
VAX/VMS
Message Utility
Reference Manual

Order Number: AA-Z422A-TE

September 1984

This manual describes the VAX/VMS Message Utility.

Revision/Update Information: This is a new manual.

Software Version: VAX/VMS Version 4.0

digital equipment corporation
maynard, massachusetts

September 1984

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1984 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

SQSDDSD
ZK-2305

This document was prepared using an in-house documentation production system. All
page composition and make-up was performed by T^X, the typesetting system developed
by Donald E. Knuth at Stanford University. Tj=X is a registered trademark of the American
Mathematical Society.

MESSAGE Contents

PREFACE V

NEW AND CHANGED FEATURES vii

FORMAT MSG-1

DESCRIPTION MSG-2

CONSTRUCTING MESSAGES MSG-3

The Message Source File MSG-3

Compiling the Message Source File MSG-4

Linking the Message Object Module MSG-5

USING MESSAGE POINTERS MSG-5

THE SET MESSAGE COMMAND MSG-6

ERROR MESSAGES MSG-7

COMMAND QUALIFIERS MSG-8

/FILE-NAME MSG-9

/LIST MSG-10

/OBJECT MSG-11

/SYMBOLS MSG-12

/TEXT MSG-13

SOURCE FILE STATEMENTS MSG-14

BASE MESSAGE NUMBER DIRECTIVE MSG-16

END DIRECTIVE MSG-17

FACILITY DIRECTIVE MSG-18

IDENTIFICATION DIRECTIVE MSG-20

LITERAL DIRECTIVE MSG-21

iii

MESSAGE Contents

MSG—1

MSG-2

MESSAGE DEFINITION MSG-22

PAGE DIRECTIVE MSG-25

SEVERITY DIRECTIVE MSG-26

TITLE DIRECTIVE MSG-27

EXAMPLES MSG-28

INDEX

FIGURES

Message Code MSG-3

Creating a Message Pointer MSG-6

IV

Preface

Intended Audience

This manual is intended for use by programmers and general users.

Structure of This Document

This document is composed of five major parts.

The Format Section is an overview of the Message Utility and is intended as a
quick reference guide. The format summary contains the DCL command that
invokes the Message Utility, listing all command qualifiers and parameters.
The usage summary describes how to invoke and exit from the Message
Utility.

The Description Section explains how to use the Message Utility.

The Qualifier Section describes each DCL command qualifier. Qualifiers
appear in alphabetical order.

The Command Section describes each message source file statement and
qualifier. Message source file statements appear in alphabetical order.

The Examples Section contains examples of commmon operations that you
perform with the Message Utility.

Associated Documents

Information about linking object modules and creating executable,
nonexecutable and shareable images can be found in the VAX/VMS Linker
Reference Manual.

Conventions Used in This Document

Convention Meaning

I RET 1 A symbol with a one- to three-character
abbreviation indicates that you press a key on
the terminal, for example, {rex\ .

ICTRL/xl The phrase CTRL/x indicates that you must press
the key labeled CTRL while you simultaneously
press another key, for example, CTRL/C, CTRL/Y,
CTRL/O.

$ SHOW TIME Command examples show all output lines or
05-JUN-1985 11:55:22 prompting characters that the system prints

or displays in black letters. All user-entered
commands are shown in red letters.

v

Preface

Convention Meaning

$ TYPE MYFILE.DAT Vertical series of periods, or ellipsis, mean either
that not all the data that the system would display
in response to the particular command is shown or
that not all the data a user would enter is shown.

file-spec,... Horizontal ellipsis indicates that additional
parameters, values, or information can be entered.

[logical-name] Square brackets indicate that the enclosed item
is optional. (Square brackets are not, however,
optional in the syntax of a directory name in a
file specification or in the syntax of a substring
specification in an assignment statement.)

quotation marks
apostrophes

The term quotation marks is used to refer to
double quotation marks ("). The term apostrophe
(') is used to refer to a single quotation mark.

vi

New and Changed Features

This version of the Message Utility does not include any significant technical
changes.

vii

MESSAGE
Description

MESSAGE

FORMAT

usage summary

The VAX/VMS Message Utility allows you to supplement the
VAX/VMS system messages with your own messages. Your
messages can indicate that an error has occurred. Messages can
also indicate other conditions, for example, that a routine has run
successfully, or that a default value has been assigned.

MESSAGE file-spec[,...]

Command Qualifiers

/[NOJFILE—NA ME[=file-spec]
/[NOJLIS T[=file-spec]
/[NO]L IS T[=file-spec]
/[NO]OBJECT[=file-spec]
/[NO]S YMBOLS
/[NO]TEXT

Defaults

/NOFILE-NAME
/NOLIST (interactive mode)
/LIST (batch mode)
/OBJECT
/SYMBOLS
/TEXT

Command Parameter

file-spec
Specifies the message source file to be compiled. If you do not specify a
file type, the default is MSG. Wildcard characters are allowed in the file
specification(s).

If you specify more than one message source file, separated by either commas
or plus signs, the files will be concatenated and compiled as a single file.

If you specify SYS$INPUT, the message source file(s) must immediately
follow the MESSAGE command in the input stream, and both the object
module name, identified by the /OBJECT qualifier, and the listing file name,
identified by the /LIST qualifier, must be explicitly stated.

