
VAX/VMS
Linker Reference Manual

Order Number: AA-Z420A-TF.

September 1984

This manual describes how the VAX/VMS Linker works
and how to use it.

Revision/Update Information: This is a new manual.

Software Version: VAX/VMS Version 4.0

digital equipment corporation
maynard, massachusetts

September 1984

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1984 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM—20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

ZK-2305

This document was prepared using an in-house documentation production system. All
page composition and make-up was performed by T^X, the typesetting system developed
by Donald E. Knuth at Stanford University. T^X is a registered trademark of the American
Mathematical Society.

LINKER Contents

PREFACE xi

NEW AND CHANGED FEATURES xiii

FORMAT LINK-1

DESCRIPTION LINK-2

SECTION 1 CONCEPTUAL OVERVIEW LINK-3

1.1 REASONS FOR A LINKER LINK-3

1.2 INPUT TO THE LINKER LINK-4

1.2.1 Object File LINK-4

1.2.2 Shareable Image File LINK-4

1.2.3 Symbol Table File LINK-5

1.2.4 Library File LINK-5

1.2.5 Options File LINK-6

1.3 OUTPUT OF THE LINKER LINK-7

1.3.1 Executable Image LINK-7

1.3.2 Shareable Image LINK-7

1.3.3 System Image LINK-8

1.3.4 Image Map LINK-8

1.3.5 Symbol Table File LINK-8

1.4 LINKER FUNCTIONS LINK-8

1.4.1 Resolution of Symbolic References LINK-9

1.4.1.1 Types of Symbols LINK-9

1.4.1.2 Designation of Local, Global, and Universal
Symbols LINK-11

1.4.1.3 Weak and Strong Global Symbols LINK-11

iii

LINKER Contents

1.4.2 Virtual Memory Allocation LINK-12

1.4.3 Image Initialization LINK-13

1.5 IMAGE ACTIVATION LINK-13

SECTION 2 OPTIONS FILES LINK-15

2.1 WHEN TO USE AN OPTIONS FILE LINK-15

2.1.1 Entering Frequently Used Input Specifications LINK-15

2.1.2 Identifying a Shareable Image as Input LINK-16

2.1.3 Entering Very Long Commands LINK-16

2.1.4 Entering Link Options LINK-16

2.2 HOW TO CREATE AND SPECIFY AN OPTIONS FILE LINK-18

2.3 LINK OPTIONS LINK-19

SECTION 3 SHAREABLE IMAGES LINK-27

3.1 BENEFITS AND USES OF SHAREABLE IMAGES LINK-27

3.1.1 Conserving Disk Storage Space LINK-27

3.1.2 Conserving Main Physical Memory LINK-28

3.1.3 Reducing Paging I/O LINK-28

3.1.4 Sharing Memory-Resident Databases LINK-28

3.1.5 Making Software Updates Compatible LINK-29

3.2 WRITING SOURCE PROGRAMS FOR SHAREABLE
IMAGES LINK-29

3.2.1 Shareability LINK-29

3.2.2 Position Independence LINK-30

3.2.3 Transfer Vectors LINK-31

3.2.3.1 Advantages of Transfer Vectors LINK-32

3.2.3.2 Creating Transfer Vectors LINK-33

3.2.4 Rules for Creating Upwardly Compatible Shareable
Images LINK-35

3.3 CREATING A SHAREABLE IMAGE LINK-36

3.3.1 Using the UNIVERSAL^ Option LINK-36

IV

LINKER Contents

3.3.2 Using The GSMATCH= Option LINK-36

3.3.3 Creating Privileged Shareable Images LINK-37

3.4 USING SHAREABLE IMAGES LINK-37

3.5 EXAMPLES OF SHAREABLE IMAGES LINK-39

SECTION 4 IMAGE MAP LINK-51

4.1 TYPES OF IMAGE MAP LINK-51

4.2 IMAGE MAP SECTIONS LINK-52

4.3 EXAMPLE OF A FULL MAP LINK-53

SECTION 5 LINKER OPERATIONS LINK-59

5.1 TYPES OF IMAGE LINK-59

5.1.1 Executable Image LINK-59

5.1.2 Shareable Image LINK-60

5.1.3 System Image LINK-60

5.2 INPUT TO THE LINKER LINK-61

5.2.1 Object Modules LINK-61

5.2.1.1 Program Section Name LINK-62

5.2.1.2 Program Section Size LINK-62

5.2.1.3 Program Section Alignment LINK-62

5.2.1.4 Program Section Attributes LINK-62

5.2.2 Shareable Images LINK-64

5.3 THE LINKER S PROCESSING ALGORITHM LINK-65

5.3.1 Command Processing LINK-66

5.3.1.1 Processing Nonoptions Files LINK-67

5.3.1.2 Processing Options Files LINK-67

5.3.1.3 Considerations in Specifying Input LINK-68

5.3.2 After Command Processing LINK-68

5.3.3 Pass 1 LINK-69

5.3.3.1 Processing Object Files LINK-70

V

LINKER Contents

5.3.3.2 Processing Other Files LINK-71

5.3.3.3 Processing Default Libraries LINK-72

5.3.4 After Pass 1 LINK-72

5.3.4.1 Generation of Image Sections LINK-73

5.3.4.2 Memory Allocation for the Cluster LINK-74

5.3.4.3 Relocation of Image Sections LINK-74

5.3.5 Pass 2 LINK-76

5.3.6 After Pass 2 LINK-77

5.3.6.1 Demand-Zero Compression LINK-77

5.3.6.2 Insertion of the Fix-Up Image Section LINK-77

5.3.6.3 Writing of the Image File LINK-79

SECTION 6 VAX OBJECT LANGUAGE LINK-81

6.1 OBJECT LANGUAGE OVERVIEW LINK-81

6.2 HEADER RECORDS LINK-83

6.2.1 Main Module Header Record (MHD$C MHD) LINK-84

6.2.2 Language Processor Name Header Record
(MHD$C LNM) LINK-85

6.2.3 Source Files Header Record (MHD$C SRC) LINK-86

6.2.4 Title Text Header Record (MHD$C TTL) LINK-86

6.3 GLOBAL SYMBOL DIRECTORY RECORDS LINK-87

6.3.1 Program Section Definition Subrecord (GSD$C PSC) LINK-88

6.3.2 Global Symbol Specification Subrecord
(GSDSC-SYM) LINK-90

6.3.2.1 GSD Subrecord for a Symbol Definition LINK-91

6.3.2.2 GSD Subrecord for a Symbol Reference LINK-92

6.3.3 Entry Point Symbol and Mask Definition Subrecord
(GSD$C EPM) LINK-93

6.3.4 Procedure With Formal Argument Definition Subrecord
(GSDSC-PRO) LINK-94

6.3.5 Symbol Definition With Word Psect Subrecord
(GSD$C_SYMW) LINK-96

vi

LINKER Contents

6.3.6 Entry Point Definition With Word Psect Subrecord
(GSD$C EPMW) LINK-96

6.3.7 Procedure Definition With Word Psect Subrecord
(GSD$C PROW) LINK-96

6.3.8 Entity Ident Consistency Check Subrecord
(GSD$C IDC) LINK-96

6.3.9 Environment Definition/Reference Subrecord
(GSD$C EIMV) LINK-98

6.3.10 Module-Local Symbol Definition/Reference Subrecord
(GSDSC—LSY) LINK-99

6.3.10.1 Module-Local Symbol Definition LINK-99

6.3.10.2 Module-Local Symbol Reference LINK-99

6.3.11 Module-Local Entry Point Definition Subrecord
(GSD$C LEPM) LINK-100

6.3.12 Module-Local Procedure Definition Subrecord
(GSD$C LPRO) LINK-100

6.3.13 Program Section Definition in a Shareable Image
(GSDSC-SPSC) LINK-100

6.4 TEXT INFORMATION AND RELOCATION RECORDS
(OBJSC-TIR) LINK-101

6.4.1 Stack Commands LINK-103

6.4.2 Store Commands LINK-105

6.4.3 Operator Commands LINK-108

6.4.4 Control Commands LINK-110

6.5 END OF MODULE RECORD LINK-111

6.6 END OF MODULE WITH WORD PSECT RECORD LINK-113

6.7 DEBUGGER INFORMATION RECORDS LINK-113

6.8 TRACEBACK INFORMATION RECORDS LINK-113

6.9 LINK OPTION SPECIFICATION RECORDS LINK-113

COMMAND QUALIFIERS LINK-116

/BRIEF LINK-118

/CONTIGUOUS LINK-119

vii

LINKER Contents

/CROSS-REFERENCE LINK-120

/DEBUG LINK-121

/EXECUTABLE LINK-122

/FULL LINK-123

/HEADER LINK-124

/MAP LINK-125

/POIMAGE LINK-126

/PROTECT LINK-127

/SHAREABLE LINK-128

/SYMBOL-TABLE LINK-130

/SYSLIB LINK-131

/SYSSHR LINK-132

/SYSTEM LINK-133

/TRACEBACK LINK-134

/USERLIBRARY LINK-135

POSITIONAL QUALIFIERS LINK-137

/INCLUDE LINK-138

/LIBRARY LINK-139

/OPTIONS LINK-140

/SELECTIVE-SEARCH LINK-141

/SHAREABLE LINK-142

EXAMPLES LINK-143

INDEX

viii

LINKER Contents

EXAMPLES

LINK-1 Transfer Vector Coded for a Procedure Call LINK-34

LINK-2 Transfer Vector Coded for a Subroutine Call LINK-34

LINK-3 Sharing Resource Allocation Procedures Among Shareable
Images LINK-40

LINK-4 Using Complex Shareable Images LINK-45

FIGURES

LINK-1 Symbol Resolution LINK-10

LINK-2 Shareable Image Without Transfer Vectors LINK-32

LINK-3 Shareable Image With Transfer Vectors LINK-33

LINK—4 Order of Records in an Object Module LINK-82

LINK-5 GSD Record With Multiple Subrecords LINK-88

TABLES

LINK-1 Link Options LINK-17

LINK-2 Types of Image Map LINK-51

LINK-3 Image Map Sections LINK-52

LINK-4 Order of Image Sections in Clusters LINK-75

LINK-5 Types of Module Records LINK-82

LINK-6 Types of Header Records LINK-83

LINK-7 Types of GSD Subrecords LINK-87

LINK-8 Command Qualifiers LINK-116

LINK-9 Positional Qualifiers LINK-137

Preface

Intended Audience
Programmers at all levels of experience can use this manual effectively.

Structure of This Document
The Format Section is an overview of the linker and is intended as a quick
reference guide. The format summary contains the DCL command that
invokes the linker, listing all command (and/or positional) qualifiers and
parameters. The usage summary describes how to invoke and exit from the
the linker, how to direct output, and any restrictions you should be aware of.

The Description Section explains how to use the linker. Section 1 presents a
conceptual overview of the linker. Section 2 explains how to use an options
file. Section 3 discusses shareable images. Section 4 discusses image maps.
Section 5 discusses in detail the operations performed by the linker in creating
an image. Section 6 describes the VAX object language.

The Qualifier Section describes each DCL command qualifier. Qualifiers
appear in alphabetical order.

The Examples Section contains examples of common operations that you
perform with the linker.

Associated Documents
For information on including the debugger in the linking operation, and on
debugging in general, see the VAX/VMS Utilities Reference Volume.

Conventions Used in This Document

Convention Meaning

I ret | A symbol with a one- to three-character
abbreviation indicates that you press a key on
the terminal, for example, I RET I .

|CTRL/x| The phrase CTRL/x indicates that you must press
the key labeled CTRL while you simultaneously
press another key, for example, CTRL/C, CTRL/Y,
CTRL/O.

$ SHOW TIME Command examples show all output lines or
05-JUN-1985 11:55:22 prompting characters that the system prints

or displays in black letters. All user-entered
commands are shown in red letters.

Preface

Convention Meaning

$ TYPE MYFILE.DAT Vertical series of periods, or ellipsis, mean either
that not all the data that the system would display
in response to the particular command is shown or
that not all the data a user would enter is shown.

file-spec,... Horizontal ellipsis indicates that additional
parameters, values, or information can be entered.

[logical-name] Square brackets indicate that the enclosed item
is optional. (Square brackets are not, however,
optional in the syntax of a directory name in a
file specification or in the syntax of a substring
specification in an assignment statement.)

quotation marks
apostrophes

The term quotation marks is used to refer to
double quotation marks ("). The term apostrophe
(') is used to refer to a single quotation mark.

xii

New and Changed Features

The following technical changes have been made to the VAX/VMS Linker:

• Link options object records (LNK) are now processed.

• Two new linker options are IDENTIFICATION and NAME. They allow
the image name and identification field to be set explicitly in the image
header.

• The NEVER parameter to the GSMATCH linker option is no longer
allowed.

• The COPY parameter on the positional qualifier /SHAREABLE is no
longer allowed. NOCOPY is now mandatory.

• The linker option UNIVERSAL = * is no longer allowed.

• Uninitialized Copy-on-Reference image sections are demand zero, even if
they are less than DZRO—MIN.

LINKER

LINKER

FORMAT

Before a source-language program can be run on VAX/VMS, it must
first be assembled or compiled, and then it must be linked. The
VAX MACRO assembler and the various VAX language compilers
(hereafter referred to as language processors) translate user-written
programs into object modules. The VAX/VMS Linker (or, simply,
the linker) binds these object modules, together with any other
necessary information, into an image, which can be executed by
VAX/VMS.

LINK /command-qualifier[,...] file-spec/file-qualifier

Command Qualifiers Defaults

/BRIEF None.
/[NOJCONTIGUOUS /NOCONTIGUOUS
/[NOJCROSS—REFERENCE /NOCROSS-REFERENCE
/[NO]DEBUG[=file-spec] /NODEBUG
/[NOJEXECUTABLE[file-spec] /EXECUTABLE
/FULL None.
/HEADER None.
/[NO]MAP[=file-spec] /NOMAP
/POIMAGE None.
/PROTECT None.
/[NO]SHAREABLE[=file-spec] /NOSHAREABLE
/[NOISYMBOL_TABLE[=file-spec] /NOSYMBOL_TABLE
/[NOJSYSLIB /SYSLIB
/[NOJSYSSHR /SYSSHR
/[NO]SYSTEM[=base-address] /NOSYSTEM
/[NOJTRA CEB A CK /TRACEBACK
/[NO]USERLIBRARY[=(table[,...])] /TRACEBACK

Positional Qualifiers Defaults
/INCLUDE=(module-name[,...]) None.
/LIBRARY None.
/OPTIONS None.
/SELECTIVE-SEARCH None.

Command Parameter
file-spec
Specifies one or more input files. The input files can be object modules to be
linked, libraries to be searched for external references or from which specific
modules are to be included, shareable images to be included in the output
image, or option files to be read by the linker. If you specify multiple input
files, separate the file specifications with commas, or plus signs. In either
case, the linker creates a single image file.

LINK-1

LINKER
Description

usage summary Invoking
Invoke the VAX/VMS Linker by typing the LINK command and one or
more input file names at the DCL prompt. You may also include the LINK
command in a command procedure.

Exiting
Exit the linker by letting it run to completion.

Directing Output
You can direct output to different types of output files with certain qualifiers,
such as the /EXECUTABLE, /SHAREABLE, /MAP, and /SYMBOL^TABLE
positional qualifiers. Otherwise, all Linker output and messages go to the
current SYS$OUTPUT device.

The names assigned to the image file, the map file, and other output
files depend on the first input file name, unless you specify differently.
You can specify a different output filename by specifying a name in an
/EXECUTABLE, /SHAREABLE, /MAP, or /SYMBOL_TABLE qualifier or by
entering one of these qualifiers after a file specification. For more information
refer to the Positional Qualifier Section.

Privileges/Restrictions
None.

DESCRIPTION The Description Section explains how to use the linker. Section 1 presents a
conceptual overview of the linker. Section 2 explains how to use an options
file. Section 3 discusses shareable images. Section 4 discusses image maps.
Section 5 discusses in detail the operations performed by the linker in creating
an image. Section 6 describes the VAX object language.

LINK—2

LINKER
Conceptual Overview

Conceptual Overview

This section provides a conceptual overview of the linker by describing the
reasons for a linker, operations performed by the linker, and the forms of
linker input and output. This information is presented in summary form to
benefit readers unfamiliar with the subject. Detailed information on these
topics is presented in subsequent sections.

1 Reasons for a Linker
Some computer systems do not have linkers as VAX/VMS does. Instead, the
language processor performs more of the work needed to resolve symbolic
references, and another software component completes the task while loading
the program in memory. However, having a linker is advantageous in the
following ways:

• A linker simplifies the job of each language processor. For example, the
logic needed to resolve symbolic references need not be duplicated in each
language processor.

• A linker simplifies modular programming.

• Object modules produced by different language compilers can be
combined in a single executable image.

Modular programming is the practice of breaking down a complex task into
smaller and simpler subtasks and then writing programs for each of the
subtasks. Some advantages of modular programming follow:

• A program consisting of modules of properly designed scope (typically a
page or two of coding) is easier to design, write, and test than one that is
not modular.

• Breaking down a program into modules makes it easy for more than one
programmer to work on the same program.

• Different modules of the same program can be written in different
languages for reasons of both programmer preference and the suitability
of a particular language to solve a particular task.

Thus, in the VAX/VMS programming environment, individual modules may
be separately written and compiled, and then linked together into a single
executable image.

LINK-3

LINKER
Conceptual Overview

1.2 Input to the Linker

This section describes the input that may be included in a linking operation.
Any unit of input must be a file. The following kinds of files are acceptable
to the linker:

• Object file, which contains one or more object modules

• Shareable image file, which contains one shareable image and one symbol
table

• Symbol table file, which contains one symbol table in the form of an
object module

• Library file, which contains either one or more object modules or one or
more shareable images

• Options file, which may contain file specifications for any of the above
kinds of files and/or one or more link options, which are directives to the
linker

Aside from link options, which are simply instructions that direct the linker
in the linking operation, all the above files contain either object modules or
shareable images. These are the two basic forms of input processed by the
linker, and they are discussed in depth in Section 1.2.

1.2.1 Object File
When a language processor translates a source language program, it produces
as output a file that contains one or more object modules. This file has the
default file type OBJ, and it is the primary form of linker input.

Each object module contains records that define its content and memory
requirements to the linker. At least one object file must be specified in any
linking operation. It may be specified in the command string or in an options
file.

The linker processes the entire contents of an OBJ file, that is, every object
module in the file. The linker cannot selectively process some modules
but not others in the same file. If selective processing of object modules is
required, the object modules must be in an object module library file.

1.2.2 Shareable Image File
A shareable image file is the product of a previous linking operation. It is
an image that is part of a complete program and is therefore not directly
executable; that is, it is not intended to be directly executed by means of the
DCL command RUN. To execute, a shareable image must be included as
input in a linking operation that produces an executable image. Then, when
that executable image is run, the shareable image can execute.

A shareable image file consists of an image header, one or more image
sections, and a symbol table, which appears at the end of the file. This
symbol table is, in fact, an object module whose records contain definitions
of universal symbols in the shareable image. A universal symbol is to a
shareable image what a global symbol is to a module; that is, it is a symbol
that can be interpreted outside the shareable image.

LINK—A

LINKER
Conceptual Overview

In processing a shareable image file, the linker needs only to read the image
header and to process the symbol table.

1.2.3 Symbol Table File
Like a shareable image file, a symbol table file is the product of a previous
linking operation. The linker creates a symbol table file when the /SYMBOL—
TABLE qualifier is specified in the LINK command.

The contents of a symbol table file vary depending on the kind of image being
produced by the linking operation. If the symbol table file is an executable or
system image, it contains the names and values of every global symbol in the
image. If the symbol table file is a shareable image, it contains the names and
values of every universal symbol in the image.

When a symbol table file is specified as input in another Unking operation,
the linker uses the symbols in that symbol table to resolve undefined symbols
in other object modules. It does this by inserting the symbol's value (as listed
in the symbol table) in place of the symbol name in the object module where
the symbol was undefined.

A major use for specifying a symbol table file as input in a linking operation
is to make global symbols in a system image available to a number of other
images.

Note, however, that a symbol table file produced in a linking operation that
created a shareable image is not adequate input, in a subsequent linking
operation, to allow the linker to resolve references to universal symbols
in that shareable image. The shareable image itself must be specified as
input because the linker requires the value of the symbol (as specified in the
symbol table) and other information such as the memory requirements of the
shareable image (contained in the image header).

1.2.4 Library File
There are two kinds of library files:

• An object module library file. It contains one or more object modules,
the names of the included object module(s), and a symbol table with the
names of each global symbol in the library and the name of the module in
which they are defined.

• A shareable image library file. It contains the names of the included
shareable image(s), a symbol table with the names of each universal
symbol in the library and the name of the shareable image in which they
are defined.

To simplify the discussion, the term module will be used to refer to both an
object module in an object library and a shareable image in a shareable image
library. Further, the term symbol will be used to refer to both a global symbol
in an object library or to a universal symbol in a shareable image library.

Libraries contain modules that are useful to many user programs. For
example, a user program may call a routine in a library to perform I/O
or to calculate a square root. When the user program calls a library routine,
the linker locates the routine and includes it in the linking operation.

LINK—5

LINKER
Conceptual Overview

Using the DCL command LIBRARY, a programmer may create a library and
populate it with modules of interest to a number of users. Such a library
is called a user library. To make a user library known to the linker, the
programmer must do either of the following:

• Specify the library in the LINK command using the /LIBRARY file
qualifier.

• Define the library as a default library for the linker to search in the
event that it cannot resolve symbolic references using the input modules
alone. In this case, the library need not be specified as input in the LINK
command. See the description of the /USERLIBRARY command qualifier
in the Qualifier Section for information on how to define a user default
library.

In addition, VAX/VMS maintains two system libraries that the linker
searches by default in the event that unresolved symbolic references remain
after all input modules and user libraries (if any) have been processed.
These are the system default shareable image library IMAGELIB.OLB and
the system default object library STARLET.OLB. Both libraries may be
found in the device and directory specified by the system logical name
SYS$LIBRARY, that is, their full names are SYS$LIBRARY:IMAGELIB.OLB
and SYS$LIBRARY:STARLET.OLB, respectively. These libraries contain
system symbol definitions, such as the addresses of entry points for
VAX/VMS system services, as well as various routines that perform such
functions as I/O for high-level language programs.

Individual modules in a library may be included in the linking operation in
either of the following ways:

• Explicitly, by name, using the /INCLUDE positional qualifier in the LINK
command.

• Implicitly, when, in searching the library, the linker discovers that the
module contains a required symbol definition.

Additional information on how to specify libraries to the linker and how to
control the linker's use of libraries may be found in the Qualifier Section,
specifically, the /SYSLIB, /SYSSHR, /USERLIBRARY, /INCLUDE, and
/LIBRARY qualifiers.

See also Sections 1.4.1.3, 5.3.3.1, and 5.3.3.2 for information on the
algorithm used by the linker to process libraries.

1.2.5 Options File
An options file is a file that is specified as input to the linker by means of the
/OPTIONS positional qualifier. By using an options file, a programmer may
exercise considerable control over the linking operation.

Since Section 2 discusses options files in depth, the scope of the discussion in
this section is limited to the contents and uses of options files.

An options file may contain the following types of information:

• One or more input file specifications and associated file qualifiers. Any
of the various files mentioned above may be included. Note in particular
that a shareable image file to be used as input to the linking operation
may be specified only in an options file, never in the command string.

LINK—6

LINKER
Conceptual Overview

• Special instructions to the linker (called link options) that may not be
specified by means of the DCL command language.

An options file is useful (or necessary) in the following ways:

• To specify lengthy and cumbersome command input that must be
frequently included in a linking operation.

• To specify command input that exceeds the limit allowed by the DCL
command interpreter.

• To include in the linking operation a shareable image that is not contained
in a shareable image library.

1.3 Output of the Linker
This section describes the three types of image that the linker creates, as well
as the optional image map and symbol table.

1.3.1 Executable Image
An executable image is an image that is executed by the DCL command RUN.
As the goal of program development is a program that can be executed on
the computer system, the executable image is the end product of program
development and the most common type of image created by the linker.

The linker creates an executable image when the /EXECUTABLE command
qualifier is specified with the LINK command or, by default, when neither
/SHAREABLE nor /SYSTEM is specified.

An executable image cannot be linked with other images. However, the
object modules that make up an executable image can be linked in different
combinations or with different link options to produce a different executable
image.

1.3.2 Shareable Image
The linker creates a shareable image when the /SHAREABLE command
qualifier is specified with the LINK command.

Shareable images are useful in the following ways:

• To provide a means of sharing a single physical copy of a set of procedures
and/or data among more than one application program.

• To facilitate the linking of very large applications (say, hundreds of
modules) by breaking down the whole into manageable segments.

• To allow the modification of one section of a large program without
having to relink the entire program.

LINK-7

LINKER
Conceptual Overview

1.3.3 System Image
A system image is an image that does not run under the control of the
VAX/VMS operating system. It is intended for stand-alone operation on
the VAX hardware. The kernel of VAX/VMS, SYS$SYSTEM:SYS.EXE, is a
system image.

The linker creates a system image when the /SYSTEM command qualifier is
specified with the LINK command.

1.3.4 Image Map
In interactive mode, the linker generates an image map only when the
/MAP qualifier is specified in the LINK command. In batch mode, the linker
generates an image map by default. The map is written to a map file during
the second pass (Pass 2) of the linking operation.

The content of an image map varies depending on which additional qualifiers
are specified in the LINK command. The following sections may appear in an
image map:

• Object module synopsis

• Module relocatable reference synopsis

• Image section synopsis

• Program section synopsis

• Symbols by name

• Symbols by value

• Image synopsis

• Link run statistics

1.3.5 Symbol Table File
The linker generates a symbol table file only when the /SYMBOL__TABLE
qualifier is specified in the LINK command.

A symbol table file may be included as input in a subsequent linking
operation.

See Section 2.3 for information on the contents of the symbol table file.

1.4 Linker Functions
This section describes the three major tasks performed by the linker in the
process of image creation: resolution of symbolic references, allocation of
virtual memory, and image initialization.

LINKS

LINKER
Conceptual Overview

1.4.1 Resolution of Symbolic References
This section explains the difference between a symbol definition and a
symbol reference, and explains how the linker resolves a symbolic reference.
Additional subsections discuss the three types of symbols and the differences
between strong and weak global symbols.

A symbol is a name associated with a program location or with a data
element. The definition of a symbol is the statement that makes that
association explicit. Where a symbol is used as a label to mark a program
location (for example, the start of a routine), the definition of the symbol is an
address. Where a symbol is used to represent a data element, the definition
of the symbol is a value.

For example, the following VAX MACRO statement defines the symbol
ROUTINE A to be the location of the specified instruction:

ROUTINEA:: MOVL #FIELDA,FIELDB

The following VAX MACRO statement defines the symbol FIELDA to be the
data value 100:

FIELDA == 100

A symbolic reference is the use of a symbol in a statement that is not its
definition.

In the first of the previous two examples, FIELDA and FIELDB are references.
In the following VAX MACRO statement, ROUTINEA is a symbolic reference:

JMP ROUTINEA

The linker maintains a global symbol table (GST) in which it stores the name
of every global symbol and its definition (if known).

To resolve a symbolic reference, the linker searches its GST for a definition
of the symbol. If it finds one, it substitutes the value of the symbol (its
definition) for the symbol itself.

Thus, to resolve the reference to FIELDA, the linker substitutes the value
100 for the symbol in the MOVL #FIELDA,FIELDB instruction. To resolve
the reference to ROUTINEA in the JMP ROUTINEA instruction, the linker
substitutes the address of the MOVL #FIELDA,FIELDB instruction for the
symbol ROUTINEA in the JMP ROUTINEA instruction.

The linker, however, does the work of symbol resolution only for two of the
three types of symbols, namely, global and universal. Language processors
perform symbol resolution for local symbols. The next section describes these
three types of symbols.

1.4.1.1 Types of Symbols
Symbols are designated as local, global, or universal on the basis of their
scope, that is, the range of object modules over which they can be recognized
and properly interpreted.

A local symbol is a symbol that cannot be interpreted outside the object
module that contains its definition. If a reference to a local symbol is made
in an outside module, an error results. Since local symbols are defined and
referenced within a single object module, the language processor resolves
local symbolic references.

LINK-9

LINKER
Conceptual Overview

A global symbol is a symbol that can be interpreted outside the object module
that contains its definition. Language processors cannot resolve a global
symbolic reference if the definition of the global symbol being referenced is
not included in the module they are processing. The linker, therefore, must
resolve such a global symbolic reference.

A universal symbol is a global symbol found only in shareable images.
A universal symbol is to a shareable image what a global symbol is to a
module; that is, it is a symbol that can be interpreted outside the shareable
image.

The reason that another type of symbol is needed for shareable images
concerns the nature of shareable images. A shareable image may have been
created from modules that themselves contained global symbols. However,
now that these symbols are all defined within a single shareable image, it
may not be necessary for object modules outside the shareable image to refer
to them. In other words, some of them now function as local symbols within
the shareable image. Consequently, the term universal is applied to those
global symbols that can be referred to by outside modules. This differentiates
those global symbols from global symbols that cannot be (and do not need to
be) so referred to.

Figure LINK-1 illustrates some of the concepts discussed so far: modular
programming, symbol reference and symbol definition, and local and global
symbols. Arrows point from a symbol reference to a symbol definition. (The
statements do not reflect a specific programming language.)

Figure LINK-1 Symbol Resolution

MODULEA

LINK-10

LINKER
Conceptual Overview

1.4.1.2 Designation of Local, Global, and Universal Symbols
By default, language processors determine whether a symbol is local or global.
For example, the VAX FORTRAN compiler designates statement numbers as
local and module entry points as global.

In some languages, the programmer can explicitly specify whether a symbol
is local or global by including or excluding particular attributes in the symbol
definition. For example, in VAX PL/I the attribute EXTERNAL specifies a
global symbol. In VAX MACRO, the use of a single colon (:) in defining a
label makes the label a local symbol, while a double colon (::) makes it a
global symbol.

A symbol is designated as universal by specifying it in the UNIVERSAL=
option in an options file.

1.4.1.3 Weak and Strong Global Symbols
In VAX MACRO, VAX BLISS-32, and VAX PASCAL you can define a global
symbol as either strong or weak, and you can make either a strong or a weak
reference to a global symbol.

It is not possible to make a weak definition or a weak reference in any of the
other VAX languages.

In VAX MACRO, VAX BLISS-32, and VAX PASCAL all definitions and
references are strong by default. To make a weak definition or a weak
reference, you must use the .WEAK assembler directive (in VAX MACRO),
the WEAK attribute (in VAX BLISS-32), or the WEAK-GLOBAL or WEAK-
EXTERNAL (in VAX PASCAL).

The linker records each symbol definition and each symbol reference in its
global symbol table, noting for each whether it is strong or weak. The linker
processes weak references differently from strong references, and weakly
defined symbols differently from strongly defined symbols.

Strong Reference

A strong reference can be made to a weakly defined symbol or to a strongly
defined symbol. In either case, the linker will go about resolving the reference
during its first pass through the input, as described in detail in Section 5.3.3
and its subsections.

For a strong reference, the linker checks all explicitly specified input modules
and libraries, and all default libraries for a definition of the symbol. In
addition, if the linker cannot locate the definition needed to resolve the strong
reference, it assigns the symbol a value of 0 and reports an error. By default,
all references are strong.

Weak Reference

A weak reference can be made to a weakly defined symbol or to a strongly
defined symbol. In either case, the linker will go about resolving the weak
reference in the same way it does a strong reference, with the following
exceptions:

• The linker will not search library modules that have been specified with
the /LIBRARY qualifier or default libraries (user-defined or system) solely
to resolve a weak reference. If, however, the linker resolves a strong
reference to another symbol in such a module, it will also use that module
to resolve any weak references.

LINK-11

LINKER
Conceptual Overview

• If the linker cannot locate the definition needed to resolve a weak
reference, it assigns the symbol a value of 0, but does not report an
error (as it does if the reference is strong). If, however, the linker reports
any unresolved strong references, it will also report any unresolved weak
references.

One purpose of making a weak reference arises from the need to write and
test incomplete programs. The resolution of all symbolic references is crucial
to a successful linking operation. Therefore, a problem arises when the
definition of a referenced global symbol does not yet exist (as would be the
case, for example, if the global symbol definition is an entry point to an as yet
unwritten module). The solution is to inform the linker that the resolution of
this particular global symbol is not crucial to the linking operation by making
the reference to the symbol weak.

Strong Definition

By default, all global symbols in all VAX languages have a strong definition.

The important point is that, for a strongly defined symbol, if the module (in
which the symbol is defined) is contained in a library, the symbol will be
included in the library symbol table; if the symbol is weakly defined, it will
not.

Weak Definition

A symbol with a weak definition is not included in the symbol table of a
library. As a result, if the module containing the weak symbol definition is in
a library but has not been specified for inclusion by means of the /INCLUDE
qualifier, the linker will not be able to resolve references (strong or weak)
to the symbol. If, however, the linker has selected that library module for
inclusion (in order to resolve a strong reference), it will be able to resolve
references (strong or weak) to the weakly defined symbol.

If the module containing the weak symbol definition is explicitly specified
either as an input object file or for extraction from a library (by means of the
/INCLUDE qualifier), the weak symbol definition is as available for symbol
resolution as a strong symbol definition.

1.4.2 Virtual Memory Allocation
Virtual memory allocation is the assignment of virtual memory space to an
image. Specifically, it is the algorithmic process of placing different parts
of the program at different memory locations to satisfy the requirements of
different program segments and of VAX/VMS memory management.

The linker, rather than the language processor, performs virtual memory
allocation for the following two reasons:

• Modular programming would not be possible if the language processor
allocated virtual memory.

• Language processors do not know the memory requirements of many of
the external modules that are called by the module they are processing.

LINK-12

LINKER

1.4.3 Image Initialization
After it resolves references and allocates virtual memory, the linker fills in
the actual contents of the image. This image initialization consists mainly
of copying the binary data and code that was written by the compiler or
assembler. However, the linker must perform two additional functions to
initialize the image contents:

• It must insert addresses into instructions that refer to externally defined
fields. For example, if a module contains an instruction moving FIELDA
to FIELDB and if FIELDB is defined in another module, the linker must
determine the virtual address of FIELDB and insert it into the instruction.

