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Preface 

The Writing a Device Driver for VAX/VMS volume provides information 
needed to write a device driver that runs under VAX/VMS Version 4.4 and to 
load it into the operating system. DIGITAL makes no guarantee that drivers 
written for earlier versions of VAX/VMS will execute without modification 
on subsequent versions of the operating system. Although the intent is to 
maintain the existing interface, some unavoidable changes might occur as 
new features are added. 

The use of internal executive interfaces other than those described in this 
manual is discouraged. 

Intended Audience 
This manual is intended for system programmers who are already familiar 
with their VAX processor and the VAX/VMS operating system. Although its 
discussion of the environment and components of a device driver can apply to 
many types of driver, the strategies discussed in the main body of the manual 
apply predominantly to UNIBUS and Micro VAX Q22 bus drivers. MASSBUS 
driver writers can find supplementary information in Appendix G. 

Structure of This Document 
There are three parts to this manual. Part I describes the components and 
environment of a device driver and provides explanations of VAX/VMS 
concepts critical to an understanding of a device driver's functions and role in 
the operating system. Part I contains the following sections: 

• Section 1 describes the role and components of a VAX/VMS device driver, 
and introduces some operating system concepts that have an impact on 
driver operation. 

• Section 2 provides an example of a device driver - a line printer driver, 
and illustrates the functions of the various parts of this driver and its 
interaction with the VAX/VMS operating system. 

• Section 3 discusses VAX/VMS synchronization mechanisms: interrupt 
priority levels, fork processes and fork queues, and resource-wait queues. 

• Section 4 discusses I/O bus features that govern the operation of direct- 
memory-access (DMA) transfers and affect the code of DMA device 
drivers. 

• Section 5 provides an overview of I/O processing and discusses the 
interaction of device drivers with VAX/VMS. 

Part II of this document describes how to code each part of a driver, and 
includes the following sections: 

• Section 6 explains some general driver coding rules and conventions, and 
includes a template of a device driver. 

• Section 7 describes how to create driver tables, including the driver- 
prologue table, driver-dispatch table, and function-decision table (FDT). 
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• Section 8 explains how to write FDT routines, use VAX/VMS-supplied 
FDT routines, and transfer control out of I/O request preprocessing. 

• Section 9 discusses the components of a driver's start-I/O routine. 

• Section 10 describes coding strategies for DMA drivers for UNIBUS and 
Micro VAX Q22 bus devices. 

• Section 11 discusses the functions performed by an interrupt-servicing 
routine. 

• Section 12 describes how to write I/O completion and device timeout 
routines. 

• Section 13 describes unit- and controller-initialization routines, cancel-I/O 
routines, and error-logging routines. 

• Section 14 examines the methods by which a device is logically connected 
to the processor and by which a driver is loaded into the operating system. 

• Section 15 describes the use of XDELTA as a device driver debugging tool. 

Part III is a reference section, and includes the following appendixes: 

• Appendix A contains a set of figures and tables that describe the contents 
of each data structure and table in the I/O database. 

• Appendix B lists the VAX/VMS macros that invoke the executive routines 
that perform work for the driver. 

• Appendix C describes the context, synchronization, and input/output 
requirements of these routines. 

• Appendix D discusses the environment of each of a driver's entry points. 

• Appendix E includes a sample driver that operates an RL01/RL02 type 
disk on the UNIBUS, Micro VAX II Q22 bus, or Micro VAX I Q22 bus. 

• Appendix F contains a sample driver for two connected DR 11 controllers 
on the UNIBUS or Micro VAX II Q22 bus. 

• Appendix G contains information that further describes strategies for 
producing a MASSBUS device driver. 

• Appendix H describes the connect-to-interrupt driver interface that is 
available to real-time users. 

• The Glossary at the end of this manual defines the vocabulary that 
pertains to device drivers and their environment. 

Associated Documents 

Before reading the Writing a Device Driver for VAX/VMS volume, you should 
have an understanding of the material discussed in the following documents: 

• VAX Hardware Handbook 

• I/O-related portions of the VAX/VMS System Services Reference Manual 

• The section on VAX/VMS naming conventions in the Guide to Creating 
Modular Procedures on VAX/VMS 

• VAX/VMS I/O User's Reference Manual: Part I and VAX/VMS I/O User's 
Reference Manual: Part II 
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You may also find useful some of the material in your processor's hardware 
documentation, as well as in the following books: 

• VAX/VMS System Dump Analyzer Reference Manual 

• VAX/VMS System Manager's Reference Manual 

• VAX/VMS Internals and Data Structures 

• VAX/VMS Delta/XDelta Utility Reference Manual 

Conventions Used in This Document 
This manual describes code transfer operations in three ways: 

1 The phrase "issues a system service call" implies the use of a CALL 
instruction. 

2 The phrase "calls a routine" implies the use of a JSB or BSB instruction. 

3 The phrase "transfers control to" implies the use of a BRB, BRW, or JMP 
instruction. 

Typographical conventions used in this book include the following: 

• Generally, terms that are further explained in the glossary of this manual 
first appear in italic print. For example: 

Under the VAX/VMS operating system, a device driver is a set of routines 
and tables that the system uses to process an I/O request for a particular 
device type. 

• Terms that serve as arguments to macros appear in boldface in the text of 
the manual. For example: 

If an at-sign character (@) precedes the oper argument, then the exp 
argument describes the address of the data with which to initialize the 
field. 

• A symbol with a one- to six-character abbreviation indicates that you press 
a key on the terminal, for example, |Ret| . 

• In examples, the phrase |ctrl/x| indicates that you must press the key 
labeled CTRL while you simultaneously press another key: for instance, 
| CTRL/C | . 

• A horizontal ellipsis indicates that additional parameters, values, or 
information can be entered. For example: 

$LINK /NOTRACE MYDRIVER1[.MYDRIVER2 
MYDRIVER.OPT/OPTIONS,- 
SYSSSYSTEM:SYS.STB/SELECTIVE_SEARCH 

• Square brackets indicate that the enclosed item is optional. (Square 
brackets are not, however, optional in the syntax of a directory name 
in a file specification or in the syntax of a substring specification in an 
assignment statement.) 

DSBINT [ipl] [ ,dst] 

• Command examples show in black letters all output lines or prompting 
characters that the system prints or displays. All user-entered commands 
are shown in red letters. For example: 
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»>DEPOSIT R3 0 
»><ODMAXDT 
SYSBOOT> 
SYSBOOT>CONTINUE 

• A vertical ellipsis means either that not all the data that the system would 
display in response to the particular command is shown or that not all the 
data a user would enter is shown. For example: 

JSB <8UCB$L_FPC(R5) ; Restore the driver process. 

;Between these instructions, the interrupt-servicing routine 
;can make no assumptions about the contents of RO through R4. 

POPR #~M<RO,R1,R2,R3,R4,R5> Restore interrupt registers. 
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New and Changed Features 

This manual applies to Version 4.4 of the VAX/VMS operating system. The 
following list summarizes the major changes to the previous edition of the 
manual: 

• The manual now incorporates specific information on the Micro VAX I, 
MicroVAX II, VAX 8600, VAX 8650, VAX 8200, and VAX 8800. The 
discussion of the VAX 8200 and VAX 8800 processors focuses on the 
writing of a driver for a device on the UNIBUS (connected to the VAXBI 
by means of a BI-to-UNIBUS adapter (BUA)). 

• Appendix H contains the discussion of mapping I/O space and using the 
connect-to-interrupt facility previously published in the VAX/VMS Release 
Notes, Version 4.0 and the VAX/VMS Real-Time User's Guide. 

• The following routines have been added to Appendix C. 

Routine Function 

EXESALONPAGVAR Allocates a system buffer from general nonpaged pool, 
making no attempt to allocate it from the lookaside 
lists 

IOC$LOADMBAMAP Loads the MASSBUS adapter's mapping registers as 
required by a DMA transfer 

MMGSUNLOCK Unlocks the pages of a process buffer when an 
attempt to lock IRP extension buffers for a direct-l/O 
transfer fails 

• The macro CPUDISP has been added to Appendix B. CPUDISP provides 
a method of implementing run-time conditional code based on the CPU- 
type of the executing VAX processor. 

• Modifications to DLDRIVER (in Appendix E) and XADRIVER (in 
Appendix F) since VAX/VMS Version 4.0 have been incorporated in 
the code listings. 

• The appendix on device driver entry points (previously Appendix I) 
has become Appendix D, and now contains a description of the driver¬ 
unloading routine. Routines in this appendix now appear in alphabetical 
order. 

• The appendix comparing UNIBUS and MicroVAX I DMA drivers 
(previously Appendix D) has been integrated into the main text of the 
book—most notably into Sections 1, 4, and 10. 

• The appendix listing the UNIBUS addresses for the various VAX 
processors (previously Appendix H) has been expanded and appears 
as Table H-2. 

• Sections 1, 3, 4, 10, 14, and 15 have been revised, rewritten, and/or 
reorganized. Cross-references have been added to help with the location 
of new and revised material. 

• A more thorough description of the driver's interaction with the 
VAX/VMS operating system in servicing an I/O request appears 
throughout Section 5, and is reflected in Figure 5-2. 
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New and Changed Features 

The glossary contains new entries for the terms: VAXBI, configuration- 
control block, direct-memory-access (DMA) transfer, nexus, node, programmed- 
1/0 (PIO) transfer, Q22 bus, and scatter-gather map. 

• Various minor revisions, as well as some reorganization of material, may 
be apparent throughout the book. The index has been expanded to help 
you find the relocated material. 
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Introduction to Device Drivers 

Under the VAX/VMS operating system, a device driver is a set of routines and 
tables that the system uses to process an I/O request for a particular device 
type. 

The VAX/VMS approach to I/O is that the operating system should perform 
as much of the processing of an I/O request as possible and that drivers 
should restrict themselves to the device-specific aspects of I/O processing. To 
accomplish this, the VAX/VMS operating system provides drivers with the 
following services: 

• A Queue I/O request ($QIO) system service that preprocesses an I/O 
request by performing those functions and checks that are common to all 
devices; for example, validating those arguments of the I/O request that 
are not device specific 

• Many operating system routines that drivers can call to perform I/O 
preprocessing, allocate and deallocate resources, and synchronize driver 
execution 

• A VAX/VMS I/O postprocessing routine that performs device¬ 
independent I/O postprocessing for all I/O requests 

Thus, drivers can leave the device-independent I/O processing to the 
operating system and concentrate on servicing those aspects of an I/O 
operation that vary from device type to device type. In addition, drivers can 
call VAX/VMS system routines to perform many functions that are common 
to several, but not all, devices. 

A device driver does not run sequentially from beginning to end. Rather, 
the operating system uses driver tables and other information maintained 
by itself and the driver to determine which driver routines to activate and 
when they should be activated. Because little sequential processing of driver 
code occurs, the VAX/VMS operating system must assume the responsibility 
for synchronizing the execution of the various driver routines, as well as the 
execution of all drivers in the system. A major purpose of this book is to 
describe the conventions that all VAX/VMS drivers must follow to maintain 
this synchronization and cooperate with the operating system in I/O request 
processing. 

This section first defines the general functions and purposes of a VAX/VMS 
device driver. It then introduces VAX/VMS concepts crucial to an 
understanding of how device drivers work within the operating system 
and integral to the process of successfully writing one. It concludes with a 
discussion of VAX hardware pertinent to device driver strategies and a brief 
example of the flow of an I/O request involving a driver. 
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1.1 Driver Functions 

A VAX/VMS device driver defines itself to the system procedure that loads 
the driver into system virtual address space and creates its associated 
data structures. Once loaded, a device driver controls I/O operations on 
a peripheral device by performing the following functions: 

• Defining the peripheral device for the rest of the operating system 

• Preparing a device unit and/or its controller for operation at system 
start-up and during recovery from a power failure 

• Performing device-dependent I/O preprocessing 

• Translating programmed requests for I/O operations into device-specific 
commands 

• Activating a device unit 

• Responding to hardware interrupts generated by a device unit 

• Responding to device timeout conditions 

• Responding to requests to cancel I/O on a device unit 

• Reporting device errors to an error-logging program 

• Returning status from a device unit to the process that requested the I/O 
operation 

1.2 Driver Components 

Normally, a device driver module can consist of the routines and tables 
discussed in this section. With a few exceptions, which are noted throughout 
Section 7, the order of the various routines and tables within the driver 
module is not important. 

1.2.1 Driver Tables 

The following tables appear in every driver. 

The driver-prologue table (DPT) defines the identity and size of the driver 
to the system routine that loads the driver into virtual memory and creates 
the associated database. With the information provided in the DPT, the 
driver-loading procedure can both load and reload drivers and perform the 
I/O-database initialization that is appropriate to either situation. 

Section 7.1 describes the procedure for creating a DPT and further discusses 
its functions. Figure A-8 illustrates the DPT and Table A-8 describes its 
contents. 

The driver-dispatch table (DDT) lists the addresses of the entry points of 
standard routines within the driver, and records the size of the diagnostic 
and error-log buffers for drivers that perform error logging. You can 
find additional information and instructions on how to specify a DDT in 
Section 7.2. An illustration of the DDT appears in Figure A-7; Table A-7 
describes its contents. 
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The function-decision table (FDT) lists all valid function codes for the device, 
and associates valid codes with the addresses of I/O preprocessing routines, 
called FDT routines. The driver contains device-dependent FDT routines, 
and the VAX/VMS operating system itself provides routines (described 
in Section 8.5) that perform request preprocessing common to many I/O 
functions. 

When a user process calls the $QIO system service, the system service uses 
the I/O-function code specified in the request to traverse the FDT and select 
one or more of these preprocessing routines for execution, as appropriate to 
the function. To prepare for the actual I/O operation, FDT routines perform 
such tasks as allocating buffers in system space, locking pages in memory, 
and validating the device-dependent arguments (pi through p6) of the I/O 
request. Section 7.3 provides further discussion of the FDT, and Section 8 
details strategies and rules for writing, specifying, and exiting from an FDT 
routine. 

1.2.2 Driver Routines 

In addition to any FDT routines it may contain, a device driver generally 
contains both a start-I/O routine and an interrupt-servicing routine. 

The start-I/O routine performs such additional device-dependent tasks as 
translating the I/O-function code into a device-specific command, storing 
the details of the user request in the device's unit-control block in the 
I/O database and, if necessary, obtaining access to controller and adapter 
resources. Whenever the start-I/O routine must wait for controller or these 
resources to become available, the VAX/VMS operating system suspends the 
routine, reactivating it when the resources become free. 

The start-I/O routine ultimately activates the device by suitably loading the 
device's registers. At this stage, the start-I/O routine invokes a VAX/VMS 
macro that causes its execution to be suspended until the device completes the 
I/O operation and posts an interrupt to the processor. The start-I/O routine 
remains suspended until the driver's interrupt-servicing routine handles the 
interrupt. 

When a device posts an interrupt, its driver's interrupt-servicing routine 
determines whether the interrupt is expected or unexpected, and takes 
appropriate action. If the interrupt is expected, the interrupt-servicing routine 
reactivates the driver's start-I/O at the point of suspension. The general 
course of action of driver mainline code at this time is to perform device¬ 
dependent I/O postprocessing and to transfer control to the VAX/VMS 
operating system for device-independent I/O postprocessing. VAX/VMS 
synchronization plays a large part in the execution of the start-I/O routine 
and interrupt-servicing routine, and is discussed later in this chapter and 
throughout this book. 

Details on writing start-I/O routines and interrupt-servicing routines appear 
in Sections 9 and 11, respectively. 

You can also include any of the following routines in a device driver. 

The unit-initialization routine and controller-initialization routine prepare 
a device or controller for operation when the VAX/VMS driver-loading 
procedure loads the driver into memory and when the VAX/VMS system 
recovers from a power failure. The amount and type of initialization needed 
by devices and controllers varies according to the device type. Section 13.1 
provides additional information about device driver initialization routines. 

1-3 



Introduction to Device Drivers 

A timeout-handling routine retries I/O operations and performs other error 
handling when a device fails to complete a transfer in a reasonable period of 
time. Once every second, the VAX/VMS system timer checks all devices in 
the system for device timeout. When it locates a device that has timed out, 
because it is offline or some error has occurred, the system timer calls the 
driver's timeout handler. 

Depending upon the reason for the timeout, the timeout-handling routine 
may call a VAX/VMS error-logging routine to allocate and fill an error-log 
buffer with information about the error. In turn, the error-logging routine can 
call a register-dumping routine in the driver that also loads into the buffer 
the contents of device registers at the time of the error. 

Timeout-handling routines are discussed in Section 12.2. Register-dumping 
routines and driver error handling are discussed in Section 13.3. 

The VAX/VMS operating system calls a driver's cancel-I/O routine when 
a user process issues a Cancel I/O on Channel ($CANCEL) system service 
for the device. It may also call the routine when the device's reference count 
goes to zero, which occurs when all users that have had assigned channels to 
the device have deassigned them. The discussion of the cancel-I/O routine 
appears in Section 13.2. 

1.3 The I/O Database 

Because a driver and the operating system cooperate to process an I/O 
request, they must have a common and current source of information about 
the request. This is the function of the I/O database. Under the VAX/VMS 
operating system, the I/O database consists of these three parts: 

• Driver tables that allow the system to load drivers, validate device 
functions, and call driver routines at their entry points 

• Data structures that describe every I/O bus adapter, every device type, 
every device unit, every controller, and every logical path from a process 
to a device 

• I/O-request packets that define individual requests for I/O activity 

Illustrations of I/O database structures and detailed descriptions of their fields 
appear in Appendix A. Figure 1-1 illustrates some of the relationships among 
VAX/VMS I/O routines, the I/O database, and a device driver. 

1-4 



Introduction to Device Drivers 

Figure 1-1 The I/O Database 

ZK-1766-84 

1.3.1 Driver Tables 
The three driver tables—driver-prologue table, driver-dispatch table, and 
function-decision table—are defined in every driver. Section 1.2 lists these 
tables among the other components of a device driver, and Section 7 is 
dedicated to a discussion of their contents. 

1.3.2 Data Structures 

I/O database data structures describe peripheral hardware and are used by 
the operating system to synchronize access to devices. VAX/VMS creates 
these data structures either at system startup or when a driver is loaded into 
the system. 

The system defines a unit-control block (UCB) for each device unit attached 
to the system. A UCB defines the characteristics and current state of an 
individual device unit. 

UCBs are the focal point of the I/O database. When a driver is suspended 
or interrupted, the UCB keeps the context of the driver in a set of fields 
collectively known as a fork block. (See the discussion of fork blocks and fork 
processes in Section 1.4.1.) In addition, the UCB contains the listhead for the 
queue of pending I/O-request packets for the unit. 
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A device-data block (DDB) contains information common to all devices of 
the same type that are connected to a particular controller. It records the 
generic device name concatenated with the controller designator (for example, 
LPA, DBB), and the name and location of the associated device driver. In 
addition, the DDB contains a pointer to the first UCB for the device units 
attached to the controller. 

The operating system creates a channel-request block (CRB) for each 
controller. A CRB defines the current state of the controller and lists the 
devices waiting for the controller's data channel. It also contains the code 
that dispatches a device interrupt to the interrupt-servicing routine for that 
unit's driver. 

The system also creates for each controller an interrupt-dispatch block (IDB). 
An IDB lists the device units associated with a controller and points to the 
UCB of the device unit that the controller is currently servicing. In addition, 
an IDB points to device registers and the controller's I/O adapter. 

An adapter-control block (ADP) defines the characteristics and current 
state of an I/O adapter, such as the VAX UNIBUS adapters and MASSBUS 
adapter, and the Micro VAX Q22 bus interface. An ADP contains the queues 
and allocation bit maps necessary to allocate adapter resources. VAX/VMS 
provides routines that drivers can call to interface with the appropriate 
adapter. 

The channel-control block (CCB) describes the logical path between a 
process and the UCB of a specific device unit.1 Each process owns a number 
of CCBs. When a process issues the Assign I/O Channel ($ASSIGN) system 
service, the system writes a description of the assigned device to the CCB. 

Unlike the data structures mentioned earlier, a CCB is not located in 
nonpaged system space, but in the process' control region (PI space). 

1.3.3 l/O-Request Packets 
The third part of the I/O database is a set of I/O-request packets. When a 
process requests I/O activity, the operating system constructs an I/O-request 
packet (IRP), that describes the I/O request in a standard form. 

The IRP contains fields into which the system and driver I/O preprocessing 
routines can write information: for instance, the device-dependent arguments 
specified in the call to the $QIO system service. The packet also includes 
buffer addresses, a pointer to the target device, I/O-function codes, and 
pointers to the I/O database. After preprocessing, the IRP can be queued to a 
list originating in the device's UCB to await processing by the driver. 

When the device unit is free and the IRP is next in line to be processed on 
the unit, the system sends it to the device driver's start-I/O routine. The 
start-I/O routine uses the IRP as its source of detailed instructions about the 
operation to be performed. 

1 Channel-request blocks and channel-control blocks are two separate data structures. To help distinguish the two, it may be helpful to think of 

the channel-request block as the "controller-request" block because it describes the hardware controller. In contrast, the channel-control block 

helps manage the logical channel (the channei argument to the $ASSIGN and $QIO system services) by means of which a process and a 

device unit accomplish I/O operations. 
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1.4 Driver Context 
Device driver code executes in a privileged access mode with a raised priority. 
Although FDT routines execute in process context and access process space 
(PO and PI), the remainder of driver code must execute in interrupt (or 
system) context, and must refer only to system (SO) space. Such code cannot 
incur exceptions, including page faults, without a bugcheck. Code executing 
in interrupt context is serviced on the interrupt stack, and synchronizes 
execution through interrupt priority levels (discussed in Section 1.5.1) and 
resource-wait queues (discussed in Section 1.5.3). 

1.4.1 Fork Processes 
An additional restriction imposed upon drivers results from their need to save 
adequate (but minimal) context when their execution is suspended, and to 
synchronize individual aspects of I/O processing of varying importance with 
other privileged system and driver code. 

After preprocessing an I/O request, a driver executes as a fork process, with a 
context that consists of: 

• Three general registers 

• The program counter (PC) 

• A unit-control block in the I/O database that describes the target device of 
the I/O request 

This context is preserved across the suspension of driver code, predominantly 
in a portion of the unit-control block known as a fork block. The system 
automatically saves registers for interrupted fork processes and restores these 
registers when the process is reactivated. Because the fork block and all data 
about the fork process reside in nonpaged system memory, the operating 
system cannot swap fork processes. 

However, like other processes, fork processes can be suspended and 
interrupted. VAX/VMS places a driver's fork process in a wait state when 
the process requests an unavailable resource: for example, a controller's data 
channel. The processor interrupts a fork process when the processor receives 
a request for an interrupt at a higher priority level. 

To minimize the number of interruptions, fork processes execute at raised 
interrupt priority levels, and even raise their priority level to 31 to block all 
other interrupts, if necessary. In addition, whenever it may be necessary 
to lower its priority level to give more important code a chance to execute, 
a fork process can preserve its context in the fork block, place the fork 
block in a fork queue at one of the interrupt-priority levels reserved for that 
purpose, and request a software interrupt at that level. When that interrupt is 
ultimately serviced, driver fork processing resumes at the lower level. 
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1.4.2 Example of Driver Context-Switching 
Because a device driver consists of a number of routines that are activated by 
VAX/VMS, the operating system for the most part determines the context in 
which the routines execute. 

As an example, consider the following write request that occurs without error: 

1 A user process executing in user mode calls the $QIO system service to 
write data to a device. 

2 The $QIO system service gains control in process context but in kernel 
mode. It performs device-independent preprocessing of the I/O request. 

3 The system service uses the driver's function-decision table to call the 
appropriate preprocessing routines. These FDT routines execute in full 
process context in kernel mode. 

4 When preprocessing is complete, a VAX/VMS routine creates a fork 
process to execute the driver's start-I/O routine in kernel mode. 

5 The start-I/O routine activates the device unit and suspends itself. At 
this point, VAX/VMS suspends the fork process executing the start-I/O 
routine and saves sufficient context to reactivate the start-I/O routine at 
the point of suspension. 

6 When the device completes the data transfer, it issues an interrupt. The 
interrupt causes the system to activate the driver's interrupt-servicing 
routine. 

7 The interrupt-servicing routine executes to handle the device interrupt. It 
then causes the start-I/O routine to resume in interrupt context. 

8 The start-I/O routine regains control in interrupt context but almost 
immediately issues a request to the operating system to transform its 
context to that of a fork process. This action dismisses the interrupt. 

9 When reactivated in fork process context, the start-I/O routine performs 
device-specific I/O completion and passes control to the system for 
additional I/O postprocessing. 

10 VAX/VMS I/O postprocessing performs processing at a software interrupt 
priority level and then issues a special kernel-mode asynchronous system 
trap (AST) for the user process requesting I/O. 

11 When the special kernel-mode AST is delivered, the AST routine executes 
in full process context in kernel mode to deliver data and status to the 
process. If the original request specified a user-mode AST, the special 
kernel-mode AST queues it. 

1 2 When the user process gains control, the user's AST routine executes in 
full process context in user mode. 

The majority of driver routines execute in fork process context. It is essential, 
however, that the various driver routines not attempt to exceed the limitations 
of the context in which they execute. 
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1.5 Synchronization of Driver Activity 

The VAX/VMS operating system uses hardware and software interrupt 
priority levels—with their associated interrupts, fork queues, and resource- 
wait queues—to synchronize the execution of all drivers within the system 
and to synchronize execution of various routines within a driver. 

1.5.1 Interrupt Priority Levels 

The VAX processor defines 32 interrupt priority levels (IPLs). The higher 
numbered IPLs (16 through 31) are reserved for hardware interrupts, such 
as those posted by devices. The VAX/VMS operating system uses the lower 
numbered IPLs (0 through 15). Code that executes at a higher IPL always 
takes precedence over code that executes at a lower IPL. 

The following IPLs are of particular interest to drivers: 

• Hardware device IPLs (20 through 23); driver interrupt-servicing routines 
execute at these IPLs. 

• Fork-processing IPLs (8 through 11); a driver's fork process executes at 
one of these IPLs. 

• All access to systemwide data structures, including the I/O database, must 
occur at IPL$_SYNCH, IPL 8. 

• I/O completion IPL (IPL 4); VAX/VMS gains control to begin its device¬ 
independent I/O postprocessing at this IPL. 

• AST delivery IPL (IPL 2); VAX/VMS uses this IPL to coordinate the 
delivery of an AST to a user process. The $QIO system service also 
executes at this IPL. 

Section 3.1 provides a thorough discussion of IPLs as used by driver code; 
you can find full information on the use of IPL in the VAX Hardware 
Handbook or your processor's hardware documentation. 

1.5.2 Fork Queues 

When an interrupt-servicing routine completes the handling of a device 
interrupt, it transfers control to the driver to complete device-dependent 
processing of the I/O request. When the driver regains control, it is executing 
at device IPL. Almost immediately, the driver should lower IPL to the driver's 
fork IPL so that it does not block other device interrupts. A driver lowers IPL 
by invoking a VAX/VMS macro that creates a fork process to execute at the 
driver's fork IPL. 

Each fork IPL has an associated fork queue. A VAX/VMS macro queues the 
driver's fork block to the fork queue that corresponds to the driver's fork 
IPL, and issues a software interrupt request for that IPL. When the software 
interrupt is granted, the VAX/VMS fork dispatcher dequeues fork blocks from 
the fork queue corresponding to the IPL at which the interrupt was granted 
and reactivates the driver at the point following the macro invocation. Refer 
to Section 3.2 for a detailed discussion of fork dispatching. 
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1.5.3 Resource-Wait Queues 

Drivers compete for such shared resources as: 

• The central processor 

• The I/O adapter's mapping registers (if the device is a direct-memory- 
access (DMA) device) 

• The UNIBUS adapter's buffered data paths (if the device is a UNIBUS 
DMA device) 

• The controller's data channel (if the device is attached to a multiunit 
controller) 

When a driver's fork process needs an unavailable resource, VAX/VMS 
resource management routines perform the following steps: 

1 Save fork process context in the device's UCB fork block 

2 Insert the address of the UCB fork block in a resource-wait queue 

3 Suspend the driver's fork process 

When another driver's fork process frees the necessary resource, the 
VAX/VMS resource management routines take the following steps to 
reactivate the next driver's fork process: 

1 Remove the next UCB fork block from the resource-wait queue. 

2 Restore fork process context to the registers. 

3 Reactivate the suspended driver's fork process. 

The VAX/VMS resource management routines allow the driver's fork process 
to be unaware of its suspension and reactivation. 

Additional discussion of the synchronization method of resource-wait queues 
appears in Section 3.3. 

1.6 Hardware Considerations 

The VAX/VMS operating system runs on any of the following VAX 
processors: the VAX 8800, VAX 8650, VAX 8600, VAX 8200, VAX-11/785, 
VAX-11/782, VAX-11/780, VAX-11/750, VAX-11/730, VAX-11/725, 
Micro VAX II, and Micro VAX I. 

Although these processors employ the same operating system and conform 
to the VAX architecture, there are some differences in design among the 
machines that merit consideration in device driver coding, installation, 
and debugging. For instance, VAX processors differ in the amount of 
physical address space available and in the location of device registers. 
Also, VAX/VMS systems support different and various combinations of I/O 
buses to which a nonstandard device can be connected. 

If you follow the conventions described in this manual when writing 
your driver, your driver should, with little modification, drive the same 
device attached to a corresponding I/O bus of another VAX processor. For 
specific processor design and device configuration information, refer to your 
processor's technical reference or hardware manual or the VAX Hardware 
Handbook. 
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1.6.1 Processor Considerations 
This section outlines some of the general differences among the processors 
that have a bearing upon the development of driver code. The main thrust 
of the discussion is to provide a brief summary of the layout of the I/O 
subsystems of the VAX processors, define a general terminology, and, when 
necessary, direct device driver writers to documentation particular to the I/O 
configuration of their device. 

1.6.1.1 VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600, and 
VAX 8650 
The VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600, and VAX 8650 
processors, from the viewpoint of I/O architecture, are SBI-based systems. 
That is, the synchronous backplane interconnect (SBI) is the bus by which I/O 
adapters communicate with main memory and the central processor (see 
Figure 1-2). I/O adapters supported by the SBI include the UNIBUS adapter 
(UBA), MASSBUS adapter (MBA), and the DR780 interface. Correspondingly, 
peripheral devices attach to either the UNIBUS, MASSBUS or DR32 device 
interconnect. Main memory shares the SBI with the I/O adapters on the 
VAX-11/780, VAX-11/782, and VAX-11/785. The VAX 8600 and VAX 8650 
employ a separate bus to which main memory is attached and both can be 
configured with up to two SBIs for I/O adapters. 

For these processors, nonstandard devices are commonly attached to the 
UNIBUS, although some nonstandard devices connect to the MASSBUS 
and DR32 device interconnect (DDI). The components of UNIBUS and 
MASSBUS drivers are identical and the strategies for producing driver code 
are similar; writers of either type of driver will profit from reading the bulk 
of this manual. In addition, MASSBUS driver writers should pay careful 
attention to the differences between UNIBUS and MASSBUS drivers outlined 
in Appendix G. DIGITAL supplies a device driver and an application library 
for the DR32 device; the VAX/VMS I/O User's Reference Manual: Part II 
discusses the DR32 interface driver in detail. 

A final note on terminology regarding these processors is pertinent. For the 
purposes of the discussion in this book, the term VAX-11/780 refers to the 
family of VAX processors that includes the VAX-11/780, the VAX-11/782, 
and the VAX-11/785; the term VAX 8600 refers to both the VAX 8600 and 
VAX 8650; and the term backplane interconnect represents the SBI. 

1.6.1.2 VAX-11/750 
The VAX-11/750 processor resembles the VAX-11/780-type processors 
in that it supports both UNIBUS and MASSBUS peripheral devices (see 
Figure 1-2). The backplane, or CPU-to-memory interconnect (CMI), by which 
I/O adapters communicate with the processor and main memory is integral 
to the processor, as are the UNIBUS interface (UBI) and MASSBUS adapter 
(MBA). Peripheral devices connect to either the UNIBUS or MASSBUS. A 
separate memory interconnect provides an interface between main memory 
and the rest of the system. 

For the VAX-11/750, nonstandard devices are commonly connected to the 
UNIBUS, although some nonstandard devices attach to the MASSBUS. 
The components of UNIBUS and MASSBUS drivers are identical, and the 
strategies for developing driver code are similar. Writers of either type of 
driver will profit from reading this manual. In addition, MASSBUS driver 
writers should pay careful attention to the differences between UNIBUS and 
MASSBUS drivers outlined in Appendix G. 
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Figure 1-2 SBI-Based System Configurations 

1.6.1.3 VAX-11/730 and VAX-11/725 
The VAX-11/730 and VAX-11/725 processors, like the VAX-11/750, 
incorporate an integral UNIBUS adapter to control transactions between 
UNIBUS peripheral devices, the processor, and the main memory interface. 
The VAX-11/730 and VAX-11/725, however, do not support MASSBUS 
devices. For the purposes of the discussion in this book, the term 
VAX-U/730 refers to both the VAX-11/730 and the VAX-11/725. 

1.6.1.4 VAX 8200 and VAX 8800 
The VAX 8200 and VAX 8800 are VAXBI-based systems; that is, the VAXBI 
is the bus by which I/O adapters communicate with main memory and the 
central processor (see Figure 1-3). The VAXBI supports UNIBUS peripherals 
by means of the BI-to-UNIBUS adapter (BUA). In the VAX 8200 configuration, 
main memory and the BUA are both connected directly to the VAXBI. The 
VAX 8800, by contrast, employs a separate memory interconnect to service 
main memory and can provide up to four VAXBIs for I/O adapters. 
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Figure 1-3 VAXBI-Based System Configurations 

ZK 4839 85 

For these processors, nonstandard devices are attached to the UNIBUS. 

A final note on terminology regarding these processors is pertinent. For the 
purposes of the discussion in this book, the term UNIBUS adapter includes the 
BUA, and the term backplane interconnect represents the VAXBI. 
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1.6.1.5 MicroVAX II and MicroVAX I 
The MicroVAX II and MicroVAX I are Q22 bus-based systems. On these 
systems, the Q22 bus is the bus by which peripheral devices communicate 
with main memory and the processor.2 Q22 bus device drivers are sufficiently 
similar to those that drive UNIBUS devices that most of the discussion 
of UNIBUS drivers in this book can equally pertain to the writing of Q22 
bus device drivers (see Section 4 for a discussion of the similarities and 
differences). 

As you can see in Figure 1-4, MicroVAX II main memory and I/O devices 
reside on separate interconnects. The MicroVAX II processor implements 
a scatter-gather map that allows devices to perform multiple-block direct- 
memory-access (DMA) transfers.3 

MicroVAX I main memory and I/O devices, by contrast, exist together on the 
same bus (see Figure 1-5). The effects of the absence of a scatter-gather map 
on DMA device drivers are discussed in Section 10.7.4 

Figure 1-4 MicroVAX II System Configuration 

2 
DMA controllers attached to the Q22 bus must be capable of 22-bit addressing. 

^ On the MicroVAX II, the 4MB of Q22 bus memory is located from physical address 30000000 to 303F0000 hex. Because only the first 1/4 
MB of this space is the area used by the scatter-gather map, the remaining 3 3/4 MB of Q22 bus memory can be used as memory local to 
controllers (for instance, a bit map). Such controllers should therefore be installed only after physical address 30040000 hex to avoid contention 
with mapped Q22 bus memory. (See Chapter 4 of the MicroVAX II 630QB Technical Manual for complete configuration information.) This 
restriction may be removed in a future release so that Q22 bus memory on a MicroVAX II can be installed at the same address as UNIBUS 
memory on a VAX-11/780. If you use some of the first 1/4 MB of Q22 bus memory for memory local to controllers, then MicroVMS will 
probably boot but will not be able to take crash dumps. 

4 The MicroVAX I uses the 22-bit Q22 bus to address both main memory and Q22 bus memory. Because MicroVAX I main memory shares 
the Q22 bus with I/O devices, the maximum amount of address space available for main memory (4MB at most) is correspondingly 
decreased whenever controllers containing memory are attached to the Q22 bus. For instance, if a controller containing a 256K bit map is 
installed on the Q22 bus, 3 3/4 MB would remain for main memory. MicroVMS is effectively prevented from using as main memory those 
locations addressable as controller memory by the appropriate setting of the SYSGEN parameter PHYSICALPAGES. In the above example, 
PHYSICALPAGES would be set to 7680 to prevent the double mapping of the 256K bit map as both main memory and controller memory. 
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Figure 1—5 MicroVAX I System Configuration 

ZK-4853-85 

For the purposes of discussion in this manual, the term backplane 
interconnect represents the Q22 bus in both the MicroVAX II and MicroVAX 
I implementations. The terms I/O adapter or Q22 bus interface represent 
those functions performed by the MicroVAX II processor that resemble those 
performed by the UNIBUS adapter of other VAX processors. 

1.7 Programmed-I/O and Direct-Memory-Access Transfers 
Devices are equipped with various registers that initiate, control, and monitor 
the transfer of data to and from memory. When a transfer is complete, the 
device posts an interrupt to the processor. The size of the transfer concluded 
by a device interrupt depends upon the capabilities of the device. 

1.7.1 Programmed I/O 
Drivers for relatively slow devices, such as printers, card readers, terminals, 
and some disk and tape drives, must transfer data to a device register a 
byte or a word at a time. These drivers must themselves keep a record of 
the location of the data buffer in memory, as well as a running count of 
the amount of data that has been transferred to or from the device. Thus, 
these devices perform programmed I/O (PIO) in that the transfer is largely 
conducted by the driver program. This type of transfer is also known as 
buffered I/O because the data registers of certain PIO devices can buffer 
several bytes or words and transfer those bytes to the device as a group. 
When this is the case, the driver monitors a device status register to determine 
when the device buffer is full. 

Examples of UNIBUS devices that do PIO transfers are the LP11 and the 
DZ11. Corresponding Q22 bus devices that perform PIO transfers are the 
LPV11 and the DZV11. 

Section 2 outlines the action of the LP11 driver. The LP11 driver transfers 
data from a system buffer to the line printer data buffer register a byte at 
a time, while maintaining a count of the number of bytes left to transfer. 
When the line printer data buffer is full, the line printer sets a "not ready" 
bit in its status register. If the driver, while examining this register, sees this 
bit set, it enables interrupts from the printer, and then suspends itself in the 
expectation that the printer will post an interrupt to the processor. While 
the driver remains suspended, the printer prints the data from its buffer and 
interrupts the processor when it is done. With the interrupt handled by the 
system interrupt dispatcher and the driver interrupt-servicing routine, driver 
execution resumes. The driver repeats both its byte-by-byte transfer to the 
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printer data buffer, as well as the entire routine described above, until it 
determines that all the data has been transferred as requested. 

Drivers performing PIO transfers are generally not concerned with the 
operation of I/O adapters. However, drivers that perform direct-memory - 
access (DMA) transfers must take into account I/O adapter functions, as 
discussed below. 

1.7.2 Direct-Memory-Access I/O 
Devices that perform direct-memory-access (DMA) transfers do not require 
the central processor so frequently. Once the driver activates the device, the 
device can transfer a large amount of data without requesting an interrupt 
after each of the smaller amounts. The responsibilities of a driver for a DMA 
device involve supplying a device register with the starting address of the 
buffer containing the data to be transferred, a byte offset into the buffer, 
and the size of the transfer. By setting the appropriate bit or bits in the 
device control and status register (CSR), the driver activates the device. The 
device then automatically transfers the specified amount of data to or from 
the specified address. The VAX/VMS drivers DLDRIVER and XADRIVER 
are examples of DMA drivers, and appear in full in Appendixes E and F, 
respectively. 

For DMA transfers, UNIBUS drivers and Micro VAX II drivers must first map 
the transfer from main memory to I/O bus memory space. The result of 
this mapping is a set of contiguous addresses in UNIBUS or Q22 bus space 
that the DMA device can access to successfully perform a DMA transfer. To 
accomplish this, a driver must first obtain mapping registers, and, optionally 
for UNIBUS drivers, a buffered data path. The driver calls VAX/VMS routines 
that interface with the I/O adapter to allocate these resources on behalf of 
the driver. Section 4 discusses the operation of the UNIBUS adapter and the 
Q22 bus. Section 10 provides instructions on how to write a DMA driver for 
UNIBUS and Q22 bus devices. 

The Micro VAX I Q22 bus has no mapping registers, so no mapping of 
physical bus addresses to virtual memory addresses is possible. As a result, 
a driver for a device attached to the MicroVAX I Q22 bus that performs 
DMA transfers must include special logic that either allocates a physically 
contiguous buffer from nonpaged pool for use in the transfer or segments 
the transfer at page boundaries. Section 10.7 discusses the strategies for 
producing MicroVAX I DMA drivers. 

Some controllers that can do DMA transfers on the Q22 bus have microcode 
that allows the controller itself to do physical-to-virtual address mapping. 
This allows such controllers to do scatter-gather mapping, eliminating the 
need for transfers to be made to or from physically contiguous main memory. 
The RD/RX controller, which MicroVAX I uses for its system disk, is such a 
controller. 
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1.8 Buffered and Direct I / O 
Because the buffer specified in the original user I/O request is in process 
space, it is not automatically accessible to the driver fork process that executes 
in system context. As a result, for any function that involves data transfer, 
the driver must select a strategy that supplies a buffer that the fork process 
can address. The VAX/VMS operating system allows FDT routines a choice 
between allocating a system buffer (buffered I/O) or locking the process 
buffer (direct I/O). 

A driver employs buffered I/O to allocate a buffer from nonpaged pool. It can 
later refer to the buffer using addresses in system space. For a write request, 
the driver FDT routine must move data from the user buffer to the allocated 
system buffer. For a read request, the system ultimately delivers the data 
from the system buffer to the user buffer by means of a special kernel-mode 
AST at driver postprocessing. Drivers most often use buffered I/O for PIO 
devices such as line printers and card readers. 

With direct I/O, the driver locks the pages of the user buffer in physical 
memory and refers to them using page-frame numbers (PFNs). Normally, a 
driver uses direct I/O for DMA transfers. 

The trade-off between buffered I/O and direct I/O is the time required to 
move the data into the user's buffer versus the time required to lock the buffer 
pages in memory. Sections 7.3.2 and 8.4 provide additional information. 

1.9 Example of an I/O Request for a UNIBUS or Q22 Bus Device 
Figure 1-6 illustrates how the VAX/VMS operating system and the device 
driver process a user request for a read I/O operation for a DMA device 
attached to a UNIBUS or Q22 bus. 

Figure 1-6 Example of I/O Request Processing 

The processing of the sample I/O request illustrated in Figure 1-6 occurs in 
the following steps: 

1 A process requests an I/O operation. 

A user process requests data from the device by issuing either a $QIO 
system service call or an RMS get-record function call (which results in a 
call to the $QIO system service). 

The user process specifies the target device, a read function code, and the 
address of a buffer into which the data is to be read. 
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2 The operating system performs I/O preprocessing. 

The $QIO system service validates the request and locates data structures 
in the I/O database that describe the device and its driver. The system 
service also allocates and initializes an I/O-request packet to contain a 
description of the I/O request. The system service then calls a reading 
routine in the driver. 

3 The driver performs I/O preprocessing. 

The driver FDT routine verifies that the user buffer resides in virtual 
memory pages that can be modified by the requesting process, locks the 
buffer pages in memory, and adds details of the I/O operation to the 
I/O-request packet. The read FDT routine then calls the operating system 
to send the I/O-request packet to the driver. 

4 VAX/VMS creates a driver's fork process. 

A VAX/VMS routine creates a fork process in which the device driver can 
execute. The routine activates the driver's fork process by transferring 
control to the driver's start-I/O routine. 

5 The driver readies the I/O adapter. 

For DMA transfers, the driver's fork process calls VAX/VMS routines that 
enable the I/O adapter hardware to map I/O bus addresses into physical 
addresses for the transfer. (Note that the Micro VAX I processor does not 
have this capability, as discussed in Section 10.7.) 

6 The driver activates the device. 

The fork process activates the device by setting bits in device registers. 

7 The driver waits for an interrupt. 

A VAX/VMS routine saves the context of the driver's fork process and 
relinquishes the processor until an interrupt occurs. 

8 The device requests an interrupt. 

When the data transfer is complete, the device requests a hardware 
interrupt that causes the system to dispatch to the driver's interrupt¬ 
servicing routine. 

9 The driver services the interrupt. 

The driver's interrupt-servicing routine handles the interrupt and 
reactivates the driver, which reads device registers to obtain status 
information about the transfer. 

10 The operating system inserts the driver in a fork queue. 

The driver requests that it again be suspended, to be reactivated later at a 
lower software IPL. 

11 The fork dispatcher reactivates the driver's fork process. 

When processor priority permits, the VAX/VMS fork dispatcher reactivates 
the driver as a fork process. 

12 The driver completes the I/O operation. 

The driver's fork process completes device-dependent processing of the 
I/O request and returns the I/O status to VAX/VMS. 
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13 VAX/VMS completes the I/O operation. 

The VAX/VMS I/O postprocessing routines copy the I/O status into 
process address space and/or general registers and return control to the 
user process. 

Only four of these 13 steps describe the driver's I/O preprocessing and fork 
processing. The VAX/VMS I/O-support routines perform I/O processing 
common to many I/O requests. Driver writing is further simplified by the use 
of VAX/VMS routines that handle device-independent functions. 

The example above simplifies the processing of an I/O operation by ignoring 
such issues as: 

• The association of a device with a process, which is to say device 
assignment 

• Simultaneous I/O requests for one device 

• The hardware's IPLs 

• Driver competition for shared system and I/O adapter resources 

• Driver competition for a multiunit controller 

• Driver recovery from device errors or power failure 

Later sections discuss each of these issues in relation to device drivers. 
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2 Discussion of a Queue-1/O Request 

This chapter describes what takes place during the processing of a queue-I/O 
request. For simplicity, the device chosen is the LP11 printer. 

The LP11 is a buffered printer. A user process can request the following 
functions on this printer: 

• Write data to the printer 

• Read the printer's device characteristics 

• Alter the printer's device characteristics 

This chapter describes two aspects of printer I/O processing: 

• The portions of the VAX/VMS device driver for an LP11 printer that are 
used in servicing a write request 

• The VAX/VMS components with which the driver interacts to process the 
write request 

The LP11 was selected for this discussion because it is a simple driver but still 
illustrates many driver principles. Although the LP11 is usually spooled, this 
discussion assumes that it is not. 

The first-time reader of this document might not understand all of the points 
made in this chapter; however, the chapter should provide some insight into 
driver flow and I/O processing. 

Figure 2-1 illustrates the flow of execution through VAX/VMS routines and 
the printer driver to satisfy this I/O request. 

The unshaded boxes in Figure 2-1 indicate processing performed by driver 
subroutines. Boxes shown above the solid line indicate processing in the 
context of the user process. Boxes below the line indicate processing in fork 
or interrupt context. 

2.1 Driver Code for the LP11 Write Function 

The VAX/VMS device driver for an LP11 printer implements a write function 
using the following parts of the driver: 

• An FDT routine that reformats the user-supplied data 

• A start-I/O routine that writes data to the device print buffer until the 
printer enters a busy state as it prints the buffer's contents 

• Code that modifies a device register to enable interrupts from the printer 

• An interrupt-servicing routine that returns control to the driver's fork 
process after a hardware interrupt from the printer 

• Code that returns I/O status to a VAX/VMS I/O completion routine 
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Figure 2-1 A Printer Write Function 

2.2 A User Process' I/O Request 

A user process writes a line to the printer by calling the Queue I/O Request 
($QIO) system service, specifying the write-virtual-block function code as 
follows: 

$QIO_S chan = CHANNEL.NUMBER,- 
func = #IO$_WRITEVBLK,- 

efn = #6,- 
iosb = STATUS.BLOCK,- 
pl = BUFFER.ADDRESS,- 
p2 = #BUFFER_SIZE,- 

p4 = #"X30 

pl, p2, and p4 are device-dependent arguments. 

2.3 Device-Independent I/O Preprocessing by VAX/VMS 

The $QIO system service first validates that the I/O request is correctly 
specified. The I/O request must meet the following criteria: 

• The location CHANNEL—NUMBER must contain a number that serves as 
a valid index into the process' channel list. This means that the process 
must have previously assigned the printer to this process channel using 
the Assign I/O Channel system service. Once $QIO locates the assigned 
channel-control block, it can retrieve the address of the unit-control 
block (UCB) of the target device of the request. Ultimately, it obtains 
the address of the driver's function-decision table, by way of a chain of 
longword pointers within the I/O database: 

CCB — UCB DDT FDT 
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• The driver FDT must list IO$_WRITEVBLK as a valid function for the 
device. 

• The event flag number must be valid. 

• The process buffered I/O request quota must permit the $QIO system 
service to perform a buffered-I/O request without exceeding the process' 
quotas. 

• The process must have write access to location STATUS-BLOCK, specified 
in the request for use as an I/O-status block. 

If all of the checks described above succeed, the $QIO system service creates 
an I/O-request packet (IRP) in nonpaged system address space. The service 
then writes all known details about the I/O request into the IRP. 

If the target device for the I/O request is not file structured, the $QIO system 
service changes any virtual-function code to its equivalent logical-function 
code when it builds the IRP. Thus, for a printer device, IO$_WRITEVBLK is 
translated to IO$_WRITELBLK. 

2.4 Device-Dependent I/O Preprocessing by the Driver 
Once it has validated the I/O request, the $QIO system service scans the 
function-decision table for an entry that associates the IO$_WRITELBLK 
function code with an FDT routine. The system service calls the routine, 
which in the case of the printer driver is a device-specific routine located in 
the printer device driver. 

The FDT routine confirms that the requesting process has read access to the 
buffer starting at BUFFER—ADDRESS. Then, the FDT routine buffers data 
from the process address space into system address space in the following 
steps: 

• It calculates the length of the required system space buffer. 

• If the process byte count quota for buffered I/O (BYTCNT) permits, the 
routine allocates a buffer from system address space, stores the address of 
the buffer in the IRP, and decreases the current process byte count quota. 

• It then synchronizes with other possible subprocesses1 to read and write 
fields of the printer's UCB. 

• It reads the description of the printer's current line and page position from 
the device's UCB. 

• It reformats the data from the process buffer into the system buffer, adding 
carriage control characters, as specified in argument p4 to the I/O request, 
before and after the data. 

Formatting includes such functions as the replacement of horizontal tabs 
with multiple spaces and the replacement of lowercase characters with 
uppercase characters, if necessary. 

• It rewrites updated line and page positions into the device's UCB. This 
information indicates what the current location on the page being printed 
will be when the request completes. 

1 For example, if a process allocates a printer, it is possible for the process and any of its subprocesses to issue write requests to the printer 

concurrently. 
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• Finally, the routine transfers control to a VAX/VMS routine that queues 
the IRP to the device driver. 

All of the I/O processing described to this point occurs in the context of 
the user's process. The user address space is mapped, and the processor's 
IPL is still low enough to permit process scheduling and paging. Subsequent 
queuing of the transfer request to the driver and all resulting driver processing 
occur at higher IPLs that synchronize the driver's handling of the device, as 
described in Section 3.1. 

2.5 Queuing the l/O-Request Packet to the Driver 
Before queuing the IRP to the proper driver, the VAX/VMS queuing 
routine raises the IPL to the driver's fork level as identified in the UCB 
(in UCB$B_FIPL). Raising IPL to fork level synchronizes the driver's access to 
the UCB. 

If the device is idle, which is to say that if the busy bit (UCB$V_BSY) in 
the I/O status word of the UCB is clear, VAX/VMS can transfer control to 
the driver. The driver-dispatch table contains the entry point to the driver's 
start-I/O routine. To find the proper entry point, the queuing routine chains 
through the I/O database to the driver-dispatch table, as follows: 

UCB —► DDT —► start-I/O routine 

If the device unit is busy with another transfer, VAX/VMS inserts the IRP in 
a queue of packets waiting for the unit. The UCB contains the head of the 
queue. The packet's position in the queue depends on the scheduling priority 
of the process issuing the request. 

2.6 Activating the Printer 
The LP11 printer controller accepts data into a data buffer until the print 
buffer is full or the driver writes a carriage-control character into the print 
buffer. When either event occurs, the printer sets a busy bit in the device's 
control and status register (CSR). Then a device driver sets the interrupt- 
enable bit in the device's CSR and waits for the printer to interrupt. When 
the printer requests a hardware interrupt, the driver can resume putting 
characters in the print buffer. 

The driver routine writes to the printer data buffer according to the following 
sequence: 

1 The driver locates the LP11 device registers using a chain of pointers 
starting at the device's UCB. 

UCB — CRB — IDB — CSR address 

The CSR address is always the address of the printer's CSR, and all other 
device registers are at fixed offsets from this address. In contrast to many 
other devices, such as disks, the LP11 printer does not share a controller 
with other devices; therefore, no arbitration for ownership of the controller 
is required. 

2 The driver examines the device's CSR to see if the device is ready to 
accept characters. 

3 If the device is ready, the driver writes a byte of data into the printer data 
buffer and decreases the count of bytes to transfer. It then repeats step 2. 
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4 If the device is not ready, which is to say that if the device's internal 
buffer is full, the driver raises IPL to 31 to block all interrupts and sets the 
interrupt-enable bit in the device's CSR. 

After setting the interrupt-enable bit, the driver invokes a VAX/VMS wait- 
for-interrupt macro to suspend driver processing until the printer requests 
an interrupt or the device times out. 

2.7 Waiting for a Device Interrupt 
The VAX/VMS wait-for-interrupt routine suspends the driver by performing 
the following functions: 

• Saving driver context (R3, R4, and the address of the next instruction in 
the driver) in the device's UCB 

• Calculating the time at which the device will time out 

• Setting bits in the device's UCB to indicate that the driver expects a device 
interrupt within a specified time period 

VAX/VMS then drops IPL back to fork level and returns control to the caller 
of the driver's start-I/O routine. 

The driver remains in a suspended state until one of two events occurs: 

• The printer requests a hardware interrupt. 

• VAX/VMS reports a device timeout because the printer did not request a 
hardware interrupt within a specified period of time. 

Normally, the LP11 prints the contents of its data buffer and requests the 
interrupt. 

2.8 Handling Interrupts 
When the LP11 printer requests a hardware interrupt, the interrupt dispatcher 
passes the interrupt to the LP11 driver's interrupt-servicing routine. 

The driver's interrupt-servicing routine restores control to the driver, as 
follows: 

1 Restores the address of the UCB in R5 

2 Confirms that the interrupt was expected by examining bits in the device's 
UCB 

3 Restores the saved registers (R3 and R4) from the device's unit-control 
block 

4 Transfers control to the driver PC address stored in the device's UCB 

Rather than execute in interrupt context, the reactivated driver routine calls a 
VAX/VMS routine to create a fork process. VAX/VMS again suspends driver 
processing by performing the following steps: 

1 Saving driver context (R3, R4, and the driver PC address) in the device's 
UCB 
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2 Inserting the UCB address in the appropriate fork queue 

The driver suspension allows the operating system to reschedule driver 
processing at a lower IPL. A VAX/VMS fork dispatcher reactivates the driver 
when IPL drops to fork level. 

After creating the fork process, the system returns control to the driver's 
interrupt-servicing routine, which restores the registers saved at the time of 
the device interrupt and dismisses the interrupt. 

2.9 I/O Postprocessing by the Driver 
When the VAX/VMS fork dispatcher reactivates the driver's fork process, the 
driver obtains the number of characters left to transfer from the unit-control 
block. If there are still characters to transfer, the driver and printer repeat the 
procedures outlined in Sections 2.6 through 2.8, until the transfer is complete. 
When all characters have been transferred, the driver code branches to the 
driver's I/O-completion code. 

The driver's I/O-completion code stores a success status code and the number 
of bytes transferred in RO, then transfers control to VAX/VMS to complete 
the I/O request. 

2.10 I/O Postprocessing by VAX/VMS 
The operating system inserts the IRP into an I/O postprocessing queue and 
requests an interrupt at IPL$_IOPOST. If another IRP is queued to the UCB 
for the device unit, VAX/VMS dequeues that packet and calls the driver start- 
I/O routine to process it. When IPL drops to IPL$_IOPOST, the processor 
grants the I/O postprocessing interrupt request. The I/O postprocessing 
dispatcher dequeues the packet for the printer I/O request and performs the 
following steps: 

1 Increases the use count of the process' buffered I/O requests because the 
current operation is complete. The use count is maintained for accounting 
purposes. 

2 Deallocates the system buffer used for the reformatted user data. 

3 Increases the process' current byte count quota. 

4 Sets an event flag to indicate that the I/O operation is complete. 

5 Queues a special kernel-mode AST routine that will deallocate the IRP 
and stores I/O status into the user's I/O-status block. 

The user process determines when the I/O operation is complete by the 
setting of the event flag and/or the filling of the I/O status block, according 
to the method defined in the I/O request. The Queue I/O Request and Wait 
($QIOW) system service completes synchronously and returns control and 
status to the user process only after the I/O operation has been completed. 
The Synchronize ($SYNCH) system service checks the completion status of 
an I/O request that completes asynchronously to user process activity. 
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The VAX/VMS operating system uses three mechanisms to synchronize I/O 
processing: 

• Hardware interrupt priority levels and interrupt-servicing routines 

• Driver fork processes, fork blocks, and fork queues 

• Resource-wait queues 

When developing driver code, you must observe the VAX/VMS conventions 
that govern the use of interrupt priority levels and fork processes. The 
VAX/VMS routines that grant resources to drivers enforce the use of resource- 
wait queues. 

3.1 Interrupt Priority Levels 
The VAX processor defines 32 levels of hardware priority, called interrupt 
priority levels (IPLs). The higher-numbered IPLs (16 through 31) are reserved 
for hardware interrupts, and the lower-numbered IPLs (1 through 15) are 
reserved for software interrupts. User-mode software runs at IPL 0. Because 
a high IPL takes precedence over a lower IPL, a routine executing at one IPL 
can block interrupts at the selected IPL and all lower IPLs. This allows the 
operating system to assign the higher IPLs to system activities that must be 
dispatched quickly and with little chance of interruption, and use specific IPLs 
to synchronize access to shared data structures. 

The hardware IPLs (16 through 31) are used for device interrupts (IPLs 20 
through 23), timer interrupts, urgent conditions like power failure, and such 
serious errors as a machine check. Those IPLs that have a bearing on driver 
execution are discussed in Sections 3.1.2 and 3.1.3. For specific hardware 
IPL information, see your processor's hardware documentation or the VAX 
Hardware Handbook. 

The software IPLs (1 through 15) are defined by VAX/VMS as illustrated in 
Table 3-1. 

Table 3-1 IPLs Defined by VAX/VMS 

IPL Symbolic Name Use 

0 

1 

2 

3 

4 

5 

User-mode software 

Reserved 

IPL$_ASTDEL Servicing of AST-delivery interrupts 

IPL$_SCHED Servicing of scheduler interrupts 

IPL$_IOPOST Servicing of l/O-postprocessing interrupts 

Servicing of XDELTA interrupts on a single¬ 
processor system 

6 IPL$_QUEUEAST Fork level processing for queuing ASTs 
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Table 3-1 (Cont.) IPLs Defined by VAX/VMS 

IPL Symbolic Name Use 

7 IPL$_TIMERFORK Fork level processing of timer interrupts 

8 IPL$_SYNCH Synchronizing access to system database 

1 1 IPL$_MAILBOX Fork level processing synchronizing access to 
mailboxes 

8-11 — Fork level processing for executing driver 
code 

12-14 — Reserved 

15 — Servicing of XDELTA interrupts on a 
multiprocessor system 

3.1.1 Interrupt-Servicing Routines 
Many IPLs have an associated interrupt-servicing routine. The processor 
responds to software or hardware interrupts at these IPLs by transferring 
control to the appropriate interrupt-servicing routine. The interrupt-servicing 
routine processes the interrupt and, when finished, dismisses the interrupt 
with an REI instruction. Execution of an REI instruction is a common way 
that IPL is lowered during normal execution. Because a change in IPL can 
alter the deliverability of pending interrupts, execution of an REI instruction 
triggers the delivery of many hardware and software interrupts. 

The VAX/VMS operating system uses interrupt-servicing routines that gain 
control when the processor grants an interrupt at the levels described above, 
thus causing interrupts to be processed according to the following priorities: 

• Device interrupts (highest priority) 

• Device drivers' fork processes 

• I/O postprocessing 

• Process scheduling 

• AST delivery (lowest priority) 

For example, VAX/VMS completes the processing of an I/O request by 
placing the I/O-request packet (IRP) in the I/O postprocessing queue and 
requesting an interrupt at IPL 4, the I/O postprocessing IPL. When the 
current IPL drops below IPL 4, the processor grants the requested interrupt 
and transfers control to the IPL 4 interrupt-servicing routine, which completes 
processing of the IRP. Because VAX/VMS handles interrupts for devices, fork 
processes, I/O postprocessing, and AST delivery at different IPLs, it should 
be clear how asynchronous the processing of a single I/O request is, in that 
no I/O postprocessing can be performed at IPL 4 if there is a driver fork 
process to execute at IPL 8. 

Device drivers themselves contain an interrupt-servicing routine which 
handles device interrupts at an appropriate device IPL (20 through 23). Also, 
some driver code following the device interrupt executes as a fork process, at 
a much lower IPL, by virtue of an interrupt-servicing routine running at a fork 
IPL (8 through 11). (See Sections 3.1.2.3 and 3.2 for additional information.) 
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Interrupt-servicing routines run in a reduced context. They can only refer 
to system space (SO) and are serviced on the interrupt stack. They should 
observe the following rules: 

• Interrupt-servicing routines generally can use only registers RO through 
R5. Using registers other than RO through R5 is not recommended. 
However, if the interrupt-servicing routine does use other registers, it must 
save their contents before use and restore them after use. 

• If the interrupt-servicing routine pushes any elements onto the stack, it 
must remove them before dismissing the interrupt. 

• Although it can elevate IPL, an interrupt-servicing routine cannot lower 
IPL below the level at which the original interrupt occurred. 

Refer to Section 11 for a discussion of rules and strategies for writing a driver 
interrupt-servicing routine. 

3.1.2 IPL Use During I/O Processing 
I/O processing occurs mainly at the IPLs discussed in this section. 

3.1.2.1 IPL 2 (IPL$_ASTDEL) 
The AST delivery interrupt-servicing routine is associated with 
IPL$__ASTDEL. When a system service for which an AST was specified is 
completed, the system service queues the AST and causes a software interrupt 
to be requested at IPL$_ASTDEL. The AST delivery interrupt-servicing 
routine gains control when IPL drops below IPL$_ASTDEL, and delivers 
the AST to the process that is currently scheduled. Any code executing at 
IPL$_ASTDEL blocks the execution of this interrupt-servicing routine. 

To block the delivery of ASTs—specifically the kernel-mode AST that causes 
process deletion—I/O preprocessing, from the time that the $QIO system 
service allocates an IRP through the execution of the last FDT routine, occurs 
at IPLs no lower than IPL$_ASTDEL. In effect, any driver routine (such as an 
FDT routine) that allocates or deallocates dynamic system pool space while 
running in the context of a process must do so at an IPL of IPL$_ASTDEL or 
higher. The VAX/VMS allocation routine records the address of the allocated 
system memory in a process register; if an AST that deletes the process were 
to occur, the allocated memory would be lost from the pool. 

In addition, some I/O postprocessing occurs in a special kernel-mode 

AST-servicing routine that also executes at IPL$__ASTDEL. Special kernel¬ 
mode ASTs, running in the context of a process whose I/O has been 
completed, write status information into I/O-status blocks, copy buffered 
input into process space, and deallocate system buffers. 
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3.1.2.2 IPL 4 (IPL$_IOPOST) 
The IPL$_IOPOST interrupt-servicing routine performs device-independent 
postprocessing of an I/O request. As appropriate to the I/O request, it adjusts 
process quota use, queues a special kernel-mode AST to write status and data 
into the process' address space, and deallocates system memory. 

After they have completed whatever device-dependent postprocessing is 
required, drivers request I/O postprocessing by calling a VAX/VMS routine 
that inserts an IRP in the postprocessing queue and requests a software 
interrupt at IPL$_IOPOST. When the interrupt is granted, the IPL$_IOPOST 
interrupt-servicing routine performs all I/O-completion processing that can 
occur without reference to the device's unit-control block (UCB) and, thus, 
can occur at an IPL lower than fork IPL. 

I/O postprocessing runs at an IPL higher than IPL$_SCHED so that all 
pending I/O-completion processing is finished before the scheduler looks for 
a new process to schedule. Whether a process is awaiting I/O completion 
affects its ability to execute. Because I/O postprocessing queues ASTs to 
processes, the scheduler might preferentially reschedule a waiting process 
because of a pending AST to the process. 

3.1.2.3 IPL 8 through IPL 11 (Fork IPLs) 
For each of the IPLs from 8 to 11, there exists a queue of fork blocks waiting 
to be processed. Each fork block contains the context of a suspended fork 
process. The interrupt-servicing routine that executes at each of these IPLs 
dequeues a fork block, restores the context of the fork process, and resumes 
its execution at the saved PC location. (Refer to Section 3.2 for a discussion 
of fork blocks and fork processes.^ 

All driver routines, except for most FDT routines, execute at fork IPL or 
higher. Usually driver routines should not read or alter fields of the UCB 
unless IPL is at fork level or higher. The fork IPL at which any individual 
driver fork process executes depends upon the contents of the UCB field 
UCB$B_FIPL. The drivers for all devices on a single I/O adapter should 
specify the same fork IPL if they actively compete for shared I/O adapter 
resources such as mapping registers and data paths. 

3.1.2.4 IPL 20 through IPL 23 (Device IPLs) 
Each of the IPLs from 20 to 23 is used to service a device interrupt. The 
UCB$B_DIPL field in the device's UCB contains an IPL value at which the 
device requests hardware interrupts. When a device interrupt occurs, the 
system transfers control to the driver's interrupt-servicing routine with IPL set 
to the device interrupt level. This IPL is in the range 20 through 23 because 
device interrupts usually need to interrupt most user and VAX/VMS software 

functions.1 

In addition, device drivers sometimes raise IPL to UCB$B_DIPL or higher 
before reading and writing certain device registers. 

* IPLs 20 through 23 generally correspond with the four bus request levels (BR4 through BR7) of the UNIBUS and Q22 bus. UNIBUS device 

IPLs are independent of the position of the devices on the bus; Q22 bus devices with higher IPL are configured closer to the CPU than devices 

with lower IPL. 

The MicroVAX II also has four interrupt request lines (BIRQ4 through BIRQ7) but only one interrupt-acknowledge line (BIAK). In 

order to guarantee proper synchronization of device interrupts, the MicroVAX II central processor honors interrupts based on the correct BIRQ 

level of the interrupting device, but services them all at the highest device IPL (23jg). 
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Because code executing at IPLs 20 through 23 blocks most other hardware 
interrupts and all software interrupts, driver code lowers its IPL as soon as 
possible. Interrupts from Micro VAX II, Micro VAX I, VAX 8200, and VAX 
8800 devices, in fact, can block hardware interrupts from the processor's 
interval timer if they occur at or above IPL 22. To prevent the loss of an 
interval-timer interrupt, these drivers, when raising IPL to 22 or above, must 
lower IPL below 22 within 10 milliseconds. (See Sections 3.1.7 and 3.2 for a 
discussion of techniques for lowering IPL.) 

3.1.2.5 IPL 31 (IPL$_POWER) 
The highest IPL, IPL$_POWER (IPL 31) locks out all other interrupts. Many 
VAX/VMS routines and drivers raise IPL to IPL$_POWER to execute code 
sequences that cannot tolerate interruption. For example, much of system 
initialization occurs at IPL$_POWER. 

When a device driver needs to execute a series of instructions without 
interruption, the driver raises IPL to IPL$_POWER. The driver never should 
remain at IPL$_POWER for more than a few instructions. The most common 
instance of a driver's raising IPL to IPL$_POWER is to determine whether a 
power failure has occurred between the time that the driver writes set-up data 
into device registers and the time that the driver starts the device by writing 
into the device's control register. 

3.1.3 Additional IPLs 

In addition to the IPLs discussed above that directly concern I/O operation, 
VAX/VMS defines the IPLs described in this section. 

3.1.3.1 IPL 3 (IPL$_SCHED) 
When the system wishes to reschedule processes, a VAX/VMS routine 
requests a software interrupt at IPL$_SCHED. The scheduler interrupt¬ 
servicing routine gains control at this IPL. Drivers never use IPL$_SCHED. 

If a process raises IPL to or above IPL$_SCHED, the scheduler cannot 
reschedule the process. The process runs until an interrupt occurs at a higher 
IPL or the process reduces IPL below IPL$_SCHED. 

3.1.3.2 IPL 6 (IPL$_QUEUEAST) 
IPL$_QUEUEAST is a fork-level IPL used predominantly by drivers written 
prior to V4.0 of the VAX/VMS operating system. A driver fork process 
originating at an IPL between 8 and 11 would use IPL$_QUEUEAST 
when it needed to synchronize access to the scheduler's database at 
IPL$_SYNCH—for instance, to queue an AST. Because IPL$_SYNCH before 
V4.0 was not yet a fork IPL, the only way that such a driver could maintain 
proper synchronization was to first call a system routine that created a fork 
block at IPL$_QUEUEAST. Once the IPL$_QUEUEAST fork dispatcher 
dequeued the fork block and resumed execution of the driver, the driver fork 
process could then raise IPL to IPL$_SYNCH and access the system database. 

Because versions of the VAX/VMS operating system after V4.0 implement 
IPL$_SYNCH as a fork IPL, a similar driver fork process needs only to fork 
to IPL$_SYNCH. It is the IPL$_SYNCH fork dispatcher that dequeues the 
driver fork block and resumes execution of the driver, thereby allowing it to 
access the system data structures with proper synchronization. 
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3.1.3.3 IPL 7 (IPL$_TIMERFORK) 
A timer-queue interrupt-servicing routine fields interrupts requested at 
IPL$_TIMERFORK. The hardware clock's interrupt-servicing routine requests 
a software timer interrupt at IPL$_TIMERFORK when the current process 
has exceeded its processor time quantum or when the first entry in the timer 
queue is due. The timer's interrupt-servicing routine immediately raises IPL 
to IPL$_SYNCH to synchronize its access to the system database, dequeues 
the first timer-queue entry, and takes appropriate action if it has expired. 

3.1.3.4 IPL 8 (IPL$_SYNCH) 
IPL$_SYNCH is the system database synchronization level. When a 
VAX/VMS subroutine or a driver needs to modify or read a dynamic portion 
of the system database, the routine always executes at IPL$_SYNCH to 
ensure that the database does not change due to some interrupt-servicing 
routine or process action. 

3.1.3.5 IPL 11 (1 PL$_M Al LBOX) 
When a VAX/VMS or driver routine writes into a mailbox, IPL must be at 
IPL$_MAILBOX to prevent other writers from modifying incomplete data in 
the mailbox, or readers from reading invalid data. 

IPL$_MAILBOX is the highest fork level; drivers can raise IPL to 
IPL$_MAILBOX and write into a mailbox. 

3.1.3.6 IPL 5 or IPL 1 5 (XDELTA IPLs) 
To stop the operating system for debugging purposes, you can halt the 
operating system from the console terminal and request a software interrupt. 
(The procedure for requesting a software interrupt to load XDELTA is 
described in Table 3-3.) The interrupt-servicing routine that loads XDELTA 
runs at IPL 5 on VAX single-processor systems and at IPL 15 on VAX 
multiprocessing systems. The processor must be executing below the 
requested IPL for the interrupt to take effect. 

3.1.4 Overview of IPL Use in an I/O Operation 

Figure 3-1 illustrates the normal IPL flow during the processing of an I/O 
request. 

The user program, executing at IPL 0, issues a $QIO system service call. 
I/O processing by the system service and FDT routines occurs mostly at 
IPL$_ASTDEL. Very rarely, an FDT routine raises IPL to fork level to read or 
modify the device's UCB. 

The start-I/O routine executes as a fork process at fork IPL, but might raise to 
device IPL or IPL$__POWER for short periods of time. After the fork process 
activates the device, the driver calls a VAX/VMS routine that saves the 
driver's fork context, suspends fork processing, and restores IPL to a previous 
level. 

Figure 3-2 illustrates the completion of the I/O request from the point of 
the device interrupt to the delivery of ASTs to the user program. The device 
interrupts at a device IPL (in the range 20 through 23). VAX/VMS transfers 
control to the appropriate driver interrupt-servicing routine. The interrupt¬ 
servicing routine reactivates the driver's fork process with IPL still at device 
IPL. 
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Figure 3-1 IPL Flow During I/O Processing 
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The fork process briefly examines or saves the contents of the device's 
registers, but soon requests that VAX/VMS insert a fork block describing 
its context into one of the fork queues for drivers' fork IPLs (8 through 11). 
When the fork process regains control at the driver's fork IPL, the process 
analyzes the success of the I/O operation and writes status into RO and Rl. 
Then, still at fork IPL, VAX/VMS inserts the IRP into the I/O-postprocessing 
queue and starts the next I/O request. 

The I/O postprocessing routine adjusts process-quota usage and deallocates 
system buffers for write functions at IPL$_IOPOST. The routine also calls 
another VAX/VMS routine that raises IPL to IPL$_SYNCH to queue a special 
kernel-mode AST to the process that issued the original $QIO request. 

The special kernel-mode AST routine executes at IPL$__ASTDEL. It 
can queue a user-mode AST routine that eventually executes at IPL 0. 
I/O postprocessing continues at IPL$_IOPOST until all entries in the 
postprocessing queue have been serviced. 
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Figure 3-2 IPL Flow During I/O Completion 
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3.1.5 Dispatching Device Interrupts 

VAX peripheral devices request interrupts at IPLs 20 through 23. When 
a device requests an interrupt at one of these IPLs and the processor is 
executing at a lower IPL, the processor grants the interrupt, and then transfers 
control to an interrupt-servicing routine for the device. If the processor is 
executing at a higher or equal IPL, the interrupt remains pending. 

The interrupt dispatcher is a combination of hardware and software that 
routes interrupts from devices on the UNIBUS, Q22 bus, or MASSBUS to 
the appropriate device driver's interrupt-servicing routine. The interrupt 
dispatcher's routing mechanism works differently depending upon whether 
the VAX processor in use accepts direct vector or nondirect vector I/O-bus 
interrupts. 
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3.1.5.1 Direct Vector Interrupts 
The VAX-11/750, VAX-11/730, VAX 8200, and VAX 8800 processors 
employ direct vector UNIBUS adapters. The Micro VAX I and Micro VAX 
II also provide for direct vector interrupt dispatching from the Q22 bus. 
On a configuration that supports direct vector interrupts, the I/O adapter 
does not dispatch the interrupt. Instead, the processor locates the device's 
interrupt-servicing routine by using the system-control block (SCB). 

The SCB consists of two or more pages of addresses. Page 1 lists the 
exception vectors; pages 2 and 3 contain the list of addresses in the channel- 
request block (CRB) that point to the interrupt-servicing routines for devices 
attached to the first UNIBUS and, for the VAX-11/750, an optional second 
UNIBUS. The SCB base register (SCBB), an internal processor register, marks 
the base of the SCB. 

The processor obtains the vector address of the device that requested the 
interrupt,2 and uses it as an index into page 2 (or page 3) of the SCB. The 
processor then transfers control to the interrupt-dispatching code in the 
device's CRB. On direct vector configurations, the interrupt-dispatching 
code saves registers R0 through R5 then transfers control to the device's 
interrupt-servicing routine. 

Figure 3-3 shows a flowchart of interrupt dispatching on a direct vector 
UNIBUS adapter. 

3.1.5.2 Nondirect Vector Interrupts 
The VAX-11/780 and VAX 8600 processors employ nondirect vector UNIBUS 
adapters. A device interrupt to a nondirect vector adapter causes the adapter to 
post an interrupt that is dispatched through the SCB to the interrupt-servicing 
routine for the UNIBUS adapter of the device that requested the interrupt.3 It 
is the adapter's interrupt-servicing routine that ultimately locates and transfers 
control to the appropriate device driver's interrupt-servicing routine. 

The UNIBUS adapter's interrupt-servicing routine performs the following 
actions: 

1 Saves R0 through R5 on the interrupt stack. 

2 Reads a UNIBUS adapter register to determine the vector address of the 
device requesting the interrupt. 

3 Uses the vector address as an index into a vector-jump table within the 
adapter-control block. The vector-jump table contains a list of addresses 
within CRBs that point to interrupt-servicing routines for devices attached 
to that UNIBUS. 

4 Transfers control to the CRB address that corresponds to the vector 
address. The CRB address contains a JSB instruction that passes control to 
the device's interrupt-servicing routine. 

Figure 3-4 contains a flowchart that illustrates nondirect vector interrupt 
dispatching. 

^ The vector addresses of direct vector interrupts can range from 0 to 777g. 

3 The MASSBUS adapter is also a nondirect vector adapter. The MASSBUS adapter's interrupt dispatcher performs the functions described in 

Section G.4 before transferring control to the driver's interrupt-servicing routine. 
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Figure 3-3 Dispatching a Direct Vector Interrupt 
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3.1.6 Transferring Control from the Device Interrupt to the Fork Process 
When a device driver receives an expected interrupt from a device, the driver 
interrupt-servicing routine executes in the context of an interrupt; it is not 
executing in fork process context at that point. Interrupt context has the 
following characteristics: 

• IPL is elevated to the level at which the device requests hardware 
interrupts. 

• The stack is the interrupt stack. 
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Figure 3-4 Dispatching a Nondirect Vector Interrupt 
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• The top of the stack contains a pointer to the address of the controller's 
interrupt-dispatch block (IDB), which contains the address of the control 
and status register (CSR). 

• The stack also contains the saved RO through R5 and the PC and PSL of 
the interrupted code. 

The interrupt occurs either because the device has completed an I/O 
operation or because an error occurred during the I/O operation. A driver's 
interrupt-servicing routine generally determines whether to service the 
interrupt by examining the I/O database. If the UCB for the device that 
currently owns the controller indicates that the interrupt is expected, the 
interrupt-servicing routine takes the following steps to transfer control to the 
driver's start-I/O routine: 

• Loads the address of the UCB into R5 

• Restores the contents of two registers (R3 and R4) from the UCB's fork 
block 

• Returns control to the saved PC in that fork block 

The driver might need to execute a few instructions in the context of the 
interrupt. For example, the driver might copy device-status information from 
the device's registers into the device's UCB. 

When a driver gains control, it might execute a few instructions at device IPL; 
however, almost immediately a driver lowers IPL to fork IPL. A driver lowers 
IPL by invoking the VAX/VMS macro that creates fork processes, IOFORK. 
As a result of invoking IOFORK, VAX/VMS performs the following functions 
for the driver: 

• Consults the device's UCB to determine fork IPL for the driver 

• Creates a driver's fork process and queues it for execution at the 
appropriate fork IPL 

• Requests a software interrupt at that IPL 

When the queued fork process is activated, it executes at the lower fork IPL. 
Section 3.2 describes fork-process dispatching in greater detail. 

3.1.7 Modifying IPL in Driver Code 

Code running in kernel mode can raise its IPL to lock out context switching 
and to block interrupts. VAX/VMS software interrupt-servicing routines 
perform some of their processing at IPLs higher than the IPL at which the 
routines gain control. For example, the scheduler is an interrupt-servicing 
routine that gains control at IPL 3; however, it raises IPL to 8 to read and 
modify the system database. Subsequent sections of this manual discuss the 
VAX/VMS routines that change IPL; discussions include their expectation of 
IPL at entry and their IPL setting at exit. 

Driver code can change the IPL at which it executes by calling a VAX/VMS 
routine that raises or lowers IPL or invoking a VAX/VMS macro to request 
explicitly a change in IPL. 
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Normally, a driver uses the macros discussed in this section to raise IPL 
before initiating a transfer. Drivers typically raise IPL to check for a power 
failure, to send a message to a mailbox, and sometimes to access device 
registers. Driver code should not raise IPL for more than a few instructions 
because doing so blocks all interrupts at lower IPLs. 

When lowering IPL, a driver either restores IPL to a previously-saved value 
or requests a software interrupt at a fork IPL at which it has queued a fork 
block (as described in Section 3.2). A driver cannot lower IPL below the level 
at which the thread of execution resumed. 

The sections that follow describe the macros that drivers can call to change 
IPL: 

• SETIPL 

• DSBINT 

• ENBINT 

• SOFTINT 

3.1.7.1 SETIPL Macro 
The SETIPL macro moves the specified IPL into the processor IPL register 
(PR$_IPL). 

Format 

SETIPL [ipl=31] 

Argument 

[ipl=31 ] 
Interrupt priority level. If no value is specified in the ipl argument, the 
SETIPL macro moves the value 31 into PR$_IPL. Setting IPL to 31 blocks all 
interrupts. 

3.1.7.2 DSBINT Macro 
The DSBINT macro saves the current IPL in the specified destination and 
moves the specified IPL into the processor IPL register (PR$_IPL). Procedures 
invoke this macro to raise IPL. 

Format 

DSBINT [ipl=31] [,dst=-(SP)] 

Arguments 

[ipl=31] 
Interrupt priority level. If no value is specified in the ipl argument, DSBINT 
moves the value 31 into PR$_IPL, thus blocking all interrupts. 

[dst=—(SP)] 
Location at which the current IPL is to be saved. If no value is specified in 
the dst argument, DSBINT stores the current IPL on the top of the stack. 
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3.1.7.3 ENBINT Macro 
The ENBINT macro restores an IPL value to processor IPL register 
(PR$_IPL). Procedures invoke this macro to lower IPL to a previously-saved 
level. If an interrupt is pending at an intermediate IPL (one lower than the 
current IPL but higher than the specified IPL), restoring IPL causes immediate 
interruption of the current procedure. 

Format 

ENBINT [src=(SP)+] 

Argument 

[src=(SP)+] 
Location containing the IPL to be restored. If no value is specified in the src 
argument, ENBINT moves the value on the top of the stack into the PR$_IPL. 

3.1.7.4 SOFTINT Macro 
The SOFTINT macro moves the specified IPL into the software interrupt 
request processor register (PR$_SIRR) to request a software interrupt. 

If the processor is executing at a low IPL (for example, IPL 0) and detects 
a software interrupt request at a higher IPL (1 through 15), it immediately 
transfers control to a software interrupt-servicing routine for the appropriate 
IPL. 

If the processor is executing at or above the specified IPL, it does not transfer 
control to the software interrupt-servicing routine until IPL drops below the 
specified IPL. 

Format 

SOFTINT ipl 

Argument 

ipl 
Interrupt priority level at which the software interrupt is being requested. 

3.2 Fork Blocks and Fork Dispatching 

Device-driver routines that activate a device and complete an I/O operation 
after a device interrupt execute for relatively short periods of time. Execution 
might be suspended to wait for a device interrupt or shared resources. To 
ensure that the resulting context-switching is fast, the VAX/VMS operating 
system forces driver routines to execute in a minimal, fork process context 
consisting of a device's UCB, called a fork block, and a few registers. 

Fork processes are created in either of the following situations: 

• Once the preprocessing of an IRP has been performed, a VAX/VMS 
routine creates a fork process to execute the driver's start-I/O routine. If 
the driver is already busy, the VAX/VMS routine queues the IRP for the 
driver to process later. 

• Either the driver's interrupt-servicing routine or the driver postprocessing 
routine creates a fork process to perform device-dependent I/O 
postprocessing. 
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When the system creates a fork process to execute the start-I/O routine, the 
newly created fork process can execute immediately because the IRP has 
been preprocessed by the $QIO system service and driver's FDT routines, and 
because the device is idle. 

When the driver's interrupt-servicing routine or the driver's postprocessing 
routine creates a fork process, it does so to lower the IPL at which the driver's 
code is executing. Either the interrupt-servicing routine or the start-I/O 
routine invokes the VAX/VMS macro IOFORK. 

IOFORK saves the context needed for the driver to execute as a fork process, 
inserts the driver's UCB fork block in the fork queue for the driver's IPL, and 
requests a software interrupt for that IPL. 

3.2.1 Interrupt-Servicing Routine for Fork Dispatching 

One interrupt-servicing routine handles all fork-process dispatching. When 
the processor grants an interrupt at fork IPL, the fork dispatcher saves RO 
through R5 on the stack and processes the fork queue that corresponds to 
the IPL of the interrupt. To do so, it removes an entry from the fork queue, 
restores the fork process context, and reactivates the suspended fork process. 

When that fork process is completed, the dispatcher regains control, removes 
the next entry from the queue, restores its fork process context, and reactivates 
it. This sequence is repeated until the fork queue is empty. When the queue 
is empty, the fork dispatcher restores RO through R5 from the stack and 
dismisses the interrupt with an REI instruction. 

Figure 3-5 illustrates the fork queue structure. 

A newly activated fork process executes under the following constraints: 

• It cannot refer to the address space of the process initiating the I/O 
request. 

• It can use only RO through R5 freely; it must save other registers before 
use and restore them after use. Use of registers other than RO through R5 
is strongly discouraged. 

• It must clean up the stack after use; the stack must be in its original state 
when the fork process relinquishes control to any VAX/VMS routine. 

• It must execute at IPLs between the driver's fork IPL and IPL$_POWER; 
it must not lower IPL below the driver's fork IPL except by creating a fork 
process at a lower IPL. 

• When it returns control to the fork dispatcher, IPL must be the same as 
it was when the fork process was activated. The driver returns control to 
the fork dispatcher by invoking the wait-for-interrupt macro or the request 
complete macro. 
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Figure 3-5 Fork Dispatching Queue Structure 
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3.3 Resource-Wait Queues 

The processing of an I/O request often requires shared system resources such 

as memory and I/O adapter mapping registers. The $QIO system service 
and fork processes call VAX/VMS routines to allocate and deallocate these 
resources. Because the resources are limited, I/O processing might be delayed 
until unavailable resources are released by other processes or drivers. Thus, 
synchronization of access to these resources can have a substantial impact on 
the processing of I/O requests. 

For example, the $QIO system service calls a VAX/VMS routine to allocate 
nonpaged system space for an IRP. If the nonpaged pool is empty, the routine 
calls another VAX/VMS routine to save the process context and change the 
process state to resource-wait mode (also called miscellaneous wait, or 
MWAIT). As a result of waiting, the process is a candidate to be swapped 
out of memory. When nonpaged pool becomes available, the scheduler 
reschedules the process. 

During fork process execution at elevated IPLs, driver context is very small. 
At any point, the driver can obtain all details about an I/O request by 
referring to the I/O database. The driver needs only the address of the 
device's UCB, which is the key to the rest of the database. Therefore, 
VAX/VMS routines that control driver resources, such as mapping registers. 
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use fork blocks and resource-wait queues to save minimal driver context. 
Each entry in a queue consists of the following items: 

• The address of the UCB, which is also the contents of R5 in the fork 
process; the UCB also contains the driver's fork block 

• R3, and normally R4, from the fork process 

• A PC for the waiting fork process 

When the awaited resource becomes available, the routine controlling the 
resource performs the following steps: 

• Restores the UCB address to R5 

• Restores the saved registers R3 and R4 

• Grants the resource 

• Transfers control to the saved driver return PC address 

Because the VAX/VMS routine that controls a particular resource places in 
a waiting state any driver that requests an unavailable resource, drivers are 
unaware of execution being suspended and subsequently reactivated. Drivers 
must not leave anything on the stack, or in general purpose registers other 
than R3, R4, and R5, when calling a routine that might suspend the driver's 
execution. 

3.3.1 Competing for a Controller's Data Channel 

A controller's data channel is a VAX/VMS synchronization mechanism that 
guarantees for multiunit controllers that one unit uses the controller at a time. 
A device's fork process can read and write a device's registers whenever the 
device unit owns the controller's data channel. 

Devices that share a controller, such as disk units, own the controller's data 
channel only when a VAX/VMS routine assigns the channel to the unit's 
fork process. In contrast, a single device unit on a controller always owns the 
controller's data channel. Therefore, if VAX/VMS transfers control to such 
a driver's start-I/O routine, the driver can immediately address the device's 
registers without first obtaining the controller's data channel. 

An LP11 printer, such as the one discussed in Section 2, has a dedicated 
(single-unit) controller attached to the UNIBUS. When VAX/VMS finds the 
device idle and creates a printer driver's fork process to write data to the 
printer's data buffer, the controller's data channel is guaranteed not to be 
busy. Because the data channel is not busy, the driver's start-I/O routine can 
perform the following: 

1 Retrieve the virtual address of the data to be written and the number of 
bytes to transfer from the device's UCB 

2 Retrieve the virtual address of the device's CSR from the IDB 

3 Calculate the address of the line printer's data buffer register by adding a 
constant offset to the CSR address 

4 Write data, one byte at a time, to the line printer's data buffer until all 
bytes of data have been written 

In contrast, a device unit on a multiunit controller must compete for the 
controller's data channel with other devices attached to that controller. 
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An RK611 controller, for example, controls as many as eight RK06/RK07 
devices. The disk driver's fork process must gain control of the controller's 
data channel before starting an I/O operation on the unit associated with the 
fork process. The disk driver's start-I/O routine uses the following sequence 
to start a seek operation on an RK07 device: 

1 The start-I/O routine requests the controller's data channel by invoking a 
VAX/VMS channel arbitration routine. 

2 The VAX/VMS routine tests the CRB mask field to determine whether the 
controller's data channel is available. 

3 If the channel is available, the VAX/VMS routine allocates the channel to 
the fork process and returns the address of the device's CSR to the fork 
process. 

If the channel is busy, the VAX/VMS routine saves the driver fork context 
in the UCB fork block and inserts the fork block address in the controller's 
channel-wait queue. 

4 When the fork process resumes execution, the process owns the controller 
channel. The fork process can then modify the device's registers to 
activate the device. 

5 The driver's start-I/O routine then requests the VAX/VMS operating 
system to suspend driver processing in anticipation of an interrupt or 
timeout and to release the channel. 

6 The VAX/VMS channel-releasing routine assigns channel ownership to 
the next fork process in the channel-wait queue, loads the CSR address 
into a general register, and reactivates the suspended fork process. 

7 The reactivated fork process continues execution as though the channel 
had been available in the first place. 

The VAX/VMS channel-arbitration routines keep track of controller 
availability using a flag field in the CRB. The fork process must always 
request and release the controller's data channel by invoking these routines. 
Once the driver owns a controller's data channel, the driver is free to read 
and modify the device's registers. 
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The UNIBUS adapter connects the UNIBUS, an asynchronous, bidirectional 
bus, to the backplane interconnect. The adapter performs the following 
functions: 

• Arbitrates priority interrupts from UNIBUS devices 

• Delivers interrupts from UNIBUS devices to the processor 

• Allows drivers to gain access to UNIBUS device's registers using system 
virtual addresses 

• Translates 18-bit UNIBUS addresses to physical addresses in main 
memory 

• Provides a data-transfer path to randomly ordered physical pages in main 
memory 

• Provides buffered data transfer paths to consecutively increasing physical 
addresses, thus optimizing CPU-to-UNIBUS data transfers. 

• Permits byte-aligned buffers for UNIBUS devices requiring word-aligned 
buffer addresses 

The Micro VAX Q22 bus closely resembles the UNIBUS. For Micro VAX II 
or Micro VAX I devices attached to the Q22 bus, special processor logic 
implements a Q22 bus interface that similarly allows drivers access to device 
registers and manages device interrupts. Additional logic in the Micro VAX 
II processor establishes a scatter-gather map that translates 22-bit Q22 bus 
addresses to physical addresses. However, neither Micro VAX II nor Micro VAX 
I implements buffered data paths. (Table 4-1 compares the UNIBUS and Q22 
bus systems of the various VAX and Micro VAX processors.) 

The protocol a VAX processor uses to enable communications between its I/O 
bus and backplane permits its devices and device drivers to exchange data 
without much awareness of the intervening hardware. First of all, both the 
UNIBUS adapter and the Q22 bus interface provide access to device registers 
using an address mapping scheme that is invisible to the driver. In addition, 
whenever the configuration of the I/O interface has an impact on the control 
of a data transfer, the driver can call one of the many VAX/VMS routines that 
handles the details of the interface. 

The functional differences between I/O adapters are irrelevant to devices that 
do not perform DMA transfers. A driver that performs non-DMA transfers for 
a device on the UNIBUS can, with no alteration, perform the same services 
for an equivalent device on a Q22 bus. 

On the other hand, the differences between the functions of the UNIBUS 
adapter and the interfaces provided by the Micro VAX II and I to the Q22 
bus are significant to those drivers that manage DMA device operations.1 A 
driver that performs block DMA transfers for a UNIBUS device or Q22 bus 
device must set up any mapping or buffering mechanisms required by the 
processor's I/O interface. For UNIBUS DMA drivers, this involves setting 

1 The Q22 bus supports only those DMA controllers that are capable of 22-bit addressing. 
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up sufficient mapping registers and, perhaps, a buffered data path prior to 
the transfer. Micro VAX II DMA drivers, likewise, must allocate and fill a set 
of mapping registers. By contrast. Micro VAX I DMA drivers—because the 
Micro VAX I has no scatter-gather map—cannot map the many and scattered 
pages of a block DMA transfer to a contiguous set of addresses in the I/O 
adapter's address space. As a result, when it is loaded into the system, a 
Micro VAX I DMA driver must reserve enough physically contiguous memory 
to accommodate its largest possible DMA transfer (see Section 10.7). 

Section 10 describes the means by which device drivers set up DMA transfers, 
according to any of these interfaces. If DMA driver that must drive similar 
devices on various VAX processors must secure some measure of machine- 
independence, it can include some run-time conditional code that branches 
to appropriate routines in the driver that accomplish the machine-dependent 
work. See the description of the CPUDISP macro in Appendix B and the 
sample drivers that appear in Appendixes E and F for guidance. 

This following sections discuss the functions of the UNIBUS adapter and 
similar Q22 bus interface functions: 

• The discussion of reading and writing device registers in Section 4.1 
applies to UNIBUS, Micro VAX II, and Micro VAX I drivers. 

• The description of mapping I/O bus addresses in Section 4.2 pertains only 
to UNIBUS and Micro VAX II DMA drivers. 

• The description of buffering data transfers in Section 4.3 relates in 
the main to UNIBUS drivers, although the section on direct data 
paths (Section 4.3.1) contains information relevant to Micro VAX II and 
Micro VAX I drivers as well. 

Table 4-1 Features of the I/O Bus Adapters of the VAX Processors 

Processor Adapter 

Memory 
References 
(Physical 
Address) 

Direct 
Data Path 

Buffered Data 
Paths 

Mapping 
Registers 

Interrupt 
Dispatcher 

VAX-11/780 
VAX-11/782 
VAX-11/785 
VAX 8600 
VAX 8650 

UBA 30-bit (via 
SBI) 

1, 
no byte- 
aligned 
transfers 

15, 
8-byte buffer, 
byte-aligned 
transfers, 
LWAE,3 
prefetch 

496 Nondirect vector 

VAX-11/750 UBI 24-bit (via 
CMI) 

1, 
byte- 
aligned 
transfers 

3, 
4-byte 
buffer,2 
byte-aligned 
transfers, 
LWAE,3 
no prefetch 

5124 Direct vector 

2Buffered data paths on the VAX-1 1/750 only buffer four bytes of data. Because the data paths do not 
perform a prefetch, they can always reference longwords at random. 

3LWAE (longword access enable) refers to the capability to reference random longword aligned data in a 
bus transfer. 

4The VAX/VMS operating system makes only 496 of these mapping registers available. 
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Table 4-1 (Cont.) Features of the I/O Bus Adapters of the VAX Processors 

Processor Adapter 

Memory 
References 
(Physical 
Address) 

Direct 
Data Path 

Buffered Data 
Paths 

Mapping 
Registers 

Interrupt 
Dispatcher 

VAX-11/730 
VAX-11/725 

UBA 24-bit 1, 
byte- 
aligned 
transfers 

None 5124 Direct vector 

VAX 8200 
VAX 8800 

BUA 30-bit (via 
VAXBI) 

1, 
byte- 
aligned 
transfers 

5, 
8-byte buffer, 
byte-aligned 
transfers, 
LWAE,3 
no prefetch 

5124 Direct vector 

MicroVAX 1 22-bit 1, 
no 
restrictions 
on data 
alignment1 

None None Direct vector 

MicroVAX II 24-bit 1, 
no 
restrictions 
on data 
alignment1 

None 81924 Direct vector 

^he MicroVAX II and MicroVAX I implementations of the Q22 bus provide no byte-offset register, so, on 
Q22 bus devices that are only capable of word-aligned transfers, only word-aligned transfers are possible. 

3LWAE (longword access enable) refers to the capability to reference random longword aligned data in a 
bus transfer. 

4The VAX/VMS operating system makes only 496 of these mapping registers available. 

4.1 Reading and Writing Device Registers 

Each I/O controller or device directly attached to a UNIBUS or Q22 bus has 
a control and status register (CSR) and set of data registers. These registers 
are assigned physical addresses in the 8K allocated for this purpose from the 
256K UNIBUS address space or from the Q22 bus I/O space. Device drivers 
obtain the device's status and activate the device by reading and writing to 
these registers. 

Because the VAX/VMS operating system maps this I/O space into virtual 
address space, a device driver can treat the addresses of device registers as 
identical to all other virtual addresses. The driver can read and write data 
to the device's register as though the device's register were a location in 
memory. The driver must use instructions within the restrictions described in 
Section 6.2. 

Before a driver for a device that shares a controller can gain access to a 
device's registers, it must first obtain a controller channel, as described in 
Sections 3.3.1 and 9.3.1. 
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4.2 Mapping Registers 
DMA devices read and write data from and to memory locations using 
18-bit UNIBUS addresses or, for the Micro VAX II and Micro VAX I, 22-bit 
Q22 bus addresses. The UNIBUS adapter and the Q22 bus interface translate 
the bus addresses into main memory addresses, thus allowing the operating 
system, I/O drivers, and UNIBUS devices to access the same physical address 
space. DMA devices connected to either a UNIBUS or Micro VAX II Q22 bus 
can access a block of memory directly by means of the scatter-gather map 
supplied by the UNIBUS adapter or Micro VAX II processor, respectively. The 
mapping registers provided allow the device to access scattered, physical 
memory addresses as contiguous, physical addresses in I/O space.2 

When a device driver performs a DMA transfer, it allocates mapping registers 
and a buffered data path (an option available to devices on the UNIBUS of 
some VAX processors), and sets up the transfer by means of the device's 
registers. The device then accesses memory directly by means of the I/O bus, 
transferring all the data requested. When the transfer is complete, the device 
notifies the driver by requesting an interrupt. 

Consider a buffer, for example, that consists of virtual pages 400, 401, 402, 
and 403, which are physical pages 1003, 204, 1190, and 240, respectively. 
For a UNIBUS device to access this buffer, the driver requests four mapping 
registers, then places the physical addresses of these pages in the mapping 
registers. Assume the driver has allocated four mapping registers, 127 
through 130. The driver loads them as follows: 

Mapping Register Contents (physical address) 

127 1003 

128 204 

129 1190 

130 240 

The device and the UNIBUS can transfer data into or out of these physical 
pages without intervention by the driver. The device requests an interrupt 
only when all the data in these four pages has been transferred. 

Generally, a mapping register exists for each page of I/O space. Because the 
UNIBUS address space consists of 256K of memory, minus the 8K reserved 
for device-control registers, 496 mapping registers are available for UNIBUS 
DMA transfers. Micro VAX II DMA devices can also use up to 496 of the 
mapping registers corresponding to 248K of the 4MB Q22 bus I/O space.3 

2 
The Micro VAX I does not provide a scatter-gather map, thereby requiring its DMA drivers to reserve a contiguous portion of physical memory 

in its controller-initialization routine to provide for its largest possible DMA transfer. See the discussion in Section 10.7 for details. 

3 There are actually 8192 mapping registers which correspond to Q22 bus I/O space. To maintain compatibility with software that accesses 

UNIBUS adapter mapping registers, only 496 of these registers are currently enabled. The remaining registers are unavailable for driver use. A 

field in the mapping register identifies the page-frame number corresponding to the UNIBUS space or Q22 bus space address that the mapping 
register represents (see Figure 4-1). 

If a driver must explicitly access memory local to the MicroVAX II Q22 bus, it cannot access it by means of mapping registers. 

Instead, it must first map the desired region into system space using the Create and Map Section ($CRMPSC) system service and specifying its 

PFNMAP option (see Section H.3 and the VAX/VMS System Services Reference Manual for additional information). In addition, it must disable 
those mapping registers that correspond to the Q22 bus addresses for this memory. 
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Figure 4-1 UIMIBUS and Q22 Bus Mapping Registers 
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Drivers call VAX/VMS routines to fill as many mapping registers with valid 
page-frame addresses as needed for a DMA transfer up to 127 pages. The 
DMA device puts an address on the I/O bus. The UNIBUS adapter or 
Q22 bus interface receives the address and translates it using the following 
information (see Figures 4-2 and 4-3)4 : 

• In UNIBUS addresses, the 9-bit UNIBUS page address field (bits 9 through 
17 of the UNIBUS address) identifies the UBA mapping register. 

In Q22 bus addresses, the 13-bit Q22 bus page address field (bits 9 through 
22 of the Q22 bus address) identifies the Micro VAX II mapping register. 

• The page-frame-number (PFN) field in the mapping register specifies the 
high-order bits of the physical address. (The PFN field is 15 bits long for 
the Micro VAX II, VAX-11/750, and VAX-11/730; and 21 bits long for the 
VAX-11/780, VAX 8600, VAX 8200, and VAX 8800.) 

• From UNIBUS addresses, bits 2 through 8 map to bits 0 through 6 of the 
physical address. The resulting physical address locates the longword 
that is the target of the transfer. The UNIBUS adapter identifies the byte 
addressed within the longword by interpreting the low-order two bits of 
the UNIBUS address. 

From Q22 bus addresses, bits 0 through 8 map to bits 0 through 8 of the 
physical address. The resulting physical address locates the byte that is 
the target of the transfer. 

Each UNIBUS adapter or Q22 bus mapping register also contains a bit called 
the mapping-register valid bit. The UNIBUS adapter or Q22 bus interface 
tests this bit every time the mapping register is used. If the bit is not set, the 
UNIBUS adapter or Q22 bus interface aborts the transfer. This bit is clear 
whenever the register is not mapped to a physical address. 

4.3 UNIBUS Adapter Data Transfer Paths 

The UNIBUS adapter sends data through one of several data paths for 
UNIBUS devices performing DMA transfers. One data path, the direct data 
path (DDP), allows UNIBUS transfers to randomly ordered physical addresses. 
The direct data path maps each UNIBUS transfer to a backplane interconnect 
transfer. Thus, a single word or byte of data is transferred for each backplane 
interconnect operation. 

The remaining data paths, the buffered data paths (BDPs), allow devices on 
the ITNIBUS to transfer much faster than through the direct data path. The 
buffered data paths store UNIBUS data so that multiple UNIBUS transfers 
result in a single backplane interconnect transfer. 

When a UNIBUS device begins a DMA transfer by placing an address on the 
UNIBUS, the UNIBUS adapter mapping register not only performs address 
mapping but also provides the number of the data path to be used for the 
transfer (see Figure 4-1). Each UNIBUS adapter mapping register contains 
a field that describes the data path. Data path 0 is the direct data path; the 
other data paths are the buffered data paths. (The data path registers of the 
various VAX processors are pictured in Figure 4-4.) 

4 The page-frame address is 15 bits long on the VAX-11/750, VAX-11/730, VAX-11/725, and Micro VAX II processors; the physical addresses 

resulting from the mapping are 24 bits long. The page-frame addresses of other VAX processors are each 2i bits long, with a resulting 30-bit 

physical address. The disposition of the lowest two bits of the UNIBUS address depends on the processor. For instance, the VAX-11/780 uses 

them to construct a byte-selection mask and function to be transmitted across UNIBUS lines that modify the I/O transaction. 
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Figure 4-2 Mapping a UNIBUS Address to a Physical Address 

18-BIT UNIBUS ADDRESS 

PHYSICAL ADDRESS 
ZK-915-82 

Figure 4-3 Mapping a Q22 Bus Address to a Physical Address 

22-BIT Q22 BUS ADDRESS 

24-BIT PHYSICAL ADDRESS 

ZK 4841 85 

The sequence below describes a UNIBUS-device DMA transfer. 

1 The UNIBUS device puts an address on the UNIBUS. 

2 The UNIBUS adapter locates the UNIBUS adapter mapping register that 
corresponds to the UNIBUS address. 
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Figure 4-4 UNIBUS Data Path Registers 
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3 The UNIBUS adapter verifies that the mapping register has the mapping- 
register valid bit set. 

4 The UNIBUS adapter maps the UNIBUS address to a page-frame number. 

5 The UNIBUS adapter extracts the number of the data path to be used for 
the transfer from the mapping register. 

6 The data path translates the UNIBUS function to a backplane interconnect 
function by reading the UNIBUS control lines. 
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7 Based on the UNIBUS function indicated by the UNIBUS control lines, 
(DATI, DATIP, DATO, or DATOB), the UNIBUS adapter starts appropriate 
UNIBUS and backplane interconnect operations to transfer data to or from 
the UNIBUS device. 

4.3.1 Direct Data Path 

Since the direct data path performs a backplane interconnect transfer for 
every UNIBUS transfer, it can be used by more than one UNIBUS device 
at a time. The UNIBUS adapter arbitrates among devices that wish to use 
the direct data path simultaneously. The device driver is unaffected by this 
UNIBUS adapter arbitration. 

The direct data path is slower than buffered data paths because each UNIBUS 
transfer cycle corresponds to a backplane interconnect cycle. One word or 
byte is transferred for each backplane interconnect cycle. On some hardware 
configurations, the direct data path is unable to transfer a word of data to an 
odd-numbered physical address. Therefore, an FDT routine for a DMA device 
that uses the direct data path should check that the specified buffer is on a 
word boundary.5 

A UNIBUS device may choose to use a direct data path rather than a buffered 
data path to perform the following functions: 

• Execute an interlock sequence to the backplane interconnect (DATIP- 
D AT O/DAT OB) 

• Transfer to randomly ordered addresses instead of consecutively increasing 
addresses 

• Mix read and write functions 

The direct data path is the simplest data path to program. Since the direct 
data path can be shared simultaneously by any number of I/O transfers, the 
device driver does not need to call the VAX/VMS routine that allocates the 
data path. It performs the following actions: 

1 Uses the REQMPR macro to allocate a set of mapping registers 

2 Uses the LOADUBA macro to load the mapping registers with physical 
address mapping data and the number of the direct data path (0). The 
VAX/VMS routine called in the expansion of the LOADUBA macro 
(IOC$LOADUBAMAP) also sets the valid bit in every mapping register 
except the last, which remains invalid to prevent a wild transfer. 

3 Loads the starting address of the transfer in a device register. 

4 Loads the transfer byte or word count in a device register. 

5 Sets bits in the device control register to initiate the transfer. 

5 a result, on Q22 bus devices that are The MicroVAX II and MicroVAX I implementations of the Q22 bus provide no byte-offset register. As 

only capable of word-aligned transfers, only word-aligned transfers are possible. 
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4.3.2 Buffered Data Paths 
In contrast to the direct data path, the buffered data paths transfer data much 
more efficiently between the UNIBUS and the backplane interconnect by 
decoupling the UNIBUS transfer from the backplane interconnect transfer. 
Buffered data paths read or write multiple words of data in a transfer, and 
buffer the unrequested portions of the data in UNIBUS adapter buffers. Thus, 
several UNIBUS read functions can be accommodated with a single backplane 
interconnect transfer. 

A UNIBUS device may choose to use a buffered data path rather than a direct 
data path to perform the following functions: 

• Fast DMA block transfers to or from consecutively increasing addresses 

• Word-oriented block transfers that begin and end on an odd-numbered 
byte of memory; note, however, that these transfers can be quite slow 
because the UNIBUS adapter might need to perform multiple transfers to 
complete a one-word transfer 

• 32-bit data transfers from random longword-aligned physical addresses 

A single buffered data path cannot be assigned to more than one active 
transfer at a time. When a driver fork process is preparing to transfer data 
to or from a UNIBUS device on a buffered data path, it performs a sequence 
of steps similar to those performed by a driver that uses the direct data path, 
with the exception that it uses a macro that calls a VAX/VMS routine that 
allocates a free buffered data path. The following are among the actions of 
the driver fork process: 

1 Uses the REQMPR macro to allocate a set of mapping registers. 

2 Uses the REQDPR macro to allocate a free buffered data path. 

3 Uses the LOADUBA macro to load the mapping registers with physical 
address mapping data and the number of the allocated buffered data path. 
The VAX/VMS routine called in the expansion of the LOADUBA macro 
(IOC$LOADUBAMAP) also sets the valid bit in every mapping register 
except the last, which remains invalid to prevent a wild transfer. 

4 Load the starting address of the transfer in a device register. 

5 Load the transfer byte or word count in a device register. 

6 Set bits in the device control register to initiate the transfer. 

The UNIBUS adapter hardware of certain processors restricts normal buffered 
data paths to referring only to consecutively increasing addresses. Through 
a special mode of operation, these UNIBUS adapters can also refer to 32-bit 
data at randomly-ordered, longword-aligned locations in physical memory. 
Other processors do not impose this restriction. In order for a device driver to 
run on both types of processors, it must observe three rules: 

• All transfers within a block must be of the same function type (DATI or 
DATO/DATOB). 

• Normal buffered data paths must always transfer data to consecutively 
increasing addresses. 

• To reference 32-bit data at random, longword-aligned locations in physical 
memory, the longword-access-enable bit (LWAE) must be set. 
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A buffered data path stores data from the UNIBUS in a buffer until multiple 
words of data have been transferred (except in longword-aligned, 32-bit, 
random-access mode as discussed in Section 4.3.5). Then, the UNIBUS 
adapter transfers the contents of the buffer to the appropriate physical address 
in a single backplane interconnect operation. The procedure for a UNIBUS 
write operation that transfers data from a device to memory is broken into 
individual steps. 

1 The UNIBUS device transfers one word of data to the buffered data path. 

2 The buffered data path stores the word of data and completes the UNIBUS 
cycle. 

3 The buffered data path sets its buffer-not-empty flag to indicate that the 
buffer contains valid data. 

4 The UNIBUS device repeats the first three steps until the buffer is full. 

5 When the UNIBUS device addresses the last byte or word in the buffer, 
the UNIBUS adapter recognizes a complete data-gathering cycle. 

6 The buffered data path requests a backplane-interconnect-write function to 
write the data from the buffered data path to memory. 

7 When the backplane interconnect transfer is complete, the buffered data 
path clears its flag to indicate that the buffer no longer contains valid data. 

The procedure for a UNIBUS read operation that transfers data from main 
memory to a device varies according to the type of UNIBUS adapter. Those 
adapters that can perform a prefetch function complete UNIBUS reads 
from memory more quickly than those that cannot. The prefetch feature 
accomplishes this improved performance by automatically filling the data 
path buffer after the buffer's contents are transferred to the UNIBUS. 

The following paragraphs discuss the UNIBUS read operation with and 
without the prefetch function. Device drivers that adhere to the conventions 
outlined in this manual will execute properly whether or not the device is 
associated with a UNIBUS adapter that provides prefetch functionality. 

1 The UNIBUS device initiates a read operation from a buffered data path. 

2 The buffered data path checks to see if its buffers contain valid data. 

3 If the buffers do not contain valid data, the buffered data path initiates a 
read function to fill the buffers with data from main memory. The transfer 
completes before the UNIBUS adapter begins a UNIBUS transfer. 

4 The buffered data path transfers the requested bytes to the UNIBUS. Bytes 
of data that were not transferred to the UNIBUS remain in the buffer. 

5 The buffered data path sets its buffer-not-empty flag to indicate that the 
buffers contain valid data. 

6 When the UNIBUS device empties the buffers of the buffered data path 
with a UNIBUS read function that accesses the last word of data, the 
buffered data path clears the buffer-not-empty flag to indicate that the 
buffer no longer contains valid data. 

7 The buffered data path then initiates a read function to prefetch data from 
memory. 

8 When the prefetch is complete, the buffered data path sets the buffer-not- 
empty flag to indicate that the buffers now contain valid data. 
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The prefetch might attempt to read data beyond the address mapped by the 
final mapping register. To avoid referring to memory that does not exist, the 
VAX/VMS routines that allocate and load mapping registers always allocate 
one extra mapping register and clear the mapping-register-valid bit before 
initiating the transfer. When the UNIBUS adapter notices that the mapping 
register for the prefetch is invalid, the UNIBUS adapter aborts the prefetch 
without reporting an error. 

The steps of a UNIBUS read function without prefetch are listed below. 

1 The UNIBUS device initiates a read operation from a buffered data path. 

2 The buffered data path checks to see if its buffers contain valid data. 

3 If the buffers do not contain valid data, the buffered data path initiates a 
read function to fill the buffers with data. The transfer completes before 
the UNIBUS adapter begins a UNIBUS transfer. 

4 The buffered data path transfers the requested bytes to the UNIBUS. Bytes 
of data that were not transferred to the UNIBUS remain in the buffer. 

4.3.3 Byte-Offset Data Transfers 
The UNIBUS adapter has a byte-offset register; thus, words that are not 
word-aligned can be transferred to and from any device on the UNIBUS 
regardless of whether the device supports non-word-aligned transfers. 

Some UNIBUS devices are restricted to transferring integral words of data 
in word-aligned UNIBUS addresses. The buffered data paths allow these 
devices to perform transfers to memory that begins and ends on an odd-byte 
address. A byte-offset bit in the mapping registers indicates byte-aligned data 
to the hardware. If the bit is set, the hardware increments physical addresses. 
A VAX/VMS subroutine that loads mapping registers determines whether the 
data is word- or byte-aligned and sets the byte-offset bit accordingly. 

4.3.4 Purging a Buffered Data Path 
Because prefetches can read more data from memory than the UNIBUS device 
wishes to read, driver fork processes must ask the UNIBUS adapter to purge 
the buffered data path when a transfer is complete. In addition, a transfer 
from a device to the backplane interconnect can complete with some data left 
in the buffer. The driver must purge the data path to complete the transfer. 