Invoking
The following DCL command invokes the Message Utility:

$ MESSAGE

Exiting
After compiling the message source file, the Message Utility returns the user
to DCL command level.

Directing Output
Does not apply.

Privileges/Restrictions
None.

For details about message statements and directives, qualifiers, and parame¬
ters in message source files, see the Source File Statements Section.

MSG-1

MESSAGE
Description

DESCRIPTION Messages are normally displayed to the user as a line of alphanumeric codes
and text explaining the condition that caused the message to be issued.

Messages are displayed in the following format:

%FACILITY-L-IDENT, message-text

FACILITY
Specifies the abbreviated name of the software component that issued the
message.

L
Shows the severity level of the condition that caused the message. The five
severity levels are represented by the following codes:

S Success

I Informational

W Warning

E Error

F Fatal or severe

IDENT
Identifies a symbol of up to 15 characters that represents the message.

message-text
Explains the cause of the message. The message text can also include up
to 255 formatted-ASCII-output (FAO) arguments. For example, an FAO
argument can be used to display the instruction where an error occurred or a
value that the user should be aware of.

% and ,
Included as delimiters if any of the first three fields—FACILITY, L, or
IDENT—is present.

If you suppress FACILITY, L, and IDENT, the first character of the message
text will be capitalized by the Put Message ($PUTMSG) system service.

The following is a typical message:

•/.TYPE® -W-© OPENIN® , error opening _DBO: [ROSE] STATS. FOR; © as input®

O TYPE is the facility

© W, warning, is the severity level

© OPENIN is the IDENT

© __DBO:[ROSE]STATS.FOR is the FAO argument

© "Error opening _JDBO:[ROSE]STATS.FOR; as input" is the message text

MSG-2

MESSAGE
Description

1 Constructing Messages
You construct messages by writing a message source file, compiling it using
the Message Utility, and linking the resulting object module with your facility
object module. When you run your program, the Put Message ($PUTMSG)
system service finds the information to use in the message by using a message
argument vector.

The message argument vector includes the message code, a 32-bit value that
uniquely identifies the message. The message code, which is created from
information defined in the message source file, consists of

• The severity level defined in the severity directive or message definition

• The message number assigned automatically by a message definition or
specified with the base message number directive

• The facility number defined in the facility directive

• Internal control flags

Figure MSG-1 shows the arrangement of the bits in the message code.

Figure MSG-1 Message Code

31 28 27 16 15 3 2 0

control facility number message number sev

ZK-866-82

You can refer to the message code in your programs by means of a global
symbol called the message symbol, which also is defined by information from
the message source file. The message symbol, which appears in the compiled
message file, consists of

• The symbol prefix defined in the facility directive

• The symbol name defined in the message definition

1.1 The Message Source File
The message source file consists of message definition statements and direc¬
tives that define the message text, the message code values, and the message
symbol. The various elements that can be included in a message source file
are

• Facility directive

• Severity directive

• Base message number directive

• Message definition

• Literal directive

• Identification directive

MSG-3

MESSAGE
Description

• Listing directives

• End directive

Usually, the first statement in a message source file is a .TITLE directive,
which allows you to specify a module name for the compiled message file.
Following the .TITLE directive, you must specify a .FACILITY directive. All
the messages defined after a .FACILITY directive are associated with that
facility. A .END directive or a new .FACILITY directive ends the list of
messages associated with a particular facility.

A severity level must be defined for each message either by specifying a
.SEVERITY directive or by including a severity qualifier as part of the message
definition.

Each message defined in the message source file must have a facility and a
message definition associated with it. All other message source file statements
are optional. See the Source File Statements Section for a detailed description
of the format of each of these message source file statements.

TESTMSG.MSG is a sample message source file. The messages for the
associated FORTRAN program, TEST.FOR, are defined in TESTMSG.MSG
with the following lines:

.FACILITY TEST.1 /PREFIX=MSG_

.SEVERITY ERROR
SYNTAX <Syntax error in string '!AS'>/FA0=1
ERRORS <Errors encountered during processing>

.END

The FORTRAN program, TEST.FOR, contains the following lines:

EXTERNAL MSG.SYNTAX.MSG.ERRORS
CALL LIB$SIGNAL(MSG_SYNTAX,*/,VAL(1) . 'ABC')
CALL LIB$SIGNAL(MSG_ERRORS)

END

In addition to defining the message data, TESTMSG.MSG also defines the
message symbols MSG—SYNTAX and MSG—ERRORS that are included as
arguments in the procedure calls of TEST.FOR. The function %VAL is a
required FORTRAN compile-time function. The first call also includes the
string 'ABC' as an FAO argument.

1.2 Compiling the Message Source File
Message source files must be compiled into object modules before the mes¬
sages defined in them can be used. You compile your message source file
by issuing the MESSAGE command followed by the file specification of the
message source file.

For example, the message source file, TESTMSG.MSG, is compiled by the
Message Utility to create an object module, TESTMSG.OBJ, with the com¬
mand:

$ MESSAGE TESTMSG

For your convenience, you can put message object modules into object
module libraries, which can then be linked with facility object modules.

MSG-4

MESSAGE
Description

1.3 Linking the Message Object Module

After the message file has been compiled, the message object module must
be linked with the facility object module (created when the source file was
compiled) to produce one executable image file.