• It must compute values that depend on externally defined fields. For
example, if a module initializes location X to contain Y plus Z and if Y and
Z are defined in an external module, the linker must compute the value of
Y plus Z and insert it in X.

1.5 Image Activation

Image activation is the preparation of an image for execution; it occurs, among
other ways, in response to any DCL command (such as RUN) that causes an
image to execute. Image activation is performed by the image activator, a
module within the executive of VAX/VMS.

The major work of image activation involves setting up the process page
tables to accurately reflect the state of all pages in the image file. To
accomplish this, the image activator performs a number of specialized
functions depending on the kind of image it is activating. However, in
general, the image activator activates an image file in the following ways:

1 It opens the image file created by the linker, thus allowing the system to
perform its file protection checks and logical name translation.

2 It reads into memory the image header, which contains, among other
information, a series of image section descriptors (ISDs), each of which
describes a portion of the virtual address space.

3 It sets up the process page tables by examining each ISD contained in the
image header, determining the type of image section being described
there (private, demand-zero, or global), and calling the appropriate
memory management system service to perform the actual mapping of
the described image section.

4 It calls the appropriate system services to allocate space for the user stack
and the image I/O segment, which is an area of memory used by VAX
RMS to manipulate files during image execution. The size of both the
image I/O segment and the user stack may be established by the user
at link time by means of the IOSEGMENT and STACK link options,
respectively.

5 It calculates the privileges that will be in effect while this image is
executing.

When the image activator finishes its work, it executes an REI instruction,
which passes control to the transfer address of the image. At this point the
image begins execution.

LINK-13

LINKER
Options Files

2 Options Files

An options file is an input file that is specified by means of the /OPTIONS
positional qualifier. Using an options file, a programmer can exercise
considerable control over the linking operation, as well as simplify the
specification of complex input.

An options file may contain the following types of information:

• Input file specifications and associated positional qualifiers, in addition to
any that you enter in the LINK command itself

• Special instructions to the linker that are not available through the DCL
command language

This section discusses when to use an options file, how to create an options
file, and what link options and positional qualifiers may be specified in an
options file.

2.1 When to Use an Options File
An options file is useful in the following ways:

• To give the linker a series of file specifications and file qualifiers that you
use frequently in linking operations

• To identify a shareable image as an input file in a linking operation

• To enter a longer list of files and positional qualifiers than the VAX/VMS
command interpreter can hold in its command input buffer

2.1.1 Entering Frequently Used Input Specifications

For convenience and flexibility, you can create an options file containing a
group of file specifications and positional qualifiers that you link frequently,
and you can specify this options file as input to the linker.

Consider the following two examples:

1 You want to create an executable image named PAYROLL containing
modules named PAYCALC, FICA, FEDTAX, STATETAX, and
OTHERDED. You also want to be able to make changes to any of the
modules and conveniently relink the image.

To accomplish these goals, you can use the EDIT or CREATE command to
create the file PAYROLL.OPT, containing the following line:

PAYCALC.FICA.FEDTAX.STATETAX.OTHERDED

Then, to link the image initially or to relink it any time thereafter, you can
simply enter the following:

$ LINK PAYROLL/OPTIONS

LINK-15

LINKER
Options Files

If you did not use an options file, you would have to enter the following
command each time you linked the modules:

$ LINK/EXECUTABLE=PAYROLL PAYCALC,FICA,FEDTAX.STATETAX,OTHERDED

The more file specifications and positional qualifiers you must specify, the
greater is the convenience of using an options file.

2 Two programmers, one writing PROGX and the other PROGY, need
to include the modules MOD A, MODB, and MODC, and to search
the library LIBZ. One programmer can create an options file (say,
[G15JGR0UP15.0PT) containing the file specifications for MODA, MODB,
and MODC, and the specification for LIBZ followed by /LIBRARY. At link
time, then, each programmer must specify only the name of his or her
module and the options file. For example:

$ LINK/MAP PROGX,[G15]GR0UP15/0PTI0NS

2.1.2 Identifying a Shareable Image as Input

To identify as input a shareable image that is not in a library, you must use
an options file.

The /SHAREABLE positional qualifier, which is used to identify an input file
as a shareable image file, can be used only in an options file; otherwise, the
linker interprets it as a command qualifier rather than a positional qualifier.

See the Command Qualifier and the Positional Qualifier Sections for more
information on the /SHAREABLE qualifier.

2.1.3 Entering Very Long Commands

Whenever you need to link a series of input files and positional qualifiers that
exceeds the buffer capacity of the command interpreter (256 characters), use
an options file.

The number of file and qualifier specifications that the command interpreter
buffer can hold depends on the length of the specific entries themselves and
how much of each line is used. However, as a general guideline, if the LINK
command statement exceeds six or seven lines, the command interpreter may
not be able to process it. In this case, you must put some or all of the input
file specifications and positional qualifiers in an options file.

2.1.4 Entering Link Options

Table LINK-1 lists the link options that may be specified only in an options
file. For each link option. Table LINK-1 states the specification format, the
default value (if applicable), and a brief explanation. Section 2.3 provides a
detailed description of each link option.

LINK-16

LINKER
Options Files

Table LINK-1 Link Options

Format Default Value Explanation

BASE=n %X200 for execut¬
able, 0 for
shareable, and
%X80000000 for
system

Sets the base
virtual address
for the image

CLUSTER=cluster-name,-
[base-address],-
[pfc],[file-spec,...]

COLLECT=cluster-name,-
psect-name[,...]

(See Section 2.3) Defines a
cluster of
image sections

Moves the named
program sections
to the specified
cluster

DZRO_MIN=n 5 Sets the minimum
number of
uninitialized
pages for demand-
zero compression

GSMATCH=keyword,- EQUAL,x,y Sets match control
major-id,minor-id (See Section 2.3) parameters for a

shareable image

IDENTIFICATION=id-name (See Section 2.3) Sets the image ID
field in the image
header

IOSEGMENT=n,-
[[NO]POBUFS]

0, POBUFS Sets the number of
pages for the
image I/O segment

ISD_MAX=n Approximately 96
(See Section 2.3)

Sets the maximum
number of image
sections

NAME=file-name Filename of the
output image file

Sets the image
name field in the
image header

PROTECT= YES
NO

PSECT_ATTR=psect-name,-
attribute[,...]

NO Protects clusters
in shareable
images

Sets program
section attributes

ST ACK=n

SYMBOL=name,value

UNIVERSAL=symbol-name

[.-]

20 Sets the initial
number of pages
for the user mode
stack

Defines a symbol
as global and
assigns it a value

Makes the named
global symbol(s)
universal

LINK-17

LINKER
Options Files

2.2 How to Create and Specify an Options File

To create an options file, use the EDIT command to create a file with any
valid file name and a file type of OPT. (You can use any file type, but the
linker uses a default file type of OPT with the /OPTIONS qualifier.)

The options file can contain input file specifications and associated positional
qualifiers, and/or any link option listed in Table 2-1.

Follow these rules when entering input in an options file:

1 You must separate input files with a comma (,).

2 You cannot enter command qualifiers.

3 You can enter the /INCLUDE, /LIBRARY, /SELECTIVE_SEARCH, and
/SHAREABLE positional qualifiers, that is, all positional qualifiers except
/OPTIONS.

4 You can enter only one link option per line.

5 You can continue any line by entering the continuation character, the
hyphen (-), at the end of the line.

6 You can enter comments after an exclamation point (!).

7 You can abbreviate the name of a link option to as few letters as needed
to make the abbreviation unique (for example, UNIVERSAL=ENTRY can
be abbreviated UNI=ENTRY).

The following example shows a file named PR0JECT3.0PT containing both
input file specifications and link options:

PROJECT3.OPT

MODI,M0D7.LIB3/LIBRARY.-

LIB4/LIBRARY/INCLUDE=(MODX,MODY, MODZ)
M0D12/SELECTIVE_SEARCH

STACK=75
SYMBOL=JOBCODE,5

To include all the specifications and options in this example at link time, you
need specify only the file name followed by /OPTIONS. For example:

$ LINK/MAP/CROSS_REFERENCE PROGA, PROGB,-

PROGC, PR0JECT3/0PTI0NS

If you have entered the DCL command SET VERIFY, the contents of the
options file are displayed as the file is processed.

You can specify one or more options files in a LINK command statement.

If you want the LINK command to be in a command procedure and you want
to specify an options file in the LINK command, specify SYS$INPUT: as the
options file. In this way, the DCL command interpreter interprets the lines
following the line containing the LINK command as lines in the options file.

For example, a command procedure LINKPROC.COM might contain the
following lines:

$ LINK MAIN.SUB1,SUB2,SYS$INPUT:/OPTIONS

MYPROC/SHAREABLE
SYSSLIBRARY:APPLPCKGE/SHAREABLE

STACK=75

$

LINK-18

LINKER
Options Files

It is advantageous to use a command procedure to invoke the LINK command
(as shown in the pevious example) because a single file contains both the
LINK command and all input file specifications, including any options files.
Thus, to perform the linking operation using all of the input in the previous
example, you need only enter the following command:

$ QLINKPROC

2.3 Link Options
This section discusses in detail each link option in alphabetical order. Each
option has the general format:

option_name=parameter [,...]

If the parameter is a number (indicated by “n”), you can express it in decimal
(%D), hexadecimal (%X), or octal (%0) radix by prefixing the number with
the corresponding radix operator. If no radix operator is specified, the linker
assumes decimal radix.

The default and maximum numeric values in this manual are expressed in
decimal, as are the values in any linker messages relating to these options.

Link Options

BASE=n
Directs the linker to assign the image a base (starting) virtual address equal to
the value of the parameter n.

The BASE= option is illegal in a linking operation that produces a system
image and will elicit a warning message. To specify a base address for a
system image, use the /SYSTEM[=base-address] command qualifier.

If the address specified in the BASE= option is not divisible by 512, the linker
automatically adjusts it upward to the next multiple of 512 (that is, the next
highest page boundary).

If the BASE= option is not specified, the linker uses the following default base
addresses: hexadecimal 200 (decimal 512) for an executable image; 0 for a
shareable image; and hexadecimal 80000000 for a system image.

In general, the use of the BASE= option to create based images is not
recommended. VAX/VMS memory management cannot relocate a
based image in the virtual address space, which could result in possible
fragmentation of the virtual address space.

The linker processes the BASE= option by assigning the specified base address
to the default cluster. If the linker creates additional clusters before it searches
the default libraries, which it does if a CLUSTER= or COLLECT= option is
specified or if a shareable image is explicitly specified, the following effects
may occur:

• If the additional clusters are based (that is, if the CLUSTER= option
specifies a base address or if the shareable image is a based shareable
image), the linker must check that memory requirements for each based
cluster do not conflict. Memory requirements conflict when more than one
cluster requires the same section of address space. If they do conflict, the
linker issues an error message and aborts the linking operation. If they do
not conflict, the linker allocates each cluster the memory space it requests.

LINK-19

LINKER
Options Files

• If the additional clusters are not based, there will be no conflicting memory
requirements. However, the linker will place each additional cluster at an
address higher than that of the default cluster (since the base address
of the default cluster must be the base address of the entire image).
Consequently, the location of clusters (relative to each other) in the image
will differ from what you would expect based on the position of each
cluster in the cluster list. (Remember here that the additional clusters
precede the default cluster on the cluster list and that the linker typically
allocates memory for clusters beginning at the first cluster on the cluster
list, then the second, and so on. See Section 5.3 and its subsections
for more information on the linker's clustering and memory allocation
algorithms).

CLUSTER=cluster-name,[base-address],[pfc],[file’Spec,...]
Directs the linker to create a cluster.

The CLUSTER= option is used for either or both of the following reasons:

• To control the order in which the linker processes input files

• To cause specified modules to be placed close together in virtual memory

If you do not specify the CLUSTER= option, the linker creates one (the
default) or more clusters as described in Section 5.3 and its subsections.

You must specify a cluster name in the CLUSTER= option; the other
parameters are optional. However, if you omit the base address or the
page fault cluster (pfc) or both, you must still enter the comma after each
omitted parameter. For example:

CLUSTER=AUTHORS...TWAIN.DICKENS

The optional base-address parameter specifies the base virtual address for the
cluster.

The optional page-fault-cluster (pfc) parameter specifies the number of pages
to be read into memory when a fault occurs for a page in the cluster. If you
do not specify the pfc parameter, VAX/VMS memory management uses the
default value established by the SYSGEN parameter PFCDEFAULT.

The file-spec parameter(s) specifies the file(s) you want the linker to place in
the cluster. Note that you should not specify in the LINK command itself any
file that you specify with the CLUSTER= option (unless you want two copies
of that file included in the final image).

Typically, you specify files to be included in the cluster. However, it is
possible to create an empty cluster and to fill it later with program sections by
means of the COLLECT= option (see Section 5.3.2).

COLLECT=cluster-name,psect-name[,...]
Directs the linker to place the named program section(s) in the named cluster.
If the named cluster has not yet been defined by a CLUSTER= option, the
linker creates the cluster when it processes the COLLECT= option.

The linker gives all named program sections the global (GBL) attribute if they
do not already have it. Program sections contained in an input shareable
image cannot be specified in the COLLECT= option. See Section 5.3.2 for
information on the use of the COLLECT= option.

LIIMK-20

LINKER
Options Files

DZRO—MIN=n
Directs the linker to perform demand-zero compression on an image section
only when the number of contiguous, uninitialized, writeable pages in that
image section is equal to or greater than the value specified by the parameter
n.

The DZRO_MIN= option is illegal in a linking operation that produces a
system image and elicits a warning message.

Demand-zero compression is the extracting of contiguous, uninitialized,
writeable pages from an image section and the placing of these pages into a
newly created demand-zero image section.

A demand-zero image section contains uninitialized, writeable pages, which
do not occupy physical memory in the image file on disk, but which, when
accessed during program execution, are allocated memory and initialized with
binary zeros by the operating system.

If the DZRO_MIN= option is not specified, the linker uses a default value of
five. This means that an uninitialized, writeable portion of an image section
is not eligible for demand-zero compression unless it contains at least five
contiguous pages.

A DZRO_MIN= value less than five might cause the linker to compress more
sections and thus create a greater number of demand-zero image sections
(depending on the contents of the object modules). The effect is a reduction
in the size of the image file on disk but a decrease in the image's paging
performance during execution.

On the other hand, a DZRO—MIN value greater than five might cause the
linker to compress fewer sections and thus create fewer demand-zero image
sections. The possible effect might be to increase the size of the image file on
disk but provide better paging performance during execution.

The linker stops creating demand-zero image sections when the total number
of image sections in the image reaches the value established by the ISD_
MAX= option (or the default value). See the description of the ISD_MAX=
option in this section for more information.

Also see Section 5.3.6.1 for a discussion of how and when the linker performs
demand-zero compression and for information about additional requirements
for demand-zero compression.

GSMATCH=keyword,major-id,minor-id
Sets match control parameters for a shareable image. Its use in the creation
of a shareable image allows you to specify whether or not executable images
that link with that shareable image must be relinked each time the shareable
image is updated and relinked.

The GSMATCH= option causes a major identification parameter (a "major
id"), a minor identification parameter (a "minor id"), and a match control
keyword to be stored in the image header of the shareable image.

These GSMATCH parameters are used in the following way. When an
executable image is linked with a shareable image, the image header of the
executable image will contain an image section descriptor (ISD) for each
image section in the image, as well as a single ISD for the shareable image.
The ISD for the shareable image will contain a major id, minor id, and match
control keyword, which the linker copies from the current (at link time)
shareable image.

LINK—21

LINKER
Options Files

Subsequently, when the executable image is run and the image activator
begins processing the ISDs in the image header of the executable image, the
image activator will encounter the ISD for the shareable image. At this time,
the image activator compares the image section name in the ISD to the image
section name in the image header of the current shareable image file.

If the image section names do not match, the image activator does not
allow the executable image to map to the shareable image, no matter what
GSMATCH parameters are in effect.

If the image section names match, the image activator compares the major-id
parameters. If they do not match, the image activator does not allow the
executable image to map to the shareable image unless GSMATCH=ALWAYS
has been specified, in which case it allows the mapping.

If the major-id parameters match, the image activator compares the minor-id
parameters. If the relation between the minor-id parameters does not satisfy
the relation specified by the match control keyword, the image activator does
not allow the executable image to map to the shareable image. Then the
image activator issues an error message to the effect that the executable image
must be relinked. The match control keywords may be EQUAL, LEQUAL, or
ALWAYS.

• EQUAL directs the image activator to allow the executable image to map
to the shareable image only if the minor id in the ISD of the executable
image is equal to the minor id in the shareable image file.

LEQUAL directs the image activator to allow the executable image to map
to the shareable image only if the minor id in the ISD of the executable
image is less than or equal to the minor id in the shareable image file.

• ALWAYS directs the image activator to allow the executable image to
map to the shareable image, regardless of the values of the major and
minor-id parameters, providing that the image section names are the
same. However, the syntax of this option requires that you specify the
major- and minor-id parameters anyway.

By convention, when a programmer updates and relinks a shareable image,
he or she always specifies the GSMATCH= option to increase the value of
the minor id and to leave unchanged the value of the major id and the match
control keyword. (If the major id is changed, executable images can never
map to the shareable image.)

By means of this convention, a programmer who updates and relinks a
shareable image can ensure that executable images that linked with the older
version of the shareable image can map to the newer version by using the
GSMATCH= option in the following way:

• When creating the first version of the shareable image, specify a
GSMATCH= option such as the following:

GSMATCH=LEQUAL.1,1000

• When updating and relinking the older (first) version, specify a
GSMATCH= option such as the following:

GSMATCH=LEQUAL,1.1001

LINK-22

Note that, in the above example, executable images that link with the new
version cannot map to the old version, whereas executable images that link
with the old version can map to the new version.

LINKER
Options Files

To allow an executable image that links with any version to map to any other
version (newer or older), you can specify the following when you create a
shareable image:

GSMATCH=ALWAYS,0,0

If you do not specify the GSMATCH= option in the creation of a shareable
image, executable images that link with the shareable image must be relinked
whenever the shareable image is updated and relinked. For, the default value
for the GSMATCH= option is the following, where x and y together are the
middle 32 bits of the 64-bit creation time stored in the shareable image file
header:

GSMATCH=EQUAL,x,y

Thus, since the values of x and y will never be the same again (x and y
increase with time) and since the keyword EQUAL requires that the minor-id
parameters be the same, this default value will require that executable images
that link with a shareable image always be relinked whenever that shareable
image is updated and relinked.

See Sections 3.5.1 and 3.5.2 for examples of the use of the GSMATCH=
option.

IDENTIFICATION=id-name
Sets the image id field in the image header. The maximum length of the field
is 15 characters. If id-name contains characters other than uppercase and
lowercase A through Z, the numerals 0 through 9, the dollar sign, and the
underscore, enclose it with quotation marks.

The image id field is initially taken from the id of the first object module
processed when producing any kind of image with an image header.
Thereafter, as long as the image id field is not empty, it is not changed
unless an object module is encountered which has a transfer address on the
end-of-module (EOM, refer to EOM object record) object record. This transfer
address is the main entry point for the image.

For executable images, the image id comes from the id of the object module
that contains the main entry point for the image.

For shareable images, the image id usually remains as the id of the first object
module processed, since shareable images normally do not have a main entry
point.

IOSEGMENT=n[,[NO]POBUFS]
Specifies the number of pages to be allocated for the image I/O segment,
which holds the buffers and VAX RMS control information for all files used
by the image.

The required parameter n specifies the number of pages to be allocated for
the image I/O segment.

The optional parameter POBUFS specifies that any additional pages needed
by VAX RMS be allocated in the PO region, while the optional parameter
NOPOBUFS denies VAX RMS additional pages in the PO region.

If the IOSEGMENT= option is not specified, VAX/VMS allocates 32 pages
in the PI region of the process virtual address space for the image I/O
segment and allocates additional pages (if needed) at the end of the PO
region of the process address space. Thus, the default setting is, in effect,
IOSEGMENT=32,POBUFS.

LINK-23

LINKER
Options Files

Specifying the value of n to be greater than 32 guarantees the contiguity of
PI address space, providing that VAX RMS does not require more pages than
the value specified. If VAX RMS does require more pages than the value
specified, the pages in the PO region would be used (by default).

Note that if you specify NOPOBUFS and if VAX RMS requires more pages
than have been allocated for it, VAX RMS issues an error message.

ISD_MAX=n
Specifies the maximum number of image sections allowed in the image. The
parameter n may be a number in hexadecimal (%X), decimal (%D), or octal
(%0) radix. The default is decimal radix.

This option is used to control the linker's creation of demand-zero image
sections by imposing an upward limit on the number of total image sections.
Thus, if the linker is compressing the image by creating demand-zero sections
and if the total number of image sections reaches the ISD_MAX= value,
compression ceases at that point.

The ISD_MAX= option may be specified only in a linking operation that
produces an executable image, since the linker only performs demand-zero
compression when it is creating an executable image. The ISD_MAX= option
is illegal in a linking operation that produces either a shareable or a system
image and will elicit a warning message.

The default value for ISD_MAX= is approximately 96. Note that any value
you specify is also an approximation. The linker determines an exact ISD_
MAX= value based on certain characteristics of the image, including the
different combinations of section attributes. The exact value, however, will be
equal to or slightly greater than what you specify; it will never be less.

See the explanation of the DZRO_MIN= option in this section and
Section 5.3.6.1, for more information about demand-zero compression.

NAME=image-name
Sets the image name field in the image header. The maximum length of
the string is 15 characters. If image-name contains characters other than
uppercase and lowercase A through Z, the numerals 0 through 9, the dollar
sign, and the underscore, enclose it with quotation marks.

PROTECT= YES/NO
Directs the linker to protect one or more clusters in a shareable image from
user-mode or supervisor-mode write access. This option may be specified
only in the creation of a shareable image.

PROTECT=YES specifies that clusters defined (by means of the CLUSTER= or
COLLECT= options) on subsequent lines (up to the line containing another
PROTECT= option, if any) in the options file be protected.

PROTECT=NO, the default value, specifies that clusters defined (by means
of the CLUSTER= or COLLECT= options) on subsequent lines (up to the
line containing another PROTECT= option, if any) in the options file not be
protected.

The following is an example of an options file containing the PROTECT=
option. Modules MODI and MOD2 in cluster A are protected; MOD3 in
cluster B is not protected; program sections PSECTX, PSECTY, and PSECTZ
in cluster B are protected.

LINK-24

LINKER
Options Files

PROTECT=YES
CLUSTER=A..,MODI,M0D2
UNIVERSAL=ENTRY

PROTECT=NO
CLUSTER=B,,,M0D3
PROTECT=YES
COLLECT=B,PSECTX,PSECTY,PSECTZ

Note that other link options may be interspersed among any PROTECT=
options and are not affected by any PROTECT= options.

This option is used in the creation of a privileged shareable image, parts of
which need to be protected from nonprivileged users and other parts not.
If the entire shareable image needs to be protected, specify the /PROTECT
command qualifier. See Section 3.3.3 for more information on privileged
shareable images.

PSECT_ATTR=psect-name,attribute[#...]
Directs the linker to assign one or more attributes to a program section. This
option is used to change the attributes assigned to a program section by a
language processor.

Attributes not mentioned in the PSECT_ATTR= option remain unchanged.
For example, the following directs the linker to make the program section
ALPHA not writeable instead of writeable and to leave all other attributes of
ALPHA unchanged:

PSECT_ATTR=ALPHA,NOWRT

STACK=n
Directs the linker to allocate the specified number of pages for the user mode
stack.

Note that additional pages for the user mode stack are automatically allocated,
if needed, during program execution.

If you do not specify the STACK= option, the linker allocates 20 pages for the
user mode stack.

The STACK= option may only be specified in a linking operation that
produces an executable image. The STACK= option is illegal in a linking
operation that produces either a shareable or a system image and will elicit a
warning message.

SYMBOL=name, value
Directs the linker to define an absolute global symbol with the specified name
and to assign it the specified value.

An absolute global symbol is a global symbol with an absolute, numerical
value. That is, it is not a relocatable symbol. Thus, the parameter "value'" in
the SYMBOL= option must be a number.

The definition of a symbol specified by the the SYMBOL= option constitutes
the first definition of that symbol, and it overrides subsequent definitions of
the symbol in input object modules. In particular:

• If the symbol is defined as relocatable in an input object module, the linker
ignores this definition, uses the definition specified by the SYMBOL=
option, and issues a warning message.

LINK-25

LINKER

• If the symbol is defined as absolute in an input object module, the linker
ignores this definition, uses the definition specified by the SYMBOL=
option, but does not issue a warning message.

UNIVERSAL=symbol-name[,...]
Directs the linker to make the specified global symbol in a shareable image
a universal symbol. This option may only be specified in the creation of a
shareable image.

Making a global symbol a universal symbol ensures that the symbol may be
referred to by outside object modules, that is, by object modules other than
those that were linked to create the shareable image.

Refer to Section 1.4.1.1 for more information on universal symbols.

LINK-26

LINKER
Shareable Images

3 Shareable Images

This section explains the benefits and uses of shareable images, explains how
to write source programs for shareable images, discusses the use of the LINK
command and pertinent options, explains how to use shareable images, and
provides two detailed examples.

Familiarity with the information in Section 5, Linker Operations, is important
to a complete understanding of the information in this section. In addition.
Section 1 contains relevant information about shareable image files and
libraries, and universal symbols.

3.1 Benefits and Uses of Shareable Images
This section discusses the benefits of using shareable images and some
applications in which the use of shareable images is essential or important.

Note that some of the benefits of using shareable images can only be realized
if the shareable image is installed using the Install Utility. Installing a
shareable image makes the shareable image known to VAX/VMS (that is,
makes it a "known" image) and results in its image sections being promoted
to global sections. The installation of images is usually done by the system
manager.

For additional information on installing images (both shareable and
executable) see the Install Utility in the VAX/VMS Utilities Reference Volume.

3.1.1 Conserving Disk Storage Space

All programs executed under the VAX/VMS system must be disk resident.
When a shareable image is linked with an executable image, the physical
contents of the shareable image are typically not copied into the executable
image file. Hence, many executable images that have been linked with
the same shareable image may be disk resident, but only one copy of
the shareable image need exist on disk. This significantly reduces the
requirements for disk storage space.

Thus, the use of a shareable image conserves disk storage space, whether or
not that shareable image has been installed using the Install Utility.

If, however, the shareable image has not been installed, the image activator
copies, at run time, that shareable image into the address space of any process
that runs an executable image to which that shareable image has been linked.
Therefore, if the shareable image is not installed, multiple copies of that
shareable image may exist at run time.

LINK-27

LINKER
Shareable Images

3.1.2 Conserving Main Physical Memory
Main physical memory is one of the prime resources that any operating
system has to control. When a shareable image is installed, VAX/VMS creates
a set of global sections in physical memory—one for each image section in
the shareable image—and allows these global sections to be mapped into
the address space of many processes. Mapping the same physical pages of
a global section into many processes eliminates the need for each process to
have its own copy of those pages, thus significantly reducing the requirements
for main physical memory.

If a shareable image is not installed, multiple processes cannot share it at run
time; instead, each process receives a private copy of the shareable image at
run time. Thus, to conserve main physical memory, the shareable image must
be installed.

3.1.3 Reducing Paging I/O
Paging occurs when a process attempts to access a virtual address that is
not in the process working set. When such a page fault occurs, the page
either is in a disk file (in which case paging I/O is required) or is already
in main physical memory. One of the reasons a page can be resident (that
is, in main physical memory) when a fault occurs is that it is a shared page,
already faulted by some other process that is sharing it. In this case, no
I/O operation is required before mapping the page into the working set of a
subsequent process. Thus, if many processes are using an installed shareable
image, it is more likely that its pages are already physically resident. This
reduces the need for paging I/O.

Note that, since a shareable image must be installed if it is to be shared by
more than one process at run time, the benefit of reduced paging I/O is
possible only if the shareable image is installed.

3.1.4 Sharing Memory-Resident Databases
There are many applications, particularly in data acquisition and control
systems, in which response times are so critical that control variables and
data readings must remain in main memory. Frequently, many programs
must make use of this data.

Shareable images help to simplify the implementation of such applications.
The shared database may be, for example, a named VAX FORTRAN
COMMON area built into a shareable image. The shareable image may
also include routines to synchronize access to such data. When programs of
the application bind with the shareable image, they have easy access to the
data (and routines) at the VAX FORTRAN level.

It is possible, moreover, for such data bases to contain initial values, and for
the most recent values to be written back to disk on system shutdown or at
regular intervals. Recording the values at regular intervals makes it possible
for a system restart to use the most recent values of the variables of an online
process.

Note that since more than one application program (or executable image) is
manipulating at run time the same physical pages of the memory-resident,
shareable-image data base, the shareable image must be installed.

LINK-28

LINKER
Shareable Images

3.1.5 Making Software Updates Compatible
A major problem in maintaining a large software installation is that of
incorporating a new version of a software component in all programs that
use it. Packaging software facilities as shareable images can help alleviate the
problem.

By carefully organizing a shareable image and by using transfer vectors and
position independent coding techniques, you can make significant changes
and enhancements to the content of the shareable image and yet eliminate
the need to relink all the images bound with it.

3.2 Writing Source Programs for Shareable Images
A shareable image, by its nature, is meant to be linked with many executable
images so that it can be executed simultaneously by one or more of these
executable images. For this reason, when you write code for shareable
images, you should consider shareability, position independence, and the use
of transfer vectors.

Sections 3.2.1 and 3.2.2 discuss the topics of shareability and position
independence for the benefit, in particular, of VAX MACRO and VAX BLISS-
32 programmers, since these languages allow considerable control in this area.
Programmers in other high-level languages need not be concerned about
these issues since their respective VAX compilers generate code according to
the guidelines discussed in these sections.

Sections 3.2.3 and 3.2.4 discuss the use of transfer vectors and the rules
for creating upwardly compatible shareable images, topics of interest to
programmers in all VAX languages.

3.2.1 Shareability
The sharing of routines between two or more processes must address the
issue of whether each process has access to data that one or more other
processes are using. Sometimes this sharing is a requirement, as in the
case of industrial data acquisition applications. At other times, however, it
cannot be allowed. For example, if a piece of data used by a routine is a loop
counter, each process must have a separate counter; otherwise the routine
cannot be shared simultaneously. This situation is part of the problem known
as reentrancy.

Sections of a program that cannot be shared among multiple users (such
as the loop counter described above) should be placed in program sections
having the WRT and NOSHR attributes. This can be accomplished in VAX
MACRO with the .PSECT assembler directive, which serves to place a section
of code in a program section with specified attributes.

Alternatively, program sections may be assigned these attributes at link time
by means of the PSECT_ATTR option. In either case, the linker places all
program sections with the WRT and NOSHR attributes in copy-on-reference
image sections or demand-zero image sections.

When an image is activated at run time, a copy-on-reference image section
is initialized to contain the contents of the shareable image file. Thereafter,
the copy-on-reference image section is treated just like a user-private image
section, that is, each process maintains its own copy with its own values. In
sum, each user receives a separate physical copy of each copy-on-reference

LINK-29

LINKER
Shareable Images

image section contained in a shareable image. Pages of these sections are
stored in the system paging file when they are removed from the working set.

On the other hand, if an image section is not copy-on-reference, each user
has access to the same physical copy. If the image section is shareable
and writeable (SHR and WRT), then when a page of that image section is
removed from all user working sets, it is eventually written back into the
shareable image file on disk. If such a page had been modified by one or
more users, the shareable image file on disk will contain the latest copy. It
is this, in fact, which makes it possible to rerun such applications as data
acquisition or transaction processing with the most recent values of shareable,
modifiable data.

Note here that the cooperating user programs in applications like these are
responsible for synchronizing access to such data. Further, when such an
application has run, the data will no longer contain its initial values.

Note the following two points about shareability when writing code for a
shareable image:

• If an image section is not writeable (has the NOWRT attribute), all
processes can use the same copy regardless of whether it is shareable
(SHR) or not shareable (NOSHR) since no form of data privacy or security
is currently implemented.

• If an image section in a shareable image contains code that includes the
.ADDRESS or .ASCID assembler directives, that image section is not
shareable.

At run time when references made using these directives are resolved
(see Section 5.3.6.2), an actual address will be inserted for each of these
directives. Since these addresses will be correct only for a single process
(other processes that want to access the image section simultaneously may
have a different memory allocation), the image section containing these
directives is not shareable.

3.2.2 Position Independence
Position-independent code executes correctly no matter where it is placed in
the virtual address space. Since shareable images by nature are meant to be
executed by multiple processes, it is highly desirable that they be position
independent.

Position independence is advantageous in shareable images for two main
reasons:

• A position-independent shareable image can be linked into the address
space of many users without fragmenting their address space. In other
words, the image activator can place the shareable image at varying
locations in each user image so that the memory allocation for each image
is contiguous. This aspect has various performance advantages such as the
conservation of page table space for each user image.

• A position-independent shareable image can be enlarged without such
modification requiring that all executable images bound to it be relinked.
This advantage is made possible by virtue of the fact that a position-
independent shareable image is allocated virtual memory at run time, not
link time (as for a based shareable image).

LINK-30

LINKER
Shareable Images

Adhere to the following coding guidelines to ensure the position
independence of a shareable image. (Note that the .ASCID directive contains
an implicit .ADDRESS directive, and therefore the following guidelines for
the use of the .ADDRESS directive apply as well to the .ASCID directive.)

• Never refer to numeric virtual addresses when you can refer to their
symbolic representation.

• Use the .LONG directive to make a data reference only when the data is
absolute. When the linker encounters a .LONG directive in a reference to
relocatable data, it must assign a virtual address to resolve the reference.
In this case, the linker issues a warning message because such a reference
makes the shareable image position-dependent.

• Use the .ADDRESS directive to make a reference to relocatable data or to
absolute data. As described in Section 6.3.6.2, the linker processes such
references to maintain the position independence of the shareable image.

• Use PC relative addressing mode in a code reference when the target of
the reference is contained in your image.

• Use general addressing mode in a code reference when the target of that
reference is not contained in your image, as, for example, when you
are making a call to a routine in LIBRTL or to various optional software
products. Again, to be safe, always use general addressing mode for any
external reference.

Although the linker and image activator work together to make code
containing .ADDRESS directives position independent, the use of this
directive should nevertheless be avoided because it incurs linker and image
activator overhead, that is, additional processing time. Further, an image
section containing this directive is not shareable.

