported RPG Data Types
Supported RPG data types follow.

RPG Type VAX Type Name

Longword Longword Integer (L)

Word Word Integer (W)

Packed Decimal Packed Decimal (P)

Character ASCII Text (T)

Overpunched Decimal Right Overpunched Sign (NRO)

Arrays (None)

Tables (None)

Note

The debugger supports access to all RPG indicators and labels used in the
current program. You can thus examine labels such as *DETL and indicators
such as *INLR and *IN01 through *IN99.

E.12 Debugger Support for SCAN
This section includes information about debugger support for SCAN.

E—23

Summary of Debugger Support for Languages

E.12.1 Supported SCAN Operators in Language Expressions
Supported SCAN operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix & Concatenation

Infix = Equal to

Infix <> Not equal to

Infix > Greater than

Infix > = Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Prefix NOT Complement

Infix AND Intersection

Infix OR Union

Infix XOR Exclusive OR

E.12.2 Supported Constructs in Language and Address Expressions for
SCAN

Supported constructs in language and address expressions for SCAN follow.

Symbol Construct

o Subscripting

Record component selection

> Pointer dereferencing

E.12.3 Supported SCAN Data Types
Supported SCAN data types follow.

SCAN Type

BOOLEAN

INTEGER

POINTER

FIXED STRING (n)

VAX Type Name

(None)

Longword Integer (L)

(None)

TEXT with CLASS=S

E—24

Summary of Debugger Support for Languages

SCAN Type VAX Type Name

VARYING STRING (n) TEXT with CLASSA/S

DYNAMIC STRING TEXT with CLASS=D

TREE (None)

TREEPTR (None)

RECORD (None)

OVERLAY (None)

Notes

1 There is no specific support for the following datatypes: FILE, TOKEN,
GROUP, SET. Examining a FILL variable will display the contents of
the specified variable as a string by default, and so may have little
meaning. If the characteristics of the fill are known, then the appropriate
qualifier (/HEX, and so on) applied to the command will produce a more
meaningful display.

2 The following examples show how to examine SCAN TREE and
TREEPTR variables. To dump an entire SCAN tree or subtree:

DBG> EXAMINE tree_variable([subscript], ...)

To dump the contents of a SCAN subtree:

DBG> EXAMINE treeptr_variable

To dump an entire SCAN subtree:

DBG> EXAMINE treeptr_variable->

3 DEPOSIT is not supported for SCAN TREE variables. You may set
breakpoints on any SCAN label, line number, MACRO, or PROCEDURE.

E.12.4 Supported SCAN Events
The following SCAN event keywords may be used with the /EVENT qualifier
of the SET BREAK, SET TRACE, CANCEL BREAK, and CANCEL TRACE
commands. You can also display these event keywords with the SHOW
EVENT-FACILITY command.

Event
Keyword

TOKEN

PICTURE

INPUT

OUTPUT

TRIGGER

SYNTAX

ERROR

Description

A token is built.

An operand in a picture is being matched.

A new line of the input stream is read.

A new line of the output stream is written.

A trigger macro is starting or terminating.

A syntax macro is starting or terminating.

Picture matching error recovery is starting or terminating.

E—25

Summary of Debugger Support for Languages

E. 13 Debugger Support for Language UNKNOWN
This section includes information about debugger support for UNKNOWN.

E. 13.1 Supported Operators in Language Expressions
Supported operators in language expressions follow.

Kind Symbol Function

Prefix + Unary plus

Prefix - Unary minus (negation)

Infix + Addition

Infix - Subtraction

Infix * Multiplication

Infix / Division

Infix ** Exponentiation

Infix & Concatenation

Infix // Concatenation

Infix = Equal to

Infix <> Not equal to

Infix /= Not equal to

Infix > Greater than

Infix > = Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Infix EQL Equal to

Infix NEQ Not equal to

Infix GTR Greater than

Infix GEQ Greater than or equal to

Infix LSS Less than

Infix LEQ Less than or equal to

Prefix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

Infix XOR Exclusive OR

Infix EQV Equivalence

E.13.2 Supported Constructs in Language and Address Expressions for
UNKNOWN

Supported constructs in language and address expressions for UNKNOWN
follow.

E—26

Summary of Debugger Support for Languages

Symbol Construct

()

Subscripting

Subscripting

Record component selection

Pointer dereferencing

E.13.3 Supported UNKNOWN Data Types
When the language is set to UNKNOWN, the debugger understands all data
types accepted by other languages except a few very language-specific types,
such a picture types and file types. In UNKNOWN language expressions, the
debugger accepts most scalar VAX Standard data types.

Notes

1 For language UNKNOWN, the debugger accepts the dot-notation for
record component selection. If C is a component of a record B which
in turn is a component of a record A, C can be referenced as "A.B.C".
Subscripts can be attached to any array components; if B is an array, for
instance, C may be referenced as "A.B[2,3].C".