The purge guarantees that the data is not transferred to the next user of the 
buffered data path. The driver fork process performs the purge by calling a 
standard VAX/VMS subroutine that performs two functions: 

• Tells the hardware to purge the buffered data path register owned by the 
fork process. For a UNIBUS read function, the adapter simply clears the 
buffer-not-empty flag. For a UNIBUS write function, the adapter transfers 
any data left in the data path buffer to VAX memory, then clears the flag. 

• Notifies the driver's fork process of any error that occurs during the purge. 

The data path must be purged before the driver releases mapping registers or 
the buffered data path register. 
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4.3.5 Longword-Aligned, 32-Bit, Random-Access Mode 
Another method of transferring data over a buffered data path is the use 
of longword-aligned, 32-bit, random-access mode. This mode essentially 
prevents the UNIBUS prefetch operation, thereby allowing a device that reads 
data from or writes data to memory to reference longword-aligned locations 
in memory at random, in longword multiples. 

To transfer data in the longword-aligned, 32-bit, random-access mode, the 
driver's fork process sets the longword-access-enable bit (VEC$V_LWAE) in 
the channel-request block (CRB) prior to loading the mapping registers. The 
UNIBUS device can then perform a read (DATI) or write (DATO) function. 

For a UNIBUS read operation that transfers data from main memory to a 
device, the function occurs as follows: 

1 The driver's fork process initiates a read function on the UNIBUS device. 

2 The UNIBUS adapter clears the buffer-not-empty flag in the assigned 
buffered data path. 

3 The UNIBUS adapter requests a read-from-memory operation on the 
backplane interconnect. 

4 The UNIBUS adapter stores the longword of data in the buffered data 
path and sets the buffer-not-empty flag. 

5 The UNIBUS adapter initiates two UNIBUS read operations to transfer 
two words of data. 

For a UNIBUS write operation that transfers data from a device to main 
memory, the function occurs as follows: 

1 The driver's fork process initiates a write function on the UNIBUS device. 

2 The UNIBUS adapter clears the buffer-not-empty flag in the assigned 
buffered data path. 

3 The UNIBUS adapter requests two write operations to transfer two words 
of data from the UNIBUS device. 

4 The UNIBUS adapter stores the longword of data in the data path's buffer 
and sets the buffer-not-empty flag. 

5 The UNIBUS adapter initiates a backplane interconnect write operation. 

6 When the backplane interconnect write operation is complete, the UNIBUS 
adapter clears the buffer-not-empty flag. 

To ensure that random-access mode works correctly regardless of processor 
type, a buffered data path should not repeatedly address the same longword. 
On certain processors a UNIBUS device that polls a single longword, waiting 
for data, will constantly be returned the same data. 

A longword-aligned transfer over a buffered data path is faster than a transfer 
over a direct data path and somewhat slower than a normal transfer using a 
buffered data path. 
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5 Overview of I / O Processing 

Under the VAX/VMS operating system, I/O processing occurs in three major 
phases: 

• I/O request preprocessing 

• Device activation and subsequent handling of the device interrupt 

• I/O postprocessing 

When a user process issues an I/O request, the Queue I/O Request ($QIO) 
system service gains control and coordinates preprocessing of the request. 
The last driver FDT routine called by the $QIO system service calls a 
VAX/VMS routine that creates a driver fork process to execute the driver's 
start-I/O routine. This routine activates the device. 

When the transfer is completed, the device requests an interrupt that results 
in execution of the driver's interrupt-servicing routine. This routine handles 
the interrupt and requests creation of a driver fork process to perform device¬ 
dependent I/O postprocessing. The driver fork process then transfers control 
to the system to perform device-independent I/O postprocessing. Figure 5-1 
illustrates the sequence of events. 

The $QIO system service is dispatched by means of a corresponding system 
service vector in process PI space. This vector essentially contains a CHMK 
instruction that causes an exception which alters the process' access mode to 
kernel and dispatches to the service-specific procedure, EXE$QIO. VAX/VMS 
system service dispatching is described in detail in the VAX/VMS Internals 
and Data Structures manual. For the purposes of the discussion in this section, 
as well as the rest of the book. Figure 5-2 portrays the flow of an I/O 
request from its system service entry point to its servicing by VAX/VMS 
executive routines and driver code. Discussion of other entry points appears 
in Sections 9, 11, and 12. 

i 

5.1 Preprocessing an I / O Request 
EXE$QIO performs device-independent preprocessing of an I/O request and 
calls driver FDT routines to perform device-dependent preprocessing. To 
preprocess an I/O request, EXESQIO takes the following steps: 

• Verifies that the requesting process has assigned a process I/O channel to 
the target device 

• Locates the device driver in the I/O database 

• Validates the I/O-function code 

• Checks process I/O request quotas 

• Validates the I/O-status block 

• Allocates and sets up the I/O-request packet (IRP) 

• Calls driver FDT routines to perform device-dependent preprocessing 

5-1 



Overview of I/O Processing 

Figure 5-1 Sequence of Driver Execution 
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Figure 5-2 Detailed Sequence of VAX/VMS I/O Processing 
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5.1.1 Process I/O Channel Assignment 
The first step in preprocessing an I/O request is to verify that the I/O request 
specifies a valid process I/O channel. The process I/O channel is an entry 
in a system-maintained process table that describes a path of reference from 
a process to a peripheral device unit. Before a program requests I/O to a 
device, the program identifies the target device unit by issuing an Assign- 
I/O-Channel ($ ASSIGN) system service call. The $ ASSIGN system service 
performs the following functions: 

• Locates an unused entry in the table of process I/O channels 

• Creates a pointer to the device unit in the table entry for the channel 

• Returns a channel-index number to the program 

When the program issues an I/O request, EXE$QIO verifies that the channel 
number specified is associated with a device and locates the unit-control block 
associated with the specified channel using the field CCB$L_UCB. 

Refer to Figure A-3 and Table A-3 for an illustration of the channel-control 
block and a description of its contents. 
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5.1.2 Locating a Device Driver in the I/O Database 
A unit-control block (UCB) that describes a device unit exists for each device 
in the system. The UCB indicates the current state of the device unit by 
recording such information as: 

• Whether the device is active (UCB$V_BSY in UCB$L_STS) 

• What I/O request is being processed (UCB$L_IRP) 

• Where transfer buffers are located (UCB$L_SVAPTE) 

Because drivers run as fork processes and cannot use process address space 
to store additional context, drivers use the UCB for temporary data storage 
during I/O processing.1 

The UCB also holds the context of a driver fork process when VAX/VMS I/O 
routines suspend the fork process to wait for an asynchronous event such as 
a device interrupt. 

Using information in the UCB, a driver can find other I/O data structures 
associated with the device, including the channel-request block, interrupt- 
dispatch block, and the device-data block. 

Figure A-13 represents a UCB and Table A-13 describes its fields. 

5.1.2.1 Channel-Request Block 
The channel-request block (CRB) allows the operating system to manage the 
controller data channel. Among its contents are: 

• Code that transfers control to a driver's interrupt-servicing routine 
(CRB$L_INTD) 

• Addresses of a driver's unit and controller initialization routines 
(CRB$L _INTD+VEC$L _UNITINIT, CRB$L _INTD+VEC$L —INITIAL) 

• A pointer to the interrupt-dispatch block (IDB), which further describes 
the controller (CRB$L_INTD+VEC$L_IDB) 

Controllers can be either multiunit or dedicated. 

All UCBs describing device units attached to a single multiunit controller 
contain a pointer to a single CRB (UCB$L_CRB). For these controllers, a 

VAX/VMS routine uses fields in the CRB (CRB$L_WQFL, CRB$B_MASK) 
and IDB (IDB$L—OWNER) to arbitrate pending driver requests for the 
controller. When the system grants ownership of a multiunit controller 
data channel to a driver fork process, the fork process can initiate an I/O 
operation on a device attached to that controller. Figure 5-3 illustrates the 
data structures required to describe three devices on a multiunit controller. 

1 Section 7.1 describes how you can allocate additional UCB space for storing data or device-dependent driver context. The template in 

Section 6.4 and the macro descriptions in Appendix B demonstrate how you can define driver-specific fields in a UCB extended in this manner 

using the $DEFINI, $DEF, $DEFEND, $VIELD, and _VIELD macros. 
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Figure 5-3 Data Structures for Three Devices on One Controller 

ZK-920-82 

The VAX/VMS operating system does not use the CRB to synchronize 
I/O operations for a dedicated controller, as the controller manages but a 
single device. Nevertheless, the CRB still is present and used by drivers and 
operating system routines. 

See Figure A-4 and Table A-4 for an illustration of the CRB and a description 
of its contents. 

5.1.2.2 Interrupt-Dispatch Block 
The CRB contains a pointer to an interrupt-dispatch block (IDB) 
(CRB$L_JNTD+VEC$L_IDB). The IDB contains the addresses of these three 
critical data structures: 

• The UCB of the device unit, if any, that currently owns the controller data 
channel (IDB$L —OWNER) 

• The control and status register (IDB$L_CSR); it is the key to access to 
device registers 

• The adapter-control block (IDB$L__ADP) that describes the adapter of the 
I/O bus to which the controller is attached 

A detailed description of the fields in the IDB appears in Table A-9; 
Figure A-9 shows its structure. 

Figure 5-4 illustrates the relationship between the data structures that 
describe a group of equivalent devices on two separate controllers. In this 
figure, one controller has a single device unit, and the other controller has 
two device units. Devices on both controllers share the same driver code. 

5.1.2.3 Device-Data Block 
All UCBs describing device units attached to a single controller contain 
a pointer (UCB$L_DDB) to a single device-data block (DDB). The DDB 
contains two fields that identify the device and its driver: 

• The generic device/controller name (DDB$T_NAME) 

• The name of the device's driver as obtained from the driver-prologue table 
(DDB$T_DRVNAME). 

Table A-6 further describes the fields of the DDB. For a representation of its 
structure, see Figure A-6. 
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Figure 5-4 I/O Database for Two Controllers 
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5.1.3 Validating the I/O Function 
Using the I/O data structures described above, EXE$QIO locates the address 
of the driver's function-decision table by following a chain of pointers that 
begins in the UCB of the target device: 

UCB -► DDT — FDT 

EXE$QIO then uses data in the function-decision table to analyze the I/O 
function. The procedure confirms that the function specified in the I/O 
request is a valid function for the device. 
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5.1.4 Checking Process I/O Request Quotas 

EXE$QIO determines whether the I/O request being readied will cause the 
process to exceed its quota for outstanding direct or buffered I/O requests. 
If the process' requests remain under quota, the system service allows it 
to continue I/O preprocessing. In the case where quota is exceeded, the 
procedure examines the process' resource wait flag (PCB$V_SSRWAIT in 
PCB$L_STS). 

If the flag is clear, EXE$QIO aborts the I/O request. However, if the flag is 
set, it places the process in a wait state until the number of requests drops 
below quota. When this occurs, process execution resumes, at which time 
EXE$QIO charges process quotas as appropriate for the requested operation. 

5.1.5 Validating the l/O-Status Block 
If the I/O request specifies a quadword I/O-status block to receive final I/O 
status information, EXE$QIO determines whether the process issuing the 
request has write access to the status-block locations specified. If the process 
has write access, EXE$QIO fills the quadword with zeros. If the process does 
not have write access, the procedure terminates the request with an error 
status. 

5.1.6 Allocating and Setting Up an l/O-Request Packet 
If validation of the I/O request succeeds to this point, EXE$QIO allocates a 
block of nonpaged system memory to contain an IRP. 

Before EXE$QIO allocates an IRP, it raises the IPL of the processor to 
IPL$_ASTDEL to block any other asynchronous activity in the process. The 
new IPL prevents possible termination of the process; process termination 
would result in the operating system's losing track of the system memory 
allocated for the IRP. 

EXE$QIO attempts to allocate an IRP from a lookaside list containing 
preallocated IRPs. If no preallocated packets exist, the procedure calls a 
VAX/VMS routine that allocates an IRP from general nonpaged pool. This 
allocating routine synchronizes with the rest of the system so that it can 
allocate the memory needed. (The VAX/VMS Internals and Data Structures 
manual describes the allocation routines in detail.) 

EXE$QIO resumes I/O preprocessing by writing a description of the I/O 
request into the fields of the IRP as follows. Note that this data encompasses 
the device-independent information associated with the request. It is up to 
the device driver's FDT routines or VAX/VMS common FDT routines to fill 
in the device-dependent portions of the IRP as described in Section 5.1.7 and 
Section 8. 

Data Field(s) 

Size in bytes of the IRP IRP$W_SIZE 

Identification of the block as an IRP IRP$B_TYPE 

Access mode of the process at the time of the IRP$B_RMOD 
request 
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Data Field(s) 

Process ID of the requesting process 

Address of an AST routine (if specified in the 
request) and its parameter1 

For file-structured devices, address of a 
window-control block (WCB) that describes 
the physical location of part of the file 

Address of the target device's UCB 

l/O-function code2 

Number of event flag to set when processing 
of the I/O request is complete 

Base software priority of the requesting 
process 

Address of an l/O-status block (if specified in 
the request) 

Process I/O channel index number 

A flag indicating whether the I/O function is for 
buffered or direct I/O 

A flag indicating whether the I/O request is an 
input request 

A flag indicating whether the I/O function is a 
physical-l/O function 

Address of a diagnostic buffer (if specified in 
the request)3 and a flag indicating that the 
buffer is present 

IRP$I_PID 

IRP$I_AST, IRP$I_ASTPRM 

IRP$I_WIND 

IRP$I_UCB 

IRP$W_FUNC 

IRP$B_EFN 

IRP$B_PRI 

IRP$L_IOSB 

IRP$W__CHAN 

IRP$V_BUFIO in IRP$W_STS 

IRP$V_FUNC in IRP$W_STS 

IRP$V_PHYSIO in IRP$W_STS 

IRP$L_DIAGBUF, IRP$V_ 
DIAGBUF in IRP$W_STS 

11f the request specifies an AST, EXESQIO also verifies that the request would 
not cause the process to exceed its AST quota. If it would, EXESQIO aborts the 
request. 

2For nonfile devices, EXESQIO reduces read- and write-virtual-block functions to 
their equivalent read- and write-logical-block functions before storing a code. 

3The size of the diagnostic buffer is specified in the driver-dispatch table of the 
driver servicing the device unit to which the request is made. See Section 7.2 for 
more information. 

Figure A-10 illustrates the format of an IRP; Table A-10 describes each of its 
fields. 

5.1.7 FDT Processing 
The driver's function-decision table controls the device-dependent 
preprocessing of an I/O request. Figure 5-5 illustrates the layout of a 
function-decision table. 
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Figure 5-5 Layout of a Function-Decision Table 
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The I/O-function code specified in an I/O request is a 16-bit value consisting 
of two fields: 

• A 6-bit I/O-function code (bits 0 through 5) that permits you to define 
64 unique I/O function codes for every device type. Table 7-1 lists the 
function codes defined by VAX/VMS. Section 7.3.1 describes how you 
can define device-specific function codes. 

• A 10-bit I/O-function modifier (bits 6 through 15). In subsequent 
processing of the I/O request, the driver's start-I/O routine uses both 
I/O-function code and I/O-function modifier, as stored in IRP$W_FUNC, 
to create a device-specific function code to use in device activation. 

The first two entries of a function-decision table are two longwords (64 
bits) each. The first quadword entry is the legal function bit mask of all I/O- 
function codes that are valid for the device. The second quadword entry 
is the buffered function bit mask of those valid I/O-functions that are also 
buffered-I/O functions. 

EXE$QIO uses the value of the low-order six bits of the I/O-function code to 
determine which bit to check in each of these bit masks. For example, if the 
function code has a value of 22, the procedure checks the twenty-third bit (bit 
22) of each bit mask. Thus, EXE$QIO determines whether the I/O-function 
code is valid for the device and is able to charge against the appropriate quota 
of the requesting process for a direct- or buffered-I/O operation.2 

2 For physical- and logical-I/O operations, EXE$QIO also verifies that the process making the I/O request has suitable privileges. 
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Subsequent entries in the function-decision table are three-longwords long, 
and it is these entries that EXE$QIO uses to dispatch to the appropriate I/O 
preprocessing routine (FDT routine) for the requested function. Again, the 
first quadword is a 64-bit bit mask, and is checked by EXE$QIO in exactly 
the same way as the legal function bit mask and the buffered function bit 
mask. These action routine bit masks, however, contain the address of an 
FDT routine in the subsequent longword, and it is to this FDT routine that 
EXE$QIO transfers control when it discovers the bit corresponding to the 
I/O-function set in the quadword. 

Some FDT routines are present in the operating system because they provide 
common services for many devices. Section 8.5 describes these routines. 
Other routines are included in the device driver because they perform device¬ 
dependent services. 

EXE$QIO uses the action routine bit mask entries in the function-decision 
table to call FDT routines in the driver or system, according to the following 
strategy: 

1 If the bit corresponding to the function code is set in the action routine 
bit mask, EXE$QIO calls the FDT routine whose address appears in the 
following longword. 

• If this I/O-function requires additional preprocessing after this 
particular FDT routine completes its activity, the FDT routine returns 
control to EXE$QIO with an RSB instruction. When EXE$QIO regains 
control, it advances to the next action routine bit mask and repeats 
Step 1. 

• If this FDT routine completes all necessary preprocessing for this 
particular I/O-function, then it transfers control to a VAX/VMS routine 
that queues the IRP or completes the request. 

2 If the bit corresponding to the function code is not set, EXE$QIO advances 
to the next action routine bit mask in the table and repeats Step 1. 

Note: A single function-decision table can specify that EXE$QIO call more 
than one FDT routine to perform the many and varied steps in the 
preprocessing of a single I/O-function. However, it is the responsibility 
of the FDT routine that ultimately completes the preprocessing to 
end EXE$QIO's scan of the function-decision table. An FDT routine 
accomplishes this by transferring control to either a VAX/VMS routine 
that queues the I/O request for the driver's start-I/O routine or one that 
completes or aborts the request (see Figure 5-2). In other words, for each 
valid I/O-function code for a device, an FDT entry must contain the 
address of a routine that ends I/O preprocessing. 

FDT routines execute in the context of the process that requested the I/O 
operation. Thus, FDT routines can gain access to process virtual address 
space. Once all FDT preprocessing is complete, however, the rest of the 
processing for the I/O request continues in the limited context of a driver fork 
process or an interrupt-servicing routine. 
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Figure 5-6 FDT Routines and I/O Preprocessing 
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5.2 Handling Device Activity 

When I/O preprocessing is complete, the last-called FDT routine generally 

jumps (with a JMP instruction) to a routine called EXE$QIODRVPKT.3 
EXE$QIODRVPKT, in turn, transfers control (using a JSB instruction) to 

EXE$INSIOQ, the VAX/VMS routine that queues IRPs and arbitrates device 
activity. (See Figure 5-2 for a representation of the flow of I/O-request 
processing at this juncture.) 

5.2.1 Creating a Driver Fork Process to Start I/O 
EXE$INSIOQ creates only one driver fork process at a time for each device 
unit on the system. As a result, only one IRP per device unit is serviced at 
one time. EXE$INSIOQ determines whether a driver fork process exists for 
the target device, as follows: 

• If the device is idle, no driver fork process exists for the device; in this 
case, the EXE$INSIOQ immediately calls IOC$INITIATE to create and 
transfer control to a driver fork process to execute the driver's start-I/O 
routine. 

• If the device is busy, a driver fork process already exists for the device, 
servicing some other I/O request. In this case, EXE$INSIOQ calls 
EXE$INSERTIRP to insert the IRP into a queue of IRPs waiting for the 
device unit. The routine queues the IRP according to the base priority of 
the caller. Within each priority, IRPs are in first-in/first-out order. The 
completion of the current I/O request triggers the servicing of the I/O 
request that is first in the queue, according to the procedure described in 
Section 12.1.2.3. 

In the latter case, by the time the driver's start-I/O routine gains control to 
dequeue the IRP, the originating user's process context is no longer available. 
Because the context of the process initiating the I/O request is not guaranteed 
to a driver's start-I/O routine, the driver must execute in the reduced context 
available to a fork process. 

IOC$INITIATE always initiates the driver's start-I/O routine with a context 
that is appropriate for a fork process. VAX/VMS establishes this context by 
performing the following steps: 

1 Raising IPL to driver fork IPL (UCB$B_FIPL) 

2 Loading the address of the IRP into R3 

3 Loading the address of the device's UCB into R5 

4 Transferring control (with a JMP instruction) to the entry point of the 
device driver's start-I/O routine 

The newly activated driver fork process executes under the following 
constraints: 

• It cannot refer to the address space of the process initiating the I/O 
request. 

• It can use only RO through R5 freely. It must save other registers before 
use and restore them after use. 

3 The rules for exiting from FDT preprocessing, including descriptions of EXE$QIODRVPKT and other FDT exit routines, appear in Sections 8.2 

and 8.6. 
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• It must clean up the stack after use. The stack must be in its original state 
when the fork process relinquishes control to any VAX/VMS routine. 

• It must execute at IPLs between driver fork level and IPL$_POWER. It 
must not lower IPL below fork IPL, except by creating a fork process at a 
lower IPL. 

Each driver fork process executes until one of the following events occurs: 

• Device-dependent processing of the I/O request is complete. 

• A shared resource needed by the driver is unavailable, as described in 
Section 3.3. 

• Device activity requires the fork process to wait for a device interrupt. 

5.2.2 Activating a Device and Waiting for an Interrupt 
Depending on the device type supported by the driver, the start-I/O routine 
performs some or all of the following steps: 

1 Analyzes the I/O function and branches to driver code that prepares the 
UCB and the device for that I/O operation 

2 Copies the contents of fields in the IRP into the UCB 

3 Tests fields in the UCB to determine whether the device and/or volume 
mounted on the device are valid 

4 If the device is attached to a multiunit controller, obtains the controller 
data channel 

5 If the I/O operation is a DMA transfer, obtains a I/O adapter resources 
such as mapping registers and a UNIBUS adapter data path 

6 Loads all necessary device registers except for the device's control and 
status register (CSR) 

7 Raises IPL to IPL$_POWER (saving the value of fork IPL on the stack) 
and confirms that a power failure that would invalidate the device 
operation has not occurred 

8 Loads the device's CSR to activate the device 

9 Invokes a VAX/VMS routine (using either the WFIKPCH or WFIRLCH 
macro) to suspend the driver fork process until a device interrupt or 
timeout occurs 

As it suspends the driver, IOC$WFIKPCH or IOC$WFIRLCH saves the 
driver's context in the UCB. This context consists of the following information: 

• A description of the I/O request and the state of the device 

• The contents of R3 and R4 (UCB$L_FR3, UCB$L_FR4) 

• The implicit contents of R5 as the address of the UCB 

• A driver return address (UCB$L_FPC) 

• The address of a device timeout handler (at UCB$L_FPC) 

• The time at which the device will time out (UCB$L_DUETIM) 
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By convention, R4 often contains the address of the CSR; it permits the driver 
to examine device registers. When the driver fork process regains control after 
interrupt processing, R5 contains the UCB address; it is the key to the rest of 
the I/O database that is relevant to the current I/O operation. 

Once the driver's start-I/O routine initiates the transfer, the driver invokes 
a VAX/VMS routine (with a macro such as WFIKPCH or WFIRLCH) to wait 
for the device to interrupt. This routine (IOC$WFIKPCH or IOC$WFIRLCH) 
expects to find, among the items it inherits on the stack, the driver's fork IPL, 
as placed there by the start-I/O routine in Step 7 above. Having removed 
the driver's start I/O routine's return address from the stack and stored it in 
UCB$L_FPC, IOC$WFIKPCH (or IOC$WFIRLCH) restores IPL to fork IPL 
from the stack and exits with an RSB instruction. Thus, IOC$WFIKPCFI (or 
IOC$WFIRLCH) effectively passes control to the caller of its caller. In this 
case, the caller of the driver start-I/O routine that called IOC$WFIKPCH 
is EXE$INSIOQ. The flow back from EXE$INSIOQ to a user process that 
asynchronously requested the I/O operation is shown in Figure 5-2. 

You can find additional information on the context of a start-I/O routine in 
Section 9. 

5.2.3 Handling a Device Interrupt 
When the device requests an interrupt, the interrupt dispatcher transfers 
control to the driver interrupt-servicing routine. The driver's interrupt¬ 
servicing routine runs at a high interrupt priority level so that the routine 
can service interrupts quickly. A driver interrupt-servicing routine usually 
performs the following processing: 

1 For multiunit device controllers, determines which device unit generated 
the interrupt 

2 Examines the UCB for the device to confirm that the driver fork process 
expects the interrupt 

3 Saves device registers 

4 Reactivates the suspended driver fork process 

If necessary, the reactivated driver fork process executes at the high IPL of 
the interrupt-servicing routine for a few instructions. Very soon, however, 
the driver lowers its execution priority so that it does not block subsequent 
interrupts for other devices in the system. 

5.2.4 Switching from Interrupt to Fork Process Context 
To lower its priority, the driver calls a VAX/VMS fork process queuing routine 
(by means of the IOFORK macro) that performs the following steps: 

1 Disables the timeout that was specified in the wait-for-interrupt routine 

2 Saves R3 and R4 (these are the registers needed to execute as a fork 
process) (UCB$L_FR3, UCB$L_FR4) 
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3 Saves the address of the instruction following the IOFORK request in the 
UCB fork block (UCB$L_FPC) 

4 Places the address of the UCB fork block from R5 in a fork queue for the 
driver's fork level 

5 Returns to the driver's interrupt-servicing routine 

The interrupt-servicing routine then cleans up the stack, restores registers, 
and dismisses the interrupt. Figure 5-7 illustrates the flow of control in a 
driver that creates a fork process after a device interrupt. 

Figure 5-7 Creating a Fork Process After an Interrupt 
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5.2.5 Activating a Fork Process from a Fork Queue 
When no hardware interrupts are pending, the software interrupt priority 
arbitration logic of the processor transfers control to the software interrupt 
fork dispatcher. When the processor grants an interrupt at a fork IPL, the 
fork dispatcher processes the fork queue that corresponds to the IPL of the 
interrupt. To do so, the dispatcher performs these actions: 

1 Removes a driver fork block from the fork queue 

2 Restores fork context 

3 Transfers control back to the fork process 

Thus, the driver code calls VAX/VMS code that coordinates suspension and 
restoration of a driver fork process. This convention allows VAX/VMS to 
service hardware device interrupts in a timely manner and reactivate driver 
fork processes as soon as no device requires attention. 

When a given fork process completes execution, the fork dispatcher removes 
the next entry, if any, from the fork queue, restores its fork process context, 
and reactivates it. This sequence is repeated until the fork queue is empty. 
When the queue is empty, the fork dispatcher restores RO through R5 from 
the stack and dismisses the interrupt with an REI instruction. 

Figure 5-8 illustrates the reactivation of a driver fork process. 
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Figure 5-8 Reactivation of a Driver Fork Process 
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5.3 Completing an I/O Request 

Once reactivated, a driver fork process completes the I/O request as follows: 

1 Releases shared driver resources, such as I/O adapter mapping registers, 
UNIBUS adapter data path, and controller ownership 

2 Returns status to the VAX/VMS I/O completion routine 

The I/O-completion routine performs the following steps to start 
postprocessing of the I/O request and to start processing the next I/O request 
in the device's queue: 

1 Writes return status from the driver into the IRP 

2 Inserts the finished IRP in the I/O-postprocessing fork-queue and requests 
an interrupt at IPL$_IOPOST 

3 Creates a new fork process for the next IRP in the device's pending I/O 
queue 

4 Activates the new driver fork process 
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5.3.1 I/O Postprocessing 

When processor priority drops below the I/O postprocessing IPL, the 
processor dispatches to the I/O postprocessing interrupt-servicing routine. 
This VAX/VMS routine completes device-independent processing of the I/O 
request. 

Using the IRP as a source of information, the IPL$_IOPOST dispatcher 
executes the sequence below for each IRP in the postprocessing queue: 

1 Removes the IRP from the queue 

2 If the I/O function was a direct I/O function, adjusts the recorded use of 
the issuing process' direct I/O quota and unlocks the pages involved in 
the I/O transfer 

3 If the I/O function was a buffered I/O function, adjusts the recorded use 
of the issuing process' buffered I/O quota and, if the I/O was a write 
function, deallocates the system buffers used in the transfer 

4 Posts the event flag associated with the I/O request 

5 Queues a special kernel-mode-AST routine to the process that issued the 
$QIO system service call 

The queuing of a special kernel-mode-AST routine allows I/O postprocessing 
to execute in the context of the user process but in a privileged access mode. 
Process context is needed to return the results of the I/O operation to the 
process' address space. The special kernel-mode-AST routine writes the 
following data into the process' address space: 

• Data read in a buffered I/O operation 

• If specified in the I/O request, the contents of the diagnostic buffer 

• If specified in the I/O request, the two longwords of I/O status 

If the I/O request specifies a user-mode-AST routine, the special kernel- 
mode-AST routine queues the user-mode AST for the process. When 
VAX/VMS delivers the user-mode AST, the system AST delivery routine 
deallocates the IRP. The first part of an IRP is the AST-control block for user 
requested ASTs. 
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PART II Writing a Device Driver 
Device drivers consist of static tables, routines that perform I/O 
preprocessing, and routines that handle the device and controller. The 
chapters that follow describe how to write the following sections of a driver: 

• Static tables 

• Routines that use the device driver's function-decision table (FDT) 

• Routines that start an I/O operation on the device and complete the I/O 
operation 

• Routines that handle interrupts 

• Routines that request allocation of UNIBUS adapter mapping registers and 
data paths 

• Routines that initialize devices and controllers 

• Routines that cancel an I/O operation 

• Routines that log errors 

The "how to" chapters are preceded by a chapter that contains a driver 
template. The template illustrates the general organization and writing of a 
driver. 

Note that the "how to" chapters describe a common approach to the design 
of various driver routines; they are examples. They do not present the only 
approach that can be taken to writing a driver. 





6 Template for a Device Driver 

The pages that follow describe conventions to be used by device drivers and 
provide a template for a device driver. Drivers do not necessarily need all 
of the routines indicated by the template, nor do driver routines and tables 
need to follow the exact order of the template. However, the VAX/VMS 
operating system does place a few restrictions on the order and content of 
driver routines and tables. 

Figure 6-1 illustrates the organization of a device driver. The first item in a 
device driver is the driver-prologue table. This table must be the first part of 
a driver. The order of the remaining tables and routines varies from driver to 
driver. 

Figure 6-1 Driver Organization 
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The last statement in every driver, except for the .END assembly directive, 
must be a label marking the end of the driver. The address of this label 
is stored in the driver-prologue table. The driver-loading procedure uses 
this address to calculate the size of the driver. Section 14 describes the 
driver-loading procedure. 
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Some drivers contain no device-dependent, FDT routines. Other drivers 
need only minimal initialization procedures. However, every driver normally 
contains static driver tables and a start-I/O routine or an interrupt-servicing 
routine. 

6.1 Coding Conventions 
The driver-loading procedure loads a device driver into a block of nonpaged 
system memory whose location is chosen by the operating system memory 
allocation routines. Therefore, the driver must consist of position-independent 
code only. 

In addition, the system might call a device driver repeatedly to process 
I/O requests and interrupts. The driver often does not complete one I/O 
operation before the system transfers control to the driver to begin another on 
a different unit. For this reason, the code must be reentrant. 

The rules of position-independent and reentrant code are listed below. 

• Instructions can branch only to relative addresses within the driver 
and to global addresses listed in the VAX/VMS symbol table 
(SYS$SYSTEM:SYS.STB). 

• Static tables can list only relative addresses within the driver and global 
addresses. 

• The driver cannot store temporary data in local driver tables for dynamic 
driver context. All dynamic temporary storage must be contained within 
the unit-control block corresponding to an I/O request or the current 
I/O-request block. 

• The driver must refer to the I/O database by loading the address of a data 
structure into a general register and using displacement addressing to the 
fields of the data structure. 

Device drivers must also restrict their use of general registers and the stack: 

• FDT routines can use RO through R2 and R9 through Rll as available 
registers. The routines can use other registers by saving the registers 
before use and restoring them before exiting from the FDT routine. 

• All other driver routines can use RO through R5 as available registers. 
The routines can use other registers, if necessary, by saving and restoring 
them; but using other registers in this way is discouraged. 

• All driver routines can use the stack for temporary storage only if the 
routines restore the stack to its previous state before calling any VAX/VMS 
routines or executing RSB instructions. 
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6.2 Restrictions on the Use of Device-Register I/O Space 

The programmer of a device driver for a UNIBUS device must observe the 
following restrictions on the use of device registers: 

• Drivers should always store the address of a device control register in 
a general register and then gain access to the device register indirectly 
through the general register. The example below defines symbolic 
word offsets for each device register and gains access to them using 
displacement-mode addressing from R4. 

; Device register offsets 

; CSR offset 

; Buffer address offset 

LP_CSR = 0 

LP_DBR = 2 

MOVL UCB$L_CRB(R5),R4 

MOVL CRB$L_INTD+VEC$L_IDB(R4),R4 

Get address of CRB 

Get the address of 

the device's CSR 

TSTW LP_CSR(R4) ; Is printer on line? 

• Floating, double, field, queue, or quadword operands are not allowed in 
I/O address space, nor can an instruction obtain the position, size, length, 
or base of an operand from I/O space. For example, a driver cannot use a 
bit field instruction to test a bit in a device register. 

• Drivers cannot use string-handling instructions. 

• Drivers can use only those instructions that modify or write to a maximum 
of one destination. The destination must be the last operand. 

• Registers of devices connected to the backplane interconnect (for example, 
UNIBUS adapter device registers and MASSBUS device registers) are 
longwords. Registers of devices connected to the UNIBUS are words. 
Instructions that refer to UNIBUS adapter registers must use longword 
context. All driver instructions that affect UNIBUS device registers must 
use word context, for example, BISW, MOVW, and ADDW3, unless the 
register is byte-addressable. 

• An instruction that refers to I/O space must not generate an exception or 
be interrupted. If the instruction is allowed to restart, it will reread the 
device register, which causes undesirable device side effects or data loss. 

• To access I/O space, use only the following instructions. These 
instructions cannot be interrupted unless they use autoincrement- 
deferred addressing mode or any of the displacement-deferred modes 
when specifying an operand. 

ADAWI 

ADD(B,W,L)2 

ADD(B,W,L)3 

ADWC 

BIC(B,W,L)2 

MCOM(B,W,L) 

MFPR 

MNEG(B,W,L) 

MOV(B,W,L) 

MOVA(B,W,L) 
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BIC(B,W,L)3 

BICPSW 

BIS(B,W,L)2 

BIS(B,W,L)3 

BISPSL 

BISPSW 

BIT(B,W,L) 

CASE(B,W,L) 

CHM(K,E,S,U) 

CLR(B,W,L) 

CMP(B,W,L) 

CVT(BW,BL,WB, 

WL,LB,LW) 

DEC(B,W,L) 

INC(B/W/L) 

MOVAQ 

MOVPSL 

MOVZ(BW,BL,WL) 

MTPR 

PROBE(R,W) 

PUSHA(B,W,L) 

PUSHAQ 

PUSHL 

SBWC 

SUB(B,W,L)2 

SUB(B,W,L)3 

TST(B,W,L) 

XOR(B,W,L)2 

XOR(B,W,L)3 

6.3 Implementing Conditional Code in a Driver 

When writing a DMA driver to function for equivalent devices on different 
I/O bus implementations, DIGITAL recommends that you use the CPUDISP 
macro in code paths that need to differentiate between the systems. 

The CPUDISP macro (defined in SYS$LIBRARY:LIB.MLB) provides a means 
for indirectly distinguishing between bus structures based on the type of the 
VAX processor that currently uses that bus structure. Use CPUDISP when it is 
necessary to conditionally execute pieces of code, for instance, the allocation 
and loading of mapping registers for those processors (for example. Micro VAX 
II, VAX-11/780, VAX 8200) whose I/O space contains mapping registers, or 
the allocation of a physically contiguous buffer for a DMA transfer on the 
Micro VAX I (which cannot map such a transfer). 

CAUTION: CPUDISP exists as a temporary means of dispatching to code conditional 
to the type of the executing processor. Although, it currently functions to 
distinguish between the I/O bus configurations used by each processor, it 
most likely will not continue to do so as processors migrate to the various 
I/O bus configurations. 

CPUDISP builds a case table, first forming the appropriate symbolic constants 
(PR$_SID_TYPExxx) as displacement values and branching to a transfer 

address according to the contents of global symbol EXE$GB_CPUTYPE. 
Currently, the only values accepted for CPU-type are 8NN (for VAX 8800), 
790 (for VAX 8600 and VAX 8650), 8SS (for VAX 8200), 780, 750, 730, UV1 
(for Micro VAX I), or UV2 (for Micro VAX II). For example: 
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CPUDISP «UV1,5$> , - 

<UV2, 1$»,- 

CONTINUE=YES ;for all other types of CPU continue 

; f or 790,785,780,750,730,8SS,8NN 

BRB 10$ 

1$: ;for UV2 

5$: ;for UV1 

10$: ;for all others 

Appendixes E and F contain examples of drivers that use the CPUDISP macro 
and other techniques (for example, a longword of bit flags in an extension to 
the UCB) to provide conditional code in a driver. See also the description of 
the CPUDISP macro in Appendix B. 

6.4 Driver Template 
The following pages list the VAX/VMS template driver. You can obtain a 
machine-readable copy of it from SYS$EXAMPLES:TDRIVER.MAR. 

.TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER 

.IDENT 'V04-000' 

Copyright (c) 1978, 1980, 1982, 1984 

by Digital Equipment Corporation, Maynard, Massachusetts 

This software is furnished under a license and may be used and copied 

only in accordance with the terms of such license and with the 

inclusion of the above copyright notice. This software or any other 

copies thereof may not be provided or otherwise made available to any 

other person. No title to and ownership of the software is hereby 

transferred. 

The information in this software is subject to change without notice 

and should not be construed as a commitment by Digital Equipment 

Corporation. 

DIGITAL assumes no responsibility for the use or reliability of its 

software on equipment which is not supplied by DIGITAL. 
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FACILITY: 

VAX/VMS Template driver 

ABSTRACT: 

This module contains the outline of a driver: 

Models of driver tables 

Controller and unit initialization routines 

An FDT routine 

The start-I/O routine 

The interrupt-servicing routine 

The cancel I/O routine 

The device register dump routine 

AUTHOR: 

S. Programmer 11-N0V-1979 

REVISION HISTORY: 

V02 JHP001 J. Programmer 2-Aug-1979 11:27 

Remove BLBC instruction from CANCEL routine. 

V02-001 JHP001 J. Programmer ll-Feb-1981 13:10 

Add description of reason argument to CANCEL 

routine. Correct references to channel index 

number. 

.SBTTL External and local symbol definitions 

External symbols 

$CANDEF 

$CRBDEF 

$DCDEF 

$DDBDEF 

$DEVDEF 

$IDBDEF 

$I0DEF 

$IPLDEF 

$IRPDEF 

$SSDEF 

$UCBDEF 

$VECDEF 

Local symbols 

Cancel reason codes 

Channel-request block 

Device classes and types 

Device-data block 

Device characteristics 

Interrupt-dispatch block 

I/O function codes 

Hardware IPL definitions 

I/O-request packet 

System status codes 

Unit-control block 

Interrupt vector block 

Argument list (AP) offsets for device-dependent QIO parameters 

First QIO parameter 

Second QIO parameter 

Third QIO parameter 

Fourth QIO parameter 

Fifth QIO parameter 

Sixth QIO parameter 

PI ss 0 

P2 = 4 

P3 = 8 

P4 = 12 

P5 = 16 

P6 = 20 
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Other constants 

TD.DEF .BUFSIZ = 1024 ; Default buffer size 
TD.TIMEOUT.SEC = 10 ; 10 second device timeout 
TD.NUM .REGS = 4 ; Device has 4 registers 

; Definitions that follow the standard UCB fields 

$DEFINI UCB ; Start of UCB definitions 

.=UCB$K_LENGTH ; Position at end of UCB 

$DEF UCB$W_TD_WORD 
.BLKW 1 

; A sample word 

$DEF UCB$W_TD_STATUS 
.BLKW 1 

; Device's CSR register 

$DEF UCB$W_TD_WRDCNT 
.BLKW 1 

; Device's word count register 

$DEF UCB$W_TD_BUFADR 
.BLKW 1 

; Device's buffer address 
; register 

$DEF UCB$W_TD_DATBUF 
.BLKW 1 

; Device's data buffer register 

$DEF UCB$K_TD_UCBLEN ; Length of extended UCB 

; Bit positions for device-dependent status field in UCB 

$VIELD UCB,0,<- ; Device status 
<BIT_ZER0,,M>, - ; First bit 
<BIT_0NE,,M>,- ; Second bit 
> 

$DEFEND UCB ; End of UCB definitions 

Device register offsets from CSR address 

$DEFINI TD 

$DEF TD.STATUS 
.BLKW 1 

Start of status definitions 

Control/status 

Bit positions for device control/status register 

.YIELD 

> 

TD_STS,0,<- Control/status register 
<G0,,M>,- Start device 
<BIT1,,M>,- Bit one 

<BIT2,,M>,- Bit two 
<BIT3,,M>,- Bit three 
<XBA,2,M>,- Extended address bits 

<INTEN,,M>,- Enable interrupts 
<READY,,M>,- Device ready for command 
<BIT8,,M>,- Bit eight 

<BIT9,,M>,- Bit nine 
<BIT10,,M>, - Bit ten 
<Bml, ,M>,- Bit eleven 

<.1>." Disregarded bit 
<ATTN,,M>,- Attention bit 
<NEX,,M>,- Nonexistent memory flag 
<ERR0R,,M>,- Error or external interrupt 
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$DEF TD.WRDCNT 
.BLKW 1 

; Word count 

$DEF TD.BUFADR 
. BLKW 1 

; Buffer address 

$DEF TD.DATBUF 
.BLKW 1 

; Data buffer 

IDEFEND TD ; End of device register 
; definitions. 

.SBTTL Standard tables 

Driver prologue table 

DPTAB 
END=TD_END,- 
ADAPTER=UBA,- 

UCBSIZE=<UCB$K_TD_UCBLEN>,- 
N AME=TDDRIVER 

DPT.STORE INIT 

DPT.STORE UCB,UCB$B_FIPL,B,8 
DPT.STORE UCB,UCB$B_DIPL,B,22 
DPT.STORE UCB,UCB$L_DEVCHAR,L.<- 

DEV$M_IDV!- 
DEV$M_0DV> 

DPT.STORE UCB.UCB$B_DEVCLASS,B,DC$_SC0M 
DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,- 

TD.DEF.BUFSIZ 

DPT.STORE REINIT 

DPT.STORE DDB,DDB$L_DDT,D,TD$DDT 
DPT.STORE CRB,CRB$L_INTD+4,D,- 

TD_INTERRUPT 

DPT.STORE CRB,- 
CRB$L_INTD+VEC$L_INITIAL,- 
D,TD.CONTROL.INIT 

DPT.STORE CRB,- 
CRB$L_INTD+VEC$L_UNITINIT,- 
D,TD.UNIT.INIT 

DPT-creation macro 
End of driver label 
Adapter type 
Length of UCB 
Driver name 

Start of load 
initialization table 

Device fork IPL 
Device interrupt IPL 
Device characteristics 

input device 
output device 

Sample device class 
Default buffer size 

Start of reload 
initialization table 

Address of DDT 
Address of interrupt 
service routine 

Address of controller 
initialization routine 

Address of device 
unit initialization 
routine 

DPT.STORE END 

Driver dispatch table 

End of initialization 
tables 

DDTAB 
DEVNAM=TD,- 
START=TD_START,- 
FUNCTB=TD_FUNCTABLE, 
CANCEL=TD_CANCEL,- 
REGDMP=TD_REG.DUMP 

DDT-creation macro 
Name of device 
Start-I/O routine 
FDT address 
Cancel I/O routine 
Register dump routine 

Function decision table 

TD.FUNCTABLE: 
FUNCTAB 

<READVBLK,- 
READLBLK,- 
READPBLK,- 
WRITEVBLK,- 
WRITELBLK,- 
WRITEPBLK,- 
SETMODE,- 
SETCHAR> 

FDT for driver 
Valid I/O functions 
Read virtual 
Read logical 
Read physical 
Write virtual 
Write logical 
Write physical 
Set device mode 
Set device chars. 
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FUNCTAB , 
FUNCTAB +EXE$READ,- 

<READVBLK,- 
READLBLK,- 
READPBLK> 

FUNCTAB +EXE$WRITE,- 
<WRITEVBLK,- 
WRITELBLK,- 
WRITEPBLK> 

FUNCTAB +EXE$SETMODE,- 
<SETCHAR,- 
SETM0DE> 

No buffered functions 
FDT read routine for 
read virtual, 
read logical, 
and read physical. 

FDT write routine for 
write virtual, 
write logical, 
and write physical. 

FDT set mode routine 
for set chars, and 
set mode. 

.SBTTL TD_CONTROL_INIT, Controller initialization routine 

++ 

TD_CONTROL_INIT, Readies controller for I/O operations 

Functional description: 

The operating system calls this routine in three places: 

At system startup 
During driver loading and reloading 
During recovery from a power failure 

Inputs: 

R4 
R5 
R6 
R8 

Outputs: 

- address of 
- address of 
- address of 
- address of 

the CSR (control/status register) 
the IDB (interrupt-dispatch block) 
the DDB (device-data block) 
the CRB (channel-request block) 

The routine must preserve all registers except R0-R3. 

TD_C0NTR0L_INIT: ; Initialize controller 
RSB ; Return 

.SBTTL TD_UNIT_INIT, Unit initialization routine 

++ 

TD_UNIT_INIT, Readies unit for I/O operations 

Functional description: 

The operating system calls this routine after calling the 
controller initialization routine: 

At system startup 
During driver loading 
During recovery from a power failure 

Inputs: 

R4 - address of the CSR (control/status register) 
R5 - address of the UCB (unit-control block) 

Outputs: 

The routine must preserve all registers except R0-R3. 
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.INIT: ; Initialize unit 

BISW #UCB$M_ONLINE, - 

UCB$W_STS(R5) ; Set unit on line 
RSB ; Return 

.SBTTL TD_FDT_ROUTINE, Sample FDT routine 

TD.FDT.ROUTINE, Sample FDT routine 

Functional description: 

SUPPLIED BY USER 

Inputs: 

R0-R2 - scratch registers 

R3 - address of the IRP 
R4 - address of the PCB 

R5 - address of the UCB 
R6 - address of the CCB 

R7 - bit number of the 
R8 - address of the FDT 
R9-R11 - scratch registers 
AP - address of the 1st 

Outputs: 

The routine must preserve all registers except R0-R2, and 

R9-R11. 

TD.FDT.ROUTINE: 
RSB 

; Sample FDT routine 
; Return 

.SBTTL TD.START, Start-I/O routine 

++ 

TD_START - Start a transmit, receive, or set mode operation 

Functional description: 

SUPPLIED BY USER 

Inputs: 

R3 - address of the IRP (I/O-request packet) 
R5 - address of the UCB (unit-control block) 

Outputs: 

RO 

R1 

- 1st longword of I/O status: contains status code and 
number of bytes transferred 

- 2nd longword of I/O status: device-dependent 

The routine must preserve all registers except R0-R2 and R4. 

TD.START: ; Process an I/O packet 

WFIKPCH TD_TIMEOUT,#TD_TIMEOUT_SEC 

After a transfer completes successfully, return the number of bytes 
transferred and a success status code. 

IOFORK 
INSV UCB$W_BCNT(R5),#16.- 

#16,RO 
MOVW #SS$_NORMAL,RO 

Load number of bytes trans¬ 
ferred into high word of RO. 
Load a success code into RO. 
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Call I/O postprocessing. 

COMPLETE.10: 
REQCOM 

Driver processing is finished. 
Complete I/O. 

Device timeout handling. Return an error status code. 

TD.TIMEOUT: 
SETIPL UCB$B_FIPL(R5) 
MOVZWL #SS$_TIME0UT,RO 
BRB COMPLETE.10 

Timeout handling 
Lower to driver fork IPL 
Return error status. 
Call I/O postprocessing. 

.SBTTL TD.INTERRUPT, Interrupt service routine 

++ 

TD.INTERRUPT, Analyzes interrupts, processes solicited interrupts 

Functional description: 

The sample code assumes either 

that the driver is for a single-unit controller, and 
that the unit initialization code has stored the 
address of the UCB in the IDB; or 

that the driver's start-I/O routine acquired the 
controller's channel with a REQPCHANL macro call, and 
then invoked the WFIKPCH macro to keep the channel 
while waiting for an interrupt. 

Inputs: 

0(SP) - pointer to the address of the IDB (interrupt dispatch 
block) 

4(SP) - saved RO 
8(SP) - saved R1 

12(SP) - saved R2 
16(SP) - saved R3 
20(SP) - saved R4 
24(SP) - saved R5 
28(SP) - saved PSL (processor status longword) 
32(SP) - saved PC 

The IDB contains the CSR address and the UCB address. 

Outputs: 

The routine must preserve all registers except R0-R5. 

TD.INTERRUPT: 
MOVL 0(SP)+,R4 

MOVL IDB$L_0WNER(R4),R5 

MOVL IDB$L_CSR(R4),R4 
BBCC #UCB$V_INT,- 

UCB$W_STS(R5),- 
UNSOL.INTERRUPT 

Service device interrupt 
Get address of IDB and remove 
pointer from stack. 
Get address of device owner's 
UCB. 
Get address of device's CSR. 
If device does not expect 
interrupt, dismiss it. 
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This is a solicited interrupt. Save 
the contents of the device registers in the UCB. 

MOVW TD.STATUS(R4) , - 
UCB$W_TD_STATUS(R5) 

MOVW TD.WRDCNT(R4),- 
UCB$W_TD_WRDCNT(R5) 

MOVW TD_BUFADR(R4),- 
UCB$W_TD_BUF ADR(R5) 

MOVW TD.DATBUF(R4),- 
UCB$W_TD_DATBUF(R5) 

Otherwise, save all device 
registers. First the CSR. 
Save the word count register. 

Save the buffer address 
register. 
Save the data buffer register 

Restore control to the main driver. 

RESTORE.DRIVER: 
MOVL UCB$L_FR3(R5),R3 

JSB «UCB$L_FPC(R5) 

Jump to main driver code. 
Restore driver's R3 (use a 
MOVQ to restore R3-R4). 
Call driver at interrupt 
wait address. 

Dismiss the interrupt. 

UNS0L_INTERRUPT: 
POPR #~M<R0,R1.R2,R3,R4,R5> 
REI 

Dismiss unsolicited interrupt. 
Restore R0-R5 
Return from interrupt. 

.SBTTL TD_CANCEL, Cancel I/O routine 

h+ 

TD_CANCEL, Cancels an I/O operation in progress 

Functional description: 

This routine calls I0C$CANCELI0 to set the cancel bit in the 
UCB status word if: 

The device is busy. 
The IRP's process ID matches the cancel process ID, 
The IRP channel matches the cancel channel. 

If IOC$CANCELIO sets the cancel bit, then this driver routine 
does device-dependent cancel I/O fixups. 

Inputs: 

R2 
R3 
R4 

R5 
R8 

Outputs: 

- channel index number 
- address of the current IRP (I/O-request packet) 
- address of the PCB (process-control block) for the 

process canceling I/O 
- address of the UCB (unit-control block) 
- cancel reason code, one of: 

CAN$C_CANCEL if called through $CANCEL or 
$DALL0C system service 

CAN$C_DASSGN if called through $DASSGN 
system service 

The routine must preserve all registers except R0-R3. 

The routine may set the UCB$M_CANCEL bit in UCB$W_STS. 

TD.CANCEL: 
JSB G~I0C$CANCELI0 
BBC #UCB$V_CANCEL,- 

UCB$W_STS(R5).10$ 

Cancel an I/O operation 
Set cancel bit if appropriate. 
If the cancel bit is not set. 
just return. 
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Device-dependent cancel operations go next. 

; Finally, the return. 

10$: 
RSB ; Return 

.SBTTL TD_REG_DUMP, Device register dump routine 

; ++ 

; TD_REG_DUMP, Dumps the contents of device registers to a buffer 

; Functional description: 

; Writes the number of device registers and their current 
; contents into a diagnostic or error buffer. 

; Inputs: 

; R0 - address of the output buffer 
; R4 - address of the CSR (control/status register) 
; R5 - address of the UCB (unit-control block) 

; Outputs: 

; The routine must preserve all registers except R1-R3. 

; The output buffer contains the current contents of the device 
; registers. RO contains the address of the next empty longword in 
; the output buffer. 

DUMP: ; Dump device registers 

MOVZBL #TD_NUM_REGS,(R0)+ ; Store device register count. 

MOVZWL UCB$W_TD_STATUS(R5),- 
(RO) + 

; Store device status register. 

MOVZWL UCB$W_TD_WRDCNT(R5).- 

(R0) + 

; Store word count register. 

MOVZWL UCB$W_TD_BUFADR(R5),- 
(R0) + 

; Store buffer address register 

MOVZWL UCB$W_TD_DATBUF(R5),- 
(RO)-*- 

; Store data buffer register. 

RSB ; Return 

.SBTTL TD_END, End of driver 

; ++ 

; Label that marks the end of the driver 

TD_END: ; Last location in driver 
.END 
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Every device driver declares three static tables that describe the device and 
driver: 

• Driver-prologue table—describes the device type, driver name, and fields 
in the I/O database to be initialized during driver loading and reloading. 

• Driver-dispatch table—lists some of the driver's entry points to which 
VAX/VMS transfers control. The channel-request block and function- 
decision table list other entry points. 

• Function-decision table—lists valid functions of the driver and entry 
points to routines that perform I/O preprocessing for each function. 

The VAX/VMS operating system provides macros that drivers can invoke to 
create the tables listed above. Descriptions of individual tables in the sections 
that follow also describe the macros invoked to create the tables. 

All of the macros described in this chapter are keyword macros. Argument 
values for such macros can be expressed in the following format: 

KEYWORD=argument-value 

The VAX MACRO and Instruction Set Reference Volume describes the syntax 
rules for keyword macros in detail. The sections that follow provide examples 
of macro usage. 

7.1 Driver-Prologue Table 

The driver-prologue table (DPT) is the first part of every device driver. 
This table, along with parameters to the SYSGEN command that request 
driver loading, describes the driver to the driver-loading procedure. In turn, 
the driver-loading procedure computes the size of the driver, loads it into 
nonpaged system memory, and creates data structures for the new device(s) 
in the I/O database. The loading procedure also links the new DPT into a list 
of all DPTs known to the system. Section 14 describes how the driver-loading 
procedure decides which data structures to build for a given device. 

Device drivers can pass data-structure initialization information to the driver¬ 
loading procedure through values stored in the DPT. In addition, the driver¬ 
loading procedure initializes some fields within the device data structures 
using information from its own tables. 

Figure A-8 illustrates the DPT data structure, and Table A-8 describes its 
contents. Drivers must treat many of the fields initialized by the driver¬ 
loading procedure as read-only fields. These fields are marked with an 
asterisk in Appendix A. 
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7.1.1 DPTAB Macro 

To create a DPT, the driver invokes the DPTAB macro. 

Format 

DPTAB end .adapter ,[flags=0] .ucbsize .[unload] ,[maxunits=8] - 
,[defunits=l] ,[deliver] ,[vector] .name 

Arguments 

end 
Name of the label at the end of the driver module. 

adapter 
Adapter type. The adapter type can be any of the following: 

UBA UNIBUS adapter or MicroVAX II or MicroVAX I Q22 bus interface 

MBA MASSBUS adapter 

DR DR device 

NULL No actual device for driver 

[flags=0] 
Flags used in loading the driver. These flags include the following: 

DPT$M_SVP When set, causes the driver-loading procedure to allocate 
a permanent system page-table entry (PTE) for the device. 
The index to the virtual address of the permanently 
allocated system PTE is stored in UCB$I_SVPN when the 
UCB is created. A driver can calculate the system virtual 
address of the page described by this index by using the 
formula: 

(index * 20016) + 8000000016 

Disk drivers use this system PTE during ECC error 
correction, and when using the system routines 
IOCSMOVFRUSER and IOCSMOVTOUSER, described 
in Appendix C. 

DPT$M_NOUNLOAD When set, indicates that the driver cannot be reloaded 
except in the event of a system bootstrap. 

ucbsize 
Size of each unit-control block (UCB) in bytes. This required argument allows 
drivers to extend the UCB to store device-dependent data describing an I/O 
operation. Driver routines and VAX/VMS ECC routines interpret fields in 
the extended part of the UCB. The amount that the UCB is extended varies 
according to driver type. Appendix A provides examples. 

[unload] 
Address of a routine to call before the driver is reloaded. The driver-loading 
procedure calls this routine before reinitializing all controllers and device 
units associated with the driver. 
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[maxunits=8] 
Maximum number of units that this driver supports on a controller. This 
field affects the size of the interrupt-dispatch block created by SYSGEN's 
CONNECT command. If this field is omitted, the default is eight units. You 
can override the default by appending the /MAXUNITS qualifier to the 
CONNECT command. 

[defunits=1] 
Number of units created by default for each controller that SYSGEN's 
AUTOCONFIGURE command processes on behalf of this driver. The unit 
numbers created are 0 through defunits-1. If the deliver argument to the 
DPTAB macro is omitted, AUTOCONFIGURE creates the number of units 
specified by defunits. If the deliver argument is present, it names a unit- 
delivery routine that AUTOCONFIGURE calls to determine whether or not to 
create each unit automatically. 

[deliver] 
Address of a unit-delivery routine that AUTOCONFIGURE calls to determine 
which units to configure automatically for the device supported by this driver. 

[vector] 
Address of a driver-specific transfer vector. Use of this argument is reserved 
to DIGITAL. 

name 
Name of the device driver module. The driver-loading procedure will permit 
the loading of only one copy of the driver associated with this name. By 
convention, a driver name is formed by appending the string DRIVER to the 
2-alphabetic-character generic device name, for example, DBDRIVER. 

7.1.2 DPT_STORE Macro 

Most device drivers need to initialize certain fields of the I/O database 
with driver-specific values. The DPT_STORE macro provides the driver 
with a means of communicating its initialization needs to the driver-loading 
procedure. When invoked, the DPT_STORE macro places information in 
the DPT that the driver-loading procedure uses to load specified values into 
specified fields. The DPT_STORE macro accepts two lists of fields: 

• Fields to be initialized when a CONNECT command causes SYSGEN to 
build I/O database data structures and when the driver is reloaded 

• Fields to be initialized only when SYSGEN is given the RELOAD 
command, causing the driver to be reloaded 

The DPTAB macro stores the relative addresses of these two lists, called 
initialization and reinitialization data, in the DPT. The list of one or more 
invocations of the DPT_STORE macro must appear after the DPTAB macro. 

Drivers must use the DPT_STORE macro to supply initialization data for the 
following fields: 

UCB$B_FIPL 

UCB$B_DIPL 

UCB$L_DEVCHAR 

Driver fork IPL 

Hardware device IPL 

Device characteristics 
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The driver also must provide reinitialization data for the device-data block 
field DDB$L_DDT and for any of the following routine addresses in the 
channel-request block: 

DDB$L_DDT 

CRB$I_INTD+4 

CRB$L_INTD+VEC$L—INITIAL 

CRB$I_INTD+VEC$I_UNITINIT 

Address of the driver-dispatch table. 

Entry point to the driver interrupt-servicing 
routine, if one exists. 

Address of a controller-initialization routine, 
if one exists. 

Address of a device unit-initialization 
routine, if one exists. This entry point 
is used by UNIBUS and Q22 bus devices. 

The DPT—STORE macro either declares an assembly language label or 
describes a field to be initialized. 

Format 

DPT.STORE type .offset ,oper ,exp [,pos] [.size] 

Arguments 

type 

Type of data structure into which the data is to be stored (CRB, DDB, IDB, 
ORB, or UCB); or label denoting a table marker. A label can be any of the 
following: 

INIT Indicates the start of fields to initialize when the driver is loaded. 

REINIT Indicates the start of additional fields to initialize when the driver is 
loaded or reloaded. 

END Indicates the end of the two lists. 

If this argument is a label, no other argument is allowed. In this case, only 
fields in the DPT are affected. 

offset 

Unsigned offset into the data structure. The driver-loading procedure can 
initialize only the first 256 bytes of each data structure. Unit and controller 
initialization routines can initialize additional data fields. 

oper 

Type of operation to be performed. The type can be one of the following: 

B Write a byte value 

W Write a word value 

L Write a longword value 

D Write an address relative to the driver 

V Write a bit field 

The V operation takes the following longword of data and the pos and size 
arguments as operands of an INSV instruction. 

An at sign ((a)) preceding the oper argument indicates that the expression 
argument that follows is the address of the initialization data. 
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exp 
Expression to be stored in the data structure or, if an at sign (@) is specified 
preceding the oper argument, the address of an expression. For example, the 
following macro indicates that DEVICE—CHARS is the address of the data to 
write into the DEVCHAR field of the UCB. 

DPT.STORE UCB,UCB$L_DEVCHAR.®L,DEVICE.CHARS 

[pos] 
Starting bit position within the specified field. This argument is specified only 
for V operations. 

[size] 
Number of bits in the field. This argument is specified only for V operations. 

7.1.3 Example of DPTAB and DPT_STORE Macros 
The following example invokes the DPTAB macro and DPT_STORE macros 
to describe a device driver and its database. 

DPTAB - 
END=XX_END,- 
ADAPTER=UBA,- 
UCBSIZE=UCB$K_XX_LENGTH. - 
NAME=XXDRIVER 

DPT.STORE INIT 

DPT.STORE UCB,UCB$B_FIPL,B,8 
DPT.STORE UCB,UCB$L_DEVCHAR,L,- 

<DEV$M_REC- 
!DEV$M_AVL- 
!DEV$M_ODV> 

DPT.STORE UCB,UCB$B_DEVCLASS.B.- 
DC$_XX 

DPT.STORE UCB,UCB$B_DEVTYPE,B,- 
XX$_XL78 

DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,- 
132 

DPT.STORE UCB,UCB$B_DIPL,B,22 

Define DPT 
End of driver 
Adapter type 
Size of UCB 
Name of driver module 
Start of data structure 
initialization values 

Driver fork IPL 
Device characteristics: 
record-oriented 
available 
output device 

Device class 

Device type 

Default buffer size 

Device IPL 

DPT.STORE REINIT Start of data structure 
reinitialization values 

DPT.STORE CRB,CRB$L_INTD+4,D,- 
XX.INTERRUPT 

Interrupt service 
routine address 

DPT.STORE CRB,CRB$L_INTD+VEC$L_UNITINIT,- 
D,XX.XL78.INIT Unit initialization 

routine address 

DPT.STORE DDB,DDB$L_DDT,D,XX$DDT 

DPT.STORE END 

Address of driver 
dispatch table 
End of field 
initialization 
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7.2 Driver-Dispatch Table 
The driver-dispatch table (DDT) lists some of the entry points for driver 
routines to be called by VAX/VMS for I/O processing. Every driver must 
create a DDT. 

The routines listed in the DDT can reside in the driver module or in a 
VAX/VMS module. Appendix A describes the VAX/VMS device-independent 
routines that can be specified. 

Device-dependent routines are normally located in the driver module. The 
DDT contains relative addresses for routines located in the driver module and 
absolute addresses for routines located in the operating system. At loading 
time, the driver-loading procedure changes the relative addresses of driver 
routines to absolute addresses. 

The driver creates the DDT by invoking the macro DDTAB. The driver¬ 
loading procedure writes the address of the DDT table, as specified in a 
DPT_STORE macro, into the device-data block. Figure A-7 illustrates the 
structure of a DDT and Table A-7 describes its contents. 

7.2.1 DDTAB Macro 
The DDTAB macro creates a DDT. The table has a label of devnam$DDT. Just 
preceding the table, DDTAB generates the driver code program section with 
the following statement: 

.PSECT $$$115_DRIVER 

The DDTAB macro writes the address of the VAX/VMS routine 
IOC$RETURN into routine address fields of the DDT that are not supplied 
in the macro invocation (with the exception of the mntver argument). 
IOC$RETURN simply executes an RSB instruction. 

Format 

DDTAB devnam ,[start=IOC$RETURN] , [unsolic^IOClRETURN] .functb - 
[,cancel=IOC$RETURN] [,regdmp=IOC$RETURN] [,diagbf=0] - 
[,erlgbf=0] [,unitinit=IOC$RETURN] [,altstart=IOC$RETURN] - 
[.mntver=IOC$MNTVER] [,cloneducb=IOC$RETURN] 

Arguments 

devnam 
Generic name of the device. 

[start=IOC$RETURN] 
Address of the driver's start-I/O routine. 

[unsolic=IOC$RETURN] 
Address of the routine that services unsolicited interrupts from the device. 
Only MASSBUS device drivers use this field. 

functb 
Address of the driver's function-decision table. 

[cancel=IOC$RETURN] 
Address of the driver's cancel-I/O routine. 
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[regdmp=IOC$RETURN 
Address of the routine that dumps the device registers to an error log buffer 
or to a diagnostic buffer. 

[diagbf=0] 
Length in bytes of the diagnostic buffer used for this device. 

[erlgbf=0] 
Length in bytes of the error log buffer used for this device. 

[unitinit=IOC$RETURN] 
Address of the device unit-initialization routine, if one exists. MASSBUS 
drivers should use this field rather than CRB$L_INTD+VEC$L_UNITINIT. 
UNIBUS or Q22 bus drivers can use either one. 

[altstart=IOC$RETURN] 
Address of the alternate start-I/O routine. To initiate this routine, a driver 
FDT routine exits by means of VAX/VMS routine EXE$ALTQUEPKT instead 
of EXE$QIODRVPKT (see Section 8.6). 

[mntver=IOC$MNTVER] 
Address of a VAX/VMS routine that is called at the beginning and end 
of a mount verification operation. If no routine is specified, the routine 
IOC$MNTVER is called. Use of this field to call any routine other than 
IOC$MNTVER is reserved to DIGITAL. 

[cloneducb=IOC$RETURN] 
Address of a VAX/VMS routine to call when a UCB is cloned by the 
$ASSIGN system service 

7.2.2 Example of DDTAB Macro 
In the following example of using the DDTAB macro, notice that a plus 
sign ( + ) precedes the address of the entry point to the cancel-I/O routine. 
The plus sign indicates that the routine is part of VAX/VMS. No plus sign 
precedes the address of the start-I/O routine because it is part of the driver 
module. Omitting a required plus sign is a common error in device drivers. 

DDTAB DEVNAM=XX,- ; Driver dispatch table 

START=STAHTIO,- ; Start the I/O operation 
FUNCTB=FUNCTABLE,- ; Function decision table 
CANCEL=+IOC$CANCELIO ; Cancel I/O 

7.3 Function-Decision Table 
The function-decision table (FDT) lists codes for I/O functions that are valid 
for the device; indicates whether the functions are buffered-I/O functions; 
and specifies routines to perform preprocessing for particular functions. Every 
device driver must create an FDT containing three or more entries: 

• The list of valid I/O-function codes 

• The list of buffered I/O-function codes 
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• One or more entries, each of which specifies all or a subset of I/O-function 
codes and the address of a routine that performs I/O preprocessing for 
those function codes 

If no buffered I/O functions are defined for the device, the second entry 
contains an empty list. 

Taken together, the third through last entries in the FDT specify one or 
more FDT routines for each valid I/O-function code for the device. The 
FDT routines must terminate the I/O preprocessing for each type of function 

by transferring control out of the $QIO system service and into a routine 
that queues the I/O request to a driver, inserts the I/O request in the 
postprocessing queue, or aborts the I/O request. 

Refer to Section 8 for information on the writing of FDT routines. 

Table 7-1 lists the physical-, logical-, and virtual-I/O-function codes that an 
FDT most commonly uses. A complete list of function codes is contained in 
the macro $IODEF in SYS$LIBRARY:STARLET.MLB. 

Table 7-1 VAX/VMS l/O-Function Codes 

Function Codes Defined 

Physical I/O IO$_AVAILABLE 

IO$_DIAGNOSE 

IO$_DRVCLR 

IO$_ERASET APE 

IO$_NOP 

IO$_OFFSET 

IO$_PACKACK 

IO$_READHEAD 

IO$_READPBLK 

IO$_READPRESET 

IO$_READTRACKD 

IO$_RECAL 

IO$_RELEASE 

IO$_RETCENTER 

IO$_SEARCH 

JO$_SEEK 

IO$_SENSECHAR 

IO$_SETCHAR 

IO$_SPACEFILE 

IO$_SPACERECORD 

IO$_ST ARTSPNDL 

IO$_UNLOAD 

IO$_WRITECHECK 

Description 

Set device available (required by all disk 
drivers) 

Diagnose 

Drive clear 

Erase tape 

No operation 

Offset read heads 

Pack acknowledge (required by all disk 
drivers) 

Read header and data 

Read physical block 

Read in preset 

Read track data 

Recalibrate drive 

Release port 

Return to center line 

Search for sector 

Seek cylinder 

Sense device characteristics 

Set device characteristics 

Space files 

Space records 

Start spindle 

Unload drive (required by all disk 
drivers) 

Write check data 
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Table 7-1 (Cont.) VAX/VMS l/O-Function Codes 

Function Codes Defined Description 

IO$_WRITECHECKH 

IO$_WRITEHEAD 

IOS—WRITEMARK 

IO$_WRITEPBLK 

IO$_WRITETRACKD 

Logical I/O IO$_READLBLK 

IO$_REWIND 

IO$_REWINDOFF 

IO$_SENSEMODE 

IO$_SETMODE 

IO$_SKIPFILE 

IO$_SKIPRECORD 

IO$_WRITELBLK 

IOS—WRITEOF 

Virtual I/O IO$_ACCESS 

IO$_ACPCONTROL 

IO$_CREATE 

IO$_DEACCESS 

IO$_DELETE 

IO$_MODIFY 

IO$_MOUNT 

IO$_READPROMPT 

IOS—READVBLK 

IO$_WRITEVBLK 

Write check header and data 

Write header and data 

Write tape mark 

Write physical block 

Write track data 

Read logical block 

Rewind tape 

Rewind and set offline 

Sense device mode 

Set mode 

Skip files 

Skip records 

Write logical block 

Write end of file 

Access file 

Miscellaneous ACP control 

Create file 

Deaccess file 

Delete file 

Modify file 

Mount volume 

Read terminal with prompt message 

Read virtual block 

Write virtual block 

7.3.1 Defining Device-Specific Function Codes 
You can also define device-specific function codes by equating the name of a 
device-specific function with the name of a function that is irrelevant to the 
device. The selected codes should, however, have a type (logical, physical, or 
virtual) that is appropriate for the function they represent. For example, the 
assembly code that follows defines three device-specific physical-I/O-function 
codes. 

IO$_STARTCLOCK=IO$_ERASETAPE ; Start hardware clock 
I0$_ST0PCL0CK=I0$_0FFSET ; Stop hardware clock 
IO$_STARTDATA=IO$_SPACEFILE ; Start data acquisition 

The device driver creates an FDT by invoking the FUNCTAB macro. Each 
invocation of the FUNCTAB macro creates a 2- or 3-longword entry in the 
FDT. The first two invocations create 2-longword entries because they specify 
only function codes; they do not specify an accompanying action routine. 
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All subsequent invocations of the FUNCTAB macro must specify both 
function codes and the address of a routine that is to perform preprocessing 
for those functions. These invocations create 3-longword entries. 

The $QIO system service processes entries in the order in which they appear 
in the FDT. When a function code is present in more than one 3-longword 
entry, the system service sequentially calls every routine specified for the 
function code until a routine stops the scan by aborting, completing, or 
queuing an I/O request. 

7.3.2 Defining Buffered-I/O Functions 
The second entry in an FDT is a buffered function bit mask that indicates which 
legal functions the driver handles as buffered-I/O operations. In selecting the 
functions that are to be buffered, you should take the following information 
into consideration: 

• Direct I/O is intended only for devices whose I/O operations always 
complete quickly. For example, although terminal I/O is fast, users can 
prevent the I/O operation from completing by using CTRL/S to halt the 
operation indefinitely; therefore, terminal I/O operations are buffered I/O. 

• Use of direct I/O requires that the process pages containing the buffer be 
locked in memory. Locking pages in memory increases the overhead of 
swapping the process that contains the pages. 

• Use of buffered I/O requires that the data be moved from the system 
buffer to the user buffer. Moving data requires additional time. 

• Routines that manipulate data before delivering it to the user (for example, 
an interrupt-servicing routine for a terminal) cannot gain access to the data 
if direct I/O is used. Therefore, transfers that require data manipulation 
must be buffered I/O. 

• VAX/VMS handles the quotas differently for direct I/O and buffered I/O, 
as described in the VAX/VMS System Manager's Reference Manual. 

• Generally, DMA devices use direct I/O, while programmed I/O devices 
use buffered I/O. 

Section 7.3.4 provides an example of functions that are handled as buffered 
I/O operations. 

7.3.3 FUNCTAB Macro 
The FUNCTAB macro creates an FDT for a driver. 

Format 

FUNCTAB [action] .codes 

Arguments 

[action] 

Address of a routine to call during I/O preprocessing of the specified I/O- 
function code or codes. A routine is specified only for the third through last 
entries of the table. The list of valid I/O functions and the list of buffered- 
I/O functions have no associated routines. 
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codes 
List of I/O-function codes. The macro expansion prefixes each code specified 

with the string IO$_; for example, READVBLK expands to IO$_READVBLK. 

7.3.4 Example of FUNCTAB Macro 
In the example below, the routine (named XX—READ) called for a read 
function is a driver routine. It appears later in the driver module. The 
routines EXE$SETMODE and EXE$SENSEMODE, preceded by plus signs ( + ) 
in the macro argument, are VAX/VMS routines that preprocess I/O requests 
for the device's set-characteristics and sense-mode functions. 

XX.FUNCTABLE: 

FUNCTAB 

<READLBLK,- 

READPBLK,- 

READVBLK,- 

SENSEMODE,- 

SENSECHAR,- 

SETMODE,- 

SETCHAR,- 
S 

Function-decision table 

Valid functions 

Read logical block 

Read physical block 

Read virtual block 

Sense reader mode 

Sense reader characteristics 

Set reader mode 

Set reader characteristics 

FUNCTAB $ 

<READLBLK,- 

READPBLK,- 

READVBLK,- 

SENSEMODE,- 

SENSECHAR,- 

SETMODE,- 

SETCHAR,- 
> 

Buffered-I/O functions 

Read logical block 

Read physical block 

Read virtual block 

Sense reader mode 

Sense reader characteristics 

Set reader mode 

Set reader characteristics 

FUNCTAB XX.READ,- 

<READLBLK,- 

READPBLK,- 

READVBLK,- 

Read functions 

Read logical block 

Read physical block 

Read virtual block 

FUNCTAB ♦EXE$SETMODE,- 

<SETCHAR,- 

SETMODE,- 

Set mode/characteristics 

Set reader characteristics 

Set reader mode 

FUNCTAB +EXE$SENSEMODE,- 

<SENSECHAR,- 

SENSEMODE,- 
> 

Sense mode/characteristics 

Sense reader characteristics 

Sense reader mode 
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The $QIO system service uses the driver's function-decision table (FDT) 
to determine which FDT routines to call. These FDT routines validate 
user-specified arguments in the I/O request. VAX/VMS contains many 
device-independent FDT routines. Device drivers contain device-dependent 
FDT routines. 

A driver should call the VAX/VMS device-independent FDT routines, 
described in Section 8.5, whenever possible. This practice encourages the 
use of well debugged routines and minimizes driver size. 

8.1 Context of FDT Routine Execution 
The $QIO system service executes in the context of the process that issues 
the I/O request, but in kernel mode and at IPL$_ASTDEL. The process is 
executing in kernel mode because the dispatching of the $QIO system service 
executes a CHMK instruction. Virtual addresses are mapped according to 
the process page tables. This mapping allows FDT routines access to user- 
specified virtual addresses. The $QIO system service expects FDT routines 
to preserve this context. Therefore, an FDT routine observes the following 
conventions: 

• It cannot call VAX/VMS system services or VAX RMS services. 

• It does not lower IPL below IPL$_ASTDEL. If a routine raises IPL, it must 
lower IPL to IPL$_ASTDEL before exiting. 

• It does not alter the stack without restoring its original state before exiting. 

• It exits either by an RSB instruction to return control to the system service, 
or it issues a JMP instruction to one of the VAX/VMS routines described 
in Section 8.2. 

Before calling an FDT routine, the $QIO system service sets up the contents 
of certain registers, as described in Table 8-1. 

Table 8—1 Registers Loaded by the $QIO System Service 

Register Content 

RO Address of FDT routine being called 

R3 Address of IRP for current I/O request 

R4 Address of process-control block (PCB) of current process 

R5 Address of UCB of device assigned to user-specified process-l/O 
channel 

R6 Address of CCB that describes user-specified process-l/O channel 

R7 Bit number of user-specified l/O-function code 
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Table 8- ■1 (Cont.) Registers Loaded by the $QIO System 
Service 

Register Content 

R8 Address of current entry in FDT 

AP Address of first function-dependent argument (pi) specified in I/O 
request 

FDT routines are responsible for preserving the contents of R3 through R8 
across subroutine calls. FDT routines can use RO through R2 and R9 through 
Rll without saving their previous contents. If an FDT routine needs to use 
R3 through R8, the routine can use the PUSHR and POPR instructions to 
save registers on the stack and later restore them. 

8.2 Transferring Into and Out of an FDT Routine 
To transfer control to an FDT routine, the $QIO system service loads the 
address of the FDT routine into a register and executes a JSB instruction, as 
follows: 

JSB (RO) 

Each FDT routine chooses an exit path on the basis of the following factors: 

• Whether another FDT routine needs to be called to perform additional 
function-specific processing 

• Whether an error is found in the I/O request 

• Whether the operation is complete 

• Whether the I/O operation requires and is ready for device activity 

The FDT routines, as illustrated in Figure 8-1, must transfer control out of 
the FDT processing loop and into a VAX/VMS routine that queues an IRP, 
completes an I/O request, or aborts an I/O request. The $QIO system service 
does not stop scanning the FDT. Therefore, you must ensure that all valid 
function codes in a driver's FDT eventually call an FDT routine that does not 
return control to the $QIO system service. 

An FDT routine can exit using any of the following methods: 

• RSB 

• JMP G''EXE$QIODRVPKT 

• JSB G/'EXE$ALTQUEPKT 

• JMP G"EXE$FINISHIO or JMP G~EXE$FINISHIOC 

• JMP G^EXESABORTIO 

These methods are described below, and you can find additional details on 
the routines they involve in Section 8.6. The first method listed returns to 
the $QIO system service. All other methods jump to VAX/VMS routines that 
take the appropriate action. 
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Figure 8-1 $QIO Scan of a Function-Decision Table 

ZK-926-82 

RSB 

Returns to the $QIO system service. The FDT routine returns to the system 
service because the routine knows that the FDT contains a subsequent entry 
with the same function code bit set. As a result, the system service calls 
another FDT routine. 

JMP G EXE$QIODRVPKT 

Transfers control to a VAX/VMS routine that queues an IRP to a driver. The 
FDT routine uses this exit method if all preprocessing is complete, if no fatal 
errors are found in the specification of an I/O request, and if device activity is 
required to complete the I/O request. 

Once an FDT routine transfers control to this routine, no driver code that 
further processes the I/O request can refer to the process virtual address 
space. 

EXE$QIODRVPKT is the standard method used to queue an I/O request 
for device activity. This routine initiates driver action only if the device unit 
is currently idle, if no I/O request is being processed. If the device unit is 
busy, EXE$QIODRVPKT queues the request to the unit so that the driver will 
process it when the unit becomes available. 

JSB G EXE$ALTQUEPKT 

Transfers control to a VAX/VMS routine that calls an alternate start-I/O 
routine in the driver that synchronizes requests for activity on a device unit 
and initiates the processing of I/O requests. A driver that can handle two or 
more I/O requests simultaneously uses this exit method. 

The FDT routine uses this exit method when it has successfully completed 
all driver preprocessing and the request requires device activity. Flowever, 
in contrast to EXE$QIODRVPKT, EXE$ALTQUEPKT initiates driver action 
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at this driver's alternate start-I/O routine entry point without regard for the 
device unit's activity status. 

JMP G EXE$FINISHIO or JMP G EXE$FINISHIOC 

Transfers control to a VAX/VMS routine that writes a quadword of final I/O 
status from RO and R1 into the I/O status field of the IRP 
(IRP$L—MEDIA and IRP$L_MEDIA+4).1 The routine then inserts the IRP in 
the I/O postprocessing queue. 

An FDT routine that discovers a device-dependent error should always return 
status using EXE$FINISHIO or EXE$FINISHIOC. The routine returns to the 
$QIO system service the two longwords of status contained in the I/O-status 
block (if any) specified in the I/O request. 

JMP G EXE$ABORTIO 

Transfers control to a VAX/VMS routine that aborts an I/O request. An FDT 
routine that discovers a device-independent error in an I/O request should 
always use this method of exit. The routine stores a longword of status in RO 
and returns this to the system service. Inability to gain access to a data buffer 
is an example of a device-independent error. 

8.3 FDT Routines for VMS Direct I/O 

The VAX/VMS operating system provides two standard FDT routines that 
are applicable for direct I/O operations: EXE$READ and EXE$WRITE. When 
called by the driver, these routines completely prepare a direct I/O read or 
write request. Thus, a driver that uses these routines eliminates the need for 
its own device-specific FDT routines. 

EXE$READ and EXE$WRITE are described in Section 8.5. 

8.4 FDT Routines for VMS Buffered I / O 

Device drivers for buffered I/O operations must contain their own device¬ 
specific FDT routines. An FDT routine for buffered I/O must confirm either 
read or write access to the user's buffer and allocate a buffer in system space. 

8.4.1 Checking Accessibility of the User's Buffer 

First the FDT routine calls EXE$READCHK or EXE$WRITECHK to confirm 
write or read access, respectively, to the user's buffer. Both of these routines 
write the transfer byte count into IRP$L_BCNT. EXE$READCHK also sets 
IRP$V_FUNC in IRP$W_STS to indicate that the function is a read. 

* EXE$FINISHIOC dears the second longword of the final I/O status. 
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8.4.2 Allocating the System Buffer 
Next, the FDT routine allocates a system buffer. First, it adds 12 bytes for 
a buffer header to the byte count passed in the p2 argument of the user's 
I/O request. This is the total system buffer size. The FDT routine then 
calls EXE$BUFFRQUOTA to ensure that the user has sufficient remaining 
resources. If EXE$BUFFRQUOTA returns with a success code, the FDT 
routine calls EXE$ALLOCBUF, which allocates the buffer and writes the 
buffer's size and type into its third longword. 

Once the buffer is allocated, the FDT routine takes the following steps: 

1 Loads the address of the system buffer into IRP$L_SVAPTE. 

2 Loads the total size of the system buffer into IRP$W_BOFF. 

3 Subtracts the system buffer size from JIB$L_BYTCNT. A longword in the 
PCB (PCB$L_JIB) points to the location of the job-information block (JIB). 

4 Stores the starting address of the system buffer data area in the first 
longword of the buffer header. 

5 Stores the user's buffer address in the second longword of the header. 

6 Copies data from the user buffer to the system buffer if the I/O request is 
a write operation. 

At this point, buffers are ready for the transfer. Figure 8-2 illustrates the 
format of the system buffer. 

Figure 8-2 Format of System Buffer for a Buffered-I/O Read 
Function 

SYSTEM BUFFER 

Appendix C provides additional information about EXE$READCFIK, 
EXE$WRITECHK, EXE$BUFFRQUOTA, and EXE$ALLOCBUF. 

8-5 



Writing FDT Routines 

8.4.3 Buffered-I/O Postprocessing 
When the transfer finishes, the driver returns control to VAX/VMS for 
completion of the I/O request. The driver writes the final count of bytes 
transferred into the high-order word of RO and the final request status in 
the low order words of RO and Rl. The driver must leave the buffer header 
intact; I/O postprocessing relies on the header's accuracy. When VAX/VMS 
I/O postprocessing gains control, it performs three steps: 

1 Adds the value in IRP$W_BOFF to JIB$L_BYTCNT to update the user's 
byte count quota 

2 If IRP$L_SVAPTE is nonzero, assumes a system buffer was allocated and 
checks to see whether IRP$V_FUNC is set in IRP$W_STS 

3 If IRP$V_FUNC is clear, deallocates the system buffer used for the write 
operation; if IRP$V_FUNC is set, the special kernel-mode AST copies the 
data to the user's buffer and then deallocates the buffer in addition to 
performing other kernel-mode AST functions 

The special kernel-mode AST performs the following steps to complete a 
buffered read operation: 

1 Obtains the address of the system buffer from IRP$L_SVAPTE. 

2 Obtains the number of bytes to write to the user's buffer from 
IRP$L_BCNT (for a read operation). 

3 Obtains the address of the user's buffer from the second longword of the 
system buffer header. 

4 Checks for write accessibility on all pages of the user's buffer (for a read 
operation). 

5 Copies the data from the system buffer to the process' buffer (for a read 
operation). 

6 Deallocates the system buffer. Note that the system uses the size listed in 
the buffer's header to deallocate the buffer. 

8.5 FDT Routines Provided by VAX/ VMS 
The VAX/VMS FDT routines perform I/O request validation that is common 
to many devices. Whenever possible, drivers should take advantage of these 
routines. Normally, if a VAX/VMS FDT routine is called, no additional 
FDT processing is required. All of the VAX/VMS FDT routines described 
here exit by transferring control to EXE$QIODRVPKT, EXE$FINISHIO, 
EXE$FINISHIOC, or EXE$ABORTIO. Once a VAX/VMS FDT routine is 
called, no subsequent FDT processing occurs. 

For additional information about VAX/VMS FDT routines, see the pertinent 

routine descriptions in Appendix C.2 

^ For disk drivers, VAX/VMS supplies the FDT routine EXE$LCLDSKVALID, described in Appendix C, that processes an IO$_PACKACK, 

IO$_AVAILABLE, or IO$_UNLOAD function on a local disk. This routine must be the last FDT routine called for the function, and dispatches 

to either EXE$FINISHIO or EXE$QIODRVPKT when it completes FDT processing. 
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8.5.1 EXE$ONEPARM 
EXE$ONEPARM processes an I/O-function code that has one parameter 
associated with it. 

Exit Method 

Queues the IRP to the driver. 

Description 

Processes an I/O-function code that requires only one parameter that needs 
no checking; for example, the parameter does not have to be checked for read 
or write accessibility. EXE$ONEPARM stores the parameter, found at 0(AP), 
in IRP$L—MEDIA of the IRP. Then, it queues the IRP to the driver. 

8.5.2 EXE$READ 
EXE$READ processes a logical-read or physical-read function for a direct I/O 
operation. EXE$READ cannot be used for buffered I/O operations. 

Exit Method 

Aborts the I/O request if an error occurs, or dismisses and resubmits the 
I/O request if the user I/O buffers cannot be locked in memory; otherwise, 
queues the IRP to a driver. 

Description 

Sets the I/O-function bit in the status field (IRP$V_FUNC in IRP$W_STS) of 
the IRP. This bit indicates that the function is a read. 

EXE$READ writes the fourth device-dependent argument to the I/O request 
(p4), located at 12(AP) into the carriage-control field (IRP$B_CARCON). 

The routine replaces the logical-function code IO$_READLBLK with the 
physical-function code IO$_READPBLK in the function code field 
(IRP$W_FUNC) of the IRP. 

If argument p2 (the transfer byte count) of the $QIO system service call is 
zero, EXE$READ queues the IRP to a device driver. Argument p2 is found at 
4(AP). If the byte count is not zero, EXE$READ uses the starting address of 
the transfer, found at 0(AP), and the transfer byte count as arguments to the 
routine EXE$READLOCK. 

The routine EXE$READLOCK calls EXE$READLOCKR, which immediately 
calls EXE$READCHKR. This last subroutine determines whether the caller's 
buffer permits write access. 

If EXE$READCHKR finds that the buffer is accessible, it updates the IRP by 
writing the size in bytes of the transfer to IRP$L_BCNT and setting the read 
status bit in IRP$W_STS (IRP$V_FUNC). The maximum number of bytes that 
EXE$READ can transfer is 65,535 (128 pages minus one byte). 

If the buffer does not allow write access, EXE$READCHKR returns access 
violation status to its caller, EXE$READLOCKR, which summons its caller 
(EXE$READLOCK) as a coroutine. 
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When EXE$READLOCK is called as a coroutine, it does not take any error 
action. Instead, it passes control to EXE$READLOCKR, which aborts the I/O 
request with access violation status. EXE$READLOCK is called as a coroutine 
for the convenience of drivers that call EXE$READLOCKR directly. (See 
Appendix C for more details.) 

After EXE$READCHKR confirms the buffer's write accessibility, 
EXE$READLOCKR calls the routine MMG$IOLOCK to lock into memory 
those pages that contain the buffer. MMG$IOLOCK, can return success, page 
fault, or error status to EXE$READLOCKR. 

If MMG$IOLOCK succeeds, EXE$READLOCKR stores the address of the 
process page-table entry (PTE) in the field IRP$L__SVAPTE and returns 
success status to EXE$READLOCK. 

However, if MMG$IOLOCK reports a page fault, EXE$READLOCKR adjusts 
direct I/O count and AST count to the values they held before the I/O 
request, deallocates the IRP and restarts the request procedure at the $QIO 
system service. This procedure is carried out so that the user process can 
receive asynchronous system traps while it waits for the page fault to 
complete. Once the page is faulted into memory, the system service will 
resubmit the I/O request. 

MMG$IOLOCK can report either of two errors: access violation (SS$_ 
ACCVIO) and insufficient working set limit (SS$_INSFWSL). When 
EXE$READLOCKR receives an error, it aborts the request with error status. 

After EXE$READLOCK returns to EXE$READ, the routine passes control to 
the exit routine EXE$QIODRVPKT so that the request is queued to the driver. 

8.5.3 EXE$SENSEMODE 

EXE$SENSEMODE processes the sense-device-mode and sense-device¬ 
characteristics functions by reading fields of the UCB. No device activity 
occurs. 

Exit Method 

Transfers control to EXE$FINISHIO. 

Description 

Loads the device-dependent characteristics field (UCB$L_DEVDEPEND) of 
the UCB into Rl. EXE$SENSEMODE then loads a normal completion status 
(SS$_NORMAL) into RO. Finally, it transfers control to EXE$FINISHIO to 
insert the IRP in the I/O postprocessing queue. 

8.5.4 EXE$SETCHAR 
EXE$SETCHAR processes the set-device-mode and set-device-characteristics 
functions. If setting device characteristics requires no device activity or 
requires no synchronization with fork processing, the driver's FDT entry can 
specify EXE$SETCHAR; otherwise, it must specify EXE$SETMODE. 

8—8 

Exit Method 

Aborts the I/O request on error; otherwise, transfers control to 
EXE$FINISHIO. 



Writing FDT Routines 

Description 

Determines whether the process has read access to the quadword that 
describes the new characteristics for the device. The first argument to the 
I/O request (pi), found at 0(AP), specifies the address of the quadword. If 
the process does not have read access to the quadword, EXE$SETCHAR 
aborts the request. 

If the process has read access, EXE$SETCHAR stores the new characteristics 
in fields of the device's UCB. If the function is IO$_SETCHAR, the 
device type and class fields (UCB$B_DEVCLASS and UCB$B_DEVTYPE, 
respectively) of the UCB receive the first word of data contained in the 
quadword. 

For both the IO$_SETCHAR and IO$_SETMODE functions, the routine 
writes the second word of data into the UCB's default-buffer-size field 
(UCB$W_DEVBUFSIZ) and the third and fourth words of data into the 
device-dependent-characteristics field (UCB$L_DEVDEPEND). 

Finally, EXE$SETCHAR stores the normal completion status (SS$_NORMAL) 
in RO and transfers control to EXE$FINISHIO to insert the IRP in the I/O 
postprocessing queue. 

8.5.5 EXE$SETMODE 

EXE$SETMODE processes the set-device-mode and set-device-characteristics 
functions by activating the device. 

Exit Method 

Aborts the I/O request if an error occurs; otherwise, queues the IRP to the 
device driver. 

Description 

Determines whether the process has read access to the quadword that 
describes the new characteristics for the device. The first argument to the 
I/O request (pi), found at 0(AP), specifies the address of the quadword. If 
the process does not have read access to the quadword, EXE$SETMODE 
aborts the request. 

If the process has read access, EXE$SETMODE stores the new characteristics 
in the media field (IRP$L—MEDIA and IRP$L_MEDIA+4) of the IRP. The 
routine then transfers control to the exit routine EXE$QIODRVPKT, which 
queues the request to the appropriate device driver. 

8.5.6 EXE$WRITE 
EXE$WRITE processes a logical- or physical-write function for a direct I/O 
operation. EXE$WRITE cannot be used for buffered I/O operations. 

Exit Method 

Aborts the I/O request if an error occurs, or dismisses the I/O request if the 
user I/O buffers cannot be locked in memory; otherwise, queues the IRP to a 
driver. 
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Description 

Writes the fourth argument to the I/O request (p4), found at 12(AP) into the 

IRP's carriage control field (IRP$B_CARCON). 

EXE$WRITE replaces the logical-function code IO$_WRITELBLK with the 
physical-function code IO$_WRITEPBLK in the function code field of the IRP 
(IRP$W_FUNC). 

If argument p2 to the I/O request (the transfer byte count) is zero, 
EXE$WRITE queues the IRP to the driver. Argument p2 is found at 4(AP). 
If the byte count is not zero, EXE$WRITE uses the starting address of the 
transfer, found at 0(AP), and the transfer byte count as arguments to the 
routine EXE$WRITELOCK. 

The routine EXE$WRITELOCK calls EXE$WRITELOCKR, which immediately 
calls EXE$WRITECHKR. This last subroutine determines whether the caller's 
buffer permits read access. 

If EXE$WRITECHKR finds that the buffer is accessible, it updates the IRP by 
writing the size in bytes of the transfer to IRP$L_BCNT. EXE$WRITE can 
transfer a maximum of 65,535 bytes (128 pages minus one byte). 

If the buffer does not allow read access, EXE$WRITECHKR returns access 
violation status to its caller, EXE$WRITELOCKR, which summons its caller 
(EXE$WRITELOCK) as a coroutine. 

When EXE$WRITELOCK is called as a coroutine, it does not take any error 
action. Instead, it passes control to EXE$WRITELOCKR, which aborts the 
I/O request with access violation status. EXE$WRITELOCK is called as a 
coroutine for the convenience of drivers that call EXE$WRITELOCKR directly. 
(See Appendix C for more details.) 

After EXE$WRITECHKR confirms the buffer's read accessibility, 
EXE$WRITELOCKR calls the routine MMG$IOLOCK to lock into memory 
those pages that contain the buffer. MMG$IOLOCK can return success, page 
fault, or error status to EXE$WRITELOCKR. 

If MMG$IOLOCK succeeds, EXE$WRITELOCKR stores the address of the 
process page-table entry (PTE) in IRP$L_SVAPTE and returns success status 
to EXE$WRITELOCK. 

However, if MMG$IOLOCK reports a page fault, EXE$WRITELOCKR adjusts 
direct I/O count and AST count to the values they held before the IRP and 
restarts the request procedure at the $QIO system service. The routine carries 
out this procedure so that the user process can receive ASTs while it waits for 
the page fault to complete. Once the page is faulted into memory, the system 
service will resubmit the I/O request. 

MMG$IOLOCK can report either of two errors: access violation 
(SS$_ACCVIO) and insufficient working set limit (SS$_INSFWSL). When 
EXE$WRITELOCKR receives an error, it aborts the request with error status. 

After EXE$WRITELOCK returns to EXE$WRITE, the routine passes control to 
the exit routine EXE$QIODRVPKT so that the request is queued to the driver. 
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8.5.7 EXE$ZEROPARM 
EXE$ZEROPARM processes an I/O-function code that has no associated 
parameters. 

Exit Method 

Queues the IRP to the driver. 

Description 

Processes an I/O-function code that describes an I/O operation completely 
without any additional function-specific arguments. The only FDT processing 
necessary for a zero-parameter function code is to zero-fill the field of the 
IRP that normally contains a user-specified argument (IRP$L—MEDIA). Then 
EXE$ZEROPARM queues the IRP to a device driver. 

8.6 VAX/VMS Exit Routines 

Ultimately, FDT processing must terminate by transferring control to one 
of the following VAX/VMS routines: EXE$ABORTIO, EXE$FINISHIO, 
EXE$FINISHIOC, EXE$ALTQUEPKT, or EXE$QIODRVPKT. Each of these 
routines returns the system service status code to the user. 

8.6.1 EXE$ABORTIO 
When an FDT routine determines that an I/O request cannot be completed 
because of an error in the specification of the request or in FDT processing, 
the FDT routine transfers control to the VAX/VMS routine EXE$ABORTIO 
to abort the request. EXE$ABORTIO gains control without any change in 
the process context. Interrupt priority level is at IPL$_ASTDEL; the process 
virtual space is mapped; and the process is executing in kernel mode. 

Required Register Contents 

RO $QIO system service final status code 

R3 Address of current IRP 

R4 Address of process-control block (PCB) of current process 

R5 Address of UCB of device unit assigned to process-1/0 channel 

R3 through R5 always contain the IRP, PCB, and UCB addresses at the entry 
to an FDT routine. The FDT routine should be careful not to destroy these 
values. 

Description 

EXE$ABORTIO clears the address of the I/O-status block in the IRP 
(IRP$L_IOSB) so that no status will be returned during I/O postprocessing. 
EXE$ABORTIO also clears the bit in the IRP (ACB$V_QUOTA in the field 
IRP$B_RMOD). When set, this bit indicates that the requesting process 
specified an AST routine. If necessary, the routine readjusts the process' use 
of its AST quota. 
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Then EXE$ABORTIO inserts the IRP in the I/O postprocessing queue. If no 
other entries are in the queue, EXE$ABORTIO requests a software interrupt at 
IPL$_IOPOST. This interrupt causes postprocessing to occur before any other 
instructions in the EXE$ABORTIO routine are executed. 

When all I/O postprocessing has been completed, EXE$ABORTIO regains 
control and finishes the I/O operation as follows: 

• Lowers IPL to zero, which is the normal IPL for a process user 

• Changes mode back to the original processor access mode 

• Returns from the system service to the code of the image that originally 
requested the I/O operation. EXE$ABORTIO returns RO, which contains 
the final status code saved when the exit routine was called, to its caller. 

As a result of this exit method, any ASTs specified when the I/O request 
was issued will not be delivered, and any event flags requested will not be 
set. 

8.6.2 EXE$FINISHIO and EXE$FINISHIOC 
Many I/O requests need no device activity to be completed. The FDT 
routine(s) can complete the entire I/O request and immediately return status 
concerning the operation to the process. However, the VAX/VMS operating 

system provides two VAX/VMS I/O completion routines: EXE$FINISHIO 
and EXE$FINISHIOC. EXE$FINISHIO returns a quadword of I/O status. 
EXE$FINISHIOC returns a quadword of I/O status with the second longword 
containing zero. 

These routines gain control without any change in process context. Interrupt 
priority level is at IPL$_ASTDEL; the process page-tables are mapped; and 
the process is executing in kernel mode. 

Required Register Contents 

RO Value to be placed in the first longword of final I/O status when the $QIO 
system service returns final status 

R1 Value to be placed in the second longword of final I/O status (EXE$FINISHIO 
only) 

R3 Address of current IRP 

R4 Address of process-control block (PCB) of current process 

R5 Address of UCB of device unit assigned to process-l/O channel 

R3 through R5 always contain the IRP, PCB, and UCB addresses at the entry 
to an FDT routine. The FDT routine should be careful not to destroy these 
values. 
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Description 

EXE$FINISHIO and EXE$FINISHIOC modify fields in the I/O database and 
then complete the I/O request in the following steps: 

1 Increase the number of I/O operations completed on the current device in 
the operation count field of the UCB (UCB$L_OPCNT) 

2 Store the contents of RO and R1 in the media fields of the IRP 
(IRP$L_MEDIA and IRP$L_MEDIA+4) 

3 Insert the IRP in the I/O postprocessing queue and, if the queue is empty, 
request a software interrupt at IPL$_IOPOST 

EXE$FINISHIO and EXE$FINISHIOC lose control to I/O postprocessing 
because postprocessing executes at the higher IPL of IPL$_IOPOST. 
When EXE$FINISHIO and EXE$FINISHIOC regain control, they complete 
processing in three steps: 

1 Lower IPL to zero, which is the normal IPL for a process. 

2 Change mode back to the original processor access mode. 

3 Return from the system service to the image that originally requested the 
I/O operation. The image receives status SS$_NORMAL in RO, indicating 
that the I/O request has completed without device-independent error. 

8.6.3 EXE$QIODRVPKT 
Some I/O functions require device activity, or at least access to device 
registers, for the I/O operation to be completed. Common examples are read 
and write functions. While FDT routines can perform extensive preprocessing, 
such as determining whether user buffers are accessible and reformatting data 
into buffers in the system address space, they should not access device 
registers because the device might be active. 

Furthermore, FDT routines should exercise restraint when modifying the 
UCB. Routines usually access the UCB at driver fork IPL to synchronize 
modifications, and FDT routines do not execute at this interrupt priority level. 
Drivers containing FDT routines that access device registers or carelessly 
modify the UCB risk unpredictable operation or a system failure. 

For the type of I/O function involving device activity, the associated FDT 
routines perform all preprocessing and then transfer control to the VAX/VMS 
routine EXE$QIODRVPKT. It queues the IRP to a device driver and attempts 
to transfer control to the device driver's start-I/O routine. If the device unit 
is busy, EXE$QIODRVPKT inserts the IRP in a priority-ordered queue of IRPs 
waiting for the unit. 

Required Register Contents 

R3 Address of IRP 

R4 Address of process-control block (PCB) of current process 

R5 Address of the UCB for device unit assigned to process-l/O channel 
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Description 

EXE$QIODRVPKT calls EXE$INSIOQ, which first raises the interrupt priority 
level of the process to the fork level of the driver (UCB$B_FIPL). Driver fork 
level is, by convention, the interrupt priority level at which device drivers and 
VAX/VMS read and alter critical portions of the device's UCB. By executing 
at fork level, EXE$INSIOQ ensures that, while it is running, a driver fork 
process for the device unit cannot also be running. 

EXE$INSIOQ tests the UCB status word to see if the unit is busy. 

If the device unit is not busy, EXE$INSIOQ calls the VAX/VMS routine 
IOC$INITIATE to create a fork process context in which the driver can 
process the I/O request. IOC$INITIATE creates this context and activates the 
driver in the following steps: 

1 Sets the busy bit of the device's UCB (UCB$V_BSY in UCB$L_STS) 

2 Stores the address of the current IRP in the UCB field UCB$L_IRP 

3 Copies the transfer parameters contained in the IRP into the UCB: 

• Copies the starting address from IRP$L_SVAPTE to UCB$L_SVAPTE 

• Copies the byte offset within the page from IRP$W_BOFF to 
UCB$W_BOFF 

• Copies the low order word of the byte count from IRP$L_BCNT to 
UCB$W_BCNT 

4 Clears the cancel-I/O and timeout bits in the UCB status word 
(UCB$V_CANCEL and UCB$V_TIMOUT in UCB$L_STS) 

5 If the I/O request specifies a diagnostic buffer, as indicated by the bit 
IRP$V_DIAGBUF in IRP$W_STS, stores the system time in the buffer to 
which IRP$L_DIAGBUF points (the $QIO system service having already 
allocated the buffer) 

6 Finds the entry point of the device driver's start-I/O routine using the 
following chain of pointers: 

UCB —► DDT —► start-I/O routine 

7 Transfers control to the driver start-I/O routine using a JMP instruction 

If, on the other hand, EXE$INSIOQ finds that the device is busy, it inserts 
the IRP in the device unit's pending I/O queue for processing later by calling 
EXE$INSERTIRP. The pending I/O queue is ordered by two factors: 

• The time that the entry is queued; for each IPL, the queue is ordered on a 
first-in/first-out basis 

• The priority of the IRP, which is derived from the requesting process' base 
priority and stored in the field IRP$B_PRI 
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After completing one of the operations described above, EXE$INSIOQ 
reduces the interrupt priority level to IPL$_ASTDEL, the level at which it 
began executing. EXE$INSIOQ returns control to EXE$QIODRVPKT. Finally, 
EXE$QIODRVPKT returns from the $QIO system service in the following 
steps: 

1 Loads a success status code (SS$_NORMAL) into RO 

2 Reduces the interrupt priority level to 0 

3 Changes mode to the access mode of the requesting process at the time of 
the I/O request by issuing an REI instruction 

4 Returns from the system service call 

The system sets and clears the busy bit in the UCB status word for the device 
unit. This bit prevents the driver from being called to service a device unit 
that is already engaged in another I/O request. 

When a device driver's start-I/O routine gains control, the process that 
queued the I/O request might no longer be the mapped process. Therefore, 
the driver must assume that all information regarding the I/O request is in 
the UCB or the IRP and that all buffer addresses in the UCB are either system 
addresses or page-frame numbers that can be interpreted in any process 
context. 

For direct I/O operations, FDT routines also must have locked all user 
buffer pages in physical memory because paging cannot occur at driver fork 
level or higher interrupt priority levels. The process virtual address space 
is not guaranteed to be mapped again until VAX/VMS delivers a special 
kernel-mode AST to the requesting process as part of I/O postprocessing. 

8.6.4 EXE$ ALTQU EPKT 
You might want special-purpose drivers to use their own internal I/O 
queues as well as the device unit's I/O queue (UCB$L_IOQFL) provided 
by VAX/VMS. These internal queues allow the driver to handle I/O requests 
even if the device is busy with another I/O operation. 

EXE$ALTQUEPKT permits the driver to ignore synchronization of the I/O 
queue for the unit. When called by an FDT routine, EXE$ALTQUEPKT gains 
access to the driver at the alternate start-I/O entry point specified in the 
driver-dispatch table (offset DDT$L_ALTSTART). This entry point bypasses 
the unit I/O queue and the device busy flag; thus, the driver is activated 
regardless of whether the device unit is busy. 

A driver that uses EXE$ALTQUEPKT must not only maintain its internal 
queues but must also synchronize those queues with the unit's pending I/O 
queue, which the operating system maintains. 

Drivers complete I/O requests by calling the routine COM$POST. This 
routine places each IRP in a postprocessing queue and returns control to the 
driver. The driver can then fetch another IRP from an internal queue. For 
more information about COM$POST, see Appendix C. 

If a driver processes more than one IRP at the same time, separate fork blocks 
must be used. 

Be aware that programming a device driver to process simultaneous I/O 
requests requires detailed knowledge of VAX/VMS internal design. 
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Required Register Contents 

R3 Address of IRP 

R5 Address of UCB 

You must assume that the contents of RO through R5 are destroyed upon 
return to the FDT routine. 

Description 

EXE$ALTQUEPKT performs the following steps: 

1 Saves the current interrupt priority level on the stack 

2 Raises interrupt priority level to driver fork level (UCB$B_FIPL) 

3 Finds the entry point of the alternate start-I/O routine using the following 
chain of pointers: 

UCB —► DDT —► alternate start-I/O routine 

4 Calls the driver at alternate start-I/O address 

When the alternate start-I/O routine finishes, it returns control to 
EXE$ALTQUEPKT by executing an RSB instruction. Unlike the other FDT 
exit routines, EXE$ALTQUEPKT is called with a JSB instruction rather than 
a JMP instruction. EXE$ALTQUEPKT restores interrupt priority level to that 
which existed when it was called, then returns control to the FDT routine that 
called it. The FDT routine performs any postprocessing and transfers control 
to the routine EXE$QIORETURN. 

When EXE$QIORETURN gains control, it performs the following steps: 

1 Sets the success status code SS$_NORMAL in RO 

2 Lowers the interrupt priority level to zero 

3 Returns (with the RET instruction) to the system-service dispatcher 
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A driver start-I/O routine activates a device and then waits for a device 
interrupt or timeout. This chapter describes the start-I/O routine. Section 12 
describes the reactivation of the driver routine that performs device¬ 
dependent I/O postprocessing. With a few exceptions, the start-I/O routine 
discussed in the following sections describes a DMA transfer using a single¬ 
unit controller. 

9.1 Transferring Control to the Start-I/O Routine 

The start-I/O routine of a device driver gains control from either of two 
VAX/VMS routines: EXE$QIODRVPKT or IOC$REQCOM. 

When FDT processing is complete for an I/O-request, the FDT routine 
transfers control to EXE$QIODRVPKT. If the designated device is idle, 
IOC$INITIATE is called to create a driver fork process. (This procedure 
is detailed in Section 8.6.3.) The driver fork process then gains control 
in the start-I/O routine of the appropriate driver. If the device is busy, 
EXE$QIODRVPKT calls EXE$INSIOQ, which queues the packet to the device 
unit's pending I/O queue. 

After a device completes an I/O operation, the driver fork process exits by 
transferring control to IOC$REQCOM. IOC$REQCOM inserts the IRP for the 
finished transfer into the postprocessing queue. It then dequeues the next IRP 
from the device unit's pending I/O queue and calls IOC$INITIATE to create 
a new driver fork process that gains control at the entry point of the driver's 
start-I/O routine. 

9.2 Context of a Driver Fork Process 

A start-I/O routine does not run in the context of a user process. Rather, it 
has the following context: 

System mapping 

Kernel mode 

High IPL 

Only system page-tables are mapped. Therefore, driver 
code cannot refer to virtual addresses in process address 
space. 

Execution occurs in the most privileged access mode and 
can, therefore, change IPL. 

The VAX/VMS routine that creates a driver fork process 
raises IPL to driver fork level before activating the driver. 
The driver can raise and lower IPL between driver fork 
level and IPL$_POWER. 
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Execution occurs on the kernel or interrupt stack. 
The driver must not alter the state of the stack 
without restoring the stack to its previous state before 
relinquishing control. The stack used depends on whether 
the I/O startup is the result of a new I/O request or 
because a previously requested I/O operation has been 
completed. The choice of stacks must not affect the 
operation of the start-l/O routine. 

In addition to the context described, the VAX/VMS packet-queuing routines 
set up R3 and R5 for a driver start-I/O routine, as follows: 

• R3 contains the address of the IRP. 

• R5 contains the address of the UCB for the device. 

The start-I/O routine must preserve all general registers except RO, Rl, R2, 
and R4. 

Before the packet-queuing routines call the start-I/O routine, they copy the 
following IRP fields into their corresponding slots in the device's UCB: 

• IRP$L_BCNT (low-order word) —► UCB$W_BCNT 

• IRP$W_BOFF -► UCB$W_BOFF 

• IRP$L _SVAPTE — UCB$L —SVAPTE 

Kernel or 
interrupt stack 

9.3 Activating the Device 

The processing performed by a start-I/O routine is device specific. A start- 
I/O routine normally contains elements that perform the following functions: 

• Analyze the I/O function 

• Transfer the details of a transfer from the IRP into the UCB 

• Obtain and initialize the controller and, for DMA transfers, I/O adapter 
resources 

• Modify device registers to activate the device 

The start-I/O routine elements listed above execute a series of steps to 
activate the device. The sections that follow describe those steps as performed 
for a representative DMA device such as a parallel communications link; the 
details of processing, however, are specific to the particular device. Section 10 
describes the UNIBUS- and Q22 bus-related details of DMA transfers. 

9.3.1 Obtaining Controller Access 
If the device is one of several attached to a controller, the start-I/O routine 
invokes the VAX/VMS macro REQPCHAN to assign the controller's data 
channel to the device unit. Controllers that control only one device do 
not require arbitration for the controller's data channel. REQPCF1AN calls 
the VAX/VMS routine IOC$REQPCHANL that acquires ownership of the 
controller data channel. 
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The transfer being controlled by the start-I/O routine discussed here requires 
no seek preceding the transfer. Disk I/O is an example of a transfer that 
requires a seek first. To permit seeks to be overlapped with transfers, invoke 
REQPCHAN with the argument pri=HIGH. Specifying pri=HIGH inserts a 
request for a channel at the head of the channel-wait queue. 

If the channel is not available, IOC$REQPCHANL suspends driver processing 
by saving the driver's context in the UCB fork block and inserting the fork 
block address in the channel-wait queue. IOC$REQPCHANL then returns 
control to the caller of the driver, that is, to EXE$INSIOQ, as illustrated in 
Figure 9-1. This procedure is further discussed in Section 3.3.1. 

Figure 9-1 Inserting a UCB into the Channel-Wait Queue 

ZK-928-82 

The UCB fork block now represents the entire context of the suspended 
driver: 

• Saved R3 containing the IRP address 

• Implicitly saved R5 containing the UCB address 

• A return address in the driver 

IOC$REQPCHANL does not save R4 because it writes R4 before returning 
control to the driver. 

If the channel is available, IOC$REQPCHANL locates the interrupt-dispatch 
block (IDB) for the channel with a pointer in the UCB: 

UCB — CRB IDB 

The IDB contains the address of the control and status register (CSR) for the 
channel (IDB$L_CSR). IOC$REQPCHANL returns the CSR address in R4. 
The driver for a unit attached to a dedicated controller must contain the code 
needed to load the CSR address into R4. 
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IOC$REQPCHANL also writes the address of the new channel-owner's 
UCB in the owner field of the IDB (IDB$L—OWNER). The driver's interrupt¬ 
servicing routine later reads this IDB field to determine which device unit 
owns the controller's data channel. A driver for a single-unit controller 
must fill the IDB$L—OWNER field in its controller-initialization or unit- 
initialization routines. 