As mentioned, if a shareable image contains .LONG references to relocatable
data, the linker reports each occurrence when the shareable image is linked.
To suppress these messages, you can either replace each occurrence of .LONG
with .ADDRESS, or you can specify the shareable image to the linker as a
based shareable image by using the BASE= option.

In sum, if shareable images are to be most useful among many processes, they
should be position independent. Since the VAX instruction set and addressing
modes lend themselves to convenient generation of position-independent
code, their use, together with strict adherence to the above guidelines, will
enable you to write position-independent shareable image code in VAX
MACRO or VAX BLISS-32. All high-level language VAX compilers supported
by VAX/VMS produce position-independent code.

3.2.3 Transfer Vectors
In writing a source program for a shareable image, you use transfer vectors
to enable user programs that are eventually linked with that shareable image
to successfully call routines within the shareable image no matter where the
shareable image is located in virtual memory.

In its simplest form, a transfer vector is a labeled virtual memory location
that contains an address of, or a displacement to, a second location in virtual
memory. The second location is the start of the instruction stream (usually a
routine) of interest.

LINK-31

LINKER
Shareable Images

The following subsections discuss the advantages of and creation of transfer
vectors.

3.2.3.1 Advantages of Transfer Vectors
There are two main reasons for transfer vectors in shareable images:

• They make it easy to modify and enhance the contents of the shareable
image.

• They allow you to avoid relinking user programs bound to the shareable
image in the event that the shareable image is modified.

For example, in Figure LINK-2 the two routines A and B are bound into
a shareable image, which is then bound into a user program. No transfer
vectors are used. The user program calls both A and B. Thus, the user
program contains a representation of the addresses of both A and B.

Figure LINK-2 Shareable Image Without Transfer Vectors

Routine A J

is expanded |

Routine A

(
New position 1 Routine B
of Routine B {
for larger A 1

V
Shareable Image

User Program

CALL A

CALL B

ZK-530-81

Referring to the example in Figure LINK-2, assume that it becomes necessary
to add more code to routine A. When the shareable image is relinked, routine
A will have the same address but because routine A has increased in size,
routine B must be given a "higher" address—higher by the amount of code
added to A.

Thus, if the user program that is bound with the shareable image is not
relinked, it can successfully call A, since A's address has not changed.
However, the call to B would result in a transfer of control to the old address
of B (which is now somewhere in the enlarged routine A), and the desired
result would not occur.

Figure LINK-3 depicts the situation when the shareable image contains
transfer vectors. If routine A is enlarged and the shareable image relinked,
the user program still calls the same transfer vector for routine B, which now
contains the new address of routine B. Thus, the desired result is achieved
and will always be achieved so long as the user program calls the correct
vector and the vector address does not change.

LINK-32

LINKER
Shareable Images

Figure LINK-3 Shareable Image With Transfer Vectors

Transfer Vectors

X

Y

A

B

User Program

CALL A

CALL B

The transfer vector contains

a jump instruction to the

address of the actual

routine.

ZK-531-81

The use of transfer vectors also allows you to add new routines to a shareable
image without needing to relink programs that use existing routines. For
instance, in the above example, if a third routine C were added, it would
be desirable not to have to relink a user program that used only A and B.
Without transfer vectors, it would be necessary to link the three routines
in the sequence A,B,C to prevent the addresses of routines A and B from
changing, thus necessitating that all user programs linked to the shareable
image be relinked. With transfer vectors, however, you can allocate a new
vector location to C (after those for A and B) and then link the three routines
in any order.

3.2.3.2 Creating Transfer Vectors
Transfer vectors may only be created in VAX MACRO. This section describes
how to code a transfer vector for a routine that is entered by a procedure
call (a CALLS or CALLG instruction) or by a subroutine call (a JSB or BSB
instruction).

By default, VAX compilers generate procedure calls. Therefore, calls to
routines in shareable images will generally be made via CALLS or CALLG
instructions. For this reason, you should code the transfer vector for a
routine in a shareable image using the format for procedure calls shown in
Example LINK-1. If, however, you are certain that the routine is coded to be
called via a subroutine call, you should use the format for subroutine calls
shown in Example LINK-2.

In either case, DIGITAL recommends that you code a transfer vector to be
eight bytes long. This may necessitate padding the transfer vector, as is done
in Example LINK-2.

LINK-33

LINKER
Shareable Images

Note that a BSBB or BSBW instruction should not be used in a transfer
vector to call a routine because these instructions branch to the routine via
displacements from the PC. As a result, the linker must assign a virtual
address to the start of the routine, thus making the shareable image position-
dependent.

Example LINK-1 illustrates the VAX MACRO definition of a transfer vector
for a routine FOO entered by means of a CALLG or CALLS instruction.

Example LINK-1 Transfer Vector Coded for a Procedure Call

.TRANSFER

.MASK
JMP

FOO

FOO
L~F00+2

;Begin transfer vector to FOO
;Store register save mask

;Jump to routine, beyond the
;register save mask

Example LINK-2 illustrates the VAX MACRO definition of a transfer vector
for a routine FOO entered by means of a JSB or BSB instruction.

Example LINK-2 Transfer Vector Coded for a Subroutine Call

.TRANSFER FOO ;Begin transfer vector to FOO
JMP L~FOO ;Jump to routine
.BLKB 2 ;Pad vector to 8 bytes

When the linker encounters the .TRANSFER directive in the above examples,
it first verifies that it is creating a shareable image; that is, that the
/SHAREABLE qualifier was specified in the LINK command. If so, the
linker performs the following actions:

1 It makes the symbol FOO a universal symbol.

2 It resolves all "internal" references to FOO by assigning FOO the address
of the routine, not the address of the transfer vector.

3 It resolves all "external" references to FOO by assigning FOO the address
of the .TRANSFER directive, rather than the address of the routine that
FOO represents. Note that this step (step 3) occurs after step 2.

Thus, the .TRANSFER directive does not cause any memory to be allocated
and does not generate any binary code. It merely generates instructions to
the linker.

Note: Because all references to FOO from object modules outside the shareable
image are resolved using the address of the transfer vector, this address
should never change. To ensure this, you should code all transfer vectors
within a single object module and link this module at the beginning of
the shareable image (for example, by means of the CLUSTER= option).
Then the vector addresses will remain fixed even if the source code for
the routines is modified.

LINK-34

LINKER
Shareable Images

In Example LINK-1, the .MASK directive follows the .TRANSFER directive.
This is required when the .TRANSFER directive is used with procedures
entered by the CALLS or CALLG instructions (according to the VAX
procedure calling standard). The .MASK directive directs the linker to allocate
two bytes of memory, find the register save mask accompanying entry point
FOO, and store that mask in the allocated memory. Thus, the register save
mask for each routine entered via a transfer vector is saved in the transfer
vector itself.

Following the .MASK directive is a jump (JMP) instruction to the start of the
routine. This instruction occurs immediately after the register save mask.
Note that if the procedure is entered via a CALLS or CALLG instruction, it is
necessary to jump to the entry point plus 2 in order to skip over the register
save mask.

In conclusion, by means of transfer vectors, any entry point to a routine in a
shareable image can be made a universal symbol, thus enabling that routine
to be called by any user program outside the shareable image in the same
way as an ordinary object module. Further, such routines in a shareable
image can be modified without requiring that user programs bound to the
shareable image be relinked.

Example LINK-2 shows how a transfer vector for a routine in VAX FORTRAN
is linked with that routine to produce a shareable image.

For additional information on VAX MACRO assembler directives, see the
VAX MACRO and Instruction Set Reference Volume.

3.2.4 Rules for Creating Upwardly Compatible Shareable Images
To be able to make changes to shareable images and not have to relink the
images using that shareable image, you must observe the following rule:

Transfer vectors must not be rearranged or removed. Thus, if a routine is
deleted from a shareable image for any reason, its transfer vector should point
to a dummy routine to ensure that user programs bound to the shareable
image do not fail in unforeseen ways. It is also a good idea to allow for the
addition of future transfer vectors by reserving extra space at the end of your
transfer vector object module. You should always add new transfer vectors at
the end. Never insert them between existing transfer vectors.

For based shareable images, you must also observe the following additional
rule:

The new shareable image must not be larger than the old one.

To meet the above guidelines for upward compatibility for based shareable
images, it is useful to reserve expansion space in a shareable image at the
time of creation to allow that image to grow. So long as modifications to the
shareable image do not cause it to grow beyond the expansion space, user
programs bound to the shareable image need not be relinked.

Ffowever, since there is a substantial overhead in increasing the size of a
shareable image (one entry in the system's global page table per shareable
page), you should reduce the expansion area when the shareable image is no
longer being developed. These restrictions on the upward compatibility of
based shareable images may be avoided by coding the shareable image for
position independence.

LINK-35

LINKER
Shareable Images

3.3 Creating a Shareable Image

This section discusses information relevant to a linking operation that results
in the creation of a shareable image. Much of this information is discussed in
detail elsewhere in this manual or in other manuals. In either case, you will
be instructed where to look for additional information.

To create a shareable image, use the /SHAREABLE[=file-spec] command
qualifier with the LINK command.

One or more object modules (but at least one), as well as one or more
shareable images, may be specified as input in the creation of a shareable
image.

To specify a shareable image as input in the creation of a shareable image (in
fact, any image), use the /SHAREABLE positional qualifier. /SHAREABLE,
as a positional qualifier, is only legal in options files.

The Format Section discusses the syntax of the LINK command, and the
Command Qualifier and Positional Qualifier Sections discuss the use of
/SHAREABLE as a command and positional qualifier.

3.3.1 Using the UNIVERSAUOption
Universal symbols are the global symbols of a shareable image that are of
use to programs that subsequently link with the shareable image. They are,
therefore, the only symbols contained in the symbol table of a shareable
image.

Any number of the global symbols of a shareable image may be made
universal. Typically, however, only a very small set of the global symbols
of a shareable image need to be made universal because few of them are of
interest outside the shareable image. Normally, all the entry points (routine
names) provided in a shareable image are made universal, and sometimes
other constants are also made universal.

High-level languages do not provide a way of characterizing a symbol
as universal. Aside from the VAX MACRO .TRANSFER directive, the
UNIVERSAL= option is the only way to designate a global symbol as
universal.

You may specify one or more global symbols by name in the UNI VERS AL=
option. See Section 2.3 for more information on the format and syntax of the
UNIVERSAL^ option.

3.3.2 Using The GSMATCH=Option
The GSMATCH= option sets match control parameters for a shareable image.
Its use in the creation of a shareable image allows you to specify whether or
not executable images that link with that shareable image must be relinked
each time the shareable image is updated and relinked.

If you do not specify the GSMATCH= option in the creation of a shareable
image, executable images that link with the shareable image must be relinked
whenever the shareable image is updated and relinked.

For a thorough discussion of the GSMATCH= option, see Section 2.3.

LINK-36

LINKER
Shareable Images

3.3.3 Creating Privileged Shareable Images
A privileged shareable image differs from a typical shareable image in the
following ways:

• A privileged shareable image may contain dispatchers that handle change-
mode-to-kemel and change-mode-to-executive instructions.

• Portions (or all) of the privileged shareable image are protected from
user-mode and supervisor-mode write access.

• A privileged shareable image must be installed using the Install Utility
(INSTALL), whereas a typical shareable image need not be installed.

Thus, a privileged shareable image allows executable images to call user-
written procedures that run in a more privileged mode in the same way that
they call system services.

Both the PROTECT= option and the /PROTECT command qualifier are used
to create privileged shareable images, though not both at the same time.
The PROTECT= option is used when some clusters require protection and
some do not. The /PROTECT command qualifier is used when all clusters
require protection. Note that an individual program section may be protected
by means of the VEC program section attribute, providing it has the correct
vector format.

When creating a privileged shareable image, you should protect the clusters
containing code or data that privileged-mode code must access, and not
protect the clusters that user-mode code must access. Thus, the /PROTECT
command qualifier should only be used when the entire shareable image
needs to be protected. The VEC program section attribute should only be
used for the program section that contains the change mode dispatch vectors.

See Section 2.3 for a discussion of the PROTECT= option and the Command
Qualifier Section for a discussion of the /PROTECT command qualifier.

For more infomation on installing privileged shareable images, see the Install
Utility in the VAX/VMS Utilities Reference Volume.

3.4 Using Shareable Images
To use a shareable image, you include the shareable image as input in a
linking operation that results in the creation of an executable image.

To specify a shareable image as input to the linker, you must use an options
file, unless the shareable image is in a shareable image library. In the options
file, you specify the shareable image file as input with the /SHAREABLE
positional qualifier.

If the shareable image is in a shareable image library, such as
SYSSLIBRARYiIMAGELIB.OLB, you use the /INCLUDE file qualifier to
specify a shareable image for extraction from the library. See the Positional
Qualifier Section and Section 2 for more information about the /SHAREABLE
and /INCLUDE positional qualifiers, and about options files, respectively.

Usually shareable images are installed by the system manager to make
them available to cooperating users at run time. Note that images with
writeable, shareable data, such as COMMON areas, must always be installed
/WRITEABLE.

LINK-37

LINKER
Shareable Images

When an executable image that is linked with a shareable image is run,
the image activator opens the shareable image file and checks the global
section match. If the match succeeds, the image activator maps the shareable
image into the assigned virtual address space. One of two things happens
depending on whether the shareable image has been installed with the
/SHARE qualifier.

If the shareable image has been installed with the /SHARE qualifier, all
processes share the same copy of the shareable image in physical memory.
Thus, if the executable image references a page of the shareable image that
is not currently in physical memory, that page is read in from the shareable
image. If the executable image references a page that is already in physical
memory, that page is used. Note that once a page of a shareable image is
read into physical memory for one process, any other process can use the
same page in physical memory.

If the shareable image has been installed without the /SHARE qualifier, or
if the shareable image has not been installed, or if the global section has
the copy-on-reference attribute, the image activator creates a private copy of
the shareable image. In this case, the private copy of the shareable image is
treated as part of your executable image. Each process that is linked with the
shareable image must have its own copy of the shareable image in physical
memory.

If the match fails, the image activator displays an error message indicating
that the required global sections are not available.

If the image activator cannot find the shareable image and if the executable
image has a private copy of the shareable image, that copy is used. But if the
executable image does not have a private copy, the image activator displays
an error message indicating that the shareable image is not available.

If the image activator finds a shareable image but the match fails, it will not
use a private copy even if one is present in the executable image.

If the image activator finds a shareable image, the match succeeds, and the
executable image already has a private copy of the shareable image, the image
activator uses the copy in the shareable image file.

Note that by default the image activator locates a shareable image section
(or global section, if the shareable image was installed) in the following
way: (1) it strips the file name from the global section name, for example,
LBRSHR is the file name derived from the global section name LBRSHR—
001, and (2) it combines that file name with the default device and file
type specification SYS$SHARE:.EXE, yielding, for example, the full file
specification SYS$SHARE:LBRSHR.EXE.

Therefore, if you want to use a shareable image in a directory other than
the default directory SYS$SHARE:, you must define a logical name for that
shareable image to enable the image activator to locate it. That is, you must
assign the full file specification of the shareable image to the name of the
shareable image, as follows:

$ DEFINE LBRSHR DISK$W0RKDISK:[MYDIR]LBRSHR

LINK-38

LINKER
Shareable Images

3.5 Examples of Shareable Images

This section contains two examples that serve to demonstrate much of what
has been discussed in this section. Both examples are command procedures
that create, compile, link, and run programs.

Both examples demonstrate the following general aspects of program
development using shareable images:

• Using a command procedure to facilitate many aspects of program
development, such as the compiling, linking, and running of programs

• Writing source code for shareable images, including the use of transfer
vectors

• Creating shareable images in linking operations

• Using options files, particularly in command procedures

• Installing shareable images

In addition, each example demonstrates a more complex use to which
shareable images may be put. The first example below shows how resource
allocation procedures may be shared among separate shareable images within
the same process, while the second example shows the correct way to use
multiple shareable images that reference the same COMMON area.

Example LINK-3 contains the command procedure SHREXAMP1.COM. Note
that a full image map of MAIN1, the executable image generated by this
command procedure, is displayed and described in Section 4.

Numbers in the programming examples are keyed to numbered notes that
follow each example.

LINK-39

LINKER
Shareable Images

Example LINK-3 Sharing Resource Allocation Procedures
Among Shareable Images

$ V =1F$VERIFY(0)
$ •
$! This command procedure demonstrates that two separate
$! shareable images (each of which calls the resource
$! allocation procedure LIB$GET_EF), when linked together
$! into an executable image, will share the OWN (local)
$! storage, rather than use two separate areas of local
$! storage, one per shareable image.
$!
$!
$! If the first parameter to this procedure is not null, the
$! procedure cleans up from a previous invocation and exits.
$!
$!

$ DELETE MAIN1.*.*,A1.*.*,B1.*.* O
$ IF PI .NES. "" THEN EXIT
$!
$! Create the source files
$!
$!
$! The main program
$!
$ CREATE MAIN1.MAR ©

.title mainl

.ident /v03-001/

; The following cell (beginning at the first .PSECT directive and
; ending at the line before the next .PSECT directive) is not
; used by this program. The cell contains a .ADDRESS directive
; and is included here merely to demonstrate how the linker
; records its occurrence in the Module Relocatable Reference
; Synopsis section of the image map. See Section 4 for a
; description of this section of the image map, as well as for
; the actual image map generated by this program.

.psect $data$,noexe,wrt,noshr,long

addr.data:
.address lib$get_vm
.psect $code$,exe,nowrt,8hr,long

a_name: .ASCIC /A/ ;Name strings for output
b_name: .ASCIC /B/

(Continued on next page)

LIIN/K—40

LINKER
Shareable Images

Example LINK-3 (Cont.) Sharing Resource Allocation
Procedures Among Shareable Images

10$:

.entry start, '“M<R11> ;Program entry point

movl #3,rll ;Loop three times
subl2 #4, sp ;Allocate temp on the stack
pushal (sp) ;Stack address to return value

; into
calls #1,G~a ;Call A
bsbb err_check ;Check for error from A
pushi (sp) ;Stack allocated EFN number
pushal a_name ;Stack routine name
calls #2,w~fao_and_ output ;Print EFN allocated
pushal (sp) ;Stack address to return value

; into
calls #1,G~b ;Call B
bsbb err_check ;Check for errors
pushi (sp) ;Stack allocated EFN number
pushal b.name ;Stack routine name
calls #2,w~fao_and_output ;format and output EFN

;allocated
sobgtr rll,10$;Loop for all
movl #1 ,r0 ;Exit success
ret ;Return from image

err.check:
bibs
pushi
calls

10$: rsb

r0,10$;Branch if no error
rO ;Error-stack code
#1,G~lib$signal ;Signal the error

;Return

fao_ctrstr:
.ASCID /Procedure !AC allocated event flag !UL./

fao_and_output:
.word ~M<R2>
8ubl2 #138,sp ;Allocate space for

;descriptor,buffer
movl #132,(sp) ;Create a string descriptor
moval 8(sp),4(sp) 9 • • •

movl sp,r2 ;Save address of descriptor
$FA0_S ctrstr=fao.ctrstr,

outlen=(r2),-
outbuf=(r2),-
Pl=4(ap),-
P2=8(ap)

;Format the output line

bsbb err_check ;Check for FAO error
pushal (sp) ;Stack descriptor address
calls #1,G~lib$put_output ;0utput formatted line
bsbb err_check ;Check for lib$put.output error
ret ;A11 done
end start

(Continued on next page)

LINK-41

LINKER
Shareable Images

Example LINK-3 (Cont.) Sharing Resource Allocation
Procedures Among Shareable Images

$
$
$
$

$
$
$
$
$

$
$
$
$
$
$
$
$
$

! Subroutine A
!

CREATE Al.MAR ©
.title a_l
.psect a_transf er,exe,nowrt,pic,shr,gbl
.transfer a ;Transfer vector for

; shareable image A

.mask a

jmp l~a+2 ;Skip the entry mask

.psect code,nowrt,pic,shr

.entry a,0 ;Entry point for routine A
callg (ap),G~lib$get_ef ;Call the RTL routine

; LIB$GET_EF
ret
. end

! Subroutine B
i

CREATE Bl.MAR o
.title b_l

.psect b_transfer,exe,nowrt,pic,shr,gbl

.transfer b

.mask b
jmp l~b+2
.psect code,nowrt,pic.shr
.entry b,0
callg (ap),G~lib$get_ef

ret
. end

;Transfer vector for
; shareable image B

;Skip the entry mask

;Entry point for routine B
;Call the RTL routine
; LIB$GET_EF

SET VERIFY

! Compile and link
!

MACRO MAIN1
MACRO A1 ©
MACRO B1

(Continued on next page)

LINK-42

LINKER
Shareable Images

Example LINK-3 (Cont.) Sharing Resource Allocation
Procedures Among Shareable Images

$ LINK/MAP/FULL/SHARE A1,SYS$INPUT/0PTI0NS
j

! Options for shareable image A
! ©

GSMATCH = LEQUAL,1,0
UNIVERSAL = A
CLUSTER = A.TRANSFER
COLLECT = A_TRANSFER,A_TRANSFER

$
$ LINK/MAP/FULL/SHARE B1,SYS$INPUT/0PTI0NS
!

! Options for shareable image B

©
UNIVERSAL = B
CLUSTER = B.TRANSFER
COLLECT = B_TRANSFER,B_TRANSFER

$
$ LINK/MAP/FULL MAIN1,SYS$INPUT/0PTI0NS

Options for executable image MAIN

Al/SHARE.Bl/SHARE

! Define logical names for the shareable images so they do
! not need to be moved to SYS$SHARE:

DEFINE /USER A1 SYS$DISK:[]A1
DEFINE /USER B1 SYS$DISK:[]B1

©

Run the program. If the test works, six different event flag

numbers will have been assigned. If the test fails and each
routine has its own data base, then two sets of the same
three event flag numbers will have been assigned.

RUN MAIN1 ©
V = 'F$VERIFY(V)

EXIT ®

The following comments annotate the preceding command procedure and
explain its execution. Each comment has a number that corresponds to the
circled number embedded in the text.

O Deletes all files created by any previous execution of this command
procedure.

© Creates the file MAIN1.MAR, a VAX MACRO program that calls the two
subroutines A and B.

© Creates the file Al.MAR, a VAX MACRO subroutine A that calls the
resource allocation procedure LIB$GET_EF. Note the use of a transfer
vector.

© Creates the file Bl.MAR, a VAX MACRO subroutine B that calls the
resource allocation procedure LIB$GET_EF. Note the use of a transfer
vector.

© Assembles MAIN1, Al, and Bl.

© Links Al as a shareable image—at the same time requesting a full map
and specifying by means of an options file that (1) GSMATCH values be
established, (2) the symbol A be made universal, (3) the cluster A_transfer
be created as an empty cluster, and (4) the program section A_transfer be
placed in the cluster A_transfer.

LINK-43

LINKER
Shareable Images

© Links B1 as a shareable image—at the same time requesting a full map
and specifying by means of an options file that (1) the symbol B be made
universal, (2) the cluster B__transfer be created as an empty cluster, and (3)
the program section B_transfer be placed in the cluster B_transfer. Note
that because the GSMATCH= option has not been specified, MAIN1 will
have to be relinked if B1 is ever relinked.

© Links MAIN1 as an executable image—at the same time requesting a full
map and specifying by means of an options file that the shareable images
A1 and B1 be included as input.

© Defines logical names for each of the shareable image files, which are in
the user's default device and directory, so that the image activator will
be able to find them at run time. (Remember that by default the image
activator searches for shareable images using the filename and the default
file specification SYS$SHARE:.EXE.)

© Runs MAIN1.

® Exits.

Example LINK-3 demonstrates, among other things, how resource allocation
procedures can be shared among separate shareable images within the same
process.

The shareable images A and B each call the resource allocation routine
LIB$GET_EF in the Run-Time Library (VMSRTL). This routine allocates local
event flags from a process-wide pool. If a flag is available, its number is
returned to the caller. If no flags are available, an error is returned.

MAIN1 calls A three times and B three times. Therefore, assuming the
availability of event flags, six event flag numbers will have been returned
when MAIN1 finishes executing.

The sharing of the routine LIB$GET_EF by A and B means that they both use
(call) the same copy of the routine. As a result, the routine LIB$GET_EF will
return six different event flag numbers—for example, 63,62,61,60,59,58.

If, on the other hand, the routine LIB$GET_EF were not shared by A
and B (that is, they each had their own copy of the routine), the routine
would return two sets of the same three event flag numbers—for example,
63,63,62,62,61,61—one set (63,62,61) to A and one set to B.

Sharing of the routine LIB$GET_EF is made possible by the fact that the
linker includes VMSRTL (which contains LIB$GET_EF) in the executable
image only once, despite the fact that two shareable images call it.

Example LINK-4 contains the command procedure SHREXAMP2.COM.

LINK—44

LINKER
Shareable Images

Example LINK-4 Using Complex Shareable Images

$ V = 'F$VERIFY(0)

$!
$! This example demonstrates how to create and link multiple
$! shareable images, each of which references an identical
$! COMMON area. To do this, one shareable image containing
$! the COMMON blocks is created and linked. Then, the
$! shareable images that reference the COMMON area are created
$! and linked with the shareable image containing the
$! the COMMON area.
$!
$! Note that the shareable image SHARE2B does not
$! use a transfer vector. Therefore, when SHARE2B
$! is updated and relinked, any executable image bound to it
$! must be relinked.

$ •
$ DELETE AC0M2.*;*,SHARE2A.*;*,XFR2A.*;*,SHARE2BO

MAIN2.*;*
$ IF PI .NES. "" THEN EXIT
$ CREATE AC0M2.FOR ©
C
C FORTRAN Block data
C
C
C This module contains only the declarations for the
C COMMON blocks referenced by the shareable images.
C

BLOCK DATA ACOM

COMMON /COMMON1/ integer_array(67)
COMMON /C0MM0N2/ integer_array2(48)

END

$
$ CREATE SHARE2A.FOR ©
C
C FORTRAN subroutine share2a
C

SUBROUTINE share2a

COMMON /COMMON1/ integer_array(67)
COMMON /C0MM0N2/ integer_array2(48)

integer_array(l) = 67
integer_array2(l) = 48

RETURN
END

$

(Continued on next page)

LINK-45

LINKER
Shareable Images

Example LINK-4 (Cont.) Using Complex Shareable Images

$ CREATE XFR2A.MAR O
.title xfr2a - Transfer vector for SHARE2A

.ident /v01-001/

.psect $$xfrvectors,exe.nowrt

.transfer share2a

.mask share2a
jmp l~share2a+2

. end

$
$ CREATE SHARE2B.FOR ©
C
C FORTRAN subroutine share2b
C

SUBROUTINE share2b

COMMON /COMMON1/ integer.array(67)

COMMON /C0MM0N2/ integer_array2(48)

integer_array(1) = 48
integer_array2(l) = 67
RETURN
END

$
$ CREATE MAIN2.F0R ©
C
C Main program

C
PROGRAM MAIN2

COMMON /COMMON1/ integer_array(67)
COMMON /C0MM0N2/ integer_array2(48)

CALL share2a
TYPE 10,integer_array(l),integer_array2(l)

10 FORMAT(' SHARE2A-— ' ,1,1)
CALL share2b
TYPE 20,integer.array(1),integer_array2(l)

20 FORMAT(' SHARE2B-',1,1)

STOP
END

$

(Continued on next page)

LINK-46

LINKER
Shareable Images

Example LINK-4 (Cont.) Using Complex Shareable Images

$ SET VERIFY

$!
$! Compile and link

$!
$ FORTRAN AC0M2
$ FORTRAN SHARE2A

$ MACRO XFR2A ©
$ FORTRAN SHARE2B
$ FORTRAN MAIN2

$
$ LINK /SHARE /MAP /FULL AC0M2 ©

$
$ LINK /SHARE /MAP=SHARE2A /FULL -

SHARE2A, SYSSINPUT/OPTION ©
j

! Options input for SHARE2A
!

AC0M2/SHARE
GSMATCH=LEQUAL,1,0
CLUSTER=TRANSFER_VECTOR,.,XFR2A

$
$ LINK /SHARE /MAP /FULL SHARE2B,SYS$INPUT/0PTI0N
!

! Options input for SHARE2B ©
!

UNIVERSAL=SHARE2B
GSMATCH=LEQUAL,1,0
AC0M2/SHARE

$
$ LINK /MAP /FULL MAIN2, SYS$INPUT/OPTION
!

! Options input for MAIN2 ®
i

SHARE2A/SHARE,SHARE2B/SHARE

$
$!
$! Now run the program

$!
$!
$! First install the shareable image containing the
$! COMMONS.

$!
$ RUN SYSSSYSTEM:INSTALL ©
SYSSDISK:[]AC0M2 /OPEN /SHARE /WRITE
$ DEFINE /USER AC0M2 SYSSDISK:[]AC0M2
$ DEFINE /USER SHARE2A SYSSDISK:[]SHARE2A ©

$ DEFINE /USER SHARE2B SYSSDISK:[]SHARE2B

$ RUN MAIN2 ©

$!
$! Remove the global section

$ ' ~
$ RUN SYSSSYSTEM:INSTALL ©
SYSSDISK:[]AC0M2 /DELETE
$ V = 'FSVERIFY(V)
$ EXIT ©

The following comments annotate the preceding command procedure and
explain its execution. Each comment has a number that corresponds to the
circled number embedded in the text.

© Deletes all files created by any previous execution of this command
procedure.

© Creates the file ACOM2.FOR, a VAX FORTRAN block data program that
defines two arrays as COMMON areas.

LINK-47

LINKER
Shareable Images

© Creates the file SHARE2A.FOR, a VAX FORTRAN subroutine that
assigns a value to the first cell in each of the COMMON areas defined
by ACOM2.FOR.

© Creates the file XFR2A.MAR, a VAX MACRO definition of a transfer
vector for the VAX FORTRAN subroutine SHARE2A.FOR.

© Creates the file SHARE2B.FOR, a VAX FORTRAN subroutine that assigns
a value (the reverse of those assigned by SHARE2A.FOR) to the first cell
in each of the COMMON areas defined by ACOM2.FOR.

© Creates the file MAIN2.FOR, the main VAX FORTRAN program that (1)
calls the subroutine SHARE2A and prints the values it assigns, and (2)
calls the subroutine SHARE2B and prints the values that it assigns.

© Compiles each of the above four VAX FORTRAN programs and assembles
the VAX MACRO transfer vector definition.

© Links ACOM2 as a shareable image—at the same time requesting a full
map. Note that because the GSMATCH= option has not been specified,
SHARE2A, SHARE2B, and MAIN2 will have to be relinked if ACOM2 is
ever relinked.

© Links SHARE2A as a shareable image containing a transfer vector—at the
same time requesting a full map and specifying (by means of an options
file) the shareable image ACOM2 as input and the GSMATCH parameter
LEQUAL with a major id of 1 and a minor id of 0.

Note that because the transfer vector definition XFR2A is specified
first on the command line, it is necessary to explicitly specify that the
shareable image and its image map be named SHARE2A, instead of
XFR2A; this is done by specifying the =SHARE2A parameter with the
/SHARE and /MAP qualifiers. Note too that it is not necessary to specify
UNIVERSAL=SHARE2A to make SHARE2A a universal symbol; the
.TRANSFER directive in XFR2A makes SHARE2A universal.

© Links SHARE2B as a shareable image—at the same time requesting
a full map and specifying (by means of an options file) the shareable
image ACOM2 as input, the entry point SHARE2B as universal, and the
GSMATCH parameter LEQUAL with a major id of 1 and a minor id of 0.
Note that since a transfer vector was not included in this linking operation,
SHARE2B may have to be relinked in the event it is modified.

® Links MAIN2 as an executable image—at the same time requesting a full
map and specifying (by means of an options file) the shareable images
SHARE2A and SHARE2B as input.

0 Installs ACOM2 as writeable and shareable.

© Defines logical names for each of the shareable image files, which are in
the user's default device and directory, so that the image activator will
be able to find them at run time (remember that by default the image
activator searches for shareable images using the filename and the default
file specification of SYS$SHARE:.EXE).

© Runs MAIN2.

© Deletes the global section that was created by the previous installation of
ACOM2.

© Exits

LINK-48

LINKER

The following are some of the more complex aspects of the use of shareable
images that are demonstrated by this example:

• This example demonstrates how to create and link multiple shareable
images each of which references an identical COMMON area. This
situation is trickier than that involving multiple subroutines within a
single image each of which references an identical COMMON area.

Since SHARE2A and SHARE2B are independent shareable images, each
would normally have its own COMMON area. Thus, the main program
MAIN2, which wishes to manipulate a single COMMON area by means
of the shareable images SHARE2A and SHARE2B would not be able to do
so. However, by the use of a third shareable image ACOM2, the desired
result is achieved in the following way.

When both shareable images that modify the COMMON area—SHARE 2A
and SHARE2B—are linked (created), a third shareable image that defines
the COMMON area is included as input. Then, SHARE2A and SHARE2B
are included as input in the linking of the main program MAIN2. In
this way, when MAIN2 calls SHARE2A and SHARE2B to modify
the COMMON area, the identical COMMON is modified (since both
SHARE2A and SHARE2B have been linked with ACOM2).

It is important to realize that SHARE2A and SHARE2B are both
independent shareable images and each one may be independently
modified without requiring that the other or that MAIN2 be relinked.

In contrast, the following link sequence would result in a single
COMMON area, but the shareable images SHARE2A and SHARE2B
would no longer be independent:

$ LINK/SHARE/MAP/FULL SHARE2A,SYS$INPUT/OPTION

GSMATCH=LEQUAL,1,0

$ LINK/SHARE/MAP/FULL SHARE2B.SYS$INPUT/OPTION

SHARE2A/SHARE GSMATCH=LEQUAL,1,0

• This example demonstrates, as a convenient side effect of the previously
described advantage, that it is necessary to install only ACOM2 as
writeable, not SHARE2A or SHARE2B.

LINK-49

LINKER
Image Map

4 Image Map

If you so request, the linker produces an image map containing information
about the contents of the image and about the linking process itself. You can
print a copy of the map with the DCL command PRINT and use it to help
locate link-time errors, to study the layout of the image in virtual memory, to
keep track of global symbols, and so on.

To obtain a map in interactive mode, you must specify the /MAP[=file-
spec] qualifier in the LINK command. If you specify the optional file-spec
parameter, the linker writes the map to a file with that file specification. If
you do not specify this parameter, then by default the linker writes the map
to a file having the file name of the first input file and the file type MAP.

