
Guide to Programming on VAX/VMS

Order Number: AI-Y503B-TE

April 1986

This guide contains practical guidelines for using VAX/VMS program
development tools. Although this manual has a FORTRAN orientation and
assumes a reading knowledge of the language, the guidelines and concepts
described can be implemented in other programming languages. To help illustrate
key concepts, many examples have been included.

Revision/Update Information: This document supersedes the Guide to
Programming on VAX/VMS (FORTRAN
Edition) Version 4.0.

Software Version: VAX/VMS Version 4.4

digital equipment corporation
maynard, massachusetts

April 1986

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1986 by Digital Equipment Corporation
All Rights Reserved • Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

ZK-2815

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

CANADA INTERNATIONAL

Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager
100 Herzberg Road c/o Digital's local subsidiary
Kanata, Ontario K2K 2A6 or approved distributor
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.
*

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

USA & PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by TgX, the typesetting system developed by
Donald E. Knuth at Stanford University. T^X is a registered trademark of the American Mathematical
Society.

Contents

PREFACE xvii

NEW AND CHANGED FEATURES xxi

CHAPTER 1 INTERUNIT LOGIC 1 -1

1.1 INVOKING PROGRAM UNITS 1-2
1.1.1 Subroutine _ 1 -3
1.1.2 Function _ 1 -4
1.1.3 Intrinsic Subprograms _ 1-5
1.1.4 System-Defined Procedures _ 1-6

1.2 TRANSFER OF DATA 1 -7
1.2.1 Argument Lists _ 1-8
1.2.2 Common Blocks _ 1-10

1.2.2.1 Primary Uses • 1-10
1.2.2.2 Initialization • 1-12

1.3 PASSING CONTROL INFORMATION AMONG USER
SUBPROGRAMS 1-13
1.3.1 Flags _ 1-13
1.3.2 Masks _ 1-14
1.3.3 Indicative Values _ 1-15

1.4 PASSING VARIABLE-LENGTH DATA 1 -16
1.4.1 Character Strings _ 1-16
1.4.2 Arrays _ 1-17

1.5 PASSING ARGUMENTS TO SYSTEM-DEFINED PROCEDURES 1 -20
1.5.1 Mechanics of Passing Arguments _ 1-22
1.5.2 Aligning Data _ 1-23
1.5.3 Passing Bytes _ 1-24
1.5.4 Passing Words _ 1-24

iii

Contents

1.5.5 Passing Longwords _ 1-24

1.5.5.1 Specifying Byte and Word Values • 1-25

1.5.5.2 Setting Bits • 1-26

1.5.6 Passing Quadwords _ 1-28

1.5.6.1 Specifying Byte, Word, and Longword
Values • 1-28

1.5.6.2 Setting Bits • 1-30

1.5.7 Passing Variable-Length Data Structures _ 1-31

1.6 READING INFORMATION RETURNED FROM SYSTEM-DEFINED

PROCEDURES 1-34

1.6.1 Masks _ 1-35

1.6.2 Addresses _ 1-36

1.6.2.1 Numeric Data • 1-36

1.6.2.2 Character Data • 1-36

1.6.3 Buffers _ 1-38

CHAPTER 2 INTRAUNIT LOGIC AND LOCAL STORAGE 2-1

2.1 LOCAL STORAGE 2-3

2.1.1 Data Type Definition _ 2-3

2.1.2 Variable Initialization _ 2-5

2.1.2.1 One Time Initialization • 2-5
2.1.2.2 Reinitialization • 2-6

2.1.3 Named Constants _ 2-6

2.1.4 Equivalent Variables _ 2-7

2.1.5 Contiguous Storage _ 2-8

2.1.6 Large Data Structures and Dynamic Storage _ 2-9
2.1.6.1 Dynamic Storage of Numeric Data *2-10

2.1.6.2 Dynamic Storage of Character Data • 2-11
2.1.6.3 Dynamic Storage Statistics *2-13

2.2 SERIAL EXECUTION 2-13

2.3 CONDITIONAL EXECUTION 2-14

2.3.1 Specifying the Condition _ 2-14

2.3.2 Single Conditional Block _ 2-15

2.3.3 Multiple Conditional Blocks _ 2-16
2.3.3.1 Exclusive Conditional • 2-16
2.3.3.2 Inclusive Conditional • 2-18

IV

Contents

2.4 ITERATIVE LOGIC 2-19

2.4.1 DO WHILE Statement _ 2-21

2.4.2 Indexed DO Statement _ 2-21

2.5 NESTING 2-22

CHAPTER 3 PROGRAM SYNCHRONIZATION AND COMMUNICATION 3-1

3.1 CREATING PROCESSES 3-1

3.1.1 Creating Subprocesses _ 3-2

3.1.1.1 Invoking LIB$SPAWN • 3-2

3.1.1.2 Subprocess Context • 3-3

3.1.1.3 Subprocess Execution • 3-4

3.1.1.4 Debugging a Program in a Subprocess • 3-5

3.1.2 Synchronizing Terminal I/O with the Lock Manager _ 3-5

3.1.3 Creating Detached Processes _ 3-7

3.1.4 Specifying a Time for Program Execution _ 3-9
3.1.4.1 Specified Time • 3-9

3.1.4.2 Timed Intervals • 3-10

3.2 EXAMINING AND MODIFYING PROCESSES 3-12

3.2.1 Examining Processes _ 3-12

3.2.2 Monitoring Program Execution _ 3-16

3.2.3 Controlling Process Scheduling _ 3-17

3.3 CONTROLLING PROGRAM EXECUTION 3-18

3.3.1 Synchronizing Operations with Event Flags _ 3-18
3.3.1.1 Manipulating Event Flags *3-18
3.3.1.2 Common Event Flags • 3-20
3.3.1.3 Synchronous and Asynchronous

System Services • 3-22

3.3.2 Interrupting Execution with an AST _ 3-24

3.4 INTERPROCESS COMMUNICATION 3-25

3.4.1 Symbols and Logical Names _ 3-25

3.4.2 Mailboxes _ 3-29
3.4.2.1 Synchronous Mailbox I/O • 3-31
3.4.2.2 Immediate Mailbox I/O • 3-34
3.4.2.3 Asynchronous Mailbox I/O • 3-39

v

Contents

3.4.3 Sharing Data _ 3-42
3.4.3.1 Installed Common Blocks • 3-43

3.4.3.2 Global Sections • 3-45

3.5 INTRAPROCESS COMMUNICATION 3-50

3.5.1 Per-Process Common Blocks _ 3-50

3.5.2 Passing Control _ 3-52

3.6 INTERSYSTEM COMMUNICATION 3-53

3.6.1 Requesting a Network Connection _ 3-53

3.6.2 Completing a Network Connection _ 3-55

3.6.3 Exchanging Messages _ 3-55

3.6.3.1 Terminating a Network Connection • 3-58

CHAPTER 4 IMPLEMENTATION CYCLE 4-1

4.1 COMPILING AND LINKING PROGRAMS 4-1

4.1.1 Creating Source Programs _ 4-2

4.1.2 Compiling Programs _ 4-4

4.1.2.1 Development Systems • 4-5
4.1.2.2 Production Systems • 4-6

4.1.2.3 Errors • 4-6

4.1.3 Object Libraries _ 4-8

4.1.4 Linking and Executing Programs _ 4-8

4.1.5 Privileged Programs _ 4-10

4.1.6 Building Programs _ 4-11

4.1.6.1 Build Process • 4-11

4.1.6.2 System Integrity *4-12

4.1.6.3 Checkin and Checkout • 4-15

4.2 SYMBOLS 4-18

4.2.1 Defining Symbols _ 4-19

4.2.2 Local and Global Symbols _ 4-19

4.2.3 Referencing Global Symbols _ 4-20

4.2.4 Resolving Global Symbols _ 4-21

4.2.4.1 Explicitly Named Modules and Libraries • 4-21
4.2.4.2 System Default Libraries • 4-22
4.2.4.3 User Default Libraries • 4-22
4.2.4.4 Macro Libraries • 4-23

4.2.5 FORTRAN Definition Libraries and Files _ 4-24

vi

Contents

4.3 SHAREABLE IMAGES 4-25
4.3.1 Creating Shareable Images _ 4-25

4.3.1.1 Transfer Vectors • 4-28
4.3.1.2 GSMATCH Option • 4-30
4.3.1.3 UNIVERSAL option • 4-30

4.3.2 Shareable Image Libraries _ 4-31

4.3.3 Linking Shareable Images _ 4-31
4.3.4 Shared Shareable Images _ 4-33

4.4 LISTINGS 4-33
4.4.1 Compiler Listings _ 4-33

4.4.1.1 Source Program Listing • 4-34
4.4.1.2 Machine Code Listing • 4-35
4.4.1.3 Storage Map • 4-36
4.4.1.4 Compilation Summary • 4-39

4.4.2 Image Maps _ 4-40

CHAPTER 5 USING THE DEBUGGER 5-1

5.1 INVOKING AND TERMINATING THE DEBUGGER 5-2
5.1.1 Invoking the Debugger _ 5-2
5.1.2 Interrupting the Debugger _ 5-3

5.1.3 Terminating the Debugger _ 5-4

5.2 ENTERING DEBUGGER COMMANDS 5-4

5.2.1 Using Debugger HELP _ 5-4
5.2.2 Abbreviating Debugger Commands _ 5-4
5.2.3 Using the Keypad _ 5-5

5.2.3.1 Default Key Definitions • 5-5
5.2.3.2 User Key Definitions • 5-7

5.3 USING SCREEN DISPLAYS 5-7
5.3.1 Invoking and Terminating Screen Mode _ 5-8
5.3.2 Defining Windows _ 5-10

5.3.3 Manipulating Displays _ 5-10
5.3.3.1 Showing Displays • 5-10
5.3.3.2 Removing Displays • 5-1 1
5.3.3.3 Scrolling Displays • 5-12
5.3.3.4 Using Pseudodisplay Names • 5-13

5.3.4 Creating Displays _ 5-13

vii

Contents

5.4 CONTROLLING PROGRAM EXECUTION 5-14

5.4.1 Starting Program Execution _ 5-15
5.4.1.1 The GO Command • 5-15

5.4.1.2 STEP Command • 5-15
5.4.1.3 CALL Command • 5-17
5.4.1.4 SHOW CALLS Command • 5-17

5.4.2 Suspending (or Tracing) Program Execution _ 5-18

5.4.2.1 Breakpoints and Tracepoints *5-18
5.4.2.2 Watchpoints • 5-20

5.4.3 Displaying Source Lines _ 5-21

5.4.4 Using Logical Control Structures _ 5-22

5.5 SYMBOLIC DEBUGGING 5-23

5.5.1 Maintaining Symbol Information _ 5-23

5.5.2 Referencing Symbols _ 5-25

5.5.3 Resolving Symbol References _ 5-26
5.5.3.1 Path-Name Prefix • 5-27

5.5.3.2 SET SCOPE Command • 5-28

5.5.4 Defining Symbols _ 5-28

5.5.5 Displaying Symbol Information _ 5-29

5.6 MANIPULATING DATA 5-30

5.6.1 Displaying Values _ 5-31

5.6.2 Calculating Values _ 5-32

5.6.3 Assigning Values _ 5-33

5.6.4 Specifying Data Type _ 5-33

5.6.5 Specifying Radix _ 5-34

5.7 USING COMMAND PROCEDURES 5-35

5.7.1 Displaying Commands _ 5-36

5.7.2 Passing Values _ 5-36

5.7.3 Initialization Files _ 5-37

5.8 USING LOG FILES 5-38

Contents

CHAPTER 6 DATA STRUCTURES 6-1

6.1 DEFINITION AND REFERENCE OF DATA ITEMS 6-1

6.2 ASSIGNMENT OF VALUES TO VARIABLES 6-3

6.3 NUMERIC DATA
6.3.1 Bvtes

6-4
6-4

6.3.2 Integers 6-4
6.3.3 Real Numbers 6-5
6.3.4 Complex Numbers 6-6

6.4 NUMERIC OPERATIONS
6.4.1 Arithmetic Ooerations

6-7
6-7

6.4.2 Relational Operations 6-8

6.4.3 System Arithmetic Routines 6-9
6.4.4 Arithmetic Errors 6-10

6.5 LOGICAL DATA 6-10

6.6 CHARACTER DATA
6.6.1 Definina Character Strinas

6-12
6-12

6.6.2 Character Constants 6-13
6.6.3 Referencing Character Strings 6-13
6.6.4 Character String Operations 6-13

6.6.5

6.6.4.1 Padding and Truncation • 6-14
6.6.4.2 Concatenation • 6-14
6.6.4.3 Intrinsic Character Functions • 6-15
Nonprintahle Characters 6-15

6.6.6 Counted Strings 6-15

6.7 UNTYPED DATA

6.7.1 Untyped Constants _

6.7.1.1 Hexadecimal Constants • 6-17
6.7.1.2 Octal Constants • 6-18
6.7.1.3 Hollerith Constants • 6-19

6.7.2 Bit Manipulation _

6-16
6-16

6-19

IX

Contents

6.8 CONVERSION BETWEEN DATA TYPES 6-20

6.8.1 Numeric Conversions - 6-20

6.8.2 Formatted Conversions - 6-21

6.8.3 Automatic Conversions _ 6-22

6.9 ARRAYS 6-23

6.9.1 Defining Arrays _ 6-23

6.9.2 Referencing Arrays _ 6-24

6.9.2.1 Per-Element Processing • 6-24
6.9.2.2 Multielement Processing • 6-25

6.9.2.3 Full Array Processing • 6-26

6.9.3 Storage and Bounds Considerations _ 6-27

6.9.4 Multidimensional Arrays _ 6-28

6.9.4.1 Storage of Multidimensional Arrays • 6-28

6.9.4.2 Processing Multidimensional Arrays • 6-29

6.10 RECORDS 6-31

6.10.1 Defining Record Formats _ 6-32

6.10.1.1 Typed Data • 6-33
6.10.1.2 Substructures • 6-34

6.10.1.3 Unions • 6-35

6.10.2 Declaring Record Variables _ 6-36

6.10.3 Referencing Records _ 6-37

6.10.4 Storing Record Structures _ 6-39

6.11 SYSTEM INFORMATION 6-40

6.11.1 Timer Statistics _ 6-40

6.11.2 System Time _ 6-43
6.11.2.1 Current Time • 6-44

6.1 1.2.2 Time Manipulation • 6-44

6.11.3 Emulated Instructions _ 6-46

CHAPTER 7 COMMAND INPUT AND SYNTAX ANALYSIS 7-1

7.1 COMMAND DESCRIPTION 7-1

7.1.1 Command Name and Image _ 7-1

x

Contents

7.1.2 Parameters 7-2

7.1.3

7.1.2.1 Labels • 7-2

7.1.2.2 Required Parameters • 7-3

7.1.2.3 Values • 7-3

7.1.2.4 Prompting • 7-4

Qualifiers 7-4

7.1.4

7.1.3.1 Negatable Qualifiers • 7-5

7.1.3.2 Default Presence • 7-5

7.1.3.3 Placement • 7-6

7.1.3.4 Values • 7-6

Value Types 7-7

7.1.5

7.1.4.1 Built-in Value Types • 7-7

7.1.4.2 Keywords • 7-7

Disallowing Entities and Combinations 7-9

7.1.6 Syntax Changes 7-9

7.1.7 Keyword and Definition Paths 7-10

7.1.7.1 Keyword Paths • 7-10

7.1.7.2 Definition Paths • 7-10

7.2 COMMAND SETUP

7.2.1 Process Command Table

7-11

7-11

7.2.2 DCL Command Table 7-12

7.2.3 User Command Table 7-12

7.2.4

7.2.3.1 Copying the DCL Command Table • 7-12

7.2.3.2 Establishing the User Table • 7-13

7.2.3.3 Creating a Table from Scratch • 7-13

Deleting Commands 7-14

7.3 SYNTAX ANALYSIS

7.3.1 Checkina for the Presence of Elements

7-14

7-15

7.3.2 Qetting Element Values 7-18

7.3.3 Determining the Position of a Qualifier 7-20

7.3.4 Examining the Command Line and Verb 7-22

7.4 SUBCOMMANDS AND INTERNAL PARSING

7.4.1 Definina Subcommands

7-22

7-22

7.4.2 Parsing Subcommands 7-23

7.4.3 Dispatching to a Subprogram 7-26

7.4.4 Returning to the Invoking Command 7-28

XI

Contents

CHAPTER 8 USER INPUT/OUTPUT 8-1

8.1 CONVERSATIONAL I/O 8-2
8.1.1 Device Selection _ 8-2

8.1.1.1 Implied Unit for FORTRAN I/O • 8-3

8.1.1.2 Explicit Unit for FORTRAN I/O • 8-4

8.1.2 Getting a Line of Input _ 8-5
8.1.2.1 LIB$GET_INPUT • 8-5

8.1.2.2 ACCEPT Statement • 8-6

8.1.2.3 READ Statement • 8-6

8.1.3 Getting Many Lines of Input _ 8-8
8.1.4 Writing Output _ 8-10

8.1.4.1 LIB$PUT_OUTPUT • 8-10

8.1.4.2 WRITE Statement • 8-11

8.1.4.3 Formatting Numeric Output *8-12

8.1.4.4 Multiple Output Records *8-13

8.1.4.5 TYPE Statement • 8-13

8.1.4.6 Processing Arrays and Records • 8-13

8.1.4.7 Carriage Control • 8-14

8.2 SCREEN MANAGEMENT
8.2.1 Pasteboards _
8.2.2 Virtual Displays _

8.2.2.1 Creating a Virtual Display *8-18

8.2.2.2 Pasting Virtual Displays *8-19

8.2.2.3 Rearranging Virtual Displays • 8-21

8.2.2.4 Removing Virtual Displays • 8-23

8.2.2.5 Modifying a Virtual Display • 8-24

8.2.3 Writing _
8.2.3.1 Positioning the Cursor • 8-26

8.2.3.2 Writing Data Character by Character • 8-26

8.2.3.3 Writing Data Line by Line • 8-28

8.2.3.4 Drawing Lines • 8-29
8.2.3.5 Deleting Text • 8-30

8.2.4 Reading _
8.2.4.1 Reading from a Display • 8-31

8.2.4.2 Reading from a Virtual Keyboard • 8-32

8.2.4.3 Reading from the Keypad • 8-34

8.2.4.4 Reading Composed Input • 8-37

8.2.5 Controlling Screen Updates
8.2.6 Modularity _

8-15
8-17
8-18

8-25

8-31

8-39
8-40

Contents

8.3 SPECIAL INPUT/OUPUT ACTIONS 8-42

8.3.1 CTRL/C and CTRL/Y Interrupts _ 8-42

8.3.2 Unsolicited Input _ 8-46

8.3.3 Type-Ahead Buffer _ 8-48

8.3.4 Echo _ 8-50

8.3.5 Timeout _ 8-51

8.3.6 Lowercase to Uppercase Conversion _ 8-52

8.3.7 Line Editing and Control Actions _ 8-52

8.3.8 Broadcasts _ 8-53

8.4 SYSSQIO AND SYSSQIOW SYSTEM SERVICES 8-55

8.4.1 Read Operations _ 8-55

8.4.2 Write Operations _ 8-59

8.4.3 Checking the Device Type _ 8-61

8.4.4 Terminal Characteristics _ 8-62

8.4.5 Record Terminators _ 8-64

CHAPTER 9 FILE INPUT/OUTPUT 9-1

9.1 FILE OPERATIONS 9-2

9.1.1 File Attributes _ 9-2
9.1.1.1 Logical Unit Number • 9-2
9.1.1.2 File Name • 9-3

9.1.1.3 File Organization and Access • 9-3

9.1.1.4 Record Structure • 9-4

9.1.1.5 File I/O • 9-5
9.1.1.6 File Status and Disposition • 9-6
9.1.1.7 Protection and Access • 9-7
9.1.1.8 Storage Allocation • 9-8

9.1.2 Opening Files _ 9-9
9.1.2.1 Opening a New or an Existing File • 9-9
9.1.2.2 Opening a File of Unknown Status • 9-10
9.1.2.3 Opening a File Across the Network • 9-1 1

9.1.3 Choosing Keywords for I/O Statements _ 9-11

9.1.4 Repositioning Within a File _ 9-14

9.1.5 Getting Information About a File _ 9-14

9.1.6 Closing a File _ 9-15

9.2 LOADING AND UNLOADING A DATABASE

9.2.1 FORTRAN I/O _

9-16

9-16

xiii

Contents

9.2.2 SYSSCRMPSC _ 9-19
9.2.2.1 Mapping a File • 9-20

9.2.2.2 User-Open Routine • 9-23
9.2.2.3 Initializing a Mapped Database • 9-25

9.2.2.4 Saving a Mapped File • 9-25

9.3 PER-RECORD PROCESSING OF ENTIRE DATABASE 9-26

9.3.1 Creating a Sequential File _ 9-27

9.3.2 Updating a Sequential File _ 9-28

9.3.3 Sorting and Merging Sequential Files _ 9-30
9.3.3.1 Passing Key Information • 9-31

9.3.3.2 Sorting with the File Interface • 9-32

9.3.3.3 Sorting with the Record Interface • 9-33

9.3.3.4 Merging with the File Interface • 9-37

9.3.3.5 Merging with the Record Interface • 9-38

9.4 PROCESSING PARTS OF THE DATABASE 9-43

9.4.1 Creating an Indexed File _ 9-43

9.4.2 Writing to an Indexed File _ 9-45

9.4.3 Accessing a Record Directly _ 9-47

9.4.4 Indexed Sequential Access Method (ISAM) _ 9-49

9.4.5 Accessing a Record Using Multiple Keys _ 9-52

9.4.6 Updating a Record in an Indexed File _ 9-56

9.4.7 Deleting a Record from an Indexed File _ 9-57

9.4.8 Handling Duplicate Keys _ 9-58

9.5 DATA COMPRESSION AND EXPANSION 9-59

9.5.1 Compression Procedures _ 9-60

9.5.2 Expansion Procedures _ 9-67

9.6 LIBRARY PROCEDURES 9-71

9.6.1 Creating, Opening, and Closing Libraries _ 9-72

9.6.2 Adding Modules _ 9-76

9.6.3 Deleting Modules _ 9-79

9.6.4 Extracting Modules _ 9-80

9.6.5 Using Multiple Keys and Multiple Indexes _ 9-83

9.6.6 Accessing Module Headers _ 9-86

9.6.7 Reading Library Headers _ 9-88

9.6.8 Displaying Help Text _ 9-89

9.6.9 Listing and Processing Index Entries _ 9-91

XIV

Contents

9.7 FILE DEFINITION LANGUAGE 9-92

9.7.1 Creating an FDL File _ 9-93
9.7.1.1 Using the FDL Editor • 9-93
9.7.1.2 Using the Characteristics of an Existing

Data File • 9-94

9.7.2 Applying an FDL File to a Data File _ 9-95
9.7.2.1 Creating a New Data File • 9-96

9.7.2.2 Modifying an Existing Data File • 9-96

9.8 USER-OPEN ROUTINES 9-97

9.8.1 USEROPEN Specifier _ 9-98

9.8.2 Writing a User-Open Routine _ 9-98

9.8.3 Setting FAB and RAB Fields _ 9-100

CHAPTER 10 RUN-TIME ERRORS 10-1

10.1 GENERAL ERROR HANDLING 10-1

10.1.1 Condition Code and Message _ 10-2

10.1.2 Return Status Convention _ 10-3

10.1.2.1 Testing Returned Condition Codes • 10-3
10.1.2.2 Testing SS$_NOPRIV and SS$_EXQUOTA • 10-4

10.1.3 Signaling Mechanism _ 10-6
10.1.3.1 Default Condition Handling • 10-6
10.1.3.2 Changing a Signal to a Return Status • 10-7

10.2 DEFINING CONDITION CODES AND MESSAGES 10-9

10.2.1 Creating the Source File _ 10-9
10.2.1.1 Specifying Facility • 10-10
10.2.1.2 Specifying Severity • 10-11
10.2.1.3 Specifying Condition Names and

Messages • 10-11
10.2.1.4 Specifying Variables in the Message Text • 10-12

10.2.2 Compiling and Linking the Messages _ 10-12

10.2.3 Signaling User-Defined Codes and Messages _ 10-13
10.2.3.1 Signaling with Global Symbols • 10-14
10.2.3.2 Signaling with Local Symbols • 10-14
10.2.3.3 Specifying FAO Parameters • 10-15

XV

Contents

10.3 FORTRAN I/O ERRORS 10-16

10.3.1 Unexpected FORTRAN I/O Errors _ 10-16

10.3.2 Expected FORTRAN I/O Errors _ 10-17

10.4 CONDITION HANDLERS 10-18

10.4.1 Establishing a Condition Handler _ 10-21

10.4.2 Writing a Condition Handler _ 10-21

10.4.2.1 Dummy Arguments • 10-21

10.4.2.2 Checking the Condition Code • 10-23
10.4.2.3 Exiting • 10-24

10.4.3 Debugging _ 10-27

10.4.4 Condition Handler Functions _ 10-28

10.4.4.1 Modifying Condition Codes • 10-28

10.4.4.2 Displaying Messages • 10-29
10.4.4.3 Chaining Messages • 10-30
10.4.4.4 Logging Messages • 10-32

10.4.5 System-Defined Arithmetic Condition Handlers _ 10-34

10.5 EXIT HANDLERS 10-35

10.5.1 Establishing an Exit Handler _ 10-36

10.5.2 Writing an Exit Handler __ 10-38

10.5.3 Debugging an Exit Handler _ 10-39

INDEX

Preface

Intended Audience

This manual is intended for experienced programmers who are working
in the VAX/VMS environment. Although the examples are written in
FORTRAN, you can use this manual as an aid to programming in other
languages if you know the other language well and are able to read
FORTRAN programs.

Structure of This Document

The Guide to Programming on VAX/VMS is designed to help programmers
understand and use the features offered by the VAX/VMS operating
system. This guide is not intended to be a complete description of any one
programming language (see the Associated Documents section for related
documentation); instead, it focuses on the tasks that typically confront
programmers and suggests ways to use the VAX/VMS operating system
features to accomplish those tasks.

Ten chapters are included:

• Chapter 1 describes the communication between the program units that
make up an executable program.

• Chapter 2 describes the makeup of the individual program units.

• Chapter 3 discusses process creation and control.

• Chapter 4 explains the mechanics of processing your program units into
executable programs.

• Chapter 5 explains how to use the VAX/VMS Debugger to check your
program for errors while it executes.

• Chapter 6 describes program data structures.

• Chapter 7 shows how to define a DCL command that invokes your
program.

• Chapter 8 describes I/O techniques used when the typical input and
output device is your terminal.

Preface

• Chapter 9 describes I/O techniques used to manipulate data stored in
files.

• Chapter 10 explains how run-time errors in your program are handled.

Associated Documents

Complete descriptions of the VAX/VMS components discussed in this
manual are provided in the appropriate reference volumes in the VAX/VMS
document set. In particular, see the following volumes:

• VAX/VMS DCL Dictionary

• VAX/VMS System Routines Reference Volume

• VAX/VMS Utility Routines Reference Manual

• VAX/VMS Run-Time Library Routines Reference Manual

Specific information in other languages, can be found in the appropriate
VAX programming manual for that language. For example, for a complete
description of the VAX FORTRAN language, see Programming in VAX
FORTRAN. Information on the VAX BASIC programming language can
be found in Programming in VAX BASIC.

Conventions Used in This Document

Convention Meaning

[ret] A symbol with a one- to six-character
abbreviation indicates that you press a key
on the terminal, for example, |ret| .

The phrase CTRL/x indicates that you
must press the key labeled CTRL while you
simultaneously press another key, for example,
CTRL/C, CTRL/Y, CTRL/O.

Command examples show all output lines or
prompting characters that the system prints
or displays in black letters. All user-entered
commands are shown in red letters.

[CTRL/x |

$ SHOW TIME
05-JUN-1985 1 1:55:22

Preface

Convention Meaning

$ TYPE MYFILE.DAT Vertical series of periods, or ellipsis, mean

either that not all the data that the system

would display in response to the particular

command is shown or that not all the data a

user would enter is shown.

file-spec,... Horizontal ellipsis indicates that additional

parameters, values, or information can be

entered.

[logical-name] Square brackets indicate that the enclosed item

is optional. (Square brackets are not, however,

optional in the syntax of a directory name in a

file specification or in the syntax of a substring

specification in an assignment statement.)

quotation marks

apostrophes

The term quotation marks is used to refer

to double quotation marks ("). The term

apostrophe (') is used to refer to a single

quotation mark.

XIX

New and Changed Features

The focus of the Guide to Programming on VAX/VMS has changed to supply
programmers working in any programming language with guidelines for
using the development tools available with VAX/VMS. However, the
manual still has a FORTRAN orientation; all examples are in FORTRAN, and
the programmer is assumed to have a reading knowledge of the language.

The Debugger section contains most of the new and changed features for
Version 4.4.

Using the Debugger (Changes in Chapter 5)

Several new debugger screen features have been added. Changes include
new display window definitions, the addition of a PROMPT predefined
display, greater usable screen height, new MOVE, EXPAND, and EXTRACT
commands, and some new key pad definitions.

Because windows can now be divided vertically, some key definitions
affecting screen displays have been changed. Key 7 now displays SRC
in the top left half of the screen, INST in the top right half, OUT below
these two, and the new PROMPT display under the OUT display. GOLD-
7 now displays INST in the top left half, REG in the top right half, OUT
below these two, and PROMPT under the OUT display. The BLUE-7 key is
now undefined. For more detailed information about these and other new
features, see the VAX/VMS Debugger Reference Manual.

Interunit Logic

An executable program (also called an executable image, applications system,
or subsystem) consists of program units that are compiled and linked together
(see Chapter 4). One program unit is the main program and the rest are
subprograms. You invoke an executable program from DCL command level
with either its command name (see Chapter 7) or the RUN command.

When designing a program, you decide what operations are required.
Typically, in the initial stages of implementation, each program unit performs
one of these operations. As you proceed with the detailed coding of the
program, you create additional subprograms to factor out repetitive and
complex operations. You can write each program unit as a separate file or
group related subprograms into a single file (see Section 4.1).

When you invoke an executable program, program execution begins at
the first executable statement in the main program unit. In FORTRAN,
the main program unit begins with a PROGRAM statement (optional, but
recommended) and ends with an END statement; it can invoke subprograms,
which can then invoke other subprograms. In FORTRAN the following types
of subprograms can be used (see your programming documentation for the
types of subprograms that may be declared in other languages):

• Subroutine—A program unit beginning with a SUBROUTINE statement
and ending with an END statement. To invoke a subroutine from
another program unit, use a CALL statement.

• Function—A program unit beginning with a FUNCTION statement
and ending with an END statement. A function provides the invoking
program unit with a value of a particular data type. To invoke a function,
use a function reference wherever a value of the same data type is
acceptable.

For clean, efficient code, use the prewritten system-defined subprograms
and procedures defined specifically for your language whenever possible.
System-defined procedures (also called system routines) can be called from
any VAX language providing that language supports the data structure
required by the particular routine. The following types of system-defined
subprograms are allowed in FORTRAN:

• Run-Time Library and Utility routines—System-defined subprograms
that perform common system and utility operations, such as terminal
I/O (see the VAX/VMS Run-Time Library Routines Reference Manual and
the VAX/VMS Utility Routines Reference Manual).

1-1

Interunit Logic

• System services—System-defined subprograms that perform system
operations, such as defining error handlers (see Section 1.1.4 and the
VAX/VMS System Services Reference Manual).

• Intrinsic subprograms—FORTRAN-defined subprograms that perform
arithmetic, data type conversions, and character and bit manipulations
(see Section 1.1.3).

The Run-Time Library procedures, unlike the system service procedures,
usually use the FORTRAN default passing mechanisms. Therefore, when
a Run-Time Library procedure and a system service procedure perform the
same operation, the Run-Time Library procedure is generally preferred.

The following diagram shows a typical division of labor within a program.
The FORTRAN sample program INCOME reads statistics (GET_STATS),
compiles statistics (REPORT), and corrects statistics (FIX_STATS). Complex
operations in each of these top-level program units are factored out into
subprograms (GET_1_STAT). Some program units may use system-defined
procedures to perform utility functions, such as terminal I/O.

INCOME

_cz ; r v

GET-STATS REPORT FIX-STATS

i

GET_1 _STAT

~r 1 r

Other user and pre-defined subprograms

ZK-2022-84

1.1 Invoking Program Units

When you invoke an executable program from DCL command level,
execution begins with the first executable statement—the entry point—of
the main program. The main program's END statement terminates program
execution, unless the program ended prematurely due to a STOP, a fatal or
severe noncontinuable error, or another exception. If a program unit (the
main program or a subprogram) invokes a subprogram, program control is

1-2

Interunit Logic

transferred to the first executable statement of the specified subprogram.
When the subprogram reaches its END statement, the subprogram terminates
and program control returns to the invoking program unit at the statement
following the subprogram invocation. The following figure diagrams
program execution.

DCL command level is command level 0. Each time a program unit is
invoked, control drops one level and the command level is incremented
by one; when a program unit terminates, control returns one level and the
command level is decremented by one. Thus, the main program in the
following figure executes at command level one, the subprogram invoked by
the main program at command level two, and the subprogram invoked by
the first subprogram at command level three.

-Main Program-
Entry point

Invoke subprogram
Next statement

- Subprogram -
Entry point

END
Invoke subprogram -►
Next statement -

END

- Subprogram -
Entry point

END

ZK-2023-84

1.1.1 Subroutine

To invoke a subroutine in FORTRAN, use a CALL statement. You can pass
arguments to the subprogram by using an argument list or a common block
(Section 1.2 contains more detail). The following statement invokes the
subprogram GET_1_STAT using an argument list to pass three arguments.

CALL GET_i_STAT (LINE.NO,
2 COL.PERSONS.
2 PERSONS)

1-3

Interunit Logic

The following FORTRAN program unit is the subroutine GET_1_STAT
invoked in the previous example.

SUBROUTINE GET_1_STAT (LINE.NO, ! In

2 COLUMN.NO, ! In

2 STAT) ! Out

END ! Subroutine

1.1.2 Function

A FORTRAN procedure must be called as a function if it returns a function
value, or if it returns a condition value. A function provides the invoking
program unit with the value of a particular data type. To invoke a function,
use a function reference wherever you could use a value of the same data
type. A function reference consists of the function name followed by an
argument list. (The argument list allows FORTRAN to differentiate between
a function reference and a variable, therefore the argument list must be
specified even when no arguments are passed.) You can pass arguments
to the function by using the argument list or a common block (Section 1.2
contains more details).

During execution a function assigns a value to the function name; this is
the value provided to the invoking program unit. The data type of the
function name, which determines the data type of the function value, must
be specified in the function subprogram and the invoking program unit (the
data type must be the same in both places). In the function subprogram,
specify the data type as the first entity of the FUNCTION statement. In the
invoking program unit, specify the data type of the function by including the
function name in a type declaration statement. (If the invoking program unit
does not specify the function name in a type declaration statement, implicit
data typing applies; see Section 2.1.)

The following example shows the function reference used to invoke the
GET—QUADAREA function. The function value provided to the invoking
program by GET_QUADAREA is the area of the quadrangle (the value
AREA, which is assigned to the function name, contains the area of the
quadrangle).

REAL GET.QUADAREA,

2 QUADAREA,

2 SIDES (4),

2 ANGLES (4)

QUADAREA = GET.QUADAREA (SIDES,

2 ANGLES)

Interunit Logic

The following is the GET_QUADAREA function.

REAL FUNCTION GET.QUADAREA (SIDES, ! Passed
2 ANGLES) ! Passed

• Dummy arguments
REAL SIDES(4),
2 ANGLES(4)

REAL AREA

! Calculate area

! Assign AREA value to function name
GET_QUADAREA = AREA

END ! Function

1.1.3 Intrinsic Subprograms

Intrinsic subprograms are FORTRAN-defined subprograms (most of which
are functions) which perform arithmetic, data type conversions, and
character and bit manipulations. If a user-written subprogram and an
intrinsic subprogram have the same name, the user-written subprogram
takes precedence (provided that the invoking program unit declares it in an
EXTERNAL statement).

An intrinsic function does not have to be declared in a type statement. In
addition, implicit data typing (default or that specified by an IMPLICIT
statement) does not affect the data type of an intrinsic function.

Each intrinsic function may have a generic name, a specific name, or both.

• Specific—A specific name determines the data type of the subprogram's
arguments and function value (if any).

• Generic—A generic name allows the data type of the arguments to
determine which specific function should be executed.

Typically, when you invoke an intrinsic function, you use the generic name.
If you specify an intrinsic function as an argument, however, you must use
the specific name. (For details about generic names, see Programming in VAX
FORTRAN).

In the following example, the specific function JIABS (generic name ABS)
is executed twice. In the first call, since JIABS is executed, the argument
must be an INTEGER*4 value. In the second call, since the argument is an
INTEGER*4 value, JIABS is executed.

1-5

Interunit Logic

INTEGER*4 NUM,
2 RESULT

RESULT = JIABS (NUM)
RESULT = ABS (NUM)

1.1.4 System-Defined Procedures

System-defined subprograms include Run-Time Library procedures, system
service procedures, and utility procedures; for details see the VAX/VMS
Run-Time Library Routines Reference Manual, the VAX/VMS System Services
Reference Manual, and the VAX/VMS Utility Routines Reference Manual,
respectively. Each of these manuals lists the procedures in alphabetical
order, giving a detailed description of each, including arguments and return
codes.

Note

Generally in the VAX/VMS document set, system-defined
procedures are known as system routines. This manual refers
to VAX/VMS system routines as procedures, because that is the
term that most FORTRAN programmers are accustomed to.

In general, the system-defined procedures are named by a facility
abbreviation, followed by a dollar sign and a descriptive name.

LIB$ERASE_LINE Erases a line on the screen or in a buffer

SYS$SETEF Sets an event flag

The following table lists commonly used facility abbreviations.

CLI Command language editor procedures

DCX Data compression procedures

EDT Editor procedure

FDL File definition procedures

LIB General utility procedures

LBR Library procedures

MTH Math procedures

SMG Screen management procedures

SOR Sort and merge procedures

SYS System service procedures

Most system-defined procedures are written as functions where the function
value is the return status of the procedure (an INTEGER*4 value indicating

1-6

Interunit Logic

success or failure of the routine). To access the return status, you must
specify the procedure name as an INTEGER*4 data type and invoke the
procedure as a function. If you invoke a system-defined procedure with a
CALL statement, the procedure executes; however, you cannot examine the
return status to determine whether it executed successfully.

The following statement invokes the Run-Time Library procedure LIB$GET_
INPUT to read a line of input from the terminal screen.

INTEGERS STATUS,
2 LIB$ERASE_PAGE
CHARACTER*255 STRING
INTEGER*4 STRING.LEN

STATUS = LIB$GET_INPUT (STRING,
2 'Input a string: ',
2 STRING.LEN)

The possible return codes for a procedure are listed at the end of the
routine template for the procedure (for a complete description of the
routine template, see the Introduction to VAX/VMS System Routines). In
general, the return codes are system-defined global symbols named by the
facility abbreviation (see the previous table), followed by a dollar sign, an
underscore, and an abbreviation of the error message. (The system service
return codes use the facility abbreviation SS rather than SYS.)

LIB$_INVARG General utility: invalid argument

SS$_ACCVIO System service: access violation

A few of the Run-Time Library procedures return a function value that is not
a status code (for details, see the Introduction to VAX/VMS System Routines).
For example, the function value of Run-Time Library procedure LIB$LP_
LINES is the default number of lines on a line printer page.

A Run-Time Library procedure whose function value is not a return status
must be invoked as a function.

INTEGERS LENGTH.
2 LIB$LP_LINES

LENGTH = LIB$LP_LINES ()

1.2 Transfer of Data

Typically, to pass data between an invoking program unit and a subprogram
you use an argument list (in FORTRAN, you can also use a common block).

1-7

Interunit Logic

1.2.1 Argument Lists

An argument list, which consists of one or more variable names or values
separated by commas and delimited by parentheses, must be declared in two
places:

• Subprogram invocation statement—An argument list in a subprogram
invocation statement passes actual arguments to a subprogram. The
arguments in this list are known as actual arguments.

• Subprogram definition statement—An argument list in a subprogram
definition statement names the dummy arguments used in the
subprogram. The arguments in this list are known as dummy arguments.

When you invoke a subprogram, the actual arguments are associated with
the dummy arguments on a one-to-one basis. The first actual argument is
associated with the first dummy argument, the second actual argument with
the second dummy argument, and so on. Usually, when the subprogram
exits, each actual argument has the value of its corresponding dummy
argument. Since the actual arguments and dummy arguments are associated
on a one-to-one basis, they must agree in number, order, and data type.

• Actual arguments—Actual arguments can be variables, constants,
expressions, or subprogram names. Any actual argument whose
corresponding dummy argument is modified by the subprogram must be
a variable.

If you use a subprogram name as an actual argument, the subprogram
must be declared in an EXTERNAL or an INTRINSIC statement (as in
FORTRAN) to identify the subprogram name as a global symbol defined
in a different program unit. User- and system-defined subprograms are
declared in EXTERNAL statements; FORTRAN intrinsic subprograms are
declared in INTRINSIC statements. When using a FORTRAN intrinsic
function as an actual argument, you must use the specific name rather
than the generic name. (Typically, a subprogram does not have to be
declared EXTERNAL or INTRINSIC because FORTRAN assumes that a
name used in a CALL statement or function reference is a global symbol.)

• Dummy arguments—Dummy arguments are always variables. For
clarity, a dummy argument should have a name that reflects its contents.
(Mechanically, the names of actual and dummy arguments do not
matter.)

In the FORTRAN example below the subprogram GET_1_STAT has three
dummy arguments: LINE_NO, COLUMN_NO, and STAT. GET_1_STAT
uses LINE _NO and COLUMN_NO to position the cursor on the screen,
reads a value at that position, and assigns the value to STAT. When GET_
STATS invokes GET_1_STAT, it passes three actual arguments: LINE_NO,
COL—PERSONS, and PERSONS. The first two actual arguments can be

1-8

Interunit Logic

variables, expressions, or constants as long as each argument evaluates to an
integer. Since the third actual argument is modified by GET_1_STAT it must
be a variable.

GETSTATS.FOR

INTEGER*4 LINE.NO.

2 COL.PERSONS,

2 PERSONS

PARAMETER (COL.PERSONS = 12)

INTEGERS STATUS,

2 GET_1_STAT

EXTERNAL GET.l.STAT

STATUS = GET.l.STAT (LINE.NO,

2 COL.PERSONS,

2 PERSONS)

! Actual 1

! Actual 2

! Actual 3

GET1STAT.FOR

INTEGER FUNCTION GET.l.STAT (LINE.NO, ! Dummy 1

2 COLUMN.NO, ! Dummy 2
2 STAT) ! Dummy 3

! Declare dummy arguments

INTEGER*4 LINE.NO,

2 COLUMN.NO,

2 STAT

INTEGERS STATUS

GET.l.STAT = STATUS

END

Each time you invoke a subprogram, check the argument lists carefully. If
the actual arguments and the dummy arguments do not agree in number,
order, data type, or structure, the subprogram receives incorrect data. A
subprogram that receives incorrect data may execute without errors but
return incorrect results, or it may generate an error. (In the early stages of
program development, an access violation error may indicate disagreement
between actual and dummy arguments.)

1-9

Interunit Logic

1.2.2 Common Blocks

In FORTRAN, a COMMON statement associates a list of variables with a
contiguous area in memory called a common block. A program can have one
unnamed common block and 250 named common blocks. When different
program units refer to the same common block, they refer to the same area
of memory. The first program unit to refer to a common block defines it.

If the common block is a named common block, place the name in slashes
following the keyword COMMON. A common block name is a global
symbol that must be unique among global symbols used by the program
(subprogram names, other common block names, and so on). The following
FORTRAN statement defines a common block of four bytes named UIC.

INTEGER* *2 MEMBER.
2 GROUP
COMMON /UIC/ MEMBER.
2 GROUP

A variable should be specified in a data type declaration statement before
being used in a COMMON statement; otherwise, FORTRAN assigns the
variable an implicit data type. Since any program unit that references a
common block can modify the data, constants (including those defined in
PARAMETER statements) cannot be placed in a common block. In addition,
subprogram names cannot be placed in a common block.

Variables are allocated space in a common block (and so in memory)
according to their order in the COMMON block declaration. For example,
in the previous program segment, the INTEGER*2 variable MEMBER refers
to the low-order two bytes of the common block, the INTEGER*2 variable
GROUP refers to the high-order two bytes. A different program unit can
reference the data in the UIC common block as four bytes, two words (as
in the previous example), or one longword. Generally, however, program
units that reference the same common block should use variables that agree
in number, order, and data type.

1.2.2.1 Primary Uses

Typically, you use common blocks to share data between program units
when argument lists are unavailable or to share data between processes.

• Sharing data between program units—In cases where the VAX/VMS
system invokes a subprogram that you have written, the subprogram
is frequently invoked with no arguments or only one argument. To
pass additional data to your subprogram, use a common block. (By
using common blocks two subprograms can share data without either
subprogram having to invoke or be invoked by the other. Such transfers

1-10

Interunit Logic

of data make program maintenance difficult; if they cannot be avoided,
they should be very well documented.)

• Sharing data between processes—A common block used to share data
between processes must be installed as a shared shareable image; see
Section 3.4.3.

In the FORTRAN example below COUNTAL.FOR counts the alias
names associated with a library module by invoking the Run-Time
Library procedure LBR$SEARCH. LBR$SEARCH invokes the user-written
subprogram SEARCH to increment a counter each time it finds an alias
name.

When LBR$SEARCH invokes a user-written subprogram, it passes two actual
arguments, both of which contain values determined by LBR$SEARCH.
To pass your own data to the user-written subprogram, you must use a
common block. In this example, the common block SEARCH_VAR is used
to pass a counter between COUNTAL.FOR and the user-written subprogram
SEARCH

COUNTAL.FOR

! Declare status variable

INTEGER STATUS

! Declare library index

INTEGER INDEX,

2 GLOBAL.INDEX

PARAMETER (GLOBAL.INDEX = 2)

! Declare module arguments

CHARACTER*31 MODNAME !
INTEGER MODNAME.LEN, !

2 TXTRFA (2), !

2 COUNT !

! Declare common block

COMMON /SEARCH.VAR/ COUNT !

Name of module

Length of module name

RFA for module text

Counts alias names

The third variable
passed to SEARCH

! Search procedure

EXTERNAL SEARCH
INTEGER SEARCH

i-ii

Interunit Logic

! Begin code

! Search for alias names in index number 2

STATUS = LBR$SEARCH (INDEX, ! Library index
2 GLOBAL.INDEX, ! Primary index

2 TXTRFA, ! RFA of key

2 SEARCH) ! User procedure

TYPE *,'Count of alias names: COUNT

END ! Subprogram

SEARCH.FOR

INTEGER FUNCTION SEARCH (ALIASNAME,

2 RFA)

! Function called by LBR$SEARCH for each alias name

! counts the alias names

! LBR$SEARCH defined arguments

CHARACTER*(*) ALIASNAME

INTEGER RFA (2)

! Name of module

! RFA of module

! User-defined argument

COMMON /SEARCH.VAR/ COUNT

INTEGER STATUS.OK

PARAMETER (STATUS.OK = 1)

COUNT = COUNT + 1

SEARCH = STATUS.OK

END ! Function

! Update alias count

! Return good status to LBR$SEARCH

1.2.2.2 Initialization

When a FORTRAN common block must be initialized, best practice is to use
a BLOCK DATA subprogram. Any program unit that references a common
block can initialize the data in that common block; however, if more than one
program unit attempts to initialize the same common block the results are
unpredictable, depending on the order in which the program units are linked.
Mechanically, a common block initialized by a BLOCK DATA subprogram
is no different from a common block initialized in any other program unit.
However, by initializing all common blocks in BLOCK DATA subprograms,
you ensure that no two program units initialize the same common block.

A BLOCK DATA subprogram is a program unit beginning with a BLOCK
DATA statement and ending with an END statement. BLOCK DATA
subprograms may contain type declaration, PARAMETER, COMMON,
EQUIVALENCE, DATA, IMPLICIT, DIMENSION, SAVE, and RECORD
statements; they may not contain executable statements.

1-12

Interunit Logic

The following BLOCK DATA subprogram initializes a common block named
UIC. To access the UIC common block from another program unit, declare a
common block of the same name.

BLOCK DATA INIT_UIC
! Initializes the UIC common block with UIC [210,200]

INTEGERS MEMBER /'200'0/,
2 GROUP /1210'0/
COMMON /UIC/ MEMBER.
2 GROUP

END

1.3 Passing Control Information Among User Subprograms

Control information is information passed between program units to
determine internal processing, such as the sequence in which statements
are to be executed (execution sequence). In FORTRAN, flags, masks, and
indicative values can be used to pass control information between program
units.

Control variables used by more than one program unit should be treated on
a global basis (see Section 4.2.4).

1.3.1 Flags

A flag indicates one of two conditions. Use a variable of LOGICAL data type
to represent a flag. The following program segment uses the READ-ONLY
flag to determine which OPEN statement to execute.

SUBROUTINE 0PEN.FILE (FILENAME,
2 READ.0NLY)

! Declare dummy arguments
CHARACTER*(*) FILENAME
LOGICAL READ.0NLY

! Logical unit number for chapter file
INTEGER CHAP.LUN

IF (READ.0NLY) THEN
OPEN (UNIT = CHAP.LUN.

2 FILE = FILENAME,
2 READONLY,
2
ELSE

STATUS = 'OLD')

OPEN (UNIT = CHAP.LUN,
2 FILE = FILENAME,
2
END IF

STATUS = 'OLD')

END

1-13

Interunit Logic

1.3.2 Masks

A mask indicates one or more of a number of conditions. Use a longword
for the mask. Each bit in the longword represents a particular condition; if
a condition is met, the appropriate bit is set. For clarity, use the FORTRAN
PARAMETER statement to assign meaningful symbolic names to the bit
offsets.

In the following program segment, the QUALIFIER mask indicates which
qualifiers were specified on the command line. The conditional statement
ensures that the selected qualifiers are not mutually exclusive.

LOGICAL BTEST

! Mask

INTEGER*4 QUALIFIER

! Offsets

INTEGERS FORWARD,

2 BACKWARD,

2 GENERAL,

2 EXACT,

2 BEGIN,

2 END

PARAMETER (FORWARD = 1.
2 BACKWARD = 2,

2 GENERAL = 3.
2 EXACT = 4,

2 BEGIN = 5.
2 END = 6)

! Condition codes

EXTERNAL BAD.QUALIFIER

! /BEGIN and /END are mutally exclusive

! /GENERAL and /EXACT are mutally exclusive

IF ((BTEST (QUALIFIER,BEGIN) .AND. BTEST (QUALIFIER,END)) .OR.

2 (BTEST (QUALIFIER,GENERAL) .AND. BTEST (QUALIFIER,EXACT)))

2 CALL LIB$SIGNAL (7.VAL(*/.L0C(BAD_QUALIFIER)))

1-14

Interunit Logic

1.3.3 Indicative Values

An indicative value indicates exactly one of a number of conditions. Use
a variable of INTEGER data type to represent the indicative value and
integer constants to represent the possible conditions. For clarity, use the
FORTRAN PARAMETER statement to assign meaningful symbolic names
to the integer constants. The following program segment uses the indicative
value COMMAND to determine which program unit to execute.

! Command entered

INTEGER COMMAND

! Possible commands
INTEGER COMMAND.CHAPTER,

2 COMMAND.TC.
2 COMMAND.INDEX,

2 COMMAND.SEARCH
PARAMETER (COMMAND.CHAPTER = 1,

2 COMMAND.TC = 2,
2 COMMAND.INDEX = 3,

2 COMMAND.SEARCH = 4)

! Get a command

STATUS = GET.COMMAND (COMMAND)

! Perform commands until EXIT

DO WHILE (STATUS)

2

2
2

2
2

2

2

2

2

2

IF (COMMAND .EQ. COMMAND.CHAPTER)

STATUS = PERUSE.CHAPTER (BOOK.

CHAPTER.NO,

SECTION.NO,

BEGIN.TEXT,

END.TEXT)

IF (COMMAND .EQ. COMMAND.TC)
STATUS = PERUSE.TC (BOOK.

CHAPTER.NO,

SECTION.NO,

BEGIN.TEXT.

END.TEXT)

! Get another command

IF (STATUS) STATUS = GET.COMMAND (COMMAND)

END DO

1-15

Interunit Logic

1.4 Passing Variable-Length Data

An array or character string passed as an actual argument must have
a specified length. Dummy character strings and arrays may also be
declared using a specified length. However, since you may want to specify
different actual arguments each time you invoke a subprogram, passed-
length character strings, adjustable arrays, and assumed-size arrays allow
a subprogram to include arrays and character strings in type statements
without specifying their lengths.

Data storage for dummy character strings and arrays is allocated when the
dummy argument is given a value; the storage remains allocated for the
duration of the program. To conserve storage, you may want to use the
library routines LIB$GET_VM and LIB$FREE_VM (see Section 2.1.6) to
allocate and deallocate the storage used by the subprogram. Allocation and
deallocation of storage is also recommended for general utility routines since
you cannot anticipate the storage requirements of the invoking program.

1.4.1 Character Strings

A dummy argument declared as a passed-length character string can
be associated with any actual argument of data type CHARACTER. A
subprogram declares a passed-length character string by specifying the
length of the string as an asterisk enclosed in parentheses.

CHARACTER*(*) TITLE

The dummy CHARACTER argument assumes the length of the actual
CHARACTER argument. To avoid unwanted spaces at the end of the
character string in the subprogram, specify the actual argument as a
substring.

In the following example, the invoking program unit passes two substrings
to the subprogram REPORT.

1-16

Interunit Logic

CHARACTER*26 TITLE
CHARACTER*10 FIRM
INTEGER TITLE.LEN,
2 FIRM.LEN
INTEGER STATS (1020)

CALL REPORT (TITLE(1:TITLE_LEN),
2 FIRM(1:FIRM_LEN),
2 STATS)

The associated dummy arguments in REPORT are passed-length character

strings. (Since the dummy arguments are associated with substrings, no
substring specification is needed when REPORT passes the dummy argument

TITLE to the Run-Time Library procedure LIB$PUT_OUTPUT.)

SUBROUTINE REPORT (TITLE,
2 FIRM,
2 STATS)

CHARACTER*(*) TITLE,
2 FIRM
INTEGER STATS (1020)

! Write header
STATUS = LIB$PUT_OUTPUT (TITLE)

1.4.2 Arrays

To pass an array as an actual argument, specify the array name. The first
element of the actual array is associated with the first element of the dummy

array, the second element of the actual array with the second element of the
dummy array, and so on.

A dummy array argument can be associated with any actual array of the

same data type. Unless you have a specific reason for modifying an array,
the dimensions of the dummy array, with the possible exception of the

last dimension, should be the same as the dimensions of the actual array.
Because of the way arrays are stored (see Section 6.9.4), changing the
dimensions of an array affects the location of the array elements.

1-17

Interunit Logic

Typically, you declare a dummy array as an adjustable or assumed-size array.

• Adjustable array—Specify a dummy argument as an adjustable array
by using dummy arguments and common block variables of data

type INTEGER to dimension the array. (Expressions can be used as

dimensions, however, the expressions must consist only of dummy

arguments, common block variables, and constants.) In the following

example, the invoking program unit passes the two-dimensional array

NAME—LIST and its two dimensions ROWS and COLUMNS to the
subprogram SEARCH.

! Declare array and dimensions
CHARACTER*10 NAME.LIST (10,12)
INTEGERS ROWS /10/,
2 COLUMNS /12/

CHARACTER*10 NAME
INTEGER*4 NAME_LEN

CALL SEARCH
2
2
2
2

(NAME.LIST,
ROWS,
COLUMNS,
NAME,
NAME.LEN)

SEARCH declares the dummy array as an adjustable array.

SUBROUTINE SEARCH (ARRAY,
2 ROWS.
2 COLUMNS,
2 KEYWORD.
2 KEYWORD.LEN)
! Find KEYWORD in ARRAY

! Argument declarations
CHARACTER*10 ARRAY (ROWS.COLUMNS)
INTEGER*4 LENGTH

CHARACTER*10 KEYWORD
INTEGER*4 KEYWORD.LEN

END ! Subroutine SEARCH

• Assumed-size array—Specify a dummy argument as an assumed-sized
array by specifying the last dimension of the array as an asterisk. If the
dummy array is multidimensional, all dimensions (with the exception of

the last) should be the same as those of the actual array. In the following
example, the invoking program unit passes the array NAME—LIST and
the position of the last element in NAME—LIST to SEARCH.

1-18

Interunit Logic

! Declare array

CHARACTER*10 NAME_LIST (12)

INTEGER*4 LAST

CHARACTER*10 NAME,

INTEGER*4 NAME.LEN

! Invoke SEARCH

CALL SEARCH (NAME.LIST,

2 LAST,

2 NAME,

2 NAME.LEN)

SEARCH declares the dummy array as an assumed-size array and uses
the position of the last element to avoid referencing an out-of-bounds
array element.

SUBROUTINE SEARCH (ARRAY,

2 LAST,
2 KEYWORD,

2 KEYWORD.LEN)

! Find KEYWORD in ARRAY

! Dummy arguments

CHARACTER*10 ARRAY (*)

INTEGER*4 LAST

CHARACTER*10 KEYWORD

INTEGER*4 KEYWORD.LEN

END ! Subroutine SEARCH

Adjustable and assumed-size array notations are not mutually exclusive.
In the following example, the subprogram SEARCH declares the dummy
array using dummy arguments for the first two dimensions (adjustable array
notation) and an asterisk for the third dimension (assumed-size notation).

1-19

Interunit Logic

SUBROUTINE SEARCH (ARRAY,
2
2
2
2

ROWS,
COLUMNS,
KEYWORD,
KEYWORD.LEN)

! Find KEYWORD in ARRAY

! Argument declarations
CHARACTER*10 ARRAY (ROWS,COLUMNS,*)
INTEGER*4 LENGTH

CHARACTER*10 KEYWORD
INTEGER*4 KEYWORD.LEN

END ! Subroutine SEARCH

Declaring an assumed-sized array generally takes less overhead than
declaring an adjustable array; therefore, assumed-sized arrays are often
used for one-dimensional arrays. However, since a subprogram cannot
compute the length of an assumed-size array, you must use adjustable arrays
under the following circumstances:

• You want to reference the entire dummy array by including its name in
an I/O list.

• You want to enable bounds checking for the dummy array (FORTRAN
/CHECKHBOUNDS).

1.5 Passing Arguments to System-Defined Procedures

The VAX/VMS documentation for each system procedure describes
the arguments that must be, or can be, passed to the procedure. It is
recommended that you omit any optional argument that is unnecessary
or that you want equated to its default value. Include commas to indicate
that an argument has been omitted. If you are using a Run-Time Library or
Utility procedure, you can omit trailing commas; if you are using a system
service procedure, you cannot.

Note

When you omit an optional argument, FORTRAN uses the
by-value passing mechanism to pass a value of 0 in place of
the omitted argument . If the argument would normally have
been passed by reference or passed by descriptor, the 0 value
FORTRAN passes generally indicates to the system-defined
procedure that it should use a default value (if one exists). If the
argument would normally be passed by value, the system-defined
procedure uses the 0 value rather than any existing default value.
Other programming languages may not pass or receive arguments

1-20

Interunit Logic

in the same way as FORTRAN does. Therefore, check the default
values for your programming language.

Each argument description in the VAX/VMS System Routines Reference Volume
indicates the VMS usage, access method, data type, passing mechanism,
and value of the argument. For an explanation of how this information is
conveyed, see the Introduction to VAX/VMS System Routines. If the system-
defined procedure reads data from the argument, the actual argument can be
a variable, constant, or expression. If the system-defined procedure writes
data to the argument, the actual argument must be a variable.

The procedure descriptions are not FORTRAN specific; therefore, the
argument data types are indicated by size. The following table matches
the size terminology used in the descriptions with the FORTRAN data types.
If you pass an argument of the wrong type, no message reports the error;
however, the procedure receives incorrect data and an error may occur when
you execute the program.

Size FORTRAN Data Type

Byte BYTE, LOGICAL* 1

Word INTEGER*2, LOGICAL*2

Longword INTEGER*4, LOGICAL*4, REAL*4

Quadword REAL*8, COMPLEX*8

Character string CHARACTER1

Routine name subprogram name2

Variable-length data structure RECORD

1 Since many of the procedures do not allow trailing blanks, you should specify a

substring.

2A subprogram name that is passed as an argument must be declared in an
EXTERNAL or INTRINSIC statement.

1-21

Interunit Logic

1.5.1 Mechanics of Passing Arguments

Arguments are passed in one of three ways:

• By reference—The address of the argument is passed in a longword.

ZK-2024-84

• By descriptor—The address of the argument's descriptor is passed in a
longword. The format of the descriptor depends on the data type of the
argument and may be two or more longwords.

ZK-2025-84

• By value—The value of the argument is passed in a longword; the value
must be a 32-bit value.

value arg

ZK-2026-84

The following table lists the FORTRAN built-in functions that allow you to
specify a particular passing mechanism. Typically, you use these functions
only to override the default passing mechanisms.

1-22

Interunit Logic

Function Passing mechanism

%REF Passes the argument list entry by reference.

%DESCR Passes the argument list entry by descriptor.

%VAL Passes the argument list entry by value. If the actual argument is
shorter than 32 bits, it is sign extended to a 32-bit field.1

1_ro sign extend a value, the high-order bits of the longer field are set to the sign
bit of the shorter value.

The passing mechanisms used by the subprogram and the invoking program
unit must agree. By default, FORTRAN passes logical and numeric data
by reference and character data by descriptor. These default passing
mechanisms always apply when you pass arguments between FORTRAN
program units; however, other languages may not use these particular
default passing mechanisms. When you pass arguments to system-defined
procedures, some exceptions to the default passing mechanisms occur.

The most frequent exception to the default passing mechanisms occurs
when a system-defined procedure requires that an argument be passed by
value. For example, the system service procedure SYS$CLREF requires one
argument; that argument must be passed by value.

INTEGER+4 EV.FLAG

! Declare status and system procedures
INTEGER*4 STATUS,
2 SYS$CLREF

STATUS = SYS$CLREF ('/,VAL(EV_FLAG))

1.5.2 Aligning Data

In rare cases, a system-defined procedure requires that an argument be
aligned. That is, the data in memory must begin on a byte, word, longword,
quadword, or page boundary (the routine description specifies what type of
alignment is required). To align data:

1 Place the data in a common block.

2 Create an options file containing a PSECT_ATTR link option of the form

PSECT_ATTR = name, alignment

Specify name as the name of the common block that contains the data.
Specify alignment as one of the following keywords: BYTE, WORD,
LONG, QUAD, or PAGE.

3 Link the options file with your program.

1-23

Interunit Logic

Assuming that the program in SECTIONS.OBJ contains a common block
named GLOBAL—SECTION, the following command page aligns the data in
that common block.

$ LINK SECTIONS.PAGE.ALIGN.OPT/OPTION

The options file, PAGE—ALIGN.OPT, contains the PSECT—ATTR link option.

PSECT.ATTR = GLOBAL.SECTION, PAGE

1.5.3 Passing Bytes

To pass the address of a byte size argument to a system-defined procedure
(that is, to pass a byte value by reference), declare the actual argument as

a byte value. In the following example, LIB$DEC_OVER uses the value in
the BYTE variable OVERFLOW to determine whether to enable or disable
decimal overflow detection.

! Argument for LIB$DEC_OVER
BYTE OVERFLOW /l/
INTEGER OLD.OVERFLOW

OLD.OVERFLOW = LIB$DEC_OVER (OVERFLOW)

1.5.4 Passing Words

To pass the address of a word size argument to a system-defined procedure
(that is, to pass a word value by reference), specify the actual argument as

a 2-byte integer value. In the following example, LIB$GET_INPUT reads
information from the terminal and returns the number of characters read in
the INTEGER*2 variable AGE— LEN.

! Arguments for LIB$GET_INPUT
CHARACTER*3 AGE
INTEGERS AGE.LEN

! Declare status and system procedures
INTEGERS STATUS.
2 LIB$GET_INPUT

STATUS = LIB$GET_INPUT (AGE.
2 'Enter age: ',
2 AGE.LEN)

String read
Prompt
Length of AGE

1.5.5 Passing Longwords

To pass the address of a longword size argument to a system-defined
procedure (that is, to pass a longword value by reference), specify the actual

argument as a 4-byte integer value. In the following example, SYS$SUSPND

1—24

Interunit Logic

suspends the process whose process identification number is specified by the
INTEGERS variable PID.

! Argument for SYS$SUSPND
INTEGER PID

! Declare status and system procedures
INTEGERS STATUS.
2 SYS$SUSPND

STATUS = SYS$SUSPND (PID.)

System-defined procedures may require that you specify values for bits,

bytes, or words within a longword argument. The following subsections

describe how to specify elements within a longword.

1.5.5.1 Specifying Byte and Word Values

To specify byte or word values within a longword, define the longword as

a record (or an array). The elements of the longword must be specified in a

record (or an array) to ensure that they are stored contiguously in memory.

The first byte or word field is the low-order byte or word of the longword;

the last byte or word field is the high-order byte or word of the longword.

The following program segment passes a UIC of [210,200] to SYS$CREPRC.
You cannot pass a RECORD by value; therefore, a UNION is used to create
a longword field that can be passed by value.

STRUCTURE /UIC/
UNION

MAP
INTEGER*2 MEMBER /'200'0/
INTEGER*2 GROUP /'210'0/

END MAP
MAP

INTEGER*4 NUMBER
END MAP

END UNION
END STRUCTURE

RECORD /UIC/ MY.UIC
INTEGER*4 STATUS.
2 SYS$CREPRC

STATUS = SYSICREPRC (.
2 'SYS$USER:[ACCOUNT]ADDEND'.

2
2 */.VAL(4).
2 '/.VAL (MY.UIC. NUMBER) . .)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

1-25

Interunit Logic

1.5.5.2 Setting Bits

If a system-defined procedure requires that a longword contain a mask,
certain bits in the longword carry special meaning for the procedure. To set
bits in a mask, use one of the following techniques:

1 Equate the longword to a system-defined mask value

2 Set the appropriate bit(s) within the longword (the intrinsic function
IBSET sets a bit)

Typically, the description of a mask argument lists the system-defined
symbols associated with each bit offset. For example, the flags argument
description of the SYS$CRMPSC system service includes the following
table:

Flag Description

SEC$M_GBL

SEC$M_CRF

SEC$M_DZRO

Pages form a global section. Default is private section.

Pages are copy-on-reference. By default, pages are shared.

Pages are demand-zero pages. By default, they are not.

SEC$M_WRT Pages form a read/write section. By default, pages form a
read-only section.

Generally, two sets of symbols are associated with each bit: a $V form that
represents the bit offset and a $M form that defines a mask value for the
bit offset. For example, to reference the bit offset for the flags argument of
SYS$CRMPSC, use the prefix SEC$V rather than SEC$M. The symbols for
bit offsets are defined in the same module as the symbols for mask values.

To create pages for read and write using the $M mask value, use SEC$M_
WRT as the mask value; all bits except SEC$V_WRT are set to 0. (The SEC$
symbols are defined in module $SECDEF of the system object or shareable
image library, and also of the FORTRAN system definition library; see
Sections 4.2.4 and 4.2.5.)

1-26

Interunit Logic

INCLUDE '($SECDEF)•

STATUS = SYS$CRMPSC (ADDR,

2
2

2

2

2

2

RET.ADDR,

*/,VAL(SEC$M_WRT) , ! Mask

'/,VAL(CHAN) ,

...)

To create copy-on-reference pages for read and write access, use the logical
.OR. operator to combine the values of SEC$M_CRF and SEC$M_WRT; all
bits except SEC$V_CRF and SEC$V_WRT are set to 0. (The MASK variable
in the following example is used for clarity; you could pass the logical
expression.)

INCLUDE '($SECDEF)1

INTEGER*4 MASK /0/

MASK = SEC$M_CRF .OR. SEC$M_WRT

STATUS = SYS$CRMPSC (ADDR,

2 RET.ADDR,

2

2

2

2

2

•/.VAL(MASK) . ! Mask

'/.VAL(CHAN) .

...)

To use the $M mask values without zeroing all other bits in the mask, use
the logical .OR. operator to combine the current mask value with the new
mask value.

INCLUDE '($SECDEF)'

INTEGER MASK

MASK = SEC$M_WRT

MASK = MASK .OR. SEC$M_CRF

To create copy-on-reference pages for read and write access using the $V
bit offsets, set the SEC$V_CRF and the SEC$V_WRT bits as shown in the
following example.

INCLUDE 1($SECDEF)1

INTEGER MASK /0/

MASK = IBSET (MASK.SEC$V_CRF)

MASK = IBSET (MASK,SEC$V_WRT)
STATUS = SYS$CRMPSC (ADDR,
2 RET.ADDR,

2

2

2

2
2

%VAL(MASK), ! Mask

•/.VAL(CHAN) .

...)

1—27

Interunit Logic

1.5.6 Passing Quadwords

To pass the address of a quadword size argument to a system-defined
procedure (that is, to pass a quadword value by reference), specify either a
two-element INTEGER*4 array or a record. The elements of a quadword
must be specified in an array or record to ensure that they are stored
contiguously in memory. In the following example, SYS$BINTIM converts
the specified absolute time into binary time and returns the binary time as a
quadword value.

! Absolute time
CHARACTER*(*) TIME.STR
PARAMETER (TIME.STR = '23-JAN-1983 14:30:22.00')

! Binary time
INTEGER*4 TIME(2)

! Declare system procedures
INTEGER*4 SYS$BINTIM

STATUS = SYSIBINTIM (TIME.STR,
2 TIME)

System-defined procedures may require that you specify values for bits,
bytes, words, or longwords within a quadword argument. The following
subsections describe how to specify elements within a quadword.

1.5.6.1 Specifying Byte, Word, and Longword Values

To specify byte, word, or longword values within a quadword, define the
quadword as a record. The elements of a quadword must be specified in a
record (or an array) to ensure that they are stored contiguously in memory.
The first byte, word, or longword field is the low-order byte, word, or
longword of the quadword; the last byte, word, or longword field is the
high-order byte, word, or longword of the quadword.

The iosb argument of SYSSGETJPI requires a quadword containing two
words followed by a longword: the low-order word contains the final status,
the second word is undefined, and the longword contains a value of 0.
(%FILL is a pseudofield name defined by FORTRAN; see Section 6.10.1.1.)

1-28

Interunit Logic

! Status variable and routine

INTEGERS STATUS,

2 SYS$GETJPI

! I/O status block for $GETJPI

STRUCTURE /IOSB/

INTEGER*2 STATUS.

2 ‘/.FILL

INTEGERS ZERO /0/

END STRUCTURE

RECORD /IOSB/ JPI.IOSB

STATUS = SYS$GETJPI (.,,

2 JPI.LIST, ! List

2 JPI.IOSB,,) ! Status

In another case, the ident argument of the SYS$CRMPSC system service
requires a quadword in the format:

match criterion

major id minor id

ZK-2027-84

Specify the quadword as a record containing a longword for the match
criterion, followed by a union containing two MAP structures: a longword
for the minor ID and a four-element BYTE array for the major ID. Assign
the match criterion to the first field, CRITERION. (Match criteria values
are defined by the global symbols SECK_MATALL, SECK_MATEQU,
and SEC$K_MATLEQ, that are defined in $SECDEF.) Assign the minor ID
value to the first MAP structure of the second field, MINOR_ID. Assign
the major ID value to the fourth element of the BYTE array, MAJOR—JD
(4), in the second MAP structure of the second field. (The minor ID value
must be assigned first; otherwise, the high-order byte of minor id value will
overwrite major id.)

1-29

Interunit Logic

! Declare ident structure

STRUCTURE /MATCH/

INTEGER*4 CRITERION

UNION

MAP

INTEGER*4 MINOR.ID

END MAP

MAP

BYTE MAJ0R_ID(4)

END MAP

END UNION

END STRUCTURE

! Define ident record

RECORD /MATCH/ DATA.ID

! Define symbols for match criteria

INCLUDE '($SECDEF)'

! Status variable and routine

INTEGER*4 STATUS.

2 SYS$CRMPSC

! Assign values to ident record

DATA.ID.CRITERION = SEC$K_MATEQU

DATA_ID.MIN0R_ID = 100

DATA.ID.MAJOR.ID(4) = 1

! Map section

STATUS = SYS$CRMPSC (IN.ADDR,
2 OUT.ADDR,

2

2

2

2

2

2

2

'/.VAL(SEC$M_GBL .OR. SEC$M_WRT) ,

'GLOBAL.SEC',
DATA.ID,

•/.VAL (CHAN) ,

...)
IF (.NOT. STATUS) CALL L IB$SIGNAL(*/.VAL(STATUS))

1.5.6.2 Setting Bits

To specify a quadword mask, define the quadword as a two-element
INTEGER*4 array. Bit positions for a quadword mask range from 0 to
63: bit positions 0 through 31 are in the low-order longword; positions 32
through 63 are in the high-order longword. Use IBSET to set a bit in either
longword; see Section 1.5.5.2.

The following program segment grants the user DETACH and SYSNAM
privileges for the duration of image execution. Specifying the first argument
of SYS$SETPRV as 1 enables the privileges specified by PRIV_MASK.
Dividing the bit position by 32 determines whether the bit should be set in

1-30

Interunit Logic

the low-order or high-order longword; a value of 0 indicates the low-order
longword. (Note that the array subscripts are 0 and 1.) The remainder
resulting from the division operation indicates the bit offset. (The global
symbols that define the bit offsets are defined in the $PRVDEF module of the
FORTRAN system definition library; see Section 4.2.5.)

! Include the privilege symbol definitions

INCLUDE '($PRVDEF)'

! Privilege mask

INTEGERS PRIV.MASK (0:1),

2 ISUB,

2 IPOS

! Intrinsic function

INTRINSIC MOD

! Status variable and system services

INTEGERS STATUS,

2 SYS$SETPRV

ISUB = PRV$V_DETACH/32

IPOS = MOD (PRV$V_DETACH,32)

PRIV.MASK (ISUB) = IBSET (PRIV.MASK(ISUB), IPOS)

ISUB = PRV$V_SYSNAM/32

IPOS = MOD (PRV$V_SYSNAM,32)

PRIV.MASK (ISUB) = IBSET (PRIV.MASK(ISUB), IPOS)

STATUS = SYS$SETPRV C/.VAL(1) , ! Enable privs

2 PRIV.MASK, ! Privs

2 . .)

1.5.7 Passing Variable-Length Data Structures

To pass a variable-length data structure to a system-defined procedure,
specify a record. The VAX/VMS system routines documentation generally
describes variable-length data structures with a diagram of the structure,
followed by a description of each element in the structure. The elements are
described in order from right to left, beginning with the first longword of the
structure. This is the order in which the elements must be stored in memory
and, consequently, the order of the fields in the record.

To pass a variable-length data structure for the itmlst argument to
SYS$GETJPI:

1 Define itmlst record structure—Each record contains either the four fields
pictured in the itmlst description or a single longword to end the list of
item codes. The following program segment defines a record structure
that alternately contains four fields or one field.

1-31

Interunit Logic

! Define itmlst structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGERS BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR

END MAP
MAP

INTEGER*4 END.LIST
END MAP

END UNION
END STRUCTURE

A UNION block within a STRUCTURE block may contain one or more
MAP blocks. When the fields within one MAP block are defined, the
fields within other MAP blocks are undefined. (Section 6.10 discusses
records.)

2 Declare itmlst variable—Decide what information you require. Declare a
RECORD array containing one element for each item code, plus an extra
element for the end-of-list item. The following statement declares an
ITMLST RECORD array for two item codes.

RECORD /ITMLST/ JPI.LIST (3)

3 Declare information buffers—For each item code, define two variables
as buffers: a buffer to contain the information returned by SYS$GETJPI
and a buffer to contain the length in bytes of the returned information.
The following program segment declares buffers for the item codes JPI$_
PRCNAM (process name) and JPI$_PRI (process priority).

! Declare buffers for information
CHARACTER*15 NAME
INTEGER*4 PRIORITY
INTEGER*2 NAME.LEN,
2 PRIORITY.LEN

4 Assign field values—For each item code, assign values to the appropriate
fields of an array element as described in following paragraphs. The
following examples assign values to the first element of JPI_LIST, which
is for the JPI$_PRCNAM item code. (You would assign values to the
second element of JPI_LIST in the same way as for the JPI$_PRI item
code.)

Assign the BUFLEN field the length in bytes of the buffer for the
requested information.

JPI_LIST(1).BUFLEN = 15

1—32

Interunit Logic

Assign the CODE field the value of the item code. (The request codes
for SYS$GETJPI are defined in the $JPIDEF module of the system object
or shareable image library, and also of the FORTRAN system definition
library; see Sections 4.2.4 and 4.2.5.)

! Definitions of SYS$GETJPI item codes

INCLUDE '($JPIDEF)'

JPI_LIST(1).CODE = JPI$_PRCNAM

Assign the BUFADR field the address of the buffer for the requested
information. (The %LOC built-in function returns the address of the
specified variable.)

JPI_LIST(1) .BUFADR = y.LOC(NAME)

Assign the RETLENADR field the address of the buffer for the length
of the requested information. (The %LOC built-in function returns the
address of the specified variable.)

JPI_LIST(1) .RETLENADR = '/.LOC(NAME_LEN)

5 End the list of item codes—Assign the END_LIST field of the last array
element a value of 0.

JPI_LIST(3).END.LIST = 0

The following program invokes SYS$GETJPI to print the name (JPI$_
PRCNAM) and priority (JPI$_JPRI) of the current process.

PROGRAM GETJPI

! Displays the name and priority of the current process

! Include the request codes

INCLUDE 1($JPIDEF)'

! Define itmlst structure

STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE

INTEGER*4 BUFADR

INTEGER*4 RETLENADR
END MAP

MAP
INTEGER*4 END.LIST

END MAP

END UNION

END STRUCTURE

1-33

Interunit Logic

! Declare GETJPI itmlst

RECORD /ITMLST/ JPI_LIST(3)

! Declare buffers for information

CHARACTER*15 NAME
INTEGER*4 PRIORITY

INTEGER*4 NAME.LEN,

2 PRIORITY.LEN

! Declare status and routine

INTEGER*4 STATUS,

2 SYS$GETJPI

! Set up itmlst

JPI.LIST(l).BUFLEN =

JPI.LIST(l).CODE =

JPI.LIST(l).BUFADR =

JPI.LIST(1).RETLENADR =

JPI.LIST(2).BUFLEN =

JPI.LIST(2).CODE =

JPI.LIST(2).BUFADR =

JPI.LIST(2).RETLENADR =

JPI.LIST(3).END.LIST =

! Call SYS$GETJPI

STATUS = SYS$GETJPI (,,.JPI.LIST,,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/,VAL(STATUS))

15

JPI$_PRCNAM

•/.LOC(NAME)

*/.L0C(NAME.LEN)

4

JPI$_PRI

•/.LOC (PRIORITY)

•/.LOC (PRIORITY.LEN)

0

! Display information

TYPE *,'NAME: ',NAME(1:NAME.LEN)

TYPE *,'PRIORITY: '.PRIORITY

END

1.6 Reading Information Returned from System-Defined
Procedures

Typically, to use information returned by a system-defined procedure,
you reference the actual argument that contains the information after the
system-defined procedure executes. However, if the procedure returns the
information as a mask, address, or a buffer containing multiple pieces of
information, you must extract the data from the actual argument before it is
useful.

1-34

Interunit Logic

1.6.1 Masks

To extract information from a mask, use the intrinsic function BTEST to test
whether or not a particular bit is set. The following program segment uses
the SYS$READEF system service to read local event flag cluster 1, and then
determines whether flags 2, 3, and 4 are set. Since flag 2 is passed to the
system service, the return status is used to determine whether that flag is set.

INCLUDE '($SSDEF)' ! Defines SS$_ return codes

INTEGERS FLAG2,

2 FLAG3.

2 FLAG4.

2 CLUSTER

PARAMETER (FLAG2 = 2,

2 FLAG3 = 3.

2 FLAG4 = 4)

! Examine local event flag cluster

STATUS = SYS$READEF (FLAG2,

2 CLUSTER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

IF (STATUS .EQ. SS$_WASSET) THEN

. ! FLAG2 is set

IF (BTEST (CLUSTER.FLAG3)) THEN

. ! FLAG3 is set

IF (BTEST (CLUSTER.FLAG4)) THEN

! FLAG4 is set

The intrinsic function BTEST, unlike the other intrinsic bit functions, is not
restricted to words and longwords. In the following example, the privilege
mask of the current process is examined to determine whether or not the
process has the SETPRV privilege.

INCLUDE '(IJPIDEF)' ! Defines JPI$_ request codes

INCLUDE '($PRVDEF)' ! Defines PRV$_ privilege codes

INCLUDE '($SSDEF)' ! Defines SS$_ return codes

INTEGER*4 PRIV.MASK (2)

! Declare system procedure

INTEGER*4 LIB$GETJPI

STATUS = LIB$GETJPI (JPI$_CURPRIV.

2
2 PRIV.MASK,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

! Signal if SETPRV is not enabled
IF (.NOT. (BTEST (PRIV.MASK(1),PRV$V_SETPRV)))

2 CALL LIB$SIGNAL (7.VAL(SS$_N0PRIV))

1-35

Interunit Logic

1.6.2 Addresses

The following data types are valid in FORTRAN: byte, character, numeric,
and logical data. However, in FORTRAN, a piece of data cannot be
expressed as an address (other languages do understand this data type).
Since system-defined procedures are not written exclusively for FORTRAN, a
number of procedures return the address of data rather than the data itself.
The steps for accessing data from an address differ depending on whether
you have numeric or character data.

1.6.2.1 Numeric Data

Given an address, use the following steps to access numeric data at that
address.

1 Use the by value passing mechanism to pass the address to a
subprogram.

2 In the subprogram, declare the dummy argument associated with the
address as a numeric variable of the required size.

3 Reference the dummy argument to access the data.

1.6.2.2 Character Data

Given an address, use the following steps to access character data at that
address.

1 Create a descriptor of the form

31_0

number of characters

address

ZK-2029-84

2 Use the by reference passing mechanism (the default) to pass the
descriptor to a subprogram.

3 In the subprogram, declare the dummy argument associated with the
descriptor as a character variable of the required size or as a passed-
length character string.

4 Reference the dummy argument to access the data.

1-36

Interunit Logic

In the following FORTRAN example, SORTING.FOR sorts a file and then
uses the SOR$STAT routine to determine what version of the Sort Utility
was used. SOR$STAT returns the address of a counted character string
containing the version number, SORTING.FOR passes that address to GET-
VERSION, and GET—VERSION can then access the counted string containing
the version number. (The first byte of a counted character string contains the
number of characters in the string.)

SORTING.FOR

CHARACTER*256

2

INTEGER*4

2

FILENAME.IN,
FILENAME.OUT

FN_SIZE_IN,
FN_SIZE_OUT

! To get version number

INTEGER*4 IDENT,

2 , VERSION(2)

CHARACTER*10 V.STRING
EXTERNAL S0R$K_IDENT

! SORT key information

INTEGER*2 KEY.BUFFER(5)

! Declare status and system routines

INTEGER STATUS,

2 S0R$INIT_S0RT,

2 S0R$PASS_FILES,

2 S0R$BEGIN_S0RT,
2 S0R$S0RT_MERGE,

2 S0R$END_S0RT,

2 S0R$STAT

! Pass files to SORT
STATUS = S0R$PASS_FILES (FILENAME.IN (1:FN.SIZE.IN),
2 FILENAME.OUT (1:FN.SIZE.OUT))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Give SORT key information
STATUS = S0R$BEGIN_S0RT (KEY.BUFFER)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Start sorting
STATUS = S0R$S0RT_MERGE ()
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

1-37

Interunit Logic

! Get SORT version

STATUS = SOR$STAT C/.LOC(SOR$K_IDENT) .

2 IDENT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Create a descriptor and pass it to GET_VERSION

VERSION(l) = 12

VERSION(2) = IDENT

CALL GET.VERSION (VERSION,

2 V.STRING)

! End SORT

STATUS = SORlEND.SORT ()

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

GET_VERSION.FOR

SUBROUTINE GET.VERSION (VERSION,

2 V.STRING)

! Dummy arguments

CHARACTER*(*) VERSION,

2 V.STRING

! VERSION length

INTEGER*4 LENGTH

! Intrinsic routine

INTRINSIC ICHAR

LENGTH = ICHAR (VERSION(1:1))

V.STRING = 'Sorted using version '

2 //VERSION (2:LENGTH)//' of SORT'

END

1.6.3 Buffers

In cases where many pieces of information are returned in a single buffer,
define the buffer variable as a record; each field within the record contains
one piece of information.

The system service SYS$CREPRC creates a process and, optionally, writes a
message to a mailbox when the created process is deleted. The termination
message is a buffer containing various pieces of information about the
deleted process. To read the information from the message, make the
message variable a record with separate fields for each piece of information.
Since you must read the message from the mailbox using formatted I/O, it is
easiest to create a record that is alternately defined as a character string or a
sequence of fields. You can read the message into the character string field,
and then use the other field definitions to reference the information.

1-38

Interunit Logic

STRUCTURE /TERM.MESSAGE/

UNION

MAP

INTEGER*2 MSGTYP,

2 MSGSIZ

INTEGERS FINALSTS,

2 PID,

2 JOBID,

2 TERMTIME(2)

CHARACTER*8 ACCOUNT

CHARACTER*12 USERNAME

INTEGER*4 CPUTIM,

2 PAGEFLTS,

2 PFGLPEAK,

2 WSPEAK,

2 BIOCNT,

2 DIOCNT,

2 VOLUMES,

2 LOGIN(2),

2 OWNER

END MAP

MAP
CHARACTER*84 MESSAGE

END MAP

END UNION

END STRUCTURE

The following FORTRAN program creates a process, reads the termination
message when the created process is deleted, and displays a line of
information about the deleted process.

1-39

Interunit Logic

! Status variable

INTEGER STATUS,

2 SYSSCREMBX,

2 SYS$GETDVIW,

2 SYSICREPRC,

2 SYS$ASCTIM

! Define termination buffer

STRUCTURE /TERM.MESSAGE/

UNION

MAP

INTEGER*2 MSGTYP,

2 MSGSIZ

INTEGER*4 FINALSTS,

2 PID,

2 JOBID,

2 TERMTIME(2)

CHARACTER*8 ACCOUNT

CHARACTER*12 USERNAME

INTEGER*4 CPUTIM,

2 PAGEFLTS.

2 PFGLPEAK,

2 WSPEAK,

2 BIOCNT,

2 DIOCNT,

2 VOLUMES.
2 L0GIN(2),

2 OWNER

END MAP

MAP

CHARACTER+84 MESSAGE

END MAP

END UNION

END STRUCTURE

RECORD /TERM.MESSAGE/ TERMINATION

! String for termination time

CHARACTER*24 TERM.STRING

INTEGER+4 TERM.LEN

1-40

Interunit Logic

! Declare itmlst for $GETDVI

STRUCTURE /ITMLST/

UNION

MAP

INTEGERS BUFLEN

INTEGER*2 CODE

INTEGER+4 BUFADR

INTEGER*4 RETLENADR

END MAP

MAP

INTEGER+4 END.LIST

END MAP

END UNION

END STRUCTURE

RECORD /ITMLST/ DVI_LIST(2)

! Buffers for $GETDVI

INTEGER*4 UNIT,

2 UNIT.LEN

! Item code for $DVIDEF

EXTERNAL DVI$_UNIT

! Channel for termination mailbox

INTEGERS MBX.CHAN

! Create mailbox

STATUS = SYS$CREMBX (,

2 MBX.CHAN,

2
2 'MBX.NAME')

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

! Get mailbox unit number

! Set up for $GETDVI

DVI.LIST(l).BUFLEN = 4

DVI.LIST(l) .CODE = 7.L0C(DVI$_UNIT)

DVI.LIST(l) .BUFADR = 7.L0C(UNIT)

DVI.LIST(l) .RETLENADR = 7.L0C(UNIT.LEN)

DVI_LIST(2).END.LIST = 0

! Call $GETDVI

STATUS = SYS$GETDVIW (.

2
2

2

2

IF

7.VAL(MBX.CHAN) ,

DVI.LIST,

...)
(.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

! Create process, passing mailbox unit number

STATUS = SYS$CREPRC (,

2 'SYS$USER:[ACCOUNT]ADDEND',

2 .
2 7.VAL(4) , ,
2 7.VAL(UNIT) ,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

! Read termination mailbox

OPEN (UNIT = 2,
2 FILE = 'MBX.NAME',
2 CARRIAGECONTROL = 'LIST',

2 STATUS = 'NEW')

READ (UNIT=2,
2 FMT = '(A)') TERMINATION.MESSAGE

1-41

Interunit Logic

! Convert termination time to ASCII

STATUS = SYS$ASCTIM (TERM.LEN,

2 TERM.STRING,

2 TERMINATION.TERMTIME,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Display informational message

TYPE *,1 Process '.TERMINATION.PID,' completed at ' .

2 TERM.STRING(1:TERM_LEN),'.'

TYPE Final status was '.TERMINATION.FINALSTS'

END

1-42

Intraunit Logic and Local Storage

A program unit consists of either the main program or a subprogram. Storing
each program unit, or set of related program units, in separate files provides
a clear method of organization for complex programs.

The figure below outlines the general structure of a program unit.

definition statements

executable statements

END

ZK-2030-84

The first statement of a FORTRAN program unit is either a PROGRAM
(optional, but recommended), SUBROUTINE, or FUNCTION statement that
identifies the program unit by name and (for functions) data type. Program
unit names must be unique among other program unit and common block
names used within the program.

Following the first statement are definition statements, which mainly identify
data elements and determine how they can be used. The next group of
statements, the executable statements, performs the actual work of the
program unit. The first executable statement in a program unit is called the
program unit's entry point. The last statement of a FORTRAN program unit
must be the END statement.

The following function, named CALC—SUMS, performs various calculations
when invoked from another program unit.

2-1

Intraunit Logic and Local Storage

CALC-SUMS. FOR

1 ******************
! Function statement
; ******************

INTEGER FUNCTION CALC.SUMS

2

2

2

2

2

2

2

2
! A function to calculate

(TOTAL-HOUSES.

PERSONS.HOUSE,

ADULTS.HOUSE,

INCOME.HOUSE,

AVG.PERSONS.HOUSE,

AVG_ADULTS_H0USE,

AVG.INCOME.HOUSE,

AVG_INCOME_PERSON,

MED_INCOME_HOUSE)

averages and median

I *********************

! Definition statements
1 *********************
! Declare dummy arguments

INTEGER TOTAL-HOUSES,

2 MED-INCOME-HOUSE

REAL PERSONS-HOUSE (2048),

2 ADULTS-HOUSE (2048),

2 INCOME-HOUSE (2048),

2 AVG-PERSONS-HOUSE,

2 AVG-ADULTS-HOUSE,

2 AVG-INCOME-HOUSE,

2 AVG_INCOME-PERSON

! Declare control variables

REAL PERSONS,
2 ADULTS.

2 INCOME

INTEGER MEDIAN (101)

! Declare status variables and values

INTEGER STATUS-OK

PARAMETER (STATUS-OK = 1)

i *********************
! Executable statements
i *********************
! Calculate totals

DO I = 1. TOTAL-HOUSES

PERSONS = PERSONS + PERSONS.HOUSE (I)
ADULTS = ADULTS + ADULTS.HOUSE (I)
INCOME = INCOME + INCOME.HOUSE (I)

! Divide and truncate to integer

J = INCOME.HOUSE (I) / 1000

• Incomes under $1000 equal $1000

IF (J .EQ. 0) J = 1

! Incomes over $100,000 not distinguished

IF (J .GT. 101) J = 101

! Count incomes in that group

MEDIAN (J) = MEDIAN (J) + 1
END DO

2-2

Intraunit Logic and Local Storage

! Calculate averages
AVG.PERSONS.HOUSE = PERSONS / TOTAL.HOUSES
AVG_ADULTS_HOUSE = ADULTS / TOTAL.HOUSES
AVG_INCOME_HOUSE = INCOME / TOTAL.HOUSES
AVG_INCOME_PERSON = INCOME / PERSONS

! Calculate median income per house
J = 1
DO I = 2, 101

IF (MEDIAN (I) .GT. MEDIAN (J)) J = I
END DO
MED.INCOME.HOUSE = J * 1000

! Return
CALC.SUMS = STATUS.OK

i *************
! End statement
i *************
END ! of subroutine

2.1 Local Storage

Local storage is the space allocated for data that is available only within the
defining program unit. It does not include space allocated for data defined
by, or available to, other program units. For example, in a FORTRAN
program, data in an INTEGER statement uses local storage; data in a
COMMON statement does not.

2.1.1 Data Type Definition

FORTRAN allows you to define the data type of an element in one of two
ways (see the data type definitions which apply to your language):

• Explicitly—Define the data type of a variable by declaring the variable in
a type declaration statement. (Chapter 6 describes each data type and its
type declaration statement.)

• Implicitly—Define the data type of a variable implicitly by using the
variable in an execution statement without first declaring it in a type
declaration statement. By default, FORTRAN implicitly defines variables
beginning with the letters I, J, K, L, M, or N as INTEGER variables and
all other variables as REAL*4.

The FORTRAN program segment below explicitly defines TOTAL—HOUSES
as an INTEGER*4 variable, explicitly defines all variables in the REAL*4
declaration statement as REAL*4 variables, and implicitly defines I as an
INTEGER variable.

2-3

Intraunit Logic and Local Storage

! Declare variables to hold statistics

INTEGER*4 TOTAL.HOUSES

REAL*4 PERSONS.HOUSE (2048),

2 ADULTS.HOUSE (2048),

2 INCOME.HOUSE (2048),

2 PERSONS,

2 ADULTS,

2 INCOME

! Number of households

! Number of persons per household

! Number of adults per household

! Gross income per household

! Total people

! Total adults

! Total gross income

! Calculate totals

DO I = 1, TOTAL.HOUSES

PERSONS = PERSONS + PERSONS.HOUSE (I)

ADULTS = ADULTS.HOUSE (I)

INCOME = INCOME.HOUSE (I)

END DO

In FORTRAN, you can override the default implicit data types by using
the IMPLICIT statement. The program segment below implicitly defines all
variables beginning with the letters A, P, and I as REAL*4 variables and
explicitly declares I as an INTEGER*4 variable. Explicit data types always
override implicit data types. (This example is functionally equivalent to the
previous example.)

! Implicit typing

IMPLICIT REAL*4 (A,P,I)

! DO control variable

INTEGER*4 I

! Calculate totals

DO I » 1, TOTAL.HOUSES

PERSONS = PERSONS + PERSONS.HOUSE (I)

ADULTS = ADULTS.HOUSE (I)

INCOME = INCOME.HOUSE (I)

END DO

To override the use of all implicit data types, use an IMPLICIT NONE
statement. If you specify IMPLICIT NONE, you cannot specify other
IMPLICIT statements and must explicitly declare all variables. In serious
programming efforts, use IMPLICIT NONE.

IMPLICIT statements, or the IMPLICIT NONE statement, must precede data
definition statements. The use of implicit data types does not affect the data
type of FORTRAN intrinsic functions, but does affect the data type of any
other external function.

2-4

Intraunit Logic and Local Storage

2.1.2 Variable Initialization

You can initialize variables at compile time (before the program unit is
invoked) or at run time (each time the program unit is invoked).

• Compile time—Initialize a variable at compile time if you want the
variable initialized exactly once. Variables initialized at compile time
require space in the image file; therefore, consider initializing large arrays
at run time instead.

• Run time—Initialize a variable at run time if you want the variable
reinitialized each time the program unit executes.

Unless you explicitly state otherwise, all variables used in FORTRAN
programs are initialized to zero. However, in serious programming efforts,
you should not depend on these zero values since they may change in future
versions of FORTRAN or the VAX/VMS operating system.

2.1.2.1 One Time Initialization

In a FORTRAN program, to initialize a variable exactly once, use the DATA
statement. The DATA statement assigns a value to a variable at compile
time. The first time the program unit executes the variable contains the
value specified by the DATA statement. During subsequent executions of
the same program unit, the variable reflects any changes made to the initial
value. In the FORTRAN example below, DATA statements initialize an array
(ACCTS), an integer variable (PAGE—COUNT), and a character variable
(PAGE-HEADER).

! Declare variables
INTEGER PAGE.COUNT,
2 ACCTS (10)
CHARACTER*55 PAGE.HEADER

! Initialize variables
DATA PAGE.COUNT /l/
DATA ACCTS /10*5/
DATA PAGEREADER /'House No.
2 Persons-house Adults-house Income-house'/

The first DATA statement assigns a value of 1 to the variable PAGE—
COUNT; the second, a value of 5 to each of the ten elements in the array
ACCTS; and the third, a 55-character string to the variable PAGE—HEADER.

You can initialize part of an array by using an implied DO loop within the
DATA statement. The example below uses an implied DO loop to initialize
the first four elements of the array ACCTS to the value 2 (the fifth element is
not initialized).

INTEGER ACCTS (5)
DATA (ACCTS(I), I = 1.4) /4*2/

2-5

Intraunit Logic and Local Storage

You can also initialize variables in type declaration statements by specifying
the initial value between slashes following the variable. Only the variable
immediately preceding the specified value is initialized. To initialize an array
in this way, include a value for every element in the array. (Values specified
in type declaration statements, like those specified in DATA statements, are
assigned to the variable at compile time.) The example below initializes the
integer ELEMENTS to the value 2 and the two elements of the NAMES array
to JACK and JOE (NEW_NAME is not initialized).

INTEGER*4 ELEMENTS /2/
CHARACTER*10 NEW.NAME,
2 NAMES(2) /'JACK','JOE'/

2.1.2.2 Reinitialization

When a FORTRAN program unit is invoked more than once during program
execution, its variables (with the exception of dummy arguments) are not
reinitialized; that is, the variables retain the values they had at the end of the
previous invocation of the program unit. To initialize a variable each time
you invoke the program unit containing that variable, use an assignment
or input statement in the executable portion of the program unit. The first
executable statement shown in the example below assigns the value of 1 to
the variable J. Each time the program unit is invoked, J is initialized to 1.

INTEGERS MEDIAN_INC0ME_H0USE,
2 MEDIAN (101)

! Calculate median income per house
J = 1
DO I = 2, 101

IF (MEDIAN (I) .GT. MEDIAN (J)) J = I
END DO
MED.INCOME.HOUSE = J * 1000

2.1.3 Named Constants

You can assign symbolic names to constant values by using a PARAMETER
statement in the definition section of a program unit. Within the program
unit containing the PARAMETER statement, you can use the symbolic
name wherever you would use the constant. The PARAMETER statement is
particularly useful for naming values that would otherwise be meaningless
to someone reading the program. For example, the following PARAMETER
statement assigns the symbolic name STATUS—OK to the integer value 1.

INTEGER STATUS.OK

PARAMETER (STATUS.OK = 1)

2—6

Intraunit Logic and Local Storage

In the example below, the PARAMETER statement assigns the symbolic
name PAGE—HEADER to the specified character string.

CHARACTER*(*) PAGEREADER
PARAMETER (PAGEREADER ='House No.
2 Persons-house Adults-house Income-house')

Note that you can use the passed-length notation, CHARACTER*^), to
define the length of a character string used in a PARAMETER statement. In
the previous example, the CHARACTER variable PAGE—HEADER assumes
the length of the character constant specified in the PARAMETER statement.

2.1.4 Equivalent Variables

Equivalent variables permit two or more variables to refer to the same area
in memory. Use the FORTRAN EQUIVALENCE statement to equivalence
variables that are in the same program unit.

The EQUIVALENCE statement causes each of the variables in a
parenthesized list to be allocated storage beginning at the same location
in memory. For example, the following EQUIVALENCE statement associates
the variables UIC and UIC—LOAD, making the INTEGER*2 array UIC_
LOAD refer to the same location in memory as the INTEGER*4 variable
UIC.

INTEGER*2 UIC.LOAD (2)
INTEGER*4 UIC
EQUIVALENCE (UIC.UIC.LOAD)

You can make variables of different data types equivalent, and you can
make an element of one array equivalent to an element of another array.
When you equivalence elements of two arrays, the other elements of the
two arrays may also be made equivalent. You can equivalence a variable
not in a common block to a variable that is in a common block, but you
cannot equivalence two variables in the same common block. You cannot
equivalence a dummy argument to any other argument.

If you equivalence two arrays, the shorter of which is in a common block,
the common block is automatically extended to include all of the elements
in the longer array. However, since the starting address of a common block
cannot change, arrays cannot be equivalenced if the equivalence would force
an extension of the common block to precede the existing starting address.

Valid Equivalence:

BYTE MESSAGE (10)
CHARACTER NAME (6)
COMMON /MAIL.BOX/ MESSAGE

EQUIVALENCE (NAME,MESSAGE(8))

2-7

Intraunit Logic and Local Storage

Valid equivalence:

BYTE MESSAGE (ID)

CHARACTER NAME (L)
COMMON /MAIL_BOX/ MESSAGE

EQUIVALENCE (NAME,MESSAGE(fi))

ZK-2031-84

Invalid Equivalence:

BYTE MESSAGE (10)

CHARACTER NAME (6)

COMMON /MAIL.BOX/ MESSAGE

EQUIVALENCE (NAME(4).MESSAGE)

Invalid equivalence:

BYTE MESSAGE (ID)

CHARACTER NAME (b)
COMMON /MAIL_BOX/ MESSAGE

EQUIVALENCE (NAME(4) ,MESSAGE)

MESSAGE

NAME

1 H H*- -►
I

extension common

ZK-2032-84

2.1.5 Contiguous Storage

Variables are not necessarily stored in virtual memory in the order of their
declaration. If the order of storage is significant (for example, if you are
creating a data structure), define the variables in a common block or an array
in the order of storage desired.

2-8

Intraunit Logic and Local Storage

2.1.6 Large Data Structures and Dynamic Storage

All data storage is allocated statically; that is, memory is allocated when the
data is given a value and remains allocated for the duration of the program's
execution. Static storage does not require space in the image file (the file
containing the executable program) unless a data element is initialized (for
example, in a DATA statement). However, all data storage does require
virtual memory.

Note

The size of virtual memory is determined by the system
parameter VIRTUALPAGECNT . Half of virtual memory is
reserved for system use and is usually inaccessible to you. Of the
remaining half, half is automatically allocated to you and half
you can dynamically allocate.

Generally, you have enough virtual memory to ensure sufficient space for
your variables. For example, if you estimate a need for storing up to 2048
real numbers each in the variables PERSONS—HOUSE, ADULTS—HOUSE,
and INCOME_HOUSE, simply allocate arrays with dimension 2048.

REAL PERS0NS.H0USE (2048),
2 ADULTS.HOUSE (2048),
2 INCOME.HOUSE (2048)

If you are approaching your virtual memory limit, consider making the data
structures smaller and processing your data in pieces rather than all at once.
If you are using large arrays or character strings that you do not need for the
duration of the program, dynamically allocate and deallocate the storage for
those variables by using the run-time library procedures LIB$GET_VM and
LIB$FREE_VM.

Dynamic allocation and deallocation of storage is especially recommended
for general purpose utility subprograms, since the subprogram cannot
anticipate the storage needs of the main program and should not burden
the image with unnecessary static storage. The procedure LIB$GET_VM
allocates a requested amount of storage (in bytes) and returns the address

of the first byte so allocated. The procedure LIB$FREE_VM deallocates
storage allocated by LIB$GET_VM. You cannot use the address returned by
LIB$GET_VM directly in FORTRAN, but you can pass it to a subprogram so
that the subprogram can access the allocated storage.

2-9

Intraunit Logic and Local Storage

2.1.6.1 Dynamic Storage of Numeric Data

To allocate and deallocate storage for numeric data dynamically do the
following:

1 Put the code that uses the storage in a subprogram.

2 Call LIB$GET_VM to obtain the address of a specified number of bytes

of storage.

3 Invoke the subprogram that uses the storage and pass it the address

returned by LIB$GET_VM and the number of allocated bytes. You must

pass the address using the built-in function %VAL.

4 In the subprogram, define the dummy argument that is associated with

the address of the storage as a numeric variable equal in size to the

number of allocated bytes. Typically, you declare the dummy argument
as an assumed-size or adjustable array of the required data type.