For example, the message object, TESTMSG.OBJ, is linked to the FORTRAN
object module, TEST.OBJ, to create the executable program, TEST.EXE with
the command:

$ LINK/NOTRACE TEST+TESTMSG

At this point, the program, which contains both the message data and the
facility code, can be executed with the command:

$ RUN TEST

If an error occurs when the program is executed, the following messages will
be issued.

%TEST-E-SYNTAX. Syntax error in string ABC
•/.TEST-E-ERRORS, Errors encountered during processing

2 Using Message Pointers

Message pointers are generally used when you need to provide different
message texts for the same set of messages, for example, a multilingual
situation. Because the message object module is not linked directly with the
facility object module, you do not have to relink the executable image file to
change the message text included in it.

To use a pointer, you must create a nonexecutable message file that contains
the message text and a pointer file that contains the symbols and pointer to
the nonexecutable file.

You create the nonexecutable message file by compiling and linking a mes¬
sage source file by itself. For example, to create the nonexecutable message
file COBOLMF.EXE, you would first create the object module by compiling
the message source file, COBOLMSG.MSG, with the following command:

$ MESSAGE/NOSYMBOLS COBOLMSG

Then, the resulting object module is linked by itself with the command:

$ LINK/SHAREABLE=SYS$MESSAGE:COBOLMF COBOLMSG.OBJ

By default, the Linker places newly created images in your default device and
directory. In the preceding example, the nonexecutable image COBOLMF.EXE
is placed in the system message library SYS$MESSAGE.

You create the pointer file by recompiling the message source file with
MESSAGE/FILE_NAME command. To avoid confusion, the pointer file
should have a different file name from the nonexecutable file.

The object module resulting from the MESSAGE/FILE_NAME command
contains only global symbols and the file specification of the nonexecutable
message file.

For example, the object module MESPNTR.OBJ, which contains a pointer to
the nonexecutable message file COBOLMF.EXE, is created by the command:

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

MSG—5

MESSAGE
Description

In addition to the pointers, the object module, MESPNTR.OBJ, contains the
global symbols defined in the message source file, COBOLMSG.MSG. If the
destination of the nonexecutable message file is not SYS$MESSAGE, you
must specify the device and directory in the file specification for the /FILE_
NAME qualifier.

After the pointer object module has been created, it can then be linked with
the facility object module.

For example, the object module, MESPNTR.OBJ is linked to the COBOL
program, COBOLCODE.

$ LINK COBOLCODE.MESPNTR

When the resulting facility image file is run, the message data is retrieved
from the message file, COBOLMF, by the $GETMSG system service.

Figure MSG-2 illustrates the relationship of the files in this example.

Figure MSG-2 Creating a Message Pointer

ZK-868-82

3 The SET MESSAGE Command

The SET MESSAGE command allows you to

• Suppress or enable the various fields of the messages in your process

• Supplement the system message data with the message data in a nonexe¬
cutable message image for your process

For example, the following SET MESSAGE command specifies that the mes¬
sage information in MYMSG.EXE supplements the existing system messages:

$ SET MESSAGE MYMSG

MSG-6

MESSAGE
Description

In addition, the SET MESSAGE command used with one or more qualifiers
suppresses or enables one or more fields in a messsage. For example, the
following command suppresses the IDENT field in a message:

$ SET MESSAGE/NOIDENTIFICATION

For more information concerning the SET MESSAGE command, see the
VAX/VMS DCL Dictionary.

4 Error Messages

The VAX/VMS System Messages and Recovery Procedures Reference Man¬
ual lists the error messages issued by the message compiler and provides
explanations and suggested user actions for these messages. Most of the
user responses entail changing the message source file and reentering the
MESSAGE command.

MSG-7

MESSAGE
Command Qualifiers

COMMAND
QUALIFIERS MESSAGE command qualifiers allow you to specify the type and contents of

output files produced. In addition, MESSAGE command qualifiers allow you
to create nonexecutable message files that contain pointers to files that contain
message data. Output files produced by command qualifiers are named in
accordance with the rules described in the VAX/VMS DCL Dictionary

MSG—8

MESSAGE
/FILE_NAME

/FILE—NAME
Specifies whether the object module contains a pointer to a file
containing message data.

FORMAT /FI LE_N AM E ^file-spec
/NOFILE—NAME

qualifier value file-spec
Identifies a nonexecutable message file. The default device and directory for
the file specification is SYS$MESSAGE, and the default file type is EXE. No
wildcard characters are allowed in the file specification.

DESCRIPTION The /[NOJFILE—NAME qualifier specifies whether the object module contains
a pointer to a file containing message data. By default, the object module
contains only compiled message information and no pointers.

The /FILE_NAME and /TEXT qualifiers are mutually exclusive because
a message pointer file cannot contain message text. The message text is
contained in the nonexecutable message file specified with the /FILE_NAME
qualifier.

EXAMPLES
□ $ MESSAGE COBOLMSG

This MESSAGE command creates the message object, COBOLMSG.OBJ, by
compiling the message source file, COBOLMSG.MSG. The default qualifier
/NOFILE_NAME is implied.

$ MESSAGE/FILE_NAME=COBOLMF COBOLMSG

This MESSAGE command creates a message pointer file COBOLMSG.OBJ
that contains a pointer to the nonexecutable message file,
SYS$MESSAGE:COBOLMF.EXE.

