
Guide to VAX/VMS
Performance Management

Order Number: AI-Y515B-TE

April 1986

This manual is a conceptual and tutorial guide for experienced users responsible

for optimizing performance on VAX/VMS systems.

Revision/Update Information: This revised manual supersedes the Guide
to VAX/VMS Performance Management

Version 4.0.

Software Version: VAX/VMS Version 4.4

digital equipment corporation

maynard, massachusetts

April 1986

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1986 by Digital Equipment Corporation
All Rights Reserved • Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

SOSQDSD
ZK-2842

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

CANADA INTERNATIONAL

Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager
100 Herzberg Road c/o Digital's local subsidiary
Kanata, Ontario K2K 2A6 or approved distributor
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.
*

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

USA & PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by T^X, the typesetting system developed by
Donald E. Knuth at Stanford University. T^X is a registered trademark of the American Mathematical
Society.

Contents

PREFACE xi

CHAPTER 1 INTRODUCTION TO PERFORMANCE MANAGEMENT 1-1

1.1 KNOWING YOUR WORKLOAD 1 -2
1.1.1 Workload Management _ 1-4
1.1.2 Workload Distribution _ 1-4
1.1.3 Code Sharing _ 1-5

1.2 EVALUATING USER COMPLAINTS 1 -6
1.2.1 Recognizing Hardware and MWAIT Problems _ 1-6
1.2.2 Recognizing Unrealistic Expectations _ 1-8

1.3 PREPARING FOR A PERFORMANCE INVESTIGATION 1-9
1.3.1 Understanding What Tuning Is _ 1-9
1.3.2 Predicting When Tuning Is Required _ 1-10

1.4 EVALUATING TUNING SUCCESS 1 -11

1.5 DECIDING WHEN TO STOP TUNING 1-11

1.6 PERFORMANCE OPTIONS FOR THE SYSTEM MANAGER 1 -13

CHAPTER 2 REVIEW OF VAX/VMS RESOURCE MANAGEMENT 2-1

2.1 A VAX/VMS MEMORY MANAGEMENT ANALOGY 2-1

2.2 ADVANCED MEMORY MANAGEMENT MECHANISMS 2-7

Contents

2.2.1 VAX/VMS Automatic Working Set Adjustment - 2-8
2.2.1.1 Working Set Sizes • 2-14
2.2.1.2 Initial Working Set Limits and Characteristics *2-16
2.2.1.3 Adjustments to Working Set Sizes *2-17
2.2.1.4 Adjustments to Automatic Working Set Adjustment

Parameters • 2-17
2.2.1.5 Performance Management Strategies and Automatic

Working Set Adjustment *2-18

2.2.2 VAX/VMS Swapper Trimming _ 2-19

2.2.3 VAX/VMS Memory Sharing _ 2-22

2.2.4 VAX/VMS Scheduling _ 2-25

CHAPTER 3 MANAGING SYSTEM RESOURCES 3-1

3.1 EVALUATION GROUND RULES 3-2

3.2 COLLECTING AND INTERPRETING IMAGE-LEVEL ACCOUNTING
DATA 3-3

3.3 MAINTAINING AND INTERPRETING MONITOR SUMMARIES 3-8

3.4 UNDERSTANDING SYSTEM RESPONSIVENESS 3-10
3.4.1 Evaluating and Improving Responsiveness of System

Resources _ 3-11

UNDERSTANDING THE CPU RESOURCE 3-12
3.5.1 Evaluating CPU Responsiveness 3-12

3.5.1.1 The Compute Queue *3-12
3.5.1.2 Estimating Available CPU Capacity *3-14

3.5.2 Improving CPU Responsiveness 3-17
3.5.2.1 Equitable CPU Sharing *3-17
3.5.2.2 Reduction of CPU Consumption by the System • 3-18
3.5.2.3 CPU Offloading • 3-23
3.5.2.4 CPU Load Balancing in a VAXcluster • 3-24

3.6 UNDERSTANDING THE MEMORY RESOURCE 3-26

3.6.1 Evaluating Memory Responsiveness _ 3-29
3.6.1.1 Page Faulting • 3-29
3.6.1.2 Swapping and Swapper Trimming • 3-32

IV

Contents

3.6.2 Improving Memory Responsiveness _ 3-33
3.6.2.1 Equitable Memory Sharing • 3-33
3.6.2.2 Reduction of Memory Consumption by the

System • 3-34
3.6.2.3 Memory Offloading • 3-35
3.6.2.4 Memory Load Balancing • 3-36

3.7 UNDERSTANDING THE DISK I/O RESOURCE 3-36

3.7.1 Components of a Disk Transfer _ 3-37

3.7.2 Disk Capacity and Demand _ 3-38
3.7.2.1 Seek Capacity • 3-38
3.7.2.2 Data Transfer Capacity • 3-38
3.7.2.3 Demand • 3-39

3.7.3 Evaluating Disk I/O Responsiveness _ 3-39
3.7.4 Improving Disk I/O Responsiveness _ 3-42

3.7.4.1 Equitable Disk I/O Sharing • 3-42
3.7.4.2 Reduction of Disk I/O Consumption by the

System • 3-43
3.7.4.3 Disk I/O Offloading • 3-46
3.7.4.4 Disk I/O Load Balancing • 3-47

3.8 SUMMARY OF IMPORTANT MONITOR DATA ITEMS 3-48

CHAPTER 4 DIAGNOSING RESOURCE LIMITATIONS 4-1

4.1 DIAGNOSTIC STRATEGY 4-1

4.2 ISOLATING MEMORY LIMITATIONS 4-5
4.2.1 Analyzing the Excessive Page Faulting Symptom _ 4-5

4.2.1.1 Image Activations Are Excessive • 4-7
4.2.1.2 Characterizing Hard Versus Soft Faults • 4-7
4.2.1.3 Total Working Set Size Is Too Small—Overview of

the Problem • 4-9
4.2.1.4 WSDEFAULT, WSQUOTA, and WSEXTENT Values

Are Inappropriate *4-12
4.2.1.5 Borrowing Is Ineffective *4-13
4.2.1.6 AWSA May Be Disabled *4-13
4.2.1.7 AWSA Is Ineffective—Overview • 4-14
4.2.1.8 Swapper Trimming Is Too Vigorous • 4-16

4.2.2 Analyzing the Swapping Symptom _ 4-18
4.2.3 Detecting Harmful Swapping _ 4-18

v

Contents

4.2.4 Investigating Why Processes Consume Unreasonable
Amounts of Memory -- 4-20
4.2.4.1 Large, Compute-Bound Process Gains Inordinate

Control of Memory • 4-23

4.2.4.2 Large Waiting Process Is Never Outswapped • 4-24

4.2.4.3 Too Many Processes Compete for Available

Memory • 4-25

4.2.4.4 Borrowing Is Too Generous • 4-25

4.2.4.5 Swapper Trimming Is Ineffective • 4-26

4.2.4.6 Many Working Sets Are Too Large • 4-26

4.2.4.7 Disk Thrashing Occurs • 4-27

4.2.4.8 System Swaps Rather Than Pages • 4-28

4.2.4.9 Demand Exceeds Available Memory • 4-29

4.2.5 Analyzing the Limited Free Memory Symptom _ 4-29
4.2.6 Special VAX—11/782 Tuning Considerations _ 4-30

4.3 ISOLATING I/O LIMITATIONS 4-30
4.3.1 Disk or Tape Operation Problems (Direct I/O) _ 4-31
4.3.2 Determining I/O Rates _ 4-31

4.3.2.1 Device I/O Rate Is Below Capacity • 4-32

4.3.2.2 Direct I/O Rate Is Abnormally High • 4-32

4.3.2.3 Disk Activity Is Due to Paging or Swapping • 4-36

4.3.3 Reduce I/O Demand or Add Capacity _ 4-36
4.3.4 Terminal Operation Problems (Buffered I/O) _ 4-37

4.3.4.1 Interrupt Stack Time Is Excessive • 4-37
4.3.4.2 Kernel Mode Time Is Excessive • 4-39

4.4 ISOLATING CPU LIMITATIONS 4-40
4.4.1 Processes Are Blocked by a Higher-Priority Process _ 4-40
4.4.2 Time-Slicing Occurs Between Processes __ 4-41
4.4.3 Interrupt Stack Activity Is Excessive _ 4-41

4.4.3.1 Memory Limitation Is Disguised • 4-42

4.4.4 Operating System Incurs Overhead _ 4-43
4.4.5 VAX RMS Is Misused _ 4-43
4.4.6 CPU Is Operating at Full Capacity _ 4-44

4.5 CONCLUSION 4-45

Contents

CHAPTER 5 COMPENSATING FOR RESOURCE LIMITATIONS 5-1

5.1 CHANGING SYSTEM PARAMETERS 5-1

5.2 COMPENSATING FOR MEMORY-LIMITED BEHAVIOR 5-2

5.2.1 Reduce Number of Image Activations _ 5-3

5.2.2 Increase Page Cache Size _ 5-3

5.2.3 Decrease Page Cache Size _ 5-4

5.2.4 Adjust Working Set Characteristics (for Quota and

Extent) _ 5-4

5.2.4.1 Establish Values for Ancillary Control Processes

(ODS-1 Only) • 5-5

5.2.4.2 Establish Values for Other Processes • 5-5

5.2.4.3 Establish Values for Detached Processes or

Subprocesses • 5-6
5.2.4.4 Establish Values for Batch Jobs • 5-7

5.2.5 Tune to Make Borrowing More Effective _ 5-7

5.2.6 Tune AWSA to Respond Quickly to Increased Demand _ 5-8

5.2.7 Disable Voluntary Decrementing _ 5-9

5.2.8 Tune Voluntary Decrementing _ 5-9

5.2.9 Turn on Voluntary Decrementing _ 5-9

5.2.10 Enable AWSA _ 5-9

5.2.11 Adjust Swapper Trimming _ 5-10

5.2.12 Convert to a System That Rarely Swaps _ 5-10

5.2.13 Adjust BALSETCNT _ 5-11

5.2.13.1 Reduce BALSETCNT to Reduce Paging • 5-1 1
5.2.13.2 Increase BALSETCNT to Decrease Swapping

Problems • 5-11

5.2.14 Reduce Large Page Caches _ 5-12

5.2.15 Curtail Large, Compute-Bound Process _ 5-12

5.2.16 Suspend Large, Compute-Bound Process _ 5-12

5.2.17 Control Growth of Large, Compute-Bound Processes _ 5-12

5.2.18 Enable Swapping for Disk ACPs (ODS-1 Only) _ 5-13

5.2.19 Enable Swapping for Other Processes _ 5-13

5.2.20 Reduce Number of Concurrent Processes _ 5-13

5.2.21 Discourage Working Set Loans When Memory Is

Scarce _ 5-13

5.2.22 Increase Swapper Trimming Memory Reclamation _ 5-14

5.2.23 Reduce Rate Of Inswapping _ 5-14

5.2.24 Induce Paging To Reduce Swapping _ 5-14

5.2.25 Add Page Files _ 5-14

VII

Contents

5.2.26 Reduce Demand or Add Memory - 5-15

5.2.26.1 Reduce Demand • 5-15

5.2.26.2 Add Memory • 5-15

5.3 COMPENSATING FOR l/O-LIMITED BEHAVIOR 5-15

5.3.1 Remove Blockage Due to ACP - 5-16

5.3.1.1 Blockage Due to a Device, Controller, or Bus (ODS-1

Only) *5-16

5.3.1.2 Enlarge Hardware Capacity • 5-17

5.3.2 Improve VAX RMS Caching _ 5-18

5.3.3 Adjust File System Caches _ 5-18

5.3.4 Reduce Interrupts for Terminal I/O _ 5-19

5.3.4.1 Choose the Appropriate Environment For

DMF32s • 5-19

5.3.4.2 Consider Application Design • 5-20

5.3.4.3 Lower the Baud Rate if Terminals Smooth

Scroll • 5-20

5.3.4.4 Reduce Demand or Increase CPU Capacity • 5-21

5.4 COMPENSATING FOR CPU-LIMITED BEHAVIOR 5-21

5.4.1 Adjust Priorities _ 5-21

5.4.2 Reduce Interrupts _ 5-22

5.4.3 Increase QUANTUM _ 5-22

5.4.4 Reduce Demand or Add CPU Capacity _ 5-22

INDEX

EXAMPLES

3—1 Sample Image-Level Accounting Report _

3—2 Sample Procedure to Obtain Working Set Information _

3—3 Sample Prime Time VAXcluster Multifile Summary Report

3-5

3-28

3-51

viii

Contents

FIGURES

1-1 Verifying the Validity of a Performance Complaint _ 1-8

1— 2 Time Spent Tuning Versus Performance Improvements _ 1-12

2— 1 Illustration of the Workshop Layout _ 2-3

2-2 VAX/VMS Memory Configuration _ 2-4

2—3 The Working Set Regions for a Process _ 2-9

2-4 Effect of Working Set Size on Page Fault Rate—Graph 1 2-11

2-5 Effect of Working Set Size on Page Fault Rate—Graph 2 _ 2-12

2-6 Effect of Working Set Size on Page Fault Rate—Graph 3 _ 2-13

2-7 An Example of Automatic Working Set Adjustment at Work _ 2-14

2-8 Example Without Shared Code _ 2-22

2-9 Example With Shared Code _ 2-23

4-1 Steps in the Preliminary Investigation Process _ 4-2

4-2 Investigating Excessive Paging—Phase I _ 4-6

4-3 Investigating Excessive Paging—Phase II _ 4-10

4—4 Investigating Excessive Paging—Phase III _ 4-11

4-5 Investigating Excessive Paging—Phase IV _ 4-16

4-6 Investigating Excessive Paging—Phase V _ 4-17

4-7 Investigating Swapping—Phase I _ 4-21

4-8 Investigating Swapping—Phase II _ 4-22

4-9 Investigating Swapping—Phase III _ 4-23

4—10 Investigating Limited Free Memory _ 4-30

4-11 Investigating Disk I/O Limitations—Phase I _ 4-33

4—12 Investigating Disk I/O Limitations—Phase II _ 4-34

4—13 Investigating Terminal I/O Limitations—Phase I _ 4-38

4—14 Investigating Terminal I/O Limitations—Phase II _ 4-39

4-15 Investigating Specific CPU Limitations—Phase I _ 4-42

4—16 Investigating Specific CPU Limitations—Phase II _ 4-44

Contents

TABLES

2- 1 Corresponding Terms in the Workshop and VAX/VMS Analogy

3- 1 Components of a Typical Disk Transfer on a VAX-11/780
(Four to Eight Block Transfer Size) _

3-2 Summary of Important MONITOR Data Items _

2-6

3-37

3-49

x

Preface

This manual presents techniques for evaluating, analyzing, and optimizing
performance on a VAX/VMS configuration. Discussions address such wide-
ranging concerns as the following:

• Understanding the relationship between workload and system capacity

• Learning to use performance-analysis tools

• Responding to complaints about performance degradation

• Helping the site adopt those programming practices that result in the
best system performance

• Using the system features that distribute the workload for better resource
utilization

• Knowing when to apply software corrections to system behavior—
"tuning" the system to allocate resources more effectively

• Evaluating the effectiveness of a tuning operation; knowing how to
recognize success and when to stop

The manual includes detailed procedures to help you evaluate resource
utilization on your system and to diagnose and overcome performance
problems resulting from memory limitations, I/O limitations, CPU
limitations, human error, or combinations of these. The procedures feature
sequential tests that use VAX/VMS tools to generate performance data; the
accompanying text explains how to evaluate it.

Whenever an investigation uncovers a situation that could benefit from
adjusting system values, those adjustments are described in detail, and hints
are provided to clarify the interrelationships of certain groups of values.
When such adjustments are not the appropriate or available action, other
options are defined and discussed.

Decision-tree diagrams summarize the step-by-step descriptions in the text.
These diagrams should also serve as useful reference tools for subsequent
investigations of system performance.

This manual does not describe methods for capacity planning, nor does it
attempt to provide details about using VAX RMS features, since users should
refer instead to the Guide to VAX/VMS File Applications for that information.
Likewise, the manual does not discuss DECnet-VAX performance issues,
since the VAX/VMS Networking Manual provides that information.

XI

Preface

Intended Audience

This manual addresses system managers and other experienced users
responsible for maintaining a consistently high level of system performance,
for diagnosing problems on a routine basis, and for taking appropriate
remedial action.

Structure of This Document

The manual is divided into five chapters, each covering a related group of
performance management topics.

• Chapter 1, Introduction to Performance Management, provides a review
of workload management concepts, guidelines for evaluating user
complaints about system performance, and a discussion of performance
investigation and tuning strategies.

• Chapter 2, Review of VAX/VMS Resource Management, describes
VAX/VMS resource management mechanisms.

• Chapter 3, Managing System Resources, explains how to use the Monitor
Utility and other VAX/VMS tools to collect and analyze data on your
system's hardware and software resources. Included are suggestions for
reallocating certain resources should analysis indicate the need.

• Chapter 4, Diagnosing Performance Problems, outlines procedures
for investigating performance problems and isolating specific resource
limitations.

• Chapter 5, Compensating for Resource Limitations, provides
recommendations for improving performance with available resources.

Associated Documents

For additional information on the topics covered in this manual, you can
refer to the following documents:

• VAX/VMS System Manager's Reference Manual

• Guide to VAX/VMS File Applications

• VAX/VMS Run-Time Library Routines Reference Manual

• VAX/VMS System Services Reference Manual

• VAX/VMS Utility Routines Reference Manual

• VAX/VMS Utility Reference Manuals

xii

Preface

Conventions Used in This Document

Convention Meaning

[REU A symbol with a one- to three-character
abbreviation indicates that you press a key
on the terminal, for example, |ret| .

$ SHOW TIME
05-MAY-1986 11:55:22

Command examples show all output lines
or prompting characters that the system
prints or displays in black letters. All
user-entered commands are shown in red
letters.

$ TYPE MYFILE.DAT Vertical series of periods, or ellipsis, means
either that not all the data that the system
would display in response to the particular
command is shown or that not all the data
a user would enter is shown.

file-spec,... Horizontal ellipsis indicates that additional
parameters, values, or information can be
entered.

[logical-name] Square brackets indicate that the enclosed
item is optional. (Square brackets are
not, however, optional in the syntax of a
directory name in a file specification or in
the syntax of a substring specification in an
assignment statement.)

quotation marks
apostrophes

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

Introduction to Performance
Management

Performance management of a VAX/VMS system means optimizing your
hardware and software resources for the current workload. This task entails
several distinct but related activities:

• Acquiring a thorough familiarity with your workload and an
understanding of how that workload exercises the system's resources.
This knowledge, combined with an appreciation of the VAX/VMS
resource management mechanisms described in Chapter 2, will enable
you to establish realistic standards for system performance in areas such
as the following:

— Interactive and batch throughput

— Interactive response time

— Batch job turnaround time

• Monitoring system behavior on a routine basis in order to determine
when and why a given resource is nearing capacity. Chapter 3 describes
procedures you can use to track resource usage.