5 In the invoking program unit, deallocate the storage by calling
LIB$FREE_VM.

In the example below, the invoking program unit invokes LIB$GET_VM to

get 512 bytes of storage and then passes the address and size of the storage
area to the subprogram that uses the storage.

Invoking Program Unit

! Program to get dynamic storage
PROGRAM GETMEM

! Declare variables
INTEGER STATUS,
2 VM_SIZE, ! Size of storage in bytes
2 VM_ADDR ! Address of storage

! Declare user routine
INTEGER USEMEM

! Declare library routines
INTEGER LIB|GET_VM,
2 LIBIFREE.VM

! Get storage
VM_SIZE * 512
STATUS * LIB$GET_VM (VM.SIZE,
2 VM.ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (y,VAL(STATUS))

! Use storage
STATUS * USEMEM C/.VAL(VM_ADDR) .
2 VM.SIZE)
IF (.NOT. STATUS) CALL LIBISIGNAL (y,VAL(STATUS))

2-10

Intraunit Logic and Local Storage

! Free storage
STATUS = LIB$FREE_VM (VM.SIZE,
2 VM.ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

USEMEM.FOR

INTEGER FUNCTION USEMEM (ARRAY.
2 ARRAY.SIZE)
! Subprogram to use dynamic storage

! Declare dummy arguments
INTEGER*4 ARRAY.SIZE,
2 ARRAY(ARRAY_SIZE/4)

! Set good return status
USEMEM = 1

2.1.6.2 Dynamic Storage of Character Data

To allocate and deallocate storage for character data dynamically:

1 Put the code that uses the storage in a subprogram.

2 Call LIB$GET_VM to obtain the address of a specified number of bytes
of storage.

3 Invoke the subprogram that uses the data and pass it a descriptor of the
character data. The descriptor is a quad word in the format

number of bytes being passed

address returned by LIB$GET_VM

ZK-2033-84

4 In the subprogram, make the dummy argument that is associated
with the descriptor a passed-length character string or CHARACTER
variable of appropriate length. If you specify the dummy argument as a
CHARACTER array, use an assumed-size or adjustable array.

5 In the invoking program unit, deallocate the storage by calling
LIB$FREE__VM.

2-11

Intraunit Logic and Local Storage

In the FORTRAN example below, the invoking program unit passes the
descriptor as the array VM_DESC: the first element contains the size (VM
SIZE) and the second contains the address (VM_ADDR).

Invoking Program Unit

! Program to get dynamic storage

PROGRAM GETMEM

! Declare variables

INTEGER STATUS.

2 VM.SIZE, ! Size of storage in bytes

2 VM_ADDR ! Address of storage

! Declare user routine

INTEGER USEMEM

! Declare library routines

INTEGER LIB$GET_VM,

2 LIB$FREE_VM

! Declare descriptor

INTEGER VM.DESC (2)

! Get storage

VM.SIZE = 512

STATUS = LIB$GET_VM (VM.SIZE,

2 VM.ADDR)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Use storage

VM.DESC(l) = VM.SIZE
VM.DESC(2) = VM.ADDR

STATUS = USEMEM (VM.DESC)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL(STATUS))

! Free storage

STATUS = LIB$FREE_VM (VM.SIZE.

VM.ADDR)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

USEMEM.FOR

INTEGER FUNCTION USEMEM (ARRAY)
! Subprogram to use dynamic storage

! Declare dummy arguments

CHARACTERS ARRAY(*)

! Set good return status

USEMEM = 1

2-12

Intraunit Logic and Local Storage

2.1.6.3 Dynamic Storage Statistics

You can check the number of calls made to both LIB$GET_VM and to
LIB$FREE_VM and the number of bytes allocated and deallocated by using
either LIB$STAT_VM or LIB$SHOW_VM. To obtain one statistic in binary
form, use LIB$STAT_VM. To obtain one or all of the statistics formatted
as a character string, use LIB$SHOW_VM. The following example calls
LIB$SHOW_VM.

! Show storage used
STATUS = LIB$SHOW_VM()

LIB$SHOW_VM returns a message similar to the following. (By default,

LIB$SHOW_VM writes the message to SYS$OUTPUT; however, you can
write a subprogram that changes that default. For details, see the description
of LIB$SHOW_VM in the VAX/VMS Run-Time Library Routines Reference
Manual).

3 LIB$GET_VM calls,0 LIB$FREE_VM calls,952 bytes still allocated

Note

FORTRAN I/O routines obtain storage dynamically. The
statistics returned by LIB$SHOW_VM include FORTRAN'S
calls to LIB$GET_VM and LIB$FREE __VM.

2.2 Serial Execution

Statements are normally executed in the order in which they occur in the
program unit—serially, from the entry point of the program unit to its END
statement. In order to maintain clarity of structure in a program unit do the
following:

• Make each operation a visibly separate block of code (separated with
comments or blank lines) and prefix each block with explanatory
comments.

• Factor out complex pieces of code by making them subprograms.

For example, the following executable statements from the function
CONVERT.FOR are organized by operation.

2-13

Intraunit Logic and Local Storage

! Initialize status
STATUS = STATUS.OK

! Convert persons per house
READ (UNIT = FIX.PERSONS.STRING,
2 FMT = INTEGER.FMT) FIX.PERSONS.HOUSE

! Convert adults per house
READ (UNIT = FIX_ADULTS_STRING,
2 FMT = INTEGER.FMT) FIX.ADULTS.HOUSE

! Convert income per house
READ (UNIT = FIX.INCOME.STRING,
2 FMT = INTEGER.FMT) FIX.INCOME.HOUSE

CONVERT.FIXES = STATUS
END ! Of function

In FORTRAN, you can circumvent serial execution with the ENTRY,
RETURN label, and GOTO statements; although, such transfers of control
are difficult to follow and are not recommended.

2.3 Conditional Execution

Conditional execution permits you to execute one or more statements (a
statement block) depending upon a specified condition. If the condition is
logically true, the statement block following it is executed; otherwise, control
passes to the executable statement following the statement block.

In FORTRAN, conditional logic is implemented primarily through the
statements IF, ELSE IF, and ELSE. (The FORTRAN DO WHILE statement
also executes conditionally; see Section 2.4.). Other languages use different
conditional expressions. See the appropriate programming manual for
information on other conditional expressions.

2.3.1 Specifying the Condition

You can base execution of a statement block on one condition or multiple
conditions. Each condition is an expression that evaluates to a logical value
(Section 6.5 discusses logical data). In the FORTRAN example below, the
READ statement is executed if the logical value STATUS is true.

IF (STATUS) THEN

READ (UNIT » FIX.PERSONS.STRING,

2 FMT - INTEGER.FMT) FIX.PERSONS.HOUSE

END IF

The following statement assigns a value to STATUS if the logical expression
is true,

IF (HOUSE.NO ,0T. MAXSTAT8) THEN

STATUS - XLOC (IN00ME.MAX8TAT8)

END IF

2-14

Intraunit Logic and Local Storage

In FORTRAN, to base execution of a statement on more than one condition,
use the logical operators .AND., .OR., .XOR., .NEQV., and .EQV., as
described in Section 6.5, to combine the conditions (see the logical operators
available in your language). In the example below, execution of the
statement block requires both that STATUS be logically true and that the
value of LINE—COUNT be greater than 58.

IF ((STATUS) .AND. (LINE.COUNT .GT. 58)) THEN

. ! Statement block

END IF

You can use any number of logical operators in an IF statement. In the
example below, two conditions must be met for the statement block to
execute: STATUS must be true, and either NEW—PAGE must be true or
LINE—COUNT must be greater than 58.

! Write new STATS.SAV
IF ((STATUS) .AND.
2 ((NEW.PAGE) .OR. (LINE.COUNT .GT. 58))) THEN

. ! Statement block

END IF

Parentheses force the order of interpretation. Even if the order does not need
to be forced, parentheses make clear the order in which conditions are to be
interpreted—from the innermost parentheses to the outermost.

2.3.2 Single Conditional Block

The simplest form of an IF statement, a logical IF statement, tests a condition
and executes one statement if the condition is true.

IF (condition) statement

The statement following the condition can be any executable statement
except a DO, END DO, END, or IF statement. In the following example of
a logical IF statement, LIB$ERASE_LINE executes only if the logical value
STATUS is true.

IF (STATUS) STATUS ■ LIBSERASE.LINE (LINE.NO,
2 END.COLUMN)

A block IF statement tests a condition and executes one or more statements if
the condition is true.

IF (condition) THEN

. I 8tatanant block

END IF

2-1B

Intraunit Logic and Local Storage

In a block IF statement, the keyword THEN must follow the condition and
the END IF statement must terminate the block of statements, as shown in
the example below.

! Load fix values into arrays

IF (STATUS) THEN
PERSONS.HOUSE (FIX_HOUSE_NO) = FIX_PERSONS_HOUSE

ADULTS.HOUSE (FIX_H0USE_N0) = FIX_ADULTS_HOUSE

INCOME.HOUSE (FIX_H0USE_N0) = FIX.INCOME.HOUSE

END IF

Indenting the statements in the IF statement block formats the IF block
clearly, which is especially helpful with nested IF structures. Generally,
since block IF statements are easier to read, they are preferred to logical IF
statements.

2.3.3 Multiple Conditional Blocks

You can conditionally execute multiple statement blocks exclusively
(executing only one statement block) or inclusively (executing more than
one block).

2.3.3.1 Exclusive Conditional

An exclusive conditional construction permits you to execute one of several
statement blocks. In its simplest form, the exclusive conditional construction
allows you to execute one of two statement blocks. Following is the structure
of statement blocks used in FORTRAN.

IF (condition) THEN

. ! Statement block

ELSE

. ! Statement block

END IF

If the condition is true, the first statement block is executed; otherwise, the
second statement block is executed.

Another form of the exclusive conditional construction permits you to execute
the first statement block that follows a true condition. If no condition is true,
none of the statement blocks are executed. If more than one condition is
true, only the first true statement block is executed.

2—16

Intraunit Logic and Local Storage

IF (condition) THEN

. ! Statement block

ELSE IF (condition) THEN

. ! Statement block

. ! Optional ELSE IF statements

END IF

In the example below, if the first condition is true, regardless of the second
condition, STATUS is assigned the value of INCOME_CTRLZ. If the
first condition is false and the second condition is true, STATUS is set
to INCOME_FORIOERR. If neither condition is true, STATUS remains
unchanged.

INTEGER*4 IOSTAT,

2 I0_0K,

2 EOF,

2 STATUS

EXTERNAL INCOME.FORIOERR,

2 INCOME.CTRLZ

IF (IOSTAT .EQ. EOF) THEN

STATUS = */,LOC (INCOME.CTRLZ)

ELSE IF (IOSTAT .NE. IO.OK) THEN

STATUS = %LOC (INCOME.FORIOERR)

END IF

In the final form of the exclusive conditional construction, the first statement
block that follows a true condition is executed. If no condition is true, the
statement block that follows the ELSE statement is executed.

IF (condition) THEN

. ! Statement block

ELSE IF (condition) THEN

. ! Statement block

. ! Optional ELSE IF statements

ELSE

. ! Statement block

END IF

2-17

Intraunit Logic and Local Storage

The example below uses an exclusive conditional construction to call an
appropriate subprogram depending on which command qualifier is entered
on the command line.

! Get qualifier and dispatch to appropriate routine
! If user types /ENTER
IF (CLISPRESENT ('ENTER')) THEN

STATUS = GET.STATS (TOTAL.HOUSES,

. ! Statement block

! If user types /FIX
ELSE IF (CLISPRESENT ('FIX')) THEN

STATUS = CLI$GET_VALUE ('FIX',

. ! Statement block

! If user types /REPORT
ELSE IF (CLISPRESENT ('REPORT')) THEN

STATUS = REPORT (TOTAL.HOUSE,

. ! Statement block

ELSE
STATUS = 7.L0C (INCOME.NOACTION)

END IF

The statement that follows the ELSE statement is executed only if none
of the qualifiers (/ENTER, /FIX, and /REPORT) are entered. Note that if
/REPORT and /ENTER are both entered on the command line, only the
first block (ENTER) is executed. (To execute both blocks, use the inclusive
conditional construction described in Section 2.3.3.2.)

2.3.3.2 Inclusive Conditional

An inclusive condition contruction permits you to execute each statement
block that follows a true condition. The example below calls the appropriate
subprogram for each qualifier entered on the command line.

2-18

Intraunit Logic and Local Storage

! Qualifier check

IF (CLI$PRESENT ('ENTER')) THEN

STATUS = GET.STATS (TOTAL.HOUSES,

. ! Statement block

END IF

IF (CLI$PRESENT ('FIX')) THEN

STATUS = CLI$GET_VALUE ('FIX',

. ! Statement block

END IF

IF (CLISPRESENT ('REPORT')) THEN

STATUS = REPORT (TOTAL_HOUSE,

. ! Statement block

END IF

! Error check

IF ((.NOT. CLI$PRESENT ('ENTER')) .AND.

2 (.NOT. CLIIPRESENT ('FIX')) .AND.

2 (.NOT. CLI$PRESENT ('REPORT'))) THEN

STATUS = 7.L0C (INCOME.NOACTION)

END IF

Since the inclusive conditional construction does not provide an ELSE
statement whose statement block is executed in the event that no condition is
true, you must check the negation of each condition specified in the inclusive
construction, as shown in the final IF statement of the previous example.
(Alternatively, you could set STATUS equal to INCOME _NOACTION at
the beginning of the program segment; if none of the qualifiers are entered,
STATUS remains equal to INCOME_NOACTION, otherwise it changes.)

2.4 Iterative Logic

Iterative logic repeatedly executes a statement block as long as a specified
condition is true. Several forms of the DO statement implement iterative
logic through the following basic loop structure.

2-19

Intraunit Logic and Local Storage

ZK-1936-84

A test in the beginning of the statement block, or loop, determines whether
or not the statements within the loop are executed. The variable that controls
the outcome of that test, the control variable, is initialized before the loop
and updated within the loop to eventually terminate execution of the loop.

2—20

Intraunit Logic and Local Storage

2.4.1 DO WHILE Statement

The FORTRAN DO WHILE statement repeatedly executes the statements in
the body of the loop while a specified condition is true. When the condition
becomes false, control transfers to the next executable statement following
the loop. The DO WHILE statement has the following general form:

(initialize control variable)
DO WHILE (condition)

. ! Statement block

. ! Update control variable
END DO

The terminating statement of a DO loop must be END DO.

The example below continues to get a character from STRING while the
character is blank and the value of FIRST-DIGIT is less than or equal to that
of SIZE.

! Find first digit in number
FIRST.DIGIT = 1
DO WHILE ((STRING (FIRST.DIGIT:FIRST.DIGIT) .EQ. • ') .AND.
2 (FIRST.DIGIT .LE. SIZE))

FIRST.DIGIT = FIRST.DIGIT + 1
END DO

Note that FIRST-DIGIT is initialized to 1 before the loop and then
incremented each time through the loop. If digit is not found, FIRST-
DIGIT is equal to SIZE plus 1.

Indenting the statements in the DO statement block formats the DO block
clearly. This is especially helpful with nested DO structures.

2.4.2 Indexed DO Statement

The indexed DO statement executes a statement or statement block a
specified number of times. It has the following general form:

DO control = initial,terminal[,increment]

. ! Statement block

END DO

The DO construction automatically initializes and updates the control
variable. Control, which must be an integer or real variable, represents
the control variable. Initial represents the value of control before the loop
starts. Increment, which can be positive or negative, represents a value to be
added to control after each iteration of the loop; increment defaults to +1.
Terminal represents the value of control after which the loop terminates.
Initial, terminal, and increment are numeric values.

2-21

Intraunit Logic and Local Storage

The example below executes the statement block while I is less than or
equal to the variable TOTAL—HOUSES. The control variable, I, starts with
a value of 1 and increments by 1 each time through the loop. (Note that I
is also used as a subscript for the arrays PERSONS—HOUSE and ADULTS—
HOUSE.)

DO I = 1, TOTAL.HOUSES

PERSONS = PERSONS + PERSONS.HOUSE (I)

ADULTS * ADULTS + ADULTS.HOUSE (I)

END DO

The following DO WHILE statement is equivalent to the previous indexed
DO statement.

i*i

DO WHILE (I .LE. TOTAL.HOUSES)

PERSONS = PERSONS + PERSONS.HOUSE (I)

ADULTS = ADULTS ♦ ADULTS.HOUSE (I)

1 = 1 + 1
END DO

2.5 Nesting

In FORTRAN, both IF constructions and DO loops can be nested within
themselves and within each other. In either case, any nested construction
must be entirely contained within the outer construction. In order to
maintain clear code, indent each nested construction and comment each
END statement.

Properly Nested:

IF (condition) THEN

DO WHILE (condition)

END DO

END IF

2-22

Intraunit Logic and Local Storage

Improperly Overlapping:

IF (condition) THEN

DO WHILE (condition)

END IF

END DO

In the example below, an exclusive conditional construction is nested within
a single condition block, which is nested within a DO WHILE.

DO WHILE (WHOOPS)

READ (UNIT=STRING (1:STRING.SIZE),

2 FMT=INTEGER_FMT,

2 IOSTAT=IOSTAT) STAT

! Erase whoops

STATUS = LIB$ERASE_LINE (LINE.NO,

2 END.COLUMN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (#/,VAL(STATUS))

WHOOPS = .FALSE.

! If I/O fails

IF (IOSTAT .NE. I0_0K) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .EQ. F0R$_INPC0NERR) THEN

! Repeat until user provides convertible input

! (or presses CTRL/Z)

STATUS = LIB$ERASE_LINE (LINE.NO,

2 COLUMN.NO)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = LIB$PUT_SCREEN ('whoops!',

2 LINE.NO,

2 END.COLUMN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
WHOOPS = .TRUE.

ELSE
! If unexpected read error
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END IF ! STATUS .EQ. F0R$_INPC0NERR

END IF ! IOSTAT .NE. IO.OK

END DO ! WHILE (WHOOPS)

2-23

3 Program Synchronization and
Communication

Synchronization and communication techniques vary depending on whether
the program units in question are in the same program, in different
programs executing in the same process, or in different programs executing
in different processes. If your application requires the execution of two
or more programs, you can execute the programs sequentially using one
process, sequentially using multiple processes, or concurrently using multiple
processes. Since a process executes exactly one image at a time, you cannot
execute two or more programs concurrently in a single process.

3.1 Creating Processes

Creating processes from within your program permits you to:

• Duplicate command-level functionality—Create a process that executes
DCL commands.

• Perform parallel processing—Create a process that executes one part of
your application while the parent process continues executing a different
part.

• Implement multiuser applications—Create a process for each application
user. The parent process can coordinate the input from the created
processes.

• Specify a time for program execution—Create a process that executes a
program, and then hibernate that process. By waking the created process
at a specified time or timed intervals, you can choose the execution time
of the program.

• Isolate code—Create a process that executes privileged or sensitive code.

A created process can be either a subprocess or a detached process. To
create a subprocess, use the LIB$SPAWN Run-Time Library routine, which
duplicates the functions of the DCL command SPAWN, or the SYS$CREPRC
system service. To create a detached process, you must use SYS$CREPRC
(see Section 3.1.3).

Usually you create subprocesses. However, a subprocess is dependent on its
parent and is deleted when the parent process exits. Therefore, if you want
a created process to continue executing a program after the parent exits, you
must use a detached process.

3-1

Program Synchronization and Communication

Note

The VAX /VMS DCL Dictionary discusses the SPAWN command
and the characteristics of spawned subprocesses. The following
discussion assumes that you are familiar with that information.

3.1.1 Creating Subprocesses

You can create a subprocess using LIB$SPAWN or SYS$CREPRC. As shown
in the following table, LIB$SPAWN creates a more complete context for
a subprocess. (The table assumes that defaults were used in the calls to
LIB$SPAWN and SYS$CREPRC.) The VAX/VMS Run-Time Library Routines
Reference Manual and the VAX/VMS System Services Reference Manual contain
complete descriptions of LIB$SPAWN and SYS$CREPRC.

Context LIB$SPAWN SYSSCREPRC

DCL Yes No1

Default device and
directory

Parent's Parent's

Symbols Parent's No

Logical Names Parent's2 No2

Privileges Parent's Parent's

Priority Parent's 0

^he created subprocess can include DCL by executing the system image
SYS$SYSTEM:LOGINOUT.EXE (example in Section 3.1.3.).

2Plus group and job logical name tables.

3.1.1.1 Invoking LIB$SPAWN

Typically, when you invoke LIB$SPAWN, you use only the first four
arguments.

• Command line (argument 1)—Specify a command to be executed in the
created subprocess. To execute multiple commands, invoke a command
procedure ('@command-procedure').

• SYS$INPUT and SYS$OUTPUT (arguments 2 and 3)—Specify the
subprocess's equivalence names for SYS$INPUT and SYS$OUTPUT.
If you omit these arguments, the subprocess inherits the equivalence
names of the parent. If you specify SYS$INPUT as a file (or nonterminal
device), the subprocess is created as a noninteractive process. These

3-2

Program Synchronization and Communication

arguments correspond to the /INPUT and /OUTPUT qualifiers of the
DCL command SPAWN.

The logical names SYS$INPUT and SYS$OUTPUT are fully defined
by these two arguments. They are not affected by bit 2 of the fourth
argument, which defines other logical names for the subprocess.

• Context and execution (argument 4)—Specify a mask that indicates
whether the subprocess inherits symbols, logical names, and/or keypad
definitions from the parent, and whether the subprocess executes at the
same time as the parent process or while the parent process hibernates.

The following statement creates a subprocess that executes the commands in
COMMANDS.COM, which must be a command procedure on the current
default device in the current default directory. The created subprocess
inherits symbols, logical names (including SYS$INPUT and SYSSOUTPUT),
keypad definitions, and other context information from the parent. The
subprocess executes while the parent process hibernates.

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN ('©COMMANDS')

3.1.1.2 Subprocess Context

It may take a few seconds for LIB$SPAWN to create a subprocess. You can
decrease this time by indicating that the created subprocess should inherit
only part of the parent's process context. For example, by specifying flags
(argument 4) as CLI$M_NOLOGNAM you prevent the subprocess from
inheriting the parent's logical name definitions. (Logical names required by
the subprocess can be placed in the job logical name table LNM$JOB).

The following program segment creates a subprocess that does not inherit the
parent's symbols, logical names, or keypad definitions. The subprocess reads
and executes the commands in the command procedure COMMANDS.COM.
(The CLI$ symbols are defined in the $CLIDEF module of the system object
or shareable image library; see Section 4.2.4.)

3-3

Program Synchronization and Communication

! Mask for LIBlSPAWN
INTEGER MASK
EXTERNAL CLI$M_NOCLISYM,
2 CLI$M_N0L0GNAM,
2 CLIIM.NOKEYPAD

! Declare status and library routine
INTEGER STATUS, LIBlSPAWN

! Set mask and call LIBlSPAWN

MASK = y.LOC(CLI|M_NOCLISYM) .OR.

2 %L0C(CLIlM.NOLOGNAM) .OR.
2 Y.LOC (CLIIM.NOKEYPAD)

STATUS = LIBlSPAWN ('©COMMANDS.COM1,
2
2 MASK)

3.1.1.3 Subprocess Execution

A subprocess can execute either while the parent process hibernates (in line)
or while the parent process continues to execute (concurrent). Unless you
specify otherwise, a subprocess executes in line. To execute a subprocess
concurrently, specify the flags argument (argument 4) as CLI$M_NOWAIT
bit when you invoke LIB$SPAWN. If the parent process must wait for
information provided by the subprocess, execute the subprocess in line.
Otherwise, consider executing the subprocess concurrently.

You can perform terminal I/O from a concurrently executing subprocess;
however, to do so requires that you include code that synchronizes access to
the terminal, as shown in Section 3.1.2. To avoid synchronization problems
when you execute a subprocess concurrently, equivalence the subprocess's
SYS$INPUT and SYS$OUTPUT to a file or device other than the terminal.
(Specify input-file and output-file when you invoke LIB$SPAWN rather
than allowing them to default to the parent's equivalence names; by default,
the terminal.)

The following program segment creates a subprocess to execute the image
$DISK1:[USER.MATH]CALC.EXE. CALC reads data from DATA84.IN and
writes the results to DATA84.RPT. The subprocess executes concurrently.
(CLI$M_NOWAIT is defined in the $CLIDEF module of the system object or
shareable image library; see Section 4.2.4.)

! Mask for LIBlSPAWN
EXTERNAL CLI|M_NOWAIT
! Declare status and library routine
INTEGER STATUS, LIBlSPAWN

STATUS = LIBlSPAWN ('RUN |DISK1:[USER.MATH]CALC', ! Image
2 'DATA84.IN', ! Input
2 'DATA84.RPT', ! Output
2 y.LOC(CLI|M_NOWAIT)) ! Concurrent

3-4

Program Synchronization and Communication

3.1.1.4 Debugging a Program in a Subprocess

A program should be debugged before you invoke it within a subprocess.
However, in cases where you must debug within the subprocess, equate the
subprocess logical names DBG$INPUT and DBG$OUTPUT to the terminal.
When the subprocess executes the program, which has been compiled and
linked with the debugger, the debugger reads input from DBG$INPUT and
writes output to DBG$OUTPUT.

If you are executing the subprocess concurrently, you should restrict
debugging to the program in the subprocess. The debugger's DBG>
prompt should enable you to differentiate between input required by the
parent process and input required by the subprocess. However, each time
the debugger displays information, you will have to press RETURN to
display the DBG> prompt. (By pressing RETURN, you actually write to
the parent process, which has regained control of the terminal following the
subprocess's writing to the terminal. Writing to the parent process allows the
subprocess to regain control of the terminal.)

3.1.2 Synchronizing Terminal I/O with the Lock Manager

When you specify the user's terminal as the I/O device for a concurrently
executing subprocess, use the lock manager to ensure that only one process
accesses the terminal at any one time. Since the parent process and the
created subprocess must use the lock manager system service to synchronize
terminal I/O, the subprocess must execute a user-written program that
includes the synchronization rather than a list of DCL commands.

The lock manager allows cooperating processes to synchronize access to a
shared resource (for example, a file, program, or device). When cooperating
processes reference a resource, they do so by an agreed-upon name. The
lock manager works only with that name; it has no control over the resource
itself. The lock manager can only grant or refuse a lock request; it cannot
ensure that processes use the lock manager or respect the locks placed on a
resource.

To request access to a resource, use the SYS$ENQ or SYS$ENQW system
service to queue a lock request. (SYS$ENQ queues a lock request and

returns; SYS$ENQW queues a lock request, waits until the lock is granted,
and then returns.) Six lock modes allow a process to indicate the extent to
which it is willing to share the resource. For example, a null lock allows
any other process read and/or write access to the resource; an exclusive lock
allows no other process access to the resource.

3—5

Program Synchronization and Communication

The VAX/VMS System Services Reference Manual describes the SYS$ENQW

system service and its arguments. Typically, when you invoke SYS$ENQW
you use only the following arguments:

• Lock mode (argument 2)—Specify the requested lock mode. When the
shared resource is a terminal, only two lock modes are significant: null
(LCK$K_NLMODE) and exclusive (LCK$K_EXMODE).

• Status block (argument 3)—Specify two words and a longword. The
first word receives the final status of the lock request and the second
word is a place holder. The first time you reference a resource, the
longword receives an identification number for the resource. From then
on, to reference the resource, you use the lock status block to pass the
identification number of the resource to the lock manager.

• Options (argument 4)—Specify a mask with the LCK$V_CONVERT bit
set to indicate that the lock manager should change the mode of the lock.

• Resource name (argument 5)—Specify the name of the resource.

The following program segment requests a null lock for the resource named
TERMINAL. After the lock is granted, the program requests that the lock
be converted to an exclusive lock. Note that after SYS$ENQW returns, the
program checks the status of the system service and the status returned in
the lock status block to ensure that the request completed successfully. (The

lock mode symbols are defined in the $LCKDEF module of the system macro
library.)

! Define lock modes
INCLUDE '($LCKDEF)'

! Define lock status block
STRUCTURE /STATUS.BLOCK/

INTEGER*2 LOCK.STATUS,
2 NULL

INTEGERS LOCK.ID
END STRUCTURE
RECORD /STATUS.BLOCK/ IOSTATUS

! Request a null lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_NLMODE),
2 IOSTATUS.
2
2 'TERMINAL'.
2 .)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK.STATUS)
2 CALL LIB$SIGNAL (7.VAL(IOSTATUS . LOCK.STATUS))

3-6

Program Synchronization and Communication

! Convert the lock to an exclusive lock
STATUS = SYS$ENQW (,
2
2
2
2
2

*/,VAL (LCK$K_EXMODE) ,
IOSTATUS,
•/.VAL(LCK$M_CONVERT) ,
'TERMINAL'.

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK.STATUS)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK.STATUS))

To share a terminal between a parent process and a subprocess, each process
requests a null lock on a shared resource name. Then, each time one of
the processes wants to perform terminal I/O, it requests an exclusive lock,
performs the I/O, and requests a null lock.

Since the lock manager is only effective between cooperating programs, the
program that created the subprocess should not exit until the subprocess
has exited. To ensure that the parent does not exit before the subprocess,
specify an event flag to be set when the subprocess exits (the completion-

efn argument of LIB$SPAWN). Before exiting from the parent program, use

SYS$WAITFR to ensure that that event flag has been set. (You can suppress

the logout message from the subprocess by using the SYS$DELPRC system
service to delete the subprocess instead of allowing the subprocess to exit.)

After the parent process exits, a created process cannot synchronize access
to the terminal and should use the SYS$BRKTHRU system to write to the
terminal.

3.1.3 Creating Detached Processes

In general, you should create a detached process only if you have a program
that must continue executing after the parent process logs out.

The VAX/VMS System Services Reference Manual contains a complete

description of the SYS$CREPRC system service and its arguments. Typically,
when you invoke the SYS$CREPRC system service, you specify only a subset
of the following arguments:

• Image (argument 2)—Specify the name of the image to be executed by
the created process. This argument is required.

The created process is not a DCL-based process; therefore, it does
not understand DCL commands. To execute DCL commands
from a process created by SYS$CREPRC, you must: 1) specify

SYS$SYSTEM:LOGINOUT.EXE as the image to execute and 2) equate

SYS$INPUT to a command procedure containing the commands that you
want executed.

3-7

Program Synchronization and Communication

• SYS$INPUT and SYS$OUTPUT (arguments 3 and 4)—Specify the

equivalence names for SYS$INPUT and SYS$OUTPUT. If you specify a
device, you must specify the device name; no logical name translations
are performed. If these arguments are omitted, SYS$INPUT and
SYS$OUTPUT are undefined.

• Process name (argument 8)—Specify a name for the created process.

• Priority (argument 9)—Specify the base priority of the created process.
Since priority defaults to 0, you should specify this argument. Unless
you are working on a real-time application, use a priority of 4.

• Options (argument 12)—Allows you to indicate the characteristics of
the created process (for example, to specify that the created process be a
detached process).

The following program segment creates a process that executes the image
SYS$USER:[ACCOUNT]INCTAXES.EXE. INCTAXES reads input from the
file TAXES.DAT and writes output to the file TAXES.RPT (TAXES.DAT
and TAXES.RPT are in the default directory on the default disk). The last
argument specifies that the created process is a detached process (the UIC

defaults to that of the parent process). (The symbol PRC$M_DETACH is

defined in the $PRCDEF module of the system macro library.)

EXTERNAL PRC$M_DETACH

! Declare status and system routines
INTEGER STATUS,SYS$CREPRC

STATUS = SYS$CREPRC (,
2 'SYS$USER:[ACCOUNT]INCTAXES',
2 'TAXES.DAT',
2 'TAXES.RPT',
2
2 '/,VAL(4) ,
2
2 %VAL C/.L0C (PRC$M_DETACH))

Image
SYS$INPUT
SYS$0UTPUT

Priority

Detached

The following program segment creates a detached process to execute the
DCL commands in the file SYS$USER:[TEST]COMMANDS.COM. The

system image SYS$SYSTEM:LOGINOUT.EXE is executed to include DCL in
the created process. The DCL commands to be executed are specified in a
command procedure that is passed to SYS$CREPRC as the input file. Output
is written to the file SYS$USER:[TEST]OUTPUT.DAT.

3-8

Program Synchronization and Communication

STATUS = SYS$CREPRC (,
2
2
2
2
2
2
2

'SYSISYSTEM:LOGINOUT', ! Image
'SYSIUSER:[TEST]COMMANDS.COM',! SYS$INPUT
'SYS$USER:[TEST]OUTPUT.DAT', ! SYS$OUTPUT

*/,VAL(4) , ! Priority

*/,VAL ('/.LOC (PRC$M_DETACH)) ! Detached

To write to another process's terminal from a detached process, use the
SYS$BRKTHRU system service.

3.1.4 Specifying a Time for Program Execution

To execute a program at a specified time or at timed intervals, create a
subprocess or detached process, hibernate the created process, and then
wake the process at the required times. A subprocess is deleted when the
parent process exits; therefore, if you expect the parent process to exit before
the program in the created process finishes executing, create a detached
process rather than a subprocess.

3.1.4.1 Specified Time

To execute a program at a specified time, use LIB$SPAWN to create a process
that executes a command procedure containing two commands: the DCL
command WAIT and the command that invokes the desired program. Since
you will not want the parent process to remain in hibernation until the
process executes, execute the process concurrently.

You can also use SYS$CREPRC, as described in the following section, to
execute a program at a specified time. However, since a process created by
SYSSCREPRC hibernates rather than terminating after executing the desired
program, LIB$SPAWN is preferred unless you need a detached process.

The following example executes a program at a specified time. The parent
program prompts the user for a delta time, equates the delta time to
the symbol EXECUTE _TIME, and then creates a subprocess to execute
the command procedure LATER.COM. LATER.COM uses the symbol
EXECUTE-TIME as the parameter for the WAIT command. (You might
also allow the user to enter an absolute time and have your program change
it to a delta time by subtracting the current time from the specified time.
Section 6.11 discusses time manipulation).

3-9

Program Synchronization and Communication

! Delta time
CHARACTER*17 TIME
INTEGER LEN

! Mask for LIB$SPAWN
INTEGER*4 MASK

! Declare status and library routine
INTEGER STATUS. LIB$SPAWN

! Get delta time
STATUS = LIB$GET_INPUT (TIME.
2 'Time (delta):
2 LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Equate symbol to TIME
STATUS = LIBSSET.SYMBOL ('EXECUTE.TIME'.
2 TIME(1:LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Set the mask and call LIBlSPAWN
MASK = IBSET (MASK.O) ! Execute subprocess concurrently
STATUS = LIB$SPAWN (' (SLATER' ,
2 'DATA84.IN',
2 'DATA84.RPT',
2 MASK)

END

LATER.COM

$ WAIT 'EXECUTE.TIME'
$ RUN SYS$DRIVEO:[USER.MATH]CALC
$ DELETE/SYMBOL EXECUTE.TIME

3.1.4.2 Timed Intervals i

To execute a program at timed intervals, you can use either LIB$SPAWN

or LIB$CREPRC. With LIB$SPAWN, create a subprocess that executes a
command procedure containing three commands: the DCL command WAIT,
the command that invokes the desired program, and a GOTO command

that directs control back to the WAIT command. Since you will not want
the parent process to remain in hibernation until the subprocess executes,
execute the subprocess concurrently. See the previous section for an example
of LIB$SPAWN.

The following steps describe how to use SYS$CREPRC to execute a program
at timed intervals. To create a detached process, you must use SYS$CREPRC.

1 Create and hibernate a process—Use SYS$CREPRC to create a process
that executes the desired program. Set the PRC$V_HIBER bit of the
stsfig argument of the SYS$CREPRC system service to indicate that the
created process should hibernate before executing the program.

3-10

Program Synchronization and Communication

2 Schedule a wakeup call for the created subprocess—Use the
SYS$SCHDWK system service to specify the time at which the system
should wake the subprocess and a time interval at which the system
should repeat the wakeup call.

The following example executes a program at timed intervals. The program
creates a subprocess that immediately hibernates. (The identification number
of the created subprocess is returned to the parent process so that it can be
passed to SYS$SCHDWK.) The system wakes the subprocess at 6:00 a.m.
the morning of the 23rd (month and year default to system month and year)
and every 10 minutes thereafter.

! SYS$CREPRC options and values

INTEGER OPTIONS

EXTERNAL PRC$V_HIBER

! ID of created subprocess

INTEGER CR_ID

! Binary times

INTEGER TIME(2),

2 INTERVAL(2)

! Set the PRC$V_HIBER bit in the OPTIONS mask and

! create the process

OPTIONS = IBSET (OPTIONS, y.LOC(PRC$V_HIBER))

STATUS = SYS$CREPRC (CR_ID, ! PID of created process

2 ’CHECK', ! Image

2 .
2 'SLEEP', ! Process name

2 7,VAL(4), ! Priority

2
2 7.VAL (OPTIONS)) ! Hibernate

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL(STATUS))

! Translate 6:00 a.m. (absolute time) to binary
STATUS = SYS$BINTIM ('23-- 06:00:00.00', ! 6:00 a.m.
2 TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL(STATUS))

! Translate 10 minutes (delta time) to binary

STATUS = SYS$BINTIM ('0 :10:00.00', ! 10 minutes

2 INTERVAL)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL(STATUS))

! Schedule wakeup calls

STATUS = SYSISCHDWK (CR.ID,

2
2 TIME,

2 INTERVAL)

IF (.NOT. STATUS) CALL LIB$SIGNAL

! ID of created process

! Initial wakeup time

! Repeat wakeup time

(7.VAL (STATUS))

3-11

Program Synchronization and Communication

3.2 Examining and Modifying Processes

The following routines allow you to create, modify, and examine processes.

LIBSGETJPI

SYS$GETJPI

SYSSGETJPIW

SYSSSETPRN

SYSSSETPRI

SYS$SETSWM

Returns process information

Returns process information

Returns process information

Sets process name

Sets process priority

Controls swapping of process

By default, these routines reference the current process. To reference another
process, you must specify either the process identification number or the
process name when you invoke the routine. You must have GROUP
privilege to reference a process with the same group number and a different
member number in its UIC; and WORLD privilege to reference a process
with a different group number in its UIC.

3.2.1 Examining Processes

Typically, you use the LIB$GETJPI Run-Time Library routine to return
information about a process. The VAX/VMS Run-Time Library Routines
Reference Manual contains a complete description of this routine including the
various items of information that you can request. LIB$GETJPI, SYS$GETJPI,
and SYSSGETJPIW share the same item list with the following exception:
LIB$K_ items can be accessed only by LIBSGETJPI.

Note that a few of the items listed in the LIBSGETJPI description can be
returned as longwords and/or strings. (SYSSGETJPI and SYSSGETJPIW
return these items only as longword values.) In the following example, the

string argument rather than the numeric argument is specified so LIBSGETJPI
returns the UIC of the current process as a string.

! Define request codes
INCLUDE '($JPIDEF)'

! Variables for LIB$GETJPI
CHARACTER*9 UIC
INTEGER LEN

STATUS = LIB$GETJPI (JPI$_UIC,
2
2 UIC,
2 LEN)

3-12

Program Synchronization and Communication

If you want to get the same information about each process on the
system, specify the process identification argument as -1 when you invoke
LIB$GETJPI. Call LIB$GETJPI repetitively until it returns a status of SS$_
NOMOREPROC indicating that all processes on the system have been
examined.

The following program creates a file, PROCNAME.RPT, that lists the process
name of each process on the system. If the process running this program
does not have the privilege necessary to access a particular process, the
program writes the words NO PRIVILEGE in place of the process name. If
a process is suspended, LIB$GETJPI cannot access it and the program writes
the word SUSPENDED in place of the process name. Note that in either
of these cases, the program changes the error value in STATUS to a success
value so that the loop calling LIB$GETJPI continues to execute.

! Status variable and error codes

INTEGER STATUS,

2 STATUS.OK,

2 LIB$GET_LUN,

2 LIB$GETJPI

INCLUDE 1($SSDEF)1

PARAMETER (STATUS.OK = 1)

! Logical unit number and file name

INTEGERS LUN

CHARACTER*(*) FILE.NAME

PARAMETER (FILE.NAME = 'PROCNAME.RPT')

! Define item codes for LIB$GETJPI

INCLUDE '($JPIDEF)'

! Process name

CHARACTER*15 NAME

INTEGER LEN

! Process identification

INTEGER PID /-!/

! Get logical unit number and open the file

STATUS = LIB$GET_LUN (LUN)

OPEN (UNIT = LUN,
2 FILE * 'PROCNAME.RPT',

2 STATUS = 'NEW')

! Get information and write it to file

DO WHILE (STATUS)

STATUS = LIB$GETJPI(JPI$_PRCNAM,
2 PID,

2
2 NAME,

2 LEN)

3-13

Program Synchronization and Communication

! Extra space in WRITE commands is for

! FORTRAN carriage control

IF (STATUS) THEN

WRITE (UNIT = LUN.

2 FMT = '(2A)') ' NAME(1:LEN)

STATUS = STATUS.OK

ELSE IF (STATUS .EQ. SS$_N0PRIV) THEN

WRITE (UNIT = LUN.

2 FMT = 1(2A)') ' ' , 'NO PRIVILEGE*

STATUS = STATUS.OK

ELSE IF (STATUS .EQ. SS$_SUSPENDED) THEN

WRITE (UNIT = LUN,

2 FMT = *(2A)*) ' 'SUSPENDED*

STATUS = STATUS.OK

END IF

END DO

! Close file

IF (STATUS .EQ. SSl.NOMOREPROC)

2 CLOSE (UNIT = LUN)

LIB$GETJPI provides an easy method of obtaining a single item of
information. To request many items of information about a process,
you can make multiple calls to LIB$GETJPI, or use SYS$GETJPI or
SYS$GETJPIW. SYS$GETJPI executes asynchronously and SYS$GETJPIW
executes synchronously; other than that the two routines are the same (see
Section 3.3.1.3).

To specify a list of items for SYS$GETJPI or SYSGETJPIW (even if that list
contains only one item), use a record structure as shown in Section 1.5.8.
The following example uses SYS$GETJPIW to request the process name and
user name associated with the process whose process identification number
is in SUBPROCESS_PID.

! PID of subprocess

INTEGER SUBPROCESS.PID

! Include the request codes

INCLUDE '(IJPIDEF)'

3-14

Program Synchronization and Communication

! Define itmlst structure

STRUCTURE /ITMLST/

UNION

MAP

INTEGERS BUFLEN

INTEGER*2 CODE

INTEGER*4 BUFADR

INTEGER*4 RETLENADR

END MAP

MAP

INTEGER*4 END.LIST

END MAP

END UNION

END STRUCTURE

! Declare GETJPI itmlst

RECORD /ITMLST/ JPI_LIST(3)

! Declare buffers for information

CHARACTER*15

CHARACTER*12

INTEGER*4

2

PROCESS.NAME

USER.NAME

PNAME_LEN,

UNAME.LEN

! Declare I/O status structure

STRUCTURE /IOSB/

INTEGER*2 STATUS,

2 COUNT

INTEGER*4 '/.FILL

END STRUCTURE

! Declare I/O status variable
RECORD /IOSB/ JPISTAT

! Declare status and routine

INTEGER*4 STATUS,

2 SYS$GETJPIW

! Define SUBPROCESS.PID

! Set up itmlst

JPI.LIST(l).BUFLEN

JPI.LIST(l).CODE
JPI.LIST(l).BUFADR
JPI.LIST(l).RETLENADR

JPI_LIST(2).BUFLEN

JPI_LIST(2).CODE

JPI_LIST(2).BUFADR

JPI_LIST(2).RETLENADR

JPI_LIST(3).END.LIST

15

JPIl.PRCNAM
'/.LOC (PROCESS.NAME)
'/.LOC (PNAME.LEN)

12

JPI$_USERNAME

y.L0C (USER.NAME)

'/.LOC (UNAME.LEN)

0

3-15

Program Synchronization and Communication

! Request information and wait for it

STATUS = SYS$GETJPIW (,

2

2

2

2

2

SUBPROCESS.PID,

JPI_LIST,

JPISTAT,

,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (*/,VAL(STATUS))

! Check final return status

IF (.NOT. JPISTAT.STATUS) THEN

CALL LIB$SIGNAL (*/.VAL(JPISTAT. STATUS))

END IF

3.2.2 Monitoring Program Execution

When you execute a lengthy image, monitoring its execution is difficult,
especially if the image does not display information to the terminal.
However, if you use the SYS$SETPRN system service to change the process
name at significant points in your program, you can easily monitor the
program's progress with either CTRL/T (if the image is currently executing
in your process) or the DCL command SHOW SYSTEM (if the image is
executing in a detached process, such as a batch job).

The following program segment calculates the tax status for a number of
households, sorts the households according to tax status, and writes the
results to a report file. Since this is a time-consuming process, the program
changes the process name at major points so that progress can be monitored.

! Calculate approximate tax rates

STATUS = SYSISETPRN ('INCTAXES')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = TAX.RATES (TOTAL.HOUSES,

2 PERSONS.HOUSE,
2 ADULTS.HOUSE,

2 INCOME.HOUSE.

2 TAX_PER_HOUSE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

3-16

Program Synchronization and Communication

! Sort

STATUS = SYS$SETPRN ('INCSORT')

IF (.NOT. STATUS) CALL LIB$S IGNAL(*/.VAL(STATUS))

STATUS = TAX.SORT (TOTAL.HOUSES,

2 TAX_PER_HOUSE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Write report

STATUS = SYS$SETPRN ('INCREPORT')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

3.2.3 Controlling Process Scheduling

In general, you should let the system control process scheduling. However,
if necessary, you can inhibit swapping and/or increase the priority of a
particular process.

• Swapping—Inhibiting swapping keeps your process in physical memory.
This is not recommended unless the effective execution of your image
depends on it (for example, if the image executing in the process is
collecting statistics on processor performance).

Inhibit swapping for any process with the SYS$SETSWM system service.
If you create a subprocess with the LIB$SPAWN routine, you can inhibit
swapping by executing the DCL command SET PROCESS/NOSWAP
as the first command in a command procedure. If you create a process
with the SYS$CREPRC system service, you can inhibit swapping for
the process by setting the inhibit bit in the stsflg argument (see the

SYS$CREPRC description in the VAX/VMS System Services Reference
Manual). A process must have PSWAPM privilege to inhibit swapping.

• Priority—Increasing a process's base priority gives that process more
processor time at the expense of processes executing at lower priorities.
This is not recommended unless you have a program that must respond
immediately to events (for example, a real-time program). If you must
increase your base priority, return it to normal as soon as possible. If the
entire image must execute at an increased priority, reset the base priority
before exiting; image termination does not reset the base priority.

Set the base priority for any process with the SYS$SETPRI system
service. If you create a subprocess with the LIB$SPAWN routine, you can
set the priority of the subprocess by executing the DCL command SET
PROCESS/PRIORITY as the first command in a command procedure.

If you create a process with the SYS$CREPRC system service, you can
set the base priority of the process with the baspri argument. You must
have ALTPRI privilege to increase a process's base priority.

3-17

Program Synchronization and Communication

3.3 Controlling Program Execution

Event flags and asynchronous system traps (ASTs) allow you to synchronize
separate operations.

3.3.1 Synchronizing Operations with Event Flags

Event flags are divided into four clusters: two for local event flags and two
for common event flags.

• Local event flags—Local event flags are process specific; use them
to synchronize events within a program or to pass information from
the current image to an image executed later by the same process
(Section 3.5 discusses intraprocess communication). Local event flags
are automatically available to each program. They are not automatically
initialized; however, if an event flag is passed to a system service such as
SYS$GETJPI, the service initializes the flag before using it.

Cluster Flags

0 0—311

1 32—63

1 Event flags 24—31 are reserved for the system.

• Common event flags—Common event flags are group specific; use them
to synchronize events among images executing in different processes
(provided that the processes are in the same group). Before a program
can reference a common event flag, it must associate a cluster name with
a common event flag cluster (see Section 3.3.1.2).

Cluster Flags

2 64—95

3 96—127

3.3.1.1 Manipulating Event Flags

The following system-defined procedures allow you to manipulate event
flags. The last four system services listed place your process into a local
event flag (LEF) or a common event flag (CEF) wait state depending on the
event flag(s) specified.

3-18

Program Synchronization and Communication

LIB$GET_EF Returns the number of a local event flag not currently in
use

Frees a local event flag number

Clears an event flag

Sets an event flag

Returns the value of one cluster

Waits for an event flag and a nonzero status block

Waits for an event flag to be set

Waits for one of a number of event flags to be set

Waits for a number of event flags to be set

LIB$FREE_EF

SYSSCLREF

SYSSSETEF

SYS$READEF

SYSSSYNCH

SYSSWAITFR

SYSSWFLOR

SYS$WFLAND

To refer to an event flag, use a number in one of the appropriate clusters.
For example, to refer to a local event flag, you can use any number between
0 and 63 (excluding 24 through 31). To prevent accidental use of an event
flag that is already in use elsewhere in your program, use the LIB$GET_EF
and LIB$FREE_EF Run-Time Library routines. The LIB$GET_EF routine
returns the number of a free local event flag; the LIB$FREE_EF returns a
specified local event flag number to the list of free event flags. LIB$GET_EF
and LIB$FREE_EF can only keep track of the event flags that they allocate
and deallocate; therefore, to be effective, they must be used throughout your
program. No similar routines exist for common event flags.

The following example uses LIB$GET_EF to choose a local event flag, and
then uses SYS$CLREF to set the event flag to zero (clear the event flag).
Unless you are passing the event flag to a routine that clears it for you, you
should clear the event flag before using it. (Note that Run-Time Library
routines require an event flag number to be passed by reference and system
services require an event flag number to be passed by value.)

INTEGER FLAG.

2 STATUS.
2 LIB$GET_EF,

2 SYS$CLREF

STATUS = LIB$GET_EF (FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))
STATUS = SYS$CLREF ('/.VAL(FLAG))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

3-19

Program Synchronization and Communication

3.3.1.2 Common Event Flags

Common event flags are manipulated like local event flags. However,
common event flag clusters are not automatically allocated to a program.
Before referencing a common event flag, a program must create a common
event flag cluster by associating it with a name. Once the name is associated
with the cluster, the program can reference any flag in the cluster.

To associate a name and a common event flag cluster, use the SYS$ASCEFC
system service. The first program to name a common event flag cluster
creates it; all flags in a newly created cluster are clear. Other processes,
provided that they have the same UIC group number as the creator of the
cluster, can reference the cluster by invoking SYS$ASCEFC and specifying
the same cluster name.

Different processes may associate the same name with different common
event flag clusters; as long as the name is the same, the processes reference
the same cluster. It is the bit offset within the cluster, rather than the number
of the bit, that is used to reference the bit. In the following example , the
first program segment associates common event flag cluster 3 with the name
CLUSTER, and then clears the second event flag in the cluster. The second
program segment associates common event flag cluster 2 with the name
CLUSTER, then sets the second event flag in the cluster (the flag cleared by
the first program segment).

Example 1

STATUS = SYS$ASCEFC (%VAL(96).
2 'CLUSTER',,)
STATUS = SYSICLREF (7,VAL(98))

Example 2

STATUS = SYS$ASCEFC C/tVAL(64) .
2 'CLUSTER',,)
STATUS = SYS$SETEF (*/.VAL(66))

For clearer code, rather than using a specific event flag number, use one
variable to contain the bit offset you need and one variable to contain the
number of the first bit in the common event flag cluster that you are using.
To reference the common event flag, add the offset to number of the first bit.
The following example is exactly the same as the previous example.

3-20

Program Synchronization and Communication

Example 1

INTEGERS BASE,

2 OFFSET

PARAMETER (BASE = 96)

0FFSET=2

STATUS = SYS$ASCEFC (7.VAL(BASE) ,

2 ’CLUSTER',,)

STATUS = SYS$CLREF ('/.VAL (BASE+OFFSET))

Example 2

INTEGER*4 BASE,

2 OFFSET

PARAMETER (BASE = 64)

0FFSET=2

STATUS = SYS$ASCEFC ('/.VAL(BASE) ,

2 •CLUSTER’,,)

STATUS = SYSISETEF (*/.VAL(BASE+OFFSET))

Common event flags are often used for communicating between a parent
process and a created subprocess. The following parent process associates
the name CLUSTER with a common event flag cluster, creates a subprocess,
and then waits for the subprocess to set event flag 64.

INTEGER+4 BASE,

2 OFFSET

PARAMETER (BASE = 64,

2 OFFSET = 0)

! Associate common event flag cluster with name

STATUS = SYS$ASCEFC ('/.VAL (BASE) ,

2 'CLUSTER',,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL(STATUS))

! Create subprocess to execute concurrently

MASK = IBSET (MASK.O)
STATUS = LIB$SPAWN (’RUN REPORTSUB’, ! Image
2 'INPUT.DAT', ! SYS$INPUT
2 'OUTPUT.DAT', ! SYS$OUTPUT

2 MASK)
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Wait for response from subprocess

STATUS = SYS$WAITFR (7,VAL(BASE+0FFSET))

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

3-21

Program Synchronization and Communication

REPORTSUB, the program executing in the subprocess, associates the
name CLUSTER with a common event flag cluster, performs some set of
operations, sets event flag 64 (allowing the parent to continue execution),
and continues executing.

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64,
2 OFFSET = 0)

. ! Do operations necessary for

. ! continuation of parent process

! Associate common event flag cluster with name
STATUS = SYS$ASCEFC (%VAL(BASE),
2 'CLUSTER',,)
IF (.NOT. STATUS)
2 CALL LIBSSIGNAL (7.VAL(STATUS))

! Set flag for parent process to resume
STATUS = SYS$SETEF (7,VAL(BASE+0FFSET))

By default, a cluster name and common event flag cluster are disassociated
when the image that associated them exits. When the last image associated
with a cluster is disassociated, the common event flag cluster is deleted.
Clusters that are deleted after all images are disassociated are called
temporary clusters.

If you have PRMCEB privilege, you can create a permanent event flag
cluster (set the perm argument to one when you invoke SYS$ASCEFC).
A permanent event flag cluster is not deleted until after it is marked for
deletion with the SYS$DLCEFC system service (requires PRMCEB). Once
a permanent cluster is marked for deletion, it is like a temporary cluster;
when the last image associated with the cluster is disassociated, the cluster is
deleted.

3.3.1.3 Synchronous and Asynchronous System Services

A number of system services can be executed either synchronously or
asynchronously (for example, SYS$GETJPI and SYS$GETJPIW). The "W" at
the end of the system service name indicates the synchronous version of the
system service.

The asynchronous version of a system service queues a request and returns
control to your program. You can perform operations while the system
service executes; however, do not attempt to access information returned by
the service until checking that the system service has completed.

3-22

Program Synchronization and Communication

Typically, you pass an asynchronous system service an event flag and an
I/O status block. When the system service completes, it sets the event flag
and places the final status of the request in the I/O status block. Use the
SYS$SYNCH system service to ensure that the system service has completed.
You pass SYS$SYNCH the event flag and I/O status block that you passed
to the asynchronous system service; SYS$SYNCH waits for the event flag
to be set and then checks that the system service rather than some other
program set the event flag by examining the I/O status block. If the I/O
status block is'still 0, SYS$SYNCH waits until the I/O status block is filled.

! Data structure for SYS$GETJPI

INTEGER*4 STATUS.

2 FLAG.

2 PID.VALUE

! I/O status block
STRUCTURE /STATUS.BLOCK/

INTEGER*2 JPISTATUS,

2 LEN

INTEGER*4 ZERO /0/

END STRUCTURE

RECORD /STATUS.BLOCK/ IOSTATUS

! Call SYS$GETJPI and wait for information

STATUS = LIB$GET_EF (FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

STATUS = SYS$GETJPI (7.VAL(FLAG) .

2 PID.VALUE,

2
2 NAME.BUF.LEN,

2 IOSTATUS.

2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

STATUS = SYS$SYNCH (7.VAL(FLAG) ,
2 IOSTATUS)

IF (.NOT. IOSTATUS.JPISTATUS) THEN

CALL LIB$SIGNAL (7.VAL(IOSTATUS . JPISTATUS))

END IF

END

The synchronous version of a system service acts exactly as if you had used
the asynchronous version followed immediately by a call to SYS$SYNCH.
Regardless of whether you use the synchronous or asynchronous version of
a system service, if you omit the efn argument, the service uses event flag 0.

3-23

Program Synchronization and Communication

3.3.2 Interrupting Execution with an AST

You can have the system interrupt execution of your program and transfer
control to a subprogram by "queuing" an asynchronous system trap (AST).
You queue an AST by specifying the name of the subprogram (the AST
routine) as the astadr argument of certain system services. The system
delivers the AST (that is, transfers control to your subprogram) at a particular
time or in response to a particular event.

The AST routine must observe the following restrictions:

• Arguments—The queuing mechanism for an AST does not provide for
returning a function value or passing arguments. Therefore, you should
write an AST routine as a subroutine and use common blocks to pass
arguments between an AST routine and the program that queues it.

In some cases, a system service that queues an AST allows you to specify
an argument for the AST routine (for example, SYS$GETJPI). If you
choose to pass the argument, the AST routine must be written to accept
the argument.

• Terminal I/O—If you try to access the terminal with FORTRAN I/O

using SYS$INPUT or SYS$OUTPUT (for example, by specifying UNIT =
*), you may receive a redundant I/O error. You must establish another
channel to the terminal by explicitly opening the terminal (or using the

Run-Time Library SMG$ routines).

• Shared routines—An AST routine may invoke a subprogram that is also
invoked by another program unit in the program. To prevent conflicts,
a program unit should use the SYS$SETAST system service to disable
AST interrupts before calling a routine that may be invoked by an AST.
Once the shared routine has executed, the program unit can use the same
service to reenable AST interrupts.

• Invocation—You should never directly call an AST routine as a
subroutine or a function.

• Iteration—You should never allow an AST routine to be delivered
iteratively.

The system service used to queue the AST routine determines whether the
AST is delivered after a specified event or time.

• Event—The following system services allow you to specify an AST
routine to be delivered when the system service completes.

3-24

Program Synchronization and Communication

LIBSSPAWN SYS$ENQ SYSSENQW SYS$GETDVI

SYSSGETDVIW SYS$GETJPI SYS$GETJPIW SYS$GETSYI

SYS$GETSYIW SYS$QIO SYS$QIOW SYS$UPDSEC

The SYS$SETPRA system service allows you to specify an AST to be
delivered when the system detects a power recovery.

• Time—The SYS$SETIMR system service allows you to specify a time for
the AST to be delivered.

The SYS$DCLAST system service delivers a specified AST immediately.
This makes it an ideal tool for debugging AST routines.

If a program queues an AST and then exits before the AST is delivered,
the AST is not delivered; it is deleted from the queue. If a process is
hibernating when an AST is delivered, the AST executes and the process
continues hibernating. If a process is suspended when an AST is delivered,
the AST executes as soon as the process is resumed. If more than one AST is
delivered, they are executed in the order in which they were delivered.

Generally AST routines are used with the SYS$QIO or SYS$QIOW
system service for handling CTRL/C, CTRL/Y, and unsolicited input. See
Section 8.3 for more information and examples.

3.4 Interprocess Communication

Symbols, logical names, mailboxes, installed common blocks, and global
sections allow you to pass information between images executing in different
processes. In general, logical names are used to pass brief messages from one
image to another. Mailboxes, installed common blocks, and global sections
are used to carry on a dialog between images. The longer the messages in
the dialog, the more reasonable it is to use installed common blocks or global
sections.

3.4.1 Symbols and Logical Names

The following system-defined routines allow you to create, examine, and
delete symbols and logical names.

LIB$SET_SYMBOL

LIB$GET_SYMBOL

LIB$DELETE_SYMBOL

SYSSCRELNM

Defines or redefines a symbol

Returns a symbol value

Deletes a symbol

Creates a logical name

3-25

Program Synchronization and Communication

SYSSCRELNT

SYS$TRNLNM

SYSSDELLNM

Creates a logical name table

Returns a logical name translation

Deletes a logical name or logical name table

Typically, you use logical names to pass information between two processes.
If both processes are part of the same job, you can place the logical name
in the process logical name table (LNM$PROCESS) or the job logical name
table (LNM$JOB). (Note that if a subprocess is prevented from inheriting the
process logical name table, you would have to communicate using the job
logical name table.) If the processes are in the same group, place the logical
name in the group logical name table LNM$GROUP (requires GRPNAM
or SYSPRV privilege). If the processes are not in the same group, place
the logical name in the system logical name table LNM$SYSTEM (requires
SYSNAM or SYSPRV privilege). Symbols can also be used, but only between
a parent and a spawned subprocess that has inherited the parent's symbols.

The following program creates a spawned subprocess to perform an iterative
calculation. The logical name REP_NUMBER specifies the number of times
that REPEAT, the program executing in the subprocess, should perform the
calculation. Since both the parent process and the subprocess are part of the
same job, REP—NUMBER is placed in the job logical name table LNM$JOB.
(Note that logical names are case sensitive; specifically, LNM$JOB is a
system-defined logical name that refers to the job logical name table, lnm$job
is not.)

PROGRAM CALC

! Status variable and system routines

INTEGER*4 STATUS,

2 SYS$CRELNM,

2 LIB$GET_EF,

2 LIB$SPAWN

! Define itmlst structure

STRUCTURE /ITMLST/

UNION

MAP

INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR

INTEGER*4 RETLENADR

END MAP

MAP

INTEGERS END.LIST

END MAP
END UNION

END STRUCTURE

! Declare itmlst

RECORD /ITMLST/ LNMLIST(2)

! Number to pass to REPEAT.FOR

CHARACTER*3 REPETITIONS.STR

INTEGER REPETITIONS

3-26

Program Synchronization and Communication

• Symbols for LIB$SPAWN and SYS$CRELNM

EXTERNAL CLI$M_NOLOGNAM,

2 CLI$M_NOCLISYM,

2 CLI$M_NOKEYPAD,

2 CLI$M_NOWAIT,

2 LNM$_STRING

! Set REPETITIONS.STR

Set up and create logical name REP.NUMBER in job table

LNM$_STRING

'/.LOC (REPETITIONS_STR)

0

LNMLIST(l).BUFLEN = 3
LNMLIST(l).CODE

LNMLIST(l).BUFADR

LNMLIST(l).RETLENADR

LNMLIST(2).END.LIST =0

STATUS = SYS$CRELNM (,

2 'LNM$J0B', ! Logical name table

2 'REP_NUMBER, ! Logical name

2 LNMLIST) ! List specifying

! equivalence string

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL(STATUS))

! Execute REPEAT.FOR in a subprocess

MASK = 7.L0C (CLI$M_N0L0GNAM) .OR.

2 7,LOC (CLI$M_NOCLISYM) .OR.

2 7.L0C (CLI$M_NOKEYPAD) .OR.

2 7.L0C (CLI$M_NOWAIT)

STATUS = LIB$GET_EF (FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

STATUS = LIB$SPAWN ('RUN REPEAT',,.MASK,.FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

REPEAT.FOR

PROGRAM REPEAT

! Repeats a calculation REP_NUMBER of times,
! where REP_NUMBER is a logical name

! Status variables and system routines

INTEGER STATUS,
2 SYS$TRNLNM,

2 SYS$DELLNM

! Number of

INTEGERS

2

CHARACTER*3

times to repeat

REITERATE.
REPEAT_STR_LEN

REPEAT.STR

3-27

Program Synchronization and Communication

! Item list for SYS$TRNLNM

! Define itmlst structure

STRUCTURE /ITMLST/

UNION

MAP

INTEGERS BUFLEN

INTEGER*2 CODE
INTEGERS BUFADR

INTEGER*4 RETLENADR

END MAP

MAP

INTEGERS END.LIST

END MAP

END UNION

END STRUCTURE

! Declare itmlst

RECORD /ITMLST/ LNMLIST (2)

! Define item code

EXTERNAL LNM$_STRING

! Set up and translate the logical name REP_NUMBER

LNMLIST(l).BUFLEN = 3

LNMLIST(1).CODE = LNM$_STRING

LNMLIST(1) .BUFADR = */.LOC(REPEAT_STR)

LNMLIST(l) .RETLENADR = */,L0C(REPEAT_STR_LEN)

LNMLIST(2).END_LIST * 0

STATUS = SYS$TRNLNM (.

2 'LNM$JOB', ! Logical name table
2 'REP.NUMBER•., ! Logical name

2 LNMLIST) ! List requesting

! equivalence string

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Convert equivalence string to integer

! BN causes spaces to be ignored

READ (UNIT = REPEAT.STR (1:REPEAT_STR_LEN),

2 FMT = '(BN,13)') REITERATE

! Calculations

DO I * 1, REITERATE

END DO

! Delete logical name
STATUS * SYS$DELLNM ('LNM$JOB *. ! Logical name table
2 'REP_NUMBER',) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

END

3-28

Program Synchronization and Communication

3.4.2 Mailboxes

To create a mailbox, use the SYS$CREMBX system service. SYS$CREMBX
creates the mailbox and returns the number of the I/O channel assigned to

the mailbox. Typically, when you invoke SYS$CREMBX, you specify two
arguments.

• I/O channel (argument 2)—Specify an INTEGER*2 variable to receive
the I/O channel number. This argument is required.

• Logical name (argument 7)—Specify the logical name to be associated
with the mailbox. The logical name identifies the mailbox for other
processes and for FORTRAN I/O statements.

The SYS$CREMBX system service also allows you to specify the message
size, buffer size, mailbox protection code, and access mode of the mailbox;
however, the default values for these arguments are usually sufficient.

The following statement creates a mailbox named MAIL_BOX. The I/O
channel assigned to the mailbox is returned in MBX_CHAN.

! I/O channel
INTEGER*2 MBX_CHAN

! Mailbox name
CHARACTER*(*) MBX.NAME
PARAMETER (MBX.NAME ■ 'MAIL.BOX')

STATUS = SYS$CREMBX (,
2 MBX.CHAN, ! I/O channel
2
2 MBX.NAME) ! Mailbox name

Note

Do not use MAIL as the logical name for a mailbox or the
system will not execute the proper image in response to the
DCL command MAIL.

By default, a mailbox is deleted when no I/O channel is assigned to it. Such
a mailbox is called a temporary mailbox. If you have PRMMBX privilege,
you can create a permanent mailbox (specify the prmflg argument as 1
when you invoke SYSSCREMBX). A permanent mailbox is not deleted until

it is marked for deletion with the SYS$DELMBX system service (requires
PRMMBX). Once a permanent mailbox is marked for deletion, it is like a
temporary mailbox; when the last I/O channel to the mailbox is deassigned,
the mailbox is deleted.

3-29

Program Synchronization and Communication

The following program segment creates a permanent mailbox, then creates a

subprocess that marks that mailbox for deletion.

INTEGER STATUS.
2 SYS$CREMBX
INTEGER*2 MBX_CHAN

! Create permanent mailbox
STATUS = SYSSCREMBX (7.VAL(1) ,
2 MBX.CHAN.
2
2 'MAIL.BOX')
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))
! Create subprocess to delete it
STATUS = LIBSSPAWN ('RUN DELETE.MBX')
IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL(STATUS))

! Permanence flag
! Channel

Logical name

END

The following program executes in the subprocess. Notice that the
subprocess must assign a channel to the mailbox and then use that channel

to delete the mailbox. Any process that deletes a permanent mailbox, unless
it is the creating process, must use this technique. (Use SYS$ASSIGN to

assign the channel to the mailbox to ensure that the mailbox already exists.
SYS$CREMBX system service assigns a channel to a mailbox; however,

SYSSCREMBX also creates the mailbox if it does not already exist.)

INTEGER STATUS,
2 SYSIDELMBX,
2 SYSIASSIGN
INTEGER*2 MBX.CHAN

! Assign channel to mailbox
STATUS = SYS$ASSIGN ('MAIL.BOX',
2 MBX.CHAN..)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))
! Delete the mailbox
STATUS = SYS$DELMBX (%VAL(MBX_CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

END

The following list describes the three ways you can read and write to a
mailbox.

• Synchronous—Read or write to a mailbox, and then wait for the
cooperating image to perform the opposite operation. Use FORTRAN
I/O. This is the recommended method of addressing a mailbox.

• Immediate—Read or write to a mailbox. Continue program execution
after the operation completes. Use the SYS$QIOW system service.

• Asynchronous—Queue a read or write request to a mailbox. Continue
program execution while the request executes. Use the SYS$QIO system
service. When the read or write operation completes, the I/O status
block (if specified) is filled, the event flag (if specified) is set, and the AST
routine (if specified) is executed.

3-30

Program Synchronization and Communication

The VAX/VMS System Services Reference Manual describes the SYS$QIO and

SYS$QIOW system services. It is recommended that you supply the optional
I/O status block parameter when you use these two system services. The
contents of the status block varies depending on the QIO function code; refer
to the function code descriptions in the VAX/VMS I/O Reference Volume for a
description of the appropriate status block.

3.4.2.1 Synchronous Mailbox I/O

Use synchronous I/O when you read or write information to another image
and cannot continue until that image responds.

To open a mailbox for FORTRAN I/O, use the OPEN statement with the
following specifiers: UNIT, FILE, CARRIAGECONTROL, and STATUS.
The value for the keyword FILE should be the logical name of a mailbox
(SYS$CREMBX allows you to associate a logical name with a mailbox when
the mailbox is created). The value for the keyword CARRIAGECONTROL
should be 'LIST'. The value for the keyword STATUS should be 'NEW' for
the first OPEN statement and 'OLD' for subsequent OPEN statements.

The following program segment opens a mailbox for the first time.

! Status variable and values
INTEGER STATUS

! Logical unit and name for mailbox
INTEGER MBX.LUN
CHARACTER(*) MBX.NAME
PARAMETER (MBX.NAME = MAIL.BOX)

! Create mailbox
STATUS = SYS$CREMBX (,
2 MBX.CHAN, ! Channel
2 . ,, ,
2 MBX.NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX.LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))
OPEN (UNIT = MBX.LUN,
2 FILE = MBX.NAME,
2 CARRIAGECONTROL = ’LIST',
2 STATUS = 'NEW')

Once a mailbox is open, you can use FORTRAN formatted, sequential READ
and WRITE statements for I/O. FORTRAN automatically synchronizes I/O
by not allowing an image to complete an I/O operation until a cooperating
image has performed the opposite operation. For example, if an image
performs a mailbox read operation, control is not returned to that image until
a cooperating image performs a write operation to the same mailbox.

3-31

Program Synchronization and Communication

In the following example, one image passes another device names. The
second image returns the process name and the terminal associated with the
process that allocated each device. A WRITE statement in the first image
does not complete until the cooperating process issues a READ statement.
(The variable declarations are not shown in the second program because they
are very similar to those in the first program.)

DEVICE.FOR

PROGRAM PROCESS.DEVICE

! Status variable

INTEGER STATUS

! Name and I/O channel for mailbox

CHARACTER*(*) MBX.NAME

PARAMETER (MBX.NAME = 'MAIL.BOX')

INTEGER*2 MBX_CHAN

! Logical unit number for FORTRAN I/O

INTEGER MBX.LUN

! Character string format

CHARACTER*(*) CHAR.FMT

PARAMETER (CHAR.FMT = '(A50)')

! Mailbox message

CHARACTER*50 MBX.MESSAGE

! Create the mailbox

STATUS = SYS$CREMBX (,

2 MBX.CHAN, ! Channel

2
2 MBX.NAME) ! Logical name

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Get logical unit for mailbox and open mailbox

STATUS = LIB$GET_LUN (MBX.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

OPEN (UNIT ■ MBX.LUN,

2 FILE = MBX.NAME.

2 CARRIAGECONTROL = 'LIST',

2 STATUS = 'NEW')

! Create subprocess to execute GETDEVINF.EXE
STATUS = SYS$CREPRC (.
2 'GETDEVINF', •! Image

2 .
2 'GET.DEVICE', ! Process name

2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Pass device names to GETDEFINF

WRITE (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) 'SYS$DRIVEO'

3-32

Program Synchronization and Communication

! Read device information from GETDEFINF
READ (UNIT=MBX_LUN,

2 FMT=CHAR_FMT) MBX.MESSAGE

END

GETDEVINF.FOR

! Create mailbox

STATUS = SYSSCREMBX (,

2 MBX.CHAN, ! I/O channel

2
2 MBX.NAME) ! Mailbox name

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get logical unit for mailbox and open mailbox

STATUS = LIB$GET_LUN (MBX.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

OPEN (UNIT=MBX_LUN,
2 FILE=MBX_NAME,

2 CARRIAGECONTROL='LIST•,

2 STATUS = 'OLD')

! Read device names from mailbox

READ (UNIT=MBX_LUN,

2 FMT=CHAR_FMT) MBX.MESSAGE

! Use SYS$GETJPI to find process and terminal

! Process name: PROC.NAME (i:P_LEN)

! Terminal name: TERM (1:T_LEN)

MBX.MESSAGE = MBX.MESSAGE//' '//

2 PROC.NAME(1:P.LEN)//' '//

2 TERM(1:T.LEN)

! Write device information to DEVICE

WRITE (UNIT=MBX_LUN,

2 FMT=CHAR_FMT) MBX.MESSAGE

END

3-33

Program Synchronization and Communication

3.4.2.2 Immediate Mailbox I/O

Use immediate I/O to read or write to another image without waiting for
a response from that image. To ensure that the other process receives the
information that you write, either (1) do not exit until the other process has
a channel to the mailbox, or (2) use a permanent mailbox.

To queue an immediate I/O request, invoke the SYS$QIOW system service
with the following arguments (for details, see the VAX/VMS System Services
Reference Manual).

• I/O channel (argument 2)—Use the channel returned by SYS$ASSIGN.
The argument must be a word passed by value (%VAL).

• Function code and modifiers (argument 3)—Specify the function as one

of the following (without the IO$M_NOW modifier the SYS$QIOW
system service performs synchronous I/O):

IO$_WRITEVBLK .OR. IO$M_NOW Write message

IO$_READVBLK .OR. IO$M_NOW Read message

IO$_WRITEOF .OR. IO$M_NOW Write end-of-file message

The symbols are defined in the $IODEF module of the system object
or shareable image library, and the FORTRAN definition library. The
argument must be passed by value (%VAL).

• Status block (argument 4)—Define a status block of two words and
a longword: the return status, the message size, and the process
identification (PID) of the sender (for read) or receiver (for write). When
reading data from a mailbox, always reference the data as a substring
using the message size returned in the status block. If you reference
the entire buffer, your data will include any excess characters from a
previous operation using the buffer.

• User buffer (argument 7, or PI)—Define the user buffer as a character

variable but pass it to SYS$QIOW by reference (%REF). SYS$QIOW
ignores this argument when writing an end-of-file message.

• User buffer size (argument 8, or P2)—Specify the number of characters
defined for the user buffer. For example, if you specify USER-BUFFER
as CHARACTER* 132, give USER-BUFFER-SIZE a value of 132. The
argument must be passed by value (%VAL). SYS$QIOW ignores this
argument when writing an end-of-file message.

3-34

Program Synchronization and Communication

Since immediate I/O is asynchronous, it is possible that a mailbox may
contain more than one message or no message when it is read. If the
mailbox contains more than one message, the read operation retrieves the
messages one at a time in the order in which they were written. If the
mailbox contains no message, the read operation generates an end-of-file
error.

To allow a cooperating program to differentiate between an empty mailbox
and the end of the data being transferred, the process writing the messages
should use the IO$_WRITEOF function code to write an end-of-file message
to the mailbox as the last piece of data. When the cooperating program
reads an empty mailbox, the end-of-file message is returned and the second
longword of the I/O status block is 0. When the cooperating program
reads an end-of-file message explicitly written to the mailbox, the end-of-
file message is returned and the second longword of the I/O status block
contains the process identification number of the process that wrote the
message to the mailbox.

In the following example, the first program creates a mailbox named MAIL¬
BOX, writes data to it, and then indicates the end of the data by writing an
end-of-file message. The second program creates a mailbox with the same
logical name, reads the messages from the mailbox into an array, stopping
the read operations when a read operation generates an end-of-file message
and the second longword of the I/O status block is nonzero, confirming that
the writing process sent the end-of-file message. The processes use common
event flag 64 to ensure that SEND.FOR does not exit until RECEIVE.FOR
has established a channel to the mailbox. (If RECEIVE.FOR executes first, an

error occurs because SYS$ASSIGN cannot find the mailbox.)

SEND.FOR

INTEGERS STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX.NAME
PARAMETER (MBX.NAME = 'MAIL.BOX')
INTEGER*2 MBX.CHAN

! Mailbox message
CHARACTER*80 MBX.MESSAGE
INTEGER LEN

CHARACTER * 80 MESSAGES (255)
INTEGER MESSAGE.LEN (255)
INTEGER MAX.MESSAGE
PARAMETER (MAX_MESSAGE = 255)

3-35

Program Synchronization and Communication

! I/O function codes and status block

INCLUDE 1($I0DEF)'

INTEGER*4 WRITE.CODE

STRUCTURE /STATUS.BLOCK/

INTEGER*2 IOSTAT,

2 MSG.LEN

INTEGER*4 READER.PID

END STRUCTURE

RECORD /STATUS.BLOCK/ IOSTATUS

! System routines

INTEGER SYS$CREMBX,

2 SYS$ASCEFC,

2 SYS$WAITFR,

2 SYSIQIOW

! Create the mailbox

STATUS = SYS$CREMBX (,

2 MBX.CHAN.

2 iiit

2 MBX.NAME)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL(STATUS))

! Fill MESSAGES array

OR. I0$M_N0W

! Write the messages

DO I = 1, MAX.MESSAGE
WRITE.CODE = IO$_WRITEVBLK

MBX.MESSAGE = MESSAGES(I)

LEN = MESSAGE.LEN(I)

STATUS = SYS$QI0W (,

'/.VAL (MBX.CHAN) ,

7.VAL (WRITE.CODE)

IOSTATUS,

Channel

I/O code

Status block

'/.REF (MBX.MESSAGE) , ! PI

'/.VAL(LEN), ..,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)

2 CALL LIB$SIGNAL (%VAL(IOSTATUS.STATUS))
END DO

3-36

Program Synchronization and Communication

! Write end-of-file

WRITE.CODE = I0$_WRITE0F .OR. I0$M_N0W

STATUS = SYS$QI0W (,

2 '/.VAL(MBX.CHAN) , ! Channel

2 '/.VAL (WRITE.CODE) , ! End-of-file code

2 IOSTATUS, ! Status block

2)
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

IF (.NOT. IOSTATUS.IOSTAT)

2 CALL LIB$SIGNAL ('/.VAL (IOSTATUS . IOSTAT))

! Make sure cooperating process can read the information

! by waiting for it to assign a channel to the mailbox

STATUS = SYS$ASCEFC ('/.VAL (64),

2 'CLUSTER',,)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SYSSWAITFR ('/.VAL (64))

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

END

RECEIVE.FOR

INTEGER STATUS

INCLUDE '($I0DEF)'

INCLUDE '($SSDEF)'

! Name and channel number for mailbox

CHARACTER*(*) MBX.NAME

PARAMETER (MBX.NAME = 'MAIL.BOX')

INTEGER*2 MBX.CHAN

! QIO function code

INTEGER READ.CODE

! Mailbox message

CHARACTER*80 MBX.MESSAGE

INTEGER*4 LEN

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE.LEN (255)

! I/O status block

STRUCTURE /STATUS.BLOCK/

INTEGER*2 IOSTAT,

2 MSG.LEN

INTEGER*4 READER.PID

END STRUCTURE
RECORD /STATUS.BLOCK/ IOSTATUS

! System routines

INTEGER SYS$ASSIGN,
SYS$ASCEFC.

SYS$SETEF,

SYS$QIOW

3-37

Program Synchronization and Communication

! Create the mailbox and let the other process know

STATUS = SYS$ASSIGN (MBX.NAME,
2 MBX.CHAN,,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = SYS$ASCEFC C/.VAL(64) ,

2 'CLUSTER',,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

STATUS = SYSSSETEF (%VAL(64))

IF (.NOT. STATUS) CALL LIB$SIGNAL (V.VAL(STATUS))

! Read first message

READ_CODE = IO$_READVBLK

LEN = 80

STATUS = SYS$QIOW (,

2

OR. IO$M_NOW

7,VAL (MBX_CHAN) .

7,VAL (READ_CODE)

IOSTATUS,

Channel

Function code

Status block

7,REF(MBX_MESSAGE) , ! PI

'/.VAL (LEN) , , , ,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/,VAL (STATUS))

IF ((.NOT. IOSTATUS.IOSTAT) .AND.

2 (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN

CALL LIBISIGNAL (*/.VAL(IOSTATUS. IOSTAT))

ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN

1 = 1

MESSAGES(I) = MBX.MESSAGE

MESSAGE_LEN(I) = IOSTATUS.MSG.LEN

END IF

! Read messages until cooperating process writes end-of-file

DO WHILE (.NOT. ((IOSTATUS.IOSTAT .EQ. SS$_ENDOFFILE) .AND.

2 (IOSTATUS.READER.PID .NE. 0)))

2

2

2

2

2

2

2

STATUS = SYS$QIOW (.
’/.VAL (MBX.CHAN) ,

'/.VAL (READ_CODE) ,

IOSTATUS,

! Channel

! Function code

! Status block

'/.REF (MBX.MESSAGE) , ! PI

•/.VAL(LEN),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

IF ((.NOT. IOSTATUS.IOSTAT) .AND.

(IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN

CALL LIB$SIGNAL C/.VAL (IOSTATUS . IOSTAT))
ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN

1 = 1 + 1

MESSAGES(I) = MBX.MESSAGE
MESSAGE_LEN(I) = IOSTATUS.MSG.LEN

END IF

END DO

3-38

Program Synchronization and Communication

3.4.2.3 Asynchronous Mailbox I/O

Use asynchronous I/O to queue a read or write request to a mailbox. To
ensure that the other process receives the information that you write, either
(1) do not exit until the other process has a channel to the mailbox, or (2)
use a permanent mailbox.

To queue an asynchronous I/O request, invoke the SYS$QIO system service
as shown in Section 3.4.2.2; however, when specifying the function codes,
do not specify the IO$M_NOW modifier. The VAX/VMS System Services
Reference Manual describes the SYS$QIO system service; the I/O function

codes are described in the VAX/VMS I/O Reference Volume. The SYS$QIO
system service allows you to specify an AST to be executed and/or an event
flag to be set when the I/O operation completes.

The following example calculates gross income and taxes, and then uses
the results to calculate net income. INCOME.FOR uses SYS$CREPRC,
specifying a termination mailbox, to create a subprocess to calculate taxes
(CALC—TAXES) while INCOME calculates gross income. INCOME issues
an asynchronous read to the termination mailbox specifying an event flag to
be set when the read completes. (The read completes when CALC—TAXES
completes terminating the created process and causing the system to write to
the termination mailbox.) After finishing its own gross income calculations,
INCOME.FOR waits for the flag that indicates CALC—TAXES has completed
and then figures net income.

CALC—TAXES.FOR passes the tax information to INCOME.FOR using the
installed common block created from INSTALLED.FOR (Section 3.4.3.1
describes installed common blocks).

INSTALLED. FOR

! Installed common to be linked with INCOME.FOR and

! CALC_TAXES.FOR.

! Unless the shareable image created from this file is

! in SYS$SHARE, you must define a group logical name

! INSTALLED and equivalence it to the full file specification

! of the shareable image.

INTEGER*4 INCOME (200),

2 TAXES (200),

2 NET (200)

COMMON /CALC/ INCOME,

2 TAXES,

2 NET

END

3-39

Program Synchronization and Communication

INCOME.FOR

! Status and system routines

INCLUDE '($SSDEF)'

INCLUDE '($I0DEF)'

INTEGER STATUS,

2 LIB$GET_LUN,

2 LIB$GET_EF,

2 SYS$CLREF,

2 SYS$CREMBX,

2 SYS$CREPRC,

2 SYS$GETDVIW,

2 SYS$QI0,

2 SYS$WAITFR

! Set up for SYS$GETDVI

! Define itmlst structure

STRUCTURE /ITMLST/

UNION

MAP

INTEGERS BUFLEN

INTEGERS CODE

INTEGER*4 BUFADR

INTEGER*4 RETLENADR
END MAP

MAP

INTEGERS END.LIST

END MAP

END UNION

END STRUCTURE

! Declare itmlst

RECORD /ITMLST/ DVILIST (2)

INTEGER*4 UNIT.BUF,

2 UNIT.LEN

EXTERNAL DVI$_UNIT

! Name and I/O channel for mailbox

CHARACTER*(*) MBX.NAME

PARAMETER (MBX.NAME = 'MAIL.BOX')
INTEGER*2 MBX.CHAN

INTEGER*4 MBX.LUN ! Logical unit number for I/O
CHARACTER*84 MBX.MESSAGE ! Mailbox message

INTEGER*4 READ.CODE,

2 LENGTH
! I/O status block

STRUCTURE /STATUS.BLOCK/

INTEGER*2 IOSTAT,

2 MSG.LEN

INTEGER+4 READER.PID

END STRUCTURE

RECORD /STATUS.BLOCK/ IOSTATUS

! Declare calculation variables in installed common

INTEGER*4 INCOME (200),

2 TAXES (200),
2 NET (200)

COMMON /CALC/ INCOME,
2 TAXES,
2 NET

3-40

Program Synchronization and Communication

! Flag to indicate taxes calculated

INTEGER*4 TAX.DONE

! Get and clear an event flag

STATUS = LIB$GET_EF (TAX.DONE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SYS$CLREF C/.VAL (TAX.DONE))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Create the mailbox

STATUS = SYS$CREMBX (,

2 MBX.CHAN,

2
2 MBX.NAME)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get unit number of the mailbox

= 4 DVILIST(l).BUFLEN

DVILIST(l).CODE

DVILIST(l).BUFADR

DVILIST(l).RETLENADR =

DVILIST(2).END.LIST =

STATUS = SYS$GETDVIW (,

2
2

2

2

*/.LOC(DVI$_UNIT)

•/.LOC(UNIT.BUF)

*/,LOC(UNIT_LEN)

0

*/,VAL(MBX.CHAN).

MBX.NAME,

DVILIST,

...)

Channel

Device

Item list

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Create subprocess to calculate taxes

STATUS = SYS$CREPRC (,

2 'CALC.TAXES'. ! Image

2 .
2 'CALC.TAXES', ! Process name

2 7.VAL(4), ! Priority

2
2 '/.VAL(UNIT_BUF) ,)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Asynchronous read to termination mailbox

! sets flag when tax calculations complete

READ.CODE = IO$_READVBLK

LENGTH = 84
SYS$QIO C/.VAL (TAX_D0NE) ,

‘/.VAL (MBX.CHAN) ,

•/.VAL(READ.CODE) ,

IOSTATUS,,,
•/.REF (MBX.MESSAGE)

•/.VAL(LENGTH) , . . ,)

STATUS =
2

2

2
2

2
IF (.NOT

Indicates read complete
Channel

Function code
Status block

PI

P2

STATUS) CALL LIB$SIGNAL (‘/.VAL(STATUS))

3-41

Program Synchronization and Communication

! Calculate incomes

! Wait until taxes are calculated

STATUS = SYS$WAITFR C/.VAL(TAX_DONE))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Check mailbox I/O

IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (*/.VAL(IOSTATUS . IOSTAT))

! Calculate net income after taxes

END

CALC_TAXES. FOR

! Declare calculation variables in installed common

INTEGER*4 INCOME (200),

2 TAXES (200).

2 NET (200)

COMMON /CALC/ INCOME,

2 TAXES,

2 NET

! Calculate taxes

END

3.4.3 Sharing Data

Typically, you use an installed common block for interprocess
communication or for allowing two or more processes to access the same
data simultaneously. However, you must have CMKRNL privilege to install
the common block. If you do not have CMKRNL privilege, global sections
allow you to perform the same operations.

3—42

Program Synchronization and Communication

3.4.3.1 Installed Common Blocks

To communicate between processes using a common block, you must install
the common block as a shared shareable image and link each program that
references the common block against that shareable image.

To install a common block as a shared shareable image:

1 Define a common block—Write a program that declares the variables in

the common block and defines the common block. This program should
not contain executable code. The following FORTRAN program defines
a common block.

INC_COMMON.FOR

INTEGER TOTAL.HOUSES
REAL PERSONS.HOUSE (2048),
2 ADULTS.HOUSE (2048),
2 INCOME.HOUSE (2048)
COMMON /INCOME.DATA/ TOTAL.HOUSES,
2 PERSONS.HOUSE,
2 ADULTS.HOUSE,
2 INCOME.HOUSE

END

2 Create the shareable image—Compile the program containing the

common block. Use the LINK/SHAREABLE command to create a
shareable image containing the common block.

$ FORTRAN INC.COMMON
$ LINK/SHAREABLE INC.COMMON

3 Install the shareable image—Use the DCL command SET PROCESS
/PRIVILEGE to give yourself CMKRNL privilege (required for use of
the Install Utility). Use the DCL command INSTALL to invoke the
interactive Install Utility. When the INSTALL> prompt appears, type
CREATE, followed by the complete file specification of the shareable
image that contains the common block (file type defaults to EXE) and the
qualifiers /WRITEABLE and /SHARED. The Install Utility installs your
shareable image and reissues the INSTALL> prompt. Type EXIT to exit.
Remember to remove CMKRNL privilege. (For complete documentation
of the Install Utility, see the VAX/VMS Install Reference Manual.)

$ SET PROCESS/PRIVILEGE=CMKRNL
$ INSTALL
INSTALL> CREATE DISK$USER:[INCOME.DEV]INC.COMMON-
_> /WRITEABLE/SHARED
INSTALL> EXIT
$ SET PROCESS/PRIVILEGE=NOCMKRNL

3—43

Program Synchronization and Communication

Note

A disk containing an installed image cannot be dismounted.
To remove an installed image, invoke the Install Utility and
type DELETE followed by the complete file specification of
the image. The DELETE subcommand does not delete the
file from the disk; it removes the file from the list of known
installed images.

Use the following steps to write or read the data in an installed common
block from within any program.

1 Include the same variable and common block definitions in the program.

2 Compile the program.

3 Link the program against the shareable image that contains the common
block. (Linking against a shareable image requires an options file.)

$ LINK INCOME, DATA/OPTION
$ LINK REPORT, DATA/OPTION

DATA.OPT

INC.COMMON/SHAREABLE

4 Execute the program.

In the previous series of examples, the two programs INCOME and REPORT
access the same area of memory through the installed common block
INCOME_DATA (defined in INC_COMMON.FOR).

Typically, programs accessing shared data use common event flag clusters
to synchronize read and write access to the data. In the simplest case, one
event flag in a common event flag cluster might indicate that a program
is writing data and a second event flag in the cluster might indicate that
a program is reading data. Before accessing the shared data, a program
would examine the common event flag cluster to ensure that accessing the
data would not conflict with an operation already in progress. Section 3.3.1
discusses program synchronization.

3-44

Program Synchronization and Communication

3.4.3.2 Global Sections

To share data using global sections, each process that plans to access the
data includes a common block, which contains the variables for the data, of
the same name. The first process to reference the data declares the common
block as a global section and, optionally, maps data to the section. (Data in
global sections, as in private sections, must be page aligned; see Section 9.2
for instructions.)

To create a global section, invoke SYS$CRMPSC as described in Section 9.2,
adding the following:

• Additional argument—Specify the name of the global section (argument
5). A program uses this name to access a global section.

• Additional flag—Set the SEC$V_GBL bit of the flags argument to
indicate that the section is a global section.

As other programs need to reference the data, each can use either
SYS$CRMPSC or SYS$MGBLSC to map data into the global section. If you
know that the global section exists, best practice is to use the SYS$MGBLSC
system service.

The VAX/VMS System Services Reference Manual describes SYS$MGBLSC and
its arguments. Typically, you specify only the following arguments:

• Section to map (argument 1)—Define the first argument as an integer
array of two elements. Specify the location of the first variable in the
common block as the value of the first array element and the location of
the last variable in the common block as the value of the second array
element. (If the first variable in the common block is an array or string,
use the first element of the array or string; if the last variable in the
common block is an array or string, use the last element of the array or
string.)

As described in Section 9.2, the program variables for the data are in a
common block. Page align the common block at link time by specifying
an options file containing the following link option (name is the name of
the common block).

PSECT.ATTR = name, PAGE

Within the common block, you should specify the data in order from
most complex to least complex (high to low rank) with character data
last. This naturally aligns the data, thus preventing odd page breaks in
virtual memory.

3-45

Program Synchronization and Communication

• Section mapped (argument 2)—Define the second argument as an integer
array of two elements. The value returned in the first array element
should be the same as the address passed in the first element of the
inadr argument. The value returned in the second element should be
equal to or slightly more than (within 512 bytes, 1 block) the value
passed in the second element of the inadr argument.

• Options (argument 4)—Specify SEC$V_GBL to indicate that the section
is a global section.

• Section name (argument 5)—Specify a character string containing the
name of the global section that you are mapping.

In the following example, one image, DEVICE.FOR, passes another image,
GETDEVINF.FOR, device names. GETDEVINF.FOR returns the process
name and the terminal associated with the process that allocated each device.
The two processes use the global section GLOBAL _SEC to communicate.
GLOBAL _SEC is mapped to the common block named DATA, which
is page aligned by the options file DATA.OPT. Event flags are used to
synchronize the exchange of information. UFO—CREATE.FOR, DATA.OPT,
and DEVICE.FOR are included here for easy reference. Refer to Section 9.2
if you have questions about either of these programs.

UFO—CREATE. FOR

INTEGER FUNCTION UFO.CREATE (FAB,
2
2

RAB,
LUN)

! Include RMS definitions
INCLUDE '($FABDEF)'
INCLUDE '($RABDEF)'

! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN

! Declare channel
INTEGER*4 CHAN
COMMON /CHANNEL/ CHAN

! Declare status variable
INTEGER STATUS

! Declare system procedures
INTEGER SYS$CREATE

! Set useropen bit in the FAB options longword
FAB.FAB$L_F0P = FAB.FAB$L_FOP .OR. FAB$M_UF0

3-46

Program Synchronization and Communication

! Open tile

STATUS = SYS$CREATE (FAB)

! Read channel from FAB status word

CHAN = FAB.FAB$L_STV

! Return status of open operation

UFO.CREATE = STATUS

END

DATA.OPT

PSECT.ATTR = DATA, PAGE

DEVICE.FOR

! Define global section flags

INCLUDE '($SECDEF)•

! Mask for section flags

INTEGER SEC.MASK

! Logical unit number for section file

INTEGER INFO.LUN

! Channel number for section file

INTEGER SEC.CHAN

COMMON /CHANNEL/ SEC.CHAN

! Length for the section file

INTEGER SEC.LEN

! Data for the section file

CHARACTER*12 DEVICE,

2 PROCESS

CHARACTER*6 TERMINAL

COMMON /DATA/ DEVICE,

2 PROCESS,
2 TERMINAL

! Location of data

INTEGER PASS.ADDR (2),

2 RET.ADDR (2)

! Two common event flags

INTEGER REQUEST.FLAG,
2 INFO.FLAG

DATA REQUEST.FLAG /70/

DATA INFO.FLAG /71/

3-47

Program Synchronization and Communication

! User-open routines
INTEGER UF0_CREATE

EXTERNAL UFO.CREATE

! Open the section file

STATUS = LIB$GET_LUN (INFO.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL('/.VAL(STATUS))

SEC.MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL

! (last address -- first address + length of last element + 511)/512

SEC.LEN = (('/.LOC(TERMINAL) - '/.LOC (DEVICE) + 6 + 511)/512)

OPEN (UNIT=INFO_LUN,

2 FILE='INFO.TMP',

2 STATUS='NEW1,

2 INITIALSIZE = SEC.LEN,

2 USEROPEN = UFO.CREATE)

! Free logical unit number and map

CLOSE (INFO.LUN)

! Get location of data

PASS.ADDR (1) = '/.LOC (DEVICE)

PASS.ADDR (2) = '/.LOC (TERMINAL)

STATUS * SYS$CRMPSC (PASS.ADDR,

2 RET.ADDR,

2
2 '/.VAL(SEC.MASK) , ! Section mask

2 'GLOBAL.SEC', ! Section name

2
2 '/.VAL(SEC.CHAN) . ! I/O channel

2 .,.)
IF (.NOT. STATUS) CALL LIB$SIGNAL('/.VAL(STATUS))

! Create the subprocess

STATUS = SYS$CREPRC (,

2 'GETDEVINF', ! Image

2 .

2 'GET.DEVICE', ! Process name

2 */,VAL(4), , ,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Write data to section

DEVICE = 1$FL0PPY1'

! Get common event flag cluster and set flag

STATUS = SYS$ASCEFC ('/.VAL(REQUEST.FLAG) ,
2 'CLUSTER•,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = SYSSSETEF ('/.VAL (REQUEST.FLAG))

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! When GETDEVINF has the information, INFO.FLAG is set

STATUS = SYS$WAITFR ('/.VAL (INFO.FLAG))

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

section

! Address of section

! Addresses mapped

3-48

Program Synchronization and Communication

GETDEVINF.FOR

! Define section flags

INCLUDE '($SECDEF)'

! Mask for section flags

INTEGER SEC.MASK

! Data for the section file

CHARACTER*12 DEVICE,

2 PROCESS

CHARACTER*6 TERMINAL

COMMON /DATA/ DEVICE,

2 PROCESS,

2 TERMINAL

! Location of data

INTEGER PASS.ADDR (2),

2 RET.ADDR (2)

! Two common event flags

INTEGER REQUEST.FLAG,

2 INFO.FLAG

DATA REQUEST.FLAG /70/

DATA INFO.FLAG /71/

! Get common event flag cluster and wait

! for GBL1.F0R to set REQUEST.FLAG

STATUS = SYS$ASCEFC C/.VAL (REQUEST.FLAG) ,

2 ■CLUSTER',,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = SYS$WAITFR C/.VAL (REQUEST.FLAG))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get location of data

PASS.ADDR (1) = V.L0C (DEVICE)

PASS.ADDR (2) = '/.LOC (TERMINAL)

! Set write flag

SEC.MASK = SEC$M_WRT

! Map the section

STATUS = SYS$MGBLSC (PASS.ADDR,
2 RET.ADDR,
2
2 7.VAL(SEC.MASK) ,

2 'GLOBAL.SEC',,)

! Address of section
! Address mapped

! Section mask

! Section name

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

Call GETDVI to get the process ID of the
process that allocated the device, then
call GETJPI to get the process name and terminal

name associated with that process ID.

Set PROCESS equal to the process name and

set TERMINAL equal to the terminal name.

! After information is in GLOBAL.SEC

STATUS = SYS$SETEF C/.VAL (INFO.FLAG))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

3-49

Program Synchronization and Communication

By default, a global section is deleted when no image is mapped to it. Such
global sections are called temporary global sections. If you have PRMGBL
privilege, you can create a permanent global section (set the SEC$V_PERM

bit of the flags argument when you invoke SYS$CRMPSC). A permanent
global section is not deleted until after it is marked for deletion with the
SYS$DGBLSC system service (requires PRMGBL). Once a permanent section
is marked for deletion, it is like a temporary section; when no image is
mapped to it, the section is deleted.

3.5 Intraprocess Communication

Per-process common blocks, local event flags, and symbols allow you to pass
data from the current image to an image executed later by the same process.
Logical names can be used for intraprocess communication; however, be sure
to use supervisor-mode logical names. By default, SYS$CRELNM creates
user-mode logical names, which are deleted when the creating image exits.
Since per-process common blocks are least likely to be corrupted by images
that execute between the time one image deposits information and another
image reads it, they are recommended.

The Run-Time Library procedures LIB$RUN—PROGRAM and LIB$DO_
COMMAND allow you to invoke the next image from the current image.
Per-process common blocks, local event flags, symbols, and supervisor¬
mode logical names are equally acceptable for passing information between
"chained" images since the image reading the information executes
immediately after the image that deposited it.

3.5.1 Per-Process Common Blocks

To pass data from the current image to a later executing image, use a per-
process common block (252 bytes long). The Run-Time Library procedure

LIB$PUT_COMMON writes information to this common block; the Run¬
Time Library procedure LIB$GET_COMMON reads information from this
common block.

The per-process common block is automatically created for you; no special
declaration is necessary. To pass more than 252 bytes of data, put the data
in a file and use the per-process common block to pass the name of the file.

The following program segment reads statistics from the terminal and enters
them into a binary file. After all of the statistics are entered into the file, the
program places the name of the file into the per-process common block and
exits.

3—50

Program Synchronization and Communication

! Enter statistics

! Put the name of the stats file into common
STATUS = LIB$PUT_C0MM0N (FILE.NAME (1:LEN))

The following program reads the file name from the per-process common
block and compiles a report using the statistics from that file.

! Read the name of the stats file from common
STATUS = LIB$GET_C0MM0N (FILE.NAME,
2 LEN)

! Compile the report

Data in the per-process common block cannot be deleted or modified unless
LIB$PUT_COMMON is invoked. Therefore, any number of images may
be executed between INCOME.FOR and REPORT.FOR and, provided that
LIB$PUT_COMMON has not been invoked, REPORT.FOR will read the
correct data. Invoking LIB$GET_COMMON to read the per-process common
block does not modify the data.

Although the descriptions of LIB$PUT_COMMON and LIB$GET_COMMON
in the VAX/VMS Run-Time Library Routines Reference Manual specify a
character string for the argument containing the data written to or read
from the per-process common block, you can specify other types of data.
However, since the data must be passed by descriptor, you must use the
built-in function %DESCR to pass noncharacter data.

Since permanent mailboxes and permanent global sections are not deleted
when the creating image exits, they also could be used to pass information
from the current image to a later executing image. However, use of the per-
process common block is recommended since it uses fewer system resources
than the permanent structures and does not require privilege.
(You need PRMMBX to create a permanent mailbox and PRMGBL to create a
permanent global section.)

3-51

Program Synchronization and Communication

3.5.2 Passing Control

The Run-Time Library procedures LIB$DO_COMMAND and LIB$RUN_
PROGRAM allow you to invoke the next image from the current image.
That is, they allow you to perform image run-down for the current image
and pass control to the next image without returning to DCL command level.
Which routine you use depends on whether the next image is a command
image or a noncommand image.

• Command image—A command image is invoked at DCL command level
with the appropriate DCL command. The following command executes
the command image associated with the DCL command COPY.

$ COPY DATA.TMP APRIL.DAT

To pass control from the current image to a command image, use the
run-time library routine LIB$DO_COMMAND. If LIB$DO_COMMAND
executes successfully, control is not returned to the invoking image
and statements following the LIB$DO_COMMAND statement are not
executed. The following statement causes the current image to exit and
executes the DCL command shown above.

STATUS = LIB$D0_C0MMAND ('COPY DATA.TMP APRIL.DAT')
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

END

To execute a number of DCL commands, specify a DCL command
procedure. The following statement causes the current image to exit and
executes the DCL command procedure [STATS.TEMP]CLEANUP.COM.

STATUS = LIB$DO_COMMAND ('0[STATS.TEMP]CLEANUP')
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

• Noncommand image—A noncommand image is invoked at DCL
command level with the DCL command RUN. The following command
executes the noncommand image [STATISTICS.TEMPjTEST.EXE.

$ RUN [STATISTICS.TEMP]TEST

To pass control from the current image to a noncommand image, use
the run-time library routine LIB$RUN_PROGRAM. If LIB$RUN_
PROGRAM executes successfully, control is not returned to the
invoking image and statements following the LIB$RUN —PROGRAM
statement are not executed. The following program segment causes

3-52

Program Synchronization and Communication

the current image to exit and passes control to the noncommand image
[STATISTICS.TEMP]TEST.EXE on the default disk.

STATUS = LIB$RUN_PROGRAM ('[STATISTICS.TEMP]TEST.EXE')
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

3.6 Intersystem Communication

To communicate between images on different systems, perform the following
operations:

• Request the network connection (initiating process)

• Complete the network connection (remote process)

• Exchange messages (both processes)

• Terminate the network connection (process that receives the final
message)

3.6.1 Requesting a Network Connection

To request a network connection, use the OPEN statement. The value of the
FILE specifier must be a network task specification of the format

node"access-control-string"::"TASK=command-procedure"

• Node—Specifies the node name of the remote system.

• Access-control-string—Specifies the user name and associated password
of an account on the remote system. The remote system uses the access
control string to ensure that you have valid access rights to the system.
(This string may be omitted if the calling process has a proxy account
on the remote node. For more information, see the description of the
AUTHORIZE utility in the VAX/VMS Authorize Reference Manual.)