MSG—9

MESSAGE
/LIST

/LIST
Controls whether an output listing is created, and optionally pro¬
vides an output file specification for the listing.

FORMAT /LI ST[=file-spec]
/NOLIST

qualifier value file-spec
Specifies an output file specification for the listing file. The default device and
directory are the current device and directory. The default file type for listing
files is LIS. No wildcard characters are allowed in the file specification.

DESCRIPTION When you compile message source files in batch mode, the output listing is
created by default; however, in interactive mode, the default is to produce no
output listing. The /LIST qualifier creates a listing file. If you do not specify
a file specification, the listing file has the same name as the first message
source file and a file type of LIS.

EXAMPLE
$ MESSAGE/LIST=MSGOUTPUT COBOLMSG

This MESSAGE command compiles the message source file COBOLMSG.MSG
and creates the output listing MSGOUTPUT.LIS in the current directory.

MSG-10

MESSAGE
/OBJECT

/OBJECT
Controls whether an object module is created by the message
compiler and optionally provides a file specification for the object
module.

FORMAT /OBJECT[=file-spec]
/NOOBJECT

qualifier value file-spec
Specifies a file specification for the object module. The default device and
directory are the current device and directory; no wildcard characters are
allowed in the file specification.

DESCRIPTION By default, the message compiler creates an object module that contains the
message data. If you do not specify a file specification, the object module has
the same name as the first message source file with a file type of OBJ.

EXAMPLES

D $ MESSAGE COBOLMSG

This MESSAGE command creates the message object, COBOLMSG.OBJ, by
compiling the message source file, COBOLMSG.MSG. The default qualifier
/OBJECT is implied.

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

This MESSAGE command creates the object module, MESPNTR.OBJ, which
contains a pointer to the nonexecutable message file, COBOLMF.EXE.

MSG-11

MESSAGE
/SYMBOLS

/SYMBOLS
Controls whether global symbols are present in the object module.
By default, object modules are created with global symbols.

FORMAT /[NO]SYMBOLS

qualifier values None.

DESCRIPTION By default, the message compiler creates an object module with global
symbols. The /SYMBOLS qualifier requires that the /OBJECT qualifier be in
effect, either explicitly or implicitly. If you are creating both a pointer object
module and a nonexecutable message image, you can compile the object
module which will become the nonexecutable image with the /NOSYMBOLS
qualifier as the symbols only have to be in the pointer object module.

EXAMPLE
$ MESSAGE/FILE_NAME=COBOLMF /OBJECT“HESPNTR/SYMBOLS COBOLMSG

This MESSAGE command creates the object module, MESPNTR.OBJ, which
contains global symbols.

MSG-12

MESSAGE
/TEXT

/TEXT
Controls whether the message text is present in the object module.

FORMAT /[NO]TEXT

qualifier values None.

DESCRIPTION By default, the message compiler creates an object module that contains
text. The /TEXT and /FILE_NAME qualifiers are mutually exclusive since
a message pointer file cannot contain message text. The message text is ob¬
tained from the nonexecutable message file specified with the /FILE_NAME
qualifier.

The /TEXT qualifier requires that the /OBJECT qualifier be in effect, either
explicitly or implicitly.

The /NOTEXT qualifier can be used with the /SYMBOLS qualifier to produce
an object module containing only global symbols.

EXAMPLE
$ MESSAGE/FILE_NAME=COBOLMF/NOTEXT /OBJECT=MESPNTR COBOLMSG

This MESSAGE command creates the object module, MESPNTR.OBJ, which
does not contain text; instead, it contains a pointer to the nonexecutable
message file, COBOLMF.EXE.

MSG-13

MESSAGE
Source File Statements

SOURCE FILE The message source file contains message statements or directives and the
information included in the message, the message code, and the message
symbol.

Message Source File Statements

Message source file statements are imbedded within a message source file.
Generally, message source file statements help construct the message code,
the message symbol, and control output listings. The message source file
statements or directives are as follows:

• Facility directive .FACILITY

• Severity directive .SEVERITY

• Base message number directive .BASE

• Message definition message-name

• END directive .END

• Literal directive .LITERAL

• Identification directive .IDENT

• Listing directives

— Title directive .TITLE

— Page directive .PAGE

Many of these statements accept qualifiers and parameters. The specific
format of each of the message source file statements is described in detail
below.

Any line in the message source file can include a comment delimited by an
exclamation point except lines that contain the .TITLE directive. You can
insert extra spaces and tabs in any line to improve readability.

The listing title specified with the .TITLE directive and the message text
specified in the message definition must occupy only one line. All other
statements in a message source file can occupy any number of lines; text that
continues onto the next line must end with a hyphen.

Defining Symbols in the Message Source File

Symbols defined in the message source file can include any of the following
characters:

A through Z
a through z
1 through 9
$ (dollar sign)
__ (underscore)

MSG-14

MESSAGE
Source File Statements

Using Expressions in the Message Source File

Expressions used in the message source file can include any of the following
radix operators to specify the radix of a numeric value:

"X Hexadecimal

~0 Octal

~D Decimal

The default radix is decimal.