• Investigating reports of degraded performance from users.

• Planning for changes in the system workload or hardware configuration
and being prepared to make any necessary adjustments to system values.

• Performing, after installation, certain optional system management
operations.

To help you understand the scope and interrelationship of these activities,
the following sections provide

• A review of workload management concepts

• Guidelines for evaluating user complaints about system performance

• A discussion of performance investigation and system tuning strategies

• A checklist of system management performance options

1-1

Introduction to Performance Management

1.1 Knowing Your Workload

One of the most important assets that a system manager brings to any
performance evaluation is an understanding of the normal workload and
behavior of the system. While this manual can indicate how to measure
or quantify the workload and how to draw certain conclusions about
that workload, it is impossible to address the unique aspects of every
workload. Therefore, each system manager must assume the responsibility
for understanding the system's workload sufficiently to be able to recognize
normal and abnormal behavior; to predict the effects of changes in
applications, operations, or usage; and to recognize typical throughput
rates. The qualified system manager can readily answer such questions as:

• What is the typical number of users on the system at each time of day?

• What is the typical response time for various tasks for this number of
users, at each hour of operation?

• What are the peak hours of operation?

• Which jobs typically run at which time of day?

• Which commonly run jobs are intensive consumers of the CPU? of
memory? of disk?

• Which applications involve the most image activations?

• Which parts of the system software, if any, have been modified or
user-written, such as device drivers?

• Are there any known system bottlenecks? Are there any
anticipated ones?

Clearly, these are questions this manual cannot answer; at best it will point
out the tools used for obtaining the answers. Yet, each system manager must
know the answers to these questions to be able to address any performance
issues.

If you are a novice system manager, you should dedicate considerable time
to observing system operation with the following tools:

• Monitor Utility

• Accounting Utility

• SHOW commands (available through DCL)

1-2

Introduction to Performance Management

Chapter 3 provides detailed procedures for using the Monitor Utility and
(to a lesser extent) other VAX/VMS tools to observe and evaluate system
performance. Over time you will learn the typical page fault rate for your
system, the typical CPU usage, the normal memory usage, typical modes of
operation, and so forth. You will begin to see how certain activities affect
system performance and how the number of users or the time of day affects
some of the values. As you continue to monitor your system, you will come
to know what range of values is acceptable, and you will be better prepared
to use these same tools, together with your knowledge, to detect aberrations.
Routine evaluation of the system is critical for effective performance management.
You cannot afford to wait for problems to develop before you learn how your
system performs.

You can become better educated about your system's operation if you use the
Monitor and Accounting utilities on a regular basis to capture and analyze
certain key data items (see Sections 3.2 and 3.3). By collecting this data, you
will also be in a position to see usage trends and to predict when your system
may reach its capacity. You should exercise care, however, in selecting the
items you want to measure and the frequency with which you capture the
data. If you are overzealous, the consumption of system resources to collect,
store, and analyze the data can distort your picture of the system's workload
and capacity. You will most certainly use excess storage capacity. The best
policy is to have a specific plan before capturing data for how you will
analyze and apply it.

With MONITOR, select an appropriate collection interval. As a guideline,
avoid an interval value so short that you require unnecessary disk storage
for the data, but do not select an interval so large that you miss significant
events occurring in the interim.

You should also be particularly judicious in using image-level accounting on
your system. (You enable image-level accounting with the DCL command
SET ACCOUNTING/ENABLE=IMAGE. Use the /DISABUMMAGE qualifier
to disable it.) As a rule, you should enable image-level accounting only when
you plan to invoke ACCOUNTING to process the information provided in
the file SYS$MANAGER:ACCOUNTNG.DAT. Once you have collected
enough data for your purposes, disable image-level accounting. While image
activation data can be very helpful in performance analysis, it is wasteful of
processing time and disk storage if merely collected and never used.

1-3

Introduction to Performance Management

1.1.1 Workload Management

System performance is directly proportional to the efficiency of workload
management. Each installation must develop its own strategy for this key
task. Before you attempt to adjust any system values, always ask yourself
the following questions:

• Is there a time of day when the workload "peaks," that is, when it is
noticeably heavier than at other times?

• Is there any way to balance the workload better? Perhaps some
voluntary measures can be adopted by users, after appropriate discussion.

• Could any jobs be run better as batch jobs, preferably during
nonpeak hours?

• Have primary and secondary hours of operation been employed with
users? (See Section 1.1.2.) If not, could system performance benefit by
adopting this practice? If the primary and secondary hours are in use, are
the choices of hours the most appropriate for all users? (Plan to review
this issue every time you either add or remove users or applications, to
ensure that the desired balance is maintained.)

• Can future applications be designed to work around any known or
expected system bottlenecks? Can present applications be redesigned
somewhat, for the same purpose? (See the Guide to VAX/VMS
File Applications.)

• Are you using to the utmost the code-sharing ability that the VAX/ VMS
system offers you? If not, you will find that code sharing provides an
excellent means to conserve memory, thereby improving performance
over the life of the system. (See Section 2.2.3.)

Do not adjust any system values until you are satisfied that all these issues
are resolved and that your workload management strategy is correct.

1.1.2 Workload Distribution

You should distribute the workload as evenly as possible over the time the
computer is running. While scheduling interactive users evenly is made
difficult by conventional working and sleeping hours, some of the following
techniques should prove workable:

Run large jobs as batch jobs—Establish a site policy that encourages the
submission of large jobs on a batch basis. Regulate the number of batch
streams so that batch usage is high when interactive usage is low. You
might also want to use DCL command qualifiers to run batch jobs at
lower priority, adjust the working set sizes, and/or control the number of

1-4

Introduction to Performance Management

concurrent jobs. Chapter 9 in the VAX/VMS System Manager's Reference
Manual discusses batch jobs.

• Restrict system use—Do not permit more users to log in at one time than
the system can support with an adequate response time. You can restrict
the number of interactive users with the DCL command SET LOGINS
/INTERACTIVE (see the VAX/VMS DCL Dictionary). You can also
control the number of concurrent processes with the MAXPROCESSCNT
system parameter, and the number of remote terminals allowed to access
the system at one time with the RJOBLIM system parameter (see the
VAX/VMS System Generation Utility Reference Manual).

You might also restrict use of the system by groups of users to certain
days and hours of the day. You can use the Authorize Utility to define
the permitted login hours for each user. In particular, refer to the
AUTHORIZE qualifiers /PRIMEDAYS, /P_RESTRICT, /PFLAGS,
/SFLAGS, and /S—RESTRICT. Remember you can use the DCL
command SET DAY (see the VAX/VMS DCL Dictionary) to override
the conventional day of the week associations for primary and secondary
days. For example, you might need to specify a primary day of the week
as a secondary day when it is a holiday.

• Design applications to reduce demand on binding resources—If you
know where your system bottlenecks are or where they will likely occur
in the near future, you can distribute the workload more evenly by
planning usage that minimizes demand on the bottleneck point(s).
(See the Guide to VAX/VMS File Applications.)

1.1.3 Code Sharing

To ensure optimum performance of your system, you must make certain that
frequently used code is shared. This important system feature should not be
overlooked as a cost-effective means of optimizing memory utilization. (See
Section 2.2.3.)

The site-independent startup command procedure creates permanent global
sections for system programs and subroutines by installing them as known
images with the shared attribute. You should use the same type of approach
for user programs and subroutines that have been designed for sharing and
have reached a production status or are in general use. However, be sure
to use the site-specific startup command procedure to install them as known
images with the shared attribute. (See the VAX/VMS System Manager's
Reference Manual.)

Programmers should be encouraged to write shareable code. Useful
references include the VAX/VMS Linker Reference Manual, and the VAX/VMS
Run-Time Library Routines Reference Manual.

1-5

Introduction to Performance Management

1.2 Evaluating User Complaints

Typically, an investigation into system performance begins when you receive
a complaint about slowdown of interactive response times, or about some
other symptom of decreased throughput. You may or may not observe the
behavior firsthand.

Before you decide that the current complaint reflects a true performance
problem, however, you should be convinced that hardware resources are
adequate. You should also know the workload reasonably well and be sure
you have been managing it according to the guidelines in Section 1.1.

You then need certain basic facts:

• The number of users on the system at the time the problem occurred

• The response times

• Evidence of jobs hung and unable to complete

As you receive this information, you should match it to your knowledge
of the normal workload and operation of your system, following the steps
shown in Figure 1-1. In this decision-tree diagram, and all the subsequent
ones like it, the procedure begins at a numbered node, proceeds through
nodes that ask questions, and ends with one of the following:

• A numbered node that matches a continuation node on another diagram
that follows

• A concluding node that has no number

At this point, you simply want to eliminate false alarms and inaccurate
reports; you need to convince yourself that there is some evidence of a
problem. The best proof occurs when you can observe or duplicate the
problem.

1.2.1 Recognizing Hardware and MWAIT Problems

Hardware problems are a common source of performance complaints. For
example, if devices are offline or malfunctioning, performance can degrade
Check the operator log and the error log for indications of problems with
specific devices. You can issue the DCL commands SHOW ERROR and
ANALYZE/ERROR to help determine of hardware is contributing to a
performance problem.

1-6

Introduction to Performance Management

It is a good idea to review the previous day's error log as part of your
morning routine. The following DCL command (which requires the SYSPRV
privilege) provides a count of errors logged since yesterday:

$ ANALYZE /ERROR /BRIEF /LOG /0UTPUT=NL: /SINCE=YESTERDAY

You can see at a glance whether a more detailed error analysis is in order.
If a hardware problem does exist, correct it as quickly as possible, and then
reevaluate the performance complaint.

For more information on error logging, see Chapter 10 in the VAX/VMS
System Manager's Reference Manual; for information on using the Analyze
/Error_Log Utility, refer to the VAX/VMS Error Log Utility Reference Manual.

Another potential cause of performance degradation occurs when a process
enters the miscellaneous resource wait (MWAIT) state because some resource,
such as a page file or mailbox capacity, is unavailable. Issue the DCL
command MONITOR STATES and look for processes in the MWAIT state.
Processes in this state are blocked either by a miscellaneous resource wait
or a mutual exclusion semaphore (MUTEX). Displays generated by the
MONITOR PROCESSES and SHOW SYSTEM commands show the reason
for the MWAIT state. (For an explanation of MWAIT codes, refer to the
discussion of the MONITOR STATES command in the VAX/VMS Monitor
Utility Reference Manual.)

Note

If the system fails to respond while you are investigating an
MWAIT condition, check the system console for error messages.

Should the MWAIT persist after you increase the capacity of the appropriate
resource, investigate the possibility of a programming design error.

1-7

Introduction to Performance Management

Figure 1-1 Verifying the Validity of a Performance Complaint

PRELIMINARY EVALUATION OF COMPLAINT

REEVALUATE
COMPLAINT

ZK-1131-82

1.2.2 Recognizing Unrealistic Expectations

Always bear in mind that what appears at first to be a performance problem

can turn out to be really a case of unrealistic expectations. Perhaps users

expect response times to remain constant, even as the system workload
increases. Perhaps an unusual set of circumstances has caused exceptionally
high demand on the system all at once. If you find any of these to be the
cause of unsatisfactory performance, you may find that education of the users

is the appropriate action. Adjusting system values will accomplish nothing in

such circumstances.

Whenever you can anticipate a temporary workload change that will affect

your users, you should try to notify them through broadcasts and/or text in

the system notices.

1-8

Introduction to Performance Management

1.3 Preparing for a Performance Investigation

Once you have established that there is a persistent performance problem,
you normally become involved in an investigative process to determine the
cause and possible corrective action. The process usually becomes easier as
you gain experience with the system and its normal operation. A number
of software tools exist (such as the Monitor and Accounting utilities) that
can help in the evaluation of system performance. (See Chapter 3.) Again,
as you become experienced in using these tools, more rapid diagnosis is
possible. Generally, system performance problems turn out to be the result
of poor operation, lack of understanding of the workload and its operational
ramifications, lack of resources, poor application design, human error, or
combinations of these. You will rarely need to make major adjustments to
system parameters.

1.3.1 Understanding What Tuning Is

Tuning is the process of altering various system values to obtain the optimum
overall performance possible from any given configuration and workload.
However, the process does not include the acquisition and installation of
additional memory or devices, although in many cases such additions (when
made at the appropriate time) can vastly improve system operation and
performance.

Always aim for best overall performance, that is, performance viewed
over time. The workload is constantly changing on most systems. What
guarantees optimal performance at one point in time may not produce
optimal performance a short time later as the workload changes. You can
only hope to establish values that, on average, produce the best overall
performance.

Before you undertake any action, you must recognize that the following
sources of performance problems cannot be cured by adjusting system
values:

• Improper operation

• Unreasonable performance expectations

• Insufficient memory for the applications attempted

• Inadequate hardware configuration for the workload, such as too slow a
processor, too few buses for the devices, too few disks, and so forth

• Improper device choices for the workload, such as using disks with
insufficient speed or capacity, or installing DZlls when DMF32s would
be more beneficial

1—9

Introduction to Performance Management

• Hardware malfunctions

• Human errors, such as poor application design or allowing one process
to consume all available resources

When it becomes necessary to make adjustments, you normally select a
very small number of values for change, based on a careful analysis of the
behavior being observed. These values are usually either system parameters
(as described in the VAX/VMS System Generation Utility Reference Manual),
or entries in the User Authorization File (UAF) that affect particular users
(see Chapters 5 and 6 in the VAX/VMS System Manager's Reference Manual).
Normally, you modify system parameters using the AUTOGEN command
procedure described in the VAX/VMS System Manager's Reference Manual.
One of AUTOGEN's special features is that it makes automatic adjustments
for you in associated parameters. To control the values in the UAF, you use
the Authorize Utility, which is described in the VAX/VMS Authorize Utility
Reference Manual.

Chapter 5 of this manual shows you how to pinpoint which parameters are
likely to produce the optimum change. Included are some hints for selecting
new values.

1.3.2 Predicting When Tuning Is Required

DIGITAL believes, for several reasons, that tuning is rarely required for
VAX/VMS systems. First of all, the system includes the AUTOGEN
command procedure, which establishes initial values for all the
configuration-dependent system parameters so that they match your
particular configuration.

Second, the system includes features that in a limited way permit it to
adjust itself dynamically during operation. That is, the system detects the
need for adjustment in certain areas, such as the nonpaged dynamic pool,
working set size, and the number of pages on the free and modified page
lists. The system makes rough adjustments in these areas automatically for
you. As a result, these areas can grow dynamically, as appropriate, during
normal operation. (More details about several of these VAX/VMS automatic
adjustment features appear in Section 2.2.)

Finally, experience has shown that the most common cause of
disappointment in system performance is insufficient hardware capacity.
Once the demand on a system exceeds its capacity, adjusting system values
will not result in any improvements, simply because such adjustments are a
means of trading off or juggling existing resources.

1-10

Introduction to Performance Management

Although tuning is rarely required, be aware that it is appropriate in response
to two particular situations:

1 If you have adjusted your system for optimal performance with current
resources and then acquire new capacity, you must plan to compensate
for the new configuration. In this situation, the first and most important
action is to execute the AUTOGEN command procedure.

2 If you anticipate a dramatic change in your workload, you should expect
to compensate for the new workload.

1.4 Evaluating Tuning Success

Whenever you make adjustments to your system, you must plan to spend
time monitoring its behavior afterward, to ensure that you obtain the desired
results and no unexpected or undesired results. You can observe results with
both the Monitor Utility (see the VAX/VMS Monitor Utility Reference Manual)
and the various forms of the DCL command SHOW (see the VAX/VMS DCL
Dictionary).

For example,you might consider running some programs whose results you
believe are fixed and reproducible, at the same time that you run your normal
workload. If you run the programs and measure their running times under
nearly identical workload conditions both before and after your adjustments,
you can obtain a basis for comparison.

However, when applying this technique, remember to take the measurements
under very similar workload conditions. Also, remember that this test alone
does not provide conclusive proof of success. There is always the possibility
that your adjustments may have favored the performance of the image you
are measuring—to the detriment of other images. Therefore, in all cases,
continue to observe system behavior closely for a time after you make
any changes.

1.5 Deciding When To Stop Tuning

In every effort to improve system performance, there comes a point of
diminishing returns. In other words, you will find that once you obtain a
certain level of improvement, you can spend a great deal of time tuning
the system beyond that point and achieve only marginal additional
improvement. Figure 1-2 represents this pattern.

Recognizing this phenomenon, you will be in a better position to know when
to stop. As a guideline, if you make some adjustments and see a marked
improvement, then make more adjustments and see about half as much
improvement, then fail to make more than a small improvement on your
next attempt or two, you should stop and evaluate the situation. You can

1-11

Introduction to Performance Management

probably assume you have done your best and you are close to point C
on the graph. In most situations, this is the point at which to stop. If you
are not satisfied with the final performance, you should carefully address
the issue of increasing your capacity through the addition of hardware.
Generally, memory is the single piece of hardware needed to solve the
problem. However, some situations warrant obtaining additional disks or
more CPU power. Very few situations warrant the expense of continued
adjustments for such minimal potential improvement, once the improvement
depicted at point C has been obtained.

When you use the AUTOGEN command procedure to set the system
parameters, you should expect performance to be at a point between A and B
in Figure 1-2. However, in a system that has been improperly adjusted, you
would find performance to be near the origin point in the diagram. Because
such systems usually exhibit blatant symptoms with fairly obvious and
simple solutions, you will likely find that tuning—in the form of adjustments
to certain critical system values—produces a high return for the time and
effort invested, and that there is a much lower risk of error.

Figure 1—2 Time Spent Tuning Versus Performance Improvements

TIME SPENT TUNING

ZK-1118-82

1-12

Introduction to Performance Management

1.6 Performance Options for the System Manager

Following is a list of optional system management operations, normally
performed after installation, that often result in improved overall
performance. Note, however, that not all options are appropriate at
every site.

• Decompress system libraries—Most of the libraries shipped with
Version 4.0 and later versions of the VAX/VMS operating system
are in a compressed format in order to conserve disk space; the
CPU dynamically decompresses them whenever they are accessed,
and the resulting performance slowdown is especially noticeable
during link operations and when requesting online help. If you have
sufficient disk space, decompressing the libraries will improve CPU and
elapsed time performance. To do this, invoke the command procedure
SYS$UPDATE:LIBDECOMP.COM. The decompressed object libraries
take up about 25 percent more disk space than when compressed; the
decompressed help libraries take up about 50 percent more disk space.

• Disable file system high-water marking—This security feature guarantees
that users cannot read data they have not written. It is implemented by
erasing the previous contents of the disk blocks allocated every time a file
is created or extended. High-water marking is set by default whenever a
volume is initialized.

Disabling the feature will improve system performance by an amount
that varies depending on how often new files are created, how often
existing files are extended, and how fragmented the volume is. To
disable high-water marking, you can specify the /NOHIGHWATER
qualifier when initializing the volume, or you can issue the following
DCL command at any time:

$ SET VOLUME/NOHIGHWATER.MARKING device-spec [:]

Then dismount and remount the volume. However, you should consider
the security implications of disabling this feature.