2 For language UNKNOWN, the debugger accepts both round and square
subscript parentheses. Hence A[2,3] and A(2,3) are equivalent.

E-27

1

Index

A
/ABORT qualifier*CD-129

/AC

See /ASCIC
% ACTI VE_T ASK • D-8
/ACTIVE qualifier*CD-129
/AD

See /ASCID
% ADAEXC_NAME • D-7
Address

simple* 5-3
Address expression

DEPOSIT command* 1-16, 6-11, CD-40
EVALUATE/ADDRESS command • 5-11, CD-55

evaluating* 5-9
EXAMINE command* 1-15, 6-5, CD-57
GO command *3-5
numeric literal in *5-6
operand in • 5-9
radix mode in *6-3
SET BREAK command • 1-12, 3-6
SET TRACE command* 1-13, 3-15
SET WATCH command* 1-14, 3-12

source display by *7-5
type associated with *5-3

/ADDRESS qualifier*CD-32, CD-55, CD-176
Address space

process* 2-5
/AFTER qualifier*CD-88, CD-134, CD-142

Aggregate
data *4-8
examining*CD-57, CD-60
setting watchpoint on *3-13

ALLOCATE command *9-2, CD-3
/ALLOCATE qualifier*CD-11 1
/ALL qualifier* 7-11

CANCEL BREAK command*CD-11
CANCEL DISPLAY command• CD-I3
CANCEL IMAGE command• CD-I5
CANCEL MODULE command• CD-I7
CANCEL TRACE command • CD-23
CANCEL WATCH command • CD-26
CANCEL WINDOW command • CD-27
DELETE/KEY command • CD-38
DELETE command*CD-37

/ALL qualifier (cont'd.)

EXTRACT command*CD-66
SEARCH command*CD-82
SET IMAGE command*CD-102
SET MODULE command*CD-111
SET TASK command*CD-129
SHOW DISPLAY command*CD-152
SHOW KEY command*CD-157
SHOW TASK command*CD-178
SHOW WINDOW command*CD-185

%AP* D-3
Apostrophe (')

ASCII string delimiter *6-12
instruction delimiter*6-13
search-string delimiter*7-10

/APPEND qualifier*CD-66
Argument

specifying • 3-5
Array *4-7, 5-8

examining*CD-57, CD-60
Array slice *4-8
ASCIC data type *5-1
/ASCIC qualifier*CD-40, CD-57
ASCID data type *5-1
/ASCID qualifier*CD-40, CD-57
ASCII data

depositing *6-12
length of *6-12
truncating *6-12

ASCII data type *5-1
/ASCII qualifier*CD-40, CD-57
ASCIW data type *5-1
/ASCIW qualifier*CD-40, CD-57
ASCIZ data type *5-1
/ASCIZ qualifier*CD-41, CD-57
AST (asynchronous system trap)

disabling* CD-45
displaying AST handling conditions*CD-147
enabling* CD-52

Asterisk (*)
HELP command • CD-71
multiplication operator*5-10, D-6
wildcard character*7-2

/AST qualifier*CD-8
Asynchronous system trap

See AST
At sign (@)

contents-of operator • 5-10, D-6

Index—1

Index

At sign (@) (cont'd.)

execute-procedure command • 2-10, CD-4
SET ATSIGN command • CD-87
SHOW ATSIGN command • CD-148

ATTACH command*CD-6
Attribute

display *8-2, 8-16, CD-84, CD-170
global *4-10
symbol declaration • 4-6

/AW

See /ASCIW
/AZ

See /ASCIZ

B
Backslash (\)*D-5

global-symbol specifier*4-16, 4-22, CD-119
last-value symbol *4-5
path-name delimiter*4-5, 4-12, 7-5

%BIN • D-4
/BINARY qualifier*CD-53, CD-55, CD-57
Bit field operator (<p,s,e>) • 5-11, D-6
Block *4-13
/BOTTOM qualifier*CD-79
/BRANCH qualifier*CD-11, CD-23, CD-88, CD-

134, CD-188
Breakpoint

See also Exception breakpoint
canceling*3-8, CD-11
defined* 1-12, 3-6
delayed activation of*CD-88
displaying *3-7, CD-149
exit handler *3-23
setting* 1-12, 3-6, CD-88
source display at *7-7

/BRIEF qualifier*CD-157
Built-in symbol *5-7, C-5, D-3
BYTE data type *5-1
/BYTE qualifier*CD-41, CD-58

c
/CALLABLE_EDT qualifier• CD-98
/CALLABLE_LSEDIT qualifier • CD-98
/CALLABLE—TPU qualifier • CD-98
CALL command *3-5, CD-7
%CALLER_T ASK • D-8