Expressions can include symbols and the plus sign, which assigns a positive
value, and minus sign, which assigns a negative value. Expressions can also
include the following binary operators:

+ Addition

- Subtraction

* Multiplication

/ Division

@ Arithmetic shift

Expressions can also include parentheses as grouping operators. Expressions
enclosed in parentheses are evaluated first; nested parenthetical expressions
are evaluated inside to outside.

MSG-15

MESSAGE
Base Message Number Directive

Base Message Number Directive
Defines the value used in constructing the message code.

FORMAT .BASE number

statement number
parameter Specifies a message number to be associated with the next message definition,

or an expression that is evaluated as the desired number.

statement
qualifiers

None.

DESCRIPTION By default, all of the messages following a facility directive are numbered
sequentially, beginning with 1.

If you need to supersede this default numbering system, (for example, if
you want to reserve some message numbers for future assignment) specify
a message number of your choice using the base message number directive.
The message number is used as a base for the sequential numbering of all
messages that follow until another .BASE is encountered or until the end of
the messages belonging to the facility.

EXAMPLE
.TITLE
.IDENT
.FACILITY
.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_ O
ERROR

< Unrecognized keyword !AS>/FA0_C0UNT=1
< Ambiguous keyword>

WARNING
10 ©
< Invalid syntax in keyword>

The facility number (facnum) in the facility statement O defines the first two
message numbers as 1 and 2. This sequential numbering is superseded by the
base message number directive © which assigns the message number 10 to
the third message.

MSG-16

MESSAGE
End Directive

End Directive
Terminates the entire list of messages for the facility.

FORMAT .END

statement
parameters

None.

statement
qualifiers

None.

DESCRIPTION An End directive terminates the entire list of messages for a facility. In
addition to using an end statement to terminate a list of messages for a
facility, you may also use another severity directive or a new facility directive.

EXAMPLE
.TITLE SAMPLE Error and Warning Messages

.IDENT 'VERSION 4.00'

.FACILITY SAMPLE.1/PREFIX=ABC_

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FA0_C0UNT=1

AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10
SYNTAX < Invalid syntax in keyword>

.END O

The .END directive O terminates the list of messages for the SAMPLE facility.

MSG-17

MESSAGE
Facility Directive

Facility Directive
Specifies the facility to which the messages will apply.

FORMAT . FAC 1 LI TY [/qualifier,...] facnamf,]facnum
[/qualifier,...]

statement
parameters

facnam
Specifies the facility name used in the facility field of the message and in the
symbol representing the facility number. The facnam can have up to nine
characters.

facnum
Specifies the facility number that is used to construct the 32-bit value of the
message code. A decimal value in the range of 1 to 2047, or an expression
that evaluates to a value in that range may be used. Facility numbers are
usually assigned by the system manager so that no two facilities have the
same number.

statement
qualifiers /PREFIX=prefix

Defines an alternate symbol prefix to be used in the message symbol for all
messages referring to this facility. The default symbol prefix is the facility
name followed by an underscore (_). If /SYSTEM is also specified, the
default prefix is the facility name followed by a dollar sign and an underscore
($_). The combined length of the prefix and the message symbol name
cannot exceed 31 characters.

/SHARED
Inhibits the setting of the facility-specific bit in the message code. The
/SHARED qualifier is used only for system service and shared messages and
is reserved for DIGITAL use.

/SYSTEM
Inhibits the setting of the customer facility bit in the message code. This
qualifier is reserved for DIGITAL use.

DESCRIPTION The facility directive is the first directive in a message source file. All of the
lines following a facility directive apply to that facility until an end statement

MSG-18

or another facility statement is reached. Both the facility name and the facility
number are required in a facility directive and can be separated by a comma
or by any number of spaces or tabs.

The facility directive creates a global symbol of the form:

facnam$_FACILITY

This symbol can be used to refer to the facility number assigned to the
facility.

MESSAGE
Facility Directive

EXAMPLE
.TITLE
.IDENT
.FACILITY
.SEVERITY

SAMPLE Error and Warning Messages
•VERSION 4.00'
SAMPLE,1/PREFIX=ABC_ O
ERROR

UNRECOG
AMBIG

< Unrecognized keyword !AS>/FA0_C0UNT=1
< Ambiguous keyword>

.SEVERITY

.BASE
SYNTAX

WARNING

10
< Invalid syntax in keyword>

.END

The facility statement O in this message source file defines the messages
belonging to a facility (facnam) SAMPLE with a facility number (facnum)
of 1. The message numbers begin with 1 and continue sequentially. The
/PREFIX=ABC_ qualifier defines the message symbols ABC—UNRECOG,
ABC—AMBIG, and ABC—SYNTAX.

MSG-19

MESSAGE
Identification Directive

Identification Directive
Identifies the object module produced by the Message Utility.

FORMAT .IDENT string

statement string
parameter Identifies the object module, for example, a string that identifies a version

number. The string is a 1 to 31 character string of alphanumeric characters,
underscores, and dollar signs if it is not delimited. If other characters are
used, then the string must be delimited with either apostrophes or quotation
marks.

statement
qualifiers

None.

DESCRIPTION The identification directive is in addition to the name you assign to the
module with .TITLE directive. You can label the object module by specifying
a character string with the directive. If a message source file contains more
than one identification directive, the last directive given establishes the
character string that forms part of the object module identification.