• Set RMS file extend parameters—In Version 4.0, the VAX RMS file
extend default has been reduced from 80 to 0 blocks. Because files
extend in increments of twice the multiblock count (default 16), system
defaults now provide file extension of only 32 blocks. Thus, when files
are created or extended, increased I/O may slow performance. The
problem can be overcome by specifying larger values for SYSGEN file
extend parameters or by setting the SYSGEN parameter RMS_EXTEND_
SIZE=80. (See the VAX/VMS System Generation Utility Reference Manual.)

1-13

Introduction to Performance Management

• Relink images—Beginning with VAX/VMS Version 4.0, the Run-Time
Library (VMSRTL) is separated into five smaller libraries. Running
images linked under previous versions of VAX/VMS will therefore incur
the image activation costs of mapping all five libraries, even if only
one is needed. You may improve performance by relinking pre-Version
4.0 images that reference Run-Time Library routines, so that only the
required libraries are mapped and activated.

• Install frequently used images—When an image is accessed concurrently
by more than one process on a routine basis, install the image with
the Install Utility, specifying the /OPEN, /SHARED, and
/HEADER-RESIDENT qualifiers. You will thereby ensure that all
processes use the same physical copy of the image, and that the image
will be activated in the most efficient way.

Generally, an image takes about two additional physical pages when
installed /OPEN/HEADER_RESIDENT/SHARED. The utility's
LIST/FULL command shows the highest number of concurrent accesses
to an image installed with the /SHARED qualifier. This information
can help you decide if installing an image is worth the space. For more
information on the Install Utility, refer to the VAX/VMS Install Utility
Reference Manual.

• Reduce system disk I/O—You can move frequently accessed files off the
system disk and use logical names or, where necessary, other pointers to
access them. For example:

— SYSUAF.DAT (SYSUAF is the logical name)

- RIGHTSLIST.DAT (RIGHTSLIST is the logical name)

— VMSMAIL.DAT (VMSMAIL is the logical name)

- NETUAF.DAT (NETUAF is the logical name)

— JBCSYSQUE.DAT (File specification in the START/QUEUE
/MANAGER command is the logical name)

— ERRFMT log files (SYS$ERRORLOG is the logical name)

— MONITOR log files (SYS$MONITOR is the logical name)

— Default DECnet account (DECNET record in SYSUAF file)

You may also want to consider moving paging and swapping activity off the
system disk by creating large secondary page and swap files on a less heavily
utilized disk.

1-14

Review of VAX/VMS Resource
Management

Once you have taken the necessary steps to manage your workload, you
can approach reports of performance problems as if they imply the need for
investigation. Before you proceed, however, it is imperative that you be well
versed in the concepts of VAX/VMS resource management. If you lack such
understanding, you are likely to encounter unnecessary problems in your
tuning attempts. For this reason, what follows is a fairly intensive review of
this key area.

In Section 2.1, an analogy is employed to explain many aspects of memory
management. Concepts are introduced in terms of a workshop environment
and then translated into VAX/VMS terms. In Section 2.2, automatic working
set adjustment and swapper trimming are described. Section 2.2.4 discusses
process scheduling.

Note

Many readers will not require the full review of VAX/VMS
memory management concepts that Section 2.1 provides. For
that reason, boldface is used to highlight the parts specific
to VAX/VMS. Readers can check their familiarity with the
VAX/VMS vocabulary and concepts by reading just the parts
printed in boldface. If some of the terms are unfamiliar, it
would be wise to read the entire section to obtain the benefit
of the explanations offered through the analogy. However, if
this material is well understood, readers can proceed directly to
Section 2.2.

2.1 A VAX/VMS Memory Management Analogy

To better understand how VAX/VMS manages system resources for its users,
consider the analogy of a large workshop. In some ways, a computer system
and a workshop have many aspects in common.1

Imagine a large workshop where a number of workers come to build different
kinds of objects. Workers tend to work on their own projects, with their own
set of parts and construction schematics; that is, the projects are not usually
done in teams. The workshop is managed by a supervisor with the help
of a few assistants. It is this supervisor's responsibility to see that as many

i Several of the basic ideas for the workshop/warehouse example were borrowed from the work of Jeffrey Berryman at the
University of British Columbia, Canada, and S. B. Schwartz at Digital Equipment Corporation, Maynard, MA.

2-1

Review of VAX/VMS Resource Management

projects as possible are finished as quickly as possible, by allocating the
various resources of the workshop (workbench space, time in the workshop,
and so forth).

Since it is often the case that the workers are building very intricate
objects that require many parts—more parts than can fit all at once in
the workshop—the workshop is supplemented by one or more warehouses
that can store the parts when they are not being actively used by any of the
workers. The warehouses are located a short distance down the road.

In a similar way, with the VAX/VMS operating system, a number
of processes can run in available physical memory. (A process is a
schedulable entity on the system.) There is one operating system,
VAX/VMS, which consists of the executive (which is always resident
in physical memory) and other components. Each process performs work,
which involves, in simple terms, the manipulation (processing) of data.
The system design tries to ensure that each process can complete its work
as quickly as possible. In addition to main memory, the configuration
supports several secondary storage devices (disks), where additional bytes
are stored.

In the imaginary workshop there is one long workbench that occupies three
of the four walls. The supervisor and each worker work at stations along
the workbench. The fourth wall is taken up by a loading dock and some
temporary storage space. The loading dock is used by the forklift trucks
that move parts to and from the warehouses. Each warehouse has its own
forklift. (See Figure 2-1.)

As workers report for work, the supervisor gives them a stool and assigns
them to a portion of the workbench where they will be able to keep some or
all of the parts they need to complete their projects. The supervisor decides
how many workers to allow in the workshop at any given time by limiting
the number of stools given out, or by allocating big areas of the workbench
to each worker so that fewer workers will fit around the bench. (Workers
who cannot get access to the workbench simply have to wait in the corner
by the loading dock until a stool or some of the workbench is free.)

With VAX/VMS, physical memory can be thought of as divided into
three major parts, according to their usage. There is the portion available
for the processes to work, there is the portion reserved for the resident
executive, and there is a portion for the page cache, where data is stored
for movement from and to the disk(s). Each disk has only one access
path available to transfer data from and to physical memory (that is, to
perform the disk I/O).

2-2

Review of VAX/VMS Resource Management

There are enough balance slots reserved in physical memory for the
maximum number of processes expected to run concurrently, including
the operating system. If the number of balance slots is reduced, fewer
processes can run concurrently. The operating system and each process
have their individual working spaces in physical memory, known as
their working sets. More precisely, working sets are process-specific
lists. The working set includes all the valid pages in memory for any
particular process. Pages in the working set usually represent a subset of
the total number of pages in the process's page tables.

Figure 2-1 Illustration of the Workshop Layout

SUPERVISOR’S STATION

• • • • •

STOOLS

TEMPORARY
STORAGE

• • • • •

o
o
Q

O
z
o
<
o

FORKLIFT
TRUCK

ZK-1119-82

Now, there are a few unusual aspects to this workshop. The first is that all
the parts the workers use are the same size and shape, although they are not
all the same color. This means that the pieces are versatile, so that they can
be used to make almost anything. This uniformity in same size and shape is
used to advantage in the workshop. The parts can be organized in a variety
of different containers that have the same capacity, and therefore they can be
moved around very easily.

For example, all parts out in a warehouse are stored in crates of the same
size. So it is very simple to store new parts in a warehouse, because any
empty crate will be the right size. It is also easy to transport lots of crates
around, since they stack so neatly.

2-3

Review of VAX/VMS Resource Management

Furthermore, the workers in the workshop always keep their parts in trays
that are just big enough to handle exactly one crateful of parts. This
procedure has two advantages: it simplifies the process of crating and
uncrating the parts when they arrive on the loading dock (the contents of
a crate are just dumped onto a tray), and it makes very efficient use of the
workbench, since parts are never left lying about.

In VAX/VMS, the basic addressable unit for data is the byte. Bytes are
always stored in groups, called pages, with 512 bytes to a page. Pages are
kept in the working sets or in sections of physical memory known as the
page cache, as well as on the disks. The page is a convenient vehicle for
moving uniform numbers of bytes into and out of memory. Note that,
although bytes are always the same size, they do, of course, have varying
contents.

Figure 2-2 illustrates the configuration of memory for VAX/VMS systems.

When the demand for workbench space and shop time is low, things run
well. The problems occur when many workers all want to use the shop at
the same time. If the supervisor is not careful, the shop gets too crowded;
workers start getting in each other's way and the net output of the shop
starts to drop.

Figure 2-2 VAX/VMS Memory Configuration

RESIDENT PAGE

SYSTEM CACHE

resident free
executive page
routines list

nonpaged
dynamic
memory

modified
page

list

BALANCE SET

user working sets

system working set

IMAGE FILES

SECTION FILES

PAGING FILE

SWAPPING FILE

ZK-1009-82

To prevent such undesirable circumstances, the supervisor sets up some
general shop procedures. First, so as to be fair, workers are assigned to
fixed-length shifts as they report to work—thus guaranteeing a worker a

2-4

Review of VAX/VMS Resource Management

certain amount of time in the shop, at the workbench. If, when a worker's
shift expires, there is no one else waiting, the worker can keep on working as
much overtime as desired. However, if someone is waiting, the worker gives
up the stool, cleans the trays off that portion of the workbench, and lets the
worker who is waiting take a shift.

With VAX/VMS, it is also important to maintain an even balance
in the use of memory and the number of processes running at once.
Each process has an available amount of time to perform its work—its
quantum. (The quantum is a fixed slice of time; if no other process is
waiting to exercise its quantum, the current process can keep renewing
its quantum and retain control of the CPU.)

In the workshop, a typical project begins when a worker reports for work
to the shop and goes to the supervisor to find out where and when to start
working. The supervisor provides a stool, allocates a section of the long
workbench for use, and records the starting time of the shift for later use.
The worker then goes to the loading dock and, as soon as the appropriate
forklift is free, drives out to the warehouse where the crates of parts needed
for the new project are kept. The worker stacks several crates onto the
forklift, and then drives them back to the loading dock.

Back at the shop, the worker has to get enough empty trays to hold all the
parts in the crates just brought in from the warehouse. Once the trays are
lined up, the worker uncrates the forklift load and arranges the trays on the
assigned section of workbench. Then assembly work begins. When a part
(say, of a particular color) is needed that is not currently available in the
workshop, the worker goes back to the loading dock, gets on the appropriate
forklift, and goes out to the warehouse to fetch the crate containing the
needed part.

The supervisor's assistant uses an elaborate map to keep track of all the
crates and trays in the workshop and the warehouses, and strives to ensure
that each worker has a steady supply of trays for each project. When the
worker needs another crate (which is in the open area of the workshop), a
delay or interruption must occur so that the worker can retrieve it. However,
first the worker checks whether there is room for it on the workbench. If
not, the worker must remove a tray to the staging area, even if work never
began on that tray.

During image activation, the groundwork is laid so that the process can
bring in the first set of pages from the image file and use them in its own
working set.

The job of scheduling physical memory falls to the swapper process. The
swapper keeps track of the pages in both physical memory and on the
disk paging and swapping files, so that it can ensure that each process
has a steady supply of pages for each job.

2-5

Review of VAX/VMS Resource Management

When the process's demand for pages exceeds those available in the
working set, some of the process's pages must be moved to the page
cache to make room.

In VAX/VMS, there are two sections to the page cache in physical
memory; those pages whose contents have been modified are stored on
the modified page list, while those that have not been modified are kept
on the free page list. When the page cache begins to fill up, the swapper
transfers a cluster of pages from the modified page cache out to disk, to
what is known as a paging file.

Sometimes the process needs additional pages that are stored in either
an image file or a paging file. This, too, involves a page fault. If there is
insufficient space in the working set, the process must move one or more
of its pages to the page cache, as before. The process brings in groups of
pages from the image file on disk, assuming that the process is likely to
reference pages other than the one just referenced.

You can imagine the delays that sometimes occur in the workshop because
there is only one forklift truck to each warehouse. If there were only one
large warehouse with its one truck, the waits for the truck could be much
worse.

With VAX/VMS, a similar type of bottleneck can occur if many processes
begin page faulting at the same time, particularly if there is only one
paging file for all processes, and the speed of retrieval is that of loading
between memory and disk, which is slower than the memory accesses
required to update the memory management database. Under such
circumstances, installing additional paging files on separate disks or
creating a larger cache can alleviate the bottleneck. (However, it may
prove even more profitable to address the cause of the excessive page
faulting in the first place.)

Table 2-1 summarizes the components of the analogy and their
VAX/VMS equivalents.

Table 2-1 Corresponding Terms in the Workshop and VAX/VMS Analogy

Workshop Component

Supervisor

Workers

Workshop

Warehouse

Storage area in warehouse

VAX/VMS Equivalent

Operating system

Processes

Physical memory

Disk

Image, page or swap file; Section file

2-6

Review of VAX/VMS Resource Management

Table 2-1 Corresponding Terms in the Workshop and VAX/VMS
Analogy (Cont.)

Workshop Component VAX/VMS Equivalent

Workbench Balance set

Workspace Working set

Stools Balance slots or resident process headers

Forklift truck I/O channel

Crates Disk blocks

Trays Pages of memory

Parts Bytes

Loading Dock Page cache

Shift Quantum

Interruption when crate is Page fault—interruption when page is needed
needed from loading dock
or warehouse

from cache or disk

2.2 Advanced Memory Management Mechanisms

VAX/VMS employs several sophisticated memory management mechanisms
to improve performance on the system. This section describes four of these
mechanisms: automatic working set adjustment, swapper trimming, memory
sharing, and scheduling.

The VAX/VMS operating system, as provided by DIGITAL, enables these
features by default. In the majority of situations, they produce highly
desirable results in optimizing system performance. However, under special,
rare circumstances, they might contribute to performance degradation by
incurring their own overhead. The following sections describe these features
and provide insight into how to adjust, or even turn them off,
through tuning.

2-7

Review of VAX/VMS Resource Management

2.2.1 VAX/VMS Automatic Working Set Adjustment

The automatic working set adjustment (AWSA) feature refers to a system
where processes can acquire additional working set space (physical memory)
under control of VAX/VMS. VAX/VMS recognizes the amount of page
faulting that is occurring for each process and factors this into the operation.

All processes have an initial default limit of pages of physical memory (a
working set limit, referred to as WSDEFAULT). Any process that needs more
space in memory is allowed to expand to the amount of a larger limit, known
as the working set quota (referred to as WSQUOTA). Figure 2-3 illustrates
these important regions.

Because page faulting is costly, VAX/VMS has another feature for extending
working set space to needy processes, provided the system has free memory
available. If the conditions are right, the process can borrow working set
space up to a final limit known as its working set extent, or WSEXTENT.

In addition to the various limits placed on the working set size, system
managers need to consider the actual number of pages the working set
requires. In this chapter, the term working set count represents that number.
The working set count consists of the process's pages plus any global pages
that the process uses.

Whenever a process working set size increases, the growth occurs in
increments, according to the value of the system parameter WSINC.
VAX/VMS recognizes or reviews the need for growth only at the end of the
next occurring quantum and after that minimum interval of time established
by the system parameter, AWSTIME. You should think of the time from the
start of the quantum right after an adjustment occurs, until the next quantum
after the time specified by AWSTIME elapses, as the adjustment period. (The
length of the quantum is defined by the system parameter, QUANTUM.) The
system samples the page faulting rate of each process over that adjustment
period defined by the system parameters AWSTIME and QUANTUM. For
example, if the system quantum is 200 milliseconds and AWSTIME is 700
milliseconds, VAX/VMS would be reviewing the need to add or subtract
pages from a process every time the process had consumed 800 milliseconds
of CPU time, or every fourth quantum.

2-8

Review of VAX/VMS Resource Management

Figure 2-3 The Working Set Regions for a Process

WORKING SET
LIMIT RANGES
THROUGHOUT
THE REGION;
ACTUAL WORKING
SET AT ANY GIVEN
TIME IS KNOWN AS
WSSIZE

WSMAX (SYSTEM PARAMETER)
WSEXTENT (UAF, DCL COMMAND)

WSQUOTA (UAF, DCL COMMAND)

INITIAL WSDEFAULT (UAF, DCL COMMAND)
AWSMIN (SYSTEM PARAMETER)
SWPOUTPGCNT (SYSTEM PARAMETER)

ZK-1121-82

By reviewing the need for each process to add some pages to its working
set limit through the AWSA feature, VAX/VMS can better balance the
working set space allocation among processes. Since the goal of this activity
is to reduce the amount of page faulting, VAX/VMS decides whether to
grant memory by comparing the current amount of page faulting that each
process is undergoing, against a norm that has been established overall for
all processes in the system. (The system parameters PFRATH and PFRATL
define the upper and lower limits of acceptable page faulting, respectively.)

At the end of each process's adjustment period, if the page fault rate for the
process is high (compared to PFRATH), VAX/VMS approves an increase in
the working set size of that process in the amount of the system parameter
WSINC, up to the value of its WSQUOTA, for the next adjustment period.
If the increase puts the process above the value of WSQUOTA and thus
requires a loan, VAX/VMS checks the availability of free memory against an
established system norm, the value of the system parameter BORROWLIM.
The AWSA feature only allows a process to grow above its WSQUOTA
value if there are at least as many pages of free memory as specified by the
parameter BORROWLIM. In this way, the AWSA feature ties loans to the
available capacity.

Even though VAX/VMS may intend to let a process grow during its next
adjustment period, if too many processes attempt to add pages at once, an
additional mechanism is needed to let VAX/VMS stop the growth while it
is occurring. (You could think of it as VAX/VMS needing to renege on its
promise. However, VAX/VMS only stops the growth of processes that have
already had the benefit of growing beyond their quota.) Therefore, whenever
a process page faults after its working set count exceeds its quota, VAX/VMS

2-9

Review of VAX/VMS Resource Management

examines the value of the system parameter GROWLIM before it allows the
process to use more of its VVSINC loan. (Note that this activity is not tied
into an adjustment period, but rather is an event-driven occurrence based on
page faulting.) If there are at least as many pages on the free list as required
by GROWLIM, VAX/VMS continues to allow the process to add pages
to its working set. If the number of free pages does not equal or exceed
GROWLIM, VAX/VMS will not allow the process to grow; the process must
give up some of its pages before it reads in new pages.

While some heavily faulting processes are being allowed to extend their
working set sizes, processes that are not page faulting heavily can be
giving up some of their working set limit through voluntary decrementing.
Processes whose page fault rate is lower than PFRATL (when PFRATL is
nonzero) are subject to giving up pages. As with growth, this reduction
occurs at the next quantum end after AWSTIME has elapsed. The amount
of the reduction is defined by the system parameter WSDEC, but no process
will be reduced below the minimum size defined by AWSMIN.

Figure 2-4 illustrates how the page fault rate and working set size are related
for most processes. Under the influence of the page fault rate values PFR1
and PFR2, the working set size tends to fluctuate between points A and B,
under the shaded portion of the graph.

