
Writing a Device Driver
for VAX/VMS

Order Number: AA-Y511B-TE

April 1986

This manual describes how to write a driver for a device connected to a
VAX processor. It discusses the required and optional components of a
driver, and explains their functions. It details the requirements VAX/VMS
imposes upon driver code and includes guidelines for creating, loading,
and debugging a driver module. It also describes data structures and
other methods by which a driver and the VAX/VMS system communicate
information and synchronize their execution.

Revision/Update Information: This book supersedes the Guide to
Writing a Device Driver for VAX/VMS,
order number AA-Y511A-TE,
published September, 1984.

Operating System and Version: VAX/VMS Version 4.4

Software Version: VAX/VMS Version 4.4

digital equipment corporation
maynard, massachusetts

April 1986

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXBI
VAXcluster
VMS
VT

GBSBE33B
ZK-2836

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

CANADA INTERNATIONAL

Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager
100 Herzberg Road c/o Digital's local subsidiary
Kanata, Ontario K2K 2A6 or approved distributor
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

USA & PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by T^X, the typesetting system developed by
Donald E. Knuth at Stanford University. T5X is a registered trademark of the American Mathematical
Society.

Contents

PREFACE xxi

NEW AND CHANGED FEATURES xxv

PARTI THE VAX/VMS DEVICE DRIVER
ENVIRONMENT

SECTION 1 INTRODUCTION TO DEVICE DRIVERS 11

1.1 DRIVER FUNCTIONS 1-2

1.2 DRIVER COMPONENTS 1-2

1.2.1 Driver Tables 1-2

1.2.2 Driver Routines 1-3

1.3 THE I/O DATABASE 1 -4

1.3.1 Driver Tables 1-5

1.3.2 Data Structures 1 -5

1.3.3 l/O-Request Packets 1 -6

1.4 DRIVER CONTEXT 1-7

1.4.1 Fork Processes 1-7
1.4.2 Example of Driver Context-Switching 1 -ft

1.5 SYNCHRONIZATION OF DRIVER ACTIVITY 1 -9
1.5.1 Interrupt Priority Levels 1-9

1.5.2 Fork Queues 1-9

1.5.3 Resource-Wait Queues 1-10

1.6 HARDWARE CONSIDERATIONS 1-10

Contents

1.6.1 Processor Considerations
1.6.1.1 VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600,

and VAX 8650 • 1-11
1.6.1.2 VAX-11/750 • 1-11
1.6.1.3 VAX-11/730 and VAX-11/725 * 1-12
1.6.1.4 VAX 8200 and VAX 8800 • 1-12
1.6.1.5 MicroVAX II and MicroVAX 1 • 1-14

1.7 PROGRAMMED-I/O AND DIRECT-MEMORY-ACCESS
TRANSFERS
1.7.1 Programmed I/O

1-15

1-15
1.7.2 Direct-Memory-Access I/O 1-16

1.8 BUFFERED AND DIRECT I/O 1-17

1.9 EXAMPLE OF AN I/O REQUEST FOR A UNIBUS OR Q22 BUS
DEVICE 1-17

ION 2 DISCUSSION OF A QUEUE-I/O REQUEST 2-1

2.1 DRIVER CODE FOR THE LP11 WRITE FUNCTION 2-1

2.2 A USER PROCESS' I/O REQUEST 2-2

2.3 DEVICE-INDEPENDENT I/O PREPROCESSING BY VAX/VMS 2-2

2.4 DEVICE-DEPENDENT I/O PREPROCESSING BY THE DRIVER 2-3

2.5 QUEUING THE l/O-REQUEST PACKET TO THE DRIVER 2-4

2.6 ACTIVATING THE PRINTER 2-4

2.7 WAITING FOR A DEVICE INTERRUPT 2-5

2.8 HANDLING INTERRUPTS 2-5

2.9 I/O POSTPROCESSING BY THE DRIVER 2-6

2.10 I/O POSTPROCESSING BY VAX/VMS 2-6

IV

Contents

SECTION 3 SYNCHRONIZATION OF l/O-REQUEST
PROCESSING 3-1

3.1 INTERRUPT PRIORITY LEVELS
3.1.1 Interrupt-Servicing Routines

3-1
3-2

3.1.2 IPL Use During I/O Processing 3-3
3.1.2.1 IPL 2 (IPL$_ASTDEL) • 3-3
3.1.2.2 IPL 4 (IPL$_IOPOST) • 3-4
3.1.2.3 IPL 8 through IPL 11 (Fork IPLs) • 3-4
3.1.2.4 IPL 20 through IPL 23 (Device IPLs) • 3-4
3.1.2.5 IPL 31 (IPL$_POWER) • 3-5

3.1.3 Additional IPLs _ 3-5
3.1.3.1 IPL 3 (IPL$_SCHED) • 3-5
3.1.3.2 IPL 6 (IPL$_QUEUEAST) • 3-5
3.1.3.3 IPL 7 (IPL$_TIMERFORK) • 3-6
3.1.3.4 IPL 8 (IPL$_SYNCH) • 3-6
3.1.3.5 IPL 11 (IPL$_MAILBOX) • 3-6
3.1.3.6 IPL 5 or IPL 15 (XDELTA IPLs) • 3-6

3.1.4 Overview of IPL Use in an I/O Operation _ 3-6

3.1.5 Dispatching Device Interrupts _ 3-8
3.1.5.1 Direct Vector Interrupts • 3-9
3.1.5.2 Nondirect Vector Interrupts • 3-9

3.1.6 Transferring Control from the Device Interrupt to the Fork
Process _ 3-10

3.1.7 Modifying IPL in Driver Code _ 3-12
3.1.7.1 SETIPL Macro • 3-13
3.1.7.2 DSBINT Macro • 3-13
3.1.7.3 ENBINT Macro • 3-14
3.1.7.4 SOFTINT Macro • 3-14

3.2 FORK BLOCKS AND FORK DISPATCHING

3.2.1 Interrupt-Servicing Routine for Fork Dispatching
3-14

3-15

3.3 RESOURCE-WAIT QUEUES

3.3.1 Competing for a Controller's Data Channel
3-16
3-17

SECTION 4 I/O ADAPTER FUNCTIONS 4-1

4.1 READING AND WRITING DEVICE REGISTERS 4-3

4.2 MAPPING REGISTERS 4-4

4.3 UNIBUS ADAPTER DATA TRANSFER PATHS 4-6
4.3.1 Direct Data Path 4-9

v

Contents

4.3.2 Buffered Data Paths 4-10
4.3.3 Byte-Offset Data Transfers 4-12
4.3.4 Purging a Buffered Data Path 4-12
4.3.5 Longword-Aligned, 32-Bit, Random-Access Mode 4-13

SECTION 5 OVERVIEW OF I/O PROCESSING 5-1

5.1 PREPROCESSING AN I/O REQUEST 5-1

5.1.1 Process I/O Channel Assignment _ 5-3

5.1.2 Locating a Device Driver in the I/O Database _ 5-4
5.1.2.1 Channel-Request Block • 5-4
5.1.2.2 Interrupt-Dispatch Block • 5-5
5.1.2.3 Device-Data Block • 5-5

5.1.3 Validating the I/O Function _ 5-6

5.1.4 Checking Process I/O Request Quotas _ 5-7

5.1.5 Validating the l/O-Status Block _ 5-7

5.1.6 Allocating and Setting Up an l/O-Request Packet _ 5-7

5.1.7 FDT Processing _ 5-8

5.2 HANDLING DEVICE ACTIVITY
5.2.1 Creating a Driver Fork Process to Start I/O

5.2.2 Activating a Device and Waiting for an Interrupt
5.2.3 Handling a Device Interrupt

5.2.4 Switching from Interrupt to Fork Process Context
5.2.5 Activating a Fork Process from a Fork Queue

5-12

5-12

5-13
5-14
5-14

5-15

5.3 COMPLETING AN I/O REQUEST
5.3.1 I/O Postprocessing

5-16
5-17

PART II WRITING A DEVICE DRIVER

SECTION 6 TEMPLATE FOR A DEVICE DRIVER 6-1

6.1 CODING CONVENTIONS 6-2

6.2 RESTRICTIONS ON THE USE OF DEVICE-REGISTER I/O SPACE 6-3

6.3 IMPLEMENTING CONDITIONAL CODE IN A DRIVER 6-4

vi

Contents

6.4 DRIVER TEMPLATE 6-5

SECTION 7 WRITING DEVICE-DRIVER TABLES 7-1

7.1 DRIVER-PROLOGUE TABLE 7-1

7.1.1 DPTAB Macro _ 7-2
7.1.2 DPT_STORE Macro _ 7-3

7.1.3 Example of DPTAB and DPT—STORE Macros _ 7-5

7.2 DRIVER-DISPATCH TABLE 7-6

7.2.1 DDTAB Macro _ 7-6

7.2.2 Example of DDTAB Macro _ 7-7

7.3 FUNCTION-DECISION TABLE 7-7

7.3.1 Defining Device-Specific Function Codes _ 7-9

7.3.2 Defining Buffered-I/O Functions _ 7-10

7.3.3 FUNCTAB Macro _ 7-10

7.3.4 Example of FUNCTAB Macro _ 7-11

SECTION 8 WRITING FDT ROUTINES 8-1

8.1 CONTEXT OF FDT ROUTINE EXECUTION 8-1

8.2 TRANSFERRING INTO AND OUT OF AN FDT ROUTINE 8-2

8.3 FDT ROUTINES FOR VMS DIRECT I/O 8-4

8.4 FDT ROUTINES FOR VMS BUFFERED I/O
8.4.1 Checking Accessibility of the User's Buffer

8-4
8-4

8.4.2 Allocating the System Buffer 8-5
8.4.3 Buffered-I/O Postprocessing 8-6

8.5 FDT ROUTINES PROVIDED BY VAX/VMS 8-6

8.5.1 EXESONEPARM _ 8-7

8.5.2 EXESREAD _ 8-7

8.5.3 EXESSENSEMODE _ 8-8
8.5.4 EXESSETCHAR _ 8-8

8.5.5 EXESSETMODE _ 8-9
8.5.6 EXESWRITE _ 8-9

vii

Contents

8.5.7 EXESZEROPARM _ 8-11

8.6 VAX/VMS EXIT ROUTINES 8-11

8.6.1 EXESABORTIO _ 8-11

8.6.2 EXESFINISHIO and EXESFINISHIOC _ 8-12

8.6.3 EXESQIODRVPKT _ 8-13

8.6.4 EXESALTQUEPKT _ 8-15

SECTION 9 WRITING A START-I/O ROUTINE 9-1

9.1 TRANSFERRING CONTROL TO THE START-I/O ROUTINE 9-1

9.2 CONTEXT OF A DRIVER FORK PROCESS 9-1

9.3 ACTIVATING THE DEVICE 9-2

9.3.1 Obtaining Controller Access _ 9-2

9.3.2 Getting the l/O-Function Code and Converting the Code and
Modifiers _ 9-4

9.3.3 Computing the Transfer Length _ 9-4

9.3.4 Computing the Transfer's Starting Address _ 9-5

9.3.5 Preparing the Device Activation Bit Mask _ 9-5

9.3.6 Blocking All Interrupts _ 9-5

9.3.7 Checking for Power Failure _ 9-5

9.3.8 Activating the Device _ 9-6

9.4 WAITING FOR AN INTERRUPT OR TIMEOUT 9-6

9.4.1 WFIKPCH and WFIRLCH Macro Formats _ 9-6
9.4.2 Expansion of WFIKPCH Macro _ 9-7

9.4.3 IOCSWFIKPCH Routine _ 9-7

9.5 RESPONDING TO AN EXPECTED DEVICE INTERRUPT 9-8

SECTION 10 WRITING DRIVER CODE FOR DMA TRANSFERS 10-1

10.1 SELECTING AND REQUESTING A DATA PATH 10-2

10.1.1 Requesting a Buffered Data Path _ 10-2

10.1.2 Requesting a Permanent Buffered Data Path _ 10-3

10.1.3 Requesting the Direct Data Path _ 10-4

10.1.4 Mixed Use of Direct and Buffered Data Paths _ 10-4

viii

Contents

10.2 REQUESTING MAPPING REGISTERS 10-4

10.2.1 Allocating Mapping Registers 10-4

10.2.2 Permanently Allocating Mapping Registers 10-5

10.3 LOADING MAPPING REGISTERS 10-6

10.4 COMPUTING THE STARTING ADDRESS OF A TRANSFER 10-7

10.5 ACTIVATING THE DEVICE 10-7

10.6 COMPLETING A DMA TRANSFER 10-8

10.6.1 Purging the Data Path 10-8

10.6.2 Releasing a Buffered Data Path 10-9

10.6.3 Releasing Mapping Registers 10-9

10.7 CONSIDERATIONS FOR MICROVAX 1 DMA DEVICES 10-10

SECTION 11 WRITING AN INTERRUPT-SERVICING ROUTINE 11-1

11.1 DELIVERING A DEVICE INTERRUPT TO A DRIVER 11-1

11.2 INTERRUPT CONTEXT 11-3

11.3 SERVICING A SOLICITED INTERRUPT 11-4

11.4 SERVICING AN UNSOLICITED INTERRUPT

11.4.1 Examples of Unsolicited Interrupts

11-5

11-6

SECTION 12 COMPLETING AN I/O REQUEST AND HANDLING
TIMEOUTS 12-1

12.1 I/O POSTPROCESSING 12-1

12.1.1 EXESIOFORK 12-1

12.1.2 Completing an I/O Request
12.1.2.1 Releasing the Controller • 12-2

12-2

12.1.2.2 Saving Status, Count, and Device-Dependent Status •
12.1.2.3 Returning Control to the Operating System • 12-3

12-3

IX

Contents

12.2 TIMEOUT HANDLING ROUTINES 12-4

12.2.1 Retrying an I/O Operation _ 12-5

12.2.2 Aborting an I/O Request _ 12-6

12.2.3 Sending a Message to the Operator _ 12-6

SECTION 13 WRITING INITIALIZATION, CANCEL-I/O, AND
ERROR-LOGGING ROUTINES 13 1

13.1 INITIALIZATION ROUTINES 13-1

13.1.1 Initialization During Driver Loading _ 13-2

13.1.2 Initialization During Recovery from a Power Failure _ 13-3

13.1.3 Context of an Initialization Routine _ 13-3

13.2 CANCEL-I/O ROUTINE 13-4

13.2.1 Context of a Cancel-I/O Routine _ 13-5

13.2.2 Drivers That Need No Cancel-I/O Routine _ 13-5

13.2.3 Device-Independent Cancel-I/O Routine _ 13-6

13.2.4 Device-Dependent Cancel-I/O Routine _ 13-6

13.3 ERROR-LOGGING ROUTINES 13-6

SECTION 14 LOADING A DEVICE DRIVER 14 1

14.1 PREPARING A DRIVER FOR LOADING INTO THE OPERATING
SYSTEM 14-1

14.2 LOADING A DRIVER 14-2

14.2.1 LOAD Command _ 14-2

14.2.2 CONNECT Command _ 14-3

14.2.3 RELOAD Command _ 14-6
14.2.4 SHOW/ADAPTER Command _ 14-7
14.2.5 SHOW/CONFIGURATION Command _ 14-8

14.2.6 SHOW/DEVICE Command _ 14-9

14.3 AUTOCONFIGURATION 14-10

14.3.1 The SYSGEN Autoconfiguration Facility _ 14-10

14.3.2 SYSGEN Device Table _ 14-11

14.3.3 Device Driver Control of Autoconfiguration _ 14-15
14.3.4 Floating-Vector Address Calculation _ 14-16
14.3.5 Floating-CSR Address Calculation _ 14-16

x

Contents

14.3.6 Rules for Configuration - 14-17
14.3.7 Example of a UNIBUS Configuration - 14-17

SECTION 15 DEBUGGING A DEVICE DRIVER 15-1

15.1 BOOTSTRAPPING THE SYSTEM WITH XDELTA 15-1

15.1.1 Proceeding from the Initial Breakpoint _ 15-3

15.2 LOADING THE DRIVER 15-4

15.3 INSERTING BREAKPOINTS IN DRIVER SOURCE CODE 1 5-4

15.4 CALCULATING THE BASE OF DRIVER CODE 15-5

15.5 REQUESTING AN XDELTA SOFTWARE INTERRUPT 15-5

15.6 EXAMINING THE VECTOR-JUMP TABLE 15-6

15.7 SETTING AN XDELTA BASE REGISTER 1 5-7

15.8 DESTROYING REGISTER CONTENTS 15-8

15.9 EXAMINING THE UCB. IRP, OR PSL 15-9

15.10 XDELTA COMMANDS 15-9

15.10.1 Values and Expressions _ 15-10

15.10.2 Special Symbols _ 15-11
15.10.2.1 Stored Base Registers • 15-11
15.10.2.2 Stored Command Strings • 15-11
15.10.2.3 Setting Base Registers • 15-12

15.10.3 Set Display Mode _ 15-12
15.10.4Open, Examine, and Close Location _ 15-13

15.10.4.1 Open and Display Value Command • 15-13
15.10.4.2 Display Instruction Command • 15-13
15.10.4.3 Close and Display Next Location Command • 15-14
15.10.4.4 Display Range Command • 15-14
15.10.4.5 Indirect Command • 15-14
15.10.4.6 Display Previous Location Command • 15-15

Contents

15.10.5 Breakpoints _ 15-15
15.10.5.1 Setting Breakpoints • 15-15
15.10.5.2 Clearing Breakpoints • 15-15
15.10.5.3 Displaying Breakpoint List • 15-15
15.10.5.4 Proceeding from Breakpoints • 15-16
15.10.5.5 Setting Complex Breakpoints • 15-16

15.10.6Step, Set Location, and Execute Instruction
Commands _ 15-16
15.10.6.1 Loading PC and Continuing • 15-16
15.10.6.2 Execute Instruction and Step Command • 15-16
15.10.6.3 Step Instruction Over Subroutine Command • 15-17

1 5.10.7 Execute String Command _ 15-17

15.11 DELTA 15-18

1 5.11.1 EXIT Command _ 1 5-18

1 5.11.2 Examining and Modifying Locations in Process Space _ 1 5-18

15.12 GUIDELINES FOR DEBUGGING DEVICE DRIVERS 15-18

15.12.1 References to System Addresses _ 15-18

1 5.12.2 Opening Device Registers in XDELTA _ 15-19

1 5.12.3 Incorrect References to Device Registers _ 15-19

1 5.12.4XDELTA and System Failures _ 15-19

PART III REFERENCE MATERIAL

APPENDIX A THE I/O DATABASE A-1

A.1 CONFIGURATION-CONTROL BLOCK (ACF) A-1

A.2 ADAPTER-CONTROL BLOCK (ADP) A-3

A.3 CHANNEL-CONTROL BLOCK (CCB) A-6

A.4 CHANNEL-REQUEST BLOCK (CRB) A-7

A.5 DEVICE-DATA BLOCK (DDB) A-11

A.6 DRIVER-DISPATCH TABLE (DDT) A-13

Contents

A.7 DRIVER-PROLOGUE TABLE (DPT) A-15

A.8 INTERRUPT-DISPATCH BLOCK (IDB) A-18

A.9 l/O-REQUEST PACKET (IRP) A-19

A.10 l/O-REQUEST-PACKET EXTENSION (IRPE) A-24

A.11 OBJECT-RIGHTS BLOCK (ORB) A-25

A.12 UNIT-CONTROL BLOCK (UCB) A-26

APPENDIX B VAX/VMS MACROS INVOKED BY DRIVERS B-1

CASE B-2

CPUDISP B-3

DDTAB B-4

$DEF B-5

SDEFEND B-6

SDEFINI B-7

DPTAB B-8

DPT_STORE B-10

DSBINT B-11

ENBINT B-12

SEQULST B-13
FORK B-14

FUNCTAB B-15

IFNORD B-16

IFNOWRT B-17
IFRD B-18
IFWRT B-19

IOFORK B-20

LOADMBA B-21
LOADUBA B-22

PURDPR B-23

RELCHAN B-24

RELDPR B-25
RELMPR B-26

RELSCHAN B-27

REQCOM B-28

REQDPR B-29

xiii

Contents

APPENDIX C

REQMPR B-30

REQPCHAN B-31

REQSCHAN B-32

SAVIPL B-33

SETIPL B-34

SOFTINT B-35

TIMEWAIT B-36

TIMEDWAIT B-37

$VIELD B-39

—VIELD B-40

WFIKPCH B-41

WFIRLCH B-42

OPERATING SYSTEM ROUTINES C l
COM$DELATTNAST C-2

COMSDRVDEALMEM C-3

COM$FLUSHATTNS C-4

COM$POST C-5

COM$SETATTNAST C-6

ERLSDEVICERR C-8

ERLSDEVICTMO C-9

EXESABORTIO C-10

EXESALLOCBUF C-11

EXESALLOCIRP C-12

EXESALONONPAGED C-13

EXESALONPAGVAR C-14

EXE$ALOPHYCNTG C-15

EXE$ALTQUEPKT C-16

EXE$BUFFRQUOTA C-17

EXESBUFQUOPRC C-18

EXESDEANONPAGED C-19

EXESFINISHIO C-20

EXE$FI NISH IOC C-21

EXESFORK C-22

EXESINSERTIRP C-23

EXESINSIOQ C-24

EXESINSTIMQ C-25

EXESIOFORK C-26

EXESLCLDSKVALID C-27

EXESMODIFY C-29

EXESMODIFYLOCK C-31

EXESMODIFYLOCKR C-32

xiv

Contents

EXE$ONEPARM C-34

EXESQIORETURN C-35

EXESREAD C-36

EXESREADCHK C-37

EXESREADCHKR C-38

EXESREADLOCK C-39

EXESREADLOCKR C-40

EXESSENSEMODE C-41

EXESSETCHAR C-42

EXESSETMODE C-43

EXE$SNDEVMSG C-44

EXE$WRITE C-46

EXE$WRITECHK C-47

EXESWRITECHKR C-48

EXESWRITELOCK C-49

EXE$WRITELOCKR C-50

EXESWRTMAILBOX C-51

EXESZEROPARM C-52

lOCSALOUBAMAP(N) C-53

IOCSAPPLYECC C-55

IOCSCANCELIO C-56

IOC$DIAGBUFILL C-57

IOCSINITIATE C-58

IOCSIOPOST C-59

IOC$LOADMBAMAP C-60

lOCSLOADUBAMAP(A) C-61

IOC$MOVFRUSER C-62

IOC$MOVFRUSER2 C-63

lOCSMOVTOUSER C-64

IOC$MOVTOUSER2 C-65

IOC$PURGDATAP C-66

IOCSRELCHAN C-67

IOC$RELDATAP C-68

lOCSRELMAPREG C-69

IOC$RELSCHAN C-70
IOCSREQCOM C-71

IOC$REQDATAP(NW) C-73

IOC$REQMAPREG C-74

IOC$REQPCHANH C-76

IOC$REQPCHANL C-77

IOC$REQSCHANH C-78

IOC$REQSCHANL C-79

IOC$RETURN C-80

XV

Contents

IOCSVERIFYCHAN

IOCSWFIKPCH

IOCSWFIRLCH

MMGSUNLOCK

C-81

C-82

C-84

C-85

APPENDIX D DEVICE DRIVER ENTRY POINTS D-1

D.1 ALTERNATE START-I/O ROUTINE D-1

D.2 CANCEL-I/O ROUTINE D-2

D.3 CONTROLLER-INITIALIZATION ROUTINE D-3

D.4 DRIVER-UNLOADING ROUTINE D-4

D.5 FDT ROUTINES D-5

D.6 INTERRUPT-SERVICING ROUTINE D-7

D.7 REGISTER-DUMPING ROUTINE D-8

D.8 START-I/O ROUTINE D-9

D.9 TIMEOUT-HANDLING ROUTINE D-10

D.10 UNIT-DELIVERY ROUTINE D-11

D.11 UNIT-INITIALIZATION ROUTINE D-12

D.12 UNSOLICITED-INTERRUPT-SERVICING ROUTINE D-13

APPENDIX E SAMPLE DRIVER FOR THE RL11, RL01, AND RL02 E-1

Contents

APPENDIX F SAMPLE DRIVER FOR THE DR11—W AND DRV11 -WA F I

APPENDIX G MASSBUS ADAPTER G-1

G.1 MASSBUS ADAPTER REGISTERS G-2

G.1.1 Loading MASSBUS Adapter Registers _ G-3

G.1.2 MASSBUS Adapter Registers and Offsets _ G-4

G.1.3 Modifying MASSBUS Adapter Registers _ G-6

G.2 I/O DATABASE FOR MASSBUS DEVICES G-6

G.3 MASSBUS ADAPTER OPERATIONS G-8

G.4 MASSBUS ADAPTER'S INTERRUPT DISPATCHING G-9

G.4.1 Checking for MASSBUS Adapter Ownership _ G-9

G.4.2 Dispatching a Device Interrupt _ G-10

G.5 SPECIAL CONSIDERATIONS FOR MASSBUS DEVICE DRIVERS G-10

G.5.1 Unit-Initialization Routine _ G-11

G.5.2 The MASSBUS Adapter and the I/O Database _ G-11

G.5.3 Start-I/O Routine _ G-12
G.5.3.1 Requesting Controller Data Channels • G-12
G.5.3.2 Loading Mapping Registers • G-12
G.5.3.3 Releasing Controller Data Channels • G-13

G.5.4 DPTAB Macro _ G-13

G.6 INTERRUPT-SERVICING ROUTINES FOR MASSBUS DEVICES G-13

G.6.1 Transferring Control to the Interrupt-Servicing Routine G-14

G.6.2 Returning Control to MBA$lNT _ G-15

G.6.3 Considerations for Interrupt-Servicing Routines _ G-15

APPENDIX H MAPPING I/O SPACE AND CONNECTING TO AN
INTERRUPT VECTOR H I

H.1 INTERRUPT-GENERATED I/O H-1

H.2 I/O SPACE H-2

Contents

H.3 PFN MAPPING H-4

H.3.1 Notes on PFN Mapping _ H-6

H.4 CONNECTING TO AN INTERRUPT VECTOR H-6

H.4.1 Performing the Connect-to-Interrupt _ H-7

H.4.2 The Connect-to-lnterrupt Driver (CONINTERR.EXE) _ H-8

H.4.3 $QIO System Service for Connect-to-lnterrupt _ H-9

H.4.4 AST Service Routine _ H-12

H.4.5 Conventions for Process-Specified Routines _ H-12

H.4.6 Programming Language Constraints _ H-13

H.4.7 Process-Specified Unit-Initialization Routine _ H-14

H.4.8 Process-Specified Start-I/O Routine _ H-14

H.4.9 Process-Specified Interrupt-Servicing Routine _ H-15

H.4.10 Process-Specified Cancel-I/O Routine _ H-17

H.5 REAL-TIME APPLICATIONS EXAMPLES H-18

H.5.1 Example 1: KW11—W Watchdog Timer _ H-18
H.5.2 Example 2: AD11—K, AMI 1-K A/D Converter with Multiplexer

Connected to the UNIBUS _ H-19

H.5.3 Example 3: KW11—P Real-Time Clock and ADI 1-K Converter
Connected to the UNIBUS _ H-21

GLOSSARY Glossary-1

INDEX

FIGURES
1-1 The I/O Database _ 1-5

1-2 SBI-Based System Configurations _ 1-12

1—3 VAXBI-Based System Configurations _ 1-13

1—4 MicroVAX II System Configuration _ 1-14
1—5 MicroV AX I System Configuration - 1-15

1— 6 Example of I/O Request Processing - 1-17

2— 1 A Printer Write Function _ 2-2

3— 1 I PL Flow During I/O Processing - 3-7

3—2 I PL Flow During I/O Completion - 3-8

3—3 Dispatching a Direct Vector Interrupt _ 3-10

3—4 Dispatching a Nondirect Vector Interrupt _ 3-11

3— 5 Fork Dispatching Queue Structure _ 3-16
4— 1 UNIBUS and Q22 Bus Mapping Registers _ 4-5

4—2 Mapping a UNIBUS Address to a Physical Address _ 4-7

xviii

Contents

4—3 Mapping a Q22 Bus Address to a Physical Address _ 4-7

4— 4 UNIBUS Data Path Registers _ 4-8

5— 1 Sequence of Driver Execution _ 5-2

5-2 Detailed Sequence of VAX/VMS I/O Processing _ 5-3

5—3 Data Structures for Three Devices on One Controller _ 5-5

5—4 I/O Database for Two Controllers _ 5-6

5—5 Layout of a Function-Decision Table _ 5-9

5—6 FDT Routines and I/O Preprocessing _ 5-11

5—7 Creating a Fork Process After an Interrupt _ 5-15

5— 8 Reactivation of a Driver Fork Process _ 5-16

6- 1 Driver Organization _ 6-1

8—1 $QIO Scan of a Function-Decision Table _ 8-3

8— 2 Format of System Buffer for a Buffered-I/O Read Function _ 8-5

9— 1 Inserting a UCB into the Channel-Wait Queue _ 9-3

11-1 Flow of Interrupt Servicing _ 11-2

11—2 CRB Containing the Address of an Interrupt-Servicing Routine _ 11-4

15-1 Loading a Driver _ 15-4

A—1 Configuration-Control Block (ACF) _ A-2

A-2 Adapter-Control Block (ADP) _ A-6

A—3 Channel-Control Block (CCB) _ A-7

A-4 Channel-Request Block (CRB) _ A-8

A—5 Interrupt Transfer Vector Block (VEC) _ A-10

A-6 Device-Data Block (DDB) _ A-12

A—7 Driver-Dispatch Table (DDT) _ A-13

A-8 Driver-Prologue Table (DPT) _ A-15

A-9 Interrupt-Dispatch Block (IDB) _ A-18

A-10 l/O-Request Packet (IRP) _ A-23

A-11 I/O-Request-Packet Extension (IRPE) _ A-25

A—12 Object-Rights Block (ORB) _ A-26

A—13 Unit-Control Block (UCB) _ A-35

A—14 UCB Error-Log Extension _ A-36
A—15 UCB Disk Extension _ A-36

A-16 UCB Local Disk Extension _ A-37

G-1 MASSBUS Configuration _ G-1
G—2 MASSBUS External-Register Longword _ G-2

G—3 Location of MASSBUS Registers in Physical Address Space _ G-5

G—4 I/O Database for MASSBUS Disk Unit _ G-7

G-5 I/O Database for MASSBUS Disk and Tape Units _ G-7
G—6 I/O Data Structures Used in Dispatching an Interrupt _ G-8
H—1 Format of a Physical Address _ H-4

Contents

TABLES
3- 1 IPLs Defined by VAX/VMS _ 3-1
4— 1 Features of the I/O Bus Adapters of the VAX Processors _ 4-2

7- 1 VAX/VMS I/O-Function Codes _ 7-8

8— 1 Registers Loaded by the $QIO System Service _ 8-1

14—1 Conventional Nexus Assignments _ 14-5

14- 2 SYSGEN Device Table _ 14-11

15— 1 Boot Flags That Control the Loading of XDELTA _ 15-1

15—2 Recommended Methods for Bootstrapping with XDELTA _ 15-2

15—3 Requesting an XDELTA Software Interrupt _ 15-6
15—4 XDELTA Command Summary _ 15-9

A—1 Contents of the Configuration-Control Block _ A-2

A—2 Contents of Adapter-Control Block _ A-3

A-3 Contents of Channel-Control Block _ A-7

A—4 Contents of Channel-Request Block _ A-8

A—5 Fields of CRB$L_INTD _ A-10

A—6 Contents of Device-Data Block - A-12

A—7 Contents of Driver-Dispatch Table - A-14

A—8 Contents of Driver-Prologue Table _ A-16
A—9 Contents of Interrupt-Dispatch Block - A-18

A—10 Contents of an l/O-Request Packet - A-19
A-11 Contents of the l/O-Request-Packet Extension - A-24

A-12 Contents of Object-Rights Block - A-26

A—13 Contents of Unit-Control Block - A-27

A—14 UCB Error-Log Extension - A-36

A-15 UCB Disk Extension - A-37

A—16 UCB Local Disk Extension - A-37

G—1 Major Offsets Defined by SMBADEF - G-4

H—1 Symbols Defined by the SlOxxxDEF Macros - H-3

H—2 UNIBUS and Q22 Bus Addresses for VAX Processors - H-3

xx

Preface

The Writing a Device Driver for VAX/VMS volume provides information
needed to write a device driver that runs under VAX/VMS Version 4.4 and to
load it into the operating system. DIGITAL makes no guarantee that drivers
written for earlier versions of VAX/VMS will execute without modification
on subsequent versions of the operating system. Although the intent is to
maintain the existing interface, some unavoidable changes might occur as
new features are added.

The use of internal executive interfaces other than those described in this
manual is discouraged.

Intended Audience
This manual is intended for system programmers who are already familiar
with their VAX processor and the VAX/VMS operating system. Although its
discussion of the environment and components of a device driver can apply to
many types of driver, the strategies discussed in the main body of the manual
apply predominantly to UNIBUS and Micro VAX Q22 bus drivers. MASSBUS
driver writers can find supplementary information in Appendix G.

Structure of This Document
There are three parts to this manual. Part I describes the components and
environment of a device driver and provides explanations of VAX/VMS
concepts critical to an understanding of a device driver's functions and role in
the operating system. Part I contains the following sections:

• Section 1 describes the role and components of a VAX/VMS device driver,
and introduces some operating system concepts that have an impact on
driver operation.

• Section 2 provides an example of a device driver - a line printer driver,
and illustrates the functions of the various parts of this driver and its
interaction with the VAX/VMS operating system.

• Section 3 discusses VAX/VMS synchronization mechanisms: interrupt
priority levels, fork processes and fork queues, and resource-wait queues.

• Section 4 discusses I/O bus features that govern the operation of direct-
memory-access (DMA) transfers and affect the code of DMA device
drivers.

• Section 5 provides an overview of I/O processing and discusses the
interaction of device drivers with VAX/VMS.

Part II of this document describes how to code each part of a driver, and
includes the following sections:

• Section 6 explains some general driver coding rules and conventions, and
includes a template of a device driver.

• Section 7 describes how to create driver tables, including the driver-
prologue table, driver-dispatch table, and function-decision table (FDT).

XXI

Preface

• Section 8 explains how to write FDT routines, use VAX/VMS-supplied
FDT routines, and transfer control out of I/O request preprocessing.

• Section 9 discusses the components of a driver's start-I/O routine.

• Section 10 describes coding strategies for DMA drivers for UNIBUS and
Micro VAX Q22 bus devices.

• Section 11 discusses the functions performed by an interrupt-servicing
routine.

• Section 12 describes how to write I/O completion and device timeout
routines.

• Section 13 describes unit- and controller-initialization routines, cancel-I/O
routines, and error-logging routines.

• Section 14 examines the methods by which a device is logically connected
to the processor and by which a driver is loaded into the operating system.

• Section 15 describes the use of XDELTA as a device driver debugging tool.

Part III is a reference section, and includes the following appendixes:

• Appendix A contains a set of figures and tables that describe the contents
of each data structure and table in the I/O database.

• Appendix B lists the VAX/VMS macros that invoke the executive routines
that perform work for the driver.

• Appendix C describes the context, synchronization, and input/output
requirements of these routines.

• Appendix D discusses the environment of each of a driver's entry points.

• Appendix E includes a sample driver that operates an RL01/RL02 type
disk on the UNIBUS, Micro VAX II Q22 bus, or Micro VAX I Q22 bus.

• Appendix F contains a sample driver for two connected DR 11 controllers
on the UNIBUS or Micro VAX II Q22 bus.

• Appendix G contains information that further describes strategies for
producing a MASSBUS device driver.

• Appendix H describes the connect-to-interrupt driver interface that is
available to real-time users.

• The Glossary at the end of this manual defines the vocabulary that
pertains to device drivers and their environment.

Associated Documents

Before reading the Writing a Device Driver for VAX/VMS volume, you should
have an understanding of the material discussed in the following documents:

• VAX Hardware Handbook

• I/O-related portions of the VAX/VMS System Services Reference Manual

• The section on VAX/VMS naming conventions in the Guide to Creating
Modular Procedures on VAX/VMS

• VAX/VMS I/O User's Reference Manual: Part I and VAX/VMS I/O User's
Reference Manual: Part II

XXII

Preface

You may also find useful some of the material in your processor's hardware
documentation, as well as in the following books:

• VAX/VMS System Dump Analyzer Reference Manual

• VAX/VMS System Manager's Reference Manual

• VAX/VMS Internals and Data Structures

• VAX/VMS Delta/XDelta Utility Reference Manual

Conventions Used in This Document
This manual describes code transfer operations in three ways:

1 The phrase "issues a system service call" implies the use of a CALL
instruction.

2 The phrase "calls a routine" implies the use of a JSB or BSB instruction.

3 The phrase "transfers control to" implies the use of a BRB, BRW, or JMP
instruction.

Typographical conventions used in this book include the following:

• Generally, terms that are further explained in the glossary of this manual
first appear in italic print. For example:

Under the VAX/VMS operating system, a device driver is a set of routines
and tables that the system uses to process an I/O request for a particular
device type.

• Terms that serve as arguments to macros appear in boldface in the text of
the manual. For example:

If an at-sign character (@) precedes the oper argument, then the exp
argument describes the address of the data with which to initialize the
field.

• A symbol with a one- to six-character abbreviation indicates that you press
a key on the terminal, for example, |Ret| .

• In examples, the phrase |ctrl/x| indicates that you must press the key
labeled CTRL while you simultaneously press another key: for instance,
| CTRL/C | .

• A horizontal ellipsis indicates that additional parameters, values, or
information can be entered. For example:

$LINK /NOTRACE MYDRIVER1[.MYDRIVER2
MYDRIVER.OPT/OPTIONS,-
SYSSSYSTEM:SYS.STB/SELECTIVE_SEARCH

• Square brackets indicate that the enclosed item is optional. (Square
brackets are not, however, optional in the syntax of a directory name
in a file specification or in the syntax of a substring specification in an
assignment statement.)

DSBINT [ipl] [,dst]

• Command examples show in black letters all output lines or prompting
characters that the system prints or displays. All user-entered commands
are shown in red letters. For example:

xxiii

Preface

»>DEPOSIT R3 0
»><ODMAXDT
SYSBOOT>
SYSBOOT>CONTINUE

• A vertical ellipsis means either that not all the data that the system would
display in response to the particular command is shown or that not all the
data a user would enter is shown. For example:

JSB <8UCB$L_FPC(R5) ; Restore the driver process.

;Between these instructions, the interrupt-servicing routine
;can make no assumptions about the contents of RO through R4.

POPR #~M<RO,R1,R2,R3,R4,R5> Restore interrupt registers.

XXIV

New and Changed Features

This manual applies to Version 4.4 of the VAX/VMS operating system. The
following list summarizes the major changes to the previous edition of the
manual:

• The manual now incorporates specific information on the Micro VAX I,
MicroVAX II, VAX 8600, VAX 8650, VAX 8200, and VAX 8800. The
discussion of the VAX 8200 and VAX 8800 processors focuses on the
writing of a driver for a device on the UNIBUS (connected to the VAXBI
by means of a BI-to-UNIBUS adapter (BUA)).

• Appendix H contains the discussion of mapping I/O space and using the
connect-to-interrupt facility previously published in the VAX/VMS Release
Notes, Version 4.0 and the VAX/VMS Real-Time User's Guide.

• The following routines have been added to Appendix C.

Routine Function

EXESALONPAGVAR Allocates a system buffer from general nonpaged pool,
making no attempt to allocate it from the lookaside
lists

IOC$LOADMBAMAP Loads the MASSBUS adapter's mapping registers as
required by a DMA transfer

MMGSUNLOCK Unlocks the pages of a process buffer when an
attempt to lock IRP extension buffers for a direct-l/O
transfer fails

• The macro CPUDISP has been added to Appendix B. CPUDISP provides
a method of implementing run-time conditional code based on the CPU-
type of the executing VAX processor.

• Modifications to DLDRIVER (in Appendix E) and XADRIVER (in
Appendix F) since VAX/VMS Version 4.0 have been incorporated in
the code listings.

• The appendix on device driver entry points (previously Appendix I)
has become Appendix D, and now contains a description of the driver¬
unloading routine. Routines in this appendix now appear in alphabetical
order.

• The appendix comparing UNIBUS and MicroVAX I DMA drivers
(previously Appendix D) has been integrated into the main text of the
book—most notably into Sections 1, 4, and 10.

• The appendix listing the UNIBUS addresses for the various VAX
processors (previously Appendix H) has been expanded and appears
as Table H-2.

• Sections 1, 3, 4, 10, 14, and 15 have been revised, rewritten, and/or
reorganized. Cross-references have been added to help with the location
of new and revised material.

• A more thorough description of the driver's interaction with the
VAX/VMS operating system in servicing an I/O request appears
throughout Section 5, and is reflected in Figure 5-2.

XXV

New and Changed Features

The glossary contains new entries for the terms: VAXBI, configuration-
control block, direct-memory-access (DMA) transfer, nexus, node, programmed-
1/0 (PIO) transfer, Q22 bus, and scatter-gather map.

• Various minor revisions, as well as some reorganization of material, may
be apparent throughout the book. The index has been expanded to help
you find the relocated material.

XXVI

PART I The VAX/VMS Device Driver
Environment

Introduction to Device Drivers

Under the VAX/VMS operating system, a device driver is a set of routines and
tables that the system uses to process an I/O request for a particular device
type.

The VAX/VMS approach to I/O is that the operating system should perform
as much of the processing of an I/O request as possible and that drivers
should restrict themselves to the device-specific aspects of I/O processing. To
accomplish this, the VAX/VMS operating system provides drivers with the
following services:

• A Queue I/O request ($QIO) system service that preprocesses an I/O
request by performing those functions and checks that are common to all
devices; for example, validating those arguments of the I/O request that
are not device specific

• Many operating system routines that drivers can call to perform I/O
preprocessing, allocate and deallocate resources, and synchronize driver
execution

• A VAX/VMS I/O postprocessing routine that performs device¬
independent I/O postprocessing for all I/O requests

Thus, drivers can leave the device-independent I/O processing to the
operating system and concentrate on servicing those aspects of an I/O
operation that vary from device type to device type. In addition, drivers can
call VAX/VMS system routines to perform many functions that are common
to several, but not all, devices.

A device driver does not run sequentially from beginning to end. Rather,
the operating system uses driver tables and other information maintained
by itself and the driver to determine which driver routines to activate and
when they should be activated. Because little sequential processing of driver
code occurs, the VAX/VMS operating system must assume the responsibility
for synchronizing the execution of the various driver routines, as well as the
execution of all drivers in the system. A major purpose of this book is to
describe the conventions that all VAX/VMS drivers must follow to maintain
this synchronization and cooperate with the operating system in I/O request
processing.

This section first defines the general functions and purposes of a VAX/VMS
device driver. It then introduces VAX/VMS concepts crucial to an
understanding of how device drivers work within the operating system
and integral to the process of successfully writing one. It concludes with a
discussion of VAX hardware pertinent to device driver strategies and a brief
example of the flow of an I/O request involving a driver.

1-1

Introduction to Device Drivers

1.1 Driver Functions

A VAX/VMS device driver defines itself to the system procedure that loads
the driver into system virtual address space and creates its associated
data structures. Once loaded, a device driver controls I/O operations on
a peripheral device by performing the following functions:

• Defining the peripheral device for the rest of the operating system

• Preparing a device unit and/or its controller for operation at system
start-up and during recovery from a power failure

• Performing device-dependent I/O preprocessing

• Translating programmed requests for I/O operations into device-specific
commands

• Activating a device unit

• Responding to hardware interrupts generated by a device unit

• Responding to device timeout conditions

• Responding to requests to cancel I/O on a device unit

• Reporting device errors to an error-logging program

• Returning status from a device unit to the process that requested the I/O
operation

1.2 Driver Components

Normally, a device driver module can consist of the routines and tables
discussed in this section. With a few exceptions, which are noted throughout
Section 7, the order of the various routines and tables within the driver
module is not important.

1.2.1 Driver Tables

The following tables appear in every driver.

The driver-prologue table (DPT) defines the identity and size of the driver
to the system routine that loads the driver into virtual memory and creates
the associated database. With the information provided in the DPT, the
driver-loading procedure can both load and reload drivers and perform the
I/O-database initialization that is appropriate to either situation.

Section 7.1 describes the procedure for creating a DPT and further discusses
its functions. Figure A-8 illustrates the DPT and Table A-8 describes its
contents.

The driver-dispatch table (DDT) lists the addresses of the entry points of
standard routines within the driver, and records the size of the diagnostic
and error-log buffers for drivers that perform error logging. You can
find additional information and instructions on how to specify a DDT in
Section 7.2. An illustration of the DDT appears in Figure A-7; Table A-7
describes its contents.

1-2

Introduction to Device Drivers

The function-decision table (FDT) lists all valid function codes for the device,
and associates valid codes with the addresses of I/O preprocessing routines,
called FDT routines. The driver contains device-dependent FDT routines,
and the VAX/VMS operating system itself provides routines (described
in Section 8.5) that perform request preprocessing common to many I/O
functions.

When a user process calls the $QIO system service, the system service uses
the I/O-function code specified in the request to traverse the FDT and select
one or more of these preprocessing routines for execution, as appropriate to
the function. To prepare for the actual I/O operation, FDT routines perform
such tasks as allocating buffers in system space, locking pages in memory,
and validating the device-dependent arguments (pi through p6) of the I/O
request. Section 7.3 provides further discussion of the FDT, and Section 8
details strategies and rules for writing, specifying, and exiting from an FDT
routine.

1.2.2 Driver Routines

In addition to any FDT routines it may contain, a device driver generally
contains both a start-I/O routine and an interrupt-servicing routine.

The start-I/O routine performs such additional device-dependent tasks as
translating the I/O-function code into a device-specific command, storing
the details of the user request in the device's unit-control block in the
I/O database and, if necessary, obtaining access to controller and adapter
resources. Whenever the start-I/O routine must wait for controller or these
resources to become available, the VAX/VMS operating system suspends the
routine, reactivating it when the resources become free.

The start-I/O routine ultimately activates the device by suitably loading the
device's registers. At this stage, the start-I/O routine invokes a VAX/VMS
macro that causes its execution to be suspended until the device completes the
I/O operation and posts an interrupt to the processor. The start-I/O routine
remains suspended until the driver's interrupt-servicing routine handles the
interrupt.

When a device posts an interrupt, its driver's interrupt-servicing routine
determines whether the interrupt is expected or unexpected, and takes
appropriate action. If the interrupt is expected, the interrupt-servicing routine
reactivates the driver's start-I/O at the point of suspension. The general
course of action of driver mainline code at this time is to perform device¬
dependent I/O postprocessing and to transfer control to the VAX/VMS
operating system for device-independent I/O postprocessing. VAX/VMS
synchronization plays a large part in the execution of the start-I/O routine
and interrupt-servicing routine, and is discussed later in this chapter and
throughout this book.

Details on writing start-I/O routines and interrupt-servicing routines appear
in Sections 9 and 11, respectively.

You can also include any of the following routines in a device driver.

The unit-initialization routine and controller-initialization routine prepare
a device or controller for operation when the VAX/VMS driver-loading
procedure loads the driver into memory and when the VAX/VMS system
recovers from a power failure. The amount and type of initialization needed
by devices and controllers varies according to the device type. Section 13.1
provides additional information about device driver initialization routines.

1-3

Introduction to Device Drivers

A timeout-handling routine retries I/O operations and performs other error
handling when a device fails to complete a transfer in a reasonable period of
time. Once every second, the VAX/VMS system timer checks all devices in
the system for device timeout. When it locates a device that has timed out,
because it is offline or some error has occurred, the system timer calls the
driver's timeout handler.

Depending upon the reason for the timeout, the timeout-handling routine
may call a VAX/VMS error-logging routine to allocate and fill an error-log
buffer with information about the error. In turn, the error-logging routine can
call a register-dumping routine in the driver that also loads into the buffer
the contents of device registers at the time of the error.

Timeout-handling routines are discussed in Section 12.2. Register-dumping
routines and driver error handling are discussed in Section 13.3.

The VAX/VMS operating system calls a driver's cancel-I/O routine when
a user process issues a Cancel I/O on Channel ($CANCEL) system service
for the device. It may also call the routine when the device's reference count
goes to zero, which occurs when all users that have had assigned channels to
the device have deassigned them. The discussion of the cancel-I/O routine
appears in Section 13.2.

1.3 The I/O Database

Because a driver and the operating system cooperate to process an I/O
request, they must have a common and current source of information about
the request. This is the function of the I/O database. Under the VAX/VMS
operating system, the I/O database consists of these three parts:

• Driver tables that allow the system to load drivers, validate device
functions, and call driver routines at their entry points

• Data structures that describe every I/O bus adapter, every device type,
every device unit, every controller, and every logical path from a process
to a device

• I/O-request packets that define individual requests for I/O activity

Illustrations of I/O database structures and detailed descriptions of their fields
appear in Appendix A. Figure 1-1 illustrates some of the relationships among
VAX/VMS I/O routines, the I/O database, and a device driver.

1-4

Introduction to Device Drivers

Figure 1-1 The I/O Database

ZK-1766-84

1.3.1 Driver Tables
The three driver tables—driver-prologue table, driver-dispatch table, and
function-decision table—are defined in every driver. Section 1.2 lists these
tables among the other components of a device driver, and Section 7 is
dedicated to a discussion of their contents.

1.3.2 Data Structures

I/O database data structures describe peripheral hardware and are used by
the operating system to synchronize access to devices. VAX/VMS creates
these data structures either at system startup or when a driver is loaded into
the system.

The system defines a unit-control block (UCB) for each device unit attached
to the system. A UCB defines the characteristics and current state of an
individual device unit.

UCBs are the focal point of the I/O database. When a driver is suspended
or interrupted, the UCB keeps the context of the driver in a set of fields
collectively known as a fork block. (See the discussion of fork blocks and fork
processes in Section 1.4.1.) In addition, the UCB contains the listhead for the
queue of pending I/O-request packets for the unit.

1-5

Introduction to Device Drivers

A device-data block (DDB) contains information common to all devices of
the same type that are connected to a particular controller. It records the
generic device name concatenated with the controller designator (for example,
LPA, DBB), and the name and location of the associated device driver. In
addition, the DDB contains a pointer to the first UCB for the device units
attached to the controller.

The operating system creates a channel-request block (CRB) for each
controller. A CRB defines the current state of the controller and lists the
devices waiting for the controller's data channel. It also contains the code
that dispatches a device interrupt to the interrupt-servicing routine for that
unit's driver.

The system also creates for each controller an interrupt-dispatch block (IDB).
An IDB lists the device units associated with a controller and points to the
UCB of the device unit that the controller is currently servicing. In addition,
an IDB points to device registers and the controller's I/O adapter.

An adapter-control block (ADP) defines the characteristics and current
state of an I/O adapter, such as the VAX UNIBUS adapters and MASSBUS
adapter, and the Micro VAX Q22 bus interface. An ADP contains the queues
and allocation bit maps necessary to allocate adapter resources. VAX/VMS
provides routines that drivers can call to interface with the appropriate
adapter.

The channel-control block (CCB) describes the logical path between a
process and the UCB of a specific device unit.1 Each process owns a number
of CCBs. When a process issues the Assign I/O Channel ($ASSIGN) system
service, the system writes a description of the assigned device to the CCB.

Unlike the data structures mentioned earlier, a CCB is not located in
nonpaged system space, but in the process' control region (PI space).

1.3.3 l/O-Request Packets
The third part of the I/O database is a set of I/O-request packets. When a
process requests I/O activity, the operating system constructs an I/O-request
packet (IRP), that describes the I/O request in a standard form.

The IRP contains fields into which the system and driver I/O preprocessing
routines can write information: for instance, the device-dependent arguments
specified in the call to the $QIO system service. The packet also includes
buffer addresses, a pointer to the target device, I/O-function codes, and
pointers to the I/O database. After preprocessing, the IRP can be queued to a
list originating in the device's UCB to await processing by the driver.

When the device unit is free and the IRP is next in line to be processed on
the unit, the system sends it to the device driver's start-I/O routine. The
start-I/O routine uses the IRP as its source of detailed instructions about the
operation to be performed.

1 Channel-request blocks and channel-control blocks are two separate data structures. To help distinguish the two, it may be helpful to think of

the channel-request block as the "controller-request" block because it describes the hardware controller. In contrast, the channel-control block

helps manage the logical channel (the channei argument to the $ASSIGN and $QIO system services) by means of which a process and a

device unit accomplish I/O operations.

1-6

Introduction to Device Drivers

1.4 Driver Context
Device driver code executes in a privileged access mode with a raised priority.
Although FDT routines execute in process context and access process space
(PO and PI), the remainder of driver code must execute in interrupt (or
system) context, and must refer only to system (SO) space. Such code cannot
incur exceptions, including page faults, without a bugcheck. Code executing
in interrupt context is serviced on the interrupt stack, and synchronizes
execution through interrupt priority levels (discussed in Section 1.5.1) and
resource-wait queues (discussed in Section 1.5.3).

1.4.1 Fork Processes
An additional restriction imposed upon drivers results from their need to save
adequate (but minimal) context when their execution is suspended, and to
synchronize individual aspects of I/O processing of varying importance with
other privileged system and driver code.

After preprocessing an I/O request, a driver executes as a fork process, with a
context that consists of:

• Three general registers

• The program counter (PC)

• A unit-control block in the I/O database that describes the target device of
the I/O request

This context is preserved across the suspension of driver code, predominantly
in a portion of the unit-control block known as a fork block. The system
automatically saves registers for interrupted fork processes and restores these
registers when the process is reactivated. Because the fork block and all data
about the fork process reside in nonpaged system memory, the operating
system cannot swap fork processes.

However, like other processes, fork processes can be suspended and
interrupted. VAX/VMS places a driver's fork process in a wait state when
the process requests an unavailable resource: for example, a controller's data
channel. The processor interrupts a fork process when the processor receives
a request for an interrupt at a higher priority level.

To minimize the number of interruptions, fork processes execute at raised
interrupt priority levels, and even raise their priority level to 31 to block all
other interrupts, if necessary. In addition, whenever it may be necessary
to lower its priority level to give more important code a chance to execute,
a fork process can preserve its context in the fork block, place the fork
block in a fork queue at one of the interrupt-priority levels reserved for that
purpose, and request a software interrupt at that level. When that interrupt is
ultimately serviced, driver fork processing resumes at the lower level.

1-7

Introduction to Device Drivers

1.4.2 Example of Driver Context-Switching
Because a device driver consists of a number of routines that are activated by
VAX/VMS, the operating system for the most part determines the context in
which the routines execute.

As an example, consider the following write request that occurs without error:

1 A user process executing in user mode calls the $QIO system service to
write data to a device.

2 The $QIO system service gains control in process context but in kernel
mode. It performs device-independent preprocessing of the I/O request.

3 The system service uses the driver's function-decision table to call the
appropriate preprocessing routines. These FDT routines execute in full
process context in kernel mode.

4 When preprocessing is complete, a VAX/VMS routine creates a fork
process to execute the driver's start-I/O routine in kernel mode.

5 The start-I/O routine activates the device unit and suspends itself. At
this point, VAX/VMS suspends the fork process executing the start-I/O
routine and saves sufficient context to reactivate the start-I/O routine at
the point of suspension.

6 When the device completes the data transfer, it issues an interrupt. The
interrupt causes the system to activate the driver's interrupt-servicing
routine.

7 The interrupt-servicing routine executes to handle the device interrupt. It
then causes the start-I/O routine to resume in interrupt context.

8 The start-I/O routine regains control in interrupt context but almost
immediately issues a request to the operating system to transform its
context to that of a fork process. This action dismisses the interrupt.

9 When reactivated in fork process context, the start-I/O routine performs
device-specific I/O completion and passes control to the system for
additional I/O postprocessing.

10 VAX/VMS I/O postprocessing performs processing at a software interrupt
priority level and then issues a special kernel-mode asynchronous system
trap (AST) for the user process requesting I/O.

11 When the special kernel-mode AST is delivered, the AST routine executes
in full process context in kernel mode to deliver data and status to the
process. If the original request specified a user-mode AST, the special
kernel-mode AST queues it.

1 2 When the user process gains control, the user's AST routine executes in
full process context in user mode.

The majority of driver routines execute in fork process context. It is essential,
however, that the various driver routines not attempt to exceed the limitations
of the context in which they execute.

1-8

Introduction to Device Drivers

1.5 Synchronization of Driver Activity

The VAX/VMS operating system uses hardware and software interrupt
priority levels—with their associated interrupts, fork queues, and resource-
wait queues—to synchronize the execution of all drivers within the system
and to synchronize execution of various routines within a driver.

1.5.1 Interrupt Priority Levels

The VAX processor defines 32 interrupt priority levels (IPLs). The higher
numbered IPLs (16 through 31) are reserved for hardware interrupts, such
as those posted by devices. The VAX/VMS operating system uses the lower
numbered IPLs (0 through 15). Code that executes at a higher IPL always
takes precedence over code that executes at a lower IPL.

The following IPLs are of particular interest to drivers:

• Hardware device IPLs (20 through 23); driver interrupt-servicing routines
execute at these IPLs.

• Fork-processing IPLs (8 through 11); a driver's fork process executes at
one of these IPLs.

• All access to systemwide data structures, including the I/O database, must
occur at IPL$_SYNCH, IPL 8.

• I/O completion IPL (IPL 4); VAX/VMS gains control to begin its device¬
independent I/O postprocessing at this IPL.

• AST delivery IPL (IPL 2); VAX/VMS uses this IPL to coordinate the
delivery of an AST to a user process. The $QIO system service also
executes at this IPL.

Section 3.1 provides a thorough discussion of IPLs as used by driver code;
you can find full information on the use of IPL in the VAX Hardware
Handbook or your processor's hardware documentation.

1.5.2 Fork Queues

When an interrupt-servicing routine completes the handling of a device
interrupt, it transfers control to the driver to complete device-dependent
processing of the I/O request. When the driver regains control, it is executing
at device IPL. Almost immediately, the driver should lower IPL to the driver's
fork IPL so that it does not block other device interrupts. A driver lowers IPL
by invoking a VAX/VMS macro that creates a fork process to execute at the
driver's fork IPL.

Each fork IPL has an associated fork queue. A VAX/VMS macro queues the
driver's fork block to the fork queue that corresponds to the driver's fork
IPL, and issues a software interrupt request for that IPL. When the software
interrupt is granted, the VAX/VMS fork dispatcher dequeues fork blocks from
the fork queue corresponding to the IPL at which the interrupt was granted
and reactivates the driver at the point following the macro invocation. Refer
to Section 3.2 for a detailed discussion of fork dispatching.

1-9

Introduction to Device Drivers

1.5.3 Resource-Wait Queues

Drivers compete for such shared resources as:

• The central processor

• The I/O adapter's mapping registers (if the device is a direct-memory-
access (DMA) device)

• The UNIBUS adapter's buffered data paths (if the device is a UNIBUS
DMA device)

• The controller's data channel (if the device is attached to a multiunit
controller)

When a driver's fork process needs an unavailable resource, VAX/VMS
resource management routines perform the following steps:

1 Save fork process context in the device's UCB fork block

2 Insert the address of the UCB fork block in a resource-wait queue

3 Suspend the driver's fork process

When another driver's fork process frees the necessary resource, the
VAX/VMS resource management routines take the following steps to
reactivate the next driver's fork process:

1 Remove the next UCB fork block from the resource-wait queue.

2 Restore fork process context to the registers.

3 Reactivate the suspended driver's fork process.

The VAX/VMS resource management routines allow the driver's fork process
to be unaware of its suspension and reactivation.

Additional discussion of the synchronization method of resource-wait queues
appears in Section 3.3.

1.6 Hardware Considerations

The VAX/VMS operating system runs on any of the following VAX
processors: the VAX 8800, VAX 8650, VAX 8600, VAX 8200, VAX-11/785,
VAX-11/782, VAX-11/780, VAX-11/750, VAX-11/730, VAX-11/725,
Micro VAX II, and Micro VAX I.

Although these processors employ the same operating system and conform
to the VAX architecture, there are some differences in design among the
machines that merit consideration in device driver coding, installation,
and debugging. For instance, VAX processors differ in the amount of
physical address space available and in the location of device registers.
Also, VAX/VMS systems support different and various combinations of I/O
buses to which a nonstandard device can be connected.

If you follow the conventions described in this manual when writing
your driver, your driver should, with little modification, drive the same
device attached to a corresponding I/O bus of another VAX processor. For
specific processor design and device configuration information, refer to your
processor's technical reference or hardware manual or the VAX Hardware
Handbook.

1-10

Introduction to Device Drivers

1.6.1 Processor Considerations
This section outlines some of the general differences among the processors
that have a bearing upon the development of driver code. The main thrust
of the discussion is to provide a brief summary of the layout of the I/O
subsystems of the VAX processors, define a general terminology, and, when
necessary, direct device driver writers to documentation particular to the I/O
configuration of their device.

1.6.1.1 VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600, and
VAX 8650
The VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600, and VAX 8650
processors, from the viewpoint of I/O architecture, are SBI-based systems.
That is, the synchronous backplane interconnect (SBI) is the bus by which I/O
adapters communicate with main memory and the central processor (see
Figure 1-2). I/O adapters supported by the SBI include the UNIBUS adapter
(UBA), MASSBUS adapter (MBA), and the DR780 interface. Correspondingly,
peripheral devices attach to either the UNIBUS, MASSBUS or DR32 device
interconnect. Main memory shares the SBI with the I/O adapters on the
VAX-11/780, VAX-11/782, and VAX-11/785. The VAX 8600 and VAX 8650
employ a separate bus to which main memory is attached and both can be
configured with up to two SBIs for I/O adapters.

For these processors, nonstandard devices are commonly attached to the
UNIBUS, although some nonstandard devices connect to the MASSBUS
and DR32 device interconnect (DDI). The components of UNIBUS and
MASSBUS drivers are identical and the strategies for producing driver code
are similar; writers of either type of driver will profit from reading the bulk
of this manual. In addition, MASSBUS driver writers should pay careful
attention to the differences between UNIBUS and MASSBUS drivers outlined
in Appendix G. DIGITAL supplies a device driver and an application library
for the DR32 device; the VAX/VMS I/O User's Reference Manual: Part II
discusses the DR32 interface driver in detail.

A final note on terminology regarding these processors is pertinent. For the
purposes of the discussion in this book, the term VAX-11/780 refers to the
family of VAX processors that includes the VAX-11/780, the VAX-11/782,
and the VAX-11/785; the term VAX 8600 refers to both the VAX 8600 and
VAX 8650; and the term backplane interconnect represents the SBI.

1.6.1.2 VAX-11/750
The VAX-11/750 processor resembles the VAX-11/780-type processors
in that it supports both UNIBUS and MASSBUS peripheral devices (see
Figure 1-2). The backplane, or CPU-to-memory interconnect (CMI), by which
I/O adapters communicate with the processor and main memory is integral
to the processor, as are the UNIBUS interface (UBI) and MASSBUS adapter
(MBA). Peripheral devices connect to either the UNIBUS or MASSBUS. A
separate memory interconnect provides an interface between main memory
and the rest of the system.

For the VAX-11/750, nonstandard devices are commonly connected to the
UNIBUS, although some nonstandard devices attach to the MASSBUS.
The components of UNIBUS and MASSBUS drivers are identical, and the
strategies for developing driver code are similar. Writers of either type of
driver will profit from reading this manual. In addition, MASSBUS driver
writers should pay careful attention to the differences between UNIBUS and
MASSBUS drivers outlined in Appendix G.

1-11

Introduction to Device Drivers

Figure 1-2 SBI-Based System Configurations

1.6.1.3 VAX-11/730 and VAX-11/725
The VAX-11/730 and VAX-11/725 processors, like the VAX-11/750,
incorporate an integral UNIBUS adapter to control transactions between
UNIBUS peripheral devices, the processor, and the main memory interface.
The VAX-11/730 and VAX-11/725, however, do not support MASSBUS
devices. For the purposes of the discussion in this book, the term
VAX-U/730 refers to both the VAX-11/730 and the VAX-11/725.

1.6.1.4 VAX 8200 and VAX 8800
The VAX 8200 and VAX 8800 are VAXBI-based systems; that is, the VAXBI
is the bus by which I/O adapters communicate with main memory and the
central processor (see Figure 1-3). The VAXBI supports UNIBUS peripherals
by means of the BI-to-UNIBUS adapter (BUA). In the VAX 8200 configuration,
main memory and the BUA are both connected directly to the VAXBI. The
VAX 8800, by contrast, employs a separate memory interconnect to service
main memory and can provide up to four VAXBIs for I/O adapters.

1-12

Introduction to Device Drivers

Figure 1-3 VAXBI-Based System Configurations

ZK 4839 85

For these processors, nonstandard devices are attached to the UNIBUS.

A final note on terminology regarding these processors is pertinent. For the
purposes of the discussion in this book, the term UNIBUS adapter includes the
BUA, and the term backplane interconnect represents the VAXBI.

1-13

Introduction to Device Drivers

1.6.1.5 MicroVAX II and MicroVAX I
The MicroVAX II and MicroVAX I are Q22 bus-based systems. On these
systems, the Q22 bus is the bus by which peripheral devices communicate
with main memory and the processor.2 Q22 bus device drivers are sufficiently
similar to those that drive UNIBUS devices that most of the discussion
of UNIBUS drivers in this book can equally pertain to the writing of Q22
bus device drivers (see Section 4 for a discussion of the similarities and
differences).

As you can see in Figure 1-4, MicroVAX II main memory and I/O devices
reside on separate interconnects. The MicroVAX II processor implements
a scatter-gather map that allows devices to perform multiple-block direct-
memory-access (DMA) transfers.3

MicroVAX I main memory and I/O devices, by contrast, exist together on the
same bus (see Figure 1-5). The effects of the absence of a scatter-gather map
on DMA device drivers are discussed in Section 10.7.4

Figure 1-4 MicroVAX II System Configuration

2
DMA controllers attached to the Q22 bus must be capable of 22-bit addressing.

^ On the MicroVAX II, the 4MB of Q22 bus memory is located from physical address 30000000 to 303F0000 hex. Because only the first 1/4
MB of this space is the area used by the scatter-gather map, the remaining 3 3/4 MB of Q22 bus memory can be used as memory local to
controllers (for instance, a bit map). Such controllers should therefore be installed only after physical address 30040000 hex to avoid contention
with mapped Q22 bus memory. (See Chapter 4 of the MicroVAX II 630QB Technical Manual for complete configuration information.) This
restriction may be removed in a future release so that Q22 bus memory on a MicroVAX II can be installed at the same address as UNIBUS
memory on a VAX-11/780. If you use some of the first 1/4 MB of Q22 bus memory for memory local to controllers, then MicroVMS will
probably boot but will not be able to take crash dumps.

4 The MicroVAX I uses the 22-bit Q22 bus to address both main memory and Q22 bus memory. Because MicroVAX I main memory shares
the Q22 bus with I/O devices, the maximum amount of address space available for main memory (4MB at most) is correspondingly
decreased whenever controllers containing memory are attached to the Q22 bus. For instance, if a controller containing a 256K bit map is
installed on the Q22 bus, 3 3/4 MB would remain for main memory. MicroVMS is effectively prevented from using as main memory those
locations addressable as controller memory by the appropriate setting of the SYSGEN parameter PHYSICALPAGES. In the above example,
PHYSICALPAGES would be set to 7680 to prevent the double mapping of the 256K bit map as both main memory and controller memory.

1-14

Introduction to Device Drivers

Figure 1—5 MicroVAX I System Configuration

ZK-4853-85

For the purposes of discussion in this manual, the term backplane
interconnect represents the Q22 bus in both the MicroVAX II and MicroVAX
I implementations. The terms I/O adapter or Q22 bus interface represent
those functions performed by the MicroVAX II processor that resemble those
performed by the UNIBUS adapter of other VAX processors.

1.7 Programmed-I/O and Direct-Memory-Access Transfers
Devices are equipped with various registers that initiate, control, and monitor
the transfer of data to and from memory. When a transfer is complete, the
device posts an interrupt to the processor. The size of the transfer concluded
by a device interrupt depends upon the capabilities of the device.

1.7.1 Programmed I/O
Drivers for relatively slow devices, such as printers, card readers, terminals,
and some disk and tape drives, must transfer data to a device register a
byte or a word at a time. These drivers must themselves keep a record of
the location of the data buffer in memory, as well as a running count of
the amount of data that has been transferred to or from the device. Thus,
these devices perform programmed I/O (PIO) in that the transfer is largely
conducted by the driver program. This type of transfer is also known as
buffered I/O because the data registers of certain PIO devices can buffer
several bytes or words and transfer those bytes to the device as a group.
When this is the case, the driver monitors a device status register to determine
when the device buffer is full.

Examples of UNIBUS devices that do PIO transfers are the LP11 and the
DZ11. Corresponding Q22 bus devices that perform PIO transfers are the
LPV11 and the DZV11.

Section 2 outlines the action of the LP11 driver. The LP11 driver transfers
data from a system buffer to the line printer data buffer register a byte at
a time, while maintaining a count of the number of bytes left to transfer.
When the line printer data buffer is full, the line printer sets a "not ready"
bit in its status register. If the driver, while examining this register, sees this
bit set, it enables interrupts from the printer, and then suspends itself in the
expectation that the printer will post an interrupt to the processor. While
the driver remains suspended, the printer prints the data from its buffer and
interrupts the processor when it is done. With the interrupt handled by the
system interrupt dispatcher and the driver interrupt-servicing routine, driver
execution resumes. The driver repeats both its byte-by-byte transfer to the

1-15

Introduction to Device Drivers

printer data buffer, as well as the entire routine described above, until it
determines that all the data has been transferred as requested.

Drivers performing PIO transfers are generally not concerned with the
operation of I/O adapters. However, drivers that perform direct-memory -
access (DMA) transfers must take into account I/O adapter functions, as
discussed below.

1.7.2 Direct-Memory-Access I/O
Devices that perform direct-memory-access (DMA) transfers do not require
the central processor so frequently. Once the driver activates the device, the
device can transfer a large amount of data without requesting an interrupt
after each of the smaller amounts. The responsibilities of a driver for a DMA
device involve supplying a device register with the starting address of the
buffer containing the data to be transferred, a byte offset into the buffer,
and the size of the transfer. By setting the appropriate bit or bits in the
device control and status register (CSR), the driver activates the device. The
device then automatically transfers the specified amount of data to or from
the specified address. The VAX/VMS drivers DLDRIVER and XADRIVER
are examples of DMA drivers, and appear in full in Appendixes E and F,
respectively.

For DMA transfers, UNIBUS drivers and Micro VAX II drivers must first map
the transfer from main memory to I/O bus memory space. The result of
this mapping is a set of contiguous addresses in UNIBUS or Q22 bus space
that the DMA device can access to successfully perform a DMA transfer. To
accomplish this, a driver must first obtain mapping registers, and, optionally
for UNIBUS drivers, a buffered data path. The driver calls VAX/VMS routines
that interface with the I/O adapter to allocate these resources on behalf of
the driver. Section 4 discusses the operation of the UNIBUS adapter and the
Q22 bus. Section 10 provides instructions on how to write a DMA driver for
UNIBUS and Q22 bus devices.

The Micro VAX I Q22 bus has no mapping registers, so no mapping of
physical bus addresses to virtual memory addresses is possible. As a result,
a driver for a device attached to the MicroVAX I Q22 bus that performs
DMA transfers must include special logic that either allocates a physically
contiguous buffer from nonpaged pool for use in the transfer or segments
the transfer at page boundaries. Section 10.7 discusses the strategies for
producing MicroVAX I DMA drivers.

Some controllers that can do DMA transfers on the Q22 bus have microcode
that allows the controller itself to do physical-to-virtual address mapping.
This allows such controllers to do scatter-gather mapping, eliminating the
need for transfers to be made to or from physically contiguous main memory.
The RD/RX controller, which MicroVAX I uses for its system disk, is such a
controller.

1-16

Introduction to Device Drivers

1.8 Buffered and Direct I / O
Because the buffer specified in the original user I/O request is in process
space, it is not automatically accessible to the driver fork process that executes
in system context. As a result, for any function that involves data transfer,
the driver must select a strategy that supplies a buffer that the fork process
can address. The VAX/VMS operating system allows FDT routines a choice
between allocating a system buffer (buffered I/O) or locking the process
buffer (direct I/O).

A driver employs buffered I/O to allocate a buffer from nonpaged pool. It can
later refer to the buffer using addresses in system space. For a write request,
the driver FDT routine must move data from the user buffer to the allocated
system buffer. For a read request, the system ultimately delivers the data
from the system buffer to the user buffer by means of a special kernel-mode
AST at driver postprocessing. Drivers most often use buffered I/O for PIO
devices such as line printers and card readers.

With direct I/O, the driver locks the pages of the user buffer in physical
memory and refers to them using page-frame numbers (PFNs). Normally, a
driver uses direct I/O for DMA transfers.

The trade-off between buffered I/O and direct I/O is the time required to
move the data into the user's buffer versus the time required to lock the buffer
pages in memory. Sections 7.3.2 and 8.4 provide additional information.

1.9 Example of an I/O Request for a UNIBUS or Q22 Bus Device
Figure 1-6 illustrates how the VAX/VMS operating system and the device
driver process a user request for a read I/O operation for a DMA device
attached to a UNIBUS or Q22 bus.

Figure 1-6 Example of I/O Request Processing

The processing of the sample I/O request illustrated in Figure 1-6 occurs in
the following steps:

1 A process requests an I/O operation.

A user process requests data from the device by issuing either a $QIO
system service call or an RMS get-record function call (which results in a
call to the $QIO system service).

The user process specifies the target device, a read function code, and the
address of a buffer into which the data is to be read.

1-17

Introduction to Device Drivers

2 The operating system performs I/O preprocessing.

The $QIO system service validates the request and locates data structures
in the I/O database that describe the device and its driver. The system
service also allocates and initializes an I/O-request packet to contain a
description of the I/O request. The system service then calls a reading
routine in the driver.

3 The driver performs I/O preprocessing.

The driver FDT routine verifies that the user buffer resides in virtual
memory pages that can be modified by the requesting process, locks the
buffer pages in memory, and adds details of the I/O operation to the
I/O-request packet. The read FDT routine then calls the operating system
to send the I/O-request packet to the driver.

4 VAX/VMS creates a driver's fork process.

A VAX/VMS routine creates a fork process in which the device driver can
execute. The routine activates the driver's fork process by transferring
control to the driver's start-I/O routine.

5 The driver readies the I/O adapter.

For DMA transfers, the driver's fork process calls VAX/VMS routines that
enable the I/O adapter hardware to map I/O bus addresses into physical
addresses for the transfer. (Note that the Micro VAX I processor does not
have this capability, as discussed in Section 10.7.)

6 The driver activates the device.

The fork process activates the device by setting bits in device registers.

7 The driver waits for an interrupt.

A VAX/VMS routine saves the context of the driver's fork process and
relinquishes the processor until an interrupt occurs.

8 The device requests an interrupt.

When the data transfer is complete, the device requests a hardware
interrupt that causes the system to dispatch to the driver's interrupt¬
servicing routine.

9 The driver services the interrupt.

The driver's interrupt-servicing routine handles the interrupt and
reactivates the driver, which reads device registers to obtain status
information about the transfer.

10 The operating system inserts the driver in a fork queue.

The driver requests that it again be suspended, to be reactivated later at a
lower software IPL.

11 The fork dispatcher reactivates the driver's fork process.

When processor priority permits, the VAX/VMS fork dispatcher reactivates
the driver as a fork process.

12 The driver completes the I/O operation.

The driver's fork process completes device-dependent processing of the
I/O request and returns the I/O status to VAX/VMS.

1-18

Introduction to Device Drivers

13 VAX/VMS completes the I/O operation.

The VAX/VMS I/O postprocessing routines copy the I/O status into
process address space and/or general registers and return control to the
user process.

Only four of these 13 steps describe the driver's I/O preprocessing and fork
processing. The VAX/VMS I/O-support routines perform I/O processing
common to many I/O requests. Driver writing is further simplified by the use
of VAX/VMS routines that handle device-independent functions.

The example above simplifies the processing of an I/O operation by ignoring
such issues as:

• The association of a device with a process, which is to say device
assignment

• Simultaneous I/O requests for one device

• The hardware's IPLs

• Driver competition for shared system and I/O adapter resources

• Driver competition for a multiunit controller

• Driver recovery from device errors or power failure

Later sections discuss each of these issues in relation to device drivers.

1-19

2 Discussion of a Queue-1/O Request

This chapter describes what takes place during the processing of a queue-I/O
request. For simplicity, the device chosen is the LP11 printer.

The LP11 is a buffered printer. A user process can request the following
functions on this printer:

• Write data to the printer

• Read the printer's device characteristics

• Alter the printer's device characteristics

This chapter describes two aspects of printer I/O processing:

• The portions of the VAX/VMS device driver for an LP11 printer that are
used in servicing a write request

• The VAX/VMS components with which the driver interacts to process the
write request

The LP11 was selected for this discussion because it is a simple driver but still
illustrates many driver principles. Although the LP11 is usually spooled, this
discussion assumes that it is not.

The first-time reader of this document might not understand all of the points
made in this chapter; however, the chapter should provide some insight into
driver flow and I/O processing.

Figure 2-1 illustrates the flow of execution through VAX/VMS routines and
the printer driver to satisfy this I/O request.

The unshaded boxes in Figure 2-1 indicate processing performed by driver
subroutines. Boxes shown above the solid line indicate processing in the
context of the user process. Boxes below the line indicate processing in fork
or interrupt context.

2.1 Driver Code for the LP11 Write Function

The VAX/VMS device driver for an LP11 printer implements a write function
using the following parts of the driver:

• An FDT routine that reformats the user-supplied data

• A start-I/O routine that writes data to the device print buffer until the
printer enters a busy state as it prints the buffer's contents

• Code that modifies a device register to enable interrupts from the printer

• An interrupt-servicing routine that returns control to the driver's fork
process after a hardware interrupt from the printer

• Code that returns I/O status to a VAX/VMS I/O completion routine

2-1

Discussion of a Queue-1/0 Request

Figure 2-1 A Printer Write Function

2.2 A User Process' I/O Request

A user process writes a line to the printer by calling the Queue I/O Request
($QIO) system service, specifying the write-virtual-block function code as
follows:

$QIO_S chan = CHANNEL.NUMBER,-
func = #IO$_WRITEVBLK,-

efn = #6,-
iosb = STATUS.BLOCK,-
pl = BUFFER.ADDRESS,-
p2 = #BUFFER_SIZE,-

p4 = #"X30

pl, p2, and p4 are device-dependent arguments.

2.3 Device-Independent I/O Preprocessing by VAX/VMS

The $QIO system service first validates that the I/O request is correctly
specified. The I/O request must meet the following criteria:

• The location CHANNEL—NUMBER must contain a number that serves as
a valid index into the process' channel list. This means that the process
must have previously assigned the printer to this process channel using
the Assign I/O Channel system service. Once $QIO locates the assigned
channel-control block, it can retrieve the address of the unit-control
block (UCB) of the target device of the request. Ultimately, it obtains
the address of the driver's function-decision table, by way of a chain of
longword pointers within the I/O database:

CCB — UCB DDT FDT

2-2

Discussion of a Queue-I/O Request

• The driver FDT must list IO$_WRITEVBLK as a valid function for the
device.

• The event flag number must be valid.

• The process buffered I/O request quota must permit the $QIO system
service to perform a buffered-I/O request without exceeding the process'
quotas.

• The process must have write access to location STATUS-BLOCK, specified
in the request for use as an I/O-status block.

If all of the checks described above succeed, the $QIO system service creates
an I/O-request packet (IRP) in nonpaged system address space. The service
then writes all known details about the I/O request into the IRP.

If the target device for the I/O request is not file structured, the $QIO system
service changes any virtual-function code to its equivalent logical-function
code when it builds the IRP. Thus, for a printer device, IO$_WRITEVBLK is
translated to IO$_WRITELBLK.

2.4 Device-Dependent I/O Preprocessing by the Driver
Once it has validated the I/O request, the $QIO system service scans the
function-decision table for an entry that associates the IO$_WRITELBLK
function code with an FDT routine. The system service calls the routine,
which in the case of the printer driver is a device-specific routine located in
the printer device driver.

The FDT routine confirms that the requesting process has read access to the
buffer starting at BUFFER—ADDRESS. Then, the FDT routine buffers data
from the process address space into system address space in the following
steps:

• It calculates the length of the required system space buffer.

• If the process byte count quota for buffered I/O (BYTCNT) permits, the
routine allocates a buffer from system address space, stores the address of
the buffer in the IRP, and decreases the current process byte count quota.

• It then synchronizes with other possible subprocesses1 to read and write
fields of the printer's UCB.

• It reads the description of the printer's current line and page position from
the device's UCB.

• It reformats the data from the process buffer into the system buffer, adding
carriage control characters, as specified in argument p4 to the I/O request,
before and after the data.

Formatting includes such functions as the replacement of horizontal tabs
with multiple spaces and the replacement of lowercase characters with
uppercase characters, if necessary.

• It rewrites updated line and page positions into the device's UCB. This
information indicates what the current location on the page being printed
will be when the request completes.

1 For example, if a process allocates a printer, it is possible for the process and any of its subprocesses to issue write requests to the printer

concurrently.

2-3

Discussion of a Queue-1/0 Request

• Finally, the routine transfers control to a VAX/VMS routine that queues
the IRP to the device driver.

All of the I/O processing described to this point occurs in the context of
the user's process. The user address space is mapped, and the processor's
IPL is still low enough to permit process scheduling and paging. Subsequent
queuing of the transfer request to the driver and all resulting driver processing
occur at higher IPLs that synchronize the driver's handling of the device, as
described in Section 3.1.

2.5 Queuing the l/O-Request Packet to the Driver
Before queuing the IRP to the proper driver, the VAX/VMS queuing
routine raises the IPL to the driver's fork level as identified in the UCB
(in UCB$B_FIPL). Raising IPL to fork level synchronizes the driver's access to
the UCB.

If the device is idle, which is to say that if the busy bit (UCB$V_BSY) in
the I/O status word of the UCB is clear, VAX/VMS can transfer control to
the driver. The driver-dispatch table contains the entry point to the driver's
start-I/O routine. To find the proper entry point, the queuing routine chains
through the I/O database to the driver-dispatch table, as follows:

UCB —► DDT —► start-I/O routine

If the device unit is busy with another transfer, VAX/VMS inserts the IRP in
a queue of packets waiting for the unit. The UCB contains the head of the
queue. The packet's position in the queue depends on the scheduling priority
of the process issuing the request.

2.6 Activating the Printer
The LP11 printer controller accepts data into a data buffer until the print
buffer is full or the driver writes a carriage-control character into the print
buffer. When either event occurs, the printer sets a busy bit in the device's
control and status register (CSR). Then a device driver sets the interrupt-
enable bit in the device's CSR and waits for the printer to interrupt. When
the printer requests a hardware interrupt, the driver can resume putting
characters in the print buffer.

The driver routine writes to the printer data buffer according to the following
sequence:

1 The driver locates the LP11 device registers using a chain of pointers
starting at the device's UCB.

UCB — CRB — IDB — CSR address

The CSR address is always the address of the printer's CSR, and all other
device registers are at fixed offsets from this address. In contrast to many
other devices, such as disks, the LP11 printer does not share a controller
with other devices; therefore, no arbitration for ownership of the controller
is required.

2 The driver examines the device's CSR to see if the device is ready to
accept characters.

3 If the device is ready, the driver writes a byte of data into the printer data
buffer and decreases the count of bytes to transfer. It then repeats step 2.

2-4

Discussion of a Queue-I/O Request

4 If the device is not ready, which is to say that if the device's internal
buffer is full, the driver raises IPL to 31 to block all interrupts and sets the
interrupt-enable bit in the device's CSR.

After setting the interrupt-enable bit, the driver invokes a VAX/VMS wait-
for-interrupt macro to suspend driver processing until the printer requests
an interrupt or the device times out.

2.7 Waiting for a Device Interrupt
The VAX/VMS wait-for-interrupt routine suspends the driver by performing
the following functions:

• Saving driver context (R3, R4, and the address of the next instruction in
the driver) in the device's UCB

• Calculating the time at which the device will time out

• Setting bits in the device's UCB to indicate that the driver expects a device
interrupt within a specified time period

VAX/VMS then drops IPL back to fork level and returns control to the caller
of the driver's start-I/O routine.

The driver remains in a suspended state until one of two events occurs:

• The printer requests a hardware interrupt.

• VAX/VMS reports a device timeout because the printer did not request a
hardware interrupt within a specified period of time.

Normally, the LP11 prints the contents of its data buffer and requests the
interrupt.

2.8 Handling Interrupts
When the LP11 printer requests a hardware interrupt, the interrupt dispatcher
passes the interrupt to the LP11 driver's interrupt-servicing routine.

The driver's interrupt-servicing routine restores control to the driver, as
follows:

1 Restores the address of the UCB in R5

2 Confirms that the interrupt was expected by examining bits in the device's
UCB

3 Restores the saved registers (R3 and R4) from the device's unit-control
block

4 Transfers control to the driver PC address stored in the device's UCB

Rather than execute in interrupt context, the reactivated driver routine calls a
VAX/VMS routine to create a fork process. VAX/VMS again suspends driver
processing by performing the following steps:

1 Saving driver context (R3, R4, and the driver PC address) in the device's
UCB

2-5

Discussion of a Queue-I/O Request

2 Inserting the UCB address in the appropriate fork queue

The driver suspension allows the operating system to reschedule driver
processing at a lower IPL. A VAX/VMS fork dispatcher reactivates the driver
when IPL drops to fork level.

After creating the fork process, the system returns control to the driver's
interrupt-servicing routine, which restores the registers saved at the time of
the device interrupt and dismisses the interrupt.

2.9 I/O Postprocessing by the Driver
When the VAX/VMS fork dispatcher reactivates the driver's fork process, the
driver obtains the number of characters left to transfer from the unit-control
block. If there are still characters to transfer, the driver and printer repeat the
procedures outlined in Sections 2.6 through 2.8, until the transfer is complete.
When all characters have been transferred, the driver code branches to the
driver's I/O-completion code.

The driver's I/O-completion code stores a success status code and the number
of bytes transferred in RO, then transfers control to VAX/VMS to complete
the I/O request.

2.10 I/O Postprocessing by VAX/VMS
The operating system inserts the IRP into an I/O postprocessing queue and
requests an interrupt at IPL$_IOPOST. If another IRP is queued to the UCB
for the device unit, VAX/VMS dequeues that packet and calls the driver start-
I/O routine to process it. When IPL drops to IPL$_IOPOST, the processor
grants the I/O postprocessing interrupt request. The I/O postprocessing
dispatcher dequeues the packet for the printer I/O request and performs the
following steps:

1 Increases the use count of the process' buffered I/O requests because the
current operation is complete. The use count is maintained for accounting
purposes.

2 Deallocates the system buffer used for the reformatted user data.

3 Increases the process' current byte count quota.

4 Sets an event flag to indicate that the I/O operation is complete.

5 Queues a special kernel-mode AST routine that will deallocate the IRP
and stores I/O status into the user's I/O-status block.

The user process determines when the I/O operation is complete by the
setting of the event flag and/or the filling of the I/O status block, according
to the method defined in the I/O request. The Queue I/O Request and Wait
($QIOW) system service completes synchronously and returns control and
status to the user process only after the I/O operation has been completed.
The Synchronize ($SYNCH) system service checks the completion status of
an I/O request that completes asynchronously to user process activity.

2-6

3 Synchronization of l/O-Request Processing

The VAX/VMS operating system uses three mechanisms to synchronize I/O
processing:

• Hardware interrupt priority levels and interrupt-servicing routines

• Driver fork processes, fork blocks, and fork queues

• Resource-wait queues

When developing driver code, you must observe the VAX/VMS conventions
that govern the use of interrupt priority levels and fork processes. The
VAX/VMS routines that grant resources to drivers enforce the use of resource-
wait queues.

3.1 Interrupt Priority Levels
The VAX processor defines 32 levels of hardware priority, called interrupt
priority levels (IPLs). The higher-numbered IPLs (16 through 31) are reserved
for hardware interrupts, and the lower-numbered IPLs (1 through 15) are
reserved for software interrupts. User-mode software runs at IPL 0. Because
a high IPL takes precedence over a lower IPL, a routine executing at one IPL
can block interrupts at the selected IPL and all lower IPLs. This allows the
operating system to assign the higher IPLs to system activities that must be
dispatched quickly and with little chance of interruption, and use specific IPLs
to synchronize access to shared data structures.

The hardware IPLs (16 through 31) are used for device interrupts (IPLs 20
through 23), timer interrupts, urgent conditions like power failure, and such
serious errors as a machine check. Those IPLs that have a bearing on driver
execution are discussed in Sections 3.1.2 and 3.1.3. For specific hardware
IPL information, see your processor's hardware documentation or the VAX
Hardware Handbook.

The software IPLs (1 through 15) are defined by VAX/VMS as illustrated in
Table 3-1.

Table 3-1 IPLs Defined by VAX/VMS

IPL Symbolic Name Use

0

1

2

3

4

5

User-mode software

Reserved

IPL$_ASTDEL Servicing of AST-delivery interrupts

IPL$_SCHED Servicing of scheduler interrupts

IPL$_IOPOST Servicing of l/O-postprocessing interrupts

Servicing of XDELTA interrupts on a single¬
processor system

6 IPL$_QUEUEAST Fork level processing for queuing ASTs

3-1

Synchronization of l/O-Request Processing

Table 3-1 (Cont.) IPLs Defined by VAX/VMS

IPL Symbolic Name Use

7 IPL$_TIMERFORK Fork level processing of timer interrupts

8 IPL$_SYNCH Synchronizing access to system database

1 1 IPL$_MAILBOX Fork level processing synchronizing access to
mailboxes

8-11 — Fork level processing for executing driver
code

12-14 — Reserved

15 — Servicing of XDELTA interrupts on a
multiprocessor system

3.1.1 Interrupt-Servicing Routines
Many IPLs have an associated interrupt-servicing routine. The processor
responds to software or hardware interrupts at these IPLs by transferring
control to the appropriate interrupt-servicing routine. The interrupt-servicing
routine processes the interrupt and, when finished, dismisses the interrupt
with an REI instruction. Execution of an REI instruction is a common way
that IPL is lowered during normal execution. Because a change in IPL can
alter the deliverability of pending interrupts, execution of an REI instruction
triggers the delivery of many hardware and software interrupts.

The VAX/VMS operating system uses interrupt-servicing routines that gain
control when the processor grants an interrupt at the levels described above,
thus causing interrupts to be processed according to the following priorities:

• Device interrupts (highest priority)

• Device drivers' fork processes

• I/O postprocessing

• Process scheduling

• AST delivery (lowest priority)

For example, VAX/VMS completes the processing of an I/O request by
placing the I/O-request packet (IRP) in the I/O postprocessing queue and
requesting an interrupt at IPL 4, the I/O postprocessing IPL. When the
current IPL drops below IPL 4, the processor grants the requested interrupt
and transfers control to the IPL 4 interrupt-servicing routine, which completes
processing of the IRP. Because VAX/VMS handles interrupts for devices, fork
processes, I/O postprocessing, and AST delivery at different IPLs, it should
be clear how asynchronous the processing of a single I/O request is, in that
no I/O postprocessing can be performed at IPL 4 if there is a driver fork
process to execute at IPL 8.

Device drivers themselves contain an interrupt-servicing routine which
handles device interrupts at an appropriate device IPL (20 through 23). Also,
some driver code following the device interrupt executes as a fork process, at
a much lower IPL, by virtue of an interrupt-servicing routine running at a fork
IPL (8 through 11). (See Sections 3.1.2.3 and 3.2 for additional information.)

3-2

Synchronization of I/O-Request Processing

Interrupt-servicing routines run in a reduced context. They can only refer
to system space (SO) and are serviced on the interrupt stack. They should
observe the following rules:

• Interrupt-servicing routines generally can use only registers RO through
R5. Using registers other than RO through R5 is not recommended.
However, if the interrupt-servicing routine does use other registers, it must
save their contents before use and restore them after use.

• If the interrupt-servicing routine pushes any elements onto the stack, it
must remove them before dismissing the interrupt.

• Although it can elevate IPL, an interrupt-servicing routine cannot lower
IPL below the level at which the original interrupt occurred.

Refer to Section 11 for a discussion of rules and strategies for writing a driver
interrupt-servicing routine.

3.1.2 IPL Use During I/O Processing
I/O processing occurs mainly at the IPLs discussed in this section.

3.1.2.1 IPL 2 (IPL$_ASTDEL)
The AST delivery interrupt-servicing routine is associated with
IPL$__ASTDEL. When a system service for which an AST was specified is
completed, the system service queues the AST and causes a software interrupt
to be requested at IPL$_ASTDEL. The AST delivery interrupt-servicing
routine gains control when IPL drops below IPL$_ASTDEL, and delivers
the AST to the process that is currently scheduled. Any code executing at
IPL$_ASTDEL blocks the execution of this interrupt-servicing routine.

To block the delivery of ASTs—specifically the kernel-mode AST that causes
process deletion—I/O preprocessing, from the time that the $QIO system
service allocates an IRP through the execution of the last FDT routine, occurs
at IPLs no lower than IPL$_ASTDEL. In effect, any driver routine (such as an
FDT routine) that allocates or deallocates dynamic system pool space while
running in the context of a process must do so at an IPL of IPL$_ASTDEL or
higher. The VAX/VMS allocation routine records the address of the allocated
system memory in a process register; if an AST that deletes the process were
to occur, the allocated memory would be lost from the pool.

In addition, some I/O postprocessing occurs in a special kernel-mode

AST-servicing routine that also executes at IPL$__ASTDEL. Special kernel¬
mode ASTs, running in the context of a process whose I/O has been
completed, write status information into I/O-status blocks, copy buffered
input into process space, and deallocate system buffers.

3-3

Synchronization of l/O-Request Processing

3.1.2.2 IPL 4 (IPL$_IOPOST)
The IPL$_IOPOST interrupt-servicing routine performs device-independent
postprocessing of an I/O request. As appropriate to the I/O request, it adjusts
process quota use, queues a special kernel-mode AST to write status and data
into the process' address space, and deallocates system memory.

After they have completed whatever device-dependent postprocessing is
required, drivers request I/O postprocessing by calling a VAX/VMS routine
that inserts an IRP in the postprocessing queue and requests a software
interrupt at IPL$_IOPOST. When the interrupt is granted, the IPL$_IOPOST
interrupt-servicing routine performs all I/O-completion processing that can
occur without reference to the device's unit-control block (UCB) and, thus,
can occur at an IPL lower than fork IPL.

I/O postprocessing runs at an IPL higher than IPL$_SCHED so that all
pending I/O-completion processing is finished before the scheduler looks for
a new process to schedule. Whether a process is awaiting I/O completion
affects its ability to execute. Because I/O postprocessing queues ASTs to
processes, the scheduler might preferentially reschedule a waiting process
because of a pending AST to the process.

3.1.2.3 IPL 8 through IPL 11 (Fork IPLs)
For each of the IPLs from 8 to 11, there exists a queue of fork blocks waiting
to be processed. Each fork block contains the context of a suspended fork
process. The interrupt-servicing routine that executes at each of these IPLs
dequeues a fork block, restores the context of the fork process, and resumes
its execution at the saved PC location. (Refer to Section 3.2 for a discussion
of fork blocks and fork processes.^

All driver routines, except for most FDT routines, execute at fork IPL or
higher. Usually driver routines should not read or alter fields of the UCB
unless IPL is at fork level or higher. The fork IPL at which any individual
driver fork process executes depends upon the contents of the UCB field
UCB$B_FIPL. The drivers for all devices on a single I/O adapter should
specify the same fork IPL if they actively compete for shared I/O adapter
resources such as mapping registers and data paths.

3.1.2.4 IPL 20 through IPL 23 (Device IPLs)
Each of the IPLs from 20 to 23 is used to service a device interrupt. The
UCB$B_DIPL field in the device's UCB contains an IPL value at which the
device requests hardware interrupts. When a device interrupt occurs, the
system transfers control to the driver's interrupt-servicing routine with IPL set
to the device interrupt level. This IPL is in the range 20 through 23 because
device interrupts usually need to interrupt most user and VAX/VMS software

functions.1

In addition, device drivers sometimes raise IPL to UCB$B_DIPL or higher
before reading and writing certain device registers.

* IPLs 20 through 23 generally correspond with the four bus request levels (BR4 through BR7) of the UNIBUS and Q22 bus. UNIBUS device

IPLs are independent of the position of the devices on the bus; Q22 bus devices with higher IPL are configured closer to the CPU than devices

with lower IPL.

The MicroVAX II also has four interrupt request lines (BIRQ4 through BIRQ7) but only one interrupt-acknowledge line (BIAK). In

order to guarantee proper synchronization of device interrupts, the MicroVAX II central processor honors interrupts based on the correct BIRQ

level of the interrupting device, but services them all at the highest device IPL (23jg).

3-4

Synchronization of l/O-Request Processing

Because code executing at IPLs 20 through 23 blocks most other hardware
interrupts and all software interrupts, driver code lowers its IPL as soon as
possible. Interrupts from Micro VAX II, Micro VAX I, VAX 8200, and VAX
8800 devices, in fact, can block hardware interrupts from the processor's
interval timer if they occur at or above IPL 22. To prevent the loss of an
interval-timer interrupt, these drivers, when raising IPL to 22 or above, must
lower IPL below 22 within 10 milliseconds. (See Sections 3.1.7 and 3.2 for a
discussion of techniques for lowering IPL.)

3.1.2.5 IPL 31 (IPL$_POWER)
The highest IPL, IPL$_POWER (IPL 31) locks out all other interrupts. Many
VAX/VMS routines and drivers raise IPL to IPL$_POWER to execute code
sequences that cannot tolerate interruption. For example, much of system
initialization occurs at IPL$_POWER.

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPL$_POWER. The driver never should
remain at IPL$_POWER for more than a few instructions. The most common
instance of a driver's raising IPL to IPL$_POWER is to determine whether a
power failure has occurred between the time that the driver writes set-up data
into device registers and the time that the driver starts the device by writing
into the device's control register.

3.1.3 Additional IPLs

In addition to the IPLs discussed above that directly concern I/O operation,
VAX/VMS defines the IPLs described in this section.

3.1.3.1 IPL 3 (IPL$_SCHED)
When the system wishes to reschedule processes, a VAX/VMS routine
requests a software interrupt at IPL$_SCHED. The scheduler interrupt¬
servicing routine gains control at this IPL. Drivers never use IPL$_SCHED.

If a process raises IPL to or above IPL$_SCHED, the scheduler cannot
reschedule the process. The process runs until an interrupt occurs at a higher
IPL or the process reduces IPL below IPL$_SCHED.

3.1.3.2 IPL 6 (IPL$_QUEUEAST)
IPL$_QUEUEAST is a fork-level IPL used predominantly by drivers written
prior to V4.0 of the VAX/VMS operating system. A driver fork process
originating at an IPL between 8 and 11 would use IPL$_QUEUEAST
when it needed to synchronize access to the scheduler's database at
IPL$_SYNCH—for instance, to queue an AST. Because IPL$_SYNCH before
V4.0 was not yet a fork IPL, the only way that such a driver could maintain
proper synchronization was to first call a system routine that created a fork
block at IPL$_QUEUEAST. Once the IPL$_QUEUEAST fork dispatcher
dequeued the fork block and resumed execution of the driver, the driver fork
process could then raise IPL to IPL$_SYNCH and access the system database.

Because versions of the VAX/VMS operating system after V4.0 implement
IPL$_SYNCH as a fork IPL, a similar driver fork process needs only to fork
to IPL$_SYNCH. It is the IPL$_SYNCH fork dispatcher that dequeues the
driver fork block and resumes execution of the driver, thereby allowing it to
access the system data structures with proper synchronization.

3-5

Synchronization of l/O-Request Processing

3.1.3.3 IPL 7 (IPL$_TIMERFORK)
A timer-queue interrupt-servicing routine fields interrupts requested at
IPL$_TIMERFORK. The hardware clock's interrupt-servicing routine requests
a software timer interrupt at IPL$_TIMERFORK when the current process
has exceeded its processor time quantum or when the first entry in the timer
queue is due. The timer's interrupt-servicing routine immediately raises IPL
to IPL$_SYNCH to synchronize its access to the system database, dequeues
the first timer-queue entry, and takes appropriate action if it has expired.

3.1.3.4 IPL 8 (IPL$_SYNCH)
IPL$_SYNCH is the system database synchronization level. When a
VAX/VMS subroutine or a driver needs to modify or read a dynamic portion
of the system database, the routine always executes at IPL$_SYNCH to
ensure that the database does not change due to some interrupt-servicing
routine or process action.

3.1.3.5 IPL 11 (1 PL$_M Al LBOX)
When a VAX/VMS or driver routine writes into a mailbox, IPL must be at
IPL$_MAILBOX to prevent other writers from modifying incomplete data in
the mailbox, or readers from reading invalid data.

IPL$_MAILBOX is the highest fork level; drivers can raise IPL to
IPL$_MAILBOX and write into a mailbox.

3.1.3.6 IPL 5 or IPL 1 5 (XDELTA IPLs)
To stop the operating system for debugging purposes, you can halt the
operating system from the console terminal and request a software interrupt.
(The procedure for requesting a software interrupt to load XDELTA is
described in Table 3-3.) The interrupt-servicing routine that loads XDELTA
runs at IPL 5 on VAX single-processor systems and at IPL 15 on VAX
multiprocessing systems. The processor must be executing below the
requested IPL for the interrupt to take effect.

3.1.4 Overview of IPL Use in an I/O Operation

Figure 3-1 illustrates the normal IPL flow during the processing of an I/O
request.

The user program, executing at IPL 0, issues a $QIO system service call.
I/O processing by the system service and FDT routines occurs mostly at
IPL$_ASTDEL. Very rarely, an FDT routine raises IPL to fork level to read or
modify the device's UCB.

The start-I/O routine executes as a fork process at fork IPL, but might raise to
device IPL or IPL$__POWER for short periods of time. After the fork process
activates the device, the driver calls a VAX/VMS routine that saves the
driver's fork context, suspends fork processing, and restores IPL to a previous
level.

Figure 3-2 illustrates the completion of the I/O request from the point of
the device interrupt to the delivery of ASTs to the user program. The device
interrupts at a device IPL (in the range 20 through 23). VAX/VMS transfers
control to the appropriate driver interrupt-servicing routine. The interrupt¬
servicing routine reactivates the driver's fork process with IPL still at device
IPL.

3-6

Synchronization of l/O-Request Processing

Figure 3-1 IPL Flow During I/O Processing

IPL 0

ZK-583-81

The fork process briefly examines or saves the contents of the device's
registers, but soon requests that VAX/VMS insert a fork block describing
its context into one of the fork queues for drivers' fork IPLs (8 through 11).
When the fork process regains control at the driver's fork IPL, the process
analyzes the success of the I/O operation and writes status into RO and Rl.
Then, still at fork IPL, VAX/VMS inserts the IRP into the I/O-postprocessing
queue and starts the next I/O request.

The I/O postprocessing routine adjusts process-quota usage and deallocates
system buffers for write functions at IPL$_IOPOST. The routine also calls
another VAX/VMS routine that raises IPL to IPL$_SYNCH to queue a special
kernel-mode AST to the process that issued the original $QIO request.

The special kernel-mode AST routine executes at IPL$__ASTDEL. It
can queue a user-mode AST routine that eventually executes at IPL 0.
I/O postprocessing continues at IPL$_IOPOST until all entries in the
postprocessing queue have been serviced.

3-7

Synchronization of l/O-Request Processing

Figure 3-2 IPL Flow During I/O Completion

IPL 0

ZK-914-82

3.1.5 Dispatching Device Interrupts

VAX peripheral devices request interrupts at IPLs 20 through 23. When
a device requests an interrupt at one of these IPLs and the processor is
executing at a lower IPL, the processor grants the interrupt, and then transfers
control to an interrupt-servicing routine for the device. If the processor is
executing at a higher or equal IPL, the interrupt remains pending.

The interrupt dispatcher is a combination of hardware and software that
routes interrupts from devices on the UNIBUS, Q22 bus, or MASSBUS to
the appropriate device driver's interrupt-servicing routine. The interrupt
dispatcher's routing mechanism works differently depending upon whether
the VAX processor in use accepts direct vector or nondirect vector I/O-bus
interrupts.

3-8

Synchronization of I/O-Request Processing

3.1.5.1 Direct Vector Interrupts
The VAX-11/750, VAX-11/730, VAX 8200, and VAX 8800 processors
employ direct vector UNIBUS adapters. The Micro VAX I and Micro VAX
II also provide for direct vector interrupt dispatching from the Q22 bus.
On a configuration that supports direct vector interrupts, the I/O adapter
does not dispatch the interrupt. Instead, the processor locates the device's
interrupt-servicing routine by using the system-control block (SCB).

The SCB consists of two or more pages of addresses. Page 1 lists the
exception vectors; pages 2 and 3 contain the list of addresses in the channel-
request block (CRB) that point to the interrupt-servicing routines for devices
attached to the first UNIBUS and, for the VAX-11/750, an optional second
UNIBUS. The SCB base register (SCBB), an internal processor register, marks
the base of the SCB.

The processor obtains the vector address of the device that requested the
interrupt,2 and uses it as an index into page 2 (or page 3) of the SCB. The
processor then transfers control to the interrupt-dispatching code in the
device's CRB. On direct vector configurations, the interrupt-dispatching
code saves registers R0 through R5 then transfers control to the device's
interrupt-servicing routine.

Figure 3-3 shows a flowchart of interrupt dispatching on a direct vector
UNIBUS adapter.

3.1.5.2 Nondirect Vector Interrupts
The VAX-11/780 and VAX 8600 processors employ nondirect vector UNIBUS
adapters. A device interrupt to a nondirect vector adapter causes the adapter to
post an interrupt that is dispatched through the SCB to the interrupt-servicing
routine for the UNIBUS adapter of the device that requested the interrupt.3 It
is the adapter's interrupt-servicing routine that ultimately locates and transfers
control to the appropriate device driver's interrupt-servicing routine.

The UNIBUS adapter's interrupt-servicing routine performs the following
actions:

1 Saves R0 through R5 on the interrupt stack.

2 Reads a UNIBUS adapter register to determine the vector address of the
device requesting the interrupt.

3 Uses the vector address as an index into a vector-jump table within the
adapter-control block. The vector-jump table contains a list of addresses
within CRBs that point to interrupt-servicing routines for devices attached
to that UNIBUS.

4 Transfers control to the CRB address that corresponds to the vector
address. The CRB address contains a JSB instruction that passes control to
the device's interrupt-servicing routine.

Figure 3-4 contains a flowchart that illustrates nondirect vector interrupt
dispatching.

^ The vector addresses of direct vector interrupts can range from 0 to 777g.

3 The MASSBUS adapter is also a nondirect vector adapter. The MASSBUS adapter's interrupt dispatcher performs the functions described in

Section G.4 before transferring control to the driver's interrupt-servicing routine.

3-9

Synchronization of l/O-Request Processing

Figure 3-3 Dispatching a Direct Vector Interrupt

INTERRUPT

I

REI
ZK-913-82

3.1.6 Transferring Control from the Device Interrupt to the Fork Process
When a device driver receives an expected interrupt from a device, the driver
interrupt-servicing routine executes in the context of an interrupt; it is not
executing in fork process context at that point. Interrupt context has the
following characteristics:

• IPL is elevated to the level at which the device requests hardware
interrupts.

• The stack is the interrupt stack.

3—10

Synchronization of I/O-Request Processing

Figure 3-4 Dispatching a Nondirect Vector Interrupt

INTERRUPT

RE I
ZK-912-82

3—11

Synchronization of l/O-Request Processing

• The top of the stack contains a pointer to the address of the controller's
interrupt-dispatch block (IDB), which contains the address of the control
and status register (CSR).

• The stack also contains the saved RO through R5 and the PC and PSL of
the interrupted code.

The interrupt occurs either because the device has completed an I/O
operation or because an error occurred during the I/O operation. A driver's
interrupt-servicing routine generally determines whether to service the
interrupt by examining the I/O database. If the UCB for the device that
currently owns the controller indicates that the interrupt is expected, the
interrupt-servicing routine takes the following steps to transfer control to the
driver's start-I/O routine:

• Loads the address of the UCB into R5

• Restores the contents of two registers (R3 and R4) from the UCB's fork
block

• Returns control to the saved PC in that fork block

The driver might need to execute a few instructions in the context of the
interrupt. For example, the driver might copy device-status information from
the device's registers into the device's UCB.

When a driver gains control, it might execute a few instructions at device IPL;
however, almost immediately a driver lowers IPL to fork IPL. A driver lowers
IPL by invoking the VAX/VMS macro that creates fork processes, IOFORK.
As a result of invoking IOFORK, VAX/VMS performs the following functions
for the driver:

• Consults the device's UCB to determine fork IPL for the driver

• Creates a driver's fork process and queues it for execution at the
appropriate fork IPL

• Requests a software interrupt at that IPL

When the queued fork process is activated, it executes at the lower fork IPL.
Section 3.2 describes fork-process dispatching in greater detail.

3.1.7 Modifying IPL in Driver Code

Code running in kernel mode can raise its IPL to lock out context switching
and to block interrupts. VAX/VMS software interrupt-servicing routines
perform some of their processing at IPLs higher than the IPL at which the
routines gain control. For example, the scheduler is an interrupt-servicing
routine that gains control at IPL 3; however, it raises IPL to 8 to read and
modify the system database. Subsequent sections of this manual discuss the
VAX/VMS routines that change IPL; discussions include their expectation of
IPL at entry and their IPL setting at exit.

Driver code can change the IPL at which it executes by calling a VAX/VMS
routine that raises or lowers IPL or invoking a VAX/VMS macro to request
explicitly a change in IPL.

3-12

Synchronization of l/O-Request Processing

Normally, a driver uses the macros discussed in this section to raise IPL
before initiating a transfer. Drivers typically raise IPL to check for a power
failure, to send a message to a mailbox, and sometimes to access device
registers. Driver code should not raise IPL for more than a few instructions
because doing so blocks all interrupts at lower IPLs.

When lowering IPL, a driver either restores IPL to a previously-saved value
or requests a software interrupt at a fork IPL at which it has queued a fork
block (as described in Section 3.2). A driver cannot lower IPL below the level
at which the thread of execution resumed.

The sections that follow describe the macros that drivers can call to change
IPL:

• SETIPL

• DSBINT

• ENBINT

• SOFTINT

3.1.7.1 SETIPL Macro
The SETIPL macro moves the specified IPL into the processor IPL register
(PR$_IPL).

Format

SETIPL [ipl=31]

Argument

[ipl=31]
Interrupt priority level. If no value is specified in the ipl argument, the
SETIPL macro moves the value 31 into PR$_IPL. Setting IPL to 31 blocks all
interrupts.

3.1.7.2 DSBINT Macro
The DSBINT macro saves the current IPL in the specified destination and
moves the specified IPL into the processor IPL register (PR$_IPL). Procedures
invoke this macro to raise IPL.

Format

DSBINT [ipl=31] [,dst=-(SP)]

Arguments

[ipl=31]
Interrupt priority level. If no value is specified in the ipl argument, DSBINT
moves the value 31 into PR$_IPL, thus blocking all interrupts.

[dst=—(SP)]
Location at which the current IPL is to be saved. If no value is specified in
the dst argument, DSBINT stores the current IPL on the top of the stack.

3-13

Synchronization of I/O-Request Processing

3.1.7.3 ENBINT Macro
The ENBINT macro restores an IPL value to processor IPL register
(PR$_IPL). Procedures invoke this macro to lower IPL to a previously-saved
level. If an interrupt is pending at an intermediate IPL (one lower than the
current IPL but higher than the specified IPL), restoring IPL causes immediate
interruption of the current procedure.

Format

ENBINT [src=(SP)+]

Argument

[src=(SP)+]
Location containing the IPL to be restored. If no value is specified in the src
argument, ENBINT moves the value on the top of the stack into the PR$_IPL.

3.1.7.4 SOFTINT Macro
The SOFTINT macro moves the specified IPL into the software interrupt
request processor register (PR$_SIRR) to request a software interrupt.

If the processor is executing at a low IPL (for example, IPL 0) and detects
a software interrupt request at a higher IPL (1 through 15), it immediately
transfers control to a software interrupt-servicing routine for the appropriate
IPL.

If the processor is executing at or above the specified IPL, it does not transfer
control to the software interrupt-servicing routine until IPL drops below the
specified IPL.

Format

SOFTINT ipl

Argument

ipl
Interrupt priority level at which the software interrupt is being requested.

3.2 Fork Blocks and Fork Dispatching

Device-driver routines that activate a device and complete an I/O operation
after a device interrupt execute for relatively short periods of time. Execution
might be suspended to wait for a device interrupt or shared resources. To
ensure that the resulting context-switching is fast, the VAX/VMS operating
system forces driver routines to execute in a minimal, fork process context
consisting of a device's UCB, called a fork block, and a few registers.

Fork processes are created in either of the following situations:

• Once the preprocessing of an IRP has been performed, a VAX/VMS
routine creates a fork process to execute the driver's start-I/O routine. If
the driver is already busy, the VAX/VMS routine queues the IRP for the
driver to process later.

• Either the driver's interrupt-servicing routine or the driver postprocessing
routine creates a fork process to perform device-dependent I/O
postprocessing.

3-14

Synchronization of I/O-Request Processing

When the system creates a fork process to execute the start-I/O routine, the
newly created fork process can execute immediately because the IRP has
been preprocessed by the $QIO system service and driver's FDT routines, and
because the device is idle.

When the driver's interrupt-servicing routine or the driver's postprocessing
routine creates a fork process, it does so to lower the IPL at which the driver's
code is executing. Either the interrupt-servicing routine or the start-I/O
routine invokes the VAX/VMS macro IOFORK.

IOFORK saves the context needed for the driver to execute as a fork process,
inserts the driver's UCB fork block in the fork queue for the driver's IPL, and
requests a software interrupt for that IPL.

3.2.1 Interrupt-Servicing Routine for Fork Dispatching

One interrupt-servicing routine handles all fork-process dispatching. When
the processor grants an interrupt at fork IPL, the fork dispatcher saves RO
through R5 on the stack and processes the fork queue that corresponds to
the IPL of the interrupt. To do so, it removes an entry from the fork queue,
restores the fork process context, and reactivates the suspended fork process.

When that fork process is completed, the dispatcher regains control, removes
the next entry from the queue, restores its fork process context, and reactivates
it. This sequence is repeated until the fork queue is empty. When the queue
is empty, the fork dispatcher restores RO through R5 from the stack and
dismisses the interrupt with an REI instruction.

Figure 3-5 illustrates the fork queue structure.

A newly activated fork process executes under the following constraints:

• It cannot refer to the address space of the process initiating the I/O
request.

• It can use only RO through R5 freely; it must save other registers before
use and restore them after use. Use of registers other than RO through R5
is strongly discouraged.

• It must clean up the stack after use; the stack must be in its original state
when the fork process relinquishes control to any VAX/VMS routine.

• It must execute at IPLs between the driver's fork IPL and IPL$_POWER;
it must not lower IPL below the driver's fork IPL except by creating a fork
process at a lower IPL.