EXAMPLE
.TITLE
.IDENT
.FACILITY
.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

SAMPLE Error and Warning Messages

'VERSION 4.00' O
SAMPLE,1/PREFIX=ABC_
ERROR

<Unrecognized keyword !AS>/FA0_C0UNT=1
<Ambiguou8 keyword>

WARNING
10
< Invalid syntax in keyword>

This identification directive O identifies the object module that will be
produced by the Message Utility.

MSG-20

MESSAGE
Literal Directive

Literal Directive
Defines global symbols in your message source file. You can either
assign values to these symbols or use the default values provided
by the directive.

FORMAT .LITERAL symbol[=value][,...]

statement
parameters

symbol
Specifies a symbol name.

value
Specifies any valid expression. If the value is omitted, a default value is
assigned. The default value is 1 for the first symbol in the directive and 1
plus the last value assigned for subsequent symbols.

statement
qualifiers

None.

DESCRIPTION You can use the .LITERAL directive to define a symbol as the value of another
previously defined symbol, or as an expression that results from operations
performed on previously defined symbols.

EXAMPLES
Q .LITERAL A.B.C

The values of A,B, and C will be 1, 2, and 3.

Q .FACILITY
.SEVERITY
FIRST

SAMPLE,1/PREFIX=MSG$_

ERROR
< first error>

LAST
.LITERAL

.LITERAL

< last error>
LASTMSG=MSG$ _LAST O
NUMSG=(MSG$_LAST@-3)-(MSG$_FIRST®-3) ! # of messages ©

In this example, symbols defined in the facility and message definitions are
used to assign values to symbols created with the .LITERAL directives.

The first .LITERAL directive O defines a symbol that has the value of the last
32-bit message code defined. The second .LITERAL directive © defines the
total number of messages in the source file.

MSG-21

MESSAGE
Message Definition

Message Definition
Defines the message symbol, the message text, and the number of
FAO arguments that can be printed with the message.

FORMAT name[/qualifier,...] < message-text> [/qualifier,...]

statement
parameters

name
Specifies the name that is combined with the symbol prefix (defined in the
facility directive) to form the message symbol. The combined length of the
prefix and the message symbol name cannot exceed 31 characters.

The name is used in the IDENT field of the message unless the
/IDENTIFICATION qualifier is specified in the message definition.

message-text
Defines the text explaining the condition that caused the message to be
issued. The message text can be delimited either by angle brackets or by
quotation marks. The text can be up to 255 bytes long; however, you cannot
continue the delimited text onto another line. The message text can include
FAO directives that insert ASCII strings into the resulting message; these
directives are used by the Formatted ASCII Output ($FAO) system service.
If you include an FAO directive, you must also use the /FAO—COUNT
qualifier.

statement
qualifiers

/FA 0—C0UNT=n
Specifies the number of FAO arguments to be included in the message at
execution time. The number specified must be a decimal number in the range
of 0 through 255. The $PUTMSG service uses n to determine how many
arguments are to be given to the $FAO service when constructing the final
message text. The default value for n is 0.

/IDENTIFICA TION=name
Specifies an alternate character string to be used as the IDENT field of the
message. The name can include up to nine characters. If this qualifier is not
specified, the name defined in the message definition will be used.

/USER—VALUE=n
Specifies an optional user value that can be associated with the message. The
value must be a decimal number in the range of 0 through 255. The default is
0. The value can be retrieved by the Get Message ($GETMSG) system service
for use in classifying messages by type or by action to be taken.

/SUCCESS
Specifies the success level for a message. This qualifier overrides any .SEVER¬
ITY directive in effect. If no .SEVERITY directive is in effect, this qualifier
must be used to specify the success level.

/INFORMATIONAL
Specifies the informational level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, this

MSG-22

MESSAGE
Message Definition

qualifier must be used to specify the informational level.

/WARNING
Specifies the warning level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, this
qualifier must be used to specify the warning level.

/ERROR
Specifies the error level for a message. This qualifier overrides any .SEVER¬
ITY directive in effect. If no .SEVERITY directive is in effect, this qualifier
must be used to specify the error level.

/SEVERE
Specifies the severe level for a message. This qualifier overrides any .SEVER¬
ITY directive in effect. If no .SEVERITY directive is in effect, this qualifier
must be used to specify the severe level.

/FATAL
Specifies the fatal level for a message. This qualifier overrides any .SEVERITY
directive in effect. If no .SEVERITY directive is in effect, this qualifier must be
used to specify the fatal level.

DESCRIPTION The message definition specifies the message text that will be displayed and
the name used in the IDENT field of the message. Additionally, you can
use the message definition to specify the number of FAO arguments to be
included in the message text. Any number of message definitions can follow
a severity directive (or a facility directive if no severity directive is included.)

Qualifiers can be placed in any order before or after the message text.

You can use the severity level qualifiers either to override the severity level
defined in a severity directive or to replace severity directives in your message
source file. Only one severity qualifier can be included per message definition.