There are several types of map. Section 4.1 discusses these map types and
the LINK command qualifiers used to obtain them. Section 4.2 discusses
the sections that comprise the various types of map. Section 4.3 shows an
example map and explains some of the information it contains.

4.1 Types of Image Map

The following are the three types of image map:

• Brief map

• Default map

• Full map

Of these three, the full map is by far the most useful. To get a full map,
specify the /MAP and /FULL command qualifiers in the LINK command;
to get a brief map, specify /MAP and /BRIEF; to get a default map, simply
specify /MAP.

With the default and full map, you can also request that a Symbol Cross-
Reference section replace the Symbols by Name section by specifying the
/CROSS-REFERENCE command qualifier.

Table LINK-2 shows the five possible types of map output and the LINK
command qualifiers required to produce each type.

Table LINK-2 Types of Image Map

Command Type of Map Produced

$ LINK/MAP/BRIEF Brief map

$ LINK/MAP Default map

$ LINK/MAP/CROSS_REFERENCE Default map with symbol
cross-reference

$ LINK/MAP/FULL Full map

$ LINK/MAP/FULL/CROSS_REFERENCE Full map with symbol
cross-reference

LINK-51

LINKER
Image Map

4.2 Image Map Sections

The number of sections contained in an image map depends on the type of
map. A full map contains eight sections; a default map, five; and a brief map,
three.

Column 1 of Table LINK-3 lists each of the possible image map sections in
the order in which they appear in the image map. Column 2 lists the type(s)
of map in which each of these sections appears. Column 3 provides a brief
explanation of the contents of each image map section.

The term "all" in Column 2 means that the corresponding map section
appears in all three types of map—full, default, and brief—while the terms
"default" and "full" in Column 2 mean that the corresponding map section
appears in the default and full maps, respectively. Note that the term "brief"
does not appear in Table LINK-3; map sections contained in a brief map are
designated by the term "all" in Column 2.

Not only does a full map contain more sections than a default or brief map,
but some of its sections may also contain more information than those same
sections would in a default or brief map.

The following are the four map sections that may contain more information
if they appear in a full map than they would if they appeared in a default or
brief map:

• Object module synopsis

• Program section synopsis

• Symbols by name

• Symbol cross-reference

In a full map, these sections may contain information about modules or
shareable images that were implicitly included (but not explicitly specified)
in the linking operation. For example, if a routine were extracted from the
default system library to resolve a symbol reference, the Program Section
Synopsis section in a full map would contain information about the program
sections comprising that routine, whereas the Program Section Synopsis
section in a default map would not.

Table LINK-3 Image Map Sections

Section Name Appearance Explanation

Object module synopsis All Object modules in the image

Module relocatable
Reference synopsis

Full Number of .ADDRESS
directives in each module

Image section synopsis Full Image sections and clusters

Program section synopsis Default Program sections and the
full modular contributions

LINK-52

LINKER
Image Map

Table LINK-3 (Cont.) Image Map Sections

Section Name Appearance Explanation

Symbols by name Default Symbols by Name lists
or

Symbol cross reference
Full global symbol names and

values. However, if you
specify /CROSS-REFERENCE,
symbol cross reference
appears instead, listing
symbol names values,
defining modules, and
referring modules.

Symbols by value Full Hexadecimal symbol values
and names of symbols with
those values

Image synopsis All Statistics and other
information about the
output image

Link run statistics All Statistics about the link
run that created the image

Thus, a default or brief map contains information only about modules and
shareable images that are explicitly included as input in the linking operation,
that is, modules or shareable images that are specified in the command
string or in an options file. Information about modules or shareable images
included as a result of the linker's search of default libraries is not included in
the default or brief map.

A full map, on the other hand, contains information about all modules and
shareable images included in the linking operation, both those explicitly
specified and those implicitly included as a result of the linker's search of
default libraries.

4.3 Example of a Full Map

This section provides an annotated illustration of a full image map. As
previously noted, a full map contains eight image map sections. These
sections are shown in the order in which the linker generates them. Brief and
default maps do not have all of these sections, but the sections that they do
have are in the order shown here.

This map was generated by the following LINK command, which appears in
the shareable image example in Section 3.5.1:

$ LINK/MAP/FULL MAIN1.SYS$INPUT/OPTIONS

The options file SYS$INPUT contains the following line:

A1/SHARE,B1/SHARE

To the casual reader, the full map shown here may be taken as a
representative example of the format and content of any full map. However,
the sophisticated reader may want to take advantage of the fact that the
source code, compile commands, and link commands that preceded the
generation of this map are available for study in Section 3.5.1.

LINK-53

LINKER
Image Map

Module

A1
B1
MAIN1
SYS$P1.
LIBRTL

Module

MAIN1

Name Ident

0
0
V03-001

.VECTOR V03-041
V04-FT2

Name

Further, careful study of this map will illustrate much of the information
presented elsewhere in this manual. For example, the linker's clustering
algorithm, discussed in Section 5, is illustrated in the Image Section Synopsis,
enabling the reader to see how the linker arranges user-defined clusters
(defined by the COLLECT^ and CLUSTER= options), clusters it creates by
default (when shareable images are extracted from IMAGELIB), and the
default cluster.

Headings and items in each illustration are explained only if they are not
self-explanatory.

All numbers are in hexadecimal radix unless they are followed by a period (.),
in which case they are in decimal radix.

1-AUG-1984 18:14 VAX-11 Linker V3A-18 Page 1

! Object Module Synopsis !

Bytes File Creation Date Creator

0 DISK$STARW0RK03:[LEAGUE]A1.EXE;1
0 DISKSSTARW0RK03:[LEAGUE]B1.EXE;1

183 DISKISTARW0RK03:[LEAGUE]MAIN1.OBJ;1
0 SYSICOMMON:[SYSLIB]STARLET.OLB;2
0 SYSSCOMMON:[SYSLIB]LIBRTL.EXE;1

1-AUG-1984 18:14
l-AUG-1984 18:14
1-AUG-1984 18:14

30- JUL-1984 23:04
31- JUL-1984 03:10

VAX-11 Linker V3A-18
VAX-11 Linker V3A-18
VAX/VMS Macro V04-00
VAX/VMS Macro V04-00
VAX-11 Linker V3A-18

The Module Name column contains the name of each object module in the
order in which it is processed by the linker. If the linker encounters an error
during its processing of an object module, an error message appears on the
line directly following the line containing the name of that object module.

The ident column contains identification information for object modules.
This information is taken from the .IDENT field in the object module header.
The ident for shareable images consists of the file type and version number.
For example, the ident for the shareable image A1 is the file type EXE and
Version number 1.

The Byte column contains the number of bytes that the object module
contributes to the image.

The File column shows the device, directory, and file containing the object
module.

! Module Relocatable Reference Synopsis !
♦-♦

Number Module Name Number Module Name Number

1

The module relocatable reference synopsis section contains information to
enable you to locate .ADDRESS directives in the event that you want to
remove these directives. Removing .ADDRESS directives reduces linker and
image activator processing time.

If the linker is creating a shareable image, the Module Name column shows
the name of each object module containing at least one .ADDRESS directive.
If the linker is creating an executable or system image, the Module Name
column shows the name of each object module containing at least one
.ADDRESS reference to a shareable image.

The Number column lists the number of .ADDRESS occurrences found in the
object module whose name appears in the Module Name column.

LINK—54

LINKER
Image Map

DISKSSTARW0RK03:[LEAGUE]MAIN1.EXE;! 1-AUG-1984 18:14 VAX-11 Linker V3A-18 Page 2

! Image Section Synopsis !

Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging Global Sec. Name Match Majorid Minorid

A1 3 1 00000000-R 0 0 READ ONLY A1.001 LESS/EQUAL 1 0

3 1 00000200-R 0 0 READ ONLY A1.002 LESS/EQUAL 1 0

2 1 00000400-R 0 0 READ WRITE FIXUP VECTORS Al_003 LESS/EQUAL 1 0

Bl 3 1 00000000-R 0 0 READ ONLY B1.001 EQUAL 111 3182177

3 1 00000200-R 0 0 READ ONLY B1.002 EQUAL 111 3182177

2 1 00000400-R 0 0 READ WRITE FIXUP VECTORS B1.003 EQUAL 111 3182177

DEFAULT.CLUSTER 0 1 00000200 2 0 READ WRITE COPY ON REF

0 1 00000400 3 0 READ ONLY

0 1 00000600 4 0 READ WRITE FIXUP VECTORS

253 20 7FFFD800 0 0 READ WRITE DEMAND ZERO

LIBRTL 3 111 00000000-R 0 0 READ ONLY LIBRTL.001 LESS/EQUAL 1 11

4 1 0000DE00-R 0 0 READ WRITE COPY ON REF LIBRTL.002 LESS/EQUAL 1 11

Key for special characters above:

! R - Relocatable !
! P - Protected !

The Cluster column shows the name of each cluster in the order in which it
is processed by the linker.

The Type column contains information of interest only to the linker and
image activator with one exception—type 253 designates the image section
that is the user stack.

The Pages column contains the length in pages of each image section. For
example, cluster A1 has 3 image sections, each of which is 1 page long.

The Base Address column contains the base address assigned to the image
section. Note that if the cluster is relocatable, the image activator assigns the
base address to the cluster. In this case, the base address entry for each image
section in the cluster has the letter R appended to it, indicating that the base
address entry is to be interpreted as an offset to be added to the cluster base
address assigned by the image activator.

The Disk VBN (virtual block number) column contains the virtual block
number of the image file on disk wherein the image section resides. The
number zero (0) indicates that the image section is not in the image file.

The PFC (page fault cluster) column indicates how many pages will be read
into memory by VAX/VMS when a page fault occurs for that image section.
The number zero (0) indicates that VAX/VMS memory management, rather
than the linker, determines this value.

The Protection and Paging column shows the protection applied to each
image section. The term FIXUP VECTORS indicates that the corresponding
image section is a fix-up image section. The term DEMAND ZERO indicates
that the image section is a demand-zero image section. The term COPY ON
REF indicates that the image section is a copy-on-reference image section.
Since a copy-on-reference image section is readable, writeable, but not
shareable, each process gets a private copy of it.

The Global Section Name column contains the name assigned by the linker
to each shareable image section.

The Match, Majorid, and Minorid columns contain global section match
information for shareable image sections. See the explanation of the
GSMATCH= option in Section 3.3 for detailed information. Note that since
the GSMATCH= option was not specified in the creation of shareable image
B1 (cluster Bl), default values were assigned.

LINK-55

LINKER
Image Map

DISKSSTARW0RK03:[LEAGUE]MAIN1.EXE;! 1-AUG-1984 18:14

Psect Name Module Name

! Program Section Synopsis !

Base End Length Align

VAX-11 Linker V3A-18

Attributes

Page 3

$DATA$
MAIN1

$CODE$

MAIN1

00000200 00000203 00000004 (
00000200 00000203 00000004 (

00000400 000004B2 000000B3 (
00000400 000004B2 OOOOOOB3 (

4.) LONG 2 NOPIC,USR.CON,REL,LCL,NOSHR,NOEXE, RD, WRT.NOVEC
4.) LONG 2

179.) LONG 2 NOPIC,USR.CON,REL,LCL, SHR, EXE, RD,NOWRT,NOVEC
179.) LONG 2

The Psect Name column lists the name of each program section in the image,
in increasing order of the base virtual address allocated.

Information about the program section as a whole may be found on the same
line as the program section name by reading across the page. For example,
under the Base and End columns are the starting and ending virtual addresses
of the program section; under the Length column is the total length; under
the Align column is the alignment (see Section A.3.1 for information on how
to interpret the number shown); and under the Attributes column are the
attributes.

The Module Name column lists the name(s) of modules that contribute to
the program section whose name appears on the line directly above in the
Psect Name column. Information about a particular module's contribution
to a program section may be found by reading across the page, as described
above for the program section as a whole.

DISKSSTARW0RK03:[LEAGUE]MAIN1.EXE;1 1-AUG-1984 18:14 VAX-11 Linker V3A-18 Page 4

! Symbols By Name !

Symbol Value Symbol Value Symbol Value

A
B
LIB$GET_VM
LIB$PUT_OUTPUT
LIBSSIGNAL
START
SYSSFAO
SYSSIMGSTA

00000648-RX
00000654-RX
00000668-RX
00000660-RX
00000664-RX
00000404-R
7FFEDF50
7FFEDF68

Symbol Value

The symbols by name section is replaced by the Symbol Cross Reference
section if the /CROSS-REFERENCE qualifier is specified in the LINK
command.

The Symbols column lists the names of each global symbol in the image in
alphabetical order.

The Value column lists the hexadecimal values of each global symbol in the
image, as well as additional information about the nature of the symbol. For
example, the letter R appended to the symbol value designates a relocatable
symbol; the letter X designates an external symbol, that is, one defined in
another image; the letter U designates a universal symbol; and the asterisk (*)
designates an undefined symbol. Note that the linker assigns a value of zero
(0) to any undefined symbol.

DISKSSTARW0RK03:[LEAGUE]MAIN1.EXE;1 1-AUG-1984 18:14 VAX-11 Linker V3A-18 Page 5

! Symbols By Value !

Value Symbols...

00000404
00000648
00000654
00000660
00000664
00000668
7FFEDF50
7FFEDF68

R-START
RX-A
RX-B
RX-LIB$PUT_OUTPUT
RX-LIBSSIGNAL
RX-LIB$GET_VM

SYSSFAO
SYSSIMGSTA

LINK-56

LINKER
Image Map

Key for special characters above:
+-+

! * - Undefined !
! U - Universal !
! R - Relocatable !
! X - External !
+-+

The Value column lists the hexadecimal values of each global symbol in
ascending numerical order.

The Symbols column lists the corresponding names of the global symbols
whose values appear in the Value column, as well as information about the
nature of each symbol (as described above in the symbols by name section).

DISK$STARW0RK03:[LEAGUE]MAIN1.EXE;! 1-AUG-1984 18:14 VAX-11 Linker V3A-18 Page 6

Virtual memory allocated:

Stack size:

Image header virtual block limits:

Image binary virtual block limits:
Image name and identification:

Number of files:
Number of modules:

Number of program sections:

Number of global symbols:

Number of image sections:
User transfer address:

Debugger transfer address:

Number of address fixups:
Number of code references to shareable images:

Image type:

Map f ormat:
Estimated map length:

! Image Synopsis !
+-♦

00000200 000007FF 00000600 (1536. bytes, 3. pages)

20. pages

1. 1. (1. block)

2. 4. (3. blocks)
MAIN1 V03-001

7.

5.

8.

250.

12.
00000404

7FFEDF68

1.
5.

EXECUTABLE.

FULL in file DISKSSTARW0RK03:[LEAGUE]MAIN1 MAP;1

54. blocks

The image synopsis section contains miscellaneous information about the
image, most of which is self-explanatory.

The virtual memory allocated line lists the base and ending addresses of
the image, as well as the total length of memory allocated expressed in
hexadecimal (and in parentheses in decimal bytes and decimal pages).

The number of code references to shareable images section may also be
interpreted as the number of external references.

♦-+

! Link Run Statistics !

Performance Indicators Page Faults CPU Time Elapsed Time

Command processing:

Pass 1:

Allocation/Relocation:

Pass 2:
Map data after object module synopsis:
Symbol table output:

Total run values:

107 00:00:00.35 00:00:01.16

147 00:00:00.60 00:00:01.36

55 00:00:00.15 00:00:00.50

48 00:00:00.26 00:00:00.72
22 00:00:00.13 00:00:00.13

5 00:00:00.02 00:00:00.11
384 00:00:01.51 00:00:03.98

Using a working set limited to 900 pages and 75 pages of data storage (excluding image)

Total number object records read (both passes): 104
of which 19 were in libraries and 2 were DEBUG data records containing 74 bytes

64 bytes of DEBUG data were written,starting at VBN 5 with 1 blocks allocated

Number of modules extracted explicitly = 0
with 1 extracted to resolve undefined symbols

5 library searches were for symbols not in the library searched

A total of 0 global symbol table records was written

LINK/MAP/FULL MAIN1,SYS$INPUT/0PTI0NS

The link run statistics section contains miscellaneous statistical information
about the linking operation, most of which is self-explanatory.

LINK-57

LINKER

The last item printed is the command string, that is, all qualifiers and input
files specified in the LINK command, including the content of any specified
options file(s). Note however that this information is printed only in a full
map.

LINK-58

LINKER
Linker Operations

5 Linker Operations

This section discusses in detail the operations performed by the linker in
creating an image.

The first section briefly discusses each of the three types of image that
the linker produces, focusing in particular on the differences in the linker
operations involved in their creation.

The second section discusses in detail the content and format of input
processed by the linker in creating an image, focusing in particular on
program sections.

The third section describes linker operations in sequential order to provide
some insight into the linker's processing algorithm.

5.1 Types of Image

The linker produces three types of image: executable, shareable, and system.
The /EXECUTABLE qualifier in the LINK command directs the linker to
produce an executable image; the /SHAREABLE qualifier, a shareable image;
and the /SYSTEM qualifier, a system image. When none of the above
qualifiers is specified, the linker produces an executable image.

5.1.1 Executable Image
An executable image, the most common type of image, may be executed by
the RUN command.

An executable image cannot be linked with other images, though the modules
that make it up may be relinked in different combinations or with other
modules to produce another executable image.

An executable image may include one or more shareable images. Shareable
images are included in an executable image when they are specified as input
or when they are extracted from libraries to resolve undefined symbols.

The linker's processing algorithm, described in this section, is essentially
a description of how the linker creates executable images, since shareable
images and system images are special cases.

LINK-59

LINKER
Linker Operations

5.1.2 Shareable Image

A shareable image differs from an executable image in the following ways:

• A shareable image is not intended to be directly executed by the RUN
command. To be executed, a shareable image should be included as input
in the creation of an executable image, which, when it executes, may cause
the shareable image to execute.

• Appended to the end of each shareable image is a symbol table, which is
itself an object module. The linker uses this symbol table when it resolves
undefined symbols in object modules with which the shareable image is
linked.

When a shareable image is created, it is the product of a linking operation.
After creation, however, a shareable image serves only as input in another
linking operation, namely, in the creation of an executable image.

Unless otherwise stated, discussion of shareable images in this section
pertains to the use of shareable images as input in linking operations.
Section 3, Shareable Images, deals extensively with shareable images as
the output of linking operations.

5.1.3 System Image

A system image is intended for stand-alone operation on the VAX hardware.
That is, it does not run under the control of the VAX/VMS operating system.

The content and format of a system image differs from that of shareable or
executable images. Specifically, a system image does not have:

• An image header, unless the /HEADER qualifier is specified

• Debugger data

• Symbol tables

Memory allocation for a system image differs from memory allocation for
shareable or executable images as described in this section. It is much
simpler. For a system image, the linker allocates memory to program sections
in alphabetical order by program section name, taking into account the
following factors:

1 Program section size

2 Program section alignment

3 Two program section attributes: concatenated or overlaid, and relocatable
or absolute.

Much of the discussion in this section does not apply to the creation of system
images.

LINK—60

LINKER
Linker Operations

5.2 Input to the Linker

The linker deals primarily with two forms of input, object modules and
shareable images. This section discusses the content and format of this input
insofar as is necessary to understand the subsequent discussion of the linker's
processing algorithm.

Library files can also be specified as input in a linking operation. However,
since libraries contain either object modules or shareable images, the input
derived from libraries must ultimately be either object modules or shareable
images. Consequently, library files are not discussed separately in this section.

Symbol table files can also be specified as input in a linking operation.
Symbol table files are structurally similar to object files. They contain a
subset of the records contained in object files, namely, HDR, GSD, and EOM
records. For this reason, symbol table files are not discussed separately in this
section.

5.2.1 Object Modules
An object module consists of an ordered set of variable-length records of the
following types:

• Header record (HDR)

• Global symbol directory record (GSD)

• Text information and relocation record (TIR)

• Debugger information record (DBG)

• Traceback information record (TBK)

• End of module record (EOM)

Each object module has a HDR record, which must appear first, and an EOM
record, which must appear last. Some object modules also contain some or
all of the other records, which may appear in any order so long as they are
not first or last.

These records contain both data and commands that tell the linker how to
operate on the data. The subsequent discussion of the linker's processing
algorithm mentions each of these records in the context in which they are
processed by the linker. Appendix A, VAX Object Language, describes the
format and content of these records in great detail for the benefit of compiler
writers and others who create object modules for input to the linker.

As an aid in understanding how the linker generates image sections, the
following subsections present information relating to program section
definition (specifically, program section name, size, alignment, and attributes).
This information is specified to the linker by language processors in the
program section definition (PSC) subrecord of the GSD record, though you
may modify program section attributes at link time by using the PSECTL.
ATTR= option.

LINK-61

LINKER
Linker Operations

5.2.1.1 Program Section Name
The program section name is an ASCII character string, 1 through 31
characters in length. Any printable ASCII character is permissible, but the use
of the dollar sign ($) is discouraged because of the danger of possible naming
conflicts with software supplied by DIGITAL.

Program sections with the same name but from different modules normally
must have the same attributes. Any exceptions to this rule are noted in the
discussions of specific attributes.

5.2.1.2 Program Section Size
The size field of a program section definition record is a 32-bit count of
the number of bytes that the particular module contributes to the program
section.

5.2.1.3 Program Section Alignment
The alignment field describes the address boundary at which a module's
contribution to the program section will be placed. The alignment is
expressed as a number from 0 through 9, representing a power of 2. The
base address of the program section is adjusted up to a multiple of that power
of two.

In an overlaid program section, all contributing modules must specify the
same alignment; otherwise, the linker generates a warning message.

In a concatenated program section, each contributing module can specify a
different alignment. The total allocation of the concatenated program section
is aligned on a boundary that is a multiple of the highest power of 2 specified
by any of the contributing modules.

In addition to the keywords BYTE, WORD, LONG, QUAD, and PAGE, the
linker allows specification of program section alignment using the integer
values 0, 1, 2, 3, and 9 where 0 corresponds to BYTE, 1 to WORD, and so on.

5.2.1.4 Program Section Attributes
This subsection describes each program section attribute.

Relocatable (REL) and Absolute (ABS)

A relocatable program section is one that the linker can position in virtual
memory according to the memory allocation strategy for the type of image
being produced.

On the other hand, the linker does not allocate virtual memory for an
absolute program section. An absolute program section contains no binary
data or code, and appears as if it were based at a virtual address of zero.
Absolute program sections are used primarily to define global symbols.

Concatenated (CON) and Overlaid (OVR)

The concatenated and overlaid attributes govern the linker's memory
allocation strategy in the case where different modules define a program
section of the same name. In this case, each module is said to contribute to
the program section's definition.

If the program section is defined with the concatenated attribute, the linker
places each module's contribution to the program section in contiguous
memory addresses.

LINK-62

LINKER
Linker Operations

For example, if PSECTA in MODULE 1 and PSECTA in MODULE2 have
the concatenated attribute, the linker allocates memory for PSECTA from
MODULE 1 and then allocates additional memory for PSECTA in MODULE2
in an address space adjacent to that of PSECTA in MODULE1.

Thus, the total size of a program section with the concatenated attribute is
the sum of each module's contribution plus any padding allowed for the
individual alignments.

If the program section is defined with the overlaid attribute, the linker
overlays each module's contribution to the program section, that is, it assigns
each module's contribution the same base address.

For example, if PSECTA in MODULE 1 and PSECTA in MODULE2 have the
overlaid attribute, the linker allocates memory to PSECTA in MODULE 1 and
then allocates the same memory to PSECTA in MODULE2. That is, they
share the same address space. Thus, the total size of an overlaid program
section is the size of the largest contribution.

Note that any module can initialize the contents of an overlaid program
section. However, the final contents of the program section is determined by
the last contributing module. Therefore, the order in which you specify the
input modules is important.

Local (LCL) and Global Scope (GBL)

The local or global attribute is significant for an image that has more than one
cluster. The attribute determines whether program sections with the same
name but from modules in different clusters are finally placed in separate
clusters (LCL attribute) or in the same cluster (GBL attribute). The memory
for a global program section is allocated in the cluster that contains the first
contributing module.

VAX BASIC and VAX FORTRAN COMMON areas are implemented with
global program sections.

Executability (EXE and NOEXE)

The executability attribute is reserved. The current version of the linker takes
this attribute into account in only two ways:

• Error-checking of the image transfer address. The linker issues a
diagnostic message if a program transfer address is defined in a
nonexecutable program section.

• Sorting of program sections into image sections. Executable program
sections in executable and shareable images are placed in image sections
separate from program sections that are not executable.

Writeability (WRT and NOWRT)

The writeability attribute determines whether the program section contents
will be protected against modification when the image is executed. If the
program section has the writeable attribute, its contents may be modified
during program execution. If the program section has the non writeable
attribute, an access violation occurs if an attempt is made to modify its
contents.

LINK-63

LINKER
Linker Operations

For executable and shareable images, writeable and nonwriteable program
sections are placed in different image sections. For system images, this
attribute is ignored, since by definition the VAX/VMS system is not normally
in control of the memory management of a system image.

Readability (RD and NORD)

The readability attribute is reserved for possible future implementation.

Position Independence (PIC and NOPIC)

The position independence attribute identifies whether or not a program
section will execute correctly anywhere in the virtual address space.

A program section with the PIC attribute will execute correctly no matter
what base virtual address it has been allocated, whereas a program section
with the NOPIC attribute will not.

The linker considers this attribute only when the image being produced is a
shareable image, in which case it sorts program sections with this attribute
(among others) into separate image sections.

See Section 3.2.2 for a complete explanation of position-independence.

Shareability (SHR and NOSHR)

The shareability attribute determines whether or not a program section may
be shared among more than one process. The linker considers this attribute
only when it is producing a shareable image, in which case it sorts program
sections with this attribute (among others) into separate image sections.

This attribute, together with the WRT and NOWRT attributes, affects whether
or not an image section can be simultaneously executed by more than one
process.

User (USR) and Library (LIB)

The user or library attribute is reserved for possible future implementation. It
should be set to USR to guarantee future compatibility.

Protection (VEC and NOVEC)

The protection attribute has two characteristics. The VEC attribute specifies
that the program section contains privileged change-mode vectors or message
vectors, whereas the NOVEC attribute specifies that it does not. Program
sections with the VEC attribute are automatically protected in shareable
images.

5.2.2 Shareable Images
Each shareable image exists in a shareable image file. This file consists of an
image header, image sections, and a symbol table.

The processing of an input shareable image is much simpler than the
processing of an object module. The linker does not need to resolve symbolic
references within the shareable image, to sort program sections into image
sections, or to initialize the image section contents.

LINK-64

LINKER
Linker Operations

Instead, the major work in processing a shareable image is that of resolving
symbolic references between it and the other input object modules. To do
this, the linker searches its global symbol table for undefined global symbols
and, for each one it finds, looks in the shareable image's symbol table for a
match. When it finds a match, it inserts the definition of that symbol as found
in the shareable image symbol table into its global symbol table. Then, after
Pass 1, when the linker allocates virtual memory, it replaces each occurrence
of a symbol with the equivalent location or value as defined in its global
symbol table.

The linker creates a new cluster for each input shareable image it encounters.
It places each new shareable image cluster onto the cluster list at the time
of cluster creation. Therefore, the linker's cluster list may contain object file
clusters, followed by shareable image clusters, followed by other object file
clusters, followed by other shareable image clusters, and so on.

Virtual memory allocation for a shareable image cluster takes place either
at link time or at run time. If the shareable image cluster contains a based
shareable image (a shareable image created using the BASE= option), the
linker allocates virtual memory for the shareable image after Pass 1. A based
shareable image is positioned at the virtual address specified in the BASE=
option.

On the other hand, if the shareable image cluster contains a nonbased (or
position-independent) shareable image, the image activator allocates virtual
memory for the shareable image at run time. As a group, therefore, position-
independent shareable image clusters will appear in the highest-addressed
virtual address space of the final image. Further, since the linker processes
clusters in order of their appearance on the cluster list, position-independent
shareable image clusters processed first will be given lower virtual addresses
than position-independent shareable image clusters processed subsequently.
Thus, a shareable image explicitly specified for inclusion in a linking operation
will always have a lower virtual address assignment than a shareable
image included by default from SYS$LIBRARY:IMAGELIB.OLB, the system
shareable image library.

In allocating virtual memory, the linker needs only to read the image header
of the shareable image to determine its memory requirements since the image
header contains a list of image section descriptors (ISD) that describe each
image section.

5.3 The Linker's Processing Algorithm

This section describes in chronological order each major step in the linking
operation.

The linker reads (passes) through its input two times. However, processing of
input also occurs before its first pass, in between its first and second pass, and
after its second pass.

Each major step in the total processing algorithm is described in the following
sections. These major steps are named, in chronological order:

1 Command processing

2 After command processing

3 Pass 1

4 After Pass 1

LINK-65

LINKER
Linker Operations

5 Pass 2

6 After Pass 2

5.3.1 Command Processing

This section describes how the linker sets up its file and cluster data structures
using the input specified in the LINK command. Since the linker associates
each input file with a cluster, this section is in effect a description of the
linker's clustering algorithm. Note however that, depending on the command
input, the linker may create additional clusters during Pass 1.

By understanding the linker's clustering algorithm, a programmer will be able
to specify input to the linker so as to cause the linker to put particular sections
of a program adjacent to (or close to) other sections in virtual memory. If
these sections frequently reference one another, putting them close together
in virtual memory will improve the performance of the program in the
VAX/VMS operating environment.

When the LINK command is first entered, the command interpreter calls
the linker, which in turn calls back to the command interpreter to obtain
descriptors for the image, symbol table, map, and input files. The linker then
stores the LINK command string for future printing in the image map.

As the linker opens each input file, it allocates a file descriptor block (FDB)
for the file, and links the FDB onto a cluster descriptor. This is how the linker
puts a file into a cluster.

The linker keeps a record of each cluster descriptor in a cluster descriptor list
so that it knows how many clusters it creates, the order in which it creates
them, and the particular cluster that it is currently processing. During Pass
1 and Pass 2, the linker refers to this list to determine the order in which to
process clusters (and therefore files).

The following points summarize the linker's clustering algorithm during
command processing:

• The linker creates a new cluster for each shareable image file or
CLUSTER= option specified in an options file.

• When the command input does not include an options file containing
either a shareable image file or a CLUSTER= option, the linker puts all
input files in the default cluster.

• The linker puts the default cluster onto the end of the cluster list.

In Pass 1 and Pass 2, the linker processes clusters in the order of their
appearance on the cluster list. Consequently, files are processed by cluster,
not by the order of their appearance in the command string. This means that
files put in the default cluster will be processed after files put in other clusters
even though they were specified first in the command string.

In processing the command string, the linker processes the first file specified,
then the next file specified, and so on, until it has processed all files. If it
encounters an options file, it reads the file and processes its contents, and
then proceeds to the next file in the command string.

Input files are specified either in the command string or in an options file. The
following subsections discuss how the linker processes input files specified in
these two ways.

LINK-66

LINKER
Linker Operations

5.3.1.1 Processing Nonoptions Files
Nonoptions files are library or object files that are specified in the command
string.

If the input file is a library file specified with the /LIBRARY qualifier, the
linker puts the entire file into the default cluster.

If the input file is a library file specified with the /INCLUDE qualifier, the
linker puts the entire file in the default cluster and makes note of the modules
specified for extraction from that library.

If the file is an object file, the linker puts the file into the default cluster.

In sum, the linker puts files specified in the command string in the default
cluster.

5.3.1.2 Processing Options Files
If the file is an options file, the linker reads and processes each line in the file
until it reaches the end of the file. How it processes each line depends on
what the line contains. There are three possibilities, each of which is further
discussed later in this section:

1 If the line contains a file specification, the linker puts the file into a cluster:
which cluster depends on the kind of file it is.

2 If the line contains a legal link option, the linker performs the action
specified. The CLUSTER= option and the COLLECT= option, however,
require some additional processing.

3 If the line does not contain either a legal link option or a file specification,
the linker issues an error message and aborts the linking operation.

If the line contains a file specified with the /SHARE qualifier, that is, a
shareable image file, the linker puts the file in a new cluster.

If the line contains a file specified with the /LIBRARY and/or the /INCLUDE
qualifier, that is, a library file, the linker puts the file in the default cluster.

If the line contains an object file specification, the linker puts the file in the
default cluster.

If the line contains a CLUSTER= option, the linker creates a new cluster and
puts the specified files in that cluster. It will, however, create more than one
cluster in the following cases:

• If more than one shareable image file is specified in a single CLUSTER=
option, the linker creates a new cluster for each specified shareable image.

• If a shareable image file appears in the CLUSTER= option together with
any other file that is not a shareable image file (hereafter referred to as a
user file), the linker puts each shareable image file in a new cluster and
puts any user files in another new cluster.

The CLUSTER= option should only specify either (1) a single shareable image
file or (2) one or more user (object or object library) files.

To illustrate, the following line in an options file violates this rule and will
result in a warning message:

CLUSTER=WRONG,,.PETER/SHARE.NINA.OBJ

LINK-67

LINKER
Linker Operations

In this example, the linker puts PETER/SHARE in the new cluster WRONG
and puts NINA.OBJ in another new cluster. If on the other hand, NINA.OBJ
preceded PETER/SHARE on the option line, the linker would put NINA.OBJ
in the new cluster WRONG and put PETER/SHARE in another new cluster.

If the line contains the COLLECT= option, the linker modifies its data base
to prepare for possible cluster creation during Pass 1. The linker cannot
completely process this option, which specifies that the named program
sections be put in the named cluster, because the linker does not process the
contents of input files (which includes program sections) until Pass 1.

5.3.1.3 Considerations in Specifying Input
Because the linker processes clusters sequentially in Pass 1 and Pass 2, care is
rfeeded when specifying input.

Consider, for example, the following command string.

$ LINK FRED,PEOPLE/LIB,SYS$INPUT/OPTION

The options file SYS$INPUT contains the following.

CLUSTER=MORE,,.MEN/LIB

If the library MEN/LIB is expected to resolve undefined symbols in FRED,
the scheme will fail because the linker puts FRED in the default cluster and
MEN/LIB in the cluster MORE, which precedes the default cluster on the list.
Thus, the linker processes MEN/LIB before it processes FRED and therefore
cannot resolve undefined symbols in FRED.