The driver must maintain the stack in a known and consistent state for the 
resource-wait-queue mechanism to work. When IOC$REQPCHANL gains 
control, the top two items on the stack must be two return addresses: 

• 0(SP)—Address of the next instruction to be executed in the driver fork 
process 

• 4(SP)—Address of the next instruction to be executed in the routine that 
called the driver start-I/O routine 

9.3.2 Getting the l/O-Function Code and Converting the Code and 
Modifiers 

The start-I/O routine extracts the I/O-function code and function modifiers 
from the field IRP$W_FUNC and translates them into device-specific function 
codes, which it loads into the device's CSR or other control registers. The 
start-I/O routine described in this chapter creates and modifies a bit mask that 
is to be loaded into the CSR when the driver starts the device. To accomplish 
this, the start-I/O routine converts the function modifiers contained in 
IRP$W_FUNC into device-specific bit settings in the general register. 

At this point, the device driver follows procedures to obtain I/O bus 

resources, as detailed in Section 10.1 

9.3.3 Computing the Transfer Length 
Because the device driven by this particular driver expects the transfer as 
a word count, the start-I/O routine computes the length of the transfer in 

words by dividing the byte count field of the UCB (UCB$W_BCNT) by 2. 
The routine loads the computed value into the device's word-count register. 
One of the FDT routines that processes the I/O request must ensure that the 
byte count for the transfer is even. An odd byte count results in the user's 
not receiving the last byte of data. 

1 Because of the unavailability of mapping registers for MicroVAX I Q22 bus devices, coding for MicroVAX I DMA drivers diverges somewhat 
from the normal method of setting up a DMA transfer. Section 10.7 describes the means by which MicroVAX I DMA transfers are accomplished 
over the Q22 bus. 
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9.3.4 Computing the Transfer's Starting Address 

The start-I/O routine calculates the address of the transfer using the byte- 
offset field of the UCB (UCB$W__BOFF) and the number of the starting 
mapping register (CRB$L_INTD+VEC$W_MAPREG). The result is an 18-bit 
value representing an address in UNIBUS or Micro VAX II Q22 bus address 
space.2 Section 10.4 details the calculation of the starting address for a 
UNIBUS or Micro VAX II Q22 bus transfer. 

The start-I/O routine stores the low-order 16 bits of the computed address 
in the device's buffer-address register. It stores the two high-order bits of 
the computed address in the memory-extension bits of the register that 
contains the bit mask described in Section 9.3.5. This register now contains 
the information on the device function that is to be placed in the device's 
CSR and the two high-order bits of the bus address. 

9.3.5 Preparing the Device Activation Bit Mask 
The start-I/O routine prepares the device-activation bit mask by setting the 
interrupt-enable bit and the go bit in the general register that also contains 
the high-order bits of the bus address and the device-function bits. At this 
point, the general register contains a complete command for starting the 
transfer, also known as the control mask. 

When the start-I/O routine copies the contents of the register into the device's 
CSR, the device starts the transfer. Before activating the device, however, 
the start-I/O routine should perform the steps described in Sections 9.3.6 
and 9.3.7. 

9.3.6 Blocking All Interrupts 
The start-I/O routine invokes the VAX/VMS macro DSBINT to block all 
interrupts. DSBINT raises IPL to IPL$_POWER and saves the previous IPL 
setting on the top of the stack. 

9.3.7 Checking for Power Failure 
The start-I/O routine examines the powerfail bits in the UCB's status word 
(UCB$V_POWFR in UCB$L__STS) to determine whether a power failure has 
occurred since the start-I/O routine gained control. If the bit is not set, the 
transfer can proceed. 

If the bit is set, a power failure might have occurred between the time that the 
start-I/O routine wrote the first device register and the time that the start-I/O 
routine is ready to activate the device. Such a power failure could modify the 
already-written device registers and cause unpredictable device behavior if 
the device were to be started. 

If the bit UCB$V_POWER is set, the start-I/O routine branches to an error 
handler in the driver. The driver must clear UCB$V_POWER before error- 
recovery procedures can be started. Many drivers clear this field and transfer 
control to the beginning of the start-I/O routine, which restarts the processing 
of the I/O request. 

2 The Micro VAX II implements only 496 of its 8192 mapping registers; thus. 18 significant bits are adequate to select a Q22 bus address (see 

Section 4.2 for details). 
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9.3.8 Activating the Device 
If no power failure has occurred, the start-I/O routine copies the contents 
of the control mask into the device's CSR. When the device notices the new 
contents of the device register, it begins to transfer the requested data. 

9.4 Waiting for an Interrupt or Timeout 
Once the start-I/O routine activates the device, the driver fork process cannot 
proceed until one of these events occurs: 

• The device generates a hardware interrupt. 

• The device does not generate a hardware interrupt within an expected 
time limit, which is to say that a device timeout occurs. 

Still executing at IPL$_POWER, the driver's start-I/O routine asks VAX/VMS 
to suspend the driver fork process by invoking one of the following 
VAX/VMS macros: 

WFIKPCH Wait for an interrupt or timeout and keep the controller data 
channel 

WFIRLCH Wait for an interrupt or timeout and release the controller data 
channel 

Both of these macros invoke routines that return IPL to the previous level 
when they exit. These routines expect to find the return IPL on the stack. 
This IPL is saved on the stack by the DSBINT macro as described in 
Section 9.3.6. 

Drivers generally keep the controller data channel while waiting for the 
interrupt or timeout. Drivers of devices with dedicated controllers always 
keep the channel because only one unit ever needs it. For devices that share 
a controller, some operations, such as disk seeks, do not require the controller 
once the operation has begun. In such cases, the driver can release the 
controller's data channel while waiting for an interrupt or timeout so that 
other units on the controller can start their operations. 

9.4.1 WFIKPCH and WFIRLCH Macro Formats 
A start-I/O routine invokes either the WFIKPCH or WFIRLCH macro to wait 
for a device interrupt. 

Formats 

WFIKPCH excpt [.time] 
WFIRLCH excpt [.time] 

Arguments 

excpt 
The address of the timeout routine for this device. 

[time] 
The number of seconds to wait before signaling a device timeout. The 
number must be greater than or equal to 2. A minimum value of 2 is required 
because the timeout mechanism is accurate only to within one second. If no 
number is specified, the macro uses the value 65,536 by default. 
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9.4.2 Expansion of WFIKPCH Macro 
Because the WFIKPCH and WFIRLCH macros are similar, the description that 
follows analyzes the expansion of WFIKPCH only. 

If the driver specifies the time argument in the macro call, the macro pushes 
the value of the argument into the stack. If the time argument is not 
specified, the macro pushes the value 65,536 onto the stack. The VAX/VMS 
timer routine uses the time value to calculate the length of time to wait before 
transferring control to a device timeout handler. 

WFIKPCH completes its expansion with two lines of code: 

JSB G~IOC$WFIKPCH 

.WORD EXCPT-. 

The execution of the JSB instruction pushes the address following the JSB 
onto the stack as the address to which the called routine would normally 
return with an RSB instruction. 

9.4.3 IOC$WFIKPCH Routine 
The VAX/VMS routine IOC$WFIKPCH invoked by the macro WFIKPCH 
performs the functions necessary for the driver fork process to wait for a 
device interrupt or timeout. IOC$WFIKPCH first adds 2 to the address on the 
top of the stack so that the top of the stack contains the address of the next 
instruction in the driver after the macro invocation. This address is where 
the driver resumes execution as a result of an interrupt-servicing routine's JSB 
instruction. 

IOC$WFIKPCH then saves the contents of R3, R4, and the address to which 
control must be returned to the driver, which it takes from the top of the 
stack. It saves this information in the first part of the UCB in the UCB fork 
block. 

Note that after an interrupt the interrupt-servicing routine must restore R5 
so that it contains the address of the UCB. The interrupt-servicing routine 
normally obtains the address of the UCB from the field IDB$L—OWNER of 
the IDB. 

The VAX/VMS routine that detects a device timeout calculates the address of 
the driver's timeout routine by subtracting 2 from the saved PC in the UCB's 
fork block and calling indirectly through the result, for example: 

MOVL UCB$L_FPC(R5),R2 
CVTWL -(R2),-(SP) 

ADDL (SP)+,R2 

JSB (R2) 

Get saved PC 
Get offset to timeout 
handler 
Add to relative driver 
address to obtain relative 
handler address 
Call timeout handler 

IOC$WFIKPCH sets bits in the UCB (UCB$V_INT and UCB$V_TIM in 
UCB$L_STS) to indicate that interrupts and timeouts are expected from the 
device. IOC$WFIKPCH also writes the device timeout absolute time in the 
field UCB$L_DUETIM. The absolute time is the number of seconds since the 
operating system was bootstrapped plus the number of seconds specified in 
the time argument to the macro. 

Finally, IOC$WFIKPCH reenables interrupts by lowering IPL to fork level, 
the IPL at which the driver was executing previously. Then it returns control 
to the caller of the driver. 
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9.5 Responding to an Expected Device Interrupt 
The only context saved for the driver is now in the UCB. It contains the 
following information: 

• A description of the I/O request and the state of the device 

• The contents of R3 and R4 

• The implicit contents of R5 (the address of the UCB fork block) 

• The address at which to return control to the driver 

• The implicit address of a device-timeout routine 

By convention, R4 often contains the address of the CSR; it permits the 
driver's interrupt-servicing routine to examine device registers. When the 
driver's fork process regains control after an interrupt processing, R5 contains 
the UCB address. The UCB is the key to that part of the I/O database 
relevant to the current I/O operation. 

When a device interrupts, the driver's interrupt-servicing routine analyzes the 
interrupt, as detailed in Section 11 and summarized below: 

• Identifies the address of the UCB of the device that generated the interrupt 

• Obtains device-status or controller-status information from the device 
registers, if necessary, and stores the status information in the UCB 

• Restores the driver's fork process' registers from the UCB fork block, 
restores R5 with the UCB address, and reactivates the suspended driver at 
the PC stored in the UCB fork block 

If, instead of requesting an interrupt, the device times out, a VAX/VMS timer 
routine reactivates the suspended driver fork process at the address of the 
timeout routine. Section 12.2 discusses device timeout handling in detail. 
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A driver performing DMA transfers over the UNIBUS, Q22 bus, or MASSBUS 
must take I/O bus operation into consideration.1 The VAX/VMS operating 
system and the I/O database manage the mapping registers and data path 
resources of the I/O adapter for device drivers. 

The I/O database contains an adapter-control block (ADP) that describes 
the I/O adapter. This block contains allocation information for the mapping 
registers; for UNIBUS adapters, the ADP also contains similar information for 
data paths. 

The ADP also contains the virtual address of the adapter's configuration 
register. All the adapter's other registers are located at fixed offsets from the 
configuration register. The VAX/VMS adapter-handling routines modify the 
adapter's mapping registers and data-path register according to requests from 
the driver's fork process. 

In general, drivers' fork processes do not directly access the ADP. Instead, 
drivers call VAX/VMS routines that perform adapter-related services, such as 
the following: 

• Allocating a buffered data path 

• Allocating mapping registers 

• Loading mapping registers 

• Deallocating mapping registers 

• Purging a buffered data path 

• Deallocating a buffered data path 

The critical responsibility of device drivers that actively compete for such 
shared I/O adapter resources as mapping registers and data paths is that they 
all execute at the same fork IPL. This IPL convention synchronizes access to 
the I/O adapter data structures. 

The system creates a driver's fork process by calling the start-I/O routine in 
a device driver. The fork process takes some or all of the following steps to 
initiate an I/O transfer to or from a device on a UNIBUS, Micro VAX II Q22 
bus, or Micro VAX I Q22 bus. 

Operation Applicable to 

Requests buffered data path 

Requests mapping registers 

Loads mapping registers 

Calculates starting bus address 

Activates device 

Waits for interrupt 

UNIBUS 

UNIBUS, MicroVAX II 

UNIBUS, MicroVAX II 

UNIBUS, MicroVAX II, MicroVAX 1 

UNIBUS, MicroVAX II, MicroVAX 1 

UNIBUS, MicroVAX II, MicroVAX 1 

1 MASSBUS drivers are discussed in Appendix G. 
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When a hardware interrupt indicates that the I/O transfer is complete, the 
driver's fork process checks the success or failure of the transfer. The driver 
then concludes with the following steps: 

Operation Applicable to 

Purges the data path UNIBUS, MicroVAX II, MicroVAX I1 

Releases the buffered data path UNIBUS 

Releases the mapping registers UNIBUS, MicroVAX II 

Regardless of whether the associated processor provides buffered data paths or 
not, drivers of all devices should initiate a purge of the data path after a transfer. 
The purge operation enables the detection of memory parity errors that may have 
occurred during the transfer, as described in the sections on the PURDPR macro 
and IOCSPURGDATAP in Appendixes B and C, respectively. 

Because of the different requirements of DMA transfers on different VAX 
processors, a driver must contain some run-time conditional code in order 
to function for equivalent UNIBUS, MicroVAX II, and MicroVAX I devices. 
Appendix E contains an example of one driver that supports the RL11 on the 
UNIBUS and the RLV11 on the MicroVAX I and MicroVAX II Q22 bus. 

Regarding the material presented in this section, UNIBUS driver writers 
should read Sections 10.1 through 10.6.3. MicroVAX II driver writers should 
read Sections 10.1.3 and 10.2 through 10.6.3. MicroVAX I driver writers 
should turn directly to 10.7. Because the MicroVAX I provides no scatter- 
gather map, MicroVAX I device drivers must perform transfers according to 
the method described therein. 

10.1 Selecting and Requesting a Data Path 
DMA device drivers for certain VAX processors can elect to request the 
use of a UNIBUS adapter buffered data path to accelerate data transfers 
(as described in Section 4.3). Other VAX/VMS processors, such as the 
MicroVAX II and VAX-11/730, provide no buffered data paths for data 
transfers. The descriptions of the direct data path in the following sections 
apply to drivers written for devices on those processors. 

10.1.1 Requesting a Buffered Data Path 
Some VAX systems allow UNIBUS drivers to request temporary or permanent 
allocation of a buffered data path (see Table 4-1). After the driver fork 
process gains access to the controller (see Section 9.3.1), it requests a buffered 
data path by invoking the VAX/VMS macro REQDPR. REQDPR calls a 
VAX/VMS routine named IOC$REQDATAP that locates the ADP. To do 
this, IOC$REQDATAP uses a series of pointers that begins in the current 
unit-control block (UCB), as follows: 

UCB — CRB ADP 
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IOC$REQDATAP performs the following services:2 

1 Tests the path-lock bit (VEC$V_PATHLOCK) in the data-path number 
field of the channel-request block (CRB$L_INTD+VEC$B_DATAPATH). 
If the device has a permanent data path allocated to it, IOC$REQDATAP 
simply returns. 

2 Determines which data paths are available by examining the data path 
allocation information in the ADP (ADP$W_DPBITMAP). 

3 Allocates the first free data path to the driver by inserting its number 
in the data path field of the CRB (CRB$L _INTD+VEC$B_DATAPATH) 
and indicating in the ADP that the data path is in use (by setting the 

appropriate bit in ADP$W_DPBITMAP). 

4 Returns control to the driver fork process. 

If no data path is available, IOC$REQDATAP saves driver context (R3, R4, 
and PC) in the UCB fork block and inserts the address of the fork block, 
which is also the address of the UCB and the content of R5, in the ADP's 
data-path-wait queue. The driver fork block remains in the queue until both 
of the following conditions are met: 

• A data path is available. 

• The driver fork block is the next entry in the data-path-wait queue. 

When these conditions are met, the VAX/VMS routine IOC$RELDATAP 
allocates the data path to the suspended driver and reactivates the driver's 
fork process. 

10.1.2 Requesting a Permanent Buffered Data Path 
A device driver can permanently allocate a buffered data path with code in a 
unit-initialization routine. Instead of using the REQDPR macro, however, a 
unit-initialization routine should perform the following steps: 

1 Test the path-lock bit (VEC$V_PATHLOCK) in the data-path-number field 
of the CRB (CRB$L _INTD+VEC$B_D ATAP ATH) to ensure that a data 
path is not already allocated for this device. 

2 Call the subroutine IOC$REQDATAPNW to allocate the data path as 
shown below: 

J SB G~10C$REQDATAPNW 

If IOC$REQDATAPNW successfully allocates the data path, it stores the 
number of the data path it obtained in the CRB at VEC$B_D ATAP ATH 
and returns with the low-order bit set in RO (SS$_NORMAL). If it cannot 
allocate a data path, IOC$REQDATAPNW does not create a fork process 
to wait for one to become available. Instead, it returns to the unit- 
initialization routine with the low-order bit clear in RO. 

3 Set the path-lock bit (VEC$V_PATHLOCK) in the CRB at 
VEC$B_D ATAP ATH 

2 When called from a driver running on a processor that does not provide buffered data paths, IOC$REQDATAP and IOC$RELDATAP simply 

return after examining the data path bit map in the ADP. 
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The driver-loading procedure calls the unit-initialization routine for each unit 
that the driver serves. A unit-initialization routine that contains the code 
described above will permanently allocate one buffered data path for each 
CRB associated with the driver, which is one path for each controller that the 
driver serves. 

Because some VAX processors have few buffered data paths (refer to 
Table 4-1), device drivers running on these processors must limit their 
allocation of permanent buffered data paths. For example, if the drivers 
loaded on a VAX-11/750 permanently allocated all three of the processor's 
buffered data paths, none would remain for normal system operations. As a 
result, I/O transfers requiring a buffered data path would wait forever. 

10.1.3 Requesting the Direct Data Path 

Because the UNIBUS adapter or other I/O interface arbitrates among devices 
that wish to use the direct data path and the data path field in the CRB 
(CRB$L _INTD+VEC$B_DATAPATH) is initialized to 0 (0 = direct data path), 
drivers are not required to invoke the REQDPR macro to request the direct 
data path. 

Some VAX processors, such as the VAX-11/780, do not permit byte-offset 
transfers on the direct data path (see Table 4-1). Because the UNIBUS itself 
is word-oriented, a processor such as the VAX-11/780 must ensure that the 
data buffer is aligned on a word boundary for word-aligned devices. 

10.1.4 Mixed Use of Direct and Buffered Data Paths 
A device driver can use the buffered data path for certain operations, then use 
the direct data path for other operations. To accomplish this task, the driver 
should allocate a buffered data path for buffered I/O. When the operation is 
completed, the driver should then purge and release the buffered data path. 
The release automatically resets the data path number to zero, which signifies 
a direct data path. When using the direct data path is complete, the driver 
should not release the direct data path, although it should purge the path. (A 
purge of the direct data path is a NOP and always yields success.) 

10.2 Requesting Mapping Registers 
The UNIBUS adapter and Micro VAX II processor logic allow UNIBUS and 
Micro VAX II Q22 bus drivers, respectively, to allocate mapping registers as 
needed or to allocate them permanently. 

10.2.1 Allocating Mapping Registers 
After the driver's fork process gains access to the controller (see Section 9.3.1), 
it requests a set of adapter mapping registers by invoking the VAX/VMS 
macro REQMPR. This macro calls the routine IOC$REQMAPREG. 
IOC$REQMAPREG calculates the number of mapping registers needed for a 
transfer. The calculation is based on the transfer byte count field and the byte 
offset fields of the device's UCB (UCB$W_BCNT and UCB$W_BOFF). 
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The procedure for allocating mapping registers is similar to that used to 
allocate a buffered data path. First, IOC$REQMAPREG locates the ADP from 
a series of pointers that begins with the current UCB, as follows: 

UCB CRB -► ADP 

Then, the routine examines the mapping-register-allocation information to 
locate the required number of contiguous mapping registers. If the registers 
are not currently available, IOC$REQMAPREG saves the driver context (R3, 
R4, and PC) in the UCB fork block and inserts the fork block's address (same 
as UCB address and the contents of R5) in the mapping-register-wait queue. 

When the mapping registers are available, IOC$REQMAPREG allocates them 
and adjusts the appropriate information about the allocation of mapping 
registers in the adapter-control block. IOC$REQMAPREG then writes the 
number of the first mapping register and the number of mapping registers 
allocated into the CRB and returns control to the driver's fork process. 

10.2.2 Permanently Allocating Mapping Registers 
A device driver can permanently allocate a set of mapping registers with 
code in the unit-initialization routine. The number of mapping registers 
permanently allocated must be sufficient for the longest possible transfer. The 
following steps permanently allocate a set of mapping registers: 

1 Test the map-lock bit (VEC$V_MAPLOCK) in the CRB 

(CRB$L_INTD+VEC$W_MAPREG) to ensure that mapping registers are 
not already allocated for this device. 

2 Load the number of mapping registers required into R3. 

3 Call the VAX/VMS routine IOC$ALOUBAMAPN with a JSB instruction: 

JSB G~IOC$ALOUBAMAPN 

If IOC$ALOUBAMAPN successfully allocates the mapping registers, it 
stores the number of mapping registers allocated and the number of the 
first of the allocated mapping registers. It stores these items in the CRB at 
CRB$L _INTD+VEC$B_NUMREG and CRB$L_INTD+VEC$W_MAPREG, 
respectively, and returns with the low-order bit set in RO. 

Otherwise, it returns with the low-order bit of RO clear. 

4 Set the map-lock bit in the CRB (VEC$V_MAPLOCK in 
CRB$L _INTD+VEC$W_MAPREG). 

The driver-loading procedure calls the unit-initialization routine once for each 
unit associated with the driver. If the unit initialization routine contains the 
code described above, it permanently allocates one set of mapping registers 
for each CRB associated with the driver, which is one set of registers for each 
device controller that the driver serves. 

10-5 



Writing Driver Code for DMA Transfers 

10.3 Loading Mapping Registers 
Once a driver's fork process has assigned a data path and allocated a set of 
mapping registers, it can request VAX/VMS to load the mapping registers 
with physical page-frame numbers (PFNs) by invoking the VAX/VMS macro 

LOADUBA.3 LOADUBA calls a VAX/VMS routine IOC$LOADUBAMAP that 
loads each allocated mapping register with five data items: 

• A bit setting to indicate whether the mapping register is valid. 

• A bit setting to indicate whether the transfer is to start on the odd or even 
byte within a word; this bit is set if the low-order bit of UCB$W_BOFF is 
a 1. 

• The number of the data path to use for the transfer. 

• The page-frame number of a page in memory. 

• A bit setting to indicate that the transfer operates in longword-aligned, 
random-access mode on the buffered data path; this bit is set when 
VEC$V_LWAE is set in VEC$B_DATAPATH. 

IOC$LOADUBAMAP loads the page-frame number of the first page of the 
transfer into the first allocated mapping register, the page-frame number of 
the second page of the transfer into the second mapping register, and so forth. 

IOC$LOADUBAMAP sets the valid bit in every allocated mapping register 
except the last. It clears the valid bit in the final mapping register to prevent 
a prefetch from an invalid page. 

To calculate the page-frame number used in the I/O transfer, 
IOC$LOADUBAMAP uses three fields that VAX/VMS has written into 
the UCB: 

• UCB$W_BOFF—Byte offset in the first page of the transfer 

• UCB$W_BCNT—Number of bytes to transfer 

• UCB$L_SVAPTE—Virtual address of the page-table entry that contains 
the page-frame number of the first page of the transfer 

IOC$LOADUBAMAP determines the data path's number, the number of 
the first mapping register, the address of the first mapping register, and the 
number of allocated mapping registers from the CRB and the ADP, as follows: 

UCB —► CRB —► number of the data path 
UCB —► CRB —► number of first mapping register 
UCB —► CRB —► ADP —► virtual address of first mapping register 
UCB —► CRB —*• number of mapping registers 

Drivers that handle UNIBUS byte-addressable devices call the routine 
IOCSLOADUBAMAPA. This routine performs the same function as 
IOC$LOADUBAMAP, with one exception. When IOCSLOADUBAMAPA 
loads mapping registers, it clears the byte-offset bit even if the transfer begins 
on an odd-byte address. 

When IOC$LOADUBAMAP has loaded all the mapping registers and marked 
the last mapping register invalid, it returns control to the driver's fork process. 

3 MicroVAX II DMA driver writers also use the LOADUBA macro. 
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10.4 Computing the Starting Address of a Transfer 
The driver fork process must calculate the starting address of a DMA transfer 
and load this address into the appropriate device register. Micro VAX I 
device drivers perform the procedure outlined in Section 10.7. UNIBUS 
and Micro VAX II Q22 bus drivers take the following five steps to make the 
calculation:4 

1 Write the byte-offset-in-page field of the UCB (UCB$W_BOFF) into bits 0 
through 8 of a general register. 

2 Get the number of the starting mapping register for the transfer from a 
field in the CRB (CRB$L_INTD+VEC$W_MAPREG). Write bits 0 through 
6 of this 9-bit value into bits 9 through 15 of the general register. 

3 Write bits 0 through 15 of the general register into the device's buffer 
address register. 

4 Write bits 7 and 8 of the mapping register number, acquired in step 2, into 
the extended memory bits of the appropriate device register (usually the 

control and status register (CSR)).5 

10.5 Activating the Device 
Because a driver's fork process can address device registers as though they 
were any other virtual address, the loading of the device buffer address 
register and CSR are simple procedures. The driver locates the CSR address 
of the device in the interrupt-dispatch block (IDB), as follows: 

UCB — CRB -* IDB -> CSR address 

The CSR address is the virtual address of a device register. All other device 
registers are located at constant offsets from the CSR address. If, for example, 
the CSR is the first device register and the device's word-count register is the 
third device register, the device driver can describe the device register offsets 
and load the word-count register with the following series of instructions: 

dev.csr = o 
DEV.XREG = 2 
DEV.WDCNT = 4 

; Compute word count of transfer and store it in user-defined UCB field, 
; UCB$W_WDCNT. 

MOVL 
MOVL 
MOW 

UCB$L_CRB(R5),R4 
®CRB$L_INTD+VEC$L_IDB(R4),R4 
UCB$W_WDCNT,DEV.WDCNT(R4) 

.Address of CRB 
;Address of CSR 
;Move word count to device word 
;count register 

4 Although the Micro VAX II processor actually contains 8192 mapping registers, VAX/VMS currently enables only 496 of them. As a result, the 

upper four bits of the 13-bit MicroVAX II mapping register number should be stored as zero. In other words, VAX/VMS treats any mapping 

register number as having nine significant bits. 

^ One example of a device that does not treat the extended memory bits in this fashion is the DRV11-WA, the code for which is listed in 

Appendix F. For the DRV11-WA, code in XADRIVER stores bits 7 and 8 of the mapping register number in a discrete device bus address 

extension register, then clears the extended address bits of the device's CSR. In contrast, XADRIVER handles the DR11-W according to the 

method described above. 
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10.6 Completing a DMA Transfer 

After a UNIBUS, Micro VAX II, or Micro VAX I device driver's fork process 
activates a DMA device, the driver waits for a device interrupt by invoking 
a VAX/VMS macro that suspends execution of the driver. When the device 
requests a hardware interrupt, the interrupt dispatcher gains control. 

The dispatcher saves RO through R5 and transfers control to the driver's 
interrupt-servicing routine. If the interrupt-servicing routine can match the 
interrupt with a suspended driver's fork process, the interrupt-servicing 
routine reactivates the driver's fork process at the point where execution was 
suspended. Most drivers almost immediately invoke the VAX/VMS macro 
IOFORK. 

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK saves 
the driver context (R3, R4, and PC) in the UCB fork block and inserts the 
address of the fork block (R5) in the device's fork queue. EXE$IOFORK then 
returns control to the driver's interrupt-servicing routine, which dismisses the 
interrupt. 

When the fork dispatcher reactivates the driver's fork process, the driver 
performs any necessary clean up operations, such as purging the data path 
and deallocating adapter resources used in the DMA transfer. 

10.6.1 Purging the Data Path 
Driver fork processes must purge the data path after the DMA transfer is 
complete. This is true for devices with buffered data paths, direct data paths, 
or no data path. 

To purge the data path, the driver invokes the macro PURDPR, which in 
turn calls the VAX/VMS routine IOC$PURGDATAP. This routine takes the 
following steps to purge the data path: 

1 Saves the contents of R4 on the stack. 

2 Locates the CRB as follows: 

R5 -> UCB — CRB 

3 Obtains the starting address of UNIBUS adapter register space and stores 
it in R2. 

4 Extracts the number of the data path to be purged from the CRB and loads 
it into Rl. 

5 Stores the address of the data path in R4. 

6 Instructs the UNIBUS adapter or Q22 bus interface to purge the data 
path. The routine then modifies RO through R2 to contain the following 
information: 

RO Success/failure status. If the purge completes without error, the routine 
sets SS$_NORMAL in this register. If a data-path error does occur, RO 
is clear and the hardware is reset. 

Rl Contents of the data-path register. 

R2 Address of the first adapter mapping register. 

10—8 



Writing Driver Code for DMA Transfers 

The address of the CRB remains in R3. This address, along with the 
information in R1 and R2, is used as input to the error-logging routine in 
the event of a data-path error. 

7 Restores the information stored on the stack to R4 and returns to the 
address in the driver immediately after the invocation of the PURDPR 
macro. 

8 Some machine implementations also check for memory errors that might 
have occurred during the DMA operation, and, if an error is detected, 
log it. 

If a data-path error occurs during a data-path purge, the driver should retry 
the entire DMA transfer. 

10.6.2 Releasing a Buffered Data Path 
A driver's fork process releases a buffered data path by invoking 
the VAX/VMS macro RELDPR. RELDPR calls a VAX/VMS routine 
IOC$RELDATAP that determines which data path was assigned to the driver 
fork process and releases the data path to a waiting driver. The driver must 
be executing at fork IPL. 

The data path number is stored in the CRB. IOC$RELDATAP locates it as 
follows: 

UCB —► CRB —► number of the data path 

If the data path is permanently assigned to a device, IOC$RELDATAP does 
not release the data path. Otherwise, the data path number in the CRB 
(CRB$L _INTD+VEC$B_DATAPATH) is zeroed. The IOC$RELDATAP 
routine attempts to dequeue a waiting driver fork process from the data¬ 
path-wait queue. It finds the queue as follows: 

UCB —> CRB —► ADP —► data-path-wait queue 

If another driver is waiting for a buffered data path, IOC$RELDATAP grants 
that driver fork process the data path, restores its context from its UCB fork 
block, and transfers control to the saved driver PC. When IOC$RELDATAP 
can allocate no more data paths, the routine returns to the driver that released 
the data path. This diversion of driver processing is transparent to the driver's 
fork process. 

If the data-path-wait queue is empty, IOC$RELDATAP marks the data path 
as available in the ADP and returns control to the driver. 

10.6.3 Releasing Mapping Registers 
A driver fork process releases a set of mapping registers by invoking the 
VAX/VMS macro RELMPR at fork IPL. RELMPR calls the VAX/VMS routine 
IOC$RELMAPREG, which releases mapping registers in a manner similar to 
the way in which the RELDPR macro releases data paths. The CRB records 
the number of mapping registers assigned to the device. The number of the 
first mapping register and the number of mapping registers are located as 
follows. 

UCB —> CRB —► number of the first mapping register 
UCB —► CRB —► number of allocated mapping registers 
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IOC$RELMAPREG releases the mapping registers by adjusting the mapping- 
register-allocation information in the ADP. 

Then, IOC$RELMAPREG attempts to dequeue a driver's fork process 
from the mapping-register-wait queue. If a suspended driver is found, 
IOC$RELMAPREG takes the following steps: 

1 Dequeues the fork block and restores driver context 

2 Satisfies the mapping-register request, if possible 

3 Reactivates the driver's fork process at the instruction following the 
driver's request for mapping registers 

4 Repeats Steps 1 through 3 

If the mapping-register-wait queue is empty or if IOC$RELMAPREG still does 
not have enough contiguous mapping registers for any of the waiting fork 
processes, it returns control to the fork process that released the mapping 
registers. 

10.7 Considerations for Micro VAX I DMA Devices 
Because the Micro VAX I does not provide a scatter-gather map. 
Micro VAX I Q22 bus DMA devices must use a physically contiguous buffer 
in data transfers. Because there is no guarantee that this is the state of the 
user's buffer, the driver must allocate an intermediate buffer consisting of 
contiguous physical pages. The driver never deallocates this buffer unless 
the driver is being unloaded (by means of SYSGEN's RELOAD command). 
The best time to allocate such a buffer is during the device's initialization. 
Memory is most likely contiguous at that time. Later it will be much more 
difficult to obtain a buffer that contains physically contiguous pages. 

To be sure that the buffer you allocate to the driver is contiguous, use the 
VAX/VMS routine EXE$ALOPHYCNTG, described in Appendix C. The size 
of the buffer will depend on the device's characteristics and the size of the 
transfers requested on the device. A buffer of four pages is likely to be large 
enough for most disk transfers, for example; but if you have enough memory 
on your system, you might want to make your buffer the size of a disk track 
in order to reduce disk latency. In any event, large transfers to the device can 
be segmented into transfers the size of your intermediate buffer. 

When a user requests a transfer to a Micro VAX I Q22 bus device, the driver 
start-I/O routine copies the data from the user's buffer into the intermediate, 
physically contiguous buffer by means of the routine IOC$MOVFRUSER. The 
driver must ensure that the buffer is word-aligned because the Micro VAX I 
has no byte-offset capability. 

The driver then sets up the device for the DMA transfer: 

1 Determines the 22-bit physical address of the buffer from the system 
virtual address returned by EXE$ALOPHYCNTG. Presuming that the 
virtual address has been temporarily stored in CRB$L_AUXSTRUC, the 
driver can use code similar to the following excerpt from DLDRIVER (in 
Appendix E). 
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MOVL UCB$L_CRB(R5),R1 
MOVL CRB$L_AUXSTRUC(R1),R2 
BEQL 70$ 
MOVL R2,UCB$A_DL_BUF_VA(R5) 
EXTZV #VA$V_VPN,#VA$S_VPN,R2 
MOVL G~MMG$GL_SPTBASE,RO 
MOVL (RO)[Rl],R0 
BICL3 #~C<VA$M_BYTE>,R2,R1 
ASSUME PTE$S_PFN GE 13 
INSV R0,#9,#13,R1 
MOVL Rl,UCB$A_DL_BUF_PA(R5) 

Rl;GET VIRTUAL PAGE NUMBER OF BUFFER 
;GET BASE ADDRESS OF SPTS 
;GET THE PTE CONTENTS 
;GET BUFFER OFFSET (BA00-BA08) 

;COPY BA09-BA21 
;SAVE PHYSICAL ADDRESS OF BUFFER 

GET CRB ADDRESS 

MEMORY ALLOC FAILURE DURING CTL INIT? 
IF EQL, YES, LEAVE OFFLINE 
SAVE BUFFER'S VIRTUAL ADDRESS 

70$: RSB 

2 Moves the low word (bits 0 to 15) of the buffer physical address into the 
device's buffer address register. 

3 Moves the extended address bits of the buffer's physical address into the 
device's extended address register or the device's CSR, as required by the 
device. 

4 Activates the device as described in Section 10.5. 

5 If the transfer size exceeds the size of the buffer, returns to Step 1. 

When a user requests a transfer from a Micro VAX I Q22 bus device, the driver 
moves the data from the device to the intermediate, physically contiguous 
buffer by means of a DMA transfer, then calls IOC$MOVTOUSER to copy 
the data into the user's buffer. 

A Micro VAX I driver should complete the transfer as described in 
Section 10.6. The driver should call IOC$PURGDATAP in order to detect 
and log any memory errors that might have occurred during the transfer. 
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For most device drivers, the driver-prologue table contains, in the 
reinitialization section established by the DPT_STORE macro, the address 
of one or more interrupt-servicing routines. Each interrupt-servicing routine 
corresponds to an interrupt vector on the I/O bus. You specify the address of 
an I/O bus vector using the SYSGEN command CONNECT, as described in 
Section 14.2.2. 

Most device interrupt-servicing routines perform the following functions: 

• Locate the device's UCB 

• Determine whether the interrupt was solicited 

• Reject or process unsolicited interrupts 

• Activate the suspended driver to process solicited interrupts 

Figure 11-1 illustrates the general flow of interrupt handling. The remaining 
sections of this chapter describe the handling of solicited and unsolicited 
interrupts in further detail. 

11.1 Delivering a Device Interrupt to a Driver 
When a device generates a hardware interrupt, the device requests the 
interrupt at its device IPL. The UNIBUS adapter or Micro VAX Q22 bus 
interface then requests a processor interrupt at that IPL. When the processor 
executes at an interrupt priority level below the device IPL, interrupt 
dispatching begins. 

Note: The subsequent discussion applies to UNIBUS and MicroVAX device 
interrupts exclusively. MASSBUS adapter interrupt dispatching differs 
substantially from UNIBUS and MicroVAX interrupt dispatching. 
MASSBUS driver writers should familiarize themselves with the 
discussion in Sections G.4 and G.6. 

On a configuration that uses nondirect vector interrupts—such as the 
VAX-11/780 and the VAX 8600—the following sequence occurs: 

1 The processor saves, on the interrupt stack, the PC and PSL of the 
currently executing code. It dispatches the interrupt by means of the 
appropriate vector in the system control block (SCB) to the interrupt¬ 
servicing routine for the UNIBUS adapter of the device that requested the 
interrupt (see Section 3.1.5). 

2 The UNIBUS adapter's interrupt-servicing routine reads the vector register 
within the UNIBUS adapter that corresponds to the interrupt level of 
the device. The UNIBUS adapter acknowledges the interrupt, and the 
interrupting device supplies its vector's address to the UNIBUS adapter's 
interrupt-servicing routine. 

3 The UNIBUS adapter's interrupt-servicing routine then saves R0 through 
R5 on the stack and, using a JMP instruction, transfers control to an 
interrupt-dispatching field within the channel-request block (CRB). 
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Figure 11-1 Flow of Interrupt Servicing 

INTERRUPT 

ZK-929-82 

11-2 



Writing an Interrupt-Servicing Routine 

4 The CRB's interrupt-dispatching field (CRB$L_INTD+2) contains 
executable code that the driver-loading procedure has associated with 
the interrupting vector. Interrupt-dispatching fields for nondirect vectors 
contain the following executable instruction: 

JSB ®#address-of-driver-isr 

On a configuration that uses direct vector interrupts—such as the Micro VAX 
I, Micro VAX II, VAX 8200, VAX 8800, VAX-11/750, and VAX-11/730—the 
following sequence occurs: 

1 The processor saves, on the interrupt stack, the PC and PSL of the 
currently executing code and acknowledges the device's interrupt. 

2 The device supplies its vector address, which the processor uses as 
an index into a table in the second (or third) page of the SCB (see 
Section 3.1.5). This table contains a list of addresses in the CRB that 
point to the interrupt-servicing routines for devices attached to the first 
UNIBUS or an optional second UNIBUS (for the VAX-11/750). 

3 When the processor locates the address in the SCB that corresponds to the 
vector address, it transfers control to an interrupt-dispatching field in the 
CRB. 

4 The CRB's interrupt-dispatching field (CRB$L_INTD) contains executable 
code that the driver-loading procedure has associated with the interrupt 
vector. Interrupt-dispatching fields of direct vectors contain the following 
executable instructions: 

PUSHR <R0,R1,R2,R3,R4,R5> 
JSB ©#address-of-driver-isr 

The driver-loading procedure determines how many interrupt-dispatching 
fields to build within the CRB from the number of vectors specified 
in the /NUMVEC qualifier to the SYSGEN command CONNECT (see 
Section 14.2.2). The driver-loading procedure obtains the address of the 
interrupt-servicing routine for each interrupt-dispatching field from the 
reinitialization portion of the driver-prologue table (see Section 7.1). This 
section of the DPT contains one or more DPT_STORE macros that identify 
the addresses of the interrupt-servicing routines. The number of DPT_ 
STORE macros that identify interrupt-servicing routines must equal the 
number of vectors given in the /NUMVEC qualifier to avoid errors in device 
initialization or interrupt handling. 

Immediately following the JSB instruction in the CRB is the address of 
the interrupt-dispatch block (IDB) associated with the CRB. When the JSB 
instruction executes, a pointer to the address of the IDB is pushed onto the 
top of the stack as though it were a return address. The driver interrupt¬ 
servicing routine can use this IDB address as a pointer into the I/O database. 
Figure 11-2 illustrates the portion of a CRB that contains the address of the 
interrupt-servicing routine. 

11.2 Interrupt Context 
When the interrupt dispatcher calls a driver's interrupt-servicing routine, 
execution context is as follows: 

• R0 through R5 are saved on the stack. 

• System address space is mapped. The interrupt-servicing routine can gain 
access to appropriate data structures in the I/O database. 
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Figure 11-2 CRB Containing the Address of an Interrupt- 
Servicing Routine 
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interrupt servicing routine address 

interrupt dispatch block address 
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• IPL is at hardware device interrupt level. 

• The processor is running in kernel mode. 

• The processor is running on the interrupt stack. 

The stack contains the following information: 

Stack Location Content 

O(SP) Pointer to the address of the IDB 

4(SP) through 24(SP) Saved RO through R5 

28(SP) PC at the time of the interrupt 

32(SP) PSL at the time of the interrupt 

11.3 Servicing a Solicited Interrupt 
When a driver's fork process activates a device and expects to service a device 
interrupt as a result, the fork process suspends its execution and waits for an 
interrupt to occur. The suspended driver is represented only by the contents 
of the device's UCB, which contains a description of the I/O request and the 
fork process. 

When the driver regains control from the interrupt-servicing routine, only 
R3, R4, R5, and the PC address are restored to their previous state by the 
interrupt-servicing routine. 

In the sequence below, a driver's interrupt-servicing routine returns control to 
the waiting driver: 

1 The interrupt-servicing routine obtains the address of the device's UCB 
from the IDB, as follows: 

0(SP) — CRB — IDB IDB$L —OWNER — UCB 

2 The interrupt-servicing routine then tests the software-interrupt-expected 
bit in the UCB status word (UCB$V_INT in UCB$L_STS). If the bit is 
set, the driver is waiting for an interrupt from this device. The interrupt¬ 
servicing routine then clears UCB$V_INT in UCB$L_STS to indicate that 
it has received the expected interrupt. 
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Note: Because device timeout processing mostly occurs at fork IPL (see 
Section 12.2), a driver's interrupt-servicing routine, executing at device 
IPL, could interrupt the processing of a timeout on the same device 
unit. For this reason, the driver's interrupt-servicing routine should 
check the interrupt-expected bit (UCB$V_INT) before handling the 
interrupt. VAX/VMS clears this bit before it calls the driver's timeout 
handler. 

3 The interrupt-servicing routine restores R5 of the driver's fork process, 
placing in it the address of the UCB fork block. It restores R3 and R4 of 
the driver process by placing in them the contents of UCB$L_FR3 and 
UCB$L_FR4, respectively. 

4 The interrupt-servicing routine transfers control to the driver's PC address, 
which is saved in the UCB fork block at UCB$L_FPC, by issuing a JSB 
instruction. 

The restored driver can execute a few instructions in the context of the 
interrupt, such as copying device-status information from the device registers 
into the device's UCB. Before completing the I/O operation, however, the 
driver routine creates a fork process to lower its IPL from device level to fork 
level. The driver creates a fork process by invoking the VAX/VMS macro 
IOFORK, as described in Section 12.1.1. 

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK inserts 
into the appropriate fork queue the UCB fork block that describes the driver 
process. Then it returns control to the driver's interrupt-servicing routine. 

The interrupt-servicing routine then performs the following steps: 

1 Removes the IDB pointer from the stack 

2 Restores RO through R5 

3 Dismisses the interrupt with an REI instruction 

11.4 Servicing an Unsolicited Interrupt 
Devices request interrupts to indicate to a driver that the device has changed 
status. If a driver's fork process starts an I/O operation on a device, the 
driver expects to receive an interrupt from the device when the I/O operation 
completes or an error occurs. 

Other changes in the device's status occur when the device has not been 
activated by a device driver. The device reports these changes by requesting 
unsolicited interrupts. For example, when a user types on a terminal that is 
not attached to a process, the terminal requests an interrupt that is handled 
by the terminal driver. As a result of the interrupt, the terminal driver causes 
the login procedure to be invoked for the user at the terminal. 

Another example of an unsolicited interrupt is one that the unit requests when 
an operator changes the volume on a disk drive. The disk driver services the 
interrupt by altering volume and unit status bits in the disk device's UCB. 

Devices request unsolicited interrupts because some external event has 
changed the status of the device. A device driver can handle these interrupts 
in two ways: 

• Ignore the interrupt as spurious 
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• Examine the device registers and take action according to their indications 
of changed status, and then poll for any other changes in device status 

The driver's interrupt-servicing routine determines whether an interrupt is 
solicited or not by examining the software-interrupt-expected bit in the UCB 
status word (UCB$V_INT in UCB$L_STS). All UNIBUS and Q22 bus device 
drivers must use this method to determine whether or not an interrupt is 
solicited; the address of the unsolicited-interrupt routine, specified in the 
driver-dispatch table, is used only by MASSBUS drivers (see Sections G.4 
and G.6.) 

If the interrupt is unsolicited, the driver can reject the interrupt with the 
following code sequence: 

1 Remove the IDB pointer from the stack 

2 Restore RO through R5 

3 Dismiss the interrupt with an REI instruction 

Rather than rejecting the interrupt, the driver might wish to handle it. For 
example, the driver can send a message to the operator or the job controller's 
mailbox when an unsolicited interrupt occurs. 

Drivers should always handle unsolicited interrupts from busy devices at 
device IPL. If a driver must create a fork process to handle such an interrupt, 
it should use extreme caution. The UCB of a busy device might contain the 
active fork block of a previously created driver fork process. If a routine 
servicing an unsolicited interrupt creates a fork process to handle its interrupt, 
it can destroy the fork context currently stored in that UCB. 

Because only one sequence of instructions can use the UCB as a fork block, 
the interrupt-servicing routine must perform the following steps before it can 
create the fork process: 

• Ensure that no one is using the device, and that no one wants to use it, by 
determining that the reference count (UCB$W_REFC) is zero. 

• Ensure that it is not already using the UCB, to create a fork process in 
order to lower IPL and to send a message to the job controller, by testing 
the job-attached bit (UCB$V_JOB in UCB$W_DEVSTS). 

The VAX/VMS routine that creates the fork process (once the above 
conditions are satisfied) returns control to the interrupt-servicing routine. 

11.4.1 Examples of Unsolicited Interrupts 
A card reader requests an unsolicited interrupt when a user turns the reader 
on line. Once the card-reader driver's interrupt-servicing routine determines 
that the interrupt is unsolicited, the routine analyzes the interrupt, as in the 
following code example: 
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CR$INT:: 
MOVL <3(SP) + ,R3 ; GET ADDRESS OF IDB© 
MOVQ IDB$L_CSR(R3),R4 ;GET CONTROLLER CSR AND OWNER UCB ADDRESS© 
BBCC #UCB$V_INT,UCB$L_STS(R5),10$ ;IF CLR, INTERRUPT NOT EXPECTED© 

UNSOLICITED INTERRUPT 

10$: 

20$: 

30$: 

40$: 

MOVZWL 
MOVZBW 
BITW 
BEQL 
TSTW 
BNEQ 
BBSS 
BSBB 

MOVQ 
MOVQ 
MOVQ 
REI 
JSB 
MOVZBL 

MOVAB 
JSB 
BLBS 
BICW 
RSB 

CR_CSR(R4),R0 
#CR_CSR_M_IE,CR.CSR(R4) 
#CR_CSR_M_ONLINE,RO 

20$ 
UCB$W_REFC(R5) 
20$ 

GET READER STATUS 

CLEAR STATUS, ENABLE INTERRUPTS© 
READER TRANSITION TO ONLINE?© 
IF EQL NO 
DEVICE ASSIGNED OR ALLOCATED?© 
IF NEQ YES 

#UCB$V_JOB,UCB$W_DEVSTS(R5),20$ ;IF SET. MESSAGE ALREADY SENT© 
30$ ;SEND MESSAGE TO JOB CONTROLLER 

(SP)+,R0 ;RESTORE REGISTERS 
(SP)+,R2 

(SP)+,R4 

G~EXE$FORK 
#MSG$_CRUNSOLIC,R4 
G~SYS$GL_JOBCTLMB,R3 
G~EXE$SNDEVMSG 
RO,40$ 

CREATE FORK PROCESS© 
SET MESSAGE TYPE© 
SET ADDRESS OF JOB CONTROLLER MAILBOX 
SENT MESSAGE TO JOB CONTROLLER 
IF LBS SUCCESSFUL NOTIFICATION® 

#UCB$M_JOB,UCB$W_DEVSTS(R5) ;CLEAR MESSAGE SENT BIT® 

© The interrupt-servicing routine obtains the address of the IDB from the top 
of the stack. 

© By means of this address, it obtains the address of the control and status 
register (CSR).1 

© It checks for an unsolicited interrupt by testing the interrupt enable bit in 
the UCB status word. 

© Because the interrupt is unsolicited, the routine clears all CSR bits except 
for the interrupt enable bit. 

© It confirms that the reader was just placed on line by examining a saved 
copy of the CSR. 

© It examines the reference count field of the device's UCB (UCB$W_REFC) 
to determine whether a process has allocated the device or assigned a 
channel to it. 

© If the reference count is zero, the interrupt-servicing routine tests the job- 
attached bit in the device-dependent status field (UCB$V_JOB in UCB$W_ 
DEVSTS) to make sure it has not already sent the job controller a message 
about the card reader being placed on line. By using the job-attached bit 
to synchronize message sending, the interrupt-servicing routine protects 
the send-message-to-job-controller function from the adverse effects of 
frequent online interrupts. 

© If the job-attached bit is not set, the routine sets the bit and creates a fork 
process to send the message to the job controller, using the system routine 
EXE$SNDEVMSG (described in Appendix C). It is necessary to lower IPL 
from device IPL by forking at this point because EXE$SNDEVMSG expects 
its caller's IPL to be no greater than IPL$_MAILBOX. 

Because the card reader has a dedicated controller, the IDB$L—OWNER field always points to the UCB for the single unit: 

0(SP) -► CRB -► IDB — IDB$L-OWNER — UCB 
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When the interrupt-servicing routine regains control, it restores RO through R5 
and dismisses the interrupt with an REI instruction. (The interrupt-servicing 
routine removed the IDB pointer from the stack earlier in its execution in 
order to obtain CSR and UCB addresses.) 

© When the fork process created at Step 8 above eventually executes, it 
writes a message to the job controller's mailbox, indicating that the card 
reader is on line. 

© If the fork process successfully sends the message, it leaves the job- 
attached bit set to prevent the job controller from receiving any further 
messages about the card reader's state. (The driver's cancel-I/O routine 
later clears the bit.) 

® If the send-message request fails, the fork process clears the job-attached 
bit so that the job controller will receive a message if any change in the 
card reader's state occurs. 

Another example of unsolicited interrupt processing occurs in a device driver 
for a multiunit controller. When the operator removes a disk volume, the 
disk drive requests an interrupt. The driver interrupt-servicing routine must 
determine what drive unit requested the interrupt, obtain status information 
from the drive's CSR, and then decide whether the interrupt was solicited. 

If the interrupt is unexpected, the driver's interrupt-servicing routine calls its 
unsolicited-interrupt-servicing routine. The routine checks the status of the 
volume, as described in the following steps: 

1 It sets a bit in the UCB to indicate that the unit is on line 
(UCB$V_ONLINE in UCB$L_STS). 

2 If the UCB's volume-valid bit is set (UCB$V_VALID in UCB$L_STS), the 
routine tests the volume valid status bit in a device register to determine 
whether the volume status has changed. If the volume is no longer valid, 
the routine clears the UCB volume valid bit. 

3 The routine returns control to the driver's interrupt-servicing routine. 

The driver's interrupt-servicing routine then polls the other device units on 
the controller to determine whether any other units requested interrupts 
while the first interrupt was being processed. When no unit requires interrupt 
servicing, the routine removes the IDB pointer from the stack, restores 
registers RO through R5, and dismisses the interrupt with an REI instruction. 
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1 2 Completing an I / O Request and Handling 
Timeouts 

Once a driver has activated the device and invoked the wait-for-interrupt 
macro, the driver remains suspended until the device requests an interrupt or 
times out. 

If the device requests an interrupt, the driver interrupt-servicing routine 
handles the interrupt and then reactivates the driver at the instruction 
following the wait-for-interrupt macro. The reactivated driver performs 
device-dependent I/O postprocessing. 

If the device does not request an interrupt within the designated time 
interval, the system transfers control to the driver's timeout handler. The 
address of the timeout handler is specified as the excpt argument to the 
wait-for-interrupt macro. 

12.1 I/O Postprocessing 
Once the driver interrupt-servicing routine has handled an interrupt, it 
transfers control to the driver by issuing a JSB instruction. At this point, 
the driver is executing in interrupt context. If the driver were to continue 
executing in interrupt context, it would lock out most other processing on the 
processor including the handling of hardware interrupts. 

To restore the driver to the context of a driver fork process, the driver invokes 
the VAX/VMS macro IOFORK. Once the fork process has been created 
and dispatched for execution, it executes the driver code that completes the 
processing of the I/O request. 

12.1.1 EXESIOFORK 
IOFORK is a macro that generates a call to the VAX/VMS routine 
EXE$IOFORK. EXE$IOFORK converts the driver context from that of an 
interrupt-servicing routine to the context of a driver fork process in the 
following steps: 

1 It disables software timeouts by clearing the timeout enable bit in the UCB 
status word (UCB$V_TIM in UCB$L_STS). 

2 It saves R3 and R4 of the current driver context in the UCB fork block 
(UCB$L_FR3 and UCB$L_FR4). 

3 It saves the current driver PC in the UCB fork block (UCB$L_FPC). 
(The driver PC is the top longword on the stack, as a result of the JSB to 
EXE$IOFORK.) 

4 It obtains the fork IPL of the device from the UCB (UCB$B_FIPL). 

5 It inserts the address of the UCB fork block (R5) into the fork queue 
corresponding to the driver's fork IPL. 

6 Finally, if the fork block is the first entry in the fork queue, EXE$IOFORK 
requests a software interrupt at the driver's fork IPL. 
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The steps listed above move the fork process' context into the UCB's 
fork block. They save R3 through R5 and the driver's PC address. The 
driver's fork process resumes processing when the VAX/VMS fork dispatcher 
dequeues the UCB fork block from the fork queue and reactivates the driver 
at the driver's fork IPL. 

12.1.2 Completing an I/O Request 
When VAX/VMS reactivates a driver's fork process by dequeuing the fork 
block, the driver resumes processing of the I/O operation. If the device has 
completed the I/O operation without errors, the driver's fork process for a 
DMA device proceeds as follows: 

1 Purges the data path 

2 Releases the buffered data path (applies only to UNIBUS DMA device 
drivers) 

3 Releases mapping registers (does not apply to Micro VAX I DMA device 
drivers) 

4 Releases the controller (applies only to drivers of devices on multiunit 
controllers) 

5 Saves the status code, transfer count, and device-dependent status that is 
to be returned to the user process in an I/O-status block 

6 Returns control to the operating system 

Section 10 discusses the first three steps listed above because they relate to 
DMA transfers. The sections that follow describe the last three steps. 

12.1.2.1 Releasing the Controller 
To release the controller channel, the driver code invokes the VAX/VMS 
macro RELCHAN. RELCHAN calls the VAX/VMS routine IOC$RELCHAN. 
If another driver is waiting for the controller channel, IOC$RELCHAN grants 
that driver's fork process the channel, restores its context from the UCB 
fork block, and transfers control to the saved PC. When no more drivers are 
awaiting the channel, IOC$RELCHAN returns control to the fork process that 
released the channel. 

Drivers for devices with dedicated controllers need not release the controller's 
data channel (as discussed in Sections 9.3.1 and 13.1). By means of code in 
the unit-initialization routine, these drivers set up the device's UCB so that 
the device owns the controller permanently. 

Drivers must be executing at driver's fork IPL when they invoke RELCHAN 
or call IOC$RELCHAN. 
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12.1.2.2 Saving Status, Count, and Device-Dependent Status 
To save the status code, transfer count, and device-dependent status, the 
driver performs the following steps: 

1 Loads a success status code (SS$_NORMAL) into bits 0 through 15 of RO. 

2 Loads the number of bytes transferred into the high-order 16 bits of RO 
(bits 16 through 31), if the I/O operation performed by the device is a 
transfer function. 

3 Loads device-dependent status information, if any, into Rl.1 

12.1.2.3 Returning Control to the Operating System 
Finally, the driver returns control to the system by invoking the REQCOM 
macro to complete the I/O request. REQCOM calls the VAX/VMS routine 
IOC$REQCOM. IOC$REQCOM locates the address of the I/O-request packet 
(IRP) corresponding to the I/O operation in the device's UCB (UCB$L_IRP). 
It then writes the two longwords of completion status contained in RO and Rl 
into the media field of the IRP (IRP$L—MEDIA and IRP$L_MEDIA+4). 

IOC$REQCOM then inserts the IRP in the I/O-postprocessing queue. If the 
packet is the only entry in the postprocessing queue, IOC$REQCOM requests 
a software interrupt at IPL$_IOPOST so the postprocessing begins when IPL 
drops below IPL$_IOPOST. 

If the error-logging bit is set in the device's UCB (UCB$V_ERLOGIP in 
UCB$L_STS), IOC$REQCOM obtains the address of the error message buffer 
from the UCB (UCB$L_EMB). It then writes the following information into 
the error buffer: 

• Final device status (UCB$W_DEVSTS) 

• Final error count (UCB$B_ERTCNT) 

• Two longwords of completion status (RO and Rl) 

To release the error-message buffer, IOC$REQCOM calls ERL$RELEASEMB. 
Section 13.3 describes error logging in more detail. 

If any IRPs are waiting for driver processing IOC$REQCOM dequeues an IRP 
from the head of the queue of packets waiting for the device unit 
(UCB$L_IOQFL), and transfers control to IOC$INITIATE. IOC$INITIATE 
proceeds to create a new driver fork process for the device unit and activate 
the driver's start-I/O routine, as described in Section 5.2.1. 

Otherwise, IOC$REQCOM clears the unit-busy bit in the device's UCB status 
word (UCB$V_BSY in UCB$L_STS) and transfers control to IOC$RELCHAN 
to release the controller channel in case the driver failed to do so. 

The remaining steps in processing the I/O request are performed by 
VAX/VMS I/O postprocessing. 

* RO and Rl are the status values that VAX/VMS returns to the user process in the I/O-status block specified in the original $QIO system 
service. If the user specifies no I/O-status block, VAX/VMS does not use RO and Rl. 
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12.2 Timeout Handling Routines 

VAX/VMS transfers control to the driver's timeout handler if a device unit 
does not request an interrupt within the time limit specified in the invocation 
of the wait-for-interrupt macro. Among its other activities, the VAX/VMS 
IPL$_TIMERFORK interrupt-servicing routine, having raised IPL to 
IPL$_SYNCH, scans UCBs once every second to determine whether a device 
has timed out. 

When the IPL$_TIMERFORK interrupt-servicing routine locates a device that 
has timed out, the routine calls the driver's timeout handler by performing 
the following steps: 

1 It disables expected interrupts and timeouts on the device by clearing bits 
in the status field of the device's UCB (UCB$V_INT and UCB$V_TIM in 

UCB$L_STS). 

2 It sets the device-timeout bit in the UCB status field (UCB$V_TIMOUT in 
UCB$L_STS). 

3 It sets IPL to hardware device interrupt IPL (UCB$B_DIPL). 

4 It restores the saved R3 and R4 of the driver's fork process from the UCB 
fork block (UCB$L_FR3 and UCB$L_FR4). 

5 It restores R5 (address of the UCB fork block). 

6 It computes the address of the driver's timeout handler from the saved PC 
in the UCB fork block (UCB$L_FPC). 

7 It calls the driver's timeout handler with a JSB instruction. 

The driver's timeout handler executes in following context: 

• RO through R5 are saved on the stack. 

• R5 contains the address of the UCB for the device that timed out. 

• System address space is mapped. 

• The processor is running in kernel mode. 

• The processor is running on the interrupt stack. 

• IPL is at hardware device interrupt level. 

Because VAX/VMS originally invoked the timeout handler through an 
interrupt at IPL$_TIMERFORK, the driver can lower IPL from device IPL 
to the driver's fork IPL to process the timeout.2 

Note: The driver should lower IPL with SETIPL to preserve the contents of the 
stack. 

When the driver's fork process regains control, R3 and R4 are restored from 
UCB$L_FR3 and UCB$L_FR4 to their previous state. 

2 
Because the device can interrupt device-timeout processing at fork IPL, the driver's interrupt-servicing routine should check the 

interrupt-expected bit (UCB$V_INT) before handling the interrupt. The operating system clears this bit before it calls the driver's timeout 

handler. 
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During recovery from a power failure, VAX/VMS forces a device timeout 
by altering the timeout field (UCB$L_DUETIM) of a UCB if that device's 
UCB records that the unit is waiting for an interrupt or timeout (UCB$V_INT 
and UCB$V_TIM set in UCB$L_STS). The timeout handler can perceive 
that recovery from a power failure is occurring by examining the power bit 
(UCB$V_POWER in UCB$L_STS) in the UCB. 

A timeout handler usually performs one of three functions: 

• It retries the I/O operation unless a retry count is exhausted. 

• It aborts the I/O request. 

• It sends a message to an operator mailbox and resumes waiting for a 
subsequent interrupt or timeout. 

12.2.1 Retrying an I/O Operation 

Some devices might retry an I/O operation after a timeout. For example, a 
disk driver might take the following steps after a transfer timeout: 

1 Invoke the following VAX/VMS macro to lower IPL to fork level: 

SETIPL UCB$B_FIPL(R5) 

The resulting IPL must not drop below IPL$_SYNCH. 

2 Release mapping registers, data path, and controller data channel. 

3 Perform one of the following actions depending upon the occurrence of a 
power failure: 

• If a power failure occurred, load the address of the IRP into R3, reload 
the following fields of the IRP into the corresponding UCB fields, and 
branch to the start-I/O routine: 

IRP$L_BCNT (low-order word) 
IRP$W_BOFF 
IRP$L _S VAPTE 

This results in a retry of the transfer from the beginning. 

• If no power failure has occurred and the device driver supports error 
logging (see Section 7.2), call ERL$DEVICTMO to log the device 
timeout. 

4 Perform one of the following actions according to the error retry count: 

• If the retry count is not exhausted, decrease the count, clear the UCB 
timeout bit in UCB$L_STS, and retry the operation. 

• If the retry count is exhausted, set the error code, perform a normal 
abort I/O clean-up operation, and invoke REQCOM. 
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12.2.2 Aborting an I/O Request 
A driver's timeout handler aborts the I/O request when it exhausts its retry 
count or when it determines, upon timeout, that a cancel-I/O was requested. 
If the cancel-I/O bit in the UCB status word (UCB$V_CANCEL in 
UCB$L_STS) is set, a cancel-I/O request was made and the timeout handler 
can abort the request. 

To abort an I/O request, a device driver timeout handler can perform the 
following sequence of steps: 

1 Clear the device control and status register (CSR), if appropriate to the 
device and controller. 

2 Invoke the following VAX/VMS macro to lower IPL to fork level: 

SETIPL UCB$B_FIPL(R5) 

The resulting IPL must not drop below IPL$_SYNCH. 

3 Release mapping registers, data path, and controller data channel. 

4 Load the abort status code (SS$_ABORT) into the low word of RO. 

5 Clear bits 16 through 31 in RO to indicate that no data was transferred. 

6 Invoke the VAX/VMS macro REQCOM described in Section 12.1.2.3 to 
complete the processing of the I/O request. 

12.2.3 Sending a Message to the Operator 
The following sequence describes a timeout handler that sends a message to 
the operator's mailbox and then goes back into a wait-for-interrupt or timeout 
state: 

1 The timeout handler invokes the following VAX/VMS macro to lower IPL 
to driver fork level: 

SETIPL UCB$B_FIPL(R5) 

The resulting IPL must not drop below IPL$_SYNCH. 

2 It checks the cancel-I/O bit in the UCB status word (UCB$V_CANCEL in 

UCB$L_STS). 

If UCB$V_CANCEL is set, the timeout handler can abort the request. 
However, if UCB$V_CANCEL is clear, the timeout handler does the 
following: 

a Saves R3 and R4 on the stack 

b Loads an OPCOM message code, such as MSG$_DEVOFFLIN, into R4 

c Loads the address of the operator's mailbox (SYS$GL_OPRMBX) into 
R3 

d Calls a VAX/VMS routine to place the message in the operator's 
mailbox, as follows: 

JSB G~EXE$SNDEVMSG 

e Restores R3 and R4 
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3 The timeout handler then invokes the VAX/VMS macro DSBINT to raise 
IPL to IPL$_POWER, thereby locking out all interrupts from software and 
hardware. 

4 Finally, it invokes the WFIKPCH macro to wait for another interrupt or 
timeout. 

When the OPCOM process reads the message in its mailbox, it sends the 
requested message, in this case "device-offline," to all operator terminals. 
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Writing Initialization, Cancel-I/O, and 
Error-Logging Routines 

13.1 

Drivers normally contain initialization, cancel-I/O, and error-logging routines. 
The driver-prologue table (by repeatedly invoking the DPT_STORE macro 
described in Section 7.1.2) specifies the addresses of the unit- and controller- 

initialization routines.1 The driver-dispatch table (DDT) contains the 
addresses of the cancel-I/O and error-logging routines. The type of device 
determines which of these routines are required in a driver. 

Initialization Routines 

Most device controllers and device units require initialization both when 
the corresponding device driver is loaded and when the operating system is 
recovering from a power failure. 

At these times, the duty of initialization routines is to prepare, according to 
their characteristics, controllers and device units for operation. Among the 
actions of initialization routines for typical controllers and devices are: 

• Enabling controller interrupts 

• Clearing the error-status bits in device registers 

• Initiating a device operation, such as clearing a drive or acknowledging a 
disk pack 

• Storing values in UCB fields that the DPT_STORE macro cannot reach 
The DPT_STORE macro can initialize only the first 256 bytes of a data 
structure. 

• Permanently allocating data paths and mapping registers, as necessary, 
according to the methods described in Section 10. 

• Setting the online bit (UCB$V-ONLINE in UCB$L_STS) in the UCB. 

• Filling in the IDB$L—OWNER field for single-unit devices such as line 
printers. 

* A MASSBUS device driver must specify the address of its unit-initialization routine in the driver-dispatch table (using the unitinit argument 
to the DDTAB macro as discussed in Section 7.2). UNIBUS and Q22 bus drivers can specify the address in either the driver-prologue table or 

driver-dispatch table. 
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13.1.1 Initialization During Driver Loading 

The extent of initialization needed during driver loading depends upon 
whether the driver is being loaded for the first time or is replacing a driver 
that was previously loaded. 

The SYSGEN commands AUTOCONFIGURE, CONNECT, and LOAD add 
new drivers to the system configuration. The LOAD command loads the 
driver into nonpaged system memory but does not call any driver-specific 
routines or execute any initialization requests specified in DPT_STORE 
macro invocations. AUTOCONFIGURE and CONNECT create the I/O data 
structures associated with the device driver, call driver-specific initialization 
routines, and perform requests specified in DPT_STORE macro invocations. 

For each new device they add to the system, AUTOCONFIGURE and 
CONNECT perform the following steps: 

• Create a UCB for the device. If this is the first occurrence of device¬ 
name and controller, the commands create a device-data block (DDB), a 
channel-request block (CRB), and an interrupt-dispatch block (IDB). 

• Perform the initialization operations specified by the DPT_STORE macros 
within the initialization and reinitialization portions of the driver-prologue 
table. 

• Relocate all addresses in the DDT and FDT to system virtual addresses. 

• Call the controller-initialization routine specified in the CRB, if the CRB 
was created. 

• Call the unit-initialization routine (if any) specified in the DDT. If no 
routine exists in the DDT, call the unit initialization routine (if any) 
specified in the CRB. 

The AUTOCONFIGURE and CONNECT command operations raise IPL to 
IPL$_POWER to prevent interruption of the initialization routines. 

The RELOAD command replaces an existing driver with a new driver. The 
command loads the new driver's code into nonpaged system memory. Unlike 
the other SYSGEN commands for driver loading, RELOAD assumes that the 
data structures associated with the driver already exist, and thus updates the 
I/O database to reflect the modified code and its different location in system 
virtual address space. 

The RELOAD command performs the following functions: 

• Executes requests specified by DPT_STORE macro invocations in only the 
reinitialization section of the driver-prologue table 

• Relocates all addresses in the FDT and DDT to system virtual addresses 

• Calls the controller-initialization routine 

Section 14 contains detailed descriptions of all SYSGEN commands related to 
device drivers. 
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13.1.2 Initialization During Recovery from a Power Failure 
During recovery from a power failure, the operating system locates every 
UCB in the I/O database, by means of following the chain of pointers to all 
DDBs in the system (starting at IOC$GL_DEVLIST and chained by 

DDB$L_LINK) and the chain of pointers to all UCBs of the same device and 
controller type (starting at DDB$L_UCB and chained by UCB$L_LINK). For 
each UCB it finds, VAX/VMS performs the following procedure: 

1 It locates the CRB associated with the UCB (UCB$L_CRB) and determines 
whether a controller initialization routine exists for the device's controller 
by examining CRB$L_INTD+VEC$L—INITIAL. If an invocation of the 
DPT—STORE macro loaded the address of a controller-initialization 
routine into this field, VAX/VMS calls that routine. 

2 It determines whether a unit-initialization routine exists for the particular 
device unit by examining the unit-initialization field of the DDT 
(DDT$L_UNITINIT). If the field does not contain an address, the system 

checks the CRB (CRB$L_INTD+VEC$L -UNITINIT).2 

If either the CRB or the DDT contains a nonzero address for such a 
routine, the system calls the routine to initialize the device unit. The 
system calls only one routine; if the DDT contains an address, the address 
in the CRB is ignored. 

13.1.3 Context of an Initialization Routine 
The VAX/VMS operating system always calls controller and unit initialization 
routines with IPL raised to IPL$_POWER. The high IPL prevents any 
interrupts from reaching the processor while initialization is occurring. The 
initialization routines must not lower IPL. The system calls initialization 
routines with a JSB instruction; the routines return by executing an RSB 
instruction. 

Controller-initialization routines are device-dependent. For example, a 
controller-initialization routine for a card reader might enable interrupts 
from the device by setting the interrupt-enable bit in the device's control and 
status register (CSR). A disk's controller-initialization routine, on the other 
hand, might enable interrupts and initialize all unit-status registers. 

At the time of a call to a controller-initialization routine, the registers contain 
the following values: 

Register Value 

R4 Address of CSR 

R5 Address of IDB that describes the controller 

R6 Address of DDB associated with the controller 

R8 Address of CRB for the controller 

Unit-initialization routines are useful for initializing device-dependent fields 
in the UCB. For example, unit-initialization routines for disks can also specify 
disk-drive geometry (such as number of cylinders) in the UCB and wait for 
online units to spin up to speed. Unit-initialization routines must set the 
online bit in the UCB (UCB$V_ONLINE) to declare the unit to be on line. 

^ MASSBUS drivers store unit-initialization routines addresses only in the DDT. 
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If a device needs permanently allocated I/O adapter resources, a unit- 
initialization routine can call VAX/VMS routines to allocate the resources. 
Then, the initialization routine can set bits in the CRB's I/O adapter 
resource-description fields (for example, VEC$V_MAPLOCK in CRB$L_ 
INTD+VEC$W_MAPREG and VEC$V_PATHLOCK in 
CRB$L _INTD+VEC$B_DATAPATH.) 

At the time of a call to a unit-initialization routine, the registers contain the 
following values: 

Register Value 

R3 Address of primary CSR 

R4 Address of secondary CSR; R4 is equal to R3 if there is no 
secondary CSR 

R5 Address of the device's UCB 

If a driver's initialization routines modify R4 through Rll, the routines must 
save the contents of the registers before use and restore them before returning 
control to the operating system. 

13.2 Cancel-1/O Routine 
VAX/VMS routines call a device driver's cancel-I/O routine under the 
following circumstances: 

• When a process issues a Cancel-I/O-on-Channel system service 
($CANCEL) 

• When a process deallocates a device, causing the device reference count 
(UCB$W_REFC) to become zero (that is, no process I/O channels are 
assigned to the device) 

• When a process deassigns a channel from a device, using the $DASSGN 
system service 

• When the command interpreter performs cleanup operations as part of 
image termination by canceling all pending I/O requests for the image 
and closing all image-related files open on process I/O channels 

The VAX/VMS routine EXE$CANCEL locates the UCB for the device 
associated with a process I/O channel from a pointer in the CRB, as follows: 

channel index number —► CCB —► UCB 

EXE$CANCEL performs the following steps: 

1 Raises IPL to fork IPL (UCB$B_FIPL) 

2 Removes from the device's pending I/O queue all IRPs associated with 
the process 

3 Sets the status code SS$_CANCEL in IRP$L—MEDIA 

4 For a buffered-I/O read operation, clears the buffered-read function bit 
(IRP$V_FUNC) in IRP$W_STS 

5 Inserts the IRPs removed from the pending I/O queue into the I/O 
postprocessing queue 
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6 If the I/O-postprocessing queue is empty, requests a software interrupt at 
IPL$_IOPOST 

7 Calls the cancel-I/O routine specified in the DDT of the associated device 
driver (argument cancel to the DDTAB macro). EXE$CANCEL locates the 
routine using the following chain of pointers: 

UCB —► DDT —► cancel-I/O routine 

The cancel-I/O routine gives the driver an opportunity to prevent further 
device-specific processing of the I/O request currently being processed on 
the device. 

13.2.1 Context of a Cancel-I/O Routine 
When EXE$CANCEL calls the cancel-I/O routine, IPL is at driver fork IPL 
so that the routine can read and modify the device's UCB registers at the 
time of the call contain the following values: 

Register Value 

R2 Channel index number 

R3 Address of current IRP 

R4 Address of process-control block (PCB) of process for which 
the $CANCEL system service is being performed 

R5 Address of device's UCB 

R8 Reason for call to cancel the I/O request. Codes that signify the 
reasons for cancellation are defined by the SCANDEF macro. 
Possible values for R8 include: 

CAN$C_CANCEL Called by SCANCEL or SDALLOC system 
services 

CAN$C_DASSGN Called by SDASSGN system service 

If a cancel-I/O routine uses registers other than RO through R3, it must 
save the registers and restore them before exiting. 

Device drivers might want to base their cancel-I/O operation on whether 
the cancel-I/O request is the result of a channel deassignment 
(CAN$C_DASSGN). For example, the terminal driver cancels out-of- 
band AST requests only if the call to its cancel-I/O routine results from a 
Deassign-I/O-Channel ($DASSGN) system service call. 

13.2.2 Drivers That Need No Cancel-I/O Routine 
Some devices do not need any device-dependent processing performed 
for an I/O request; you can omit the cancel argument from the DDTAB 
macro. In this case, the DDTAB macro expansion loads the address of 
the VAX/VMS routine IOC$RETURN into the appropriate position in the 
DDT. The routine IOC$RETURN executes a single RSB instruction. 
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13.2.3 Device-Independent Cancel-I/O Routine 
Drivers can specify the VAX/VMS routine IOC$CANCELIO as the value 
of the cancel argument in the DDTAB macro invocation. IOC$CANCELIO 
cancels I/O to a device in the following device-independent manner: 

1 It confirms that the device is busy by examining the device-busy bit in 
the UCB status word (UCB$V_BSY in UCB$L_STS). 

2 It locates the process-identification field in the IRP currently being 
processed on the device by using the following chain of pointers: 

UCB —► IRP —► process identification field 

IOC$CANCELIO confirms that the field (IRP$L_PID) contains the 
same value as the corresponding field in the process-control block 
(PCB$L_PID). 

3 It confirms that the specified channel-index number is the same as the 
value stored in the IRP's channel-index field (IRP$W_CHAN). 

4 It sets the cancel-I/O bit in the UCB status word (UCB$V_CANCEL 
in UCB$L_STS). Other driver routines, such as the timeout-handling 
routine, check the cancel-I/O bit to determine whether to retry the I/O 
operation or abort it. (See Section 12.2.2 for additional information.) 

13.2.4 Device-Dependent Cancel-I/O Routine 
Drivers that include their own cancel-I/O routines must perform the 
first three steps of IOC$CANCELIO listed in Section 13.2.3 to determine 
whether the I/O request being processed originates from the process 
canceling I/O on a channel. If the three checks succeed, the cancel 
routine can proceed in a device-specific manner. 

13.3 Error-Logging Routines 
The operating system supplies two routines that drivers can call to 
allocate and fill error-logging buffers after a device error or timeout 
occurs: ERL$DEVICERR and ERL$DEVICTMO, respectively. Drivers call 
either routine at fork IPL; each expects to find the address of the device's 
UCB in R5. 

Note: See the VAX /VMS System Manager's Reference Manual and the 
VAX/VMS Error Log Utility Reference Manual for help with producing 
and reading error log files. 

Both ERL$DEVICERR and ERL$DEVICTMO perform the following steps: 

1 Allocate an error log buffer of the length specified in the device's DDT 
(in argument erlgbf to the DDTAB macro). The following chain of 
pointers is used to locate the buffer length: 

UCB —* DDT —► length of error log buffer 

2 Load fields from the UCB, the IRP, and the DDB into the buffer. 

3 Load into RO the address of the location in the buffer in which device¬ 
register's contents are to be stored. 
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4 Call a register-dumping routine in the device driver. The following 
chain of pointers is used to locate the register-dumping routine: 

UCB —► DDT —► register-dumping routine 

Specify the address of a register-dumping routine with the value of the 
regdmp argument to the DDTAB macro. 

The register-dumping routine expects the following registers to be loaded 
as described: 

Register Content 

RO Buffer address 

R4 Address of CSR if the driver used the WFIKPCH macro to wait 
for an interrupt or timeout 

R5 Address of the device's UCB 

The register-dumping routine should save and restore R3 through Rll if 
the routine requires their use. 

The driver register-dumping routine should fill the buffer as follows: 

1 Write a longword value representing the number of device registers to 
be written into the buffer 

2 Move device register longword values into the buffer following the 
register count longword 

The routine must store the contents of each device register to be logged in 
a longword in the buffer. For example, the following instruction stores the 
contents of the device register: 

MOVZWL TD_STATUS(R4),(R0) + 

A driver that supports error logging must satisfy the following 
prerequisites: 

• It must use the error-log extension of the UCB. 

• It must ensure that DDT$W_ERRORBUF is large enough to 
accommodate EMB$L_DV_REGSAV+4, plus one longword for each 
register to be dumped. 

• Its driver-prologue table must set the device characteristic DEV$V_ELG 
in UCB$L _DEVCHAR. 
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14 Loading a Device Driver 

You can load a user-written device driver any time after the system is 
bootstrapped. If the driver contains an error and the error does not crash 
or corrupt the operating system, you can correct the error and reload a new 
version of the driver. 

14.1 Preparing a Driver for Loading into the Operating System 

To prepare a device driver for loading, take the following steps: 

1 Write the device driver in one or more source files. If the driver comprises 
several source files, you must insert a .PSECT directive before any 
generated code in all files except the file that contains the DPTAB and 
DDTAB macro invocations. The following .PSECT must be used: 

.PSECT $$$115_DRIVER 

If a single source file contains the driver, you must not specify any .PSECT 
directives. The declaration of the DPTAB and DDTAB macros establish 
driver program sections correctly. 

2 Assemble the source file(s) with the system's macro library 
(SYS$LIBRARY:LIB.MLB). For example: 

$ MACRO MYDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY 

3 Link the object file with the VAX/VMS global symbol table, which is 
located in SYS$SYSTEM and called SYS.STB. If the driver consists of 
several source files, you must specify the file that contains the driver- 
prologue table as the first file in the list. The linker-options file must 
contain a BASE statement specifying a zero base for the executable image. 
The following is an example of the creation of the options file and the 
LINK command used to link a driver: 

$ CREATE MYDRIVER.OPT 

BASE=0 

| CTRL/Zl 

$ LINK /NOTRACE MYDRIVER1[,MYDRIVER2_],- 

MYDRIVER.OPT/OPTIONS,- 

SYS$SYSTEM:SYS.STB/SELECTIVE.SEARCH 

The resulting image must consist of a single image section. The linker will 
report that the image has no transfer address. 
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14.2 Loading a Driver 

Once the driver has been linked correctly, it is ready to be loaded. To load 
the driver into system virtual memory, run the System Generation Utility 
(SYSGEN) from the system manager's account or from an account having 
CMKRNL privilege, using the following command: 

$ RUN SYS$SYSTEM:SYSGEN 

SYSGEN responds with a prompt and waits for further input: 

SYSGEN> 

The VAX/VMS System Generation Utility Reference Manual describes the full 
set of SYSGEN commands. The sections that follow describe those commands 
SYSGEN uses to load drivers: 

SYSGEN command Privilege required 

LOAD CMKRNL 

CONNECT CMKRNL 

RELOAD CMKRNL 

SHOW/ADAPTER CMEXEC 

SHOW/CONFIGURATION CMEXEC 

SHOW/DEVICE CMEXEC 

In addition, you should understand SYSGEN's automatic configuration 
feature, as described in Section 14.3. 

14.2.1 LOAD Command 

To load a device driver, issue the LOAD command. 

Note: If the controller has only a single unit attached to it, you can issue 
the CONNECT command to perform the driver-loading tasks normally 
performed by the LOAD command, as well as its task of creating the 
device's I/O database (see Section 14.2.2). 

Format 

LOAD file-spec 

Parameter 

file-spec 
Name of a file containing an executable driver image. The driver-loading 
procedure compares the name field in the driver-prologue table 
(DPT$T_NAME) of the driver being loaded with the names of the drivers in 
the current system configuration. If the procedure discovers that a driver with 
the same name already exists in the configuration, it will not load the new 
driver. If it does not find a configured driver with the same name, it loads 
the new driver into contiguous locations in nonpaged pool, and links the DPT 
into the system's linked list of DPTs (headed by IOC$GL_DEVLIST). 

The LOAD command uses SYS$SYSTEM as the default device/directory 
name, and EXE as the default file type. 
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Example 

SYSGEN> LOAD CRDRIVER 

This command loads the driver found in SYS$SYSTEM:CRDRIVER.EXE (the 
card-reader driver). 

14.2.2 CONNECT Command 

The CONNECT command creates data structures in the I/O database for a 
specified device. The device-connecting procedure performs the following 
general functions: 

• If the CONNECT command specifies a new device unit on an existing 
controller, it creates a unit-control block for the new unit and calls the 
driver's unit-initialization routine. 

• If the CONNECT command specifies a device unit on a new controller, it 
creates a device-data block, channel-request block, interrupt-dispatch 
block, and unit-control block and then calls both the controller- 
initialization and unit-initialization routine in the driver. 

The CONNECT command can also load into system memory a driver that 
has not been previously loaded. (See the discussion of the /DRIVERNAME 
qualifier below and the description of the LOAD command in Section 14.2.1 
for information on driver loading.) 

CAUTION: The database-loading procedure does little error checking. If you specify a 
vector that has already been defined, the procedure rejects the CONNECT 
command. However, if the CONNECT command specifies an incorrect 
CSR address, the I/O database is apt to become corrupted and will likely 
cause a system failure. 

Format 

CONNECT device 

Parameter 

device 
Name of the device to be connected. Specify the device name in the format 
ddcu where: 

dd = device code (up to 9 alphabetic characters) 

c = controller designation (alphabetic) 

u = unit number 

For example, LPAO specifies the line printer (LP) on controller A at unit 
number 0. When specifying the device name, do not follow it with a colon 

(:)• 

The device code and controller specification must be a unique and accurate 
device name and controller combination. If data structures for the specified 
device/controller already exist, the device-connecting procedure does not 
create any data structures or perform any initialization operations. If the 
device/controller name does not accurately name a device, the procedure 
creates spurious data structures. 
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The device-connecting procedure examines the I/O database for data 
structures that support the specified device. The procedure creates the 
following data structures if they do not exist: 

• Device-data block (DDB) for the specified device/controller combination 
(iddcu). 

• Channel-request block (CRB) and interrupt-dispatch block (IDB) for the 
specified controller. The device-connecting procedure creates these data 
structures whenever it creates a DDB for a UNIBUS or Q22 bus device. 

• Unit-control block (UCB) for the device unit. The device-connecting 
procedure creates a UCB whenever it creates a DDB, or when a UCB for 
the specified device does not exist. If a UCB already exists, the procedure 
ceases its modifications to the I/O database and continues its other tasks. 

After it creates the data structures listed above, the procedure initializes them 
as follows: 

• Performs the initialization operations specified by the DPT_STORE macros 
in the initialization and reinitialization portions of the driver-prologue 
table (DPT). 

• Relocates all addresses in the driver-dispatch table (DDT) and function- 
decision table (FDT) to absolute system virtual addresses. 

• Raises IPL to IPL$_POWER so that initialization is not interrupted. 

• If it created a new CRB, calls the controller-initialization routine (if one 

exists) specified by CRB$L_INTD+VEC$L—INITIAL. 

• Calls the unit-initialization routine (if one exists) specified by 
DDT$L_UNITINIT. If the DDT does not contain the address of a 
unit-initialization routine, the procedure calls the unit-initialization routine 
(if any) specified by CRB$L_INTD+VEC$L_UNITINIT. 

Required Qualifiers 

/[NO]ADAPTER=nexus 
Nexus value of the UNIBUS adapter, MASSBUS adapter, or other controller 
to which the device unit is attached. The nexus can be a number or a generic 
name as listed by the /ADAPTER qualifier to the SYSGEN command SHOW. 
(See Section 14.2.4 for a discussion of the SHOW/ADAPTER command.) 

Specify a nexus number in the range 0 through 15. All numeric values are 
interpreted as decimal unless they are preceded by a radix descriptor (%0 or 
%X). 

The nexuses of the various VAX processors are conventionally assigned as 
listed in Table 14-1. 
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Table 14-1 Conventional Nexus Assignments 

Adapter 
VAX-11/725 
VAX-11/730 VAX-11/750 

VAX-11/780 
VAX-11/782 
VAX-11/785 
VAX 8600 
VAX 8650 

MicroVAX 1 
MicroVAX II 
VAX 82001 
VAX 88001 

UNIBUS 
0 3 8 3 0 

1 - 9 4 - 

2 - - 5 - 

3 - - 6 - 

MASSBUS 
- 4 8 — 

0 

1 - 5 9 - 

2 - 6 10 - 

3 - - 1 1 - 

^he BI-to-UNIBUS adapter on a VAX 8800 or VAX 8200 must be located at 
Node 0. 

Issue the CONNECT command with the /NOADAPTER qualifier to connect 
drivers associated with software devices. The mailbox driver is an example of 
this type of driver. 

/CSR=csr-addr 
UNIBUS or Q22 bus address of the device's control and status register (CSR). 
All numeric values are interpreted as decimal unless they are preceded by a 
radix descriptor (%0 or %X). 

/CSR_OFFSET=value 
Offset from the CSR address of a multiple-device board to the CSR address 
of the device. All numeric values are interpreted as decimal unless they are 
preceded by a radix descriptor (%0 or %X). 

/VECTOR=vector-addr 
Q22 bus or UNIBUS address of the interrupt vector for the device. All 
numeric values are interpreted as decimal unless they are preceded by a 
radix descriptor (%0 or %X). Section 14.3 provides additional information on 
vector and CSR assignments. 

/VECTOR_OFFSET=value 
Offset from the interrupt vector of a multiple-device board to the interrupt 
vector of the device being connected. All numeric values are interpreted 
as decimal unless they are preceded by a radix descriptor (%0 or %X). 
Section 14.3 provides additional information on vector and CSR assignments. 

14-5 



Loading a Device Driver 

Optional Qualifiers 

/N U M VEC=vector-cnt 
Number of interrupt vectors for the device. If this qualifier is omitted, the 
default number of vectors is 1. The number specified by the /VECTOR 
qualifier is the address of the lowest vector. Vectors must be contiguous. 

/DRIVERNAME=driver 
Name of the driver for the device to be connected. If the driver for the 
specified device has not yet been loaded, the CONNECT command will 
load its driver. First, it will attempt to load the driver whose name is 
specified in this qualifier, defaulting to a file type of EXE in device/directory 
SYS$SYSTEM). 

If the /DRIVERNAME qualifier is omitted, CONNECT follows one of two 
procedures to supply a default name. If the device to be connected is the 
first unit on the controller, CONNECT concatenates the first two characters 
of the device code with "DRIVER," (for example, LPDRIVER). Otherwise, 
CONNECT obtains the driver name from the field DDB$T_DRVNAME. 

Consult the SYSGEN device table in Section 14.3.2 for the driver names of 
the devices supported by VAX/VMS. 

/ADPUNIT=unit-number 
Unit number of a device on the MASSBUS adapter. The unit number for a 
disk drive is the number of the plug on the drive. For magnetic tape drives, 
the unit number corresponds to the tape controller's number. 

/MAXUNITS=max-unit-cnt 
Maximum number of units attached to the controller. This number 
determines the size of the UCB list appended to the IDB. If specified, this 
value overrides the maximum number of units designated in the DPT. The 
maximum number of units is stored in the field IDB$W_UNITS. 

Example 

SYSGEN> CONNECT LPAO /ADAPTER=UB0/CSR=%0777514/VECT0R=y.020O 

This command loads the driver LPDRIVER, if it is not already loaded, and 
creates the data structures (DDB, CRB, IDB, and UCB) needed to describe 
LPAO. 

14.2.3 RELOAD Command 
The RELOAD command loads a driver and removes a previously loaded 
version of that driver. The RELOAD command provides all of the functions 
of LOAD, except that it loads the driver regardless of whether it is already 
loaded. 

If any of the units associated with the driver are busy, the driver cannot be 
reloaded; SYSGEN issues an error message. 

CAUTION: Use the RELOAD command only when all devices supported by the 
driver are inactive. The checks for activity made by the RELOAD 
command might not detect all device activity, and changing a driver 
while an I/O request is being processed will cause a system failure. 
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Parameter 

file-spec 
Name of a file containing an executable driver image. The driver-reloading 
procedure compares the name field in the driver-prologue table 
(DPT$T_NAME) of the driver being loaded with the names of the drivers in 
the current system configuration. If no such driver is configured, the driver¬ 
reloading procedure loads the driver as described in the discussion of the 
LOAD command in Section 14.2.1. 

If the driver-reloading procedure finds a driver with the specified name in the 
configuration, it first determines that the current driver can be replaced in the 
following steps: 

• Confirms that the DPT$M_NOUNLOAD flag of the current driver is not 
set. 

• Calls the current driver's driver-unloading routine, if one exists, and 
confirms that the returned status is a success code. 

• Ensures that no devices that use the current driver are busy, as indicated 
by the UCB$V_BSY bit set in UCB$L_STS. 

If these checks succeed, the driver-reloading procedure replaces the current 
driver with the new driver in the following manner: 

1 Loads the new driver into contiguous locations in nonpaged system 
memory. 

2 Searches the I/O database for references to the driver. If any device-data 
block refers to the driver being reloaded, the driver-reloading procedure 
must reinitialize data structure fields according to the reinitialization 
instructions in the new driver-prologue table (see Section 7.1). 

Fields that must be reinitialized when a driver is reloaded include those 
that contain relative addresses within the driver: 

• Addresses of the driver's interrupt-servicing routines 

• Addresses of the device's unit-initialization and controller-initialization 
routines 

• Address of the driver-dispatch table 

3 Calls the driver's controller-initialization routine. (It does not call the 
unit-initialization routine.) 

4 Removes the newly replaced driver from the system's linked list of DPTs 
(headed by IOC$GL_DEVLIST). (headed by IOC$GL_DEVLIST) and 
deallocates the nonpaged system space the old driver occupied. 

5 Links the address of the new driver-prologue table to the system's list of 
DPTs. 

14.2.4 SHOW/ADAPTER Command 
The SHOW/ADAPTER command displays nexus numbers and generic names 
of UNIBUS and MASSBUS adapters, memory controllers, and interconnection 
devices such as the DR32. Use of the SHOW/ADAPTER command requires 
CMEXEC privilege. 
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Format 

SHOW/ADAPTER 

Example 

SYSGEN> SHOW/ADAPTER 

CPU Type: 11/780 
Hardware Revision #96 

Nexus Generic Name or Description 

1 16K memory, non-interleaved 

4 UBO 
5 UB1 
8 MBO 
9 MB1 

This example shows a VAX-11/780 that uses one memory controller 
composed of 16K-bit chips, two UNIBUS adapters, and two MASSBUS 
adapters. 

14.2.5 SHOW/CONFIGURATION Command 
The SHOW/CONFIGURATION command displays the device name, number 
of units, nexus number and type, and shows the CSR and vector addresses of 
devices connected to or autoconfigured in the system. 

Format 

SHOW/CONFIGURATION 

Optional Qualifiers 

/ADAPTER=nexus 
Nexus value of the UNIBUS adapter, MASSBUS adapter, or other 
interconnect to be displayed. The nexus value can be expressed as an integer 
or as one of the generic names listed by the SHOW/ADAPTER command. 

/COMMAND-FILE 
Option by which you instruct SYSGEN to format all device data produced by 
the SHOW/CONFIGURATION command into CONNECT/ADAPTER=nexus 
commands and write them to a specified output file. By executing the 
commands in this file, you can remove a device from floating address 
space without completely reconnecting the CSR and vector addresses of 
the remaining devices. See the VAX/VMS System Generation Utility Reference 
Manual for more details. 

/OUTPUT=file-spec 
Name of a file into which SHOW/CONFIGURATION is to write device 
configuration information. 
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Example 

SYSGEN> SH0W/C0NFIGURATI0N/ADAPTER=UB1 

System CSR and Vectors on 24-. JUL-1986 14:58:26.08 

Name: LPA Units: 1 Nexus:4 (UBA) CSR: 777514 Vectorl: 200 Vector2: 000 

Name: DYA Units: 2 Nexus:4 (UBA) CSR: 777170 Vectorl: 264 Vector2: 000 

Name: XMA Units: 1 Nexus:4 (UBA) CSR: 760070 Vectorl: 300 Vector2: 304 

Name: XMB Units: 1 Nexus:4 (UBA) CSR: 760100 Vectorl: 310 Vector2: 314 

Name: XMC Units: 1 Nexus:4 (UBA) CSR: 760110 Vectorl: 320 Vector2: 324 

Name: TTA Units: 8 Nexus:4 (UBA) CSR: 760130 Vectorl: 330 Vector2: 334 

Name: TTB Units: 8 Nexus:4 (UBA) CSR: 760140 Vectorl: 340 Vector2: 344 

Name: TTC Units: 8 Nexus:4 (UBA) CSR: 760150 Vectorl: 350 Vector2: 354 

Name: TTD Units: 8 Nexus:4 (UBA) CSR: 760160 Vectorl: 360 Vector2: 364 

Name: TTE Units: 8 Nexus:4 (UBA) CSR: 760170 Vectorl: 370 Vector2: 374 

14.2.6 SHOW/DEVICE Command 
The SHOW/DEVICE command displays the following information: 

• Name of the driver 

• Starting virtual address of the driver (that is, the address of the driver- 
prologue table) 

• Ending virtual address of the driver 

• Generic device/controller name associated with the driver 

• Addresses of the device-data block, channel-request block, and interrupt- 
dispatch block for the generic device/controller supported by the driver 

• Unit number and UCB address of each device unit associated with the 
driver 

The SHOW/DEVICE command requires CMEXEC privilege. 

Format 

SHOW/DEVICE [=driver-name] 

Parameter 

driver-name 
Name of the driver for which the information is to be displayed. If a driver 
name is not specified, the command displays information about all drivers 
and devices known to the system. 

Example 

SYSGEN> SHOW/DEVICE=TMDRIVER 

_DRIVER_START_END_DEV_DDB_CRB_IDB_UNIT_UCB 

TMDRIVER 8009DF00 8009F020 

MTA 800BA660 800BA6C0 800BA360 

0 8009F020 

1 8009F0C0 

14-9 



Loading a Device Driver 

14.3 Autoconfiguration 

The standard VAX/VMS system start-up file runs SYSGEN to create and 
initialize an I/O database that describes all supported DIGITAL peripherals 
in the configuration. The following command requests SYSGEN to prepare a 
database for all supported DIGITAL devices attached to every UNIBUS, Q22 
bus, and MASSBUS: 

SYSGEN> AUTOCONFIGURE ALL 

To configure devices attached to the UNIBUS or Q22 bus, SYSGEN goes 
through the steps described in subsequent sections of this chapter. 

DIGITAL-supplied devices are attached to the UNIBUS or Q22 bus according 
to a table found in Appendix A of the PDP-11 Peripherals Handbook. The 
basic rules follow: 

• A device of type A is always at a fixed and predefined CSR address; the 
device always interrupts at a fixed and predefined vector address; only one 
example of device A can be configured in each system. 

• A device of type B is identical to type A except that 1 through n examples 
can be configured in a single system. Examples 2 through n are also 
located at fixed and predefined CSRs and vector addresses. 

• Devices of type C (1 through n of them) are always at fixed and predefined 
CSR addresses; however, the interrupt vector addresses vary according to 
what other devices are present on the system. 

• Devices of type D (1 through n of them) are at CSR addresses and vector 
addresses that vary according to what other devices are present on the 
system. 

The CSR and vector addresses that vary are called floating addresses. The 
devices must be located in floating CSR and vector space according to the 
order in which the devices appear in the SYSGEN device table. This table, 
shown in Section 14.3.2, lists all the type A and type B devices supported by 
VAX/VMS. It also lists the type C and type D devices that are recognized by 
SYSGEN's autoconfiguration procedure. 

The base of floating vector space is 300s. The base of floating CSR space is 
7600108. 

14.3.1 The SYSGEN Autoconfiguration Facility 

The SYSGEN utility automatically configures a UNIBUS or Q22 bus as 
follows: 

• It initializes the base of floating space to 3008 and 7600108 for vectors and 
CSRs, respectively. 

• It tests fixed and floating CSR address space for all known DIGITAL 
devices. 

• When a device is found at a CSR, SYSGEN reserves floating CSR and 
vector space for that device, if necessary. 

• It searches for the name of the driver associated with the device by 
checking the SYSGEN device table (shown in Section 14.3.2 and the 
directory SYS$SYSTEM. If the driver has already been loaded or exists as 
an image file in SYS$SYSTEM, SYSGEN creates and initializes the I/O 
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database for that device and loads the driver's image if necessary. If the 
device at the CSR is supported by VAX/VMS and SYSGEN cannot locate 
its associated driver's image, it generates an error message. If the device 
is unsupported and has no corresponding driver's image, SYSGEN ignores 
the condition. 

14.3.2 SYSGEN Device Table 
The SYSGEN device table (see Table 14-2 lists the characteristics of all 
DIGITAL devices. This table indicates the following information for each 
device type: 

• Device name 

• Device controller name 

• Interrupt vector 

• Number of interrupt vectors per controller 

• Vector alignment factor 

• Address of the first device register for each controller recognized by 
SYSGEN (the first register is usually, but not always, the CSR) 

• Number of registers per controller 

• Device driver name 

• Indication of whether the driver is or is not supported 

Devices not listed in the SYSGEN device table include: 

• Non-DIGITAL-supplied devices with fixed CSR and vector addresses. 
These devices have no effect on autoconfiguration. Customer-built devices 
should be assigned CSR and vector addresses beyond the floating address 
space reserved for DIGITAL-supplied devices. 

• Those DIGITAL-supplied, floating-vector devices that the 
AUTOCONFIGURE command does not recognize. Use the CONNECT 
command to attach these devices to the system. 

Table 14-2 SYSGEN Device Table 

Device 
Name 

Controller 
Name Vector 

No. of 
Vectors Alignment 

CSR 
/Rank 

No. of 
Registers 

Driver 
Name Support 

CR CR1 1 230 — — 777160 — CRDRIVER Yes 

DM RK611 210 — — 777440 — DMDRIVER Yes 

LP LP11 200 — — 777514 — LPDRIVER Yes 
170 764004 
174 764014 
270 764024 
274 764034 

DL RL1 1 160 — — 774400 — DLDRIVER Yes 

MS TS11 224 — — 772520 — TSDRIVER Yes 

DY RX211 264 — — 777170 — DYDRIVER Yes 
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Table 14-2 (Cont.) SYSGEN Device Table 

Device Controller No. of CSR No. of Driver 
Name Name Vector Vectors Alignment /Rank Registers Name Support 

DY RB730 250 — — 775606 — DQDRIVER Yes 

PU UDA 154 — — 772150 — PUDRIVER Yes 

PT TU81 260 — — 774500 — PUDRIVER Yes 

XE UNA 120 — — 774510 — XEDRIVER Yes 

XQ QNA 120 — — 774440 — XQDRIVER Yes 

OM DC11 Float 2 8 774000 
774010 
774020 
774030 

32 units 
maximum 

OMDRIVER No 

DD TU58 Float 2 8 776500 
776510 
776520 
776530 

16 units 
maximum 

DDDRIVER Yes 

OB DN1 1 Float 1 4 775200 
775210 
775220 
775230 

16 units 
maximum 

OBDRIVER No 

YM DM1 IB Float 1 4 770500 
770510 
770520 
770530 

YMDRIVER No 

16 units 
maximum 
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Table 14-2 (Cont.) SYSGEN Device Table 

Device 
Name 

Controller 
Name Vector 

No. of 
Vectors Alignment 

CSR 
/Rank 

No. of 
Registers 

Driver 
Name Support 

OA DR11C Float 2 8 767600 
767570 
767520 
767550 

16 units 
maximum 

OADRIVER No 

PR PR611 Float 1 8 772600 
772604 
772610 
772614 

8 units 
maximum 

PRDRIVER No 

PP PP611 Float 1 8 772700 
772704 
772710 
772714 

8 units 
maximum 

PPDRIVER No 

OC DT11 Float 2 8 777420 
777422 
777424 
777426 

8 units 
maximum 

OCDRIVER No 

OD DX11 Float 2 8 776200 
776240 

— ODDRIVER No 

YL DL11C Float 2 8 775610 
775620 
775630 
775640 

31 units 
maximum 

YLDRIVER No 

YJ DJ11 Float 2 8 Float 4 YJDRIVER No 

YH DH11 Float 2 8 Float 8 YHDRIVER No 
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Table 14-2 (Cont.) SYSGEN Device Table 

Device 
Name 

Controller 
Name Vector 

No. of 
Vectors Alignment 

CSR 
/Rank 

No. of 
Registers 

Driver 
Name Support 

OE GT40 Float 4 8 772000 
772010 

— OEDRIVER No 

LS LPS1 1 Float 6 8 770400 — LSDRIVER No 

OR DQ1 1 Float 2 8 Float 4 0RDRIVER No 

OF KW11W Float 2 8 772400 — OFDRIVER No 

XU DU1 1 Float 2 8 Float 4 XUDRIVER No 

XW DUP1 1 Float 2 8 Float 4 OODRIVER No 

XV DV1 1 Float 3 8 775000 
775040 
775100 
775140 

XVDRIVER No 

OG LK1 1 Float 2 8 Float 4 OGDRIVER No 

XM DMC1 1 Float 2 8 Float 4 XMDRIVER Yes 

TT DZ1 1 Float 2 8 Float 4 DZDRIVER Yes 

XK KMC1 1 Float 2 8 Float 4 XKDRIVER No 

OH LPS1 1 Float 2 8 Float 4 OHDRIVER No 

01 VMV21 Float 2 8 Float 4 OIDRIVER No 

OJ VMV31 Float 2 8 Float 8 OJDRIVER No 

OK DWR70 Float 2 8 Float 4 OKDRIVER No 

DL RL1 1 Float 1 4 Float 4 DLDRIVER Yes 

MS TS1 1 Float 1 4 772524 
772530 
772534 

TSDRIVER Yes 

LA LPA1 1 Float 2 8 770460 — LADRIVER Yes 

LA LPA1 1 Float 2 8 Float 8 LADRIVER Yes 

OL KW1 1C Float 2 8 Float 4 OLDRIVER No 

RSV RSV Float 1 8 Float 4 RSVDRIVER No 

DY RX21 1 Float 1 4 Float 4 DYDRIVER Yes 

XA DR1 1W Float 1 4 Float 4 XADRIVER Yes 

XB DR11B 124 — — 772410 — XBDRIVER No 

XB DR1 IB Float 1 4 772430 4 XBDRIVER No 

XB DR11B Float 1 4 Float 4 XBDRIVER No 

XD DMP1 1 Float 2 8 Float 4 XDDRIVER Yes 

ON DP VI 1 Float 2 8 Float 4 ONDRIVER No 

IS ISB11 Float 2 8 Float 4 ISDRIVER No 

XD DM VI 1 Float 2 8 Float 8 XDDRIVER No 

XE UNA Float 1 4 Float 4 XEDRIVER No 

PU UDA Float 1 4 Float 2 PUDRIVER Yes 

TX DMF32 Float 8 4 Float 16 YCDRIVER Yes 

XG — — — — — — XGDRIVER Yes 
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Table 14-2 (Cont.) SYSGEN Device Table 

Device 
Name 

Controller 
Name Vector 

No. of 
Vectors Alignment 

CSR 
/Rank 

No. of 
Registers 

Driver 
Name Support 

LC — — — — — — LCDRIVER Yes 

XI — — — — — — XIDRIVER No 

XS KMS11 Float 3 8 Float 8 XSDRIVER No 

XP PCL11 Float 2 8 764200 
764240 
764300 
764340 

XPDRIVER No 

VB VS 100 Float 1 4 Float 8 VBDRIVER No 

PT TU81 Float 1 4 Float 2 PUDRIVER Yes 

OQ KM V11 Float 2 8 Float 8 OQDRIVER No 

UK KCT32 Float 2 8 764400 
764440 
764500 
764540 

UKDRIVER No 

IX IEQ1 1 Float 2 8 764100 — IXDRIVER No 

TX DHV1 1 Float 2 8 Float 8 YFDRIVER Yes 

TX DMZ32 
CPI32 

Float 6 4 Float 16 YCDRIVER Yes 

XG CPI32 Float 6 4 Float 16 XGDRIVER Yes 

DT TCI 1 214 — — 777340 — DTDRIVER No 

VC VC01B 060 — — 777200 — VCDRIVER Yes 

14.3.3 Device Driver Control of Autoconfiguration 
The SYSGEN autoconfiguration facility provides two features that drivers 
can use to control the automatic configuration of the devices they operate. 
These features are invoked through the defunits and deliver arguments to 
the DPTAB macro. 

The defunits argument to the DPTAB macro specifies a default number of 
units to be configured into the system. The DPTAB macro copies this value 
to the DPT$W_DEFUNITS field in the driver-prologue table. The SYSGEN 
autoconfiguration facility reads this field and creates unit-control blocks 
numbered zero through the default unit number minus one. The default 
value of defunits is 1. 

The deliver argument to the DPTAB macro specifies the address of a 
driver-specific unit-delivery routine. An offset to this routine is stored in 
the DPT$W_DELIVER field within the driver-prologue table. When the 
deliver argument is present, the SYSGEN autoconfiguration facility calls the 
unit-delivery routine once for each unit, the number of which being specified 
in the defunits argument. 

The unit-delivery routine prevents the creation of unit-control blocks for 
devices that do not respond to a test for their presence. 
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If the unit-delivery routine returns a true status in RO, the unit is configured. 
If the status in RO is false, the autoconfiguration facility does not configure 
the device. If the deliver argument is not used, the unit-delivery feature is 
disabled. 

SYSGEN calls the unit-delivery routine with a JSB instruction in the following 
context: 

• Interrupt priority level is at IPL$_POWER (31). 

• RO through R2 are available for use. 

• R3 contains the address of the interrupt-dispatch block, of one exists. If 
none exists, the value contained in R3 is zero. 

• R4 contains the address of the CSR for the controller. 

• R5 contains the number of the unit that the routine must decide whether 
or not to configure. 

• R6 contains the base address of UNIBUS adapter I/O space. 

• R7 contains the address of the configuration-control block (ACF). 

• R8 contains the address of the adapter-control block. 

The configuration-control block is described in Figure A-l and Table A-l. 

A driver may or may not specify a unit-delivery routine. For instance, the 
DZll's device driver specifies 8 as the default unit number, but no routine to 
configure eight terminal units automatically for each DZll's CSR. The RK611 
device driver specifies 8 as the default number of units and also specifies the 
address of a unit-delivery routine that is called once for each of the eight 
possible devices on the controller. 

14.3.4 Floating-Vector Address Calculation 
To calculate the floating-vector address of a device, the SYSGEN utility 
rounds the current floating-vector base (CFVB) up to the next valid vector 
address boundary for the next device in the table. 

If a device is present, SYSGEN reserves floating-vector space for the device 
by computing a new CFVB: 

CFVB + (4 * number-of-vectors) —► CFVB 

14.3.5 Floating-CSR Address Calculation 
To calculate the floating CSR address of a device, SYSGEN rounds the current 
floating CSR base (CFCB) up to the next valid floating CSR address. Floating 
CSR addresses must fall on an 8-byte boundary. 

SYSGEN tests the CSR address (CFCB) for the next device in the device table 
by executing a TSTW instruction on the address and noting whether there is 
a response at that address. 

If the device is present, SYSGEN reserves floating CSR address space for the 
device by computing a new CFCB: 

CFCB + bytes-in-register-set —► CFCB 
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When all devices of a particular type have been located and their floating CSR 
space reserved, SYSGEN reserves an extra block of CSR space to indicate a 
change to a new device type: 

CFCB + 8 — CFCB 

If the device is not present, SYSGEN reserves an extra block of CSR space to 
indicate a change to a new device type by adding eight to the rounded CFCB: 

CFCB + 8 — CFCB 

14.3.6 Rules for Configuration 
The formulas described in Sections 14.3.4 and 14.3.5 reduce to the following 
maxims: 

• Devices with fixed CSR addresses and fixed vector addresses must be 
attached according to the SYSGEN device table settings. 

• Devices with floating CSR or vector addresses must be attached in the 
order in which they are listed in the SYSGEN device table. 

• An 8-byte gap must be reserved between each different type of device that 
is located in floating CSR address space. 

• An 8-byte gap must be reserved in floating CSR address space for each 
device type that has no controller in its configuration. 

• An extra 8-byte gap must be reserved between the KW11C and the RX11 
in floating CSR address space. 

When assigning floating vector addresses and registers to devices not supplied 
by DIGITAL, be sure to leave a generous gap between these addresses 
and those of DIGITAL devices because subsequent VAX/VMS maintenance 

updates might add new devices to the SYSGEN device table.1 

14.3.7 Example of a UNIBUS Configuration 
This example shows the correct configuration for UNIBUS devices with 
floating CSR and vector addresses. Controllers flagged with an asterisk (*) 
are not supported by DIGITAL. 

Controller Vector(s) CSR (first register) 

1 DN11* 300 775200 

1 DU1 1* 310 760040 

1 DV11* 320 775000 

1 DMC11 340 760100 

2 DZ1Is 350 760120 

360 760130 

2 TS1Is 224 772520 

370 772524 

1 UNIBUS addresses 764100 through 767776 are available for non-DIGITAL-supplied devices. 
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Controller Vector(s) CSR (first register) 

3 DRIlBs* 124 772410 (CSR is third register) 

400 772430 

410 760300 

1 customer 420 760320 
device (or higher) (or higher) 
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1 5 Debugging a Device Driver 

DELTA and XDELTA are debugging tools that can be used to monitor the 
execution of user programs and the VAX/VMS operating system. When you 
link DELTA with a user image that runs in a nonprivileged process, DELTA 
is a user-mode debugging tool. When run in a privileged process, however, 
DELTA acts as a multimode debugger; it allows you to debug in user mode or 
to change to kernel mode for debugging. However, DELTA does not support 
debugging at elevated IPLs. 

XDELTA is syntactically identical to DELTA but also allows you to debug code 
that executes at an elevated IPL. XDELTA is used for stand-alone debugging 
of driver code and the executive. 

In the command syntaxes and dialogues contained in this chapter, red ink 
indicates the commands typed by the user and black ink indicates the system 
prompts and responses. 

15.1 Bootstrapping the System with XDELTA 
Under VAX/VMS, drivers are part of the operating system. You normally 
bootstrap the system with two boot flags set to allow you to debug with 
XDELTA. One flag causes the bootstrapping procedure to include XDELTA 
in the system. The other boot flag indicates a stop at a breakpoint in 
VAX/VMS initialization. Table 15-1 describes the possible values of these 
flags. Following a boot that includes XDELTA, executing a BPT instruction 
causes control to transfer to a fault handler located in XDELTA. 

Table 15-1 Boot Flags That Control the Loading of XDELTA 

Flag 
Value (f) Meaning 

0 Normal nonstop bootstrap (default) 

1 Stop in SYSBOOT (equivalent to @DxyGEN on the VAX-1 1/780) 

2 Include XDELTA with the system but do not take the initial 
breakpoint 

6 Include XDELTA with the system and take the initial breakpoint 

7 Include XDELTA with the system, stop in SYSBOOT and take the 
initial breakpoint at system initialization (equivalent to @DxyXDT 
on the VAX-1 1/780) 

The procedures for bootstrapping the system with XDELTA differ depending 
upon which processor the operating system is running. Some processors 
that use a console block storage device supply a special boot command file 
that automatically includes XDELTA in the system and causes the processor 
to stop in SYSBOOT and take the initial breakpoint at system initialization. 
When booting other processors, you must specify the appropriate flag value 
in the BOOT command. Table 15-2 lists some recommended methods for 
booting with XDELTA. See the Guide to VAX/VMS Software Installation for 
additional information. 
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Table 15-2 Recommended Methods for Bootstrapping with XDELTA 

Boot Commands Explanation 

MicroVAX II, MicroVAX I, and VAX-11/7501 Processors 

B[/f\ devname B is the console BOOT command. The flags (f) parameter is a 32-bit hexadecimal 
integer loaded into R5 as input to VMB.EXE, the primary bootstrap program. See 
Table 15-1 for a list of its possible values. 

Using the format ddcu, specify the name of the device that contains the volume to be 
bootstrapped. You must supply both controller (c) and unit (u) identifiers; there are 
no defaults. If you omit devname, the f parameter is ignored. 