EXAMPLE
.TITLE SAMPLE Error and Warning Messages

.IDENT •VERSION 4.00'

.FACILITY SAMPLE.1/PREFIX=ABC_ ©

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FA0_C0UNT=

AMBIG "Ambiguous keyword" ©

.SEVERITY WARNING

.BASE 10
SYNTAX

.END

< Invalid syntax in keyword> ©

This message source file contains a facility directive O and three mes¬
sage definitions 0 0 9. The symbol names—UNRECOG, AMBIG, and
SYNTAX—specified in the message definitions will be combined with a pre¬
fix, ABC_, defined in the facility directive, to form the message symbols,
ABC—UNRECOG, ABC—AMBIG, and ABC—SYNTAX.

The message text of the UNRECOG and SYNTAX messages © O is delimited
by the angle brackets (< >); the message text of the AMBIG message © is
delimited by quotation marks ("").

MSG-23

MESSAGE
Message Definition

In addition, the first message definition above includes the FAO directive
!AS (which inserts an ASCII string at the end of the message text) and the
corresponding qualifier /FAO—COUNT.

MSG-24

MESSAGE
Page Directive

Page Directive
Forces page breaks in the output listing.

FORMAT .PAGE

statement
parameters

None.

statement
qualifiers

None.

DESCRIPTION The .PAGE directive allows you to specify page breaks in the output listing.
You can only specify one page break with any one .PAGE directive; however,
you can use the .PAGE directive as often as you like.

EXAMPLE
.TITLE
.IDENT
.FACILITY
.SEVERITY

UNRECOG
AMBIG
.PAGE O
.SEVERITY
.BASE
SYNTAX

.END

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_

ERROR

< Unrecognized keyword !AS>/FA0_C0UNT=1
< Ambiguous keyword>

WARNING

10
< Invalid syntax in keyword>

This .PAGE directive O forces a page break in the output listing after the
AMBIG message definition.

MSG—25

MESSAGE
Severity Directive

Severity Directive

Specifies the severity level to be associated with the messages that
follow.

FORMAT .SEVERITY level

statement level
parameter Specifies the level of the condition that caused the message.

SUCCESS Produces an S code in a message.

INFORMATIONAL Produces an 1 code in a message.

WARNING Produces a W code in a message.

ERROR Produces an E code in a message.

SEVERE Produces an F code in a message.

FATAL Produces an F code in a message.

SEVERE is equivalent to FATAL and they can be used interchangeably; the
severity level code for both of these is F.

statement
qualifiers

None.

DESCRIPTION Following the facility directive, the message source file generally contains a
severity directive. You must include a severity directive if you do not specify
the severity on each message definition with one of the severity qualifiers. If
you attempt to define a message without specifying a severity level, an error
will result.

A new facility directive cancels the previous severity level in effect.

EXAMPLE
.TITLE
.IDENT
.FACILITY
.SEVERITY

SAMPLE Error and Warning Messages
•VERSION 4.00'
SAMPLE.1/PREFIX=ABC_

ERROR O
UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

< Unrecognized keyword !AS>/FA0_C0UNT=1
< Ambiguous keyword>

WARNING ©
10
< Invalid syntax in keyword>

The two severity directives © © included in this message source define the
severity levels for three messages. The first two messages have a severity
level of E; the third message has the severity level W.

MSG-26

MESSAGE

•
Title Directive

Title Directive

Specifies the module name and title text that will appear on the top
of each page of the output listing file.

FORMAT .TITLE modname [listing-title]

statement modname

•

parameters Specifies a character string of up to 31 characters that will appear in the object
module as the module name.

listing-title
Defines the text to be used as the title of the listing. The title begins with
the first nonblank character after the module name and continues through
the next 28 characters. An exclamation mark in these 28 characters will be
treated as part of the title and not as a comment delimiter. The listing title
has a maximum length of 28 characters and cannot be continued onto another
line.

• statement
qualifiers

None.

EXAMPLE
.TITLE
.IDENT
.FACILITY
.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

SAMPLE Error and Warning Messages O
•VERSION 4.00'
SAMPLE,1/PREFIX=ABC_

ERROR

< Unrecognized keyword !AS>/FA0_C0UNT=1
< Ambiguous keyword>

WARNING
10
< Invalid syntax in keyword>

The module name O of the object module produced by this file will be
"SAMPLE" , and the title of the output listing O will be defined as "Error and
Warning Messages."

MSG-27

MESSAGE
Examples

MESSAGE
EXAMPLES

The following examples demonstrate the use of message files and pointer
files.

Creating an executable image containing message data

The following example illustrates the steps involved in incorporating a
message file within an executable image.

The message source file, TESTMSG.MSG, created with a text editor, contains
the following lines:

.FACILITY TEST.1 /PREFIX=MSG_

.SEVERITY ERROR

SYNTAX < Syntax error in string '!AS'>/FA0=1
ERRORS < Errors encountered during processing>
.END

The message source file is compiled with the command

$ MESSAGE TESTMSG

The FORTRAN source file is compiled with the command

$ FORTRAN TEST

The message object module, TESTMSG.OBJ, is linked to the FORTRAN object
module, TEST.OBJ, with the command

$ LINK/NOTRACE TEST-*-TESTMSG

You execute the image by issuing the command

$ RUN TEST

The following messages are issued when the program is executed and an
error occurs:

'/.TEST-E-SYNTAX, Syntax error in string ABC
'/.TEST-E-ERRORS, Errors encountered during processing

Creating an executable image containing a pointer

The following example demonstrates how to create an executable image that
contains a pointer to a nonexecutable message file.