Not all working sets for all images exhibit the same curve as depicted in
Figure 2-4. For example, for other images the working sets might behave
more like the curves in Figures 2-5 or 2-6. Yet each of these characteristic
curves illustrates that, as you decrease the working set size, you should
expect the page fault rate to increase. Note that if you establish a maximum
acceptable page fault rate of PFR1, for each image there is a minimum
required working set size, as shown at point A on each figure. If you
determine that the minimum level of page faulting is defined by PFR2 for all
images, then for each image there is a point (shown as point B) that is the
maximum size the working set needs to reach.

2-10

Review of VAX/VMS Resource Management

Figure 2-4 Effect of Working Set Size on Page Fault Rate—Graph 1

WORKING SET SIZE

ZK-1139-82

2—11

Review of VAX/VMS Resource Management

Figure 2-5 Effect of Working Set Size on Page Fault Rate—Graph 2

2-12

Review of VAX/VMS Resource Management

Figure 2-6 Effect of Working Set Size on Page Fault Rate—Graph 3

WORKING SET SIZE

PFR1

PFR2

ZK-1141-82

Figure 2-7 illustrates how automatic working set adjustment works over
time, across the whole system, to minimize the amount of page faulting
by adjusting working set sizes in balance with the amount of free memory
available. The units used for AWSTIME, WSDEC, and WSINC in Figure 2-7
are simply for illustration; they are not recommendations.

In the figure, the shaded area identifies where paging occurs. The portion
between the desired working set size and the actual working set limit (shown
with cross-hatching) represents unnecessary memory overhead—an obvious
case where it costs memory to minimize page faulting.

2-13

Review of VAX/VMS Resource Management

Figure 2-7 An Example of Automatic Working Set Adjustment at Work

TIME IN QUANTUM TICKS

ADJUSTMENT PERIOD

AWSTIME=(2 x QUANTUM)

Q2 Q3 Q4 Q5 Q6 Q7
I I I I I I I I I I I I I

Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

A4 A5 A6 A7 A8 A9 A10

WSINCA(7 UNITS)

WSDEGf (3 UNITS)

ZK-1123-82

One more point should be clarified. At the time an image exits, the process's
working set limit drops automatically back to the value of WSDEFAULT.

2.2.1.1 Working Set Sizes

The whole memory management strategy depends initially on the values in
effect for the working set quota (WSQUOTA) and working set extent
limit (WSEXTENT).

For a process, these values are derived from the User Authorization File
(UAF) as initially assigned by the system manager. When establishing values,
the system manager makes a conscious decision about the appropriate values
for each user, or else lets the system assign the default values defined in the
DEFAULT record. (The AUTHORIZE command SHOW DEFAULT displays
the default values.) Note that each value in the UAF represents an upper
limit for the process. When an interactive process runs, the values in effect
may have been lowered or raised either by the corresponding qualifiers on
the last SET WORKING _SET command to affect them, or by the system
service $ADJWSL.

2-14

Review of VAX/VMS Resource Management

Subprocesses and detached processes receive their working set characteristics
when created by the $CREPRC system service or the DCL command RUN
(process). If specific values are not provided at that time, the subprocess
or detached process receives default working set characteristics from the
corresponding system PQL parameters as follows:

Parameter Characteristic

PQL _DWSDEF AULT Default WSDEFAULT

PQL _D WSQUOTA Default WSQUOTA

PQL _D WSEXTENT Default WSEXTENT.

PQL parameters are described in the VAX/VMS System Generation Utility
Reference Manual.

When a batch queue is created, the DCL command INITIALIZE/QUEUE
establishes the default values for jobs with the /WSDEFAULT, /WSQUOTA,
and /WSEXTENT qualifiers. These qualifiers may, however, be set to defer
to the user's values in the UAF. When a batch job runs, the values in
effect may have been lowered by the corresponding qualifiers on the DCL
commands SUBMIT or SET QUEUE/ENTRY.

The time and forethought you (and your user community) use to establish
and maintain appropriate values for WSDEFAULT, WSQUOTA, and
WSEXTENT are always returned in better system performance. Remember
that WSQUOTA should be large enough that a process can perform
reasonably well without a loan, yet small enough that a single process is
not guaranteed an inequitable share of memory when memory is tight.

The most cost-effective working set limit lies just above the point where
performance drops sharply. A two-phase strategy is recommended for
setting working sets at their optimal sizes:

1 Figure initial working set limits for different types of processing on a
rule-of-thumb basis.

2 Adjust working set limits based on observed behavior.

2-15

Review of VAX/VMS Resource Management

2.2.1.2 Initial Working Set Limits and Characteristics

For processing that involves system components, the following working set
limits are suggested:

• Small (60 to 300 pages)—For editing, and for compiling and linking
small programs ("typical" interactive processing)

• Large (350 to 700 pages)—For compiling and linking large programs, and
for sorting ("typical" batch processing)

Working set limits for user programs depend on the code-to-data ratio of
the program and on the amount of data in the program. Programs that
are mostly code—that include a small or moderate amount of data, or use
VAX RMS to process data on a per-record basis—should require only a
small working set. The amount of code should not matter as long as it is
reasonably linear. Programs that may need to manipulate large amounts of
data internally (such as sort procedures, linkers, compilers, assemblers, and
librarians) typically require large working sets.

The following guidelines are suggested for initial working set characteristics:

• System parameters—Set WSMAX at the highest number of pages
required by any program.

• UAF options—For each user, set WSQUOTA at the largest number of
pages required by a program that the user will run interactively. Set
WSDEFAULT at the median number of pages required by a program that
the user will run interactively. Set WSEXTENT at the largest number of
pages you anticipate the process will need. Be as realistic as possible in
your estimate.

• Batch queues for user-submitted jobs—For each batch queue, set
WSEXTENT (using the DCL commands INITIALIZE/QUEUE or START
/QUEUE) to the largest number of pages required. Set WSQUOTA
to the number of pages that will allow the jobs to complete within a
reasonable amount of time. Set WSDEFAULT at the median number of
pages required.

This arrangement effectively forces users to submit large jobs for batch
processing, since the jobs will not run efficiently interactively. To further
restrict the user who attempts to run a large job interactively, you can
impose CPU time limits in the UAF.

2—1 6

Review of VAX/VMS Resource Management

2.2.1.3 Adjustments to Working Set Sizes

Once you establish initial values according to the guidelines above, you
should let the system run and observe its performance. If you observe
unsatisfactory performance, refer to Section 5.2.4.2.

2.2.1.4 Adjustments to Automatic Working Set Adjustment Parameters

As indicated in earlier discussions, the delicate mechanism of automatic
working set adjustment also depends heavily on the values of the key system
parameters of PFRATH, PFRATL, WSINC, WSDEC, QUANTUM, AWSTIME,
AWSMIN, GROWLIM, and BORROWLIM. Normally, the default values that
the system provides for these parameters correctly match the operational
needs.

The parameters PFRATL and WSDEC, which control voluntary
decrementing, are very sensitive to the application workload. For the
PFRATH and PFRATL parameters,it is possible to define values that may
appear to be reasonable page faulting limits, but that yield poor system
performance. The problem is due to the VAX/VMS page replacement
algorithm and the time spent maintaining the operation within the page
faulting limits. For example, for some values of PFRATL, you may observe
that a process continuously page faults as its working set size grows and
shrinks while the process attempts to keep its page fault rate between the
limits imposed by PFRATH and PFRATL. However, you might observe the
same process running in approximately the same size working set, without
page faulting once, with PFRATL turned off (set to zero). (To prevent sites
from encountering an undesirable extreme of oscillation, VAX/VMS turns off
voluntary decrementing by initially setting the parameter PFRATL equal to
zero. You will only achieve voluntary decrementing if you deliberately turn
it on.)

The possibility that automatic working set adjustment parameters are out
of balance is so slight that you should not attempt to modify any of the
key parameter values without a very thorough understanding of the entire
mechanism. Furthermore, some of the system parameters values should
be related to others. For example, BORROWLIM should be greater than
FREELIM. Such interrelationships are discussed in the VAX/VMS System
Generation Utility Reference Manual.

Again, it must be emphasized: if you plan to change any of these automatic
working set adjustment parameters, review the documentation for all of
them, at length, before proceeding, you should also be able to explain why
you want to change the parameter(s) and what system behavior you predict
will occur. In other words, never make whimsical or guesswork changes to
the automatic working set adjustment parameters on a production system.

2-17

Review of VAX/VMS Resource Management

It is certainly possible for you to turn off borrowing for any process by
setting the process WSEXTENT value equal to its WSQUOTA value. It is also
possible to circumvent the automatic working set adjustment feature through
the DCL command SET WORKING_SET/NOADJUST. Use caution in
turning off automatic working set adjustment with the /NOADJUST qualifier,
since conditions could arise that would force the swapper to trim the process
back to the value of the SWPOUTPGCNT system parameter. (Swapper
trimming is fully described in Section 2.2.2.) Once automatic working set
adjustment is disabled for a process, the process can not increase its working
set size after the swapper trims the process to the SWPOUTPGCNT value.
If the value of SWPOUTPGCNT is too low, the process is restricted to that
working set size and will fault badly.

You can also turn off automatic working set adjustment on a system-wide
basis, simply by setting the value for WSINC to zero. However, you should
first think out and properly justify these actions.

2.2.1.5 Performance Management Strategies and Automatic
Working Set Adjustment

Earlier discussions in this section have shown the effects that the automatic
working set adjustment parameters can have on system behavior. Your site
needs to determine which behavior is more desirable under the conditions
that prevail with your workload. By developing a strategy for performance
management that considers the desired automatic working set adjustment,
you will know when the parameters are out of adjustment and how to direct
your tuning efforts.

Sites typically choose one of the following two general strategies for tuning
automatic working set adjustment parameters:

1 Tune to provide a rapid response whenever the load demands greater
working set sizes.

2 Tune for a less dynamic response that will stabilize and track moderate
needs for working set growth.

The first strategy works best in the time-sharing environment, where there
can be wild fluctuations in demand for memory from moment to moment.
The second strategy works better in a production environment where the
demand tends to be more predictable and far less volatile.

To implement the highly responsive strategy, you would set PFRATH low
(possibly even to zero), set a low value for AWSTIME, and set a relatively
large value for WSINC. You would start processes off with small values for
their working set defaults, but you would provide for either large working
set quotas or generous loans by setting BORROWLIM low and by defining
large WSEXTENT values.

2-18

Review of VAX/VMS Resource Management

To implement the less dynamic strategy, you would establish moderate
values for AWSTIME, WSINC, and PFRATH. (For example, you might set
WSINC equal to approximately 10% of the typical value for WSDEFAULT on
your system.) You might also provide somewhat more generous working set
defaults, and you would not need to set BORROWLIM so low as to ensure
that loans would always be granted.

2.2.2 VAX/VMS Swapper Trimming

Sometimes, if process requirements so dictate, the VAX/VMS operating
system will "swap out" processes to a swapping file on disk so that the
remaining processes can have the benefit of the use of memory without
excessive page faulting. Swapping refers to writing a process out to a
reserved disk file known as a swapping file.

To better balance the availability of memory resources among processes,
the operating system normally reclaims memory through a somewhat more
complicated sequence of actions than simple swapping. This method of
reclaiming memory is known as "swapper trimming." The name indicates
that both trimming and swapping of processes may be involved, and that the
swapper performs the act.

Swapper trimming can be initiated by VAX/VMS at any time that it detects
too few pages in the free page list. That is, whenever the number of free
pages drops below the value of the system parameter FREELIM, VAX/VMS
will take necessary action to obtain at least as many free pages as specified
by the value of the system parameter FREEGOAL.

• First, VAX/VMS checks whether the minimum number of pages exists in
the modified page list to make it worthwhile to write them out.
This minimum value is dictated by the value of the system
parameter MPW_THRESH.

• If the minimum exists, VAX/VMS invokes the modified page writer to
write out the modified page list and free its pages for the free page list.

However, if not enough pages could be obtained from the modified page
list to match FREEGOAL, VAX/VMS does not activate the modified page
writer. Instead, VAX/VMS concludes that some of the processes should be
"trimmed," that is, forced to relinquish some of their pages or else swapped
out. When this is done, all remaining processes obtain a more equitable
chance of getting free pages for their needs.

Trimming takes place on two levels, and it is attempted before the system
resorts to swapping. On the process level, the swapper checks for processes
that have loans out, that is, processes that have borrowed on their working
set extent. Such processes can be trimmed, at the swapper's discretion, back
to their working set quota.

2-19

Review of VAX/VMS Resource Management

Next, if this amount of trimming fails to produce a sufficient number of pages
(perhaps because few if any loans were out at the time), the swapper can trim
on the second level. Here, the swapper refers to its system-wide trimming
value, the system parameter SWPOUTPGCNT. The swapper attempts to
trim as many candidates as necessary back to the value of SWPOUTPGCNT,
which is the minimum number of pages any process is allowed to retain in
memory before it is swapped out. However, because the swapper does not
want to trim pages needed by an active process, it selects the processes that
are candidates for trimming based on their state. As soon as the needed
pages are acquired, the swapper stops trimming on the second level.

If trimming on the second level fails to produce enough pages, the swapper
resorts to swapping out processes from its list of likely candidates. Memory
is always reclaimed from suspended processes before it is taken from any
other processes. The actual algorithm used for the selection of processes in
each of these cases is complex, but those processes that are in local event flag
wait or hibernate wait states are among the next likeliest candidates.

In addition, as the swapper determines which processes to swap out, it
compares the length of real time that a process has been waiting since
entering the hibernate or local event flag wait states against the system
parameter LONG WAIT. This test allows VAX/VMS to differentiate between
those processes that have been idle for some time and are likely to remain
idle, and those processes that have not been idle too long and might be likely
to become computable sooner. From its candidates, VAX/VMS selects as the
better candidates for outswapping those processes that have been idle for as
long a time period as specified by LONG WAIT. By freeing up pages through
outswapping, VAX/VMS should allow enough processes to satisfy their CPU
requirements, so that those processes that were waiting can resume execution
sooner.

When the system is lightly loaded, a large, low-priority, compute-bound
process may increase its working set beyond the quota value. Prior to
VAX/VMS Version 4.0, such processes, as long as they remained computable,
were rarely outswapped, even when memory later became overcommitted
under more normal system loading conditions, and when the large processes
were making little progress (no page faults, no direct or buffered I/O, no
CPU time accumulation over a significant time period). Thus, to reclaim
memory sufficient to prevent excessive paging by interactive processes, it was
sometimes necessary to suspend the large processes.

VAX/VMS Version 4.0 provides an alternative to this procedure by
introducing, for purposes of outswap candidate selection, a new dormant
process "pseudo class." Two criteria define a dormant process:

1 The process must be a non real-time process whose current priority is
equal to or less than the SYSGEN parameter DEFPRI (default 4).

2-20

Review of VAX/VMS Resource Management

2 The process must be a computable process that has not had a significant
event (page fault, direct or buffered I/O, CPU time allocation) within an
elapsed time period defined by the SYSGEN parameter DORMANTWAIT
(default 10 seconds).

After suspended (SUSP) processes, dormant processes are the most likely
candidates for memory reclamation by the swapper.

If you understand this memory management mechanism, you can probably
appreciate both how it works to reduce the amount of costly swapping that
occurs in a system, and how it might, in the worst possible case, turn out to
be costly in itself. The worst case occurs when the swapper trims out pages
that processes truly need, to the point that they begin to fault heavily and
the system-wide paging reaches the saturation point.

You should try to determine for your overall workload a minimum working
set size that permits some work to be done reasonably efficiently, but that is
below the peak efficiency value. By setting SWPOUTPGCNT to this value,
you allow VAX/VMS to efficiently reclaim memory from processes without
resorting to swapping processes out of the balance set.

It is possible to turn off the second level of swapper trimming on a system-
wide basis, if necessary, by increasing SWPOUTPGCNT to such a large
value that second-level trimming is never permitted. However, the swapper
will still trim processes that are above their working set quota back to it, as
appropriate. If you encounter a situation where any swapper trimming
causes excessive paging, you may decide it would be preferable as a
corrective action to eliminate second-level trimming and initiate swapping
sooner. In this case, you tune the swapping with the SWPOUTPGCNT
parameter.

For a process with the PSWAPM privilege, you can also turn off swapping
and second-level trimming with the DCL command SET PROCESS
/NOSWAPPING.

Be aware that swapper trimming is more beneficial on most systems than
voluntary decrementing. The reason lies in the fact that swapper trimming
occurs on an as-needed basis, whereas voluntary decrementing occurs on a
continuous basis. Furthermore, as previously explained, there is potential for
voluntary decrementing to reach a detrimental condition of oscillation. Thus,
you will find that the AUTOGEN command procedure establishes parameter
values when the system is first installed to provide for swapper trimming but
to disable voluntary decrementing.

2-21

Review of VAX/VMS Resource Management

2.2.3 VAX/VMS Memory Sharing

In simplest terms, memory sharing allows multiple processes to map to (and
thereby gain access to) the same page(s) of physical memory. The sharing
of memory (either code or data) is accomplished under VAX/VMS through a
system-wide global page table that is similar in function to the system page
table.

Figure 2-8 Example Without Shared Code

PROCESS A

VIRTUAL ADDRESS SPACE PROCESS A

ZK-1120-82

2-22

Review of VAX/VMS Resource Management

Figure 2-9 Example With Shared Code

PROCESS A
VIRTUAL ADDRESS SPACE

PROCESS A
PO PAGE TABLE

PRIVATE
DATA

CODE

CODE

\

/

PROCESS B
VIRTUAL ADDRESS SPACE

PRIVATE
DATA

CODE

CODE

S
\

/

PROCESS C
VIRTUAL ADDRESS SPACE

PRIVATE
DATA

CODE

\
\

/
/

ZK-1128-82

Figures 2-8 and 2-9 illustrate how memory can be conserved through the
use of global (shared) pages. The three processes (A, B, and C) run the
same program, which consists of two pages of read-only code and one
page of writeable data. Figure 2-8 shows the virtual-to-physical memory
mapping required when each process runs a completely private copy of the
program. Figure 2-9 illustrates the physical memory gains possible and the
data-structure linkage required when the read-only portion of the program is
shared by the three processes. Note that each process must still maintain a
private data area to avoid corrupting the data used by the other processes.

2-23

Review of VAX/VMS Resource Management

The memory that is saved by sharing is the product that results when the
number of pages of shared read-only code is multiplied by the number that
is one less than the total number of sharing processes. In the example.
Figure 2-8 shows that nine pages of memory are required when there is
no sharing. However, Figure 2-9 shows that 4 pages of memory are saved
by sharing (2 pages of shared code times 3 minus 1 processes). A more
realistic example is even more impressive. If 30 users share 300 pages of
code concurrently, the savings are 8700 pages.

A small amount of overhead is required to obtain these memory savings.
The overhead consists of the data-structure space required for the global
page table entries and global section table entries, both of which are needed
to provide global mapping. Each global page requires one global page table
entry (4 bytes each, allocated from the global page table, which is part of
the system process header). Each global section requires a global section
table entry (32 bytes in the global section table, which is also part of the
system process header) and a global section descriptor (48 bytes, allocated
from paged dynamic pool). (For more information on global sections, see the
VAX/VMS Linker Reference Manual.)