The following example bootstraps a MicroVAX II system from DUAO.2 

»>B/7 DUAO 
SYSBOOT> 

SYSBOOT>CONTINUE 

VAX 8800 and VAX 8200 Processors 

B[/R5:f] devname B is the console BOOT command. The flags (f) parameter is a 32-bit hexadecimal 
integer loaded into R5 as input to VMB.EXE, the primary bootstrap program. See 
Table 15-1 for a list of its possible values. 

For the VAX 8800, specify devname in the format ddduuu. The console places the 
specified unit number (uuu) in R3 and executes the procedure dddBOO.COM. If you do 
not specify devname, the console executes DEFBOO.COM. To use the /R5 qualifier, 
you must have previously removed or commented out the DEPOSIT R5 command in 
the procedure to be executed. 

For the VAX 8200, specify devname in the format ddxu, where x represents the 
number of the VAXBI node to which the boot device unit is attached. If you do not 
specify devname, the console boots from the default boot device. 

The following example bootstraps a VAX 8200 system from the boot disk at VAXBI 
node 4.2 

>»B/R5:7 DU40 
SYSB00T> 

SYSB00T>C0NTINUE 

VAX-11/780, VAX-11/782, and VAX-11/785 Processors 

@DMAXDT Use either DMAXDT.CMD or DBAXDT.CMD, depending upon the boot device. The 
@DBAXDT following example boots from DM AO, first depositing the value 0 in R3.2 

>»DEP0SIT R3 0 
»XDDMAXDT 
SYSB00T> 

SYSB00T>C0NTINUE 

^he console TU58 of the VAX-11/750 processor contains command files (DMAXDT.CMD and 
DBAXDT.CMD) analogous to those supplied for the VAX-11/780. See the Guide to VAX/VMS Software 
Installation for additional information. 

2 At the SYSBOOT prompt enter other required SYSBOOT commands and conclude the boot operation with 
a CONTINUE command. If you do not set or load system parameters with a USE command, the system 
uses parameters stored in the system image. To prevent the system from automatically rebooting after a 
bugcheck, set system parameter BUGREBOOT to 0. 
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Table 15-2 (Cont.) Recommended Methods for Bootstrapping with XDELTA 

Boot Commands Explanation 

VAX-11/730 and VAX-11/725 Processors 

@DQAXDT 
@DQ0XDT 

Use either DQAXDT.CMD or DQ0XDT.CMD, depending upon the boot device. The 
following example boots from DQA1, first depositing the value 1 in R3. When the 
boot device is DQA0, you can omit this step and execute DQ0XDT.COM.2 

»>D/G/L 3 1 
»><DDQAXDT 

SYSB00T> 
SYSB00T>CONTINUE 

VAX 8600 and VAX 8650 Processors 

@DU0XDT Use DUOXDT.COM, if available on the console media, according to the method 
described for the VAX-11/780. Otherwise, perform a normal bootstrap using the 
available dduGEN.COM or dduBOO.COM according to the following method: 

Use the /NOSTART qualifier in the BOOT command to cause the processor to pause 
and await console commands after it boots. After a variety of progress messages 
are displayed, the console prompt reappears. First, a value for the flag that controls 
XDELTA loading (see Table 15-1). Then, examine the current value of R5; if it 
is nonzero (for instance, it is the system root number), perform an inclusive-OR 
operation upon it and your selected XDELTA flag value.2 

»> BOOT/NOSTART 
SYSB00T>EXAMINE R5 
SYSB00T>DEPOSIT R5 7 
SYSB00T> 
SYSB00T>CONTINUE 

2At the SYSBOOT prompt enter other required SYSBOOT commands and conclude the boot operation with 
a CONTINUE command. If you do not set or load system parameters with a USE command, the system 
uses parameters stored in the system image. To prevent the system from automatically rebooting after a 
bugcheck, set system parameter BUGREBOOT to 0. 

15.1.1 Proceeding from the Initial Breakpoint 
After being bootstrapped, the system displays its welcoming message and 
halts in XDELTA, as follows: 

1 BRK AT nnnnnnnn 
address/NOP 

XDELTA is waiting for input. (XDELTA never issues explicit prompts.) 
Usually, you proceed from this point with the following command: 

;P fRETl 

All of the XDELTA commands are described in Section 15.10 and in the 
VAX/VMS Delta/XDelta Utility Reference Manual. 
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If the operating system halts with a fatal bugcheck, the system prints 
the bugcheck information on the console terminal. Then, because the 
system parameter BUGREBOOT was set to 0, XDELTA prompts. Bugcheck 
information consists of the following: 

• Type of bugcheck 

• Register values 

• Dump of one or more stacks 

PC and stack content indicate how an experimental driver crashed the 
system. You can then examine the system state further by issuing XDELTA 
commands. 

15.2 Loading the Driver 

Once the system is running, you can log in to the system as the system 
manager and load the experimental driver. 

To load the driver, run SYSGEN and issue the appropriate LOAD and 
CONNECT commands. Figure 15-1 provides a sample dialogue. 

The first SHOW command in Figure 15-1 causes SYSGEN to display the 
location of the device driver in system memory. You then define the device 
to the operating system. The second SHOW command causes SYSGEN to 
display the driver's location and the addresses of the device's DDB, CRB, IDB, 
and UCB. 

Figure 15-1 Loading a Driver 

$ RUN SYSISYSTEM:SYSGEN 
SYSGEN>L0AD DMAO:[YOUR.DIRECTORY]YRDRIVER.EXE 
SYSGEN>SH0W /DEVICE=YRDRIVER 

_Driver_Start_End_Dev_DDB_CRB_IDB_Unit_UCB_ 
YRDRIVER 80060E50 80061070 

SYSGEN>C0NNECT YR /ADAP=3/VEC=*/.0274/CSR=*/.0776240 
SYSGEN>SHOW /DEVICE=YRDRIVER 

_Driver_Start_End_Dev_DDB_CRB_IDB_Unit_UCB_ 
YRDRIVER 80060E50 80061070 

YRA 8005FDC0 80060B70 8005FE00 
0 80060BB0 

SYSGEN>EXIT 

15.3 Inserting Breakpoints in Driver Source Code 

The SYSGEN command CONNECT calls controller-initialization and unit- 
initialization routines. To begin debugging the driver, you should ensure that 
the kernel-mode debugging utility XDELTA gains control of the driver before 
these routines execute. This is accomplished by placing one or more calls 
to the special system routine INI$BRK within the source code of either the 
controller- or unit-initialization routine. To call INI$BRK, use the following 
instruction: 

JSB G~INI$BRK 
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The INI$BRK routine contains two instructions: 

BPT 
RSB 

When the processor executes the BPT instruction, XDELTA gains control and 
reports the address of the breakpoint: 

1 BRK AT nnnnnnnn 

You can use INI$BRK as a debugging tool and place calls to it within any part 
of the driver source code. 

To determine the last driver PC before the breakpoint, examine the kernel 
stack. The stack register is register RE (hexadecimal format): 

RE/address /address 

Display RE to find the address of the top of the stack. Another display 
command (/) reveals the contents of the top of the stack, which should be 
the return address to the driver that called INI$BRK. 

15.4 Calculating the Base of Driver Code 

Before you debug the driver, it is a good idea to calculate the base address of 
driver code, as follows: 

1 Run SYSGEN and issue the SHOW/DEVICE command. The resulting 
display lists the location in nonpaged pool at which SYSGEN loaded the 
driver. 

2 Consult the load-map for the driver (obtained at driver link time). The 
driver resides in two program sections (PSECTs): 

$$$105_PROLOGUE driver-prologue table 

$$$115_DRIVER driver code 

The locations given in the driver code listing are offsets from 
$$$115_DRIVER. Thus, you can calculate the base address of the driver 
by adding the address at which the driver was loaded to the offset 
associated with the PSECT $$$115_DRIVER shown in the map. 

If you do not have the load-map, consult the driver-prologue table in the 
driver listing. Look for the address of DPT_STORE_-END, which generates a 
2-byte entry that terminates the DPT. To get the base address of driver code, 
add the address of DPT_STORE_END + 2 to the address at which the driver 
was loaded. You can set an XDELTA base register to the base of driver code; 
Section 15.7 describes this procedure. 

15.5 Requesting an XDELTA Software Interrupt 

Once the controller- and unit-initialization routines complete execution, 
you will need to set breakpoints in order to debug the driver. You can set 
a breakpoint in the driver source code by inserting calls to INI$BRK, as 
described in Section 15.3. You can also invoke XDELTA to set breakpoints 
interactively by requesting an XDELTA software interrupt. 
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15.6 

The procedures described in Table 15-3 issue a software interrupt to a single 
processor at IPL 5 or a multiprocessor at IPL 15. The corresponding interrupt¬ 
servicing routine handles the interrupt by calling the routine INI$BRK, which 
in turn executes the first XDELTA breakpoint. XDELTA then issues this 
message: 

1 BRK AT imnnnnnn 
address/NOP 

Table 15-3 Requesting an XDELTA Software Interrupt 

Processor Boot Commands 

MicroVAX II 
MicroVAX I1 

Press and release the HALT button on the CPU control 
panel, or press the BREAK key (if enabled) on the console 
terminal. Then issue these commands: 

»>D/I 14 5 
»>C 

VAX 88001 2 *1 CTRL/P| 

»>HALT 
»>D/I 14 F 
»>C 

VAX 8600 
VAX 86501 

* 1 CTRL/P | 

»>HALT 
»>D/I 14 5 
»>c 

VAX 8200 
VAX-11/750 
VAX-11/730 
VAX-11/7251 

$ 1 CTRL/P| 

»>D/I 14 5 
»>C 

VAX-11/780 
VAX-11/785 

$ 1 CTRL/P| 

»>HALT 
»>DEP0SIT/I 14 5 
»>C0NTINUE 

VAX-11/7822 $ 1 CTRL/P| 

»>HALT 

»>DEP0SIT/I 14 F 
»> CONTINUE 

1 These VAX processors accept only one-character console commands. 

2Deposit F in the processor IPL register only if multiprocessing is in effect (for 
example, if a START/CPU command has been executed); otherwise deposit the 
value 5 . 

Examining the Vector-Jump Table 

To gain familiarity with the I/O database, you might wish to look for the 
address of the location in the channel-request block that contains a JSB 
instruction to the driver's interrupt-servicing routine. You can do this at 
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a controller initialization breakpoint because one of the inputs is the IDB 
address. The procedures for locating the driver interrupt-servicing routine on 
nondirect and direct vector adapters follow. 

Nondirect Vector Procedure 

R5/IDB-address Q+10/ADP-address 
Q+10/vector-table-address 

Q+vector-address-in-hex/address-of-JSB-instruction-in-CRB 
Q!JSB-instruction 

Direct Vector Procedure 

R5/IDB-address Q+10/ADP-address 
Q+10/vector-table-address 
Q+vector-address-in-hex+2/address-of-JSB-instruction-in-CRB 
Q!JSB-instruction 

Finding the address of the driver's interrupt-servicing routine at the expected 
vector does not guarantee that an interrupt from the device will dispatch to 
the driver's interrupt-servicing routine. If the device's physical vector is set to 
some other address, an interrupt from the device can dispatch to some other 
interrupt-servicing routine, or dispatch to an unassigned vector. 

See the SYSGEN device table shown in Section 14.3.2 for a list of vectors. 
Consult DIGITAL field service for help with any problem similar to the one 
described above. 

15.7 Setting an XDELTA Base Register 

During a driver debugging session, you can use an XDELTA relocation register 
as a base from which to examine driver code and set breakpoints within the 
driver. Use one of the methods outlined in Section 15.4 to determine the base 
address of driver code, then set a relocation register by issuing the following 
command: 

driver-base-address,0;X I RET| 

This command sets relocation register XO to the base of driver code. Now you 
can examine offsets into the code using XO as a base: 

XO + offset/nnnnnnnn 

or 

XO + offset!instruction 

XDELTA also uses the base register to display address values in the base 
register plus offset format. Suppose, for example, that your driver contains 
the code shown below. 

50 81 90 00D3 132 10$: M0VB (R1)+.R0 

10 13 00D6 133 BEQL 20$ 

20 50 91 00D8 134 CMPB RO,#~A/ / 

F6 19 00DB 135 BLSS 10$ 
8F 50 91 00DD 136 CMPB R0,#~A/Z/ 

F0 14 00E1 137 BGTR 10$ 
82 50 90 00E3 138 MOVB RO.(R2)+ 

EB 11 00E6 139 BRB 10$ 
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If base register 0 contains the base address of your driver, the following 
XDELTA dialogue is possible: 

X0+D3,X0+E6!X0+D3/M0VB (R1)+,R0 
X0+D6/BEQL X0+E8 
X0+D8/CMPB RO,#20 
XO+DB/BLSS X0+D3 
XO+DD/CMPB RO,#7A 
X0+E1/BGTR X0+D3 
X0+E3/M0VB RO,(R2) + 
X0+E6/BRB X0+D3 

To set breakpoints in driver code, use the command: 

XO + offset;B I RET1 

To display a driver instruction and set a breakpoint, add the instruction's 
offset to the base register, for example: 

X0+1C!instruction .;B I RET| 

The last XDELTA command sets a breakpoint at the displayed location. See 
Section 15.10 or the VAX/VMS Delta/XDelta Utility Reference Manual for a 
detailed discussion of XDELTA commands. 

15.8 Destroying Register Contents 

Because the driver frequently calls VAX/VMS I/O routines, you must be 
careful to anticipate the register usage of these routines. Most VAX/VMS 
common I/O support routines use RO through R3 freely. A frequent driver 
bug is to load a value into R3 and expect to find it intact after a call to allocate 
or load adapter resources. 

Other VAX/VMS I/O routines write into R4. In some cases, the use of R4 
is obvious; for example, IOC$REQSCHANL writes the device's CRB address 
into R4. In other cases, you might not anticipate the use of R4. 

For example, EXE$IOFORK saves the calling code's R4 in a fork block, and 
then writes the device's IPL into R4. Because the normal flow of events is 
that an interrupt-servicing routine restores a driver with a JSB instruction and 
the driver then calls EXE$IOFORK which returns to the interrupt-servicing 
routine, the instructions following the JSB in the interrupt-servicing routine 
can only assume R5 is still untouched. The coding sequence is as follows: 

MOVQ UCB$L_FR3(R5),R3 ; Restore R3-R4. 
JSB <8UCB$L_FPC(R5) ; Restore the driver process. 

;Between these instructions, the interrupt-servicing routine 
;can make no assumptions about the contents of RO through R4. 

POPR 
REI 

#~M<R0.R1,R2.R3,R4.R5> Restore interrupt registers. 
Return from the interrupt. 
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15.9 Examining the UCB, IRP, or PSL 

In addition to using XDELTA to debug drivers, you can also examine the 
contents of the unit-control block and the associated I/O-request packet. 

It also is useful to examine the contents of the PSL at the time of a system 
failure. The PSL, for example, indicates the IPL at the time. When the system 
fails it prints the PSL and other register contents on the console terminal. 

While the system is running, the following command can be used to examine 
the PSL in XDELTA: 

RF+4/ 

The PSL location is stored in the longword following the PC. 

15.10 XDELTA Commands 

Table 15-4 summarizes XDELTA commands. The sections that follow this 
table describe the commands. 

Table 15-4 XDELTA Command Summary 

Command Function 

Set Display Mode 

[B Set byte mode 

[W Set word mode 

[L Set longword mode 

[I Set instruction mode 

" Set ASCII mode 

Set and Proceed from Breakpoint 

;P Proceed from breakpoint 

;B Set/clear/display breakpoint 

Open, Examine, and Close Location 

/ Open location (display contents in current mode) 

! Open location (display contents as instructions) 

I RET | Close current location 

[lfI Close current location; open next 

|tab| Open location specified by current value 

I esc | Display previous location 

Deposit in Location 

'string7 Deposit string at current location, autoincrementing the current 
location symbol (.). Every 1 ret| and [lf] typed will be stored. A 
single quote terminates the string. 
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Table 15-4 (Cont.) XDELTA Command Summary 

Command Function 

Step, Set Location, and Execute Code 

S Execute one instruction, step into subroutine call 

0 Execute one instruction, step over subroutine call (on CALLx, JSB, 
or BSBx instruction) 

;G 

;E 

Go to location and proceed 

Execute command string at location 

Special Symbols 

/ Field separator 

Q Last quantity displayed 

= Display value of expression; set Q 

Xn Base register n 

;X Set base register 

Rn Register n 

Pn Processor register n 

G Add "X80000000 to subsequent or preceding value 

H Add "X7FFE0000 to subsequent or preceding value 

Current location 

Operators 

+ Add 

- Subtract 

space Add 

* Multiply 

@ Shift 

% Divide 

15.10.1 Values and Expressions 

All numeric values are interpreted in hexadecimal radix. Expressions are 
strings of alternating values and binary operators, where the first and last 
items in the string are always values, as in the following example: 

G4A32 + 24 - . 
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XDELTA evaluates expressions from left to right with no precedence, and 
ignores trailing operators. To display the value of an expression, use the 
XDELTA Show Value ( = ) command, as follows: 

Syntax 

expression=value-of-expression 

Type an expression followed by an equal sign ( = ). The expression can be 
composed of a series of values and operators from the set of operators listed 
in the command summary. XDELTA shows the value of the expression 
according to the current display data type. The last quantity (Q) is set to the 
value of the computed expression. 

15.10.2 Special Symbols 

XDELTA defines the following special symbols: 

Current location; set by slash (/), exclamation point (!) and TAB 
operations. 

Q Last quantity displayed; you can also change this value by using the 
Show Value ( = ) command described in Section 15.10.1. 

XO-XF Base registers; used for remembering values. Set base registers 
by means of the Set Base Register command (;X) described in 
Sections 15.7 and 15.10.2.3. XDELTA, by default, stores special 
values in base registers X4 and X5 that help reference the Process 
Control Block of the current process (see Section 15.10.2.1). Also, 
XDELTA initializes XE and XF with special commands that help 
reference page-frame numbers as described in Section 15.10.2.2. 

RO-RF General register names. 

PO-Pnn Internal processor registers. 

RF+4 PSL. 

G ~X80000000; prefix for system space addresses; for example, G2E 
is equivalent to "X8000002E. 

H ''X7FFE0000; prefix for control region prefix; for example, H2E is 
equivalent to "X7FFE002E. 

15.10.2.1 Stored Base Registers 
XDELTA defines two base registers useful in system debugging: X4 and X5. 
Base register X4 corresponds to the global symbol SCH$GL_CURPCB. This 
symbol contains the address of the current process' software process-control 
block (PCB). Base register X5 corresponds to the global symbol 
SCH$GL_PCBVEC, which contains the starting address of the list of PCB 
slots. 

15.10.2.2 Stored Command Strings 
XDELTA contains two predefined command strings whose addresses are 
contained in base registers XE and XF. You can use these commands during 
general system debugging as well as driver debugging; they perform the 
following functions: 

XE Use the value of base register XO as a page-frame number and display 
the PFN database for that page 

XF Set base register XO to the value (PFN) in RO and perform the same 
function as XE 
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You must initialize the stored commands to set the relocation registers they 
use (X6-XD). Issue the following commands: 

XE;E 
XF; E 

After executing these commands, you can use the commands stored in XE 
and XF to obtain the following information about a page-frame number: 

• Specified physical page number (PFN) 

• PFN state 

• PFN type 

• PFN reference count 

• PFN backward link/working set list index 

• PFN forward link/share count 

• Page-table entry (PTE) pointer to PFN 

• PFN backing store address 

• Virtual block number in process swap image 

RET 
RET 

15.10.2.3 Setting Base Registers 

Syntax 

addreBs-expression,n;X I RET 1 

Type an expression followed by a comma (,), a single digit between 0 and D 
(hexadecimal), a semicolon (;), and the letter X. XDELTA assigns the specified 
expression to the base register selected by n. XDELTA confirms that the base 
register is set by displaying the value deposited in the base register. 

Whenever XDELTA displays an address closely located to an address stored in 
a base register, XDELTA displays the base register identifier (Xn), followed by 
an offset that gives the address's location in relation to the address stored in 
the base register. For example, if base register 2 (X2) contains 800D046A and 
the address XDELTA needs to display is 800D052E, XDELTA displays X2+C4. 
XDELTA computes relative addresses for opened or displayed locations and 
addresses that are instruction operands. 

XDELTA displays an address in base register plus offset format to a distance 
of 80016 from the base register. If the address falls outside this range, 
XDELTA displays it as a hexadecimal value. 

15.10.3 Set Display Mode 

Syntax 

[B Byte width 
[W Word width 
[L Longword width 
[I Instruction display (using longword width) 
" ASCII display (using current width) 
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Type a left square bracket ([) followed by one of the letters B, W, or L to 
change the current display width to byte, word, or longword respectively. 
The default value is longword. The setting remains in effect until another 
display mode control command is given. For example, the following 
command displays the least significant byte contained at the specified address 
and deposits the new value to that byte only. 

addres8-expression [B/ old-value new-value 

Type a left square bracket ([) followed by the letter I to change the current 
display mode to instruction format. This command is equivalent to the 
exclamation point (!) command and, similarly, is canceled by typing a slash 
(/) or a double quotation mark ("). Instruction mode sets display mode 
storage units to longword values. For an example of an instruction display, 
see Section 15.7. 

You can display contents of memory locations in ASCII characters by typing 
an address expression followed by a quotation mark ("). 

address-expression" old-value-in-ASCII 

Pressing LINE FEED displays the next location in ASCII. 

The display mode remains set to ASCII until the next slash (/) or exclamation 
point (!) command. At this point, the display mode reverts to hexadecimal. 
The width remains unchanged. 

15.10.4 Open, Examine, and Close Location 

XDELTA provides the commands described in the following sections to open, 
examine, and close the specified memory locations. 

15.10.4.1 Open and Display Value Command 

Syntax 

address-expression/old-value [new-value-expression] 

Type an address expression followed by a slash (/) character. XDELTA 
displays the contents of the location (old-value above), followed by a space 
character. You can change the value at the location by typing a new value 
and then pressing RETURN. If you press RETURN without preceding it with 
a value, the old contents remain unchanged. 

The display and the value deposited default to longword hexadecimal values. 
The length can be changed to byte or word with the set mode commands. 

A slash preceded by a null address expression uses the displayed value (Q) 
as the address value. This feature is convenient for following address linked 
chains, as shown below: 

address-expression/old-value /old-value /old-value 

15.10.4.2 Display Instruction Command 

Syntax 

address-expressionIdecoded-instruction 

Type an address-expression followed by an exclamation point (!). XDELTA 
displays the contents of memory as a VAX/VMS MACRO instruction starting 
with the address you specify. 
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XDELTA does not make any distinction between reasonable and unreasonable 
instructions or instruction streams; the decoding always begins at the specified 
address. The display instruction command does not allow you to modify the 
displayed location. The command sets a flag that causes subsequent close and 
display next or indirect location commands to perform instruction decoding. 
You can reset the flag with the open and display value command. 

Whenever an address appears as an instruction operand, XDELTA sets the 
last quantity displayed (Q) to that address. XDELTA changes Q only for 
operands that use program counter or branch displacement addressing modes; 
Q is not altered for literal and register addressing modes. This feature is 
useful for following branches, as shown below: 

address-expressionIBRW address-2 !instruction-at-address-2 

1 5.10.4.3 Close and Display Next Location Command 

Syntax 

EE 
address/old-value 

Press LINE FEED. XDELTA closes the current open location, then opens and 
displays the value in the next location, according to the current display mode. 

If instruction display is the current mode, XDELTA does not deposit a value in 
the open location. The next location is the first location after the instruction 
currently displayed. If value display is the current mode, you can deposit 
a value into the open location. In this case, the next location is the current 
location, incremented by the current data width (byte, word, or longword). 

15.10.4.4 Display Range Command 

Syntax 

start-addr-expres8ion,end-addr-expression/contents-of-8tart 

or 

start-addr-expression,end-addr-expression!contents-of-start 

Type two address expressions separated by a comma and followed by a 
slash (/) or exclamation point (!) character. XDELTA displays the range 
of addresses, using the specified display mode (value or instruction). If 
you specify instruction display, XDELTA decodes one more instructions. 
Otherwise, XDELTA displays the contents of each location in the current data 
type (byte, word, or longword). 

15.10.4.5 Indirect Command 

Syntax 

EMI 
address/old-value 

Press TAB. XDELTA uses the last quantity displayed (Q) as an address and 
displays that address and its contents using the current display mode. This 
command opens locations in the same way as the slash (/) and exclamation 
point (!) commands, but prints the information on a new line and displays 
the address value before showing the address's contents. 
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15.10.4.6 Display Previous Location Command 

Syntax 

fESCl 

address/old-value 

Press ESC. Unless the current display mode is instruction, XDELTA decreases 
the location counter by the current data width, and displays the contents of 
the resulting location using the current data width and type. This command 
is ignored in instruction display mode. 

15.10.5 Breakpoints 

XDELTA uses the following commands to set and clear breakpoints, display 
a list of set breakpoints, continue from a breakpoint, and set a complex 
breakpoint. 

15.10.5.1 Setting Breakpoints 

Syntax 

address-expression;B I RET1 

Type an address followed by a semicolon (;) the letter B, then press 
RETURN. XDELTA sets a breakpoint at the specified location and assigns 
it the first available breakpoint number. 

Alternate syntax: 

address-expression,n;B I RET| 

Type an address, followed by a comma, a single digit between 2 and 8, 
a semicolon (;), the letter B, and then press RETURN. XDELTA sets a 
breakpoint at the specified location and assigns it the specified breakpoint 
number. Breakpoint 1 is reserved for INI$BRK. 

Before XDELTA executes the instruction as a breakpoint, it suspends normal 
instruction processing, sets a flag that causes subsequent close and display 
next or indirect location commands to perform instruction decoding, and 
displays the following message: 

n BRK at address 
address/decoded-instruction 

You can now enter XDELTA commands. You can reset the flag that controls 
instruction display mode by issuing the open and display value command. 

15.10.5.2 Clearing Breakpoints 

Syntax 

0,n;B iRETl 

Type zero (0), followed by a comma, a single digit between 2 and 8, a 
semicolon (;), the letter B, and then press RETURN. XDELTA clears the 
specified breakpoint. Never clear breakpoint 1. 

15.10.5.3 Displaying Breakpoint List 

Syntax 

;B IRETl 
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Type a semicolon (;) followed by the letter B. XDELTA shows the current 
setting of all breakpoints. For each breakpoint, XDELTA displays the 
following information: 

• Breakpoint number 

• Address at which the breakpoint is set 

• Display address (for complex breakpoints; see Section 15.10.5.5) 

• Command string address (for complex breakpoints) 

15.10.5.4 Proceeding from Breakpoints 

Syntax 

;P [RETl 

Type a semicolon (;) followed by the letter P and then press RETURN. 
XDELTA continues executing at the current PC. 

15.10.5.5 Setting Complex Breakpoints 

Syntax 

address-expression,n,display-addr-expression,command-string-address;B IRETl 

Type an address expression, followed by a comma, a single digit between 
2 and 8, another address expression, and the address of a command string. 
The first address is the breakpoint address; the digit equals the breakpoint 
number. XDELTA shows the contents of the display address in the current 
display mode when the breakpoint is reached. The command string address 
specified in the last command parameter executes after automatic display. 

15.10.6 Step, Set Location, and Execute Instruction Commands 
The following XDELTA commands enable you to step through and execute 
driver code. 

15.10.6.1 Loading PC and Continuing 

Syntax 

addre8s-expression;G [RETl 

Type an address, a semicolon, and G, then press RETURN. XDELTA loads 
the address into PC and continues executing at the new PC. 

15.10.6.2 Execute Instruction and Step Command 

Syntax 

s 

Type an S. XDELTA causes one instruction to be executed, then displays the 
address of the next instruction and decodes that instruction. 

This command also sets a flag that causes subsequent close and display next 
or indirect location commands to perform instruction decoding. The open and 
display value command resets the flag. 

If the next instruction is BSBB, BSBW, JSB, CALLG, or CALLS, this command 
steps into the subroutine and displays the first instruction within the routine. 
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1 5.10.6.3 Step Instruction Over Subroutine Command 

Syntax 

o 

Type an O. XDELTA causes one instruction to be executed, then displays the 
address of the next instruction and decodes that instruction. 

This command also sets a flag that causes subsequent close and display next 
or indirect location commands to perform instruction decoding. The open and 
display value command resets the flag. 

If the next instruction is BSBB, BSBW, JSB, CALLG or CALLS, XDELTA 
executes the entire subroutine and displays the instruction that immediately 
follows the subroutine call; this command steps over subroutines. 

15.10.7 Execute String Command 

Syntax 

address-expression;E I RET| 

Type an address expression followed by a semicolon, the letter E, then 
press RETURN. This command executes the ASCII commands found at the 
specified address expression. If you terminate the ASCII commands with 
a semicolon followed by the letter P, XDELTA will proceed with program 
execution. If you terminate the string with null (1 byte of 0), XDELTA waits 
for a new command. 

To create command strings, open the address of the start of the string and 
deposit ASCII text as follows: 

address/old-contents 'XDELTA-command' 1 RET 1 

You can use any XDELTA command, including RETURN, LINE FEED, and 
TAB. 

To terminate the string with a null, follow the above command with 

./old-contents 0 I RET1 

You can deposit command strings into nonpaged system patch space. To 
determine the size of patch space and its starting address, locate the symbol 
PAT$A_NONPGD in the system map file (SYS$SYSTEM:SYS.MAP). This 
symbol contains a descriptor of the address and size of patch space remaining 
in the system, as shown below: 

PAT$A_N0NPGD:: 

.LONG size-in-bytes 

.LONG patch-space-start-address 

You can also preassemble command strings with your experimental driver. 
Locate the addresses of these strings as you would any other address within 
your driver. 
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15.11 DELTA 

DELTA is a debugging tool that can be linked with a user program to examine 
that program's execution. To link and run DELTA, issue the following 
commands: 

$ LINK program-name 

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA 
$ RUN/DEBUG program-name 

DELTA accepts all the XDELTA commands, plus two additional commands 
described in the following sections. 

15.11.1 EXIT Command 

Syntax 

EXIT 1 RET| 

Typing EXIT causes DELTA to return control to the command interpreter. 

15.11.2 Examining and Modifying Locations in Process Space 

Syntax 

process.id:address_expression/old_contents 

DELTA displays the current contents at the specified address expression 
within the specified process. The modify flag controls the ability to modify 
locations opened by this command. To examine the flag, type: 

;M [RET] 

Modification access is inhibited by default (M=0). 

To open, examine and change a location, type the commands: 

1;M [RET] 

process_id:address_expression/old_contents new_contents 

15.12 Guidelines for Debugging Device Drivers 

The following sections discuss errors commonly made during debugging 
sessions and describe additional debugging techniques. 

15.12.1 References to System Addresses 
References by drivers to system addresses within the executive must use 
general addressing (G~) mode. For example, use 

JSB G~INI$BRK 
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15.12.2 Opening Device Registers in XDELTA 
References to 16-bit device registers must be word instructions; references to 
8-bit device registers must be byte instructions. These restrictions apply to 
the XDELTA EXAMINE command; therefore, be sure to set the correct mode 
control before examining device registers. For example, if the address of the 
device CSR is in R4, give the following command: 

R4/csr_addres8 [W/csr_contents 

15.12.3 Incorrect References to Device Registers 
A common driver error is to access a nonexistent device register or to access 
the correct register with an instruction of incorrect word length. On VAX 
processors that use direct vector interrupts, these references cause a fatal 
machine check exception. On VAX processors using nondirect vector 
interrupts, these references cause a UNIBUS adapter error interrupt. The 
system logs the adapter error and continues. When debugging a device 
driver, it is a good idea to catch this type of driver error as early as possible. 
Set an XDELTA breakpoint at the place in the system where it detected a 
UNIBUS adapter error interrupt. Follow the steps outlined below: 

• Consult the system map file. Read the value of EXE$DW780_INT. 

• Enter XDELTA and set a breakpoint at the address of EXE$DW780_INT. 
When a UNIBUS adapter error interrupt occurs, XDELTA executes the 
breakpoint at EXE$DW780_INT. 

• Examine the stack as follows: 

RE/current_stack_pointer/saved_R2 

saved_R3 
8aved_R4 
saved_R5 
saved_PC 
saved.PSL 

LF 
LF 
LF 
LF 
LF 

In many cases, the saved PC on the stack is the address of the instruction that 
caused the error. In other cases (for example, when the offending instruction 
is executed at IPL 31), the saved PC is not the address of this instruction 
but an address some number of instructions later, when the system actually 
services the interrupt. 

15.12.4XDELTA and System Failures 
Driver errors can cause the operating system to suspend activity in such a way 
that you cannot invoke XDELTA. In this case, the only recourse is to induce a 
system failure. Follow the procedure described in the VAX/VMS System Dump 
Analyzer Reference Manual; the system will signal a fatal bugcheck. 
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To gain control in XDELTA following a fatal bugcheck, stop in SYSBOOT 
while initializing the system and set the BUGREBOOT parameter to 0. The 
system will stop in XDELTA, thereby allowing you to examine the device 
unit-control block and other driver data to determine the driver error. 

Another, more thorough, way to determine the cause of a system failure is 
to leave the BUGREBOOT parameter set to 1, allow the system to reboot, 
and then invoke the System Dump Analyzer (SDA) to examine the condition 
of the I/O data structures at the time of the fatal bugcheck. The VAX/VMS 
System Dump Analyzer Reference Manual provides detailed information on fatal 
bugcheck stack format and how SDA can help debug a device driver. 
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A The I / O Database 

The I/O database is a collection of data structures that provide the following 
types of information to the VAX/VMS operating system and drivers to help 
monitor the status of, and control the functions of, the I/O subsystem: 

• Descriptions of each pending and in-progress I/O request 

• Characteristics of each device type 

• Number and type of each device unit 

• Status of current activity on each device unit 

• External entry points to all device drivers 

• Entry points for controller and device unit initialization routines 

• Code that dispatches interrupts to the appropriate servicing routines 

• Addresses of device registers 

• Bit maps describing the allocation of data paths and mapping registers 

Much of the I/O database is created and used only by VAX/VMS routines; 
other parts are the primary source of data for the device drivers. All of its 
data structures—with the exception of the channel-control block (CCB)—exist 
in nonpaged system memory. This appendix identifies all data structures in 
the I/O database, and describes their fields in the order in which they appear 
in the structures. 

Note: Driver code must consider fields marked by asterisks to be read-only 
fields. Fields marked by "spare" or "unused" are reserved for future use 
by DIGITAL unless otherwise specified. 

A.1 Configuration-Control Block (ACF) 
The configuration-control block (ACF) is used by the SYSGEN 
autoconfiguration facility to describe the device it is adding to the system. 
Device drivers can gain access to this data structure only if they have specified 
a unit-delivery routine in the DPT and only when that routine is executing. 
Under certain conditions, the information stored in the ACF might be useful 
to a unit-delivery routine. 

The fields described in the configuration-control block are illustrated in 
Figure A-l and described in Table A-l. 
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Figure A-1 Configuration-Control Block (ACF) 

ACF$B AFLAG* ACF$B 

ACF$I_ADAPTER* 

ACF$I_CONFIGREG* 

AUNIT* 

ACF$I_CONTRLREG* 

ACF$W_CUNIT * 

ACF$I_DEVNAME* 

ACF$W AVECTOR* 

ACF$W _CVECTOR* 

ACFSI_DRVNAME* 

ACF$B —COMBO_VEC* ACF$B CNUMVEC* ACF$W MAXUNITS* 

unused ACFSB NUMUNIT* ACFSB COMBO CSR* 

ACF$I_DLVR—SCRH 

ZK-1778-84 

Table A-1 Contents of the Configuration-Control Block 

Field Name 

ACF$L—ADAPTER* 

ACF$L—CONFIGREG* 

ACF$W_AVECTOR* 

ACF$B_AUNIT* 

ACF$B_AFLAG* 

ACF$L-CONTRLREG* 

ACF$W_C VECTOR* 

ACF$B_CUNIT* 

ACF$L_DEVNAME* 

ACF$L -DRVNAME* 

ACF$W_MAXUNITS* 

Contents 

Address of ADP for adapter currently being configured. 

Address of configuration register for adapter currently being configured. 

Offset from base of SCB to interrupt vector of adapter currently being configured. 

Adapter unit number of device or controller currently being configured. 

Flags associated with autoconfiguration operation. Flags defined in this field 
include the following: 

ACF$ V_RELOAD 

ACF$V_CRBBLT 

ACF$V_SCBVEC 

ACF$V_NOLOAD—DB 

ACF$V_SUPPORT 

ACF$V_GETDONE 

Reloading driver code. 

CRB and IDB already built for device. 

CVECTOR is offset into SCB. 

Do not load I/O database, only load driver. 

VAX/VMS supported device. 

Addresses of data structures in I/O database have been 
obtained. 

Address of CSR for controller currently being configured. 

Offset into ADP's vector table to longword that contains transfer address of 
interrupt vector used by controller currently being configured (if ACF$V_SCBVEC 
is not set). If ACF$V_SCBVEC is set, this field is the offset from the SCB base to 
the interrupt vector of the controller currently being configured. 

Unit number of device currently being configured. 

Address of counted ASCII string that gives name of controller currently being 
configured. 

Address of counted ASCII string that gives driver name for controller currently 
being configured. 

Maximum number of units that can be connected to controller currently being 
configured. 
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Table A—1 (Cont.) Contents of the Configuration-Control Block 

Field Name Contents 

ACF$B_CNUMVEC* 

ACF$B_COMBO_VEC* 

ACF$B_COMBO_CSR* 

ACF$B_NUMUNIT* 

ACF$L _DLVR_SCRH 

Number of interrupt vectors to configure for controller currently being configured. 

Offset to vectors for combo device. (The name of this field is 
ACF$B_COMBO_VECTOR_OFFSET.) 

Offset to start of control registers of combo device. (The name of this field is 
ACF$B_COMBO_CSR_OFFSET.) 

Number of units to be configured for controller currently being configured. 

Field available for use by unit-delivery routine. SYSGEN never alters this field. 

A.2 Adapter-Control Block (ADP) 
Each MASSBUS and UNIBUS adapter, as well as each Q22 bus, configured 
in the system is represented to VAX/VMS and driver routines by an adapter- 
control block (ADP). The ADP stores adapter-specific static and dynamic data 
such as the adapter CSR address and mapping-register-wait queues. 

The adapter-control block for a UNIBUS adapter and Micro VAX II Q22 bus is 
illustrated in Figure A-2 and described in Table A-2. 

Table A-2 Contents of Adapter-Control Block 

Field Name 

ADP$I_CSR* 

ADP$L_LINK* 

ADP$W_SIZE* 

ADP$B_TYPE* 

ADP$B_NUMBER* 

ADP$W_TR* 

ADP$W_ADPTYPE* 

Contents 

Virtual address of adapter configuration register. The VAX/VMS initialization 
routine writes this field. 

The configuration register marks the base of adapter register space, an area 
that contains data path registers, mapping registers, or any other registers 
appropriate to the implementation of the adapter. 

Address of next ADP. The VAX/VMS adapter initialization routine writes this 
field. A value of 0 indicates that this is the last ADP. 

Size of ADP. The VAX/VMS adapter initialization routine writes this field when 
the routine creates the ADP. For the UNIBUS and the Q22 bus, this includes the 
UNIBUS interrupt servicing code and device vector table. 

Type of data structure. The VAX/VMS adapter initialization routine writes the 
symbolic constant DYN$C_ADP into this field when the routine creates the ADP. 

Number of this type of adapter (for example, the number for a third MASSBUS 
adapter is 2). The CPU initialization routine writes this field when the routine 
creates the ADP. 

Nexus number of adapter. The VAX/VMS adapter initialization routine writes this 
field when the routine creates the ADP. The driver-loading procedure compares 
the nexus number specified in a CONNECT command with this field of each ADP 
in the system to determine to which adapter a device is attached. 

Type of adapter. The CPU initialization routine writes the symbolic constant 
AT$_UBA into this field when the routine creates an ADP for a UNIBUS adapter 
or Q22 bus. AT$_MBA is the type code for a MASSBUS adapter. 
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Table A-2 (Cont.) Contents of Adapter-Control Block 

Field Name Contents 

ADP$L—VECTOR* 

ADP$L_DPQFL* 

ADP$L_DPQBL* 

ADP$L _A VECTOR* 

ADP$L_BI_ONLY* 

ADP$L_MRQFL* 

ADP$L —MRQBL* 

ADP$L_INTD* 

Address of vector table. The table is 512 bytes of longword vectors that 
correspond to device interrupt vectors (0-%0777). 

On VAX processors that handle direct vector interrupts, ADP$L_VECTOR 
points to the second (or third) page of the SCB. The CPU uses this page when 
it dispatches the device interrupt to the driver interrupt-servicing routine. Each 
vector entry that corresponds to a vector in use contains the address of the 
controller's interrupt dispatcher (CRB$L_INTD). 

On VAX processors that handle nondirect vector interrupts, ADP$L_VECTOR 
points to a page allocated from nonpaged pool. Each longword in the page that 
corresponds to a vector in use contains the address of the controller's interrupt 
dispatcher (CRB$I_INTD+2). When the UNIBUS adapter interrupts on behalf 
of a UNIBUS device, the UNIBUS adapter interrupt-servicing routine saves RO 
through R5, determines the vector address of the interrupting device, indexes 
into the vector table, and executes the instruction at CRB$L_INTD+2. 

For both types of VAX processor, vector table entries that correspond to 
unused vectors contain the address of the adapter's unexpected-interrupt- 
servicing routine. 

Data path wait queue forward link. IOCSREQDATAP and IOCSRELDATAP read 
and write this field. When a driver fork process requests a buffered data path 
and none is currently available, IOCSREQDATAP saves driver context in the 
device's UCB fork block, inserts the fork block address in the data path wait 
queue, and suspends the driver fork process. 

When another driver calls IOCSRELDATAP to release a buffered data path, the 
routine dequeues a UCB fork block address from the data path wait queue, 
allocates a data path to the driver, and reactivates that driver fork process. 

Data path wait queue backward link. IOCSREQDATAP and IOCSRELDATAP read 
and write this field. 

Address of first SCB vector for adapter. 

Reserved to DIGITAL. 

Mapping-register-wait queue's forward link. IOCSREQMAPREG and 
IOCSRELMAPREG read and write these fields. When a driver fork process 
requests a set of mapping registers and the set is not currently available, 
IOCSREQMAPREG saves driver fork context in the device's UCB fork block, 
inserts the fork block address in the mapping-register-wait queue, and suspends 
the driver fork process. 

When another driver calls IOCSRELMAPREG to release a set of mapping 
registers, the routine dequeues a UCB fork block address from the mapping- 
register-wait queue, allocates the requested set of mapping registers to the 
driver, and reactivates that driver fork process. 

Mapping-register-wait queue's backward link. IOCSREQMAPREG and 
IOCSRELMAPREG read and write this field. 

Interrupt transfer vector. When a device attached to the UNIBUS or Q22 bus 
requests a hardware interrupt, the processor transfers control to the UNIBUS 
or Q22-bus ADP$L_INTD field. The field contains code that dispatches the 
interrupt to the proper driver interrupt-servicing routine. The interrupt transfer 
vector is only used for UNIBUS adapters that directly generate interrupts and the 
MicroVAX I and MicroVAX II Q22 bus. 
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Table A—2 (Cont.) Contents of Adapter-Control Block 

Field Name Contents 

ADP$I_UBASCB* Series of four longwords that contain SCB entry values, one for each bus request 
(BR) level or interrupt vector. The UNIBUS adapter power failure recovery 
procedure uses these values. 

ADPSI_UBASPTE* Page-table-entry (PTE) values for base of UNIBUS adapter register space and 
base of UNIBUS I/O register space. These values are used during UNIBUS 
adapter power failure recovery. 

ADPSL _MRACTMDRS* Number of active mapping register descriptors in arrays to which 
ADP$W_MRNREGARY and ADP$W_MRFREGARY point. IOC$REQMAPREG 
and IOCSRELMAPREG use these fields when allocating and deallocating mapping 
registers. 

ADP$W_DPBITMAP« Data path allocation bit map. IOCSREQDATAP and IOC$RELDATAP read and 
write this field. The VAX/VMS adapter initialization routine sets the bit map to 
show as available all the buffered data paths supported by the UNIBUS adapter. 

The state of each of the available buffered data paths (whether in use or 
available) is recorded in the data path allocation bit map. One data path 
corresponds to each bit in the field. If a bit is clear, the related data path is 
currently allocated to a driver fork process. 

ADP$W_MRNFENCE* Boundary marker for array specified by ADP$W_MRNREGARY; contains -1. 

ADP$W_MRNREGARY* Mapping register "number of registers" array of 124 words. The number of 

ADP$W_MRFFENCE* 

ADP$W_MRFREGARY* 

words, or cells, that are active in this array is contained in 
ADP$L_MRACTMDRS. Each active cell gives a number of free mapping 
registers. For each active cell in this array, there is a corresponding first 
free mapping register number in the array specified by ADP$W_MRFREGARY. 
Together, these values give the base mapping register and number of free 
mapping registers for a block of free mapping registers. This information is used 
to allocate and deallocate mapping registers. 

Boundary marker for array specified by ADP$W_MRFREGARY; contains — 1. 

Mapping register "first register" array of 124 words. The number of currently 
active cells in this array is contained in ADP$L_MRACTMDRS. Each active cell 
gives a number of the first free mapping register within a block of free mapping 
registers. For each active cell in this array, there is a corresponding cell in 
the number of registers array that gives a number of free mapping registers. 
Together, these values give the base mapping register and number of free 
mapping registers for a block of free mapping registers. This information is used 
to allocate and deallocate mapping registers. 

ADP$W_UMR_DIS* Number of disabled mapping registers. During system initialization, some 
mapping registers can be disabled so that their corresponding UNIBUS and Q22 
bus addresses can be accessed directly through backplane interconnect physical 
addresses. 
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Figure A-2 Adapter-Control Block (ADP) 
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A.3 Channel-Control Block (CCB) 
When a process assigns an I/O channel to a device unit with the $ ASSIGN 
system service, EXE$ASSIGN locates a free block among the process' 
preallocated channel-control blocks (CCBs). EXE$ASSIGN then writes into 
the CCB a description of the device attached to the CCB's channel. 

The channel-control block is illustrated in Figure A-3 and described in 
Table A-3. 
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Figure A—3 Channel-Control Block (CCB) 
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Table A-3 Contents of Channel-Control Block 

Field Name Contents 

CCB$I_UCB* Address of UCB of assigned device unit. EXE$ASSIGN writes a value into this 
field. EXESQIO reads this field to determine that the I/O request specifies a 
process I/O channel assigned to a device and to obtain the device's UCB address. 

CCB$L_WIND* Address of window-control block (WCB) for file-structured device assignment. 
This field is written by an ACP and read by EXESQIO. 

A file-structured device's ACP creates a WCB when a process accesses a file 
on a device assigned to a process I/O channel. The WCB maps the virtual block 
numbers of the file to a series of physical locations on the device. 

CCBSB—STS* Channel status. 

CCB$B_AMOD* Access mode plus 1 of process at time of channel assignment. EXESASSIGN 
writes the process access mode value into this field. 

CCB$W_IOC* Number of outstanding I/O requests on channel. EXE$QIO increases this field 
when it begins to process an I/O request that specifies the channel. During I/O 
postprocessing, the special kernel-mode-AST routine decrements this field. Some 
FDT routines and EXESDASSGN read this field. 

CCB$I_DIRP* Address of IRP for requested deaccess. A number of outstanding I/O requests 
can be pending on the same process I/O channel at one time. If the process that 
owns the channel issues an I/O request to deaccess the device, EXESQIO holds 
the deaccess request until all other outstanding I/O requests are processed. 

A.4 Channel-Request Block (CRB) 
The activity of each controller in a configuration is described in a channel- 
request block (CRB). This data structure contains pointers to the wait queue of 
drivers ready to gain access to a device through the controller. It also stores 
the entry points to the driver's interrupt-servicing routines and 
device/controller initialization routines. 

The channel-request block is illustrated in Figure A-4 and described in 
Table A-4. 
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Figure A-4 Channel-Request Block (CRB) 
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Table A-4 Contents of Channel-Request Block 

Field Name 

CRB$L_WQFL* 

CRB$L_WQBL* 

CRB$W_SIZE* 

CRB$B_TYPE* 

CRB$B_TT_TYPE* 

CRB$W_REFC* 

CRB$B_MASK* 

Contents 

Controller data channel wait queue forward link. IOC$REQxCHANy and 
IOC$RELxCHAN insert and remove driver fork block addresses in this field. 

A channel wait queue contains addresses of driver fork blocks that record 
the context of suspended drivers waiting to gain control of a controller data 
channel. If a channel is busy when a driver requests access to the channel, 
IOC$REQxCHANy suspends the driver by saving the driver's context in the 
device's UCB fork block and inserting the fork block address in the channel-wait 
queue. 

When a driver releases a channel because an I/O operation no longer needs the 
channel, IOC$RELxCHAN dequeues a driver fork block, allocates the channel to 
the driver, and reactivates the suspended driver fork process. If no drivers are 
awaiting the channel, IOC$RELxCHAN clears the channel busy bit. 

Controller channel wait queue backward link. IOC$REQxCHANy and 
IOC$RELxCHAN read and write this field. 

Size of CRB. The driver-loading procedure writes this field when the procedure 
creates the CRB. 

Type of data structure. The driver-loading procedure writes the symbolic constant 
DYN$C_CRB into this field when the procedure creates the CRB. 

Type of controller (DZ1 1 or DZ32) for terminals. 

UCB reference count. The driver-loading procedure increases the value in this field 
each time the procedure creates a UCB for a device attached to the controller. 

Mask that describes controller status. At present, only one bit, CRB$V_BSY, is 
defined in this field. IOC$REQxCHANy reads the busy bit to determine whether 
the controller is free and sets this bit when it allocates the controller data channel 
to a driver. IOC$RELxCHAN clears the busy bit if no driver is waiting to acquire 
the channel. 
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Table A-4 (Cont.) Contents of Channel-Request Block 

Field Name Contents 

CRB$I_AUXSTRUC* Address of auxiliary data structure used by device driver to store special controller 
information. A device driver that wishes to use this field can contain a controller 
initialization routine that allocates a block of nonpaged dynamic memory and sets 
this field to point to it. 

CRB$L —TIMELINK* Forward link in queue of CRBs waiting for periodic wakeups. This field points 
to the CRB$L_TIMELINK field of the next CRB in the list. The CRB$L_TIMELINK 
field of the last CRB in the list contains zero. The listhead for this queue is 
IOC$GL_CRBTMOUT. Use of this field is reserved to DIGITAL. 

CRB$L—DUETIME* Time in seconds, relative to EXE$GL_ABSTIM, at which next periodic wakeup 
associated with CRB is to be delivered. Compute this value by raising IPL to 
IPL$_POWER, adding the desired number of seconds to the contents of 
EXE$GL_ABSTIM, and storing the result in this field. Use of this field is reserved 
to DIGITAL. 

CRBSI_TOUTROUT* Address of routine to be called when periodic wakeup associated with CRB 
becomes due. The routine must compute and reset the value in CRB$L_DUETIME 
if another periodic wakeup request is desired. Use of this field is reserved to 
DIGITAL. 

CRB$L_LINK* Address of secondary CRB (for MASSBUS devices only). This field is written by 
the driver-loading procedure and read by lOCSREQSCHANx and IOC$RELSCHAN. 

CRB$L_INTD* Interrupt transfer vector. The DPT in every driver for an interrupting device 
specifies the address of a driver interrupt-servicing routine. The driver-loading 
procedure writes two instructions in this field: 

PUSHR #~M<RO,R1,R2,R3,R4,R5> 
JSB <D#~driver-isr-address 

CRB$L_INTD2* 

Direct vector UNIBUS or Q22 bus adapters transfer control to CRB$I_INTD, 
which causes the processor to execute the PUSHR instruction to save RO through 
R5 on the stack. Next, the processor executes the JSB instruction to transfer 
control to the driver interrupt-servicing routine. 

On nondirect vector UNIBUS adapters, the UNIBUS adapter interrupt-servicing 
routine transfers control to CRB$L_INTD+2, which contains the JSB instruction 
to the driver interrupt-servicing routine. Because the UNIBUS adapter's interrupt¬ 
servicing routine has already saved RO through R5, the PUSHR instruction is 
bypassed. 

The CRB$L_INTD field is nine longwords long. Figure A-5 and Table A-5 
describe the contents of the rest of block. 

Second interrupt transfer vector for devices with multiple interrupt vectors. If the 
DPT in a device driver specifies the address of a second driver interrupt-servicing 
routine, the driver-loading procedure creates a CRB long enough to contain two 
INTDx fields of nine longwords each. 

The first two longwords of the CRB$I_INTD2 field contain a PUSHR instruction 
and a JSB instruction to the second driver interrupt-servicing routine. There are 
as many interrupt-transfer-vector blocks as there are device vectors. The number 
of device vectors is determined by the value specified in the /NUMVEC= qualifier 
to the SYSGEN command CONNECT. 

The interrupt-transfer-vector blocks contained in the CRB store executable 
code, driver entry points, and I/O adapter information. The block pointed to 
by CRB$L_INTD is illustrated in Figure A-5 and described in Table A-5. 

A—9 



The I/O Database 

Figure A-5 Interrupt Transfer Vector Block (VEC) 
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Table A-5 Fields of CRB$L_IIMTD 

Field Name 

VEC$Q—DISPATCH* 

VEC$I_IDB* 

VEC$I_INITIAL* 

VEC$W_MAPREG 

VEC$B_NUMREG 

Contents 

Two interrupt dispatching instructions, written by driver-loading procedure and 
described above in CRB$I_INTD. 

Address of IDB for controller. The driver-loading procedure creates an IDB for 
each CRB and loads the address of the IDB in this field. Device drivers use the 
IDB address to obtain the virtual addresses of device registers. 

When a driver interrupt-servicing routine gains control, the top of the stack 
contains a pointer to this field. 

Address of controller-initialization routine. If a device controller requires 
initialization at driver-loading time and during recovery from a power failure, 
the driver specifies a value for this field in the DPT. 

The driver-loading procedure calls this routine each time the procedure loads the 
driver. The VAX/VMS powerfail recovery procedure also calls this routine to 
initialize a controller after a power failure. 

The following bits are defined within VEC$W_MAPREG: 

VEC$V_MAPREG Number of first mapping register allocated to driver that 
owns controller data channel. 

IOCSREQMAPREG writes this field when the routine 
allocates a set of mapping registers to a driver fork 
process for a DMA transfer. IOC$RELMAPREG reads the 
field to deallocate a set of mapping registers. 

Device drivers read this field in calculating the starting 
address of a UNIBUS or MicroVAX II Q22 bus transfer. 

VEC$V_MAPLOCK Mapping register set is permanently allocated (when 
set). 

Number of UNIBUS adapter mapping registers allocated to driver. 
IOCSREQMAPREG writes this field when the routine allocates a set of mapping 
registers. IOCSRELMAPREG reads this field to deallocate a set of mapping 
registers. 
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Table A-5 (Cont.) Fields of CRB$I_INTD 

Field Name Contents 

VEC$B_DATAPATH Data path specifier. The bits that make up this field are used as follows: 

0-4 Number of data path used in DMA transfer. The routine 
IOCSREQDATAP sets this field when a buffered data 
path is allocated and clears the field when the data path 
is released. 

The routine IOCSLOADUBAMAP copies the contents 
of this field into the UNIBUS adapter or MicroVAX II 
mapping registers. These bits also serve as implicit 
input to the IOC$PURGDATAP routine. 

Longword access enable (LWAE) bit. Drivers set 
this bit when they wish to limit the data path to 
longword-aligned, random-access mode. The routine 
IOCSLOADUBAMAP copies the value in this field to the 
UNIBUS adapter mapping registers. 

Reserved to DIGITAL. 

VEC$V_PATHLOCK Buffered data path allocation indicator. Drivers set this 
bit to specify that the buffered data path is permanently 
allocated. 

Address of ADP. The SYSGEN command CONNECT must specify the nexus 
number of the UNIBUS adapter used by a controller. The driver-loading procedure 
writes the address of the ADP for the specified UBA into the VEC$L_ADP field. 

IOCSREQMAPREG and IOCSRELMAPREG read and write fields in the ADP to 
allocate and deallocate mapping registers. 

Address of device unit-initialization routine. If a device unit requires initialization at 
driver-loading time and during recovery from a power failure, the driver specifies a 
value for this field in the DPT. 

The driver-loading procedure calls this routine for each device unit each time the 
procedure loads the driver. The VAX/VMS powerfail recovery procedure also 
calls this routine to initialize device units after a power failure. 

MASSBUS drivers that support mixed device types must not use this field. 
Instead, they should specify unit initialization in the unit initialization field of the 
DDT (DDT$L_UNITINIT). Other drivers can use either field. 

VEC$L-START* Reserved to DIGITAL. 

VEC$L_UNITDISC* Reserved to DIGITAL. 

VECSl_ADP* 

VEC$I_UNITINIT* 

VEC$V_LWAE 

6 

A.5 Device-Data Block (DDB) 
The device-data block (DDB) is a variable-length block that identifies the 
generic device/controller name and driver name for a set of devices attached 
to a single controller. The driver-loading procedure creates a DDB for each 
controller during autoconfiguration at system startup and dynamically creates 
additional DDBs for new controllers as they are added to the system using 
the SYSGEN command CONNECT. The procedure initializes all fields in the 
DDB. All the DDBs in the I/O database are linked together in a single-linked 
list. The contents of IOC$GL_DEVLIST point to the first entry in the list. 

VAX/VMS routines and device drivers refer to the DDB. 
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The device-data block is illustrated in Figure A-6 and described in Table A-6. 

Figure A—6 Device-Data Block (DDB) 
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Table A-6 Contents of Device-Data Block 

Field Name Contents 

DDB$L_LINK* 

DDB$L_UCB* 

DDB$W_SIZE* 

DDB$B_TYPE* 

DDB$L_DDT 

DDB$L_ACPD 

DDB$T_NAME* 

Address of next DDB. A zero indicates that this is the last DDB in the DDB chain. 

Address of UCB for first unit attached to controller. 

Size of DDB. 

Type of data structure. The driver-loading procedure writes the constant 
DYN$C_DDB into this field when the procedure creates the DDB. 

Address of DDT. VAX/VMS can transfer control to a device driver only through 
addresses listed in the DDT, the CRB, and the UCB fork block. The DPT of every 
device driver must specify a value for this field. 

Name of default ACP for controller. ACPs that control access to file-structured 
devices use the high-order byte of this field, DDB$B_ACPCLASS, to indicate 
the class of the file-structured device. If the SYSGEN parameter ACP—MULT is 
set to one, the initialization procedure creates a unique ACP for each class of 
file-structured device. 

Drivers initialize DDB$B_ACPCLASS by invoking a DPT_STORE macro. Values for 
DDB$B_ACPCLASS are listed below. 

DDB$K_CART Cartridge disk pack 

DDB$K_PACK Standard disk pack 

DDB$K_SLOW Floppy disk 

DDB$K_TAPE Magnetic tape that simulates file-structured device 

Generic name of devices attached to controller. The first byte of this field is the 
number of characters in the generic name. The remainder of the field consists of 
a string of up to 15 characters in length that, suffixed by a device unit number, 
identifies devices on the controller. 
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Table A—6 (Cont.) Contents of Device-Data Block 

Field Name Contents 

DDB$T_DRVNAME* Name of device driver for controller. The first byte of this field is the number of 
characters in the driver name. The remainder of the field contains a string of up 
to 15 characters in length taken from the DPT in the driver. 

DDB$L_SB* Address of system block 

DDB$L —CONLINK* Address of next DDB in the connection subchain 

DDB$L _ALLOCLS* Allocation class of device 

DDB$L _2P_UCB* Address of first UCB on secondary path. Another name for this field is 
DDB$I_DP_UCB. 

A.6 Driver-Dispatch Table (DDT) 
Each device driver contains a driver-dispatch table (DDT). The DDT lists 
entry points in the driver that various VAX/VMS routines call. An example is 
the entry point for the driver routine that starts an I/O operation on a device. 

A device driver creates a DDT by invoking the VAX/VMS macro DDTAB. The 
fields in the driver-dispatch table are illustrated in Figure A-7 and described 
in Table A-7. 

Figure A-7 Driver-Dispatch Table (DDT) 
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Table A—7 Contents of Driver-Dispatch Table 

Field Name Contents 

DDT$L—START Entry point to driver start-l/0 routine. Every driver must specify this field with the 
value of the start argument to the DDTAB macro. 

When a device unit is idle and an I/O request is pending for that unit, 
IOCSINITIATE transfers control to the address contained in this field. 

DDT$I_UNSOLINT Entry point to MASSBUS driver's unsolicited-interrupt-servicing routine. The 
driver specifies this field with the value of the unsolic argument to the DDTAB 
macro. 

DDT$I_FDT 

This field contains the address of a routine that analyzes unexpected interrupts 
from a device. The standard interrupt-servicing routine, the address of which is 
stored in the CRB, determines whether an interrupt was solicited by a driver. If 
the interrupt is unsolicited, the interrupt-servicing routine can call the unsolicited- 
interrupt-servicing routine. 

Address of driver's FDT. Every driver must specify this field with the value of the 
functb argument to the DDTAB macro. 

EXESQIO refers to the FDT to validate 1/0-function codes, decide which functions 
are buffered, and call FDT routines associated with function codes. 

DDTSL-CANCEL Entry point to driver cancel-l/O routine. The driver specifies this field with the 
value of the cancel argument to the DDTAB macro. 

Some devices require special clean-up processing when a process or a VAX/VMS 
routine cancels an I/O request before the I/O operation completes or when the 
last channel is deassigned. The $DASSGN, SDALLOC, and SCANCEL system 
services cancel I/O requests. 

DDT$L _REGDUMP Entry point to driver register-dumping routine. The driver specifies this field with 
the value of the regdmp argument to the DDTAB macro. 

IOCSDIAGBUFILL, ERLSDEVICERR, and ERLSDEVICTMO call the address contained 
in this field to write device register contents into a diagnostic or error-logging 
buffer. 

DDT$W_DIAGBUF Size of diagnostic buffer. The driver specifies this field with the value of the 
diagbf argument to the DDTAB macro. The value is the size in bytes of a 
diagnostic buffer for the device. 

When EXESQIO preprocesses an I/O request, the routine allocates a system 
buffer of the size recorded in this field if the user process has diagnostic 
privileges, specifies a diagnostic buffer in the I/O request, and this field of 
the DDT contains a nonzero value. IOCSDIAGBUFILL fills the buffer after the I/O 
operation completes. 

DDT$W_ERRORBUF Size of error-logging buffer. The driver specifies this field as the value of the 
erlgbf argument to the DDTAB macro. The value is the size in bytes of an 
error-logging buffer for the device. 

If error logging is enabled and an error occurs during an I/O operation, the driver 
calls ERLSDEVICERR or ERLSDEVICTMO to allocate and write error-logging data 
into the error message buffer. IOCSINITIATE and IOCSREQCOM write values into 
the buffer if an error has occurred. 

DDT$I_UNITINIT Address of device unit-initialization routine, if one exists. Drivers for MASSBUS 
devices use this field rather than CRB$L_INTD+VEC$I_UNITINIT. Drivers for 
UNIBUS and Q22 devices can use either field. 

DDT$1_ALTST ART Address of alternate start-l/O routine. The VAX/VMS routine EXESALTQUEPKT 
initiates the alternate start-l/O routine at this address. 
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A.7 

Table A-7 (Cont.) Contents of Driver-Dispatch Table 

Field Name Contents 

DDT$L_MNTVER 

DDT$L_CLONEDUCB 

DDT$W_FDTSIZE* 

DDT$I_MNTV_SSSC 

DDT$L _MNTV_FOR 

DDT$L _MNTV_SQD 

Address of VAX/VMS routine (IOCSMNTVER) called at beginning and end of 
mount verification operation. The mntver argument to the DPTAB macro defaults 
to this routine. Use of the mntver argument to call any routine other than 
IOCSMNTVER is reserved to DIGITAL. 

Address of routine to call when UCB is cloned. 

Number of bytes in FDT. The driver-loading procedure uses this field to relocate 
addresses in the FDT to system virtual addresses. 

Address of routine to call when performing mount verification for a shadow-set- 
state change. 

Address of routine to call when performing mount verification for foreign device. 

Address of routine to call when performing mount verification for sequential 
device. 

Driver-Prologue Table (DPT) 
When loading a device driver and its database into virtual memory, the 
driver-loading procedure finds the basic description of the driver and its 
device in a driver-prologue table (DPT). The DPT provides the length, name, 
adapter type, and loading and reloading specifications for the driver. 

A device driver creates a DPT by invoking the VAX/VMS macros DPTAB 
and DPT_STORE. The driver-prologue table is illustrated in Figure A-8 and 
described in Table A-8. 

Figure A-8 Driver-Prologue Table (DPT) 
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Table A-8 Contents of Driver-Prologue Table 

Field Name Contents 

DPT$L_FLINK* Forward link to next DPT. The driver-loading procedure writes this field. The 
procedure links all DPTs in the system in a doubly linked list. 

DPT$I_BLINK* 

DPT$W_SIZE 

Backward link to previous DPT. The driver-loading procedure writes this field. 

Size in bytes of driver. The DPTAB macro writes this field by subtracting the 
address of the beginning of the DPT from the address specified as the end 
argument to the DPTAB macro. The driver-loading procedure uses this value to 
determine the space needed in nonpaged system memory to load the driver. 

DPT$B_TYPE* Type of data structure. The DPTAB macro always writes the symbolic constant, 
DYN$C_DPT, into this field. 

DPT$B_REFC* Number of DDBs that refer to driver. The driver-loading procedure increments the 
value in this field each time the procedure creates another DDB that points to the 
driver's DDT. 

DPT$B_ADPTYPE Type of adapter used by devices using driver. Every driver must specify the 
string "UBA" or "MBA" as value of the adapter argument to the DPTAB macro. 
Q22 bus drivers should specify "UBA" as the adapter type. The macro writes the 
value AT$_UBA or AT$_MBA in this field. 

DPT$B_FLAGS Driver loader flags. The driver can specify any of a set of flags as the value of 
the flags argument to the DPTAB macro. The driver-loading procedure modifies 
the loading and reloading algorithm followed on the basis of the settings of these 
flags. 

Flags defined in the flag field include the following: 

DPT$M_SUBCNTRL Device is a subcontroller. 

DPT$M_SVP Device requires permanent system page to be allocated 
during driver loading. 

DPT$M_NOUNLOAD Driver cannot be reloaded. 

DPT$V_SCS SCS code must be loaded with this driver. 

DPT$W_UCBSIZE Size in bytes of UCBs created for device units using driver. Every driver must 
specify a value for this field as the value of the ucbsize argument to the DPTAB 
macro. 

DPT$W_INITTAB 

The driver-loading procedure allocates blocks of nonpaged system memory of the 
specified size when creating UCBs for devices associated with the driver. 

Offset to driver-initialization table. Every driver must specify a list of control-block 
fields and values to be written into the fields at the time that the driver-loading 
procedure creates the control blocks. 

The driver invokes the VAX/VMS macro DPT_STORE to specify these fields and 
their values. Every driver must specify the following fields: 

UCB$B_FIPL Fork interrupt priority level 

UCB$B_DIPL Device interrupt priority level 

Other commonly initialized fields are: 

UCB$I_DEVCHAR Device characteristics 

UCB$B_DEVCLASS Device class 

UCB$B_DEVTYPE Device type 

UCB$W_DEVBUFSIZ Default buffer size 

UCB$L_DEVDEPEND Device-dependent parameters 
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Table A—8 (Cont.) Contents of Driver-Prologue Table 

Field Name Contents 

DPT$ W_REINITT AB 

DPT$W_UNLOAD 

DPT$W_MAXUNITS 

DPT$W_VERSION* 

DPT$W_DEFUNITS 

DPT$W_DELIVER 

DPT$W_VECTOR 

DPT$T_NAME 

DPT$Q_LINKTIME* 

DPT$L _ECOLE VEL* 

Offset to driver-reinitialization table. Every driver must specify a list of control- 
block fields and values to be written into fields at the time that the driver-loading 
procedure creates the control blocks or loads the driver. 

The driver invokes the VAX/VMS macro DPT_STORE to specify these fields and 
their values. Every driver must specify the following field: 

DDB$L_DDT Driver-dispatch table 

Other commonly initialized fields are: 

CRB$L_INTD+4 Interrupt-servicing routine 

CRB$L_INTD2+4 Second interrupt-servicing routine 

VECSl_INITIAL Controller initialization routine 

VEC$L_UNITINIT Unit initialization routine 

Relative address of driver action routine to be called when driver is reloaded. The 
driver specifies this field with the value of the unload argument to the DPTAB 
macro. 

If the driver requires special clean-up processing, such as buffer or mapping 
register deallocation, before the driver can be reloaded, the driver must specify 
this field. The driver-loading procedure calls the driver unloading routine before 
reinitializing all device units associated with the driver. 

Maximum number of units on controller that this driver supports. Specify this 
value in the maxunits argument to the DPTAB macro. If no value is specified, the 
default is 8 units. 

Version number that identifies format of DPT. The DPTAB macro automatically 
inserts a value in this field. SYSGEN checks its copy of the version number 
against the value stored in this field. If the values do not match, an error is 
generated. To correct the error, reassemble and relink the driver. 

Number of UCBs that autoconfiguration facility will automatically create. Drivers 
specify this number with the defunits argument to the DPTAB macro. If the 
driver also gives a value to DPT$W_DELIVER, this field is also the number of 
times that the autoconfiguration facility calls the unit-delivery routine. 

Relative address of unit-delivery routine that autoconfiguration facility calls for 
number of UCBs specified in DPT$W_DEFUNITS. The driver supplies the address 
of the unit-delivery routine in the deliver argument to the DPTAB macro. 

Relative address of driver-specific vector. Use of this field is reserved to DIGITAL. 

Name of device driver. Field is 12 bytes in length. One byte records the length 
of the name string; the name string can be up to 11 characters in length. Drivers 
specify this field as the value of the name argument to the DPTAB macro. 

The driver-loading procedure compares the name of a driver to be loaded with the 
values in this field in all DPTs already loaded into system memory to ensure that 
it loads only one copy of a driver at a time. 

Time and date at which driver was linked, taken from its image header. 

ECO level of driver, taken from its image header. 
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A.8 Interrupt-Dispatch Block (IDB) 
The interrupt-dispatch block (IDB) records controller characteristics. The 
driver-loading procedure creates and initializes this block when the procedure 
creates a CRB. The IDB points to the physical controller by storing the virtual 
address of the CSR. The CSR is the indirect pointer to all device unit registers. 

The interrupt-dispatch block is illustrated in Figure A-9 and described in 
Table A-9. 

Figure A-9 Interrupt-Dispatch Block (IDB) 

IDB$I_CSR* 

IDB$I_OWNER 

IDB$B_VECTOR* IDB$B_TYPE* IDB$W_SIZE* 

IDB$B_COMBO_CSR* IDB$B_TT_ENABLE* IDB$W_UNITS* 

unused unused IDB$B COMBO_VEC* 

IDBSl_ADP* 

IDB$I_UCBLST* (32 bytes) 
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Table A-9 Contents of Interrupt-Dispatch Block 

Field Name 

IDB$I_CSR* 

IDB$L_OWNER 

IDB$W_SIZE* 

IDB$B_TYPE* 

Contents 

Address of CSR. The SYSGEN command CONNECT must specify the address of 
a device's CSR. The driver-loading procedure writes the system virtual equivalent 
of this address into the IDB$L_CSR field. 

Device drivers set and clear bits in device registers by referencing all device 
registers at fixed offsets from the CSR address. 

Address of UCB of device that owns controller data channel. IOC$REQx CHANy 
writes a UCB address into this field when the routine allocates a controller data 
channel to a driver. IOC$RELx CHAN confirms that the proper driver fork process 
is releasing a channel by comparing the driver's UCB with the UCB stored in 
the IDB$L_OWNER field. If the UCB addresses are the same, IOC$RELx CHAN 
allocates the channel to a waiting driver by writing a new UCB address into the 
field. If no driver fork processes are waiting for the channel, IOC$RELxCHAN 
clears the field. 

If the controller is a single-unit controller, the unit or controller initialization routine 
should write the UCB address of the single device into this field. 

Size of IDB. The driver-loading procedure writes the constant IDB$K_LENGTH into 
this field when the procedure creates the IDB. 

Type of data structure. The driver-loading procedure writes the symbolic constant 
DYN$C_IDB into this field when the procedure creates the IDB. 
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Table A-9 (Cont.) Contents of Interrupt-Dispatch Block 

Field Name Contents 

IDB$B_VECT OR* Interrupt vector number of device, right-shifted by 2 bits. SYSGEN writes a value 
to this field using either the autoconfiguration database or the value specified in 
the /VECTOR qualifier to the CONNECT command. Drivers for devices that define 
the interrupt vector address through a device register must use this field to load 
that register during unit initialization and reinitialization after a power failure. 

IDB$W_UNITS* Maximum number of units connected to controller. The maximum number of units 
is specified in the DPT and can be overridden at driver-loading time. 

IDB$B_TT_ENABLE* Reserved for use by VAX/VMS terminal driver. 

IDB$B_COMBO_CSR* Address of start of CSRs for multicontroller device (such as the DMF32). (The 
name of this field is IDB$B_COMBO_CSR_OFFSET.) 

IDB$B_COMBO_VEC* Address of start of interrupt vectors for multicontroller device. (The name of this 
field is IDB$B_COMBO_VECTOR_OFFSET.) 

IDB$L_ADP* Address of UNIBUS's ADP. The SYSGEN CONNECT command must specify the 
nexus number of the I/O adapter used by a device. The driver-loading procedure 
writes the address of the ADP for the specified I/O adapter into the IDB$L_ADP 
field. 

IDB$L _UCBLST* List of UCB addresses. The size of this field is the maximum number of units 
supported by the controller, as defined in the DPT. The maximum specified in the 
DPT can be overridden at driver load time. The driver-loading procedure writes a 
UCB address into this field every time the routine creates a new UCB associated 
with the controller. 

A.9 l/O-Request Packet (IRP) 

When a user process queues a valid I/O request by issuing a $QIO or $QIOW 
system service, the service creates an I/O-request packet (IRP). The IRP 
contains a description of the request and receives the status of the I/O 
processing as it proceeds. 

The I/O-request packet is illustrated in Figure A-10 and described in 
Table A-10. 

Table A-10 Contents of an l/O-Request Packet 

Field Name 

IRP$I_IOQFL 

IRP$I_IOQBL 

IRP$W_SIZE* 

IRP$B_TYPE* 

Contents 

I/O queue forward link. EXE$INSERTIRP reads and writes this field when the 
routine inserts IRPs into a pending I/O queue. IOCSREQCOM reads and writes this 
field when the routine dequeues IRPs from a pending I/O queue in order to send 
an IRP to a device driver. 

I/O queue backward link. EXESINSERTIRP and IOCSREQCOM read and write these 
fields. 

Size of IRP. EXESQIO writes the symbolic constant, IRP$C_LENGTH, into this field 
when the routine allocates and fills an IRP. 

Type of data structure. EXESQIO writes the symbolic constant DYN$C_IRP into 
this field when the routine allocates and fills an IRP. 
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Table A-10 (Cont.) Contents of an l/O-Request Packet 

Field Name Contents 

IRP$B_RMOD* 

IRP$I_PID* 

IRP$I_AST* 

IRP$I_ASTPRM 

IRP$I_WIND 

IRP$L_UCB* 

IRP$W_FUNC 

IRP$B_EFN* 

IRP$B_PRI* 

IRP$I_IOSB 

IRP$W_CHAN* 

Access mode of process at time of I/O request. EXESQIO obtains the processor 
access mode from the PSL and writes the value into this field. 

Process identification of process that issued I/O request. EXESQIO obtains the 
process identification from the PCB and writes the value into this field. 

Address of AST routine specified by user in I/O request. If the process specifies 
an AST routine address in the $QIO call, EXESQIO writes the address in this field. 

During I/O postprocessing, the special kernel-mode-AST routine queues a user 
mode AST to the requesting process if this field contains the address of an AST 
routine. 

Parameter sent as argument to AST routine specified by user in I/O request. If 
the process specifies an AST routine and a parameter to that AST routine in the 
$QIO call, EXESQIO writes the parameter in this field. 

During I/O postprocessing, the special kernel-mode-AST routine queues a user 
mode AST if the IRP$L_AST field contains an address, and passes the value in 
IRP$L_ASTPRM to the AST routine as an argument. 

Address of window-control block (WCB) that describes file being accessed in I/O 
request. EXESQIO writes this field if the I/O request refers to a file-structured 
device. The ACP reads this field. 

When a process gains access to a file on a file-structured device or creates a 
logical link between a file and a process I/O channel, the device ACP creates a 
WCB that describes the virtual-to-logical mapping of the file data on the disk. 
EXESQIO stores the address of this WCB in the IRPSl_WIND field. 

Address of UCB for device assigned to process I/O channel. EXESQIO copies this 
value from the CCB. 

l/O-function code that identifies function to be performed for I/O request. The 
I/O request call specifies an l/O-function code; EXESQIO and driver FDT routines 
map the code value to its most basic level (virtual -*• logical —► physical) and copy 
the reduced value into this field. 

Based on this function code, EXESQIO calls FDT action routines to preprocess 
an I/O request. Six bits of the function code describe the basic function. The 
remaining 10 bits modify the function. 

Event flag number and group specified in I/O request. If the I/O request call 
does not specify an event flag number, EXESQIO uses event flag 0 by default. 
EXESQIO writes this field. The I/O postprocessing routine calls SCHSPOSTEF to 
set this event flag when the I/O operation is complete. 

Base priority of process when I/O request was issued. EXESQIO obtains a value 
for this field from the PCB. EXESINSERTIRP reads this field to insert an IRP into a 
priority-ordered pending I/O queue. 

Virtual address of process' l/O-status block (IOSB) that receives final status of 
I/O request at I/O completion. EXESQIO writes a value into this field if the I/O 
request call specifies an IOSB address. The I/O postprocessing special kernel- 
mode-AST routine writes two longwords of I/O status into the IOSB after the I/O 
operation is complete. 

When an FDT routine aborts an I/O request by calling EXESABORTIO, 
EXESABORTIO fills the IRP$I_IOSB field with zeros so that I/O postprocessing 
does not write status into the IOSB. 

Index number of process I/O channel for request. EXESQIO writes this field. 
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Table A-10 (Cont.) Contents of an l/O-Request Packet 

Field Name Contents 

IRP$W_STS Status of I/O request. EXE$QIO initializes this field to 0. EXESQIO, FDT routines, 
and driver fork processes modify this field according to the current status of 
the I/O request. I/O postprocessing reads this field to determine what sort of 
postprocessing is necessary (for example, deallocate system buffers and adjust 
quota usage). 

Bits in the IRP$W_STS field describe the type of I/O function, as follows: 

IRP$V_BUFIO Buffered-I/O function 

IRP$V_FUNC Read function 

IRP$V_PAGIO Paging-I/O function 

IRP$V_COMPLX Complex-buffered-l/O function 

IRP$V_VIRTUAL Virtual-I/O function 

IRP$V_CHAINED Chained-buffered-l/O function 

IRP$V_SWAPIO Swapping-I/O function 

IRP$V_DIAGBUF Diagnostic buffer is present 

IRP$V_PHYSIO Physical-I/O function 

IRP$V_TERMIO Terminal I/O (for priority increment calculation) 

IRP$V_MBXIO Mailbox-1/0 function 

IRP$V_EXTEND An extended IRP is linked to this IRP 

IRP$V_FILACP File ACP I/O 

IRP$V_MVIRP Mount-verification-l/O function 

IRP$V_JNL_REMREQ Remote-I/O (slave) function 

IRP$V_KEY IRP$L_KEYDESC contains the address of a key used 
for encryption. 

IRP$I_SVAPTE For direct-l/O transfer, virtual address of first page-table entry (PTE) of 1/0- 
transfer buffer, written here by FDT routine locking process pages; for buffered- 
1/0 transfer, address of buffer in system address space, written here by FDT 
routine allocating buffer. 

IRP$W_BOFF 

IOCSINITIATE copies this field into the device UCB field UCB$I_SVAPTE before 
transferring control to a device driver start-l/0 routine. 

I/O postprocessing uses this field to deallocate the system buffer for a buffered- 
1/0 transfer or to unlock pages locked for a direct-l/O transfer. 

Byte offset into first page of direct-l/O transfer. FDT routines calculate this offset 
and write the field. 

For buffered-1/0 transfers, FDT routines must write the number of bytes to be 
charged to the process in this field because these bytes are being used for a 
system buffer. 

IOCSINITIATE copies this field into the device UCB field UCB$W_B0FF before 
calling a device driver start-l/0 routine. 

I/O postprocessing uses IRP$W_B0FF in conjunction with IRP$L_BCNT and 
IRP$I_SVAPTE to unlock pages locked for direct I/O. For buffered I/O, I/O 
postprocessing adds the value of IRP$W_B0FF to the process byte count quota. 
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Table A-10 (Cont.) Contents of an l/O-Request Packet 

Field Name Contents 

IRP$I_BCNT 

IRP$I_IOST1 

IRP$I_IOST2 

IRP$L_ABCNT 

IRP$I_OBCNT 

IRP$I_SEGVBN 

IRP$L_DIAGBUF* 

IRP$I_SEQNUM* 

IRP$L_EXTEND 

Byte count of I/O transfer. FDT routines calculate the count value and write the 
field. IOC$INITIATE copies the low-order word of this field into UCB$W_BCNT 
before calling a device driver's start-l/O routine. 

For a buffered-l/O-read function, I/O postprocessing uses IRP$L_BCNT to 
determine how many bytes of data to write to the user's buffer. 

The field IRP$W_BCNT points to the low-order word of this field to provide 
compatibility with previous versions of VAX/VMS. 

First I/O status longword. IOC$REQCOM and EXE$FINISHIO(C) write the contents 
of RO into this field. The I/O postprocessing routine copies the contents of this 
field into the user's IOSB. 

EXE$ZEROPARM copies a 0 and EXE$ONEPARM copies pi into this field. This 
field is a good place to put a $QIO request argument (pi through p6) or a 
computed value. 

This field is also called IRP$L_MEDIA 

Second I/O status longword. IOC$REQCOM and EXE$FINISHIO(C) write the 
contents of R1 into this field. The I/O postprocessing routine copies the contents 
of this field into the user's IOSB. 

This field is also known as IRP$B_CARCON. 

IRP$B_CARCON contains carriage control instructions to the driver. EXE$READ 
and EXESWRITE copy the contents of P4 of the user's I/O request into this field. 

Accumulated bytes transferred in virtual I/O transfer. Read and written by 
IOC$IOPOST after a partial virtual transfer. 

The symbol IRP$W_ABCNT points to the low-order word of this field to provide 
compatibility with previous versions of VAX/VMS. 

Original transfer byte count in a virtual I/O transfer. Read by IOCSIOPOST to 
determine whether a virtual transfer is complete, or whether another I/O request 
is necessary to transfer the remaining bytes. 

The symbol IRP$W_OBCNT points to the low-order word of this field to provide 
compatibility with previous versions of VAX/VMS. 

Virtual block number of current segment of virtual I/O transfer. Written by 
IOCSIOPOST after a partial virtual transfer. 

Address of diagnostic buffer in system address space. If the I/O request call 
specifies this address, and if a diagnostic buffer length is specified in the DDT, 
and if the process has diagnostic privilege, EXESQIO copies the buffer address 
into this field. 

EXESQIO allocates a diagnostic buffer in system address space to be filled by 
IOCSDIAGBUFILL during I/O processing. During I/O postprocessing, the special 
kernel-mode-AST routine copies diagnostic data from the system buffer into the 
process diagnostic buffer. 

I/O transaction sequence number. If an error is logged for the request, this field 
contains the universal error log sequence number. 

Address of IRPE linked to packet. FDT routines write an extension address to 
this field when a device requires more context than the IRP can accommodate. 
This field is read by IOCSIOPOST. IRP$V_EXTEND in IRP$W_STS is set if this 
extension address is used. 
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Table A-10 (Cont.) Contents of an l/O-Request Packet 

Field Name Contents 

IRP$L_ARB* Address of access-rights block (ARB). This block is located in the PCB and 
contains the process privilege mask and UIC, which are set up as follows: 

ARB$Q_PRIV Quadword containing process privilege mask 

SPARESL Unused longword 

ARBSI_UIC Longword containing process UIC 

IRPSI_KEYDESC Address of encryption key. 

Figure A-10 l/O-Request Packet (IRP) 
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A. 10 l/O-Request-Packet Extension (IRPE) 
I/O-request-packet extensions (IRPEs) hold additional I/O-request 
information for devices that require more context than the standard IRP 
can accommodate. IRP extensions are also used when more than one buffer 
(region) must be locked into memory for a direct-I/O operation, or when a 
transfer requires a buffer that is larger than 64K. An IRPE provides space for 
two buffer regions, each with a 32-bit byte count. 

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routines link 
the IRPE to the IRP, store the IRPE's address in IRP$L—EXTEND and set 
the bit field IRP$V_EXTEND in IRP$W_STS to show that an IRPE exists 
for the IRP. The FDT routine initializes the contents of the IRPE. Any fields 
within the extension not described in Table A-ll can store driver-dependent 
information. 

If the IRP extension specifies additional buffer regions, the FDT routine must 
use those buffer locking routines that perform coroutine calls back to the 
driver if the locking procedure fails (EXE$READLOCKR, EXE$WRITELOCKR, 
and EXE$MODIFYLOCKR). If an error occurs during the locking procedure, 
the driver must unlock all previously locked regions using MMG$UNLOCK 
and deallocate the IRPE before returning to the buffer locking routine. 

IOC$IOPOST automatically unlocks the pages in region 1 (if defined) and 
region 2 (if defined) for all the IRPEs linked to the IRP undergoing completion 

processing. IOC$IOPOST also deallocates all the IRPEs. 

The I/O-request-packet extension is illustrated in Figure A-ll and described 
in Table A-ll. 

Table A-11 Contents of the l/O-Request-Packet Extension 

Field Name 

IRPE$W_SIZE 

IRPE$B__TYPE 

IRPE$W_STS 

IRPE$I_SVAPTE1 

IRPES W_BOFF1 

IRPESl_BCNT1 

IRPE$L_SVAPTE2 

IRPES W_BOFF2 

IRPESL _BCNT2 

IRPESl_EXTEND 

Contents 

Size of IRPE. EXESALLOCIRP writes the constant IRP$C_LENGTH to this field. 

Type of data structure. EXESALLOCIRP writes the constant DYN$C_IRP to this 
field. 

IRPE status field. Bits in the status field describe the following condition: 

IRPE$V_EXTEND Another IRPE is linked to this one. 

System virtual address of page-table entry (PTE) that maps start of region 1. FDT 
routines write this field. If the region is not defined, this field is zero. 

Byte offset of region 1. FDT routines write this field. 

Size in bytes of region 1. FDT routines write this field. 

System virtual address of PTE that maps start of region 2. Set by FDT routines. 
This field contains a value of zero if region 2 is not defined. 

Byte offset of region 2. This field is set by FDT routines. 

Size in bytes of region 2. FDT routines write this field. 

Address of next IRPE for this IRP, if any. 
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Figure A-11 l/O-Request-Packet Extension (IRPE) 
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A. 11 Object-Rights Block (ORB) 

The object-rights block (ORB) is a data structure that describes the rights 
a process must have in order to access the object with which the ORB is 
associated. 

The ORB is usually allocated when the device is connected by means of 
SYSGEN's CONNECT command. SYSGEN also sets the address of the ORB 
in UCB$L_ORB at that time. 

When initializing the ORB, device drivers must first zero the ORB, then use 
the DPT—STORE macro to initialize the fields in the ORB. The object-rights 
block is illustrated in Figure A-12 and described in Table A-12. 
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A.12 

Figure A-12 Object-Rights Block (ORB) 
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Table A-12 Contents of Object-Rights Block 

Field 

ORBSL _OWNER 

ORB$L_ACL _MUTEX 

ORB$W_SIZE 

ORB$B_TYPE 

ORB$B_FLAGS 

ORB$W_PROT 

ORB$L_ACLFL 

ORB$L_ACLBL 

Use 

UIC of object's owner. 

Mutex for object's ACL, used to control access to ACL for reading and writing. 

Size in bytes of ORB (ORB$K_LENGTH). 

Type of data structure (DYN$C_ORB). 

Flags needed for interpreting portions of ORB that can have alternate meanings. 
The following fields are defined within ORB$B_FLAGS: 

ORB$V_PROT—16 This flag must be set to 1. 

ORB$V_ACL—QUEUE This flag represents the existence of an ACL queue. 
The driver should initially set this bit to 0. 

ORB$V_NOACL This object cannot have an ACL. 

Standard SOGW protection. 

ACL queue forward link. If ORB$V_ACL_QUEUE is 0, this field should contain 0. 

ACL queue backward link. If ORB$V_ACL_QUEUE is 0, this field should contain 
0. 

Unit-Control Block (UCB) 

The unit-control block (UCB) is a variable-length block that describes a single 
device unit. Each device unit on the system has its own UCB. The UCB 
describes or provides pointers to the device type, controller, driver, device 
status, and current I/O activity. 
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During autoconfiguration, the driver-loading procedure creates one UCB 
for each device unit in the system. A privileged system user can request 
the driver-loading procedure to create UCBs for additional devices with the 
SYSGEN command CONNECT as described in Section 14. The procedure 
creates UCBs of the length specified in the DPT. The driver uses UCB storage 
located beyond the standard UCB fields for device-specific data and temporary 
driver storage. 

The driver-loading procedure initializes some static UCB fields when it 
creates the block. VAX/VMS and device drivers can read and modify all 
nonstatic fields of the UCB. The fields UCB that are present for all devices 
are illustrated in Figure A-13 and described in Table A-13. The length of the 
basic UCB is defined by the symbol UCB$K_LENGTH. 

UCBs are variable in length depending on the type of device and whether the 
driver performs error-logging for the device. A number of UCB extensions 
define symbols employed by the drivers of these devices. 

The error-log UCB extension, if present, appears at the end of the standard 
UCB. The fields in the UCB error-log extension are illustrated in Figure A-14 
and described in Table A-14. The symbol UCB$K_ERL—LENGTH defines 
the end of the extended UCB in this case. 

Another extension of the UCB is the disk-extension block. This UCB 
extension is present for all disk devices. It follows the error-log extension. A 
driver that supports a disk or tape must allow space in the UCB for both the 
error-log and disk extensions. 

For tape devices, the base of the device-dependent UCB must be defined 
using UCB$K_LCL _TAPE-LENGTH. 

The fields are illustrated in Figure A-15 and described in Table A-15. 

Another extension to the UCB is a local-disk extension, used by disks that 
are local to a processor as opposed to disks that are in a cluster with the 
processor. This UCB extension, if present, appears directly after the UCB's 
disk extension. For disk devices, the base of the device-dependent UCB must 
be defined using the symbol UCB$K_LCL-DISK-LENGTH. 

The fields in the UCB local-disk extension are illustrated in Figure A-16 and 
described in Table A-16. 

Table A-13 Contents of Unit-Control Block 

Field Name Contents 

UCB$I_FQFL* Fork queue forward link. The link points to the next entry in the fork queue. 
EXE$IOFORK and VAX/VMS resource management routines write this field. The 
queue contains addresses of UCBs that contain driver fork process context of 
drivers waiting to continue I/O processing. 

UCB$L_FQBL* Fork queue backward link. The link points to the previous entry in the fork queue. 
EXESIOFORK and VAX/VMS resource management routines write this field. 

UCB$W_SIZE* Size of UCB. The DPT of every driver must specify a value for this field. The 
driver-loading procedure uses the value to allocate space for a UCB and stores 
the value in each UCB created. Extra space beyond the standard bytes in a UCB 
(UCB$K_LENGTH) is for device-specific data and temporary storage. 

UCB$B_TYPE* Type of data structure. The driver-loading procedure writes the constant 
DYN$C_UCB into this field when the procedure creates the UCB. 
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Table A-13 (Cont.) Contents of Unit-Control Block 

Field Name Contents 

UCB$B_FIPL* Fork interrupt priority level (IPL) at which device driver usually executes. The DPT 
of every driver must specify a value for this field. The driver-loading procedure 
writes the value in the UCB when the procedure creates the UCB. 

VAX/VMS creates a driver fork process that gains control in a driver start- 
l/O routine at this IPL. When the driver creates a fork process after an interrupt, 
VAX/VMS inserts the fork block into a fork queue based on this IPL. A VAX/VMS 
fork dispatcher executing at UCB$B_FIPL dequeues the fork block and restores 
control to the suspended driver fork process. 

All devices that are attached to one I/O adapter and actively compete for shared 
adapter resources and/or a controller data channel must specify the same value 
for the fork IPL field. 

UCBSI_FPC Fork process driver PC address. When a VAX/VMS routine saves driver fork 
context in order to suspend driver execution, the routine stores the address of 
the next driver instruction to be executed in this field. A VAX/VMS routine that 
reactivates a suspended driver transfers control to the saved PC address. 

VAX/VMS routines that suspend driver processing include EXE$IOFORK, 
lOCSREQxCHANy, IOC$REQMAPREG, IOCSREQDATAP, and IOC$WFIKPCH. 
Routines that reactivate suspended drivers include IOCSRELCHAN, 
IOCSRELMAPREG, IOCSRELDATAP, EXESFORKDSPTH, and driver interrupt¬ 
servicing routines. 

When a driver interrupt-servicing routine determines that a device is expecting 
an interrupt, the routine restores control to the saved PC address in the device's 
UCB. 

UCB$I_FR3 Value of R3 at time that VAX/VMS routine suspends driver fork process. The 
value of R3 is restored just before a suspended driver regains control. 

UCBSI_FR4 Value of R4 at time that VAX/VMS routine suspends driver fork process. The 
value of R4 is restored just before a suspended driver regains control. 

UCB$W_BUFQUO* 

UCB$W_SRCADDR* 

UCB$I_ORB* 

Buffered-I/O quota if UCB represents mailbox. 

Local connection number for DECnet. 

Address of ORB associated with UCB. SYSGEN places the address in this field 
when you use SYSGEN's CONNECT command. 

UCBSL _lockid* 

UCBSI_CRB* 

ID of lock on device. 

Address of primary CRB associated with the device. The driver-loading procedure 
writes this field after it creates the associated CRB. Driver fork processes read 
this field to gain access to device registers. VAX/VMS routines use UCB$L_CRB 
to locate interrupt-dispatching code and initialization-routine addresses. 

UCBSL _DDB* Address of DDB associated with device. The driver-loading procedure writes 
this field when the procedure creates the associated UCB. VAX/VMS routines 
generally read the DDB field in order to locate device driver entry points, the 
address of a driver FDT, or the ACP associated with a given device. 

UCBSL _PID* Process identification code of process that has allocated device. Written by the 
$ALLOC system service. 

UCBSI_LINK* Address of next UCB in chain of UCBs attached to a single controller and 
associated with a DDB. The driver-loading procedure writes this field when the 
procedure adds the next UCB. Any VAX/VMS routines that examine the status of 
all devices on the system read this field. Such routines include EXESTIMEOUT, 
IOC$SEARCHDEV, and power failure recovery routines. 
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Table A-13 (Cont.) Contents of Unit-Control Block 

Field Name Contents 

UCB$L_VCB* Address of volume-control block (VCB) that describes volume mounted on device. 
This field is written by the device's ACP and read by EXE$QIOACPPKT and ACPs. 

UCB$L_DEVCHAR First longword of device characteristics bits. The DPT of every driver should 
specify symbolic constant values (defined by the SDEVDEF macro) for this field. 
The driver-loading procedure writes the field when the procedure creates the 
UCB. The $QIO system service reads the field to determine whether a device is 
spooled, file-structured, shared, has a volume mounted, and so on. 

The system defines the following device characteristics: 

DEV$V_REC Record-oriented device 

DEV$V_CCL Carriage control device 

DEV$V_TRM 

DEV$V_DIR 

DEV$V_SDI 

DEV$V_SQD 

DEV$V_SPL 

DEV$V_OPR 

DEV$V_RCT 

DEV$V_NET 

Terminal device 

Directory-structured device 

Single directory-structured device 

Sequential block-oriented device (magnetic tape, for example) 

Device spooled 

Operator device 

Device contains RCT 

Network device 

DEV$V_FOD 

DEVSV-DUA 

DEV$V_SHR 

File-oriented device (disk and magnetic tape, for example) 

Dual-ported device 

Shareable device (used by more than one program 
simultaneously) 

DEV$V_GEN 

DEV$V_AVL 

DEV$V_MNT 

DEV$V_MBX 

DEV$V_DMT 

DEV$V_ELG 

DEV$V_ALL 

DEV$V_FOR 

DEV$V_SWL 

DEV$V_IDV 

DEV$V_ODV 

DEVSV—RND 

DEV$V_RTM 

DEV$V_RCK 

DEV$V_WCK 

Generic device 

Device available for use 

Device mounted 

Mailbox device 

Device marked for dismount 

Error logging enabled 

Device allocated 

Device mounted as foreign (not file-structured) 

Device software write-locked 

Device capable of providing input 

Device capable of providing output 

Device allowing random access 

Real-time device 

Read-checking enabled 

Write-checking enabled 
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Table A-13 (Cont.) Contents of Unit-Control Block 

Field Name Contents 

UCB$B_DEVCHAR2 

UCB$B_DEVCLASS 

UCB$B_DEVTYPE 

Second longword of device characteristics. The DPT of every driver should 
specify symbolic constant values (defined by the $DEVDEF macro) for this field. 
The driver-loading procedure writes the field when the procedure creates the UCB. 

The system defines the following device characteristics: 

DEV$V_CLU Device available cluster-wide 

DEV$V_DET Detached terminal 

DEV$V_RTT Remote-terminal UCB extension 

DEV$V_CDP Dual-path device with two UCBs 

DEV$V_2P Two paths known to device 

DEV$V_MSCP 

DEV$V_SSM 

DEV$V_SRV 

Disk or tape accessed using MSCP 

Shadow set member 

Served by MSCP server 

DEV$V_RED Redirected terminal 

DEV$V_NNM Name of device (up to 16 characters total) consisting of 
prefix of node name and dollar sign ($) and string (up to 
eight characters) consisting of device designation, controller 
designation, and largest possible unit number 

Device class. The DPT of every driver should specify a symbolic constant (defined 
by the SDCDEF macro) for this field. The driver-loading procedure writes this field 
when the UCB is created. 

Drivers with set mode and device characteristics functions can rewrite the value 
in this field with data supplied in the characteristics buffer, the address of which 
is passed in the I/O request. 

The VAX/VMS system defines the following device classes: 

DC$_DISK 

DC$_TAPE 

DC$_SCOM 

DC$_CARD 

DC$_TERM 

DC$_LP 

DC$_REALTIME 

DCS—MAILBOX 

Disk device 

Tape device 

Synchronous communications device 

Card reader device 

Terminal device 

Line printer device 

Real time device 

Mailbox device 

Note that the definition of a device as a real-time device is somewhat subjective; 
it implies no special treatment by VAX/VMS. 

Device type. The DPT of every driver should specify a symbolic constant (defined 
by the SDCDEF macro) for this field. The driver-loading procedure writes the field 
when the procedure creates the UCB. 

Drivers with set mode and device characteristics functions can rewrite the value 
in this field with data supplied in the characteristics buffer, the address of which 
is passed in the I/O request. 
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Table A-13 (Cont.) Contents of Unit-Control Block 

Field Name 

UCB$W_DEVBUFSIZ 

UCB$L_DEVDEPEND 

UCB$L_DEVDEPND2 

UCB$I_IOQFL* 

UCB$I_IOQBL* 

UCB$W_UNIT* 

UCB$W_CHARGE* 

UCBSl_IRP 

UCB$W_REFC* 

UCB$B_DIPL 

UCB$B_AMOD* 

UCBSL _AMB* 

Contents 

Default buffer size. The DPT can specify a value for this field if relevant. The 
driver-loading procedure writes the field when the procedure creates the UCB. 

Drivers with set mode and device characteristics functions can rewrite the value 
in this field with data supplied in the characteristics buffer, the address of which 
is passed in the I/O request. This field is used by RMS for record I/O on nonfile 
devices. 

Contains device-descriptive data that only device driver can interpret. The DPT 
can specify a value for this field. The driver-loading procedure writes this field 
when the procedure creates the UCB. 

Drivers with set mode and device characteristics functions can rewrite the value 
in this field with data supplied in the characteristics buffer, the address of which 
is passed in the I/O request. 

Second longword for device-dependent status. This field is an extension of 
UCB$L_DEVDEPEND. 

I/O queue listhead forward link. The queue contains the addresses of IRPs 
waiting for processing on a device. EXESINSERTIRP inserts IRPs into the pending 
I/O queue when a device is busy. IOCSREQCOM dequeues IRPs when the device 
is idle. 

The queue is a priority queue that has the highest priority IRPs at the front of the 
queue. Priority is determined by the base priority of the requesting process. IRPs 
with the same priority are processed first-in/first-out. 

I/O queue listhead backward link. EXESINSERTIRP and IOCSREQCOM modify the 
pending I/O queue. 

Number of physical device unit. Stored as a binary value. The driver-loading 
procedure writes a value into this field when the UCB is created. Drivers for 
multiunit controllers read this field during unit initialization to identify a unit to the 
controller. 

Mailbox byte count quota charge, if the device is a mailbox. 

Address of IRP currently being processed on device unit by driver fork process. 
IOCSINITIATE writes the address of an IRP into this field before the routine 
creates a driver fork process to handle an I/O request. From this field, a driver 
fork process obtains the address of the IRP being processed. 

The value contained in this field is valid if the UCB$V_BSY bit in UCB$L_STS is 
set. 

Reference count of processes that currently have process I/O channels assigned 
to device. Incremented by the $ASSIGN and $ALLOC system services. 
Decremented by the SDASSGN and SDALLOC system services. 

Device interrupt priority level at which device requests hardware interrupts. 
The DPT of every driver must specify a value for this field. The driver-loading 
procedure writes the field when the procedure creates the UCB. 

Some device drivers raise IPL to this value before reading or writing device 
registers. 

Access mode at which allocation occurred, if device is allocated. Written by the 
SALLOC and SDALLOC system services. 

Associated mailbox UCB pointer. A spooled device uses this field for the address 
of its associated device. Devices that are nonshareable and not file-oriented can 
use this field for the address of an associated mailbox. 
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Table A-13 (Cont.) Contents of Unit-Control Block 

Field Name Contents 

UCB$I_STS Device unit status (formerly UCB$L_STS). Written by drivers, IOCSREQCOM, 
IOCSCANCELIO, IOC$INITIATE, IOC$WFIKPCH, IOCSWFIRLCH, EXE$INSIOQ, and 
EXESTIMEOUT. This field is read by drivers, the $QIO system service routines, 
IOCSREQCOM, IOCSINITIATE, and EXESTIMEOUT. 

This longword includes 

UCB$V_TIM 

UCB$V_JNT 

UCB$V_ERLOGIP 

UCB$V_CANCEL 

UCB$V_ONLINE 

UCB$V_POWER 

UCB$V_TIMOUT 

UCB$V_INTTYPE 

UCB$V_BSY 

UCB$V_MOUNTING 

UCB$V_DEADMO 

UCB$V_VALID 

the following bits: 

Timeout enabled. 

Interrupts expected. 

Error log in progress. 

Cancel I/O on unit. 

Device is on line. 

Power has failed while unit was busy. 

Unit is timed out. 

Receiver interrupt. 

Unit is busy. 

Device is being mounted. 

Deallocate device at dismount. 

Software believes volume is valid. 

UCB$V_UNLOAD 

UCB$V_TEMPLATE 

UCB$V_MNTVERIP 

UCB$V_WRONGVOL 

UCB$V_DELETEUCB 

UCB$V_LCL _VALID 

UCB$V_SUPMVMSG 

UCB$V_MNTVERPND 

Unload volume at dismount. 

Template UCB from which other UCBs for this device 
are made. The SASSIGN system service checks this bit 
in the requested UCB and, if the bit is set, creates a UCB 
from the template. The new UCB is assigned instead. 

Mount verification in progress. 

Volume name does not match name in the VCB. 

Delete this UCB when the value in UCB$W_REFC 
becomes zero. 

The volume on this device is valid on the local node. 

Suppress mount-verification messages if they indicate 
success. 

Mount verification is pending on the device and the 
device is busy. 
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Table A-13 (Cont.) Contents of Unit-Control Block 

Field Name Contents 

UCB$W_DEVSTS Device-dependent status. Read and written by device drivers. 

The system defines the following status bits: 

UCB$V_JOB Job-controller has been notified. 

UCB$V_TEMPL_BSY Template UCB is busy. 

UCB$V_PRMMBX Device is a permanent mailbox. 

UCB$V_DELMBX Mailbox is marked for deletion. 

UCB$V_SHMMBS Device is shared-memory mailbox. 

Disk drivers use three bits in UCB$W_DEVSTS as follows: 

UCB$V_ECC ECC correction made. 

UCB$W_QLEN 

UCB$L _DUETIM* 

UCB$V_DIAGBUF Diagnostic buffer is specified. 

UCB$V_NOCNVRT No logical block number to media address conversion. 

Length of queue of IRPs to which UCBSl_IOQFL points. 

Due time for I/O completion. Stored as the low-order 32-bit absolute time (time 
in seconds since the operating system was booted) at which the device will 
timeout. IOCSWFIKPCH and IOCSWFIRLCH write this value when they suspend a 
driver to wait for an interrupt or timeout. 

EXESTIMEOUT examines this field in each UCB in the I/O database once per 
second. If the timeout has occurred and timeouts are enabled for the device, 
EXESTIMEOUT calls the device driver timeout handler. 

UCB$L _OPCNT* Count of operations completed on device unit since VAX/VMS booted. 
IOCSREQCOM writes this field every time the routine inserts an IRP into the 
I/O postprocessing queue. 

UCBSl_SVPN* Index to virtual address of system PTE permanently allocated to device by driver¬ 
loading procedure. The system virtual address of the page described by this 
index can be calculated by the formula: 

(index * 20016) + 8000000016 

UCBSl_SVAPTE 

If a DPT specifies DPT$M_SVP in the flags argument to the DPTAB macro, the 
driver-loading procedure allocates a page of nonpaged system memory to the 
device. The procedure writes the system PTE's index into UCBSl_SVPN when 
the procedure creates the UCB. 

This field is used for ECC error correction by disk drivers. 

For direct-l/O transfer, virtual address of system PTE for first page to be used in 
transfer; for buffered-l/O transfer, address of system buffer used in transfer. 

IOCSINITIATE writes this field from IRP$L_SVAPTE before calling a driver 
start-l/O routine. Drivers read this value to compute the starting address of a 
transfer. 

UCB$W_BOFF For direct-l/O transfer, byte offset in first page of transfer buffer; for buffered-l/O 
transfer, number of bytes charged to process for transfer. 

IOCSINITIATE copies this field from the IRP. Drivers read the field in calculating 
the starting address of a DMA transfer. If only part of a DMA transfer succeeds, 
the driver adjusts the value in this field to be the byte offset in the first page of 
the data that was not transferred. 
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Table A-13 (Cont.) Contents of Unit-Control Block 

Field Name Contents 

UCB$W_BCNT Count of bytes in I/O transfer. IOCSINITIATE copies this field from the IRP. 
Drivers read this field to determine how many bytes to transfer in an I/O 
operation. 

UCB$B_ERTCNT Error retry count of current I/O transfer. The driver sets this field to the maximum 
retry count each time it begins I/O processing. Before each retry, the driver 
decreases the value in this field. If error-logging is occurring, IOCSREQCOM 
copies the value into the error message buffer. 

UCB$B_ERTMAX Maximum error retry count allowed for single I/O transfer. The DPT of some 
drivers specifies a value for this field. The driver-loading procedure writes the field 
when the procedure creates the UCB. If error-logging is occurring, IOC$REQCOM 
copies the value into the error message buffer. 

UCB$W_ERRCNT Number of errors that have occurred on device since VAX/VMS booted. The 
driver-loading procedure initializes the field to 0 when the procedure creates the 
UCB. ERL$DEVICERR and ERL$DEVICTMO increment the value in the field and 
copy the value into an error message buffer. The DCL command SHOW DEVICE 
displays in its error count column the value contained in this field. 

UCB$I_PDT* Address of port-descriptor table (PDT). This field is reserved for VAX/VMS port 
drivers. 

UCB$L_DDT* Address of DDT for unit. The driver load procedure writes the contents of 
DDB$L_DDT for the device controller to this field when it creates the UCB. 
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Figure A-13 Unit-Control Block (UCB) 

UCB$I_FQFL* 

UCB$I_FQBL* 

UCB$B_FIPL* UCB$B_TYPE* UCB$W_SIZE* 

UCB$I_FPC 
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UCB$I_FR4 

UCB$W_SRCADDR* UCB$W_BUFQUO* 

UCBSI_ORB* 

UCB$I_LOCKID* 

UCB$I_CRB* 
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UCBSI_DEVCHAR 

UCBSI_DEVCHAR2 

UCB$W_DEVBUFSIZ UCBSB_DEVTYPE UCBSB_DEVCLASS 

UCBSI_DEVDEPEND 
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UCBSI_IOQFL* 

UCBSI_IOQBL* 

UCBSW_CHARGE* UCB$W_UNIT * 

UCBSI_IRP 

UCBSB_AMOD* UCBSB_DIPL UCB$W_REFC* 
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UCBSI_STS 

UCBSW QLEN UCB$W_DEVSTS 

UCBSI DUETIM* 
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UCBSI SVPN* 

UCBSI_SVAPTE 

UCBSW BCNT 

UCBSW ERRCNT 

UCBSW. „BOFF 

UCBSB_ERTMAX UCBSB_ERTCNT 

UCBSI_PDT* 

UCBSI_DDT* 

reserved 

ZK-1789-84 
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Figure A-14 UCB Error-Log Extension 

UCB$B_CEX UCB$B_FEX UCB$B_SPR UCB$B_SLAVE* 

UCB$I_EMB* 

UCB$W_FUNC unused 

UCB$I_DPC 

ZK-1790-84 

Table A-14 UCB Error-Log Extension 

Field Name Contents 

UCB$B_SLAVE* 

UCB$B_SPR 

UCB$B_FEX 

UCB$B_CEX 

UCB$L_EMB* 

UCB$W_FUNC 

UCB$I_DPC 

Unit number of slave controller. 

Spare byte. This field is reserved for driver use. MASSBUS adapter drivers use this 
field to store a fixed offset to the MASSBUS adapter registers for the unit. 

Device-specific field. This field is reserved for driver use. 

Device-specific field. This field is reserved for driver use. 

Address of error message buffer. If error logging is enabled and a device/controller 
error or timeout occurs, the driver calls ERL$DEVICERR or ERL$DEVICTMO to allocate 
an error message buffer and copy the buffer address into this field. IOC$REQCOM 
writes final device status, error counters, and I/O request status into the buffer 
specified by this field. 

l/O-function modifiers. This field is read and written by drivers that log errors. 

Device-specific field. This field is reserved for driver use. 

Figure A-15 UCB Disk Extension 

reserved UCB$B_ONLCNT UCB$W_DIRSEQ 

UCB$I_MAXBLOCK 

UCB$I_MAXBCNT 

UCB$L_ _DCCB 

ZK-1791-84 
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Table A-15 UCB Disk Extension 

Field Name Contents 

UCB$W_DIRSEQ Directory sequence number. If the high-order bit of this word, 
UCB$V_AST_ARMED, is set, it indicates that the requesting process is blocking 
ASTs. 

UCBSB—ONLCNT Number of times device has been placed 1 on line since VAX/VMS booted. 

UCB$I_MAXBLOCK Maximum number of logical blocks on random-access device. This field is written 
by a disk driver during unit initialization and power recovery. This field is also 
known to tape drivers as UCB$L_RECORD and, as such, contains the number of 
records between the beginning of the tape and the current position of the tape. 

UCB$L_DCCB Pointer to cache-control block. 

Figure A-16 UCB Local Disk Extension 

UCB$I_ .MEDIA 

UCB$L _BCR 

UCB$W_EC2 UCB$W_EC1 

UCB$B_OFFRTC UCB$B_OFFNDX UCB$W_OFFSET 

UCB$I_1 DX_BUF 

UCB$I_DX_BFPNT 

UCB$I_DX_RXDB 

unused UCB$B_DX_SCTCNT UCB$W_DX_BCR 

ZK-1792-84 

Table A-16 UCB Local Disk Extension 

Field Name Contents 

UCB$L—MEDIA Media address. 

Byte-count register. Some disk drivers use this field as an internal count of the 
number of bytes left to be transferred in an I/O request. The symbol 
UCB$W_BCR points to the low-order word of this field. 

ECC position register. This field records the starting bit number of an error 
burst. Disk driver register-dumping routines copy the contents of this field into an 
error-logging or diagnostic buffer. 

The VAX/VMS correction routine IOC$APPLYECC reads the contents of this field 
to locate the beginning of an error burst in a disk block. 

ECC position register. Records the exclusive OR correction pattern. Disk driver 
register dump routines copy the contents of this field into an error-logging or 
diagnostic buffer. 

The VAX/VMS ECC correction routine IOC$APPLYECC reads the contents of this 
field to correct disk data. 

Current offset register contents. 

Current offset table index. When a disk driver transfer ends in an error, the disk 
driver can retry the error a number of times with different offsets of the disk head 
from the centerline. This field is an index into a driver table of offset positions. 

UCB$L_BCR 

UCB$W_EC1 

UCB$W_EC2 

UCB$W_OFFSET 

UCB$B_OFFNDX 
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Table A-16 (Cont.) UCB Local Disk Extension 

Field Name Contents 

UCB$B_OFFRT C Current offset retry count. This field records the number of times to try a 
particular offset setting in a disk transfer retry. 

UCB$I_DX _BUF 

UCB$L_DX_BFPNT 

UCB$L_DX_RXDB 

UCB$W_BCR 

UCB$B_DX_SCTCNT 

Address of sector buffer (used by floppy-disk drivers). 

Pointer to current sector (used by floppy-disk drivers). 