The following command string circumvents this problem:

$ LINK/EXE=FRED/MAP=FRED/FULL SYS$INPUT/OPTION

The options file SYS$INPUT contains:

CLUSTER=MAIN,,.FRED.PEOPLE/LIB
CLUSTER=MORE,,.MEN/LIB

Now the linker puts FRED in the cluster MAIN and MEN/LIB in the cluster
MORE, which follows MAIN in the list. Thus, the linker processes FRED
before MEN/LIB and therefore can resolve undefined symbols in FRED.

5.3.2 After Command Processing

After the linker has processed each input file as described in the preceding
section, it does some further processing if a COLLECT= option was specified
in an options file. The COLLECT= option directs the linker to put the
specified program sections in the specified cluster.

The linker processes the COLLECT= option as follows:

1 It creates a new cluster if the cluster does not already exist

2 It gives each specified program section the global (GBL) attribute to enable
a global search for the definition of that program section in Pass 1

3 It enters each program section in the specified cluster, specifically, in the
program section descriptor list of that cluster

LINK-68

When using the COLLECT= option, care is needed to insure that the cluster
named in the option is linked onto the cluster list before those clusters that
contain the program section definitions.

LINKER
Linker Operations

To illustrate, consider the following options file wherein the COLLECT=
option is intended to gather selected program sections from the file RACE
into a new cluster GAS:

CLUSTER=WHEELS,,,RACE,CRUISE
COLLECT=GAS,.,RACEPSECT1,RACEPSECT2

In this example, the cluster WHEELS will precede the cluster GAS on the
cluster list. The linker processes WHEELS first during Pass 1 and puts the
program sections RACEPSECT1 and RACEPSECT2 in the cluster WHEELS,
instead of in the cluster GAS.

Note that putting the second line before the first in the options file does not
solve the problem because, although the linker now processes the cluster
GAS before the cluster WHEELS, it will be unable to locate definitions of
the specified program sections when it is processing the cluster GAS (since it
only looks for definitions in previous, not subsequent, clusters). The specified
program sections will ultimately be put in the cluster WHEELS.

One way to solve this problem is to specify an empty cluster GAS before the
cluster WHEELS, as follows:

CLUSTER=GAS
CLUSTER=WHEELS,,.RACE,CRUISE
COLLECT=GAS,,,RACEPSECT1,RACEPSECT2

5.3.3 Pass 1
The next step in the linking operation is Pass 1. The linker now reads and
processes the contents of the input files with the aim of building its global
symbol table (GST) and program section table (PST), and resolving undefined
symbols.

The linker builds its GST by reading various subrecords in global symbol
directory (GSD) records. If it encounters a library file, the linker also refers
to its GST to see if it can resolve symbols that are so far undefined. Thus,
during Pass 1, the linker both stores information in and extracts information
from its GST.

The linker builds its PST by reading program section definition (PSC)
subrecords in GSD records. Each PSC subrecord describes a program section,
which in turn describes the memory requirements of a section of an object
module. Each program section represents an area of memory that has a name,
a length, and a series of attributes, which describe the intended or permitted
usage of that portion of memory. The linker will use the PST after Pass 1 to
generate image sections for which it will allocate virtual memory.

The processing of files and clusters takes place in the following order. The
linker reads and processes each input file starting with the first file in the first
cluster, then the second, and so on, until it has processed all files in the first
cluster. Then it does the same for the second cluster, and the next, and so on,
until it has processed all files in all clusters.

Once again, how the linker processes each file depends on whether the file is
an object file, library, or shareable image. The following subsections discuss
these in turn.

LINK—69

LINKER
Linker Operations

5.3.3.1 Processing Object Files
If the file is an object file, the linker reads the records in the file and processes
each record as described below. Note that in the process of reading records,
the linker checks to see that they are in the correct order and that all required
records are present.

1 For the main header (HDR) record (there is only one per object module),
the linker creates an object module descriptor into which it stores such
information as the name and location of the object module and its ident.
The linker then links the object module descriptor onto the object module
descriptor list.

2 For each global symbol directory (GSD) record, the linker checks to
see what subrecords it contains, since a GSD record may have multiple
subrecords.

• If the subrecord type is program section definition (PSC), the linker
must first determine the scope of the search for a definition of the
program section by examining its attributes, in particular, the GBL
attribute. Since two linker options (PSECT_ATTR= and COLLECT=)
change the attributes of a program section, the linker checks to see
whether either of these options were specified. If so, it modifies
the attributes present in the PSC subrecord in accordance with the
attributes specified in the option(s). If not, it leaves the attributes in
the PSC subrecord unchanged.

If the program section does not have the GBL attribute, the linker
searches for a previous definition of the program section in the
program section descriptor list of only the current cluster, that is,
the cluster it is currently processing. If it finds a previous definition,
the linker checks for conflicting attributes and, if there are none, uses
that definition. Otherwise, it defines the program section in the current
cluster by extracting information about the program section out of the
PSC subrecord and putting it into the program section descriptor list.

If a program section has the GBL attribute, the linker searches for
a previous definition of the program section in the program section
descriptor lists of the first cluster, the second, the next, and so on,
until it looks finally in that of the current cluster. If the linker finds a
previous definition, it checks for conflicting attributes and, if there are
none, uses that definition. Otherwise, the linker defines the program
section in the current cluster.

After it has defined the program section, the linker creates the
module program section contribution block (MPC). The MPC keeps a
record, for future use in the map file, of how much data this module
contributes to the program section. The MPC is pointed to by the
object module descriptor, which the linker created when it read the
HDR record.

The linker then checks that the number of program sections for this
module does not exceed the allowable limit. Then, if the program
section has the overlaid attribute OVR, it calculates the maximum
length of the program section (which is the length of the longest
contribution to that program section).

• If the subrecord type is global symbol specification (SYM), entry point
symbol and mask definition (EPM), or procedure and formal argument
definition (PRO), the linker reads all of the information contained in
the record and uses it to build its global symbol table (GST). The GST
contains a list of the names of all global symbols in the image, together

LINK—70

LINKER
Linker Operations

with other information such as its value, where it is defined, and so on.
The linker also uses this information for the map file.

3 The linker ignores text information and relocation (TIR) records in Pass 1,
reserving these for processing in Pass 2.

4 For debugger information (DBG) and traceback information (TBK) records,
the linker calculates how big a buffer is required to store these records for
future use.

5 For the end of module (EOM) record, the linker checks to see whether a
transfer address is defined and if so makes a note of it.

5.3.3.2 Processing Other Files
If the file is a library file that is specified with the /INCLUDE qualifier, the
linker first determines whether the library file is an object module library or a
shareable image library.

If the library is an object library, the linker extracts the specified object
modules and processes them like it does object files.

If the library is a shareable image library, the linker extracts the specified
modules, each of which is a shareable image, and processes them like it does
shareable image files, described below.

If the file is a library file that is specified with the /LIBRARY qualifier, the
linker first determines whether the library is an object module library or
a shareable image library. In either case, since the library will be used to
resolve undefined symbols, the linker looks for a match between undefined
symbols in its GST and symbols in the library symbol table. Note that
the symbols in a shareable image library symbol table are called universal
symbols.

If the library is an object module library, the linker extracts each module that
contains a symbol definition for an undefined symbol and processes it like an
object file.

If the library is a shareable image library and the linker has determined that a
particular module in the library contains a symbol definition that it needs, the
linker must locate that module (remember that each module in a shareable
image library is itself a shareable image file). To locate the module, the
linker attempts to open a file with the file name of the module in the device
and directory of the library file. If this attempt fails, the linker then uses
the name of the module with the device and directory name of the system
default shareable image library (SYS$LIBRARY:). When the linker locates the
module, it processes it like a shareable image file.

If the file is a shareable image file, that is, specified with the /SHARE
qualifier in an options file, the linker reads the image header to obtain the
memory requirements of the image. Then it processes the shareable image's
symbol table, which is pointed to by the image header. The symbol table
of a shareable image is itself an object module containing HDR, GSD, and
EOM records. The linker then processes this symbol table just like an object
module.

LINK-71

LINKER
Linker Operations

5.3.3.3 Processing Default Libraries
After it processes all files in all clusters, the linker checks its GST for
undefined symbols. If there are undefined symbols, the linker processes
the following default libraries in the stated order:

1 Default user libraries, if any, provided that the /NOUSERLIBRARY
qualifier was not specified in the LINK command

2 The system default shareable image library
SYS$LIBRARY:IMAGELIB.OLB, provided that neither the /NOSYSSHR
nor the /NOSYSLIB qualifiers were specified in the LINK command

3 The system default object module library SYS$LIBRARY:STARLET.OLB,
provided that the /NOSYSLIB qualifier was not specified in the LINK
command

The linker processes these libraries by looking for matches between undefined
symbols in its GST and symbols in the library symbol table. For each match
that it finds, it extracts the object module or shareable image that contains the
symbol definition and processes it as previously described.

Remember that for any user default library that is a shareable image library
and for IMAGELIB.OLB, the linker locates any needed module by looking
first in the device and directory of the library file and then, if that search fails,
in the device and directory SYS$LIBRARY:. Note too that IMAGELIB.OLB is
in SYS$LIBRARY:.

The linker puts modules extracted from any user default library that is an
object library and from STARLET.OLB in the default cluster.

The linker puts modules extracted from IMAGELIB.OLB into a new cluster at
the end of the cluster list (after the default cluster). Since all files explicitly
specified by the user have been processed at this point, the shareable image
is able to resolve undefined symbols from all files in all previous clusters.

After the linker processes default libraries (if necessary), it reports on the
terminal and in the map (if a map was specified) all unresolved references
to global symbols, providing that at least one of these references is a strong
reference (as described in Section 1.4.1.3). Again, if at least one unresolved
reference is strong, the linker reports all weak and all strong unresolved
references. If all unresolved references are weak, the linker reports nothing.

5.3.4 After Pass 1

By this point, the linker has resolved undefined symbols and has built its
PST. Since it has processed all input modules and all library modules that
were needed to resolve undefined symbols, the linker now knows how big
the final image will be. Its next job is the allocation of virtual memory.

The linker allocates virtual memory on a cluster-by-cluster basis. It proceeds
by making two passes through the cluster list. On the first pass, it processes
any of the following clusters as it encounters them:

• Based user clusters, that is, clusters assigned a base address by means of
the CLUSTER= option (remember that user clusters are clusters that are
not shareable image clusters)

• Based shareable image clusters, that is, clusters containing a based
shareable image

LINK—72

LINKER
Linker Operations

• Default cluster, if and only if the BASE= option was specified

On the second pass, the linker processes, in order, each user cluster that
was not assigned a base address. The linker ignores nonbased (or position-
independent) shareable image clusters at this point because these clusters will
have virtual memory allocated for them at run time.

The processing of each cluster takes place in three distinct steps, resulting in
the complete allocation of virtual memory for that cluster:

1 Generation of image sections

2 Memory allocation for the cluster

3 Relocation of image sections within the cluster

The following subsections discuss each of these steps in turn.

5.3.4.1 Generation of Image Sections
An image section defines the memory requirements of an image or part of an
image by means of a number of attributes, derived from the program sections
that comprise that image section.

Each image section is described by an image section descriptor (ISD) that
contains, among other things, the number of pages in the image section, the
starting virtual address of the image section, and the descriptor of a buffer
that the linker will use during Pass 2 when it executes TIR records.

To generate an image section, the linker searches the PST of the cluster for
program sections that have a particular set of attributes (significant attributes).
If it finds a program section with this set of attributes, it generates an image
section and puts the program section in that image section. All program
sections having this same set of significant attributes are put in the same
image section.

The linker then repeats this procedure for all other sets of significant attributes
until it has generated a complete set of image sections that contain all
program sections in the cluster. Which set of attributes are significant depends
on the kind of image being produced:

• For executable images, all combinations of the writeability (WRT and
NOWRT), executability (EXE and NOEXE), and protected vector (VEC and
NOVEC) attributes are considered.

• For shareable images, all combinations of the writeability, executability,
protected vector, position-independence (PIC and NOPIC), and
shareability (SHR and NOSHR) attributes are considered.

The linker places program sections in an image section in alphabetical order
according to program section name. It then assigns to each program section a
virtual address relative to the base address of the image section.

The linker places image sections within the cluster in order according to the
particular set of significant attributes that their contained program sections
have. It then assigns to each image section a virtual address relative to the
base address of the cluster.

Thus, at this point, all image sections have cluster-relative addresses and all
program sections have image-section-relative addresses.

LINK-73

LINKER
Linker Operations

Table LINK-4 shows every set of significant attributes that the linker
considers in generating image sections, as well as the order in which image
sections with these sets of attributes are placed in the cluster. Each line of
the table specifies a set of significant attributes, and the order of the lines is
the order that the image sections with those sets of attributes are placed in
the cluster. The table also shows which sets of attributes are significant for
each type of image. For example, the first image section in a cluster for an
executable image will contain program sections with the NOWRT, NOEXE,
and NOVEC attributes, if in fact program sections with these attributes
appeared in the cluster.

5.3.4.2 Memory Allocation for the Cluster
After the linker has generated all image sections, it allocates virtual memory
for the cluster.

The linker keeps track of free (available) virtual addresses by maintaining a
free virtual memory list. For each cluster, the linker determines the number
of pages required, searches the list beginning at the lowest virtual address for
a contiguous number of pages large enough to contain the cluster, allocates
those addresses to the cluster, then removes those addresses from the list.

The linker allocates virtual memory to the first cluster beginning at virtual
address 200 hexadecimal (for an executable image) or 0 (for a shareable
image) in the P0 region of the user's virtual address space, unless the cluster
is based in which case it allocates virtual memory beginning at the specified
address.

On its first pass through the cluster list, the linker allocates virtual addresses
to any based user clusters or based shareable image clusters on the cluster
list, removing the allocated addresses from the free virtual memory list
as it proceeds. On its second pass, it repeats this procedure for nonbased
user clusters. (Remember that nonbased shareable image clusters will have
memory allocated for them at run time.)

Since the linker processes clusters in the order of their appearance on the
cluster list, the virtual address space of the final image will generally contain
contiguous image sections of consecutive clusters on the basis of their order
in the cluster list. The presence of based clusters, however, may prevent such
an outcome, and for this reason they are not recommended.

5.3.4.3 Relocation of Image Sections
When virtual memory has been allocated for each cluster, the linker relocates
all image sections within the cluster by adding the beginning virtual address
of the cluster (derived from the free virtual memory list) to the offset of each
image section into the cluster.

The linker updates the appropriate field in the image section descriptor (ISD)
of each image section in the cluster with the now final starting virtual address
of the image section.

LINK—74

LINKER
Linker Operations

Table LINK-4 Order of Image Sections in Clusters

Type of Image Image Section PSECT Attributes

Executable NOWRT NOEXE — — NOVEC
WRT NOEXE — — NOVEC
NOWRT EXE — — NOVEC
WRT EXE — — NOVEC
NOWRT NOEXE — — VEC
WRT NOEXE — — VEC
NOWRT EXE — — VEC
WRT EXE — — VEC

Shareable NOWRT NOEXE SHR NOPIC NOVEC
WRT NOEXE SHR NOPIC NOVEC
NOWRT EXE SHR NOPIC NOVEC
WRT EXE SHR NOPIC NOVEC

NOWRT NOEXE NOSHR NOPIC NOVEC
WRT NOEXE NOSHR NOPIC NOVEC
NOWRT EXE NOSHR NOPIC NOVEC
WRT EXE NOSHR NOPIC NOVEC

NOWRT NOEXE SHR PIC NOVEC
WRT NOEXE SHR PIC NOVEC
NOWRT EXE SHR PIC NOVEC
WRT EXE SHR PIC NOVEC

NOWRT NOEXE NOSHR PIC NOVEC
WRT NOEXE NOSHR PIC NOVEC
NOWRT EXE NOSHR PIC NOVEC
WRT EXE NOSHR PIC NOVEC

NOWRT NOEXE SHR NOPIC VEC
WRT NOEXE SHR NOPIC VEC
NOWRT EXE SHR NOPIC VEC
WRT EXE SHR NOPIC VEC

NOWRT NOEXE NOSHR NOPIC VEC
WRT NOEXE NOSHR NOPIC VEC
NOWRT EXE NOSHR NOPIC VEC
WRT EXE NOSHR NOPIC VEC

NOWRT NOEXE SHR PIC VEC
WRT NOEXE SHR PIC VEC
NOWRT EXE SHR PIC VEC
WRT EXE SHR PIC VEC

NOWRT NOEXE NOSHR PIC VEC
WRT NOEXE NOSHR PIC VEC
NOWRT EXE NOSHR PIC VEC
WRT EXE NOSHR PIC VEC

System — — — — —

(only one image section)

LINK-75

LINKER
Linker Operations

5.3.5 Pass 2

At this point, the linker has allocated virtual memory for each image section
in each cluster in the image. The linker now opens the map file, if a map
was requested in the LINK command, and allocates virtual memory for the
debug symbol table (DST), unless the /NOTRACE qualifier was specified in
the LINK command.

The major work of Pass 2 is the initialization of image sections, that is, the
writing of the binary contents of the image sections.

To initialize the image sections, the linker makes another pass through the
input to process records in each object module. The linker processes the
records in each object module in the following manner:

1 Header (HDR) records are ignored unless a map was requested in
the LINK command, in which case the linker copies, to the map file,
information contained in these records.

2 Global symbol directory (GSD) records are ignored.

3 Text information and relocation (TIR) records are processed by the linker.
These records direct the linker in the initialization of the image section by
telling it what to store in the image section buffers.

A TIR record contains object language commands, such as stack and store
commands. Stack commands direct the linker to put information on its
stack, and store commands direct the linker to write the information from
its stack to the buffer for that image section.

During this image section initialization, the linker keeps track of the
program section being initialized and the image section to which it has
been allocated. The first attempt to initialize part of an image section
by storing nonzero data causes the linker to allocate a buffer in its own
program region to contain the binary contents of the generated image
section. This allocation is achieved by the expand region system service,
and it requires that the linker have available a virtually contiguous region
of its own memory at least as large as the image section being initialized.

A buffer is not allocated for an image section unless the linker executes a
store command (with nonzero data) within that image section.

4 Debugger information (DBG) and traceback information (TBK) records are
processed only if the debugger was requested and traceback information
was not excluded by the /NOTRACE qualifier in the LINK command.
Otherwise, these records are ignored.

These records contain stack and store object language commands like TIR
records, but they store into the debugger symbol table instead of into an
image section.

5 End of module (EOM) records are processed. The linker checks that its
internal stack has been collapsed to its initial state.

Pass 2 is complete when the linker has processed the records, as described
above, for each object module. At this point, the linker has written the binary
contents of all image sections to image section buffers in its own address
space.

LINK-76

LINKER
Linker Operations

5.3.6 After Pass 2
The linker completes the linking operation with the following three actions:

• Demand-zero compression

• Insertion of the fix-up image section

• Writing of the image file

The following subsections discuss each of these in turn.

5.3.6.1 Demand-Zero Compression
Since neither language processors nor the linker initialize data areas in a
program with zeros, leaving this task to the operating system instead, some
image sections may contain uninitialized pages.

Demand-zero compression is the placing of several uninitialized pages of
an image section into another newly created image section (a demand-zero
image section). Demand-zero compression is a desirable optimization feature
because it reduces the size of the image file and enhances the performance
of the program. However, the linker will create demand-zero image sections
only if all of the following conditions are met:

• The linker is creating an executable or a shareable image, not a system
image.

• The image section contains at least as many uninitialized pages as
specified in the DZRO-JMIN option. If this option was not specified,
the linker uses the default value of 5 pages. However, unitialized copy-
on-reference image sections are made demand-zero, even if they consist of
fewer pages than DZRO—MIN.

• The total number of image sections in the image is less than the allowable
limit (which is either explicitly specified by the ISD_MAX option or
implicitly established by the default value).

The linker proceeds by examining each image section in each user cluster, in
order, from the first to the last cluster, searching for contiguous uninitialized
pages. If the linker finds a collection of uninitialized pages and if all of the
above conditions are met, the linker places the uninitialized pages into a new
image section by creating another image section descriptor (ISD) and linking
it into the ISD list at that point.

Subsequently, when the image is run and a demand-zero page is referenced,
VAX/VMS will initialize an allocated page of physical memory with zeros
(hence the name demand-zero).

5.3.6.2 Insertion of the Fix-Up Image Section
If it is creating an executable image, the linker will always insert a fix-up
image section directly following the last image section in the highest-
addressed user cluster, that is, the last cluster that is not a shareable image
cluster.

If it is creating a nonbased shareable image, the linker will insert a fix-up
image section directly following the last image section in the highest-
addressed user cluster only if either or both of the following conditions
are true:

• One or more nonbased (position-independent) shareable image clusters
follow the highest-addressed user cluster. This occurs when additional

LINK-77

LINKER
Linker Operations

shareable images were included in the linking operation to resolve
undefined symbols.

• One or more .ADDRESS directives were encountered in TIR records.

By means of the fix-up image section, the linker performs the following two
functions, each of which is described in detail in subsequent paragraphs:

• It adjusts the values stored by any .ADDRESS directives that are
encountered during the creation of the nonbased shareable image. This
action, together with subsequent adjustment of these values by the image
activator, preserves the position-independence of the shareable image.

• It processes all general-addressing-mode code references to targets in
position-independent shareable images. In this way, it creates the linkage
between these code references and their targets, whose locations are not
known until run time.

If it were not for the image fix-up section, an occurrence of a .ADDRESS
directive in a shareable image would make that shareable image position-
dependent because the .ADDRESS directive references a fixed address in
virtual memory. For example, if the directive .ADDRESS 4055 appears in the
instruction stream at address 4032, address 4032 now contains virtual address
4055. As a result, the shareable image can only execute correctly when it is
placed in virtual memory at the same address assigned to it by the linker at
the time of its creation.

By means of the fix-up image section, the linker stores information about
each .ADDRESS directive it encounters and passes this information to
the image activator at run time. The image activator can then substitute
run-time addresses for the fixed link-time addresses, thus insuring the
position-independence of the shareable image.

Consider the occurrence of the .ADDRESS 4055 directive at virtual address
4032, described above. Assume at the time the shareable image was created
that its base address was 0 (the default for position-independent shareable
images). Assume further that at run time, the image activator assigns that
shareable image a base address of 6000. The following describes how the
linker, working with the image activator, "fixes up" the .ADDRESS directive:

1 The linker calculates the offset of the directive from the base address of
the shareable image (4032 - 0 = 4032).

2 The linker calculates the offset of the address being stored by the directive
from the base address of the shareable image (4055 - 0 = 4055) .

3 The linker passes both offsets to the image activator.

4 The image activator adds the first offset (4032) to the run-time base
address (6000) to calculate the run-time address (10032) of the occurrence
of the .ADDRESS directive.

5 The image activator adds the second offset (4055) to the run-time base
address (6000) to calculate the run-time address (10055) of the value being
stored by the .ADDRESS directive.

6 The image activator inserts the run-time value being stored (10055) at the
run-time address of the occurrence of the directive (10032).

LIIMK-78

Now the shareable image can execute correctly at the run-time virtual address
assigned to it by the image activator.

LINKER

The linker "fixes up" a general-addressing-mode code reference, whose target
is in a position-independent shareable image, in the following manner:

1 The linker changes the addressing mode of the reference to longword-
relative-deferred and changes the target of the reference to a cell within
the image fix-up section.

2 The linker loads the cell of the image fix-up section with the offset of the
target of the reference from the beginning of the position-independent
shareable image.

3 The image activator assigns a base address to the shareable image and
adds this address to the cell in the image fix-up section during image
activation.

For example, consider the following general-addressing-mode code reference
whose target is the square-root routine MTH$SQRT in VMSRTL:

CALLG LIST.G~MTH$SQRT

The linker changes the reference to a longword-relative-deferred reference to
a cell within the image fix-up section, as follows:

CALLG LIST.QL^sqrt

where sqrt is a cell in the image fix-up section.

The linker then loads sqrt with the offset of MTH$SQRT from the beginning
of VMSRTL.

When the image is run, the image activator adds the base address of VMSRTL
to sqrt, and the linkage is complete.

5.3.6.3 Writing of the Image File
The final step in the linking operation is the writing of information from the
linker buffers to the image file on disk. If a map or symbol table file was
requested, the linker writes the appropriate information to these files as well.

The linker writes the contents of its buffers in the following order:

• All image sections to the image file

• The image header to the image file

• The debug symbol table to the image file, unless /NOTRACE was
specified in the LINK command

• The remaining sections of the map to the map file, if requested in the
LINK command (These sections include all requested sections except the
object module synopsis, which it already wrote, and the link statistics,
which it cannot write until the linking operation completes.)

• The global symbol table to the image file, and also to another separate file
if requested in the LINK command

• The link statistics to the map file, if requested in the LINK command

Lastly, the linker closes the image file, and the map and symbol table files if
these were requested, and exits.

LINK-79

LINKER
VAX Object Language

0 VAX Object Language

This section describes the VAX object language according to DIGITAL
software specifications. The object language described is for use by all VAX
family software; no subsetting will occur.

The VAX object language describes the contents of object modules to the VAX
Linker, as well as to the object module librarian. All language processors that
produce code for execution in native mode are free to use any or all of the
described object language.

This section is useful primarily to programmers writing compilers or
assemblers that must generate object modules acceptable for input to the
VAX Linker. These programmers may also find the ANALYZE/OBJECT
command in the VAX/VMS DCL Dictionary useful because it explains how the
DCL command ANALYZE/OBJECT may be used to check whether an object
module conforms to the requirements of the VAX object language.

This section contains eight sections. The first section provides an overview
of the object language and lists the main types of records. Each subsequent
section discusses a main record and provides a detailed description of all
subrecords and fields that it contains.

The $OBJDEF macro, which defines all symbols used in this section,is
available to programmers in VAX MACRO and VAX BLISS-32. VAX MACRO
programmers will find this macro in the STARLET.MLB object library; VAX
BLISS-32 programmers will find it in the STARLET.REQ require file.

6.1 Object Language Overview
Each object module specified as input to the linker must be in the format
described by the object language. Thus, object files, object library files, and
all symbol table files (which the linker creates) will conform to the format
described by the object language.

The object language defines an object module as an ordered set of variable-
length records. Table LINK-5 shows the main record types currently
available. Column 1 displays the name of the record, followed by its
abbreviation. Column 2 displays the name of the record in symbolic notation:
this name is placed in the first byte of the record to identify the record type.
Column 3 displays the numerical code corresponding to the name in Column
2; this code may be substituted for the symbolic name in the first byte of the
record, though this is not recommended.

LINK-81

LINKER
VAX Object Language

Table LINK-5 Types of Module Records

Record Type Symbol Code

Header (HDR) OBJSC—HDR 0

Global symbol directory (GSD) OBJ$C_GSD 1

Text information and relocation (TIR) OBJ$C_TIR 2

End of module (EOM) OBJ$C_EOM 3

Debugger information (DBG) OBJ$C_DBG 4

Traceback information (TBT) OBJ$C_TBT 5

Link option specification (LNK) OBJ$C_LNK 6

End of module with word psect (EOMW) OBJ$C_EOMW 7

Reserved for future use by linker 8-100

Reserved always 101-200

Reserved for customer use 201-255

The term "reserved" indicates that the item must not be present because it
is reserved for possible future use by the linker and DIGITAL. The linker
produces an error if a reserved item is found in an object module. All of the
seven legal record types need not appear in a single object module. However,
each object module must contain the following:

1 One (and only one) main module header record (MHD) appearing first in
the object module (see Section 6.2.1)

2 One (and only one) language name header record (LNM) appearing
second in the object module (see Section 6.2.2)

3 At least one global symbol directory record (GSD)

4 Either one end of module (EOM) record or one end of module with word
psect (EOMW) record, but not both, appearing last in the object module

An object module may contain any number of GSD, TIR, DBG, and TBT
records, in any order, as long as they are not first or last in the object module.
Figure LINK-4 depicts the correct ordering of records within an object
module.

Figure LINK-4 Order of Records in an Object Module

Main Module Header Record

Language Name Header Record

GSD, TIR, DBG, TBT Records

End of Module Record

or

End of Module With Word Psect Record

ZK-532-81

LINK-82

LINKER
VAX Object Language

If a field is currently ignored by the linker, you must nevertheless allocate
space for it, filling it with zeros to its entire specified length.

Records in the object language may contain the names of program sections,
object modules, language processors, utilities, and so on. Two methods of
specifying names are implemented in the VAX object language:

1 The standard naming method, which uses two fields of the record.
The first field is the 1-byte name length field containing the length in
characters of the name. The second field is the name field containing the
name in ASCII notation.

2 The single field naming method, which uses a single field containing the
name in ASCII notation. The name is not preceded by a 1-byte name
length field.

All name strings except the names specified in Header Records may be up to
31 characters long.

The following sections contain diagrams of the VAX records and subrecords.
Each record or subrecord contains several fields. The left-hand column of a
diagram gives, for each field, its name, symbolic representation, and length
in bytes. The right-hand column gives the value (which may be a symbolic
name), where appropriate, and a description of the field.

Note that many records contain identical fields; if the right-hand column of
a diagram does not give a description of a field, that field has already been
described in a previous record.

Also note that corresponding numerical codes for record types, subrecord
types (in HDR and GSD records), and TIR commands are defined and are
given in this section. Though these may be substituted for the symbolic
name of the record or subrecord in the appropriate field, this practice is not
recommended.

6.2 Header Records

The object language currently provides for the definition of six types of
header records. Of the remaining possible types, types 7 to 100 are reserved
for future use, and types 101 to 255 are ignored.

Table LINK-6 displays the types of header records. Column 1 displays the
name of the header type, followed by its abbreviation. Column 2 displays
its symbolic representation. Column 3 displays its corresponding numerical
code.

Table LINK-6 Types of Header Records

Header Type Symbol Code

Main module header (MHD)1 MHD$C_MHD 0

Language processor name header (LNM)1 MHD$C_LNM 1

Source file header (SRC)2 MHD$C_SRC 2

Title text header (TTL)2 MHD$C_TTL 3

^his record is required by the linker.
2This record is currently ignored by the linker.

LINK-83

LINKER
VAX Object Language

Table LINK-6 (Cont.) Types of Header Records

Header Type Symbol Code

Copyright header (CPR)2 MHD$C_CPR 4

Maintenance status header (MTC)2 MHD$C_MTC 5

General text header (GTX)2 MHD$C_GTX 6

Reserved 7-100

Ignored 101-255

2This record is currently ignored by the linker.

The content and format of the MHD and LNM header types, both of which
are required in each object module, are described in the following subsections.

Though currently ignored by the linker, the header types SRC, TTL, CPR,
MTC, and GTX exist to allow the language processors to provide printable
information within the object module for documentation purposes. The
format of the SRC, TTL, CPR, MTC, and GTX records consists of a record
type field, header type field, and a field containing the ASCII text.

The content and format of the SRC and TTL records are depicted in following
subsections. The contents of these records, as well as the MTC record (which
contains information about the maintenance status of the object module), are
displayed in an object module analysis (see the description of the ANALYZE
/OBJECT command in the VAX/VMS DCL Dictionary).

6.2.1 Main Module Header Record (MHD$C_MHD)
The following diagram depicts the Main module header record. The left-hand
column displays the name, symbolic representation, and length of each field,
where appropriate. The right-hand column displays the value (which may
be a symbol) and any needed explanation of the contents of the field, where
appropriate.

RECORD TYPE
Name: MHD$B_RECTYP
Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE
Name: MHD$B_HDRTYP
Length: 1 byte

The header type is MHD$C_MHD.

STRUCTURE LEVEL
Name: MHD$B_STRLVL
Length: 1 byte

The structure level is OBJ$C_STRLVL. Since the format of the MHD record
will never change, the structure level field was provided so that changes in
the format of other records could be made without requiring recompilation of
every module that conformed to the previous format.

LINK-84

LINKER
VAX Object Language

MAXIMUM RECORD SIZE
Name: MHD$W_RECSIZ
Length: 2 bytes

The maximum record size is OBJ$C_MAXRECSIZ, which is limited in the
current implementation to 2048 bytes. This field contains the size in bytes of
the longest record that can occur in the object module.

MODULE NAME LENGTH
Name: MHD$B_NAMLNG
Length: 1 byte

This field contains the length in characters of the module name.

MODULE NAME
Name: MHD$T_NAME
Length: variable, 1-31 bytes for object modules; 1-39 bytes for the module
header at the beginning of a shareable image symbol table.

This field contains the module name in ASCII format.

MODULE VERSION
Length: variable, 2-32 bytes

This field contains the module version number in standard name format.

CREATION TIME AND DATE
Length: 17 bytes

This field contains the module creation time and date in the fixed format dd-
mmm-yyyy hh:mm where dd is the day of the month, mmm is the standard
3-character abbreviation of month, yyyy is the year, hh is the hour (00 to 23),
and mm is the minutes of the hour (00 to 59). Note that a space is required
after the year and that the total character count for this time format is 17
characters (this includes hyphens (-), the space, and the colon (:)).

TIME AND DATE OF LAST PATCH
Length: 17 bytes

This field is currently ignored by the linker and should be padded with 17
zeros.

6.2.2 Language Processor Name Header Record (MHD$C_LNM)
The following diagram depicts the language processor name header record:

RECORD TYPE
Name: MHD$B_RECTYP
Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE
Name: MHD$B_HDRTYP
Length: 1 byte

The header type is MHD$C_LNM.

LINK—85

LINKER
VAX Object Language

LANGUAGE NAME
Length: variable

This field, which is generated by the language processor, contains the name
and version of the source language that the language processor translates into
the object language. It consists of a variable-length string of ASCII characters
and is not preceded by a byte count of the string.

6.2.3 Source Files Header Record (MHD$C_SRC)
The following diagram depicts the source files header record. The contents
of this record, though ignored by the linker, is displayed in an object module
analysis (see the description of the ANALYZE/OBJECT command in the
VAX/VMS DCL Dictionary).

RECORD TYPE
Name: MHD$B_RECTYP
Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE
Name: MHD$B_HDRTYP
Length: 1 byte

The header type is MHD$C_SRC.

SOURCE FILES
Length: variable

This field, which is generated by the language processor, contains the list of
file specifications from which the object module was created. It consists of a
variable-length string of ASCII characters and is not preceded by a byte count
of the string.

6.2.4 Title Text Header Record (MHD$C_TTL)
The following diagram depicts the title text header record. The contents of
this record, though ignored by the linker, is displayed in an object module
analysis.