/CALL qualifier*CD-11, CD-23, CD-89, CD-135,
CD-188

/CALLS qualifier*CD-178
Call stack* 1-11

building *3-19
displaying *3-19, 4-1, CD-150

CANCEL ALL command • CD-10
CANCEL BREAK/EXCEPTION command *3-11
CANCEL BREAK command*3-8, CD-11
CANCEL DISPLAY command• CD-I3
CANCEL EXCEPTION BREAK command • 3-11,

CD-14
CANCEL IMAGE command• CD-I5
CANCEL MODE command *6-3, CD-16
CANCEL MODULE command* 1-17, 4-4, 4-20,

CD-17
CANCEL RADIX command*CD-19
CANCEL SCOPE command • 1-18, 4-22, CD-20
CANCEL SOURCE command *7-3, CD-21
CANCEL TRACE command • 3-15, CD-23
CANCEL TYPE/OVERRIDE command • CD-25
CANCEL WATCH command *3-13, CD-26
CANCEL WINDOW command • 8-11, CD-27
Circumflex 0*5-7, D-5
/CLEAR qualifier*CD-47
Colon (:)

range delimiter*6-6
Comma (,) • 6-6
Command

See Debugger command
Command procedure

debugger *2-10
declaring parameters to *9-7
default directory • CD-87, CD-148
displaying commands in*2-11, CD-114
DO clause *2-10
exiting*CD-4, CD-62, CD-76
invoking *2-10, CD-4
log file as *2-12
recreating displays*8-18, CD-66

/COMMAND qualifier*CD-32
Command syntax

debugger* CD-I
Comment

format • CD-2
Compiler

/DEBUG qualifier* 1-5
/OPTIMIZE qualifier* 1-5, 7-17

/CONDITION—VALUE qualifier• CD-53, CD-58
Condition handler

executing *3-11
Contents-of operator* 5-10, D-6
CONTINUE command *2-13

Index—2

Index

CTRL/C *2-13, CD-28
CTRL/W • CD-28
CTRL/Y • 1-6, 2-12, CD-28
CTRL/Z* 1-5, CD-28
%CURDISP»C-5, C-6
%CURLOC* 5-7, D-5
Current entity* 5-3, 5-7, 6-6, 6-13, D-5
%CURSCROLL • C-5, C-6
%CURVAL* D-5

D
D_FLOAT data type *5-1
/D_FLOAT qualifier*CD-41, CD-58

Data
aggregate *4-8
depositing *6-11
examining* 6-6
name *4-6

Data type *5-1
displaying* CD-183

DATE_TIME data type *5-1
/DATE-TIME qualifier*CD-58
DBG$HELP* D-1
DBG$INIT • D-1
DBGSINPUT • D-1
DBG$OUTPUT•D-1
DEBUG command* 1-6, 2-3, 2-13
Debugger command

dictionary • CD-I
repeating• CD-68, CD-77, CD-197
summary* 1-21
syntax* CD-I

/DEBUG qualifier* 1-5, 2-1, 4-2, 7-1
Debug symbol table (DST)

See DST
%DEC* D-4
/DECIMAL qualifier*CD-53, CD-55, CD-58
DECLARE command *9-7, CD-30
/DEFAULT qualifier*CD-58
DEFINE/KEY command *9-9, CD-34
DEFINE command *4-6, CD-32

displaying default qualifiers for*CD-I51
setting default qualifiers for*CD-93

/DEFINED qualifier*CD-176
DELETE/KEY command • 9-12, CD-38
DELETE command*CD-37
Delimiter

depositing ASCII data *6-12
depositing instruction • 6-13

Delimiter (cont'd.)

specifying precedence*5-11
symbol • 4-8

DEPOSIT command *1-16,6-11, CD-40
/DIRECTORY qualifier*CD-I58
/DIRECT qualifier*CD-176
DISABLE AST command • CD-45
Display

See also Source display
attribute*8-2, 8-16, CD-84, CD-170
canceling • 8-8, CD-13
contracting • 8-9, CD-64
creating *8-10, CD-94
defined • 8-2
expanding *8-9, CD-64
extracting *8-18, CD-66
hiding *8-8, CD-48, CD-95
identifying *8-8, CD-152
kind *8-2, 8-11, C-1
list *8-2, CD-152, C-6
moving *8-9, CD-74
pasteboard • 8-2, CD-49, CD-96
predefined *8-3, C-3
removing • 8-8, CD-49, CD-96
saving *8-18, CD-78
scrolling*8-8, CD-79
selecting *8-16, CD-84
showing *8-8, CD-46
window *8-2, 8-10, C-7

DISPLAY command *8-8, CD-46
DO clause

example* 1-13, 2-11
executing *3-9
exiting*CD-62, CD-76
format* CD-I
invoking command procedure • 2-10