• TASK=command-procedure—Specifies the task to be executed on the
remote node. The command procedure, which must invoke the program
that completes the network connection, is a user-written command
procedure that must be in the default directory (on the default disk) of
the account named in the access control string. (The login command
procedure of the remote account is executed before the system searches
for the command procedure; therefore, if the login command procedure
changes the default device and/or directory, the command procedure

3-53

Program Synchronization and Communication

must be in that device and directory rather than the SYS$LOGIN device
and directory.)

The following program segment requests a network connection to the remote
system PHILLY. To prevent a security problem, the program constructs the
access control string by prompting the user for a user name and password.
(To prevent the password from being echoed as the user types it, use the
SYS$QIO system service and the IO$M_NOECHO modifier, as described in
Section 8.3.4.)

! Status variable

INTEGER STATUS

! Logical unit for network connection

INTEGER NET.LUN

! User name and password

CHARACTER*15 USERNAME.

2 PASSWORD

INTEGER USERNAME.LEN.

2 PASSWORD __LEN

! Task specification string

CHARACTER*80 TASK

! Declare system routines

INTEGER LIB$GET_LUN,

2 LIB$GET_INPUT

! Get logical unit for network connection

STATUS = LIB$GET.LUN (NET.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get user name and password

STATUS = LIB$GET_INPUT (USERNAME.

2 'USERNAME: '.

2 USERNAME.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS = LIB$GET_INPUT (PASSWORD.

2 'PASSWORD: ',

2 PASSWORD.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL(STATUS))

! Create a network access string of the form:

! PHILLY"username password"::"TASK=BUDGET"

TASK = 'PHILLY'"//

2 USERNAMEU: USERNAME.LEN)//' '//
2 PASSWORD(1:PASSWORD.LEN)//
2 '"::"TASK=BUDGET"'

OPEN (UNIT=NET_LUN,
2 FILE = TASK.

2 STATUS = 'OLD')

3-54

Program Synchronization and Communication

3.6.2 Completing a Network Connection

To complete a network connection, the program that is invoked by the

command procedure named in the connection request uses the OPEN
statement with a FILE specifier value of SYS$NET. In the following example,
the command procedure BUDGET.COM invokes the image NET_IMAGE,
which completes the network connection requested in the previous example.

BUDGET.COM

$ RUN NET.IMAGE
$ PURGE/KEEP=2 NETSERVER.LOG

NET-IMAGE. FOR

! Status variable
INTEGER STATUS

! Logical unit number for network connection
INTEGER NET.LUN

! Declare system routines
INTEGER LIB$GET_LUN

! Get a logical unit number and
! complete the network connection
STATUS = LIB$GET_LUN (NET.LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

OPEN (UNIT = NET.LUN,
2 FILE = 'SYS$NET',
2 STATUS = 'OLD')

The NETSERVER.LOG file, which is purged in the command procedure,

is created in the default directory of the remote account if the remote
system can be accessed and the account is valid. The NETSERVER.LOG
file describes the network transaction regardless of whether or not the
connection completes successfully.

3.6.3 Exchanging Messages

To exchange messages, cooperating programs can use FORTRAN READ and
WRITE statements. In the following example, GET—STATS.FOR requests
a network connection. If SEND—STATS.FOR completes the connection,
SEND—STATS.FOR writes the statistics and GET—STATS.FOR reads them.
The command procedure SEND_STATS.COM must be in the default
directory of the remote account specified by the user executing

GET—STATS.FOR.

3-55

Program Synchronization and Communication

GET—STATS.FOR

! Communicates with SEND_STATS on remote node PHILLY.

! User must supply username/password from an account

! on remote system.

! Status variables and values

INTEGER STATUS,

2 IOSTAT,

2 IO.OK

PARAMETER (IO.OK = 0)

INCLUDE '($F0RDEF)'

! Logical unit for network connection

INTEGER LUN

! Statistics

INTEGER STATS (2500)

INTEGER MAX.STATS /2500/

! User name and password

CHARACTER*15 USERNAME,

2 PASSWORD

INTEGER USERNAME.LEN,

2 PASSWORD.LEN

! Network task string

CHARACTER*80 TASK

! Declare system routines

INTEGER LIB$GET_LUN,

2 LIB$GET_INPUT

• Get logical unit for network connection

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL(STATUS))

! Get user name on remote system

STATUS = LIB$GET_INPUT (USERNAME,

2 'USERNAME: ',

2 USERNAME.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Get matching password

STATUS = LIB$GET_INPUT (PASSWORD,

2 'PASSWORD: ',

2 PASSWORD.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

! Concatenate node, user name, password, and

! command procedure name to create task name of the

! format: PHILLY"username password"::"TASK = SEND.STATS"
TASK = 'PHILLY'"//

2 USERNAME(1:USERNAME.LEN)//' •//

2 PASSWORD(1:PASSWORD.LEN)//

2 '"::"TASK=SEND_STATS"'

! Request network connection

OPEN (UNIT=LUN,
2 FILE * TASK,

2 STATUS = 'OLD')

! Read statistics

1 = 1

READ (UNIT = LUN,
2 FMT = '(14)',

2 IOSTAT = IOSTAT) STATS (I)

3-56

Program Synchronization and Communication

DO WHILE ((IOSTAT .EQ. IO.OK) .AND. (I .LT. MAX.STATS))

1 = 1 + 1

READ (UNIT = LUN,

2 FMT = '(14)',

2 IOSTAT = IOSTAT) STATS(I)

END DO

! Check that IOSTAT is okay or end of file

IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (,,,.STATUS)

IF (STATUS .NE. FOR$_ENDDURREA)

2 CALL LIB$SIGNAL(7,VAL(STATUS))
END IF

! Terminate network connection
CLOSE (LUN)

END

SEND_STATS.COM

$ RUN SEND.STATS

$ PURGE/KEEP=2 NETSERVER.LOG

SEND—STATS.FOR

! Passes statistics to a remote node.

! Status variable

INTEGER STATUS

! Statistics

INTEGER STATS (2500)

INTEGER MAX.STATS /2500/

! Logical unit number for network connection

INTEGER LUN

! Library routines

INTEGER LIB$GET_LUN

! Get logical unit number

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Complete network connection

OPEN (UNIT = LUN,
2 FILE = 'SYS$NET',

2 STATUS = 'OLD')

! Pass statistics to remote node

DO 1=1,MAX.STATS
WRITE (UNIT = LUN,

2 FMT = '(14)') STATS(I)
END DO

END

3-57

Program Synchronization and Communication

3.6.3.1 Terminating a Network Connection

To terminate a network connection, use the CLOSE statement. To prevent
losing data, the program that receives the last message should terminate the
network connection. When a program terminates a network connection, the
cooperating program receives an end-of-file message on the subsequent read
operation.

3-58

4 Implementation Cycle

The term implementation cycle referes to the mechanics of processing your
source program, subroutines, and functions into an executable program. The
tools used in this process are the compiler, the linker, the librarian, and the
debugger. This chapter discusses the FORTRAN implementation cycle; other
languages follow a similar cycle. See the language-specific programming
manual for more information about the language you are using.

Generally, you use the EDT editor to create and modify the files containing
your source program units. For details about EDT, see the VAX EDT
Reference Manual.

4.1 Compiling and Linking Programs

The general cycle for implementing an executable program (also called an
executable image, application system, or subsystem) starts with compilation
of the source program units into object modules and inclusion of those
modules (except for the main program module) in an object library, then
proceeds to linking the object modules into an executable image. (You are
not required to put object modules in a library. You can link them directly.)

The following figure illustrates the FORTRAN implementation cycle. In
addition to modules produced by the FORTRAN compiler, the object
modules might include command language descriptions (see Chapter 7),
error descriptions (see Chapter 10), symbol definitions (see Section 4.2),
system-defined procedures (see Chapter 1), and other existing code that can
be used by your system.

4-1

Implementation Cycle

Source program units

FORTRAN command

Object modules Other object modules

LIBRARY command
V_

Object module library

LINK command
V

Executable image

ZK-2077-84

4.1.1 Creating Source Programs

To create FORTRAN source programs (files with a file type of FOR) follow
these rules:

• Statements—Start each new FORTRAN statement after the first tab on a
new line (press RETURN and TAB)—otherwise an error results. In EDT,
do not change the setting of the first tab (EDT changes a tab to multiple
spaces if the tab is not a multiple of 8).

• Labels—Put a label (for example, for a FORMAT statement) in the first
position of a new line, then press the TAB key.

• Spaces—Use spaces for legibility. They do not affect the compilation
of the program into object code (provided that the spaces follow the
first tab). For example, you can indent code on a line or insert spaces
between words, numbers, and symbols—the code DOWHILE(STATUS)
means the same as DO WHILE (STATUS).

• Continuation lines—You can continue a statement over any number of
lines. Start each continuation line (after the tab) with any digit except 0.
Do not extend lines beyond position 80.

4-2

Implementation Cycle

• Comments—You can add comments to your code by (1) putting an
asterisk, the letter C, or an exclamation point in the first position of a line
(before the tab), (2) leaving a line all blank, (3) placing an exclamation
point on a line (after the tab)—everything after the exclamation point is
taken as a comment. In general, use the exclamation point and blank
lines to describe your code, and the asterisk or letter C to leave code
visibly intact but prevent it from being compiled.

The following FORTRAN example shows the contents of a file named
GETFROM.FOR.

<-first tab

SUBROUTINE GET_FROM_BUFF (BUF,

2 PTR,

2 SIZ,

2 CURLIN,

2 LINE,

2 LINEJLEN)

! Gets one line from a buffer

Return value

Return value

! Declare arguments

CHARACTER BUF (204800)

INTEGER PTR (10240),

2 SIZ (10240),

2 CURLIN

CHARACTER LINE (80)

INTEGER LINE.LEN

Buffer

Line pointers

Line sizes

Line number of line being extracted

Line being extracted

Length of line being extracted

! Declare local data

INTEGER OFF, ! Offset into buffer
2 I ! For extracting a line character by character

! Get line from buffer

OFF = PTR (CURLIN) - 1

LINE.LEN = SIZ (CURLIN)

DO I * 1, LINE.LEN

LINE (I) = BUF (OFF+I)

END DO
END ! Of subroutine

All the code above starts after the first tab. Note the use of spaces, blank
lines, and exclamation points to format and add comments to the code. The
lines beginning with digits are continuation lines—remember not to use a 0
as a continuation digit.

The code fragment below demonstrates the use of the first position of a
source line.

<-first position

<-first tab

! Declare 1/0 format

1 FORMAT (Q, INPUT.LINE)

! Establish special condition handler

C CALL LIB$ESTABLISH (IO.HANDLER)

4-3

Implementation Cycle

The number of the format statement must go in position 1. The C in position
1 of the CALL statement denotes a comment statement and is not compiled
or executed (an asterisk or exclamation point also works)—at some future
time, you could activate this statement by removing the C.

4.1.2 Compiling Programs

The FORTRAN command compiles source program units into object
modules. In its simplest form, you need only name the file containing the
source program unit or units. File types default to FOR for source files and
OBJ for object files. The following command compiles the program unit or
units in the file named REPORT.FOR in your default directory and produces
a file named REPORT.OBJ which contains the resultant object module or
modules.

$ FORTRAN REPORT

If REPORT.FOR contains one program unit named WRITE—REPORT, then
REPORT.OBJ contains one object module named WRITE—REPORT. If
REPORT.FOR contains two program units named WRITE—REPORT and
CALC—SUMMARIES, then REPORT.OBJ contains two object modules with
those names. The program unit names and file names are separate entities.

You can compile more than one source file at once. If you separate the
names of the files with commas, the resultant object modules are placed in
separate object files with names the same as the source files. If you separate
the file names with plus signs, the resultant object modules are placed in one
object file with the same name as the first source file.

Examples

$ FORTRAN REPORT,CALC

This example produces two object files named REPORT.OBJ and CALC.OBJ.

$ FORTRAN REPORT+CALC

This example produces one object file named REPORT.OBJ.

4-4

Implementation Cycle

4.1.2.1 Development Systems

If you are compiling FORTRAN program units for a system under
development, you should include the following qualifiers:

• /DEBUG—Appends to each object module information on local symbols,
the entry point name (the name of the program or subprogram, which
points at the first line of executable code), and line numbers (associating
the line numbers with the code they generate). When you run the
program, this information enables the debugger to communicate with
you in terms of the program and subprogram names, variable names,
and line numbers. It is recommended that you use the /NOOPTIMIZE
qualifier with /DEBUG.

• /CHECK—Appends to each object module information to trap out-
of-bounds subscripts, arithmetic overflows, and arithmetic underflows.

• /NOOPTIMIZE—Prevents optimization of the code for performance
purposes. Optimization usually alters object modules so that they
no longer exactly reflect the source program unit as you wrote it.
In particular, optimization uses processor registers rather than your
variables for some mathematical operations so that examination of those
variables at run time does not yield true results.

• /LIST (optional)—Writes a listing to a file with the same name as the
source file (if you do not specify otherwise) and a file type of LIS. You
can print the file or display it. The listing includes the source statements
in each program unit with their line numbers, and the data types and
addresses (relative to the beginning of the program unit) of the variables.
The listing is helpful in debugging. You may want to delete the listing
after you finish using it because it requires a large amount of secondary
storage. You can generate a listing without producing an object module
by specifying the /LIST and /NOOBJECT qualifiers with the FORTRAN
command.

The following FORTRAN example compiles the program unit in the file
REPORT.FOR for development purposes. The compilation produces an
unoptimized object module with full debugging information in a file named
REPORT.OBJ and a listing in a file named REPORT.LIS.

$ FORTRAN/DEBUG/CHECK/NOOPTIMIZATION/LIST REPORT

4-5

Implementation Cycle

4.1.2.2 Production Systems

When your program is stable and you wish to produce object modules for
day-to-day use, you should compile the source files without the /DEBUG
and /CHECK qualifiers (you no longer need the appended information)
and without the /NOOPTIMIZATION qualifier (you want to optimize
performance). Include the /LIST qualifier if you need a listing. The following
example demonstrates the compilation of a production program unit.

$ FORTRAN/LIST REPORT

4.1.2.3 Errors

Your program will report any syntax errors at the end of the compilation. In
FORTRAN, these messages start with the characters %FORT. Included in the
message are the line number of the statement containing the error and the
statement text containing the error. The messages also appear in the program
listing.

Often the error message does not accurately state the problem; however,
it usually locates the error correctly. In most cases, the errors are simple
violations of the syntax rules or typographical errors. Common errors found
in FORTRAN programs include the following:

• No parenthesis—Omitting the parenthesis at the end of an argument list
generates the error MISSDEL (missing operator or delimiter symbol).

• No continuation digit—Omitting or mistyping the continuation digit,
when a line is continued, generates various and numerous messages
depending on the context, as FORTRAN attempts to interpret the
continuation line as a new statement. Remember that 0 does not work as
a continuation digit. Typing the continuation digit when it is not needed,
extending a line beyond position 80, or using spaces in place of the first
tab also gives unspecified results.

• No comma—Omitting a comma in a list of operands usually generates
the error EXTCHAFOL (extra characters following a valid statement).

• No comment character—A full comment line must begin (before the tab)
with an asterisk, the letter C, or an exclamation point. Omission of the
comment character usually generates the error MISSDEL.

• Incorrect condition—The condition in an IF or DO WHILE statement
must be enclosed in parentheses. The condition symbol must be of the
form .EQ., .LE., and so on, not an equal sign or less-than sign. Each
opening parenthesis must have a corresponding closing parenthesis.
Violation of these rules usually generates the errors MISSDEL, NOPATH
(no path to this statement), and INVCONSTR (invalid control statement
using ELSE IF, ELSE, or END IF).

4-6

Implementation Cycle

• No THEN on block IF—Omitting the word THEN in a block IF statement
usually generates the errors MISSDEL, NOPATH, and INVCONSTR.

• No END for an IF or DO—Omitting the END IF statement on a block
IF or the END DO statement on a DO statement results in the error

OPEDOLOOP (unclosed DO loop or IF block).

A simple way to examine your compilation errors along with the source code

causing the errors is to read the listing file with EDT (EDIT/READ) searching

for each occurrence of %FORT. After determining the problem and the fix,

edit your FORTRAN source file (not the listing file) to make the correction

and recompile. If the errors are numerous or complex, print the listing.

An error that FORTRAN does not detect and for which you should always
check is the incorrect specification of variable names. When FORTRAN

encounters a name not explicitly declared, it creates a new variable implicitly,
giving it a type based on the first letter in the name. In the following
example, CURLINE is not treated as an error but as a new variable.

INTEGER CURLIN ! Line number of line being extracted

OFF = PTR (CURLIN) - 1
LINE.LEN = SIZ (CURLINE) <--misspelling
DO I = 1. LINE.LEN

LINE (I) = BUF (OFF+I)
END DO

Another simple way to specify a variable name incorrectly (besides
misspelling it) is to omit required punctuation. The following example
omits a comma in the argument list, causing FORTRAN to concatenate

CURLIN and LINE into a new variable named CURLINLINE (remember that

comments and spaces do not serve as delimiters in FORTRAN).

INTEGER FUNCTION GET_FROM_BUFF (BUF,
2 PTR,
3 SIZ,
4 missing comma--> CURLIN
5 LINE.
6 LINE_LEN)

Passed
Passed
Passed
Passed
Returned
Returned

In FORTRAN, you can force the explicit declaration of variable names by
typing the statement IMPLICIT NONE in the definition part of your program
unit. The errors shown above would then be reported at compilation time.

If you do not use the IMPLICIT NONE statement, you should make a habit
of examining the sections of the listing near the end entitled VARIABLES and
ARRAYS for unexpected entries. These sections list the variables as actually

defined by FORTRAN.

4-7

Implementation Cycle

4.1.3 Object Libraries

In any large development effort, you should store the object modules for
your subprograms in an object library. An object library not only reduces
the number of files you must maintain but greatly simplifies the linking
process. To initially create an object library, type the LIBRARY command
with the /CREATE qualifier and the name you are assigning the library. The
following example creates a library in a file named INCOME.OLB (OLB, the
default file type, means object library).

$ LIBRARY/CREATE INCOME

To add or replace modules in a library, type the LIBRARY command with
the /REPLACE qualifier followed by the name of the library (first parameter)
and the name(s) of the file(s) containing the module or modules (second
parameter). After you put an object module or modules in a library, you can
delete the object file. The following example adds or replaces the module(s)
from the object file named GETSTATS.OBJ to the object library named
INCOME.OLB and then deletes the object file.

$ LIBRARY/REPLACE INCOME GETSTATS
$ DELETE GETSTATS.OBJ;*

You can examine the contents of an object library with the /LIST qualifier.
Use the /ONLY qualifier to limit the display. The following command
displays all the modules in INCOME.OLB that start with GET.

$ LIBRARY/LIST/ONLY=GET* INCOME

Use the /DELETE qualifier to delete a library module and the /EXTRACT
qualifier to recreate an object file. If you delete many modules, you should
also compress (/COMPRESS) and purge (PURGE command) the library.
Note that the /ONLY, /DELETE, and /EXTRACT qualifiers require the
names of modules—not file names—and that the names are specified as
qualifier values, not parameter values.

4.1.4 Linking and Executing Programs

The LINK command combines your object modules into one executable
image, resolving global symbols such as entry point names, the names
of common areas, and other variables declared as external. (Section 4.2
discusses symbols and the resolution of global symbols in more detail.)
You can specify the object modules by naming the files or by naming
the libraries in which they exist; the name of a library must be followed
by the /LIBRARY qualifier. Typically, you name the file containing the
main program first followed by the name of the library containing the
subprograms. For example, if the file INCOME.OBJ contains your main
program and the library file INCOME.OLB contains your subprograms, you
specify the LINK command as follows:

4-8

Implementation Cycle

$ LINK INCOME,INCOME/LIBRARY

For development systems, you normally include the /DEBUG qualifier. This
qualifier appends to the image all the symbol and line number information
appended to the object modules plus information on global symbols, and
forces the image to run under debugger control when it is executed. The
following example links INCOME and its subprograms for debugging.

$ LINK/DEBUG INCOME,INCOME/LIBRARY

If you invoke the image with the RUN command, you can inhibit the
debugger by specifying RUN/NODEBUG. If you invoke the image through
its own command, you must relink without the /DEBUG qualifier to inhibit
the debugger. If you are executing a program without the debugger, you can
invoke the debugger by pressing CTRL/Y and entering the word DEBUG as
a command.

$ RUN INCOME

| CTRL/Y I

$ DEBUG

For production systems, you not only want to inhibit the debugger (by not
specifying /DEBUG) but you also want to inhibit the display of traceback
information by specifying /NOTRACEBACK. The traceback information tells
you on what lines and in what modules a run-time error occurs. However,
this information should not be necessary after development and is rather
messy in instances where your image simply continues execution after the
issuance of a message (you want the message displayed but not the traceback
information). The following example links INCOME and its subprograms for
production.

$ LINK/NOTRACEBACK INCOME,INCOME/LIBRARY

If you set up your image as a DCL command through the use of command
language descriptions (as explained in Chapter 7), execution of the image
requires only that you enter the name of the command, followed by any
parameters and qualifiers. In the following example, INCOME.EXE is
executed by invoking the INCOME command with the /ENTER qualifier.

$ INCOME/ENTER

If the image is not set up as a DCL command, you can execute it by naming
it as the parameter to the RUN command, as demonstrated below:

$ RUN INCOME

4-9

Implementation Cycle

4.1.5 Privileged Programs

If a user needs privileges in order to execute your program, you may want
to install the program as a privileged image. When a program is installed
as a privileged image, the program has specified privileges, eliminating the
need for the user to have those privileges. To avoid security problems, you
must prevent the privileged image from displaying traceback information;
therefore, before installing the image, link it using the /NOTRACEBACK
qualifier of the LINK command.

To install a FORTRAN program as a privileged image:

1 Use the DCL command SET PROCESS/PRIVILEGE=CMKRNL to give
yourself CMKRNL privilege (required for use of the Install Utility).

2 Type INSTALL to invoke the interactive Install Utility.

3 When the INSTALL> prompt appears, type CREATE, the complete
file specification of the file containing the executable program (file type
defaults to EXE), and the /PRIVILEGED=(priv) qualifier, where priv is a
list of the privileges that the program requires.

4 Press RETURN. The Install Utility installs your program as a privileged
image and reissues the INSTALL> prompt.

5 Type EXIT to exit.

6 Use the DCL command SET PROCESS/PRIVILEGE=NOCMKRNL to
remove CMKRNL privilege.

The following statements install $DISKl:[INCOME]GET_STATS as a
privileged image with BYPASS privilege.

$ SET PROCESS/PRIVILEGE=CMKRNL
$ INSTALL
INSTALL> CREATE $DISK1:[INCOME]GET.STATS /PRIVILEGED=(BYPASS)
INSTALL> EXIT
$ SET PROCESS/PRIVILEGE=NOCMKRNL

A disk containing an installed image cannot be dismounted until the installed
image is deleted. To delete an installed image, invoke the Install Utility and
type DELETE followed by the complete file specification of the image. Use
the EXIT subcommand to exit. For complete documentation of the Install
Utility, see the VAX/VMS Install Reference Manual.

4-10

Implementation Cycle

4.1.6 Building Programs

You should take care to maintain your source, object, library, and image files
so that they are all at the same level of development. For example, you do
not want to make changes in a source program, produce a new image, and
then lose the source program associated with the new image. In this regard,
you should maintain a definitive set of source, object, library, and image files
in their own directory.

You will save yourself a lot of time and trouble by writing command
procedures to compile and link your modules and perform other
development activities. Command procedures eliminate errors by ensuring
that all necessary commands are entered correctly; they standardize
your development procedures; and, of course, they simplify entry of the
commands. However, develop your command procedures carefully and test
them.

4.1.6.1 Build Process

Typically, you want to compile a program unit, enter the resultant object
module in the library (if it is not the main program), and link it with
other object modules in the executable program, purging old files and
deleting unnecessary files. You want to ensure that the proper qualifiers
are appended to the FORTRAN and LINK commands, depending on
whether you are building a program for debugging, production, or with
/TRACEBACK (without DEBUG). By using parameter 2 for control
purposes, the following command procedure combines all of the above
activities for an executable program called INCOME maintained in the
directory $DISKl:[DEV.INCOME]. Alternatively, you could write separate
command procedures to perform the separate types of builds (for example,
DEBUG.COM, TRACE.COM, and PROD.COM).

4-11

Implementation Cycle

$DISK1 :[DEV.IIMCOME]INCOME.COM

$! INCOME.COM -- compiles and links a program unit for INCOME
$! Two parameters: PI = file name of the program unit

$! P2 = D -- debug (development system)
$! T -- traceback (no debug)
$! P -- production system

$!
$ SET DEFAULT $DISK1:[DEV.INCOME]
$! Qualifiers for production system
$ QUALS = "/LIST"
$! Qualifiers for debug or traceback
$ IF (P2 .EQS. "D") .OR. (P2 .EQS. "T") THEN -

QUALS = "/DEBUG/CHECK/NOOPTIMIZE/LIST"
$! Compile
$ FORTRAN'QUALS' 'PI'
$! If main module do not put in library
$ IF PI .EQS. "INCOME" THEN GOTO LINK
$! Put subprogram module in library
$ LIBRARY/REPLACE INCOME 'PI'
$ DELETE 'PI'.OBJ;*
$LINK:
$! If linking for production system
$ IF P2 .EQS. "P" THEN LINK/NOTRACE
$! If linking for debug
$ IF P2 .EQS. "D" THEN LINK/DEBUG INCOME,INCOME/LIBRARY
$! If linking for traceback
$ IF P2 .EQS. "T" THEN LINK INCOME,INCOME/LIBRARY
$! Purge old files
$ PURGE

To build a new debugging system based on modifications to the program

unit GET_STATS in the file GETSTATS.FOR, for example, you enter the

following command:

$ aINCOME GETSTATS D

4.1.6.2 System Integrity

Once you have a program that works in your main build directory, you

should avoid introducing changes that might make it not work. In this
regard, a good practice when writing a new program unit or modifying

an existing program unit is to build new executable programs (images) in

another directory until you get a program that works properly. At this point,

you can copy the new or modified source program unit to the build directory

and build the new executable image there. (Do not just copy the image to

the build directory. The image and the source files would then not match.)

When you are building in a separate directory, you should still use the

main build directory's copies of the other object modules. The following

sequence of FORTRAN commands modifies the source file GETSTATS.FOR,
builds new INCOME images in the [MY.INCOME] directory until a good

4-12

Implementation Cycle

image results, then copies GETSTATS.FOR to the main build directory
[DEV.INCOME] and builds the image there.

$ SET DEFAULT $DISK1:[MY.INCOME]
$ COPY [DEV.INCOME]GETSTATS.FOR *
$ EDIT GETSTATS.FOR

! Editing session

$ OMYINCOME GETSTATS D ! See below for MYINCOME.COM
$ INCOME/ENTER

! Debug session with INC0ME.EXE

(repeat the preceding steps until the image is correct)
$ COPY GETSTATS.FOR [DEV.INCOME]*
$ SET DEFAULT $DISK1:[DEV.INCOME]
$ 0INC0ME GETSTATS D

The command procedure MYINCOME.COM is similar to INCOME.COM but
builds the image in [MY.INCOME] using the specified program unit (GET_

STATS in this example) in [MY.INCOME] but obtaining the other object
modules from [DEV.INCOME]. By default, the image created by the LINK

command is given the file name of the first file named in the LINK command.
Therefore, when you compile and link a library module from [MY.INCOME],

you must use the /EXECUTABLE qualifier of the LINK command to explicitly
name the new executable image [MY.INCOME]INCOME.

4-13

Implementation Cycle

$DISK1 :[M Y. I NCOME]M YINCOME.COM

MYINCOME.COM -- compiles and links a program unit in my

Two parameters: PI = file name of the program unit

P2 = D -- debug (development system)

T -- traceback (no debug)

P -- production system

SET DEFAULT $DISK1:[MY.INCOME]

! Qualifiers for production system

IF (P2 .NES. "P") THEN GOTO DEBUG

FORT.QUALS = "/LIST"

LINK.QUALS = "/NOTRACE"

$DEBUG:

$! Qualifiers for debug

$ IF (P2 .NES. "D") THEN GOTO TRACEBACK

$ FORT.QUALS = "/DEBUG/CHECK/NOOPTIMIZE/LIST"
$ LINK.QUALS = "/DEBUG"

$TRACEBACK:

$! Qualifiers for traceback

$ IF (P2 .NES

$ FORT.QUALS

$ LINK.QUALS

$END_QUALS:

$

$

$

$

"T") THEN GOTO END.QUALS

"/DEBUG/CHECK/NOOPTIMIZE/LIST"

"/TRACE"

! Compile

FORTRAN'FORT.QUALS' 'PI•

! Main program needs different link sequence

IF (PI .EQS. "INCOME") THEN GOTO MAIN

! Link subprogram

LINK/EXECUTABLE=[]INCOME'LINK.QUALS' -
[DEV.INCOME]INCOME,-

[] 'Pl'
[DEV.INCOME]INCOME/LIBRARY

$ GOTO PURGE

$MAIN:

$! Link main program

$ LINK'LINK.QUALS' -
INCOME,-

[DEV.INCOME]INCOME/LIBRARY

$PURGE:

$! Purge old files

$ PURGE

Main program

New program unit

Library

New main program

Library

4-14

Implementation Cycle

4.1.6.3 Checkin and Checkout

If more than one person is working on the development of a program, you
must take precautions against destroying one another's changes. Suppose,
for example, that Jane copies GETSTATS.FOR from the main build directory
to her area and a few minutes later Dick copies the same program unit from
the build directory to his area. They both make distinct modifications to
their copies of the program unit, copy the program unit back to the main
directory, and perform a build. The last person performing the build will
destroy the other person's changes. You can resolve such conflicts verbally
either by assigning ownership of each program unit to one person or telling
one another what you are doing. However, automating the process so that
only one person can work on a program unit at a time is much safer.

The following command procedure checks out a program unit from the main
build directory by copying it to the current default directory and placing
information in a special file in the build directory (CHECKOUT.DAT, which
you must create as an empty file before using the command procedure) to
indicate that the program unit is checked out. The command procedure
aborts the checkout process if the program unit is already checked out.

$! CHECKOUT — checks out a program unit
$! Two parameters -- Pi = file name of the program unit
$! P2 = name of

$!
$ ON ERROR THEN EXIT ($STATUS)

$!
$! Checkout file format:
$! unit-name user-name date

$!
$! Read records from checkout.dat
$! is found or end of file occurs
$ OPEN CHECKOUT - !

$DISK1:[DEV.INCOME]CHECKOUT.DAT
$ MODULE = "" !
$READL00P:
$ READ/END_OF_FILE=ENDREADLOOP -

CHECKOUT CHECKOUT.LINE

the user checking the file out

until program unit

Open for read

Initialize program unit name

4-15

Implementation Cycle

$! Extract program unit name and compare with parameter 1

$ MODULE.LEN = F$L0CATE (" ", CHECKOUT.LINE)

$ MODULE = F$EXTRACT (0, MODULE.LEN. CHECKOUT.LINE)

$! Drop out if parameter 1 is found

$ IF PI .NES. MODULE THEN GOTO READLOOP

$ENDREADLOOP:

$ CLOSE CHECKOUT

$!
$! If program unit already checked out, issue message

$ IF PI .NES. MODULE THEN GOTO ENDALREADY

$ WRITE SYS$OUTPUT "Program unit already checked out"

$ WRITE SYS$OUTPUT CHECKOUT.LINE

$ EXIT

$ENDALREADY:

$!
$! Otherwise check it out

$! Copy source file to default directory

$ COPY $DISK1:[DEV.INCOME]'PI'.FOR *

$! On error, close checkout files before exit

$ ON ERROR THEN GOTO EXIT

$! Copy checkout file to new file

$ OPEN OLDOUT $DISK1:[DEV.INCOME]CHECKOUT.DAT

$ OPEN/WRITE NEWOUT $DISK1:[DEV.INCOME]CHECKOUT.DAT

$WRITELOOP:

$ READ/END_OF_FILE=ENDWRITELOOP OLDOUT CHECKOUT.LINE

$ WRITE NEWOUT CHECKOUT.LINE

$ GOTO WRITELOOP

$ENDWRITELOOP:

$! Add new record

$ CHECKOUT.LINE = PI + " " + P2 + " " + F$TIME ()

$ WRITE NEWOUT CHECKOUT.LINE

$! Close files, purge old file, and exit

$EXIT:

$ STATUS = $STATUS

$ CLOSE OLDOUT

$ CLOSE NEWOUT

$ PURGE $DISK1:[DEV.INCOME]CHECKOUT.DAT

$ EXIT (STATUS)

The following command procedure checks a program unit back into the main
build directory by copying it from the default directory and deleting the
associated entry in CHECKOUT.DAT. Exceptions are made if the program
unit is checked out by another user (the checkin process is aborted) or the
program unit is not checked out (you are asked if you want to proceed).

4-16

Implementation Cycle

$! CHECKIN -- checks in a program unit

$! Two parameters -- PI = file name of the program unit

$! P2 = name of user checking the file in

$!
$ ON ERROR THEN GOTO EXIT

$ FOUND = "FALSE"

$!
$! Open checkout.dat for read and new one for write

$ OPEN OLDOUT $DISK1:[DEV.INCOME]CHECKOUT.DAT

$ OPEN/WRITE NEWOUT $DISK1:[DEV.INCOME]CHECKOUT.DAT

$!
$! Read records to end of file

$UPL00P:

$ READ/END_OF_FILE=ENDUPLOOP OLDOUT CHECKOUT.LINE
$! Look for program unit name

$ MODULE.LEN = F$L0CATE (" ", CHECKOUT.LINE)

$ MODULE = F$EXTRACT (0, MODULE.LEN, CHECKOUT.LINE)

$! If not program unit, write checkout record to new file

$ IF MODULE .EQS. PI THEN GOTO USERNAME

$ WRITE NEWOUT CHECKOUT.LINE

$ GOTO UPLOOP

$! Otherwise program unit name was found

$USERNAME:

$ FOUND = "TRUE"

$! Look for user name

$ NAME = CHECKOUT.LINE - (MODULE + " »)

$ NAME.LEN = F$LOCATE (" ", NAME)

$ NAME = F$EXTRACT (0, NAME.LEN, NAME)

$! If correct program unit and user name,

$! copy source over and purge, and

$! delete checkout.dat record by not writing

$ IF NAME .NES. P2 THEN GOTO ANOTHER

$ COPY 'PI'.FOR $DISK1:[DEV.INCOME]'PI'.FOR

$ PURGE $DISK1:[DEV.INCOME]'PI'.FOR

$ GOTO UPLOOP

$! Otherwise write error message and copy record

$ANOTHER:

$ WRITE SYS$OUTPUT "Program unit checked out by another person"
$ WRITE SYS$OUTPUT CHECKOUT.LINE

$ WRITE NEWOUT CHECKOUT.LINE

$ GOTO UPLOOP

$ENDUPLOOP:
$! Reset status from EOF to success

$ $STATUS = 1
$! Inquire for copy if program unit was not found

$ IF FOUND THEN GOTO EXIT

$ INQUIRE YN "Program unit not checked out. Copy anyhow (Y or N)? "

$ IF YN THEN COPY ’PI'.FOR $DISK1:[DEV.INCOME]'PI'.FOR

$!
$! Close checkout files, purge, and exit

$EXIT:

$ STATUS = $STATUS

$ CLOSE OLDOUT

$ CLOSE NEWOUT
$ PURGE $DISK1:[DEV.INCOME]CHECKOUT.DAT

$ EXIT (STATUS)

4-17

Implementation Cycle

The CHECKIN.COM and CHECKOUT.COM command procedures are
effective only if everyone working on the program uses them. No one must
be allowed to shortcut the process by issuing COPY commands directly.

Unless all of the people working on the program have the same UIC, you
must provide a means for the people working on the program to read from
and write to the build directory. Several ways you can provide such access
are as follows:

• Make the programmers members of one group and provide group
members complete access to the build library.

• Use access control lists (ACLs) to provide all the programmers complete
access to the build library.

• Set up a special account that the programmers must log into to use the
checkin and checkout procedures.

• Provide the programmers with SYSPRV privilege. In the checkout
procedure, use BACKUP instead of COPY to copy the source file to the
build directory, and specify /OWNER=PARENT.

4.2 Symbols

Symbols are names that represent locations (addresses) in virtual memory.
More precisely, a symbol's value is the address of the first or low-order
byte of a defined area of virtual memory, while the characteristics of the
defined area provide the number of bytes referred to. For example, if you
define TOTAL—HOUSES as an integer, the symbol TOTAL—HOUSES
is assigned the address of the low-order byte of a 4-byte area in virtual
memory. FORTRAN requires that you define all variables and code locations
in terms of symbols, and also provides the capability of assigning symbols to
constants. FORTRAN makes all the virtual address assignments—you cannot
assign the actual addresses yourself, although you can assign contiguous
addresses by placing variables in a record, array, or common block. Some
system components (for example, the debugger) permit you to refer to areas
of virtual memory by their actual addresses, but symbolic references are
always recommended.

4-18

Implementation Cycle

4.2.1 Defining Symbols

A symbolic name can consist of up to 31 letters, digits, underscores, and
dollar signs. Uppercase and lowercase letters are equivalent. By convention,
dollar signs are restricted to symbols used in system components. (If you do
not use the dollar sign in your symbolic names, you will never accidentally
duplicate a system-defined symbol.) In FORTRAN programs, you define
symbols in the following ways:

• Variables—The explicit or implicit declaration of a variable (as discussed
in Chapter 6) allocates an area of virtual memory to hold the variable
data and associates the area with a symbol.

• Blocks of variables—The declaration of a common block places variables
in one physical area in virtual memory and associates the beginning of
the area with a symbol.

• Constants—The PARAMETER statement assigns an immutable value to
an area of virtual memory and associates the area with a symbol.

• Code—The PROGRAM, SUBROUTINE, or FUNCTION statement starts
a block of code (the program or subprogram) and associates a symbol
(the name of the program or subprogram) with the first executable
statement in the block. If you do not start a program with a PROGRAM
statement, the name of the program is filename$MAIN, where filename
is the name of the file containing the program. The ENTRY statement
also associates a symbol with an executable statement.

4.2.2 Local and Global Symbols

Symbols are either local or global in scope.

• Local symbols—A local symbol can only be referenced within the
program unit in which it is defined. Local symbol names must be unique
among all other local symbols within the program unit, but not within
other program units in the program. References to local symbols are
resolved at compile time. In FORTRAN, the names of all variables and
PARAMETER constants are local symbols.

• Global symbols—A global symbol can be referenced outside the program
unit in which it is defined. Global symbol names must be unique among
all other global symbols within the program. References to global
symbols are not resolved until link time. In FORTRAN, the names of
programs, subprograms, entry points, and common blocks are global
symbols.

4-19

Implementation Cycle

References to global symbols in the executable portion of a program unit
are usually invocations of subprograms. If you reference a global symbol in
any other capacity—as an argument (see Chapter 1) or data value (see the
following paragraph)—you must define the symbol as external (EXTERNAL
statement) or intrinsic (INTRINSIC statement; used for FORTRAN intrinsic
functions and subroutines) in the definition portion of the program unit.

System facilities, such as the MESSAGE utility and the MACRO assembler,
use global symbols to define data values. FORTRAN allows you to reference
global data values defined by other programs; however, it does not allow
you to define data values as global symbols.

4.2.3 Referencing Global Symbols

To reference a global symbol in FORTRAN, you must (1) define the symbol
as external, and (2) reference the symbol as an argument to the %LOC
built-in function. The following code fragment references the global symbol
RMS$_EOF (a condition code that may be returned by LIB$GET_INPUT).

CHARACTER*255 NEW.TEXT
INTEGER STATUS
INTEGER*2 NT.SIZ
INTEGER LIB$GET_INPUT
EXTERNAL RMS$_E0F
STATUS = LIB$GET_INPUT (NEW.TEXT,
2 'New text: ',
2 NT.SIZ)
IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. */.LOC (RMS$_E0F))) THEN

CALL LIB$SIGNAL (RETURN.STATUS BY VALUE)
END IF

Condition codes and other symbols defined in the system object and
shareable image libraries are also defined in a FORTRAN specific library
FORSYSDEF.TLB. Using the definitions from FORSYSDEF.TLB (see
Section 4.2.5) allows you to reference condition codes and other system-
defined symbols as local, rather than global, symbols.

4-20

Implementation Cycle

4.2.4 Resolving Global Symbols

References to global symbols are resolved by including the module that
defines the symbol in the link operation. When the linker encounters a
global symbol, it uses the following search alogorithm to find the defining
module:

1 Explicitly named modules and libraries—Generally used to resolve user-
defined global symbols, such as subprogram names and condition codes.
These modules and libraries are searched in the order in which they are
specified.

2 System default libraries—Generally used to resolve system-defined
global symbols, such as procedure names and condition codes.

3 User default libraries—Generally used to avoid explicitly naming
libraries, thereby simplifying linking.

If the linker cannot find the symbol, the symbol is said to be unresolved, and
a warning results. You can run an image containing unresolved symbols.
The image runs successfully as long as it does not access any unresolved
symbol. For example, if your code calls a subroutine but the subroutine call
is not executed, the image will run successfully.

If an image accesses an unresolved global symbol, results are unpredictable.
Usually the image fails with an access violation (attempting to access a
physical memory location outside those assigned to the program's virtual
memory addresses).

4.2.4.1 Explicitly Named Modules and Libraries

You can resolve a global symbol reference by naming the defining object
module in the link command. For example, if the program unit INCOME
references the subprogram GET_STATS, you can resolve the global symbol
reference when you link INCOME by including the file containing the object
module for GET_STATS.

$ LINK INCOME, GETSTATS

If the modules that define the symbols are in an object library, name the
library in the link operation. In the following example, the GET_STATS
module resides in the object module library INCOME.OLB.

$ LINK INCOME,INCOME/LIBRARY

4—21

Implementation Cycle

4.2.4.2 System Default Libraries

Link operations automatically check the system object and shareable image
libraries for any references to global symbols not resolved by your explicitly
named object modules and libraries. The system object and shareable image
libraries include the entry points for the Run-Time Library procedures
and system services, condition codes, and other system-defined values.
Invocations of these modules do not require any explicit action by you at link

time.

4.2.4.3 User Default Libraries

If you write general-purpose procedures or define general-purpose symbols,
you can place them in a user default library. (You can also make your
development library a user default library.) In this way, you can link to the
modules containing these procedures and symbols without explicitly naming
the library in the LINK command. To name a single user library, equate the
file name of the library to the logical name LNK$LIBRARY. The following
example defines the library in the file PROCEDURES.OLB (the file type

defaults to OLB) in $DISK1:[DEV] as a default user library.

$ DEFINE LNK$LIBRARY $DISK1:[DEV]PROCEDURES

Additional user default libraries can be defined as LNK$LIBRARY_1,
LNK$LIBRARY_2, and so on through LNK$LIBRARY_999. Do not skip
any numbers.

To make a library available to everyone using the system, define it at the
system level. To restrict use of a library or to override a system library,
define the library at the process or group level. The following example
defines the default user library at the system level.

$ DEFINE/SYSTEM LNK$LIBRARY $DISK1:[DEV]PROCEDURES

When the linker is resolving global symbol references, it searches user default
libraries at the process level first, then libraries at the group and system level.
Within levels, the library defined as LNK$LIBRARY is searched first, then
LNK$LIBRARY_1, LNK$LIBRARY_2, and so on.

4—22

Implementation Cycle

4.2.4.4 Macro Libraries

Some system symbols are not defined in the system object and shareable
image libraries. In such cases, the VAX/VMS System Routines Reference
Volume notes that the symbols are defined in the system macro library
and tells you the name of the macro containing the symbols. To access
these symbols, you must first assemble a macro routine with the following
source code. The keyword GLOBAL must be in uppercase. The .TITLE
directive is similar to FORTRAN'S PROGRAM statement; it is optional, but
recommended.

<--first tab <--second tab

.TITLE macro-name
macro-name GLOBAL

.END

The following example is a macro program that includes two system macros.

LBRDEF.MAR

.TITLE $LBRDEF
ILBRDEF GLOBAL
ILHIDEF GLOBAL
.END

Assemble the routine containing the macros with the MACRO command.
You can place the resultant object modules in a default library or a library
that you specify in the LINK command, or you can specify the object
modules in the LINK command. The following example places the $LBRDEF
and $LHIDEF modules in a library before performing a link operation.

$ MACRO LBRDEF
$ LIBRARY/REPLACE INCOME LBRDEF
$ DELETE LBRDEF.OBJ;*
$ LINK INCOME,INCOME/LIBRARY

The following LINK command uses the object file directly.

$ LINK INCOME.LBRDEF.INCOME/LIBRARY

4-23

Implementation Cycle

4.2.5 FORTRAN Definition Libraries and Files

The FORTRAN system definition library, SYS$LIBRARY:FORSYSDEF.TLB,
defines the condition codes and other values defined in the system object
and shareable image libraries (with the exception of those values specific to
BASIC or COBOL) using data definition statements—mainly PARAMETER
statements. Rather than accessing a symbol as a global symbol, you can
include the FORSYSDEF symbol definition in your program unit by naming
the library module that contains the symbol in an INCLUDE statement.

For example, the condition code RMS$_EOF is defined in the module
$RMSDEF in the FORTRAN system definition library and the system object
and shareable image libraries. To define the symbol for use in your program
unit, specify the following INCLUDE statement in the definition part of your
module (the INCLUDE specifier must be specified as a literal).

INCLUDE 1($LIBDEF)'

The INCLUDE statement incorporates the data definition statements into
your program unit so that the names of the values become local symbols.
To reference the symbol, name the symbol; do not use %LOC. Note that
the value definitions must be included in every program unit requiring them,
not, for example, just in your main program.

The documentation identifies symbols defined in the system object and
shareable image libraries (and in FORSYSDEF.TLB) by naming the defining
module. If a symbol is defined only in the system macro library, you must
use a MACRO routine (see Section 4.2.4.4) in order to reference the symbol.

You can create your own "global" values the same way FORSYSDEF.TLB
does by placing PARAMETER statements, common blocks, or other
data definition statements in text files and including them in your
FORTRAN program units. If you have many INCLUDE modules, you
should maintain them in a text library. The following example stores the
parameter statements in SCREEN.TXT in an existing text library file named
SYMBOLS.TLB (the file type defaults to TLB), and then deletes the source
text file.

$ LIBRARY/TEXT/REPLACE SYMBOLS SCREEN
$ DELETE SCREEN.TXT;*

To include a module from a text library, place the name of the module in
parentheses after the name of the file (the name of the text library defaults to

SYS$SYSTEM:FORSYSDEF).

INCLUDE '$DISK1:[FORDEF]SYMBOLS(SCREEN)'

4-24

Implementation Cycle

4.3 Shareable Images

A shareable image is a nonexecutable image which can be linked into
executable images. If you have a program unit that is invoked by more than
one program, linking it as a shareable image provides the following benefits:

• Saves disk space—The executable images to which the shareable image
is linked do not physically include the shareable image. Only one copy
of the shareable image exists.

• Simplifies maintenance—If you use transfer vectors and the GSMATCH
option (see Section 4.3.1), you can modify, recompile, and relink a
shareable image without having to relink any executable image that is
linked with it.

Shareable images can also save memory provided that they are installed as
shared images (see Section 4.3.4).

4.3.1 Creating Shareable Images

To create a shareable image follow these steps:

1 Compile the object module(s)—Write and compile the program unit to
be shared by your different programs. In general, you want to produce
a shareable image that executes one program unit. If that program
unit invokes any other subprograms, they also must be included in the
shareable image.

2 Write the transfer vector—Write a transfer vector for each program
unit in the shareable image (Section 4.3.1.1 discusses transfer vectors);
transfer vectors must be written in MACRO. The following template
contains one transfer vector; repeat the three middle statements for each
additional transfer vector.

<-first tab
<- second tab

<-third tab

.TITLE vector-name

.TRANSFER routine-name

.MASK routine-name
JMP L~routine-name+2
.END

4-25

Implementation Cycle

Naming the macro file with a name similar to that of the program unit's
source file makes the transfer vector file easier to find. The MACRO and
FORTRAN program units should not have identical names because after
compiling the source files, you do not want the two object modules to
have the same name. The following transfer vector file is for the program
unit GET_1_STAT.

XGET1 STAT.MAR

.TITLE X_GET_1_STAT

.TRANSFER GET.i.STAT

.MASK GET.I.STAT
JMP L~GET_l_STAT+2
.END

Compiling the transfer vector with the following MACRO command
produces an object module named X_GET_1_STAT in the file
XGET1STAT.OBJ.

$ MACRO XGET1STAT

3 Write an options file—Use the CLUSTER option to place the transfer
vector at the beginning of the shareable image. Use the GSMATCH
option to specify whether an executable image linked with the shareable
image can access a modified version of that shareable image without
relinking.

The CLUSTER option takes the following form:

CLUSTER=cluster-name,,.filename

The cluster name is up to you. The file name is that of the object file
containing the transfer vector.

The GSMATCH option takes the following form:

GSMATCH=keyword,maj or.id,minor.id

Typically, when you create a shareable image, you use the LEQUAL
keyword, specifying any integer values for the major and minor IDs;
when you update that shareable image, you use the LEQUAL keyword,
specifying the same major ID and incrementing the minor ID by one.
This use of LEQUAL allows an executable image to access a newer
version of the shareable image without relinking, but prevents the
executable image from accessing an older version of the shareable image
(see Section 4.3.1.2 for more information).

The following options file might be specified when you create the
shareable image GET1STAT.

4—26

Implementation Cycle

GET1 STAT.OPT

CLUSTER=X_GET_1_STAT,,.XGET1STAT
GSMATCH=LEQUAL,1,100

When you update that shareable image, you would change the
GSMATCH option:

GET1 STAT.OPT

CLUSTER=X_GET_1_STAT,,.XGET1STAT
GSMATCH=LEQUAL.1,101

4 Link to produce the shareable image—Use the /SHAREABLE qualifier
of the LINK command to create a shareable image specifying the object
module(s) and the options file as input to the linker. The following
command produces a shareable image named GET1STAT.EXE from the
object module GET1STAT.OBJ and the options file GET1STAT.OPT.

$ LINK/SHAREABLE GET1STAT,GET1STAT/0PTI0N

GET1 STAT.OPT

CLUSTER=X_GET_1_STAT,,.XGET1STAT
GSMATCH=LEQUAL,1,100

Once you have created the shareable image, you can delete the object
modules GET1STAT.OBJ and XGET1STAT.OBJ.

When you link a shareable image, references to global symbols must be
resolved by including the module that defines the symbol in the link
operation. For example, to create a shareable image from the program
unit GET_STATS, which references the program unit GET_1_STAT, you
must specify both GETSTATS.OBJ (the file containing GET_STATS) and
GET1STAT.OBJ (the file containing GET_1_STAT) as input to the linker.
The following command creates the shareable image, GETSTATS.EXE.
(XGETSTATS contains transfer vectors for both GET_STATS and GET_1_
STAT.)

$ LINK/SHAREABLE GETSTATS,GET1STAT,GETSTATS/OPTION

GETSTATS.OPT

CLUSTER=X_GET_STATS,,,XGETSTATS
GSMATCH=LEQUAL,1,100

In any large development effort, you should keep the program units in
libraries (either object module or shareable image) to simplify maintenance
and the linking process. Shareable image libraries, also called shareable
image symbol table libraries, are different from object libraries in that the
symbol table of the shareable image, not the shareable image itself, is placed

4-27

Implementation Cycle

into the shareable image library (see Section 4.3.2); therefore, do not delete a
shareable image after placing it in a shareable image library.

The following commands create the shareable images GET1STAT.EXE
and GETSTATS.EXE, placing them into the shareable image library
INCOMESHR. INCOMESHR is named in the second link command to
resolve the reference to GET_1_STAT in GET_STATS.

$ LINK/SHAREABLE GET1STAT,GET1STAT/0PTI0N
$ LIBRARY/SHAREABLE/REPLACE INCOMESHR GET1STAT
$ LINK/SHAREABLE GETSTATS,GETSTATS/OPTION,INCOMESHR/LIBRARY
$ LIBRARY/SHAREABLE/REPLACE INCOMESHR GETSTATS

If you attempt to create GETSTATS.EXE before GET1STAT.EXE, the linker
cannot resolve the reference to GET_1_STAT and displays the following
warning message:

‘/.LINK-W-USEUNDEF, 1 undefined symbol:
'/.LINK-I-UDFSYM, GET_1_STAT

4.3.1.1 Transfer Vectors

A transfer vector is placed at the beginning of a shareable image to point
to a program unit in that shareable image. Typically, a shareable image
contains one program unit and one transfer vector. If you have more than
one program unit in a shareable image, include a transfer vector for each
program unit. The following example shows a macro program unit that
contains two transfer vectors, one for GET_1_STAT and one for GET_
STATS.

XGETSTATS.MAR

.TITLE X_GET_STATS

.TRANSFER GET.l.STAT

.MASK GET.l.STAT
JMP L~GET_l_STAT+2

.TRANSFER GET.STATS

.MASK GET.STATS
JMP L~GET.STATS+2

.END

You should always use transfer vectors; they allow you to modify a shareable
image without relinking any executable image that references the shareable
image. When you link a shareable image to produce an executable image,
the linker resolves a reference to a program unit in that shareable image
by using the address of the transfer vector for that program unit (see the
following figure). If you modify a program unit in a shareable image, the
starting address of one or more program units may change; relinking the
shareable image updates each transfer vector to point to the correct starting
address of its associated program unit. Since the addresses of the transfer

4-28

Implementation Cycle

vectors have not been modified, executable images linked with the shareable
image do not have to be relinked.

Shareable Image Executable Image

ZK-2078-84

You should not delete a transfer vector from a shareable image that contains
more than one transfer vector. Deleting one transfer vector may change the
addresses of other transfer vectors in the shareable image. If you change the
address of a transfer vector, you have to relink each executable image that
references that shareable image. If you must delete a program unit from a
shareable image containing more than one program unit, create a dummy
program unit with the same name, such as the one for GET_1_STAT in the
following example.

GET1 STAT.FOR

FUNCTION GET_1_STAT (ROW,
2 COLUMN,
2 STAT)
! Dummy routine

END

Compile the dummy program unit and relink the shareable image. In the
new version of the shareable image, the transfer vector for the "deleted"
program unit points to the dummy program unit.

4-29

Implementation Cycle

4.3.1.2 GSMATCH Option

The GSMATCH option allows you to specify whether an executable image
linked with a shareable image can access a modified shareable image. The
GSMATCH option must be specified in an options file (use the /OPTIONS
qualifier of the LINK command; for details, see the description of the linker
in the VAX/VMS Linker Reference Manual).

When an executable image attempts to access a shareable image at run
time, the system examines the GSMATCH option specified by the shareable
image that was originally linked with the executable image. The following
keywords may be specified with the GSMATCH option.

• LEQUAL—If the minor ID of the original shareable image is less than or
equal to the minor ID of the shareable image that the executable image
is attempting to access, the system allows the executable image to access
the shareable image.

• EQUAL—If the minor ID of the original shareable image is equal to the
minor ID of the shareable image that the executable image is attempting
to access, the system allows the executable image to access the shareable
image. (Default if no GSMATCH option is specified.)

• ALWAYS—The system allows the executable image to access the
shareable image regardless of the major ID or minor ID.

To examine the major and minor ID values of a shareable image, use the
command LINK/MAP/FULL to produce a listing of the image that includes
the GSMATCH option.

4.3.1.3 UNIVERSAL Options

A universal symbol is a global symbol in a shareable image that can be
referenced outside the shareable image. A transfer vector, in addition to
creating a pointer to a program unit, makes the name of that program unit
a universal symbol. To make a symbol other than a program unit name a
universal symbol, use the UNIVERSAL option in an options file (use the
/OPTIONS qualifier of the LINK command; for details, see the description of
the linker in the VAX/VMS Linker Reference Manual.

A reference to a universal symbol is resolved at link time as an offset from
the beginning of the defining routine. This implies that if you modify the
routine that defines a universal symbol, you must relink that routine to
correct the offset to the universal symbol. Since universal symbols created
by transfer vectors are always at the beginning of the defining module (see
Section 4.3.1.1), relinking is only necessary if the universal symbol is created
using the UNIVERSAL option.

4-30

Implementation Cycle

4.3.2 Shareable Image Libraries

To create a shareable image library, type the LIBRARY command with the
/CREATE and /SHAREABLE qualifiers followed by the name of the library.
The following command creates a shareable image library in a file named
INCOMESHR.OLB (OLB is the default file type for both shareable image and
object module libraries).

$ LIBRARY/CREATE/SHAREABLE INCOMESHR

To add or replace a shareable image in a shareable image library, type
the LIBRARY command with the /SHAREABLE and /REPLACE qualifiers
followed by the name of the library (first parameter) and the file name of
the shareable image (second parameter). The file type of the shareable
image defaults to EXE. The following command enters the symbol
table of the shareable image GET1STAT.EXE into the shareable library
INCOMESHR.OLB.

$ LIBRARY/SHAREABLE/REPLACE INCOMESHR GET1STAT

You can examine shareable image libraries with the /LIST qualifier of the
LIBRARY command. You can delete shareable images from a shareable
image library with the /DELETE qualifier of the LIBRARY command.

4.3.3 Linking Shareable Images

To specify a shareable image as input to the linker, you must specify either
the name of the shareable image library containing the symbol table of the
shareable image (use the /LIBRARY qualifier to identify a library file) or
an options file that contains the name of the shareable image file (use the
/SHAREABLE qualifier in the options file to identify a shareable image
file). A shareable image file must be specified in an options file because
a /SHAREABLE qualifier on the LINK command line is interpreted as a
command qualifier which creates a shareable image.

The following command links the object module INCOME.OBJ with the
library INCOME.OLB, and the shareable images GETSTATS.EXE and
GET1STAT.EXE.

$ LINK INCOME,INCOME/OPTION.INCOME/LIBRARY

4-31

Implementation Cycle

INCOME.OPT

GETSTATS/SHAREABLE
GET1STAT/SHAREABLE

The following command links the object module INCOME.OBJ, the
object module library INCOME.OLB, and the shareable image library
INCOMESHR.OLB to produce an executable image in the file INCOME.EXE.

$ LINK INCOME,INCOME/LIBRARY,INCOMESHR/LIBRARY

At link time, a shareable image is assumed to be in SYS$SHARE and to have
a file type of EXE. Therefore, if you have not copied the shareable image
over to SYS$SHARE, you must define a logical name that equates the name
of the shareable image file to its full file specification.

The executable image INCOME.EXE created in the previous example
references the shareable image files GETSTATS.EXE and GET1STAT.EXE.
If these shareable images are in SYS$SHARE, you can execute INCOME as
shown below:

$ RUN INCOME

However, if these shareable image files are in another directory, you
must create logical names that associate the file names with the full file
specifications. For example, if GETSTATS.EXE and GET1STAT.EXE are in the
directory [INCOME.DEVELOP] on the disk $DISK1, define logical names for
the files before executing INCOME.

$ DEFINE GETSTATS $DISK1:[INCOME.DEVELOP]GETSTATS
$ DEFINE GET1STAT $DISK1:[INCOME.DEVELOP]GET1STAT
$ RUN INCOME

If you attempt to execute INCOME without defining the logical names, the
following messages are displayed (by default, SYS$SHARE translates to

SYS$SYSROOT:[SYSLIB]).

7.DCL-W-ACTIMAGE, error activating image GETSTATS
-CLI-E-IMAGEFNF, image file not found

SYS$SYSR00T:[SYSLIB]GETSTATS.EXE

In general, while you are developing a program that uses shareable images
you should leave the shareable images in your development directory and
define the logical names each time you begin work on the program. If you
are working on the program over a number of sessions, you may want to
put the necessary logical name definitions in your LOGIN.COM file. Once
the shareable images are working, you can move them into SYS$SHARE and
delete the logical name definitions from LOGIN.COM.

4—32

Implementation Cycle

4.3.4 Shared Shareable Images

To allow executable images to share one copy of the shareable image in
memory, install the shareable image as a shared image. When an executable
image linked with a shared shareable image accesses the shareable image,
if a copy of the image is already in memory, the executable image uses that
copy. If no copy of the shared shareable image is in memory, the executable
image copies the shared shareable image into memory. Unless the shareable
image is likely to be accessed by more than one image at a time, do not
bother to install the shareable image as a shared image.

To install an image as shared, follow the steps described in Section 4.1.5
for installing an image as privileged. However, instead of specifying the
/PRIVILEGED qualifier, specify the /SHARED qualifier.

4.4 Listings

You can generate compiler listings and image maps during the compile and
link phases of your program's development.

4.4.1 Compiler Listings

To generate a listing file, specify the /LIST qualifier when you enter the
FORTRAN command interactively.

$ FORTRAN/LIST INCOME

If the program is compiled as a batch job, the listing file is created by default;
specify the /NOLIST qualifier to suppress creation of the listing file. (In
either case, the listing file is not automatically printed.) By default, the
listing file has the same file name as that of the first source file specified
with the FORTRAN command and a file type of LIS. You can include a file
specification with the /LIST qualifier to override this default. For example,
to generate a listing file with the specification INCOME1.LIS, specify

$ F0RTRAN/LIST=INC0ME1.LIS INCOME

The components of a listing depend upon the qualifiers specified with /LIST.
By default, a listing contains the source program section, storage map, and
compilation summary. You can additionally request optional source lines,
machine code, and supplementary symbol information.

4-33

Implementation Cycle

4.4.1.1 Source Program Listing

The source listing contains the source code plus line numbers generated by

the compiler. The line numbers appear, one per line, in the left margin;

they are the lines referred to by error messages and debugger displays

and commands. If you created the source file with editor-generated line

numbers, those line numbers appear to the left of the compiler-generated
line numbers. FORTRAN error messages refer to editor line numbers

when present; otherwise, they refer to the compiler-generated numbers.
In the following excerpt from a listing of the function CALC_SUMS, only
compiler-generated line numbers are present.

0001 INTEGER FUNCTION CALC. .SUMS (TOTAL.HOUSES,
0002 2 PERSONS.HOUSE,
0003 2 ADULTS.HOUSE,
0004 2 INCOME.HOUSE,
0005 2 AVG_PERSONS_HOUSE,
0006 2 AVG_ADULTS_HOUSE,
0007 2 AVG_INCOME_HOUSE,
0008 2 AVG_INCOME_PERSON,
0009 2 MED.INCOME.HOUSE)
0010 ! Calculates averages and median from statistics

0050 ! Calculate median income per house
0051 J = 1
0052 DO I = 2, 101
0053 IF (MEDIAN (I) .GT. MEDIAN (j>) j = i
0054 END DO
0055 MED_INCOME_HOUSE = J * 1000
0056
0057 ! Return
0058 CALC.SUMS = STATUS.OK
0059 END ! Of subroutine

To include lines of source code which are usually omitted from the compiler
listing, use the /SHOW qualifier in addition to the /LIST qualifier. For

example, to list the source lines of a file specified by the INCLUDE statement,
specify /SHOW=INCLUDE. To list source lines generated by a preprocessor
(for example, the VAX DBMS FORTRAN Data Manipulation Language),
specify /SHOW=PREPROCESSOR.

4-34

Implementation Cycle

4.4.1.2 Machine Code Listing

To include a listing of the compiler-generated object code, specify the
/MACHINE—CODE qualifier with the /LIST qualifier.

$ FORTRAN/LIST/MACHINE.CODE INCOME

The first line of machine code contains a .TITLE directive that indicates the
name of the program unit to which the machine code corresponds. If the
program unit is the main program, the title is either the name declared
in the PROGRAM statement or, if there is no PROGRAM statement,
filename$MAIN. If the program unit is a BLOCK DATA subprogram, the
title is either the name declared in the BLOCK DATA statement or, if there
is no BLOCK DATA statement, filename$DATA. (In the previous statements,
filename refers to the name of the source file.)

The lines following .TITLE contain information about storage, such as
the variables initialized in data type statements. Following the storage
information are machine instructions, represented by VAX MACRO
mnemonics. Compiler-generated line numbers are listed in the right margin,
and the virtual address of the beginning of each line is listed in the left
margin. For example, line 53 of the source program unit CALC—SUMS
translates into five lines of machine code.

00BB MOVL J(R11), RO
00BF MOVL I(Rll), R1
00C3 CMPL MEDIAN-4(R11)[Rl]
OOCC BLEQ L$6
00CE MOVL I(R11), J(R11)

; 0053

MEDIAN-4CR11)[R0]

The VAX general registers (0 through 12) are represented by RO through
R12. When register 12 is used as the argument pointer, it is represented as
AP. The frame pointer (register 13) is represented as FP; the stack pointer
(register 14) as SP; and the program counter (register 15) as PC. Integer
constants are shown as signed integer values, real and complex constants as
unsigned hexadecimal values preceded by ~X. Addresses are represented by
the program section name plus the hexadecimal offset within that program
section. Program sections are indicated by PSECT lines, and labels that the
compiler generates for its own use appear as L$n.

The following is an excerpt of machine code generated for the program unit
CALCSUMS.

4-35

Implementation Cycle

.TITLE CALC.SUMS

.IDENT 01

01AC .PSECT $L0CAL

01AC .LONG “X040A0004

01B0 .LONG “X00000000

01B4 .LONG -X01E00000.-X00002000

0000 .PSECT $C0DE

0000 CALC.SUMS::

0000 .WORD ~M<IV,R11>

0002 MOVAL $L0CAL+~X198, Rll

0009 MOVL PERSONS.HOUSE(AP), $L0CAL+“X1B0(R11)

000E SUBL3 #4, P EIRSO NS .HOUSE (AP) , $L0CAL+~X1BC(R11)

0014 MOVL ADULTS.HOUSE(AP), $LOCAL+~X1DO(R11)

0019 SUBL3 #4, ADULTS.HOUSE(AP), $L0CAL+~X1DC(R11)

001F MOVL INCOME.HOUSE(AP), $L0CAL+~X1F0(R11)

0024 SUBL3 #4, INCOME.HOUSE(AP), $L0CAL+~X1FC(R11)

002A MOVL ©TOTAL.HOUSES(AP), $LOCAL+~X20C(R11)

002F MOVL #1, I(Rll)

0033 CMPL I(Rll), $L0CAL+~X20C(R11)

0038 BGTR L$4

; 0034

OODC MULL3 #1000, J(Rll), ©MED.INCOME.HOUSE(AP)

; 0055

00E6 MOVL #1. CALC.SUMS(Rll)

; 0058

00 EA MOVL CALC.SUMS(Rll), RO
; 0059

OOEE RET

.END

4.4.1.3 Storage Map

The storage map portion of a compiler listing contains summary information
on program sections, variables, and arrays. You can also request additional
symbol information in certain sections of the storage map by specifying the
/CROSS-REFERENCE qualifier with the /LIST qualifier (see the end of this
section).

Note that data addresses are specified in hexadecimal as offsets from the
start of a program section or the argument pointer (AP). Indirect addressing
is indicated by an at sign (@) following an address field. (In indirect
addressing, the address specified by the program section or AP, plus the
offset, points to the address of the data—not to the data itself.)

4-36

Implementation Cycle

The following is a list of the information which can be generated:

1 Program sections—Describe each program section, including its PSECT
number, name, size, and attributes, as well as the total memory
allocated for all program sections. For example, the following program
section summary describes $CODE (the PSECT containing executable
statements) as being 224 (decimal) bytes of code that is position-
independent, concatenated, relocatable, local, shareable, executable,
readable, nonwriteable, and longword aligned.

PROGRAM SECTIONS

Name Bytes Attributes

$C0DE 224 PIC CON REL LCL SHR EXE RD NOWRT LONG
$LOCAL 524 PIC CON REL LCL NOSHR NOEXE RD WRT LONG

Total Space Allocated 748

2 Entry points—List each entry point (an executable statement at which
execution of a program unit can begin) and its address. If the program
unit is a function, its data type is also listed. For example, the following
summary indicates the program unit CALC—SUMS is a function with an
INTEGER*4 data type.

ENTRY POINTS

Address Type Name

0-00000000 1*4 CALC.SUMS

3 Statement function summary—Lists the entry point, data type, and name
of each statement function. If all of the references to a statement function
generate in-line code, the body of the statement function is not compiled,
and a double asterisk (**) appears instead of an address.

4 Variables—List the addresses, data types, and names of all variables
except arrays. In the following example, each variable is a REAL*4 type.

VARIABLES

Address Type Name

2-0000019C R*4 ADULTS
AP-00000018® R*4 AVG_ADULTS_HOUSE
AP-0000001C® R*4 AVG.INCOME.HOUSE

5 Arrays—List the address, data type, and name of each array, plus its
total size (in bytes) and number of elements (listed as dimensions). If
the array is an adjustable array or assumed-size array, its size is shown
as double asterisks (**) and each adjustable dimension bound is shown
as a single asterisk (*). In the following example, all arrays are one
dimensional.

4-37

Implementation Cycle

ARRAYS

Address Type Name Bytes Dimensions

AP-OOOOOOOC® R*4 ADULTS.HOUSE 8192 (2048)

AP-00000010® R*4 INCOME.HOUSE 8192 (2048)

2-00000000 1*4 MEDIAN 404 (101)

AP-00000008® R*4 PERSONS.HOUSE 8192 (2048)

6 Namelist Summary—Lists the name and address of each namelist.

7 Label Summary—Lists the number and address of each user-defined
statement label. FORMAT statement labels are suffixed with an
apostrophe ('). If the label address field contains double asterisks
(**), the label was not used or referred to by the compiled code.

8 Functions and subroutines referenced—List all external symbols
referenced by the source program (except references to symbols used
as dummy arguments) and their data types. The following excerpt shows
the external symbols referenced by INCOME.

FUNCTIONS AND SUBROUTINES REFERENCED

Type Name

1*4 CLI$GET_VALUE

1*4 FIX.STATS

1*4 GET.STATS

INCOME_INSFIXVAL

LIB$SIGNAL

1*4 CLI$PRESENT
F0R$CL0SE

INCOME_BADFIXVAL

INCOME_NOACTION

To generate additional symbol information in various sections of the storage
map, specify the /CROSS-REFERENCE qualifier with the /LIST qualifier.

$ FORTRAN/LIST/CROSS.REFERENCE INCOME

The /CROSS-REFERENCE qualifier includes the following symbol
information in the storage map: the lines where symbols are defined and
initialized, the lines where the values of symbols are modified, the lines
where symbols are actual arguments, and the number of times a symbol
occurs in each line. For example, the following excerpt indicates that the
variable ADULTS was referenced four times: in lines 24, 36 (where it was
referenced twice and its value was modified), and 46.

Type Name

1*4 REPORT

1*4 CONVERT.FIXES

F0R$0PEN

INCOME_FORIOERR

1*4 LIB$GET_LUN

4-38

Implementation Cycle

Key to Reference Flags

= Value modified

Defining reference

A Actual argument, possibly modified

D Data initialization

(n) Number of occurrences on line

ENTRY POINTS

Address Type Name References

0-00000000 1*4 CALC.SUMS 1

ii
00
LO

VARIABLES

Address Type Name References

2-0000019C R*4 ADULTS 24 36(2)= 46

AP-00000018® R*4 AVG.ADULTS.HOUSE 1 15 46=

AP-0000001C® R*4 AVG.INCOME.HOUSE 1 15 47=

AP-00000020® R*4 AVG_INCOME_PERSON 1 15 48=
AP-00000014® R*4 AVG.PERSONS.HOUSE 1 15 45=

4.4.1.4 Compilation Summary

The compilation summary lists the qualifiers used with the FORTRAN
command and the compilation statistics.

COMMAND QUALIFIERS

FORTRAN /DEBUG/LIS/MACHINE_CODE CALCSUMS

/CHECK=(NOBOUNDS,OVERFLOW,NOUNDERFLOW)

/DEBUG=(SYMBOLS,TRACEBACK)

/STANDARD=(NOSYNTAX,NOSOURCE.FORM)
/SHOW=(NOPREPROCESSOR,NOINCLUDE,MAP)
/F77 /NOG.FLOATING /I4 /OPTIMIZE /WARNINGS

/NOD.LINES /NOCROSS.REFERENCE /MACHINE.CODE

/C0NTINUATI0NS=19

COMPILATION STATISTICS

Run Time:

Elapsed Time:
Page Faults:

Dynamic Memory:

1.29 seconds

4.02 seconds

163
160 pages

4-39

Implementation Cycle

4.4.2 Image Maps

An image map contains information about the link process and the image
it produces; you can use an image map to locate link-time errors, to study
the layout of the image in virtual memory, to keep track of global symbols,
and so on. When you link your program interactively, you must specify the
/MAP qualifier with the LINK command to generate an image map file.

$ LINK/MAP INCOME

If the program is linked in a batch job, a map is generated by default. To
suppress the creation of a map file, specify /NOMAP. (In either case, the
image map is not automatically printed.) By default, the map file has a file
type of MAP and the same file name as that of the first object file specified
with the LINK command. To override this default, specify the file name
with the LINK command. For example, to generate a map file with the
specification INCOME1.MAP, specify

$ LINK/MAP=INC0ME1.MAP INCOME

The components of a map file depend upon the qualifiers specified with the
/MAP qualifier. If you specify only LINK/MAP, the image map contains
five sections; if you specify LINK/MAP/FULL, it contains eight sections;
if you specify LINK/MAP/BRIEF, it contains only three sections. The
following table indicates which map sections are generated by each qualifier
combination.

Qualifier Image Map Sections

/MAP/BRIEF Object module synopsis
Image synopsis
Link run statistics

/MAP Object module synopsis
Image synopsis
Link run statistics
Program section synopsis
Symbols by name

/MAP/FULL Object module synopsis
Image synopsis
Link run statistics
Program section synopsis
Symbols by name
Symbols by value
Module relocatable reference synopsis
Image section synopsis

Not only does a full map (an image map generated by the /MAP/FULL
qualifiers) contain more sections than a default or brief map does, but some

4-40

Implementation Cycle

of the full map's sections may also contain more information than the same
sections in a default or brief map. This information concerns modules or
shareable images that were implicitly included (not explicitly specified) in
the link. The sections that contain more information when generated with
the /FULL qualifier are: object module synopsis, program section synopsis,
symbols by name, and symbol cross-reference.

With the /MAP and /MAP/FULL qualifiers you can also specify the
/CROSS-REFERENCE qualifier, which replaces the symbols by name
section with a symbol cross-reference section.

4-41

L

Using the Debugger

Once you have successfully compiled and linked your program, you can
use the debugger to check it for errors while it executes. For a complete
description of the debugger, see the VAX/VMS Debugger Reference Manual.

Debugging sessions differ depending on the size and content of your
program. Assuming that you have compiled and linked your FORTRAN
program with the debugger (FORTRAN/LIST/DEBUG/NOOPTIMIZE; LINK
/DEBUG), the following commands are generally useful in locating an error.

• SET MODULE/ALL—Gives the debugger access to all program
variables.

• SET EXCEPTION BREAK—Indicates that the debugger should take
control when an error occurs.

• GO—Begins program execution. When an error occurs, the debugger
displays the line at which it occurred, and then prompts you for a
command.

• EXAMINE variable—Examines a local variable. When an error occurs,
you should examine local variables to ensure that they all contain the
expected values.

• EXIT—If you are still unsure of the problem, use the EXIT command
to exit from the debugger and execute the program again. (You can
reexecute a program without exiting, as shown in Section 5.4.1.1;
however, variable values may be incorrect.)

For subsequent debugging sessions, use the following commands to watch
program execution more carefully.

• SET BREAK routine—After using the SET MODULE/ALL command
as described above, use the SET BREAK command to indicate that the
debugger should take control when the routine that caused the error
begins executing. (Specify the name of the offending routine as the
parameter of the SET BREAK command.)

• SET MODE SCREEN—Enters screen mode in the debugger so that you
can examine the source code as your program executes.

• STEP—Executes the current routine one line at a time. Use STEP to
ensure that all statements are executing in the expected order.

5—1

Using the Debugger

If you still have not located the error, you might use tracepoints, as described
in Section 5.4.2.1, to ensure that your routines are executing in the proper
order.

5.1 Invoking and Terminating the Debugger

Normally, to invoke the debugger, you compile and link a program with the
/DEBUG qualifier and then execute the program. When a program linked
with the debugger executes, the debugger prompt appears and the program
executes under debugger control. To terminate a debugging session, type the
EXIT command or press CTRL/Z.

5.1.1 Invoking the Debugger

To make all symbol information available during a debugging session, specify
the /DEBUG qualifier with both the FORTRAN and LINK commands.
Subsequent execution of your program invokes the debugger. For example,
to debug a FORTRAN program named INCOME.FOR, enter the following
commands.

$ FORTRAN/DEBUG/NOOPTIMIZE INCOME
$ LINK/DEBUG INCOME

To invoke the debugger, issue the RUN command at DCL level. The
debugger identifies itself as follows:

$ RUN INCOME

VAX DEBUG VERSION 4.4
'/.DEBUG-1-INITIAL, language is FORTRAN, module set to 'INCOME'
DBG>

The /NOOPTIMIZE qualifier of the FORTRAN command prevents the
FORTRAN compiler from optimizing your program, thus ensuring that
the executable image exactly reflects your source code. If you omit the
/NOOPTIMIZE qualifier, examining variables while debugging may not
produce valid results. For systems under development, you should also
include the /CHECK and /LIST qualifiers with the FORTRAN command; see
Section 4.1 for more information about these qualifiers.

If your program is running without debugger control and you want to invoke
the debugger, use CTRL/Y to interrupt the execution of your program
and then specify the DCL command DEBUG. The module and language
information that exists in your program at the time of its interruption
is preserved; however, the debugger will not have access to full symbol
information.

5—2

Using the Debugger

5.1.2 Interrupting the Debugger

Once you have invoked the debugger, you can interrupt the currently
executing source code by pressing CTRL/Y or entering the SPAWN
command.

• CTRL/Y—Terminates any debugger command or source code that is
executing and puts you at DCL command level. You can return to the
debugger with either the DCL command CONTINUE or DEBUG, as long
as while you were at DCL level you only executed commands performed
within the command interpreter (see the VAX/VMS DCL Dictionary for
a list of these commands.) The CONTINUE command continues the
debugging session where you interrupted it. The DEBUG command
aborts the interrupted command before continuing the debugging session
(useful for aborting an infinite loop or long command).

• SPAWN—Creates a subprocess that allows you to use DCL commands
without terminating the debugging session. If you specify a DCL
command as a parameter of SPAWN, the spawned subprocess executes
the command and immediately returns debugger control. The following
example executes MAIL in the middle of a debugging session.

DBG> SPAWN MAIL

MAIL> EXIT
'/.DEBUG-1-RETURNED, control returned to process USER
DBG>

Specify the SPAWN command without a parameter to go to DCL
command level and be able to enter any number of DCL commands.
To resume your debugging session, specify the LOGOUT command.

DBG> SPAWN
$ MAIL

MAIL> EXIT
$ LOGOUT
Process USER_1 logged out at 28-JUL-1984 09:59:12:45

'/.DEBUG-1-RETURNED, control returned to process USER
DBG>

5-3

Using the Debugger

5.1.3 Terminating the Debugger

The following message indicates that your program has executed normally.

•/.DEBUG-I-EXITSTATUS, is ''/.SYSTEM-S-NORMAL, normal successful completion'

DBG>

To terminate the debugging session, press CTRL/Z or type EXIT.

DBG> EXIT

$

The dollar sign prompt indicates that you are at DCL command level.

5.2 Entering Debugger Commands

To enter a debugger command, type it after the debugger prompt (DBG>)
and press RETURN. A number of keypad keys are also defined commands.
If you are in keypad mode (the default) and wish to execute one of these
commands, press the appropriate keypad key.

5.2.1 Using Debugger HELP

To display the list of debugger topics on which information is available,
type HELP. To display information about a particular topic, type HELP plus
the topic name. For example, to display information about the use of the
qualifier /ALL with the SET MODULE command, specify

DBG> HELP SET MODULE/ALL

5.2.2 Abbreviating Debugger Commands

Debugger commands, like DCL commands, can be abbreviated to unique
characters. For example, the command CANCEL EXCEPTION BREAK could
be entered as CAN EX BR. (For clarity, this document does not abbreviate
commands.) In addition, you can abbreviate a debugger command by
using the DEFINE command with its /COMMAND qualifier to equate the
command to a shorter symbol name. The following example creates the
symbol CEB to abbreviate the command CANCEL EXCEPTION BREAK.

DBG> DEFINE/COMMAND CEB = "CANCEL EXCEPTION BREAK/ALL"

To make your symbol definitions available at each debugging session, include
them in a debug initialization command file that is executed at the outset of
all debugging sessions (see Section 5.7.3).

5-4

Using the Debugger

5.2.3 Using the Keypad

Debugging in keypad mode allows you to use the keypad keys to enter
debugger commands. To invoke keypad mode, specify

DBG> SET MODE KEYPAD

To terminate keypad mode, specify

DBG> SET MODE NOKEYPAD

The debugger provides a set of default key definitions for each key in
the keypad; you can redefine each of these keys with the DEFINE/KEY
command. Each key in the default keypad can perform at least one
debugging command; most of the keys perform three: one command is
entered by pressing the keypad key, a second command is entered by
pressing the PF1 key and then the keypad key, and a third command is
entered by pressing the PF4 key and then the keypad key.

For example, the keypad key labeled 0 enters the STEP command by default;
the 0 key in combination with the PF1 key enters the STEP/INTO command;
and the 0 key in combination with the PF4 key enters the STEP/OVER
command.

STEP: STEP/INTO: STEP/OVER:

□□□ □□□■ □□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□ □□□
HID ■ID ■ID

ZK-1937-84

5.2.3.1 Default Key Definitions

The following figure shows the default definitions of each keypad key. (The
commands are listed in the block designating the keypad key to which
they are assigned.) The first command listed is the command you enter
by pressing the single key, the second command listed is the command
you enter by pressing the PF1 key in combination with the key, and the
third command listed is the command you enter by pressing the PF4 key in
combination with the key.

5-5

Using the Debugger

DEFAULT

(SCROLL)

s- J

FI 8

MOVE

FI 9

EXPAND

(EXPAND f)

F20 ^

CONTRACT

(EXPAND -)
"MOVE"

0 'l

MOVE/UP

MOVE/UP 999

MOVE/UP 5

^ J
r >

’ PF1 PF2 PF3 PF4 ^
4 6

MOVE/LEFT MOVE/RIGHT
GOLD HELP DEFAULT SET MODE SCREEN BLUE MOVE/LEFT 999 MOVE/RIGHT 999
GOLD HELP GOLD SET MODE NOSCR BLUE MOVE/LEFT: 10 MOVE/RIGHT 10
GOLD HELP BLUE DISP GENERATE BLUE

l J ^ J
r

7

f8 ^

9 —
2

MOVE/DOWN
DISP SRC.INST.OUT SCROLL UP DISPLAY next DISP next at FS MOVE/DOWN 999
DISP INST.REG.OUT SCROLL'TOP MOVE/DOWN 5

SCROLL/UP DISP SRC. OUT
^ J

^__J
K N|

J

SCROLL LEFT EX SOU 0\%PC SCROLL/RIGHT GO

SCROLL/LEFT 255 SHOW CALLS SCROLL/RIGHT 255

SCROLL/LEFT SHOW CALLS 3 SCROLL/RIGHT SEL/INST next
"EXPAND" EXPAND/UP

EXPAND/UP 999

^ J L j EXPAND/UP 5

1 3 ENTER ^ J
r n

EXAMINE SCROLL/DOWN SEL SCROLL next 4 6

EXAM"(prev) SCROLL/BOTTOM SEL OUTPUT next

SCROLL/DOWN SEL SOURCE next EXPAND/LEFT EXPAND/RIGHT

EXPAND/LEFT 999 EXPAND/RIGHT 999
V J EXPAND/LEFT 10 FXPANn/RlftMTin

0 ■ ENTER 1 J c J
STEP RESET 2

STEP INTO RESET

STEP OVER RESET EXPAND/DOWN

_> EXPAND/DOWN 999

EXPAND/DOWN 5

V_/
LK201 Keyboard:

Press

F1 7

F18

F19

F20

VT-100 Keyboard:

Type

SET KEY/STATE=DEFAULT

SET KEY/STATE=MOVE

SET KEY/STATE=EXPAND

SET KEY/STATE=CONTRACT

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

Keys 2,4,6,8
SCROLL

MOVE

EXPAND

CONTRACT

-

"CONTRACT" EXPAND/UP -1

EXPAND/UP -999

EXPAND/UP-5

^ J
/.N

4 6

EXPAN D/LEFT: -1

EXPAND/LEFT -999

EXPAND/LEFT -10

V J
..

EXPAND/RIGHT -1

EXPAND/RIGHT -999

EXPAND/RIGHT -10

^ J

EXPAND/DOWN -1

EXPAND/DOWN -999

EXPAND/DOWN -5

^ J ZK-4774-85

5-6

Using the Debugger

Some keys (such as PF3, SET MODE SCREEN) enter the command
immediately when pressed. The keys whose commands are followed by
an ellipsis (such as PF4 plus key 8, SCROLL/UP...) take parameters that you
must type on the main keyboard; enter the completed command by pressing
either RETURN or ENTER. For example, to enter the command SCROLL
/UP..., first press PF4 and key 8. The command SCROLL/UP is echoed on
the screen, you type the number of lines you would like to scroll, and then
you press ENTER to execute the command.

5.2.3.2 User Key Definitions

The debugger DEFINE/KEY command (similar to the DCL DEFINE/KEY
command) allows you to assign a debugger command to a keypad key. For
example, to define the keypad key 7 to enter and execute the SET MODULE
/ALL command, specify

DBG> DEFINE/KEY/TERMINATE KP7 "SET MODULE/ALL"

You must be in keypad mode to define, use, display, or delete a keypad key.
To display the current definition of a keypad key, specify

DBG> SHOW KEY key

To delete a key's definition, specify

DBG> DELETE/KEY key

You can put key definitions in a debugger initialization file so that the key is
available whenever the intialization file is executed (see Section 5.7.3).

5.3 Using Screen Displays

Screen mode debugging allows you to keep a variety of debugging
information on the screen by dividing the screen into sections and displaying
different types of information in each section. The sections of the screen
are called windows, and the contents of the windows are called displays.
In screen mode, the debugger defines a number of default windows and
maintains five default displays: a display of source lines (SRC), a display of
instruction lines (INST), a display of debugger output (OUT), a display of
register contents (REG), and a display containing the debugger prompt and
your input.

5-7

Using the Debugger

5.3.1 Invoking and Terminating Screen Mode

To invoke screen mode, press the keypad PF3 key or enter the SET MODE
SCREEN command. Three displays appear on the screen by default: the
default SRC display appears in window HI (the top half of your screen), the
default OUT display appears in window S45 (lines 13 through 20), and the
PROMPT display appears in window S6 (lines 21-24). The screen output
includes 24 lines; six sections containing four lines each.

The display name and characteristics are placed on the title line of the
window. The following screen appears when you execute a SET MODE
SCREEN command followed by a STEP command when debugging the
program INCOME. The arrow in the left column indicates the current
location of the program counter which points to the next statement to be
executed. The STEP command brings you to the first executable statement of
the program.

DBG> SET MODE SCREEN
DGB> STEP
DBG>

--SRC: module INCOME-scroll-source-
219: ! Declare subprograms invoked as functions
220: 2 CLI$PRESENT,
221: 2 LIB$GET_LUN
222:

223: ! Get logical unit number for STATS.SAV
-> 224: STATUS = LIB$GET_LUN (STATS.LUN)

225: IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))
226:
227: ! Get name of file containing data base
228: CALL CLI$GET_VALUE (•STATS.FILE',
229: 2 STATS.FILE,
--OUT-output-
stepped to INCOMEV/.LINE 224

224: STATUS = LIB$GET_LUN (STATS.LUN)

--PROMPT -error-program-prompt
DBG>

By default, the SRC display points to the next executable source line and
shows the five'lines preceding and following it. The entire source program
is available through scrolling, as long as the conditions for regular source
display are met (see Section 5.4.3 for a list of these conditions). The OUT
display shows debugger output, such as responses to SHOW and EXAMINE
commands. (The 100 most recent lines of debugger output are available
through scrolling.) The REG and INST displays are also available by
specifying the DISPLAY REGISTER or DISPLAY INST commands; the

5-8

Using the Debugger

REG display shows the current contents of machine registers and the INST
display shows the instruction code.

To display information about existing screen displays (including those not
currently displayed on the screen), specify the SHOW DISPLAY command.
The information is output to display OUT.

DBG> SHOW DISPLAY

DBG>

--SRC: module INCOME-scroll-source-

219: ! Declare subprograms invoked as functions

220: 2 CLI$PRESENT,

221: 2 LIB$GET_LUN

222:

223: ! Get logical unit number for STATS.SAV

-> 224: STATUS = LIB$GET_LUN (STATS.LUN)

225: IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

226:

227: ! Get name of file containing data base

228: CALL CLI$GET_VALUE (•STATS.FILE',

229: 2 STATS_FILE,

--OUT-out-

display SRC at HI, size = 64

kind = SOURCE (EXAMINE/SOURCE . y.SOURCE_SCOPE\'/,PC)

display INST at HI,size = 64, removed

kind = INSTRUCTION (EXAMINE/INSTRUCTION .OV/.PC)

display REG at RH1, size = 64, removed, kind = REGISTER

display OUT at S45, size = 100, kind = OUTPUT

display PROMPT at S6, size = 64, kind = PROGRAM

-PROMPT -error-program-prompt-

DBG>

When debugger output from a single command exceeds the dimensions of
display OUT (the output from the SHOW WINDOW command, for example),
the beginning of the display is not visible. To view the entire display, you
can scroll the display (see Section 5.3.3.3), place the display into window
FS (full screen) or another large screen region (Section 5.3.3.1), or terminate
screen mode (SET MODE NOSCREEN) before entering the command. (A
subsequent SET MODE SCREEN command restores the screen displays.)

5-9

Using the Debugger

5.3.2 Defining Windows

The debugger provides a number of default windows that allow you
to treat the entire screen as a single window (FS) or divide the screen
into halves (H1,H2), thirds (T1,T2,T3), quarters (01,(22,(23,(24), or sixths
(S1,S2,S3,S4,S5,S6). The full screen (FS) covers lines 1-24; HI covers lines
1-12 and H2 covers lines 13-24. In addition, each of these screens can also
be divided vertically into a right and left half. For example, the top right side
of the screen (RH1) is where INST and REG are displayed and the top left
side of the screen (LH1) is where SCR is displayed.

Use the SHOW WINDOW command to display the names and dimensions
of all windows currently defined. Use the CANCEL WINDOW command to
delete one or more windows.

5.3.3 Manipulating Displays

You can manipulate screen displays in several ways, including showing them
on the screen, scrolling forward or backward through them, and removing
them from the screen.

5.3.3.1 Showing Displays

You can show a REG or INST display on the right side of the screen with
the DISPLAY command. For example, in response to the DISPLAY REG
command, the debugger places the REG display in window RH1. If the
DISPLAY INST command is issued, the REG display is replaced with the
INST display in RH1.

DBG> DISPLAY REG
DBG>

5—10

Using the Debugger

--SRC:

219:

220:

221:

222:

223:

-> 224:

225:

226:

227:

228:

229:
--0UT-

module INCOME-scroll-source-

! Declare subprograms in IRO:00007C00

2 CLI$PRESENT, |R1:00000000

2 LIB$GET_LUN IR2:00000000

IR3:7FF55F94
! Get logical unit numbe|R4:00000000

STATUS = LIB$GET_LUN (ST IR5:00000000

IF (.NOT. STATUS) CALL LIR6:7FF55449

IR7:8001E4DD

! Get name of file contaIR8:7FFED052

CALL CLI$GET_VALUE ('STAIR9:7FFED25A

2 STAT|N:0 Z:0
-out-

RIO:7FFEDD4

R11:00006904

AP :7FF557CC

FP :7FF55740

SP :7FF55740

PC :00007C09

SAP:00000000

+4:800212C0

+8:20000000

+12:00000000

V:0 C:0

<3SP: 00000000

+4:08000020

+8:7FF55FCC

+12:7FF55758

+16:00009B5E

+20:7FFE33DC

+24:00000000

+28:20000000

+32:7FF557CC

+36:7FF55FF0

+40:0000924B

display SRC at HI, size = 64

kind = SOURCE (EXAMINE/SOURCE . */,SOURCE_SCOPEV/.PC)

display INST at HI,size = 64, removed

kind = INSTRUCTION (EXAMINE/INSTRUCTION .OV/.PC)

display REG at RH1, size = 64, removed, kind = REGISTER

display OUT at S45, size = 100, kind = OUTPUT

display PROMPT at S6, size = 64, kind = PROGRAM

-PROMPT -error-program-prompt-

DBG>

5.3.3.2 Removing Displays

If you remove a display from the screen and that display is overlying another
display, the hidden display appears in place of the removed display. If you
remove a display from the screen and that display is not overlying any other
displays, the contents of the display remain on the screen until overwritten
by subsequent debugger and/or program output. The following commands
remove a display from the screen.

• CANCEL DISPLAY—Removes the display from the screen and deletes it
from memory. For example, to delete display OUT, specify the following:

DBG> CANCEL DISPLAY OUT

If you delete the OUT display, the debugger no longer sends output to a
special display; instead, command output follows the command line.

• DISPLAY/REMOVE—Removes the display from the screen and saves
it (as is) in memory. For example, to save display OUT, specify the
following:

DBG> DISPLAY/REMOVE OUT

To reactivate the OUT display, use the DISPLAY command to return the
display to the screen (see Section 5.3.3.1) and the SELECT/OUTPUT
command to select the OUT display for debugger output (see the
description of NORMAL displays in Section 5.3.4).

5—11

Using the Debugger

• DISPLAY/HIDE—Determines whether a specified display is overlying
another display. If so, the debugger uncovers the hidden display hiding
the specified display; otherwise, the display remains unchanged. The
debugger saves and continues to update the original display even if it is
hidden as a result of the DISPLAY/HIDE command. You can return the
original display to the screen with the DISPLAY command. For example,
to force any display hidden by the OUT display to appear on the screen,
specify the following:

DBG> DISPLAY/HIDE OUT

You can use the DISPLAY/CLEAR command to erase the contents of a
display without removing the display from the screen.

5.3.3.3 Scrolling Displays

The SCROLL command allows you to show different parts of a display on
the screen. The SELECT/SCROLL command determines which display is
affected by the SCROLL command. For example, to make the SRC display
the default scrolling display, specify the following:

DBG> SELECT/SCROLL SRC

Display SRC remains the default parameter of the SCROLL command until
you specify another SELECT/SCROLL command. To display the previous
five lines of source code, specify the following:

DBG> SCROLL/UP:5

Typically, you scroll a display using the keypad keys.

• Up—Key 8 scrolls towards the beginning of the display by entering the
SCROLL/UP command. To scroll to the top of the display, press PF1
followed by key 8.

• Down—Key 2 scrolls towards the end of the display by entering the
SCROLL/DOWN command. To scroll to the bottom of the display, press
PF1 followed by key 2.

• Left—Key 4 scrolls towards the left of the display by entering the
SCROLL/LEFT command.

• Right—Key 6 scrolls toward the right of the display by entering the
SCROLL/RIGHT command.

Keypad key 5 refreshes the current source display (SRC, by default) causing
the next source line that is to be executed to appear in the middle of the
display (the source line is marked with an arrow at the left of the source
display).

5-12

Using the Debugger

5.3.3.4 Using Pseudodisplay Names

The debugger keeps a chronological list of the displays that you reference
with DISPLAY commands. You can refer to displays by their relative
positions in this list; that is, you can refer to the current (most recently
referenced) display or the next display. (You can restrict the list to a single
type of display as well.)

For example, %NEXTDISP is a pseudodisplay name that refers to the next
display in the list. That is, if you create displays A, B, and C in that order
and you are currently displaying B, the name %NEXTDISP refers to display
C. If you display A while B is current, A becomes current and B moves to
the end of the list, making the order of the list A, C, B. The default definition
for keypad key 9 is DISPLAY %NEXTDISP, which allows you to use the 9
key to circle through your displays (assuming that you have referenced each
display with the DISPLAY command).

You can use the following pseudodisplay names to reference displays in
debugger commands.

%CURDISP

%CURSCROLL

%NEXTDISP

%NEXTINST

%NEXTOUTPUT

%NEXTSCROLL

%NEXTSOURCE

The current (most recently referenced) display

The current scrolling display

The next display in the list

The next instruction display

The next output display

The next scrolling display

The next source display

5.3.4 Creating Displays

In addition to the default displays, you can define other source, output, and
register displays. To create a display, use the SET DISPLAY command.

SET DISPLAY display [AT window] [type]

You must specify a display name; optionally, you can specify the window
into which the display is mapped and the type of display to create. The
following display types are available.

• DO (command-list)—Display contains the results of the debugger
commands specified in the command list. The command list is executed
each time the debugger regains control. If you specify more than one
command, separate the commands using semicolons.

5-13

Using the Debugger

• INSTRUCTION—Display contains the assembly language instructions,
but only if the display is selected for instruction display with the SELECT

/INSTRUCTION command.

• INSTRUCTION (command-list)—Display contains the results of the
debugger commands specified in the command list. The command list,
which should consist of a single EXAMINE/INSTRUCTION command,
is executed each time the debugger regains control. The SRC display is
type INSTRUCTION with a command list of EXAMINE/INSTRUCTION
.0\%PC (examine the instruction line in the current module at the
location in the program counter). By default, the INST display is selected
for instruction display when the language is MACRO.

• OUTPUT—Display contains all debugger output, but only if the display
is selected for output with the SELECT/OUTPUT command. By default,
the OUT display is selected for output.

• REGISTER—Display contains the VAX registers and their contents; the
display is updated each time the debugger regains control. The REG
display is type REGISTER.

• SOURCE—Display contains the program source statements, but only
if the display is selected for source display with the SELECT/SOURCE
command.

• SOURCE (command-list)—Display contains the results of the debugger
commands specified in the command list. The command list, which
should consist of a single TYPE or EXAMINE/SOURCE command, is
executed each time the debugger regains control. The SRC display is
type SOURCE with a command list of EXAMINE/SOURCE .0\%PC
(examine the source line in the current module at the location in the
program counter). By default, the SRC display is selected for source
display for all language except MACRO.

5.4 Controlling Program Execution

Debugger commands provide several means of controlling your program's
execution. If your program contains more than one program unit, you may
need to use the SET MODULE and/or SET SCOPE commands in order
to reference symbols in all modules. (See Sections 5.5.1 and 5.5.3.2 for
information about the SET MODULE and SET SCOPE commands.) For a
complete description of each debugger command, see the VAX/VMS Debugger
Reference Manual.

5-14

Using the Debugger

5.4.1 Starting Program Execution

The command with which you start program execution determines when
the debugger regains control. The GO, STEP, and CALL commands execute
varying numbers of source lines before returning control to the debugger.
The SHOW CALLS command displays the current hierarchy of routine calls.

5.4.1.1 The GO Command

The GO command starts execution at the current line and continues to the
conclusion of the program (as in the following example), an error, or the next
breakpoint or watchpoint (see Section 5.4.2).

DBG> GO
'/.DEBUG-I-EXITSTATUS, is • ‘/.SYSTEM-S-NORMAL, normal successful completion'
DBG>

An optional parameter of the GO command allows you to specify an address
at which to start program execution. This feature allows you to reexecute
your program without exiting from the debugger; however, unless you
reinitialize modified data, your results are likely to be incorrect.

5.4.1.2 STEP Command

By default, the STEP command executes one source statement. To execute
more than one statement, specify the number of statements to be executed
as a parameter of the STEP command. The following command executes the
next three source statements.

DBG> STEP 3
stepped to INCOMEV/.LINE 228

228: CALL CLI$GET_VALUE ('STATS.FILE',

If you are debugging in screen mode, the information displayed by the STEP
command is redundant since the SRC display shows the source code and
your current position. Use the SET STEP SILENT command to prevent the
STEP command from displaying any text.

If the STEP command encounters a subprogram invocation, the following
STEP characteristics determine whether the subprogram executes as a single
step.

• OVER—Causes the debugger to execute subprograms as a single STEP
command.

• INTO—Causes the debugger to step through subprograms line by line.

5-15

Using the Debugger

• NOSYSTEM and SYSTEM—NOSYSTEM causes the debugger to execute
system subprograms as a single STEP command regardless of the
INTO and OVER characteristics. SYSTEM and INTO together cause
the debugger to step through system subprograms line by line.

To display the current default characteristics of the STEP command, enter the
SHOW STEP command. The following SHOW STEP command displays the
default STEP parameters.

DBG> SHOW STEP
STEP TYPE: NOSYSTEM, SOURCE, HVER ROUTINE CALLS, BY LINE

By default, the debugger executes all subprograms as a single step. To set the
STEP characteristics so that the debugger steps through user subprograms,
but not system subprograms, specify the following:

DBG> SET STEP NOSYSTEM, SOURCE, INTO, LINE

The LINE characteristic in the previous example (same as BY LINE in the
SHOW STEP display) indicates that a STEP command will execute source
line by source line. Alternatively, you can use the following keywords to
specify that a STEP command should execute all lines up to an exception
or a particular type of machine code instruction (the BRANCH, CALL, and
INSTRUCTION keywords are useful only if you are familiar with machine
code).

• BRANCH—Specifies the next machine code branch instruction

• CALL—Specifies the next machine code call instruction

• EXCEPTION—Specifies the next exception (error)

• INSTRUCTION—Specifies the next machine code instruction

• LINE—Specifies the next source code statement

• RETURN—Specifies the end of the currently executing subprogram

To use one of the previously listed keywords to modify a single STEP
command, name the keyword as a qualifier of the STEP command (for
example, STEP/INSTRUCTION). To use one of the previously listed
keywords as the default for the STEP command, use the keyword
as a parameter of the SET STEP command (for example, SET STEP
INSTRUCTION).

5-16

Using the Debugger

5.4.1.3 CALL Command

The CALL command invokes a subprogram (passing it specified arguments),
executes the subprogram, and displays the function value returned (0 for a
subroutine). Typically, you use the CALL command to invoke a subprogram
that you have written to display data structures or other information required
for debugging.

When passing arguments to a subprogram invoked by the CALL command,
use the following keywords to specify the passing mechanism.

• %ADDR (default)—Pass by address; typically, you use this mechanism
when passing the name of a routine as an argument

• %DESCR—Pass by descriptor

• %REF—Pass by reference

• %VAL—Pass by value

For example, the subprogram INC—DUMP is a subroutine that requires two
arguments, both passed by reference. To invoke INC—DUMP, specify the
following:

DBG> CALL INC.DUMP C/.REF PERSONS.HOUSE, ‘/.REF ADULTS.HOUSE)
value returned is 0

5.4.1.4 SHOW CALLS Command

To display information about the sequence of subprogram calls, or the
number of call frames on the stack, use the SHOW CALLS command. For
each call frame (beginning with the most recent call), the debugger displays
one line of information, including the name of the routine, the name of the
module containing the routine, and the line number of the call. For example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC

♦CALC_SUMS CALC.SUMS 00000002 00008D06
♦REPORT REPORT 68 0000009A 00008C52
♦INCOME INCOME 253 00000276 00008676

The value of the program counter (PC) in the calling routine at the time that
control passed to the called routine is also displayed. The PC is expressed
both as a virtual address relative to the virtual address of the routine's name
and as an absolute address.

5-17

Using the Debugger

5.4.2 Suspending (or Tracing) Program Execution

You can suspend program execution at specified locations in your program
by setting breakpoints and watchpoints with the SET BREAK and SET
WATCH commands. In addition, you can follow program execution without
suspending execution by setting tracepoints.

An optional WHEN clause allows you to activate a breakpoint, tracepoint, or
watchpoint conditionally. An optional DO clause allows you to specify one
or more debugger commands to be executed when a breakpoint, tracepoint,
or watchpoint is activated. SHOW and CANCEL commands display and
cancel the breakpoints, tracepoints, and watchpoints that you have set.

Note

You cannot set a breakpoint, tracepoint, and watchpoint at the
same location: the most recently issued command overrides any
other breakpoint, tracepoint, or watchpoint at that location.