RECORD TYPE
Name: MHD$B_RECTYP
Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE
Name: MHD$B_HDRTYP
Length: 1 byte

The header type is MHD$C_TTL.

TITLE TEXT
Length: variable

This field, which is generated by the language processor, contains a brief
description of the object module. It consists of a variable-length string of
ASCII characters and is not preceded by a byte count of the string.

LINK—86

LINKER
VAX Object Language

6.3 Global Symbol Directory Records
GSD records contain information that the linker uses to build the global
symbol table and the program section table. Using this information, the
linker allocates virtual address space and combines program sections into
image sections.

At least one GSD record must appear in an object module.

The first field in a GSD record is the record type GSD$B_RECTYP,
whose value is OBJ$C_GSD. Subsequent fields describe one or more GSD
subrecords, each of which begins with the GSD type field GSD$B__GSDTYP.

Table LINK-7 displays the types of GSD subrecords. Column 1 displays the
name of the GSD subrecord; column 2 displays its symbolic representation;
and column 3 displays its corresponding numerical code.

Table LINK-7 Types of GSD Subrecords

GSD Subrecord Symbol Code

Program section definition GSD$C_PSC 0

Global symbol specification GSD$C_SYM 1

Entry point symbol and mask definition GSD$C_EPM 2

Procedure with formal argument definition GSD$C_PRO 3

Symbol definition with word psect GSD$C_SYMW 4

Entry point definition with word psect GSD$C_EPMW 5

Procedure definition with word psect GSD$C_PROW 6

Entity ident consistency check GSD$C_IDC 7

Environment definition/reference GSD$C_ENV 8

Module-local symbol definition/reference GSD$C_LSY 9

Module-local entry point definition GSD$C_LEPM 10

Module-local procedure definition GSD$C_LPRO 11

Program section definition in a
shareable image

GSD$C_SPSC 12

Again, a single GSD record may contain one or more of the above types of
subrecords. Figure LINK-5 displays the general format of a GSD record that
contains multiple subrecords. Column 1 displays the field names; column 2
displays possible values for those fields. Note that the RECORD TYPE field
appears only once at the beginning. Each GSD subrecord therefore begins
with the GSD TYPE field.

The following subsections describe the format and content of each GSD
subrecord. For each subrecord, the name, length, value, and description of
each field is given, where appropriate.

Note that the RECORD TYPE field is not shown in the diagrams in the
subsequent subsections. Remember, therefore, that this field must always
appear first in the GSD record and that it appears only once, no matter how
many GSD subrecords are included in the GSD record.

LINK-87

6.3.1

LINKER

VAX Object Language

Figure LINK-5 GSD Record With Multiple Subrecords

FIELD TYPE

RECORD TYPE
(GSD$B RECTYP)

GSD TYPE
(GSY$B_GSDTYP)

•

•

•

GSD TYPE
(GPS$B GSDTYP)

•

•

•

GSD TYPE
(PRO$B GSDTYP)

•

•

EXAMPLE CONTENT

OBJ$C_GSD

GSD$C_SYM

•

•

•

GSD$C_PSC

•

•

•

GSD$C_PRO

•

•

ZK-533-81

Program Section Definition Subrecord (GSD$C_PSC)
The linker assigns program sections an identifying index number as it
encounters their respective GSD subrecords, that is, the GSD$C_PSC records.
The linker assigns these numbers in sequential order, assigning 0 to the first
program section it encounters, 1 to the second, and so on, up to the maximum
allowable limit of 65535 (216 -1) within any single object module.

Program sections are referred to by other object language records by means
of this program section index. For example, the global symbol specification
subrecord (GSD$C_SYM) contains a field that specifies the program section
index. This field is used to locate the program section containing a symbol
definition. Also, TIR commands use the program section index.

Of course, care is required to ensure that program sections are defined to
the linker (and thus assigned an index) in proper order so that other object
language records that reference a program section by means of the index are
in fact referencing the correct program section.

The following diagram depicts the format of a program section definition
subrecord, showing the fields it contains and providing a description of each.
Note that the names of fields in this subrecord begin with GPS rather than
PSC.

GSD TYPE
Name: GPS$B_GSDTYP
Length: 1 byte

The GSD type is GSD$C_PSC.

LINK—88

LINKER
VAX Object Language

ALIGNMENT
Name: GPS$B_ALIGN
Length: 1 byte

This field specifies the virtual address boundary at which the program section
is placed. Each module contributing to a particular program section may
specify its own alignment unless the program section is overlaid, in which
case each module must specify the same alignment. An overlaid program
section is one in which the value of flag bit 2 (GPS$V_OVR) is not equal to
0.

The contents of the alignment field is a number from 0 to 9, which is
interpreted as a power of 2; the value of this expression is the alignment
in bytes. Page alignment (alignment field value of 9) is the limit for program
section alignment. For example:

Value Alignment

0 1 (BYTE)

1 2 (WORD)

2 4 (LONGWORD)

3 8 (QUADWORD)

4 24

9 29 (PAGE)

FLAGS
Name: GPS$W_FLAGS
Length: 2 bytes

This field is a word-length bit field, each bit indicating (when set) that the
program section has the corresponding attribute. (See Section 5.2.1.4 for a
description of program section attributes.) The following are the numbers,
names, and corresponding meanings of each bit in the field:

Bit Name Meaning if Set

0

1

2

3

4

GPS$V_PIC

GPS$V_LIB

GPS$V_OVR

GPS$V_REL

GPS$V_GBL

Program section is position independent.

Program section is defined in the symbol table of a
shareable image, to which this image is bound. This
bit is used by the linker and should not be set in
user-defined program sections.

Contributions to this program section by more than
one module are overlaid.

Program section is relocatable. If this bit is not
set, the program section is absolute and therefore
contains only symbol definitions. Note that memory
is not allocated for absolute program sections.

Program section is global.

LINK-89

LINKER
VAX Object Language

Bit Name Meaning if Set

5 GPS$V_SHR Program section is shareable between two or more
active processes.

6 GPS$V_EXE Program section is executable.

7 GPS$V_RD Program section is readable.

8 GPS$V_WRT Program section is writeable.

9 GPS$V_VEC Program section contains change mode dispatch
vectors or message vectors.

10-15 Reserved.

ALLOCATION
Name: GPS$L_ALLOC
Length: 4 bytes

This field contains the length in bytes of this module's contribution to the
program section. If the program section is absolute, the value of the allocation
field must be zero.

PSECT NAME LENGTH
Name: GPS$B_NAMLNG
Length: 1 byte

This field contains the length in characters of the program section name.

PSECT NAME
Name: GPS$T__NAME
Length: 1-31 bytes

This field contains the name of the program section in ASCII format.

6.3.2 Global Symbol Specification Subrecord (GSD$C_SYM)
The global symbol specification subrecord is used to describe the nature of a
symbol (global or universal, relocatable or absolute) and how it is being used
(definition or reference, weak or strong). This information is specified in the
FLAGS field of the subrecord.

There are two formats for a global symbol specification subrecord, one for
a symbol definition and one for a symbol reference. A symbol definition is
indicated when bit 1 (GSY$V_DEF) in the FLAGS field is set—that is, when
GSY$V_JDEF = 1. A symbol reference is indicated when GSY$V_DEF = 0.

Section 6.3.2.1 describes the format of the global symbol specification
subrecord for symbol definitions; Section 6.3.2.2 does the same for symbol
references. Note that the PSECT INDEX and VALUE fields are present only
for symbol definitions, not for symbol references.

LINK—90

LINKER
VAX Object Language

6.3.2.1 GSD Subrecord for a Symbol Definition
The following diagram depicts the global symbol specification subrecord for a
symbol definition.

GSD TYPE
Name: SDF$B_GSDTYP
Length: 1 byte

The GSD type is GSD$C_SYM.

DATA TYPE
Name: SDF$B_DATYP
Length: 1 byte

This field describes the data type of the global symbol. The data type is
encoded as described in Appendix C of the VAX Architecture Handbook. The
linker currently ignores this field.

FLAGS
Name: SDF$W_FLAGS
Length: 2 bytes

This field is a 2-byte bit field, whose bits describe the nature of the global
symbol. Only bits 0 through 3 are used. The following are the numbers,
names, and corresponding meanings of each bit in the field:

Bit Name Meaning

0 GSY$V_WEAK When this bit is set, a strong symbol definition is
indicated; when clear, a weak symbol definition.

1 GSY$V_DEF This bit is set for a symbol definition.

2 GSY$V_UNI When this bit is set, a universal symbol definition
is indicated; when clear, a global symbol definition.
Note that when this bit is set, the value of GSY$V_
WEAK is ignored.

3 GSY$V_REL When this bit is set, the symbol is defined as
relocatable; when clear, as absolute. When it is
relocated, the value of a relocatable symbol is
augmented by the base address of the module's
contribution to the program section.

4-15 Reserved

PSECTINDEX
Name: SDF$B_PSINDX
Length: 1 byte

This field contains the program section index, described at the beginning
of Section 6.3.2. This field identifies the program section that contains the
symbol definition. It may contain a number from 0 through 255 (28 -1).

VALUE
Name: SDF$L_VALUE
Length: 4 bytes

This field contains the value assigned to the symbol by the language
processor.

LINK-91

LINKER
VAX Object Language

NAME LENGTH
Name: SDF$B_NAMLNG
Length: 1 byte

This field contains the length in characters of the symbol name.

SYMBOL NAME
Name: SDF$T_NAME
Length: variable, 1-31 bytes

This field contains the symbol name in ASCII format.

6.3.2.2 GSD Subrecord for a Symbol Reference
The following diagram depicts the global symbol specification subrecord for a
symbol reference:

GSD TYPE
Name: SRF$B_GSDTYP
Length: 1 byte

The GSD type is GSD$C_SYM.

DATA TYPE
Name: SRF$B_DATYP
Length: 1 byte

FLAGS
Name: SRF$W_FLAGS
Length: 2 bytes

This field is a 2-byte bit field, whose bits describe the nature of the global
symbol. Only bits 0 through 3 are used. The following are the numbers,
names, and corresponding meanings of each bit in the field:

Bit Name Meaning

0 GSY$V_WEAK When this bit is set, a weak symbol reference is
indicated; when clear, a strong symbol reference.

1 GSY$V_DEF This bit is clear for a symbol reference.

2 GSY$V_UNI The linker ignores the value of this bit for a symbol
reference.

3 GSY$V_REL The linker ignores the value of this bit for a symbol
reference.

4-15 Reserved

NAME LENGTH
Name: SRF$B_NAMLNG
Length: 1 byte

SYMBOL NAME
Name: SRF$T_NAME
Length: variable, 1-31 bytes

LINK-92

LINKER
VAX Object Language

6.3.3 Entry Point Symbol and Mask Definition Subrecord (GSD$C_EPM)
The following diagram depicts the format of an entry point symbol and mask
definition subrecord:

GSD TYPE
Name: EPM$B_GSDTYP
Length: 1 byte

The GSD type is GSD$C_EPM.

DATA TYPE
Name: EPM$B_DATYP
Length: 1 byte

FLAGS
Name: EPM$W_JFLAGS
Length: 2 bytes

The content of this field is described in Section 6.3.2.1. Note that bit 1 must
be set, that is, GSY$V_DEF = 1, because this is a symbol definition.

PSECTINDEX
Name: EPM$B_PSINDX
Length: 1 byte

VALUE
Name: EPM$L_ADDRS
Length: 4 bytes

The value is the entry point address.

ENTRY MASK
Name: EPM$W_MASK
Length: 2 bytes

The entry mask is written at the entry point of a procedure entered via a
CALLS or CALLG instruction, and in some cases is also used in transfer
vectors to such procedures. A TIR command is provided for the language
processor to direct the linker to insert the mask at the procedure entry point
or at the transfer vector.

NAME LENGTH
Name: EPM$B_NAMLNG
Length: 1 byte

SYMBOL NAME
Name: EPM$T_NAME
Length: variable, 1-31 bytes

LINK-93

LINKER
VAX Object Language

6.3.4 Procedure With Formal Argument Definition Subrecord
(GSD$C_PRO)

The following diagram depicts the format of a procedure with formal
argument definition subrecord.

GSD TYPE
Name: PRO$B_GSDTYP
Length: 1 byte

The GSD type is GSD$C_PRO.

DATA TYPE
Name: PRO$B_DATYP
Length: 1 byte

FLAGS
Name: PRO$W_FLAGS
Length: 2 bytes

The content of this field is described in Section 6.3.2.1. Note that bit 1 must
be set, that is, GSY$V_DEF = 1, because this is a symbol definition.

PSECT INDEX
Name: PRO$B_PSINDX
Length: 1 byte

VALUE
Name: PRO$L_ADDRS
Length: 4 bytes

ENTRY MASK
Name: PRO$W_MASK
Length: 2 bytes

NAME LENGTH
Name: PRO$B_NAMLNG
Length: 1 byte

SYMBOL NAME
Name: PRO$T_NAME
Length: variable, 1-31 bytes

MINIMUM ACTUAL ARGUMENTS
Name: FML$B_MINARGS
Length: 1 byte

This field specifies the minimum number of arguments required for a valid
call to this procedure. Permissible values are 0 to 255. The number must
include the function return value if it exists.

MAXIMUM ACTUAL ARGUMENTS
Name: FML$B_MAXARGS
Length: 1 byte

LINK-94

LINKER
VAX Object Language

This field specifies the maximum number of arguments that may be included
in a valid call to this procedure. Permissible values are 0 to 255. Note that
the linker does not perform argument validation. However, the linker issues
a warning message if the value of MINIMUM ACTUAL ARGUMENTS is
greater than the value of MAXIMUM ACTUAL ARGUMENTS.

FORMAL ARG 1 DESCRIPTOR
Length: variable, 2-256 bytes

This field specifies a single formal argument descriptor. There is a FORMAL
ARG DESCRIPTOR field for each formal argument specified. This field
contains three subfields; its format is displayed at the end of this section.

FORMAL ARG n DESCRIPTOR
Length: variable, 2-256 bytes

This field specifies the last (n) formal argument descriptor and is identical in
format to previous formal argument descriptor fields. Note that if there is a
function return value, this field specifies it.

Each FORMAL ARG DESCRIPTOR field in the above record contains three
subfields. The following diagram depicts its content and format:

ARG VAL CTL
Name: ARG$B__VALCTL
Length: 1 byte

This field is the argument validation control byte. Bits 0 and 1 together define
the argument passing mechanism (ARG$V_PASSMECH). Bits 2 through
7 are ignored. There are four possible values for ARG$V_PASSMECH
corresponding to the four possible values (0 through 3) resulting from the
combination of the values of bits 0 and 1:

ARG$V PASSMECH Name Description

0 ARG$K_UNKNOWN Unspecified

1 ARG$K_VALUE By value

2 ARG$K_REF By reference

3 ARG$K_DESC By descriptor

REM BYTE CNT
Name: ARG$B_BYTECNT
Length: 1 byte

This field contains the length in bytes of the remainder of the argument
descriptor. Permissible values are 0 through 255. Since the linker does not
perform argument validation, it uses the value of this field only to determine
how many subsequent bytes to ignore.

DETAILED ARGUMENT DESCRIPTION
Length: variable, 0-255 bytes

This field contains a detailed description of the argument. The linker
currently ignores this field.

Note that if bits 2 through 7 in ARG$B_VALCTL are not equal to 0 and/or
the value of ARG$B_BYTECNT is not equal to 0, then recompilation of the
object module may be necessary in the event that argument validation is
implemented in a future VAX/VMS Linker.

LINK—95

LINKER
VAX Object Language

6.3.5 Symbol Definition With Word Psect Subrecord (GSD$C_SYMW)
This subrecord is identical in format to the global symbol definition subrecord
described in Section 6.3.2.1, with the exception that the PSINDX field in this
subrecord is 2 bytes long.

The field names in this record begin with SYMW, instead of SYM as in the
global symbol definition subrecord. For example, in this subrecord the name
of the GSD TYPE is SYMW$B_GSDTYP.

Note that the name of the PSECT INDEX field in this subrecord is
SYMW$W_PSINDX.

6.3.6 Entry Point Definition With Word Psect Subrecord (GSD$C_EPMW)
This subrecord is identical in format to the entry point symbol and mask
definition subrecord described in Section 6.3.3, with the exception that the
PSINDX field in this subrecord is 2 bytes long.

The field names in this record begin with EPMW, instead of EPM as in the
entry point symbol and mask definition subrecord. For example, in this
subrecord the name of the GSD TYPE is EPMW$B_GSDTYP.

Note that the name of the PSECT INDEX field in this subrecord is
EPMW$W_PSINDX.

6.3.7 Procedure Definition With Word Psect Subrecord (GSD$C_PROW)
This subrecord is identical in format to the procedure with formal argument
definition subrecord described in Section 6.3.4, with the exception that the
PSINDX field in this subrecord is 2 bytes long.

The field names in this record begin with PROW, instead of PRO as in the
Procedure With Formal Argument Definition subrecord. For example, in this
subrecord the name of the GSD TYPE is PROW$B_GSDTYP.

Note that the name of the PSECT INDEX field in this subrecord is
PROW$W_PSINDX.

6.3.8 Entity Ident Consistency Check Subrecord (GSD$C_IDC)
This subrecord allows for the consistency checking of an entity at link time.
Using this subrecord, a compiler may emit code to check the consistency of
any type of entity that has either an ASCIC or binary ident string associated
with it.

The following diagram depicts the format of an entity ident consistency check
subrecord:

GSD TYPE
Name: IDC$B_GSDTYP
Length: 1 byte

The GSD type is GSD$C_IDC.

LINK-96

LINKER
VAX Object Language

FLAGS
Name: IDC$W_FLAGS
Length: 2 bytes

The FLAGS field is a 2-byte bit field, of which only the first five bits are used.
When bit 0 (IDC$V_BINIDENT) is set, that is, when IDC$V_BINIDENT = 1,
the ident is a 32-bit binary value; when clear, the ident is an ASCIC string.

Bits 1 and 2 (IDC$V_IDMATCH) specify the ident match control for 32-
bit binary idents and are thus only significant when IDC$V__BINIDENT =
1. IDC$V_MATCH may take two values: 0 (IDC$C_LEQ) or 1 (IDC$C_
EQUAL).

When IDC$V_MATCH = IDC$C_LEQ, the binary ident of the entity specified
in the subrecord must be less than or equal to the binary ident of the entity
that is listed in the entity name table.

When IDC$V_MATCH = IDC$C—EQUAL, the binary ident of the entity
specified in the subrecord must be equal to the binary ident of the entity that
is listed in the entity name table. Remaining values of IDC$V_MATCH, that
is, the numbers 2 to 8, are reserved.

Bits 3 to 5 (IDC$V_ERRSEV) specify error message severity levels. When
the value of IDC$V_JERRSEV is 0, the message severity is warning; when 1,
success; when 2, error; when 3, informational; when 4, severe.

Bits 6 to 15 in the FLAGS field are reserved.

NAME LENGTH
Name: IDC$B_NAMLNG
Length: 1 byte

This field contains the length of the entity name.

ENTITY NAME
Name: IDC$T__NAME
Length: variable, 1-31 bytes

This field contains the entity name in ASCII format.

IDENT LENGTH
Length: 1 byte

This field contains the length in bytes of the ident string. For binary idents,
this field contains the value 4.

IDENT STRING
Length: variable, 1-31 bytes

This field contains the ident string. The ident string may be an ASCIC string
or a 32-bit binary value. If this string specifies a 32-bit binary value, it
consists of 24 bits of minor ident and 8 bits of major ident, analogous to the
global section match values for a shareable image. If this string specifies an
ASCIC string, its length is variable.

OBJECT NAME LENGTH
Length: 1 byte

This field contains the length in bytes of the name of the entity in the entity
name table.

LINK-97

LINKER
VAX Object Language

OBJECT NAME
Length: variable, 1-31 bytes

This field contains the name of the entity in the entity name table.

When this GSD subrecord is processed during Pass 1, the linker searches
the entity name table (which is a single name table for all entity types) for
an entity of the same name. If the linker locates such an entity, it compares
the idents. If the idents do not satisfy the specified match control value, the
linker issues a warning message.

6.3.9 Environment Definition/Reference Subrecord (GSD$C_ENV)
The following diagram depicts the format of an environment definition and
reference subrecord:

GSD TYPE
Name: ENV$B_GSDTYP
Length: 1 byte

The GSD type is GSD$C_ENV.

FLAGS
Name: ENV$W_FLAGS
Length: 2 bytes

This field is a 2-byte bit field. Bit 0, whose name is ENV$V_DEF, is a bit
mask. When ENV$V_DEF = 1, the subrecord describes an environment
definition; when clear, an environment reference. Bits 2-15 are ignored.

ENV$V__NESTED—The current environment is nested within another
environment. The parent environment index is ENV$W_ENVINDX.

ENVIRONMENT INDEX
Name: ENV$W_ENVINDX
Length: 2 bytes

This field contains the environment index, a number from 0 through 65535.
Like a program section, each environment is assigned a number (its index)
that is used by TIR and GSD records in references to it.

If the current environment is contained within another environment (for
example, a nested environment), then this field contains the index of the
surrounding or "parent'" environment. Otherwise, this field is 0. However,
since a 0 could also be interpreted as the current environment being contained
within environment 0, the ENV$V__NESTED bit may be consulted to clear up
this ambiguity.

NAME LENGTH
Name: ENV$B_NAMLNG
Length: 1 byte

This field contains the length in characters of the environment name.

LINK-98

LINKER
VAX Object Language

ENVIRONMENT NAME
Name: ENV$T_NAME
Length: variable, 1-31 bytes

This field contains the environment name.

The linker reports any undefined environments at the end of Pass 1. Note
that there may be a total of 65535 environments defined or referenced in any
single object module.

6.3.10 Module-Local Symbol Definition/Reference Subrecord
(GSD$C_LSY)

This subrecord, like the global symbol specification subrecord described in
Section 6.3.2, has two formats: one for a symbol definition and one for a
symbol reference. The following subsections describe each of these.

6.3.10.1 Module-Local Symbol Definition
The format of a module-local symbol definition is identical to the format of
the symbol definition with word psect subrecord described in Section 6.3.5,
with the following exceptions:

• The field names in this record begin with LSDF instead of SYMW as in
the symbol definition with word psect subrecord. For example, in this
subrecord the name of the GSD TYPE is LSDF$B_GSDTYP.

• The module-local symbol definition subrecord contains an additional field,
directly following the FLAGS field and preceding the PSINDX field: the
ENVIRONMENT INDEX field (LSDF$W_ENVINDX).

• Only two of the four bits in the FLAGS field are used in this subrecord.
Bit 1 (LSY$V_DEF) must be set because this is a definition. Bit 3 (LSY$V__
REL) is set or not set depending on whether the module-local symbol is
relocatable or not relocatable, respectively. Bit 0 (LSY$V_WEAK) and bit
2 (LSY$V_UNI) are ignored because a module-local symbol may not be
defined as either weak or universal.

6.3.10.2 Module-Local Symbol Reference
The format of a module-local symbol reference is identical to the format of
the global symbol reference subrecord described in Section 6.3.2.2, with the
following exceptions:

• The field names in this record begin with LSRF instead of SRF as in the
global symbol reference subrecord. For example, in this subrecord the
name of the GSD TYPE is LSRF$B_GSDTYP.

• The module-local symbol reference subrecord contains an additional field
directly following the FLAGS field and preceding the NAME LENGTH
field: the ENVIRONMENT INDEX field (LSRF$W_ENVINDX).

• Only bit 1 (LSY$V_DEF) in the FLAGS field is used. It must be clear,
that is, LSY$V_JDEF = 0, because this is a reference. Bits 0, 2, and 3 are
ignored.

LINK-99

LINKER
VAX Object Language

6.3.11 Module-Local Entry Point Definition Subrecord (GSD$C_LEPM)
This subrecord is identical in format to the entry point definition with word
psect subrecord described in Section 6.3.6, with the following exceptions:

• The field names in this record begin with LEPM instead of EPMW as in
the entry point definition with word psect subrecord. For example, in this
subrecord the name of the GSD TYPE is LEPM$B_GSDTYP.

• The module-local entry point definition subrecord contains an additional
field directly following the FLAGS field and preceding the PSINDX field:
the ENVIRONMENT INDEX field (LEPM$W_ENVINDX).

6.3.12 Module-Local Procedure Definition Subrecord (GSD$C_LPRO)
This subrecord is identical in format to the procedure definition with word
psect subrecord described in Section 6.3.7, with the following exceptions:

• The field names in this record begin with LPRO instead of PROW as in
the procedure definition with word psect subrecord. For example, in this
subrecord the name of the GSD TYPE is LPRO$B_GSDTYP.

• The module-local procedure definition subrecord contains an additional
field directly following the FLAGS field and preceding the PSINDX field:
the ENVIRONMENT INDEX field (LEPM$W__ENVINDX).

6.3.13 Program Section Definition in a Shareable Image (GSD$C_SPSC)
This subrecord is identical in format to the program section definition
subrecord described in Section 6.3.1, with the following exceptions:

• This subrecord is generated only by the linker and is reserved to the
linker.

• This subrecord is only legal in the global symbol table (GST) of a
shareable image.

• This subrecord contains an additional, 4-byte field directly following the
ALLOCATION field and preceding the PSECT NAME LENGTH field: the
BASE field (SGPS$L_BASE). The BASE field contains the base address of
this program section in the shareable image.

• The field names in this subrecord begin with SGPS, instead of GPS as in
the program section definition subrecord. For example, in this subrecord
the name of the GSD TYPE is SGPS$B_GSDTYP.

LINK-100

LINKER
VAX Object Language

6.4 Text Information and Relocation Records (OBJ$C_TIR)
A text information and relocation record contains commands and data that
the linker uses to compute and record the contents of the image.

The linker's creation of the binary content of an image file is controlled by
the language processor using the commands contained in TIR records.

A TIR record consists of the RECORD TYPE field (TIR$B_RECTYP) followed
by one COMMAND field and one DATA field for each TIR command in the
record. Since a TIR record may contain many TIR commands, it may be quite
long. It may not, however, exceed the record size limit for the object module.
This limit is set in the MAXIMUM RECORD SIZE field (MHD$W_RECSIZ) in
the Main Module Header Record (MHD$C_MHD).

The fields in a TIR record are described below. Note that the description
given for the first COMMAND and first DATA field applies to all TIR
commands but one, the Store Immediate command, while the description
given for the second COMMAND and second DATA field applies only to the
Store Immediate command. This does not imply that the Store Immediate
command must follow other TIR commands; TIR commands may appear
within the TIR record in any order.

RECORD TYPE
Name: TIR$B_RECTYP
Length: 1 byte

The record type is OBJ$C_TIR.

COMMAND
Length: 1 byte

This field designates the TIR command. This description of the COMMAND
field applies to all TIR commands except the Store Immediate command,
which is described in the next COMMAND field. There are 85 TIR commands
(excluding the Store Immediate command), and each has a positive number
ranging from 0 to 84 associated with it. Thus, this field may contain the name
of a command or its corresponding number, though it is recommended that
you use the name of the command rather than the number.

DATA
Length: variable

This field contains the data upon which the previously specified (in the
COMMAND field) TIR command operates. The length of this field is implied
by the command itself. For example, if the previous COMMAND field
specifies a stack-byte command, the length of this DATA field is one byte.

COMMAND
Length: 1 byte

This field contains the name of a TIR command. This description of the
COMMAND field applies only to the Store Immediate command. The Store
Immediate command is designated by any negative number (bit 7 is set) in
the COMMAND field. The absolute value of the COMMAND field is the
length in bytes of the following DATA field. The Store Immediate command
directs the linker to write the contents of the DATA field directly to the
output image file, without using the internal stack. Thus, from 1 to 128 bytes
of data may be immediately stored by means of this command.

LINK-101

LINKER
VAX Object Language

DATA
Length: variable

This field contains the data upon which the previously specified TIR
command operates. The length of this field is given by the command itself.
When the previous COMMAND field contains a Store Immediate command,
the length of this DATA field is the absolute value of the COMMAND field.

Most TIR commands operate on values on the linker's internal stack, which is
longword-aligned at all times. Values placed on the stack by TIR commands
are retained during processing of other record types; however, the stack must
be completely collapsed when the EOM or EOMW record is processed. The
minimum stack space available is never less than 25 longwords.

TIR commands fall into four categories:

1 Stack commands place data on the stack.

2 Store commands pop data from the stack and write it to the output image
file. The only exception is the Store Immediate command, which writes
data directly to the image file without using the stack.

3 Operator commands perform arithmetic operations on data currently on
the stack.

4 Control commands reposition the linker's location counter.

In the interest of linker performance, a few implementation decisions and
their possible side effects should be noted.

• The linker does not execute a store repeated command when the value
being stored is zero. Such a command is, in effect, a null operation. The
reason for this is twofold. First, the pages of an image are guaranteed
to be zero anyway, unless otherwise initialized by the compiler. Second,
demand-zero compression works only on pages that have not been
initialized; thus, not allowing a Store Repeated command to initialize a
page with zeros permits the linker to compress that page.

• The linker is a two-pass processor of object modules. It ignores TIR
records on Pass 1 and executes them on Pass 2. The execution of TIR
records produces the output image file. TIR records are not executed if the
linking operation is aborted before Pass 2 because of a command or link¬
time error. Consequently, user or compiler errors potentially detectable in
Pass 2 (such as truncation errors) will not be detected in this case.

TIR commands are described in the following four subsections. The first
subsection discusses the stack commands; the second, the store commands;
the third, operator commands; and the fourth, control commands. The
commands are presented in numerical order, based on their equivalent
numerical codes (in decimal), except for the Store Immediate command,
which does not have a specific numerical code. The Store Immediate
command has already been described.

LINK—102

LINKER
VAX Object Language

6.4.1 Stack Commands
The stack commands place bytes, words, and longwords on the stack. Byte
and word stack commands (except those that stack the values of global
symbols or addresses) have both signed extension to longword and zero
extension to longword formats.

The data stacked is taken from one of the following:

• The DATA field directly following the COMMAND field

• A global symbol

• A computation derived from the base address of a program section

Code Command Description

0 TIR$C_STA_GBL
(Stack Global)

Data is the name of the global symbol in
standard name format. The command stacks
the 32-bit binary value of the stacks symbol.

1 TIR$C_ST A_SB
(Stack Signed Byte)

Data is a 1-byte constant, which is sign-
extended to 32 bits.

2 TIR$C_STA_SW
(Stack Signed Word)

Data is a 2-byte constant, which is sign-
extended to 32 bits.

3 TIR$C_STA_LW
(Stack Longword)

Data is a 4-byte constant.

4 TIR$C_STA_PB
(Stack Psect Base
Plus Byte Offset)

Data is a 1-byte program section index followed
by a single signed byte offset. The psect base
and byte offset are added and stacked.

5 TIR$C_STA_PW
(Stack Psect Base
Plus Word Offset)

Data is a 1-byte program section index followed
by a single signed word offset. The psect base
and word offset are added and stacked.

6 TIR$C_STA_PL
(Stack Psect Base
Plus Longword
Offset)

Data is a 1-byte program section index followed
by a single signed longword offset. The
psect base and longword offset are added
and stacked.

Note that although the offsets in the above three commands are signed,
negative values are very rarely correct. Note also that the base address is that
of this module's contribution to the program section.

Code Command Description

7 TIR$C_ST A_UB
(Stack Unsigned
Byte)

Same as Stack Signed Byte except that the
value is zero-extended to 32 bits.

8 TIR$C_ST A_U W
(Stack Unsigned
Word)

Same as Stack Signed Word except that the
value is zero-extended to 32 bits.

9 TIR$C_STA_BFI
(Stack Byte From
Image)

This command is reserved for future use.
The top longword on the stack is used as an
address, in the image, from which to retrieve a
byte. The byte is zero-extended and replaces
the top longword on the stack.

LINK-103

LINKER
VAX Object Language

Code Command Description

10

11

12

13

14

15

16

17

18

TIR$C_STA_WFI
(Stack Word From
Image)

TIR$C_ST A_LFI
(Stack Longword
From Image)

TIR$C_ST A—EPM
(Stack Entry Point
Mask)

TIR$C_ST A—CKARG
(Compare Procedure
Argument and Stack
for TRUE or FALSE)

TIR$C_ST A—WPB
(Stack Psect Base
Plus Byte Offset
With Word Psect)

TIR$C_ST A_WP W
(Stack Psect Base
Plus Word Offset
With Word Psect)

TIR$C_ST A_WPL
(Stack Psect Base
Plus Longword
Offset With Word
Psect)

TIR$C_ST A_LSY
(Stack Local Symbol
Value)

TIR$C_STA_LIT
(Stack Literal)

This command is reserved for future use. It is
the word equivalent of the previous command.

This command is reserved for future use. It is
the longword equivalent of the previous two
commands.

This command has the same format as the
Stack Global command. However, it stacks the
entry point mask (unsigned stacks word) that
accompanies the symbol definition, rather than
the symbol value. An error results if the symbol
is not an entry point.

This command allows for a limited form of
procedure argument validation by checking to
see whether the argument passing mechanism
(ARG$V_PASSMECH) in the formal argument
descriptor matches that in the actual argument
descriptor. The DATA field for this command
consists of the ASCIC symbol name in standard
name format (1 count byte followed by the
symbol name (1-31 bytes)) followed by the
1-byte argument index, followed by the actual
argument descriptor, whose format is indentical
to that of the formal argument descriptor
described in Section 6.3.4. The linker
compares the values of ARG$V_PASSMECH
for the formal and actual argument descriptors.
If these values agree or if there is no formal
argument descriptor, the linker places the TRUE
value on top of the stack; otherwise, it stacks
the FALSE value.

Same as TIR$C_STA_PB except the program
section index is a word rather than a byte.

Same as TIR$C_STA_PW except the program
section index is a word rather than a byte.

Same as TIR$C_STA_PL except the program
section index is a word rather than a byte.

Data is a 2-byte environment index followed
by the ASCIC symbol name in standard name
format.

Data is a 1-byte index of the literal to be
stacked. If the literal has not been defined, the
linker stacks zero and issues an error message.

LIIMK-104

LINKER
VAX Object Language

6.4.2

Code Command Description

19 TIRSC—ST A_LEPM
(Stack Local Symbol
Entry Point Mask)

This command has the same format as the
Stack Local Symbol Value command and the
same action as the Stack Entry Point Mask
command.