• When it returns control to the fork dispatcher, IPL must be the same as
it was when the fork process was activated. The driver returns control to
the fork dispatcher by invoking the wait-for-interrupt macro or the request
complete macro.

3-15

Synchronization of I/O-Request Processing

Figure 3-5 Fork Dispatching Queue Structure

IPL 15 RESERVED

IPL 14 RESERVED

IPL 13 RESERVED

IPL 12 RESERVED

IPL 1 1 FORK LEVEL

IPL 10 FORK LEVEL

IPL 9 FORK LEVEL

IPL 8 FORKLEVEL

IPL 7 TIMERFORK

IPL 6 FORK LEVEL

IPL 5 XDELTA

IPL 4 I/O POSTING

IPL 3 PROCESS SCHEDULING

IPL 2 AST DELIVERY

IPL 1 RESERVED

IPL 0 PROCESS EXECUTION

ZK-584-81

3.3 Resource-Wait Queues

The processing of an I/O request often requires shared system resources such

as memory and I/O adapter mapping registers. The $QIO system service
and fork processes call VAX/VMS routines to allocate and deallocate these
resources. Because the resources are limited, I/O processing might be delayed
until unavailable resources are released by other processes or drivers. Thus,
synchronization of access to these resources can have a substantial impact on
the processing of I/O requests.

For example, the $QIO system service calls a VAX/VMS routine to allocate
nonpaged system space for an IRP. If the nonpaged pool is empty, the routine
calls another VAX/VMS routine to save the process context and change the
process state to resource-wait mode (also called miscellaneous wait, or
MWAIT). As a result of waiting, the process is a candidate to be swapped
out of memory. When nonpaged pool becomes available, the scheduler
reschedules the process.

During fork process execution at elevated IPLs, driver context is very small.
At any point, the driver can obtain all details about an I/O request by
referring to the I/O database. The driver needs only the address of the
device's UCB, which is the key to the rest of the database. Therefore,
VAX/VMS routines that control driver resources, such as mapping registers.

3-16

Synchronization of I/O-Request Processing

use fork blocks and resource-wait queues to save minimal driver context.
Each entry in a queue consists of the following items:

• The address of the UCB, which is also the contents of R5 in the fork
process; the UCB also contains the driver's fork block

• R3, and normally R4, from the fork process

• A PC for the waiting fork process

When the awaited resource becomes available, the routine controlling the
resource performs the following steps:

• Restores the UCB address to R5

• Restores the saved registers R3 and R4

• Grants the resource

• Transfers control to the saved driver return PC address

Because the VAX/VMS routine that controls a particular resource places in
a waiting state any driver that requests an unavailable resource, drivers are
unaware of execution being suspended and subsequently reactivated. Drivers
must not leave anything on the stack, or in general purpose registers other
than R3, R4, and R5, when calling a routine that might suspend the driver's
execution.

3.3.1 Competing for a Controller's Data Channel

A controller's data channel is a VAX/VMS synchronization mechanism that
guarantees for multiunit controllers that one unit uses the controller at a time.
A device's fork process can read and write a device's registers whenever the
device unit owns the controller's data channel.

Devices that share a controller, such as disk units, own the controller's data
channel only when a VAX/VMS routine assigns the channel to the unit's
fork process. In contrast, a single device unit on a controller always owns the
controller's data channel. Therefore, if VAX/VMS transfers control to such
a driver's start-I/O routine, the driver can immediately address the device's
registers without first obtaining the controller's data channel.

An LP11 printer, such as the one discussed in Section 2, has a dedicated
(single-unit) controller attached to the UNIBUS. When VAX/VMS finds the
device idle and creates a printer driver's fork process to write data to the
printer's data buffer, the controller's data channel is guaranteed not to be
busy. Because the data channel is not busy, the driver's start-I/O routine can
perform the following:

1 Retrieve the virtual address of the data to be written and the number of
bytes to transfer from the device's UCB

2 Retrieve the virtual address of the device's CSR from the IDB

3 Calculate the address of the line printer's data buffer register by adding a
constant offset to the CSR address

4 Write data, one byte at a time, to the line printer's data buffer until all
bytes of data have been written

In contrast, a device unit on a multiunit controller must compete for the
controller's data channel with other devices attached to that controller.

3-17

Synchronization of l/O-Request Processing

An RK611 controller, for example, controls as many as eight RK06/RK07
devices. The disk driver's fork process must gain control of the controller's
data channel before starting an I/O operation on the unit associated with the
fork process. The disk driver's start-I/O routine uses the following sequence
to start a seek operation on an RK07 device:

1 The start-I/O routine requests the controller's data channel by invoking a
VAX/VMS channel arbitration routine.

2 The VAX/VMS routine tests the CRB mask field to determine whether the
controller's data channel is available.

3 If the channel is available, the VAX/VMS routine allocates the channel to
the fork process and returns the address of the device's CSR to the fork
process.

If the channel is busy, the VAX/VMS routine saves the driver fork context
in the UCB fork block and inserts the fork block address in the controller's
channel-wait queue.

4 When the fork process resumes execution, the process owns the controller
channel. The fork process can then modify the device's registers to
activate the device.

5 The driver's start-I/O routine then requests the VAX/VMS operating
system to suspend driver processing in anticipation of an interrupt or
timeout and to release the channel.

6 The VAX/VMS channel-releasing routine assigns channel ownership to
the next fork process in the channel-wait queue, loads the CSR address
into a general register, and reactivates the suspended fork process.

7 The reactivated fork process continues execution as though the channel
had been available in the first place.

The VAX/VMS channel-arbitration routines keep track of controller
availability using a flag field in the CRB. The fork process must always
request and release the controller's data channel by invoking these routines.
Once the driver owns a controller's data channel, the driver is free to read
and modify the device's registers.

3-18

I/O Adapter Functions

The UNIBUS adapter connects the UNIBUS, an asynchronous, bidirectional
bus, to the backplane interconnect. The adapter performs the following
functions:

• Arbitrates priority interrupts from UNIBUS devices

• Delivers interrupts from UNIBUS devices to the processor

• Allows drivers to gain access to UNIBUS device's registers using system
virtual addresses

• Translates 18-bit UNIBUS addresses to physical addresses in main
memory

• Provides a data-transfer path to randomly ordered physical pages in main
memory

• Provides buffered data transfer paths to consecutively increasing physical
addresses, thus optimizing CPU-to-UNIBUS data transfers.

• Permits byte-aligned buffers for UNIBUS devices requiring word-aligned
buffer addresses

The Micro VAX Q22 bus closely resembles the UNIBUS. For Micro VAX II
or Micro VAX I devices attached to the Q22 bus, special processor logic
implements a Q22 bus interface that similarly allows drivers access to device
registers and manages device interrupts. Additional logic in the Micro VAX
II processor establishes a scatter-gather map that translates 22-bit Q22 bus
addresses to physical addresses. However, neither Micro VAX II nor Micro VAX
I implements buffered data paths. (Table 4-1 compares the UNIBUS and Q22
bus systems of the various VAX and Micro VAX processors.)

The protocol a VAX processor uses to enable communications between its I/O
bus and backplane permits its devices and device drivers to exchange data
without much awareness of the intervening hardware. First of all, both the
UNIBUS adapter and the Q22 bus interface provide access to device registers
using an address mapping scheme that is invisible to the driver. In addition,
whenever the configuration of the I/O interface has an impact on the control
of a data transfer, the driver can call one of the many VAX/VMS routines that
handles the details of the interface.

The functional differences between I/O adapters are irrelevant to devices that
do not perform DMA transfers. A driver that performs non-DMA transfers for
a device on the UNIBUS can, with no alteration, perform the same services
for an equivalent device on a Q22 bus.

On the other hand, the differences between the functions of the UNIBUS
adapter and the interfaces provided by the Micro VAX II and I to the Q22
bus are significant to those drivers that manage DMA device operations.1 A
driver that performs block DMA transfers for a UNIBUS device or Q22 bus
device must set up any mapping or buffering mechanisms required by the
processor's I/O interface. For UNIBUS DMA drivers, this involves setting

1 The Q22 bus supports only those DMA controllers that are capable of 22-bit addressing.

4—1

I/O Adapter Functions

up sufficient mapping registers and, perhaps, a buffered data path prior to
the transfer. Micro VAX II DMA drivers, likewise, must allocate and fill a set
of mapping registers. By contrast. Micro VAX I DMA drivers—because the
Micro VAX I has no scatter-gather map—cannot map the many and scattered
pages of a block DMA transfer to a contiguous set of addresses in the I/O
adapter's address space. As a result, when it is loaded into the system, a
Micro VAX I DMA driver must reserve enough physically contiguous memory
to accommodate its largest possible DMA transfer (see Section 10.7).

Section 10 describes the means by which device drivers set up DMA transfers,
according to any of these interfaces. If DMA driver that must drive similar
devices on various VAX processors must secure some measure of machine-
independence, it can include some run-time conditional code that branches
to appropriate routines in the driver that accomplish the machine-dependent
work. See the description of the CPUDISP macro in Appendix B and the
sample drivers that appear in Appendixes E and F for guidance.

This following sections discuss the functions of the UNIBUS adapter and
similar Q22 bus interface functions:

• The discussion of reading and writing device registers in Section 4.1
applies to UNIBUS, Micro VAX II, and Micro VAX I drivers.

• The description of mapping I/O bus addresses in Section 4.2 pertains only
to UNIBUS and Micro VAX II DMA drivers.

• The description of buffering data transfers in Section 4.3 relates in
the main to UNIBUS drivers, although the section on direct data
paths (Section 4.3.1) contains information relevant to Micro VAX II and
Micro VAX I drivers as well.

Table 4-1 Features of the I/O Bus Adapters of the VAX Processors

Processor Adapter

Memory
References
(Physical
Address)

Direct
Data Path

Buffered Data
Paths

Mapping
Registers

Interrupt
Dispatcher

VAX-11/780
VAX-11/782
VAX-11/785
VAX 8600
VAX 8650

UBA 30-bit (via
SBI)

1,
no byte-
aligned
transfers

15,
8-byte buffer,
byte-aligned
transfers,
LWAE,3
prefetch

496 Nondirect vector

VAX-11/750 UBI 24-bit (via
CMI)

1,
byte-
aligned
transfers

3,
4-byte
buffer,2
byte-aligned
transfers,
LWAE,3
no prefetch

5124 Direct vector

2Buffered data paths on the VAX-1 1/750 only buffer four bytes of data. Because the data paths do not
perform a prefetch, they can always reference longwords at random.

3LWAE (longword access enable) refers to the capability to reference random longword aligned data in a
bus transfer.

4The VAX/VMS operating system makes only 496 of these mapping registers available.

4-2

I/O Adapter Functions

Table 4-1 (Cont.) Features of the I/O Bus Adapters of the VAX Processors

Processor Adapter

Memory
References
(Physical
Address)

Direct
Data Path

Buffered Data
Paths

Mapping
Registers

Interrupt
Dispatcher

VAX-11/730
VAX-11/725

UBA 24-bit 1,
byte-
aligned
transfers

None 5124 Direct vector

VAX 8200
VAX 8800

BUA 30-bit (via
VAXBI)

1,
byte-
aligned
transfers

5,
8-byte buffer,
byte-aligned
transfers,
LWAE,3
no prefetch

5124 Direct vector

MicroVAX 1 22-bit 1,
no
restrictions
on data
alignment1

None None Direct vector

MicroVAX II 24-bit 1,
no
restrictions
on data
alignment1

None 81924 Direct vector

^he MicroVAX II and MicroVAX I implementations of the Q22 bus provide no byte-offset register, so, on
Q22 bus devices that are only capable of word-aligned transfers, only word-aligned transfers are possible.

3LWAE (longword access enable) refers to the capability to reference random longword aligned data in a
bus transfer.

4The VAX/VMS operating system makes only 496 of these mapping registers available.

4.1 Reading and Writing Device Registers

Each I/O controller or device directly attached to a UNIBUS or Q22 bus has
a control and status register (CSR) and set of data registers. These registers
are assigned physical addresses in the 8K allocated for this purpose from the
256K UNIBUS address space or from the Q22 bus I/O space. Device drivers
obtain the device's status and activate the device by reading and writing to
these registers.

Because the VAX/VMS operating system maps this I/O space into virtual
address space, a device driver can treat the addresses of device registers as
identical to all other virtual addresses. The driver can read and write data
to the device's register as though the device's register were a location in
memory. The driver must use instructions within the restrictions described in
Section 6.2.

Before a driver for a device that shares a controller can gain access to a
device's registers, it must first obtain a controller channel, as described in
Sections 3.3.1 and 9.3.1.

4-3

I/O Adapter Functions

4.2 Mapping Registers
DMA devices read and write data from and to memory locations using
18-bit UNIBUS addresses or, for the Micro VAX II and Micro VAX I, 22-bit
Q22 bus addresses. The UNIBUS adapter and the Q22 bus interface translate
the bus addresses into main memory addresses, thus allowing the operating
system, I/O drivers, and UNIBUS devices to access the same physical address
space. DMA devices connected to either a UNIBUS or Micro VAX II Q22 bus
can access a block of memory directly by means of the scatter-gather map
supplied by the UNIBUS adapter or Micro VAX II processor, respectively. The
mapping registers provided allow the device to access scattered, physical
memory addresses as contiguous, physical addresses in I/O space.2

When a device driver performs a DMA transfer, it allocates mapping registers
and a buffered data path (an option available to devices on the UNIBUS of
some VAX processors), and sets up the transfer by means of the device's
registers. The device then accesses memory directly by means of the I/O bus,
transferring all the data requested. When the transfer is complete, the device
notifies the driver by requesting an interrupt.

Consider a buffer, for example, that consists of virtual pages 400, 401, 402,
and 403, which are physical pages 1003, 204, 1190, and 240, respectively.
For a UNIBUS device to access this buffer, the driver requests four mapping
registers, then places the physical addresses of these pages in the mapping
registers. Assume the driver has allocated four mapping registers, 127
through 130. The driver loads them as follows:

Mapping Register Contents (physical address)

127 1003

128 204

129 1190

130 240

The device and the UNIBUS can transfer data into or out of these physical
pages without intervention by the driver. The device requests an interrupt
only when all the data in these four pages has been transferred.

Generally, a mapping register exists for each page of I/O space. Because the
UNIBUS address space consists of 256K of memory, minus the 8K reserved
for device-control registers, 496 mapping registers are available for UNIBUS
DMA transfers. Micro VAX II DMA devices can also use up to 496 of the
mapping registers corresponding to 248K of the 4MB Q22 bus I/O space.3

2
The Micro VAX I does not provide a scatter-gather map, thereby requiring its DMA drivers to reserve a contiguous portion of physical memory

in its controller-initialization routine to provide for its largest possible DMA transfer. See the discussion in Section 10.7 for details.

3 There are actually 8192 mapping registers which correspond to Q22 bus I/O space. To maintain compatibility with software that accesses

UNIBUS adapter mapping registers, only 496 of these registers are currently enabled. The remaining registers are unavailable for driver use. A

field in the mapping register identifies the page-frame number corresponding to the UNIBUS space or Q22 bus space address that the mapping
register represents (see Figure 4-1).

If a driver must explicitly access memory local to the MicroVAX II Q22 bus, it cannot access it by means of mapping registers.

Instead, it must first map the desired region into system space using the Create and Map Section ($CRMPSC) system service and specifying its

PFNMAP option (see Section H.3 and the VAX/VMS System Services Reference Manual for additional information). In addition, it must disable
those mapping registers that correspond to the Q22 bus addresses for this memory.

4-4

I/O Adapter Functions

Figure 4-1 UIMIBUS and Q22 Bus Mapping Registers

VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600, and VAX 8650

31 26 25 24 21 20

unused
data
path
number

page frame number

byte offset

longword access enable (LWAE)

valid bit

VAX-11/750, VAX-11/730, and VAX-11/725

31 26 25 24 22 2120 15 14

MBZ undefined page frame number

data path number (for VAX-11/750)

byte offset

longword access enable (LWAE) for compatibility with
VAX-11/780, unused on VAX-11/750 and VAX-11/730
valid bit

VAX 8800 and VAX 8200

31 30 29 27 26 25 24 23 21 20 0

reserved 0

data
path
number

page frame number

n i

- byte offset

- longword access enable (LWAE)

- valid bit

MicroVAX II

3130 1514 0

unused page frame number

i i

-valid bit

4-5

I/O Adapter Functions

Drivers call VAX/VMS routines to fill as many mapping registers with valid
page-frame addresses as needed for a DMA transfer up to 127 pages. The
DMA device puts an address on the I/O bus. The UNIBUS adapter or
Q22 bus interface receives the address and translates it using the following
information (see Figures 4-2 and 4-3)4 :

• In UNIBUS addresses, the 9-bit UNIBUS page address field (bits 9 through
17 of the UNIBUS address) identifies the UBA mapping register.

In Q22 bus addresses, the 13-bit Q22 bus page address field (bits 9 through
22 of the Q22 bus address) identifies the Micro VAX II mapping register.

• The page-frame-number (PFN) field in the mapping register specifies the
high-order bits of the physical address. (The PFN field is 15 bits long for
the Micro VAX II, VAX-11/750, and VAX-11/730; and 21 bits long for the
VAX-11/780, VAX 8600, VAX 8200, and VAX 8800.)

• From UNIBUS addresses, bits 2 through 8 map to bits 0 through 6 of the
physical address. The resulting physical address locates the longword
that is the target of the transfer. The UNIBUS adapter identifies the byte
addressed within the longword by interpreting the low-order two bits of
the UNIBUS address.

From Q22 bus addresses, bits 0 through 8 map to bits 0 through 8 of the
physical address. The resulting physical address locates the byte that is
the target of the transfer.

Each UNIBUS adapter or Q22 bus mapping register also contains a bit called
the mapping-register valid bit. The UNIBUS adapter or Q22 bus interface
tests this bit every time the mapping register is used. If the bit is not set, the
UNIBUS adapter or Q22 bus interface aborts the transfer. This bit is clear
whenever the register is not mapped to a physical address.

4.3 UNIBUS Adapter Data Transfer Paths

The UNIBUS adapter sends data through one of several data paths for
UNIBUS devices performing DMA transfers. One data path, the direct data
path (DDP), allows UNIBUS transfers to randomly ordered physical addresses.
The direct data path maps each UNIBUS transfer to a backplane interconnect
transfer. Thus, a single word or byte of data is transferred for each backplane
interconnect operation.

The remaining data paths, the buffered data paths (BDPs), allow devices on
the ITNIBUS to transfer much faster than through the direct data path. The
buffered data paths store UNIBUS data so that multiple UNIBUS transfers
result in a single backplane interconnect transfer.

When a UNIBUS device begins a DMA transfer by placing an address on the
UNIBUS, the UNIBUS adapter mapping register not only performs address
mapping but also provides the number of the data path to be used for the
transfer (see Figure 4-1). Each UNIBUS adapter mapping register contains
a field that describes the data path. Data path 0 is the direct data path; the
other data paths are the buffered data paths. (The data path registers of the
various VAX processors are pictured in Figure 4-4.)

4 The page-frame address is 15 bits long on the VAX-11/750, VAX-11/730, VAX-11/725, and Micro VAX II processors; the physical addresses

resulting from the mapping are 24 bits long. The page-frame addresses of other VAX processors are each 2i bits long, with a resulting 30-bit

physical address. The disposition of the lowest two bits of the UNIBUS address depends on the processor. For instance, the VAX-11/780 uses

them to construct a byte-selection mask and function to be transmitted across UNIBUS lines that modify the I/O transaction.

4-6

I/O Adapter Functions

Figure 4-2 Mapping a UNIBUS Address to a Physical Address

18-BIT UNIBUS ADDRESS

PHYSICAL ADDRESS
ZK-915-82

Figure 4-3 Mapping a Q22 Bus Address to a Physical Address

22-BIT Q22 BUS ADDRESS

24-BIT PHYSICAL ADDRESS

ZK 4841 85

The sequence below describes a UNIBUS-device DMA transfer.

1 The UNIBUS device puts an address on the UNIBUS.

2 The UNIBUS adapter locates the UNIBUS adapter mapping register that
corresponds to the UNIBUS address.

4-7

I/O Adapter Functions

Figure 4-4 UNIBUS Data Path Registers

VAX-11/780, VAX-11/782, VAX 8600, and VAX 8650

31 30 29 28 23 15 0

unused spare
UNIBUS address

< 17:2 >

T~ l- data path function

- buffer transfer error

- buffer not empty/purge

VAX-11/750

31 30 29 28 1 0

error summary

VAX 8800 and VAX 8200

DATA PATH CONTROL/STATUS REGISTER

31 2423 2120 1 0

data
path

select

“T purge-1

ADDRESS/STATUS REGISTER

31 16 15 0

buffer address flags

ZK 4843 85

3 The UNIBUS adapter verifies that the mapping register has the mapping-
register valid bit set.

4 The UNIBUS adapter maps the UNIBUS address to a page-frame number.

5 The UNIBUS adapter extracts the number of the data path to be used for
the transfer from the mapping register.

6 The data path translates the UNIBUS function to a backplane interconnect
function by reading the UNIBUS control lines.

4-8

I/O Adapter Functions

7 Based on the UNIBUS function indicated by the UNIBUS control lines,
(DATI, DATIP, DATO, or DATOB), the UNIBUS adapter starts appropriate
UNIBUS and backplane interconnect operations to transfer data to or from
the UNIBUS device.

4.3.1 Direct Data Path

Since the direct data path performs a backplane interconnect transfer for
every UNIBUS transfer, it can be used by more than one UNIBUS device
at a time. The UNIBUS adapter arbitrates among devices that wish to use
the direct data path simultaneously. The device driver is unaffected by this
UNIBUS adapter arbitration.

The direct data path is slower than buffered data paths because each UNIBUS
transfer cycle corresponds to a backplane interconnect cycle. One word or
byte is transferred for each backplane interconnect cycle. On some hardware
configurations, the direct data path is unable to transfer a word of data to an
odd-numbered physical address. Therefore, an FDT routine for a DMA device
that uses the direct data path should check that the specified buffer is on a
word boundary.5

A UNIBUS device may choose to use a direct data path rather than a buffered
data path to perform the following functions:

• Execute an interlock sequence to the backplane interconnect (DATIP-
D AT O/DAT OB)

• Transfer to randomly ordered addresses instead of consecutively increasing
addresses

• Mix read and write functions

The direct data path is the simplest data path to program. Since the direct
data path can be shared simultaneously by any number of I/O transfers, the
device driver does not need to call the VAX/VMS routine that allocates the
data path. It performs the following actions:

1 Uses the REQMPR macro to allocate a set of mapping registers

2 Uses the LOADUBA macro to load the mapping registers with physical
address mapping data and the number of the direct data path (0). The
VAX/VMS routine called in the expansion of the LOADUBA macro
(IOC$LOADUBAMAP) also sets the valid bit in every mapping register
except the last, which remains invalid to prevent a wild transfer.

3 Loads the starting address of the transfer in a device register.

4 Loads the transfer byte or word count in a device register.

5 Sets bits in the device control register to initiate the transfer.

5 a result, on Q22 bus devices that are The MicroVAX II and MicroVAX I implementations of the Q22 bus provide no byte-offset register. As

only capable of word-aligned transfers, only word-aligned transfers are possible.

4-9

I/O Adapter Functions

4.3.2 Buffered Data Paths
In contrast to the direct data path, the buffered data paths transfer data much
more efficiently between the UNIBUS and the backplane interconnect by
decoupling the UNIBUS transfer from the backplane interconnect transfer.
Buffered data paths read or write multiple words of data in a transfer, and
buffer the unrequested portions of the data in UNIBUS adapter buffers. Thus,
several UNIBUS read functions can be accommodated with a single backplane
interconnect transfer.

A UNIBUS device may choose to use a buffered data path rather than a direct
data path to perform the following functions:

• Fast DMA block transfers to or from consecutively increasing addresses

• Word-oriented block transfers that begin and end on an odd-numbered
byte of memory; note, however, that these transfers can be quite slow
because the UNIBUS adapter might need to perform multiple transfers to
complete a one-word transfer

• 32-bit data transfers from random longword-aligned physical addresses

A single buffered data path cannot be assigned to more than one active
transfer at a time. When a driver fork process is preparing to transfer data
to or from a UNIBUS device on a buffered data path, it performs a sequence
of steps similar to those performed by a driver that uses the direct data path,
with the exception that it uses a macro that calls a VAX/VMS routine that
allocates a free buffered data path. The following are among the actions of
the driver fork process:

1 Uses the REQMPR macro to allocate a set of mapping registers.

2 Uses the REQDPR macro to allocate a free buffered data path.

3 Uses the LOADUBA macro to load the mapping registers with physical
address mapping data and the number of the allocated buffered data path.
The VAX/VMS routine called in the expansion of the LOADUBA macro
(IOC$LOADUBAMAP) also sets the valid bit in every mapping register
except the last, which remains invalid to prevent a wild transfer.

4 Load the starting address of the transfer in a device register.

5 Load the transfer byte or word count in a device register.

6 Set bits in the device control register to initiate the transfer.

The UNIBUS adapter hardware of certain processors restricts normal buffered
data paths to referring only to consecutively increasing addresses. Through
a special mode of operation, these UNIBUS adapters can also refer to 32-bit
data at randomly-ordered, longword-aligned locations in physical memory.
Other processors do not impose this restriction. In order for a device driver to
run on both types of processors, it must observe three rules:

• All transfers within a block must be of the same function type (DATI or
DATO/DATOB).

• Normal buffered data paths must always transfer data to consecutively
increasing addresses.

• To reference 32-bit data at random, longword-aligned locations in physical
memory, the longword-access-enable bit (LWAE) must be set.

4-10

I/O Adapter Functions

A buffered data path stores data from the UNIBUS in a buffer until multiple
words of data have been transferred (except in longword-aligned, 32-bit,
random-access mode as discussed in Section 4.3.5). Then, the UNIBUS
adapter transfers the contents of the buffer to the appropriate physical address
in a single backplane interconnect operation. The procedure for a UNIBUS
write operation that transfers data from a device to memory is broken into
individual steps.

1 The UNIBUS device transfers one word of data to the buffered data path.

2 The buffered data path stores the word of data and completes the UNIBUS
cycle.

3 The buffered data path sets its buffer-not-empty flag to indicate that the
buffer contains valid data.

4 The UNIBUS device repeats the first three steps until the buffer is full.

5 When the UNIBUS device addresses the last byte or word in the buffer,
the UNIBUS adapter recognizes a complete data-gathering cycle.

6 The buffered data path requests a backplane-interconnect-write function to
write the data from the buffered data path to memory.

7 When the backplane interconnect transfer is complete, the buffered data
path clears its flag to indicate that the buffer no longer contains valid data.

The procedure for a UNIBUS read operation that transfers data from main
memory to a device varies according to the type of UNIBUS adapter. Those
adapters that can perform a prefetch function complete UNIBUS reads
from memory more quickly than those that cannot. The prefetch feature
accomplishes this improved performance by automatically filling the data
path buffer after the buffer's contents are transferred to the UNIBUS.

The following paragraphs discuss the UNIBUS read operation with and
without the prefetch function. Device drivers that adhere to the conventions
outlined in this manual will execute properly whether or not the device is
associated with a UNIBUS adapter that provides prefetch functionality.

1 The UNIBUS device initiates a read operation from a buffered data path.

2 The buffered data path checks to see if its buffers contain valid data.

3 If the buffers do not contain valid data, the buffered data path initiates a
read function to fill the buffers with data from main memory. The transfer
completes before the UNIBUS adapter begins a UNIBUS transfer.

4 The buffered data path transfers the requested bytes to the UNIBUS. Bytes
of data that were not transferred to the UNIBUS remain in the buffer.

5 The buffered data path sets its buffer-not-empty flag to indicate that the
buffers contain valid data.

6 When the UNIBUS device empties the buffers of the buffered data path
with a UNIBUS read function that accesses the last word of data, the
buffered data path clears the buffer-not-empty flag to indicate that the
buffer no longer contains valid data.

7 The buffered data path then initiates a read function to prefetch data from
memory.

8 When the prefetch is complete, the buffered data path sets the buffer-not-
empty flag to indicate that the buffers now contain valid data.

4—11

I/O Adapter Functions

The prefetch might attempt to read data beyond the address mapped by the
final mapping register. To avoid referring to memory that does not exist, the
VAX/VMS routines that allocate and load mapping registers always allocate
one extra mapping register and clear the mapping-register-valid bit before
initiating the transfer. When the UNIBUS adapter notices that the mapping
register for the prefetch is invalid, the UNIBUS adapter aborts the prefetch
without reporting an error.

The steps of a UNIBUS read function without prefetch are listed below.

1 The UNIBUS device initiates a read operation from a buffered data path.

2 The buffered data path checks to see if its buffers contain valid data.

3 If the buffers do not contain valid data, the buffered data path initiates a
read function to fill the buffers with data. The transfer completes before
the UNIBUS adapter begins a UNIBUS transfer.

4 The buffered data path transfers the requested bytes to the UNIBUS. Bytes
of data that were not transferred to the UNIBUS remain in the buffer.

4.3.3 Byte-Offset Data Transfers
The UNIBUS adapter has a byte-offset register; thus, words that are not
word-aligned can be transferred to and from any device on the UNIBUS
regardless of whether the device supports non-word-aligned transfers.

Some UNIBUS devices are restricted to transferring integral words of data
in word-aligned UNIBUS addresses. The buffered data paths allow these
devices to perform transfers to memory that begins and ends on an odd-byte
address. A byte-offset bit in the mapping registers indicates byte-aligned data
to the hardware. If the bit is set, the hardware increments physical addresses.
A VAX/VMS subroutine that loads mapping registers determines whether the
data is word- or byte-aligned and sets the byte-offset bit accordingly.

4.3.4 Purging a Buffered Data Path
Because prefetches can read more data from memory than the UNIBUS device
wishes to read, driver fork processes must ask the UNIBUS adapter to purge
the buffered data path when a transfer is complete. In addition, a transfer
from a device to the backplane interconnect can complete with some data left
in the buffer. The driver must purge the data path to complete the transfer.

The purge guarantees that the data is not transferred to the next user of the
buffered data path. The driver fork process performs the purge by calling a
standard VAX/VMS subroutine that performs two functions:

• Tells the hardware to purge the buffered data path register owned by the
fork process. For a UNIBUS read function, the adapter simply clears the
buffer-not-empty flag. For a UNIBUS write function, the adapter transfers
any data left in the data path buffer to VAX memory, then clears the flag.

• Notifies the driver's fork process of any error that occurs during the purge.

The data path must be purged before the driver releases mapping registers or
the buffered data path register.

4—12

I/O Adapter Functions

4.3.5 Longword-Aligned, 32-Bit, Random-Access Mode
Another method of transferring data over a buffered data path is the use
of longword-aligned, 32-bit, random-access mode. This mode essentially
prevents the UNIBUS prefetch operation, thereby allowing a device that reads
data from or writes data to memory to reference longword-aligned locations
in memory at random, in longword multiples.

To transfer data in the longword-aligned, 32-bit, random-access mode, the
driver's fork process sets the longword-access-enable bit (VEC$V_LWAE) in
the channel-request block (CRB) prior to loading the mapping registers. The
UNIBUS device can then perform a read (DATI) or write (DATO) function.

For a UNIBUS read operation that transfers data from main memory to a
device, the function occurs as follows:

1 The driver's fork process initiates a read function on the UNIBUS device.

2 The UNIBUS adapter clears the buffer-not-empty flag in the assigned
buffered data path.

3 The UNIBUS adapter requests a read-from-memory operation on the
backplane interconnect.

4 The UNIBUS adapter stores the longword of data in the buffered data
path and sets the buffer-not-empty flag.

5 The UNIBUS adapter initiates two UNIBUS read operations to transfer
two words of data.

For a UNIBUS write operation that transfers data from a device to main
memory, the function occurs as follows:

1 The driver's fork process initiates a write function on the UNIBUS device.

2 The UNIBUS adapter clears the buffer-not-empty flag in the assigned
buffered data path.

3 The UNIBUS adapter requests two write operations to transfer two words
of data from the UNIBUS device.

4 The UNIBUS adapter stores the longword of data in the data path's buffer
and sets the buffer-not-empty flag.

5 The UNIBUS adapter initiates a backplane interconnect write operation.

6 When the backplane interconnect write operation is complete, the UNIBUS
adapter clears the buffer-not-empty flag.

To ensure that random-access mode works correctly regardless of processor
type, a buffered data path should not repeatedly address the same longword.
On certain processors a UNIBUS device that polls a single longword, waiting
for data, will constantly be returned the same data.

A longword-aligned transfer over a buffered data path is faster than a transfer
over a direct data path and somewhat slower than a normal transfer using a
buffered data path.

4-13

5 Overview of I / O Processing

Under the VAX/VMS operating system, I/O processing occurs in three major
phases:

• I/O request preprocessing

• Device activation and subsequent handling of the device interrupt

• I/O postprocessing

When a user process issues an I/O request, the Queue I/O Request ($QIO)
system service gains control and coordinates preprocessing of the request.
The last driver FDT routine called by the $QIO system service calls a
VAX/VMS routine that creates a driver fork process to execute the driver's
start-I/O routine. This routine activates the device.

When the transfer is completed, the device requests an interrupt that results
in execution of the driver's interrupt-servicing routine. This routine handles
the interrupt and requests creation of a driver fork process to perform device¬
dependent I/O postprocessing. The driver fork process then transfers control
to the system to perform device-independent I/O postprocessing. Figure 5-1
illustrates the sequence of events.

The $QIO system service is dispatched by means of a corresponding system
service vector in process PI space. This vector essentially contains a CHMK
instruction that causes an exception which alters the process' access mode to
kernel and dispatches to the service-specific procedure, EXE$QIO. VAX/VMS
system service dispatching is described in detail in the VAX/VMS Internals
and Data Structures manual. For the purposes of the discussion in this section,
as well as the rest of the book. Figure 5-2 portrays the flow of an I/O
request from its system service entry point to its servicing by VAX/VMS
executive routines and driver code. Discussion of other entry points appears
in Sections 9, 11, and 12.

i

5.1 Preprocessing an I / O Request
EXE$QIO performs device-independent preprocessing of an I/O request and
calls driver FDT routines to perform device-dependent preprocessing. To
preprocess an I/O request, EXESQIO takes the following steps:

• Verifies that the requesting process has assigned a process I/O channel to
the target device

• Locates the device driver in the I/O database

• Validates the I/O-function code

• Checks process I/O request quotas

• Validates the I/O-status block

• Allocates and sets up the I/O-request packet (IRP)

• Calls driver FDT routines to perform device-dependent preprocessing

5-1

Overview of I/O Processing

Figure 5-1 Sequence of Driver Execution

FORK PROCESS CONTEXT
KERNEL OR INTERRUPT
STACK

INTERRUPT CONTEXT

HARDWARE INTERRUPT OCCURS WHEN
REQUESTED BY DEVICE

5-2

Overview of I/O Processing

Figure 5-2 Detailed Sequence of VAX/VMS I/O Processing

USER'S SYSTEM SERVICE CHANGE MODE $QIO SYSTEM
PROGRAM VECTOR DISPATCHER SERVICE JSB

ZK 4844 85

5.1.1 Process I/O Channel Assignment
The first step in preprocessing an I/O request is to verify that the I/O request
specifies a valid process I/O channel. The process I/O channel is an entry
in a system-maintained process table that describes a path of reference from
a process to a peripheral device unit. Before a program requests I/O to a
device, the program identifies the target device unit by issuing an Assign-
I/O-Channel ($ ASSIGN) system service call. The $ ASSIGN system service
performs the following functions:

• Locates an unused entry in the table of process I/O channels

• Creates a pointer to the device unit in the table entry for the channel

• Returns a channel-index number to the program

When the program issues an I/O request, EXE$QIO verifies that the channel
number specified is associated with a device and locates the unit-control block
associated with the specified channel using the field CCB$L_UCB.

Refer to Figure A-3 and Table A-3 for an illustration of the channel-control
block and a description of its contents.

5—3

Overview of I/O Processing

5.1.2 Locating a Device Driver in the I/O Database
A unit-control block (UCB) that describes a device unit exists for each device
in the system. The UCB indicates the current state of the device unit by
recording such information as:

• Whether the device is active (UCB$V_BSY in UCB$L_STS)

• What I/O request is being processed (UCB$L_IRP)

• Where transfer buffers are located (UCB$L_SVAPTE)

Because drivers run as fork processes and cannot use process address space
to store additional context, drivers use the UCB for temporary data storage
during I/O processing.1

The UCB also holds the context of a driver fork process when VAX/VMS I/O
routines suspend the fork process to wait for an asynchronous event such as
a device interrupt.

Using information in the UCB, a driver can find other I/O data structures
associated with the device, including the channel-request block, interrupt-
dispatch block, and the device-data block.

Figure A-13 represents a UCB and Table A-13 describes its fields.

5.1.2.1 Channel-Request Block
The channel-request block (CRB) allows the operating system to manage the
controller data channel. Among its contents are:

• Code that transfers control to a driver's interrupt-servicing routine
(CRB$L_INTD)

• Addresses of a driver's unit and controller initialization routines
(CRB$L _INTD+VEC$L _UNITINIT, CRB$L _INTD+VEC$L —INITIAL)

• A pointer to the interrupt-dispatch block (IDB), which further describes
the controller (CRB$L_INTD+VEC$L_IDB)

Controllers can be either multiunit or dedicated.

All UCBs describing device units attached to a single multiunit controller
contain a pointer to a single CRB (UCB$L_CRB). For these controllers, a

VAX/VMS routine uses fields in the CRB (CRBL_WQFL, CRBB_MASK)
and IDB (IDB$L—OWNER) to arbitrate pending driver requests for the
controller. When the system grants ownership of a multiunit controller
data channel to a driver fork process, the fork process can initiate an I/O
operation on a device attached to that controller. Figure 5-3 illustrates the
data structures required to describe three devices on a multiunit controller.

1 Section 7.1 describes how you can allocate additional UCB space for storing data or device-dependent driver context. The template in

Section 6.4 and the macro descriptions in Appendix B demonstrate how you can define driver-specific fields in a UCB extended in this manner

using the $DEFINI, $DEF, $DEFEND, $VIELD, and _VIELD macros.

5-4

Overview of I/O Processing

Figure 5-3 Data Structures for Three Devices on One Controller

ZK-920-82

The VAX/VMS operating system does not use the CRB to synchronize
I/O operations for a dedicated controller, as the controller manages but a
single device. Nevertheless, the CRB still is present and used by drivers and
operating system routines.

See Figure A-4 and Table A-4 for an illustration of the CRB and a description
of its contents.

5.1.2.2 Interrupt-Dispatch Block
The CRB contains a pointer to an interrupt-dispatch block (IDB)
(CRB$L_JNTD+VEC$L_IDB). The IDB contains the addresses of these three
critical data structures:

• The UCB of the device unit, if any, that currently owns the controller data
channel (IDB$L —OWNER)

• The control and status register (IDB$L_CSR); it is the key to access to
device registers

• The adapter-control block (IDB$L__ADP) that describes the adapter of the
I/O bus to which the controller is attached

A detailed description of the fields in the IDB appears in Table A-9;
Figure A-9 shows its structure.

Figure 5-4 illustrates the relationship between the data structures that
describe a group of equivalent devices on two separate controllers. In this
figure, one controller has a single device unit, and the other controller has
two device units. Devices on both controllers share the same driver code.

5.1.2.3 Device-Data Block
All UCBs describing device units attached to a single controller contain
a pointer (UCB$L_DDB) to a single device-data block (DDB). The DDB
contains two fields that identify the device and its driver:

• The generic device/controller name (DDB$T_NAME)

• The name of the device's driver as obtained from the driver-prologue table
(DDB$T_DRVNAME).

Table A-6 further describes the fields of the DDB. For a representation of its
structure, see Figure A-6.

5-5

Overview of I/O Processing

Figure 5-4 I/O Database for Two Controllers

ZK-1765-84

5.1.3 Validating the I/O Function
Using the I/O data structures described above, EXE$QIO locates the address
of the driver's function-decision table by following a chain of pointers that
begins in the UCB of the target device:

UCB -► DDT — FDT

EXE$QIO then uses data in the function-decision table to analyze the I/O
function. The procedure confirms that the function specified in the I/O
request is a valid function for the device.

5-6

Overview of I/O Processing

5.1.4 Checking Process I/O Request Quotas

EXE$QIO determines whether the I/O request being readied will cause the
process to exceed its quota for outstanding direct or buffered I/O requests.
If the process' requests remain under quota, the system service allows it
to continue I/O preprocessing. In the case where quota is exceeded, the
procedure examines the process' resource wait flag (PCB$V_SSRWAIT in
PCB$L_STS).

If the flag is clear, EXE$QIO aborts the I/O request. However, if the flag is
set, it places the process in a wait state until the number of requests drops
below quota. When this occurs, process execution resumes, at which time
EXE$QIO charges process quotas as appropriate for the requested operation.

5.1.5 Validating the l/O-Status Block
If the I/O request specifies a quadword I/O-status block to receive final I/O
status information, EXE$QIO determines whether the process issuing the
request has write access to the status-block locations specified. If the process
has write access, EXE$QIO fills the quadword with zeros. If the process does
not have write access, the procedure terminates the request with an error
status.

5.1.6 Allocating and Setting Up an l/O-Request Packet
If validation of the I/O request succeeds to this point, EXE$QIO allocates a
block of nonpaged system memory to contain an IRP.

Before EXE$QIO allocates an IRP, it raises the IPL of the processor to
IPL$_ASTDEL to block any other asynchronous activity in the process. The
new IPL prevents possible termination of the process; process termination
would result in the operating system's losing track of the system memory
allocated for the IRP.

EXE$QIO attempts to allocate an IRP from a lookaside list containing
preallocated IRPs. If no preallocated packets exist, the procedure calls a
VAX/VMS routine that allocates an IRP from general nonpaged pool. This
allocating routine synchronizes with the rest of the system so that it can
allocate the memory needed. (The VAX/VMS Internals and Data Structures
manual describes the allocation routines in detail.)

EXE$QIO resumes I/O preprocessing by writing a description of the I/O
request into the fields of the IRP as follows. Note that this data encompasses
the device-independent information associated with the request. It is up to
the device driver's FDT routines or VAX/VMS common FDT routines to fill
in the device-dependent portions of the IRP as described in Section 5.1.7 and
Section 8.

Data Field(s)

Size in bytes of the IRP IRP$W_SIZE

Identification of the block as an IRP IRP$B_TYPE

Access mode of the process at the time of the IRP$B_RMOD
request

5—7

Overview of I/O Processing

Data Field(s)

Process ID of the requesting process

Address of an AST routine (if specified in the
request) and its parameter1

For file-structured devices, address of a
window-control block (WCB) that describes
the physical location of part of the file

Address of the target device's UCB

l/O-function code2

Number of event flag to set when processing
of the I/O request is complete

Base software priority of the requesting
process

Address of an l/O-status block (if specified in
the request)

Process I/O channel index number

A flag indicating whether the I/O function is for
buffered or direct I/O

A flag indicating whether the I/O request is an
input request

A flag indicating whether the I/O function is a
physical-l/O function

Address of a diagnostic buffer (if specified in
the request)3 and a flag indicating that the
buffer is present

IRP$I_PID

IRPI_AST, IRPI_ASTPRM

IRP$I_WIND

IRP$I_UCB

IRP$W_FUNC

IRP$B_EFN

IRP$B_PRI

IRP$L_IOSB

IRP$W__CHAN

IRP$V_BUFIO in IRP$W_STS

IRP$V_FUNC in IRP$W_STS

IRP$V_PHYSIO in IRP$W_STS

IRP$L_DIAGBUF, IRP$V_
DIAGBUF in IRP$W_STS

11f the request specifies an AST, EXESQIO also verifies that the request would
not cause the process to exceed its AST quota. If it would, EXESQIO aborts the
request.

2For nonfile devices, EXESQIO reduces read- and write-virtual-block functions to
their equivalent read- and write-logical-block functions before storing a code.

3The size of the diagnostic buffer is specified in the driver-dispatch table of the
driver servicing the device unit to which the request is made. See Section 7.2 for
more information.

Figure A-10 illustrates the format of an IRP; Table A-10 describes each of its
fields.

5.1.7 FDT Processing
The driver's function-decision table controls the device-dependent
preprocessing of an I/O request. Figure 5-5 illustrates the layout of a
function-decision table.

5-8

Overview of I/O Processing

Figure 5-5 Layout of a Function-Decision Table

2 longwords

2 longwords

3 longwords

3 longwords

valid I/O

functions

buffered I/O

functions

64-bit

mask

routine address

64-bit

mask

routine address

ZK-921-82

The I/O-function code specified in an I/O request is a 16-bit value consisting
of two fields:

• A 6-bit I/O-function code (bits 0 through 5) that permits you to define
64 unique I/O function codes for every device type. Table 7-1 lists the
function codes defined by VAX/VMS. Section 7.3.1 describes how you
can define device-specific function codes.

• A 10-bit I/O-function modifier (bits 6 through 15). In subsequent
processing of the I/O request, the driver's start-I/O routine uses both
I/O-function code and I/O-function modifier, as stored in IRP$W_FUNC,
to create a device-specific function code to use in device activation.

The first two entries of a function-decision table are two longwords (64
bits) each. The first quadword entry is the legal function bit mask of all I/O-
function codes that are valid for the device. The second quadword entry
is the buffered function bit mask of those valid I/O-functions that are also
buffered-I/O functions.

EXE$QIO uses the value of the low-order six bits of the I/O-function code to
determine which bit to check in each of these bit masks. For example, if the
function code has a value of 22, the procedure checks the twenty-third bit (bit
22) of each bit mask. Thus, EXE$QIO determines whether the I/O-function
code is valid for the device and is able to charge against the appropriate quota
of the requesting process for a direct- or buffered-I/O operation.2

2 For physical- and logical-I/O operations, EXE$QIO also verifies that the process making the I/O request has suitable privileges.

5-9

Overview of I/O Processing

Subsequent entries in the function-decision table are three-longwords long,
and it is these entries that EXE$QIO uses to dispatch to the appropriate I/O
preprocessing routine (FDT routine) for the requested function. Again, the
first quadword is a 64-bit bit mask, and is checked by EXE$QIO in exactly
the same way as the legal function bit mask and the buffered function bit
mask. These action routine bit masks, however, contain the address of an
FDT routine in the subsequent longword, and it is to this FDT routine that
EXE$QIO transfers control when it discovers the bit corresponding to the
I/O-function set in the quadword.

Some FDT routines are present in the operating system because they provide
common services for many devices. Section 8.5 describes these routines.
Other routines are included in the device driver because they perform device¬
dependent services.

EXE$QIO uses the action routine bit mask entries in the function-decision
table to call FDT routines in the driver or system, according to the following
strategy:

1 If the bit corresponding to the function code is set in the action routine
bit mask, EXE$QIO calls the FDT routine whose address appears in the
following longword.

• If this I/O-function requires additional preprocessing after this
particular FDT routine completes its activity, the FDT routine returns
control to EXE$QIO with an RSB instruction. When EXE$QIO regains
control, it advances to the next action routine bit mask and repeats
Step 1.

• If this FDT routine completes all necessary preprocessing for this
particular I/O-function, then it transfers control to a VAX/VMS routine
that queues the IRP or completes the request.

2 If the bit corresponding to the function code is not set, EXE$QIO advances
to the next action routine bit mask in the table and repeats Step 1.

Note: A single function-decision table can specify that EXE$QIO call more
than one FDT routine to perform the many and varied steps in the
preprocessing of a single I/O-function. However, it is the responsibility
of the FDT routine that ultimately completes the preprocessing to
end EXE$QIO's scan of the function-decision table. An FDT routine
accomplishes this by transferring control to either a VAX/VMS routine
that queues the I/O request for the driver's start-I/O routine or one that
completes or aborts the request (see Figure 5-2). In other words, for each
valid I/O-function code for a device, an FDT entry must contain the
address of a routine that ends I/O preprocessing.

FDT routines execute in the context of the process that requested the I/O
operation. Thus, FDT routines can gain access to process virtual address
space. Once all FDT preprocessing is complete, however, the rest of the
processing for the I/O request continues in the limited context of a driver fork
process or an interrupt-servicing routine.

5-10

Overview of I/O Processing

Figure 5-6 FDT Routines and I/O Preprocessing

Overview of I/O Processing

5.2 Handling Device Activity

When I/O preprocessing is complete, the last-called FDT routine generally

jumps (with a JMP instruction) to a routine called EXE$QIODRVPKT.3
EXE$QIODRVPKT, in turn, transfers control (using a JSB instruction) to

EXE$INSIOQ, the VAX/VMS routine that queues IRPs and arbitrates device
activity. (See Figure 5-2 for a representation of the flow of I/O-request
processing at this juncture.)

5.2.1 Creating a Driver Fork Process to Start I/O
EXE$INSIOQ creates only one driver fork process at a time for each device
unit on the system. As a result, only one IRP per device unit is serviced at
one time. EXE$INSIOQ determines whether a driver fork process exists for
the target device, as follows:

• If the device is idle, no driver fork process exists for the device; in this
case, the EXE$INSIOQ immediately calls IOC$INITIATE to create and
transfer control to a driver fork process to execute the driver's start-I/O
routine.

• If the device is busy, a driver fork process already exists for the device,
servicing some other I/O request. In this case, EXE$INSIOQ calls
EXE$INSERTIRP to insert the IRP into a queue of IRPs waiting for the
device unit. The routine queues the IRP according to the base priority of
the caller. Within each priority, IRPs are in first-in/first-out order. The
completion of the current I/O request triggers the servicing of the I/O
request that is first in the queue, according to the procedure described in
Section 12.1.2.3.

In the latter case, by the time the driver's start-I/O routine gains control to
dequeue the IRP, the originating user's process context is no longer available.
Because the context of the process initiating the I/O request is not guaranteed
to a driver's start-I/O routine, the driver must execute in the reduced context
available to a fork process.

IOC$INITIATE always initiates the driver's start-I/O routine with a context
that is appropriate for a fork process. VAX/VMS establishes this context by
performing the following steps:

1 Raising IPL to driver fork IPL (UCB$B_FIPL)

2 Loading the address of the IRP into R3

3 Loading the address of the device's UCB into R5

4 Transferring control (with a JMP instruction) to the entry point of the
device driver's start-I/O routine

The newly activated driver fork process executes under the following
constraints:

• It cannot refer to the address space of the process initiating the I/O
request.

• It can use only RO through R5 freely. It must save other registers before
use and restore them after use.

3 The rules for exiting from FDT preprocessing, including descriptions of EXE$QIODRVPKT and other FDT exit routines, appear in Sections 8.2

and 8.6.

5-12

Overview of I/O Processing

• It must clean up the stack after use. The stack must be in its original state
when the fork process relinquishes control to any VAX/VMS routine.

• It must execute at IPLs between driver fork level and IPL$_POWER. It
must not lower IPL below fork IPL, except by creating a fork process at a
lower IPL.

Each driver fork process executes until one of the following events occurs:

• Device-dependent processing of the I/O request is complete.

• A shared resource needed by the driver is unavailable, as described in
Section 3.3.

• Device activity requires the fork process to wait for a device interrupt.

5.2.2 Activating a Device and Waiting for an Interrupt
Depending on the device type supported by the driver, the start-I/O routine
performs some or all of the following steps:

1 Analyzes the I/O function and branches to driver code that prepares the
UCB and the device for that I/O operation

2 Copies the contents of fields in the IRP into the UCB

3 Tests fields in the UCB to determine whether the device and/or volume
mounted on the device are valid

4 If the device is attached to a multiunit controller, obtains the controller
data channel

5 If the I/O operation is a DMA transfer, obtains a I/O adapter resources
such as mapping registers and a UNIBUS adapter data path

6 Loads all necessary device registers except for the device's control and
status register (CSR)

7 Raises IPL to IPL$_POWER (saving the value of fork IPL on the stack)
and confirms that a power failure that would invalidate the device
operation has not occurred

8 Loads the device's CSR to activate the device

9 Invokes a VAX/VMS routine (using either the WFIKPCH or WFIRLCH
macro) to suspend the driver fork process until a device interrupt or
timeout occurs

As it suspends the driver, IOC$WFIKPCH or IOC$WFIRLCH saves the
driver's context in the UCB. This context consists of the following information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4 (UCBL_FR3, UCBL_FR4)

• The implicit contents of R5 as the address of the UCB

• A driver return address (UCB$L_FPC)

• The address of a device timeout handler (at UCB$L_FPC)

• The time at which the device will time out (UCB$L_DUETIM)

5-13

Overview of I/O Processing

By convention, R4 often contains the address of the CSR; it permits the driver
to examine device registers. When the driver fork process regains control after
interrupt processing, R5 contains the UCB address; it is the key to the rest of
the I/O database that is relevant to the current I/O operation.

Once the driver's start-I/O routine initiates the transfer, the driver invokes
a VAX/VMS routine (with a macro such as WFIKPCH or WFIRLCH) to wait
for the device to interrupt. This routine (IOC$WFIKPCH or IOC$WFIRLCH)
expects to find, among the items it inherits on the stack, the driver's fork IPL,
as placed there by the start-I/O routine in Step 7 above. Having removed
the driver's start I/O routine's return address from the stack and stored it in
UCBL_FPC, IOCWFIKPCH (or IOC$WFIRLCH) restores IPL to fork IPL
from the stack and exits with an RSB instruction. Thus, IOC$WFIKPCFI (or
IOC$WFIRLCH) effectively passes control to the caller of its caller. In this
case, the caller of the driver start-I/O routine that called IOC$WFIKPCH
is EXE$INSIOQ. The flow back from EXE$INSIOQ to a user process that
asynchronously requested the I/O operation is shown in Figure 5-2.

You can find additional information on the context of a start-I/O routine in
Section 9.

5.2.3 Handling a Device Interrupt
When the device requests an interrupt, the interrupt dispatcher transfers
control to the driver interrupt-servicing routine. The driver's interrupt¬
servicing routine runs at a high interrupt priority level so that the routine
can service interrupts quickly. A driver interrupt-servicing routine usually
performs the following processing:

1 For multiunit device controllers, determines which device unit generated
the interrupt

2 Examines the UCB for the device to confirm that the driver fork process
expects the interrupt

3 Saves device registers

4 Reactivates the suspended driver fork process

If necessary, the reactivated driver fork process executes at the high IPL of
the interrupt-servicing routine for a few instructions. Very soon, however,
the driver lowers its execution priority so that it does not block subsequent
interrupts for other devices in the system.

5.2.4 Switching from Interrupt to Fork Process Context
To lower its priority, the driver calls a VAX/VMS fork process queuing routine
(by means of the IOFORK macro) that performs the following steps:

1 Disables the timeout that was specified in the wait-for-interrupt routine

2 Saves R3 and R4 (these are the registers needed to execute as a fork
process) (UCBL_FR3, UCBL_FR4)

5-14

Overview of I/O Processing

3 Saves the address of the instruction following the IOFORK request in the
UCB fork block (UCB$L_FPC)

4 Places the address of the UCB fork block from R5 in a fork queue for the
driver's fork level

5 Returns to the driver's interrupt-servicing routine

The interrupt-servicing routine then cleans up the stack, restores registers,
and dismisses the interrupt. Figure 5-7 illustrates the flow of control in a
driver that creates a fork process after a device interrupt.

Figure 5-7 Creating a Fork Process After an Interrupt

ZK-923-82

5.2.5 Activating a Fork Process from a Fork Queue
When no hardware interrupts are pending, the software interrupt priority
arbitration logic of the processor transfers control to the software interrupt
fork dispatcher. When the processor grants an interrupt at a fork IPL, the
fork dispatcher processes the fork queue that corresponds to the IPL of the
interrupt. To do so, the dispatcher performs these actions:

1 Removes a driver fork block from the fork queue

2 Restores fork context

3 Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension and
restoration of a driver fork process. This convention allows VAX/VMS to
service hardware device interrupts in a timely manner and reactivate driver
fork processes as soon as no device requires attention.

When a given fork process completes execution, the fork dispatcher removes
the next entry, if any, from the fork queue, restores its fork process context,
and reactivates it. This sequence is repeated until the fork queue is empty.
When the queue is empty, the fork dispatcher restores RO through R5 from
the stack and dismisses the interrupt with an REI instruction.

Figure 5-8 illustrates the reactivation of a driver fork process.

5-15

Overview of I/O Processing

Figure 5-8 Reactivation of a Driver Fork Process

ZK-924-82

5.3 Completing an I/O Request

Once reactivated, a driver fork process completes the I/O request as follows:

1 Releases shared driver resources, such as I/O adapter mapping registers,
UNIBUS adapter data path, and controller ownership

2 Returns status to the VAX/VMS I/O completion routine

The I/O-completion routine performs the following steps to start
postprocessing of the I/O request and to start processing the next I/O request
in the device's queue:

1 Writes return status from the driver into the IRP

2 Inserts the finished IRP in the I/O-postprocessing fork-queue and requests
an interrupt at IPL$_IOPOST

3 Creates a new fork process for the next IRP in the device's pending I/O
queue

4 Activates the new driver fork process

5-16

Overview of I/O Processing

5.3.1 I/O Postprocessing

When processor priority drops below the I/O postprocessing IPL, the
processor dispatches to the I/O postprocessing interrupt-servicing routine.
This VAX/VMS routine completes device-independent processing of the I/O
request.

Using the IRP as a source of information, the IPL$_IOPOST dispatcher
executes the sequence below for each IRP in the postprocessing queue:

1 Removes the IRP from the queue

2 If the I/O function was a direct I/O function, adjusts the recorded use of
the issuing process' direct I/O quota and unlocks the pages involved in
the I/O transfer

3 If the I/O function was a buffered I/O function, adjusts the recorded use
of the issuing process' buffered I/O quota and, if the I/O was a write
function, deallocates the system buffers used in the transfer

4 Posts the event flag associated with the I/O request

5 Queues a special kernel-mode-AST routine to the process that issued the
$QIO system service call

The queuing of a special kernel-mode-AST routine allows I/O postprocessing
to execute in the context of the user process but in a privileged access mode.
Process context is needed to return the results of the I/O operation to the
process' address space. The special kernel-mode-AST routine writes the
following data into the process' address space:

• Data read in a buffered I/O operation

• If specified in the I/O request, the contents of the diagnostic buffer

• If specified in the I/O request, the two longwords of I/O status

If the I/O request specifies a user-mode-AST routine, the special kernel-
mode-AST routine queues the user-mode AST for the process. When
VAX/VMS delivers the user-mode AST, the system AST delivery routine
deallocates the IRP. The first part of an IRP is the AST-control block for user
requested ASTs.

5-17

PART II Writing a Device Driver
Device drivers consist of static tables, routines that perform I/O
preprocessing, and routines that handle the device and controller. The
chapters that follow describe how to write the following sections of a driver:

• Static tables

• Routines that use the device driver's function-decision table (FDT)

• Routines that start an I/O operation on the device and complete the I/O
operation

• Routines that handle interrupts

• Routines that request allocation of UNIBUS adapter mapping registers and
data paths

• Routines that initialize devices and controllers

• Routines that cancel an I/O operation

• Routines that log errors

The "how to" chapters are preceded by a chapter that contains a driver
template. The template illustrates the general organization and writing of a
driver.

Note that the "how to" chapters describe a common approach to the design
of various driver routines; they are examples. They do not present the only
approach that can be taken to writing a driver.

6 Template for a Device Driver

The pages that follow describe conventions to be used by device drivers and
provide a template for a device driver. Drivers do not necessarily need all
of the routines indicated by the template, nor do driver routines and tables
need to follow the exact order of the template. However, the VAX/VMS
operating system does place a few restrictions on the order and content of
driver routines and tables.

Figure 6-1 illustrates the organization of a device driver. The first item in a
device driver is the driver-prologue table. This table must be the first part of
a driver. The order of the remaining tables and routines varies from driver to
driver.

Figure 6-1 Driver Organization

DRIVER
PROLOGUE

TABLE

DRIVER
DISPATCH

TABLE

FUNCTION
DECISION

TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUTINES

END MARK

ZK-925-82

The last statement in every driver, except for the .END assembly directive,
must be a label marking the end of the driver. The address of this label
is stored in the driver-prologue table. The driver-loading procedure uses
this address to calculate the size of the driver. Section 14 describes the
driver-loading procedure.

6-1

Template for a Device Driver

Some drivers contain no device-dependent, FDT routines. Other drivers
need only minimal initialization procedures. However, every driver normally
contains static driver tables and a start-I/O routine or an interrupt-servicing
routine.

6.1 Coding Conventions
The driver-loading procedure loads a device driver into a block of nonpaged
system memory whose location is chosen by the operating system memory
allocation routines. Therefore, the driver must consist of position-independent
code only.

In addition, the system might call a device driver repeatedly to process
I/O requests and interrupts. The driver often does not complete one I/O
operation before the system transfers control to the driver to begin another on
a different unit. For this reason, the code must be reentrant.

The rules of position-independent and reentrant code are listed below.

• Instructions can branch only to relative addresses within the driver
and to global addresses listed in the VAX/VMS symbol table
(SYS$SYSTEM:SYS.STB).

• Static tables can list only relative addresses within the driver and global
addresses.

• The driver cannot store temporary data in local driver tables for dynamic
driver context. All dynamic temporary storage must be contained within
the unit-control block corresponding to an I/O request or the current
I/O-request block.

• The driver must refer to the I/O database by loading the address of a data
structure into a general register and using displacement addressing to the
fields of the data structure.

Device drivers must also restrict their use of general registers and the stack:

• FDT routines can use RO through R2 and R9 through Rll as available
registers. The routines can use other registers by saving the registers
before use and restoring them before exiting from the FDT routine.

• All other driver routines can use RO through R5 as available registers.
The routines can use other registers, if necessary, by saving and restoring
them; but using other registers in this way is discouraged.

• All driver routines can use the stack for temporary storage only if the
routines restore the stack to its previous state before calling any VAX/VMS
routines or executing RSB instructions.

6-2

Template for a Device Driver

6.2 Restrictions on the Use of Device-Register I/O Space

The programmer of a device driver for a UNIBUS device must observe the
following restrictions on the use of device registers:

• Drivers should always store the address of a device control register in
a general register and then gain access to the device register indirectly
through the general register. The example below defines symbolic
word offsets for each device register and gains access to them using
displacement-mode addressing from R4.

; Device register offsets

; CSR offset

; Buffer address offset

LP_CSR = 0

LP_DBR = 2

MOVL UCB$L_CRB(R5),R4

MOVL CRB$L_INTD+VEC$L_IDB(R4),R4

Get address of CRB

Get the address of

the device's CSR

TSTW LP_CSR(R4) ; Is printer on line?

• Floating, double, field, queue, or quadword operands are not allowed in
I/O address space, nor can an instruction obtain the position, size, length,
or base of an operand from I/O space. For example, a driver cannot use a
bit field instruction to test a bit in a device register.

• Drivers cannot use string-handling instructions.

• Drivers can use only those instructions that modify or write to a maximum
of one destination. The destination must be the last operand.

• Registers of devices connected to the backplane interconnect (for example,
UNIBUS adapter device registers and MASSBUS device registers) are
longwords. Registers of devices connected to the UNIBUS are words.
Instructions that refer to UNIBUS adapter registers must use longword
context. All driver instructions that affect UNIBUS device registers must
use word context, for example, BISW, MOVW, and ADDW3, unless the
register is byte-addressable.

• An instruction that refers to I/O space must not generate an exception or
be interrupted. If the instruction is allowed to restart, it will reread the
device register, which causes undesirable device side effects or data loss.

• To access I/O space, use only the following instructions. These
instructions cannot be interrupted unless they use autoincrement-
deferred addressing mode or any of the displacement-deferred modes
when specifying an operand.

ADAWI

ADD(B,W,L)2

ADD(B,W,L)3

ADWC

BIC(B,W,L)2

MCOM(B,W,L)

MFPR

MNEG(B,W,L)

MOV(B,W,L)

MOVA(B,W,L)

6—3

Template for a Device Driver

BIC(B,W,L)3

BICPSW

BIS(B,W,L)2

BIS(B,W,L)3

BISPSL

BISPSW

BIT(B,W,L)

CASE(B,W,L)

CHM(K,E,S,U)

CLR(B,W,L)

CMP(B,W,L)

CVT(BW,BL,WB,

WL,LB,LW)

DEC(B,W,L)

INC(B/W/L)

MOVAQ

MOVPSL

MOVZ(BW,BL,WL)

MTPR

PROBE(R,W)

PUSHA(B,W,L)

PUSHAQ

PUSHL

SBWC

SUB(B,W,L)2

SUB(B,W,L)3

TST(B,W,L)

XOR(B,W,L)2

XOR(B,W,L)3

6.3 Implementing Conditional Code in a Driver

When writing a DMA driver to function for equivalent devices on different
I/O bus implementations, DIGITAL recommends that you use the CPUDISP
macro in code paths that need to differentiate between the systems.

The CPUDISP macro (defined in SYS$LIBRARY:LIB.MLB) provides a means
for indirectly distinguishing between bus structures based on the type of the
VAX processor that currently uses that bus structure. Use CPUDISP when it is
necessary to conditionally execute pieces of code, for instance, the allocation
and loading of mapping registers for those processors (for example. Micro VAX
II, VAX-11/780, VAX 8200) whose I/O space contains mapping registers, or
the allocation of a physically contiguous buffer for a DMA transfer on the
Micro VAX I (which cannot map such a transfer).

CAUTION: CPUDISP exists as a temporary means of dispatching to code conditional
to the type of the executing processor. Although, it currently functions to
distinguish between the I/O bus configurations used by each processor, it
most likely will not continue to do so as processors migrate to the various
I/O bus configurations.

CPUDISP builds a case table, first forming the appropriate symbolic constants
(PR$_SID_TYPExxx) as displacement values and branching to a transfer

address according to the contents of global symbol EXE$GB_CPUTYPE.
Currently, the only values accepted for CPU-type are 8NN (for VAX 8800),
790 (for VAX 8600 and VAX 8650), 8SS (for VAX 8200), 780, 750, 730, UV1
(for Micro VAX I), or UV2 (for Micro VAX II). For example:

6-4

Template for a Device Driver

CPUDISP «UV1,5$> , -

<UV2, 1$»,-

CONTINUE=YES ;for all other types of CPU continue

; f or 790,785,780,750,730,8SS,8NN

BRB 10$

1$: ;for UV2

5$: ;for UV1

10$: ;for all others

Appendixes E and F contain examples of drivers that use the CPUDISP macro
and other techniques (for example, a longword of bit flags in an extension to
the UCB) to provide conditional code in a driver. See also the description of
the CPUDISP macro in Appendix B.

6.4 Driver Template
The following pages list the VAX/VMS template driver. You can obtain a
machine-readable copy of it from SYS$EXAMPLES:TDRIVER.MAR.

.TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER

.IDENT 'V04-000'

Copyright (c) 1978, 1980, 1982, 1984

by Digital Equipment Corporation, Maynard, Massachusetts

This software is furnished under a license and may be used and copied

only in accordance with the terms of such license and with the

inclusion of the above copyright notice. This software or any other

copies thereof may not be provided or otherwise made available to any

other person. No title to and ownership of the software is hereby

transferred.

The information in this software is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation.

DIGITAL assumes no responsibility for the use or reliability of its

software on equipment which is not supplied by DIGITAL.

6-5

Template for a Device Driver

FACILITY:

VAX/VMS Template driver

ABSTRACT:

This module contains the outline of a driver:

Models of driver tables

Controller and unit initialization routines

An FDT routine

The start-I/O routine

The interrupt-servicing routine

The cancel I/O routine

The device register dump routine

AUTHOR:

S. Programmer 11-N0V-1979

REVISION HISTORY:

V02 JHP001 J. Programmer 2-Aug-1979 11:27

Remove BLBC instruction from CANCEL routine.

V02-001 JHP001 J. Programmer ll-Feb-1981 13:10

Add description of reason argument to CANCEL

routine. Correct references to channel index

number.

.SBTTL External and local symbol definitions

External symbols

$CANDEF

$CRBDEF

$DCDEF

$DDBDEF

$DEVDEF

$IDBDEF

$I0DEF

$IPLDEF

$IRPDEF

$SSDEF

$UCBDEF

$VECDEF

Local symbols

Cancel reason codes

Channel-request block

Device classes and types

Device-data block

Device characteristics

Interrupt-dispatch block

I/O function codes

Hardware IPL definitions

I/O-request packet

System status codes

Unit-control block

Interrupt vector block

Argument list (AP) offsets for device-dependent QIO parameters

First QIO parameter

Second QIO parameter

Third QIO parameter

Fourth QIO parameter

Fifth QIO parameter

Sixth QIO parameter

PI ss 0

P2 = 4

P3 = 8

P4 = 12

P5 = 16

P6 = 20

6-6

Template for a Device Driver

Other constants

TD.DEF .BUFSIZ = 1024 ; Default buffer size
TD.TIMEOUT.SEC = 10 ; 10 second device timeout
TD.NUM .REGS = 4 ; Device has 4 registers

; Definitions that follow the standard UCB fields

$DEFINI UCB ; Start of UCB definitions

.=UCB$K_LENGTH ; Position at end of UCB

$DEF UCB$W_TD_WORD
.BLKW 1

; A sample word

$DEF UCB$W_TD_STATUS
.BLKW 1

; Device's CSR register

$DEF UCB$W_TD_WRDCNT
.BLKW 1

; Device's word count register

$DEF UCB$W_TD_BUFADR
.BLKW 1

; Device's buffer address
; register

$DEF UCB$W_TD_DATBUF
.BLKW 1

; Device's data buffer register

$DEF UCB$K_TD_UCBLEN ; Length of extended UCB

; Bit positions for device-dependent status field in UCB

$VIELD UCB,0,<- ; Device status
<BIT_ZER0,,M>, - ; First bit
<BIT_0NE,,M>,- ; Second bit
>

$DEFEND UCB ; End of UCB definitions

Device register offsets from CSR address

$DEFINI TD

$DEF TD.STATUS
.BLKW 1

Start of status definitions

Control/status

Bit positions for device control/status register

.YIELD

>

TD_STS,0,<- Control/status register
<G0,,M>,- Start device
<BIT1,,M>,- Bit one

<BIT2,,M>,- Bit two
<BIT3,,M>,- Bit three
<XBA,2,M>,- Extended address bits

<INTEN,,M>,- Enable interrupts
<READY,,M>,- Device ready for command
<BIT8,,M>,- Bit eight

<BIT9,,M>,- Bit nine
<BIT10,,M>, - Bit ten
<Bml, ,M>,- Bit eleven

<.1>." Disregarded bit
<ATTN,,M>,- Attention bit
<NEX,,M>,- Nonexistent memory flag
<ERR0R,,M>,- Error or external interrupt

6-7

Template for a Device Driver

$DEF TD.WRDCNT
.BLKW 1

; Word count

$DEF TD.BUFADR
. BLKW 1

; Buffer address

$DEF TD.DATBUF
.BLKW 1

; Data buffer

IDEFEND TD ; End of device register
; definitions.

.SBTTL Standard tables

Driver prologue table

DPTAB
END=TD_END,-
ADAPTER=UBA,-

UCBSIZE=<UCB$K_TD_UCBLEN>,-
N AME=TDDRIVER

DPT.STORE INIT

DPT.STORE UCB,UCB$B_FIPL,B,8
DPT.STORE UCB,UCB$B_DIPL,B,22
DPT.STORE UCB,UCB$L_DEVCHAR,L.<-

DEV$M_IDV!-
DEV$M_0DV>

DPT.STORE UCB.UCB$B_DEVCLASS,B,DC$_SC0M
DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,-

TD.DEF.BUFSIZ

DPT.STORE REINIT

DPT.STORE DDB,DDBL_DDT,D,TDDDT
DPT.STORE CRB,CRB$L_INTD+4,D,-

TD_INTERRUPT

DPT.STORE CRB,-
CRB$L_INTD+VEC$L_INITIAL,-
D,TD.CONTROL.INIT

DPT.STORE CRB,-
CRB$L_INTD+VEC$L_UNITINIT,-
D,TD.UNIT.INIT

DPT-creation macro
End of driver label
Adapter type
Length of UCB
Driver name

Start of load
initialization table

Device fork IPL
Device interrupt IPL
Device characteristics

input device
output device

Sample device class
Default buffer size

Start of reload
initialization table

Address of DDT
Address of interrupt
service routine

Address of controller
initialization routine

Address of device
unit initialization
routine

DPT.STORE END

Driver dispatch table

End of initialization
tables

DDTAB
DEVNAM=TD,-
START=TD_START,-
FUNCTB=TD_FUNCTABLE,
CANCEL=TD_CANCEL,-
REGDMP=TD_REG.DUMP

DDT-creation macro
Name of device
Start-I/O routine
FDT address
Cancel I/O routine
Register dump routine

Function decision table

TD.FUNCTABLE:
FUNCTAB

<READVBLK,-
READLBLK,-
READPBLK,-
WRITEVBLK,-
WRITELBLK,-
WRITEPBLK,-
SETMODE,-
SETCHAR>

FDT for driver
Valid I/O functions
Read virtual
Read logical
Read physical
Write virtual
Write logical
Write physical
Set device mode
Set device chars.

6-8

Template for a Device Driver

FUNCTAB ,
FUNCTAB +EXE$READ,-

<READVBLK,-
READLBLK,-
READPBLK>

FUNCTAB +EXE$WRITE,-
<WRITEVBLK,-
WRITELBLK,-
WRITEPBLK>

FUNCTAB +EXE$SETMODE,-
<SETCHAR,-
SETM0DE>

No buffered functions
FDT read routine for
read virtual,
read logical,
and read physical.

FDT write routine for
write virtual,
write logical,
and write physical.

FDT set mode routine
for set chars, and
set mode.

.SBTTL TD_CONTROL_INIT, Controller initialization routine

++

TD_CONTROL_INIT, Readies controller for I/O operations

Functional description:

The operating system calls this routine in three places:

At system startup
During driver loading and reloading
During recovery from a power failure

Inputs:

R4
R5
R6
R8

Outputs:

- address of
- address of
- address of
- address of

the CSR (control/status register)
the IDB (interrupt-dispatch block)
the DDB (device-data block)
the CRB (channel-request block)

The routine must preserve all registers except R0-R3.

TD_C0NTR0L_INIT: ; Initialize controller
RSB ; Return

.SBTTL TD_UNIT_INIT, Unit initialization routine

++

TD_UNIT_INIT, Readies unit for I/O operations

Functional description:

The operating system calls this routine after calling the
controller initialization routine:

At system startup
During driver loading
During recovery from a power failure

Inputs:

R4 - address of the CSR (control/status register)
R5 - address of the UCB (unit-control block)

Outputs:

The routine must preserve all registers except R0-R3.

6-9

Template for a Device Driver

.INIT: ; Initialize unit

BISW #UCB$M_ONLINE, -

UCB$W_STS(R5) ; Set unit on line
RSB ; Return

.SBTTL TD_FDT_ROUTINE, Sample FDT routine

TD.FDT.ROUTINE, Sample FDT routine

Functional description:

SUPPLIED BY USER

Inputs:

R0-R2 - scratch registers

R3 - address of the IRP
R4 - address of the PCB

R5 - address of the UCB
R6 - address of the CCB

R7 - bit number of the
R8 - address of the FDT
R9-R11 - scratch registers
AP - address of the 1st

Outputs:

The routine must preserve all registers except R0-R2, and

R9-R11.

TD.FDT.ROUTINE:
RSB

; Sample FDT routine
; Return

.SBTTL TD.START, Start-I/O routine

++

TD_START - Start a transmit, receive, or set mode operation

Functional description:

SUPPLIED BY USER

Inputs:

R3 - address of the IRP (I/O-request packet)
R5 - address of the UCB (unit-control block)

Outputs:

RO

R1

- 1st longword of I/O status: contains status code and
number of bytes transferred

- 2nd longword of I/O status: device-dependent

The routine must preserve all registers except R0-R2 and R4.

TD.START: ; Process an I/O packet

WFIKPCH TD_TIMEOUT,#TD_TIMEOUT_SEC

After a transfer completes successfully, return the number of bytes
transferred and a success status code.

IOFORK
INSV UCB$W_BCNT(R5),#16.-

#16,RO
MOVW #SS$_NORMAL,RO

Load number of bytes trans¬
ferred into high word of RO.
Load a success code into RO.

6-10

Template for a Device Driver

Call I/O postprocessing.

COMPLETE.10:
REQCOM

Driver processing is finished.
Complete I/O.

Device timeout handling. Return an error status code.

TD.TIMEOUT:
SETIPL UCB$B_FIPL(R5)
MOVZWL #SS$_TIME0UT,RO
BRB COMPLETE.10

Timeout handling
Lower to driver fork IPL
Return error status.
Call I/O postprocessing.

.SBTTL TD.INTERRUPT, Interrupt service routine

++

TD.INTERRUPT, Analyzes interrupts, processes solicited interrupts

Functional description:

The sample code assumes either

that the driver is for a single-unit controller, and
that the unit initialization code has stored the
address of the UCB in the IDB; or

that the driver's start-I/O routine acquired the
controller's channel with a REQPCHANL macro call, and
then invoked the WFIKPCH macro to keep the channel
while waiting for an interrupt.

Inputs:

0(SP) - pointer to the address of the IDB (interrupt dispatch
block)

4(SP) - saved RO
8(SP) - saved R1

12(SP) - saved R2
16(SP) - saved R3
20(SP) - saved R4
24(SP) - saved R5
28(SP) - saved PSL (processor status longword)
32(SP) - saved PC

The IDB contains the CSR address and the UCB address.

Outputs:

The routine must preserve all registers except R0-R5.

TD.INTERRUPT:
MOVL 0(SP)+,R4

MOVL IDB$L_0WNER(R4),R5

MOVL IDB$L_CSR(R4),R4
BBCC #UCB$V_INT,-

UCB$W_STS(R5),-
UNSOL.INTERRUPT

Service device interrupt
Get address of IDB and remove
pointer from stack.
Get address of device owner's
UCB.
Get address of device's CSR.
If device does not expect
interrupt, dismiss it.

6-11

Template for a Device Driver

This is a solicited interrupt. Save
the contents of the device registers in the UCB.

MOVW TD.STATUS(R4) , -
UCB$W_TD_STATUS(R5)

MOVW TD.WRDCNT(R4),-
UCB$W_TD_WRDCNT(R5)

MOVW TD_BUFADR(R4),-
UCB$W_TD_BUF ADR(R5)

MOVW TD.DATBUF(R4),-
UCB$W_TD_DATBUF(R5)

Otherwise, save all device
registers. First the CSR.
Save the word count register.

Save the buffer address
register.
Save the data buffer register

Restore control to the main driver.

RESTORE.DRIVER:
MOVL UCB$L_FR3(R5),R3

JSB «UCB$L_FPC(R5)

Jump to main driver code.
Restore driver's R3 (use a
MOVQ to restore R3-R4).
Call driver at interrupt
wait address.

Dismiss the interrupt.

UNS0L_INTERRUPT:
POPR #~M<R0,R1.R2,R3,R4,R5>
REI

Dismiss unsolicited interrupt.
Restore R0-R5
Return from interrupt.

.SBTTL TD_CANCEL, Cancel I/O routine

h+

TD_CANCEL, Cancels an I/O operation in progress

Functional description:

This routine calls I0C$CANCELI0 to set the cancel bit in the
UCB status word if:

The device is busy.
The IRP's process ID matches the cancel process ID,
The IRP channel matches the cancel channel.

If IOC$CANCELIO sets the cancel bit, then this driver routine
does device-dependent cancel I/O fixups.

Inputs:

R2
R3
R4

R5
R8

Outputs:

- channel index number
- address of the current IRP (I/O-request packet)
- address of the PCB (process-control block) for the

process canceling I/O
- address of the UCB (unit-control block)
- cancel reason code, one of:

CAN$C_CANCEL if called through $CANCEL or
$DALL0C system service

CAN$C_DASSGN if called through $DASSGN
system service

The routine must preserve all registers except R0-R3.

The routine may set the UCB$M_CANCEL bit in UCB$W_STS.

TD.CANCEL:
JSB G~I0C$CANCELI0
BBC #UCB$V_CANCEL,-

UCB$W_STS(R5).10$

Cancel an I/O operation
Set cancel bit if appropriate.
If the cancel bit is not set.
just return.

6-12

Template for a Device Driver

Device-dependent cancel operations go next.

; Finally, the return.

10$:
RSB ; Return

.SBTTL TD_REG_DUMP, Device register dump routine

; ++

; TD_REG_DUMP, Dumps the contents of device registers to a buffer

; Functional description:

; Writes the number of device registers and their current
; contents into a diagnostic or error buffer.

; Inputs:

; R0 - address of the output buffer
; R4 - address of the CSR (control/status register)
; R5 - address of the UCB (unit-control block)

; Outputs:

; The routine must preserve all registers except R1-R3.

; The output buffer contains the current contents of the device
; registers. RO contains the address of the next empty longword in
; the output buffer.

DUMP: ; Dump device registers

MOVZBL #TD_NUM_REGS,(R0)+ ; Store device register count.

MOVZWL UCB$W_TD_STATUS(R5),-
(RO) +

; Store device status register.

MOVZWL UCB$W_TD_WRDCNT(R5).-

(R0) +

; Store word count register.

MOVZWL UCB$W_TD_BUFADR(R5),-
(R0) +

; Store buffer address register

MOVZWL UCB$W_TD_DATBUF(R5),-
(RO)-*-

; Store data buffer register.

RSB ; Return

.SBTTL TD_END, End of driver

; ++

; Label that marks the end of the driver

TD_END: ; Last location in driver
.END

6-13

7 Writing Device-Driver Tables

Every device driver declares three static tables that describe the device and
driver:

• Driver-prologue table—describes the device type, driver name, and fields
in the I/O database to be initialized during driver loading and reloading.

• Driver-dispatch table—lists some of the driver's entry points to which
VAX/VMS transfers control. The channel-request block and function-
decision table list other entry points.

• Function-decision table—lists valid functions of the driver and entry
points to routines that perform I/O preprocessing for each function.

The VAX/VMS operating system provides macros that drivers can invoke to
create the tables listed above. Descriptions of individual tables in the sections
that follow also describe the macros invoked to create the tables.

All of the macros described in this chapter are keyword macros. Argument
values for such macros can be expressed in the following format:

KEYWORD=argument-value

The VAX MACRO and Instruction Set Reference Volume describes the syntax
rules for keyword macros in detail. The sections that follow provide examples
of macro usage.

7.1 Driver-Prologue Table

The driver-prologue table (DPT) is the first part of every device driver.
This table, along with parameters to the SYSGEN command that request
driver loading, describes the driver to the driver-loading procedure. In turn,
the driver-loading procedure computes the size of the driver, loads it into
nonpaged system memory, and creates data structures for the new device(s)
in the I/O database. The loading procedure also links the new DPT into a list
of all DPTs known to the system. Section 14 describes how the driver-loading
procedure decides which data structures to build for a given device.

Device drivers can pass data-structure initialization information to the driver¬
loading procedure through values stored in the DPT. In addition, the driver¬
loading procedure initializes some fields within the device data structures
using information from its own tables.

Figure A-8 illustrates the DPT data structure, and Table A-8 describes its
contents. Drivers must treat many of the fields initialized by the driver¬
loading procedure as read-only fields. These fields are marked with an
asterisk in Appendix A.

7-1

Writing Device-Driver Tables

7.1.1 DPTAB Macro

To create a DPT, the driver invokes the DPTAB macro.

Format

DPTAB end .adapter ,[flags=0] .ucbsize .[unload] ,[maxunits=8] -
,[defunits=l] ,[deliver] ,[vector] .name

Arguments

end
Name of the label at the end of the driver module.

adapter
Adapter type. The adapter type can be any of the following:

UBA UNIBUS adapter or MicroVAX II or MicroVAX I Q22 bus interface

MBA MASSBUS adapter

DR DR device

NULL No actual device for driver

[flags=0]
Flags used in loading the driver. These flags include the following:

DPT$M_SVP When set, causes the driver-loading procedure to allocate
a permanent system page-table entry (PTE) for the device.
The index to the virtual address of the permanently
allocated system PTE is stored in UCB$I_SVPN when the
UCB is created. A driver can calculate the system virtual
address of the page described by this index by using the
formula:

(index * 20016) + 8000000016

Disk drivers use this system PTE during ECC error
correction, and when using the system routines
IOCSMOVFRUSER and IOCSMOVTOUSER, described
in Appendix C.

DPT$M_NOUNLOAD When set, indicates that the driver cannot be reloaded
except in the event of a system bootstrap.

ucbsize
Size of each unit-control block (UCB) in bytes. This required argument allows
drivers to extend the UCB to store device-dependent data describing an I/O
operation. Driver routines and VAX/VMS ECC routines interpret fields in
the extended part of the UCB. The amount that the UCB is extended varies
according to driver type. Appendix A provides examples.

[unload]
Address of a routine to call before the driver is reloaded. The driver-loading
procedure calls this routine before reinitializing all controllers and device
units associated with the driver.

7—2

Writing Device-Driver Tables

[maxunits=8]
Maximum number of units that this driver supports on a controller. This
field affects the size of the interrupt-dispatch block created by SYSGEN's
CONNECT command. If this field is omitted, the default is eight units. You
can override the default by appending the /MAXUNITS qualifier to the
CONNECT command.

[defunits=1]
Number of units created by default for each controller that SYSGEN's
AUTOCONFIGURE command processes on behalf of this driver. The unit
numbers created are 0 through defunits-1. If the deliver argument to the
DPTAB macro is omitted, AUTOCONFIGURE creates the number of units
specified by defunits. If the deliver argument is present, it names a unit-
delivery routine that AUTOCONFIGURE calls to determine whether or not to
create each unit automatically.

[deliver]
Address of a unit-delivery routine that AUTOCONFIGURE calls to determine
which units to configure automatically for the device supported by this driver.

[vector]
Address of a driver-specific transfer vector. Use of this argument is reserved
to DIGITAL.

name
Name of the device driver module. The driver-loading procedure will permit
the loading of only one copy of the driver associated with this name. By
convention, a driver name is formed by appending the string DRIVER to the
2-alphabetic-character generic device name, for example, DBDRIVER.

7.1.2 DPT_STORE Macro

Most device drivers need to initialize certain fields of the I/O database
with driver-specific values. The DPT_STORE macro provides the driver
with a means of communicating its initialization needs to the driver-loading
procedure. When invoked, the DPT_STORE macro places information in
the DPT that the driver-loading procedure uses to load specified values into
specified fields. The DPT_STORE macro accepts two lists of fields:

• Fields to be initialized when a CONNECT command causes SYSGEN to
build I/O database data structures and when the driver is reloaded

• Fields to be initialized only when SYSGEN is given the RELOAD
command, causing the driver to be reloaded

The DPTAB macro stores the relative addresses of these two lists, called
initialization and reinitialization data, in the DPT. The list of one or more
invocations of the DPT_STORE macro must appear after the DPTAB macro.

Drivers must use the DPT_STORE macro to supply initialization data for the
following fields:

UCB$B_FIPL

UCB$B_DIPL

UCB$L_DEVCHAR

Driver fork IPL

Hardware device IPL

Device characteristics

7-3

Writing Device-Driver Tables

The driver also must provide reinitialization data for the device-data block
field DDB$L_DDT and for any of the following routine addresses in the
channel-request block:

DDB$L_DDT

CRB$I_INTD+4

CRB$L_INTD+VEC$L—INITIAL

CRB$I_INTD+VEC$I_UNITINIT

Address of the driver-dispatch table.

Entry point to the driver interrupt-servicing
routine, if one exists.

Address of a controller-initialization routine,
if one exists.

Address of a device unit-initialization
routine, if one exists. This entry point
is used by UNIBUS and Q22 bus devices.

The DPT—STORE macro either declares an assembly language label or
describes a field to be initialized.

Format

DPT.STORE type .offset ,oper ,exp [,pos] [.size]

Arguments

type

Type of data structure into which the data is to be stored (CRB, DDB, IDB,
ORB, or UCB); or label denoting a table marker. A label can be any of the
following:

INIT Indicates the start of fields to initialize when the driver is loaded.

REINIT Indicates the start of additional fields to initialize when the driver is
loaded or reloaded.

END Indicates the end of the two lists.

If this argument is a label, no other argument is allowed. In this case, only
fields in the DPT are affected.

offset

Unsigned offset into the data structure. The driver-loading procedure can
initialize only the first 256 bytes of each data structure. Unit and controller
initialization routines can initialize additional data fields.

oper

Type of operation to be performed. The type can be one of the following:

B Write a byte value

W Write a word value

L Write a longword value

D Write an address relative to the driver

V Write a bit field

The V operation takes the following longword of data and the pos and size
arguments as operands of an INSV instruction.

An at sign ((a)) preceding the oper argument indicates that the expression
argument that follows is the address of the initialization data.

7-4

Writing Device-Driver Tables

exp
Expression to be stored in the data structure or, if an at sign (@) is specified
preceding the oper argument, the address of an expression. For example, the
following macro indicates that DEVICE—CHARS is the address of the data to
write into the DEVCHAR field of the UCB.

DPT.STORE UCB,UCB$L_DEVCHAR.®L,DEVICE.CHARS

[pos]
Starting bit position within the specified field. This argument is specified only
for V operations.

[size]
Number of bits in the field. This argument is specified only for V operations.

7.1.3 Example of DPTAB and DPT_STORE Macros
The following example invokes the DPTAB macro and DPT_STORE macros
to describe a device driver and its database.

DPTAB -
END=XX_END,-
ADAPTER=UBA,-
UCBSIZE=UCB$K_XX_LENGTH. -
NAME=XXDRIVER

DPT.STORE INIT

DPT.STORE UCB,UCB$B_FIPL,B,8
DPT.STORE UCB,UCB$L_DEVCHAR,L,-

<DEV$M_REC-
!DEV$M_AVL-
!DEV$M_ODV>

DPT.STORE UCB,UCB$B_DEVCLASS.B.-
DC$_XX

DPT.STORE UCB,UCB$B_DEVTYPE,B,-
XX$_XL78

DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,-
132

DPT.STORE UCB,UCB$B_DIPL,B,22

Define DPT
End of driver
Adapter type
Size of UCB
Name of driver module
Start of data structure
initialization values

Driver fork IPL
Device characteristics:
record-oriented
available
output device

Device class

Device type

Default buffer size

Device IPL

DPT.STORE REINIT Start of data structure
reinitialization values

DPT.STORE CRB,CRB$L_INTD+4,D,-
XX.INTERRUPT

Interrupt service
routine address

DPT.STORE CRB,CRB$L_INTD+VEC$L_UNITINIT,-
D,XX.XL78.INIT Unit initialization

routine address

DPT.STORE DDB,DDBL_DDT,D,XXDDT

DPT.STORE END

Address of driver
dispatch table
End of field
initialization

7-5

Writing Device-Driver Tables

7.2 Driver-Dispatch Table
The driver-dispatch table (DDT) lists some of the entry points for driver
routines to be called by VAX/VMS for I/O processing. Every driver must
create a DDT.

The routines listed in the DDT can reside in the driver module or in a
VAX/VMS module. Appendix A describes the VAX/VMS device-independent
routines that can be specified.

Device-dependent routines are normally located in the driver module. The
DDT contains relative addresses for routines located in the driver module and
absolute addresses for routines located in the operating system. At loading
time, the driver-loading procedure changes the relative addresses of driver
routines to absolute addresses.

The driver creates the DDT by invoking the macro DDTAB. The driver¬
loading procedure writes the address of the DDT table, as specified in a
DPT_STORE macro, into the device-data block. Figure A-7 illustrates the
structure of a DDT and Table A-7 describes its contents.

7.2.1 DDTAB Macro
The DDTAB macro creates a DDT. The table has a label of devnam$DDT. Just
preceding the table, DDTAB generates the driver code program section with
the following statement:

.PSECT $$$115_DRIVER

The DDTAB macro writes the address of the VAX/VMS routine
IOC$RETURN into routine address fields of the DDT that are not supplied
in the macro invocation (with the exception of the mntver argument).
IOC$RETURN simply executes an RSB instruction.

Format

DDTAB devnam ,[start=IOC$RETURN] , [unsolic^IOClRETURN] .functb -
[,cancel=IOC$RETURN] [,regdmp=IOC$RETURN] [,diagbf=0] -
[,erlgbf=0] [,unitinit=IOC$RETURN] [,altstart=IOC$RETURN] -
[.mntver=IOC$MNTVER] [,cloneducb=IOC$RETURN]

Arguments

devnam
Generic name of the device.

[start=IOC$RETURN]
Address of the driver's start-I/O routine.

[unsolic=IOC$RETURN]
Address of the routine that services unsolicited interrupts from the device.
Only MASSBUS device drivers use this field.

functb
Address of the driver's function-decision table.

[cancel=IOC$RETURN]
Address of the driver's cancel-I/O routine.

7—6

Writing Device-Driver Tables

[regdmp=IOC$RETURN
Address of the routine that dumps the device registers to an error log buffer
or to a diagnostic buffer.

[diagbf=0]
Length in bytes of the diagnostic buffer used for this device.

[erlgbf=0]
Length in bytes of the error log buffer used for this device.

[unitinit=IOC$RETURN]
Address of the device unit-initialization routine, if one exists. MASSBUS
drivers should use this field rather than CRB$L_INTD+VEC$L_UNITINIT.
UNIBUS or Q22 bus drivers can use either one.

[altstart=IOC$RETURN]
Address of the alternate start-I/O routine. To initiate this routine, a driver
FDT routine exits by means of VAX/VMS routine EXE$ALTQUEPKT instead
of EXE$QIODRVPKT (see Section 8.6).

[mntver=IOC$MNTVER]
Address of a VAX/VMS routine that is called at the beginning and end
of a mount verification operation. If no routine is specified, the routine
IOC$MNTVER is called. Use of this field to call any routine other than
IOC$MNTVER is reserved to DIGITAL.

[cloneducb=IOC$RETURN]
Address of a VAX/VMS routine to call when a UCB is cloned by the
$ASSIGN system service

7.2.2 Example of DDTAB Macro
In the following example of using the DDTAB macro, notice that a plus
sign (+) precedes the address of the entry point to the cancel-I/O routine.
The plus sign indicates that the routine is part of VAX/VMS. No plus sign
precedes the address of the start-I/O routine because it is part of the driver
module. Omitting a required plus sign is a common error in device drivers.

DDTAB DEVNAM=XX,- ; Driver dispatch table

START=STAHTIO,- ; Start the I/O operation
FUNCTB=FUNCTABLE,- ; Function decision table
CANCEL=+IOC$CANCELIO ; Cancel I/O

7.3 Function-Decision Table
The function-decision table (FDT) lists codes for I/O functions that are valid
for the device; indicates whether the functions are buffered-I/O functions;
and specifies routines to perform preprocessing for particular functions. Every
device driver must create an FDT containing three or more entries:

• The list of valid I/O-function codes

• The list of buffered I/O-function codes

7-7

Writing Device-Driver Tables

• One or more entries, each of which specifies all or a subset of I/O-function
codes and the address of a routine that performs I/O preprocessing for
those function codes

If no buffered I/O functions are defined for the device, the second entry
contains an empty list.

Taken together, the third through last entries in the FDT specify one or
more FDT routines for each valid I/O-function code for the device. The
FDT routines must terminate the I/O preprocessing for each type of function

by transferring control out of the $QIO system service and into a routine
that queues the I/O request to a driver, inserts the I/O request in the
postprocessing queue, or aborts the I/O request.

Refer to Section 8 for information on the writing of FDT routines.

Table 7-1 lists the physical-, logical-, and virtual-I/O-function codes that an
FDT most commonly uses. A complete list of function codes is contained in
the macro $IODEF in SYS$LIBRARY:STARLET.MLB.

Table 7-1 VAX/VMS l/O-Function Codes

Function Codes Defined

Physical I/O IO$_AVAILABLE

IO$_DIAGNOSE

IO$_DRVCLR

IO$_ERASET APE

IO$_NOP

IO$_OFFSET

IO$_PACKACK

IO$_READHEAD

IO$_READPBLK

IO$_READPRESET

IO$_READTRACKD

IO$_RECAL

IO$_RELEASE

IO$_RETCENTER

IO$_SEARCH

JO$_SEEK

IO$_SENSECHAR

IO$_SETCHAR

IO$_SPACEFILE

IO$_SPACERECORD

IO$_ST ARTSPNDL

IO$_UNLOAD

IO$_WRITECHECK

Description

Set device available (required by all disk
drivers)

Diagnose

Drive clear

Erase tape

No operation

Offset read heads

Pack acknowledge (required by all disk
drivers)

Read header and data

Read physical block

Read in preset

Read track data

Recalibrate drive

Release port

Return to center line

Search for sector

Seek cylinder

Sense device characteristics

Set device characteristics

Space files

Space records

Start spindle

Unload drive (required by all disk
drivers)

Write check data

7-8

Writing Device-Driver Tables

Table 7-1 (Cont.) VAX/VMS l/O-Function Codes

Function Codes Defined Description

IO$_WRITECHECKH

IO$_WRITEHEAD

IOS—WRITEMARK

IO$_WRITEPBLK

IO$_WRITETRACKD

Logical I/O IO$_READLBLK

IO$_REWIND

IO$_REWINDOFF

IO$_SENSEMODE

IO$_SETMODE

IO$_SKIPFILE

IO$_SKIPRECORD

IO$_WRITELBLK

IOS—WRITEOF

Virtual I/O IO$_ACCESS

IO$_ACPCONTROL

IO$_CREATE

IO$_DEACCESS

IO$_DELETE

IO$_MODIFY

IO$_MOUNT

IO$_READPROMPT

IOS—READVBLK

IO$_WRITEVBLK

Write check header and data

Write header and data

Write tape mark

Write physical block

Write track data

Read logical block

Rewind tape

Rewind and set offline

Sense device mode

Set mode

Skip files

Skip records

Write logical block

Write end of file

Access file

Miscellaneous ACP control

Create file

Deaccess file

Delete file

Modify file

Mount volume

Read terminal with prompt message

Read virtual block

Write virtual block

7.3.1 Defining Device-Specific Function Codes
You can also define device-specific function codes by equating the name of a
device-specific function with the name of a function that is irrelevant to the
device. The selected codes should, however, have a type (logical, physical, or
virtual) that is appropriate for the function they represent. For example, the
assembly code that follows defines three device-specific physical-I/O-function
codes.

IO$_STARTCLOCK=IO$_ERASETAPE ; Start hardware clock
I0$_ST0PCL0CK=I0$_0FFSET ; Stop hardware clock
IO$_STARTDATA=IO$_SPACEFILE ; Start data acquisition

The device driver creates an FDT by invoking the FUNCTAB macro. Each
invocation of the FUNCTAB macro creates a 2- or 3-longword entry in the
FDT. The first two invocations create 2-longword entries because they specify
only function codes; they do not specify an accompanying action routine.

7-9

Writing Device-Driver Tables

All subsequent invocations of the FUNCTAB macro must specify both
function codes and the address of a routine that is to perform preprocessing
for those functions. These invocations create 3-longword entries.

The $QIO system service processes entries in the order in which they appear
in the FDT. When a function code is present in more than one 3-longword
entry, the system service sequentially calls every routine specified for the
function code until a routine stops the scan by aborting, completing, or
queuing an I/O request.

7.3.2 Defining Buffered-I/O Functions
The second entry in an FDT is a buffered function bit mask that indicates which
legal functions the driver handles as buffered-I/O operations. In selecting the
functions that are to be buffered, you should take the following information
into consideration:

• Direct I/O is intended only for devices whose I/O operations always
complete quickly. For example, although terminal I/O is fast, users can
prevent the I/O operation from completing by using CTRL/S to halt the
operation indefinitely; therefore, terminal I/O operations are buffered I/O.

• Use of direct I/O requires that the process pages containing the buffer be
locked in memory. Locking pages in memory increases the overhead of
swapping the process that contains the pages.

• Use of buffered I/O requires that the data be moved from the system
buffer to the user buffer. Moving data requires additional time.

• Routines that manipulate data before delivering it to the user (for example,
an interrupt-servicing routine for a terminal) cannot gain access to the data
if direct I/O is used. Therefore, transfers that require data manipulation
must be buffered I/O.

• VAX/VMS handles the quotas differently for direct I/O and buffered I/O,
as described in the VAX/VMS System Manager's Reference Manual.

• Generally, DMA devices use direct I/O, while programmed I/O devices
use buffered I/O.

Section 7.3.4 provides an example of functions that are handled as buffered
I/O operations.

7.3.3 FUNCTAB Macro
The FUNCTAB macro creates an FDT for a driver.

Format

FUNCTAB [action] .codes

Arguments

[action]

Address of a routine to call during I/O preprocessing of the specified I/O-
function code or codes. A routine is specified only for the third through last
entries of the table. The list of valid I/O functions and the list of buffered-
I/O functions have no associated routines.

7-10

Writing Device-Driver Tables

codes
List of I/O-function codes. The macro expansion prefixes each code specified

with the string IO$_; for example, READVBLK expands to IO$_READVBLK.

7.3.4 Example of FUNCTAB Macro
In the example below, the routine (named XX—READ) called for a read
function is a driver routine. It appears later in the driver module. The
routines EXE$SETMODE and EXE$SENSEMODE, preceded by plus signs (+)
in the macro argument, are VAX/VMS routines that preprocess I/O requests
for the device's set-characteristics and sense-mode functions.

XX.FUNCTABLE:

FUNCTAB

<READLBLK,-

READPBLK,-

READVBLK,-

SENSEMODE,-

SENSECHAR,-

SETMODE,-

SETCHAR,-
S

Function-decision table

Valid functions

Read logical block

Read physical block

Read virtual block

Sense reader mode

Sense reader characteristics

Set reader mode

Set reader characteristics

FUNCTAB $

<READLBLK,-

READPBLK,-

READVBLK,-

SENSEMODE,-

SENSECHAR,-

SETMODE,-

SETCHAR,-
>

Buffered-I/O functions

Read logical block

Read physical block

Read virtual block

Sense reader mode

Sense reader characteristics

Set reader mode

Set reader characteristics

FUNCTAB XX.READ,-

<READLBLK,-

READPBLK,-

READVBLK,-

Read functions

Read logical block

Read physical block

Read virtual block

FUNCTAB ♦EXE$SETMODE,-

<SETCHAR,-

SETMODE,-

Set mode/characteristics

Set reader characteristics

Set reader mode

FUNCTAB +EXE$SENSEMODE,-

<SENSECHAR,-

SENSEMODE,-
>

Sense mode/characteristics

Sense reader characteristics

Sense reader mode

7-11

8 Writing FDT Routines

The $QIO system service uses the driver's function-decision table (FDT)
to determine which FDT routines to call. These FDT routines validate
user-specified arguments in the I/O request. VAX/VMS contains many
device-independent FDT routines. Device drivers contain device-dependent
FDT routines.

A driver should call the VAX/VMS device-independent FDT routines,
described in Section 8.5, whenever possible. This practice encourages the
use of well debugged routines and minimizes driver size.

8.1 Context of FDT Routine Execution
The $QIO system service executes in the context of the process that issues
the I/O request, but in kernel mode and at IPL$_ASTDEL. The process is
executing in kernel mode because the dispatching of the $QIO system service
executes a CHMK instruction. Virtual addresses are mapped according to
the process page tables. This mapping allows FDT routines access to user-
specified virtual addresses. The $QIO system service expects FDT routines
to preserve this context. Therefore, an FDT routine observes the following
conventions:

• It cannot call VAX/VMS system services or VAX RMS services.

• It does not lower IPL below IPL$_ASTDEL. If a routine raises IPL, it must
lower IPL to IPL$_ASTDEL before exiting.

• It does not alter the stack without restoring its original state before exiting.

• It exits either by an RSB instruction to return control to the system service,
or it issues a JMP instruction to one of the VAX/VMS routines described
in Section 8.2.

Before calling an FDT routine, the $QIO system service sets up the contents
of certain registers, as described in Table 8-1.

Table 8—1 Registers Loaded by the $QIO System Service

Register Content

RO Address of FDT routine being called

R3 Address of IRP for current I/O request

R4 Address of process-control block (PCB) of current process

R5 Address of UCB of device assigned to user-specified process-l/O
channel

R6 Address of CCB that describes user-specified process-l/O channel

R7 Bit number of user-specified l/O-function code

8-1

Writing FDT Routines

Table 8- ■1 (Cont.) Registers Loaded by the $QIO System
Service

Register Content

R8 Address of current entry in FDT

AP Address of first function-dependent argument (pi) specified in I/O
request

FDT routines are responsible for preserving the contents of R3 through R8
across subroutine calls. FDT routines can use RO through R2 and R9 through
Rll without saving their previous contents. If an FDT routine needs to use
R3 through R8, the routine can use the PUSHR and POPR instructions to
save registers on the stack and later restore them.

8.2 Transferring Into and Out of an FDT Routine
To transfer control to an FDT routine, the $QIO system service loads the
address of the FDT routine into a register and executes a JSB instruction, as
follows:

JSB (RO)

Each FDT routine chooses an exit path on the basis of the following factors:

• Whether another FDT routine needs to be called to perform additional
function-specific processing

• Whether an error is found in the I/O request

• Whether the operation is complete

• Whether the I/O operation requires and is ready for device activity

The FDT routines, as illustrated in Figure 8-1, must transfer control out of
the FDT processing loop and into a VAX/VMS routine that queues an IRP,
completes an I/O request, or aborts an I/O request. The $QIO system service
does not stop scanning the FDT. Therefore, you must ensure that all valid
function codes in a driver's FDT eventually call an FDT routine that does not
return control to the $QIO system service.

An FDT routine can exit using any of the following methods:

• RSB

• JMP G''EXE$QIODRVPKT

• JSB G/'EXE$ALTQUEPKT

• JMP G"EXE$FINISHIO or JMP G~EXE$FINISHIOC

• JMP G^EXESABORTIO

These methods are described below, and you can find additional details on
the routines they involve in Section 8.6. The first method listed returns to
the $QIO system service. All other methods jump to VAX/VMS routines that
take the appropriate action.

8-2

Writing FDT Routines

Figure 8-1 $QIO Scan of a Function-Decision Table

ZK-926-82

RSB

Returns to the $QIO system service. The FDT routine returns to the system
service because the routine knows that the FDT contains a subsequent entry
with the same function code bit set. As a result, the system service calls
another FDT routine.

JMP G EXE$QIODRVPKT

Transfers control to a VAX/VMS routine that queues an IRP to a driver. The
FDT routine uses this exit method if all preprocessing is complete, if no fatal
errors are found in the specification of an I/O request, and if device activity is
required to complete the I/O request.

Once an FDT routine transfers control to this routine, no driver code that
further processes the I/O request can refer to the process virtual address
space.

EXE$QIODRVPKT is the standard method used to queue an I/O request
for device activity. This routine initiates driver action only if the device unit
is currently idle, if no I/O request is being processed. If the device unit is
busy, EXE$QIODRVPKT queues the request to the unit so that the driver will
process it when the unit becomes available.

JSB G EXE$ALTQUEPKT

Transfers control to a VAX/VMS routine that calls an alternate start-I/O
routine in the driver that synchronizes requests for activity on a device unit
and initiates the processing of I/O requests. A driver that can handle two or
more I/O requests simultaneously uses this exit method.

The FDT routine uses this exit method when it has successfully completed
all driver preprocessing and the request requires device activity. Flowever,
in contrast to EXE$QIODRVPKT, EXE$ALTQUEPKT initiates driver action

8—3

Writing FDT Routines

at this driver's alternate start-I/O routine entry point without regard for the
device unit's activity status.

JMP G EXE$FINISHIO or JMP G EXE$FINISHIOC

Transfers control to a VAX/VMS routine that writes a quadword of final I/O
status from RO and R1 into the I/O status field of the IRP
(IRP$L—MEDIA and IRP$L_MEDIA+4).1 The routine then inserts the IRP in
the I/O postprocessing queue.

An FDT routine that discovers a device-dependent error should always return
status using EXE$FINISHIO or EXE$FINISHIOC. The routine returns to the
$QIO system service the two longwords of status contained in the I/O-status
block (if any) specified in the I/O request.

JMP G EXE$ABORTIO

Transfers control to a VAX/VMS routine that aborts an I/O request. An FDT
routine that discovers a device-independent error in an I/O request should
always use this method of exit. The routine stores a longword of status in RO
and returns this to the system service. Inability to gain access to a data buffer
is an example of a device-independent error.

8.3 FDT Routines for VMS Direct I/O

The VAX/VMS operating system provides two standard FDT routines that
are applicable for direct I/O operations: EXE$READ and EXE$WRITE. When
called by the driver, these routines completely prepare a direct I/O read or
write request. Thus, a driver that uses these routines eliminates the need for
its own device-specific FDT routines.

EXE$READ and EXE$WRITE are described in Section 8.5.

8.4 FDT Routines for VMS Buffered I / O

Device drivers for buffered I/O operations must contain their own device¬
specific FDT routines. An FDT routine for buffered I/O must confirm either
read or write access to the user's buffer and allocate a buffer in system space.

8.4.1 Checking Accessibility of the User's Buffer

First the FDT routine calls EXE$READCHK or EXE$WRITECHK to confirm
write or read access, respectively, to the user's buffer. Both of these routines
write the transfer byte count into IRP$L_BCNT. EXE$READCHK also sets
IRP$V_FUNC in IRP$W_STS to indicate that the function is a read.

* EXE$FINISHIOC dears the second longword of the final I/O status.

8-4

Writing FDT Routines

8.4.2 Allocating the System Buffer
Next, the FDT routine allocates a system buffer. First, it adds 12 bytes for
a buffer header to the byte count passed in the p2 argument of the user's
I/O request. This is the total system buffer size. The FDT routine then
calls EXE$BUFFRQUOTA to ensure that the user has sufficient remaining
resources. If EXE$BUFFRQUOTA returns with a success code, the FDT
routine calls EXE$ALLOCBUF, which allocates the buffer and writes the
buffer's size and type into its third longword.

Once the buffer is allocated, the FDT routine takes the following steps:

1 Loads the address of the system buffer into IRP$L_SVAPTE.

2 Loads the total size of the system buffer into IRP$W_BOFF.

3 Subtracts the system buffer size from JIB$L_BYTCNT. A longword in the
PCB (PCB$L_JIB) points to the location of the job-information block (JIB).

4 Stores the starting address of the system buffer data area in the first
longword of the buffer header.

5 Stores the user's buffer address in the second longword of the header.

6 Copies data from the user buffer to the system buffer if the I/O request is
a write operation.

At this point, buffers are ready for the transfer. Figure 8-2 illustrates the
format of the system buffer.

Figure 8-2 Format of System Buffer for a Buffered-I/O Read
Function

SYSTEM BUFFER

Appendix C provides additional information about EXE$READCFIK,
EXE$WRITECHK, EXE$BUFFRQUOTA, and EXE$ALLOCBUF.

8-5

Writing FDT Routines

8.4.3 Buffered-I/O Postprocessing
When the transfer finishes, the driver returns control to VAX/VMS for
completion of the I/O request. The driver writes the final count of bytes
transferred into the high-order word of RO and the final request status in
the low order words of RO and Rl. The driver must leave the buffer header
intact; I/O postprocessing relies on the header's accuracy. When VAX/VMS
I/O postprocessing gains control, it performs three steps:

1 Adds the value in IRP$W_BOFF to JIB$L_BYTCNT to update the user's
byte count quota

2 If IRP$L_SVAPTE is nonzero, assumes a system buffer was allocated and
checks to see whether IRP$V_FUNC is set in IRP$W_STS

3 If IRP$V_FUNC is clear, deallocates the system buffer used for the write
operation; if IRP$V_FUNC is set, the special kernel-mode AST copies the
data to the user's buffer and then deallocates the buffer in addition to
performing other kernel-mode AST functions

The special kernel-mode AST performs the following steps to complete a
buffered read operation:

1 Obtains the address of the system buffer from IRP$L_SVAPTE.

2 Obtains the number of bytes to write to the user's buffer from
IRP$L_BCNT (for a read operation).

3 Obtains the address of the user's buffer from the second longword of the
system buffer header.

4 Checks for write accessibility on all pages of the user's buffer (for a read
operation).

5 Copies the data from the system buffer to the process' buffer (for a read
operation).

6 Deallocates the system buffer. Note that the system uses the size listed in
the buffer's header to deallocate the buffer.

8.5 FDT Routines Provided by VAX/ VMS
The VAX/VMS FDT routines perform I/O request validation that is common
to many devices. Whenever possible, drivers should take advantage of these
routines. Normally, if a VAX/VMS FDT routine is called, no additional
FDT processing is required. All of the VAX/VMS FDT routines described
here exit by transferring control to EXE$QIODRVPKT, EXE$FINISHIO,
EXE$FINISHIOC, or EXE$ABORTIO. Once a VAX/VMS FDT routine is
called, no subsequent FDT processing occurs.

For additional information about VAX/VMS FDT routines, see the pertinent

routine descriptions in Appendix C.2

^ For disk drivers, VAX/VMS supplies the FDT routine EXE$LCLDSKVALID, described in Appendix C, that processes an IO$_PACKACK,

IO$_AVAILABLE, or IO$_UNLOAD function on a local disk. This routine must be the last FDT routine called for the function, and dispatches

to either EXE$FINISHIO or EXE$QIODRVPKT when it completes FDT processing.

8-6

Writing FDT Routines

8.5.1 EXE$ONEPARM
EXE$ONEPARM processes an I/O-function code that has one parameter
associated with it.

Exit Method

Queues the IRP to the driver.

Description

Processes an I/O-function code that requires only one parameter that needs
no checking; for example, the parameter does not have to be checked for read
or write accessibility. EXE$ONEPARM stores the parameter, found at 0(AP),
in IRP$L—MEDIA of the IRP. Then, it queues the IRP to the driver.

8.5.2 EXE$READ
EXE$READ processes a logical-read or physical-read function for a direct I/O
operation. EXE$READ cannot be used for buffered I/O operations.

Exit Method

Aborts the I/O request if an error occurs, or dismisses and resubmits the
I/O request if the user I/O buffers cannot be locked in memory; otherwise,
queues the IRP to a driver.

Description

Sets the I/O-function bit in the status field (IRP$V_FUNC in IRP$W_STS) of
the IRP. This bit indicates that the function is a read.

EXE$READ writes the fourth device-dependent argument to the I/O request
(p4), located at 12(AP) into the carriage-control field (IRP$B_CARCON).

The routine replaces the logical-function code IO$_READLBLK with the
physical-function code IO$_READPBLK in the function code field
(IRP$W_FUNC) of the IRP.

If argument p2 (the transfer byte count) of the $QIO system service call is
zero, EXE$READ queues the IRP to a device driver. Argument p2 is found at
4(AP). If the byte count is not zero, EXE$READ uses the starting address of
the transfer, found at 0(AP), and the transfer byte count as arguments to the
routine EXE$READLOCK.

The routine EXE$READLOCK calls EXE$READLOCKR, which immediately
calls EXE$READCHKR. This last subroutine determines whether the caller's
buffer permits write access.

If EXE$READCHKR finds that the buffer is accessible, it updates the IRP by
writing the size in bytes of the transfer to IRP$L_BCNT and setting the read
status bit in IRP$W_STS (IRP$V_FUNC). The maximum number of bytes that
EXE$READ can transfer is 65,535 (128 pages minus one byte).

If the buffer does not allow write access, EXE$READCHKR returns access
violation status to its caller, EXE$READLOCKR, which summons its caller
(EXE$READLOCK) as a coroutine.