Two system parameters determine the maximum sizes for the two data
structures in the system process header. GBLPAGES defines the size of
the global page table and GBLSECTIONS defines the size of the global
section table. Since these two data structures are part of the system process
header, the system working set size (determined by the system parameter
SYSMWCNT) must be increased whenever you increase GBLPAGES. The
AUTOGEN command procedure automatically increases the value of the
system parameter SYSMWCNT by one for every 128 pages you add to
GBLPAGES.

Once a shareable image has been created it can be installed as a permanently
shared image. (See the VAX/VMS Linker Reference Manual and the VAX/VMS
Install Utility Reference Manual). Memory will only be saved, however, when
there is more than one process actually mapped to the image at a time.

Remember, also, to use AUTHORIZE to increase the user's working set
characteristics (WSDEF, WSQUO, WSEXTENT), wherever appropriate, to
correspond to the expected use of shared code. (Note, however, that this
increase does not mean that the actual memory usage will increase. Sharing
of code by many users actually decreases the memory requirement.)

If physical memory is especially limited, you may decide to investigate
whether there is much concurrent image activation that results in savings.
If you find there is not, there is no reason to employ code sharing. You can
use the following procedure to determine if there is active sharing on image
sections that have been installed as shareable.

2-24

Review of VAX/VMS Resource Management

1 Invoke the Install Utility and issue the LIST/FULL command.
For example:

$ RUN SYS$SYSTEM:INSTALL

INSTALL> LIST/FULL LOGINOUT

INSTALL displays information in the following format:

DISK$VAXVMSRL4:<SYSO.SYSEXE>.EXE

LOGINOUT;3 Open Hdr Shar Priv

Entry access count = 44

Current / Maximum shared =3/5

Global section count = 2

Privileges = CMKRNL SYSNAM TMPMBX EXQUOTA SYSPRV

2 Observe the values shown for the Current/Maximum shared
access counts:

• The Current value is the current count of concurrent accesses of the
known image.

• The Maximum value is the highest count of concurrent accesses of
the image since it became known (installed). This number appears
only if the image is installed with the /SHARED qualifier.

The Maximum value should be at least 3 or 4. A lower value indicates that
overhead for sharing is excessive.

In general, your intuition, based on knowledge of the workload is the best
guide. Remember that the overhead required to share memory is counted
in bytes of memory, while the savings are counted in pages of physical
memory. Thus, even if you merely suspect there is occasional concurrent use
of an image, the investment required to make it shareable is worthwhile.

2.2.4 VAX/VMS Scheduling

The VAX/VMS scheduler controls both when and how long a process
executes. For this reason, it has impact on the demand on the CPU, an
impact that can ultimately affect system performance. It is important to
understand the role of the scheduler as you analyze system performance and
consider ways to improve it.

The scheduler tries to obtain maximum performance from concurrently
executing processes. To achieve this, the scheduler rotates the control of the
CPU among the processes that are computable, so that all the computing
processes receive frequent and equitable chances to complete their processing
requirements. As part of the optimization, it allows operations to overlap.
For example, if a process must wait for an I/O completion, another process
is allowed to run.

2—25

Review of VAX/VMS Resource Management

The VAX/VMS scheduler uses a modified round-robin form of scheduling:
processes receive a chance to execute on a rotating basis, according to process
priority and state. At some point, each computable process receives a time
slice for execution. (The time slice equals the system parameter QUANTUM,
and rotating the time slices among the processes is called time-slicing.) Once
its quantum starts, each process executes until

• A process of higher priority becomes computable

• The process is no longer computable because of a resource wait

• The process itself voluntarily enters a wait state

• The quantum ends

If there is no other computable process at the same priority ready to execute
when the quantum ends, the current process receives another time slice.

A change in process state causes the scheduler to reexamine which process
should be allowed to run. For example, a process that completes a terminal
input operation changes from local event flag wait state to the computable
state. When required to select the next process for scheduling, the scheduler
examines the priorities assigned to all the processes that are computable and
selects the process with the highest priority. Priorities are numbers from
0 through 31. Processes with priorities of 16 and above receive maximum
access to the CPU resource (even over system processes) whenever they are
computable. (These priorities, therefore, are used for real-time processes.)

Another important scheduler feature is priority boosting. For processes below
priority 16, the scheduler can increase and decrease process priorities. While
processes run, the scheduler recognizes events such as I/O completions,
the completion of an interval of time, and so forth. As soon as one of the
recognized events occurs and the associated process becomes computable,
the priority of that process may be increased. The amount of the increase is
related to the associated event. For example, if the event is the completion
of terminal I/O input, a large increase is given, so that the process can run
again sooner. Then the scheduler examines which computable process has
the highest priority, and, if necessary, causes a context switch so that the
highest priority process runs. As soon as a process is scheduled, its priority
is reduced by one, to allow processes that have received a priority boost
to begin to return to their base priority. However, the priority is never
decreased below the base priority or into the real-time range.

For real-time processes (those with base priorities in the 16 to 31 range) there
are some special distinctions. These processes never receive a priority boost,
nor do they experience automatic working set adjustments or quantum-based
time-slicing. Although quantum-based sharing of the processor works well
for other processes, VAX/VMS permits real-time processes to run until either

2-26

Review of VAX/VMS Resource Management

they voluntarily enter a wait state or a higher priority real-time process
becomes computable.

From a tuning standpoint, you have very few controls you can use to
influence process scheduling. You can modify the base priorities of processes
and you can modify the length of time for a quantum. All other aspects
of process scheduling are fixed by the behavior of the scheduler and the
characteristics of the workload.

A process receives a default base priority from the /PRIO qualifier in the
user's UAF record, or from the DEFAULT record in the UAF. A process can
also change its priority with the system service $SETPRI. With the DCL
command SET PROCESS/PRIORITY, users can always reduce the priority of
their own processes. However, users need the ALTPRI privilege to use the
same command to increase the priority of their processes. A user requires
privilege (GROUP or WORLD) to change the priority of other processes.

A detached process or subprocess receives its base priority when created by
the $CREPRC system service or the DCL command RUN. If no priority is
specified, the priority of the creator is used.

When a batch queue is created, the DCL command INITIALIZE/QUEUE
/PRIORITY establishes the default priority for jobs. However, when the user
submits a job with the DCL command SUBMIT or changes characteristics of
that job with the DCL command SET QUEUE/ENTRY, the user can adjust
the priority with the /PRIORITY qualifier. (With either command, increases
are permitted only for submitters with the OPER privilege.)

2-27

Managing System Resources

For practical purposes, managing the performance of a VAX/VMS system is
best approached as managing its resources. These include both hardware
components (CPU, memory, peripherals), and software (application
programs, optional products, and operating system facilities such as
the Extended QIO Processor (XQP), and memory and I/O management
mechanisms).

If you have properly configured your system and installed it using the
AUTOGEN command procedure, and if you have followed the workload
management recommendations in Chapter 1, you will rarely need to adjust
system values. Good management practice dictates, however, that you
evaluate your system both on a routine basis and in the following special
circumstances:

• Whenever a significant alteration occurs in the system hardware or
software environment, such as an update or an upgrade

• Whenever the workload changes in kind or amount

• Whenever you suspect a performance problem

This approach to performance management will allow you to collect and
become familiar with the statistics that represent "normal" behavior for
individual resources and for the system as a whole. You can then respond
with confidence to reported problems, recognize changes in the system's
behavior, and make decisions about possible hardware changes.

Bear in mind, however, that a statistic that represents normal behavior on
one system may be unreasonable for a different one, because CPU speed,
workload, and user expectations can vary widely from system to system.

This chapter describes procedures to help you evaluate the performance of
the CPU, memory, and disk I/O subsystem resources using the Monitor
Utility and (to a lesser extent) other standard VAX/VMS utilities. Discussions
focus on the utilization of each hardware resource by major VAX/VMS
software components and on the the measurement, analysis, and possible
reallocation of the hardware resources. Suggestions for corrective actions are
provided, in case your evaluation indicates that improvements are possible.

3—1

Managing System Resources

Section 3.2 describes the use of the Accounting Utility to obtain image-level
accounting data and provides guidelines for interpreting the data. Section 3.3
explains how to maintain and interpret MONITOR summary reports. The
three major VAX/VMS hardware resources are examined in the following
sections:

• The CPU Resource—Section 3.5

• The Memory Resource—Section 3.6

• The Disk I/O Resource—Section 3.7

Table 3-2 in Section 3.8 summarizes important MONITOR statistics and
includes rules of thumb for evaluating the performance of the resources
characterized by those statistics.

In summary, the purpose of this chapter is to help you verify that your
system is performing well and to provide information to aid you in
maintaining performance at an acceptable level. Detailed problem analysis
of a system that already performs well is not discussed. For information on
detailed problem analysis, refer to Chapters 4 and 5.

3.1 Evaluation Ground Rules

As you conduct your evaluations, keep the following ground rules in mind:

• Complete the entire evaluation. It is important to examine all the
resources in order to evaluate the system as a whole. A partial
examination may lead you to attempt an improvement in an area
where it may have minimal effect, because more serious problems
exist elsewhere.

• Become as familiar as possible with the applications running on your
system. Get to know what their resource requirements are. You can
obtain a good deal of relevant information from the ACCOUNTING
image report described in Section 3.2. User's guides associated with
DIGITAL or third-party software can also be very helpful in identifying
resource requirements.

• If you believe that a change in software parameters or hardware
configuration may improve performance, execute such a change
cautiously, being sure to make only one change at a time. Evaluate
the effectiveness of the change before deciding to make it permanent.

Note

When specific values or ranges of values for MONITOR data
items are recommended, they are intended only as general
guidelines and will not be appropriate in all cases.

3-2

Managing System Resources

For purposes of the following discussion, it is assumed that the workload
management techniques and installation guidelines described in Chapter 1
have been followed. It is further assumed that your system can be classified
as a general timesharing system. Some information in this chapter may
not apply to certain specialized types of systems or to applications such
as workstations, database management, real-time operations, transaction
processing, or any system in which a major software subsystem is in control
of resources for other VAX/VMS processes.

Note that the procedures outlined in this chapter differ from those in
Chapters 4 and 5 in the following ways:

• They are designed to help you conduct an evaluation of your system
and its resources, rather than to execute an investigation of a specific
problem. If you discover problems during an evaluation, you can refer to
the decision-tree diagrams in Chapters 4 and 5 for further analysis.

• For simplicity, they are less exhaustive, relying on certain rules of thumb
to evaluate the major hardware resources and to point out possible
deficiencies, but stopping short of pinpointing exact causes.

• They are centered around the use of the Monitor Utility, particularly the
summary reports, both standard and multifile.

3.2 Collecting and Interpreting Image-Level Accounting Data

Image-level accounting information can be quite useful in helping you to
gain an understanding of resource utilization on a per-image basis. By
knowing which images are heavy consumers of resources at your site, you
can better direct your efforts toward controlling them and the resources they
consume. Images used frequently are typically good candidates for code
sharing, whereas images that consume large quantities of various resources
may be forced to run in a batch queue, where the number of simultaneous
processes can be controlled. Example 3-1 illustrates the type of accounting
report that can provide the resource utilization information necessary to
manage images.

Note

This example assumes that image-level accounting records have
been collected previously. (You enable image-level record
collection by issuing the DCL command SET ACCOUNTING
/ENABLE=IMAGE.) Since the collection of image-level
accounting data consumes CPU cycles, and since the collected
records can consume a significant amount of disk space, remember
to enable image-level accounting only for the period of time
needed for the report. After you have collected the data you need,
issue the DCL command SET ACCOUNTING/ DISABLE=IMAGE
to disable image-level accounting.

3-3

Managing System Resources

A series of commands like the following will generate output similar to that
shown in Example 3-1:

$ ACCOUNTING /TYPE=IMAGE /OUTPUT=BYNAM.LIS -

_$ /SUMMARY=IMAGE -

_$ /REPORT=(PROCESSOR,ELAPSED,DIRECT.IO,FAULTS,RECORDS)

$ SORT BYNAM.LIS BYNAM.ORD /KEY=(P0S=16,SIZ=13,DESCEND)

(Edit BYNAM.ORD to relocate heading lines)

$ TYPE BYNAM.ORD

3-4

Managing System Resources

Example 3-1 Sample Image-Level Accounting Report

From: 8-MAY-1986 11:09 To: 8-MAY-1986 17:31

Image name Processor
Time

Elapsed
Time

Direct
I/O

Page
Faults

Total
Records

EDT 0 00:34:21.34 0 15:51:34.78 5030 132583 390
DTR32 0 00:19:30.94 0 03:17:37.48 7981 83916 12
PASCAL 0 00:15:19.42 0 01:04:19.57 38473 143107 75
MAIL 0 00:10:40.88 1 02:54:02.89 26139 106854 380
VAX11C 0 00:05:57.31 0 00:19:13.59 426 23180 26
LINK 0 00:05:44.41 0 00:23:54.54 7443 57092 111
RTPAD 0 00:04:58.40 0 20:49:19.24 668 8004 72
LOGINOUT 0 00:04:53.98 0 02:01:31.81 2809 67579 893
EMACS 0 00:04:30.40 0 05:25:01.37 420 8461 1
MACR032 0 00:04:26.22 0 00:14:55.00 1014 34016 46
BLISS32 0 00:03:45.80 0 00:12:58.87 98 32797 8
DIRECTORY 0 00:03:26.20 0 01:22:34.47 1020 27329 275
FORTRAN 0 00:03:13.87 0 00:14:15.08 1157 28003 47
NOTES 0 00:01:39.90 0 02:06:01.95 8011 6272 32
DELETE 0 00:01:37.31 0 00:57:43.31 834 25516 332
TYPE 0 00:01:06.35 0 00:28:58.26 406 14457 173
COPY 0 00:00:57.08 0 00:11:11.40 2197 4943 42
SHOW 0 00:00:56.39 0 00:24:53.22 23 11505 166
ACC 0 00:00:54.43 0 00:03:41.46 132 2007 7
MONITOR 0 00:00:53.91 0 02:37:13.84 159 5649 40
CALENDAR 0 00:00:43.55 0 00:30:15.52 1023 3557 25
PHONE 0 00:00:40.56 0 00:54:59.39 24 1510 33
ERASE 0 00:00:37.88 0 00:03:51.04 105 9873 113
LIBRARIAN 0 00:00:35.58 0 00:03:37.98 1134 10297 62
FAL 0 00:00:34.27 0 00:20:56.63 110 4596 122
SDA 0 00:00:27.34 0 00:09:28.68 52 4797 3
SET 0 00:00:27.02 0 00:02:30.28 160 9447 206
NETSERVER 0 00:00:26.89 0 02:38:17.90 263 10164 407
CDU 0 00:00:24.32 0 00:01:57.67 13 21906 17
VMSHELP 0 00:00:12.83 0 00:05:40.96 121 1943 14
RENAME 0 00:00:09.56 0 00:00:57.44 6 3866 47
SDL 0 00:00:09.55 0 00:01:19.78 11 3158 4
SUBMIT 0 00:00:08.14 0 00:01:08.50 9 2991 28
NCP 0 00:00:07.30 0 00:02:26.20 7 1765 16
QUEMAN 0 00:00:06.44 0 00:01:38.75 201 1561 20

This example shows a report of system resource utilization for the indicated
period, summarized by unique image name, in descending order of CPU
utilization. Only the top 35 CPU consumers are shown. (The records could
just as easily have been sorted differently.) The Total Records column
is a count of image terminations, requested by specifying the RECORDS
report key in the ACCOUNTING command that generated the report. The
/SINCE and /BEFORE qualifiers may be specified to select any time period
of interest.

3-5

Managing System Resources

The From: and To: timestamps show that the accounting period ran for
6 1/2 hours and included an entire afternoon. Assume that this report
represents a typical workload for the installation, and examine the data in
the various columns.

• Image Name—Most image names are those of programming languages
and operating system utilities, indicating that the report was probably
generated in a program development environment.

• Processor Time—Data in this column shows that no single image is by
far the highest consumer of the CPU resource. It is therefore unlikely
that the installation would benefit significantly by attempting to reduce
CPU utilization by any one image.

• Direct I/O—In the figures for Direct I/O, you can see that there are
two top images, PASCAL and MAIL. One way to compare them is by
calculating I/O operations per second. The total elapsed time spent
running PASCAL is roughly 3860 seconds, while the time spent running
MAIL is a little under 96843 seconds (several people used MAIL all
afternoon). Calculating on a time basis, then, MAIL caused roughly
1/3-1/4 of an I/O operation per second, whereas PASCAL caused about
10 operations per second.

Note that by the same calculation, LINK caused about 5 I/O operations
per second. It would appear that a sequence of PASCAL/LINK
commands contributes somewhat to the overall I/O load. One possible
approach from here would be to look at the VAX RMS buffer parameters
set by the main PASCAL users. You can find out who used PASCAL
and LINK by issuing a DCL command of the form:

$ ACCOUNTING /TYPE=IMAGE -
_$ /IMAGE=(PASCAL,LINK) -
_$ /SUMMARY=(IMAGE,USER) -
_$ /REP0RT=(ELAPSED,DIRECT)

This command selects image accounting records for the PASCAL and
LINK images by image name and user name, and requests Elapsed Time
and Direct I/O data. You can examine this data to determine whether
the users are employing VAX RMS buffers of appropriate size. DIGITAL
recommended that two fairly large buffers be used for sequential I/O,
perhaps in the range of 12 to 32 blocks each.

• Page Faults—As with direct I/O, page faults are best analyzed on a time
basis. One technique is to compute faults-per-10-seconds of processor
time and compare the result with the value of the SYSGEN parameter
PFRATH. A little arithmetic shows that on a time basis PASCAL is
incurring more than 1555 faults per 10 seconds. Suppose that the value
of PFRATH on this system is 120 (120 page faults per 10 seconds of
processor time), which is considered typical in most environments. What
can you conclude by comparing the two values?

3—6

Managing System Resources

Whenever a process's page fault rate exceeds the PFRATH value,
VAX/VMS memory management attempts to increase the process
working set, subject to system management quotas, until the fault rate
declines below PFRATH. So if an image's fault rate is persistently greater
than PFRATH, it is not obtaining all the memory it needs.

Clearly, the PASCAL image is causing many more faults per CPU second
than would be considered normal for this system. You should therefore
make an effort to examine the working set limits and working set
adjustment policies for the PASCAL users. To lower the PASCAL fault
rate, the process working sets must be increased—either by adjusting the
appropriate UAF quotas directly, or perhaps by setting up a "PASCAL
batch queue" with generous working set values.

• Total Records—These figures represent the count of activations for
images run during the accounting period: in other words, they show
each image's relative "popularity." You can use this information to
ensure that the most popular images are installed (see Section 1.6).
For customer applications, you might consider linking options such as
/NOSYSSHR and reassigning PSECT attributes to speed up activations
(see the VAX/VMS Linker Reference Manual).