5.4.2.1 Breakpoints and Tracepoints

You can set a breakpoint at a particular program location, on an exception,
or on a particular type of instruction. When your program encounters a
breakpoint, the debugger suspends program execution, displays the address
of the breakpoint and the source line at that address, executes the DO
command sequence (if specified), and (unless the DO command sequence
causes an alternative action) prompts for a command.

A tracepoint is exactly like a breakpoint, except that instead of prompting
for a command, the debugger executes an implicit GO command to continue
program execution.

To set a breakpoint or tracepoint at a particular program location, specify
that location as the parameter of the SET BREAK or SET TRACE command.
The following example sets a breakpoint that causes the debugger to suspend
execution just before line 224 in module INCOME.

DBG> SET BREAK INCOMEV/.LINE 224
DBG> GO
DBG> STEP
break at INCOMEY/.LINE 224

224: STATUS = LIB$GET_LUN(STATS_LUN

A breakpoint usually suspends execution at the first byte of the specified
location so that the instruction beginning at that location does not execute.
However, if you set a breakpoint at a routine, the breakpoint is actually set
at the memory address two bytes greater than the address of the routine
name itself (the entry point), thereby causing the routine to be called before
the debugger takes control and issues the message "routine break at routine
NAME".

5-18

Using the Debugger

To set a breakpoint or tracepoint on an exception or type of instruction, use
the following qualifiers of the SET BREAK and SET TRACE commands (note
that these qualifiers are the same as those used on the STEP and SET STEP
commands).

• /BRANCH—Specifies the next machine code branch instruction.

• /CALL—Specifies the next machine code call instruction.

• /EXCEPTION—Specifies the next exception (error). The debugger
reports the exception and the line at which it occurred, after which you
can execute or inhibit a user-declared condition handler. You cannot
use the STEP command to step into a condition handler, but you can
set a breakpoint or tracepoint within the handler. (The SET BREAK
/EXCEPTION command is the same as the SET EXCEPTION BREAK
command.)

• /INSTRUCTION—Specifies the next machine code instruction.

• /LINE—Specifies the next source code statement.

• /RETURN—Specifies the end of the currently executing subprogram.

You can use tracepoints (or breakpoints) to indicate both the order and
frequency with which subprograms are called by setting a tracepoint at
every subprogram. (If you use the /CALL qualifier, a tracepoint is placed
on every machine code call instruction, which is typically many more
tracepoints than you want.) For example, to trace subprogram calls for
INCOME (assuming that INCOME invokes the subprograms GET_STAT,
FIX—STAT, and REPORT), specify the following:

dbg> set trace get.stat
dbg> set trace fix.stat
dbg> set trace report
DBG> GO

To activate a tracepoint or breakpoint exactly once, specify the
/TEMPORARY qualifier. To activate a tracepoint or breakpoint after a
certain number of iterations, specify the /AFTER qualifier. For example, to
activate a tracepoint on the third execution of line 35 in module CALC-
SUMS, specify the following:

DBG> SET TRACE/AFTER:3 CALC.SUMSY/.LINE 35

DBG> GO
trace at CALC.SUMSY/.LINE 35

35 PERSONS = PERSONS + PERSONS_HOUSE(I)
trace at CALC_SUMSY/.LINE 35

35 PERSONS = PERSONS + PERSONS_HOUSE(I)

5-19

Using the Debugger

The tracepoint is activated at each successive execution of that line (unless
you specify /TEMPORARY).

To have a breakpoint or tracepoint execute a list of commands when it
is activated, use a DO command sequence. The following example sets a
breakpoint on line 242 and, if the value of TOTAL—HOUSES is more than
100, displays the value of TOTAL—HOUSES; if not, execution resumes at
line 243.

DBG> SET BREAK INCOMEV/.LINE 242 DO (IF TOTAL.HOUSES .GT. 100 -)
_ THEN (EXAMINE T0TAL.H0USES) ELSE (GO)

The optional WHEN clause allows you to conditionally execute a breakpoint
or tracepoint. Each time the debugger encounters the breakpoint or
tracepoint, it evaluates the expression in the WHEN clause: if the expression
is true, the breakpoint or tracepoint is activated; if it is false, the breakpoint
or tracepoint is ignored. For example, in the following command, the DO
command sequence executes only if the expression TOTAL—HOUSES .GT.
100 is true.

DBG> SET TRACE INCOMEV/.LINE 242 WHEN(T0TAL.H0USES .GT. 100) -
_ DO (EXAMINE PERSONS)

5.4.2.2 Watchpoints

Specify a watchpoint to display a particular program location each time the
contents of that location are modified. When your program modifies the
specified location, the debugger suspends program execution; displays the
address of the location, the old and new values of the location, and the
source line that modified the location; executes the DO command sequence
(if specified); and (unless the DO command sequence causes an alternative
action) prompts for a command. To set a watchpoint on a location, specify
that location as the parameter of the SET WATCH command. The following
example sets a watchpoint on the location TOTAL—HOUSES in the module
INCOME and starts execution.

DBG> SET WATCH INC0ME\T0TAL_H0USES
DBG> GO
watch of INC0ME\T0TAL_H0USES at 50340

old value = 0
new value = 65

break at 50345
DBG>

The SET WATCH command uses the /AFTER and /TEMPORARY qualifiers
in the same way the SET BREAK and SET TRACE commands do. Likewise,
you can execute a list of commands when a watchpoint is activated by using
a DO command sequence, or you can conditionally activate a watchpoint by
using a WHEN clause. See Section 5.4.2.1 for examples of the /AFTER and
/TEMPORARY qualifiers, as well as the DO and WHEN clauses.

5-20

Using the Debugger

5.4.3 Displaying Source Lines

Debugger commands allow you to display source lines both when they
execute and independent of their execution. The STEP/SOURCE and SET
MODE SCREEN commands display source lines as they execute; the TYPE
and SEARCH commands display source lines independently. All commands
that display source lines require the following:

1 The source file must have been compiled with the /DEBUG and
/NOOPTIMIZE qualifiers.

2 The source file must reside in the same location in which it was
compiled, or you must use the SET SOURCE command to establish
the file's new location. For example, if the source file has been moved to
the subdirectory [INCOME.SOURCE], specify the following:

DBG> SET SOURCE [INCOME.SOURCE]

3 You must specify the appropriate scope (or path-name) when necessary.

The STEP/SOURCE command displays the currently executing source lines;
see Section 5.4.1.2 for information about the STEP command. The SET
MODE SCREEN command generates the SRC display by default; SRC shows
the currently executing source line, the lines preceding it, and the lines
following it; see Section 5.3 for information on debugger screen displays.
The TYPE and SEARCH commands display source lines independent of their
execution.

• TYPE—Displays a specified range of source lines. For example, to
display lines 22 through 27 of module INCOME, type

DBG> TYPE INC0ME\22:27
module INCOME

22: 2 ADULTS.HOUSE (2048),
23: 2 INCOME.HOUSE (2048)
24:
25: ! Declare variables and values
26: INTEGER STATUS,
27: 2 IOSTAT

In SCREEN mode, the source lines appear in the source display (SRC,
by default); in NOSCREEN mode, the source lines appear with other
debugger output.

• SEARCH—Displays the source lines containing the specified string. For
example, to display all lines containing the string STATS—FILE in the
module named INCOME, specify the following:

5—21

Using the Debugger

DBG> SEARCH/ALL INCOME STATS.FILE

module INCOME
213: CHARACTER*255 STATS.FILE
228: CALL CLI$GET.VALUE (STATS.FILE',
229: 2 STATS.FILE,
238: 2 FILE=STATS_FILE (1:SF_SIZE,

The SEARCH display appears with other debugger output.

5.4.4 Using Logical Control Structures

You can further control the flow of your program's execution by using the

following debugger commands for logical control.

• IF THEN ELSE—A conditional construction that executes a THEN clause

of one or more debugger commands if a specified logical expression

is true. If the expression is false, the command either terminates or

executes an optional ELSE clause of one or more debugger commands.
The format of an IF construction is as follows:

IF expression THEN (command[;...]) [ELSE(command[;...])]

In the following example, if the expression in the IF clause is false, the
ELSE clause executes.

DBG> IF I .GT. 100 THEN (EXAMINE PERSONS) ELSE (GO)

• WHILE—An iterative construction that executes a DO command

sequence while a specified logical expression is true; if the expression

is false, the command terminates. The format of a WHILE construction is
as follows:

WHILE expression DO(command[;...])

The following example causes the debugger to step line by line while
TOTAL —HOUSE is less than 5.

DBG> WHILE TOTAL.HOUSES .LT. 5 DO(STEP/LINE)

• FOR—An iterative construction that executes a DO command sequence
through a range of values. The format of a FOR construction is as
follows:

FOR control = init TO term [BY inc] DO(command[;...])

The control variable is initialized to the value of init and compared to
term. If control is less than term, the commands in the DO command
sequence execute and control is incremented by one (or the value of inc).
If control is greater than term, the command terminates. For example,
the following FOR command displays the value of three variables five
times.

5-22

Using the Debugger

DBG> FOR I = 1 TO 5 DO(EXAMINE PERSONS,ADULTS.INCOME)

Logical control structures are especially useful in command procedures
and DO command sequences (see Section 5.7 for information about using
debugger command procedures). The following command sets a break
on line 36 of module CALC—SUMS; evaluates an expression; and, if true,
executes a command procedure, or, if false, continues execution at line 36.

DBG> SET BREAK CALC_SUMS\#/,LINE 36 DO (IF I .GT. 100 -)
_ THEN (EXAMINE T0TAL_H0USES) ELSE (GO)

5.5 Symbolic Debugging

During a debugging session you can reference the following items:

• Locally defined program variables, such as variables

• Globally defined program variables, such as routine names

• Virtual memory locations, such as an address returned by a system-
defined routine

• Debugger symbols for VAX registers:

%R0—%R11 General registers 0 through 11

%AP Argument pointer

%FP Frame pointer

%SP Stack pointer

%PC Program counter

%PSL Processor status longword

• User-defined debugger symbols as described in Section 5.5.4.

5.5.1 Maintaining Symbol Information

The debugger maintains information about the local and global symbols in
your program, depending upon the DCL commands used to compile and link
the program.

• Local symbols—To maintain local symbol information (symbolic names
of variables) in a FORTRAN program, specify the /DEBUG qualifier with
both the FORTRAN and LINK commands.

F0RTRAN/DEBUG/N00PTIMIZE
LINK/DEBUG

5-23

Using the Debugger

• Global symbols—To maintain global symbol information (symbolic
names of routines in a FORTRAN program, procedure entry points, and
global data names), specify the /DEBUG and /NOOPTIMIZE qualifiers
with the LINK command.

$ LINK/DEBUG

By default, only symbols declared in the main program unit are available
to the debugger at run-time. To make the symbols of any other program
unit available, use the SET MODULE command. For example, to make the
symbols in the module GET_STATS available, specify the following:

DBG> SET MODULE GET.STATS

If your program is not too large, it is useful to make the symbols of all
modules available at the outset of the debugging session. (Performance will
suffer noticeably if your program is too large for all of its modules to be
set.) To set all modules, specify the /ALL qualifier with the SET MODULE
command.

DBG> SET MODULE/ALL

Depending upon the size of your program, most or all of its modules'
symbols will be set. To display which modules' symbols are available,
use the debugger command SHOW MODULE. The following example
demonstrates the effect of the SET MODULE/ALL command. At the outset
of a debugging session on a FORTRAN program named INCOME, only the
symbols of the first linked module (the main program unit named INCOME)
are available.

DBG> SHOW MODULE
module name symbols language size

INCOME yes FORTRAN 948
CONVERT.FIXES no FORTRAN 424
FIX.STATS no FORTRAN 372
GET.STATS no FORTRAN 60
REPORT no FORTRAN 660
CALC.SUMS no FORTRAN 664
GET.l.STAT no FORTRAN 264
PUT_PARTI no FORTRAN 496
PUT.PART2 no FORTRAN 704
PUT.RPTHEAD no FORTRAN 200
LEFT.JUSTIFY no FORTRAN 284

total FORTRAN modules: 11 remaining size: 55856

Entering the SET MODULE/ALL command makes all the modules' symbols
available.

5-24

Using the Debugger

DBG> SET MODULE/ALL
DBG> SHOW MODULE
module name symbols language size

INCOME yes FORTRAN 948
CONVERT.FIXES yes FORTRAN 424
FIX.STATS yes FORTRAN 372
GET.STATS yes FORTRAN 660
REPORT yes FORTRAN 660
CALC.SUMS yes FORTRAN 664
GET.l.STAT yes FORTRAN 264
PUT_PARTI yes FORTRAN 496
PUT.PART2 yes FORTRAN 704
PUT.RPTHEAD yes FORTRAN 200
LEFT.JUSTIFY yes FORTRAN 284

total FORTRAN modules: 11 remaining size: 50964

If your program is not too large, including the SET MODULE/ALL command
in an initialization file (see Section 5.7.3) is useful for two reasons. First, it
makes the symbol records of all modules automatically available. Second,
if you use the SET MODULE/ALL command before your own program
gains control, program data and debugger data will be stored separately,
eliminating the possibility of interspersing program memory with debugger
memory. (Interspersing program and debugger memory is not a problem
unless the program is dependent on the exact location of the data in
memory.)

Note that the SHOW MODULE command displays the remaining size of
the debugger's storage area. You can increase this storage area by using the
ALLOCATE command or the /ALLOCATE qualifier of the SET MODULE
command. However, both the /ALLOCATE qualifier and the ALLOCATE
command may cause program and debugger memory to be interspersed.

In addition to specifying the DCL /DEBUG qualifier at compile and link time
and the debugger SET MODULE command at debug time, you may also
need to use the debugger SET SCOPE command to reference symbols during
the debugging session; see Section 5.5.3.2.

5.5.2 Referencing Symbols

You can reference a symbol by specifying the symbol name as a parameter in
debugger commands. The following command displays the value contained
in the variable VM—SIZE.

DBG> EXAMINE VM.SIZE
V$MAIN\VM_SIZE: 24580

5-25

Using the Debugger

Generally, a symbol name is equated to an address; therefore, specifying the
symbol name is the same as specifying the address. The following sequence
of commands displays the address associated with the symbol VM_SIZE and
then displays the value at that address.

DBG> EVALUATE/ADDRESS VM.SIZE
25608
DBG> EXAMINE 25608
V$MAIN\VM_SIZE: 24580

The debugger also provides the SYMBOLIZE command to allow you to
determine the symbol, if any, associated with a particular location in
memory.

DBG> SYMBOLIZE 25608
address 00006408:

V$MAIN\VM_SIZE

When examining memory locations, you can also use the following
shorthand notations:

. (period) Current location (the location most recently referenced by
an EXAMINE or DEPOSIT command)

A (circumflex) Previous location (the location at the next lower address
from the current location)

RETURN Next location (the location at the next higher address from
the current location;) invalid for the DEPOSIT command

5.5.3 Resolving Symbol References

Given that the required symbols are available to the debugger, you may need
to specify the program region, or scope, in which a particular symbol is to
be interpreted. Scope is dynamic, changing by default to the module that is
currently executing. To display the current default scope (represented both
by number and module name), enter the SHOW SCOPE command.

DBG> SHOW SCOPE
scope: 0 [* INCOME]

A numeric scope of 0 indicates that the scope is the currently executing
program unit; a numeric scope of 1 indicates that the scope is the program
unit that invoked the currently executing program unit; and so on.

5-26

Using the Debugger

When the debugger encounters a reference to a symbol, it attempts to resolve
that symbol with the following steps:

1 If the symbol name is unique within the program, the debugger can
reference its definition.

2 If the symbol is not unique within the program, but is used within the
current scope, then the debugger uses the definition for the symbol as
defined by the current scope.

3 If the symbol is not defined within the program, the debugger issues
a message indicating that the symbol is "not in the symbol table". In
this case, you might have misspelled the symbol, forgotten to use the
SET MODULE command to include the symbols of a particular module,
forgotten the /DEBUG qualifier when you compiled or linked the
program, or linked the FORTRAN program with the /OPTIMIZE instead
of the /NOOPTIMIZE qualifier.

If the symbol is not unique within the program and is not used within
the current scope, the debugger issues a message indicating that the
symbol "is not unique." In this case, you must specify a path-name or
use the SET SCOPE command, as shown in the following sections, to
resolve the ambiguity for the debugger. (If necessary, use the SHOW
SYMBOL command to list the modules that define the symbol.)

5.5.3.1 Path-Name Prefix

You can make a symbol unique by specifying a string of symbolic names
connected by backslashes that fully identify the symbol. The string, or
path-name, can include the module, routine, block, labeled section, and/or
line that contains it. The path-name can be incomplete, so long as it makes
the symbol unique. Usually one path-name prefix is sufficient to make
the symbol unique. For example, to specify the variable LINE_NO in the
module GET_STATS (rather than the variable LINE_NO in the module
GET—l—STAT), specify the following:

DBG> EXAMINE GET_STATS\LINE_NO

Examples of other path-names are:

DBG> EXAMINE '/.LINE 121\LINE_N0
DBG> EXAMINE GET_STATS\'/,LINE 121\LINE_N0
DBG> EXAMINE 0\LINE_NO

Modules in path-names can be specified numerically (as in the preceding
example), where the currently executing module is 0, the module that calls
the currently executing module is 1, the module that calls the module that
calls that one is 2, and so on.

5-27

Using the Debugger

5.5.3.2 SET SCOPE Command

You can use the SET SCOPE command to specify one or more program
regions to be used by default in the interpretation of symbols. For example,
to make the module GET_STATS the default scope, specify the following:

DBG> SET SCOPE GET.STATS

Subsequently, the path-name GET_STATS\ is the default prefix of references
to symbols without path-names.

DBG> EXAMINE LINE.NO
GET_STATS\LINE_NO: 0

You can also use a list of modules or path-names as a parameter of the
SET SCOPE command to set the order in which the debugger searches
for referenced symbols. For example, the following command makes the
debugger search first the module GET_STATS and then the module GET_1_
STAT for whatever symbol is being referenced.

DBG> SET SCOPE GETSTATS,GET_1_STAT
DBG> SHOW SCOPE
scope: GET.STATS, GET_1_STAT

5.5.4 Defining Symbols

You can assign a symbolic name to a program location, value, or character
string with the debugger command DEFINE. You might, for instance,
define a symbol to represent a frequently referenced location that is hard
to remember. The following example assigns the symbolic name TOT to
the integer variable TOTAL—HOUSES in the module INCOME and then
references the variable by its assigned name.

DBG> DEFINE TOT = INC0ME\T0TAL_H0USES
DBG> EXAMINE TOT
INCOME\TOTAL_HOUSES: 57

The symbol definition lasts for the duration of the debugging session or until
you cancel it with the UNDEFINE command.

5—28

Using the Debugger

5.5.5 Displaying Symbol Information

To display information about the symbols in your program, use the SHOW
SYMBOL command. For example, to display the address and type of all
symbols named INCOME in a FORTRAN program, enter

DGB> SHOW SYMBOL/ADDRESS/TYPE INCOME

data CALC_SUMS\INCOME

address: +290690

atomic type, F_floating, size: 4 bytes

data GET_STATS\INCOME
address: +27556

atomic type, longword integer, size: 4 bytes

routine INCOME

address: 31744, size 763 bytes

routine INCOME (global)

address: 31744

module INCOME, language FORTRAN

To display information about symbols you have defined during the
debugging session, use the SHOW SYMBOL/DEFINED command.

DBG> SHOW SYMBOL/DEFINED TOT

bound to: INC0ME\T0TAL_H0USES

was defined /address

By default, the SHOW SYMBOL command returns information about global
symbols and those symbols in modules that have been set (either by default
or with the SET MODULE command). The IN clause allows you to restrict
the SHOW SYMBOL command to one or more modules. You can use the
asterisk wildcard character with the SHOW SYMBOL command to match
any number of characters in the symbol's name. The following command
displays information about all symbols within the scope of the module
CALC—SUMS (any specified scope must be in a module that is set in order
for the SHOW SYMBOL command to work properly).

DBG> SHOW SYMBOL * IN CALC.SUMS
data CALC_SUMS\TOTAL_HOUSES
data CALC_SUMS\PERSONS_HOUSE

data CALC_SUMS\ADULTS_HOUSE

data CALC_SUMS\INCOME_HOUSE

data CALC_SUMS\AVG_PERSONS_HOUSE

data CALC_SUMS\AVG_ADULTS_HOUSE

data CALC_SUMS\AVG_INCOME_HOUSE

data CALC_SUMS\AVG_INCOME_PERSON

data CALC_SUMS\MED_INCOME_PERSON

data CALC_SUMS\PERSONS
data CALC_SUMS\ADULTS

data CALC_SUMS\INCOME
data CALC_SUMS\MEDIAN

data CALC_SUMS\I
data CALC_SUMS\J

5-29

Using the Debugger

To display the address specification of all symbols beginning with the
characters LIB$, specify the following:

DBG> SHOW SYMBOL/ADDRESS LIB$*
routine LIB$DATE_TIME (global)

address: 00009994

5.6 Manipulating Data

The debugger allows you to examine and manipulate data as your program
executes. (If the locations referenced by the following commands are not
in your default scope, you must set the module and specify a scope or
path-name, as described in Section 5.5.3.)

When using commands that manipulate data (such as EXAMINE and
DEPOSIT), be aware of the difference between an address expression and a
language expression.

• Address expression—An address expression specifies a program location.
If the location is that of a symbol defined by the source program, it has
a language-dependent data type associated with it; otherwise, no data
type is associated with it. An address expression may consist of a single
operand or multiple operands combined with the debugger operators; it
is evaluated in the following order:

1 Parenthesized parts of the expression

2 Operators by rank low to high (see the following table)

3 Operators of the same rank from left to right

The result of an address expression is a 32-bit longword integer that
represents a program location.

• Language expression—A language expression specifies a value; the value
is associated with a data type. A language expression may consist of
a single operand or multiple operands combined with operators; the
expression is evaluated according to the rules of precedence for the
source language. The result of a language expression must be a value
that is valid for the current source language.

For example, assume that you have a symbol named NUMBER that has
a value of 3 and is located at address 1600. The EXAMINE command,
which expects an address expression, interprets (NUMBER + 1) as 1601.
The EVALUATE command, which expects a language expression, interprets
(NUMBER + 1) as 4.

5-30

Using the Debugger

Operator Rank Description

. or @ 1 Unary operators specifying the contents of the operand

+ or - 1 Unary operators specifying the positive or negative value
of the operand

* or / 2 Binary operators specifying the multiplication or division of
the operands

+ or - 3 Binary operators specifying the addition or subtraction of
the operands

5.6.1 Displaying Values

The EXAMINE command displays the contents of a specified program
location. For example, to display the contents of the variable ADULTS in
the module CALC—SUMS, set the module to CALC—SUMS and specify the
following:

DBG> EXAMINE TOTAL.HOUSES
CALC_SUMS\TOTAL_HOUSES: 16

To display array elements, specify the elements individually (1:1, 2:2, etc.), in
a range (1:10), or with a wildcard (*). To display an entire array, specify the
array name without a subscript. The following command displays the first
ten elements of the one-dimensional array PERSONS—HOUSE.

DBG> EXAMINE PERS0NS_H0USE(1:10)
CALC_SUMS\PERS0NS_H0USE

(1): 6.000000
(2) : 3.000000
(3) : 10.00000
(4) : 6.000000
(5) : 1.000000
(6) : 4.000000
(7) : 3.000000
(8) : 2.000000

(9) : 3.000000
(10) : 4.000000

You can also use the EXAMINE command to display a record field or an
entire record. If you choose to display the entire record, fields are displayed
in order (as described by the STRUCTURE block). Substructure and array
fields are fully displayed, as are all maps in all unions. The following
example displays the record CARRIAGE, and then displays the CUSTOMER
field of that same record. (For clarity, the record definition is shown before
the debugger session.)

5-31

Using the Debugger

STRUCTURE /STOCK/

INTEGERS STOCK.NUMBER

STRUCTURE /PRODUCT.CODE/ CODE

CHARACTER*12 ITEM

INTEGER*4 PART.NUMBER

END STRUCTURE

UNION

MAP

CHARACTER+30 CUSTOMER
END MAP

MAP

CHARACTER*30 DEPARTMENT

END MAP

END UNION

END STRUCTURE

RECORD /STOCK/ CARRIAGE

DBG> EXAMINE CARRIAGE

INVENTORY\CARRIAGE

STOCK.NUMBER: 48796

CODE

ITEM: "TRANSPORT
PART.NUMBER: 12

CUSTOMER: "BENNINGTON GARAGE

DEPARTMENT: "."

DBG> EXAMINE CARRIAGE.CUSTOMER
INVENTORY\CARRIAGE.CUSTOMER: "BENNINGTON GARAGE

5.6.2 Calculating Values

The EVALUATE command displays the value of a specified language
expression. For example, to add the value in PERSONS and the value in
PERSONS_HOUSE(7), where both symbols are defined in the module
CALC—SUMS, set module and scope to CALC—SUMS and specify the
following:

DBG> EVALUATE PERSONS + PERS0NS_H0USE(7)
3.OOOOOO

Using the EVALUATE command you can also perform arithmetic calculations
that may or may not be related to your program, in effect using the debugger
as a calculator.

5-32

Using the Debugger

5.6.3 Assigning Values

The DEPOSIT command assigns a language expression to a program
location. For example, to assign the value 5 to the array element PERSONS—
HOUSE(7) in module CALC—SUMS, set module and scope to CALC—SUMS
and specify the following:

DBG> DEPOSIT PERS0NS_H0USE(7) = 5

Subsequent examination of the variable displays its assigned value.

DBG> EXAMINE PERS0NS_H0USE(7)
CALC_SUMS\PERS0NS_H0USE(7): 5

5.6.4 Specifying Data Type

Typically, when you examine a program location, you want to use the data
type that your program has associated with that location. For example, if
you have defined STATUS as a variable of data type INTEGER, when you
examine STATUS in the debugger, you probably want to examine it as an
integer value. By default, the debugger uses the program-assigned data types
when it displays program locations.

However, if necessary, you can specify a data type for a program location
other than the data type your program has, associated with it.

• SET TYPE/OVERRIDE command—Sets the default data type for
debugger commands that interpret and display program data. For
example, if you set the default data type to be BYTE, any variable
you examine (regardless of how you declared it in your program) will
be displayed as a BYTE value. The first EXAMINE command in the
following example displays ADULTS as a REAL*4 value because the
program unit CALC—SUMS declared ADULTS as a REAL*4 value; the
second EXAMINE command displays ADULTS as a BYTE value because
of the SET TYPE/OVERRIDE command.

DBG> EXAMINE ADULTS
CALC_SUMS\ADULTS: 1.000000
DBG> SET TYPE/OVERRIDE BYTE
DBG> EXAMINE ADULTS
CALC_SUMS\ADULTS: -128

• Data type qualifiers—Indicates that the modified command should
display or evaluate the referenced location using the data type specified
by the qualifier. A type qualifier overrides the default type specified with
the SET TYPE/OVERRIDE command. In the following example, the
default type for the debugging session is set to BYTE. The EXAMINE
command uses the /FLOAT qualifier (FORTRAN data type REAL*4) to
examine the variable ADULTS.

5-33

Using the Debugger

DBG> SET TYPE/OVERRIDE BYTE
DBG> EXAMINE ADULTS
CALC_SUMS\ADULTS: -128
DBG> EXAMINE/FLOAT ADULTS
CALC_SUMS\ADULTS: 1.OOOOOO

The following table displays debugger data types and their FORTRAN
equivalents (other languages may have different data types available, see
your language-specific programming manual). The SHOW TYPE command
displays the default FORTRAN data type, and the SHOW TYPE/OVERRIDE
command displays the current /OVERRIDE type setting.

Debugger FORTRAN

BYTE LOGICAL* 1

WORD INTEGER*2, LOGICAL*2

LONG INTEGER*4, LOGICAL*4

FLOAT REAL*4

D_FLOAT REAL*8

G—FLOAT REAL*8

H_FLOAT REAL* 16

ASCII[:n] CHARACTER*n

In addition to the familiar data types, the FORTRAN debugger provides an
INSTRUCTION data type, which interprets values as VAX machine code
instructions. The INSTRUCTION data type is a powerful debugging tool for
those programmers who are familiar with machine code instructions.

5.6.5 Specifying Radix

To specify a radix other than the decimal default, use either the SET MODE
command or include a radix qualifier with individual debugger commands.

• SET MODE command—Sets the default radix and symbolic mode for
debugger commands that display and interpret data. The default for
FORTRAN is decimal radix and symbolic mode (displaying symbolic
rather than numeric addresses). For example, the following commands
display the value of ADULTS before and after establishing hexadecimal
as the default radix mode.

DBG> EXAMINE ADULTS
CALC_SUMS\ADULTS: 10
DBG> SET MODE OCTAL
DBG> EXAMINE ADULTS
CALC_SUMS\ADULTS: 012

5-34

Using the Debugger

Radix qualifier—Controls the radix of values interpreted by individual
commands (and whether those commands display symbolic or numeric
addresses). A qualifier that specifies radix overrides the default radix set
by the SET MODE command, as is shown in the following example:

DBG> EXAMINE ADULTS
CALC_SUMS\ADULTS: 100
DBG> EXAMINE/HEX ADULTS
CALC_SUMS\ADULTS: 64

To display the current type and mode settings, use the SHOW TYPE and
SHOW MODE commands. For example, the following commands display
the FORTRAN default type and mode.

DBG> SHOW TYPE
type: long integer
DBG> SHOW MODE
mode: symbolic, noscreen, keypad
input radix: decimal
output radix: decimal

5.7 Using Command Procedures

You can create a command procedure that executes a sequence of debugger
commands when you specify the at sign with the file's specification. For
example:

DBG> ODEBUG

You can execute a command procedure interactively, from within a DO
command sequence, or from within another command procedure. Command
procedures are especially useful when you regularly perform a number of
standard set up debugger commands; see Section 5.7.3 for information about
initialization files. The following command procedure includes several SET
commands as well as a call to another command procedure, ACTBUG.COM.

DEBUG.COM

SET MODULE/ALL
SET STEP SOURCE,INTO
SET LOG ACCTS.LOG
SET OUTPUT LOG,VERIFY
(DACTBUG

5-35

Using the Debugger

5.7.1 Displaying Commands

To display the commands in a command procedure (or DO command
sequence) as they execute, specify the VERIFY keyword of the SET OUTPUT

command.

DBG> SET OUTPUT VERIFY

For instance, the following commands show the effect of the SET OUTPUT

VERIFY command upon the execution of the command procedure
DEBUG.COM. The debugger reports entrance into and exit from nested

command procedures.

DBG> SET OUTPUT VERIFY
DBG> (8DEBUG

SET MODULE/ALL
SET MODE SYMBOL
SET STEP SOURCE, INTO
SET OUTPUT LOG,VERIFY
SET LOG ACCTS.LOG
OACTBUG

7.DEBUG-I-VERIFYICF, entering indirect command file "ACTBUG"
SET SCOPE CALC.SUMS
TYPE 1

MODULE CALC.SUMS
1: INTEGER FUNCTION CALC.SUMS (TOTAL.HOUSES,

'/.DEBUG-I-VERIFYICF, exiting indirect command file "ACTBUG"
'/.DEBUG -1 - VERIFY ICF, exiting indirect command file "DEBUG"
DBG>

5.7.2 Passing Values

To pass data to a command procedure:

1 Include a DECLARE command in the command procedure to associate a

symbol with each parameter to be passed to the command procedure.

2 Specify the parameter values after the procedure name when invoking
the command procedure.

For example, the following command procedure expects one parameter value,
which will be associated with the symbol PI. The parameter value is then
assigned to the program symbol J.

5-36

Using the Debugger

J.COM

SET SCOPE CALC.SUMS

SET BREAK CALC.SUMS

STEP 5

EXAMINE J

DECLARE PI.VALUE

DEPOSIT J = PI

EXAMINE J

GO

To pass the value 3 to J.COM, specify the following:

DBG> OJ 3

stepped to INCOMEV/.LINE 177

177: READ (UNIT=STATS_LUN,

CALC_SUMS\J: 0

CALC_SUMS\J: 3

break at routine CALC.SUMS

DBG>

5.7.3 Initialization Files

You can use a command procedure as an initialization file by equating
it to the logical name DBG$INIT. The file assigned the name DBG$INIT
automatically executes at debugger start up. The following command
procedure contains commands commonly used to set up for a debugging
session.

DBGSTART.COM

! If source is not in my directory, use [INC.SOURCE]

SET SOURCE [], [INC.SOURCE]

SET MODULE/ALL

SET MODE SYMBOL,SCREEN,KEYPAD

SET STEP SILENT
SET OUTPUT LOG,VERIFY
SET LOG ACCTS.LOG

To make the file an initialization file, specify the DCL command DEFINE.

$ DEFINE DBG$INIT WORK:[USER]DBGSTART.COM

5—37

Using the Debugger

5.8 Using Log Files

A debugger log file maintains a record of each debugger command and
display that occurs during a debugging session. The DBG> prompt is not
recorded and the displays are automatically commented out with exclamation
points to allow the use of a log file as a command procedure.

To create a log file, specify both of the following:

• SET OUTPUT—Directs debugger output to a log file (as well as the

terminal)

• SET LOG—Specifies the name of the log file

For example, to create a log file named FIXINCOME.LOG, specify LOG as
the parameter of the SET OUTPUT command and FIXINCOME.LOG as the
parameter of the SET LOG command.

DBG> SET LOG FIXINCOME.LOG

DBG> SET OUTPUT LOG

The default file specification of a log file is DEBUG.LOG.

To use a log file as a command procedure, invoke it.

DBG> OFIXINCOME.LOG

‘/.DEBUG-I-VERIFYICF, entering indirect command file "FIXINCOME.LOG"

!'/.DEBUG-I-VERIFYICF, exiting indirect command file "DBG$INIT"

SET BREAK CALC.SUMSV/.LINE 35

EXIT

‘/.DEBUG-I-VERIFYICF, exiting indirect command file "FIXINCOME.LOG"

DBG>

5-38

6 Data Structures

You can define data items for use by your program and associate these items
with symbolic names to reference them. In general, data items are numeric
(integers, real numbers, complex numbers), character, or logical in type. In
addition, integers can be treated as logical or untyped data. This chapter
describes the FORTRAN data structures; see your programming manual for
the data structures available in other languages.

6.1 Definition and Reference of Data Items

Defining a data item means creating the entity and assigning its
characteristics. Referencing a data item means using the entity. Data items
are defined and referenced as follows:

• Variables—Data items that can change in value as the program executes
are called variables. A type declaration statement explicitly defines a
variable and takes the following form:

data-type symbolic-name [,...]

Programming in VAX FORTRAN describes the valid data types in
FORTRAN. (See your language-specific programming manual for the
valid data types available in your language.) The symbolic name
consists of 1 through 31 alphabetic, numeric, underscore, or dollar
sign characters). Unless you are declaring a system-defined symbol, the
symbolic name is your own invention. (Most system symbols include a
dollar sign; you can avoid accidentally redefining a system symbol by not
using dollar signs in your symbol names.) You can define any number
of variables of one type in one type declaration statement by separating
the symbolic names with commas. The following FORTRAN example
defines an integer variable with the symbolic name TOTAL—HOUSES.

INTEGER TOTAL.HOUSES

Type declaration statements must appear in the definition part of a
program unit. In the execution part of a program unit, you can define
variables implicitly by referencing an undefined symbolic name. By
default, FORTRAN implicitly defines an integer variable for names
beginning with the letters I, J, K, L, M, and N, and a real variable for
names beginning with all other letters. (You can inhibit the implicit
definition of variables or change the defaults with the IMPLICIT

6-1

Data Structures

statement.) Assuming that I is not explicitly defined, the following
example implicitly defines a variable named I as an integer.

DO I = 1. TOTAL.HOUSES

• Constants—Data items whose values are fixed are called constants. You
define a constant implicitly by referencing its value. No symbolic name
is associated with the constant. The right-hand side of the following
example defines a constant with the value 1.

status = 1

You can assign a symbolic name to a constant by using a PARAMETER
statement, which must appear in the definition part of a program unit.
The following FORTRAN statements define two INTEGER constants.

INTEGER STATUS.OK.
2 IO.OK
PARAMETER (STATUS.OK = 1,
2 IO.OK = 0)

When you assign a symbolic name to a constant, a type declaration
statement defines the data type of the constant. If you do not provide a
type declaration statement, the constant takes an implicit data type based
on the symbolic name.

• Function references—When a function executes, it replaces its invocation
with a value. The intrinsic function SQRT, for example, evaluates to the
square root of the argument specified in its invocation. The following
statement fragment means 9.0.

SQRT (81.0)

Except for FORTRAN intrinsic functions, you must specify the data type
of a function in a type declaration statement, as you do a variable
or constant, or accept the implicit data types. The data types for
the FORTRAN implicit functions are listed in Programming in VAX
FORTRAN.

• Expressions— Expressions are values combined by operators. The values
can be any combination of variables, constants, function references, or
other expressions. The following statement fragment joins the values of
a variable and a constant with the addition operator.

TOTAL.HOUSES + 1

The values being joined must all be of the same type or be convertible
to the same type—for example, you cannot add a character value and a
numeric value. At program execution time, an expression evaluates to a
single value.

6-2

Data Structures

6.2 Assignment of Values to Variables

The assignment statement, which can only appear in the execution part of
a program unit, assigns a value to a variable. It takes the following general
form:

variable = value

The value (the right-hand side of the assignment statement) can be a
variable, constant, function reference, or expression. The variable and
the value must be of the same data type or the value must be convertible to
the variable data type (see Section 6.8). At execution time, the variable takes
on the value of the right-hand side of the assignment statement.

Examples

TOTAL.HOUSES = 1

Assigns the integer value 1 to TOTAL—HOUSES.

TOTAL.HOUSES = TOTAL.HOUSES + 1

Increments the value of TOTAL—HOUSES by 1.

AVG.PERSONS.HOUSE = PERSONS / TOTAL.HOUSES

Assigns the value of the variable PERSONS divided by the value of the
variable TOTAL-HOUSES to AVG_PERSONS_HOUSE.

ROOT = SQRT (BASE)

Assigns the square root of the value of the variable BASE to ROOT.

In FORTRAN, variables are not automatically initialized. (Static variables
are initially 0; however, you should not depend on these zero values.)
You can initialize a variable by placing a constant enclosed in slashes (/)
immediately after the name of the variable in the type declaration statement.
The following example initializes the variable LINES to 1.

INTEGER LINES /l/

Alternatively, you can initialize a variable by naming the variable in a
FORTRAN DATA statement, which must appear in the definition part of the
FORTRAN program unit, as shown:

INTEGER LINES
DATA LINES /l/

Data initialization occurs only once—at the start of the program. In
particular, local variables in subprograms are not initialized each time the
subprogram is invoked; these variables retain their values from the previous
invocation. In addition, a FORTRAN subprogram cannot use a DATA
statement (or the slash notation) to initialize a variable that is passed to it

6-3

Data Structures

as an argument or that is in a common block defined by another program
unit. See Chapter 2 for information on local variables and Chapter 1 for
information on passing data between program units.

6.3 Numeric Data

A numeric data item is an entity of 1, 2, 4, 8, or 16 bytes treated as a single
number. Data items of type LOGICAL can also be manipulated as numeric
data; see Section 6.5.

6.3.1 Bytes

The BYTE data type defines a variable as consisting of one byte of storage.
You can use a byte variable as an integer containing values in the range of
-128 through 127, or as a logical value (equivalent to LOGICAL*!).

6.3.2 Integers

An integer is a positive or negative whole number. The integer data types
are as follows.

• INTEGER*4—Defines an integer that can have values in the range -
2,147,483,648 through 2,147,483,647. An INTEGERS value takes four
bytes of storage.

• INTEGER*2—Defines an integer that can have values in the range -
32,768 through 32,767. An INTEGER*2 value takes two bytes of storage.

• INTEGER—Defers the typing decision to compile time. If the program
unit is compiled (FORTRAN command) with the /I4 qualifier (the
default), INTEGER means INTEGER*4. If the program unit is compiled
with the /NOI4 qualifier, INTEGER means INTEGER*2.

Specify an integer constant as a whole number (no decimal points) optionally
preceded by a plus or minus sign. An unsigned number is assumed to be
positive. The following example defines the symbolic name
TOTAL—HOUSES to mean an integer and assigns it the value of the integer
constant 1.

! Definition part of program
INTEGER TOTAL.HOUSES
! Execution part of program
TOTAL.HOUSES = 1

6-4

Data Structures

To define integers of greater than four bytes (for example, a quad word
integer for storing system time), use an array of integers as shown in
Section 6.11.2.

6.3.3 Real Numbers

A real number is a positive or negative number with a decimal point
or exponent. Machine code instructions for manipulating real data are
implemented in hardware or emulated by software depending on your
hardware.

The real data types are as follows

• REAL and REAL*4—Defines a single-precision real number that can
have very low and high values (.29 times 10 raised to the power of -38
through 1.7 times 10 raised to the power of 38) but is precise only to
approximately seven digits. Values exceeding seven digits in size are
rounded. A REAL*4 value is stored in F_floating format taking four
bytes of storage.

• REAL*8 and DOUBLE PRECISION—Defines a double-precision real
number in either D_floating format (default) or G—floating format
(if /G_FLOATING is specified at compile time). A double-precision
number in D_floating format has the same range of values as a single¬
precision number (REAL*4) but much greater precision—approximately
16 digits. A double-precision number in G—floating format has greater
range (.56 times 10 raised to the power of -308 through .9 times 10
raised to the power of 308) but less precision (approximately 15 digits)
than a double-precision number in D_floating format. A REAL*8 value
is stored in D_floating or G_floating format taking eight bytes of storage

• REAL* 16—Defines a quad-precision number that can have values in
the range of .84 times 10 raised to the power of -4932 through .9 times
10 raised to the power of 4932, with an approximate precision of 33
digits. A REAL* 16 value is stored in H_floating format taking 16 bytes
of storage.

Specify a real constant as follows:

[sign]multiplierE[sign]exponent - REAL*4

[sign]multiplierD[sign]exponent - REAL*8

[sign]multiplierQ[sign]exponent - REAL*16

6-5

Data Structures

The multiplier can be a whole number or a number that includes a decimal
point. The exponent must be a whole number. The value of the constant is
the multiplier times 10 raised to the power of the exponent. For example,
2.1E3 means 2.1 times 10 cubed, or 2100. You can precede the entire
constant by a plus sign (default) or minus sign to indicate a positive or
negative number. For example, -2.1E3 means -2100. You can precede the
exponent by a plus sign (default) or minus sign to indicate a positive or
negative power of 10. For example, 2.1E-3 means 2.1 times 10 to the power
of -3, or .0021.

You can also specify a REAL*4 constant simply as a number, optionally
preceded by a plus or minus sign, that has a decimal point. Be sure to
include the decimal point even if the number is not fractional—for example,
specify 1 as 1.0. A whole number is an integer constant. An unsigned
number is assumed to be positive. The following example defines the
symbolic name ROOT_ADD_l as a real number (F_floating format) and
assigns it the value of the square root of 81 plus 1, specifying the constants
as real numbers.

! Definition part of program
REAL R00T_ADD_1
! Execution part of program
R00T_ADD_1 = SQRT (81.0) + 1.0

6.3.4 Complex Numbers

A complex number consists of a real part and an imaginary part. The
complex data types are as follows

• COMPLEX and COMPLEX*8—Defines a complex number using single¬
precision (REAL*4) numbers for both its real and imaginary parts. A
COMPLEX*8 value is stored as two single-precision numbers in F_
floating format taking eight bytes of storage.

• COMPLEX* 16—Defines the complex number using double-precision
(REAL*8) numbers for both its real and imaginary parts. A
COMPLEX* 16 value is stored as two double-precision numbers in
either D_floating (default) or G—floating (if /G_FLOATING is specified
at compile time) format taking 16 bytes of storage.

Specify a complex constant as follows:

(real,imaginary)

The real and imaginary components can be either integer or real constants
in any combination, except: inclusion of a REAL*8 constant as either
component defines a COMPLEX* 16 constant rather than a COMPLEX*8
constant; and inclusion of a REAL* 16 constant as either component is illegal.

6-6

Data Structures

For example, (1.3,—1) defines a COMPLEX*8 constant, while (1.3D0,-1)
defines a COMPLEX* 16 constant.

6.4 Numeric Operations

Numeric expressions permit you to combine and compare numbers with
special operators. In addition, system-defined procedures and FORTRAN
intrinsic functions permit more involved operations.

6.4.1 Arithmetic Operations

FORTRAN provides operators for the basic arithmetic operations of
exponentiation (**), multiplication (*), division (/), addition (+), and
subtraction (-). You specify the operation by placing the operator between
two values in an expression. (You also use the plus and minus signs as
unary operators to indicate positive and negative numbers.) The values can
be numeric variables, constants, function references, or expressions.

You can specify any number of operations in one expression. The operations
are performed in the normal order of arithmetic evaluation: exponentiation
first, followed by multiplication and division, followed by addition and
subtraction. Operations enclosed in parentheses are performed first.
Parenthesized operations can be nested; the innermost operations are
performed first. Operations of equal value are performed left to right, with
the exception of exponentiation which is performed right to left.

Note the following examples of arithmetic operations.

Examples

TOTAL.HOUSES + 1

Increments the value of TOTAL—HOUSES by 1.

PERSONS (I) / TOTAL.HOUSES

Divides the value of element I in the array PERSONS by the value of
TOTAL-HOUSES.

SQRT (J) *1+1

Multiplies the square root of] (SQRT (J) is a function reference) by the value
of I and adds 1.

SQRT (J) * (i + l)

Multiplies the square root of J by the sum of the value of I and 1.

3 + 3**2 + 4*2

6-7

Data Structures

Evaluates to 20: 32 = 9, 4*2-8, 3 + 9 + 8- 20.

2**3**2

Evaluates to 512: 32 = 9, 29 = 512.

(3 + 3) **2 +4*2

Evaluates to 44: 3 + 3 = 6, 62 = 36, 4*2 = 8, 36 + 8 = 44.

3 ♦ 3**(2 + 4) * 2

Evaluates to 1461: 2 + 4 = 6, 36 = 729, 729 * 2 = 1458, 1458 + 3 = 1461.

(3 + (3**2 + 4)) * 2

Evaluates to 32: 32 = 9, 9 + 4 = 13, 13 + 3 = 16, 16 * 2 = 32.

6.4.2 Relational Operations

FORTRAN provides relational operators for comparing values for equality
(.EQ.), inequality (.NE.), less than (.LT.), less than or equal (.LE.), greater
than (.GT.), and greater than or equal (.GE.). Comparisons are based on
numeric value. You specify the operation by placing the operator between
two values. The values can be variables, constants, function references, or
expressions. The result of a comparative operation is a logical value of true
(the relation is true) or false (the relation is false).

You can mix relational and arithmetic operations in an expression. Relational
operations rank below arithmetic operations in order of evaluation so that
typically you are comparing those items of the expression on either side
of the relational operator. (You can change the order of evaluation with
parentheses.)

Note the following examples of relational operations.

Examples

T0TAL.H0USES .EQ. 0

True if the value of TOTAL—HOUSES equals 0.

IOSTAT .NE. I0.0K

True if the value of IOSTAT does not equal IO_OK.

H0USE.N0 .GT. MAX.STATS

True if the value of HOUSE_NO is greater than the value of MAX_STATS.

H0USE.N0 + 1 .GT. MAX.STATS

6—8

Data Structures

True if the sum of the value of HOUSE_NO and 1 is greater than the value
of MAX_STATS.

3**2 .EQ. 3*3

True.

6.4.3 System Arithmetic Routines

The following intrinsic functions perform arithmetic operations.

ABS Absolute value

ACOS Arc cosine

ASIN Arc sine

ATAN Arc tangent

ATAN2 Arc tangent al /a2

COS Cosine

COSH Hyperbolic cosine

DIM Positive difference

EXP Exponential

LOG Natural logarithm

LOG 10 Common logarithm

MAX Maximum value of a list

MIN Minimum value of a list

MOD Remainder

SIGN Transfer of sign

SIN Sine

SINH Hyperbolic sine

SORT Square root

TAN Tangent

TANH Hyperbolic tangent

Use the intrinsic subroutine RAN to obtain a random number.

The FORTRAN data types permit you to apply arithmetic operations to
integers of one byte (using the BYTE or LOGICAL* 1 data type), one
word (INTEGER*2), or one longword (INTEGER*4). To add and subtract
integers of one quadword or other lengths, use the Run-Time Library
procedures LIB$ADDX and LIB$SUBX. Specify a quadword as an array of
two INTEGER*4 integers. See Section 6.11.2.2, which describes manipulating

time, for an example.

6-9

Data Structures

6.4.4 Arithmetic Errors

The system detects and signals the following arithmetic errors at program
run time (where constants are used, some of these errors may be trapped as

compile-time errors).

Error Symbol

Integer overflow SS$_INTOVF

Integer divide by 0 SS$_INTDIV

Floating overflow SS$_FLTOVF_F

Floating underflow SS$_FLTUND_F

Floating divide by 0 SS$_FLTDIV_F

Decimal overflow SS$_DEC0VF

Unspecified SS$_ARTRES

You can control the signaling of integer overflow errors and
floating-point underflow errors by specifying either (or both) the
/CHECK=[NO]OVERFLOW or /CHECK=[NO]UNDERFLOW qualifiers at
compile time. By default, integer overflow errors are signaled but floating¬
point underflow errors are not.

6.5 Logical Data

A logical data item is an entity of one, two, or four bytes treated as a value
of true or false. The item has a value of true if its value as an integer is
odd—that is, the low-order bit is on; a value of false if its value as an integer
is 0 or even—that is, the low-order bit is off. The logical data types are as
follows:

• LOGICAL* 1—Defines the logical item as taking one byte of storage.

• LOGICAL*2—Defines the logical item as taking two bytes of storage.

• LOGICAL*4—Defines the logical item as taking four bytes of storage.

• LOGICAL—Defers the typing decision to compile time. If the program
unit is compiled (FORTRAN command) with the /I4 qualifier (the
default), LOGICAL means LOGICAL*4. If the program unit is compiled
with the /NOI4 qualifier, LOGICAL means LOGICAL*2.

In general, the integer and logical data types are interchangeable: a data item
defined as an integer can be operated on as a logical item and the reverse.

6-10

Data Structures

You can specify logical values as follows:

• Constants—The special constant .TRUE, means true; numerically, .TRUE,
evaluates to -1 (all bits are on). The special constant .FALSE, means
false; numerically, .FALSE, evaluates to 0 (all bits are off). The following
example assigns a value of true to a variable.

! Definition statements
LOGICAL READ.ONLY
! Execution statements
READ.ONLY = .TRUE.

• Numbers—An odd integer value means true, and 0 or an even integer
value means false. The following example assigns a logical value of true
to a variable.

! Definition statements
INTEGER STATUS
! Execution statements
STATUS = 1

• Relations—A compare operation with a true logical value (the
relationship is true) has a numeric value of -1. A compare operation
with a false logical value (the relationship is false) has a numeric value of
0. The following example assigns a value of true to STATUS if IOSTAT
equals IO_OK and a value of false if IOSTAT does not equal IO_OK.

STATUS = IOSTAT .EQ. I0.0K

• Logical operators—The special operators .NOT., .AND., .OR., .XOR.,
.NEQV., and .EQV. operators are ranked below the comparison operators
in precedence of evaluation. The following example makes STATUS true
if IOSTAT is false, false if IOSTAT is true.

STATUS = .NOT. IOSTAT

The IF and DO WHILE statements test a logical value to decide whether to
execute or not execute a block of statements that follow. (See Chapter 2 for
a discussion of IF and DO logic.) A true value means a block is executed, a
false value means it is skipped. The following example executes the block of
statements if the value of STATUS is true.

IF (STATUS) THEN
<block of 8tatements>

END IF

The logical value being tested can be any logical or integer expression, as
demonstrated:

IF ((STATUS) .AND. (IOSTAT .EQ. I0.0K))

6-11

Data Structures

In this statement, the system evaluates STATUS, compares IOSTAT and IO_
OK, and then combines the results of the two operations using the .AND.
logical operator. The parentheses around STATUS and IOSTAT .EQ. IO_OK
are not really necessary, as the comparison operator .EQ. ranks higher than
the logical operator .AND., but parentheses help clarify the source code.

At times it is possible for FORTRAN to determine the result of an expression
before completing evaluation of all subexpressions. In the previous example,
if STATUS is false, the subexpression (IOSTAT .EQ. IO_OK) is not evaluated.
Do not depend on the side effects of a function invoked within a logical
expression since that function may not be executed.

6.6 Character Data

A character string is a series of one or more characters. Each character in a
string is an entity of one byte interpreted according to ASCII conventions .

6.6.1 Defining Character Strings

The type declaration statement for a character string takes the following
form:

CHARACTER*8ize symbolic-name

All character strings in FORTRAN are fixed-length strings. Size represents
the number of characters in the string and must be specified as an integer
constant. The following example defines a character string of 12 characters.

CHARACTER*12 FIX.HOUSE.STRING

Assumed-size character strings permit you to omit the size of the character
string. You can use assumed-size character strings in the following cases:

• Dummy argument—When the character string is a dummy argument,
size is the length of the actual argument.

• PARAMETER constant—When the character string is a constant defined
in a PARAMETER statement, size is the length of the specified constant.

Specify an assumed-size character string by substituting an asterisk in
parentheses for the size of the array. In the following example, the character
string INSTRUCTIONS assumes the size of the character constant specified
in the PARAMETER statement.

CHARACTER*(*) INSTRUCTIONS
PARAMETER (INSTRUCTIONS = 'Enter a statistic and hit RETURN')

6-12

Data Structures

6.6.2 Character Constants

Specify a character constant as a series of printable characters enclosed in
apostrophes. To include an apostrophe in the constant, type two consecutive
apostrophes.

STRING = 'I said it couldn''t be true.'

6.6.3 Referencing Character Strings

Reference a character string variable by specifying the variable name in
a context that allows a CHARACTER data type. To reference a part of a
character string (called a substring), use a reference of the following form:

symbolic-name ([first]: [last])

State the first and last positions of the substring within the string, in
parentheses separated by a colon. The positions can be specified as integer
constants, variables, function references, or expressions. First defaults to
the first character in the string and last defaults to the last character in the
string. The following example writes the number of characters in STRING as
specified by the integer variable SIZE.

! Definition statements
CHARACTER*12 STRING
INTEGER SIZE
! Execution statements
TYPE *, STRING (1:SIZE)

Take care to reference substrings of one character in the proper format. The
first character of STRING, for example, is STRING (1:1), not STRING (1).

6.6.4 Character String Operations

You should reference only the defined portion of a character string. For
instance, if STRING is a 12-character string and you have assigned it a
value of less than 12 characters, reference the significant characters using
a substring. The following example writes the defined portion of STRING
(the number of characters as specified by the INTEGER variable SIZE) to

SYS$OUTPUT.

TYPE *, STRING (1:SIZE)

Where you are building the character value, you should calculate and
maintain its size in an integer variable. If you are obtaining the character
value (for example, through an I/O operation or a Run-Time Library
procedure), you may or may not be supplied its length. If you are supplied
the length (for example, as a return argument), you should save it in an
integer variable. If you are not supplied the length, you should calculate it.

6—13

Data Structures

for example, by using the system-defined procedure STR$TRIM to return the
length of the string minus any trailing blanks or tabs. The following example
writes the length of the value in STRING to SIZE.

! Definition statements
CHARACTER*12 STRING
INTEGER SIZE
! Declare status and system routines
INTEGER STATUS,
2 STR$TRIM
! Execution statements
STATUS = STR$TRIM (STRING, ! Destination
2 STRING, ! Source
2 SIZE) ! Length
IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

6.6.4.1 Padding and Truncation

If you assign a character string to a variable and the length of the character
string is less than the length defined for the variable, the character string is
left-justified and the variable is padded on the right with blanks. The string
lengths returned by system-defined procedures do not count the padding
blanks.

If you assign a character string to a variable and the length of the character
string is greater than the length defined for the variable, the character string
is left-justified and truncated on the right. The string lengths returned by
system-defined procedures do not count the truncated characters.

6.6.4.2 Concatenation

The concatenation operator (//) combines two character strings so that
the last character of the first string adjoins the first character of the second
string. Remember to trim unwanted blanks from both character strings,
especially the first, before joining them. The following example concatenates
a character constant and variable to form the first argument of a function
reference.

TYPE *, 'Average income per household: $' // STRING (1:SIZE)

6-14

Data Structures

6.6.4.3 Intrinsic Character Functions

The following intrinsic functions operate on character strings.

LEN Determines the length of a character string

INDEX Determines the starting position of a substring

CHAR Returns a character whose ASCII value is as specified in the integer
argument

ICHAR Returns an integer whose value is the ASCII value of the character
argument

6.6.5 Nonprintable Characters

A number of ASCII characters do not have corresponding terminal keys
and printing characters. You can represent a nonprintable character by

specifying its ASCII value as an argument to the intrinsic function CHAR.
The argument is an integer value and CHAR returns a one-character

constant. The following example rings the bell on the terminal (the ASCII
character represented by the decimal value 7 is the control character BEL).

CHARACTER*1 BEL
PARAMETER (BEL = CHAR(7))
TYPE *, BEL

You can concatenate nonprintable characters with other characters using the
concatenation character (//). The following example rings the bell before
displaying a line on the terminal.

CHARACTER*1 BEL
PARAMETER (BEL = CHAR(7))
CHARACTER*(*) IMP
PARAMETER (IMP = BEL//•IMPORTANT NOTICE FOLLOWS')
TYPE *, IMP

6.6.6 Counted Strings

System-defined procedures may pass you data or require data in the form of
a counted string. A counted string is a character string or array of no more

than 256 characters. The first character is the character representation of a
binary count of the remaining characters. The following example sets up a
counted string from data read from SYS$INPUT.

INTEGER COUNT
CHARACTER*256 STRING
READ (UNIT=*,
2 FMT='(Q,A)') COUNT.
2 STRING (2:256)
STRING (1:1) = CHAR (COUNT)

6-15

Data Structures

Do not convert the count from or to a BYTE (or LOGICAL* 1) data type
because the upper positive value is only 127. Use at least an INTEGER*2
data type. The following example displays the contents of a counted string.

INTEGER COUNT

CHARACTER*256 STRING

COUNT = ICHAR (STRING (1:1))
WRITE (UNIT=*,

2 FMT='(A)') STRING (2:C0UNT+1)

6.7 Untyped Data

In general, you should try to work within the numeric and character data
types. The capabilities exist, however, to define and manipulate data as bit
configurations.

6.7.1 Untyped Constants

You can treat hexadecimal, octal, and Hollerith constants as numeric (integer,
real, complex, logical, and byte) data. Character constants may also be
used as numeric data; however, a character constant in a numeric context
is considered a Hollerith constant with the length of the specified character
constant.

An untyped constant has a value corresponding to its bit configuration. An
untyped constant assumes a data type based on its context.

• Expressions—When used with a binary operator (an operator that joins
two elements; includes the assignment operator), the constant assumes
the data type of the other operand.

INTEGER*2 WORD

INTEGER*4 LONG

REAL*8 DOUBLE

IF (LONG .LE. 1123'0) THEN

LONG = WORD + 1123'0

DOUBLE = '123*0
END IF

• Required data types—When used in a context that requires a particular
data type (generally integer), the constant assumes the required data
type.

REAL*8 DOUBLE.

2 ARRAY(20)

DOUBLE = ARRAY('16*0) +3.5 ! Constant is INTEGER*4

! Constant is INTEGER*4

! Constant is INTEGER*2

! Constant is REAL*8

6-16

Data Structures

6.7.1.

• Actual arguments—When used as an actual argument, the constant does
not assume a data type. For hexadecimal and octal constants, FORTRAN
passes exactly four bytes. For Hollerith constants, FORTRAN passes
the constant: if the constant is shorter than the dummy argument, it
is padded with zero bytes; if the constant is longer than the dummy
argument, it is truncated.

When used in any other context, an untyped constant assumes an
INTEGER*4 data type.

Hexadecimal Constants

Specify a hexadecimal constant as a series of digits in the range 0 through
9 and letters in the range A through F (uppercase or lowercase), enclosed in
apostrophes and followed by the letter X (in uppercase or lowercase). Each
hexadecimal character represents a configuration of four bits with binary and
decimal values as follows:

Hex Binary Decimal Hex Binary Decimal

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 A 1010 10

3 0011 3 B 101 1 11

4 0100 4 C 1100 12

5 0101 5 D 1 101 13

6 0110 6 E 1 1 10 14

7 0111 7 F 1111 15

Two hexadecimal characters represent precisely one byte. The rightmost
character represents the low-order four bits and the leftmost character
represents the high-order four bits. In the following example, the variable
HEX is assigned a binary value of 01000010 (decimal 66).

BYTE HEX
HEX = '42'X

You can specify up to 32 hexadecimal characters in one constant, equivalent
to 128 bits or 16 bytes. If the hexadecimal constant contains fewer digits
than fill the variable, the variable is padded on the left side with zeros. If
the hexadecimal constant contains more digits than the variable can hold,
the constant is truncated on the left. In the case of truncation, you receive
warning messages at compile and link time; however, the program does
compile and link with the expected results.

6-17

Data Structures

6.7.1.2 Octal Constants

Specify an octal constant as a series of digits in the range 0 through 7,
enclosed in apostrophes and followed by the letter O (in uppercase or
lowercase). Each octal character represents a configuration of three bits with
binary and decimal values as follows:

Octal Binary Decimal Octal Binary Decimal

0 000 0 4 100 4

1 001 1 5 101 5

2 010 2 6 1 10 6

3 011 3 7 111 7

Octal constants are assigned to variables with the rightmost character
representing the low-order three bits of the variable, the next character
representing the next three bits, and so on. Octal constants do not fit into
bytes precisely. Three octal constants, for example, represent nine bits, or
one byte with one bit left over. Depending on the size of the variable to
which the constant is being assigned, the leftover bit becomes the low-order
bit of the next byte in the variable. In the following example, OCTAL 1 is
assigned a binary value of 00111111 (decimal 63), while the low-order byte
of OCTAL2 is assigned a binary value of 11111111, and the high-order byte
is assigned a value of 1.

BYTE OCTAL1
INTEGERS 0CTAL2
OCTAL1 = '7710
0CTAL2 = '777'0

You can specify up to 43 octal characters in one constant, equivalent to 128
bits or 16 bytes (but the high-order character of a 43-character specification
cannot exceed a value of 6). If the octal constant contains fewer digits than
fill the variable, the variable is padded on the left side with zeros. If the
octal constant contains more digits than the variable can hold, the constant is
truncated on the left. In the case of truncation, you receive warning messages
at compile and link time; however, the program does compile and link with
the expected results.

6—18

Data Structures

6.7.1.3 Hollerith Constants

Specify a Hollerith constant as an integer, followed by the letter H (uppercase
or lowercase), followed by a sequence of printable characters—the number
of characters in the sequence must equal the value of the integer. Each
character following the H corresponds to one byte in the numeric variable to
which it is assigned; the variable takes the ASCII value of the character. (You
cannot assign Hollerith constants to character variables.) In the following
example, the variable LETTER is assigned the decimal value 66, the ASCII
value of an uppercase B.

BYTE LETTER
LETTER = 1HB

The leftmost character of a Hollerith constant corresponds to the low-
order byte of the numeric variable to which it is assigned. In the following
example, the low-order byte of LETTERS takes a value of 65 and the high-
order byte takes a value of 66 (the numeric value of LETTERS as an integer
is 16,961—66 times 256 plus 65).

INTEGER*2 LETTERS
LETTERS = 2HAB

You can specify up to 2000 characters in a Hollerith constant. If the constant
contains fewer characters than the variable contains bytes, the variable is
padded on the right side with spaces (a space is a decimal 32 in ASCII). If
the constant contains more characters than the variable contains bytes, the
constant is truncated on the right. In the case of truncation, you receive
warning messages at compile and link time; however, the program does
compile and link with the expected results.

6.7.2 Bit Manipulation

To manipulate bits (for example, to set or examine mask values as described
in Sections 1.5 and 1.6), use the intrinsic functions IAND, IOR, IEOR, NOT,
ISHFT, IBITS, IBSET, BTEST, IBCLR, and ISHFTC. Note that these functions
require that bits be referenced in integers (INTEGER, LOGICAL, and BYTE
data types). In referring to the position of a bit, 0 means the low-order bit in
the integer, 1 means the next bit, and so on. The following example sets the
low-order and high-order bits in a longword.

INTEGER*4 MASK
MASK = IBSET (MASK, 0)
MASK = IBSET (MASK, 31)

6-19

Data Structures

6.8 Conversion Between Data Types

Conversion of values between data types is necessary internally when values
are assigned to variables of different types, or values of different types appear
in the same operation.

When moving data between internal storage and external units (such as
terminals, printers, and disk files), conversion is required when the internal
data is noncharacter and the external unit is a character-oriented device
(for example, a terminal or printer) or a formatted file. Chapter 8 discusses
terminal I/O and Chapter 9 discusses file I/O.

6.8.1 Numeric Conversions

When you assign a numeric value to a numeric variable and the data types
are different, the value is converted to the data type of the variable. In the
following example, the integer value of PERSONS is converted to a real
number.

REAL PERSONS.HOUSE (2048)
INTEGER PERSONS

PERSONS.HOUSE (I) = PERSONS

When you use a binary operator (an operator that joins two elements) to
combine numeric values of different data types, the value with the lower
ranking data type is converted to the data type of the other operand before
the operation is performed. The data types are ranked integer, real, and
complex, low to high, with the smaller or less precise data types below
the larger or more precise data types (for example, REAL*4 ranks below
REAL*8). In the following example, WORD is converted to an INTEGER*4
value and added to LONG. The result is then converted to a REAL*4 value
and added to SINGLE.

INTEGERS WORD
INTEGERS LONG
REAL*4 SINGLE

TYPE *, WORD + LONG + SINGLE

In converting from an integer to a real number, a fraction (.0) is appended
to the integer. In converting from a lower data type to a complex number,
an imaginary part (0.0) is added to the number; if necessary, a fraction (.0)
is added to the real part of the complex number. You do not lose any part
of the number in converting upwards except that conversion of a very large
integer to a REAL*4 real number results in a loss of precision. For example.

6-20

Data Structures

conversion of the integer value 123,456,789 into a real number (REAL*4)
yields 1.2345679E+08 (123,456,790).

In converting from a complex number to a lower data type, the imaginary
part is truncated. In converting from a real number to an integer, the fraction
is truncated. Conversion of a number to a smaller and/or less precise data
type (for example, a REAL*8 real number to a REAL*4 real number) may
result in an overflow error (if the number is too large for the receiving data
type) or a loss of precision.

6.8.2 Formatted Conversions

You cannot manipulate a character string as a number even if the string has
the appearance of a number. For example, 9 + '2' is an illegal expression.
And you cannot use a number as a character value. You must convert the
number to a character string or the character string to a number.

The preferred mechanism for performing character-to-numeric conversions is
the internal READ statement. The preferred mechanism for performing
numeric-to-character conversions is the internal WRITE statement. In
internal READ and WRITE statements, the I/O unit is specified as the
variable containing the character value (rather than as an external device or
file) and the I/O list is the variable or constant containing the number. A
format must be specified with the FMT specifier of the I/O statement.

The general form of an internal READ statement (for converting characters to
numbers) is as follows:

READ (UNIT=character-variable,
2 FMT=format-spec) numeric-variable

The following example converts the character string in C to the integer N.

CHARACTER*10 C
INTEGER N
INTEGER*2 SIZE
CALL LIB$GET_INPUT (C,
2 'Next number or END:
2 SIZE)
READ (UNIT=C(1:SIZE),
2 FMT=1(BN, 110)') N

The general form of the internal WRITE statement (for converting numbers
to character strings) is as follows:

WRITE (UNIT=character-variable,
2 FMT=format-spec) numeric-value

6-21

Data Structures

The following example converts the integer in N to the character string C.

CHARACTER*10 C
INTEGER N,
2 SIZE
WRITE (UNIT=C,
2 FMT='(110)') N
! Get rid of padding
SIZE = 1
DO WHILE ((C(SIZE:SIZE) .EQ. ' ') .AND. (SIZE .LE. 10))

SIZE = SIZE + 1
END DO
! Display it
TYPE *,'Number = '//C(SIZE:10)

You can convert multiple values in one READ or WRITE statement by

defining the character variables as an array. The following example converts

two numbers to character strings.

CHARACTER*10 C (2)
INTEGER Nl,
2 N2
WRITE (UNIT=C,
2 FMT=*(2110)') Nl,
2 N2

You can also use format specifications to convert data during regular I/O

operations. For example, you can read directly from the terminal or a
formatted file into numeric variables or write numeric values directly to the

terminal or a formatted file. The following example writes an integer to the

terminal.

INTEGER N
WRITE (UNIT=*,
2 FMT='(14)') N

6.8.3 Automatic Conversions

You can also convert data during regular sequential I/O operations without
specifying a format. In list-directed and namelist-directed I/O statements,
conversion is automatic using the default formats for the data types of the
values involved. The following example writes an integer to the terminal.

INTEGER N
TYPE *, N

6—22

Data Structures

6.9 Arrays

An array is a sequence of data items of the same type with one name. Each
data item within the array is called an element and is associated with an
integer value that designates the position of the element in the sequence. For
clarity. Sections 6.9.1 through 6.9.3 refer only to one-dimensional arrays.
Section 6.9.4 discusses multidimensional arrays.

6.9.1 Defining Arrays

You define an array with a type declaration statement of the following form:

data-type symbolic-name ([first:]last) [,...]

First designates the position of the first array element (lower bound) and last
the position of the last array element (upper bound); the lower bound must
be less than or equal to the upper bound. The increment between positions
is always 1, so that the size of the array is last minus first plus 1. If you
omit first, the array starts at position 1 and contains the number of elements
specified by last. The following example demonstrates two array definitions,

each defining an array of 2048 elements.

REAL PERSONS-HOUSE (2048)
PERSONS-HOUSE

REAL PERSONS-HOUSE (0:2047)
PERSONS-HOUSE

real number position 1 real number

real number position 2 real number

real number position 2048 real number

position 0

position 1

position 2047

ZK-2041-84

You can also define an array with the DIMENSION statement, which must
appear in the definition part of a program unit.

DIMENSION symbolic-name ([first:]last) [,...]

6-23

Data Structures

You must declare the data type of the array elements explicitly with a type
declaration statement or accept the implicit data type. The following example
defines an array of 2048 real numbers.

REAL PERSONS.HOUSE
DIMENSION PERS0NS.H0USE (2048)

The values specifying the first and last positions of arrays in type and
DIMENSION statements must be constants or expressions containing only
constants or variables defined either in a common block or as dummy
arguments (if the array is a dummy argument). See Chapter 1 for defining
and using adjustable and assumed-size arrays as dummy arguments in
subprograms.

6.9.2 Referencing Arrays

You reference a particular element in an array by appending a subscript to
the name of the array. The subscript consists of a parenthesized integer value
and designates the position of the array element. For example, PERSONS—
HOUSE (5) means the element of PERSONS—HOUSE at position 5. The
subscript value can be specified as a variable, constant, function reference, or
expression. The use of variables as subscripts provides a very powerful tool
for manipulating data, as demonstrated in the sections that follow.

In referencing an element of a character string array, place the element
subscript before the substring specification. The following example places the
first character of the fifth element of the character string array BOOK-NAME
into the variable LETTER.

CHARACTER*31 B00K.NAME (101)
CHARACTER LETTER
! Executable statements
LETTER = B00K.NAME (5) (1:1)

6.9.2.1 Per-Element Processing

Typically you do not specify an array subscript as a constant, but calculate
the position of the element you need. For example, if each element of
the PERSONS—HOUSE array represents a statistic for one household,
and the subscript corresponds to a number assigned to the household for
identification purposes, you calculate the subscript by making it equal a
particular household number. If you want to change the statistic for a
particular household, you might require the user of your program to specify
the household number. You read the household number and convert it to a
numeric data type, placing it in the integer variable FIX—HOUSE—NO. You
can now reference the required array element by using FIX—HOUSE—NO as
the subscript (FIX—PERSONS—HOUSE is the new value being placed in the
array element).

6-24

Data Structures

PERSONS.HOUSE (FIX_HOUSE.NO) = FIX.PEHSONS.HOUSE

As another example, consider the initial entry of values into the array. The
integer TOTAL—HOUSES represents the highest number household for
which a statistic has been entered. The subscript for a new household, then,
can be calculated as one greater than for the last (where PERSONS is the
new value being added to the array).

TOTAL.HOUSES = TOTAL.HOUSES + 1

PERSONS.HOUSE (TOTAL.HOUSES) = PERSONS

Or

PERSONS.HOUSE (TOTAL.HOUSES + 1) = PERSONS

6.9.2.2 Multielement Processing

Typically you process the elements of an entire array or a part of an array
with a DO loop. At the start of the first iteration of the loop, you make the
subscript equal to the lowest (or highest) position of the array, then after
each iteration of the loop you increment (or decrement) the subscript until
you process the highest (or lowest) element of the array. In the following
example, the control variable for the DO loop also serves as the subscript for
the required array element. The example totals the array elements.

DO I = 1, TOTAL.HOUSES

T0TAL.PERS0NS = TOTAL.PERSONS + PERSONS.HOUSE (I)

END DO

In FORTRAN I/O statements, you can transfer an entire array by using an
unsubscripted array name. However, if you have defined only part of an
array, transfer the data by specifying the lower and upper bounds of the
defined elements in an implied DO loop. An implied DO loop for processing
an array takes the following form:

statement (control-list) (array-name (sub), sub = begin, end)

Sub is the control variable for the loop and the subscript for the variable.
Begin and end designate the positions of that portion of the array to be
processed. The following example writes that portion of PERSONS—HOUSE
that contains statistics to a file.

WRITE (UNIT=STATS_LUN)

2 (PERSONS.HOUSE (I), I = 1, TOTAL.HOUSES)

In general, you should write arrays in this fashion to limit the transfer to that
portion of the array containing useful values. For example, if PERSONS—
HOUSE defines an array of 2048 elements but contains (at the time of the
data transfer) only 921 significant elements (as reflected in the value of
TOTAL—HOUSES), you do not want to transfer the entire array of 2048
elements. When reading data in this fashion, you must be precise. If the file

6-25

Data Structures

record you are reading contains 921 elements of an array, you must transfer
exactly 921 elements.

6.9.2.3 Full Array Processing

You can use array elements in the same contexts as variables of the same
data type. The contexts in which you can use whole arrays are more limited.
For example, whole arrays cannot appear as either the left-hand side or
the right-hand side of an assignment statement. If you want to copy all
the elements of one array into another array, you must do so element by
element. You can specify whole arrays in the following contexts:

• COMMON—Specifies that the entire array is being placed in the
common block. See Section 2.1.4 for restrictions on equivalencing
arrays in common blocks.

• DATA—Specifies that every element of the array is being initialized. You
must then specify a value for every element. The following example
initializes every element of PERSONS—HOUSE to the numeric value
9999.

REAL PERSONS.HOUSE (2048)
DATA PERSONS.HOUSE /2048*9999/

You can use an implied DO loop to initialize a portion of the array.
The following example initializes the first 1024 elements of PERSONS—
HOUSE.

DATA (PERSONS.HOUSE (I), 1=1, 1024)
2 /1024*99999/

• EQUIVALENCE—Associates two arrays with the same area of storage.
See Section 2.1.4 for restrictions on equivalencing arrays in common
blocks.

• FUNCTION—You can specify the entire array as a dummy argument.

• SUBROUTINE—You can specify the entire array as a dummy argument.

• ENTRY—You can specify the entire array as a dummy argument.

• SAVE—Refers to the entire array.

You can also use unsubscripted array names in I/O statements and as actual
arguments in CALL statements and function references. If you have defined
only a subset of the array elements, you may wish to use an implied DO
loop (as shown in Section 6.9.2.2) when specifying the array in an I/O
statement.

6-26

Data Structures

6.9.3 Storage and Bounds Considerations

In general, you should define larger arrays than you estimate you need
(unless you are sure of the exact number of elements) so you do not run
out of space. Do not worry about size unless you are close to your virtual
memory limit (2MB; see Section 2.1.6). The storage you define is not really
used until you reference it, and the transparent management of memory
by the system is easier to use and usually more efficient than attempting to
manage memory yourself (for example, by breaking an array into several
records and processing it a record at a time).

When referencing an array, you should ensure that the array subscript is
within the defined bounds. The following example returns an error status
if the variable destined to be a subscript (HOUSE _NO) exceeds the array
range (1:MAXSTATS).

REAL PERSONS.HOUSE (2048)
INTEGER H0USE.N0
INTEGER MAXSTATS
PARAMETER (MAXSTATS = 2048)
EXTERNAL INCOME.MAXSTATS

H0USE.N0 = H0USE.N0 + 1
IF ((H0USE.N0 .LT. 1) .OR.
2 (H0USE.N0 .GT. MAXSTATS)) THEN

STATUS = 7.L0C (INCOME.MAXSTATS)
END IF

You can have the system trap out-of-range subscript references by specifying
/CHECK=BOUNDS when you compile the program unit. When your

program runs, the system signals the fatal error SS$_SUBRNG if a subscript
reference is out of the array range. (An out-of-range subscript that is a
constant is trapped at compile time.)

If you do not trap or let the system trap out-of-range references, results
are unpredictable. You may access data or code in another portion of your
program or attempt to enter an area of memory being used by another
process causing an access violation.

6-27

Data Structures

6.9.4 Multidimensional Arrays

You can define arrays of up to seven dimensions. You specify multiple
dimensions with multiple bounds specifiers in the data type declaration or
DIMENSION statements, separating them with commas. The following
example specifies an array of two dimensions. The bounds of the first
dimension are positions 1 and 3; the bounds of the second dimension are
positions 1 and 2048.

REAL STATS (3, 2048)

The total number of elements in a multidimensional array is the product of
the number of elements in each dimension. The STATS array shown above
has 6144 elements.

You reference an element of a multidimensional array by specifying a
position in each dimension. The following example references the elements
at position 958 (second dimension) of position 1 (first dimension) and
position 958 (second dimension) of position 2 (first dimension).

<assume TOTAL.HOUSES equals 957>
TOTAL.HOUSES = TOTAL.HOUSES + 1
STATS (1, TOTAL.HOUSES) = PERSONS
STATS (2. TOTAL.HOUSES) = ADULTS

6.9.4.1 Storage of Multidimensional Arrays

Arrays are stored with the leftmost subscripts varying most rapidly. The
example below demonstrates the absolute storage positions for an array with
three positions in dimension 1 and 2048 positions in dimension 2.

Array Element

<T7T>
(2,1)

(3.1)

(1/2)

(2.2)

Storage Position

1
2

3

4

5

(2.2047) 6140

(3.2047) 6141

6-28

Data Structures

Array Element Storage Position

(1.2048)

(2.2048)

(3.2048)

6142

6143

6144

If you think of a two-dimensional array as a table of columns (dimension
1) and rows (dimension 2), the order of storage would be all the elements
in row 1, all the elements in row 2, and so on. If you think of a three-
dimensional array as a number of tables on consecutive pages (columns,
dimension 1; rows, 2; pages, 3), the order of storage would be all the
elements on page 1 (stored row by row), all the elements on page 2 (stored
row by row), and so on.

6.9.4.2 Processing Multidimensional Arrays

To process the elements of a multidimensional array, use a DO loop, similar
to that described in Section 6.9.2.2, for each dimension. The nesting of
the DO loops depends on the order in which you want the array elements
processed. The innermost DO loop corresponds to the dimension varying the
fastest; the outermost DO loop to the dimension varying most slowly. For
more efficient programs, process the elements of multidimensional arrays in
their order of storage.

For example, think of a three-dimensional array as described in
Section 6.9.4.1: a series of pages (dimension 3) with a table of columns
(dimension 1) and rows (dimension 2) on each page. To display the elements
in each row in order beginning with the table on the first page, you would
vary dimension 1 the fastest (to move across the row before beginning
the next row), followed by dimension 2 (to move down the rows before
beginning the next page), with dimension 3 varying most slowly. The
following program segment displays each table, printing the page number at
the beginning of each.

! Array
CHARACTER*3 CODES (10,20,6)
! Dimensions
INTEGER*4 MAX.PAGE /6/,
2 MAX.ROW /20/,
2 MAX.COLUMN /10/

6-29

Data Structures

! Physical page positions

INTEGER*4 LINE,

2 HEADER /2/,

2 LEFT.MARGIN /6/,

2 BEGIN.TABLE /5/

! Page number

CHARACTER*3 PAGE

DO K ■ 1, MAX.PAGE
! At the beginning of each page print the page number

! Convert page number to character

WRITE (UNIT = PAGE,

2 FMT ■ '(14)') K

STATUS = LIB$PUT_SCREEN ('Table - page '//PAGE, ! Text
2 HEADER, ! Line

2 LEFT.MARGIN) ! Margin

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Line to begin table

LINE = BEGIN.TABLE

DO J = 1, MAX.ROW

DO I = 1, MAX.COLUMN

! Leave 3 spaces between elements

! (3 spaces + 3 characters - 6 characters per element)

STATUS = LIB$PUT_SCREEN (CODES (I,J,K),

2 LINE,

2 1*6)

END DO ! Columns

! At the end of each row update the line number

LINE = LINE + 1

END DO ! Rows

END DO ! Pages

In FORTRAN I/O statements, transfer multidimensional arrays by nesting
implied DO loops. A nested implied DO loop has the following form:

statement (control-list)
2 (...((array (a,b,...), a = begin,end), b = begin,end)....)

A, b, and so on are control variables for the loops and subscript values for
the array variable. Each control variable has begin and end values that
designate that portion of the dimension to be processed. The following
example writes the three-dimensional array of the previous example to a file.

WRITE (UNIT=STATS_LUN)
2 (((CODES (I,J,K), 1=1,MAX.COLUMN), J=l,MAX.ROW), K=1.MAX.PAGE)

6-30

Data Structures

In general, you should limit the transfer to that portion of the array
containing useful values. When transferring data in this fashion, you must
be precise. You must read an array of exactly the same dimensions as the
array you wrote.

6.10 Records

A record provides you with a data structure that can be addressed at several
levels. At the top level, you address all the data in the record. At lower
levels, you address fields and subfields within the record. The following
record, JPI_LIST, addresses a single field of 12 bytes.

12 bytes

JPl-LIST

ZK-2042-84

At a second level, the names BUFLEN, CODE, BUFADR, and RETLENADR
may be used to address individual fields in the JPI—LIST record.

2 bytes 2 bytes 4 bytes 4 bytes

BUFLEN CODE BUFADR RETLENADR

ZK-2043-84

To use a record variable, take the following steps:

1 Define a record structure using a structure block (see Section 6.10.1).

2 Declare a record variable using a RECORD statement (see Section 6.10.2).

3 Reference the record by using the record variable name, or a field of the
record by using the record variable name followed by a period and a
record field name (see Section 6.10.3).

The following program segment uses a record to pass an item list to the
SYS$GETJPIW system service. The definition portion of the program defines
a record structure ITMLST and a record variable JPI_LIST of type ITMLST.
The ITMLST structure alternately contains four fields (BUFLEN, CODE,
BUFADR, and RETLENADR) or one field (END_LIST); the previous figure
shows the four-field alternative. The execution portion of the program
assigns values to each field of the JPI_LIST record and then passes that
record to the SYS$GETJPIW system service.

6-31

Data Structures

! Structure definition

IMPLICIT NONE

INCLUDE '($JPIDEF)'

STRUCTURE /ITMLST/

UNION

MAP

INTEGER*2 BUFLEN

INTEGER*2 CODE

INTEGER*4 BUFADR

INTEGER*4 RETLENADR

END MAP

MAP

INTEGERS END.LIST

END MAP

END UNION

END STRUCTURE

! Record declaration

RECORD /ITMLST/ JPI_LIST (2)

! Buffers for SYS$GETJPI

INTEGER+4 PRIORITY

INTEGER*4 PRIORITY.LEN

INTEGER*4 STATUS

INTEGERS SYS$GETJPIW

! Assign field values

JPI.LIST(l).BUFLEN = 4

JPI_LIST(1).CODE = JPI$_PRI
JPI.LIST(l) .BUFADR = '/.LOC(PRIORITY)

JPI_LIST(1) .RETLENADR = */.LOC(PRIORITY_LEN)
JPI_LIST(1).END.LIST = 0

! Call SYS$GETJPIW

STATUS = SYS$GETJPIW (,,,

2 JPI_LIST,,,)

FORTRAN stores a record in memory as a sequence of values. The first
field of the record is in the first storage location and the last field in the last
storage location. No gaps are left between storage locations. In an array of
records, each element in the array is stored in a similar fashion with no gaps
between array elements.

6.10.1 Defining Record Formats

A record's structure is defined by the number, order, and data types of the
fields within the record. To define a record structure, use a structure block of
the following form:

STRUCTURE /structure-name/

field-declaration

[field-declaration]

END STRUCTURE

6-32

Data Structures

The STRUCTURE statement begins a structure block and names the record
structure. Each field-declaration defines one field of the structure; the order
of the declarations determines the order of the fields. Field names must be
unique within a structure block. The END STRUCTURE statement terminates
the structure block. A structure block does not create any variables; it defines
a record format and names the fields within that record format. To create a
record variable, use a RECORD statement as shown in Section 6.10.2.

Note

Since periods are used in record references to separate fields, you
should avoid using the names of relational operators (.EQ., .XOR.,
etc.), logical constants (.TRUE, or .FALSE.), or logical operators
(.AND., .NOT., etc.) as field names.

A record field can contain typed data, a substructure, or a union. Field types
can vary from field to field within a record. The three different field types
are described in the following subsections.

6.10.1.1 Typed Data

A variable or an array of any FORTRAN data type. Field-declarations for
typed data take the form of data type declaration statements. Adjustable
or assumed-size arrays and passed-length character strings are illegal

within a structure block. The following example defines a record structure
containing three fields: the first is a BYTE field named CLASS, the second

an INTEGER*2 field named WIDTH, and the third a BYTE array field named
LENGTH.

STRUCTURE /CHARACTERISTICS/
BYTE CLASS
INTEGER*2 WIDTH
BYTE LENGTH(4)

END STRUCTURE

Any required array dimensions must be specified in the field declaration
statements; DIMENSION statements cannot be used to define field names.

The IMPLICIT statement has no effect on field names; you must explicitly
name each field in a field-declaration. By default, field values are initially
undefined. To specify an initial field value, enclose a value in slashes
following the field name, as shown in Section 2.1.2. (DATA statements do
not permit record references.) If a field value is initialized in a structure
block, all records declared using that structure receive the initial field values.

FORTRAN provides one pseudofield name, %FILL, which creates an empty
space in the record. The following example uses %FILL to create a one-byte
space between the FLAG and WORD fields.

6-33

Data Structures

6.10.1.2

STRUCTURE /ALIGNED/

BYTE FLAG,

2 '/.FILL

INTEGERS WORD

END STRUCTURE

Substructures

A record. If you specify a record structure as a field value within another
record, the inner record structure (substructure) cannot have the same
structure name as that of the outer record structure (that is, a structure
definition cannot include itself at any level of nesting). Field-declarations
for substructures can be either RECORD statements or structure blocks.

If the field-declaration is a RECORD statement, the specified structure name
must have been previously defined. If the field-declaration is a structure
block, the field names (with the exception of %FILL) must be unique within
the substructure.

The following example defines a structure APPOINTMENT that contains two
fields: the first field, APP_DATE, is a substructure of type DATE; the second
field, APP__TIME, is a substructure of type TIME. Note that a STRUCTURE
statement within another structure block can include a list of field names; the
substructure block defines the format of each field in the list.

STRUCTURE /DATE/

INTEGER*4 DAY,

2 MONTH,

2 YEAR

END STRUCTURE

STRUCTURE /APPOINTMENT/

RECORD /DATE/ APP.DATE ! Field one

STRUCTURE /TIME/ APP.TIME ! Field two
INTEGERS HOUR,

2 MINUTE

END STRUCTURE

END STRUCTURE

6-34

Data Structures

6.10.1.3 Unions

A union is two or more fields logically sharing a common location.
Field-declarations for unions take the following form:

STRUCTURE /structure-name/

UNION

map-declaration

[map-declaration]

END UNION

END STRUCTURE

Map-declarations take the following form:

MAP

field-declaration

[field-declaration]

END MAP

Multiple maps share the same area of the record structure. The size of the
shared area is the size of the largest map in the UNION block. At any time
during program execution, the fields of exactly one map within a union are
defined. However, if you overlay one map with a smaller map, any part of
the larger map that is not overlaid remains unchanged.

The following example sets up a record to receive terminal characteristics.
Since the basic characteristics are returned in the low-order three bytes of
the fourth field (BASIC field) and the length of the record is returned in the
high-order byte of the same field (fourth element of the LENGTH field), a
union acts as an equivalence for the BASIC and LENGTH fields.

STRUCTURE /CHARACTERISTICS/

BYTE CLASS. ! Field

2 TYPE ! Field

INTEGERS WIDTH ! Field
UNION ! Field

MAP

INTEGER*4 BASIC

END MAP
MAP

BYTE LENGTH(4)

END MAP
END UNION
INTEGER*4 EXTENDED ! Field

END STRUCTURE

1

2

3
4

5

6—35

Data Structures

The effect of a union is different from that of an EQUIVALENCE statement

in that the data entities in an EQUIVALENCE statement are concurrently
associated with a common storage location whereas the maps in a union
block are alternately associated with a common storage location.

Another common use of a union block is to provide one or more different

definitions for the same record. For example, many system services require
that you pass information in an item list consisting of one or more items

(each containing four separate fields) followed by a longword containing a

value of 0 to indicate the end of the item list. In order to specify an item list

as an array of records, you must be able to use the same record for the four-

element items and the one-element end of list. In the following structure, a
union provides the required double definition.

STRUCTURE /ITMLST/
UNION

MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGERS BUFADR,

2 RETLENADR
END MAP
MAP

INTEGERS END.LIST /0/
END MAP

END UNION
END STRUCTURE

6.10.2 Declaring Record Variables

To declare a record variable, use a RECORD statement of the following form:

RECORD /structure-name/ record-name-list
2 [,/structure-name/ record-name-list]

Structure-name must be the name of a record structure previously defined
in a structure block (see Section 6.10.1). Record-name-list is a list of one
or more variable names, array names, or array declarators, separated by
commas (adjustable arrays are permitted, provided that the array is a dummy
argument). The following statements create three record items, a record
variable D VI—LIST and four-element record array JPI_LIST (both of type
ITMLST), and a record variable IOSTAT (type IOSB).

6—36

Data Structures

! Item list for SYS$GETDVI and SYS$GETJPI

STRUCTURE /ITMLST/

UNION

MAP

INTEGER*2 BUFLEN,

2 CODE

INTEGERS BUFADR,

2 RETLENADR
END MAP

MAP

INTEGER*4 END.LIST

END MAP

END UNION

END STRUCTURE

RECORD /ITMLST/ DVI.LIST, ! Item 1

2 JPI_LIST(4) ! Item 2

! I/O status block

STRUCTURE /IOSB/

INTEGER*2 STATUS

INTEGER*2 NOTHING

INTEGER*4 ZERO /O/

END STRUCTURE

RECORD /IOSB/ IOSTAT ! Item 3

6.10.3 Referencing Records

Records can be referenced in one of two ways:

• Qualified reference—Refers to a typed record field; that is, a field that is
not itself a record.

record-name[.subrecord-name...].typed-name

• Unqualified reference—Refers to a record structure or record
substructure.

record-name[.subrecord-name...]

Typically, you can use a qualified record reference in any context that allows
a variable of the same data type. However, you cannot use a qualified record
reference in COMMON, SAVE, NAMELIST, or EQUIVALENCE statements.

The contexts in which you can use unqualified record references are more
limited.

• Assignment statements—Specifies that each field of the record on the
right-hand side of the assignment statement is to be assigned to the
matching field of the record on the left-hand side. The value on either
side of the assignment statement must be a record; both records must
have been declared using the same structure name.

• COMMON—Specifies that the record is to be placed in the common
block.

6-37

Data Structures

• FUNCTION—You can specify a record as either a dummy or an actual
argument. The number, type, and order of the fields in a dummy record

argument must match those of the actual argument (the order of maps
within a union does not matter).

• SUBROUTINE—You can specify a record as either a dummy or an actual

argument. The number, type, and order of the fields in a dummy record

argument must match those of the actual argument (the order of maps
within a union does not matter).

• ENTRY—You can specify a record as either a dummy or an actual
argument. The number, type, and order of the fields in a dummy record
argument must match those of the actual argument (the order of maps
within a union does not matter).

• VOLATILE—Prevents FORTRAN from performing optimization

operations on the record.

• I/O—You can specify unqualified record references in unformatted

I/O statements, but not in formatted, list-directed, or NAMELIST I/O
statements.

When mixing record and array notation, take care where you place the
subscript. If you want to reference one element of an array of records, place
the subscript after the record name but before any field names.

STRUCTURE /ORDER.REC/
BYTE FLAGS(3)
CHARACTER*80 CUSTOMER
INTEGERS ITEM.CODE

END STRUCTURE
RECORD /ORDER.REC/ ORDERS(2500)

ORDERS(1).ITEM.CODE

If you want to reference one element of an array that is a field within a
record, place the subscript after the field name.

STRUCTURE /ORDER.REC/
BYTE FLAGS(3)
CHARACTER*80 CUSTOMER
INTEGER*4 ITEM.CODE

END STRUCTURE
RECORD /ORDER.REC/ TEMPORARY

TEMPORARY.FLAGS(1)

6-38

Data Structures

6.10.4 Storing Record Structures

If you have a number of commonly used record structures, you can store
the structures in a text library and use the FORTRAN INCLUDE statement
to reference them from your programs when necessary. One drawback to
specifying record definitions with the INCLUDE statement is that a person
reading your program cannot examine the field definitions of the record. A
common candidate for inclusion in a structure library would be the item list
structure used by many of the system services, as shown here.

ITMLST.TXT

STRUCTURE /ITMLST/

UNION

MAP

INTEGER*2 BUFLEN,

2 CODE

INTEGERS BUFADR,

2 RETLENADR

END MAP

END UNION

END STRUCTURE

Create a text library for your structures and put the ITMLST.TXT file in the
library.

$ LIBRARY/CREATE/TEXT $DISK1:[DEV.LIBRARY]STRUCTURES

$ LIBRARY/REPLACE/TEXT $DISK1:[DEV.LIBRARY]STRUCTURES ITMLST

To include the ITMLST structure block in a program, use the INCLUDE
statement as shown in the following example. Note that you still need the
RECORD statement to define a record variable of type ITMLST.

! Include the ITMLST structure definition

INCLUDE 1 DISKI:[DEV.LIBRARY]STRUCTURES (ITMLST)'

! Record declaration
RECORD /ITMLST/ JPI_LIST
! Buffers for SYS$GETJPI

INTEGERS PRIORITY,
2 PRIORITY.LEN

! Assign field values

JPI.LIST.BUFLEN = 4

JPI_LIST.CODE = JPI$JPRI
JPI.LIST. BUFADR = '/.LOC (PRIORITY)

JPI.LIST. RETLENADR = */.LOC(PRIORITY_LEN)

! Call SYS$GETJPIW

STATUS = SYS$GETJPIW (,,,

2 JPI_LIST,,,)

6-39

Data Structures

6.11 System Information

The VAX/VMS operating system provides services for collecting information
from the system.

6.11.1 Timer Statistics

You can collect the following timer statistics from the system.

• Elapsed time—Actual time that has passed since setting a timer

• CPU time—CPU time that has passed since setting a timer

• Buffered I/O—Number of buffered I/O operations that have occurred
since setting a timer

• Direct I/O—Number of direct I/O operations that have occurred since
setting a timer

• Page faults—Number of page faults that have occurred since setting a
timer

You obtain the statistics by invoking the following Run-Time Library
procedures:

• LIB$INIT_TIMER—Allocates and initializes space for collecting the
statistics. You should specify the one argument and specify it as an
integer variable with a value of 0 to ensure the modularity of your
program (for example, in case a program unit calling your program unit
also sets a timer). When you specify the argument, the system collects
the information in a specially allocated area in dynamic storage.

• LIB$SHOW_TIMER—Obtains one statistic or all the statistics; the
statistics are formatted for output. The first argument must be the same
integer variable you specified for LIB$INIT_TIMER (do not modify this
variable). Specify the second argument to obtain one particular statistic
rather than all the statistics.

You can let the system write the statistics to SYS$OUTPUT (the default)
or you can process the statistics with a subprogram of your own. To
process the statistics yourself, specify the name of your subprogram
as the third argument (make sure you declare it as EXTERNAL and
INTEGER*4). You can pass one argument to your subprogram by

naming it as the fourth argument to LIB$SHOW_TIMER. If you use your
own subprogram, it must be written as an integer function and return an
error code (return a value of 1 for success). This error code becomes the

error code returned by LIB$SHOW_TIMER. Two arguments are passed to
your function: the first is a passed-length character string containing the

6-40

Data Structures

formatted statistics and the second is the value of the fourth argument (if
any) specified to LIB$SHOW_TIMER.

• LIB$STAT_TIMER—Obtains one unformatted statistic. Specify the
statistic as the first argument. Specify a storage area for the statistic
as the second argument: an array of two INTEGER*4 data items for
the elapsed time and one INTEGER*4 data item for each of the other
statistics. The last argument must be the same integer variable you
specified for LIB$INIT_TIMER.

• LIB$FREE—TIMER—You should invoke this procedure when you are
done with the timer to ensure the modularity of your program. The
argument must be the same integer variable specified for LIB$INIT_
TIMER.

You must invoke LIB$INIT_TIMER to allocate storage for the timer. You
should invoke LIB$FREE—TIMER before you exit from your program unit. In
between you can invoke LIB$SHOW_TIMER or LIB$STAT_TIMER, or both,
as often as you want. The following example invokes LIB$SHOW_TIMER
and uses a user-written subprogram to either display the statistics or write
them to a file.

! Timer arguments

INTEGERS TIMER. AD DR.

2 TIMER.DATA,

2 TIMER.ROUTINE

EXTERNAL TIMER.ROUTINE

! Declare library procedures as functions

INTEGER+4 LIB$INIT_TIMER,

2 LIB$SHOW_TIMER

EXTERNAL LIB$INIT_TIMER,

2 LIB$SHOW_TIMER

! Work variables

CHARACTER*5 REQUEST
INTEGER*4 STATUS
! User request - either WRITE or FILE

INTEGER+4 WRITE,

2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)

! Get user request
WRITE (UNIT=*, FMT='($,A)') ' Request: '

ACCEPT *, REQUEST
IF (REQUEST .EQ. 'WRITE') TIMER.DATA = WRITE

IF (REQUEST .EQ. 'FILE') TIMER.DATA = FILE

6-41

Data Structures

! Set timer

STATUS = LIB$INIT_TIMER (TIMER.ADDR)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get statistics

STATUS = LIB$SHOW_TIMER (TIMER.ADDR,,

2 TIMER.ROUTINE,

2 TIMER.DATA)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Free timer
STATUS = LIB$FREE_TIMER (TIMER_ADDR)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

INTEGER FUNCTION TIMER.ROUTINE (STATS,

2 TIMER.DATA)

! Dummy arguments

CHARACTER*(*) STATS
INTEGER TIMER.DATA

! Logical unit number for file

INTEGER STATS.FILE

! User request

INTEGER WRITE,

2 FILE

PARAMETER (WRITE = 1,

2 FILE = 2)

! Return code

INTEGER SUCCESS,

2 FAILURE

PARAMETER (SUCCESS = 1,

2 FAILURE = 0)

! Set return status to success

TIMER.ROUTINE = SUCCESS

! Write statistics or file them in STATS.DAT

IF (TIMER.DATA .EQ. WRITE) THEN

TYPE *, STATS
ELSE IF (TIMER.DATA .EQ. FILE) THEN

CALL LIB$GET_LUN (STATS.FILE)

OPEN (UNIT=STATS_FILE,
2 FILE='STATS.DAT')

WRITE (UNIT=STATS_FILE,

2 FMT='(A)') STATS

ELSE

TIMER.ROUTINE = FAILURE

END IF

END

You can use the system services SYS$GETTIM and SYS$GETSYI to obtain
more detailed system information.

6-42

Data Structures

6,11.2 System Time

The VAX/VMS operating system recognizes two types of time:

• Absolute time—A certain date and/or time of day.

• Delta time—A number of days and/or units of time within a day.

The VAX/VMS operating system formats an absolute time as follows. The
full date and time require a character string of 23 characters. The punctuation
is required.

dd-mmm-yyyy hh:mm:ss.ss

dd Day of the month (two characters)

mmm First three letters of the month in uppercase (three characters)

yyyy Year (four characters)

hh Hour of the day in 24-hour format (two characters)

mm Minute

ss.ss Second and hundredth of second

The VAX/VMS operating system formats a delta time as follows. The full
date and time require a character string of 16 characters. The punctuation is
required.

dddd hh:mm:ss.ss

dddd Days

hh Hours

mm Minutes

ss.ss Seconds and hundredths of seconds

Internally the system maintains an absolute time as an integer value
representing the number of 100-nanosecond units since midnight on 17-
NOV-1858 (the base date for the system). A delta time is maintained as an
integer value representing an amount of time in 100-nanosecond units. The
absolute time is maintained as a positive number and the delta time as a
negative number, in quadwords. (In FORTRAN, define an internal time as
an array of two INTEGER*4 variables.)

6-43

Data Structures

6.11.2.1 Current Time

The Run-Time Library procedure LIB$DATE_TIME returns a character string
containing the current date and time in absolute time format. The full string
requires a declaration of CHARACTER*23. If you specify a shorter string, the
value is truncated. A declaration of CHARACTER* 16 obtains only the date.
The following example displays the current date and time.

! Formatted date and time
CHARACTER*23 DATETIME
! Status and library procedures
INTEGER+4 STATUS,
2 LIB$DATE_TIME
EXTERNAL LIB$DATE_TIME
STATUS = LIB$DATE_TIME (DATETIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))
TYPE *. DATETIME

You can obtain the current date and time in internal format with the
SYS$GETTIM system service. You can convert from internal to character
format with the SYS$ASCTIM system service or a directive to the SYS$FAO
system service, and back to internal format with the SYS$BINTIM system
service.

6.11.2.2 Time Manipulation

The general procedures for manipulating times (for example, finding the delta
difference between two absolute times, adding a delta time to an absolute
time, or subtracting a delta time from an absolute time) are as follows:

• Convert to internal format—Obtain the time in or convert the time to
internal format. Use SYS$GETTIM to get the current time in internal
format or SYS$BINTIM to convert a formatted time to an internal time.

• Manipulate the times—Add, subtract, or otherwise manipulate the times.
Use the Run-Time Library procedures LIB$ADDX and LIB$SUBX to add
and subtract times, since the times are defined in integer arrays. When
manipulating delta times, remember that they are stored as negative
numbers. For example, to add a delta time to an absolute time, you must
subtract the delta time from the absolute time.

• Format the times—Format the result, as desired, with SYS$BINTIM or
SYS$FAO.

The following example calculates the difference between the current time
and a time input in absolute format, and then displays the result as a delta
time. If the input time is later than the current time, the difference is a
negative value (delta time) and can be displayed directly. If the input time
is an earlier time, the difference is a positive value (absolute time) and must

6-44

Data Structures

be converted to a delta time before being displayed. To change an absolute
time to a delta time, negate the time array by subtracting it from 0 (specified
as an integer array) using the LIB$SUBX procedure. For the absolute or delta
time format, see Section 6.11.2.