8-7

Writing FDT Routines

When EXE$READLOCK is called as a coroutine, it does not take any error
action. Instead, it passes control to EXE$READLOCKR, which aborts the I/O
request with access violation status. EXE$READLOCK is called as a coroutine
for the convenience of drivers that call EXE$READLOCKR directly. (See
Appendix C for more details.)

After EXE$READCHKR confirms the buffer's write accessibility,
EXE$READLOCKR calls the routine MMG$IOLOCK to lock into memory
those pages that contain the buffer. MMG$IOLOCK, can return success, page
fault, or error status to EXE$READLOCKR.

If MMG$IOLOCK succeeds, EXE$READLOCKR stores the address of the
process page-table entry (PTE) in the field IRP$L__SVAPTE and returns
success status to EXE$READLOCK.

However, if MMG$IOLOCK reports a page fault, EXE$READLOCKR adjusts
direct I/O count and AST count to the values they held before the I/O
request, deallocates the IRP and restarts the request procedure at the $QIO
system service. This procedure is carried out so that the user process can
receive asynchronous system traps while it waits for the page fault to
complete. Once the page is faulted into memory, the system service will
resubmit the I/O request.

MMG$IOLOCK can report either of two errors: access violation (SS$_
ACCVIO) and insufficient working set limit (SS$_INSFWSL). When
EXE$READLOCKR receives an error, it aborts the request with error status.

After EXE$READLOCK returns to EXE$READ, the routine passes control to
the exit routine EXE$QIODRVPKT so that the request is queued to the driver.

8.5.3 EXE$SENSEMODE

EXE$SENSEMODE processes the sense-device-mode and sense-device¬
characteristics functions by reading fields of the UCB. No device activity
occurs.

Exit Method

Transfers control to EXE$FINISHIO.

Description

Loads the device-dependent characteristics field (UCB$L_DEVDEPEND) of
the UCB into Rl. EXE$SENSEMODE then loads a normal completion status
(SS$_NORMAL) into RO. Finally, it transfers control to EXE$FINISHIO to
insert the IRP in the I/O postprocessing queue.

8.5.4 EXE$SETCHAR
EXE$SETCHAR processes the set-device-mode and set-device-characteristics
functions. If setting device characteristics requires no device activity or
requires no synchronization with fork processing, the driver's FDT entry can
specify EXE$SETCHAR; otherwise, it must specify EXE$SETMODE.

8—8

Exit Method

Aborts the I/O request on error; otherwise, transfers control to
EXE$FINISHIO.

Writing FDT Routines

Description

Determines whether the process has read access to the quadword that
describes the new characteristics for the device. The first argument to the
I/O request (pi), found at 0(AP), specifies the address of the quadword. If
the process does not have read access to the quadword, EXE$SETCHAR
aborts the request.

If the process has read access, EXE$SETCHAR stores the new characteristics
in fields of the device's UCB. If the function is IO$_SETCHAR, the
device type and class fields (UCB$B_DEVCLASS and UCB$B_DEVTYPE,
respectively) of the UCB receive the first word of data contained in the
quadword.

For both the IO$_SETCHAR and IO$_SETMODE functions, the routine
writes the second word of data into the UCB's default-buffer-size field
(UCB$W_DEVBUFSIZ) and the third and fourth words of data into the
device-dependent-characteristics field (UCB$L_DEVDEPEND).

Finally, EXE$SETCHAR stores the normal completion status (SS$_NORMAL)
in RO and transfers control to EXE$FINISHIO to insert the IRP in the I/O
postprocessing queue.

8.5.5 EXE$SETMODE

EXE$SETMODE processes the set-device-mode and set-device-characteristics
functions by activating the device.

Exit Method

Aborts the I/O request if an error occurs; otherwise, queues the IRP to the
device driver.

Description

Determines whether the process has read access to the quadword that
describes the new characteristics for the device. The first argument to the
I/O request (pi), found at 0(AP), specifies the address of the quadword. If
the process does not have read access to the quadword, EXE$SETMODE
aborts the request.

If the process has read access, EXE$SETMODE stores the new characteristics
in the media field (IRP$L—MEDIA and IRP$L_MEDIA+4) of the IRP. The
routine then transfers control to the exit routine EXE$QIODRVPKT, which
queues the request to the appropriate device driver.

8.5.6 EXE$WRITE
EXE$WRITE processes a logical- or physical-write function for a direct I/O
operation. EXE$WRITE cannot be used for buffered I/O operations.

Exit Method

Aborts the I/O request if an error occurs, or dismisses the I/O request if the
user I/O buffers cannot be locked in memory; otherwise, queues the IRP to a
driver.

8—9

Writing FDT Routines

Description

Writes the fourth argument to the I/O request (p4), found at 12(AP) into the

IRP's carriage control field (IRP$B_CARCON).

EXE$WRITE replaces the logical-function code IO$_WRITELBLK with the
physical-function code IO$_WRITEPBLK in the function code field of the IRP
(IRP$W_FUNC).

If argument p2 to the I/O request (the transfer byte count) is zero,
EXE$WRITE queues the IRP to the driver. Argument p2 is found at 4(AP).
If the byte count is not zero, EXE$WRITE uses the starting address of the
transfer, found at 0(AP), and the transfer byte count as arguments to the
routine EXE$WRITELOCK.

The routine EXE$WRITELOCK calls EXE$WRITELOCKR, which immediately
calls EXE$WRITECHKR. This last subroutine determines whether the caller's
buffer permits read access.

If EXE$WRITECHKR finds that the buffer is accessible, it updates the IRP by
writing the size in bytes of the transfer to IRP$L_BCNT. EXE$WRITE can
transfer a maximum of 65,535 bytes (128 pages minus one byte).

If the buffer does not allow read access, EXE$WRITECHKR returns access
violation status to its caller, EXE$WRITELOCKR, which summons its caller
(EXE$WRITELOCK) as a coroutine.

When EXE$WRITELOCK is called as a coroutine, it does not take any error
action. Instead, it passes control to EXE$WRITELOCKR, which aborts the
I/O request with access violation status. EXE$WRITELOCK is called as a
coroutine for the convenience of drivers that call EXE$WRITELOCKR directly.
(See Appendix C for more details.)

After EXE$WRITECHKR confirms the buffer's read accessibility,
EXE$WRITELOCKR calls the routine MMG$IOLOCK to lock into memory
those pages that contain the buffer. MMG$IOLOCK can return success, page
fault, or error status to EXE$WRITELOCKR.

If MMG$IOLOCK succeeds, EXE$WRITELOCKR stores the address of the
process page-table entry (PTE) in IRP$L_SVAPTE and returns success status
to EXE$WRITELOCK.

However, if MMG$IOLOCK reports a page fault, EXE$WRITELOCKR adjusts
direct I/O count and AST count to the values they held before the IRP and
restarts the request procedure at the $QIO system service. The routine carries
out this procedure so that the user process can receive ASTs while it waits for
the page fault to complete. Once the page is faulted into memory, the system
service will resubmit the I/O request.

MMG$IOLOCK can report either of two errors: access violation
(SS$_ACCVIO) and insufficient working set limit (SS$_INSFWSL). When
EXE$WRITELOCKR receives an error, it aborts the request with error status.

After EXE$WRITELOCK returns to EXE$WRITE, the routine passes control to
the exit routine EXE$QIODRVPKT so that the request is queued to the driver.

8-10

Writing FDT Routines

8.5.7 EXE$ZEROPARM
EXE$ZEROPARM processes an I/O-function code that has no associated
parameters.

Exit Method

Queues the IRP to the driver.

Description

Processes an I/O-function code that describes an I/O operation completely
without any additional function-specific arguments. The only FDT processing
necessary for a zero-parameter function code is to zero-fill the field of the
IRP that normally contains a user-specified argument (IRP$L—MEDIA). Then
EXE$ZEROPARM queues the IRP to a device driver.

8.6 VAX/VMS Exit Routines

Ultimately, FDT processing must terminate by transferring control to one
of the following VAX/VMS routines: EXE$ABORTIO, EXE$FINISHIO,
EXE$FINISHIOC, EXE$ALTQUEPKT, or EXE$QIODRVPKT. Each of these
routines returns the system service status code to the user.

8.6.1 EXE$ABORTIO
When an FDT routine determines that an I/O request cannot be completed
because of an error in the specification of the request or in FDT processing,
the FDT routine transfers control to the VAX/VMS routine EXE$ABORTIO
to abort the request. EXE$ABORTIO gains control without any change in
the process context. Interrupt priority level is at IPL$_ASTDEL; the process
virtual space is mapped; and the process is executing in kernel mode.

Required Register Contents

RO $QIO system service final status code

R3 Address of current IRP

R4 Address of process-control block (PCB) of current process

R5 Address of UCB of device unit assigned to process-1/0 channel

R3 through R5 always contain the IRP, PCB, and UCB addresses at the entry
to an FDT routine. The FDT routine should be careful not to destroy these
values.

Description

EXE$ABORTIO clears the address of the I/O-status block in the IRP
(IRP$L_IOSB) so that no status will be returned during I/O postprocessing.
EXE$ABORTIO also clears the bit in the IRP (ACB$V_QUOTA in the field
IRP$B_RMOD). When set, this bit indicates that the requesting process
specified an AST routine. If necessary, the routine readjusts the process' use
of its AST quota.

8-11

Writing FDT Routines

Then EXE$ABORTIO inserts the IRP in the I/O postprocessing queue. If no
other entries are in the queue, EXE$ABORTIO requests a software interrupt at
IPL$_IOPOST. This interrupt causes postprocessing to occur before any other
instructions in the EXE$ABORTIO routine are executed.

When all I/O postprocessing has been completed, EXE$ABORTIO regains
control and finishes the I/O operation as follows:

• Lowers IPL to zero, which is the normal IPL for a process user

• Changes mode back to the original processor access mode

• Returns from the system service to the code of the image that originally
requested the I/O operation. EXE$ABORTIO returns RO, which contains
the final status code saved when the exit routine was called, to its caller.

As a result of this exit method, any ASTs specified when the I/O request
was issued will not be delivered, and any event flags requested will not be
set.

8.6.2 EXE$FINISHIO and EXE$FINISHIOC
Many I/O requests need no device activity to be completed. The FDT
routine(s) can complete the entire I/O request and immediately return status
concerning the operation to the process. However, the VAX/VMS operating

system provides two VAX/VMS I/O completion routines: EXE$FINISHIO
and EXE$FINISHIOC. EXE$FINISHIO returns a quadword of I/O status.
EXE$FINISHIOC returns a quadword of I/O status with the second longword
containing zero.

These routines gain control without any change in process context. Interrupt
priority level is at IPL$_ASTDEL; the process page-tables are mapped; and
the process is executing in kernel mode.

Required Register Contents

RO Value to be placed in the first longword of final I/O status when the $QIO
system service returns final status

R1 Value to be placed in the second longword of final I/O status (EXE$FINISHIO
only)

R3 Address of current IRP

R4 Address of process-control block (PCB) of current process

R5 Address of UCB of device unit assigned to process-l/O channel

R3 through R5 always contain the IRP, PCB, and UCB addresses at the entry
to an FDT routine. The FDT routine should be careful not to destroy these
values.

8-12

Writing FDT Routines

Description

EXE$FINISHIO and EXE$FINISHIOC modify fields in the I/O database and
then complete the I/O request in the following steps:

1 Increase the number of I/O operations completed on the current device in
the operation count field of the UCB (UCB$L_OPCNT)

2 Store the contents of RO and R1 in the media fields of the IRP
(IRP$L_MEDIA and IRP$L_MEDIA+4)

3 Insert the IRP in the I/O postprocessing queue and, if the queue is empty,
request a software interrupt at IPL$_IOPOST

EXE$FINISHIO and EXE$FINISHIOC lose control to I/O postprocessing
because postprocessing executes at the higher IPL of IPL$_IOPOST.
When EXE$FINISHIO and EXE$FINISHIOC regain control, they complete
processing in three steps:

1 Lower IPL to zero, which is the normal IPL for a process.

2 Change mode back to the original processor access mode.

3 Return from the system service to the image that originally requested the
I/O operation. The image receives status SS$_NORMAL in RO, indicating
that the I/O request has completed without device-independent error.

8.6.3 EXE$QIODRVPKT
Some I/O functions require device activity, or at least access to device
registers, for the I/O operation to be completed. Common examples are read
and write functions. While FDT routines can perform extensive preprocessing,
such as determining whether user buffers are accessible and reformatting data
into buffers in the system address space, they should not access device
registers because the device might be active.

Furthermore, FDT routines should exercise restraint when modifying the
UCB. Routines usually access the UCB at driver fork IPL to synchronize
modifications, and FDT routines do not execute at this interrupt priority level.
Drivers containing FDT routines that access device registers or carelessly
modify the UCB risk unpredictable operation or a system failure.

For the type of I/O function involving device activity, the associated FDT
routines perform all preprocessing and then transfer control to the VAX/VMS
routine EXE$QIODRVPKT. It queues the IRP to a device driver and attempts
to transfer control to the device driver's start-I/O routine. If the device unit
is busy, EXE$QIODRVPKT inserts the IRP in a priority-ordered queue of IRPs
waiting for the unit.

Required Register Contents

R3 Address of IRP

R4 Address of process-control block (PCB) of current process

R5 Address of the UCB for device unit assigned to process-l/O channel

8-13

Writing FDT Routines

Description

EXE$QIODRVPKT calls EXE$INSIOQ, which first raises the interrupt priority
level of the process to the fork level of the driver (UCB$B_FIPL). Driver fork
level is, by convention, the interrupt priority level at which device drivers and
VAX/VMS read and alter critical portions of the device's UCB. By executing
at fork level, EXE$INSIOQ ensures that, while it is running, a driver fork
process for the device unit cannot also be running.

EXE$INSIOQ tests the UCB status word to see if the unit is busy.

If the device unit is not busy, EXE$INSIOQ calls the VAX/VMS routine
IOC$INITIATE to create a fork process context in which the driver can
process the I/O request. IOC$INITIATE creates this context and activates the
driver in the following steps:

1 Sets the busy bit of the device's UCB (UCB$V_BSY in UCB$L_STS)

2 Stores the address of the current IRP in the UCB field UCB$L_IRP

3 Copies the transfer parameters contained in the IRP into the UCB:

• Copies the starting address from IRP$L_SVAPTE to UCB$L_SVAPTE

• Copies the byte offset within the page from IRP$W_BOFF to
UCB$W_BOFF

• Copies the low order word of the byte count from IRP$L_BCNT to
UCB$W_BCNT

4 Clears the cancel-I/O and timeout bits in the UCB status word
(UCB$V_CANCEL and UCB$V_TIMOUT in UCB$L_STS)

5 If the I/O request specifies a diagnostic buffer, as indicated by the bit
IRP$V_DIAGBUF in IRP$W_STS, stores the system time in the buffer to
which IRP$L_DIAGBUF points (the $QIO system service having already
allocated the buffer)

6 Finds the entry point of the device driver's start-I/O routine using the
following chain of pointers:

UCB —► DDT —► start-I/O routine

7 Transfers control to the driver start-I/O routine using a JMP instruction

If, on the other hand, EXE$INSIOQ finds that the device is busy, it inserts
the IRP in the device unit's pending I/O queue for processing later by calling
EXE$INSERTIRP. The pending I/O queue is ordered by two factors:

• The time that the entry is queued; for each IPL, the queue is ordered on a
first-in/first-out basis

• The priority of the IRP, which is derived from the requesting process' base
priority and stored in the field IRP$B_PRI

8—14

Writing FDT Routines

After completing one of the operations described above, EXE$INSIOQ
reduces the interrupt priority level to IPL$_ASTDEL, the level at which it
began executing. EXE$INSIOQ returns control to EXE$QIODRVPKT. Finally,
EXE$QIODRVPKT returns from the $QIO system service in the following
steps:

1 Loads a success status code (SS$_NORMAL) into RO

2 Reduces the interrupt priority level to 0

3 Changes mode to the access mode of the requesting process at the time of
the I/O request by issuing an REI instruction

4 Returns from the system service call

The system sets and clears the busy bit in the UCB status word for the device
unit. This bit prevents the driver from being called to service a device unit
that is already engaged in another I/O request.

When a device driver's start-I/O routine gains control, the process that
queued the I/O request might no longer be the mapped process. Therefore,
the driver must assume that all information regarding the I/O request is in
the UCB or the IRP and that all buffer addresses in the UCB are either system
addresses or page-frame numbers that can be interpreted in any process
context.

For direct I/O operations, FDT routines also must have locked all user
buffer pages in physical memory because paging cannot occur at driver fork
level or higher interrupt priority levels. The process virtual address space
is not guaranteed to be mapped again until VAX/VMS delivers a special
kernel-mode AST to the requesting process as part of I/O postprocessing.

8.6.4 EXE$ ALTQU EPKT
You might want special-purpose drivers to use their own internal I/O
queues as well as the device unit's I/O queue (UCB$L_IOQFL) provided
by VAX/VMS. These internal queues allow the driver to handle I/O requests
even if the device is busy with another I/O operation.

EXE$ALTQUEPKT permits the driver to ignore synchronization of the I/O
queue for the unit. When called by an FDT routine, EXE$ALTQUEPKT gains
access to the driver at the alternate start-I/O entry point specified in the
driver-dispatch table (offset DDT$L_ALTSTART). This entry point bypasses
the unit I/O queue and the device busy flag; thus, the driver is activated
regardless of whether the device unit is busy.

A driver that uses EXE$ALTQUEPKT must not only maintain its internal
queues but must also synchronize those queues with the unit's pending I/O
queue, which the operating system maintains.

Drivers complete I/O requests by calling the routine COM$POST. This
routine places each IRP in a postprocessing queue and returns control to the
driver. The driver can then fetch another IRP from an internal queue. For
more information about COM$POST, see Appendix C.

If a driver processes more than one IRP at the same time, separate fork blocks
must be used.

Be aware that programming a device driver to process simultaneous I/O
requests requires detailed knowledge of VAX/VMS internal design.

8—15

Writing FDT Routines

Required Register Contents

R3 Address of IRP

R5 Address of UCB

You must assume that the contents of RO through R5 are destroyed upon
return to the FDT routine.

Description

EXE$ALTQUEPKT performs the following steps:

1 Saves the current interrupt priority level on the stack

2 Raises interrupt priority level to driver fork level (UCB$B_FIPL)

3 Finds the entry point of the alternate start-I/O routine using the following
chain of pointers:

UCB —► DDT —► alternate start-I/O routine

4 Calls the driver at alternate start-I/O address

When the alternate start-I/O routine finishes, it returns control to
EXE$ALTQUEPKT by executing an RSB instruction. Unlike the other FDT
exit routines, EXE$ALTQUEPKT is called with a JSB instruction rather than
a JMP instruction. EXE$ALTQUEPKT restores interrupt priority level to that
which existed when it was called, then returns control to the FDT routine that
called it. The FDT routine performs any postprocessing and transfers control
to the routine EXE$QIORETURN.

When EXE$QIORETURN gains control, it performs the following steps:

1 Sets the success status code SS$_NORMAL in RO

2 Lowers the interrupt priority level to zero

3 Returns (with the RET instruction) to the system-service dispatcher

8-16

9 Writing a Start-1 /O Routine

A driver start-I/O routine activates a device and then waits for a device
interrupt or timeout. This chapter describes the start-I/O routine. Section 12
describes the reactivation of the driver routine that performs device¬
dependent I/O postprocessing. With a few exceptions, the start-I/O routine
discussed in the following sections describes a DMA transfer using a single¬
unit controller.

9.1 Transferring Control to the Start-I/O Routine

The start-I/O routine of a device driver gains control from either of two
VAX/VMS routines: EXE$QIODRVPKT or IOC$REQCOM.

When FDT processing is complete for an I/O-request, the FDT routine
transfers control to EXE$QIODRVPKT. If the designated device is idle,
IOC$INITIATE is called to create a driver fork process. (This procedure
is detailed in Section 8.6.3.) The driver fork process then gains control
in the start-I/O routine of the appropriate driver. If the device is busy,
EXE$QIODRVPKT calls EXE$INSIOQ, which queues the packet to the device
unit's pending I/O queue.

After a device completes an I/O operation, the driver fork process exits by
transferring control to IOC$REQCOM. IOC$REQCOM inserts the IRP for the
finished transfer into the postprocessing queue. It then dequeues the next IRP
from the device unit's pending I/O queue and calls IOC$INITIATE to create
a new driver fork process that gains control at the entry point of the driver's
start-I/O routine.

9.2 Context of a Driver Fork Process

A start-I/O routine does not run in the context of a user process. Rather, it
has the following context:

System mapping

Kernel mode

High IPL

Only system page-tables are mapped. Therefore, driver
code cannot refer to virtual addresses in process address
space.

Execution occurs in the most privileged access mode and
can, therefore, change IPL.

The VAX/VMS routine that creates a driver fork process
raises IPL to driver fork level before activating the driver.
The driver can raise and lower IPL between driver fork
level and IPL$_POWER.

9-1

Writing a Start-I/O Routine

Execution occurs on the kernel or interrupt stack.
The driver must not alter the state of the stack
without restoring the stack to its previous state before
relinquishing control. The stack used depends on whether
the I/O startup is the result of a new I/O request or
because a previously requested I/O operation has been
completed. The choice of stacks must not affect the
operation of the start-l/O routine.

In addition to the context described, the VAX/VMS packet-queuing routines
set up R3 and R5 for a driver start-I/O routine, as follows:

• R3 contains the address of the IRP.

• R5 contains the address of the UCB for the device.

The start-I/O routine must preserve all general registers except RO, Rl, R2,
and R4.

Before the packet-queuing routines call the start-I/O routine, they copy the
following IRP fields into their corresponding slots in the device's UCB:

• IRP$L_BCNT (low-order word) —► UCB$W_BCNT

• IRP$W_BOFF -► UCB$W_BOFF

• IRP$L _SVAPTE — UCB$L —SVAPTE

Kernel or
interrupt stack

9.3 Activating the Device

The processing performed by a start-I/O routine is device specific. A start-
I/O routine normally contains elements that perform the following functions:

• Analyze the I/O function

• Transfer the details of a transfer from the IRP into the UCB

• Obtain and initialize the controller and, for DMA transfers, I/O adapter
resources

• Modify device registers to activate the device

The start-I/O routine elements listed above execute a series of steps to
activate the device. The sections that follow describe those steps as performed
for a representative DMA device such as a parallel communications link; the
details of processing, however, are specific to the particular device. Section 10
describes the UNIBUS- and Q22 bus-related details of DMA transfers.

9.3.1 Obtaining Controller Access
If the device is one of several attached to a controller, the start-I/O routine
invokes the VAX/VMS macro REQPCHAN to assign the controller's data
channel to the device unit. Controllers that control only one device do
not require arbitration for the controller's data channel. REQPCF1AN calls
the VAX/VMS routine IOC$REQPCHANL that acquires ownership of the
controller data channel.

9—2

Writing a Start-I/O Routine

The transfer being controlled by the start-I/O routine discussed here requires
no seek preceding the transfer. Disk I/O is an example of a transfer that
requires a seek first. To permit seeks to be overlapped with transfers, invoke
REQPCHAN with the argument pri=HIGH. Specifying pri=HIGH inserts a
request for a channel at the head of the channel-wait queue.

If the channel is not available, IOC$REQPCHANL suspends driver processing
by saving the driver's context in the UCB fork block and inserting the fork
block address in the channel-wait queue. IOC$REQPCHANL then returns
control to the caller of the driver, that is, to EXE$INSIOQ, as illustrated in
Figure 9-1. This procedure is further discussed in Section 3.3.1.

Figure 9-1 Inserting a UCB into the Channel-Wait Queue

ZK-928-82

The UCB fork block now represents the entire context of the suspended
driver:

• Saved R3 containing the IRP address

• Implicitly saved R5 containing the UCB address

• A return address in the driver

IOC$REQPCHANL does not save R4 because it writes R4 before returning
control to the driver.

If the channel is available, IOC$REQPCHANL locates the interrupt-dispatch
block (IDB) for the channel with a pointer in the UCB:

UCB — CRB IDB

The IDB contains the address of the control and status register (CSR) for the
channel (IDB$L_CSR). IOC$REQPCHANL returns the CSR address in R4.
The driver for a unit attached to a dedicated controller must contain the code
needed to load the CSR address into R4.

9-3

Writing a Start-I/O Routine

IOC$REQPCHANL also writes the address of the new channel-owner's
UCB in the owner field of the IDB (IDB$L—OWNER). The driver's interrupt¬
servicing routine later reads this IDB field to determine which device unit
owns the controller's data channel. A driver for a single-unit controller
must fill the IDB$L—OWNER field in its controller-initialization or unit-
initialization routines.

The driver must maintain the stack in a known and consistent state for the
resource-wait-queue mechanism to work. When IOC$REQPCHANL gains
control, the top two items on the stack must be two return addresses:

• 0(SP)—Address of the next instruction to be executed in the driver fork
process

• 4(SP)—Address of the next instruction to be executed in the routine that
called the driver start-I/O routine

9.3.2 Getting the l/O-Function Code and Converting the Code and
Modifiers

The start-I/O routine extracts the I/O-function code and function modifiers
from the field IRP$W_FUNC and translates them into device-specific function
codes, which it loads into the device's CSR or other control registers. The
start-I/O routine described in this chapter creates and modifies a bit mask that
is to be loaded into the CSR when the driver starts the device. To accomplish
this, the start-I/O routine converts the function modifiers contained in
IRP$W_FUNC into device-specific bit settings in the general register.

At this point, the device driver follows procedures to obtain I/O bus

resources, as detailed in Section 10.1

9.3.3 Computing the Transfer Length
Because the device driven by this particular driver expects the transfer as
a word count, the start-I/O routine computes the length of the transfer in

words by dividing the byte count field of the UCB (UCB$W_BCNT) by 2.
The routine loads the computed value into the device's word-count register.
One of the FDT routines that processes the I/O request must ensure that the
byte count for the transfer is even. An odd byte count results in the user's
not receiving the last byte of data.

1 Because of the unavailability of mapping registers for MicroVAX I Q22 bus devices, coding for MicroVAX I DMA drivers diverges somewhat
from the normal method of setting up a DMA transfer. Section 10.7 describes the means by which MicroVAX I DMA transfers are accomplished
over the Q22 bus.

9-4

Writing a Start-I/O Routine

9.3.4 Computing the Transfer's Starting Address

The start-I/O routine calculates the address of the transfer using the byte-
offset field of the UCB (UCB$W__BOFF) and the number of the starting
mapping register (CRB$L_INTD+VEC$W_MAPREG). The result is an 18-bit
value representing an address in UNIBUS or Micro VAX II Q22 bus address
space.2 Section 10.4 details the calculation of the starting address for a
UNIBUS or Micro VAX II Q22 bus transfer.

The start-I/O routine stores the low-order 16 bits of the computed address
in the device's buffer-address register. It stores the two high-order bits of
the computed address in the memory-extension bits of the register that
contains the bit mask described in Section 9.3.5. This register now contains
the information on the device function that is to be placed in the device's
CSR and the two high-order bits of the bus address.

9.3.5 Preparing the Device Activation Bit Mask
The start-I/O routine prepares the device-activation bit mask by setting the
interrupt-enable bit and the go bit in the general register that also contains
the high-order bits of the bus address and the device-function bits. At this
point, the general register contains a complete command for starting the
transfer, also known as the control mask.

When the start-I/O routine copies the contents of the register into the device's
CSR, the device starts the transfer. Before activating the device, however,
the start-I/O routine should perform the steps described in Sections 9.3.6
and 9.3.7.

9.3.6 Blocking All Interrupts
The start-I/O routine invokes the VAX/VMS macro DSBINT to block all
interrupts. DSBINT raises IPL to IPL$_POWER and saves the previous IPL
setting on the top of the stack.

9.3.7 Checking for Power Failure
The start-I/O routine examines the powerfail bits in the UCB's status word
(UCB$V_POWFR in UCB$L__STS) to determine whether a power failure has
occurred since the start-I/O routine gained control. If the bit is not set, the
transfer can proceed.

If the bit is set, a power failure might have occurred between the time that the
start-I/O routine wrote the first device register and the time that the start-I/O
routine is ready to activate the device. Such a power failure could modify the
already-written device registers and cause unpredictable device behavior if
the device were to be started.

If the bit UCB$V_POWER is set, the start-I/O routine branches to an error
handler in the driver. The driver must clear UCB$V_POWER before error-
recovery procedures can be started. Many drivers clear this field and transfer
control to the beginning of the start-I/O routine, which restarts the processing
of the I/O request.

2 The Micro VAX II implements only 496 of its 8192 mapping registers; thus. 18 significant bits are adequate to select a Q22 bus address (see

Section 4.2 for details).

9-5

Writing a Start-I/O Routine

9.3.8 Activating the Device
If no power failure has occurred, the start-I/O routine copies the contents
of the control mask into the device's CSR. When the device notices the new
contents of the device register, it begins to transfer the requested data.

9.4 Waiting for an Interrupt or Timeout
Once the start-I/O routine activates the device, the driver fork process cannot
proceed until one of these events occurs:

• The device generates a hardware interrupt.

• The device does not generate a hardware interrupt within an expected
time limit, which is to say that a device timeout occurs.

Still executing at IPL$_POWER, the driver's start-I/O routine asks VAX/VMS
to suspend the driver fork process by invoking one of the following
VAX/VMS macros:

WFIKPCH Wait for an interrupt or timeout and keep the controller data
channel

WFIRLCH Wait for an interrupt or timeout and release the controller data
channel

Both of these macros invoke routines that return IPL to the previous level
when they exit. These routines expect to find the return IPL on the stack.
This IPL is saved on the stack by the DSBINT macro as described in
Section 9.3.6.

Drivers generally keep the controller data channel while waiting for the
interrupt or timeout. Drivers of devices with dedicated controllers always
keep the channel because only one unit ever needs it. For devices that share
a controller, some operations, such as disk seeks, do not require the controller
once the operation has begun. In such cases, the driver can release the
controller's data channel while waiting for an interrupt or timeout so that
other units on the controller can start their operations.

9.4.1 WFIKPCH and WFIRLCH Macro Formats
A start-I/O routine invokes either the WFIKPCH or WFIRLCH macro to wait
for a device interrupt.

Formats

WFIKPCH excpt [.time]
WFIRLCH excpt [.time]

Arguments

excpt
The address of the timeout routine for this device.

[time]
The number of seconds to wait before signaling a device timeout. The
number must be greater than or equal to 2. A minimum value of 2 is required
because the timeout mechanism is accurate only to within one second. If no
number is specified, the macro uses the value 65,536 by default.

9-6

Writing a Start-I/O Routine

9.4.2 Expansion of WFIKPCH Macro
Because the WFIKPCH and WFIRLCH macros are similar, the description that
follows analyzes the expansion of WFIKPCH only.

If the driver specifies the time argument in the macro call, the macro pushes
the value of the argument into the stack. If the time argument is not
specified, the macro pushes the value 65,536 onto the stack. The VAX/VMS
timer routine uses the time value to calculate the length of time to wait before
transferring control to a device timeout handler.

WFIKPCH completes its expansion with two lines of code:

JSB G~IOC$WFIKPCH

.WORD EXCPT-.

The execution of the JSB instruction pushes the address following the JSB
onto the stack as the address to which the called routine would normally
return with an RSB instruction.

9.4.3 IOC$WFIKPCH Routine
The VAX/VMS routine IOC$WFIKPCH invoked by the macro WFIKPCH
performs the functions necessary for the driver fork process to wait for a
device interrupt or timeout. IOC$WFIKPCH first adds 2 to the address on the
top of the stack so that the top of the stack contains the address of the next
instruction in the driver after the macro invocation. This address is where
the driver resumes execution as a result of an interrupt-servicing routine's JSB
instruction.

IOC$WFIKPCH then saves the contents of R3, R4, and the address to which
control must be returned to the driver, which it takes from the top of the
stack. It saves this information in the first part of the UCB in the UCB fork
block.

Note that after an interrupt the interrupt-servicing routine must restore R5
so that it contains the address of the UCB. The interrupt-servicing routine
normally obtains the address of the UCB from the field IDB$L—OWNER of
the IDB.

The VAX/VMS routine that detects a device timeout calculates the address of
the driver's timeout routine by subtracting 2 from the saved PC in the UCB's
fork block and calling indirectly through the result, for example:

MOVL UCB$L_FPC(R5),R2
CVTWL -(R2),-(SP)

ADDL (SP)+,R2

JSB (R2)

Get saved PC
Get offset to timeout
handler
Add to relative driver
address to obtain relative
handler address
Call timeout handler

IOC$WFIKPCH sets bits in the UCB (UCB$V_INT and UCB$V_TIM in
UCB$L_STS) to indicate that interrupts and timeouts are expected from the
device. IOC$WFIKPCH also writes the device timeout absolute time in the
field UCB$L_DUETIM. The absolute time is the number of seconds since the
operating system was bootstrapped plus the number of seconds specified in
the time argument to the macro.

Finally, IOC$WFIKPCH reenables interrupts by lowering IPL to fork level,
the IPL at which the driver was executing previously. Then it returns control
to the caller of the driver.

9-7

Writing a Start-I/O Routine

9.5 Responding to an Expected Device Interrupt
The only context saved for the driver is now in the UCB. It contains the
following information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4

• The implicit contents of R5 (the address of the UCB fork block)

• The address at which to return control to the driver

• The implicit address of a device-timeout routine

By convention, R4 often contains the address of the CSR; it permits the
driver's interrupt-servicing routine to examine device registers. When the
driver's fork process regains control after an interrupt processing, R5 contains
the UCB address. The UCB is the key to that part of the I/O database
relevant to the current I/O operation.

When a device interrupts, the driver's interrupt-servicing routine analyzes the
interrupt, as detailed in Section 11 and summarized below:

• Identifies the address of the UCB of the device that generated the interrupt

• Obtains device-status or controller-status information from the device
registers, if necessary, and stores the status information in the UCB

• Restores the driver's fork process' registers from the UCB fork block,
restores R5 with the UCB address, and reactivates the suspended driver at
the PC stored in the UCB fork block

If, instead of requesting an interrupt, the device times out, a VAX/VMS timer
routine reactivates the suspended driver fork process at the address of the
timeout routine. Section 12.2 discusses device timeout handling in detail.

9-8

10 Writing Driver Code for DMA Transfers

A driver performing DMA transfers over the UNIBUS, Q22 bus, or MASSBUS
must take I/O bus operation into consideration.1 The VAX/VMS operating
system and the I/O database manage the mapping registers and data path
resources of the I/O adapter for device drivers.

The I/O database contains an adapter-control block (ADP) that describes
the I/O adapter. This block contains allocation information for the mapping
registers; for UNIBUS adapters, the ADP also contains similar information for
data paths.

The ADP also contains the virtual address of the adapter's configuration
register. All the adapter's other registers are located at fixed offsets from the
configuration register. The VAX/VMS adapter-handling routines modify the
adapter's mapping registers and data-path register according to requests from
the driver's fork process.

In general, drivers' fork processes do not directly access the ADP. Instead,
drivers call VAX/VMS routines that perform adapter-related services, such as
the following:

• Allocating a buffered data path

• Allocating mapping registers

• Loading mapping registers

• Deallocating mapping registers

• Purging a buffered data path

• Deallocating a buffered data path

The critical responsibility of device drivers that actively compete for such
shared I/O adapter resources as mapping registers and data paths is that they
all execute at the same fork IPL. This IPL convention synchronizes access to
the I/O adapter data structures.

The system creates a driver's fork process by calling the start-I/O routine in
a device driver. The fork process takes some or all of the following steps to
initiate an I/O transfer to or from a device on a UNIBUS, Micro VAX II Q22
bus, or Micro VAX I Q22 bus.

Operation Applicable to

Requests buffered data path

Requests mapping registers

Loads mapping registers

Calculates starting bus address

Activates device

Waits for interrupt

UNIBUS

UNIBUS, MicroVAX II

UNIBUS, MicroVAX II

UNIBUS, MicroVAX II, MicroVAX 1

UNIBUS, MicroVAX II, MicroVAX 1

UNIBUS, MicroVAX II, MicroVAX 1

1 MASSBUS drivers are discussed in Appendix G.

10-1

Writing Driver Code for DMA Transfers

When a hardware interrupt indicates that the I/O transfer is complete, the
driver's fork process checks the success or failure of the transfer. The driver
then concludes with the following steps:

Operation Applicable to

Purges the data path UNIBUS, MicroVAX II, MicroVAX I1

Releases the buffered data path UNIBUS

Releases the mapping registers UNIBUS, MicroVAX II

Regardless of whether the associated processor provides buffered data paths or
not, drivers of all devices should initiate a purge of the data path after a transfer.
The purge operation enables the detection of memory parity errors that may have
occurred during the transfer, as described in the sections on the PURDPR macro
and IOCSPURGDATAP in Appendixes B and C, respectively.

Because of the different requirements of DMA transfers on different VAX
processors, a driver must contain some run-time conditional code in order
to function for equivalent UNIBUS, MicroVAX II, and MicroVAX I devices.
Appendix E contains an example of one driver that supports the RL11 on the
UNIBUS and the RLV11 on the MicroVAX I and MicroVAX II Q22 bus.

Regarding the material presented in this section, UNIBUS driver writers
should read Sections 10.1 through 10.6.3. MicroVAX II driver writers should
read Sections 10.1.3 and 10.2 through 10.6.3. MicroVAX I driver writers
should turn directly to 10.7. Because the MicroVAX I provides no scatter-
gather map, MicroVAX I device drivers must perform transfers according to
the method described therein.

10.1 Selecting and Requesting a Data Path
DMA device drivers for certain VAX processors can elect to request the
use of a UNIBUS adapter buffered data path to accelerate data transfers
(as described in Section 4.3). Other VAX/VMS processors, such as the
MicroVAX II and VAX-11/730, provide no buffered data paths for data
transfers. The descriptions of the direct data path in the following sections
apply to drivers written for devices on those processors.

10.1.1 Requesting a Buffered Data Path
Some VAX systems allow UNIBUS drivers to request temporary or permanent
allocation of a buffered data path (see Table 4-1). After the driver fork
process gains access to the controller (see Section 9.3.1), it requests a buffered
data path by invoking the VAX/VMS macro REQDPR. REQDPR calls a
VAX/VMS routine named IOC$REQDATAP that locates the ADP. To do
this, IOC$REQDATAP uses a series of pointers that begins in the current
unit-control block (UCB), as follows:

UCB — CRB ADP

10—2

Writing Driver Code for DMA Transfers

IOC$REQDATAP performs the following services:2

1 Tests the path-lock bit (VEC$V_PATHLOCK) in the data-path number
field of the channel-request block (CRB$L_INTD+VEC$B_DATAPATH).
If the device has a permanent data path allocated to it, IOC$REQDATAP
simply returns.

2 Determines which data paths are available by examining the data path
allocation information in the ADP (ADP$W_DPBITMAP).

3 Allocates the first free data path to the driver by inserting its number
in the data path field of the CRB (CRB$L _INTD+VEC$B_DATAPATH)
and indicating in the ADP that the data path is in use (by setting the

appropriate bit in ADP$W_DPBITMAP).

4 Returns control to the driver fork process.

If no data path is available, IOC$REQDATAP saves driver context (R3, R4,
and PC) in the UCB fork block and inserts the address of the fork block,
which is also the address of the UCB and the content of R5, in the ADP's
data-path-wait queue. The driver fork block remains in the queue until both
of the following conditions are met:

• A data path is available.

• The driver fork block is the next entry in the data-path-wait queue.

When these conditions are met, the VAX/VMS routine IOC$RELDATAP
allocates the data path to the suspended driver and reactivates the driver's
fork process.

10.1.2 Requesting a Permanent Buffered Data Path
A device driver can permanently allocate a buffered data path with code in a
unit-initialization routine. Instead of using the REQDPR macro, however, a
unit-initialization routine should perform the following steps:

1 Test the path-lock bit (VEC$V_PATHLOCK) in the data-path-number field
of the CRB (CRB$L _INTD+VEC$B_D ATAP ATH) to ensure that a data
path is not already allocated for this device.

2 Call the subroutine IOC$REQDATAPNW to allocate the data path as
shown below:

J SB G~10C$REQDATAPNW

If IOC$REQDATAPNW successfully allocates the data path, it stores the
number of the data path it obtained in the CRB at VEC$B_D ATAP ATH
and returns with the low-order bit set in RO (SS$_NORMAL). If it cannot
allocate a data path, IOC$REQDATAPNW does not create a fork process
to wait for one to become available. Instead, it returns to the unit-
initialization routine with the low-order bit clear in RO.

3 Set the path-lock bit (VEC$V_PATHLOCK) in the CRB at
VEC$B_D ATAP ATH

2 When called from a driver running on a processor that does not provide buffered data paths, IOC$REQDATAP and IOC$RELDATAP simply

return after examining the data path bit map in the ADP.

10-3

Writing Driver Code for DMA Transfers

The driver-loading procedure calls the unit-initialization routine for each unit
that the driver serves. A unit-initialization routine that contains the code
described above will permanently allocate one buffered data path for each
CRB associated with the driver, which is one path for each controller that the
driver serves.

Because some VAX processors have few buffered data paths (refer to
Table 4-1), device drivers running on these processors must limit their
allocation of permanent buffered data paths. For example, if the drivers
loaded on a VAX-11/750 permanently allocated all three of the processor's
buffered data paths, none would remain for normal system operations. As a
result, I/O transfers requiring a buffered data path would wait forever.

10.1.3 Requesting the Direct Data Path

Because the UNIBUS adapter or other I/O interface arbitrates among devices
that wish to use the direct data path and the data path field in the CRB
(CRB$L _INTD+VEC$B_DATAPATH) is initialized to 0 (0 = direct data path),
drivers are not required to invoke the REQDPR macro to request the direct
data path.

Some VAX processors, such as the VAX-11/780, do not permit byte-offset
transfers on the direct data path (see Table 4-1). Because the UNIBUS itself
is word-oriented, a processor such as the VAX-11/780 must ensure that the
data buffer is aligned on a word boundary for word-aligned devices.

10.1.4 Mixed Use of Direct and Buffered Data Paths
A device driver can use the buffered data path for certain operations, then use
the direct data path for other operations. To accomplish this task, the driver
should allocate a buffered data path for buffered I/O. When the operation is
completed, the driver should then purge and release the buffered data path.
The release automatically resets the data path number to zero, which signifies
a direct data path. When using the direct data path is complete, the driver
should not release the direct data path, although it should purge the path. (A
purge of the direct data path is a NOP and always yields success.)

10.2 Requesting Mapping Registers
The UNIBUS adapter and Micro VAX II processor logic allow UNIBUS and
Micro VAX II Q22 bus drivers, respectively, to allocate mapping registers as
needed or to allocate them permanently.

10.2.1 Allocating Mapping Registers
After the driver's fork process gains access to the controller (see Section 9.3.1),
it requests a set of adapter mapping registers by invoking the VAX/VMS
macro REQMPR. This macro calls the routine IOC$REQMAPREG.
IOC$REQMAPREG calculates the number of mapping registers needed for a
transfer. The calculation is based on the transfer byte count field and the byte
offset fields of the device's UCB (UCB$W_BCNT and UCB$W_BOFF).

10-4

Writing Driver Code for DMA Transfers

The procedure for allocating mapping registers is similar to that used to
allocate a buffered data path. First, IOC$REQMAPREG locates the ADP from
a series of pointers that begins with the current UCB, as follows:

UCB CRB -► ADP

Then, the routine examines the mapping-register-allocation information to
locate the required number of contiguous mapping registers. If the registers
are not currently available, IOC$REQMAPREG saves the driver context (R3,
R4, and PC) in the UCB fork block and inserts the fork block's address (same
as UCB address and the contents of R5) in the mapping-register-wait queue.

When the mapping registers are available, IOC$REQMAPREG allocates them
and adjusts the appropriate information about the allocation of mapping
registers in the adapter-control block. IOC$REQMAPREG then writes the
number of the first mapping register and the number of mapping registers
allocated into the CRB and returns control to the driver's fork process.

10.2.2 Permanently Allocating Mapping Registers
A device driver can permanently allocate a set of mapping registers with
code in the unit-initialization routine. The number of mapping registers
permanently allocated must be sufficient for the longest possible transfer. The
following steps permanently allocate a set of mapping registers:

1 Test the map-lock bit (VEC$V_MAPLOCK) in the CRB

(CRB$L_INTD+VEC$W_MAPREG) to ensure that mapping registers are
not already allocated for this device.

2 Load the number of mapping registers required into R3.

3 Call the VAX/VMS routine IOC$ALOUBAMAPN with a JSB instruction:

JSB G~IOC$ALOUBAMAPN

If IOC$ALOUBAMAPN successfully allocates the mapping registers, it
stores the number of mapping registers allocated and the number of the
first of the allocated mapping registers. It stores these items in the CRB at
CRB$L _INTD+VEC$B_NUMREG and CRB$L_INTD+VEC$W_MAPREG,
respectively, and returns with the low-order bit set in RO.

Otherwise, it returns with the low-order bit of RO clear.

4 Set the map-lock bit in the CRB (VEC$V_MAPLOCK in
CRB$L _INTD+VEC$W_MAPREG).

The driver-loading procedure calls the unit-initialization routine once for each
unit associated with the driver. If the unit initialization routine contains the
code described above, it permanently allocates one set of mapping registers
for each CRB associated with the driver, which is one set of registers for each
device controller that the driver serves.

10-5

Writing Driver Code for DMA Transfers

10.3 Loading Mapping Registers
Once a driver's fork process has assigned a data path and allocated a set of
mapping registers, it can request VAX/VMS to load the mapping registers
with physical page-frame numbers (PFNs) by invoking the VAX/VMS macro

LOADUBA.3 LOADUBA calls a VAX/VMS routine IOC$LOADUBAMAP that
loads each allocated mapping register with five data items:

• A bit setting to indicate whether the mapping register is valid.

• A bit setting to indicate whether the transfer is to start on the odd or even
byte within a word; this bit is set if the low-order bit of UCB$W_BOFF is
a 1.

• The number of the data path to use for the transfer.

• The page-frame number of a page in memory.

• A bit setting to indicate that the transfer operates in longword-aligned,
random-access mode on the buffered data path; this bit is set when
VEC$V_LWAE is set in VEC$B_DATAPATH.

IOC$LOADUBAMAP loads the page-frame number of the first page of the
transfer into the first allocated mapping register, the page-frame number of
the second page of the transfer into the second mapping register, and so forth.

IOC$LOADUBAMAP sets the valid bit in every allocated mapping register
except the last. It clears the valid bit in the final mapping register to prevent
a prefetch from an invalid page.

To calculate the page-frame number used in the I/O transfer,
IOC$LOADUBAMAP uses three fields that VAX/VMS has written into
the UCB:

• UCB$W_BOFF—Byte offset in the first page of the transfer

• UCB$W_BCNT—Number of bytes to transfer

• UCB$L_SVAPTE—Virtual address of the page-table entry that contains
the page-frame number of the first page of the transfer

IOC$LOADUBAMAP determines the data path's number, the number of
the first mapping register, the address of the first mapping register, and the
number of allocated mapping registers from the CRB and the ADP, as follows:

UCB —► CRB —► number of the data path
UCB —► CRB —► number of first mapping register
UCB —► CRB —► ADP —► virtual address of first mapping register
UCB —► CRB —*• number of mapping registers

Drivers that handle UNIBUS byte-addressable devices call the routine
IOCSLOADUBAMAPA. This routine performs the same function as
IOC$LOADUBAMAP, with one exception. When IOCSLOADUBAMAPA
loads mapping registers, it clears the byte-offset bit even if the transfer begins
on an odd-byte address.

When IOC$LOADUBAMAP has loaded all the mapping registers and marked
the last mapping register invalid, it returns control to the driver's fork process.

3 MicroVAX II DMA driver writers also use the LOADUBA macro.

10-6

Writing Driver Code for DMA Transfers

10.4 Computing the Starting Address of a Transfer
The driver fork process must calculate the starting address of a DMA transfer
and load this address into the appropriate device register. Micro VAX I
device drivers perform the procedure outlined in Section 10.7. UNIBUS
and Micro VAX II Q22 bus drivers take the following five steps to make the
calculation:4

1 Write the byte-offset-in-page field of the UCB (UCB$W_BOFF) into bits 0
through 8 of a general register.

2 Get the number of the starting mapping register for the transfer from a
field in the CRB (CRB$L_INTD+VEC$W_MAPREG). Write bits 0 through
6 of this 9-bit value into bits 9 through 15 of the general register.

3 Write bits 0 through 15 of the general register into the device's buffer
address register.

4 Write bits 7 and 8 of the mapping register number, acquired in step 2, into
the extended memory bits of the appropriate device register (usually the

control and status register (CSR)).5

10.5 Activating the Device
Because a driver's fork process can address device registers as though they
were any other virtual address, the loading of the device buffer address
register and CSR are simple procedures. The driver locates the CSR address
of the device in the interrupt-dispatch block (IDB), as follows:

UCB — CRB -* IDB -> CSR address

The CSR address is the virtual address of a device register. All other device
registers are located at constant offsets from the CSR address. If, for example,
the CSR is the first device register and the device's word-count register is the
third device register, the device driver can describe the device register offsets
and load the word-count register with the following series of instructions:

dev.csr = o
DEV.XREG = 2
DEV.WDCNT = 4

; Compute word count of transfer and store it in user-defined UCB field,
; UCB$W_WDCNT.

MOVL
MOVL
MOW

UCB$L_CRB(R5),R4
®CRB$L_INTD+VEC$L_IDB(R4),R4
UCB$W_WDCNT,DEV.WDCNT(R4)

.Address of CRB
;Address of CSR
;Move word count to device word
;count register

4 Although the Micro VAX II processor actually contains 8192 mapping registers, VAX/VMS currently enables only 496 of them. As a result, the

upper four bits of the 13-bit MicroVAX II mapping register number should be stored as zero. In other words, VAX/VMS treats any mapping

register number as having nine significant bits.

^ One example of a device that does not treat the extended memory bits in this fashion is the DRV11-WA, the code for which is listed in

Appendix F. For the DRV11-WA, code in XADRIVER stores bits 7 and 8 of the mapping register number in a discrete device bus address

extension register, then clears the extended address bits of the device's CSR. In contrast, XADRIVER handles the DR11-W according to the

method described above.

10-7

Writing Driver Code for DMA Transfers

10.6 Completing a DMA Transfer

After a UNIBUS, Micro VAX II, or Micro VAX I device driver's fork process
activates a DMA device, the driver waits for a device interrupt by invoking
a VAX/VMS macro that suspends execution of the driver. When the device
requests a hardware interrupt, the interrupt dispatcher gains control.

The dispatcher saves RO through R5 and transfers control to the driver's
interrupt-servicing routine. If the interrupt-servicing routine can match the
interrupt with a suspended driver's fork process, the interrupt-servicing
routine reactivates the driver's fork process at the point where execution was
suspended. Most drivers almost immediately invoke the VAX/VMS macro
IOFORK.

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK saves
the driver context (R3, R4, and PC) in the UCB fork block and inserts the
address of the fork block (R5) in the device's fork queue. EXE$IOFORK then
returns control to the driver's interrupt-servicing routine, which dismisses the
interrupt.

When the fork dispatcher reactivates the driver's fork process, the driver
performs any necessary clean up operations, such as purging the data path
and deallocating adapter resources used in the DMA transfer.

10.6.1 Purging the Data Path
Driver fork processes must purge the data path after the DMA transfer is
complete. This is true for devices with buffered data paths, direct data paths,
or no data path.

To purge the data path, the driver invokes the macro PURDPR, which in
turn calls the VAX/VMS routine IOC$PURGDATAP. This routine takes the
following steps to purge the data path:

1 Saves the contents of R4 on the stack.

2 Locates the CRB as follows:

R5 -> UCB — CRB

3 Obtains the starting address of UNIBUS adapter register space and stores
it in R2.

4 Extracts the number of the data path to be purged from the CRB and loads
it into Rl.

5 Stores the address of the data path in R4.

6 Instructs the UNIBUS adapter or Q22 bus interface to purge the data
path. The routine then modifies RO through R2 to contain the following
information:

RO Success/failure status. If the purge completes without error, the routine
sets SS$_NORMAL in this register. If a data-path error does occur, RO
is clear and the hardware is reset.

Rl Contents of the data-path register.

R2 Address of the first adapter mapping register.

10—8

Writing Driver Code for DMA Transfers

The address of the CRB remains in R3. This address, along with the
information in R1 and R2, is used as input to the error-logging routine in
the event of a data-path error.

7 Restores the information stored on the stack to R4 and returns to the
address in the driver immediately after the invocation of the PURDPR
macro.

8 Some machine implementations also check for memory errors that might
have occurred during the DMA operation, and, if an error is detected,
log it.

If a data-path error occurs during a data-path purge, the driver should retry
the entire DMA transfer.

10.6.2 Releasing a Buffered Data Path
A driver's fork process releases a buffered data path by invoking
the VAX/VMS macro RELDPR. RELDPR calls a VAX/VMS routine
IOC$RELDATAP that determines which data path was assigned to the driver
fork process and releases the data path to a waiting driver. The driver must
be executing at fork IPL.

The data path number is stored in the CRB. IOC$RELDATAP locates it as
follows:

UCB —► CRB —► number of the data path

If the data path is permanently assigned to a device, IOC$RELDATAP does
not release the data path. Otherwise, the data path number in the CRB
(CRB$L _INTD+VEC$B_DATAPATH) is zeroed. The IOC$RELDATAP
routine attempts to dequeue a waiting driver fork process from the data¬
path-wait queue. It finds the queue as follows:

UCB —> CRB —► ADP —► data-path-wait queue

If another driver is waiting for a buffered data path, IOC$RELDATAP grants
that driver fork process the data path, restores its context from its UCB fork
block, and transfers control to the saved driver PC. When IOC$RELDATAP
can allocate no more data paths, the routine returns to the driver that released
the data path. This diversion of driver processing is transparent to the driver's
fork process.

If the data-path-wait queue is empty, IOC$RELDATAP marks the data path
as available in the ADP and returns control to the driver.

10.6.3 Releasing Mapping Registers
A driver fork process releases a set of mapping registers by invoking the
VAX/VMS macro RELMPR at fork IPL. RELMPR calls the VAX/VMS routine
IOC$RELMAPREG, which releases mapping registers in a manner similar to
the way in which the RELDPR macro releases data paths. The CRB records
the number of mapping registers assigned to the device. The number of the
first mapping register and the number of mapping registers are located as
follows.

UCB —> CRB —► number of the first mapping register
UCB —► CRB —► number of allocated mapping registers

10-9

Writing Driver Code for DMA Transfers

IOC$RELMAPREG releases the mapping registers by adjusting the mapping-
register-allocation information in the ADP.

Then, IOC$RELMAPREG attempts to dequeue a driver's fork process
from the mapping-register-wait queue. If a suspended driver is found,
IOC$RELMAPREG takes the following steps:

1 Dequeues the fork block and restores driver context

2 Satisfies the mapping-register request, if possible

3 Reactivates the driver's fork process at the instruction following the
driver's request for mapping registers

4 Repeats Steps 1 through 3

If the mapping-register-wait queue is empty or if IOC$RELMAPREG still does
not have enough contiguous mapping registers for any of the waiting fork
processes, it returns control to the fork process that released the mapping
registers.

10.7 Considerations for Micro VAX I DMA Devices
Because the Micro VAX I does not provide a scatter-gather map.
Micro VAX I Q22 bus DMA devices must use a physically contiguous buffer
in data transfers. Because there is no guarantee that this is the state of the
user's buffer, the driver must allocate an intermediate buffer consisting of
contiguous physical pages. The driver never deallocates this buffer unless
the driver is being unloaded (by means of SYSGEN's RELOAD command).
The best time to allocate such a buffer is during the device's initialization.
Memory is most likely contiguous at that time. Later it will be much more
difficult to obtain a buffer that contains physically contiguous pages.

To be sure that the buffer you allocate to the driver is contiguous, use the
VAX/VMS routine EXE$ALOPHYCNTG, described in Appendix C. The size
of the buffer will depend on the device's characteristics and the size of the
transfers requested on the device. A buffer of four pages is likely to be large
enough for most disk transfers, for example; but if you have enough memory
on your system, you might want to make your buffer the size of a disk track
in order to reduce disk latency. In any event, large transfers to the device can
be segmented into transfers the size of your intermediate buffer.

When a user requests a transfer to a Micro VAX I Q22 bus device, the driver
start-I/O routine copies the data from the user's buffer into the intermediate,
physically contiguous buffer by means of the routine IOC$MOVFRUSER. The
driver must ensure that the buffer is word-aligned because the Micro VAX I
has no byte-offset capability.

The driver then sets up the device for the DMA transfer:

1 Determines the 22-bit physical address of the buffer from the system
virtual address returned by EXE$ALOPHYCNTG. Presuming that the
virtual address has been temporarily stored in CRB$L_AUXSTRUC, the
driver can use code similar to the following excerpt from DLDRIVER (in
Appendix E).

10-10

Writing Driver Code for DMA Transfers

MOVL UCB$L_CRB(R5),R1
MOVL CRB$L_AUXSTRUC(R1),R2
BEQL 70$
MOVL R2,UCB$A_DL_BUF_VA(R5)
EXTZV #VA$V_VPN,#VA$S_VPN,R2
MOVL G~MMG$GL_SPTBASE,RO
MOVL (RO)[Rl],R0
BICL3 #~C<VA$M_BYTE>,R2,R1
ASSUME PTE$S_PFN GE 13
INSV R0,#9,#13,R1
MOVL Rl,UCB$A_DL_BUF_PA(R5)

Rl;GET VIRTUAL PAGE NUMBER OF BUFFER
;GET BASE ADDRESS OF SPTS
;GET THE PTE CONTENTS
;GET BUFFER OFFSET (BA00-BA08)

;COPY BA09-BA21
;SAVE PHYSICAL ADDRESS OF BUFFER

GET CRB ADDRESS

MEMORY ALLOC FAILURE DURING CTL INIT?
IF EQL, YES, LEAVE OFFLINE
SAVE BUFFER'S VIRTUAL ADDRESS

70$: RSB

2 Moves the low word (bits 0 to 15) of the buffer physical address into the
device's buffer address register.

3 Moves the extended address bits of the buffer's physical address into the
device's extended address register or the device's CSR, as required by the
device.

4 Activates the device as described in Section 10.5.

5 If the transfer size exceeds the size of the buffer, returns to Step 1.

When a user requests a transfer from a Micro VAX I Q22 bus device, the driver
moves the data from the device to the intermediate, physically contiguous
buffer by means of a DMA transfer, then calls IOC$MOVTOUSER to copy
the data into the user's buffer.

A Micro VAX I driver should complete the transfer as described in
Section 10.6. The driver should call IOC$PURGDATAP in order to detect
and log any memory errors that might have occurred during the transfer.

10-11

1 1 Writing an Interrupt-Servicing Routine

For most device drivers, the driver-prologue table contains, in the
reinitialization section established by the DPT_STORE macro, the address
of one or more interrupt-servicing routines. Each interrupt-servicing routine
corresponds to an interrupt vector on the I/O bus. You specify the address of
an I/O bus vector using the SYSGEN command CONNECT, as described in
Section 14.2.2.

Most device interrupt-servicing routines perform the following functions:

• Locate the device's UCB

• Determine whether the interrupt was solicited

• Reject or process unsolicited interrupts

• Activate the suspended driver to process solicited interrupts

Figure 11-1 illustrates the general flow of interrupt handling. The remaining
sections of this chapter describe the handling of solicited and unsolicited
interrupts in further detail.

11.1 Delivering a Device Interrupt to a Driver
When a device generates a hardware interrupt, the device requests the
interrupt at its device IPL. The UNIBUS adapter or Micro VAX Q22 bus
interface then requests a processor interrupt at that IPL. When the processor
executes at an interrupt priority level below the device IPL, interrupt
dispatching begins.

Note: The subsequent discussion applies to UNIBUS and MicroVAX device
interrupts exclusively. MASSBUS adapter interrupt dispatching differs
substantially from UNIBUS and MicroVAX interrupt dispatching.
MASSBUS driver writers should familiarize themselves with the
discussion in Sections G.4 and G.6.

On a configuration that uses nondirect vector interrupts—such as the
VAX-11/780 and the VAX 8600—the following sequence occurs:

1 The processor saves, on the interrupt stack, the PC and PSL of the
currently executing code. It dispatches the interrupt by means of the
appropriate vector in the system control block (SCB) to the interrupt¬
servicing routine for the UNIBUS adapter of the device that requested the
interrupt (see Section 3.1.5).

2 The UNIBUS adapter's interrupt-servicing routine reads the vector register
within the UNIBUS adapter that corresponds to the interrupt level of
the device. The UNIBUS adapter acknowledges the interrupt, and the
interrupting device supplies its vector's address to the UNIBUS adapter's
interrupt-servicing routine.

3 The UNIBUS adapter's interrupt-servicing routine then saves R0 through
R5 on the stack and, using a JMP instruction, transfers control to an
interrupt-dispatching field within the channel-request block (CRB).

11-1

Writing an Interrupt-Servicing Routine

Figure 11-1 Flow of Interrupt Servicing

INTERRUPT

ZK-929-82

11-2

Writing an Interrupt-Servicing Routine

4 The CRB's interrupt-dispatching field (CRB$L_INTD+2) contains
executable code that the driver-loading procedure has associated with
the interrupting vector. Interrupt-dispatching fields for nondirect vectors
contain the following executable instruction:

JSB ®#address-of-driver-isr

On a configuration that uses direct vector interrupts—such as the Micro VAX
I, Micro VAX II, VAX 8200, VAX 8800, VAX-11/750, and VAX-11/730—the
following sequence occurs:

1 The processor saves, on the interrupt stack, the PC and PSL of the
currently executing code and acknowledges the device's interrupt.

2 The device supplies its vector address, which the processor uses as
an index into a table in the second (or third) page of the SCB (see
Section 3.1.5). This table contains a list of addresses in the CRB that
point to the interrupt-servicing routines for devices attached to the first
UNIBUS or an optional second UNIBUS (for the VAX-11/750).

3 When the processor locates the address in the SCB that corresponds to the
vector address, it transfers control to an interrupt-dispatching field in the
CRB.

4 The CRB's interrupt-dispatching field (CRB$L_INTD) contains executable
code that the driver-loading procedure has associated with the interrupt
vector. Interrupt-dispatching fields of direct vectors contain the following
executable instructions:

PUSHR <R0,R1,R2,R3,R4,R5>
JSB ©#address-of-driver-isr

The driver-loading procedure determines how many interrupt-dispatching
fields to build within the CRB from the number of vectors specified
in the /NUMVEC qualifier to the SYSGEN command CONNECT (see
Section 14.2.2). The driver-loading procedure obtains the address of the
interrupt-servicing routine for each interrupt-dispatching field from the
reinitialization portion of the driver-prologue table (see Section 7.1). This
section of the DPT contains one or more DPT_STORE macros that identify
the addresses of the interrupt-servicing routines. The number of DPT_
STORE macros that identify interrupt-servicing routines must equal the
number of vectors given in the /NUMVEC qualifier to avoid errors in device
initialization or interrupt handling.

Immediately following the JSB instruction in the CRB is the address of
the interrupt-dispatch block (IDB) associated with the CRB. When the JSB
instruction executes, a pointer to the address of the IDB is pushed onto the
top of the stack as though it were a return address. The driver interrupt¬
servicing routine can use this IDB address as a pointer into the I/O database.
Figure 11-2 illustrates the portion of a CRB that contains the address of the
interrupt-servicing routine.

11.2 Interrupt Context
When the interrupt dispatcher calls a driver's interrupt-servicing routine,
execution context is as follows:

• R0 through R5 are saved on the stack.

• System address space is mapped. The interrupt-servicing routine can gain
access to appropriate data structures in the I/O database.

11—3

Writing an Interrupt-Servicing Routine

Figure 11-2 CRB Containing the Address of an Interrupt-
Servicing Routine

CHANNEL REQUEST BLOCK:

JSB @#

interrupt servicing routine address

interrupt dispatch block address

ZK-930-82

• IPL is at hardware device interrupt level.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

The stack contains the following information:

Stack Location Content

O(SP) Pointer to the address of the IDB

4(SP) through 24(SP) Saved RO through R5

28(SP) PC at the time of the interrupt

32(SP) PSL at the time of the interrupt

11.3 Servicing a Solicited Interrupt
When a driver's fork process activates a device and expects to service a device
interrupt as a result, the fork process suspends its execution and waits for an
interrupt to occur. The suspended driver is represented only by the contents
of the device's UCB, which contains a description of the I/O request and the
fork process.

When the driver regains control from the interrupt-servicing routine, only
R3, R4, R5, and the PC address are restored to their previous state by the
interrupt-servicing routine.

In the sequence below, a driver's interrupt-servicing routine returns control to
the waiting driver:

1 The interrupt-servicing routine obtains the address of the device's UCB
from the IDB, as follows:

0(SP) — CRB — IDB IDB$L —OWNER — UCB

2 The interrupt-servicing routine then tests the software-interrupt-expected
bit in the UCB status word (UCB$V_INT in UCB$L_STS). If the bit is
set, the driver is waiting for an interrupt from this device. The interrupt¬
servicing routine then clears UCB$V_INT in UCB$L_STS to indicate that
it has received the expected interrupt.

11-4

Writing an Interrupt-Servicing Routine

Note: Because device timeout processing mostly occurs at fork IPL (see
Section 12.2), a driver's interrupt-servicing routine, executing at device
IPL, could interrupt the processing of a timeout on the same device
unit. For this reason, the driver's interrupt-servicing routine should
check the interrupt-expected bit (UCB$V_INT) before handling the
interrupt. VAX/VMS clears this bit before it calls the driver's timeout
handler.

3 The interrupt-servicing routine restores R5 of the driver's fork process,
placing in it the address of the UCB fork block. It restores R3 and R4 of
the driver process by placing in them the contents of UCB$L_FR3 and
UCB$L_FR4, respectively.

4 The interrupt-servicing routine transfers control to the driver's PC address,
which is saved in the UCB fork block at UCB$L_FPC, by issuing a JSB
instruction.

The restored driver can execute a few instructions in the context of the
interrupt, such as copying device-status information from the device registers
into the device's UCB. Before completing the I/O operation, however, the
driver routine creates a fork process to lower its IPL from device level to fork
level. The driver creates a fork process by invoking the VAX/VMS macro
IOFORK, as described in Section 12.1.1.

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK inserts
into the appropriate fork queue the UCB fork block that describes the driver
process. Then it returns control to the driver's interrupt-servicing routine.

The interrupt-servicing routine then performs the following steps:

1 Removes the IDB pointer from the stack

2 Restores RO through R5

3 Dismisses the interrupt with an REI instruction

11.4 Servicing an Unsolicited Interrupt
Devices request interrupts to indicate to a driver that the device has changed
status. If a driver's fork process starts an I/O operation on a device, the
driver expects to receive an interrupt from the device when the I/O operation
completes or an error occurs.

Other changes in the device's status occur when the device has not been
activated by a device driver. The device reports these changes by requesting
unsolicited interrupts. For example, when a user types on a terminal that is
not attached to a process, the terminal requests an interrupt that is handled
by the terminal driver. As a result of the interrupt, the terminal driver causes
the login procedure to be invoked for the user at the terminal.

Another example of an unsolicited interrupt is one that the unit requests when
an operator changes the volume on a disk drive. The disk driver services the
interrupt by altering volume and unit status bits in the disk device's UCB.

Devices request unsolicited interrupts because some external event has
changed the status of the device. A device driver can handle these interrupts
in two ways:

• Ignore the interrupt as spurious

11-5

Writing an Interrupt-Servicing Routine

• Examine the device registers and take action according to their indications
of changed status, and then poll for any other changes in device status

The driver's interrupt-servicing routine determines whether an interrupt is
solicited or not by examining the software-interrupt-expected bit in the UCB
status word (UCB$V_INT in UCB$L_STS). All UNIBUS and Q22 bus device
drivers must use this method to determine whether or not an interrupt is
solicited; the address of the unsolicited-interrupt routine, specified in the
driver-dispatch table, is used only by MASSBUS drivers (see Sections G.4
and G.6.)

If the interrupt is unsolicited, the driver can reject the interrupt with the
following code sequence:

1 Remove the IDB pointer from the stack

2 Restore RO through R5

3 Dismiss the interrupt with an REI instruction

Rather than rejecting the interrupt, the driver might wish to handle it. For
example, the driver can send a message to the operator or the job controller's
mailbox when an unsolicited interrupt occurs.

Drivers should always handle unsolicited interrupts from busy devices at
device IPL. If a driver must create a fork process to handle such an interrupt,
it should use extreme caution. The UCB of a busy device might contain the
active fork block of a previously created driver fork process. If a routine
servicing an unsolicited interrupt creates a fork process to handle its interrupt,
it can destroy the fork context currently stored in that UCB.

Because only one sequence of instructions can use the UCB as a fork block,
the interrupt-servicing routine must perform the following steps before it can
create the fork process:

• Ensure that no one is using the device, and that no one wants to use it, by
determining that the reference count (UCB$W_REFC) is zero.

• Ensure that it is not already using the UCB, to create a fork process in
order to lower IPL and to send a message to the job controller, by testing
the job-attached bit (UCB$V_JOB in UCB$W_DEVSTS).

The VAX/VMS routine that creates the fork process (once the above
conditions are satisfied) returns control to the interrupt-servicing routine.

11.4.1 Examples of Unsolicited Interrupts
A card reader requests an unsolicited interrupt when a user turns the reader
on line. Once the card-reader driver's interrupt-servicing routine determines
that the interrupt is unsolicited, the routine analyzes the interrupt, as in the
following code example:

11-6

Writing an Interrupt-Servicing Routine

CR$INT::
MOVL <3(SP) + ,R3 ; GET ADDRESS OF IDB©
MOVQ IDB$L_CSR(R3),R4 ;GET CONTROLLER CSR AND OWNER UCB ADDRESS©
BBCC #UCBV_INT,UCBL_STS(R5),10$;IF CLR, INTERRUPT NOT EXPECTED©

UNSOLICITED INTERRUPT

10$:

20$:

30$:

40$:

MOVZWL
MOVZBW
BITW
BEQL
TSTW
BNEQ
BBSS
BSBB

MOVQ
MOVQ
MOVQ
REI
JSB
MOVZBL

MOVAB
JSB
BLBS
BICW
RSB

CR_CSR(R4),R0
#CR_CSR_M_IE,CR.CSR(R4)
#CR_CSR_M_ONLINE,RO

20$
UCB$W_REFC(R5)
20$

GET READER STATUS

CLEAR STATUS, ENABLE INTERRUPTS©
READER TRANSITION TO ONLINE?©
IF EQL NO
DEVICE ASSIGNED OR ALLOCATED?©
IF NEQ YES

#UCBV_JOB,UCBW_DEVSTS(R5),20$;IF SET. MESSAGE ALREADY SENT©
30$;SEND MESSAGE TO JOB CONTROLLER

(SP)+,R0 ;RESTORE REGISTERS
(SP)+,R2

(SP)+,R4

G~EXE$FORK
#MSG$_CRUNSOLIC,R4
G~SYS$GL_JOBCTLMB,R3
G~EXE$SNDEVMSG
RO,40$

CREATE FORK PROCESS©
SET MESSAGE TYPE©
SET ADDRESS OF JOB CONTROLLER MAILBOX
SENT MESSAGE TO JOB CONTROLLER
IF LBS SUCCESSFUL NOTIFICATION®

#UCBM_JOB,UCBW_DEVSTS(R5) ;CLEAR MESSAGE SENT BIT®

© The interrupt-servicing routine obtains the address of the IDB from the top
of the stack.

© By means of this address, it obtains the address of the control and status
register (CSR).1

© It checks for an unsolicited interrupt by testing the interrupt enable bit in
the UCB status word.

© Because the interrupt is unsolicited, the routine clears all CSR bits except
for the interrupt enable bit.

© It confirms that the reader was just placed on line by examining a saved
copy of the CSR.

© It examines the reference count field of the device's UCB (UCB$W_REFC)
to determine whether a process has allocated the device or assigned a
channel to it.

© If the reference count is zero, the interrupt-servicing routine tests the job-
attached bit in the device-dependent status field (UCB$V_JOB in UCB$W_
DEVSTS) to make sure it has not already sent the job controller a message
about the card reader being placed on line. By using the job-attached bit
to synchronize message sending, the interrupt-servicing routine protects
the send-message-to-job-controller function from the adverse effects of
frequent online interrupts.

© If the job-attached bit is not set, the routine sets the bit and creates a fork
process to send the message to the job controller, using the system routine
EXE$SNDEVMSG (described in Appendix C). It is necessary to lower IPL
from device IPL by forking at this point because EXE$SNDEVMSG expects
its caller's IPL to be no greater than IPL$_MAILBOX.

Because the card reader has a dedicated controller, the IDB$L—OWNER field always points to the UCB for the single unit:

0(SP) -► CRB -► IDB — IDB$L-OWNER — UCB

11-7

Writing an Interrupt-Servicing Routine

When the interrupt-servicing routine regains control, it restores RO through R5
and dismisses the interrupt with an REI instruction. (The interrupt-servicing
routine removed the IDB pointer from the stack earlier in its execution in
order to obtain CSR and UCB addresses.)

© When the fork process created at Step 8 above eventually executes, it
writes a message to the job controller's mailbox, indicating that the card
reader is on line.

© If the fork process successfully sends the message, it leaves the job-
attached bit set to prevent the job controller from receiving any further
messages about the card reader's state. (The driver's cancel-I/O routine
later clears the bit.)

® If the send-message request fails, the fork process clears the job-attached
bit so that the job controller will receive a message if any change in the
card reader's state occurs.

Another example of unsolicited interrupt processing occurs in a device driver
for a multiunit controller. When the operator removes a disk volume, the
disk drive requests an interrupt. The driver interrupt-servicing routine must
determine what drive unit requested the interrupt, obtain status information
from the drive's CSR, and then decide whether the interrupt was solicited.

If the interrupt is unexpected, the driver's interrupt-servicing routine calls its
unsolicited-interrupt-servicing routine. The routine checks the status of the
volume, as described in the following steps:

1 It sets a bit in the UCB to indicate that the unit is on line
(UCB$V_ONLINE in UCB$L_STS).

2 If the UCB's volume-valid bit is set (UCB$V_VALID in UCB$L_STS), the
routine tests the volume valid status bit in a device register to determine
whether the volume status has changed. If the volume is no longer valid,
the routine clears the UCB volume valid bit.

3 The routine returns control to the driver's interrupt-servicing routine.

The driver's interrupt-servicing routine then polls the other device units on
the controller to determine whether any other units requested interrupts
while the first interrupt was being processed. When no unit requires interrupt
servicing, the routine removes the IDB pointer from the stack, restores
registers RO through R5, and dismisses the interrupt with an REI instruction.

-n-8

1 2 Completing an I / O Request and Handling
Timeouts

Once a driver has activated the device and invoked the wait-for-interrupt
macro, the driver remains suspended until the device requests an interrupt or
times out.

If the device requests an interrupt, the driver interrupt-servicing routine
handles the interrupt and then reactivates the driver at the instruction
following the wait-for-interrupt macro. The reactivated driver performs
device-dependent I/O postprocessing.

If the device does not request an interrupt within the designated time
interval, the system transfers control to the driver's timeout handler. The
address of the timeout handler is specified as the excpt argument to the
wait-for-interrupt macro.

12.1 I/O Postprocessing
Once the driver interrupt-servicing routine has handled an interrupt, it
transfers control to the driver by issuing a JSB instruction. At this point,
the driver is executing in interrupt context. If the driver were to continue
executing in interrupt context, it would lock out most other processing on the
processor including the handling of hardware interrupts.

To restore the driver to the context of a driver fork process, the driver invokes
the VAX/VMS macro IOFORK. Once the fork process has been created
and dispatched for execution, it executes the driver code that completes the
processing of the I/O request.

12.1.1 EXESIOFORK
IOFORK is a macro that generates a call to the VAX/VMS routine
EXE$IOFORK. EXE$IOFORK converts the driver context from that of an
interrupt-servicing routine to the context of a driver fork process in the
following steps:

1 It disables software timeouts by clearing the timeout enable bit in the UCB
status word (UCB$V_TIM in UCB$L_STS).

2 It saves R3 and R4 of the current driver context in the UCB fork block
(UCB$L_FR3 and UCB$L_FR4).

3 It saves the current driver PC in the UCB fork block (UCB$L_FPC).
(The driver PC is the top longword on the stack, as a result of the JSB to
EXE$IOFORK.)

4 It obtains the fork IPL of the device from the UCB (UCB$B_FIPL).

5 It inserts the address of the UCB fork block (R5) into the fork queue
corresponding to the driver's fork IPL.

6 Finally, if the fork block is the first entry in the fork queue, EXE$IOFORK
requests a software interrupt at the driver's fork IPL.

12—1

Completing an I/O Request and Handling Timeouts

The steps listed above move the fork process' context into the UCB's
fork block. They save R3 through R5 and the driver's PC address. The
driver's fork process resumes processing when the VAX/VMS fork dispatcher
dequeues the UCB fork block from the fork queue and reactivates the driver
at the driver's fork IPL.

12.1.2 Completing an I/O Request
When VAX/VMS reactivates a driver's fork process by dequeuing the fork
block, the driver resumes processing of the I/O operation. If the device has
completed the I/O operation without errors, the driver's fork process for a
DMA device proceeds as follows:

1 Purges the data path

2 Releases the buffered data path (applies only to UNIBUS DMA device
drivers)

3 Releases mapping registers (does not apply to Micro VAX I DMA device
drivers)

4 Releases the controller (applies only to drivers of devices on multiunit
controllers)

5 Saves the status code, transfer count, and device-dependent status that is
to be returned to the user process in an I/O-status block

6 Returns control to the operating system

Section 10 discusses the first three steps listed above because they relate to
DMA transfers. The sections that follow describe the last three steps.

12.1.2.1 Releasing the Controller
To release the controller channel, the driver code invokes the VAX/VMS
macro RELCHAN. RELCHAN calls the VAX/VMS routine IOC$RELCHAN.
If another driver is waiting for the controller channel, IOC$RELCHAN grants
that driver's fork process the channel, restores its context from the UCB
fork block, and transfers control to the saved PC. When no more drivers are
awaiting the channel, IOC$RELCHAN returns control to the fork process that
released the channel.

Drivers for devices with dedicated controllers need not release the controller's
data channel (as discussed in Sections 9.3.1 and 13.1). By means of code in
the unit-initialization routine, these drivers set up the device's UCB so that
the device owns the controller permanently.

Drivers must be executing at driver's fork IPL when they invoke RELCHAN
or call IOC$RELCHAN.

12—2

Completing an I/O Request and Handling Timeouts

12.1.2.2 Saving Status, Count, and Device-Dependent Status
To save the status code, transfer count, and device-dependent status, the
driver performs the following steps:

1 Loads a success status code (SS$_NORMAL) into bits 0 through 15 of RO.

2 Loads the number of bytes transferred into the high-order 16 bits of RO
(bits 16 through 31), if the I/O operation performed by the device is a
transfer function.

3 Loads device-dependent status information, if any, into Rl.1

12.1.2.3 Returning Control to the Operating System
Finally, the driver returns control to the system by invoking the REQCOM
macro to complete the I/O request. REQCOM calls the VAX/VMS routine
IOC$REQCOM. IOC$REQCOM locates the address of the I/O-request packet
(IRP) corresponding to the I/O operation in the device's UCB (UCB$L_IRP).
It then writes the two longwords of completion status contained in RO and Rl
into the media field of the IRP (IRP$L—MEDIA and IRP$L_MEDIA+4).

IOC$REQCOM then inserts the IRP in the I/O-postprocessing queue. If the
packet is the only entry in the postprocessing queue, IOC$REQCOM requests
a software interrupt at IPL$_IOPOST so the postprocessing begins when IPL
drops below IPL$_IOPOST.

If the error-logging bit is set in the device's UCB (UCB$V_ERLOGIP in
UCB$L_STS), IOC$REQCOM obtains the address of the error message buffer
from the UCB (UCB$L_EMB). It then writes the following information into
the error buffer:

• Final device status (UCB$W_DEVSTS)

• Final error count (UCB$B_ERTCNT)

• Two longwords of completion status (RO and Rl)

To release the error-message buffer, IOC$REQCOM calls ERL$RELEASEMB.
Section 13.3 describes error logging in more detail.

If any IRPs are waiting for driver processing IOC$REQCOM dequeues an IRP
from the head of the queue of packets waiting for the device unit
(UCB$L_IOQFL), and transfers control to IOC$INITIATE. IOC$INITIATE
proceeds to create a new driver fork process for the device unit and activate
the driver's start-I/O routine, as described in Section 5.2.1.

Otherwise, IOC$REQCOM clears the unit-busy bit in the device's UCB status
word (UCB$V_BSY in UCB$L_STS) and transfers control to IOC$RELCHAN
to release the controller channel in case the driver failed to do so.

The remaining steps in processing the I/O request are performed by
VAX/VMS I/O postprocessing.

* RO and Rl are the status values that VAX/VMS returns to the user process in the I/O-status block specified in the original $QIO system
service. If the user specifies no I/O-status block, VAX/VMS does not use RO and Rl.

12-3

Completing an I/O Request and Handling Timeouts

12.2 Timeout Handling Routines

VAX/VMS transfers control to the driver's timeout handler if a device unit
does not request an interrupt within the time limit specified in the invocation
of the wait-for-interrupt macro. Among its other activities, the VAX/VMS
IPL$_TIMERFORK interrupt-servicing routine, having raised IPL to
IPL$_SYNCH, scans UCBs once every second to determine whether a device
has timed out.

When the IPL$_TIMERFORK interrupt-servicing routine locates a device that
has timed out, the routine calls the driver's timeout handler by performing
the following steps:

1 It disables expected interrupts and timeouts on the device by clearing bits
in the status field of the device's UCB (UCB$V_INT and UCB$V_TIM in

UCB$L_STS).

2 It sets the device-timeout bit in the UCB status field (UCB$V_TIMOUT in
UCB$L_STS).

3 It sets IPL to hardware device interrupt IPL (UCB$B_DIPL).

4 It restores the saved R3 and R4 of the driver's fork process from the UCB
fork block (UCB$L_FR3 and UCB$L_FR4).

5 It restores R5 (address of the UCB fork block).

6 It computes the address of the driver's timeout handler from the saved PC
in the UCB fork block (UCB$L_FPC).

7 It calls the driver's timeout handler with a JSB instruction.

The driver's timeout handler executes in following context:

• RO through R5 are saved on the stack.

• R5 contains the address of the UCB for the device that timed out.

• System address space is mapped.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

• IPL is at hardware device interrupt level.

Because VAX/VMS originally invoked the timeout handler through an
interrupt at IPL$_TIMERFORK, the driver can lower IPL from device IPL
to the driver's fork IPL to process the timeout.2

Note: The driver should lower IPL with SETIPL to preserve the contents of the
stack.

When the driver's fork process regains control, R3 and R4 are restored from
UCB$L_FR3 and UCB$L_FR4 to their previous state.

2
Because the device can interrupt device-timeout processing at fork IPL, the driver's interrupt-servicing routine should check the

interrupt-expected bit (UCB$V_INT) before handling the interrupt. The operating system clears this bit before it calls the driver's timeout

handler.

12-4

Completing an I/O Request and Handling Timeouts

During recovery from a power failure, VAX/VMS forces a device timeout
by altering the timeout field (UCB$L_DUETIM) of a UCB if that device's
UCB records that the unit is waiting for an interrupt or timeout (UCB$V_INT
and UCB$V_TIM set in UCB$L_STS). The timeout handler can perceive
that recovery from a power failure is occurring by examining the power bit
(UCB$V_POWER in UCB$L_STS) in the UCB.

A timeout handler usually performs one of three functions:

• It retries the I/O operation unless a retry count is exhausted.

• It aborts the I/O request.

• It sends a message to an operator mailbox and resumes waiting for a
subsequent interrupt or timeout.

12.2.1 Retrying an I/O Operation

Some devices might retry an I/O operation after a timeout. For example, a
disk driver might take the following steps after a transfer timeout:

1 Invoke the following VAX/VMS macro to lower IPL to fork level:

SETIPL UCB$B_FIPL(R5)

The resulting IPL must not drop below IPL$_SYNCH.

2 Release mapping registers, data path, and controller data channel.

3 Perform one of the following actions depending upon the occurrence of a
power failure:

• If a power failure occurred, load the address of the IRP into R3, reload
the following fields of the IRP into the corresponding UCB fields, and
branch to the start-I/O routine:

IRP$L_BCNT (low-order word)
IRP$W_BOFF
IRP$L _S VAPTE

This results in a retry of the transfer from the beginning.

• If no power failure has occurred and the device driver supports error
logging (see Section 7.2), call ERL$DEVICTMO to log the device
timeout.

4 Perform one of the following actions according to the error retry count:

• If the retry count is not exhausted, decrease the count, clear the UCB
timeout bit in UCB$L_STS, and retry the operation.

• If the retry count is exhausted, set the error code, perform a normal
abort I/O clean-up operation, and invoke REQCOM.

12-5

Completing an I/O Request and Handling Timeouts

12.2.2 Aborting an I/O Request
A driver's timeout handler aborts the I/O request when it exhausts its retry
count or when it determines, upon timeout, that a cancel-I/O was requested.
If the cancel-I/O bit in the UCB status word (UCB$V_CANCEL in
UCB$L_STS) is set, a cancel-I/O request was made and the timeout handler
can abort the request.

To abort an I/O request, a device driver timeout handler can perform the
following sequence of steps:

1 Clear the device control and status register (CSR), if appropriate to the
device and controller.

2 Invoke the following VAX/VMS macro to lower IPL to fork level:

SETIPL UCB$B_FIPL(R5)

The resulting IPL must not drop below IPL$_SYNCH.

3 Release mapping registers, data path, and controller data channel.

4 Load the abort status code (SS$_ABORT) into the low word of RO.

5 Clear bits 16 through 31 in RO to indicate that no data was transferred.

6 Invoke the VAX/VMS macro REQCOM described in Section 12.1.2.3 to
complete the processing of the I/O request.

12.2.3 Sending a Message to the Operator
The following sequence describes a timeout handler that sends a message to
the operator's mailbox and then goes back into a wait-for-interrupt or timeout
state:

1 The timeout handler invokes the following VAX/VMS macro to lower IPL
to driver fork level:

SETIPL UCB$B_FIPL(R5)

The resulting IPL must not drop below IPL$_SYNCH.

2 It checks the cancel-I/O bit in the UCB status word (UCB$V_CANCEL in

UCB$L_STS).

If UCB$V_CANCEL is set, the timeout handler can abort the request.
However, if UCB$V_CANCEL is clear, the timeout handler does the
following:

a Saves R3 and R4 on the stack

b Loads an OPCOM message code, such as MSG$_DEVOFFLIN, into R4

c Loads the address of the operator's mailbox (SYS$GL_OPRMBX) into
R3

d Calls a VAX/VMS routine to place the message in the operator's
mailbox, as follows:

JSB G~EXE$SNDEVMSG

e Restores R3 and R4

12-6

Completing an I/O Request and Handling Timeouts

3 The timeout handler then invokes the VAX/VMS macro DSBINT to raise
IPL to IPL$_POWER, thereby locking out all interrupts from software and
hardware.

4 Finally, it invokes the WFIKPCH macro to wait for another interrupt or
timeout.

When the OPCOM process reads the message in its mailbox, it sends the
requested message, in this case "device-offline," to all operator terminals.

12-7

Writing Initialization, Cancel-I/O, and
Error-Logging Routines

13.1

Drivers normally contain initialization, cancel-I/O, and error-logging routines.
The driver-prologue table (by repeatedly invoking the DPT_STORE macro
described in Section 7.1.2) specifies the addresses of the unit- and controller-

initialization routines.1 The driver-dispatch table (DDT) contains the
addresses of the cancel-I/O and error-logging routines. The type of device
determines which of these routines are required in a driver.

Initialization Routines

Most device controllers and device units require initialization both when
the corresponding device driver is loaded and when the operating system is
recovering from a power failure.

At these times, the duty of initialization routines is to prepare, according to
their characteristics, controllers and device units for operation. Among the
actions of initialization routines for typical controllers and devices are:

• Enabling controller interrupts

• Clearing the error-status bits in device registers

• Initiating a device operation, such as clearing a drive or acknowledging a
disk pack

• Storing values in UCB fields that the DPT_STORE macro cannot reach
The DPT_STORE macro can initialize only the first 256 bytes of a data
structure.

• Permanently allocating data paths and mapping registers, as necessary,
according to the methods described in Section 10.

• Setting the online bit (UCB$V-ONLINE in UCB$L_STS) in the UCB.

• Filling in the IDB$L—OWNER field for single-unit devices such as line
printers.

* A MASSBUS device driver must specify the address of its unit-initialization routine in the driver-dispatch table (using the unitinit argument
to the DDTAB macro as discussed in Section 7.2). UNIBUS and Q22 bus drivers can specify the address in either the driver-prologue table or

driver-dispatch table.

13-1

Writing Initialization, Cancel-1/0, and Error-Logging Routines

13.1.1 Initialization During Driver Loading

The extent of initialization needed during driver loading depends upon
whether the driver is being loaded for the first time or is replacing a driver
that was previously loaded.

The SYSGEN commands AUTOCONFIGURE, CONNECT, and LOAD add
new drivers to the system configuration. The LOAD command loads the
driver into nonpaged system memory but does not call any driver-specific
routines or execute any initialization requests specified in DPT_STORE
macro invocations. AUTOCONFIGURE and CONNECT create the I/O data
structures associated with the device driver, call driver-specific initialization
routines, and perform requests specified in DPT_STORE macro invocations.

For each new device they add to the system, AUTOCONFIGURE and
CONNECT perform the following steps:

• Create a UCB for the device. If this is the first occurrence of device¬
name and controller, the commands create a device-data block (DDB), a
channel-request block (CRB), and an interrupt-dispatch block (IDB).

• Perform the initialization operations specified by the DPT_STORE macros
within the initialization and reinitialization portions of the driver-prologue
table.

• Relocate all addresses in the DDT and FDT to system virtual addresses.

• Call the controller-initialization routine specified in the CRB, if the CRB
was created.

• Call the unit-initialization routine (if any) specified in the DDT. If no
routine exists in the DDT, call the unit initialization routine (if any)
specified in the CRB.

The AUTOCONFIGURE and CONNECT command operations raise IPL to
IPL$_POWER to prevent interruption of the initialization routines.

The RELOAD command replaces an existing driver with a new driver. The
command loads the new driver's code into nonpaged system memory. Unlike
the other SYSGEN commands for driver loading, RELOAD assumes that the
data structures associated with the driver already exist, and thus updates the
I/O database to reflect the modified code and its different location in system
virtual address space.

The RELOAD command performs the following functions:

• Executes requests specified by DPT_STORE macro invocations in only the
reinitialization section of the driver-prologue table

• Relocates all addresses in the FDT and DDT to system virtual addresses

• Calls the controller-initialization routine

Section 14 contains detailed descriptions of all SYSGEN commands related to
device drivers.

13-2

Writing Initialization, Cancel-1/0, and Error-Logging Routines

13.1.2 Initialization During Recovery from a Power Failure
During recovery from a power failure, the operating system locates every
UCB in the I/O database, by means of following the chain of pointers to all
DDBs in the system (starting at IOC$GL_DEVLIST and chained by

DDB$L_LINK) and the chain of pointers to all UCBs of the same device and
controller type (starting at DDB$L_UCB and chained by UCB$L_LINK). For
each UCB it finds, VAX/VMS performs the following procedure:

1 It locates the CRB associated with the UCB (UCB$L_CRB) and determines
whether a controller initialization routine exists for the device's controller
by examining CRB$L_INTD+VEC$L—INITIAL. If an invocation of the
DPT—STORE macro loaded the address of a controller-initialization
routine into this field, VAX/VMS calls that routine.

2 It determines whether a unit-initialization routine exists for the particular
device unit by examining the unit-initialization field of the DDT
(DDT$L_UNITINIT). If the field does not contain an address, the system

checks the CRB (CRB$L_INTD+VEC$L -UNITINIT).2

If either the CRB or the DDT contains a nonzero address for such a
routine, the system calls the routine to initialize the device unit. The
system calls only one routine; if the DDT contains an address, the address
in the CRB is ignored.

13.1.3 Context of an Initialization Routine
The VAX/VMS operating system always calls controller and unit initialization
routines with IPL raised to IPL$_POWER. The high IPL prevents any
interrupts from reaching the processor while initialization is occurring. The
initialization routines must not lower IPL. The system calls initialization
routines with a JSB instruction; the routines return by executing an RSB
instruction.

Controller-initialization routines are device-dependent. For example, a
controller-initialization routine for a card reader might enable interrupts
from the device by setting the interrupt-enable bit in the device's control and
status register (CSR). A disk's controller-initialization routine, on the other
hand, might enable interrupts and initialize all unit-status registers.

At the time of a call to a controller-initialization routine, the registers contain
the following values:

Register Value

R4 Address of CSR

R5 Address of IDB that describes the controller

R6 Address of DDB associated with the controller

R8 Address of CRB for the controller

Unit-initialization routines are useful for initializing device-dependent fields
in the UCB. For example, unit-initialization routines for disks can also specify
disk-drive geometry (such as number of cylinders) in the UCB and wait for
online units to spin up to speed. Unit-initialization routines must set the
online bit in the UCB (UCB$V_ONLINE) to declare the unit to be on line.

^ MASSBUS drivers store unit-initialization routines addresses only in the DDT.

13—3

Writing Initialization, Cancel-1/0, and Error-Logging Routines

If a device needs permanently allocated I/O adapter resources, a unit-
initialization routine can call VAX/VMS routines to allocate the resources.
Then, the initialization routine can set bits in the CRB's I/O adapter
resource-description fields (for example, VEC$V_MAPLOCK in CRB$L_
INTD+VEC$W_MAPREG and VEC$V_PATHLOCK in
CRB$L _INTD+VEC$B_DATAPATH.)

At the time of a call to a unit-initialization routine, the registers contain the
following values:

Register Value

R3 Address of primary CSR

R4 Address of secondary CSR; R4 is equal to R3 if there is no
secondary CSR

R5 Address of the device's UCB

If a driver's initialization routines modify R4 through Rll, the routines must
save the contents of the registers before use and restore them before returning
control to the operating system.

13.2 Cancel-1/O Routine
VAX/VMS routines call a device driver's cancel-I/O routine under the
following circumstances:

• When a process issues a Cancel-I/O-on-Channel system service
($CANCEL)

• When a process deallocates a device, causing the device reference count
(UCB$W_REFC) to become zero (that is, no process I/O channels are
assigned to the device)

• When a process deassigns a channel from a device, using the $DASSGN
system service

• When the command interpreter performs cleanup operations as part of
image termination by canceling all pending I/O requests for the image
and closing all image-related files open on process I/O channels

The VAX/VMS routine EXE$CANCEL locates the UCB for the device
associated with a process I/O channel from a pointer in the CRB, as follows:

channel index number —► CCB —► UCB

EXE$CANCEL performs the following steps:

1 Raises IPL to fork IPL (UCB$B_FIPL)

2 Removes from the device's pending I/O queue all IRPs associated with
the process

3 Sets the status code SS$_CANCEL in IRP$L—MEDIA

4 For a buffered-I/O read operation, clears the buffered-read function bit
(IRP$V_FUNC) in IRP$W_STS

5 Inserts the IRPs removed from the pending I/O queue into the I/O
postprocessing queue

13-4

Writing Initialization, Cancel-I/O, and Error-Logging Routines

6 If the I/O-postprocessing queue is empty, requests a software interrupt at
IPL$_IOPOST

7 Calls the cancel-I/O routine specified in the DDT of the associated device
driver (argument cancel to the DDTAB macro). EXE$CANCEL locates the
routine using the following chain of pointers:

UCB —► DDT —► cancel-I/O routine

The cancel-I/O routine gives the driver an opportunity to prevent further
device-specific processing of the I/O request currently being processed on
the device.

13.2.1 Context of a Cancel-I/O Routine
When EXE$CANCEL calls the cancel-I/O routine, IPL is at driver fork IPL
so that the routine can read and modify the device's UCB registers at the
time of the call contain the following values:

Register Value

R2 Channel index number

R3 Address of current IRP

R4 Address of process-control block (PCB) of process for which
the $CANCEL system service is being performed

R5 Address of device's UCB

R8 Reason for call to cancel the I/O request. Codes that signify the
reasons for cancellation are defined by the SCANDEF macro.
Possible values for R8 include:

CAN$C_CANCEL Called by SCANCEL or SDALLOC system
services

CAN$C_DASSGN Called by SDASSGN system service

If a cancel-I/O routine uses registers other than RO through R3, it must
save the registers and restore them before exiting.

Device drivers might want to base their cancel-I/O operation on whether
the cancel-I/O request is the result of a channel deassignment
(CAN$C_DASSGN). For example, the terminal driver cancels out-of-
band AST requests only if the call to its cancel-I/O routine results from a
Deassign-I/O-Channel ($DASSGN) system service call.

13.2.2 Drivers That Need No Cancel-I/O Routine
Some devices do not need any device-dependent processing performed
for an I/O request; you can omit the cancel argument from the DDTAB
macro. In this case, the DDTAB macro expansion loads the address of
the VAX/VMS routine IOC$RETURN into the appropriate position in the
DDT. The routine IOC$RETURN executes a single RSB instruction.

13-5

Writing Initialization, Cancel-I/O, and Error-Logging Routines

13.2.3 Device-Independent Cancel-I/O Routine
Drivers can specify the VAX/VMS routine IOC$CANCELIO as the value
of the cancel argument in the DDTAB macro invocation. IOC$CANCELIO
cancels I/O to a device in the following device-independent manner:

1 It confirms that the device is busy by examining the device-busy bit in
the UCB status word (UCB$V_BSY in UCB$L_STS).

2 It locates the process-identification field in the IRP currently being
processed on the device by using the following chain of pointers:

UCB —► IRP —► process identification field

IOC$CANCELIO confirms that the field (IRP$L_PID) contains the
same value as the corresponding field in the process-control block
(PCB$L_PID).

3 It confirms that the specified channel-index number is the same as the
value stored in the IRP's channel-index field (IRP$W_CHAN).

4 It sets the cancel-I/O bit in the UCB status word (UCB$V_CANCEL
in UCB$L_STS). Other driver routines, such as the timeout-handling
routine, check the cancel-I/O bit to determine whether to retry the I/O
operation or abort it. (See Section 12.2.2 for additional information.)

13.2.4 Device-Dependent Cancel-I/O Routine
Drivers that include their own cancel-I/O routines must perform the
first three steps of IOC$CANCELIO listed in Section 13.2.3 to determine
whether the I/O request being processed originates from the process
canceling I/O on a channel. If the three checks succeed, the cancel
routine can proceed in a device-specific manner.

13.3 Error-Logging Routines
The operating system supplies two routines that drivers can call to
allocate and fill error-logging buffers after a device error or timeout
occurs: ERL$DEVICERR and ERL$DEVICTMO, respectively. Drivers call
either routine at fork IPL; each expects to find the address of the device's
UCB in R5.

Note: See the VAX /VMS System Manager's Reference Manual and the
VAX/VMS Error Log Utility Reference Manual for help with producing
and reading error log files.

Both ERL$DEVICERR and ERL$DEVICTMO perform the following steps:

1 Allocate an error log buffer of the length specified in the device's DDT
(in argument erlgbf to the DDTAB macro). The following chain of
pointers is used to locate the buffer length:

UCB —* DDT —► length of error log buffer

2 Load fields from the UCB, the IRP, and the DDB into the buffer.

3 Load into RO the address of the location in the buffer in which device¬
register's contents are to be stored.

13—6

Writing Initialization, Cancel-I/O, and Error-Logging Routines

4 Call a register-dumping routine in the device driver. The following
chain of pointers is used to locate the register-dumping routine:

UCB —► DDT —► register-dumping routine

Specify the address of a register-dumping routine with the value of the
regdmp argument to the DDTAB macro.

The register-dumping routine expects the following registers to be loaded
as described:

Register Content

RO Buffer address

R4 Address of CSR if the driver used the WFIKPCH macro to wait
for an interrupt or timeout

R5 Address of the device's UCB

The register-dumping routine should save and restore R3 through Rll if
the routine requires their use.

The driver register-dumping routine should fill the buffer as follows:

1 Write a longword value representing the number of device registers to
be written into the buffer

2 Move device register longword values into the buffer following the
register count longword

The routine must store the contents of each device register to be logged in
a longword in the buffer. For example, the following instruction stores the
contents of the device register:

MOVZWL TD_STATUS(R4),(R0) +

A driver that supports error logging must satisfy the following
prerequisites:

• It must use the error-log extension of the UCB.

• It must ensure that DDT$W_ERRORBUF is large enough to
accommodate EMB$L_DV_REGSAV+4, plus one longword for each
register to be dumped.

• Its driver-prologue table must set the device characteristic DEV$V_ELG
in UCB$L _DEVCHAR.

13-7

14 Loading a Device Driver

You can load a user-written device driver any time after the system is
bootstrapped. If the driver contains an error and the error does not crash
or corrupt the operating system, you can correct the error and reload a new
version of the driver.

14.1 Preparing a Driver for Loading into the Operating System

To prepare a device driver for loading, take the following steps:

1 Write the device driver in one or more source files. If the driver comprises
several source files, you must insert a .PSECT directive before any
generated code in all files except the file that contains the DPTAB and
DDTAB macro invocations. The following .PSECT must be used:

.PSECT $$$115_DRIVER

If a single source file contains the driver, you must not specify any .PSECT
directives. The declaration of the DPTAB and DDTAB macros establish
driver program sections correctly.

2 Assemble the source file(s) with the system's macro library
(SYS$LIBRARY:LIB.MLB). For example:

$ MACRO MYDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY

3 Link the object file with the VAX/VMS global symbol table, which is
located in SYS$SYSTEM and called SYS.STB. If the driver consists of
several source files, you must specify the file that contains the driver-
prologue table as the first file in the list. The linker-options file must
contain a BASE statement specifying a zero base for the executable image.
The following is an example of the creation of the options file and the
LINK command used to link a driver:

$ CREATE MYDRIVER.OPT

BASE=0

| CTRL/Zl

$ LINK /NOTRACE MYDRIVER1[,MYDRIVER2_],-

MYDRIVER.OPT/OPTIONS,-

SYS$SYSTEM:SYS.STB/SELECTIVE.SEARCH

The resulting image must consist of a single image section. The linker will
report that the image has no transfer address.

14-1

Loading a Device Driver

14.2 Loading a Driver

Once the driver has been linked correctly, it is ready to be loaded. To load
the driver into system virtual memory, run the System Generation Utility
(SYSGEN) from the system manager's account or from an account having
CMKRNL privilege, using the following command:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN responds with a prompt and waits for further input:

SYSGEN>

The VAX/VMS System Generation Utility Reference Manual describes the full
set of SYSGEN commands. The sections that follow describe those commands
SYSGEN uses to load drivers:

SYSGEN command Privilege required

LOAD CMKRNL

CONNECT CMKRNL

RELOAD CMKRNL

SHOW/ADAPTER CMEXEC

SHOW/CONFIGURATION CMEXEC

SHOW/DEVICE CMEXEC

In addition, you should understand SYSGEN's automatic configuration
feature, as described in Section 14.3.

14.2.1 LOAD Command

To load a device driver, issue the LOAD command.

Note: If the controller has only a single unit attached to it, you can issue
the CONNECT command to perform the driver-loading tasks normally
performed by the LOAD command, as well as its task of creating the
device's I/O database (see Section 14.2.2).

Format

LOAD file-spec

Parameter

file-spec
Name of a file containing an executable driver image. The driver-loading
procedure compares the name field in the driver-prologue table
(DPT$T_NAME) of the driver being loaded with the names of the drivers in
the current system configuration. If the procedure discovers that a driver with
the same name already exists in the configuration, it will not load the new
driver. If it does not find a configured driver with the same name, it loads
the new driver into contiguous locations in nonpaged pool, and links the DPT
into the system's linked list of DPTs (headed by IOC$GL_DEVLIST).

The LOAD command uses SYS$SYSTEM as the default device/directory
name, and EXE as the default file type.

14—2

Loading a Device Driver

Example

SYSGEN> LOAD CRDRIVER

This command loads the driver found in SYS$SYSTEM:CRDRIVER.EXE (the
card-reader driver).

14.2.2 CONNECT Command

The CONNECT command creates data structures in the I/O database for a
specified device. The device-connecting procedure performs the following
general functions:

• If the CONNECT command specifies a new device unit on an existing
controller, it creates a unit-control block for the new unit and calls the
driver's unit-initialization routine.

• If the CONNECT command specifies a device unit on a new controller, it
creates a device-data block, channel-request block, interrupt-dispatch
block, and unit-control block and then calls both the controller-
initialization and unit-initialization routine in the driver.

The CONNECT command can also load into system memory a driver that
has not been previously loaded. (See the discussion of the /DRIVERNAME
qualifier below and the description of the LOAD command in Section 14.2.1
for information on driver loading.)

CAUTION: The database-loading procedure does little error checking. If you specify a
vector that has already been defined, the procedure rejects the CONNECT
command. However, if the CONNECT command specifies an incorrect
CSR address, the I/O database is apt to become corrupted and will likely
cause a system failure.

Format

CONNECT device

Parameter

device
Name of the device to be connected. Specify the device name in the format
ddcu where:

dd = device code (up to 9 alphabetic characters)

c = controller designation (alphabetic)

u = unit number

For example, LPAO specifies the line printer (LP) on controller A at unit
number 0. When specifying the device name, do not follow it with a colon

(:)•

The device code and controller specification must be a unique and accurate
device name and controller combination. If data structures for the specified
device/controller already exist, the device-connecting procedure does not
create any data structures or perform any initialization operations. If the
device/controller name does not accurately name a device, the procedure
creates spurious data structures.

14-3

Loading a Device Driver

The device-connecting procedure examines the I/O database for data
structures that support the specified device. The procedure creates the
following data structures if they do not exist:

• Device-data block (DDB) for the specified device/controller combination
(iddcu).

• Channel-request block (CRB) and interrupt-dispatch block (IDB) for the
specified controller. The device-connecting procedure creates these data
structures whenever it creates a DDB for a UNIBUS or Q22 bus device.

• Unit-control block (UCB) for the device unit. The device-connecting
procedure creates a UCB whenever it creates a DDB, or when a UCB for
the specified device does not exist. If a UCB already exists, the procedure
ceases its modifications to the I/O database and continues its other tasks.

After it creates the data structures listed above, the procedure initializes them
as follows:

• Performs the initialization operations specified by the DPT_STORE macros
in the initialization and reinitialization portions of the driver-prologue
table (DPT).

• Relocates all addresses in the driver-dispatch table (DDT) and function-
decision table (FDT) to absolute system virtual addresses.

• Raises IPL to IPL$_POWER so that initialization is not interrupted.

• If it created a new CRB, calls the controller-initialization routine (if one

exists) specified by CRB$L_INTD+VEC$L—INITIAL.

• Calls the unit-initialization routine (if one exists) specified by
DDT$L_UNITINIT. If the DDT does not contain the address of a
unit-initialization routine, the procedure calls the unit-initialization routine
(if any) specified by CRB$L_INTD+VEC$L_UNITINIT.

Required Qualifiers

/[NO]ADAPTER=nexus
Nexus value of the UNIBUS adapter, MASSBUS adapter, or other controller
to which the device unit is attached. The nexus can be a number or a generic
name as listed by the /ADAPTER qualifier to the SYSGEN command SHOW.
(See Section 14.2.4 for a discussion of the SHOW/ADAPTER command.)

Specify a nexus number in the range 0 through 15. All numeric values are
interpreted as decimal unless they are preceded by a radix descriptor (%0 or
%X).

The nexuses of the various VAX processors are conventionally assigned as
listed in Table 14-1.

14—4

Loading a Device Driver

Table 14-1 Conventional Nexus Assignments

Adapter
VAX-11/725
VAX-11/730 VAX-11/750

VAX-11/780
VAX-11/782
VAX-11/785
VAX 8600
VAX 8650

MicroVAX 1
MicroVAX II
VAX 82001
VAX 88001

UNIBUS
0 3 8 3 0

1 - 9 4 -

2 - - 5 -

3 - - 6 -

MASSBUS
- 4 8 —

0

1 - 5 9 -

2 - 6 10 -

3 - - 1 1 -

^he BI-to-UNIBUS adapter on a VAX 8800 or VAX 8200 must be located at
Node 0.

Issue the CONNECT command with the /NOADAPTER qualifier to connect
drivers associated with software devices. The mailbox driver is an example of
this type of driver.

/CSR=csr-addr
UNIBUS or Q22 bus address of the device's control and status register (CSR).
All numeric values are interpreted as decimal unless they are preceded by a
radix descriptor (%0 or %X).

/CSR_OFFSET=value
Offset from the CSR address of a multiple-device board to the CSR address
of the device. All numeric values are interpreted as decimal unless they are
preceded by a radix descriptor (%0 or %X).

/VECTOR=vector-addr
Q22 bus or UNIBUS address of the interrupt vector for the device. All
numeric values are interpreted as decimal unless they are preceded by a
radix descriptor (%0 or %X). Section 14.3 provides additional information on
vector and CSR assignments.

/VECTOR_OFFSET=value
Offset from the interrupt vector of a multiple-device board to the interrupt
vector of the device being connected. All numeric values are interpreted
as decimal unless they are preceded by a radix descriptor (%0 or %X).
Section 14.3 provides additional information on vector and CSR assignments.

14-5

Loading a Device Driver

Optional Qualifiers

/N U M VEC=vector-cnt
Number of interrupt vectors for the device. If this qualifier is omitted, the
default number of vectors is 1. The number specified by the /VECTOR
qualifier is the address of the lowest vector. Vectors must be contiguous.

/DRIVERNAME=driver
Name of the driver for the device to be connected. If the driver for the
specified device has not yet been loaded, the CONNECT command will
load its driver. First, it will attempt to load the driver whose name is
specified in this qualifier, defaulting to a file type of EXE in device/directory
SYS$SYSTEM).

If the /DRIVERNAME qualifier is omitted, CONNECT follows one of two
procedures to supply a default name. If the device to be connected is the
first unit on the controller, CONNECT concatenates the first two characters
of the device code with "DRIVER," (for example, LPDRIVER). Otherwise,
CONNECT obtains the driver name from the field DDB$T_DRVNAME.

Consult the SYSGEN device table in Section 14.3.2 for the driver names of
the devices supported by VAX/VMS.

/ADPUNIT=unit-number
Unit number of a device on the MASSBUS adapter. The unit number for a
disk drive is the number of the plug on the drive. For magnetic tape drives,
the unit number corresponds to the tape controller's number.

/MAXUNITS=max-unit-cnt
Maximum number of units attached to the controller. This number
determines the size of the UCB list appended to the IDB. If specified, this
value overrides the maximum number of units designated in the DPT. The
maximum number of units is stored in the field IDB$W_UNITS.

Example

SYSGEN> CONNECT LPAO /ADAPTER=UB0/CSR=%0777514/VECT0R=y.020O

This command loads the driver LPDRIVER, if it is not already loaded, and
creates the data structures (DDB, CRB, IDB, and UCB) needed to describe
LPAO.

14.2.3 RELOAD Command
The RELOAD command loads a driver and removes a previously loaded
version of that driver. The RELOAD command provides all of the functions
of LOAD, except that it loads the driver regardless of whether it is already
loaded.

If any of the units associated with the driver are busy, the driver cannot be
reloaded; SYSGEN issues an error message.

CAUTION: Use the RELOAD command only when all devices supported by the
driver are inactive. The checks for activity made by the RELOAD
command might not detect all device activity, and changing a driver
while an I/O request is being processed will cause a system failure.

14-6

Format

RELOAD file-spec

Loading a Device Driver

Parameter

file-spec
Name of a file containing an executable driver image. The driver-reloading
procedure compares the name field in the driver-prologue table
(DPT$T_NAME) of the driver being loaded with the names of the drivers in
the current system configuration. If no such driver is configured, the driver¬
reloading procedure loads the driver as described in the discussion of the
LOAD command in Section 14.2.1.

If the driver-reloading procedure finds a driver with the specified name in the
configuration, it first determines that the current driver can be replaced in the
following steps:

• Confirms that the DPT$M_NOUNLOAD flag of the current driver is not
set.

• Calls the current driver's driver-unloading routine, if one exists, and
confirms that the returned status is a success code.

• Ensures that no devices that use the current driver are busy, as indicated
by the UCB$V_BSY bit set in UCB$L_STS.

If these checks succeed, the driver-reloading procedure replaces the current
driver with the new driver in the following manner:

1 Loads the new driver into contiguous locations in nonpaged system
memory.

2 Searches the I/O database for references to the driver. If any device-data
block refers to the driver being reloaded, the driver-reloading procedure
must reinitialize data structure fields according to the reinitialization
instructions in the new driver-prologue table (see Section 7.1).

Fields that must be reinitialized when a driver is reloaded include those
that contain relative addresses within the driver:

• Addresses of the driver's interrupt-servicing routines

• Addresses of the device's unit-initialization and controller-initialization
routines

• Address of the driver-dispatch table

3 Calls the driver's controller-initialization routine. (It does not call the
unit-initialization routine.)

4 Removes the newly replaced driver from the system's linked list of DPTs
(headed by IOC$GL_DEVLIST). (headed by IOC$GL_DEVLIST) and
deallocates the nonpaged system space the old driver occupied.

5 Links the address of the new driver-prologue table to the system's list of
DPTs.

14.2.4 SHOW/ADAPTER Command
The SHOW/ADAPTER command displays nexus numbers and generic names
of UNIBUS and MASSBUS adapters, memory controllers, and interconnection
devices such as the DR32. Use of the SHOW/ADAPTER command requires
CMEXEC privilege.

14-7

Loading a Device Driver

Format

SHOW/ADAPTER

Example

SYSGEN> SHOW/ADAPTER

CPU Type: 11/780
Hardware Revision #96

Nexus Generic Name or Description

1 16K memory, non-interleaved

4 UBO
5 UB1
8 MBO
9 MB1

This example shows a VAX-11/780 that uses one memory controller
composed of 16K-bit chips, two UNIBUS adapters, and two MASSBUS
adapters.

14.2.5 SHOW/CONFIGURATION Command
The SHOW/CONFIGURATION command displays the device name, number
of units, nexus number and type, and shows the CSR and vector addresses of
devices connected to or autoconfigured in the system.

Format

SHOW/CONFIGURATION

Optional Qualifiers

/ADAPTER=nexus
Nexus value of the UNIBUS adapter, MASSBUS adapter, or other
interconnect to be displayed. The nexus value can be expressed as an integer
or as one of the generic names listed by the SHOW/ADAPTER command.

/COMMAND-FILE
Option by which you instruct SYSGEN to format all device data produced by
the SHOW/CONFIGURATION command into CONNECT/ADAPTER=nexus
commands and write them to a specified output file. By executing the
commands in this file, you can remove a device from floating address
space without completely reconnecting the CSR and vector addresses of
the remaining devices. See the VAX/VMS System Generation Utility Reference
Manual for more details.

/OUTPUT=file-spec
Name of a file into which SHOW/CONFIGURATION is to write device
configuration information.