Note that the number of LOGINOUT activations far exceeds that
of all other images. This situation could result from a variety of
causes, including attempts to breach security, an open terminal line,
a runaway batch job, or a large number of network operations. Further
ACCOUNTING commands would be necessary to determine the exact
cause. At this site, it turned out that most of the activations were caused
by an open terminal line. The problem was detected by an astute
system manager, who checked the count of LOGFAIL entries in the
ACCOUNTING log file.

You can also use information in this field to examine the characteristics
of the "average" image activation. That knowledge would be useful if
you wanted to determine whether it would be worthwhile to set up a
special batch queue.

For example, the "average" PASCAL image uses 51 seconds of elapsed
time, and the "average" LINK uses 13 seconds. You can therefore infer
that the "average" PASCAL and LINK sequence takes about a minute.
This information could help you persuade users of those images to run
PASCAL and LINK in batch mode. If, on the other hand, the average
time were only 5 seconds, batch processing would probably not be
worthwhile.

3-7

Managing System Resources

3.3 Maintaining and Interpreting MONITOR Summaries

As a foundation for the evaluation strategy discussed in this chapter, you
must develop a database of performance information for your system
by running MONITOR continuously as a background process. The
SYS$EXAMPLES directory provides three command procedures you can
use to establish the database. Instructions for installing and running the
procedures are contained in the comments at the beginning of each one.
Following is a brief summary of these procedures:

• SUBMON.COM—Starts MONITOR.COM as a detached process.
You should invoke SUBMON.COM from the DCL procedure
SYS$MANAGER:SYSTARTUP.COM.

• MONITOR.COM—Creates a summary file from the recording file of the
previous boot, then begins recording for this boot. The recording interval
is 10 minutes.

• MONSUM.COM—Generates two VAXclusterwide multifile summary
reports; one for the previous 24 hours, and one for the previous day's
prime-time period (9 A.M. to 6 P.M.). These are mailed to the system
manager, and then the procedure resubmits itself to run each day at
midnight.

While MONITOR data is recorded continuously, a summary report can cover
any contiguous time segment. The command file MONSUM.COM, which
is executed every midnight, generates and mails the two multifile summary
reports described above. These reports are not saved as files, so if you wish
to keep them, you must either extract them from your mail file or alter
the MONSUM.COM command procedure to save them. Example 3-3 in
Section 3.8 is a typical "prime-time" VAXcluster multifile summary.

The report you require for the evaluation procedure is one that covers a
period you feel best represents the typical operation of your system. You
may wish, for example, to evaluate your system only during hours of peak
activity. To generate a summary of the appropriate time segment, edit the
MONSUM.COM procedure and change the beginning and ending times on
one of the two MONITOR commands that produce the summary reports.

Note

The summary reports produced by MONSUM.COM are in the
multifile summary format—there is one column of averages
for each node in a VAXcluster, as well as some overall "row
statistics". For noncluster systems, the row statistics may be
ignored.

3-8

Managing System Resources

If you prefer to use a report in the standard summary format
(which includes current, minimum, and maximum statistics),
execute a MONITOR playback summary command referencing
the input data file of interest as the only file in the /INPUT list.
Note that a new data file is created for each system whenever
it reboots. Remember to use the /BEGINNING and /ENDING
qualifiers to select the desired time period.

Once you have printed a copy of a MONITOR summary report, you are
ready to begin the evaluation of your system. Keep in mind, however,
that although the discussions in this chapter focus on summary reports,
you are encouraged to observe current system activity regularly by running
MONITOR in live mode. In live mode, always begin an analysis with the
MONITOR CLUSTER and MONITOR SYSTEM classes to obtain an overview
of system performance; then monitor other classes to examine components
of particular interest. Note that all references to MONITOR items in this
chapter are assumed to be for the average statistic, unless otherwise noted.

In multifile reports, a page or more is devoted to each MONITOR class. Each
column represents one node and is headed by the node name and beginning
and ending times of the segment requested. In most cases, time segments for
all nodes will be roughly the same. Differences of a few minutes are typical,
because data collection on the various nodes is not synchronized.

In some cases, one or more time segments will be shorter than others; in
these cases, some of the requested data was not recorded (probably because
the nodes were unavailable). Note that if data is unavailable for some period
within the bounds of a request, that fact is not explicitly specified.

However, such a gap can occur only when the column of data uses more
than one input file; and if multiple files contributed to the column, the
number is shown in parentheses to the right of the node name. In cases
where a time segment is missing, this number must be greater than 1. If no
number appears, there is only one input data file for that column, and the
column therefore includes no missing time segments.

To summarize: if all beginning and ending times are not roughly the same,
or if a parenthesized number appears, some data may be unavailable, and
you may want to base your evaluation on a different time segment that
includes more complete data. Whenever the multifile report is based on
incomplete data, the Row Average statistic may be weighted unfairly in favor
of one or more nodes.

Note

While interpreting MONITOR statistics, keep in mind that the
collection interval has no effect on the accuracy of MONITOR
rates. It does, however, affect levels, because these represent
sampled data. In other words, the smaller the collection interval,
the more accurate MONITOR level statistics will be.

3-9

Managing System Resources

(For more information on MONITOR rates and levels, refer to the
VAX/VMS Monitor Utility Reference Manual.)

Although the interval value supplied with MONITOR.COM is
adequate for most purposes, it does represent a tradeoff between
statistical accuracy and the consumption of disk space. Thus,
before you base major decisions on MONITOR level statistics,
be sure to verify them by running MONITOR for a time with a
much smaller collection interval, while carefully observing disk
space usage.

3.4 Understanding System Responsiveness

Overall responsiveness of a system depends largely on the responsiveness
of its CPU, memory, and disk I/O resources. If each resource responds
satisfactorily, then so will the entire system.

Not only must each resource operate efficiently by itself, but it must also
interact with other resources. A resource that is not performing well can
cause system degradation not only because of its own poor performance,
but because other resources that depend on it will operate less efficiently as
well. Thus, an important aspect of your evaluation is to distinguish between
resources that may be performing poorly because they are overcommitted,
and those that may be doing so because one or both of the following
conditions has occured:

• They are blocked by the overcommitted resource.

• They are incurring additional overhead operations caused by the
overcommitted resource.

An overcommitted resource that causes the others to be blocked or burdened
with overhead operations is said to be a system's "binding resource" or
"bottleneck". Proper identification of such a resource is critical to correction
of a performance problem. Upgrading a nonbinding resource will do nothing
to improve a bottlenecked system.

Detection of bottlenecks is particularly important for interactions of the CPU
with each of the other resources. CPU blockage occurs when CPU capacity,
though it appears sufficient to meet demand, cannot be used because the
CPU must wait for disk I/O to complete or memory to be allocated. You
should make every effort to maintain sufficient disk I/O and memory
capacity so that the CPU is not unduly blocked.

Because of the potential for bottlenecks, it is especially important to maintain
balance among the capacities of your system's resources. When upgrading to
a faster CPU, it is wise to consider the effect the additional CPU power will
have on the other primary resources. For example, since the faster CPU can

3—10

Managing System Resources

initiate more I/O requests per unit of time, you must ensure that the disk
I/O subsystem has sufficient capacity to handle the increased traffic.

3.4.1 Evaluating and Improving Responsiveness of System Resources

The following sections describe procedures for evaluating the CPU, memory,
and disk I/O subsystem resources, and for improving the responsiveness of
those resources should your evaluation indicate that improvement is possible.
For each resource, key MONITOR statistics are identified and discussed with
a view to helping you answer such questions as the following:

• How well is the resource responding to requests for service?

• How well is the capacity of the resource meeting demand?

• Does the resource have any excess capacity, and if so, can that capacity
be attributed to blockage by another, overcommitted resource?

Two prime measures of resource responsiveness are the size of the queue
of requests for service (compute queue) and the amount of time it takes the
system to respond to those requests (response time). For each resource, you
can use MONITOR summaries to examine or estimate one or both of these
quantities.

In addition, you can investigate four possible ways to improve
responsiveness:

• Equitable sharing—Is the resource shared equitably among processes?

• Reduction of resource consumption by the system—Can the system's
consumption of a resource be reduced, thereby making available more of
that resource to users? The effective amount of a resource available to
users is that remaining after the operating system has used its portion.
Remember that although the operating system performs essential services
for users, it consumes the same hardware resources users need to do
their work.

• Load balancing—How well distributed is the demand for a resource?
Can overall system responsiveness be improved, either by reconfiguring
hardware or by better distributing the demand for it?

• Offloading—Can overall system responsiveness be improved by
offloading some of the activity on a resource to other less heavily utilized
resource types? For example, excess memory capacity is often used to
reduce the demand on an overworked disk I/O subsystem by increasing
the size of each I/O transfer, thereby reducing the total number of I/O
operations. The CPU benefits as well, because it needs to do less work
executing system service and device driver software. The primary means
of offloading I/O to memory is the extensive use in the system of caches

3-11

Managing System Resources

(page caches, XQP caches, VAX RMS blocking) to reduce the number of
I/O operations.

If the responsiveness of a resource that is performing poorly cannot be
improved by these methods, you should consider augmenting its capacity
with additional or upgraded hardware.

3.5 Understanding the CPU Resource

The CPU is the central resource in your system, and it is the most costly
to augment. Good CPU performance is vital to that of the system as a
whole, because the CPU performs the two most basic system functions: it
allocates and initiates the demand for all the other resources, and it provides
instruction execution service to user processes.

3.5.1 Evaluating CPU Responsiveness

You can assess CPU responsiveness by first observing the average size of the
compute queue and then examining idle time and process scheduling wait
states to estimate available CPU capacity.

3.5.1.1 The Compute Queue

The MONITOR statistics of interest in this section are as follows:

• STATES—Number of processes in Compute (COM) and Compute
(Outswapped) (COMO) scheduling states

Since only one VAX/VMS process can execute on a CPU at any given
time, the CPU resource must be shared in a sequential fashion: the system
allocates it for a period of time known as a quantum to each process that is
not waiting for other resources.

During its quantum, a process may execute until any of the following events
occur:

• The process is preempted by a higher-priority process.

• The process voluntarily yields the CPU by requesting a wait state for
some purpose (for example, to wait for the completion of a user I/O
request).

• The process enters an involuntary wait state, such as when it triggers a
hard page fault (one that must be satisfied by reading from disk).

3—12

Managing System Resources

Since several processes may be ready to use the CPU at any given time, and
since the CPU can be allocated to only one process at a time, the system
maintains a queue of processes waiting for the CPU. Such processes are in
the Compute (COM) or Compute (Outswapped) (COMO) scheduling states.
A good measure of CPU response is the average number of processes in
these two states over time—that is, the average length of the compute queue.

If the number of processes in the compute queue is close to 0, unblocked
processes will rarely need to wait for the CPU. In typical cases, the larger
this number, the longer the processes must wait for service. An exception
occurs when the processes in the compute queue are at different priorities.
A given process must then wait only for other processes of equal or greater
priority.

Several factors, including interrupt stack time, the computing requirements
of the processes in the compute queue, CPU type, and scheduling priority,
determine how long any given process must wait to be granted its quantum
of CPU time. The effect of a large compute queue is worst when the COM
processes are strictly compute bound, because they may retain the CPU for
the entire quantum period. This situation represents the worst-case delays in
acquiring the CPU.

Assuming no interrupt stack time, each of several compute-bound processes
of the same priority (one in CUR state and the others in COM state) will
acquire the CPU once every second (with the default QUANTUM value
of 200 milliseconds). As the number of such processes increases, there is
a proportional increase in the waiting time. But if the processes are not
compute bound, they may relinquish the CPU before having consumed their
entire quantum period, thus reducing waiting time for the CPU.

Because of MONITOR'S sampling nature, the utility rarely detects processes
that remain only briefly in the COM state. Thus, if MONITOR shows
COM processes, you can assume they are the compute-bound type.
(Note, however, that the NULL job is always in COM state.)

Try to keep in mind that perceived response time is a subjective issue.
Notions of "fast" and "slow" are rarely consistent among any user population.
The best way to determine a reasonable length for the compute queue at your
site is to note its length during periods when all the system's resources are
performing adequately, and users perceive response time to be satisfactory.
Then watch for deviations from this value and try to develop a sense for
acceptable ranges.

Be sure, however, that the other resources are performing adequately.
Otherwise, they could block or induce overhead on the CPU, thereby
affecting its responsiveness. If that situation occurs, you may find it
difficult to correlate the length of the compute queue with overall system
performance.

3-13

Managing System Resources

There are several ways to attempt to make more of the CPU available to
processes by shortening the average length of the compute queue. These are
discussed in Section 3.5.2. If you are unsuccessful in all of these attempts,
the only way to improve responsiveness is to increase CPU capacity either
through a hardware upgrade, or by adding one or more CPUs to your
VAXcluster.

3.5.1.2 Estimating Available CPU Capacity

The MONITOR statistics of interest in this section are as follows:

• STATES—All items

• MODES—Idle time

To estimate available CPU capacity, observe the average amount of idle time
and the average number of processes in the various scheduling wait states.
While idle time is a measure of the percentage of unused CPU time, the
wait states indicate the reasons that the CPU was idle, and may point to
utilization problems with other resources.

Before using idle time to estimate growth potential or as an aid to balancing
the CPU resource among processes in a VAXcluster, ensure that the
other resources are not overcommitted, thereby causing the CPU to be
underutilized. MONITOR data on the scheduling wait states provides
clues about potential problems with the memory and disk I/O resources.
You should, however, also conduct the complete evaluations described in
Sections 3.6 and 3.7.

Whenever a process enters a scheduling wait state—a state other than CUR
(process currently using the CPU) or COM (computable process)—it is said
to be blocked from using the CPU. Most times, a process enters a wait state
as part of the normal synchronization that takes place between the CPU and
the other resources. But certain wait states can indicate problems with those
other resources that could block viable processes from using the CPU. It is
important to realize that performance problems caused by CPU blockage can
be corrected only by improving the responsiveness of the resource causing
the blockage.

Scheduling wait states may be categorized as voluntary or involuntary.
Processes enter voluntary wait states directly; they are placed in involuntary
wait states by the system. These two types of wait states are discussed in
Sections 3.5.1.2.1 and 3.5.1.2.2. Outswapped states are associated with
memory management and are discussed in Section 3.6.1.2.

3-14

Managing System Resources

3.5.1.2.1 Voluntary Wait States

The MONITOR statistics of interest in this section are as follows:

• STATES—Number of processes in Local Event Flag Wait (LEF), Common
Event Flag Wait (CEF), Hibernate (HIB) and Suspended (SUSP) states

• LOCK—ENQs Forced To Wait Rate

Processes in the Local Event Flag Wait (LEF) state are said to be "voluntarily"
blocked from using the CPU; that is, they are temporarily requesting to
wait before continuing with CPU service. Since the LEF state can indicate
conditions ranging from "normal" waiting for terminal command input to
waiting for I/O completion or locks, you can obtain no useful information
about potentially harmful blockage simply by observing the number of
processes in that state. You can usually assume, though, that most of them
are waiting for terminal command input (at the DCL prompt).

Some processes may enter the LEF state because they are awaiting I/O
completion on a disk or other peripheral device. If the I/O subsystem is
not overloaded, this type of waiting is temporary and inconsequential. If,
on the other hand, the I/O resource, particularly disk I/O, is approaching
capacity, it could very well be causing the CPU to be seriously underutilized.
Long disk response times are the clue that certain processes are in the LEF
state because they are experiencing long delays acquiring disk service. If
your system exhibits unusually long disk response times, refer to Section
3.7.3 and try to correct that problem before attempting to improve CPU
responsiveness.

Still other processes in the LEF state may be waiting for a lock to be granted.
This situation may arise in environments where extensive file sharing is
the norm—particularly in VAXclusters. Check the ENQs Forced to Wait
Rate. (This is the rate of $ENQ lock requests forced to wait before the lock
was granted.) Since the statistic gives no indication of the duration of lock
waits, it does not provide direct information about lock waiting. But a value
significantly larger than your system's normal value may be a clue that users
will start to notice delays. If you suspect that the lock waiting is caused by
file sharing (VAX RMS and the XQP use locks to synchronize record and file
access), attempt to reduce the level of sharing, if possible. If you suspect that
it results from user or third-party application locks, attempt to influence the
redesign of such applications.

Processes may also enter the LEF state or the other voluntary wait states
(Common Event Flag Wait (CEF), Hibernate (HIB) and Suspended (SUSP))
when system services are used to synchronize applications. Such processes
have temporarily abdicated use of the CPU; they do not indicate problems
with other resources.

3-15

Managing System Resources

3.5.1.2.2 Involuntary Wait States

The MONITOR statistics of interest in this section are as follows:

• STATES—Number of processes in miscellaneous resource wait (MWAIT)

state

• PROCESSES—Types of resource waits (RWxxx)

Involuntary wait states are not requested by processes, but are invoked
by the system to achieve process synchronization in certain circumstances.
The Free Page Wait (FPG), Page Fault Wait (PFW) and Collided Page Wait
(COLPG) states are associated with memory management and are discussed
in Section 3.6.1.1.1. The current section is concerned with the miscellaneous
resource wait (MWAIT) state.

The presence of processes in the MWAIT state indicates that there may be
a shortage of a systemwide resource (usually page or swap file capacity),
and that the shortage is blocking these processes from the CPU. If you see
processes in this state, check the type of resource wait by examining the
MONITOR PROCESSES data available in the collected recording files. Since
a standard summary report contains only the very last PROCESSES display,
and since the multifile summary report does not contain any PROCESSES
data, you must check the resource wait states by playing back the data files
and examining each PROCESSES display. Issue a MONITOR command like
the following:

$ MONITOR /INPUT=SYS$MONITOR:file-spec /VIEWING_TIME=1 PROCESSES

This command will display all the PROCESSES data available in the input
file. Look for RWxxx scheduling states, where xxx is a three-character code
indicating the depleted resource for which the process is waiting. (The
codes are listed in the VAX/VMS Monitor Utility Reference Manual under the
description of the STATES class.) Mutex wait state (indicated by the state
keyword MUTEX in the MONITOR PROCESSES display) is a temporary
wait state, and is not of interest in this discussion.

The most common types of resource waits are those signifying depletion of
the page and swap files. The RWSWP state indicates a swap file of deficient
size, while RWMBP, RWMPE, and RWPGF may indicate a page file that
is too small. (You can determine page and swap file sizes and the amount
of available space they contain by issuing the SHOW MEMORY/FILES
/FULL command.) The RWAST state indicates that the process is waiting
for a resource, the availability of which will be signaled by delivery of an
asynchronous system trap (AST). In most instances, either an I/O operation
is outstanding (incomplete), or a process quota has been exhausted.

3-16

Managing System Resources

3.5.2 Improving CPU Responsiveness

It is always good practice to check the four methods for improving CPU
responsiveness, to see whether there are ways to buy back more CPU power.
This is particularly true if you have determined that a large compute queue is
the cause of poor CPU performance. Before taking action, however, be sure
to complete your evaluation of all the system's resources. You must resolve
any pending memory or disk I/O responsiveness problems before attempting
to improve CPU responsiveness.