Address of saved receiver-data buffer (used by floppy-disk drivers). 

Current floppy byte count (used by floppy-disk drivers). 

Current sector byte count (used by floppy-disk drivers). 
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This chapter describes the VAX/VMS macros that drivers can use. Optional 
arguments are enclosed in brackets. If an argument has a default value, that 
value is shown, separated from the argument name by an equal sign ( = ). 
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CASE 

The CASE macro generates a CASE instruction and its associated table. 

CAS E src, displist [, type= W] [, limit=0] - 
[,nmode=S%] 

src 

Source of the index value to be used with the CASE instruction. 

displist 

List of destinations to which control is to be dispatched, depending on the 
value of the index. 

[type=W] 

Data type of src (B, W, or L). 

[limit=0] 

Lower limit of the value of src. 

[nmode=S/'#] 

Addressing mode used to reference the case-table entries; the default, short- 
literal mode, is good for up to 63 entries. 
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CPUDISP 

CPUDISP 
The CPUDISP macro provides a means for indirectly distinguishing between 
I/O bus structures based on the type of the CPU that currently uses that bus 
structure, and transferring control to a specified destination depending on 
the CPU-type. CPUDISP builds a case table, first forming the appropriate 
symbolic constants (PR$_SID_TYPE;m:), where xxx is the CPU-type, as 
displacement values and branching to a transfer address according to the 
contents of global symbol EXE$GB_CPUTYPE. 

CPUDISP addrlist ,[environ=VMS] ,continue=NO 

addrlist 
A list containing one or more specifications of the following format: 

< CPU-type, destination > 

The CPUDISP macro accepts only the following values for the CPU-type: 
8NN (for VAX 8800), 790 (for VAX 8600 and VAX 8650), 8SS (for VAX 
8200), 780, 750, 730, UV1, and UV2. The parameter destination contains 
the address to which the code generated by the invocation of the CPUDISP 
macro passes control to continue with CPU-specific processing. 

[environ=VMS] 
The environment in which the CPUDISP macro has been invoked. There is 
no need for driver code to alter the default value of this argument. 

continue=NO 
Specifies whether execution should continue at the line immediately after the 
CPUDISP macro if the value at EXE$GB_CPUTYPE does not correspond to 
any of the values specified as the CPU-type in the addrlist argument. A fatal 
bugcheck of UNSUPRTCPU occurs if the dispatching code does not find the 
executing processor identified in the addrlist and the value of continue is 
NO. 

Caution: CPUDISP exists as a temporary means of dispatching to code conditional 
to the type of the executing processor. Although, it currently functions to 
distinguish between the I/O bus configurations used by each processor, it 
most likely will not continue to do so as processors migrate to the various 
I/O bus configurations. 
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DDTAB 
The DDTAB macro generates a driver-dispatch table (DDT) labeled 
devnam$DDT. 

DDTAB devnam ,[start=IOC$RETURN] - 
,[unsolic=IOC$RETURN] - 
,functb [, canceHOC$RETURN] - 
[, regdmp=IOC$RETURN] - 
[, diagbf=0] [, erlgbf=0] - 
[, unitinit=IOC$RETURN] - 
[,altstart=IOC$RETURN] - 
[,mntveHOC$MNTVER] - 
[, cloneducb=IOC$RETURN] 

devnam 

Generic name of the device. 

[start=IOC$RETURN] 

Address of start-I/O routine. 

[unsolic=IOC$RETURN] 

Address of unsolicited-interrupt-servicing routine. 

functb 

Address of FDT. 

[cancel=IOC$RETURN] 

Address of cancel-I/O routine. 

[regdmp=IOC$RETURN] 

Address of register-dumping routine. 

[diagbf=0] 

Length in bytes of the diagnostic buffer. 

[erlgbf=0] 
Length in bytes of the error-logging buffer. 

[unitinit=IOC$RETURN] 
Address of unit-initialization routine. 

[altstart=IOC$RETURN] 

Address of alternate start-I/O routine. 

[mntver=IOC$MNTVER] 

Address of mount-verification routine; the default is suitable for all single¬ 
stream disk drives. 

[cloneducb=IOC$RETURN] 

Address of routine called when a UCB is cloned by the $ASSIGN system 
service. 
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$DEF 
Drivers use the $DEF macro to define a data-structure field. $DEF can only 
be used within the scope of a $DEFINI macro. 

$ D E F s ym [, alloc] [,siz] 

sym 
Name of the symbol by which the field is to be accessed. 

[alloc] 
Block-storage-allocation directives, one of the following: .BLKB, .BLKW, 
.BLKL, .BLKQ, or .BLKO 

You can define a second symbolic name for the same field by using the $DEF 
macro a second time immediately following the first definition, leaving this 
argument blank in the second invocation. 

[siz] 
Number of block-storage units to allocate. 
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$DEFEND 
The $DEFEND macro ends the scope of the $DEFINI macro, thereby ending 
the definition of fields within the data structure. 

$DEFEND struc 
struc 

Name of the structure that is being defined. 
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$DEFINI 
The $DEFINI macro initiates the definition of a data structure. The $DEF 
macro is used to define fields within this structure, and the $DEFEND macro 
ends the definition of this structure. 

$DEFINI struc [,gbhLOCAL] [,dot=0] 
struc 
Name of the data structure to be defined. 

[gbl=LOCAL] 
Specifies whether the symbols defined for this data structure are to be local or 
global symbols. The default is to make them local. 

To make the symbols' definitions global, you must specify GLOBAL for the 
value of the gbl argument. 

[dot=0] 
Offset from the beginning of the data structure of the first field to be defined. 
The default is to make the offset zero. 
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DPTAB 
The DPTAB macro generates a driver-prologue table (DPT) in a program 

section called $$$ 105-PROLOGUE. 

DPTAB end,[adapter ,[flags=0] ,[ucbsize] - 
f [unload] ,[maxunits=8] ,[defunits= 1 ]- 
,[deliver],[vector] ,name 

end 
Address of end of the driver. 

adapter 
Type of adapter (UBA, MBA, DR, or NULL). 

[flags=0] 
Flags used in loading the driver. The following flags are used: 

DPT$M_SVP Indicates that the device requires a permanently 
allocated system page. This flag causes the driver¬ 
loading procedure to allocate a system page-table entry 
(PTE) for the device permanently. 

The system's driver-loading procedure writes the 
virtual address of the system PTE into the system-page 
field of the UCB (UCB$L_SVPN) during creation of the 
UCB. Disk drivers use this page table entry during ECC 
error correction. 

DPT$M_NOUNLOAD Indicates that the driver cannot be reloaded. A driver 
with this bit set can be unloaded only by bootstrapping 
the system. 

ucbsize 
Size in bytes of UCB required by each device that this driver will drive; 
this field allows drivers to use extensions to the UCB for storage of device¬ 
dependent data that describes an I/O operation. 

The amount that the UCB is extended varies for each type of driver. Driver 
routines and VAX/VMS ECC routines interpret fields in the extended part of 
the UCB. 

[unload] 
Address of routine in the driver that SYSGEN is to call before unloading the 
driver and loading a new version of the driver. SYSGEN calls this routine 
when you use the RELOAD command. 

[maxunits=8] 
Maximum number of device units that can be connected to the controller. 
This field affects the size of the IDB created by SYSGEN's CONNECT 
command. 

If this field is omitted, the default is 8 units. You can override the contents of 
this field by using the /MAXUNITS qualifier with the CONNECT command. 
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[defunits=1] 
Maximum number of UCBs to be created by SYSGEN's AUTOCONFIGURE 
command (one for each device unit to be configured). The unit numbers 
assigned are zero through defunits-1. 

If the deliver argument is present, it names a routine that the 
AUTOCONFIGURE command calls to determine whether to create each 
unit's data structures automatically. 

[deliver] 
Address of routine in the driver that determines whether a unit should be 
configured automatically, the unit-delivery routine. 

If this argument is omitted, the AUTOCONFIGURE command creates the 
number of units specified by the defunits argument. 

[vector] 
Reserved to DIGITAL; address of a driver-specific transfer vector. 

name 
Name of the device driver. 
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DPT-STORE 
A driver uses the DPT_STORE macro to instruct the system's driver-loading 
procedure to store values in a table or data structure. 

DPT-STORE type ,offset ,oper ,exp [,pos][,size] 
type 
Type of control block into which the data is to be stored (DDB, UCB, ORB, 
CRB, or IDB), or a table marker (INIT, REINIT, or END). If this argument is a 
table marker, no other argument is allowed and the table affected is the DPT. 

offset 
Offset from the beginning of the data structure at which the data is to be 
stored. This cannot be more than 255 bytes. 

oper 
Type of storage operation, one of the following: 

Type Meaning 

B Byte 

W Word 

L Longword 

D Address relative to the beginning of the driver 

V Bit field 

If an at-sign character (@) precedes the oper argument, then the exp 
argument describes the address of the data with which to initialize the 
field. 

exp 
Value with which to initialize the field; if the value specified for the oper 
argument is preceded by an at-sign character (@), then address at which to 
find the value with which to initialize the field. 

[pos] 
Position of the bit affected; used only if oper=V. 

[size] 
Size of the bit-field affected; used only if oper=V. 
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DSBIIMT 
The DSBINT macro disables interrupts occurring at or below the specified IPL 
and saves the current IPL in the specified longword. 

DSBINT [iph31][, dst=-(SP)] 
[ipl=31] 
IPL at which to block interrupts. If no IPL is specified, the default is IPL 31, 
which blocks all interrupts. 

[dst=—(SP)] 
Location in which to save the current IPL. If no destination is specified, the 
current IPL is pushed on the stack. 
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ENBINT 
The ENBINT macro enables interrupts at a specified IPL or at the IPL stored 
on the stack. 

ENBINT [src=(SP)+] 

[src=(SP)+] 
Address of IPL at which to enable interrupts. If no src is specified, the IPL is 
popped from the top of the current stack. 
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$EQULST 
The $EQULST macro defines a list of symbols and assigns values to the 
symbols. 

$EQULST prefix ,[gbl=LOCAL] ,init ,[incr= 1 ] ,list 
prefix 
Prefix to be used in forming the names of the symbols, and VALUE is the 
value assigned to the symbol. 

[gbl=LOCAL] 
Scope of the definition of the symbol, either LOCAL, the default, or GLOBAL. 

init 
Value to be assigned to the first symbol in the list. 

[incr=1] 
Increment by which to increase the value of each succeeding symbol in the 
list. The default is 1. 

list 
List of symbols to be defined. Each element in the list can have one of the 
following forms: 

< symbol > — where symbol is the string appended to the prefix, 
forming the name of the symbol; the value of the symbol is assigned 
based on the values of init and incr. 
<symbol,value> — where symbol is the string that is appended to the 

prefix, forming the name of the symbol, and value specifies the value of 
the symbol. 
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FORK 
Drivers use the FORK macro to create, by calling EXE$FORK, a fork process, 
in which context the code that follows the macro invocation executes. Unlike 
the IOFORK macro, the FORK macro does not clear the UCB$V_TIM bit in 
the field UCB$L_STS. 

FORK 
When the FORK macro is invoked, the following registers must contain the 
values listed below: 

Register Contents 

R3 Contents of fork's R3 

R4 Contents of fork's R4 

R5 Address of fork block 

(SP) Address of caller's caller 
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FUNCTAB 
The FUNCTAB macro generates an entry for a function-decision table (FDT). 

FUNCTAB [action], codes 
[action] 
Routine to call when the function code specified in the I/O request matches 
the codes argument to the FUNCTAB macro; if this is to be the first or second 
entry in the table, this argument must not be supplied. 

codes 
Code or codes for which the routine specified in the action argument to the 
FUNCTAB macro is to be called; the codes are specified as the I/O-function 
codes of the form lO$—XXX, but without the IO$ prefix. 
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IFNORD 
The IFNORD macro uses the PROBER instruction to check the accessibility 
of the specified range of memory by checking the accessibility of the first and 
last bytes in that range. 

If both of the specified bytes can be read in the specified access mode, the 
IFNORD macro dispatches control to the destination specified in the dest 
argument. Otherwise, IFNORD passes control to the next in-line instruction. 

IFNORD siz ,adr ,dest [,mode=#0] 
siz 
Offset of the last byte to check from the first byte to check, a number less 
than or equal to 512. 

adr 
Address of first byte to check. 

dest 
Address to which IFNORD passes control if both bytes can be read. 

[mode=#0] 
Mode in which access is to be checked; zero, the default, causes the check to 
be performed in the mode contained in the previous-mode field of the current 
PSL. 
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IFNOWRT 
The IFNOWRT macro uses the PROBEW instruction to check the accessibility 
of the specified range of memory by checking the accessibility of the first and 
last bytes in that range. 

If both of the specified bytes can be written in the specified access mode, 
IFNOWRT passes control to the address specified in the dest argument. 
Otherwise, it passes control to the next in-line instruction. 

IFNOWRT siz ,adr ,dest [,mode=#0] 
siz 
Offset from the first byte to check to the second byte to check; this number 
must be less than or equal to 512. 

adr 
Address of first byte to check. 

dest 
Address to which IFNOWRT passes control if both bytes can be written in the 
specified access mode. 

[mode=#0] 
Mode in which to check access to the bytes; zero, the default, causes the 
check to be made in the mode contained in the previous-mode field of the 
current PSL. 
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IFRD 
The IFRD macro checks the accessibility of the specified range of memory by 
checking the accessibility of the first and last bytes in that range. 

If either byte cannot be read in the specified access mode, the IFRD macro 
passes control to the specified destination. Otherwise it passes control to the 
next in-line instruction. 

IFRD siz ,adr, dest [,mode=#0] 
siz 
Offset from the first byte to check of the second byte to check; only the first 
and last bytes in the range are checked. 

adr 
Address of first byte to check. 

dest 
Address to which IFRD passes control if either byte cannot be read in the 
specified access mode. 

[mode=#0] 
Mode in which to check read access; zero, the default, causes the check to be 
made in the mode contained in the previous-mode field of the current PSL. 
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IFWRT 
The IFWRT macro checks the accessibility of the specified range of memory 
by checking the accessibility of the first and last bytes in that range. 

If either byte cannot be written in the specified access mode, the IFWRT 
macro passes control to destination. Otherwise, it passes control to the next 
in-line instruction. 

IFWRT siz ,adr, dest [,mode=#0] 
siz 
Offset from the first byte to check of the second byte to check; only the first 
and last bytes in the specified range are checked. 

adr 
Address of first byte to check. 

dest 
Address to which IFWRT passes control if either byte cannot be written in the 
specified access mode. 

mode=#0 
Mode in which access is to be checked; zero, the default, causes the check to 
be performed in the mode contained in the previous-mode field of the current 
PSL. 
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IOFORK 
The IOFORK macro calls EXE$IOFORK to create a fork process for a device 
driver. IOFORK clears the bit UCB$V_TIM in the field UCB$L_STS, whereas 
the FORK macro does not. 

IOFORK 
When the IOFORK macro is invoked, the following registers must contain the 
values listed below: 

Register Contents 

R3 Contents of fork's R3 

R4 Contents of fork's R4 

R5 Address of UCB that will be used as a fork block for the fork 
process to be created 

(SP) Address of caller's caller 
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LOADMBA 
The LOADMBA macro calls IOC$LOADMBAMAP to load MASSBUS 
mapping registers. The driver must own the MASSBUS adapter, and thus 
the mapping registers, before it can invoke LOADMBA. 

LOADMBA 
When the LOADMBA macro is invoked, the following registers must contain 
the values listed below: 

Register Contents 

R4 Address of MBA's CSR 

R5 Address of UCB 

Note that the LOADMBA macro destroys the contents of registers RO 
through R2. 
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LOADUBA 
The LOADUBA macro calls IOC$LOADUBAMAP to load the UNIBUS 
adapter's registers. The registers must already be allocated before the 
LOADUBA macro can be invoked. 

LOADUBA 
When the LOADUBA macro is invoked, register R5 must contain the address 
of the UCB. LOADUBA destroys the contents of registers RO through R2. 
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PURDPR 
The PURDPR macro calls IOC$PURGDATAP to purge a data path. 

PURDPR 
When the PURDPR macro is invoked, register R5 must contain the address of 
the UCB. 

When PURDPR returns control to its caller, the following registers must 
contain the values listed below: 

Register Contents 

RO Status of the purge (success or failure) 

R1 Contents of data-path register, provided for the use of the driver's 
register-dumping routine 

R2 Address of first mapping register, provided for the use of the 
driver's register-dumping routine 

The PURDPR macro destroys the contents of R3. 
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RELCHAN 
The RELCHAN macro calls IOC$RELCHAN to release all data channels 
(controllers) allocated to the device. 

RELCHAN 
When the RELCHAN macro is invoked, R5 must contain the address of the 
UCB. RELCHAN destroys the contents of registers RO through R2. 
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RELDPR 
The RELDPR macro calls IOC$RELDATAP to release a UNIBUS data path 
register allocated to the driver. 

RELDPR 
When the RELDPR macro is invoked, R5 must contain the address of the 
UCB. RELDPR destroys the contents of registers RO through R2. 
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RELMPR 
The RELMPR macro calls IOC$RELMAPREG to release a set of UNIBUS or 
Micro VAX II Q22 bus mapping registers allocated by the driver. 

RELMPR 
When the RELMPR macro is invoked, R5 must contain the address of the 
UCB. RELMPR destroys the contents of RO through R2. 
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RELSCHAN 
The RELSCHAN macro calls IOC$RELSCHAN to release all secondary data 
channels allocated by the driver. 

RELSCHAN 
When the RELSCHAN macro is invoked, R5 must contain the address of the 
UCB. RELSCHAN destroys the contents of RO through R2. 
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REQCOM 
The REQCOM macro calls IOC$REQCOM to complete the processing of an 
I/O request after the driver has finished its portion of the processing. 

REQCOM 
When the REQCOM macro is invoked, R5 must contain the address of the 
UCB. REQCOM destroys the contents of RO through R2. 
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REQDPR 
The REQDPR macro calls IOC$REQDATAP to request a data path in a 
UNIBUS adapter. 

REQDPR 

When the REQDPR macro is invoked, the following registers must contain 
the values listed below: 

Register Contents 

R5 Address of UCB 

(SP) Address of caller's caller 

The REQDPR macro destroys the contents of RO through R2. 
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REQMPR 
The REQMPR macro calls IOC$REQMAPREG to obtain UNIBUS or 
Micro VAX II Q22 bus mapping registers. 

REQMPR 
When the REQMPR macro is invoked, the following registers must contain 
the values listed below: 

Register Contents 

R5 Address of UCB 

(SP) Address of caller's caller 

The REQMPR macro destroys the contents of RO through R2. 
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REQPCHAN 
The REQPCHAN macro calls IOC$REQPCHANH or IOC$REQPCHANL, 
depending on the priority specified, to obtain a controller data channel. 

REQPCHAN [pri] 

[pri] 
Priority of request. If the priority is HIGH, REQPCHAN calls 
IOC$REQPCHANH; otherwise it calls IOC$REQPCHANL. 

When the REQPCHAN macro is invoked, the following registers must contain 
the values listed below: 

Register Contents 

R5 Address of UCB 

(SP) Address of caller's caller 

The REQPCHAN macro destroys the contents of RO through R2. 
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REQSCHAN 
The REQSCHAN macro calls IOC$REQSCHANH or IOC$REQSCHANL, 
depending on the priority specified, to obtain a secondary MASSBUS data 
channel. 

REQSCHAN [pri] 

[pri] 
Priority of request. If the priority is HIGH, REQSCHAN calls 
IOC$REQSCHANH; otherwise it calls IOCSREQSCHANL. 

When the REQSCHAN macro is invoked, the following registers must contain 
the values listed below: 

Register Contents 

R5 Address of UCB 

(SP) Address of caller's caller 

The REQSCHAN macro destroys the contents of RO through R2. 
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SAVIPL 
The SAVIPL macro saves the current IPL, as recorded in the processor IPL 
register (PR$_IPL), in the specified location or on the stack. 

SAVIPL [des-^-(SP)] 

[dest=—(SP)] 
Address of longword in which to save the current IPL; the default is to push 
the IPL on the stack. 
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SETIPL 
The SETIPL macro sets the current IPL by moving the specified value into the 
processor IPL register (PR$_IPL). 

SETIPL [ipl=31] 
[ipl=31] 
Level at which to set the current IPL; the default is IPL 31. 
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SOFTIIMT 
The SOFTINT macro moves the specified IPL into the processor software- 
interrupt-request register (PR$_SIRR), thus requesting a software interrupt at 
that IPL. 

SOFTINT ipl 

ipl 
IPL at which interrupt is to occur. 

B—35 



VAX/VMS Macros Invoked by Drivers 
TIME WAIT 

TIMEWAIT 
The TIMEWAIT macro checks for a specific state by testing bits for a specified 
length of time. Use of the TIMEDWAIT macro instead of the TIMEWAIT 
macro is recommended. 

If the state comes into existence during the specified interval, the TIMEWAIT 
macro places a success code in RO and returns control to its caller. 

If the state does not occur during the specified period, the TIMEWAIT macro 
places a failure code in RO and returns control to its caller. 

TIMEWAIT time ,bitval,source,context - 
[rsense=. TRUE.] 

time 
Number of 10-microsecond intervals to wait. 

bitval 
Mask that determines which bits to test. 

source 
Address of bits to test. 

context 
Context in which the bits are to be tested (B, W, or L). 

[sense=.TRUE.] 
If .TRUE., test for one or more of the specified bits set; otherwise test for all 
bits cleared. 
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TIMEDWAIT 
The TIMEDWAIT macro waits for a period of time for an event or condition 
to occur. You can specify up to six instructions for this macro to execute in a 
loop to determine whether the event has occurred. 

TIMEDWAIT macro does not read the processor's clock. The interval it waits 
is approximate and depends upon the processor and the set of instructions 
you choose for testing to see if the condition exists. 

TIMEDWAIT time [,ins 1] [,ins2] [,ins3] [,ins4] - 
[, ins5] [, ins6] [, donelbl] [, imbedlbl] - 
[,ublbl] 

time 
Number of 10-microsecond intervals by which to multiply the processor- 
specific value in order to calculate the interval to wait. The processor-specific 
value is inversely proportional to the speed of the processor, but is never less 
than 1. 

If you do not specify any embedded instructions, increase the value of time 
by 25 percent. 

If you specify embedded instructions that take longer to execute than the 
average, such as the POLYD instruction, they will cause TIMEDWAIT to wait 
proportionally longer. 

[insl] 
First instruction in the loop. 

[ins2] 
Second instruction in the loop. 

[ins3] 
Third instruction in the loop. 

[ins4] 
Fourth instruction in the loop. 

[in s5] 
Fifth instruction in the loop. 

[ins6] 
Sixth instruction in the loop. 

[donelbl] 
Label placed at the address of the instruction at the end of the TIMEDWAIT 
loop; embedded instructions can pass control to this label in order to pass 
control to the instruction following the invocation of the TIMEDWAIT macro. 

[imbedlbl] 
Label placed at the first of the embedded instructions; after executing a 
processor-specific delay, the TIMEDWAIT macro passes control here to retest 
for the condition. 
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[ublbl] 
Label placed at the instruction that performs the processor-specific delay 
after each execution of the loop of embedded instructions; embedded 
instructions can pass control here in order to skip the execution of the rest of 
the embedded instructions in a given execution of the embedded loop. 

The TIMEDWAIT macro returns a status code (success or failure) in RO. It 
destroys the contents of Rl, and preserves the contents of all other registers. 

B—38 



VAX/VMS Macros Invoked by Drivers 
$VIELD 

$VIELD 
The $VIELD macro defines bit-fields whose names have the form 
mod$x_sym, where x can be V, S, or M and sym is a value supplied in the 
fields argument to the macro as described below. 

$VIELD mod, ini bit, fields 

mod 
Module in which this bit field is defined; the prefix portion of the name of the 
symbols to be defined. 

inibit 
Bit within the field on which the positions of the bits to be defined are based. 

fields 
One or more fields of the form: < sym,[size=l],[mask] > , where these 
arguments are defined as follows: 

Argument Meaning 

sym String appended to the string "mod$" to form the name of 
this bit-field 

[size=1] Size in bits of this bit-field 

[mask] Character "m" if the value of the symbol is to be a bit mask, 
blank otherwise 
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-VIELD 
The _VIELD macro defines bit-fields whose names have the form 
mocL^r—sym, where x can be V, S, or M and sym is a value supplied in the 
fields argument to the macro as described below. 

_VIELD mod ,inibit, fields 
mod 
Module in which this bit field is defined; the prefix portion of the name of the 
symbols to be defined. 

inibit 
Bit within the field on which the positions of the bits to be defined are based. 

fields 
One or more fields of the form: < sym, [size=l], [mask] > , where these 
arguments are defined as follows: 

Argument Meaning 

sym String appended to the string "mod_" to form the name of 
this bit-field 

[size=1] Size in bits of this bit-field 

[mask] Character "m" if the value of the symbol is to be a bit mask, 
blank otherwise 
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WFIKPCH 

WFIKPCH 
The WFIKPCH macro causes a process to wait for an interrupt from a device 
by calling IOC$WFIKPCH. The process retains ownership of the channel (the 
controller) while waiting. 

The waiting can be ended by the successful completion of a device operation, 
a device failure, or a timeout. When the interrupt occurs, control returns to 
the instruction following the WFIKPCH macro. 

WFIKPCH excpt [, time=65536] 
excpt 
Name of a device timeout-handling routine; the address of this routine must 
be within 65,536 bytes of the address at which the WFIKPCH macro is 
invoked. 

[time=65536] 
Number of seconds to wait for an interrupt before a device timeout is 
considered to exist. 

When the WFIKPCH macro is invoked, the following registers must contain 
the values listed below: 

Register Contents 

R5 Address of UCB 

(SP) IPL at which control is passed to the caller's caller (generally placed 
on the stack by a prior invocation of the DSBINT macro) 

4(SP) Address (in the caller's caller) at which to return control 

The WFIKPCH macro destroys the contents of registers RO through R2. 
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WFIRLCH 

WFIRLCH 
The WFIRLCH macro causes a process to wait for an interrupt from a device 
by calling IOC$WFIRLCH. The process releases ownership of the channel 
(the controller) while waiting. 

The waiting can be ended by the successful completion of a device operation, 
a device failure, or a timeout. When the interrupt occurs, control returns to 
the instruction following the WFIRLCH. 

WFIRLCH excpt [,time=65536] 
excpt 
Name of a device timeout-handling routine; the address of this routine must 
be within 65,536 bytes of the address at which the WFIRLCH macro is 
invoked. 

[time=65536] 
Number of seconds to wait for an interrupt before a device timeout is 
considered to exist. 

When the WFIRLCH macro is invoked, the following registers must contain 
the values listed below: 

Register Contents 

R5 Address of UCB 

(SP) IPL at which control is passed to the caller's caller 

4(SP) Address (in the caller's caller) at which to return control 

The WFIRLCH macro destroys the contents of registers RO through R2. 
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c Operating System Routines 

This appendix describes the VAX/VMS operating system routines that are 
used by device drivers. The information given in this section follows the 
conventions listed below: 

• Fields used for both input and output are not specified. 

• Registers are assumed preserved unless otherwise specified. 

• "IPL at execution" refers to the IPL at which the routine executes, not the 
IPL at which it is called. 

These routines generally return a status value in RO (for instance, 
SS$_NORMAL). The low-order bit of this value indicates successful (1) 
or unsuccessful (0) completion of the routine. Additional information on 
returned status values appears in the VAX/VMS System Services Reference 
Manual and the VAX/VMS System Messages and Recovery Procedures Reference 
Manual. 
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COM$DELATTNAST 

COM$DELATTNAST 

Module: COMDRVSUB 
Driver fork processes call this routine to deliver all the AST-control blocks 
(ACBs) linked to the specified AST list. COM$DELATTNAST removes all 
AST control blocks from the specified list and schedules a fork process at 
IPL$_QUEUEAST to queue each AST to its process. 

input 

output 

Registers 

R4 

R5 

Fields 

Contents 

Address of specified listhead 

Address of UCB 

Contents 

IPL at execution: caller's IPL 

Registers Contents 

Fields Contents 

Specified listhead 0 

IPL at exit: caller's IPL 
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COM$DRVDEALMEM 

COM$DRVDEALMEM 

Module: COMDRVSUB 
Drivers can call this routine from any interrupt priority level to deallocate 
system dynamic memory. 

Because the deallocation of nonpaged pool frees a systemwide resource, the 
deallocation routine (EXE$DEANONPAGED) eventually calls SCH$RAVAIL 

to notify the scheduler of the availability of the freed memory.1 Because the 
scheduler database is synchronized at IPL$_SYNCH, COM$DRVDEALMEM 
ensures that the interrupt level upon entry to EXE$DEANONPAGED is less 
than IPL$_SYNCH. 

Contents 

Address of block to be deallocate 

Contents 

Size of block in bytes 

Registers 

RO 

Fields 

IRP$W_SIZE 

input 

IPL at execution: caller's IPL or IPL$_QUEUEAST (if caller's IPL is greater than 
IPL$_SYNCH) 

output IPL at exit: caller's IPL 

If the size of the block of memory is less than than 24 bytes, or if the block is not properly aligned, a system bugcheck occurs. 
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COMSFLUSHATTNS 

COM$FLUSHATTNS 

Module: COMDRVSUB 
Driver FDT and fork routines call COM$FLUSHATTNS during cancel-I/O 
operations to flush an attention AST list. 

COM$FLUSHATTNS locates all control blocks whose channel number and 
process identification match those specified as input to the routine, removes 
them from the specified list, and deallocates them. COM$FLUSHATTNS exits 
by returning to its caller. 

input 

output 

Registers 

R4 

R5 

R6 

R7 

Fields 

UCB$B_DIPL 

PCB$I_PID 

PCB$W_ASTCNT 

Contents 

Address of current PCB 

Address of UCB 

Number of the assigned channel 

Address of AST-control block listhead 

Contents 

Device IPL 

Process' ID 

ASTs remaining in quota 

IPL at execution: device IPL (UCB$B_DIPL) 

Registers 

RO 

R1 

R2 

R7 

Fields 

PCB$W_ASTCNT 

Specified listhead 

Contents 

SS$_NORMAL 

Destroyed 

Destroyed 

Destroyed 

Contents 

Number of AST control blocks flushed (added to 
previous contents) 

Updated 

IPL at exit: caller's IPL 
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COM$POST 

COM$POST 
Module: COMDRVSUB 
Drivers call COM$POST after they have completed all device-dependent 
I/O postprocessing for an I/O request. Drivers generally use this routine to 
complete the processing of IRPs initiated by the routine EXE$ALTQUEPKT. 

COM$POST inserts the IRP into the I/O postprocessing queue headed by 
IOC$GL_PSBL and returns to the driver fork process. COM$POST operates 
independently of the device unit: that is, it does not attempt to dequeue 
another packet nor does it change the busy status of the device. 

input Registers 

R3 

R5 

Fields 

IRP$L _MEDIA 

IRP$I_MEDIA+4 

Contents 

Address of IRP 

Address of UCB 

Contents 

Data to be copied to the l/O-status block 

Data to be copied to the l/O-status block 

IPL at execution: caller's IPL (driver fork level or above) 

output Registers 

R0-R1 

Fields 

UCB$I_OPCNT 

Contents 

Destroyed 

Contents 

Increased by 1 

IPL at exit: caller's IPL 
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COM$SETATTN AST 

COM$SETATTNAST 

Module: COMDRVSUB 
Driver FDT routines call COM$SETATTNAST to enable or disable attention 
ASTs, depending on the contents of the pi argument to the $QIO system 
service. 

If pi contains the address of an AST routine, COM$SETATTNAST allocates 
a control block that can double as an AST-control block when the AST is 
delivered. This control block contains the following information: 

• Address of the specified AST routine 

• Specified AST parameter 

• Specified access mode 

• Channel number 

• Process identification of the requesting process 

COM$SETATTNAST links the control block to the start of the specified linked 
list of AST-control blocks located in the unit-control block's extension area. 
The driver defines this extension area by using the $DEFINI, $DEF, and 
$ DEFEND macros (see Appendix B). 

If the process exceeds buffered I/O or AST quotas, or if there is no memory 
available to allocate an AST-control block, this routine transfers control to 
EXE$ABORTIO with error status. 

If pi is clear, the routine transfers control to COM$FLUSHATTNS which 
disables ASTs by searching through this linked list, extracting each entry, and 
deallocating the identified AST-control block. 

COM$SETATTNAST exits by returning to its caller. 

input Registers 

R3 

R4 

R5 

R6 

R7 

AP 

Fields 

IRP$W_CHAN 

UCB$B_DIPL 

PCB$ W_AST CNT 

PCB$I_PID 

O(AP) 

4(AP) 

8(AP) 

Contents 

Address of IRP 

Address of current PCB 

Address of UCB 

Address of assigned channel's CCB 

Address of specified AST-control block listhead 

Address of $QIO system service argument list 

Contents 

I/O request channel number 

Device IPL 

Number of ASTs remaining in process quota 

Process identification 

Process AST address 

AST parameter 

Access mode for AST 

IPL at execution: caller's IPL and device IPL 
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COM$SETATTNAST 

output Registers 

RO 

Contents 

SS$_NORMAL, SS$_EXQUOTA, or SS$_INSFMEM 

R1-R2 Destroyed 

R3 Address of IRP 

R5 Address of UCB 

R6-R8 Destroyed 

Fields Contents 

PCB$W_ASTCNT 

Specified listhead 

Decreased by 1 

Updated 

I PL at exit: caller's IPL 
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ERL$DEVICERR 

ERL$DEVICERR 
Module: ERRORLOG 
ERL$DEVICERR logs a controller and/or device error by allocating an error 
message buffer and filling it with data from IRP and UCB. ERL$DEVICERR 
sets the error type code to device error. 

If the driver specifies the address of a register-dumping routine in the regdmp 
argument to the DDTAB macro, ERL$DEVICERR calculates its address from 
the DDT and calls it. Otherwise, the DDTAB macro supplies the address of 
IOC$RETURN. 

input Registers 

R5 

Contents 

Address of UCB 

output Registers Contents 

Fields Contents 

UCB$I_EMB Address of error message buffer 

UCB$I_STS Bit UCB$V_ERLOGIP (error log in progress) is set 
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ERL$DEVICTMO 

ERL$DEVICTMO 

Module: ERRORLOG 

ERL$DEVICTMO logs a device timeout. This routine performs the same 
functions and uses the same input and output as ERL$DEVICERR with one 
exception: the error type code is device timeout. 
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EXE$ABORTIO 

EXE$ABORTIO 

Module: SYSQIOREQ 
FDT routines jump to EXE$ABORTIO to finish an I/O operation without 
returning final I/O status in the IOSB. 

EXE$ABORTIO clears IRP$L_IOSB in IRP, clears a bit (ACB$V_QUOTA in 
IRP$B_RMOD) to prevent a user mode AST, and inserts the IRP in the I/O 

postprocessing queue headed by IOC$GL_PSBL. 

input 

output 

Registers 

RO 

R3 

R4 

R5 

Fields 

ACB$V_QUOTA (in 
IRP$B_RMOD) 

Contents 

First longword of status for l/O-status block 

Address of IRP 

Address of current PCB 

Address of UCB 

Contents 

Set to 1 (when an AST is specified) 

IPL at execution: IPL$_ASTDEL 

Registers 

None written 

Fields 

ACB$V_QUOTA (in 
IRP$B_RMOD) 

IRP$L_IOSB 

PCB$W_ASTCNT 

Contents 

Contents 

Cleared to zero (if field previously set) 

Zero 

Increased by 1 if ACB$V_QUOTA was set 

IPL at exit: 0 (normal process IPL) 
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EXE$ALLOCBUF 

EXE$ALLOCBUF 

Module: MEMORYALC 
FDT routines call EXE$ALLOCBUF to allocate a buffer from nonpaged 
pool for a buffered-I/O operation. EXE$ALLOCBUF performs the necessary 
operations to synchronize access to the system database from the FDT routine, 
and then calls EXE$ALONONPAGED to attempt to allocate the buffer. 

If the process requesting the I/O operation has resource wait mode enabled, 
EXE$ALLOCBUF can place the process in a resource wait state if sufficient 
nonpaged pool is unavailable. 

The caller must adjust process quotas, generally subtracting the value returned 
in R1 from JIB$L_BYTCNT. The normal buffered I/O postprocessing routine, 
initiated by the REQCOM macro, readjusts the quota and also deallocates 
the buffer. Note that the value returned in R1 and placed at IRP$W_SIZE 
in the allocated buffer is the size of the requested buffer. The actual size 
of the allocated buffer is determined according to the algorithms used by 
EXE$ALONONPAGED and the size of the lookaside list packets. The 
nonpaged pool deallocation routine (EXE$DEANONPAGED), called in 
buffered I/O postprocessing, uses similar algorithms when returning memory 
to nonpaged pool. 

input Registers 

R1 

R4 

Fields 

Contents 

Size of requested buffer in bytes. This value should 
include the 12 bytes required to store header 
information. 

Address of current PCB 

Contents 

PCB$V_SSRWAIT Clear if the process should wait if no memory is available 
for requested buffer; set if resource wait mode is 
disabled. 

IPL at execution: caller's IPL, IPL$_SYNCH, and the IPL that synchronizes the 
allocation of nonpaged pool (EXE$GI_NONPAGED). Generally, 
EXE$GL_NONPAGED contains 11. 

Output Registers 

RO 

R1 

R2 

R3 

Fields 

IRP$W_SIZE (in 
allocated buffer) 

IRP$B_TYPE (in 
allocated buffer) 

IPL at exit: IPL! 

Contents 

SS$_NORMAL or SS$_INSFMEM 

Size of requested buffer in bytes. 

Address of allocated buffer 

Destroyed 

Contents 

Size of requested buffer in bytes 

DYN$C_BUFIO 

;_ASTDEL 

C-11 



Operating System Routines 
EXE$ALLOCIRP 

EXE$ALLOCIRP 

Module: MEMORYALC 
EXE$ALLOCIRP allocates an IRP from nonpaged dynamic memory. It 
performs the same functions and has the same input and output as 
EXE$ALLOCBUF, with the following exceptions: 

• The caller does not specify a buffer size. 

• The allocated buffer is IRP$C_LENGTH bytes long. 

• The buffer size is set to IRP$C_LENGTH. 

• The buffer type is set to DYN$C_IRP. 
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EXE$ALONONPAGED 

EXE$ALONONPAGED 

Module: MEMORYALC 
Driver fork processes use EXE$ALONONPAGED to allocate a block of 
memory from nonpaged pool. Depending upon the size of the requested 
block, EXE$ALONONPAGED allocates nonpaged pool either from one of the 
lookaside lists or from general nonpaged pool. 

EXE$ALONONPAGED cannot be called from an IPL above that specified 
in EXE$GL-NONPAGED (usually 11). EXE$ALONONPAGED does not 
initialize the header of the allocated block of memory. 

Contents 

Requested block size in bytes 

Contents 

Registers 

R1 

Fields 

None 

input 

IPL at execution: caller's IPL and the IPL that synchronizes the allocation of 
nonpaged pool (EXE$GL—NONPAGED). Generally, EXE$GL_NONPAGED 
contains 1 1. 

output Registers 

RO 

R1 

Contents 

Status code (0 or 1) 

If the allocation succeeds from one of the lookaside 
lists, the value returned in R1 remains the size of the 
requested block. If the allocated block is from general 
nonpaged pool, the value in R1 is the requested size, 
rounded up to a 16-byte multiple. 

Address of allocated block 

Destroyed 

Contents 

R2 

R3 

Fields 

IPL at exit: caller's IPL 
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EXE$ALON PAG VAR 

EXE$ALOIMPAGVAR 

Module: MEMORYALC 
Driver fork processes use EXE$ALONPAGVAR, as an alternative to 
EXE$ALONONPAGED, to allocate pool from general nonpaged pool. 
EXE$ALONPAGVAR, unlike EXE$ALONONPAGED, makes no attempt 
to allocate nonpaged pool from the lookaside lists, which makes it suitable 
for driver fork processes that may afterwards return the allocated block to 
nonpaged pool in pieces. 

EXE$ALONPAGVAR cannot be called from an IPL above that specified in 
EXE$GL _NONPAGED (usually 11). EXE$ALONPAGVAR does not initialize 
the header of the allocated block of memory. 

input 

output 

Registers Contents 

R1 Requested block size in bytes 

Fields Contents 

None — 

IPL at execution: caller's IPL and the IPL that synchronizes the allocation of 
nonpaged pool (EXE$GL_NONPAGED). Generally, EXE$GL_NONPAGED 
contains 11. 

Registers Contents 

RO Status code (0 or 1) 

R1 Size of requested buffer, rounded up to a 16-byte 
multiple 

R2 Address of allocated block 

R3 Destroyed 

Fields Contents 

IPL at exit: caller's IPL 
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EXE$ALOPHYCNTG 

EXE$ALOPHYCNTG 

Module: MEMORYALC 
Driver fork processes use EXE$ALOPHYCNTG to allocate a physically 
contiguous block of memory. Note that the number of SPT slots available 
depends on the value of system parameter SPTREQ. 

Memory allocated by EXE$ALOPHYCNTG must not be deallocated. 

input Registers 

R1 

Fields 

None 

Contents 

The number of physically contiguous pages to allocate 

Contents 

IPL at execution: caller's IPL (must be IPL$_SYNCH) 

output Registers 

RO 

R2 

Fields 

Contents 

SS$_NORMAL, SS$_INSFMEM, or SS$_INSFSPTS 

System virtual address of allocated block, if the 
allocation succeeds 

All other registers are preserved. 

Contents 

IPL at exit: caller's IPL 
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EXE$ALTQUEPKT 

Module: SYSQIOREQ 
Driver FDT routines and fork processes call EXE$ALTQUEPKT to send an 
IRP to a driver's alternate start-I/O routine, and bypass the synchronization 
usually afforded by the pending I/O queue for the device's UCB. 

EXE$ALTQUEPKT passes the address of the IRP to the driver's alternate 
start-I/O routine without regard for the status of the device unit and returns 
to its caller. 

input Registers Contents 

R3 Address of IRP 

R5 Address of UCB 

Fields Contents 

DDT$L _ALTST ART Address of alternate start-I/O routine 

UCB$B_FIPL Driver fork IPL 

UCB$I_DDB Address of unit's DDB 

DDB$L_DDT Address of DDT 

IPL at execution: UCB$B_FIPL 

output Registers Contents 

R0-R5 Destroyed 

Fields Contents 

IPL at exit: caller's IPL 
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EXE$BUFFRQUOTA 

Module: EXSUBROUT 
FDT routines call EXE$BUFFRQUOTA to determine whether a process' 
buffered byte count quota usage permits the process to be granted additional 
buffered I/O. EXE$BUFFRQUOTA places the process in a resource wait state 
if quota usage is too large and the process has resource wait mode enabled. 

input 

output 

Registers 

R1 

R4 

Fields 

PCB$V_SSRWAIT 

IOC$GW_MAXBUF 

JIB$L_BYTLM 

JIB$L_BYTCNT 

Contents 

Number of requested bytes 

Address of current PCB 

Contents 

When process exceeds quota, determines whether 
process should wait. If this field is set, resource wait 
mode is disabled. 

Maximum number of buffered I/O bytes that system 
allows to any process 

Process' byte count limit 

Process' byte count usage quota 

IPL at execution: caller's IPL and IPL$_SYNCH 

Registers 

RO 

R2-R3 

Fields 

Contents 

SS$_NORMAL or SS$_EXQUOTA 

Destroyed 

Contents 

IPL at exit: IPL$_ASTDEL 
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EXE$BUFQUOPRC 

Module: EXSUBROUT 
EXE$BUFQUOPRC performs the same function and has the same 
input and output as EXE$BUFFRQUOTA with the following exception: 
EXE$BUFQUOPRC does not check the field IOC$GW_MAXBUF. 

C—18 



Operating System Routines 
EXE$DEANONPAGED 

EXE$DEANONPAGED 

Module: MEMORYALC 
EXE$DEANONPAGED deallocates a block of memory and returns it to 
nonpaged pool. EXE$DEANONPAGED performs the same functions and has 
the same input and output as the routine COM$DRVDEALMEM, with the 
following exceptions: 

• R3 is destroyed. 

• The caller's IPL must be at IPL$_QUEUEAST or lower. 
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EXE$FINISHIO 
Module: SYSQIOREQ 
FDT routines transfer control to EXE$FINISHIO to finish an I/O operation 
and return a quadword of final I/O status to the requesting process. 

EXE$FINISHIO writes final I/O status into the IRP and inserts the IRP into 
the I/O postprocessing queue headed by IOC$GL_PSBL. 

input Registers Contents 

RO First longword of status for the l/O-status block 

R1 Second longword of status for the l/O-status block 

R3 Address of IRP 

R4 Address of current PCB 

R5 Address of UCB 

output Registers 

RO 

Fields 

IRP$L_MEDIA 

IRP$I_MEDIA+4 

UCB$L_OPCNT 

Contents 

SSS—NORMAL 

Contents 

First longword of I/O status (RO) 

Second longword of I/O status (R1) 

Increased by 1 
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EXE$FINISHIOC 

EXE$FINISHIOC 

Module: SYSQIOREQ 
EXE$FINISHIOC performs the same functions and has the same input and 
output as EXE$FINISHIO with the following exception: EXE$FINISHIOC 
clears the contents of R1 before storing RO and R1 in the IRP. 
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EXE$FORK 

Module: FORKCNTRL 
EXE$FORK performs the same functions as EXE$IOFORK except that it does 
not disable timeouts by clearing UCB$V__TIM in the UCB$L_STS field of the 
UCB. 
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EXE$INSERTIRP 

Module: SYSQIOREQ 
EXE$INSERTIRP inserts an IRP into the pending I/O queue of a device's 
UCB according to the base priority of process that originated the I/O request. 
It also sets the Z condition code in the PSL as follows: 

1 Indicates that the entry is first in the queue. 

0 Indicates that at least one entry was already in the queue. 

input Registers 

R2 

R3 

Fields 

Contents 

Address of I/O queue listhead for the device 

Address of IRP 

Contents 

IPL at execution: caller's IPL (fork level or higher) 

output Registers 

R1 

Contents 

Destroyed 

IPL at exit: caller's IPL 
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EXE$INSIOQ 

Module: SYSQIOREQ 
EXE$INSIOQ examines UCB$V_BSY in UCB$W_STS. If the device is idle 
(UCB$V_BSY is clear), EXE$INSIOQ calls IOC$INITIATE; if the device is 
busy, it calls EXE$INSERTIRP. 

input Registers 

R3 

R5 

Fields 

UCB$B_FIPL 

UCB$V_BSY (in 
UCB$L_STS) 

UCB$I_IOQFL 

Contents 

Address of IRP 

Address of UCB 

Contents 

Driver fork IPL 

Determines whether device is busy 

Address of device I/O queue listhead 

IPL at execution: driver fork level 

Output Registers Contents 

R0-R2 Destroyed 

— Additional registers used by the driver start-l/O routine 
will be destroyed if the start-l/O routine is called. 

Fields Contents 

UCB$V_BSY (in Set to 1 
UCB$L_STS) 

IPL at exit: original IPL 
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EXE$INSTIMQ 

Module: EXSUBROUT 
EXE$INSTIMQ inserts a timer queue element (TQE) into the timer queue. 
Elements are ordered according to expiration time with those elements closest 
to due time taking priority. 

input 

output 

Registers Contents 

RO, R1 Quadword expiration time for new element 

R5 Address of timer element to be queued 

I PL at execution: IPL$_TIMER 

Registers Contents 

R2-R3 Destroyed 

I PL at exit: IPL$_TIMER 
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EXE$IOFORK 

Module: FORKCNTRL 
EXE$IOFORK saves the contents of R3 and R4—and the return PC value from 
the top of the stack—in the fork block specified by R5. It then inserts the fork 
block address into a fork queue, headed by SWI$GL_FQFL, corresponding to 
the IPL stored in the fork block. If the queue is empty, EXE$IOFORK requests 
a software interrupt at fork IPL. 

Unlike, EXE$IOFORK also disables timeouts by clearing UCB$V_TIM in the 
UCB$L_STS field. 

input 

output 

Registers 

R5 

O(SP) 

4(SP) 

Fields 

Contents 

Address of fork block (usually the UCB) 

Return address of caller 

Return address of caller's caller 

Contents 

FKB$B_FIPL (in fork Fork IPL 
block) 

IPL at execution: caller's IPL 

Registers Contents 

R3 Destroyed 

R4 FKB$B_FIPL 

Fields Contents 

UCB$V_TIM (in 0 
UCB$I_STS) 

FKB$L_FR3 (in UCB) R3 

FKB$L_FR4 (in UCB) R4 

FKB$L_FPC (in UCB) O(SP) 

IPL at exit: caller's IPL 
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EXE$LCLDSKVALID 
Module: SYSQIOFDT 
A disk driver's FDT routines call EXE$LCLDSKVALID to process a request for 
an IO$—PACKACK, IO$_AVAILABLE, or IO$_UNLOAD on a local disk, and 
to queue the IRP to the device's UCB for driver processing, if needed. This 
must be the last FDT routine called during preprocessing of these requests. 

For an IO$_PACKACK function, EXE$LCLDSKVALID and the driver proceed 
as follows: 

• If UCB$ V—LCL —VALID is not set, this routine sets UCB$V_LCL__VALID, 
increments UCB$B_ONLCNT, and queues the IRP to the UCB for driver 
processing by branching to EXE$QIODRVPKT. The driver's start-I/O 
routine must subsequently set the UCB$V_VALID bit in the field 
UCB$L_STS. 

• If UCB$V_LCL —VALID is set, this routine calls EXE$FINISHIO. 

For an IO$_UNLOAD or IO$-AVAILABLE function, EXE$LCLDSKVALID 
and the driver proceed as follows: 

• If UCB$V_LCL _VALID is set, this routine clears UCB$V_LCL-VALID, 
decrements the field UCB$B_ONLCNT, and queues the IRP to the UCB 
for driver processing. The driver's start-I/O routine must subsequently 
clear the UCB$V_VALID bit in the field UCB$L_STS. 

• If UCB$V_LCL -VALID is not set, this routine calls EXE$FINISHIO. 

Note: Because EXE$LCLDSKVALID passes control to EXE$QIODRVPKT if 
processing is required by the driver, or to EXE$FINISHIO if no further 
processing is required, its outputs are not returned to its caller. 

input Registers 

R3 

R5 

R7 

Fields 

Contents 

Address of IRP 

Address of UCB 

The number of the bit that the l/O-function code 
represents 

Contents 

UCB$V_LCL—VALID If set, the volume is already valid. If not set, the drive is 
(in UCB$L_STS) already unloaded or available 

I PL at execution: caller's IPL (should be IPL$_ASTDEL) 
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EXE$LCLDSKVALID 

output Registers Contents 

R3 Destroyed 

R4 FKB$B_FIPL 

Fields Contents 

UCB$V_LCI_VALID If the requested function is IO$_PACKACK, this bit is 
set (in UCB$I_STS); if the requested function is 
IO$_UNLOAD or IO$_AVAILABLE, this bit is cleared 

UCB$B_ONLCNT If the function is IO$_PACKACK and, on entry to this 
routine, UCB$V_LCL—VALID was not set, this field is 
increased by 1; if the function is IO$_UNLOAD or 
IO$_AVAILABLE and, on entry to this routine, 
UCB$V_LCL —VALID was set, this field is decreased 
by 1 

I PL at exit: IPL$_SYNCH 
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EXE$MODIFY 

Module: SYSQIOFDT 
FDT routines transfer control to this device-independent routine to 
validate and prepare a user buffer for a DMA read/write operation. Use 
EXE$MODIFY instead of EXE$READ when you wish your driver to both read 
from and write to a buffer. 

EXE$MODIFY performs the following functions: 

• Translates read-logical functions to read-physical functions 

• Transfers $QIO system service arguments to the IRP 

• Verifies that the caller has access to the specified buffer 

• Locks the buffer's pages into physical memory. If a page fault occurs 
during this step, the routine returns control to the $QIO system service, 
which repeats the request. EXE$MODIFY disables a paging mechanism 
used during write-only operations. 

If EXE$MODIFY completes successfully, it transfers control to 
EXE$QIODRVPKT. If it fails, it transfers control to EXE$ABORTIO. 

EXE$MODIFY does not check for zero-length transfers and will queue an IRP 
that specifies a zero-length buffer to the UCB. The driver start-I/O routine 
should check for zero length buffers to avoid mapping them to UNIBUS, Q22 
bus, or MASSBUS space, because the attempted mapping causes a system 
failure. 

input 

Fields 

O(AP) 

4(AP) 

12(AP) 

R3 

R4 

R5 

R6 

R7 

R8 

AP 

Registers 

IRP$W_FUNC 

Contents 

Address of IRP 

Address of current PCB 

Address of UCB assigned to the device unit 

Address of CCB for the channel assigned to the device 
unit 

Bit number of the l/O-function code 

FDT entry address 

Address of first function-dependent $QIO argument (pi) 

Contents 

Virtual address of buffer (pi) 

Number of bytes in transfer (p2) 

Carriage control byte (p4) 

l/O-function code 

IPL at execution: caller's IPL (IPL$_ASTDEL) 

C—29 



Operating System Routines 
EXE$MODIFY 

output Registers 

R0-R2 

Fields 

IRP$B_CARCON 

IRP$V_FUNC (in 
IRP$W_STS) 

IRP$I_SVAPTE 

IRP$I_BCNT 

Contents 

Destroyed 

Contents 

p4 

Set to 1 (indicates a read function) 

Address of PTE that maps the first page of the buffer 

Size of transfer in bytes 

IPL at exit: caller's IPL 
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EXE$MODIFYLOCK 

Module: SYSQIOFDT 
FDT routines call EXE$MODIFYLOCK to perform buffer processing for a 
DMA transfer. Use EXE$MODIFYLOCK instead of EXE$READLOCK when 
you expect your driver to both read from and write to a buffer. 

EXE$MODIFYLOCK performs the following functions: 

• Determines whether the caller has write access to the buffer. 

• Locks the buffer's pages into memory. If a page fault occurs during this 
process, the routine returns control to the $QIO system service, which 
resubmits the request. EXE$MODIFYLOCK disables a paging mechanism 
used in write-only operations. 

If EXE$MODIFYLOCK completes successfully, it returns control to its caller. 
If it fails, it transfers control to EXE$ABORTIO. 

input Registers Contents 

RO Starting address of buffer 

R1 Size of transfer in bytes 

R3 Address of IRP 

R4 Address of current PCB 

R6 Address of CCB 

Fields Contents 

IPL at execution: caller's IPL (IPL$_ASTDEL) 

output Registers 

RO 

R1 

R2 

R3 

Fields 

IRP$I_SVAPTE 

IRP$I_BCNT 

IRP$V_FUNC (in 
IRP$W_STS) 

IPL at exit: caller's IPL 

Contents 

SS$_NORMAL 

Address of PTE that maps the first page of the buffer 

Destroyed 

Address of IRP 

Contents 

Address of PTE that maps the first page of the buffer 

Size of transfer in bytes 

A value of 1 (indicating a read function) 
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EXE$MODIFYLOCKR 

Module: SYSQIOFDT 
Drivers typically use EXE$MODIFYLOCKR when they must lock multiple 
areas into memory for a single I/O request and, if the request is aborted, 
must unlock these areas. 

EXE$MODIFYLOCKR determines whether a process has write access 
to the buffer pages it requested. If the process does have write access, 
EXE$MODIFYLOCKR then locks the buffer's pages into memory. If it 
completes successfully, it returns control to its caller. 

If EXE$MODIFYLOCKR fails, it calls back the driver as a coroutine, returning 
an appropriate error status in RO and preserving all other registers. The driver 
then performs any necessary procedures not performed by the system as part 
of its normal queue-I/O request abortion processing, taking care to preserve 
all registers, including RO and Rl. 

When the driver returns to EXE$MODIFYLOCKR with an RSB instruction, the 
routine aborts the I/O request if RO contains an error status, then performs 
processing that results in the I/O request's being resubmitted to the driver. 
For example: 

JSB G“EXE$M0DIFYLOCKR 
BLBS BUF.LOCK.OK 

BUF.LOCK.FAIL: 

; clean up this $QI0 bookkeeping 

RSB 

BUF.LOCK.OK: 

;continue processing this I/O request 

EXE$MODIFYLOCKR can fail for any of the following reasons: 

• The buffer-access check fails. In this case, the routine returns 
SS$_ACCVIO to the driver in RO. 

• The calling process has an insufficient working set limit to lock all the 
buffer pages into memory. The routine returns SS$_INSFWSL in RO. 

• A page fault occurs while the routine is locking pages into memory. The 
status returned in RO in this case is zero. 

input 
RO 

Rl 

R3 

R4 

R6 

Registers Contents 

Starting address of buffer 

Length of the buffer in bytes 

Address of IRP 

Address of current PCB 

Address of CCB 
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EXE$MODIFYLOCKR 

Fields Contents 

output Registers 

RO 

R1 

R2 

R3 

Fields 

IRP$I_SVAPTE 

IRP$L_BCNT 

IRP$M_FUNC (in 
IRP$W_FUNC) 

IPL at exit: caller's IPL 

Contents 

SS$_NORMAL 

Address of PTE that maps the first page of the buffer 

Function indicator (set to 1) 

Address of IRP 

Contents 

Address of PTE that maps the first page of the buffer 

Size of transfer in bytes 

Set to 1 
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EXE$ONEPARM 

Module: SYSQIOFDT 
This device-independent FDT routine copies a single $QIO parameter into the 
IRP and calls EXE$QIODRVPKT. (See Section 8.6 for more information about 
this routine.) 

input Registers 

R3 

R4 

R5 

Fields 

UCB$B_FIPL 

UCB$V_BSY (in 
UCB$I_STS) 

UCB$I_IOQFL 

Contents 

Address of IRP for the current I/O request 

Address of current PCB 

Address of UCB 

Contents 

Driver fork IPL 

Unit busy flag 

Address of unit I/O queue listhead 
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EXE$QIORETURN 

Module: SYSQIOREQ 
EXE$QIORETURN sets a success status code in RO, lowers IPL to 0, and 
returns to the system service dispatcher. 

Output Registers Contents 

RO SS$_NORMAL 

IPL at exit: 0 

This routine returns by issuing a RET instruction. 
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EXE$READ 

Module: SYSQIOFDT 
This device-independent FDT routine validates and prepares a user buffer for 
a DMA read operation. This routine performs the same functions and has the 
same input and output as EXE$MODIFY, with the single exception noted in 
the description of EXE$MODIFY. 
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EXE$READCHK 
Module: SYSQIOFDT 
EXE$READCHK checks that a process has write access to the pages in the 
specified buffer. 

If EXE$READCHK completes successfully, it writes the total byte count of 
the transfer into the IRP (IRP$L_BCNT) and returns control to its caller. If 
it determines that the process does not have write access to the buffer, it 
transfers control to EXE$ABORTIO, which terminates the request with access 
violation status. 

input 

output 

Registers 

RO 

R1 

R3 

Fields 

Contents 

Address of buffer 

Size of transfer in bytes 

Address of IRP 

Contents 

IPL at execution: caller's IPL 

Registers 

RO 

R1 

R2 

R3 

Fields 

IRP$I_BCNT 

IRP$V_FUNC (in 
IRP$W_STS) 

Contents 

Address of buffer (success) 

Size of transfer in bytes 

Value of 1 (to indicate a read) 

Address of IRP 

Contents 

Size of transfer in bytes 

Value of 1 (indicates a read function) 

IPL at exit: caller's IPL 

C—37 



Operating System Routines 
EXE$READCHKR 

EXE$READCHKR 

Module: SYSQIOFDT 
EXE$READCHKR performs the same function as EXE$READCHK, except 
that, on error, it calls the driver FDT routine back as a coroutine to 
clean up $QIO bookkeeping. See the description of error procedures in 
EXE$MODIFYLOCKR for further information. 
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EXE$READLOCK 

Module: SYSQIOFDT 
FDT routines call EXE$READLOCK to check buffer accessibility and lock the 
user buffer in memory for a DMA read transfer. This routine performs the 
same functions and has the same input and output as EXE$MODIFYLOCK, 
except that it is used when the driver performs only a read function. 

C—39 



Operating System Routines 
EXE$READLOCKR 

EXE$READLOCKR 

Module: SYSQIOFDT 
EXE$READLOCKR determines whether a process has write access to the 
requested buffer pages and, if access is permitted, locks those pages into 
memory. EXE$READLOCKR performs the same functions and has the same 
input and output as EXE$MODIFYLOCKR. 
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EXE$SENSEMODE 

Module: SYSQIOFDT 
This device-independent FDT routine copies device-dependent characteristics 
from the device's UCB into Rl. This routine writes a success code into 
RO and transfers control to EXE$FINISHIO. (See Section 8.5 for additional 
information.) 

input 

output 

Registers 

R3 

R4 

R5 

R6 

R7 

R8 

AP 

Fields 

UCB$L_DEVDEPEND 

Contents 

Address of IRP for the current I/O request 

Address of current PCB 

Address of UCB of the device assigned to the user- 
specified process I/O channel 

Address of CCB that describes the user-specified 
process I/O channel 

Bit number of the user-specified l/O-function code 

Address of FDT dispatcher 

Address of first function-dependent parameter specified 
in the user's request 

Contents 

Device-dependent status 

IPL at execution: caller's IPL 

Registers 

RO 

Rl 

Fields 

Contents 

SSS—NORMAL 

Device-dependent characteristics copied from 
UCB$L_DEVDEPEND 

Contents 

IPL at exit: caller's IPL 
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EXE$SETCHAR 

Module: SYSQIOFDT 
This device-independent FDT routine writes into the device's unit-control 
block a quadword of information, the address of which is supplied by the pi 
argument to the $QIO request. 

If EXE$SETCHAR completes successfully, it places a success code into RO 
and transfers control to EXE$FINISHIO. If it fails because the user lacks read 
access to the characteristics quadword, it transfers control to EXE$ABORTIO 
with access violation status. (For additional information on EXE$SETCHAR, 
see Section 8.5.) 

input 

output 

Registers 

R3 

R4 

R5 

R6 

R7 

R8 

AP 

Fields 

O(AP) 

Contents 

Address of IRP for the current I/O request 

Address of current PCB 

Address of UCB of the assigned device unit 

Address of CCB that describes the specified process I/O 
channel 

Bit number of the l/O-function code 

Address of FDT dispatcher 

Address of first function-dependent $QIO parameter 

Contents 

Address of new device characteristics (pi) 

IPL at execution: caller's IPL 

Registers 

RO 

Fields 

UCB$B_DEVCLASS 

UCB$B_DEVTYPE 

UCB$W_DEVBUFSIZ 

UCB$L_DEVDEPEND 

Contents 

SS$_NORMAL or SS$_ACCVIO 

Contents 

Byte 0 of quadword 

Byte 1 of quadword 

Bytes 2 and 3 of quadword 

Bytes 4 through 7 of quadword 

IPL at exit: caller's IPL 
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EXE$SETMODE 
Module: SYSQIOFDT 
This device-independent FDT routine writes into the device's unit-control 
block a quadword of information, the address of which is supplied by the pi 
argument to the $QIO request. 

If EXE$SETMODE completes successfully, it places a success code into RO and 
transfers control to EXE$QIODRVPKT. If it fails because the user lacks read 
access to the characteristics quadword, it transfers control to EXE$ABORTIO 
with access violation status. (For additional information on EXE$SETMODE, 
see Section 8.5.) 

input 

output 

Registers 

R3 

R4 

R5 

R6 

R7 

R8 

AP 

Fields 

pO(AP) 

Contents 

Address of IRP for the current I/O request 

Address of current PCB 

Address of UCB of the device assigned to the user- 
specified process I/O channel 

Address of CCB that describes the user-specified 
process I/O channel 

Bit number of the l/O-function code 

Address of FDT entry 

Address of first function-dependent $QIO parameter 

Contents 

Address of a quadword of device characteristics 

IPL at execution: caller's IPL 

Registers 

RO 

Fields 

IRP$L_MEDIA 

IRP$I_MEDIA+4 

Contents 

SSS—NORMAL or SS$_ACCVIO 

Contents 

First longword of device characteristics quadword 

Second longword of device characteristics quadword 

IPL at exit: caller's IPL 
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EXE$SIMDEVMSG 

Module: MBDRIVER 
Driver fork processes call EXE$SNDEVMSG to send messages to system 
processes such as OPCOM. 

EXE$SNDEVMSG builds a 32-byte message on the stack that includes the 
following information: 

Bytes Contents 

0-1 Low word of R4 (message type) 

2-3 UCB$W_UNIT (device unit number) 

4-31 Counted string of device controller name, formatted as node$controller 
for clusterwide devices 

EXE$SNDEVMSG then calls EXE$WRTMAILBOX to send the message to a 
mailbox. 

If EXE$SNDEVMSG completes successfully, it exits with an RSB instruction. 
If it fails, it returns error status to its caller. 

EXE$SNDEVMSG can fail for any of the following reasons: 

• The message is too large for the mailbox. 

• The message mailbox is full of messages. 

• The system is unable to allocate memory for the message. 

• The caller lacks privilege to write to the mailbox. 

input 

output 

Registers 

R3 

R4 

R5 

Fields 

UCB$W_UNIT 

UCB$L_DDB 

DDB$T_NAME and 
mailbox UCB fields 

Contents 

Address of mailbox UCB 

Message type 

Address of UCB 

Contents 

Device unit number 

Address of device DDB 

Device controller name 

I PL at execution: caller's IPL (must be at or below IPL$_MAILBOX) 

Registers 

R0 

R1-R4 

Contents 

SS$_N0RMAL, SS$_MBTOOSML (message too large 
for mailbox), SS$_MBFULL (mailbox full of messages), 
SS$_INSFMEM (memory allocation problem), or 
SS$_N0PRIV (no owner write access) 

Destroyed 

C—44 



Operating System Routines 
EXE$SNDEVMSG 

Fields Contents 

I PL at exit: caller's IPL 
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EXE$WRITE 

Module: SYSQIOFDT 
This device-independent FDT routine validates and prepares a user buffer 
for a DMA write operation. EXE$WRITE performs the same actions as 
EXE$MODIFY, and has the same input and output. 
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EXE$WRITECHK 

Module: SYSQIOFDT 
EXE$WRITECHK checks that a process has read access to the pages in the 
specified buffer. 

If EXE$WRITECHK completes successfully, it writes the total byte count of 
the transfer into the IRP (IRP$L_BCNT) and returns control to its caller. 
If it determines that the process does not have read access to the buffer, it 
transfers control to EXE$ABORTIO, which terminates the request with access 
violation status. 

input Registers Contents 

Address of buffer 

Size of transfer in bytes 

Address of IRP 

RO 

R1 

R3 

IPL at execution: caller's IPL 

output 
RO 

R1 

R2 

R3 

Registers Contents 

Buffer address (success) 

Size of transfer in bytes 

Cleared (indicates a write function) 

Address of IRP 

Contents 

Contains transfer size in bytes 

Fields 

IRP$I_BCNT 

IPL at exit: caller's IPL 
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EXE$WRITECHKR 

Module: SYSQIOFDT 
EXE$WRITECHKR performs the same functions as EXE$WRITECHK, except 
that, if it fails, it calls the driver FDT routine back as a coroutine to clean up 
$QIO bookkeeping. 

See the description of error procedures in EXE$MODIFYLOCKR for more 
information about coroutine cleanup. 
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EXE$WRITELOCK 

Module: SYSQIOFDT 
FDT routines call EXE$WRITELOCK to perform buffer processing for a DMA 
write transfer. 

EXE$WRITELOCK calls EXE$WRITECHK and MMG$IOLOCK, and performs 
the following operations: 

• Determines whether the caller has read access to the buffer. 

• Locks the buffer's pages into memory. If a page fault occurs during this 
process, the routine returns control to the $QIO system service, which 
resubmits the request. 

If EXE$WRITELOCK completes successfully, it returns control to its caller. If 
it fails, it transfers control to EXE$ABORTIO. 

input Registers Contents 

RO Starting address of I/O buffer 

R1 Length of transfer in bytes 

R3 Address of IRP 

R4 Address of current PCB 

R6 Address of CCB 

Fields Contents 

IPL at execution: caller's IPL (IPL$_ASTDEL) 

Output Registers 

RO 

R1 

R2 

R3 

Fields 

IRP$I_SVAPTE 

IRP$I_BCNT 

IRP$V_FUNC (in 
IRP$W_STS) 

IPL at exit: caller's IPL 

Contents 

SS$_NORMAL 

Address of PTE that maps the first page of the buffer 

Destroyed 

Address of IRP 

Contents 

Address of PTE that maps the first page of the buffer 

Size of transfer in bytes 

A value of 0 (indicating a write function) 
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EXE$WRITELOCKR 

Module: SYSQIOFDT 
EXE$WRITELOCKR determines whether the process has read access to the 
requested buffer pages and, if access is permitted, locks those pages into 
memory. 

EXE$WRITELOCKR performs the same functions as EXE$MODIFYLOCKR, 
with the following exceptions: 

• R2, on output, contains a zero to indicate a write function. 

• IRP$M_FUNC (in IRP$W_FUNC) is clear (zero), indicating a write 
function. 
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EXE$WRTMAILBOX 

Module: MBDRIVER 
Driver fork processes call EXE$WRTMAILBOX to send messages to mailboxes. 

If it completes successfully, EXE$WRTMAILBOX returns success status to its 
caller. If it fails, it returns an appropriate error status to its caller. 

EXE$WRTMAILBOX can fail for any of the following reasons: 

• The message is too large for the mailbox. 

• The message mailbox is full of messages. 

• The system is unable to allocate memory for the message. 

• The caller lacks privilege to write to the mailbox. 

input Registers 

R3 

R4 

R5 

Fields 

Mailbox UCB fields 

I PL at execution: 

Contents 

Size of message 

Message address 

Address of mailbox UCB 

Contents 

caller's IPL (must be at or below IPL$_MAILBOX) 

output Registers 

RO 

R1-R2 

Contents 

SS$_NORMAL, SS$_MBTOOSML (message too large 
for mailbox), SS$_MBFULL (mailbox full of messages), 
SS$_INSFMEM (memory allocation problem), or 
SS$_NOPRIV (no owner write access) 

Destroyed 
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EXE$ZEROPARM 

Module: SYSQIOFDT 
This device-independent FDT routine clears the parameter field of the IRP 
and calls EXE$QIODRVPKT. (For additional information, see Section 8.5.) 

input Registers 

R3 

R4 

R5 

Contents 

Address of IRP for the current I/O request 

Address of current PCB 

Address of UCB of the device assigned to the user- 
specified process I/O channel 

R6 Address of CCB that describes the user-specified 
process I/O channel 

R7 

R8 

AP 

Bit number of the user-specified l/O-function code 

Address of FDT entry 

Address of first function-dependent parameter specified 
in the user's request 

Fields Contents 

IPL at execution: caller's IPL 

output Registers Contents 

Fields 

IRP$I_MEDIA 

Contents 

0 

IPL at exit: caller's IPL 

C—52 



Operating System Routines 
IOC$ALOUBAMAP(N) 

IOC$ALOUBAMAP(N) 

Module: IOSUBNPAG 
IOC$ALOUBAMAP and IOC$ALOUBAMAPN both search the mapping 
register bit map in the ADP to allocate a contiguous set of mapping registers 
to a driver fork process. 

If mapping registers are already permanently allocated to the controller, 
these routines exit successfully without allocating any mapping registers. 
Otherwise, they search the mapping register bit map for the required number 
of contiguous mapping registers, call IOC$ALTUBAMAP, and exit with an 
RSB instruction. 

IOC$ALOUBAMAP calculates the number of needed mapping registers 
by using the values contained in UCB$W_BCNT and UCB$W_BOFF; 
it automatically allocates an extra mapping register to be set invalid 
by IOC$LOADUBAMAP to prevent a wild block transfer. If you use 
IOC$ALOUBAMAPN, you must specify the number of mapping registers 
you wish to allocate in R3. Be sure to include the extra mapping register in 
this value. 

input Registers 

R3 

R5 

Fields 

UCB$W_BCNT 

UCB$W_BOFF 

UCB$L_CRB 

CRB$L_INTD+ 
VEC$I_ADP 

VEC$V_MAPLOCK 
(in CRB$L_INTD+ 
VEC$W_MAPREG) 

ADP$W_MRNREGARY, 
ADP$W_MRFREGARY 

Contents 

Number of mapping registers to allocate (if the called 
routine is IOCSALOUBAMAPN) 

Address of UCB 

Contents 

Transfer byte count (if entry is IOC$ALOUBAMAP) 

Byte offset in page (if entry is IOCSALOUBAMAP) 

Address of CRB 

Address of device's ADP 

Bit that indicates whether mapping registers are 
permanently allocated to this controller 

Determine which mapping registers are available 

IPL at execution: caller's IPL 

output Registers 

RO 

R1-R2 

Contents 

1 (success) or 0 (insufficient contiguous mapping 
registers) 

Destroyed 
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Fields Contents 

CRB$L_INTD+ Number of mapping registers allocated 
VEC$B_NUMREG 

CRB$I_INTD+ Starting mapping register number 
VEC$W_MAPREG 

ADP$W_MRNREGARY, Bits for allocated mapping registers set to zero. 
ADP$W_MRFREGARY 

IPL at exit: caller's IPL 
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IOC$APPLYECC 
Module: IOSUBRAMS 
Disk drivers call IOC$APPLYECC to apply an ECC correction to data 
transferred from a device into memory. IOC$APPLYECC corrects the data 
by performing an exclusive-OR operation on the data and a correction 
pattern from the UCB. IOC$APPLYECC also sets a UCB bit (UCB$V_ECC in 
UCB$W_DEVSTS) to indicate that it has made an ECC correction. 

input 

output 

Registers 

RO 

R5 

Fields 

UCB$W_BCNT 

UCB$W_EC1 

UCB$W_EC2 

UCB$L_SVPN 

UCB$I_SVAPTE 

Contents 

Number of bytes of data that have been transferred, 
not including the block to be corrected; this must be a 
multiple of 512 bytes 

Address of UCB 

Contents 

Length of transfer in bytes 

Starting bit number of the error burst 

Exclusive OR correction pattern 

Address of system PTE for a page that is available for 
use by driver 

System virtual address of PTE that maps the transfer 

IPL at execution: caller's IPL 

Registers Contents 

R0-R2 Destroyed 

Fields Contents 

UCB$V_ECC (in Set to 1 to show that an ECC correction was made 
UCB$W_DEVSTS) 

IPL at exit: caller's IPL 
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IOC$CANCELIO 
Module: IOSUBNPAG 
This device-independent cancel-I/O routine sets a cancel-I/O bit in the 
UCB (UCB$V_CANCEL in UCB$L_STS) if the IRP in process on the device 
originates from the current process on the specified channel and the unit is 
busy. 

input 

output 

Registers 

R2 

R3 

R4 

R5 

Fields 

IRP$I_PID 

IRP$W_CHAN 

PCB$I_PID 

UCB$V_BSY 

Contents 

Channel index number 

Address of IRP 

Address of current PCB 

Address of UCB 

Contents 

Process identification of the process that queued the I/O 
request 

Channel index number 

Process identification of the process that requested 
cancellation 

Device busy flag (in UCB$I_STS) 

IPL at execution: caller's IPL 

Registers Contents 

Fields Contents 

UCB$V_CANCEL (in Set if I/O request should be canceled 
UCB$L_STS) 

IPL at exit: caller's IPL 
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IOC$DIAGBUFILL 

Module: IOSUBNPAG 
Driver fork processes call IOC$DIAGBUFILL to fill a diagnostic buffer, if the 
$QIO request specifies such a buffer. 

IOC$DIAGBUFILL saves the system time and final error count in the 
diagnostic buffer. It then calls the driver register-dumping routine which 
fills the remainder of the buffer, and exits with an RSB instruction. 

input Registers 

R4 

R5 

Fields 

UCB$L_IRP 

IRP$V_DIAGBUF (in 
IRP$W_STS) 

IRP$L_DIAGBUF 

UCB$B_ERTCNT 

UCB$L_DDB 

DDB$L_DDT 

DDT$L_REGDUMP 

EXE$GQ_SYSTIME 

DDT$L_REGDUMP 

Contents 

Address of device's CSR 

Address of UCB 

Contents 

Address of current IRP 

Determines whether diagnostic buffer is present; this bit 
is set if one exists. 

Address of diagnostic buffer, if one is present 

Final error retry count 

Address of DDB 

Address of DDT 

Address of driver register-dumping routine 

Current system time (time at I/O request completion) 

Address of driver register-dumping routine 

IPL at execution: caller's IPL 

output Registers Contents 

R0-R1 Destroyed 

R2 Address of DDT 

R3 Address of IRP 

R4 Device CSR register 

R5 Address of UCB 

Fields Contents 

IPL at exit: caller's IPL 
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IOC$INITIATE 
Module: IOSUBNPAG 
IOC$INITIATE starts a driver fork process to process an IRP. 

IOC$INITIATE writes the address of the IRP and its transfer parameters 
into the UCB and clears the device status bits. If the $QIO system service 
call specifies a diagnostic buffer, IOC$INITIATE writes the system time into 
that buffer. It exits with a JMP instruction to the entry point of the driver's 
start-I/O routine, as specified in the DDT. 

input 

output 

Registers 

R3 

R5 

Fields 

Contents 

Address of IRP 

Address of UCB 

Contents 

IRP$I_SVAPTE 

IRP$W_BOFF 

IRP$I_BCNT 

IRP$V_DIAGBUF (in 
IRP$W_STS) 

IRP$L_DIAGBUF 

EXE$GQ_SYSTIME 

UCB$L_DDB 

UCB$L_DDT 

DDT$L_START 

Address of system buffer (buffered I/O) or address of 
PTE that maps process buffer (direct I/O) 

Byte offset of start of buffer 

Size in bytes of transfer 

Determines whether a diagnostic buffer is present. This 
field is set if one exists. 

Address of diagnostic buffer, if one is present 

Current system time (when I/O processing began) 

Address of DDB 

Address of DDT 

Address of driver start-I/O routine 

I PL at execution: caller's IPL 

Registers 

R0-R1 

Fields 

UCB$I_IRP 

UCB$L_SVAPTE 

UCB$W_BOFF 

UCB$W_BCNT 

UCB$V_CANCEL (in 
UCB$I_STS) 

UCB$V_TIMOUT (in 
UCB$I_STS) 

Diagnostic buffer 

Contents 

Destroyed 

Contents 

Address of IRP 

IRP$L_SVAPTE 

IRP$W_BOFF 

IRP$L_BCNT (low-order word) 

0 

0 

Current system time (first quadword) 

IPL at exit: caller's IPL 
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IOC$IOPOST 

Module: IOCIOPOST 
This interrupt-servicing routine processes IRPs in an I/O postprocessing 
queue and gains control when the processor grants a software interrupt at 
IPL$_IOPOST. When the postprocessing queue is empty, IOC$IOPOST 
dismisses the interrupt with an REI instruction. 

IOC$IOPOST performs several discrete tasks to complete either a direct or 
buffered I/O request: 

• For a bujfered-l/O request, it copies data from the system buffer to the 
process buffer and releases the system buffer to nonpaged pool. 

• For a direct-I/O request, it unlocks those process buffer pages that were 
locked for the I/O transfer. (If an IRPE exists, the unlocked pages include 
any defined in the IRPE area descriptors.) 

IOC$IOPOST performs the following tasks for both direct and buffered I/O 
requests: 

• Adjusts direct-I/O or buffer-I/O quota use. 

• Sets an event flag if one was specified in the $QIO system service call. 

• Copies I/O completion status from the IRP to the process' I/O-status 
block (if one was specified in the $QIO system service call). 

• Queues a user mode AST (if specified) to the process. 

• Copies the diagnostic buffer (if specified) from system to process space 
and releases the system buffer. 

• Deallocates the IRP and any IRPEs. 

Note that many of these operations are performed by the special kernel-mode 
AST IOC$IOPOST queues to the process. 

input Registers Contents 

Fields 

IOC$GI_PSFL 

Contents 

Head of the I/O postprocessing queue. This routine 
uses this field to locate fields in the IRP. 

IRP$I_PID Process identification of the process that initiated the 
I/O request. This routine uses this field to locate the 
PCB. 

IPL at execution: IPL$_IOPOST, IPL$_ASTDEL 
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IOC$LOADMBAMAP 

Module: LOADMREG 
Driver fork processes for DMA transfers call IOC$LOADMBAMAP to load the 
MASSBUS adapter mapping registers required by the current transfer with a 
page-frame number. 

IOC$LOADMBAMAP also loads the transfer size into the MASSBUS 
adapter's byte count register (MBA$L_BCR) and the byte offset of the 
transfer into the MASSBUS adapter's virtual address register (MBA$L_VAR). 
It confirms that enough mapping registers have been allocated and sets the 
last mapping register invalid to stop a wild transfer. 

input 

output 

Registers 

R4 

R5 

Fields 

UCB$W_B0FF 

UCB$W_BCNT 

UCB$L_SVAPTE 

Contents 

Address of MBA configuration register (MBA$I_CSR) 

Address of UCB 

Contents 

Offset to the first byte in the first page of the transfer 

Number of bytes in the transfer 

Address of PTE for the first page of the transfer 

Registers Contents 

R0-R2 Destroyed 

Fields Contents 

Allocated mapping 
registers 

IPL at exit: caller's IPL 
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IOC$LOADUBAMAP(A) 

Module: LOADMREG 
Driver fork processes for DMA transfers call IOC$LOADUBAMAP or 
IOC$LOADUBAMAPA to load the UNIBUS or Micro VAX II mapping registers 
required by the current transfer with a page-frame number, the data-path 
number, and, optionally, the byte-offset bit and longword-access-enable bit. 

IOC$LOADUBAMAP and IOC$LOADUBAMAPA confirm that sufficient 
mapping registers and a data path have been previously allocated. In 
addition, they set the valid bit of all allocated mapping registers except 
the last, which remains clear to prevent a runaway block transfer. 

input Registers 

R5 

Fields 

UCB$W_BOFF 

UCB$W_BCNT 

UCB$L_CRB 

CRB$L_INTD+ 
VEC$B_DAT APATH 

VEC$V_LWAE 
(in CRB$L_INTD+ 
VEC$B_DAT APATH) 

CRB$L_INTD+ 
VEC$B_NUMREG 

CRB$L_INTD+ 
VEC$I_ADP 

UBA$L_MAP 

UCB$I_SVAPTE 

Contents 

Address of UCB 

Contents 

Offset to the first byte in the first page of the transfer 

Number of bytes in the transfer 

Address of controller's CRB 

Number of the data path 

Determines length of buffering. Set if longword buffering 
used (instead of quadword buffering) 

Number of mapping registers allocated 

Address of ADP 

Address of first UNIBUS or MicroVAX II mapping 
register 

Address of PTE for the first page of the transfer 

output Registers 

R0-R2 

Fields 

Contents 

Destroyed 

Contents 

Allocated mapping Byte offset is set for entry IOCSLOADUBAMAP (never 
registers set for IOC$LOADUBAMAPA) 

IPL at exit: caller's IPL 
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IOC$MOVFRUSER 

Module: BUFFERCTL 
IOC$MOVFRUSER moves a string from a user buffer to a system buffer. 

To use this routine, you must first set bit DPT$M_SVP in field 
DPT$B_FLAGS in the driver's prologue table. (See the description of the 
DPTAB macro in Appendix B.) This bit causes the system to allocate a system 
page-table entry (PTE) to the driver. If this PTE is not allocated to the driver, 
this routine will cause an access violation when it attempts to refer to the 
location addressed by the contents of the field UCB$L_SVAPTE. 

input 
R1 

R2 

R5 

Registers 

Fields 

Contents 

Address of driver's buffer 

The number of bytes to move 

Address of UCB 

Contents 

IPL at execution: caller's IPL (must be called at fork IPL) 

output IPL at exit: caller's IPL (fork IPL) 
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IOC$MOVFRUSER2 

Module: BUFFERCTL 
IOC$MOVFRUSER2 moves a string from a user buffer to a system buffer. 

IOC$MOVFRUSER2 is useful for moving blocks of data in several pieces, 
each piece beginning within a page rather than on a page boundary. To 
begin, the driver calls IOC$MOVFRUSER. For each subsequent piece, the 
driver calls this routine. 

To use IOC$MOVFRUSER2, first set bit DPT$M_SVP in field DPT$B_FLAGS 
in the DPT. (See the description of the DPTAB macro in Appendix B.) This 
bit causes the system to allocate a system page-table entry (PTE) to the driver. 
If this PTE is not allocated to the driver, this routine will cause an access 
violation when it attempts to refer to the location addressed by the contents 
of the field UCB$L_SVAPTE. 

input Registers 

RO 

R1 

R2 

R5 

Fields 

Contents 

Address of first byte of the string to be moved 

Address of driver's buffer 

Number of bytes to move 

Address of UCB 

Contents 

IPL at execution: caller's IPL (must be called at fork IPL) 

output IPL at exit: caller's IPL (fork IPL) 
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IOC$MOVTOUSER 

Module: BUFFERCTL 
IOC$MOVTOUSER moves a string from a system buffer to a user buffer. 

To use IOC$MOVTOUSER, first set bit DPT$M_SVP in field DPT$B_FLAGS 
in the DPT. (See the description of the DPTAB macro in Appendix B.) This 
bit causes the system to allocate a system page-table entry (PTE) to the driver. 
If this PTE is not allocated to the driver, this routine will cause an access 
violation when it attempts to refer to the location addressed by the contents 
of the field UCB$L_SVAPTE. 

input 
R1 

R2 

R5 

Fields 

Registers Contents 

Address of driver's buffer 

Number of bytes to move 

Address of UCB 

Contents 

I PL at execution: caller's IPL (must be called at fork IPL) 

output IPL at exit: caller's IPL (fork IPL) 
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IOC$MOVTOUSER2 

Module: BUFFERCTL 
IOC$MOVTOUSER2 moves a string from a system buffer to a user buffer. 

IOC$MOVTOUSER2 is useful when moving blocks of data in several pieces, 
each piece beginning within a page rather than on a page boundary. To 
begin, the driver calls IOC$MOVTOUSER. For each subsequent piece, the 
driver calls this routine. 

To use IOC$MOVTOUSER2, first set bit DPT$M_SVP in field 
DPT$B__FLAGS in the driver's prologue table. (See the description of the 
DPTAB macro in Appendix B.) This bit causes the system to allocate a system 
page-table entry (PTE) to the driver. If this PTE is not allocated to the driver, 
this routine will cause an access violation when it attempts to refer to the 
location addressed by the contents of the field UCB$L_SVAPTE. 

input 

output 

Registers 

R1 

R2 

R5 

Fields 

Contents 

Address of driver's buffer 

Number of bytes to move 

Address of UCB 

Contents 

IPL at execution: caller's IPL (must be called at fork IPL) 

I PL at exit: caller's IPL (fork IPL) 
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IOC$PURGDATAP 

Module: LIOSUB 
All device drivers that support DMA transfers, including those on processors 
that have no buffered data paths (such as the Micro VAX II and Micro VAX I), 

call IOC$PURGDATAP after a data transfer.2 

IOC$PURGDATAP performs the following tasks: 

1 Obtains the start of adapter register space using the following chain of 
pointers: 

UCB$L_CRB — CRB$L_INTD+VEC$L_ADP ADP$L_CSR 

2 Extracts the caller's data path number (buffered or direct) from the CRB. 

3 Purges the data path if it is a buffered data path. 

4 Stores the contents of the data path register in Rl. 

5 Clears any purge errors in the data path register. 

6 Places the appropriate return status in RO. 

7 Determines the base of UNIBUS or Micro VAX II bus mapping registers 
and writes the value into R2. 

IOC$PURGDATAP alters RO through R3, but preserves all other registers. 

input Registers 

R5 

Fields 

Contents 

Address of UCB 

Contents 

IPL at execution: caller's IPL 

output Registers Contents 

RO Low bit set (success) Low bit clear (failure) 

Rl Contents of data path after purge (for register dump 
routine) 

R2 Address of start of the I/O bus mapping registers (for 
the register-dumping routine) 

R3 Address of CRB 

Fields Contents 

IPL at exit: caller's IPL 

2 A purge of data path 0 is legal and always results in success status. 
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IOC$RELCHAN 

Module: IOSUBNPAG 
A driver fork process calls IOC$RELCHAN to release a controller data 
channel assigned to a device. If the channel wait queue contains waiting fork 
processes, IOC$RELCHAN dequeues a process, assigns the channel to that 
process, restores R3 through R5, and reactivates the suspended process. 

input 

output 

Registers 

R5 

Fields 

UCB$L_CRB 

CRB$I_LINK 

CRB$V_BSY (in 
CRB$B_MASK) 

CRB$L_INTD+ 
VEC$I_IDB 

IDB$L_OWNER 

CRB$L_WQFL 

Contents 

Address of UCB 

Contents 

Address of CRB 

Address of secondary CRB 

Set if the channel is busy 

Address of IDB 

Address of UCB of channel owner 

Head of queue of waiting UCBs 

IPL at execution: caller's IPL 

Registers 

R0-R2 

Fields 

IDB$I_OWNER 

CRB$V_BSY 

Contents 

Destroyed 

Contents 

Clear (if no driver is waiting for the channel) 

Clear (if no driver is waiting for the channel) 

IPL at exit: caller's IPL 
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IOC$RELDATAP 

Module: IOSUBNPAG 
Driver fork processes call this IOC$RELDATAP to release a UNIBUS adapter 
buffered data path. It should not be called unless the driver owns a buffered 
data path. However, IOC$RELDATAP performs no operation if a data path is 
permanently allocated to the controller. 

If the data path wait queue contains waiting fork processes, IOC$RELDATAP 
dequeues a process, allocates the data path to that process, restores R3 
through R5, and reactivates the suspended process. If the bit-map is 
corrupted, IOC$RELDATAP signals a bugcheck with the message code 
INCONSTATE. If it completes successfully, it exits with an RSB instruction. 

input Registers 

R5 

Fields 

UCB$I_CRB 

CRB$L_INTD+ 
VEC$I_ADP 

CRB$L_INTD+ 
VEC$B_DAT APATH 

VEC$V_PATHLOCK 

ADP$L_DPQFL 

Contents 

Address of UCB 

Contents 

Address of CRB 

Address of ADP 

Data path specifier 

Set to 1 to indicate that the data path is permanently 
allocated to the controller 

Head of the adapter data path wait queue 

IPL at execution: caller's IPL 

output Registers 

R0-R2 

Fields 

Contents 

Destroyed 

Contents 

ADP$W_DPBITMAP Data path is set to free if not allocated to another driver 
fork process 

Bits 0 through 4 Clear 
(in CRB$L_INTD+ 
VEC$B_DAT APATH) 

IPL at exit: caller's IPL 
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IOC$RELMAPREG 

Module: IOSUBNPAG 
Driver fork processes call IOC$RELMAPREG to release a set of UNIBUS 
adapter or Micro VAX II mapping registers. This routine performs no 
operation if mapping registers are permanently allocated to the controller. 
IOC$RELMAPREG assumes that the caller is the current owner of the 
controller data channel. 

If the mapping-register-wait queue contains waiting fork processes, 
IOC$RELMAPREG dequeues a process and attempts to allocate the required 
set of mapping registers. If successful, it restores R3 through R5 and 
reactivates the suspended process. If it fails, it reinserts the fork process 
in the mapping-register-wait queue and dequeues the next process. 

IOC$RELMAPREG calls IOC$ALTUBAMAP and IOC$ALOUBAMAP and 
exits with an RSB instruction. 

input Registers 

R5 

Fields 

UCB$I_CRB 

VEC$V_MAPLOCK 
(in CRB$L_INTD+ 
VEC$W_MAPREG) 

CRB$L_INTD+ 
VEC$I_ADP 

CRB$L_INTD+ 
VEC$W_MAPREG 

CRB$L_INTD+ 
VEC$B_NUMREG 

ADP$L_MRQFL 

Contents 

Address of UCB 

Contents 

Address of CRB 

If set, indicates that mapping registers are permanently 
allocated to the controller 

Address of ADP 

Number of the starting mapping register 

Number of mapping registers to release 

Head of the queue of waiting drivers 

IPL at execution: caller's IPL 

output Registers Contents 

R0-R2 Destroyed 

Fields Contents 

ADP$W_MRNREGARY, Mapping registers set to free 
ADP$W_MRFREGARY 

IPL at exit: caller's IPL 
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IOC$RELSCHAN 

Module: IOSUBNPAG 
IOC$RELSCHAN releases a secondary controller's data channel: that is, the 
MASSBUS adapter's controller data channel. For more information, refer to 
Appendix G. 

IOC$RELSCHAN has the same inputs and outputs as IOC$RELCHAN. 
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IOC$REQCOM 

Module: IOSUBNPAG 
A driver fork process calls this routine after a device I/O operation and all 
device-dependent processing of an I/O request is complete. 

IOC$REQCOM performs the following tasks: 

1 Writes RO and R1 into IRP$L_IOSTl and IRP$L_IOST2. 

2 Inserts the IRP into the I/O postprocessing queue headed by 
IOC$GL _PSBL. 

3 Writes final status into the error message buffer, if error logging has been 
specified, and calls ERL$RELEASEMB. 

4 Dequeues an IRP from the pending I/O queue (at UCB$L_IOQFL) and 
calls IOC$INITIATE. If the queue is empty, it clears the unit busy bit 
(UCB$V_BSY) to indicate that the device is idle. 

5 Exits by branching to IOC$RELCHAN. 

input Registers 

RO 

R1 

R5 

Fields 

UCB$V_ERLOGIP (in 
UCB$I_STS) 

UCB$I_STS 

UCB$B_ERTCNT 

UCB$L_EMB 

UCB$I_IRP 

Contents 

First longword of I/O status 

Second longword of I/O status 

Address of UCB 

Contents 

Set or clear; determines whether error logging should be 
performed 

Final device status 

Final error counters 

Address of error log message buffer 

Address of IRP 

IPL at execution: caller's IPL 

output Registers 

R2-R3 

All other registers 

Contents 

Destroyed 

Destroyed if IOCSINITIATE is called 
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Fields 

IRP$I_MEDIA 

IRP$L_MEDIA+4 

EMB$Q_IOSB 

UCB$L_OPCNT 

EMB$B_ERTCNT 

EMB$B_ERTCNT+1 

EMB$W_DV_STS 

UCB$V_BSY 

I PL at exit: caller's IPL 

Contents 

I/O status (RO) 

I/O status (R1) 

I/O status (RO and R1) 

Increased by 1 

UCB$B_ERTCNT 

UCB$W_ERRCNT 

UCB$W_STS 

Clear 
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IOC$REQDAT AP(NW) 

Module: IOSUBNPAG 
Driver fork processes call IOC$REQDATAP and IOCSREQDATAPNW to 
request a UNIBUS adapter buffered data path for a DMA transfer. These 
routines perform no operation if a data path is permanently allocated to the 
controller. 

IOC$REQDATAP and IOCSREQDATAPNW locate a free data path and write 
the data path number in the CRB. If IOC$REQDATAP cannot allocate a data 
path, it saves process context by placing the contents of R3, R4 and the PC 
in the UCB fork block and R5 in the data path wait queue (ADP$L_DPQBL). 
IOCSREQDATAPNW, by contrast, does not suspend the process to wait for 
the data path. 

input Registers 

R5 

O(SP) 

4(SP) 

Fields 

UCB$I_CRB 

VEC$V_PATHLOCK 
(in CRB$L_INTD+ 
VEC$B_D AT APATH) 

CRB$L_INTD+ 
VEC$I_ADP 

ADP$W_DPBITMAP 

Contents 

Address of UCB 

Caller's return address 

Return address of caller's caller 

Contents 

Address of CRB 

If set, indicates that the data path already is allocated 

Address of ADP 

Indicates what data paths are available 

IPL at execution: caller's IPL 

output Registers 

RO 

Contents 

SS$_NORMAL 

Fields 

CRB$L_INTD+ 
VEC$B_DAT APATH 

ADP$W_DPBITMAP 

Contents 

Data path number 

Bit for allocated data path clear 

IPL at exit: caller's IPL 
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IOC$REQMAPREG 

Module: IOSUBNPAG 
Driver fork processes call IOC$REQMAPREG to request a set of 
UNIBUS adapter or Micro VAX II mapping registers for a DMA transfer. 
IOC$REQMAPREG performs no operation if mapping registers are 
permanently allocated to the controller. 

IOC$REQMAPREG locates the required number of mapping registers and 
writes the number of registers and the number of the first register into the 
CRB. If sufficient mapping registers are not available, IOC$REQMAPREG 
suspends the process by saving the following context: 

• R3 and R4 in UCB$L_FR3 and UCB$L_FR4, respectively 

• PC in UCB$L_FPC 

• R5 in the mapping-register-wait queue (ADP$L _MRQBL) 

input Registers 

R5 

O(SP) 

4(SP) 

Fields 

UCB$W_BCNT 

UCB$W_BOFF 

UCB$I_CRB 

CRB$L_INTD+ 
VEC$I_ADP 

VEC$V_MAPLOCK 
(in CRB$L_INTD+ 
VEC$W_MAPREG) 

ADP$W_MRNREGARY, 
ADP$W_MRFREGARY 

Contents 

Address of UCB 

Return address of caller 

Return address of caller's caller 

Contents 

Transfer byte count 

Byte offset into page of start of buffer 

Address of CRB 

Address of ADP 

Determines status of map-lock bit 

Adapter's mapping-register-allocation bit-map 

IPL at execution: caller's IPL 

output Registers 

RO 

R1-R2 

Contents 

SS$_NORMAL 

Destroyed 
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Fields Contents 

CRB$I_INTD+ 
VEC$W_MAPREG 

CRB$L_INTD+ 
VEC$B_NUMREG 

ADP$W_MRNREGARY, 
ADP$W_MRFREGARY 

The number of the first mapping register allocated 

Number of mapping registers allocated 

Allocated mapping registers 

IPL After execution: caller's IPL 
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IOC$REQPCHANH 

Module: IOSUBNPAG 
Driver fork processes call IOC$REQPCHANH to request a channel on the 
primary controller with high priority. 

If the controller data channel is idle, IOC$REQPCHANH writes the UCB 
address in the IDB and returns the CSR address in R4. If the channel is busy, 
it suspends the driver fork process, saving its context as follows: 

• R3 and R4 in UCB$L_FR3 and UCB$L_FR4, respectively 

• The driver's return address (at 0(SP)) in UCB$L_FPC 

• R5 in the device controller data channel wait queue (CRB$L_WQFL) 

IOCSREQPCHANH exits by issuing an RSB instruction. 

input 

output 

Registers 

R5 

O(SP) 

4(SP) 

Fields 

UCB$I_CRB 

CRB$L_LINK 

CRB$L_INTD+ 
VEC$I_IDB 

CRB$V_BSY in 
CRB$B_MASK 

IDB$L_CSR 

Contents 

Address of UCB 

Return address of caller 

Return address of caller's caller 

Contents 

Address of CRB 

Address of secondary CRB 

Address of IDB 

Set if channel is busy 

Address of device CSR 

IPL at execution: caller's IPL 

Registers 

R0-R2 

R4 

Fields 

IDB$L_OWNER 

Contents 

Destroyed 

IDB$I_CSR 

Contents 

R5 

IPL at exit: caller's IPL 
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IOC$REQPCHANL 

Module: IOSUBNPAG 
Driver fork processes call IOC$REQPCHANL to request a channel on the 
primary controller with low priority. IOC$REQPCHANL performs in the 
same manner as IOC$REQPCHANH, except that, if the driver must wait for 
the channel, it places the UCB at the end of the channel wait queue. 
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IOC$REQSCHANH 

Module: IOSUBNPAG 
Driver fork processes call IOC$REQSCHANH to request a channel on the 
secondary controller with high priority. The input to and output from 
IOC$REQSCHANH are the same as that for IOC$REQPCHANH, except 
that the secondary controller data channel is assigned. 
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IOC$REQSCHANL 

Module: IOSUBNPAG 
Driver fork processes call IOC$REQSCHANL to request a channel on the 
secondary controller with low priority. The input to and output from 
IOC$REQSCHANL are the same as that for IOC$REQPCHANH, except 
that the secondary controller data channel is assigned. 
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IOC$RETURN 

IOC$RETURN 

Module: IOSUBNPAG 
IOC$RETURN merely returns by issuing an RSB instruction. It has no input 
requirements and produces no output. 

C-80 



Operating System Routines 
IOC$VERIFYCHAN 

IOC$VERIFYCHAN 
Module: IOSUBPAGD 
Drivers call IOC$VERIFYCHAN to validate a user-supplied channel number, 
construct a channel index, and obtain the address of the CCB to which 
the channel number points. Because IOC$VERIFYCHAN gains access to 
information stored in user process virtual address space, it should only be 
called when the user process is mapped. 

input Registers 

RO 

Fields 

CTL$GL _CCB ASE 

IPL at execution: 

Contents 

Channel number 

Contents 

Base address of process CCB table 

IPL$_ASTDEL or below 

output Registers Contents 

RO SS$_NORMAL, SS$_IVCHAN (invalid channel number), 
or SS$_NOPRIV (no privilege to access specified 
channel) 

R1 Address of CCB 

R2 Channel index number 

Fields Contents 

IPL at exit: caller's IPL 
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IOC$WFIKPCH 

IOC$WFIKPCH 

Module: IOSUBNPAG 
Driver fork processes call IOC$WFIKPCH to suspend driver processing to 
wait for an interrupt or device timeout while still retaining ownership of the 
controller data channel. 

IOC$WFIKPCH performs the following operations: 

• Saves R3, R4, and the driver's return PC from the top of stack in the UCB 
fork block. 

• Sets UCB$V_INT to indicate an expected interrupt from the device unit. 

• Sets UCB$V_TIM to indicate that timeouts are expected from the device 
unit.3 

• Clears UCB$V_TIMOUT to indicate that the unit has not timed out. 

• Lowers IPL to the IPL saved on the top of the stack (generally placed 
there by an invocation of the DSBINT macro prior to the setting of device 
registers). 

• Returns to the caller of the driver fork process (that is, its caller's caller). 

In the course of processing, IOC$WFIKPCH explicitly removes 0(SP) through 
11 (SP) from the stack and implicitly removes 12(SP) through 15(SP) by 
exiting with an RSB instruction. 

input 

output 

Registers 

R5 

O(SP) 

4(SP) 

8(SP) 

12(SP) 

Fields 

EXE$GL_ABSTIM 

Contents 

Address of UCB 

Address following the JSB to IOCSWFIKPCH 

Timeout value in seconds 

IPL to which to lower before returning to the caller's 
caller 

Return address of caller's caller 

Contents 

Absolute time; used to compute time at which the 
device times out 

IPL at execution: Fork or device IPL (caller's IPL) 

Registers Contents 

^ The two bytes following the JSB to IOCSWFIKPCH contain the relative offset to the timeout-handling routine. 
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IOC$WFIKPCH 

Contents 

Sum of timeout value and EXE$GL_ABSTIM 

Set to indicate that interrupts are expected on the device 

Set to indicate that timeouts are expected on the device 

Cleared to indicate that unit is not timed out 

R3 

R4 

0(SP)+2 

IPL at exit: IPL specified in 8(SP) 

Fields 

UCB$I_DUETIM 

UCB$V_INT 

UCB$V_TIM 

UCB$V_TIMOUT 

UCB$L_FR3 

UCB$I_FR4 

UCB$I—FPC 
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IOC$WFIRLCH 

IOC$WFIRLCH 

Module: IOSUBNPAG 
Driver fork processes call IOC$WFIRLCH to suspend driver processing to 
wait for an interrupt or device timeout, but first releasing the controller data 
channel. The input to and output from IOC$WFIRLCH is the same as that for 
IOC$WFIKPCH, except that IOC$WFIRLCH exits to IOC$RELCHAN, which 
releases the controller data channel. 
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MMG$UNLOCK 

MMG$UNLOCK 

Module: IOLOCK 
Drivers rarely use MMG$UNLOCK. At the completion of a direct-I/O 
transfer, IOC$IOPOST automatically unlocks the pages of both the user 
buffer and any additional buffers specified in region 1 (if defined) and region 
2 (if defined) for all the IRPEs linked to the packet undergoing completion 
processing. 

However, driver FDT routines do use MMG$UNLOCK when an attempt 
to lock IRPE buffers for a direct-I/O transfer fails. The buffer-locking 
routines called by such a driver—EXE$READLOCKR, EXE$WRITELOCKR, 
and EXE$MODIFYLOCKR—all perform coroutine calls back to the driver 
if an error occurs. When called as a coroutine, the driver must unlock all 
previously locked regions using MMG$UNLOCK, and deallocate the IRPE 
(using EXE$DEANONPAGED), before returning to the buffer-locking routine. 

input 

output 

Registers 

R1 

R3 

Fields 

Contents 

Number of buffer pages to unlock 

System virtual address of PTE for the first buffer page 

Contents 

I PL at execution: IPL$_SYNCH 

Registers 

Fields 

Contents 

Contents 

IPL at exit: caller's IPL 
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D Device Driver Entry Points 

This appendix describes the entry points the VAX/VMS operating system uses 
to activate a device driver. 

D.1 Alternate Start-1 /O Routine 

The alternate start-I/O routine is an optional entry point present only 
in drivers that, in some circumstances, initiate multiple, concurrent I/O 
operations on a device. Drivers that use an alternate start-I/O routine 
synchronize their access to the UCB and, thus, to the device. 

How to Specify This Entry Point 

Specify the name of the alternate start-I/O routine in the altstart argument 
of the DDTAB macro. This macro places the address of the routine into the 
DDT. 

Input 

Registers Contents 

R3 Address of IRP 

R5 Address of UCB 

Output 

The output of an alternate start-I/O routine is device activity. 

Use of Registers 

The contents of all registers except RO through R5 must be preserved. 

Context 

An alternate start-I/O routine gains control of the processor in fork process 
context. Consequently, it can access only those virtual addresses that are in 
system (SO) space. 

I PL on Entry and Exit 

Alternate start-I/O routines are called at fork IPL. 

Which VAX/VMS Routines Use This Entry Point 

The routine EXE$ALTQUEPKT, in module SYSQIOREQ, calls a driver's 
alternate start-I/O routine. 

D—1 



Device Driver Entry Points 

D.2 Cancel-I/O Routine 

VAX/VMS calls a driver's cancel-I/O routine when the user calls the 
$CANCEL system service to cancel all requests for I/O activity on a channel. 
It performs the following functions: 

• Determine whether an IRP associated with the cancellation request is 
actively being processed. It usually does so by first checking the bit 
UCB$V_BSY in the field UCB$L_STS to see if any request is being 
processed by the device. If so, the cancel-I/O routine tests whether the 
PID and channel number of the request being processed match the PID 
and channel number specified in the cancel-I/O request. 

• Cause to be completed (canceled) as quickly as possible all active I/O 
requests on the specified channel that were made by the process that has 
requested the cancellation. 

The cancel-I/O routine usually accomplishes this by setting UCB$V_ 
CANCEL in the field UCB$L_STS. When the next interrupt or timeout 
occurs for the device, the driver's start-I/O routine detects the presence of 
an active but canceled I/O request by testing this bit and takes appropriate 
action, such as completing the request without initiating any further device 
activity. 

How to Specify This Entry Point 

Specify the name of the cancel-I/O routine in the cancel argument of the 
DDTAB macro. This macro places the address of the routine into the DDT. 

Input 

Registers Contents 

R2 Channel index number 

R3 Address of IRP 

R4 Address of PCB of the process for which the I/O request is being 
canceled 

R5 Address of UCB 

R8 Code that stands for the caller of the cancel-I/O routine, one of 
the following: 

Code Meaning 

CAN$C_CANCEL $CANCEL or $DALLOC system service 

CAN$C_DASSGN $DASSGN system service 

Output 

The I/O requests on the specified channel are canceled, and the bit 
UCB$V_CANCEL is set in the field UCB$L_STS. 

Use of Registers 

The driver's cancel-I/O routine can use RO through R3 freely. The contents of 
any other register must be restored before the cancel-I/O routine relinquishes 
control by means of an RSB instruction. 
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Context 

A cancel-I/O routine executes in kernel mode in process context. 

I PL on Entry and Exit 

A cancel-I/O routine is called at driver fork IPL. 

Which VAX/VMS Routines Use This Entry Point 

The $CANCEL, $DASSGN, and $DALLOC system services use this entry 
point from modules SYSCANCEL, SYSDASSGN, and SYSDEVALC, 
respectively. 

D.3 Controller-Initialization Routine 
A controller-initialization routine prepares a controller for operation. Some 
controllers require initialization when the system's driver-loading routine 
loads the driver and when the system is recovering from a power failure. 

How to Specify This Entry Point 

Specify the name of the controller-initialization routine by using the 
DPT_STORE macro to place the address of the routine in the CRB, into the 
field CRB$L _JNTD+VEC$L —INITIAL. 

Input 

The caller of the controller-initialization routine provides the following 
information. 

Registers Contents 

R4 Address of device's CSR 

R5 Address of IDB associated with the controller 

R6 Address of DDB associated with the controller 

R8 Address of controller's CRB 

The System Generation Utility (SYSGEN) creates all the I/O data structures 
associated with a device before calling the controller-initialization routine. 

Output 

Depending on the device, a controller-initialization routine performs any and 
all of the following actions: 

• Clear error-status bits in device registers. 

• Enable controller interrupts. 

• Store values in fields that are offset more than 256 bytes from the 
beginning of the data structure and consequently cannot be reached 
with the DPT—STORE macro. 

• Allocate resources that must be permanently allocated to the controller. 

• If the controller is dedicated to a single-unit device, such as a printer, fill 
in IDB$L —OWNER and set the online bit (UCB$V_ONLINE in 
UCB$L_STS). 
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Use of Registers 

A controller-initialization routine must preserve the contents of all registers 
except RO, Rl, and R2. If the controller-initialization routine uses these 
registers, it must save their contents first and then restore those contents 
before returning control to the caller. 

Context 

Because a controller-initialization routine executes within system context, it 
can refer to only those virtual addresses that reside in system (SO) space. 

I PL on Entry and Exit 

VAX/VMS calls a controller-initialization routine at IPL$_POWER. The 
controller-initialization routine must not lower IPL. 

Which VAX/VMS Routines Use This Entry Point 

SYSGEN calls a driver's controller-initialization routine when processing 
a CONNECT command. Also, VAX/VMS calls this routine if the device, 
controller, processor, or adapter to which the device is connected experiences 
a power failure. 

D.4 Driver-Unloading Routine 
A driver specifies a driver-unloading routine if there is any device-specific 
work to do when the driver is unloaded and reloaded. 

The driver-unloading routine may perform the following operations: 

• Deallocate mapping registers permanently allocated to the device. 

• Deallocate a buffered data path permanently allocated to the device. 

• Return any allocated system buffers to nonpaged pool. 

• Flush the attention AST queue. 

How to Specify This Entry Point 

Specify the address of the driver-unloading routine in unload argument of 
the DPTAB macro. 

Input 

Registers Contents 

R6 Address of DDT 

RIO Address of DPT 

Output 

The driver-unloading routine exits with an RSB instruction. 

If RO contains a code that indicates success (the low bit set), the System 
Generation Utility (SYSGEN) interprets it as meaning it can reload the new 
version of the driver. 
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D.5 

Use of Registers 

The driver-unloading routine can use any registers. 

Context 

The driver-unloading routine executes in process context. 

I PL on Entry and Exit 

SYSGEN calls a driver-unloading routine at IPL$_POWER. The driver¬ 
unloading routine must not change IPL. 

Which VAX/VMS Routines Use This Entry Point 

SYSGEN calls the driver-unloading routine, if it exists, when executing a 
RELOAD command. 

FDT Routines 
FDT routines perform any device-dependent activities needed to prepare the 
I/O database to process an I/O request. This request may or may not involve 
the transfer of data. 

How to Specify This Entry Point 

Use the FUNCTAB macro to specify the set of FDT routines that preprocess 
requests for I/O activity of a given type. Specify the names of the routines in 
the order in which you want them to execute for each type of I/O operation. 

Input 

Registers Contents 

RO Address of FDT routine being called 

R3 Address of IRP 

R4 Address of PCB of the requesting process 

R5 Address of UCB of the device on which I/O activity is requested 

R6 Address of CCB that describes the user-specified process-l/O 
channel 

R7 Number of the bit that specifies the code for the requested I/O 
function 

R8 Address of entry in the function-decision table that dispatched 
control to this FDT routine 

AP Address of first function-dependent argument (pi) specified in the 
$QIO request 

Outputs 

No direct outputs are required; but control must either be returned to the 
$QIO code by means of an RSB instruction, or passed, by means of a JMP 
instruction, to a routine that queues the IRP or to a routine that finishes or 
aborts the I/O request. 
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Use of Registers 

FDT routines must preserve the contents of R3 through R8, the AP, and the 
FP. 

Context 

FDT routines execute in the context of the process that requested the I/O 
activity. FDT routines must not lower IPL below IPL$_ASTDEL. If they 
raise IPL, they must lower it to IPL$_ASTDEL before passing control to any 
other code. If an FDT routine alters the stack, it must restore the stack before 
returning control to the caller of the routine. 

IPL on Entry and Exit 

FDT routines are called at IPL$__ASTDEL and must exit at IPL$__ASTDEL. 

Which VAX/VMS Routines Use This Entry Point 

The $QIO system service calls an FDT routine from the executive module 
SYSQIOREQ. 

Exiting Mechanisms 

The way in which FDT routines exit depends on what I/O activity is 
requested. The choices are listed below. 

For each function a device supports, a set of FDT routines must provide 
preprocessing of requests for that function. Except for the last FDT routine in 
such a set, each routine must return control to its caller by means of in RSB 
instruction. The last must exit by means of one of the routines listed below, 
not by means of an RSB instruction. 