14-8

Loading a Device Driver

Example

SYSGEN> SH0W/C0NFIGURATI0N/ADAPTER=UB1

System CSR and Vectors on 24-. JUL-1986 14:58:26.08

Name: LPA Units: 1 Nexus:4 (UBA) CSR: 777514 Vectorl: 200 Vector2: 000

Name: DYA Units: 2 Nexus:4 (UBA) CSR: 777170 Vectorl: 264 Vector2: 000

Name: XMA Units: 1 Nexus:4 (UBA) CSR: 760070 Vectorl: 300 Vector2: 304

Name: XMB Units: 1 Nexus:4 (UBA) CSR: 760100 Vectorl: 310 Vector2: 314

Name: XMC Units: 1 Nexus:4 (UBA) CSR: 760110 Vectorl: 320 Vector2: 324

Name: TTA Units: 8 Nexus:4 (UBA) CSR: 760130 Vectorl: 330 Vector2: 334

Name: TTB Units: 8 Nexus:4 (UBA) CSR: 760140 Vectorl: 340 Vector2: 344

Name: TTC Units: 8 Nexus:4 (UBA) CSR: 760150 Vectorl: 350 Vector2: 354

Name: TTD Units: 8 Nexus:4 (UBA) CSR: 760160 Vectorl: 360 Vector2: 364

Name: TTE Units: 8 Nexus:4 (UBA) CSR: 760170 Vectorl: 370 Vector2: 374

14.2.6 SHOW/DEVICE Command
The SHOW/DEVICE command displays the following information:

• Name of the driver

• Starting virtual address of the driver (that is, the address of the driver-
prologue table)

• Ending virtual address of the driver

• Generic device/controller name associated with the driver

• Addresses of the device-data block, channel-request block, and interrupt-
dispatch block for the generic device/controller supported by the driver

• Unit number and UCB address of each device unit associated with the
driver

The SHOW/DEVICE command requires CMEXEC privilege.

Format

SHOW/DEVICE [=driver-name]

Parameter

driver-name
Name of the driver for which the information is to be displayed. If a driver
name is not specified, the command displays information about all drivers
and devices known to the system.

Example

SYSGEN> SHOW/DEVICE=TMDRIVER

_DRIVER_START_END_DEV_DDB_CRB_IDB_UNIT_UCB

TMDRIVER 8009DF00 8009F020

MTA 800BA660 800BA6C0 800BA360

0 8009F020

1 8009F0C0

14-9

Loading a Device Driver

14.3 Autoconfiguration

The standard VAX/VMS system start-up file runs SYSGEN to create and
initialize an I/O database that describes all supported DIGITAL peripherals
in the configuration. The following command requests SYSGEN to prepare a
database for all supported DIGITAL devices attached to every UNIBUS, Q22
bus, and MASSBUS:

SYSGEN> AUTOCONFIGURE ALL

To configure devices attached to the UNIBUS or Q22 bus, SYSGEN goes
through the steps described in subsequent sections of this chapter.

DIGITAL-supplied devices are attached to the UNIBUS or Q22 bus according
to a table found in Appendix A of the PDP-11 Peripherals Handbook. The
basic rules follow:

• A device of type A is always at a fixed and predefined CSR address; the
device always interrupts at a fixed and predefined vector address; only one
example of device A can be configured in each system.

• A device of type B is identical to type A except that 1 through n examples
can be configured in a single system. Examples 2 through n are also
located at fixed and predefined CSRs and vector addresses.

• Devices of type C (1 through n of them) are always at fixed and predefined
CSR addresses; however, the interrupt vector addresses vary according to
what other devices are present on the system.

• Devices of type D (1 through n of them) are at CSR addresses and vector
addresses that vary according to what other devices are present on the
system.

The CSR and vector addresses that vary are called floating addresses. The
devices must be located in floating CSR and vector space according to the
order in which the devices appear in the SYSGEN device table. This table,
shown in Section 14.3.2, lists all the type A and type B devices supported by
VAX/VMS. It also lists the type C and type D devices that are recognized by
SYSGEN's autoconfiguration procedure.

The base of floating vector space is 300s. The base of floating CSR space is
7600108.

14.3.1 The SYSGEN Autoconfiguration Facility

The SYSGEN utility automatically configures a UNIBUS or Q22 bus as
follows:

• It initializes the base of floating space to 3008 and 7600108 for vectors and
CSRs, respectively.

• It tests fixed and floating CSR address space for all known DIGITAL
devices.

• When a device is found at a CSR, SYSGEN reserves floating CSR and
vector space for that device, if necessary.

• It searches for the name of the driver associated with the device by
checking the SYSGEN device table (shown in Section 14.3.2 and the
directory SYS$SYSTEM. If the driver has already been loaded or exists as
an image file in SYS$SYSTEM, SYSGEN creates and initializes the I/O

14-10

Loading a Device Driver

database for that device and loads the driver's image if necessary. If the
device at the CSR is supported by VAX/VMS and SYSGEN cannot locate
its associated driver's image, it generates an error message. If the device
is unsupported and has no corresponding driver's image, SYSGEN ignores
the condition.

14.3.2 SYSGEN Device Table
The SYSGEN device table (see Table 14-2 lists the characteristics of all
DIGITAL devices. This table indicates the following information for each
device type:

• Device name

• Device controller name

• Interrupt vector

• Number of interrupt vectors per controller

• Vector alignment factor

• Address of the first device register for each controller recognized by
SYSGEN (the first register is usually, but not always, the CSR)

• Number of registers per controller

• Device driver name

• Indication of whether the driver is or is not supported

Devices not listed in the SYSGEN device table include:

• Non-DIGITAL-supplied devices with fixed CSR and vector addresses.
These devices have no effect on autoconfiguration. Customer-built devices
should be assigned CSR and vector addresses beyond the floating address
space reserved for DIGITAL-supplied devices.

• Those DIGITAL-supplied, floating-vector devices that the
AUTOCONFIGURE command does not recognize. Use the CONNECT
command to attach these devices to the system.

Table 14-2 SYSGEN Device Table

Device
Name

Controller
Name Vector

No. of
Vectors Alignment

CSR
/Rank

No. of
Registers

Driver
Name Support

CR CR1 1 230 — — 777160 — CRDRIVER Yes

DM RK611 210 — — 777440 — DMDRIVER Yes

LP LP11 200 — — 777514 — LPDRIVER Yes
170 764004
174 764014
270 764024
274 764034

DL RL1 1 160 — — 774400 — DLDRIVER Yes

MS TS11 224 — — 772520 — TSDRIVER Yes

DY RX211 264 — — 777170 — DYDRIVER Yes

14-11

Loading a Device Driver

Table 14-2 (Cont.) SYSGEN Device Table

Device Controller No. of CSR No. of Driver
Name Name Vector Vectors Alignment /Rank Registers Name Support

DY RB730 250 — — 775606 — DQDRIVER Yes

PU UDA 154 — — 772150 — PUDRIVER Yes

PT TU81 260 — — 774500 — PUDRIVER Yes

XE UNA 120 — — 774510 — XEDRIVER Yes

XQ QNA 120 — — 774440 — XQDRIVER Yes

OM DC11 Float 2 8 774000
774010
774020
774030

32 units
maximum

OMDRIVER No

DD TU58 Float 2 8 776500
776510
776520
776530

16 units
maximum

DDDRIVER Yes

OB DN1 1 Float 1 4 775200
775210
775220
775230

16 units
maximum

OBDRIVER No

YM DM1 IB Float 1 4 770500
770510
770520
770530

YMDRIVER No

16 units
maximum

14-12

Loading a Device Driver

Table 14-2 (Cont.) SYSGEN Device Table

Device
Name

Controller
Name Vector

No. of
Vectors Alignment

CSR
/Rank

No. of
Registers

Driver
Name Support

OA DR11C Float 2 8 767600
767570
767520
767550

16 units
maximum

OADRIVER No

PR PR611 Float 1 8 772600
772604
772610
772614

8 units
maximum

PRDRIVER No

PP PP611 Float 1 8 772700
772704
772710
772714

8 units
maximum

PPDRIVER No

OC DT11 Float 2 8 777420
777422
777424
777426

8 units
maximum

OCDRIVER No

OD DX11 Float 2 8 776200
776240

— ODDRIVER No

YL DL11C Float 2 8 775610
775620
775630
775640

31 units
maximum

YLDRIVER No

YJ DJ11 Float 2 8 Float 4 YJDRIVER No

YH DH11 Float 2 8 Float 8 YHDRIVER No

14-13

Loading a Device Driver

Table 14-2 (Cont.) SYSGEN Device Table

Device
Name

Controller
Name Vector

No. of
Vectors Alignment

CSR
/Rank

No. of
Registers

Driver
Name Support

OE GT40 Float 4 8 772000
772010

— OEDRIVER No

LS LPS1 1 Float 6 8 770400 — LSDRIVER No

OR DQ1 1 Float 2 8 Float 4 0RDRIVER No

OF KW11W Float 2 8 772400 — OFDRIVER No

XU DU1 1 Float 2 8 Float 4 XUDRIVER No

XW DUP1 1 Float 2 8 Float 4 OODRIVER No

XV DV1 1 Float 3 8 775000
775040
775100
775140

XVDRIVER No

OG LK1 1 Float 2 8 Float 4 OGDRIVER No

XM DMC1 1 Float 2 8 Float 4 XMDRIVER Yes

TT DZ1 1 Float 2 8 Float 4 DZDRIVER Yes

XK KMC1 1 Float 2 8 Float 4 XKDRIVER No

OH LPS1 1 Float 2 8 Float 4 OHDRIVER No

01 VMV21 Float 2 8 Float 4 OIDRIVER No

OJ VMV31 Float 2 8 Float 8 OJDRIVER No

OK DWR70 Float 2 8 Float 4 OKDRIVER No

DL RL1 1 Float 1 4 Float 4 DLDRIVER Yes

MS TS1 1 Float 1 4 772524
772530
772534

TSDRIVER Yes

LA LPA1 1 Float 2 8 770460 — LADRIVER Yes

LA LPA1 1 Float 2 8 Float 8 LADRIVER Yes

OL KW1 1C Float 2 8 Float 4 OLDRIVER No

RSV RSV Float 1 8 Float 4 RSVDRIVER No

DY RX21 1 Float 1 4 Float 4 DYDRIVER Yes

XA DR1 1W Float 1 4 Float 4 XADRIVER Yes

XB DR11B 124 — — 772410 — XBDRIVER No

XB DR1 IB Float 1 4 772430 4 XBDRIVER No

XB DR11B Float 1 4 Float 4 XBDRIVER No

XD DMP1 1 Float 2 8 Float 4 XDDRIVER Yes

ON DP VI 1 Float 2 8 Float 4 ONDRIVER No

IS ISB11 Float 2 8 Float 4 ISDRIVER No

XD DM VI 1 Float 2 8 Float 8 XDDRIVER No

XE UNA Float 1 4 Float 4 XEDRIVER No

PU UDA Float 1 4 Float 2 PUDRIVER Yes

TX DMF32 Float 8 4 Float 16 YCDRIVER Yes

XG — — — — — — XGDRIVER Yes

14-14

Loading a Device Driver

Table 14-2 (Cont.) SYSGEN Device Table

Device
Name

Controller
Name Vector

No. of
Vectors Alignment

CSR
/Rank

No. of
Registers

Driver
Name Support

LC — — — — — — LCDRIVER Yes

XI — — — — — — XIDRIVER No

XS KMS11 Float 3 8 Float 8 XSDRIVER No

XP PCL11 Float 2 8 764200
764240
764300
764340

XPDRIVER No

VB VS 100 Float 1 4 Float 8 VBDRIVER No

PT TU81 Float 1 4 Float 2 PUDRIVER Yes

OQ KM V11 Float 2 8 Float 8 OQDRIVER No

UK KCT32 Float 2 8 764400
764440
764500
764540

UKDRIVER No

IX IEQ1 1 Float 2 8 764100 — IXDRIVER No

TX DHV1 1 Float 2 8 Float 8 YFDRIVER Yes

TX DMZ32
CPI32

Float 6 4 Float 16 YCDRIVER Yes

XG CPI32 Float 6 4 Float 16 XGDRIVER Yes

DT TCI 1 214 — — 777340 — DTDRIVER No

VC VC01B 060 — — 777200 — VCDRIVER Yes

14.3.3 Device Driver Control of Autoconfiguration
The SYSGEN autoconfiguration facility provides two features that drivers
can use to control the automatic configuration of the devices they operate.
These features are invoked through the defunits and deliver arguments to
the DPTAB macro.

The defunits argument to the DPTAB macro specifies a default number of
units to be configured into the system. The DPTAB macro copies this value
to the DPT$W_DEFUNITS field in the driver-prologue table. The SYSGEN
autoconfiguration facility reads this field and creates unit-control blocks
numbered zero through the default unit number minus one. The default
value of defunits is 1.

The deliver argument to the DPTAB macro specifies the address of a
driver-specific unit-delivery routine. An offset to this routine is stored in
the DPT$W_DELIVER field within the driver-prologue table. When the
deliver argument is present, the SYSGEN autoconfiguration facility calls the
unit-delivery routine once for each unit, the number of which being specified
in the defunits argument.

The unit-delivery routine prevents the creation of unit-control blocks for
devices that do not respond to a test for their presence.

14-15

Loading a Device Driver

If the unit-delivery routine returns a true status in RO, the unit is configured.
If the status in RO is false, the autoconfiguration facility does not configure
the device. If the deliver argument is not used, the unit-delivery feature is
disabled.

SYSGEN calls the unit-delivery routine with a JSB instruction in the following
context:

• Interrupt priority level is at IPL$_POWER (31).

• RO through R2 are available for use.

• R3 contains the address of the interrupt-dispatch block, of one exists. If
none exists, the value contained in R3 is zero.

• R4 contains the address of the CSR for the controller.

• R5 contains the number of the unit that the routine must decide whether
or not to configure.

• R6 contains the base address of UNIBUS adapter I/O space.

• R7 contains the address of the configuration-control block (ACF).

• R8 contains the address of the adapter-control block.

The configuration-control block is described in Figure A-l and Table A-l.

A driver may or may not specify a unit-delivery routine. For instance, the
DZll's device driver specifies 8 as the default unit number, but no routine to
configure eight terminal units automatically for each DZll's CSR. The RK611
device driver specifies 8 as the default number of units and also specifies the
address of a unit-delivery routine that is called once for each of the eight
possible devices on the controller.

14.3.4 Floating-Vector Address Calculation
To calculate the floating-vector address of a device, the SYSGEN utility
rounds the current floating-vector base (CFVB) up to the next valid vector
address boundary for the next device in the table.

If a device is present, SYSGEN reserves floating-vector space for the device
by computing a new CFVB:

CFVB + (4 * number-of-vectors) —► CFVB

14.3.5 Floating-CSR Address Calculation
To calculate the floating CSR address of a device, SYSGEN rounds the current
floating CSR base (CFCB) up to the next valid floating CSR address. Floating
CSR addresses must fall on an 8-byte boundary.

SYSGEN tests the CSR address (CFCB) for the next device in the device table
by executing a TSTW instruction on the address and noting whether there is
a response at that address.

If the device is present, SYSGEN reserves floating CSR address space for the
device by computing a new CFCB:

CFCB + bytes-in-register-set —► CFCB

14-16

Loading a Device Driver

When all devices of a particular type have been located and their floating CSR
space reserved, SYSGEN reserves an extra block of CSR space to indicate a
change to a new device type:

CFCB + 8 — CFCB

If the device is not present, SYSGEN reserves an extra block of CSR space to
indicate a change to a new device type by adding eight to the rounded CFCB:

CFCB + 8 — CFCB

14.3.6 Rules for Configuration
The formulas described in Sections 14.3.4 and 14.3.5 reduce to the following
maxims:

• Devices with fixed CSR addresses and fixed vector addresses must be
attached according to the SYSGEN device table settings.

• Devices with floating CSR or vector addresses must be attached in the
order in which they are listed in the SYSGEN device table.

• An 8-byte gap must be reserved between each different type of device that
is located in floating CSR address space.

• An 8-byte gap must be reserved in floating CSR address space for each
device type that has no controller in its configuration.

• An extra 8-byte gap must be reserved between the KW11C and the RX11
in floating CSR address space.

When assigning floating vector addresses and registers to devices not supplied
by DIGITAL, be sure to leave a generous gap between these addresses
and those of DIGITAL devices because subsequent VAX/VMS maintenance

updates might add new devices to the SYSGEN device table.1

14.3.7 Example of a UNIBUS Configuration
This example shows the correct configuration for UNIBUS devices with
floating CSR and vector addresses. Controllers flagged with an asterisk (*)
are not supported by DIGITAL.

Controller Vector(s) CSR (first register)

1 DN11* 300 775200

1 DU1 1* 310 760040

1 DV11* 320 775000

1 DMC11 340 760100

2 DZ1Is 350 760120

360 760130

2 TS1Is 224 772520

370 772524

1 UNIBUS addresses 764100 through 767776 are available for non-DIGITAL-supplied devices.

14-17

Loading a Device Driver

Controller Vector(s) CSR (first register)

3 DRIlBs* 124 772410 (CSR is third register)

400 772430

410 760300

1 customer 420 760320
device (or higher) (or higher)

14-18

1 5 Debugging a Device Driver

DELTA and XDELTA are debugging tools that can be used to monitor the
execution of user programs and the VAX/VMS operating system. When you
link DELTA with a user image that runs in a nonprivileged process, DELTA
is a user-mode debugging tool. When run in a privileged process, however,
DELTA acts as a multimode debugger; it allows you to debug in user mode or
to change to kernel mode for debugging. However, DELTA does not support
debugging at elevated IPLs.

XDELTA is syntactically identical to DELTA but also allows you to debug code
that executes at an elevated IPL. XDELTA is used for stand-alone debugging
of driver code and the executive.

In the command syntaxes and dialogues contained in this chapter, red ink
indicates the commands typed by the user and black ink indicates the system
prompts and responses.

15.1 Bootstrapping the System with XDELTA
Under VAX/VMS, drivers are part of the operating system. You normally
bootstrap the system with two boot flags set to allow you to debug with
XDELTA. One flag causes the bootstrapping procedure to include XDELTA
in the system. The other boot flag indicates a stop at a breakpoint in
VAX/VMS initialization. Table 15-1 describes the possible values of these
flags. Following a boot that includes XDELTA, executing a BPT instruction
causes control to transfer to a fault handler located in XDELTA.

Table 15-1 Boot Flags That Control the Loading of XDELTA

Flag
Value (f) Meaning

0 Normal nonstop bootstrap (default)

1 Stop in SYSBOOT (equivalent to @DxyGEN on the VAX-1 1/780)

2 Include XDELTA with the system but do not take the initial
breakpoint

6 Include XDELTA with the system and take the initial breakpoint

7 Include XDELTA with the system, stop in SYSBOOT and take the
initial breakpoint at system initialization (equivalent to @DxyXDT
on the VAX-1 1/780)

The procedures for bootstrapping the system with XDELTA differ depending
upon which processor the operating system is running. Some processors
that use a console block storage device supply a special boot command file
that automatically includes XDELTA in the system and causes the processor
to stop in SYSBOOT and take the initial breakpoint at system initialization.
When booting other processors, you must specify the appropriate flag value
in the BOOT command. Table 15-2 lists some recommended methods for
booting with XDELTA. See the Guide to VAX/VMS Software Installation for
additional information.

15-1

Debugging a Device Driver

Table 15-2 Recommended Methods for Bootstrapping with XDELTA

Boot Commands Explanation

MicroVAX II, MicroVAX I, and VAX-11/7501 Processors

B[/f\ devname B is the console BOOT command. The flags (f) parameter is a 32-bit hexadecimal
integer loaded into R5 as input to VMB.EXE, the primary bootstrap program. See
Table 15-1 for a list of its possible values.

Using the format ddcu, specify the name of the device that contains the volume to be
bootstrapped. You must supply both controller (c) and unit (u) identifiers; there are
no defaults. If you omit devname, the f parameter is ignored.

The following example bootstraps a MicroVAX II system from DUAO.2

»>B/7 DUAO
SYSBOOT>

SYSBOOT>CONTINUE

VAX 8800 and VAX 8200 Processors

B[/R5:f] devname B is the console BOOT command. The flags (f) parameter is a 32-bit hexadecimal
integer loaded into R5 as input to VMB.EXE, the primary bootstrap program. See
Table 15-1 for a list of its possible values.

For the VAX 8800, specify devname in the format ddduuu. The console places the
specified unit number (uuu) in R3 and executes the procedure dddBOO.COM. If you do
not specify devname, the console executes DEFBOO.COM. To use the /R5 qualifier,
you must have previously removed or commented out the DEPOSIT R5 command in
the procedure to be executed.

For the VAX 8200, specify devname in the format ddxu, where x represents the
number of the VAXBI node to which the boot device unit is attached. If you do not
specify devname, the console boots from the default boot device.

The following example bootstraps a VAX 8200 system from the boot disk at VAXBI
node 4.2

>»B/R5:7 DU40
SYSB00T>

SYSB00T>C0NTINUE

VAX-11/780, VAX-11/782, and VAX-11/785 Processors

@DMAXDT Use either DMAXDT.CMD or DBAXDT.CMD, depending upon the boot device. The
@DBAXDT following example boots from DM AO, first depositing the value 0 in R3.2

>»DEP0SIT R3 0
»XDDMAXDT
SYSB00T>

SYSB00T>C0NTINUE

^he console TU58 of the VAX-11/750 processor contains command files (DMAXDT.CMD and
DBAXDT.CMD) analogous to those supplied for the VAX-11/780. See the Guide to VAX/VMS Software
Installation for additional information.

2 At the SYSBOOT prompt enter other required SYSBOOT commands and conclude the boot operation with
a CONTINUE command. If you do not set or load system parameters with a USE command, the system
uses parameters stored in the system image. To prevent the system from automatically rebooting after a
bugcheck, set system parameter BUGREBOOT to 0.

15—2

Debugging a Device Driver

Table 15-2 (Cont.) Recommended Methods for Bootstrapping with XDELTA

Boot Commands Explanation

VAX-11/730 and VAX-11/725 Processors

@DQAXDT
@DQ0XDT

Use either DQAXDT.CMD or DQ0XDT.CMD, depending upon the boot device. The
following example boots from DQA1, first depositing the value 1 in R3. When the
boot device is DQA0, you can omit this step and execute DQ0XDT.COM.2

»>D/G/L 3 1
»><DDQAXDT

SYSB00T>
SYSB00T>CONTINUE

VAX 8600 and VAX 8650 Processors

@DU0XDT Use DUOXDT.COM, if available on the console media, according to the method
described for the VAX-11/780. Otherwise, perform a normal bootstrap using the
available dduGEN.COM or dduBOO.COM according to the following method:

Use the /NOSTART qualifier in the BOOT command to cause the processor to pause
and await console commands after it boots. After a variety of progress messages
are displayed, the console prompt reappears. First, a value for the flag that controls
XDELTA loading (see Table 15-1). Then, examine the current value of R5; if it
is nonzero (for instance, it is the system root number), perform an inclusive-OR
operation upon it and your selected XDELTA flag value.2

»> BOOT/NOSTART
SYSB00T>EXAMINE R5
SYSB00T>DEPOSIT R5 7
SYSB00T>
SYSB00T>CONTINUE

2At the SYSBOOT prompt enter other required SYSBOOT commands and conclude the boot operation with
a CONTINUE command. If you do not set or load system parameters with a USE command, the system
uses parameters stored in the system image. To prevent the system from automatically rebooting after a
bugcheck, set system parameter BUGREBOOT to 0.

15.1.1 Proceeding from the Initial Breakpoint
After being bootstrapped, the system displays its welcoming message and
halts in XDELTA, as follows:

1 BRK AT nnnnnnnn
address/NOP

XDELTA is waiting for input. (XDELTA never issues explicit prompts.)
Usually, you proceed from this point with the following command:

;P fRETl

All of the XDELTA commands are described in Section 15.10 and in the
VAX/VMS Delta/XDelta Utility Reference Manual.

1 5—3

Debugging a Device Driver

If the operating system halts with a fatal bugcheck, the system prints
the bugcheck information on the console terminal. Then, because the
system parameter BUGREBOOT was set to 0, XDELTA prompts. Bugcheck
information consists of the following:

• Type of bugcheck

• Register values

• Dump of one or more stacks

PC and stack content indicate how an experimental driver crashed the
system. You can then examine the system state further by issuing XDELTA
commands.

15.2 Loading the Driver

Once the system is running, you can log in to the system as the system
manager and load the experimental driver.

To load the driver, run SYSGEN and issue the appropriate LOAD and
CONNECT commands. Figure 15-1 provides a sample dialogue.

The first SHOW command in Figure 15-1 causes SYSGEN to display the
location of the device driver in system memory. You then define the device
to the operating system. The second SHOW command causes SYSGEN to
display the driver's location and the addresses of the device's DDB, CRB, IDB,
and UCB.

Figure 15-1 Loading a Driver

$ RUN SYSISYSTEM:SYSGEN
SYSGEN>L0AD DMAO:[YOUR.DIRECTORY]YRDRIVER.EXE
SYSGEN>SH0W /DEVICE=YRDRIVER

_Driver_Start_End_Dev_DDB_CRB_IDB_Unit_UCB_
YRDRIVER 80060E50 80061070

SYSGEN>C0NNECT YR /ADAP=3/VEC=*/.0274/CSR=*/.0776240
SYSGEN>SHOW /DEVICE=YRDRIVER

_Driver_Start_End_Dev_DDB_CRB_IDB_Unit_UCB_
YRDRIVER 80060E50 80061070

YRA 8005FDC0 80060B70 8005FE00
0 80060BB0

SYSGEN>EXIT

15.3 Inserting Breakpoints in Driver Source Code

The SYSGEN command CONNECT calls controller-initialization and unit-
initialization routines. To begin debugging the driver, you should ensure that
the kernel-mode debugging utility XDELTA gains control of the driver before
these routines execute. This is accomplished by placing one or more calls
to the special system routine INI$BRK within the source code of either the
controller- or unit-initialization routine. To call INI$BRK, use the following
instruction:

JSB G~INI$BRK

15-4

Debugging a Device Driver

The INI$BRK routine contains two instructions:

BPT
RSB

When the processor executes the BPT instruction, XDELTA gains control and
reports the address of the breakpoint:

1 BRK AT nnnnnnnn

You can use INI$BRK as a debugging tool and place calls to it within any part
of the driver source code.

To determine the last driver PC before the breakpoint, examine the kernel
stack. The stack register is register RE (hexadecimal format):

RE/address /address

Display RE to find the address of the top of the stack. Another display
command (/) reveals the contents of the top of the stack, which should be
the return address to the driver that called INI$BRK.

15.4 Calculating the Base of Driver Code

Before you debug the driver, it is a good idea to calculate the base address of
driver code, as follows:

1 Run SYSGEN and issue the SHOW/DEVICE command. The resulting
display lists the location in nonpaged pool at which SYSGEN loaded the
driver.

2 Consult the load-map for the driver (obtained at driver link time). The
driver resides in two program sections (PSECTs):

$$$105_PROLOGUE driver-prologue table

$$$115_DRIVER driver code

The locations given in the driver code listing are offsets from
$$$115_DRIVER. Thus, you can calculate the base address of the driver
by adding the address at which the driver was loaded to the offset
associated with the PSECT $$$115_DRIVER shown in the map.

If you do not have the load-map, consult the driver-prologue table in the
driver listing. Look for the address of DPT_STORE_-END, which generates a
2-byte entry that terminates the DPT. To get the base address of driver code,
add the address of DPT_STORE_END + 2 to the address at which the driver
was loaded. You can set an XDELTA base register to the base of driver code;
Section 15.7 describes this procedure.

15.5 Requesting an XDELTA Software Interrupt

Once the controller- and unit-initialization routines complete execution,
you will need to set breakpoints in order to debug the driver. You can set
a breakpoint in the driver source code by inserting calls to INI$BRK, as
described in Section 15.3. You can also invoke XDELTA to set breakpoints
interactively by requesting an XDELTA software interrupt.

1 5—5

Debugging a Device Driver

15.6

The procedures described in Table 15-3 issue a software interrupt to a single
processor at IPL 5 or a multiprocessor at IPL 15. The corresponding interrupt¬
servicing routine handles the interrupt by calling the routine INI$BRK, which
in turn executes the first XDELTA breakpoint. XDELTA then issues this
message:

1 BRK AT imnnnnnn
address/NOP

Table 15-3 Requesting an XDELTA Software Interrupt

Processor Boot Commands

MicroVAX II
MicroVAX I1

Press and release the HALT button on the CPU control
panel, or press the BREAK key (if enabled) on the console
terminal. Then issue these commands:

»>D/I 14 5
»>C

VAX 88001 2 *1 CTRL/P|

»>HALT
»>D/I 14 F
»>C

VAX 8600
VAX 86501

* 1 CTRL/P |

»>HALT
»>D/I 14 5
»>c

VAX 8200
VAX-11/750
VAX-11/730
VAX-11/7251

$ 1 CTRL/P|

»>D/I 14 5
»>C

VAX-11/780
VAX-11/785

$ 1 CTRL/P|

»>HALT
»>DEP0SIT/I 14 5
»>C0NTINUE

VAX-11/7822 $ 1 CTRL/P|

»>HALT

»>DEP0SIT/I 14 F
»> CONTINUE

1 These VAX processors accept only one-character console commands.

2Deposit F in the processor IPL register only if multiprocessing is in effect (for
example, if a START/CPU command has been executed); otherwise deposit the
value 5 .

Examining the Vector-Jump Table

To gain familiarity with the I/O database, you might wish to look for the
address of the location in the channel-request block that contains a JSB
instruction to the driver's interrupt-servicing routine. You can do this at

15-6

Debugging a Device Driver

a controller initialization breakpoint because one of the inputs is the IDB
address. The procedures for locating the driver interrupt-servicing routine on
nondirect and direct vector adapters follow.

Nondirect Vector Procedure

R5/IDB-address Q+10/ADP-address
Q+10/vector-table-address

Q+vector-address-in-hex/address-of-JSB-instruction-in-CRB
Q!JSB-instruction

Direct Vector Procedure

R5/IDB-address Q+10/ADP-address
Q+10/vector-table-address
Q+vector-address-in-hex+2/address-of-JSB-instruction-in-CRB
Q!JSB-instruction

Finding the address of the driver's interrupt-servicing routine at the expected
vector does not guarantee that an interrupt from the device will dispatch to
the driver's interrupt-servicing routine. If the device's physical vector is set to
some other address, an interrupt from the device can dispatch to some other
interrupt-servicing routine, or dispatch to an unassigned vector.

See the SYSGEN device table shown in Section 14.3.2 for a list of vectors.
Consult DIGITAL field service for help with any problem similar to the one
described above.

15.7 Setting an XDELTA Base Register

During a driver debugging session, you can use an XDELTA relocation register
as a base from which to examine driver code and set breakpoints within the
driver. Use one of the methods outlined in Section 15.4 to determine the base
address of driver code, then set a relocation register by issuing the following
command:

driver-base-address,0;X I RET|

This command sets relocation register XO to the base of driver code. Now you
can examine offsets into the code using XO as a base:

XO + offset/nnnnnnnn

or

XO + offset!instruction

XDELTA also uses the base register to display address values in the base
register plus offset format. Suppose, for example, that your driver contains
the code shown below.

50 81 90 00D3 132 10$: M0VB (R1)+.R0

10 13 00D6 133 BEQL 20$

20 50 91 00D8 134 CMPB RO,#~A/ /

F6 19 00DB 135 BLSS 10$
8F 50 91 00DD 136 CMPB R0,#~A/Z/

F0 14 00E1 137 BGTR 10$
82 50 90 00E3 138 MOVB RO.(R2)+

EB 11 00E6 139 BRB 10$

15-7

Debugging a Device Driver

If base register 0 contains the base address of your driver, the following
XDELTA dialogue is possible:

X0+D3,X0+E6!X0+D3/M0VB (R1)+,R0
X0+D6/BEQL X0+E8
X0+D8/CMPB RO,#20
XO+DB/BLSS X0+D3
XO+DD/CMPB RO,#7A
X0+E1/BGTR X0+D3
X0+E3/M0VB RO,(R2) +
X0+E6/BRB X0+D3

To set breakpoints in driver code, use the command:

XO + offset;B I RET1

To display a driver instruction and set a breakpoint, add the instruction's
offset to the base register, for example:

X0+1C!instruction .;B I RET|

The last XDELTA command sets a breakpoint at the displayed location. See
Section 15.10 or the VAX/VMS Delta/XDelta Utility Reference Manual for a
detailed discussion of XDELTA commands.

15.8 Destroying Register Contents

Because the driver frequently calls VAX/VMS I/O routines, you must be
careful to anticipate the register usage of these routines. Most VAX/VMS
common I/O support routines use RO through R3 freely. A frequent driver
bug is to load a value into R3 and expect to find it intact after a call to allocate
or load adapter resources.

Other VAX/VMS I/O routines write into R4. In some cases, the use of R4
is obvious; for example, IOC$REQSCHANL writes the device's CRB address
into R4. In other cases, you might not anticipate the use of R4.

For example, EXE$IOFORK saves the calling code's R4 in a fork block, and
then writes the device's IPL into R4. Because the normal flow of events is
that an interrupt-servicing routine restores a driver with a JSB instruction and
the driver then calls EXE$IOFORK which returns to the interrupt-servicing
routine, the instructions following the JSB in the interrupt-servicing routine
can only assume R5 is still untouched. The coding sequence is as follows:

MOVQ UCB$L_FR3(R5),R3 ; Restore R3-R4.
JSB <8UCB$L_FPC(R5) ; Restore the driver process.

;Between these instructions, the interrupt-servicing routine
;can make no assumptions about the contents of RO through R4.

POPR
REI

#~M<R0.R1,R2.R3,R4.R5> Restore interrupt registers.
Return from the interrupt.

15-8

Debugging a Device Driver

15.9 Examining the UCB, IRP, or PSL

In addition to using XDELTA to debug drivers, you can also examine the
contents of the unit-control block and the associated I/O-request packet.

It also is useful to examine the contents of the PSL at the time of a system
failure. The PSL, for example, indicates the IPL at the time. When the system
fails it prints the PSL and other register contents on the console terminal.

While the system is running, the following command can be used to examine
the PSL in XDELTA:

RF+4/

The PSL location is stored in the longword following the PC.

15.10 XDELTA Commands

Table 15-4 summarizes XDELTA commands. The sections that follow this
table describe the commands.

Table 15-4 XDELTA Command Summary

Command Function

Set Display Mode

[B Set byte mode

[W Set word mode

[L Set longword mode

[I Set instruction mode

" Set ASCII mode

Set and Proceed from Breakpoint

;P Proceed from breakpoint

;B Set/clear/display breakpoint

Open, Examine, and Close Location

/ Open location (display contents in current mode)

! Open location (display contents as instructions)

I RET | Close current location

[lfI Close current location; open next

|tab| Open location specified by current value

I esc | Display previous location

Deposit in Location

'string7 Deposit string at current location, autoincrementing the current
location symbol (.). Every 1 ret| and [lf] typed will be stored. A
single quote terminates the string.

15-9

Debugging a Device Driver

Table 15-4 (Cont.) XDELTA Command Summary

Command Function

Step, Set Location, and Execute Code

S Execute one instruction, step into subroutine call

0 Execute one instruction, step over subroutine call (on CALLx, JSB,
or BSBx instruction)

;G

;E

Go to location and proceed

Execute command string at location

Special Symbols

/ Field separator

Q Last quantity displayed

= Display value of expression; set Q

Xn Base register n

;X Set base register

Rn Register n

Pn Processor register n

G Add "X80000000 to subsequent or preceding value

H Add "X7FFE0000 to subsequent or preceding value

Current location

Operators

+ Add

- Subtract

space Add

* Multiply

@ Shift

% Divide

15.10.1 Values and Expressions

All numeric values are interpreted in hexadecimal radix. Expressions are
strings of alternating values and binary operators, where the first and last
items in the string are always values, as in the following example:

G4A32 + 24 - .

15-10

Debugging a Device Driver

XDELTA evaluates expressions from left to right with no precedence, and
ignores trailing operators. To display the value of an expression, use the
XDELTA Show Value (=) command, as follows:

Syntax

expression=value-of-expression

Type an expression followed by an equal sign (=). The expression can be
composed of a series of values and operators from the set of operators listed
in the command summary. XDELTA shows the value of the expression
according to the current display data type. The last quantity (Q) is set to the
value of the computed expression.

15.10.2 Special Symbols

XDELTA defines the following special symbols:

Current location; set by slash (/), exclamation point (!) and TAB
operations.

Q Last quantity displayed; you can also change this value by using the
Show Value (=) command described in Section 15.10.1.

XO-XF Base registers; used for remembering values. Set base registers
by means of the Set Base Register command (;X) described in
Sections 15.7 and 15.10.2.3. XDELTA, by default, stores special
values in base registers X4 and X5 that help reference the Process
Control Block of the current process (see Section 15.10.2.1). Also,
XDELTA initializes XE and XF with special commands that help
reference page-frame numbers as described in Section 15.10.2.2.

RO-RF General register names.

PO-Pnn Internal processor registers.

RF+4 PSL.

G ~X80000000; prefix for system space addresses; for example, G2E
is equivalent to "X8000002E.

H ''X7FFE0000; prefix for control region prefix; for example, H2E is
equivalent to "X7FFE002E.

15.10.2.1 Stored Base Registers
XDELTA defines two base registers useful in system debugging: X4 and X5.
Base register X4 corresponds to the global symbol SCH$GL_CURPCB. This
symbol contains the address of the current process' software process-control
block (PCB). Base register X5 corresponds to the global symbol
SCH$GL_PCBVEC, which contains the starting address of the list of PCB
slots.

15.10.2.2 Stored Command Strings
XDELTA contains two predefined command strings whose addresses are
contained in base registers XE and XF. You can use these commands during
general system debugging as well as driver debugging; they perform the
following functions:

XE Use the value of base register XO as a page-frame number and display
the PFN database for that page

XF Set base register XO to the value (PFN) in RO and perform the same
function as XE

15-11

Debugging a Device Driver

You must initialize the stored commands to set the relocation registers they
use (X6-XD). Issue the following commands:

XE;E
XF; E

After executing these commands, you can use the commands stored in XE
and XF to obtain the following information about a page-frame number:

• Specified physical page number (PFN)

• PFN state

• PFN type

• PFN reference count

• PFN backward link/working set list index

• PFN forward link/share count

• Page-table entry (PTE) pointer to PFN

• PFN backing store address

• Virtual block number in process swap image

RET
RET

15.10.2.3 Setting Base Registers

Syntax

addreBs-expression,n;X I RET 1

Type an expression followed by a comma (,), a single digit between 0 and D
(hexadecimal), a semicolon (;), and the letter X. XDELTA assigns the specified
expression to the base register selected by n. XDELTA confirms that the base
register is set by displaying the value deposited in the base register.

Whenever XDELTA displays an address closely located to an address stored in
a base register, XDELTA displays the base register identifier (Xn), followed by
an offset that gives the address's location in relation to the address stored in
the base register. For example, if base register 2 (X2) contains 800D046A and
the address XDELTA needs to display is 800D052E, XDELTA displays X2+C4.
XDELTA computes relative addresses for opened or displayed locations and
addresses that are instruction operands.

XDELTA displays an address in base register plus offset format to a distance
of 80016 from the base register. If the address falls outside this range,
XDELTA displays it as a hexadecimal value.

15.10.3 Set Display Mode

Syntax

[B Byte width
[W Word width
[L Longword width
[I Instruction display (using longword width)
" ASCII display (using current width)

15-12

Debugging a Device Driver

Type a left square bracket ([) followed by one of the letters B, W, or L to
change the current display width to byte, word, or longword respectively.
The default value is longword. The setting remains in effect until another
display mode control command is given. For example, the following
command displays the least significant byte contained at the specified address
and deposits the new value to that byte only.

addres8-expression [B/ old-value new-value

Type a left square bracket ([) followed by the letter I to change the current
display mode to instruction format. This command is equivalent to the
exclamation point (!) command and, similarly, is canceled by typing a slash
(/) or a double quotation mark ("). Instruction mode sets display mode
storage units to longword values. For an example of an instruction display,
see Section 15.7.

You can display contents of memory locations in ASCII characters by typing
an address expression followed by a quotation mark (").

address-expression" old-value-in-ASCII

Pressing LINE FEED displays the next location in ASCII.

The display mode remains set to ASCII until the next slash (/) or exclamation
point (!) command. At this point, the display mode reverts to hexadecimal.
The width remains unchanged.

15.10.4 Open, Examine, and Close Location

XDELTA provides the commands described in the following sections to open,
examine, and close the specified memory locations.

15.10.4.1 Open and Display Value Command

Syntax

address-expression/old-value [new-value-expression]

Type an address expression followed by a slash (/) character. XDELTA
displays the contents of the location (old-value above), followed by a space
character. You can change the value at the location by typing a new value
and then pressing RETURN. If you press RETURN without preceding it with
a value, the old contents remain unchanged.

The display and the value deposited default to longword hexadecimal values.
The length can be changed to byte or word with the set mode commands.

A slash preceded by a null address expression uses the displayed value (Q)
as the address value. This feature is convenient for following address linked
chains, as shown below:

address-expression/old-value /old-value /old-value

15.10.4.2 Display Instruction Command

Syntax

address-expressionIdecoded-instruction

Type an address-expression followed by an exclamation point (!). XDELTA
displays the contents of memory as a VAX/VMS MACRO instruction starting
with the address you specify.

15-13

Debugging a Device Driver

XDELTA does not make any distinction between reasonable and unreasonable
instructions or instruction streams; the decoding always begins at the specified
address. The display instruction command does not allow you to modify the
displayed location. The command sets a flag that causes subsequent close and
display next or indirect location commands to perform instruction decoding.
You can reset the flag with the open and display value command.

Whenever an address appears as an instruction operand, XDELTA sets the
last quantity displayed (Q) to that address. XDELTA changes Q only for
operands that use program counter or branch displacement addressing modes;
Q is not altered for literal and register addressing modes. This feature is
useful for following branches, as shown below:

address-expressionIBRW address-2 !instruction-at-address-2

1 5.10.4.3 Close and Display Next Location Command

Syntax

EE
address/old-value

Press LINE FEED. XDELTA closes the current open location, then opens and
displays the value in the next location, according to the current display mode.

If instruction display is the current mode, XDELTA does not deposit a value in
the open location. The next location is the first location after the instruction
currently displayed. If value display is the current mode, you can deposit
a value into the open location. In this case, the next location is the current
location, incremented by the current data width (byte, word, or longword).

15.10.4.4 Display Range Command

Syntax

start-addr-expres8ion,end-addr-expression/contents-of-8tart

or

start-addr-expression,end-addr-expression!contents-of-start

Type two address expressions separated by a comma and followed by a
slash (/) or exclamation point (!) character. XDELTA displays the range
of addresses, using the specified display mode (value or instruction). If
you specify instruction display, XDELTA decodes one more instructions.
Otherwise, XDELTA displays the contents of each location in the current data
type (byte, word, or longword).

15.10.4.5 Indirect Command

Syntax

EMI
address/old-value

Press TAB. XDELTA uses the last quantity displayed (Q) as an address and
displays that address and its contents using the current display mode. This
command opens locations in the same way as the slash (/) and exclamation
point (!) commands, but prints the information on a new line and displays
the address value before showing the address's contents.

15-14

Debugging a Device Driver

15.10.4.6 Display Previous Location Command

Syntax

fESCl

address/old-value

Press ESC. Unless the current display mode is instruction, XDELTA decreases
the location counter by the current data width, and displays the contents of
the resulting location using the current data width and type. This command
is ignored in instruction display mode.

15.10.5 Breakpoints

XDELTA uses the following commands to set and clear breakpoints, display
a list of set breakpoints, continue from a breakpoint, and set a complex
breakpoint.

15.10.5.1 Setting Breakpoints

Syntax

address-expression;B I RET1

Type an address followed by a semicolon (;) the letter B, then press
RETURN. XDELTA sets a breakpoint at the specified location and assigns
it the first available breakpoint number.

Alternate syntax:

address-expression,n;B I RET|

Type an address, followed by a comma, a single digit between 2 and 8,
a semicolon (;), the letter B, and then press RETURN. XDELTA sets a
breakpoint at the specified location and assigns it the specified breakpoint
number. Breakpoint 1 is reserved for INI$BRK.

Before XDELTA executes the instruction as a breakpoint, it suspends normal
instruction processing, sets a flag that causes subsequent close and display
next or indirect location commands to perform instruction decoding, and
displays the following message:

n BRK at address
address/decoded-instruction

You can now enter XDELTA commands. You can reset the flag that controls
instruction display mode by issuing the open and display value command.

15.10.5.2 Clearing Breakpoints

Syntax

0,n;B iRETl

Type zero (0), followed by a comma, a single digit between 2 and 8, a
semicolon (;), the letter B, and then press RETURN. XDELTA clears the
specified breakpoint. Never clear breakpoint 1.

15.10.5.3 Displaying Breakpoint List

Syntax

;B IRETl

15-15

Debugging a Device Driver

Type a semicolon (;) followed by the letter B. XDELTA shows the current
setting of all breakpoints. For each breakpoint, XDELTA displays the
following information:

• Breakpoint number

• Address at which the breakpoint is set

• Display address (for complex breakpoints; see Section 15.10.5.5)

• Command string address (for complex breakpoints)

15.10.5.4 Proceeding from Breakpoints

Syntax

;P [RETl

Type a semicolon (;) followed by the letter P and then press RETURN.
XDELTA continues executing at the current PC.

15.10.5.5 Setting Complex Breakpoints

Syntax

address-expression,n,display-addr-expression,command-string-address;B IRETl

Type an address expression, followed by a comma, a single digit between
2 and 8, another address expression, and the address of a command string.
The first address is the breakpoint address; the digit equals the breakpoint
number. XDELTA shows the contents of the display address in the current
display mode when the breakpoint is reached. The command string address
specified in the last command parameter executes after automatic display.

15.10.6 Step, Set Location, and Execute Instruction Commands
The following XDELTA commands enable you to step through and execute
driver code.

15.10.6.1 Loading PC and Continuing

Syntax

addre8s-expression;G [RETl

Type an address, a semicolon, and G, then press RETURN. XDELTA loads
the address into PC and continues executing at the new PC.

15.10.6.2 Execute Instruction and Step Command

Syntax

s

Type an S. XDELTA causes one instruction to be executed, then displays the
address of the next instruction and decodes that instruction.

This command also sets a flag that causes subsequent close and display next
or indirect location commands to perform instruction decoding. The open and
display value command resets the flag.

If the next instruction is BSBB, BSBW, JSB, CALLG, or CALLS, this command
steps into the subroutine and displays the first instruction within the routine.

15-16

Debugging a Device Driver

1 5.10.6.3 Step Instruction Over Subroutine Command

Syntax

o

Type an O. XDELTA causes one instruction to be executed, then displays the
address of the next instruction and decodes that instruction.

This command also sets a flag that causes subsequent close and display next
or indirect location commands to perform instruction decoding. The open and
display value command resets the flag.

If the next instruction is BSBB, BSBW, JSB, CALLG or CALLS, XDELTA
executes the entire subroutine and displays the instruction that immediately
follows the subroutine call; this command steps over subroutines.

15.10.7 Execute String Command

Syntax

address-expression;E I RET|

Type an address expression followed by a semicolon, the letter E, then
press RETURN. This command executes the ASCII commands found at the
specified address expression. If you terminate the ASCII commands with
a semicolon followed by the letter P, XDELTA will proceed with program
execution. If you terminate the string with null (1 byte of 0), XDELTA waits
for a new command.

To create command strings, open the address of the start of the string and
deposit ASCII text as follows:

address/old-contents 'XDELTA-command' 1 RET 1

You can use any XDELTA command, including RETURN, LINE FEED, and
TAB.

To terminate the string with a null, follow the above command with

./old-contents 0 I RET1

You can deposit command strings into nonpaged system patch space. To
determine the size of patch space and its starting address, locate the symbol
PAT$A_NONPGD in the system map file (SYS$SYSTEM:SYS.MAP). This
symbol contains a descriptor of the address and size of patch space remaining
in the system, as shown below:

PAT$A_N0NPGD::

.LONG size-in-bytes

.LONG patch-space-start-address

You can also preassemble command strings with your experimental driver.
Locate the addresses of these strings as you would any other address within
your driver.

15-17

Debugging a Device Driver

15.11 DELTA

DELTA is a debugging tool that can be linked with a user program to examine
that program's execution. To link and run DELTA, issue the following
commands:

$ LINK program-name

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA
$ RUN/DEBUG program-name

DELTA accepts all the XDELTA commands, plus two additional commands
described in the following sections.

15.11.1 EXIT Command

Syntax

EXIT 1 RET|

Typing EXIT causes DELTA to return control to the command interpreter.

15.11.2 Examining and Modifying Locations in Process Space

Syntax

process.id:address_expression/old_contents

DELTA displays the current contents at the specified address expression
within the specified process. The modify flag controls the ability to modify
locations opened by this command. To examine the flag, type:

;M [RET]

Modification access is inhibited by default (M=0).

To open, examine and change a location, type the commands:

1;M [RET]

process_id:address_expression/old_contents new_contents

15.12 Guidelines for Debugging Device Drivers

The following sections discuss errors commonly made during debugging
sessions and describe additional debugging techniques.

15.12.1 References to System Addresses
References by drivers to system addresses within the executive must use
general addressing (G~) mode. For example, use

JSB G~INI$BRK

15-18

Debugging a Device Driver

15.12.2 Opening Device Registers in XDELTA
References to 16-bit device registers must be word instructions; references to
8-bit device registers must be byte instructions. These restrictions apply to
the XDELTA EXAMINE command; therefore, be sure to set the correct mode
control before examining device registers. For example, if the address of the
device CSR is in R4, give the following command:

R4/csr_addres8 [W/csr_contents

15.12.3 Incorrect References to Device Registers
A common driver error is to access a nonexistent device register or to access
the correct register with an instruction of incorrect word length. On VAX
processors that use direct vector interrupts, these references cause a fatal
machine check exception. On VAX processors using nondirect vector
interrupts, these references cause a UNIBUS adapter error interrupt. The
system logs the adapter error and continues. When debugging a device
driver, it is a good idea to catch this type of driver error as early as possible.
Set an XDELTA breakpoint at the place in the system where it detected a
UNIBUS adapter error interrupt. Follow the steps outlined below:

• Consult the system map file. Read the value of EXE$DW780_INT.

• Enter XDELTA and set a breakpoint at the address of EXE$DW780_INT.
When a UNIBUS adapter error interrupt occurs, XDELTA executes the
breakpoint at EXE$DW780_INT.

• Examine the stack as follows:

RE/current_stack_pointer/saved_R2

saved_R3
8aved_R4
saved_R5
saved_PC
saved.PSL

LF
LF
LF
LF
LF

In many cases, the saved PC on the stack is the address of the instruction that
caused the error. In other cases (for example, when the offending instruction
is executed at IPL 31), the saved PC is not the address of this instruction
but an address some number of instructions later, when the system actually
services the interrupt.

15.12.4XDELTA and System Failures
Driver errors can cause the operating system to suspend activity in such a way
that you cannot invoke XDELTA. In this case, the only recourse is to induce a
system failure. Follow the procedure described in the VAX/VMS System Dump
Analyzer Reference Manual; the system will signal a fatal bugcheck.

15-19

Debugging a Device Driver

To gain control in XDELTA following a fatal bugcheck, stop in SYSBOOT
while initializing the system and set the BUGREBOOT parameter to 0. The
system will stop in XDELTA, thereby allowing you to examine the device
unit-control block and other driver data to determine the driver error.

Another, more thorough, way to determine the cause of a system failure is
to leave the BUGREBOOT parameter set to 1, allow the system to reboot,
and then invoke the System Dump Analyzer (SDA) to examine the condition
of the I/O data structures at the time of the fatal bugcheck. The VAX/VMS
System Dump Analyzer Reference Manual provides detailed information on fatal
bugcheck stack format and how SDA can help debug a device driver.

15—20

PART III Reference Material

A The I / O Database

The I/O database is a collection of data structures that provide the following
types of information to the VAX/VMS operating system and drivers to help
monitor the status of, and control the functions of, the I/O subsystem:

• Descriptions of each pending and in-progress I/O request

• Characteristics of each device type

• Number and type of each device unit

• Status of current activity on each device unit

• External entry points to all device drivers

• Entry points for controller and device unit initialization routines

• Code that dispatches interrupts to the appropriate servicing routines

• Addresses of device registers

• Bit maps describing the allocation of data paths and mapping registers

Much of the I/O database is created and used only by VAX/VMS routines;
other parts are the primary source of data for the device drivers. All of its
data structures—with the exception of the channel-control block (CCB)—exist
in nonpaged system memory. This appendix identifies all data structures in
the I/O database, and describes their fields in the order in which they appear
in the structures.

Note: Driver code must consider fields marked by asterisks to be read-only
fields. Fields marked by "spare" or "unused" are reserved for future use
by DIGITAL unless otherwise specified.

A.1 Configuration-Control Block (ACF)
The configuration-control block (ACF) is used by the SYSGEN
autoconfiguration facility to describe the device it is adding to the system.
Device drivers can gain access to this data structure only if they have specified
a unit-delivery routine in the DPT and only when that routine is executing.
Under certain conditions, the information stored in the ACF might be useful
to a unit-delivery routine.

The fields described in the configuration-control block are illustrated in
Figure A-l and described in Table A-l.

A—1

The I/O Database

Figure A-1 Configuration-Control Block (ACF)

ACF$B AFLAG* ACF$B

ACF$I_ADAPTER*

ACF$I_CONFIGREG*

AUNIT*

ACF$I_CONTRLREG*

ACF$W_CUNIT *

ACF$I_DEVNAME*

ACF$W AVECTOR*

ACF$W _CVECTOR*

ACFSI_DRVNAME*

ACF$B —COMBO_VEC* ACF$B CNUMVEC* ACF$W MAXUNITS*

unused ACFSB NUMUNIT* ACFSB COMBO CSR*

ACF$I_DLVR—SCRH

ZK-1778-84

Table A-1 Contents of the Configuration-Control Block

Field Name

ACF$L—ADAPTER*

ACF$L—CONFIGREG*

ACF$W_AVECTOR*

ACF$B_AUNIT*

ACF$B_AFLAG*

ACF$L-CONTRLREG*

ACF$W_C VECTOR*

ACF$B_CUNIT*

ACF$L_DEVNAME*

ACF$L -DRVNAME*

ACF$W_MAXUNITS*

Contents

Address of ADP for adapter currently being configured.

Address of configuration register for adapter currently being configured.

Offset from base of SCB to interrupt vector of adapter currently being configured.

Adapter unit number of device or controller currently being configured.

Flags associated with autoconfiguration operation. Flags defined in this field
include the following:

ACF$ V_RELOAD

ACF$V_CRBBLT

ACF$V_SCBVEC

ACF$V_NOLOAD—DB

ACF$V_SUPPORT

ACF$V_GETDONE

Reloading driver code.

CRB and IDB already built for device.

CVECTOR is offset into SCB.

Do not load I/O database, only load driver.

VAX/VMS supported device.

Addresses of data structures in I/O database have been
obtained.

Address of CSR for controller currently being configured.

Offset into ADP's vector table to longword that contains transfer address of
interrupt vector used by controller currently being configured (if ACF$V_SCBVEC
is not set). If ACF$V_SCBVEC is set, this field is the offset from the SCB base to
the interrupt vector of the controller currently being configured.

Unit number of device currently being configured.

Address of counted ASCII string that gives name of controller currently being
configured.

Address of counted ASCII string that gives driver name for controller currently
being configured.

Maximum number of units that can be connected to controller currently being
configured.

A—2

The I/O Database

Table A—1 (Cont.) Contents of the Configuration-Control Block

Field Name Contents

ACF$B_CNUMVEC*

ACF$B_COMBO_VEC*

ACF$B_COMBO_CSR*

ACF$B_NUMUNIT*

ACF$L _DLVR_SCRH

Number of interrupt vectors to configure for controller currently being configured.

Offset to vectors for combo device. (The name of this field is
ACF$B_COMBO_VECTOR_OFFSET.)

Offset to start of control registers of combo device. (The name of this field is
ACF$B_COMBO_CSR_OFFSET.)

Number of units to be configured for controller currently being configured.

Field available for use by unit-delivery routine. SYSGEN never alters this field.

A.2 Adapter-Control Block (ADP)
Each MASSBUS and UNIBUS adapter, as well as each Q22 bus, configured
in the system is represented to VAX/VMS and driver routines by an adapter-
control block (ADP). The ADP stores adapter-specific static and dynamic data
such as the adapter CSR address and mapping-register-wait queues.

The adapter-control block for a UNIBUS adapter and Micro VAX II Q22 bus is
illustrated in Figure A-2 and described in Table A-2.

Table A-2 Contents of Adapter-Control Block

Field Name

ADP$I_CSR*

ADP$L_LINK*

ADP$W_SIZE*

ADP$B_TYPE*

ADP$B_NUMBER*

ADP$W_TR*

ADP$W_ADPTYPE*

Contents

Virtual address of adapter configuration register. The VAX/VMS initialization
routine writes this field.

The configuration register marks the base of adapter register space, an area
that contains data path registers, mapping registers, or any other registers
appropriate to the implementation of the adapter.

Address of next ADP. The VAX/VMS adapter initialization routine writes this
field. A value of 0 indicates that this is the last ADP.

Size of ADP. The VAX/VMS adapter initialization routine writes this field when
the routine creates the ADP. For the UNIBUS and the Q22 bus, this includes the
UNIBUS interrupt servicing code and device vector table.

Type of data structure. The VAX/VMS adapter initialization routine writes the
symbolic constant DYN$C_ADP into this field when the routine creates the ADP.

Number of this type of adapter (for example, the number for a third MASSBUS
adapter is 2). The CPU initialization routine writes this field when the routine
creates the ADP.

Nexus number of adapter. The VAX/VMS adapter initialization routine writes this
field when the routine creates the ADP. The driver-loading procedure compares
the nexus number specified in a CONNECT command with this field of each ADP
in the system to determine to which adapter a device is attached.

Type of adapter. The CPU initialization routine writes the symbolic constant
AT$_UBA into this field when the routine creates an ADP for a UNIBUS adapter
or Q22 bus. AT$_MBA is the type code for a MASSBUS adapter.

A—3

The I/O Database

Table A-2 (Cont.) Contents of Adapter-Control Block

Field Name Contents

ADP$L—VECTOR*

ADP$L_DPQFL*

ADP$L_DPQBL*

ADP$L _A VECTOR*

ADP$L_BI_ONLY*

ADP$L_MRQFL*

ADP$L —MRQBL*

ADP$L_INTD*

Address of vector table. The table is 512 bytes of longword vectors that
correspond to device interrupt vectors (0-%0777).

On VAX processors that handle direct vector interrupts, ADP$L_VECTOR
points to the second (or third) page of the SCB. The CPU uses this page when
it dispatches the device interrupt to the driver interrupt-servicing routine. Each
vector entry that corresponds to a vector in use contains the address of the
controller's interrupt dispatcher (CRB$L_INTD).

On VAX processors that handle nondirect vector interrupts, ADP$L_VECTOR
points to a page allocated from nonpaged pool. Each longword in the page that
corresponds to a vector in use contains the address of the controller's interrupt
dispatcher (CRB$I_INTD+2). When the UNIBUS adapter interrupts on behalf
of a UNIBUS device, the UNIBUS adapter interrupt-servicing routine saves RO
through R5, determines the vector address of the interrupting device, indexes
into the vector table, and executes the instruction at CRB$L_INTD+2.

For both types of VAX processor, vector table entries that correspond to
unused vectors contain the address of the adapter's unexpected-interrupt-
servicing routine.

Data path wait queue forward link. IOCSREQDATAP and IOCSRELDATAP read
and write this field. When a driver fork process requests a buffered data path
and none is currently available, IOCSREQDATAP saves driver context in the
device's UCB fork block, inserts the fork block address in the data path wait
queue, and suspends the driver fork process.

When another driver calls IOCSRELDATAP to release a buffered data path, the
routine dequeues a UCB fork block address from the data path wait queue,
allocates a data path to the driver, and reactivates that driver fork process.

Data path wait queue backward link. IOCSREQDATAP and IOCSRELDATAP read
and write this field.

Address of first SCB vector for adapter.

Reserved to DIGITAL.

Mapping-register-wait queue's forward link. IOCSREQMAPREG and
IOCSRELMAPREG read and write these fields. When a driver fork process
requests a set of mapping registers and the set is not currently available,
IOCSREQMAPREG saves driver fork context in the device's UCB fork block,
inserts the fork block address in the mapping-register-wait queue, and suspends
the driver fork process.

When another driver calls IOCSRELMAPREG to release a set of mapping
registers, the routine dequeues a UCB fork block address from the mapping-
register-wait queue, allocates the requested set of mapping registers to the
driver, and reactivates that driver fork process.

Mapping-register-wait queue's backward link. IOCSREQMAPREG and
IOCSRELMAPREG read and write this field.

Interrupt transfer vector. When a device attached to the UNIBUS or Q22 bus
requests a hardware interrupt, the processor transfers control to the UNIBUS
or Q22-bus ADP$L_INTD field. The field contains code that dispatches the
interrupt to the proper driver interrupt-servicing routine. The interrupt transfer
vector is only used for UNIBUS adapters that directly generate interrupts and the
MicroVAX I and MicroVAX II Q22 bus.

A—4

The I/O Database

Table A—2 (Cont.) Contents of Adapter-Control Block

Field Name Contents

ADP$I_UBASCB* Series of four longwords that contain SCB entry values, one for each bus request
(BR) level or interrupt vector. The UNIBUS adapter power failure recovery
procedure uses these values.

ADPSI_UBASPTE* Page-table-entry (PTE) values for base of UNIBUS adapter register space and
base of UNIBUS I/O register space. These values are used during UNIBUS
adapter power failure recovery.

ADPSL _MRACTMDRS* Number of active mapping register descriptors in arrays to which
ADP$W_MRNREGARY and ADP$W_MRFREGARY point. IOC$REQMAPREG
and IOCSRELMAPREG use these fields when allocating and deallocating mapping
registers.

ADP$W_DPBITMAP« Data path allocation bit map. IOCSREQDATAP and IOC$RELDATAP read and
write this field. The VAX/VMS adapter initialization routine sets the bit map to
show as available all the buffered data paths supported by the UNIBUS adapter.

The state of each of the available buffered data paths (whether in use or
available) is recorded in the data path allocation bit map. One data path
corresponds to each bit in the field. If a bit is clear, the related data path is
currently allocated to a driver fork process.

ADP$W_MRNFENCE* Boundary marker for array specified by ADP$W_MRNREGARY; contains -1.

ADP$W_MRNREGARY* Mapping register "number of registers" array of 124 words. The number of

ADP$W_MRFFENCE*

ADP$W_MRFREGARY*

words, or cells, that are active in this array is contained in
ADP$L_MRACTMDRS. Each active cell gives a number of free mapping
registers. For each active cell in this array, there is a corresponding first
free mapping register number in the array specified by ADP$W_MRFREGARY.
Together, these values give the base mapping register and number of free
mapping registers for a block of free mapping registers. This information is used
to allocate and deallocate mapping registers.

Boundary marker for array specified by ADP$W_MRFREGARY; contains — 1.

Mapping register "first register" array of 124 words. The number of currently
active cells in this array is contained in ADP$L_MRACTMDRS. Each active cell
gives a number of the first free mapping register within a block of free mapping
registers. For each active cell in this array, there is a corresponding cell in
the number of registers array that gives a number of free mapping registers.
Together, these values give the base mapping register and number of free
mapping registers for a block of free mapping registers. This information is used
to allocate and deallocate mapping registers.

ADP$W_UMR_DIS* Number of disabled mapping registers. During system initialization, some
mapping registers can be disabled so that their corresponding UNIBUS and Q22
bus addresses can be accessed directly through backplane interconnect physical
addresses.

A—5

The I/O Database

Figure A-2 Adapter-Control Block (ADP)

ADP$I CSR*

ADP$I LINK*

ADP$B NUMBER* ADP$B TYPE* ADP$W SIZE*

ADP$W ADPTYPE* ADP$W TR*

ADP$I_VECTOR*

ADP$I_DPQFL*

ADP$I DPQBL*

ADP$I AVECTOR*

ADP$I_Bl_ONLY (16 bytes)

ADP$I_MRQFL*

ADP$I_MRQBL*

ADP$I_INTD* (12 bytes)

ADP$I_UBASCB* (16 bytes)

ADP$I_UBASPTE*

ADP$I_MRACTMDRS*

ADP$W MRN FENCE* ADP$W_DPBITMAP*

ADP$W_MRN REG ARY* (248 bytes)

ADP$W_MRFFENCE*

ADP$W_MRFREGARY* (248 bytes)

ADP$W_UMR_DIS*

ZK-1779-84

A.3 Channel-Control Block (CCB)
When a process assigns an I/O channel to a device unit with the $ ASSIGN
system service, EXE$ASSIGN locates a free block among the process'
preallocated channel-control blocks (CCBs). EXE$ASSIGN then writes into
the CCB a description of the device attached to the CCB's channel.

The channel-control block is illustrated in Figure A-3 and described in
Table A-3.

A—6

The I/O Database

Figure A—3 Channel-Control Block (CCB)

CCB$I_UCB*

CCB$I_WIND*

CCB$W_IOC* CCB$B AMOD* CCB$B STS*

CCB$I_DIRP*

Table A-3 Contents of Channel-Control Block

Field Name Contents

CCB$I_UCB* Address of UCB of assigned device unit. EXE$ASSIGN writes a value into this
field. EXESQIO reads this field to determine that the I/O request specifies a
process I/O channel assigned to a device and to obtain the device's UCB address.

CCB$L_WIND* Address of window-control block (WCB) for file-structured device assignment.
This field is written by an ACP and read by EXESQIO.

A file-structured device's ACP creates a WCB when a process accesses a file
on a device assigned to a process I/O channel. The WCB maps the virtual block
numbers of the file to a series of physical locations on the device.

CCBSB—STS* Channel status.

CCB$B_AMOD* Access mode plus 1 of process at time of channel assignment. EXESASSIGN
writes the process access mode value into this field.

CCB$W_IOC* Number of outstanding I/O requests on channel. EXE$QIO increases this field
when it begins to process an I/O request that specifies the channel. During I/O
postprocessing, the special kernel-mode-AST routine decrements this field. Some
FDT routines and EXESDASSGN read this field.

CCB$I_DIRP* Address of IRP for requested deaccess. A number of outstanding I/O requests
can be pending on the same process I/O channel at one time. If the process that
owns the channel issues an I/O request to deaccess the device, EXESQIO holds
the deaccess request until all other outstanding I/O requests are processed.

A.4 Channel-Request Block (CRB)
The activity of each controller in a configuration is described in a channel-
request block (CRB). This data structure contains pointers to the wait queue of
drivers ready to gain access to a device through the controller. It also stores
the entry points to the driver's interrupt-servicing routines and
device/controller initialization routines.

The channel-request block is illustrated in Figure A-4 and described in
Table A-4.

A—7

The I/O Database

Figure A-4 Channel-Request Block (CRB)

CRB$L— WQFL*

CRB$I_ J/VQBL*

CRB$B TT_TYPE* CRB$B_TYPE* CRB$W_SIZE*

unused CRB$B_MASK* CRB$W_REFC*

CRBSI_AUXSTRUC*

CRB$I_TIMELINK*

CRB$I_DUETIME*

CRB$I_TOUTROUT*

CRB$I_LINK*

CRB$I_INTD* (36 bytes)

CRB$I_INTD2* (36 bytes)

ZK-1781-84

Table A-4 Contents of Channel-Request Block

Field Name

CRB$L_WQFL*

CRB$L_WQBL*

CRB$W_SIZE*

CRB$B_TYPE*

CRB$B_TT_TYPE*

CRB$W_REFC*

CRB$B_MASK*

Contents

Controller data channel wait queue forward link. IOC$REQxCHANy and
IOC$RELxCHAN insert and remove driver fork block addresses in this field.

A channel wait queue contains addresses of driver fork blocks that record
the context of suspended drivers waiting to gain control of a controller data
channel. If a channel is busy when a driver requests access to the channel,
IOC$REQxCHANy suspends the driver by saving the driver's context in the
device's UCB fork block and inserting the fork block address in the channel-wait
queue.

When a driver releases a channel because an I/O operation no longer needs the
channel, IOC$RELxCHAN dequeues a driver fork block, allocates the channel to
the driver, and reactivates the suspended driver fork process. If no drivers are
awaiting the channel, IOC$RELxCHAN clears the channel busy bit.

Controller channel wait queue backward link. IOC$REQxCHANy and
IOC$RELxCHAN read and write this field.

Size of CRB. The driver-loading procedure writes this field when the procedure
creates the CRB.

Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_CRB into this field when the procedure creates the CRB.

Type of controller (DZ1 1 or DZ32) for terminals.

UCB reference count. The driver-loading procedure increases the value in this field
each time the procedure creates a UCB for a device attached to the controller.

Mask that describes controller status. At present, only one bit, CRB$V_BSY, is
defined in this field. IOC$REQxCHANy reads the busy bit to determine whether
the controller is free and sets this bit when it allocates the controller data channel
to a driver. IOC$RELxCHAN clears the busy bit if no driver is waiting to acquire
the channel.

A—8

The I/O Database

Table A-4 (Cont.) Contents of Channel-Request Block

Field Name Contents

CRB$I_AUXSTRUC* Address of auxiliary data structure used by device driver to store special controller
information. A device driver that wishes to use this field can contain a controller
initialization routine that allocates a block of nonpaged dynamic memory and sets
this field to point to it.

CRB$L —TIMELINK* Forward link in queue of CRBs waiting for periodic wakeups. This field points
to the CRB$L_TIMELINK field of the next CRB in the list. The CRB$L_TIMELINK
field of the last CRB in the list contains zero. The listhead for this queue is
IOC$GL_CRBTMOUT. Use of this field is reserved to DIGITAL.

CRB$L—DUETIME* Time in seconds, relative to EXE$GL_ABSTIM, at which next periodic wakeup
associated with CRB is to be delivered. Compute this value by raising IPL to
IPL$_POWER, adding the desired number of seconds to the contents of
EXE$GL_ABSTIM, and storing the result in this field. Use of this field is reserved
to DIGITAL.

CRBSI_TOUTROUT* Address of routine to be called when periodic wakeup associated with CRB
becomes due. The routine must compute and reset the value in CRB$L_DUETIME
if another periodic wakeup request is desired. Use of this field is reserved to
DIGITAL.

CRB$L_LINK* Address of secondary CRB (for MASSBUS devices only). This field is written by
the driver-loading procedure and read by lOCSREQSCHANx and IOC$RELSCHAN.

CRB$L_INTD* Interrupt transfer vector. The DPT in every driver for an interrupting device
specifies the address of a driver interrupt-servicing routine. The driver-loading
procedure writes two instructions in this field:

PUSHR #~M<RO,R1,R2,R3,R4,R5>
JSB <D#~driver-isr-address

CRB$L_INTD2*

Direct vector UNIBUS or Q22 bus adapters transfer control to CRB$I_INTD,
which causes the processor to execute the PUSHR instruction to save RO through
R5 on the stack. Next, the processor executes the JSB instruction to transfer
control to the driver interrupt-servicing routine.

On nondirect vector UNIBUS adapters, the UNIBUS adapter interrupt-servicing
routine transfers control to CRB$L_INTD+2, which contains the JSB instruction
to the driver interrupt-servicing routine. Because the UNIBUS adapter's interrupt¬
servicing routine has already saved RO through R5, the PUSHR instruction is
bypassed.

The CRB$L_INTD field is nine longwords long. Figure A-5 and Table A-5
describe the contents of the rest of block.

Second interrupt transfer vector for devices with multiple interrupt vectors. If the
DPT in a device driver specifies the address of a second driver interrupt-servicing
routine, the driver-loading procedure creates a CRB long enough to contain two
INTDx fields of nine longwords each.

The first two longwords of the CRB$I_INTD2 field contain a PUSHR instruction
and a JSB instruction to the second driver interrupt-servicing routine. There are
as many interrupt-transfer-vector blocks as there are device vectors. The number
of device vectors is determined by the value specified in the /NUMVEC= qualifier
to the SYSGEN command CONNECT.

The interrupt-transfer-vector blocks contained in the CRB store executable
code, driver entry points, and I/O adapter information. The block pointed to
by CRB$L_INTD is illustrated in Figure A-5 and described in Table A-5.

A—9

The I/O Database

Figure A-5 Interrupt Transfer Vector Block (VEC)

VEC$Q_DISPATCH *

VEC$B DATAPATH

VEC$LJDB*

VEC$L_INITIAL *

VEC$B_NUMREG

VEC$L_ADP *

VEC$L_UNITINIT *

VEC$L-START *

VEC$L_UNITDISC *

VEC$W_M A PR EG

ZK-1782-84

Table A-5 Fields of CRB$L_IIMTD

Field Name

VEC$Q—DISPATCH*

VEC$I_IDB*

VEC$I_INITIAL*

VEC$W_MAPREG

VEC$B_NUMREG

Contents

Two interrupt dispatching instructions, written by driver-loading procedure and
described above in CRB$I_INTD.

Address of IDB for controller. The driver-loading procedure creates an IDB for
each CRB and loads the address of the IDB in this field. Device drivers use the
IDB address to obtain the virtual addresses of device registers.

When a driver interrupt-servicing routine gains control, the top of the stack
contains a pointer to this field.

Address of controller-initialization routine. If a device controller requires
initialization at driver-loading time and during recovery from a power failure,
the driver specifies a value for this field in the DPT.

The driver-loading procedure calls this routine each time the procedure loads the
driver. The VAX/VMS powerfail recovery procedure also calls this routine to
initialize a controller after a power failure.

The following bits are defined within VEC$W_MAPREG:

VEC$V_MAPREG Number of first mapping register allocated to driver that
owns controller data channel.

IOCSREQMAPREG writes this field when the routine
allocates a set of mapping registers to a driver fork
process for a DMA transfer. IOC$RELMAPREG reads the
field to deallocate a set of mapping registers.

Device drivers read this field in calculating the starting
address of a UNIBUS or MicroVAX II Q22 bus transfer.

VEC$V_MAPLOCK Mapping register set is permanently allocated (when
set).

Number of UNIBUS adapter mapping registers allocated to driver.
IOCSREQMAPREG writes this field when the routine allocates a set of mapping
registers. IOCSRELMAPREG reads this field to deallocate a set of mapping
registers.

A—10

The I/O Database

Table A-5 (Cont.) Fields of CRB$I_INTD

Field Name Contents

VEC$B_DATAPATH Data path specifier. The bits that make up this field are used as follows:

0-4 Number of data path used in DMA transfer. The routine
IOCSREQDATAP sets this field when a buffered data
path is allocated and clears the field when the data path
is released.

The routine IOCSLOADUBAMAP copies the contents
of this field into the UNIBUS adapter or MicroVAX II
mapping registers. These bits also serve as implicit
input to the IOC$PURGDATAP routine.

Longword access enable (LWAE) bit. Drivers set
this bit when they wish to limit the data path to
longword-aligned, random-access mode. The routine
IOCSLOADUBAMAP copies the value in this field to the
UNIBUS adapter mapping registers.

Reserved to DIGITAL.

VEC$V_PATHLOCK Buffered data path allocation indicator. Drivers set this
bit to specify that the buffered data path is permanently
allocated.

Address of ADP. The SYSGEN command CONNECT must specify the nexus
number of the UNIBUS adapter used by a controller. The driver-loading procedure
writes the address of the ADP for the specified UBA into the VEC$L_ADP field.

IOCSREQMAPREG and IOCSRELMAPREG read and write fields in the ADP to
allocate and deallocate mapping registers.

Address of device unit-initialization routine. If a device unit requires initialization at
driver-loading time and during recovery from a power failure, the driver specifies a
value for this field in the DPT.

The driver-loading procedure calls this routine for each device unit each time the
procedure loads the driver. The VAX/VMS powerfail recovery procedure also
calls this routine to initialize device units after a power failure.

MASSBUS drivers that support mixed device types must not use this field.
Instead, they should specify unit initialization in the unit initialization field of the
DDT (DDT$L_UNITINIT). Other drivers can use either field.

VEC$L-START* Reserved to DIGITAL.

VEC$L_UNITDISC* Reserved to DIGITAL.

VECSl_ADP*

VEC$I_UNITINIT*

VEC$V_LWAE

6

A.5 Device-Data Block (DDB)
The device-data block (DDB) is a variable-length block that identifies the
generic device/controller name and driver name for a set of devices attached
to a single controller. The driver-loading procedure creates a DDB for each
controller during autoconfiguration at system startup and dynamically creates
additional DDBs for new controllers as they are added to the system using
the SYSGEN command CONNECT. The procedure initializes all fields in the
DDB. All the DDBs in the I/O database are linked together in a single-linked
list. The contents of IOC$GL_DEVLIST point to the first entry in the list.

VAX/VMS routines and device drivers refer to the DDB.

A—11

The I/O Database

The device-data block is illustrated in Figure A-6 and described in Table A-6.

Figure A—6 Device-Data Block (DDB)

DDB$I_LINK*

DDB$L. _UCB*

unused DDB$B_TYPE* DDB$W_SIZE*

DDBSI_DDT

DDB$I_ACPD

DDB$T_NAME* (16 bytes)

DDB$T_DRVNAME* (16 bytes)

DDB$I_SB*

DDB$I_CONLINK*

DDB$I_ALLOCLS*

DDB$I_2P_UCB*

ZK-1783-84

Table A-6 Contents of Device-Data Block

Field Name Contents

DDB$L_LINK*

DDB$L_UCB*

DDB$W_SIZE*

DDB$B_TYPE*

DDB$L_DDT

DDB$L_ACPD

DDB$T_NAME*

Address of next DDB. A zero indicates that this is the last DDB in the DDB chain.

Address of UCB for first unit attached to controller.

Size of DDB.

Type of data structure. The driver-loading procedure writes the constant
DYN$C_DDB into this field when the procedure creates the DDB.

Address of DDT. VAX/VMS can transfer control to a device driver only through
addresses listed in the DDT, the CRB, and the UCB fork block. The DPT of every
device driver must specify a value for this field.

Name of default ACP for controller. ACPs that control access to file-structured
devices use the high-order byte of this field, DDB$B_ACPCLASS, to indicate
the class of the file-structured device. If the SYSGEN parameter ACP—MULT is
set to one, the initialization procedure creates a unique ACP for each class of
file-structured device.

Drivers initialize DDB$B_ACPCLASS by invoking a DPT_STORE macro. Values for
DDB$B_ACPCLASS are listed below.

DDB$K_CART Cartridge disk pack

DDB$K_PACK Standard disk pack

DDB$K_SLOW Floppy disk

DDB$K_TAPE Magnetic tape that simulates file-structured device

Generic name of devices attached to controller. The first byte of this field is the
number of characters in the generic name. The remainder of the field consists of
a string of up to 15 characters in length that, suffixed by a device unit number,
identifies devices on the controller.

A—12

The I/O Database

Table A—6 (Cont.) Contents of Device-Data Block

Field Name Contents

DDB$T_DRVNAME* Name of device driver for controller. The first byte of this field is the number of
characters in the driver name. The remainder of the field contains a string of up
to 15 characters in length taken from the DPT in the driver.

DDB$L_SB* Address of system block

DDB$L —CONLINK* Address of next DDB in the connection subchain

DDB$L _ALLOCLS* Allocation class of device

DDB$L _2P_UCB* Address of first UCB on secondary path. Another name for this field is
DDB$I_DP_UCB.

A.6 Driver-Dispatch Table (DDT)
Each device driver contains a driver-dispatch table (DDT). The DDT lists
entry points in the driver that various VAX/VMS routines call. An example is
the entry point for the driver routine that starts an I/O operation on a device.

A device driver creates a DDT by invoking the VAX/VMS macro DDTAB. The
fields in the driver-dispatch table are illustrated in Figure A-7 and described
in Table A-7.

Figure A-7 Driver-Dispatch Table (DDT)

DDT$I_START

DDT$I_UNSOLINT

DDT$I_FDT

DDT$I_CANCEL

DDT$I_REGDUMP

DDT$W_ERRORBUF

DDT$I_UNITINIT

DDT$I_ALTSTART

DDT$I_MNTVER

DDT$I_CLONEDUCB

unused

DDT$I_MNTV_SSSC

DDT$I_MNTV_FOR

DDT$I_MNTV_SQD

DDT$W_DIAGBUF

DDT$W_FDTSIZE*

ZK-1784-84

A—13

The I/O Database

Table A—7 Contents of Driver-Dispatch Table

Field Name Contents

DDT$L—START Entry point to driver start-l/0 routine. Every driver must specify this field with the
value of the start argument to the DDTAB macro.

When a device unit is idle and an I/O request is pending for that unit,
IOCSINITIATE transfers control to the address contained in this field.

DDT$I_UNSOLINT Entry point to MASSBUS driver's unsolicited-interrupt-servicing routine. The
driver specifies this field with the value of the unsolic argument to the DDTAB
macro.

DDT$I_FDT

This field contains the address of a routine that analyzes unexpected interrupts
from a device. The standard interrupt-servicing routine, the address of which is
stored in the CRB, determines whether an interrupt was solicited by a driver. If
the interrupt is unsolicited, the interrupt-servicing routine can call the unsolicited-
interrupt-servicing routine.

Address of driver's FDT. Every driver must specify this field with the value of the
functb argument to the DDTAB macro.

EXESQIO refers to the FDT to validate 1/0-function codes, decide which functions
are buffered, and call FDT routines associated with function codes.

DDTSL-CANCEL Entry point to driver cancel-l/O routine. The driver specifies this field with the
value of the cancel argument to the DDTAB macro.

Some devices require special clean-up processing when a process or a VAX/VMS
routine cancels an I/O request before the I/O operation completes or when the
last channel is deassigned. The $DASSGN, SDALLOC, and SCANCEL system
services cancel I/O requests.

DDT$L _REGDUMP Entry point to driver register-dumping routine. The driver specifies this field with
the value of the regdmp argument to the DDTAB macro.

IOCSDIAGBUFILL, ERLSDEVICERR, and ERLSDEVICTMO call the address contained
in this field to write device register contents into a diagnostic or error-logging
buffer.

DDT$W_DIAGBUF Size of diagnostic buffer. The driver specifies this field with the value of the
diagbf argument to the DDTAB macro. The value is the size in bytes of a
diagnostic buffer for the device.

When EXESQIO preprocesses an I/O request, the routine allocates a system
buffer of the size recorded in this field if the user process has diagnostic
privileges, specifies a diagnostic buffer in the I/O request, and this field of
the DDT contains a nonzero value. IOCSDIAGBUFILL fills the buffer after the I/O
operation completes.

DDT$W_ERRORBUF Size of error-logging buffer. The driver specifies this field as the value of the
erlgbf argument to the DDTAB macro. The value is the size in bytes of an
error-logging buffer for the device.

If error logging is enabled and an error occurs during an I/O operation, the driver
calls ERLSDEVICERR or ERLSDEVICTMO to allocate and write error-logging data
into the error message buffer. IOCSINITIATE and IOCSREQCOM write values into
the buffer if an error has occurred.

DDT$I_UNITINIT Address of device unit-initialization routine, if one exists. Drivers for MASSBUS
devices use this field rather than CRB$L_INTD+VEC$I_UNITINIT. Drivers for
UNIBUS and Q22 devices can use either field.

DDT$1_ALTST ART Address of alternate start-l/O routine. The VAX/VMS routine EXESALTQUEPKT
initiates the alternate start-l/O routine at this address.

A—14

The I/O Database

A.7

Table A-7 (Cont.) Contents of Driver-Dispatch Table

Field Name Contents

DDT$L_MNTVER

DDT$L_CLONEDUCB

DDT$W_FDTSIZE*

DDT$I_MNTV_SSSC

DDT$L _MNTV_FOR

DDT$L _MNTV_SQD

Address of VAX/VMS routine (IOCSMNTVER) called at beginning and end of
mount verification operation. The mntver argument to the DPTAB macro defaults
to this routine. Use of the mntver argument to call any routine other than
IOCSMNTVER is reserved to DIGITAL.

Address of routine to call when UCB is cloned.

Number of bytes in FDT. The driver-loading procedure uses this field to relocate
addresses in the FDT to system virtual addresses.

Address of routine to call when performing mount verification for a shadow-set-
state change.

Address of routine to call when performing mount verification for foreign device.

Address of routine to call when performing mount verification for sequential
device.

Driver-Prologue Table (DPT)
When loading a device driver and its database into virtual memory, the
driver-loading procedure finds the basic description of the driver and its
device in a driver-prologue table (DPT). The DPT provides the length, name,
adapter type, and loading and reloading specifications for the driver.

A device driver creates a DPT by invoking the VAX/VMS macros DPTAB
and DPT_STORE. The driver-prologue table is illustrated in Figure A-8 and
described in Table A-8.

Figure A-8 Driver-Prologue Table (DPT)

DPT$I_FUNK*

DPT$I_BLINK*

DPT$B_REFC* DPT$B_TYPE* DPT$W_SIZE

DPT$W_UCBSIZE DPT$B_FLAGS DPT$B_ADPTYPE

DPT$W_REINITTAB DPT$W_INITTAB

DPT$W_MAXUNITS DPT$W_UNLOAD

DPT$W_DEFUN ITS DPT$W_VERSION*

DPT$W_VECTOR DPT$W_DELIVER

DPT$T_NAME (12 bytes)

DPT$Q_LINKTIME*

DPT$I-ECOLEVEL*

ZK-1785-84

A—15

The I/O Database

Table A-8 Contents of Driver-Prologue Table

Field Name Contents

DPT$L_FLINK* Forward link to next DPT. The driver-loading procedure writes this field. The
procedure links all DPTs in the system in a doubly linked list.

DPT$I_BLINK*

DPT$W_SIZE

Backward link to previous DPT. The driver-loading procedure writes this field.

Size in bytes of driver. The DPTAB macro writes this field by subtracting the
address of the beginning of the DPT from the address specified as the end
argument to the DPTAB macro. The driver-loading procedure uses this value to
determine the space needed in nonpaged system memory to load the driver.

DPT$B_TYPE* Type of data structure. The DPTAB macro always writes the symbolic constant,
DYN$C_DPT, into this field.

DPT$B_REFC* Number of DDBs that refer to driver. The driver-loading procedure increments the
value in this field each time the procedure creates another DDB that points to the
driver's DDT.

DPT$B_ADPTYPE Type of adapter used by devices using driver. Every driver must specify the
string "UBA" or "MBA" as value of the adapter argument to the DPTAB macro.
Q22 bus drivers should specify "UBA" as the adapter type. The macro writes the
value AT$_UBA or AT$_MBA in this field.

DPT$B_FLAGS Driver loader flags. The driver can specify any of a set of flags as the value of
the flags argument to the DPTAB macro. The driver-loading procedure modifies
the loading and reloading algorithm followed on the basis of the settings of these
flags.

Flags defined in the flag field include the following:

DPT$M_SUBCNTRL Device is a subcontroller.

DPT$M_SVP Device requires permanent system page to be allocated
during driver loading.

DPT$M_NOUNLOAD Driver cannot be reloaded.

DPT$V_SCS SCS code must be loaded with this driver.

DPT$W_UCBSIZE Size in bytes of UCBs created for device units using driver. Every driver must
specify a value for this field as the value of the ucbsize argument to the DPTAB
macro.

DPT$W_INITTAB

The driver-loading procedure allocates blocks of nonpaged system memory of the
specified size when creating UCBs for devices associated with the driver.

Offset to driver-initialization table. Every driver must specify a list of control-block
fields and values to be written into the fields at the time that the driver-loading
procedure creates the control blocks.

The driver invokes the VAX/VMS macro DPT_STORE to specify these fields and
their values. Every driver must specify the following fields:

UCB$B_FIPL Fork interrupt priority level

UCB$B_DIPL Device interrupt priority level

Other commonly initialized fields are:

UCB$I_DEVCHAR Device characteristics

UCB$B_DEVCLASS Device class

UCB$B_DEVTYPE Device type

UCB$W_DEVBUFSIZ Default buffer size

UCB$L_DEVDEPEND Device-dependent parameters

A—16

The I/O Database

Table A—8 (Cont.) Contents of Driver-Prologue Table

Field Name Contents

DPT$ W_REINITT AB

DPT$W_UNLOAD

DPT$W_MAXUNITS

DPT$W_VERSION*

DPT$W_DEFUNITS

DPT$W_DELIVER

DPT$W_VECTOR

DPT$T_NAME

DPT$Q_LINKTIME*

DPT$L _ECOLE VEL*

Offset to driver-reinitialization table. Every driver must specify a list of control-
block fields and values to be written into fields at the time that the driver-loading
procedure creates the control blocks or loads the driver.

The driver invokes the VAX/VMS macro DPT_STORE to specify these fields and
their values. Every driver must specify the following field:

DDB$L_DDT Driver-dispatch table

Other commonly initialized fields are:

CRB$L_INTD+4 Interrupt-servicing routine

CRB$L_INTD2+4 Second interrupt-servicing routine

VECSl_INITIAL Controller initialization routine

VEC$L_UNITINIT Unit initialization routine

Relative address of driver action routine to be called when driver is reloaded. The
driver specifies this field with the value of the unload argument to the DPTAB
macro.

If the driver requires special clean-up processing, such as buffer or mapping
register deallocation, before the driver can be reloaded, the driver must specify
this field. The driver-loading procedure calls the driver unloading routine before
reinitializing all device units associated with the driver.

Maximum number of units on controller that this driver supports. Specify this
value in the maxunits argument to the DPTAB macro. If no value is specified, the
default is 8 units.

Version number that identifies format of DPT. The DPTAB macro automatically
inserts a value in this field. SYSGEN checks its copy of the version number
against the value stored in this field. If the values do not match, an error is
generated. To correct the error, reassemble and relink the driver.

Number of UCBs that autoconfiguration facility will automatically create. Drivers
specify this number with the defunits argument to the DPTAB macro. If the
driver also gives a value to DPT$W_DELIVER, this field is also the number of
times that the autoconfiguration facility calls the unit-delivery routine.

Relative address of unit-delivery routine that autoconfiguration facility calls for
number of UCBs specified in DPT$W_DEFUNITS. The driver supplies the address
of the unit-delivery routine in the deliver argument to the DPTAB macro.

Relative address of driver-specific vector. Use of this field is reserved to DIGITAL.

Name of device driver. Field is 12 bytes in length. One byte records the length
of the name string; the name string can be up to 11 characters in length. Drivers
specify this field as the value of the name argument to the DPTAB macro.

The driver-loading procedure compares the name of a driver to be loaded with the
values in this field in all DPTs already loaded into system memory to ensure that
it loads only one copy of a driver at a time.

Time and date at which driver was linked, taken from its image header.

ECO level of driver, taken from its image header.

A-17

The I/O Database

A.8 Interrupt-Dispatch Block (IDB)
The interrupt-dispatch block (IDB) records controller characteristics. The
driver-loading procedure creates and initializes this block when the procedure
creates a CRB. The IDB points to the physical controller by storing the virtual
address of the CSR. The CSR is the indirect pointer to all device unit registers.

The interrupt-dispatch block is illustrated in Figure A-9 and described in
Table A-9.

Figure A-9 Interrupt-Dispatch Block (IDB)

IDB$I_CSR*

IDB$I_OWNER

IDB$B_VECTOR* IDB$B_TYPE* IDB$W_SIZE*

IDB$B_COMBO_CSR* IDB$B_TT_ENABLE* IDB$W_UNITS*

unused unused IDB$B COMBO_VEC*

IDBSl_ADP*

IDB$I_UCBLST* (32 bytes)

ZK-1786-84

Table A-9 Contents of Interrupt-Dispatch Block

Field Name

IDB$I_CSR*

IDB$L_OWNER

IDB$W_SIZE*

IDB$B_TYPE*

Contents

Address of CSR. The SYSGEN command CONNECT must specify the address of
a device's CSR. The driver-loading procedure writes the system virtual equivalent
of this address into the IDB$L_CSR field.

Device drivers set and clear bits in device registers by referencing all device
registers at fixed offsets from the CSR address.

Address of UCB of device that owns controller data channel. IOC$REQx CHANy
writes a UCB address into this field when the routine allocates a controller data
channel to a driver. IOC$RELx CHAN confirms that the proper driver fork process
is releasing a channel by comparing the driver's UCB with the UCB stored in
the IDB$L_OWNER field. If the UCB addresses are the same, IOC$RELx CHAN
allocates the channel to a waiting driver by writing a new UCB address into the
field. If no driver fork processes are waiting for the channel, IOC$RELxCHAN
clears the field.

If the controller is a single-unit controller, the unit or controller initialization routine
should write the UCB address of the single device into this field.

Size of IDB. The driver-loading procedure writes the constant IDB$K_LENGTH into
this field when the procedure creates the IDB.

Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_IDB into this field when the procedure creates the IDB.

A—18

The I/O Database

Table A-9 (Cont.) Contents of Interrupt-Dispatch Block

Field Name Contents

IDB$B_VECT OR* Interrupt vector number of device, right-shifted by 2 bits. SYSGEN writes a value
to this field using either the autoconfiguration database or the value specified in
the /VECTOR qualifier to the CONNECT command. Drivers for devices that define
the interrupt vector address through a device register must use this field to load
that register during unit initialization and reinitialization after a power failure.

IDB$W_UNITS* Maximum number of units connected to controller. The maximum number of units
is specified in the DPT and can be overridden at driver-loading time.

IDB$B_TT_ENABLE* Reserved for use by VAX/VMS terminal driver.

IDB$B_COMBO_CSR* Address of start of CSRs for multicontroller device (such as the DMF32). (The
name of this field is IDB$B_COMBO_CSR_OFFSET.)

IDB$B_COMBO_VEC* Address of start of interrupt vectors for multicontroller device. (The name of this
field is IDB$B_COMBO_VECTOR_OFFSET.)

IDB$L_ADP* Address of UNIBUS's ADP. The SYSGEN CONNECT command must specify the
nexus number of the I/O adapter used by a device. The driver-loading procedure
writes the address of the ADP for the specified I/O adapter into the IDB$L_ADP
field.

IDB$L _UCBLST* List of UCB addresses. The size of this field is the maximum number of units
supported by the controller, as defined in the DPT. The maximum specified in the
DPT can be overridden at driver load time. The driver-loading procedure writes a
UCB address into this field every time the routine creates a new UCB associated
with the controller.

A.9 l/O-Request Packet (IRP)

When a user process queues a valid I/O request by issuing a $QIO or $QIOW
system service, the service creates an I/O-request packet (IRP). The IRP
contains a description of the request and receives the status of the I/O
processing as it proceeds.

The I/O-request packet is illustrated in Figure A-10 and described in
Table A-10.

Table A-10 Contents of an l/O-Request Packet

Field Name

IRP$I_IOQFL

IRP$I_IOQBL

IRP$W_SIZE*

IRP$B_TYPE*

Contents

I/O queue forward link. EXE$INSERTIRP reads and writes this field when the
routine inserts IRPs into a pending I/O queue. IOCSREQCOM reads and writes this
field when the routine dequeues IRPs from a pending I/O queue in order to send
an IRP to a device driver.

I/O queue backward link. EXESINSERTIRP and IOCSREQCOM read and write these
fields.

Size of IRP. EXESQIO writes the symbolic constant, IRP$C_LENGTH, into this field
when the routine allocates and fills an IRP.

Type of data structure. EXESQIO writes the symbolic constant DYN$C_IRP into
this field when the routine allocates and fills an IRP.

A—19

The I/O Database

Table A-10 (Cont.) Contents of an l/O-Request Packet

Field Name Contents

IRP$B_RMOD*

IRP$I_PID*

IRP$I_AST*

IRP$I_ASTPRM

IRP$I_WIND

IRP$L_UCB*

IRP$W_FUNC

IRP$B_EFN*

IRP$B_PRI*

IRP$I_IOSB

IRP$W_CHAN*

Access mode of process at time of I/O request. EXESQIO obtains the processor
access mode from the PSL and writes the value into this field.

Process identification of process that issued I/O request. EXESQIO obtains the
process identification from the PCB and writes the value into this field.

Address of AST routine specified by user in I/O request. If the process specifies
an AST routine address in the $QIO call, EXESQIO writes the address in this field.

During I/O postprocessing, the special kernel-mode-AST routine queues a user
mode AST to the requesting process if this field contains the address of an AST
routine.

Parameter sent as argument to AST routine specified by user in I/O request. If
the process specifies an AST routine and a parameter to that AST routine in the
$QIO call, EXESQIO writes the parameter in this field.

During I/O postprocessing, the special kernel-mode-AST routine queues a user
mode AST if the IRP$L_AST field contains an address, and passes the value in
IRP$L_ASTPRM to the AST routine as an argument.

Address of window-control block (WCB) that describes file being accessed in I/O
request. EXESQIO writes this field if the I/O request refers to a file-structured
device. The ACP reads this field.

When a process gains access to a file on a file-structured device or creates a
logical link between a file and a process I/O channel, the device ACP creates a
WCB that describes the virtual-to-logical mapping of the file data on the disk.
EXESQIO stores the address of this WCB in the IRPSl_WIND field.

Address of UCB for device assigned to process I/O channel. EXESQIO copies this
value from the CCB.

l/O-function code that identifies function to be performed for I/O request. The
I/O request call specifies an l/O-function code; EXESQIO and driver FDT routines
map the code value to its most basic level (virtual -*• logical —► physical) and copy
the reduced value into this field.

Based on this function code, EXESQIO calls FDT action routines to preprocess
an I/O request. Six bits of the function code describe the basic function. The
remaining 10 bits modify the function.

Event flag number and group specified in I/O request. If the I/O request call
does not specify an event flag number, EXESQIO uses event flag 0 by default.
EXESQIO writes this field. The I/O postprocessing routine calls SCHSPOSTEF to
set this event flag when the I/O operation is complete.

Base priority of process when I/O request was issued. EXESQIO obtains a value
for this field from the PCB. EXESINSERTIRP reads this field to insert an IRP into a
priority-ordered pending I/O queue.

Virtual address of process' l/O-status block (IOSB) that receives final status of
I/O request at I/O completion. EXESQIO writes a value into this field if the I/O
request call specifies an IOSB address. The I/O postprocessing special kernel-
mode-AST routine writes two longwords of I/O status into the IOSB after the I/O
operation is complete.

When an FDT routine aborts an I/O request by calling EXESABORTIO,
EXESABORTIO fills the IRP$I_IOSB field with zeros so that I/O postprocessing
does not write status into the IOSB.

Index number of process I/O channel for request. EXESQIO writes this field.

A—20

The I/O Database

Table A-10 (Cont.) Contents of an l/O-Request Packet

Field Name Contents

IRP$W_STS Status of I/O request. EXE$QIO initializes this field to 0. EXESQIO, FDT routines,
and driver fork processes modify this field according to the current status of
the I/O request. I/O postprocessing reads this field to determine what sort of
postprocessing is necessary (for example, deallocate system buffers and adjust
quota usage).

Bits in the IRP$W_STS field describe the type of I/O function, as follows:

IRP$V_BUFIO Buffered-I/O function

IRP$V_FUNC Read function

IRP$V_PAGIO Paging-I/O function

IRP$V_COMPLX Complex-buffered-l/O function

IRP$V_VIRTUAL Virtual-I/O function

IRP$V_CHAINED Chained-buffered-l/O function

IRP$V_SWAPIO Swapping-I/O function

IRP$V_DIAGBUF Diagnostic buffer is present

IRP$V_PHYSIO Physical-I/O function

IRP$V_TERMIO Terminal I/O (for priority increment calculation)

IRP$V_MBXIO Mailbox-1/0 function

IRP$V_EXTEND An extended IRP is linked to this IRP

IRP$V_FILACP File ACP I/O

IRP$V_MVIRP Mount-verification-l/O function

IRP$V_JNL_REMREQ Remote-I/O (slave) function

IRP$V_KEY IRP$L_KEYDESC contains the address of a key used
for encryption.

IRP$I_SVAPTE For direct-l/O transfer, virtual address of first page-table entry (PTE) of 1/0-
transfer buffer, written here by FDT routine locking process pages; for buffered-
1/0 transfer, address of buffer in system address space, written here by FDT
routine allocating buffer.

IRP$W_BOFF

IOCSINITIATE copies this field into the device UCB field UCB$I_SVAPTE before
transferring control to a device driver start-l/0 routine.

I/O postprocessing uses this field to deallocate the system buffer for a buffered-
1/0 transfer or to unlock pages locked for a direct-l/O transfer.

Byte offset into first page of direct-l/O transfer. FDT routines calculate this offset
and write the field.

For buffered-1/0 transfers, FDT routines must write the number of bytes to be
charged to the process in this field because these bytes are being used for a
system buffer.

IOCSINITIATE copies this field into the device UCB field UCB$W_B0FF before
calling a device driver start-l/0 routine.

I/O postprocessing uses IRP$W_B0FF in conjunction with IRP$L_BCNT and
IRP$I_SVAPTE to unlock pages locked for direct I/O. For buffered I/O, I/O
postprocessing adds the value of IRP$W_B0FF to the process byte count quota.

A—21

The I/O Database

Table A-10 (Cont.) Contents of an l/O-Request Packet

Field Name Contents

IRP$I_BCNT

IRP$I_IOST1

IRP$I_IOST2

IRP$L_ABCNT

IRP$I_OBCNT

IRP$I_SEGVBN

IRP$L_DIAGBUF*

IRP$I_SEQNUM*

IRP$L_EXTEND

Byte count of I/O transfer. FDT routines calculate the count value and write the
field. IOC$INITIATE copies the low-order word of this field into UCB$W_BCNT
before calling a device driver's start-l/O routine.

For a buffered-l/O-read function, I/O postprocessing uses IRP$L_BCNT to
determine how many bytes of data to write to the user's buffer.

The field IRP$W_BCNT points to the low-order word of this field to provide
compatibility with previous versions of VAX/VMS.

First I/O status longword. IOC$REQCOM and EXE$FINISHIO(C) write the contents
of RO into this field. The I/O postprocessing routine copies the contents of this
field into the user's IOSB.

EXE$ZEROPARM copies a 0 and EXE$ONEPARM copies pi into this field. This
field is a good place to put a $QIO request argument (pi through p6) or a
computed value.

This field is also called IRP$L_MEDIA

Second I/O status longword. IOC$REQCOM and EXE$FINISHIO(C) write the
contents of R1 into this field. The I/O postprocessing routine copies the contents
of this field into the user's IOSB.

This field is also known as IRP$B_CARCON.

IRP$B_CARCON contains carriage control instructions to the driver. EXE$READ
and EXESWRITE copy the contents of P4 of the user's I/O request into this field.

Accumulated bytes transferred in virtual I/O transfer. Read and written by
IOC$IOPOST after a partial virtual transfer.

The symbol IRP$W_ABCNT points to the low-order word of this field to provide
compatibility with previous versions of VAX/VMS.

Original transfer byte count in a virtual I/O transfer. Read by IOCSIOPOST to
determine whether a virtual transfer is complete, or whether another I/O request
is necessary to transfer the remaining bytes.

The symbol IRP$W_OBCNT points to the low-order word of this field to provide
compatibility with previous versions of VAX/VMS.

Virtual block number of current segment of virtual I/O transfer. Written by
IOCSIOPOST after a partial virtual transfer.

Address of diagnostic buffer in system address space. If the I/O request call
specifies this address, and if a diagnostic buffer length is specified in the DDT,
and if the process has diagnostic privilege, EXESQIO copies the buffer address
into this field.

EXESQIO allocates a diagnostic buffer in system address space to be filled by
IOCSDIAGBUFILL during I/O processing. During I/O postprocessing, the special
kernel-mode-AST routine copies diagnostic data from the system buffer into the
process diagnostic buffer.

I/O transaction sequence number. If an error is logged for the request, this field
contains the universal error log sequence number.

Address of IRPE linked to packet. FDT routines write an extension address to
this field when a device requires more context than the IRP can accommodate.
This field is read by IOCSIOPOST. IRP$V_EXTEND in IRP$W_STS is set if this
extension address is used.

A—22

The I/O Database

Table A-10 (Cont.) Contents of an l/O-Request Packet

Field Name Contents

IRP$L_ARB* Address of access-rights block (ARB). This block is located in the PCB and
contains the process privilege mask and UIC, which are set up as follows:

ARB$Q_PRIV Quadword containing process privilege mask

SPARESL Unused longword

ARBSI_UIC Longword containing process UIC

IRPSI_KEYDESC Address of encryption key.

Figure A-10 l/O-Request Packet (IRP)

IRP$B RMOD*

IRP$B_PRI*

IRP$I_IOQFL

IRP$I_IOQBL

IRP$B TYPE*

IRP$I PID*

IRP$I_AST*

IRP$I_ASTPRM

IRP$I_WIND

IRP$I_UCB*

IRP$B_EFN*

IRP$I_IOSB

IRP$W_STS

IRP$I_SVAPTE

IRP$I BCNT

unused

IRP$I_IOST1

IRRSI_IOST2

IRP$I_ABCNT

IRP$I_OBCNT

IRP$I_SEGVBN

IRP$I_DIAGBUF*

IRPSI_SEQNUM*

IRRSI EXTEND

IRPSI_ARB*

IRPSI_KEYDESC

IRP$W_SIZE*

IRP$W_FUNC

IRP$W_CHAN*

IRP$W_BOFF

IRPSI-BCNT

ZK-1787-84

A—23

The I/O Database

A. 10 l/O-Request-Packet Extension (IRPE)
I/O-request-packet extensions (IRPEs) hold additional I/O-request
information for devices that require more context than the standard IRP
can accommodate. IRP extensions are also used when more than one buffer
(region) must be locked into memory for a direct-I/O operation, or when a
transfer requires a buffer that is larger than 64K. An IRPE provides space for
two buffer regions, each with a 32-bit byte count.

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routines link
the IRPE to the IRP, store the IRPE's address in IRP$L—EXTEND and set
the bit field IRP$V_EXTEND in IRP$W_STS to show that an IRPE exists
for the IRP. The FDT routine initializes the contents of the IRPE. Any fields
within the extension not described in Table A-ll can store driver-dependent
information.

If the IRP extension specifies additional buffer regions, the FDT routine must
use those buffer locking routines that perform coroutine calls back to the
driver if the locking procedure fails (EXE$READLOCKR, EXE$WRITELOCKR,
and EXE$MODIFYLOCKR). If an error occurs during the locking procedure,
the driver must unlock all previously locked regions using MMG$UNLOCK
and deallocate the IRPE before returning to the buffer locking routine.

IOC$IOPOST automatically unlocks the pages in region 1 (if defined) and
region 2 (if defined) for all the IRPEs linked to the IRP undergoing completion

processing. IOC$IOPOST also deallocates all the IRPEs.

The I/O-request-packet extension is illustrated in Figure A-ll and described
in Table A-ll.

Table A-11 Contents of the l/O-Request-Packet Extension

Field Name

IRPE$W_SIZE

IRPE$B__TYPE

IRPE$W_STS

IRPE$I_SVAPTE1

IRPES W_BOFF1

IRPESl_BCNT1

IRPE$L_SVAPTE2

IRPES W_BOFF2

IRPESL _BCNT2

IRPESl_EXTEND

Contents

Size of IRPE. EXESALLOCIRP writes the constant IRP$C_LENGTH to this field.

Type of data structure. EXESALLOCIRP writes the constant DYN$C_IRP to this
field.

IRPE status field. Bits in the status field describe the following condition:

IRPE$V_EXTEND Another IRPE is linked to this one.

System virtual address of page-table entry (PTE) that maps start of region 1. FDT
routines write this field. If the region is not defined, this field is zero.

Byte offset of region 1. FDT routines write this field.

Size in bytes of region 1. FDT routines write this field.

System virtual address of PTE that maps start of region 2. Set by FDT routines.
This field contains a value of zero if region 2 is not defined.

Byte offset of region 2. This field is set by FDT routines.

Size in bytes of region 2. FDT routines write this field.

Address of next IRPE for this IRP, if any.

A—24

The I/O Database

Figure A-11 l/O-Request-Packet Extension (IRPE)

unused

unused

unused IRPE$B_TYPE

unused (28 bytes)

IRPE$W_STS

IRPE$I_SVAPTE1

unused

IRPE$I_BCNT1

IRPE$I_SVAPTE2

unused

IRPE$I—BCNT2

IRPE$W SIZE

unused

IRPE$W BOFF1

IRPE$W BOFF2

unused (16 bytes)

IRPE$I_EXTEND

ZK-1788-84

A. 11 Object-Rights Block (ORB)

The object-rights block (ORB) is a data structure that describes the rights
a process must have in order to access the object with which the ORB is
associated.

The ORB is usually allocated when the device is connected by means of
SYSGEN's CONNECT command. SYSGEN also sets the address of the ORB
in UCB$L_ORB at that time.

When initializing the ORB, device drivers must first zero the ORB, then use
the DPT—STORE macro to initialize the fields in the ORB. The object-rights
block is illustrated in Figure A-12 and described in Table A-12.

A—25

The I/O Database

A.12

Figure A-12 Object-Rights Block (ORB)

ORB$l_ OWNER

ORB$l_ACI_MUTEX

ORB$B_FLAGS ORB$B_TYPE ORB$W_SIZE

reserved (16 bytes) ~

ORB$W_PROT

reserved (14 bytes) ~

ORB$l_ACLFL

ORB$l_ACLBL

~ reserved (20 bytes) ^

L
reserved (20 bytes) ~

ZK-1874-84

Table A-12 Contents of Object-Rights Block

Field

ORBSL _OWNER

ORB$L_ACL _MUTEX

ORB$W_SIZE

ORB$B_TYPE

ORB$B_FLAGS

ORB$W_PROT

ORB$L_ACLFL

ORB$L_ACLBL

Use

UIC of object's owner.

Mutex for object's ACL, used to control access to ACL for reading and writing.

Size in bytes of ORB (ORB$K_LENGTH).

Type of data structure (DYN$C_ORB).

Flags needed for interpreting portions of ORB that can have alternate meanings.
The following fields are defined within ORB$B_FLAGS:

ORB$V_PROT—16 This flag must be set to 1.

ORB$V_ACL—QUEUE This flag represents the existence of an ACL queue.
The driver should initially set this bit to 0.

ORB$V_NOACL This object cannot have an ACL.

Standard SOGW protection.

ACL queue forward link. If ORB$V_ACL_QUEUE is 0, this field should contain 0.

ACL queue backward link. If ORB$V_ACL_QUEUE is 0, this field should contain
0.

Unit-Control Block (UCB)

The unit-control block (UCB) is a variable-length block that describes a single
device unit. Each device unit on the system has its own UCB. The UCB
describes or provides pointers to the device type, controller, driver, device
status, and current I/O activity.

A—26

The I/O Database

During autoconfiguration, the driver-loading procedure creates one UCB
for each device unit in the system. A privileged system user can request
the driver-loading procedure to create UCBs for additional devices with the
SYSGEN command CONNECT as described in Section 14. The procedure
creates UCBs of the length specified in the DPT. The driver uses UCB storage
located beyond the standard UCB fields for device-specific data and temporary
driver storage.

The driver-loading procedure initializes some static UCB fields when it
creates the block. VAX/VMS and device drivers can read and modify all
nonstatic fields of the UCB. The fields UCB that are present for all devices
are illustrated in Figure A-13 and described in Table A-13. The length of the
basic UCB is defined by the symbol UCB$K_LENGTH.

UCBs are variable in length depending on the type of device and whether the
driver performs error-logging for the device. A number of UCB extensions
define symbols employed by the drivers of these devices.

The error-log UCB extension, if present, appears at the end of the standard
UCB. The fields in the UCB error-log extension are illustrated in Figure A-14
and described in Table A-14. The symbol UCB$K_ERL—LENGTH defines
the end of the extended UCB in this case.

Another extension of the UCB is the disk-extension block. This UCB
extension is present for all disk devices. It follows the error-log extension. A
driver that supports a disk or tape must allow space in the UCB for both the
error-log and disk extensions.

For tape devices, the base of the device-dependent UCB must be defined
using UCB$K_LCL _TAPE-LENGTH.

The fields are illustrated in Figure A-15 and described in Table A-15.

Another extension to the UCB is a local-disk extension, used by disks that
are local to a processor as opposed to disks that are in a cluster with the
processor. This UCB extension, if present, appears directly after the UCB's
disk extension. For disk devices, the base of the device-dependent UCB must
be defined using the symbol UCB$K_LCL-DISK-LENGTH.

The fields in the UCB local-disk extension are illustrated in Figure A-16 and
described in Table A-16.

Table A-13 Contents of Unit-Control Block

Field Name Contents

UCB$I_FQFL* Fork queue forward link. The link points to the next entry in the fork queue.
EXE$IOFORK and VAX/VMS resource management routines write this field. The
queue contains addresses of UCBs that contain driver fork process context of
drivers waiting to continue I/O processing.

UCB$L_FQBL* Fork queue backward link. The link points to the previous entry in the fork queue.
EXESIOFORK and VAX/VMS resource management routines write this field.

UCB$W_SIZE* Size of UCB. The DPT of every driver must specify a value for this field. The
driver-loading procedure uses the value to allocate space for a UCB and stores
the value in each UCB created. Extra space beyond the standard bytes in a UCB
(UCB$K_LENGTH) is for device-specific data and temporary storage.

UCB$B_TYPE* Type of data structure. The driver-loading procedure writes the constant
DYN$C_UCB into this field when the procedure creates the UCB.

A—27

The I/O Database

Table A-13 (Cont.) Contents of Unit-Control Block

Field Name Contents

UCB$B_FIPL* Fork interrupt priority level (IPL) at which device driver usually executes. The DPT
of every driver must specify a value for this field. The driver-loading procedure
writes the value in the UCB when the procedure creates the UCB.

VAX/VMS creates a driver fork process that gains control in a driver start-
l/O routine at this IPL. When the driver creates a fork process after an interrupt,
VAX/VMS inserts the fork block into a fork queue based on this IPL. A VAX/VMS
fork dispatcher executing at UCB$B_FIPL dequeues the fork block and restores
control to the suspended driver fork process.

All devices that are attached to one I/O adapter and actively compete for shared
adapter resources and/or a controller data channel must specify the same value
for the fork IPL field.

UCBSI_FPC Fork process driver PC address. When a VAX/VMS routine saves driver fork
context in order to suspend driver execution, the routine stores the address of
the next driver instruction to be executed in this field. A VAX/VMS routine that
reactivates a suspended driver transfers control to the saved PC address.

VAX/VMS routines that suspend driver processing include EXE$IOFORK,
lOCSREQxCHANy, IOC$REQMAPREG, IOCSREQDATAP, and IOC$WFIKPCH.
Routines that reactivate suspended drivers include IOCSRELCHAN,
IOCSRELMAPREG, IOCSRELDATAP, EXESFORKDSPTH, and driver interrupt¬
servicing routines.

When a driver interrupt-servicing routine determines that a device is expecting
an interrupt, the routine restores control to the saved PC address in the device's
UCB.

UCB$I_FR3 Value of R3 at time that VAX/VMS routine suspends driver fork process. The
value of R3 is restored just before a suspended driver regains control.

UCBSI_FR4 Value of R4 at time that VAX/VMS routine suspends driver fork process. The
value of R4 is restored just before a suspended driver regains control.