! Internal times

! Input time in absolute format, dd-mmm-yyyy hh:mm:ss.ss

INTEGER*4 CURRENT.TIME (2),

PAST.TIME (2),

TIME.DIFFERENCE (2),

ZERO (2)

2

2
2

DATA ZERO /0,0/

! Formatted times

CHARACTER*23 PAST.TIME.F

CHARACTER*16 TIME.DIFFERENCE.F

! Status

INTEGER+4 STATUS

! Integer functions

INTEGER*4 SYS$GETTIM,

2 LIB$GET_INPUT,

2 SYS$BINTIM,

2 LIB$SUBX,

2 SYS$ASCTIM

! Get current time

STATUS = SYS$GETTIM (CURRENT.TIME)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get past time and convert to internal format

STATUS = LIB$GET_INPUT (PAST.TIME.F,

2 'Past time (in absolute format): ')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SYS$BINTIM (PAST.TIME.F,

2 PAST.TIME)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Subtract past time from current time

STATUS = LIBISUBX (CURRENT.TIME,

2 PAST.TIME,

2 TIME.DIFFERENCE)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! If resultant time is in absolute format (positive value means
! most significant bit is not set), convert it to delta time

IF (.NOT. (BTEST (TIME.DIFFERENCE(2),31))) THEN

STATUS = LIB$SUBX (ZERO,

2 TIME.DIFFERENCE,

2 TIME.DIFFERENCE)

END IF

! Format time difference and display

STATUS = SYS$ASCTIM (, TIME.DIFFERENCE.F,

2 TIME.DIFFERENCE,)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
TYPE *, 'Time difference = ', TIME.DIFFERENCE.F

END

6-45

Data Structures

If you are ignoring the time portion of the date/time (that is, working just

at the date level), the Run-Time Library procedure LIB$DAY might simplify

your calculations. LIB$DAY returns to you the number of days from the base

system date to a given date.

6.11.3 Emulated Instructions

A number of VAX machine code instructions are implemented by special

hardware. If your machine does not have the hardware, the missing

instructions are emulated by the system software (at slower speeds). The
Micro VMS systems emulate D_floating, H—floating, decimal, and string

instructions.

If execution speed is important to your program, you may wish to execute
code conditionally depending on whether the machine executing the program

implements a certain set of instructions using hardware or software. The

LIB$GETSYI and SYS$GETSYI system-defined procedures allow you to

use the following item codes to determine which types of instructions are

emulated.

Item code Data type

SYI$_D_FLOAT_EMULATED D_floating instructions

SYI$_F_FLOAT_EMULATED F_floating instructions

SYI$_G_FLOAT_EMULATED G_floating instructions

SYI$_H_FLOAT_EMULATED H_floating instructions

SYI$_DECIMAL—EMULATED Decimal instructions

SYI$_CHARACTER_EMULATED Character instructions

The following program segment uses LIB$SETSYI to check on D_floating

instructions. If D_floating instructions are emulated, LIB$GETSYI returns a

logically true (odd) value in the INTEGER variable EMULATE.

INTEGER STATUS,
2 LIB$GETSYI,
2 EMULATE
EXTERNAL SYI$_D_FLOAT_EMULATED

STATUS = LIB$GETSYI C/.LOC(SYI$_D_FLOAT_EMULATED) ,
2 EMULATE)
IF (EMULATE) THEN

END IF

END

6—46

Data Structures

The F$GETSYI lexical function returns the same information at DCL

command level.

$ WRITE SYS$OUTPUT F$GETSYI (»D_FLOAT_EMULATED")
FALSE

6-47

7 Command Input and Syntax Analysis

To invoke a program using a unique DCL command, define the command
in a command language definition (CLD) file, then apply the CLD file to a
command table with the SET COMMAND command. For details about CLD
source statements and the SET COMMAND command, see the description
of the Command Definition Utility in the VAX/VMS Command Definition
Reference Manual.

In your program, use the Command Language (CLI) routines to examine the
command line typed by the user to invoke your program. For details about
the CLI routines, see the VAX/VMS Utility Routines Reference Manual.

7.1 Command Description

Define a command by writing a CLD file. The default file type for a CLD file
is CLD. You can define more than one command in a file.)

7.1.1 Command Name and Image

Start a command definition with a DEFINE VERB statement followed
optionally by an IMAGE clause. You can supply alternate names for
the command with SYNONYM clauses. Ensure that the command
name and any synonyms you choose are unique to four characters
among all commands in your system. The following example defines
a command named INCOME whose image (the executable program to
be invoked when INCOME is entered as a DCL command) is in the file
WORKDISK:[INCOME]INCOME.EXE (the file type of the image defaults to
EXE).

DEFINE VERB INCOME
IMAGE "WORKDISK:[INCOME]INCOME"

If you do not enter an IMAGE statement, the image file name defaults to the
command name, the directory to SYS$SYSTEM, and the file type to EXE. For
example, if the IMAGE statement were omitted from the previous definition,
the image would have to exist as the file SYS$SYSTEM:INCOME.EXE. When
an IMAGE statement is omitted or specifies only a file name, you can use a
logical name identical to the command or the specified file name to point to
the image; that is, the equivalence name is assumed to be the image file. For
example, if the IMAGE statement were omitted from the above definition.

7-1

Command Input and Syntax Analysis

the user could invoke the proper image by defining the following logical
name prior to invoking the command.

$ DEFINE INCOME WORKDISK:[INCOME]INCOME

Specifying the full file specification of the image in the CLD file precludes
logical name accidents. For example, suppose you omit the IMAGE statement
for INCOME and put the image file in SYS$SYSTEM. If the user defines
INCOME for some other purpose, the command will not work. Not
specifying the name of the image in the CLD file does permit you to relocate
the image or use different versions of the image without redefining the
command.

7.1.2 Parameters

Specify a parameter with the PARAMETER clause. Parameters must be
named PI, P2, and so on, to a maximum of 8. You must not omit parameter
1 or skip a parameter although you can specify parameters out of order.
The following example indicates that the INCOME command takes two
parameters.

DEFINE VERB INCOME

IMAGE »SYS$SYSTEM:INCOME"

PARAMETER PI

PARAMETER P2

7.1.2.1 Labels

The LABEL clause provides a means for your program to refer to the
parameter. The label defaults (if LABEL is not specified) to the parameter
name (PI, P2, and so on). The following example provides labels other than
PI and P2 for the parameters.

DEFINE VERB INCOME

IMAGE "SYSISYSTEM:INCOME"

PARAMETER PI

LABEL = STATS.FILE

PARAMETER P2

LABEL = REPORT.FILE

7-2

Command Input and Syntax Analysis

7.1.2.2 Required Parameters

You can make a parameter required by specifying the REQUIRED option
of the VALUE clause. All required parameters must be specified before
any optional parameters. If an interactive user omits a required parameter,
DCL enters prompting mode and prompts for the required parameter.
(Section 7.1.2.4 describes prompt mode.) To continue command execution,
the user must enter a value. (The user can enter two consecutive quotation
marks ("") to indicate a null value.) If a noninteractive user omits a required
parameter, an error occurs.

The following example makes the two INCOME parameters required. You
can specify the prompt with the PROMPT clause, as shown in the example,
or let the prompt default to the parameter label. In either case, the prompt
appears on the terminal preceded by an underscore and followed by a colon
and a tab.

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = STATS.FILE
VALUE (REQUIRED)
PROMPT = "Statistics file"

PARAMETER P2
LABEL = REPORT.FILE
VALUE (REQUIRED)
PROMPT = "Report file"

7.1.2.3 Values

If you do not specify the REQUIRED option, the parameter is optional. You
can specify a default value for an optional parameter with the DEFAULT
option of the VALUE clause. (Defaulting keyword values is different; see
Section 7.1.4.2.) To permit entry of a list of values separated by commas or
plus signs specify the LIST option of the VALUE clause.

The following example makes the two INCOME parameters optional and
provides default values for them. The example permits the user to enter a
list of values for P2. You can provide one default value for a list.

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = STATS.FILE
VALUE (DEFAULT = "STATS.SAV")

PARAMETER P2
LABEL = REPORT.FILE
VALUE (LIST, DEFAULT = "INCOME.RPT")

7-3

Command Input and Syntax Analysis

Specify CONCATENATE instead of LIST to permit entry of values separated
only by plus signs. Specify LIST and NOCONCATENATE to permit entry of
values separated by commas only.

7.1.2.4 Prompting

When an interactive user omits a required parameter, DCL enters prompt
mode and prompts for the required parameter. (Omitting a required
parameter while working noninteractively causes an error.) A user must
respond by pressing RETURN to repeat the prompt, pressing CTRL/Z to
abort the command, or entering a value. If the user enters a legal value, DCL
prompts for the next parameter, if any. If this parameter is required, the user
must respond as described. If the parameter is optional, pressing RETURN
executes the command; pressing CTRL/Z aborts the command; and entering
a legal value causes DCL to prompt for the next parameter, if any.

Use the PROMPT clause to specify a prompt for a required or optional
parameter, or let the prompt default to the parameter label. Optional
parameter prompts are displayed only if a required parameter has been
omitted, causing DCL to enter prompt mode.

7.1.3 Qualifiers

Specify a qualifier with the QUALIFIER clause. The name of the qualifier
immediately follows the word QUALIFIER; do not put a slash at the
beginning of the name. The following example indicates that the income
command takes three qualifiers (and one parameter).

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME-
PARAMETER PI

LABEL = STATS.FILE
VALUE (DEFAULT = "STATS.SAV")

QUALIFIER ENTER
QUALIFIER FIX
QUALIFIER REPORT

The name of the qualifier serves as the label unless you explicitly provide an
alternative name with the LABEL clause.

7-4

Command Input and Syntax Analysis

7.1.3.1 Negatable Qualifiers

By default, a qualifier is negatable: a user can prefix the qualifier name with
NO to explicitly negate its presence in the command line. You can make a
qualifier nonnegatable with the NONNEGATABLE option. The following

example makes the INCOME qualifiers nonnegatable.

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = STATS.FILE,
VALUE (DEFAULT = "STATS.SAV")

QUALIFIER ENTER
NONNEGATABLE

QUALIFIER FIX
NONNEGATABLE

QUALIFIER REPORT
NONNEGATABLE

7.1.3.2 Default Presence

A qualifier is present by default if you specify the DEFAULT option. A
qualifier is present by default only in batch jobs if you specify the BATCH

option. The user must explicitly negate a default qualifier to make it not
present. (However, your program can detect whether a qualifier is entered
explicitly or is present by default.) The following example makes the ENTER
qualifier present by default.

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = STATS.FILE,
VALUE (DEFAULT = "STATS.SAV")

QUALIFIER ENTER
DEFAULT

QUALIFIER FIX
QUALIFIER REPORT

7-5

Command Input and Syntax Analysis

7.1.3.3 Placement

You can restrict the placement of a qualifier in the command line by
specifying one of the following PLACEMENT options:

• GLOBAL (default)—The qualifier affects all parameters no matter where
the user places it on the command line.

• LOCAL—The qualifier can only be placed after a parameter. The
qualifier can be placed after more than one parameter. The qualifier
affects only the parameter it follows.

• POSITIONAL—The qualifier can be placed before all parameters or after
one or more parameters. The qualifier affects all parameters if it precedes
all parameters. Otherwise, the qualifier affects only the parameter it
follows.

The following example permits varying interpretations of the qualifier
depending on whether it is positioned before all parameters or follows a
particular parameter.

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI, VALUE (REQUIRED)

PROMPT = "Input file"
PARAMETER P2, VALUE (REQUIRED)

PROMPT = "Output file"
QUALIFIER FILETYPE, PLACEMENT = POSITIONAL

See Section 7.3.3 for the programming techniques involved in detecting the
position of a local or positional qualifier.

7.1.3.4 Values

The VALUE clause permits the user to specify a value for the qualifier (
/qualifier-name = value). The REQUIRED option of the VALUE clause makes
specification of the value required. If the value is optional (REQUIRED is
not specified), you can specify a default value with the DEFAULT option.
(Defaulting keyword values is different; see Section 7.1.4.2). The LIST option
permits entry of a list of values (/qualifier = (value,...)).

The following example permits the user to enter a list of values on the
REPORT qualifier; you can provide one default value for a list.

7-6

Command Input and Syntax Analysis

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = STATS_FILE,
VALUE (DEFAULT = "STATS.SAV")

QUALIFIER ENTER
QUALIFIER FIX
QUALIFIER REPORT

VALUE (LIST, DEFAULT = "INCOME.RPT")

7.1.4 Value Types

You can require that a parameter, qualifier, or keyword value conform to
the specifications of a built-in value type, or that a value be one of a list of
keywords.

7.1.4.1 Built-in Value Types

Identify the built-in value types with the system-defined names: $ACL,
$DATETIME, $DELTATIME, $FILE, $NUMBER, $QUOTED_STRING, and
$REST_OF_LINE. For details, see the description of the Command Definition
Utility in the VAX/VMS Command Definition Reference Manual. The following

example requires the parameter value to be a valid file specification.

DEFINE VERB INCOME
IMAGE »SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = STATS.FILE
VALUE (TYPE = $FILE,

DEFAULT = "STATS.SAV")

7.1.4.2 Keywords

Define a list of keywords by creating a DEFINE TYPE block consisting of a
DEFINE TYPE statement followed by KEYWORD statements. To indicate
that the user must enter only listed keywords (or unique abbreviations of the
keywords), use the TYPE option of the VALUE clause to specify the name
of the data type described by the DEFINE TYPE statement. The following
example gives the user a choice of entering ENTER, FIX, or REPORT for the
parameter value.

7—7

Command Input and Syntax Analysis

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = ACTION
VALUE (TYPE * ACTION.TYPE)

DEFINE TYPE ACTION.TYPE
KEYWORD ENTER
KEYWORD FIX
KEYWORD REPORT

Keywords can be modified by most of the same clauses as qualifiers:
DEFAULT, LABEL, NEGATABLE, NONNEGATABLE, SYNTAX, and VALUE.

However, NONNEGATABLE is the default. The VALUE clause can take the
DEFAULT, LIST, REQUIRED, and TYPE options.

To specify a default keyword:

1 In the PARAMETER or QUALIFIER statement, use a DEFAULT clause to
indicate that a default value exists.

2 In the DEFINE TYPE block, use a DEFAULT clause in the appropriate

KEYWORD statement to identify the default keyword.

The following example requires that the user enter ALL or FILE =
(filename,...) for the parameter value. The default keyword is ALL. The
default value of the FILE keyword is STATS.SAV.

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
PARAMETER PI

LABEL = STATS.FILES
VALUE (TYPE = FILE.TYPE)
DEFAULT

DEFINE TYPE FILE.TYPE
KEYWORD ALL

DEFAULT
KEYWORD FILE

VALUE (TYPE = $FILE, LIST, DEFAULT = "STATS.SAV")

If you are defaulting a keyword value for a qualifier or keyword that you
do not want defaulted, omit step one. Since a parameter value cannot be
defaulted without being present, you cannot omit step one when defaulting a
keyword value for a parameter.

7-8

Command Input and Syntax Analysis

7.1.5 Disallowing Entities and Combinations

You can prohibit specified parameters, qualifiers, and keywords by naming
the restricted entities in DISALLOW statements. You can prohibit certain
combinations of entities by using expressions in DISALLOW statements. The
following example permits only one of the three qualifiers to be entered.

DEFINE VERB INCOME

IMAGE "SYS$SYSTEM:INCOME"

QUALIFIER ENTER, NONNEGATABLE

QUALIFIER FIX, NONNEGATABLE

QUALIFIER REPORT, NONNEGATABLE

DISALLOW ANY2 (ENTER, FIX. REPORT)

For a complete list of expressions you can use in DISALLOW statements, see
the description of the Command Definition Utility in the VAX/VMS Command
Definition Reference Manual.

7.1.6 Syntax Changes

You can change the syntax requirements of a command depending on the
entry of a particular parameter, qualifier, or keyword. The parameter,
qualifier, or keyword points to a new syntax described in a DEFINE
SYNTAX block. The following example invokes one of three different
images depending on the value entered for PI. The /OUTPUT qualifier is
valid only if REPORT is entered as the action.

DEFINE VERB INCOME

IMAGE "SYS$SYSTEM:ENTER"

NOQUALIFIERS

PARAMETER PI

LABEL = ACTION

VALUE (TYPE = ACTION.TYPE)

DEFAULT

DEFINE TYPE ACTION.TYPE
KEYWORD ENTER, DEFAULT

KEYWORD FIX, SYNTAX = FIX.SYNTAX

KEYWORD REPORT. SYNTAX * REPORT.SYNTAX

DEFINE SYNTAX FIX.SYNTAX

IMAGE "SYS$SYSTEM:FIX"

DEFINE SYNTAX REPORT.SYNTAX
IMAGE "SYS$SYSTEM:REPORT"

QUALIFIER OUTPUT
VALUE (TYPE = $FILE)

If you specify new parameter definitions, those definitions replace all the
old parameter definitions. If you specify NOPARAMETERS, the new syntax
permits no parameters. If you specify no new parameters and do not specify
NOPARAMETERS, the old parameter definitions remain in effect.

7-9

Command Input and Syntax Analysis

If you specify new qualifier definitions, those definitions replace all the
old qualifier definitions. If you specify NOQUALIFIERS, the new syntax
permits no qualifiers. If you specify no new qualifiers and do not specify
NOQUALIFIERS, the old qualifier definitions remain in effect.

If you specify new DISALLOW definitions, those definitions replace all the
old DISALLOW definitions. If you specify NODISALLOW, the new syntax
permits no disallows. If you specify no new disallow definitions and do not
specify NODISALLOW, the old DISALLOW definitions remain in effect.

7.1.7 Keyword and Definition Paths

Keyword and definition paths permit you to identify entities exactly.

7.1.7.1 Keyword Paths

To refer to keywords that would otherwise be ambiguous, construct keyword
paths. A keyword path is constructed by preceding the ambiguous entity
with the name of the parent parameter, qualifier, or keyword and a period.
A path can be constructed to a depth of 8. The following example uses
keyword paths to distinguish the keywords for the /INPUT qualifier from
those for the /OUTPUT qualifier. Entering INCOME/INPUT=FORMl
/OUTPUT=FORM3, for example, is illegal.

DEFINE VERB INCOME
IMAGE "SYS$SYSTEM:INCOME"
QUALIFIER INPUT, VALUE (TYPE = FILE.TYPE)
QUALIFIER OUTPUT, VALUE (TYPE = FILE.TYPE)
DISALLOW INPUT.F0RM1 AND OUTPUT.F0RM3
DISALLOW INPUT.F0RM2 AND OUTPUT.F0RM3

DEFINE TYPE FILE.TYPE
KEYWORD F0RM1
KEYWORD F0RM2
KEYWORD F0RM3

7.1.7.2 Definition Paths

To refer to parameter values, qualifiers, or keywords not defined in the same
DEFINE VERB or DEFINE SYNTAX block, construct definition paths. In a
definition path, you precede the entity name by the name of the parent verb
or syntax in angle brackets. Definition paths are useful for referring to the
qualifiers in an old syntax from a new syntax (as long as the qualifiers are
not disallowed by the specification of new qualifiers or the NOQUALIFIERS
characteristic). The following example disallows certain inherited qualifiers
in the new syntaxes. The user cannot enter INCOME/ENTER/OUTPUT, for
example.

7—10

Command Input and Syntax Analysis

DEFINE VERB INCOME

QUALIFIER ENTER, NONNEGATABLE, SYNTAX = ENTER.SYNTAX

QUALIFIER FIX, NONNEGATABLE. SYNTAX = FIX.SYNTAX

QUALIFIER REPORT, NONNEGATABLE, SYNTAX = REPORT.SYNTAX

DISALLOW ANY2 (ENTER, FIX, REPORT)

QUALIFIER INPUT, VALUE (TYPE = FILE.TYPE)

QUALIFIER OUTPUT, VALUE (TYPE = FILE.TYPE)

DEFINE TYPE FILE.TYPE

KEYWORD FORM1

KEYWORD F0RM2

KEYWORD F0RM3

DEFINE SYNTAX ENTER.SYNTAX

IMAGE "SYS$SYSTEM:ENTER"

DISALLOW <INCOME>OUTPUT

DEFINE SYNTAX FIX.SYNTAX

IMAGE "SYS$SYSTEM:FIX"

DISALLOW <INCOME>INPUT OR <INCOME>OUTPUT

DEFINE SYNTAX REPORT.SYNTAX

IMAGE »SYS$SYSTEM:REPORT"

DISALLOW <INCOME>INPUT

7.2 Command Setup

The commands which a user can type at DCL command level are defined
by the user's process command table. The table exists only for the duration
of the process and is recreated each time the user logs in or otherwise
creates a process. By default, the process command table is created from the
file SYS$LIBRARY:DCLTABLES.EXE (the DCL command table) when the
process is created.

7.2.1 Process Command Table

To add or replace commands in your current process command table,
specify the name of a CLD file in the SET COMMAND command. Each
command defined in the file by a DEFINE VERB statement is added to the
table if the command does not already exist, or is substituted in the table
if the command already exists. The following example adds or replaces
the INCOME command (defined in the file INCOME.CLD) in the process
command table.

$ SET COMMAND WORKDISK:[INCOME]INCOME

Adding or replacing a command in the process command table makes the
command available until the process terminates. (To make the command
available each time you log in, place the SET COMMAND command in your
login command file.)

7-11

Command Input and Syntax Analysis

7.2.2 DCL Command Table

To add or replace a command in the DCL command table, use the SET
COMMAND command specifying the DCL table as input with the
/TABLE qualifier and also specifying the DCL table as output with the
/OUTPUT qualifier. You must have WRITE access to DCLTABLES.EXE

in SYS$LIBRARY. The following example adds or replaces the INCOME
command in the DCL command table.

$ SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES-
_$ /OUTPUT=SYS$LIBRARY:DCLTABLES -
_$ WORKDISK:[INCOME]INCOME

Modifications to the DCL command table affect all users on the system
(except for users who switch to a user command table; see below). For each
user, the changes become effective the next time the user logs in. A user can
make the changes effective immediately by entering the following command:

$ SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES

7.2.3 User Command Table

You can create and use your own command tables.

7.2.3.1 Copying the DCL Command Table

To create a copy of the DCL command table, either use the COPY command
or use the SET COMMAND command specifying the DCL command table as
input with the /TABLE qualifier and the name of a file to hold the copy as
output with the /OUTPUT qualifier. The following command creates a copy

of the DCL table SYS$LIBRARY:DCLTABLES.EXE in the [INCOME] directory
on WORKDISK.

$ SET COMMAND/TABLE = SYS$LIBRARY:DCLTABLES-
_$ /OUTPUT = WORKDISK:[INCOME]DCLTABLES

To add a command or commands to your copy of the table while you are
copying it, specify the name of the CLD file containing the command in the
SET COMMAND. The following example creates a copy of the DCL table
and adds the INCOME command to the new table.

$ SET COMMAND/TABLE = SYS$LIBRARY:DCLTABLES-
_$ /OUTPUT = WORKDISK: [INCOME]DCLTABLES -
_$ WORKDISK:[INCOME]INCOME

7-12

Command Input and Syntax Analysis

To add or replace commands in the copied table after you have copied it,
use the SET COMMAND specifying the file name of the copied table as
input with the /TABLE qualifier and as output with the /OUTPUT qualifier.
The following example adds the INCOME command to a copy of the DCL
command table.

$ SET COMMAND/TABLE = WORKDISK: [INCOME]DCLTABLES-
_$ /OUTPUT = WORKDISK:[INCOME]DCLTABLES -
_$ WORKDISK:[INCOME]INCOME

7.2.3.2 Establishing the User Table

To establish your copy of the DCL command table as the process command
table rather than DCLTABLES.EXE in SYS$LIBRARY, use the SET
COMMAND command specifying your copy of the table as input with
the /TABLE qualifier. Do not specify a parameter and do not specify the
/OUTPUT qualifier. The following example switches your process command
table to a user table.

$ SET COMMAND/TABLE = WORKDISK:[INCOME]DCLTABLES

You must switch tables each time you log in except in the following cases.
If the user table is in the system directory SYS$LIBRARY, you can specify
that it be used as the process table at login instead of the default DCL table
with the /CLITABLES qualifier to AUTHORIZE. You can also specify an

alternative table (again the table must be in SYS$LIBRARY) by following
your user name with the /TABLES qualifier when you log in.

7.2.3.3 Creating a Table from Scratch

Using a table that is not a copy of the DCL table makes the VAX/VMS
commands unavailable and is therefore not recommended. If you do create
your own command table and wish to reestablish the DCL command table,
you must log out and log back in again. Since LOGOUT is a VAX/VMS
command, you will have to delete your process by using the STOP command
from another terminal or, if your system has only one terminal, by bringing
down the system.

To create your own command table from scratch, create an empty table, add
the commands that you want in the table, and then switch to your table
as outlined in Section 7.2.3.3. To create an empty table, create a CLD file
that contains a MODULE statement and optionally an IDENT statement;
compile the CLD file with a SET COMMAND/OBJECT command; and link
the resultant object module as a shareable image with the LINK/SHARE
command. The following commands create an empty command table.

7-13

Command Input and Syntax Analysis

$ SET DEFAULT WORKDISK:[INCOME]
$ CREATE INCTABLES.CLD

MODULE INCOME_TABLES <ctrl/z>
$ SET COMMAND/OBJECT INCTABLES
$ LINK/SHARE INCTABLES

Add the desired commands to your newly created table. The following

example adds the INCOME command.

$ SET COMMAND/TABLE = WORKDISK:[INCOME]INCTABLES-
_$ /OUTPUT = WORKDISK:[INCOME]INCTABLES -
_$ WORKDISK:[INCOME]INCOME

You are now ready to switch to your table as outlined in Section 7.2.3.3.
Remember, once you switch to your table, no VAX/VMS commands are

available.

7.2.4 Deleting Commands

Use the /DELETE qualifier of the SET COMMAND command to delete a

command from a table. Specify the /TABLE and /OUTPUT qualifiers as
necessary to work on tables in files rather than your process command table.

The following example deletes the INCOME command from your process
table.

$ SET COMMAND/DELETE=INCOME

The next example deletes the INCOME command from the DCL table.

$ SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES-
_$ /OUTPUT=SYS$LIBRARY:DCLTABLES-
_$ /DELETE=INCOME

7.3 Syntax Analysis

The Run-Time Library routines CLI$PRESENT and CLI$GET_VALUE permit

you to check for the presence of parameters, qualifiers, and keywords, and to
read the values typed by the user for those elements.

7-14

Command Input and Syntax Analysis

7.3.1 Checking for the Presence of Elements

CLI$PRESENT takes one argument: a character string whose value is the

label of a parameter, qualifier, or keyword as specified in the CLD file.

CLI$PRESENT returns a status of success if the user entered the element

or if the element is present by default. CLI$PRESENT returns a status of
failure (warning) if the user did not enter the element (and the element is
not present by default) or if the user explicitly negated the element. The
following (an excerpt from a CLD file) example performs different actions
depending on which of three qualifiers the user enters.

Excerpt from CLD File

QUALIFIER ENTER
QUALIFIER FIX
QUALIFIER REPORT
DISALLOW ANY2 (ENTER, FIX, REPORT)

Excerpt from Program

INTEGER CLI$PRESENT

IF (CLI$PRESENT ('ENTER')) THEN

ELSE IF (CLI$PRESENT ('FIX')) THEN

ELSE IF (CLI$PRESENT ('REPORT')) THEN

END IF

If the distinction between explicit entry and default presence of an element,
or explicit negation and omission of an element, is significant, you must
check the exact condition codes returned (the condition codes are defined in
a system object library).

• CLI$_PRESENT—Element explicitly entered by the user

• CLI$_DEFAULTED—Element present by default

• CLI$_ABSENT—Element not entered by the user and not present by

default

• CLI$_NEGATED—Element explicitly negated by the user

7-15

Command Input and Syntax Analysis

• CLI$_LOCPRES—Qualifier locally present (Section 7.3.3 describes
positional qualifiers)

• CLI$_LOCNEG—Qualifier locally negated (Section 7.3.3 describes
positional qualifiers)

In the following example, simply checking for success or failure would give
undesired results. For example, if the user entered /FIX, success codes would
be returned for both /ENTER (the default) and /FIX. (The example (an
excerpt from a CLD file) provides for the possibility of changing the default
qualifier in the CLD file without having to change the code.)

Excerpt from CLD File

QUALIFIER ENTER, DEFAULT

QUALIFIER FIX

QUALIFIER REPORT

DISALLOW ANY2 (ENTER, FIX. REPORT)

Excerpt from Program

INTEGER CLI$PRESENT

EXTERNAL CLI$_PRESENT,

2 CLI$.DEFAULTED

IF ((CLI$PRESENT

2

2 ((CLI$PRESENT

2

2

2

2

('ENTER') .EQ. '/.LOC (CLI$_PRESENT))

.OR.

('ENTER') .EQ. 7.L0C (CL I $.DEFAULTED))

.AND.

(.NOT. CLI$PRESENT ('FIX'))

.AND.

(.NOT. CLI$PRESENT ('REPORT')))) THEN

ELSE IF ((CLI$PRESENT (’FIX') .EQ. '/.LOC (CLI$_PRESENT))

2 .OR.

2 ((CLI$PRESENT ('FIX') .EQ. '/.LOC (CLI$_DEFAULTED))
2 .AND.
2 (.NOT. CLI$PRESENT ('ENTER'))

2 .AND.

2 (.NOT. CLI$PRESENT ('REPORT')))) THEN

7-16

Command Input and Syntax Analysis

ELSE IF ((CLI$PRESENT ('REPORT') .EQ. */,L0C (CLI$_PRESENT))

2 .OR.
2 ((CLI$PRESENT ('REPORT') .EQ. ‘/.LOC (CL I $.DEFAULTED))

2 .AND.

2 (.NOT. CLI$PRESENT ('ENTER'))

2 .AND.

2 (.NOT. CLI$PRESENT ('FIX')))) THEN

END IF

If a keyword can be ambiguous, provide the full keyword path as described
in Section 7.1.7.1. The following program (an excerpt from a CLD file) takes
action only if the FORM1, FORM2, or FORM3 keyword is entered as a value
to the /INPUT qualifier.

Excerpt from CLD File

QUALIFIER INPUT, VALUE (TYPE = FILE.TYPE)

QUALIFIER OUTPUT, VALUE (TYPE = FILE.TYPE)

DEFINE TYPE FILE.TYPE

KEYWORD F0RM1

KEYWORD F0RM2

KEYWORD F0RM3

Excerpt from Program

INTEGER CLI$PRESENT

IF (CLI$PRESENT ('INPUT.F0RM1')) THEN

ELSE IF (CLI$PRESENT ('INPUT.F0RM2')) THEN

ELSE IF (CLI$PRESENT ('INPUT.F0RM3')) THEN

END IF

7-17

Command Input and Syntax Analysis

7.3.2 Getting Element Values

Define the first argument to CLI$GET_VALUE as a character string whose

value is the label of a parameter, qualifier, or keyword specified in the
CLD file. Define the second argument as a character string large enough
to receive the parameter, qualifier, or keyword value. Define the third
(optional) argument as an INTEGER*2 integer to receive the length of the
value returned in argument 2.

The following example (an excerpt from a CLD file) uses the value of
parameter 1 in opening a file.

Excerpt from CLD File

PARAMETER PI
LABEL = STATS.FILE
VALUE (DEFAULT = "STATS.SAV")

Excerpt from Program

INTEGER STATUS,
2 CLI$GET_VALUE,
2 LIB$GET_LUN
INTEGERS FILE.NAME.SIZE
CHARACTER * 255 FILE.NAME
INTEGER FILE.LUN

STATUS = CLI$GET_VALUE ('STATS.FILE',
2 FILE.NAME,
2 FILE.NAME.SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = LIB$GET_LUN (FILE.LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL P/.VAL (STATUS))
OPEN (UNIT=FILE_LUN,
2 FILE=FILE_NAME(1:FILE_NAME_SIZE),
2 STATUS='OLD•,
2 F0RM='UNFORMATTED')

If the value is not present (for example, if the value is not required and no

default is supplied), a status of CLI$_ABSENT is returned.

If you are expecting a list of values, invoke CLI$GET_VALUE successively
for each value in the list. Each time CLI$GET_VALUE is called, it returns
one of the following as a status:

• SS$__NORMAL—If the value is the only or the last value in the list. The
value is returned as argument 2.

• CLI$_COMMA—If the value is followed by a comma. The value is
returned as argument 2.

7-18

Command Input and Syntax Analysis

• CLI$_CONCAT—If the value is followed by a plus sign. The value is
returned as argument 2.

• CLI$_ABSENT—If the list is depleted. No value is returned.

If the separation of elements by commas or plus signs is not significant, you
can simply check for CLI$__ABSENT on each invocation of CLI$GET_
VALUE. The following example (an excerpt from a CLD file) reads a
parameter list into an array (arbitrarily cutting the list off at 10 values).

Excerpt from CLD File

PARAMETER PI

LABEL = STATS.FILE

VALUE (LIST,
DEFAULT = "STATS.SAV")

Excerpt from Program

INTEGER STATUS,

2 CLI$GET_VALUE,

2 FN.COUNT

INTEGERS FN.SIZE (10)

CHARACTER*255 FILE.NAME (10)
EXTERNAL CLI$_ABSENT

! Get first value in list

STATUS = CLI$GET_VALUE ('STATS.FILE',

2 FILE.NAME (1),

2 FN.SIZE (1))

! Loop until CLI$GET_VALUE fails

DO WHILE (STATUS)

! Update count of values

FN.COUNT = FN.COUNT + 1

IF (FN.COUNT .LT. 10) THEN
! Get the next value in the list
STATUS = CLI$GET_VALUE ('STATS.FILE',

2 FILE.NAME (FN.COUNT + 1).
2 FN.SIZE (FN.COUNT + 1))

ELSE
! Force end of list at 10 values

STATUS = V.L0C (CLI$_ABSENT)

END IF

END DO
! Make sure the bad status was the expected one

IF (STATUS .NE. V.LOC (CLI$_ABSENT)) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

7-19

Command Input and Syntax Analysis

7.3.3 Determining the Position of a Qualifier

The positional environment of the parent command changes each time
you invoke CLI$GET_VALUE for a parameter value: you are in the global
environment before getting any parameter value, the PI environment after
getting PI, the P2 environment after getting P2, and so on. The rules for
determining the presence of a qualifier in an environment are as follows:

• Global presence—If the user enters a positional (PLACEMENT =
POSITIONAL) qualifier before entering any parameters, the qualifier is

present (CLI$_PRESENT) in all environments except local environments
explicitly specified by the user.

• Global negation—If the user negates a positional (PLACEMENT =
POSITIONAL) qualifier before entering any parameters, the qualifier

is negated (CLI$_NEGATED) in all environments except local
environments explicitly specified by the user.

• Local presence—If the user enters a positional (PLACEMENT =
POSITIONAL) or local (PLACEMENT = LOCAL) qualifier after a

parameter, the qualifier is locally present (CLI$_LOCPRES) in the
environment for that parameter.

• Local negation—If the user negates a positional (PLACEMENT =
POSITIONAL) or local (PLACEMENT = LOCAL) qualifier after a

parameter, the qualifier is locally negated (CLI$_LOCNEG) in the
environment for that parameter.

• Default presence—If a positional (PLACEMENT = POSITIONAL)
qualifier has the DEFAULT characteristic, the qualifier is present by
default (CLI$_DEFAULTED) in all environments unless overridden by
a user specification. If a local (PLACEMENT = LOCAL) qualifier has

the DEFAULT characteristic, the qualifier is present by default (CLI$_
DEFAULTED) in all parameter environments unless overridden by a user
specification.

In most cases, your code should be secure if you simply check for the
presence of the qualifier and obtain qualifier values in each of the parameter
environments. The main care that you must exercise in working with
positional qualifiers is to ensure that you are in the proper environment when
looking at a qualifier. The following example (an excerpt from a CLD file)
permits the user to enter a qualifier value (/FILETYPE = FORM1, /FILETYPE
= FORM2, or /FILETYPE = FORM3) for each parameter by specifying the
qualifier globally or by specifying it locally after each parameter. Note that
by default each parameter environment gets a qualifier value of FORM1.

7-20

Command Input and Syntax Analysis

Excerpt from CLD File

PARAMETER PI, VALUE (REQUIRED)

PROMPT = "Input file"

PARAMETER P2, VALUE (REQUIRED)

PROMPT = "Output file"

QUALIFIER FILETYPE

DEFAULT

VALUE (TYPE = FILE.TYPE)

PLACEMENT = POSITIONAL

DEFINE TYPE FILE.TYPE

KEYWORD FORM1, DEFAULT

KEYWORD F0RM2

KEYWORD F0RM3

Excerpt from Program

INTEGER STATUS,
2 CLI$PRESENT,

2 CLI$GET_VALUE

INTEGERS IF.SIZE,
2 OF.SIZE

CHARACTER*31 INPUT.FILE,
2 OUTPUT_FILE

CHARACTER*5 IF.TYPE,

2 OF.TYPE

STATUS = CLI$GET_VALUE

2
2

IF (.NOT. STATUS) CALL

STATUS = CLI$GET_VALUE

2
IF (.NOT. STATUS) CALL

STATUS = CLI$GET_VALUE

2

2

IF (.NOT. STATUS) CALL
STATUS = CLI$GET_VALUE

2
IF (.NOT. STATUS) CALL

CPI' ,
INPUT.FILE,

IF.SIZE)

LIB$SIGNAL C/.VAL (STATUS))

('FILETYPE',

IF.TYPE)

LIB$SIGNAL C/.VAL (STATUS))

('P2',
OUTPUT.FILE,

OF.SIZE)

LIB$SIGNAL C/.VAL (STATUS))

('FILETYPE',
OF.TYPE)

LIB$SIGNAL C/.VAL (STATUS))

Command Input and Syntax Analysis

7.3.4 Examining the Command Line and Verb

You can obtain the contents of the command line exactly as entered by the
user by passing the literal $LINE as the first argument to CLI$GET_VALUE.
You can obtain the first four characters of the command name (no matter

how many characters the user types) by passing the literal $VERB as the first

argument to CLI$GET_VALUE. The following example returns the contents
of the command line to the variable LINE and the first four characters of the
command name to the variable VERB.

INTEGER STATUS.
2 CLI$GET_VALUE
INTEGERS LINE.SIZE
CHARACTER*1024 LINE
CHARACTERS VERB
STATUS = CLI$GET_VALUE
2
2
IF (.NOT. STATUS) CALL
STATUS = CLI$GET_VALUE
2
IF (.NOT. STATUS) CALL

('$LINE'.
LINE,
LINE.SIZE)

LIB$SIGNAL C/.VAL
('$VERB',
VERB)

LIB$SIGNAL (7,VAL

(STATUS))

(STATUS))

7.4 Subcommands and Internal Parsing

The Command Definition Utility and associated CLI routines permit you to
parse character strings obtained from sources other than the command line
invoking your program.

7.4.1 Defining Subcommands

Define each subcommand in a DEFINE VERB block in a CLD file using the
same rules as for any command. Compile the subcommands into an object
command table by specifying the CLD file containing the subcommand
definitions in a SET COMMAND command with the /OBJECT qualifier.
Link the object command table to your program.

You can supply a module name for the command table by including a
MODULE statement in the command definition file. If you do not include
a MODULE statement, you can include a module name as a value to the
/OBJECT qualifier, or let the module name default to the name of the CLD
file (or the first CLD file processed).

The following example compiles three subcommands into an object
module named INCOME-SUBCOMMANDS (the name of the object file
is INCSUB.OBJ).

7-22

Command Input and Syntax Analysis

INCSUB.CLD

MODULE INCOME.SUBCOMMANDS

DEFINE VERB ENTER

DEFINE VERB FIX

PARAMETER PI, LABEL = HOUSE.NO

VALUE (REQUIRED, TYPE = $NUMBER)

PROMPT = "House number"

PARAMETER P2, LABEL = PERSONS.HOUSE

VALUE (REQUIRED, TYPE = $NUMBER)

PROMPT = "Persons per house"

PARAMETER P3, LABEL = ADULTS.HOUSE

VALUE (REQUIRED, TYPE = $NUMBER)

PROMPT = "Adults per house"

PARAMETER P4, LABEL = INCOME.HOUSE
VALUE (REQUIRED, TYPE = $NUMBER)

PROMPT = "Income per house"

DEFINE VERB REPORT

QUALIFIER OUTPUT, VALUE (TYPE = $FILE,

DEFAULT = "INCOME.RPT")

$ SET COMMAND/OBJECT INCSUB

The object file containing the command definition module must be linked to
your main program and other program units.

7.4.2 Parsing Subcommands

A program must explicitly parse a subcommand by invoking the Run-Time
Library routine CLI$DCL—PARSE. Specify the arguments to CLI$DCL —
PARSE as follows:

• Input line or 0 (argument 1)—If you are using argument 4 to read the
entire command, specify argument 1 as a 0. Pass the argument by value.
If you have already read (or otherwise obtained) the command or part
of the command, specify the character string containing the command as
argument 1 (and pass it by descriptor, the default mechanism).

• Subcommand table (argument 2)—Specify the name of the module
containing the subcommand table. The module name must be defined as
external.

• Required parameter routine (argument 3)—If the subcommand
definitions contain any required parameters, specify the name of a
routine to prompt for and read the parameters in case the user does not
enter them on the command line. The routine can be LIB$GET_INPUT
or any other routine that takes the same arguments and returns a status
code. The routine name must be defined as external.

7-23

Command Input and Syntax Analysis

• Command line routine (argument 4)—Specify the name of a routine to
read the entire command (if you did not obtain the command and pass
it to CLI$DCL—PARSE as argument 1) or continuation command lines.
The routine can be LIB$GET_INPUT or any other routine that takes the
same three arguments and returns a status code. The routine name must
be defined as external.

• Command line prompt (argument 5)—If you specify argument 4, specify
a character string to be written as a prompt to obtain the command or
the rest of the command.

The following example reads (using LIB$GET_INPUT and the prompt
INCOME >) and parses a subcommand, and performs various actions
depending on the subcommand that the user enters. The program processes
subcommands until the user presses CTRL/Z.

INTEGER STATUS,

2 CLI$DCL_PARSE,

2 CLI$GET_VALUE

INCLUDE '($RMSDEF)'

INCLUDE '($STSDEF)'

EXTERNAL INCOME.SUBCOMMANDS,

2 LIB$GET_INPUT

CHARACTER*4 SUBCOMMAND.NAME

STATUS = LIB$PUT_OUTPUT

2 ('Subcommands: ENTER — FIX --- REPORT')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = LIB$PUT_OUTPUT ('Press CTRL/Z to exit')

! Get first subcommand

STATUS = CLI$DCL_PARSE C/.VAL (0),

2 INCOME.SUBCOMMANDS,
2 LIB$GET_INPUT,

2 LIB$GET_INPUT,

2 'INC0ME> ')

CLD module

Parameter routine
Command routine

Command prompt

Command Input and Syntax Analysis

! Do it until user presses CTRL/Z

DO WHILE (STATUS .NE. RMS$_E0F)

! If no error on CLI$DCL_PARSE

IF (STATUS) THEN

! Get name of subcommand - always 4 characters

STATUS = CLI$GET_VALUE ('$VERB',

2 SUBCOMMAND.NAME)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Perform appropriate action

IF (SUBCOMMAND.NAME .EQ. 'ENTE') THEN

ELSE IF (SUBCOMMAND.NAME .EQ. 'FIX ') THEN

ELSE IF (SUBCOMMAND.NAME .EQ. 'REPO') THEN

END IF

! Do not signal warning again

ELSE IF (IBITS (STATUS, 0, 3) .NE. STS$K_WARNING) THEN
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

! Get another subcommand

STATUS = CLI$DCL_PARSE C/.VAL (0),

2 INCOME.SUBCOMMANDS,

2 LIB$GET_INPUT,

2 LIB$GET_INPUT,

2 'INCOME> ')

END DO

END

If the user makes a syntax error in the subcommand, CLI$DCL—PARSE both
signals the error and returns it as a status code. The severity of a syntax error
is a warning, so that the default action (if you do not establish your own
condition handler) is to type the message and continue execution. You can
trap a warning by comparing the lower 3 bits of the status code to STS$K—
WARNING (defined in $STSDEF). The example shown above refrains from
explicitly calling LIB$SIGNAL if an error returned by CLI$DCL—PARSE is a
warning, so that the error message is not typed twice.

If an error occurs while the routine specified by argument 4 is reading the
command line, the error status is passed along as the status returned by
CLI$DCL_PARSE. In the example shown above, the program can expect
to receive the status RMS$_EOF (defined in $RMSDEF) from CLI$DCL_
PARSE (CLI$DCL—PARSE receives the status from LIB$GET_INPUT) when
the user presses CTRL/Z.

7-25

Command Input and Syntax Analysis

If you write your own routine for argument 3 or 4, write it as a FUNCTION
subprogram and return a status code as the function value (return SS$_
NORMAL to continue execution of the program). Specify the dummy
arguments for the routine as follows:

• Argument 1—Assumed-length character string in which you must place
the character string that you read

• Argument 2—Assumed-length character string containing a prompt; this
value is passed to you from argument 5 of CLI$DCL—PARSE

• Argument 3—INTEGER*2 integer in which you must place the size of
the character string that you read

The following example demonstrates the necessary declarations.

INTEGER FUNCTION GETINPUT (INPUT, ! Returned
2 PROMPT, ! Passed
2 SIZE) ! Returned
CHARACTER*(*) INPUT,
2 PROMPT
INTEGER*2 SIZE
INTEGER STATUS

GETINPUT = STATUS
END

7.4.3 Dispatching to a Subprogram

You can invoke a subprogram depending on the subcommand (that is, the
verb) entered by the user. You must specify the name of the subprogram to
be invoked for a particular subcommand with a ROUTINE statement in the
DEFINE VERB block for the subcommand. In your program, simply invoke
CLI$DISPATCH after you invoke CLI$DCL—PARSE. The following example
(a CLD file) causes one of the subprograms ENTER, FIX, and REPORT to be
invoked depending on which subcommand is entered by the user.

MODULE INCOME.SUBCOMMANDS
DEFINE VERB ENTER

ROUTINE ENTER
DEFINE VERB FIX

ROUTINE FIX

DEFINE VERB REPORT
ROUTINE REPORT
QUALIFIER OUTPUT, VALUE (TYPE = $FILE,

DEFAULT = •' INCOME. RPT")

7-26

Command Input and Syntax Analysis

PROGRAM INCOME

INTEGER STATUS,

2 CLI$DCL_PARSE,

2 CLI$DISPATCH

INCLUDE '($RMSDEF)'

INCLUDE 1($STSDEF)1

EXTERNAL INCOME.SUBCOMMANDS,

2 LIB$GET_INPUT

STATUS = LIB$PUT_OUTPUT

2 ('Subcommands: ENTER --- FIX --- REPORT')

IF (.NOT. STATUS) CALL LIB$SIGNAL O/.VAL (STATUS))

STATUS = LIB$PUT_OUTPUT

2 ('Press CTRL/Z to exit')

! Get first subcommand

STATUS = CLI$DCL_PARSE C/.VAL (0),

2 INCOME.SUBCOMMANDS, ! CLD module
2 LIB$GET_INPUT, ! Parameter routine

2 LIB$GET_INPUT, ! Command routine

2 'INCOME> ') ! Command prompt

! Do it until user presses CTRL/Z

DO WHILE (STATUS .NE. RMS$_EOF)

! If no error on CLI$DCL_PARSE

IF (STATUS) THEN

! Dispatch depending on subcommand

STATUS = CLI$DISPATCH ()

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Do not signal warning again

ELSE IF (IBITS (STATUS, 0, 3) .NE. STS$K_WARNING) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

! Get another subcommand

STATUS = CLI$DCL_PARSE ('/.VAL (0),

2 INCOME.SUBCOMMANDS,

2 LIB$GET_INPUT,

2 LIB$GET_INPUT,

2 'INCOME> ')

END DO

END

INTEGER FUNCTION ENTER ()
INTEGER STATUS

ENTER = STATUS

END

INTEGER FUNCTION FIX ()

INTEGER STATUS

FIX = STATUS

END

Command Input and Syntax Analysis

INTEGER FUNCTION REPORT ()

INTEGER STATUS

REPORT = STATUS

END

If you define your subprogram as an integer function, the return value is
used by CLI$DISPATCH as a status code. Otherwise, CLI$DISPATCH does
not return a proper status code.

You can pass one optional longword from CLI$DISPATCH to your
subprogram. All other data must be passed by defining common areas.

7.4.4 Returning to the Invoking Command

When you invoke CLI$DCL-PARSE for a subcommand, further
CLI$PRESENT and CLI$GET_VALUE invocations apply to the subcommand.
You no longer have access to the command that invoked your program from
DCL command level. You can reparse the command that invoked your
program by invoking CLI$DCL—PARSE specifying zeros for the first two
arguments and omitting the remaining arguments. You must pass the first
argument by value.

7-28

User Input/ Output

Typically, you set up your program so that the user is the invoker. The user
starts the program by naming the DCL command with which it is associated
(see Chapter 7) or by naming the image file (for example, in the RUN
command). The user's input and output devices are defined by the logical

names SYS$INPUT and SYS$OUTPUT, which are initially equivalenced as
follows:

Logical Name User Mode Equivalence Device or File

SYS$INPUT Interactive Terminal on which user is logged in

Batch job Data lines following the invocation
of the program

Command procedure Data lines following the invocation
of the program

SYSSOUTPUT Interactive Terminal on which the user is
logged in

Batch job Batch log file

Command procedure Terminal on which the user is
logged in

Generally, use of SYS$INPUT and SYS$OUTPUT as the primary input
and output devices is recommended. A user of the program can redefine
SYS$INPUT and SYS$OUTPUT to redirect input and output as desired. For
example, the interactive user might redefine SYS$OUTPUT as a file name to
save output in a file rather than display it on the terminal.

Alternatively, you can design your program to get input from and put output
to a file or a device other than the user's terminal. Files may be useful for
writing lengthy amounts of data, for writing data that the user might want
to save, and for writing data that can be reused as input. If you do use files
or devices other than SYS$INPUT and SYS$OUTPUT, you should provide
the names of the files or devices (best form is to use logical names) and any
conventions for their use. You can specify such information by having the
program write it to the terminal, by creating a help file, or by providing user
documentation. Chapter 9 describes file input/output.

8-1

User Input/Output

8.1 Conversational I/O

Usually, you can request information from, or write information to, the
user with little regard for formatting. For such conversational I/O, use the

Run-Time Library routines LIB$GET_INPUT and LIB$PUT_OUTPUT. If
programming in FORTRAN, the FORTRAN I/O statements READ, ACCEPT,
WRITE, PRINT, and TYPE can also be used. For the I/O statements available
in your language, see your language-specific programming manual.

To provide fancy (complex) screen displays for input or output, use the
screen management facility described in Section 8.2.

8.1.1 Device Selection

The Run-Time Library procedures LIB$GET_INPUT and LIB$PUT_OUTPUT
read from SYS$INPUT and write to SYS$OUTPUT. The logical names
SYS$INPUT and SYS$OUTPUT are implicit to the procedures; you need
only invoke the procedure to access the I/O unit (device or file) associated
with the logical name. You cannot use the procedures to access an I/O unit

other than the one associated with SYS$INPUT or SYS$OUTPUT.

With FORTRAN I/O, you can use the OPEN statement to specify an I/O
unit, or omit the OPEN statement and use an implied I/O unit.

To identify an I/O unit for FORTRAN, you use a logical unit number—an
integer value of your choice. Specify the logical unit number when you open
the I/O unit (UNIT keyword of the OPEN statement). To read or write to
that I/O unit, specify the logical unit number in the appropriate FORTRAN
I/O statement (UNIT keyword of the I/O statement). When you use an
implied I/O unit, you do not specify a logical unit number; FORTRAN uses
an implied logical unit number.

If more than one person is working on a program, you should generate
logical unit numbers with the Run-Time Library procedure LIB$GET_LUN,
rather than choosing your own values, to ensure that the number is unique
among all logical unit numbers used in the program.

8-2

User Input/Output

8.1.1.1 Implied Unit for FORTRAN I/O

In FORTRAN I/O statements, if you specify UNIT as an asterisk (*) or

omit UNIT, input statements use an implied unit of SYS$INPUT and output
statements use an implied unit of SYS$OUTPUT. (Not all FORTRAN I/O
statements allow you to omit UNIT; for a complete description of each
FORTRAN statement, see Programming in VAX FORTRAN.) In addition,
the I/O units are associated with special FORTRAN logical names. The
following table details the associations of FORTRAN implied units with
FORTRAN and system logical names.

FORTRAN Statement FORTRAN System

READ (UNIT=*,...) list FOR$READ SYSSINPUT

READ fmt, list FORSREAD SYSSINPUT

ACCEPT fmt, list FORSACCEPT SYSSINPUT

WRITE (UNIT=*,...) list FOR$PRINT SYSSOUTPUT

PRINT fmt, list FORSPRINT SYSSOUTPUT

TYPE fmt, list FOR$TYPE SYSSOUTPUT

A person using your program can redirect input and output either by
redefining SYS$INPUT and SYS$OUTPUT, or by defining one of the
FORTRAN logical names. The FORTRAN logical name (when it is defined)
takes precedence over the system logical name.

When you use an implied I/O unit, do not open or close the unit. Simply
issue the appropriate I/O statement. Since FORTRAN opens an implied
I/O unit using the default characteristics of the OPEN statement (including
ACCESS = 'SEQUENTIAL' and CARRIAGECONTROL = 'FORTRAN'),
you must remember to specify the first output character as the FORTRAN
carriage control character and not a data character. The following example
demonstrates the use of a WRITE statement to write to SYS$OUTPUT.

INTEGER OUTPUT.SIZE
CHARACTER* 512 OUTPUT

! The leading space is for FORTRAN carriage control,
! the default characteristic for formatted, sequential files
WRITE (UNIT=*,
2 FMT=1(2A)1) * •, OUTPUT (1:OUTPUT.SIZE)

8-3

User Input/Output

8.1.1.2 Explicit Unit for FORTRAN I/O

To write to a device other than the one associated with SYS$INPUT or
SYS$OUTPUT, you must name the device (physical or logical name) in an
OPEN statement and use the logical unit number of the OPEN statement in
subsequent READ and WRITE statements. The following example writes to
the device named $TERMINAL1.

INTEGER STATUS,
2 OUTPUT,SIZE

CHARACTER*512 OUTPUT

! Open output file with list carriage control

OPEN (UNIT*1,

2 FILE='$TERMINAL1',

2 STATUS='UNKNOWN',

2 CARRIAGECONTROL='LIST')

WRITE (UNIT=1,

2 FMT='(A)') OUTPUT (1:OUTPUT.SIZE)

You can also access SYS$INPUT or SYS$OUTPUT by naming the unit in an
OPEN statement and using the logical unit number of the OPEN statement
in subsequent READ and WRITE statements. This technique is useful if you
want to assign other than the default characteristics to the I/O unit.

In the OPEN statement, specify the FILE attribute as FILE = 7SYS$INPUT7
(for read operations) or FILE = 7SYS$OUTPUT7 (for write operations). Specify
the STATUS attribute as 7OLD7. The following example explicitly opens
SYS$OUTPUT to use list carriage control (rather than FORTRAN carriage
control, the default).

INTEGER STATUS,

2 OUTPUT.SIZE

CHARACTER* 512 OUTPUT

! Open SYS$OUTPUT with list carriage control
OPEN (UNIT=1,
2 FILE=•SYS$OUTPUT',

2 STATUS='OLD',

2 CARRIAGECONTROL='LIST')

! Write a line to SYS$OUTPUT

WRITE (UNIT=1,

2 FMT='(A)') OUTPUT (1:OUTPUT.SIZE)

8-4

User Input/Output

If you specify a FORTRAN logical name (FOR$READ, FOR$ACCEPT,

FOR$PRINT, or FOR$TYPE) in the OPEN statement, it must be defined
before the program is invoked or an error (error in file name) occurs.

8.1.2 Getting a Line of Input

A read operation transfers one record from the input unit to a variable or
variables of your choice. On a terminal, the user ends a record by pressing
a terminator. The terminators are the ASCII characters NUL through US (0
through 31) except for LF, VT, FF, TAB, and BS. The usual terminator is CR,
generated by pressing RETURN.

If you are reading character data, LIB$GET_INPUT is a simple way of
prompting for and reading the data. If you are reading noncharacter data,
FORTRAN I/O is preferable since it allows you to translate the data to
a format of your choice. (Format specifications for the FORTRAN I/O
statements are described in Programming in VAX FORTRAN.) For input,
FORTRAN I/O offers the ACCEPT statement, which reads data from

SYS$INPUT, and the READ statement, which reads data from an I/O
unit of your choice.

Make sure the variables that you specify can hold the largest number of
characters the user of your program might enter unless you deliberately want
to truncate the input. Overflowing the input variable using LIB$GET_INPUT
causes the fatal error LIB$_INPSTRTRU (defined in $LIBDEF); overflowing
the input variable using FORTRAN I/O does not necessarily cause an error,
but does truncate your data.

8.1.2.1 LIB$GET_INPUT

LIB$GET_INPUT places the characters read in a variable of your choice. You
must define the variable as character in type. Optionally, LIB$GET_INPUT
places the number of characters read in another variable of your choice
which must be defined as INTEGER*2 in type. On terminal input, LIB$GET_
INPUT optionally writes a prompt before reading the input. The prompt is
suppressed automatically for a nonterminal operation.

The following example reads a line of input using LIB$GET_INPUT.

INTEGER*4 STATUS,
2 LIB$GET_INPUT
INTEGER*2 INPUT.SIZE
CHARACTER*512 INPUT
STATUS = LIB$GET_INPUT (INPUT, ! Input value
2 'Input value: ', ! Prompt (optional)
2 INPUT_SIZE) ! Input size (optional)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

8-5

User Input/Output

In further references to input character data, you should specify the
appropriate substring or sequence of array elements rather than the entire
character variable. For example, if you read characters into a character string
variable named INPUT and store the number of characters read in a variable
named INPUT_SIZE, you should refer to INPUT (1:INPUT_SIZE) rather
than INPUT.

8.1.2.2 ACCEPT Statement

The FORTRAN ACCEPT statement reads data from FOR$ACCEPT (if it is

defined) or SYS$INPUT. The data, which must be read using sequential
access mode, is transferred from the I/O unit to a variable or variables of
your choice. You can specify the format of the data or use list-directed I/O
by specifying the format as an asterisk (*). The following example uses

list-directed I/O to read a numeric variable from SYS$INPUT.

INTEGER*4 NUMBER

ACCEPT *, NUMBER

8.1.2.3 READ Statement

The FORTRAN READ statement transfers data from an I/O unit to a variable
or variables of your choice. By default, an input record is restricted to 132
characters in length. You can override the default by explicitly opening the
input unit and specifying the RECL specifier. Overflowing the maximum
length causes the fatal error FOR$_ERRDURREA (defined in $FORDEF).

For character input (that is, if you do not convert the data on input), the
following guidelines are suggested:

• Input size—Use the Q format specification to obtain the number of
characters in the input record. Define the variable associated with the Q
specification as an integer data type.

• Input data—Use the A format specification to obtain the actual data.
Define the variable associated with the A specification as a character data
type. Specify the variable as a character string whose bounds are 1 and
the size read by the Q specification.

• Prompt—To prompt, first issue a WRITE statement using the A format
specification for the actual prompt, followed by the dollar sign ($) format
specification to suppress the carriage return (if you want the input data to

8-6

User Input/Output

appear on the same line as the prompt). Alternatively, you can omit the
dollar sign format specification and use the dollar sign as a FORTRAN
carriage control character by making it the first character of the prompt
string.

Note

You can format the READ statement to process more than one
record; for details, see Programming in VAX FORTRAN.

The following example issues a prompt to SYS$OUTPUT and obtains an
input value from SYS$INPUT.

INTEGER INPUT.SIZE
CHARACTER*512 INPUT
WRITE (UNIT=*,
2 FMT='(A,$)') ' Input value: '
READ (UNIT=*,
2 FMT='(Q.A)') INPUT.SIZE,
2 INPUT (1:INPUT.SIZE)
! The leading space in the prompt is the FORTRAN carriage
! control character, which must be included unless you
! open SYS$INPUT and specify carriage control other than
! FORTRAN. The trailing space is so a space appears on
! the terminal after the colon.

In further references to input character data, you should specify the
appropriate substring or array elements rather than the entire character
variable. For example, if you read characters into a character variable named
INPUT and store the number of characters read in a variable named INPUT-
SIZE, you should refer to INPUT (1:INPUT_SIZE) rather than INPUT.

If you are reading numeric or logical data, you can perform the conversion as
part of the I/O operation. You should check for the error condition FOR$_

INPCONERR (defined in $FORDEF) in case the character input was not
suitable for conversion to a number. The following example reads the input
value into an integer variable.

8-7

User Input/Output

INTEGER

2
2

2
PARAMETER

INCLUDE

WHOLE.NUMBER,

IOSTAT,

STATUS,

I0_0K

(IO.OK = 0)

'($FORDEF)'

WRITE (UNIT=*,

2 FMT='(A,$)') ' Input value: '

READ (UNIT=*,

2 IOSTAT=IOSTAT,

2 FMT='(BN,I)') WHOLE.NUMBER

! Error loop in case the user types in a noninteger value

DO WHILE (IOSTAT .NE. IO.OK)

CALL ERRSNS (,,,.STATUS)

IF (STATUS .EQ. FOR$_INPCONERR) THEN

WRITE (UNIT=*,

2 FMT='(A,$)') ' Oops. Try again: '

READ (UNIT=*,

2 IOSTAT=IOSTAT,

2 FMT='(BN,I)') WHOLE.NUMBER

ELSE

CALL LIB$SIGNAL P/.VAL (STATUS))

END IF

END DO

8.1.3 Getting Many Lines of Input

The usual technique for getting a variable number of input records—either
values for which you are prompting or data records from a file—is to read
and process records until end-of-file. End-of-file means one of the following:

• Terminal—The user has pressed CTRL/Z. To ensure that the convention
is followed, you might first write a message telling the user to press
CTRL/Z to terminate the input sequence.

• Command procedure—The end of a sequence of data lines has been
reached.

• File—The end of an actual file has been reached.

Process the records in a loop (one record per iteration) and terminate the
loop on end-of-file. LIB$GET_INPUT returns the error RMS$_EOF (defined
in $RMSDEF) when end-of-file occurs. FORTRAN generates the error
FOR$_ENDDURREA (defined in $FORDEF) when end-of-file occurs. On a
FORTRAN read operation, you can also detect end-of-file by checking the
I/O return status (IOSTAT) for a negative value or by using an END specifier
in the READ statement.

8-8

User Input/Output

The following example uses a FORTRAN READ statement in a loop to read
a sequence of integers from SYS$INPUT.

! Return status and error codes

INTEGER STATUS,

2 IOSTAT,

3 STATUS.OK.

4 IOSTAT.OK

PARAMETER (STATUS.OK = 1,

2 I0_0K = 0)

INCLUDE '($F0RDEF)'

! Data record read on each iteration
INTEGER INPUT.NUMBER

! Accumulated data records

INTEGER STORAGE.COUNT,

2 STORAGE.MAX

PARAMETER (STORAGE.MAX = 255)

INTEGER STORAGE.NUMBER (STORAGE.MAX)

! Write instructions to interactive user

TYPE *,

2 'Enter values below. Press CTRL/Z when done.'

! Get first input value

WRITE (UNIT=*,

2 FMT=1(A,$)') ' Input value: '

READ (UNIT=*,

2 I0STAT=I0STAT,
2 FMT='(BN,I)') INPUT.NUMBER

IF (IOSTAT .EQ. IO.OK) THEN

STATUS = STATUS.OK

ELSE

CALL ERRSNS (,..,STATUS)

END IF

! Process each input value until end-of-file

DO WHILE ((STATUS .NE. FOR$_ENDDURREA) .AND.

(STORAGE.COUNT .LT. STORAGE.MAX))

! Keep repeating on conversion error

DO WHILE (STATUS .EQ. F0R$_INPC0NERR)

WRITE (UNIT=*,
2 FMT='(A,$)') ' Try again: '

READ (UNIT=*,
2 I0STAT=I0STAT,
2 FMT='(BN,I)') INPUT.NUMBER

IF (IOSTAT .EQ. IO.OK) THEN

STATUS = STATUS.OK
ELSE

CALL ERRSNS (,,,.STATUS)

END IF

END DO

8-9

User Input/Output

! Continue if end-of-file not entered
IF (STATUS .NE. FOR$_ENDDURREA) THEN

! Status check on last read
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
! Store input numbers in input array
STORAGE.COUNT = STORAGE.COUNT + 1
STORAGE.NUMBER (STORAGE.COUNT) = INPUT,NUMBER
! Get next input value
WRITE (UNIT=*,

2 FMT='(A,$)') ' Input value: '
READ (UNIT=*,

2 I0STAT=I0STAT,
2 FMT='(BN,I)') INPUT,NUMBER

IF (IOSTAT .EQ. IO.OK) THEN
STATUS * STATUS.OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
END IF

END DO

8.1.4 Writing Output

If you are writing character data, LIB$PUT_OUTPUT is a simple way of
writing the data. If you are writing noncharacter data, FORTRAN I/O is
preferable since it allows you to translate the data to a format of your choice.
(Format specifications for the FORTRAN I/O statements are described in
Programming in VAX FORTRAN.) For output, FORTRAN I/O offers the

TYPE or PRINT statement, which writes data to SYS$INPUT, and the READ
statement, which writes data to an I/O unit of your choice.

8.1.4.1 LIB$PUT_OUTPUT

LIB$PUT_OUTPUT writes one record of output to SYS$OUTPUT. Typically,
you should avoid writing records that exceed the device width. The width of
a terminal is 80 or 132 characters depending on the setting of the physical
characteristics of the device. The width of a line printer is 132 characters. If
your output record exceeds the width of the device, the excess characters are
either truncated or wrapped to the next line depending on the setting of the
physical characteristics.

You must define a value (a variable, constant, or expression) to be written.
The value must be character in type. You should specify the exact number of
characters being written and not include the trailing portion of a variable.

8-10

User Input/Output

The following example writes a character expression to SYS$OUTPUT.

INTEGER*4 STATUS,
2 LIB$PUT_OUTPUT
CHARACTER*40 ANSWER
INTEGER*4 ANSWER.SIZE

STATUS = LIB$PUT_OUTPUT ('Answer: ' // ANSWER (1:ANSWER.SIZE))
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

8.1.4.2 WRITE Statement

The FORTRAN WRITE statement writes one or more output records to an

I/O unit depending upon the format. For character data, use the A format

specification. If you specify the output data as substrings, you do not need to
attach a number to the A format specification. If you use FORTRAN carriage
control, be sure that the first character of the output record is the carriage
control character (see Section 8.1.4.7) and not data. The following example

writes a character expression.

CHARACTER*31 ANSWER
INTEGER ANSWER.SIZE

! Write answer
! Leading space is for FORTRAN carriage control
WRITE (UNIT=*,
2 FMT='(A)') ' Answer: ' // ANSWER (1:ANSWER.SIZE)

As an alternative to concatenating the output data, you can specify the

output data as a comma-separated list of constants and variables, and use
list-directed formatting or provide a format specification for each element of
the list. You can also include constants within the format specification rather
than within the list of output data. The following WRITE statements are
alternatives to the example shown above.

Example 1

WRITE (UNIT=*,
2 FMT=*) 'Answer: '. ANSWER (1:ANSWER.SIZE)

Example 2

WRITE (UNIT=*,
2 FMT='(2A)') ' Answer: ', ANSWER (1:ANSWER.SIZE)

8-11

User Input/Output

Example 3

WRITE (UNIT=*,
2 FMT='(" Answer: ",A)') ANSWER (1:ANSWER.SIZE)

8.1.4.3 Formatting Numeric Output

You can convert numeric data as part of the output operation, as
demonstrated here:

INTEGER*4 ANSWER

WRITE (UNIT=*,
2 FMT='(A,I)') ' Answer:
2 ANSWER

However, the appearance of the data may not be what you desire depending
on how the format specification converts the number. For example, the I

specification places the character representation of the number in a field of

12 positions, right justified, and padded on the left with blanks. If ANSWER
equals 31, the above code would write the following line:

Answer: 31

If you know exactly how many character positions the number requires,

you can include that value as part of the specification. For example, you

could use a specification of 12 instead of I. A more generic solution would

be to convert the number to a character string internally using the default
specification, then strip the leading blanks before writing the value.

INTEGERS ANSWER,
2 START
CHARACTER*12 STRING

! Convert number to character string
WRITE (UNIT=STRING,
2 FMT='(I)') ANSWER
! Locate first nonblank character
START = 1
DO WHILE (STRING (START:START) .EQ. ' ')

START = START + 1
END DO
! Write substring starting at first nonblank character
WRITE (UNIT**,
2 FMT='(2A)') ' Answer: STRING (START:12)

8-12

User Input/Output

8.1.4.4 Multiple Output Records

You can place the output data in more than one record by separating format
specifications with a slash (/). The following example writes the constant on
one line and the variable on the next line.

WRITE (UNIT=*.
2 FMT='(A/1X.A)') ' Answer: ANSWER (1:ANSWER.SIZE)

8.1.4.5 TYPE Statement

The FORTRAN TYPE statement transfers one or more records to
SYS$OUTPUT (FOR$TYPE, if it is defined). You can specify the format
of the data or use list-directed I/O by specifying the format as an asterisk

(*). A list-directed I/O record is automatically constructed with a leading
space; therefore, do not specify a FORTRAN carriage control character as the
first character of output. The following example writes a character constant
and a numeric variable to SYS$OUTPUT.

INTEGER*4 ANSWER

TYPE *, 'Answer: ANSWER

8.1.4.6 Processing Arrays and Records

The FORTRAN WRITE statement permits you to specify unqualified array
names in formatted or unformatted I/O. However, unqualified record

names can be used only in unformatted I/O. When using formatted I/O

with records, you must treat each record field as a separate variable. The

following program segment uses formatted I/O to write the whole of array
STOCK-NUMBER and information from the ITEM record.

INTEGERS STOCK.NUMBER(IO)
STRUCTURE /ITEM.DESCR/

INTEGER*4 CODE
CHARACTER * 80 DESCRIPTION
INTEGERS D.LEN

END STRUCTURE
RECORD /ITEM.DESCR/ ITEM

WRITE (UNIT=*,
2 FMT='(1014)') STOCK.NUMBER
WRITE (UNIT=*,
2 FMT=1(110, " '',A)') ITEM.CODE,
2 ITEM.DESCRIPTION (1:ITEM.D.LEN)

8-13

User Input/Output

The FORTRAN WRITE statement permits you to process a series of data
elements with an implied DO loop. An implied DO loop is particularly
useful for processing an array. The following example writes one line for
each element in the ITEMS array starting with element 1 and ending with
the element whose position is the value of ITEM_COUNT.

STRUCTURE /ITEM.DESCR/
INTEGERS CODE
CHARACTER*80 DESCRIPTION
INTEGER*4 D_LEN

END STRUCTURE
RECORD /ITEM.DESCR/ ITEMS (255)
INTEGER*4 ITEM.COUNT

WRITE (UNIT=*,
2 FMT=' (110, " ".A)')
2 (ITEMS(I).CODE, ! Part 1
2 ITEMS(I).DESCRIPTION (1:ITEMS(I).D.LEN),
2 1=1, ITEM.COUNT) ! Part 2

Note that the I/O list must be enclosed in parentheses. The first part of the
I/O list consists of the data elements being written; the second part of the
I/O list is an iterative DO loop specification. In the example, the variable I
serves as the control variable. The control variable can be used in the first
part of the I/O list (as it is in the example) but cannot be modified.

The above implied DO loop is equivalent to the following explicit DO loop:

DO I - 1, ITEM.COUNT
WRITE (UNIT=*,

2 FMT-'UIO," ' ' ,A) 1)
2 (ITEMS(I).CODE,
2 ITEMS(I).DESCRIPTION (1:ITEMS(I).D.LEN))
END DO

8.1.4.7 Carriage Control

The standard carriage control operations are as follows:

• Single spacing—Writing of the output record is preceded by a line
feed and carriage return, and is terminated by a carriage return. Single
spacing occurs if you use list carriage control. If you use FORTRAN
carriage control (the default for formatted I/O), specify the control
character (the first character of the record) as a blank.

• Double spacing—Writing of the output is preceded by two line feeds and
a carriage return, and is terminated by a carriage return. Double spacing
occurs if you use FORTRAN carriage control and specify the control
character as 0 (zero).

• Form feed—Writing of the output is preceded by a form feed and a
carriage return, and is terminated by a carriage return. Use FORTRAN
carriage control and specify the control character as the character 1.

8-14

User Input/Output

• Overprinting—Writing of the output is preceded by a carriage return
(no form feed or line feed), and is terminated by a carriage return. Use
FORTRAN carriage control and specify the control character as a plus
sign (+).

• Prompt—Writing of the output is preceded by a line feed and carriage
return. No termination carriage return is output. Use FORTRAN carriage
control and specify the control character as a dollar sign ($) or use the
dollar sign format specification.

List carriage control occurs by default when you use the WRITE or
TYPE statement without a format specification. FORTRAN carriage
control occurs by default when you use the WRITE or TYPE statement
with a format specification. You can override the default in the WRITE
statement by explicitly opening the output device and specifying the
CARRIAGECONTROL specifier.

8.2 Screen Management

The suggested tools for managing the appearance of the terminal screen
are the SMG Run-Time Library routines, which provide a simple, device¬
independent interface to the terminal. The routines are primarily for use
with video terminals; however, they can be used with files or hardcopy
terminals.

To use the screen management facility for output:

1 Create a pasteboard—A pasteboard is a logical two-dimensional
area on which you place virtual displays. Use the SMG$CREATE_
PASTEBOARD routine to create a pasteboard and associate it with a
physical device. You refer to the pasteboard and SMG performs the
necessary I/O to the device.

2 Create a virtual display—A virtual display is a logical two-dimensional
area in which you place the information to be displayed. Use the
SMG$CREATE—VIRTUAL—DISPLAY routine to create a virtual display.

3 Paste virtual displays to the pasteboard—To make a virtual display
visible, map (or paste) it to the pasteboard using the SMG$PASTE_
VIRTUAL—DISPLAY routine. You can reference a virtual display
regardless of whether or not that display is currently pasted to a
pasteboard.

8-15

User Input/Output

The following example associates a pasteboard with the terminal, creates a
virtual display the size of the terminal screen, and pastes the display to the
pasteboard. When text is written to the virtual display, it appears on the
terminal screen.

! Screen management control structures

INTEGER*4 PBID, ! Pasteboard ID

2 VDID, ! Virtual display ID

2 ROWS, ! Rows on screen

2 COLS ! Columns on screen

! Status variable and routines called as functions

INTEGER+4 STATUS,
2 SMG$CREATE_PASTEBOARD.

2 SMG$CREATE_VIRTUAL_DISPLAY,

2 SMG$PASTE_VIRTUAL_DISPLAY

! Set up SYS$OUTPUT for screen management

! sind get the number of rows and columns on the screen

STATUS * SMG$CREATE_PASTEBOARD (PBID, ! Return value

2 1SYS$OUTPUT',

2 ROWS, ! Return value

2 COLUMNS) ! Return value

IF (.NOT. STATUS) CALL LIB$SIGNAL P/.VAL (STATUS))

! Create virtual display that pastes to the full screen size

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,

2 COLUMNS,

2 VDID) ! Return value

IF (.NOT. STATUS) CALL LIB$SIGNAL P/.VAL (STATUS))

! Paste virtual display to pasteboard

STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,

2 PBID,

2 1, ! Starting at row 1 and

2 1) ! column 1 of the screen

IF (.NOT. STATUS) CALL LIB$SIGNAL P/.VAL (STATUS))

To use the SMG routines for input, you associate a virtual keyboard with
a physical device or file using the SMG$CREATE —VIRTUAL —KEYBOARD
routine. The SMG input routines can be used alone or with the output
routines. This section assumes that you are using the input routines with the
output routines. Section 8.3 describes how to use the input routines without
the output routines.

The screen management facility keeps an internal representation of the screen
contents; therefore, it is important that you do not mix SMG routines with
other forms of terminal I/O. The following subsections contain guidelines
for using most of the SMG routines; for more details, see the VAX/VMS
Run-Time Library Routines Reference Manual.

8-16

User Input/Output

8.2.1 Pasteboards

Use the SMG$CREATE—PASTEBOARD routine to create a pasteboard and
associate it with a physical device. SMG$CREATE—PASTEBOARD returns
a unique pasteboard identification number; use that number to refer to
the pasteboard in subsequent calls to SMG routines. After associating a
pasteboard with a device, your program references only the pasteboard. The
screen management facility performs all necessary operations between the
pasteboard and the physical device.

When you create a pasteboard, the screen management facility clears the
screen by default. To clear the screen yourself, invoke the SMG$ERASE_
PASTEBOARD routine. Any virtual displays associated with the pasteboard
are removed from the screen, but their contents in memory are not affected.
The following example erases the screen.

STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

Invoking SMG$DELETE—PASTEBOARD deletes a pasteboard making the
screen unavailable for further pasting. The optional second argument of
the SMG$DELETE—PASTEBOARD routine allows you to indicate whether
the routine clears the screen (the default) or leaves it as is. The following
example deletes a pasteboard and clears the screen.

STATUS = SMG$DELETE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

By default, the screen is erased when you create a pasteboard. Generally,
you should erase the screen at the end of a session.

The routine SMG$CHANGE_PBD_CHARACTERISTICS sets the dimensions
of the screen and its background color. You can also use this routine to
retrieve dimensions and background color. To get more detailed information
about the physical device, use the SMG$GET_PASTEBOARD—ATTRIBUTES
routine. The following example changes the screen width to 132 and the
background to white, then restores the original width and background before
exiting.

INTEGERS WIDTH,
2 COLOR
INCLUDE '($SMGDEF)'

8-17

User Input/Output

! Get current width and background color
STATUS = SMG$CHAN GE_PBD_CHARACTERISTICS

2
2
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL
! Change width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS
2
2
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL

(PBID,,
WIDTH,,,,
COLOR)

(STATUS))

(PBID,
132,,.,
SMG$C_COLOR_WHITE)

(STATUS))

! Restore width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS
2
2
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL

(PBID,
WIDTH,,,,
COLOR)

(STATUS))

8.2.2 Virtual Displays

Using the SMG routines, you write to virtual displays which are logically

configured as rectangles. The dimensions of a virtual display are designated

vertically as so many rows and horizontally as so many columns. A position

in a virtual display is designated by naming a row and a column. Row and

column numbers begin at one.

8.2.2.1 Creating a Virtual Display

Use the SMG$CREATE—VIRTUAL—DISPLAY routine to create a virtual
display. SMG$CREATE_VIRTUAL—DISPLAY returns a unique virtual
display identification number; use that number to refer to the virtual display.

Optionally, you can use the fifth argument of SMG$CREATE_VIRTUAL —
DISPLAY to specify one or more of the following video attributes: blinking,
bolding, reversing background, and underlining. All characters written to

that display will have the specified attribute unless you indicate otherwise
when writing text to the display. The following example makes everything
written to the display HEADER—VDID appear bolded by default.

INCLUDE '($SMGDEF)'

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (1, ! Rows
2 80, ! Columns
2 HEADER_VDID,,
2 SMG$M_B0LD)

8-18

User Input/Output

You can border a virtual display by specifying the fourth argument when you
invoke SMG$CREATE—VIRTUAL—DISPLAY. You can label the border with
the routine SMG$LABEL—BORDER. If you use a border, you must leave
room for it: a border requires two rows and two columns more than the size
of the display. The following example places a labeled border around the
STATS—VDID display. As pasted, the border will occupy rows 2 and 13 and
columns 1 and 57.

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10, ! Rows

2 55, ! Columns

2 STATS.VDID,
2 SMG$M_B0RDER)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$LABEL_BORDER (STATS.VDID,

2 'statistics')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS.VDID,

2 PBID,

2 3, ! Row

2 2) ! Column

8.2.2.2 Pasting Virtual Displays

To make a virtual display visible, paste it to a pasteboard using the
SMG$PASTE_VIRTUAL—DISPLAY routine. You position the virtual display
by specifying which row and column of the pasteboard should contain the
upper lefthand corner of the display. The following example defines two
virtual displays and pastes them to one pasteboard.

INCLUDE '($SMGDEF)'

INTEGER*4 PBID,

2 HEADER.VDID,

2 STATS.VDID

INTEGER*4 STATUS,
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$PASTE_VIRTUAL_DISPLAY

! Create pasteboard for SYS$0UTPUT
STATUS = SMG$CREATE_PASTEBOARD (PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Header pastes to first rows of screen

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3, ! Rows

2 80, ! Columns

2 HEADER.VDID, ! Name

2
IF (.NOT. STATUS) CALL LIB$SIGNAL

STATUS = SMG$PASTE_VIRTUAL_DISPLAY

2

SMG$M_B0RDER)

C/.VAL (STATUS))

(HEADER.VDID,
PBID,

! Border

2 1, ! Row

2
IF (.NOT. STATUS) CALL LIB$SIGNAL

1)
C/.VAL (STATUS))

! Column

8-19

User Input/Output

! Statistics area pastes to rows 5 through 15,
! columns 2 through 56
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10, ! Rows
2 55, ! Columns
2 STATS.VDID, ! Name
2 SMG$M_B0RDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS.VDID,
2 PBID,
2 5, ! Row
2 2) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

The following figure shows the resultant screen.

ZK-2044-84

You can paste a single display to any number of pasteboards. Any time you

change the display, all pasteboards containing the display are automatically

updated.

A pasteboard can hold any number of virtual displays. You can paste virtual
displays over one another to any depth, occluding the displays underneath.
The displays underneath are only occluded to the extent that they are
covered; that is, the parts not occluded remain visible on the screen. (In
the first figure of Section 8.2.2.3, displays 1 and 2 are partially occluded.)
When you unpaste a virtual display that occludes another virtual display, the
occluded part of the underneath display becomes visible again.

You can find out if a display is occluded with the routine SMG$CHECK_
FOR—OCCLUSION. The following example pastes a two-row summary
display over the last two rows of the statistics display if the statistics display
is not already occluded. If the statistics display is occluded, the example

assumes that it is occluded by the summary display and unpastes the

8-20

User Input/Output

summary display, making the last two rows of the statistics display visible
again.

STATUS = SMG$CHECK_FOR_OCCLUSION (STATS.VDID,

2 PBID,

2 OCCLUDE.STATE)

! OCCLUDE.STATE must be defined as INTEGER*4

IF (OCCLUDE.STATE) THEN

STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (SUM.VDID,

2 PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

ELSE

STATUS = SMGSPASTE.VIRTUAL.DISPLAY (SUM.VDID,

2 PBID,

2 11,
2 2)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7,VAL (STATUS))

END IF

8.2.2.3 Rearranging Virtual Displays

Pasted displays can be rearranged by moving or repasting.

• Moving—To move a display, use the SMG$MOVE—VIRTUAL _
DISPLAY routine. The following example moves display 2; the figure
following the example shows the screen before and after the statement
executes.

STATUS = SMG$MOVE_VIRTUAL.DISPLAY

2

2
2
IF (.NOT. STATUS) CALL LIB$SIGNAL

(VDID,

PBID,

5,
10)

(7.VAL (STATUS))

8-21

User Input/Output

Before Moving Display 2 After Moving Display 2

1
aaaaaaaaa
aaaaaaaaa
aa
aa
aa

bbbbbbbbb
bbbbbbbbb
bbbbbb
bbbbbb
bbbbbb

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

aaaaaaaaa
aaaaaaaaa
aaaaaa
aaaaaa
aaaaaa

bbbbbbbbb
bbbbbbbbb
bb
bb
bb

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

ZK-2045-84

Repasting—To repaste a display, use the SMG$REPASTE—VIRTUAL —
DISPLAY routine. The following example repastes display 2; the figure
following the example shows the screen before and after the statement
executes.

STATUS = SMG$REPASTE_VIRTUAL_DISPLAY (VDID,

2 PBID,

2 4,

2 4)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

8-22

User Input/Output

Before Repasting Display 2 After Repasting Display 2

aaaaaaaaa

aaaaaaaaa
aa

aa

aa
bbbbbbbbb
bbbbbbbbb

bbbbbb

bbbbbb
bbbbbb

ccccccccc

ccccccccc
ccccccccc

ccccccccc

ccccccccc

-1-
aaaaaaaaa

aaaaaaaaa
aaaaaa
aaaaaa

aaaaaa

- 2-
bbbbbbbbb

bbbbbbbbb
bbbbbbbbb _

bbbbbbbbb’
bbbbbbbbb

cc
cc
cc

ccccccccc

ccccccccc

ZK-2046-84

8.2.2.4 Removing Virtual Displays

You can remove a virtual display from a pasteboard in a number of different

ways:

• Erase a virtual display—Invoking SMG$UNPASTE—VIRTUAL —
DISPLAY erases a virtual display from the screen but retains its contents

in memory. The following example erases the statistics display.

STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (STATS.VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

• Delete a virtual display—Invoking SMG$DELETE_VIRTUAL—DISPLAY
removes a virtual display from the screen and removes its contents from
memory. The following example deletes the statistics display.

STATUS = SMG$DELETE_VIRTUAL_DISPLAY (STATSJVDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

• Delete a number of virtual displays—Invoking SMG$POP_VIRTUAL —
DISPLAY removes a specified virtual display and any virtual displays
pasted after that display from the screen and removes the contents of
those displays from memory. The following example "pops" display
2; the figure following the example shows the screen before and after
popping. (Note that display 3 is not deleted because it is occluding

display 2, but because it was pasted after display 2.)

8-23

User Input/Output

8.2.2.5

STATUS = SMG$POP_VIRTUAL_DISPLAY (STATS.VDID,

2 PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

Before Popping Display 2 After Popping Display 2

aaaaaaaaa
aaaaaaaaa
aa
aa
aa

-2 -J—
bbbbbbbbb
bbbbbbbbb
bbbbbb
bbbbbb
bbbbbb

-3-
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

-1 —
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

ZK-2047-84

Modifying a Virtual Display

The screen management facility provides two routines for modifying the
characteristics of an existing virtual display: SMG$CHANGE —VIRTUAL —
DISPLAY, which allows you to change the size, video attributes, or border of
a display; and SMG$CHANGE—RENDITION, which allows you to change
the video attributes of a portion of a display.

The following example uses SMG$CHANGE-VIRTUAL-DISPLAY to
change the size of the Whoops display to five rows and seven columns and
to turn off all of the display's video attributes. If you decrease the size of a
display that is on the screen, any characters in the excess area are removed
from the screen.

STATUS = SMG$CHANGE_VIRTUAL_DISPLAY (WHOOPS.VDID.

2 5. ! Rows

2 7, . ! Columns

2 0) ! Video attributes off

8-24

User Input/Output

The following example uses SMG$CHANGE—RENDITION to direct
attention to the first 20 columns of the statistics display by setting the
reverse video attribute to the complement of the display's default setting for
that attribute.

STATUS = SMG$CHANGE_RENDITION (STATS.VDID,
2 1.
2 1.
2 10,
2 20,
2
2 SMG$M_REVERSE)
2

SMG$CHANGE_RENDITION uses three sets of video attributes to
determine the attributes to apply to the specified portion of the display: the
display's default video attributes, the attributes specified by the rendition-set
argument of SMG$CHANGE—RENDITION, and the attributes specified by
the rendition-complement argument of SMG$CHANGE_RENDITION. The
following table shows the result of each possible combination.

! Row
! Column
! Number of rows
! Number of columns
! Video-set argument
! Video-comp argument

rendition-set rendition-complement Result

off off Uses display default

on off Sets attribute

off on Uses the complement of display
default

on on Clears attribute

In the previous example, the reverse video attribute is set in rendition-
complement but not in rendition-set specifying that SMG use the
complement of the display's default setting to ensure that the selected
portion of the display is easily seen.

Note that the resulting attributes are based on the display's default attributes,
not its current attributes. If you use SMG routines that explicitly set video
attributes, the current attributes of the display may not match its default
attributes.

8.2.3 Writing

The SMG output routines allow you to write text to displays and to delete
or modify the existing text of a display. Remember that changes to a display
are visible only if the display is pasted to a pasteboard.

8-25

User Input/Output

8.2.3.1 Positioning the Cursor

Each virtual display has its own logical cursor position. You can control the
position of the cursor in a virtual display with the following routines:

• SMG$HOME —CURSOR—Moves the cursor to a corner of the virtual
display. The default corner is the upper left corner, that is, row 1 column
1 of the display.

• SMG$SET_CURSOR_ABS—Moves the cursor to a specified row and
column.

• SMG$SET_CURSOR_REL—Moves the cursor to offsets from the current
cursor position. A negative value means up (rows) or left (columns).
Zero means no movement.

In addition, many routines permit you to specify a starting location other
than the current cursor position for the operation.

The routine SMG$RETURN_CURSOR_POS returns the row and column of
the current cursor position within a virtual display. You do not have to write
special code to track the cursor position.

Typically, the physical cursor is at the logical cursor position of the most
recently written-to display. If necessary, you can use the SMG$SET_
PHYSICAL—CURSOR routine to set the physical cursor location.

8.2.3.2 Writing Data Character by Character

If you are writing character by character (see Section 8.2.3.3 for line-oriented

output), SMG$PUT_CHARS is a simple, precise tool. The routine places
exactly the specified characters on the screen, starting at a specified position
in a virtual display (which defaults to the current cursor position). Anything
currently in the positions written to is overwritten; no other positions on the
screen are affected. Convert numeric data to character data with a FORTRAN
internal WRITE operation before invoking SMG$PUT_CHARS.

The following example converts an integer to a character string and places it
at a designated position in a virtual display.

8-26

User Input/Output

CHARACTER*4 HOUSE.NO.STRING
INTEGER*4 HOUSE.NO,
2
2

LINE.NO,
STATS.VDID

WRITE (UNIT=HOUSE_NO_STRING,
2 FMT='(14)1) HOUSE.NO
STATUS = SMG$PUT_CHARS (STATS.VDID
2
2
2

HOUSE.NO.STRING
LINE.NO, ! Row
1) ! Coll ! Column

Note that the converted integer is right justified from column 4 because
the format specification is 14 and the full character string is written. To left
justify a converted number, you must locate the first nonblank character

and write a substring starting with that character and ending with the last
character.

To insert characters rather than overwriting the current contents of the
screen, use the routine SMG$INSERT_CHARS. Existing characters at the

location written to are shifted to the right. Characters pushed out of the
display are truncated; no wrapping occurs and the cursor remains at the end
of the last character inserted.

In addition to the aforementioned routines, you can use SMG$PUT_
CHARS—WIDE to write characters to the screen in double width or
SMG$PUT_CHARS_HIGHWIDE to write characters to the screen in double
height and double width. When you use these routines, you must allot two
spaces for each double-width character on the line and two lines for each

line of double-height characters. You cannot mix single and double-size
characters on a line.

All four character routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the
characters being written. The explanation of the SMG$CHANGE_
RENDITION routine in Section 8.2.2.5 discusses how to use rendition-set
and rendition-complement.

8-27

User Input/Output

8.2.3.3 Writing Data Line by Line

The routines SMG$PUT_LINE and SMG$PUT_WITH-SCROLL write lines
to virtual displays one line after another. If the display area is full, it is
scrolled. You do not have to keep track of which line you are on. Both
routines permit you to scroll forward (up); SMG$PUT_WITH—SCROLL

permits you to scroll backward (down). SMG$PUT_LINE permits other than
single spacing.

The following example writes lines from a buffer to a display area. The
output is scrolled forward if the buffer contains more lines than the display

area.

INTEGER*4 BUFF.COUNT,
2 BUFF.SIZE (4096)
CHARACTER * 512 BUFF (4096)

DO I ■ 1, BUFF.COUNT
STATUS = SMG$PUT_WITH_SCROLL (VDID,

2 BUFF (I) (1:BUFF.SIZE (I)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

The next example scrolls the output backward.

DO I = BUFF.COUNT, 1, -1
STATUS = SMG$PUT_WITH_SCROLL (VDID,

2 BUFF (I) (1:BUFF.SIZE (I)),
2 SMG$M_D0WN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END DO

To maintain precise control over cursor movement and scrolling, you can
write with SMG$PUT_CHARS and scroll explicitly with SMG$SCROLL_
DISPLAY-AREA. SMG$PUT_CHARS leaves the cursor after the last
character written and does not force scrolling; SMG$SCROLL-DISPLAY-
AREA scrolls the current contents of the display forward, backward, or
sideways without writing to the display. To restrict the scrolling region
to a portion of the display area, use the SMG$SET_DISPLAY— SCROLL —
REGION routine.

To insert text rather than overwriting the current contents of the screen, use
the routine SMG$INSERT_LINE. Existing lines are shifted up or down (you
specify) to open space for the new text. If the text is longer than a single
line, the excess characters are truncated or wrapped (you specify).

In addition, you can use SMG$PUT_LINE—WIDE to write a line of text to
the screen using double-width characters. You must allot two spaces for each
double-width character on the line. You cannot mix single and double-size
characters on a line.

8-28

User Input/Output

All four line routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the
text being written. The explanation of the SMG$CHANGE—RENDITION
routine in Section 8.2.2.5 discusses how to use rendition-set and rendition-
complement.

8.2.3.4 Drawing Lines

The routine SMG$DRAW_LINE draws solid lines on the screen. Appropriate
corner and crossing marks are drawn when lines join or intersect. You can
also use the routine SMG$DRAW—RECTANGLE to draw a solid rectangle.
Suppose that you want to draw the following figure in the statistics display
area (an area of 10 rows by 55 columns).

You might write the following code:

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10,

2 55,
2 STATS.VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Draw rectangle with upper left corner at row 1 column 1
! and lower right corner at row 10 column 55
STATUS =SMG$DRAW_RECTANGLE (STATS.VDID,

2 1. 1.
2 10, 55)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Draw vertical lines at

DO I = 11. 31, 10
STATUS = SMG$DRAW_LINE

2

2

IF (.NOT. STATUS) CALL

END DO

columns 11, 21, and 31

(STATS.VDID,

1. I.
10. I)

LIB$SIGNAL 0/.VAL (STATUS))

8-29

User Input/Output

! Draw horizontal line at row 3
STATUS = SMG$DRAW_LINE (STATS.VDID,
2
2

3. 1.
3. 55)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS.VDID,
2
2
2

PBID,
3.
2)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

8.2.3.5 Deleting Text

The following routines erase specified characters leaving the rest of the
screen intact:

• SMG$ERASE_CHARS—Erases specified characters on one line.

• SMG$ERASE_LINE—Erases the characters on one line starting from a
specified position.

• SMG$ERASE—DISPLAY—Erases specified characters on one or more
lines.

The following routines perform delete operations. In a delete operation,
characters following the deleted characters are shifted into the empty space.

• SMGSDELETE— CHARS—Deletes specified characters on one line. Any
characters to the right of the deleted characters are shifted left.

• SMG$DELETE_LINE—Deletes one or more full lines. Any remaining
lines in the display are scrolled up to fill the empty space.

The following example erases the remaining characters on the line whose
line number is specified by LINE—NO starting at the column specified by
COLUMN-NO.

STATUS = SMG$ERASE_LINE (STATS.VDID.
2
2

IF .NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

LINE.NO,
COLUMN.NO)

8-30

User Input/Output

8.2.4 Reading

You can read text from a virtual display (SMG$READ_FROM—DISPLAY)

or from a virtual keyboard (SMG$READ_STRING or SMG$READ_
COMPOSED—LINE). The two routines for virtual keyboard input are known

as the SMG input routines. SMG$READ_FROM—DISPLAY is not a true
input routine because it reads text from the virtual display rather than from a
user.

The SMG input routines can be used alone or with the SMG output routines.
Section 8.3 describes how to use the input routines without the output
routines. This section assumes that you are using the input routines with the
output routines.

When using the SMG input routines with the SMG output routines, always
specify the optional argument of the input routine, which specifies the virtual
display in which the input is to occur. The specified virtual display must be
pasted to the device associated with the virtual keyboard that is specified
as the first argument of the input routine. The display must be pasted in
column 1, may not be occluded, and may not have any other display to its
right; input begins at the current cursor position but the cursor must be in
column 1.

8.2.4.1 Reading from a Display

You can read the contents of the screen using the routine SMG$READ—
FROM—DISPLAY. By default, the read operation reads all of the characters
from the current cursor position to the end of that line. The third argument
of SMG$READ_FROM—DISPLAY allows you to choose the starting point of
the read operation by providing a set of "terminators." If the terminator¬
string argument is specified, SMG$READ_FROM—DISPLAY searches
backward from the current cursor position and reads the line beginning
at the first terminator encountered (or the beginning of the line). You must
calculate the length of the character string read yourself.

The following example reads the current contents of the first line in
the STATS—VDID display. To ensure that the display is up to date,
SMG$READ_FROM-DISPLAY automatically invokes SMG$FLUSH—
BUFFER before reading from the display.

8-31

User Input/Output

CHARACTERS STRING
INTEGERS SIZE

STATUS = SMG$H0ME_CURS0R (STATS.VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SMG$READ_FROM_DISPLAY (STATS.VDID,
2 STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
SIZE = 55
DO WHILE ((STRING (SIZE:SIZE) .EQ. ' ') .AND.
2 (SIZE .GT. 1))

SIZE = SIZE - 1
END DO

The SMG$READ_FROM—DISPLAY routine provides a simple input

mechanism for menu driven applications. The sample program in

Section 8.2.4.3 creates a simple menu, allows a user to use the numeric
keys on the keypad to position the cursor at the beginning of a menu entry,
and reads the entry when the user presses RETURN.

8.2.4.2 Reading from a Virtual Keyboard

The routine SMG$CREATE_VIRTUAL—KEYBOARD establishes a device for

input operations; the default device is the user's terminal. The routine

SMG$READ_STRING reads characters typed on the screen until the

user types a terminator or until the maximum size (which defaults to 512

characters) is exceeded. (The terminator is usually a carriage return; see the

routine description for a complete list of terminators.) The current cursor
location for the display determines where the read operation begins.

The VMS terminal driver processes carriage returns differently than the SMG
routines. Therefore, in order to scroll input accurately, you must keep track
of your vertical position in the display area and explicitly set the cursor

position and scroll the display. If a read operation takes place on other than

the last row of the display, advance the cursor to the beginning of the next

row before the next operation. If a read operation takes place on the last row
of the display, scroll the display with SMG$SCROLL_DISPLAY—AREA and
then set the cursor to the beginning of the row. Modify the read operation
with TRM$M_TM_NOTRMECHO to ensure that no extraneous scrolling

occurs.

The following example reads input until CTRL/Z is pressed.

8-32

User Input/Output

! Read first record

STATUS = SMG$H0ME_CURS0R (VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$READ_STRING (KBID,
2

2
2
2

2
2

TEXT,

'Prompt: ',

4,

TRM$M_TM_TRMN OECHO

TEXT.SIZE,,

VDID)

! Read remaining records until CTRL/Z

DO WHILE (STATUS .NE. SMG$_E0F)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
! Process record

! Set up screen for next read

! Display area contains four rows

STATUS = SMG$RETURN_CURSOR_POS (VDID, ROW, COL)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

IF (ROW .EQ. 4) THEN

STATUS = SMG$SCROLL_DISPLAY_AREA (VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$SET_CURSOR_ABS (VDID, 4, 1)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
ELSE

STATUS = SMG$SET_CURSOR_ABS (VDID,, 1)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$SET_CURSOR_REL (VDID, 1)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
END IF

! Read next record

STATUS = SMG$READ_STRING (KBID,

2 TEXT,

2 'Prompt: ',

2 4.

2 TRM$M_TM_TRMNOECHO,,,

2 TEXT.SIZE,,
2 VDID)
END DO

Note

Since you are controlling the scrolling, SMG$PUT__LINE and
SMG$PUT_WITH_SCROLL may not scroll as expected. When
scrolling a mix of input and output, you can prevent possible
problems by using SMG$PUT_CHARS.

User Input/Output

8.2.4.3 Reading from the Keypad

To read from the keypad in keypad mode (that is, the user presses a
keypad character to perform some special action rather than to enter data),
modify the read operation with TRM$M_TM_ESCAPE and TRM$M_TM_
NOECHO. Examine the terminator to determine which key was pressed.

The following example moves the cursor about on the screen in response to
the user's pressing the keys surrounding the 5 key on the keypad. The 8 key
moves the cursor north (up), the 9 key moves the cursor northeast, the 6 key
moves the cursor east (right), and so on. The routine SMG$SET_CURSOR_
REL is called instead of invoked as a function because you do not want to
abort the program on an error. (The error would be attempting to move the
cursor out of the display area and you just want the cursor not to move if
this error occurs.) The read operation is also modified with TRM$M_TM_
PURGE to prevent the user from getting ahead of the cursor.

INTEGER STATUS,

2 PBID,

2 ROWS.

2 COLUMNS.
2 VOID, ! Virtual display ID

2 KID, ! Keyboard ID

2 SMG$CREATE_PASTEBOARD,

2 SMG$CREATE_VIRTUAL_DISPLAY.

2 SMG$CREATE_VIRTUAL_KEYBOARD,

2 SMG$PASTE_VIRTUAL_DISPLAY,

2 SMG$HOME_CURSOR,

2 SMG$SET_CURSOR_REL,

2 SMG$READ_STRING,
2 SMG$ERASE_PASTEBOARD.

2 SMG$PUT_CHARS,

2 SMG$READ_FROM_DISPLAY

CHARACTERS INPUT.STRING,

2 MENU.STRING

INTEGER*2 TERMINATOR

INTEGERS MODIFIERS

INCLUDE *($SMGDEF)1

INCLUDE 1($TRMDEF)1

8-34

User Input/Output

! Set up screen and keyboard

STATUS = SMG$CREATE_PASTEBOARD (PBID,

2 'SYS$OUTPUT',

2 ROWS,

2 COLUMNS)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,
2

2

IF (.NOT

STATUS = SMG$PUT_CHARS

COLUMNS,
VDID)

STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

(VDID,

2 MENU CHOICE ONE*,

2 10,30)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$PUT_CHARS (VDID,

2 MENU CHOICE TWO'.

2 15,30)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (KID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,

PBID,

1.
1)

C/.VAL (STATUS)) (.NOT. STATUS) CALL LIB$SIGNAL

! Put cursor in NW corner

STATUS = SMG$HOME_CURSOR (VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Read character from keyboard

MODIFIERS = TRM$M_TM_ESCAPE .OR.

2 TRM$M_TM_NOECHO .OR.

2 TRM$M_TM_PURGE

STATUS = SMG$READ_STRING (KID,

INPUT.STRING,

6,
MODIFIERS,

TERMINATOR)

8-35

User Input/Output

DO WHILE ((STATUS) .AND.

2 (TERMINATOR .NE. SMG$K_TRM_CR))

! Check status of last read

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! North

IF (TERMINATOR .EQ. SMG$K_TRM_KP8) THEN

CALL SMG$SET_CURSOR_REL (VDID, -1.0)

! Northeast

ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP9) THEN

CALL SMG$SET_CURSOR_REL (VDID, -1, 1)

! Northwest

ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP7) THEN

CALL SMG$SET_CURSOR_REL (VDID, -1, -1)

! South

ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP2) THEN

CALL SMG$SET_CURSOR_REL (VDID, 1. 0)

! Southeast

ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP3) THEN

CALL SMG$SET_CURSOR_REL (VDID, 1, 1)

! Southwest

ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP1) THEN

CALL SMG$SET_CURSOR_REL (VDID, 1, -1)

! East

ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP6) THEN

CALL SMG$SET_CURSOR_REL (VDID, 0, 1)

! West

ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP4) THEN

CALL SMG$SET_CURSOR_REL (VDID, 0, -1)

END IF

! Read another character

STATUS = SMG$READ_STRING (KID,

2 INPUT.STRING,

2
2 6,
2 MODIFIERS,

2

2

2
2 TERMINATOR)

END DO

! Read menu entry and process

! Guidelines for reading from the display

! are in Section 8.2.4.1.
STATUS * SMG$READ_FROM_DISPLAY (VDID,

2 MENU.STRING)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Clear screen

STATUS = SMG$ERASE_PASTEBOARD (PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

8-36

User Input/Output

8.2.4.4 Reading Composed Input

The routine SMG$CREATE_KEY_TABLE creates a table that equates keys
to character strings. When you read input using the routine SMG$READ_

COMPOSED-LINE and the user presses a defined key, the corresponding

character string in the table is substituted for the key. The routine

SMG$ADD_KEY_DEF can be used to load the table. Composed input
also permits

• If states—You can define the same key to mean different things in
different states. You can define a key to cause a change in state. The
change in state can be temporary (until after the next defined key is
pressed) or permanent (until a key that changes states is pressed).

• Input termination—You can define the key to cause termination of

the input transmission (as if RETURN were pressed after the character
string). If the key is not defined to cause termination of the input, the
user must press a terminator or another key that does cause termination.

The following example defines the keys 1 through 9 on the keypad and

permits the user to temporarily change state by pressing the PF1 key (the

gold key). Pressing 1 on the keypad is equivalent to typing 1000 and

pressing RETURN. Pressing PF1 and then 1 on the keypad is equivalent to

typing 10000 and pressing return.