The message source, COBOLMSG, is compiled by itself with the command

$ MESSAGE/NOSYMBOLS COBOLMSG

The object module COBOLMSG.OBJ, is linked by itself to create the nonexe¬
cutable message file with the command

$ LINK/SHAREABLE=SYS$MESSAGE:COBOLMF COBOLMSG.OBJ

The pointer object module, MESPNTR.OBJ, which contains a pointer to the
nonexecutable message file, COBOLMF.E)GE, is created by the command

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

The pointer object module, MESPNTR.OBJ, is linked to the COBOL program
object module, COBOLCODE.OBJ, with the command

$ LINK COBOLCODE,MESPNTR

The messages defined in COBOLMSG are displayed when the program is
executed with the command

$ RUN COBOLCODE

MSG-28

Index

B

Base message number directive (.BASE)

in message source file*MSG-16

Facility number

in facility directive*MSG-18

FAO argument • MSG-2

/FAO—COUNT qualifier

in message definition*MSG-22

/FATAL qualifier

in message definition • MSG-23

/FILE_NAME qualifier*MSG-9

i
Compiling message source file*MSG-8

Constructing messages*MSG-3

E

End directive (.END)

in message source file*MSG-17

/ERROR qualifier

in message definition*MSG-23

Example

using message pointers*MSG-28

Examples

creating an executable image containing
message data*MSG-28

Exiting Message Utility • MSG-1

Expressions

in message source file*MSG-15

Identification directive (.IDENT)

in message source file*MSG-20

/IDENTIFICATION qualifier

in message definition*MSG-22

/INFORMATIONAL qualifier

in message definition • MSG-23

Invoking Message Utility • MSG-1

L

/LIST qualifier*MSG-10

Listing directives

.PAGE directive*MSG-25

.TITLE directive*MSG-27

Literal directive (.LITERAL)

in message source file*MSG-21

F

Facility directive (.FACILITY)

in message source file*MSG-18

qualifiers

/PREFIX* MSG-18

/SHARED* MSG-18

/SYSTEM* MSG-18

Facility name

in facility directive*MSG-18

Message

construction of*MSG-3

definition of*MSG-22

example of*MSG-2

format of*MSG-2

Message code*MSG-3

MESSAGE command • MSG-4, MSG-8

format* MSG-1

parameter • MSG-1

Index—1

Index

MESSAGE command (cont'd.)

qualifiers*MSG-1, MSG-8

/FILE_NAME* MSG-9

/LIST* MSG-10

/OBJECT* MSG-11

/SYMBOLS* MSG-12

/TEXT* MSG-13

Message definition

in message source file*MSG-22

qualifiers

/ERROR* MSG-23

/FAO—COUNT • MSG-22

/FATAL* MSG-23

/IDENTIFICATION • MSG-22

/INFORMATIONAL • MSG-23

/SEVERE* MSG-23

/SUCCESS* MSG-22

/USER-VALUE • MSG-22

/WARNING* MSG-23

Message object module

linking of*MSG-5

Message pointer

use of*MSG-5, MSG-6

Message source file

comments in*MSG-14

compiling of*MSG-4, MSG-8

elements of*MSG-3

expressions in*MSG-15

sample of*MSG-18

symbols in*MSG-14

Message source file statements*MSG-14

base message number directive (.BASE)*
MSG-16

end directive (.END) • MSG-17

facility directive (.FACILITY)*MSG-18

identification directive (.IDENT) • MSG-20

listing directives*MSG-25, MSG-27

literal directive (.LITERAL) • MSG-21

message definition • MSG-22

.PAGE directive*MSG-25

severity directive (.SEVERITY) • MSG-26

.TITLE directive*MSG-14, MSG-27

Message symbol*MSG-3, MSG-22

Nonexecutable message file

creation of*MSG-5

o
/OBJECT qualifier*MSG-11

p

.PAGE directive

in message source file*MSG-25

/PREFIX qualifier

in facility directive*MSG-18

Program example*MSG-4

SPUTMSG* MSG-3

s
SET MESSAGE command • MSG-6

/SEVERE qualifier

in message definition • MSG-23

Severity directive (.SEVERITY)

in message source file*MSG-26

Severity level*MSG-2

/SHARED qualifier

in facility directive*MSG-18

/SUCCESS qualifier

in message definition • MSG-22

Symbols

in message source file*MSG-14

/SYMBOLS qualifier*MSG-12

/SYSTEM qualifier

in facility directive*MSG-18

T

/TEXT qualifier*MSG-13

.TITLE directive

in message source file*MSG-14, MSG-27

Index—2

Index

U

/USER_VALUE qualifier
in message definition • MSG-22

w
/WARNING qualifier

in message definition • MSG-23

Index—3

VAX/VMS
Message Utility

Reference Manual
AA-Z422A-TE

READER'S Note: This form is for document comments only. DIGITAL will use comments
COMMENTS submitted on this form at the company's discretion. If you require a written reply

and are eligible to receive one under Software Performance Report (SPR) service,
submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name -Date-

Organization --

Street ---

City __State_Zip Code_
or Country

— — Do Not Tear - Fold Here and Tape

iDDSD
No Postage
Necessary

if Mailed in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

— — Do Not Tear - Fold Here

C
ut

 A
lo

ng
 D

o
tt

ed
 L

in
e