UCB$W_BUFQUO*

UCB$W_SRCADDR*

UCB$I_ORB*

Buffered-I/O quota if UCB represents mailbox.

Local connection number for DECnet.

Address of ORB associated with UCB. SYSGEN places the address in this field
when you use SYSGEN's CONNECT command.

UCBSL _lockid*

UCBSI_CRB*

ID of lock on device.

Address of primary CRB associated with the device. The driver-loading procedure
writes this field after it creates the associated CRB. Driver fork processes read
this field to gain access to device registers. VAX/VMS routines use UCB$L_CRB
to locate interrupt-dispatching code and initialization-routine addresses.

UCBSL _DDB* Address of DDB associated with device. The driver-loading procedure writes
this field when the procedure creates the associated UCB. VAX/VMS routines
generally read the DDB field in order to locate device driver entry points, the
address of a driver FDT, or the ACP associated with a given device.

UCBSL _PID* Process identification code of process that has allocated device. Written by the
$ALLOC system service.

UCBSI_LINK* Address of next UCB in chain of UCBs attached to a single controller and
associated with a DDB. The driver-loading procedure writes this field when the
procedure adds the next UCB. Any VAX/VMS routines that examine the status of
all devices on the system read this field. Such routines include EXESTIMEOUT,
IOC$SEARCHDEV, and power failure recovery routines.

A—28

The I/O Database

Table A-13 (Cont.) Contents of Unit-Control Block

Field Name Contents

UCB$L_VCB* Address of volume-control block (VCB) that describes volume mounted on device.
This field is written by the device's ACP and read by EXE$QIOACPPKT and ACPs.

UCB$L_DEVCHAR First longword of device characteristics bits. The DPT of every driver should
specify symbolic constant values (defined by the SDEVDEF macro) for this field.
The driver-loading procedure writes the field when the procedure creates the
UCB. The $QIO system service reads the field to determine whether a device is
spooled, file-structured, shared, has a volume mounted, and so on.

The system defines the following device characteristics:

DEV$V_REC Record-oriented device

DEV$V_CCL Carriage control device

DEV$V_TRM

DEV$V_DIR

DEV$V_SDI

DEV$V_SQD

DEV$V_SPL

DEV$V_OPR

DEV$V_RCT

DEV$V_NET

Terminal device

Directory-structured device

Single directory-structured device

Sequential block-oriented device (magnetic tape, for example)

Device spooled

Operator device

Device contains RCT

Network device

DEV$V_FOD

DEVSV-DUA

DEV$V_SHR

File-oriented device (disk and magnetic tape, for example)

Dual-ported device

Shareable device (used by more than one program
simultaneously)

DEV$V_GEN

DEV$V_AVL

DEV$V_MNT

DEV$V_MBX

DEV$V_DMT

DEV$V_ELG

DEV$V_ALL

DEV$V_FOR

DEV$V_SWL

DEV$V_IDV

DEV$V_ODV

DEVSV—RND

DEV$V_RTM

DEV$V_RCK

DEV$V_WCK

Generic device

Device available for use

Device mounted

Mailbox device

Device marked for dismount

Error logging enabled

Device allocated

Device mounted as foreign (not file-structured)

Device software write-locked

Device capable of providing input

Device capable of providing output

Device allowing random access

Real-time device

Read-checking enabled

Write-checking enabled

A—29

The I/O Database

Table A-13 (Cont.) Contents of Unit-Control Block

Field Name Contents

UCB$B_DEVCHAR2

UCB$B_DEVCLASS

UCB$B_DEVTYPE

Second longword of device characteristics. The DPT of every driver should
specify symbolic constant values (defined by the $DEVDEF macro) for this field.
The driver-loading procedure writes the field when the procedure creates the UCB.

The system defines the following device characteristics:

DEV$V_CLU Device available cluster-wide

DEV$V_DET Detached terminal

DEV$V_RTT Remote-terminal UCB extension

DEV$V_CDP Dual-path device with two UCBs

DEV$V_2P Two paths known to device

DEV$V_MSCP

DEV$V_SSM

DEV$V_SRV

Disk or tape accessed using MSCP

Shadow set member

Served by MSCP server

DEV$V_RED Redirected terminal

DEV$V_NNM Name of device (up to 16 characters total) consisting of
prefix of node name and dollar sign ($) and string (up to
eight characters) consisting of device designation, controller
designation, and largest possible unit number

Device class. The DPT of every driver should specify a symbolic constant (defined
by the SDCDEF macro) for this field. The driver-loading procedure writes this field
when the UCB is created.

Drivers with set mode and device characteristics functions can rewrite the value
in this field with data supplied in the characteristics buffer, the address of which
is passed in the I/O request.

The VAX/VMS system defines the following device classes:

DC$_DISK

DC$_TAPE

DC$_SCOM

DC$_CARD

DC$_TERM

DC$_LP

DC$_REALTIME

DCS—MAILBOX

Disk device

Tape device

Synchronous communications device

Card reader device

Terminal device

Line printer device

Real time device

Mailbox device

Note that the definition of a device as a real-time device is somewhat subjective;
it implies no special treatment by VAX/VMS.

Device type. The DPT of every driver should specify a symbolic constant (defined
by the SDCDEF macro) for this field. The driver-loading procedure writes the field
when the procedure creates the UCB.

Drivers with set mode and device characteristics functions can rewrite the value
in this field with data supplied in the characteristics buffer, the address of which
is passed in the I/O request.

A—30

The I/O Database

Table A-13 (Cont.) Contents of Unit-Control Block

Field Name

UCB$W_DEVBUFSIZ

UCB$L_DEVDEPEND

UCB$L_DEVDEPND2

UCB$I_IOQFL*

UCB$I_IOQBL*

UCB$W_UNIT*

UCB$W_CHARGE*

UCBSl_IRP

UCB$W_REFC*

UCB$B_DIPL

UCB$B_AMOD*

UCBSL _AMB*

Contents

Default buffer size. The DPT can specify a value for this field if relevant. The
driver-loading procedure writes the field when the procedure creates the UCB.

Drivers with set mode and device characteristics functions can rewrite the value
in this field with data supplied in the characteristics buffer, the address of which
is passed in the I/O request. This field is used by RMS for record I/O on nonfile
devices.

Contains device-descriptive data that only device driver can interpret. The DPT
can specify a value for this field. The driver-loading procedure writes this field
when the procedure creates the UCB.

Drivers with set mode and device characteristics functions can rewrite the value
in this field with data supplied in the characteristics buffer, the address of which
is passed in the I/O request.

Second longword for device-dependent status. This field is an extension of
UCB$L_DEVDEPEND.

I/O queue listhead forward link. The queue contains the addresses of IRPs
waiting for processing on a device. EXESINSERTIRP inserts IRPs into the pending
I/O queue when a device is busy. IOCSREQCOM dequeues IRPs when the device
is idle.

The queue is a priority queue that has the highest priority IRPs at the front of the
queue. Priority is determined by the base priority of the requesting process. IRPs
with the same priority are processed first-in/first-out.

I/O queue listhead backward link. EXESINSERTIRP and IOCSREQCOM modify the
pending I/O queue.

Number of physical device unit. Stored as a binary value. The driver-loading
procedure writes a value into this field when the UCB is created. Drivers for
multiunit controllers read this field during unit initialization to identify a unit to the
controller.

Mailbox byte count quota charge, if the device is a mailbox.

Address of IRP currently being processed on device unit by driver fork process.
IOCSINITIATE writes the address of an IRP into this field before the routine
creates a driver fork process to handle an I/O request. From this field, a driver
fork process obtains the address of the IRP being processed.

The value contained in this field is valid if the UCB$V_BSY bit in UCB$L_STS is
set.

Reference count of processes that currently have process I/O channels assigned
to device. Incremented by the $ASSIGN and $ALLOC system services.
Decremented by the SDASSGN and SDALLOC system services.

Device interrupt priority level at which device requests hardware interrupts.
The DPT of every driver must specify a value for this field. The driver-loading
procedure writes the field when the procedure creates the UCB.

Some device drivers raise IPL to this value before reading or writing device
registers.

Access mode at which allocation occurred, if device is allocated. Written by the
SALLOC and SDALLOC system services.

Associated mailbox UCB pointer. A spooled device uses this field for the address
of its associated device. Devices that are nonshareable and not file-oriented can
use this field for the address of an associated mailbox.

A—31

The I/O Database

Table A-13 (Cont.) Contents of Unit-Control Block

Field Name Contents

UCB$I_STS Device unit status (formerly UCB$L_STS). Written by drivers, IOCSREQCOM,
IOCSCANCELIO, IOC$INITIATE, IOC$WFIKPCH, IOCSWFIRLCH, EXE$INSIOQ, and
EXESTIMEOUT. This field is read by drivers, the $QIO system service routines,
IOCSREQCOM, IOCSINITIATE, and EXESTIMEOUT.

This longword includes

UCB$V_TIM

UCB$V_JNT

UCB$V_ERLOGIP

UCB$V_CANCEL

UCB$V_ONLINE

UCB$V_POWER

UCB$V_TIMOUT

UCB$V_INTTYPE

UCB$V_BSY

UCB$V_MOUNTING

UCB$V_DEADMO

UCB$V_VALID

the following bits:

Timeout enabled.

Interrupts expected.

Error log in progress.

Cancel I/O on unit.

Device is on line.

Power has failed while unit was busy.

Unit is timed out.

Receiver interrupt.

Unit is busy.

Device is being mounted.

Deallocate device at dismount.

Software believes volume is valid.

UCB$V_UNLOAD

UCB$V_TEMPLATE

UCB$V_MNTVERIP

UCB$V_WRONGVOL

UCB$V_DELETEUCB

UCB$V_LCL _VALID

UCB$V_SUPMVMSG

UCB$V_MNTVERPND

Unload volume at dismount.

Template UCB from which other UCBs for this device
are made. The SASSIGN system service checks this bit
in the requested UCB and, if the bit is set, creates a UCB
from the template. The new UCB is assigned instead.

Mount verification in progress.

Volume name does not match name in the VCB.

Delete this UCB when the value in UCB$W_REFC
becomes zero.

The volume on this device is valid on the local node.

Suppress mount-verification messages if they indicate
success.

Mount verification is pending on the device and the
device is busy.

A—32

The I/O Database

Table A-13 (Cont.) Contents of Unit-Control Block

Field Name Contents

UCB$W_DEVSTS Device-dependent status. Read and written by device drivers.

The system defines the following status bits:

UCB$V_JOB Job-controller has been notified.

UCB$V_TEMPL_BSY Template UCB is busy.

UCB$V_PRMMBX Device is a permanent mailbox.

UCB$V_DELMBX Mailbox is marked for deletion.

UCB$V_SHMMBS Device is shared-memory mailbox.

Disk drivers use three bits in UCB$W_DEVSTS as follows:

UCB$V_ECC ECC correction made.

UCB$W_QLEN

UCB$L _DUETIM*

UCB$V_DIAGBUF Diagnostic buffer is specified.

UCB$V_NOCNVRT No logical block number to media address conversion.

Length of queue of IRPs to which UCBSl_IOQFL points.

Due time for I/O completion. Stored as the low-order 32-bit absolute time (time
in seconds since the operating system was booted) at which the device will
timeout. IOCSWFIKPCH and IOCSWFIRLCH write this value when they suspend a
driver to wait for an interrupt or timeout.

EXESTIMEOUT examines this field in each UCB in the I/O database once per
second. If the timeout has occurred and timeouts are enabled for the device,
EXESTIMEOUT calls the device driver timeout handler.

UCB$L _OPCNT* Count of operations completed on device unit since VAX/VMS booted.
IOCSREQCOM writes this field every time the routine inserts an IRP into the
I/O postprocessing queue.

UCBSl_SVPN* Index to virtual address of system PTE permanently allocated to device by driver¬
loading procedure. The system virtual address of the page described by this
index can be calculated by the formula:

(index * 20016) + 8000000016

UCBSl_SVAPTE

If a DPT specifies DPT$M_SVP in the flags argument to the DPTAB macro, the
driver-loading procedure allocates a page of nonpaged system memory to the
device. The procedure writes the system PTE's index into UCBSl_SVPN when
the procedure creates the UCB.

This field is used for ECC error correction by disk drivers.

For direct-l/O transfer, virtual address of system PTE for first page to be used in
transfer; for buffered-l/O transfer, address of system buffer used in transfer.

IOCSINITIATE writes this field from IRP$L_SVAPTE before calling a driver
start-l/O routine. Drivers read this value to compute the starting address of a
transfer.

UCB$W_BOFF For direct-l/O transfer, byte offset in first page of transfer buffer; for buffered-l/O
transfer, number of bytes charged to process for transfer.

IOCSINITIATE copies this field from the IRP. Drivers read the field in calculating
the starting address of a DMA transfer. If only part of a DMA transfer succeeds,
the driver adjusts the value in this field to be the byte offset in the first page of
the data that was not transferred.

A—33

The I/O Database

Table A-13 (Cont.) Contents of Unit-Control Block

Field Name Contents

UCB$W_BCNT Count of bytes in I/O transfer. IOCSINITIATE copies this field from the IRP.
Drivers read this field to determine how many bytes to transfer in an I/O
operation.

UCB$B_ERTCNT Error retry count of current I/O transfer. The driver sets this field to the maximum
retry count each time it begins I/O processing. Before each retry, the driver
decreases the value in this field. If error-logging is occurring, IOCSREQCOM
copies the value into the error message buffer.

UCB$B_ERTMAX Maximum error retry count allowed for single I/O transfer. The DPT of some
drivers specifies a value for this field. The driver-loading procedure writes the field
when the procedure creates the UCB. If error-logging is occurring, IOC$REQCOM
copies the value into the error message buffer.

UCB$W_ERRCNT Number of errors that have occurred on device since VAX/VMS booted. The
driver-loading procedure initializes the field to 0 when the procedure creates the
UCB. ERL$DEVICERR and ERL$DEVICTMO increment the value in the field and
copy the value into an error message buffer. The DCL command SHOW DEVICE
displays in its error count column the value contained in this field.

UCB$I_PDT* Address of port-descriptor table (PDT). This field is reserved for VAX/VMS port
drivers.

UCB$L_DDT* Address of DDT for unit. The driver load procedure writes the contents of
DDB$L_DDT for the device controller to this field when it creates the UCB.

A—34

The I/O Database

Figure A-13 Unit-Control Block (UCB)

UCB$I_FQFL*

UCB$I_FQBL*

UCB$B_FIPL* UCB$B_TYPE* UCB$W_SIZE*

UCB$I_FPC

UCB$I_FR3

UCB$I_FR4

UCB$W_SRCADDR* UCB$W_BUFQUO*

UCBSI_ORB*

UCB$I_LOCKID*

UCB$I_CRB*

UCBSI_DDB*

UCBSI_PID*

UCBSI_LINK*

UCBSI_VCB*

UCBSI_DEVCHAR

UCBSI_DEVCHAR2

UCB$W_DEVBUFSIZ UCBSB_DEVTYPE UCBSB_DEVCLASS

UCBSI_DEVDEPEND

UCBSI_DEVDEPND2

UCBSI_IOQFL*

UCBSI_IOQBL*

UCBSW_CHARGE* UCB$W_UNIT *

UCBSI_IRP

UCBSB_AMOD* UCBSB_DIPL UCB$W_REFC*

UCBSI_AMB*

UCBSI_STS

UCBSW QLEN UCB$W_DEVSTS

UCBSI DUETIM*

UCBSI_OPCNT *

UCBSI SVPN*

UCBSI_SVAPTE

UCBSW BCNT

UCBSW ERRCNT

UCBSW. „BOFF

UCBSB_ERTMAX UCBSB_ERTCNT

UCBSI_PDT*

UCBSI_DDT*

reserved

ZK-1789-84

A—35

The I/O Database

Figure A-14 UCB Error-Log Extension

UCB$B_CEX UCB$B_FEX UCB$B_SPR UCB$B_SLAVE*

UCB$I_EMB*

UCB$W_FUNC unused

UCB$I_DPC

ZK-1790-84

Table A-14 UCB Error-Log Extension

Field Name Contents

UCB$B_SLAVE*

UCB$B_SPR

UCB$B_FEX

UCB$B_CEX

UCB$L_EMB*

UCB$W_FUNC

UCB$I_DPC

Unit number of slave controller.

Spare byte. This field is reserved for driver use. MASSBUS adapter drivers use this
field to store a fixed offset to the MASSBUS adapter registers for the unit.

Device-specific field. This field is reserved for driver use.

Device-specific field. This field is reserved for driver use.

Address of error message buffer. If error logging is enabled and a device/controller
error or timeout occurs, the driver calls ERL$DEVICERR or ERL$DEVICTMO to allocate
an error message buffer and copy the buffer address into this field. IOC$REQCOM
writes final device status, error counters, and I/O request status into the buffer
specified by this field.

l/O-function modifiers. This field is read and written by drivers that log errors.

Device-specific field. This field is reserved for driver use.

Figure A-15 UCB Disk Extension

reserved UCB$B_ONLCNT UCB$W_DIRSEQ

UCB$I_MAXBLOCK

UCB$I_MAXBCNT

UCB$L_ _DCCB

ZK-1791-84

A—36

The I/O Database

Table A-15 UCB Disk Extension

Field Name Contents

UCB$W_DIRSEQ Directory sequence number. If the high-order bit of this word,
UCB$V_AST_ARMED, is set, it indicates that the requesting process is blocking
ASTs.

UCBSB—ONLCNT Number of times device has been placed 1 on line since VAX/VMS booted.

UCB$I_MAXBLOCK Maximum number of logical blocks on random-access device. This field is written
by a disk driver during unit initialization and power recovery. This field is also
known to tape drivers as UCB$L_RECORD and, as such, contains the number of
records between the beginning of the tape and the current position of the tape.

UCB$L_DCCB Pointer to cache-control block.

Figure A-16 UCB Local Disk Extension

UCB$I_ .MEDIA

UCB$L _BCR

UCB$W_EC2 UCB$W_EC1

UCB$B_OFFRTC UCB$B_OFFNDX UCB$W_OFFSET

UCB$I_1 DX_BUF

UCB$I_DX_BFPNT

UCB$I_DX_RXDB

unused UCB$B_DX_SCTCNT UCB$W_DX_BCR

ZK-1792-84

Table A-16 UCB Local Disk Extension

Field Name Contents

UCB$L—MEDIA Media address.

Byte-count register. Some disk drivers use this field as an internal count of the
number of bytes left to be transferred in an I/O request. The symbol
UCB$W_BCR points to the low-order word of this field.

ECC position register. This field records the starting bit number of an error
burst. Disk driver register-dumping routines copy the contents of this field into an
error-logging or diagnostic buffer.

The VAX/VMS correction routine IOC$APPLYECC reads the contents of this field
to locate the beginning of an error burst in a disk block.

ECC position register. Records the exclusive OR correction pattern. Disk driver
register dump routines copy the contents of this field into an error-logging or
diagnostic buffer.

The VAX/VMS ECC correction routine IOC$APPLYECC reads the contents of this
field to correct disk data.

Current offset register contents.

Current offset table index. When a disk driver transfer ends in an error, the disk
driver can retry the error a number of times with different offsets of the disk head
from the centerline. This field is an index into a driver table of offset positions.

UCB$L_BCR

UCB$W_EC1

UCB$W_EC2

UCB$W_OFFSET

UCB$B_OFFNDX

A—37

The I/O Database

Table A-16 (Cont.) UCB Local Disk Extension

Field Name Contents

UCB$B_OFFRT C Current offset retry count. This field records the number of times to try a
particular offset setting in a disk transfer retry.

UCB$I_DX _BUF

UCB$L_DX_BFPNT

UCB$L_DX_RXDB

UCB$W_BCR

UCB$B_DX_SCTCNT

Address of sector buffer (used by floppy-disk drivers).

Pointer to current sector (used by floppy-disk drivers).

Address of saved receiver-data buffer (used by floppy-disk drivers).

Current floppy byte count (used by floppy-disk drivers).

Current sector byte count (used by floppy-disk drivers).

A—38

B VAX/VMS Macros Invoked by Drivers

This chapter describes the VAX/VMS macros that drivers can use. Optional
arguments are enclosed in brackets. If an argument has a default value, that
value is shown, separated from the argument name by an equal sign (=).

B—1

VAX/VMS Macros Invoked by Drivers
CASE

The CASE macro generates a CASE instruction and its associated table.

CAS E src, displist [, type= W] [, limit=0] -
[,nmode=S%]

src

Source of the index value to be used with the CASE instruction.

displist

List of destinations to which control is to be dispatched, depending on the
value of the index.

[type=W]

Data type of src (B, W, or L).

[limit=0]

Lower limit of the value of src.

[nmode=S/'#]

Addressing mode used to reference the case-table entries; the default, short-
literal mode, is good for up to 63 entries.

B—2

VAX/VMS Macros Invoked by Drivers
CPUDISP

CPUDISP
The CPUDISP macro provides a means for indirectly distinguishing between
I/O bus structures based on the type of the CPU that currently uses that bus
structure, and transferring control to a specified destination depending on
the CPU-type. CPUDISP builds a case table, first forming the appropriate
symbolic constants (PR$_SID_TYPE;m:), where xxx is the CPU-type, as
displacement values and branching to a transfer address according to the
contents of global symbol EXE$GB_CPUTYPE.

CPUDISP addrlist ,[environ=VMS] ,continue=NO

addrlist
A list containing one or more specifications of the following format:

< CPU-type, destination >

The CPUDISP macro accepts only the following values for the CPU-type:
8NN (for VAX 8800), 790 (for VAX 8600 and VAX 8650), 8SS (for VAX
8200), 780, 750, 730, UV1, and UV2. The parameter destination contains
the address to which the code generated by the invocation of the CPUDISP
macro passes control to continue with CPU-specific processing.

[environ=VMS]
The environment in which the CPUDISP macro has been invoked. There is
no need for driver code to alter the default value of this argument.

continue=NO
Specifies whether execution should continue at the line immediately after the
CPUDISP macro if the value at EXE$GB_CPUTYPE does not correspond to
any of the values specified as the CPU-type in the addrlist argument. A fatal
bugcheck of UNSUPRTCPU occurs if the dispatching code does not find the
executing processor identified in the addrlist and the value of continue is
NO.

Caution: CPUDISP exists as a temporary means of dispatching to code conditional
to the type of the executing processor. Although, it currently functions to
distinguish between the I/O bus configurations used by each processor, it
most likely will not continue to do so as processors migrate to the various
I/O bus configurations.

B—3

VAX/VMS Macros Invoked by Drivers
DDTAB

DDTAB
The DDTAB macro generates a driver-dispatch table (DDT) labeled
devnam$DDT.

DDTAB devnam ,[start=IOC$RETURN] -
,[unsolic=IOC$RETURN] -
,functb [, canceHOC$RETURN] -
[, regdmp=IOC$RETURN] -
[, diagbf=0] [, erlgbf=0] -
[, unitinit=IOC$RETURN] -
[,altstart=IOC$RETURN] -
[,mntveHOC$MNTVER] -
[, cloneducb=IOC$RETURN]

devnam

Generic name of the device.

[start=IOC$RETURN]

Address of start-I/O routine.

[unsolic=IOC$RETURN]

Address of unsolicited-interrupt-servicing routine.

functb

Address of FDT.

[cancel=IOC$RETURN]

Address of cancel-I/O routine.

[regdmp=IOC$RETURN]

Address of register-dumping routine.

[diagbf=0]

Length in bytes of the diagnostic buffer.

[erlgbf=0]
Length in bytes of the error-logging buffer.

[unitinit=IOC$RETURN]
Address of unit-initialization routine.

[altstart=IOC$RETURN]

Address of alternate start-I/O routine.

[mntver=IOC$MNTVER]

Address of mount-verification routine; the default is suitable for all single¬
stream disk drives.

[cloneducb=IOC$RETURN]

Address of routine called when a UCB is cloned by the $ASSIGN system
service.

B-A

VAX/VMS Macros Invoked by Drivers
$DEF

$DEF
Drivers use the $DEF macro to define a data-structure field. $DEF can only
be used within the scope of a $DEFINI macro.

$ D E F s ym [, alloc] [,siz]

sym
Name of the symbol by which the field is to be accessed.

[alloc]
Block-storage-allocation directives, one of the following: .BLKB, .BLKW,
.BLKL, .BLKQ, or .BLKO

You can define a second symbolic name for the same field by using the $DEF
macro a second time immediately following the first definition, leaving this
argument blank in the second invocation.

[siz]
Number of block-storage units to allocate.

B—5

VAX/VMS Macros Invoked by Drivers
$DEFEND

$DEFEND
The $DEFEND macro ends the scope of the $DEFINI macro, thereby ending
the definition of fields within the data structure.

$DEFEND struc
struc

Name of the structure that is being defined.

B—6

VAX/VMS Macros Invoked by Drivers
$DEFINI

$DEFINI
The $DEFINI macro initiates the definition of a data structure. The $DEF
macro is used to define fields within this structure, and the $DEFEND macro
ends the definition of this structure.

$DEFINI struc [,gbhLOCAL] [,dot=0]
struc
Name of the data structure to be defined.

[gbl=LOCAL]
Specifies whether the symbols defined for this data structure are to be local or
global symbols. The default is to make them local.

To make the symbols' definitions global, you must specify GLOBAL for the
value of the gbl argument.

[dot=0]
Offset from the beginning of the data structure of the first field to be defined.
The default is to make the offset zero.

B—7

VAX/VMS Macros Invoked by Drivers
DPTAB

DPTAB
The DPTAB macro generates a driver-prologue table (DPT) in a program

section called $$$ 105-PROLOGUE.

DPTAB end,[adapter ,[flags=0] ,[ucbsize] -
f [unload] ,[maxunits=8] ,[defunits= 1]-
,[deliver],[vector] ,name

end
Address of end of the driver.

adapter
Type of adapter (UBA, MBA, DR, or NULL).

[flags=0]
Flags used in loading the driver. The following flags are used:

DPT$M_SVP Indicates that the device requires a permanently
allocated system page. This flag causes the driver¬
loading procedure to allocate a system page-table entry
(PTE) for the device permanently.

The system's driver-loading procedure writes the
virtual address of the system PTE into the system-page
field of the UCB (UCB$L_SVPN) during creation of the
UCB. Disk drivers use this page table entry during ECC
error correction.

DPT$M_NOUNLOAD Indicates that the driver cannot be reloaded. A driver
with this bit set can be unloaded only by bootstrapping
the system.

ucbsize
Size in bytes of UCB required by each device that this driver will drive;
this field allows drivers to use extensions to the UCB for storage of device¬
dependent data that describes an I/O operation.

The amount that the UCB is extended varies for each type of driver. Driver
routines and VAX/VMS ECC routines interpret fields in the extended part of
the UCB.

[unload]
Address of routine in the driver that SYSGEN is to call before unloading the
driver and loading a new version of the driver. SYSGEN calls this routine
when you use the RELOAD command.

[maxunits=8]
Maximum number of device units that can be connected to the controller.
This field affects the size of the IDB created by SYSGEN's CONNECT
command.

If this field is omitted, the default is 8 units. You can override the contents of
this field by using the /MAXUNITS qualifier with the CONNECT command.

B—8

VAX/VMS Macros Invoked by Drivers
DPTAB

[defunits=1]
Maximum number of UCBs to be created by SYSGEN's AUTOCONFIGURE
command (one for each device unit to be configured). The unit numbers
assigned are zero through defunits-1.

If the deliver argument is present, it names a routine that the
AUTOCONFIGURE command calls to determine whether to create each
unit's data structures automatically.

[deliver]
Address of routine in the driver that determines whether a unit should be
configured automatically, the unit-delivery routine.

If this argument is omitted, the AUTOCONFIGURE command creates the
number of units specified by the defunits argument.

[vector]
Reserved to DIGITAL; address of a driver-specific transfer vector.

name
Name of the device driver.

B—9

VAX/VMS Macros Invoked by Drivers
DPT-STORE

DPT-STORE
A driver uses the DPT_STORE macro to instruct the system's driver-loading
procedure to store values in a table or data structure.

DPT-STORE type ,offset ,oper ,exp [,pos][,size]
type
Type of control block into which the data is to be stored (DDB, UCB, ORB,
CRB, or IDB), or a table marker (INIT, REINIT, or END). If this argument is a
table marker, no other argument is allowed and the table affected is the DPT.

offset
Offset from the beginning of the data structure at which the data is to be
stored. This cannot be more than 255 bytes.

oper
Type of storage operation, one of the following:

Type Meaning

B Byte

W Word

L Longword

D Address relative to the beginning of the driver

V Bit field

If an at-sign character (@) precedes the oper argument, then the exp
argument describes the address of the data with which to initialize the
field.

exp
Value with which to initialize the field; if the value specified for the oper
argument is preceded by an at-sign character (@), then address at which to
find the value with which to initialize the field.

[pos]
Position of the bit affected; used only if oper=V.

[size]
Size of the bit-field affected; used only if oper=V.

B-10

VAX/VMS Macros Invoked by Drivers
DSBINT

DSBIIMT
The DSBINT macro disables interrupts occurring at or below the specified IPL
and saves the current IPL in the specified longword.

DSBINT [iph31][, dst=-(SP)]
[ipl=31]
IPL at which to block interrupts. If no IPL is specified, the default is IPL 31,
which blocks all interrupts.

[dst=—(SP)]
Location in which to save the current IPL. If no destination is specified, the
current IPL is pushed on the stack.

B—11

VAX/VMS Macros Invoked by Drivers
ENBINT

ENBINT
The ENBINT macro enables interrupts at a specified IPL or at the IPL stored
on the stack.

ENBINT [src=(SP)+]

[src=(SP)+]
Address of IPL at which to enable interrupts. If no src is specified, the IPL is
popped from the top of the current stack.

B-12

VAX/VMS Macros Invoked by Drivers
$EQULST

$EQULST
The $EQULST macro defines a list of symbols and assigns values to the
symbols.

$EQULST prefix ,[gbl=LOCAL] ,init ,[incr= 1] ,list
prefix
Prefix to be used in forming the names of the symbols, and VALUE is the
value assigned to the symbol.

[gbl=LOCAL]
Scope of the definition of the symbol, either LOCAL, the default, or GLOBAL.

init
Value to be assigned to the first symbol in the list.

[incr=1]
Increment by which to increase the value of each succeeding symbol in the
list. The default is 1.

list
List of symbols to be defined. Each element in the list can have one of the
following forms:

< symbol > — where symbol is the string appended to the prefix,
forming the name of the symbol; the value of the symbol is assigned
based on the values of init and incr.
<symbol,value> — where symbol is the string that is appended to the

prefix, forming the name of the symbol, and value specifies the value of
the symbol.

B—13

VAX/VMS Macros Invoked by Drivers
FORK

FORK
Drivers use the FORK macro to create, by calling EXE$FORK, a fork process,
in which context the code that follows the macro invocation executes. Unlike
the IOFORK macro, the FORK macro does not clear the UCB$V_TIM bit in
the field UCB$L_STS.

FORK
When the FORK macro is invoked, the following registers must contain the
values listed below:

Register Contents

R3 Contents of fork's R3

R4 Contents of fork's R4

R5 Address of fork block

(SP) Address of caller's caller

B—14

VAX/VMS Macros Invoked by Drivers
FUNCTAB

FUNCTAB
The FUNCTAB macro generates an entry for a function-decision table (FDT).

FUNCTAB [action], codes
[action]
Routine to call when the function code specified in the I/O request matches
the codes argument to the FUNCTAB macro; if this is to be the first or second
entry in the table, this argument must not be supplied.

codes
Code or codes for which the routine specified in the action argument to the
FUNCTAB macro is to be called; the codes are specified as the I/O-function
codes of the form lO$—XXX, but without the IO$ prefix.

B-15

VAX/VMS Macros Invoked by Drivers
IFNORD

IFNORD
The IFNORD macro uses the PROBER instruction to check the accessibility
of the specified range of memory by checking the accessibility of the first and
last bytes in that range.

If both of the specified bytes can be read in the specified access mode, the
IFNORD macro dispatches control to the destination specified in the dest
argument. Otherwise, IFNORD passes control to the next in-line instruction.

IFNORD siz ,adr ,dest [,mode=#0]
siz
Offset of the last byte to check from the first byte to check, a number less
than or equal to 512.

adr
Address of first byte to check.

dest
Address to which IFNORD passes control if both bytes can be read.

[mode=#0]
Mode in which access is to be checked; zero, the default, causes the check to
be performed in the mode contained in the previous-mode field of the current
PSL.

B—16

VAX/VMS Macros Invoked by Drivers
IFNOWRT

IFNOWRT
The IFNOWRT macro uses the PROBEW instruction to check the accessibility
of the specified range of memory by checking the accessibility of the first and
last bytes in that range.

If both of the specified bytes can be written in the specified access mode,
IFNOWRT passes control to the address specified in the dest argument.
Otherwise, it passes control to the next in-line instruction.

IFNOWRT siz ,adr ,dest [,mode=#0]
siz
Offset from the first byte to check to the second byte to check; this number
must be less than or equal to 512.

adr
Address of first byte to check.

dest
Address to which IFNOWRT passes control if both bytes can be written in the
specified access mode.

[mode=#0]
Mode in which to check access to the bytes; zero, the default, causes the
check to be made in the mode contained in the previous-mode field of the
current PSL.

B-17

VAX/VMS Macros Invoked by Drivers
IFRD

IFRD
The IFRD macro checks the accessibility of the specified range of memory by
checking the accessibility of the first and last bytes in that range.

If either byte cannot be read in the specified access mode, the IFRD macro
passes control to the specified destination. Otherwise it passes control to the
next in-line instruction.

IFRD siz ,adr, dest [,mode=#0]
siz
Offset from the first byte to check of the second byte to check; only the first
and last bytes in the range are checked.

adr
Address of first byte to check.

dest
Address to which IFRD passes control if either byte cannot be read in the
specified access mode.

[mode=#0]
Mode in which to check read access; zero, the default, causes the check to be
made in the mode contained in the previous-mode field of the current PSL.

B—18

VAX/VMS Macros Invoked by Drivers
IFWRT

IFWRT
The IFWRT macro checks the accessibility of the specified range of memory
by checking the accessibility of the first and last bytes in that range.

If either byte cannot be written in the specified access mode, the IFWRT
macro passes control to destination. Otherwise, it passes control to the next
in-line instruction.

IFWRT siz ,adr, dest [,mode=#0]
siz
Offset from the first byte to check of the second byte to check; only the first
and last bytes in the specified range are checked.

adr
Address of first byte to check.

dest
Address to which IFWRT passes control if either byte cannot be written in the
specified access mode.

mode=#0
Mode in which access is to be checked; zero, the default, causes the check to
be performed in the mode contained in the previous-mode field of the current
PSL.

B—19

VAX/VMS Macros Invoked by Drivers
IOFORK

IOFORK
The IOFORK macro calls EXE$IOFORK to create a fork process for a device
driver. IOFORK clears the bit UCB$V_TIM in the field UCB$L_STS, whereas
the FORK macro does not.

IOFORK
When the IOFORK macro is invoked, the following registers must contain the
values listed below:

Register Contents

R3 Contents of fork's R3

R4 Contents of fork's R4

R5 Address of UCB that will be used as a fork block for the fork
process to be created

(SP) Address of caller's caller

B—20

VAX/VMS Macros Invoked by Drivers
LOADMBA

LOADMBA
The LOADMBA macro calls IOC$LOADMBAMAP to load MASSBUS
mapping registers. The driver must own the MASSBUS adapter, and thus
the mapping registers, before it can invoke LOADMBA.

LOADMBA
When the LOADMBA macro is invoked, the following registers must contain
the values listed below:

Register Contents

R4 Address of MBA's CSR

R5 Address of UCB

Note that the LOADMBA macro destroys the contents of registers RO
through R2.

B—21

VAX/VMS Macros Invoked by Drivers
LOADUBA

LOADUBA
The LOADUBA macro calls IOC$LOADUBAMAP to load the UNIBUS
adapter's registers. The registers must already be allocated before the
LOADUBA macro can be invoked.

LOADUBA
When the LOADUBA macro is invoked, register R5 must contain the address
of the UCB. LOADUBA destroys the contents of registers RO through R2.

B—22

VAX/VMS Macros Invoked by Drivers
PURDPR

PURDPR
The PURDPR macro calls IOC$PURGDATAP to purge a data path.

PURDPR
When the PURDPR macro is invoked, register R5 must contain the address of
the UCB.

When PURDPR returns control to its caller, the following registers must
contain the values listed below:

Register Contents

RO Status of the purge (success or failure)

R1 Contents of data-path register, provided for the use of the driver's
register-dumping routine

R2 Address of first mapping register, provided for the use of the
driver's register-dumping routine

The PURDPR macro destroys the contents of R3.

B—23

VAX/VMS Macros Invoked by Drivers
RELCHAN

RELCHAN
The RELCHAN macro calls IOC$RELCHAN to release all data channels
(controllers) allocated to the device.

RELCHAN
When the RELCHAN macro is invoked, R5 must contain the address of the
UCB. RELCHAN destroys the contents of registers RO through R2.

B—24

VAX/VMS Macros Invoked by Drivers
RELDPR

RELDPR
The RELDPR macro calls IOC$RELDATAP to release a UNIBUS data path
register allocated to the driver.

RELDPR
When the RELDPR macro is invoked, R5 must contain the address of the
UCB. RELDPR destroys the contents of registers RO through R2.

B—25

VAX/VMS Macros Invoked by Drivers
RELMPR

RELMPR
The RELMPR macro calls IOC$RELMAPREG to release a set of UNIBUS or
Micro VAX II Q22 bus mapping registers allocated by the driver.

RELMPR
When the RELMPR macro is invoked, R5 must contain the address of the
UCB. RELMPR destroys the contents of RO through R2.

B—26

VAX/VMS Macros Invoked by Drivers
RELSCHAN

RELSCHAN
The RELSCHAN macro calls IOC$RELSCHAN to release all secondary data
channels allocated by the driver.

RELSCHAN
When the RELSCHAN macro is invoked, R5 must contain the address of the
UCB. RELSCHAN destroys the contents of RO through R2.

VAX/VMS Macros Invoked by Drivers
REQCOM

REQCOM
The REQCOM macro calls IOC$REQCOM to complete the processing of an
I/O request after the driver has finished its portion of the processing.

REQCOM
When the REQCOM macro is invoked, R5 must contain the address of the
UCB. REQCOM destroys the contents of RO through R2.

B—28

VAX/VMS Macros Invoked by Drivers
REQDPR

REQDPR
The REQDPR macro calls IOC$REQDATAP to request a data path in a
UNIBUS adapter.

REQDPR

When the REQDPR macro is invoked, the following registers must contain
the values listed below:

Register Contents

R5 Address of UCB

(SP) Address of caller's caller

The REQDPR macro destroys the contents of RO through R2.

B—29

VAX/VMS Macros Invoked by Drivers
REQMPR

REQMPR
The REQMPR macro calls IOC$REQMAPREG to obtain UNIBUS or
Micro VAX II Q22 bus mapping registers.

REQMPR
When the REQMPR macro is invoked, the following registers must contain
the values listed below:

Register Contents

R5 Address of UCB

(SP) Address of caller's caller

The REQMPR macro destroys the contents of RO through R2.

B—30

VAX/VMS Macros Invoked by Drivers
REQPCHAN

REQPCHAN
The REQPCHAN macro calls IOC$REQPCHANH or IOC$REQPCHANL,
depending on the priority specified, to obtain a controller data channel.

REQPCHAN [pri]

[pri]
Priority of request. If the priority is HIGH, REQPCHAN calls
IOC$REQPCHANH; otherwise it calls IOC$REQPCHANL.

When the REQPCHAN macro is invoked, the following registers must contain
the values listed below:

Register Contents

R5 Address of UCB

(SP) Address of caller's caller

The REQPCHAN macro destroys the contents of RO through R2.

B—31

VAX/VMS Macros Invoked by Drivers
REQSCHAN

REQSCHAN
The REQSCHAN macro calls IOC$REQSCHANH or IOC$REQSCHANL,
depending on the priority specified, to obtain a secondary MASSBUS data
channel.

REQSCHAN [pri]

[pri]
Priority of request. If the priority is HIGH, REQSCHAN calls
IOC$REQSCHANH; otherwise it calls IOCSREQSCHANL.

When the REQSCHAN macro is invoked, the following registers must contain
the values listed below:

Register Contents

R5 Address of UCB

(SP) Address of caller's caller

The REQSCHAN macro destroys the contents of RO through R2.

B—32

VAX/VMS Macros Invoked by Drivers
SAVIPL

SAVIPL
The SAVIPL macro saves the current IPL, as recorded in the processor IPL
register (PR$_IPL), in the specified location or on the stack.

SAVIPL [des-^-(SP)]

[dest=—(SP)]
Address of longword in which to save the current IPL; the default is to push
the IPL on the stack.

B—33

VAX/VMS Macros Invoked by Drivers
SETIPL

SETIPL
The SETIPL macro sets the current IPL by moving the specified value into the
processor IPL register (PR$_IPL).

SETIPL [ipl=31]
[ipl=31]
Level at which to set the current IPL; the default is IPL 31.

B—34

VAX/VMS Macros Invoked by Drivers
SOFTINT

SOFTIIMT
The SOFTINT macro moves the specified IPL into the processor software-
interrupt-request register (PR$_SIRR), thus requesting a software interrupt at
that IPL.

SOFTINT ipl

ipl
IPL at which interrupt is to occur.

B—35

VAX/VMS Macros Invoked by Drivers
TIME WAIT

TIMEWAIT
The TIMEWAIT macro checks for a specific state by testing bits for a specified
length of time. Use of the TIMEDWAIT macro instead of the TIMEWAIT
macro is recommended.

If the state comes into existence during the specified interval, the TIMEWAIT
macro places a success code in RO and returns control to its caller.

If the state does not occur during the specified period, the TIMEWAIT macro
places a failure code in RO and returns control to its caller.

TIMEWAIT time ,bitval,source,context -
[rsense=. TRUE.]

time
Number of 10-microsecond intervals to wait.

bitval
Mask that determines which bits to test.

source
Address of bits to test.

context
Context in which the bits are to be tested (B, W, or L).

[sense=.TRUE.]
If .TRUE., test for one or more of the specified bits set; otherwise test for all
bits cleared.

B—36

VAX/VMS Macros Invoked by Drivers
TIMEDWAIT

TIMEDWAIT
The TIMEDWAIT macro waits for a period of time for an event or condition
to occur. You can specify up to six instructions for this macro to execute in a
loop to determine whether the event has occurred.

TIMEDWAIT macro does not read the processor's clock. The interval it waits
is approximate and depends upon the processor and the set of instructions
you choose for testing to see if the condition exists.

TIMEDWAIT time [,ins 1] [,ins2] [,ins3] [,ins4] -
[, ins5] [, ins6] [, donelbl] [, imbedlbl] -
[,ublbl]

time
Number of 10-microsecond intervals by which to multiply the processor-
specific value in order to calculate the interval to wait. The processor-specific
value is inversely proportional to the speed of the processor, but is never less
than 1.

If you do not specify any embedded instructions, increase the value of time
by 25 percent.

If you specify embedded instructions that take longer to execute than the
average, such as the POLYD instruction, they will cause TIMEDWAIT to wait
proportionally longer.

[insl]
First instruction in the loop.

[ins2]
Second instruction in the loop.

[ins3]
Third instruction in the loop.

[ins4]
Fourth instruction in the loop.

[in s5]
Fifth instruction in the loop.

[ins6]
Sixth instruction in the loop.

[donelbl]
Label placed at the address of the instruction at the end of the TIMEDWAIT
loop; embedded instructions can pass control to this label in order to pass
control to the instruction following the invocation of the TIMEDWAIT macro.

[imbedlbl]
Label placed at the first of the embedded instructions; after executing a
processor-specific delay, the TIMEDWAIT macro passes control here to retest
for the condition.

B—37

VAX/VMS Macros Invoked by Drivers
TIMEDWAIT

[ublbl]
Label placed at the instruction that performs the processor-specific delay
after each execution of the loop of embedded instructions; embedded
instructions can pass control here in order to skip the execution of the rest of
the embedded instructions in a given execution of the embedded loop.

The TIMEDWAIT macro returns a status code (success or failure) in RO. It
destroys the contents of Rl, and preserves the contents of all other registers.

B—38

VAX/VMS Macros Invoked by Drivers
$VIELD

$VIELD
The $VIELD macro defines bit-fields whose names have the form
mod$x_sym, where x can be V, S, or M and sym is a value supplied in the
fields argument to the macro as described below.

$VIELD mod, ini bit, fields

mod
Module in which this bit field is defined; the prefix portion of the name of the
symbols to be defined.

inibit
Bit within the field on which the positions of the bits to be defined are based.

fields
One or more fields of the form: < sym,[size=l],[mask] > , where these
arguments are defined as follows:

Argument Meaning

sym String appended to the string "mod$" to form the name of
this bit-field

[size=1] Size in bits of this bit-field

[mask] Character "m" if the value of the symbol is to be a bit mask,
blank otherwise

B—39

VAX/VMS Macros Invoked by Drivers
_VIELD

-VIELD
The _VIELD macro defines bit-fields whose names have the form
mocL^r—sym, where x can be V, S, or M and sym is a value supplied in the
fields argument to the macro as described below.

_VIELD mod ,inibit, fields
mod
Module in which this bit field is defined; the prefix portion of the name of the
symbols to be defined.

inibit
Bit within the field on which the positions of the bits to be defined are based.

fields
One or more fields of the form: < sym, [size=l], [mask] > , where these
arguments are defined as follows:

Argument Meaning

sym String appended to the string "mod_" to form the name of
this bit-field

[size=1] Size in bits of this bit-field

[mask] Character "m" if the value of the symbol is to be a bit mask,
blank otherwise

B—40

VAX/VMS Macros Invoked by Drivers
WFIKPCH

WFIKPCH
The WFIKPCH macro causes a process to wait for an interrupt from a device
by calling IOC$WFIKPCH. The process retains ownership of the channel (the
controller) while waiting.

The waiting can be ended by the successful completion of a device operation,
a device failure, or a timeout. When the interrupt occurs, control returns to
the instruction following the WFIKPCH macro.

WFIKPCH excpt [, time=65536]
excpt
Name of a device timeout-handling routine; the address of this routine must
be within 65,536 bytes of the address at which the WFIKPCH macro is
invoked.

[time=65536]
Number of seconds to wait for an interrupt before a device timeout is
considered to exist.

When the WFIKPCH macro is invoked, the following registers must contain
the values listed below:

Register Contents

R5 Address of UCB

(SP) IPL at which control is passed to the caller's caller (generally placed
on the stack by a prior invocation of the DSBINT macro)

4(SP) Address (in the caller's caller) at which to return control

The WFIKPCH macro destroys the contents of registers RO through R2.

B—41

VAX/VMS Macros Invoked by Drivers
WFIRLCH

WFIRLCH
The WFIRLCH macro causes a process to wait for an interrupt from a device
by calling IOC$WFIRLCH. The process releases ownership of the channel
(the controller) while waiting.

The waiting can be ended by the successful completion of a device operation,
a device failure, or a timeout. When the interrupt occurs, control returns to
the instruction following the WFIRLCH.

WFIRLCH excpt [,time=65536]
excpt
Name of a device timeout-handling routine; the address of this routine must
be within 65,536 bytes of the address at which the WFIRLCH macro is
invoked.

[time=65536]
Number of seconds to wait for an interrupt before a device timeout is
considered to exist.

When the WFIRLCH macro is invoked, the following registers must contain
the values listed below:

Register Contents

R5 Address of UCB

(SP) IPL at which control is passed to the caller's caller

4(SP) Address (in the caller's caller) at which to return control

The WFIRLCH macro destroys the contents of registers RO through R2.

B—42

c Operating System Routines

This appendix describes the VAX/VMS operating system routines that are
used by device drivers. The information given in this section follows the
conventions listed below:

• Fields used for both input and output are not specified.

• Registers are assumed preserved unless otherwise specified.

• "IPL at execution" refers to the IPL at which the routine executes, not the
IPL at which it is called.

These routines generally return a status value in RO (for instance,
SS$_NORMAL). The low-order bit of this value indicates successful (1)
or unsuccessful (0) completion of the routine. Additional information on
returned status values appears in the VAX/VMS System Services Reference
Manual and the VAX/VMS System Messages and Recovery Procedures Reference
Manual.

C-1

Operating System Routines
COM$DELATTNAST

COM$DELATTNAST

Module: COMDRVSUB
Driver fork processes call this routine to deliver all the AST-control blocks
(ACBs) linked to the specified AST list. COM$DELATTNAST removes all
AST control blocks from the specified list and schedules a fork process at
IPL$_QUEUEAST to queue each AST to its process.

input

output

Registers

R4

R5

Fields

Contents

Address of specified listhead

Address of UCB

Contents

IPL at execution: caller's IPL

Registers Contents

Fields Contents

Specified listhead 0

IPL at exit: caller's IPL

C—2

Operating System Routines
COM$DRVDEALMEM

COM$DRVDEALMEM

Module: COMDRVSUB
Drivers can call this routine from any interrupt priority level to deallocate
system dynamic memory.

Because the deallocation of nonpaged pool frees a systemwide resource, the
deallocation routine (EXE$DEANONPAGED) eventually calls SCH$RAVAIL

to notify the scheduler of the availability of the freed memory.1 Because the
scheduler database is synchronized at IPL$_SYNCH, COM$DRVDEALMEM
ensures that the interrupt level upon entry to EXE$DEANONPAGED is less
than IPL$_SYNCH.

Contents

Address of block to be deallocate

Contents

Size of block in bytes

Registers

RO

Fields

IRP$W_SIZE

input

IPL at execution: caller's IPL or IPL$_QUEUEAST (if caller's IPL is greater than
IPL$_SYNCH)

output IPL at exit: caller's IPL

If the size of the block of memory is less than than 24 bytes, or if the block is not properly aligned, a system bugcheck occurs.

C—3

Operating System Routines
COMSFLUSHATTNS

COM$FLUSHATTNS

Module: COMDRVSUB
Driver FDT and fork routines call COM$FLUSHATTNS during cancel-I/O
operations to flush an attention AST list.

COM$FLUSHATTNS locates all control blocks whose channel number and
process identification match those specified as input to the routine, removes
them from the specified list, and deallocates them. COM$FLUSHATTNS exits
by returning to its caller.

input

output

Registers

R4

R5

R6

R7

Fields

UCB$B_DIPL

PCB$I_PID

PCB$W_ASTCNT

Contents

Address of current PCB

Address of UCB

Number of the assigned channel

Address of AST-control block listhead

Contents

Device IPL

Process' ID

ASTs remaining in quota

IPL at execution: device IPL (UCB$B_DIPL)

Registers

RO

R1

R2

R7

Fields

PCB$W_ASTCNT

Specified listhead

Contents

SS$_NORMAL

Destroyed

Destroyed

Destroyed

Contents

Number of AST control blocks flushed (added to
previous contents)

Updated

IPL at exit: caller's IPL

C—4

Operating System Routines
COM$POST

COM$POST
Module: COMDRVSUB
Drivers call COM$POST after they have completed all device-dependent
I/O postprocessing for an I/O request. Drivers generally use this routine to
complete the processing of IRPs initiated by the routine EXE$ALTQUEPKT.

COM$POST inserts the IRP into the I/O postprocessing queue headed by
IOC$GL_PSBL and returns to the driver fork process. COM$POST operates
independently of the device unit: that is, it does not attempt to dequeue
another packet nor does it change the busy status of the device.

input Registers

R3

R5

Fields

IRP$L _MEDIA

IRP$I_MEDIA+4

Contents

Address of IRP

Address of UCB

Contents

Data to be copied to the l/O-status block

Data to be copied to the l/O-status block

IPL at execution: caller's IPL (driver fork level or above)

output Registers

R0-R1

Fields

UCB$I_OPCNT

Contents

Destroyed

Contents

Increased by 1

IPL at exit: caller's IPL

C—5

Operating System Routines
COM$SETATTN AST

COM$SETATTNAST

Module: COMDRVSUB
Driver FDT routines call COM$SETATTNAST to enable or disable attention
ASTs, depending on the contents of the pi argument to the $QIO system
service.

If pi contains the address of an AST routine, COM$SETATTNAST allocates
a control block that can double as an AST-control block when the AST is
delivered. This control block contains the following information:

• Address of the specified AST routine

• Specified AST parameter

• Specified access mode

• Channel number

• Process identification of the requesting process

COM$SETATTNAST links the control block to the start of the specified linked
list of AST-control blocks located in the unit-control block's extension area.
The driver defines this extension area by using the $DEFINI, $DEF, and
$ DEFEND macros (see Appendix B).

If the process exceeds buffered I/O or AST quotas, or if there is no memory
available to allocate an AST-control block, this routine transfers control to
EXE$ABORTIO with error status.

If pi is clear, the routine transfers control to COM$FLUSHATTNS which
disables ASTs by searching through this linked list, extracting each entry, and
deallocating the identified AST-control block.

COM$SETATTNAST exits by returning to its caller.

input Registers

R3

R4

R5

R6

R7

AP

Fields

IRP$W_CHAN

UCB$B_DIPL

PCB$ W_AST CNT

PCB$I_PID

O(AP)

4(AP)

8(AP)

Contents

Address of IRP

Address of current PCB

Address of UCB

Address of assigned channel's CCB

Address of specified AST-control block listhead

Address of $QIO system service argument list

Contents

I/O request channel number

Device IPL

Number of ASTs remaining in process quota

Process identification

Process AST address

AST parameter

Access mode for AST

IPL at execution: caller's IPL and device IPL

C—6

Operating System Routines
COM$SETATTNAST

output Registers

RO

Contents

SS$_NORMAL, SS$_EXQUOTA, or SS$_INSFMEM

R1-R2 Destroyed

R3 Address of IRP

R5 Address of UCB

R6-R8 Destroyed

Fields Contents

PCB$W_ASTCNT

Specified listhead

Decreased by 1

Updated

I PL at exit: caller's IPL

C—7

Operating System Routines
ERL$DEVICERR

ERL$DEVICERR
Module: ERRORLOG
ERL$DEVICERR logs a controller and/or device error by allocating an error
message buffer and filling it with data from IRP and UCB. ERL$DEVICERR
sets the error type code to device error.

If the driver specifies the address of a register-dumping routine in the regdmp
argument to the DDTAB macro, ERL$DEVICERR calculates its address from
the DDT and calls it. Otherwise, the DDTAB macro supplies the address of
IOC$RETURN.

input Registers

R5

Contents

Address of UCB

output Registers Contents

Fields Contents

UCB$I_EMB Address of error message buffer

UCB$I_STS Bit UCB$V_ERLOGIP (error log in progress) is set

C—8

Operating System Routines
ERL$DEVICTMO

ERL$DEVICTMO

Module: ERRORLOG

ERL$DEVICTMO logs a device timeout. This routine performs the same
functions and uses the same input and output as ERL$DEVICERR with one
exception: the error type code is device timeout.

C—9

Operating System Routines
EXE$ABORTIO

EXE$ABORTIO

Module: SYSQIOREQ
FDT routines jump to EXE$ABORTIO to finish an I/O operation without
returning final I/O status in the IOSB.

EXE$ABORTIO clears IRP$L_IOSB in IRP, clears a bit (ACB$V_QUOTA in
IRP$B_RMOD) to prevent a user mode AST, and inserts the IRP in the I/O

postprocessing queue headed by IOC$GL_PSBL.

input

output

Registers

RO

R3

R4

R5

Fields

ACB$V_QUOTA (in
IRP$B_RMOD)

Contents

First longword of status for l/O-status block

Address of IRP

Address of current PCB

Address of UCB

Contents

Set to 1 (when an AST is specified)

IPL at execution: IPL$_ASTDEL

Registers

None written

Fields

ACB$V_QUOTA (in
IRP$B_RMOD)

IRP$L_IOSB

PCB$W_ASTCNT

Contents

Contents

Cleared to zero (if field previously set)

Zero

Increased by 1 if ACB$V_QUOTA was set

IPL at exit: 0 (normal process IPL)

C-10

Operating System Routines
EXE$ALLOCBUF

EXE$ALLOCBUF

Module: MEMORYALC
FDT routines call EXE$ALLOCBUF to allocate a buffer from nonpaged
pool for a buffered-I/O operation. EXE$ALLOCBUF performs the necessary
operations to synchronize access to the system database from the FDT routine,
and then calls EXE$ALONONPAGED to attempt to allocate the buffer.

If the process requesting the I/O operation has resource wait mode enabled,
EXE$ALLOCBUF can place the process in a resource wait state if sufficient
nonpaged pool is unavailable.

The caller must adjust process quotas, generally subtracting the value returned
in R1 from JIB$L_BYTCNT. The normal buffered I/O postprocessing routine,
initiated by the REQCOM macro, readjusts the quota and also deallocates
the buffer. Note that the value returned in R1 and placed at IRP$W_SIZE
in the allocated buffer is the size of the requested buffer. The actual size
of the allocated buffer is determined according to the algorithms used by
EXE$ALONONPAGED and the size of the lookaside list packets. The
nonpaged pool deallocation routine (EXE$DEANONPAGED), called in
buffered I/O postprocessing, uses similar algorithms when returning memory
to nonpaged pool.

input Registers

R1

R4

Fields

Contents

Size of requested buffer in bytes. This value should
include the 12 bytes required to store header
information.

Address of current PCB

Contents

PCB$V_SSRWAIT Clear if the process should wait if no memory is available
for requested buffer; set if resource wait mode is
disabled.

IPL at execution: caller's IPL, IPL$_SYNCH, and the IPL that synchronizes the
allocation of nonpaged pool (EXE$GI_NONPAGED). Generally,
EXE$GL_NONPAGED contains 11.

Output Registers

RO

R1

R2

R3

Fields

IRP$W_SIZE (in
allocated buffer)

IRP$B_TYPE (in
allocated buffer)

IPL at exit: IPL!

Contents

SS$_NORMAL or SS$_INSFMEM

Size of requested buffer in bytes.

Address of allocated buffer

Destroyed

Contents

Size of requested buffer in bytes

DYN$C_BUFIO

;_ASTDEL

C-11

Operating System Routines
EXE$ALLOCIRP

EXE$ALLOCIRP

Module: MEMORYALC
EXE$ALLOCIRP allocates an IRP from nonpaged dynamic memory. It
performs the same functions and has the same input and output as
EXE$ALLOCBUF, with the following exceptions:

• The caller does not specify a buffer size.

• The allocated buffer is IRP$C_LENGTH bytes long.

• The buffer size is set to IRP$C_LENGTH.

• The buffer type is set to DYN$C_IRP.

C-12

Operating System Routines
EXE$ALONONPAGED

EXE$ALONONPAGED

Module: MEMORYALC
Driver fork processes use EXE$ALONONPAGED to allocate a block of
memory from nonpaged pool. Depending upon the size of the requested
block, EXE$ALONONPAGED allocates nonpaged pool either from one of the
lookaside lists or from general nonpaged pool.

EXE$ALONONPAGED cannot be called from an IPL above that specified
in EXE$GL-NONPAGED (usually 11). EXE$ALONONPAGED does not
initialize the header of the allocated block of memory.

Contents

Requested block size in bytes

Contents

Registers

R1

Fields

None

input

IPL at execution: caller's IPL and the IPL that synchronizes the allocation of
nonpaged pool (EXE$GL—NONPAGED). Generally, EXE$GL_NONPAGED
contains 1 1.

output Registers

RO

R1

Contents

Status code (0 or 1)

If the allocation succeeds from one of the lookaside
lists, the value returned in R1 remains the size of the
requested block. If the allocated block is from general
nonpaged pool, the value in R1 is the requested size,
rounded up to a 16-byte multiple.

Address of allocated block

Destroyed

Contents

R2

R3

Fields

IPL at exit: caller's IPL

C—13

Operating System Routines

EXE$ALON PAG VAR

EXE$ALOIMPAGVAR

Module: MEMORYALC
Driver fork processes use EXE$ALONPAGVAR, as an alternative to
EXE$ALONONPAGED, to allocate pool from general nonpaged pool.
EXE$ALONPAGVAR, unlike EXE$ALONONPAGED, makes no attempt
to allocate nonpaged pool from the lookaside lists, which makes it suitable
for driver fork processes that may afterwards return the allocated block to
nonpaged pool in pieces.

EXE$ALONPAGVAR cannot be called from an IPL above that specified in
EXE$GL _NONPAGED (usually 11). EXE$ALONPAGVAR does not initialize
the header of the allocated block of memory.

input

output

Registers Contents

R1 Requested block size in bytes

Fields Contents

None —

IPL at execution: caller's IPL and the IPL that synchronizes the allocation of
nonpaged pool (EXE$GL_NONPAGED). Generally, EXE$GL_NONPAGED
contains 11.

Registers Contents

RO Status code (0 or 1)

R1 Size of requested buffer, rounded up to a 16-byte
multiple

R2 Address of allocated block

R3 Destroyed

Fields Contents

IPL at exit: caller's IPL

C—14

Operating System Routines
EXE$ALOPHYCNTG

EXE$ALOPHYCNTG

Module: MEMORYALC
Driver fork processes use EXE$ALOPHYCNTG to allocate a physically
contiguous block of memory. Note that the number of SPT slots available
depends on the value of system parameter SPTREQ.

Memory allocated by EXE$ALOPHYCNTG must not be deallocated.

input Registers

R1

Fields

None

Contents

The number of physically contiguous pages to allocate

Contents

IPL at execution: caller's IPL (must be IPL$_SYNCH)

output Registers

RO

R2

Fields

Contents

SS$_NORMAL, SS$_INSFMEM, or SS$_INSFSPTS

System virtual address of allocated block, if the
allocation succeeds

All other registers are preserved.

Contents

IPL at exit: caller's IPL

C-15

Operating System Routines
EXE$ALTQUEPKT

EXE$ALTQUEPKT

Module: SYSQIOREQ
Driver FDT routines and fork processes call EXE$ALTQUEPKT to send an
IRP to a driver's alternate start-I/O routine, and bypass the synchronization
usually afforded by the pending I/O queue for the device's UCB.

EXE$ALTQUEPKT passes the address of the IRP to the driver's alternate
start-I/O routine without regard for the status of the device unit and returns
to its caller.

input Registers Contents

R3 Address of IRP

R5 Address of UCB

Fields Contents

DDT$L _ALTST ART Address of alternate start-I/O routine

UCB$B_FIPL Driver fork IPL

UCB$I_DDB Address of unit's DDB

DDB$L_DDT Address of DDT

IPL at execution: UCB$B_FIPL

output Registers Contents

R0-R5 Destroyed

Fields Contents

IPL at exit: caller's IPL

C—16

Operating System Routines
EXE$BUFFRQUOTA

EXE$BUFFRQUOTA

Module: EXSUBROUT
FDT routines call EXE$BUFFRQUOTA to determine whether a process'
buffered byte count quota usage permits the process to be granted additional
buffered I/O. EXE$BUFFRQUOTA places the process in a resource wait state
if quota usage is too large and the process has resource wait mode enabled.

input

output

Registers

R1

R4

Fields

PCB$V_SSRWAIT

IOC$GW_MAXBUF

JIB$L_BYTLM

JIB$L_BYTCNT

Contents

Number of requested bytes

Address of current PCB

Contents

When process exceeds quota, determines whether
process should wait. If this field is set, resource wait
mode is disabled.

Maximum number of buffered I/O bytes that system
allows to any process

Process' byte count limit

Process' byte count usage quota

IPL at execution: caller's IPL and IPL$_SYNCH

Registers

RO

R2-R3

Fields

Contents

SS$_NORMAL or SS$_EXQUOTA

Destroyed

Contents

IPL at exit: IPL$_ASTDEL

C-17

Operating System Routines
EXE$BUFQUOPRC

EXE$BUFQUOPRC

Module: EXSUBROUT
EXE$BUFQUOPRC performs the same function and has the same
input and output as EXE$BUFFRQUOTA with the following exception:
EXE$BUFQUOPRC does not check the field IOC$GW_MAXBUF.

C—18

Operating System Routines
EXE$DEANONPAGED

EXE$DEANONPAGED

Module: MEMORYALC
EXE$DEANONPAGED deallocates a block of memory and returns it to
nonpaged pool. EXE$DEANONPAGED performs the same functions and has
the same input and output as the routine COM$DRVDEALMEM, with the
following exceptions:

• R3 is destroyed.

• The caller's IPL must be at IPL$_QUEUEAST or lower.

C—19

Operating System Routines
EXE$FINISHIO

EXE$FINISHIO
Module: SYSQIOREQ
FDT routines transfer control to EXE$FINISHIO to finish an I/O operation
and return a quadword of final I/O status to the requesting process.

EXE$FINISHIO writes final I/O status into the IRP and inserts the IRP into
the I/O postprocessing queue headed by IOC$GL_PSBL.

input Registers Contents

RO First longword of status for the l/O-status block

R1 Second longword of status for the l/O-status block

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

output Registers

RO

Fields

IRP$L_MEDIA

IRP$I_MEDIA+4

UCB$L_OPCNT

Contents

SSS—NORMAL

Contents

First longword of I/O status (RO)

Second longword of I/O status (R1)

Increased by 1

C—20

Operating System Routines
EXE$FINISHIOC

EXE$FINISHIOC

Module: SYSQIOREQ
EXE$FINISHIOC performs the same functions and has the same input and
output as EXE$FINISHIO with the following exception: EXE$FINISHIOC
clears the contents of R1 before storing RO and R1 in the IRP.

C—21

Operating System Routines
EXE$FORK

EXE$FORK

Module: FORKCNTRL
EXE$FORK performs the same functions as EXE$IOFORK except that it does
not disable timeouts by clearing UCB$V__TIM in the UCB$L_STS field of the
UCB.

C—22

Operating System Routines
EXE$INSERTIRP

EXE$INSERTIRP

Module: SYSQIOREQ
EXE$INSERTIRP inserts an IRP into the pending I/O queue of a device's
UCB according to the base priority of process that originated the I/O request.
It also sets the Z condition code in the PSL as follows:

1 Indicates that the entry is first in the queue.

0 Indicates that at least one entry was already in the queue.

input Registers

R2

R3

Fields

Contents

Address of I/O queue listhead for the device

Address of IRP

Contents

IPL at execution: caller's IPL (fork level or higher)

output Registers

R1

Contents

Destroyed

IPL at exit: caller's IPL

C—23

Operating System Routines
EXE$INSIOQ

EXE$INSIOQ

Module: SYSQIOREQ
EXE$INSIOQ examines UCB$V_BSY in UCB$W_STS. If the device is idle
(UCB$V_BSY is clear), EXE$INSIOQ calls IOC$INITIATE; if the device is
busy, it calls EXE$INSERTIRP.

input Registers

R3

R5

Fields

UCB$B_FIPL

UCB$V_BSY (in
UCB$L_STS)

UCB$I_IOQFL

Contents

Address of IRP

Address of UCB

Contents

Driver fork IPL

Determines whether device is busy

Address of device I/O queue listhead

IPL at execution: driver fork level

Output Registers Contents

R0-R2 Destroyed

— Additional registers used by the driver start-l/O routine
will be destroyed if the start-l/O routine is called.

Fields Contents

UCB$V_BSY (in Set to 1
UCB$L_STS)

IPL at exit: original IPL

C—24

Operating System Routines
EXE$INSTIMQ

EXE$INSTIMQ

Module: EXSUBROUT
EXE$INSTIMQ inserts a timer queue element (TQE) into the timer queue.
Elements are ordered according to expiration time with those elements closest
to due time taking priority.

input

output

Registers Contents

RO, R1 Quadword expiration time for new element

R5 Address of timer element to be queued

I PL at execution: IPL$_TIMER

Registers Contents

R2-R3 Destroyed

I PL at exit: IPL$_TIMER

C—25

Operating System Routines
EXE$IOFORK

EXE$IOFORK

Module: FORKCNTRL
EXE$IOFORK saves the contents of R3 and R4—and the return PC value from
the top of the stack—in the fork block specified by R5. It then inserts the fork
block address into a fork queue, headed by SWI$GL_FQFL, corresponding to
the IPL stored in the fork block. If the queue is empty, EXE$IOFORK requests
a software interrupt at fork IPL.

Unlike, EXE$IOFORK also disables timeouts by clearing UCB$V_TIM in the
UCB$L_STS field.

input

output

Registers

R5

O(SP)

4(SP)

Fields

Contents

Address of fork block (usually the UCB)

Return address of caller

Return address of caller's caller

Contents

FKB$B_FIPL (in fork Fork IPL
block)

IPL at execution: caller's IPL

Registers Contents

R3 Destroyed

R4 FKB$B_FIPL

Fields Contents

UCB$V_TIM (in 0
UCB$I_STS)

FKB$L_FR3 (in UCB) R3

FKB$L_FR4 (in UCB) R4

FKB$L_FPC (in UCB) O(SP)

IPL at exit: caller's IPL

C—26

Operating System Routines
EXE$LCLDSKVALID

EXE$LCLDSKVALID
Module: SYSQIOFDT
A disk driver's FDT routines call EXE$LCLDSKVALID to process a request for
an IO$—PACKACK, IO$_AVAILABLE, or IO$_UNLOAD on a local disk, and
to queue the IRP to the device's UCB for driver processing, if needed. This
must be the last FDT routine called during preprocessing of these requests.

For an IO$_PACKACK function, EXE$LCLDSKVALID and the driver proceed
as follows:

• If UCB$ V—LCL —VALID is not set, this routine sets UCB$V_LCL__VALID,
increments UCB$B_ONLCNT, and queues the IRP to the UCB for driver
processing by branching to EXE$QIODRVPKT. The driver's start-I/O
routine must subsequently set the UCB$V_VALID bit in the field
UCB$L_STS.

• If UCB$V_LCL —VALID is set, this routine calls EXE$FINISHIO.

For an IO$_UNLOAD or IO$-AVAILABLE function, EXE$LCLDSKVALID
and the driver proceed as follows:

• If UCB$V_LCL _VALID is set, this routine clears UCB$V_LCL-VALID,
decrements the field UCB$B_ONLCNT, and queues the IRP to the UCB
for driver processing. The driver's start-I/O routine must subsequently
clear the UCB$V_VALID bit in the field UCB$L_STS.

• If UCB$V_LCL -VALID is not set, this routine calls EXE$FINISHIO.

Note: Because EXE$LCLDSKVALID passes control to EXE$QIODRVPKT if
processing is required by the driver, or to EXE$FINISHIO if no further
processing is required, its outputs are not returned to its caller.

input Registers

R3

R5

R7

Fields

Contents

Address of IRP

Address of UCB

The number of the bit that the l/O-function code
represents

Contents

UCB$V_LCL—VALID If set, the volume is already valid. If not set, the drive is
(in UCB$L_STS) already unloaded or available

I PL at execution: caller's IPL (should be IPL$_ASTDEL)

C—27

Operating System Routines
EXE$LCLDSKVALID

output Registers Contents

R3 Destroyed

R4 FKB$B_FIPL

Fields Contents

UCB$V_LCI_VALID If the requested function is IO$_PACKACK, this bit is
set (in UCB$I_STS); if the requested function is
IO$_UNLOAD or IO$_AVAILABLE, this bit is cleared

UCB$B_ONLCNT If the function is IO$_PACKACK and, on entry to this
routine, UCB$V_LCL—VALID was not set, this field is
increased by 1; if the function is IO$_UNLOAD or
IO$_AVAILABLE and, on entry to this routine,
UCB$V_LCL —VALID was set, this field is decreased
by 1

I PL at exit: IPL$_SYNCH

C—28

Operating System Routines
EXE$MODIFY

EXE$MODIFY

Module: SYSQIOFDT
FDT routines transfer control to this device-independent routine to
validate and prepare a user buffer for a DMA read/write operation. Use
EXE$MODIFY instead of EXE$READ when you wish your driver to both read
from and write to a buffer.

EXE$MODIFY performs the following functions:

• Translates read-logical functions to read-physical functions

• Transfers $QIO system service arguments to the IRP

• Verifies that the caller has access to the specified buffer

• Locks the buffer's pages into physical memory. If a page fault occurs
during this step, the routine returns control to the $QIO system service,
which repeats the request. EXE$MODIFY disables a paging mechanism
used during write-only operations.

If EXE$MODIFY completes successfully, it transfers control to
EXE$QIODRVPKT. If it fails, it transfers control to EXE$ABORTIO.

EXE$MODIFY does not check for zero-length transfers and will queue an IRP
that specifies a zero-length buffer to the UCB. The driver start-I/O routine
should check for zero length buffers to avoid mapping them to UNIBUS, Q22
bus, or MASSBUS space, because the attempted mapping causes a system
failure.

input

Fields

O(AP)

4(AP)

12(AP)

R3

R4

R5

R6

R7

R8

AP

Registers

IRP$W_FUNC

Contents

Address of IRP

Address of current PCB

Address of UCB assigned to the device unit

Address of CCB for the channel assigned to the device
unit

Bit number of the l/O-function code

FDT entry address

Address of first function-dependent $QIO argument (pi)

Contents

Virtual address of buffer (pi)

Number of bytes in transfer (p2)

Carriage control byte (p4)

l/O-function code

IPL at execution: caller's IPL (IPL$_ASTDEL)

C—29

Operating System Routines
EXE$MODIFY

output Registers

R0-R2

Fields

IRP$B_CARCON

IRP$V_FUNC (in
IRP$W_STS)

IRP$I_SVAPTE

IRP$I_BCNT

Contents

Destroyed

Contents

p4

Set to 1 (indicates a read function)

Address of PTE that maps the first page of the buffer

Size of transfer in bytes

IPL at exit: caller's IPL

C—30

Operating System Routines
EXE$MODIFYLOCK

EXE$MODIFYLOCK

Module: SYSQIOFDT
FDT routines call EXE$MODIFYLOCK to perform buffer processing for a
DMA transfer. Use EXE$MODIFYLOCK instead of EXE$READLOCK when
you expect your driver to both read from and write to a buffer.

EXE$MODIFYLOCK performs the following functions:

• Determines whether the caller has write access to the buffer.

• Locks the buffer's pages into memory. If a page fault occurs during this
process, the routine returns control to the $QIO system service, which
resubmits the request. EXE$MODIFYLOCK disables a paging mechanism
used in write-only operations.

If EXE$MODIFYLOCK completes successfully, it returns control to its caller.
If it fails, it transfers control to EXE$ABORTIO.

input Registers Contents

RO Starting address of buffer

R1 Size of transfer in bytes

R3 Address of IRP

R4 Address of current PCB

R6 Address of CCB

Fields Contents

IPL at execution: caller's IPL (IPL$_ASTDEL)

output Registers

RO

R1

R2

R3

Fields

IRP$I_SVAPTE

IRP$I_BCNT

IRP$V_FUNC (in
IRP$W_STS)

IPL at exit: caller's IPL

Contents

SS$_NORMAL

Address of PTE that maps the first page of the buffer

Destroyed

Address of IRP

Contents

Address of PTE that maps the first page of the buffer

Size of transfer in bytes

A value of 1 (indicating a read function)

C—31

Operating System Routines
EXE$MODIFYLOCKR

EXE$MODIFYLOCKR

Module: SYSQIOFDT
Drivers typically use EXE$MODIFYLOCKR when they must lock multiple
areas into memory for a single I/O request and, if the request is aborted,
must unlock these areas.

EXE$MODIFYLOCKR determines whether a process has write access
to the buffer pages it requested. If the process does have write access,
EXE$MODIFYLOCKR then locks the buffer's pages into memory. If it
completes successfully, it returns control to its caller.

If EXE$MODIFYLOCKR fails, it calls back the driver as a coroutine, returning
an appropriate error status in RO and preserving all other registers. The driver
then performs any necessary procedures not performed by the system as part
of its normal queue-I/O request abortion processing, taking care to preserve
all registers, including RO and Rl.

When the driver returns to EXE$MODIFYLOCKR with an RSB instruction, the
routine aborts the I/O request if RO contains an error status, then performs
processing that results in the I/O request's being resubmitted to the driver.
For example:

JSB G“EXE$M0DIFYLOCKR
BLBS BUF.LOCK.OK

BUF.LOCK.FAIL:

; clean up this $QI0 bookkeeping

RSB

BUF.LOCK.OK:

;continue processing this I/O request

EXE$MODIFYLOCKR can fail for any of the following reasons:

• The buffer-access check fails. In this case, the routine returns
SS$_ACCVIO to the driver in RO.

• The calling process has an insufficient working set limit to lock all the
buffer pages into memory. The routine returns SS$_INSFWSL in RO.

• A page fault occurs while the routine is locking pages into memory. The
status returned in RO in this case is zero.

input
RO

Rl

R3

R4

R6

Registers Contents

Starting address of buffer

Length of the buffer in bytes

Address of IRP

Address of current PCB

Address of CCB

C—32

Operating System Routines
EXE$MODIFYLOCKR

Fields Contents

output Registers

RO

R1

R2

R3

Fields

IRP$I_SVAPTE

IRP$L_BCNT

IRP$M_FUNC (in
IRP$W_FUNC)

IPL at exit: caller's IPL

Contents

SS$_NORMAL

Address of PTE that maps the first page of the buffer

Function indicator (set to 1)

Address of IRP

Contents

Address of PTE that maps the first page of the buffer

Size of transfer in bytes

Set to 1

C—33

Operating System Routines
EXE$ONEPARM

EXE$ONEPARM

Module: SYSQIOFDT
This device-independent FDT routine copies a single $QIO parameter into the
IRP and calls EXE$QIODRVPKT. (See Section 8.6 for more information about
this routine.)

input Registers

R3

R4

R5

Fields

UCB$B_FIPL

UCB$V_BSY (in
UCB$I_STS)

UCB$I_IOQFL

Contents

Address of IRP for the current I/O request

Address of current PCB

Address of UCB

Contents

Driver fork IPL

Unit busy flag

Address of unit I/O queue listhead

C—34

Operating System Routines
EXE$QIORETURN

EXE$QIORETURN

Module: SYSQIOREQ
EXE$QIORETURN sets a success status code in RO, lowers IPL to 0, and
returns to the system service dispatcher.

Output Registers Contents

RO SS$_NORMAL

IPL at exit: 0

This routine returns by issuing a RET instruction.

C—35

Operating System Routines
EXE$READ

EXE$READ

Module: SYSQIOFDT
This device-independent FDT routine validates and prepares a user buffer for
a DMA read operation. This routine performs the same functions and has the
same input and output as EXE$MODIFY, with the single exception noted in
the description of EXE$MODIFY.

C—36

Operating System Routines
EXE$READCHK

EXE$READCHK
Module: SYSQIOFDT
EXE$READCHK checks that a process has write access to the pages in the
specified buffer.

If EXE$READCHK completes successfully, it writes the total byte count of
the transfer into the IRP (IRP$L_BCNT) and returns control to its caller. If
it determines that the process does not have write access to the buffer, it
transfers control to EXE$ABORTIO, which terminates the request with access
violation status.

input

output

Registers

RO

R1

R3

Fields

Contents

Address of buffer

Size of transfer in bytes

Address of IRP

Contents

IPL at execution: caller's IPL

Registers

RO

R1

R2

R3

Fields

IRP$I_BCNT

IRP$V_FUNC (in
IRP$W_STS)

Contents

Address of buffer (success)

Size of transfer in bytes

Value of 1 (to indicate a read)

Address of IRP

Contents

Size of transfer in bytes

Value of 1 (indicates a read function)

IPL at exit: caller's IPL

C—37

Operating System Routines
EXE$READCHKR

EXE$READCHKR

Module: SYSQIOFDT
EXE$READCHKR performs the same function as EXE$READCHK, except
that, on error, it calls the driver FDT routine back as a coroutine to
clean up $QIO bookkeeping. See the description of error procedures in
EXE$MODIFYLOCKR for further information.

C—38

Operating System Routines
EXE$READLOCK

EXE$READLOCK

Module: SYSQIOFDT
FDT routines call EXE$READLOCK to check buffer accessibility and lock the
user buffer in memory for a DMA read transfer. This routine performs the
same functions and has the same input and output as EXE$MODIFYLOCK,
except that it is used when the driver performs only a read function.

C—39

Operating System Routines
EXE$READLOCKR

EXE$READLOCKR

Module: SYSQIOFDT
EXE$READLOCKR determines whether a process has write access to the
requested buffer pages and, if access is permitted, locks those pages into
memory. EXE$READLOCKR performs the same functions and has the same
input and output as EXE$MODIFYLOCKR.

C—40

Operating System Routines
EXE$SENSEMODE

EXE$SENSEMODE

Module: SYSQIOFDT
This device-independent FDT routine copies device-dependent characteristics
from the device's UCB into Rl. This routine writes a success code into
RO and transfers control to EXE$FINISHIO. (See Section 8.5 for additional
information.)

input

output

Registers

R3

R4

R5

R6

R7

R8

AP

Fields

UCB$L_DEVDEPEND

Contents

Address of IRP for the current I/O request

Address of current PCB

Address of UCB of the device assigned to the user-
specified process I/O channel

Address of CCB that describes the user-specified
process I/O channel

Bit number of the user-specified l/O-function code

Address of FDT dispatcher

Address of first function-dependent parameter specified
in the user's request

Contents

Device-dependent status

IPL at execution: caller's IPL

Registers

RO

Rl

Fields

Contents

SSS—NORMAL

Device-dependent characteristics copied from
UCB$L_DEVDEPEND

Contents

IPL at exit: caller's IPL

C—41

Operating System Routines
EXE$SETCHAR

EXE$SETCHAR

Module: SYSQIOFDT
This device-independent FDT routine writes into the device's unit-control
block a quadword of information, the address of which is supplied by the pi
argument to the $QIO request.

If EXE$SETCHAR completes successfully, it places a success code into RO
and transfers control to EXE$FINISHIO. If it fails because the user lacks read
access to the characteristics quadword, it transfers control to EXE$ABORTIO
with access violation status. (For additional information on EXE$SETCHAR,
see Section 8.5.)

input

output

Registers

R3

R4

R5

R6

R7

R8

AP

Fields

O(AP)

Contents

Address of IRP for the current I/O request

Address of current PCB

Address of UCB of the assigned device unit

Address of CCB that describes the specified process I/O
channel

Bit number of the l/O-function code

Address of FDT dispatcher

Address of first function-dependent $QIO parameter

Contents

Address of new device characteristics (pi)

IPL at execution: caller's IPL

Registers

RO

Fields

UCB$B_DEVCLASS

UCB$B_DEVTYPE

UCB$W_DEVBUFSIZ

UCB$L_DEVDEPEND

Contents

SS$_NORMAL or SS$_ACCVIO

Contents

Byte 0 of quadword

Byte 1 of quadword

Bytes 2 and 3 of quadword

Bytes 4 through 7 of quadword

IPL at exit: caller's IPL

C—42

Operating System Routines
EXE$SETMODE

EXE$SETMODE
Module: SYSQIOFDT
This device-independent FDT routine writes into the device's unit-control
block a quadword of information, the address of which is supplied by the pi
argument to the $QIO request.

If EXE$SETMODE completes successfully, it places a success code into RO and
transfers control to EXE$QIODRVPKT. If it fails because the user lacks read
access to the characteristics quadword, it transfers control to EXE$ABORTIO
with access violation status. (For additional information on EXE$SETMODE,
see Section 8.5.)

input

output

Registers

R3

R4

R5

R6

R7

R8

AP

Fields

pO(AP)

Contents

Address of IRP for the current I/O request

Address of current PCB

Address of UCB of the device assigned to the user-
specified process I/O channel

Address of CCB that describes the user-specified
process I/O channel

Bit number of the l/O-function code

Address of FDT entry

Address of first function-dependent $QIO parameter

Contents

Address of a quadword of device characteristics

IPL at execution: caller's IPL

Registers

RO

Fields

IRP$L_MEDIA

IRP$I_MEDIA+4

Contents

SSS—NORMAL or SS$_ACCVIO

Contents

First longword of device characteristics quadword

Second longword of device characteristics quadword

IPL at exit: caller's IPL

C—43

Operating System Routines
EXE$SNDEVMSG

EXE$SIMDEVMSG

Module: MBDRIVER
Driver fork processes call EXE$SNDEVMSG to send messages to system
processes such as OPCOM.

EXE$SNDEVMSG builds a 32-byte message on the stack that includes the
following information:

Bytes Contents

0-1 Low word of R4 (message type)

2-3 UCB$W_UNIT (device unit number)

4-31 Counted string of device controller name, formatted as node$controller
for clusterwide devices

EXE$SNDEVMSG then calls EXE$WRTMAILBOX to send the message to a
mailbox.

If EXE$SNDEVMSG completes successfully, it exits with an RSB instruction.
If it fails, it returns error status to its caller.

EXE$SNDEVMSG can fail for any of the following reasons:

• The message is too large for the mailbox.

• The message mailbox is full of messages.

• The system is unable to allocate memory for the message.

• The caller lacks privilege to write to the mailbox.

input

output

Registers

R3

R4

R5

Fields

UCB$W_UNIT

UCB$L_DDB

DDB$T_NAME and
mailbox UCB fields

Contents

Address of mailbox UCB

Message type

Address of UCB

Contents

Device unit number

Address of device DDB

Device controller name

I PL at execution: caller's IPL (must be at or below IPL$_MAILBOX)

Registers

R0

R1-R4

Contents

SS$_N0RMAL, SS$_MBTOOSML (message too large
for mailbox), SS$_MBFULL (mailbox full of messages),
SS$_INSFMEM (memory allocation problem), or
SS$_N0PRIV (no owner write access)

Destroyed

C—44

Operating System Routines
EXE$SNDEVMSG

Fields Contents

I PL at exit: caller's IPL

C—45

Operating System Routines
EXE$WRITE

EXE$WRITE

Module: SYSQIOFDT
This device-independent FDT routine validates and prepares a user buffer
for a DMA write operation. EXE$WRITE performs the same actions as
EXE$MODIFY, and has the same input and output.

C—46

Operating System Routines
EXE$WRITECHK

EXE$WRITECHK

Module: SYSQIOFDT
EXE$WRITECHK checks that a process has read access to the pages in the
specified buffer.

If EXE$WRITECHK completes successfully, it writes the total byte count of
the transfer into the IRP (IRP$L_BCNT) and returns control to its caller.
If it determines that the process does not have read access to the buffer, it
transfers control to EXE$ABORTIO, which terminates the request with access
violation status.

input Registers Contents

Address of buffer

Size of transfer in bytes

Address of IRP

RO

R1

R3

IPL at execution: caller's IPL

output
RO

R1

R2

R3

Registers Contents

Buffer address (success)

Size of transfer in bytes

Cleared (indicates a write function)

Address of IRP

Contents

Contains transfer size in bytes

Fields

IRP$I_BCNT

IPL at exit: caller's IPL

C—47

Operating System Routines
EXE$WRITECHKR

EXE$WRITECHKR

Module: SYSQIOFDT
EXE$WRITECHKR performs the same functions as EXE$WRITECHK, except
that, if it fails, it calls the driver FDT routine back as a coroutine to clean up
$QIO bookkeeping.

See the description of error procedures in EXE$MODIFYLOCKR for more
information about coroutine cleanup.

C—48

Operating System Routines
EXE$WRITELOCK

EXE$WRITELOCK

Module: SYSQIOFDT
FDT routines call EXE$WRITELOCK to perform buffer processing for a DMA
write transfer.

EXE$WRITELOCK calls EXE$WRITECHK and MMG$IOLOCK, and performs
the following operations:

• Determines whether the caller has read access to the buffer.

• Locks the buffer's pages into memory. If a page fault occurs during this
process, the routine returns control to the $QIO system service, which
resubmits the request.

If EXE$WRITELOCK completes successfully, it returns control to its caller. If
it fails, it transfers control to EXE$ABORTIO.

input Registers Contents

RO Starting address of I/O buffer

R1 Length of transfer in bytes

R3 Address of IRP

R4 Address of current PCB

R6 Address of CCB

Fields Contents

IPL at execution: caller's IPL (IPL$_ASTDEL)

Output Registers

RO

R1

R2

R3

Fields

IRP$I_SVAPTE

IRP$I_BCNT

IRP$V_FUNC (in
IRP$W_STS)

IPL at exit: caller's IPL

Contents

SS$_NORMAL

Address of PTE that maps the first page of the buffer

Destroyed

Address of IRP

Contents

Address of PTE that maps the first page of the buffer

Size of transfer in bytes

A value of 0 (indicating a write function)

C—49

Operating System Routines
EXE$WRITELOCKR

EXE$WRITELOCKR

Module: SYSQIOFDT
EXE$WRITELOCKR determines whether the process has read access to the
requested buffer pages and, if access is permitted, locks those pages into
memory.

EXE$WRITELOCKR performs the same functions as EXE$MODIFYLOCKR,
with the following exceptions:

• R2, on output, contains a zero to indicate a write function.

• IRP$M_FUNC (in IRP$W_FUNC) is clear (zero), indicating a write
function.

C-50

Operating System Routines
EXE$WRTMAILBOX

EXE$WRTMAILBOX

Module: MBDRIVER
Driver fork processes call EXE$WRTMAILBOX to send messages to mailboxes.

If it completes successfully, EXE$WRTMAILBOX returns success status to its
caller. If it fails, it returns an appropriate error status to its caller.

EXE$WRTMAILBOX can fail for any of the following reasons:

• The message is too large for the mailbox.

• The message mailbox is full of messages.

• The system is unable to allocate memory for the message.

• The caller lacks privilege to write to the mailbox.

input Registers

R3

R4

R5

Fields

Mailbox UCB fields

I PL at execution:

Contents

Size of message

Message address

Address of mailbox UCB

Contents

caller's IPL (must be at or below IPL$_MAILBOX)

output Registers

RO

R1-R2

Contents

SS$_NORMAL, SS$_MBTOOSML (message too large
for mailbox), SS$_MBFULL (mailbox full of messages),
SS$_INSFMEM (memory allocation problem), or
SS$_NOPRIV (no owner write access)

Destroyed

C—51

Operating System Routines
EXE$ZEROPARM

EXE$ZEROPARM

Module: SYSQIOFDT
This device-independent FDT routine clears the parameter field of the IRP
and calls EXE$QIODRVPKT. (For additional information, see Section 8.5.)

input Registers

R3

R4

R5

Contents

Address of IRP for the current I/O request

Address of current PCB

Address of UCB of the device assigned to the user-
specified process I/O channel

R6 Address of CCB that describes the user-specified
process I/O channel

R7

R8

AP

Bit number of the user-specified l/O-function code

Address of FDT entry

Address of first function-dependent parameter specified
in the user's request

Fields Contents

IPL at execution: caller's IPL

output Registers Contents

Fields

IRP$I_MEDIA

Contents

0

IPL at exit: caller's IPL

C—52

Operating System Routines
IOC$ALOUBAMAP(N)

IOC$ALOUBAMAP(N)

Module: IOSUBNPAG
IOC$ALOUBAMAP and IOC$ALOUBAMAPN both search the mapping
register bit map in the ADP to allocate a contiguous set of mapping registers
to a driver fork process.

If mapping registers are already permanently allocated to the controller,
these routines exit successfully without allocating any mapping registers.
Otherwise, they search the mapping register bit map for the required number
of contiguous mapping registers, call IOC$ALTUBAMAP, and exit with an
RSB instruction.

IOC$ALOUBAMAP calculates the number of needed mapping registers
by using the values contained in UCB$W_BCNT and UCB$W_BOFF;
it automatically allocates an extra mapping register to be set invalid
by IOC$LOADUBAMAP to prevent a wild block transfer. If you use
IOC$ALOUBAMAPN, you must specify the number of mapping registers
you wish to allocate in R3. Be sure to include the extra mapping register in
this value.

input Registers

R3

R5

Fields

UCB$W_BCNT

UCB$W_BOFF

UCB$L_CRB

CRB$L_INTD+
VEC$I_ADP

VEC$V_MAPLOCK
(in CRB$L_INTD+
VEC$W_MAPREG)

ADP$W_MRNREGARY,
ADP$W_MRFREGARY

Contents

Number of mapping registers to allocate (if the called
routine is IOCSALOUBAMAPN)

Address of UCB

Contents

Transfer byte count (if entry is IOC$ALOUBAMAP)

Byte offset in page (if entry is IOCSALOUBAMAP)

Address of CRB

Address of device's ADP

Bit that indicates whether mapping registers are
permanently allocated to this controller

Determine which mapping registers are available

IPL at execution: caller's IPL

output Registers

RO

R1-R2

Contents

1 (success) or 0 (insufficient contiguous mapping
registers)

Destroyed

C—53

Operating System Routines
IOC$ALOUBAMAP(N)

Fields Contents

CRB$L_INTD+ Number of mapping registers allocated
VEC$B_NUMREG

CRB$I_INTD+ Starting mapping register number
VEC$W_MAPREG

ADP$W_MRNREGARY, Bits for allocated mapping registers set to zero.
ADP$W_MRFREGARY

IPL at exit: caller's IPL

C—54

Operating System Routines
IOC$APPLYECC

IOC$APPLYECC
Module: IOSUBRAMS
Disk drivers call IOC$APPLYECC to apply an ECC correction to data
transferred from a device into memory. IOC$APPLYECC corrects the data
by performing an exclusive-OR operation on the data and a correction
pattern from the UCB. IOC$APPLYECC also sets a UCB bit (UCB$V_ECC in
UCB$W_DEVSTS) to indicate that it has made an ECC correction.

input

output

Registers

RO

R5

Fields

UCB$W_BCNT

UCB$W_EC1

UCB$W_EC2

UCB$L_SVPN

UCB$I_SVAPTE

Contents

Number of bytes of data that have been transferred,
not including the block to be corrected; this must be a
multiple of 512 bytes

Address of UCB

Contents

Length of transfer in bytes

Starting bit number of the error burst

Exclusive OR correction pattern

Address of system PTE for a page that is available for
use by driver

System virtual address of PTE that maps the transfer

IPL at execution: caller's IPL

Registers Contents

R0-R2 Destroyed

Fields Contents

UCB$V_ECC (in Set to 1 to show that an ECC correction was made
UCB$W_DEVSTS)

IPL at exit: caller's IPL

C—55

Operating System Routines
IOC$CANCELIO

IOC$CANCELIO
Module: IOSUBNPAG
This device-independent cancel-I/O routine sets a cancel-I/O bit in the
UCB (UCB$V_CANCEL in UCB$L_STS) if the IRP in process on the device
originates from the current process on the specified channel and the unit is
busy.

input

output

Registers

R2

R3

R4

R5

Fields

IRP$I_PID

IRP$W_CHAN

PCB$I_PID

UCB$V_BSY

Contents

Channel index number

Address of IRP

Address of current PCB

Address of UCB

Contents

Process identification of the process that queued the I/O
request

Channel index number

Process identification of the process that requested
cancellation

Device busy flag (in UCB$I_STS)

IPL at execution: caller's IPL

Registers Contents

Fields Contents

UCB$V_CANCEL (in Set if I/O request should be canceled
UCB$L_STS)

IPL at exit: caller's IPL

C—56

Operating System Routines
IOC$DIAGBUFILL

IOC$DIAGBUFILL

Module: IOSUBNPAG
Driver fork processes call IOC$DIAGBUFILL to fill a diagnostic buffer, if the
$QIO request specifies such a buffer.

IOC$DIAGBUFILL saves the system time and final error count in the
diagnostic buffer. It then calls the driver register-dumping routine which
fills the remainder of the buffer, and exits with an RSB instruction.

input Registers

R4

R5

Fields

UCB$L_IRP

IRP$V_DIAGBUF (in
IRP$W_STS)

IRP$L_DIAGBUF

UCB$B_ERTCNT

UCB$L_DDB

DDB$L_DDT

DDT$L_REGDUMP

EXE$GQ_SYSTIME

DDT$L_REGDUMP

Contents

Address of device's CSR

Address of UCB

Contents

Address of current IRP

Determines whether diagnostic buffer is present; this bit
is set if one exists.

Address of diagnostic buffer, if one is present

Final error retry count

Address of DDB

Address of DDT

Address of driver register-dumping routine

Current system time (time at I/O request completion)

Address of driver register-dumping routine

IPL at execution: caller's IPL

output Registers Contents

R0-R1 Destroyed

R2 Address of DDT

R3 Address of IRP

R4 Device CSR register

R5 Address of UCB

Fields Contents

IPL at exit: caller's IPL

C—57

Operating System Routines
IOC$INITIATE

IOC$INITIATE
Module: IOSUBNPAG
IOC$INITIATE starts a driver fork process to process an IRP.

IOC$INITIATE writes the address of the IRP and its transfer parameters
into the UCB and clears the device status bits. If the $QIO system service
call specifies a diagnostic buffer, IOC$INITIATE writes the system time into
that buffer. It exits with a JMP instruction to the entry point of the driver's
start-I/O routine, as specified in the DDT.

input

output

Registers

R3

R5

Fields

Contents

Address of IRP

Address of UCB

Contents

IRP$I_SVAPTE

IRP$W_BOFF

IRP$I_BCNT

IRP$V_DIAGBUF (in
IRP$W_STS)

IRP$L_DIAGBUF

EXE$GQ_SYSTIME

UCB$L_DDB

UCB$L_DDT

DDT$L_START

Address of system buffer (buffered I/O) or address of
PTE that maps process buffer (direct I/O)

Byte offset of start of buffer

Size in bytes of transfer

Determines whether a diagnostic buffer is present. This
field is set if one exists.

Address of diagnostic buffer, if one is present

Current system time (when I/O processing began)

Address of DDB

Address of DDT

Address of driver start-I/O routine

I PL at execution: caller's IPL

Registers

R0-R1

Fields

UCB$I_IRP

UCB$L_SVAPTE

UCB$W_BOFF

UCB$W_BCNT

UCB$V_CANCEL (in
UCB$I_STS)

UCB$V_TIMOUT (in
UCB$I_STS)

Diagnostic buffer

Contents

Destroyed

Contents

Address of IRP

IRP$L_SVAPTE

IRP$W_BOFF

IRP$L_BCNT (low-order word)

0

0

Current system time (first quadword)

IPL at exit: caller's IPL

C—58

Operating System Routines
IOC$IOPOST

IOC$IOPOST

Module: IOCIOPOST
This interrupt-servicing routine processes IRPs in an I/O postprocessing
queue and gains control when the processor grants a software interrupt at
IPL$_IOPOST. When the postprocessing queue is empty, IOC$IOPOST
dismisses the interrupt with an REI instruction.

IOC$IOPOST performs several discrete tasks to complete either a direct or
buffered I/O request:

• For a bujfered-l/O request, it copies data from the system buffer to the
process buffer and releases the system buffer to nonpaged pool.

• For a direct-I/O request, it unlocks those process buffer pages that were
locked for the I/O transfer. (If an IRPE exists, the unlocked pages include
any defined in the IRPE area descriptors.)

IOC$IOPOST performs the following tasks for both direct and buffered I/O
requests:

• Adjusts direct-I/O or buffer-I/O quota use.

• Sets an event flag if one was specified in the $QIO system service call.

• Copies I/O completion status from the IRP to the process' I/O-status
block (if one was specified in the $QIO system service call).

• Queues a user mode AST (if specified) to the process.

• Copies the diagnostic buffer (if specified) from system to process space
and releases the system buffer.

• Deallocates the IRP and any IRPEs.

Note that many of these operations are performed by the special kernel-mode
AST IOC$IOPOST queues to the process.

input Registers Contents

Fields

IOC$GI_PSFL

Contents

Head of the I/O postprocessing queue. This routine
uses this field to locate fields in the IRP.

IRP$I_PID Process identification of the process that initiated the
I/O request. This routine uses this field to locate the
PCB.

IPL at execution: IPL$_IOPOST, IPL$_ASTDEL

C—59

Operating System Routines
IOC$LOADMBAMAP

IOC$LOADMBAMAP

Module: LOADMREG
Driver fork processes for DMA transfers call IOC$LOADMBAMAP to load the
MASSBUS adapter mapping registers required by the current transfer with a
page-frame number.

IOC$LOADMBAMAP also loads the transfer size into the MASSBUS
adapter's byte count register (MBA$L_BCR) and the byte offset of the
transfer into the MASSBUS adapter's virtual address register (MBA$L_VAR).
It confirms that enough mapping registers have been allocated and sets the
last mapping register invalid to stop a wild transfer.

input

output

Registers

R4

R5

Fields

UCB$W_B0FF

UCB$W_BCNT

UCB$L_SVAPTE

Contents

Address of MBA configuration register (MBA$I_CSR)

Address of UCB

Contents

Offset to the first byte in the first page of the transfer

Number of bytes in the transfer

Address of PTE for the first page of the transfer

Registers Contents

R0-R2 Destroyed

Fields Contents

Allocated mapping
registers

IPL at exit: caller's IPL

C—60

Operating System Routines
IOC$LOADUBAMAP(A)

IOC$LOADUBAMAP(A)

Module: LOADMREG
Driver fork processes for DMA transfers call IOC$LOADUBAMAP or
IOC$LOADUBAMAPA to load the UNIBUS or Micro VAX II mapping registers
required by the current transfer with a page-frame number, the data-path
number, and, optionally, the byte-offset bit and longword-access-enable bit.

IOC$LOADUBAMAP and IOC$LOADUBAMAPA confirm that sufficient
mapping registers and a data path have been previously allocated. In
addition, they set the valid bit of all allocated mapping registers except
the last, which remains clear to prevent a runaway block transfer.

input Registers

R5

Fields

UCB$W_BOFF

UCB$W_BCNT

UCB$L_CRB

CRB$L_INTD+
VEC$B_DAT APATH

VEC$V_LWAE
(in CRB$L_INTD+
VEC$B_DAT APATH)

CRB$L_INTD+
VEC$B_NUMREG

CRB$L_INTD+
VEC$I_ADP

UBA$L_MAP

UCB$I_SVAPTE

Contents

Address of UCB

Contents

Offset to the first byte in the first page of the transfer

Number of bytes in the transfer

Address of controller's CRB

Number of the data path

Determines length of buffering. Set if longword buffering
used (instead of quadword buffering)

Number of mapping registers allocated

Address of ADP

Address of first UNIBUS or MicroVAX II mapping
register

Address of PTE for the first page of the transfer

output Registers

R0-R2

Fields

Contents

Destroyed

Contents

Allocated mapping Byte offset is set for entry IOCSLOADUBAMAP (never
registers set for IOC$LOADUBAMAPA)

IPL at exit: caller's IPL

C—61

Operating System Routines
IOC$MOVFRUSER

IOC$MOVFRUSER

Module: BUFFERCTL
IOC$MOVFRUSER moves a string from a user buffer to a system buffer.

To use this routine, you must first set bit DPT$M_SVP in field
DPT$B_FLAGS in the driver's prologue table. (See the description of the
DPTAB macro in Appendix B.) This bit causes the system to allocate a system
page-table entry (PTE) to the driver. If this PTE is not allocated to the driver,
this routine will cause an access violation when it attempts to refer to the
location addressed by the contents of the field UCB$L_SVAPTE.

input
R1

R2

R5

Registers

Fields

Contents

Address of driver's buffer

The number of bytes to move

Address of UCB

Contents

IPL at execution: caller's IPL (must be called at fork IPL)

output IPL at exit: caller's IPL (fork IPL)

C—62

Operating System Routines
IOC$MOVFRUSER2

IOC$MOVFRUSER2

Module: BUFFERCTL
IOC$MOVFRUSER2 moves a string from a user buffer to a system buffer.

IOC$MOVFRUSER2 is useful for moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary. To
begin, the driver calls IOC$MOVFRUSER. For each subsequent piece, the
driver calls this routine.

To use IOC$MOVFRUSER2, first set bit DPT$M_SVP in field DPT$B_FLAGS
in the DPT. (See the description of the DPTAB macro in Appendix B.) This
bit causes the system to allocate a system page-table entry (PTE) to the driver.
If this PTE is not allocated to the driver, this routine will cause an access
violation when it attempts to refer to the location addressed by the contents
of the field UCB$L_SVAPTE.

input Registers

RO

R1

R2

R5

Fields

Contents

Address of first byte of the string to be moved

Address of driver's buffer

Number of bytes to move

Address of UCB

Contents

IPL at execution: caller's IPL (must be called at fork IPL)

output IPL at exit: caller's IPL (fork IPL)

C—63

Operating System Routines
IOC$MOVTOUSER

IOC$MOVTOUSER

Module: BUFFERCTL
IOC$MOVTOUSER moves a string from a system buffer to a user buffer.

To use IOC$MOVTOUSER, first set bit DPT$M_SVP in field DPT$B_FLAGS
in the DPT. (See the description of the DPTAB macro in Appendix B.) This
bit causes the system to allocate a system page-table entry (PTE) to the driver.
If this PTE is not allocated to the driver, this routine will cause an access
violation when it attempts to refer to the location addressed by the contents
of the field UCB$L_SVAPTE.

input
R1

R2

R5

Fields

Registers Contents

Address of driver's buffer

Number of bytes to move

Address of UCB

Contents

I PL at execution: caller's IPL (must be called at fork IPL)

output IPL at exit: caller's IPL (fork IPL)

C—64

Operating System Routines
IOC$MOVTOUSER2

IOC$MOVTOUSER2

Module: BUFFERCTL
IOC$MOVTOUSER2 moves a string from a system buffer to a user buffer.

IOC$MOVTOUSER2 is useful when moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary. To
begin, the driver calls IOC$MOVTOUSER. For each subsequent piece, the
driver calls this routine.

To use IOC$MOVTOUSER2, first set bit DPT$M_SVP in field
DPT$B__FLAGS in the driver's prologue table. (See the description of the
DPTAB macro in Appendix B.) This bit causes the system to allocate a system
page-table entry (PTE) to the driver. If this PTE is not allocated to the driver,
this routine will cause an access violation when it attempts to refer to the
location addressed by the contents of the field UCB$L_SVAPTE.

input

output

Registers

R1

R2

R5

Fields

Contents

Address of driver's buffer

Number of bytes to move

Address of UCB

Contents

IPL at execution: caller's IPL (must be called at fork IPL)

I PL at exit: caller's IPL (fork IPL)

C—65

Operating System Routines
IOC$PURGDATAP

IOC$PURGDATAP

Module: LIOSUB
All device drivers that support DMA transfers, including those on processors
that have no buffered data paths (such as the Micro VAX II and Micro VAX I),

call IOC$PURGDATAP after a data transfer.2

IOC$PURGDATAP performs the following tasks:

1 Obtains the start of adapter register space using the following chain of
pointers:

UCB$L_CRB — CRB$L_INTD+VEC$L_ADP ADP$L_CSR

2 Extracts the caller's data path number (buffered or direct) from the CRB.

3 Purges the data path if it is a buffered data path.

4 Stores the contents of the data path register in Rl.

5 Clears any purge errors in the data path register.

6 Places the appropriate return status in RO.

7 Determines the base of UNIBUS or Micro VAX II bus mapping registers
and writes the value into R2.

IOC$PURGDATAP alters RO through R3, but preserves all other registers.

input Registers

R5

Fields

Contents

Address of UCB

Contents

IPL at execution: caller's IPL

output Registers Contents

RO Low bit set (success) Low bit clear (failure)

Rl Contents of data path after purge (for register dump
routine)

R2 Address of start of the I/O bus mapping registers (for
the register-dumping routine)

R3 Address of CRB

Fields Contents

IPL at exit: caller's IPL

2 A purge of data path 0 is legal and always results in success status.

C—66

Operating System Routines
IOC$RELCHAN

IOC$RELCHAN

Module: IOSUBNPAG
A driver fork process calls IOC$RELCHAN to release a controller data
channel assigned to a device. If the channel wait queue contains waiting fork
processes, IOC$RELCHAN dequeues a process, assigns the channel to that
process, restores R3 through R5, and reactivates the suspended process.

input

output

Registers

R5

Fields

UCB$L_CRB

CRB$I_LINK

CRB$V_BSY (in
CRB$B_MASK)

CRB$L_INTD+
VEC$I_IDB

IDB$L_OWNER

CRB$L_WQFL

Contents

Address of UCB

Contents

Address of CRB

Address of secondary CRB

Set if the channel is busy

Address of IDB

Address of UCB of channel owner

Head of queue of waiting UCBs

IPL at execution: caller's IPL

Registers

R0-R2

Fields

IDB$I_OWNER

CRB$V_BSY

Contents

Destroyed

Contents

Clear (if no driver is waiting for the channel)

Clear (if no driver is waiting for the channel)

IPL at exit: caller's IPL

C—67

Operating System Routines
IOC$RELDATAP

IOC$RELDATAP

Module: IOSUBNPAG
Driver fork processes call this IOC$RELDATAP to release a UNIBUS adapter
buffered data path. It should not be called unless the driver owns a buffered
data path. However, IOC$RELDATAP performs no operation if a data path is
permanently allocated to the controller.

If the data path wait queue contains waiting fork processes, IOC$RELDATAP
dequeues a process, allocates the data path to that process, restores R3
through R5, and reactivates the suspended process. If the bit-map is
corrupted, IOC$RELDATAP signals a bugcheck with the message code
INCONSTATE. If it completes successfully, it exits with an RSB instruction.

input Registers

R5

Fields

UCB$I_CRB

CRB$L_INTD+
VEC$I_ADP

CRB$L_INTD+
VEC$B_DAT APATH

VEC$V_PATHLOCK

ADP$L_DPQFL

Contents

Address of UCB

Contents

Address of CRB

Address of ADP

Data path specifier

Set to 1 to indicate that the data path is permanently
allocated to the controller

Head of the adapter data path wait queue

IPL at execution: caller's IPL

output Registers

R0-R2

Fields

Contents

Destroyed

Contents

ADP$W_DPBITMAP Data path is set to free if not allocated to another driver
fork process

Bits 0 through 4 Clear
(in CRB$L_INTD+
VEC$B_DAT APATH)

IPL at exit: caller's IPL

C—68

Operating System Routines
IOC$RELMAPREG

IOC$RELMAPREG

Module: IOSUBNPAG
Driver fork processes call IOC$RELMAPREG to release a set of UNIBUS
adapter or Micro VAX II mapping registers. This routine performs no
operation if mapping registers are permanently allocated to the controller.
IOC$RELMAPREG assumes that the caller is the current owner of the
controller data channel.

If the mapping-register-wait queue contains waiting fork processes,
IOC$RELMAPREG dequeues a process and attempts to allocate the required
set of mapping registers. If successful, it restores R3 through R5 and
reactivates the suspended process. If it fails, it reinserts the fork process
in the mapping-register-wait queue and dequeues the next process.

IOC$RELMAPREG calls IOC$ALTUBAMAP and IOC$ALOUBAMAP and
exits with an RSB instruction.

input Registers

R5

Fields

UCB$I_CRB

VEC$V_MAPLOCK
(in CRB$L_INTD+
VEC$W_MAPREG)

CRB$L_INTD+
VEC$I_ADP

CRB$L_INTD+
VEC$W_MAPREG

CRB$L_INTD+
VEC$B_NUMREG

ADP$L_MRQFL

Contents

Address of UCB

Contents

Address of CRB

If set, indicates that mapping registers are permanently
allocated to the controller

Address of ADP

Number of the starting mapping register

Number of mapping registers to release

Head of the queue of waiting drivers

IPL at execution: caller's IPL

output Registers Contents

R0-R2 Destroyed

Fields Contents

ADP$W_MRNREGARY, Mapping registers set to free
ADP$W_MRFREGARY

IPL at exit: caller's IPL

C—69

Operating System Routines
IOC$RELSCHAN

IOC$RELSCHAN

Module: IOSUBNPAG
IOC$RELSCHAN releases a secondary controller's data channel: that is, the
MASSBUS adapter's controller data channel. For more information, refer to
Appendix G.

IOC$RELSCHAN has the same inputs and outputs as IOC$RELCHAN.

C—70

Operating System Routines
IOC$REQCOM

IOC$REQCOM

Module: IOSUBNPAG
A driver fork process calls this routine after a device I/O operation and all
device-dependent processing of an I/O request is complete.

IOC$REQCOM performs the following tasks:

1 Writes RO and R1 into IRP$L_IOSTl and IRP$L_IOST2.

2 Inserts the IRP into the I/O postprocessing queue headed by
IOC$GL _PSBL.

3 Writes final status into the error message buffer, if error logging has been
specified, and calls ERL$RELEASEMB.

4 Dequeues an IRP from the pending I/O queue (at UCB$L_IOQFL) and
calls IOC$INITIATE. If the queue is empty, it clears the unit busy bit
(UCB$V_BSY) to indicate that the device is idle.

5 Exits by branching to IOC$RELCHAN.

input Registers

RO

R1

R5

Fields

UCB$V_ERLOGIP (in
UCB$I_STS)

UCB$I_STS

UCB$B_ERTCNT

UCB$L_EMB

UCB$I_IRP

Contents

First longword of I/O status

Second longword of I/O status

Address of UCB

Contents

Set or clear; determines whether error logging should be
performed

Final device status

Final error counters

Address of error log message buffer

Address of IRP

IPL at execution: caller's IPL

output Registers

R2-R3

All other registers

Contents

Destroyed

Destroyed if IOCSINITIATE is called

C—71

Operating System Routines
IOC$REQCOM

Fields

IRP$I_MEDIA

IRP$L_MEDIA+4

EMB$Q_IOSB

UCB$L_OPCNT

EMB$B_ERTCNT

EMB$B_ERTCNT+1

EMB$W_DV_STS

UCB$V_BSY

I PL at exit: caller's IPL

Contents

I/O status (RO)

I/O status (R1)

I/O status (RO and R1)

Increased by 1

UCB$B_ERTCNT

UCB$W_ERRCNT

UCB$W_STS

Clear

C—72

Operating System Routines
IOC$REQDATAP(NW)

IOC$REQDAT AP(NW)

Module: IOSUBNPAG
Driver fork processes call IOC$REQDATAP and IOCSREQDATAPNW to
request a UNIBUS adapter buffered data path for a DMA transfer. These
routines perform no operation if a data path is permanently allocated to the
controller.

IOC$REQDATAP and IOCSREQDATAPNW locate a free data path and write
the data path number in the CRB. If IOC$REQDATAP cannot allocate a data
path, it saves process context by placing the contents of R3, R4 and the PC
in the UCB fork block and R5 in the data path wait queue (ADP$L_DPQBL).
IOCSREQDATAPNW, by contrast, does not suspend the process to wait for
the data path.

input Registers

R5

O(SP)

4(SP)

Fields

UCB$I_CRB

VEC$V_PATHLOCK
(in CRB$L_INTD+
VEC$B_D AT APATH)

CRB$L_INTD+
VEC$I_ADP

ADP$W_DPBITMAP

Contents

Address of UCB

Caller's return address

Return address of caller's caller

Contents

Address of CRB

If set, indicates that the data path already is allocated

Address of ADP

Indicates what data paths are available

IPL at execution: caller's IPL

output Registers

RO

Contents

SS$_NORMAL

Fields

CRB$L_INTD+
VEC$B_DAT APATH

ADP$W_DPBITMAP

Contents

Data path number

Bit for allocated data path clear

IPL at exit: caller's IPL

C—73

Operating System Routines
IOC$REQMAPREG

IOC$REQMAPREG

Module: IOSUBNPAG
Driver fork processes call IOC$REQMAPREG to request a set of
UNIBUS adapter or Micro VAX II mapping registers for a DMA transfer.
IOC$REQMAPREG performs no operation if mapping registers are
permanently allocated to the controller.