INTEGER*4 TABLEID

! Create table for key definitions
STATUS = SMG$CREATE_KEY_TABLE (TABLEID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Load table
! If user presses PF1, the state changes to BYTEN
! The BYTEN state is in effect only for the very next key
STATUS = SMG$ADD_KEY_DEF (TABLEID.
2 1PF1',
2 ...'BYTEN')
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

8-37

User Input/Output

! Pressing KP1 through Kp9 in the null state is like typing

! 1000 through 9000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,

2 'KP1',

2
2 SMG$M_KEY_TERMINATE,

2 '1000')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$ADD_KEY_DEF (TABLEID.

2 'KP2',

2
2 SMG$M_KEY_TERMINATE.

2 '2000 *)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$ADD_KEY_DEF (TABLEID,

2 •KP9',

2
2 SMG$M_KEY_TERMINATE,

2 '9000')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Pressing KP1 through KP9 in the BYTEN state is like

! typing 10000 through 90000 and pressing return

STATUS = SMG$ADD_KEY_DEF (TABLEID,

2 'KP1',

2 'BYTEN',

2 SMG$M_KEY_TERMINATE,

2 '10000')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$ADD_KEY_DEF

2

2

2

2

IF (.NOT

(TABLEID,

'KP2'.

'BYTEN',

SMG$M_KEY_TERMINATE,
'20000')

STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$ADD_KEY_DEF (TABLEID,

2 'KP9',
2 'BYTEN',
2 SMG$M_KEY_TERMINATE,

2 '90000')
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

8-38

User Input/Output

! End loading key definition table

! Read input which substitutes key definitions where appropriate
STATUS = SMG$READ_COMPOSED_LINE (KBID,
2
2
2
2

TABLEID,
STRING,
SIZE.
VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

Use the routine SMG$DELETE_KEY_DEF to delete a key definition and
the routine SMG$GET_KEY_DEF to examine a key definition. You can
also load key definition tables with the routines SMG$DEFINE_KEY and
SMG$LOAD_KEY_DEFS; the input to these routines is in the form of DCL
DEFINE/KEY commands.

In order to use keypad keys 0 through 9, the keypad must be in application
mode. (Use the /APPLICATION qualifier of the DCL command SET
TERMINAL; see the VAX/VMS DCL Dictionary for details.)

8.2.5 Controlling Screen Updates

If your program needs to make a number of changes to a virtual display, you
may want to have the SMG routines make all of the changes before updating
the display. The routine SMG$BEGIN_DISPLAY_UPDATE causes output
operations to a pasted display to be reflected only in the display's buffers.
The routine SMG$END_DISPLAY_UPDATE writes the display's buffer to
the pasteboard.

The SMG$BEGIN_DISPLAY_UPDATE and SMG$END_DISPLAY_UPDATE
routines increment and decrement a counter. When this counter's value is
0, output to the virtual display is immediately sent to the pasteboard. The
counter mechanism allows a subroutine to request and turn off batching
without disturbing the batching state of the calling program.

A second set of routines, SMG$BEGIN_PASTEBOARD_UPDATE and
SMG$END_PASTEBOARD_UPDATE, allow you to buffer output to a
pasteboard in a similar manner.

8-39

User Input/Output

8.2.6 Modularity

You must take care when using the SMG routines not to corrupt the mapping
between the screen appearance and the internal representation of the screen.
Observe the following guidelines:

• Mixing SMG and other forms of I/O—In general, you should not
use any other form of terminal I/O while the terminal is active as a
pasteboard. If you do use non-SMG I/O (for example, if you invoke a
subprogram that may perform non-SMG terminal I/O), first invoke the

routine SMG$SAVE—PHYSICAL—SCREEN and when the non-SMG I/O

completes invoke the routine SMG$RESTORE_PHYSICAL—SCREEN, as
demonstrated below:

STATUS = SMG$SAVE_PHYSICAL_SCREEN (PBID,
2 SAVE.VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
CALL GET_EXTRA_INFO (INFO.ARRAY)
STATUS = SMG$RESTORE_PHYSICAL_SCREEN (PBID,
2 SAVE.VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

• Sharing the pasteboard—A routine using the terminal screen without
consideration for its current contents must: use the existing pasteboard
ID associated with the terminal (therefore, a program unit invoking a
subprogram that also performs screen I/O must pass the pasteboard
ID); and delete any virtual displays it creates before returning control to
the higher level code. The safest way to clean up your virtual displays
is to call the routine SMG$POP_VIRTUAL —DISPLAY and name the
first virtual display you created. The following example invokes a
subprogram that also uses the terminal screen.

Invoking Program Unit

CALL GET.EXTRA.INFO (PBID,
2 INFO.ARRAY)

CALL STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

8-40

User Input/Output

Subprogram

SUBROUTINE GET.EXTRA.INFO (PBID,

2 INFO.ARRAY)

! Start executable code

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,

2 40,

2 INSTR.VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR.VDID,

2 PBID, 1, 1)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$POP_VIRTUAL_DISPLAY (INSTR.VDID,

2 PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

• Sharing virtual displays—To share a virtual display created by higher
level code, the lower level code must use the virtual display ID created
by the higher level code; an invoking program unit must pass the virtual
display ID to the subprogram. To share a virtual display created by
lower level code, the higher level code must use the virtual display ID
created by the lower level code; a subprogram must return the virtual
display ID to the invoking program. The following example permits a
subprogram to use a virtual display created by the invoking program
unit.

Invoking Program Unit

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,
2 40.
2 INSTR.VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR.VDID,

2 PBID, 1, 1)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

CALL GET_EXTRA_INFO (PBID,
2 INSTR.VDID)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

Subprogram

SUBROUTINE GET_EXTRA_INFO (PBID,

2 INSTR.VDID)

8-41

User Input/Output

8.3 Special Input/Ouput Actions

Screen management input routines and the SYS$QIO and SYS$QIOW system
services allow you to perform I/O operations otherwise unavailable to high-
level languages. For example, you can allow a user to interrupt normal
program execution by typing a character and have a mechanism for reading
that character. You can also control such things as echoing, time allowed for
input, and whether or not data is read from the type-ahead buffer.

Some of the operations described in the following sections require the use of
the SYSSQIO or SYS$QIOW system services. For more information on the
QIO system services, see the VAX/VMS System Services Reference Manual.

Other operations described in the following sections can be performed by
calling the SMG input routines. The SMG input routines can be used alone
or with the SMG output routines. Section 8.2 describes how to use the input
routines with the output routines. This section assumes that you are using
the input routines alone. To use the SMG input routines:

1 Call SMG$CREATE—VIRTUAL —KEYBOARD to associate a logical
keyboard with a device or file specification (SYS$INPUT by

default). SMG$CREATE-VIRTUAL-KEYBOARD returns a keyboard
identification number; use that number to identify the device or file to
the SMG input routines.

2 Call an SMG input routine (SMG$READ_STRING or SMG$READ_
COMPOSED—LINE) to read data typed at the device associated with the
virtual keyboard.

When using the SMG input routines without the SMG output routines, do
not specify the optional argument of the input routine.

8.3.1 CTRL/C and CTRL/Y Interrupts

The QIO system services enable you to detect a CTRL/C or CTRL/Y
interrupt (the terminal user types CTRL/C or CTRL/Y) even if you have
not issued a read to the terminal. You must take the following steps:

1 Queue an asynchronous system trap (AST)—Issue the SYSSQIO or

SYSSQIOW system service with a function code of IO$_SETMODE
modified by either IO$M_CTRLCAST (for CTRL/C interrupts) or

IO$M_CTRLYAST (for CTRL/Y interrupts). For PI, provide the name
of a subroutine (must be defined as EXTERNAL) to be executed when
the interrupt occurs. For P2, you can optionally identify one longword
argument to pass to the AST subroutine.

8-42

User Input/Output

2 Write an AST subroutine—Write the subroutine identified in the PI
argument of the QIO system service, and link the subroutine into your
program. Your subroutine can take one longword dummy argument
which will be associated with the P2 argument in the QIO system
service. You must define common areas to access any other data in your
program from the AST routine.

If the user types CTRL/C or CTRL/Y after your program queues the
appropriate AST, the system interrupts your program and transfers control
to your AST subroutine (this action is called delivering the AST). After your
AST subroutine executes, the system returns control to your program at the
point of interruption (unless your AST subroutine causes the program to exit
or another AST has been queued). Note the following guidelines in using
CTRL/C and CTRL/Y ASTs.

• ASTs are asynchronous—Since your AST subroutine does not know
exactly where you are in your program when the interrupt occurs, you
should avoid manipulating data or performing other main line activities.
In general, the AST subroutine should simply notify the main line code
(for example, by setting a flag) that the interrupt occurred or clean up
and exit from the program (if that is what you want to do).

• ASTs need new channels to the terminal—If you try to access the
terminal with FORTRAN I/O using SYS$INPUT or SYS$OUTPUT (for
example, by specifying UNIT=*), you may receive a redundant I/O error.
You must establish another channel to the terminal by explicitly opening
the terminal.

• CTRL/C and CTRL/Y ASTs are one-time ASTs—After a CTRL/C or
CTRL/Y AST is delivered, it is dequeued. You must reissue the QIO
system service if you wish to trap another interrupt.

• Many ASTs can be queued—You can queue multiple ASTs (for the
same or different AST subroutines, on the same or different channels)
by issuing the appropriate number of QIO system services. The system
delivers the ASTs on a last-in first-out basis.

• Unhandled CTRL/Cs turn into CTRL/Ys—If the user types CTRL/C
and you do not have an AST queued to handle the interrupt, the system
turns the CTRL/C interrupt into a CTRL/Y interrupt.

• DCL handles CTRL/Y interrupts—DCL handles CTRL/Y interrupts by
returning the user to DCL command level, where the user has the option
of continuing or exiting from your program. DCL takes precedence
over your AST subroutine for CTRL/Y interrupts. Your CTRL/Y
AST subroutine is executed only under the following circumstances:
if CTRL/Y interrupts are disabled at DCL level (SET NOCONTROL _Y)
before your program is executed; if your program disables DCL CTRL/Y

8-43

User Input/Output

interrupts with the LIB$DISABLE—CTRL Run-Time Library routine; if
the user elects to continue your program after DCL interrupts it.

• You can dequeue CTRL/C and CTRL/Y ASTs—You can dequeue all
CTRL/C or CTRL/Y ASTs on a channel by issuing the appropriate
QIO system service with a value of 0 for PI (passed by immediate
value). You can dequeue all CTRL/C ASTs on a channel by issuing
the SYS$CANCEL system service for the appropriate channel. You can
dequeue all CTRL/Y ASTs on a channel by issuing the SYS$DASSGN
system service for the appropriate channel.

• You can use SMG routines—You can connect to the terminal using the
SMG routines from either AST level or main line code. Do not attempt
to connect to the terminal from AST level if you do so in your main line
code.

The following program permits the terminal user to interrupt a display to see
how many lines have been typed so far.

Main Program

INTEGER STATUS

! Accumulated data records

CHARACTER*132 STORAGE (255)

INTEGER*4 STORAGE.SIZE (255),

2 STORAGE.COUNT

! QIOW and QIO structures

INTEGER*2 INPUT.CHAN

INTEGER*4 CODE

STRUCTURE /IOSTAT.BLOCK/

INTEGER*2 IOSTAT

BYTE TRANSMIT.

2 RECEIVE.

2 CRFILL,

2 LFFILL,

2 PARITY.

2 ZERO

END STRUCTURE

RECORD /IOSTAT.BLOCK/ IOSB

! Flag to notify program of CTRL/C interrupt
L0GICAL*4 CTRLC.CALLED

! AST subroutine to handle CTRL/C interrupt
EXTERNAL CTRLC.AST
! Subroutines

INTEGER SYS$ASSIGN,

2 SYS$QIOW

! Symbols used for I/O operations

INCLUDE '($IODEF)'

! Put values into array

CALL LOAD.STORAGE (STORAGE,

2 STORAGE.SIZE.
2 STORAGE.COUNT)

8-44

User Input/Output

! Assign channel and set up QIOW structures

STATUS = SYS$ASSIGN ('SYS$INPUT•.

2 INPUT.CHAN,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

CODE = I0$_SETM0DE .OR. IO$M_CTRLCAST

! Queue an AST to handle CTRL/C interrupt

STATUS = SYS$QI0W (,

*/.VAL (INPUT.CHAN),

*/.VAL (CODE),

IOSB,

Name of AST routine

Argument for AST routine

CTRLC.AST,

CTRLC.CALLED,

...)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

IF (.NOT. IOSB.IOSTAT)

2 CALL LIB$SIGNAL C/.VAL (IOSB. IOSTAT))

! Display STORAGE array, one element per line

DO I = 1, STORAGE.COUNT

TYPE *, STORAGE (I) (1:STORAGE.SIZE (I))

! Additional actions if user types CTRL/C

IF (CTRLC.CALLED) THEN

CTRLC.CALLED = .FALSE.

! Show user number of lines displayed so far

TYPE *, 'Number of lines: ', I

! Requeue AST

STATUS = SYS$QIOW (,

7.VAL (INPUT.CHAN) ,

*/.VAL (CODE),

IOSB,

CTRLC.AST,

CTRLC.CALLED.

...)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

IF (.NOT. IOSB.IOSTAT)

2 CALL LIB$SIGNAL C/.VAL (IOSB . IOSTAT))

END IF
END DO

END

AST Routine

! AST routine

! Notifies program that user typed CTRL/C

SUBROUTINE CTRLC.AST (CTRLC.CALLED)

L0GICAL*4 CTRLC.CALLED

CTRLC.CALLED = .TRUE.

END

8-45

User Input/Output

8.3.2 Unsolicited Input

You can detect input from the terminal even if you have not issued a read by
using SMG$ENABLE_UNSOLICITED_INPUT. This routine uses the AST
mechanism to transfer control to a subprogram of your choice each time the
user types at the terminal; the AST subprogram is responsible for reading
any input. When the subprogram completes, control returns to your main
line code where it was interrupted.

The SMG$EN ABLE-UNSOLICITED-INPUT is not an SMG input routine.
Before invoking SMG$ENABLE_UNSOLICITED—INPUT, you must invoke
SMG$CREATE_PASTEBOARD to associate a pasteboard with the terminal
and SMG$CREATE_VIRTUAL—KEYBOARD to associate a virtual keyboard
with the same terminal.

SMG$EN ABLE-UNSOLICITED-INPUT accepts three arguments:

1 The pasteboard identification number (use the value returned by

SMG$CRE ATE -PASTEBOARD)

2 The name of an AST subprogram

3 An argument to be passed to the AST subprogram

When SMG$EN ABLE-UNSOLICITED-INPUT invokes the AST subprogram
it passes the subprogram two arguments: the pasteboard identification
number and the argument that you specified. Typically, you write the AST
subprogram to read the unsolicited input with the SMG$READ_STRING
Run-Time Library routine. Since SMG$READ_STRING requires that you
specify the virtual keyboard at which the input was typed, specify the virtual
keyboard identification number as the second argument to pass to the AST
subprogram.

The following example permits the terminal user to interrupt the display of a
series of arrays to either go on to the next array (by typing input beginning
with an uppercase N) or to exit from the program (by typing input beginning
with anything else).

Main Program

! The main program calls DISPLAY.ARRAY once for each array.
! DISPLAY.ARRAY displays the array in a DO loop.
! If the user enters input from the terminal, the loop is
! interrupted and the AST routine takes over.
! If the user types anything beginning with an N, the AST
! sets DO.NEXT and resumes execution — DISPLAY.ARRAY drops
! out of the loop processing the array (because DO.NEXT is
! set -- and the main program calls DISPLAY.ARRAY for the
! next array.
! If the user types anything not beginning with an N,
! the program exits.

8-46

User Input/Output

INTEGER*4 STATUS,

2 VKID, ! Virtual keyboard ID

2 PBID ! Pasteboard ID

! Storage arrays

INTEGER+4 ARRAY1 (256),

2 ARRAY2 (256),

2 ARRAY3 (256)

! System routines

INTEGER*4 SMG$CREATE_PASTEBOARD,

2 SMG$CREATE_VIRTUAL_KEYBOARD,

2 SMG$ENABLE_UNSOLICITED_INPUT

! AST routine

EXTERNAL AST.ROUTINE

! Create a pasteboard

STATUS = SMG$CREATE_PASTEBOARD (PBID, ! Pasteboard ID

2 'SYS$INPUT')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Create a keyboard for the same device

STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID

2 'SYS$INPUT')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Enable unsolicited input

STATUS = SMG$ENABLE_UNSOLICITED_INPUT (PBID, ! Pasteboard ID

2 AST.ROUTINE,

2 VKID) ! Pass keyboard

! ID to AST

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Call display subroutine once for each array

CALL DISPLAY.ARRAY (ARRAY1)

CALL DISPLAY.ARRAY (ARRAY2)

CALL DISPLAY.ARRAY (ARRAY3)

END

Array Display Routine

! Subroutine to display one array
SUBROUTINE DISPLAY.ARRAY (ARRAY)
! Dummy argument

INTEGERS ARRAY (256)

! Status
INTEGER*4 STATUS

! Flag for doing next array

L0GICAL*4 DO.NEXT

COMMON /DO.NEXT/ DO.NEXT

! If AST has been delivered, reset

IF (DO.NEXT) DO.NEXT = .FALSE.

! Initialize control variable

8-47

User Input/Output

! Display entire array unless interrupted by user

! If interrupted by user (DO.NEXT is set), drop out of loop

DO WHILE ((I .LE. 256) .AND. (.NOT. DO.NEXT))

TYPE *, ARRAY (I)

1 = 1 + 1

END DO

END

AST Routine

! Subroutine to read unsolicited input

SUBROUTINE AST.ROUTINE (PBID,

2 VKID)

! dummy arguments

INTEGER*4 PBID, ! Pasteboard ID

2 VKID ! Keyboard ID

! Status

INTEGER*4 STATUS

! Flag for doing next array

L0GICAL*4 DO.NEXT

COMMON /DO.NEXT/ DO.NEXT

! Input string

CHARACTER+4 INPUT

! Routines

INTEGER*4 SMG$READ_STRING

! Read input

STATUS = SMG$READ_STRING (VKID, ! Keyboard ID

2 INPUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! If user types anything beginning with N, set DO.NEXT

! otherwise, exit from program

IF (INPUT (1:1) .EQ. 'N*) THEN

DO.NEXT = .TRUE.

ELSE

CALL EXIT

END IF

END

8.3.3 Type-Ahead Buffer

Normally, if the user types on the terminal before you issue a read, the
input is saved in a special data structure maintained by the system called
the type-ahead buffer. When you do issue a read to the terminal, the input
is transferred from the type-ahead buffer to your input buffer. The type-
ahead buffer is preset at a size of 78 bytes. If the HOSTSYNC characteristic
is on (the usual condition), input to the type-ahead buffer is stopped (the
keyboard locks) when the buffer is within eight bytes of becoming full. If the
HOSTSYNC characteristic is off, the bell rings when the type-ahead buffer
is within eight bytes of becoming full; if you overflow the buffer, the excess
data is lost. The system parameter TTY—ALTALARM determines the point at
which input is stopped or the bell rings.

8-48

User Input/Output

You can clear the type-ahead buffer when you issue a read by reading from
the terminal with the SMG$READ_STRING Run-Time Library routine, and
modifying the read operation (argument 5) with TRM$M_TM—PURGE.
Clearing the type-ahead buffer has the effect of reading only what the
user types on the terminal after the read is issued. Any characters in the
type-ahead buffer are lost.

INTEGERS SMG$CREATE_VIRTUAL_KEYBOARD,

2 SMG$READ_STRING,

2 STATUS,

2 VKID, ! Virtual keyboard ID

2 INPUT.SIZE

CHARACTER * 512 INPUT

INCLUDE '($TRMDEF)'

STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,

2 'SYS$INPUT1) ! I/O device

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SMG$READ_STRING (VKID, ! Keyboard ID

2 INPUT, ! Data read

2 'Prompt> 1,

2 512,

2 TRM$M_TM_PURGE,

2
2 INPUT.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

You can also clear the type-ahead buffer with a QIO read operation modified
by IO$M_PURGE (defined in $IODEF). You can turn off the type-ahead
buffer for further read operations with a QIO set mode operation which
specifies TT$M—NOTYPEAHD as a basic terminal characteristic.

You can examine the type-ahead buffer by issuing a QIO sense mode
operation modified by IO$M_TYPEAHDCNT. The number of characters in
the type-ahead buffer and the value of the first character are returned to the
PI argument.

The size of the type-ahead buffer is determined by the system parameter
TTY—TYPAHDSZ. You can specify an alternate type-ahead buffer by turning
on the ALTYPEAHD terminal characteristic; the size of the alternate type-
ahead buffer is determined by the system parameter TTY_ALTYPAHD.

8-49

User Input/Output

8.3.4 Echo

Normally, the system writes back to the terminal any printable characters
the user types on the terminal. The system also writes highlighted words in
response to certain control characters; for example, the system writes EXIT if
the user types CTRL/Z. If the user types ahead of your read, the characters
are not echoed until you read them from the type-ahead buffer.

You can turn off echoing when you issue a read by reading from the terminal
with the SMG$READ_STRING Run-Time Library routine, and modifying
the read operation (argument 5) with TRM$M_TM__NOECHO. You can turn
off echoing just for control characters by modifying the read operation with
TRM$M_TM_TRMNOECHO. The following example turns off all echoing
for the read operation.

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT.SIZE
CHARACTER*512 INPUT
INCLUDE 1(ITRMDEF)'
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, !
2 'SYS$INPUT') !
IF (.NOT. STATUS) CALL LIB$SIGNAL P/.VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 'Prompt> ',
2 512,
2 TRM$M_TM_NOECHO,
2
2 INPUT.SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

Keyboard ID
I/O device

You can also turn off echoing with a QIO read operation modified by IO$M_
NOECHO (defined in $IODEF). You can turn off echoing for further read
operations with a QIO set mode operation which specifies TT$M_NOECHO
as a basic terminal characteristic.

8-50

User Input/Output

8.3.5 Timeout

You can restrict the user to a certain amount of time in which to respond to a
read command by reading from the terminal with the SMG$READ_STRING
Run-Time Library routine, and specifying argument 6. Specify the argument
as the number of seconds to which the user is restricted. If the user fails
to type a character in the allotted time, the error condition SS$_TIMEOUT
(defined in $SSDEF) is returned. The following example restricts the user to
eight seconds in which to respond to a read.

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD.
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT.SIZE
CHARACTER * 512 INPUT
INCLUDE '($SSDEF)'
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,
2 'SYS$INPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 'Prompt> ',
2 512,

2
2 8,
2
2 INPUT.SIZE)
IF (.NOT. STATUS) THEN

IF (STATUS .EQ. SS$_TIMEOUT) CALL NO.RESPONSE ()
ELSE

CALL LIB$SIGNAL C/.VAL (STATUS))
END IF

You can cause a QIO read operation to time out after a certain number of
seconds by modifying the operation with IO$M—TIMED and specifying the
number of seconds as the P3 argument. A message broadcast to a terminal
resets a timer set for a timed read operation (regardless of whether the
operation was initiated with QIO or SMG).

Note that the timed read operations mentioned above work on a character-
by-character basis. To set a time limit on an input record rather than an
input character, you would have to use the SYS$SETIMR system service.
The SYS$SETIMR executes an AST routine at a specified time. The specified
time would be the input time limit; the AST routine would cancel any
outstanding I/O on the channel assigned to the user's terminal.

8-51

User Input/Output

8.3.6 Lowercase to Uppercase Conversion

You can automatically convert user input to uppercase (that is, any lowercase
characters typed by the user are transformed to uppercase) by reading from
the terminal with the SMG$READ_STRING Run-Time Library routine, and
modifying the read operation (argument 5) with TRM$M_TM_CVTLOW.

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT.SIZE
CHARACTER*512 INPUT
INCLUDE '($TRMDEF)'
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 'SYS$INPUT')
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 'Prompt> ',
2 512,
2 TRM$M_TM_CVTLOW,
2
2 INPUT.SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

You can also convert lowercase characters with a QIO read operation
modified by IO$M_CVTLOW (defined in $IODEF).

8.3.7 Line Editing and Control Actions

Normally, the user can edit input as explained in the VAX EDT Reference
Manual. You can inhibit line editing on the read operation by reading from
the terminal with the SMG$READ_STRING Run-Time Library routine, and
modifying the read operation (argument 5) with TRM$M_TM_NOFILTR.

8-52

User Input/Output

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,

2 SMG$READ_STRING,

2 STATUS.

2 VKID, ! Virtual keyboard ID

2 INPUT.SIZE

CHARACTER*512 INPUT

INCLUDE '($TRMDEF)'

STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID. ! Keyboard ID

2 'SYS$INPUT')

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = SMG$READ_STRING (VKID. ! Keyboard ID

2 INPUT, ! Data read

2 'Prompt> ',

2 512,

2 TRM$M_TM_NOFILTR,

2
2 INPUT.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

You can also inhibit line editing with a QIO read operation modified by
IO$M_NOFILTR (defined in $IODEF).

8.3.8 Broadcasts

You can write (broadcast) to any interactive terminal with the
SYS$BRKTHRU system service. The following example broadcasts a
message to all terminals on which users are currently logged in. Use of
SYS$BRKTHRU to write to a terminal allocated to a process other than your
own requires OPER privilege.

INTEGERS STATUS,

2 SYS$BRKTHRUW

INTEGER*2 B.STATUS (4)

INCLUDE '($BRKDEF)'

STATUS = SYS$BRKTHRUW (,
2 'Accounting system started',,
2 '/.VAL (BRK$C_ALLUSERS) ,

2 B.STATUS.)
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

If the terminal user has taken no action to handle broadcasts, a broadcast
is written to the terminal screen at the current position (after a carriage
return and line feed). If a write operation is in progress, the broadcast occurs
after the write ends. If a read operation is in progress, the broadcast occurs
immediately; after the broadcast, any echoed user input to the aborted read
operation is written to the screen (same effect as pressing CTRL/R).

You can handle broadcasts to the terminal on which your program is running
with the SMG$SET_BROADCAST_TRAPPING Run-Time Library routine.
This routine uses the AST mechanism to transfer control to a subprogram of
your choice each time a broadcast message is sent to the terminal; when the

8-53

User Input/Output

subprogram completes, control returns to your main line code where it was
interrupted.

The SMG$SET_BROADCAST_TRAPPING is not an SMG input routine.
Before invoking SMG$SET_BROADCAST_TRAPPING, you must invoke
SMG$CREATE—PASTEBOARD to associate a pasteboard with the terminal.
SMG$CREATE_PASTEBOARD returns a pasteboard identification number-
pass that number to SMG$SET_BROADCAST-TRAPPING to identify
the terminal in question. Read the contents of the broadcast with the
SMG$GET_BROADCAST— MESSAGE Run-Time Library routine.

The following example demonstrates how you might trap a broadcast and
write it at the bottom of the screen. For more information about the use of
SMG pasteboards and virtual displays see Section 8.2.

INTEGER*4

2

2

2

2

2

COMMON

2

INTEGER*2

INCLUDE

INCLUDE

EXTERNAL

STATUS,

PBID,

VDID,

SMG$CREATE_PASTEBOARD,

SMG$ SET_BR0ADCAST_TRAPPING

SMG$PASTE_VIRTUAL_DISPLAY

/ID/ PBID,

VDID

B.STATUS (4)

'($SMGDEF)'

'($BRKDEF)'

BRKTHRU.ROUTINE

Pasteboard ID

Virtual display ID

STATUS = SMG$CREATE_PASTEBOARD (PBID)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3, ! Height

2 80, ! Width

2 VDID,, ! Display ID

2 SMG$M_REVERSE)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = SMG$SET_BROADCAST_TRAPPING (PBID, ! Pasteboard ID

2 BRKTHRU.ROUTINE) ! AST

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

SUBROUTINE BRKTHRU.ROUTINE ()
INTEGER*4 STATUS,

2 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 SMG$GET_BROADCAST_MESSAGE,

2 SMG$PUT_CHARS,

2 SMG$PASTE_VIRTUAL_DISPLAY

COMMON /ID/ PBID,

2 VDID

CHARACTER*240 MESSAGE
INTEGER*2 MESSAGE.SIZE

8-54

User Input/Output

! Read the message
STATUS = SMG$GET_BROADCAST_MESSAGE (PBID,
2 MESSAGE,
2 MESSAGE.SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
! Write the message to the virtual display
STATUS = SMG$PUT_CHARS (VDID,
2 MESSAGE (1:MESSAGE.SIZE),
2 1, ! Line
2 1) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
! Make the display visble by pasting it to the pasteboard
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 22, ! Row
2 1) ! Column

END

8.4 SYS$QIO and SYS$QIOW System Services

The QIO system services permit direct interaction with the system's terminal
driver. QIOs permit some operations that cannot be performed with
FORTRAN I/O and Run-Time Library routines, reduce overhead, and
permit asynchronous I/O operations. However, for ease of programming
and device independence, you should generally avoid issuing QIOs.

To read from or write to a terminal with the SYS$QIO or SYS$QIOW
system service, you must first associate the terminal name with an I/O
channel in the SYS$ASSIGN system service, then use the assigned channel
in the SYS$QIO or SYS$QIOW system service. The I/O channel must be
defined as an INTEGER*2 data type. To read from SYS$INPUT or write to
SYS$OUTPUT, specify the appropriate logical name as the terminal name in
the SYS$ASSIGN system service. In general, use SYS$QIO for asynchronous
operations and use SYS$QIOW for all other operations.

8.4.1 Read Operations

The SYS$QIO or SYS$QIOW system service moves one record of data from
a terminal to a variable. Do not use this system service, as described here,
for input from a file or nonterminal device.

For synchronous I/O (your program pauses until the I/O completes), use
SYS$QIOW. Specify the following arguments:

• I/O channel (argument 2)—Use the channel returned by SYS$ASSIGN.
The argument must be a word passed by value (%VAL).

8-55

User Input/Output

• Function code and modifiers (argument 3)—Specify the function code as
IO$_READPROMPT to issue a prompt, or IO$_READVBLK to read a
data record without prompting. Combine any modifiers (for example, for
special formatting) with the function code using a logical .OR. operation.
For example, to inhibit echoing during the read operation, specify the
third argument as IO$_READVBLK .OR. IO$M_NOECHO. The symbols
are defined in $IODEF. The argument must be passed by value (%VAL).

• Status block (argument 4)—Define a status block of four words: the
return status, the offset of the line terminator in the input buffer, the
value of the first character of the line terminator, and the size of the
line terminator. The full line terminator is placed in the input buffer
immediately after the input data.

The status returned in the status block is the final status of the I/O
operation; this status value is not available until the I/O operation
completes. The status returned as the function value of the SYS$QIO or
SYS$QIOW routine is the final status of the call to the routine; this status
value is available when the routine returns control to your program. The
two return values are different, equally important, and should both be
checked.

• Input buffer (argument 7, or PI)—Define the input buffer as a character
variable but pass it to SYS$QIOW by reference (%REF).

• Input buffer size (argument 8, or P2)—Specify the number of characters
defined for the input buffer. For example, if you specify INPUT as
CHARACTER*132, give INPUT_BUFF_SIZE a value of 132. The
argument must be passed by value (%VAL).

• Prompt buffer (argument 11, or P5)—Define the prompt (if you are
prompting) as a character literal or variable but pass it to SYS$QIOW by
reference (%REF).

• Prompt buffer size (argument 12, or P6)—Specify the number of
characters defined for the prompt (if you are prompting). The argument
must be passed by value (%VAL).

The SYS$QIOW system service places the data read in the variable passed
as PI. The second word of the status block contains the offset from the
beginning of the buffer to the terminator—hence, it equals the size of the
data read. Always reference the data as a substring using the offset to
the terminator as the position of the last character (that is, the size of the
substring). If you reference the entire buffer, your data will include the
terminator for the operation (for example, the CR character) and any excess
characters from a previous operation using the buffer. (The only exception to
the substring guideline is if you deliberately overflow the buffer to terminate
the I/O operation.)

8-56

User Input/Output

The following example reads a line of data from the terminal and waits for
the I/O to complete.

INTEGER STATUS

! QIOW structures

INTEGER*2 INPUT.CHAN ! I/O channel
INTEGER CODE, ! Type of I/O operation

2 INPUT_BUFF_SIZE, ! Size of input buffer
2 PROMPT.SIZE, ! Size of prompt

2 INPUT.SIZE ! Size of input line as read
PARAMETER (PROMPT.SIZE = 13,

2 INPUT_BUFF_SIZE = 132)

CHARACTER*132 INPUT

CHARACTER*(*) PROMPT

PARAMETER (PROMPT = 'Input value: ')

! Define symbols used in I/O operations

INCLUDE '($I0DEF)'

! Status block for QIOW

STRUCTURE /IOSTAT.BLOCK/

INTEGER*2 IOSTAT,

2 TERM.OFFSET,

2 TERMINATOR,

2 TERM.SIZE

END STRUCTURE

RECORD /IOSTAT.BLOCK/ IOSB

! Subprograms

INTEGER*4 SYS$ASSIGN,

2 SYS$QI0W

! Return status

! Location of line terminator

! Value of terminator

! Size of terminator

! Assign an I/O channel to SYS$INPUT

STATUS = SYS$ASSIGN ('SYS$INPUT•,

2 INPUT.CHAN,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Read with prompt

CODE = I0$_READPR0MPT

STATUS = SYS$QIOW (.
2 7.VAL (INPUT.CHAN) ,
2 */.VAL (CODE) ,

2 IOSB,

2
2 ‘/.REF (INPUT),

2 */.VAL (INPUT_BUFF_SIZE) ,

2
2 ‘/.REF (PROMPT) ,

2 '/.VAL (PROMPT.SIZE))

! Check QIOW status

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
! Check status of I/O operation

IF (.NOT. IOSB. IOSTAT) CALL LIB$SIGNAL ('/.VAL (IOSB. IOSTAT))
! Set size of input string
INPUT.SIZE = IOSB.TERM_OFFSET

8-57

User Input/Output

To perform an asynchronous read operation, use the SYS$QIO system
service and specify an event flag (the first argument, which must be passed
by value). Your program continues while the I/O is taking place. When
you need the input from the I/O operation, invoke the SYS$SYNCH system
service to wait for the event flag and status block specified in the SYS$QIO
system service. If the I/O is not complete, your program will pause until
it is. In this manner, you can overlap processing within your program.
Naturally, you must take care not to use data returned by the I/O operation
before issuing SYS$SYNCH. The following FORTRAN example demonstrates
an asynchronous read operation.

INTEGER STATUS

! QIO structures

INTEGER*2 INPUT.CHAN !

INTEGER CODE, !

2 INPUT.BUFF.SIZE, !

2 PROMPT.SIZE, !

2 INPUT.SIZE !

PARAMETER (INPUT_BUFF_SIZE

2 PROMPT = 13)

CHARACTER*132 INPUT

CHARACTER*(*) PROMPT

PARAMETER (PROMPT * 'Input

INCLUDE '($I0DEF)'

! Status block for QIO

STRUCTURE /IOSTAT.BLOCK/

INTEGER*2 IOSTAT,

2 TERM.OFFSET,

2 TERMINATOR,

2 TERM.SIZE

END STRUCTURE

RECORD /IOSTAT.BLOCK/ IOSB

! Event flag for I/O

INTEGER INPUT.EF

! Subprograms

INTEGER*4 SYS$ASSIGN,

2 SYS$QIO,

2 SYS$SYNCH,

2 LIB$GET_EF

I/O channel

Type of I/O operation

Size of input buffer

Size of prompt

Size of input line as read

= 132,

value: ')

Symbols used in I/O operations

Return status

Location of line terminator

Value of terminator

Size of terminator

! Assign an I/O channel to SYS$INPUT
STATUS = SYS$ASSIGN ('SYS$INPUT•,

2 INPUT.CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Get an event flag
STATUS = LIB$GET_EF (INPUT.EF)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7,VAL (STATUS))

8-58

User Input/Output

! Read with prompt
CODE = IO$_READPROMPT
STATUS = SYS$QI0 C/.VA] C/.VAL (INPUT.EF),

•/.VAL (INPUT.CHAN),
*/.VAL (CODE),
IOSB,

2
2
2
2
2
2
2
2
2

'/.REF (INPUT) ,
•/.VAL (INPUT_BUFF_SIZE) ,

•/.REF (PROMPT),
•/.VAL (PROMPT.SIZE))

! Check status of QIO
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = SYS$SYNCH C/.VAL (INPUT.EF),
2 IOSB)
! Check status of SYNCH
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB. IOSTAT) CALL LIB$SIGNAL C/.VAL (IOSB . IOSTAT))
! Set size of input string
INPUT.SIZE = IOSB.TERM.OFFSET

Be sure to check the status of the I/O operation as returned in the I/O status
block. In an asynchronous operation, you can only check this status after the
I/O operation is complete (that is, after the call to SYS$SYNCH).

8.4.2 Write Operations

The SYS$QIO or SYS$QIOW system service moves one record of data from a
character value to the terminal. Do not use this system service, as described
here, for output to a file or nonterminal device.

For synchronous I/O (your program pauses until the I/O completes), use
SYS$QIOW and omit the first argument (the event flag number). Specify the
following arguments:

• I/O channel (argument 2)—Use the channel returned by SYS$ASSIGN.
You must pass the argument as a word by value (%VAL).

• Function code and modifiers (argument 3)—Specify the function code as
IO$_WRITEVBLK. Combine any modifiers with the function code using
a logical OR operation. For example, to perform the operation without
formatting the output, specify the third argument as IO$_WRITEVBLK
.OR. IO$M_NOFORMAT. The symbols are defined in $IODEF. You
must pass the argument by value (%VAL).

8-59

User Input/Output

• Status block (argument 4)—Define a status block of three words and
two bytes: the return status, the number of bytes written (includes any
carriage control characters specified in P4 for local devices), the number
of lines written (the number of line feeds transmitted), the column
number at the end of transmission, and the line number at the end of
transmission. The last two items are useless if you are doing any special
formatting.

• Output buffer (argument 7, or PI)—Define the output buffer as a
character value but pass it to SYS$QIOW by reference (%REF).

• Output buffer size (argument 8, or P2)—Specify the number of characters
in the output value. You must pass the argument by value (%VAL).

• Carriage control specifier (argument 10, or P4)— Omit this argument
only if you modify the function with IO$M_NOFORMAT or you do not
want any carriage control action after writing the line. You must pass the
argument by value (%VAL).

The following example writes a line of character data to the terminal.

INTEGER STATUS,
2 ANSWER.SIZE
CHARACTER*31 ANSWER
INTEGER*2 OUT.CHAN

! Status block for QIO
STRUCTURE /I0STAT.BL0CK/

INTEGER*2 IOSTAT,
2 BYTE.COUNT,
2 LINES.OUTPUT

BYTE COLUMN,
2 LINE
END STRUCTURE
RECORD /IOSTAT.BLOCK/ IOSB

! Routines
INTEGER SYS$ASSIGN,
2 SYS$QI0W

8-60

User Input/Output

! 10$ symbol definitions

INCLUDE '($I0DEF)'

STATUS = SYS$ASSIGN ('SYS$0UTPUT',

2 OUT.CHAN,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = SYS$QI0W (,

2 '/.VAL (0UT_CHAN) ,

2 '/.VAL (IO$_WRITEVBLK) ,

2 IOSB,

2

2
2 ‘/.REF ('Answer: ' //ANSWER(1: ANSWER.SIZE)) ,

2 '/.VAL (8+ANSWER.SIZE) ,

2
2 '/.VAL (32),,) ! Single spacing

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

IF (.NOT. IOSB . IOSTAT) CALL LIB$SIGNAL ('/.VAL (IOSB . IOSTAT))

END

8.4.3 Checking the Device Type

You are restricted to a terminal device in a QIO operation. If the user of your
program redirects SYS$INPUT or SYSSOUTPUT to a file or nonterminal
device, an error occurs. You can use the SYS$GETDVIW system service to
make sure the logical name is associated with a terminal, as demonstrated
in the following FORTRAN example. SYS$GETDVIW returns a status of
SS$_IVDEVNAM if the logical name is defined as a file or otherwise does
not equate to a device name. The type of device is the response associated
with the DVI$_DEVCLASS request code, and should be DC$_TERM for a
terminal.

RECORD /ITMLST/ DVI.LIST
L0GICAL*4 STATUS

! GETDVI buffers

INTEGER CLASS, ! Response buffer

2 CLASS.LEN ! Response length

! GETDVI symbols
INCLUDE '($DCDEF)'

INCLUDE '($SSDEF)'
INCLUDE '($DVIDEF)'

! Define subprograms
INTEGER SYS$GETDVIW

8-61

User Input/Output

! Find out the device class of SYS$INPUT

DVI_LIST.BUFLEN = 4

DVI_LIST.CODE = DVI$_DEVCLASS

DVI_LIST. BUFADR = '/.LOC (CLASS)

DVI_LIST. RETLENADR = ‘/.LOC (CLASS.LEN)

STATUS = SYS$GETDVIW (,,•SYS$INPUT'.

2 DVI_LIST,,,,,)

IF ((.NOT. STATUS) .AND. (STATUS .NE. SS$_IVDEVNAM)) THEN
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

! Make sure device is a terminal

IF ((STATUS .NE. SS$_IVDEVNAM) .AND. (CLASS .EQ. DC$_TERM)) THEN

ELSE

TYPE *, 'Input device not a terminal'

END IF

8.4.4 Terminal Characteristics

The VAX/VMS I/O Reference Volume describes device-specific characteristics
associated with terminals. To examine a characteristic, issue a QIO system
service with the IO$_SENSEMODE function and examine the appropriate bit
in the structure returned to PI. To change a characteristic:

1 Issue a QIO system service with the IO$_SENSEMODE function.

2 Set or clear the appropriate bit in the structure returned to PI.

3 Issue a QIO system service with the IO$_SETMODE function passing
as PI the structure you obtained from the sense mode operation and
modified.

The following example turns off the HOSTSYNC terminal characteristic. To
check that NOHOSTSYNCH has been set, issue the SHOW TERMINAL
command.

INTEGER+4 STATUS
! I/O channel
INTEGERS INPUT,CHAN

! I/O status block

STRUCTURE /IOSTAT.BLOCK/

INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,

2 CRFILL,

2 LFFILL,
2 PARITY,

2 ZERO
END STRUCTURE
RECORD /IOSTAT.BLOCK/ IOSB

8-62

User Input/Output

! Characteristics buffer

! Note: basic characteristics are first three

! bytes of second longword -- length is

! last byte

STRUCTURE /CHARACTERISTICS/

BYTE CLASS,

2 TYPE

INTEGERS WIDTH

UNION

MAP

INTEGER*4 BASIC

END MAP
MAP

BYTE LENGTH(4)

END MAP

END UNION

INTEGERS EXTENDED

END STRUCTURE

RECORD /CHARACTERISTICS/ CHARBUF

! Define symbols used for I/O and terminal operations

INCLUDE '($I0DEF)1

INCLUDE '($TTDEF)'

! Subroutines

INTEGERS SYS$ASSIGN,

2 SYS$QI0W

! Assign channel to terminal

STATUS = SYS$ASSIGN ('SYS$INPUT•,
2 INPUT.CHAN,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Get current characteristics

STATUS * SYS$QI0W (,

2 '/.VAL (INPUT.CHAN),

2 '/.VAL (I0$_SENSEM0DE) ,

2 IOSB,,,

2 CHARBUF, ! Buffer

2 '/.VAL (12),,,,) ! Buffer size

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

IF (.NOT. IOSB . IOSTAT) CALL LIB$SIGNAL ('/.VAL (IOSB. IOSTAT))
! Turn off hostsync
CHARBUF.BASIC = IBCLR (CHARBUF.BASIC, TT$V_HOSTSYNC)

! Set new characteristics

STATUS = SYS$QI0W (,
2 '/.VAL (INPUT.CHAN),

2 '/.VAL (I0$_SETM0DE) ,
2 IOSB,,,

2 CHARBUF,

2 '/.VAL (12),,.,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

IF (.NOT. IOSB. IOSTAT) CALL LIB$SIGNAL ('/.VAL (IOSB. IOSTAT))

END

8-63

User Input/Output

If you modify terminal characteristics with set mode QIO operations, you
should save the characteristics buffer that you obtain on the first sense
mode operation and restore those characteristics with a set mode operation
before exiting. (No reset is necessary if you just use modifiers on each
read operation.) To ensure that the restoration is performed if the program
aborts (for example, if the user types CTRL/Y), you should restore the user's
environment in an exit handler. See Chapter 10 for a description of exit
handlers.

8.4.5 Record Terminators

A QIO read operation ends when the user enters a terminator or when the
input buffer fills, whichever occurs first. The standard set of terminators
applies unless you specify the P4 argument in the read QIO operation. You
can examine the terminator that ended the read operation by examining
the input buffer starting at the terminator offset (second word of the I/O
status block). The length of the terminator in bytes is specified by the high-
order word of the I/O status block. The third word of the I/O status block
contains the value of the first character of the terminator.

Examining the terminator enables you to read escape sequences from the
terminal provided that you modify the QIO read operation with the IO$M_
ESCAPE modifier (or the ESCAPE terminal characteristic is set). The first
character of the terminator will be the ESC character (an ASCII value of 27).
The remaining characters will contain the value of the escape sequence.

You must examine the terminator to detect end-of-file (CTRL/Z) on the
terminal. No error condition is generated at the QIO level. If the user
presses CTRL/Z, the terminator will be the SUB character (an ASCII value of
26).

8-64

File Input/Output

I/O statements transfer data between records in files and variables in your
program. The I/O statement determines the operation to be performed; the
I/O control list specifies the file, record, and format attributes; and the I/O
list contains the variables to be acted upon.

Some confusion might arise between records in a file and record variables.
Where this chapter refers to a record variable, the term "record variable" will
be used; otherwise, "record" refers to a record in a file.

Before writing a program that accesses a data file, you must know the
attributes of the file and the order of the data. To determine this information,
see your language-specific programming manual.

• File attributes (organization, record structure, and so on) determine how
data is stored and accessed. Typically, the attributes are specified by
keywords when you open the data file.

• Ordering of the data within a file is not important mechanically.
However, if you attempt to read data without knowing how it is ordered
within the file, you are likely to read the wrong data; if you attempt to
write data without knowing how it is ordered within the file, you are
likely to corrupt existing data.

When determining the file attributes and order of your data file, consider
how you plan to access that data. File access strategies fall into the following
categories:

• Complete—If your program processes all or most of the data in the file
and especially if many references are made to the data, you should read
the entire file into memory. Put each record in its own variable or set of
variables.

If your program is larger than the amount of memory available (including

additional memory you get using LIB$GET_VM), you must declare fewer
variables and process your file in pieces. To determine the size of your
program, add the number of bytes in each PSECT (the LINK/MAP
command produces a listing that includes the length of each PSECT). For
more information on local storage, see Section 2.1.

• Record by record—If your program accesses records one after another or
you cannot fit the entire file into memory, you should read one record
into memory at a time.

9-1

File Input/Output

• Discrete records—If your program processes only a few records at a time,
you should read only the necessary records into memory.

Use an unformatted sequential file for speed and to conserve disk space. Use
indexed files to process selected sets of records or to directly access records.
Use a sequential file with fixed-length records, a relative file, or an indexed
file to directly access records.

9.1 File Operations

To access a FORTRAN file, explicitly open the file and then perform read and
/or write operations on the file. (If you omit the OPEN statement, the first
READ or WRITE statement implicitly opens a file using applicable default
values.) Once you have finished with the file, you can explicitly close it or
allow the system to close it for you when your program terminates.

9.1.1 File Attributes

In FORTRAN, when you create or open a file, you are required to specify a
logical unit number. You may also specify other attributes, such as file name,
file organization, and record structure. The following subsections describe
common file attributes and the specifiers (keywords) of the FORTRAN OPEN
statement used to set them.

A larger set of attributes can be specified using the File Definition Language
(FDL; see Section 9.7). All of the file attributes can be specified using VAX
RMS in a user-open routine (see Section 9.8). Typically, you only need
the FORTRAN specifiers. Use FDL only when FORTRAN specifiers are
unavailable. Use a user-open routine when both FORTRAN specifiers and
FDL are unavailable.

9.1.1.1 Logical Unit Number

A logical unit number is an integer value that identifies a file within a
program. In FORTRAN, you associate a logical unit number with a file
using the OPEN statement. Thereafter, you refer to the file by its logical
unit number. To specify a logical unit number in an OPEN, READ, WRITE,
DELETE, or REWRITE statement, use the UNIT specifier or specify the logical
unit number as the first parameter of the statement.

If more than one person is working on a program, you should generate
logical unit numbers with the Run-Time Library procedure LIB$GET_LUN.
LIB$GET_LUN returns a logical unit number unique among the numbers
returned by LIB$GET_LUN within the current program. This implies that

9-2

File Input/Output

LIB$GET_LUN is only effective when used to generate all logical unit
numbers within the program.

9.1.1.2 File Name

Use the FORTRAN FILE specifier to specify a file name in an OPEN
statement. The file name can be any valid file or device specification, or
a logical name. If you omit the file name, FORTRAN uses FOROnn.DAT,
where nn is the logical unit number. The DEFAULTFILE specifier can
be used to provide a default device, directory, and file type. If you omit
DEFAULTFILE, the run-time default device and directory are used with a file
type of DAT.

9.1.1.3 File Organization and Access

File organization is the way in which records are arranged within a file. (The
following file organizations may not be appropriate for your language, see
your programming manual for more information.) FORTRAN allows three
file organizations:

• Sequential—Records are arranged one after another in the order in which
they are written to the file. Records can only be added to the end of the
file. Records can be accessed sequentially. If you have fixed-length
records, they can also be accessed directly.

• Relative—Records are arranged in fixed-length cells. The cells are
numbered from 1 to n beginning with the first record in the file. Records
can be placed in or deleted from any cell. Your program is responsible
for keeping track of the cell number for each record. Records can be
accessed sequentially or directly.

• Indexed—Records are arranged according to key fields. Each record must
have at least one key, but can have more than one. The length of each
key field and its position within the record are the same for every record
in an indexed file. Use the value stored in a key field to identify a record.
Records can be accessed sequentially or by key.

Specify the organization of a file with the ORGANIZATION specifier, which
accepts the value SEQUENTIAL (default), INDEXED, or RELATIVE. If you
create a relative or indexed file, you must use the RECL specifier to specify
the length of the records in the file.

File access is the manner in which the records of a file are accessed.
FORTRAN provides three methods of file access:

• Sequential—Records are accessed sequentially. For sequential files, the
records are accessed in the order in which they were written to the

9—3

File Input/Output

file. For relative files, records are accessed according to ascending cell
numbers. For indexed files, records are accessed according to ascending
key values; if two keys are the same, the records are accessed in the
order in which they were written to the file.

• Direct—Records are accessed directly. Specify a record by including a
REC specifier in the READ or WRITE statement.

• Keyed—Records are accessed by key. Specify a record by including a
KEY specifier in a READ statement. You can use sequential and keyed
access on the same file (see Section 9.4.4).

Other languages may allow different methods to access files. See your
language-specific programming manual for this information.

Specify file access with the ACCESS specifier, which accepts the value
SEQUENTIAL (default), KEYED, DIRECT, or APPEND. APPEND indicates
sequential access and, in addition, positions you at the end of the file after
opening it.

The following table shows the access modes allowed for each file
organization.

c Access Mode
o
CO
N

"c

Sequential Direct Keyed

Sequential yes yes1 no
CD

F
il

e
O

rg

Relative yes yes no

Indexed yes no yes

1 Only with fixed-length records

ZK-1991-84

9.1.1.4 Record Structure

Record structure determines the format of the records in a file. FORTRAN
allows three record structures:

• Fixed—All records in a single file are the same length. If you specify
fixed-length records, you must specify the length of the records using the
RECL specifier.

9-4

File Input/Output

• Variable—Records in a single file vary in size depending on their content.
To access variable-length records in a sequentially organized file using
unformatted I/O, you must specify RECORDTYPE = 'VARIABLE' when
you open the file. Otherwise, FORTRAN assumes that the variable-
length records are segmented records and reads the first two bytes of
each record as control information.

• Segmented—Each logical record consists of one or more variable-length
records in a sequentially organized file. The first two bytes of each
record contain control information indicating whether the particular
variable-length record is the first segment of a segmented record, the last
segment, the only segment, or a middle segment.

Segmented records are FORTRAN specific. If a file must be read by
a program written in a language other than FORTRAN, do not use
segmented records.

Specify the record structure of a file with the RECORDTYPE keyword of the
OPEN statement, which accepts the following values: FIXED, VARIABLE, or
SEGMENTED. The following table shows the record structure allowed for
each file organization.

c Record Structure
o
-
(0

Fixed Variable Segmented

N

'c Sequential yes yes yes'
CO

0) o>
— Relative yes yes no

il O
Indexed yes yes no

1 Only with unformatted sequential access

ZK-1990-84

9.1.1.5 File I/O

Data can be read (in FORTRAN) from a record using either unformatted
or formatted I/O. Unformatted I/O transfers data exactly as it is stored in
memory. The data is said to be in machine-readable or binary form. Files
written using unformatted I/O can be processed faster and require less
storage space, but are not readily intelligible (you cannot display them with
the TYPE command). You should use unformatted files only for storage of
data that is written and read by programs.

9-5

File Input/Output

Formatted I/O changes data from binary format to character format during
write operations, and from character to binary format during read operations.
You should use formatted I/O if you want users to be able to examine the
file without using a program that knows the structure of the file. When
performing formatted I/O, you must include format specifiers in your READ
and WRITE statements (see Programming in VAX FORTRAN).

Specify a file's format using the FORM specifier, which accepts a value of
FORMATTED or UNFORMATTED. If a file is opened for sequential access,
file format defaults to FORMATTED; if a file is opened for direct or keyed
access, file format defaults to UNFORMATTED. (To access variable-length
records in a sequentially structured file using unformatted I/O, you must
specify RECORDTYPE = 'VARIABLE' when you open the file.)

9.1.1.6 File Status and Disposition

Specify file status using the STATUS specifier, which accepts any one of the
following values:

• OLD—Opens an existing file. If the file does not exist, FORTRAN
generates an error.

• NEW—Creates a new file. If the file exists, a new version of the file is
created.

• UNKNOWN—Opens an existing file if one exists; otherwise, creates a
new file.

• SCRATCH—Creates a new file and deletes it when the file is closed.

By default, a file is saved when it is closed. You can use the DISPOSE
specifier to indicate that you want something else done with the file. The
DISPOSE specifier accepts any one of the following values: KEEP (same
as SAVE; the default), DELETE, PRINT, PRINT/DELETE, SUBMIT, or
SUBMIT/DELETE. A file opened as a scratch file cannot be saved, printed,
or submitted. A file opened for read-only access cannot be deleted.

The DISPOSE specifier may be included in either an OPEN statement or a
CLOSE statement. If specified in both an OPEN and a CLOSE statement for
the same file, the disposition specified in the CLOSE statement overrides that
specified in the OPEN statement.

9-6

File Input/Output

9.1.1.7 Protection and Access

Files are owned by the process that creates them and receive the default
protection of the creating process. To create a file with ownership and
protection other than the default, use the FDL attributes OWNER and
PROTECTION in the File Section of an FDL file (see Section 9.7).

By default, the user of your program must have WRITE access to a file
in order for your program to open that file. However, if you specify the
READONLY specifier when opening the file, the user only needs READ
access to the file in order to open it (specifying READONLY does not set the
protection on a file). You cannot write to a file opened with the READONLY
specifier.

The READONLY specifier and the SHARED specifier allow multiple
processes to open the same file simultaneously provided that each process
uses one of these specifiers when opening the file. The READONLY specifier
allows the process READ access to the file; the SHARED specifier allows
other processes read and WRITE access to the file. If a process opens the file
without specifying READONLY or SHARED, no other process can open that
file even by specifying READONLY or SHARED.

If you are sharing a FORTRAN file, a read operation or a direct access
write operation may return a status of FOR$_SPERECLOC indicating that
the record you attempted to read is being used by another process. In
serious programming efforts, you should include conditional code to handle
this possibility. In the following FORTRAN program segment, if the read
operation indicates that the record is locked, the read operation is repeated.
You should not attempt to read a locked record without providing a delay
(in this example, the call to ERRSNS) to allow the other process time to
complete its operation and unlock the record.

! Status variable and values
INTEGER STATUS.
2 IOSTAT,
2 IO.OK
PARAMETER (IO.OK = 0)
INCLUDE '($F0RDEF)'

! Logical unit number
INTEGER LUN /!/

9-7

File Input/Output

! Record variables
INTEGER LEN
CHARACTER*80 RECORD

READ (UNIT = LUN,
2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) LEN, RECORD(1:LEN)
IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (.,..STATUS)
IF (STATUS .EQ. FOR$_SPERECLOC) THEN

DO WHILE (STATUS .EQ. FOR$_SPERECLOC)
READ (UNIT = LUN,

2 FMT = '(Q,A)',
2 IOSTAT = IOSTAT) LEN, REC0RD(1:LEN)

IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,..STATUS)
IF (STATUS .NE. FOR$_SPERECLOC) THEN

CALL LIB$SIGNAL(*/.VAL(STATUS))
END IF

END IF
END DO

ELSE
CALL LIB$SIGNAL (*/.VAL(STATUS))

END IF
END IF

Each time you access a record in a shared file, that record is automatically

locked until you perform another I/O operation on the same logical unit, or

explicitly unlock the record using the UNLOCK statement. If you plan to

modify a record, you should do so before unlocking it; otherwise, you should
unlock the record as soon as possible.

9.1.1.8 Storage Allocation

When you open a file, you can specify the following disk storage
requirements for the file:

• Initial size of the file—To specify the initial size of a file, use the
INITIALSIZE specifier. If you omit INITIALSIZE, or specify it as zero,
FORTRAN makes no initial allocation of storage.

• Number of blocks to be added each time a file is extended—A file is

extended whenever more storage is required by that file. To specify
the extend size of the file, use the EXTENDSIZE specifier. If you omit
EXTENDSIZE, or specify it as zero, FORTRAN uses the system default
for the device containing the file.

9-8

File Input/Output

• Number of bytes transferred by each I/O operation—To specify the
number of bytes transferred by each I/O operation, use the BLOCKSIZE
specifier. By default, for sequential files FORTRAN uses the buffer size
specified by the DCL command SET RMS—DEFAULT (for details, see
the VAX/VMS DCL Dictionary). By default, for relative and indexed files
FORTRAN uses the smallest number of bytes that can hold a single
record.

• Number of memory buffers to be used for I/O operations—To specify
the number of buffers, use the BUFFERCOUNT specifier. By default,
FORTRAN uses the number of buffers specified by the DCL command
SET RMS—DEFAULT. The size of each buffer is determined by the
BLOCKSIZE specifier.

9.1.2 Opening Files

In FORTRAN, the OPEN statement explicitly opens a file. (For a complete
description of the OPEN statement, see Programming in VAX FORTRAN.)
Section 9.1.1 describes the options that can be specified with the OPEN
statement.

9.1.2.1 Opening a New or an Existing File

To create a new file, use the OPEN statement specifying NEW as the
STATUS specifier value. To open an existing file, use the OPEN statement
specifying OLD as the STATUS specifier value. The following program
segment creates a file.

INTEGER*4 LUN /l/
CHARACTER*256 FILENAME
INTEGER*2 FN.SIZE

INTEGER STATUS
! Get file name
STATUS = LIB$GET_INPUT (FILENAME.
2 'File name: ',
2 FN.SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Create the file
OPEN (UNIT=LUN,
2 FILE=FILENAME (1:FN_SIZE),
2 DEF AULTFILE='WORKDISK:[PERSONNEL]',
2 FORM='UNFORMATTED',
2 STATUS='NEW')

The example solicits the name of the input file from the terminal. If the
user omits the device or directory name, the defaults WORKDISK and
[PERSONNEL] are used.

9-9

File Input/Output

9.1.2.2 Opening a File of Unknown Status

To open a file which may or may not exist, use the OPEN statement
specifying UNKNOWN as the STATUS specifier value. The following
program segment opens a file; if the file does not exist, it is created.

INTEGER*4 LUN

CHARACTER*256 FILENAME

INTEGERS FN.SIZE

INTEGER STATUS,

2 LIB$GET_LUN,

2 LIB$GET_INPUT

! Get file name

STATUS = LIB$GET_INPUT (FILENAME,

2 'File name: ',

2 FN.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get a free logical unit number

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the file

OPEN (UNIT=LUN,

2 FILE=FILENAME (1:FN_SIZE),

2 F0RM='UNFORMATTED',

2 STATUS='UNKNOWN')

A STATUS specifier value of UNKNOWN opens a file whether or not it
exists. If you must take additional or alternative actions depending on
whether or not the file exists, you can use the INQUIRE statement with
the EXIST keyword. If the file exists, FORTRAN returns a value of .TRUE,
to the variable specified with the EXIST keyword; otherwise, FORTRAN
returns a value of .FALSE. (Section 9.1.5 discusses INQUIRE). The following
FORTRAN example opens a scratch file if an existing file cannot be found.

CHARACTER*256 FILENAME

INTEGERS FN_SIZE

LOGICAL EXIST

INQUIRE (FILE = FILENAME (1:FN_SIZE),

2 EXIST = EXIST)

IF (EXIST) THEN
OPEN (UNIT =

2 FILE =

2 FORM =

2 STATUS

ELSE
OPEN (UNIT *

2 FILE =

2 FORM =

2 STATUS
END IF

LUN,

FILENAME (1:FN_SIZE),

'UNFORMATTED',
= 'OLD')

LUN,
FILENAME (1:FN_SIZE),
'UNFORMATTED',
= 'SCRATCH')

9-10

File Input/Output

9.1.2.3 Opening a File Across the Network

When opening files across the DECnet network, you must include the node
in the file specification. The following example creates a new file on the
node LIGHT on the device DISKI:.

OPEN (UNIT-LUN,
2 FILE='LIGHT::DISKI:[FORTRAN]INPUT.DAT'.
2 FORM3'UNFORMATTED'.
2 STATUS31 NEW')

If the directory or file on the remote node is protected, either the user of
your program must have a proxy account that grants access to the file, or you
must specify an access control string as part of the file specification.

• Proxy account—A proxy account allows a user the same rights and
privileges as a specified user on the remote node. The user of your
program must obtain a proxy account from the system manager of the
remote node.

• Access control string—An access control string specifies the user name
and password of a user on a remote node. When an access control
string ("username password") is included in a file specification between
the node name and the double colon delimiter, the access rights of the
specified user are used to gain access to the file. The following statement
opens a file on a remote node; access to the file is granted or denied
depending on the access rights of the user MARX (password OHFISH).

OPEN (UNIT=LUN,
2 FILE3 •LIGHT"MARX OHFISH"::DISKI:[FORTRAN]INPUT.DAT'.
2 FORM3'UNFORMATTED',
2 STATUS3'NEW•)

Since including an access control string in your program reveals a user's
password, use of proxy accounts is preferred.

9.1.3 Choosing Keywords for I/O Statements

Different types of access (sequential, direct, indexed, internal) allow different
types of I/O (formatted, unformatted, list-directed, or name-list directed). In
addition, most FORTRAN I/O statements (TYPE, READ, and so on) work
only for certain combinations of access and I/O types, as shown in the
following table.

9-11

File Input/Output

Formatted

Type of I/O

Unformatted List-Directed
Namelist-
Directed

Sequential ACCEPT ACCEPT ACCEPT

PRINT PRINT PRINT

READ READ READ READ

TYPE TYPE TYPE

WRITE WRITE WRITE WRITE
(/>
</> Direct
<D
o
o DELETE

READ READ
o WRITE WRITE
a>
Q. Indexed
H DELETE

READ READ
REWRITE REWRITE
WRITE WRITE

Internal

READ READ
WRITE WRITE

ZK-1989-84

The control list of an I/O statement contains one or more specifiers
(keywords) that determine the exact operation of the statement. The I/O
specifiers are in either keyword form (that is, keyword = value) or nokeyword
form (that is, just the value). If you use the keyword form of the specifiers,
the specifiers may be in any order. If you use one or more nokeyword forms,
the following rules apply.

1 The nokeyword form of the UNIT specifier must be listed first.

2 When used, the nokeyword form of the FMT, NML, or REC specifier
must be listed second. If you use the nokeyword form of the FMT, NML,
or REC specifier, you must also use the nokeyword form of the UNIT
specifier.

The following table indicates which specifiers to use and which to omit to
perform an I/O operation for a particular combination of access and I/O
type. For clarity, the table uses the keyword form of each specifier.

9-12

File Input/Output

Type of I/O
Namelist-

Formatted Unformatted List-Directed Directed

Sequential Specify: Specify: Specify: Specify:
UNIT-u UNIT-u UNIT-u UNIT=u
FMT=f FMT= * NML=nml

Omit: Omit: Omit: Omit:
NMUnml NML=nml NML=nml FMT f
REC=r FMT-f

FMT = *
REC=r

REC=r REC r

Direct Specify: Specify
UNIT-u UNIT=u'
FMT=f REC=r

</>
REC=r

in
<D Omit: Omit:
O
o END s END =s

< NML=nml FMT=f

o FMT= *

<D NML=nml
Q.
>. Indexed Specify: Specify:
1- UNIT-u1 UNIT-u1

FMT f1 keyspec2
keyspec2

Omit:
Omit: END =s

END s FMT=f
NML=nml FMT= *
REC=r NML=nml

REC-r

Internal Specify: Specify:
UNIT=c UNIT=c
FMT=f FMT -f

Omit: Omit:
NML=nml END=s
REC=r NML-nml

REC = r

1 The nokeyword forms of the UNIT and FMT specifiers are invalid.
The term keyspec refers to any one of the following specifiers:

KEYID, KEY, KEYEQ, KEYGT, or KEYGE.

ZK-1992-84

9-13

File Input/Output

9.1.4 Repositioning Within a File

Use the FORTRAN REWIND statement to return to the beginning of
an already open sequential file. REWIND requires only the logical unit
number of the file. For a complete description of the REWIND statement, see
Programming in VAX FORTRAN.

Typically, you use the REWIND statement to return to the beginning of a
sequential file after an end-of-file is encountered; that way the file can be
used later in the program without having to be closed and reopened. The
following program segment uses REWIND to return to the beginning of a file
after reading it.

INTEGER STATUS.
2 LUN1
INTEGER*2 IOSTAT
INCLUDE*($F0RDEF)'

DO WHILE (STATUS .NE. FOR$_ENDDURREA)

READ (UNIT=LUN1,
2 IOSTAT=IOSTAT) REC.SIZE, RECORD

IF (IOSTAT .EQ. IOSTAT.OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (7.VAL (STATUS))
END IF

END IF

END DO

REWIND (UNIT=LUN1)

9.1.5 Getting Information About a File

You can determine the characteristics of an existing file from within a
program by using the FORTRAN INQUIRE statement. INQUIRE returns the
state of most file attributes. In addition, INQUIRE permits you to determine
whether a specific file exists, whether it is currently open, and with what
logical unit number it is associated. The file you wish to inquire about can be
identified by the file name or, if the file is open, by its logical unit number.
For a complete description of the INQUIRE statement, see Programming in
VAX FORTRAN.

9-14

File Input/Output

The following example determines whether a file exists, the organization, the
record type, and the record length of the file.

INTEGER*4 LUN /l/

CHARACTER*256 FILENAME

INTEGER*2 FN.SIZE

! Returned information

LOGICAL EXIST

CHARACTER*10 ORGANIZATION

CHARACTER*9 RECORDTYPE

INTEGER*4 RECL

INTEGER STATUS,

2 LIB$GET_INPUT

! Get file name

STATUS = LIB$GET_INPUT (FILENAME,

2 'File to inquire about: '

2 FN.SIZE)

! Perform an INQUIRE operation

INQUIRE (FILE = FILENAME (1:FN_SIZE),

2 EXIST = EXIST,

2 ORGANIZATION = ORGANIZATION,

2 RECORDTYPE = RECORDTYPE,

2 RECL = RECL)

9.1.6 Closing a File

All files are closed automatically when a program exits. The FORTRAN
CLOSE statement explicitly closes a file during program execution. Use
the DISPOSE specifier to indicate what should happen to the file when it
is closed; by default, a file is saved (see Section 9.1.1.6). For a complete
description of the CLOSE statement, see Programming in VAX FORTRAN.

You should close a file explicitly in the following cases:

• If the program is going to continue after you are done with the file, close
the file.

• If the file is used only by a subprogram, the subprogram should close it
before returning.

• If you wish to reuse the file with different file attributes, close the file
and then reopen it specifying the new attributes.

• If the program uses many files, close each file as you finish with it. Too
many open files may cause a process to exceed its open file limit.

9-15

File Input/Output

The following program segment reopens a file with write protection. Note
that you can reuse the logical unit number when you reopen the file.

INTEGER*4 LUN /i/
INTEGER*2 FN.SIZE
CHARACTER * 256 FILENAME
CHARACTER*80 INPUT.REC

! Open the file
OPEN (UNIT=LUN,
2 FILE=FILENAME (1:FN_SIZE),
2 F0RM='UNFORMATTED'.
2 STATUS='NEW')

! Close the file
CLOSE (UNIT=LUN)

! Reopen the file
OPEN (UNIT=LUN,
2 FILE=FILENAME (1:FN.SIZE),
2 F0RM='UNFORMATTED',
2 STATUS3'OLD■,
2 READONLY)
READ (UNIT=LUN) INPUT.REC

9.2 Loading and Unloading a Database

To copy an entire data file from the disk to program variables and back
again, either use FORTRAN I/O to read and write the data or use the
SYSSCRMPSC system service to map the data. Mapping the file is faster
than reading it. However, a mapped file usually uses more storage than one
read using FORTRAN I/O. Using I/O, you only have to store the data that
you have entered. Using SYS$CRMPSC, you have to initialize the database
and store the entire structure including the parts that do not yet contain data.

9.2.1 FORTRAN I/O

When using FORTRAN I/O to access all or most of your database, perform
the following operations:

1 Read all of the records from the database into program variables.

2 Process the records using the program variables.

3 Write the records to a new data file (or back to the original data file).

9—16

File Input/Output

FORTRAN I/O can be either formatted or unformatted. Typically, you
use an unformatted data file for numbers or other data accessed only by
programs that understand the structure of the data file. Use a formatted data
file if the data must be accessible to any general purpose display program
(for example, the program invoked with the DCL command TYPE).

Each unformatted I/O operation reads or writes one record of a file. Since
one or more variables (including record variables or arrays) can be written
in a single I/O operation, one record of a file can contain multiple variables.
The following program segment writes three records to a file: the first
contains a RECORD variable, the second an INTEGER variable, and the third
an array.

STRUCTURE /CHAR.STRING/

INTEGER*2 LENGTH

CHARACTER*50 NAME

END STRUCTURE

RECORD /CHAR.STRING/ REPORT.NAME

INTEGER*4 TOTAL.HOUSES

REAL*4 PERSONS.HOUSE (2048)

WRITE (UNIT=STATS_LUN) REPORT.NAME

WRITE (UNIT=STATS_LUN) TOTAL.HOUSES

WRITE (UNIT=STATS_LUN) PERSONS.HOUSE

When performing I/O on arrays, reading or writing the entire array in
a single I/O operation is faster than reading or writing single elements.
However, if you have used only a portion of a large array, you may want
to save disk space by writing only the used portion of the array to the file.
In the following example, the first record of the data file STATS.SAV is an
integer whose value is the number of array elements written to the file. The
remaining records are the array elements, one per record, that were written.

! Write new STATS.SAV

IF (TOTAL.HOUSES .NE. 0) THEN
OPEN (UNIT=STATS_LUN,

2 FILE='STATS.SAV',

2 STATUS='NEW',
2 F0RM='UNFORMATTED')

! Unload database
WRITE (UNIT=STATS_LUN) TOTAL.HOUSES

WRITE (UNIT=STATS_LUN) (PERSONS.HOUSE (I), I = 1, TOTAL.HOUSES)

WRITE (UNIT=STATS_LUN) (ADULTS.HOUSE (I), 1=1, TOTAL.HOUSES)
WRITE (UNIT=STATS_LUN) (INCOME.HOUSE (I), I = 1, TOTAL.HOUSES)

END IF

9-17

File Input/Output

The size and data type of the variable specified in a read or write statement
must agree with the size of the record being read or written. Therefore, if
any record in your database has a variable size, the size of the record must
be included before the element or must be calculable. For example, if an
unformatted file contains character data, you must have some mechanism for
determining the length of the character strings. In the following example,
the array NAME-HOUSE contains the last name of the major provider
in each household. Each name is stored as a counted string—the value
of the first byte of the string is the length of the string—of 51 characters.
(Alternatively, you could store each string as a RECORD variable with two
fields: an INTEGER field containing the length and a CHARACTER field
containing the substring.)

! Declare variables to hold statistics

INTEGER TOTAL.HOUSES

REAL PERSONS.HOUSE (2048),

2 ADULTS.HOUSE (2048),

2 INCOME.HOUSE (2048)

CHARACTER*51 STORE_NAME(2048)

CHARACTER*50 NAME_H0USE(2O48)

INTEGER NAME_LEN(2048)

! Open STATS.SAV file, which contains the following values:

! o TOTAL.HOUSES (one integer)

! o PERSONS.HOUSE (one real number times TOTAL.HOUSES)

! o ADULTS.HOUSE (one real number times TOTAL.HOUSES)

! o INCOME.HOUSE (one real number times TOTAL.HOUSES)

! o STORE.NAME (one 51 character string time TOTAL.HOUSES)

OPEN (UNIT=STATS_LUN,

2 FILE='STATS.SAV',

2 STATUS='OLD',

2 F0RM='UNFORMATTED',

2 I0STAT=I0STAT)

IF (IOSTAT .EQ. IO.OK) THEN

! If STATS.SAV exists, load database from STATS.SAV

READ (UNIT=STATS_LUN) TOTAL.HOUSES

READ (UNIT=STATS_LUN) (PERSONS.HOUSE (I), 1=1, TOTAL.HOUSES)

READ (UNIT=STATS_LUN) (ADULTS.HOUSE (I), 1=1, TOTAL.HOUSES)
READ (UNIT=STATS_LUN) (INCOME.HOUSE (I), 1=1, TOTAL.HOUSES)

READ (UNIT=STATS_LUN) (STORE.NAME (I), 1=1, TOTAL.HOUSES)
CLOSE (UNIT=STATS_LUN)

DO I = 1, TOTAL.HOUSES

NAME.LEN(I) = ICHAR(STORE.NAME(I)(1:1))

NAME.HOUSE(I)(1:NAME.LEN(I)) = STORE.NAME(I)(2:NAME.LEN(I)+1)

END DO

9-18

File Input/Output

! If STATS.SAV does not exist, assume new database

ELSE

CALL ERRSNS (,...STATUS)

IF (STATUS .NE. F0R$_FILN0TF0U) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF
END IF

! Write new STATS.SAV

IF (TOTAL.HOUSES .NE. 0) THEN

OPEN (UNIT=STATS_LUN,

2 FILE='STATS.SAV',

2 STATUS='NEW',

2 FORM='UNFORMATTED')

! Unload database

DO I = 1, TOTAL.HOUSES

STORE.NAME(I)(1:1) =
STORE.NAME(I)(2:NAME.

END DO

WRITE (UNIT=STATS_LUN)

WRITE (UNIT=STATS_LUN)

WRITE (UNIT=STATS_LUN)

WRITE (UNIT=STATS_LUN)

WRITE (UNIT=STATS_LUN)

END IF

CHAR(NAME.LEN(I))

LEN(I)+1) = NAME_H0USE(I)(1:NAME.LEN(I))

TOTAL.HOUSES

(PERSONS.HOUSE (I), I = 1, TOTAL.HOUSES)

(ADULTS.HOUSE (I), 1=1, TOTAL.HOUSES)

(INCOME.HOUSE (I), 1=1, TOTAL.HOUSES)

(STORE.NAME (I), I = 1, TOTAL.HOUSES)

END

9.2.2 SYSSCRMPSC

Mapping a file means associating each byte of the file with a byte of program
storage. You access data in a mapped file by referencing the program storage;
your program does not perform READ or WRITE statements.

Note

Files created using VAX RMS typically contain control
information. Unless you are very familiar with the structure
of these files, do not attempt to map one. Best practice is to map
only those files that have been created as the result of mapping.

To map a file, perform the following operations:

1 Place the program variables for the data in a common block. Page align
the common block at link time by specifying an options file containing
the following link option (name is the name of the common block):

PSECT.ATTR = name, PAGE

9-19

File Input/Output

Within the common block, you should specify the data in order from
most complex to least complex (high to low rank) with character data
last. This naturally aligns the data, thus preventing troublesome page
breaks in virtual memory.

2 Open the data file using a user-open routine. The user-open routine
must open the file for user I/O (as opposed to RMS I/O) and return the
channel number on which the file is opened.

3 Map the data file to the common block.

4 Process the records using the program variables in the common block.

5 Free the memory used by the common block forcing modified data to be
written back to the disk file.

Do not initialize variables in a common block that you plan to map; the
initial values will be lost when SYS$CRMPSC maps the common block.

9.2.2.1 Mapping a File

For a complete description of the SYS$CRMPSC system service, see the
VAX/VMS System Services Reference Manual. Typically, you use only the
following arguments to map a file.

• inadr (argument 1)—Define the first argument as an integer array of
two elements. Specify the location of the first variable in the common
block as the value of the first array element, and the location of the last
variable in the common block as the value of the second array element.
(If the first variable in the common block is an array or string, the first
variable in the common block is the first element of that array or string.
If the last variable in the common block is an array or string, the last
variable in the common block is the last element in that array or string.)

• retadr (argument 2)—Define the second argument as an integer array
of two elements. SYS$CRMPSC returns the location of the first element
mapped as the first array element and the location of the last element
mapped as the second array element.

The value returned in the first array element should be the same as the
address passed in the first element of inadr. The value returned in the
second element should be equal to or slightly more than (within 512
bytes, or one block) the value passed in the second element of inadr. If
the first element of retadr is in error, you probably forgot to page align
the common block containing the mapped data. If the second element
of retadr is in error, you were probably creating a new data file and
forgot to specify the INITIALSIZE keyword of the OPEN statement (see
Section 9.2.2.3).

9-20

File Input/Output

• flags (argument 4)—Typically, when using private sections, you specify
SEC$M_WRT (indicates that the section is writable). If the file is
new, also specify SEC$M_DZRO (indicates that the section should
be initialized to zero; Section 9.2.2.3 discusses new sections).

• chan (argument 8)—You must use a user-open routine to get the channel
number (see Section 9.2.2.2).

The following example maps a data file consisting of one longword and three
real arrays to the INC—DATA common block. The options file INCOME.OPT
page aligns the INC—DATA common block.

If SYS$CRMPSC returns a status of SS$_IVSECFLG and you have correctly
specified the flags in the mask argument, check to see if you are passing a
channel number of 0.

INCOME.OPT

PSECT_ATTR = INC.DATA, PAGE

INCOME.FOR

! Declare variables to hold statistics

REAL PERS0NS.H0USE (2048),

2 ADULTS.HOUSE (2048),

2 INC0ME.H0USE (2048)

INTEGER T0TAL.H0USES

! Declare section information

! Data area

COMMON /INC.DATA/ PERS0NS.H0USE,

2 ADULTS_H0USE,

2 INC0ME.H0USE,

2 T0TAL.H0USES

! Addresses

INTEGER ADDR(2),

2 RET_ADDR(2)
! Section length

INTEGER SEC.LEN

! Channel

INTEGER*2 CHAN,
2 GARBAGE

COMMON /CHANNEL/ CHAN,
2 GARBAGE

! Mask values

INTEGER MASK
INCLUDE '($SECDEF)'

! User-open routines

INTEGER UFO.OPEN,
2 UFO.CREATE

EXTERNAL UFO.OPEN.
2 UFO.CREATE

! Declare logical unit number

INTEGER STATS.LUN

9-21

File Input/Output

! Declare status variables and values

INTEGER STATUS,

2 IOSTAT,

2 IO.OK

PARAMETER (IO.OK = 0)

INCLUDE '($FORDEF)'

EXTERNAL INCOME.BADMAP

! Declare logical for INQUIRE statement

LOGICAL EXIST

! Declare subprograms invoked as functions

INTEGER LIB$GET_LUN,

2 SYS$CRMPSC,

2 SYS$DELTVA,

2 SYS$DASSGN

! Get logical unit number for STATS.SAV

STATUS = LIB$GET_LUN (STATS.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

INQUIRE (FILE = 'STATS.SAV',
2 EXIST = EXIST)

IF (EXIST) THEN

! Open STATS.SAV file

OPEN (UNIT=STATS_LUN,

2 FILE='STATS.SAV',

2 STATUS='OLD',

2 USEROPEN = UFO.OPEN)

MASK = SEC$M_WRT

ELSE

! If STATS.SAV does not exist, create new database

MASK = SEC$M_WRT .OR. SEC$M_DZRO

SEC.LEN =

! (address of last - address of first + size of last + 511)/512

2 ((*/.LOC(TOTAL_HOUSES) - %LOC(PERSONS.HOUSE(l)) + 4 + 511)/512)

OPEN (UNIT=STATS.LUN,
2 FILE='STATS.SAV',

2 STATUS='NEW',

2 INITIALSIZE = SEC.LEN,

2 USEROPEN = UFO.CREATE)

END IF

! Free logical unit number and map section

CLOSE (STATS.LUN)

9-22

File Input/Output

! ********

! MAP DATA
j ********

! Specify first and last address of section

ADDR(l) = */,L0C(PERS0NS_H0USE(l))

ADDR(2) = */.L0C(T0TAL_H0USES)

! Map the section

STATUS = SYS$CRMPSC (ADDR,

2 RET.ADDR,
2

2 '/,VAL(MASK) ,

2
2 '/.VAL(CHAN) ,

2 . . .)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Check for correct mapping

IF ((ADDR(l) .NE. RET_ADDR(1)) .OR.

2 (ADDR(2) .GT. RET_ADDR(2)))

2 CALL LIB$SIGNAL C/.VAL C/.LOC(INCOME_BADMAP)))

! Reference data using the

! data structures listed

! in the common block

! Close and update STATS.SAV

STATUS = SYS$DELTVA (RET_ADDR,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
STATUS = SYS$DASSGN C/.VAL (CHAN))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

9.2.2.2 User-Open Routine

When you open a file for mapping, you must specify a user-open routine to
perform the following operations (Section 9.8 discusses user-open routines):

• Set the user-file open bit (FAB$V_UFO) in the FAB options mask.

• Open the file using SYS$OPEN for an existing file or SYS$CREATE for
a new file. (Do not invoke SYS$CONNECT if you have set the user-file
open bit.)

• Return the channel number to the program unit that started the OPEN
operation. The channel number is in the additional status longword of
the FAB (FAB$L_STV) and must be returned in a common block.

• Return the status of the OPEN operation (SYS$OPEN or SYS$CREATE)
as the value of the user-open routine.

9-23

File Input/Output

After setting the user-file open bit in the FAB options mask, you cannot
use FORTRAN I/O to access data in that file. Therefore, you should use
the FORTRAN CLOSE statement to free the FORTRAN logical unit number
associated with the file. The file is still open. You access the file with the
channel number.

The following user-open routine is invoked by the example program in
Section 9.2.2.1 if the file STATS.SAV exists. (If STATS.SAV does not exist,
the user-open routine must invoke SYSSCREATE rather than SYS$OPEN.)

UFO-OPEN.FOR

INTEGER FUNCTION UFO.OPEN (FAB,

2 RAB,

2 LUN)

! Include VAX RMS definitions

INCLUDE '($FABDEF)'

INCLUDE '($RABDEF)'

! Declare dummy arguments

RECORD /FABDEF/ FAB

RECORD /RABDEF/ RAB

INTEGER LUN

! Declare channel

INTEGERS CHAN

COMMON /CHANNEL/ CHAN

! Declare status variable

INTEGER STATUS

! Declare system procedures

INTEGER SYS$0PEN

! Set useropen bit in the FAB options longword

FAB.FAB$L_F0P = FAB.FAB$L_F0P .OR. FAB$M_UF0

! Open file

STATUS = SYS$OPEN (FAB)

! Read channel from FAB status word

CHAN = FAB.FAB$L_STV

! Return status of open operation

UFO.OPEN = STATUS

END

9-24

File Input/Output

9.2.2.3 Initializing a Mapped Database

The first time you map a file you must perform the following operations in
addition to those listed at the beginning of Section 9.2.2:

• Specify the size of the file—SYS$CRMPSC maps data based on the size
of the file. Therefore, when creating a file that is to be mapped, you
must use the INITIALSIZE specifier of the OPEN statement to create a
file large enough to contain all of the expected data. Figure the size of
your database as follows:

1 Find the size of the common block (in bytes) by subtracting the
location of the first variable in the common block from the location
of the last variable in the common block and adding the size of the
last element.

2 Find the number of blocks in the common block by adding 511 to
the size and dividing the result by 512 (512 bytes = 1 block).

• Initialize the file when you map it—FORTRAN does not initialize the
blocks allocated to a file; they contain random data. When you first map
the file, you should initialize the mapped area to zeros by setting the
SEC$V_DZRO bit in the mask argument of SYS$CRMPSC.

The user-open routine for creating a file is the same as the user-open routine
for opening a file except that SYS$OPEN is replaced by SYS$CREATE.

9.2.2.4 Saving a Mapped File

To close a data file opened for user I/O, you must deassign the I/O channel
assigned to that file. Before you can deassign a channel assigned to a
mapped file, you must delete the virtual memory associated with the file (the
memory used by the common block). When you delete the virtual memory
used by a mapped file, any changes made while the file was mapped are
written back to the disk file. Use the SYS$DELTVA system service to delete
the virtual memory used by a mapped file. Use the SYS$DASSGN system
service to deassign the I/O channel assigned to a file.

The following program segment closes a mapped file, automatically writing
any modifications back to the disk. To ensure that the proper locations
are deleted, pass SYS$DELTVA the addresses returned to your program
by SYS$CRMPSC rather than the addresses you passed to SYS$CRMPSC.
For complete descriptions of the SYS$DELTVA and SYS$DASSGN system
services, see the VAX/VMS System Services Reference Manual.

9—25

File Input/Output

If you want to save modifications made to the mapped section without
closing the file, use the SYS$UPDSEC system service. To ensure that the
proper locations are updated, pass SYS$UPDSEC the addresses returned
to your program by SYS$CRMPSC rather than the addresses you passed
to SYS$CRMPSC. Typically, you want to wait until the update operation
completes before continuing program execution. Therefore, use the efn
argument (argument 5) of SYS$UPDSEC to specify an event flag to be set
when the update is complete and wait for the system service to complete
before continuing. For a complete description of the SYS$UPDSEC system
service, see the VAX/VMS System Services Reference Manual.

! Section address

INTEGER+4 ADDR(2),

2 RET_ADDR(2)

! Event flag

INTEGER*4 FLAG

! Status block

STRUCTURE /IO.BLOCK/

INTEGER*2 IOSTAT,

2 HARDWARE

INTEGER*4 BAD.PAGE

END STRUCTURE

RECORD /IO.BLOCK/ IOSTATUS

! Get an event flag

STATUS = LIB$GET_EF (FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Update the section

STATUS = SYS$UPDSEC (RET.ADDR,

2
2 '/.VAL(FLAG)

2
2 IOSTATUS,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL(STATUS))

! Wait for section to be updated

STATUS = SYS$SYNCH (V.VAL(FLAG) ,

2 IOSTATUS)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7, VAL (STATUS))

9.3 Per-Record Processing of Entire Database

A sequential file consists of records arranged one after the other in the order
in which they are written to the file. Records can only be added to the end
of the file. Typically, sequential files are accessed sequentially.

9-26

File Input/Output

9.3.1 Creating a Sequential File

To create a sequential file, use the OPEN statement specifying the following:

STATUS - NEW', ACCESS = 'SEQUENTIAL', and ORGANIZATION =
'SEQUENTIAL'.

(ORGANIZATION may be also be specified as 'INDEXED' or 'RELATIVE';
see Section 9.4.4 for information about sequential access of indexed files.)

The following example creates a sequential file of fixed-length records.

INTEGER STATUS.
2 LUN,

2 LIB$GET_INPUT,

2 LIB$GET_LUN.

2 STR$UPCASE

INTEGERS FN.SIZE,

2 REC.SIZE

CHARACTER*256 FILENAME

CHARACTER*80 RECORD

! Get file name

STATUS = LIB$GET_INPUT

2

2
IF (.NOT. STATUS) CALL

! Get free unit number

STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the file

OPEN (UNIT = LUN.

2 FILE = FILENAME (1:FN_SIZE),

2 ORGANIZATION = 'SEQUENTIAL•.

2 ACCESS = 'SEQUENTIAL1,

2 RECORDTYPE = 'FIXED'.

2 FORM = 'UNFORMATTED',

2 RECL = 20,
2 STATUS = 'NEW')

! Get the record input
STATUS = LIB$GET_INPUT (RECORD,
2 'Input: ',

2 REC.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

(FILENAME,

'File name: ',

FN.SIZE)

LIB$SIGNAL C/.VAL (STATUS))

9-27

File Input/Output

DO WHILE (REC.SIZE .NE. 0)

! Convert to uppercase

STATUS = STR$UPCASE (RECORD.RECORD)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

WRITE (UNIT=LUN) RECORD(1:REC.SIZE)

! Get more record input

STATUS = LIB$GET_INPUT (RECORD,

2 'Input: ',

2 REC.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

END DO

END

9.3.2 Updating a Sequential File

To update a sequential file, read each record from the file, update it, and
write it to a new sequential file. Updated records cannot be written back as
replacement records for the same sequential file from which they were read.

The following program example updates a sequential file, giving the user the
option of modifying a record before writing it to the new file. The same file
name is used for both files; since the new update file was opened after the
old file, it has a higher version number.

9—28

File Input/Output

INTEGER STATUS

2 LUN1,

2 LUN2,

2 IOSTAT

2

2

2

INTEGERS FN.SIZE

CHARACTER*256 FILENAME

CHARACTER*80 RECORD

CHARACTER*80 NEW.RECORD

INCLUDE '($FORDEF)'

INTEGER*4 LIB$GET_INPUT,

2 LIB$GET_LUN,

2 STR$UPCASE

! Get file name

STATUS = LIB$GET_INPUT (FILENAME,
2 'File name: ',

2 FN.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Get free unit number

STATUS = LIB$GET_LUN (LUN1)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Open the old file

OPEN (UNIT=LUN1,

2 FILE=FILENAME (1:FN.SIZE),

2 ORGANIZATION='SEQUENTIAL',

2 ACCESS='SEQUENTIAL',

2 RECORDTYPE='FIXED',

2 FORM='UNFORMATTED',

2 RECL=20,

2 STATUS='OLD')

! Get free unit number

STATUS = LIB$GET_LUN (LUN2)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Open the new file

OPEN (UNIT=LUN2,

2 FILE=FILENAME (1:FN.SIZE),

2 ORGANIZATION^'SEQUENTIAL'.

2 ACCESS='SEQUENTIAL',

2 RECORDTYPE='FIXED',

2 FORM='UNFORMATTED',
2 RECL=20.
2 STATUS='NEW')

File Input/Output

! Read a record from the old file

READ (UNIT=LUN1,

2 I0STAT=I0STAT) RECORD

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

END IF

DO WHILE (STATUS .NE. FOR$_ENDDURREA)

TYPE *, RECORD

! Get record update

STATUS = LIB$GET_INPUT (NEW.RECORD,

2 'Update: ')

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Convert to uppercase

STATUS = STR$UPCASE (NEW.RECORD,

2 NEW.RECORD)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Write unchanged record or updated record

IF (NEW.RECORD .EQ. ' ') THEN

WRITE (UNIT=LUN2) RECORD

ELSE

WRITE (UNIT=LUN2) NEW.RECORD

END IF

! Read the next record

READ (UNIT=LUN1,

2 I0STAT=I0STAT) RECORD

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

END IF

END DO

END

9.3.3 Sorting and Merging Sequential Files

The Sort Utility permits you to sort and merge records in sequential files
based on one or more key fields that you specify. You can sort from one to
ten input files, generating a single reordered output file. You can also merge
from two to ten presorted input files into a single output file.

Use the SORT and MERGE commands to sort and merge files at the DCL
command level; for details, see the description of the Sort Utility in the
VAX/VMS Sort Reference Manual. Use the SOR$ library procedures to
sort and merge files within a program. The VAX/VMS Utility Routines
Reference Manual contains complete specifications for the procedures and
their arguments.

9-30

File Input/Output

Sequential files can be sorted and merged using either a file interface or a
record interface. Using the file interface, your program passes entire files
to SORT, and receives an entire reordered file upon completion. Using the
record interface, your program passes a file to SORT one record at a time,
and receives the reordered file one record at a time. Typically, the record
interface is used to process individual records before or after a sort operation.
These interfaces can be combined, allowing your program to pass entire files
to SORT and receive individual records or vice versa.

A program can perform multiple sort operations concurrently by specifying
the context argument when calling the various SOR$ procedures. The
context argument is a longword that you pass and SORT updates to keep
track of concurrent sort operations. A call to SOR$END_SORT reinitializes
the context argument.

9.3.3.1 Passing Key Information

To perform sort or merge operations, you must pass key information (key-
buffer argument) to either the SOR$BEGIN_SORT or SOR$BEGIN—MERGE
procedure. The key_buffer argument is passed as an array of words. The
first word of the array contains the number of keys to be used in the sort or
merge. Each block of four words that follows describes one key (multiple
keys are listed in order of their priority).

• The first word of each block describes the key datatype.

• The second word determines the sort or merge order (0 for ascending, 1
for descending).

• The third word describes the relative offset of the key (beginning at
position 0).

• The fourth word describes the length of the key in bytes.

To sort or merge sequential files, you must call a specific sequence of SOR$
procedures. The procedures and calling sequence depend on (1) whether
you are sorting or merging, and (2) which interface you use.

9-31

File Input/Output

9.3.3.2 Sorting with the File Interface

To sort sequential files using the file interface:

1 Call SOR$PASS_FILES to pass the file specifications of the input and
output files to SORT. Up to ten input files are permitted. For multiple

input files, you must call SOR$PASS_FILES once for each input file.
The output file must be specified in the first call. A number of optional
arguments control the characteristics of the output file; see the VAX/VMS
Utility Routines Reference Manual.

2 Call SOR$BEGIN_SORT to pass key information. You may also specify
a number of sort options, including a user-written key comparison

routine; see the VAX/VMS Utility Routines Reference Manual. When using

the file interface, SOR$BEGIN_SORT opens the input and output files.

3 Call SOR$SORT_MERGE to execute the sort and direct the sorted

records to the output file.

4 Call SOR$END_SORT to end the sort and close the input and output
files.

The following example sorts a sequential file using the file interface.

INTEGER STATUS,
2 FN.SIZE.IN,
2 FN.SIZE.OUT,
2 LUN.IN,
2 LUN.OUT
CHARACTER*256 FILENAME.IN,
2 FILENAME.OUT

INTEGER LIB$GET_INPUT,
2 LIB$GET_LUN,
2 SOR$PASS_FILES,
2 S0R$BEGIN_S0RT,
2 SOR$SORT_MERGE,
2 SOR$END_SORT

EXTERNAL DSC$K_DTYPE_T ! Character data type definition

! Define a record
STRUCTURE /EMPLOYEE/

CHARACTER*20 NAME ! 1:20
CHARACTER*20 ADDRESS ! 21:40
CHARACTER*19 CITY ! 41:59
CHARACTER*2 STATE ! 60:61
CHARACTER*9 ZIP.C0DE ! 62:70

END STRUCTURE
RECORD /EMPLOYEE/ TEMP

9-32

File Input/Output

! Sort key information - 1 key

INTEGER*2 KEY.BUFFER (5)

KEY.BUFFER (1) = 1

KEY.BUFFER (2) = 7.L0C(DSC$K_DTYPE_T)

KEY.BUFFER (3) = 0

KEY.BUFFER (4) = 0 !

KEY.BUFFER (5) = 20 !

! Number of keys

! Character data

! Ascending sort

Start at offset 0 (pos. 1)

Length of the key

! Get input file name

STATUS = LIB$GET_INPUT

2
2

IF (.NOT. STATUS) CALL

! Get output file name

STATUS = LIB$GET_INPUT

2

2
IF (.NOT. STATUS) CALL

(FILENAME.IN,

'Input file name: ',

FN.SIZE.IN)

LIB$SIGNAL ('/.VAL (STATUS))

(FILENAME.OUT,

'Output file name: ',

FN.SIZE.OUT)

LIB$SIGNAL ('/.VAL (STATUS))

! Pass files to SORT

STATUS = SORSPASS.FILES (FILENAME.IN (1:FN_SIZE_IN),
2 FILENAME.OUT (1:FN.SIZE.OUT))

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Pass key information to SORT

STATUS = S0R$BEGIN_S0RT (KEY.BUFFER)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Perform sort

STATUS = S0R$S0RT_MERGE ()

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! End sort

STATUS = SOR$END_SORT ()

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

END

9.3.3.3 Sorting with the Record Interface

To sort files using the record interface:

1 Call SOR$BEGIN_SORT to pass key information, the longest record
length, and sort options. (Record length, the lrl argument, must be
specified for the record interface.)

2 Call SOR$RELEASE_REC once for each record that you wish release to
SORT. (Record buffer, the desc argument, must be specified.)

3 Call SOR$SORT_MERGE to execute the sort.

4 Call SOR$RETURN_REC once for each record that is to be returned
from SORT. (Record buffer, the desc argument, must be specified.)

5 Call SOR$END_SORT to end the sort and close the input and output
files.

9-33

File Input/Output

The following example sorts a sequential file using the file interface. Since
the SOR$RELEASE_REC and SOR$RETURN_REC routines require that
you pass the record as a character string, the structure block that defines the
record variable uses a union block to indicate that the record variable may be
interpreted as various fields or as a single character string field.

INTEGER STATUS,

2 FN_SIZE_IN,

2 FN_SIZE_OUT,

2 LUN_IN,

2 LUN.OUT,

2 IOSTAT

INTEGERS LRL/72/

CHARACTER*256 FILENAME.IN,
2 FILENAME.OUT

INTEGER LIB$GET_INPUT,

2 LIB$GET_LUN,

2 SOR$BEGIN_SORT,

2 SOR$RELEASE_REC,

2 SOR$SORT_MERGE,

2 SOR$RETURN_REC,

2 S0R$END_S0RT

INCLUDE '($FORDEF)1

INCLUDE '($SSDEF)'

EXTERNAL DSC$K_DTYPE_T

PARAMETER STATUS.OK = 1

! Define a record

STRUCTURE /EMPLOYEE/

UNION

MAP

CHARACTER*22 NAME ! 1:20

CHARACTER*20 ADDRESS ! 21:40

CHARACTER*19 CITY ! 41:59
CHARACTER*2 STATE ! 60:61

CHARACTER*9 ZIP.CODE ! 62:70

END MAP

MAP

CHARACTER*72 STRING

END MAP

END UNION

END STRUCTURE

RECORD /EMPLOYEE/ TEMP

! Sort key information - 1 key

INTEGER*2 KEY.BUFFER (5)

KEY.BUFFER (1) = 1 ! Number of keys

KEY.BUFFER (2) = */.LOC(DSC$K_DTYPE_T) ! Character data

KEY.BUFFER (3) = 0 ! Ascending sort

KEY_BUFFER (4) = 0 ! Start at offset 0 (pos. 1)
KEY.BUFFER (5) = 22 ! Length of the key

! Get input file name

STATUS = LIB$GET_INPUT

2
2
IF (.NOT. STATUS) CALL

(FILENAME.IN,
'Input file name:

FN.SIZE.IN)
LIB$SIGNAL C/.VAL (STATUS))

9-34

File Input/Output

! Get output file name

STATUS = LIB$GET_INPUT (FILENAME.OUT,

2 'Output file name:

2 FN_SIZE_OUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get free logical unit number

STATUS = LIB$GET_LUN (LUN.IN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Open the input file

OPEN (UNIT=LUN_IN,

2 FILE=FILENAME_IN (1:FN.SIZE.IN).

2 0RGANIZATI0N='SEQUENTIAL'.

2 ACCESS='SEQUENTIAL',

2 RECORDTYPE='FIXED',

2 FORM='UNFORMATTED',

2 RECL=18,

2 STATUS='OLD')

! Get free logical unit number

STATUS = LIB$GET_LUN (LUN.OUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the output file

OPEN (UNIT=LUN_OUT,

2 FILE=FILENAME_OUT (1:FN_SIZE_OUT),

2 ORGANIZATION='SEQUENTIAL',

2 ACCESS='SEQUENTIAL',

2 RECORDTYPE='FIXED',

2 F0RM='UNFORMATTED',

2 RECL=18,

2 STATUS^'NEW')

! Give SORT key information

STATUS = SOR$BEGIN_SORT (KEY.BUFFER,

2 LRL)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Read first record from input file

READ (UNIT=LUN_IN,

2 I0STAT=I0STAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS(,...STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END IF

9-35

File Input/Output

! Pass each record to SORT

DO WHILE (STATUS .NE. FOR$_ENDDURREA)

! Pass the record

STATUS = SOR$RELEASE_REC (TEMP.STRING)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Read next record

READ (UNIT=LUN_IN,

2 I0STAT=I0STAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS(,,..STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL ('/.VAL (STATUS))
END IF

END IF

END DO

! Start sorting

STATUS = SOR$SORT_MERGE ()

IF (.NOT. STATUS) CALL LIB$SIGNAL (‘/.VAL (STATUS))

! Release records from SORT

STATUS = SOR$RETURN_REC (TEMP.STRING)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Write records to output

DO WHILE (STATUS .NE. SS$_ENDOFFILE)

! Write the record to output file

WRITE (UNIT=LUN_OUT,

2 I0STAT=IOSTAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS(,...STATUS)

CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

! Release the next record

STATUS = SOR$RETURN_REC (TEMP.STRING)

IF ((STATUS .NE. STATUS.OK) .AND.

2 (STATUS .NE. SS$_ENDOFFILE)) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END DO

! End SORT

STATUS = SOR$END_SORT ()

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

9-36

File Input/Output

9.3.3.4 Merging with the File Interface

To merge records using the file interface:

1 Call SOR$PASS_FILES to pass the file specifications of the input and
output files to SORT. Up to ten input files are permitted. For multiple
input files, you must call SOR$PASS_FILES once for each input file.
The output file must be specified in the first call. A number of optional
arguments control the characteristics of the output file; see the VAX/VMS
Utility Routines Reference Manual.

2 Call SOR$BEGIN—MERGE to pass key information and merge options.
You may also specify a number of merge options, including a user-
written key comparison routine; see the VAX/VMS Utility Routines
Reference Manual. When using the file interface, SOR$BEGIN_MERGE
opens the input and output files and initializes the merge operation.

3 Call SOR$END_SORT to end the merge and close the input and output
files.

The following example merges two sequential files using the file interface.

INTEGER STATUS,

2 FN_SIZE.INI,

2 FN_SIZE_IN2,

2 FN.SIZE.OUT,

2 LUN.OUT

CHARACTER*256 FILENAME.INI,

2 FILENAME.IN2,
2 FILENAME.OUT

INTEGER LIB$GET_INPUT,

2 LIB$GET_LUN,

2 SOR$PASS_FILES,

2 SOR$BEGIN_MERGE,

2 S0R$END_S0RT

EXTERNAL DSC$K_DTYPE_T

! Define a record

STRUCTURE /EMPLOYEE/

CHARACTER*22 NAME

CHARACTER*20 ADDRESS

CHARACTER*19 CITY
CHARACTER*2 STATE

CHARACTER+9 ZIP.CODE
END STRUCTURE
RECORD /EMPLOYEE/ TEMP

! SORT key information - 1 key

INTEGER*2 KEY.BUFFER (5)
KEY.BUFFER (1) = 1
KEY.BUFFER (2) = '/.LOC(DSC$K_DTYPE_T)

KEY.BUFFER (3) =0

KEY.BUFFER (4) = 0

KEY.BUFFER (5) = 22

! 1:20
! 21:40

! 41:59
! 60:61

! 62:70

Number of keys
Character data

Ascending sort

Start at offset 0 (pos.