Exit Mechanism Function 

EXE$ABORTIO Aborts an I/O request and returns to the caller of the $QIO 
system service, as status information, the contents of RO 

EXE$ALTQUEPKT Queues an IRP to the driver's alternate entry point without 
checking the status of the device 

EXESFINISHIO Finishes the I/O processing, returning a quadword of 
status information to the caller of the $QIO system service. 
(EXESFINISHIO takes the status information from RO and 
R1 and returns it in the IOSB specified in the call to $QIO.) 

EXE$FINISHIOC Finishes the I/O processing, returning a longword of status 
information to the caller of the $QIO system service. 
(EXESFINISHIOC takes the status information from RO and 
returns it in the IOSB specified in the call to $QIO, clearing 
the second longword of the IOSB.) 

EXESQIODRVPKT Queues an IRP to the pending I/O queue if the device is 
busy, or starts I/O activity if the device is idle 

RSB Returns control to the caller of the routine, that being the 
FDT-processing loop of the $QIO system service 
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D.6 Interrupt-Servicing Routine 

An interrupt-servicing routine processes interrupts generated by the device. 
The interrupts can signal the completion of an I/O operation or an error. 
UNIBUS and Q22 bus devices require an interrupt-servicing routine for each 
UNIBUS or Q22 bus interrupt vector the device has. 

Tape devices on the MASSBUS require an interrupt-servicing routine that 
interrogates the tape formatter (the controller) to determine which drive needs 
attention and if the interrupt is unsolicited. 

Disk devices on the MASSBUS use an interrupt-servicing routine provided by 
VAX/VMS and do not need to provide an interrupt-servicing routine. 

An interrupt-servicing routine performs the following functions: 

1 Determine whether the interrupt is expected 

2 Process or dismiss unexpected interrupts 

3 Activate the suspended driver so it can process expected interrupts 

For MASSBUS devices, the interrupt-servicing routine supplied with 
VAX/VMS provides these functions. 

How to Specify This Entry Point 

Use the DPT_STORE macro to place the address of the interrupt-servicing 
routine into the field CRB$L_INTD+4. 

If the device has two different interrupts, use the DPT_STORE macro to 
specify the name of the second interrupt-servicing routine and to place the 
address of that routine into the longword field CRB$L_INTD2+4 within the 
CRB. 

Input 

When VAX/VMS invokes a driver's interrupt-servicing routine, the stack 
contains the following data: 

Stack Location Contents 

O(SP) Address of longword that contains the address of the IDB 

4(SP) to 24(SP) For UNIBUS and Q22 bus devices, the contents of RO 
through R5 at the time of the interrupt; for MASSBUS 

devices, the contents of R2 through R5 at the time of the 
interrupt 

28(SP) PC at the time of the interrupt 

32(SP) PSL at the time of the interrupt 

Output 

Before an interrupt-servicing routine transfers control to the suspended driver, 
it must restore the contents of R3 and R4 from the UCB. It then transfers 
control to the address saved in UCB$L_FPC. 

When it regains control (after the suspended driver forks), an interrupt¬ 
servicing routine removes the address of the pointer to the IDB from the top 
of the stack and restores the registers VAX/VMS saved when dispatching 
the interrupt (RO through R5 for UNIBUS and Q22 bus interrupt-servicing 
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routines, R2 through R5 for MASSBUS interrupt-servicing routines). Finally, 
an interrupt-servicing routine dismisses the interrupt with an REI instruction. 

Use of Registers 

If an interrupt-servicing routine user R6 through Rll, the AP, or the FP, it 
must first save the contents of those registers, restoring their contents before 
exiting by means of the REI instruction. MASSBUS drivers must also preserve 
the contents of RO and Rl. 

Context 

At the execution of a driver's interrupt-servicing routine, the processor is 
running in kernel mode on the interrupt stack. As a result, an interrupt¬ 
servicing routine can reference only those virtual addresses that reside in 
system (SO) space. 

IPL on Entry and Exit 

The interrupt-servicing routine is called, executes, and returns at device IPL. 

Which VAX/VMS Routines Use This Entry Point 

The interrupt-servicing routine is called by the VAX/VMS interrupt-servicing 
routines, the addresses of which are usually loaded into the ADP, the CRB, or 
both for the interrupting device. 

D.7 Register-Dumping Routine 
The VAX/VMS error-logging and diagnostic-buffer-filling routines call the 
register-dumping routine to copy the contents of a device's registers into an 
error-log entry or the diagnostic buffer. 

How to Specify This Entry Point 

Specify the name of the register-dumping routine in the regdmp argument 
of the DDTAB macro. This macro places the address of the routine into the 
DDT. 

Input 

The register-dumping routine has the following inputs. 

Registers Contents 

RO Address of buffer into which a register-dumping routine copies the 
contents of device registers 

R4 Address of device's CSR 

R5 Address of UCB 

Output 

The contents of the device's registers are copied into the buffer. 
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Use of Registers 

The register-dumping routine preserves the contents of all registers except RO 
through R2. If it uses the stack, the register-dumping routine must restore the 
stack before passing control to another routine, waiting for an interrupt, or 
returning control to its caller. 

Context 

A register-dumping routine executes within the context of an interrupt¬ 
servicing routine or a fork process, using the kernel-mode stack. As a result, 
it can refer only to those virtual addresses that reside in system (SO) space. 

I PL on Entry and Exit 

VAX/VMS calls a register-dumping routine at the same IPL at which the 
driver called the VAX/VMS routine ERL$DEVICERR, ERL$DEVICTMO, or 
IOC$DIAGBUFILL. A register-dumping routine must not change IPL. 

Which VAX/VMS Routines Use This Entry Point 

The routines ERL$DEVICERR and ERL$DEVICTMO in module ERRORLOG, 
and IOC$DIAGBUFILL in module IOSUBNPAG call the register-dumping 
routine. 

D.8 Start-1/O Routine 
The VAX/VMS routines IOC$REQCOM and IOC$INITIATE call a driver's 
start-I/O routine. The start-I/O routine activates a device. 

How to Specify This Entry Point 

Specify the name of the start-I/O routine in the start argument of the DDTAB 
macro. This macro places the address of the routine into the DDT. 

Input 

Registers Contents 

R3 Address of IRP 

R5 Address of UCB 

VAX/VMS copies the following information from the current IRP into the 
UCB fields listed below. 

Fields Contents 

UCB$W_BCNT Number of bytes to be transferred, copied from the 
low-order word of IRP$L_BCNT 

UCB$W_BOFF Offset from the beginning of the page of the first byte to 
be transferred, copied from IRP$W_BOFF 

UCB$L_SVAPTE System virtual address of first PTE that describes the 
buffer, copied from IRP$L SVAPTE 

Output 

The output of a start-I/O routine is device activity. 
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Use of Registers 

The contents of all registers except RO, Rl, R2, and R4 must be preserved. 

If the start-I/O routine uses the stack, it must restore the stack before 
completing the request, waiting for an interrupt, or requesting system 
resources. 

Context 

Because a start-I/O routine gains control of the processor in the context of a 
fork process, it can refer to only those addresses that reside in system (SO) 
space. 

I PL on Entry and Exit 

A start-I/O routine gains control of the processor, and relinquishes control, at 
fork IPL. For many devices, the start-I/O routine raises IPL to IPL$_POWER 
to check that a power failure has not occurred on the device. The start-I/O 
routine initiates device activity at device IPL. 

Which VAX/VMS Routines Use This Entry Point 

The start-I/O routine is called by IOC$INITIATE and IOC$REQCOM in 
module IOSUBNPAG. 

D.9 Timeout-Handling Routine 
A timeout-handling routine takes whatever action is necessary when a device 
has not yet responded to a request for device activity and the time allowed 
for a response has expired. 

How to Specify This Entry Point 

Specify the name of the timeout-handling routine in the excpt argument to 
the WFIKPCH or the WFIRLCH macro. 

Input 

Registers Contents 

R3 Contents of R3 when the last invocation of WFIKPCH or WFIRLCH 
took place 

R4 Contents of R4 when the last invocation of WFIKPCH or WFIRLCH 
took place 

R5 Address of UCB of the device 

Output 

There are no required outputs, but, depending on the characteristics of the 
device, the timeout-handling routine might cancel or retry the current I/O 
request, send a message to the operator, or take some other action. 

Before calling a timeout-handling routine, VAX/VMS places the device in 
a state in which no interrupt is expected (by clearing the bit UCB$V_INT 
in field UCB$L_STS). If the requested interrupt occurs after this routine is 
called, it will appear to be an unsolicited interrupt. Many drivers handle this 
situation by disabling interrupts while the timeout-handling routine executes. 
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Use of Registers 

A timeout-handling routine can use RO, Rl, and R2 freely, but must preserve 
the contents of all other registers. 

If a timeout-handling routine uses the stack, it must restore the stack before 
completing or canceling the current I/O request, waiting for an interrupt, or 
returning control to its caller. 

Context 

Because a timeout-handling routine executes in the context of a fork process, 
it can access only those virtual addresses that refer to system (SO) space. 

I PL on Entry and Exit 

A timeout-handling routine is called at device IPL. After taking whatever 
device-specific action is necessary at device IPL, a timeout-handling routine 
can lower IPL to fork IPL. 

Which VAX/VMS Routines Use This Entry Point 

The WFIKPCH and WFIRLCH macros use this entry point, but only when 
the name of a timeout-handling routine is provided in their excpt argument. 
These macros are used in the driver's start-I/O routine; thus, strictly speaking, 
the driver itself is the only entity that uses this entry point. 

Routines in the VAX/VMS module TIMESCHDL call the timeout-handling 
routine at the request of the WFIKPCH and WFIRLCH macros. 

D. 10 Unit-Delivery Routine 
For controllers that can control a variable number of device units, the unit- 
delivery routine determines which specific devices are present and available 
for inclusion in the system's configuration. 

The System Generation Utility (SYSGEN) calls the unit-delivery routine once 
for each unit the controller is capable of controlling. This value is specified in 
the defunits argument to the DPTAB macro. % 

How to Specify This Entry Point 

Specify the name of the unit-delivery routine in the deliver argument to the 
DPTAB macro. 

Input 

Registers Contents 

R3 Address of IDB; 0 if none exists 

R4 Address of device's CSR 

R5 Number of unit that the unit-delivery routine must decide to 
configure or not to configure 

R6 Address of start of the UNIBUS adapter's I/O space 

R7 Address of AUTOCONFIGURE command's configuration-control 
block (ACF) 

R8 Address of ADP 
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Output 

If bit 0 is set in RO, the unit should be configured; if it is cleared, the unit 
should not be configured. 

Use of Registers 

The unit-delivery routine can use RO, Rl, and R2 freely, but must preserve 
the contents of all other registers. 

Context 

The unit-delivery routine executes in the context of the process within which 
SYSGEN executes. 

I PL on Entry and Exit 

The unit-delivery routine is called at IPL$_POWER, and must not lower IPL. 

Which VAX/VMS Routines Use This Entry Point 

SYSGEN's AUTOCONFIGURE command calls the unit-delivery routine. 

D.11 Unit-Initialization Routine 
A unit-initialization routine prepares a device for operation. In the case of a 
device on a dedicated controller, the unit-initialization routine also initializes 
the controller. The unit-initialization routine is called when the driver-loading 
routine loads the driver and when the system is recovering from a power 
failure. 

How to Specify This Entry Point 

You can specify a unit-initialization routine in two ways, either of which will 
suffice for all but a few specific devices.2 

• Use the DDTAB macro to specify the unit-initialization routine by 
providing the name of the routine in the unitinit argument. 

• Use the DPT_STORE macro to place the address of the unit-initialization 
routine in the CRB, into field CRB$L_INTD+VEC$L_UNITINIT. 

Input 

The caller of unit-initialization routines provides the following information. 

Registers Contents 

R3 Address of primary CSR 

R4 Address of secondary CSR, if it exists. (If it does not, the 
contents of R4 are the same as those of R3.) 

R5 Address of UCB 

In addition, the System Generation Utility (SYSGEN) creates the I/O data 
structures associated with a device before calling the unit-initialization 
routine. 

^ A MASSBUS device driver must specify the address of its unit-initialization routine in the DDT (using the unitinit argument to the DDTAB 

macro as discussed in Section 7.2). UNIBUS and Q22 bus drivers can specify the address in either the DPT or DDT. 
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Output 

Depending on the device, a unit-initialization routine performs any or all of 
the following tasks: 

1 Clear error-status bits in device registers. 

2 Enable controller interrupts. 

3 Set the online bit (UCB$V_ONLINE in UCB$L_STS). 

4 Store values in fields that are offset more than 256 bytes from the 
beginning of the UCB and, consequently, cannot be reached with the 
DPT_STORE macro. 

5 Allocate resources that must be permanently allocated to the device or, for 
some devices, the controller. 

6 If the device has a dedicated controller, as some printers do, fill in 
IDB$L —OWNER. 

Use of Registers 

A unit-initialization routine must preserve the contents of all registers except 
RO, Rl, and R2. If the unit-initialization routine uses these registers, it must 
save their contents first and then restore those contents before returning 
control to the caller. 

Context 

Because VAX/VMS calls it in system context, a unit-initialization routine can 
refer to only those virtual addresses that reside in system (SO) space. 

I PL on Entry and Exit 

VAX/VMS calls a unit-initialization routine at IPL$_POWER. A unit- 
initialization routine must not lower IPL. 

Which VAX/VMS Routines Use This Entry Point 

SYSGEN calls a unit-initialization routine when processing a CONNECT 
command. VAX/VMS calls a unit-initialization routine when the device, the 
controller, the processor, or the adapter to which the device is connected 
undergoes power failure recovery. 

D.12 Unsolicited-Interrupt-Servicing Routine 
For MASSBUS disks, VAX/VMS calls the unsolicited-interrupt-servicing 
routine whenever a hardware event produces an interrupt that is not the 
result of a driver's request. Examples of such events are disks being placed 
on line or taken off line. 

Only drivers of MASSBUS disks must provide unsolicited-interrupt-servicing 
routines. All other devices detect unsolicited interrupts in their interrupt¬ 
servicing routines. 

The routine that handles these unsolicited interrupts must determine the 
nature of the interrupt and act accordingly, depending on the characteristics 
of the device and controller. 
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How to Specify This Entry Point 

Provide the name of the unsolicited-interrupt routine in the unsolic argument 
to the DDTAB macro. This macro places the address of the routine into the 
DDT. 

Input 

Registers Contents 

R4 Address of MBA's CSR 

R5 Address of UCB 

Output 

There are no required outputs. 

Use of Registers 

The unsolicited-interrupt-servicing routine must not alter the contents of 
registers R6 through Rll or the AP or FP. 

Context 

Because, the unsolicited interrupt-servicing routine executes in kernel mode 
on the interrupt stack, it can refer to only those addresses that reside in 
system (SO) space. 

I PL on Entry and Exit 

An unsolicited interrupt-servicing routine is called, executes, and returns at 
device IPL. 

Which VAX/VMS Routines Use This Entry Point 

The MBA$INT routine in module MBAINTDSP of the SYSLOA facility calls 
an unsolicited interrupt-servicing routine. 
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E Sample Driver for the RL11, RL01, and RL02 

This example driver, DLDRIVER, drives devices on both the UNIBUS and 
the Micro VAX I and Micro VAX II Q22 bus. Specific code changes since 
VAX/VMS Version 4.0 are highlighted with change bars in the margin. 

.TITLE DLDRIVER - VAX/VMS RL11/RL01.RL02 DISK DRIVER 

.IDENT 'V03-008' 

**************************************************************************** 

COPYRIGHT (c) 1978, 1980, 1982, 1984, 1986 BY 

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. 

ALL RIGHTS RESERVED. 

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED 

ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE 

INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER 

COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY 

OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY 

TRANSFERRED. 

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE 

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT 

CORPORATION. 

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS 

SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. 

**************************************************************************** 

FACILITY: 

VAX/VMS RL11/RL01,RL02 DISK DRIVER 

AUTHOR: 

C. F. Programmer 05-OCT-1979 

MODIFIED BY: 

V04-002 RLRCPUDISPb R. L. Programmer 22-Mar-1985 

Modify CPUDISP invocations to use CONTINUE=YES and 

thereby obviate the need to necessarily modify this 

driver each time a new CPU comes along. 

31-Jan-1985 

15-May-1984 

V04-001 JJ00003 J. J. Programmer 

Added MicroVAX II support. 

V03-008 WHMOOOl B. M. Programmer 

Added MicroVAX I/QBUS support. 
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V03-007 RAS0300 R. S. Programmer 27-Apr-1984 
Add DEV$M_NNM characteristic to DECHAR2 so that these 
devices will have the "node$" prefix. 

V03-006 PRD0033 P. R. Programmer 09-Sep-1983 
Added EXE$LCLDSKVALID to function decision table. 

V03-005 R0WO211 R. 0. Programmer 16-AUG-1983 
Change device-dependent UCB definition base from UCB$W_BCR+2 
to UCB$K_LCL_DISK_LENGTH. 

V03-004 KDM0059 K. D. Programmer 14-Jul-1983 
Change time-wait loops to use new TIMEDWAIT macro. 

V03-003 PRD0020 P. R. Programmer 26-Apr-1983 
Modified FATALERR routine to return SS$_PARITY only for 
errors that possibly indicate bad media. All other error 
conditions which formerly returned SS$_PARITY now return 
SS$_CNTLERR. 

V03-002 KDM0002 K. D. Programmer 28-Jun-1982 
Added $DYNDEF. 

V03-001 KTA0100 K. T. Programmer 07-Jun-1982 
Add code to set UCB$L_MEDIA_ID. 

** 

PAGE 
ABSTRACT: 

THIS MODULE CONTAINS THE TABLES AND ROUTINES NECESSARY TO 
PERFORM ALL DEVICE-DEPENDENT PROCESSING OF AN I/O REQUEST 
FOR RLll/RLOl,RL02 DISK TYPES ON A VAX/VMS SYSTEM. 

THE DISKS HAVE THE FOLLOWING PHYSICAL GEOMETRY: 

# CYL 
TRACKS/ 
CYLINDER 

SECTORS/ 
TRACK 

BYTES/ 
SECTOR 

MAXIMUM 
BLOCKS 

RL01 256 2 40 256 10240 

RL02 512 2 40 256 20480 
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SINCE THE SECTOR SIZE IS ONLY 1/2 BLOCK, LOGICAL TO PHYSICAL 
CONVERSION OF THE DISK ADDRESS IS DONE IN THE DRIVER STARTIO 
ROUTINE RATHER THAN IN THE IOC$CVTLOGPHY FDT ROUTINE. 

OVERLAPPED SEEKS ARE NOT ATTEMPTED BECAUSE THE DEVICE DOES 
NOT INTERRUPT AT THE COMPLETION OF A SEEK. 

ALSO, THE DEVICE DOES NOT PERFORM AN IMPLICIT SEEK WHEN PERFORMING 
A READ OR WRITE FUNCTION, SO SEEK FUNCTIONS ARE ISSUED BY THIS 
DRIVER WHERE NECESSARY PRIOR TO ISSUING A READ OR WRITE FUNCTION. 
THE READ OR WRITE FUNCTION IS THEN ISSUED AS SOON AS THE RL11 
CONTROLLER COMES READY (WHILE THE SEEK IS IN PROGRESS), AND A 
WAIT-FOR-INTERRUPT (UPON COMPLETION OF THE READ OR WRITE) IS 
ISSUED. IF A SEEK FUNCTION IS REQUESTED SEPARATELY FROM A READ OR 
WRITE, A DUMMY READ HEADER FUNCTION IS ISSUED FOLLOWING THE SEEK 
FUNCTION AND A WAIT-FOR-INTERRUPT (UPON COMPLETION OF THE READ 
HEADER) IS ISSUED. 

THE IO$X_INHSEEK FUNCTION MODIFIER IS TREATED AS A NO-OP BY 
THIS DRIVER, SINCE AN EXPLICIT SEEK IS NECESSARY FOR THE RL02 
TO TRANSFER DATA PROPERLY. 

THE RL'S DO NOT READ OR WRITE BEYOND THE END OF TRACK (THEY DO NOT 
AUTOMATICALLY SEEK THE NEXT TRACK), SO ALL READ AND WRITE FUNCTIONS 
ARE BROKEN UP BY THIS DRIVER INTO PARTIAL TRANSFERS TO THE END OF 
TRACK, FOLLOWED BY A SEEK TO THE NEXT TRACK, THEN ANOTHER READ OR 
WRITE FUNCTION UNTIL THE TOTAL DATA TRANSFER IS COMPLETE. 

.PAGE 

.SBTTL EXTERNAL AND LOCAL DEFINITIONS 

EXTERNAL SYMBOLS 

IADPDEF 
$CRBDEF 
$DCDEF 
$DDBDEF 
$DEVDEF 

IDPTDEF 
IDYNDEF 
$EMBDEF 

IIDBDEF 
IIODEF 
$IRPDEF 
$PRDEF 
$PTEDEF 
$SSDEF 
$UCBDEF 
$VADEF 
IVECDEF 

DEFINE ADAPTER CONTROL BLOCK 
DEFINE CHANNEL REQUEST BLOCK 
DEFINE DEVICE CLASS 
DEFINE DEVICE DATA BLOCK 
DEFINE DEVICE CHARACTERISTICS 
DEFINE DRIVER PROLOGUE TABLE 
DEFINE DYNAMIC DATA STRUCTURE TYPES 
DEFINE ERROR MESSAGE BUFFER 
DEFINE INTERRUPT DISPATCH BLOCK 
DEFINE I/O FUNCTION CODES 
DEFINE I/O REQUEST PACKET 
DEFINE PROCESSOR REGISTERS 
DEFINE SYSTEM PTES 
DEFINE SYSTEM STATUS CODES 
DEFINE UNIT-CONTROL BLOCK 
DEFINE VIRTUAL ADDRESS BITS 
DEFINE INTERRUPT VECTOR BLOCK 

LOCAL MACROS 

EXFUNCL 
BRANCH TO SUBROUTINE WHICH REQUESTS CHANNEL (IF NOT ALREADY OWNED), 
EXECUTES FCODE (OR R3) FUNCTION, AND BRANCHES TO BDST ON ERROR 

.MACRO 

. ENDM 

EXFUNCL BDST.FCODE 
.IF NB FCODE 

MOVZBL #CD'FCODE,R3 
. ENDC 

BSBW FEXL 
.BYTE BDST-.-1 

IS FCODE NON-BLANK? 
IF NB, SPECIFY FCODE FUNCTION 
IF B, SPECIFY FNTN IN EXISTING R3 
EXECUTE FUNCTION 
WHERE TO GO ON ERROR 
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GENF 
GENERATE FUNCTION TABLE ENTRY AND CASE TABLE INDEX SYMBOL 

.MACRO GENF FCODE 
CD'FCODE=.-FTAB/2 
.WORD FCODE!RL_CS_M_IE ;FCODE WITH INT ENABLE BIT 

. ENDM 

CKPWR 
DISABLE INTERRUPTS. CHECK IF POWER HAS FAILED. 
AND PUT DEVICE UNIT NUMBER IN R2<9:8> 

.MACRO CKPWR ?L1 
CLRL R2 ;CLEAR R2 FOR UNIT NUMBER 
INSV UCB$W_UNIT(R5),- ;PUT UNIT # IN R2<9:8> 

#8.#2,R2 . . . 

DSBINT DISABLE INTERRUPTS 
BBC #UCB$V_POWER,- IF CLR, NO POWER FAILURE 

UCB$W_STS(R5),L1 » • • • 

ENBINT POWER FAILURE - ENABLE INTERRUPTS 
BRW RETREG EXIT 

Ll: RETURN FOR NO POWER FAILURE 
.ENDM 

; LOCAL SYMBOLS 

RL_NUM_ REGS =4 NUMBER OF DEVICE REGISTERS 
RL.SLM =5 STATE*SEEK LINEAR MODE (READY TO GO) 
UCB$B_DL_DCHEK =UCB$W_OFFSET+l REDEFINE FOR DATA CHECK USE 

; UCB OFFSETS WHICH FOLLOW THE 1 STANDARD UCB FIELDS 

$DEFINI UCB START OF UCB DEFINITIONS 

.=UCB$K_LCL_DISK_LENGTH BEGIN DEFINITIONS AT END OF UCB 
$DEF UCB$W_DL_PBCR . BLKW 1 PARTIAL BYTE COUNT 
$DEF UCB$W_DL_CS . BLKW 1 CONTROL STATUS REGISTER 
$DEF UCB$W_DL_BA .BLKW 1 BUS ADDRESS REGISTER 
$DEF UCB$W_DL_DA .BLKW 1 DISK ADDRESS REGISTER 

$DEF UCB$W_DL_MP .BLKW 1 MULTIPURPOSE REGISTER 
$DEF UCB$W_DL_DPN .BLKW 1 DATA-PATH NUMBER 

$DEF UCB$L_DL_SVAPTE SAVED SVAPTE OF THE USER'S BUFFER 

$DEF UCB$L_DL_DPR .BLKL 1 DATA-PATH REGISTER 
$DEF UCB$L_DL_BUFADR USER BUFFER ADDRESS 
$DEF UCB$L_DL_FMPR . BLKL 1 FINAL MAP REGISTER 
$DEF UCB$A_DL_MOVRTN BUFFER MOVE ROUTINE ADDRESS 

$DEF UCB$L_DL_PMPR .BLKL 1 PREVIOUS MAP REGISTER 

$DEF UCB$B_DL_DPPE . BLKB 1 DATA-PATH PURGE ERROR 
$DEF UCB$W_DL_DB .BLKW 3 DATA BUFFER REGISTER 
$DEF UCB$B_DL_XBA .BLKB 1 BUS ADDRESS EXTENSION BITS 
$DEF UCB$W_DL_SBA .BLKW 1 SAVED BUFFER ADDRESS 
$DEF UCB$A_DL_BUF_VA .BLKL 1 PHYSICAL BUFFER VIRTUAL ADDRESS 
$DEF UCB$A_DL_BUF_PA .BLKL 1 PHYSICAL BUFFER PHYSICAL ADDRESS 
$DEF UCB$W_DL_FLAGS .BLKW 1 FLAGS 

$VIELD UCB,0,<- START THE FLAG DEFINITIONS 
<DL_22BIT,, M>, - 22 BIT ADDRESSING 
<DL_MAPPING,,M> , - ADAPTER MAPPING 
> END OF FLAG DEFINITIONS 

$DEF UCB$K_DL_LEN .BLKW 1 LENGTH OF UCB 
$EQU UCB$K_DL_BUFSZ 20 BUFFER SIZE = 40 SECTORS * 

256 BYTES/SECTOR / 512 BYTES/PAGE 
$DEFEND UCB END OF UCB DEFINITONS 
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RL11/RL01 REGISTER OFFSETS FROM CSR ADDRESS 

$DEF 

$DEF 

$DEF 

$DEF 

$DEFINI RL 

RL_CS .BLKW 
_VIELD RL_CS,0,<- 

<DRDY,,M>,- 

<FC0DE,3>,- 
<XBA,2>,- 
<IE,,M>, - 
<CRDY,,M>,- 
<DS,2>,- 
<OPI,,M>,- 
<CRC,,M>,- 
<DLT,,M>,- 
<NXM,,M>,- 
<DE,,M>,- 
<CE,,M>- 

> 

RL_BA .BLKW 

RL.DA .BLKW 
_VIELD RL_DA,0,<- 

<MRK,,M>,- 
<STS,,M>,- 

<RST,, M>, - 
<,12>,- 

> 

RL_MP .BLKW 
_VIELD RL_MP,0,<- 

<STA,3>,- 
<BH,,M>,- 
<H0,,M>,- 
<C0,,M>, - 
<HS,,M>,- 
<TYP,,M>,- 
<DSE,,M>,- 
<VC,, M>, - 
<WGE,,M>,- 
<SPE,,M>,- 
<SKTO,, M>, - 
<WL,,M>,- 
<CHE,,M>, - 
<WDE,,M>- 

$DEF RL.BAE 

IDEFEND RL 

.BLKW 

HARDWARE FUNCTION CODES 

F_N0P=0*2 
F_UNLOAD=F_NOP 
F_SEEK=3*2 
F_RECAL=F_NOP 
F_DRVCLR=2*2 
F_RELEASE=F_NOP 
F_OFFSET=F_NOP 
F_RETCENTER=F_NOP 
F_PACKACK=2*2 
F_SEARCH=F_NOP 
F_WRITECHECK=1*2 
F_WRITEDATA=5*2 
F_WRITEHEAD=F_NOP 
F_READDATA=6*2 
F_READHEAD=4*2 
F_AVAILABLE=F_NOP 
F_GETSTATUS=2*2 

START OF REGISTER DEFINITIONS 

CONTROL STATUS REGISTER (CSR) 
START OF CSR BIT DEFINITIONS 

DRIVE READY 
FUNCTION CODE 

BUS ADDRESS EXTENSION BITS 
INTERRUPT ENABLE 
CONTROLLER READY 
DRIVE SELECT 
OPERATION INCOMPLETE 
DATA CRC OR HEADER CRC 
DATA LATE OR HEADER NOT FOUND 
NON-EXISTENT MEMORY 
DRIVE ERROR 
COMPOSITE ERROR 

END CSR BIT DEFINITIONS 

BUS ADDRESS REGISTER (BAR) 

DISK ADDRESS REGISTER (DAR) 
START OF DAR BIT DEFINITIONS 

MARK (ALWAYS 1) 
GET STATUS 
RESERVED BIT 
RESET 
RESERVED BITS 

END OF DAR BIT DEFINITIONS 

MULTIPURPOSE REGISTER (MPR) 
START OF MPR BIT DEFINITIONS 

DRIVE STATE 
BRUSH HOME 
HEADS OUT 
COVER OPEN 
HEAD SELECT 
DRIVE TYPE 
DRIVE SELECT ERROR 
VOLUME CHECK 
WRITE GATE ERROR 
SPIN ERROR 
SEEK TIME OUT 
WRITE LOCK 
CURRENT HEAD ERROR 
WRITE DATA ERROR 

END MPR BIT DEFINITIONS 

BUS ADDRESS EXTENSION REGISTER(BAE) 

END RL11/RL01 REGISTER DEFINITIONS 

NO OPERATION 
NO OPERATION 
SEEK CYLINDER 
NO OPERATION 
DRIVE CLEAR (GET STATUS) 
NO OPERATION 
NO OPERATION 
NO OPERATION 
PACK ACKNOWLEDGE (SET VOLUME VALID) 
NO OPERATION 
WRITE CHECK 
WRITE DATA 
NO OPERATION 
READ DATA 
READ HEADER 
NO OPERATION 
GET STATUS (DRIVER INTERNAL USE) 
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.PAGE 

.SBTTL STANDARD TABLES 

DRIVER PROLOGUE TABLE 

THE DPT DESCRIBES DRIVER PARAMETERS AND I/O DATABASE FIELDS 
THAT ARE TO BE INITIALIZED DURING DRIVER LOADING AND RELOADING 

DPTAB 
END=DL_END,- 

ADAPTER=UBA,- 
FLAGS=DPT$M_SVP,- 
UCBSIZE=UCB$K_DL_LEN,- 
NAME=DLDRIVER 

DPT CREATION MACRO 
END OF DRIVER LABEL 
ADAPTER TYPE = UNIBUS 
SYSTEM PAGE TABLE ENTRY REQUIRED 
LENGTH OF UCB 
DRIVER NAME 

DPT.STORE INIT ;START CONTROL BLOCK INIT VALUES 
DPT.STORE DDB,DDB$L_ACPD,L,<~A\F11\> ;DEFAULT ACP NAME 
DPT.STORE DDB,DDB$L_ACPD+3,B,DDB$K.CART ;ACP CLASS 
DPT.STORE UCB,UCB$B_FIPL,B,8 
DPT_STORE UCB,UCB$L_DEVCHAR,L,- 

<DEV$M_FOD- 
!DEV$M_DIR- 
!DEV$M_AVL- 
!DEV|M_ELG- 
!DEVIM.SHR- 
!DEV$M_IDV- 
!DEV$M_ODV- 

!DEV$M_RND> 
DPT.STORE UCB,UCB$L_DEVCHAR2,L,- 

FORK IPL 
DEVICE CHARACTERISTICS 

FILES ORIENTED 
DIRECTORY STRUCTURED 
AVAILABLE 
ERROR LOGGING 
SHAREABLE 
INPUT DEVICE 
OUTPUT DEVICE 
RANDOM ACCESS 
DEVICE CHARACTERISTICS 
PREFIX NAME WITH "node!" <DEV$M_NNM> 

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_DISK ;DEVICE CLASS 
DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,512 ;DEFAULT BUFFER SIZE 
DPT.STORE UCB,UCB$B_SECTORS, B, 40 ;NUMBER OF SECTORS PER TRACK 
DPT.STORE UCB,UCB$B_TRACKS,B,2 
DPT.STORE UCB,UCB$B_DIPL,B,21 
DPT.STORE UCB,UCB$B_ERTMAX,B,8 
DPT.STORE UCB.UCB$W_DEVSTS.W,- 

<UCB$M_NOCNVRT> 

DPT.STORE REINIT ;START CONTROL BLOCK RE-INIT VALUES 
DPT.STORE CRB,CRB$L_INTD+4,D,DL.INT ;INTERRUPT SERVICE ROUTINE ADDRESS 

NUMBER OF TRACKS PER CYLINDER 
DEVICE IPL 
MAX ERROR RETRY COUNT 
INHIBIT LOG TO PHYS CONVERSION IN FDT 

DPT.STORE CRB,CRB$L_INTD+VEC$L_INITIAL,- 
D.DL.RL11.INIT 

DPT.STORE CRB,CRB$L_INTD+VEC$L_UNITINIT,- 
D,DL.RLOX.INIT 

DPT.STORE DDB,DDB$L_DDT,D,DL$DDT 

CONTROLLER INIT ADDRESS 

UNIT INIT ADDRESS 

DDT ADDRESS 

DPT.STORE END ;END OF INITIALIZATION TABLE 

DRIVER DISPATCH TABLE 

THE DDT LISTS ENTRY POINTS FOR DRIVER SUBROUTINES WHICH ARE 
CALLED BY THE OPERATING SYSTEM. 

DDTAB 
DEVNAM=DL.- 
START=DL_STARTIO,- 
UNSOLIC=DL_UNSOLNT,- 

FUNCTB=DL_FUNCTABLE,- 
CANCEL=0,- 
REGDMP=DL_REGDUMP,- 
DIAGBF=«RL_NUM_REGS+5+5+3+l>*4>, - ; BYTES IN DIAG BUFFER 
ERLGBF=«<RL_NUM_REGS+5+l>*4>+EMB$L_DV_REGSAV> ; BYTES IN 

;ERROR LOG BUFFER 

DDT CREATION MACRO 
NAME OF DEVICE 
START I/O ROUTINE 
UNSOLICITED INTERRUPT 

FUNCTION DECISION TABLE 
CANCEL=NO-OP FOR FILES DEVICE 
REGISTER DUMP ROUTINE 
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DIAGNOSTIC BUFFER SIZE = «4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS 
+ 5 IOC$DIAGBUFILL LONGWORDS + 3 BUFFER ALLOCATION 
LONGWORDS + 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP> 
* 4 BYTES/LONGWORD> 

ERROR LOG BUFFER SIZE = «<4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS 
+ 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP> 
* 4 BYTES/LONGWORD> + BYTES NEEDED FOR ERROR LOGGER 
TO SAVE SOFTWARE REGISTERS> 

HARDWARE FUNCTION CODE TABLE 

THIS TABLE MERGES THE FUNCTION CODE BITS WITH THE 
INTERRUPT ENABLE BIT AND GENERATES THE CASE TABLE 
INDEX SYMBOL. 

FTAB: GENF F.NOP NO-OP 

GENF F.UNLOAD UNLOAD VOLUME (NOP) 

GENF F.SEEK SEEK 

GENF F.RECAL RECALIBRATE (NOP) 

GENF F.DRVCLR DRIVE CLEAR (RESET & GET STATUS) 

GENF F.RELEASE RELEASE PORT (NOP) 

GENF F.OFFSET OFFSET HEADS (NOP) 

GENF F.RETCENTER RETURN HEADS TO CENTERLINE (NOP) 
GENF F.PACKACK PACK ACKNOWLEDGE (RESET & GET STATUS) 

GENF F_SEARCH SEARCH (NOP) 

GENF F.WRITECHECK WRITE CHECK 
GENF F.WRITEDATA WRITE DATA 
GENF F.READDATA READ DATA 
GENF F.WRITEHEAD WRITE HEADERS (NOP) 
GENF F.READHEAD READ HEADERS 
GENF F.NOP PLACE HOLDER 
GENF F.NOP PLACE HOLDER 
GENF F.AVAILABLE AVAILABLE 

.PAGE 

FUNCTION DECISION TABLE 

THE FDT LISTS VALID FUNCTION CODES, SPECIFIES WHICH 
CODES ARE BUFFERED, AND DESIGNATES SUBROUTINES TO 
PERFORM PREPROCESSING FOR PARTICULAR FUNCTIONS. 

DL.FUNCTABLE: 
FUNCTAB 

<NOP,- NO-OP 
UNLOAD,- UNLOAD 

SEEK.- SEEK 
DRVCLR,- DRIVE CLEAR 
PACKACK,- PACK ACKNOWLEDGE 
SENSECHAR,- SENSE CHARACTERISTICS 
SETCHAR,- SET CHARACTERISTICS 
SENSEMODE,- SENSE MODE 
SETMODE,- SET MODE 
WRITECHECK,- WRITE CHECK 
READHEAD,- READ HEADER 
READLBLK,- READ LOGICAL BLOCK 
WRITELBLK,- WRITE LOGICAL BLOCK 
READPBLK,- READ PHYSICAL BLOCK 
WRITEPBLK,- WRITE PHYSICAL BLOCK 
READVBLK,- READ VIRTUAL BLOCK 
WRITEVBLK,- WRITE VIRTUAL BLOCK 
AVAILABLE,- AVAILABLE 
ACCESS,- ACCESS FILE / FIND DIRECTORY ENTRY 
ACPCONTROL,- ACP CONTROL FUNCTION 
CREATE,- CREATE FILE AND/OR DIRECTORY ENTRY 
DEACCESS.- DEACCESS FILE 
DELETE,- DELETE FILE AND/OR DIRECTORY ENTRY 
MODIFY,- MODIFY FILE ATTRIBUTES 
MOUNT- MOUNT VOLUME 
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FUNCTAB , - BUFFERED FUNCTIONS 
<NOP,- NO-OP 
UNLOAD,- UNLOAD 
SEEK.- SEEK 
DRVCLR,- DRIVE CLEAR 
PACKACK,- PACK ACKNOWLEDGE 
SENSECHAR,- SENSE CHARACTERISTICS 
SETCHAR,- SET CHARACTERISTICS 
SENSEMODE,- SENSE MODE 
SETMODE,- SET MODE 
AVAILABLE,- AVAILABLE 
ACCESS.- ACCESS FILE / FIND DIRECTORY ENTRY 
ACPCONTROL,- ACP CONTROL FUNCTION 
CREATE,- CREATE FILE AND/OR DIRECTORY ENTRY 
DEACCESS.- DEACCESS FILE 
DELETE,- DELETE FILE AND/OR DIRECTORY ENTRY 
MODIFY.- MODIFY FILE ATTRIBUTES 
MOUNT- MOUNT VOLUME 

FUNCTAB DL.ALIGN,- 
<READHEAD,- 
READLBLK,- 
READPBLK,- 
READVBLK,- 
WRITECHECK,- 
WRITELBLK,- 
WRITEPBLK,- 
WRITEVBLK- 
> 

FUNCTAB +ACP$READBLK,- 
<READHEAD,- 
READLBLK,- 
READPBLK,- 
READVBLK- 
> 

FUNCTAB +ACP$WRITEBLK,- 
<WRITECHECK,- 
WRITELBLK,- 
WRITEPBLK,- 
WRITEVBLK- 
> 

TEST ALIGNMENT FUNCTIONS 
READ HEADER 
READ LOGICAL BLOCK 
READ PHYSICAL BLOCK 
READ VIRTUAL BLOCK 
WRITE CHECK 
WRITE LOGICAL BLOCK 
WRITE PHYSICAL BLOCK 
WRITE VIRTUAL BLOCK 

READ FUNCTIONS 
READ HEADER 
READ LOGICAL BLOCK 
READ PHYSICAL BLOCK 
READ VIRTUAL BLOCK 

WRITE FUNCTIONS 
WRITE CHECK 
WRITE LOGICAL BLOCK 
WRITE PHYSICAL BLOCK 
WRITE VIRTUAL BLOCK 

FUNCTAB +ACP$ACCESS,- 
<ACCESS,- 
CREATE- 
> 

ACCESS FUNCTIONS 
ACCESS FILE / FIND DIRECTORY ENTRY 
CREATE FILE AND/OR DIRECTORY ENTRY 

FUNCTAB +ACP$DEACCESS,- ;DEACCESS FUNCTION 
<DEACCESS- ; DEACCESS FILE 
> 

FUNCTAB +ACP$MODIFY,- 
<ACPCONTROL,- 
DELETE,- 
MODIFY- 
> 

MODIFY FUNCTIONS 
ACP CONTROL FUNCTION 
DELETE FILE AND/OR DIRECTORY ENTRY 
MODIFY FILE ATTRIBUTES 

FUNCTAB +ACP$MOUNT,- 
<MOUNT- 

;MOUNT FUNCTION 
; MOUNT VOLUME 

> 

FUNCTAB +EXE$LCLDSKVALID,- 
CUNLOAD.- 

AVAILABLE,- 
PACKACK- 

> 

FUNCTAB +EXE$ZEROPARM,- 

<NOP.- 
UNLOAD.- 
DRVCLR.- 
PACKACK.- 
AVAILABLE.- 

LOCAL DISK VALID FUNCTIONS 
UNLOAD VOLUME 
UNIT AVAILABLE 
PACK ACKNOWLEDGE 

ZERO PARAMETER FUNCTIONS 
NO-OP 
UNLOAD 
DRIVE CLEAR 
PACK ACKNOWLEDGE 
AVAILABLE 
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FUNCTAB 

FUNCTAB 

FUNCTAB 

.PAGE 

.SBTTL 
+♦ 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE IS A NO-OP FOR THE RL11 BUT MUST BE INCLUDED 
SINCE IT IS CALLED WHEN THE RL02 IS BOOTED AS A SYSTEM DEVICE. 

THE OPERATING SYSTEM CALLS THIS ROUTINE: 
- AT SYSTEM STARTUP 
- DURING DRIVER LOADING 
- DURING RECOVERY FROM POWER FAILURE 

INPUTS: 

R4 - CSR ADDRESS (DEVICE CONTROL STATUS REGISTER) 
R5 - IDB ADDRESS (INTERRUPT DATA BLOCK) 
R6 - DDB ADDRESS (DEVICE DATA BLOCK) 
R8 - CRB ADDRESS (CHANNEL REQUEST BLOCK) 
ALL INTERRUPTS ARE LOCKED OUT 

OUTPUTS: 

ALL REGISTERS EXCEPT R0-R3 ARE PRESERVED. 
CONTROL IS RETURNED TO THE CALLER. 

+EXE$ONEPARM,- 
<SEEK- 
> 

+EXE$SENSEMODE,- 
<SENSECHAR,- 
SENSEMODE- 
> 

+EXE$SETCHAR,- 
<SETCHAR,- 
SETMODE- 
> 

;ONE PARAMETER FUNCTION 
; SEEK 

SENSE FUNCTIONS 
SENSE CHARACTERISTICS 
SENSE MODE 

SET FUNCTIONS 
SET CHARACTERISTICS 
SET MODE 

CONTROLLER INITIALIZATION ROUTINE 

DL.RLll.INIT: ;CONTROLLER INITIALIZATION 

; FOR MICROVAX I, ALLOCATE A PHYSICALLY CONTIGUOUS BUFFER 
; AREA FOR PERFORMING I/O. 

CPUDISP «UV1,10$»,- 
CONTINUE=YES 

BRB 20$ 

10$: MOVZWL #UCB$K_DL_BUFSZ,R1 
JSB G~EXE$ALOPHYCNTG 
BLBC RO,20$ 
MOVL 
RSB 

R2,CRB$L_AUXSTRUC(R8) 

20$: CLRL 
RSB 

CRB$L_AUXSTRUC(R8) 

FOR MICROVAX I, ALLOCATE BUFFER AREA 
FOR ALL CPU TYPES, WHICH INCLUDE, UP 
UNTIL NOW, 780, 785, 790, 750, 730, 
UV2, 8SS, 8NN 
FOR ALL OTHERS, SKIP BUFFER AREA 

LOAD SIZE OF BUFFER 
ALLOCATE PHYSICALLY-CONTIGUOUS MEMORY 
EXIT ON ERROR 
GET BUFFER VIRTUAL ADDRESS 
RETURN TO CALLER 

INDICATE MEMORY ALLOCATION FAILURE 
RETURN TO CALLER 
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.SBTTL UNIT INITIALIZATION ROUTINE 

++ 

DL.RLOX.INIT - UNIT INITIALIZATION ROUTINE 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE READIES THE RL01/RL02 UNITS FOR I/O OPERATIONS. 

THE OPERATING SYSTEM CALLS THIS ROUTINE: 
- AT SYSTEM STARTUP 
- DURING DRIVER LOADING 
- DURING RECOVERY FROM POWER FAILURE 

INPUTS: 

R4 - CSR ADDRESS (CONTROLLER STATUS REGISTER) 
R5 - UCB ADDRESS (UNIT-CONTROL BLOCK) 

OUTPUTS: 

THE DRIVE UNIT IS RESET. UCB FIELDS ARE INITIALIZED. AND THE 
ROUTINE WAITS FOR ONLINE UNITS TO SPIN UP. ALL REGISTERS 
EXCEPT R0-R3 ARE PRESERVED. 

DL.RLOX.INIT: 
MOVW #1®UCB$V_DL_MAPPING, - 

UCB$W_DL_FLAGS(R5) 

RL01/RL02 UNIT INITIALIZATION 
DEFAULT TO ADAPTER MAPPING 
AND 18 BIT ADDRESSING 

SET CPU DEPENDENT UCB FLAGS FOR DL 

CPUDISP «UV1,5$>, - 
<UV2,1$» , - 

CONTINUE=YES ;FOR ALL OTHER CPU TYPES CONTINUE. 
BRB 10$ ;FOR 790,785,780,750,730,8SS,8NN 

1$: BISW #1<DUCB$V_DL_22BIT, - ;FOR MICROVAX II 22 BIT 
UCB$W_DL_FLAGS(R5) ;ADDRESSING AS WELL AS ADAPTER MAPPING 

BRB 10$ 

5$: MOVW #1©UCB$V_DL_22BIT.- ;FOR MICROVAX I 22 BIT 
UCB$W_DL_FLAGS(R5) ;ADDRESSING AND NO ADAPTER MAPPING 

10$: MOVZWL UCB$W_STS(R5),R3 ;SAVE CURRENT UNIT STATUS 
BICW #UCB$M_ONLINE!UCB$M_VALID,- ;ASSUME OFFLINE/INVALID 

UCB$W_STS(R5) 9 • • • 

; WAIT FOR CONTROLLER (6 SECONDS MAX) IF CHANNEL IS BUSY WITH ANOTHER UNIT 

MOVL UCB$L_CRB(R5),R0 ;GET CRB ADDRESS 
BBC #CRB$V_BSY,CRB$B_MASK(RO),20$ ;IF CLEAR. CHANNEL NOT BUSY 
TIMEDWAIT TIME=#600*1000,- ;6 SECOND WAIT LOOP 

INS1=<TSTB RL_CS(R4)>,- ; IS CONTROLLER READY 
INS2=<BLSS 15$>, - ;IF LSS, YES 
D0NELBL=15$ ;LABEL TO EXIT WAIT LOOP 

BLBC RO,25$ ;TIME EXPIRED - EXIT 

; GET CURRENT DRIVE STATUS AND RESET DRIVE 

20$: MOVW #RL_DA_M_RST!- ;PUT RESET AND GET STATUS IN DAR 
RL_DA_M_STS!RL_DA_M_MRK.RL_DA(R4) ;... 

CLRL R1 ;CLEAR R1 FOR UNIT NUMBER 
INSV UCB$W_UNIT(R5).#8.#8. R1 ;GET UNIT NUMBER 
BISW3 R1,#F_GETSTATUS,RL_CS(R4) ;EXECUTE GET STATUS FUNCTION 
BSBW DL.WAIT ;WAIT FOR CONTROLLER 
TSTB RL_CS(R4) ;WAS CONTROLLER READY? 
BGEQ 25$ ;IF GEQ, NO 
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CLASSIFY DRIVE TYPE 

MOVL IT X2324C001,- 

BITW 
UCB$L_MEDIA_ID(R5) 

#RL_MP_M_TYP,RL.MP(R4) 
BNEQ 30$ 
MOVB S~#DT$_RL01,- 

MOVW 
UCB$B_DEVTYPE(R5) ; 

#256,UCB$W_CYLINDERS(R5); 
MOVZWL #10240.UCB$L_MAXBLOCK(R5) 
BRB 40$ 

25$: BRB 70$ ; 

30$: MOVB S~#DT$_RL02,- 

MOVW 
UCB$B_DEVTYPE(R5) ; 

#512,UCB$W_CYLINDERS(R5); 
MOVZWL #20480,UCB$L_MAXBLOCK(R5) 
INCL UCB$L_MEDIA_ID(R5) ; 

40$: BBC #UCB$V_VALID,R3,60$ ; 

SET MEDIA IDENT "DL RLOl" 
IS DRIVE TYPE = RL02? 
IF NEQ, YES 

SET RL01 DEVICE TYPE 
SET NUMBER OF RLOl CYLINDERS 

;SET MAX RLOl BLOCK NUMBER 

BRANCH TO COMMON EXIT 

SET RL02 DEVICE TYPE 
SET NUMBER OF RL02 CYLINDERS 

;SET MAX RL02 BLOCK NUMBER 
SET MEDIA IDENT "DL RL02" 

BRANCH AROUND WAIT FOR DRIVE TO SPINUP 
IF THE DRIVE DID NOT HAVE A VALID 
VOLUME ON IT BEFORE POWER FAILURE. 

INITIALIZE UCB FIELDS AND WAIT FOR ONLINE UNITS TO SPIN UP 

45$: 

50$: 

60$: 

65$: 
70$: 

BITW #RL_CS_M_DRDY,RL.CS(R4) 
BNEQ 50$ 
JSB G~EXE$PWRTIMCHK 
BLBS RO,45$ 
BRB 60$ 

IS DRIVE READY? 
IF NEQ, YES 
IS MAX TIME EXCEEDED? 
IF LBS, NO, MORE TIME NEEDED 
POWER UP TIME EXCEEDED 

BISW #UCB$M_VALID,UCB$W_STS(R5) ;SET UCB STATUS VOLUME VALID 

BBS 

MOVL 
MOVL 
BEQL 
MOVL 
EXTZV 
MOVL 
MOVL 
BICL3 
ASSUME 
INSV 
MOVL 
BISW 
RSB 

.PAGE 

.SBTTL 

#UCB$V_DL_MAPPING,- 
UCB$W_DL_FLAGS(R5),65$ 
UCB$L_CRB(R5),R1 
CRB$L_AUXSTRUC(R1),R2 
70$ 
R2,UCB$A_DL_BUF_VA(R5) 

ADAPTER MAPPING? 
IF BS, YES 
GET CRB ADDRESS 
MEMORY ALLOC FAILURE DURING CTL INIT? 
IF EQL, YES, LEAVE OFFLINE 
SAVE BUFFER'S VIRTUAL ADDRESS 

#VA$V_VPN,#VA$S_VPN,R2,R1;GET VIRTUAL PAGE NUMBER OF BUFFER 
G~MMG$GL_SPTBASE,RO 
(RO)[Rl],R0 
#“C<VA$M_BYTE>,R2,Rl 
PTE$S_PFN GE 13 
R0,#9,#13,R1 
Rl,UCB$A_DL_BUF_PA(R5) 

GET BASE ADDRESS OF SPTS 
GET THE PTE CONTENTS 
GET BUFFER OFFSET (BA00-BA08) 

;COPY BA09-BA21 
;SAVE PHYSICAL ADDRESS OF BUFFER 

#UCB$M_ONLINE,UCB$W_STS(R5) ;SET UCB STATUS VOLUME VALID 

DRIVER SPECIFIC SUBROUTINES 

DL.WAIT - WAIT FOR CONTROLLER READY 

INPUTS: 
R4 - DEVICE CSR ADDRESS 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE IS CALLED FROM THE DRIVER UNIT INITIALIZATION ROUTINE 
TO WAIT UNTIL THE RL11 CONTROLLER IS READY. TO PREVENT HANGING UP 
AT HIGH IPL, A MAXIMUM OF 30 USEC ELAPSES BEFORE CONTROL IS 
RETURNED TO THE CALLER. 

DL.WAIT: 
MOVQ RO.-(SP) 
DSBINT 
TIMEWAIT 
ENBINT 
MOVQ (SP)+,R0 
RSB 

#3.#RL_CS_M_CRDY 

WAIT FOR CONTROLLER READY 
SAVE RO, Rl 
DISABLE INTERRUPTS 
RL_CS(R4),W 
ENABLE INTERRUPTS 
RESTORE RO, Rl 
RETURN TO UNIT INIT OR STARTIO 
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.SBTTL FDT ROUTINE - TEST TRANSFER BYTE COUNT ALIGNMENT 

♦♦ 

DL.ALIGN - FDT ROUTINE TO TEST XFER BYTE COUNT 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER 
TO CHECK THE BYTE COUNT PARAMETER SPECIFIED BY THE USER PROCESS 
FOR AN EVEN NUMBER OF BYTES (WORD BOUNDARY). 

INPUTS: 

R3 
R4 
R5 
R6 
R7 
R8 
4(AP) 

IRP ADDRESS (I/O REQUEST PACKET) 
PCB ADDRESS (PROCESS CONTROL BLOCK) 
UCB ADDRESS (UNIT-CONTROL BLOCK) 
CCB ADDRESS (CHANNEL CONTROL BLOCK) 
BIT NUMBER OF THE I/O FUNCTION CODE 
ADDRESS OF FDT TABLE ENTRY FOR THIS ROUTINE 
ADDRESS OF FIRST FUNCTION DEPENDENT QIO PARAMETER 

OUTPUTS: 

IF THE QIO BYTE COUNT PARAMETER IS ODD. THE I/O OPERATION IS 
TERMINATED WITH AN ERROR. IF IT IS EVEN. CONTROL IS RETURNED 
TO THE FDT DISPATCHER. 

DL.ALIGN: 
BLBS 4(AP),10$ 
RSB 
MOVZWL #SS$_IVBUFLEN.RO 
JMP G~EXE$ABORTIO 
.PAGE 
.SBTTL START I/O ROUTINE 

+♦ 

CHECK BYTE COUNT AT Pl(AP) 
IF LBS. ODD BYTE COUNT 
EVEN - RETURN TO CALLER 
SET BUFFER ALIGNMENT STATUS 
ABORT I/O 

DL.STARTIO - START I/O ROUTINE 

FUNCTIONAL DESCRIPTION: 

THIS FORK PROCESS IS ENTERED FROM THE EXECUTIVE AFTER AN I/O REQUEST 
PACKET HAS BEEN DEQUEUED, AND PERFORMS THE FOLLOWING: 

- ACTIVATES THE DISK AFTER SETTING UCB FIELDS. OBTAINING 
UBA AND CONTROLLER RESOURCES. AND SETTING RL11 REGISTERS 

- WAITS FOR AN INTERRUPT 

- REGAINS CONTROL AFTER THE ISR SERVICES THE INTERRUPT. AND 
- RE-ACTIVATES THE DISK IF THE ORIGINAL FUNCTION 

IS NOT YET COMPLETE. OR 
- COMPLETES THE I/O REQUEST BY RELEASING RESOURCES. 

SETTING STATUS CODES, AND RETURNING TO THE EXECUTIVE. 
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INPUTS: 

R3 - IRP ADDRESS (I/O REQUEST PACKET) 
R5 - UCB ADDRESS (UNIT-CONTROL BLOCK) 
IRP$L_MEDIA - PARAMETER LONGWORD (LOGICAL BLOCK NUMBER) 

OUTPUTS: 

RO - FIRST I/O STATUS LONGWORD: STATUS CODE & BYTES XFERED 
R1 - SECOND I/O STATUS LONGWORD: 0 FOR DISKS 

THE I/O FUNCTION IS EXECUTED. 

ALL REGISTERS EXCEPT R0-R4 ARE PRESERVED. 

DL.STARTIO: ;START I/O OPERATION 

; COMPUTE PHYSICAL MEDIA ADDRESS 

; LBN = LBN * (SECTORS/BLOCK) 
; LBN/(SECTORS/TRACK) = D + SECTOR 
; D/(TRACKS/CYLINDER) = CYLINDER + TRACK 

PREPROCESS UCB FIELDS 

PREPROCESS: 
MOVL 

BBS 

MULL3 
MOVZBL 
CLRL 
EDIV 
MOVZBL 
EDIV 
MOVB 
MOVW 

MOVB 

MNEGW 
CLRW 

CLRB 
MOVW 
EXTZV 

MOVB 
CMPB 
BNEQ 
MOVW 

10$ 

IRP$L_MEDIA(R3),- 
UCB$L_MEDIA(R5) 
#IRP$V_PHYSIO,- 
IRP$W_STS(R3),10$ 
#2,UCB$L_MEDIA(R5),R0 
UCB$B_SECTORS(R5),R2 
R1 
R2.R0.R0,UCB$L_MEDIA(R5) 
UCB$B_TRACKS(R5),R2 
R2,R0,R0,R1 
R1,UCB$L_MEDIA+1(R5) 
RO,UCB$L_MEDIA+2(R5) 

UCB$B_ERTMAX(R5),- 
UCB$B_ERTCNT(R5) ; . . . 
UCB$W_BCNT(R5),UCB$W_BCR(R5) 

COPY GIVEN MEDIA ADDRESS (LOGICAL) 
TO THE UCB. 

IF SET, PHYSICAL I/O 

SCALE LBN IN RO 
GET NUMBER OF SECTORS PER TRACK 
CLEAR HIGH PART OF DIVIDEND 
CALCULATE SECTOR NUMBER AND STORE 
GET NUMBER OF TRACKS PER CYLINDER 
CALCULATE TRACK AND CYLINDER 
STORE TRACK NUMBER 
STORE CYLINDER NUMBER 

;INITIALIZE ERROR RETRY COUNT 

;INIT NEG BYTES LEFT TO XFER 
CLEAR DATA-PATH NO. FOR USE AS A 

UBA-RESOURCE-ALLOCATION FLAG 
CLEAR DATA-PATH-PURGE-ERROR REGISTER 

UCB$W_DL_DPN(R5) 

UCB$B_DL_DPPE(R5) 
IRP$W_FUNC(R3),UCB$W_FUNC(R5) ;SAVE FUNCTION CODE 
#IRP$V_FCODE,- ;EXTRACT I/O FUNCTION CODE 
#IRP$S_FCODE.IRP$W_FUNC(R3).R1 ;... 
R1,UCB$B_FEX(R5) 
#I0$_SEEK,R1 
20$ 
IRP$L_MEDIA(R3),- 
UCB$W_DC(R5) 

STORE FUNCTION DISPATCH INDEX 
SEEK FUNCTION? 
IF NEQ, NO 
STORE CYLINDER ADDRESS 

20$: 
BICW #UCB$M_DIAGBUF,- 

UCB$W_DEVSTS(R5) ;CLR DIAGNOSTIC BUFFER PRESENT 
BBC #IRP$V_DIAGBUF,- ;IF CLR, NO DIAG BUFFER 

IRP$W_STS(R3).FDISPATCH ;... 
BISW #UCB$M_DIAGBUF,UCB$W_DEVSTS(R5) ;SET DIAG BUFFER PRESENT 
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; CENTRAL FUNCTION DISPATCH 

FDISPATCH: 

MOVL UCB$L_IRP(R5),R3 

BBS #IRP$V_PHYSIO,- 

IRP$W_STS(R3),10$ 

BBS #UCB$V_VALID,- 

UCB$W_STS(R5),10$ 

MOVZWL #SS$_VOLINV,RO 

BRW RESETXFR 

10$: CLRB UCB$B_DL_DCHEK(R5) 

MOVZBL UCB$B_FEX(R5),R3 

CASE R3,<- 

UNLOAD,- 

SEEK,- 

NOP,- 

DRVCLR,- 

NOP,- 

NOP,- 

NOP,- 

PACKACK,- 

NOP,- 

WRITECHECK,- 

WRITEDATA,- 

READDATA,- 

NOP,- 

READHEAD,- 

NOP,- 

NOP,- 

AVAILABLE- 

>,LIMIT=#CDF_UNLOAD 

NOP: 

SEEK: 

DRVCLR: 

DO.FUNCTION: 

EXFUNCL RETRYERR 

BRB NORMAL 

PACKACK: 

BISW #UCB$M_VALID, - 

UCB$W_STS(R5) 

BRB DO.FUNCTION 

UNLOAD: 

AVAILABLE: 

BICW #UCB$M_VALID, - 

UCB$W_STS(R5) 

BRB NORMAL 

WRITECHECK: 

READHEAD: 

BICW #IO$M_DATACHECK,- 

UCB$W_FUNC(R5) 

WRITEDATA: 

READDATA: 

EXFUNCL RETRYERR,F.SEEK 

MOVZBL UCB$B_FEX(R5),R3 

EXFUNCL RETRYERR 

; OPERATON COMPLETION 

NORMAL: 

MOVZWL #SS$_NORMAL,RO 

BRW FUNCXT 

RETRYERR: 

DECB UCB$B_ERTCNT(R5) 

BEQL FATALERR 

BRW FDISPATCH 

FUNCTION DISPATCH 

GET IRP ADDRESS 

IF SET, PHYSICAL I/O FUNCTION 

IF SET, VOLUME SOFTWARE VALID 

SET VOLUME INVALID STATUS 

RESET BYTE COUNT AND EXIT 

CLEAR DATA CHECK IN PROGRESS 

GET FUNCTION DISPATCH INDEX 

DISPATCH TO FUNCTION HANDLING ROUTINE 

UNLOAD 

SEEK 

RECALIBRATE (UNSUPPORTED) 

DRVCLR 

RELEASE PORT (UNSUPPORTED) 

OFFSET HEADS (UNSUPPORTED) 

RETURN TO CENTER (UNSUPPORTED) 

PACK ACKNOWLEDGE 

SEARCH (UNSUPPORTED) 

WRITE CHECK 

WRITE DATA 

READ DATA 

WRITE HEADER (UNSUPPORTED) 

READ HEADER 

PLACE HOLDER 

PLACE HOLDER 

AVAILABLE 

NO-OP 

SEEK 

DRIVE CLEAR (GET STATUS & RESET) 

EXECUTE FUNCTION - RETRY IF FAILURE 

SUCCESSFUL - EXIT WITH NORMAL STATUS 

PACK ACKNOWLEDGE (GET STATUS & RESET) 

SET SOFTWARE VOLUME VALID BIT. 

THEN GO DO HARDWARE FUNCTION. 

UNLOAD 

AVAILABLE 

CLEAR SOFTWARE VOLUME VALID BIT, 

AND GO COMPLETE OPERATION WITHOUT 

ANY HARDWARE INTERACTION. 

WRITE CHECK 

READ HEADER 

CLEAR DATA CHECK REQUEST 

TO PREVENT EXTRA WRITE CHECK 

WRITE DATA 

READ DATA 

EXECUTE EXPLICIT SEEK - RETRY IF FAIL 

GET FUNCTION DISPATCH INDEX 

EXECUTE TRANSFER FUNCTION 

SUCCESSFUL OPERATION COMPLETE 

SET NORMAL COMPLETION STATUS 

FUNCTION EXIT 

RETRIABLE ERROR 

ANY RETRIES LEFT? 

IF EQL, NO 

RETRY FUNCTION 
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FATALERR: 
MOVZWL 
BBS 

MOVZWL 
BBC 

BBS 

5$: MOVZWL 
TSTB 
BEQL 
BBS 

BBS 

10$: MOVZWL 
BBS 

20$: MOVZWL 
BBS 

MOVZWL 

FUNCXT: 
PUSHL 
JSB 
CMPB 
BGTRU 
CMPB 
BEQL 
MOVL 
ADDW3 

TSTW 
BEQL 
BBC 

RELDPR 
RELMPR 
BRB 

10$: MOVL 

20$: RELCHAN 

CLRL 
POPL 
REQCOM 

.PAGE 

#SS$_V0LINV,R0 
#RL_MP_V_VC,- 

UCB$W_DL_MP(R5).FUNCXT 

#SS$_WRITLCK,RO 
#RL_MP_V_WL,- 
UCB$W_DL_MP(R5).5$ 
#rl_mp_v_wge,- 
UCB$W_DL_MP(R5).FUNCXT 

#SS$_DATACHECK,RO 
UCB$B_DL_DCHEK(R5) 
10$ 
#RL_CS_V_0PI.- 
UCB$W_DL_CS(R5),10$ 
#RL_CS_V_CRC,- 
UCB$W_DL_CS(R5).FUNCXT 

#SS$_PARITY,RO 
#RL_CS_V_CRC,- 
UCB$W_DL_CS(R5).FUNCXT 

UNRECOVERABLE ERROR 
ASSUME VOLUME INVALID STATUS 
IF SET, VOLUME INVALID 

ASSUME WRITE LOCK ERROR STATUS 
IF CLR, VOLUME NOT WRITE LOCKED 

IF SET. WRITE GATE ERROR 
IF WL & WGE SET, WRITE LOCK ERROR 

ASSUME DATA CHECK ERROR STATUS 
WRITE CHECK IN PROGRESS? 
IF EQL, NO 
IF SET, NOT WRITE CHECK ERROR 

IF SET, WRITE CHECK ERROR 

ASSUME PARITY ERROR STATUS 
IF SET, CRC ERROR 
OR DATA-PATH-PURGE ERROR 

#SS$_DRVERR,RO 
#RL_CS_V_DE,- 
UCB$W_DL_CS(R5).FUNCXT 

#SS$_CTRLERR,RO 

ASSUME DRIVE ERROR STATUS 
IF SET, DRIVE ERROR 

ASSUME CONTROLLER ERROR STATUS 

RO 
G~IOC$DIAGBUFILL 

FUNCTION EXIT 
SAVE FINAL REQUEST STATUS 
FILL DIAGNOSTIC BUFFER IF PRESENT 

#CDF_WRITECHECK,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION? 
10$ ; IF GTRU, YES 
#CDF_AVAILABLE,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION? 
10$ 
UCB$L_IRP(R5),R3 
UCB$W_BCR(R5),- 
IRP$W_BCNT(R3),2(SP) 
UCB$W_DL_DPN(R5) 
20$ 
#UCB$V_DL_MAPPING,- 
UCB$W_DL_FLAGS(R5),10$ 

20$ 
UCB$L_DL_SVAPTE(R5).- 
UCB$L_SVAPTE(R5) 

IF EQL, YES 
RETRIEVE ADDRESS OF IRP 
CALCULATE BYTES TRANSFERRED 

ARE UBA RESOURCES ALLOCATED? 
IF EQL. NO 
ADAPTER MAPPING? 
IF BC. NO 
RELEASE DATA PATH 
RELEASE MAP REGISTERS 
JOIN COMMON CODE 
RESTORE ORIGINAL SVAPTE 

RELEASE CHANNEL IF OWNED 

R1 
RO 

CLEAR SECOND STATUS LONGWORD 
RETRIEVE FINAL REQUEST STATUS 
COMPLETE REQUEST 

FEXL - RL11 HARDWARE FUNCTION EXECUTION 

THIS ROUTINE IS CALLED VIA A BSB WITH A BYTE IMMEDIATELY FOLLOWING THAT 
SPECIFIES THE ADDRESS OF AN ERROR ROUTINE. ALL DATA IS ASSUMED TO HAVE BEEN 
SET UP IN THE UCB BEFORE THE CALL. THE APPROPRIATE PARAMETERS ARE LOADED 
INTO DEVICE REGISTERS AND THE FUNCTION IS INITIATED. THE RETURN ADDRESS 
IS STORED IN THE UCB AND A WAITFOR INTERRUPT IS EXECUTED. WHEN THE 
INTERRUPT OCCURS. CONTROL IS RETURNED TO THE CALLER. 
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INPUTS: 

R3 = FUNCTION TABLE DISPATCH INDEX 
R5 = DEVICE UNIT UCB ADDRESS 

00(SP) = RETURN ADDRESS OF CALLER 
04(SP) = RETURN ADDRESS OF CALLER'S CALLER 

IMMEDIATELY FOLLOWING INLINE AT THE CALL SITE IS A BYTE WHICH CONTAINS 
A BRANCH DESTINATION TO AN ERROR RETRY ROUTINE. 

OUTPUTS: 

THERE ARE FOUR EXITS FROM THIS ROUTINE: 

1. SPECIAL CONDITION - THIS EXIT IS TAKEN IF A POWER FAILURE OCCURS 
OR THE OPERATION TIMES OUT. IT IS A JUMP TO THE APPROPRIATE 
ERROR ROUTINE. 

2. FATAL ERROR - THIS EXIT IS TAKEN IF A FATAL CONTROLLER OR DRIVE 
ERROR OCCURS OR IF ANY ERROR OCCURS AND ERROR RETRY IS EITHER 
INHIBITED OR EXHAUSTED. IT IS A JUMP TO THE FATAL ERROR EXIT 
ROUTINE. 

3. RETRIABLE ERROR - THIS EXIT IS TAKEN IF A RETRIABLE CONTROLLER 
OR DRIVE ERROR OCCURS AND ERROR RETRY IS NEITHER INHIBITED 
NOR EXHAUSTED. IT CONSISTS OF TAKING THE ERROR BRANCH EXIT 
SPECIFIED AT THE CALL SITE. 

4. SUCCESSFUL OPERATION - THIS EXIT IS TAKEN IF NO ERRORS OCCUR 
DURING THE OPERATION. IT CONSISTS OF A RETURN INLINE. 

IN ALL CASES IF AN ERROR OCCURS, AN ATTEMPT IS MADE TO LOG THE ERROR. 

IN ALL CASES FINAL DEVICE REGISTERS ARE RETURNED VIA THE UCB. 

UCB$W_BCR(R5) = NEGATIVE BYTES REMAINING TO TRANSFER 
.PAGE 

FEXL: 
POPL UCB$L_DPC(R5) 
MOVB R3,UCB$B_CEX(R5) 
MOVL UCB$L_CRB(R5),R0 
MOVL CRB$L_INTD+VEC$L_IDB(RO) 
CMPL R5,IDB$L_OWNER(R1) 
BNEQ 10$ 
MOVL IDB$L_CSR(R1),R4 
BRB 20$ 

10$: REQPCHAN 

FUNCTION EXECUTOR 
SAVE DRIVER PC VALUE 
SAVE CASE INDEX 
GET ADDRESS OF PRIMARY CRB 
R1 ;GET ADDRESS OF IDB 
DOES THIS PROCESS OWN CHANNEL? 
IF NEQ, NO 
SET ASSIGNED CHANNEL CSR ADDRESS 

REQUEST CHANNEL (RETURNS R4 = CSR ADR) 

20$: CASE R3,<- 
IMMED,- 
IMMED,- 
POSIT.- 
IMMED,- 

DRCLR,- 
IMMED,- 
IMMED,- 
IMMED,- 
DRCLR,- 
IMMED.- 
> 

BRW XFER 

DISPATCH TO PROPER FUNCTION ROUTINE 
NO OPERATION 
UNLOAD VOLUME (NOP) 
SEEK CYLINDER 
RECALIBRATE (NOP) 

DRIVE CLEAR (GET STATUS & RESET) 
RELEASE DRIVE (NOP) 
OFFSET HEADS (NOP) 
RETURN TO CENTERLINE (NOP) 
PACK ACKNOWLEDGE 
SEARCH (NOP) 

TRANSFER FUNCTION 
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IMMEDIATE FUNCTION EXECUTION 

FUNCTIONS INCLUDE: 

NO OPERATION, 
DRIVE CLEAR, AND 
PACK ACKNOWLEDGE 

INPUTS: 
R3 - CASE INDEX 
R4 - CSR ADDRESS 
R5 - UCB ADDRESS 

; FUNCTIONAL DESRIPTION: 

; INTERRUPTS ARE LOCKED OUT. THE APPROPRIATE FUNCTION IS INITIATED WITH 
; INTERRUPT ENABLE. AND A WAITFOR INTERRUPT AND KEEP CHANNEL IS EXECUTED. 

DRCLR: ;DRIVE CLEAR 
BISW #RL_DA_M_STS!- 

RL_DA_M_RST!RL_DA_M_MRK 

CKPWR 

BISW3 R2,FTAB[R3],RL_CS(R4) 
WFIKPCH 
IOFORK 

RETREG,#2 

BRW 

.PAGE 

RETREG 

POSITIONING FUNCTION EXECUTION 

FUNCTIONS INCLUDE: 

SEEK CYLINDER 

INPUTS: 
R3 - CASE INDEX 
R4 - DEVICE CSR ADDRESS 
R5 - UCB ADDRESS 

;SET GETSTATUS.RESET,AND MARK IN DAR 
RL_DA(R4) ; . . . 

;IMMEDIATE FUNCTION EXECUTION 
;DISABLE INTERRUPTS, CHECK POWER,- 
;AND PUT UNIT NUMBER IN R2<9:8> 
;MERGE UNIT WITH FNTN AND EXECUTE 
;WAITFOR INTERRUPT 
;RETURN FROM ISR- 
;CREATE FORK PROCESS (&JSB BACK TO ISR) 

FUNCTIONAL DESRIPTION: 

THE CYLINDER DIFFERENCE WORD IS CALCULATED AND LOADED INTO THE DISK 
ADDRESS REGISTER, INTERRUPTS ARE LOCKED OUT, AND THE SEEK FUNCTION 
IS INITIATED WITHOUT INTERRUPT ENABLE. THE CONTROLLER IS THEN POLLED 
FOR READY. AND DEVICE INTERRUPTS ARE ENABLED. 

SINCE THE RL01/RL02 DO NOT ISSUE AN INTERRUPT UPON COMPLETION OF A 
SEEK, OVERLAPPED SEEKS ARE NOT ATTEMPTED, AND ONE OF THE FOLLOWING IS 
PERFORMED. 

IF ONLY A SEEK FUNCTION IS BEING REQUESTED, A DUMMY READ HEADER 
FUNCTION IS ISSUED AND A WAITFOR INTERRUPT IS INITIATED. 
THE READ HEADER IS USED TO SIGNAL THE END OF THE SEEK, SINCE IT 
WILL ISSUE AN INTERRUPT SHORTLY (315 USEC AVG) AFTER THE SEEK IS 
COMPLETE. IT WILL ALSO SENSE FOR A TIMEOUT DURING THE SEEK. 

IF THE SEEK IS ASSOCIATED WITH A DATA TRANSFER REQUEST (RL01/RL02 
TRANSFER FUNCTIONS REQUIRE EXPLICIT SEEKS), THE PROGRAM KEEPS THE 
CHANNEL AND RETURNS TO FDISPATCH TO ISSUE THE TRANSFER REQUEST 
WHILE THE SEEK IS STILL IN PROGREES. WHEN THE SEEK COMPLETES. THE 
RL11 CONTROLLER WILL BEGIN THE TRANSFER. 
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POSIT: ;POSITIONING FUNCTION 

; OBTAIN CURRENT DISK ADDRESS 

; IF THERE HAS NOT BEEN A PREVIOUS TRANSFER DURING THIS REQUEST, 

; A READ HEADER IS EXECUTED TO DETERMINE THE CURRENT DISK ADDRESS. 

TSTW UCB$W_DL_DPN(R5) ;WAS THERE A PREVIOUS TRANSFER? 
BEQL 10$ ;IF EQL, NO, READ HEADER 
BICW3 #“077,UCB$W_DL_DA(R5),R1 ;PUT CURRENT CYL ft SURFACE IN R1 
BRW 60$ CALCULATE DIFFERENCE WORD 

10$ MOVZBL #8 ,R3 SET READ HEADER RETRY COUNT IN R3 
20$ CKPWR DISABLE INTERRUPTS. CHECK POWER,- 

AND PUT UNIT NUMBER IN R2<9:8> 
BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE READ HEADER 

RL.CS(R4) . . . 
WFIKPCH 40$,#2 WAIT FOR INTERRUPT OR TIMEOUT 
IOFORK CREATE FORK PROCESS 
BITW #RL_CS_M_CE,UCB$W_DL_CS(R5) ;ANY ERRORS? 
BEQL 50$ IF EQL, NO 
DECB R3 DECREMENT READ HEADER RETRY COUNT 
BNEQ 20$ IF NEQ, RETRY READ HEADER 

IF EQL, READ HEADER RETRY EXHAUSTED - 
TRY PREVIOUS TRACK 

MOVW #“0200!RL.DA_M.MRK,- 
RL_DA(R4) 

LOAD REVERSE SEEK DIFFERENCE WORD 

CKPWR DISABLE INTERRUPTS, CHECK POWER,- 
AND PUT UNIT NUMBER IN R2<9:8> 

BISW3 R2,#F_SEEK!RL.CS.M_IE,- 
RL.CS(R4) 

EXECUTE REVERSE SEEK 

WFIKPCH 40$,#2 WAIT FOR SEEK TO BEGIN (INTERRUPT) 
IOFORK CREATE FORK PROCESS 
CKPWR DISABLE INTERRUPTS, CHECK POWER,- 

AND PUT UNIT NUMBER IN R2<9:8> 
BISW3 R2,#F_READHEAD!RL.CS.M_IE,- ;TRY READ HEADER ON NEW TRACK 

RL.CS(R4) . . . 
WFIKPCH 40$.#2 WAITFOR INTERRUPT OR TIMEOUT 
IOFORK CREATE FORK PROCESS 
BITW #RL_CS_M_CE,UCB$W_DL_CS(R5) ;READ HEADER ERROR? 
BEQL 50$ IF EQL, NO 

40$: 
CLRB UCB$B_ERTCNT(R5) 

CANNOT READ CURRENT DISK ADDRESS 
CLEAR RETRY COUNT 

BRW RETREG 

50$: FOUND CURRENT DISK ADDRESS 

BICW3 #“077,UCB$W_DL_MP(R5),R1 ;PUT CURRENT CYL ft SURFACE IN R1 

; CALCULATE CYLINDER DIFFERENCE WORD 

60$: CLRL RO CLEAR RO FOR DESIRED ADDRESS 

INSV UCB$W_DA+1(R5),#6,#1,R0 INSERT DESIRED SURFACE IN R0<6> 
INSV UCB$W_DC(R5).#7.#9.RO INSERT DESIRED CYLINDER IN R0<15:7> 
CMPW R0.R1 IS A SEEK NEEDED? 

BEQL 80$ IF EQL, NO 
BICW #“0177,R1 REMOVE SURFACE BIT 
BICW #“0177,RO REMOVE SURFACE BIT 
SUBW RO.Rl SUBTRACT DESIRED FROM ACTUAL 
BEQL 70$ IF EQL, ONLY CHANGE SURFACE 
BCC 70$ IF CC. ACTUAL>=DESIRED 
MNEGW R1.R1 ACTUAL<DESIRED, MAKE POSITIVE DIFF 
BISW #4, R1 SET SIGN FOR MOVE TO CENTER OF DISK 

70$: INSV UCB$W_DA+1(R5),#4,#1,R1 INSERT SURFACE BIT 
BISW3 #RL_DA_M_MRK,R1,RL_DA(R4) ;SET MARKER AND LOAD DIFFERENCE WORD 
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EXECUTE SEEK 

CKPWR DISABLE INTERRUPTS, CHECK POWER,- 
AND PUT UNIT NUMBER IN R2<9:8> 

BISW3 R2,#F_SEEK!RL_CS_M_IE,- EXECUTE SEEK FUNCTION 
RL_CS(R4) . . . 

WFIKPCH 40$,#2 WAIT FOR SEEK TO BEGIN (INTERRUPT) 
IOFORK CREATE FORK PROCESS 

80$: CMPB #IO$_SEEK,UCB$B_FEX(R5) IS SEEK ASSOCIATED WITH A TRANSFER? 
BEQL 90$ IF EQL, NO, SEEK ONLY 

; RETURN FOR SEEK ASSOCIATED WITH A TRANSFER REQUEST 

INCL UCB$L_DPC(R5) ; ;ADJUST TO CORRECT RETURN ADDRESS 
JMP ®UCB$L_DPC(R5) ;RETURN TO DRIVER FOR TRANSFER 

; RETURN FOR SEEK ONLY REQUEST 

90$: CKPWR ;DISABLE INTERRUPTS, CHECK POWER,- 
;AND PUT UNIT NUMBER IN R2<9:8> 

BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE DUMMY READ HEADER 
RL_CS(R4) • • . 

WFIKPCH RETREG,#2 WAIT FOR SEEK TO COMPLETE (INTERRUPT) 
IOFORK CREATE FORK PROCESS 
BRW RETREG 

.PAGE 

TRANSFER FUNCTION EXECUTION 

FUNCTIONS INCLUDE: 

WRITE CHECK 
WRITE DATA 
READ DATA, AND 
READ HEADER 

INPUTS: 
R3 
R4 
R5 

- CASE INDEX 
- DEVICE CSR ADDRESS 
- UCB ADDRESS 

FUNCTIONAL DESCRIPTION: 

A UNIBUS DATA PATH IS REQUESTED FOLLOWED BY THE APPROPRIATE NUMBER OF MAP 
REGISTERS REQUIRED FOR THE TRANSFER. THE TRANSFER PARAMETERS ARE LOADED 
INTO THE DEVICE REGISTERS, INTERRUPTS ARE LOCKED OUT, THE FUNCTION IS 
INITIATED, AND A WAITFOR INTERRUPT AND KEEP CHANNEL IS EXECUTED. 

UPON RETURN FROM THE INTERRUPT SERVICE ROUTINE, IF THE TRANSFER IS 
COMPLETE, THE APPROPRIATE EXIT IS TAKEN. IF THE FUNCTION IS NOT COMPLETE 
TRANSFER PARAMETERS ARE UPDATED AND A RETURN TO FDISPATCH IS EXECUTED TO 
RE-ISSUE SEEK AND TRANSFER FUNCTIONS WHILE KEEPING CHANNEL AND UBA 
RESOURCES. IF A DATA CHECK HAS BEEN REQUESTED, IT IS PERFORMED 
BEFORE RETURNING TO FDISPATCH. 

XFER: 
BBS 

MOVW 
MOVZWL 
MOVW 
ASHL 
MOVB 

#UCB$V_DL_MAPPING,- 
UCB$W_DL_FLAGS(R5),2$ 

TRANSFER FUNCTION EXECUTION 
ADAPTER MAPPING? 
BRANCH IF ADAPTER MAPPING. 

UCB$A_DL_BUF_PA(R5),UCB$W_DL_SBA(R5);GET 1ST WORD OF BUFFER ADDR 
UCB$A_DL_BUF_PA+2(R5),RO 
R0,RL_BAE(R4) 
#4,RO,RO 
RO,UCB$B_DL_XBA(R5) 

GET BITS 16:21 OF BUFFER ADDRESS 
SET MEMORY EXTENSION BITS IN BAE 
PUT MEMORY EXTENSION BITS IN <5:4> 
OF CSR 
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FIRST TRANSFER OF THIS I/O REQUEST ALLOCATE RESOURCES 

1$: 

TSTW 
BNEQ 
CLRL 
CMPB 
BNEQ 
MOVAB 

MOVL 
MNEGW 
BRB 

UCB$W_DL_DPN(R5) 
5$ 
UCB$A.DL.MOVRTN(R5) 
#CDF_WRITEDATA,R3 

1$ 
G~IOC$MOVFRUSER,- 
UCB$A_DL_MOVRTN(R5) 
UCB$L_SVAPTE(R5),UCB$L_DL 
#1,UCB$W_DL_DPN(R5) 
5$ 

RESOURCES ALREADY ALLOCATED? 
IF NEQ, YES 
ASSUME READ 
WRITE DATA? 
IF NEQ, NO 
SET MOVE ROUTINE ADDRESS FOR 
1ST PARTIAL WRITE 

SVAPTE(R5);SAVE SVAPTE FOR BUFFER COPY 
SET FIRST XFER FLAG 
JOIN COMMON CODE 

; FIRST TRANSFER OF THIS I/O REQUEST - ALLOCATE RESOURCES 

2$: TSTW UCB$W_DL_DPN(R5) ;UBA RESOURCES ALREADY ALLOCATED? 
BNEQ 5$ ;IF NEQ, YES 
REQDPR ;REQUEST DATA PATH 
REQMPR ;REQUEST MAP REGISTERS 
LOADUBA ;LOAD UNIBUS MAP REGISTERS 
MOVL UCB$L_CRB(R5),R1 ;GET CRB ADDRESS 
EXTZV #VEC$V_DATAPATH,#VEC$S.DATAPATH,- ;EXTRACT DATA-PATH NUMBER 

CRB$L_INTD+VEC$B_DATAPATH(R1),RO ; FOR UBA-RESOURCE FLAG 
MOVW RO,UCB$W_DL_DPN(R5) ;INDICATE UBA RESOURCES ALLOCATED 

MOVZWL UCB$W_B0FF(R5),RO ;GET BYTE OFFSET IN PAGE 
INSV CRB$L_INTD+VEC$W_MAPREG(R1),- ;INSERT HIGH 7 BITS OF ADDRESS 

#9,#7,RO 
MOVW RO,UCB$W_DL_SBA(R5) ;SET BUFFER ADDRESS 
EXTZV #7,#2,CRB$L_INTD+VEC$W_MAPREG(R1),RO ;GET MEMORY EXTENSION BITS 
MULB3 #16,RO,UCB$B_DL_XBA(R5) ;POSITION MEMORY EXTENSION BITS TO <5:4> 

COMMON TRANSFER POINT 

; FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT EMPTY THE 
; INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE PREVIOUS READ TO THE 
; USER'S BUFFER. 

5$: BSBW DL_MOVE_TO_BUFFER ;COPY TO USER BUFFER 

; PUT BUFFER ADDRESS, WORD COUNT, AND DISK ADDRESS IN DEVICE REGISTERS 

MOVW UCB$W_DL_SBA(R5),RL_BA(R4) ;SET BUFFER ADDRESS 
MNEGW UCB$W_BCR(R5),- 

UCB$W_DL_PBCR(R5) 
MOVZBL UCB$B_SECT0RS(R5),R2 
MOVZBL UCB$W_DA(R5),R1 
SUBW R1.R2 
MULW #256.R2 
CMPW UCB$W_DL_PBCR(R5),R2 
BLEQU 10$ 
MOVW R2,UCB$W_DL_PBCR(R5) 

GET BYTES LEFT TO TRANSFER AND - 
ASSUME ONLY ONE TRANSFER NEEDED 
GET SECTORS/SURFACE 
GET DESIRED SECTOR 
CALCULATE SECTORS LEFT ON SURFACE 
CONVERT TO BYTES LEFT ON SURFACE 
ARE ADDITIONAL TRANSFERS REQUIRED? 
IF LEQU, NO 
SET BYTE COUNT FOR THIS TRANSFER 

E—20 



Sample Driver for the RL11, RL01, and RL02 

FOR A WRITE OPERATION WHEN NO ADAPTER MAPPING IS PRESENT 
FILL INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE USER'S BUFFER. 

10$: BSBW DL_MOVE_FROM_BUFFER 

MOVZBL UCB$B_DL_XBA(R5),R0 
BISW FTAB[R3],R0 
DIVW3 #2,UCB$W_DL_PBCR(R5),R2 
MNEGW R2,RL_MP(R4) 

MOVZBL UCB$W_DA(R5),R1 
INSV UCB$W_DA+1(R5),#6,#1,R1 
INSV UCB$W_DC(R5),#7,#9,R1 
MOVW R1,RL_DA(R4) 

EXECUTE THE TRANSFER FUNCTION 

CKPWR 

BISW3 R2,R0,RL_CS(R4) 
WFIKPCH RETREG,#6 

IOFORK 

COPY FROM USER BUFFER 

SET MEMORY EXTENSION BITS 
MERGE XBA BITS WITH FUNCTION 
CALCULATE TRANSFER WORD COUNT 
SET TRANSFER WORD COUNT 

PUT DESIRED SECTOR IN Rl<5:0> 
INSERT DESIRED SURFACE IN Rl<6> 
INSERT DESIRED CYLINDER IN Rl<15:7> 
SET DESIRED DISK ADDRESS 

DISABLE INTERRUPTS, CHECK POWER,- 
AND PUT UNIT NUMBER IN R2<9:8> 
EXECUTE FUNCTION 
WAITFOR INTERRUPT AND KEEP CHANNEL 
RETURN HERE FROM ISR SAVING REGISTERS 
CREATE FORK PROCESS (RETURN TO ISR) 
RETURN HERE FROM ISR REI ROUTINE 

; PURGE DATA PATH 

CLRB UCB$B_DL_DPPE(R5) CLEAR DATA-PATH-PURGE ERROR 
JSB G~IOC$PURGDATAP PURGE DATA PATH 
BLBS RO,20$ IF SET, NO PURGE ERRORS 
INCB UCB$B_DL_DPPE(R5) SET DATA-PATH-PURGE ERROR 

; SAVE UBA REGISTERS FOR UPDATE AND REGDUMP ROUTINES 

20$: BBC #UCB$V_DL_MAPPING,- ADAPTER MAPPING? 
UCB$W_DL_FLAGS(R5),30$ IF BC, NO 

MOVL R1,UCB$L_DL_DPR(R5) SAVE DATA-PATH REGISTER 
EXTZV #9,#7,UCB$W_DL JBA(R5),R0 ;EXTRACT LOW BITS OF FINAL MAP REG NO. 
EXTZV #4,#2,UCB$W_DL_CS(R5),R1 ;EXTRACT HIGH BITS OF FINAL MAP REG NO 
INSV R1,#7,#2,RO INSERT HIGH BITS OF FINAL MAP REGISTER 
CMPW #495,RO LEGAL MAP REGISTER NUMBER? 
BGEQ 25$ IF GEQ, YES 
MOVZWL #495,RO RESTRICT MAP REGISTER NUMBER 

25$: MOVL (R2)[RO],UCB$L_DL_FMPR(R5) ;SAVE FINAL MAP REGISTER NUMBER 
CLRL UCB$L_DL_PMPR(R5) ;CLEAR PREVIOUS MAP REGISTER CONTENTS 
DECL RO ;CALCULATE PREVIOUS MAP REGISTER NUMBER 
CMPV #VEC$V_MAPREG,#VEC$S_MAPREG,- ;ANY PREVIOUS MAP REGISTER? 

CRB$L_INTD+VEC$W_MAPREG(R3),R0 ;... 
BGTR 30$ ;IF GTR, NO 
MOVL (R2)[RO],UCB$L_DL_PMPR(R5) ;SAVE PREVIOUS MAP REGISTER 

30$: BBC #RL_CS_V_CE,UCB$W_DL_CS(R5),40$ ;IF CLR, NO RL ERRORS 
BRW RETREG DEVICE ERROR 

40$: BLBC UCB$B_DL_DPPE(R5).45$ IF CLR, NO PURGE ERROR 
BRW RETREG PURGE ERROR 

; RETURN HEADER INFORMATION FOR READ HEADER FUNCTION 

45$: CMPB #CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION? 
BNEQ DATACHECK IF NEQ, NO 
PUSHL UCB$W_BCR(R5) SAVE NEG BYTES REMAINING 
PUSHL UCB$L_SVAPTE(R5) SAVE ADDRESS OF PTE 
MOVAB UCB$W_DL_DB(R5),R1 SET ADDRESS OF INTERNAL BUFFER 
MOVL #6,R2 SET NUMBER OF BYTES TO MOVE 
CMPW R2,UCB$W_BCNT(R5) ROOM FOR FULL HEADER? 
BLSSU 50$ IF LSSU, YES 
MOVZWL UCB$W_BCNT(R5),R2 SET LENGTH OF PARTIAL HEADER 
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50$: SUBW3 UCB$W_BCNT(R5),R2,UCB$W_BCR(R5) ;CALCULATE TRANSFER BYTE COUNT 
JSB G~IOC$MOVTOUSER MOVE HEADER TO USER BUFFER 
POPL UCB$L_SVAPTE(R5) RESTORE ADDRESS OF PTE 
POPL UCB$W_BCR(R5) RESTORE NEG BYTES REMAINING 

; PERFORM DATA CHECK. IF REQUESTED 

DATACHECK: DATACHECK AFTER PARTIAL TRANSFER 
BBC #IO$V_DATACHECK,- 

UCB$W_FUNC(R5).UPDATE 
IF CLR. DATA CHECK NOT REQUESTED 

BBSC #0,UCB$B_DL_DCHEK(R5).- 
UPDATE 

IF SET, DATA CHECK ALREADY PERFORMED 

INCB UCB$B_DL_DCHEK(R5) SET DATA CHECK IN PROGRESS 
MOVZBL #IO$_WRITECHECK,R3 SET CASE INDEX TO WRITE CHECK 
BRW XFER BRANCH TO PERFORM WRITE CHECK 

; UPDATE BUFFER ADDRESS. CURRENT DISK ADDRESS. AND BYTES REMAINING 
; FOR NEXT TRANSFER 

UPDATE 
BBC #UCB$V_DL_MAPPING,- 

UPDATE TRANSFER PARAMETERS 
ADAPTER MAPPING? 

UCB$W_DL_FLAGS(R5),10$ IF BC. NO 
BICB3 #~XCF.UCB$W_DL_CS(R5),- 

UCB$B_DL _XBA(R5) 
SAVE MEMORY EXTENSION BITS 

MOVW UCB$W_DL_BA(R5).- 
UCB$W_DL_SBA(R5) 

UPDATE SAVED BUFFER ADDRESS 

10$: CLRB UCB$W_DA(R5) UPDATE DESIRED SECTOR TO ZERO 
ADDL3 #~0100,UCB$W_DL_DA(R5),R1 ;INCREMENT CYLINDER & SURFACE 
EXTZV #6,#1,R1,R2 EXTRACT DESIRED DISK SURFACE 
MOVB R2,UCB$W_DA+1(R5) UPDATE DESIRED DISK SURFACE 
EXTZV #7,#9,R1,R2 EXTRACT DESIRED DISK CYLINDER 
MOVW R2,UCB$W_DC(R5) UPDATE DESIRED DISK CYLINDER 
ADDW UCB$W_DL_PBCR(R5),- UPDATE NEG BYTES REMAINING TO XFER 

UCB$W_BCR(R5) . . . 
BEQL RETREG IF EQL. TRANSFER COMPLETE 
BRW FDISPATCH MORE BYTES REMAINING - CONTINUE 

GET STATUS AND RESET ERRORS 

RETREG: ;GET STATUS AND RESET ERRORS 

FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT 
EMPTY INTERNAL BUFFER INTO USER'S BUFFER FOR LAST READ 

MOVE LAST READ INTO USER'S BUFFER 
MAKE SURE AT FORK IPL (TIMEOUT) 
PUT GET STATUS IN DAR 

BSBW DL_MOVE_TO_BUFFER 
SETIPL UCB$B_FIPL(R5) 
MOVW #RL_DA_M_STS!- 

RL_DA_M_MRK,RL.DA(R4) 
CLRL R2 ;CLEAR R2 FOR UNIT NUMBER 
INSV UCB$W_UNIT(R5),#8,#8,R2 ;GET UNIT NUMBER 
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE GET STATUS 
BSBW DL_WAIT ;WAIT FOR CONTROLLER 
MOVW RL_MP(R4),UCB$W_DL_MP(R5) ;RETRIEVE ERROR REGISTER 
MOVW #RL_DA_M_RST!- ;PUT GET STATUS A RESET IN DAR 

RL_DA_M_STS!RL_DA_M_MRK,RL_DA(R4) ;... 
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE RESET 
BSBW DL.WAIT ;WAIT FOR CONTROLLER 
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DETERMINE EXIT - SPECIAL CONDITION, FATAL ERROR, RETRIABLE ERROR, OR SUCCESS 

1$: 

2$: 

4$: 

CMPZV #0,#5,UCB$W_DL_MP(R5),- ;HEADS. BRUSHES, STATE OK? 
#RL_MP_M_BH!RL_MP_M_HO!RL_SLM ;... 

BEQL 1$ ;IF EQL, YES, ONLINE 
BICW #UCB$M_TIM0UT,UCB$W_STS(R5) ;CLEAR DEVICE TIME OUT 
MOVZWL #SS$_MEDOFL,RO ;SET MEDIUM OFFLINE STATUS 
BRW FUNCXT ;RETURN 
BITW #UCB$M_POWER!- ;POWER FAIL OR DEVICE TIMEOUT? 

UCB$M_TIMOUT,UCB$W_STS(R5) ;... 
BNEQ SPECOND ;IF NEQ, YES, SPECIAL CONDITION 

BBS #RL_MP_V_VC,UCB$W_DL_MP(R5),20$ ;IF SET, VOLUME INVALID 
BBS #RL_CS_V_CE,UCB$W_DL_CS(R5),2$ ;IF SET. RL ERROR 
BLBC UCB$B_DL_DPPE(R5),10$ ; IF CLR, NO PURGE ERROR 
JSB G~ERL$DEVICERR ;ALLOCATE AND FILL ERROR MESSAGE BUFFER 
BBS #IO$V_INHRETRY,UCB$W_FUNC(R5),20$ ;IF SET. RETRY INHIBITED 
BBS #RL_CS_V_NXM,UCB$W_DL_CS(R5),20$ ;IF SET, NONEXISTENT MEMORY 
BBC #RL_CS_V__DE,UCB$W_DL_CS(R5),5$ ;IF CLR, NO DRIVE ERRORS 
BBC #RL_MP_V_WL,UCB$W_DL_MP(R5),4$ ;IF CLR, NOT WRITE LOCKED 
BBS #RL_MP_V_WGE,UCB$W_DL_MP(R5),20$ ;IF WL & WGE SET, WL ERROR 
BITW #RL_MP_M_WDE!- ;WRITE DATA ERROR, OR 

RL_MP_M_CHE!- ;CURRENT HEAD ERROR, OR 
RL_MP_M_WGE!- ;WRITE GATE ERROR, OR 
RL_MP_M_DSE,UCB$W_DL_MP(R5) ;DRIVE SELECT ERROR? 

BNEQ 20$ ;IF NEQ, YES 

RETRIABLE ERROR EXIT 

5$: CVTBL ©UCB$L_DPC(R5),-(SP) ;GET BRANCH DISPLACEMENT 
ADDL (SP)+,UCB$L_DPC(R5) ;CALCULATE RETURN ADDRESS - 1 

SUCCESSFUL OPERATION EXIT 

10$: INCL UCB$L_DPC(R5) 
JMP ®UCB$L_DPC(R5) 

;ADJUST TO CORRECT RETURN ADDRESS 
;RETURN TO DRIVER 

FATAL ERROR EXIT 
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20$: BRW FATALERR ;FATAL ERROR EXIT 

SPECIAL CONDITION EXIT (POWER FAILURE OR DEVICE TIMEOUT) 

SPECOND: 
BBS 

JSB 
BICW 
MOVZWL 
DECB 
BEQL 
BRW 

RESETXFR: 
MOVL 
MNEGW 
BRW 

#UCB$V_POWER,UCB$W_STS(R5),PWRFAIL ;IF SET, POWER FAILURE 
;IF CLR, DEVICE TIMEOUT 

G~ERL$DEVICTMO ;LOG DEVICE TIMEOUT 
#UCB$M_TIM0UT,UCB$W_STS(R5) ;CLEAR TIMEOUT STATUS 
#SS$_TIMEOUT,RO 
UCB$B_ERTCNT(R5) 
RESETXFR 
FDISPATCH 

SET DEVICE TIMEOUT STATUS 
ANY ERROR RETRIES REMAINING? 
IF EQL, NO 
RETURN 

UCB$L_IRP(R5),R3 
IRP$W_BCNT(R3),UCB$W_BCR(R5) 
FUNCXT ;EXIT 

RESET TRANSFER BYTE COUNT 
GET ADDRESS OF I/O PACKET 

;RESET BYTE COUNT 

PWRFAIL: 

50$: 

BICW 
TSTW 
BEQL 
BBC 

RELDPR 
RELMPR 
RELCHAN 
MOVL 
MOVQ 

BRW 

#UCB$M_POWER, UCB$W. 
UCB$W_DL_DPN(R5) 
50$ 
#UCB$V_DL_MAPPING, 
UCB$W_DL_FLAGS(R5) 

UCB$L_IRP(R5),R3 
IRP$L_SVAPTE(R3), - 
UCB$L_SVAPTE(R5) 
PREPROCESS 

;POWER FAILURE 
_STS(R5) ;CLEAR POWER FAILURE BIT 

;ARE UCB RESOURCES ALLOCATED? 
IF EQL, NO 

;ADAPTER MAPPING? 
50$ ;IF BC, NO 

;RELEASE DATA PATH 
RELEASE MAP REGISTERS 
RELEASE CHANNEL IF OWNED 
GET ADDRESS OF I/O PACKET 
RESTORE TRANSFER PARAMETERS 

RETURN TO PREPROCESS UCB FIELDS 

.PAGE 

.SBTTL INTERRUPT SERVICE ROUTINE 
K + 

DL$INT - RL11 INTERRUPT SERVICE ROUTINE 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN INTERRUPT 
OCCURS ON AN RL11 DISK CONTROLLER. IF THE INTERRUPT IS NOT EXPECTED, 

THE UNSOLICITED INTERRUPT ROUTINE DISMISSES THE INTERRUPT. IF 
THE INTERRUPT IS EXPECTED, DEVICE REGISTERS ARE SAVED AND THE 
DRIVER IS CALLED AT ITS INTERRUPT RETURN ADDRESS. THE DRIVER FORKS, 
CAUSING A RETURN TO THIS ROUTINE, WHICH RESTORES GENERAL REGISTERS 
AND DISMISSES THE INTERRUPT. 

INPUTS: 

00(SP) - POINTER TO ADDRESS OF THE IDB 
04(SP) - SAVED RO 
08(SP) - SAVED R1 
12(SP) - SAVED R2 
16(SP) - SAVED R3 

20(SP) - SAVED R4 
24(SP) - SAVED R5 
28(SP) - PC AT THE TIME OF THE INTERRUPT 
32(SP) - PSL AT THE TIME OF THE INTERRUPT 

OUTPUTS: 

DEVICE REGISTERS ARE SAVED, IPL IS LOWERED TO FORK LEVEL. THE 
INTERRUPT IS DISMISSED. ALL REGISTERS EXCEPT R0-R5 ARE PRESERVED. 
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DL_INT:: 
MOVL 
MOVQ 
TSTL 
BEQL 
BBCC 

CMPB 
BNEQ 
MOVW 
MOVW 
MOVW 

10$: MOVAB 
MOVAB 
MOVW 
MOVW 
MOVW 
MOVW 

20$: MOVQ 
JSB 

DL.UNSOLNT: 
POPR 
REI 

.PAGE 

.SBTTL 

; +♦ 

®(SP)+,R3 
(R3),R4 
R5 
DL.UNSOLNT 
#UCB$V_INT,- 
UCB$W_STS(R5).DL.UNSOLNT 

INTERRUPT SERVICE ROUTINE 
REMOVE ADDRESS OF IDB FROM STACK 
GET ADDRESS OF CSR AND UCB 
IS R5 A ZERO 
IF EQL, NO OWNER 
IF CLR, INTERRUPT NOT EXPECTED 

#CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION? 
10$ ;IF NEQ, NO 
RL_MP(R4),UCB$W_DL_DB(R5) ;SAVE SECTOR HEADER INFORMATION 
RL_MP(R4),UCB$W_DL_DB+2(R5) ;... 
RL_MP(R4),UCB$W_DL_DB+4(R5) ;... 

RL_CS(R4),R2 
UCB$W_DL_CS(R5),R3 
(R2)+,(R3) + 
(R2)+,(R3)+ 
(R2)+,(R3) + 
(R2)+,(R3) + 

UCB$L_FR3(R5),R3 
®UCB$L_FPC(R5) 

#~M<R0,R1,R2,R3.R4,R5> 

GET ADDRESS OF CONTROL STATUS REGISTER 
GET ADDRESS OF REGISTER SAVE AREA 
SAVE CONTROL STATUS REGISTER 
SAVE BUFFER ADDRESS REGISTER 
SAVE DISK ADDRESS REGISTER 
SAVE MULTIPURPOSE REGISTER 

RESTORE DRIVER CONTEXT 
CALL DRIVER AT INTERRUPT RETURN ADDRESS 

UNSOLICITED INTERRUPT 
RESTORE R0-R5 
RETURN FROM INTERRUPT 

REGISTER DUMP ROUTINE 

DL.REGDUMP - REGISTER DUMP ROUTINE 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE IS CALLED TO SAVE THE DEVICE REGISTERS AND UBA RESOURCE 
REGISTERS IN A SPECIFIED BUFFER. IT IS CALLED FROM THE DEVICE ERROR 

LOGGING ROUTINE AND FROM THE DIAGNOSTIC BUFFER FILL ROUTINE. 

INPUTS: 

RO - ADDRESS OF REGISTER SAVE BUFFER 
R4 - ADDRESS OF DEVICE CONTROL STATUS REGISTER (CSR) 
R5 - ADDRESS OF UNIT-CONTROL BLOCK (UCB) 

OUTPUTS: 

THE DEVICE AND UBA REGISTERS ARE SAVED IN THE SPECIFIED BUFFER. 
RO CONTAINS THE ADDRESS OF THE NEXT EMPTY LONGWORD IN THE BUFFER. 
ALL REGISTERS EXCEPT R1 AND R2 ARE PRESERVED. 

DL_REGDUMP: 
MOVL #<RL_NUM_REGS+5>.(R0)+ 
MOVAL UCB$W_DL_CS(R5),R1 
MOVZBL #RL_NUM_REGS,R2 
MOVZWL (Rl)+,(R0)+ 
SOBGTR R2,10$ 
MOVZWL (Rl)+,(R0)+ 
MOVL (Rl) +, (RO) + 
MOVL (Rl)+,(R0)+ 
MOVL (Rl) +,(RO)+ 
MOVZBL 
RSB 

(Rl)+,(RO)+ 

REGISTER DUMP ROUTINE 
INSERT NUMBER OF REGISTERS 
GET ADDRESS OF SAVED DEVICE REGISTERS 
GET NUMBER OF DEVICE REGISTERS TO MOVE 
DUMP REGISTER IN BUFFER 
IF GTR, STILL MORE TO MOVE 
DUMP DATA-PATH NUMBER 
DUMP DATA-PATH REGISTER 
DUMP FINAL MAP REGISTER 
DUMP PREVIOUS MAP REGISTER 
DUMP DATA-PATH-PURGE-ERROR REGISTER 
RETURN 
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.PAGE 

.SBTTL MOVE TO USER BUFFER ROUTINE 
♦+ 

DL_MOVE_TO_BUFFER - MOVE TO USER BUFFER 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND 
THE USER'S BUFFER. 

INPUTS: 

R5 - UCB ADDRESS 

OUTPUTS: 

DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER'S BUFFER. 
REGISTER'S RO.Rl, AND R2 ARE DESTROYED 

DL_MOVE_TO_BUFFER: 

10$: 

20$: 

BBS 

CMPB 
BNEQ 
BBS 

TSTL 
BEQL 
MOVL 
MOVL 
MOVZWL 
JSB 
MOVL 
MOVAB 

RSB 

MOVAB 

RSB 

#UCB$V_DL_MAPPING,- 
UCB$W_DL_FLAGS(R5),10$ 

BUFFER MOVE ROUTINE 
ADAPTER MAPPING? 
IF BS, YES, NOTHING TO MOVE 

#CDF_READDATA,UCB$B_CEX(R5);READ DATA OPERATION? 
10$ 
#0.UCB$B_DL_DCHEK(R5).- 
10$ 
UCB$A_DL_MOVRTN(R5) 
20$ 
UCB$L_DL_BUFADR(R5),R0 
UCB$A_DL_BUF_VA(R5),R1 
UCB$W_DL_PBCR(R5),R2 
<OUCB$A_DL_MOVRTN (R5) 
RO,UCB$L_DL_BUFADR(R5) 
G~I0C$M0VT0USER2,- 
UCB$A_DL_MOVRTN(R5) 

G~IOC$MOVTOUSER,- 
UCB$A_DL_MOVRTN(R5) 

IF NEQ, NOT A READ 
DATA CHECK IN PROGRESS? 
IF BS, YES, NOTHING TO MOVE 
ANYTHING TO MOVE? 
IF EQL, NO 
GET USER BUFFER POINTER 
GET PHYSICALLY CONTIGUOUS BUFFER ADDRESS 
GET NUMBER OF BYTES TO TRANSFER 
CALL MOVE ROUTINE 
SAVE INTERNAL BUFFER POINTER 
SET NEXT MOVE ROUTINE TO BE USED 

RETURN 

SET NEXT MOVE ROUTINE TO BE USED 

RETURN 

.PAGE 

.SBTTL MOVE FROM USER BUFFER ROUTINE 
♦+ 

DL.MOVE.FROM.BUFFER - MOVE FROM USER BUFFER 

FUNCTIONAL DESCRIPTION: 

THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND 
THE USER'S BUFFER. 
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INPUTS: 

R5 - UCB ADDRESS 

OUTPUTS: 

DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER'S BUFFER. 
REGISTER’S R0.R1, AND R2 ARE DESTROYED 

DL.MOVE. _FROM_BUFFER: BUFFER MOVE ROUTINE 
BBS #UCB$V_DL_MAPPING.- ADAPTER MAPPING? 

UCB$W_DL_FLAGS(R5).10$ IF BS, YES. NOTHING TO MOVE 
CMPB #CDF_WRITEDATA,UCB$B_CEX(R5);WRITE DATA OPERATION? 
BNEQ 10$ IF NEQ, NOT A WRITE 
BBS #0.UCB$B_DL_DCHEK(R5),- DATA CHECK IN PROGRESS? 

10$ IF BS. YES. NOTHING TO MOVE 
MOVL UCB$L_DL_BUFADR(R5).RO GET USER BUFFER POINTER 
MOVL UCB$A_DL_BUF_VA(R5),R1 GET PHYSICALLY CONTIGUOUS BUFFER ADDRESS 
MOVZWL UCB$W_DL_PBCR(R5),R2 GET NUMBER OF BYTES TO TRANSFER 
JSB ®UCB$A_DL_MOVRTN(R5) CALL MOVE ROUTINE 
MOVL RO,UCB$L_DL_BUFADR(R5) SAVE INTERNAL BUFFER POINTER 
MOVAB G~I0C$M0VFRUSER2, - 

UCB$A_DL_MOVRTN(R5) 
SET NEXT MOVE ROUTINE TO BE USED 

10$: RSB RETURN 

DL.END: 
.END 

ADDRESS OF LAST LOCATION IN DRIVER 

W 
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DRV11-WA 

The following driver, XADRIVER, controls the DR11-W, a 16-bit parallel 
DMA interface on Unibus systems. The driver also controls the DRV11-WA, 
a 16-bit parallel DMA interface on the Q-bus. Operational details of these 
devices, as well as the capabilities controlled by the driver can be found in 
the VAX/VMS I/O User's Reference Manual: Part II. Specific code changes 
since VAX/VMS V4.0, including the code added to support the DRV11-WA, 
are highlighted with change bars in the margin. 

You can find a copy of the driver code (XADRIVER.MAR) in 

SYS$EXAMPLES. 

.TITLE XADRIVER - VAX/VMS DRil-W AND DRV11-WA DRIVER 

.IDENT 'X-51 

**************************************************************************** 
* 

* COPYRIGHT (c) 1978, 1980, 1982, 1984, 1986 
* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. 
* ALL RIGHTS RESERVED. 
* 

* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED 
* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE 
* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER 
* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY 
* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY 
* TRANSFERRED. 
* 

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE 
* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT 
* CORPORATION. 
* 

* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS 
* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. 
* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

**************************************************************************** 
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FACILITY: 

VAX/VMS Executive, I/O Drivers 

ABSTRACT: 

This module contains the driver for the DR11-W (UNIBUS) and 
DRV11-WA (Q22 bus). Since the driver was originally written for the 
DR11-W, many inline comments refer to the "DR11-W" and "UNIBUS," but 
apply as well to the DRV11-WA and the Q22 bus. It includes: 

Tables for loading and dispatching 
Controller-initialization routine 
FDT routine 
Start-I/O routine 
Interrupt-servicing routine 
Device-specific cancel-I/0 routine 
Error-logging, register-dumping routine 

ENVIRONMENT: 

Kernel mode, nonpaged 

AUTHOR: 

C. A. Programmer 10-JAN-79 

MODIFIED BY: 

V04-005 DGB0127 D. G. Programmer 19-Sep-1985 
Clean up and document MicroVAX II support 

V04-005 DGB0124 D. G. Programmer 25-Jul-1985 
Add support for the DRV11-WA on MicroVAX II 

V04-003 DGB0112 D. G. Programmer 31-Jan-1985 
Move the I0$M_RESET bit to a new location so it no 
longer coincides with the I0$M_INHERL0G bit. 

V04-002 DGB0106 D. G. Programmer 07-Dec-1984 
Fix synchronization problem which occurs in the 
cancel routine if an I/O completes while we're trying 
to cancel it. 

V04-001 JLV0395 J. V. Programmer 
Add AVL bit to DEVCHAR. 

06-Sep-1984 
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V03-006 TMK0001 T. M. Programmer 07-Dec-1983 
Fix a broken branch. 

V03-005 JLV0304 J. V. Programmer 24-Aug-1983 
Several bug fixes. All word writes to XA_CSR now have 
ATTN set so as to prevent lost interrupts. Attention 
AST list is synchronized at device IPL in DEL.ATTNAST. 
Correct status is returned on a set mode ast that 
it returns through EXE$FINISHIO. REQCOM's are always 
done at FIPL. Signed division that prevented full size 
transfers has been fixed. 

V03-004 KDM0059 K. D. Programmer 14-Jul-1983 
Change time-wait loops to use new TIMEDWAIT macro. 
Add $DEVDEF. 