DO display • 8-13, C-1
/DOWN qualifier*CD-64, CD-74, CD-79
DST (debug symbol table)

content of *2-1, 4-2
creating • 4-2
inhibiting • 2-4
source records in *7-2

Dynamic module setting* 1-17, 4-3, CD-109
/DYNAMIC qualifier*CD-47, CD-95

E
/ECHO qualifier*CD-34
EDIT command*CD-50

Index—3

Index

/EDIT qualifier*CD-21, CD-I24, CD-172
ENABLE AST command • CD-52
Entry mask*3-7
/ERROR qualifier *8-16, CD-84
EVALUATE/ADDRESS command • 5-11, CD-55
EVALUATE command* 1-16, 6-18, CD-53
Event facility, setting • CD-100
/EVENT qualifier*CD-11, CD-23, CD-89, CD-135
EXAMINE/INSTRUCTION command *8-6, C-5
EXAMINE/SOURCE command *8-4, C-4
EXAMINE command* 1-15, 6-5, 7-5, CD-57
%EXC_FACILITY • 3-11, D-7
%EXC_NAME *3-11, D-7
%EXC_NUMBER*3-11, D-7
%EXC_SEVERITY *3-11, D-7
Exception breakpoint

canceling *3-11, CD-14
qualifying *3-1 1, D-7
setting *3-10, CD-101

Exception condition • 3-10
/EXCEPTION qualifier*CD-11, CD-23, CD-89,

CD-135, CD-188
Exclamation point (!) • 2-12, CD-2

log file*2-7
Execution

continuing after exception break *3-11
monitoring with SHOW CALLS command*

1-11, 3-19, CD-150
monitoring with tracepoint* 1-13, 3-15, CD-134
starting or continuing with CALL command*

3-5, CD-7
starting or continuing with GO command* 1-9,

3-5, CD-70
starting or continuing with STEP command*

1-10, 3-1, CD-188
suspending with breakpoint* 1-12, 3-6, CD-88
suspending with exception breakpoint • 3-10,

CD-89, CD-101
suspending with watchpoint* 1-14, 3-12,

CD-142
$EXIT • 3-22
EXIT command* 1-5, 2-13, CD-62
Exit handler

debugging • 3-23, CD-62
defined *3-22
execution sequence of *3-22
identifying *3-23, CD-155

EXITLOOP command*CD-63
/EXIT qualifier*CD-50
EXPAND command *8-9, CD-64
Expression

See also Address expression

See also Language expression

EXTRACT command • 8-18, CD-66

F
F_FLOAT data type • 5-1
FLOAT data type *5-1
/FLOAT qualifier*CD-41, CD-58
FOR command *9-5, CD-68
%FP* D-3
/FULL qualifier*CD-178

G
G_FLOAT data type *5-1
/G_FLOAT qualifier*CD-41, CD-58
/GENERATE qualifier*CD-48
Global symbol

declaration *4-10
scope of *4-10

Global symbol table (GST)

See GST
GO command* 1-9, 3-5, CD-70
GST (global symbol table)

content of *2-1
creating • 4-3
debugger's use of *4-3
initializing *2-5
symbol records in *4-3

H
H—FLOAT data type *5-2
/H-FLOAT qualifier*CD-41, CD-58
Help

online* 1-6, CD-71
HELP command* 1-6, CD-71
%HEX • D-4
/HEXADECIMAL qualifier • CD-53, CD-55, CD-58
/HIDE qualifier*CD-48, CD-95
/HOLD qualifier*CD-129, CD-178
Hyphen (-)*6-8

line-continuation character • 3-9, CD-2
subtraction operator • 5-10, D-6

lndex—4

Index

I
Identifier

See also Symbol
search string *7-11

/IDENTIFIER qualifier • 7-11, CD-82
/IF—STATE qualifier*CD-35
IF command *9-6, CD-73
Indirection operator

See contents-of operator
Initialization

debugger* 1-5, 2-5
Initialization file

debugger *2-5
/INPUT qualifier*8-16, CD-84, CD-117
Instruction

depositing *6-13
display (INST) *8-6, C-5
display kind *8-13, C-1
examining *6-7
replacing *6-14

INSTRUCTION data type *5-2
/INSTRUCTION qualifier• 8-6, CD-11, CD-23, CD-

41, CD-58, CD-84, CD-89, CD-135, CD-188,
C-5

Interrupt
debugging session* 1-6, 2-12, 2-13, CD-28
program *2-3, CD-28

/INTO qualifier*CD-89, CD-135, CD-189
Invocation number *4-16

path name *4-13
syntax of • 4-19

Invoking
debugger*1-5

j
/JSB qualifier*CD-89, CD-135, CD-189

K
Key definition

create* CD-34
debugger predefined • B-1
delete*CD-38, CD-196
display • CD-157

Keypad mode*CD-109, B-1

%LABEL* D-5
simple address *5-5

Label
path-name element *4-11
program symbol *4-6

Language
current • 2-6
identifying • CD-159
setting *2-6, CD-104
support by debugger *E-1