3.5.2.1 Equitable CPU Sharing

If you have concluded that a large compute queue is affecting the
responsiveness of your CPU, try to determine whether the resource is being
shared on an equitable basis. Ask yourself the following questions:

• Have you assigned different base priorities to different classes of users?

• Is your system supporting one or more real-time processes?

• Are some users complaining about poor service while others have no
problems?

The VAX/VMS operating system uses a round-robin scheduling technique
for all non-real-time processes at the same scheduling priority. However,
there are 31 priority levels, and as long as a higher-level process is ready
to use the CPU, none of the lower-level processes will execute. A compute-
bound process whose base priority is elevated above that of other processes
can usurp the CPU. Conversely, the CPU will service processes with base
priorities lower than the system default only when no other processes of
default priority are ready for service.

Do not confuse inequitable sharing with the VAX/VMS priority-boosting
scheme, which gives temporary priority boosts to processes encountering
certain events, such as I/O completion. These boosts are temporary, and
they cannot cause inequities.

You can detect inequitable sharing by looking at the CPU Time column
of the MONITOR PROCESSES display in a standard summary report (not
included in the multifile summary report). A process with a CPU time
accumulation much higher than that of other processes may be suspect. A
better means of detection is to use the MONITOR playback feature to obtain
a display of the top CPU users during each collection interval. To view the
display, issue a command of the form

$ MONITOR /INPUT=SYS$MONITOR:file-spec /VIEWING_TIME=1 PROCESSES /TOPCPU

3-17

Managing System Resources

You may want to select a specific time interval using the /BEGINNING
and /ENDING qualifiers if you suspect a problem. Check whether the top
process changes periodically.

It may sometimes be difficult to judge whether processes are receiving
appropriate amounts of CPU allocation, because the allocation depends on
their processing requirements. If you find that the MONITOR collection
interval is too large to provide a sufficient level of detail, issue the command
on the running system (live mode) during a representative period using
the default three-second collection interval. If you discover an inequity,
try to obtain more information about the process and the image being run
by issuing the DCL command SHOW PROCESS /CONTINUOUS. Your
analysis of that information my lead you to consider a reexamination of your
priority assignment policies for both interactive and batch users.

3.5.2.2 Reduction of CPU Consumption by the System

This section will help you answer the question, "Can I reduce demand on the
CPU by curtailing consumption by the system?"

The MONITOR statistics of interest in this section are as follows:

• MODES—All items

Depending on the amount of service required by your system, VAX/VMS
functions may consume anywhere from almost no CPU cycles to a significant
amount. Any reductions you can make in VAX/VMS services represent
additional available CPU cycles. These can be used by processes in the
Compute (COM) state, thereby lowering the average size of the compute
queue and making the CPU more responsive.

The information in this section will help you identify the system components
that are using the CPU. You can then decide whether it is reasonable to
reduce the involvement of those components.

The principal body of information about system CPU activity is contained in
the MONITOR MODES class. Its statistics represent rates of clock ticks (10-
millisecond units) per second; but they can also be viewed as percentages of
time spent by the CPU in each of the various modes: Interrupt Stack, Kernel,
Executive, Supervisor, User, PDP-11 Compatibility, and Idle. Interrupt
stack time is really kernel mode time that cannot be charged to a particular
process. It is therefore sometimes convenient to consider these two together.
PDP-11 compatibility mode is a special case of user mode time.

3—18

Managing System Resources

3.5.2.2.1

Following is a list of some of the activities that execute in each processor

mode.

• Interrupt stack—CPU time spent handling interrupts from peripheral
devices such as disks, tapes, printers, and terminals. The majority of
system scheduling code executes on the interrupt stack, because for most
of the time spent executing that code, there is no current process.

In a VAXcluster, services performed on behalf of a remote node execute
on the interrupt stack, because there is no local process to which
the time can be charged. These include functions involving System
Communication Services (SCS), such as remote lock requests and Mass
Storage Control Protocol (MSCP) requests.

• Kernel—Most local system functions execute in kernel mode. These
include local lock requests, file system (XQP) requests, memory

management and most system services (including $QIO).

• Executive—The major VAX/VMS consumer of executive mode time is
VAX RMS. Some optional products such as ACMS, DBMS, and Rdb also
run in executive mode.

• Supervisor—The command language interpreters DCL and MCR execute
in this mode.

• User—Most user-written code executes in this mode.

• Compatibility—PDP-11 utility and user code executes in this mode.

• Idle—Time consumed by the NULL process. When not executing, the
NULL process is always in COM state at priority 0.

Although MONITOR provides no breakdown of modes into component
parts, you can make inferences about how the time is distributed within a
mode by examining some of the other MONITOR classes in your summary
report and through your knowledge of the workload.

Interpreting MONITOR MODES Data

As a general rule, the combination of interrupt stack and kernel mode time
should be less than 40 percent of the total CPU time used. Note that some
functions (such as VAX RMS locking and file system requests) that ran in
executive mode under VAX/VMS Version 3.0 have been moved to kernel
mode in Version 4.0 in conjunction with VAXcluster development. You can
therefore expect an increase in kernel mode time and a decrease in executive
mode time in VAX/VMS Version 4.0 as compared to Version 3.0.

3-19

Managing System Resources

Interrupt Stack Time

The MONITOR statistics of interest in this section are as follows:

• IO—Buffered I/O Rate

• DLOCK—All items

• SCS—All items

High interrupt stack time (greater than 15%) can be caused by excessive
interrupts from peripheral devices. For example, DZ11 terminal controllers
need to interrupt the CPU for every character read or written. Applications
that frequently perform large terminal I/O operations such as "screen
painting" through this controller can cause high interrupt stack time.
Line printers, such as the LP11 series, which interrupt the CPU every
four characters, can also cause increased interrupt stack time. Both of
these devices generate buffered I/O operations that you can observe with
the Buffered I/O Rate item in the MONITOR IO class. The MONITOR
PROCESSES/TOPBIO command will show which processes are generating
the most buffered I/O operations.

In VAXcluster systems, interrupt stack time per node may be higher than in
noncluster systems, because of the remote services performed. However, if
this time appears excessive, you should investigate the remote services and
look for deviations from typical values. Issue the following commands:

• MONITOR DLOCK—Observe the distributed lock manager activity.
Activity labeled "incoming" and "outgoing" is executed on the interrupt
stack.

• MONITOR SCS/ITEM=ALL—Observe internode traffic over the
Computer Interconnect (Cl).

• SHOW DEVICE /SERVED /ALL—Observe the MSCP Server activity.

Note

Even though VAXcluster systems can be expected to consume
marginally more CPU resources than noncluster systems because
of this remote activity, there is no measurable loss in CPU
performance when a system becomes a member of a VAXcluster.
VAXclusters achieve their sense of "clusterness" by making use of
SCS, a very low overhead protocol. Furthermore, in a quiescent
cluster with default SYSGEN parameter settings, each system
needs to communicate with every other system only once every
five seconds.

3-20

Managing System Resources

Kernel Mode Time

The MONITOR statistics of interest in this section are as follows:

• MODES—Kernel Mode

• IO—Page Fault Rate, Inswap Rate, Logical Name Translation Rate

• LOCK—New ENQ Rate, Converted ENQ Rate, DEQ Rate

• FCP—All items

• PAGE—Demand Zero Fault Rate, Global Valid Fault Rate, Page Read
I/O Rate

• DECNET—Sum of packet rates

High kernel mode time (greater than 25%) may indicate several conditions
warranting further investigation:

• A memory limitation. In this case, the MONITOR IO class should
indicate a high page fault rate and/or a high inswap rate. Refer to
Section 3.6 for information on the memory resource.

• Excessive local locking. Become familiar with the locking rates (New
ENQ, Converted ENQ and DEQ) shown in the MONITOR LOCK
class, and watch for deviations from the typical values. (In VAXcluster
environments, use the DLOCK class instead; only the local portion of
each of the locking rates is executed in kernel mode.)

• A high process creation rate. Process creation is a CPU-intensive
operation. Process accounting can help determine if this activity is
contributing to the high level of kernel mode time.

• Excessive file system activity. The file system, also known as the XQP,
performs various operations on behalf of users and VAX RMS. These
include file opens, closes, extends, deletes, and window turns (retrieval
of mapping pointers). The CPU Tick Rate of the MONITOR FCP class
can be viewed as a percentage of the CPU being consumed by the file
system. It is highly dependent on application file handling, and can
be kept to a minimum by encouraging efficient use of files, minimizing
disk fragmentation by performing periodic backups, and so forth. The
Erase Rate of the FCP class is the rate of erase operations performed to
support the high-water marking security feature. If you do not require
this feature at your installation, be sure to set your volumes to disable it
(see Section 1.6).

3-21

Managing System Resources

• Excessive direct I/O rate. While direct I/O activity, particularly disk I/O,
is important in an evaluation of the I/O resource, it is also important
in an evaluation of the CPU resource, because it can be costly of CPU
cycles. The direct I/O rate is included in the MONITOR IO class. The
top users of direct I/O are indicated in the MONITOR PROCESSES
/TOPDIO class.

• A high image activation rate. The image activation code itself does not
use a significant amount of CPU time, but it can cause consumption of
kernel mode time by activities like the following:

— An excessive amount of logical name translation as file specifications
are parsed.

— Increased file system activity to locate and open the image and
associated library files (which activity also generates buffered I/O
operations).

— A substantial number of page faults as the images and libraries are
mapped into working sets.

— A high demand zero fault rate (shown in the MONITOR PAGE
class). This activity may be accompanied by a high global valid fault
rate and/or a high page read I/O (hard fault) rate.

Two possible causes of a high image activation rate are as follows:

— Excessive use of DCL command procedures. You should expect
to see high levels of supervisor mode activity if this is the case.
Frequently invoked, stable command procedures are good candidates
to be rewritten as images.

— Migration of applications from PDP-11 to VAX processors. To
fit large programs into the small address space of the PDP-11
architecture, the programs are often broken into smaller pieces and
chained together. The large virtual address space of the VAX/VMS
architecture makes this unnecessary. Each piece of the large program
migrated directly from a PDP-11 environment becomes a separate
image, with the result that references to the various pieces cause high
activation rates.

• Excessive use of DECnet. Become familiar with the packet rates shown
in the MONITOR DECNET class, and watch for deviations from the
typical values.

3-22

Managing System Resources

Executive Mode Time

High levels of executive mode time may be an indication of excessive VAX
RMS activity. File design decisions and access characteristics can have a
direct impact on CPU performance. For example, consider how the design of
indexed files may affect the consumption of executive mode time:

• Bucket size determines average time to search each bucket.

• Fill factor and record add rate determine rate of bucket splits.

• Index, key, and data compression saves disk space and can reduce bucket
splits, but requires extra CPU time.

• Use of alternate keys provides increased retrieval flexibility, but requires
additional disk space, and additional CPU time when adding new
records.

Be sure to consult the Guide to VAX/VMS File Applications when designing
a VAX RMS application. That manual contains descriptions of available
alternatives along with their performance implications.

3.5.2.3 CPU Offloading

Following are some techniques you might use to reduce demand on the CPU:

• Decompress the system libraries (see Section 1.6).

• Force compute-intensive images to execute only in a batch queue, with a
job limit. A good technique for enforcing such batch execution is to use
the Access Control List facility as follows:

$ SET FILE /ACL = (IDENTIFIER=INTERACTIVE+NETWORK, ACCESS=NONE) file-spec

This command will force batch execution of the image file for which the
command is issued.

• Implement off-shift timesharing or set up batch queues to spread the
CPU load across the hours when the CPU would normally not be used.

• Submit larger batch jobs. The size of the queue file
SYS$SYSTEM:JBCSYSQUE.DAT and the amount of work the job
controller has to do to read it are minimized when multiple small print
or batch submissions are combined in fewer larger entries.

• Disable code optimization. Compilers such as FORTRAN and BLISS
do some code optimizing by default. However, code optimization is a
CPU-and memory-intensive operation. It may be beneficial to disable

3—23

Managing System Resources

optimization in environments where frequent iterative compiles are done.
Such activity is typical of an educational environment where students are
learning a new language.

• Use a dedicated batch engine. It may be beneficial during prime time
to set up in a VAXcluster one system dedicated to batch work, thereby
isolating the compute-intensive, noninteractive work from the online
users. You can accomplish this by making sure that the cluster-accessible
generic batch queue points only to executor batch queues defined on the
batch system. If a local area terminal server is used for terminal access
to the cluster, you can limit interactive access to the batch system by
making that system unknown to the server.

3.5.2.4 CPU Load Balancing in a VAXcluster

The MONITOR statistics of interest in this section are as follows:

• MODES—Time spent by processes in each mode

You can improve responsiveness on an individual CPU in a VAXcluster by
shifting some of the workload to another, less utilized processor. You can
do this by setting up generic batch queues, or by assigning terminal lines
to such a processor. Some terminal server products perform automatic load
balancing by assigning users to the least heavily utilized processor.

Note

Do not attempt to load balance among CPUs in a VAXcluster until
you are sure that other resources are not blocking (and thus not
inflating idle time artificially) on a processor that is responding
poorly—and until you have already done all you can to improve
responsiveness on each individual processor in the cluster.

Your principal tool in assessing the relative load on each CPU is the MODES
class in the MONITOR multifile summary. Compare the Idle Time figures
for all the processors. The processor with the most idle time may be a good
candidate for offloading the one with the least idle time.

A hint on interpreting idle time is in order. On a VAXcluster member system
where low-priority batch work is being executed, there may be little or no
idle time. But such a system may still be a good candidate for receiving more
of the VAXcluster workload. The interactive workload on that system may be
very light, so that it would have the capacity to handle more default-priority
work, at the expense of the low-priority work.

3-24

Managing System Resources

There are several ways to tell whether a seemingly 100% busy processor is
executing mostly low-priority batch work. The first is to issue a MONITOR
command like the following and observe the TOPCPU processes:

$ MONITOR /INPUT=SYS$M0NIT0R:file-spec /VIEWING_TIME=1 PROCESSES /TOPCPU

Second, you can examine your batch policies to see whether the system is
favored for such work. A third way is to use the ACCOUNTING image
report described in Section 3.2 (or a similarly generated process accounting
report) to examine the kind of work being done on the system.

Following are some techniques for VAXcluster load balancing. Once you
have determined the relative CPU capacities of individual member systems,
you might do any of the following:

• Use a local area terminal server to distribute interactive users.

• Increase the job limit for batch queues on high-powered systems. The
distributed job controller attempts to balance the number of currently
executing batch jobs with the batch queue job limit, across all executor
batch queues pointed to by a generic queue. You can increase the
percentage of jobs that the job controller will assign to the higher-
powered CPU by increasing the job limit of the executor batch queue on
that system.

• Design batch workloads to execute in parallel across a VAXcluster. For
example, a large system build procedure could be redesigned so that all
nodes in the VAXcluster would participate in the compilation and link
phases. Synchronization would be required between the two phases and
could be accomplished with the DCL command SYNCHRONIZE.

• Reallocate lock directory activity. If your VAXcluster contains member
systems of widely varying CPU power, for example, VAX-1 l/780s
and VAX 8650s, you may want to allow the more powerful processors
to handle a larger portion of the distributed lock manager directory
activities. This may be done by increasing the SYSGEN parameter
LOCKDIRWT above the default value of 1 on the more powerful
machines. Note that this approach can be beneficial only in VAXclusters
that support high levels of lock directory activity.

Consider a VAXcluster containing three VAX-1 l/780s and one VAX
8650. Increasing LOCKDIRWT to 3 on the VAX 8650 will cause it over
time to handle about half of the directory functions, while each of the
VAX-1 l/780s will handle approximately one-sixth. In other words, the
three-to-one ratio means that the VAX 8650 is three times more likely to
be chosen as the directory node for a particular resource than any of the
VAX-1 l/780s. The MONITOR DLOCK class shows the lock directory
activity on each system.

3-25

Managing System Resources

3.6 Understanding the Memory Resource

The memory resource shares some similarities with the other resources, but it
exhibits some notable differences. It is similar to CPU and disk in that it is a
single resource pool that must must be shared, but different in the sense that
it can be separated into pieces of varying size, all of which can be allocated
to processes simultaneously. The process may retain its allocation of memory
until memory is demanded by other processes (page faulting), at which time
the sizes of the pieces are reconfigured. In some cases, certain processes
must wait longer for their allocations (swapping).

The key to good performance of the memory subsystem is to maintain
working sets of appropriate size for resident processes. As a rule, the total
of all resident process working set quotas should be within the amount of
free memory available on the system. When there is abundant free memory
available, the borrowing mechanism of VAX/VMS memory management
allows working sets to grow to the value specified in the user authorization
file by WSEXTENT. However, you should set the WSQUOTA value such
that user programs can have reasonable faulting behavior even if they can
only grow to WSQUOTA. See Section 2.2.1 for guidelines on estimating
appropriate WSQUOTA values.

Erratic code and data reference patterns by user programs can cause memory
to be used inefficiently. The effectiveness of a virtual memory system is
based upon good locality of reference. If an application has been designed
with poor virtual address reference patterns, it can require an extremely large
WSQUOTA value to perform satisfactorily. In addition, applications such as
AI and CAD/CAM, which perform an inordinately large amount of dynamic
memory allocation, often require large WSQUOTA values.

One way to obtain information about working set values on the running
system is to use the procedure shown in Example 3-2. You may wish to
execute it several times during some representative period of loading to gain
an idea of the steady-state working set requirements for your system.