IOC$REQMAPREG locates the required number of mapping registers and
writes the number of registers and the number of the first register into the
CRB. If sufficient mapping registers are not available, IOC$REQMAPREG
suspends the process by saving the following context:

• R3 and R4 in UCB$L_FR3 and UCB$L_FR4, respectively

• PC in UCB$L_FPC

• R5 in the mapping-register-wait queue (ADP$L _MRQBL)

input Registers

R5

O(SP)

4(SP)

Fields

UCB$W_BCNT

UCB$W_BOFF

UCB$I_CRB

CRB$L_INTD+
VEC$I_ADP

VEC$V_MAPLOCK
(in CRB$L_INTD+
VEC$W_MAPREG)

ADP$W_MRNREGARY,
ADP$W_MRFREGARY

Contents

Address of UCB

Return address of caller

Return address of caller's caller

Contents

Transfer byte count

Byte offset into page of start of buffer

Address of CRB

Address of ADP

Determines status of map-lock bit

Adapter's mapping-register-allocation bit-map

IPL at execution: caller's IPL

output Registers

RO

R1-R2

Contents

SS$_NORMAL

Destroyed

C—74

Operating System Routines
IOC$REQMAPREG

Fields Contents

CRB$I_INTD+
VEC$W_MAPREG

CRB$L_INTD+
VEC$B_NUMREG

ADP$W_MRNREGARY,
ADP$W_MRFREGARY

The number of the first mapping register allocated

Number of mapping registers allocated

Allocated mapping registers

IPL After execution: caller's IPL

C—75

Operating System Routines
IOC$REQPCHANH

IOC$REQPCHANH

Module: IOSUBNPAG
Driver fork processes call IOC$REQPCHANH to request a channel on the
primary controller with high priority.

If the controller data channel is idle, IOC$REQPCHANH writes the UCB
address in the IDB and returns the CSR address in R4. If the channel is busy,
it suspends the driver fork process, saving its context as follows:

• R3 and R4 in UCB$L_FR3 and UCB$L_FR4, respectively

• The driver's return address (at 0(SP)) in UCB$L_FPC

• R5 in the device controller data channel wait queue (CRB$L_WQFL)

IOCSREQPCHANH exits by issuing an RSB instruction.

input

output

Registers

R5

O(SP)

4(SP)

Fields

UCB$I_CRB

CRB$L_LINK

CRB$L_INTD+
VEC$I_IDB

CRB$V_BSY in
CRB$B_MASK

IDB$L_CSR

Contents

Address of UCB

Return address of caller

Return address of caller's caller

Contents

Address of CRB

Address of secondary CRB

Address of IDB

Set if channel is busy

Address of device CSR

IPL at execution: caller's IPL

Registers

R0-R2

R4

Fields

IDB$L_OWNER

Contents

Destroyed

IDB$I_CSR

Contents

R5

IPL at exit: caller's IPL

C—76

Operating System Routines
IOC$REQPCHANL

IOC$REQPCHANL

Module: IOSUBNPAG
Driver fork processes call IOC$REQPCHANL to request a channel on the
primary controller with low priority. IOC$REQPCHANL performs in the
same manner as IOC$REQPCHANH, except that, if the driver must wait for
the channel, it places the UCB at the end of the channel wait queue.

C—77

Operating System Routines
IOC$REQSCHANH

IOC$REQSCHANH

Module: IOSUBNPAG
Driver fork processes call IOC$REQSCHANH to request a channel on the
secondary controller with high priority. The input to and output from
IOC$REQSCHANH are the same as that for IOC$REQPCHANH, except
that the secondary controller data channel is assigned.

C—78

Operating System Routines
IOC$REQSCHANL

IOC$REQSCHANL

Module: IOSUBNPAG
Driver fork processes call IOC$REQSCHANL to request a channel on the
secondary controller with low priority. The input to and output from
IOC$REQSCHANL are the same as that for IOC$REQPCHANH, except
that the secondary controller data channel is assigned.

C—79

Operating System Routines
IOC$RETURN

IOC$RETURN

Module: IOSUBNPAG
IOC$RETURN merely returns by issuing an RSB instruction. It has no input
requirements and produces no output.

C-80

Operating System Routines
IOC$VERIFYCHAN

IOC$VERIFYCHAN
Module: IOSUBPAGD
Drivers call IOC$VERIFYCHAN to validate a user-supplied channel number,
construct a channel index, and obtain the address of the CCB to which
the channel number points. Because IOC$VERIFYCHAN gains access to
information stored in user process virtual address space, it should only be
called when the user process is mapped.

input Registers

RO

Fields

CTL$GL _CCB ASE

IPL at execution:

Contents

Channel number

Contents

Base address of process CCB table

IPL$_ASTDEL or below

output Registers Contents

RO SS$_NORMAL, SS$_IVCHAN (invalid channel number),
or SS$_NOPRIV (no privilege to access specified
channel)

R1 Address of CCB

R2 Channel index number

Fields Contents

IPL at exit: caller's IPL

Operating System Routines
IOC$WFIKPCH

IOC$WFIKPCH

Module: IOSUBNPAG
Driver fork processes call IOC$WFIKPCH to suspend driver processing to
wait for an interrupt or device timeout while still retaining ownership of the
controller data channel.

IOC$WFIKPCH performs the following operations:

• Saves R3, R4, and the driver's return PC from the top of stack in the UCB
fork block.

• Sets UCB$V_INT to indicate an expected interrupt from the device unit.

• Sets UCB$V_TIM to indicate that timeouts are expected from the device
unit.3

• Clears UCB$V_TIMOUT to indicate that the unit has not timed out.

• Lowers IPL to the IPL saved on the top of the stack (generally placed
there by an invocation of the DSBINT macro prior to the setting of device
registers).

• Returns to the caller of the driver fork process (that is, its caller's caller).

In the course of processing, IOC$WFIKPCH explicitly removes 0(SP) through
11 (SP) from the stack and implicitly removes 12(SP) through 15(SP) by
exiting with an RSB instruction.

input

output

Registers

R5

O(SP)

4(SP)

8(SP)

12(SP)

Fields

EXE$GL_ABSTIM

Contents

Address of UCB

Address following the JSB to IOCSWFIKPCH

Timeout value in seconds

IPL to which to lower before returning to the caller's
caller

Return address of caller's caller

Contents

Absolute time; used to compute time at which the
device times out

IPL at execution: Fork or device IPL (caller's IPL)

Registers Contents

^ The two bytes following the JSB to IOCSWFIKPCH contain the relative offset to the timeout-handling routine.

C—82

Operating System Routines
IOC$WFIKPCH

Contents

Sum of timeout value and EXE$GL_ABSTIM

Set to indicate that interrupts are expected on the device

Set to indicate that timeouts are expected on the device

Cleared to indicate that unit is not timed out

R3

R4

0(SP)+2

IPL at exit: IPL specified in 8(SP)

Fields

UCB$I_DUETIM

UCB$V_INT

UCB$V_TIM

UCB$V_TIMOUT

UCB$L_FR3

UCB$I_FR4

UCB$I—FPC

C—83

Operating System Routines
IOC$WFIRLCH

IOC$WFIRLCH

Module: IOSUBNPAG
Driver fork processes call IOC$WFIRLCH to suspend driver processing to
wait for an interrupt or device timeout, but first releasing the controller data
channel. The input to and output from IOC$WFIRLCH is the same as that for
IOC$WFIKPCH, except that IOC$WFIRLCH exits to IOC$RELCHAN, which
releases the controller data channel.

C—84

Operating System Routines
MMG$UNLOCK

MMG$UNLOCK

Module: IOLOCK
Drivers rarely use MMG$UNLOCK. At the completion of a direct-I/O
transfer, IOC$IOPOST automatically unlocks the pages of both the user
buffer and any additional buffers specified in region 1 (if defined) and region
2 (if defined) for all the IRPEs linked to the packet undergoing completion
processing.

However, driver FDT routines do use MMG$UNLOCK when an attempt
to lock IRPE buffers for a direct-I/O transfer fails. The buffer-locking
routines called by such a driver—EXE$READLOCKR, EXE$WRITELOCKR,
and EXE$MODIFYLOCKR—all perform coroutine calls back to the driver
if an error occurs. When called as a coroutine, the driver must unlock all
previously locked regions using MMG$UNLOCK, and deallocate the IRPE
(using EXE$DEANONPAGED), before returning to the buffer-locking routine.

input

output

Registers

R1

R3

Fields

Contents

Number of buffer pages to unlock

System virtual address of PTE for the first buffer page

Contents

I PL at execution: IPL$_SYNCH

Registers

Fields

Contents

Contents

IPL at exit: caller's IPL

C—85

D Device Driver Entry Points

This appendix describes the entry points the VAX/VMS operating system uses
to activate a device driver.

D.1 Alternate Start-1 /O Routine

The alternate start-I/O routine is an optional entry point present only
in drivers that, in some circumstances, initiate multiple, concurrent I/O
operations on a device. Drivers that use an alternate start-I/O routine
synchronize their access to the UCB and, thus, to the device.

How to Specify This Entry Point

Specify the name of the alternate start-I/O routine in the altstart argument
of the DDTAB macro. This macro places the address of the routine into the
DDT.

Input

Registers Contents

R3 Address of IRP

R5 Address of UCB

Output

The output of an alternate start-I/O routine is device activity.

Use of Registers

The contents of all registers except RO through R5 must be preserved.

Context

An alternate start-I/O routine gains control of the processor in fork process
context. Consequently, it can access only those virtual addresses that are in
system (SO) space.

I PL on Entry and Exit

Alternate start-I/O routines are called at fork IPL.

Which VAX/VMS Routines Use This Entry Point

The routine EXE$ALTQUEPKT, in module SYSQIOREQ, calls a driver's
alternate start-I/O routine.

D—1

Device Driver Entry Points

D.2 Cancel-I/O Routine

VAX/VMS calls a driver's cancel-I/O routine when the user calls the
$CANCEL system service to cancel all requests for I/O activity on a channel.
It performs the following functions:

• Determine whether an IRP associated with the cancellation request is
actively being processed. It usually does so by first checking the bit
UCB$V_BSY in the field UCB$L_STS to see if any request is being
processed by the device. If so, the cancel-I/O routine tests whether the
PID and channel number of the request being processed match the PID
and channel number specified in the cancel-I/O request.

• Cause to be completed (canceled) as quickly as possible all active I/O
requests on the specified channel that were made by the process that has
requested the cancellation.

The cancel-I/O routine usually accomplishes this by setting UCB$V_
CANCEL in the field UCB$L_STS. When the next interrupt or timeout
occurs for the device, the driver's start-I/O routine detects the presence of
an active but canceled I/O request by testing this bit and takes appropriate
action, such as completing the request without initiating any further device
activity.

How to Specify This Entry Point

Specify the name of the cancel-I/O routine in the cancel argument of the
DDTAB macro. This macro places the address of the routine into the DDT.

Input

Registers Contents

R2 Channel index number

R3 Address of IRP

R4 Address of PCB of the process for which the I/O request is being
canceled

R5 Address of UCB

R8 Code that stands for the caller of the cancel-I/O routine, one of
the following:

Code Meaning

CAN$C_CANCEL $CANCEL or $DALLOC system service

CAN$C_DASSGN $DASSGN system service

Output

The I/O requests on the specified channel are canceled, and the bit
UCB$V_CANCEL is set in the field UCB$L_STS.

Use of Registers

The driver's cancel-I/O routine can use RO through R3 freely. The contents of
any other register must be restored before the cancel-I/O routine relinquishes
control by means of an RSB instruction.

D—2

Device Driver Entry Points

Context

A cancel-I/O routine executes in kernel mode in process context.

I PL on Entry and Exit

A cancel-I/O routine is called at driver fork IPL.

Which VAX/VMS Routines Use This Entry Point

The $CANCEL, $DASSGN, and $DALLOC system services use this entry
point from modules SYSCANCEL, SYSDASSGN, and SYSDEVALC,
respectively.

D.3 Controller-Initialization Routine
A controller-initialization routine prepares a controller for operation. Some
controllers require initialization when the system's driver-loading routine
loads the driver and when the system is recovering from a power failure.

How to Specify This Entry Point

Specify the name of the controller-initialization routine by using the
DPT_STORE macro to place the address of the routine in the CRB, into the
field CRB$L _JNTD+VEC$L —INITIAL.

Input

The caller of the controller-initialization routine provides the following
information.

Registers Contents

R4 Address of device's CSR

R5 Address of IDB associated with the controller

R6 Address of DDB associated with the controller

R8 Address of controller's CRB

The System Generation Utility (SYSGEN) creates all the I/O data structures
associated with a device before calling the controller-initialization routine.

Output

Depending on the device, a controller-initialization routine performs any and
all of the following actions:

• Clear error-status bits in device registers.

• Enable controller interrupts.

• Store values in fields that are offset more than 256 bytes from the
beginning of the data structure and consequently cannot be reached
with the DPT—STORE macro.

• Allocate resources that must be permanently allocated to the controller.

• If the controller is dedicated to a single-unit device, such as a printer, fill
in IDB$L —OWNER and set the online bit (UCB$V_ONLINE in
UCB$L_STS).

D—3

Device Driver Entry Points

Use of Registers

A controller-initialization routine must preserve the contents of all registers
except RO, Rl, and R2. If the controller-initialization routine uses these
registers, it must save their contents first and then restore those contents
before returning control to the caller.

Context

Because a controller-initialization routine executes within system context, it
can refer to only those virtual addresses that reside in system (SO) space.

I PL on Entry and Exit

VAX/VMS calls a controller-initialization routine at IPL$_POWER. The
controller-initialization routine must not lower IPL.

Which VAX/VMS Routines Use This Entry Point

SYSGEN calls a driver's controller-initialization routine when processing
a CONNECT command. Also, VAX/VMS calls this routine if the device,
controller, processor, or adapter to which the device is connected experiences
a power failure.

D.4 Driver-Unloading Routine
A driver specifies a driver-unloading routine if there is any device-specific
work to do when the driver is unloaded and reloaded.

The driver-unloading routine may perform the following operations:

• Deallocate mapping registers permanently allocated to the device.

• Deallocate a buffered data path permanently allocated to the device.

• Return any allocated system buffers to nonpaged pool.

• Flush the attention AST queue.

How to Specify This Entry Point

Specify the address of the driver-unloading routine in unload argument of
the DPTAB macro.

Input

Registers Contents

R6 Address of DDT

RIO Address of DPT

Output

The driver-unloading routine exits with an RSB instruction.

If RO contains a code that indicates success (the low bit set), the System
Generation Utility (SYSGEN) interprets it as meaning it can reload the new
version of the driver.

D—4

If RO contains a failure code (low bit cleared), SYSGEN interprets that as
meaning it cannot reload the new version of the driver.

Device Driver Entry Points

D.5

Use of Registers

The driver-unloading routine can use any registers.

Context

The driver-unloading routine executes in process context.

I PL on Entry and Exit

SYSGEN calls a driver-unloading routine at IPL$_POWER. The driver¬
unloading routine must not change IPL.

Which VAX/VMS Routines Use This Entry Point

SYSGEN calls the driver-unloading routine, if it exists, when executing a
RELOAD command.

FDT Routines
FDT routines perform any device-dependent activities needed to prepare the
I/O database to process an I/O request. This request may or may not involve
the transfer of data.

How to Specify This Entry Point

Use the FUNCTAB macro to specify the set of FDT routines that preprocess
requests for I/O activity of a given type. Specify the names of the routines in
the order in which you want them to execute for each type of I/O operation.

Input

Registers Contents

RO Address of FDT routine being called

R3 Address of IRP

R4 Address of PCB of the requesting process

R5 Address of UCB of the device on which I/O activity is requested

R6 Address of CCB that describes the user-specified process-l/O
channel

R7 Number of the bit that specifies the code for the requested I/O
function

R8 Address of entry in the function-decision table that dispatched
control to this FDT routine

AP Address of first function-dependent argument (pi) specified in the
$QIO request

Outputs

No direct outputs are required; but control must either be returned to the
$QIO code by means of an RSB instruction, or passed, by means of a JMP
instruction, to a routine that queues the IRP or to a routine that finishes or
aborts the I/O request.

D—5

Device Driver Entry Points

Use of Registers

FDT routines must preserve the contents of R3 through R8, the AP, and the
FP.

Context

FDT routines execute in the context of the process that requested the I/O
activity. FDT routines must not lower IPL below IPL$_ASTDEL. If they
raise IPL, they must lower it to IPL$_ASTDEL before passing control to any
other code. If an FDT routine alters the stack, it must restore the stack before
returning control to the caller of the routine.

IPL on Entry and Exit

FDT routines are called at IPL$__ASTDEL and must exit at IPL$__ASTDEL.

Which VAX/VMS Routines Use This Entry Point

The $QIO system service calls an FDT routine from the executive module
SYSQIOREQ.

Exiting Mechanisms

The way in which FDT routines exit depends on what I/O activity is
requested. The choices are listed below.

For each function a device supports, a set of FDT routines must provide
preprocessing of requests for that function. Except for the last FDT routine in
such a set, each routine must return control to its caller by means of in RSB
instruction. The last must exit by means of one of the routines listed below,
not by means of an RSB instruction.

Exit Mechanism Function

EXE$ABORTIO Aborts an I/O request and returns to the caller of the $QIO
system service, as status information, the contents of RO

EXE$ALTQUEPKT Queues an IRP to the driver's alternate entry point without
checking the status of the device

EXESFINISHIO Finishes the I/O processing, returning a quadword of
status information to the caller of the $QIO system service.
(EXESFINISHIO takes the status information from RO and
R1 and returns it in the IOSB specified in the call to $QIO.)

EXE$FINISHIOC Finishes the I/O processing, returning a longword of status
information to the caller of the $QIO system service.
(EXESFINISHIOC takes the status information from RO and
returns it in the IOSB specified in the call to $QIO, clearing
the second longword of the IOSB.)

EXESQIODRVPKT Queues an IRP to the pending I/O queue if the device is
busy, or starts I/O activity if the device is idle

RSB Returns control to the caller of the routine, that being the
FDT-processing loop of the $QIO system service

D—6

Device Driver Entry Points

D.6 Interrupt-Servicing Routine

An interrupt-servicing routine processes interrupts generated by the device.
The interrupts can signal the completion of an I/O operation or an error.
UNIBUS and Q22 bus devices require an interrupt-servicing routine for each
UNIBUS or Q22 bus interrupt vector the device has.

Tape devices on the MASSBUS require an interrupt-servicing routine that
interrogates the tape formatter (the controller) to determine which drive needs
attention and if the interrupt is unsolicited.

Disk devices on the MASSBUS use an interrupt-servicing routine provided by
VAX/VMS and do not need to provide an interrupt-servicing routine.

An interrupt-servicing routine performs the following functions:

1 Determine whether the interrupt is expected

2 Process or dismiss unexpected interrupts

3 Activate the suspended driver so it can process expected interrupts

For MASSBUS devices, the interrupt-servicing routine supplied with
VAX/VMS provides these functions.

How to Specify This Entry Point

Use the DPT_STORE macro to place the address of the interrupt-servicing
routine into the field CRB$L_INTD+4.

If the device has two different interrupts, use the DPT_STORE macro to
specify the name of the second interrupt-servicing routine and to place the
address of that routine into the longword field CRB$L_INTD2+4 within the
CRB.

Input

When VAX/VMS invokes a driver's interrupt-servicing routine, the stack
contains the following data:

Stack Location Contents

O(SP) Address of longword that contains the address of the IDB

4(SP) to 24(SP) For UNIBUS and Q22 bus devices, the contents of RO
through R5 at the time of the interrupt; for MASSBUS

devices, the contents of R2 through R5 at the time of the
interrupt

28(SP) PC at the time of the interrupt

32(SP) PSL at the time of the interrupt

Output

Before an interrupt-servicing routine transfers control to the suspended driver,
it must restore the contents of R3 and R4 from the UCB. It then transfers
control to the address saved in UCB$L_FPC.

When it regains control (after the suspended driver forks), an interrupt¬
servicing routine removes the address of the pointer to the IDB from the top
of the stack and restores the registers VAX/VMS saved when dispatching
the interrupt (RO through R5 for UNIBUS and Q22 bus interrupt-servicing

D—7

Device Driver Entry Points

routines, R2 through R5 for MASSBUS interrupt-servicing routines). Finally,
an interrupt-servicing routine dismisses the interrupt with an REI instruction.

Use of Registers

If an interrupt-servicing routine user R6 through Rll, the AP, or the FP, it
must first save the contents of those registers, restoring their contents before
exiting by means of the REI instruction. MASSBUS drivers must also preserve
the contents of RO and Rl.

Context

At the execution of a driver's interrupt-servicing routine, the processor is
running in kernel mode on the interrupt stack. As a result, an interrupt¬
servicing routine can reference only those virtual addresses that reside in
system (SO) space.

IPL on Entry and Exit

The interrupt-servicing routine is called, executes, and returns at device IPL.

Which VAX/VMS Routines Use This Entry Point

The interrupt-servicing routine is called by the VAX/VMS interrupt-servicing
routines, the addresses of which are usually loaded into the ADP, the CRB, or
both for the interrupting device.

D.7 Register-Dumping Routine
The VAX/VMS error-logging and diagnostic-buffer-filling routines call the
register-dumping routine to copy the contents of a device's registers into an
error-log entry or the diagnostic buffer.

How to Specify This Entry Point

Specify the name of the register-dumping routine in the regdmp argument
of the DDTAB macro. This macro places the address of the routine into the
DDT.

Input

The register-dumping routine has the following inputs.

Registers Contents

RO Address of buffer into which a register-dumping routine copies the
contents of device registers

R4 Address of device's CSR

R5 Address of UCB

Output

The contents of the device's registers are copied into the buffer.

D—8

Device Driver Entry Points

Use of Registers

The register-dumping routine preserves the contents of all registers except RO
through R2. If it uses the stack, the register-dumping routine must restore the
stack before passing control to another routine, waiting for an interrupt, or
returning control to its caller.

Context

A register-dumping routine executes within the context of an interrupt¬
servicing routine or a fork process, using the kernel-mode stack. As a result,
it can refer only to those virtual addresses that reside in system (SO) space.

I PL on Entry and Exit

VAX/VMS calls a register-dumping routine at the same IPL at which the
driver called the VAX/VMS routine ERL$DEVICERR, ERL$DEVICTMO, or
IOC$DIAGBUFILL. A register-dumping routine must not change IPL.

Which VAX/VMS Routines Use This Entry Point

The routines ERL$DEVICERR and ERL$DEVICTMO in module ERRORLOG,
and IOC$DIAGBUFILL in module IOSUBNPAG call the register-dumping
routine.

D.8 Start-1/O Routine
The VAX/VMS routines IOC$REQCOM and IOC$INITIATE call a driver's
start-I/O routine. The start-I/O routine activates a device.

How to Specify This Entry Point

Specify the name of the start-I/O routine in the start argument of the DDTAB
macro. This macro places the address of the routine into the DDT.

Input

Registers Contents

R3 Address of IRP

R5 Address of UCB

VAX/VMS copies the following information from the current IRP into the
UCB fields listed below.

Fields Contents

UCB$W_BCNT Number of bytes to be transferred, copied from the
low-order word of IRP$L_BCNT

UCB$W_BOFF Offset from the beginning of the page of the first byte to
be transferred, copied from IRP$W_BOFF

UCB$L_SVAPTE System virtual address of first PTE that describes the
buffer, copied from IRP$L SVAPTE

Output

The output of a start-I/O routine is device activity.

D—9

Device Driver Entry Points

Use of Registers

The contents of all registers except RO, Rl, R2, and R4 must be preserved.

If the start-I/O routine uses the stack, it must restore the stack before
completing the request, waiting for an interrupt, or requesting system
resources.

Context

Because a start-I/O routine gains control of the processor in the context of a
fork process, it can refer to only those addresses that reside in system (SO)
space.

I PL on Entry and Exit

A start-I/O routine gains control of the processor, and relinquishes control, at
fork IPL. For many devices, the start-I/O routine raises IPL to IPL$_POWER
to check that a power failure has not occurred on the device. The start-I/O
routine initiates device activity at device IPL.

Which VAX/VMS Routines Use This Entry Point

The start-I/O routine is called by IOC$INITIATE and IOC$REQCOM in
module IOSUBNPAG.

D.9 Timeout-Handling Routine
A timeout-handling routine takes whatever action is necessary when a device
has not yet responded to a request for device activity and the time allowed
for a response has expired.

How to Specify This Entry Point

Specify the name of the timeout-handling routine in the excpt argument to
the WFIKPCH or the WFIRLCH macro.

Input

Registers Contents

R3 Contents of R3 when the last invocation of WFIKPCH or WFIRLCH
took place

R4 Contents of R4 when the last invocation of WFIKPCH or WFIRLCH
took place

R5 Address of UCB of the device

Output

There are no required outputs, but, depending on the characteristics of the
device, the timeout-handling routine might cancel or retry the current I/O
request, send a message to the operator, or take some other action.

Before calling a timeout-handling routine, VAX/VMS places the device in
a state in which no interrupt is expected (by clearing the bit UCB$V_INT
in field UCB$L_STS). If the requested interrupt occurs after this routine is
called, it will appear to be an unsolicited interrupt. Many drivers handle this
situation by disabling interrupts while the timeout-handling routine executes.

D—10

Device Driver Entry Points

Use of Registers

A timeout-handling routine can use RO, Rl, and R2 freely, but must preserve
the contents of all other registers.

If a timeout-handling routine uses the stack, it must restore the stack before
completing or canceling the current I/O request, waiting for an interrupt, or
returning control to its caller.

Context

Because a timeout-handling routine executes in the context of a fork process,
it can access only those virtual addresses that refer to system (SO) space.

I PL on Entry and Exit

A timeout-handling routine is called at device IPL. After taking whatever
device-specific action is necessary at device IPL, a timeout-handling routine
can lower IPL to fork IPL.

Which VAX/VMS Routines Use This Entry Point

The WFIKPCH and WFIRLCH macros use this entry point, but only when
the name of a timeout-handling routine is provided in their excpt argument.
These macros are used in the driver's start-I/O routine; thus, strictly speaking,
the driver itself is the only entity that uses this entry point.

Routines in the VAX/VMS module TIMESCHDL call the timeout-handling
routine at the request of the WFIKPCH and WFIRLCH macros.

D. 10 Unit-Delivery Routine
For controllers that can control a variable number of device units, the unit-
delivery routine determines which specific devices are present and available
for inclusion in the system's configuration.

The System Generation Utility (SYSGEN) calls the unit-delivery routine once
for each unit the controller is capable of controlling. This value is specified in
the defunits argument to the DPTAB macro. %

How to Specify This Entry Point

Specify the name of the unit-delivery routine in the deliver argument to the
DPTAB macro.

Input

Registers Contents

R3 Address of IDB; 0 if none exists

R4 Address of device's CSR

R5 Number of unit that the unit-delivery routine must decide to
configure or not to configure

R6 Address of start of the UNIBUS adapter's I/O space

R7 Address of AUTOCONFIGURE command's configuration-control
block (ACF)

R8 Address of ADP

Device Driver Entry Points

Output

If bit 0 is set in RO, the unit should be configured; if it is cleared, the unit
should not be configured.

Use of Registers

The unit-delivery routine can use RO, Rl, and R2 freely, but must preserve
the contents of all other registers.

Context

The unit-delivery routine executes in the context of the process within which
SYSGEN executes.

I PL on Entry and Exit

The unit-delivery routine is called at IPL$_POWER, and must not lower IPL.

Which VAX/VMS Routines Use This Entry Point

SYSGEN's AUTOCONFIGURE command calls the unit-delivery routine.

D.11 Unit-Initialization Routine
A unit-initialization routine prepares a device for operation. In the case of a
device on a dedicated controller, the unit-initialization routine also initializes
the controller. The unit-initialization routine is called when the driver-loading
routine loads the driver and when the system is recovering from a power
failure.

How to Specify This Entry Point

You can specify a unit-initialization routine in two ways, either of which will
suffice for all but a few specific devices.2

• Use the DDTAB macro to specify the unit-initialization routine by
providing the name of the routine in the unitinit argument.

• Use the DPT_STORE macro to place the address of the unit-initialization
routine in the CRB, into field CRB$L_INTD+VEC$L_UNITINIT.

Input

The caller of unit-initialization routines provides the following information.

Registers Contents

R3 Address of primary CSR

R4 Address of secondary CSR, if it exists. (If it does not, the
contents of R4 are the same as those of R3.)

R5 Address of UCB

In addition, the System Generation Utility (SYSGEN) creates the I/O data
structures associated with a device before calling the unit-initialization
routine.

^ A MASSBUS device driver must specify the address of its unit-initialization routine in the DDT (using the unitinit argument to the DDTAB

macro as discussed in Section 7.2). UNIBUS and Q22 bus drivers can specify the address in either the DPT or DDT.

D—12

Device Driver Entry Points

Output

Depending on the device, a unit-initialization routine performs any or all of
the following tasks:

1 Clear error-status bits in device registers.

2 Enable controller interrupts.

3 Set the online bit (UCB$V_ONLINE in UCB$L_STS).

4 Store values in fields that are offset more than 256 bytes from the
beginning of the UCB and, consequently, cannot be reached with the
DPT_STORE macro.

5 Allocate resources that must be permanently allocated to the device or, for
some devices, the controller.

6 If the device has a dedicated controller, as some printers do, fill in
IDB$L —OWNER.

Use of Registers

A unit-initialization routine must preserve the contents of all registers except
RO, Rl, and R2. If the unit-initialization routine uses these registers, it must
save their contents first and then restore those contents before returning
control to the caller.

Context

Because VAX/VMS calls it in system context, a unit-initialization routine can
refer to only those virtual addresses that reside in system (SO) space.

I PL on Entry and Exit

VAX/VMS calls a unit-initialization routine at IPL$_POWER. A unit-
initialization routine must not lower IPL.

Which VAX/VMS Routines Use This Entry Point

SYSGEN calls a unit-initialization routine when processing a CONNECT
command. VAX/VMS calls a unit-initialization routine when the device, the
controller, the processor, or the adapter to which the device is connected
undergoes power failure recovery.

D.12 Unsolicited-Interrupt-Servicing Routine
For MASSBUS disks, VAX/VMS calls the unsolicited-interrupt-servicing
routine whenever a hardware event produces an interrupt that is not the
result of a driver's request. Examples of such events are disks being placed
on line or taken off line.

Only drivers of MASSBUS disks must provide unsolicited-interrupt-servicing
routines. All other devices detect unsolicited interrupts in their interrupt¬
servicing routines.

The routine that handles these unsolicited interrupts must determine the
nature of the interrupt and act accordingly, depending on the characteristics
of the device and controller.

D—13

Device Driver Entry Points

How to Specify This Entry Point

Provide the name of the unsolicited-interrupt routine in the unsolic argument
to the DDTAB macro. This macro places the address of the routine into the
DDT.

Input

Registers Contents

R4 Address of MBA's CSR

R5 Address of UCB

Output

There are no required outputs.

Use of Registers

The unsolicited-interrupt-servicing routine must not alter the contents of
registers R6 through Rll or the AP or FP.

Context

Because, the unsolicited interrupt-servicing routine executes in kernel mode
on the interrupt stack, it can refer to only those addresses that reside in
system (SO) space.

I PL on Entry and Exit

An unsolicited interrupt-servicing routine is called, executes, and returns at
device IPL.

Which VAX/VMS Routines Use This Entry Point

The MBA$INT routine in module MBAINTDSP of the SYSLOA facility calls
an unsolicited interrupt-servicing routine.

D—14

E Sample Driver for the RL11, RL01, and RL02

This example driver, DLDRIVER, drives devices on both the UNIBUS and
the Micro VAX I and Micro VAX II Q22 bus. Specific code changes since
VAX/VMS Version 4.0 are highlighted with change bars in the margin.

.TITLE DLDRIVER - VAX/VMS RL11/RL01.RL02 DISK DRIVER

.IDENT 'V03-008'

**

COPYRIGHT (c) 1978, 1980, 1982, 1984, 1986 BY

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.

ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED

ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE

INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER

COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY

OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY

TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS

SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

**

FACILITY:

VAX/VMS RL11/RL01,RL02 DISK DRIVER

AUTHOR:

C. F. Programmer 05-OCT-1979

MODIFIED BY:

V04-002 RLRCPUDISPb R. L. Programmer 22-Mar-1985

Modify CPUDISP invocations to use CONTINUE=YES and

thereby obviate the need to necessarily modify this

driver each time a new CPU comes along.

31-Jan-1985

15-May-1984

V04-001 JJ00003 J. J. Programmer

Added MicroVAX II support.

V03-008 WHMOOOl B. M. Programmer

Added MicroVAX I/QBUS support.

E—1

Sample Driver for the RL11, RL01, and RL02

V03-007 RAS0300 R. S. Programmer 27-Apr-1984
Add DEV$M_NNM characteristic to DECHAR2 so that these
devices will have the "node$" prefix.

V03-006 PRD0033 P. R. Programmer 09-Sep-1983
Added EXE$LCLDSKVALID to function decision table.

V03-005 R0WO211 R. 0. Programmer 16-AUG-1983
Change device-dependent UCB definition base from UCB$W_BCR+2
to UCB$K_LCL_DISK_LENGTH.

V03-004 KDM0059 K. D. Programmer 14-Jul-1983
Change time-wait loops to use new TIMEDWAIT macro.

V03-003 PRD0020 P. R. Programmer 26-Apr-1983
Modified FATALERR routine to return SS$_PARITY only for
errors that possibly indicate bad media. All other error
conditions which formerly returned SS$_PARITY now return
SS$_CNTLERR.

V03-002 KDM0002 K. D. Programmer 28-Jun-1982
Added $DYNDEF.

V03-001 KTA0100 K. T. Programmer 07-Jun-1982
Add code to set UCB$L_MEDIA_ID.

**

PAGE
ABSTRACT:

THIS MODULE CONTAINS THE TABLES AND ROUTINES NECESSARY TO
PERFORM ALL DEVICE-DEPENDENT PROCESSING OF AN I/O REQUEST
FOR RLll/RLOl,RL02 DISK TYPES ON A VAX/VMS SYSTEM.

THE DISKS HAVE THE FOLLOWING PHYSICAL GEOMETRY:

CYL
TRACKS/
CYLINDER

SECTORS/
TRACK

BYTES/
SECTOR

MAXIMUM
BLOCKS

RL01 256 2 40 256 10240

RL02 512 2 40 256 20480

E—2

Sample Driver for the RL11, RL01, and RL02

SINCE THE SECTOR SIZE IS ONLY 1/2 BLOCK, LOGICAL TO PHYSICAL
CONVERSION OF THE DISK ADDRESS IS DONE IN THE DRIVER STARTIO
ROUTINE RATHER THAN IN THE IOC$CVTLOGPHY FDT ROUTINE.

OVERLAPPED SEEKS ARE NOT ATTEMPTED BECAUSE THE DEVICE DOES
NOT INTERRUPT AT THE COMPLETION OF A SEEK.

ALSO, THE DEVICE DOES NOT PERFORM AN IMPLICIT SEEK WHEN PERFORMING
A READ OR WRITE FUNCTION, SO SEEK FUNCTIONS ARE ISSUED BY THIS
DRIVER WHERE NECESSARY PRIOR TO ISSUING A READ OR WRITE FUNCTION.
THE READ OR WRITE FUNCTION IS THEN ISSUED AS SOON AS THE RL11
CONTROLLER COMES READY (WHILE THE SEEK IS IN PROGRESS), AND A
WAIT-FOR-INTERRUPT (UPON COMPLETION OF THE READ OR WRITE) IS
ISSUED. IF A SEEK FUNCTION IS REQUESTED SEPARATELY FROM A READ OR
WRITE, A DUMMY READ HEADER FUNCTION IS ISSUED FOLLOWING THE SEEK
FUNCTION AND A WAIT-FOR-INTERRUPT (UPON COMPLETION OF THE READ
HEADER) IS ISSUED.

THE IO$X_INHSEEK FUNCTION MODIFIER IS TREATED AS A NO-OP BY
THIS DRIVER, SINCE AN EXPLICIT SEEK IS NECESSARY FOR THE RL02
TO TRANSFER DATA PROPERLY.

THE RL'S DO NOT READ OR WRITE BEYOND THE END OF TRACK (THEY DO NOT
AUTOMATICALLY SEEK THE NEXT TRACK), SO ALL READ AND WRITE FUNCTIONS
ARE BROKEN UP BY THIS DRIVER INTO PARTIAL TRANSFERS TO THE END OF
TRACK, FOLLOWED BY A SEEK TO THE NEXT TRACK, THEN ANOTHER READ OR
WRITE FUNCTION UNTIL THE TOTAL DATA TRANSFER IS COMPLETE.

.PAGE

.SBTTL EXTERNAL AND LOCAL DEFINITIONS

EXTERNAL SYMBOLS

IADPDEF
$CRBDEF
$DCDEF
$DDBDEF
$DEVDEF

IDPTDEF
IDYNDEF
$EMBDEF

IIDBDEF
IIODEF
$IRPDEF
$PRDEF
$PTEDEF
$SSDEF
$UCBDEF
$VADEF
IVECDEF

DEFINE ADAPTER CONTROL BLOCK
DEFINE CHANNEL REQUEST BLOCK
DEFINE DEVICE CLASS
DEFINE DEVICE DATA BLOCK
DEFINE DEVICE CHARACTERISTICS
DEFINE DRIVER PROLOGUE TABLE
DEFINE DYNAMIC DATA STRUCTURE TYPES
DEFINE ERROR MESSAGE BUFFER
DEFINE INTERRUPT DISPATCH BLOCK
DEFINE I/O FUNCTION CODES
DEFINE I/O REQUEST PACKET
DEFINE PROCESSOR REGISTERS
DEFINE SYSTEM PTES
DEFINE SYSTEM STATUS CODES
DEFINE UNIT-CONTROL BLOCK
DEFINE VIRTUAL ADDRESS BITS
DEFINE INTERRUPT VECTOR BLOCK

LOCAL MACROS

EXFUNCL
BRANCH TO SUBROUTINE WHICH REQUESTS CHANNEL (IF NOT ALREADY OWNED),
EXECUTES FCODE (OR R3) FUNCTION, AND BRANCHES TO BDST ON ERROR

.MACRO

. ENDM

EXFUNCL BDST.FCODE
.IF NB FCODE

MOVZBL #CD'FCODE,R3
. ENDC

BSBW FEXL
.BYTE BDST-.-1

IS FCODE NON-BLANK?
IF NB, SPECIFY FCODE FUNCTION
IF B, SPECIFY FNTN IN EXISTING R3
EXECUTE FUNCTION
WHERE TO GO ON ERROR

E—3

Sample Driver for the RL11, RL01, and RL02

GENF
GENERATE FUNCTION TABLE ENTRY AND CASE TABLE INDEX SYMBOL

.MACRO GENF FCODE
CD'FCODE=.-FTAB/2
.WORD FCODE!RL_CS_M_IE ;FCODE WITH INT ENABLE BIT

. ENDM

CKPWR
DISABLE INTERRUPTS. CHECK IF POWER HAS FAILED.
AND PUT DEVICE UNIT NUMBER IN R2<9:8>

.MACRO CKPWR ?L1
CLRL R2 ;CLEAR R2 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5),- ;PUT UNIT # IN R2<9:8>

#8.#2,R2 . . .

DSBINT DISABLE INTERRUPTS
BBC #UCB$V_POWER,- IF CLR, NO POWER FAILURE

UCB$W_STS(R5),L1 » • • •

ENBINT POWER FAILURE - ENABLE INTERRUPTS
BRW RETREG EXIT

Ll: RETURN FOR NO POWER FAILURE
.ENDM

; LOCAL SYMBOLS

RL_NUM_ REGS =4 NUMBER OF DEVICE REGISTERS
RL.SLM =5 STATE*SEEK LINEAR MODE (READY TO GO)
UCB$B_DL_DCHEK =UCB$W_OFFSET+l REDEFINE FOR DATA CHECK USE

; UCB OFFSETS WHICH FOLLOW THE 1 STANDARD UCB FIELDS

$DEFINI UCB START OF UCB DEFINITIONS

.=UCB$K_LCL_DISK_LENGTH BEGIN DEFINITIONS AT END OF UCB
$DEF UCB$W_DL_PBCR . BLKW 1 PARTIAL BYTE COUNT
$DEF UCB$W_DL_CS . BLKW 1 CONTROL STATUS REGISTER
$DEF UCB$W_DL_BA .BLKW 1 BUS ADDRESS REGISTER
$DEF UCB$W_DL_DA .BLKW 1 DISK ADDRESS REGISTER

$DEF UCB$W_DL_MP .BLKW 1 MULTIPURPOSE REGISTER
$DEF UCB$W_DL_DPN .BLKW 1 DATA-PATH NUMBER

$DEF UCB$L_DL_SVAPTE SAVED SVAPTE OF THE USER'S BUFFER

$DEF UCB$L_DL_DPR .BLKL 1 DATA-PATH REGISTER
$DEF UCB$L_DL_BUFADR USER BUFFER ADDRESS
$DEF UCB$L_DL_FMPR . BLKL 1 FINAL MAP REGISTER
$DEF UCB$A_DL_MOVRTN BUFFER MOVE ROUTINE ADDRESS

$DEF UCB$L_DL_PMPR .BLKL 1 PREVIOUS MAP REGISTER

$DEF UCB$B_DL_DPPE . BLKB 1 DATA-PATH PURGE ERROR
$DEF UCB$W_DL_DB .BLKW 3 DATA BUFFER REGISTER
$DEF UCB$B_DL_XBA .BLKB 1 BUS ADDRESS EXTENSION BITS
$DEF UCB$W_DL_SBA .BLKW 1 SAVED BUFFER ADDRESS
$DEF UCB$A_DL_BUF_VA .BLKL 1 PHYSICAL BUFFER VIRTUAL ADDRESS
$DEF UCB$A_DL_BUF_PA .BLKL 1 PHYSICAL BUFFER PHYSICAL ADDRESS
$DEF UCB$W_DL_FLAGS .BLKW 1 FLAGS

$VIELD UCB,0,<- START THE FLAG DEFINITIONS
<DL_22BIT,, M>, - 22 BIT ADDRESSING
<DL_MAPPING,,M> , - ADAPTER MAPPING
> END OF FLAG DEFINITIONS

$DEF UCB$K_DL_LEN .BLKW 1 LENGTH OF UCB
$EQU UCB$K_DL_BUFSZ 20 BUFFER SIZE = 40 SECTORS *

256 BYTES/SECTOR / 512 BYTES/PAGE
$DEFEND UCB END OF UCB DEFINITONS

E—4

Sample Driver for the RL11, RL01, and RL02

RL11/RL01 REGISTER OFFSETS FROM CSR ADDRESS

$DEF

$DEF

$DEF

$DEF

$DEFINI RL

RL_CS .BLKW
_VIELD RL_CS,0,<-

<DRDY,,M>,-

<FC0DE,3>,-
<XBA,2>,-
<IE,,M>, -
<CRDY,,M>,-
<DS,2>,-
<OPI,,M>,-
<CRC,,M>,-
<DLT,,M>,-
<NXM,,M>,-
<DE,,M>,-
<CE,,M>-

>

RL_BA .BLKW

RL.DA .BLKW
_VIELD RL_DA,0,<-

<MRK,,M>,-
<STS,,M>,-

<RST,, M>, -
<,12>,-

>

RL_MP .BLKW
_VIELD RL_MP,0,<-

<STA,3>,-
<BH,,M>,-
<H0,,M>,-
<C0,,M>, -
<HS,,M>,-
<TYP,,M>,-
<DSE,,M>,-
<VC,, M>, -
<WGE,,M>,-
<SPE,,M>,-
<SKTO,, M>, -
<WL,,M>,-
<CHE,,M>, -
<WDE,,M>-

$DEF RL.BAE

IDEFEND RL

.BLKW

HARDWARE FUNCTION CODES

F_N0P=0*2
F_UNLOAD=F_NOP
F_SEEK=3*2
F_RECAL=F_NOP
F_DRVCLR=2*2
F_RELEASE=F_NOP
F_OFFSET=F_NOP
F_RETCENTER=F_NOP
F_PACKACK=2*2
F_SEARCH=F_NOP
F_WRITECHECK=1*2
F_WRITEDATA=5*2
F_WRITEHEAD=F_NOP
F_READDATA=6*2
F_READHEAD=4*2
F_AVAILABLE=F_NOP
F_GETSTATUS=2*2

START OF REGISTER DEFINITIONS

CONTROL STATUS REGISTER (CSR)
START OF CSR BIT DEFINITIONS

DRIVE READY
FUNCTION CODE

BUS ADDRESS EXTENSION BITS
INTERRUPT ENABLE
CONTROLLER READY
DRIVE SELECT
OPERATION INCOMPLETE
DATA CRC OR HEADER CRC
DATA LATE OR HEADER NOT FOUND
NON-EXISTENT MEMORY
DRIVE ERROR
COMPOSITE ERROR

END CSR BIT DEFINITIONS

BUS ADDRESS REGISTER (BAR)

DISK ADDRESS REGISTER (DAR)
START OF DAR BIT DEFINITIONS

MARK (ALWAYS 1)
GET STATUS
RESERVED BIT
RESET
RESERVED BITS

END OF DAR BIT DEFINITIONS

MULTIPURPOSE REGISTER (MPR)
START OF MPR BIT DEFINITIONS

DRIVE STATE
BRUSH HOME
HEADS OUT
COVER OPEN
HEAD SELECT
DRIVE TYPE
DRIVE SELECT ERROR
VOLUME CHECK
WRITE GATE ERROR
SPIN ERROR
SEEK TIME OUT
WRITE LOCK
CURRENT HEAD ERROR
WRITE DATA ERROR

END MPR BIT DEFINITIONS

BUS ADDRESS EXTENSION REGISTER(BAE)

END RL11/RL01 REGISTER DEFINITIONS

NO OPERATION
NO OPERATION
SEEK CYLINDER
NO OPERATION
DRIVE CLEAR (GET STATUS)
NO OPERATION
NO OPERATION
NO OPERATION
PACK ACKNOWLEDGE (SET VOLUME VALID)
NO OPERATION
WRITE CHECK
WRITE DATA
NO OPERATION
READ DATA
READ HEADER
NO OPERATION
GET STATUS (DRIVER INTERNAL USE)

E—5

Sample Driver for the RL11, RL01, and RL02

.PAGE

.SBTTL STANDARD TABLES

DRIVER PROLOGUE TABLE

THE DPT DESCRIBES DRIVER PARAMETERS AND I/O DATABASE FIELDS
THAT ARE TO BE INITIALIZED DURING DRIVER LOADING AND RELOADING

DPTAB
END=DL_END,-

ADAPTER=UBA,-
FLAGS=DPT$M_SVP,-
UCBSIZE=UCB$K_DL_LEN,-
NAME=DLDRIVER

DPT CREATION MACRO
END OF DRIVER LABEL
ADAPTER TYPE = UNIBUS
SYSTEM PAGE TABLE ENTRY REQUIRED
LENGTH OF UCB
DRIVER NAME

DPT.STORE INIT ;START CONTROL BLOCK INIT VALUES
DPT.STORE DDB,DDB$L_ACPD,L,<~A\F11\> ;DEFAULT ACP NAME
DPT.STORE DDB,DDBL_ACPD+3,B,DDBK.CART ;ACP CLASS
DPT.STORE UCB,UCB$B_FIPL,B,8
DPT_STORE UCB,UCB$L_DEVCHAR,L,-

<DEV$M_FOD-
!DEV$M_DIR-
!DEV$M_AVL-
!DEV|M_ELG-
!DEVIM.SHR-
!DEV$M_IDV-
!DEV$M_ODV-

!DEV$M_RND>
DPT.STORE UCB,UCB$L_DEVCHAR2,L,-

FORK IPL
DEVICE CHARACTERISTICS

FILES ORIENTED
DIRECTORY STRUCTURED
AVAILABLE
ERROR LOGGING
SHAREABLE
INPUT DEVICE
OUTPUT DEVICE
RANDOM ACCESS
DEVICE CHARACTERISTICS
PREFIX NAME WITH "node!" <DEV$M_NNM>

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_DISK ;DEVICE CLASS
DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,512 ;DEFAULT BUFFER SIZE
DPT.STORE UCB,UCB$B_SECTORS, B, 40 ;NUMBER OF SECTORS PER TRACK
DPT.STORE UCB,UCB$B_TRACKS,B,2
DPT.STORE UCB,UCB$B_DIPL,B,21
DPT.STORE UCB,UCB$B_ERTMAX,B,8
DPT.STORE UCB.UCB$W_DEVSTS.W,-

<UCB$M_NOCNVRT>

DPT.STORE REINIT ;START CONTROL BLOCK RE-INIT VALUES
DPT.STORE CRB,CRB$L_INTD+4,D,DL.INT ;INTERRUPT SERVICE ROUTINE ADDRESS

NUMBER OF TRACKS PER CYLINDER
DEVICE IPL
MAX ERROR RETRY COUNT
INHIBIT LOG TO PHYS CONVERSION IN FDT

DPT.STORE CRB,CRB$L_INTD+VEC$L_INITIAL,-
D.DL.RL11.INIT

DPT.STORE CRB,CRB$L_INTD+VEC$L_UNITINIT,-
D,DL.RLOX.INIT

DPT.STORE DDB,DDBL_DDT,D,DLDDT

CONTROLLER INIT ADDRESS

UNIT INIT ADDRESS

DDT ADDRESS

DPT.STORE END ;END OF INITIALIZATION TABLE

DRIVER DISPATCH TABLE

THE DDT LISTS ENTRY POINTS FOR DRIVER SUBROUTINES WHICH ARE
CALLED BY THE OPERATING SYSTEM.

DDTAB
DEVNAM=DL.-
START=DL_STARTIO,-
UNSOLIC=DL_UNSOLNT,-

FUNCTB=DL_FUNCTABLE,-
CANCEL=0,-
REGDMP=DL_REGDUMP,-
DIAGBF=«RL_NUM_REGS+5+5+3+l>*4>, - ; BYTES IN DIAG BUFFER
ERLGBF=«<RL_NUM_REGS+5+l>*4>+EMB$L_DV_REGSAV> ; BYTES IN

;ERROR LOG BUFFER

DDT CREATION MACRO
NAME OF DEVICE
START I/O ROUTINE
UNSOLICITED INTERRUPT

FUNCTION DECISION TABLE
CANCEL=NO-OP FOR FILES DEVICE
REGISTER DUMP ROUTINE

E—6

Sample Driver for the RL11, RL01, and RL02

DIAGNOSTIC BUFFER SIZE = «4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS
+ 5 IOC$DIAGBUFILL LONGWORDS + 3 BUFFER ALLOCATION
LONGWORDS + 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP>
* 4 BYTES/LONGWORD>

ERROR LOG BUFFER SIZE = «<4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS
+ 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP>
* 4 BYTES/LONGWORD> + BYTES NEEDED FOR ERROR LOGGER
TO SAVE SOFTWARE REGISTERS>

HARDWARE FUNCTION CODE TABLE

THIS TABLE MERGES THE FUNCTION CODE BITS WITH THE
INTERRUPT ENABLE BIT AND GENERATES THE CASE TABLE
INDEX SYMBOL.

FTAB: GENF F.NOP NO-OP

GENF F.UNLOAD UNLOAD VOLUME (NOP)

GENF F.SEEK SEEK

GENF F.RECAL RECALIBRATE (NOP)

GENF F.DRVCLR DRIVE CLEAR (RESET & GET STATUS)

GENF F.RELEASE RELEASE PORT (NOP)

GENF F.OFFSET OFFSET HEADS (NOP)

GENF F.RETCENTER RETURN HEADS TO CENTERLINE (NOP)
GENF F.PACKACK PACK ACKNOWLEDGE (RESET & GET STATUS)

GENF F_SEARCH SEARCH (NOP)

GENF F.WRITECHECK WRITE CHECK
GENF F.WRITEDATA WRITE DATA
GENF F.READDATA READ DATA
GENF F.WRITEHEAD WRITE HEADERS (NOP)
GENF F.READHEAD READ HEADERS
GENF F.NOP PLACE HOLDER
GENF F.NOP PLACE HOLDER
GENF F.AVAILABLE AVAILABLE

.PAGE

FUNCTION DECISION TABLE

THE FDT LISTS VALID FUNCTION CODES, SPECIFIES WHICH
CODES ARE BUFFERED, AND DESIGNATES SUBROUTINES TO
PERFORM PREPROCESSING FOR PARTICULAR FUNCTIONS.

DL.FUNCTABLE:
FUNCTAB

<NOP,- NO-OP
UNLOAD,- UNLOAD

SEEK.- SEEK
DRVCLR,- DRIVE CLEAR
PACKACK,- PACK ACKNOWLEDGE
SENSECHAR,- SENSE CHARACTERISTICS
SETCHAR,- SET CHARACTERISTICS
SENSEMODE,- SENSE MODE
SETMODE,- SET MODE
WRITECHECK,- WRITE CHECK
READHEAD,- READ HEADER
READLBLK,- READ LOGICAL BLOCK
WRITELBLK,- WRITE LOGICAL BLOCK
READPBLK,- READ PHYSICAL BLOCK
WRITEPBLK,- WRITE PHYSICAL BLOCK
READVBLK,- READ VIRTUAL BLOCK
WRITEVBLK,- WRITE VIRTUAL BLOCK
AVAILABLE,- AVAILABLE
ACCESS,- ACCESS FILE / FIND DIRECTORY ENTRY
ACPCONTROL,- ACP CONTROL FUNCTION
CREATE,- CREATE FILE AND/OR DIRECTORY ENTRY
DEACCESS.- DEACCESS FILE
DELETE,- DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY,- MODIFY FILE ATTRIBUTES
MOUNT- MOUNT VOLUME

E—7

Sample Driver for the RL11, RL01, and RL02

FUNCTAB , - BUFFERED FUNCTIONS
<NOP,- NO-OP
UNLOAD,- UNLOAD
SEEK.- SEEK
DRVCLR,- DRIVE CLEAR
PACKACK,- PACK ACKNOWLEDGE
SENSECHAR,- SENSE CHARACTERISTICS
SETCHAR,- SET CHARACTERISTICS
SENSEMODE,- SENSE MODE
SETMODE,- SET MODE
AVAILABLE,- AVAILABLE
ACCESS.- ACCESS FILE / FIND DIRECTORY ENTRY
ACPCONTROL,- ACP CONTROL FUNCTION
CREATE,- CREATE FILE AND/OR DIRECTORY ENTRY
DEACCESS.- DEACCESS FILE
DELETE,- DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY.- MODIFY FILE ATTRIBUTES
MOUNT- MOUNT VOLUME

FUNCTAB DL.ALIGN,-
<READHEAD,-
READLBLK,-
READPBLK,-
READVBLK,-
WRITECHECK,-
WRITELBLK,-
WRITEPBLK,-
WRITEVBLK-
>

FUNCTAB +ACP$READBLK,-
<READHEAD,-
READLBLK,-
READPBLK,-
READVBLK-
>

FUNCTAB +ACP$WRITEBLK,-
<WRITECHECK,-
WRITELBLK,-
WRITEPBLK,-
WRITEVBLK-
>

TEST ALIGNMENT FUNCTIONS
READ HEADER
READ LOGICAL BLOCK
READ PHYSICAL BLOCK
READ VIRTUAL BLOCK
WRITE CHECK
WRITE LOGICAL BLOCK
WRITE PHYSICAL BLOCK
WRITE VIRTUAL BLOCK

READ FUNCTIONS
READ HEADER
READ LOGICAL BLOCK
READ PHYSICAL BLOCK
READ VIRTUAL BLOCK

WRITE FUNCTIONS
WRITE CHECK
WRITE LOGICAL BLOCK
WRITE PHYSICAL BLOCK
WRITE VIRTUAL BLOCK

FUNCTAB +ACP$ACCESS,-
<ACCESS,-
CREATE-
>

ACCESS FUNCTIONS
ACCESS FILE / FIND DIRECTORY ENTRY
CREATE FILE AND/OR DIRECTORY ENTRY

FUNCTAB +ACP$DEACCESS,- ;DEACCESS FUNCTION
<DEACCESS- ; DEACCESS FILE
>

FUNCTAB +ACP$MODIFY,-
<ACPCONTROL,-
DELETE,-
MODIFY-
>

MODIFY FUNCTIONS
ACP CONTROL FUNCTION
DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY FILE ATTRIBUTES

FUNCTAB +ACP$MOUNT,-
<MOUNT-

;MOUNT FUNCTION
; MOUNT VOLUME

>

FUNCTAB +EXE$LCLDSKVALID,-
CUNLOAD.-

AVAILABLE,-
PACKACK-

>

FUNCTAB +EXE$ZEROPARM,-

<NOP.-
UNLOAD.-
DRVCLR.-
PACKACK.-
AVAILABLE.-

LOCAL DISK VALID FUNCTIONS
UNLOAD VOLUME
UNIT AVAILABLE
PACK ACKNOWLEDGE

ZERO PARAMETER FUNCTIONS
NO-OP
UNLOAD
DRIVE CLEAR
PACK ACKNOWLEDGE
AVAILABLE

E—8

Sample Driver for the RL11, RL01, and RL02

FUNCTAB

FUNCTAB

FUNCTAB

.PAGE

.SBTTL
+♦

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS A NO-OP FOR THE RL11 BUT MUST BE INCLUDED
SINCE IT IS CALLED WHEN THE RL02 IS BOOTED AS A SYSTEM DEVICE.

THE OPERATING SYSTEM CALLS THIS ROUTINE:
- AT SYSTEM STARTUP
- DURING DRIVER LOADING
- DURING RECOVERY FROM POWER FAILURE

INPUTS:

R4 - CSR ADDRESS (DEVICE CONTROL STATUS REGISTER)
R5 - IDB ADDRESS (INTERRUPT DATA BLOCK)
R6 - DDB ADDRESS (DEVICE DATA BLOCK)
R8 - CRB ADDRESS (CHANNEL REQUEST BLOCK)
ALL INTERRUPTS ARE LOCKED OUT

OUTPUTS:

ALL REGISTERS EXCEPT R0-R3 ARE PRESERVED.
CONTROL IS RETURNED TO THE CALLER.

+EXE$ONEPARM,-
<SEEK-
>

+EXE$SENSEMODE,-
<SENSECHAR,-
SENSEMODE-
>

+EXE$SETCHAR,-
<SETCHAR,-
SETMODE-
>

;ONE PARAMETER FUNCTION
; SEEK

SENSE FUNCTIONS
SENSE CHARACTERISTICS
SENSE MODE

SET FUNCTIONS
SET CHARACTERISTICS
SET MODE

CONTROLLER INITIALIZATION ROUTINE

DL.RLll.INIT: ;CONTROLLER INITIALIZATION

; FOR MICROVAX I, ALLOCATE A PHYSICALLY CONTIGUOUS BUFFER
; AREA FOR PERFORMING I/O.

CPUDISP «UV1,10$»,-
CONTINUE=YES

BRB 20$

10$: MOVZWL #UCB$K_DL_BUFSZ,R1
JSB G~EXE$ALOPHYCNTG
BLBC RO,20$
MOVL
RSB

R2,CRB$L_AUXSTRUC(R8)

20$: CLRL
RSB

CRB$L_AUXSTRUC(R8)

FOR MICROVAX I, ALLOCATE BUFFER AREA
FOR ALL CPU TYPES, WHICH INCLUDE, UP
UNTIL NOW, 780, 785, 790, 750, 730,
UV2, 8SS, 8NN
FOR ALL OTHERS, SKIP BUFFER AREA

LOAD SIZE OF BUFFER
ALLOCATE PHYSICALLY-CONTIGUOUS MEMORY
EXIT ON ERROR
GET BUFFER VIRTUAL ADDRESS
RETURN TO CALLER

INDICATE MEMORY ALLOCATION FAILURE
RETURN TO CALLER

E—9

Sample Driver for the RL11, RL01, and RL02

.PAGE

.SBTTL UNIT INITIALIZATION ROUTINE

++

DL.RLOX.INIT - UNIT INITIALIZATION ROUTINE

FUNCTIONAL DESCRIPTION:

THIS ROUTINE READIES THE RL01/RL02 UNITS FOR I/O OPERATIONS.

THE OPERATING SYSTEM CALLS THIS ROUTINE:
- AT SYSTEM STARTUP
- DURING DRIVER LOADING
- DURING RECOVERY FROM POWER FAILURE

INPUTS:

R4 - CSR ADDRESS (CONTROLLER STATUS REGISTER)
R5 - UCB ADDRESS (UNIT-CONTROL BLOCK)

OUTPUTS:

THE DRIVE UNIT IS RESET. UCB FIELDS ARE INITIALIZED. AND THE
ROUTINE WAITS FOR ONLINE UNITS TO SPIN UP. ALL REGISTERS
EXCEPT R0-R3 ARE PRESERVED.

DL.RLOX.INIT:
MOVW #1®UCB$V_DL_MAPPING, -

UCB$W_DL_FLAGS(R5)

RL01/RL02 UNIT INITIALIZATION
DEFAULT TO ADAPTER MAPPING
AND 18 BIT ADDRESSING

SET CPU DEPENDENT UCB FLAGS FOR DL

CPUDISP «UV1,5$>, -
<UV2,1$» , -

CONTINUE=YES ;FOR ALL OTHER CPU TYPES CONTINUE.
BRB 10$;FOR 790,785,780,750,730,8SS,8NN

1$: BISW #1<DUCB$V_DL_22BIT, - ;FOR MICROVAX II 22 BIT
UCB$W_DL_FLAGS(R5) ;ADDRESSING AS WELL AS ADAPTER MAPPING

BRB 10$

5$: MOVW #1©UCB$V_DL_22BIT.- ;FOR MICROVAX I 22 BIT
UCB$W_DL_FLAGS(R5) ;ADDRESSING AND NO ADAPTER MAPPING

10$: MOVZWL UCB$W_STS(R5),R3 ;SAVE CURRENT UNIT STATUS
BICW #UCB$M_ONLINE!UCB$M_VALID,- ;ASSUME OFFLINE/INVALID

UCB$W_STS(R5) 9 • • •

; WAIT FOR CONTROLLER (6 SECONDS MAX) IF CHANNEL IS BUSY WITH ANOTHER UNIT

MOVL UCB$L_CRB(R5),R0 ;GET CRB ADDRESS
BBC #CRBV_BSY,CRBB_MASK(RO),20$;IF CLEAR. CHANNEL NOT BUSY
TIMEDWAIT TIME=#600*1000,- ;6 SECOND WAIT LOOP

INS1=<TSTB RL_CS(R4)>,- ; IS CONTROLLER READY
INS2=<BLSS 15$>, - ;IF LSS, YES
D0NELBL=15$;LABEL TO EXIT WAIT LOOP

BLBC RO,25$;TIME EXPIRED - EXIT

; GET CURRENT DRIVE STATUS AND RESET DRIVE

20$: MOVW #RL_DA_M_RST!- ;PUT RESET AND GET STATUS IN DAR
RL_DA_M_STS!RL_DA_M_MRK.RL_DA(R4) ;...

CLRL R1 ;CLEAR R1 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5).#8.#8. R1 ;GET UNIT NUMBER
BISW3 R1,#F_GETSTATUS,RL_CS(R4) ;EXECUTE GET STATUS FUNCTION
BSBW DL.WAIT ;WAIT FOR CONTROLLER
TSTB RL_CS(R4) ;WAS CONTROLLER READY?
BGEQ 25$;IF GEQ, NO

E—10

Sample Driver for the RL11, RL01, and RL02

CLASSIFY DRIVE TYPE

MOVL IT X2324C001,-

BITW
UCB$L_MEDIA_ID(R5)

#RL_MP_M_TYP,RL.MP(R4)
BNEQ 30$
MOVB S~#DT$_RL01,-

MOVW
UCB$B_DEVTYPE(R5) ;

#256,UCB$W_CYLINDERS(R5);
MOVZWL #10240.UCB$L_MAXBLOCK(R5)
BRB 40$

25$: BRB 70$;

30$: MOVB S~#DT$_RL02,-

MOVW
UCB$B_DEVTYPE(R5) ;

#512,UCB$W_CYLINDERS(R5);
MOVZWL #20480,UCB$L_MAXBLOCK(R5)
INCL UCB$L_MEDIA_ID(R5) ;

40$: BBC #UCB$V_VALID,R3,60$;

SET MEDIA IDENT "DL RLOl"
IS DRIVE TYPE = RL02?
IF NEQ, YES

SET RL01 DEVICE TYPE
SET NUMBER OF RLOl CYLINDERS

;SET MAX RLOl BLOCK NUMBER

BRANCH TO COMMON EXIT

SET RL02 DEVICE TYPE
SET NUMBER OF RL02 CYLINDERS

;SET MAX RL02 BLOCK NUMBER
SET MEDIA IDENT "DL RL02"

BRANCH AROUND WAIT FOR DRIVE TO SPINUP
IF THE DRIVE DID NOT HAVE A VALID
VOLUME ON IT BEFORE POWER FAILURE.

INITIALIZE UCB FIELDS AND WAIT FOR ONLINE UNITS TO SPIN UP

45$:

50$:

60$:

65$:
70$:

BITW #RL_CS_M_DRDY,RL.CS(R4)
BNEQ 50$
JSB G~EXE$PWRTIMCHK
BLBS RO,45$
BRB 60$

IS DRIVE READY?
IF NEQ, YES
IS MAX TIME EXCEEDED?
IF LBS, NO, MORE TIME NEEDED
POWER UP TIME EXCEEDED

BISW #UCBM_VALID,UCBW_STS(R5) ;SET UCB STATUS VOLUME VALID

BBS

MOVL
MOVL
BEQL
MOVL
EXTZV
MOVL
MOVL
BICL3
ASSUME
INSV
MOVL
BISW
RSB

.PAGE

.SBTTL

#UCB$V_DL_MAPPING,-
UCB$W_DL_FLAGS(R5),65$
UCB$L_CRB(R5),R1
CRB$L_AUXSTRUC(R1),R2
70$
R2,UCB$A_DL_BUF_VA(R5)

ADAPTER MAPPING?
IF BS, YES
GET CRB ADDRESS
MEMORY ALLOC FAILURE DURING CTL INIT?
IF EQL, YES, LEAVE OFFLINE
SAVE BUFFER'S VIRTUAL ADDRESS

#VA$V_VPN,#VA$S_VPN,R2,R1;GET VIRTUAL PAGE NUMBER OF BUFFER
G~MMG$GL_SPTBASE,RO
(RO)[Rl],R0
#“C<VA$M_BYTE>,R2,Rl
PTE$S_PFN GE 13
R0,#9,#13,R1
Rl,UCB$A_DL_BUF_PA(R5)

GET BASE ADDRESS OF SPTS
GET THE PTE CONTENTS
GET BUFFER OFFSET (BA00-BA08)

;COPY BA09-BA21
;SAVE PHYSICAL ADDRESS OF BUFFER

#UCBM_ONLINE,UCBW_STS(R5) ;SET UCB STATUS VOLUME VALID

DRIVER SPECIFIC SUBROUTINES

DL.WAIT - WAIT FOR CONTROLLER READY

INPUTS:
R4 - DEVICE CSR ADDRESS

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS CALLED FROM THE DRIVER UNIT INITIALIZATION ROUTINE
TO WAIT UNTIL THE RL11 CONTROLLER IS READY. TO PREVENT HANGING UP
AT HIGH IPL, A MAXIMUM OF 30 USEC ELAPSES BEFORE CONTROL IS
RETURNED TO THE CALLER.

DL.WAIT:
MOVQ RO.-(SP)
DSBINT
TIMEWAIT
ENBINT
MOVQ (SP)+,R0
RSB

#3.#RL_CS_M_CRDY

WAIT FOR CONTROLLER READY
SAVE RO, Rl
DISABLE INTERRUPTS
RL_CS(R4),W
ENABLE INTERRUPTS
RESTORE RO, Rl
RETURN TO UNIT INIT OR STARTIO

E—11

Sample Driver for the RL11, RL01, and RL02

.PAGE

.SBTTL FDT ROUTINE - TEST TRANSFER BYTE COUNT ALIGNMENT

♦♦

DL.ALIGN - FDT ROUTINE TO TEST XFER BYTE COUNT

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER
TO CHECK THE BYTE COUNT PARAMETER SPECIFIED BY THE USER PROCESS
FOR AN EVEN NUMBER OF BYTES (WORD BOUNDARY).

INPUTS:

R3
R4
R5
R6
R7
R8
4(AP)

IRP ADDRESS (I/O REQUEST PACKET)
PCB ADDRESS (PROCESS CONTROL BLOCK)
UCB ADDRESS (UNIT-CONTROL BLOCK)
CCB ADDRESS (CHANNEL CONTROL BLOCK)
BIT NUMBER OF THE I/O FUNCTION CODE
ADDRESS OF FDT TABLE ENTRY FOR THIS ROUTINE
ADDRESS OF FIRST FUNCTION DEPENDENT QIO PARAMETER

OUTPUTS:

IF THE QIO BYTE COUNT PARAMETER IS ODD. THE I/O OPERATION IS
TERMINATED WITH AN ERROR. IF IT IS EVEN. CONTROL IS RETURNED
TO THE FDT DISPATCHER.

DL.ALIGN:
BLBS 4(AP),10$
RSB
MOVZWL #SS$_IVBUFLEN.RO
JMP G~EXE$ABORTIO
.PAGE
.SBTTL START I/O ROUTINE

+♦

CHECK BYTE COUNT AT Pl(AP)
IF LBS. ODD BYTE COUNT
EVEN - RETURN TO CALLER
SET BUFFER ALIGNMENT STATUS
ABORT I/O

DL.STARTIO - START I/O ROUTINE

FUNCTIONAL DESCRIPTION:

THIS FORK PROCESS IS ENTERED FROM THE EXECUTIVE AFTER AN I/O REQUEST
PACKET HAS BEEN DEQUEUED, AND PERFORMS THE FOLLOWING:

- ACTIVATES THE DISK AFTER SETTING UCB FIELDS. OBTAINING
UBA AND CONTROLLER RESOURCES. AND SETTING RL11 REGISTERS

- WAITS FOR AN INTERRUPT

- REGAINS CONTROL AFTER THE ISR SERVICES THE INTERRUPT. AND
- RE-ACTIVATES THE DISK IF THE ORIGINAL FUNCTION

IS NOT YET COMPLETE. OR
- COMPLETES THE I/O REQUEST BY RELEASING RESOURCES.

SETTING STATUS CODES, AND RETURNING TO THE EXECUTIVE.

E—12

Sample Driver for the RL11, RL01, and RL02

INPUTS:

R3 - IRP ADDRESS (I/O REQUEST PACKET)
R5 - UCB ADDRESS (UNIT-CONTROL BLOCK)
IRP$L_MEDIA - PARAMETER LONGWORD (LOGICAL BLOCK NUMBER)

OUTPUTS:

RO - FIRST I/O STATUS LONGWORD: STATUS CODE & BYTES XFERED
R1 - SECOND I/O STATUS LONGWORD: 0 FOR DISKS

THE I/O FUNCTION IS EXECUTED.

ALL REGISTERS EXCEPT R0-R4 ARE PRESERVED.

DL.STARTIO: ;START I/O OPERATION

; COMPUTE PHYSICAL MEDIA ADDRESS

; LBN = LBN * (SECTORS/BLOCK)
; LBN/(SECTORS/TRACK) = D + SECTOR
; D/(TRACKS/CYLINDER) = CYLINDER + TRACK

PREPROCESS UCB FIELDS

PREPROCESS:
MOVL

BBS

MULL3
MOVZBL
CLRL
EDIV
MOVZBL
EDIV
MOVB
MOVW

MOVB

MNEGW
CLRW

CLRB
MOVW
EXTZV

MOVB
CMPB
BNEQ
MOVW

10$

IRP$L_MEDIA(R3),-
UCB$L_MEDIA(R5)
#IRP$V_PHYSIO,-
IRP$W_STS(R3),10$
#2,UCB$L_MEDIA(R5),R0
UCB$B_SECTORS(R5),R2
R1
R2.R0.R0,UCB$L_MEDIA(R5)
UCB$B_TRACKS(R5),R2
R2,R0,R0,R1
R1,UCB$L_MEDIA+1(R5)
RO,UCB$L_MEDIA+2(R5)

UCB$B_ERTMAX(R5),-
UCB$B_ERTCNT(R5) ; . . .
UCB$W_BCNT(R5),UCB$W_BCR(R5)

COPY GIVEN MEDIA ADDRESS (LOGICAL)
TO THE UCB.

IF SET, PHYSICAL I/O

SCALE LBN IN RO
GET NUMBER OF SECTORS PER TRACK
CLEAR HIGH PART OF DIVIDEND
CALCULATE SECTOR NUMBER AND STORE
GET NUMBER OF TRACKS PER CYLINDER
CALCULATE TRACK AND CYLINDER
STORE TRACK NUMBER
STORE CYLINDER NUMBER

;INITIALIZE ERROR RETRY COUNT

;INIT NEG BYTES LEFT TO XFER
CLEAR DATA-PATH NO. FOR USE AS A

UBA-RESOURCE-ALLOCATION FLAG
CLEAR DATA-PATH-PURGE-ERROR REGISTER

UCB$W_DL_DPN(R5)

UCB$B_DL_DPPE(R5)
IRP$W_FUNC(R3),UCB$W_FUNC(R5) ;SAVE FUNCTION CODE
#IRP$V_FCODE,- ;EXTRACT I/O FUNCTION CODE
#IRP$S_FCODE.IRP$W_FUNC(R3).R1 ;...
R1,UCB$B_FEX(R5)
#I0$_SEEK,R1
20$
IRP$L_MEDIA(R3),-
UCB$W_DC(R5)

STORE FUNCTION DISPATCH INDEX
SEEK FUNCTION?
IF NEQ, NO
STORE CYLINDER ADDRESS

20$:
BICW #UCB$M_DIAGBUF,-

UCB$W_DEVSTS(R5) ;CLR DIAGNOSTIC BUFFER PRESENT
BBC #IRP$V_DIAGBUF,- ;IF CLR, NO DIAG BUFFER

IRP$W_STS(R3).FDISPATCH ;...
BISW #UCB$M_DIAGBUF,UCB$W_DEVSTS(R5) ;SET DIAG BUFFER PRESENT

E—13

Sample Driver for the RL11, RL01, and RL02

; CENTRAL FUNCTION DISPATCH

FDISPATCH:

MOVL UCB$L_IRP(R5),R3

BBS #IRP$V_PHYSIO,-

IRP$W_STS(R3),10$

BBS #UCB$V_VALID,-

UCB$W_STS(R5),10$

MOVZWL #SS$_VOLINV,RO

BRW RESETXFR

10$: CLRB UCB$B_DL_DCHEK(R5)

MOVZBL UCB$B_FEX(R5),R3

CASE R3,<-

UNLOAD,-

SEEK,-

NOP,-

DRVCLR,-

NOP,-

NOP,-

NOP,-

PACKACK,-

NOP,-

WRITECHECK,-

WRITEDATA,-

READDATA,-

NOP,-

READHEAD,-

NOP,-

NOP,-

AVAILABLE-

>,LIMIT=#CDF_UNLOAD

NOP:

SEEK:

DRVCLR:

DO.FUNCTION:

EXFUNCL RETRYERR

BRB NORMAL

PACKACK:

BISW #UCB$M_VALID, -

UCB$W_STS(R5)

BRB DO.FUNCTION

UNLOAD:

AVAILABLE:

BICW #UCB$M_VALID, -

UCB$W_STS(R5)

BRB NORMAL

WRITECHECK:

READHEAD:

BICW #IO$M_DATACHECK,-

UCB$W_FUNC(R5)

WRITEDATA:

READDATA:

EXFUNCL RETRYERR,F.SEEK

MOVZBL UCB$B_FEX(R5),R3

EXFUNCL RETRYERR

; OPERATON COMPLETION

NORMAL:

MOVZWL #SS$_NORMAL,RO

BRW FUNCXT

RETRYERR:

DECB UCB$B_ERTCNT(R5)

BEQL FATALERR

BRW FDISPATCH

FUNCTION DISPATCH

GET IRP ADDRESS

IF SET, PHYSICAL I/O FUNCTION

IF SET, VOLUME SOFTWARE VALID

SET VOLUME INVALID STATUS

RESET BYTE COUNT AND EXIT

CLEAR DATA CHECK IN PROGRESS

GET FUNCTION DISPATCH INDEX

DISPATCH TO FUNCTION HANDLING ROUTINE

UNLOAD

SEEK

RECALIBRATE (UNSUPPORTED)

DRVCLR

RELEASE PORT (UNSUPPORTED)

OFFSET HEADS (UNSUPPORTED)

RETURN TO CENTER (UNSUPPORTED)

PACK ACKNOWLEDGE

SEARCH (UNSUPPORTED)

WRITE CHECK

WRITE DATA

READ DATA

WRITE HEADER (UNSUPPORTED)

READ HEADER

PLACE HOLDER

PLACE HOLDER

AVAILABLE

NO-OP

SEEK

DRIVE CLEAR (GET STATUS & RESET)

EXECUTE FUNCTION - RETRY IF FAILURE

SUCCESSFUL - EXIT WITH NORMAL STATUS

PACK ACKNOWLEDGE (GET STATUS & RESET)

SET SOFTWARE VOLUME VALID BIT.

THEN GO DO HARDWARE FUNCTION.

UNLOAD

AVAILABLE

CLEAR SOFTWARE VOLUME VALID BIT,

AND GO COMPLETE OPERATION WITHOUT

ANY HARDWARE INTERACTION.

WRITE CHECK

READ HEADER

CLEAR DATA CHECK REQUEST

TO PREVENT EXTRA WRITE CHECK

WRITE DATA

READ DATA

EXECUTE EXPLICIT SEEK - RETRY IF FAIL

GET FUNCTION DISPATCH INDEX

EXECUTE TRANSFER FUNCTION

SUCCESSFUL OPERATION COMPLETE

SET NORMAL COMPLETION STATUS

FUNCTION EXIT

RETRIABLE ERROR

ANY RETRIES LEFT?

IF EQL, NO

RETRY FUNCTION

E—14

Sample Driver for the RL11, RL01, and RL02

FATALERR:
MOVZWL
BBS

MOVZWL
BBC

BBS

5$: MOVZWL
TSTB
BEQL
BBS

BBS

10$: MOVZWL
BBS

20$: MOVZWL
BBS

MOVZWL

FUNCXT:
PUSHL
JSB
CMPB
BGTRU
CMPB
BEQL
MOVL
ADDW3

TSTW
BEQL
BBC

RELDPR
RELMPR
BRB

10$: MOVL

20$: RELCHAN

CLRL
POPL
REQCOM

.PAGE

#SS$_V0LINV,R0
#RL_MP_V_VC,-

UCB$W_DL_MP(R5).FUNCXT

#SS$_WRITLCK,RO
#RL_MP_V_WL,-
UCB$W_DL_MP(R5).5$
#rl_mp_v_wge,-
UCB$W_DL_MP(R5).FUNCXT

#SS$_DATACHECK,RO
UCB$B_DL_DCHEK(R5)
10$
#RL_CS_V_0PI.-
UCB$W_DL_CS(R5),10$
#RL_CS_V_CRC,-
UCB$W_DL_CS(R5).FUNCXT

#SS$_PARITY,RO
#RL_CS_V_CRC,-
UCB$W_DL_CS(R5).FUNCXT

UNRECOVERABLE ERROR
ASSUME VOLUME INVALID STATUS
IF SET, VOLUME INVALID

ASSUME WRITE LOCK ERROR STATUS
IF CLR, VOLUME NOT WRITE LOCKED

IF SET. WRITE GATE ERROR
IF WL & WGE SET, WRITE LOCK ERROR

ASSUME DATA CHECK ERROR STATUS
WRITE CHECK IN PROGRESS?
IF EQL, NO
IF SET, NOT WRITE CHECK ERROR

IF SET, WRITE CHECK ERROR

ASSUME PARITY ERROR STATUS
IF SET, CRC ERROR
OR DATA-PATH-PURGE ERROR

#SS$_DRVERR,RO
#RL_CS_V_DE,-
UCB$W_DL_CS(R5).FUNCXT

#SS$_CTRLERR,RO

ASSUME DRIVE ERROR STATUS
IF SET, DRIVE ERROR

ASSUME CONTROLLER ERROR STATUS

RO
G~IOC$DIAGBUFILL

FUNCTION EXIT
SAVE FINAL REQUEST STATUS
FILL DIAGNOSTIC BUFFER IF PRESENT

#CDF_WRITECHECK,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION?
10$; IF GTRU, YES
#CDF_AVAILABLE,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION?
10$
UCB$L_IRP(R5),R3
UCB$W_BCR(R5),-
IRP$W_BCNT(R3),2(SP)
UCB$W_DL_DPN(R5)
20$
#UCB$V_DL_MAPPING,-
UCB$W_DL_FLAGS(R5),10$

20$
UCB$L_DL_SVAPTE(R5).-
UCB$L_SVAPTE(R5)

IF EQL, YES
RETRIEVE ADDRESS OF IRP
CALCULATE BYTES TRANSFERRED

ARE UBA RESOURCES ALLOCATED?
IF EQL. NO
ADAPTER MAPPING?
IF BC. NO
RELEASE DATA PATH
RELEASE MAP REGISTERS
JOIN COMMON CODE
RESTORE ORIGINAL SVAPTE

RELEASE CHANNEL IF OWNED

R1
RO

CLEAR SECOND STATUS LONGWORD
RETRIEVE FINAL REQUEST STATUS
COMPLETE REQUEST

FEXL - RL11 HARDWARE FUNCTION EXECUTION

THIS ROUTINE IS CALLED VIA A BSB WITH A BYTE IMMEDIATELY FOLLOWING THAT
SPECIFIES THE ADDRESS OF AN ERROR ROUTINE. ALL DATA IS ASSUMED TO HAVE BEEN
SET UP IN THE UCB BEFORE THE CALL. THE APPROPRIATE PARAMETERS ARE LOADED
INTO DEVICE REGISTERS AND THE FUNCTION IS INITIATED. THE RETURN ADDRESS
IS STORED IN THE UCB AND A WAITFOR INTERRUPT IS EXECUTED. WHEN THE
INTERRUPT OCCURS. CONTROL IS RETURNED TO THE CALLER.

E-15

Sample Driver for the RL11, RL01, and RL02

INPUTS:

R3 = FUNCTION TABLE DISPATCH INDEX
R5 = DEVICE UNIT UCB ADDRESS

00(SP) = RETURN ADDRESS OF CALLER
04(SP) = RETURN ADDRESS OF CALLER'S CALLER

IMMEDIATELY FOLLOWING INLINE AT THE CALL SITE IS A BYTE WHICH CONTAINS
A BRANCH DESTINATION TO AN ERROR RETRY ROUTINE.

OUTPUTS:

THERE ARE FOUR EXITS FROM THIS ROUTINE:

1. SPECIAL CONDITION - THIS EXIT IS TAKEN IF A POWER FAILURE OCCURS
OR THE OPERATION TIMES OUT. IT IS A JUMP TO THE APPROPRIATE
ERROR ROUTINE.

2. FATAL ERROR - THIS EXIT IS TAKEN IF A FATAL CONTROLLER OR DRIVE
ERROR OCCURS OR IF ANY ERROR OCCURS AND ERROR RETRY IS EITHER
INHIBITED OR EXHAUSTED. IT IS A JUMP TO THE FATAL ERROR EXIT
ROUTINE.

3. RETRIABLE ERROR - THIS EXIT IS TAKEN IF A RETRIABLE CONTROLLER
OR DRIVE ERROR OCCURS AND ERROR RETRY IS NEITHER INHIBITED
NOR EXHAUSTED. IT CONSISTS OF TAKING THE ERROR BRANCH EXIT
SPECIFIED AT THE CALL SITE.

4. SUCCESSFUL OPERATION - THIS EXIT IS TAKEN IF NO ERRORS OCCUR
DURING THE OPERATION. IT CONSISTS OF A RETURN INLINE.

IN ALL CASES IF AN ERROR OCCURS, AN ATTEMPT IS MADE TO LOG THE ERROR.

IN ALL CASES FINAL DEVICE REGISTERS ARE RETURNED VIA THE UCB.

UCB$W_BCR(R5) = NEGATIVE BYTES REMAINING TO TRANSFER
.PAGE

FEXL:
POPL UCB$L_DPC(R5)
MOVB R3,UCB$B_CEX(R5)
MOVL UCB$L_CRB(R5),R0
MOVL CRB$L_INTD+VEC$L_IDB(RO)
CMPL R5,IDB$L_OWNER(R1)
BNEQ 10$
MOVL IDB$L_CSR(R1),R4
BRB 20$

10$: REQPCHAN

FUNCTION EXECUTOR
SAVE DRIVER PC VALUE
SAVE CASE INDEX
GET ADDRESS OF PRIMARY CRB
R1 ;GET ADDRESS OF IDB
DOES THIS PROCESS OWN CHANNEL?
IF NEQ, NO
SET ASSIGNED CHANNEL CSR ADDRESS

REQUEST CHANNEL (RETURNS R4 = CSR ADR)

20$: CASE R3,<-
IMMED,-
IMMED,-
POSIT.-
IMMED,-

DRCLR,-
IMMED,-
IMMED,-
IMMED,-
DRCLR,-
IMMED.-
>

BRW XFER

DISPATCH TO PROPER FUNCTION ROUTINE
NO OPERATION
UNLOAD VOLUME (NOP)
SEEK CYLINDER
RECALIBRATE (NOP)

DRIVE CLEAR (GET STATUS & RESET)
RELEASE DRIVE (NOP)
OFFSET HEADS (NOP)
RETURN TO CENTERLINE (NOP)
PACK ACKNOWLEDGE
SEARCH (NOP)

TRANSFER FUNCTION

E-16

Sample Driver for the RL11, RL01, and RL02

.PAGE

IMMEDIATE FUNCTION EXECUTION

FUNCTIONS INCLUDE:

NO OPERATION,
DRIVE CLEAR, AND
PACK ACKNOWLEDGE

INPUTS:
R3 - CASE INDEX
R4 - CSR ADDRESS
R5 - UCB ADDRESS

; FUNCTIONAL DESRIPTION:

; INTERRUPTS ARE LOCKED OUT. THE APPROPRIATE FUNCTION IS INITIATED WITH
; INTERRUPT ENABLE. AND A WAITFOR INTERRUPT AND KEEP CHANNEL IS EXECUTED.

DRCLR: ;DRIVE CLEAR
BISW #RL_DA_M_STS!-

RL_DA_M_RST!RL_DA_M_MRK

CKPWR

BISW3 R2,FTAB[R3],RL_CS(R4)
WFIKPCH
IOFORK

RETREG,#2

BRW

.PAGE

RETREG

POSITIONING FUNCTION EXECUTION

FUNCTIONS INCLUDE:

SEEK CYLINDER

INPUTS:
R3 - CASE INDEX
R4 - DEVICE CSR ADDRESS
R5 - UCB ADDRESS

;SET GETSTATUS.RESET,AND MARK IN DAR
RL_DA(R4) ; . . .

;IMMEDIATE FUNCTION EXECUTION
;DISABLE INTERRUPTS, CHECK POWER,-
;AND PUT UNIT NUMBER IN R2<9:8>
;MERGE UNIT WITH FNTN AND EXECUTE
;WAITFOR INTERRUPT
;RETURN FROM ISR-
;CREATE FORK PROCESS (&JSB BACK TO ISR)

FUNCTIONAL DESRIPTION:

THE CYLINDER DIFFERENCE WORD IS CALCULATED AND LOADED INTO THE DISK
ADDRESS REGISTER, INTERRUPTS ARE LOCKED OUT, AND THE SEEK FUNCTION
IS INITIATED WITHOUT INTERRUPT ENABLE. THE CONTROLLER IS THEN POLLED
FOR READY. AND DEVICE INTERRUPTS ARE ENABLED.

SINCE THE RL01/RL02 DO NOT ISSUE AN INTERRUPT UPON COMPLETION OF A
SEEK, OVERLAPPED SEEKS ARE NOT ATTEMPTED, AND ONE OF THE FOLLOWING IS
PERFORMED.

IF ONLY A SEEK FUNCTION IS BEING REQUESTED, A DUMMY READ HEADER
FUNCTION IS ISSUED AND A WAITFOR INTERRUPT IS INITIATED.
THE READ HEADER IS USED TO SIGNAL THE END OF THE SEEK, SINCE IT
WILL ISSUE AN INTERRUPT SHORTLY (315 USEC AVG) AFTER THE SEEK IS
COMPLETE. IT WILL ALSO SENSE FOR A TIMEOUT DURING THE SEEK.

IF THE SEEK IS ASSOCIATED WITH A DATA TRANSFER REQUEST (RL01/RL02
TRANSFER FUNCTIONS REQUIRE EXPLICIT SEEKS), THE PROGRAM KEEPS THE
CHANNEL AND RETURNS TO FDISPATCH TO ISSUE THE TRANSFER REQUEST
WHILE THE SEEK IS STILL IN PROGREES. WHEN THE SEEK COMPLETES. THE
RL11 CONTROLLER WILL BEGIN THE TRANSFER.

E—17

Sample Driver for the RL11, RL01, and RL02

POSIT: ;POSITIONING FUNCTION

; OBTAIN CURRENT DISK ADDRESS

; IF THERE HAS NOT BEEN A PREVIOUS TRANSFER DURING THIS REQUEST,

; A READ HEADER IS EXECUTED TO DETERMINE THE CURRENT DISK ADDRESS.

TSTW UCB$W_DL_DPN(R5) ;WAS THERE A PREVIOUS TRANSFER?
BEQL 10$;IF EQL, NO, READ HEADER
BICW3 #“077,UCB$W_DL_DA(R5),R1 ;PUT CURRENT CYL ft SURFACE IN R1
BRW 60$ CALCULATE DIFFERENCE WORD

10$ MOVZBL #8 ,R3 SET READ HEADER RETRY COUNT IN R3
20$ CKPWR DISABLE INTERRUPTS. CHECK POWER,-

AND PUT UNIT NUMBER IN R2<9:8>
BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE READ HEADER

RL.CS(R4) . . .
WFIKPCH 40$,#2 WAIT FOR INTERRUPT OR TIMEOUT
IOFORK CREATE FORK PROCESS
BITW #RL_CS_M_CE,UCB$W_DL_CS(R5) ;ANY ERRORS?
BEQL 50$ IF EQL, NO
DECB R3 DECREMENT READ HEADER RETRY COUNT
BNEQ 20$ IF NEQ, RETRY READ HEADER

IF EQL, READ HEADER RETRY EXHAUSTED -
TRY PREVIOUS TRACK

MOVW #“0200!RL.DA_M.MRK,-
RL_DA(R4)

LOAD REVERSE SEEK DIFFERENCE WORD

CKPWR DISABLE INTERRUPTS, CHECK POWER,-
AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_SEEK!RL.CS.M_IE,-
RL.CS(R4)

EXECUTE REVERSE SEEK

WFIKPCH 40$,#2 WAIT FOR SEEK TO BEGIN (INTERRUPT)
IOFORK CREATE FORK PROCESS
CKPWR DISABLE INTERRUPTS, CHECK POWER,-

AND PUT UNIT NUMBER IN R2<9:8>
BISW3 R2,#F_READHEAD!RL.CS.M_IE,- ;TRY READ HEADER ON NEW TRACK

RL.CS(R4) . . .
WFIKPCH 40$.#2 WAITFOR INTERRUPT OR TIMEOUT
IOFORK CREATE FORK PROCESS
BITW #RL_CS_M_CE,UCB$W_DL_CS(R5) ;READ HEADER ERROR?
BEQL 50$ IF EQL, NO

40$:
CLRB UCB$B_ERTCNT(R5)

CANNOT READ CURRENT DISK ADDRESS
CLEAR RETRY COUNT

BRW RETREG

50$: FOUND CURRENT DISK ADDRESS

BICW3 #“077,UCB$W_DL_MP(R5),R1 ;PUT CURRENT CYL ft SURFACE IN R1

; CALCULATE CYLINDER DIFFERENCE WORD

60$: CLRL RO CLEAR RO FOR DESIRED ADDRESS

INSV UCB$W_DA+1(R5),#6,#1,R0 INSERT DESIRED SURFACE IN R0<6>
INSV UCB$W_DC(R5).#7.#9.RO INSERT DESIRED CYLINDER IN R0<15:7>
CMPW R0.R1 IS A SEEK NEEDED?

BEQL 80$ IF EQL, NO
BICW #“0177,R1 REMOVE SURFACE BIT
BICW #“0177,RO REMOVE SURFACE BIT
SUBW RO.Rl SUBTRACT DESIRED FROM ACTUAL
BEQL 70$ IF EQL, ONLY CHANGE SURFACE
BCC 70$ IF CC. ACTUAL>=DESIRED
MNEGW R1.R1 ACTUAL<DESIRED, MAKE POSITIVE DIFF
BISW #4, R1 SET SIGN FOR MOVE TO CENTER OF DISK

70$: INSV UCB$W_DA+1(R5),#4,#1,R1 INSERT SURFACE BIT
BISW3 #RL_DA_M_MRK,R1,RL_DA(R4) ;SET MARKER AND LOAD DIFFERENCE WORD

E—18

Sample Driver for the RL11, RL01, and RL02

EXECUTE SEEK

CKPWR DISABLE INTERRUPTS, CHECK POWER,-
AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_SEEK!RL_CS_M_IE,- EXECUTE SEEK FUNCTION
RL_CS(R4) . . .

WFIKPCH 40$,#2 WAIT FOR SEEK TO BEGIN (INTERRUPT)
IOFORK CREATE FORK PROCESS

80$: CMPB #IO$_SEEK,UCB$B_FEX(R5) IS SEEK ASSOCIATED WITH A TRANSFER?
BEQL 90$ IF EQL, NO, SEEK ONLY

; RETURN FOR SEEK ASSOCIATED WITH A TRANSFER REQUEST

INCL UCB$L_DPC(R5) ; ;ADJUST TO CORRECT RETURN ADDRESS
JMP ®UCB$L_DPC(R5) ;RETURN TO DRIVER FOR TRANSFER

; RETURN FOR SEEK ONLY REQUEST

90$: CKPWR ;DISABLE INTERRUPTS, CHECK POWER,-
;AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE DUMMY READ HEADER
RL_CS(R4) • • .

WFIKPCH RETREG,#2 WAIT FOR SEEK TO COMPLETE (INTERRUPT)
IOFORK CREATE FORK PROCESS
BRW RETREG

.PAGE

TRANSFER FUNCTION EXECUTION

FUNCTIONS INCLUDE:

WRITE CHECK
WRITE DATA
READ DATA, AND
READ HEADER

INPUTS:
R3
R4
R5

- CASE INDEX
- DEVICE CSR ADDRESS
- UCB ADDRESS

FUNCTIONAL DESCRIPTION:

A UNIBUS DATA PATH IS REQUESTED FOLLOWED BY THE APPROPRIATE NUMBER OF MAP
REGISTERS REQUIRED FOR THE TRANSFER. THE TRANSFER PARAMETERS ARE LOADED
INTO THE DEVICE REGISTERS, INTERRUPTS ARE LOCKED OUT, THE FUNCTION IS
INITIATED, AND A WAITFOR INTERRUPT AND KEEP CHANNEL IS EXECUTED.

UPON RETURN FROM THE INTERRUPT SERVICE ROUTINE, IF THE TRANSFER IS
COMPLETE, THE APPROPRIATE EXIT IS TAKEN. IF THE FUNCTION IS NOT COMPLETE
TRANSFER PARAMETERS ARE UPDATED AND A RETURN TO FDISPATCH IS EXECUTED TO
RE-ISSUE SEEK AND TRANSFER FUNCTIONS WHILE KEEPING CHANNEL AND UBA
RESOURCES. IF A DATA CHECK HAS BEEN REQUESTED, IT IS PERFORMED
BEFORE RETURNING TO FDISPATCH.

XFER:
BBS

MOVW
MOVZWL
MOVW
ASHL
MOVB

#UCB$V_DL_MAPPING,-
UCB$W_DL_FLAGS(R5),2$

TRANSFER FUNCTION EXECUTION
ADAPTER MAPPING?
BRANCH IF ADAPTER MAPPING.

UCB$A_DL_BUF_PA(R5),UCB$W_DL_SBA(R5);GET 1ST WORD OF BUFFER ADDR
UCB$A_DL_BUF_PA+2(R5),RO
R0,RL_BAE(R4)
#4,RO,RO
RO,UCB$B_DL_XBA(R5)

GET BITS 16:21 OF BUFFER ADDRESS
SET MEMORY EXTENSION BITS IN BAE
PUT MEMORY EXTENSION BITS IN <5:4>
OF CSR

E—19

Sample Driver for the RL11, RL01, and RL02

FIRST TRANSFER OF THIS I/O REQUEST ALLOCATE RESOURCES

1$:

TSTW
BNEQ
CLRL
CMPB
BNEQ
MOVAB

MOVL
MNEGW
BRB

UCB$W_DL_DPN(R5)
5$
UCB$A.DL.MOVRTN(R5)
#CDF_WRITEDATA,R3

1$
G~IOC$MOVFRUSER,-
UCB$A_DL_MOVRTN(R5)
UCB$L_SVAPTE(R5),UCB$L_DL
#1,UCB$W_DL_DPN(R5)
5$

RESOURCES ALREADY ALLOCATED?
IF NEQ, YES
ASSUME READ
WRITE DATA?
IF NEQ, NO
SET MOVE ROUTINE ADDRESS FOR
1ST PARTIAL WRITE

SVAPTE(R5);SAVE SVAPTE FOR BUFFER COPY
SET FIRST XFER FLAG
JOIN COMMON CODE

; FIRST TRANSFER OF THIS I/O REQUEST - ALLOCATE RESOURCES

2$: TSTW UCB$W_DL_DPN(R5) ;UBA RESOURCES ALREADY ALLOCATED?
BNEQ 5$;IF NEQ, YES
REQDPR ;REQUEST DATA PATH
REQMPR ;REQUEST MAP REGISTERS
LOADUBA ;LOAD UNIBUS MAP REGISTERS
MOVL UCB$L_CRB(R5),R1 ;GET CRB ADDRESS
EXTZV #VEC$V_DATAPATH,#VEC$S.DATAPATH,- ;EXTRACT DATA-PATH NUMBER

CRB$L_INTD+VEC$B_DATAPATH(R1),RO ; FOR UBA-RESOURCE FLAG
MOVW RO,UCB$W_DL_DPN(R5) ;INDICATE UBA RESOURCES ALLOCATED

MOVZWL UCB$W_B0FF(R5),RO ;GET BYTE OFFSET IN PAGE
INSV CRB$L_INTD+VEC$W_MAPREG(R1),- ;INSERT HIGH 7 BITS OF ADDRESS

#9,#7,RO
MOVW RO,UCB$W_DL_SBA(R5) ;SET BUFFER ADDRESS
EXTZV #7,#2,CRB$L_INTD+VEC$W_MAPREG(R1),RO ;GET MEMORY EXTENSION BITS
MULB3 #16,RO,UCB$B_DL_XBA(R5) ;POSITION MEMORY EXTENSION BITS TO <5:4>

COMMON TRANSFER POINT

; FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT EMPTY THE
; INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE PREVIOUS READ TO THE
; USER'S BUFFER.

5$: BSBW DL_MOVE_TO_BUFFER ;COPY TO USER BUFFER

; PUT BUFFER ADDRESS, WORD COUNT, AND DISK ADDRESS IN DEVICE REGISTERS

MOVW UCB$W_DL_SBA(R5),RL_BA(R4) ;SET BUFFER ADDRESS
MNEGW UCB$W_BCR(R5),-

UCB$W_DL_PBCR(R5)
MOVZBL UCB$B_SECT0RS(R5),R2
MOVZBL UCB$W_DA(R5),R1
SUBW R1.R2
MULW #256.R2
CMPW UCB$W_DL_PBCR(R5),R2
BLEQU 10$
MOVW R2,UCB$W_DL_PBCR(R5)

GET BYTES LEFT TO TRANSFER AND -
ASSUME ONLY ONE TRANSFER NEEDED
GET SECTORS/SURFACE
GET DESIRED SECTOR
CALCULATE SECTORS LEFT ON SURFACE
CONVERT TO BYTES LEFT ON SURFACE
ARE ADDITIONAL TRANSFERS REQUIRED?
IF LEQU, NO
SET BYTE COUNT FOR THIS TRANSFER

E—20

Sample Driver for the RL11, RL01, and RL02

FOR A WRITE OPERATION WHEN NO ADAPTER MAPPING IS PRESENT
FILL INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE USER'S BUFFER.

10$: BSBW DL_MOVE_FROM_BUFFER

MOVZBL UCB$B_DL_XBA(R5),R0
BISW FTAB[R3],R0
DIVW3 #2,UCB$W_DL_PBCR(R5),R2
MNEGW R2,RL_MP(R4)

MOVZBL UCB$W_DA(R5),R1
INSV UCB$W_DA+1(R5),#6,#1,R1
INSV UCB$W_DC(R5),#7,#9,R1
MOVW R1,RL_DA(R4)

EXECUTE THE TRANSFER FUNCTION

CKPWR

BISW3 R2,R0,RL_CS(R4)
WFIKPCH RETREG,#6

IOFORK

COPY FROM USER BUFFER

SET MEMORY EXTENSION BITS
MERGE XBA BITS WITH FUNCTION
CALCULATE TRANSFER WORD COUNT
SET TRANSFER WORD COUNT

PUT DESIRED SECTOR IN Rl<5:0>
INSERT DESIRED SURFACE IN Rl<6>
INSERT DESIRED CYLINDER IN Rl<15:7>
SET DESIRED DISK ADDRESS

DISABLE INTERRUPTS, CHECK POWER,-
AND PUT UNIT NUMBER IN R2<9:8>
EXECUTE FUNCTION
WAITFOR INTERRUPT AND KEEP CHANNEL
RETURN HERE FROM ISR SAVING REGISTERS
CREATE FORK PROCESS (RETURN TO ISR)
RETURN HERE FROM ISR REI ROUTINE

; PURGE DATA PATH

CLRB UCB$B_DL_DPPE(R5) CLEAR DATA-PATH-PURGE ERROR
JSB G~IOC$PURGDATAP PURGE DATA PATH
BLBS RO,20$ IF SET, NO PURGE ERRORS
INCB UCB$B_DL_DPPE(R5) SET DATA-PATH-PURGE ERROR

; SAVE UBA REGISTERS FOR UPDATE AND REGDUMP ROUTINES

20$: BBC #UCB$V_DL_MAPPING,- ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5),30$ IF BC, NO

MOVL R1,UCB$L_DL_DPR(R5) SAVE DATA-PATH REGISTER
EXTZV #9,#7,UCB$W_DL JBA(R5),R0 ;EXTRACT LOW BITS OF FINAL MAP REG NO.
EXTZV #4,#2,UCB$W_DL_CS(R5),R1 ;EXTRACT HIGH BITS OF FINAL MAP REG NO
INSV R1,#7,#2,RO INSERT HIGH BITS OF FINAL MAP REGISTER
CMPW #495,RO LEGAL MAP REGISTER NUMBER?
BGEQ 25$ IF GEQ, YES
MOVZWL #495,RO RESTRICT MAP REGISTER NUMBER

25$: MOVL (R2)[RO],UCB$L_DL_FMPR(R5) ;SAVE FINAL MAP REGISTER NUMBER
CLRL UCB$L_DL_PMPR(R5) ;CLEAR PREVIOUS MAP REGISTER CONTENTS
DECL RO ;CALCULATE PREVIOUS MAP REGISTER NUMBER
CMPV #VEC$V_MAPREG,#VEC$S_MAPREG,- ;ANY PREVIOUS MAP REGISTER?

CRB$L_INTD+VEC$W_MAPREG(R3),R0 ;...
BGTR 30$;IF GTR, NO
MOVL (R2)[RO],UCB$L_DL_PMPR(R5) ;SAVE PREVIOUS MAP REGISTER

30$: BBC #RL_CS_V_CE,UCB$W_DL_CS(R5),40$;IF CLR, NO RL ERRORS
BRW RETREG DEVICE ERROR

40$: BLBC UCB$B_DL_DPPE(R5).45$ IF CLR, NO PURGE ERROR
BRW RETREG PURGE ERROR

; RETURN HEADER INFORMATION FOR READ HEADER FUNCTION

45$: CMPB #CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION?
BNEQ DATACHECK IF NEQ, NO
PUSHL UCB$W_BCR(R5) SAVE NEG BYTES REMAINING
PUSHL UCB$L_SVAPTE(R5) SAVE ADDRESS OF PTE
MOVAB UCB$W_DL_DB(R5),R1 SET ADDRESS OF INTERNAL BUFFER
MOVL #6,R2 SET NUMBER OF BYTES TO MOVE
CMPW R2,UCB$W_BCNT(R5) ROOM FOR FULL HEADER?
BLSSU 50$ IF LSSU, YES
MOVZWL UCB$W_BCNT(R5),R2 SET LENGTH OF PARTIAL HEADER

E-21

Sample Driver for the RL11, RL01, and RL02

50$: SUBW3 UCB$W_BCNT(R5),R2,UCB$W_BCR(R5) ;CALCULATE TRANSFER BYTE COUNT
JSB G~IOC$MOVTOUSER MOVE HEADER TO USER BUFFER
POPL UCB$L_SVAPTE(R5) RESTORE ADDRESS OF PTE
POPL UCB$W_BCR(R5) RESTORE NEG BYTES REMAINING

; PERFORM DATA CHECK. IF REQUESTED

DATACHECK: DATACHECK AFTER PARTIAL TRANSFER
BBC #IO$V_DATACHECK,-

UCB$W_FUNC(R5).UPDATE
IF CLR. DATA CHECK NOT REQUESTED

BBSC #0,UCB$B_DL_DCHEK(R5).-
UPDATE

IF SET, DATA CHECK ALREADY PERFORMED

INCB UCB$B_DL_DCHEK(R5) SET DATA CHECK IN PROGRESS
MOVZBL #IO$_WRITECHECK,R3 SET CASE INDEX TO WRITE CHECK
BRW XFER BRANCH TO PERFORM WRITE CHECK

; UPDATE BUFFER ADDRESS. CURRENT DISK ADDRESS. AND BYTES REMAINING
; FOR NEXT TRANSFER

UPDATE
BBC #UCB$V_DL_MAPPING,-

UPDATE TRANSFER PARAMETERS
ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5),10$ IF BC. NO
BICB3 #~XCF.UCB$W_DL_CS(R5),-

UCB$B_DL _XBA(R5)
SAVE MEMORY EXTENSION BITS

MOVW UCB$W_DL_BA(R5).-
UCB$W_DL_SBA(R5)

UPDATE SAVED BUFFER ADDRESS

10$: CLRB UCB$W_DA(R5) UPDATE DESIRED SECTOR TO ZERO
ADDL3 #~0100,UCB$W_DL_DA(R5),R1 ;INCREMENT CYLINDER & SURFACE
EXTZV #6,#1,R1,R2 EXTRACT DESIRED DISK SURFACE
MOVB R2,UCB$W_DA+1(R5) UPDATE DESIRED DISK SURFACE
EXTZV #7,#9,R1,R2 EXTRACT DESIRED DISK CYLINDER
MOVW R2,UCB$W_DC(R5) UPDATE DESIRED DISK CYLINDER
ADDW UCB$W_DL_PBCR(R5),- UPDATE NEG BYTES REMAINING TO XFER

UCB$W_BCR(R5) . . .
BEQL RETREG IF EQL. TRANSFER COMPLETE
BRW FDISPATCH MORE BYTES REMAINING - CONTINUE

GET STATUS AND RESET ERRORS

RETREG: ;GET STATUS AND RESET ERRORS

FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT
EMPTY INTERNAL BUFFER INTO USER'S BUFFER FOR LAST READ

MOVE LAST READ INTO USER'S BUFFER
MAKE SURE AT FORK IPL (TIMEOUT)
PUT GET STATUS IN DAR

BSBW DL_MOVE_TO_BUFFER
SETIPL UCB$B_FIPL(R5)
MOVW #RL_DA_M_STS!-

RL_DA_M_MRK,RL.DA(R4)
CLRL R2 ;CLEAR R2 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5),#8,#8,R2 ;GET UNIT NUMBER
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE GET STATUS
BSBW DL_WAIT ;WAIT FOR CONTROLLER
MOVW RL_MP(R4),UCB$W_DL_MP(R5) ;RETRIEVE ERROR REGISTER
MOVW #RL_DA_M_RST!- ;PUT GET STATUS A RESET IN DAR

RL_DA_M_STS!RL_DA_M_MRK,RL_DA(R4) ;...
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE RESET
BSBW DL.WAIT ;WAIT FOR CONTROLLER

E—22

Sample Driver for the RL11, RL01, and RL02

DETERMINE EXIT - SPECIAL CONDITION, FATAL ERROR, RETRIABLE ERROR, OR SUCCESS

1$:

2$:

4$:

CMPZV #0,#5,UCB$W_DL_MP(R5),- ;HEADS. BRUSHES, STATE OK?
#RL_MP_M_BH!RL_MP_M_HO!RL_SLM ;...

BEQL 1$;IF EQL, YES, ONLINE
BICW #UCBM_TIM0UT,UCBW_STS(R5) ;CLEAR DEVICE TIME OUT
MOVZWL #SS$_MEDOFL,RO ;SET MEDIUM OFFLINE STATUS
BRW FUNCXT ;RETURN
BITW #UCB$M_POWER!- ;POWER FAIL OR DEVICE TIMEOUT?

UCBM_TIMOUT,UCBW_STS(R5) ;...
BNEQ SPECOND ;IF NEQ, YES, SPECIAL CONDITION

BBS #RL_MP_V_VC,UCB$W_DL_MP(R5),20$;IF SET, VOLUME INVALID
BBS #RL_CS_V_CE,UCB$W_DL_CS(R5),2$;IF SET. RL ERROR
BLBC UCB$B_DL_DPPE(R5),10$; IF CLR, NO PURGE ERROR
JSB G~ERL$DEVICERR ;ALLOCATE AND FILL ERROR MESSAGE BUFFER
BBS #IO$V_INHRETRY,UCB$W_FUNC(R5),20$;IF SET. RETRY INHIBITED
BBS #RL_CS_V_NXM,UCB$W_DL_CS(R5),20$;IF SET, NONEXISTENT MEMORY
BBC #RL_CS_V__DE,UCB$W_DL_CS(R5),5$;IF CLR, NO DRIVE ERRORS
BBC #RL_MP_V_WL,UCB$W_DL_MP(R5),4$;IF CLR, NOT WRITE LOCKED
BBS #RL_MP_V_WGE,UCB$W_DL_MP(R5),20$;IF WL & WGE SET, WL ERROR
BITW #RL_MP_M_WDE!- ;WRITE DATA ERROR, OR

RL_MP_M_CHE!- ;CURRENT HEAD ERROR, OR
RL_MP_M_WGE!- ;WRITE GATE ERROR, OR
RL_MP_M_DSE,UCB$W_DL_MP(R5) ;DRIVE SELECT ERROR?

BNEQ 20$;IF NEQ, YES

RETRIABLE ERROR EXIT

5$: CVTBL ©UCB$L_DPC(R5),-(SP) ;GET BRANCH DISPLACEMENT
ADDL (SP)+,UCB$L_DPC(R5) ;CALCULATE RETURN ADDRESS - 1

SUCCESSFUL OPERATION EXIT

10$: INCL UCB$L_DPC(R5)
JMP ®UCB$L_DPC(R5)

;ADJUST TO CORRECT RETURN ADDRESS
;RETURN TO DRIVER

FATAL ERROR EXIT

E—23

Sample Driver for the RL11, RL01, and RL02

20$: BRW FATALERR ;FATAL ERROR EXIT

SPECIAL CONDITION EXIT (POWER FAILURE OR DEVICE TIMEOUT)

SPECOND:
BBS

JSB
BICW
MOVZWL
DECB
BEQL
BRW

RESETXFR:
MOVL
MNEGW
BRW

#UCBV_POWER,UCBW_STS(R5),PWRFAIL ;IF SET, POWER FAILURE
;IF CLR, DEVICE TIMEOUT

G~ERL$DEVICTMO ;LOG DEVICE TIMEOUT
#UCBM_TIM0UT,UCBW_STS(R5) ;CLEAR TIMEOUT STATUS
#SS$_TIMEOUT,RO
UCB$B_ERTCNT(R5)
RESETXFR
FDISPATCH

SET DEVICE TIMEOUT STATUS
ANY ERROR RETRIES REMAINING?
IF EQL, NO
RETURN

UCB$L_IRP(R5),R3
IRP$W_BCNT(R3),UCB$W_BCR(R5)
FUNCXT ;EXIT

RESET TRANSFER BYTE COUNT
GET ADDRESS OF I/O PACKET

;RESET BYTE COUNT

PWRFAIL:

50$:

BICW
TSTW
BEQL
BBC

RELDPR
RELMPR
RELCHAN
MOVL
MOVQ

BRW

#UCBM_POWER, UCBW.
UCB$W_DL_DPN(R5)
50$
#UCB$V_DL_MAPPING,
UCB$W_DL_FLAGS(R5)

UCB$L_IRP(R5),R3
IRP$L_SVAPTE(R3), -
UCB$L_SVAPTE(R5)
PREPROCESS

;POWER FAILURE
_STS(R5) ;CLEAR POWER FAILURE BIT

;ARE UCB RESOURCES ALLOCATED?
IF EQL, NO

;ADAPTER MAPPING?
50$;IF BC, NO

;RELEASE DATA PATH
RELEASE MAP REGISTERS
RELEASE CHANNEL IF OWNED
GET ADDRESS OF I/O PACKET
RESTORE TRANSFER PARAMETERS

RETURN TO PREPROCESS UCB FIELDS

.PAGE

.SBTTL INTERRUPT SERVICE ROUTINE
K +

DL$INT - RL11 INTERRUPT SERVICE ROUTINE

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN INTERRUPT
OCCURS ON AN RL11 DISK CONTROLLER. IF THE INTERRUPT IS NOT EXPECTED,

THE UNSOLICITED INTERRUPT ROUTINE DISMISSES THE INTERRUPT. IF
THE INTERRUPT IS EXPECTED, DEVICE REGISTERS ARE SAVED AND THE
DRIVER IS CALLED AT ITS INTERRUPT RETURN ADDRESS. THE DRIVER FORKS,
CAUSING A RETURN TO THIS ROUTINE, WHICH RESTORES GENERAL REGISTERS
AND DISMISSES THE INTERRUPT.

INPUTS:

00(SP) - POINTER TO ADDRESS OF THE IDB
04(SP) - SAVED RO
08(SP) - SAVED R1
12(SP) - SAVED R2
16(SP) - SAVED R3

20(SP) - SAVED R4
24(SP) - SAVED R5
28(SP) - PC AT THE TIME OF THE INTERRUPT
32(SP) - PSL AT THE TIME OF THE INTERRUPT

OUTPUTS:

DEVICE REGISTERS ARE SAVED, IPL IS LOWERED TO FORK LEVEL. THE
INTERRUPT IS DISMISSED. ALL REGISTERS EXCEPT R0-R5 ARE PRESERVED.