Language expression
DEPOSIT command* 1-16, 6-11, CD-40
EVALUATE command* 1-16, 6-18, CD-53
radix mode in *6-3

Language-Sensitive Editor*CD-50
/LEFT qualifier*CD-64, CD-74, CD-79

Lexical function • C-5, D-3
LIBSDEBUG • D-1
%LINE • D-5

path name *4-13
simple address *5-4
unnamed block *5-4

Line mode*CD-109
Line number

anonymous block *4-15
path name *4-13, 5-4
SET BREAK command* 1-12
SET TRACE command* 1-14
simple address *5-4
source display* 1-8
source display by *7-5
traceback information • 2-2

/LINE qualifier* 1-13, CD-12, CD-24, CD-58,
CD-89, CD-135, CD-189

LINK command* 1-5, 2-1
/LIST qualifier*7-1
/LOCAL qualifier*CD-32, CD-37, CD-176
Local symbol • 2-2
/LOCK_STATE qualifier• CD-35
Log file

command procedure *2-12
creating• 2-8, CD-114
debugger* 2-7
executing *2-12
name *2-9, CD-105, CD-160

Logical name
debugger* D-1

Logical predecessor* 5-3, 5-7, 6-8, D-5
Logical successor• 5-3, 5-8, 6-9, 6-13, D-5

Index—5

Index

/LOG qualifier*CD-35, CD-38
LONG WORD data type *5-2
/LONGWORD qualifier*CD-41, CD-59

M
Margin

setting* CD-106
source display • 7-13, CD-106, CD-161

/MARK_CHANGE qualifier• CD-48, CD-95
MicroVAX

screen size*8-19

Mode
CANCEL MODE *6-3, CD-16

SET MODE [NO]DYNAMIC • CD-109
SET MODE [NO]G_FLOAT • 6-1, CD-109
SET MODE [NO]KEYPAD • CD-109

SET MODE [NO]LINE • CD-109
SET MODE [NOjSCREEN • CD-109

SET MODE [NO]SCROLL • CD-109

SET MODE [NOJSYMBOLIC • 6-1, CD-109

SHOW MODE *6-1, CD-163

/MODIFY qualifier*CD-90, CD-136
Module

information about *4-19, CD-164
setting *1-17, 4-3

/MODULE qualifier*CD-21, CD-124
MOVE command *8-9, CD-74

N
%NAME • D-4
Nested program unit *4-9

%NEXT_TASK* D-8
%NEXTDISP • C-5, C-6
%NEXTINST *C-5, C-6
%NEXTLOC • 5-8, D-5
Next location

See Logical successor
%NEXTOUTPUT *C-5, C-6
/NEXT qualifier* 7-11, CD-82
%NEXTSCROLL• C-5, C-6
%NEXTSOURCE • C-5, C-6
NOP (No Operation) instruction • 6-15
Numeric label

path-name prefix *5-5
simple address *5-5

Numeric literal *5-6, 6-2

o
Object code *7-17
%OCT • D-4

/OCTAL qualifier*CD-53, CD-55, CD-59
OCTAWORD data type *5-2
/OCT A WORD qualifier* CD-41, CD-59
Opcode tracing *3-17

See also Tracepoint
Operator

address expression*5-10, D-6
language expression • E-1

radix* 6-3
/OPTIMIZE qualifier* 1-5, 7-17
Output

display (OUT) *8-5, C-4
display kind *8-14, C-1

Output configuration

displaying *2-8, CD-166
setting*2-8, CD-114

/OUTPUT qualifier*8-16, CD-85, CD-117

/OVER qualifier*CD-90, CD-136, CD-189

/OVERRIDE qualifier*5-2, CD-19, CD-25, CD-117,
CD-140, CD-167, CD-183

p
PACKED data type *5-2

/PACKED qualifier*CD-42, CD-59
%PAGE*C-5

/PAGE qualifier*8-19, CD-132
Parameter

language-dependent • 2-6
language-independent • 2-7

%PARCNT • D-4

Parentheses (())

DO clause *3-9
to delimit arguments*3-6

Pasteboard • 8-2
Path name

abbreviation *4-15
default *4-12
distinguishing symbols *4-1 1

numeric *4-20
parameter in SET SCOPE *4-12
relation to symbol* 1-10
syntax *4-13

%PC* D-3

Index—6

Index

PC

breakpoint* 1-12
SHOW CALLS display* 1-11
source display* 1-8
STEP command* 1-10

Percent sign (%)
symbol prefix *4-5

Period (.)
contents-of operator*5-10, D-6
current entity *5-7, D-5
symbol delimiter*4-8