V03-003 KDM0002 K. D. Programmer 28-Jun-1982 
Added $DYNDEF, $DCDEF, and $SSDEF. 

.SBTTL External and local symbol definitions 

; External symbols 

$ACBDEF 
$CRBDEF 
$DCDEF 

$DDBDEF 
IDEVDEF 
$DPTDEF 
$DYNDEF 
IEMBDEF 
$IDBDEF 
$I0DEF 
$IPLDEF 
$IRPDEF 
$PRDEF 
IPRIDEF 
$SSDEF 
$UCBDEF 
$VECDEF 
$XADEF 

AST control block 
Channel request block 
Device types 

Device data block 
Device characteristics 
Driver prolog table 
Dynamic data structure types 
EMB offsets 
Interrupt dispatch block 
I/O function codes 
Hardware IPL definitions 
I/O request packet 
Internal processor registers 
Scheduler priority increments 
System status codes 
Unit control block 
Interrupt vector block 
Define device specific characteristics 

; Local symbols 

; Argument list (AP) offsets for device-dependent QIO parameters 

PI = 0 
P2 = 4 
P3 = 8 
P4 = 12 

P5 s 16 
P6 = 20 

; Other constants 

_DEF_TIMEOUT 
_DEF_BUFSIZ 
_RESET_DELAY 

* 10 
= 65535 
= «2+9>/10> 

First QIO parameter 
Second QIO parameter 
Third QIO parameter 
Fourth QIO parameter 
Fifth QIO parameter 
Sixth QIO parameter 

10 second default device timeout 
Default buffer size 
Delay N microseconds after RESET 

(rounded up to 10 microsec intervals) 

; DR11-W definitions that follow the standard UCB fields 
; *** N 0 T E *** ORDER OF THESE UCB FIELDS IS ASSUMED 

$DEFINI UCB 
.=UCB$L_DPC+4 

$DEF UCB$L_XA_ATTN 
.BLKL 1 

; Attention AST listhead 

$DEF UCB$W_XA_CSRTMP 
.BLKW 1 

; Temporary storage of CSR image 
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$DEF UCB$W_XA_BARTMP 
.BLKW 1 

$DEF UCB$W_XA_CSR 
.BLKW 1 

$DEF UCB$W_XA_EIR 
.BLKW 1 

$DEF UCB$W_XA_IDR 
.BLKW 1 

$DEF UCB$W_XA_BAR 
.BLKW 1 

$DEF UCB$W_XA_WCR 
.BLKW 1 

$DEF UCB$W_XA_ERROR 
.BLKW 1 

$DEF UCB$L_XA_DPR 
.BLKL 1 

$DEF UCB$L_XA_FMPR 
.BLKL 1 

$DEF UCB$L_XA_PMPR 
.BLKL 1 

$DEF UCB$W_XA_DPRN 
.BLKW 1 

$DEF UCB$W_XA_BAETMP 
.BLKW 1 

$DEF UCB$W_XA_BAE 
.BLKW 1 

; Bit positions for device-dependent 

IVIELD UCB,0,<- 
<ATTNAST,,M>,- 
<UNEXPT,,M>,- 

<IGNORE_UNEXPT,,M>,- 

> 

UCB$K_SIZE=. 
IDEFEND UCB 

; Temporary storage of BAR image 

; Saved CSR on interrupt 

; Saved EIR on interrupt 

; Saved IDR on interrupt 

; Saved BAR register on interrupt 

; Saved WCR register on interrupt 

; Saved device status flag 

; Data-path register's contents 

; Final map register's contents 

; Previous map register's contents 

; Saved data-path register's number 
; and data-path-parity-error flag 

; Temporary storage of BAE (DRV11-WA 

; only 
; Saved BAE register (DRV11-WA only) 

status field in UCB 

; UCB device-specific bit definitions 
; ATTN AST requested 
; Unexpected interrupt received 

; Ignore initial interrupt on DRV11-WA 

; Device register offsets from CSR address 

IDEFINI XA ; i Start of DR11-W definitions 

$DEF XA_WCR ; Word count 
.BLKW 1 

$DEF XA.BAR i ; Buffer address 
.BLKW 1 

$DEF XA.BAE : Buffer address extension (DRV11-WA) 
.BLKW 1 

$DEF XA.CSR 
.BLKW 1 

; Control/status 

; Bit positions for device control/status register 

$EQULST XA$K_,,0,1,<- ; Define CSR FNCT bit values 
<FNCT1,2>- 
<FNCT2,4>- 
<FNCT3,8>- 
<STATUSA,2048>- ; 
<STATUSB,1024>- 

; Define CSR STATUS bit values 

> 
<STATUSC,512>- 

IVIELD XA_CSR.0,<- Control/status register 
<G0,,M>,- Start device 
<FNCT,3,M>,- CSR FNCT bits 
<XBA,2,M>,- Extended address bits 
<IE,,M>,- Enable interrupts 
<RDY,,M>,- Device ready for command 
<CYCLE,,M>,- Starts slave transmit 
<STATUS,3,M>,- CSR STATUS bits 
<MAINT,.M>,- Maintenance bit 
<ATTN,,M>,- Status from other processor 
<NEX,,M>,- Nonexistent memory flag 
<ERROR,,M>,- Error or external interrupt 

> 
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$DEF XA_EIR 

; Bit positions for error information 

$VIELD XA.EIR.O,<- 
<REGFLG,,M>,- 
<SPARE,7,M>,- 
<BURST,,M>,- 
<DLT,,M>, - 
<PAR,, M>, - 
<ACL0,, M>, - 
<MULTI,, M>, - 
<ATTN,,M>,- 
<NEX,, M>, - 
<ERR0R,,M>, - 

> 

; Error information register 

register 

; Error information register 
; Flags whether EIR or CSR is accessed 
; Unused - spare 
; Burst mode transfer occurred 
; timeout for successive burst transfer 
; Parity error during DATI/P 
; Power fail on this processor 
; Multicycle request error 
; ATTN - same as in CSR 
; NEX - same as in CSR 
; ERROR - same as in CSR 

.BLKW 1 

$DEF XA.IDR 
$DEF XA_0DR 

.BLKW 1 

$DEFEND XA 

Input-data-buffer register 
Output-data-buffer register 

End of DR11-W definitions 

.SBTTL Device Driver Tables 

Driver prologue table 

DPTAB 
END=XA_END,- 

ADAPTER=UBA,- 
FLAGS=DPT$M_SVP,- 
UCBSIZE=UCB$K_SIZE,- 
NAME=XADRIVER 

DPT_ST0RE INIT 

DPT_ST0RE UCB,UCB$B_FIPL,B,8 
DPT.STORE UCB,UCB$B_DIPL,B,22 
DPT.STORE UCB,UCB$L_DEVCHAR, L, <- 

DEV$M_AVL!- 
DEV$M_RTM!- 
DEV$M_ELG!- 
DEV$M_IDV!- 
DEV$M_0DV> 

DPT.STORE UCB,UCB$B_DEVCLASS,B,DC$_REALTIME 

DPT-creation macro 
End of driver label 
Adapter type 
Allocate system page table 
UCB size 
Driver name 

Start of load 
initialization table 
Device fork IPL 
Device interrupt IPL 
Device characteristics 
Available 
Real-time device 
Error Logging enabled 

input device 
output device 

Device class 
DPT.STORE UCB,UCB$B_DEVTYPE,B.DT$_DR11W 
DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,- 

XA.DEF.BUFSIZ 

DPT.STORE REINIT 

DPT.STORE DDB,DDB$L_DDT,D,XA$DDT 
DPT.STORE CRB,CRB$L_INTD+4,D,- 

XA.INTERRUPT 
DPT.STORE CRB,CRB$L_INTD+VEC$L_INITIAL,- 

D,XA.CONTROL.INIT 
DPT.STORE END 

Device Type 
Default buffer size 

Start of reload 
initialization table 
Address of DDT 
Address of interrupt 
service routine 
Address of controller 

initialization routine 
End of initialization 
tables 

; Driver dispatch table 

DDTAB 
DEVNAM=XA,- 
START=XA_START,- 
FUNCTB=XA_FUNCTABLE,- 
CANCEL=XA_CANCEL,- 
REGDMP=XA_REGDUMP,- 

DDT-creation macro 
Name of device 
Start I/O routine 
FDT address 
Cancel I/O routine 
Register dump routine 

Diagnostic buffer size 
log buffer size 

DIAGBF=«15*4>+«3+5+l>*4», - 
ERLGBF=«15*4>+<1*4>+<EMB$L_DV_REGSAV» ; Error 
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Function dispatch table 

XA.FUNCTABLE: 
FUNCTAB 

FUNCTAB 
FUNCTAB 

FUNCTAB 
FUNCTAB 
FUNCTAB 
FUNCTAB 

; FDT for driver 
; Valid I/O functions 

<READPBLK.READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK,- 
SETMODE.SETCHAR,SENSEMODE,SENSECHAR> 
, ; No buffered functions 
XA.READ.WRITE,- ; Device-specific FDT 
<READPBLK.READLBLK,READVBLK,WRITEPBLK.WRITELBLK,WRITEVBLK> 
+EXE$READ,<READPBLK.READLBLK,READVBLK> 
+EXE$WRITE,<WRITEPBLK,WRITELBLK,WRITEVBLK> 
XA.SETMODE,<SETMODE,SETCHAR> 
+EXE$SENSEMODE,<SENSEMODE,SENSECHAR> 

.SBTTL XA_C0NTR0L_INIT, Controller initialization 

++ 

XA_CONTROL_INIT, Called when driver is loaded, system is booted, or 
power failure recovery. 

Functional Description: 

1) Allocates the direct data path permanently 
2) Assigns the controller data channel permanently 

3) Clears the Control and Status Register 
4) If power recovery, requests device timeout 

Inputs: 

R4 = address of CSR 
R5 = address of IDB 
R6 = address of DDB 
R8 = address of CRB 

Outputs: 

VEC$V_PATHLOCK bit set in CRB$L_INTD+VEC$B_DATAPATH 
UCB address placed into IDB$L_OWNER 
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XA_C0NTR0L_INIT: 
MOVL IDB$L_UCBLST(R5),R0 ; Address of UCB 
MOVL RO,IDB$L_0WNER(R5) ; Make permanent controller owner 
BISW #UCB$M_ONLINE,UCB$W_STS(RO) 

; Set device status "on-line" 

CPUDISP «UV1,3$>, - 
<UV2,5$», - 

CONTINUE=YES 
BRB 9$ 

3$: BUG.CHECK UNSUPRTCPU,FATAL 
5$: MOVB #DT$_XA_DRV11WA,- 

UCB$B_DEVTYPE(RO) 

; Branch to handle MicroVAX I 
; Branch to handle MicroVAX II 
; Else continue for all other processors 

; DRV11-WA not supported on MicroVAX I 
; If this is a Q22 bus, then this is 
; a DRV11-WA rather than a DR11-W. 

On the DRV11-WA, the interrupt enable bit normally remains set at all 
times since an interrupt is generated if the bit makes a low-to-high 
transition when there isn't a DMA transfer in progress. Since the 
device has the IE bit clear at power-up, an interrupt will be generated 
when we set the IE bit. Therefore, we tell the interrupt service 
routine to ignore the first unexpected interrupt that occurs. 

BBS #XA_CSR$V_IE,- ; Branch if IE bit already set 
XA_CSR(R4),9$ 

BBSS #UCB$V_IGNORE_UNEXPT,- ; Else interrupt will occur 
UCB$W_DEVSTS(RO),9$ 

; If powerfail has occurred and device was active, force device timeout. 
; The user can set his own timeout interval for each request. Timeout 
; is forced so a very long timeout period will be short-circuited. 

9$: BBS #UCB$V_POWER,UCB$W_STS(RO),10$ 

10$: 

; Branch if powerfail 
BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(R8) 

; Permanently allocate direct datapath 

BSBW XA_DEV_RESET ; Reset DR11W 
RSB ; Done 

.SBTTL XA_READ_WRITE, FDT for device data transfers 

++ 

XA_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK, 
WRITEPBLK 

Functional Description: 

1) 
2) 

Rejects QUEUE I/O's with odd transfer count 
Rejects QUEUE I/O's for BLOCK MODE request to UBA direct data 
path on odd byte boundary 
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3) Stores 
4) Stores 
5) Stores 
6) Checks 

request timeout count specified in P3 into IRP 
FNCT bits specified in P4 into IRP 
word to write into ODR from P5 into IRP 
block mode transfers for memory modify access 

Input8: 

R3 
R4 
R5 
R6 
R8 
AP 

Address of IRP 
Address of PCB 
Address of UCB 
Address of CCB 
Address of FDT routine 
Address of PI 

PI = Buffer address 
P2 = Buffer size in bytes 
P3 * Request timeout period (conditional on I0$M_TIMED) 
P4 = Value for CSR FNCT bits (conditional on IO$M_SETFNCT) 
P5 = Value for ODR (conditional on IO$M_SETFNCT) 
P6 = Address of diagnostic buffer 

Outputs: 

RO = Error status if odd transfer count 
IRP$L_MEDIA = timeout count for this request 
IRP$L_SEGVBN = FNCT bits for DR11-W CSR and ODR image 

XA_READ_WRITE: 

; The I0$M_INHERL0G ("inhibit error logging") function modifier was not 
; intended to be used by this driver. However, since the definition for 
; the I0$M_RESET modifier used to be the same as that for I0$M_INHERL0G, 
; the error logging routines incorrectly used the I0$M_RESET bit to 
; determine whether it should log errors. To solve this problem, the 
; definition for IO$M_RESET was changed. For the sake of old programs, we 
; manually move the RESET bit to its new location. 

BBCC #I0$V_INHERL0G,IRP$W_FUNC(R3).1$ 
J Branch if old reset bit not set 

BISW #I0$M_RESET,IRP$W_FUNC(R3) 
; Set new reset bit 

1$: BLBC P2(AP),10$ ; Branch if transfer count even 

2$: MOVZWL #SS$_BADPARAM,RO ; Set error status code 
5$: JMP G~EXE$AB0RTI0 ; Abort request 
10$: MOVZWL IRP$W_FUNC(R3),R1 ; Fetch I/O Function code 

MOVL P3(AP),IRP$L_MEDIA(R3) ; Set request specific timeout count 
BBS #10$V_TIMED,R1,15$ ; Branch if timeout specified 
MOVL #XA_DEF_TIMEOUT,IRP$L_MEDIA(R3) 

; Else set default timeout value 

15$: BBC #I0$V_DIAGN0STIC,R1,20$ ; Branch if not maintenance request 
EXTZV #I0$V_FC0DE,#I0$S_FC0DE,R1,R1 ; AND out all function modifiers 
CMPB #IO$_READPBLK,R1 ; If maintenance function, must be 

; physical I/O read or write 
BEQL 20$ 
CMPB #I0$_WRITEPBLK,R1 
BEQL 20$ 
MOVZWL #SS$_N0PRIV,R0 ; No privilege for operation 
BRB 5$ ; Abort request 

20$: EXTZV #0,#3,P4(AP),RO ; Get value for FNCT bits 
ASHL #XA_CSR$V_FNCT,RO,IRP$L_SEGVBN(R3) ; Shift into position for CSR 
MOVW P5(AP),IRP$L_SEGVBN+2(R3) ; Store ODR value for later 

; if this is a block mode transfer, check buffer for modify access 
whether or not the function is read or write. The DR11-W does 

not decide whether to read or write, the users device does. 
For word mode requests, return to read check or write check. 

If this is a BLOCK MODE request and the UBA direct data path is 
in use, check the data buffer address for word alignment. If buffer 
is not word aligned, reject the request. 
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BBS 

BBS 

BLBS 
25$: JMP 
30$: RSB 

.SBTTL 

; ++ 

#I0$V_W0RD,IRP$W_FUNC(R3),30$ 

; Branch if word mode transfer 
#XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),25$ 

; Branch if Buffered Data Path in use 
P1(AP),2$ ; DDP, branch on bad alignment 
G~EXE$M0DIFY ; Check buffer for modify access 

; Return 

XA_SETM0DE, Set Mode, Set characteristics FDT 

XA_SETM0DE, FDT routine to process SET MODE and SET CHARACTERISTICS 

Functional Description: 

If I0$M_ATTNAST modifier is set, queue attention AST for device 
If I0$M_DATAPATH modifier is set, queue packet. 
Else, finish I/O. 

Input8: 

R3 = I/O packet address 
R4 = PCB address 
R5 = UCB address 
R6 = CCB address 
R7 = Function code 
AP = QIO parameter list address 

Outputs: 

If I0$M_ATTNAST is specified, queue AST on UCB attention AST list. 
If IO$M_DATAPATH is specified, queue packet to driver. 
Else, use exec routine to update device characteristics 

XA.SETMODE: 
MOVZWL IRP$W_FUNC(R3),R0 ; Get entire function code 
BBC #IO$V_ATTNAST,RO,20$ ; Branch if not an ATTN AST 

; Attention AST request 

PUSHR #~M<R4,R7> 
MOVAB UCB$L_XA_ATTN(R5),R7 ; Address of ATTN AST control block list 
JSB G~COM$SETATTNAST ; Set up attention AST 
POPR #~M<R4,R7> 
BLBC RO,50$ ; Branch if error 
BISW #UCB$M_ATTNAST,UCB$W_DEVSTS(R5) 

; Flag ATTN AST expected 
BBC #UCB$V_UNEXPT,UCB$W_DEVSTS(R5),10$ 

; Deliver AST if unsolicited interrupt 
BSBW DEL.ATTNAST 

10$: MOVZBL #SS$_N0RMAL,RO ; Set status 
JMP G~EXE$FINISHIOC ; That's all for now (clears Rl) 

; If modifier I0$M_DATAPATH is set. 
; queue packet. The data path is changed at driver level to preserve 
; order with other requests. 

20$: BBS S~#IO$V_DATAPATH,RO,30$ ; If BDP modifier set, queue packet 

JMP G~EXE$SETCHAR ; Set device characteristics 

; This is a request to change data path usage, queue packet 

30$: CMPL 
BNEQ 
JMP 

; Error, abort 

45$: MOVZWL 
50$: CLRL 

JMP 

#I0$_SETCHAR,R7 
45$ 
G~EXE$SETMODE 

10 

#SS$_N0PRIV,RO 
R1 
G~EXE$AB0RTI0 

Set characteristics? 
No, must have the privilege 
Queue packet to start I/O 

No privilege for operation 

Abort 10 on error 
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.SBTTL XA.START, Start I/O routines 
♦+ 

XA_START - Start a data transfer, set characteristics, enable ATTN AST. 

Functional Description: 

This routine has two major functions: 

1) Start an I/O transfer. This transfer can be in either word 
or block mode. The FNCTN bits in the DR11-W CSR are set. If 
the transfer count is zero, the STATUS bits in the DR11-W CSR 
are read and the request completed. 

2) Set characteristics. If the function is change data path, the 
new data path flag is set in the UCB. 

Input8: 

R3 = Address of the I/O request packet 
R5 = Address of the UCB 

Outputs: 

RO = final status and number of bytes transferred 
R1 = value of CSR STATUS bits and value of input data buffer register 
Device errors are logged 
Diagnostic buffer is filled 

.ENABL LSB 

XA.START: 

; Retrieve the address of the device CSR 

ASSUME IDB$L_CSR EQ 0 
MOVL UCB$L_CRB(R5),R4 ; Address of CRB 
MOVL <DCRB$L_INTD+VEC$L_IDB(R4) ,R4 

; Address of CSR 

; Fetch the I/O function code 

MOVZWL IRP$W_FUNC(R3),R1 ; Get entire function code 
MOVW R1,UCB$W_FUNC(R5) ; Save FUNC in UCB for Error Logging 
EXTZV #I0$V_FC0DE,#I0$S_FC0DE,R1,R2 ; Extract function field 

; Dispatch on function code. If this is SET CHARACTERISTICS, we will 
; select a data path for future use. 
; If this is a transfer function, it will either be processed in word 
; or block mode. 

CMPB #I0$_SETCHAR,R2 ; Set characteristics? 
BNEQ 3$ 

; +♦ 

; SET CHARACTERISTICS - Process Set Characteristics QIO function 

; INPUTS: 

; XA_DATAPATH bit in Device Characteristics specifies which data path 
; to use. If bit is a one, use buffered data path. If zero, use 
; direct data path. 

; OUTPUTS: 

; CRB is flagged as to which data path to use. 
; DEVDEPEND bits in device characteristics is updated 
; XA_DATAPATH * 1 --> buffered data path in use 
; XA_DATAPATH = 0 --> direct data path in use 
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MOVL UCB$L_CRB(R5),R0 ; Get CRB address 
MOVQ IRP$L_MEDIA(R3),UCB$B_DEVCLASS(R5) ; Set device characteristics 
BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO) 

; Assume direct data path 
BBC #XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),2$ ; Were we right? 
BICB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO) ; Set buffered data path 

2$: 
CLRL R1 ; Return success 
MOVZWL #SS$_N0RMAL,RO 
REQCOM 

; If subfunction modifier for device reset is set, do one here 

3$: BBC S~#I0$V_RESET,R1,4$ ; Branch if not device reset 
BSBW XA.DEV.RESET ; Reset DR11-W 

This must be a data transfer function (read or write). 
Check to see if this is a zero-length transfer. 
If so, only set CSR FNCT bits and return STATUS from CSR 

4$: TSTW UCB$W_BCNT(R5) Is transfer count zero? 
BNEQ 10$ No, continue with data transfer 
BBC 
DSBINT 

S“#IO$V_SETFNCT,R1,6$ Set CSR FNCT specified? 

MOVW IRP$L_SEGVBN+2(R3),XA_0DR(R4) 
; Store word in ODR 

MOVZWL XA_CSR(R4),RO 
BICW #<XA_CSR$M_FNCT!XA_CSR$M_ _ERR0R>,RO 
BISW IRP$L_SEGVBN(R3),R0 
BISW #XA_CSR$M_ATTN,RO ; Force ATTN on to prevent lost interrupt 
MOVW R0,XA_CSR(R4) 
BBC #XA$V_LINK,UCB$L_DEVDEPEND(R5).5$ ; Link mode? 

5$: 
BICW3 #XA$K_FNCT2,R0,XA_CSR(R4) ; Make FNCT bit 2 a pulse 

ENBINT 
6$: 

BSBW XA_REGISTER Fetch DR11-W registers 
BLBS R0,7$ If error, then log it 
JSB G~ERL$DEVICERR Log a device error 

7$: JSB G~IOC$DIAGBUFILL Fill diagnostic buffer if specified 
MOVL UCB$W_XA_CSR(R5),R1 Return CSR and EIR in R1 
MOVZWL UCB$W_XA_ERROR(R5),R0 Return status in RO 

BISB #XA_CSR$M_IE,XA_CSR(R4) Enable device interrupts 
REQCOM Request done 

; Build CSR image in RO for later use in starting transfers 

10$: 
MOVZWL UCB$W_BCNT(R5),R0 ; Fetch byte count 
DIVL3 #2,R0,UCB$L_XA_DPR(R5) ; Make byte count into word count 

Set up UCB$W_CSRTMP used for loading CSR later. 

MOVZWL XA_CSR(R4),RO 
BICW #~C<XA_CSR$M_FNCT>,RO 
BISW #XA_CSR$M_IE!XA_CSR$M_ATTN,RO ; Set Interrupt Enable and ATTN 
BBC S~#IO$V_SETFNCT,R1,20$ ; Set FNCT bits in CSR? 
BICW #<XA_CSR$M_FNCT>,RO ; Yes, Clear previous FNCT bits 
BISB IRP$L_SEGVBN(R3),R0 ; OR in new value 

20$: BBC S“#IO$V_DIAGNOSTIC,R1,23$ ; Check for maintenance function 
BISW #XA_CSR$M_MAINT,RO ; Set maintenance bit in CSR image 

; is this a word mode or block mode request? 

23$: MOVW RO,UCB$W_XA_CSRTMP(R5) ; Save CSR image in UCB 
BBC S~#I0$V_W0RD,R1,BL0CK_M0DE ; Check if word or block mode 
BRW W0RD_M0DE ; Branch to handle word mode 
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++ 

BLOCK MODE -- Process a block-mode (DMA) transfer request 

Functional Description: 

This routine takes the buffer-address, buffer-size, function-code, 
and function-modifier fields from the IRP. It calculates the UNIBUS 
address, allocates the UBA map registers, loads the DRli-W device 
registers, and starts the request. 

Set up UBA 
Start transfer 

BLOCK.MODE: 

; If I0$M_CYCLE subfunction is specified, set CYCLE bit in CSR image. 

BBC #I0$V_CYCLE,R1,25$ ; Set CYCLE bit in CSR? 
BISW #XA_CSR$M_CYCLE,UCB$W_XA_CSRTMP(R5) ; If yes, or into CSR image 

; Allocate UBA data path and map registers 

25$: 
REQDPR ; Request UBA data path 
REQMPR ; Request UBA map registers 
LOADUBA ; Load UBA map registers 

; Calculate the UNIBUS transfer address for the DR11-W from the UBA 
; map register address and byte offset. 

100$: 

MOVZWL 
MOVL 
INSV 

EXTZV 

CMPB 

BEQL 
MOVW 
CLRL 
ASHL 
BISW 
BISW 
BICW3 

BICW3 
MOVW 

UCB$W_B0FF(R5),R1 ; Byte offset in first page 
UCB$L_CRB(R5),R2 ; Address of CRB 
CRB$L_INTD+VEC$W_MAPREG(R2).#9.#9,R1 

#16,#2,R1,R2 
Insert page number 
Extract bits 17:16 of bus 

of transfer 

address 

#DT$_DR11W,- 
UCB$B_DEVTYPE(R5) 

100$ 
R2,UCB$W_XA_BAETMP(R5) 
R2 
#XA_CSR$V_XBA,R2,R2 
#XA_CSR$M_G0,R2 
R2,UCB$W_XA_CSRTMP(R5) 

If this is a DR11-W, 

then branch 
Save value of BAE prior to transfer 
Clear XBA bits 
Shift extended memory bits for CSR 
Set GO bit into CSR image 
Set into CSR image we are building 

#<XA_CSR$M_G0!XA_CSR$M_CYCLE>,UCB$W_XA_CSRTMP(R5),RO 
; CSR image less GO and CYCLE 

#XA$K_FNCT2,UCB$W_XA_CSRTMP(R5),R2 ; CSR image less FNCT bit 2 
R1,UCB$W_XA_BARTMP(R5) ; Save BAR for error logging 

At this juncture: 
RO = CSR image less GO and CYCLE 
R1 = Low 16 bits of transfer-bus address 
R2 = CSR image less FNCT bit 2 
UCB$L_XA_DPR(R5) = transfer count in words 
UCB$W_XA_CSRTMP(R5) = CSR image to start transfer with 

Set DR11-W registers and start transfer. 
Note that read-modify-write cycles are NOT performed to the DR11-W CSR. 
The CSR is always written into directly. This prevents inadvertently setting 
the EIR-select flag (writing bit 15) if error happens to become true. 
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DSBINT 
MNEGW 

MOVW 

CMPB 

BEQL 
MOW/ 

200$: MOW/ 

BBC 
MOW/ 
BRB 

; Disable interrupts (powerfail) 
UCB$L_XA_DPR(R5),XA_WCR(R4) 

; Load negative of transfer count 
; Load low 16 bits of bus address R1,XA_BAR(R4) 

#DT$_DR11W,- 
UCB$B_DEVTYPE(R5) 

200$ 

UCB$W_XA_BAETMP(R5),- 
XA_BAE(R4) 

R0,XA_CSR(R4) 

If this is a DR11-W, 

then branch 
Load high bits of bus address 

Load CSR image less GO and CYCLE 

#XA$V_LINK,UCB$L_DEVDEPEND(R5),26$ ; Link mode? 
R2,XA_CSR(R4) 
126$ 

Yes, load CSR image less FNCT bit 2 
Only if link-mode bit is set 
in device characteristics 

26$: 
MOW/ UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Move all bits to CSR 

; Wait for transfer complete interrupt, powerfail, or device timeout 

126$: 
WFIKPCH XA_TIME_0UT,IRP$L_MEDIA(R3) ; Wait for interrupt 

; Device has interrupted, FORK 

IOFORK ; FORK to lower IPL 

; Handle request completion, release UBA resources, check for errors. 

27$: 

300$: 
310$: 

28$: 

MOVZWL 
CLRW 
PURDPR 
BLBS 
MOVZWL 
INCB 
MOVL 
EXTZV 

MOVB 
EXTZV 

#SS$_N0RMAL,-(SP) 
UCB$W_XA_DPRN(R5) 

RO,27$ 
#SS$_PARITY,(SP) 
UCB$W_XA_DPRN+1(R5) 
R1,UCB$L_XA_DPR(R5) 
#VEC$V_DATAPATH,- 
#VEC$S_DATAPATH,- 
CRB$L_INTD+VEC$B_DATAPATH 
RO,UCB$W_XA_DPRN(R5) 
#9,#7,UCB$W_XA_BAR(R5),R0 

Assume success, store code on stack 
Clear DPR number and DPR error flag 
Purge UBA buffered data path 
Branch if no data-path error 
Flag parity error on device 
Flag PDR error for log 
Save data-path register in UCB 
Get data-path-register number 
For error log 

(R3),R0 
Save for later in UCB 
; Low bits, final map-register number 

CMPB #DT$_DR11W,- ; If this is a DR11-W, 
UCB$B_DEVTYPE(R5) 

BEQL 300$ ; then branch 
MOVZWL UCB$W_XA_BAE(R5),R1 ; Fetch high bits of map register no. 
BRB 310$ 
EXTZV #4,#2,UCB$W_XA_CSR(R5),R1 ; High bits of map register no. 
INSV R1,#7,#2,R0 ; Entire map register number 

CMPW RO,#496 ; Is map-register number in range? 
BGTR 28$ ; No, forget it - compound error 
MOVL (R2)[RO],UCB$L_XA_FMPR(R5) ; Save map-register contents 
CLRL UCB$L_XA_PMPR(R5) ; Assume no previous map register 
DECL RO ; Was there a previous map register? 
CMPV #VEC$V_MAPREG,#VEC$S_MAPREG.- 

CRB$L_INTD+VEC$W_MAPREG(R3),R0 
BGTR 28$ ; If GTR, no 
MOVL (R2)[RO],UCB$L_XA_FMPR(R5) ; Save previous map register contents 
RELMPR ; Release UBA resources 
RELDPR 
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; Check lor errors and return status 

TSTW UCB$W_XA_WCR(R5) ; All words transferred? 
BEQL 30$ ; Yes 
MOVZWL #SS$_0PINC0MPL,(SP) ; No, flag operation not complete 

30$: BBC #XA_CSR$V_ERROR,UCB$W_XA_ _CSR(R5),35$ ; Branch on CSR error bit 
MOVZWL UCB$W_XA_ERR0R(R5),(SP) Flag for controller/drive error status 
BSBW XA_DEV_RESET Reset DR11-W 

35$: BLBS (SP),40$ Any errors after all this? 

CMPW (SP),#SS$_0PINC0MPL Log the error, unless this is 
BNEQ 37$ a DRV11-WA running in link mode 
CMPB #DT$_DR11W,- and the operation is incomplete, 

UCB$B_DEVTYPE(R5) in which case it is an expected 
BEQL 37$ error and not worth logging. 
BBS #XA$V_LINK,- . . . 

UCB$L_DEVDEPEND(R5),40$ . . . 
37$: JSB G~ERL$DEVICERR Log the error. 

40$: BSBW DEL.ATTNAST Deliver outstanding ATTN AST's 

JSB G~IOC$DIAGBUFILL Fill diagnostic buffer 
MOVL (SP)+,R0 Get final device status 
MULW3 #2,UCB$W_XA_WCR(R5),R1 Calculate final transfer count 
ADDW UCB$W_BCNT(R5),R1 
INSV R1,#16,#16,R0 Insert into high byte of IOSB 
MOVL UCB$W_XA_CSR(R5),R1 Return CSR and EIR in IOSB 
BISB #XA_CSR$M_IE,XA_CSR(R4) Enable interrupts 
REQCOM Finish request in exec 

.DSABL LSB 
++ 

WORD MODE -- Process word mode (interrupt per word) transfer 

Functional Description: 

Data is transferred one word at a time with an interrupt for each word. 
The request is handled separately for a write (from memory to DR11-W 
and a read (from DR11-W to memory). 

For a write, data is fetched from memory, loaded into the ODR of the 
DR11-W and the system waits for an interrupt. For a read, the system 
waits for a DR11-W interrupt and the IDR is transferred into memory. 
If the unsolicited interrupt flag is set, the first word is transferred 
directly into memory without waiting for an interrupt. 

.ENABL LSB 
WORD.MODE: 

; Dispatch to separate loops on READ or WRITE 

CMPB #IO$_READPBLK,R2 ; Check for read function 
BEQL 30$ 

♦+ 

WORD MODE WRITE -- Write (output) in word mode 

Functional Description: 

Transfer the requested number of words from user memory to 
the DR11-W ODR one word at a time, wait for interrupt for each 
word. 
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10$: 

15$: 

BSBW MOVFRUSER ; Get two bytes from user buffer 
DSBINT ; Lock out interrupts 

; Flag interrupt expected 
MOVW R1,XA_0DR(R4) ; Move data to DR11-W 
MOVW UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Set DR11-W CSR 
BBC #XA$V_LINK,UCB$L_DEVDEPEND(R5),15$ ; Link mode? 
BICW3 #XA$K_FNCT2,UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Clear interrupt FNCT bit 2 

; Only if link mode specified 

; Wait for interrupt, powerfail, or device timeout 

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3) 

; Check for errors, decrement transfer count, and loop until complete. 

I0F0RK ; Fork to lower IPL 

CMPB #DT$_DR11W,- ; Branch if this is a DR11-W 
UCB$B_DEVTYPE(R5) 

BEQL 17$ 
BBC #XA_CSR$V_ERROR,- ; DRV11-WA - check ERROR bit in CSR 

UCB$W_XA_CSR(R5),20$ ; Branch on success 
BRW 40$ ; Branch on error 

17$: BITW #XA_EIR$M_NEX!- 
XA_EIR$M_MULTI!- 

XA_EIR$M_ACLO!- 
XA_EIR$M_PAR!- 

XA_EIR$M_DLT,UCB$W_XA_EIR(R5) ; Any errors? 
BEQL 20$ ; No, continue 
BRW 40$ ; Yes, abort transfer 

20$: DECW UCB$L_XA_DPR(R5) ; All words transferred? 
BNEQ 10$ ; No, loop until finished 

; Transfer is done, clear interrupt expected flag and FORK 
; All words read or written in WORD MODE Finish I/O. 

RETURN .STATUS: 

JSB G~IOC$DIAGBUFILL Fill diagnostic buffer if present 
BSBW DEL.ATTNAST Deliver outstanding ATTN ASTs 
MOVZWL #SS$_N0RMAL,RO Complete success status 

22$: MULW3 #2,UCB$L_XA_DPR(R5),R1 Calculate actual bytes transferred 
SUBW3 R1,UCB$W_BCNT(R5),R1 From requested number of bytes 
INSV R1,#16,#16,R0 And place in high word of RO 
MOVL UCB$W_XA_CSR(R5),R1 Return CSR and EIR status 
BISB #XA_CSR$M_IE,XA.CSR(R4) Enable device interrupts 
REQCOM Finish request in exec 

; + + 

WORD-MODE READ -- Read (input) in word mode 

Functional Description: 

Transfer the requested number of word from the DR11-W IDR into 
user memory one word at a time, wait for interrupt for each word. 

If the unexpected (unsolicited) interrupt bit is set, transfer the 
first (last received) word to memory without waiting for an 
interrupt. 
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30$: 
DSBINT UCB$B_DIPL(R5) ; Lock out interrupts 

; If am unexpected (unsolicited) interrupt has occurred, assume it 
; is for this READ request and return value to user buffer without 
; waiting for am interrupt. 

BBCC 

ENBINT 
BRB 

#UCB$V_UNEXPT,- 
UCB$W_DEVSTS(R5).32$ 

37$ 

; Bramch if no unexpected interrupt 
; Enable interrupts 
; continue 

32$: 

35$: 
SETIPL #IPL$_P0WER 

; Wait for interrupt, powerfail, or device timeout 

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3) 

; Check for errors, decrement transfer count and loop until done. 

37$: 

IOFORK 

CMPB #DT$_DR11W,- 

; Fork to lower IPL 

; Bramch if this is a DR11-W 

BEQL 
BBC 

UCB$B_DEVTYPE(R5) 
1037$ 
#XA_CSR$V_ERROR,- ; DRV11-WA - check ERROR bit in CSR 

BRW 
UCB$W_XA_CSR(R5),1038$ 

40$ 
; Bramch on success 
; Bramch on error 

1037$: BITW #XA_EIR$M_NEX!- 

BNEQ 

XA_EIR$M_MULTI!- 

XA_EIR$M_ACLO!- 
XA_EIR$M_PAR!- 

XA_EIR$M_DLT,UCB$W_XA_EIR(R5) ; Any errors? 
40$ ; Yes, abort tramsfer 

1038$: BSBW MOVTOUSER ; Store two bytes into user buffer 

; Send interrupt back to sender. 

DSBINT 
MOVW 

BBC 
BICW3 

38$: 
DECW 
BNEQ 
ENBINT 
BRW RETURN.STATUS 

; Error detected in word mode transfer 

40$: 
BSBW DEL.ATTNAST 
BSBW XA_DEV_RESET 
JSB G~IOC$DIAGBUFILL 
JSB G~ERL$DEVICERR 
MOVZWL UCB$W_XA_ERR0R(R5),R0 
BRW 22$ 

.DSABL LSB 

Decrement transfer count 
Loop until all words transferred 

Finish request in common code 

Deliver ATTN ASTs 
Error, reset DR11-W 
Fill diagnostic buffer if present 
Log device error 
Set controller/drive status in RO 

Acknowledge receipt of last word. 

UCB$W_XA_CSRTMP(R5),XA_CSR(R4) 
#XA$V_LINK,UCB$L_DEVDEPEND(R5),38$ ; Link mode? 
#XA$K_FNCT2,UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Yes, clear FNCT 2 

UCB$L_XA_DPR(R5) 
35$ 

MOVFRUSER - Routine to fetch two bytes from user buffer. 

INPUTS: 

R5 = UCB address 

OUTPUTS: 

R1 = Two bytes of data from users buffer 
Buffer descriptor in UCB is updated. 

.ENABL LSB 
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MOVFRUSER: 
MOVAL -(SP),R1 
MOVZBL #2 ,R2 
JSB G~I0C$M0VFRUSER 
MOVL (SP)+,R1 
BRB 20$ 

Address of temporary stack location 
Fetch two bytes 
Call exec routine to do the deed 
Retreive the bytes 
Update UCB buffer pointers 

MOVTOUSER - Routine to store two bytes into users buffer. 

INPUTS: 

R5 = UCB address 
UCB$W_XA_IDR(R5) = Location where two bytes are saved 

OUTPUTS: 

Two bytes are stored in user buffer and buffer descriptor in 
; UCB is updated. 

MOVTOUSER: 
MOVAB UCB$W_XA_IDR(R5),R1 ; Address of internal buffer 

MOVZBL #2 ,R2 
JSB G~I0C$M0VT0USER ; Call exec 

20$: Update buffer pointers in UCB 
ADDW #2,UCB$W_B0FF(R5) ; Add two to buffer descriptor 

BICW #~C<~X01FF>,UCB$W_B0FF(R5) ; Modulo the page size 

BNEQ 30$ ; If NEQ, no page boundary crossed 

ADDL #4,UCB$L_SVAPTE(R5) ; Point to next page 

30$: 
RSB 

.DSABL LSB 

.PAGE 

.SBTTL 
. xx 

DR11-W DEVICE timeout 
TT 

; DR11-W device timeout 
; If a DMA transfer was in progress, release UBA resources. 

; For DMA or WORD mode, deliver ATTN ASTs, log a device-timeout error. 

; and do a hard reset on the controller. 

; Clear DR11-W CSR 
; Return error status 

; Power failure will appear as a device timeout 

.ENABL LSB 
XA_TIME_OUT: Timeout for DMA transfer 

SETIPL UCB$B_FIPL(R5) Lower to FORK IPL 

PURDPR Purge buffered data path in UBA 

RELMPR Release UBA map registers 
RELDPR Release UBA data path 
BRB 10$ Continue 

XA_TIME_OUTW: Timeout for WORD mode transfer 

SETIPL UCB$B_FIPL(R5) Lower to FORK IPL 

10$: MOVL UCB$L_CRB(R5),R4 Fetch address of CSR 

MOVL QCRB$L_INTD+VEC$L_IDB(R4),R4 
BSBW XA.REGISTER Read DR11-W registers 

JSB G~IOC$DIAGBUFILL Fill diagnostic buffer 

JSB G~ERL$DEVICTMO Log device timeout 
BSBW DEL_ATTNAST and deliver the ASTs 

BSBW XA_DEV_RESET Reset controller 

MOVZWL #SS$_TIMEOUT,RO Assume error status 

BBC #UCB$V_CANCEL.- 
UCB$W_STS(R5),20$ ; Branch if not cancel 

MOVZWL #SS$_CANCEL,RO ; Set status 
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20$: CLRL 

BICW 

BICW 

REQCOM 
.DSABL 

.PAGE 

.SBTTL 

; ++ 
; XA_INTERRUPT, 

R1 

#UCB$M_ATTNAST!UCB$M_UNEXPT,UCB$W_DEVSTS(R5) 
; Clear unwanted flags 

#<UCB$M_TIM!UCB$M_INT!UCB$M_TIMOUT!UCB$M_CANCEL!UCB$M_POWER>,- 
UCB$W_STS(R5) ; Clear unit status flags 

; Complete I/O in exec 
LSB 

XA_INTERRUPT, Interrupt service routine for DR11-W 

Handles interrupts generated by DR11-W 

Functional Description: 

This routine is entered whenever an interrupt is generated 
by the DR11-W. It checks that an interrupt was expected. 

If not, it sets the unexpected (unsolicited) interrupt flag. 
All device registers are read and stored into the UCB. 
If an interrupt was expected, it calls the driver back at its 
wait-for-interrupt point. 
Deliver ATTN ASTs if unexpected interrupt. 

Inputs: 

00(SP) = Pointer to address of the device IDB 
04(SP) = saved R0 
08(SP) * saved R1 
12(SP) = saved R2 
16(SP) = saved R3 
20(SP) = saved R4 
24(SP) * saved R5 
28(SP) = saved PSL 
32(SP) = saved PC 

Outputs: 

The driver is called at its wait-for-interrupt point if an 
interrupt was expected. 
The current value of the DR11-W CSRs are stored in the UCB. 

XA_INTERRUPT: ; Interrupt service for DR11-W 
MOVL <8(SP) + ,R4 ; Address of IDB and pop SP 
MOVQ (R4),R4 ; CSR and UCB address from IDB 

; Read the DR11-W device registers (WCR, BAR, CSR, EIR, IDR) and store 
; into UCB. 

BSBW XA_REGISTER ; Read device registers 

; Check to see if device transfer request active or not 
; If so, call driver back at wait-for-interrupt point and 
; Clear unexpected interrupt flag. 

20$: BBCC #UCB$V_INT,UCB$W_STS(R5),25$ 
; If clear, no interrupt expected 

; Interrupt expected, clear unexpected interrupt flag and call driver 
; back. 

BICW #UCB$M_UNEXPT,UCB$W_DEVSTS(R5) 
; Clear unexpected interrupt flag 

MOVL UCB$L_FR3(R5),R3 ; Restore drivers R3 
JSB <8UCB$L_FPC(R5) ; Call driver back 
BRB 30$ 

; Deliver ATTN ASTs if no interrupt expected and set unexpected 
; interrupt flag. 

25$: BBSC #UCB$V_IGNORE_UNEXPT,- ; Ignore spurious interrupt - 
UCB$W_DEVSTS(R5),30$ ; (DRV11-WA only) 

BISW #UCB$M_UNEXPT.UCB$W_DEVSTS(R5) ; Set unexpected interrupt flag 
BSBW DEL.ATTNAST ; Deliver ATTN AST's 
BISB #XA_CSR$M_IE,XA_CSR(R4) ; Enable device interrupts 
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; Restore registers and return from interrupt 

30$: 
POPR #~M<R0,R1,R2,R3.R4,R5> ; Restore registers 
REI ; Return from interrupt 

.PAGE 

.SBTTL XA.REGISTER - Handle DR11-W CSR transfers 
; ♦+ 

; XA_REGISTER - Routine to handle DR11-W register transfers 

; INPUTS: 

; R4 - DR11-W CSR address 
; R5 - UCB address of unit 

OUTPUTS: 

CSR, EIR, WCR, BAR, IDR, and status are read and stored into UCB. 
The DR11-W is placed in its initial state with interrupts enabled. 

RO - .true, if no hard error 
.false, if hard error (cannot clear ATTN) 

If the CSR ERROR bit is set and the associated condition can be cleared, then 
the error is transient and recoverable. The status returned is SS$_DRVERR. 
If the CSR ERROR bit is set and cannot be cleared by clearing the CSR, then 
this is a hard error and cannot be recovered. The returned status is 

SS$_CTRLERR. 

R0,R1 - destroyed, all other registers preserved. 

XA.REGISTER: 
MOVZWL 
MOVZWL 
MOVW 
BBC 
MOVZWL 

55$: BICW 

#SS$_N0RMAL,RO 
XA_CSR(R4),R1 
R1,UCB$W_XA_CSR(R5) 
#XA_CSR$V_ERROR,R1,55$ 
#SS$_DRVERR,RO 
#~C<XA_CSR$M_FNCT>,R1 

Assume success 
Read CSR 
Save CSR in UCB 
Branch if no error 
Assume "drive" error 
Clear all uninteresting bits for later 

57$: 

59$: 

CMPB 

BEQL 
BISB 
MOVW 
BRB 
BISW 

MOVW 

#DT$_XA_DRV11WA,- ; If this is a DRV11-WA, 
UCB$B_DEVTYPE(R5) 

57$ ; then branch 
#<XA_CSR$M_ERR0R/256>,XA_CSR+1(R4) ; Set EIR flag 
XA_EIR(R4),UCB$W_XA_EIR(R5) ; Save EIR in UCB 

59$ 
#XA_CSR$M_IE,R1 On the DRV11-WA, if the IE bit makes 

a 0-->l transition while READY=1, a 

R1,XA_CSR(R4) 

spurious interrupt in generated. 
Therefore, we leave IE high at all times. 
Clear EIR flag and errors 

60$: 

MOVW XA_CSR(R4),R1 
BBC #XA_CSR$V_ATTN,R1,60$ 
MOVZWL #SS$_CTRLERR,RO 
MOVW XA_IDR(R4),UCB$W_XA_IDR(R5) 
MOVW XA_BAR(R4),UCB$W_XA_BAR(R5) 

Read CSR back 
If attention still set, hard error 
Flag hard controller error 

Save IDR in UCB 

70$: 

CMPB #DT$_DR11W,- ; If this is a DR11-W, 
UCB$B_DEVTYPE(R5) 

BEQL 70$ ; then branch 
MOVW XA_BAE(R4),UCB$W_XA_BAE(R5) ; Save BAE in UCB 
MOVW XA_WCR(R4),UCB$W_XA_WCR(R5) 

MOVW RO,UCB$W_XA_ERROR(R5) ; Save status in UCB 
RSB 

.SBTTL XA.CANCEL, Cancel I/O routine 
++ 

XA_CANCEL, Cancels an I/O operation in progress 

Functional Description: 

Flushes Attention AST queue for the user. 
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; If transfer in progress, do a device reset to DRli-W and finish the 

; request. 
; Clear interrupt expected flag. 

; Inputs: 

; R2 = negated value of channel index 
; R3 * address of current IRP 
; R4 = address of the PCB requesting the cancel 
; R5 = address of the device's UCB 

; Outputs: 

XA.CANCEL: ; Cancel I/O 
BBCC #UCB$V_ATTNAST,- 

UCB$W_DEVSTS(R5),20$ ; ATTN AST enabled? 

; Finish all ATTN ASTs for this process. 

PUSHR #~M<R2,R6,R7> 
MOVL R2.R6 ; Set up channel number 
MOVAB UCB$L_XA_ATTN(R5),R7 ; Address of listhead 

JSB G~COM$FLUSHATTNS ; Flush ATTN ASTs for process 

POPR #~M<R2,R6,R7> 

; Check to see if a data transfer request is in progress 
; for this process on this channel 

20$: 
DSBINT UCB$B_DIPL(R5) ; Lock out device interrupts 

BBC #UCB$V_INT,- ; Branch if I/O not in progress 
UCB$W_STS(R5),30$ 

JSB G~I0C$CANCELI0 ; Check if transfer going 

BBC #UCB$V_CANCEL.- 
UCB$W_STS(R5),30$ ; Branch if not for this process 

; Force timeout 

CLRL UCB$L_DUETIM(R5) ; Clear timer 
BISW #UCB$M_TIM,UCB$W_STS(R5) ; Set timed bit 
BICW #UCB$M_TIMOUT,- 

UCB$W_STS(R5) ; Clear timed-out bit 

30$: 
ENBINT ; Lower to FORK IPL 
RSB ; Return 

.PAGE 

.SBTTL 

;++ 
; DEL.ATTNAST, 

DEL_ATTNAST, Deliver ATTN ASTs 

Deliver all outstanding ATTN ASTs 

Functional Description: 

This routine is used by the DR11-W driver to deliver all of the 
outstanding attention ASTs. It is copied from COM$DELATTNAST in 

the exec. In addition, it places the saved value of the DRli-W CSR 
and input-data-buffer register in the AST parameter. 

Inputs: 

R5 = UCB of DR11-W unit 

Outputs: 

R0.R1.R2 Destroyed 
R3.R4.R5 Preserved 
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DEL.ATTNAST: 
DSBINT 
BBCC 

UCB$B_DIPL(R5) ; Device IPL 
#UCB$V_ATTNAST,UCB$W_DEVSTS(R5),30$ 

Any ATTN ASTs expected? 

10$: 
PUSHR 
MOVL 
MOVAB 
MOVL 
BEQL 
BICW 
MOVL 
MOVW 

MOVW 

PUSHAB 
FORK 

#~M<R3,R4,R5> 
8(SP),R1 
UCB$L_XA_ATTN(Rl),R2 
(R2),R5 
20$ 

Save R3.R4.R5 
Get address of UCB 
Address of ATTN AST listhead 
Address of next entry on list 
No next entry, end of loop 

#UCB$M_UNEXPT,UCB$W_DEVSTS(Rl) ; Clear unexpected interrupt flag 
(R5),(R2) ; Close list 
UCB$W_XA_IDR(Rl),ACB$L_KAST+6(R5) 

; Store IDR in AST parameter 
UCB$W_XA_CSR(Rl),ACB$L_KAST+4(R5) 

; Store CSR in AST parameter 
B~10$ ; Set return address for FORK 

; FORK for this AST 

AST fork procedure 

20$: 
30$: 

MOVQ ACB$L_KAST(R5),ACB$L_AST(R5) 
; Rearrange entries 

MOVB ACB$L_KAST+8(R5), ACB$B_RM0D(R5) 
MOVL ACB$L_KAST+12(R5),ACB$L_PID(R5) 
CLRL ACB$L_KAST(R5) 
MOVZBL #PRI$_I0C0M,R2 ; Set up priority increment 
JMP G~SCH$QAST ; Queue the AST 

POPR #~M<R3,R4,R5> ; Restore registers 
ENBINT ; Enable interrupts 
RSB ; Return 

.PAGE 

.SBTTL XA_REGDUMP - DR11 -W register dump routine 

XA_REGDUMP - DR11-W Register dump routine. 

This routine is called to save the controller registers in a specified 
buffer. It is called from the device error logging routine and from the 
diagnostic buffer fill routine. 

Inputs: 

RO - Address of register save buffer 
R4 - Address of Control and Status Register 
R5 - Address of UCB 

Outputs: 

The controller registers are saved in the specified buffer. 

CSRTMP - The last command written to the DR11-W CSR 
by the driver. 

BARTMP - The last value written into the DR11-W BAR by 
the driver during a block mode transfer. 

CSR - The CSR image at the last interrupt 
EIR - The EIR image at the last interrupt 
IDR - The IDR image at the last interrupt 
BAR - The BAR image at the last interrupt 
WCR - Word count register 
ERROR - The system status at request completion 
PDRN - UBA data-path-register number 
DPR - The contents of the UBA data-path register 
FMPR - The contents of the last UBA Map register 
PMRP - The contents of the previous UBA Map register 
DPRF - Flag for purge-data-path error 

0 = no purge-data-path error 
1 = parity error when data path was purged 

BAETMP - The last value written to the BAE by the driver 
during a block mode transfer (DRV11-WA only) 

BAE - The BAE image at the last interrupt (DRV11-WA only) 
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Note that the values stored are from the last completed transfer 
operation. If a zero transfer count is specified, then the 
values are from the last operation with a nonzero transfer count. 

XA.REGDUMP: 
MOVZBL 
MOVAB 
MOVZBL 

10$: MOVZWL 
SOBGTR 
MOVZBL 
MOVZBL 

20$: MOVL 
SOBGTR 
MOVZBL 

MOVZWL 
MOVZWL 

RSB 

.PAGE 

.SBTTL 
; ++ 

; XA_DEV_RESET 

#15,(R0) + ; 
UCB$W_XA_CSRTMP(R5),R1 ; 
#8,R2 ; 
(R1)+,(R0)+ 
R2.10$ ; 
UCB$W_XA_DPRN(R5),(RO)+ ; 
#3,R2 ; 
(R1)+,(R0)+ ; 
R2,20$ 
UCB$W_XA_DPRN+1(R5),(R0) + 

Fifteen registers are stored 
Get address of saved register images 
Return eight registers here 

Move them all 
Save data-path register number 
and three more here 
Move UBA register contents 

; Save data-path-parity-error flag 

UCB$W_XA_BAETMP(R5),(R0) + ; Save BAE stored prior to transfer 
UCB$W_XA_BAE(R5),(R0) + ; Save BAE stored following transfer 

XA.DEV.RESET - Device reset DR11-W 

- DR11-W Device reset routine 

This routine raises IPL to device IPL, performs a device reset to 
the required controller, and reenables device interrupts. 

Inputs: 

R4 - Address of control and status register 
R5 - Address of UCB 

Outputs: 

Controller is reset, controller interrupts are enabled 

XA.DEV.RESET: 
PUSHR #~M<R0,R1,R2> ; Save some registers 
DSBINT ; Raise IPL to lock all interrupts 

CMPB #DT$_DR11W,- ; If this is a DR11-W, 
UCB$B_DEVTYPE(R5) 

BEQL 20$ then branch 
MOVW #XA_CSR$M_IE,XA_CSR(R4) Clear all writeable bits but IE 
BITB #XA_CSR$M_RDY,XA.CSR(R4) If not READY then no xfer in progress, 
BNEQ 40$ So no need to reset device 
MNEGW #1,XA_WCR(R4) Tell it only 1 byte left to xfer 
MOVB #XA_CSR$M_CYCLE/256,- and complete the transfer. 

XA.CSR+l(R4) 
BRB 30$ 
MOVB #<XA_CSR$M_MAINT/256>,XA.CSR+l(R4) 

CLRB XA.CSR+l(R4) 

; *** Must delay here depending on reset interval 

30$: TIMEDWAIT TIME=#XA_RESET_DELAY ; Number of 10 micro-sec intervals to wait 

MOVB #XA_CSR$M_IE,XA.CSR(R4) ; Reenable device interrupts 
ENBINT ; Restore IPL 
POPR #~M<R0,R1,R2> ; Restore registers 
RSB 

; End of driver label 
.END 
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G MASSBUS Adapter 

This appendix describes the data structures and macros used by DIGITAL for 
its standard magnetic tape and disk products. 

The MASSBUS adapter (MBA) is the hardware interface between the 
backplane interconnect and MASSBUS storage devices. The MASSBUS is 
the communication path linking the MASSBUS adapter to the mass storage 
devices. 

The MASSBUS adapter performs the following functions that allow 
communication between devices and memory: 

• Mapping of virtual address to physical page-frame numbers 

• Buffering of data for transfers between main memory and the MASSBUS 

• Transfer of interrupts from MASSBUS devices to the backplane 
interconnect 

A MASSBUS adapter supports any combination of up to eight device 
controllers. Typical MASSBUS controllers include the TM03 tape controller 
and the RP06, RM03, and RM80 disk controllers. Only one controller can 
transfer data over the MASSBUS at a time. 

The TM03 tape controller supports up to eight tape drives. In contrast to 
tape controllers, there is a one-to-one relationship between a disk controller 
and its device; each controller supports only one disk drive. The VAX/VMS 
system interprets and maintains the I/O database differently, depending upon 
whether the controller is single or multiunit. 

Each MASSBUS controller connected to a MASSBUS adapter is assigned a 
unit number in the range 0 to 7. The method of unit number assignment 
is controller specific, but you can obtain the number from either unit plugs 
or switch packs. In the case of a controller for several devices, the unit 
number is distinct from the subunit numbers assigned to the individual drives 
connected to the controller. 

Figure G-l illustrates a possible MASSBUS configuration. 

Figure G-1 MASSBUS Configuration 

SUBUNIT SUBUNIT SUBUNIT SUBUNIT 
0 1 2 3 

ZK-939-82 
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G. 1 MASSBUS Adapter Registers 
The MASSBUS adapter has three sets of registers: 

• The MASSBUS adapter's registers 

• External registers for each device (controller) on the MASSBUS 

• 256 mapping registers 

To allow competing devices to share these resources, access to and 
modification of all MASSBUS adapter registers (internal, external, and 
mapping registers) are governed by certain rules and conventions. In 
particular, access to registers might, at times, require ownership of either 
the device controller or the MASSBUS adapter itself, or both. Subsequent 
sections in this chapter discuss the methods of obtaining such ownership of 
these shared resources. 

MASSBUS adapter external registers are device dependent and accessible 
whether or not the driver owns the MASSBUS adapter. However, in the case 
of multiunit MASSBUS adapter controllers, the driver might need to own the 
controller before it can gain access to a register. 

MASSBUS adapter external registers are each 16 bits wide, but they must 
be accessed as long words. When a driver reads an external register, the 
MASSBUS adapter concatenates the high order 16 bits of the MBA's status 

* register (one of the MBA's internal registers) to the contents of the specified 
external register. Figure G-2 illustrates the resulting longword. 

Figure G-2 MASSBUS External-Register Longword 

31 16 15 0 

MBA's status register bits external register contents 

ZK-1796-84 

On a write to an external register, the MASSBUS adapter uses the low order 
16 bits of the longword source operand to update the external register. 

MASSBUS adapter internal and mapping registers are 32 bits in length. 
They must be accessed as longwords or the processor will signal a machine 
check exception. The driver for a MASSBUS device must obtain exclusive 
ownership of the MASSBUS adapter before modifying any of the MBA's 
internal or mapping registers. 

Bits 21 through 30 of each of the MBA's mapping registers are reserved; they 
cannot be written. Use of the MBA's mapping registers is analogous to use of 
the UNIBUS adapter's mapping registers with the following exceptions: 

• Because the MASSBUS can handle only one transfer at a time, ownership 
of the MASSBUS adapter implies ownership of all its mapping registers. 
Thus, the driver need not independently request mapping registers. 
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• The MBA's mapping registers do not contain a byte-offset field. The 
driver loads the full MASSBUS adapter virtual address, including the byte 
alignment, into the MASSBUS adapter virtual address register 
at the start of a data transfer. Use of the MBA$L_VAR register is 
described below. 

• The MBA's mapping registers do not contain a data path field; the 
MASSBUS adapter has a single data path, and ownership of the adapter 
implies ownership of the path. Thus, the driver need not allocate the data 
path independently. 

G. 1.1 Loading MASSBUS Adapter Registers 
To prepare for a data transfer over the MASSBUS, the driver that owns the 
MASSBUS adapter uses the LOADMBA macro to load the MBA's mapping 
registers and associated internal registers. The LOADMBA macro invokes the 
subroutine IOC$LOADMBAMAP, which performs the following steps: 

• Determines the number of mapping registers needed to map the data area 
by adding the contents of UCB$W_BCNT to UCB$W_BOFF, adjusting the 
sum to the next even multiple of 512, and dividing the result by 512. 

• Loads the specified number of mapping registers, beginning with mapping 
register 0, with the contents of the page-table entries to which 
UCB$L_SVAPTE points. This step maps the data area for the transfer 
into the low portion of the MBA's virtual address space. The routine also 
loads the next mapping register beyond the number used to map the data 
area with zeros (an invalid map entry). This procedure stops the transfer 
should a hardware failure occur. 

• Loads the MBA$L_VAR register with the zero extended contents of 
UCB$W_BOFF. Because the first byte of the data area is located at offset 
UCB$W_BOFF within the page of memory mapped by mapping register 0, 
the UCB$W_BOFF contains the virtual address of the start of the data area 
in MASSBUS adapter virtual address space. 

• Loads the complement (negative) of UCB$W_BCNT into the MBA's 

byte-count register (MBA$L_BCR). 

Note that if a driver is to perform a data transfer in the reverse direction (for 
example, read reverse on a tape), it must modify the contents of the 
MBA$L_VAR, as established by IOC$LOADMBAMAP, so that it points 
to the last byte of the data area. This is done by adding one less than the 
contents of UCB$W_BCNT to the contents of the MBA$L_VAR register. 

During the progress of a data transfer over the MASSBUS, the MBA$L_VAR 
register is continuously updated so that it points to the current position in 
the data area. The VAX Hardware Handbook illustrates the mapping of the 
contents of the MBA$L_VAR register into physical memory. 
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G. 1.2 MASSBUS Adapter Registers and Offsets 
During system initialization, VAX/VMS builds an adapter-control block 
(ADP) a channel-request block (CRB), and an interrupt-dispatch block (IDB) 
for each MASSBUS adapter. The system also allocates 4K of system virtual 
address space for the adapter's register I/O space. The base of this I/O 
register virtual address space is placed in IDB$L_CSR. Thus, you can access 
MASSBUS adapter registers using the base register virtual address plus 
some offset. The $MBADEF macro defines the offsets for MASSBUS adapter 
registers. The major symbols defined by this macro are shown in Table G-l. 

Table G-1 Major Offsets Defined by $MBADEF 

Symbol MBA Register Name Hex Offset 

MBA$L_CSR Configuration register 0 

MBA$I_CR Control register 4 

MBA$I_SR Status register 8 

MBA$L_VAR Virtual-address register C 

MBA$I_BCR Byte-count register 10 

MBA$L_DR Diagnostic register 14 

MBA$L_SMR Selected mapping register 18 

MBA$I_CAR Command-address register 1C 

MBA$L_ERB External register base 400 

MBA$I_AS Attention-summary register 414 

MBA$L_MAP Base of mapping registers 800 

The MASSBUS adapter's internal registers occupy the low order 1024 bytes 
of address space even though there are only eight internal MBA registers. 
Beyond the internal registers, there are eight blocks of 32 longwords (128 
bytes) each, one block for each of the eight device controllers that can be 
connected to a single MASSBUS adapter. Each of these blocks provides space 
for the device registers of each controller. Beyond the device-register space is 
the area reserved for the MASSBUS adapter's 256 mapping registers. 

Figure G-3 illustrates the relative positions of the MASSBUS adapter's 
registers and the values device drivers use to gain access to them. The base 
address of the MASSBUS adapter's address space, stored in IDB$L_CSR, is 
the address of the first of the MASSBUS adapter's internal registers. 
IDB$L_CSR represents the internal register's virtual location, while the 
MBA$L_ symbols represent register values as defined by $MBADEF. Note 
that the MASSBUS adapter's register space occupies only the first 3K out 
of the 8K allotted to physical I/O address space. However, by convention, 
VAX/VMS allocates 4K of virtual addresses to each MASSBUS adapter. 
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Figure G-3 Location of MASSBUS Registers in Physical 
Address Space 

MASSBUS INTERNAL REGISTERS 
IDB$L_CSR 

UNIT 0 DEVICE REGISTERS 
IDB$L_CSR+MBA$L_ERB=(X"80 *Q) 

UNIT 1 DEVICE REGISTERS 

IDB$L_CSR+MBA$L_ERB=(X''80 *1) 

UNIT 2 DEVICE REGISTERS 

IDB$L_CSR+MBA$L_ERB=(X"80 *2) 

UNIT 7 DEVICE REGISTERS 
IDB$L_CSR+MBA$L_ERB=(X~80 *7) 

MAP REGISTERS 
IDB$L_CSR+MBA$L_MAP 

1024 UNUSED BYTES 

4K BYTES 

I 
ZK-940-82 

To address a mapping register in the MASSBUS adapter, the driver constructs 
the following address: 

IDB$L_CSR + MBA$L_MAP + mapping-register-index 

To address a device register, the driver constructs the following address: 

IDB$L_CSR + MBA$L_ERB + (unit-number * 80i6) + register- 
displacement 

An individual driver should define offsets for the registers of its device. 
During execution, the driver computes a register address by summing the 
MBA's starting virtual address (the contents of IDB$L_CSR), MBA$L_ERB, 
the unit number of the device controller multiplied by 80i6, and the offset of 
the specified register. 

The attention-summary register (MBA$L_AS), as shown in Table G-l, 
appears to reside within the external-register space reserved for MASSBUS 
adapter controller 0. Actually, the attention-summary register is a composite 
register. Each of the MASSBUS adapter's controllers contributes one bit of 
information to the register. This composite register appears in each of the 
eight device register spaces at offset 10i6 from the base of the device registers 
for that device. Thus, MBA$L__AS can be defined as either 410i6, 490i6, 
510i6, 590i6, and so on. For convenience, it has been defined as 410i6. 
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G.1.3 Modifying MASSBUS Adapter Registers 
The driver for a MASSBUS device must obtain ownership of the MBA before 
modifying any of the MBA's internal registers or mapping registers. A driver 
obtains ownership of the MBA by invoking either the REQPCHAN macro 
or the REQSCHAN macro, depending on whether the device is connected 
to a single unit MASSBUS controller or a multiunit MASSBUS controller. 
For dedicated controllers, invoke the REQPCHAN macro. Because the 
controller is dedicated to its single device, there is never any contention 
for the controller. 

For multiunit devices, however, invoke the REQSCHAN macro to obtain 
MBA ownership because several devices can share the controller, and so must 
contend for its use. The controller for several devices relegates the MASSBUS 
adapter to a secondary position. Thus, for multiunit controllers, invoke 
REQPCHAN to gain ownership of the controller, and invoke REQSCHAN to 
obtain the MASSBUS adapter. 

G.2 I/O Database for MASSBUS Devices 
During initialization, the system creates an ADP, a CRB, and an IDB for 
each MASSBUS adapter included in the configuration. The driver-loading 
procedure subsequently builds additional data structures for each device 
controller connected to a MASSBUS adapter. The type of structure created 
depends upon whether the device controller is a dedicated controller or the 
controller of several devices. 

The system builds a unit-control block (UCB) for each single unit controller. 
Figure G-4 illustrates the I/O database for a MASSBUS adapter with one 
dedicated controller attached to it. Note that the ADP, CRB, and IDB all 
correspond to the MASSBUS adapter and can logically be considered a single, 
extended data block. The UCB corresponds to the device/controller pair. 
Because of the one-to-one correspondence between a dedicated controller and 
its device, the system does not need to distinguish between the two and thus 
does not maintain separate data blocks for each piece of hardware. 

A controller of several devices, however, requires separate data structures for 
the controller and each of its subunits (devices). The driver-loading procedure 
builds a CRB/IDB pair for the controller, as well as a UCB for each subunit. 
Figure G-5 shows the I/O database created for a MASSBUS adapter with one 
disk unit and two tape units. 

Figure G-5 does not include several pointers used in interrupt dispatching. In 
particular, the IDB associated with the MASSBUS adapter maintains an array 
of up to eight longwords that point to the data structures associated with the 
eight possible MASSBUS controllers attached to the MASSBUS. 

For dedicated controllers, the IDB longword points to the device's UCB, 
whereas, for a controller for several devices, the longword (or longwords) 
points to a field within the CRB associated with the controller. The low 
bit of this longword, when set, indicates a multiunit vector. The software 
checks this bit to determine whether the longword points to a single UCB or 
a multiunit CRB. 

Also not pictured in Figure G-5 is how multiunit IDBs also maintain an array 
of longwords. Each longword points to the individual UCBs for the units 
attached to the controller. Figure G-6 illustrates in more detail the set of I/O 
data structures for the MASSBUS adapter and its devices. 
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Figure G-4 I/O Database for MASSBUS Disk Unit 

ZK-941-82 

Figure G-5 I/O Database for MASSBUS Disk and Tape Units 

ZK-942-82 
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G.3 MASSBUS Adapter Operations 
The MASSBUS accepts two kinds of operations: data transfer operations 
and nondata transfer operations. Data transfer operations require the use of 
MASSBUS adapter shared resources, while nondata transfers do not. 

Figure G-6 I/O Data Structures Used in Dispatching an 
Interrupt 

ADP 

ZK-943-82 

Before a driver can activate a data-transfer operation on the MASSBUS, the 
driver must request and receive ownership of the MASSBUS adapter on 
behalf of the device unit. However, drivers must not initiate nondata transfer 
operations while they have control of the MASSBUS adapter. Section G.4.1 
explains this statement further. 

The MASSBUS adapter generates interrupts when data transfers terminate 
and when attention conditions arise on devices. When an interrupt occurs 
on the MASSBUS adapter, the MASSBUS adapter's interrupt dispatcher 
determines whether the interrupt is for a data transfer or an attention 
condition. 

Data-transfer interrupts occur when a data transfer either completes or is 
aborted. When the interrupt occurs, the MBA's status register (MBA$L_SR) 
contains information about the condition that caused the interrupt. 

Attention interrupts occur when nondata transfers on MASSBUS devices 
terminate, or when the device undergoes an exceptional condition, such as 
coming on line. 
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The MASSBUS adapter's attention-summary register controls attention- 
interrupt handling. This register contains eight bits of data, one for each 
of the eight possible controllers that can be connected to the MASSBUS 
adapter. When a device incurs an attention condition, the hardware sets 
the corresponding bit in the attention-summary register and generates a 
MASSBUS adapter interrupt. 

If the attention condition occurs while a data-transfer operation for another 
device is in progress, the hardware sets the bit in the attention-summary 
register but suppresses the attention interrupt. The interrupt generated when 
the data transfer is completed allows the MASSBUS adapter's interrupt 
dispatcher to gain control, handle the data-transfer interrupt, check the 
attention-summary register and then invoke the proper driver to handle the 
interrupt. 

G.4 MASSBUS Adapter's Interrupt Dispatching 
When interrupts occur on the MASSBUS adapter, the MASSBUS adapter's 
interrupt dispatcher gains control. This routine first determines whether the 
interrupt is the result of a data transfer or an attention condition. The routine 
checks to see if the MASSBUS adapter is owned and, if so, by whom. 

G.4.1 Checking for MASSBUS Adapter Ownership 
There are two conditions by which the interrupt dispatcher can determine 
that the interrupt is an attention interrupt: 

• If the MASSBUS adapter is not owned 

• If the MASSBUS adapter is owned, but the owner is not expecting an 
interrupt (UCB$V_INT in UCB$L_STS is clear) 

When the MASSBUS adapter is owned and the owner expects an interrupt, 
the interrupt is assumed to be the result of a data transfer operation. 

As mentioned earlier, a driver must not initiate nondata transfers on the 
MASSBUS adapter while it owns the adapter. For example, consider a 
MASSBUS adapter attached to two disk units, A and B. Disk A is performing 
an IO$_SEEK (a nondata transfer operation that completes fairly quickly), 
while at the same time, disk B is performing an IO$_RECAL operation (a 
nondata transfer operation that takes about 0.5 seconds to complete). 

The driver for disk A correctly initiates its operation without obtaining 
possession of the MASSBUS adapter channel, but the disk B driver 
initiates its operation while it owns the MASSBUS adapter. Both of these 
operations, upon completion, set the bit in the attention-summary register 
that corresponds to their respective drive units, and initiate an interrupt. We 
will assume that disk A's IO$_SEEK is completed first. The operation sets 
disk A's bit in the attention-summary register and generates the MASSBUS 
adapter's interrupt. 

The MASSBUS adapter's interrupt dispatcher finds that the adapter is owned, 
and that the owner is expecting an interrupt. Therefore, the interrupt 
dispatcher incorrectly assumes that it is handling a data-transfer interrupt, 
and, moreover, that this interrupt is the one for which the owner of the MBA 
is waiting. 
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So, the MASSBUS adapter's interrupt dispatcher returns control, through the 
fork block in the MASSBUS adapter owner's UCB, to the driver for disk B, 
even though disk B's operation has not completed. The disk B driver will 
now incorrectly assume that the device has completed its operation, which 
can cause serious problems. 

G.4.2 Dispatching a Device Interrupt 
Once the MASSBUS adapter's interrupt dispatcher determines the type of 
interrupt, it dispatches the interrupt to the driver. The interrupt dispatcher 
handles attention interrupts and data-transfer interrupts in the same way, 
with one exception: On an attention interrupt, the interrupt dispatcher clears 
the MASSBUS adapter's status register (MBA$L_SR) before dispatching the 
interrupt to the driver. The status register contains information used only in 
data-transfer interrupt dispatching. 

How the interrupt dispatcher dispatches the interrupt to the driver differs 
depending on the type of controller. 

The MASSBUS adapter's interrupt dispatcher handles a solicited interrupt 
on a dedicated controller by transferring control to the driver through the 
fork block in the UCB. On unsolicited interrupts on dedicated controllers, the 
interrupt dispatcher calls the driver's unsolicited-interrupt-servicing routine. 

On dedicated controllers, the MASSBUS adapter's interrupt dispatcher always 
clears the attention bit in the attention-summary register before it calls back 
the driver after an interrupt. 

Dispatching interrupts to the driver of a device that shares its controller with 
several other devices differs in two ways from dispatching interrupts to the 
driver of a device with a dedicated controller. 

First, the interrupt dispatcher never clears the attention bit. This task is left 
to the driver because some controllers that control more than one device use 
this bit to synchronize their activities, and guarantee the integrity of device 
registers only while the bit is set. If the interrupt dispatcher clears the bit 
before returning control to the driver, the driver can no longer rely on the 
contents of the device's registers. 

Second, a controller that controls several devices needs another interrupt 
dispatcher to handle simultaneous requests from its several subunits. This 
second-level interrupt dispatcher resides in the driver. After an interrupt, the 
MASSBUS adapter's interrupt dispatcher indirectly calls this second, driver's 
interrupt dispatcher using code in the controller's CRB. The driver-loading 
procedure installs this code when it establishes the I/O database. 

G.5 Special Considerations for MASSBUS Device Drivers 
MASSBUS adapter considerations affect a driver's device unit initialization 
routine, start-I/O routines and, for multiunit controllers only, the driver's 
use of the DPTAB macro. MBA considerations also affect interrupt handling, 
as described in Section G.4.2. The next sections in this chapter discuss 
programming details for writing a MASSBUS device driver. 
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G.5.1 Unit-Initialization Routine 
All drivers for MASSBUS adapter devices initialize two fields in the UCB (as 
well as initializing device-specific fields): UCB$B_SLAVE and 
UCB$B_SLAVE+1. The first of these fields should contain the controller's 
MASSBUS adapter unit number, which marks the controller's position on the 
MASSBUS adapter. The second of these contains the offset, in longwords, 
from the start of the MASSBUS adapter's external registers to this controller's 
device registers. The value of this longword offset is always 32 times the unit 
number of the controller. 

Initialization of a device attached to a dedicated controller is simple because 
the device unit number and the controller position number on the MASSBUS 
adapter are always equal. To initialize the field UCB$B_SLAVE, copy to it 
the contents of UCB$W_UNIT. To initialize UCB$B_SLAVE+1, multiply its 
contents by 32. The driver later uses this information to compute a pointer 
to this device's registers. By convention, R4 points to the MASSBUS adapter 
configuration register, and R5 points to the UCB of this device. 

Thus, the following two instructions cause R3 to point to the device registers 
during normal system operation: 

MOVZBL UCB$B_SLAVE+1(R5),R3 
MOVAL MBA$L_ERB(R4)[R3],R3 

For devices connected to a controller that controls several devices, 
determination of the controller's MBA position is more complex. When 
the unit-initialization routine is invoked, the following values are in the 
following registers: 

R3 Address of controller's device registers 

R4 Address of the MBA's configuration register 

R5 Address of device's UCB 

The driver computes the MBA position of the controller by using R3 and 
R4 to determine the number of bytes from the start of the MBA's external 
registers to the start of the device's device registers. The difference, when 
divided by 128, is the controller's MBA position number. 

G.5.2 The MASSBUS Adapter and the I/O Database 
The UCB of a device connected to a single-unit controller, at offset 
UCB$L_CRB, contains the address of the MASSBUS adapter's CRB. This 
CRB in turn contains, at offset CRB$L _INTD+VEC$L _IDB, the address of 
the MASSBUS IDB. This IDB points to the base address of the MASSBUS 
adapter registers at offset IDB$L_CSR. 

A controller that controls several devices maintains a more complicated I/O 
database. The device UCB, at offset UCB$L_CRB, points to the controller's 
CRB, and this structure points to the CRB for the MASSBUS adapter at 
offset CRB$L_LINK. Also, the controller's CRB points to its own IDB at 
offset CRB$L_JNTD-i-VEC$L_IDB. This IDB points to the controller's device 
registers at offset IDB$L_CSR. 

Thus, the UCB for a device always points to that device's primary CRB, 
whether it is the MASSBUS adapter's CRB or the controller's CRB. The 
primary CRB points to the secondary CRB, if one exists for the device. 

Figure G-6 shows these relationships among I/O data structures. 
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G.5.3 Start-I/O Routine 
Depending on the function being executed, the start-I/O routine for a 
MASSBUS device performs all or some of the following tasks: 

• Requests controller data channel(s) as described in Section G.5.3.1 

• Clears errors on the MASSBUS adapter by placing the value -1 into the 
MBA's status register; this is a write-ones-to-clear register (MASSBUS 
device registers and the MBA's registers are all longwords) 

• Invokes the LOADMBA macro to load the MBA's mapping registers as 
described in Section G.5.3.2 

• Loads device registers to start the function 

• Waits for a device interrupt or timeout 

• Releases controller data channel(s) as described in Section G.5.3.3 

• Finishes the request like other drivers 

G.5.3.1 Requesting Controller Data Channels 
Device drivers for MASSBUS devices must request and receive ownership of 
the MASSBUS adapter channel before loading the MBA's internal registers 
or mapping registers. In addition, drivers for devices connected to multiunit 
controllers must obtain ownership of the controller channel before modifying 
the contents of controller registers that can be shared among the units 
connected to the controller. 

Drivers for dedicated controllers must request ownership of the MASSBUS 
adapter channel by invoking the macro REQPCHAN. 

Device drivers for controllers that control several devices invoke the 
REQPCHAN macro when the operation requires ownership of only the 
primary channel (the controller's channel). However, if the operation 
requires ownership of both primary and secondary channels (a data transfer 
operation), the driver must first obtain the controller channel and then request 
the MASSBUS adapter channel by invoking the REQSCHAN macro. 

Again, the driver needs ownership of both channels only when performing 
a data transfer, and must release the channels before initiating a nondata 
transfer. Thus, a driver must obtain ownership of the MASSBUS adapter 
channel sometime before initiating a data transfer and must either not own 
the channel or release such ownership before it invokes the WFIKPCH macro 
following the start of a nondata transfer operation. 

G.5.3.2 Loading Mapping Registers 
MASSBUS device drivers invoke the LOADMBA macro before they initiate a 
data transfer to load the MBA's mapping registers, the MBA's virtual-address 
register (MBA$L__VAR), and the MBA's byte-count register (MBA$L_BCR). 
Drivers cannot modify these registers during a transfer. The LOADMBA 
macro expects the following register contents: 

• The address of the MBA's configuration register (MBA$L_CSR) in R4 

• The address of the device UCB in R5 
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LOADMBA preserves the contents of R3 but modifies RO through R2. The 
macro performs the following steps: 

1 Uses the contents of UCB$W_BCNT and UCB$W_BOFF to determine the 
number of pages that contain pieces of the I/O buffer 

2 Beginning with the page-table entry to which UCB$L_SVAPTE points 
and continuing for the number of page-table entries determined in the 
step above, copies the page-frame numbers from the page-table entries to 
the corresponding mapping registers, starting at mapping register 0 

3 Deposits an invalid value into the mapping register that immediately 
follows the last mapping register loaded with a PFN so that a hardware 
fault does not modify memory 

4 Moves the negative value of the transfer byte count (UCB$W_BCNT) into 
the MBA's byte-count register (MBA$L_BCR) 

5 Moves the byte offset in the first page of the transfer (UCB$W_BOFF) into 
the MBA's virtual-address register (MBA$L_VAR) 

6 Returns to the start-I/O routine that invoked it 

If the I/O operation about to be initiated by the driver is a reverse operation 
(a read-reverse on tape), the driver must modify the contents of the MBA's 
virtual-address register set up by LOADMBA. Because reverse operations 
access the I/O buffer from its highest address through its lowest address, 
the value to be loaded into the MBA's virtual-address register must be the 
virtual address, in MBA's virtual memory, of the last byte of the buffer. This 
number is equal to one less than the sum of the contents of UCB$W_BOFF 
and UCB$W_BCNT. 

G.5.3.3 Releasing Controller Data Channels 
The driver releases the controller data channels by invoking the RELCHAN 
macro. RELCHAN releases all controller channels (both primary and 
secondary) currently owned by the device. To release only the secondary 
channel and retain ownership of the primary channel, a driver can invoke the 
RELSCHAN macro. 

G.5.4 DPTAB Macro 
The device driver for a MASSBUS device that shares its controller with other 
devices must set the DPT$M_SUBCNTRL bit in the flags argument of the 
DPTAB macro. Setting this bit causes the driver-loading procedure to create a 
second CRB and an IDB for the controller. 

G.6 Interrupt-Servicing Routines for MASSBUS Devices 
The VAX MASSBUS interrupt dispatcher (MBA$INT) gains control when it 
receives an interrupt from the MASSBUS adapter. Because data transfers in 
progress suppress attention interrupts on the MASSBUS adapter, and because 
several devices can request attention simultaneously, some device drivers 
might need to be informed of the interrupt. 
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MBA$INT determines which drivers should be invoked as a result of the 
interrupt and then passes control to these drivers. For data-transfer interrupts, 
MBA$INT preserves the value contained in the MBA's status register at the 
time of the interrupt so that the driver can have access to this value. 

For I/O operations that involve no data transfer, MBA$INT clears this register 
before invoking the driver. MBA$INT only preserves the contents of registers 
R2 through R5. Drivers that use other registers must save the contents of 
those registers, and must restore them before exiting the interrupt-servicing 
routine. 

G.6.1 Transferring Control to the Interrupt-Servicing Routine 
The method by which MBA$INT invokes a driver depends upon whether 
the driver serves a device connected to a dedicated controller or a device that 
shares its controller with several other devices. Furthermore, if the device is 
connected to a dedicated controller, the method of transfer from MBA$INT to 
the driver depends upon whether or not the interrupt is expected. 

For a device on dedicated controller when the driver is expecting an interrupt, 
MBA$INT restores the driver context saved in the UCB fork block and 
transfers control (using a JSB instruction) to the instruction that follows the 
wait-for-interrupt instruction. 

For a device on a dedicated controller when the driver is not expecting 
interrupts, MBA$INT obtains the address of the driver's unsolicited-interrupt 
routine from the driver-dispatch table and calls the routine. 

For a device that shares its controller with several other devices, MBA$INT 
transfers control to the driver's interrupt-servicing routine by simulating a 
direct transfer, through an interrupt vector, to the controller's CRB. The CRB 
contains code that transfers control to the interrupt-servicing routine. 

MBA$INT first pushes the processor status longword (PSL) onto the stack. 
The routine then calls (with a JSB instruction that leaves an address within 
MBA$INT on the stack) the code within the CRB. This code contains the 
following sequence of instructions, where XX$INT is the address of the 
interrupt-servicing routine and XX$IDB is the address of the controller's IDB: 

PUSHR #~M<R2,R3,R4,R5> 
JSB XX$INT 

.LONG XX$IDB 

The execution of the above sequence of instructions, plus the instructions 
executed by MBA$INT (the pushing of the PSL onto the stack and the JSB), 
places a simulated interrupt-frame onto the stack, including a saved PSL, a 
saved PC, saved registers and pointer to an address in the IDB. 
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G.6.2 Returning Control to MBA$INT 
The way in which a driver returns control to MBA$INT depends on the way 
in which MBA$INT invoked it. Drivers for dedicated controller devices return 
to MBA$INT through an RSB instruction, although the RSB can execute as a 
result of the driver's invoking the IOFORK macro. 

Drivers of devices that share a controller return control to MBA$INT by 
removing the indirect pointer to the IDB from the top of the stack, restoring 
registers R2 through R5, and executing an REI instruction. This sequence, 
executed within the driver's interrupt-servicing routine, eliminates the 
simulated interrupt-frame from the stack before returning to MBA$INT. 

G. 6.3 Considerations for I nterrupt-Servicing Routines 
Drivers for dedicated controller devices attached to the MASSBUS do not 
have interrupt-servicing routines. Instead, MBA$INT handles all the functions 
that a driver interrupt-servicing routine normally provides. 

Drivers of devices that share a controller on the MASSBUS must have their 
own interrupt-servicing routines. In general, these routines perform the same 
functions as the interrupt-servicing routines for UNIBUS and Q22 bus devices 
(discussed in Section 11. However, the two types of drivers diverge in two 
areas. 

One difference between UNIBUS/Q22 bus and MASSBUS drivers concerns 
the number of registers saved by the interrupt-servicing routine. When the 
interrupt dispatcher transfers control to a MASSBUS driver interrupt-servicing 
routine, registers R2 through R5 are pushed onto the stack. UNIBUS/Q22 
bus drivers save RO through R5. 

After handling an interrupt, both MASSBUS and UNIBUS/Q22 bus driver 
interrupt-servicing routines execute an REI instruction. For UNIBUS/Q22 bus 
devices, the REI dismisses a real interrupt, whereas the MASSBUS driver's 
REI returns control to MBA$INT. 
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Mapping I/O Space and Connecting to an 
Interrupt Vector 

A real-time VAX/VMS process running on a VAX 8600, VAX 8650, 
VAX-11/785, VAX-11/782, VAX-11/780, VAX-11/750, VAX-11/730, 
VAX-11/725, Micro VAX II, or Micro VAX I system can bypass most of the 
I/O subsystem by manipulating device registers and responding to device 

interrupts directly.1 

Programs written in VAX MACRO can interface with the I/O system by using 
VAX RMS, by using the Queue I/O Request ($QIO) system service, or by 
mapping to I/O space and connecting to a device interrupt vector. Programs 
written in a high-level language can interface with the I/O subsystem using 
the same methods as a VAX MACRO program, or they can issue the I/O 
statements specific to that language. In the latter case, the program interfaces 
with the I/O subsystem by means of the VAX Common Run-Time Procedure 
Library. 

A user program can interface with the I/O subsystem at one of several levels, 
depending on its requirements. At each level, the user program makes trade¬ 
offs between ease of use and execution speed. As a general rule, the closer to 
the VAX/VMS executive that a user program interfaces, the less overhead is 
involved in the I/O operation. The connect-to-interrupt capability offers the 
least overhead. 

H.1 Interrupt-Generated I/O 
A process with suitable privileges can connect to a device interrupt vector 
and/or map the processor's I/O space into process virtual address space. 
Connecting to a device interrupt vector allows your process to respond to 
interrupts from the device with minimal overhead. Mapping processor I/O 
space allows your process to access device registers from the main program or 
from an AST service routine. 

A process normally uses these features for devices that do not have 
VAX/VMS drivers. These devices must not be direct memory access (DMA) 
devices, and they must be attached to the UNIBUS or Q22 bus. Examples of 
such devices are the AD11-K and the KW11-P. 

You can use the $QIO system service with an appropriate function code to 
connect to a device interrupt vector and to specify a user-supplied interrupt¬ 
servicing routine that VAX/VMS executes when the designated device 
interrupts. Connecting to a device interrupt vector allows you to do the 
following: 

• Respond to an interrupt within a very short time 

• Preempt other system processing to handle a real-time event, for example, 
a clock interrupt 

• Buffer data from a device in real time and return the data to the process at 
a later time 

* The VAX 8800 and VAX 8200 systems do not support the connect-to-interrupt driver facility discussed in this appendix. 
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• Set an event flag or queue an AST to your process after receiving the 
interrupt 

An interrupt-servicing routine, specified in your process, allows it to perform 
some of the functions normally performed by a device driver. The connect- 
to-interrupt facility, with its VAX/VMS-supplied driver (CONINTERR), 
thus allows you to avoid writing a full device driver and loading it into the 
operating system. 

If you must access device registers from user mode (that is, from the main 
program or a user-mode AST service routine), you must use the Create and 
Map Section ($CRMPSC) system service to map I/O space, specifying page 
frame number (PFN) mapping. The service creates a global or private section 
that maps the specified I/O pages into your process' virtual address space. 
The process can then gain access to I/O space using virtual addresses. 

You do not need to map I/O space to access device registers from any of the 
following routines specified in the $QIO call connecting to an interrupt vector: 

• Unit-initialization routine 

• Start-I/O routine 

• Interrupt-servicing routine 

• Cancel-I/O routine 

These routines execute in system space and thus can access UNIBUS or Q22 
bus I/O space, which is mapped as part of system space. 

The remainder of this appendix explains how to map the VAX processor's 
I/O space and how to connect to a device interrupt vector. 

H.2 I/O Space 
On a VAX processor, I/O space is assigned physical address locations of 
20000000i6 and higher. I/O space contains device registers that a driver or 
user process can read and write to control a device. Each device controller 
has an associated control and status register (CSR) in I/O space. Device 
registers for each device are located at an offset from the device's CSR. 

Macros of the format $IO;mfDEF (where xxx represents a specific VAX 
processor), contained in SYS$LIBRARY:LIB.MLB, define symbols describing 
the layout of I/O space. Table H-l describes these macros and the symbols 
they define for each VAX processor. 
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Table H-1 Symbols Defined by the $IOxxxDEF Macros 

Macro Processor(s) Symbol(s) Meaning Value (hex) 

SI0790DEF VAX 8600 
VAX 8650 

10790$ AL_IO A0 
10790$ Al_IOA1 
10790$ AL_UB0SP 

Start of I/O space for SBIO 
Start of I/O space for SBI1 
Offset to start of address space 
for first UNIBUS 

20000000 
22000000 
24000000 
100000 

SI0780DEF 
VAX-11/782 
VAX-11/785 

10780$ Al_IOBASE 
10780$ AL_UB0SP 

Start of I/O space 
Start of address space for first 
UNIBUS 

20000000 
20100000 

SI0750DEF1 VAX-11/750 I0750$AI_IOBASE 
10750$ Al_UBBASE 
I0750$AI_MBBASE 
IO750$AI_UBOSP 

Start of I/O space 
Start of UBAO register space 
Start of MBAO register space 
Start of address space for first 
UNIBUS 

F20000 
F30000 
F28000 
FC0000 

$I0730DEF VAX-1 1/730 
VAX-11/725 

10730$ Al_IOBASE 
10730$ Al_UBOSP 

Start of I/O space 
Start of address space for UNIBUS 

F20000 
FC0000 

SI0UV2DEF MicroVAX II I0UV2$AI_QBOSP Start of address space for Q22 
bus 

20000000 

SI0UV1DEF MicroVAX 1 I0UV1 $ Al_QBOSP Start of address space for Q22 
bus 

20000000 

^he VAX-11/750 processor has fixed MASSBUS adapters (UBBASE, MBBASE) in contrast to the 
VAX-11/780 processor, which has floating MASSBUS adapters, and the VAX-11/730, which does 
not have MASSBUS adapters. 

The number of registers and their locations vary from device to device. 
The PDP-11 Peripherals Handbook provides the necessary information 
for DIGITAL-supplied devices. The VAX Hardware Handbook contains 
information about the layout of I/O space. 

From the symbols defined by the macros described in Table H-1, you can 
derive the starting physical addresses of UNIBUS or Q22 bus space for the 
various VAX processors. Table H-2 lists the starting physical addresses for 
UNIBUS adapters on the VAX-11/780, VAX-11/782, VAX-11/785, 
VAX-11/750, VAX-11/730, and VAX-11/725 processors, as well as the 
starting physical addresses for Micro VAX I and Micro VAX II Q22 bus space. 

Table H-2 UNIBUS and Q22 Bus Addresses for VAX Processors 

UNIBUS 
adapter 
number 

VAX-11/725 
VAX-11/730 VAX-11/750 

VAX-11/780 
VAX-11/782 
VAX-11/785 

MicroVAX 1 
MicroVAX II 

VAX 8600 SBI0/SBI1 
VAX 8650 SBI0/SBI11 

0 00FC0000 00FC0000 20100000 20000000 20100000/22100000 

1 - 00F80000 20140000 - 20140000/22140000 

2 - - 20180000 - 20180000/22180000 

3 - - 201C0000 - 201C0000/221C0000 

^he maximum number of UBAs that either a VAX 8650 or VAX 8600 can have is seven. Each SBI can 
have up to four UBAs, but only one of the SBIs can be expanded into another cabinet. If you expand SBI1, 
you can put four UBAs on it, plus three on the internal slots of SBIO. Thus, the maximum number of UBAs in 
this configuration is seven. If you expand SBIO, you can have four UBAs on it (three internal, one external). 
Because you cannot expand SBI1 in this case, the maximum number of UBAs in this configuration is four. 
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The page frame number (PFN) of a physical page in memory is contained 
in bits 9 through 29 of its physical address (see Figure H-l). Bit 29 of the 
address is clear to indicate a physical memory address and set to indicate an 
address in I/O space. Bits 0 through 8 specify the byte address within the 
page. 

Figure H-1 Format of a Physical Address 

31 30 29 9 8 

page frame number byte 

ZK-4845-85 

H.3 PFN Mapping 
For a process to gain access to I/O space or to any page of physical memory, 
it must map that page into its virtual address space. When your VAX/VMS 
process maps a page by specifying its page frame number, it completely 
bypasses VAX/VMS memory management and creates its own window to the 
page. As a result, the protection functions that VAX/VMS normally performs 
are not performed for PFN mapping: 

• No checks are performed to ensure that no other VAX/VMS processes are 
mapped to the page and modifying it. 

• No reference count is maintained. A process can delete a global section 
mapped by page frame numbers when other processes are still using it; 
this is not the case for other types of global sections. 

Modifying pages mapped by page frame numbers can have unpredictable 
results and can adversely affect system operation, especially if the operating 
system is also using these pages. Because of the unprotected nature of 
PFN-mapped pages, you must have the PFNMAP privilege to use this 
capability. 

When used for mapping by page frame number, the Create and Map Section 
($CRMPSC) system service designates the specified page(s) as a global or 
private section and maps the section into the requesting process' virtual 
address space. The pages can be located anywhere in the VAX processor's 
local memory, in MA780 memory (if a multiport memory unit is connected to 
the system), or in I/O space. 

The format and conventions PFN mapping (that is, mapping a physical 
page frame section) are similar to those for mapping a disk file section. The 
$CRMPSC system service has the following general formats: 

VAX MACRO Format 

ICRMPSC [inadr] [.retadr] [.acmode] [.flags] [.gsdnam] [.ident] - 
[.relpag] [.chan] [.pagcnt] [,vbn] [,prot] [,pfc] 
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High-Level Language Format 

SYS$CRMPSC([inadr] [.retadr] [.acmode] [.flags] [.gsdnam] [.ident] 
[.relpag] [.chan] [.pagcnt] [,vbn] [,prot] [,pfc]> 

The relpag, chan, and pfc arguments are not applicable to mapping by 
page frame number. The inadr, retadr, acmode, gsdnam, ident, and prot 
arguments have the same functions, regardless of whether you specify page 
frame number mapping; these arguments are described in the VAX/VMS 
System Services Reference Manual 

The following arguments can have values specific to PFN mapping: 

Arguments 

[flags] 
Mask defining the section type and characteristics. This mask is the logical 
OR of the flag bits you want to set. The $SECDEF macro defines symbolic 
names for the flag bits in the mask. The SEC$M_PFNMAP flag bit must be 
set to indicate mapping by page frame number. The SEC$M_PFNMAP flag 
setting identifies the memory for the section as starting at the page frame 
number specified in the vbn argument and extending for the number of pages 
specified in the pagcnt argument. 

If appropriate, the following flags can also be set: 

Flag Description 

SEC$M_GBL Pages form a global section. The default is private section. 

SEC$M_EXPREG Pages are mapped into the first available space. By default, 
pages are mapped into the range specified by the inadr 
argument. 

SEC$M_WRT Pages form a read/write section. By default, pages form a 
read-only section. 

SEC$M_PERM Pages are permanent. By default, pages are temporary. 

SEC$M_SYSGBL Pages form a system global section. By default, pages form 
a group global section. 

Neither the SEC$M_CRF (copy-on-reference) nor the SEC$M_DZRO 
(demand-zero) bit can be set when mapping by page frame number. 

[pagcnt] 
Number of pages in the section; the value of this argument must not be zero. 

[vbn] 
Page frame number of the first page to be mapped (as opposed to this 
argument's normal usage identifying the starting virtual block number (vbn) 
within a disk file). When you are mapping more than one page with a single 
$CRMPSC system service request, the pages are physically contiguous starting 
with the specified page. 
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H.3.1 Notes on PFN Mapping 
The following considerations apply to PFN mapping. 

1 An error in mapping UNIBUS or Q22 bus I/O space or a reference to 
a nonexistent bus address causes a UNIBUS adapter error. However, 
this error does not cause a system failure (except on VAX-11/750 and 
VAX-11/730 processors where a machine check will occur). Rather, an 
entry is made in the system error log file and the user program continues 
executing (probably with erroneous results). The process is not notified of 
the UNIBUS adapter error. 

2 If a power failure occurs on the UNIBUS or Q22 bus, the system continues 
to run. However, if a user process accesses UNIBUS or Q22 bus I/O 
space from user mode during a bus power failure, the process receives 
a machine check exception. To handle this condition, the process must 
have a condition handler to deal with machine check exceptions. The 
VAX/VMS System Services Reference Manual discusses condition handlers 
in detail. 

3 During recovery from a UNIBUS adapter or Q22 bus power failure, 
the processor spends a considerable amount of time (perhaps 10 to 60 
milliseconds) at IPL 31. This action blocks user processes from executing 
during the recovery. 

4 When a process requests deletion of a PFN-mapped page, VAX/VMS 
will wait until there is no direct I/O outstanding for the process before 
deleting the page. This is because no reference count is maintained for 
PFN-mapped pages. (For example, VAX/VMS cannot determine whether 
outstanding direct I/O is for the PFN-mapped page or not.) Applications 
using devices that have direct I/O perpetually outstanding, such as the 
DR32, must not delete PFN-mapped pages because this will cause the 
process to hang in the MWAIT state. 

Once you have mapped to I/O space, you can read data from a device data 
buffer register or enable interrupts by setting a bit in the CSR, because the 
device registers are now addressable as part of your process' virtual memory. 
The UNIBUS adapter performs the actual mapping of VAX virtual addresses 
to 18-bit UNIBUS addresses that correspond to device registers. Likewise, 
the Micro VAX II or Micro VAX I processor performs the mapping of virtual 
addresses to 22-bit Q22 bus addresses that correspond top device registers. 

See Section 6.2 for a list of restrictions that apply to the use of device register 
space. 

H.4 Connecting to an Interrupt Vector 
On a VAX processor, peripheral devices are associated with interrupt vectors. 
When a device interrupt occurs, the action taken by the processor depends on 
the device's associated IPL. 

Connecting to an interrupt vector differs from the standard method of 
programming a peripheral device. Programming a peripheral device is 
normally a 3-step loop: 

1 The device driver starts the device and enables interrupts from the device. 

2 The device generates an interrupt. 
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3 The device driver services the interrupt, collects status and data, and clears 
the interrupt condition. 

Under the VAX/VMS operating system, a user program normally requests 
I/O by means of a $QIO system service call. A device driver, executing as 
part of the operating system, controls and responds to the device. The driver 
returns status and data to the requesting user process. 

However, real-time application programmers can connect to an interrupt 
vector to control and respond to a device without writing a full VAX/VMS 
device driver, and without issuing $QIO calls for each device interaction. 
Instead, you issue a connect-to-interrupt $QIO call that specifies code to be 
executed to control the device, and a data area that the program and the 
device control code can share. You subsequently control and respond to the 
device without additional $QIO calls. 

The timings involved in different system activities associated with connecting 
to an interrupt vector are as follows: 

• The time between when the device generates an interrupt and when the 
process' interrupt-servicing routine receives control depends upon the IPL 
of the processor at the time of the interrupt. If the processor is executing 
at an IPL below that of the device (as is the usual case), the interrupt¬ 
servicing routine gains control within a few microseconds. However, if the 
processor is executing at an IPL above that of the device, the interrupt¬ 
servicing routine does not gain control until the executing code lowers 
the IPL below the device IPL. (Section 3.1 contains a more complete 
discussion of interrupt priority levels.) 

• The time from the user interrupt-servicing routine's exit to the execution 
of the AST routine specified in the $QIO call depends on the priority of 
the process and whether a context switch is required. 

H .4.1 Performing the Connect-to-Interrupt 
Connecting to a device interrupt vector allows your program to receive 
notification of an interrupt from a designated device by any combination of 
the following means: 

• By execution of a user-supplied interrupt-servicing routine 

• By the setting of an event flag 

• By execution of an AST service routine that gains control in process 
context 

In addition, you can specify a cancel-I/O routine that is executed when the 
process disconnects from the interrupt vector or is deleted. 

Before your program can run, the system manager must have performed the 
following actions at system generation time: 

• Specify the REALTIME —SPTS SYSGEN parameter, reserving system page 
table entries for use by real-time processes. These system page table 
entries are used to map process-specified buffers in system space (see 
the pi argument description in Section H.4.3). The REALTIME SPTS 
parameter value must be greater than or equal to the number of pages in 
buffers specified by processes connected to interrupt vectors. 
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• Configure the real-time device by issuing a CONNECT command to the 
System Generation Utility. This command names the device; its vector, 
register, and adapter addresses; and a skeletal driver (CONINTERR) 
for the device. (See the description of the CONNECT command in 
Section 14.2.2 and in the VAX/VMS System Generation Utility Reference 
Manual.) 

At run time the process calls the $ASSIGN system service to associate a 
channel with the device. The process can also map the page in UNIBUS 
or Q22 bus I/O space containing the device registers (see Section H.3). 
To connect to the device interrupt vector, the process issues a $QIO call 
specifying the IO$_CONINTREAD or IO$_CONINTWRITE function code 
and as many of the following items as are appropriate: 

• An interrupt-servicing routine to be executed when the device generates 
an interrupt. 

• A buffer containing code to be executed in system context and/or data. 
(This buffer must be contiguous in the process' address space.) 

• An AST service routine to execute and/or an event flag to be set after the 
interrupt-servicing routine (if any) completes. (If an AST service routine is 
specified, an AST parameter may also be specified.) 

• A unit-initialization routine. 

• A start-I/O routine. 

• A cancel-I/O routine. 

A nonprivileged process (that is, lacking the CMKRNL privilege) can also 
connect to an interrupt vector, but it can only specify an AST service routine 
to be executed or an event flag to be set (or both) when an interrupt is 
generated. Section H.4.3 describes the $QIO format for connecting to an 
interrupt vector. 

H.4.2 The Connect-to-lnterrupt Driver (CONINTERR.EXE) 
The VAX/VMS connect-to-interrupt driver (CONINTERR) provides a driver 
interface to the system on behalf of the process. CONINTERR connects the 
process to the device by executing the following steps: 

1 Validates the arguments to the $QIO system service call, such as the 
accessibility of the buffer specified in argument pi to the process, and the 
number of the event flag optionally specified in the efn argument. 

2 Locks the physical pages of the buffer into physical memory, and maps 
the pages using system page table entries allocated by the 
REALTIME-SPTS SYSGEN parameter. 

3 Constructs argument lists and calling interfaces to the process-specified 
routines by storing values in the device's unit-control block (UCB). 

4 Allocates the specified number of AST control blocks to the process, and 
inserts each block in a queue in the device's UCB. 

5 Transfers control to VAX/VMS to queue the connect to interrupt I/O 
packet to the CONINTERR start-I/O routine. 
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When the CONINTERR start-I/O routine gains control, it passes control, by 
means of a user-specified JSB or CALLS instruction interface, to the process- 
specified start-I/O routine. This routine usually initializes the device and may 
also start device activity. 

When the device generates an interrupt, the CONINTERR interrupt-servicing 
routine gains control. This routine transfers control to the process-supplied 
interrupt-servicing routine. 

H.4.3 $QIO System Service for Connect-to-Interrupt 
The format of the $QIO system service to connect to an interrupt vector is 
given below. This explanation is limited to connecting to an interrupt vector. 
For a detailed description of the $QIO system service, see the VAX/VMS 
System Services Reference Manual. 

The relpag, chan, and pfc arguments are not applicable in mapping by 
page frame number. The inadr, retadr, acmode, gsdnam, ident, and prot 
arguments have the same functions regardless of whether you specify page 
frame number mapping; these arguments are described in the VAX/VMS 
System Services Reference Manual. 

VAX MACRO Format 

$QI0 [efn] ,[chan] ,func [,iosb] [.astadr] [.astprm] - 

[.pi] Lp2] [,p3] [ ,p4] [,p5] [ ,p6] 

High-Level Language Format 

SYS$QI0([efn] ,[chan] ,func [,iosb] [.astadr] [.astprm] 

[.pi] Lp2] [,p3] [,p4] [,p5] [,p6] ) 

Arguments 

[efn] 
[iosb] 
[astadr] 
[astprm] 

These arguments apply to the $QIO system service completion, not to device 
interrupt actions. For an explanation of these arguments, see the description 
of the $QIO system service in the VAX/VMS System Services Reference Manual. 

func 
Function code of IO$_CONINTREAD or IO$_CONINTWRITE. The 
IO$_CONINTWRITE function code allows locations in the buffer pointed to 
by the pi argument to be modified; the IO$_CONINTREAD function code 
makes the buffer contents read-only. 

[pi] 
Address of a descriptor for the buffer containing code and/or data. The first 
longword records the number of bytes in the buffer; the second longword 
records the address of the buffer. The buffer size must not exceed 65,535 
bytes. 

[p2] 
Address of an entry point list. The list consists of four longwords that 
contain offsets into the buffer (specified in the pi argument) of entry points 
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of process-specified routines. These longwords and their contents2 are as 
follows: 

Symbol Meaning 

CIN$I_INIDEV Offset to unit-initialization routine 

CIN$L—START Offset to start-l/O routine 

CiN$l_ISR Offset to interrupt-servicing routine 

CINSI_CANCEL Offset to cancel-l/O routine 

[p3] 
Long word containing flags and an optional event flag number specification. 

The low-order word contains the inclusive-OR of flags describing options to 
the connect-to-interrupt facility. The flags and their meanings are as follows: 

Flag Meaning 

CIN$M_EFN Set event flag on interrupt 

CIN$M_USECAL Use CALL interface to process-specified routines (default is 
JSB interface) 

CIN$M_REPEAT Leave process connected to the interrupt vector until the 
connection is canceled 

CIN$M_INIDEV Process-specified unit-initialization routine is in the buffer 
specified in the pi argument 

CIN$M_START Process-specified start-l/O routine is in buffer 

CIN$M_ISR Process-specified interrupt-servicing routine is in buffer 

CIN$M_CANCEL Process-specified cancel-l/O routine is in buffer 

The high-order word specifies the number of the event flag to be set when an 
interrupt occurs. This number is expressed as an offset to CIN$V_EFNUM. 

For example, to specify that your interrupt-servicing routine is in the buffer 
and to set event flag 4, code p3 as follows: 

P3 = <CIN$M_ISR! CIN$M_EFN! 4<DCIN$V_EFNUM> 

[p4] 
Address of the entry mask of an AST service routine to be called as the result 
of an interrupt (see Section H.4.4). 

[p5] 
AST parameter to be passed to the AST service routine (used as the AST 
parameter only if the process-supplied interrupt-servicing routine does not 
overwrite the value). 

[p6] 
Number of AST control blocks to preallocate in anticipation of fast, recurrent 
interrupts from the device. 

^ The listed symbols are defined by the $CINDEF macro located in the library SYS$LIBRARY:LIB.MLB. 
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Condition Values Returned 

SSS—NORMAL 

SS$_ACCVIO 

SSS—BADPARAM 

SS$_DISCONNECT 

SS$_EXQUOT A 

SS$_ILLEFC 

SSS—INSFMEM 

SS$_INSFSPTS 

SS$_NOPRIV 

SS$_UNASEFC 

System service successfully completed. 

The caller does not have the appropriate access to the 
buffer specified in the pi argument or to the entry point list 
specified in the p2 argument. 

The size of the buffer specified in the pi argument exceeds 
65535 bytes, or the number of preallocated AST control 
blocks specified in the P6 argument exceeds 65535. 

A connection is already outstanding for the device, or a 
condition described in Note 2b below has occurred. 

The process has exceeded its direct I/O limit quota or its 
AST limit quota. 

An illegal event flag number was specified. 

Insufficient system dynamic memory is available to 
complete the system service. 

Insufficient system page table entries are available 
to double map the process buffer. (The value of the 
REALTIMESPTS SYSGEN parameter must be increased.) 

The process does not have the CMKRNL privilege. This 
privilege is only required if the user specifies a buffer to be 
used by the process and the process-specified kernel mode 
routines. 

The process is not associated with the cluster containing 
the specified event flag. 

See Note 3 below for additional information on these flags. 

Privilege Restrictions 

The connect-to-interrupt $QIO call does not require privileges if no shared 
buffer is specified. If the request specifies a buffer descriptor argument (that 
is, pi), the process must have the CMKRNL privilege. 

Resources Required/Returned 

A connect-to-interrupt request updates the process quota values as follows: 

• Subtracts the number of preallocated AST control blocks in the p6 
argument from the number of outstanding ASTs remaining for the process 
(ASTCNT) 

• Subtracts 1 (for the $QIO) from the direct I/O count (DIOCNT) 

Notes 

1 After the $QIO call is issued, the operation is not completed until the 
process or the connect-to-interrupt driver cancels I/O on the channel. 

2 The connect-to-interrupt driver can cancel I/O on the channel for a 
number of reasons, including the following: 

a The driver cannot set the specified event flag, perhaps because 
the process disassociated from the common event flag cluster after 
requesting that a flag in that cluster be set. 
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b The driver cannot reallocate AST control blocks quickly enough. 
This condition can occur because not enough AST control blocks (p6 
argument) were specified, because not enough pool space is available 
for the requested AST control blocks, or because the process ASTCNT 
quota is exhausted. 

c The driver cannot queue the AST to the process. 

3 If no event flag setting was requested in the p3 argument and if no 
AST service routine was specified in the p4 argument, p6 is ignored and 
no AST control blocks are preallocated. If you requested an event flag 
be set and/or an AST service routine but did not preallocate any AST 
control blocks (that is, p6 is zero), one AST control block is preallocated 
automatically, because the system needs one control block to set any event 
flag or to deliver any ASTs. 

If you request an event flag and/or an AST service routine and if you 
preallocate any AST control blocks, the CIN$M—REPEAT bit is set 
automatically in the longword specified in the p3 argument. Thus, as long 
as you preallocate any AST control blocks, your process will automatically 
remain connected to the interrupt vector to receive repeated interrupts 
until the process is disconnected from the interrupt vector. 

If the CIN$M—REPEAT flag is not set, the process is disconnected from 
the interrupt vector after the first successful interrupt, and a status code of 
SS$_NORMAL is returned. 

H.4.4 AST Service Routine 
The AST service routine that you specify in call to the $QIO system service 
for the connect-to-interrupt operation, gains control in process context. This 
routine usually performs one or more of the following steps: 

1 Reads or writes device registers if the process mapped I/O space. 

2 Interprets data. Use caution, however, because any processing done by 
the AST service routine can be interrupted by a device interrupt, which 
might store more data or modify the buffer's contents. 

3 Calls the Cancel I/O on Channel ($CANCEL) system service to 
disconnect the process from the interrupt. Once the process is completely 
disconnected, the CONINTERR driver clears all interrupts for the driver. 

H.4.5 Conventions for Process-Specified Routines 
Any routines that the process specifies in the connect-to-interrupt call are 
double-mapped, once in process space and once in system space. Each 
routine executes in kernel mode at an appropriate IPL: 

Routine IPL 

Unit-initialization routine (after power 
recovery) 

IPL$_POWER (IPL 31) 

Start-I/O routine IPL$_QUEUEAST (IPL 6) 

Interrupt-servicing routine Device IPL (assumed to be IPL 22) 

Cancel-I/O routine IPL$QUEUEAST (IPL 6) 

The process must have the CMKRNL privilege. Each routine must: 
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• Be position independent. 

• Follow the rules for accessing I/O space as described in Section 6.2. 

• Access only data within the buffer or nonpageable locations in system 
space. 

• Perform any necessary synchronization of access to data in the shared 
buffer. 

• Save any registers it uses (unless otherwise noted in the remaining sections 
of this appendix). 

• Exit properly. 

• Not incur exceptions. 

• Not perform lengthy processing. 

• Not dispatch to code outside the buffer specified in the pi argument to the 
$QIO system service call. 

Later sections in this appendix discuss various programming language 
constraints and other conventions for the process-specified routines included 
in a connect-to-interrupt procedure. You can find additional help for 
writing a start-I/O routine, interrupt-servicing routine, unit-initialization 
routine, or cancel-I/O routine in Sections 9, 11, 13.1, and 13.2, respectively. 
Additionally, you may find useful the several program examples of connecting 
to an interrupt vector with which this appendix concludes. 

H.4.6 Programming Language Constraints 
Only VAX MACRO or VAX BLISS-32 should be used to code process- 
specified routines in system space or any references to I/O space. There 
is no assurance that the code generated by compilers for other languages will 
satisfy all the constraints described in this section. 