E—24

Sample Driver for the RL11, RL01, and RL02

DL_INT::
MOVL
MOVQ
TSTL
BEQL
BBCC

CMPB
BNEQ
MOVW
MOVW
MOVW

10$: MOVAB
MOVAB
MOVW
MOVW
MOVW
MOVW

20$: MOVQ
JSB

DL.UNSOLNT:
POPR
REI

.PAGE

.SBTTL

; +♦

®(SP)+,R3
(R3),R4
R5
DL.UNSOLNT
#UCB$V_INT,-
UCB$W_STS(R5).DL.UNSOLNT

INTERRUPT SERVICE ROUTINE
REMOVE ADDRESS OF IDB FROM STACK
GET ADDRESS OF CSR AND UCB
IS R5 A ZERO
IF EQL, NO OWNER
IF CLR, INTERRUPT NOT EXPECTED

#CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION?
10$;IF NEQ, NO
RL_MP(R4),UCB$W_DL_DB(R5) ;SAVE SECTOR HEADER INFORMATION
RL_MP(R4),UCB$W_DL_DB+2(R5) ;...
RL_MP(R4),UCB$W_DL_DB+4(R5) ;...

RL_CS(R4),R2
UCB$W_DL_CS(R5),R3
(R2)+,(R3) +
(R2)+,(R3)+
(R2)+,(R3) +
(R2)+,(R3) +

UCB$L_FR3(R5),R3
®UCB$L_FPC(R5)

#~M<R0,R1,R2,R3.R4,R5>

GET ADDRESS OF CONTROL STATUS REGISTER
GET ADDRESS OF REGISTER SAVE AREA
SAVE CONTROL STATUS REGISTER
SAVE BUFFER ADDRESS REGISTER
SAVE DISK ADDRESS REGISTER
SAVE MULTIPURPOSE REGISTER

RESTORE DRIVER CONTEXT
CALL DRIVER AT INTERRUPT RETURN ADDRESS

UNSOLICITED INTERRUPT
RESTORE R0-R5
RETURN FROM INTERRUPT

REGISTER DUMP ROUTINE

DL.REGDUMP - REGISTER DUMP ROUTINE

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS CALLED TO SAVE THE DEVICE REGISTERS AND UBA RESOURCE
REGISTERS IN A SPECIFIED BUFFER. IT IS CALLED FROM THE DEVICE ERROR

LOGGING ROUTINE AND FROM THE DIAGNOSTIC BUFFER FILL ROUTINE.

INPUTS:

RO - ADDRESS OF REGISTER SAVE BUFFER
R4 - ADDRESS OF DEVICE CONTROL STATUS REGISTER (CSR)
R5 - ADDRESS OF UNIT-CONTROL BLOCK (UCB)

OUTPUTS:

THE DEVICE AND UBA REGISTERS ARE SAVED IN THE SPECIFIED BUFFER.
RO CONTAINS THE ADDRESS OF THE NEXT EMPTY LONGWORD IN THE BUFFER.
ALL REGISTERS EXCEPT R1 AND R2 ARE PRESERVED.

DL_REGDUMP:
MOVL #<RL_NUM_REGS+5>.(R0)+
MOVAL UCB$W_DL_CS(R5),R1
MOVZBL #RL_NUM_REGS,R2
MOVZWL (Rl)+,(R0)+
SOBGTR R2,10$
MOVZWL (Rl)+,(R0)+
MOVL (Rl) +, (RO) +
MOVL (Rl)+,(R0)+
MOVL (Rl) +,(RO)+
MOVZBL
RSB

(Rl)+,(RO)+

REGISTER DUMP ROUTINE
INSERT NUMBER OF REGISTERS
GET ADDRESS OF SAVED DEVICE REGISTERS
GET NUMBER OF DEVICE REGISTERS TO MOVE
DUMP REGISTER IN BUFFER
IF GTR, STILL MORE TO MOVE
DUMP DATA-PATH NUMBER
DUMP DATA-PATH REGISTER
DUMP FINAL MAP REGISTER
DUMP PREVIOUS MAP REGISTER
DUMP DATA-PATH-PURGE-ERROR REGISTER
RETURN

E—25

Sample Driver for the RL11, RL01, and RL02

.PAGE

.SBTTL MOVE TO USER BUFFER ROUTINE
♦+

DL_MOVE_TO_BUFFER - MOVE TO USER BUFFER

FUNCTIONAL DESCRIPTION:

THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND
THE USER'S BUFFER.

INPUTS:

R5 - UCB ADDRESS

OUTPUTS:

DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER'S BUFFER.
REGISTER'S RO.Rl, AND R2 ARE DESTROYED

DL_MOVE_TO_BUFFER:

10$:

20$:

BBS

CMPB
BNEQ
BBS

TSTL
BEQL
MOVL
MOVL
MOVZWL
JSB
MOVL
MOVAB

RSB

MOVAB

RSB

#UCB$V_DL_MAPPING,-
UCB$W_DL_FLAGS(R5),10$

BUFFER MOVE ROUTINE
ADAPTER MAPPING?
IF BS, YES, NOTHING TO MOVE

#CDF_READDATA,UCB$B_CEX(R5);READ DATA OPERATION?
10$
#0.UCB$B_DL_DCHEK(R5).-
10$
UCB$A_DL_MOVRTN(R5)
20$
UCB$L_DL_BUFADR(R5),R0
UCB$A_DL_BUF_VA(R5),R1
UCB$W_DL_PBCR(R5),R2
<OUCB$A_DL_MOVRTN (R5)
RO,UCB$L_DL_BUFADR(R5)
G~I0C$M0VT0USER2,-
UCB$A_DL_MOVRTN(R5)

G~IOC$MOVTOUSER,-
UCB$A_DL_MOVRTN(R5)

IF NEQ, NOT A READ
DATA CHECK IN PROGRESS?
IF BS, YES, NOTHING TO MOVE
ANYTHING TO MOVE?
IF EQL, NO
GET USER BUFFER POINTER
GET PHYSICALLY CONTIGUOUS BUFFER ADDRESS
GET NUMBER OF BYTES TO TRANSFER
CALL MOVE ROUTINE
SAVE INTERNAL BUFFER POINTER
SET NEXT MOVE ROUTINE TO BE USED

RETURN

SET NEXT MOVE ROUTINE TO BE USED

RETURN

.PAGE

.SBTTL MOVE FROM USER BUFFER ROUTINE
♦+

DL.MOVE.FROM.BUFFER - MOVE FROM USER BUFFER

FUNCTIONAL DESCRIPTION:

THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND
THE USER'S BUFFER.

E—26

Sample Driver for the RL11, RL01, and RL02

INPUTS:

R5 - UCB ADDRESS

OUTPUTS:

DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER'S BUFFER.
REGISTER’S R0.R1, AND R2 ARE DESTROYED

DL.MOVE. _FROM_BUFFER: BUFFER MOVE ROUTINE
BBS #UCB$V_DL_MAPPING.- ADAPTER MAPPING?

UCB$W_DL_FLAGS(R5).10$ IF BS, YES. NOTHING TO MOVE
CMPB #CDF_WRITEDATA,UCB$B_CEX(R5);WRITE DATA OPERATION?
BNEQ 10$ IF NEQ, NOT A WRITE
BBS #0.UCB$B_DL_DCHEK(R5),- DATA CHECK IN PROGRESS?

10$ IF BS. YES. NOTHING TO MOVE
MOVL UCB$L_DL_BUFADR(R5).RO GET USER BUFFER POINTER
MOVL UCB$A_DL_BUF_VA(R5),R1 GET PHYSICALLY CONTIGUOUS BUFFER ADDRESS
MOVZWL UCB$W_DL_PBCR(R5),R2 GET NUMBER OF BYTES TO TRANSFER
JSB ®UCB$A_DL_MOVRTN(R5) CALL MOVE ROUTINE
MOVL RO,UCB$L_DL_BUFADR(R5) SAVE INTERNAL BUFFER POINTER
MOVAB G~I0C$M0VFRUSER2, -

UCB$A_DL_MOVRTN(R5)
SET NEXT MOVE ROUTINE TO BE USED

10$: RSB RETURN

DL.END:
.END

ADDRESS OF LAST LOCATION IN DRIVER

W

E—27

Sample Driver for the DR 11 —W and
DRV11-WA

The following driver, XADRIVER, controls the DR11-W, a 16-bit parallel
DMA interface on Unibus systems. The driver also controls the DRV11-WA,
a 16-bit parallel DMA interface on the Q-bus. Operational details of these
devices, as well as the capabilities controlled by the driver can be found in
the VAX/VMS I/O User's Reference Manual: Part II. Specific code changes
since VAX/VMS V4.0, including the code added to support the DRV11-WA,
are highlighted with change bars in the margin.

You can find a copy of the driver code (XADRIVER.MAR) in

SYS$EXAMPLES.

.TITLE XADRIVER - VAX/VMS DRil-W AND DRV11-WA DRIVER

.IDENT 'X-51

**
*

* COPYRIGHT (c) 1978, 1980, 1982, 1984, 1986
* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
* ALL RIGHTS RESERVED.
*

* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
* TRANSFERRED.
*

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
* CORPORATION.
*

* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

F—1

Sample Driver for the DR11 —W and DRV11 -WA

FACILITY:

VAX/VMS Executive, I/O Drivers

ABSTRACT:

This module contains the driver for the DR11-W (UNIBUS) and
DRV11-WA (Q22 bus). Since the driver was originally written for the
DR11-W, many inline comments refer to the "DR11-W" and "UNIBUS," but
apply as well to the DRV11-WA and the Q22 bus. It includes:

Tables for loading and dispatching
Controller-initialization routine
FDT routine
Start-I/O routine
Interrupt-servicing routine
Device-specific cancel-I/0 routine
Error-logging, register-dumping routine

ENVIRONMENT:

Kernel mode, nonpaged

AUTHOR:

C. A. Programmer 10-JAN-79

MODIFIED BY:

V04-005 DGB0127 D. G. Programmer 19-Sep-1985
Clean up and document MicroVAX II support

V04-005 DGB0124 D. G. Programmer 25-Jul-1985
Add support for the DRV11-WA on MicroVAX II

V04-003 DGB0112 D. G. Programmer 31-Jan-1985
Move the I0$M_RESET bit to a new location so it no
longer coincides with the I0$M_INHERL0G bit.

V04-002 DGB0106 D. G. Programmer 07-Dec-1984
Fix synchronization problem which occurs in the
cancel routine if an I/O completes while we're trying
to cancel it.

V04-001 JLV0395 J. V. Programmer
Add AVL bit to DEVCHAR.

06-Sep-1984

F—2

£
£
£

Sample Driver for the DR11 -W and DRV11 - WA

V03-006 TMK0001 T. M. Programmer 07-Dec-1983
Fix a broken branch.

V03-005 JLV0304 J. V. Programmer 24-Aug-1983
Several bug fixes. All word writes to XA_CSR now have
ATTN set so as to prevent lost interrupts. Attention
AST list is synchronized at device IPL in DEL.ATTNAST.
Correct status is returned on a set mode ast that
it returns through EXE$FINISHIO. REQCOM's are always
done at FIPL. Signed division that prevented full size
transfers has been fixed.

V03-004 KDM0059 K. D. Programmer 14-Jul-1983
Change time-wait loops to use new TIMEDWAIT macro.
Add $DEVDEF.

V03-003 KDM0002 K. D. Programmer 28-Jun-1982
Added $DYNDEF, $DCDEF, and $SSDEF.

.SBTTL External and local symbol definitions

; External symbols

$ACBDEF
$CRBDEF
$DCDEF

$DDBDEF
IDEVDEF
$DPTDEF
$DYNDEF
IEMBDEF
$IDBDEF
$I0DEF
$IPLDEF
$IRPDEF
$PRDEF
IPRIDEF
$SSDEF
$UCBDEF
$VECDEF
$XADEF

AST control block
Channel request block
Device types

Device data block
Device characteristics
Driver prolog table
Dynamic data structure types
EMB offsets
Interrupt dispatch block
I/O function codes
Hardware IPL definitions
I/O request packet
Internal processor registers
Scheduler priority increments
System status codes
Unit control block
Interrupt vector block
Define device specific characteristics

; Local symbols

; Argument list (AP) offsets for device-dependent QIO parameters

PI = 0
P2 = 4
P3 = 8
P4 = 12

P5 s 16
P6 = 20

; Other constants

_DEF_TIMEOUT
_DEF_BUFSIZ
_RESET_DELAY

* 10
= 65535
= «2+9>/10>

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

10 second default device timeout
Default buffer size
Delay N microseconds after RESET

(rounded up to 10 microsec intervals)

; DR11-W definitions that follow the standard UCB fields
; *** N 0 T E *** ORDER OF THESE UCB FIELDS IS ASSUMED

$DEFINI UCB
.=UCB$L_DPC+4

$DEF UCB$L_XA_ATTN
.BLKL 1

; Attention AST listhead

$DEF UCB$W_XA_CSRTMP
.BLKW 1

; Temporary storage of CSR image

F—3

Sample Driver for the DR11 -W and DRV11 -WA

$DEF UCB$W_XA_BARTMP
.BLKW 1

$DEF UCB$W_XA_CSR
.BLKW 1

$DEF UCB$W_XA_EIR
.BLKW 1

$DEF UCB$W_XA_IDR
.BLKW 1

$DEF UCB$W_XA_BAR
.BLKW 1

$DEF UCB$W_XA_WCR
.BLKW 1

$DEF UCB$W_XA_ERROR
.BLKW 1

$DEF UCB$L_XA_DPR
.BLKL 1

$DEF UCB$L_XA_FMPR
.BLKL 1

$DEF UCB$L_XA_PMPR
.BLKL 1

$DEF UCB$W_XA_DPRN
.BLKW 1

$DEF UCB$W_XA_BAETMP
.BLKW 1

$DEF UCB$W_XA_BAE
.BLKW 1

; Bit positions for device-dependent

IVIELD UCB,0,<-
<ATTNAST,,M>,-
<UNEXPT,,M>,-

<IGNORE_UNEXPT,,M>,-

>

UCB$K_SIZE=.
IDEFEND UCB

; Temporary storage of BAR image

; Saved CSR on interrupt

; Saved EIR on interrupt

; Saved IDR on interrupt

; Saved BAR register on interrupt

; Saved WCR register on interrupt

; Saved device status flag

; Data-path register's contents

; Final map register's contents

; Previous map register's contents

; Saved data-path register's number
; and data-path-parity-error flag

; Temporary storage of BAE (DRV11-WA

; only
; Saved BAE register (DRV11-WA only)

status field in UCB

; UCB device-specific bit definitions
; ATTN AST requested
; Unexpected interrupt received

; Ignore initial interrupt on DRV11-WA

; Device register offsets from CSR address

IDEFINI XA ; i Start of DR11-W definitions

$DEF XA_WCR ; Word count
.BLKW 1

$DEF XA.BAR i ; Buffer address
.BLKW 1

$DEF XA.BAE : Buffer address extension (DRV11-WA)
.BLKW 1

$DEF XA.CSR
.BLKW 1

; Control/status

; Bit positions for device control/status register

$EQULST XA$K_,,0,1,<- ; Define CSR FNCT bit values
<FNCT1,2>-
<FNCT2,4>-
<FNCT3,8>-
<STATUSA,2048>- ;
<STATUSB,1024>-

; Define CSR STATUS bit values

>
<STATUSC,512>-

IVIELD XA_CSR.0,<- Control/status register
<G0,,M>,- Start device
<FNCT,3,M>,- CSR FNCT bits
<XBA,2,M>,- Extended address bits
<IE,,M>,- Enable interrupts
<RDY,,M>,- Device ready for command
<CYCLE,,M>,- Starts slave transmit
<STATUS,3,M>,- CSR STATUS bits
<MAINT,.M>,- Maintenance bit
<ATTN,,M>,- Status from other processor
<NEX,,M>,- Nonexistent memory flag
<ERROR,,M>,- Error or external interrupt

>

F—4

Sample Driver for the DR11—W and DRV11-WA

$DEF XA_EIR

; Bit positions for error information

$VIELD XA.EIR.O,<-
<REGFLG,,M>,-
<SPARE,7,M>,-
<BURST,,M>,-
<DLT,,M>, -
<PAR,, M>, -
<ACL0,, M>, -
<MULTI,, M>, -
<ATTN,,M>,-
<NEX,, M>, -
<ERR0R,,M>, -

>

; Error information register

register

; Error information register
; Flags whether EIR or CSR is accessed
; Unused - spare
; Burst mode transfer occurred
; timeout for successive burst transfer
; Parity error during DATI/P
; Power fail on this processor
; Multicycle request error
; ATTN - same as in CSR
; NEX - same as in CSR
; ERROR - same as in CSR

.BLKW 1

$DEF XA.IDR
$DEF XA_0DR

.BLKW 1

$DEFEND XA

Input-data-buffer register
Output-data-buffer register

End of DR11-W definitions

.SBTTL Device Driver Tables

Driver prologue table

DPTAB
END=XA_END,-

ADAPTER=UBA,-
FLAGS=DPT$M_SVP,-
UCBSIZE=UCB$K_SIZE,-
NAME=XADRIVER

DPT_ST0RE INIT

DPT_ST0RE UCB,UCB$B_FIPL,B,8
DPT.STORE UCB,UCB$B_DIPL,B,22
DPT.STORE UCB,UCB$L_DEVCHAR, L, <-

DEV$M_AVL!-
DEV$M_RTM!-
DEV$M_ELG!-
DEV$M_IDV!-
DEV$M_0DV>

DPT.STORE UCB,UCB$B_DEVCLASS,B,DC$_REALTIME

DPT-creation macro
End of driver label
Adapter type
Allocate system page table
UCB size
Driver name

Start of load
initialization table
Device fork IPL
Device interrupt IPL
Device characteristics
Available
Real-time device
Error Logging enabled

input device
output device

Device class
DPT.STORE UCB,UCB$B_DEVTYPE,B.DT$_DR11W
DPT.STORE UCB,UCB$W_DEVBUFSIZ,W,-

XA.DEF.BUFSIZ

DPT.STORE REINIT

DPT.STORE DDB,DDBL_DDT,D,XADDT
DPT.STORE CRB,CRB$L_INTD+4,D,-

XA.INTERRUPT
DPT.STORE CRB,CRB$L_INTD+VEC$L_INITIAL,-

D,XA.CONTROL.INIT
DPT.STORE END

Device Type
Default buffer size

Start of reload
initialization table
Address of DDT
Address of interrupt
service routine
Address of controller

initialization routine
End of initialization
tables

; Driver dispatch table

DDTAB
DEVNAM=XA,-
START=XA_START,-
FUNCTB=XA_FUNCTABLE,-
CANCEL=XA_CANCEL,-
REGDMP=XA_REGDUMP,-

DDT-creation macro
Name of device
Start I/O routine
FDT address
Cancel I/O routine
Register dump routine

Diagnostic buffer size
log buffer size

DIAGBF=«15*4>+«3+5+l>*4», -
ERLGBF=«15*4>+<1*4>+<EMB$L_DV_REGSAV» ; Error

F—5

Sample Driver for the DR11—W and DRV11 -WA

Function dispatch table

XA.FUNCTABLE:
FUNCTAB

FUNCTAB
FUNCTAB

FUNCTAB
FUNCTAB
FUNCTAB
FUNCTAB

; FDT for driver
; Valid I/O functions

<READPBLK.READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK,-
SETMODE.SETCHAR,SENSEMODE,SENSECHAR>
, ; No buffered functions
XA.READ.WRITE,- ; Device-specific FDT
<READPBLK.READLBLK,READVBLK,WRITEPBLK.WRITELBLK,WRITEVBLK>
+EXE$READ,<READPBLK.READLBLK,READVBLK>
+EXE$WRITE,<WRITEPBLK,WRITELBLK,WRITEVBLK>
XA.SETMODE,<SETMODE,SETCHAR>
+EXE$SENSEMODE,<SENSEMODE,SENSECHAR>

.SBTTL XA_C0NTR0L_INIT, Controller initialization

++

XA_CONTROL_INIT, Called when driver is loaded, system is booted, or
power failure recovery.

Functional Description:

1) Allocates the direct data path permanently
2) Assigns the controller data channel permanently

3) Clears the Control and Status Register
4) If power recovery, requests device timeout

Inputs:

R4 = address of CSR
R5 = address of IDB
R6 = address of DDB
R8 = address of CRB

Outputs:

VEC$V_PATHLOCK bit set in CRB$L_INTD+VEC$B_DATAPATH
UCB address placed into IDB$L_OWNER

F-6

Sample Driver for the DR11 -W and DRV11 -WA

XA_C0NTR0L_INIT:
MOVL IDB$L_UCBLST(R5),R0 ; Address of UCB
MOVL RO,IDB$L_0WNER(R5) ; Make permanent controller owner
BISW #UCBM_ONLINE,UCBW_STS(RO)

; Set device status "on-line"

CPUDISP «UV1,3$>, -
<UV2,5$», -

CONTINUE=YES
BRB 9$

3$: BUG.CHECK UNSUPRTCPU,FATAL
5$: MOVB #DT$_XA_DRV11WA,-

UCB$B_DEVTYPE(RO)

; Branch to handle MicroVAX I
; Branch to handle MicroVAX II
; Else continue for all other processors

; DRV11-WA not supported on MicroVAX I
; If this is a Q22 bus, then this is
; a DRV11-WA rather than a DR11-W.

On the DRV11-WA, the interrupt enable bit normally remains set at all
times since an interrupt is generated if the bit makes a low-to-high
transition when there isn't a DMA transfer in progress. Since the
device has the IE bit clear at power-up, an interrupt will be generated
when we set the IE bit. Therefore, we tell the interrupt service
routine to ignore the first unexpected interrupt that occurs.

BBS #XA_CSR$V_IE,- ; Branch if IE bit already set
XA_CSR(R4),9$

BBSS #UCB$V_IGNORE_UNEXPT,- ; Else interrupt will occur
UCB$W_DEVSTS(RO),9$

; If powerfail has occurred and device was active, force device timeout.
; The user can set his own timeout interval for each request. Timeout
; is forced so a very long timeout period will be short-circuited.

9$: BBS #UCB$V_POWER,UCB$W_STS(RO),10$

10$:

; Branch if powerfail
BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(R8)

; Permanently allocate direct datapath

BSBW XA_DEV_RESET ; Reset DR11W
RSB ; Done

.SBTTL XA_READ_WRITE, FDT for device data transfers

++

XA_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK,
WRITEPBLK

Functional Description:

1)
2)

Rejects QUEUE I/O's with odd transfer count
Rejects QUEUE I/O's for BLOCK MODE request to UBA direct data
path on odd byte boundary

F—7

Sample Driver for the DR11 -W and DRV11 -WA

3) Stores
4) Stores
5) Stores
6) Checks

request timeout count specified in P3 into IRP
FNCT bits specified in P4 into IRP
word to write into ODR from P5 into IRP
block mode transfers for memory modify access

Input8:

R3
R4
R5
R6
R8
AP

Address of IRP
Address of PCB
Address of UCB
Address of CCB
Address of FDT routine
Address of PI

PI = Buffer address
P2 = Buffer size in bytes
P3 * Request timeout period (conditional on I0$M_TIMED)
P4 = Value for CSR FNCT bits (conditional on IO$M_SETFNCT)
P5 = Value for ODR (conditional on IO$M_SETFNCT)
P6 = Address of diagnostic buffer

Outputs:

RO = Error status if odd transfer count
IRP$L_MEDIA = timeout count for this request
IRP$L_SEGVBN = FNCT bits for DR11-W CSR and ODR image

XA_READ_WRITE:

; The I0$M_INHERL0G ("inhibit error logging") function modifier was not
; intended to be used by this driver. However, since the definition for
; the I0$M_RESET modifier used to be the same as that for I0$M_INHERL0G,
; the error logging routines incorrectly used the I0$M_RESET bit to
; determine whether it should log errors. To solve this problem, the
; definition for IO$M_RESET was changed. For the sake of old programs, we
; manually move the RESET bit to its new location.

BBCC #I0$V_INHERL0G,IRP$W_FUNC(R3).1$
J Branch if old reset bit not set

BISW #I0M_RESET,IRPW_FUNC(R3)
; Set new reset bit

1$: BLBC P2(AP),10$; Branch if transfer count even

2$: MOVZWL #SS$_BADPARAM,RO ; Set error status code
5$: JMP G~EXE$AB0RTI0 ; Abort request
10$: MOVZWL IRP$W_FUNC(R3),R1 ; Fetch I/O Function code

MOVL P3(AP),IRP$L_MEDIA(R3) ; Set request specific timeout count
BBS #10$V_TIMED,R1,15$; Branch if timeout specified
MOVL #XA_DEF_TIMEOUT,IRP$L_MEDIA(R3)

; Else set default timeout value

15$: BBC #I0$V_DIAGN0STIC,R1,20$; Branch if not maintenance request
EXTZV #I0$V_FC0DE,#I0$S_FC0DE,R1,R1 ; AND out all function modifiers
CMPB #IO$_READPBLK,R1 ; If maintenance function, must be

; physical I/O read or write
BEQL 20$
CMPB #I0$_WRITEPBLK,R1
BEQL 20$
MOVZWL #SS$_N0PRIV,R0 ; No privilege for operation
BRB 5$; Abort request

20$: EXTZV #0,#3,P4(AP),RO ; Get value for FNCT bits
ASHL #XA_CSRV_FNCT,RO,IRPL_SEGVBN(R3) ; Shift into position for CSR
MOVW P5(AP),IRP$L_SEGVBN+2(R3) ; Store ODR value for later

; if this is a block mode transfer, check buffer for modify access
whether or not the function is read or write. The DR11-W does

not decide whether to read or write, the users device does.
For word mode requests, return to read check or write check.

If this is a BLOCK MODE request and the UBA direct data path is
in use, check the data buffer address for word alignment. If buffer
is not word aligned, reject the request.

F—8

Sample Driver for the DR11 -W and DRV11 - WA

BBS

BBS

BLBS
25$: JMP
30$: RSB

.SBTTL

; ++

#I0V_W0RD,IRPW_FUNC(R3),30$

; Branch if word mode transfer
#XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),25$

; Branch if Buffered Data Path in use
P1(AP),2$; DDP, branch on bad alignment
G~EXE$M0DIFY ; Check buffer for modify access

; Return

XA_SETM0DE, Set Mode, Set characteristics FDT

XA_SETM0DE, FDT routine to process SET MODE and SET CHARACTERISTICS

Functional Description:

If I0$M_ATTNAST modifier is set, queue attention AST for device
If I0$M_DATAPATH modifier is set, queue packet.
Else, finish I/O.

Input8:

R3 = I/O packet address
R4 = PCB address
R5 = UCB address
R6 = CCB address
R7 = Function code
AP = QIO parameter list address

Outputs:

If I0$M_ATTNAST is specified, queue AST on UCB attention AST list.
If IO$M_DATAPATH is specified, queue packet to driver.
Else, use exec routine to update device characteristics

XA.SETMODE:
MOVZWL IRP$W_FUNC(R3),R0 ; Get entire function code
BBC #IO$V_ATTNAST,RO,20$; Branch if not an ATTN AST

; Attention AST request

PUSHR #~M<R4,R7>
MOVAB UCB$L_XA_ATTN(R5),R7 ; Address of ATTN AST control block list
JSB G~COM$SETATTNAST ; Set up attention AST
POPR #~M<R4,R7>
BLBC RO,50$; Branch if error
BISW #UCB$M_ATTNAST,UCB$W_DEVSTS(R5)

; Flag ATTN AST expected
BBC #UCBV_UNEXPT,UCBW_DEVSTS(R5),10$

; Deliver AST if unsolicited interrupt
BSBW DEL.ATTNAST

10$: MOVZBL #SS$_N0RMAL,RO ; Set status
JMP G~EXE$FINISHIOC ; That's all for now (clears Rl)

; If modifier I0$M_DATAPATH is set.
; queue packet. The data path is changed at driver level to preserve
; order with other requests.

20$: BBS S~#IO$V_DATAPATH,RO,30$; If BDP modifier set, queue packet

JMP G~EXE$SETCHAR ; Set device characteristics

; This is a request to change data path usage, queue packet

30$: CMPL
BNEQ
JMP

; Error, abort

45$: MOVZWL
50$: CLRL

JMP

#I0$_SETCHAR,R7
45$
G~EXE$SETMODE

10

#SS$_N0PRIV,RO
R1
G~EXE$AB0RTI0

Set characteristics?
No, must have the privilege
Queue packet to start I/O

No privilege for operation

Abort 10 on error

F—9

Sample Driver for the DR11 —W and DRV11 -WA

.SBTTL XA.START, Start I/O routines
♦+

XA_START - Start a data transfer, set characteristics, enable ATTN AST.

Functional Description:

This routine has two major functions:

1) Start an I/O transfer. This transfer can be in either word
or block mode. The FNCTN bits in the DR11-W CSR are set. If
the transfer count is zero, the STATUS bits in the DR11-W CSR
are read and the request completed.

2) Set characteristics. If the function is change data path, the
new data path flag is set in the UCB.

Input8:

R3 = Address of the I/O request packet
R5 = Address of the UCB

Outputs:

RO = final status and number of bytes transferred
R1 = value of CSR STATUS bits and value of input data buffer register
Device errors are logged
Diagnostic buffer is filled

.ENABL LSB

XA.START:

; Retrieve the address of the device CSR

ASSUME IDB$L_CSR EQ 0
MOVL UCB$L_CRB(R5),R4 ; Address of CRB
MOVL <DCRB$L_INTD+VEC$L_IDB(R4) ,R4

; Address of CSR

; Fetch the I/O function code

MOVZWL IRP$W_FUNC(R3),R1 ; Get entire function code
MOVW R1,UCB$W_FUNC(R5) ; Save FUNC in UCB for Error Logging
EXTZV #I0$V_FC0DE,#I0$S_FC0DE,R1,R2 ; Extract function field

; Dispatch on function code. If this is SET CHARACTERISTICS, we will
; select a data path for future use.
; If this is a transfer function, it will either be processed in word
; or block mode.

CMPB #I0$_SETCHAR,R2 ; Set characteristics?
BNEQ 3$

; +♦

; SET CHARACTERISTICS - Process Set Characteristics QIO function

; INPUTS:

; XA_DATAPATH bit in Device Characteristics specifies which data path
; to use. If bit is a one, use buffered data path. If zero, use
; direct data path.

; OUTPUTS:

; CRB is flagged as to which data path to use.
; DEVDEPEND bits in device characteristics is updated
; XA_DATAPATH * 1 --> buffered data path in use
; XA_DATAPATH = 0 --> direct data path in use

F—10

Sample Driver for the DR11 —W and DRV11 - WA

MOVL UCB$L_CRB(R5),R0 ; Get CRB address
MOVQ IRP$L_MEDIA(R3),UCB$B_DEVCLASS(R5) ; Set device characteristics
BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO)

; Assume direct data path
BBC #XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),2$; Were we right?
BICB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO) ; Set buffered data path

2$:
CLRL R1 ; Return success
MOVZWL #SS$_N0RMAL,RO
REQCOM

; If subfunction modifier for device reset is set, do one here

3$: BBC S~#I0$V_RESET,R1,4$; Branch if not device reset
BSBW XA.DEV.RESET ; Reset DR11-W

This must be a data transfer function (read or write).
Check to see if this is a zero-length transfer.
If so, only set CSR FNCT bits and return STATUS from CSR

4$: TSTW UCB$W_BCNT(R5) Is transfer count zero?
BNEQ 10$ No, continue with data transfer
BBC
DSBINT

S“#IO$V_SETFNCT,R1,6$ Set CSR FNCT specified?

MOVW IRP$L_SEGVBN+2(R3),XA_0DR(R4)
; Store word in ODR

MOVZWL XA_CSR(R4),RO
BICW #<XA_CSR$M_FNCT!XA_CSR$M_ _ERR0R>,RO
BISW IRP$L_SEGVBN(R3),R0
BISW #XA_CSR$M_ATTN,RO ; Force ATTN on to prevent lost interrupt
MOVW R0,XA_CSR(R4)
BBC #XAV_LINK,UCBL_DEVDEPEND(R5).5$; Link mode?

5$:
BICW3 #XA$K_FNCT2,R0,XA_CSR(R4) ; Make FNCT bit 2 a pulse

ENBINT
6$:

BSBW XA_REGISTER Fetch DR11-W registers
BLBS R0,7$ If error, then log it
JSB G~ERL$DEVICERR Log a device error

7$: JSB G~IOC$DIAGBUFILL Fill diagnostic buffer if specified
MOVL UCB$W_XA_CSR(R5),R1 Return CSR and EIR in R1
MOVZWL UCB$W_XA_ERROR(R5),R0 Return status in RO

BISB #XA_CSR$M_IE,XA_CSR(R4) Enable device interrupts
REQCOM Request done

; Build CSR image in RO for later use in starting transfers

10$:
MOVZWL UCB$W_BCNT(R5),R0 ; Fetch byte count
DIVL3 #2,R0,UCB$L_XA_DPR(R5) ; Make byte count into word count

Set up UCB$W_CSRTMP used for loading CSR later.

MOVZWL XA_CSR(R4),RO
BICW #~C<XA_CSR$M_FNCT>,RO
BISW #XA_CSR$M_IE!XA_CSR$M_ATTN,RO ; Set Interrupt Enable and ATTN
BBC S~#IO$V_SETFNCT,R1,20$; Set FNCT bits in CSR?
BICW #<XA_CSR$M_FNCT>,RO ; Yes, Clear previous FNCT bits
BISB IRP$L_SEGVBN(R3),R0 ; OR in new value

20$: BBC S“#IO$V_DIAGNOSTIC,R1,23$; Check for maintenance function
BISW #XA_CSR$M_MAINT,RO ; Set maintenance bit in CSR image

; is this a word mode or block mode request?

23$: MOVW RO,UCB$W_XA_CSRTMP(R5) ; Save CSR image in UCB
BBC S~#I0$V_W0RD,R1,BL0CK_M0DE ; Check if word or block mode
BRW W0RD_M0DE ; Branch to handle word mode

F—11

Sample Driver for the DR11 —W and DRV11 -WA

++

BLOCK MODE -- Process a block-mode (DMA) transfer request

Functional Description:

This routine takes the buffer-address, buffer-size, function-code,
and function-modifier fields from the IRP. It calculates the UNIBUS
address, allocates the UBA map registers, loads the DRli-W device
registers, and starts the request.

Set up UBA
Start transfer

BLOCK.MODE:

; If I0$M_CYCLE subfunction is specified, set CYCLE bit in CSR image.

BBC #I0$V_CYCLE,R1,25$; Set CYCLE bit in CSR?
BISW #XA_CSRM_CYCLE,UCBW_XA_CSRTMP(R5) ; If yes, or into CSR image

; Allocate UBA data path and map registers

25$:
REQDPR ; Request UBA data path
REQMPR ; Request UBA map registers
LOADUBA ; Load UBA map registers

; Calculate the UNIBUS transfer address for the DR11-W from the UBA
; map register address and byte offset.

100$:

MOVZWL
MOVL
INSV

EXTZV

CMPB

BEQL
MOVW
CLRL
ASHL
BISW
BISW
BICW3

BICW3
MOVW

UCB$W_B0FF(R5),R1 ; Byte offset in first page
UCB$L_CRB(R5),R2 ; Address of CRB
CRB$L_INTD+VEC$W_MAPREG(R2).#9.#9,R1

#16,#2,R1,R2
Insert page number
Extract bits 17:16 of bus

of transfer

address

#DT$_DR11W,-
UCB$B_DEVTYPE(R5)

100$
R2,UCB$W_XA_BAETMP(R5)
R2
#XA_CSR$V_XBA,R2,R2
#XA_CSR$M_G0,R2
R2,UCB$W_XA_CSRTMP(R5)

If this is a DR11-W,

then branch
Save value of BAE prior to transfer
Clear XBA bits
Shift extended memory bits for CSR
Set GO bit into CSR image
Set into CSR image we are building

#<XA_CSR$M_G0!XA_CSR$M_CYCLE>,UCB$W_XA_CSRTMP(R5),RO
; CSR image less GO and CYCLE

#XAK_FNCT2,UCBW_XA_CSRTMP(R5),R2 ; CSR image less FNCT bit 2
R1,UCB$W_XA_BARTMP(R5) ; Save BAR for error logging

At this juncture:
RO = CSR image less GO and CYCLE
R1 = Low 16 bits of transfer-bus address
R2 = CSR image less FNCT bit 2
UCB$L_XA_DPR(R5) = transfer count in words
UCB$W_XA_CSRTMP(R5) = CSR image to start transfer with

Set DR11-W registers and start transfer.
Note that read-modify-write cycles are NOT performed to the DR11-W CSR.
The CSR is always written into directly. This prevents inadvertently setting
the EIR-select flag (writing bit 15) if error happens to become true.

F—12

Sample Driver for the DR11 —W and DRV11 -WA

DSBINT
MNEGW

MOVW

CMPB

BEQL
MOW/

200$: MOW/

BBC
MOW/
BRB

; Disable interrupts (powerfail)
UCB$L_XA_DPR(R5),XA_WCR(R4)

; Load negative of transfer count
; Load low 16 bits of bus address R1,XA_BAR(R4)

#DT$_DR11W,-
UCB$B_DEVTYPE(R5)

200$

UCB$W_XA_BAETMP(R5),-
XA_BAE(R4)

R0,XA_CSR(R4)

If this is a DR11-W,

then branch
Load high bits of bus address

Load CSR image less GO and CYCLE

#XAV_LINK,UCBL_DEVDEPEND(R5),26$; Link mode?
R2,XA_CSR(R4)
126$

Yes, load CSR image less FNCT bit 2
Only if link-mode bit is set
in device characteristics

26$:
MOW/ UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Move all bits to CSR

; Wait for transfer complete interrupt, powerfail, or device timeout

126$:
WFIKPCH XA_TIME_0UT,IRP$L_MEDIA(R3) ; Wait for interrupt

; Device has interrupted, FORK

IOFORK ; FORK to lower IPL

; Handle request completion, release UBA resources, check for errors.

27$:

300$:
310$:

28$:

MOVZWL
CLRW
PURDPR
BLBS
MOVZWL
INCB
MOVL
EXTZV

MOVB
EXTZV

#SS$_N0RMAL,-(SP)
UCB$W_XA_DPRN(R5)

RO,27$
#SS$_PARITY,(SP)
UCB$W_XA_DPRN+1(R5)
R1,UCB$L_XA_DPR(R5)
#VEC$V_DATAPATH,-
#VEC$S_DATAPATH,-
CRB$L_INTD+VEC$B_DATAPATH
RO,UCB$W_XA_DPRN(R5)
#9,#7,UCB$W_XA_BAR(R5),R0

Assume success, store code on stack
Clear DPR number and DPR error flag
Purge UBA buffered data path
Branch if no data-path error
Flag parity error on device
Flag PDR error for log
Save data-path register in UCB
Get data-path-register number
For error log

(R3),R0
Save for later in UCB
; Low bits, final map-register number

CMPB #DT$_DR11W,- ; If this is a DR11-W,
UCB$B_DEVTYPE(R5)

BEQL 300$; then branch
MOVZWL UCB$W_XA_BAE(R5),R1 ; Fetch high bits of map register no.
BRB 310$
EXTZV #4,#2,UCB$W_XA_CSR(R5),R1 ; High bits of map register no.
INSV R1,#7,#2,R0 ; Entire map register number

CMPW RO,#496 ; Is map-register number in range?
BGTR 28$; No, forget it - compound error
MOVL (R2)[RO],UCB$L_XA_FMPR(R5) ; Save map-register contents
CLRL UCB$L_XA_PMPR(R5) ; Assume no previous map register
DECL RO ; Was there a previous map register?
CMPV #VEC$V_MAPREG,#VEC$S_MAPREG.-

CRB$L_INTD+VEC$W_MAPREG(R3),R0
BGTR 28$; If GTR, no
MOVL (R2)[RO],UCB$L_XA_FMPR(R5) ; Save previous map register contents
RELMPR ; Release UBA resources
RELDPR

F—13

Sample Driver for the DR11 —W and DRV11 -WA

; Check lor errors and return status

TSTW UCB$W_XA_WCR(R5) ; All words transferred?
BEQL 30$; Yes
MOVZWL #SS$_0PINC0MPL,(SP) ; No, flag operation not complete

30$: BBC #XA_CSR$V_ERROR,UCB$W_XA_ _CSR(R5),35$; Branch on CSR error bit
MOVZWL UCB$W_XA_ERR0R(R5),(SP) Flag for controller/drive error status
BSBW XA_DEV_RESET Reset DR11-W

35$: BLBS (SP),40$ Any errors after all this?

CMPW (SP),#SS$_0PINC0MPL Log the error, unless this is
BNEQ 37$ a DRV11-WA running in link mode
CMPB #DT$_DR11W,- and the operation is incomplete,

UCB$B_DEVTYPE(R5) in which case it is an expected
BEQL 37$ error and not worth logging.
BBS #XA$V_LINK,- . . .

UCB$L_DEVDEPEND(R5),40$. . .
37$: JSB G~ERL$DEVICERR Log the error.

40$: BSBW DEL.ATTNAST Deliver outstanding ATTN AST's

JSB G~IOC$DIAGBUFILL Fill diagnostic buffer
MOVL (SP)+,R0 Get final device status
MULW3 #2,UCB$W_XA_WCR(R5),R1 Calculate final transfer count
ADDW UCB$W_BCNT(R5),R1
INSV R1,#16,#16,R0 Insert into high byte of IOSB
MOVL UCB$W_XA_CSR(R5),R1 Return CSR and EIR in IOSB
BISB #XA_CSR$M_IE,XA_CSR(R4) Enable interrupts
REQCOM Finish request in exec

.DSABL LSB
++

WORD MODE -- Process word mode (interrupt per word) transfer

Functional Description:

Data is transferred one word at a time with an interrupt for each word.
The request is handled separately for a write (from memory to DR11-W
and a read (from DR11-W to memory).

For a write, data is fetched from memory, loaded into the ODR of the
DR11-W and the system waits for an interrupt. For a read, the system
waits for a DR11-W interrupt and the IDR is transferred into memory.
If the unsolicited interrupt flag is set, the first word is transferred
directly into memory without waiting for an interrupt.

.ENABL LSB
WORD.MODE:

; Dispatch to separate loops on READ or WRITE

CMPB #IO$_READPBLK,R2 ; Check for read function
BEQL 30$

♦+

WORD MODE WRITE -- Write (output) in word mode

Functional Description:

Transfer the requested number of words from user memory to
the DR11-W ODR one word at a time, wait for interrupt for each
word.

F—14

Sample Driver for the DR11 —W and DRV11 -WA

10$:

15$:

BSBW MOVFRUSER ; Get two bytes from user buffer
DSBINT ; Lock out interrupts

; Flag interrupt expected
MOVW R1,XA_0DR(R4) ; Move data to DR11-W
MOVW UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Set DR11-W CSR
BBC #XAV_LINK,UCBL_DEVDEPEND(R5),15$; Link mode?
BICW3 #XAK_FNCT2,UCBW_XA_CSRTMP(R5),XA_CSR(R4) ; Clear interrupt FNCT bit 2

; Only if link mode specified

; Wait for interrupt, powerfail, or device timeout

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

; Check for errors, decrement transfer count, and loop until complete.

I0F0RK ; Fork to lower IPL

CMPB #DT$_DR11W,- ; Branch if this is a DR11-W
UCB$B_DEVTYPE(R5)

BEQL 17$
BBC #XA_CSR$V_ERROR,- ; DRV11-WA - check ERROR bit in CSR

UCB$W_XA_CSR(R5),20$; Branch on success
BRW 40$; Branch on error

17$: BITW #XA_EIR$M_NEX!-
XA_EIR$M_MULTI!-

XA_EIR$M_ACLO!-
XA_EIR$M_PAR!-

XA_EIRM_DLT,UCBW_XA_EIR(R5) ; Any errors?
BEQL 20$; No, continue
BRW 40$; Yes, abort transfer

20$: DECW UCB$L_XA_DPR(R5) ; All words transferred?
BNEQ 10$; No, loop until finished

; Transfer is done, clear interrupt expected flag and FORK
; All words read or written in WORD MODE Finish I/O.

RETURN .STATUS:

JSB G~IOC$DIAGBUFILL Fill diagnostic buffer if present
BSBW DEL.ATTNAST Deliver outstanding ATTN ASTs
MOVZWL #SS$_N0RMAL,RO Complete success status

22$: MULW3 #2,UCB$L_XA_DPR(R5),R1 Calculate actual bytes transferred
SUBW3 R1,UCB$W_BCNT(R5),R1 From requested number of bytes
INSV R1,#16,#16,R0 And place in high word of RO
MOVL UCB$W_XA_CSR(R5),R1 Return CSR and EIR status
BISB #XA_CSR$M_IE,XA.CSR(R4) Enable device interrupts
REQCOM Finish request in exec

; + +

WORD-MODE READ -- Read (input) in word mode

Functional Description:

Transfer the requested number of word from the DR11-W IDR into
user memory one word at a time, wait for interrupt for each word.

If the unexpected (unsolicited) interrupt bit is set, transfer the
first (last received) word to memory without waiting for an
interrupt.

F—15

Sample Driver for the DR11 -W and DRV11 -WA

30$:
DSBINT UCB$B_DIPL(R5) ; Lock out interrupts

; If am unexpected (unsolicited) interrupt has occurred, assume it
; is for this READ request and return value to user buffer without
; waiting for am interrupt.

BBCC

ENBINT
BRB

#UCB$V_UNEXPT,-
UCB$W_DEVSTS(R5).32$

37$

; Bramch if no unexpected interrupt
; Enable interrupts
; continue

32$:

35$:
SETIPL #IPL$_P0WER

; Wait for interrupt, powerfail, or device timeout

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

; Check for errors, decrement transfer count and loop until done.

37$:

IOFORK

CMPB #DT$_DR11W,-

; Fork to lower IPL

; Bramch if this is a DR11-W

BEQL
BBC

UCB$B_DEVTYPE(R5)
1037$
#XA_CSR$V_ERROR,- ; DRV11-WA - check ERROR bit in CSR

BRW
UCB$W_XA_CSR(R5),1038$

40$
; Bramch on success
; Bramch on error

1037$: BITW #XA_EIR$M_NEX!-

BNEQ

XA_EIR$M_MULTI!-

XA_EIR$M_ACLO!-
XA_EIR$M_PAR!-

XA_EIRM_DLT,UCBW_XA_EIR(R5) ; Any errors?
40$; Yes, abort tramsfer

1038$: BSBW MOVTOUSER ; Store two bytes into user buffer

; Send interrupt back to sender.

DSBINT
MOVW

BBC
BICW3

38$:
DECW
BNEQ
ENBINT
BRW RETURN.STATUS

; Error detected in word mode transfer

40$:
BSBW DEL.ATTNAST
BSBW XA_DEV_RESET
JSB G~IOC$DIAGBUFILL
JSB G~ERL$DEVICERR
MOVZWL UCB$W_XA_ERR0R(R5),R0
BRW 22$

.DSABL LSB

Decrement transfer count
Loop until all words transferred

Finish request in common code

Deliver ATTN ASTs
Error, reset DR11-W
Fill diagnostic buffer if present
Log device error
Set controller/drive status in RO

Acknowledge receipt of last word.

UCB$W_XA_CSRTMP(R5),XA_CSR(R4)
#XAV_LINK,UCBL_DEVDEPEND(R5),38$; Link mode?
#XAK_FNCT2,UCBW_XA_CSRTMP(R5),XA_CSR(R4) ; Yes, clear FNCT 2

UCB$L_XA_DPR(R5)
35$

MOVFRUSER - Routine to fetch two bytes from user buffer.

INPUTS:

R5 = UCB address

OUTPUTS:

R1 = Two bytes of data from users buffer
Buffer descriptor in UCB is updated.

.ENABL LSB

F—16

Sample Driver for the DR11 -W and DRV11 -WA

MOVFRUSER:
MOVAL -(SP),R1
MOVZBL #2 ,R2
JSB G~I0C$M0VFRUSER
MOVL (SP)+,R1
BRB 20$

Address of temporary stack location
Fetch two bytes
Call exec routine to do the deed
Retreive the bytes
Update UCB buffer pointers

MOVTOUSER - Routine to store two bytes into users buffer.

INPUTS:

R5 = UCB address
UCB$W_XA_IDR(R5) = Location where two bytes are saved

OUTPUTS:

Two bytes are stored in user buffer and buffer descriptor in
; UCB is updated.

MOVTOUSER:
MOVAB UCB$W_XA_IDR(R5),R1 ; Address of internal buffer

MOVZBL #2 ,R2
JSB G~I0C$M0VT0USER ; Call exec

20$: Update buffer pointers in UCB
ADDW #2,UCB$W_B0FF(R5) ; Add two to buffer descriptor

BICW #~C<~X01FF>,UCB$W_B0FF(R5) ; Modulo the page size

BNEQ 30$; If NEQ, no page boundary crossed

ADDL #4,UCB$L_SVAPTE(R5) ; Point to next page

30$:
RSB

.DSABL LSB

.PAGE

.SBTTL
. xx

DR11-W DEVICE timeout
TT

; DR11-W device timeout
; If a DMA transfer was in progress, release UBA resources.

; For DMA or WORD mode, deliver ATTN ASTs, log a device-timeout error.

; and do a hard reset on the controller.

; Clear DR11-W CSR
; Return error status

; Power failure will appear as a device timeout

.ENABL LSB
XA_TIME_OUT: Timeout for DMA transfer

SETIPL UCB$B_FIPL(R5) Lower to FORK IPL

PURDPR Purge buffered data path in UBA

RELMPR Release UBA map registers
RELDPR Release UBA data path
BRB 10$ Continue

XA_TIME_OUTW: Timeout for WORD mode transfer

SETIPL UCB$B_FIPL(R5) Lower to FORK IPL

10$: MOVL UCB$L_CRB(R5),R4 Fetch address of CSR

MOVL QCRB$L_INTD+VEC$L_IDB(R4),R4
BSBW XA.REGISTER Read DR11-W registers

JSB G~IOC$DIAGBUFILL Fill diagnostic buffer

JSB G~ERL$DEVICTMO Log device timeout
BSBW DEL_ATTNAST and deliver the ASTs

BSBW XA_DEV_RESET Reset controller

MOVZWL #SS$_TIMEOUT,RO Assume error status

BBC #UCB$V_CANCEL.-
UCB$W_STS(R5),20$; Branch if not cancel

MOVZWL #SS$_CANCEL,RO ; Set status

F—1 7

Sample Driver for the DR11 —W and DRV11 -WA

20$: CLRL

BICW

BICW

REQCOM
.DSABL

.PAGE

.SBTTL

; ++
; XA_INTERRUPT,

R1

#UCB$M_ATTNAST!UCB$M_UNEXPT,UCB$W_DEVSTS(R5)
; Clear unwanted flags

#<UCB$M_TIM!UCB$M_INT!UCB$M_TIMOUT!UCB$M_CANCEL!UCB$M_POWER>,-
UCB$W_STS(R5) ; Clear unit status flags

; Complete I/O in exec
LSB

XA_INTERRUPT, Interrupt service routine for DR11-W

Handles interrupts generated by DR11-W

Functional Description:

This routine is entered whenever an interrupt is generated
by the DR11-W. It checks that an interrupt was expected.

If not, it sets the unexpected (unsolicited) interrupt flag.
All device registers are read and stored into the UCB.
If an interrupt was expected, it calls the driver back at its
wait-for-interrupt point.
Deliver ATTN ASTs if unexpected interrupt.

Inputs:

00(SP) = Pointer to address of the device IDB
04(SP) = saved R0
08(SP) * saved R1
12(SP) = saved R2
16(SP) = saved R3
20(SP) = saved R4
24(SP) * saved R5
28(SP) = saved PSL
32(SP) = saved PC

Outputs:

The driver is called at its wait-for-interrupt point if an
interrupt was expected.
The current value of the DR11-W CSRs are stored in the UCB.

XA_INTERRUPT: ; Interrupt service for DR11-W
MOVL <8(SP) + ,R4 ; Address of IDB and pop SP
MOVQ (R4),R4 ; CSR and UCB address from IDB

; Read the DR11-W device registers (WCR, BAR, CSR, EIR, IDR) and store
; into UCB.

BSBW XA_REGISTER ; Read device registers

; Check to see if device transfer request active or not
; If so, call driver back at wait-for-interrupt point and
; Clear unexpected interrupt flag.

20$: BBCC #UCB$V_INT,UCB$W_STS(R5),25$
; If clear, no interrupt expected

; Interrupt expected, clear unexpected interrupt flag and call driver
; back.

BICW #UCBM_UNEXPT,UCBW_DEVSTS(R5)
; Clear unexpected interrupt flag

MOVL UCB$L_FR3(R5),R3 ; Restore drivers R3
JSB <8UCB$L_FPC(R5) ; Call driver back
BRB 30$

; Deliver ATTN ASTs if no interrupt expected and set unexpected
; interrupt flag.

25$: BBSC #UCB$V_IGNORE_UNEXPT,- ; Ignore spurious interrupt -
UCB$W_DEVSTS(R5),30$; (DRV11-WA only)

BISW #UCB$M_UNEXPT.UCB$W_DEVSTS(R5) ; Set unexpected interrupt flag
BSBW DEL.ATTNAST ; Deliver ATTN AST's
BISB #XA_CSR$M_IE,XA_CSR(R4) ; Enable device interrupts

F—18

Sample Driver for the DR11 -W and DRV11 -WA

; Restore registers and return from interrupt

30$:
POPR #~M<R0,R1,R2,R3.R4,R5> ; Restore registers
REI ; Return from interrupt

.PAGE

.SBTTL XA.REGISTER - Handle DR11-W CSR transfers
; ♦+

; XA_REGISTER - Routine to handle DR11-W register transfers

; INPUTS:

; R4 - DR11-W CSR address
; R5 - UCB address of unit

OUTPUTS:

CSR, EIR, WCR, BAR, IDR, and status are read and stored into UCB.
The DR11-W is placed in its initial state with interrupts enabled.

RO - .true, if no hard error
.false, if hard error (cannot clear ATTN)

If the CSR ERROR bit is set and the associated condition can be cleared, then
the error is transient and recoverable. The status returned is SS$_DRVERR.
If the CSR ERROR bit is set and cannot be cleared by clearing the CSR, then
this is a hard error and cannot be recovered. The returned status is

SS$_CTRLERR.

R0,R1 - destroyed, all other registers preserved.

XA.REGISTER:
MOVZWL
MOVZWL
MOVW
BBC
MOVZWL

55$: BICW

#SS$_N0RMAL,RO
XA_CSR(R4),R1
R1,UCB$W_XA_CSR(R5)
#XA_CSR$V_ERROR,R1,55$
#SS$_DRVERR,RO
#~C<XA_CSR$M_FNCT>,R1

Assume success
Read CSR
Save CSR in UCB
Branch if no error
Assume "drive" error
Clear all uninteresting bits for later

57$:

59$:

CMPB

BEQL
BISB
MOVW
BRB
BISW

MOVW

#DT$_XA_DRV11WA,- ; If this is a DRV11-WA,
UCB$B_DEVTYPE(R5)

57$; then branch
#<XA_CSR$M_ERR0R/256>,XA_CSR+1(R4) ; Set EIR flag
XA_EIR(R4),UCB$W_XA_EIR(R5) ; Save EIR in UCB

59$
#XA_CSR$M_IE,R1 On the DRV11-WA, if the IE bit makes

a 0-->l transition while READY=1, a

R1,XA_CSR(R4)

spurious interrupt in generated.
Therefore, we leave IE high at all times.
Clear EIR flag and errors

60$:

MOVW XA_CSR(R4),R1
BBC #XA_CSR$V_ATTN,R1,60$
MOVZWL #SS$_CTRLERR,RO
MOVW XA_IDR(R4),UCB$W_XA_IDR(R5)
MOVW XA_BAR(R4),UCB$W_XA_BAR(R5)

Read CSR back
If attention still set, hard error
Flag hard controller error

Save IDR in UCB

70$:

CMPB #DT$_DR11W,- ; If this is a DR11-W,
UCB$B_DEVTYPE(R5)

BEQL 70$; then branch
MOVW XA_BAE(R4),UCB$W_XA_BAE(R5) ; Save BAE in UCB
MOVW XA_WCR(R4),UCB$W_XA_WCR(R5)

MOVW RO,UCB$W_XA_ERROR(R5) ; Save status in UCB
RSB

.SBTTL XA.CANCEL, Cancel I/O routine
++

XA_CANCEL, Cancels an I/O operation in progress

Functional Description:

Flushes Attention AST queue for the user.

F—19

Sample Driver for the DR11 —W and DRV11 -WA

; If transfer in progress, do a device reset to DRli-W and finish the

; request.
; Clear interrupt expected flag.

; Inputs:

; R2 = negated value of channel index
; R3 * address of current IRP
; R4 = address of the PCB requesting the cancel
; R5 = address of the device's UCB

; Outputs:

XA.CANCEL: ; Cancel I/O
BBCC #UCB$V_ATTNAST,-

UCB$W_DEVSTS(R5),20$; ATTN AST enabled?

; Finish all ATTN ASTs for this process.

PUSHR #~M<R2,R6,R7>
MOVL R2.R6 ; Set up channel number
MOVAB UCB$L_XA_ATTN(R5),R7 ; Address of listhead

JSB G~COM$FLUSHATTNS ; Flush ATTN ASTs for process

POPR #~M<R2,R6,R7>

; Check to see if a data transfer request is in progress
; for this process on this channel

20$:
DSBINT UCB$B_DIPL(R5) ; Lock out device interrupts

BBC #UCB$V_INT,- ; Branch if I/O not in progress
UCB$W_STS(R5),30$

JSB G~I0C$CANCELI0 ; Check if transfer going

BBC #UCB$V_CANCEL.-
UCB$W_STS(R5),30$; Branch if not for this process

; Force timeout

CLRL UCB$L_DUETIM(R5) ; Clear timer
BISW #UCBM_TIM,UCBW_STS(R5) ; Set timed bit
BICW #UCB$M_TIMOUT,-

UCB$W_STS(R5) ; Clear timed-out bit

30$:
ENBINT ; Lower to FORK IPL
RSB ; Return

.PAGE

.SBTTL

;++
; DEL.ATTNAST,

DEL_ATTNAST, Deliver ATTN ASTs

Deliver all outstanding ATTN ASTs

Functional Description:

This routine is used by the DR11-W driver to deliver all of the
outstanding attention ASTs. It is copied from COM$DELATTNAST in

the exec. In addition, it places the saved value of the DRli-W CSR
and input-data-buffer register in the AST parameter.

Inputs:

R5 = UCB of DR11-W unit

Outputs:

R0.R1.R2 Destroyed
R3.R4.R5 Preserved

F—20

Sample Driver for the DR11 -W and DRV11 -WA

DEL.ATTNAST:
DSBINT
BBCC

UCB$B_DIPL(R5) ; Device IPL
#UCB$V_ATTNAST,UCB$W_DEVSTS(R5),30$

Any ATTN ASTs expected?

10$:
PUSHR
MOVL
MOVAB
MOVL
BEQL
BICW
MOVL
MOVW

MOVW

PUSHAB
FORK

#~M<R3,R4,R5>
8(SP),R1
UCB$L_XA_ATTN(Rl),R2
(R2),R5
20$

Save R3.R4.R5
Get address of UCB
Address of ATTN AST listhead
Address of next entry on list
No next entry, end of loop

#UCBM_UNEXPT,UCBW_DEVSTS(Rl) ; Clear unexpected interrupt flag
(R5),(R2) ; Close list
UCB$W_XA_IDR(Rl),ACB$L_KAST+6(R5)

; Store IDR in AST parameter
UCB$W_XA_CSR(Rl),ACB$L_KAST+4(R5)

; Store CSR in AST parameter
B~10$; Set return address for FORK

; FORK for this AST

AST fork procedure

20$:
30$:

MOVQ ACB$L_KAST(R5),ACB$L_AST(R5)
; Rearrange entries

MOVB ACB$L_KAST+8(R5), ACB$B_RM0D(R5)
MOVL ACB$L_KAST+12(R5),ACB$L_PID(R5)
CLRL ACB$L_KAST(R5)
MOVZBL #PRI$_I0C0M,R2 ; Set up priority increment
JMP G~SCH$QAST ; Queue the AST

POPR #~M<R3,R4,R5> ; Restore registers
ENBINT ; Enable interrupts
RSB ; Return

.PAGE

.SBTTL XA_REGDUMP - DR11 -W register dump routine

XA_REGDUMP - DR11-W Register dump routine.

This routine is called to save the controller registers in a specified
buffer. It is called from the device error logging routine and from the
diagnostic buffer fill routine.

Inputs:

RO - Address of register save buffer
R4 - Address of Control and Status Register
R5 - Address of UCB

Outputs:

The controller registers are saved in the specified buffer.

CSRTMP - The last command written to the DR11-W CSR
by the driver.

BARTMP - The last value written into the DR11-W BAR by
the driver during a block mode transfer.

CSR - The CSR image at the last interrupt
EIR - The EIR image at the last interrupt
IDR - The IDR image at the last interrupt
BAR - The BAR image at the last interrupt
WCR - Word count register
ERROR - The system status at request completion
PDRN - UBA data-path-register number
DPR - The contents of the UBA data-path register
FMPR - The contents of the last UBA Map register
PMRP - The contents of the previous UBA Map register
DPRF - Flag for purge-data-path error

0 = no purge-data-path error
1 = parity error when data path was purged

BAETMP - The last value written to the BAE by the driver
during a block mode transfer (DRV11-WA only)

BAE - The BAE image at the last interrupt (DRV11-WA only)

F—21

Sample Driver for the DR11 —W and DRV11 -WA

Note that the values stored are from the last completed transfer
operation. If a zero transfer count is specified, then the
values are from the last operation with a nonzero transfer count.

XA.REGDUMP:
MOVZBL
MOVAB
MOVZBL

10$: MOVZWL
SOBGTR
MOVZBL
MOVZBL

20$: MOVL
SOBGTR
MOVZBL

MOVZWL
MOVZWL

RSB

.PAGE

.SBTTL
; ++

; XA_DEV_RESET

#15,(R0) + ;
UCB$W_XA_CSRTMP(R5),R1 ;
#8,R2 ;
(R1)+,(R0)+
R2.10$;
UCB$W_XA_DPRN(R5),(RO)+ ;
#3,R2 ;
(R1)+,(R0)+ ;
R2,20$
UCB$W_XA_DPRN+1(R5),(R0) +

Fifteen registers are stored
Get address of saved register images
Return eight registers here

Move them all
Save data-path register number
and three more here
Move UBA register contents

; Save data-path-parity-error flag

UCB$W_XA_BAETMP(R5),(R0) + ; Save BAE stored prior to transfer
UCB$W_XA_BAE(R5),(R0) + ; Save BAE stored following transfer

XA.DEV.RESET - Device reset DR11-W

- DR11-W Device reset routine

This routine raises IPL to device IPL, performs a device reset to
the required controller, and reenables device interrupts.

Inputs:

R4 - Address of control and status register
R5 - Address of UCB

Outputs:

Controller is reset, controller interrupts are enabled

XA.DEV.RESET:
PUSHR #~M<R0,R1,R2> ; Save some registers
DSBINT ; Raise IPL to lock all interrupts

CMPB #DT$_DR11W,- ; If this is a DR11-W,
UCB$B_DEVTYPE(R5)

BEQL 20$ then branch
MOVW #XA_CSR$M_IE,XA_CSR(R4) Clear all writeable bits but IE
BITB #XA_CSR$M_RDY,XA.CSR(R4) If not READY then no xfer in progress,
BNEQ 40$ So no need to reset device
MNEGW #1,XA_WCR(R4) Tell it only 1 byte left to xfer
MOVB #XA_CSR$M_CYCLE/256,- and complete the transfer.

XA.CSR+l(R4)
BRB 30$
MOVB #<XA_CSR$M_MAINT/256>,XA.CSR+l(R4)

CLRB XA.CSR+l(R4)

; *** Must delay here depending on reset interval

30$: TIMEDWAIT TIME=#XA_RESET_DELAY ; Number of 10 micro-sec intervals to wait

MOVB #XA_CSR$M_IE,XA.CSR(R4) ; Reenable device interrupts
ENBINT ; Restore IPL
POPR #~M<R0,R1,R2> ; Restore registers
RSB

; End of driver label
.END

F—22

G MASSBUS Adapter

This appendix describes the data structures and macros used by DIGITAL for
its standard magnetic tape and disk products.

The MASSBUS adapter (MBA) is the hardware interface between the
backplane interconnect and MASSBUS storage devices. The MASSBUS is
the communication path linking the MASSBUS adapter to the mass storage
devices.

The MASSBUS adapter performs the following functions that allow
communication between devices and memory:

• Mapping of virtual address to physical page-frame numbers

• Buffering of data for transfers between main memory and the MASSBUS

• Transfer of interrupts from MASSBUS devices to the backplane
interconnect

A MASSBUS adapter supports any combination of up to eight device
controllers. Typical MASSBUS controllers include the TM03 tape controller
and the RP06, RM03, and RM80 disk controllers. Only one controller can
transfer data over the MASSBUS at a time.

The TM03 tape controller supports up to eight tape drives. In contrast to
tape controllers, there is a one-to-one relationship between a disk controller
and its device; each controller supports only one disk drive. The VAX/VMS
system interprets and maintains the I/O database differently, depending upon
whether the controller is single or multiunit.

Each MASSBUS controller connected to a MASSBUS adapter is assigned a
unit number in the range 0 to 7. The method of unit number assignment
is controller specific, but you can obtain the number from either unit plugs
or switch packs. In the case of a controller for several devices, the unit
number is distinct from the subunit numbers assigned to the individual drives
connected to the controller.

Figure G-l illustrates a possible MASSBUS configuration.

Figure G-1 MASSBUS Configuration

SUBUNIT SUBUNIT SUBUNIT SUBUNIT
0 1 2 3

ZK-939-82

G-1

MASSBUS Adapter

G. 1 MASSBUS Adapter Registers
The MASSBUS adapter has three sets of registers:

• The MASSBUS adapter's registers

• External registers for each device (controller) on the MASSBUS

• 256 mapping registers

To allow competing devices to share these resources, access to and
modification of all MASSBUS adapter registers (internal, external, and
mapping registers) are governed by certain rules and conventions. In
particular, access to registers might, at times, require ownership of either
the device controller or the MASSBUS adapter itself, or both. Subsequent
sections in this chapter discuss the methods of obtaining such ownership of
these shared resources.

MASSBUS adapter external registers are device dependent and accessible
whether or not the driver owns the MASSBUS adapter. However, in the case
of multiunit MASSBUS adapter controllers, the driver might need to own the
controller before it can gain access to a register.

MASSBUS adapter external registers are each 16 bits wide, but they must
be accessed as long words. When a driver reads an external register, the
MASSBUS adapter concatenates the high order 16 bits of the MBA's status

* register (one of the MBA's internal registers) to the contents of the specified
external register. Figure G-2 illustrates the resulting longword.

Figure G-2 MASSBUS External-Register Longword

31 16 15 0

MBA's status register bits external register contents

ZK-1796-84

On a write to an external register, the MASSBUS adapter uses the low order
16 bits of the longword source operand to update the external register.

MASSBUS adapter internal and mapping registers are 32 bits in length.
They must be accessed as longwords or the processor will signal a machine
check exception. The driver for a MASSBUS device must obtain exclusive
ownership of the MASSBUS adapter before modifying any of the MBA's
internal or mapping registers.

Bits 21 through 30 of each of the MBA's mapping registers are reserved; they
cannot be written. Use of the MBA's mapping registers is analogous to use of
the UNIBUS adapter's mapping registers with the following exceptions:

• Because the MASSBUS can handle only one transfer at a time, ownership
of the MASSBUS adapter implies ownership of all its mapping registers.
Thus, the driver need not independently request mapping registers.

G-2

MASSBUS Adapter

• The MBA's mapping registers do not contain a byte-offset field. The
driver loads the full MASSBUS adapter virtual address, including the byte
alignment, into the MASSBUS adapter virtual address register
at the start of a data transfer. Use of the MBA$L_VAR register is
described below.

• The MBA's mapping registers do not contain a data path field; the
MASSBUS adapter has a single data path, and ownership of the adapter
implies ownership of the path. Thus, the driver need not allocate the data
path independently.

G. 1.1 Loading MASSBUS Adapter Registers
To prepare for a data transfer over the MASSBUS, the driver that owns the
MASSBUS adapter uses the LOADMBA macro to load the MBA's mapping
registers and associated internal registers. The LOADMBA macro invokes the
subroutine IOC$LOADMBAMAP, which performs the following steps:

• Determines the number of mapping registers needed to map the data area
by adding the contents of UCB$W_BCNT to UCB$W_BOFF, adjusting the
sum to the next even multiple of 512, and dividing the result by 512.

• Loads the specified number of mapping registers, beginning with mapping
register 0, with the contents of the page-table entries to which
UCB$L_SVAPTE points. This step maps the data area for the transfer
into the low portion of the MBA's virtual address space. The routine also
loads the next mapping register beyond the number used to map the data
area with zeros (an invalid map entry). This procedure stops the transfer
should a hardware failure occur.

• Loads the MBA$L_VAR register with the zero extended contents of
UCB$W_BOFF. Because the first byte of the data area is located at offset
UCB$W_BOFF within the page of memory mapped by mapping register 0,
the UCB$W_BOFF contains the virtual address of the start of the data area
in MASSBUS adapter virtual address space.

• Loads the complement (negative) of UCB$W_BCNT into the MBA's

byte-count register (MBA$L_BCR).

Note that if a driver is to perform a data transfer in the reverse direction (for
example, read reverse on a tape), it must modify the contents of the
MBA$L_VAR, as established by IOC$LOADMBAMAP, so that it points
to the last byte of the data area. This is done by adding one less than the
contents of UCB$W_BCNT to the contents of the MBA$L_VAR register.

During the progress of a data transfer over the MASSBUS, the MBA$L_VAR
register is continuously updated so that it points to the current position in
the data area. The VAX Hardware Handbook illustrates the mapping of the
contents of the MBA$L_VAR register into physical memory.

G—3

MASSBUS Adapter

G. 1.2 MASSBUS Adapter Registers and Offsets
During system initialization, VAX/VMS builds an adapter-control block
(ADP) a channel-request block (CRB), and an interrupt-dispatch block (IDB)
for each MASSBUS adapter. The system also allocates 4K of system virtual
address space for the adapter's register I/O space. The base of this I/O
register virtual address space is placed in IDB$L_CSR. Thus, you can access
MASSBUS adapter registers using the base register virtual address plus
some offset. The $MBADEF macro defines the offsets for MASSBUS adapter
registers. The major symbols defined by this macro are shown in Table G-l.

Table G-1 Major Offsets Defined by $MBADEF

Symbol MBA Register Name Hex Offset

MBA$L_CSR Configuration register 0

MBA$I_CR Control register 4

MBA$I_SR Status register 8

MBA$L_VAR Virtual-address register C

MBA$I_BCR Byte-count register 10

MBA$L_DR Diagnostic register 14

MBA$L_SMR Selected mapping register 18

MBA$I_CAR Command-address register 1C

MBA$L_ERB External register base 400

MBA$I_AS Attention-summary register 414

MBA$L_MAP Base of mapping registers 800

The MASSBUS adapter's internal registers occupy the low order 1024 bytes
of address space even though there are only eight internal MBA registers.
Beyond the internal registers, there are eight blocks of 32 longwords (128
bytes) each, one block for each of the eight device controllers that can be
connected to a single MASSBUS adapter. Each of these blocks provides space
for the device registers of each controller. Beyond the device-register space is
the area reserved for the MASSBUS adapter's 256 mapping registers.

Figure G-3 illustrates the relative positions of the MASSBUS adapter's
registers and the values device drivers use to gain access to them. The base
address of the MASSBUS adapter's address space, stored in IDB$L_CSR, is
the address of the first of the MASSBUS adapter's internal registers.
IDB$L_CSR represents the internal register's virtual location, while the
MBA$L_ symbols represent register values as defined by $MBADEF. Note
that the MASSBUS adapter's register space occupies only the first 3K out
of the 8K allotted to physical I/O address space. However, by convention,
VAX/VMS allocates 4K of virtual addresses to each MASSBUS adapter.

G—4

MASSBUS Adapter

Figure G-3 Location of MASSBUS Registers in Physical
Address Space

MASSBUS INTERNAL REGISTERS
IDB$L_CSR

UNIT 0 DEVICE REGISTERS
IDB$L_CSR+MBA$L_ERB=(X"80 *Q)

UNIT 1 DEVICE REGISTERS

IDB$L_CSR+MBA$L_ERB=(X''80 *1)

UNIT 2 DEVICE REGISTERS

IDB$L_CSR+MBA$L_ERB=(X"80 *2)

UNIT 7 DEVICE REGISTERS
IDB$L_CSR+MBA$L_ERB=(X~80 *7)

MAP REGISTERS
IDB$L_CSR+MBA$L_MAP

1024 UNUSED BYTES

4K BYTES

I
ZK-940-82

To address a mapping register in the MASSBUS adapter, the driver constructs
the following address:

IDB$L_CSR + MBA$L_MAP + mapping-register-index

To address a device register, the driver constructs the following address:

IDB$L_CSR + MBA$L_ERB + (unit-number * 80i6) + register-
displacement

An individual driver should define offsets for the registers of its device.
During execution, the driver computes a register address by summing the
MBA's starting virtual address (the contents of IDB$L_CSR), MBA$L_ERB,
the unit number of the device controller multiplied by 80i6, and the offset of
the specified register.

The attention-summary register (MBA$L_AS), as shown in Table G-l,
appears to reside within the external-register space reserved for MASSBUS
adapter controller 0. Actually, the attention-summary register is a composite
register. Each of the MASSBUS adapter's controllers contributes one bit of
information to the register. This composite register appears in each of the
eight device register spaces at offset 10i6 from the base of the device registers
for that device. Thus, MBA$L__AS can be defined as either 410i6, 490i6,
510i6, 590i6, and so on. For convenience, it has been defined as 410i6.

G—5

MASSBUS Adapter

G.1.3 Modifying MASSBUS Adapter Registers
The driver for a MASSBUS device must obtain ownership of the MBA before
modifying any of the MBA's internal registers or mapping registers. A driver
obtains ownership of the MBA by invoking either the REQPCHAN macro
or the REQSCHAN macro, depending on whether the device is connected
to a single unit MASSBUS controller or a multiunit MASSBUS controller.
For dedicated controllers, invoke the REQPCHAN macro. Because the
controller is dedicated to its single device, there is never any contention
for the controller.

For multiunit devices, however, invoke the REQSCHAN macro to obtain
MBA ownership because several devices can share the controller, and so must
contend for its use. The controller for several devices relegates the MASSBUS
adapter to a secondary position. Thus, for multiunit controllers, invoke
REQPCHAN to gain ownership of the controller, and invoke REQSCHAN to
obtain the MASSBUS adapter.

G.2 I/O Database for MASSBUS Devices
During initialization, the system creates an ADP, a CRB, and an IDB for
each MASSBUS adapter included in the configuration. The driver-loading
procedure subsequently builds additional data structures for each device
controller connected to a MASSBUS adapter. The type of structure created
depends upon whether the device controller is a dedicated controller or the
controller of several devices.

The system builds a unit-control block (UCB) for each single unit controller.
Figure G-4 illustrates the I/O database for a MASSBUS adapter with one
dedicated controller attached to it. Note that the ADP, CRB, and IDB all
correspond to the MASSBUS adapter and can logically be considered a single,
extended data block. The UCB corresponds to the device/controller pair.
Because of the one-to-one correspondence between a dedicated controller and
its device, the system does not need to distinguish between the two and thus
does not maintain separate data blocks for each piece of hardware.

A controller of several devices, however, requires separate data structures for
the controller and each of its subunits (devices). The driver-loading procedure
builds a CRB/IDB pair for the controller, as well as a UCB for each subunit.
Figure G-5 shows the I/O database created for a MASSBUS adapter with one
disk unit and two tape units.

Figure G-5 does not include several pointers used in interrupt dispatching. In
particular, the IDB associated with the MASSBUS adapter maintains an array
of up to eight longwords that point to the data structures associated with the
eight possible MASSBUS controllers attached to the MASSBUS.

For dedicated controllers, the IDB longword points to the device's UCB,
whereas, for a controller for several devices, the longword (or longwords)
points to a field within the CRB associated with the controller. The low
bit of this longword, when set, indicates a multiunit vector. The software
checks this bit to determine whether the longword points to a single UCB or
a multiunit CRB.

Also not pictured in Figure G-5 is how multiunit IDBs also maintain an array
of longwords. Each longword points to the individual UCBs for the units
attached to the controller. Figure G-6 illustrates in more detail the set of I/O
data structures for the MASSBUS adapter and its devices.

G-6

MASSBUS Adapter

Figure G-4 I/O Database for MASSBUS Disk Unit

ZK-941-82

Figure G-5 I/O Database for MASSBUS Disk and Tape Units

ZK-942-82

G—7

MASSBUS Adapter

G.3 MASSBUS Adapter Operations
The MASSBUS accepts two kinds of operations: data transfer operations
and nondata transfer operations. Data transfer operations require the use of
MASSBUS adapter shared resources, while nondata transfers do not.

Figure G-6 I/O Data Structures Used in Dispatching an
Interrupt

ADP

ZK-943-82

Before a driver can activate a data-transfer operation on the MASSBUS, the
driver must request and receive ownership of the MASSBUS adapter on
behalf of the device unit. However, drivers must not initiate nondata transfer
operations while they have control of the MASSBUS adapter. Section G.4.1
explains this statement further.

The MASSBUS adapter generates interrupts when data transfers terminate
and when attention conditions arise on devices. When an interrupt occurs
on the MASSBUS adapter, the MASSBUS adapter's interrupt dispatcher
determines whether the interrupt is for a data transfer or an attention
condition.

Data-transfer interrupts occur when a data transfer either completes or is
aborted. When the interrupt occurs, the MBA's status register (MBA$L_SR)
contains information about the condition that caused the interrupt.

Attention interrupts occur when nondata transfers on MASSBUS devices
terminate, or when the device undergoes an exceptional condition, such as
coming on line.

G—8

MASSBUS Adapter

The MASSBUS adapter's attention-summary register controls attention-
interrupt handling. This register contains eight bits of data, one for each
of the eight possible controllers that can be connected to the MASSBUS
adapter. When a device incurs an attention condition, the hardware sets
the corresponding bit in the attention-summary register and generates a
MASSBUS adapter interrupt.

If the attention condition occurs while a data-transfer operation for another
device is in progress, the hardware sets the bit in the attention-summary
register but suppresses the attention interrupt. The interrupt generated when
the data transfer is completed allows the MASSBUS adapter's interrupt
dispatcher to gain control, handle the data-transfer interrupt, check the
attention-summary register and then invoke the proper driver to handle the
interrupt.

G.4 MASSBUS Adapter's Interrupt Dispatching
When interrupts occur on the MASSBUS adapter, the MASSBUS adapter's
interrupt dispatcher gains control. This routine first determines whether the
interrupt is the result of a data transfer or an attention condition. The routine
checks to see if the MASSBUS adapter is owned and, if so, by whom.

G.4.1 Checking for MASSBUS Adapter Ownership
There are two conditions by which the interrupt dispatcher can determine
that the interrupt is an attention interrupt:

• If the MASSBUS adapter is not owned

• If the MASSBUS adapter is owned, but the owner is not expecting an
interrupt (UCB$V_INT in UCB$L_STS is clear)

When the MASSBUS adapter is owned and the owner expects an interrupt,
the interrupt is assumed to be the result of a data transfer operation.

As mentioned earlier, a driver must not initiate nondata transfers on the
MASSBUS adapter while it owns the adapter. For example, consider a
MASSBUS adapter attached to two disk units, A and B. Disk A is performing
an IO$_SEEK (a nondata transfer operation that completes fairly quickly),
while at the same time, disk B is performing an IO$_RECAL operation (a
nondata transfer operation that takes about 0.5 seconds to complete).

The driver for disk A correctly initiates its operation without obtaining
possession of the MASSBUS adapter channel, but the disk B driver
initiates its operation while it owns the MASSBUS adapter. Both of these
operations, upon completion, set the bit in the attention-summary register
that corresponds to their respective drive units, and initiate an interrupt. We
will assume that disk A's IO$_SEEK is completed first. The operation sets
disk A's bit in the attention-summary register and generates the MASSBUS
adapter's interrupt.

The MASSBUS adapter's interrupt dispatcher finds that the adapter is owned,
and that the owner is expecting an interrupt. Therefore, the interrupt
dispatcher incorrectly assumes that it is handling a data-transfer interrupt,
and, moreover, that this interrupt is the one for which the owner of the MBA
is waiting.

G—9

MASSBUS Adapter

So, the MASSBUS adapter's interrupt dispatcher returns control, through the
fork block in the MASSBUS adapter owner's UCB, to the driver for disk B,
even though disk B's operation has not completed. The disk B driver will
now incorrectly assume that the device has completed its operation, which
can cause serious problems.

G.4.2 Dispatching a Device Interrupt
Once the MASSBUS adapter's interrupt dispatcher determines the type of
interrupt, it dispatches the interrupt to the driver. The interrupt dispatcher
handles attention interrupts and data-transfer interrupts in the same way,
with one exception: On an attention interrupt, the interrupt dispatcher clears
the MASSBUS adapter's status register (MBA$L_SR) before dispatching the
interrupt to the driver. The status register contains information used only in
data-transfer interrupt dispatching.

How the interrupt dispatcher dispatches the interrupt to the driver differs
depending on the type of controller.

The MASSBUS adapter's interrupt dispatcher handles a solicited interrupt
on a dedicated controller by transferring control to the driver through the
fork block in the UCB. On unsolicited interrupts on dedicated controllers, the
interrupt dispatcher calls the driver's unsolicited-interrupt-servicing routine.

On dedicated controllers, the MASSBUS adapter's interrupt dispatcher always
clears the attention bit in the attention-summary register before it calls back
the driver after an interrupt.

Dispatching interrupts to the driver of a device that shares its controller with
several other devices differs in two ways from dispatching interrupts to the
driver of a device with a dedicated controller.

First, the interrupt dispatcher never clears the attention bit. This task is left
to the driver because some controllers that control more than one device use
this bit to synchronize their activities, and guarantee the integrity of device
registers only while the bit is set. If the interrupt dispatcher clears the bit
before returning control to the driver, the driver can no longer rely on the
contents of the device's registers.

Second, a controller that controls several devices needs another interrupt
dispatcher to handle simultaneous requests from its several subunits. This
second-level interrupt dispatcher resides in the driver. After an interrupt, the
MASSBUS adapter's interrupt dispatcher indirectly calls this second, driver's
interrupt dispatcher using code in the controller's CRB. The driver-loading
procedure installs this code when it establishes the I/O database.

G.5 Special Considerations for MASSBUS Device Drivers
MASSBUS adapter considerations affect a driver's device unit initialization
routine, start-I/O routines and, for multiunit controllers only, the driver's
use of the DPTAB macro. MBA considerations also affect interrupt handling,
as described in Section G.4.2. The next sections in this chapter discuss
programming details for writing a MASSBUS device driver.

G—10

MASSBUS Adapter

G.5.1 Unit-Initialization Routine
All drivers for MASSBUS adapter devices initialize two fields in the UCB (as
well as initializing device-specific fields): UCB$B_SLAVE and
UCB$B_SLAVE+1. The first of these fields should contain the controller's
MASSBUS adapter unit number, which marks the controller's position on the
MASSBUS adapter. The second of these contains the offset, in longwords,
from the start of the MASSBUS adapter's external registers to this controller's
device registers. The value of this longword offset is always 32 times the unit
number of the controller.

Initialization of a device attached to a dedicated controller is simple because
the device unit number and the controller position number on the MASSBUS
adapter are always equal. To initialize the field UCB$B_SLAVE, copy to it
the contents of UCB$W_UNIT. To initialize UCB$B_SLAVE+1, multiply its
contents by 32. The driver later uses this information to compute a pointer
to this device's registers. By convention, R4 points to the MASSBUS adapter
configuration register, and R5 points to the UCB of this device.

Thus, the following two instructions cause R3 to point to the device registers
during normal system operation:

MOVZBL UCB$B_SLAVE+1(R5),R3
MOVAL MBA$L_ERB(R4)[R3],R3

For devices connected to a controller that controls several devices,
determination of the controller's MBA position is more complex. When
the unit-initialization routine is invoked, the following values are in the
following registers:

R3 Address of controller's device registers

R4 Address of the MBA's configuration register

R5 Address of device's UCB

The driver computes the MBA position of the controller by using R3 and
R4 to determine the number of bytes from the start of the MBA's external
registers to the start of the device's device registers. The difference, when
divided by 128, is the controller's MBA position number.

G.5.2 The MASSBUS Adapter and the I/O Database
The UCB of a device connected to a single-unit controller, at offset
UCB$L_CRB, contains the address of the MASSBUS adapter's CRB. This
CRB in turn contains, at offset CRB$L _INTD+VEC$L _IDB, the address of
the MASSBUS IDB. This IDB points to the base address of the MASSBUS
adapter registers at offset IDB$L_CSR.

A controller that controls several devices maintains a more complicated I/O
database. The device UCB, at offset UCB$L_CRB, points to the controller's
CRB, and this structure points to the CRB for the MASSBUS adapter at
offset CRB$L_LINK. Also, the controller's CRB points to its own IDB at
offset CRB$L_JNTD-i-VEC$L_IDB. This IDB points to the controller's device
registers at offset IDB$L_CSR.

Thus, the UCB for a device always points to that device's primary CRB,
whether it is the MASSBUS adapter's CRB or the controller's CRB. The
primary CRB points to the secondary CRB, if one exists for the device.

Figure G-6 shows these relationships among I/O data structures.

G—11

MASSBUS Adapter

G.5.3 Start-I/O Routine
Depending on the function being executed, the start-I/O routine for a
MASSBUS device performs all or some of the following tasks:

• Requests controller data channel(s) as described in Section G.5.3.1

• Clears errors on the MASSBUS adapter by placing the value -1 into the
MBA's status register; this is a write-ones-to-clear register (MASSBUS
device registers and the MBA's registers are all longwords)

• Invokes the LOADMBA macro to load the MBA's mapping registers as
described in Section G.5.3.2

• Loads device registers to start the function

• Waits for a device interrupt or timeout

• Releases controller data channel(s) as described in Section G.5.3.3

• Finishes the request like other drivers

G.5.3.1 Requesting Controller Data Channels
Device drivers for MASSBUS devices must request and receive ownership of
the MASSBUS adapter channel before loading the MBA's internal registers
or mapping registers. In addition, drivers for devices connected to multiunit
controllers must obtain ownership of the controller channel before modifying
the contents of controller registers that can be shared among the units
connected to the controller.

Drivers for dedicated controllers must request ownership of the MASSBUS
adapter channel by invoking the macro REQPCHAN.

Device drivers for controllers that control several devices invoke the
REQPCHAN macro when the operation requires ownership of only the
primary channel (the controller's channel). However, if the operation
requires ownership of both primary and secondary channels (a data transfer
operation), the driver must first obtain the controller channel and then request
the MASSBUS adapter channel by invoking the REQSCHAN macro.

Again, the driver needs ownership of both channels only when performing
a data transfer, and must release the channels before initiating a nondata
transfer. Thus, a driver must obtain ownership of the MASSBUS adapter
channel sometime before initiating a data transfer and must either not own
the channel or release such ownership before it invokes the WFIKPCH macro
following the start of a nondata transfer operation.

G.5.3.2 Loading Mapping Registers
MASSBUS device drivers invoke the LOADMBA macro before they initiate a
data transfer to load the MBA's mapping registers, the MBA's virtual-address
register (MBA$L__VAR), and the MBA's byte-count register (MBA$L_BCR).
Drivers cannot modify these registers during a transfer. The LOADMBA
macro expects the following register contents:

• The address of the MBA's configuration register (MBA$L_CSR) in R4

• The address of the device UCB in R5

G-12

MASSBUS Adapter

LOADMBA preserves the contents of R3 but modifies RO through R2. The
macro performs the following steps:

1 Uses the contents of UCB$W_BCNT and UCB$W_BOFF to determine the
number of pages that contain pieces of the I/O buffer

2 Beginning with the page-table entry to which UCB$L_SVAPTE points
and continuing for the number of page-table entries determined in the
step above, copies the page-frame numbers from the page-table entries to
the corresponding mapping registers, starting at mapping register 0

3 Deposits an invalid value into the mapping register that immediately
follows the last mapping register loaded with a PFN so that a hardware
fault does not modify memory

4 Moves the negative value of the transfer byte count (UCB$W_BCNT) into
the MBA's byte-count register (MBA$L_BCR)

5 Moves the byte offset in the first page of the transfer (UCB$W_BOFF) into
the MBA's virtual-address register (MBA$L_VAR)

6 Returns to the start-I/O routine that invoked it

If the I/O operation about to be initiated by the driver is a reverse operation
(a read-reverse on tape), the driver must modify the contents of the MBA's
virtual-address register set up by LOADMBA. Because reverse operations
access the I/O buffer from its highest address through its lowest address,
the value to be loaded into the MBA's virtual-address register must be the
virtual address, in MBA's virtual memory, of the last byte of the buffer. This
number is equal to one less than the sum of the contents of UCB$W_BOFF
and UCB$W_BCNT.

G.5.3.3 Releasing Controller Data Channels
The driver releases the controller data channels by invoking the RELCHAN
macro. RELCHAN releases all controller channels (both primary and
secondary) currently owned by the device. To release only the secondary
channel and retain ownership of the primary channel, a driver can invoke the
RELSCHAN macro.

G.5.4 DPTAB Macro
The device driver for a MASSBUS device that shares its controller with other
devices must set the DPT$M_SUBCNTRL bit in the flags argument of the
DPTAB macro. Setting this bit causes the driver-loading procedure to create a
second CRB and an IDB for the controller.

G.6 Interrupt-Servicing Routines for MASSBUS Devices
The VAX MASSBUS interrupt dispatcher (MBA$INT) gains control when it
receives an interrupt from the MASSBUS adapter. Because data transfers in
progress suppress attention interrupts on the MASSBUS adapter, and because
several devices can request attention simultaneously, some device drivers
might need to be informed of the interrupt.

G-13

MASSBUS Adapter

MBA$INT determines which drivers should be invoked as a result of the
interrupt and then passes control to these drivers. For data-transfer interrupts,
MBA$INT preserves the value contained in the MBA's status register at the
time of the interrupt so that the driver can have access to this value.

For I/O operations that involve no data transfer, MBA$INT clears this register
before invoking the driver. MBA$INT only preserves the contents of registers
R2 through R5. Drivers that use other registers must save the contents of
those registers, and must restore them before exiting the interrupt-servicing
routine.

G.6.1 Transferring Control to the Interrupt-Servicing Routine
The method by which MBA$INT invokes a driver depends upon whether
the driver serves a device connected to a dedicated controller or a device that
shares its controller with several other devices. Furthermore, if the device is
connected to a dedicated controller, the method of transfer from MBA$INT to
the driver depends upon whether or not the interrupt is expected.

For a device on dedicated controller when the driver is expecting an interrupt,
MBA$INT restores the driver context saved in the UCB fork block and
transfers control (using a JSB instruction) to the instruction that follows the
wait-for-interrupt instruction.

For a device on a dedicated controller when the driver is not expecting
interrupts, MBA$INT obtains the address of the driver's unsolicited-interrupt
routine from the driver-dispatch table and calls the routine.

For a device that shares its controller with several other devices, MBA$INT
transfers control to the driver's interrupt-servicing routine by simulating a
direct transfer, through an interrupt vector, to the controller's CRB. The CRB
contains code that transfers control to the interrupt-servicing routine.

MBA$INT first pushes the processor status longword (PSL) onto the stack.
The routine then calls (with a JSB instruction that leaves an address within
MBA$INT on the stack) the code within the CRB. This code contains the
following sequence of instructions, where XX$INT is the address of the
interrupt-servicing routine and XX$IDB is the address of the controller's IDB:

PUSHR #~M<R2,R3,R4,R5>
JSB XX$INT

.LONG XX$IDB

The execution of the above sequence of instructions, plus the instructions
executed by MBA$INT (the pushing of the PSL onto the stack and the JSB),
places a simulated interrupt-frame onto the stack, including a saved PSL, a
saved PC, saved registers and pointer to an address in the IDB.

G—14

MASSBUS Adapter

G.6.2 Returning Control to MBA$INT
The way in which a driver returns control to MBA$INT depends on the way
in which MBA$INT invoked it. Drivers for dedicated controller devices return
to MBA$INT through an RSB instruction, although the RSB can execute as a
result of the driver's invoking the IOFORK macro.

Drivers of devices that share a controller return control to MBA$INT by
removing the indirect pointer to the IDB from the top of the stack, restoring
registers R2 through R5, and executing an REI instruction. This sequence,
executed within the driver's interrupt-servicing routine, eliminates the
simulated interrupt-frame from the stack before returning to MBA$INT.

G. 6.3 Considerations for I nterrupt-Servicing Routines
Drivers for dedicated controller devices attached to the MASSBUS do not
have interrupt-servicing routines. Instead, MBA$INT handles all the functions
that a driver interrupt-servicing routine normally provides.

Drivers of devices that share a controller on the MASSBUS must have their
own interrupt-servicing routines. In general, these routines perform the same
functions as the interrupt-servicing routines for UNIBUS and Q22 bus devices
(discussed in Section 11. However, the two types of drivers diverge in two
areas.

One difference between UNIBUS/Q22 bus and MASSBUS drivers concerns
the number of registers saved by the interrupt-servicing routine. When the
interrupt dispatcher transfers control to a MASSBUS driver interrupt-servicing
routine, registers R2 through R5 are pushed onto the stack. UNIBUS/Q22
bus drivers save RO through R5.

After handling an interrupt, both MASSBUS and UNIBUS/Q22 bus driver
interrupt-servicing routines execute an REI instruction. For UNIBUS/Q22 bus
devices, the REI dismisses a real interrupt, whereas the MASSBUS driver's
REI returns control to MBA$INT.

G—15

Mapping I/O Space and Connecting to an
Interrupt Vector

A real-time VAX/VMS process running on a VAX 8600, VAX 8650,
VAX-11/785, VAX-11/782, VAX-11/780, VAX-11/750, VAX-11/730,
VAX-11/725, Micro VAX II, or Micro VAX I system can bypass most of the
I/O subsystem by manipulating device registers and responding to device

interrupts directly.1

Programs written in VAX MACRO can interface with the I/O system by using
VAX RMS, by using the Queue I/O Request ($QIO) system service, or by
mapping to I/O space and connecting to a device interrupt vector. Programs
written in a high-level language can interface with the I/O subsystem using
the same methods as a VAX MACRO program, or they can issue the I/O
statements specific to that language. In the latter case, the program interfaces
with the I/O subsystem by means of the VAX Common Run-Time Procedure
Library.

A user program can interface with the I/O subsystem at one of several levels,
depending on its requirements. At each level, the user program makes trade¬
offs between ease of use and execution speed. As a general rule, the closer to
the VAX/VMS executive that a user program interfaces, the less overhead is
involved in the I/O operation. The connect-to-interrupt capability offers the
least overhead.

H.1 Interrupt-Generated I/O
A process with suitable privileges can connect to a device interrupt vector
and/or map the processor's I/O space into process virtual address space.
Connecting to a device interrupt vector allows your process to respond to
interrupts from the device with minimal overhead. Mapping processor I/O
space allows your process to access device registers from the main program or
from an AST service routine.

A process normally uses these features for devices that do not have
VAX/VMS drivers. These devices must not be direct memory access (DMA)
devices, and they must be attached to the UNIBUS or Q22 bus. Examples of
such devices are the AD11-K and the KW11-P.

You can use the $QIO system service with an appropriate function code to
connect to a device interrupt vector and to specify a user-supplied interrupt¬
servicing routine that VAX/VMS executes when the designated device
interrupts. Connecting to a device interrupt vector allows you to do the
following:

• Respond to an interrupt within a very short time

• Preempt other system processing to handle a real-time event, for example,
a clock interrupt

• Buffer data from a device in real time and return the data to the process at
a later time

* The VAX 8800 and VAX 8200 systems do not support the connect-to-interrupt driver facility discussed in this appendix.

H—1

Mapping I/O Space and Connecting to an Interrupt Vector

• Set an event flag or queue an AST to your process after receiving the
interrupt

An interrupt-servicing routine, specified in your process, allows it to perform
some of the functions normally performed by a device driver. The connect-
to-interrupt facility, with its VAX/VMS-supplied driver (CONINTERR),
thus allows you to avoid writing a full device driver and loading it into the
operating system.

If you must access device registers from user mode (that is, from the main
program or a user-mode AST service routine), you must use the Create and
Map Section ($CRMPSC) system service to map I/O space, specifying page
frame number (PFN) mapping. The service creates a global or private section
that maps the specified I/O pages into your process' virtual address space.
The process can then gain access to I/O space using virtual addresses.

You do not need to map I/O space to access device registers from any of the
following routines specified in the $QIO call connecting to an interrupt vector:

• Unit-initialization routine

• Start-I/O routine

• Interrupt-servicing routine

• Cancel-I/O routine

These routines execute in system space and thus can access UNIBUS or Q22
bus I/O space, which is mapped as part of system space.

The remainder of this appendix explains how to map the VAX processor's
I/O space and how to connect to a device interrupt vector.

H.2 I/O Space
On a VAX processor, I/O space is assigned physical address locations of
20000000i6 and higher. I/O space contains device registers that a driver or
user process can read and write to control a device. Each device controller
has an associated control and status register (CSR) in I/O space. Device
registers for each device are located at an offset from the device's CSR.

Macros of the format $IO;mfDEF (where xxx represents a specific VAX
processor), contained in SYS$LIBRARY:LIB.MLB, define symbols describing
the layout of I/O space. Table H-l describes these macros and the symbols
they define for each VAX processor.

H—2

Mapping I/O Space and Connecting to an Interrupt Vector

Table H-1 Symbols Defined by the $IOxxxDEF Macros

Macro Processor(s) Symbol(s) Meaning Value (hex)

SI0790DEF VAX 8600
VAX 8650

10790$ AL_IO A0
10790$ Al_IOA1
10790$ AL_UB0SP

Start of I/O space for SBIO
Start of I/O space for SBI1
Offset to start of address space
for first UNIBUS

20000000
22000000
24000000
100000

SI0780DEF
VAX-11/782
VAX-11/785

10780$ Al_IOBASE
10780$ AL_UB0SP

Start of I/O space
Start of address space for first
UNIBUS

20000000
20100000

SI0750DEF1 VAX-11/750 I0750$AI_IOBASE
10750$ Al_UBBASE
I0750$AI_MBBASE
IO750$AI_UBOSP

Start of I/O space
Start of UBAO register space
Start of MBAO register space
Start of address space for first
UNIBUS

F20000
F30000
F28000
FC0000

$I0730DEF VAX-1 1/730
VAX-11/725

10730$ Al_IOBASE
10730$ Al_UBOSP

Start of I/O space
Start of address space for UNIBUS

F20000
FC0000

SI0UV2DEF MicroVAX II I0UV2$AI_QBOSP Start of address space for Q22
bus

20000000

SI0UV1DEF MicroVAX 1 I0UV1 $ Al_QBOSP Start of address space for Q22
bus

20000000

^he VAX-11/750 processor has fixed MASSBUS adapters (UBBASE, MBBASE) in contrast to the
VAX-11/780 processor, which has floating MASSBUS adapters, and the VAX-11/730, which does
not have MASSBUS adapters.

The number of registers and their locations vary from device to device.
The PDP-11 Peripherals Handbook provides the necessary information
for DIGITAL-supplied devices. The VAX Hardware Handbook contains
information about the layout of I/O space.

From the symbols defined by the macros described in Table H-1, you can
derive the starting physical addresses of UNIBUS or Q22 bus space for the
various VAX processors. Table H-2 lists the starting physical addresses for
UNIBUS adapters on the VAX-11/780, VAX-11/782, VAX-11/785,
VAX-11/750, VAX-11/730, and VAX-11/725 processors, as well as the
starting physical addresses for Micro VAX I and Micro VAX II Q22 bus space.

Table H-2 UNIBUS and Q22 Bus Addresses for VAX Processors

UNIBUS
adapter
number

VAX-11/725
VAX-11/730 VAX-11/750

VAX-11/780
VAX-11/782
VAX-11/785

MicroVAX 1
MicroVAX II

VAX 8600 SBI0/SBI1
VAX 8650 SBI0/SBI11

0 00FC0000 00FC0000 20100000 20000000 20100000/22100000

1 - 00F80000 20140000 - 20140000/22140000

2 - - 20180000 - 20180000/22180000

3 - - 201C0000 - 201C0000/221C0000

^he maximum number of UBAs that either a VAX 8650 or VAX 8600 can have is seven. Each SBI can
have up to four UBAs, but only one of the SBIs can be expanded into another cabinet. If you expand SBI1,
you can put four UBAs on it, plus three on the internal slots of SBIO. Thus, the maximum number of UBAs in
this configuration is seven. If you expand SBIO, you can have four UBAs on it (three internal, one external).
Because you cannot expand SBI1 in this case, the maximum number of UBAs in this configuration is four.

H—3

Mapping I/O Space and Connecting to an Interrupt Vector

The page frame number (PFN) of a physical page in memory is contained
in bits 9 through 29 of its physical address (see Figure H-l). Bit 29 of the
address is clear to indicate a physical memory address and set to indicate an
address in I/O space. Bits 0 through 8 specify the byte address within the
page.

Figure H-1 Format of a Physical Address

31 30 29 9 8

page frame number byte

ZK-4845-85

H.3 PFN Mapping
For a process to gain access to I/O space or to any page of physical memory,
it must map that page into its virtual address space. When your VAX/VMS
process maps a page by specifying its page frame number, it completely
bypasses VAX/VMS memory management and creates its own window to the
page. As a result, the protection functions that VAX/VMS normally performs
are not performed for PFN mapping:

• No checks are performed to ensure that no other VAX/VMS processes are
mapped to the page and modifying it.

• No reference count is maintained. A process can delete a global section
mapped by page frame numbers when other processes are still using it;
this is not the case for other types of global sections.

Modifying pages mapped by page frame numbers can have unpredictable
results and can adversely affect system operation, especially if the operating
system is also using these pages. Because of the unprotected nature of
PFN-mapped pages, you must have the PFNMAP privilege to use this
capability.

When used for mapping by page frame number, the Create and Map Section
($CRMPSC) system service designates the specified page(s) as a global or
private section and maps the section into the requesting process' virtual
address space. The pages can be located anywhere in the VAX processor's
local memory, in MA780 memory (if a multiport memory unit is connected to
the system), or in I/O space.

The format and conventions PFN mapping (that is, mapping a physical
page frame section) are similar to those for mapping a disk file section. The
$CRMPSC system service has the following general formats:

VAX MACRO Format

ICRMPSC [inadr] [.retadr] [.acmode] [.flags] [.gsdnam] [.ident] -
[.relpag] [.chan] [.pagcnt] [,vbn] [,prot] [,pfc]

H—4

Mapping I/O Space and Connecting to an Interrupt Vector

High-Level Language Format

SYS$CRMPSC([inadr] [.retadr] [.acmode] [.flags] [.gsdnam] [.ident]
[.relpag] [.chan] [.pagcnt] [,vbn] [,prot] [,pfc]>

The relpag, chan, and pfc arguments are not applicable to mapping by
page frame number. The inadr, retadr, acmode, gsdnam, ident, and prot
arguments have the same functions, regardless of whether you specify page
frame number mapping; these arguments are described in the VAX/VMS
System Services Reference Manual

The following arguments can have values specific to PFN mapping:

Arguments

[flags]
Mask defining the section type and characteristics. This mask is the logical
OR of the flag bits you want to set. The $SECDEF macro defines symbolic
names for the flag bits in the mask. The SEC$M_PFNMAP flag bit must be
set to indicate mapping by page frame number. The SEC$M_PFNMAP flag
setting identifies the memory for the section as starting at the page frame
number specified in the vbn argument and extending for the number of pages
specified in the pagcnt argument.

If appropriate, the following flags can also be set:

Flag Description

SEC$M_GBL Pages form a global section. The default is private section.

SEC$M_EXPREG Pages are mapped into the first available space. By default,
pages are mapped into the range specified by the inadr
argument.

SEC$M_WRT Pages form a read/write section. By default, pages form a
read-only section.

SEC$M_PERM Pages are permanent. By default, pages are temporary.

SEC$M_SYSGBL Pages form a system global section. By default, pages form
a group global section.

Neither the SEC$M_CRF (copy-on-reference) nor the SEC$M_DZRO
(demand-zero) bit can be set when mapping by page frame number.

[pagcnt]
Number of pages in the section; the value of this argument must not be zero.

[vbn]
Page frame number of the first page to be mapped (as opposed to this
argument's normal usage identifying the starting virtual block number (vbn)
within a disk file). When you are mapping more than one page with a single
$CRMPSC system service request, the pages are physically contiguous starting
with the specified page.

H—5

Mapping I/O Space and Connecting to an Interrupt Vector

H.3.1 Notes on PFN Mapping
The following considerations apply to PFN mapping.

1 An error in mapping UNIBUS or Q22 bus I/O space or a reference to
a nonexistent bus address causes a UNIBUS adapter error. However,
this error does not cause a system failure (except on VAX-11/750 and
VAX-11/730 processors where a machine check will occur). Rather, an
entry is made in the system error log file and the user program continues
executing (probably with erroneous results). The process is not notified of
the UNIBUS adapter error.

2 If a power failure occurs on the UNIBUS or Q22 bus, the system continues
to run. However, if a user process accesses UNIBUS or Q22 bus I/O
space from user mode during a bus power failure, the process receives
a machine check exception. To handle this condition, the process must
have a condition handler to deal with machine check exceptions. The
VAX/VMS System Services Reference Manual discusses condition handlers
in detail.

3 During recovery from a UNIBUS adapter or Q22 bus power failure,
the processor spends a considerable amount of time (perhaps 10 to 60
milliseconds) at IPL 31. This action blocks user processes from executing
during the recovery.

4 When a process requests deletion of a PFN-mapped page, VAX/VMS
will wait until there is no direct I/O outstanding for the process before
deleting the page. This is because no reference count is maintained for
PFN-mapped pages. (For example, VAX/VMS cannot determine whether
outstanding direct I/O is for the PFN-mapped page or not.) Applications
using devices that have direct I/O perpetually outstanding, such as the
DR32, must not delete PFN-mapped pages because this will cause the
process to hang in the MWAIT state.

Once you have mapped to I/O space, you can read data from a device data
buffer register or enable interrupts by setting a bit in the CSR, because the
device registers are now addressable as part of your process' virtual memory.
The UNIBUS adapter performs the actual mapping of VAX virtual addresses
to 18-bit UNIBUS addresses that correspond to device registers. Likewise,
the Micro VAX II or Micro VAX I processor performs the mapping of virtual
addresses to 22-bit Q22 bus addresses that correspond top device registers.

See Section 6.2 for a list of restrictions that apply to the use of device register
space.

H.4 Connecting to an Interrupt Vector
On a VAX processor, peripheral devices are associated with interrupt vectors.
When a device interrupt occurs, the action taken by the processor depends on
the device's associated IPL.

Connecting to an interrupt vector differs from the standard method of
programming a peripheral device. Programming a peripheral device is
normally a 3-step loop:

1 The device driver starts the device and enables interrupts from the device.

2 The device generates an interrupt.

H—6

Mapping I/O Space and Connecting to an Interrupt Vector

3 The device driver services the interrupt, collects status and data, and clears
the interrupt condition.

Under the VAX/VMS operating system, a user program normally requests
I/O by means of a $QIO system service call. A device driver, executing as
part of the operating system, controls and responds to the device. The driver
returns status and data to the requesting user process.

However, real-time application programmers can connect to an interrupt
vector to control and respond to a device without writing a full VAX/VMS
device driver, and without issuing $QIO calls for each device interaction.
Instead, you issue a connect-to-interrupt $QIO call that specifies code to be
executed to control the device, and a data area that the program and the
device control code can share. You subsequently control and respond to the
device without additional $QIO calls.

The timings involved in different system activities associated with connecting
to an interrupt vector are as follows:

• The time between when the device generates an interrupt and when the
process' interrupt-servicing routine receives control depends upon the IPL
of the processor at the time of the interrupt. If the processor is executing
at an IPL below that of the device (as is the usual case), the interrupt¬
servicing routine gains control within a few microseconds. However, if the
processor is executing at an IPL above that of the device, the interrupt¬
servicing routine does not gain control until the executing code lowers
the IPL below the device IPL. (Section 3.1 contains a more complete
discussion of interrupt priority levels.)

• The time from the user interrupt-servicing routine's exit to the execution
of the AST routine specified in the $QIO call depends on the priority of
the process and whether a context switch is required.

H .4.1 Performing the Connect-to-Interrupt
Connecting to a device interrupt vector allows your program to receive
notification of an interrupt from a designated device by any combination of
the following means:

• By execution of a user-supplied interrupt-servicing routine

• By the setting of an event flag

• By execution of an AST service routine that gains control in process
context

In addition, you can specify a cancel-I/O routine that is executed when the
process disconnects from the interrupt vector or is deleted.

Before your program can run, the system manager must have performed the
following actions at system generation time:

• Specify the REALTIME —SPTS SYSGEN parameter, reserving system page
table entries for use by real-time processes. These system page table
entries are used to map process-specified buffers in system space (see
the pi argument description in Section H.4.3). The REALTIME SPTS
parameter value must be greater than or equal to the number of pages in
buffers specified by processes connected to interrupt vectors.

H—7

Mapping I/O Space and Connecting to an Interrupt Vector

• Configure the real-time device by issuing a CONNECT command to the
System Generation Utility. This command names the device; its vector,
register, and adapter addresses; and a skeletal driver (CONINTERR)
for the device. (See the description of the CONNECT command in
Section 14.2.2 and in the VAX/VMS System Generation Utility Reference
Manual.)

At run time the process calls the $ASSIGN system service to associate a
channel with the device. The process can also map the page in UNIBUS
or Q22 bus I/O space containing the device registers (see Section H.3).
To connect to the device interrupt vector, the process issues a $QIO call
specifying the IO$_CONINTREAD or IO$_CONINTWRITE function code
and as many of the following items as are appropriate:

• An interrupt-servicing routine to be executed when the device generates
an interrupt.

• A buffer containing code to be executed in system context and/or data.
(This buffer must be contiguous in the process' address space.)

• An AST service routine to execute and/or an event flag to be set after the
interrupt-servicing routine (if any) completes. (If an AST service routine is
specified, an AST parameter may also be specified.)

• A unit-initialization routine.

• A start-I/O routine.

• A cancel-I/O routine.

A nonprivileged process (that is, lacking the CMKRNL privilege) can also
connect to an interrupt vector, but it can only specify an AST service routine
to be executed or an event flag to be set (or both) when an interrupt is
generated. Section H.4.3 describes the $QIO format for connecting to an
interrupt vector.

H.4.2 The Connect-to-lnterrupt Driver (CONINTERR.EXE)
The VAX/VMS connect-to-interrupt driver (CONINTERR) provides a driver
interface to the system on behalf of the process. CONINTERR connects the
process to the device by executing the following steps:

1 Validates the arguments to the $QIO system service call, such as the
accessibility of the buffer specified in argument pi to the process, and the
number of the event flag optionally specified in the efn argument.

2 Locks the physical pages of the buffer into physical memory, and maps
the pages using system page table entries allocated by the
REALTIME-SPTS SYSGEN parameter.

3 Constructs argument lists and calling interfaces to the process-specified
routines by storing values in the device's unit-control block (UCB).

4 Allocates the specified number of AST control blocks to the process, and
inserts each block in a queue in the device's UCB.

5 Transfers control to VAX/VMS to queue the connect to interrupt I/O
packet to the CONINTERR start-I/O routine.

H—8

Mapping I/O Space and Connecting to an Interrupt Vector

When the CONINTERR start-I/O routine gains control, it passes control, by
means of a user-specified JSB or CALLS instruction interface, to the process-
specified start-I/O routine. This routine usually initializes the device and may
also start device activity.

When the device generates an interrupt, the CONINTERR interrupt-servicing
routine gains control. This routine transfers control to the process-supplied
interrupt-servicing routine.

H.4.3 $QIO System Service for Connect-to-Interrupt
The format of the $QIO system service to connect to an interrupt vector is
given below. This explanation is limited to connecting to an interrupt vector.
For a detailed description of the $QIO system service, see the VAX/VMS
System Services Reference Manual.

The relpag, chan, and pfc arguments are not applicable in mapping by
page frame number. The inadr, retadr, acmode, gsdnam, ident, and prot
arguments have the same functions regardless of whether you specify page
frame number mapping; these arguments are described in the VAX/VMS
System Services Reference Manual.

VAX MACRO Format

$QI0 [efn] ,[chan] ,func [,iosb] [.astadr] [.astprm] -

[.pi] Lp2] [,p3] [,p4] [,p5] [,p6]

High-Level Language Format

SYS$QI0([efn] ,[chan] ,func [,iosb] [.astadr] [.astprm]

[.pi] Lp2] [,p3] [,p4] [,p5] [,p6])

Arguments

[efn]
[iosb]
[astadr]
[astprm]

These arguments apply to the $QIO system service completion, not to device
interrupt actions. For an explanation of these arguments, see the description
of the $QIO system service in the VAX/VMS System Services Reference Manual.

func
Function code of IO$_CONINTREAD or IO$_CONINTWRITE. The
IO$_CONINTWRITE function code allows locations in the buffer pointed to
by the pi argument to be modified; the IO$_CONINTREAD function code
makes the buffer contents read-only.

[pi]
Address of a descriptor for the buffer containing code and/or data. The first
longword records the number of bytes in the buffer; the second longword
records the address of the buffer. The buffer size must not exceed 65,535
bytes.

[p2]
Address of an entry point list. The list consists of four longwords that
contain offsets into the buffer (specified in the pi argument) of entry points

H—9

Mapping I/O Space and Connecting to an Interrupt Vector

of process-specified routines. These longwords and their contents2 are as
follows:

Symbol Meaning

CIN$I_INIDEV Offset to unit-initialization routine

CIN$L—START Offset to start-l/O routine

CiN$l_ISR Offset to interrupt-servicing routine

CINSI_CANCEL Offset to cancel-l/O routine

[p3]
Long word containing flags and an optional event flag number specification.

The low-order word contains the inclusive-OR of flags describing options to
the connect-to-interrupt facility. The flags and their meanings are as follows:

Flag Meaning

CIN$M_EFN Set event flag on interrupt

CIN$M_USECAL Use CALL interface to process-specified routines (default is
JSB interface)

CIN$M_REPEAT Leave process connected to the interrupt vector until the
connection is canceled

CIN$M_INIDEV Process-specified unit-initialization routine is in the buffer
specified in the pi argument

CIN$M_START Process-specified start-l/O routine is in buffer

CIN$M_ISR Process-specified interrupt-servicing routine is in buffer

CIN$M_CANCEL Process-specified cancel-l/O routine is in buffer

The high-order word specifies the number of the event flag to be set when an
interrupt occurs. This number is expressed as an offset to CIN$V_EFNUM.

For example, to specify that your interrupt-servicing routine is in the buffer
and to set event flag 4, code p3 as follows:

P3 = <CIN$M_ISR! CIN$M_EFN! 4<DCIN$V_EFNUM>

[p4]
Address of the entry mask of an AST service routine to be called as the result
of an interrupt (see Section H.4.4).

[p5]
AST parameter to be passed to the AST service routine (used as the AST
parameter only if the process-supplied interrupt-servicing routine does not
overwrite the value).