/POP qualifier*CD-48, CD-96
Previous location

See Logical predecessor
%PREVLOC • 5-7, D-5
/PRIORITY qualifier*CD-130, CD-179
Procedure

See also Routine
Process address space *2-5
Program

display kind *8-15, C-1
/PROGRAM qualifier*8-16, CD-85
Program unit

declaring symbol in *4-9
label *4-6
multiple invocations of *4-14
nested *4-9

Prompt
debugger (DBG>)• 1-5, 2-3, CD-116
display (PROMPT) • 8-5, C-4

/PROMPT qualifier*8-16, CD-85
Pseudo-display name*C-6
%PSL* D-3
PSL (processor status longword)

examining *6-11
information in *6-11, 6-16

/PSL qualifier*CD-59
/PSW qualifier*CD-59
/PUSH qualifier*CD-48, CD-96

Q
QUADWORD data type *5-2
/QUADWORD qualifier*CD-42, CD-59
QUIT command*CD-76
Quotation mark (")

ASCII string delimiter • 6-12
instruction delimiter*6-13

R
Radix

assembly-level debugging • 6-3
canceling* CD-19
conversion • 6-3, D-4
displaying* CD-167
setting • CD-117

Radix operator *6-3
Record

field *4-8
source line correlation • 7-1

/REFRESH qualifier*CD-48
Register

depositing into *6-15
display (REG) *8-7, C-5
display kind *8-14, C-1
examining *6-10
name of *4-5
saving *3-5
symbol* D-3

/RELATED qualifier*CD-I7, CD-I 11, CD-164
/REMOVE qualifier*CD-49, CD-96
REPEAT command*CD-77
/RESTORE qualifier*CD-130
RETURN key

logical successor• 5-8, 6-9, D-5
TYPE command *7-5, CD-193

/RETURN qualifier*CD-90, CD-136, CD-189
/RIGHT qualifier*CD-64, CD-74, CD-79
Routine *4-13

calling • 3-5
currently active *4-20
displaying calls to *3-19
entry mask *3-7
innermost *4-17
multiple invocations of *4-17

Routine name *2-2
path name *4-13
SET BREAK command *3-7

RST (run-time symbol table)* 1-17, 4-3, 9-1
at startup*2-7
debugger symbols in*CD-176
deleting symbol records in *4-20, CD-17
initializing • 2-5
inserting symbol records in*4-20, CD-11 1
searching *4-12
symbol records in *4-2

RUN command* 1-5, 2-1
Run-time symbol table (RST)

See RST

Index—7

Index

S
SAVE command • 8-18, CD-78

Scope
canceling • CD-20

displaying* CD-168
global symbol *4-10

module-level • 4-22
nonglobal symbol *4-10

routine-level • 4-22
search list*4-21, CD-119, CD-168

setting* 1-18, CD-119
symbol declaration • 4-9
TYPE command *7-5

/SCREEN—LAYOUT qualifier*CD-66

Screen mode* 1-7, 8-1, CD-109
summary reference information • C-1

Screen size
displaying* CD-I 81

setting • CD-I 32

SCROLL command *8-8, CD-79
Scroll mode*CD-109
/SCROLL qualifier*8-16, CD-85
SEARCH command • 7-10, CD-81

displaying default qualifiers for*7-12, CD-169
setting default qualifiers for *7-1 1, CD-122

Search list

scope*CD-119, CD-168
source file • 7-2, CD-21, CD-124, CD-172

SELECT command *8-16, CD-84
Semicolon (;)

command separator • CD-2

DO clause*3-9
/SET_STATE qualifier• CD-35
SET ATSIGN command • CD-87
SET BREAK command • 1-12, 3-6, CD-88
SET DEFINE command • CD-93

SET DISPLAY command • 8-10, CD-94
SET EDITOR command • CD-98
SET EVENT_FACILITY command • CD-100

SET EXCEPTION BREAK command • 3-10, CD-101
SET IMAGE command*CD-102

effect on symbol definitions*CD-33
SET KEY command*CD-103
SET LANGUAGE command *2-6, CD-104
SET LOG command *2-9, CD-105
SET MARGINS command • 7-14, CD-106
SET MAX—SOURCE_FILES command • 7-16,

CD-108
SET MODE [NO]DYNAMIC command* 1-17, 4-4,

CD-109

SET MODE [NO]G_FLOAT command *6-1, CD-
109

SET MODE [NO]KEYPAD command • CD-109, B-1
SET MODE [NO]LINE command • CD-109
SET MODE [NO]SCREEN command *8-1, CD-109
SET MODE [NO]SCROLL command*CD-109
SET MODE [NO]SYMBOLIC command *6-1, CD-