Length of the key
1)

9-37

File Input/Output

! Get first input file name

STATUS = LIB$GET_INPUT (FILENAME.INI,

2 'Input file name:

2 FN_SIZE.INI)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get second input file name

STATUS = LIB$GET_INPUT (FILENAME.IN2,

2 'Input file name: ',

2 FN_SIZE_IN2)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get output file name

STATUS = LIB$GET_INPUT (FILENAME.OUT,

2 'Output file name: ',

2 FN.SIZE.OUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Pass files to SORT - output file in first call

STATUS = SOR$PASS_FILES (FILENAME.INI (1:FN_SIZE_IN1),
2 FILENAME.OUT (1:FN.SIZE.OUT))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Pass second input file to SORT

STATUS = SOR$PASS_FILES (FILENAME.IN2 (1:FN_SIZE.IN2))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Give SORT key information
STATUS = SOR$BEGIN_MERGE (KEY.BUFFER)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! End merge

STATUS = S0R$END_S0RT ()

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

9.3.3.5 Merging with the Record Interface

To merge sequential files using the record interface:

1 Call SOR$BEGIN—MERGE to pass the key information, the longest
record length, the merge order (number of input files to be merged),
and a user-written input routine. The last three arguments mentioned
(lrl, merge—order, and user—input) are required when using the record
interface; the first argument (key_buffer) may be omitted if you specify
a key comparison routine. The user input routine must determine which
input file to read, read a record, and determine the record's length.

2 Call SOR$RETURN_REC once for each record that is to be returned
from SORT. (Record buffer, the desc argument, must be specified.)
SOR$RETURN_REC calls the user input routine until all records are
passed. When using the record interface, releasing, merging, and reading
of records all occur during a call to SOR$RETURN_REC.

3 Call SOR$END_SORT to end the merge and close the input and output
files.

9-38

File Input/Output

The user input routine must accept four arguments: a record buffer, a file
order argument (an integer passed by SORT determining which input file
should be read), a record length buffer (an integer), and a context argument
(a longword used to keep track of concurrent operations). The routine must
return a status value: either SS$_NORMAL for a successful read or SS$_
ENDOFFILE for an end-of-file error. SOR$BEGIN_MERGE passes any other
error back to the program unit performing the merge.

The following example merges two sequential files using the record interface.
Note that the common block UNIT-NUMBERS is used to pass the logical
unit numbers of the input files to the input routine, GET—RECORD. Since the
SOR$RETURN_REC routines require that you pass the record as a character
string, the structure block that defines the record variable uses a union block
to indicate that the record variable may be interpreted as various fields or as
a single character string field.

INTEGER STATUS,
2 GET.RECORD,

2 FN_SIZE.INI,

2 FN_SIZE_IN2,

2 FN.SIZE.OUT,

2 STATUS.OK,

2 I0STAT_0K,

2 LUN.INl,

2 LUN.IN2,

2 LUN.OUT,

2 RECORD.LEN,

2 IOSTAT

PARAMETER (STATUS.OK = 1)

PARAMETER (IOSTAT.OK = 0)

INTEGER*2 LRL /72/

EXTERNAL DSC$K_DTYPE_T

LOGICAL*1 ORDER ! Order of merge

DATA ORDER/2/

! Common block to pass luns to subroutine

COMMON /UNIT.NUMBERS/ LUN.INi,
2 LUN.IN2

CHARACTER*256 FILENAME.INI,
2 FILENAME.IN2,
2 FILENAME.OUT

EXTERNAL GET.RECORD
INTEGER LIB$GET_INPUT,

2 LIB$GET_LUN,

2 SOR$BEGIN_MERGE,

2 SOR$RETURN_REC,
2 SOR$PASS_FILES,

2 S0R$END_S0RT

INCLUDE '($F0RDEF)'

INCLUDE 1($SSDEF)'

9-39

File Input/Output

! Define a record

STRUCTURE /EMPLOYEE/

UNION

MAP

CHARACTER*22 NAME

CHARACTER * 20 ADDRESS

CHARACTER*19 CITY

CHARACTER*2 STATE

CHARACTER*9 ZIP.CODE

END MAP

MAP

CHARACTER*72 STRING ! Whole record

1:20

21:40

41:59

60:61

62:70

END MAP

END UNION

END STRUCTURE

RECORD /EMPLOYEE/ TEMP

! Sort key information - 1 key

INTEGER*2 KEY.BUFFER (5)

KEY.BUFFER (1) = 1 ! Number of keys

KEY.BUFFER (2) = y.LOC(DSC$K_DTYPE_T) ! Character data

KEY.BUFFER (3) = 0 ! Ascending sort

KEY.BUFFER (4) = 0 ! Start at offset 0 (pos. 1)

KEY.BUFFER (5) = 22 ! Length of the key

! Get first input file name

STATUS = LIB$GET_INPUT (FILENAME.INI,

2 'Input file name: ',

2 FN_SIZE.INI)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get second input file name

STATUS = LIB$GET_INPUT (FILENAME.IN2,

2 'Input file name: ',

2 FN.SIZE.IN2)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get output file name

STATUS = LIB$GET_INPUT (FILENAME.OUT,

2 'Output file name: ',

2 FN.SIZE.OUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get free logical unit number

STATUS = LIB$GET_LUN (LUN.IN1)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the input file
OPEN (UNIT=LUN_IN1,

2 FILE=FILENAME.INI (1:FN_SIZE_IN1),

2 ORGANIZATION='SEQUENTIAL',
2 ACCESS='SEQUENTIAL',

2 RECORDTYPE='FIXED',
2 FORM='UNFORMATTED'.

2 RECL-18,
2 STATUS='OLD')

! Get free logical unit number

STATUS = LIB$GET.LUN (LUN.IN2)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

9-40

File Input/Output

! Open the second input file

OPEN (UNIT=LUN_IN2,

2 FILE=FILENAME_IN2 (1:FN.SIZE.IN2),

2 ORGANIZATION*'SEQUENTIAL',

2 ACCESS*'SEQUENTIAL',

2 RECORDTYPE*'FIXED',

2 FORM*'UNFORMATTED',

2 RECL=18,

2 STATUS*'OLD•)

! Get free logical unit number

STATUS = LIB$GET_LUN (LUN.OUT)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the output file

OPEN (UNIT=LUN_OUT,

2 FILE=FILENAME_OUT (1:FN.SIZE.OUT),

2 ORGANIZATION*'SEQUENTIAL',

2 ACCESS*'SEQUENTIAL',

2 RECORDTYPE*'FIXED',

2 FORM*'UNFORMATTED',

2 RECL=18,

2 STATUS*'NEW')

! Begin the MERGE

STATUS * SOR$BEGIN_MERGE (KEY.BUFFER,

2 LRL,,
2 ORDER,,,

2 GET.RECORD)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get, merge and release records

! RETURN_REC calls GET.RECORD for input

DO WHILE (STATUS .NE. SS$_ENDOFFILE)

STATUS = SOR$RETURN_REC (TEMP.STRING,

2 RECORD.LEN)

IF (.NOT. STATUS) THEN

IF (STATUS .NE. SS$_ENDOFFILE)

2 CALL LIB$SIGNAL C/.VAL (STATUS))

ELSE
! Write the record to output file

WRITE (UNIT=LUN_OUT,
2 IOSTAT=IOSTAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS(..,,STATUS)
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END IF

END DO

! End the merge

STATUS = S0R$END_S0RT ()

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

9-41

File Input/Output

GET—RECORD.FOR

INTEGER FUNCTION GET.RECORD (RECORDX,
2

2

FILE.ORDER,

SIZE)

INTEGER STATUS.

IOSTAT,

STATUS.OK,

IOSTAT.OK,
MAX_NUM_FILES,

LUNX.

FILE.ORDER,

SIZE

2

2

2

2

2

2

2

PARAMETER (STATUS.OK = 1)

PARAMETER (IOSTAT.OK = 0)

PARAMETER (MAX.NUM.FILES =2) ! Max number of input files

INCLUDE '($SSDEF)'

INCLUDE '($FORDEF)'

COMMON /UNIT.NUMBERS/ LUN.INl,

2 LUN.IN2

CHARACTER*72 RECORDX ! Record buffer

GET.RECORD = SS$_NORMAL

! Determine which input file is being read

IF (FILE.ORDER .EQ. 1) THEN

LUNX = LUN.INl

ELSE IF (FILE.ORDER .EQ. 2) THEN

LUNX = LUN.IN2

ELSE IF ((FILE.ORDER .LT. 1) .OR.

2 (FILE.ORDER .GT. MAX.NUM.FILES)) THEN
GET.RECORD = SS$_ENDOFFILE

END IF

IF (GET.RECORD .NE. SS$_ENDOFFILE) THEN

! Read record from input file

READ (UNIT=LUNX,

2 IOSTAT=IOSTAT) RECORDX

! Error during read

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS(,,,,STATUS)

IF (STATUS .EQ. FOR$_ENDDURREA) THEN

GET.RECORD = SS$_ENDOFFILE

ELSE

CALL LIB$SIGNAL ('/.VAL(STATUS))
END IF

END IF

! Successful read
SIZE = LEN (RECORDX)

END IF

END

9-42

File Input/Output

9.4 Processing Parts of the Database

Indexed files consist of records that contain sets of keys. Each key in a set
of keys occupies the same position in its record. Each set of keys constitutes
one index into the records of a file. This record structure permits

• Direct access—Access a given record by specifying the value of one of its
keys.

• Sequential access—Access records sequentially according to the
ascending values of a set of keys.

Keys can be either integer or character data types. An indexed file must
have at least one key, known as the primary key, and may have up to 254
alternate keys.

For example, suppose that you must save the following information on
customer orders:

• Order number

• Customer identification number

• Item number

You want to be able to access orders directly either by order number or
customer identification number. Specify order number as the primary key
because it is unique. Specify the customer identification number as the
secondary key.

9.4.1 Creating an Indexed File

To create an indexed file, use an OPEN statement with the following
specifiers:

• STATUS = 'NEW'

• ORGANIZATION = 'INDEXED'

• ACCESS = 'KEYED'

• RECL = n

where n is the exact record size for fixed-length records and the
maximum record size for variable-length records. Specify size in bytes
for formatted files and in longwords for unformatted files.

• KEY = (begin:end:type,...)

9-43

File Input/Output

where the values specified are the beginning and ending byte positions
of the field, and the data type of the key (must be INTEGER*2 (2 bytes),
INTEGER*4 (4 bytes), or CHARACTER.

Specify the primary key (key 0) first, the first alternate key (key 1)
second, and so on. The following example shows a record definition
and its matching key specifier. (A record variable is used for the record
definition to ensure that the record fields are contiguous.)

Record Definition:

STRUCTURE /ITEM/

INTEGER*4 ORDER.NUMBER ! Pos 1--4 (key 0)

CHARACTER*10 CUSTOMER.ID ! Pos 5--14 (key 1)

INTEGER*2 ITEM.NUMBER ! Pos 15--16

END STRUCTURE

Key Specifier:

KEY=(1:4:INTEGER. 5:14:CHARACTER)

By default, duplicate values are not allowed for the primary key, that is, no
two records in the file can have the same value for a primary key. Duplicate
values are allowed for alternate keys. See Section 9.4.8 for more information
about duplicate keys.

The following example creates an indexed file with ORDER—NUMBER as
the primary key and CUSTOMER-ID as the alternate key.

INTEGER STATUS.

2 LUN

INTEGER*2 ORDER.SIZE,

2 ITEM.SIZE

CHARACTER *256 FILENAME

INTEGER*2 FN.SIZE

CHARACTER*4 ORDER.INT

CHARACTER*2 ITEM.INT

! Define a record

STRUCTURE /ITEM/
INTEGER*4 ORDER.NUMBER
CHARACTER*10 CUSTOMER.ID
INTEGER*4 CUSTOMER.LEN
INTEGER*2 ITEM.NUMBER

END STRUCTURE
RECORD /ITEM/ TEMP

INTEGER LIB$GET_INPUT,
2 LIB$GET_LUN

Pos 1--4 (key 0)
Pos 5--14 (key 1)

Pos 15--16

Pos 19--20

! Get file name

STATUS = LIB$GET_INPUT

2

2
IF (.NOT. STATUS) CALL

(FILENAME.

'File name:

FN.SIZE)
LIB$SIGNAL (%VAL (STATUS))

9-44

File Input/Output

• Get free unit number

STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the file

OPEN (UNIT=LUN,

2 FILE=FILENAME (1:FN.SIZE),

2 ORGANIZATION='INDEXED',

2 ACCESS='KEYED',

2 RECORDTYPE='FIXED',

2 FORM='UNFORMATTED',

2 RECL=5,
2 KEY=(1:4:INTEGER, 5:14:CHARACTER),

2 STATUS=1 NEW1)

9.4.2 Writing to an Indexed File

A WRITE statement inserts a new record into the file and updates the
indexes so that the record may be accessed by each of its keys. The record
being written must include the primary key. However, you may omit an
alternate key if it is at the end of a variable length record.

The following program writes an indexed file using terminal input (error
checking for proper input has been omitted).

INTEGER STATUS,

2 LUN

INTEGER*2 ORDER.SIZE,

2 ITEM.SIZE

CHARACTER*256 FILENAME

INTEGERS FN.SIZE

CHARACTERS ORDER.INT

CHARACTER*2 ITEM.INT

! Define a record
STRUCTURE /ITEM/

INTEGER*4 ORDER.NUMBER ! Pos 1--4 (key 0)

CHARACTER*10 CUSTOMER.ID ! Pos 5--14 (key 1)

INTEGER*4 CUSTOMER.LEN
INTEGER*2 ITEM.NUMBER ! Pos 15--16

END STRUCTURE
RECORD /ITEM/ TEMP

INTEGER LIB$GET_INPUT,
2 LIB$GET_LUN

! Get file name

STATUS = LIB$GET_INPUT (FILENAME,
2 'File name: ',

2 FN.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get free unit number

STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

9-45

File Input/Output

! Open the file

OPEN (UNIT=LUN,

2 FILE=FILENAME (1:FN_SIZE),

2 ORGANIZATION=•INDEXED',

2 ACCESS='KEYED',

2 RECORDTYPE='FIXED',

2 F0RM='UNFORMATTED'.

2 RECL=5.

2 KEY=(1:4:INTEGER. 5:14:CHARACTER),

2 STATUS='NEW')

! Instructions

STATUS = LIB$PUT_OUTPUT ('To exit, enter an order number of 0.')

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

STATUS = LIB$PUT_OUTPUT (' ')

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Get the record input

STATUS = LIB$GET_INPUT (ORDER.INT,

2 'Order Number: ',

2 ORDER.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Convert to integer
READ (UNIT=ORDER_INT(1:ORDER.SIZE),

2 FMT='(BN,I)') TEMP.ORDER.NUMBER

DO WHILE (TEMP.ORDER.NUMBER .NE. 0)

STATUS = LIB$GET_INPUT (TEMP.CUSTOMER.ID,

2 'Customer ID: ',

2 TEMP.CUSTOMER.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

STATUS = LIB$GET_INPUT (ITEM.INT,

2 'Item Number: ',

2 ITEM.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Convert to integer

READ (UNIT=ITEM_INT(1:ITEM.SIZE),

2 FMT='(BN,I)') TEMP.ITEM.NUMBER

! Write the record

WRITE (UNIT=LUN) TEMP

! Write blank line between records

STATUS = LIB$PUT_OUTPUT (' ')

• Get the record input
STATUS = LIB$GET_INPUT (ORDER.INT,

2 'Order Number: ',

2 ORDER.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Convert to integer

READ (UNIT=ORDER.INT(1:ORDER.SIZE),
2 FMT='(BN,I)') TEMP.ORDER.NUMBER

END DO

9-46

File Input/Output

9.4.3 Accessing a Record Directly

To access a specific record in a file, use the READ statement including the
following specifiers:

• KEYID—The key of reference—specifies which key field is to be
searched. KEYID takes an integer value corresponding to the key number
of the key (0 for the primary key, 1 for the first alternate, and so on).
For the first read operation on the file, KEYID defaults to the primary
key; for subsequent read operations, KEYID defaults to the last key of
reference used to access the file.

• KEY—The value of the specified key in the record you are seeking.

Instead of KEY, you could specify one of the following:

• KEYEQ—The key value of the record sought must equal that of the
search value. (This specifier means the same as KEY.)

• KEYGT—The key value of the record sought must be greater than the
search value.

• KEYGE—The key value of the record sought must be greater than or
equal to the search value.

If no record has the specified key value, the error condition FOR$_
ATTACCNON (attempt to access nonexistent record) occurs. If you attempt
to access a record that is locked by another user, the error condition FOR$_
SPERECLOC (specified record locked) occurs. Section 9.1.1.7 describes how
to handle record lock errors.

The following program segment reads the record whose primary key is the
social security number input from the terminal.

INTEGER STATUS.

2 LUN,

2 IOSTAT,

2 I0STAT.0K

INTEGER*2 FN.SIZE

CHARACTER*256 FILENAME

CHARACTER*9 REQUEST.SOC

INTEGER*4 SOC.LEN

! Define a record

STRUCTURE /EMPLOYEE/

CHARACTER*20 NAME

CHARACTER*20 ADDRESS

CHARACTER*15 CITY

CHARACTER*2 STATE

CHARACTER*6 ZIP.CODE

CHARACTER*9 S0C_SEC_NUM

END STRUCTURE

RECORD /EMPLOYEE/ TEMP

9-47

File Input/Output

INTEGER LIB$GET_INPUT,

2 LIB$GET_LUN

! Get file name

STATUS = LIB$GET_INPUT

2

2

IF (.NOT. STATUS) CALL

(FILENAME.

'File name: ',

FN.SIZE)

LIB$SIGNAL (7.VAL (STATUS))

! Get requested social security number

STATUS = LIB$GET_INPUT (REQUEST.SOC,

2 'Desired SS Number: ',

2 SOC.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

DO WHILE (SOC.LEN .NE. 9)

! Get requested social security number

STATUS = LIB$GET_INPUT (REQUEST.SOC.

2 'Enter Full SS Number: ',

2 SOC.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END DO

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Open the file

OPEN (UNIT=LUN,

2 FILE=FILENAME (1:FN_SIZE),

2 ORGANIZATION=* INDEXED•.

2 ACCESS-'KEYED',

2 RECORDTYPE='FIXED',

2 FORM='UNFORMATTED'.

2 RECL=18,
2 KEY=(64:72:CHARACTER),

2 STATUS='OLD')

! Read the record

READ (UNIT=LUN,

2 KEY=REQUEST_SOC.

2 KEYID=0) TEMP

9-48

File Input/Output

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. F0R$_ATTACCN0N) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END IF

DO WHILE (STATUS .EQ. FOR$_ATTACCNON)

! Get requested social security number

STATUS = LIB$GET_INPUT (REQUEST.SOC,

2 'Desired SS Number:

2 SOC.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

DO WHILE (SOC.LEN .NE. 9)

! Get requested social security number

STATUS = LIB$GET_INPUT (REQUEST.SOC,

2 'Enter Full SS Number: ',

2 SOC.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
END DO

! Read the record

READ (UNIT=LUN,

2 KEY=REQUEST_SOC,

2 KEYID=0) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS (,,.,STATUS)

IF (STATUS .NE. F0R$_ATTACCN0N) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END IF

END DO

9.4.4 Indexed Sequential Access Method (ISAM)

You can access an indexed file sequentially, as you would a sequential file,
by using a sequential READ statement. However, indexed files permit you to
read selected portions of a file, rather than having to start at the beginning of
the file. Proceed as follows:

• First record—Get the first record you want by specifying its key in an
indexed READ statement.

• Subsequent records—Get subsequent records with sequential READ
statements. Records are returned in the sequence of the key of reference
used in step 1. The sequence is different depending on the key of
reference.

9—49

File Input/Output

• Last record—The last record you want to read may be the last record in
the file or it may be the last record in the sequence. After each sequential
read, you must check for the error condition FOR$_ENDDURREA (end-
of-file), and if the read is successful, examine the record you just read to
ensure that you have not passed the last record in a particular sequence.

The following program segment reads the records of a file beginning with the
record greater than or equal to a user-specified social security number and
ending with a record containing a social security number less than or equal
to another user-specified social security number. Note that the program uses
KEYGE to get the first social security number; KEYEQ might be used in cases
where the exact social security number is known. Also, note that the last
record is determined by checking for both end-of-file and for a social security
number that exceeds the value in STOP—SOC.

INTEGER STATUS,

2 LUN,

2 IOSTAT,

2 IOSTAT.OK

INTEGER*2 FN.SIZE
PARAMETER (IOSTAT.OK = 0)

CHARACTER * 256 FILENAME

CHARACTER*9 START.SOC,

2 ST0P.S0C

INTEGERS SOC.LEN

INCLUDE '($F0RDEF)'

! Define a record

STRUCTURE /EMPLOYEE/

CHARACTER*20 NAME

CHARACTER*20 ADDRESS

CHARACTER*15 CITY

CHARACTER*2 STATE

CHARACTER*© ZIP.CODE

CHARACTER*9 SOC.SEC.NUM

END STRUCTURE
RECORD /EMPLOYEE/ TEMP

INTEGER LIB$GET_INPUT,

2 LIB$GET_LUN

! Get file name
STATUS = LIB$GET_INPUT (FILENAME.
2 'File name: ',

2 FN.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get starting social security number

STATUS = LIB$GET.INPUT (START.SOC.

2 'Starting SS Number: ',
2 SOC.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

9-50

File Input/Output

DO WHILE (SOC.LEN .NE. 9)
! Get requested social security number

STATUS = LIB$GET_INPUT (REQUEST.SOC,

2 'Enter Full SS Number:

2 S0C_LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

END DO

! Get ending social security number

STATUS = LIB$GET_INPUT (STOP.SOC,

2 'Ending SS Number: ')

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

DO WHILE (SOC.LEN .NE. 9)

! Get requested social security number

STATUS = LIB$GET_INPUT (REQUEST.SOC,
2 'Enter Full SS Number: ',

2 SOC.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

END DO

! Get free unit number

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Open the file

OPEN (UNIT=LUN,

2

2
2

2

2

FILE=FILENAME (1:FN_SIZE),

ORGANIZATION='INDEXED',

ACCESS='KEYED',

RECORDTYPE='FIXED',

F0RM='UNFORMATTED',

RECL=18,
KEY=(64:72:CHARACTER),

STATUS='OLD')

! Read the first record

READ (UNIT=LUN,

2 KEYGE=START_SOC,

2 KEYID=0) TEMP

DO WHILE ((TEMP.SOC_SEC_NUM .LE. STOP.SOC) .AND.

2 (STATUS .NE. FOR$_ENDDURREA))

! Read the rest of the records

READ (UNIT=LUN,
2 IOSTAT=IOSTAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS(,.,.STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

END IF

END DO

9-51

File Input/Output

9.4.5 Accessing a Record Using Multiple Keys

In some cases, you may want to find the record that contain two or more
specified attributes. For example, in an automobile dealership inventory
program. If a customer requests a car with certain attributes (a radio, a
specific color, a certain number of cylinders), the dealership's inventory
program would identify all the cars with the requested attributes.

To identify records with two or more attributes, you must provide each
record with a unique identifier (primary key) and make each attribute an
alternate key. Given a set of requested attributes, the program builds a list of
qualifying records for each attribute, and then compares the lists to determine
which records contain all the attributes.

The following example illustrates an automobile dealership inventory
program. Each record contains a number of automobile attributes, with
the stock number serving as the unique identifier. The user is allowed to
select any two attributes. The program performs indexed reads for the first
attribute, storing the stock numbers in an array; performs indexed reads for
the second attribute, storing the stock numbers in a second array; and then
compares the two arrays, printing the stock numbers of the records that
contain both attributes.

A subroutine called GET_ATTRIBUTE can be written which permits the
user to input the requested attributes, translate them into KEY, KEYID, and
KEY_SIZE parameters, and pass them back to the main program to use in
READ statements.

IMPLICIT NONE
INTEGER STATUS.
2 LUN,
2 KEYID,
2 KEY.SIZE,
2 I.
2 ONECNT,
2 ONE.MAX,
2 TWOCNT,
2 TWO.MAX,
2 STATUS.OK,
2 IOSTAT.OK,
2 IOSTAT
INTEGERS FN.SIZE
CHARACTER*256 FILENAME
CHARACTER*10 KEY
CHARACTER*8 ARRAY1(255)
CHARACTER*8 ARRAY2(255)
CHARACTER*10 FIELD
DATA ONECNT /l/
DATA TWOCNT /l/
PARAMETER (IOSTAT.OK = 0)
PARAMETER (STATUS.OK = 1)

9-52

File Input/Output

INCLUDE '($F0RDEF)'

INCLUDE '($RMSDEF)'

! Define a record

STRUCTURE /CAR/

CHARACTER*8 STOCK.NUMBER ! (key 0)

CHARACTER*10 MODEL ! (key 1)
CHARACTER*3 COLOR ! (key 2)

CHARACTER+3 ENGINE.SIZE ! (key 3)
CHARACTER*2 CYLINDERS ! (key 4)

CHARACTER*2 RADIO ! (key 5)
CHARACTER*4 TRANS ! (key 6)

END STRUCTURE

RECORD /CAR/ TEMP

INTEGER LIB$GET_INPUT,

2 LIB$GET_LUN

! Get file name

STATUS = LIB$GET_INPUT

2

2

IF (.NOT. STATUS) CALL

(FILENAME,

'File name: ',

FN.SIZE)

LIB$SIGNAL C/.VAL (STATUS))

! Get free unit number

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the file

OPEN (UNIT=LUN,

2 FILE=FILENAME (1:FN_SIZE),

2 0RGANIZATI0N='INDEXED',

2 ACCESS='KEYED',

2 RECORDTYPE='FIXED',

2 F0RM='UNFORMATTED',

2 RECL=8,

2 KEY=(1:8:CHARACTER, 9:18:CHARACTER, 19:21:CHARACTER,

2 22:24:CHARACTER,25:26:CHARACTER,27:28:CHARACTER.

2 29:32:CHARACTER),

2 STATUS3'OLD')

CALL GET.ATTRIBUTE (KEYID,

2 KEY,
2 KEY.SIZE)
! Read the record

READ (UNIT=LUN,
2 KEY=KEY(1:KEY_SIZE),
2 KEYID=KEYID,

2 IOSTAT=IOSTAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS (,,,,STATUS)
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

! Load stock number into arrayl

ARRAY1 (ONECNT) = TEMP.STOCK.NUMBER

9-53

File Input/Output

! Set field equal to key

FIELD(1:KEY_SIZE) = KEY(1:KEY.SIZE)

DO WHILE ((FIELD(1:KEY.SIZE) .EQ. KEY(1:KEY.SIZE)) .AND.
2 (STATUS .NE. FOR$_ENDDURREA))

! Do a sequential read

READ (UNIT=LUN,

2 I0STAT=I0STAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS (,,,.STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

ELSE

! Change the value in field, if necessary

IF (KEYID .EQ. 1) THEN

FIELD = TEMP.MODEL

ELSE IF (KEYID .EQ. 2) THEN

FIELD = TEMP.COLOR

ELSE IF (KEYID .EQ. 3) THEN

FIELD = TEMP.ENGINE.SIZE

ELSE IF (KEYID .EQ. 4) THEN

FIELD = TEMP.CYLINDERS

ELSE IF (KEYID .EQ. 5) THEN

FIELD = TEMP.RADIO

ELSE IF (KEYID .EQ. 6) THEN

FIELD = TEMP.TRANS

END IF

! Check for end-of-sequence and load arrayl

IF (FIELD(1:KEY.SIZE) .EQ. KEY(1:KEY.SIZE)) THEN

ONECNT = ONECNT+1

ARRAY1(ONECNT) = TEMP.STOCK.NUMBER

END IF

END IF

END DO

ONE.MAX = ONECNT

STATUS * STATUS.OK

CALL GET.ATTRIBUTE (KEYID.

2 KEY,

2 KEY.SIZE)

! Read the record

READ (UNIT=LUN,
2 KEY=KEY(1:KEY.SIZE),
2 KEYID=KEYID,

2 IOSTAT=IOSTAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN
CALL ERRSNS (,,,.STATUS)

CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

! Load ARRAY2

ARRAY2(TW0CNT) = TEMP.STOCK.NUMBER

9-54

File Input/Output

! Set field equal to key

FIELD(1:KEY.SIZE) = KEY(1:KEY_SIZE)

DO WHILE ((FIELD(1:KEY_SIZE) .EQ. KEY(1:KEY.SIZE)) .AND.

2 (STATUS .NE. FOR$_ENDDURREA))

! Do a sequential read

READ (UNIT=LUN,

2 I0STAT=I0STAT) TEMP

IF (IOSTAT .NE. IOSTAT.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL (STATUS))

END IF

ELSE

IF (KEYID .EQ. 1) THEN

FIELD = TEMP.MODEL

ELSE IF (KEYID .EQ. 2) THEN

FIELD = TEMP.COLOR

ELSE IF (KEYID .EQ. 3) THEN

FIELD = TEMP.ENGINE_SIZE

ELSE IF (KEYID .EQ. 4) THEN

FIELD = TEMP.CYLINDERS

ELSE IF (KEYID .EQ. 5) THEN

FIELD = TEMP.RADIO

ELSE IF (KEYID .EQ. 6) THEN

FIELD = TEMP.TRANS

END IF

! Check for end-of-sequence and load array

IF (FIELD(1:KEY_SIZE) .EQ. KEY(1:KEY.SIZE)) THEN

TWOCNT = TWOCNT+1

ARRAY2(TWOCNT) = TEMP.STOCK.NUMBER

END IF

END IF

END DO

TW0_MAX = TWOCNT

STATUS = STATUS.OK

! Compare the two arrays

DO I = 1, ONE.MAX
TWOCNT = 1

DO WHILE ((ARRAY1(I) .NE. ARRAY2(TWOCNT)) .AND.

2 (TWOCNT .LE. TWO.MAX))

TWOCNT = TWOCNT+1

END DO

IF (ARRAY1(I) .EQ. ARRAY2(TWOCNT)) THEN

! And type it out

TYPE *, ARRAY1(1)

END IF

END DO

9-55

File Input/Output

9.4.6 Updating a Record in an Indexed File

To update an existing record in an indexed file, read the record, modify it,
and then write it back to the file using the REWRITE statement. (A WRITE
statement inserts a new record.) By default, you may modify any alternate
key, but not a primary key. If you attempt to modify a key field that you
are not permitted to change, the error condition FOR$IOS_INCKEYCHG
(inconsistent key change) occurs. Handle this error like a duplicate key
error (the error code is the same); see Section 9.4.8 for more information on
handling duplicate keys.

The following example updates the record with an item number of 4 (a value
of 4 in the second alternate key field). A subroutine called NEWADDRESS
can be written to read a new address, city, state, and zip code from the
terminal, and pass this information back to the calling program unit.

INTEGER STATUS.

2 LUN.

2 LIB$GET_INPUT,

2 LIB$GET_LUN

INTEGER+2 FN_SIZE

CHARACTER*256 FILENAME

! Define a record

STRUCTURE /ITEM/
INTEGER*4 ORDER.NUMBER

CHARACTER*20 NAME

CHARACTER*20 ADDRESS

CHARACTER*19 CITY

CHARACTER*2 STATE

CHARACTER*9 ZIP.CODE
INTEGER*2 ITEM.NUMBER

END STRUCTURE

RECORD /ITEM/ TEMP

! Get file name

STATUS - LIB$GET_INPUT (FILENAME,

2 'File name: ',

2 FN.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get free unit number

STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Open the file

OPEN (UNIT=LUN,

2 FILE=FILENAME (1:FN_SIZE),

2 0RGANIZATI0N='INDEXED',

2 ACCESS='KEYED',

2 REC0RDTYPE='VARIABLE',

2 F0RM='UNFORMATTED',

2 RECL=19,

2 KEY=(1:4:INTEGER. 66:74:CHARACTER. 75:76:INTEGER),

2 STATUS='OLD')

Pos 1— 4 (key 0)

Pos 5— 24

Pos 25- -44

Pos 45- -63

Pos 64- -65

Pos 66- -74 (key 1)

Pos 75- -76 (key 2)

9-56

File Input/Output

! Read the record to make it current

READ (UNIT=LUN,

2 KEY=4,

2 KEYID=2) TEMP

! Get the new address

CALL NEWADDRESS (ADDRESS,

2 CITY,

2 STATE,

2 ZIP.CODE)

! Update the record

REWRITE (UNIT=LUN) TEMP

9.4.7 Deleting a Record from an Indexed File

To delete a record from an indexed file, read the record and then delete it
using a DELETE statement. Deleting a record removes it from all indexes in
the file. The following program segment deletes the record containing the
item number 3.

INTEGER STATUS,

2 LUN,

2 LIB$GET_INPUT,

2 LIB$GET_LUN

INTEGER*2 FN.SIZE

CHARACTER*256 FILENAME

! Define a record

STRUCTURE /ITEM/

INTEGER*4 ORDER.NUMBER ! Pos 1--4 (key 0)

CHARACTER*20 NAME ! Pos 5--24

CHARACTER*20 ADDRESS ! Pos 25--44

CHARACTER*19 CITY ! Pos 45--63

CHARACTER*2 STATE ! Pos 64--65
CHARACTER*9 ZIP.CODE ! Pos 66--74 (key 1)
INTEGER*2 ITEM.NUMBER ! Pos 75--76 (key 2)

END STRUCTURE

RECORD /ITEM/ TEMP

! Get file name
STATUS = LIB$GET_INPUT (FILENAME,

2 'File name: ',

2 FN.SIZE)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get free unit number

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

9-57

File Input/Output

! Open the file

OPEN (UNIT=LUN,

2 FILE=FILENAME (1:FN_SIZE),

2 ORGANIZATION**INDEXED',

2 ACCESS*'KEYED',
2 RECORDTYPE*'VARIABLE',

2 FORM*'UNFORMATTED',

2 RECL=19,
2 KEY=(1:4:INTEGER, 66:74:CHARACTER, 75:76:INTEGER),

2 STATUS*'OLD•)

! Read the record to make it current

READ (UNIT=LUN,

2 KEY*4,

2 KEYID=2) TEMP

! Get the new address

CALL NEWADDRESS (ADDRESS,

2 CITY,

2 STATE,

2 ZIP.CODE)

! Update the record

DELETE (UNIT=LUN)

9.4.8 Handling Duplicate Keys

By default, FORTRAN creates files that allow duplicate alternate keys,
but prohibit duplicate primary keys. If you want to create a file with key
attributes other than the defaults, you must use the File Definition Language
(FDL); see Section 9.7. When a file contains duplicate keys, a keyed access
returns the duplicates in the order in which they were written.

In cases where duplicate keys are not allowed, the error condition FOR$IOS_
INCKEYCHG (inconsistent key change) occurs. The following program
segment handles this error by trapping it and prompting for a new value.

INTEGER STATUS,
2 IOSTAT,
2 IOSTAT.OK

INTEGER LIB$GET_INPUT,

2 LIB$GET_LUN

! Define a record

STRUCTURE /ITEM/

INTEGERS ORDER.NUMBER ! Pos 1--4 (key 0)

CHARACTER*20 NAME ! Pos 5--24

CHARACTER*20 ADDRESS ! Pos 25--44

CHARACTER*19 CITY ! Pos 45--63

CHARACTER*2 STATE ! Pos 64--65

CHARACTER*9 ZIP.CODE ! Pos 66--74 (key 1)

INTEGER*2 ITEM.NUMBER ! Pos 75--76 (key 2)
END STRUCTURE

RECORD /ITEM/ TEMP

9-58

File Input/Output

INCLUDE •($F0RI0SDEF)

! Write a record
WRITE (UNIT=LUN,
2 I0STAT=I0STAT) TEMP

IF ((IOSTAT .NE. IOSTAT.OK) .AND.
2 (IOSTAT .NE. FOR$IOS_INCKEYCHG)) THEN

CALL ERRSNS (,,,.STATUS)
CALL LIB$SIGNAL (V.VAL(STATUS))

END IF

! Check for duplicate error
DO WHILE (IOSTAT .EQ. FOR$IOS_INCKEYCHG)

TYPE *, 'This order number is a duplicate'
TYPE *, 'Enter a different value'
READ (UNIT=*,FMT=*) TEMP.ORDER.NUMBER

! Write the new value
WRITE (UNIT=LUN,

2 I0STAT=I0STAT) TEMP

IF ((IOSTAT .NE. IOSTAT.OK) .AND.
2 (IOSTAT .NE. FOR$IOS_INCKEYCHG)) THEN

CALL ERRSNS (,,..STATUS)
CALL LIB$SIGNAL (*/.VAL(STATUS))

END IF
END DO

9.5 Data Compression and Expansion

To compress data in a library, use the /DATA=REDUCE qualifier of the
LIBRARY command (for details, see the description of the Librarian Utility
in the VAX/VMS Librarian Reference Manual). Once a library is reduced, the
librarian automatically compresses each record entered into the library and
expands each record extracted from the library. To expand the entire library,
use the /DATA=EXPAND qualifier of the LIBRARY command.

You cannot compress files (except for libraries) from DCL command level.
However, the DCX procedures allow you to compress and expand files from
within a program. (For a complete description of the DCX procedures, see
the VAX/VMS Utility Routines Reference Manual). To access a compressed
file, you must first expand that file. Therefore, large infrequently accessed
files are good candidates for compression. You can compress small files;
however, it is inefficient since you must store a data compression/expansion
function with the compressed records.

9-59

File Input/Output

9.5.1 Compression Procedures

Compressing a file with the DCX procedures involves the following steps (an
example follows):

1 Initialize an analysis work area—Use the DCX$ANALYZE_INIT
procedure to initialize a work area for analyzing the records. The first
(and, typically, the only) argument passed to DCX$ANALYZE—INIT is
an integer variable to contain the context value. The data compression
facility assigns a value to the context variable and associates the value
with the created work area. Each time you want a record analyzed in
that area, specify the associated context variable. You can analyze two or
more files at once by creating a different work area for each file, giving
each area a different context variable, and analyzing the records of each
file in the appropriate work area.

2 Analyze the records in the file—Use the DCX$ANALYZE—DATA
procedure to pass each record in the file to an analysis work area.
During analysis, the data compression facility gathers information
that DCX$MAKE_MAP will use to create the compression/expansion
function for the file. To ensure that the first byte of each record is
passed to the data compression facility rather than being interpreted as
FORTRAN carriage control, specify CARRIAGECONTROL - 'NONE'
when you open the file to be compressed.

3 Create the compression/expansion function—Use the DCX$MAKE—
MAP procedure to create the compression/expansion function. You pass

DCX$MAKE_MAP a context variable and DCX$MAKE—MAP uses the
information stored in the associated work area to compute a compression
/expansion function for the records being compressed. If DCX$MAKE_

MAP returns a status value of DCX$_AGAIN, repeat steps two and three
until DCX$MAKE_MAP returns a status of DCX$—NORMAL indicating
that a compression/expansion function has been created.

In the following example, the integer function GET_MAP analyzes each
record in the file to be compressed and invokes DCX$MAKE_JMAP
to create the compression/expansion function. The function value of

GET—MAP is the return status of DCX$MAKE_MAP, and the address
and length of the compression/expansion function are returned in GET—
MAP's argument list. The main program, COMPRESS, invokes the GET_
MAP function, examines its function value, and, if necessary, invokes
GET—MAP again (see the ANALYZE DATA section of COMPRESS.FOR).

4 Clean up the analysis work area—Use the DCX$ANALYZE—DONE
procedure to delete a work area. Identify the work area to be deleted by
passing DCX$ANALYZE_DONE a context variable.

9-60

File Input/Output

5 Save the compression/expansion function—You cannot expand
compressed records without the compression/expansion function.
Therefore, before compressing the records, write the compression
/expansion function to the file that will contain the compressed records.

You cannot use an address directly in FORTRAN (see Section 2.1.5).
Therefore, use the immediate value passing mechanism to pass the
address of the compression/expansion function to a subprogram
(WRITE_MAP in the following example). Pass the subprogram the
length of the compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the
function address as a one-dimensional, adjustable, byte array. Declare
the dummy argument corresponding to the function length as an integer
and use it to dimension the adjustable array. Write the function length
and the array containing the function to the file that is to contain the
compressed records. (The length must be stored so that you can read the
function from the file using unformatted I/O; see Section 9.5.2.)

6 Compress each record—Use the DCX$COMPRESS_INIT procedure to
initialize a compression work area. Specify a context variable for the
compression area just as for the analysis area.

Use the DCX$COMPRESS_DATA procedure to compress each record.
As you compress each record, use unformatted I/O to write the
compressed record to the file containing the compression/expansion
function. For each record, write the length of the record and the
substring containing the record. See the COMPRESS DATA section
in the following example. (The length is stored with the substring so that
you can read the compressed record from the file using unformatted I/O;
see Section 9.5.2.)

Use DCX$COMPRESS_DONE to delete the work area created by
DCX$COMPRESS_INIT. Identify the work area to be deleted by passing
DCX$COMPRESS_DATA a context variable. Use LIB$FREE_VM to free
the virtual memory that DCX$MAKE_MAP used for the compression
/expansion function.

COMPRESS.FOR

! Status variable

INTEGER STATUS,

2 IOSTAT,

2 I0_0K,

2 STATUS.OK

PARAMETER (IO.OK = 0)

PARAMETER (STATUS.OK = 1)

INCLUDE 1($F0RDEF)'

EXTERNAL DCX$_AGAIN

9-61

File Input/Output

•
! Context variable

INTEGER CONTEXT

! Compression/expansion function

INTEGER MAP,

2 MAP.LEN

! Normal file name, length, and logical unit number

CHARACTER*256 NORM.NAME

INTEGER*2 NORM.LEN

INTEGER NORM.LUN

! Compressed file name, length, and logical unit

CHARACTER*256 COMP.NAME
INTEGER*2 COMP.LEN

INTEGER COMP.LUN

! Logical end-of-file

LOGICAL EOF

! Record buffers; 32767 is maximum record size

CHARACTER*32767 RECORD,

2 REC0RD2

INTEGER RECORD.LEN,

2 REC0RD2.LEN

! User routine

INTEGER GET.MAP,

2 WRITE.MAP

! Library procedures

INTEGER DCX$ANALYZE_INIT,

2 DCX$ANALYZE_DONE,

2 DCX$COMPRESS_INIT,

2 DCX$COMPRESS_DATA,

2 DCX$COMPRESS_DONE,

2 LIB$GET_INPUT,

2 LIB$GET_LUN,

2 LIB$FREE_VM

! Get name of file to be compressed and open it

STATUS = LIB$GET_INPUT (NORM.NAME,

2 'File to compress:

2 NORM.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS = LIB$GET_LUN (NORM.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
OPEN (UNIT = NORM.LUN,

2 FILE = N0RM_NAME(1:NORM.LEN).
2 CARRIAGECONTROL = 'NONE',
2 STATUS = 'OLD')

number

9-62

File Input/Output

; ************

! ANALYZE DATA
j ************

! Initialize work area

STATUS = DCX$ANALYZE_INIT (CONTEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (‘/.VAL (STATUS))

! Get compression/expansion function (map)

STATUS = GET.MAP (NORM.LUN,

2 CONTEXT,

2 MAP,

2 MAP.LEN)

DO WHILE (STATUS .EQ. */.LOC(DCX$_AGAIN))

! Go back to beginning of file

REWIND (UNIT = NORM.LUN)

! Try map again

STATUS = GET.MAP (NORM.LUN,

2 CONTEXT,

2 MAP,

2 MAP.LEN)

END DO

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Clean up work area

STATUS = DCX$ANALYZE_DONE (CONTEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

; *************
! COMPRESS DATA
; *************

! Go back to beginning of file to be compressed

REWIND (UNIT = NORM.LUN)

! Open file to hold compressed records

STATUS = LIB$GET.LUN (COMP.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (‘/.VAL (STATUS))

STATUS = LIB$GET_INPUT (COMP.NAME,

2 'File for compressed records

2 COMP.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

OPEN (UNIT = COMP.LUN,
2 FILE = COMP.NAME(1:COMP.LEN),
2 STATUS = 'NEW',

2 FORM = 'UNFORMATTED')

! Initialize work area

STATUS = DCX$COMPRESS_INIT (CONTEXT,

2 MAP)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Write compression/expansion function to new file

CALL WRITE.MAP (COMP.LUN.

2 '/.VAL (MAP),

2 MAP.LEN)

File Input/Output

! Read record from file to be compressed

EOF = .FALSE.

READ (UNIT = NORM.LUN.

2 FMT = '(Q,A)'.
2 IOSTAT = IOSTAT) RECORD.LEN,

2 RECORD(1:RECORD.LEN)

IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (7.VAL (STATUS))

ELSE

EOF = .TRUE.

STATUS * STATUS.OK

END IF

END IF

DO WHILE (.NOT. EOF)

! Compress the record

STATUS = DCX$COMPRESS_DATA (CONTEXT,

2 RECORD(1:RECORD.LEN),

2 REC0RD2,

2 REC0RD2.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Write compressed record to new file

WRITE (UNIT = COMP.LUN) REC0RD2.LEN

WRITE (UNIT = COMP.LUN) REC0RD2 (1:REC0RD2_LEN)

! Read from file to be compressed

READ (UNIT = NORM.LUN,

2 FMT = '(Q,A)',

2 IOSTAT = IOSTAT) RECORD.LEN,

2 RECORD (1:RECORD.LEN)

IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (7.VAL(STATUS))

ELSE
EOF = .TRUE.

STATUS = STATUS.OK

END IF

END IF

END DO

! Close files and clean up work area

CLOSE (NORM.LUN)
CLOSE (COMP.LUN)
STATUS = LIB$FREE_VM (MAP.LEN,

2 MAP)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

STATUS = DCX$COMPRESS_DONE (CONTEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

END

9-64

File Input/Output

GET_MAP.FOR

INTEGER FUNCTION GET.MAP (LUN, Passed

Passed

Returned

Returned

2

2

2

CONTEXT,

MAP,

MAP.LEN)

! Analyzes records in file opened on logical

! unit LUN and then attempts to create a

! compression/expansion function using

! DCX$MAKE_MAP.

! Dummy arguments

! Context variable

INTEGER CONTEXT
! Logical unit number

INTEGER LUN

! Compression/expansion function

INTEGER MAP.

2 MAP.LEN

! Status variable

INTEGER STATUS,

2 IOSTAT,

2 IO.OK,

2 STATUS.OK

PARAMETER (IO.OK = 0)

PARAMETER (STATUS.OK = 1)

INCLUDE '($F0RDEF)1

! Logical end-of-file

LOGICAL EOF

! Record buffer; 32767 is the maximum record size

CHARACTER*32767 RECORD

INTEGER RECORD.LEN

! Library procedures

INTEGER DCX$ANALYZE_DATA,

2 DCX$MAKE_MAP

! Analyze records

EOF = .FALSE.

READ (UNIT = LUN.

2 FMT = '(Q.A)',
2 IOSTAT = IOSTAT) RECORD.LEN,RECORD
IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (,,,.STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (%VAL(STATUS))

ELSE

EOF = .TRUE.

STATUS = STATUS.OK
END IF

END IF

9-65

File Input/Output

DO WHILE (.NOT. EOF)

STATUS = DCX$ANALYZE.DATA (CONTEXT,

2 RECORD(1:RECORD.LEN))

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

READ (UNIT = LUN,

2 FMT = '(Q,A)',

2 IOSTAT = IOSTAT) RECORD.LEN,RECORD

IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (*/,VAL(STATUS))
ELSE

EOF = .TRUE.

STATUS = STATUS.OK
END IF

END IF
END DO

STATUS = DCX$MAKE_MAP (CONTEXT,

2 MAP,

2 MAP.LEN)

GET.MAP = STATUS

END

WRITE_MAP.FOR

SUBROUTINE WRITE.MAP (LUN, !

2 MAP, !

2 MAP.LEN) !

! Write compression/expansion function

! to file of compressed data

! Dummy arguments

INTEGER LUN, ! Logical unit of file

2 MAP.LEN ! Length of function

BYTE MAP (MAP.LEN) ! Compression/expansion function

! Write map length

WRITE (UNIT = LUN) MAP.LEN

! Write map

WRITE (UNIT = LUN) MAP

END

Passed

Passed

Passed

9-66

File Input/Output

9.5.2 Expansion Procedures

To expand a compressed file follow these steps:

1 Read the compression/expansion function—When reading the
compression/expansion function from the compressed file, do not make
any assumptions about the function's size. Best practice is to read the
length of the function from the compressed file and then invoke the
library procedure LIB$GET_VM to get the necessary amount of storage
for the function. LIB$GET_VM returns the address of the first byte of
the storage area.

Since you cannot use an address directly in FORTRAN, use the
immediate value passing mechanism to pass the address of the storage
area to a subprogram (READ_MAP in the following example). Pass the
subprogram the length of the compression/expansion function as well.

In the subprogram, declare the dummy argument corresponding to the
storage address as a one-dimensional, adjustable, BYTE array. Declare
the dummy argument corresponding to the function length as an integer
and use it to dimension the adjustable array. Read the compression
/expansion function from the compressed file into the dummy array.
Since the compression/expansion function is stored in the subprogram,
do not return to the main program until you have expanded all of the
compressed records.

2 Initialize an expansion work area—Use the DCX$EXPAND_INIT
procedure to initialize a work area for expanding the records. The
first argument passed to DCX$EXPAND_INIT is an integer variable
to contain a context value (see step 1 in Section 9.5.1). The second
argument is the address of the compression/expansion function (use the
%LOC built-in function to pass the address of the array containing the
function).

3 Expand the records—Use the DCX$EXPAND_DATA procedure to
expand each record.

4 Clean up the work area—Use the DCX$EXPAND_DONE procedure to
delete an expansion work area. Identify the work area to be deleted by
passing DCX$EXPAND_DONE a context variable.

The following example expands a compressed file. The first record of
the compressed file is an integer containing the number of bytes in the
compression/expansion function. The second record is the compression
/expansion function. The remainder of the file contains the compressed
records. Each compressed record is stored as two records, an integer
containing the length of the record and a substring containing the record.

9-67

File Input/Output

EXPAND.FOR

INTEGER STATUS

! File names, lengths, and logical unit numbers

CHARACTER*256 OLD.FILE,

2 NEW.FILE

INTEGER*2 OLD.LEN.

2 NEW.LEN

INTEGER OLD.LUN,

2 NEW.LUN

! Length of compression/expansion function

INTEGER MAP,

2 MAP.LEN

! User routine

EXTERNAL EXPAND.DATA

! Library procedures

INTEGER LIB$GET_LUN,

2 LIB$GET_INPUT,

2 LIB$GET_VM,

2 LIB$FREE_VM

! Open file to expand

STATUS = LIB$GET.LUN (OLD.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

STATUS = LIB$GET_INPUT (OLD.FILE,
2 'File to expand: '

2 OLD.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

OPEN (UNIT = OLD.LUN,

2 STATUS = 'OLD•,

2 FILE = 0LD_FILE(1:OLD.LEN),

2 FORM = 'UNFORMATTED')

! Open file to hold expanded data

STATUS = LIB$GET_LUN (NEW.LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

STATUS = LIB$GET_INPUT (NEW.FILE,
2 'File to hold expanded data: '

2 NEW.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))

OPEN (UNIT = NEW.LUN,

2 STATUS = 'NEW',

2 CARRIAGECONTROL = 'NONE',
2 FILE * NEW_FILE(1:NEW.LEN))

9-68

File Input/Output

! Expand file

! Get length of compression/expansion function

READ (UNIT = OLD.LUN) MAP.LEN

STATUS = LIB$GET_VM (MAP.LEN,

2 MAP)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Expand records

CALL EXPAND.DATA (’/.VAL(MAP) ,

2 MAP.LEN, ! Length of function

2 OLD.LUN, ! Compressed data file

2 NEW.LUN) ! Expanded data file

! Delete virtual memory used for function

STATUS = LIB$FREE_VM (MAP.LEN,

2 MAP)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))
END

EXPAN D_DATA. FOR

SUBROUTINE EXPAND.DATA (MAP,

2 MAP.LEN,

2 OLD.LUN,

2 NEW.LUN)

! Expand data program

! Passed

! Passed

! Passed

! Passed

! Dummy arguments

INTEGER MAP.LEN,

2 OLD.LUN,

2 NEW.LUN
BYTE MAP(MAP.LEN)

Length of expansion function

Logical unit of compressed file

logical unit of expanded file

Array containing the function

! Status variables

INTEGER STATUS,

2 IOSTAT,

2 IO.OK,

2 STATUS.OK

PARAMETER (IO.OK = 0)

PARAMETER (STATUS.OK = 1)

INCLUDE '($FORDEF)'

! Context variable
INTEGER CONTEXT

! Logical end-of-file

LOGICAL EOF

! Record buffers

CHARACTER*32767 RECORD,

2 RECORD2
INTEGER RECORD.LEN,

2 REC0RD2.LEN

! Library procedures

INTEGER DCX$EXPAND_INIT,

2 DCX$EXPAND_DATA,

2 DCX$EXPAND_DONE

9-69

File Input/Output

! Read data compression/expansion function

READ (UNIT = OLD.LUN) MAP

! Initialize work area

STATUS = DCX$EXPAND_INIT (CONTEXT,

2 y.L0C(MAP(l)))

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))
! Expand records

EOF = .FALSE.

! Read length of compressed record

READ (UNIT = OLD.LUN,

2 IOSTAT = IOSTAT) RECORD.LEN

IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (,,,.STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL (*/.VAL(STATUS))

ELSE

EOF = .TRUE.

STATUS = STATUS.OK
END IF

END IF

DO WHILE (.NOT. EOF)

! Read compressed record

READ (UNIT = OLD.LUN) RECORD (1:RECORD.LEN)
! Expand record

STATUS = DCX$EXPAND_DATA (CONTEXT,

2 RECORD(1:RECORD_LEN),

2 RECORD2.

2 REC0RD2.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Write expanded record to new file

WRITE (UNIT = NEW.LUN,

2 FMT = '(A)') REC0RD2(1:REC0RD2_LEN)

! Read length of compressed record

READ (UNIT = OLD.LUN,

2 IOSTAT = IOSTAT) RECORD_LEN

IF (IOSTAT .NE. IO.OK) THEN

CALL ERRSNS (,,,,STATUS)

IF (STATUS .NE. FOR$_ENDDURREA) THEN

CALL LIB$SIGNAL C/.VAL(STATUS))

ELSE

EOF = .TRUE.

STATUS = STATUS.OK
END IF

END IF
END DO

! Clean up work area

STATUS = DCX$EXPAND_DONE (CONTEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

END

9-70

File Input/Output

9.6 Library Procedures

A library is a specially formatted file in which you store units of data called
modules. System-defined libraries are of the following types:

• Object libraries—Each object module corresponds to one library module.
An object library has a default file type of OLB; an input file to an object
library has a file type of OBJ.

• Shareable image libraries—Each shareable image symbol table
corresponds to one library module. A shareable image library has a
default file type of OLB; an input file to a shareable image library has a
file type of EXE.

• Macro libraries—Each source program corresponds to one library
module. A macro library has a default file type of MLB; an input file
to a macro library has a file type of MAR.

• Help libraries—A help library stores specially formatted lines of text.
Every level 1 line starts a new library module. A help library has a
default file type of HLB; an input file to a help library has a file type of
HLP.

• Text libraries—Each text file inserted into the library corresponds to one
library module. A text library has a default file type of TLB; an input file
to a text library has a file type of TXT.

Modules are cataloged in the library by name. For shareable image libraries,
the module names are the shareable image file names. For object and macro
libraries, the module names are the names of the programs (not the names of
the files containing the programs). For help libraries, the module names are
the names on the level 1 lines. For text libraries, the module names are user
assigned, defaulting to the names of the source files. Object and shareable
image libraries also catalog the modules by the names of the global symbols
defined in the modules.

Use the LIBRARY command to maintain libraries at DCL command level.
For a description of libraries and how to access them at the DCL command
level, see the description of the Librarian Utility in the VAX/VMS Librarian
Reference Manual.

Use the LBR$ library procedures to maintain libraries at the programming
level. The VAX/VMS Utility Routines Reference Manual contains complete
specifications for the procedures and their arguments.

9-71

File Input/Output

9.6.1 Creating, Opening, and Closing Libraries

Using a library requires the following sequence of events:

1 Initialize the library—Call LBR$INI—CONTROL to initialize the library.
LBR$INI_CONTROL returns a value to the first argument that you
must use in the remaining calls to the LBR$ procedures; do not alter
this value. Pass one of the following values as the second argument:
LBR$C_CREATE to create and update a new library; LBR$C_UPDATE
to update an existing library; LBR$C_READ to read (no updates allowed)
from an existing library.

2 Open the library—Call LBR$OPEN to open the library. Pass the value
returned by LBR$INI—CONTROL as the first argument. Pass the
file specification or partial file specification of the library file as the
second argument and any defaults for the file specification as the fourth
argument. (The current default device and directory are used if these
parts of the file specification remain unspecified.) If you are creating a
new library, pass the create options array as the third argument. The
CRE$ symbols (see the specifications in the VAX/VMS Utility Routines
Reference Manual) identify the significant longwords of the array by their
byte offsets into the array. Convert these values to subscripts for an array
of integers (longwords) by dividing by four and adding one. If you do
not load the significant longwords before calling LBR$INI—CONTROL,
the library may be corrupted upon creation.

3 Work with the library—Call the various LBR$ procedures and perform
other operations according to your program design.

4 Close the library—Call LBR$CLOSE to close the library. Supply the
value returned by LBR$INI_CONTROL as the first and only argument.
You must close a library explicitly for updates to be posted.

Note

Do not use LBR$INIT_CONTROL, LBR$OPEN, and LBR$CLOSE
for writing help text with LBR$OUTPUT_HELP. Simply invoke
LBR$OUTPUT—HELP.

Certain symbols used by the LBR$ procedures are not defined in the default
object and shareable image libraries. You must include them explicitly by
calling $LBRDEF, $CREDEF, $MHDDEF, $LHIDEF, and $HLPDEF (as noted
in the specifications in the VAX/VMS Utility Routines Reference Manual) in
macro programs specifying GLOBAL as an argument, and by linking these
programs with your application program.

9-72

File Input/Output

To open a library if it exists, or to create and open it if it does not exist,
attempt to open the library in UPDATE or READ mode, checking for an
error status value of RMS$_FNF. If this error occurs, open the library in
CREATE mode. Otherwise open the library in UPDATE or READ mode. The
following program unit opens, or creates and opens a text library.

DOLIB.CLD

! Defines the command to call D0LIB.EXE

DEFINE VERB DOLIB

IMAGE WORK:[TEXTLIB]DOLIB

! Specify the library name (not the full spec)

! Defaults to current directory and a file type of TLB

PARAMETER PI,LABEL=LIBSPEC,PROMPT="Library".VALUE(REQUIRED)

! Specify the action to be performed

QUALIFIER ENTER

QUALIFIER EXTRACT, VALUE (LIST)

QUALIFIER DELETE, VALUE (LIST)

QUALIFIER TYPEINFO

QUALIFIER MODHEAD, VALUE (LIST)

QUALIFIER LIST, VALUE (DEFAULT®"*")

QUALIFIER ALIAS, VALUE (LIST)

QUALIFIER SHOWALIAS, VALUE (REQUIRED)

DOLIBMSG.MSG

.TITLE DOLIB messages

.FACILITY DOLIB, 1 /PREFIX=DOLIB_

.SEVERITY WARNING

MODEX "Module already exists - '!AS

NOMOD "No such module --- '!AS'" /FA0=

.SEVERITY SEVERE

NOACTION "No action specified on command line"

.END

/ENTER

/EXTRACT®(module,...)

/DELETE® (module_)

/TYPEINFO

/MODHEAD®(module,...)

/LIST[=matchname]

/ALIAS®(module,alias,...)

/SHOWALIAS=module

'" /FA0=1

1

LBRDEF.MAR

$LBRDEF GLOBAL

$CREDEF GLOBAL

$MHDDEF GLOBAL

$LHIDEF GLOBAL

$HLPDEF GLOBAL

.END

9-73

File Input/Output

DOLIB.FOR

PROGRAM DOLIB

Implements user requests on text libraries

Command line: DOLIB [qualifier] library-name

Qualifiers: /ENTER

/EXTRACT=(module-name,...)

/DELETE=(module-name,. . .)

/TYPEINFO
/M0DHEAD=(module-name,...)

/LIST[=match-name]

/ALIAS=(module,alias,...)

/SHOWALIAS=module

CHARACTERS LIBSPEC,

2 STATUS,

2 INDEX,

2 FUNC,

2 OPTIONS (20),

2 TYPE,

2 KEYLEN,

2 ALLOC,

2 IDXMAX,
2 UHDMAX,

2 ENTALL

! VMS library procedures

INTEGER LBR$INI_C0NTR0L,

2 LBR$0PEN,

2 LBR$CL0SE,

2 CLI$PRESENT

! Offsets for create options array

EXTERNAL CRE$L_TYPE,
2 CRE$L_KEYLEN,

2 CRE$L_ALLOC,

2 CRE$L_IDXMAX,
2 CRE$L_UHDMAX,

2 CRE$L_ENTALL

! Library file

! Return status

! Library index

! Library function

! Create options

! Subscripts for create options

-- defined in $CREDEF

Library type

Maximum key length

Initial allocation

Number of indexes

Module header extra bytes

Preallocated index entries

! Type and function values - defined in $LBRDEF

EXTERNAL LBR$C_TYP_UNK,

2 LBR$C_TYP_OBJ,

2 LBR$C_TYP_MLB,

2 LBR$C_TYP_HLP,
2 LBR$C_TYP_TXT,
2 LBR$C_CREATE,

2 LBR$C_READ,

2 LBR$C_UPDATE

! Unknown

! Object or shareable image

! Macro

! Help
! Text
! Create new library

! Open for read only

! Update

! Return codes

EXTERNAL RMS$_FNF,

2 DOLIB.NOACTION

! File not found

! No action specified

! Get library name

CALL CLI$GET_VALUE (*LIBSPEC',

2 LIBSPEC)

9-74

File Input/Output

! Determine function - update or read only

! Read only on /EXTRACT, /TYPEINFO, /LIST, /SHOWALIAS

IF (CLI$PRESENT ('EXTRACT') .OR.

2 CLI$PRESENT ('TYPEINFO') .OR.

2 CLI$PRESENT ('LIST') .OR.

2 CLI$PRESENT ('SHOWALIAS')) THEN

FUNC = '/.LOC (LBR$C_READ)
ELSE

FUNC = '/.LOC (LBR$C_UPDATE)

END IF

! Initialize and open library

STATUS = LBR$INI_CONTROL (INDEX,

2 FUNC)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = LBR$0PEN (INDEX,

2 LIBSPEC,,

2 '.TLB')

! If library does not exist, create it

IF (STATUS .EQ. ‘/.LOC (RMS$_FNF)) THEN

! Initialize with function = create

STATUS = LBR$INI_C0NTR0L (INDEX,

2 ‘/.LOC (LBR$C_CREATE))

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Calculate subscripts for create options array

TYPE = '/.LOC (CRE$L_TYPE) / 4 + 1

KEYLEN = '/.LOC (CRE$L_KEYLEN) / 4 + 1

ALLOC = '/.LOC (CRE$L_ALLOC) / 4 + 1
IDXMAX = '/.LOC (CRE$L_IDXMAX) / 4 + 1

UHDMAX = '/.LOC (CRE$L_UHDMAX) / 4 + 1

ENTALL = '/.LOC (CRE$L_ENTALL) / 4 + 1

! Load create options array

OPTIONS (TYPE) = '/.LOC (LBR$C_TYP_TXT)

OPTIONS (KEYLEN) = 31

OPTIONS (ALLOC) = 8

OPTIONS (IDXMAX) = 2

OPTIONS (UHDMAX) = 64

OPTIONS (ENTALL) = 96
! Open library
STATUS = LBR$OPEN (INDEX,

2 LIBSPEC,

2 OPTIONS,
2 '.TLB')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

ELSE IF ((.NOT. STATUS) THEN

CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

9-75

File Input/Output

! Dispatch per user request

IF (CLI$PRESENT ('ENTER')) THEN
CALL ENTER (INDEX)

ELSE IF (CLI$PRESENT ('EXTRACT')) THEN

CALL EXTRACT (INDEX)

ELSE IF (CLI$PRESENT ('DELETE')) THEN

CALL DELETE (INDEX)

ELSE IF (CLI$PRESENT ('TYPEINFO')) THEN

CALL TYPEINFO (INDEX)

ELSE IF (CLI$PRESENT ('MODHEAD')) THEN

CALL MODHEAD (INDEX)

ELSE IF (CLI$PRESENT ('LIST')) THEN

CALL LIST (INDEX)

ELSE IF (CLI$PRESENT ('ALIAS')) THEN

CALL ALIAS (INDEX)

ELSE IF (CLI$PRESENT ('SHOWALIAS')) THEN

CALL SHOWAL (INDEX)

ELSE
CALL LIB$SIGNAL (7.LOC (DOLIB.NOACTION))

END IF

! Close library

STATUS = LBR$CLOSE (INDEX)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Exit

END

9.6.2 Adding Modules

Use the following procedures to insert new modules into an open library.

1 LBR$LOOKUP_KEY (optional)—Ensure that the module does not already
exist by calling LBR$LOOKUP_KEY. The expected return status is LBR$_
KEYNOTFND.

2 LBR$PUT_RECORD—Construct the module by calling LBR$PUT_
RECORD once for each record going into the module. Pass the contents
of the record as the second argument. LBR$PUT_RECORD returns the
record's file address (RFA) in the library file as the third argument on the
first call. On subsequent calls, you pass the RFA as the third argument,
so do not alter its value between calls.

3 LBR$PUT_END—Call LBR$PUT_END after the last call to LBR$PUT_
RECORD.

4 LBR$INSERT_KEY—Call LBR$INSERT_KEY to catalog the records you
have just put in the library. The second argument is the name of the
module.

9-76

File Input/Output

To replace an existing module, save the old RFA returned by LBR$LOOKUP_
KEY in step 1 above (you should not receive an error message) in one
variable and the new RFA returned by the first call to LBR$PUT_RECORD
(step 2) in another variable. On step 4, invoke LBR$REPLACE_KEY instead
of LBR$INSERT_KEY passing the old RFA as the third argument and the
new RFA as the fourth argument.

The following subroutine solicits module names and text from SYS$INPUT,
and adds modules to a text library.

SUBROUTINE ENTER (INDEX)

! Enters text modules into library from SYS$INPUT

INTEGER STATUS, ! Return status

2 INDEX, ! Library index

2 TXTRFA (2) ! RFA of module

CHARACTER*31 MODNAME ! Name of module

CHARACTER*255 TEXTLINE ! One record of text

INTEGER*2 MODNAME.LEN, ! Length of module name

2 TEXTLINE.LEN ! Length of text record

! VMS library procedures

INTEGER LBR$LOOKUP_KEY,

2 LBR$PUT_RECORD,

2 LBR$PUT_END,

2 LBR$INSERT_KEY,

2 LBR$GET_INPUT,

2 LIB$PUT.OUTPUT

! Return codes

EXTERNAL RMS$_E0F, ! End-of-file

2 LBR$_KEYNOTFND, ! Key not found

2 D0LIB_M0DEX ! Module already exists

! Get first module name

STATUS = LIB$GET_INPUT (MODNAME,

2 'Module name or CTRL/Z: ',

2 MODNAME.LEN)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. '/.LOC (RMS$_EOF))) THEN
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

9-77

to

to

to

to

to

to

to

File Input/Output

! Insert modules until end-of-file

DO WHILE (STATUS .NE. V.L0C (RMS$_EOF))

! Verify that module does not already exist

STATUS = LBR$L00KUP_KEY (INDEX.

2 MODNAME (1:MODNAME.LEN),

2 TXTRFA)

! Insert module in library

IF (STATUS .EQ. V.L0C (LBR$_KEYNOTFND)) THEN

! Get first line of text

STATUS = LIB$PUT_OUTPUT

2 ('Enter lines of text. Terminate with CTRL/Z:')

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = LIB$GET_INPUT (TEXTLINE.,
2 TEXTLINE.LEN)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. #/,L0C (RMS$_E0F))) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

! Insert text lines until end-of-file

DO WHILE (STATUS .NE. */.L0C (RMS$_E0F))

! Insert line

STATUS = LBR$PUT_RECORD (INDEX,

TEXTLINE (1:TEXTLINE_LEN),

TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get another line

STATUS = LIB$GET_INPUT (TEXTLINE., TEXTLINE.LEN)

IF ((.NOT. STATUS) .AND.

(STATUS .NE. '/.LOC (RMS$_E0F))) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END DO

! Terminate text and catalog module

STATUS = LBR$PUT_END (INDEX)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = LBR$INSERT.KEY (INDEX,

MODNAME (1:MODNAME_LEN),

TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! If module already exists

ELSE IF (STATUS) THEN

CALL LIB$SIGNAL (DOLIB.MODEX,
*/.VAL (1),
MODNAME (1:MODNAME_LEN))

ELSE
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

9-78

File Input/Output

! Get smother module name

STATUS = LIB$GET_INPUT (MODNAME,

2 'Module name: '

2 MODNAME.LEN)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. '/.LOC (RMS$_EOF))) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END DO

! Exit

END

9.6.3 Deleting Modules

Use the following procedures to delete modules from a library.

1 LBR$LOOKUP-KEY—Call LBR$LOOKUP_KEY to locate the
module. Specify the name of the module as the second argument.
LBR$LOOKUP_KEY returns the RFA of the module as the third
argument; do not alter this value.

2 LBR$DELETE_KEY—Call LBR$DELETE _KEY to delete the key for the
module. Specify the name of the module as the second argument.

3 LBR$DELETE _DATA—Call LBR$DELETE _DATA to delete the module
itself. Specify the RFA of the module as the second argument.

The following subroutine gets module names from the command line and
deletes the specified modules from a text library.

SUBROUTINE DELETE (INDEX)

! Deletes text modules named by the

! qualifier /DELETE=(module-name,...)

INTEGER STATUS, ! Return status

2 INDEX, ! Library index
2 TXTRFA (2) ! RFA of module

CHARACTER*31 MODNAME ! Name of module

INTEGER MODNAME.LEN ! Length of module name

! VMS library procedures

INTEGER LBR$LOOKUP_KEY,

2 LBR$DELETE_KEY,

2 LBR$DELETE_DAT A,

2 CLI$GET_VALUE

2 LIB$L0CC

! Return codes

EXTERNAL LBR$_KEYNOTFND, ! Key not found
2 DOLIB.NOMOD ! No such module

! Get module name from /DELETE on command line

STATUS = CLI$GET_VALUE ('DELETE', MODNAME)

9-79

File Input/Output

! Delete modules until bad return status,

! which indicates end of qualifier values

DO WHILE (STATUS)
! Calculate length of module name

MODNAME.LEN = LIB$L0CC (' ', MODNAME) - 1

! Look up module name in library index

STATUS = LBR$LOOKUP_KEY (INDEX,
2 MODNAME (1:MODNAME.LEN),

2 TXTRFA)

! Delete module if it exists

IF (STATUS) THEN

STATUS = LBR$DELETE_KEY (INDEX,

2 MODNAME (1:MODNAME.LEN))

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS * LBRIDELETE.DATA (INDEX, TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Issue warning if it does not exist

ELSE IF (STATUS .EQ. '/.LOC (LBR$_KEYNOTFND)) THEN

CALL LIB$SIGNAL (DOLIB.NOMOD,

2 '/.VAL (1) ,

2 MODNAME (1:MODNAME.LEN))

ELSE
CALL LIBISIGNAL ('/.VAL (STATUS))

END IF
! Get another module name

STATUS = CLI$GET_VALUE ('DELETE', MODNAME)

END DO

! Exit

END

9.6.4 Extracting Modules

Use the following procedures to extract modules from a library:

1 LBR$LOOKUP_KEY—Call LBR$LOOKUP_KEY to locate the
module. Specify the name of the module as the second argument.
LBR$LOOKUP__KEY returns the RFA of the module as the third
argument; do not alter this value.

2 LBR$GET_RECORD—Call LBR$GET_RECORD once for each record in
the module. Specify a character string to receive the extracted record
as the second argument. LBR$GET_RECORD returns a status value of
RMS$__EOF after the last record in the module is extracted.

9-80

File Input/Output

The following subroutine gets module names from the command
line, extracts the contents of the modules, and writes the contents to
SYS$OUTPUT.

SUBROUTINE EXTRACT (INDEX)

! Extracts text modules named by the

! qualifier /EXTRACT=(module-name....)

! and types their contents to SYS$OUTPUT

INTEGER STATUS, !
2 INDEX, !

2 TXTRFA (2) !

CHARACTER*31 MODNAME !

CHARACTER*255 TEXTLINE !

INTEGER MODNAME.LEN !

INTEGER TEXTLINE.LEN !

! VMS library procedures

INTEGER LBR$LOOKUP_KEY,

2 LBR$GET_RECORD,

2 LIB$PUT_OUTPUT,

2 CLI$GET_VALUE,

2 LIB$L0CC

! Return codes

EXTERNAL LBR$_KEYNOTFND, !

2 RMS$_EOF, !

2 D0LIB.N0M0D !

Return status

Library index
RFA of module

Name of module

Line of text

Length of module name

Length of line of text

Key not found

End of text in module

No such module

! Get module name from /EXTRACT on command line

STATUS = CLI$GET_VALUE ('EXTRACT', MODNAME)

! Extract modules until bad return status,

! which indicates end of qualifier values

DO WHILE (STATUS)

! Calculate length of module name

MODNAME.LEN = LIB$LOCC (' ', MODNAME) - 1

! Look up module name in library index

STATUS = LBR$L00KUP_KEY (INDEX,

2 MODNAME (1:MODNAME.LEN),

2 TXTRFA)

9-81

to

to

File Input/Output

! Extract module if it exists

IF (STATUS) THEN

! Get line of text

STATUS = LBR$GET_RECORD (INDEX, TEXTLINE)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. %L0C (RMS$_EOF))) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))
END IF

! Write and extract records until end-of-file

DO WHILE (STATUS .NE. */.L0C (RMS$_E0F))

! Calculate length of text

TEXTLINE.LEN = 255

DO WHILE ((TEXTLINE (TEXTLINE.LEN:TEXTLINE.LEN) .EQ. ' ')
2 .AND. (TEXTLINE.LEN .GT. 0))

TEXTLINE.LEN = TEXTLINE.LEN - 1

END DO

! Type text

IF (TEXTLINE.LEN .GT. 0) THEN

STATUS = LIB$PUT_OUTPUT (TEXTLINE (1:TEXTLINE.LEN))

ELSE

STATUS = LIB$PUT_OUTPUT (' •)

END IF

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

! Get another record

TEXTLINE (1:255) = ' '

STATUS = LBR$GET_RECORD (INDEX, TEXTLINE)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. */.L0C (RMS$_E0F))) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))
END IF

END DO

STATUS = LIB$PUT_OUTPUT ('***END OF MODULE***')

! Issue warning if module does not exist

ELSE IF (STATUS .EQ. 7.L0C (LBR$_KEYNOTFND)) THEN

CALL LIB$SIGNAL (D0LIB.N0M0D,

7.VAL (1),

MODNAME (1:MODNAME.LEN))
ELSE

CALL LIB$SIGNAL C/.VAL (STATUS))
END IF

STATUS = CLI$GET_VALUE ('EXTRACT', MODNAME)
END DO

! Exit

END

9-82

File Input/Output

9.6.5 Using Multiple Keys and Multiple Indexes

You can point at the same module with more than one key. The keys can
be in the primary index (index 1) or alternate indexes (indexes 2 through
10). The best form is to reserve the primary index for module names. In
system-defined object libraries, index 2 contains the global symbols defined
by the various modules. The following subroutine associates additional keys
(which the routine calls aliases) with modules and stores these keys in index
2.

SUBROUTINE ALIAS (INDEX)

! Catalogs modules by alias

INTEGER STATUS, !

2 INDEX, !

2 TXTRFA (2) !

CHARACTER*31 MODNAME, !
2 ALIASNAME !

INTEGER MODNAME.LEN !

INTEGER ALIASNAME.LEN !

! VMS library procedures

INTEGER LBR$L00KUP_KEY,

2 LBR$SET_INDEX,

2 LBR$INSERT_KEY,

2 LIB$GET_INPUT,

2 LIB$GET_VALUE

2 LIB$L0CC

! Return codes

EXTERNAL LBR$_KEYN0TFND,

2 LBR$_DUPKEY,

2 RMS$_E0F,

2 D0LIB.N0M0D

Return status

Library index

RFA of module

Name of module

Name of alias

Length of module name

Length of alias name

Key not found

Duplicate key

End of text in module

No such module

! Get module name from /ALIAS on command line

CALL CLI$GET_VALUE ('ALIAS', MODNAME)

! Calculate length of module name

MODNAME.LEN = LIB$L0CC (' ', MODNAME) - 1

! Look up module name in library index
STATUS = LBR$L00KUP_KEY (INDEX,

2 MODNAME (1:MODNAME.LEN),

3 TXTRFA)
END IF

9-83

File Input/Output

! Insert aliases if module exists

IF (STATUS) THEN

! Set to index 2

STATUS = LBR$SET_INDEX (INDEX, 2)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Get alias name from /ALIAS on command line

STATUS = CLI$GET_VALUE ('ALIAS', ALIASNAME)

! Insert aliases in index 2 until bad return status

! which indicates end of qualifier values

DO WHILE (STATUS)

! Calculate length of alias name

ALIASNAME.LEN = LIB$L0CC (• '. ALIASNAME) - 1

! Put alias name in index

STATUS = LBR$INSERT_KEY (INDEX,

2 ALIASNAME (1:ALIASNAME.LEN),

2 TXTRFA)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. '/.LOC (LBR$_DUPKEY)) THEN

CALL LIBISIGNAL C/.VAL (STATUS))

END IF
! Get smother alias

STATUS = CLI$GET_VALUE ('ALIAS', ALIASNAME)

END DO

! Issue warning if module does not exist

ELSE IF (STATUS .EQ. '/.LOC (LBR$_KEYNOTFND)) THEN

CALL LIB$SIGNAL (D0LIB.N0M0D.

2 '/.VAL (1),

2 MODNAME (1:MODNAME.LEN))

ELSE

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

! Exit

END

You can look up a module using any of the keys associated with it. The
following code fragment checks index 2 for a key if the lookup in the
primary index fails.

STATUS = LBR$SET_INDEX (INDEX, 1)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

STATUS = LBR$L00KUP_KEY (INDEX,
2 MODNAME (1:MODNAME.LEN),
2 TXTRFA)

IF (STATUS .EQ. '/.LOC (LBR$_KEYNOTFND)) THEN
STATUS = LBR$SET_INDEX (INDEX, 2)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = LBR$L00KUP_KEY (INDEX,
2 MODNAME (1:MODNAME.LEN),
2 TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

9-84

File Input/Output

You can identify the keys associated with a module by (1) looking up the
module (LBR$LOOKUP_KEY) using one of the keys, and (2) searching
(LBR$SEARCH) applicable indexes for the keys. LBR$SEARCH calls a user-
written routine each time it retrieves a key. The routine must be an integer
function defined as external that returns a success (odd number) or failure
(even number) status. LBR$SEARCH stops processing on a return status of
failure. The following subroutine prints the names of keys in index 2 (the
aliases) that point to a module identified on the command line by its name in
the primary index.

SUBROUTINE SHOWAL (INDEX)

! Lists aliases for a module

INTEGER STATUS,

2 INDEX,

2 TXTRFA (2)

CHARACTER*31 MODNAME

INTEGER MODNAME.LEN

Key not found

No such module

Return status

Library index

RFA for module text

Name of module

Length of module name

! VMS library procedures

INTEGER LBR$LOOKUP_KEY,
2 LBR$SEARCH,

2 LIB$L0CC

! Return codes

EXTERNAL LBR$_KEYNOTFND, !
2 D0LIB.N0M0D !

! Search routine
EXTERNAL SEARCH

INTEGER SEARCH

! Get module name and calculate length

CALL CLI$GET_VALUE ('SHOWALIAS', MODNAME)

MODNAME.LEN = LIB$LOCC (' ', MODNAME) - 1

! Look up module in index 1

2 STATUS = LBR$LOOKUP_KEY (INDEX,

2 MODNAME (1:MODNAME.LEN),

2 TXTRFA)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Search for alias names in index 2
2 STATUS = LBR$SEARCH (INDEX.

2 2.
2 TXTRFA,
2 SEARCH)

END

INTEGER FUNCTION SEARCH (ALIASNAME, RFA)

! Function called for each alias name pointing to MODNAME

! Displays the alias name

INTEGER STATUS.OK, ! Good return status
2 RFA (2) ! RFA of module

PARAMETER (STATUS.OK = 1) ! Odd number
CHARACTER*(*) ALIASNAME ! Name of module

! Display module name

TYPE *, MODNAME

! Exit

SEARCH = STATUS.OK
END

9-85

File Input/Output

9.6.6 Accessing Module Headers

You can store user information in the header of each module to the amount
specified at library creation time in the CRE$L_UHDMAX option. The total
size of each header in bytes is the value of MHD$B_USRDAT (defined by
the macro $MHDDEF—currently this value is 16) plus the value assigned to
the CRE$L _UHDMAX option.

To put user data into a module header, first locate the module with
LBR$LOOKUP_KEY, then move the data to the module header by invoking
LBR$SET_MODULE, specifying the first (index value returned by LBR$INI_
CONTROL), second (RFA returned by LBR$LOOKUP_KEY), and fifth
(character string containing the user data) arguments.

To read user data from a module header, first locate the module with
LBR$LOOKUP_KEY, then retrieve the entire module header by invoking
LBR$SET_MODULE, specifying the first, second, third (character string
to receive the contents of the module header), and fourth (length of the
module header) arguments. The user data starts at the byte offset defined
by MHD$B_USRDAT. Convert this value to a character string subscript by
adding 1.

The following example displays the user data portion of module headers on
SYS$OUTPUT and applies updates from SYS$INPUT.

SUBROUTINE MODHEAD (INDEX)

! Modifies module headers

INTEGER STATUS. !

2 INDEX. !

2 TXTRFA (2) !

CHARACTER*31 MODNAME !

INTEGER MODNAME.LEN !

CHARACTERS HEADER !

INTEGER HEADER.LEN !

INTEGER USER_START !

CHARACTER*64 USERDATA !

INTEGER*2 USERDATA.LEN !

Return status

Library index

RFA of module

Name of module

Length of module name

Module header

Length of module header

Start of user data in header

User data part of header

Length of user data

! VMS library procedures
INTEGER LBR$LOOKUP_KEY,
2 LBR$SET_MODULE,
2 LIB$GET_INPUT,
2 LIB$PUT_OUTPUT,

2 CLI$GET_VALUE.

2 LIB$L0CC

! Offset to user data - defined in $MHDDEF
EXTERNAL MHD$B_USRDAT

! Return codes

EXTERNAL LBR$_KEYNOTFND, ! Key not found

2 DOLIB.NOMOD ! No such module

! Calculate start of user data in header
USER.START = 7.L0C (MHD$B_USRDAT) + 1

9-86

to

to

to

to

to

to

to

to

to

to

to

to

File Input/Output

! Get module name from /MODHEAD on command line

STATUS = CLI$GET_VALUE ('MODHEAD', MODNAME)

! Get module headers until bad return status

! which indicates end of qualifier values

DO WHILE (STATUS)

! Calculate length of module name

MODNAME.LEN = LIB$L0CC (' •. MODNAME) - 1

! Look up module name in library index

STATUS = LBR$L00KUP_KEY (INDEX,

MODNAME (1:MODNAME.LEN).

TXTRFA)

! Get header if module exists

IF (STATUS) THEN

STATUS = LBR$SET_MODULE (INDEX,

TXTRFA,

HEADER.
HEADER.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Display header and solicit replacement
STATUS = LIB$PUT_OUTPUT

('User data for module '//MODNAME (1:MODNAME.LEN)//':

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))
STATUS = LIB$PUT_OUTPUT

(HEADER (USER.START:HEADER.LEN))

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))
STATUS = LIB$PUT_OUTPUT

('Enter replacement text below or just hit return:')

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

STATUS = LIB$GET_INPUT (USERDATA,, USERDATA.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL ('/.VAL (STATUS))

! Replace user data

IF (USERDATA.LEN .GT. 0) THEN

STATUS = LBR$SET_MODULE (INDEX,

TXTRFA,,,

USERDATA (1:USERDATA.LEN))

END IF

! Issue warning if module does not exist

ELSE IF (STATUS .EQ. 7.L0C (LBR$_KEYNOTFND)) THEN
CALL LIB$SIGNAL (D0LIB.N0M0D,

'/.VAL (i),

MODNAME (1:MODNAME.LEN))
ELSE

CALL LIB$SIGNAL ('/.VAL (STATUS))

END IF

! Get smother module name

STATUS = CLI$GET_VALUE ('MODHEAD', MODNAME)

END DO

! Exit
END

9-87

File Input/Output

9,6.7 Reading Library Headers

Call LBR$GET_HEADER to obtain general information concerning the
library. Pass the value returned by LBR$INI—CONTROL as the first
argument. LBR$GET_HEADER returns the information to the second
argument, which must be an array of 128 longwords. The LHI$ symbols
(see the specifications in the VAX/VMS Utility Routines Reference Manual)
identify the significant longwords of the array by their byte offsets into the
array. Convert these values to subscripts by dividing by four and adding
one.

The following example reads the library header and displays some
information from it.

SUBROUTINE TYPEINFO (INDEX)

! Types the type, major ID, and minor ID

! of a library to SYS$OUTPUT

INTEGER STATUS

2 INDEX,

2 HEADER (128),

2 TYPE,

2 MAJOR.ID,

2 MINOR.ID
CHARACTER*8 MAJOR_ID_TEXT, !

2 MINOR_ID_TEXT

! VMS library procedures

INTEGER LBR$GET_HEADER,
2 LIB$PUT.OUTPUT

Return status

Library index

Structure for header information

Subscripts for header structure

Display info in character format

! Offsets for header - defined in $LHIDEF

EXTERNAL LHI$L_TYPE,

2 LHI$L_MAJORID,

2 LHI$L_MINORID

! Library type values - defined in $LBRDEF

EXTERNAL LBR$C_TYP_OBJ,
2 LBR$C_TYP_MLB,

2 LBR$C_TYP_HLP,

2 LBR$C_TYP_TXT

9-88

File Input/Output

! Get header information

STATUS = LBR$GET_HEADER (INDEX, HEADER)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Calculate subscripts for header structure

TYPE = V.L0C (LHI$L_TYPE) / 4 + 1

MAJOR.ID = 7.L0C (LHI$L_MAJORID) / 4 + 1

MINOR.ID = 7.L0C (LHI$L_MINORID) / 4 + 1

! Display library type

IF (HEADER (TYPE) .EQ. 7.L0C (LBR$C_TYP_OBJ)) THEN

STATUS = LIB$PUT_OUTPUT ('Library type: object')

ELSE IF (HEADER (TYPE) .EQ. ‘/.LOC (LBR$C_TYP_MLB)) THEN

STATUS * LIB$PUT.OUTPUT ('Library type: macro')

ELSE IF (HEADER (TYPE) .EQ. 7.L0C (LBR$C_TYP_HLP)) THEN

STATUS = LIB$PUT_OUTPUT ('Library type: help')

ELSE IF (HEADER (TYPE) .EQ. 7.L0C (LBR$C_TYP_TXT)) THEN

STATUS = LIB$PUT_OUTPUT ('Library type: text')

ELSE

STATUS = LIB$PUT_OUTPUT ('Library type: unknown')

END IF

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Convert and display major ID

WRITE (UNIT=MAJOR_ID_TEXT,

2 FMT='(I)') HEADER (MAJOR.ID)

STATUS = LIB$PUT_OUTPUT ('Major ID: '//MAJOR.ID.TEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Convert and display minor ID

WRITE (UNIT=MINOR_ID_TEXT,

2 FMT='(I)') HEADER (MINOR.ID)

STATUS = LIB$PUT_OUTPUT ('Minor ID: '//MINOR.ID.TEXT)

IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL (STATUS))

! Exit

END

9.6.8 Displaying Help Text

You can display text from a help library by invoking LBR$OUTPUT-HELP,
specifying the first (the output routine), third (the keywords), and fourth (the
name of the library) arguments. You must also specify the last argument
if the fifth argument indicates prompting mode or is omitted. Remember,
subprograms specified in an argument list must be declared as external.
LIB$PUT_OUTPUT and LIB$GET_INPUT can be used for the first and last
arguments. (If you use your own routines, make sure the argument lists
are the same as for LIB$PUT_OUTPUT and LIB$GET_INPUT.) Do not call
LBR$INI-CONTROL and LBR$OPEN before calling LBR$OUTPUT_HELP.
The following program solicits keywords from SYS$INPUT and displays
the text associated with those keywords on SYS$OUTPUT, inhibiting the
prompting facility.

PROGRAM GET.HELP

! Prints help text from a help library

9-89

File Input/Output

CHARACTER*31 LIBSPEC !

CHARACTER*15 KEYWORD !

INTEGER*2 LIBSPEC.LEN. !

2 KEYWORD.LEN !

INTEGER FLAGS, !

2 STATUS !

! VMS library procedures

INTEGER LBR$OUTPUT_HELP,

2 LIB$GET_INPUT,

2 LIB$PUT_OUTPUT

EXTERNAL LIB$GET_INPUT,

2 LIB$PUT_OUTPUT

! Error codes

EXTERNAL RMS$_E0F,

2 LIB$_INPSTRTRU ! Input string truncated

! Flag values - defined in $HLPDEF

EXTERNAL HLP$M_PROMPT,

2 HLP$M_PROCESS,

2 HLP$M_GROUP,

2 HLP$M_SYSTEM,

2 HLP$M_LIBLIST,

2 HLP$M_HELP

! Get library name

STATUS = LIB$GET_INPUT (LIBSPEC,

2 'Library: ',

2 LIBSPEC.LEN)

IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

IF (LIBSPEC.LEN .EQ. 0) THEN

LIBSPEC = 1HELPLIB'

LIBSPEC.LEN = 7

END IF

! Set flags for no prompting

FLAGS = V.L0C (HLP$_PROCESS) +

2 ’/.LOC (HLP$_GR0UP) +

2 '/.LOC (HLP$_SYSTEM)

! Get first keyword

STATUS = LIB$GET_INPUT (KEYWORD,

2 'Keyword or CTRL/Z: ',

2 KEYWORD.LEN)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. */.LOC (LIB$.INPSTRTRU)) .AND.
2 (STATUS .NE. */.LOC (RMS$_EOF))) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

Library name

Keyword in help library

Length of name

Length of keyword

Help flags

Return status

I F.nH-ftf-fila

9-90

File Input/Output

! Display text until end-of-file

DO WHILE (STATUS .NE. '/.LOC (RMS$_E0F))
STATUS = LBR$OUTPUT_HELP (LIB$PUT_OUTPUT,

KEYWORD (1:KEYWORD_LEN),

LIBSPEC (1:LIBSPEC_LEN),

FLAGS.
LIB$GET_INPUT)

2

2

2

2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Get another keyword

STATUS = LIB$GET_INPUT (KEYWORD,

2
2

'Keyword or CTRL/Z:

KEYWORD.LEN)

IF ((.NOT. STATUS) .AND.

2 (STATUS .NE. */.L0C (LIB$_INPSTRTRU)) .AND.

2 (STATUS .NE. */,LOC (RMS$_E0F))) THEN

CALL LIB$SIGNAL C/.VAL (STATUS))

END IF

END DO

! Exit

END

9.6.9 Listing and Processing Index Entries

You can process index entries an entry at a time by invoking LBR$GET_
INDEX. The fourth argument specifies a match name for the entry or entries
in the index to be processed: you can include the asterisk and percent
characters in the match name for generic processing—for example, MOD*
means all entries whose names begin with MOD, MOD% means all entries
whose names are four characters and begin with MOD, and the asterisk (*)
means all entries.

The third argument names a user-written routine that will be executed once
for each index entry specified by the fourth argument. The routine must be
a function declared as external that returns a success (odd number) or failure
(even number) status. LBR$GET_INDEX processing stops on a return status
of failure. Declare the first argument passed to the function as a passed-
length character argument—this argument will contain the name of the index
entry. Declare the second argument as an integer array of two elements.

The following example obtains a match name from the command line
and displays the names of the matching entries from index 1 (the index
containing the names of the modules).

SUBROUTINE LIST (INDEX)

! Lists modules in the library

INTEGER STATUS. ! Return status
2 INDEX, ! Library index
CHARACTER*31 MATCHNAME ! Name of module to list
INTEGER MATCHNAME.LEN ! Length of match name

9-91

File Input/Output

! VMS library procedures

INTEGER address LBR$GET_INDEX,

3 LIB$L0CC

! Match routine

INTEGER MATCH

EXTERNAL MATCH

! Get module name and calculate length

CALL CLI$GET_VALUE ('LIST', MATCHNAME)

MATCHNAME.LEN = LIB$L0CC (' ', MATCHNAME) - 1

! Call routine to display module names

STATUS = LBR$GET_INDEX (INDEX,

2 i, ! Primary index

3 MATCH.

4 MATCHNAME (1:MATCHNAME.LEN))

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Exit

END

INTEGER FUNCTION MATCH (MODNAME, RFA)

! Function called for each module matched by MATCHNAME

! Displays the module name

INTEGER STATUS.OK, ! Good return status

2 RFA (2) ! RFA of module name in index

PARAMETER (STATUS.OK =1) ! Odd value

CHARACTER*(*) MODNAME ! Name of module

! Display the name
TYPE *, MODNAME ! Display module name

! Exit

MATCH = STATUS.OK

END

9.7 File Definition Language

The File Definition Language (FDL) commands and procedures provide a
means of defining file characteristics. Typically, you use FDL to perform the
following operations:

• Specify file characteristics otherwise unavailable from your language.

• Examine and/or modify the file characteristics of an existing data file in
order to improve program or system interaction with that file.

You cannot specify FDL attributes when you open a file using a FORTRAN
OPEN statement. Instead, use FDL to create your data file, set the desired
file characteristics, close the file, and then use a FORTRAN OPEN statement
to reopen the file. Since the data file is closed between the time the FDL
attributes are set and the time your program accesses the file, you cannot
use FDL to specify run-time attributes (attributes that are ignored or deleted
when the associated data file is closed).

9-92

File Input/Output

9.7.1 Creating an FDL File

An FDL file is a specially formatted text file containing a series of FDL
attributes. You can create an FDL file with any text editor; however, to
ensure that the file is correctly formatted, best practice is to use the FDL
editor or create the FDL file from an existing data file.

9.7.1.1 Using the FDL Editor

To invoke the FDL editor, use the EDIT/FDL command. Use the editor
interactively to create new FDL files or modify existing FDL files. Use the
editor either interactively or noninteractively to optimize an FDL file in order
to improve program or system interaction with the associated data file.

Throughout an interactive editing session (Section 9.7.2.2 describes
noninteractive use of the editor), the FDL editor displays available
subcommands or appropriate attributes, each followed by a brief description,
and prompts you for a response. In general, a prompt consists of a short
question, the type of value required or the range of acceptable values, and
the default answer in brackets. If the question has no default answer, a
hyphen appears within the brackets ([-]); in this case, you must supply an
answer (or use CTRL/Z to abort the current command) before EDIT/FDL
will continue the editing session.

If you are using FDL to specify a particular file characteristic that is
unavailable from FORTRAN, use the editor subcommands ADD, DELETE,
and MODIFY to edit the appropriate attribute. If you are using FDL to
improve program or system interaction with an existing data file, have the
editor optimize the associated FDL file (see Section 9.7.2.2). If you are
using FDL to optimize program or system interaction with a data file that
you have not yet created, use the editor subcommand INVOKE to choose
an appropriate script. A script is a series of questions pertaining to the
planned data file. By analyzing your responses to the questions, the editor
determines which characteristics are best suited to the file and creates an FDL
file describing those characteristics.

9-93

File Input/Output

9.7.1.2 Using the Characteristics of an Existing Data File

To create an FDL file that describes the characteristics of an existing data file,
use the DCL command ANALYZE/RMS—FILE/FDL or the library routine

FDL$GENERATE. ANALYZE/RMS—FILE/FDL examines the specified data
file and creates an FDL file that describes the characteristics of that file.
FDL$GENERATE examines the VAX RMS structures (the FAB and the
RAB) of the specified data file and creates an FDL file that describes those
structures.

Typically, an FDL file created by ANALYZE/RMS—FILE/FDL differs slightly

from an FDL file created by FDL$GENERATE. (For example, if a file was
created with no initial storage allocation and has since been allocated 30
blocks, the file section's ALLOCATE attribute in an FDL file created by
FDL$GENERATE is 0; the same attribute in an FDL file created by ANALYZE
/RMS—FILE/FDL is 30.) The FDL editor can optimize an FDL file created by
ANALYZE/RMS_FILE/FDL; however, it cannot optimize an FDL file created

by FDL$GENERATE.

The following command creates an FDL file INCOME.FDL, which describes
the characteristics of the data file INCOME83.DAT.

$ ANALYZE/RMS_FILE/FDL=INCOME INC0ME83.DAT

For complete specifications for the ANALYZE/RMS—FILE command, see the
VAX/VMS DCL Dictionary.

The following program segment creates an FDL file INCOME.FDL, which
describes the VAX RMS structures of the data file INCOME83.DAT. Since the
addresses of the FAB and RAB are only available within a user-open routine,
FDL$GENERATE can be invoked only from within a user-open routine
(Section 9.8 describes user-open routines). The VAX/VMS Utility Routines
Reference Manual) contains complete specifications for FDL$GENERATE.

MAIN.FOR

INTEGER LUN

! User-open routine

INTEGER FDL

EXTERNAL FDL

STATUS = LIB$GET_LUN (LUN)

IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

9-94

File Input/Output

OPEN (UNIT = LUN,

2 FILE = 'INC0ME83.DAT',

2 STATUS = 'OLD',

2 USEROPEN = FDL)

USER_OPEN.FOR

INTEGER FUNCTION FDL (FAB,

2 RAB,

2 LUN)

! Generates an FDL file

! Dummy arguments

BYTE FAB(*),

2 RAB(*)

INTEGER LUN

! Mask for FDL$GENERATE

INTEGER MASK

EXTERNAL FDL$V_FULL_OUTPUT

! Status and library routine

INTEGER STATUS,

2 FDL$GENERATE

MASK = IBSET (MASK, '/.LOC(FDL$V_FULL_OUTPUT))

STATUS = FDLIGENERATE (MASK,
2 '/.LOC(FAB) ,

2 */,L0C(RAB) ,

2 'TEST.FDL',

2 ...)
IF (.NOT. STATUS) CALL LIB$SIGNAL (*/.VAL(STATUS))

! Return user-open status

FDL = STATUS

END

9.7.2 Applying an FDL File to a Data File

Use an FDL file to specify the file characteristics of a new data file or
modify the file characteristics of an existing data file. When modifying
file characteristics, the system creates a new data file, and then reads the
records from the existing data file to the new data file.

9-95

File Input/Output

9.7.2.1 Creating a New Data File

To create a data file using the characteristics specified by an FDL file, use
the DCL command CREATE/FDL or the library routine FDL$CREATE. The
following command creates an empty data file INCOME83.DAT using the
file characteristics specified by the FDL file INCOME.FDL.

$ CREATE/FDL=INCOME.FDL INC0ME83.DAT

For complete specifications for the CREATE/FDL command, see the
description of the FDL Utility in the VAX/VMS File Definition Language
Reference Manual.

The following program segment creates an empty data file named
INCOME83.DAT using the file characteristics specified by the FDL file
INCOME.FDL. The STATEMENT variable contains the number of the last
FDL statement processed by FDL$CREATE; this argument is useful for
debugging an FDL file. The VAX/VMS Utility Routines Reference Manual)
contains complete specifications for FDL$CREATE.

INTEGER STATEMENT
INTEGER STATUS.
2 FDL$CREATE

STATUS = FDL$CREATE ('INCOME.FDL',
2 'INC0ME83.DAT',
2
2 STATEMENT,
2 , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7.VAL(STATUS))

9.7.2.2 Modifying an Existing Data File

To change the characteristics of an existing data file to those specified by an
FDL file, use the DCL command CONVERT/FDL. For complete specifications
for the CONVERT command, see the description of the Convert Utility in
the VAX/VMS Convert Reference Manual. The following command changes
the characteristics of the data file INCOME83.DAT to agree with those
specified by the FDL file INCOME.FDL. The modified file is written to
NEWINCOME83.DAT. (To write the modified data to a file with the same
name as the original file, specify the second parameter as an asterisk.)

$ CONVERT/FDL=INCOME INC0ME83.DAT NEWINC0ME83.DAT

9-96

File Input/Output

Typically, you change the characteristics of an existing data file to improve
program or system interaction with that file. Unless you are familiar with
VAX RMS and the internal structure of the file, best practice is to allow the
system to optimize the data file for you, as described in the following steps:

1 Create an FDL file—Use the DCL command ANALYZE/RMS—FILE/FDL
to create an FDL file that describes the existing data file. The following
command creates the FDL file INCOME.FDL, which describes the file
characteristics of the data file INCOME83.DAT.

$ ANALYZE/RMS_FILE/FDL=INCOME INC0ME83.DAT

2 Optimize the FDL file—Use the FDL editor noninteractively to optimize
the FDL file. The following command writes an optimized version of
INCOME.FDL to NEWINCOME.FDL. (Since an FDL file created by

FDL$GENERATE describes the RMS structures rather than the file itself,
EDIT/FDL cannot optimize an FDL file created by FDL$GENERATE and,
therefore, will not accept such a file as input to a noninteractive session.)

$ EDIT/FDL/NOINTERACTIVE/ANALYZE=INCOME NEWINCOME

3 Change the data file—Use the DCL command CONVERT/FDL to
change the characteristics of the existing data file to those specified
by the optimized FDL file. The following command changes the file
characteristics of the data file INCOME83.DAT to agree with those
specified by the FDL file NEWINCOME.FDL. The modified file is written
to NEWINCOME83.DAT.

$ CONVERT/FDL=NEWINCOME INC0ME83.DAT NEWINC0ME83.DAT

9.8 User-Open Routines

A user-open routine allows you direct access to the FAB and RAB (the RMS
structures that define file characteristics). Use a user-open routine to specify
file characteristics otherwise unavailable from FORTRAN.

When you specify a user-open routine, you open the file rather than allowing
FORTRAN to open the file for you. Before passing the FAB and RAB to
your user-open routine, FORTRAN sets any file characteristics specified by
keywords in the OPEN statement and the FORTRAN defaults. Your user-
open routine should not set or modify file characteristics that can be set by
FORTRAN keywords because FORTRAN may not be aware that you have
set the characteristics and may not perform as expected.

Note

The FORTRAN system definition library,
SYS$LIBRARY:FORSYSDEF.TLB, includes record structure
definitions for most VAX RMS structures, providing direct access
to VAX RMS. However, correct use of VAX RMS structures

9-97

File Input/Output

requires a knowledge of RMS internals beyond the scope of
this manual; therefore, this documentation discusses only the
FAB and RAB structures (which are accessible from a user-open
routine) and the following VAX RMS routines: SYS$CONNECT,
SYS$CREATE, and SYS$OPEN. For more information about RMS,
see the VAX Record Management Services Reference Manual.

9.8.1 USEROPEN Specifier

To open a file with a user-open routine, include the USEROPEN specifier
in the FORTRAN OPEN statement. The value of the USEROPEN specifier
is the name of the routine (not a character string containing the name).
Declare the user-open routine as an INTEGER*4 function. Since the user-
open routine name is specified as an argument, it must be declared in an
EXTERNAL statement. The following statement instructs FORTRAN to open
SECTION.DAT using the routine UFO—OPEN.

! Logical unit number
INTEGER LUN

! Declare user-open routine
INTEGER UFO.OPEN
EXTERNAL UFO.OPEN

OPEN (UNIT = LUN,
2 FILE = 'SECTION.DAT',
2 STATUS = 'OLD',
2 USEROPEN = UFO.OPEN)

9.8.2 Writing a User-Open Routine

Write a user-open routine as an INTEGER function that accepts three dummy
arguments:

• FAB address—Declare this argument as a RECORD variable. Use
the record structure FABDEF defined in the $FABDEF module of
SYS$LIBRARY:FORSYSDEF.TLB.

• RAB address—Declare this argument as a RECORD variable. Use
the record structure RABDEF defined in the $RABDEF module of
SYS$LIBRARY :FORSYSDEF.TLB.

• Logical unit number—Declare this argument as an INTEGER.