Store Commands
The store commands pop the top longword from the stack and write it to
the output image file. Several store commands provide validation of the
quantity being stored, with the possibility of issuing truncation errors during
the operation. After a store command is executed, the location counter is
pointing to the next byte in the output image.

Code Command Description

20 TIR$C_STO_SB
(Store Signed Byte)

Low byte is written to image. Bits 31:7 must
be identical.

21 TIR$C_STO_SW
(Store Signed Word)

Low word is written to image. Bits 31:15 must
be identical.

22 TIR$C_STO_LW
(Store Longword)

One longword is written to image.

23 TIR$C_STO_
BD (Store Byte
Displaced)

Current location counter plus 1 is subtracted
from the top longword on the stack. Low byte
of resulting value is written to image. Bits 31:7
must be identical.

24 TIR$C_STO_
WD (Store Word
Displaced)

Current location counter plus 2 is subtracted
from the top longword on the stack. Low word
of resulting value is written to image. Bits
31:15 must be identical.

25 TIR$C_STO_LD
(Store Longword
Displaced)

Current location counter plus 4 is subtracted
from the top longword on the stack. Resulting
value is written to image.

26 TIR$C_STO_LI
(Store Short Literal)

Low byte of top longword on the stack is
written to image. Bits 31:6 must be zero.

27 TIR$C_STO_PIDR
(Store Position-
Independent Data
Reference)

The longword on top of the stack is the address
of a data item. If the address is absolute, the
longword is written to the image. If the address
is relocatable, the linker stores information in
the image file to allow the image activator to
initialize the location when the image is run.

LINK-105

LINKER
VAX Object Language

Code Command Description

28

29

30

31

32

33

TIR$C_STO_PICR
(Store Position-
Independent Code
Reference)

TIR$C_STO_RSB
(Store Repeated
Signed Byte)

TIR$C_STO_RSW
(Store Repeated
Signed Word)

TIR$C_ST 0_RL
(Store Repeated
Longword)

TIR$C_ST 0_VPS
(Store Arbitrary
Field)

TIR$C_STO_USB
(Store Unsigned
Byte)

The purpose of this command is to generate
a position-independent code reference. The
top longword on stack is the address of an
item to which a position-independent instruction
makes reference. If the item is absolute, the
byte 9F hexadecimal (the operand specifier for
absolute addressing mode) followed by the top
longword on the stack are written to the image,
and the location counter is incremented. If the
item is relocatable, the byte EF hexadecimal
(the operand specifier for longword relative
addressing mode) is written to the image;
the top longword on the stack is Stored
Longword Displaced (see TIR$C_STO_LD);
and the location counter is incremented. If the
item is relocatable and contained in a shareable
image, the byte FF (the operand specifier for
longword relative deferred addressing mode) is
written to the image; the top longword on the
stack is Stored Longword Displaced (target is
in the EXIT vector); and the location counter is
incremented.

The longword on top of the stack is used
as a repeat count. The low byte of the next
longword on the stack is then written to the
image the indicated number of times. Both
longwords are removed from the stack upon
completion. See note in Section 6.4 regarding
the use of this command with zeros.

Same as above command except that a word
rather than a byte is written.

Same as above two commands except that a
longword is written.

This command writes a bitfield to the image.
The data field consists of an unsigned byte
containing the value p, followed by another
unsigned byte containing the value s. Bits 0
to s-1 of the top longword on the stack are
written to the image starting at bit p of the
current location. Only the specified bits of the
image are altered. After the operation, the
location counter is the address of the byte
containing bit (p+s) of the location modified.
Note that the value of p+s must be greater
than zero and less than or equal to either 32 or
((P+8)/8)8-1, whichever is less. In other words,
the bitfield must be contained within a single
byte.

Same as TIR$C_STO_SB except that bits 31:8
must be zero.

LINK-106

LINKER
VAX Object Language

Code Command Description

34

35

36

37

38

39

40

41

TIR$C_ST0_USW
(Store Unsigned
Word)

TIR$C_STO_RUB
(Store Repeated
Unsigned Byte)

TIR$C_STO_RUW
(Store Repeated
Unsigned Word)

TIR$C_ST0_B
(Store Byte)

TIR$C_ST0_W
(Store Word)

TIR$C_STO_RB
(Store Repeated
Byte)

TIR$C_STO_RW
(Store Repeated
Word)

TIR$C_STO_RIVB
(Store Repeated
Immediate Variable
Bytes)

Same as TIR$C_ST0_SW except that bits
31:16 must be zero.

Same as TIR$C_STO_RSB except that bits 31:8
of the stored byte must be zero.

Same as TIR$C_STO_RSW except that bits
31:16 of the stored word must be zero.

This command writes the low byte of the top
longword on the stack to the image file. It thus
permits any 8-bit (from -128 to 255) to be
written to the image. If the top longword on the
stack is negative, then bits 31:7 must be 1; if
positive, then bits 31:8 must be zero.

This command writes the low word of the top
longword on the stack to the image file. It
thus permits any 16-bit value (from -32768 to
65535) to be written to the image. If the top
longword on the stack is negative, bits 31:15
must be 1; if positive, the bits 31:16 must be
zero.

The top longword on the stack is used as
a repeat count. The low byte of the next
longword on the stack is then written to the
image the indicated number of times. This is
the repeated version of Store Byte (see TIR$C_
STO_B).

This is the word version of the above command.

Data is a 1-byte count (N) field followed by
N bytes of data. These N bytes of data are
written to the image the number of times
specified by the top longword on the stack
(which is removed from the stack upon
completion of the command). If the top
longword on the stack is zero, nothing is
stored.

LINK-107

LINKER
VAX Object Language

Code Command Description

42 TIR$C_STO_PIRR
(Store Position-
Independent
Reference Relative)

43-49

The longword (longword 1) on the top of the
stack is the address of a data item. If the data
item is absolute, the command is the same as
Store Longword except that the next longword
on the stack (following the top one) is also
removed from the stack upon completion of
the command. If the data item is relocatable,
the value of the second longword (longword
2) on the stack is checked. If its value is -
1, the current value of the location counter
is substituted for longword 2, and the value
stored is longword 1 minus longword 2. Both
longwords are removed from the stack upon
completion of the command.

Reserved

6.4.3 Operator Commands
Operator commands perform arithmetic operations on the top one or two
longwords on the stack. Upon completion of the operation, the result is the
top longword on the stack.

The linker evaluates expressions in Post Fix Polish form. All arithmetic
operations are performed in signed 32-bit two's complement integers. There
is no provision for floating point, string, or quadword computation.

Attempts to divide by zero produce a zero result and a nonfatal warning
message.

Code Command Description

50 TIR$C_OPR_NOP
(No-Operation)

No operation results.

51 TIR$C_OPR_ADD
(Add)

Top two longwords on the stack are added.

52 TIR$C_OPR_SUB
(Subtract)

Top longword on the stack is subtracted from
the next longword on the stack.

53 TIR$C_OPR_MUL
(Multiply)

Top two longwords on the stack are multiplied.

54 TIR$C_OPR_DIV
(Divide)

Top longword on the stack is divided into the
next longword on the stack.

55 TIR$C_OPR_AND
(Logical AND)

Logical AND of top two longwords.

56 TIR$C_OPR_IOR
(Logical Inclusive OR)

Inclusive OR of top two longwords.

57 TIR$C_OPR_EOR
(Logical Exclusive
OR)

Exclusive OR of top two longwords.

58 TIR$C_OPR_NEG
(Negate)

Top longword is negated.

LINK—108

LINKER
VAX Object Language

Code Command Description

59 TIR$C_OPR_COM
(Complement)

60 TIR$C_OPR_INSV
(Insert Field)

Top longword is complemented.

This command is reserved. It is similar
to TIR$C_STO_VPS except that the bit
field is written to the next longword on
the stack instead of to the image file. The
location counter is therefore unaffected. After
completion of the command, only the top
longword on the stack is removed.

61 TIR$C_OPR_ASH
(Arithmetic Shift)

The top longword on the stack specifies the
shift count and direction to be applied to the
next longword on the stack. When the top
longword is negative, bits in the next longword
are shifted right with replication of the sign bit.
When the top longword is positive, bits in the
next longword are shifted left with zeros moved
into low order bits.

62 TIR$C_OPR_USH
(Unsigned Shift)

Same as previous command except that, for a
shift right, zeros are always moved into the high
bits.

63 TIR$C_OPR_ROT
(Rotate)

The top longword on the stack specifies the
rotate count and direction to be applied to
the next longword on the stack. When the
top longword is positive, the next longword
is rotated left; when negative, right. The top
longword must have an absolute value of 0 to
32.

64 TIR$C_OPR_SEL
(Select)

This command manipulates the top three
longwords on the stack. If the top longword
has the value TRUE (low bit set), it and the next
(second) longword on the stack are removed,
leaving the third longword (unchanged) on top
of the stack. If the top longword has the value
FALSE (low bit clear), the value of the next
(second) longword is copied to the following
(third) longword, and the top and second
longwords are removed, leaving the third (now
having the value of the second) on top of the
stack. Thus, the command collapses three
longwords on the stack to a single longword
that has the value of the second or third based
on the value of the first.

LINK-109

6.4.4

LINKER
VAX Object Language

Code Command Description

65

66

67-79

TIR$C_OPR_REDEF
(Redefine Symbol To
Current Location)

TIR$C_OPR_DFLIT
(Define a Literal)

This command is used only in the creation
of shareable images. Data for the command
consists of a symbol name in standard name
format, that is, 1 count byte followed by a
variable length (1-31 bytes) ASCII string. The
value of the symbol, as listed in the shareable
image's symbol table, is made equal to the
value of the current location counter (at the
time the command is processed). Values of the
symbol within the image itself are not affected
by the command. The value is not assigned
until after all image binary has been written to
the image output file. If no binary is generated
(or is aborted) the value is not assigned. The
symbol is also made universal.

Data is a 1-byte field that indicates the literal (0-
255) to be defined. The literal is assigned the
value of the top longword on the stack, which
is removed upon completion of the command.
Note that this command does not stack a result.

Reserved

Control Commands
Control commands manipulate the linker's location counter.

Code Command Description

80 TIRSC—CTL_SETRB
(Set Relocation Base)

The top longword on the stack is placed into
the location counter and then removed from the
stack.

81 TIR$C_CTI_AUGRB
(Augment Relocation
Base)

Data consists of a signed longword. The value
of this longword is added to the current location
counter.

The following three commands are legal only in debugger information (DBG)
and traceback information (TBT) records. For each object module, a list of
debug indexes is kept. These commands operate on the list for the object
module in which the DBG or TBT record occurs.

Code Command Description

82 TIR$C_CTL_DFLOC The value of the top longword on the stack is
(Define Location) used as an index. The value of the current location

counter is then saved under this index. Upon
completion of the command, the top longword is
removed from the stack.

LINK-110

LINKER
VAX Object Language

Code Command Description

83 TIR$C_CTl_STLOC
(Set Location)

84 TIR$C_CTI_STKDL
(Stack Debug)

SB-
127

The value of the top longword on the stack is an
index (from a previous Define Location command)
that is used to locate a previously saved location
counter. The value of the previously saved
location counter is then set as the value of the
current location counter. Upon completion of the
command, the top longword is removed from the
stack.

The value of the top longword on the stack is an
index (from a previous Define Location command).
The top longword is removed from the stack, and
the saved location counter, located by means of
the index, is placed on top of the stack.

Reserved

6.5 End of Module Record
The end of module record declares the end of the module. Either this record
or the end of module with word psect (EOMW) record must be the last record
in the object module.

If the module does not contain a program section that contains the transfer
address, the EOM record is two bytes long, consisting of only the RECORD
TYPE and ERROR SEVERITY fields.

If the module does contain a program section that contains the transfer
address, the EOM record may be either 7 or 8 bytes long, depending on
whether the optional TRANSFER FLAGS field is included.

The fields in an EOM record are described below.

RECORD TYPE
Name: EOM$B_RECTYP
Length: 1 byte

The record type is OBJ$C_EOM.

ERROR SEVERITY
Name: EOM$B_COMCOD
Length: 1 byte

This field contains completion codes, which are generated by the language
processor. This field may contain a value from 0 to 3, where each number
corresponds to a completion code. Values from 4 to 10 are reserved,
and values from 11 to 255 are ignored. The following shows the name.

LINK-111

LINKER
VAX Object Language

corresponding value, and meaning of each of the four completion codes:

Value Name Meaning

0 EOM$C_SUCCESS Successful compilation or assembly; no errors
detected.

1 EOM$C_WARNING Language processor generated warning
messages. The linker issues a warning
message and proceeds with the linking
operation.

2 EOM$C_ERROR Language processor generated severe errors.
The linker issues an error message, proceeds
with the linking operation, but does not
produce an output image file.

3 EOM$C_ABORT Language processor generated fatal errors.
The linker aborts the linking operation.

4-10 Reserved

11-255 Ignored

PSECTINDEX
Name: EOM$B_PSINDX
Length: 1 byte

This field contains the program section index of the program section within
the module that contains the transfer address. Note that this field is present
only if the module contains a program section that contains the transfer
address.

TRANSFER ADDRESS
Name: EOM$L_TRFADR
Length: 4 bytes

This field contains the location of the transfer address. This location is
expressed as an offset from the base of this module's contribution to the
program section that contains the transfer address. Note that this field is
present only if the module contains a program section that contains the
transfer address.

TRANSFER FLAGS
Name: EOM$B_TFRFLG
Length: 1 byte

This field is a 1-byte bit mask that contains information about the transfer
address. When bit 0 is set (EOM$V_WKTFR = 1), a weak transfer address
is indicated; when clear (EOM$V_WKTFR = 0), a strong transfer address. If
bit 0 is set and a transfer address has already been defined, no error results.
Bits 1 to 7 are reserved and must contain zeros. Note that this field may
be present only if the module contains a program section that contains the
transfer address, and even then it is optional.

LINK-112

LINKER
VAX Object Language

6.6 End of Module With Word Psect Record
The end of module with word psect record is identical in format to the end of
module record (OBJ$C_EOM), with the following exceptions:

• The field names in the EOMW record begin with EOMW instead of EOM
as in the end of module record. For example, in the EOMW record, the
RECORD TYPE field has the name EOMW$B__RECTYP.

• The PSECT INDEX field for the EOMW record is 2 bytes in length, instead
of 1 byte as in the EOM record.

6.7 Debugger Information Records
The purpose of debugger information records is to allow the language
processors to pass compilation information, such as descriptions of local
variables, to the debugger. The transmission of this information may make
use of all the functions (commands) available in the TIR set.

The command stream in DBG records generates what is referred to as the
debug symbol table (DST). The DST immediately follows the binary of the
user image, and the image header contains a descriptor of where in the file
such data has been written. The production of the DST in memory makes
use of a separate location counter within the linker. This location counter
is initialized as if the DST were the highest addressed part of the program
region of the image. Note, however, the DST is not mapped into the user
image.

The linker produces a DST only if the /DEBUG qualifier was specified at link
time and only if an executable image is being produced. If either of these is
not true, DBG records are ignored.

6.8 Traceback Information Records
Traceback information records are the means by which language processors
pass information to the facility which produces a traceback of the call stack.
From the point of view of the linker and its processing of these records, they
are identical to DBG records. That is, they may be mixed with DBG records
and all data generated goes into the DST as if they were in fact DBG records.

The purpose of separating the information contained in DBG records is to
allow inclusion of a DST containing only traceback data when no debugging
is requested at link time. If the production of traceback information is
disabled at link time, then these records are ignored.

6.9 Link Option Specification Records
The link option specification records are defined for the purpose of allowing
the language processor to provide the linker with additional input files to be
searched for symbol resolution at link time.

As a result, the file specifications in the link option records must be correct
at link time. Also, since the files in the LNK records are encountered during
the first pass of the linking operation, no related name defaulting can be
performed for file specifications.

LINK-113

LINKER
VAX Object Language

The linker can, however, apply default file types if none are present in the
file specifications in the LNK records.

OBJ Indicates object files

OLB Indicates object libraries and shareable image libraries

EXE Indicates shareable images

The first field in a LNK record is the record type LNK$B_RECTYP, whose
value is OBJ$C_LNK. The next field describes the LNK subrecord type,
LNK$B_LNKTYP.

The table below shows the LNK subrecord types. Column 1 displays the
name of the LNK subrecord; column 2 shows its symbolic representation; and
column 3 displays its corresponding numerical code.

LNK Subrecord Symbol Code

Object library file specification LNK$C_OLB 0

Shareable image library file specification LNK$C_SHR 1

Object library with inclusion list LNK$C_OLI 2

Object file or symbol table file LNK$C_OBJ 3

Shareable image file LNK$C_SHA 4

FLAGS
Name: LNK$W_FLAGS
Length: 2 bytes

This field follows the subrecord type and is a word-length bit field. Currently,
two flag bits are defined in LNK$W_FLAGS:

Bit Name Meaning if set

0 LNK$V_SELSER Selectively search object module or symbol table. This
bit is valid only for LNK$C_OBJ subrecords.

1 LNK$V_LIBSRCH After module inclusion, search this library for resolution
of currently undefined symbols. The need for this
bit arises out of an ambiguity between the usage
of the two record types LNK$C_OLI and LNK$C_
OLB. The use of this bit is best illustrated by the
file-qualifiers /LIBRARY and /INCLUDE. Note that an
input file specification such as A/INCLUDE=(B,C) would
correspond to a LNK$C_OLI type, and an input file
spec such as A/LIB would correspond to a LNK$C_
OLB type. However, an input file such as A/LIB
/INCLUDE=(B,C) is indicated by a Linker Options Record
type of LNKSC—OLI with the LNK$V_LIBSRCH bit set.
This bit is valid only for LNK$C_OLI subrecords.

FILE NAME LENGTH
Name: LNK$W_NAMLNG
Length: 2 bytes

This field is one word in length and is the length of the file name string. For
LNK$C_OLI subrecord types, this length does not include the length of the
list of modules to be included.

LINK-114

LINKER
VAX Object Language

FILE NAME
Name: LNK$T_NAME
Length: LNK$W_NAMLNG

This field is the file specification of the file to be included.

Note that for all subrecord types except LNK$C_OLI, this is the end of
the LNK record. For LNK$C__OLI records, the modules to be included are
described as a series of ASCII counted strings, and appear immediately
after the file name LNK$T_NAME. The end of the module inclusion list is
indicated by one byte of zero.

LINK-115

LINKER
Command Qualifiers

COMMAND
QUALIFIERS

This section discusses each command qualifier acceptable to the linker.
Although you can enter one or more command qualifiers, in most cases you
need not do so since the linker supplies default values for each one.

Command qualifiers direct the linker as to what kind of image to create, what
to include or not include in the image, what parameters to use in creating the
image, and what additional files, if any, to create.

Positional qualifiers direct the linker in its processing of a file by specifying
such information as what kind of file it is and how to process it. For more
information, refer to the following section. Positional Qualifiers.

Some qualifiers are valid only if they are used with other qualifiers, and
some qualifiers are incompatible with other qualifiers. The linker takes one
of two actions if you specify incompatible qualifiers: either it displays an
error message and invalidates the entire LINK command, or it ignores certain
qualifiers (generally, all except the last valid one) and allows the link to
continue. For example, if you specify /FULL and /BRIEF for the map, the
linker rejects the entire command; but if you specify the positive and negative
forms of a qualifier (for example, /EXECUTABLE and /NOEXECUTABLE),
the linker accepts the last one entered.

Table LINK-8 lists, in alphabetical order, each command qualifier, its default
value, and the names of other qualifiers with which it is incompatible. A [NO]
indicates that the qualifier can be negated by prefixing NO (without brackets):
for example, /NODEBUG or /NOEXECUTABLE. Qualifier values are not
valid with negative qualifiers: for example, /NOEXECUTABLE=PAYROLL is
not valid.

Table LINK-8 Command Qualifiers

Incompatible

Qualifiers Command Qualifier Default

Default map /BRIEF

/[NOJCONTIGUOUS

/[NO]CROSS_REFERENCE

/[NO]DEBUG[=file-spec]

/[NO]EXECUT ABLE-
[=file-spec]

/FULL

/HEADER

/[NO]MAP[=file-spec]

/POIMAGE

/PROTECT

/NOCONTIGUOUS

/NOCROSS—REFERENCE

/NODEBUG

/EXECUTABLE

Default map

/NOMAP (interactive)
/MAP (batch)

/NOMAP,/FULL,
/CROSS-REFERENCE

/NOEXECUTABLE

/NOMAP,/BRIEF

/NOTRACEBACK,
/SHAREABLE,
/SYSTEM,
/NOEXECUTABLE

/SHAREABLE

/NOMAP,/BRIEF

/SYSTEM,
/EXECUTABLE

LINK-116

LINKER
Command Qualifiers

Table LINK-8 (Cont.) Command Qualifiers

Command Qualifier Default
Incompatible
Qualifiers

/[NO]SHAREABLE- /NOSHAREABLE /SYSTEM,
[=file-spec /DEBUG,

/EXECUTABLE

/[NO]SYMBOI—T ABLE-
[=file-spec]

/NOSYMBOI_T AB

/[NO]SYSLIB /SYSLIB

/[NO]SYSSHR /SYSSHR /NOSYSLIB

/[NOJSYSTEM- /NOSYSTEM /DEBUG,
[=base-address] /SHAREABLE

/[NOjTRACEBACK /TRACEBACK

/[NO]USERLIBRARY-
[=(table[,...])]

/USERLIBRARY=ALL

LINK-117

LINKER
/BRIEF

•

/BRIEF
Directs the linker to produce a brief form of the image map.

FORMAT /MAP /BRIEF

qualifier values None.

DESCRIPTION A brief map contains only the following sections:

• Object Module Synopsis

• Image Synopsis

• Link Run Statistics

•

In contrast, the default image map contains the above sections, as well as the
program section synopsis and symbols by name sections.

/BRIEF is incompatible with /FULL and /CROSS-REFERENCE. In general,
you should request a full (rather than a brief) map because the full map
contains more information. #

EXAMPLE
$ LINK /MAP /BRIEF GARBO

This example directs the linker to produce an executable image named
GARBO.EXE and an image map named GARBO.MAP that contain an object
module synopsis, an image synopsis, and link run statistics.

LINK—118

LINKER
/CONTIGUOUS

/CONTIGUOUS
Directs the linker to place the entire image in consecutive disk
blocks. If sufficient contiguous space is not available on the output
disk, the linker reports an error and terminates the linking operation.

FORMAT /[NO]CONTIGUOUS

qualifier values None.

DESCRIPTION Since any type of image usually executes more slowly if its pages are not
contiguous, you can use the /CONTIGUOUS qualifier to speed up the
execution time of any type of image. (Note however that in most cases
performance benefits do not warrant the use of /CONTIGUOUS.) You can
also use the /CONTIGUOUS qualifier when linking bootstrap programs for
certain system images that require contiguity.

Even when you do not specify /CONTIGUOUS, the operating system still
tries to make the pages of an image contiguous whenever possible. Thus,
only if sufficient contiguous space is not available, will the pages of an image
be noncontiguous.

/NOCONTIGUOUS is the default.

EXAMPLE
$ LINK /CONTIGUOUS HARLOW

This example directs the linker to place the entire image named
HARLOW.EXE in consecutive disk blocks.

LINK-119

LINKER
/CROSS-REFERENCE

/CROSS-REFERENCE
Directs the linker to replace the symbols by name section of the
image map with the symbol cross-reference section.

FORMAT /MAP /[NO]CROSS_REFERENCE

qualifier values None.

DESCRIPTION The Symbols by Name section lists, in alphabetical order, the name of each
global symbol, together with the following information about each:

• Its value

• The name of the first module in which it is defined

• The name of each module in which it is referenced

The number of symbols listed in the Cross-Reference section depends on
whether the linker is generating a full map or a default map. In a full map,
this section includes global symbols from all modules in the image, including
those extracted from all libraries. In a default map, this section does not
include global symbols from modules extracted from the default system
libraries SYS$LIBRARY:IMAGELIB.OLB and SYS$LIBRARY:STARLET.OLB.

/CROSS-REFERENCE is incompatible with /BRIEF.

/NOCROSS—REFERENCE is the default. In this case, if the linker is
generating a default map or a full map, the map will contain the symbol
by name section instead of the symbol cross-reference section.

EXAMPLE
$ LINK /MAP /CROSS.REFERENCE BARA

This example produces an executable image named BARA.EXE and an image
map named BARA.MAP that includes a cross-reference.

LINK-120

LINKER
/DEBUG

/DEBUG
Directs the linker to generate a debug symbol table (DST) using DBG
and TBT object language records and to give the debugger control
when the image is run.

FORMAT /DEBUG [=file-spec]
/NODEBUG

qualifier value file-spec
Identifies the user-written debug module.

If you specify /DEBUG without entering a file specification, the VAX/VMS
Symbolic Debugger gains control at run time. Requesting the VAX/VMS
Symbolic Debugger does not affect the location of code within the image,
since the debugger is mapped into the process address space at run time, not
at link time. See the description of the VAX/VMS Symbolic Debugger in the
VAX/VMS Utilities Reference Volume for additional information.

If you specify /DEBUG with a file specification, the user-written debug
module identified by the file specification gains control at run time. If you
specify /DEBUG with a file specification consisting of only a file name, the
linker assumes a default file type of OBJ. Requesting a user-written debug
module does affect the location of code within the image, since the debug
module code is processed by the linker together with program code.

DESCRIPTION /DEBUG automatically includes /TRACEBACK. If you specify /DEBUG
and /NOTRACEBACK, the linker overrides your specification and includes
traceback information.

/NODEBUG is the default.

EXAMPLE
$ LINK /DEBUG GISH

This example produces an executable image named GISH.EXE. Upon image
activation, control will be passed to the debugger.

LINK-121

LINKER
/EXECUTABLE

/EXECUTABLE
Directs the linker to create an executable image, as opposed to a
shareable image or a system image.

FORMAT /EXECUTABLE [=file-spec]
/NOEXECUTABLE

qualifier value file-spec
Identifies the file name by which you want the linker to create an executable
image. If you do not enter a file type after the file name, the linker assumes a
file type of EXE.

If you do not give a file specification with the /EXECUTABLE qualifier, the
linker creates an executable image with the file name of the first input file.

DESCRIPTION If you specify /EXECUTABLE as a positional qualifier, the linker creates
an executable image with the file name of the file to which the qualifier is
attached.

If you specify both /SYSTEM and /EXECUTABLE, the linker creates a system
image. In this case, the /EXECUTABLE qualifier allows you to give the file
specification of the system image.

/NOEXECUTABLE directs the linker to perform the linking operation but to
not create an image file.

If you do not specify /NOEXECUTABLE, /SHAREABLE, or /SYSTEM, the
linker assumes /EXECUTABLE.

EXAMPLES
□ $ LINK /NOEXE STREEP

This example directs the linker to link the object module in file STREEP.OBJ

0 $ LINK /EXE STREEP

without creating an image file. You can use /NOEXE with /MAP or /SYM to
produce only a map or symbol table. You can also use the /NOEXE qualifier
to ensure that the link operation progresses without error.

This example directs the linker to produce an executable image named
STREEP.EXE. (The command line $ LINK STREEP will yield the same result
because /EXE is the default.)

0 $ LINK /EXECUTABLE=PICKFORD STREEP

This example directs the linker to produce an executable image with the name
PICKFORD.EXE instead of the name STREEP.

LINK-122

LINKER
/FULL

/FULL
Directs the linker to create a full image map when specified with
/MAP.

FORMAT /MAP /FULL

qualifier values None.

DESCRIPTION A full map, which is the most complete image map, contains the following
sections:

• Object module synopsis

• Module relocatable reference synopsis

• Program section synopsis

• Symbols by name

• Image section synopsis

• Symbols by value

• Module relocatable reference synopsis

In contrast, the default map does not contain the image section synopsis, the
symbols by value, or the module relocatable reference synopsis sections.

Further, unlike the default map, the full map includes information
about modules included from the system default libraries
SYS$LIBRARY:STARLET.OLB and SYS$LIBRARY:IMAGELIB.OLB. Thus,
the object module synopsis, program section synopsis, and symbols by name
sections of a default map do not contain information about modules included
from SYS$LIBRARY:STARLET.OLB and SYS$LIBRARY:IMAGELIB.OLB,
whereas in a full map they do.

For these reasons, you should request a full map rather than a default or brief
map.

/FULL is valid only if you also specify /MAP in the LINK command. Also,
/FULL is incompatible with /BRIEF but not with /CROSS-REFERENCE.

EXAMPLE
$ LINK /MAP /FULL MONROE

This example directs the linker to produce an executable image named
MONROE.EXE and an image map named MONROE.MAP that contains the
image section synopsis, the symbols by value, and the module relocatable
reference synopsis sections.

LINK-123

LINKER
/HEADER

/HEADER
Directs the linker to include an image header in the system image
when specified with /SYSTEM.

FORMAT /HEADER

qualifier values None.

DESCRIPTION If you specify /SYSTEM without /HEADER, the linker creates a system
image without a header.

Executable and shareable images always have image headers. Consequently,
the linker ignores /HEADER if it is creating an executable or shareable image.

EXAMPLE
$ LINK/SYSTEM/HEADER MANSFIELD

This example directs the linker to produce a system image named
MANSFIELD.EXE with an image header. The use of /HEADER or
/NOHEADER depends on the characteristics of the loader program, which
loads the operating system. (For more information, see the description of the
/SYSTEM qualifier.)

LINK-124

LINKER
/MAP

/MAP
Directs the linker to create an image map file.

FORMAT /MAP /=file-spec]
/NOMAP

qualifier value file-spec
Identifies the file name from which you want the linker to create an image
map file. If you enter a file specification with the /MAP qualifier, the linker
creates an image map file with that file name. If you do not enter a file type
after the file name, the linker assumes a file type of MAP.

If you do not enter a file specification with the /MAP qualifier, the linker
creates an image map file with the file name of the first input file and the file
type MAP.

If you specify /MAP as a positional qualifier, the linker creates an image map
file with the file name of the file to which the qualifier is attached.

DESCRIPTION If you specify /MAP but do not also specify either the /BRIEF, /FULL, or
/CROSS-REFERENCE qualifier, the linker produces a default map containing
the following sections:

• Object module synopsis

• Program section synopsis

• Symbols by name

• Image synopsis

• Link run statistics

If you do not specify /MAP, the linker assumes, by default, /NOMAP in
interactive mode and /MAP in batch mode.

See Section 4 for more information.

EXAMPLES
□ $ LINK /NOMAP GARLAND

This example directs the linker to override the default of /MAP on batch jobs.

0 $ LINK /MAP GARLAND

This example directs the linker to produce an image map (in all cases) with
the default name of GARLAND.MAP.

0 $ LINK /MAP=RUSSELL GARLAND

This example directs the linker to produce an image map with the name of
RUSSELL.MAP instead of the default name of GARLAND.MAP.

LINK-125

LINKER
/POIMAGE

/POIMAGE
Causes an executable image to be placed entirely in the PO address
space. Thus, when /POIMAGE is specified, the user stack and VAX
RMS buffers, which usually go in PI space, are placed in PO space.

FORMAT /POIMAGE

qualifier values None.

DESCRIPTION Note that the address of the stack shown in the map of an image linked with
the /POIMAGE qualifier does not reflect the true address of the stack at run
time, since when /POIMAGE is specified, virtual address space for the stack is
dynamically allocated at the end of PO space at run time.

/POIMAGE is used to create executable images that modify PI address space.

See the VAX Hardware Handbook for an explanation of PO and PI address
space.

EXAMPLE
$ LINK /POIMAGE LOMBARD

This example directs the linker to set up an executable image named
LOMBARD.EXE to be run entirely in the PO address space.

LINK-126

LINKER
/PROTECT

/PROTECT
Directs the linker to protect the entire shareable image from user-
mode and supervisor-mode write access when specified with
/SHAREABLE.

FORMAT /SHAREABLE /PROTECT

qualifier values None.

DESCRIPTION To protect one or more clusters, but not the entire image, from user-mode and
supervisor-mode write access, use the PROTECT= option with the clusters
that you want to protect.

The /PROTECT qualifier is incompatible with the /EXECUTABLE and
/SYSTEM qualifiers.

The /PROTECT qualifier is useful in the creation of privileged shareable
images. See Section 3.3.3 for more information on privileged shareable
images.

EXAMPLE
$ LINK /SHAREABLE /PROTECT HEPBURN

This example directs the linker to produce a privileged, shareable image
named HEPBURN.EXE.

LINK-127

LINKER
/SHAREABLE

/SHAREABLE
Is both a command qualifier and a positional qualifier. As a
command qualifier, /SHAREABLE directs the linker to create
a shareable image. As a file qualifier in a linker options file,
/SHAREABLE identifies an input file as a shareable image file.

FORMAT /SHAREABLE [=file-spec]

qualifier value file-spec
Specifies the file name and type by which you want the linker to create a
shareable image. If you omit the file type, the linker uses the default file type
EXE.

If you do not specify the optional file-spec parameter with the /SHAREABLE
qualifier, the linker creates a shareable image with the file name of the file to
which it is appended or, if it is not appended to a file, the first input file.

DESCRIPTION If the /SHAREABLE qualifier appears anywhere in the command string, the
linker interprets it as a command qualifier and creates a shareable image. To
illustrate, if /SHAREABLE is appended to a file name that is specified in the
command string, the linker interprets it as a command qualifier, even though
it looks like a positional qualifier. In this case, the linker creates a shareable
image with the name of the file to which the /SHAREABLE qualifier is
appended.

To use /SHAREABLE as a positional qualifier, you must use it in an options
file, rather than in the command string.

Thus, you cannot specify a shareable image as input in the command string
by means of the /SHAREABLE qualifier. However, you can specify a
shareable image as input in the command string if the shareable image is
in a shareable image library file, since in this case you use the /INCLUDE
rather than the /SHAREABLE qualifier.

If you specify /SHAREABLE, you cannot also specify /SYSTEM, /DEBUG, or
/TRACEBACK. If you specify both /SHAREABLE and /EXECUTABLE, the
linker ignores /EXECUTABLE.

If you do not specify /SHAREABLE, the linker creates an executable image
unless you specified /SYSTEM.

EXAMPLES
□ $ LINK /SHAREABLE ALLISON

This example directs the linker to produce a shareable image named
ALLISON.EXE. (/SHAREABLE is used as an output qualifier in this example.)