109
SET MODE command • CD-109

SET MODE SCREEN command* 1-7
SET MODULE/ALLOCATE command *9-2
SET MODULE command• 1-17, 4-4, 4-19, CD-111

SET OUTPUT command *2-8, CD-114
SET PROMPT command*CD-116
SET RADIX command *6-1, CD-117

SET SCOPE command* 1-18, 4-2, 4-4, 4-11,
4-20, 7-5, CD-119

SET SEARCH command • 7-11, CD-122

SET SOURCE command *7-2, CD-124
SET STEP command *3-3, 7-7, CD-126

SET TASK command*CD-129

SET TERMINAL command *8-19, CD-132

SET TRACE command • 1-13, 3-15, CD-134
SET TYPE command *5-2, CD-139
SET WATCH command* 1-14, 3-12, CD-142

SET WINDOW command *8-11, CD-145
Shareable image

CANCEL IMAGE*CD-15

debugging *4-23
SET BREAK command*CD-90
SET IMAGE*CD-102
SET STEP command*CD-127

SET TRACE command*CD-136

SHOW IMAGE*CD-156
SHOW MODULE command *4-19
STEP command • CD-189

/SHARE qualifier* 1-13, 4-19, CD-90, CD-136,
CD-164, CD-189

SHOW AST command*CD-147

SHOW ATSIGN command • CD-148
SHOW BREAK command*CD-149
SHOW CALLS command* 1-11, 2-4, 3-19, CD-

150
SHOW DEFINE command • CD-151
SHOW DISPLAY command• CD-I52
SHOW EDITOR command• CD-I53
SHOW EVENT_FACILITY command• CD-I54
SHOW EXIT_HANDLERS command • 3-23, CD-

155
SHOW IMAGE command*CD-156
SHOW KEY command *9-11, CD-157
SHOW LANGUAGE command *2-6, CD-159
SHOW LOG command *2-9, CD-160

Index—8

Index

SHOW MARGINS command • 7-14, CD-161
SHOW MAX_SOURCE_FILES command• 7-16,

CD-162
SHOW MODE command • 6-1, CD-163
SHOW MODULE command* 1-17, 4-19, CD-164
SHOW OUTPUT command *2-8, CD-166
SHOW RADIX command*CD-167
SHOW SCOPE command* 1-18, 4-22, CD-168
SHOW SEARCH command • 7-12, CD-169
SHOW SELECT command*CD-170
SHOW SOURCE command *7-3, CD-172
SHOW STACK command*CD-174
SHOW STEP command *3-3, CD-175
SHOW SYMBOL/DEFINED command • CD-33
SHOW SYMBOL command* 1-18, CD-176
SHOW TASK command*CD-178
SHOW TERMINAL command • 8-19, CD-181
SHOW TRACE command • 3-15, CD-182
SHOW TYPE command *5-2, CD-183
SHOW WATCH command *3-13, CD-184
SHOW WINDOW command • 8-11, CD-185
/SILENT qualifier* 1-14, CD-90, CD-136, CD-142,

CD-189
Simple address

defined* 5-3
path-name prefix *5-4

Simple symbol *4-7
/SIZE qualifier*CD-49, CD-96
Slash (/)

division operator*5-10, D-6
%SOURCE_SCOPE • 8-4, C-4
Source directory

displaying*7-3, CD-172
search list *7-3, CD-21, CD-124
source file in*7-2

Source display* 1-8
at breakpoint activation • 7-7
at watchpoint activation • 7-7
by address expression • 7-5
by line number*7-5, CD-193
by search string *7-10, CD-81
by stepping*7-7
discrepancies in *7-17
display kind *8-15, C-1
during program execution • 7-7
line-oriented • 7-1
margins in*7-13, CD-161
next line*7-5
not available* 1-8
SRC, predefined • 8-4, C-4
TYPE command* 1-9, CD-193

Source file

correct version of *7-3
defined* 7-1
file specification • 7-2
location *7-1, CD-21, CD-124, CD-172
maximum number*7-16, CD-108, CD-162

/SOURCE qualifier*8-16, CD-59, CD-85, CD-90,
CD-136, CD-142, CD-189

EXAMINE command *7-6
STEP command *7-7

%SP* D-3
SPAWN command*CD-186
SRC source display *8-4, C-4
SS$_DEBUG condition • D-1
/START_POSITION qualifier • CD-98
Statement number

path-name prefix *5-5
simple address *5-5

/STATE qualifier*CD-39, CD-103, CD-158, CD-
179

/STATISTICS qualifier*CD-179
STEP command* 1-10, 3-1, CD-188

displaying default qualifiers for*3-3, CD-I75
setting default qualifiers for*3-3, CD-126
source display *7-7