9-98

File Input/Output

A user-open routine must at least perform the following operations. In
addition, before opening the file, a user-open routine usually adjusts one or
more fields in the FAB and/or the RAB.

• Opens the file—To open the file, invoke the SYS$OPEN system service
if the file already exists, or the SYS$CREATE system service if the file is
being created.

• Connects the file—Invoke the SYS$CONNECT system service to
establish a record stream for I/O.

• Returns the status—To return the status, equate the return status of the
SYS$OPEN or SYS$CREATE system service to the function value of the
user-open routine.

The following user-open routine opens an existing file. The file to be opened
is specified in the OPEN statement of the invoking program unit.

UFO—OPEN.FOR

INTEGER FUNCTION UFO.OPEN (FAB,

2 RAB,

2 LUN)

! Include VAX RMS definitions

INCLUDE '($FABDEF)'

INCLUDE '($RABDEF)1

! Declare dummy arguments

RECORD /FABDEF/ FAB

RECORD /RABDEF/ RAB

INTEGER LUN

! Declare status variable

INTEGER STATUS

! Declare system routines

INTEGER SYS$CREATE,

2 SYS$0PEN,
2 SYS$CONNECT

! Optional FAB and/or RAB modifications

! Open file
STATUS = SYS$OPEN (FAB)

IF (STATUS)
2 STATUS = SYS$CONNECT (RAB)

! Return status of $0PEN or $CONNECT

UFO.OPEN = STATUS

END

9-99

File Input/Output

9.8.3 Setting FAB and RAB Fields

Each field in the FAB and RAB is identified by a symbolic name, such as
FAB$L_FOP. Where separate bits in a field represent different attributes,
each bit offset is identified by a similar symbolic name, such as FAB$V_CTG.
The first three letters identify the structure containing the field. The letter
following the dollar sign indicates either the length of the field (B for byte,
W for word, or L for longword), or that the name is a bit offset (V for bit)
rather than a field. The letters following the underscore identify the attribute
associated with the field or bit. The symbol FAB$L_FOP identifies the
FAB options field, which is a longword in length; the symbol FAB$V_CTG
identifies the contiguity bit within the options field.

The STRUCTURE definitions for the FAB and RAB are in the $FABDEF and
SRABDEF modules of the library SYS$LIBRARY:FORSYSDEF.TLB. To use
these definitions:

1 Include the modules in your program unit.

2 Declare RECORD variables for the FAB and the RAB.

3 Reference the various fields of the FAB and RAB using the symbolic
name of the field.

The following user-open routine specifies that the blocks allocated for
the file must be contiguous. To specify contiguity, you clear the best-try-
contiguous bit (FAB$V_CBT) of the FAB$L_FOP field and set the contiguous

bit (FAB$V_CTG) of the same field.

UFO-CONTIG.FOR

INTEGER FUNCTION UFO.CONTIG (FAB,
2 RAB,
2 LUN)

! Include VAX RMS definitions
INCLUDE 1($FABDEF)'
INCLUDE '($RABDEF)'

! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN

! Declare status variable
INTEGER STATUS

! Declare system procedures
INTEGER SYS$CREATE,
2 SYS$CONNECT

! Clear contiguous-best-try bit and
! set contiguous bit in FAB options
FAB.FAB$L_F0P = IBCLR (FAB.FAB$L_FOP, FAB$V_CBT)
FAB.FAB$L_FOP = IBSET (FAB.FAB$L_FOP, FAB$V_CTG)

9-100

File Input/Output

! Open file

STATUS = SYS$CREATE (FAB)

IF (STATUS) STATUS = SYS$CONNECT (RAB)

! Return status of open or connect

UFO.CONTIG = STATUS

END

9-101

Run-Time Errors

Run-time errors are events, usually errors, detected by hardware or software
that alter normal program execution. Examples of run-time errors are:

• System errors—For example, specifying an invalid argument to a system-
defined procedure.

• Language-specific errors—For example, in FORTRAN, a data type
conversion error during an I/O operation.

• Application specific errors—For example, attempting to use invalid data.

When an error occurs, the VAX/VMS operating system either returns a
condition code identifying the error to your program or signals the condition
code (Section 10.1.3 describes signaling). If the VAX/VMS operating system
signals the condition code, an error message is typically displayed, and
program execution continues or terminates depending on the severity of
the error. If the VAX/VMS operating system returns the condition code to
your program, your program should test the condition code and respond
accordingly.

Both an error message and its associated condition code identify an error
by the name of the facility that generated the error and an abbreviation
of the message text. (See 1.1.4 for a list of the commonly used facility
abbreviations.) Therefore, if your program displays an error message, you
can identify the condition code that was signaled. For example, if your
program displays the following error message, you know that the condition
code SS$_NOPRIV was signaled.

"•/.SYSTEM-F-NOPRIV, no privilege for attempted operation"

The descriptions of the system routines in the VAX/VMS System Routines
Reference Volume include a lists of the condition codes that may be returned
by the routine.

10.1 General Error Handling

When unexpected errors occur, your program should display a message
that identifies the error, and then either continue or stop, depending on the
severity of the error. If you know that certain run-time errors might occur,
you should provide special actions in your program to handle those errors.

10-1

Run-Time Errors

10.1.1 Condition Code and Message

Error conditions are identified by integer values called condition codes. The
VAX/VMS operating system defines condition codes to identify errors that
may occur during execution of system-defined procedures. You can define
condition codes for errors that may occur in your programs (see Section 10.2
for more information).

From a condition code you can determine whether or not any error has
occurred, which particular error has occurred, and the severity of the error.
A condition code contains the following fields:

31 28 27 16 15 32 0

control facility number message number severity

ZK-2049-84

• Severity—The severity of the error condition. Bit 0 indicates success
when set and failure when clear. Bits 1 and 2 distinguish degrees of
success or failure. The three bits, when taken as an unsigned integer, are
interpreted as shown in the following table. (The symbolic names are

defined in module $STSDEF.)

• Message number—The number identifying the message associated with
the error condition. The message may or may not be displayed when the
associated error occurs.

• Facility number—The number identifying the facility (program) in which
the error occurred. Bit 27 is set for user facilities and clear for DIGITAL
facilities.

• Control—Control bits. Bit 28 inhibits the display of the error message;
bits 29 through 31 are reserved for DIGITAL.

Code (Symbolic Name) Severity Response

0 (STS$K_WARNING) Warning Execution continues,
unpredictable results

1 (STS$K_SUCCESS) Success Execution continues, expected
results

2 (STS$K_ERROR) Error Execution continues,
erroneous results

10-2

Run-Time Errors

Code (Symbolic Name) Severity Response

3 (STS$K_INFO) Information Execution continues,
informational message
displayed

4 (STS$K_SEVERE) Severe error Execution terminates, no
output

5 Reserved for DIGITAL

6 Reserved for DIGITAL

7 Reserved for DIGITAL

10.1.2 Return Status Convention

Most system-defined procedures are functions of INTEGER*4 data type
where the function value is equated to a condition code. In this capacity,
the condition code is referred to as a return status. You can write your
own routines to follow this convention. To access a procedure's return
status, you must declare the procedure name as an INTEGER*4 data type
and invoke the procedure as a function. Each procedure description in the
VAX/VMS System Routines Reference Volume lists the condition codes that
may be returned by that procedure. For example, the Run-Time Library
procedure LIB$SET_CURSOR returns one of three condition codes defined
by the symbols SS$_NORMAL (success), LIB$_INVARG (invalid argument),

or LIB$_INVSCRPOS (invalid screen position).

10.1.2.1 Testing Returned Condition Codes

When a function returns a condition code to your program unit, you should
always examine the returned condition code. To check for a failure condition
(warning, error, or severe error), test the returned condition code for a logical
value of false. The following program segment invokes the run-time library
procedure LIB$DATE_TIME, checks the returned condition code (returned
in the variable STATUS), and, if an error occurred, signals the condition

code by calling the Run-Time Library procedure LIB$SIGNAL (Section 10.1.3
describes signaling).

INTEGER*4 STATUS.
2 LIB$DATE_TIME
CHARACTERS DATE

STATUS = LIB$DATE_TIME (DATE)
IF (.NOT. STATUS) CALL LIB$SIGNAL C/.VAL (STATUS))

10-3

Run-Time Errors

To check for a specific error, test the return status for a particular condition
code. For example, LIB$DATE—TIME returns a success code (LIB$_STRTRU)
when it truncates the string. If you want to take special action when
truncation occurs, specify the condition, as shown (the special action would
follow the IF statement).

INTEGERS STATUS.
2 LIB$DATE_TIME
CHARACTER»23 DATE

INCLUDE ’(JLIBDEF)'

STATUS = LIB$DATE_TIME (DATE)
IF (STATUS .EQ. LIB$_STRTRU) THEN

10.1.2.2 Testing SS$_NOPRIV and SS$_EXQUOTA

The SS$_NOPRIV and SS$_EXQUOTA condition codes returned by a
number of system service procedures require special checking. Any system
service that is listed as returning SS$_NOPRIV or SS$_EXQUOTA may
instead return a more specific condition code that indicates the privilege or
quota in question. The following tables list the specific privilege errors (first
table) and quota errors (second table).

Privilege Errors:

SSS—NOACNT

SS$_NOBUGCHK

SS$_NOCMKRNL

SS$_NODOWNGRADE

SS$_NOGRPNAM

SS$_NOMOUNT

SS$_NOPFNMAP

SS$_NOPRMGBL

SS$_NOREADALL

SS$_NOSHARE

SSS—NO ALLSPOOL

SS$_NOBYPASS

SS$_NODET ACH

SS$_N0EXQU0T A

SS$_NOGRPPRV

SS$_NONETMBX

SS$_NOPHYIO

SS$_NOPRMMBX

SS$_NOSECURITY

SS$_NOSHMEM

SS$_NOALTPRI

SS$_NOCMEXEC

SS$_N0DIAGN0SE

SS$_NOGROUP

SS$_NOLOGIO

SS$_NOOPER

SS$_NOPRMCEB

SS$_NOPS W APM

SSS-NOSETPRV

SS$_NOSYSGBL

10-4

Run-Time Errors

SS$_NOSYSLCK

SS$_NOTMPMBX

SS$_NOWORLD

SS$_NOSYSNAM SS$_NOSYSPRV

SS$_NOUPGRADE SS$_NOVOLPRO

Quota Errors:

SS$_EXASTLM

SSS—EXDIOLM

SS$_EXBIOLM

SS$_EXENQLM

SS$_EXPRCLM

SS$_EXBYTLM

SS$_EXFILLM

SS$_EXTQELM SS$_EXPGFLQUOT A

Since either a general or a specific code may be returned, your program must

test for both. The following four symbols provide a starting and ending point
with which you can compare the returned condition code.

• SS$_NOPRIVSTRT—First specific code for SS$_NOPRIV

• SS$_NOPRIVEND—Last specific code for SS$_NOPRIV

• SS$_NOQUOTASTRT—First specific code for SS$_EXQUOTA

• SS$_NOQUOTAEND—Last specific code for SS$_EXQUOTA

The following FORTRAN example tests for a privilege error by comparing

STATUS, the returned condition code, with the specific condition code
SS$_NOPRIV and the range provided by SS$_NOPRIVSTRT and SS$_
NOPRIVEND. You would test for SS$_NOEXQUOTA in a similar fashion.

! Declare status and status values
INTEGER STATUS
INCLUDE '($SSDEF)1

IF (.NOT. STATUS) THEN
IF ((STATUS .EQ. SS$_N0PRIV) .OR.

2 ((STATUS .GE. SS$_NOPRIVSTRT) .AND.
2 (STATUS .LE. SS$_NOPRIVEND))) THEN

ELSE
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF
END IF

10-5

Run-Time Errors

10.1.3 Signaling Mechanism

Signaling a condition code causes the VAX/VMS operating system to pass
control to a special subprogram called a condition handler. The VAX/VMS
operating system invokes a default condition handler unless you have
established your own. The default condition handler displays the associated
error message and continues or, if the error is a severe error, terminates
program execution (see Section 10.1.3.1).

You can signal a condition code by invoking the Run-Time Library procedure
LIB$SIGNAL and passing the condition code as the first argument. In
FORTRAN, use the by-value passing mechanism (%VAL) to pass the
condition code. (The VAX/VMS Run-Time Library Routines Reference
Manual contains the complete specifications for LIB$SIGNAL.) The following
statement signals the condition code contained in the variable STATUS.

CALL LIB$SIGNAL (7.VAL(STATUS))

When an error occurs in a subprogram, the subprogram may signal the
appropriate condition code rather than returning the condition code to the
invoking program unit. In addition, some statements also signal condition
codes; for example, an assignment statement that attempts to divide by zero
signals the condition code SS$_INTDIV.

10.1.3.1 Default Condition Handling

The VAX/VMS operating system has two default condition handlers: the
traceback and catchall handlers. The traceback handler is in effect if you link
your program with the /TRACEBACK qualifier of the LINK command (the
default). Once you have completed program development, you generally
link your program with the /NOTRACEBACK qualifier and use the catchall
handler.

• Traceback handler—Displays the message associated with the signaled
condition code, the traceback message, the program unit name and
line number of the statement that signaled the condition code, and
the relative and absolute program counter values. (On a warning or
error, the number of the next statement to be executed is displayed.)
In addition, the traceback handler displays the names of the program
units in the calling hierarchy and the line numbers of the invocation
statements. After displaying the error information, the traceback handler
continues program execution or, if the error is severe, terminates program
execution.

10-6

Run-Time Errors

• Catchall handler—Displays the message associated with the condition
code and then continues program execution or, if the error is severe,
terminates execution. The catchall handler is not invoked if the traceback
handler is enabled.

For example, if the condition code INCOME _LINELOST is signaled at line
496 of GET-STATS, regardless of which default handler is in effect the
following message is displayed.

'/.INCOME-W-LINELOST, Statistics on last line lost due to CTRL/Z

If the traceback handler is in effect, the following text is also displayed.

'/.TRACE-W-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

GET.STATS GET.STATS 497 00000306 00008DA2
INCOME INCOME 148 0000015A 0000875A

0000A5BC 0000A5BC
00009BDB 00009BDB
0000A599 0000A599

Because INCOME—LINELOST is a warning, the line number of the next
statement to be executed (497), rather than the line number of the statement
that signaled the condition code, is displayed. Line 148 of the program unit
INCOME invoked GET-STATS.

10.1.3.2 Changing a Signal to a Return Status

If you expect a particular condition code to be signaled, you can prevent the
VAX/VMS operating system from invoking the default condition handler by
establishing a different condition handler. The following paragraphs describe
how to establish and use the system-defined condition handler LIB$SIG_
TO—RET, which changes a signal to a return status that your program can
examine. For more information on condition handlers see Section 10.4.

To change a signal to a return status, you must put any code that might
signal a condition code into an INTEGER function where the function
value is a return status. The function containing the code must perform the
following operations:

• Declare LIB$SIG_TO—RET—Declare the condition handler LIB$SIG_
TO—RET in an EXTERNAL statement.

• Establish LIB$SIG_TO_RET—Invoke the Run-Time Library procedure
LIB$ESTABLISH to establish a condition handler for the current program
unit. Specify the name of the condition handler LIB$SIG_TO_RET as
the only argument.

10-7

Run-Time Errors

• Initialize the function value—Initialize the function value to SS$_
NORMAL so that if no condition code is signaled, the function returns a
success status to the invoking program unit.

• Declare necessary dummy arguments—If any statement that might signal
a condition code is a subprogram that requires dummy arguments, pass
the necessary arguments to the function. In the function, declare each
dummy argument exactly as it is declared in the subprogram that requires
it, and specify the dummy arguments in the subprogram invocation.

If the program unit GET_1_STAT in the following function signals a
condition code, LIB$SIG_TO—RET changes the signal to the return status
of the INTERCEPT—SIGNAL function and returns control to the program
unit that invoked INTERCEPT—SIGNAL. (If GET—1_STAT has a condition
handler established, the VAX/VMS operating system invokes that handler

before invoking LIB$SIG_TO_RET.)

FUNCTION INTERCEPT.SIGNAL (STAT,

2 ROW,

2 COLUMN)

! Dummy arguments for GET_1_STAT

INTEGER STAT,

2 ROW,

2 COLUMN

! Declare SS$_NORMAL

INCLUDE '($SSDEF)'

! Declare condition handler

EXTERNAL LIB$SIG_TO_RET

! Declare user routine

INTEGER GET.1.STAT

! Establish LIB$SIG_TO_RET

CALL LIB$ESTABLISH (LIB$SIG_TO_RET)

! Set return status to success

INTERCEPT.SIGNAL = SS$_NORMAL

! Statements and/or subprograms that

! signal expected error condition codes

STAT = GET.1.STAT (ROW,

2 COLUMN)

END

When the program unit that invoked INTERCEPT-SIGNAL regains control,
it should check the return status (as shown in Section 10.1.2) to determine
which condition code, if any, was signaled during execution of INTERCEPT-
SIGNAL.

10-8

Run-Time Errors

10.2 Defining Condition Codes and Messages

You can supplement system condition codes and messages by defining your
own. To define your own condition codes and messages follow these steps:

1 Create a message source file

2 Compile the message source file with the MESSAGE command

3 Link the resultant object module with your program

10.2.1 Creating the Source File

A message source file contains definition statements and directives. The
following source message file defines the error messages generated by the
FORTRAN INCOME program.

INCMSG.MSG

.FACILITY INCOME, 1 /PREFIX=INCOME__

.SEVERITY WARNING
LINELOST "Statistics on last line lost due to CTRL/Z"

.SEVERITY SEVERE
BADFIXVAL "Bad value on /FIX"
CTRLZ "CTRL/Z entered on terminal"
FORIOERR "FORTRAN I/O error"
INSFIXVAL "Insufficient values on /FIX"
MAXSTATS "Maximum number of statistics already entered"
NOACTION "No action qualifier specified"
NOHOUSE "No such house number"
NOSTATS "No statistics to report"

.END

The default file type of a message source file is MSG. For a complete
description of the MESSAGE Utility, see the VAX/VMS Message Reference
Manual.

10—9

Run-Time Errors

10.2.1.1 Specifying Facility

To specify the name and number of the facility for which you are defining
the error messages, use the .FACILITY directive. For instance, the following
.FACILITY directive specifies the facility (program) INCOME and a facility
number of 1.

.FACILITY INCOME, 1

In addition to identifying the program associated with the error messages,
the .FACILITY directive specifies the facility prefix that is added to each
condition name to create the symbolic name used to reference the message.
By default, the prefix is the facility name followed by an underscore. For
example, a condition name BADFIXVAL defined following the previous
.FACILITY directive is referenced as INCOME—BADFIXVAL. You can specify
a prefix other than the specified program name by specifying the /PREFIX
qualifier of the .FACILITY directive.

By convention, system-defined condition codes are identified by the facility
name, followed by a dollar sign, an underscore, and the condition name.
User-defined condition codes are identified by the facility name, followed by
two underscores, and the condition name. To include two underscores in the
symbolic name, use the /PREFIX qualifier to specify the prefix.

.FACILITY INCOME, 1 /PREFIX=INCOME__

A condition name BADFIXVAL defined following this .FACILITY directive is
referenced as INCOME_BADFIXVAL.

The facility number, which must be between 1 and 2047, is part of the
condition code that identifies the error message. To prevent different
programs from generating the same condition codes, the facility number
must be unique. A good way to ensure uniqueness is to have the system
manager keep a list of programs and their facility numbers in a file.

All messages defined after a .FACILITY directive are associated with the
specified program. Specify either an .END directive or another .FACILITY
directive to end the list of messages for that program. Best practice is to have
one .FACILITY directive per message file.

10-10

Run-Time Errors

10.2.1.2

10.2.1.3

Specifying Severity

Use the .SEVERITY directive and one of the following keywords to specify
the severity of one or more condition codes.

SUCCESS
WARNING
INFORMATIONAL
ERROR
SEVERE or FATAL

All condition codes defined after a .SEVERITY directive have the specified
severity (unless you use the /SEVERITY qualifier of the message definition
statement to change the severity of one particular condition code). Specify
an .END directive or another .SEVERITY directive to end the group of errors
with the specified severity. Note that when the .END directive is used to
end the list of messages for a .SEVERITY directive, it also ends the list
of messages for the previous .FACILITY directive. The following example
defines one condition code with a severity of WARNING and two condition
codes with a severity of SEVERE. The optional spacing between the lines and
at the beginning of the lines is used for clarity.

.SEVERITY WARNING
LINELOST "Statistics on last line lost due to CTRL/Z"

.SEVERITY SEVERE
BADFIXVAL "Bad value on /FIX"
INSFIXVAL "Insufficient values on /FIX"

.END

Specifying Condition Names and Messages

To define a condition code and message, specify the condition name and
the message text. The condition name, when combined with the facility
prefix, can contain up to 31 characters. The message text can be up to 255
characters but only one line long. Use quotation marks (" ") or angle brackets
(< >) to enclose the text of the message. For example, the following line
from INCMSG.MSG defines the condition code INCOME_BADFIXVAL.

BADFIXVAL "Bad value on /FIX"

10-11

Run-Time Errors

10.2.1.4 Specifying Variables in the Message Text

To include variables in the message text, specify formatted ASCII output
(FAO) directives (for details, see the description of the Message utility in the
VAX/VMS Message Reference Manual. Specify the /FAO—COUNT qualifier
after either the condition name or the message text to indicate the number
of FAO directives that you used. The following example includes an integer
variable in the message text.

NONUMBER <No such house number: !UL. Try again.>/FA0_C0UNT=l

The FAO directive !UL converts a longword to decimal notation. To include
a character string variable in the message, you could use the FAO directive
!AS, as shown in the following example:

NOFILE <No such file: !AS. Try again.>/FA0_C0UNT=:l

If the message text contains FAO directives, you must specify the appropriate
variables when you signal the condition code (see Section 10.2.3).

10.2.2 Compiling and Linking the Messages

Use the DCL command MESSAGE to compile a message source file into
an object module. The following command compiles the message source
file INCMSG.MSG into an object module named INCMSG in the file
INCMSG.OBJ. To specify an object file name different than the source
file name, use the /OBJECT qualifier of the MESSAGE command. To specify
an object module name different than the source file name, use the .TITLE
directive in the message source file.

$ MESSAGE INCMSG

The message object module must be linked with your program so that the
system can reference the messages.

To simplify linking a program with the message module, include the message
object module in the program's object library. For example, to include the
message module in INCOME'S object library, specify

$ LIBRARY INCOME.OLB INCMSG.OBJ

Including the message module in the program's object library does not allow
other programs access to the module's condition codes and messages. To
allow several programs access to a message module, create a default message
library as follows:

1 Create the message library—Create an object module library and enter
all of the message object modules into it.

10-12

Run-Time Errors

2 Make the message library a default library—Equate the complete
file specification of the object module library with the logical name
LNK$LIBRARY. (If LNK$LIBRARY is already assigned a library name,

you can create LNK$LIBRARY_1, LNK$LIBRARY_2, and so on.) By

default, the linker searches any libraries equated with the LNK$LIBRARY

logical names.

The following example creates the message library MESSAGLIB.OLB,
enters the message object module INCMSG. OBJ into it, and makes
MESSAGLIB.OLB a default library.

$ LIBRARY/CREATE MESSAGLIB
$ LIBRARY/INSERT MESSAGLIB INCMSG
$ DEFINE LNK$LIBRARY SYS$DISK:MESSAGLIB

To modify a message in the message library: modify and recompile the
message source file, and then replace the module in the object module
library. To access the modified messages, a program must relink against
the object module library (or the message object module). The following
command enters the module INCMSG into the message library MESSAGLIB;
if MESSAGLIB already contains an INCMSG module, it is replaced.

$ LIBRARY/REPLACE MESSAGLIB INCMSG

To allow a program to access modified messages without relinking, create a
message pointer file. Message pointer files are useful if you need to provide
messages in more than one language or frequently change the text of existing
messages. See the description of the Message Utility in the VAX/VMS
Message Reference Manual.

10.2.3 Signaling User-Defined Codes and Messages

To signal a user-defined condition code, you use the symbol
formed by the facility prefix and the condition name (for example,
INCOME_BADFIXVAL). Typically, you reference a condition code as a
global symbol; however, you can create a FORTRAN INCLUDE file (similar

to the modules in the system library SYS$LIBRARY:FORSTSDEF.TLB) to
define the condition codes as local symbols. If the message text contains
FAO arguments, you must specify parameters for those arguments when you
signal the condition code.

10-13

Run-Time Errors

10.2.3.1 Signaling with Global Symbols

To signal a user-defined condition code using a global symbol, declare
the appropriate condition code in an EXTERNAL statement in the definition
section of the program unit, and then invoke the Run-Time Library procedure
LIB$SIGNAL to signal the condition code. Use the built-in function %LOC
to reference a symbol declared in an EXTERNAL statement. The following
statements signal the condition code INCOME_NOHOUSE when the value
of FIX—HOUSE _NO is less than 1 or greater than the value of TOTAL —
HOUSES.

EXTERNAL INC0ME..N0H0USE

IF ((FIX_H0USE_N0 .GT. TOTAL.HOUSES) .OR.
2 FlX.HOUSE.NO .LT. 1)) THEN

CALL LIB$SIGNAL P/.VAL (%L0C (INC0ME__N0H0USE)))
END IF

10.2.3.2 Signaling with Local Symbols

To signal a user-defined condition code using a local symbol, you must first
create a file containing PARAMETER statements that equate each condition
code with its value.

1 Create a listing file—Compile the message source file with the /LIST
qualifier of the MESSAGE command. The /LIST qualifier produces a
listing file with the same name as the source file and a file type of LIS.
The following line might appear in a listing file.

08018020 11 N0H0USE "No such house number"

The hexadecimal value in the left hand column is the value of the
condition code; the decimal number in the second column is the line
number; the text in the third column is the condition name; and the text
in quotation marks is the message text.

2 Edit the listing file—For each condition name, define the matching
condition code as an INTEGER*4 variable and use a PARAMETER
statement to equate the condition code to its hexadecimal condition
value. Assuming a prefix of INCOME_, editing the previous statement
would result in the following statements:

INTEGER INCOME_N0H0USE
PARAMETER (INCOME_NOHOUSE = '08018020'X)

3 Rename the listing file—Name the edited listing file with the same name
as the source file and a file type of FOR.

10-14

Run-Time Errors

In the definition section of your program unit, declare the local symbol

definitions by naming your edited listing file in an INCLUDE statement.

(You must still link the message object file with your program.) Invoke

the Run-Time Library procedure LIB$SIGNAL to signal the condition code.

The following statements signal the condition code INCOME_NOHOUSE

when the value of FIX_HOUSE_NO is less than 1 or greater than the value

of TOTAL—HOUSES. When using local symbols, you omit %LOC; however,
you must still use %VAL.

! Specify the full file specification
INCLUDE '$DISK1:[DEV.INCOME]INCMSG.FOR'

IF ((FlX.HOUSE.NO .GT. TOTAL.HOUSES) .OR.
2 FIX_H0USE_N0 .LT. 1)) THEN

CALL LIB$SIGNAL C/.VAL (INC0ME..N0H0USE))
END IF

10.2.3.3 Specifying FAO Parameters

If the message contains FAO arguments, you must specify the number of
FAO arguments as the second argument of LIB$SIGNAL, the first FAO

argument as the third argument, the second FAO argument as the fourth
argument, and so on. Use the built-in function %VAL to pass the number
of FAO arguments and any numeric FAO arguments. Pass string FAO

arguments by descriptor (the default). For example, to signal the condition
code INCOME_NONUMBER, where FIX-HOUSE _NO contains the
erroneous house number, specify

EXTERNAL INCOME_NONUMBER

IF ((FIX_H0USE_N0 .GT. TOTAL.HOUSES) .OR.
2 FlX.HOUSE.NO .LT. 1)) THEN

CALL LIB$SIGNAL C/.VAL C/.L0C (INCOME_NONUMBER)) ,
2 V.VAL (1).
2 %VAL (FlX.HOUSE.NO))

END IF

To signal the condition code NOFILE, where FILE—NAME contains the
invalid file specification, specify

EXTERNAL INCOME_N0FILE

IF (I0STAT .EQ. F0R$I0S.FILN0TF0U)
2 CALL LIB$SIGNAL C/.VAL C/.L0C (INCOME_N0FILE)) ,
2 %VAL (1),
2 FILE.NAME)

10-15

Run-Time Errors

Both of the previous examples use global symbols for the condition codes.
You could use local symbols, as described in Section 10.2.3.2.

10.3 FORTRAN I/O Errors

By default, if an error occurs during execution of a FORTRAN I/O statement,
FORTRAN signals the appropriate condition code. If you are expecting
a particular I/O error and want to intercept it before FORTRAN signals,
include the IOSTAT specifier in the I/O statement. When IOSTAT is
specified, FORTRAN returns a FORTRAN error code in the IOSTAT variable
rather than signaling the appropriate condition code.

Specifying either the END or ERR specifier in an I/O statement also prevents
FORTRAN from signaling. Both END and ERR circumvent normal execution
sequence by transferring control to a label in your program; however, they
are useful for exiting from the loops generally used for I/O. For easier code
maintenance, transfer control to the statement immediately following the
loop or to the statement at the beginning of the loop; otherwise, include
a comment that directs the reader of your code to the statement receiving
control.

10.3.1 Unexpected FORTRAN I/O Errors

If you are not expecting an I/O statement to generate an error, do not
include the IOSTAT specifier. The following READ operation is expected to
complete successfully.

! Format for READ
CHARACTER*(*) INTEGER.FMT
PARAMETER (INTEGER.FMT = '(14)')

READ (UNIT = *.
2 FMT = INTEGER.FMT)

If an error occurs during the read operation, the traceback or catchall handler
displays an error message (like the following) and continues or terminates
program execution, depending on the severity of the error.

7.F0R-F-INPC0NERR, input conversion error
unit 0 file WORKDISK:[ACCOUNTS]D0GS83.DAT
user PC 00000628B

-FOR-F-INVTEXREC, invalid text is "

10-16

Run-Time Errors

10.3.2 Expected FORTRAN I/O Errors

To handle an expected error, include the IOSTAT specifier in the I/O
statement. If the statement executes successfully, the IOSTAT variable
contains a value of 0. If the statement fails, the IOSTAT variable contains a
positive integer value that identifies the FORTRAN error that occurred. If the
statement encounters an end-of-file condition, the IOSTAT variable contains
a negative integer value.

If IOSTAT contains a positive integer, you check the value against the value
of the expected error. If the error that occurred is the one you expected, you
take whatever measures are appropriate; otherwise, you signal the error.
When you signal a FORTRAN error, the message identifies the error, but
generally includes garbled text as well. Most FORTRAN errors include FAO
arguments used to provide information about the element that caused the
error; the garbled text appears because you signal the error without supplying
parameters for those FAO arguments. When FORTRAN signals an error, the
message text is clear since the FAO parameters are automatically included.

To signal a FORTRAN error, you must first use the intrinsic subprogram
ERRSNS to translate the FORTRAN error code (returned in the IOSTAT
variable) to the matching VAX/VMS condition code. You cannot use

LIB$SIGNAL to signal the FORTRAN error code. The FORTRAN error
codes are defined in the module $FORIOSDEF. The matching VAX/VMS

condition codes are defined in the module $FORDEF.

The intrinsic subprogram ERRSNS accepts five optional arguments: the fifth
argument returns the VAX/VMS condition code. If the read operation in the
following example executes successfully, program execution continues. If the
read operation fails, ERRSNS is invoked to return the VAX/VMS condition
code. If the error was an input conversion error (VAX/VMS error code

FOR$_INPCONERR), the program takes special action; otherwise, and the
error is signaled.

! Format for READ
CHARACTER*(*) INTEGER.FMT
PARAMETER (INTEGER.FMT = '(14)')
INTEGER*4 STAT
! Status variable and values
INTEGER STATUS,
2 IO.STAT,
2 I0.0K
PARAMETER (I0.0K = 0)
INCLUDE '($F0RDEF)'

! Read one integer
READ (UNIT=*,
2 FMT=INTEGER_FMT,
2 I0STAT=I0.STAT) STAT

10-17

Run-Time Errors

IF (IO.STAT .NE. I0_0K) THEN
CALL ERRSNS (,,,,STATUS)
! Check for conversion error
IF (STATUS .EQ. FOR$_INPCONERR) THEN

ELSE
! Unexpected error
CALL LIB$SIGNAL C/.VAL (STATUS))

END IF
END IF

10.4 Condition Handlers

When a program signals a condition code, the VAX/VMS operating system
searches for a condition handler, invokes the first handler it finds, passing
the handler information about the condition code and the state of the
program when the condition code was signaled. If the handler resignals, the
VAX/VMS operating system searches for another handler; otherwise, the
search for a condition handler ends.

The VAX/VMS operating system searches for condition handlers in the
following sequence:

• Primary exception vectors—Four vectors (lists) of one or more condition
handlers; each vector is associated with an access mode. By default,
all of the primary exception vectors are empty. Exception vectors are
primarily used for system programming, not application programming.
The debugger uses the primary exception vector associated with user
mode.

When an exception occurs, the VAX/VMS operating system searches
the primary exception associated with the access mode at which the
exception occurred. To enter or cancel a condition handler in an
exception vector, use the SYSSSETEXV system service. Condition
handlers entered into the exception vectors associated with kernel,
executive, and supervisor modes remain in effect until they are canceled
or you log out. Condition handlers entered into the exception vector
associated with user mode remain in effect until they are canceled or the
image that entered them exits.

• Secondary exception vectors—A set of exception vectors with the
same structure as the primary exception vectors. Exception vectors are
primarily used for system programming, not application programming.
By default, all of the secondary exception vectors are empty.

10-18

Run-Time Errors

• Call frame condition handlers—Each program unit can establish one
condition handler (the address of the handler is placed in the call frame
of the program unit). The VAX/VMS operating system searches for
condition handlers established by your program beginning with the
current program unit. If the current program unit has not established a
condition handler, the VAX/VMS operating system searches for a handler
established by the program unit that invoked the current program unit,
and so on back to the main program.

• Traceback handler—If you do not establish any condition handlers
and link your program with the /TRACEBACK qualifier of the LINK
command (the default), the VAX/VMS operating system finds and
invokes the traceback handler (see Section 10.1.3.1).

• Catchall handler—If you do not establish any condition handlers and
link your program with the /NOTRACEBACK qualifier of the LINK
command, the VAX/VMS operating system finds and invokes the catchall
handler (see Section 10.1.3.1).

• Last-chance exception vectors—A set of exception vectors with the same
structure as the primary and secondary exception vectors. Exception
vectors are primarily used for system programming, not application
programming. By default, the user and supervisor mode last-chance
exception vectors are empty. The executive and kernel mode last-
chance exception vectors contain procedures that cause a bugcheck
(a nonfatal bugcheck results in an error log entry; a fatal bugcheck
results in a system shutdown). The debugger uses the user mode last-
chance exception vector and DCL uses the supervisor mode last-chance
exception vector.

In cases where the default condition handling is insufficient, you can use the
Run-Time Library procedure LIB$ESTABLISH to establish your own handler.
Typically, you need condition handlers only if your program must perform
one of the following operations:

• Respond to condition codes that are signaled rather than returned, such
as an integer overflow error. (Section 10.1.3.2 describes the system-

defined handler LIB$SIG_TO_RET that allows you to treat signals
as return values; Section 10.4.5 describes other useful system-defined
handlers for arithmetic errors.)

• Modify part of a condition code, such as the severity (see Section
10.4.4 for more information). If you want to change the severity of
any condition code to a severe error, you can use the run-time library
procedure LIB$STOP instead of writing your own condition handler.

10-19

Run-Time Errors

• Add additional messages to the one associated with the originally
signaled condition code or log the messages associated with the originally
signaled condition code (see Section 10.4.4 for more information).

10-20

Run-Time Errors

10.4.1 Establishing a Condition Handler

To establish a condition handler for the current program unit, use the Run¬
Time Library procedure LIB$ESTABLISH. The following program segment
establishes the condition handler ERRLOG. Since the condition handler is
used as an actual argument, it must be declared in an EXTERNAL statement.

INTEGER*4 OLD.HANDLER
EXTERNAL ERRLOG

OLD.HANDLER = LIB$ESTABLISH (ERRLOG)

As its function value, LIB$ESTABLISH returns the address of the previous
handler. If only part of a program unit requires a special condition handler,
you can reestablish the original handler by invoking LIB$ESTABLISH and
specifying the saved handler address.

CALL LIB$ESTABLISH (OLD.HANDLER)

10.4.2 Writing a Condition Handler

You must write your condition handler as an INTEGER function that accepts
two integer arrays as dummy arguments.

10.4.2.1 Dummy Arguments

The VAX/VMS operating system passes a condition handler two arrays. Any
condition handler that you write should declare two dummy arguments as
variable-length arrays. For example:

INTEGERS FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

The first dummy argument, the signal array, describes the signaled condition
code that indicate which error occurred and the state of the process when the
condition code was signaled.

10-21

Run-Time Errors

Element 1

Element 2

Element 3

Element n-2

Element n-1

Element n

argument count

condition code

~ message description ~

program counter

processor status longword

repeat
for each
message

ZK-2050-84

• Argument count—The number of elements in the array, not counting
this first element.

• Condition code—The value of the condition code. If more than one
message is associated with the error, this is the condition code of the first
message.

• Message description—The format of the message description varies
depending on the type of message being signaled. For more information,
see the SYS$PUTMSG description in the VAX/VMS System Services
Reference Manual.

• Program counter (PC)—If the error that caused the signal was a fault
(occurring during the instruction's execution), the PC contains the
address of the instruction that signaled the condition code. If the error
that caused the signal was a trap (occurring at the end of the instruction),
the PC contains the address of the instruction following the one that
signaled the condition code. The error generated by LIB$SIGNAL is a
trap.

• Processor status longword (PSL)—The PSL describes the state of the
program at the time of the signal.

Typically, a condition handler does not use the PC or PSL.

The second dummy argument, the mechanism array, describes the state of
the process when the condition code was signaled. Typically, a condition
handler references only the call depth and the saved function value.
Currently, the mechanism array contains exactly five elements; however,
since its length is subject to change, you should declare the dummy argument
as a variable-length array.

10-22

Run-Time Errors

Element 1

Element 2

Element 3

Element 4

Element 5

• Argument count—The number of elements in the array not counting this
first element (that is, four).

• Establisher—Pointer to information that allows the VAX/VMS operating
system to resume execution of the program unit that established the
condition handler.

• Call depth—The number of program units called between the program
unit that established the handler and the program unit that signaled the
condition code. For example, if a program unit establishes a handler
and then signals a condition code, the call depth is 0. If a program unit
establishes a handler and then calls a subprogram that signals a condition
code, the call depth is 1, and so on.

• R0 and R1—The contents of the R0 and R1 registers. (In FORTRAN,
when you invoke a function, the R0 register contains the function value.)

argument count

establisher

call depth

function value

R1

ZK-2051-84

10.4.2.2 Checking the Condition Code

A condition handler is usually written in anticipation of a particular set
of condition codes. Since a handler will be invoked in response to any
signaled condition code, you should begin your handler by comparing the
condition code passed to the handler (element 2 of the signal array) against
the condition codes expected by the handler. If the signaled condition code
is not one of the expected codes, you should resignal the condition code
by equating the function value of the handler to the global symbol SS$_
RESIGNAL.

To compare the signaled condition code to a list of expected condition
codes, use the Run-Time Library procedure LIB$MATCH_COND. The first
argument passed to LIB$MATCH_COND is the signaled condition code,
the second element of the signal array. The rest of the arguments passed
to LIB$MATCH_COND are the expected condition codes. LIB$MATCH_
COND compares the first argument with each of the remaining arguments

10—23

Run-Time Errors

10.4.2.3

and returns the number of the argument that matches the first one. For
example, if the second argument matches the first argument, LIB$MATCH_

COND returns a value of 1. If the first argument does not match any of the

other arguments, LIB$MATCH_COND returns 0.

The following condition handler determines whether the signaled condition
code is one of four FORTRAN I/O errors. If it is not, the condition handler
resignals the condition code. Note that when a FORTRAN I/O error is
signaled, the signal array describes the VAX/VMS condition code, not the

FORTRAN error code.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

INCLUDE •($F0RDEF)• ! Declare the F0R$_ symbols
INCLUDE '($SSDEF)' ! Declare the SS$_ symbols

INTEGER INDEX

! Declare procedures
INTEGER LIB$MATCH_C0ND

INDEX = LIB$MATCH_C0ND
2
2
2
2

(SIGARGS(2),
F0R$_FILN0TF0U,
F0R$_0PEFAI,
F0R$_N0_SUCDEV,
F0R$_FILNAMSPE)

IF (INDEX .EQ. 0) THEN
! Not an expected condition code, resignal
HANDLER = SS$_RESIGNAL

ELSE IF (INDEX .GT. 0) THEN
! Expected condition code, handle it

END IF

END

Exiting

You can exit from a condition handler in one of three ways:

• Continue execution of the program—If you equate the function value of
the condition handler to SS$_CONTINUE, the handler returns control
to the program at the statement that signaled the condition (fault) or
the statement following the one that signaled the condition (trap). The

Run-Time Library routine LIB$SIGNAL generates a trap so that control
is returned to the statement following the call to LIB$SIGNAL.

10-24

Run-Time Errors

In the following example, if the condition code is one of the expected
codes, the handler displays a message (Section 10.4.4.2) describes how

to display a message) and then returns the value SS$_CONTINUE to
resume program execution.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

INCLUDE '($F0RDEF)'
INCLUDE '(SSSDEF)'

INTEGER*4 INDEX,
2 LIB$MATCH_C0ND

INDEX = LIB$MATCH_C0ND (SIGARGS(2),
2 F0R$_FILN0TF0U,
2 F0R$_0PEFAI.
2 F0R$_N0_SUCDEV,
2 F0R$_FILNAMSPE)

IF (INDEX .GT. 0) THEN

. ! Display the message

HANDLER = SS$_C0NTINUE
END IF

• Resignal the condition code—If you equate the function value of the
condition handler to SS$_RESIGNAL or do not specify a function value

(function value of 0), the handler allows the VAX/VMS operating system
to execute the next condition handler. If you modify the signal array or
mechanism array before resignaling, the modified arrays are passed to

the next handler.

In the following example, if the condition code is not one of the expected

codes, the handler resignals.

INDEX = LIB$MATCH_C0ND (SIGARGS(2),
2 F0R$_FILN0TF0U,
2 F0R$_0PEFAI,
2 F0R$_N0_SUCDEV,
2 F0R$_FILNAMSPE)

IF (INDEX .EQ. 0) THEN
HANDLER = SS$_RESIGNAL

END IF

• Continue execution of the program at a previous location—If you call
the SYS$UNWIND system service, the handler can return control to any
point in the program unit that incurred the exception, the program unit
that invoked the program unit that incurred the exception, and so on
back to the program unit that established the handler. The remainder of
this section discusses SYS$UNWIND.

10-25

Run-Time Errors

Since correctly invoking SYS$UNWIND requires a knowledge of VMS
internals that is beyond the scope of this manual, your handlers should
return control either to the program unit that established the handler or the
program unit that invoked the program unit that established the handler.

• Establisher—To return control to the program unit that established the
handler, invoke SYS$UNWIND passing the call depth (third element of
the mechanism array) as the first argument and no second argument.

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGSC*)

CALL SYSIUNWIND (MECHARGS(3),)

• Program unit that invoked the establisher—To return control to the caller
of the program unit that established the handler, invoke SYS$UNWIND
passing no arguments.

! Declare dummy arguments
INTEGER+4 SIGARGS(*),
2 MECHARGSC*)

CALL SYS$UNWIND (,)

The first argument of the SYS$UNWIND system service specifies the
number of program units to unwind (remove from the stack). If you
specify this argument at all, you should do so as shown in the previous
example. (MECHARGS(3) contains the number of program units that must
be unwound to reach the program unit that established the handler that
invoked SYS$UNWIND.) The second argument of the SYS$UNWIND
system service contains the location of the next statement to be executed.
Typically, you omit the second argument to indicate that the program should
resume execution at the statement following the last statement executed in
the program unit that is regaining control.

Each time SYS$UNWIND removes a program unit from the stack it invokes
the condition handler (if any) established by that program unit, passing the

condition handler the SS$_UNWIND condition code. To prevent the handler
from resignaling the SS$_UNWIND condition code (and so complicating the

unwind operation), you should include SS$_UNWIND as an expected

condition code when you invoke LIB$MATCH_COND. When the condition
code is SS$__UNWIND, your condition handler may perform necessary
cleanup operations or no action whatsoever.

10-26

Run-Time Errors

In the following example, if the condition code is SS$_UNWIND no action
is performed. If the condition code is another of the expected codes, the
handler displays the message and then returns control to the program unit
that called the program unit that established the handler.

INTEGER FUNCTION HANDLER (SIGARGS,

2 MECHARGS)

! Declare dummy arguments

INTEGER*4 SIGARGS(*)f

2 MECHARGS(*)

INCLUDE '($F0RDEF)'

INCLUDE '($SSDEF)'

INTEGER*4 INDEX,

2 LIB$MATCH_COND

INDEX = LIB$MATCH_COND (SIGARGS(2),

2 SS$_UNWIND,

2 F0R$_FILN0TF0U,

2 F0R$_0PEFAI,

2 F0R$_N0_SUCDEV,

2 FOR$_FILNAMSPE)

IF (INDEX .EQ. 0) THEN

! Unexpected condition, resignal

HANDLER = SS$_RESIGNAL

ELSE IF (INDEX .EQ. 1) THEN

! Unwinding, do nothing

ELSE IF (INDEX .GT. 1) THEN

. ! Display the message

CALL SYS$UNWIND (,)

END IF

10.4.3 Debugging

You can debug a condition handler as you would any subprogram, except
that you cannot use the DEBUG command STEP/INTO to enter a handler.
You must set a breakpoint in the handler and wait for the debugger to invoke
the handler.

Typically, to trace execution of a condition handler, you set breakpoints at
the statement in your program that should signal the condition code, at the
statement following the one that should signal, and at the first executable
statement in your condition handler. Chapter 5 describes how to use the
debugger.

10-27

Run-Time Errors

10.4.4 Condition Handler Functions

The following sections describe some of the common functions performed by
condition handlers. Since a condition handler cannot know exactly where
you are in your program, you should avoid manipulating data or performing
other mainline activities.

10.4.4.1 Modifying Condition Codes

A condition code contains the following information:

31 28 27 16 15 3 2_ 0

control facility number message number severity

ZK-2052-84

To modify a condition code, use the FORTRAN intrinsic subroutine MVBITS.
MVBITS allows you to copy a series of bits from one longword to another
longword. For example, the following statement copies the first three bits
(bits 0 through 2) of STS$K_INFO to the first three bits of the signaled
condition code, which is in the second element of the signal array named
SIGARGS. As shown in the table in Section 10.1.1, STS$K_INFO contains
the symbolic severity code for an informational message.

! Declare STS$K_ symbols
INCLUDE '($STSDEF)'

! Change the severity of the condition code
! in SIGARGS(2) to informational
CALL MVBITS (STS$K_INF0,
2 0.
2 3,
2 SIGARGS(2),
2 0)

Once you have modified the condition code, you can resignal the condition
code and let the default handler display the associated message or use the
SYS$PUTMSG system service to display the message. If your condition
handler displays the message, do not resignal the condition code or the
default handler will display the message a second time.

In the following example, the condition handler checks to be sure the
signaled condition code is LIB$_NOSUCHSYM. If it is, the handler changes
its severity from error to informational, and then resignals the modified
condition code. As a result of the handler's actions, the program displays an

10-28

Run-Time Errors

10.4.4.2

informational message indicating that the specified symbol does not exist,

and then continues executing.

INTEGER FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)
! Changes LIB$_NOSUCHSYM to an informational message

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

! Declare index variable for LIB$MATCH_COND
INTEGER INDEX

! Declare condition codes
INCLUDE '($LIBDEF)'
INCLUDE '($STSDEF)'
INCLUDE '($SSDEF)'

! Declare library procedures
INTEGER LIB$MATCH_COND

INDEX = LIB$MATCH_COND (SIGARGS(2),
2 LIB$NO_SUCHSYM)

! If the signaled condition code is LIB$NO_SUCHSYM,
! change its severity to informational.
IF (INDEX .GT. 0)
2 CALL MVBITS (STS$K_INF0,
2 0,
2 3.
2 SIGARGS(2),
2 0)

SYMBOL = SS$_RESIGNAL

END

Displaying Messages

The VAX/VMS operating system uses the SYS$PUTMSG system service to

display messages. For consistency with the default handling mechanisms,

you should use the same system service.

You can use the signal array that the VAX/VMS operating system passes

to the condition handler as the first argument of the SYS$PUTMSG system

service. The signal array contains the condition code, the number of required

FAO arguments for each condition code, and the FAO arguments. The

VAX/VMS System Services Reference Manual contains complete specifications

for SYS$PUTMSG.

The last two array elements, the PC and PSL, are not FAO arguments and

should be deleted before the array is passed to SYS$PUTMSG. Because
the first element of the signal array contains the number of longwords in

the array, you can effectively delete the last two elements of the array by

subtracting two from the value in the first element. Before exiting from the
condition handler restore the last two elements of the array by adding two to

the first element in case other handlers reference the array.

10-29

Run-Time Errors

The following example performs the same function as the previous example.

However, in this case, the condition handler uses the SYS$PUTMSG system
service and then returns a value of SS$_CONTINUE so that the default

handler is not executed.

INTEGER*4 FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)

INDEX = LIB$MATCH_COND (SIGARGS(2),
2 LIB$_NOSUCHSYM)

IF (INDEX .GT. 0) THEN
! If condition code is LIB$_NOSUCHSYM,
! change the severity to informational
CALL MVBITS (STS$K_INF0,

2 0,
2 3,
2 SIGARGS(2),
2 0)

! Display the message
SIGARGS(1) = SIGARGS(1) - 2 ! Subtract last two elements
CALL SYS$PUTMSG (SIGARGS,..)
SIGARGS(l) = SIGARGS(l) + 2 ! Restore last two elements

! Continue program execution;
SYMBOL = SS$_CONTINUE

ELSE
! Otherwise, resignal the condition
SYMBOL = SS$_RESIGNAL

END IF

END

10.4.4.3 Chaining Messages

A handler may be used to add condition codes to an originally signaled
condition code. For example, if your program calculates the standard
deviation of a series of numbers and the user only enters one value, the

VAX/VMS operating system will signal the condition code SS$_INTDIV
when the program attempts to divide by zero. (In calculating the standard
deviation, the divisor is the number of values entered minus one.) You
could use a condition handler to add a user-defined message to the original
message to indicate that only one value was entered.

To display multiple messages, pass the condition codes associated with the
messages to the Run-Time Library procedure LIB$SIGNAL. To display the
message associated with an additional condition code, the handler must pass
LIB$SIGNAL the condition code, the number of FAO arguments used, and
the FAO arguments. To display the message associated with the originally
signaled condition codes, the handler must pass LIB$SIGNAL each element
of the signal array as a separate argument. Since the signal array is a

10—30

Run-Time Errors

variable-length array and LIB$SIGNAL cannot accept a variable number of

arguments, when you write your handler, you must pass LIB$SIGNAL more

arguments than you think will be required. Then, during execution of the

handler, zero the arguments that you do not need (LIB$SIGNAL ignores zero
values), as described in the following steps:

1 Declare an array with one element for each argument that you plan to

pass LIB$SIGNAL. Fifteen elements are usually sufficient.

INTEGER*4 NEWSIGARGS(15)

2 Transfer the condition codes and FAO information from the signal

array to your new array. The first element and the last two elements
of the signal array do not contain FAO information and should not be
transferred.

3 Fill any remaining elements of your new array with zeros.

The following example demonstrates steps two and three.

do i = 1, 15

IF (I .LE. SIGARGS(l) - 2) THEN
NEWSIGARGS(I) = SIGARGS(I+1) ! Start with SIGARGS(2)
ELSE
NEWSIGARGS(I) =0 ! Pad with zeros

END IF

END DO

Since the new array is a known-length array, you can specify each element
as an argument to LIB$SIGNAL.

The following condition handler ensures that the signaled condition code is

SS$_INTDIV. If it is, the user-defined message ONE—VALUE is added to
SS$_INTDIV and both messages are displayed.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER SIGARGS(*),
2 MECHARGS(*)

! Declare new array for SIGARGS
INTEGER NEWSIGARGS (15)

! Declare index variable for LIB$MATCH_C0ND
INTEGER INDEX

! Declare procedures
INTEGER LIB$MATCH_COND

! Declare condition codes
EXTERNAL ONE.VALUE
INCLUDE '($SSDEF)'

INDEX = LIB$MATCH_COND (SIGARGS(2),
2 SS$_INTDIV)

10-31

Run-Time Errors

IF (INDEX .GT. 0) THEN

DO 1=1,15

IF (I .LE. SIGARGS(1) - 2) THEN

NEWSIGARGS(I) = SIGARGSU+l) ! Start with SIGARGS(2)

ELSE

NEWSIGARGS(I) =0 ! Pad with zeros

END IF

END DO

! Signal messages

CALL LIBSSIGNAL C/.VAL (NEWS I GARGS (1)) .

'/,VAL(NEWSIGARGS(2)) ,

*/,VAL(NEWSIGARGS(3)) ,
’/,VAL(NEWSIGARGS(4)) ,

*/.VAL(NEWSIGARGS(5)) ,

y,VAL(NEWSIGARGS(6)) ,

%VAL(NEWSIGARGS(7)),

y,VAL(NEWSIGARGS(8)) ,

*/,VAL(NEWSIGARGS(9)) ,

*/,VAL(NEWSIGARGS(10)) ,

'/,VAL(NEWSIGARGS (11)) ,

'/,VAL(NEWSIGARGS(12)) ,

'/,VAL(NEWSIGARGS(13)) ,

'/,VAL(NEWSIGARGS(14)) ,

'/,VAL (NEWSIGARGS (15)) ,

#/.VAL C/.L0C (ONE.VALUE)) ,

'/tVAL(0))

HANDLER = SSl.CONTINUE

ELSE

HANDLER = SS$_RESIGNAL

END IF

END

2
2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

10.4.4.4 Logging Messages

When a program executes interactively or from within a command procedure,
the logical names SYS$OUTPUT and SYS$ERROR are both equated to the
user's terminal by default. To write the error messages displayed by your
program to a file as well as to the terminal, equate SYS$ERROR to a file
specification. (When a program executes as a batch job, the logical names
SYS$OUTPUT and SYS$ERROR are both equated to the batch log by default.
To write error messages to the log file and a second file, equate SYS$ERROR
to the second file.) Success messages are not written to SYS$ERROR.

To keep a running log of the messages displayed by your program (that is, a
log that is resumed each time your program is invoked), use SYS$PUTMSG.
Create a condition handler that invokes SYS$PUTMSG regardless of the
signaled condition code. When you invoke SYS$PUTMSG specify a function
that writes the formatted message to your log file and then returns with a
function value of 0. Have the condition handler resignal the condition code.
(One of the arguments of the SYS$PUTMSG system service allows you to

10—32

Run-Time Errors

specify a user-defined function that SYS$PUTMSG invokes after formatting
the message and before displaying the message. SYS$PUTMSG passes the
specified function the formatted message. If the function returns with a
function value of 0, SYS$PUTMSG does not display the message; if the
function returns with a value of 1, SYS$PUTMSG displays the message. The
VAX/VMS System Services Reference Manual contains complete specifications
for SYS$PUTMSG.)

For example, to keep a running log of messages, you might have your main
program open a file for the error log, perhaps write the date, and then
establish a condition handler to write all signaled messages to the error log.
Each time a condition is signaled, a condition handler, like the one in the
following example, would invoke SYS$PUTMSG and specify a function
that writes the message to the log file and returns with a function value of
0. SYS$PUTMSG writes the message to the log file, but does not display
the message. After SYS$PUTMSG writes the message to the log file, the
handler resignals to continue program execution. (The condition handler
uses LIB$GET_COMMON to read the unit number of the file from the
per-process common block.)

ERR.FOR

INTEGER FUNCTION ERRLOG (SIGARGS,

2 MECHARGS)
! Writes the message to file opened on the

! logical unit named in the per-process common block

! Define the dummy arguments

INTEGER SIGARGS(*),

2 MECHARGS(*)

INCLUDE '($SSDEF)'

EXTERNAL PUT.LINE

INTEGER PUTJLINE

! Pass signal array and PUT_LINE routine to SYS$PUTMSG
SIGARGS(1) = SIGARGS(1) - 2 ! Subtract PC/PSL from signal array

CALL SYS$PUTMSG (SIGARGS.
2 PUT.LINE,)
SIGARGS(1) = SIGARGS(1) + 2 ! Replace PC/PSL

ERRLOG = SS$_RESIGNAL

END

PUT_LINE.FOR

INTEGER FUNCTION PUT.LINE (LINE)
! Writes the formatted message in LINE to

! the file opened on the logical unit named

! in the per-process common block

! Dummy argument

CHARACTER*(*) LINE

10-33

Run-Time Errors

! Logical unit number

CHARACTER*4 LOGICAL.UNIT

INTEGER UNIT.NUM

! Indicates that SYS$PUTMSG is not to display the message

PUT.LINE = 0

! Get logical unit number and change to integer

STATUS = LIB$GET_COMMON (LOGICAL.UNIT)

READ (UNIT = LOGICAL.UNIT,

2 FMT = '(14)') UNIT.NUMBER

! The main program opens the error log

WRITE (UNIT = UNIT.NUMBER,

2 FMT = '(A)') LINE

END

10.4.5 System-Defined Arithmetic Condition Handlers

The VAX/VMS operating system provides three arithmetic condition
handlers:

• LIB$DEC_OVER—Enables/disables the signaling of a decimal overflow.
By default, signaling is disabled.

• LIB$FLT_UNDER—Enables/disables the signaling of a floating-point
underflow. By default, signaling is disabled.

• LIB$INT_OVER—Enables/disables the signaling of an integer overflow.
By default, signaling is enabled.

You can establish these handlers in one of two ways:

• Invoke the appropriate handler as a function specifying the first argument
as 1 to enable signaling.

• When you compile your program with the FORTRAN command, specify
the OVERFLOW (LIB$INT_OVER) option of the /CHECK qualifier
to enable signaling of integer overflow or specify the UNDERFLOW
(LIB$FLT_UNDER) option of the /CHECK qualfier to enable signaling
of floating-point underflow. You cannot use the /CHECK qualifier to
enable signaling of decimal overflow (LIB$DEC_OVER).

10-34

Run-Time Errors

10.5 Exit Handlers

When an image exits, the VAX/VMS operating system performs the
following operations:

• Invokes any user-defined exit handlers.

• Invokes the system-defined default exit handler, which closes any files
that were left open by the program or user-defined exit handlers.

• Executes a number of cleanup operations collectively known as image
run-down. The following list contains some of these cleanup operations:

— Cancels outstanding ASTs and timer requests.

— Deassigns any channel assigned by your program and not already
deassigned by your program or the system.

— Deallocates devices allocated by the program.

— Disassociates common event flag clusters associated with the
program.

— Deletes user mode logical names created by the program (unless you

specify otherwise, logical names created by SYS$CRELNM are user
mode logical names).

— Restores internal storage (for example, stacks or mapped sections) to
its original state.

If any exit handler exits using the SYS$EXIT system service, none of the
remaining handlers is executed. In addition, if an image is aborted by the
DCL command STOP (the user presses CTRL/Y and then types STOP), the
system performs image run-down and does not invoke any exit handlers.
(The DCL command EXIT invokes the exit handlers before running down the
image.)

Use exit handlers to perform any cleanup that your program requires in
addition to the normal run-down operations performed by the VAX /VMS
operating system. In particular, if your program must perform some final
action regardless of whether it exits normally or is aborted, you should write
and establish an exit handler to perform that action.

10—35

Run-Time Errors

10.5.1 Establishing an Exit Handler

To establish an exit handler, .use the SYS$DCLEXH system service. The
SYS$DCLEXH system service requires one argument, a variable-length data
structure that describes the exit handler.

31 87 0

returned; address of next exit handler

address of exit handler

0 n

exit status of the image

other arguments being passed

n = The number of arguments being passed to
the exit handler; the exit status counts
as the first argument.

ZK-2053-84

The first longword of the structure contains the address of the next handler.
The VAX/VMS operating system uses this argument to keep track of the
established exit handlers; do not modify this value. The second longword of
the structure contains the address of the exit handler being established. The
low-order byte of the third longword contains the number of arguments to
be passed to the exit handler. Each of the remaining longwords contains the
address of an argument.

The first argument passed to an exit handler is an integer value containing
the final status of the exiting program. The status argument is mandatory.
However, you should not supply the final status value; when the VAX/VMS
operating system invokes an exit handler, it passes the handler the final
status of the exiting program.

To pass an argument with a numeric data type, use the %LOC function to
assign the address of a numeric variable to one of the longwords in the exit
handler data structure. To pass an argument with a character data type,
create a descriptor of the form

10-36

Run-Time Errors

31_0

number of characters

address

ZK-2054-84

Use the %LOC function to assign the address of the descriptor to one of the
longwords in the exit handler data structure.

The following program segment establishes an exit handler with two
arguments, the mandatory status argument and a character argument.
(Section 1.5.8 describes how to create a variable-length data structure using a
record.)

! Arguments for exit handler

INTEGER EXIT.STATUS ! Status

CHARACTER*12 STRING ! String

STRUCTURE /DESCRIPTOR/

INTEGER SIZE,

2 ADDRESS

END STRUCTURE

RECORD /DESCRIPTOR/ EXIT.STRING

! Setup for exit handler

STRUCTURE /EXIT.DESCRIPTOR/
INTEGER LINK,

2 ADDR,

2 ARGS /2/,

2 STATUS.ADDR,

2 STRING.ADDR

END STRUCTURE

RECORD /EXIT.DESCRIPTOR/ HANDLER

10-37

Run-Time Errors

! Exit handler
EXTERNAL EXIT.HANDLER

! Set up descriptor
EXIT_STRING.SIZE = 12 ! Pass entire string
EXIT.STRING.ADDRESS = V.LOC (STRING)
! Enter the handler and argument addresses
! into the exit handler description
HANDLER. ADDR = '/.LOC (EXIT.HANDLER)
HANDLER. STATUS.ADDR = y.LOC(EXIT_STATUS)
HANDLER.STRING.ADDR = */.LOC(EXIT_STRING)
! Establish the exit handler
CALL SYS$DCLEXH (HANDLER)

An exit handler can be established at any time during your program and
remains in effect until it is canceled (with SYS$CANEXH) or executed. If you
establish more than one handler, the handlers are executed in reverse order;
the handler established last is executed first, the handler established first is
executed last.

10.5.2 Writing an Exit Handler

An exit handler should be written as a subroutine since no function value
can be returned. The dummy arguments of the exit subroutine should agree
in number, order, and data type with the arguments you specified in the call
to SYS$DCLEXH.

Assume that two or more programs are cooperating with each other. To keep
track of which programs are executing, each has been assigned a common
event flag (the common event flag cluster is named ALIVE). When a program
begins, it sets its flag; when the program terminates it clears its flag. Since it
is important that each program clear its flag before exiting, you create an exit
handler (such as the one in the following example) to perform the action.
The exit handler accepts two arguments, the final status of the program
and the number of the event flag to be cleared. Since, in this example, the
cleanup operation is to be performed regardless of whether the program
completes successfully, the final status is not examined in the exit routine.
(This subroutine would not be used with the exit handler declaration in the
previous example.)

10—38

Run-Time Errors

CLEAR_FLAG.FOR

SUBROUTINE CLEAR.FLAG (EXIT.STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT.STATUS,
2 FLAG

! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF

! Associate with the common event flag
! cluster and clear the flag
STATUS = SYS$ASCEFC (7.VAL (FLAG) ,

2 'ALIVE',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (7. VAL (STATUS))
STATUS = SYS$CLREF (7,VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (7,VAL (STATUS))

END

If for any reason you must perform terminal I/O from an exit handler, use
appropriate Run-Time Library procedures. Trying to access the terminal from
an exit handler using FORTRAN I/O may cause a redundant I/O error.

10.5.3 Debugging an Exit Handler

To debug an exit handler, you must set a breakpoint in the handler and wait

for the VAX/VMS operating system to invoke that handler; you cannot use

the DEBUG command STEP/INTO to enter an exit handler. In addition,
when the debugger is invoked, it establishes an exit handler that exits using

the SYS$EXIT system service. If you invoke the debugger when you invoke

your image, the debugger's exit handler does not affect your program's

handlers because the debugger's handler is established first and so executes
last. However, if you invoke the debugger after your program has begun
executing (the user presses CTRL/Y and then types DEBUG), the debugger's
handler may affect the execution of your program's exit handlers since one
or more of your handlers may have been established before the debugger's
handler and so will not be executed.

10-39

Index

A

Absolute time *6-43
Access

direct • 9-4
keyed • 9-4
sequential • 9-4
specifiers • 9-11

Actual argument* 1-8
Add

command to DCL table *7-12
command to process table *7-1 1
command to user table *7-12
module to object library *4-8

Addition • 6-7
Address

virtual memory *4-18
Aligning data *9-19
ALWAYS keyword

GSMATCH option *4-30
ANALYZE/RMS_FILE command *9-94

.AND. logical operator*6-11
Apostrophe (')

character constant *6-13

Argument
actual • 1-8
buffer address* 1-33
byte* 1-24
common block* 1-10
dummy* 1-8
list* 1-8
longword • 1-25
mask* 1-26, 1-30
passing* 1-8, 1-10
passing mechanisms* 1-22
quadword • 1-28
system-defined procedure* 1-20
variable-length structure* 1-31
word • 1-24

Arithmetic error *6-10
Arithmetic operation • 6-7

Arithmetic trap *4-5
Array • 4-37

adjustable* 1-18
assumed-size* 1-18
bounds* 6-27
character* 6-24
EQUIVALENCE elements *2-7
1/0*9-17
initializing elements *2-5
multidimensional • 6-28
numeric *6-23

defining • 6-23
referencing • 6-24

passing *1-17
processing with implied DO loop *8-13
referencing the full array *6-26
storage* 6-27

Assignment statement • 6-3
record • 6-37

AST (asynchronous system trap) *3-24
delivery • 3-25
execution • 3-24
writing • 3-24

Asynchronous input/output • 8-58
Asynchronous read *8-59
Asynchronous system trap

see AST
Attribute

video *8-18

B

Background color
screen *8-17

Bit
manipulation *6-19

Blink* 8-18
BLOCK DATA statement* 1-12
Bold *8-18
Border

virtual display *8-19

Index—1

Index

Bounds array • 6-27
/BRIEF qualifier

LINK/MAP command *4-40
Broadcast *8-53
Buffered input/output operation • 6-40
Byte

in longword • 1-25
in quadword • 1-28
passing • 1-24

BYTE data type *6-4

c
CALL command *5-17
CALL statement

array processing • 6-26
CANCEL DISPLAY command • 5-11
Carriage control • 8-14
Catchall handler* 10-7
Channel

input/output • 8-55, 8-59
Character

array • 6-24
constant*6-13, 6-16
conversion *6-21
data *6-12
nonprintable*6-15
string *6-12

Characterconversion
from number *6-22

Characteristics
terminal • 8-62

Character string
assumed-size *6-12
concatenating *6-14
counted *6-15
defining *6-12
fixed-length* 6-12
padding *6-14
passed-length *1-16
passing *1-16
referencing *6-13
size* 6-13
truncating *6-14

CHAR intrinsic function • 6-15

/CHECK=BOUNDS qualifier
FORTRAN command *6-27

/CHECKHMOOVERFLOW qualifier
FORTRAN command *6-10

/CHECK=NOUNDERFLOW qualifier
FORTRAN command *6-10

Checkin/checkout
system program units *4-15

/CHECK qualifier
FORTRAN command *4-5

CLI$_ABSENT*7-15, 7-19
CLI$_COMM A *7-18
CLI$_CONCAT *7-19
CLI$_DEF AULTED *7-15
CLI$_LOCNEG • 7-20
CLI$_LOCPRES • 7-20
CLI$_NEGATED *7-15
CLI$_PRESENT *7-15
CLI$DCL_PARSE • 7-23
CLI$DISPATCH • 7-26
CLI$GET_VALUE
CLISPRESENT
CLOSE statement • 9-15
CLUSTER option *4-26
Command

parsing
deleting* 7-14
description* 7-1
image* 7-1
input • 7-1
line *7-22
name* 7-1
verb* 7-22

Command procedure
debugger* 5-35
system building *4-11

Command syntax
changing* 7-9
defining* 7-1

Command table
create* 7-11
DCL* 7-12
modify • 7-11
user-defined* 7-12

Index—2

Index

Comment

formatting source program *4-3
Common block* 1-10, 2-8, 4-19

align*9-19
BLOCK DATA statement* 1-12
contents* 1-10
initializing* 1-12
installing • 3-43
interprocess *3-43
passing *1-31
per-process • 3-50
uses* 1-10

Common event flag *3-18
Common event flag cluster

permanent • 3-22
temporary • 3-22

COMMON statement* 1-10, 2-8
array processing • 6-26
record processing • 6-37

Compile
development system *4-5
listing *4-33
production system *4-6
program • 4-4

COMPLEX* 16 data type *6-6
COMPLEX*8 data type *6-6
COMPLEX data type *6-6
Complex number *6-6

constant • 6-6
Composed input *8-37
Conditional execution • 2-14
Conditional logic

block IF *2-15
exclusive conditional • 2-16
inclusive IF *2-19
multiple conditions*2-14
nesting • 2-22
single condition • 2-14, 2-15

Condition code* 10-2
chaining • 10-30
defining • 10-9
FORTRAN error code* 10-17
modifying • 10-28
signaling • 10-6
SS$_EXQUOT A • 10-4

Condition code (cont'd.)

SS$_NOPRIV • 10-4
Condition code and message* 10-2
Condition handler

arithmetic* 10-34
condition code* 10-24
debugging* 10-27
establishing* 10-21
exiting* 10-24
mechanism array* 10-22
signal array* 10-21
use of* 10-19, 10-28
writing • 10-21

Condition handling
arithmetic* 10-34
condition handler* 10-21
default* 10-6
FORTRAN I/O errors* 10-16
handlers* 10-18
last-chance exception vectors* 10-19
primary exception vectors* 10-18
resignaling • 10-25
returning to other locations* 10-25
return status* 10-3
secondary exception vectors* 10-18
signal* 10-6
unwinding • 10-25

Constant *6-2
character*6-13, 6-16
complex number *6-6
hexadecimal *6-17
Hollerith *6-19
integer* 6-4
logical *6-11
octal *6-18
real number *6-5

Continuation line
source program *4-2

Control action
inhibit • 8-52

Control character
CTRL/Y • 5-3

Control information* 1-13
flag* 1-13
global symbols* 1-13
indicative value* 1-15

Index—3

Index

Control information (cont'd.)

mask* 1-14
Conversion

automatic *6-22
character* 6-21
data • 6-20
formatted • 6-21
input data*8-7
lowercase to uppercase*8-52
numeric • 6-20

CONVERT/FDL command *9-96
Counted string *6-15
CPU time*6-40
Create

object library *4-8
CREATE/FDL command *9-95
/CREATE qualifier

LIBRARY command *4-8
/CROSS-REFERENCE qualifier

FORTRAN/LIST *4-38
CTRL/C *8-42
CTRL/Y • 8-42
CTRL/Z • 8-8, 8-64
Current time*6-44
Cursor position

on screen • 8-26

D

D_floating format *6-5
Data

aligning* 1-23, 9-19
array (passing) *1-17
byte (passing)* 1-24
character* 6-12
character (passing)* 1-16
control information* 1-13
conversion • 6-20
defining • 2-3, 6-1
initializing • 2-5, 6-3
interprocess • 3-42
logical *6-10
longword (passing)* 1-25
mask (passing)* 1-26, 1-30
numeric* 6-4

Data (cont'd.)

passing • 1-8
quadword (passing)* 1-28
record structure • 6-31
referencing • 6-1
relation *6-11
sharing • 3-42
storage* 2-3
structure *6-1
untyped *6-16
variable-length (passing)* 1-16
variable-length structure (passing)* 1-31
word (passing)* 1-24

Database
compressing • 9-60
expanding • 9-67
1/0*9-16
record • 9-26

Data compression facility • 9-59
DATA statement • 2-5, 6-3

array processing • 6-26
Data type

complex number *6-6
debugger* 5-33
declaration *2-3
declaration statement • 6-1
integer* 6-4
logical *6-10
real number*6-5

Data type declaration • 2-3
DCL commands

ANALYZE/RMS—FILE command *9-94
CONVERT/FDL *9-96
CREATE/FDL command • 9-95
EDIT/FDL command *9-93
LIBRARY command *9-71
SET COMMAND command *7-11

DCL command table *7-12
DCLTABLES.EXE • 7-12
DCX routines *9-59
Debugger

abbreviating commands *5-4
breakpoints* 5-18
command procedures • 5-35
controlling execution • 5-14, 5-18
control structures • 5-22

Index—4

Index

Debugger (cont'd.)

CTRL/Y • 5-3
data types • 5-33
defining keys • 5-5
displaying source*5-21
displays *5-10
examining data *5-30
global symbols *5-24
initialization files *5-37
interrupting • 5-3
invoking • 5-2
local symbols *5-23
log files • 5-38
path-name* 5-27
screen mode* 5-7
storage allocation • 5-25
suspending execution *5-18
terminating • 5-4
tracepoints* 5-18
tracing execution • 5-18
watchpoints • 5-20
window displays *5-7
windows* 5-10

Debugging
condition handlers* 10-27
exit handler* 10-39

/DEBUG qualifier
FORTRAN command *4-5
LINK command *4-9

Default
library

system • 4-22
user • 4-22

parameter value • 7-3
qualifier* 7-5

Define
character string *6-12
data *6-1
subcommand • 7-22

DEFINE/KEY command *5-5
DEFINE command *5-4, 5-28, 7-1
DEFINE VERB statement • 7-1
Defining keys

in debugger*5-5
Definition library *4-24

Definition path *7-10
Definition statement • 2-3
Delete

characters from screen *8-30
command *7-14
pasteboard *8-17
virtual display *8-23

DELETE/KEY command *5-7
Delete module

object library *4-8
Delta time • 6-43
DEPOSIT command *5-33
Detached process

creating • 3-7

Device type *8-61
DIMENSION statement • 6-23
Direct access *9-4, 9-43
Direct input/output operation • 6-40
Directive

.FACILITY* 10-9
DISALLOW clause *7-9
Dispatch to subprogram • 7-26
Display

deleting *5-11
overlying *5-12
saving • 5-11

DISPLAY command *5-10
Divide by 0 error *6-10
Division • 6-7
DO loop

array processing • 6-25, 6-29
implied

array processing • 6-25, 6-30
DATA statement • 6-26

DO statement • 2-19, 2-21
Double height *8-27
DOUBLE PRECISION data type *6-5
Double spacing *8-14
Double width*8-27, 8-28
DO WHILE statement *2-21, 6-1 1
Draw

lines on screen *8-29
Dummy argument* 1-8

assumed-size *6-12

Index—5

Index

E

Echo
terminal • 8-50
terminator* 8-32

EDIT/FDL command *9-93
Editor

File Definition Language*9-93
Elapsed time *6-40
END DO statement • 2-21
END IF statement *2-16
End of file *8-8
END statement • 2-1
Entry point *4-37
ENTRY statement

array processing • 6-26
record processing • 6-38

.EQ. operator *6-8
EQUAL keyword

GSMATCH option *4-30
EQUIVALENCE statement • 2-7

array processing • 6-26
Equivalent variable *2-7
.EQV. logical operator *6-11
Erase

characters from screen • 8-30
virtual display • 8-17

Error
arithmetic* 6-10
parsing subcommand • 7-25
see Condition handling* 10-1
source program *4-6

Error handling
general *10-1
See Condition Handling* 10-1

ERRSN condition code* 10-17
ERRSNS intrinsic program* 10-17
Escape sequence

read • 8-64
EVALUATE command *5-32
Event flag *3-18

common *3-18
LIB$FREE_EF *3-19
LIB$GET_EF *3-19
local *3-18

Event flag (cont'd.)

manipulating *3-18
EXAMINE command *5-31
Executable image *4-8
Execute

image *4-9
EXE file type *9-71
Exit

exit handler* 10-35
image* 10-35

EXIT command *5-4
Exit handler *8-64, 10-35

debugging • 10-39
establishing* 10-36
writing • 10-38

Explicit
data definition • 6-1

Exponentiation • 6-7
Expression • 6-2

numeric *6-7
EXTERNAL statement* 1-8, 4-20
Extract module

object library *4-8

F

F_floating format *6-5, 6-6
FAB structure *9-97
.FACILITY directive* 10-9
.FALSE, operator*6-11
False value *6-10
/FAO_COUNT qualifier

Message Utility* 10-12
FAO argument

signaling • 10-15
FAO parameter

specifying • 10-15
Fault

page* 6-40
FDL (File Definition Language) • 9-92

applying source *9-95
creating source *9-93
editor* 9-93
generating source *9-94

FDL$CRE ATE • 9-95

Index—6

Index

FDL$GENERATE • 9-94

File
access* 9-3
attributes* 9-2
closing *9-15
compressing • 9-60
creating • 9-9
deleting • 9-6
direct access *9-43
examining attributes *9-14
expanding • 9-67
1/0*9-16
indexed *9-3, 9-43
interprocess • 3-42
ISAM *9-49
mapping *9-19
merging • 9-37
modifying • 9-96
name* 9-3
network *9-11
opening • 9-9
organization • 9-3
protection • 9-7
relative • 9-3
rewinding *9-14
scratch *9-6
sequential • 9-3, 9-27
sequential access *9-43
sharing • 3-42
sorting • 9-32

File terminator*8-64
Fixed-length character string *6-12
Fixed-length record *9-4
Flag *6-19

see Event flag
user-defined* 1-13

FOR$ACCEPT • 8-3
FOR$PRINT • 8-3
FOR$READ • 8-3
F0R$TYPE • 8-3
FOR command *5-22
FOR file type • 4-2
Format

numeric data *8-12
source program *4-2

Formatted
conversion • 6-21
input/output • 6-22

Form feed *8-14
FORSYSDEF.TLB • 4-24
FORTRAN

system definition library *4-24
FORTRAN command *4-4
FORTRAN I/O errors* 10-16
FORTRAN statements

COMMON statement* 1-10, 2-8
DATA statement *2-5
DO statement *2-19, 2-21
DO WFHLE statement*2-21
END DO statement • 2-21
END IF statement *2-16
END statement • 2-1
EQUIVALENCE statement • 2-7
EXTERNAL statement* 1-8
FUNCTION statement* 1-4, 2-1
IF statement • 2-15
IMPLICIT NONE statement • 2-4
IMPLICIT statement *2-4
INTRINSIC statement* 1-8
PARAMETER statement • 2-6
PROGRAM statement *2-1
SUBROUTINE statement* 1-4, 2-1

/FULL qualifier
LINK/MAP command *4-40

Function
condition handler* 10-21
intrinsic* 6-9

character* 6-15
reference • 6-2
system • 6-9

Function code
write operation • 8-59

Function reference
array processing • 6-26

FUNCTION statement* 1-4, 2-1, 4-19
array processing • 6-26
record processing • 6-38

Function value* 1-4
system-defined procedure* 1-7

Index—7

Index

G i

G_floating format *6-5, 6-6
/G—FLOATING qualifier

FORTRAN command*6-5
.GE. operator*6-8
Generic name* 1-5
GLOBAL qualifier • 7-6
Global section *3-45

permanent • 3-50
temporary • 3-50

Global symbol *4-19
control information* 1-13
debugger* 5-24
resolving *4-21

GO command *5-15
GSMATCH option *4-26
.GT. operator*6-8

H

H_floating format *6-5
Header

library *9-88
library module *9-86

Height
double* 8-27

Help
display text

LBR$ procedure*9-89
library • 9-71

HELP command • 5-4
/HELP qualifier

LIBRARY command *9-71
Hexadecimal

constant • 6-17
/HIDE qualifier

DISPLAY command *5-12
HLB file type*9-71
HLP file type *9-71
Hollerith

constant • 6-19

I/O
array *9-17
attributes* 9-11
conversion • 6-22
database *9-16
error handling* 10-16
list-directed • 6-22
record *9-17
specifiers* 9-11

I/O operation
status of • 8-59

/I4 qualifier
FORTRAN command *6-4, 6-10

If state
composed input *8-37

IF statement • 2-15, 6-11
IF THEN ELSE command *5-22
Image

See Executable image
command • 7-1
exiting • 10-35
installed *4-10
map *4-40
privileged *4-10
shareable *4-25

IMAGELIB.OLB • 4-22
Image run-down* 10-35
Imaginary

complex number *6-6
Implicit

data definition *6-2
variable *4-7

IMPLICIT NONE statement • 2-4, 4-7
IMPLICIT statement • 2-4, 6-2
Implied

Input/output unit *8-3
Implied DO loop *8-13

array processing • 6-25, 6-30
DATA statement • 6-26

INCLUDE statement *4-24
Indexed file*9-3
Indicative value* 1-15

Index—8

Index

Initialization file

debugger* 5-37
Initialize

data variable*6-3
Input

command • 7-1
one line • 8-5
unsolicited • 8-46

Input/output
array processing • 6-25, 6-30
asynchronous • 8-58
buffered operation • 6-40
channel • 8-55, 8-59
direct operation • 6-40
internal • 6-21
synchronous • 8-55
user* 8-1

Input/output statement
array processing • 6-26
record processing • 6-38

Input operation
one record *8-6

INQUIRE statement • 9-14
Insert

characters on screen *8-27, 8-28
Install

privileged image *4-10
Integer • 6-4

constant • 6-4
quadword • 6-5

INTEGER*2 data type *6-4
INTEGER*4 data type *6-4
INTEGER data type *6-4
Internal

READ statement*6-21
WRITE statement *6-21

Internal parsing *7-22
Interprocess communication • 3-25
Intrinsic character function • 6-15
Intrinsic function

CHAR*6-15
generic name • 1 -5
specific name* 1-5

INTRINSIC statement* 1-8, 4-20
Intrinsic subprogram* 1-5, 6-9

Intrinsic subprogram (cont'd.)

generic name* 1-5
specific name • 1-5

ISAM file *9-49
Iterative logic *2-19

DO loop • 2-20
indexed DO*2-21
nesting • 2-22

K

Key
alternate • 9-44
defining • 8-37
duplicate* 9-58
multiple* 9-52
primary • 9-44
sorting • 9-31
specifying • 9-43

Keyed access *9-4
Keypad

reading from • 8-34
Keyword • 7-7

ambiguous* 7-17
KEYWORD clause *7-10
Keyword path *7-10, 7-17
Keyword specifier • 9-12

L

Label
formatting source program *4-2
parameter* 7-2
qualifier* 7-4

Last-chance exception vectors* 10-19
LBR$_KEYNOTFND • 9-76
LBRSCLOSE• 9-72
LBR$DELETE_D AT A • 9-79
LBR$DELETE_KEY • 9-79
LBR$GET_HE ADER • 9-88
LBR$GET_INDEX • 9-91
LBR$GET_RECORD • 9-80
LBR$INI_CONTROL* 9-72
LBR$INSERT_KEY • 9-76
LBR$LOOKUP_KEY • 9-76, 9-79, 9-80, 9-86

Index—9

Index

LBR$OPEN • 9-72
LBR$OUTPUT_HELP • 9-89
LBR$PUT_END • 9-76
LBR$PUT_RECORD • 9-76
LBR$REPLACE_KEY • 9-77
LBR$SET_MODULE • 9-86
.LE. operator*6-8
LEQUAL keyword

GSMATCH option*4-30
LIB$ADDX • 6-9, 6-44
LIB$DATE_TIME • 6-44
LIB$DAY • 6-46
LIB$DEC_OVER • 10-34
LIB$FLT_UNDER • 10-34
LIB$FREE_EF *3-19
LIB$FREE_TIMER* 6-41
LIB$FREE_VM • 2-9
LIB$GET_EF *3-19
LIB$GET_INPUT *8-5
LIB$GET_LUN • 8-2, 9-3
LIB$GET_VM • 2-9
LIB$INIT_TIMER • 6-40
LIB$INSERT_KEY • 9-83
LIB$INT_OVER • 10-34
LIB$MATCH_COND • 10-24
LIB$PUT_OUTPUT *2-13, 8-11
LIB$SET_INDEX • 9-83
LIB$SHOW_TIMER • 6-40
LIB$SHOW_VM *2-13
LIB$SIG_TO_RET

establishing • 10-7
LIB$SIGNAL

invoking • 10-6
LIB$SPA WN • 3-2
LIB$ST AT_TIMER • 6-41
LIB$ST AT_VM *2-13
LIB$SUBX*6-9, 6-44
Library

adding module with LBR$ procedure*
9-76

closing
LBR$ procedure*9-72

closing with LBR$ procedure*9-72
compressing • 9-59
creating with LBR$ procedure*9-72

Library (cont'd.)

deleting module with LBR$ procedure*
9-79

expanding • 9-59
header *9-88
initializing with LBR$ procedure • 9-72
inserting module with LBR$ procedure*

9-76
macro *4-23
message* 10-12
multiple indexes *9-83
multiple keys *9-83
object *4-8, 4-21
opening with LBR$ procedure • 9-72
processing index entry with LBR$

procedure *9-91
replacing module *9-77
shareable image *4-31
system default *4-22
user default *4-22

LIBRARY command *4-8, 9-71
Library module

extracting with LBR$ procedure *9-80
header *9-86

/LIBRARY qualifier
LINK command *4-8

Line
input • 8-5
output • 8-10

Line editing
inhibit • 8-52

Link
program *4-8
shareable image *4-27

LINK/SHAREABLE command *3-43
LIS file type *4-5
List

parameter* 7-3
Listing *4-33

compilation *4-5
image map *4-40
machine code *4-35
source *4-34

List module
object library *4-8

Index-10

Index

/LIST qualifier
FORTRAN command *4-5, 4-33

Local event flag *3-18
LOCAL qualifier*7-6
Local storage *2-3
Local symbol *4-19

debugger* 5-23
Location

virtual memory *4-18
%LOC built-in function* 1-33
Lock manager

terminal input/output • 3-5
Log file

debugger* 5-38
Logic

conditional* 2-14
iterative* 2-19
linear* 2-13
serial *2-13

Logical
constant* 6-11
data type*6-10
operator* 6-11

LOGICAL* 1 data type *6-4, 6-10
LOGICAL*2 data type *6-10
LOGICAL*4 data type *6-10
LOGICAL data type *6-10
Logical expression

evaluation *6-12
Logical name *3-25
Logical operator*2-14
Logical unit number*8-2, 9-2
Longword

aligning • 1-23
in quadword • 1-28
mask* 1-26
mask (reading)* 1-35
passing • 1-25

Loop structure*2-20
Lowercase

conversion to uppercase • 8-52
.LT. operator*6-8

M

MAC file type • 9-71
/MACHINE_CODE qualifier

FORTRAN/LIST *4-35
Machine code *4-35
Macro

library • 9-71
Macro library *4-23
/MACRO qualifier

LIBRARY command *9-71
Mailbox

creating • 3-29
temporary • 3-29

/MAP qualifier
LINK command *4-40

Mask *6-19
passing • 1-26, 1-30
reading • 1-35
setting* 1-26, 1-30
user-defined *1-14

Mechanism array* 10-22
MERGE command

file interface*9-37
record interface • 9-38

Message

see also Message Utility
chainging* 10-30
displaying* 10-29
library* 10-12
logging* 10-32

Message text
specifyling variables in* 10-12

Message Utility* 10-9
compiling message file* 10-12
.END* 10-10
.FACILITY* 10-10
facility name *10-10
facility number* 10-10
message text* 10-11
message text variables* 10-12
.SEVERITY* 10-11
/FAO—COUNT • 10-12
source file • 10-9
.TITLE* 10-12

Index—11

Index

MLB file type*9-71
Modularity

virtual displays • 8-40
Module

name • 9-71
Multidimensional array *6-28
Multiple output record *8-13
Multiplication • 6-7

N

Name
symbol *4-19

Named constant *2-6
.NE. operator*6-8
Negatable qualifier • 7-5
NEQV. logical operator*6-1 1

Nesting • 2-22
Network

connection • 3-55
exchanging messages • 3-55
file access*9-11
terminating connection • 3-58

Nokeyword specifier*9-1 1
Nonprintable character • 6-15
/NOOPTIMIZE qualifier

FORTRAN command *4-5
.NOT. logical operator*6-11
Number conversion

to character*6-22
Numeric

array • 6-23
defining • 6-23
referencing • 6-24

conversion • 6-20
expression • 6-7

Numeric data • 6-4
formatting* 8-12

o
Object library *4-8, 4-21, 9-71

add module *4-8
create *4-8
delete module *4-8

Object library (cont'd.)

extract module *4-8
list modules *4-8

Object module *4-4
/OBJECT qualifier

FORTRAN command *4-5
LIBRARY command *9-71

OBJ file type *4-4, 9-71
Octal

constant* 6-18
OLB file type • 4-8, 4-31,9-71
OPEN command

END specifier* 10-16
ERR specifier* 10-16
IOSTAT specifier* 10-16

OPEN statement • 8-4, 9-9
ACCESS specifier*9-4
BLOCKSIZE specifier *9-9
BUFFERCOUNT specifier • 9-9
DEFAULTFILE specifier • 9-9
DISPOSE specifier*9-6
EXTENDSIZE specifier • 9-8
FILE specifier*9-3
FORM specifier*9-5
INITIALSIZE specifier *9-8
IOSTAT specifier*9-10
KEY specifier*9-43
ORGANIZATION specifier • 9-3
READONLY specifier • 9-7
RECL specifier*9-43
SHARED specifier*9-7
STATUS specifier*9-6
UNIT specifier*9-2
USEROPEN specifier*9-97

Operation
arithmetic* 6-7

Operator
logical *6-11
relational • 6-8

/OPTIMIZE qualifier
FORTRAN command *4-5

Options
creating with LBRSOPEN • 9-72

Options file *4-26, 4-31
/OPTIONS qualifier

LINK command *4-30

Index—12

Index

.OR. logical operator*6-1 1
Out-of-bounds trap *4-5
Output

record size • 8-10
writing *8-10, 8-11

Output record
multiple* 8-13

Overflow error *6-10
Overflow trap • 4-5
Overprinting *8-15

P

Page
aligning • 1-23

fault • 6-40
Parameter • 7-2

default value* 7-3
label *7-2
list • 7-3
name* 7-2
optional • 7-3
presence *7-15
prompt • 7-3
prompting • 7-4
required • 7-3
value* 7-18

PARAMETER clause *7-2
PARAMETER statement • 2-6, 4-19, 6-2

assumed-size *6-12
Parentheses (())

operations* 6-7
Parsing

command
subcommand • 7-23

Passed-length character string* 1-16
Passing mechanisms* 1-22
Pasteboard

delete *8-17
Path

definition *7-10
keyword *7-10

Path-name
debugger* 5-27

Per-Process common block *3-50

Pop
virtual display *8-40

Position
cursor on screen *8-26

Positional qualifier • 7-20
Presence

parameter* 7-15
qualifier* 7-15

Primary exception vector* 10-18
Privilege

for images *4-10
SS$_NOPRIV • 10-4

Procedure
system-defined* 1-6

Process *3-12
creating • 3-1
detached *3-7
examine *3-12
monitor • 3-16
scheduling *3-17

Program • 1-2
building *4-11
comiling • 4-1
command • 7-1
compiling • 4-4
control flow* 1-3
creating *4-2
debugging • 3-5
execution • 3-9, 3-18
invoking • 1-2, 7-1
linking • 4-1,4-8

Program execution
specified time • 3-9
timed intervals*3-10

Program section *4-37

aligning data* 1-23

PROGRAM statement • 4-19
Program unit

structure of • 2-1
Prompt *8-5, 8-15

parameter* 7-3
PSECT

see Program section

Index—13

Index

Q

Quadword • 6-9
aligning • 1-23
mask* 1-30
mask (reading)* 1-35
passing* 1-28

Qualifier* 7-4
combining • 7-9
default • 7-5
defining • 7-4
global • 7-6
label *7-4
local • 7-6, 7-20
negatable* 7-5
positional* 7-6, 7-20
presence* 7-15
value*7-6, 7-18

Quotas
SS$_EXQUOTA* 10-4

R

RAB structure*9-97
Read

composed input *8-37
keypad input *8-34
menu • 8-31
one input record *8-6
screen* 8-32
screen contents • 8-31
subcommand • 7-23

Reading

command
READ statement • 8-6

internal *6-21
keyed • 9-47

Real
complex number *6-6

REAL* 16 data type *6-5
REAL*4 data type *6-5
REAL*8 data type *6-5
REAL data type *6-5
Real number *6-5

Real number (cont'd.)

constant* 6-5
Record

accessing *9-43
compressing • 9-60
creating variable-length structure* 1-31
data structure • 6-31
deleting *9-57
expanding *9-67
fixed-length *9-4
1/0*9-17, 9-26
key *9-31, 9-43
merging • 9-38
segmented *9-5
size* 8-10
sorting • 9-33
structure *9-4
updating *9-56
variable-length • 9-5

Record terminator • 8-64
Reference

character string *6-13
data • 6-1

Relation
data *6-11

Relational operator *6-8
Relative file *9-3
/REMOVE qualifier

DISPLAY command *5-11
/REPLACE qualifier

LIBRARY command *4-8
Resignaling • 10-25
Return status* 10-3

from signal • 10-7
Reverse video *8-18
REWIND statement *9-14
RMS structures *9-97
RUN command *4-9
Run-Time Library procedure* 1-6

return status* 10-3

s
SAVE statement

array processing • 6-26

Index—14

Index

Scratch file
creating • 9-6

Screen
special effects *8-18

Screen debugging • 5-7
Screen management • 8-15
Scroll

backward • 8-28
down • 8-28
forward *8-28
output *8-28
up* 8-28

SEARCH command *5-21
Secondary exception vector* 10-18
Section

deleting • 9-25
global *3-45
mapping* 9-19
private *9-19
updating • 9-25

Segmented record *9-5
Sequential access *9-4, 9-43
Sequential file*9-3
Serial execution*2-13
SET BREAK command *5-18
SET COMMAND command *7-1 1
SET DISPLAY command *5-13
SET LOG command *5-38
SET MODE command *5-5, 5-8, 5-34
SET MODULE command *5-24
SET OUTPUT command *5-36, 5-38
SET SCOPE command *5-28
SET TRACE command *5-18
SET TYPE command *5-33
SET WATCH command *5-20
Shareable image *4-25

create *4-25
library *4-31, 9-71
linking* 4-31

/SHAREABLE qualifier
LIBRARY command *4-31
LINK command • 4-25, 4-27

/SHARE qualifier
LIBRARY command *9-71

SHOW CALLS command *5-17

SHOW DISPLAY command *5-9
SHOW KEY command *5-7
SHOW MODULE command *5-24
/SHOW qualifier *4-34
SHOW SYMBOL command *5-29
Signal array* 10-21
Signaling • 10-6

changing to return status* 10-7
resignaling • 10-25

Single spacing *8-14
SMG$ADD_KEY_DEF • 8-37
SMG$CHANGE_VIRTUAL—DISPLAY • 8-24
SMG$CHECK_FOR—OCCLUSION • 8-21
SMG$CREATE_KEY—T ABLE • 8-37
SMG$CRE ATE_PASTEBOARD *8-16
SMG$CRE ATE—VIRTUAL -DISPLAY *8-16
SMG$CREATE_VIRTUAL—KEYBOARD •

8-32
SMG$DELETE_CHARS • 8-30
SMG$DELETE_LINE • 8-30
SMG$DELETE_PASTEBOARD *8-17
SMGSDELETE—VIRTUAL—DISPLAY • 8-23
SMGSDRAW—LINE • 8-29
SMGSDRA W-RECTANGLE • 8-29
SMG$ERASE_CHARS • 8-30
SMG$ERASE_DISPLAY • 8-30
SMGSERASE—LINE • 8-30
SMG$ER ASE—PASTEBOARD *8-17
SMG$HOME_CURSOR • 8-26
SMG$INSERT_CHARS • 8-27
SMG$INSERT_LINE • 8-28
SMGSLABEL -BORDER *8-19
SMG$PASTE_VIRTUAL—DISPLAY *8-16
SMG$POP_VIRTU Al_DISPLAY • 8-40
SMGSPUT—CHARS—HIGH WIDE • 8-27
SMG$PUT_LINE • 8-28
SMG$PUT_LINE—WIDE • 8-28
SMG$PUT_WITH—SCROLL* 8-28
SMG$READ_COMPOSED—LINE • 8-37
SMG$READ_FROM—DISPLAY • 8-31
SMG$RE AD_STRING • 8-32
SMGSRESTORE—PHYSICAL—SCREEN • 8-40
SMG$RETURN_CURSOR—POS • 8-26
SMG$S A VE_PHYSIC Al_SCREEN • 8-40
SMG$SCROLL -DISPLAY-AREA • 8-28

Index—15

Index

SMG$SET_CURSOR_ABS • 8-26
SMG$SET_CURSOR_REL • 8-26
SMG$SET_DISPLA Y_SCROLL —REGION •

8-28
SMG$SET_PH YSICAI_CURSOR • 8-26
SMG$UNPASTE—VIRTUAL—DISPLAY • 8-23
SOR$BEGIN_MERGE • 9-37
SORSBEGIN—SORT • 9-32
SOR$END_SORT • 9-32
SORSPASS—FILES • 9-32, 9-37
SOR$RELEASE_REC • 9-33
SOR$RETURN_REC • 9-33
SOR$SORT_MERGE • 9-32
SORT command

file interface • 9-32
record interface • 9-33

Source program
creating • 4-2
error • 4-6
formatting spaces *4-2
listing • 4-34

SPAWN command *5-3
Specific name* 1-5
Specifier

I/O attributes*9-12
keyword form *9-12
nokeyword form *9-12

SS$_SUBRNG error *6-27
ST ARLET.OLB • 4-22
Start-up file

debugger* 5-37
Statement

formatting source program *4-2
Statistics

timer* 6-40
Status block

write operation • 8-60
STEP command *5-15
Storage* 2-9

array *6-27
character data *2-1 1
contiguous* 2-8
dynamic*2-9, 2-10
large data structures • 2-9
local • 2-3

Storage (cont'd.)

numeric data *2-10
statistics *2-13

Storage map *4-36
String

See Character string
counted *6-15

Subcommand • 7-22
define* 7-22
read *7-23

Subprocess
concurrent execution • 3-4
context *3-3
creating • 3-2
delete *3-7
execution • 3-4
in line execution • 3-4
LIB$SPA WN • 3-2
SYSSCREPRC • 3-2

Subprogram *1-1
as argument* 1-8
BLOCK DATA statement* 1-12
dispatch* 7-26
execution* 1-3
function • 1-4
intrinsic* 1-5
Run-Time Library procedure* 1-6
subroutine* 1-3
system-defined procedures* 1-6
system service procedure* 1-6

Subroutine
invoking • 1-3
system *6-9

SUBROUTINE statement* 1-4, 2-1, 4-19
array processing • 6-26
record processing • 6-38

Subscript
array • 6-24

Substring *6-13
Subtraction • 6-7
Symbol *6-1

and logical names *3-25
debugger* 5-28
defining *4-19
global *4-19

Index-16

Index

Symbol (cont'd.)

local *4-19
name* 4-19
storage* 4-18
universal *4-30
unresolved *4-21

Synchronous input/output • 8-55
Syntax

error* 4-6
Syntax analysis
SYS$ ASCTIM • 6-44
SYS$ ASSIGN • 8-55
SYS$BINTIM • 6-44
SYSSCREATE • 9-23
SYSSCREMBX • 3-29
SYSSCREPRC • 3-2, 3-7, 3-9
SYS$CRMPSC*9-19
SYSSDASSGN • 9-25
SYSSDCLEXH* 10-36
SYSSDELPRC • 3-7
SYSSDELTV A • 9-25
SYS$ENQ*3-5
SYSSENQW • 3-5
SYSSERROR* 10-32
SYS$FA0*6-44
SYSSGETDVI • 8-61
SYSSGETSYI • 6-42
SYSSGETTIM • 6-42, 6-44
SYSSINPUT* 10-32
SYSSMGBLSC • 3-45
SYSSOPEN • 9-23
SYSSOUTPUT *8-11
SYS$OUTPUT_HELP • 9-72
SYSSPUTMSG* 10-22, 10-29
SYS$QIO*3-31, 8-55
SYSSQIOW • 3-31, 8-55
SYS$SCHDWK*3-11
SYSSSETEXV* 10-18
SYSSSHARE • 4-32
SYSSUNWIND* 10-25
SYS$UPDSEC • 9-25
SYSSWAITFR • 3-7
System

building *4-11
procedures *6-9

System-defined procedure
argument (byte)* 1-24
argument (longword)* 1-25
argument (mask)* 1-26, 1-30
argument (quadword)* 1-28
argument (word)* 1-24
arguments* 1-20
function value* 1-7
invoking* 1-7

System service procedure* 1-6
return status* 10-3

System time *6-43

T

Table
command • 7-1 1
key definition • 8-37

Terminal
characteristics • 8-62
echo *8-50
input/output *3-5
timeout • 8-51
unsolicited input • 8-46

Terminate
composed input *8-37

Terminator*8-5, 8-64
echo* 8-32
file *8-64

Text
library • 9-71

/TEXT qualifier
LIBRARY command *9-71

Time* 6-43
absolute • 6-43
current • 6-44
delta • 6-43
internal format *6-43

Time manipulation • 6-44
Timeout

terminal • 8-51
Timer

statistics* 6-40
TLB file type*9-71
Traceback handler* 10-6

Index—17

Index

/TRACEBACK qualifier • 4-9
Transfer vector *4-25, 4-28
TRM$M_TM_ESCAPE • 8-34
TRM$M_TM_NOECHO • 8-34
TRM$M_TM_TRMNOECHO • 8-32
.TRUE, operator*6-11
True value*6-10
TXT file type *9-71
Type-ahead buffer *8-48
TYPE command • 5-21
TYPE statement *8-13

u
UFO

see User-file open
Underflow error *6-10
Underflow trap *4-5
Underline* 8-18
Union • 6-35
UNIVERSAL option

LINK command *4-30
Universal symbol *4-30
Unpaste

virtual display *8-23
Unsolicited input *8-46
Untyped data *6-16
Unwind condition handler* 10-25
Uppercase

conversion from lowercase • 8-52
User

input/output • 8-1
User command table *7-12
User-defined condition code

signaling • 10-13
User-file open • 9-23
User-open routine *9-97

v
Value

assignment to variable *6-3
parameter* 7-18
qualifier* 7-6, 7-18

VALUE clause *7-3

Variable *4-19, 6-1
associated • 2-7
default values *2-5
defining *2-3
equivalent *2-7
1/0*9-17
implicit *4-7
initializing • 2-5, 2-6
name *4-7
reinitializing *2-6

Variable-length record *9-5
Variable-length structure

passing* 1-31
Verb

see Command
Video attribute *8-18
Virtual display

changing *8-24
checking occlusion of *8-21
delete • 8-23
erase* 8-17
removing • 8-23
unpaste *8-23

VOLATILE statement
record processing • 6-38

w
WHILE command *5-22
Whole number *6-4
Width

double*8-27, 8-28
screen *8-17

Word
in longword • 1-25
in quadword • 1-28
passing • 1-24

Write
output • 8-10

WRITE statement • 8-11
internal* 6-21
keyed • 9-45

Writing output *8-1 1

Index—18

Index

x
.XOR. logical operator *6-11

Index—19

Guide to Programming
on VAX/VMS
AI-Y503B-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date_

Organization _

Street _

City _State_Zip Code .
or Country

Do Not Tear - Fold Here and Tape

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

IlHlIlHIllll 11111111 m ! 11 • 11

Do Not Tear • Fold Here

No Postage

Necessary

if Mailed in the

United States

C
ut
 A

lo
ng

 D
ot

te
d

L
in

e

Guide to Programming
on VAX/VMS

Al—Y503B-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date-

Organization _

Street ___

City _State_Zip Code .
or Country

Do Not Tear - Fold Here and Tape

Iddsd
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03062-2698

No Postage

Necessary

if Mailed in the

United States

iiiMliiiimiimiiiuiiiiiiiiiMii

Do Not Tear - Fold Here

C
u
t

A
lo

n
g
 D

o
tt

ed
 L

in
e