[p6]
Number of AST control blocks to preallocate in anticipation of fast, recurrent
interrupts from the device.

^ The listed symbols are defined by the $CINDEF macro located in the library SYS$LIBRARY:LIB.MLB.

H-10

Mapping I/O Space and Connecting to an Interrupt Vector

Condition Values Returned

SSS—NORMAL

SS$_ACCVIO

SSS—BADPARAM

SS$_DISCONNECT

SS$_EXQUOT A

SS$_ILLEFC

SSS—INSFMEM

SS$_INSFSPTS

SS$_NOPRIV

SS$_UNASEFC

System service successfully completed.

The caller does not have the appropriate access to the
buffer specified in the pi argument or to the entry point list
specified in the p2 argument.

The size of the buffer specified in the pi argument exceeds
65535 bytes, or the number of preallocated AST control
blocks specified in the P6 argument exceeds 65535.

A connection is already outstanding for the device, or a
condition described in Note 2b below has occurred.

The process has exceeded its direct I/O limit quota or its
AST limit quota.

An illegal event flag number was specified.

Insufficient system dynamic memory is available to
complete the system service.

Insufficient system page table entries are available
to double map the process buffer. (The value of the
REALTIMESPTS SYSGEN parameter must be increased.)

The process does not have the CMKRNL privilege. This
privilege is only required if the user specifies a buffer to be
used by the process and the process-specified kernel mode
routines.

The process is not associated with the cluster containing
the specified event flag.

See Note 3 below for additional information on these flags.

Privilege Restrictions

The connect-to-interrupt $QIO call does not require privileges if no shared
buffer is specified. If the request specifies a buffer descriptor argument (that
is, pi), the process must have the CMKRNL privilege.

Resources Required/Returned

A connect-to-interrupt request updates the process quota values as follows:

• Subtracts the number of preallocated AST control blocks in the p6
argument from the number of outstanding ASTs remaining for the process
(ASTCNT)

• Subtracts 1 (for the $QIO) from the direct I/O count (DIOCNT)

Notes

1 After the $QIO call is issued, the operation is not completed until the
process or the connect-to-interrupt driver cancels I/O on the channel.

2 The connect-to-interrupt driver can cancel I/O on the channel for a
number of reasons, including the following:

a The driver cannot set the specified event flag, perhaps because
the process disassociated from the common event flag cluster after
requesting that a flag in that cluster be set.

H-11

Mapping I/O Space and Connecting to an Interrupt Vector

b The driver cannot reallocate AST control blocks quickly enough.
This condition can occur because not enough AST control blocks (p6
argument) were specified, because not enough pool space is available
for the requested AST control blocks, or because the process ASTCNT
quota is exhausted.

c The driver cannot queue the AST to the process.

3 If no event flag setting was requested in the p3 argument and if no
AST service routine was specified in the p4 argument, p6 is ignored and
no AST control blocks are preallocated. If you requested an event flag
be set and/or an AST service routine but did not preallocate any AST
control blocks (that is, p6 is zero), one AST control block is preallocated
automatically, because the system needs one control block to set any event
flag or to deliver any ASTs.

If you request an event flag and/or an AST service routine and if you
preallocate any AST control blocks, the CIN$M—REPEAT bit is set
automatically in the longword specified in the p3 argument. Thus, as long
as you preallocate any AST control blocks, your process will automatically
remain connected to the interrupt vector to receive repeated interrupts
until the process is disconnected from the interrupt vector.

If the CIN$M—REPEAT flag is not set, the process is disconnected from
the interrupt vector after the first successful interrupt, and a status code of
SS$_NORMAL is returned.

H.4.4 AST Service Routine
The AST service routine that you specify in call to the $QIO system service
for the connect-to-interrupt operation, gains control in process context. This
routine usually performs one or more of the following steps:

1 Reads or writes device registers if the process mapped I/O space.

2 Interprets data. Use caution, however, because any processing done by
the AST service routine can be interrupted by a device interrupt, which
might store more data or modify the buffer's contents.

3 Calls the Cancel I/O on Channel ($CANCEL) system service to
disconnect the process from the interrupt. Once the process is completely
disconnected, the CONINTERR driver clears all interrupts for the driver.

H.4.5 Conventions for Process-Specified Routines
Any routines that the process specifies in the connect-to-interrupt call are
double-mapped, once in process space and once in system space. Each
routine executes in kernel mode at an appropriate IPL:

Routine IPL

Unit-initialization routine (after power
recovery)

IPL$_POWER (IPL 31)

Start-I/O routine IPL$_QUEUEAST (IPL 6)

Interrupt-servicing routine Device IPL (assumed to be IPL 22)

Cancel-I/O routine IPL$QUEUEAST (IPL 6)

The process must have the CMKRNL privilege. Each routine must:

H-12

Mapping I/O Space and Connecting to an Interrupt Vector

• Be position independent.

• Follow the rules for accessing I/O space as described in Section 6.2.

• Access only data within the buffer or nonpageable locations in system
space.

• Perform any necessary synchronization of access to data in the shared
buffer.

• Save any registers it uses (unless otherwise noted in the remaining sections
of this appendix).

• Exit properly.

• Not incur exceptions.

• Not perform lengthy processing.

• Not dispatch to code outside the buffer specified in the pi argument to the
$QIO system service call.

Later sections in this appendix discuss various programming language
constraints and other conventions for the process-specified routines included
in a connect-to-interrupt procedure. You can find additional help for
writing a start-I/O routine, interrupt-servicing routine, unit-initialization
routine, or cancel-I/O routine in Sections 9, 11, 13.1, and 13.2, respectively.
Additionally, you may find useful the several program examples of connecting
to an interrupt vector with which this appendix concludes.

H.4.6 Programming Language Constraints
Only VAX MACRO or VAX BLISS-32 should be used to code process-
specified routines in system space or any references to I/O space. There
is no assurance that the code generated by compilers for other languages will
satisfy all the constraints described in this section.

The following constraints apply to process-specified routines in system space
(that is, in the buffer specified in the pi argument to the $QIO call that
establishes the connection to the interrupt vector):

• The compiler must generate position-independent code for the routines.

• The generated code and data must be contiguous in virtual space.

• No calls can be made to any procedure outside the buffer. (This restriction
includes calls to routines in the VAX Common Run-Time Procedure
Library.)

For any references to I/O space, the generated code must follow the rules
for accessing I/O space discussed in Section 6.2. Device register access from
high-level languages usually requires that the variable equivalent to the
register be a 16-bit integer data type. You may need to check the assembly-
language code generated by compilers for languages other than VAX MACRO
or VAX BLISS-32 to determine whether it follows all necessary conventions.

H—13

Mapping I/O Space and Connecting to an Interrupt Vector

H.4.7 Process-Specified Unit-Initialization Routine
During recovery from a power failure, VAX/VMS calls the CONINTERR
unit-initialization routine. This routine marks the device as on line in the
UCB$L_STS field, stores the UCB address in the IDB$L—OWNER field, and
then transfers control to the process-specified unit-initialization routine. The
process-specified routine executes in system context at IPL$_POWER (IPL
31).

If the process specified a JSB interface, the process unit-initialization routine
gains control with the following register settings:

RO Address of UCB

R4 Address of CSR

R5 Address of IDB

R6 Address of DDB

R8 Address of CRB

If the process specified a CALL interface, the process unit-initialization routine
gains control with an argument list pointed to by AP:

O(AP) Argument count of 5

4(AP) Address of CSR

8(AP) Address of IDB

12(AP) Address of DDB

16(AP) Address of CRB

20(AP) Address of UCB

The process-specified unit-initialization routine may initialize device registers.
It must follow these conventions:

• Not lower IPL.

• Save and restore all registers it uses, other than RO through R3.

• Restore the stack to its original state before exiting.

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for
a CALL interface).

For additional information on writing a unit-initialization routine, see
Section 13.1.

H.4.8 Process-Specified Start-I/O Routine
The process-specified start-I/O routine executes in system context at
IPL$_QUEUEAST (IPL 6). It is entered from the CONINTERR start-I/O
routine.

If the process specified a JSB interface, the process start-I/O routine gains
control with the following register settings:

H-14

Mapping I/O Space and Connecting to an Interrupt Vector

R2 Address of counted argument list

R3 Address of IRP

R5 Address of UCB

If the process specified a CALL interface, the process start-I/O routine gains
control with an argument list pointed to by AP:

O(AP) Argument count of 4

4(AP) System-mapped address of process buffer

8(AP) Address of IRP

12(AP) System-mapped address of the device's CSR

16(AP) Address of UCB

The process-specified start-I/O routine may set up device registers. It must
follow these conventions:

• Maintain an IPL equal to or higher than IPL$_QUEUEAST (IPL 6), and
exit at IPL 6. If it raises IPL, the routine should first save the current IPL
on the stack for later use in restoring IPL.

• Save and restore all registers it uses, other than RO through R4.

• Restore the stack to its original state before exiting.

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for
a CALL interface).

For additional information on writing a start-I/O routine, see Section 9.

H.4.9 Process-Specified Interrupt-Servicing Routine
A process-specified interrupt-servicing routine is entered when an interrupt
from the device occurs. This routine executes in system context at device IPL.

If the process specified a JSB interface, the process interrupt-servicing routine
gains control with the following register settings:

R2 Address of counted argument list

R4 Address of IDB

R5 Address of UCB

If the process specified a CALL interface, the process interrupt-servicing
routine gains control with an argument list pointed to by AP:

O(AP) Argument count of 5

4(AP) System-mapped address of process buffer

8(AP) Address of AST parameter

12(AP) System-mapped address of the device's CSR

16(AP) Address of IDB

20(AP) Address of UCB

The process-specified interrupt-servicing routine usually performs one or
more of the following steps:

1 Copies the contents of device registers into the shared buffer or the AST
parameter.

H-15

Mapping I/O Space and Connecting to an Interrupt Vector

2 Writes to a device register to clear the interrupt condition, if such an
operation is required for the device.

3 Restarts the device, or returns an offset, a byte count, or actual data as an
AST parameter.

4 Returns an interrupt status to the VAX/VMS connect-to-interrupt driver
(CONINTERR).

The process-specified interrupt-servicing routine, like those supplied by
VAX/VMS, has the following characteristics:

• It is mapped in system space.

• It executes on the interrupt stack.

• It executes at the IPL of the device that requested the interrupt.

Because of these characteristics, the interrupt-servicing routine executes as
part of the VAX/VMS operating system rather than in the context of your
user process. As part of the operating system, the interrupt-servicing routine
has access to system data bases not available to user processes. However,
because an interrupt-servicing routine has these capabilities and executes at a
raised IPL, you must code it carefully to avoid disrupting the system.

The routine must follow these conventions:

• Maintain an IPL equal to or higher than device IPL. (If the IPL is raised,
the current IPL should first be saved on the stack for later use in restoring
IPL.)

• Save and restore all registers it uses, other than RO through R4.

• Restore the stack to its original state before exiting.

• Set or clear the low bit of RO, as a status value, before exiting. The status
values are as follows:

Bit 0 of RO Meaning

Clear Dismiss the interrupt. The process is not notified of the
interrupt.

Set Set the event flag if CIN$M_EFN bit is set in the p3
argument to the $QIO system service call, and queue the
AST if p4 specifies an AST service routine.

• Returns to the CONINTERR interrupt-servicing routine with a RET
instruction (for a CALL interface) or RSB instruction (for a JSB interface)

Depending on the interrupt status, the CONINTERR interrupt-servicing
routine queues a fork process to run at a lower IPL. Then the interrupt¬
servicing routine exits from the interrupt with an REI instruction. When the
CONINTERR fork process gains control, it queues an AST or posts an event
flag to the process (or both).

For additional information on writing an interrupt-servicing routine, see
Section 11.

H-16

Mapping I/O Space and Connecting to an Interrupt Vector

H.4.10 Process-Specified Cancel-I/O Routine
When the user process issues a cancel-I/O request for a device connected to
the process, the CONINTERR cancel-I/O routine first checks to determine
whether the process can indeed cancel I/O for this device. If it can, the
CONINTERR cancel-I/O routine transfers control to the process-specified
cancel-I/O routine. This routine executes in system context at IPL 8 (fork
IPL).

If the process specified a JSB interface, the process cancel-I/O routine gains
control with the following register settings:

R2 Negated value of channel index number

R3 Address of current IRP

R4 Address of PCB for process canceling the I/O

R5 Address of UCB

If the process specified a CALL interface, the process cancel-I/O routine gains
control with an argument list pointed to by AP:

O(AP) Argument list count of 4

4(AP) Negated value of channel index number

8(AP) Address of current IRP

12(AP) Address of PCB for process canceling the I/O

16(AP) Address of UCB

The process-specified cancel-I/O routine may clear device registers and set
the UCB$V_CANCEL bit in UCB$L_STS. It must follow these conventions:

• Maintain an IPL equal to or higher than IPL$_QUEUEAST (IPL 6), and
exit at IPL 6. If it raises IPL, the routine should first save the current IPL
on the stack for later use in restoring IPL.

• Save and restore all registers it uses, other than RO through R3.

• Check the UCB$V_BSY bit in UCB$L_STS to validate that the channel
index number represents that the process is still connected to the device.

• Place a completion status in RO and Rl. VAX/VMS places the values in
these registers in the I/O status block associated with the connect-to-

interrupt $QIO call.

• Restore the stack to its original state before exiting.

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for
a CALL interface).

For additional information on writing a cancel-I/O routine, see Section 13.2.

H-17

Mapping I/O Space and Connecting to an Interrupt Vector

H.5 Real-Time Applications Examples
To understand how the connect-to-interrupt facility is useful for programming
real-time devices, consider devices used in three types of real-time
applications:

1 Asynchronous event reporting without data—devices that generate an
interrupt as the result of an external event not initiated by a programmed
request.

2 Program-driven data collection—devices that generate an interrupt as
the result of a programmed request, and make the result of the request
available as data in a device register at the time of the interrupt.

3 Asynchronous event reporting with data—one device triggers another
device by generating an interrupt that causes a programmed request to be
sent to the other device, which in turn generates an interrupt.

Examples of these three types of real time applications and models of
programs to handle the devices follow.

Note: The configurations described in the examples in this section are not
officially supported; DIGITAL does not provide device driver, UETP,
or diagnostic support for certain devices mentioned. The examples
are provided merely as possible models for users who wish to design
real-time applications using unsupported devices or configurations.

The files in the SYS$EXAMPLES directory whose names begin with "LABIO"
illustrate an application using the connect to interrupt technique. Included is
a program example illustrating data definitions and coding used to connect to
a device interrupt vector.

H.5.1 Example 1: KW11-W Watchdog Timer
This type of device reports asynchronous external events: it generates an
interrupt as a result of an external event not initiated by a programmed
request. The only data of interest to be passed to the user process is the
occurrence of the external event. Such devices include contact and/or solid
state interrupts, and clocks or counters. The program may need to initiate
clock and counter devices by means of a programmed request, but any
subsequent interrupts are the result of external events only.

In this example, a dual-processor system uses two KW11-W watchdog timers
connected back-to-back to monitor CPU failures. Each processor must arm
its timer at regular intervals to prevent the timer from operating a relay that
outputs an alarm signal. The alarm output of each timer is connected to the
receive input of the other watchdog. If processor A fails and its watchdog
times out, the alarm output generates an interrupt on processor B by way of
the second watchdog timer.

The watchdog control program on each processor simply addresses the timer
at regular intervals. If the interval passes without the timer being addressed,
the timer operates an output relay that generates an interrupt to the second
CPU. For this example, assume that the interval is 5 seconds (Section H.5.3
contains an example that addresses the problem of a much smaller time
interval.)

The watchdog control program on processor A executes as follows:

1 Assigns a channel to the device.

H—18

Mapping I/O Space and Connecting to an Interrupt Vector

2 Calls the $CRMPSC system service to map to the I/O page in order to
address the device registers.

3 Issues a connect-to-interrupt $QIO call to connect the program to the
watchdog timer for processor B; specifies the addresses of an interrupt¬
servicing routine and an AST routine.

4 Writes a value to a device register to start the timer.

5 Calls the $SETIMR system service to request that an event flag be set after
a specified interval (for example, 5 seconds).

6 Calls the $WAITFR system service to wait for the event flag.

7 When the event flag is set, writes a value to a device register to reset the
timer.

8 Loops to Step 5.

The same control program runs on processor B except that it connects to the
watchdog timer for processor A. If either processor fails, the watchdog timer
generates an interrupt on the other processor.

The standby processor that receives the interrupt gains control in the
VAX/VMS connect-to-interrupt driver (CONINTERR), which calls a process-
supplied interrupt-servicing routine (defined in step 3 above) that handles the
interrupt as follows:

1 Sets the KW11-W switch relay register to clear the timer interrupt
condition.

2 Sets a status flag that will cause an AST to be delivered to the control
program that connected to the interrupt.

3 Returns to CONINTERR.

CONINTERR completes the interrupt handling as follows:

1 Schedules a fork process at a lower IPL. This fork process, when it gains
control, will queue an AST to the user program.

2 Executes an REI instruction to return from the interrupt.

The timer control program on the standby processor regains control in an AST
routine. This routine responds to the other processor's failure by switching
over and assuming control of the other processor's tasks (or whatever is
appropriate).

H.5.2 Example 2: ADI 1—K, AMI 1—K A/D Converter with Multiplexer
Connected to the UNIBUS

This type of device provides program-driven data collection: it generates an
interrupt as the result of a programmed request to the device, and makes the
result of the request available as data in a device register. Typical devices
include A/D converters and digital I/O registers.

The data collection operation is usually repetitive for such applications.
Therefore, the interrupt service routine must be capable of buffering data
from the device in order to ensure that no data is lost because of the high¬
speed data transfer rate. A typical buffer size for this sampling technique
might be 32 16-bit words.

H—19

Mapping I/O Space and Connecting to an Interrupt Vector

In this example, a user program controls an AD11-K/AM11-K combination
that accepts analog data from thermocouples. The AD11-K converts analog
data to digital data and returns the data in a device register. Every 10
seconds, the program samples 16 to 32 out of 64 channels at gain settings
that may vary based on the thermocouple type and previous samplings.

To collect data efficiently, the program buffers data in a process-specified
interrupt-servicing routine, and requests delivery of an AST to the user
process when all the requested channels have been sampled. To perform
variable sampling, the program passes parameters to the interrupt-servicing
routine.

The program establishes a protocol to communicate between the program and
the interrupt-servicing routine. The protocol defines a data area shared by the
main program, the interrupt-servicing routine, and the AST routine. The data
area contains parameters from the program and data from the AD11-K. The
data area is a 98-word array used as follows:

1 Elements 1-2 of the data area contain an index to the next buffer location
to be filled, and a count indicating the number of samplings still to be
taken. The main program initializes these values before starting the
device. The interrupt-servicing routine reads and modifies these values in
the process of copying data and determining when to stop sampling.

2 Elements 3-66 of the data area are reserved for interrupt service routine
parameters. Each pair of elements contains the number of a channel and a
gain value. The main program loads these parameters before starting the
device.

3 Elements 67-98 of the data area receive the data that the interrupt¬
servicing routine reads from the AD11-K data buffer register. The AST
routine later reads data from this part of the buffer.

The program sets up for the sampling as follows:

1 Assigns a channel to the device.

2 Calls the $CRMPSC system service to map to the I/O page in order to
address the device registers.

3 Initializes the data area by writing a 67 (the index to the next buffer
location to be filled) into element 1, and the number of samples to take
into element 2 of the data area; clears elements 3 through 98 of the data
area.

4 Writes channel numbers and gain values into the parameter section of the
data area.

5 Issues a connect-to-interrupt $QIO call to connect the process to the A/D
converter; specifies the addresses of the area to be double mapped, an
offset to the interrupt-servicing routine, and an AST routine.

6 Sets the start and interrupt-enable bits in the AD11-K status register to
start the A/D converter.

7 Calls the $HIBER system service to place the process in a wait state.

As soon as the AD11-K has converted the first sample, the device generates
an interrupt. The VAX/VMS CONINTERR routine calls the process-specified
interrupt-servicing routine. This process-specified routine executes as follows:

1 Computes the next location to be written in the buffer by reading the first
element in the data area.

H—20

Mapping I/O Space and Connecting to an Interrupt Vector

2 Reads 12 bits of data from the A/D buffer register into the next location
in the buffer.

3 Updates the buffer offset and count elements at the beginning of the data
area.

4 If all requested samples have been collected, writes the address of the data
area into the AST parameter, sets a status flag that will cause an AST to be
delivered to the control program, and returns to the CONINTERR routine.

5 Otherwise, sets the start bit in a device register to restart the device and
returns to the CONINTERR routine with a status flag requesting no AST
delivery or event flag setting.

Based on the interrupt status from the process-specified interrupt-servicing
routine, the CONINTERR routine completes the interrupt processing by
queuing a fork process that will queue an AST to the user process. When the
process gains control in the AST service routine, this routine processes the
samples in the following steps:

1 Clears the interrupt-enable bit in the device status register.

2 Examines the data collected in order to adjust channel selection and/or
gain values for the next sampling.

3 Copies the data to a file.

4 Reinitializes the data area.

5 Calls the $SCHDWK system service to wake the process after a short
interval (for example, 10 seconds).

6 Returns.

When the time interval elapses, the process regains control. The program
can then restart the sampling process by again setting the start and interrupt-
enable bits in the AD11-K status register.

H.5.3 Example 3: KW11—P Real-Time Clock and ADI 1—K Converter
Connected to the UNIBUS

This type of device reports asynchronous external events by collecting data:
one device triggers another device by generating an interrupt that causes a
programmed request to be sent to the other device, which in turn generates
an interrupt. A typical example is a clock-driven A/D operation for precise
time sampling as required in signal processing. This processing technique
is often used in laboratories. The amount of data collected in such a timed
sampling might typically be 200 to 1000 16-bit words.

In this example, the main program sets up the real-time clock to generate
interrupts periodically. At regular intervals, the clock interrupt triggers a
programmed request for an A/D conversion operation. The AD11-K collects
a sample, and interrupts the CPU with a "done" interrupt and 12 bits of data.
The AD11-K interrupt-servicing routine buffers the data and, if the buffer
is full, causes an AST to be delivered to the process. The process, gaining
control in an AST routine, copies the buffered data to another buffer or to
disk.

H—21

Mapping I/O Space and Connecting to an Interrupt Vector

Programming these device functions is slightly more complicated than the
previous example. The main program must specify a large buffer to be
used in ring fashion to guarantee that data is not lost between clock-driven
samplings. In addition, the program must connect to two device interrupts—
one for the clock and one for the A/D converter.

The protocol used by the main program, the interrupt-servicing routine, and
the AST routine is similar to the previous example. The data area is larger:
4K words of buffer area follow the parameter area. The A/D converter
interrupt-servicing routine and the AST routine treat the 4K-word buffer as
four buffer sections of IK words per section. The first element in each IK
buffer section is a flag indicating whether the section is in use. The AST
resets the flag value after copying the contents of the buffer. The interrupt¬
servicing routine uses a buffer section only if the section's flag value indicates
that the buffer has been emptied.

The main program starts the sampling with the following steps:

1 Assigns channels to the clock and to the A/D converter.

2 Calls the $CRMPSC system service to map to the I/O page in order to
address the device registers.

3 Initializes the data buffer by writing a 67 (the index to the next buffer
location to be filled) into element 1, and the number of samples to take
into element 2 of the data area; clears elements 3 through 4096 of the data
area; flags each page of the buffer as available.

4 Writes channel numbers and gain values into the parameter segments of
the data area.

5 Issues a connect-to-interrupt $QIO call to connect the process to the clock,
and specifies the address of an interrupt-servicing routine.

6 Issues a connect-to-interrupt $QIO call to connect the process to the A/D
converter; and specifies the addresses of the area to be double mapped, an
offset to the interrupt-servicing routine and an AST routine.

7 Sets the sampling interval by writing a 16-bit value into the KW11-P
count set buffer register.

8 Starts the clock by setting the run, mode, rate selection, and interrupt-
enable bits in the KW11-P control and status register. Setting the mode
bit causes repeated interrupts generated at a rate specified in the time
interval.

9 Calls the $HIBER system service to place the process in a wait state.

The clock interrupts when zero (underflow) occurs during a countdown
from the preset interval count. The VAX/VMS CONINTERR routine calls
the process-specified clock interrupt-servicing service routine. This process-
specified routine starts the A/D conversion as follows:

1 Starts the A/D converter by setting the start and interrupt-enable bits in
the AD11-K status register.

2 Sets interrupt status that prevents AST delivery or event flag setting as a
result of this interrupt.

3 Returns to CONINTERR.

H—22

Mapping I/O Space and Connecting to an Interrupt Vector

Starting the A/D converter results in an interrupt from the AD11-K, and
control passes, by way of CONINTERR, to the AD11-K interrupt-servicing
routine. This routine executes as follows:

1 If this sample is the first sample for a new buffer (indicated by a flag in
the data area), the routine moves to the next buffer section (branches to
error handling if the buffer is still full), and sets up the first two elements
of the data area to indicate the buffer section to be written next. Then it
sets the flag at the start of the new buffer section and sets a flag in the
data area to indicate that sampling is occurring.

2 The routine computes the next location to be written in the buffer by
reading the first location in the data area.

3 The routine reads 12 bits of data from the A/D buffer register into the
next location in the buffer.

4 The routine updates the buffer offset and count values in the data area.

5 If this sample fills the data sector, the routine writes the offset of the filled
sector from the start of the 4K-word buffer into the AST parameter, sets a
status flag that will cause an AST to be delivered to the control program,
and sets a flag indicating that a new data section is to be started.

6 The routine returns to CONINTERR.

The AST routine copies and fills the next buffer section with zeros to indicate
that the section is again available to the interrupt-servicing routine. When the
next clock interrupt occurs, the data can be written to the next buffer section,
even if the AST routine has not yet emptied the previous buffer section.

H—23

Glossary

ACF: See configuration-control block.

ACP: See Ancillary Control Process.

adapter-control block (ADP): A structure in the I/O database that describes an I/O
adapter and its resources.

ADP: See adapter-control block.

allocate a device: To reserve a particular device unit for exclusive use. A user process
can allocate a device only when that device is not allocated by any other process.

Ancillary Control Process (ACP): A process that acts as an interface between user
software and an I/O driver. An ACP provides functions supplemental to those
performed by the driver, such as file and directory management.

Three examples of ACPs are the Files-11 ACP (FI 1 ACP), the magnetic tape ACP
(MTAACP), and the networks ACP (NETACP).

assign a channel: To establish the necessary software linkage between a user process
and a device unit before a user process can communicate with that device. A user
process requests the system to assign a channel and the system returns a channel
number.

AST: See asynchronous system trap.

ASTLVL: See asynchronous system trap level.

asynchronous system trap (AST): A software-simulated interrupt that passes control
to a user-defined routine. ASTs enable a user process to be notified of the occurrence
of a specific event, asynchronously with respect to the execution of the user process.

If a user process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When the AST
routine exits, the system resumes execution of the process at the point where it was
interrupted.

asynchronous system trap level (ASTLVL): A value kept in an internal processor
register that is the highest access mode for which an AST is pending. The AST does
not occur until the current access mode drops in privilege (rises in numeric value) to
a value greater than or equal to ASTLVL. Thus, an AST for an access mode will not
be serviced while the processor is executing in a more privileged access mode.

backplane interconnect: An internal processor bus that allows I/O device controllers
to communicate with main memory and the central processor. These I/O controllers
may reside on the same bus as memory and the central processor (for instance, in
a VAX 8200 or Micro VAX I system), or they may be on a separate bus entirely (for
instance, in a VAX-11/780 or VAX 8600 system). In the latter case, an I/O adapter
enables and controls the communications between the I/O bus and the processor
and memory.

Glossary—1

Glossary

The backplane interconnect is called the synchronous backplane interconnect (SBI)
on the VAX-11/780 and VAX 8600 processor, the CPU-to-memory interconnect
(CMI) on the VAX-11/750 processor, and the VAXBI on the VAX 8800 and VAX
8200 processors. The Micro VAX II and Micro VAX I processors use the Q22 bus as a
backplane.

base register: A general register that contains the base address of (the address of the
first entry in) a list, table, array, or other data structure.

buffered data path: A UNIBUS adapter data path that transfers several bytes of data in
a single backplane-interconnect transfer.

buffered I/O: An I/O operation, such as terminal or mailbox I/O, in which an
intermediate buffer from the system's buffer pool is used instead of a buffer in
process space. See also direct I/O.

bugcheck: The operating system's diagnostic that detects and reports internal
inconsistencies. If the system can continue running, it declares a nonfatal bugcheck
and reports it in an error log entry. A serious error results in a fatal bugcheck. As a
result of a fatal bugcheck, the system shuts itself down in an orderly fashion.

CALL instructions: The processor instructions CALLG (Call Procedure with General
Argument List) and CALLS (Call Procedure with Stack Argument List).

CCB: See channel-control block.

channel: A logical path connecting a user process to a physical device unit. A user
process requests the operating system to assign a channel to a device so the process
can communicate with that device. See also controller data channel.

channel-control block (CCB): A structure in the I/O database maintained by the
Assign-I/O-Channel system service to describe the device unit to which a channel is
assigned.

channel-request block (CRB): A structure in the I/O database that describes the
activity on a particular controller. The channel-request block for a controller contains
pointers to the queue of drivers waiting to access a device through the controller.

configuration-control block: A structure in the I/O database used by the
autoconfiguration facility of the System Generation Utility to describe the device
it is adding to the system. The information stored in the configuration-control block
might be useful to a device driver's unit-delivery routine.

configuration register: A control and status register for an I/O adapter (for example, a
UNIBUS adapter). It resides in the adapter's I/O space.

connect-to-interrupt: A function by which a process connects to a device interrupt
vector. To perform a connect-to-interrupt, the process must map to the physical
pages in the I/O space which contain the vector.

console: The manual control unit integrated into the central processor. The console
includes a serial-line interface connected to a hard-copy terminal. This enables the
operator to start and stop the system, monitor system operation, and run diagnostic
programs.

console terminal: The hard-copy terminal connected to the central processor's console.

Glossary—2

Glossary

context: The environment of an activity. See also process context, hardware context, and
software context.

controller data channel: A logical path to which the driver of a device that shares a
controller must gain access before it can use the controller to activate a device.

control and status register (CSR): A control and status register for a device or
controller. It resides in the processor's I/O space.

CRB: See channel-request block.

CSR: See control and status register.

database: A collection of related data structures; all the occurrences of data described
by a database management system.

data structure: Any table, list, array, queue, or tree whose format and access
conventions are well-defined for reference by one or more images.

DDB: See device-data block.

DDT: See driver-dispatch table.

device-data block (DDB): A structure in the I/O database that identifies the generic
device/controller name and driver name for a set of devices that share the same
controller.

device driver: The set of instructions and tables that handles physical I/O operations to
a device.

device interrupt: An interrupt received on interrupt priority levels 20 through 23.
Device interrupts can be requested only by devices, controllers, and memories.

device register: A location in controller logic used to request device functions (such as
I/O transfers) and/or report status.

device unit: One device and its controlling logic (for example, a disk drive or terminal).
Some controllers can have several device units connected to a single controller (for
example, mass-storage controllers).

diagnostic program: A program that tests hardware, firmware, peripherals logic, or
memory, and that reports any faults it detects.

direct data-path: A UNIBUS adapter data path that transfers several bytes of data in a
single backplane-interconnect transfer.

direct I/O: An I/O operation in which VAX/VMS locks the pages containing the
associated buffer in physical memory for the duration of the I/O operation. The I/O
transfer takes place directly from the process' buffer. Contrast with system buffered
I/O.

direct-memory-access (DMA) transfer: The type of I/O transfer by which a device
controller accesses memory directly and, as a result, can transfer a large amount
of data without requesting a processor interrupt after each of the smaller amounts.
Contrast with programmed-I/O (PIO) transfer.

DPT: See driver-prologue table.

Glossary—3

Glossary

drive: The electromechanical unit of a mass storage device on which a recording
medium (disk cartridge, disk pack, or magnetic tape reel) is mounted.

driver-dispatch table (DDT): A table in a driver that lists the addresses of the entry
points of standard driver routines and the sizes of diagnostic and error-logging
buffers for the device.

driver-prologue table (DPT): A table in a driver that describes the driver and the type
of device it drives to the VAX/VMS procedure that loads drivers into the system.

ECC: Error-Correction Code.

error logger: A system process that empties the error-log buffers and writes the error
messages into the error file. Errors logged by the system include memory errors,
device errors and timeouts, and interrupts with invalid vector addresses.

exception: An event detected by the hardware or software (other than an interrupt or
jump, branch, case, or call instruction) that changes the normal flow of instruction
execution.

An exception is always caused by the execution of an instruction or set of
instructions (whereas an interrupt is caused by an activity in the system that is
independent of the current instruction).

There are three types of hardware exceptions: traps, faults, and abortions. Examples
are: attempts to execute a privileged or reserved instruction, trace traps, page faults,
compatibility-mode faults, execution of breakpoint instructions, and arithmetic traps.

executive: The software that provides the basic control and monitoring functions of the
operating system.

FDT: See function-decision table.

FDT routines: Driver routines called by the $QIO system service to perform device¬
dependent preprocessing of an I/O request.

fork block: That portion of a unit-control block that contains a driver's context while
the driver is waiting for a resource. A driver awaiting the processor resource has its
fork block linked into the fork queue.

fork dispatcher: A VAX/VMS interrupt-servicing routine that is activated by a software
interrupt at a fork-interrupt priority level. Once activated, it dispatches driver fork
processes from a fork queue until no processes remain in the queue for that IPL.

fork process: A process with a minimal context that executes instructions under a set
of constraints: it executes at raised interrupt priority levels; it uses RO through R5
only (other registers must be saved and restored); it executes in the system's virtual
address space; it can refer to and modify static storage that is never modified by
procedures that execute at a higher IPL. VAX/VMS uses software interrupts and fork
processes to synchronize executive operations.

fork queue: A queue of fork blocks that are awaiting activation at a particular IPL by
the VAX/VMS fork dispatcher.

function code: See 1/O-function code.

function-decision table (FDT): A table in the driver that lists all valid function codes
for the device, and lists the addresses of preprocessing routines associated with each
valid function of the device.

Glossary—4

Glossary

function modifier: See 1/O-function modifier.

generic device name: A device name that identifies the type of device but not a
particular unit; a device name in which the specific controller and/or unit number is
omitted. When discussing device drivers, the generic device name contains neither
the controller designation nor the unit number (for example, DB).

hardware context: The values contained in the following registers while a process is
executing:

• The PC

• The PSL

• The 14 general registers (RO through R13)

• The four processor registers (POBR, POLR, P1BR and P1LR) that describe the
process' virtual address space

• The SP for the access mode in which the processor is executing

• The contents to be loaded in the SP for every access mode other than the current
access mode

When a process is executing, its hardware context is continually being updated by
the processor. When a process is not executing, its hardware context is stored in its
hardware PCB.

hardware process-control block (hardware PCB): A data structure known to the
processor that contains the hardware context when a process is not executing. A
process' hardware PCB resides in its process header (PHD).

IDB: See interrupt-dispatch block.

interrupt: An event other than an exception or a branch, jump, case, or call instruction
that changes the normal flow of instruction execution. Interrupts are generally
external to the process executing when the interrupt occurs. See also device interrupt,
software interrupt, and urgent interrupt.

interrupt-dispatch block (IDB): A structure in the I/O database that describes the
characteristics of a particular controller and points to devices attached to that
controller.

interrupt priority level (IPL): The level at which a software or hardware interrupt
is generated. There are 32 interrupt priority levels: IPL 0 is lowest, 31 is highest.
The levels arbitrate contention for processor service. For example, a device cannot
interrupt the processor if the processor is currently executing at an interrupt priority
level greater than the interrupt priority level of the device's interrupt-servicing
routine.

interrupt-servicing routine (ISR): A routine executed when a device interrupt occurs.

interrupt stack (IS): The system-wide stack used when executing instructions in
interrupt context. In the VAX/VMS operating system, all hardware interrupts (and
all software interrupts above IPL 3) are serviced on the system-wide interrupt stack
and not one of the per-process stacks.

interrupt-stack pointer (ISP): The pointer to the top of the interrupt stack. Unlike the
stack pointers for process context stacks, which are stored in the hardware PCB, the
interrupt-stack pointer is stored in an internal processor register.

Glossary—5

Glossary

interrupt vector: See vector.

I/O database: A collection of data structures that describe I/O requests, controllers,
device units, volumes, and device drivers in a VAX/VMS system. Examples are the
driver-dispatch table, driver-prologue table, device-data table, unit-control block,
channel-request block, I/O-request packet, and interrupt-dispatch block.

I/O driver: See driver.

I/O function: An I/O operation interpreted by the operating system and typically
resulting in one or more physical I/O operations.

l/O-function code: A 6-bit value specified in a $QIO system service that describes the
particular I/O operation to be performed (such as, read, write, rewind).

l/O-function modifier: A 10-bit value specified in a $QIO system service that modifies
an I/O-function code (for example: read terminal input, no echo).

I/O lockdown: The state of a page such that it cannot be paged or swapped out of
memory.

I/O-request packet (IRP): A structure in the I/O database that describes an individual
I/O request. The $QIO system service creates an I/O-request packet for each
I/O request. VAX/VMS and the driver of the target device use information in the
I/O-request packet to process the request.

I/O rundown: An operating system function in which the system cleans up any I/O in
progress when an image exits.

I/O space: The regions of physical address space that contain the configuration
registers and device control and status register and data registers. These regions
are physically discontiguous.

l/O-status block (IOSB): A data structure associated with the $QIO system service.
This service optionally returns a status code, number of bytes transferred, and
device/function-dependent information in an I/O-status block. The information is
not returned from the system service call, but filled in by VAX/VMS when the I/O
request completes.

I PL: See interrupt priority level.

IRP: See I/O-request packet.

ISP: See interrupt-stack pointer.

ISR: See interrupt-servicing routine.

limit: The size or number of items requiring system resources (such as mailboxes, locked
pages, I/O requests, or open files) that a job is allowed to have at any one time
during execution, as specified by the system manager in the user-authorization file.
See quota.

locking a page in memory: Making a page in an image ineligible for either paging
or swapping. A page stays locked in physical memory until VAX/VMS specifically
unlocks it.

Glossary—6

Glossary

logical-I/O function: A set of I/O operations (for example, read-logical-block and
write-logical-block) that allow restricted direct access to device-level I/O operations
using logical block numbers.

mailbox: A software data structure that is treated as a record-oriented device for
interprocess communication (for example, the error logger and OPCOM read from
system-wide mailboxes). Communication using a mailbox is similar to other forms
of device-independent I/O. Senders write to a mailbox; the receiver reads from that
mailbox.

machine check: An exception that is reported when the processor or an external
adapter detects an internal error. If the machine check is recoverable, the machine
check handler the condition in an error log entry. If an unrecoverable machine
check occurs while the processor is in supervisor or user mode, the machine check
handler reports the exception to that mode. However, if an unrecoverable machine
check occurs in kernel or executive mode, a fatal bugcheck results. See also exception
and bugcheck.

mapping register: See scatter-gather map.

MASSBUS adapter (MBA): An interface device between the backplane interconnect
and the MASSBUS.

memory interconnect: The internal processor bus for the VAX-11/750.

nexus: A physical connection to the synchronous backplane interconnect (SBI). For
example, when connected to the SBI, the central processor, memory subsystem, and
I/O controllers are known as nexuses. See also Synchronous Backplane Interconnect.

node: A VAXBI interface—such as a central processor, controller, or memory
subsystem—that occupies one of 16 logical locations on a VAXBI bus. See also
VAXBI.

offset: A displacement from the beginning of a data structure to the beginning of a field
within that data structure. Offsets for items within a data structure usually have an
associated symbol. The name of the symbol is used to refer to the field; its value is
the offset.

page-frame number (PFN): The high-order 21 bits of the physical address of a page
in physical memory.

page-table entry (PTE): The data structure that identifies the physical location and
status of a page of virtual address space. When a virtual page is in memory, the PTE
contains the page-frame number needed to map the virtual page to a physical page.
When it is not in memory, the page-table entry contains the information needed to
locate the page on secondary storage (disk).

PCB: See Process-Control Block.

PFN: See page-frame number.

physical address: The address used by hardware to identify a location in physical
memory or on directly-addressable secondary storage devices such as disks. A
physical-memory address consists of a page-frame number and the number of a byte
within the page. A physical-disk-block address consists of a cylinder or track and a
sector number.

Glossary—7

physical address space: The set of all possible physical addresses that can be used to
refer to locations in memory (memory space) or device registers (I/O space).

physical-l/O functions: A set of I/O functions that allows access to all device-level
I/O operations except maintenance-mode operations.

PID: See process identification.

process: The basic entity, scheduled by the system software, that provides the context
in which an image executes. A process consists of an address space, hardware
context, and software context.

process context: The hardware and software contexts of a process.

process-control block (PCB): A data structure used to contain process context. The
hardware PCB contains the hardware context. The software PCB contains the
software context, which includes a pointer to the hardware PCB.

process identification (PID): A 32-bit value that uniquely identifies a process. Each
process has a PID and a name.

process I/O channel: See channel.

process page tables: The page tables used to describe process virtual memory.

process priority: The priority assigned to a process for scheduling purposes. The
operating system recognizes 32 levels of process priority, where 0 is low and 31
is high. Levels 16 through 31 are used for real-time processes. The system does
not modify the priority of a real-time process (although the system manager or the
process itself might). Levels 0 through 15 are used for normal processes. The system
can temporarily increase the priority of a normal process based on the activity of the
process.

Contrast with interrupt priority level.

programmed-l/O (PIO) transfer: The type of I/O transfer, largely conducted by
the driver program, that requires a processor interrupt after each byte or word
is transferred. Drivers for relatively slow devices, such as printers, card readers,
terminals, and some disk and tape drives use PIO data transfers. Contrast with
direct-memory-access (DMA) transfer.

program section (psect): A portion of a program with a given protection and set of
storage-management attributes. Program sections that have the same attributes are
gathered together by the linker to form an image section.

PTE: See page-table entry.

Q22 bus: The hardware interconnect by which Micro VAX II and Micro VAX I peripheral
devices communicate with main memory and the processor.

QIO: Queue I/O Request system service. The VAX/VMS system service that services
$QIO and $QIOW requests. The Queue I/O Request system service prepares an I/O
request for processing by the driver and performs device-independent preprocessing
of the request. This system service also calls driver FDT routines. See also FDT
routines.

quota: The total amount of a system resource, such as CPU time, that a job is allowed
to use in an accounting period, as specified by the system manager in the user-
authorization file. See limit.

Glossary

return status code: See status code.

SBI: See Synchronous Backplane Interconnect.

scatter-gather map: A technique by which a set of physically discontiguous pages are
made to seem contiguous to an I/O controller performing a direct-memory-access
transfer. It is I/O adapter hardware that generally provides this means of mapping
physical pages to I/O adapter address space.

small process: A system process that has no control region in its virtual address space
and has an abbreviated context. Examples are the swapper and the null process. A
small process is scheduled in the same manner as user processes, but must remain
resident until it completes execution; it cannot be swapped.

software context: The context maintained by VAX/VMS to describe a process. See
also software process-control block (PCB).

software process-control block (software PCB): The data structure used to contain
a process' software context. The operating system defines a software PCB for every
process when the process is created.

The software PCB includes the following kinds of information about the process:
current state; storage address, if the process is swapped out of memory; unique
identification of the process; and address of the process header (which contains the
hardware PCB). The software PCB resides in system region of virtual address space.
It is not swapped with a process.

start-I/O routine: The routine in a device driver that is responsible for obtaining
needed resources and for activating the device unit. An example of a needed
resource is the controller's data channel.

status code: A longword value that indicates the success or failure of a specific
function. For example, system services always return a status code in RO upon
completion.

SVA: See system virtual address.

Synchronous Backplane Interconnect (SBI): The part of the VAX-11/780 or VAX
8600 hardware that interconnects the processor, memory controllers, MASSBUS
adapters, the UNIBUS adapter.

System Page Table (SPT): The data structure that maps the system virtual addresses,
including the addresses used to refer to the process page tables. The SPT contains
one PTE for each page of system virtual memory. The physical base address of the
SPT is contained in a processor register called SBR.

system virtual address (SVA): A virtual address identifying a location mapped to an
address in system space.

timeout: The expiration of the time limit in which a device is to complete an I/O
transfer. The driver's wait-for-interrupt request specifies the timeout limit.

timer: A system process that maintains the time of day and the date. It is also alert for
device timeouts and performs time-dependent scheduling upon request. The timer's
interrupt-servicing routine creates the timer process.

UCB: See unit-control block.

Glossary—9

Glossary

UNIBUS adapter: An interface device between the backplane interconnect and the
UNIBUS. On the VAX-11/780, this device is called the UBA. On the VAX-11/750,
it is called the UBI. On a VAX 8200 or VAX 8800, it is called a BUA.

unit-control block (UCB): A structure in the I/O database that describes the
characteristics of a device unit and current activity on it. The unit-control block
also holds the fork block for its unit's device driver; the fork block is part of the
UCB and is a critical part of a driver fork process. The UCB also provides a static
storage area for the driver.

unit-initialization routine: The routine that readies controllers and device units for
operation. Controllers and device units require initialization after a power failure
and during execution of the driver-loading procedure.

urgent interrupt: An interrupt received on interrupt priority levels 24 through 31.
These can be generated only by the processor for the interval clock, serious errors,
and power failures.

VAXBI: The part of the VAX 8200 hardware that connects I/O adapters with memory
controllers and the processor. In a VAX 8800 system, the part of the hardware that
connects I/O adapters with the bus that interfaces with the processor and memory.

vector: A one-dimensional array.

An interrupt or exception vector is a storage location known to the system that
contains the starting address of a routine to be executed when a given interrupt or
exception occurs. The system defines separate vectors for each interrupting adapter
and for classes of exceptions. Each system vector is a longword.

For the purpose of handling exceptions, users can declare up to two software-
exception vectors (primary and secondary) for each of the four processor-access
modes. Each vector contains the address of a condition handler, and is a longword.

virtual-l/O functions: A set of I/O functions that must be interpreted by an ancillary
control process.

wait-for-interrupt request: A request made by a driver's start-I/O routine after it
activates a device. The request causes the driver's fork process to be suspended until
the device requests an interrupt or the device times out.

XDELTA: A software tool for debugging operating systems and drivers.

Glossary—10

Index

A
Aborting an I/O request

See I/O request
ACB (AST control block) • 5-17, C-2, C-4

contents* C-6
ACB$ V_QUOT A *8-11,0-10
Accessibility of memory

See Buffer
Access rights block

See ARB
Access rights list

See ACL
Access violation

See SS$_ACCVIO
ACF (configuration control block)* A-1 to A-3
ACL (access rights list)* A-26
ACP (ancillary control process) • A-7, A-20, A-21,

A-28
class* A-12
default • A-12

ACP_MULT parameter* A-12
Action routine

See FDT routine
Action routine bit mask *5-10
Adapter

See I/O adapter
Adapter control block

See ADP
Address

translating virtual to physical* 10-10
ADP (adapter control block)* 1-6, 10-1, A-3 to

A-6
address *5-5, 10-3, 10-5, A-11, A-19
data path allocation information* 10-3
data path wait queue* 10-3
for MBA*G-4, G-6 to G-7
mapping register allocation information* 10-5
mapping register wait queue* 10-5
role in nondirect vector interrupt dispatching*

3-9
vector jump table • 3-9

ADP$I_DPQFL • C-68
ADP$I_MRQBL • C-74
ADP$I_MRQFL • C-69
ADP$W_DPBITMAP • C-68, C-73

ADP$W_MRFREGARY • C-53, C-69, C-74, C-75
ADP$W_MRNREGARY • C-53, C-69, C-74, C-75
Allocation class* A-13
Alternate start I/O routine *8-15 to 8-16, C-16

address *7-7, A-14, D-1
context • D-1
functions* D-1
input • D-1
IPL requirements*D-1
output • D-1
register usage*D-1

Ancillary control process

See ACP
ARB (access rights block)* A-23
AST (asynchronous system trap) *8-8, C-6 to C-7

See also Attention AST
delivering *3-3, 8-12, C-2
for aborted I/O request *8-12
out of band • 13-5
process quota for *8-11
queuing • C-59
special kernel mode*3-7, 5-17, 8-6, 8-6, A-7,

C-59
user mode*3-7, 5-17
user specified *8-11, A-20

AST control block
See ACB

AST service routine
for connect to interrupt facility • H-8, H-10, H-12

Asynchronous system trap

See AST
AT$_MBA • A-3, A-16
AT$_UBA • A-3, A-16
Attention AST

See also AST
blocking • A-37
delivering* C-2
disabling*C-6 to C-7
enabling*C-6 to C-7
flushing • C-4

Attention condition • G-8 to G-9
See also MBA, MBA$L_AS, MASSBUS

Attention summary register

See MBA$L_AS
Autoconfiguration

See also System Generation Utility
driver control of* 14-15 to 14-16

Index—1

Index

B
Backplane interconnect* 1-11, 1-14, 4-1

See also VAXBI, CMI, SBI, Q22 bus
UNIBUS interlock sequence to *4-9

BIOLM (buffered I/O limit) quota
adjusting *5-17
charging • 5-7, 5-9
checking*5-7, C-17, C-18
for mailbox* A-28

Bit mask
See Device activation bit mask. Action routine

bit mask. Buffered function bit mask. Legal
function bit mask

BI-to-UNIBUS adapter

See UNIBUS adapter
Blocking process deletion *3-3
BOOT command* 15-1

/NOSTART qualifier* 15-1
Booting

with XDELTA* 15-1 to 15-4
BPT instruction* 15-5
Breakpoint

clearing* 15-15
complex* 15-16
displaying XDELTA breakpoint list* 15-15
proceeding from* 15-3, 15-16
setting in driver code* 15-4 to 15-5, 15-8,

15-15
BR level *3-4, A-5
BUA (BI-to-UNIBUS adapter) • 1-12

See also UNIBUS adapter
Buffer

See also Diagnostic buffer. Error logging buffer.
Error message buffer, Nonpaged pool

allocating* 1-17, 2-3, 8-5, C-11, C-12, C-13,
C-14

allocating physically contiguous* 10-10, C-15
checking accessibility of *8-4

for modify *C-29, C-31, C-32
for read (write access) • B-17, B-19, C-36,

C-37, C-38, C-39, C-40
for write (read access) • B-16, B-18, C-46,

C-47, C-48, C-49, C-50
data area of • 8-5
deallocating*2-6, 3-4, 5-17, 8-6, C-3, C-19
format • 8-5
header*8-5, 8-6
inability to gain access to *8-4
locking* 1-17, 7-10, A-24, C-29, C-31, C-32,

C-36, C-40, C-46, C-49, C-50

Buffer (cont'd.)

moving data from a system *C-64, C-65
moving data to a system *C-62, C-63
size *8-5, 10-10

Buffer address register* 10-7
Buffered data path *4-6, 4-10 to 4-13, A-4

See also Data path
flow of read operation using *4-11 to 4-12
flow of write operation using *4-11
functions *4-10
purging *4-12, 10-4, 10-8 to 10-9, C-66
releasing* 10-4, 10-9, 12-2, B-25, C-68
requesting • 4-10, 10-2 to 10-4, B-29, C-73
requesting permanent* 10-3 to 10-4, 13-1,

A-11
rules for using *4-10, 4-13
speed *4-13
unavailability* 10-3

Buffered function bit mask *5-9, 7-10
Buffered 1/0*1-17, 2-3, 5-9, 13-4, A-21, A-22,

A-33
See also Buffer
chained* A-21
complex* A-21
FDT routines for *8-4 to 8-6
functions* 7-7
postprocessing *8-6, C-59
reasons for using* 1-17, 7-10

Buffered read function bit
See IRP$V_FUNC

Bugcheck* 15-19
examining information regarding* 15-4
INCONST ATE • C-68
memory allocation*C-3
UNSUPRTCPU • B-3

BUGREBOOT parameter* 15-1, 15-19
Bus request level

See BR level
Busy bit

See UCB$V_BSY
Byte count

See UCBW_BCNT, IRPL_BCNT
Byte count register

See MBA$L_BCR
Byte offset

See UCBW_B0FF, IRPW_BOFF, Data
transfer. Mapping registers

Byte offset register *4-12

Index—2

Index

C
Cache control block *A-37
C AN$C_C ANCEL • 13-5
CAN$C_DASSGN • 13-5
Cancel I/O bit

See UCB$V_CANCEL
Cancel I/O routine* 1-4, 11-8, 12-6, 13-4 to 13-6,

A-14, C-56
address*7-6, 13-1, D-2
context* 13-5, D-3
device dependent* 13-6
device independent* 13-6
flushing ASTs in*C-4
for connect to interrupt facility • H-7, H-10, H-17
functions* D-2
input* D-2
IPL requirements*D-3
of CONINTERR.EXE • H-11, H-17
output • D-2
register usage*D-2

SCANDEF macro* 13-5
Card reader driver* 11-6 to 11-8
Carriage control argument

to I/O request*8-7, 8-10
CASE macro*B-2
CCB (channel control block)* 1-6, 5-3, A-6 to A-7,

C-81
CCB$L _UCB • 5-3
Channel* 1-6
Channel control block

See CCB
Channel index number *5-3, 13-6, C-81
Channel request block

See CRB
CHMK (Change Mode to Kernel) instruction • 5-1
$CINDEF macro*H-10
Clock

See Hardware clock. Software timer
Cloned UCB routine* A-15

address* 7-7
CMI (CPU-to-memory interconnect)* 1-11
Coding conventions

See Device driver
COMSDELATTN AST • C-2
COMSDRVDEALMEM • C-3
COMSFLUSHATTNS • C-4, C-6
COMSPOST *8-15, C-5
COM$SETATTNAST *C-6 to C-7

Command address register

See MBA$L_CAR
Configuration control block

See ACF
Configuration register

See CSR, MBA$L_CSR
CONINTERR.EXE *H-2, H-8 to H-9

cancel I/O routine of*H-11
connecting to*H-7

CONNECT command
See System Generation Utility

Connect to interrupt driver

See CONINTERR.EXE
Connect to interrupt facility

cancel I/O routine*H-17
condition values returned • H-10
CONNECT command*H-7
example of A/D converter using *H-18, H-19 to

H-21
example of time sampling using *H-18, H-21 to

H-23
example of watchdog timer using *H-18, H-18

to H-19
interrupt servicing routine *H-15 to H-16
mapping I/O space *H-2
privileges required *H-11
programming language requirements • H-13
start I/O routine*H-14 to H-15
SYSGEN requirements*H-7
timings* H-7
unit initialization routine*H-14
user-specified routines • H-8, H-12 to H-17

Control and status register

See CSR
Control block

See Data structure
Controller

See Device controller
Controller initialization routine* 1-3, 13-1 to 13-4,

14-4
address *5-4, 7-4, 13-1, A-10, A-17, D-3
allocating controller data channel in *9-4
context* 13-3 to 13-4, D-4
determining the existence of* 13-3
functions* 13-1, D-3
input* 13-3, D-3
IPL requirements*D-4
output* D-3
register usage*D-4

Control mask
See Device activation bit mask

Index—3

Index

Control register

See CSR, MBA$L_CR
CPUDISP macro *6-4 to 6-5, B-3
CRB (channel request block)* 1-6, 5-4 to 5-5, A-7

to A-11
address* 14-9
creation • 14-4
data path fields* 10-3 to 10-4
for MBA*G-4, G-6 to G-7, G-11, G-13
initializing* 7-4
interrupt dispatching fields *3-9, 11-3
mapping register fields* 10-5
periodic wakeup of*A-9
primary • A-28, G-11
reinitializing • 7-4
secondary • A-9, G-1 1

CRB$B_M ASK • 5-4
CRB$L _AUXSTRUC • 10-10
CRB$I_INTD • 5-4, 11-3, A-9 to A-11
CRB$L _INTD+VEC$B_D AT AP ATH • 10-3, 10-9,

C-68
CRB$L_INTD+VEC$B_NUMREG• 10-5, C-54,

C-69, C-75
CRB$I_INTD+VEC$L_IDB • 5-4, G-11
CRB$I_INTD+VEC$L_INITIAL* 5-4, 7-4, 13-3,

14-4
CRB$I_INTD+VEC$I_UNITINIT *5-4, 7-4, 13-3,

14-4
CRB$I_INTD+VEC$W_MAPREG • 9-5, 10-5,

C-54, C-69, C-75
CRB$I_LINK* G-1 1
CRB$L_WQFL• 5-4, C-67, C-76
CSR (control and status register) • 9-5, 10-7

See also Device registers
address *3-12, 5-5, 9-3, 10-7, 14-5, 14-8,

A-18
locating device registers from* 10-7
of LP11 printer *2-4 to 2-5
setting *9-6

CTL$GI_CCB ASE • C-81

D
Data channel

See Device controller data channel. Secondary
controller data channel

Data path* 1-16, 4-6 to 4-13, 10-2 to 10-4, A-10
to A-1 1

See also Buffered data path. Direct data path
mixed use of direct and buffered* 10-4

Data path (cont'd.)

purging *4-12, 10-4, 10-8 to 10-9, 12-2, B-23,
C-66

speed *4-9, 4-10, 4-13
Data path allocation bit map* A-5
Data path register*4-6, 10-1

purge error*C-66
Data path wait queue* 10-9, A-4, C-68, C-73
Data storage*6-2

device specific*5-4, 7-2, 13-1, 13-3, A-22,
A-27

Data structure
See also I/O database
defining* B-7
defining bit field within *B-39, B-40
defining field within *B-5, B-6
initializing • 7-1, 7-3 to 7-5

Data transfer
See also DMA transfer, PIO transfer
byte offset *4-12, 10-4, C-61
in reverse direction • G-3, G-13
longword-aligned 32-bit random-access *4-10
mixing read and write functions in *4-9
odd byte-count *9-4
overlapping with seek operation • 9-2
size *8-7, 8-10, 9-4
speed *4-9, 4-10, 4-13
starting address*9-5, 10-7, 10-10
to randomly ordered addresses *4-9
zero length *C-29

$DCDEF macro *A-30

DDB (device data block)* 1-5, 5-5, A-11 to A-13
address* 14-9, A-28
creation* 14-4
initializing • 7-4
reinitializing • 7-4

DDB$L_DDT • 7-4
DDB$L_LINK* 13-3
DDB$L_UCB* 13-3
DDB$T_DRVN AME • 5-5
DDB$T_N AME • 5-5
DDT (driver dispatch table)* 1-2, 13-1, 13-6, A-13

to A-15
address*7-4, A-12, A-17, A-34
addresses specified in* 13-2
creating *7-6 to 7-7, 13-2, B-4
label *7-6

DDTSL _ALTST ART *8-15
DDT$L_UNITINIT • 13-3
DDT$W_ERRORBUF • 13-7
DDTAB macro *7-6 to 7-7, 14-1, B-4

example* 7-7

Index—4

Index

DECnet

local connection number *A-28
$DEFEND macro *B-6
$DEFINI macro *B-7
$DEF macro*B-5
DELTA

See Delta/XDelta Utility
Delta/XDelta Utility (DELTA/XDELTA) • 15-1 to

15-20
base register* 15-12

predefined* 15-11
X4 • 15-11
X5* 15-11
XE* 15-11
XF* 15-11

changing contents of location using* 15-13
closing location using* 15-14
commands

executing string* 15-17
indirect* 15-14
predefined in XE and XF* 15-11
summary* 15-9 to 15-10

depositing command string in system patch
space for use by • 15-17

displaying contents of address range using*
15-14

displaying contents of location using* 15-13

expressions* 15-10
formats

address display* 15-13
instruction display* 15-13

guidelines* 15-18 to 15-20
prefixes

G* 15-11
H* 15-11

setting PC with* 15-16
stepping through code with* 15-17
symbols

period (.) • 15-11
Q* 15-11, 15-14

values* 15-10
DEV$V_ELG • 13-7
$DEVDEF macro* A-29
Device

See also Device unit
activating • 2-4 to 2-5, 3-17, 9-5 to 9-6, 10-7
allocation class* A-13
busy • 8-14
byte-addressable* 10-6
class* A-16, A-30
CSR address* 14-8
deaccessing • A-7
DIGIT AL-supplied* 14-10, 14-11

Device (cont'd.)

file structured *2-3, 5-8, A-12
name* 1-5, 7-6, A-12
position on Q22 bus *3-4
position on UNIBUS *3-4
status* 11-5
type* A-16, A-30
vector address* 14-8
word-aligned* 10-4

Device activation bit mask *9-5
Device characteristics • 8-8, 8-9, A-16, A-29 to

A-30, C-41, C-42, C-43
Device controller* 1-5, 1-6, A-7

See also MBA, Controller initialization routine
dedicated* 5-5
initializing* 13-1
intelligent* 1-16
multiunit *3-17 to 3-18, 5-4, 5-14, 9-2, 9-6,

11-8, A-18
number of units created for* 7-3, 14-6
number of units supported by • 7-3, A-17, A-19
reinitializing • 7-2

single unit*3-17, 12-2, 13-1, 14-2, A-18
Device controller data channel *5-4 to 5-5, G-12,

G-13
See also Secondary controller data channel
obtaining ownership • 3-17 to 3-18, 5-4, 9-2 to

9-4, A-18, B-31, C-76, C-77
permanently allocating* 13-1
releasing *3-18, 9-6, 12-2, B-24, C-67, C-84
requesting • 9-2
unavailability • 9-3

Device controller data channel wait queue *9-3,
A-8, C-67, C-76, C-77

Device data block* 13-3
See DDB

Device driver* 1-1
assembling with SYS$LIBRARY:LIB.MLB • 14-1
asynchronous nature* 1-1, 1-8, 3-2, 6-2
calculating base address* 15-5
coding conventions • 6-2, 14-1, 15-8, 15-18 to

15-19
components* 1-2 to 1-4, 6-1
context* 1-7 to 1-8
debugging • 15-1 to 15-20
displaying address of* 14-9
end label • 7-2
entry points* 1-2, 7-6 to 7-7, A-13, D-1 to

D-14
example *E-1 to E-28, F-1 to F-22
flow* 1-8, 1-17 to 1-19
functions* 1-2
image transfer address* 14-1

Index—5

Index

Device driver (cont'd.)

linking with SYS$SYSTEM:SYS.STB* 14-1,
15-5

loading *7-1, 7-3, 13-2, 14-1 to 14-18, 15-4,
A-16, G-6 to G-7

machine independence* 1-10, 6-4 to 6-5, 10-2,
B-3

MASSBUS • G-10 to G-15
name*5-5, 7-3, 14-2, 14-6, 14-7, 14-9, A-12,

A-17
program sections*7-6, 14-1, 15-5, B-8
reactivating* 12-2, A-28
reloading* 7-2, 14-6 to 14-7
size *6-1, A-16
storing data from • 6-2
suspending• 2-5, 9-6 to 9-7, 10-8, A-28, C-82

to C-83, C-84
synchronization methods used by* 1-9 to 1-10
template for *6-5 to 6-13
unloading*7-2, A-16

Device interrupt* 1-6, 3-4 to 3-5, 5-14, 11-1 to
11-8

See also Interrupt servicing routine
disabling an expected* 12-4
dispatching • 3-8 to 3-9
enabling *2-4 to 2-5, 13-3
expected *3-12, 9-7, 11-4 to 11-5
on MASSBUS*G-8
servicing *2-5 to 2-6
unsolicited*7-6, 11-5 to 11-8, A-14
waiting for*2-5, 5-14, 9-6 to 9-7, 10-8, B-41,

C-82 to C-83, C-84
Device IPL* 1-9, A-31

specifying*7-3, A-16
Device mode *8-8, 8-9
Device registers* 1-6, 1-15 to 1-16, 9-4, 9-5

accessing* 15-19, A-18
address *2-4, 5-5, 10-7, A-10, H-2
initializing* 13-1, 13-3
modification by power failure *9-5
modifying *6-3
obtaining ownership • 3-17
of LP11 printer *2-4 to 2-5
rules for referencing • 4-3, 6-3 to 6-4
saving the value of* 13-7
virtual addresses *4-3

Device timeout
See Timeout

Device timeout bit
See UCB$V_TIMOUT

Device unit* 1-5, A-26

See also Device initialization routine
allocating* A-31

Device unit (cont'd.)

autoconfiguring • 7-3, 14-17
description • 5-4
initializing* 13-1
name* 5-5
number* 14-9, A-31
reinitializing* 7-2
status* A-31 to A-33

Diagnostic buffer*5-17, 8-14, A-14, A-21, A-22,
A-33, A-37, D-8

copying to process space *C-59
filling • C-57
length* 7-7
specifying* 5-8

Diagnostic register

See MBA$L_DR
DIOLM (direct I/O limit) quota

adjusting *5-17
charging *5-7, 5-9
checking • 5-7

Direct data path *4-6, 4-9

See also Data path
functions *4-9
purging* 10-4, 10-8 to 10-9
requesting* 10-4

speed • 4-9
Direct 1/0*1-17, 8-15, A-21, A-33

additional buffer regions for* A-24
checking accessibility of process buffer for*

C-36, C-37, C-38, C-39, C-40, C-46, C-47,
C-48, C-49, C-50

FDT routines for *8-4, 8-7 to 8-8, 8-9 to 8-10
locking a process buffer for*C-29, C-31, C-32,

C-39, C-40, C-46, C-49, C-50
postprocessing • C-59
reasons for using* 1-17, 7-10

Direct memory access transfer

See DMA transfer
Directory sequence number* A-37
Direct vector interrupt • 3-9, 11-3, 15-7, A-4, A-9
Disk driver*8-6, 9-2, 9-6, 11-5, A-27, A-33,

A-36 to A-37, C-27 to C-28, D-13

See also MBA, MASSBUS
clearing a drive in* 13-1
ECC correction routine for*C-55
for local disk* A-27, A-37 to A-38
pack acknowledgment in* 13-1
recording disk geometry in* 13-3
removing a disk volume in* 11-8
waiting for disk unit spinup in* 13-3

DLDRIVER.MAR*E-1 to E-28
DMA transfer* 1-16, 6-4

Index—6

Index

DMA transfer (cont'd.)

See also Mapping registers, Data path
byte-aligned *4-10
calculating starting address* 10-10 to 10-11
detecting memory error during* 10-9
device driver code for* 10-1 to 10-11
flow* 1-17 to 1-19, 4-7
for modify operation • C-29 to C-30, C-31, C-32

to C-33
for read operation • C-36, C-39, C-40
for write operation • C-46, C-49, C-50
longword-aligned 32-bit random-access *4-10,

4-13
on MicroVAX 1*4-2, 10-1 to 10-2, 10-8 to

10-9, 10-10 to 10-11
on MicroVAX II* 10-1 to 10-2, 10-4 to 10-9,

10-9 to 10-10
on UNIBUS* 10-1 to 10-10
postprocessing* 10-2, 10-8 to 10-10
start I/O routine *9-1 to 9-8
using direct data path *4-9
using direct 1/0*7-10
using I/O adapter resources • 4-1 to 4-13

DPT (driver prologue table)* 1-2, 13-1, 15-5, A-15
to A-17, A-29, A-30

creating *7-1 to 7-5, B-8 to B-10
initialization table *7-3 to 7-4, 14-4, A-16
initializing* 13-2
linked into system DPT list* 14-2, 14-7
reinitialization table*7-4, 14-4, 14-7, A-16

DPT$M_N0UNL0AD • 7-2, 14-7
DPT$M_SUBCNTRL • G-13
DPT$M_SVP* 7-2, A-33, C-62, C-63, C-64, C-65
DPT$W_DEFUNITS • 14-15
DPT$W_DELI VER *14-15
DPT_ST0RE macro *7-3 to 7-5, A-25, B-10

example* 7-5
DPTAB macro *7-2 to 7-3, 13-1, 14-1, B-8 to B-9

as used by MASSBUS drivers *G-13
controlling autoconfiguration with* 14-15 to

14-16
example* 7-5

DR11-W driver *F-1 to F-22
Driver

See Device driver
Driver dispatch table

See DDT
Driver prologue table

See DPT
Driver unloading routine*7-2, 14-7, A-17

address* D-4
context • D-5
functions* D-4

Driver unloading routine (cont'd.)

input* D-4
IPL requirements*D-5
output • D-4
register usage*D-5

DRV 11-W A driver *F-1 to F-22
DSBINT macro*3-13, 9-5, 9-6, 12-7, B-1 1
DYN$C_BUFIO • C-1 1
DYN$C_IRP • C-12
DZ11 controller* A-8
DZ32 controller* A-8

E
ECC error correction• 7-2, A-33, A-37, C-55
ECC position register* A-37
EMB$L_DV_REGSAV • 13-7
EMB$Q_IOSB • C-72
EMB$W_DV_STS • C-72
ENBINT macro *3-14, B-12
Encryption key*A-23
SEQULST macro*B-13
ERLSDEVICERR* 13-6, A-14, A-34, A-36, C-8,

D-9
ERLSDEVICTMO* 12-5, 13-6, A-14, A-34, A-36,

C-9, D-9
ERL$RELEASEMB • 12-3, C-71
Error handling* 1-3

error retry count* 12-5, A-34, C-57
in FDT routine *8-11
using IOC$PURGDATAP to detect transfer

errors *C-66
Error handling routine *9-5
Error logging • A-27, A-34, A-34 to A-36, C-8,

C-9, C-57, C-71
error log sequence number* A-22
final error count* 12-3

Error logging buffer* A-14, A-36, A-37, D-8
allocating* 13-6, C-8
filling* 13-6 to 13-7
size *7-7, 13-6, 13-7

Error logging enable bit

See UCB$V_ERLOGIP
Error logging routine* 1-4, 13-6 to 13-7, A-14

See also Register dumping routine
address* 13-1
requirements* 13-7

Error message buffer* 12-3, C-71
releasing* 12-3

Event flag • A-20
handling for aborted I/O request *8-12

Index—7

Index

Event flag (cont'd.)

posting *5-17
setting *2-6

Exception

See also Bugcheck, Page fault
generating* 6-3

EXESABORTIO • 8-4, 8-11 to 8-12, A-20, C-6,
C-10, C-29, C-31, C-37, C-42, C-43, C-47,
D-6

EXESALLOCBUF • 8-5, C-11
EXESALLOCIRP* A-24, C-12
EXESALONONPAGED • C-11, C-13
EXES ALONPAGV AR • C-14
EXESALOPHYCNTG • 10-10, C-15
EXESALTQUEPKT • 7-7, 8-4, 8-15 to 8-16, A-14,

C-5, C-16, D-1, D-6
EXES ASSIGN* A-6, A-7
EXESBUFFRQUOTA • 8-5, C-17
EXESBUFQUOPRC • C-18
EXESCANCEL* 13-4 to 13-5
EXESDASSGN* A-7
EXESDEANONPAGED • C-3, C-19
EXE$DW780_INT *15-19
EXESFINISHIO• 8-4, 8-8, 8-9, 8-12 to 8-13, A-22,

C-20, C-27, C-41, C-42, D-6
EXESFINISHIOC • 8-4, 8-12 to 8-13, A-22, C-21,

D-6
EXESFORK• C-22
EXESFORKDSPTH• A-28
EXE$GB_CPUTYPE • 6-4, B-3
EXESGI_ABSTIM • A-9, C-82
EXE$GL_NONPAGED*C-11, C-13, C-14
EXE$GQ_SYSTIME • C-57
EXESINSERTIRP *5-12, 8-14, A-19, A-20, A-31,

C-23, C-24
EXESINSIOQ *5-12, 8-14, 9-1, A-32, C-24

returning control to *5-14
EXESINSTIMQ • C-25
EXESIOFORK* 10-8, 11-5, 12-1 to 12-2, A-27,

A-28, C-26
EXESLCLDSKVALID • 8-6, C-27 to C-28
EXESMODIFY • C-29 to C-30
EXESMODIFYLOCK • C-31
EXESMODIFYLOCKR* A-24, C-32 to C-33
EXESONEPARM • 8-7, A-22, C-34
EXESQIO* 5-1 to 5-10, A-7, A-14, A-19 to A-21,

A-22
EXESQIOACPPKT • A-28
EXESQIODRVPKT *5-12, 8-3, 8-10, 8-13 to 8-15,

9-1, C-27, C-29, C-34, C-43, C-52, D-6
EXESQIORETURN *8-16, C-35
EXE$READ*8-7 to 8-8, A-22, C-36
EXESREADCHK • 8-4, C-37

EXESREADCHKR• 8-7, C-38
EXE$READLOCK*8-7, C-39
EXESREADLOCKR* 8-7, A-24, C-40
EXESSENSEMODE • 8-8, C-41
EXESSETCHAR • 8-8, C-42
EXESSETMODE • 8-9, C-43
EXESSNDEVMSG* 11-7 to 11-8, 12-6, C-44 to

C-45
EXESTIMEOUT • A-28, A-32, A-33
EXES WRITE • 8-9 to 8-10, A-22, C-46
EXESWRITECHK• 8-4, C-47, C-49
EXESWRITECHKR *8-10, C-48
EXESWRITELOCK *8-10, C-49
EXESWRITELOCKR *8-10, A-24, C-50
EXESWRTMAILBOX • C-44, C-51
EXESZEROPARM *8-11, A-22, C-52
Expected interrupt

See Device interrupt
External register base

See MBASl_ERB
External routine

specifying entry point of in driver tables *7-6

F
FDT (function decision table)* 1-2, 5-8

address *5-6, 7-6, A-14
addresses specified in* 13-2
as used by EXE$QIO*5-6
creating • 7-7 to 7-11, 13-2, B-15
dispatching to FDT routines from *5-10
size* A-15
specifying buffered functions in *5-9
specifying legal functions in *5-9

FDT routine* 1-3, 1-17, 2-3 to 2-4, 8-15
aborting an I/O request from *8-11
adjusting process quotas in*C-11
allocating IRPE in*A-24
allocating system buffer in *8-5
calling sequence*8-2, D-5
completing an I/O operation in*C-20, C-21
context • 5-10, 8-1 to 8-2, 8-13, D-6
creating*8-1 to 8-16
dispatched to from EXE$QIO*5-9
ensuring an even byte count in *9-4
exiting from *8-2 to 8-4, 8-11 to 8-16, D-6
for buffered I/O *8-4 to 8-6
for direct I/O *8-4, 8-7 to 8-8, 8-9 to 8-10
for disk I/O*C-27 to C-28
input • D-5

Index—8

Index

FDT routine (cont'd.)

IPL requirements*D-6
output • D-5
provided by VAX/VMS*8-6 to 8-1 1
register usage *6-2, 8-2, D-6
returning control to for postprocessing • 8-16
setting attention ASTs in*C-6

Fixed CSR space* 14-10 to 14-11
of non-DIGITAL-supplied devices* 14-11

Fixed vector space* 14-10 to 14-11
of non-DIGITAL-supplied devices* 14-11

FKB$B_FIPL • C-26
FKB$L _FPC • C-26
FKB$L_FR3 • C-26
FKB$I_FR4 • C-26
Floating CSR space* 14-10 to 14-11

assigning to device* 14-16
base address* 14-10
current floating CSR base* 14-16

Floating vector space* 14-10 to 14-11
assigning to device* 14-16
base address* 14-10
current floating vector base* 14-16

Fork block* 1-5, 1-7, 3-4, 3-14, 5-13 to 5-14,
9-7, 12-1, A-27 to A-28

Fork dispatcher* 1-9, 2-6, 3-4, 3-5, 3-15
functions* 5-15

Fork IPL* 1-9, 2-4, 3-4, 3-12, 5-15, 8-13, 10-1,
A-27

See also UCB$B_FIPL
specifying*7-3, A-16

FORK macro*B-14
See also I0F0RK macro

Fork process* 1-7, 1-9, 3-14 to 3-15, 9-1
context* 1-7, 3-15, 3-16, 5-12 to 5-13, 5-13

to 5-14, 5-14, 8-15, 9-1 to 9-2
creation by driver*2-5, 3-12, 3-14 to 3-15,

5-14, 12-1 to 12-2, B-14, B-20, C-22,
C-26

creation by IOC$INITIATE • 5-12 to 5-13, 9-1,
12-3, C-58

dispatching *3-15
reactivating *3-15, 5-15 to 5-16
suspending • 5-14, 9-6 to 9-7

Fork queue* 1-9, 3-15, 5-14, 5-15, A-27
Full duplex device driver *8-4, 8-15 to 8-16

I/O completion for*C-5
FUNCTAB macro • 7-10 to 7-11, B-15

example* 7-11
Function decision table

See FDT

G
General purpose registers

rules for using in driver code *6-2

H
Hardware clock

interrupt from • 3-5
role in device timeouts* 1-3

i
I/O adapter* 1-6, 1-11 to 1-15, 1-16, 4-1 to 4-13

See also UBA, UNIBUS adapter, MBA, and Q22
bus

displaying nexus value* 14-7, 14-8
functions *4-1 to 4-2
obtaining resources* 10-1
synchronizing access to *3-4, 4-2
type *7-2, A-3, A-16

I/O adapter registers* 10-1

See Mapping registers. Data path register.
Vector register. Byte count register, MBA

I/O completion

See I/O postprocessing
I/O database* 1-4 to 1-6, A-1 to A-38

creation *7-1, 13-2, 14-3 to 14-6, 14-11,
A-16, G-6

examining with XDELTA • 15-9
for MASSBUS configuration • G-6 to G-7, G-11
for two-controller configuration • 5-5
initializing *7-3 to 7-5, 14-11
locating* 14-9
referencing fields in *6-2, A-1
reinitializing* 13-2
synchronization • 3-6

I/O function
indicating a buffered • 5-9, 7-7
indicating as legal to a device *5-9, 7-7
preprocessing *5-10

I/O function code *5-9, A-20
converting to device-specific function code *9-4
defined by VAX/VMS*7-8 to 7-9
defining device-specific • 7-9

I/O function modifier *5-9
I/O postprocessing* 12-1 to 12-3, A-21

Index—9

Index

I/O postprocessing (cont'd.)

device-dependent • 2-6, 5-16, 8-6, 12-2 to
12-3

device-independent*2-6, 3-4, 5-17, 8-6, C-59
for aborted I/O request *8-12
for buffered I/O *8-6, 10-9
for DMA transfer* 10-2, 10-8 to 10-10
for full duplex device driver *C-5
for I/O request involving no device activity*

8-13, C-20, C-21
I/O postprocessing queue* 12-3, 13-4, A-33, C-5,

C-59, C-71
I/O preprocessing

See also SYS$QIO and FDT routine
completing*5-12, 7-8
device-dependent • 2-3 to 2-4, 5-8 to 5-10, 8-1

to 8-16
device-independent *2-2 to 2-3, 5-1 to 5-8

I/O request
aborting • 8-4, 8-8, 8-10, 8-11 to 8-12, 12-6,

C-10
canceling* 13-4 to 13-6, A-14
completing*C-71 to C-72
example *2-1 to 2-6
involving no device activity • 8-12 to 8-13
IPL flow during the processing of *3-6 to 3-7
outstanding on channel *A-7
restarting after power failure *9-5
retrying* 12-5
returning completion status of to process *2-6,

5-17, 8-4, 8-12, 12-2, 12-3
status* A-20
synchronizing simultaneous processing of

multiple *8-4, 8-15 to 8-16
validating device-dependent arguments *2-3
validating device-independent arguments*2-2

to 2-3, 5-6 to 5-7
with no parameters*8-11
with one parameter*8-7

I/O request packet

See IRP
I/O request packet extension

See IRPE
I/O space *H-2 to H-6

access to during bus power failure*H-6
error in mapping*H-6
mapping to process space *H-2, H-4, H-4 to

H-6
of MASSBUS • G-4
of Q22 bus *4-3
of UNIBUS *4-3
rules for referencing • 6-3, 6-3 to 6-4, H-6

I/O status block

See I0SB
validating access to *5-7

I/O transaction sequence number* A-22
IDB (interrupt dispatch block)* 1-6, 5-5, 10-7,

A-18 to A-19
address *5-4, 9-3, 11-3, 14-9, A-10
creation* 7-3, 14-4
for MBA*G-4, G-6 to G-7, G-11, G-13
size* 7-3

IDB$I_ADP* 5-5
IDB$L_CSR• 5-5, G-4, G-5, G-11
IDB$L_OWNER• 5-4, 5-5, 9-4, 9-7, 11-4, 13-1
IDB$W_UNITS • 14-6
IFNORD macro *B-16
IFNOWRT macro *B-17
IFRD macro *B-18
IFWRT macro *B-19
Image termination* 13-4
INI$BRK* 15-4
Initialization routine

See Unit initialization routine. Controller
initialization routine

Interrupt

See also Device interrupt
blocking *B-11
disabling *3-13, B-11
dismissing *3-2, 12-1
enabling *3-14, B-12
requesting an XDELTA* 15-5 to 15-6
requesting a software *3-14, B-35

Interrupt context* 1-7, 3-2, 3-10, 9-8
Interrupt dispatch block

See IDB
Interrupt dispatcher*3-8, 10-8, 11-1, A-4

See also IDB
direct vector *3-9, 11-3, A-4, A-9
for MASSBUS • D-14, G-6, G-6 to G-7, G-9 to

G-10, G-13 to G-15
for UNIBUS* A-9
nondirect vector *3-9, 11-1, A-4, A-9

Interrupt enable bit *9-5
Interrupt expected bit

See UCB$V_INT
Interrupt priority level

See IPL
Interrupt servicing routine* 1-3, 3-2, 10-8, 11-1 to

11-8, 15-8, A-9, A-28

See also Unsolicited interrupt servicing routine
address *7-4, 11-3, A-17, D-7
context *3-2, 11-3, D-8
defined by VAX/VMS*3-2 to 3-3

Index-10

Index

Interrupt servicing routine (cont'd.)

example* 11-6 to 11-8
for connect to interrupt facility *1-1-10, H-15 to

H-16
for fork IPL*3-4
for hardware clock • 3-6
for IPL$_ASTDEL* 3-3
for IPL$_I0P0ST • 3-4, C-59
for IPL$_SCHED • 3-5
for IPL$_TIMERFORK*3-6, 12-4
for LP11 printer *2-5 to 2-6
for MASSBUS device*D-7, G-10, G-15
for solicited interrupt* 11-4 to 11-5
for UBA*3-9
for UNIBUS adapter* 11-1
for unsolicited interrupt* 11-5 to 11-8, D-13
functions* 5-14, 9-8, 11-1, D-7
input* D-7
IPL requirements *D-8
of CONINTERR.EXE • H-9
output* D-7
register usage *3-2, 9-7, D-8
specifying more than one*D-7
transferring control to *5-14

Interrupt stack • 9-2
Interrupt vector*3-9, 14-8, A-4, A-9 to A-11

address • 14-5
connecting to*H-1, H-6 to H-23
multiple* A-9
number* 14-6

Interval timer
See Hardware clock

SIO730DEF macro *H-2
SI0750DEF macro *H-2
SI0780DEF macro *H-2
SI0790DEF macro *H-2
I0$_AV AILABLE* 8-6, C-27
IO$_CONINTREAD • H-8, H-9

IOS—CONINTWRITE • H-8, H-9
I0$_PACKACK • 8-6, C-27
IO$_SETCHAR • 8-9
IO$_UNLOAD • 8-6, C-27
I0C$ ALOUBAM AP • C-53 to C-54, C-69
I0CSAL0UBAM APN • 10-5
IOC$ALTUBAMAP • C-53, C-69
IOCSAPPLYECC • A-37, C-55
IOC$CANCELIO • 13-6, A-32, C-56
I0CSDIAGBUFILL• A-14, A-22, C-57, D-9
IOCSGI_CRBTMOUT • A-9
IOC$GL_DEVLIST • 13-3, A-11
IOCSGL _PSBL • C-5, C-10, C-20, C-71
I0CSGL _PSFL • C-59

IOC$GW_M AXBUF • C-17
IOCSINITIATE *5-12 to 5-13, 8-14, 9-1, 12-3,

A-14, A-21, A-31, A-32, A-33, A-34, C-24,
C-58, C-71, D-10

IOCSIOPOST• A-22, A-24, C-59
IOCSLOADMB AM AP • B-21, C-60, G-3
IOCSLOADUBAMAP* 10-6, A-11, B-22, C-61
IOCSLOADUBAM APA • 10-6, C-61
IOC$MNTVER • 7-7, A-14
IOCSMOVFRUSER* 7-2, 10-10, C-62
IOCSMOVFRUSER2 • C-63
IOCSMOVTOUSER • 7-2, 10-11, C-64
IOCSMOVTOUSER2 • C-65
IOCSPURGDATAP* 10-8 to 10-9, 10-11, A-11,

B-23, C-66
IOCSRELCHAN* 12-2, A-8, A-18, A-28, B-24,

C-67, C-84

IOCSRELDATAP • 10-9, A-4, A-5, A-28, B-25,
C-68

IOCSRELMAPREG* 10-9 to 10-10, A-4, A-5,
A-10, A-11, A-28, B-26, C-69

lOCSRELSCHAN • A-8, A-9, A-18, B-27, C-70
IOCSREQCOM • 9-1, 12-3, A-14, A-19, A-22,

A-31, A-32, A-33, A-34, A-36, B-28, C-71 to
C-72, D-10

IOCSREQDATAP • 10-2 to 10-3, A-4, A-5, A-11,
A-28, B-29, C-73

IOCSREQDAT APN W • 10-3, C-73
IOCSREQMAPREG • 10-4 to 10-5, A-4, A-5, A-10,

A-11, A-28, B-30, C-74 to C-75
IOCSREQPCHANH • A-8, A-18, A-28, B-31, C-76
IOCSREQPCHANL• 9-2 to 9-4, A-8, A-18, A-28,

B-31, C-77
IOCSREQSCHANH • A-8, A-9, A-18, B-32, C-78
IOCSREQSCHANL• A-8, A-9, A-18, A-28, B-32,

C-79
IOCSRETURN • 7-6, 13-5, C-80
IOCSSEARCHDEV• A-28
IOCSVERIFYCHAN • C-81

IOCSWFIKPCH *5-13, 5-14, 9-7, A-28, A-32,
A-33, B-41, C-82 to C-83

IOCSWFIRLCH *5-13, 5-14, A-32, A-33, B-42,
C-84

SIODEF macro *7-8
IOFORK macro *3-12, 3-15, 5-14, 10-8, 11-5,

12-1, B-20
IOSB (I/O status block) *8-4, 12-2, 12-3, A-20,

A-22
SI0UV1DEF macro *H-2
SIOUV2DEF macro *H-2
IPL (interrupt priority level)* 1-7, 1-9, 3-1 to 3-14

device*3-4 to 3-5, A-16, A-31
during I/O processing *3-3 to 3-7

Index—11

Index

IPL (interrupt priority level) (cont'd.)

fork*A-16, A-27
lowering • 3-3, 3-5, 3-12, 3-13, 3-14, 3-14,

9-7, B-12
modifying *3-12 to 3-14
raising • 3-3, 3-13, B-11, B-34
saving • B-33
software *3-1 to 3-2

IPL$_ASTDEL* 1-9, 3-3, 5-7, 8-15
IPL$_IOPOST• 1-9, 2-6, 3-4, 5-17, 8-12, 8-13,

12-3, 13-4, C-59
IPL$_MAILBOX • 3-6, 11-7, 12-6, C-51
IPL$_POWER• 3-5, 9-5 to 9-6, 12-7, 13-2, 14-4
IPL$_QUEUEAST *3-5, C-2, C-3
IPL$_SCHED • 3-4, 3-5
IPL$_SYNCH* 1-9, 3-5, 3-6
IPL$_TIMER* 12-6
IPL$_TIMERFORK • 3-6, 12-4
IPL$_XDELT A • 3-6
IRP (I/O request packet)* 1-6, A-19 to A-23

creation*2-3, 5-7
current* A-31
deallocation *2-6, C-59
dequeuing from UCB* A-19
device-independent portion of *5-7 to 5-8
insertion in pending I/O queue *2-4, 5-12, 8-3,

8-13 to 8-15, 9-1, C-23
insertion in postprocessing queue *2-6, 3-4
removal from pending I/O queue *2-6, 5-12,

12-3
storing data in *6-2

IRP$B_CARCON • 8-7, 8-10, A-22
IRP$B_RMOD *8-11, C-10
IRP$I_BCNT • 8-4, 8-10, 8-14, 9-2, C-58
IRP$I_DlAGBUF *8-14, C-57, C-58
IRP$I_IOSB* 8-11, C-10
IRP$I_MEDIA • 8-9, 8-13, 12-3, 13-4, A-22

storing device-dependent parameters in *8-7
IRP$I_PID* 13-6
IRP$I_SVAPTE *8-14, 9-2, C-58

for buffered I/O *8-5, 8-6, 8-8
for direct 1/0*8-10

IRP$V_DIAGBUF*8-14, C-57, C-58
IRP$V_FUNC • 8-4, 8-6, 8-7, 13-4
IRP$W_BOFF • 8-5, 8-6, 8-14, 9-2, C-58
IRP$W_CHAN* 13-6
IRP$W_FUNC *8-10, 9-4
IRP$W_STS

for read function • 8-4, 8-6, 8-7
for write function • 8-6

IRPE (I/O request packet extension) • A-21, A-24
address • A-22
allocating • A-24

IRPE (I/O request packet extension) (cont'd.)

deallocation • A-24, C-59
unlocking buffer pages*C-59

j
JIB (job information block) *8-5
JIB$I_BYTCNT • 8-5, 8-6, C-1 1, C-17
JIB$L _BYTLM • C-17
Job attached bit

See UCB$V_J0B
Job controller* A-33

sending a message to* 11-7 to 11-8
Job information block

See JIB

K
Kernel mode AST

See AST
Kernel stack *9-2

L
Legal function bit mask *5-9
LOADMBA macro *B-21, G-3, G-12, G-12 to G-13
LOADUBA macro* 10-6, B-22
Lock ID* A-28
Logical I/O function

translation from virtual function to *2-3
Longword access enable bit

See VEC$V_LWAE
Longword-aligned random-access mode*4-13,

A-11
Lookaside list*C-11, C-12, C-13

allocation of IRP from *5-7
LWAE (longword access enable) bit* A-11

M
Machine check* 15-19, H-6

condition handler*H-6
Mailbox* A-31

associated with device unit* A-31
buffered I/O quota* A-28

Index-12

Index

Mailbox (cont'd.)

I/O function • A-21
in shared memory* A-33
marked for deletion • A-33
of job controller* 11-7
of OPCOM process* 12-6
permanent • A-33
sending a message to*C-44 to C-45, C-51

Mailbox driver* 14-5
Map lock bit

See VEC$V_MAPLOCK
Mapping register base register

See MBA$L_MAP
Mapping registers* 1-16, 4-4 to 4-6, 10-1, 10-4

to 10-6, A-10, A-11
allocating permanent* 13-1, A-10
byte offset bit • C-61
calculating the number needed* 10-4
format *4-6, 10-6
invalidating *4-6, 4-12, 10-6
loading* 10-6, B-22, C-61
number of active* A-5
number of disabled • A-5
of MBA • B-21, C-60, G-2
of MicroVAX 11*4-4
of UBA • 4-4
operation • 4-5 to 4-6
releasing* 10-9 to 10-10, 12-2, B-26, C-69
requesting* 10-4 to 10-5, B-30, C-53 to C-54,

C-74 to C-75
requesting permanent* 10-5
unavailability* 10-5

Mapping register valid bit* 10-6
Mapping register wait queue* 10-5, 10-10, A-4,

C-69, C-74
MASSBUS

configuration *G-1, G-4
I/O database*G-4, G-6 to G-7
I/O space*H-2
servicing multiunit controller on*G-2, G-6,

G-11, G-12, G-14
servicing single-unit controller on*G-6, G-10,

G-11, G-14
MASSBUS adapter

See MBA
MASSBUS driver

DPT for*G-13
interrupt servicing routine*G-15
start I/O routine*G-12
unit initialization routine*7-7, G-11
unsolicited interrupt servicing routine*G-14

MBA (MASSBUS adapter)* 1-1 1

MBA (MASSBUS adapter) (cont'd.)

address space*G-4 to G-5
data path*G-3
functions • G-1, G-8 to G-9
nexus value* 14-4
obtaining ownership*G-2, G-6 to G-10, G-12
registers*G-2 to G-6

device*G-5, G-11, G-12
external* G-2
internal* G-2

mapping • B-21, C-60, G-2 to G-6
secondary data channel *C-70
subunit number*G-1
unit number* 14-6, G-1, G-11

MBA$INT • D-14, G-13 to G-15
MBA$l_AS • G-4, G-5, G-8 to G-9, G-9, G-10
MBA$L_BCR • C-60, G-3, G-4, G-12
MBA$L_CAR • G-4
MBA$L_CR • G-4
MBA$l_CSR • C-60, G-4, G-12
MBA$L_DR*G-4
MBA$L_ERB• G-4, G-5, G-1 1
MBA$L_MAP• G-4, G-5
MB A$L _SMR • G-4
MBA$I_SR • G-4, G-10, G-12
MBA$I_VAR• C-60, G-3, G-4, G-12, G-13
SMBADEF macro*G-4 to G-5
Memory

See Buffer, Nonpaged pool
Memory error

detecting during DMA transfer* 10-9
MicroVAX 1*1-14 to 1-15, 3-9

adapter logic *4-1
booting with XDELTA on* 15-1
comparison with other VAX processors* 1-14,

1-16
DMA transfer* 10-1 to 10-2, 10-8 to 10-9,

10-10 to 10-11
example driver *E-1 to E-28, F-1 to F-22
requesting an XDELTA interrupt on* 15-6

MicroVAX II* 1-14 to 1-15, 3-9
adapter logic *4-1
booting with XDELTA on* 15-1
DMA transfer* 10-1 to 10-2, 10-4 to 10-9,

10-9 to 10-10
example driver *E-1 to E-28, F-1 to F-22
requesting an XDELTA interrupt on* 15-6

MMGSIOLOCK • 8-8, C-49
MMGSUNLOCK • A-24, C-85
Mount verification • A-21, A-32
Mount verification routine • A-14, A-15

address* 7-7
MSG$_CRUNSOLIC • 1 1-7

Index—13

Index

MSG$_DEVOFFLIN • 12-6
Mutex

for ACL* A-26
MW AIT state *3-16

Nexus* 14-4, 14-7, 14-8
Node* 14-4, 14-7, 14-8
Nondirect vector interrupt• 3-9, 11-1, 15-7, A-4,

A-9
Nonpaged pool

allocating*3-3, C-11, C-12, C-13, C-14
deallocating *3-3, C-3, C-19

NPR (Non-processor request)

See DMA transfer

o
Object rights block

See ORB
Online bit

See UCB$V_ONLINE
Online condition

on MASSBUS* G-8
OPCOM process *C-44

sending a message to* 12-6
Operating system routine

specifying entry point of in driver tables *7-6
ORB (object rights block)* A-25 to A-26

address* A-28
initializing* A-25

p
Page fault*8-10

during FDT execution • 8-8
Paging I/O function • A-21
PAT$A_NONPGD* 15-17
Patch space* 15-17
PCB$L_JIB • 8-5
PCB$I_PID • 13-6
PCB$V_SSRWAIT • 5-7, C-1 1, C-17
PCB$W_ASTCNT *C-4, C-6, C-10
PDT (port descriptor table)* A-34

Pending I/O queue*5-12, 8-14, 9-1, 13-4, A-19,
A-31, C-23, C-71

bypassing* C-16
length* A-33
synchronizing with driver internal queue *8-15

PFN database
examining with XDELTA* 15-11 to 15-12

PFN mapping *H-4 to H-6
deleting a PFN mapped page*H-6
modifying pages mapped by*H-4

Physical address
format • H-4

Physical I/O function • A-21
PIO transfer* 1-15 to 1-16

example*2-1 to 2-6
using buffered 1/0*7-10
using I/O adapter resources *4-1

Port descriptor table

See PDT
Position independent code *6-2
Postprocessing

See I/O postprocessing
Power bit

See UCB$V_POWER
Power failure

blocking *3-5
determining the occurrence of *9-5
I/O bus*H-6

Power failure recovery procedure* A-4, A-10,
A-11, A-28

controller initialization routine called by*D-4
device timeout forced by* 12-5
initialization performed by* 13-3
unit initialization routine called by*D-13

PR$_IPL*3-13, 3-14, B-33, B-34
PR$_SIRR *3-14, B-35
Prefetch function of UNIBUS adapter *4-11, 4-12
Preprocessing

See I/O preprocessing
Preprocessing routine

See FDT routine
Printer driver

description *2-1 to 2-6
PROBER (Probe Read) instruction*B-16
PROBEW (Probe Write) instruction*B-17
Process context* 1-7, 2-4, 3-3, 5-12, 8-1 to 8-2

returning to*5-17
Process I/O channel* 13-4, A-6, A-20

assigning* 5-3
deassigning* 13-5
reference count* A-31, A-32
validating *2-2, 5-3, C-81

Index—14

Index

Processor status longword

See PSL
Process privilege mask*A-23
Process quota

adjusting • 3-4, 5-17
buffered I/O*2-3, 2-6, 5-7, C-17, C-18
byte count *2-3, 2-6, 8-6, C-17
charging • 5-7, 5-9, A-21
direct I/O*5-7

Process virtual address space
access to*5-10

Programmed I/O

See PIO transfer
PSL (processor status longword)

examining with XDELTA* 15-9
Z condition code*C-23

PURDPR macro* 10-8, B-23
detecting memory errors using* 10-9

Q
Q22 bus* 1-14

accessing unmapped memory *4-4
address *9-5
example driver*E-1 to E-28, F-1 to F-22
functions *4-1
I/O space *4-3, H-2, H-3, H-6
interrupt dispatching • 3-9
position of devices on *3-4
power failure*H-6
scatter-gather map *4-4 to 4-6

Quota
See Process quota

R
Read function • A-21, A-22

FDT routine for *8-7 to 8-8
REALTIME_SPTS parameter• H-7
Real time I/O processing • H-1 to H-23
Reentrant code *6-2
Register dumping routine* 1-4, A-14, A-37, B-23,

C-8, C-57, C-66
address*7-7, 13-7, D-8
context* 13-7, D-9
functions* 13-7, D-8
input* D-8
IPL requirements • D-9

Register dumping routine (cont'd.)

output • D-8
register usage • D-9

Registers

See Device registers. General purpose registers.
Mapping registers

REI instruction *3-2, 8-15
RELCHAN macro* 12-2, B-24, G-13
RELDPR macro* 10-9, B-25
RELMPR macro* 10-9, B-26
RELSCHAN macro *B-27
REQCOM macro* 12-3, 12-5, B-28
REQDPR macro* 10-2, B-29
REQMPR macro* 10-4, B-30
REQPCHAN macro *9-2 to 9-4, B-31, G-6, G-12
REQSCHAN macro *B-32, G-6, G-12
Resource wait* 1-10, 3-16 to 3-18
Resource wait flag

See PCB$V_SSRWAIT
Resource wait mode *5-7, C-11, C-17
Resource wait queue* 1-10
Retry count* 12-6
RL01 driver *E-1 to E-28
RL02 driver *E-1 to E-28
RL11 driver *E-1 to E-28

s
SAVIPL macro *B-33
SBI (synchronous backplane interconnect)* 1-11
Scatter-gather map

See Mapping registers
SCB (system control block)* 11-3, A-4

role in interrupt dispatching • 3-9
SCH$GL_CURPCB* 15-11
SCH$GL_PCBVEC* 15-11
SCH$POSTEF• A-20
SCH$RAVAIL* C-3
Scheduler*3-4, C-3

SCS (system communications services) • A-16
$SECDEF macro *H-5
Secondary controller data channel • B-27, G-12,

G-13
obtaining ownership • B-32
releasing • C-70
requesting • C-78, C-79

Seek operation • 9-6
overlapping with data transfer *9-2

Selected mapping register

See MBA$I_SMR

Index—15

Index

Sense device characteristics function *8-8
Sense device mode function *8-8
Set device characteristics function • 8-8, 8-9,

A-30, A-31
Set device mode function • 8-8, 8-9, A-30
SETIPL macro*3-13, 12-4, 12-5, 12-6, B-34
Set mode function • A-31
SHOW DEVICE command *A-34
SOFTINT macro *3-14, B-35
Software timer *3-6
Solicited interrupt

See Device interrupt
Special kernel mode AST

See AST
SS$_ABORT • 12-6
SS$_ACCVIO • 8-8, 8-10, C-32, C-42, C-43,

C-62, C-63, C-64, C-65
SS$_CANCEL* 13-4
SS$_EXQUOTA • C-7, C-17
SS$_INSFMEM • C-7, C-11, C-15, C-44, C-51
SS$_INSFSPTS • C-15
SS$_INSFWSL• 8-8, 8-10, C-32
SSS—IVCH AN • C-81
SS$_MBFULL • C-44, C-51
SS$_MBTOOSML* C-44, C-51
SS$_NOPRIV • C-44, C-51, C-81
SS$_NORM AL • 8-8
Stack

device driver use of*6-2, 9-2
Start I/O routine* 1-3

See also Alternate start I/O routine
address *2-4, 7-6, 8-14, A-14, D-9
context *5-12 to 5-13, 8-15, 9-1 to 9-2, D-10
for connect to interrupt facility • H-10, H-14 to

H-15
for MASSBUS device driver *G-12
for MicroVAX I device driver* 10-10
for multiunit controller*3-18
for single unit controller*3-17
functions*5-13 to 5-14
input • D-9
IPL requirements*D-10
of CONINTERR.EXE • H-9
output from • D-9
reactivating*3-10 to 3-12, 5-15 to 5-16
register usage *9-2, D-10
suspending* 5-14
transferring control to *5-12 to 5-13, 8-14,

9-1, 12-3, C-58
writing *9-1 to 9-8

Status* 1 1-5

Status register

See CSR, MBA$L_SR
Subcontroller • A-16
Swapping I/O function* A-21
SWI$GL_FQFL • C-26
Symbol list

defining • B-13

Synchronization techniques* 1-9 to 1-10, 3-1 to
3-18

See also IPL, Fork queue, and Resource wait
queue

Synchronous backplane interconnect

See SBI
SYSSALLOC • A-28, A-31
SYSSASSIGN* 1-6, 2-2, 5-3, 7-7, A-6, A-31,

A-32, H-8
SYS$CANCEL* 1-4, 13-4, 13-5, A-14, D-2, D-3,

H-12
SYS$CRMPSC • 4-4, H-2, H-4 to H-6
SYS$DALLOC • 13-5, A-14, A-31, D-3
SYSSDASSGN* 13-4, 13-5, A-14, A-31, D-3
SYS$GL_JOBCTLMB • 11-7
SYS$GL_OPRMBX • 12-6
SYSSQIO* 1-1, 2-2 to 2-4, 5-1 to 5-13, A-19

device-dependent arguments of* A-22
dispatching* 5-1
for connect to interrupt facility • H-8, H-9 to

H-12
SYSSQIOW • 2-6, A-19
SYS$SYNCH • 2-6
SYSBOOT program* 15-1, 15-19
SYSGEN

See System Generation Utility
System buffer

See Buffer, Nonpaged pool
storing address of *8-5

System communications services

See SCS
System configuration* 14-8
System context* 1-7
System control block

See SCB
System Dump Analyzer (SDA)* 15-20
System failure

inducing with XDELTA* 15-19
System Generation Utility (SYSGEN)* 14-2 to

14-18
AUTOCONFIGURE command *7-3, 13-2, 14-10

to 14-18, A-1, A-17, A-27, D-12
CONNECT command *7-3, 13-2, 14-2, 14-3 to

14-6, A-3, A-11, A-19, A-25, D-4, D-13
/ADAPTER qualifier* 14-4

lndex—16

Index

System Generation Utility (SYSGEN)
CONNECT command (cont'd.)

/ADPUNIT qualifier* 14-6
/CSR—OFFSET qualifier* 14-5
/CSR qualifier* 14-5
/DRIVERNAME qualifier* 14-6
/MAXUNITS qualifier* 14-6
/NOADAPTER qualifier* 14-5
/NUMVEC qualifier* 11-3, 14-6, A-9
/VECTOR-OFFSET qualifier* 14-5
/VECTOR qualifier* 14-5

device table* 14-11, 14-17
LOAD command* 13-2, 14-2 to 14-3
RELOAD command* 13-2, 14-6 to 14-7, D-4
SHOW/ADAPTER command* 14-7
SHOW/CONFIGURATION command* 14-8 to

14-9
SHOW/DEVICE command* 14-9

System map (SYS$SYSTEM:SYS.MAP) • 15-17
System page table entry

allocating permanent• 7-2, A-16, A-33, C-62,
C-63, C-64, C-65

System time*C-57

T
Tape driver* A-27, A-36 to A-37, D-7
Template for a device driver *6-5 to 6-13
Template UCB*A-32, A-33
Terminal controller* A-8
Terminal driver *7-10, 11-5

out-of-band ASTs* 13-5
Terminal I/O function • A-21
TIMEDWAIT macro *B-37 to B-38
Timeout *9-8, C-9, C-22

caused by power failure recovery procedure*
12-5

disabling • 5-14, 12-1
due time* A-33
logging* 12-5

Timeout enable bit
See UCB$V_TIM

Timeout handling* 1-3
Timeout handling routine* 1-3, 9-8, 11-5, 12-4 to

12-7, 13-6
aborting an I/O request in* 12-6
address *9-6, 9-7, 12-1, B-41, B-42, C-82,

D-10
context* 12-4, D-1 1
functions* 12-5, D-10
input • D-10

Timeout handling routine (cont'd.)

IPL requirements*D-1 1
output • D-10
register usage*D-11
retrying an I/O operation in* 12-5

Timeout interval • B-41, B-42, C-82
specifying • 9-6, 12-4

Timer
See Hardware clock. Software timer

Timer queue • C-25
Timer queue entry

See TQE
TIMEWAIT macro *B-36
TQE (timer queue element)

queuing a • C-25
TQE (timer queue entry) *3-6
Transfer vector • 7-3
Translating virtual address to physical address*

10-10
TU58 cartridge device

booting with XDELTA from* 15-1

u
UBA (UNIBUS adapter)* 1-1 1

See also UNIBUS adapter
UBI (UNIBUS interface)* 1-11

See also UNIBUS adapter
UCB (unit control block)* 1-5, 5-4, A-7, A-26 to

A-38
address *9-7, 13-3, 14-9
as fork block*9-7
as template* A-33
cloned *7-7, A-15, A-32
creation* 13-2, 14-4, 14-15, A-19, A-27, G-6
disk extension* A-27, A-36 to A-37
error log extension* 13-7, A-27, A-34 to A-36
initializing • 13-1, 13-3
local disk extension • A-27, A-37 to A-38, C-55
size• 7-2, A-16, A-27, A-27
storing data in *5-4, 6-2
synchronizing access to *2-4, 3-4, 8-13

UCB$B_DEVCLASS • 8-9, A-16
UCB$B_DEVTYPE • 8-9, A-16
UCB$B_DIPL• 3-4 to 3-5, 7-3, 12-4, A-16
UCB$B_ERTCNT • 12-3, C-57, C-71, C-72
UCB$B_FIPL• 3-4, 5-12, 7-3, 12-1, 13-4, A-16
UCB$B_ONLCNT *C-27
UCB$B_SLAVE • G-11
UCB$B_SLAVE+1 *G-11

Index—17

Index

UCB$K_ERL —LENGTH • A-27
UCB$K_LCL_DISK_LENGTH* A-27
UCB$K_LCL _T APE—LENGTH • A-27
UCB$K_LENGTH• A-27
UCB$I_CRB* 13-3, G-11
UCB$L _DDB • 5-5
UCB$I_DEVCHAR* 7-3, 13-7, A-16
UCBSl_DEVDEPEND • 8-8, 8-9
UCB$I_DUETIM *5-13, 9-7, 12-5, C-83
UCBSL _EMB* 12-3, C-71
UCBSL_FPC* 5-13, 5-14, 11-5, 12-1, 12-4
UCB$L_FR3*5-13, 5-14, 11-5, 12-1, 12-4
UCBSl_FR4*5-13, 5-14, 11-5, 12-1, 12-4

UCBSL _IOQFL* 12-3, C-71
UCBSL _IRP* 5-4, 8-14, 12-3
UCBSL _LINK* 13-3
UCBSL_OPCNT *8-13, C-72
UCBSL _ORB*A-25
UCBSL —RECORD • A-37
UCBSL_STS *8-14, 9-5, 9-7
UCBSL_SVAPTE* 5-4, 8-14, 9-2, 10-6, A-21,

C-55, G-3, G-13
UCBSl_SVPN • 7-2, C-55
UCB$V_BSY • 2-4, 5-4, 8-14, 8-15, 12-3, 13-6
UCB$V_CANCEL *8-14, 12-6, 13-6, C-56
UCB$V_ECC• C-55
UCB$V_ERLOGIP* 12-3, C-71
UCB$V_INT *9-7, 11-4, 11-6, 11-7, 12-4, C-83,

G-9
UCB$V_JOB* 11-6, 11-7, 11-8
UCB$V_LCI_VALID • C-27
UCB$V_ONLINE* 11-8, 13-1, 13-3
UCB$V_POWER • 9-5, 12-5
UCB$V_TIM • 9-7, 12-1, 12-4, B-20, C-83
UCB$V_TIMOUT *8-14, 12-4, C-83
UCB$V_VALID* 11-8
UCBSW_BCNT *8-14, 9-2, 10-4, 10-6, A-22,

A-34, G-3, G-13
UCBS W_BCR • A-37
UCBSW—BOFF *8-14, 9-2, 9-5, 10-4, 10-6, 10-7,

A-21, A-33, G-3, G-13
UCBS W_DEVBUFSIZ • 8-9
UCBS W_DEVSTS • 12-3
UCB$W_EC1 *C-55
UCB$W_EC2 • C-55
UCB$W_REFC* 11-6, 11-7, 13-4
UCBS W_UNIT • G-11
UNIBUS

address *4-6, 9-5
configuration* 14-17 to 14-18
DMA transfer* 10-1 to 10-10
example driver*E-1 to E-28, F-1 to F-22

UNIBUS (cont'd.)

example of read operation *4-11 to 4-12, 4-13
example of write operation • 4-11, 4-13
I/O space *4-3, FI-2, FI-3, H-6
position of devices on *3-4
power failure*H-6

UNIBUS adapter* 1-11, 1-12
error interrupt from* 15-19, H-6
functions *4-1
interrupt dispatching • 3-8 to 3-9
interrupt servicing routine *3-9
nexus value* 14-4
power failure recovery procedure • A-4
prefetch function *4-11, 4-12

UNIBUS address
scatter-gather map *4-4 to 4-6

Unit control block
See UCB

Unit delivery routine* A-1, A-17
address *7-3, 14-15, D-11
context* 14-16, D-12
functions* 14-16, D-11
input • D-11
IPL requirements*D-12
output* 14-16, D-12
register usage • D-12

Unit initialization routine* 1-3, 13-1 to 13-4, 14-4
address *5-4, 7-4, 7-7, 13-1, A-11, A-14,

A-17, D-12
allocating contiguous physical memory in*

10-10
allocating controller data channel in *9-4, 12-2
allocating permanent buffered data path in*

10-4
allocating permanent mapping registers in* 10-5
context* 13-3 to 13-4, D-13
for connect to interrupt facility • H-10, H-14
for MASSBUS device drivers* 13-3, A-11, G-11
for MicroVAX I device drivers* 10-10
functions* 13-1, D-12
input* D-12
IPL requirements*D-13
of CONINTERR.EXE • H-14
output • D-13
register usage • D-13

Unsolicited interrupt

See Device interrupt
Unsolicited interrupt routine

address* 7-6
Unsolicited interrupt servicing routine* 11-6, 11-8,

A-14, G-14
address* D-14
context* D-14

Index—18

Index

Unsolicited interrupt servicing routine (cont'd.)

functions* D-13
input • D-14
IPL requirements*D-14
output • D-14
register usage *D-14

USE command* 15-1
User mode AST

See AST
User process

returning control to *5-14

v
VAX-1 1/725

See VAX-11/730
VAX-11/730* 1-12, 3-9

booting with XDELTA • 15-1
requesting an XDELTA interrupt on* 15-6

VAX-11/750* 1-11, 3-9
booting with XDELTA on* 15-1
requesting an XDELTA interrupt on* 15-6

VAX-11/780* 1-11, 3-9
booting with XDELTA* 15-1
requesting an XDELTA interrupt on* 15-6

VAX-1 1/782

See VAX-11/780
VAX-11/785

See VAX-11/780
VAX 8200* 1-12 to 1-13, 3-9

booting with XDELTA on* 15-1
requesting an XDELTA interrupt on* 15-6

VAX 8600* 1-11, 3-9
booting with XDELTA* 15-1
requesting an XDELTA interrupt on* 15-6

VAX 8650
See VAX 8600

VAX 8800* 1-12 to 1-13, 3-9
booting with XDELTA on* 15-1
requesting an XDELTA interrupt on* 15-6

VAXBI* 1-12
VAX MACRO instructions

as used in device driver *6-2 to 6-4
VCB (volume control block)* A-28, A-32
VEC$B_DATAPATH* 10-3, 10-6
VEC$ V_LOCK • C-69
VEC$V_LWAE *4-13, 10-6, C-61
VEC$V_MAPLOCK • 10-5, 13-4, C-53, C-74
VEC$V_PATHLOCK • 10-3, 13-4, C-68, C-73
Vector jump table *3-9, A-4

Vector jump table (cont'd.)

examining* 15-6 to 15-7
Vector register* 11-1
Vector table* A-4
$VIELD macro *B-39
_VIELD macro *B-40
Virtual address register

See MBA$L_VAR
Virtual I/O function • A-21, A-22

translation to logical function from *2-3
Volume control block

See VCB
Volume valid bit

See UCB$V_VALID

w
Wait for interrupt macro

See WFIKPCH macro, WFIRLCH macro
WCB (window control block) *5-8, A-7, A-20
WFIKPCH macro *5-14, 9-6, 9-6 to 9-7, 12-7,

13-7, B-41, D-11, G-12
WFIRLCH macro *5-14, 9-6, 9-6 to 9-7, B-42,

D-11
Window control block

See WCB
Word count register *9-4
Working set limit

insufficient • 8-8, 8-10
Write function

FDT routine for *8-9 to 8-10

x
XADRIVER.MAR* F-1 to F-22
XDELTA

See also Delta/XDelta Utility
IPL *3-6

Index-19

Writing a Device Driver
for VAX/VMS

AA-Y51 1B-TE

READER'S
COMMENTS

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance Report (SPR) service,
submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) -

Name _Date-

Organization ___

Street ---

City __State_Zip Code_
or Country

— — Do Not Tear - Fold Here and Tape

mmn No Postage
Necessary

if Mailed in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

III,,.,,11.II.., 11II111111II1111111111111II111111

— — Do Not Tear - Fold Here

C
ut

 A
lo

ng
 D

o
tt

ed
 L

in
e

Writing a Device Driver
for VAX/VMS

AA-Y511B-TE

READERS
COMMENTS

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance Report (SPR) service,
submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date-

Organization -

Street _ __

City _State_Zip Code_
or Country

Do Not Tear - Fold Here and Tape

mwm No Postage
Necessary

if Mailed in the
United States

T

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03062-2698

.II,II.m.II,...I.II,ImI,ImI,ImII.1,11

— — Do Not Tear - Fold Here

C
u

t
A

lo
n
g
 D

o
tt

e
d
 L

in
e