STOP command *2-13
/STRING qualifier* 7-11, CD-82
Symbol

built-in *4-5, 5-7, C-5, D-3
defining *4-6, CD-33
displaying*CD-33, CD-176
global *4-10
line number*2-2
local *2-2
module setting* 1-17
pointer-qualified • 4-9
relation to path name* 1-10
resolving *1-18, 4-9
routine name*2-2
simple *4-7
/DEBUG qualifier* 2-2
structure-qualified • 4-8
subscript-qualified • 4-7
types of *4-5

Symbol declaration *4-9
Symbolic mode*CD-109
SYMBOLIZE command*CD-192
/SYMBOL qualifier*CD-59
Symbol record* 1-5

deleting from RST • 1-17, 4-20
DST • 4-2
GST *4-3
information in RST *4-19

lndex-9

Index

Symbol record (cont'd.)

inserting into the RST*1-17, 4-20
RST *4-3
traceback* 2-2, 4-1

Symbol reference
incorrect *4-4

path name*4-11

Symbol table
used by debugger *4-2

SYS$IMGST A • 2-4
/SYSTEM qualifier* 1-13, CD-91, CD-137, CD-190
System space

SET BREAK command*CD-91
SET STEP command*CD-127

SET TRACE command*CD-137

STEP command • CD-190

TYPE command* 1-9, 7-5, CD-193
Type conversion *6-12
Type override*CD-25, CD-140, CD-183
/TYPE qualifier*CD-42, CD-59, CD-176

UNDEFINE/KEY command • 9-12, CD-196
UNDEFINE command*CD-195
/UP qualifier*CD-64, CD-74, CD-79

/USE_CLAUSE qualifier*CD-177

v

%TASK* D-8
Tasking

SET TASK command*CD-129
SHOW TASK command*CD-178

/TASK qualifier*CD-42, CD-59

/TEMPORARY qualifier*CD-91, CD-137, CD-143
Terminal screen size

displaying *8-19, CD-181
%PAGE, % WIDTH symbols *C-6
setting *8-19, CD-132

/TERMINATE qualifier*CD-35
Termination

debugging session • CD-62, CD-76

execution of handlers at *3-22
/TIME_SLICE qualifier*CD-130, CD-179

/TOP qualifier*CD-79

Traceback*2-2, 4-1
SHOW CALLS command* 1-11

/TRACEBACK qualifier*4-1, 4-2

Tracepoint

canceling* CD-23
defined* 1-13, 3-15
delayed activation of*CD-134
displaying *3-15, CD-182
setting* 1-13, 3-15, CD-134

Transfer address
debugger activation • 2-4
defined • 2-7
execution at* 1-9, 3-5

Truncation of ASCII data *6-12
Type

Data types and other types *5-1

/VALUE qualifier*CD-32
Variable name

DEPOSIT command* 1-16

EXAMINE command* 1-15
SET WATCH command* 1-14

VAX Language-Sensitive Editor*CD-50
Verify

SET OUTPUT command*CD-114
% VISIBLE—T ASK • D-8

/VISIBLE qualifier*CD-130

/WAIT qualifier*CD-186
Watchpoint

canceling* CD-26
defined* 1-14, 3-12

displaying *3-13, CD-184
restrictions *3-14

setting* 1-14, 3-12, CD-142
source display at *7-7

WHEN clause

effect with DO clause • 3-9
example* 1-13
format* CD-I

WHILE command *9-6, CD-197
% WIDTH • C-5

/WIDTH qualifier*8-19, CD-132
Window

canceling • CD-27
defined • 8-2
identifying* CD-185
predefined • C-7

Index—10

Index

Window (cont'd.)

specifying • 8-10, CD-145
WORD data type *5-2
/WORD qualifier*CD-42, CD-59

Index—11

VAX/VMS
Debugger Reference

Manual
AA—Z41 IC-te

READERS
COMMENTS

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance Report (SPR) service,
submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date_

Organization _

Street _

City _State_Zip Code_
or Country

Do Not Tear - Fold Here and Tape

GD1DDSD
No Postage
Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

I.II,II,m.II..mI.II,I,.I.I..I,ImII.I.ll

— — Do Not Tear - Fold Here

C
ut

 A
lo

ng
 D

o
tt

ed
 L

in
e

VAX/VMS
Debugger Reference

Manual
AA-Z41 IC-te

READER'S
COMMENTS

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance Report (SPR) service,
submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date-

Organization __

Street ____

City _State_Zip Code_
or Country

Do Not Tear - Fold Here and Tape

BDSBQSD
No Postage

Necessary
if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

— — Do Not Tear - Fold Here

.Ml

C
u

t
A

lo
n
g
 D

o
tt

e
d
 L

in
e