B $ LINK /SHAREABLE=GRABLE ALLISON

This example directs the linker to produce a shareable image named

LIIMK-128

GRABLE.EXE. (/SHAREABLE is used as an output qualifier in this example.)

LINKER
/SHAREABLE

E $ LINK LAMAR,SYS$INPUT/OPTION GRABLE/SHAREABLE

This example shows how the shareable image GRABLE.EXE is used as input
to the linker with the object file LAMAR.OBJ to produce the executable image
named LAMAR.EXE. (In this example, GRABLE is the name of an options file
and /SHAREABLE is used as an input qualifier.)

LINK-129

LINKER
/SYMBOL-TABLE

/SYMBOL. .TABLE

Directs the linker to create a symbol table file.

FORMAT /SYMBOI_TABLE /=file-spec]
/NOSYMBOI_TABLE

qualifier value file-spec
Specifies the file name and type by which you want the Linker to create a
symbol table file.

If you specify /SYMBOL —TABLE as a command qualifier without the
optional file-spec parameter, the linker creates a symbol table file with the file
name of the first input file and the default file type STB.

If you specify /SYMBOL —TABLE as a command qualifier with the optional
file-spec parameter, the linker creates a symbol table file with that file name
and file type; if you do not enter a file type after the file name, the linker
assumes a file type of STB.

If you specify /SYMBOL—TABLE as a positional qualifier, the linker creates
a symbol table file with the file name of the file to which the qualifier is
attached and the default file type STB.

DESCRIPTION The symbol table file contains a copy of the linker's global symbol table
(GST) in object module format. Note that the /SYMBOL—TABLE qualifier
does not change the contents of the linker's GST.

If you do not specify /SYMBOL—TABLE, the linker assumes /NOSYMBOL—
TABLE.

A symbol table file may be specified as input in a subsequent linking
operation (see Section 1.3.5 for details).

EXAMPLES
□ $ LINK /SYMBOL.TABLE /NOEXE DEHAVILND

This example directs the linker to produce a symbol table file named
DEHAVILND.STB. No executable image file is produced.

S $ LINK /SYMBOL_TABLE=BACALL DEHAVILND

This example directs the linker to produce a symbol table file named
BACALL.STB. An executable image file named DEHAVILND.EXE is
produced.

LINK-130

LINKER
/SYS LIB

/SYSLIB
Directs the linker to search the default system libraries
SYS$LIBRARY:IMAGELIB and SYS$LIBRARY:STARLET.OLB to
resolve symbolic references that remain undefined after all specified
input and any user default libraries have been processed.

FORMAT /[NO]SYSLIB

qualifier values None.

DESCRIPTION The linker first searches SYS$LIBRARY:IMAGELIB.OLB, the system default
shareable image library, and then SYS$LIBRARY:STARLET.OLB, the system
default object library.

/NOSYSLIB directs the linker not to search the default system libraries
(IMAGELIB and STARLET). Since these libraries contain many routines
required by almost all high-level language programs, you should specify
/NOSYSLIB only if you know that your input, together with any user default
libraries, allows the linker to resolve all symbolic references.

If you do not specify /NOSYSLIB, the linker assumes /SYSLIB by default.
If you specify both /NOSYSLIB and /SYSSHR, the /SYSSHR qualifier is
ignored.

If you want the linker to search IMAGELIB but not STARLET, specify
/NOSYSLIB (to inhibit the default search of both IMAGELIB and STARLET)
and then specify the search of IMAGELIB in the command string (or in an
options file) as follows:

SYS$LIBRARY:IMAGELIB/LIBRARY

EXAMPLE
$ LINK /NOSYSLIB LAMOUR

This example directs the linker to produce the image LAMOUR.EXE without
referencing the default system libraries SYS$LIBRARY:IMAGELIB.OLB or
SYS$LIBRARY:ST ARLET.OLB.

LINK-131

LINKER
/SYSSHR

/SYSSHR
Directs the linker to search SYS$LIBRARY:IMAGELIB.OLB, the
system default shareable image library, to resolve symbolic
references that remain undefined after all specified input files and
any user default libraries have been processed. This qualifier is not
often used since the linker searches IMAGELIB by default.

FORMAT /[NO]SYSSHR

qualifier values None.

DESCRIPTION /NOSYSSHR directs the linker not to search IMAGELIB. By thus inhibiting
the search of IMAGELIB, this qualifier allows the linker to search only the
system default object library SYS$LIBRARY:STARLET.OLB providing that
/NOSYSLIB was not also specified. This is the primary purpose of the
/NOSYSSHR qualifier—to specify that STARLET and not IMAGELIB be
searched.

See the description of the /NOSYSLIB qualifier for information on how to
direct the linker to search IMAGELIB but not STARLET.

EXAMPLE
$ LINK /NOSHSSHR CRAWFORD

This example directs the linker to search only the system default object
library (SYS$LIBRARY:STARLET.OLB), not the system default shareable
image library (SYS$LIBRARY:IMAGELIB.OLB), to resolve symbolic references
while producing an executable image named CRAWFORD.EXE.

LINK-132

LINKER
/SYSTEM

/SYSTEM
Directs the linker to create a system image.

FORMAT /SYSTEM [=base-address]
/NOSYSTEM

qualifier value base-address
Specifies the base-address at which you want the Linker to create a system
image.

DESCRIPTION If you specify the optional base-address parameter with the /SYSTEM
qualifier, the linker assigns the system image the specified base address,
providing that the /HEADER qualifier is not also specified.

If, however, the /HEADER and /SYSTEM qualifiers are both specified, the
linker adjusts any specified base address to the next highest page boundary
if it is not already a page boundary. The next highest page boundary is
the smallest number that is both greater than the value specified in the
base-address parameter and divisible by 512 decimal.

You can specify a base address in hexadecimal (%X), octal (%0), or decimal
(%D) format.

If you specify /SYSTEM without a base address, the linker assumes
hexadecimal (%X) 80000000 as the base address.

The linker creates the system image with the file name of the first input file
and the file type EXE. If you want a different output file specification, specify
that file specification in the /EXECUTABLE qualifier.

If you specify /SYSTEM, you cannot specify /SHAREABLE or /DEBUG.

If you do not specify /SYSTEM, the linker does not create a system image.
See the /EXECUTABLE command qualifier in this section for an explanation
of the linker's default behavior.

EXAMPLE
$ LINK /SYSTEM SISSY

This example directs the linker to produce a system image named SISSY.EXE
based at address 80000000.

LINKER
/TRACEBACK

/TRACE BACK
Directs the linker to include traceback information in the image

FORMAT /[NO]TRACEBACK

qualifier values None.

DESCRIPTION Traceback is a facility that automatically displays information from the call
stack when a program error occurs. The output shows which modules were
called before the error occurred.

The linker assumes /TRACEBACK unless you specify /NOTRACEBACK.
However, if you enter /DEBUG, the linker automatically includes traceback
whether or not you also specify /NOTRACEBACK.

Images linked /NOTRACE cannot be run /DEBUG.

EXAMPLE
$ LINK /NOTRACEBACK HAYS

This example directs the linker not to include traceback information in the
executable image named HAYS.EXE.

LINK-134

LINKER
/USERLIBRARY

/USERLIBRARY
Directs the linker to search one or more user default libraries to
resolve symbolic references that remain undefined even after all
specified input has been processed.

FORMAT /USERLIBRARY [=(table[,...])]
/NOUSER—LIBRARY

qualifier value table
Specifies the logical name table(s) that the linker will look through when
it searches for user default library definitions. The following are acceptable
values of the table parameter:

ALL Causes the linker to search the process, group, and system logical
name tables for user default library definitions

GROUP Causes the linker to search the group logical name table for user
default library definitions

NONE Causes the linker not to search any logical name table;
/USERLIBRARY=NONE is equivalent to /NOUSERLIBRARY.

PROCESS Causes the linker to search the process logical name table for user
default library definitions.

SYSTEM Causes the linker to search the system logical name table for user
default library definitions.

DESCRIPTION A user default library may be an object module library or a shareable image
library.

If you do not specify either /NOUSERLIBRARY or /USERLIBRARY=(table),
the linker assumes /USERLIBRARY=ALL by default.

/NOUSERLIBRARY directs the linker not to search any user default libraries.

To define a user default library, you must use the DCL commands DEFINE or
ASSIGN to equate the logical name LNK$LIBRARY to the file specification of
the library, since the linker looks for this logical name to determine if a user
default library exists.

Further, to control access to the library, you can define LNK$LIBRARY in
the process, group, or system logical name table by using the /PROCESS,
/GROUP, and /SYSTEM qualifiers, respectively, in the DEFINE command.

For example, if you want the library MINE to be your default user library, the
library THEIRS to be the default user library of everyone else in your group,
and the library ANY to be the default user library of everyone else on the
system, you would issue the following commands:

DEFINE LNK$LIBRARY DB2:[MARK]MINE
DEFINE/GROUP LNK$LIBRARY DB2:[PROJECT]THEIRS
DEFINE/SYSTEM LNK$LIBRARY SYS$LIBRARY:ANY

Note that the GRPNAM and SYSNAM privileges are required to use the
/GROUP and /SYSTEM qualifiers, respectively.

LINK-135

LINKER
/USERLIBRARY

If you are defining more than one library in a single logical name table, use
the logical names LNK$LIBRARY for the first library, LNK$LIBRARY_1 for
the second library, LNK$LIBRARY_2 for the third, and so on, up to the last
possible logical name LNK$LIBRARY_999. However, you must specify these
logical names in numerical order without skipping any, for when the linker
fails to find the next sequential logical name it ceases its search in that logical
name table.

The search of user default libraries proceeds as follows:

1 If you specify /USERLIBRARY=PROCESS or /USERLIBRARY, the linker
searches the process logical name table for the name LNK$LIBRARY.
If this entry exists, the linker translates the logical name and searches
the specified library for unresolved strong references. If you exclude
PROCESS from the table list in /USERLIBRARY or if no entry exists for
LNK$LIBRARY, the linker proceeds to step 4 (searching the group logical
name table).

2 If any unresolved strong references remain, the linker searches the process
logical name table for the name LNK$LIBRARY_1, and follows the logic
of step 1. If no entry exists for LNK$LIBRARY_1, the linker proceeds to
step 4 (searching the group logical name table).

3 If any unresolved strong references remain, the linker follows the logic of
step 1 for LNK$LIBRARY__2, LNK$LIBRARY_3, and so on, until it finds
no match in the process logical name table, at which point it proceeds to
step 4.

4 If you specify /USERLIBRARY=GROUP or /USERLIBRARY, the linker
follows the logic in steps 1-3 using the group logical name table. If you
exclude GROUP from the table list in /USERLIBRARY or when any
logical name translation fails, the linker proceeds to step 5.

5 If you specify /USERLIBRARY=SYSTEM or /USERLIBRARY, the linker
follows the logic in steps 1-3 using the system logical name table. If
you exclude SYSTEM from the table list in /USERLIBRARY or when
any logical name translation fails, the search of user default libraries is
complete. By default, the linker proceeds to search the default system
libraries if any unresolved references remain.

EXAMPLE
$ LINK /USERLIBRARY=(GROUP) ROGERS

This example directs the linker to reference only the group logical name
table to translate the logical names LNK$LIBRARY, LNK$LIBRARY_1,
LNK$LIBRARY_2, and so on to LNK$LIBRARY_999.

LINK-136

LINKER
Positional Qualifiers

POSITIONAL
QUALIFIERS

This section discusses each positional qualifier acceptable to the linker.
Positional qualifiers direct the linker in its processing of a file by specifying
such information as what kind of file it is and how to process it. Although
you can enter one or more positional qualifiers, in most cases you need not
do so since the linker supplies default values for each one.

Some qualifiers are incompatible with certain other qualifiers. The linker
takes one of two actions if you specify incompatible qualifiers: either it
invalidates the entire LINK command and displays an error message, or it
ignores certain qualifiers (generally, all except the last valid one) and allows
the link to continue.

Table LINK-9 lists, in alphabetical order, each positional qualifier, its
function, and the names of other qualifiers with which it is incompatible.

Table LINK-9 Positional Qualifiers

Positional Qualifier Function
Incompatible
Qualifiers

/INCLUDE=module-name[,...] Includes one or All others, except
more modules
from a library in
the link

/LIBRARY

/LIBRARY Identifies a All others, except
library /INCLUDE

/OPTIONS Identifies an
options file

All others

/SELECTIVE_SEARCH Includes only All others, except
global symbols
referred to by
previously named
input files

/SHAREABLE

/SHAREABLE Identifies a All others, except
shareable image
file; valid only
in an options file

/SELECTIVE_SEARCH

LINK-137

LINKER
/INCLUDE

/INCLUDE
Identifies the file to which it is appended as a library file and directs
the linker to include the named module or modules from that library
in the linking operation.

FORMAT library-name / INCLUDE=module-name[,...]

qualifier value module-name
Indicates the module or modules that you want included from the specified
library in the linking operation.

DESCRIPTION Note that the /INCLUDE qualifier does not also cause the linker to search
that library for unresolved references. It only directs the linker to extract the
specified modules. If you want the library searched as well, you must also
specify the /LIBRARY positional qualifier.

To specify more than one module, enclose the list in parentheses and separate
module names with a comma.

EXAMPLES
Q $ LINK LEAGUE,NATIONAL/INCLUDE=(REDS.DODGERS,PHILS)

This example directs the linker to combine modules REDS, DODGERS, and
PHILS to the input module LEAGUE.

0 $ LINK LEAGUE.NATIONAL/LIBRARY/INCLUDE=(REDS.DODGERS,PHILS)

This example directs the linker to combine modules REDS, DODGERS,
and PHILS to the input module LEAGUE and then to search the library
NATIONAL for symbol definitions that are unresolved in all four modules.

LINK-138

LINKER
/LIBRARY

/LIBRARY
Identifies the file to which it is appended as a library file, specifies
that the linker search the symbol table of this library for symbols
that are undefined in previously processed modules, and if it finds
such a symbol, specifies that the linker include the library module
containing the symbol definition in the linking operation.

FORMAT library-name /LIBRARY

qualifier values None.

DESCRIPTION The order in which a library file is specified in the command string (or in an
options file) is important because the linker uses the library file to resolve
undefined symbols only in previously processed, not subsequently processed,
modules.

When specifying library files in lengthy and complex command input, be sure
to read Section 5.3 to learn how the linker places input files in clusters, since
which symbols are resolved by the library file depends on which cluster the
library file is placed in.

EXAMPLES
□ $ LINK ROSE.FLOWERS/LIBRARY,DAISY,PANSY

In this example, the linker uses the library FLOWERS to resolve undefined
symbols in ROSE, but not in DAISY or PANSY.

E $ LINK ROSE.DAISY.PANSY,FLOWERS/LIBRARY

In this example, the linker uses the library FLOWERS to resolve undefined
symbols in ROSE, DAISY, and PANSY.

LINK-139

LINKER
/OPTIONS

/OPTIONS
Identifies a file as a linker options file. This file can contain input file
specifications, as well as special instructions to the linker called link
options.

FORMAT options-file /OPTIONS

qualifier values None.

DESCRIPTION Section 2 discusses the purpose, contents, and specification of options files.
Section 5.3 discusses how the linker processes options files.

EXAMPLE
$ LINK GARDNER.LOREN/OPTIONS

This example directs the linker to use an options file named LOREN.OPT to
produce an executable image named GARDNER.EXE. The options file named
LOREN.OPT contains the line GRABLE/SH ARE ABLE.

LINK-140

LINKER
/SELECTIVE_SEARCH

/SELECTIVE-SEARCH
Directs the linker to copy from the specified file into its global
symbol table (GST) only those global symbols that are both defined
in the specified file and referenced by previously processed input
files.

FORMAT object-file /SELECTIVE-SEARCH

qualifier values None.

DESCRIPTION If you do not specify /SELECTIVE_SEARCH with an input file, the linker
includes all global symbols from that file in its GST.

The /SELECTIVE_SEARCH positional qualifier is useful when you want to
control the size of the GST in your image by eliminating the inclusion of
irrelevant global symbols. For example, if you were including the system
symbol table (SYS$SYSTEM:SYS.STB) in the linking operation to resolve a
few references, you would want to specify this file with the /SELECTIVE-
SEARCH qualifier to avoid the inclusion of numerous, irrelevant global
symbols.

EXAMPLE
$ LINK WEAVER,SYS$SYSTEM:SYS.STB/SELECTIVE

This example directs the linker to produce an executable image named
WEAVER.EXE. The linker will not include global symbols in its global symbol
table (GST) defined in SYS.STB that were not referenced by WEAVER.

LINK-141

LINKER
/SHAREABLE

/SHAREABLE
/SHAREABLE is both a command qualifier and a positional qualifier.
As a command qualifier, /SHAREABLE directs the linker to create a
shareable image. As a positional qualifier, /SHAREABLE identifies
an input file as a shareable image file.

FORMAT shareable-image-file /S H AR E AB LE

qualifier values None.

DESCRIPTION If the /SHAREABLE qualifier appears anywhere in the command string, the
linker interprets it as a command qualifier and creates a shareable image. To
illustrate, if /SHAREABLE is appended to a file name that is specified in the
command string, the linker interprets it as a command qualifier, even though
it looks like a positional qualifier. In this case, the linker creates a shareable
image with the name of the file to which the /SHAREABLE qualifier is
appended.

See the Command Qualifier Section for an explanation of the use of
/SHAREABLE as a command qualifier.

EXAMPLES
□ $ LINK /SHAREABLE=GRABLE ALLISON

This example directs the linker to produce a shareable image named
GRABLE.EXE. (/SHAREABLE is used as an output qualifier in this example.)

0 $ LINK LAMAR,SYSSINPUT/OPTION GRABLE/SHAREABLE

This example shows how the shareable image GRABLE.EXE is used as input
to the linker with the object file LAMAR.OBJ to produce the executable image
named LAMAR.EXE. (In this example, GRABLE is the name of an options file
and /SHAREABLE is used as an input qualifier.)

LINK-142

LINKER
Examples

EXAMPLES
□ $ LINK PROGA

This command directs the linker to create an executable image using the
object module PROGA.OBJ and to name it PROGA.EXE. If there are
unresolved references in PROGA, the linker searches any user default
libraries to resolve them. If there are still unresolved references in
PROGA or in any module included from a user default library, the linker
searches the system default libraries SYS$LIBRARY:IMAGELIB.OLB and
SYS$LIBRARY:STARLET.OLB to resolve them.

0 $ LINK/DEBUG LOVE,HATE

This command directs the linker to combine the modules LOVE and HATE,
and the debugger, into an executable image with the file name LOVE.EXE.
The linker searches user default and system default libraries as in the first
example.

E $ LINK/EXECUTABLE=SPIRIT LOVE,HATE,FEELINGS/INCLUDE=PEACE

This command directs the linker to combine the modules LOVE and HATE
and the library module PEACE (to be extracted from the library FEELINGS)
into an executable image with the file name SPIRIT.EXE. The linker searches
user default and system default libraries as in the first example.

Q $ LINK/MAP=TEST/FULL/CROSS_REFERENCE PAYROLL,FICA,PAYLIB/LIBRARY

This command directs the linker to combine the modules PAYROLL and
FICA, to search the library PAYLIB for unresolved references in PAYROLL
and FICA and include any needed modules, into an executable image with
the file name PAYROLL.EXE. The linker also creates an image map file with
the file name TEST.MAP, which contains all sections provided in the full
map, as well as a Symbol Cross Reference section. The linker searches user
default and system default libraries as in the first example.

E $ LINK/SYMBOL.TABLE/NOUSERLIBRARY CURLY,LARRY,MOE,TVLIB/INCLUDE=OLDIES,-
COMEDY/LIBRARY,SLAPSTICK/OPTIONS

This command directs the linker to combine object modules CURLY, LARRY,
and MOE, as well as the module OLDIES from the library TVLIB, into an
executable image with the file name CURLY.EXE. The linker searches the
library COMEDY for any unresolved symbolic references in CURLY, LARRY,
MOE, and OLDIES, and includes any modules in COMEDY that resolve
those references. After the linker processes the options file SLAPSTICK (see
Section 2), it does not search any user default library but it does search the
system default libraries. Finally, the linker creates a symbol table file with the
file name CURLY.STB.

LINK-143

Index

A

.ADDRESS directive

count of, in map •LINK-52, LINK-54

effect on position independence*LINK-31

effect on shareability • LINK-30

guidelines for use of*LINK-31

image activator's processing of*LINK-78

linker's processing of*LINK-78

relation to fix-up image section*LINK-78

.ASCID directive

effect on position independence*LINK-31

effect on shareability • LINK-30

ASSIGN command*LINK-135

Attributes of program sections

absolute* LINK-62

concatenated • LINK-62

executable • LINK-63

global*LINK-63, LINK-70

in image section generation • LINK-73

in shareable images*LINK-29

local • LINK-63

modification of*LINK-61

non-position-independent • LINK-64

nonexecutable • LINK-63

nonshareable • LINK-64

nonvector • LINK-64

nonwriteable • LINK-63

overlaid* LINK-62

position-independent • LINK-64

relocatable • LINK-62

shareable • LINK-64

vector • LINK-64

writeable* LINK-63

B

Base address (cont'd.)

image section, in map*LINK-55

specification of*LINK-20

system image*LINK-19, LINK-133

Based image

creation of*LINK-19

memory allocation for*LINK-19, LINK-30

rules for upward compatibility • LINK-35

Brief map*LINK-51, LINK-118

module information in*LINK-52, LINK-53

sections in*LINK-52

/BRIEF qualifier*LINK-118

c
Cluster

creation of*LINK-20, LINK-66, LINK-68

current* LINK-70

default* LINK-66

empty • LINK-69

for transfer vector*LINK-34

in a based image*LINK-19

memory allocation for*LINK-72

order of processing • LINK-66, LINK-69

protection of*LINK-24

shareable image*LINK-65

Cluster-based shareable image • LINK-73

Cluster-based user*LINK-73

Clustering algorithm • LINK-66

Command processing • LINK-66

/CONTIGUOUS qualifier*LINK-1 19

Cross-reference of symbols*LINK-51, LINK-120

in map*LINK-56

/CROSS-REFERENCE qualifier • LINK-120

D

DCL command

Base address ASSIGN*LINK-135

cluster • LINK-73 DEFINE • LINK-135

defaults for images • LINK-19 LIBRARY • LINK-5

Index—1

Index

DCL command (cont'd.)

RUN* LINK-7

SET VERIFY*LINK-18

/DEBUG qualifier*LINK-121

Debugger

inclusion of*LINK-121

symbol table*LINK-76

Default map*LINK-51

module information in*LINK-52, LINK-53

sections in*LINK-52

symbols cross-referenced in*LINK-120

DEFINE command*LINK-135

Demand-zero compression

cessation of*LINK-24

conditions for*LINK-77

control of by option*LINK-21

definition of*LINK-21

Demand-zero image section • LINK-21

E

Global section (cont'd.)

processing of by image activator*LINK-38

Global symbol*LINK-10

absolute* LINK-25

conversion of to universal • LINK-26

defining by option*LINK-25

designation of*LINK-11

strong definition of*LINK-12

strong reference to*LINK-11

weak definition of*LINK-12

weak reference to*LINK-11

Global symbol table
See GST

GSMATCH processing • LINK-22

GST (global symbol table) • LINK-9, LINK-71

building of in Pass 1 • LINK-69

limiting symbols in*LINK-141

H

/HEADER qualifier*LINK-124

Executable image*LINK-59

output of linker*LINK-7

/EXECUTABLE qualifier*LINK-7, LINK-122

F

Fix-up image section

condition for insertion of*LINK-77

creation of* LINK-77

in relation to code reference*LINK-78

purpose of* LINK-78

Full map*LINK-51, LINK-123

module information in*LINK-52, LINK-53

sections in*LINK-52

symbols cross-referenced in*LINK-120

/FULL qualifier*LINK-123

G

Global section

linker-assigned name of*LINK-55

I/O segment*LINK-13

Image

base address of, in map*LINK-57

length of, in map*LINK-57

types of*LINK-59

Image activation*LINK-13

Image activator

GSMATCH processing*LINK-22, LINK-38

locating a shareable image*LINK-38

mapping of shareable image*LINK-27

memory allocation • LINK-65

processing of .ADDRESS*LINK-78

Image file

linker's writing of*LINK-79

Image header*LINK-5, LINK-13, LINK-124

ID field*LINK-23

image name field*LINK-24

Image I/O segment • LINK-23

Image ID field

setting • LINK-23

Index—2

Index

Image initialization*LINK-13, LINK-76

Image map*LINK-125

brief* LINK-118

full* LINK-123

linker's output*LINK-8

linker's writing of*LINK-79

module information in*LINK-52, LINK-53

sections in*LINK-8, LINK-52

specification of*LINK-51

symbol cross-reference in*LINK-120

type of*LINK-51

Image name field

setting • LINK-24

Image section

copy-on-reference • LINK-29, LINK-55

demand-zero*LINK-21, LINK-55, LINK-77

fix-up*LINK-77, LINK-78

generation of*LINK-61, LINK-73

initialization of*LINK-76

length of, in map*LINK-55

maximum number of*LINK-24

order of, in cluster*LINK-75

placement of program sections in*LINK-73

promotion of to global section*LINK-27

protection of*LINK-55

relocation of*LINK-74

type of*LINK-13

Image section descriptor
See ISD

IMAGELIB.OLB
See SYS$LIBRARY:IMAGELIB.OLB

/INCLUDE qualifier*LINK-6, LINK-12, LINK-138

Installation

of shareable image*LINK-27, LINK-38

requirement for sharing • LINK-28

/SHARE* LINK-38

ISD (image section descriptor) • LINK-13

in GSMATCH processing • LINK-21

L

Library

creation of*LINK-6

identification of*LINK-138, LINK-139

input to linker*LINK-5, LINK-61

processing of default*LINK-72

symbol table*LINK-12

Library (cont'd.)

system default*LINK-6, LINK-72

system default object library • LINK-131, LINK-
132

type of*LINK-5

user* LINK-6

user default*LINK-135

user-default shareable image*LINK-72

LIBRARY command*LINK-5

Library file

processing of*LINK-67, LINK-71

/LIBRARY qualifier*LINK-6, LINK-139

LINK command

in command procedure*LINK-19

LINK command qualifiers

incompatibility among*LINK-116

Link options
See Options

Linker* LINK-1

LNKSLIBR ARY • LINK-135

Local symbol • LINK-9

Major id*LINK-21

of shareable image in map*LINK-55

Map
See Image map

/MAP qualifier*LINK-8, LINK-125

Memory allocation • LINK-12

absolute program section • LINK-62

algorithm for*LINK-72

based image*LINK-19

cluster* LINK-74

information about, in map*LINK-57

relocatable program section • LINK-62

shareable image*LINK-65

steps in*LINK-73

system image • LINK-60

Minor id*LINK-21

of shareable image in map*LINK-55

Modular programming • LINK-3

Index—3

Index

O

Object file

input to linker*LINK-4

processing of*LINK-67, LINK-70

Object language*LINK-81 to LINK-113

Object module

content of*LINK-4

input to linker*LINK-61

record content of*LINK-61

Object module library

content of*LINK-5

input to linker*LINK-5

processing of*LINK-71

Options

BASE=* LINK-19

CLUSTERS LINK-20

COLLECTS LINK-20

default values*LINK-16

DZROMIN=* LINK-21

GSMATCH=* LINK-21

IDENTIFICATION^ LINK-23

IOSEGMENT=* LINK-13, LINK-23

ISDMAX=* LINK-24

NAME=* LINK-24

PROTECTS LINK-24

PSECTATTR=* LINK-25

STACK= • LINK-13, LINK-25

SYMBOL=* LINK-25

UNIVERSAL^* LINK-26

Options file

content of*LINK-7, LINK-15

creation of*LINK-18

identification of*LINK-140

in command procedure*LINK-18

input to linker*LINK-6

processing of*LINK-67

rules for*LINK-18

specification of clusters in • LINK-67

use for*LINK-7, LINK-15

/OPTIONS qualifier*LINK-6, LINK-140

/POIMAGE qualifier*LINK-126

Page boundary • LINK-19

Page fault cluster*LINK-20, LINK-55

Performance*LINK-21, LINK-30, LINK-31, LINK-66

Position independence

coding guidelines for*LINK-31

desirability of*LINK-30

in shareable image*LINK-30

Positional qualifier

/INCLUDE*LINK-6, LINK-12, LINK-138

incompatibility among • LINK-137

/LIBRARY*LINK-6, LINK-139

/OPTIONS*LINK-6, LINK-140

/SELECTI VE_SE ARCH • LINK-141

/SHAREABLE*LINK-128, LINK-142

Privileged shareable image

creation of*LINK-37

definition of*LINK-37

Program section

absolute* LINK-62

alignment of*LINK-62

in map*LINK-56

attributes*LINK-25, LINK-29, LINK-61, LINK-
62, LINK-63, LINK-64

base address of, in map*LINK-56

executable • LINK-63

global*LINK-63, LINK-70

in image section generation*LINK-61

length of, in map*LINK-56

local*LINK-63, LINK-70

modification of attributes • LINK-61

module contribution to*LINK-62

module contribution to, in map*LINK-56

name* LINK-62

name of, in map*LINK-56

non-position-independent • LINK-64

nonexecutable • LINK-63

nonshareable • LINK-64

nonwriteable • LINK-63

ordering of, in image section • LINK-73

position-independent • LINK-64

relocatable* LINK-62

shareable • LINK-64

Index-4

Index

Program section (cont'd.)

significant attributes of*LINK-73, LINK-74

size* LINK-62

writeable* LINK-63

/PROTECT qualifier*LINK-127

Protection

cluster •LINK-24, LINK-127

image section*LINK-55

shareable image*LINK-127

R

Radix operator*LINK-19

Reentrancy • LINK-29

RUN command*LINK-7

s
/SELECTIVE_SEARCH qualifier • LINK-141

SET VERIFY command*LINK-18

Shareable image*LINK-60

as separate cluster*LINK-65

based*LINK-35, LINK-65

benefit of*LINK-27

code references to, in map*LINK-57

coding for position independence*LINK-31

content of*LINK-4

creating • LINK-36

default directory of*LINK-38

identification of*LINK-142

in resource allocation*LINK-39

input to linker*LINK-4, LINK-61

installation of*LINK-27, LINK-37

library* LINK-37

linking of multiple*LINK-44, LINK-49

location of by image activator*LINK-38

match control for*LINK-21

memory allocation for*LINK-65

output of linker*LINK-7

position independent • LINK-30, LINK-65

private copy of*LINK-38

privileged • LINK-37

processing of*LINK-71

program sections in*LINK-29

Shareable image (cont'd.)

protection of*LINK-25

resolving references to*LINK-65

rules for upward compatibility • LINK-35

shareability • LINK-29

guidelines for*LINK-30

specification of*LINK-37

symbol table of*LINK-60

transfer vectors in • LINK-31

universal symbols in*LINK-36

updating of*LINK-22

use for*LINK-7

use of for COMMON area • LINK-44, LINK-49

use of GSMATCH* LINK-22, LINK-36

writing code for*LINK-29

Shareable image library

as user default library • LINK-135

content of*LINK-5

input to linker*LINK-5

processing of*LINK-71

system default • LINK-132

/SHAREABLE qualifier• LINK-7, LINK-128, LINK
142

STARLET. OLB
See SYS$LIBRARY:STARLET.OLB

Strong definition • LINK-11, LINK-12

Strong reference*LINK-11

Symbol

definition • LINK-9

global* LINK-10

information about, in map*LINK-56

local* LINK-9

types of*LINK-9

universal* LINK-10

Symbol reference*LINK-9

Symbol resolution • LINK-5, LINK-9, LINK-11,
LINK-34, LINK-72, LINK-131, LINK-139,
LINK-143

Symbol table

of a library*LINK-71

of a shareable image*LINK-4

Symbol table file

content of*LINK-5

input to linker*LINK-5, LINK-61

output of linker*LINK-8, LINK-130

/SYMBOI_TABLE qualifier • LINK-8, LINK-130

SYSSINPUT • LINK-18

SYSSLIBRARY* LINK-71, LINK-72

Index—5

Index

SYS$LIBRARY:IMAGELIB.OLB• LINK-6, LINK-37,
LINK-54, LINK-65, LINK-72, LINK-123

searched by linker*LINK-131

SYS$LIBRARY:STARLET.OLB • LINK-6, LINK-72,
LINK-123

searched by linker*LINK-131

SYS$SHARE • LINK-38, LINK-44, LINK-48

SYS$SYSTEM:SYS.EXE • LINK-8

SYS$SYSTEM:SYS.STB • LINK-141

/SYSLIB qualifier*LINK-131

/SYSSHR qualifier*LINK-132

System default library • LINK-6, LINK-132

content of*LINK-6

linker's search of*LINK-131, LINK-143

processing of*LINK-72

searched by linker*LINK-131

symbols in*LINK-120

System image*LINK-60, LINK-133

content of*LINK-60

memory allocation for*LINK-60

output of linker*LINK-8

/SYSTEM qualifier*LINK-8, LINK-133

System symbol table*LINK-141

User default library (cont'd.)

linker's search of*LINK-135, LINK-136, LINK
143

object module*LINK-72

shareable image*LINK-72

/USERLIBRARY qualifier*LINK-6, LINK-135

v
VAX object language*LINK-81 to LINK-113

Virtual memory allocation
See Memory allocation

w
Weak definition*LINK-11, LINK-12

Weak reference*LINK-11

T

/TRACEBACK qualifier*LINK-134

.TRANSFER directive*LINK-34

Transfer vector

advantage of*LINK-32

coded for procedure call • LINK-34

coded for subroutine call • LINK-34

creation of*LINK-33

for upward compatibility • LINK-35

purpose of*LINK-31

recommended length of*LINK-33

u
Universal symbol*LINK-4, LINK-10

designation of*LINK-11, LINK-26

in shareable image creation • LINK-36

reason for*LINK-10

User default library

definition of*LINK-135

Index—6

VAX/VMS
Linker Reference

Manual
AA-Z420A-TE

READER'S Note: This form is for document comments only. DIGITAL will use comments
COMMENTS submitted on this form at the company's discretion. If you require a written reply

and are eligible to receive one under Software Performance Report (SPR) service,
submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date_

Organization _

Street _

City _State_Zip Code_
or Country

Do Not Tear - Fold Here and Tape

IDDEIO
No Postage
Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

- — — Do Not Tear - Fold Here

C
ut

 A
lo

ng
 D

o
tt

ed
 L

in
e