The following constraints apply to process-specified routines in system space 
(that is, in the buffer specified in the pi argument to the $QIO call that 
establishes the connection to the interrupt vector): 

• The compiler must generate position-independent code for the routines. 

• The generated code and data must be contiguous in virtual space. 

• No calls can be made to any procedure outside the buffer. (This restriction 
includes calls to routines in the VAX Common Run-Time Procedure 
Library.) 

For any references to I/O space, the generated code must follow the rules 
for accessing I/O space discussed in Section 6.2. Device register access from 
high-level languages usually requires that the variable equivalent to the 
register be a 16-bit integer data type. You may need to check the assembly- 
language code generated by compilers for languages other than VAX MACRO 
or VAX BLISS-32 to determine whether it follows all necessary conventions. 
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H.4.7 Process-Specified Unit-Initialization Routine 
During recovery from a power failure, VAX/VMS calls the CONINTERR 
unit-initialization routine. This routine marks the device as on line in the 
UCB$L_STS field, stores the UCB address in the IDB$L—OWNER field, and 
then transfers control to the process-specified unit-initialization routine. The 
process-specified routine executes in system context at IPL$_POWER (IPL 
31). 

If the process specified a JSB interface, the process unit-initialization routine 
gains control with the following register settings: 

RO Address of UCB 

R4 Address of CSR 

R5 Address of IDB 

R6 Address of DDB 

R8 Address of CRB 

If the process specified a CALL interface, the process unit-initialization routine 
gains control with an argument list pointed to by AP: 

O(AP) Argument count of 5 

4(AP) Address of CSR 

8(AP) Address of IDB 

12(AP) Address of DDB 

16(AP) Address of CRB 

20(AP) Address of UCB 

The process-specified unit-initialization routine may initialize device registers. 
It must follow these conventions: 

• Not lower IPL. 

• Save and restore all registers it uses, other than RO through R3. 

• Restore the stack to its original state before exiting. 

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for 
a CALL interface). 

For additional information on writing a unit-initialization routine, see 
Section 13.1. 

H.4.8 Process-Specified Start-I/O Routine 
The process-specified start-I/O routine executes in system context at 
IPL$_QUEUEAST (IPL 6). It is entered from the CONINTERR start-I/O 
routine. 

If the process specified a JSB interface, the process start-I/O routine gains 
control with the following register settings: 
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R2 Address of counted argument list 

R3 Address of IRP 

R5 Address of UCB 

If the process specified a CALL interface, the process start-I/O routine gains 
control with an argument list pointed to by AP: 

O(AP) Argument count of 4 

4(AP) System-mapped address of process buffer 

8(AP) Address of IRP 

12(AP) System-mapped address of the device's CSR 

16(AP) Address of UCB 

The process-specified start-I/O routine may set up device registers. It must 
follow these conventions: 

• Maintain an IPL equal to or higher than IPL$_QUEUEAST (IPL 6), and 
exit at IPL 6. If it raises IPL, the routine should first save the current IPL 
on the stack for later use in restoring IPL. 

• Save and restore all registers it uses, other than RO through R4. 

• Restore the stack to its original state before exiting. 

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for 
a CALL interface). 

For additional information on writing a start-I/O routine, see Section 9. 

H.4.9 Process-Specified Interrupt-Servicing Routine 
A process-specified interrupt-servicing routine is entered when an interrupt 
from the device occurs. This routine executes in system context at device IPL. 

If the process specified a JSB interface, the process interrupt-servicing routine 
gains control with the following register settings: 

R2 Address of counted argument list 

R4 Address of IDB 

R5 Address of UCB 

If the process specified a CALL interface, the process interrupt-servicing 
routine gains control with an argument list pointed to by AP: 

O(AP) Argument count of 5 

4(AP) System-mapped address of process buffer 

8(AP) Address of AST parameter 

12(AP) System-mapped address of the device's CSR 

16(AP) Address of IDB 

20(AP) Address of UCB 

The process-specified interrupt-servicing routine usually performs one or 
more of the following steps: 

1 Copies the contents of device registers into the shared buffer or the AST 
parameter. 
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2 Writes to a device register to clear the interrupt condition, if such an 
operation is required for the device. 

3 Restarts the device, or returns an offset, a byte count, or actual data as an 
AST parameter. 

4 Returns an interrupt status to the VAX/VMS connect-to-interrupt driver 
(CONINTERR). 

The process-specified interrupt-servicing routine, like those supplied by 
VAX/VMS, has the following characteristics: 

• It is mapped in system space. 

• It executes on the interrupt stack. 

• It executes at the IPL of the device that requested the interrupt. 

Because of these characteristics, the interrupt-servicing routine executes as 
part of the VAX/VMS operating system rather than in the context of your 
user process. As part of the operating system, the interrupt-servicing routine 
has access to system data bases not available to user processes. However, 
because an interrupt-servicing routine has these capabilities and executes at a 
raised IPL, you must code it carefully to avoid disrupting the system. 

The routine must follow these conventions: 

• Maintain an IPL equal to or higher than device IPL. (If the IPL is raised, 
the current IPL should first be saved on the stack for later use in restoring 
IPL.) 

• Save and restore all registers it uses, other than RO through R4. 

• Restore the stack to its original state before exiting. 

• Set or clear the low bit of RO, as a status value, before exiting. The status 
values are as follows: 

Bit 0 of RO Meaning 

Clear Dismiss the interrupt. The process is not notified of the 
interrupt. 

Set Set the event flag if CIN$M_EFN bit is set in the p3 
argument to the $QIO system service call, and queue the 
AST if p4 specifies an AST service routine. 

• Returns to the CONINTERR interrupt-servicing routine with a RET 
instruction (for a CALL interface) or RSB instruction (for a JSB interface) 

Depending on the interrupt status, the CONINTERR interrupt-servicing 
routine queues a fork process to run at a lower IPL. Then the interrupt¬ 
servicing routine exits from the interrupt with an REI instruction. When the 
CONINTERR fork process gains control, it queues an AST or posts an event 
flag to the process (or both). 

For additional information on writing an interrupt-servicing routine, see 
Section 11. 
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H.4.10 Process-Specified Cancel-I/O Routine 
When the user process issues a cancel-I/O request for a device connected to 
the process, the CONINTERR cancel-I/O routine first checks to determine 
whether the process can indeed cancel I/O for this device. If it can, the 
CONINTERR cancel-I/O routine transfers control to the process-specified 
cancel-I/O routine. This routine executes in system context at IPL 8 (fork 
IPL). 

If the process specified a JSB interface, the process cancel-I/O routine gains 
control with the following register settings: 

R2 Negated value of channel index number 

R3 Address of current IRP 

R4 Address of PCB for process canceling the I/O 

R5 Address of UCB 

If the process specified a CALL interface, the process cancel-I/O routine gains 
control with an argument list pointed to by AP: 

O(AP) Argument list count of 4 

4(AP) Negated value of channel index number 

8(AP) Address of current IRP 

12(AP) Address of PCB for process canceling the I/O 

16(AP) Address of UCB 

The process-specified cancel-I/O routine may clear device registers and set 
the UCB$V_CANCEL bit in UCB$L_STS. It must follow these conventions: 

• Maintain an IPL equal to or higher than IPL$_QUEUEAST (IPL 6), and 
exit at IPL 6. If it raises IPL, the routine should first save the current IPL 
on the stack for later use in restoring IPL. 

• Save and restore all registers it uses, other than RO through R3. 

• Check the UCB$V_BSY bit in UCB$L_STS to validate that the channel 
index number represents that the process is still connected to the device. 

• Place a completion status in RO and Rl. VAX/VMS places the values in 
these registers in the I/O status block associated with the connect-to- 

interrupt $QIO call. 

• Restore the stack to its original state before exiting. 

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for 
a CALL interface). 

For additional information on writing a cancel-I/O routine, see Section 13.2. 
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H.5 Real-Time Applications Examples 
To understand how the connect-to-interrupt facility is useful for programming 
real-time devices, consider devices used in three types of real-time 
applications: 

1 Asynchronous event reporting without data—devices that generate an 
interrupt as the result of an external event not initiated by a programmed 
request. 

2 Program-driven data collection—devices that generate an interrupt as 
the result of a programmed request, and make the result of the request 
available as data in a device register at the time of the interrupt. 

3 Asynchronous event reporting with data—one device triggers another 
device by generating an interrupt that causes a programmed request to be 
sent to the other device, which in turn generates an interrupt. 

Examples of these three types of real time applications and models of 
programs to handle the devices follow. 

Note: The configurations described in the examples in this section are not 
officially supported; DIGITAL does not provide device driver, UETP, 
or diagnostic support for certain devices mentioned. The examples 
are provided merely as possible models for users who wish to design 
real-time applications using unsupported devices or configurations. 

The files in the SYS$EXAMPLES directory whose names begin with "LABIO" 
illustrate an application using the connect to interrupt technique. Included is 
a program example illustrating data definitions and coding used to connect to 
a device interrupt vector. 

H.5.1 Example 1: KW11-W Watchdog Timer 
This type of device reports asynchronous external events: it generates an 
interrupt as a result of an external event not initiated by a programmed 
request. The only data of interest to be passed to the user process is the 
occurrence of the external event. Such devices include contact and/or solid 
state interrupts, and clocks or counters. The program may need to initiate 
clock and counter devices by means of a programmed request, but any 
subsequent interrupts are the result of external events only. 

In this example, a dual-processor system uses two KW11-W watchdog timers 
connected back-to-back to monitor CPU failures. Each processor must arm 
its timer at regular intervals to prevent the timer from operating a relay that 
outputs an alarm signal. The alarm output of each timer is connected to the 
receive input of the other watchdog. If processor A fails and its watchdog 
times out, the alarm output generates an interrupt on processor B by way of 
the second watchdog timer. 

The watchdog control program on each processor simply addresses the timer 
at regular intervals. If the interval passes without the timer being addressed, 
the timer operates an output relay that generates an interrupt to the second 
CPU. For this example, assume that the interval is 5 seconds (Section H.5.3 
contains an example that addresses the problem of a much smaller time 
interval.) 

The watchdog control program on processor A executes as follows: 

1 Assigns a channel to the device. 
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2 Calls the $CRMPSC system service to map to the I/O page in order to 
address the device registers. 

3 Issues a connect-to-interrupt $QIO call to connect the program to the 
watchdog timer for processor B; specifies the addresses of an interrupt¬ 
servicing routine and an AST routine. 

4 Writes a value to a device register to start the timer. 

5 Calls the $SETIMR system service to request that an event flag be set after 
a specified interval (for example, 5 seconds). 

6 Calls the $WAITFR system service to wait for the event flag. 

7 When the event flag is set, writes a value to a device register to reset the 
timer. 

8 Loops to Step 5. 

The same control program runs on processor B except that it connects to the 
watchdog timer for processor A. If either processor fails, the watchdog timer 
generates an interrupt on the other processor. 

The standby processor that receives the interrupt gains control in the 
VAX/VMS connect-to-interrupt driver (CONINTERR), which calls a process- 
supplied interrupt-servicing routine (defined in step 3 above) that handles the 
interrupt as follows: 

1 Sets the KW11-W switch relay register to clear the timer interrupt 
condition. 

2 Sets a status flag that will cause an AST to be delivered to the control 
program that connected to the interrupt. 

3 Returns to CONINTERR. 

CONINTERR completes the interrupt handling as follows: 

1 Schedules a fork process at a lower IPL. This fork process, when it gains 
control, will queue an AST to the user program. 

2 Executes an REI instruction to return from the interrupt. 

The timer control program on the standby processor regains control in an AST 
routine. This routine responds to the other processor's failure by switching 
over and assuming control of the other processor's tasks (or whatever is 
appropriate). 

H.5.2 Example 2: ADI 1—K, AMI 1—K A/D Converter with Multiplexer 
Connected to the UNIBUS 

This type of device provides program-driven data collection: it generates an 
interrupt as the result of a programmed request to the device, and makes the 
result of the request available as data in a device register. Typical devices 
include A/D converters and digital I/O registers. 

The data collection operation is usually repetitive for such applications. 
Therefore, the interrupt service routine must be capable of buffering data 
from the device in order to ensure that no data is lost because of the high¬ 
speed data transfer rate. A typical buffer size for this sampling technique 
might be 32 16-bit words. 
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In this example, a user program controls an AD11-K/AM11-K combination 
that accepts analog data from thermocouples. The AD11-K converts analog 
data to digital data and returns the data in a device register. Every 10 
seconds, the program samples 16 to 32 out of 64 channels at gain settings 
that may vary based on the thermocouple type and previous samplings. 

To collect data efficiently, the program buffers data in a process-specified 
interrupt-servicing routine, and requests delivery of an AST to the user 
process when all the requested channels have been sampled. To perform 
variable sampling, the program passes parameters to the interrupt-servicing 
routine. 

The program establishes a protocol to communicate between the program and 
the interrupt-servicing routine. The protocol defines a data area shared by the 
main program, the interrupt-servicing routine, and the AST routine. The data 
area contains parameters from the program and data from the AD11-K. The 
data area is a 98-word array used as follows: 

1 Elements 1-2 of the data area contain an index to the next buffer location 
to be filled, and a count indicating the number of samplings still to be 
taken. The main program initializes these values before starting the 
device. The interrupt-servicing routine reads and modifies these values in 
the process of copying data and determining when to stop sampling. 

2 Elements 3-66 of the data area are reserved for interrupt service routine 
parameters. Each pair of elements contains the number of a channel and a 
gain value. The main program loads these parameters before starting the 
device. 

3 Elements 67-98 of the data area receive the data that the interrupt¬ 
servicing routine reads from the AD11-K data buffer register. The AST 
routine later reads data from this part of the buffer. 

The program sets up for the sampling as follows: 

1 Assigns a channel to the device. 

2 Calls the $CRMPSC system service to map to the I/O page in order to 
address the device registers. 

3 Initializes the data area by writing a 67 (the index to the next buffer 
location to be filled) into element 1, and the number of samples to take 
into element 2 of the data area; clears elements 3 through 98 of the data 
area. 

4 Writes channel numbers and gain values into the parameter section of the 
data area. 

5 Issues a connect-to-interrupt $QIO call to connect the process to the A/D 
converter; specifies the addresses of the area to be double mapped, an 
offset to the interrupt-servicing routine, and an AST routine. 

6 Sets the start and interrupt-enable bits in the AD11-K status register to 
start the A/D converter. 

7 Calls the $HIBER system service to place the process in a wait state. 

As soon as the AD11-K has converted the first sample, the device generates 
an interrupt. The VAX/VMS CONINTERR routine calls the process-specified 
interrupt-servicing routine. This process-specified routine executes as follows: 

1 Computes the next location to be written in the buffer by reading the first 
element in the data area. 
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2 Reads 12 bits of data from the A/D buffer register into the next location 
in the buffer. 

3 Updates the buffer offset and count elements at the beginning of the data 
area. 

4 If all requested samples have been collected, writes the address of the data 
area into the AST parameter, sets a status flag that will cause an AST to be 
delivered to the control program, and returns to the CONINTERR routine. 

5 Otherwise, sets the start bit in a device register to restart the device and 
returns to the CONINTERR routine with a status flag requesting no AST 
delivery or event flag setting. 

Based on the interrupt status from the process-specified interrupt-servicing 
routine, the CONINTERR routine completes the interrupt processing by 
queuing a fork process that will queue an AST to the user process. When the 
process gains control in the AST service routine, this routine processes the 
samples in the following steps: 

1 Clears the interrupt-enable bit in the device status register. 

2 Examines the data collected in order to adjust channel selection and/or 
gain values for the next sampling. 

3 Copies the data to a file. 

4 Reinitializes the data area. 

5 Calls the $SCHDWK system service to wake the process after a short 
interval (for example, 10 seconds). 

6 Returns. 

When the time interval elapses, the process regains control. The program 
can then restart the sampling process by again setting the start and interrupt- 
enable bits in the AD11-K status register. 

H.5.3 Example 3: KW11—P Real-Time Clock and ADI 1—K Converter 
Connected to the UNIBUS 

This type of device reports asynchronous external events by collecting data: 
one device triggers another device by generating an interrupt that causes a 
programmed request to be sent to the other device, which in turn generates 
an interrupt. A typical example is a clock-driven A/D operation for precise 
time sampling as required in signal processing. This processing technique 
is often used in laboratories. The amount of data collected in such a timed 
sampling might typically be 200 to 1000 16-bit words. 

In this example, the main program sets up the real-time clock to generate 
interrupts periodically. At regular intervals, the clock interrupt triggers a 
programmed request for an A/D conversion operation. The AD11-K collects 
a sample, and interrupts the CPU with a "done" interrupt and 12 bits of data. 
The AD11-K interrupt-servicing routine buffers the data and, if the buffer 
is full, causes an AST to be delivered to the process. The process, gaining 
control in an AST routine, copies the buffered data to another buffer or to 
disk. 
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Programming these device functions is slightly more complicated than the 
previous example. The main program must specify a large buffer to be 
used in ring fashion to guarantee that data is not lost between clock-driven 
samplings. In addition, the program must connect to two device interrupts— 
one for the clock and one for the A/D converter. 

The protocol used by the main program, the interrupt-servicing routine, and 
the AST routine is similar to the previous example. The data area is larger: 
4K words of buffer area follow the parameter area. The A/D converter 
interrupt-servicing routine and the AST routine treat the 4K-word buffer as 
four buffer sections of IK words per section. The first element in each IK 
buffer section is a flag indicating whether the section is in use. The AST 
resets the flag value after copying the contents of the buffer. The interrupt¬ 
servicing routine uses a buffer section only if the section's flag value indicates 
that the buffer has been emptied. 

The main program starts the sampling with the following steps: 

1 Assigns channels to the clock and to the A/D converter. 

2 Calls the $CRMPSC system service to map to the I/O page in order to 
address the device registers. 

3 Initializes the data buffer by writing a 67 (the index to the next buffer 
location to be filled) into element 1, and the number of samples to take 
into element 2 of the data area; clears elements 3 through 4096 of the data 
area; flags each page of the buffer as available. 

4 Writes channel numbers and gain values into the parameter segments of 
the data area. 

5 Issues a connect-to-interrupt $QIO call to connect the process to the clock, 
and specifies the address of an interrupt-servicing routine. 

6 Issues a connect-to-interrupt $QIO call to connect the process to the A/D 
converter; and specifies the addresses of the area to be double mapped, an 
offset to the interrupt-servicing routine and an AST routine. 

7 Sets the sampling interval by writing a 16-bit value into the KW11-P 
count set buffer register. 

8 Starts the clock by setting the run, mode, rate selection, and interrupt- 
enable bits in the KW11-P control and status register. Setting the mode 
bit causes repeated interrupts generated at a rate specified in the time 
interval. 

9 Calls the $HIBER system service to place the process in a wait state. 

The clock interrupts when zero (underflow) occurs during a countdown 
from the preset interval count. The VAX/VMS CONINTERR routine calls 
the process-specified clock interrupt-servicing service routine. This process- 
specified routine starts the A/D conversion as follows: 

1 Starts the A/D converter by setting the start and interrupt-enable bits in 
the AD11-K status register. 

2 Sets interrupt status that prevents AST delivery or event flag setting as a 
result of this interrupt. 

3 Returns to CONINTERR. 
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Starting the A/D converter results in an interrupt from the AD11-K, and 
control passes, by way of CONINTERR, to the AD11-K interrupt-servicing 
routine. This routine executes as follows: 

1 If this sample is the first sample for a new buffer (indicated by a flag in 
the data area), the routine moves to the next buffer section (branches to 
error handling if the buffer is still full), and sets up the first two elements 
of the data area to indicate the buffer section to be written next. Then it 
sets the flag at the start of the new buffer section and sets a flag in the 
data area to indicate that sampling is occurring. 

2 The routine computes the next location to be written in the buffer by 
reading the first location in the data area. 

3 The routine reads 12 bits of data from the A/D buffer register into the 
next location in the buffer. 

4 The routine updates the buffer offset and count values in the data area. 

5 If this sample fills the data sector, the routine writes the offset of the filled 
sector from the start of the 4K-word buffer into the AST parameter, sets a 
status flag that will cause an AST to be delivered to the control program, 
and sets a flag indicating that a new data section is to be started. 

6 The routine returns to CONINTERR. 

The AST routine copies and fills the next buffer section with zeros to indicate 
that the section is again available to the interrupt-servicing routine. When the 
next clock interrupt occurs, the data can be written to the next buffer section, 
even if the AST routine has not yet emptied the previous buffer section. 
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ACF: See configuration-control block. 

ACP: See Ancillary Control Process. 

adapter-control block (ADP): A structure in the I/O database that describes an I/O 
adapter and its resources. 

ADP: See adapter-control block. 

allocate a device: To reserve a particular device unit for exclusive use. A user process 
can allocate a device only when that device is not allocated by any other process. 

Ancillary Control Process (ACP): A process that acts as an interface between user 
software and an I/O driver. An ACP provides functions supplemental to those 
performed by the driver, such as file and directory management. 

Three examples of ACPs are the Files-11 ACP (FI 1 ACP), the magnetic tape ACP 
(MTAACP), and the networks ACP (NETACP). 

assign a channel: To establish the necessary software linkage between a user process 
and a device unit before a user process can communicate with that device. A user 
process requests the system to assign a channel and the system returns a channel 
number. 

AST: See asynchronous system trap. 

ASTLVL: See asynchronous system trap level. 

asynchronous system trap (AST): A software-simulated interrupt that passes control 
to a user-defined routine. ASTs enable a user process to be notified of the occurrence 
of a specific event, asynchronously with respect to the execution of the user process. 

If a user process has defined an AST routine for an event, the system interrupts 
the process and executes the AST routine when that event occurs. When the AST 
routine exits, the system resumes execution of the process at the point where it was 
interrupted. 

asynchronous system trap level (ASTLVL): A value kept in an internal processor 
register that is the highest access mode for which an AST is pending. The AST does 
not occur until the current access mode drops in privilege (rises in numeric value) to 
a value greater than or equal to ASTLVL. Thus, an AST for an access mode will not 
be serviced while the processor is executing in a more privileged access mode. 

backplane interconnect: An internal processor bus that allows I/O device controllers 
to communicate with main memory and the central processor. These I/O controllers 
may reside on the same bus as memory and the central processor (for instance, in 
a VAX 8200 or Micro VAX I system), or they may be on a separate bus entirely (for 
instance, in a VAX-11/780 or VAX 8600 system). In the latter case, an I/O adapter 
enables and controls the communications between the I/O bus and the processor 
and memory. 
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The backplane interconnect is called the synchronous backplane interconnect (SBI) 
on the VAX-11/780 and VAX 8600 processor, the CPU-to-memory interconnect 
(CMI) on the VAX-11/750 processor, and the VAXBI on the VAX 8800 and VAX 
8200 processors. The Micro VAX II and Micro VAX I processors use the Q22 bus as a 
backplane. 

base register: A general register that contains the base address of (the address of the 
first entry in) a list, table, array, or other data structure. 

buffered data path: A UNIBUS adapter data path that transfers several bytes of data in 
a single backplane-interconnect transfer. 

buffered I/O: An I/O operation, such as terminal or mailbox I/O, in which an 
intermediate buffer from the system's buffer pool is used instead of a buffer in 
process space. See also direct I/O. 

bugcheck: The operating system's diagnostic that detects and reports internal 
inconsistencies. If the system can continue running, it declares a nonfatal bugcheck 
and reports it in an error log entry. A serious error results in a fatal bugcheck. As a 
result of a fatal bugcheck, the system shuts itself down in an orderly fashion. 

CALL instructions: The processor instructions CALLG (Call Procedure with General 
Argument List) and CALLS (Call Procedure with Stack Argument List). 

CCB: See channel-control block. 

channel: A logical path connecting a user process to a physical device unit. A user 
process requests the operating system to assign a channel to a device so the process 
can communicate with that device. See also controller data channel. 

channel-control block (CCB): A structure in the I/O database maintained by the 
Assign-I/O-Channel system service to describe the device unit to which a channel is 
assigned. 

channel-request block (CRB): A structure in the I/O database that describes the 
activity on a particular controller. The channel-request block for a controller contains 
pointers to the queue of drivers waiting to access a device through the controller. 

configuration-control block: A structure in the I/O database used by the 
autoconfiguration facility of the System Generation Utility to describe the device 
it is adding to the system. The information stored in the configuration-control block 
might be useful to a device driver's unit-delivery routine. 

configuration register: A control and status register for an I/O adapter (for example, a 
UNIBUS adapter). It resides in the adapter's I/O space. 

connect-to-interrupt: A function by which a process connects to a device interrupt 
vector. To perform a connect-to-interrupt, the process must map to the physical 
pages in the I/O space which contain the vector. 

console: The manual control unit integrated into the central processor. The console 
includes a serial-line interface connected to a hard-copy terminal. This enables the 
operator to start and stop the system, monitor system operation, and run diagnostic 
programs. 

console terminal: The hard-copy terminal connected to the central processor's console. 
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context: The environment of an activity. See also process context, hardware context, and 
software context. 

controller data channel: A logical path to which the driver of a device that shares a 
controller must gain access before it can use the controller to activate a device. 

control and status register (CSR): A control and status register for a device or 
controller. It resides in the processor's I/O space. 

CRB: See channel-request block. 

CSR: See control and status register. 

database: A collection of related data structures; all the occurrences of data described 
by a database management system. 

data structure: Any table, list, array, queue, or tree whose format and access 
conventions are well-defined for reference by one or more images. 

DDB: See device-data block. 

DDT: See driver-dispatch table. 

device-data block (DDB): A structure in the I/O database that identifies the generic 
device/controller name and driver name for a set of devices that share the same 
controller. 

device driver: The set of instructions and tables that handles physical I/O operations to 
a device. 

device interrupt: An interrupt received on interrupt priority levels 20 through 23. 
Device interrupts can be requested only by devices, controllers, and memories. 

device register: A location in controller logic used to request device functions (such as 
I/O transfers) and/or report status. 

device unit: One device and its controlling logic (for example, a disk drive or terminal). 
Some controllers can have several device units connected to a single controller (for 
example, mass-storage controllers). 

diagnostic program: A program that tests hardware, firmware, peripherals logic, or 
memory, and that reports any faults it detects. 

direct data-path: A UNIBUS adapter data path that transfers several bytes of data in a 
single backplane-interconnect transfer. 

direct I/O: An I/O operation in which VAX/VMS locks the pages containing the 
associated buffer in physical memory for the duration of the I/O operation. The I/O 
transfer takes place directly from the process' buffer. Contrast with system buffered 
I/O. 

direct-memory-access (DMA) transfer: The type of I/O transfer by which a device 
controller accesses memory directly and, as a result, can transfer a large amount 
of data without requesting a processor interrupt after each of the smaller amounts. 
Contrast with programmed-I/O (PIO) transfer. 

DPT: See driver-prologue table. 
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drive: The electromechanical unit of a mass storage device on which a recording 
medium (disk cartridge, disk pack, or magnetic tape reel) is mounted. 

driver-dispatch table (DDT): A table in a driver that lists the addresses of the entry 
points of standard driver routines and the sizes of diagnostic and error-logging 
buffers for the device. 

driver-prologue table (DPT): A table in a driver that describes the driver and the type 
of device it drives to the VAX/VMS procedure that loads drivers into the system. 

ECC: Error-Correction Code. 

error logger: A system process that empties the error-log buffers and writes the error 
messages into the error file. Errors logged by the system include memory errors, 
device errors and timeouts, and interrupts with invalid vector addresses. 

exception: An event detected by the hardware or software (other than an interrupt or 
jump, branch, case, or call instruction) that changes the normal flow of instruction 
execution. 

An exception is always caused by the execution of an instruction or set of 
instructions (whereas an interrupt is caused by an activity in the system that is 
independent of the current instruction). 

There are three types of hardware exceptions: traps, faults, and abortions. Examples 
are: attempts to execute a privileged or reserved instruction, trace traps, page faults, 
compatibility-mode faults, execution of breakpoint instructions, and arithmetic traps. 

executive: The software that provides the basic control and monitoring functions of the 
operating system. 

FDT: See function-decision table. 

FDT routines: Driver routines called by the $QIO system service to perform device¬ 
dependent preprocessing of an I/O request. 

fork block: That portion of a unit-control block that contains a driver's context while 
the driver is waiting for a resource. A driver awaiting the processor resource has its 
fork block linked into the fork queue. 

fork dispatcher: A VAX/VMS interrupt-servicing routine that is activated by a software 
interrupt at a fork-interrupt priority level. Once activated, it dispatches driver fork 
processes from a fork queue until no processes remain in the queue for that IPL. 

fork process: A process with a minimal context that executes instructions under a set 
of constraints: it executes at raised interrupt priority levels; it uses RO through R5 
only (other registers must be saved and restored); it executes in the system's virtual 
address space; it can refer to and modify static storage that is never modified by 
procedures that execute at a higher IPL. VAX/VMS uses software interrupts and fork 
processes to synchronize executive operations. 

fork queue: A queue of fork blocks that are awaiting activation at a particular IPL by 
the VAX/VMS fork dispatcher. 

function code: See 1/O-function code. 

function-decision table (FDT): A table in the driver that lists all valid function codes 
for the device, and lists the addresses of preprocessing routines associated with each 
valid function of the device. 
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function modifier: See 1/O-function modifier. 

generic device name: A device name that identifies the type of device but not a 
particular unit; a device name in which the specific controller and/or unit number is 
omitted. When discussing device drivers, the generic device name contains neither 
the controller designation nor the unit number (for example, DB). 

hardware context: The values contained in the following registers while a process is 
executing: 

• The PC 

• The PSL 

• The 14 general registers (RO through R13) 

• The four processor registers (POBR, POLR, P1BR and P1LR) that describe the 
process' virtual address space 

• The SP for the access mode in which the processor is executing 

• The contents to be loaded in the SP for every access mode other than the current 
access mode 

When a process is executing, its hardware context is continually being updated by 
the processor. When a process is not executing, its hardware context is stored in its 
hardware PCB. 

hardware process-control block (hardware PCB): A data structure known to the 
processor that contains the hardware context when a process is not executing. A 
process' hardware PCB resides in its process header (PHD). 

IDB: See interrupt-dispatch block. 

interrupt: An event other than an exception or a branch, jump, case, or call instruction 
that changes the normal flow of instruction execution. Interrupts are generally 
external to the process executing when the interrupt occurs. See also device interrupt, 
software interrupt, and urgent interrupt. 

interrupt-dispatch block (IDB): A structure in the I/O database that describes the 
characteristics of a particular controller and points to devices attached to that 
controller. 

interrupt priority level (IPL): The level at which a software or hardware interrupt 
is generated. There are 32 interrupt priority levels: IPL 0 is lowest, 31 is highest. 
The levels arbitrate contention for processor service. For example, a device cannot 
interrupt the processor if the processor is currently executing at an interrupt priority 
level greater than the interrupt priority level of the device's interrupt-servicing 
routine. 

interrupt-servicing routine (ISR): A routine executed when a device interrupt occurs. 

interrupt stack (IS): The system-wide stack used when executing instructions in 
interrupt context. In the VAX/VMS operating system, all hardware interrupts (and 
all software interrupts above IPL 3) are serviced on the system-wide interrupt stack 
and not one of the per-process stacks. 

interrupt-stack pointer (ISP): The pointer to the top of the interrupt stack. Unlike the 
stack pointers for process context stacks, which are stored in the hardware PCB, the 
interrupt-stack pointer is stored in an internal processor register. 
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interrupt vector: See vector. 

I/O database: A collection of data structures that describe I/O requests, controllers, 
device units, volumes, and device drivers in a VAX/VMS system. Examples are the 
driver-dispatch table, driver-prologue table, device-data table, unit-control block, 
channel-request block, I/O-request packet, and interrupt-dispatch block. 

I/O driver: See driver. 

I/O function: An I/O operation interpreted by the operating system and typically 
resulting in one or more physical I/O operations. 

l/O-function code: A 6-bit value specified in a $QIO system service that describes the 
particular I/O operation to be performed (such as, read, write, rewind). 

l/O-function modifier: A 10-bit value specified in a $QIO system service that modifies 
an I/O-function code (for example: read terminal input, no echo). 

I/O lockdown: The state of a page such that it cannot be paged or swapped out of 
memory. 

I/O-request packet (IRP): A structure in the I/O database that describes an individual 
I/O request. The $QIO system service creates an I/O-request packet for each 
I/O request. VAX/VMS and the driver of the target device use information in the 
I/O-request packet to process the request. 

I/O rundown: An operating system function in which the system cleans up any I/O in 
progress when an image exits. 

I/O space: The regions of physical address space that contain the configuration 
registers and device control and status register and data registers. These regions 
are physically discontiguous. 

l/O-status block (IOSB): A data structure associated with the $QIO system service. 
This service optionally returns a status code, number of bytes transferred, and 
device/function-dependent information in an I/O-status block. The information is 
not returned from the system service call, but filled in by VAX/VMS when the I/O 
request completes. 

I PL: See interrupt priority level. 

IRP: See I/O-request packet. 

ISP: See interrupt-stack pointer. 

ISR: See interrupt-servicing routine. 

limit: The size or number of items requiring system resources (such as mailboxes, locked 
pages, I/O requests, or open files) that a job is allowed to have at any one time 
during execution, as specified by the system manager in the user-authorization file. 
See quota. 

locking a page in memory: Making a page in an image ineligible for either paging 
or swapping. A page stays locked in physical memory until VAX/VMS specifically 
unlocks it. 
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logical-I/O function: A set of I/O operations (for example, read-logical-block and 
write-logical-block) that allow restricted direct access to device-level I/O operations 
using logical block numbers. 

mailbox: A software data structure that is treated as a record-oriented device for 
interprocess communication (for example, the error logger and OPCOM read from 
system-wide mailboxes). Communication using a mailbox is similar to other forms 
of device-independent I/O. Senders write to a mailbox; the receiver reads from that 
mailbox. 

machine check: An exception that is reported when the processor or an external 
adapter detects an internal error. If the machine check is recoverable, the machine 
check handler the condition in an error log entry. If an unrecoverable machine 
check occurs while the processor is in supervisor or user mode, the machine check 
handler reports the exception to that mode. However, if an unrecoverable machine 
check occurs in kernel or executive mode, a fatal bugcheck results. See also exception 
and bugcheck. 

mapping register: See scatter-gather map. 

MASSBUS adapter (MBA): An interface device between the backplane interconnect 
and the MASSBUS. 

memory interconnect: The internal processor bus for the VAX-11/750. 

nexus: A physical connection to the synchronous backplane interconnect (SBI). For 
example, when connected to the SBI, the central processor, memory subsystem, and 
I/O controllers are known as nexuses. See also Synchronous Backplane Interconnect. 

node: A VAXBI interface—such as a central processor, controller, or memory 
subsystem—that occupies one of 16 logical locations on a VAXBI bus. See also 
VAXBI. 

offset: A displacement from the beginning of a data structure to the beginning of a field 
within that data structure. Offsets for items within a data structure usually have an 
associated symbol. The name of the symbol is used to refer to the field; its value is 
the offset. 

page-frame number (PFN): The high-order 21 bits of the physical address of a page 
in physical memory. 

page-table entry (PTE): The data structure that identifies the physical location and 
status of a page of virtual address space. When a virtual page is in memory, the PTE 
contains the page-frame number needed to map the virtual page to a physical page. 
When it is not in memory, the page-table entry contains the information needed to 
locate the page on secondary storage (disk). 

PCB: See Process-Control Block. 

PFN: See page-frame number. 

physical address: The address used by hardware to identify a location in physical 
memory or on directly-addressable secondary storage devices such as disks. A 
physical-memory address consists of a page-frame number and the number of a byte 
within the page. A physical-disk-block address consists of a cylinder or track and a 
sector number. 
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physical address space: The set of all possible physical addresses that can be used to 
refer to locations in memory (memory space) or device registers (I/O space). 

physical-l/O functions: A set of I/O functions that allows access to all device-level 
I/O operations except maintenance-mode operations. 

PID: See process identification. 

process: The basic entity, scheduled by the system software, that provides the context 
in which an image executes. A process consists of an address space, hardware 
context, and software context. 

process context: The hardware and software contexts of a process. 

process-control block (PCB): A data structure used to contain process context. The 
hardware PCB contains the hardware context. The software PCB contains the 
software context, which includes a pointer to the hardware PCB. 

process identification (PID): A 32-bit value that uniquely identifies a process. Each 
process has a PID and a name. 

process I/O channel: See channel. 

process page tables: The page tables used to describe process virtual memory. 

process priority: The priority assigned to a process for scheduling purposes. The 
operating system recognizes 32 levels of process priority, where 0 is low and 31 
is high. Levels 16 through 31 are used for real-time processes. The system does 
not modify the priority of a real-time process (although the system manager or the 
process itself might). Levels 0 through 15 are used for normal processes. The system 
can temporarily increase the priority of a normal process based on the activity of the 
process. 

Contrast with interrupt priority level. 

programmed-l/O (PIO) transfer: The type of I/O transfer, largely conducted by 
the driver program, that requires a processor interrupt after each byte or word 
is transferred. Drivers for relatively slow devices, such as printers, card readers, 
terminals, and some disk and tape drives use PIO data transfers. Contrast with 
direct-memory-access (DMA) transfer. 

program section (psect): A portion of a program with a given protection and set of 
storage-management attributes. Program sections that have the same attributes are 
gathered together by the linker to form an image section. 

PTE: See page-table entry. 

Q22 bus: The hardware interconnect by which Micro VAX II and Micro VAX I peripheral 
devices communicate with main memory and the processor. 

QIO: Queue I/O Request system service. The VAX/VMS system service that services 
$QIO and $QIOW requests. The Queue I/O Request system service prepares an I/O 
request for processing by the driver and performs device-independent preprocessing 
of the request. This system service also calls driver FDT routines. See also FDT 
routines. 

quota: The total amount of a system resource, such as CPU time, that a job is allowed 
to use in an accounting period, as specified by the system manager in the user- 
authorization file. See limit. 
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return status code: See status code. 

SBI: See Synchronous Backplane Interconnect. 

scatter-gather map: A technique by which a set of physically discontiguous pages are 
made to seem contiguous to an I/O controller performing a direct-memory-access 
transfer. It is I/O adapter hardware that generally provides this means of mapping 
physical pages to I/O adapter address space. 

small process: A system process that has no control region in its virtual address space 
and has an abbreviated context. Examples are the swapper and the null process. A 
small process is scheduled in the same manner as user processes, but must remain 
resident until it completes execution; it cannot be swapped. 

software context: The context maintained by VAX/VMS to describe a process. See 
also software process-control block (PCB). 

software process-control block (software PCB): The data structure used to contain 
a process' software context. The operating system defines a software PCB for every 
process when the process is created. 

The software PCB includes the following kinds of information about the process: 
current state; storage address, if the process is swapped out of memory; unique 
identification of the process; and address of the process header (which contains the 
hardware PCB). The software PCB resides in system region of virtual address space. 
It is not swapped with a process. 

start-I/O routine: The routine in a device driver that is responsible for obtaining 
needed resources and for activating the device unit. An example of a needed 
resource is the controller's data channel. 

status code: A longword value that indicates the success or failure of a specific 
function. For example, system services always return a status code in RO upon 
completion. 

SVA: See system virtual address. 

Synchronous Backplane Interconnect (SBI): The part of the VAX-11/780 or VAX 
8600 hardware that interconnects the processor, memory controllers, MASSBUS 
adapters, the UNIBUS adapter. 

System Page Table (SPT): The data structure that maps the system virtual addresses, 
including the addresses used to refer to the process page tables. The SPT contains 
one PTE for each page of system virtual memory. The physical base address of the 
SPT is contained in a processor register called SBR. 

system virtual address (SVA): A virtual address identifying a location mapped to an 
address in system space. 

timeout: The expiration of the time limit in which a device is to complete an I/O 
transfer. The driver's wait-for-interrupt request specifies the timeout limit. 

timer: A system process that maintains the time of day and the date. It is also alert for 
device timeouts and performs time-dependent scheduling upon request. The timer's 
interrupt-servicing routine creates the timer process. 

UCB: See unit-control block. 
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UNIBUS adapter: An interface device between the backplane interconnect and the 
UNIBUS. On the VAX-11/780, this device is called the UBA. On the VAX-11/750, 
it is called the UBI. On a VAX 8200 or VAX 8800, it is called a BUA. 

unit-control block (UCB): A structure in the I/O database that describes the 
characteristics of a device unit and current activity on it. The unit-control block 
also holds the fork block for its unit's device driver; the fork block is part of the 
UCB and is a critical part of a driver fork process. The UCB also provides a static 
storage area for the driver. 

unit-initialization routine: The routine that readies controllers and device units for 
operation. Controllers and device units require initialization after a power failure 
and during execution of the driver-loading procedure. 

urgent interrupt: An interrupt received on interrupt priority levels 24 through 31. 
These can be generated only by the processor for the interval clock, serious errors, 
and power failures. 

VAXBI: The part of the VAX 8200 hardware that connects I/O adapters with memory 
controllers and the processor. In a VAX 8800 system, the part of the hardware that 
connects I/O adapters with the bus that interfaces with the processor and memory. 

vector: A one-dimensional array. 

An interrupt or exception vector is a storage location known to the system that 
contains the starting address of a routine to be executed when a given interrupt or 
exception occurs. The system defines separate vectors for each interrupting adapter 
and for classes of exceptions. Each system vector is a longword. 

For the purpose of handling exceptions, users can declare up to two software- 
exception vectors (primary and secondary) for each of the four processor-access 
modes. Each vector contains the address of a condition handler, and is a longword. 

virtual-l/O functions: A set of I/O functions that must be interpreted by an ancillary 
control process. 

wait-for-interrupt request: A request made by a driver's start-I/O routine after it 
activates a device. The request causes the driver's fork process to be suspended until 
the device requests an interrupt or the device times out. 

XDELTA: A software tool for debugging operating systems and drivers. 
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A 
Aborting an I/O request 

See I/O request 
ACB (AST control block) • 5-17, C-2, C-4 

contents* C-6 
ACB$ V_QUOT A *8-11,0-10 
Accessibility of memory 

See Buffer 
Access rights block 

See ARB 
Access rights list 

See ACL 
Access violation 

See SS$_ACCVIO 
ACF (configuration control block)* A-1 to A-3 
ACL (access rights list)* A-26 
ACP (ancillary control process) • A-7, A-20, A-21, 

A-28 
class* A-12 
default • A-12 

ACP_MULT parameter* A-12 
Action routine 

See FDT routine 
Action routine bit mask *5-10 
Adapter 

See I/O adapter 
Adapter control block 

See ADP 
Address 

translating virtual to physical* 10-10 
ADP (adapter control block)* 1-6, 10-1, A-3 to 

A-6 
address *5-5, 10-3, 10-5, A-11, A-19 
data path allocation information* 10-3 
data path wait queue* 10-3 
for MBA*G-4, G-6 to G-7 
mapping register allocation information* 10-5 
mapping register wait queue* 10-5 
role in nondirect vector interrupt dispatching* 

3-9 
vector jump table • 3-9 

ADP$I_DPQFL • C-68 
ADP$I_MRQBL • C-74 
ADP$I_MRQFL • C-69 
ADP$W_DPBITMAP • C-68, C-73 

ADP$W_MRFREGARY • C-53, C-69, C-74, C-75 
ADP$W_MRNREGARY • C-53, C-69, C-74, C-75 
Allocation class* A-13 
Alternate start I/O routine *8-15 to 8-16, C-16 

address *7-7, A-14, D-1 
context • D-1 
functions* D-1 
input • D-1 
IPL requirements*D-1 
output • D-1 
register usage*D-1 

Ancillary control process 

See ACP 
ARB (access rights block)* A-23 
AST (asynchronous system trap) *8-8, C-6 to C-7 

See also Attention AST 
delivering *3-3, 8-12, C-2 
for aborted I/O request *8-12 
out of band • 13-5 
process quota for *8-11 
queuing • C-59 
special kernel mode*3-7, 5-17, 8-6, 8-6, A-7, 

C-59 
user mode*3-7, 5-17 
user specified *8-11, A-20 

AST control block 
See ACB 

AST service routine 
for connect to interrupt facility • H-8, H-10, H-12 

Asynchronous system trap 

See AST 
AT$_MBA • A-3, A-16 
AT$_UBA • A-3, A-16 
Attention AST 

See also AST 
blocking • A-37 
delivering* C-2 
disabling*C-6 to C-7 
enabling*C-6 to C-7 
flushing • C-4 

Attention condition • G-8 to G-9 
See also MBA, MBA$L_AS, MASSBUS 

Attention summary register 

See MBA$L_AS 
Autoconfiguration 

See also System Generation Utility 
driver control of* 14-15 to 14-16 
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B 
Backplane interconnect* 1-11, 1-14, 4-1 

See also VAXBI, CMI, SBI, Q22 bus 
UNIBUS interlock sequence to *4-9 

BIOLM (buffered I/O limit) quota 
adjusting *5-17 
charging • 5-7, 5-9 
checking*5-7, C-17, C-18 
for mailbox* A-28 

Bit mask 
See Device activation bit mask. Action routine 

bit mask. Buffered function bit mask. Legal 
function bit mask 

BI-to-UNIBUS adapter 

See UNIBUS adapter 
Blocking process deletion *3-3 
BOOT command* 15-1 

/NOSTART qualifier* 15-1 
Booting 

with XDELTA* 15-1 to 15-4 
BPT instruction* 15-5 
Breakpoint 

clearing* 15-15 
complex* 15-16 
displaying XDELTA breakpoint list* 15-15 
proceeding from* 15-3, 15-16 
setting in driver code* 15-4 to 15-5, 15-8, 

15-15 
BR level *3-4, A-5 
BUA (BI-to-UNIBUS adapter) • 1-12 

See also UNIBUS adapter 
Buffer 

See also Diagnostic buffer. Error logging buffer. 
Error message buffer, Nonpaged pool 

allocating* 1-17, 2-3, 8-5, C-11, C-12, C-13, 
C-14 

allocating physically contiguous* 10-10, C-15 
checking accessibility of *8-4 

for modify *C-29, C-31, C-32 
for read (write access) • B-17, B-19, C-36, 

C-37, C-38, C-39, C-40 
for write (read access) • B-16, B-18, C-46, 

C-47, C-48, C-49, C-50 
data area of • 8-5 
deallocating*2-6, 3-4, 5-17, 8-6, C-3, C-19 
format • 8-5 
header*8-5, 8-6 
inability to gain access to *8-4 
locking* 1-17, 7-10, A-24, C-29, C-31, C-32, 

C-36, C-40, C-46, C-49, C-50 

Buffer (cont'd.) 

moving data from a system *C-64, C-65 
moving data to a system *C-62, C-63 
size *8-5, 10-10 

Buffer address register* 10-7 
Buffered data path *4-6, 4-10 to 4-13, A-4 

See also Data path 
flow of read operation using *4-11 to 4-12 
flow of write operation using *4-11 
functions *4-10 
purging *4-12, 10-4, 10-8 to 10-9, C-66 
releasing* 10-4, 10-9, 12-2, B-25, C-68 
requesting • 4-10, 10-2 to 10-4, B-29, C-73 
requesting permanent* 10-3 to 10-4, 13-1, 

A-11 
rules for using *4-10, 4-13 
speed *4-13 
unavailability* 10-3 

Buffered function bit mask *5-9, 7-10 
Buffered 1/0*1-17, 2-3, 5-9, 13-4, A-21, A-22, 

A-33 
See also Buffer 
chained* A-21 
complex* A-21 
FDT routines for *8-4 to 8-6 
functions* 7-7 
postprocessing *8-6, C-59 
reasons for using* 1-17, 7-10 

Buffered read function bit 
See IRP$V_FUNC 

Bugcheck* 15-19 
examining information regarding* 15-4 
INCONST ATE • C-68 
memory allocation*C-3 
UNSUPRTCPU • B-3 

BUGREBOOT parameter* 15-1, 15-19 
Bus request level 

See BR level 
Busy bit 

See UCB$V_BSY 
Byte count 

See UCB$W_BCNT, IRP$L_BCNT 
Byte count register 

See MBA$L_BCR 
Byte offset 

See UCB$W_B0FF, IRP$W_BOFF, Data 
transfer. Mapping registers 

Byte offset register *4-12 

Index—2 



Index 

C 
Cache control block *A-37 
C AN$C_C ANCEL • 13-5 
CAN$C_DASSGN • 13-5 
Cancel I/O bit 

See UCB$V_CANCEL 
Cancel I/O routine* 1-4, 11-8, 12-6, 13-4 to 13-6, 

A-14, C-56 
address*7-6, 13-1, D-2 
context* 13-5, D-3 
device dependent* 13-6 
device independent* 13-6 
flushing ASTs in*C-4 
for connect to interrupt facility • H-7, H-10, H-17 
functions* D-2 
input* D-2 
IPL requirements*D-3 
of CONINTERR.EXE • H-11, H-17 
output • D-2 
register usage*D-2 

SCANDEF macro* 13-5 
Card reader driver* 11-6 to 11-8 
Carriage control argument 

to I/O request*8-7, 8-10 
CASE macro*B-2 
CCB (channel control block)* 1-6, 5-3, A-6 to A-7, 

C-81 
CCB$L _UCB • 5-3 
Channel* 1-6 
Channel control block 

See CCB 
Channel index number *5-3, 13-6, C-81 
Channel request block 

See CRB 
CHMK (Change Mode to Kernel) instruction • 5-1 
$CINDEF macro*H-10 
Clock 

See Hardware clock. Software timer 
Cloned UCB routine* A-15 

address* 7-7 
CMI (CPU-to-memory interconnect)* 1-11 
Coding conventions 

See Device driver 
COMSDELATTN AST • C-2 
COMSDRVDEALMEM • C-3 
COMSFLUSHATTNS • C-4, C-6 
COMSPOST *8-15, C-5 
COM$SETATTNAST *C-6 to C-7 

Command address register 

See MBA$L_CAR 
Configuration control block 

See ACF 
Configuration register 

See CSR, MBA$L_CSR 
CONINTERR.EXE *H-2, H-8 to H-9 

cancel I/O routine of*H-11 
connecting to*H-7 

CONNECT command 
See System Generation Utility 

Connect to interrupt driver 

See CONINTERR.EXE 
Connect to interrupt facility 

cancel I/O routine*H-17 
condition values returned • H-10 
CONNECT command*H-7 
example of A/D converter using *H-18, H-19 to 

H-21 
example of time sampling using *H-18, H-21 to 

H-23 
example of watchdog timer using *H-18, H-18 

to H-19 
interrupt servicing routine *H-15 to H-16 
mapping I/O space *H-2 
privileges required *H-11 
programming language requirements • H-13 
start I/O routine*H-14 to H-15 
SYSGEN requirements*H-7 
timings* H-7 
unit initialization routine*H-14 
user-specified routines • H-8, H-12 to H-17 

Control and status register 

See CSR 
Control block 

See Data structure 
Controller 

See Device controller 
Controller initialization routine* 1-3, 13-1 to 13-4, 

14-4 
address *5-4, 7-4, 13-1, A-10, A-17, D-3 
allocating controller data channel in *9-4 
context* 13-3 to 13-4, D-4 
determining the existence of* 13-3 
functions* 13-1, D-3 
input* 13-3, D-3 
IPL requirements*D-4 
output* D-3 
register usage*D-4 

Control mask 
See Device activation bit mask 
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Control register 

See CSR, MBA$L_CR 
CPUDISP macro *6-4 to 6-5, B-3 
CRB (channel request block)* 1-6, 5-4 to 5-5, A-7 

to A-11 
address* 14-9 
creation • 14-4 
data path fields* 10-3 to 10-4 
for MBA*G-4, G-6 to G-7, G-11, G-13 
initializing* 7-4 
interrupt dispatching fields *3-9, 11-3 
mapping register fields* 10-5 
periodic wakeup of*A-9 
primary • A-28, G-11 
reinitializing • 7-4 
secondary • A-9, G-1 1 

CRB$B_M ASK • 5-4 
CRB$L _AUXSTRUC • 10-10 
CRB$I_INTD • 5-4, 11-3, A-9 to A-11 
CRB$L _INTD+VEC$B_D AT AP ATH • 10-3, 10-9, 

C-68 
CRB$L_INTD+VEC$B_NUMREG• 10-5, C-54, 

C-69, C-75 
CRB$I_INTD+VEC$L_IDB • 5-4, G-11 
CRB$I_INTD+VEC$L_INITIAL* 5-4, 7-4, 13-3, 

14-4 
CRB$I_INTD+VEC$I_UNITINIT *5-4, 7-4, 13-3, 

14-4 
CRB$I_INTD+VEC$W_MAPREG • 9-5, 10-5, 

C-54, C-69, C-75 
CRB$I_LINK* G-1 1 
CRB$L_WQFL• 5-4, C-67, C-76 
CSR (control and status register) • 9-5, 10-7 

See also Device registers 
address *3-12, 5-5, 9-3, 10-7, 14-5, 14-8, 

A-18 
locating device registers from* 10-7 
of LP11 printer *2-4 to 2-5 
setting *9-6 

CTL$GI_CCB ASE • C-81 

D 
Data channel 

See Device controller data channel. Secondary 
controller data channel 

Data path* 1-16, 4-6 to 4-13, 10-2 to 10-4, A-10 
to A-1 1 

See also Buffered data path. Direct data path 
mixed use of direct and buffered* 10-4 

Data path (cont'd.) 

purging *4-12, 10-4, 10-8 to 10-9, 12-2, B-23, 
C-66 

speed *4-9, 4-10, 4-13 
Data path allocation bit map* A-5 
Data path register*4-6, 10-1 

purge error*C-66 
Data path wait queue* 10-9, A-4, C-68, C-73 
Data storage*6-2 

device specific*5-4, 7-2, 13-1, 13-3, A-22, 
A-27 

Data structure 
See also I/O database 
defining* B-7 
defining bit field within *B-39, B-40 
defining field within *B-5, B-6 
initializing • 7-1, 7-3 to 7-5 

Data transfer 
See also DMA transfer, PIO transfer 
byte offset *4-12, 10-4, C-61 
in reverse direction • G-3, G-13 
longword-aligned 32-bit random-access *4-10 
mixing read and write functions in *4-9 
odd byte-count *9-4 
overlapping with seek operation • 9-2 
size *8-7, 8-10, 9-4 
speed *4-9, 4-10, 4-13 
starting address*9-5, 10-7, 10-10 
to randomly ordered addresses *4-9 
zero length *C-29 

$DCDEF macro *A-30 

DDB (device data block)* 1-5, 5-5, A-11 to A-13 
address* 14-9, A-28 
creation* 14-4 
initializing • 7-4 
reinitializing • 7-4 

DDB$L_DDT • 7-4 
DDB$L_LINK* 13-3 
DDB$L_UCB* 13-3 
DDB$T_DRVN AME • 5-5 
DDB$T_N AME • 5-5 
DDT (driver dispatch table)* 1-2, 13-1, 13-6, A-13 

to A-15 
address*7-4, A-12, A-17, A-34 
addresses specified in* 13-2 
creating *7-6 to 7-7, 13-2, B-4 
label *7-6 

DDTSL _ALTST ART *8-15 
DDT$L_UNITINIT • 13-3 
DDT$W_ERRORBUF • 13-7 
DDTAB macro *7-6 to 7-7, 14-1, B-4 

example* 7-7 
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DECnet 

local connection number *A-28 
$DEFEND macro *B-6 
$DEFINI macro *B-7 
$DEF macro*B-5 
DELTA 

See Delta/XDelta Utility 
Delta/XDelta Utility (DELTA/XDELTA) • 15-1 to 

15-20 
base register* 15-12 

predefined* 15-11 
X4 • 15-11 
X5* 15-11 
XE* 15-11 
XF* 15-11 

changing contents of location using* 15-13 
closing location using* 15-14 
commands 

executing string* 15-17 
indirect* 15-14 
predefined in XE and XF* 15-11 
summary* 15-9 to 15-10 

depositing command string in system patch 
space for use by • 15-17 

displaying contents of address range using* 
15-14 

displaying contents of location using* 15-13 

expressions* 15-10 
formats 

address display* 15-13 
instruction display* 15-13 

guidelines* 15-18 to 15-20 
prefixes 

G* 15-11 
H* 15-11 

setting PC with* 15-16 
stepping through code with* 15-17 
symbols 

period (.) • 15-11 
Q* 15-11, 15-14 

values* 15-10 
DEV$V_ELG • 13-7 
$DEVDEF macro* A-29 
Device 

See also Device unit 
activating • 2-4 to 2-5, 3-17, 9-5 to 9-6, 10-7 
allocation class* A-13 
busy • 8-14 
byte-addressable* 10-6 
class* A-16, A-30 
CSR address* 14-8 
deaccessing • A-7 
DIGIT AL-supplied* 14-10, 14-11 

Device (cont'd.) 

file structured *2-3, 5-8, A-12 
name* 1-5, 7-6, A-12 
position on Q22 bus *3-4 
position on UNIBUS *3-4 
status* 11-5 
type* A-16, A-30 
vector address* 14-8 
word-aligned* 10-4 

Device activation bit mask *9-5 
Device characteristics • 8-8, 8-9, A-16, A-29 to 

A-30, C-41, C-42, C-43 
Device controller* 1-5, 1-6, A-7 

See also MBA, Controller initialization routine 
dedicated* 5-5 
initializing* 13-1 
intelligent* 1-16 
multiunit *3-17 to 3-18, 5-4, 5-14, 9-2, 9-6, 

11-8, A-18 
number of units created for* 7-3, 14-6 
number of units supported by • 7-3, A-17, A-19 
reinitializing • 7-2 

single unit*3-17, 12-2, 13-1, 14-2, A-18 
Device controller data channel *5-4 to 5-5, G-12, 

G-13 
See also Secondary controller data channel 
obtaining ownership • 3-17 to 3-18, 5-4, 9-2 to 

9-4, A-18, B-31, C-76, C-77 
permanently allocating* 13-1 
releasing *3-18, 9-6, 12-2, B-24, C-67, C-84 
requesting • 9-2 
unavailability • 9-3 

Device controller data channel wait queue *9-3, 
A-8, C-67, C-76, C-77 

Device data block* 13-3 
See DDB 

Device driver* 1-1 
assembling with SYS$LIBRARY:LIB.MLB • 14-1 
asynchronous nature* 1-1, 1-8, 3-2, 6-2 
calculating base address* 15-5 
coding conventions • 6-2, 14-1, 15-8, 15-18 to 

15-19 
components* 1-2 to 1-4, 6-1 
context* 1-7 to 1-8 
debugging • 15-1 to 15-20 
displaying address of* 14-9 
end label • 7-2 
entry points* 1-2, 7-6 to 7-7, A-13, D-1 to 

D-14 
example *E-1 to E-28, F-1 to F-22 
flow* 1-8, 1-17 to 1-19 
functions* 1-2 
image transfer address* 14-1 
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Device driver (cont'd.) 

linking with SYS$SYSTEM:SYS.STB* 14-1, 
15-5 

loading *7-1, 7-3, 13-2, 14-1 to 14-18, 15-4, 
A-16, G-6 to G-7 

machine independence* 1-10, 6-4 to 6-5, 10-2, 
B-3 

MASSBUS • G-10 to G-15 
name*5-5, 7-3, 14-2, 14-6, 14-7, 14-9, A-12, 

A-17 
program sections*7-6, 14-1, 15-5, B-8 
reactivating* 12-2, A-28 
reloading* 7-2, 14-6 to 14-7 
size *6-1, A-16 
storing data from • 6-2 
suspending• 2-5, 9-6 to 9-7, 10-8, A-28, C-82 

to C-83, C-84 
synchronization methods used by* 1-9 to 1-10 
template for *6-5 to 6-13 
unloading*7-2, A-16 

Device interrupt* 1-6, 3-4 to 3-5, 5-14, 11-1 to 
11-8 

See also Interrupt servicing routine 
disabling an expected* 12-4 
dispatching • 3-8 to 3-9 
enabling *2-4 to 2-5, 13-3 
expected *3-12, 9-7, 11-4 to 11-5 
on MASSBUS*G-8 
servicing *2-5 to 2-6 
unsolicited*7-6, 11-5 to 11-8, A-14 
waiting for*2-5, 5-14, 9-6 to 9-7, 10-8, B-41, 

C-82 to C-83, C-84 
Device IPL* 1-9, A-31 

specifying*7-3, A-16 
Device mode *8-8, 8-9 
Device registers* 1-6, 1-15 to 1-16, 9-4, 9-5 

accessing* 15-19, A-18 
address *2-4, 5-5, 10-7, A-10, H-2 
initializing* 13-1, 13-3 
modification by power failure *9-5 
modifying *6-3 
obtaining ownership • 3-17 
of LP11 printer *2-4 to 2-5 
rules for referencing • 4-3, 6-3 to 6-4 
saving the value of* 13-7 
virtual addresses *4-3 

Device timeout 
See Timeout 

Device timeout bit 
See UCB$V_TIMOUT 

Device unit* 1-5, A-26 

See also Device initialization routine 
allocating* A-31 

Device unit (cont'd.) 

autoconfiguring • 7-3, 14-17 
description • 5-4 
initializing* 13-1 
name* 5-5 
number* 14-9, A-31 
reinitializing* 7-2 
status* A-31 to A-33 

Diagnostic buffer*5-17, 8-14, A-14, A-21, A-22, 
A-33, A-37, D-8 

copying to process space *C-59 
filling • C-57 
length* 7-7 
specifying* 5-8 

Diagnostic register 

See MBA$L_DR 
DIOLM (direct I/O limit) quota 

adjusting *5-17 
charging *5-7, 5-9 
checking • 5-7 

Direct data path *4-6, 4-9 

See also Data path 
functions *4-9 
purging* 10-4, 10-8 to 10-9 
requesting* 10-4 

speed • 4-9 
Direct 1/0*1-17, 8-15, A-21, A-33 

additional buffer regions for* A-24 
checking accessibility of process buffer for* 

C-36, C-37, C-38, C-39, C-40, C-46, C-47, 
C-48, C-49, C-50 

FDT routines for *8-4, 8-7 to 8-8, 8-9 to 8-10 
locking a process buffer for*C-29, C-31, C-32, 

C-39, C-40, C-46, C-49, C-50 
postprocessing • C-59 
reasons for using* 1-17, 7-10 

Direct memory access transfer 

See DMA transfer 
Directory sequence number* A-37 
Direct vector interrupt • 3-9, 11-3, 15-7, A-4, A-9 
Disk driver*8-6, 9-2, 9-6, 11-5, A-27, A-33, 

A-36 to A-37, C-27 to C-28, D-13 

See also MBA, MASSBUS 
clearing a drive in* 13-1 
ECC correction routine for*C-55 
for local disk* A-27, A-37 to A-38 
pack acknowledgment in* 13-1 
recording disk geometry in* 13-3 
removing a disk volume in* 11-8 
waiting for disk unit spinup in* 13-3 

DLDRIVER.MAR*E-1 to E-28 
DMA transfer* 1-16, 6-4 
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DMA transfer (cont'd.) 

See also Mapping registers, Data path 
byte-aligned *4-10 
calculating starting address* 10-10 to 10-11 
detecting memory error during* 10-9 
device driver code for* 10-1 to 10-11 
flow* 1-17 to 1-19, 4-7 
for modify operation • C-29 to C-30, C-31, C-32 

to C-33 
for read operation • C-36, C-39, C-40 
for write operation • C-46, C-49, C-50 
longword-aligned 32-bit random-access *4-10, 

4-13 
on MicroVAX 1*4-2, 10-1 to 10-2, 10-8 to 

10-9, 10-10 to 10-11 
on MicroVAX II* 10-1 to 10-2, 10-4 to 10-9, 

10-9 to 10-10 
on UNIBUS* 10-1 to 10-10 
postprocessing* 10-2, 10-8 to 10-10 
start I/O routine *9-1 to 9-8 
using direct data path *4-9 
using direct 1/0*7-10 
using I/O adapter resources • 4-1 to 4-13 

DPT (driver prologue table)* 1-2, 13-1, 15-5, A-15 
to A-17, A-29, A-30 

creating *7-1 to 7-5, B-8 to B-10 
initialization table *7-3 to 7-4, 14-4, A-16 
initializing* 13-2 
linked into system DPT list* 14-2, 14-7 
reinitialization table*7-4, 14-4, 14-7, A-16 

DPT$M_N0UNL0AD • 7-2, 14-7 
DPT$M_SUBCNTRL • G-13 
DPT$M_SVP* 7-2, A-33, C-62, C-63, C-64, C-65 
DPT$W_DEFUNITS • 14-15 
DPT$W_DELI VER *14-15 
DPT_ST0RE macro *7-3 to 7-5, A-25, B-10 

example* 7-5 
DPTAB macro *7-2 to 7-3, 13-1, 14-1, B-8 to B-9 

as used by MASSBUS drivers *G-13 
controlling autoconfiguration with* 14-15 to 

14-16 
example* 7-5 

DR11-W driver *F-1 to F-22 
Driver 

See Device driver 
Driver dispatch table 

See DDT 
Driver prologue table 

See DPT 
Driver unloading routine*7-2, 14-7, A-17 

address* D-4 
context • D-5 
functions* D-4 

Driver unloading routine (cont'd.) 

input* D-4 
IPL requirements*D-5 
output • D-4 
register usage*D-5 

DRV 11-W A driver *F-1 to F-22 
DSBINT macro*3-13, 9-5, 9-6, 12-7, B-1 1 
DYN$C_BUFIO • C-1 1 
DYN$C_IRP • C-12 
DZ11 controller* A-8 
DZ32 controller* A-8 

E 
ECC error correction• 7-2, A-33, A-37, C-55 
ECC position register* A-37 
EMB$L_DV_REGSAV • 13-7 
EMB$Q_IOSB • C-72 
EMB$W_DV_STS • C-72 
ENBINT macro *3-14, B-12 
Encryption key*A-23 
SEQULST macro*B-13 
ERLSDEVICERR* 13-6, A-14, A-34, A-36, C-8, 

D-9 
ERLSDEVICTMO* 12-5, 13-6, A-14, A-34, A-36, 

C-9, D-9 
ERL$RELEASEMB • 12-3, C-71 
Error handling* 1-3 

error retry count* 12-5, A-34, C-57 
in FDT routine *8-11 
using IOC$PURGDATAP to detect transfer 

errors *C-66 
Error handling routine *9-5 
Error logging • A-27, A-34, A-34 to A-36, C-8, 

C-9, C-57, C-71 
error log sequence number* A-22 
final error count* 12-3 

Error logging buffer* A-14, A-36, A-37, D-8 
allocating* 13-6, C-8 
filling* 13-6 to 13-7 
size *7-7, 13-6, 13-7 

Error logging enable bit 

See UCB$V_ERLOGIP 
Error logging routine* 1-4, 13-6 to 13-7, A-14 

See also Register dumping routine 
address* 13-1 
requirements* 13-7 

Error message buffer* 12-3, C-71 
releasing* 12-3 

Event flag • A-20 
handling for aborted I/O request *8-12 
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Event flag (cont'd.) 

posting *5-17 
setting *2-6 

Exception 

See also Bugcheck, Page fault 
generating* 6-3 

EXESABORTIO • 8-4, 8-11 to 8-12, A-20, C-6, 
C-10, C-29, C-31, C-37, C-42, C-43, C-47, 
D-6 

EXESALLOCBUF • 8-5, C-11 
EXESALLOCIRP* A-24, C-12 
EXESALONONPAGED • C-11, C-13 
EXES ALONPAGV AR • C-14 
EXESALOPHYCNTG • 10-10, C-15 
EXESALTQUEPKT • 7-7, 8-4, 8-15 to 8-16, A-14, 

C-5, C-16, D-1, D-6 
EXES ASSIGN* A-6, A-7 
EXESBUFFRQUOTA • 8-5, C-17 
EXESBUFQUOPRC • C-18 
EXESCANCEL* 13-4 to 13-5 
EXESDASSGN* A-7 
EXESDEANONPAGED • C-3, C-19 
EXE$DW780_INT *15-19 
EXESFINISHIO• 8-4, 8-8, 8-9, 8-12 to 8-13, A-22, 

C-20, C-27, C-41, C-42, D-6 
EXESFINISHIOC • 8-4, 8-12 to 8-13, A-22, C-21, 

D-6 
EXESFORK• C-22 
EXESFORKDSPTH• A-28 
EXE$GB_CPUTYPE • 6-4, B-3 
EXESGI_ABSTIM • A-9, C-82 
EXE$GL_NONPAGED*C-11, C-13, C-14 
EXE$GQ_SYSTIME • C-57 
EXESINSERTIRP *5-12, 8-14, A-19, A-20, A-31, 

C-23, C-24 
EXESINSIOQ *5-12, 8-14, 9-1, A-32, C-24 

returning control to *5-14 
EXESINSTIMQ • C-25 
EXESIOFORK* 10-8, 11-5, 12-1 to 12-2, A-27, 

A-28, C-26 
EXESLCLDSKVALID • 8-6, C-27 to C-28 
EXESMODIFY • C-29 to C-30 
EXESMODIFYLOCK • C-31 
EXESMODIFYLOCKR* A-24, C-32 to C-33 
EXESONEPARM • 8-7, A-22, C-34 
EXESQIO* 5-1 to 5-10, A-7, A-14, A-19 to A-21, 

A-22 
EXESQIOACPPKT • A-28 
EXESQIODRVPKT *5-12, 8-3, 8-10, 8-13 to 8-15, 

9-1, C-27, C-29, C-34, C-43, C-52, D-6 
EXESQIORETURN *8-16, C-35 
EXE$READ*8-7 to 8-8, A-22, C-36 
EXESREADCHK • 8-4, C-37 

EXESREADCHKR• 8-7, C-38 
EXE$READLOCK*8-7, C-39 
EXESREADLOCKR* 8-7, A-24, C-40 
EXESSENSEMODE • 8-8, C-41 
EXESSETCHAR • 8-8, C-42 
EXESSETMODE • 8-9, C-43 
EXESSNDEVMSG* 11-7 to 11-8, 12-6, C-44 to 

C-45 
EXESTIMEOUT • A-28, A-32, A-33 
EXES WRITE • 8-9 to 8-10, A-22, C-46 
EXESWRITECHK• 8-4, C-47, C-49 
EXESWRITECHKR *8-10, C-48 
EXESWRITELOCK *8-10, C-49 
EXESWRITELOCKR *8-10, A-24, C-50 
EXESWRTMAILBOX • C-44, C-51 
EXESZEROPARM *8-11, A-22, C-52 
Expected interrupt 

See Device interrupt 
External register base 

See MBASl_ERB 
External routine 

specifying entry point of in driver tables *7-6 

F 
FDT (function decision table)* 1-2, 5-8 

address *5-6, 7-6, A-14 
addresses specified in* 13-2 
as used by EXE$QIO*5-6 
creating • 7-7 to 7-11, 13-2, B-15 
dispatching to FDT routines from *5-10 
size* A-15 
specifying buffered functions in *5-9 
specifying legal functions in *5-9 

FDT routine* 1-3, 1-17, 2-3 to 2-4, 8-15 
aborting an I/O request from *8-11 
adjusting process quotas in*C-11 
allocating IRPE in*A-24 
allocating system buffer in *8-5 
calling sequence*8-2, D-5 
completing an I/O operation in*C-20, C-21 
context • 5-10, 8-1 to 8-2, 8-13, D-6 
creating*8-1 to 8-16 
dispatched to from EXE$QIO*5-9 
ensuring an even byte count in *9-4 
exiting from *8-2 to 8-4, 8-11 to 8-16, D-6 
for buffered I/O *8-4 to 8-6 
for direct I/O *8-4, 8-7 to 8-8, 8-9 to 8-10 
for disk I/O*C-27 to C-28 
input • D-5 
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FDT routine (cont'd.) 

IPL requirements*D-6 
output • D-5 
provided by VAX/VMS*8-6 to 8-1 1 
register usage *6-2, 8-2, D-6 
returning control to for postprocessing • 8-16 
setting attention ASTs in*C-6 

Fixed CSR space* 14-10 to 14-11 
of non-DIGITAL-supplied devices* 14-11 

Fixed vector space* 14-10 to 14-11 
of non-DIGITAL-supplied devices* 14-11 

FKB$B_FIPL • C-26 
FKB$L _FPC • C-26 
FKB$L_FR3 • C-26 
FKB$I_FR4 • C-26 
Floating CSR space* 14-10 to 14-11 

assigning to device* 14-16 
base address* 14-10 
current floating CSR base* 14-16 

Floating vector space* 14-10 to 14-11 
assigning to device* 14-16 
base address* 14-10 
current floating vector base* 14-16 

Fork block* 1-5, 1-7, 3-4, 3-14, 5-13 to 5-14, 
9-7, 12-1, A-27 to A-28 

Fork dispatcher* 1-9, 2-6, 3-4, 3-5, 3-15 
functions* 5-15 

Fork IPL* 1-9, 2-4, 3-4, 3-12, 5-15, 8-13, 10-1, 
A-27 

See also UCB$B_FIPL 
specifying*7-3, A-16 

FORK macro*B-14 
See also I0F0RK macro 

Fork process* 1-7, 1-9, 3-14 to 3-15, 9-1 
context* 1-7, 3-15, 3-16, 5-12 to 5-13, 5-13 

to 5-14, 5-14, 8-15, 9-1 to 9-2 
creation by driver*2-5, 3-12, 3-14 to 3-15, 

5-14, 12-1 to 12-2, B-14, B-20, C-22, 
C-26 

creation by IOC$INITIATE • 5-12 to 5-13, 9-1, 
12-3, C-58 

dispatching *3-15 
reactivating *3-15, 5-15 to 5-16 
suspending • 5-14, 9-6 to 9-7 

Fork queue* 1-9, 3-15, 5-14, 5-15, A-27 
Full duplex device driver *8-4, 8-15 to 8-16 

I/O completion for*C-5 
FUNCTAB macro • 7-10 to 7-11, B-15 

example* 7-11 
Function decision table 

See FDT 

G 
General purpose registers 

rules for using in driver code *6-2 

H 
Hardware clock 

interrupt from • 3-5 
role in device timeouts* 1-3 

i 
I/O adapter* 1-6, 1-11 to 1-15, 1-16, 4-1 to 4-13 

See also UBA, UNIBUS adapter, MBA, and Q22 
bus 

displaying nexus value* 14-7, 14-8 
functions *4-1 to 4-2 
obtaining resources* 10-1 
synchronizing access to *3-4, 4-2 
type *7-2, A-3, A-16 

I/O adapter registers* 10-1 

See Mapping registers. Data path register. 
Vector register. Byte count register, MBA 

I/O completion 

See I/O postprocessing 
I/O database* 1-4 to 1-6, A-1 to A-38 

creation *7-1, 13-2, 14-3 to 14-6, 14-11, 
A-16, G-6 

examining with XDELTA • 15-9 
for MASSBUS configuration • G-6 to G-7, G-11 
for two-controller configuration • 5-5 
initializing *7-3 to 7-5, 14-11 
locating* 14-9 
referencing fields in *6-2, A-1 
reinitializing* 13-2 
synchronization • 3-6 

I/O function 
indicating a buffered • 5-9, 7-7 
indicating as legal to a device *5-9, 7-7 
preprocessing *5-10 

I/O function code *5-9, A-20 
converting to device-specific function code *9-4 
defined by VAX/VMS*7-8 to 7-9 
defining device-specific • 7-9 

I/O function modifier *5-9 
I/O postprocessing* 12-1 to 12-3, A-21 
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I/O postprocessing (cont'd.) 

device-dependent • 2-6, 5-16, 8-6, 12-2 to 
12-3 

device-independent*2-6, 3-4, 5-17, 8-6, C-59 
for aborted I/O request *8-12 
for buffered I/O *8-6, 10-9 
for DMA transfer* 10-2, 10-8 to 10-10 
for full duplex device driver *C-5 
for I/O request involving no device activity* 

8-13, C-20, C-21 
I/O postprocessing queue* 12-3, 13-4, A-33, C-5, 

C-59, C-71 
I/O preprocessing 

See also SYS$QIO and FDT routine 
completing*5-12, 7-8 
device-dependent • 2-3 to 2-4, 5-8 to 5-10, 8-1 

to 8-16 
device-independent *2-2 to 2-3, 5-1 to 5-8 

I/O request 
aborting • 8-4, 8-8, 8-10, 8-11 to 8-12, 12-6, 

C-10 
canceling* 13-4 to 13-6, A-14 
completing*C-71 to C-72 
example *2-1 to 2-6 
involving no device activity • 8-12 to 8-13 
IPL flow during the processing of *3-6 to 3-7 
outstanding on channel *A-7 
restarting after power failure *9-5 
retrying* 12-5 
returning completion status of to process *2-6, 

5-17, 8-4, 8-12, 12-2, 12-3 
status* A-20 
synchronizing simultaneous processing of 

multiple *8-4, 8-15 to 8-16 
validating device-dependent arguments *2-3 
validating device-independent arguments*2-2 

to 2-3, 5-6 to 5-7 
with no parameters*8-11 
with one parameter*8-7 

I/O request packet 

See IRP 
I/O request packet extension 

See IRPE 
I/O space *H-2 to H-6 

access to during bus power failure*H-6 
error in mapping*H-6 
mapping to process space *H-2, H-4, H-4 to 

H-6 
of MASSBUS • G-4 
of Q22 bus *4-3 
of UNIBUS *4-3 
rules for referencing • 6-3, 6-3 to 6-4, H-6 

I/O status block 

See I0SB 
validating access to *5-7 

I/O transaction sequence number* A-22 
IDB (interrupt dispatch block)* 1-6, 5-5, 10-7, 

A-18 to A-19 
address *5-4, 9-3, 11-3, 14-9, A-10 
creation* 7-3, 14-4 
for MBA*G-4, G-6 to G-7, G-11, G-13 
size* 7-3 

IDB$I_ADP* 5-5 
IDB$L_CSR• 5-5, G-4, G-5, G-11 
IDB$L_OWNER• 5-4, 5-5, 9-4, 9-7, 11-4, 13-1 
IDB$W_UNITS • 14-6 
IFNORD macro *B-16 
IFNOWRT macro *B-17 
IFRD macro *B-18 
IFWRT macro *B-19 
Image termination* 13-4 
INI$BRK* 15-4 
Initialization routine 

See Unit initialization routine. Controller 
initialization routine 

Interrupt 

See also Device interrupt 
blocking *B-11 
disabling *3-13, B-11 
dismissing *3-2, 12-1 
enabling *3-14, B-12 
requesting an XDELTA* 15-5 to 15-6 
requesting a software *3-14, B-35 

Interrupt context* 1-7, 3-2, 3-10, 9-8 
Interrupt dispatch block 

See IDB 
Interrupt dispatcher*3-8, 10-8, 11-1, A-4 

See also IDB 
direct vector *3-9, 11-3, A-4, A-9 
for MASSBUS • D-14, G-6, G-6 to G-7, G-9 to 

G-10, G-13 to G-15 
for UNIBUS* A-9 
nondirect vector *3-9, 11-1, A-4, A-9 

Interrupt enable bit *9-5 
Interrupt expected bit 

See UCB$V_INT 
Interrupt priority level 

See IPL 
Interrupt servicing routine* 1-3, 3-2, 10-8, 11-1 to 

11-8, 15-8, A-9, A-28 

See also Unsolicited interrupt servicing routine 
address *7-4, 11-3, A-17, D-7 
context *3-2, 11-3, D-8 
defined by VAX/VMS*3-2 to 3-3 
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Interrupt servicing routine (cont'd.) 

example* 11-6 to 11-8 
for connect to interrupt facility *1-1-10, H-15 to 

H-16 
for fork IPL*3-4 
for hardware clock • 3-6 
for IPL$_ASTDEL* 3-3 
for IPL$_I0P0ST • 3-4, C-59 
for IPL$_SCHED • 3-5 
for IPL$_TIMERFORK*3-6, 12-4 
for LP11 printer *2-5 to 2-6 
for MASSBUS device*D-7, G-10, G-15 
for solicited interrupt* 11-4 to 11-5 
for UBA*3-9 
for UNIBUS adapter* 11-1 
for unsolicited interrupt* 11-5 to 11-8, D-13 
functions* 5-14, 9-8, 11-1, D-7 
input* D-7 
IPL requirements *D-8 
of CONINTERR.EXE • H-9 
output* D-7 
register usage *3-2, 9-7, D-8 
specifying more than one*D-7 
transferring control to *5-14 

Interrupt stack • 9-2 
Interrupt vector*3-9, 14-8, A-4, A-9 to A-11 

address • 14-5 
connecting to*H-1, H-6 to H-23 
multiple* A-9 
number* 14-6 

Interval timer 
See Hardware clock 

SIO730DEF macro *H-2 
SI0750DEF macro *H-2 
SI0780DEF macro *H-2 
SI0790DEF macro *H-2 
I0$_AV AILABLE* 8-6, C-27 
IO$_CONINTREAD • H-8, H-9 

IOS—CONINTWRITE • H-8, H-9 
I0$_PACKACK • 8-6, C-27 
IO$_SETCHAR • 8-9 
IO$_UNLOAD • 8-6, C-27 
I0C$ ALOUBAM AP • C-53 to C-54, C-69 
I0CSAL0UBAM APN • 10-5 
IOC$ALTUBAMAP • C-53, C-69 
IOCSAPPLYECC • A-37, C-55 
IOC$CANCELIO • 13-6, A-32, C-56 
I0CSDIAGBUFILL• A-14, A-22, C-57, D-9 
IOCSGI_CRBTMOUT • A-9 
IOC$GL_DEVLIST • 13-3, A-11 
IOCSGL _PSBL • C-5, C-10, C-20, C-71 
I0CSGL _PSFL • C-59 

IOC$GW_M AXBUF • C-17 
IOCSINITIATE *5-12 to 5-13, 8-14, 9-1, 12-3, 

A-14, A-21, A-31, A-32, A-33, A-34, C-24, 
C-58, C-71, D-10 

IOCSIOPOST• A-22, A-24, C-59 
IOCSLOADMB AM AP • B-21, C-60, G-3 
IOCSLOADUBAMAP* 10-6, A-11, B-22, C-61 
IOCSLOADUBAM APA • 10-6, C-61 
IOC$MNTVER • 7-7, A-14 
IOCSMOVFRUSER* 7-2, 10-10, C-62 
IOCSMOVFRUSER2 • C-63 
IOCSMOVTOUSER • 7-2, 10-11, C-64 
IOCSMOVTOUSER2 • C-65 
IOCSPURGDATAP* 10-8 to 10-9, 10-11, A-11, 

B-23, C-66 
IOCSRELCHAN* 12-2, A-8, A-18, A-28, B-24, 

C-67, C-84 

IOCSRELDATAP • 10-9, A-4, A-5, A-28, B-25, 
C-68 

IOCSRELMAPREG* 10-9 to 10-10, A-4, A-5, 
A-10, A-11, A-28, B-26, C-69 

lOCSRELSCHAN • A-8, A-9, A-18, B-27, C-70 
IOCSREQCOM • 9-1, 12-3, A-14, A-19, A-22, 

A-31, A-32, A-33, A-34, A-36, B-28, C-71 to 
C-72, D-10 

IOCSREQDATAP • 10-2 to 10-3, A-4, A-5, A-11, 
A-28, B-29, C-73 

IOCSREQDAT APN W • 10-3, C-73 
IOCSREQMAPREG • 10-4 to 10-5, A-4, A-5, A-10, 

A-11, A-28, B-30, C-74 to C-75 
IOCSREQPCHANH • A-8, A-18, A-28, B-31, C-76 
IOCSREQPCHANL• 9-2 to 9-4, A-8, A-18, A-28, 

B-31, C-77 
IOCSREQSCHANH • A-8, A-9, A-18, B-32, C-78 
IOCSREQSCHANL• A-8, A-9, A-18, A-28, B-32, 

C-79 
IOCSRETURN • 7-6, 13-5, C-80 
IOCSSEARCHDEV• A-28 
IOCSVERIFYCHAN • C-81 

IOCSWFIKPCH *5-13, 5-14, 9-7, A-28, A-32, 
A-33, B-41, C-82 to C-83 

IOCSWFIRLCH *5-13, 5-14, A-32, A-33, B-42, 
C-84 

SIODEF macro *7-8 
IOFORK macro *3-12, 3-15, 5-14, 10-8, 11-5, 

12-1, B-20 
IOSB (I/O status block) *8-4, 12-2, 12-3, A-20, 

A-22 
SI0UV1DEF macro *H-2 
SIOUV2DEF macro *H-2 
IPL (interrupt priority level)* 1-7, 1-9, 3-1 to 3-14 

device*3-4 to 3-5, A-16, A-31 
during I/O processing *3-3 to 3-7 
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IPL (interrupt priority level) (cont'd.) 

fork*A-16, A-27 
lowering • 3-3, 3-5, 3-12, 3-13, 3-14, 3-14, 

9-7, B-12 
modifying *3-12 to 3-14 
raising • 3-3, 3-13, B-11, B-34 
saving • B-33 
software *3-1 to 3-2 

IPL$_ASTDEL* 1-9, 3-3, 5-7, 8-15 
IPL$_IOPOST• 1-9, 2-6, 3-4, 5-17, 8-12, 8-13, 

12-3, 13-4, C-59 
IPL$_MAILBOX • 3-6, 11-7, 12-6, C-51 
IPL$_POWER• 3-5, 9-5 to 9-6, 12-7, 13-2, 14-4 
IPL$_QUEUEAST *3-5, C-2, C-3 
IPL$_SCHED • 3-4, 3-5 
IPL$_SYNCH* 1-9, 3-5, 3-6 
IPL$_TIMER* 12-6 
IPL$_TIMERFORK • 3-6, 12-4 
IPL$_XDELT A • 3-6 
IRP (I/O request packet)* 1-6, A-19 to A-23 

creation*2-3, 5-7 
current* A-31 
deallocation *2-6, C-59 
dequeuing from UCB* A-19 
device-independent portion of *5-7 to 5-8 
insertion in pending I/O queue *2-4, 5-12, 8-3, 

8-13 to 8-15, 9-1, C-23 
insertion in postprocessing queue *2-6, 3-4 
removal from pending I/O queue *2-6, 5-12, 

12-3 
storing data in *6-2 

IRP$B_CARCON • 8-7, 8-10, A-22 
IRP$B_RMOD *8-11, C-10 
IRP$I_BCNT • 8-4, 8-10, 8-14, 9-2, C-58 
IRP$I_DlAGBUF *8-14, C-57, C-58 
IRP$I_IOSB* 8-11, C-10 
IRP$I_MEDIA • 8-9, 8-13, 12-3, 13-4, A-22 

storing device-dependent parameters in *8-7 
IRP$I_PID* 13-6 
IRP$I_SVAPTE *8-14, 9-2, C-58 

for buffered I/O *8-5, 8-6, 8-8 
for direct 1/0*8-10 

IRP$V_DIAGBUF*8-14, C-57, C-58 
IRP$V_FUNC • 8-4, 8-6, 8-7, 13-4 
IRP$W_BOFF • 8-5, 8-6, 8-14, 9-2, C-58 
IRP$W_CHAN* 13-6 
IRP$W_FUNC *8-10, 9-4 
IRP$W_STS 

for read function • 8-4, 8-6, 8-7 
for write function • 8-6 

IRPE (I/O request packet extension) • A-21, A-24 
address • A-22 
allocating • A-24 

IRPE (I/O request packet extension) (cont'd.) 

deallocation • A-24, C-59 
unlocking buffer pages*C-59 

j 
JIB (job information block) *8-5 
JIB$I_BYTCNT • 8-5, 8-6, C-1 1, C-17 
JIB$L _BYTLM • C-17 
Job attached bit 

See UCB$V_J0B 
Job controller* A-33 

sending a message to* 11-7 to 11-8 
Job information block 

See JIB 

K 
Kernel mode AST 

See AST 
Kernel stack *9-2 

L 
Legal function bit mask *5-9 
LOADMBA macro *B-21, G-3, G-12, G-12 to G-13 
LOADUBA macro* 10-6, B-22 
Lock ID* A-28 
Logical I/O function 

translation from virtual function to *2-3 
Longword access enable bit 

See VEC$V_LWAE 
Longword-aligned random-access mode*4-13, 

A-11 
Lookaside list*C-11, C-12, C-13 

allocation of IRP from *5-7 
LWAE (longword access enable) bit* A-11 

M 
Machine check* 15-19, H-6 

condition handler*H-6 
Mailbox* A-31 

associated with device unit* A-31 
buffered I/O quota* A-28 
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Mailbox (cont'd.) 

I/O function • A-21 
in shared memory* A-33 
marked for deletion • A-33 
of job controller* 11-7 
of OPCOM process* 12-6 
permanent • A-33 
sending a message to*C-44 to C-45, C-51 

Mailbox driver* 14-5 
Map lock bit 

See VEC$V_MAPLOCK 
Mapping register base register 

See MBA$L_MAP 
Mapping registers* 1-16, 4-4 to 4-6, 10-1, 10-4 

to 10-6, A-10, A-11 
allocating permanent* 13-1, A-10 
byte offset bit • C-61 
calculating the number needed* 10-4 
format *4-6, 10-6 
invalidating *4-6, 4-12, 10-6 
loading* 10-6, B-22, C-61 
number of active* A-5 
number of disabled • A-5 
of MBA • B-21, C-60, G-2 
of MicroVAX 11*4-4 
of UBA • 4-4 
operation • 4-5 to 4-6 
releasing* 10-9 to 10-10, 12-2, B-26, C-69 
requesting* 10-4 to 10-5, B-30, C-53 to C-54, 

C-74 to C-75 
requesting permanent* 10-5 
unavailability* 10-5 

Mapping register valid bit* 10-6 
Mapping register wait queue* 10-5, 10-10, A-4, 

C-69, C-74 
MASSBUS 

configuration *G-1, G-4 
I/O database*G-4, G-6 to G-7 
I/O space*H-2 
servicing multiunit controller on*G-2, G-6, 

G-11, G-12, G-14 
servicing single-unit controller on*G-6, G-10, 

G-11, G-14 
MASSBUS adapter 

See MBA 
MASSBUS driver 

DPT for*G-13 
interrupt servicing routine*G-15 
start I/O routine*G-12 
unit initialization routine*7-7, G-11 
unsolicited interrupt servicing routine*G-14 

MBA (MASSBUS adapter)* 1-1 1 

MBA (MASSBUS adapter) (cont'd.) 

address space*G-4 to G-5 
data path*G-3 
functions • G-1, G-8 to G-9 
nexus value* 14-4 
obtaining ownership*G-2, G-6 to G-10, G-12 
registers*G-2 to G-6 

device*G-5, G-11, G-12 
external* G-2 
internal* G-2 

mapping • B-21, C-60, G-2 to G-6 
secondary data channel *C-70 
subunit number*G-1 
unit number* 14-6, G-1, G-11 

MBA$INT • D-14, G-13 to G-15 
MBA$l_AS • G-4, G-5, G-8 to G-9, G-9, G-10 
MBA$L_BCR • C-60, G-3, G-4, G-12 
MBA$L_CAR • G-4 
MBA$L_CR • G-4 
MBA$l_CSR • C-60, G-4, G-12 
MBA$L_DR*G-4 
MBA$L_ERB• G-4, G-5, G-1 1 
MBA$L_MAP• G-4, G-5 
MB A$L _SMR • G-4 
MBA$I_SR • G-4, G-10, G-12 
MBA$I_VAR• C-60, G-3, G-4, G-12, G-13 
SMBADEF macro*G-4 to G-5 
Memory 

See Buffer, Nonpaged pool 
Memory error 

detecting during DMA transfer* 10-9 
MicroVAX 1*1-14 to 1-15, 3-9 

adapter logic *4-1 
booting with XDELTA on* 15-1 
comparison with other VAX processors* 1-14, 

1-16 
DMA transfer* 10-1 to 10-2, 10-8 to 10-9, 

10-10 to 10-11 
example driver *E-1 to E-28, F-1 to F-22 
requesting an XDELTA interrupt on* 15-6 

MicroVAX II* 1-14 to 1-15, 3-9 
adapter logic *4-1 
booting with XDELTA on* 15-1 
DMA transfer* 10-1 to 10-2, 10-4 to 10-9, 

10-9 to 10-10 
example driver *E-1 to E-28, F-1 to F-22 
requesting an XDELTA interrupt on* 15-6 

MMGSIOLOCK • 8-8, C-49 
MMGSUNLOCK • A-24, C-85 
Mount verification • A-21, A-32 
Mount verification routine • A-14, A-15 

address* 7-7 
MSG$_CRUNSOLIC • 1 1-7 
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MSG$_DEVOFFLIN • 12-6 
Mutex 

for ACL* A-26 
MW AIT state *3-16 

Nexus* 14-4, 14-7, 14-8 
Node* 14-4, 14-7, 14-8 
Nondirect vector interrupt• 3-9, 11-1, 15-7, A-4, 

A-9 
Nonpaged pool 

allocating*3-3, C-11, C-12, C-13, C-14 
deallocating *3-3, C-3, C-19 

NPR (Non-processor request) 

See DMA transfer 

o 
Object rights block 

See ORB 
Online bit 

See UCB$V_ONLINE 
Online condition 

on MASSBUS* G-8 
OPCOM process *C-44 

sending a message to* 12-6 
Operating system routine 

specifying entry point of in driver tables *7-6 
ORB (object rights block)* A-25 to A-26 

address* A-28 
initializing* A-25 

p 
Page fault*8-10 

during FDT execution • 8-8 
Paging I/O function • A-21 
PAT$A_NONPGD* 15-17 
Patch space* 15-17 
PCB$L_JIB • 8-5 
PCB$I_PID • 13-6 
PCB$V_SSRWAIT • 5-7, C-1 1, C-17 
PCB$W_ASTCNT *C-4, C-6, C-10 
PDT (port descriptor table)* A-34 

Pending I/O queue*5-12, 8-14, 9-1, 13-4, A-19, 
A-31, C-23, C-71 

bypassing* C-16 
length* A-33 
synchronizing with driver internal queue *8-15 

PFN database 
examining with XDELTA* 15-11 to 15-12 

PFN mapping *H-4 to H-6 
deleting a PFN mapped page*H-6 
modifying pages mapped by*H-4 

Physical address 
format • H-4 

Physical I/O function • A-21 
PIO transfer* 1-15 to 1-16 

example*2-1 to 2-6 
using buffered 1/0*7-10 
using I/O adapter resources *4-1 

Port descriptor table 

See PDT 
Position independent code *6-2 
Postprocessing 

See I/O postprocessing 
Power bit 

See UCB$V_POWER 
Power failure 

blocking *3-5 
determining the occurrence of *9-5 
I/O bus*H-6 

Power failure recovery procedure* A-4, A-10, 
A-11, A-28 

controller initialization routine called by*D-4 
device timeout forced by* 12-5 
initialization performed by* 13-3 
unit initialization routine called by*D-13 

PR$_IPL*3-13, 3-14, B-33, B-34 
PR$_SIRR *3-14, B-35 
Prefetch function of UNIBUS adapter *4-11, 4-12 
Preprocessing 

See I/O preprocessing 
Preprocessing routine 

See FDT routine 
Printer driver 

description *2-1 to 2-6 
PROBER (Probe Read) instruction*B-16 
PROBEW (Probe Write) instruction*B-17 
Process context* 1-7, 2-4, 3-3, 5-12, 8-1 to 8-2 

returning to*5-17 
Process I/O channel* 13-4, A-6, A-20 

assigning* 5-3 
deassigning* 13-5 
reference count* A-31, A-32 
validating *2-2, 5-3, C-81 
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Processor status longword 

See PSL 
Process privilege mask*A-23 
Process quota 

adjusting • 3-4, 5-17 
buffered I/O*2-3, 2-6, 5-7, C-17, C-18 
byte count *2-3, 2-6, 8-6, C-17 
charging • 5-7, 5-9, A-21 
direct I/O*5-7 

Process virtual address space 
access to*5-10 

Programmed I/O 

See PIO transfer 
PSL (processor status longword) 

examining with XDELTA* 15-9 
Z condition code*C-23 

PURDPR macro* 10-8, B-23 
detecting memory errors using* 10-9 

Q 
Q22 bus* 1-14 

accessing unmapped memory *4-4 
address *9-5 
example driver*E-1 to E-28, F-1 to F-22 
functions *4-1 
I/O space *4-3, H-2, H-3, H-6 
interrupt dispatching • 3-9 
position of devices on *3-4 
power failure*H-6 
scatter-gather map *4-4 to 4-6 

Quota 
See Process quota 

R 
Read function • A-21, A-22 

FDT routine for *8-7 to 8-8 
REALTIME_SPTS parameter• H-7 
Real time I/O processing • H-1 to H-23 
Reentrant code *6-2 
Register dumping routine* 1-4, A-14, A-37, B-23, 

C-8, C-57, C-66 
address*7-7, 13-7, D-8 
context* 13-7, D-9 
functions* 13-7, D-8 
input* D-8 
IPL requirements • D-9 

Register dumping routine (cont'd.) 

output • D-8 
register usage • D-9 

Registers 

See Device registers. General purpose registers. 
Mapping registers 

REI instruction *3-2, 8-15 
RELCHAN macro* 12-2, B-24, G-13 
RELDPR macro* 10-9, B-25 
RELMPR macro* 10-9, B-26 
RELSCHAN macro *B-27 
REQCOM macro* 12-3, 12-5, B-28 
REQDPR macro* 10-2, B-29 
REQMPR macro* 10-4, B-30 
REQPCHAN macro *9-2 to 9-4, B-31, G-6, G-12 
REQSCHAN macro *B-32, G-6, G-12 
Resource wait* 1-10, 3-16 to 3-18 
Resource wait flag 

See PCB$V_SSRWAIT 
Resource wait mode *5-7, C-11, C-17 
Resource wait queue* 1-10 
Retry count* 12-6 
RL01 driver *E-1 to E-28 
RL02 driver *E-1 to E-28 
RL11 driver *E-1 to E-28 

s 
SAVIPL macro *B-33 
SBI (synchronous backplane interconnect)* 1-11 
Scatter-gather map 

See Mapping registers 
SCB (system control block)* 11-3, A-4 

role in interrupt dispatching • 3-9 
SCH$GL_CURPCB* 15-11 
SCH$GL_PCBVEC* 15-11 
SCH$POSTEF• A-20 
SCH$RAVAIL* C-3 
Scheduler*3-4, C-3 

SCS (system communications services) • A-16 
$SECDEF macro *H-5 
Secondary controller data channel • B-27, G-12, 

G-13 
obtaining ownership • B-32 
releasing • C-70 
requesting • C-78, C-79 

Seek operation • 9-6 
overlapping with data transfer *9-2 

Selected mapping register 

See MBA$I_SMR 
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Sense device characteristics function *8-8 
Sense device mode function *8-8 
Set device characteristics function • 8-8, 8-9, 

A-30, A-31 
Set device mode function • 8-8, 8-9, A-30 
SETIPL macro*3-13, 12-4, 12-5, 12-6, B-34 
Set mode function • A-31 
SHOW DEVICE command *A-34 
SOFTINT macro *3-14, B-35 
Software timer *3-6 
Solicited interrupt 

See Device interrupt 
Special kernel mode AST 

See AST 
SS$_ABORT • 12-6 
SS$_ACCVIO • 8-8, 8-10, C-32, C-42, C-43, 

C-62, C-63, C-64, C-65 
SS$_CANCEL* 13-4 
SS$_EXQUOTA • C-7, C-17 
SS$_INSFMEM • C-7, C-11, C-15, C-44, C-51 
SS$_INSFSPTS • C-15 
SS$_INSFWSL• 8-8, 8-10, C-32 
SSS—IVCH AN • C-81 
SS$_MBFULL • C-44, C-51 
SS$_MBTOOSML* C-44, C-51 
SS$_NOPRIV • C-44, C-51, C-81 
SS$_NORM AL • 8-8 
Stack 

device driver use of*6-2, 9-2 
Start I/O routine* 1-3 

See also Alternate start I/O routine 
address *2-4, 7-6, 8-14, A-14, D-9 
context *5-12 to 5-13, 8-15, 9-1 to 9-2, D-10 
for connect to interrupt facility • H-10, H-14 to 

H-15 
for MASSBUS device driver *G-12 
for MicroVAX I device driver* 10-10 
for multiunit controller*3-18 
for single unit controller*3-17 
functions*5-13 to 5-14 
input • D-9 
IPL requirements*D-10 
of CONINTERR.EXE • H-9 
output from • D-9 
reactivating*3-10 to 3-12, 5-15 to 5-16 
register usage *9-2, D-10 
suspending* 5-14 
transferring control to *5-12 to 5-13, 8-14, 

9-1, 12-3, C-58 
writing *9-1 to 9-8 

Status* 1 1-5 

Status register 

See CSR, MBA$L_SR 
Subcontroller • A-16 
Swapping I/O function* A-21 
SWI$GL_FQFL • C-26 
Symbol list 

defining • B-13 

Synchronization techniques* 1-9 to 1-10, 3-1 to 
3-18 

See also IPL, Fork queue, and Resource wait 
queue 

Synchronous backplane interconnect 

See SBI 
SYSSALLOC • A-28, A-31 
SYSSASSIGN* 1-6, 2-2, 5-3, 7-7, A-6, A-31, 

A-32, H-8 
SYS$CANCEL* 1-4, 13-4, 13-5, A-14, D-2, D-3, 

H-12 
SYS$CRMPSC • 4-4, H-2, H-4 to H-6 
SYS$DALLOC • 13-5, A-14, A-31, D-3 
SYSSDASSGN* 13-4, 13-5, A-14, A-31, D-3 
SYS$GL_JOBCTLMB • 11-7 
SYS$GL_OPRMBX • 12-6 
SYSSQIO* 1-1, 2-2 to 2-4, 5-1 to 5-13, A-19 

device-dependent arguments of* A-22 
dispatching* 5-1 
for connect to interrupt facility • H-8, H-9 to 

H-12 
SYSSQIOW • 2-6, A-19 
SYS$SYNCH • 2-6 
SYSBOOT program* 15-1, 15-19 
SYSGEN 

See System Generation Utility 
System buffer 

See Buffer, Nonpaged pool 
storing address of *8-5 

System communications services 

See SCS 
System configuration* 14-8 
System context* 1-7 
System control block 

See SCB 
System Dump Analyzer (SDA)* 15-20 
System failure 

inducing with XDELTA* 15-19 
System Generation Utility (SYSGEN)* 14-2 to 

14-18 
AUTOCONFIGURE command *7-3, 13-2, 14-10 

to 14-18, A-1, A-17, A-27, D-12 
CONNECT command *7-3, 13-2, 14-2, 14-3 to 

14-6, A-3, A-11, A-19, A-25, D-4, D-13 
/ADAPTER qualifier* 14-4 
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System Generation Utility (SYSGEN) 
CONNECT command (cont'd.) 

/ADPUNIT qualifier* 14-6 
/CSR—OFFSET qualifier* 14-5 
/CSR qualifier* 14-5 
/DRIVERNAME qualifier* 14-6 
/MAXUNITS qualifier* 14-6 
/NOADAPTER qualifier* 14-5 
/NUMVEC qualifier* 11-3, 14-6, A-9 
/VECTOR-OFFSET qualifier* 14-5 
/VECTOR qualifier* 14-5 

device table* 14-11, 14-17 
LOAD command* 13-2, 14-2 to 14-3 
RELOAD command* 13-2, 14-6 to 14-7, D-4 
SHOW/ADAPTER command* 14-7 
SHOW/CONFIGURATION command* 14-8 to 

14-9 
SHOW/DEVICE command* 14-9 

System map (SYS$SYSTEM:SYS.MAP) • 15-17 
System page table entry 

allocating permanent• 7-2, A-16, A-33, C-62, 
C-63, C-64, C-65 

System time*C-57 

T 
Tape driver* A-27, A-36 to A-37, D-7 
Template for a device driver *6-5 to 6-13 
Template UCB*A-32, A-33 
Terminal controller* A-8 
Terminal driver *7-10, 11-5 

out-of-band ASTs* 13-5 
Terminal I/O function • A-21 
TIMEDWAIT macro *B-37 to B-38 
Timeout *9-8, C-9, C-22 

caused by power failure recovery procedure* 
12-5 

disabling • 5-14, 12-1 
due time* A-33 
logging* 12-5 

Timeout enable bit 
See UCB$V_TIM 

Timeout handling* 1-3 
Timeout handling routine* 1-3, 9-8, 11-5, 12-4 to 

12-7, 13-6 
aborting an I/O request in* 12-6 
address *9-6, 9-7, 12-1, B-41, B-42, C-82, 

D-10 
context* 12-4, D-1 1 
functions* 12-5, D-10 
input • D-10 

Timeout handling routine (cont'd.) 

IPL requirements*D-1 1 
output • D-10 
register usage*D-11 
retrying an I/O operation in* 12-5 

Timeout interval • B-41, B-42, C-82 
specifying • 9-6, 12-4 

Timer 
See Hardware clock. Software timer 

Timer queue • C-25 
Timer queue entry 

See TQE 
TIMEWAIT macro *B-36 
TQE (timer queue element) 

queuing a • C-25 
TQE (timer queue entry) *3-6 
Transfer vector • 7-3 
Translating virtual address to physical address* 

10-10 
TU58 cartridge device 

booting with XDELTA from* 15-1 

u 
UBA (UNIBUS adapter)* 1-1 1 

See also UNIBUS adapter 
UBI (UNIBUS interface)* 1-11 

See also UNIBUS adapter 
UCB (unit control block)* 1-5, 5-4, A-7, A-26 to 

A-38 
address *9-7, 13-3, 14-9 
as fork block*9-7 
as template* A-33 
cloned *7-7, A-15, A-32 
creation* 13-2, 14-4, 14-15, A-19, A-27, G-6 
disk extension* A-27, A-36 to A-37 
error log extension* 13-7, A-27, A-34 to A-36 
initializing • 13-1, 13-3 
local disk extension • A-27, A-37 to A-38, C-55 
size• 7-2, A-16, A-27, A-27 
storing data in *5-4, 6-2 
synchronizing access to *2-4, 3-4, 8-13 

UCB$B_DEVCLASS • 8-9, A-16 
UCB$B_DEVTYPE • 8-9, A-16 
UCB$B_DIPL• 3-4 to 3-5, 7-3, 12-4, A-16 
UCB$B_ERTCNT • 12-3, C-57, C-71, C-72 
UCB$B_FIPL• 3-4, 5-12, 7-3, 12-1, 13-4, A-16 
UCB$B_ONLCNT *C-27 
UCB$B_SLAVE • G-11 
UCB$B_SLAVE+1 *G-11 
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UCB$K_ERL —LENGTH • A-27 
UCB$K_LCL_DISK_LENGTH* A-27 
UCB$K_LCL _T APE—LENGTH • A-27 
UCB$K_LENGTH• A-27 
UCB$I_CRB* 13-3, G-11 
UCB$L _DDB • 5-5 
UCB$I_DEVCHAR* 7-3, 13-7, A-16 
UCBSl_DEVDEPEND • 8-8, 8-9 
UCB$I_DUETIM *5-13, 9-7, 12-5, C-83 
UCBSL _EMB* 12-3, C-71 
UCBSL_FPC* 5-13, 5-14, 11-5, 12-1, 12-4 
UCB$L_FR3*5-13, 5-14, 11-5, 12-1, 12-4 
UCBSl_FR4*5-13, 5-14, 11-5, 12-1, 12-4 

UCBSL _IOQFL* 12-3, C-71 
UCBSL _IRP* 5-4, 8-14, 12-3 
UCBSL _LINK* 13-3 
UCBSL_OPCNT *8-13, C-72 
UCBSL _ORB*A-25 
UCBSL —RECORD • A-37 
UCBSL_STS *8-14, 9-5, 9-7 
UCBSL_SVAPTE* 5-4, 8-14, 9-2, 10-6, A-21, 

C-55, G-3, G-13 
UCBSl_SVPN • 7-2, C-55 
UCB$V_BSY • 2-4, 5-4, 8-14, 8-15, 12-3, 13-6 
UCB$V_CANCEL *8-14, 12-6, 13-6, C-56 
UCB$V_ECC• C-55 
UCB$V_ERLOGIP* 12-3, C-71 
UCB$V_INT *9-7, 11-4, 11-6, 11-7, 12-4, C-83, 

G-9 
UCB$V_JOB* 11-6, 11-7, 11-8 
UCB$V_LCI_VALID • C-27 
UCB$V_ONLINE* 11-8, 13-1, 13-3 
UCB$V_POWER • 9-5, 12-5 
UCB$V_TIM • 9-7, 12-1, 12-4, B-20, C-83 
UCB$V_TIMOUT *8-14, 12-4, C-83 
UCB$V_VALID* 11-8 
UCBSW_BCNT *8-14, 9-2, 10-4, 10-6, A-22, 

A-34, G-3, G-13 
UCBS W_BCR • A-37 
UCBSW—BOFF *8-14, 9-2, 9-5, 10-4, 10-6, 10-7, 

A-21, A-33, G-3, G-13 
UCBS W_DEVBUFSIZ • 8-9 
UCBS W_DEVSTS • 12-3 
UCB$W_EC1 *C-55 
UCB$W_EC2 • C-55 
UCB$W_REFC* 11-6, 11-7, 13-4 
UCBS W_UNIT • G-11 
UNIBUS 

address *4-6, 9-5 
configuration* 14-17 to 14-18 
DMA transfer* 10-1 to 10-10 
example driver*E-1 to E-28, F-1 to F-22 

UNIBUS (cont'd.) 

example of read operation *4-11 to 4-12, 4-13 
example of write operation • 4-11, 4-13 
I/O space *4-3, FI-2, FI-3, H-6 
position of devices on *3-4 
power failure*H-6 

UNIBUS adapter* 1-11, 1-12 
error interrupt from* 15-19, H-6 
functions *4-1 
interrupt dispatching • 3-8 to 3-9 
interrupt servicing routine *3-9 
nexus value* 14-4 
power failure recovery procedure • A-4 
prefetch function *4-11, 4-12 

UNIBUS address 
scatter-gather map *4-4 to 4-6 

Unit control block 
See UCB 

Unit delivery routine* A-1, A-17 
address *7-3, 14-15, D-11 
context* 14-16, D-12 
functions* 14-16, D-11 
input • D-11 
IPL requirements*D-12 
output* 14-16, D-12 
register usage • D-12 

Unit initialization routine* 1-3, 13-1 to 13-4, 14-4 
address *5-4, 7-4, 7-7, 13-1, A-11, A-14, 

A-17, D-12 
allocating contiguous physical memory in* 

10-10 
allocating controller data channel in *9-4, 12-2 
allocating permanent buffered data path in* 

10-4 
allocating permanent mapping registers in* 10-5 
context* 13-3 to 13-4, D-13 
for connect to interrupt facility • H-10, H-14 
for MASSBUS device drivers* 13-3, A-11, G-11 
for MicroVAX I device drivers* 10-10 
functions* 13-1, D-12 
input* D-12 
IPL requirements*D-13 
of CONINTERR.EXE • H-14 
output • D-13 
register usage • D-13 

Unsolicited interrupt 

See Device interrupt 
Unsolicited interrupt routine 

address* 7-6 
Unsolicited interrupt servicing routine* 11-6, 11-8, 

A-14, G-14 
address* D-14 
context* D-14 
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Unsolicited interrupt servicing routine (cont'd.) 

functions* D-13 
input • D-14 
IPL requirements*D-14 
output • D-14 
register usage *D-14 

USE command* 15-1 
User mode AST 

See AST 
User process 

returning control to *5-14 

v 
VAX-1 1/725 

See VAX-11/730 
VAX-11/730* 1-12, 3-9 

booting with XDELTA • 15-1 
requesting an XDELTA interrupt on* 15-6 

VAX-11/750* 1-11, 3-9 
booting with XDELTA on* 15-1 
requesting an XDELTA interrupt on* 15-6 

VAX-11/780* 1-11, 3-9 
booting with XDELTA* 15-1 
requesting an XDELTA interrupt on* 15-6 

VAX-1 1/782 

See VAX-11/780 
VAX-11/785 

See VAX-11/780 
VAX 8200* 1-12 to 1-13, 3-9 

booting with XDELTA on* 15-1 
requesting an XDELTA interrupt on* 15-6 

VAX 8600* 1-11, 3-9 
booting with XDELTA* 15-1 
requesting an XDELTA interrupt on* 15-6 

VAX 8650 
See VAX 8600 

VAX 8800* 1-12 to 1-13, 3-9 
booting with XDELTA on* 15-1 
requesting an XDELTA interrupt on* 15-6 

VAXBI* 1-12 
VAX MACRO instructions 

as used in device driver *6-2 to 6-4 
VCB (volume control block)* A-28, A-32 
VEC$B_DATAPATH* 10-3, 10-6 
VEC$ V_LOCK • C-69 
VEC$V_LWAE *4-13, 10-6, C-61 
VEC$V_MAPLOCK • 10-5, 13-4, C-53, C-74 
VEC$V_PATHLOCK • 10-3, 13-4, C-68, C-73 
Vector jump table *3-9, A-4 

Vector jump table (cont'd.) 

examining* 15-6 to 15-7 
Vector register* 11-1 
Vector table* A-4 
$VIELD macro *B-39 
_VIELD macro *B-40 
Virtual address register 

See MBA$L_VAR 
Virtual I/O function • A-21, A-22 

translation to logical function from *2-3 
Volume control block 

See VCB 
Volume valid bit 

See UCB$V_VALID 

w 
Wait for interrupt macro 

See WFIKPCH macro, WFIRLCH macro 
WCB (window control block) *5-8, A-7, A-20 
WFIKPCH macro *5-14, 9-6, 9-6 to 9-7, 12-7, 

13-7, B-41, D-11, G-12 
WFIRLCH macro *5-14, 9-6, 9-6 to 9-7, B-42, 

D-11 
Window control block 

See WCB 
Word count register *9-4 
Working set limit 

insufficient • 8-8, 8-10 
Write function 

FDT routine for *8-9 to 8-10 

x 
XADRIVER.MAR* F-1 to F-22 
XDELTA 

See also Delta/XDelta Utility 
IPL *3-6 
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