3—26

Managing System Resources

This procedure produces output like the following:

Working Set Information

WS WS WS WS Pages Page

Username Processname State Extnt Quota Deflt Size in WS faults Image

SYSTEM ERRFMT HIB 1024 512 100 60 60 165 ERRFMT

SYSTEM CACHE.SERVER HIB 1024 512 100 512 75 55 FILESERV

SYSTEM CLUSTER.SERVER HIB 1024 512 100 60 60 218 CSP

SYSTEM OPCOM LEF 2048 512 100 210 59 5764 OPCOM

SYSTEM JOB.CONTROL HIB 1024 512 100 360 238 1459 JOBCTL

SYSTEM CONFIGURE HIB 1024 512 100 125 121 101 CONFIGURE

SYSTEM SYMBIONT.OOOl HIB 1024 512 100 668 57 67853 PRTSMB

DECNET NETACP HIB 1500 750 175 1200 812 10305 NETACP

DECNET EVL HIB 1024 350 175 210 33 84080 EVL

SYSTEM REMACP HIB 1024 350 175 60 47 74 REMACP

SYSTEM VAXsim.Monitor HIB 1024 200 100 350 210 1583 VAXSIM

SYSTEM DBMS.MONITOR LEF 1000 512 150 62 62 488 DBMMON

SYSTEM TINKERBELLE LEF 1024 350 175 325 177 1627

SYSTEM NULF COM 1024 350 250 350 246 1007 FAC

HALL CFAI COM 2400 1024 512 662 358 567 CFAI

VTXUP VTX.SERVER LEF 2400 1024 512 962 696 624 VTXSRV

WEINSTEIN Jane LEF 2400 1024 512 662 432 13132 EDT

HURWITZ HURWITZ LEF 2400 1024 512 512 350 4605

CARMODY CARMODY LEF 2400 1024 512 812 546 16822 MAIL

CAPARILLIO CAPARILLIO CUR 2400 1024 512 512 282 10839

STRATFORD Kathy LEF 2400 1024 512 512 210 9852

FREY .VTA270: LEF 2400 1024 512 512 163 1021

CHRISTOPHER _VTA271: LEF 2400 1024 512 512 252 379

STANLEY STANLEY LEF 2048 1024 512 512 295 10369

MINSKY MINSKY LEF 2400 1024 512 512 143 60316

TESTGEN TESTGEN LEF 4100 1024 512 234 84 75753
CLAYMORE Cluster Buster LEF 2400 1024 512 1262 932 1919 CREATOR

DINEAUX Sally LEF 2400 1024 512 512 330 31803

DECNET SERVER.0848 LEF 1024 350 175 325 183 647 NETSERVER

LUZ Lars LEF 2400 1024 512 1024 980 95420 TEX

DECNET MAIL.222 LEF 1024 350 175 325 234 526 MAIL

STEVENS STEVENS LEF 2400 1024 512 512 221 7851

ZEN .VTA259: LEF 2400 1024 512 1024 319 4267 SHOW

ZEN ZEN_2 LEF 2400 1024 512 512 171 3026

Note that WS Deflt refers to the default working set size, which is
reestablished at each image activation. WS Size is the current size of the
working set. When the number of pages actually allocated (Pages in WS)
reaches this threshold, subsequent page faults will cause page replacement.
The Pages in WS column includes both private and global pages. WS Extent
and WS Quota represent threshold values to which WS Size may be adjusted.
Finally, the Page faults column shows the total number of faults that have
occurred since process creation.

3-27

Managing System Resources

Example 3-2 Sample Procedure to Obtain Working Set Information

$

$

$
$

$
$
$
$
n

$
$
n

$

$

$
$
$
$
$
$
$
$

$
$

$
$
$
$
$
$

$

$
$

$
$
$

ii ii n

H H

WORKSET.COM - Command file to display working set information.

Requires 'WORLD' privilege to display other processes.

a =

pid

context * ""

IF pl.NES. "" THEN pid = pi

WRITE 8ys$output -

Working Set Information"

WRITE sys$output ""

WRITE sys$output -

Pages Page"

Size in WS faults

WS WS WS WS

WRITE sys$output -

"Username Processname State Extnt Quota Deflt

WRITE sysloutput ""

START:

IF pl.EQS."" THEN pid = F$PID(context)

IF pid.EQS."" THEN EXIT
pid = a+pid+a

username = F$GETJPI('pid,"USERNAME")

IF username.EQS."" THEN GOTO START

processname = F$GETJPI('pid,"PRCNAM")

imagename = F$GETJPI('pid,"IMAGNAME")

imagename = F$PARSE(imagename, ,,"NAME")

state = F$GETJPI('pid,"STATE")

wsdefault = F$GETJPI('pid,"DFWSCNT")

wsquota = F$GETJPI('pid,"WSQUOTA")

wsextent = F$GETJPI('pid,"WSEXTENT")

wssize = F$GETJPI('pid,"WSSIZE")

globalpages = F$GETJPI('pid."GPGCNT")

processpages = F$GETJPI('pid,"PPGCNT")

pagefaults = F$GETJPI('pid,"PAGEFLTS")

pages = globalpages + processpages

text = F$FA0("!AS!15AS!BAS!5(6SL)!7SL!AS",-

username,processname,state,wsextent,wsquota,wsdefault,wssize,-

pages,pagefaults," "+imagename)

WRITE sysloutput text

IF pl.NES."" THEN EXIT

GOTO START

Image"

3-28

Managing System Resources

3.6.1 Evaluating Memory Responsiveness

The key measure of responsiveness for the memory management subsystem
is the amount of time required for a process to be allocated its share of
memory. Since allocation time is not measured directly, you should be
concerned with the rates of the two memory management activities that
extend the processing time experienced by processes in a virtual memory
system—namely, page faulting and swapping. These activities not only incur
overhead on the CPU and disk resources, but they also block the execution
of processes during the time the system needs to allocate memory and the
time the processes spend waiting for memory allocation. Thus, your goal in
evaluating the memory resource is to ensure that faulting and swapping rates
are kept within reasonable bounds.

3.6.1.1 Page Faulting

The MONITOR statistics of interest in this section are as follows:

• PAGE—All items

Whenever a process references a virtual page that is not in its working set,
a page fault occurs. For process execution to continue, VAX/VMS memory
management software is called to acquire and map a physical page into the
working set.

The fault may be hard or soft. A hard fault (measured by the Page Read I/O
Rate item in the MONITOR PAGE class) is one that requires a read operation
from a page or image file on disk. A soft fault is one that is satisfied by
mapping to a page already in memory; this may be a global page or a page
in the secondary page cache. (The secondary page cache consists of the Free
List and Modified List; the primary page cache is each process's working set.)
The following categories of soft faults are measured and reported in the
MONITOR PAGE class:

• Free List Fault Rate—the rate of page faults satisfied by reclaiming
from the free list a page that was previously allocated to a process. An
excessive rate of free list faults can occur when working set quotas are
too small, causing excessive page replacement.

• Modified List Fault Rate—the rate of page faults satisfied by reclaiming a
page from the modified page list. An excessive rate of modified list faults
can occur when working set quotas are too small.

• Demand Zero Fault Rate—the rate of page faults satisfied by allocating
a free page and initializing its contents to zero. This type of fault is
typically seen during image activation and whenever the virtual address
space is expanded.

3-29

Managing System Resources

• Global Valid Fault Rate—The rate of page faults satisfied by mapping
a shared page that is already valid (one already in another process's
working set). Swapping or image activation can cause an elevated global
valid fault rate.

• Write in Progress Fault Rate—The rate of page faults satisfied by
mapping to a page that is in the process of being written back to disk.
The rate for this type of fault is typically very low.

The total Page Fault Rate is equal to the sum of the hard fault rate (Page
Read I/O Rate) plus the soft fault rate, which is the sum of the five categories
listed above.

System Fault Rate is the rate of faults for which the referenced virtual address
is in system space (hex address 80000000 and above). It is not included in
the overall Page Fault Rate, and is discussed separately in Section 3.6.2.2.

Your own judgment, based on familiarity with the data in your MONITOR
summaries, is the best determinant of an acceptable Page Fault Rate for your
system.

When any of the following thresholds are exceeded, you should attempt to
improve memory responsiveness. (See Section 3.6.2.)

• Hard faults (Page Read I/O Rate) should be kept as low as possible, but
to no more than 10% of the overall Page Fault Rate. When the hard
fault rate exceeds this threshold, you can assume that the secondary page
cache is not being used efficiently.

• Overall Page Fault Rate begins to become excessive when more than
5% of the CPU is devoted to soft faulting (faulting that involves no disk
I/O). Since an average soft fault takes about half a millisecond to service
on a VAX-11/780 processor under VAX/VMS Version 4, a good rule of
thumb is to keep the total fault rate below about 100 per second on a
VAX-11/780-class processor (MicroVAX II, VAX 8200, for example). On
slower processors, such as VAX-11/730, Micro VAX I, and VAX-11/750,
try to keep page faulting in the 30-60 per second range. Processors faster
than the VAX-11/780 (VAX-11/785, VAX 8600, VAX 8650, for example)
can handle proportionally higher page fault rates, up to several hundred
for the VAX 8650, and still be within the 5% rule of thumb. While
these rules do not represent absolute upper limits, rates that exceed the
suggested limits are warning signs that the memory resource should
either be improved by one of the four means listed in Section 3.6.2, or
that a memory upgrade should perhaps be considered. Note, however,
that more memory will not reduce the number of page faults caused by
image activation.

3-30

Managing System Resources

3.6.1.1.1 The Secondary Page Cache

The MONITOR statistics of interest in this section are as follows:

• STATES—Number of processes in Free Page Wait (FPG), Collided Page
Wait (COLPG), and Page Fault Wait (PFW) states

Paging problems typically occur when the secondary page cache (Free List
and Modified List) is too small. This systemwide cache, which is sized by
AUTOGEN, should be large enough to ensure that the overall fault rate in
not excessive and that most faults are soft faults.

When evaluating paging activity on your system, you should check for
processes in the Free Page Wait (FPG), Collided Page Wait (COLPG), and
Page Fault Wait (PFW) states and note departures from normal figures. The
presence of processes in Free Page Wait almost always indicates serious
memory management problems, because it implies that the free list has been
depleted.

Processes in Page Fault Wait and Collided Page Wait are waiting for hard
faults (from disk) to be satisfied. Note, however, that while hard fault
waiting is undesirable, it is not as serious as swapping.

An average free list size that is between the values of the FREELIM and
FREEGOAL system parameters is usually an indicator of deficient memory
and is often accompanied by a high page fault rate. If either condition exists,
or if the hard fault rate exceeds the recommended percentage, you must
consider enlarging the free and modified lists, if possible. Enlarging the
secondary page cache could reduce hard faulting, provided such faulting is
not the result of image activation.

To enlarge the cache, you must increase the free list either by acquiring
more memory or by freeing up memory allocated for other purposes—that
permanently assigned to the system, or that allocated to user processes (up
to WSQUOTA). In most cases, you will want to determine whether working
set values specified for users in the UAF are larger than necessary for the
users to perform their work efficiently, before you attempt to decrease those
values.

Note, however, that memory freed up by this type of reallocation can cause
an increase in the overall fault rate unless the working set values initially
specified in the UAF were overgenerous.

If you are able to increase the size of the free list, you can then allocate
more memory to the modified list. Using AUTOGEN, you can increase the
modified list by adjusting the appropriate MPW system parameters. (See
the VAX/VMS System Generation Utility Reference Manual for a description of
MPW parameters.)

3-31

Managing System Resources

3.6.1.2 Swapping and Swapper Trimming

The MONITOR statistics of interest in this section are as follows:

• STATES—Number of outswapped processes

• IO—Inswap Rate

Swapping is an expensive operation. It places a large data transfer load on
the disk I/O subsystem, and may cause the CPU to be underutilized, because
outswapped processes are blocked from using it. Try to minimize swapping
activity and to keep the inswap rate near 0, and less than 1 per second.

Before a process can use the CPU, it must receive its required allotment of
memory. If it is in one of the outswapped states, it is waiting for memory
and cannot use the CPU.

As a general rule, swapping should be kept to a minimum. But if you
have chosen to allow a low level of swapping on your system—following
the common-sense principle that processes that do not need to execute for
long periods should not occupy memory—you should expect to see some
processes in outswapped states. Thus, while outswapped processes may
sometimes indicate that harmful swapping is taking place, a more reliable
measure of the condition is a high inswap rate—a rate greater than one
process per second.

Before attempting to improve a system with a high inswap rate, first check
for a condition known as "artificially induced swapping". This condition
occurs when there are no available balance set slots.

Check the BALSETCNT system parameter. Swapping may have been
artificially induced because BALSETCNT is set too low (see Section 5.2.12).
You can obtain information on balance slots with the DCL command SHOW
MEMORY. If BALSETCNT appears to be set correctly, and the inswap
rate is high, refer to Section 3.6.2 for other methods of improving memory
responsiveness.

Swapper trimming is a memory management function that provides an
alternative to swapping. For most categories of processes, the working
set will be trimmed down to a smaller value in preference to swapping.
When memory is scarce, the system will trim processes down to their
WSQUOTA values, a function called first-level trimming. If a critical memory
shortage develops, second-level timming may occur—the system will trim
processes down to the value of the SWPOUTPGCNT system parameter
before swapping. The default value of this parameter is typically very
low, which usually eliminates most swapping, but causes page faulting to
increase. The presence of several processes with working sets equal to the
value of SWPOUTPGCNT is a clue that second-level trimming has occurred.

3—32

Managing System Resources

It is an indicator that, at least for a time, memory was, and possibly still is,
very scarce.

3.6.2 Improving Memory Responsiveness

It is always good practice to check the four methods for improving memory
responsiveness to see whether there are ways to free up more memory, even
if no problem seems to exist currently.

3.6.2.1 Equitable Memory Sharing

Always check memory for inequitable sharing if you believe page faulting
is excessive. Since page fault behavior is so heavily dependent on the page
referencing patterns of user programs, the WSQUOTA values you assign may
be satisfactory for some programs but not for others. Use the ACCOUNTING
image report described in Section 3.2 to identify the programs (images)
that are the heaviest faulters on your system, and then compensate by
encouraging users to run such images as batch jobs on queues you have set
up with large WSQUOTA values.

You may be able to detect inequitable sharing by looking at the Faults
column of the MONITOR PROCESSES display in a standard summary
report (it is not contained in the multifile summary report). A process with
a page fault accumulation much higher than that of other processes may be
suspect, although it depends on how long the process has been active. A
better means of detection is to use the MONITOR playback feature to view a
display of the top page faulters during each collection interval:

$ MONITOR /INPUT=SYS$MONITOR:file-spec /VIEWING_TIME=1 PROCESSES /TOPFAULT

You may want to select a time interval using the /BEGINNING and
/ENDING qualifiers when you suspect that a problem has occurred.

Check to see whether the top process changes periodically. If it appears
that one or two processes are consistently the top faulters, you may want to
obtain more information about which images they are running and consider
upgrading their WSQUOTA values, using the guidelines in Section 2.2.1.
Sometimes a small adjustment in a WSQUOTA value can make a drastic
difference in the page faulting behavior if the original value was somewhere
around the "knee" of the working-set/page-fault curve. (See Figures 2-4,
2-5, and 2-6.)

If you find that the MONITOR collection interval is too large to provide
sufficient detail, try issuing the command on the running system (live mode)
during a representative period using the default three-second collection
interval. If you discover an inequity, try to obtain more information about

3-33

Managing System Resources

the process and the image being run by issuing the SHOW PROCESS
/CONTINUOUS command.

Another way to check for inequitable sharing of memory is to use the
WORKSET.COM command procedure described in Section 3.6. Examine the
various working set values and ensure that the allocation of memory, even if
not evenly distributed, is appropriate.

3.6.2.2 Reduction of Memory Consumption by the System

The MONITOR statistics of interest in this section are as follows:

• PAGE—System Fault Rate

• POOL—All items

The VAX/VMS system uses physical memory for storage of the code and
data structures it requires to support user processes. You have control over
the sizes of two of the memory areas reserved for the system: the system
working set and the nonpaged pool area. Both of these areas are sized
by AUTOGEN. The sizes it selects are normally adequate, but may not be
optimal, because AUTOGEN cannot anticipate all operational requirements.

The system working set is an area of physical memory reserved to satisfy
page faults of virtual addresses in system space. Such virtual addresses
can be code or data (paged pool, for example). Since the same system
working set is used for all processes on the system, there is very little locality
associated with it. This means that, if allowed to fault even moderately,
the working set may exhibit page thrashing, and can create a systemwide
bottleneck. You must therefore try to limit system faulting to an absolute
minimum—no more than 1 fault per second. The rate is easily controlled
with the SYSMWCNT system parameter. Keep in mind, however, that pages
allocated to the system working set by raising the value of SYSMWCNT are
considered permanently allocated to the system and are therefore no longer
available for process working sets.

The nonpaged pool area is a portion of physical memory permanently
allocated to the system for the storage of data structures and device drivers.
Its initial size is determined by AUTOGEN, but automatic expansion will
occur if necessary. The system expands pool as required by permanently
allocating a page of memory from the free list. Pages freed up in this fashion
are not available for use by process working sets until the system is rebooted.

Refer to the In Use figures from the MONITOR POOL class when you
are considering adjustments in the sizes of the three preallocated pools
(SRP, IRP, LRP) and the general dynamic pool. Using the standard
summary report, compare the maximum In Use figure with the size of
your initial allocation (values of the SRPCOUNT, IRPCOUNT, LRPCOUNT,

3-34

Managing System Resources

and NPAGEDYN system parameters). If the In Use value exceeds the
initial allocation, pool expansion has occurred. Pool may be expanded to
values defined by the system parameters SRPCOUNTV, IRPCOUNTV,
LRPCOUNTV, and NPAGEVIR. You must trade off the permanent allocation
of memory for nonpaged pool against the small amount of CPU overhead
required to do pool expansion. If physical memory on your system is limited,
it may be reasonable to accept a low to moderate amount of expansion.

Note

All POOL items are averages of levels, or snapshots. Since
they are not rates, their accuracy is dependent on the collection
interval.

3.6.2.3 Memory Offloading

While the most common, and probably most cost-effective type of offloading
is that performed by shifting the CPU and disk resources onto memory, it is
possible to improve memory responsiveness by offloading it onto disk. This
procedure is recommended only when sufficient disk resource is available
and its use is more cost effective than purchasing additional memory.

Some of the CPU offloading techniques described in Section 3.5.2.3 apply
also to memory. Additional techniques are as follows:

• Install images with the appropriate attributes. When an image is accessed
concurrently by more than one process on a routine basis, it should be
installed /SHARED so that all processes use the same physical copy
of the image. The LIST/FULL command of the Install Utility shows
the highest number of concurrent accesses to an image installed with
the /SHARED qualifier. This information can help you decide whether
installing an image is worth the space. Generally, an image takes
about two additional physical pages when installed /OPEN/HEADER__
RESIDENT/SHARED.

• Favor process swapping over working set trimming for process-intensive
applications. There are cases in which an image creates several
subprocesses that may not be used continuously during the run time.
These idle processes take up a share of physical memory, so that it may
be wise to swap them out. This typically occurs when users walk away
from their terminals for long periods of time.

The following two techniques, used concurrently, will make the system
favor swapping out inactive processes over trimming the working sets of
highly active processes:

— On a per process basis—Increase the working set quotas of the
active processes.

3-35

Managing System Resources

— On a systemwide basis—Increase the value of the SYSGEN
parameter SWPOUTPGCNT; perhaps as high as a typical
WSQUOTA. As a result, fewer pages will be trimmed, so it is more
likely that swapping will occur.

After making adjustments, monitor the inswap rate closely. If it becomes
excessive, lower the value of SWPOUTPGCNT.

3.6.2.4 Memory Load Balancing

The following MONITOR statistic is of interest in this section:

• PAGE—Free List Size

You can balance the memory load by using some of the techniques described
in Section 3.5.2.4 to shift user demand.

To balance the load by reconfiguring memory hardware, first examine the
multifile summary report and look at the Free List Size item of the PAGE
class. This item gives a rough idea of the relative amounts of free memory
available on each CPU. If a system seems to be deficient in memory and is
experiencing memory management problems, perhaps the best solution is to
reconfigure the VAXcluster by moving some memory from a memory-rich
system to a memory-poor one—provided the memory type is compatible
with both CPU types.

Note

The Free List Size item is an average of levels, or snapshots.
Since it is not a rate, its accuracy is dependent on the collection
interval.

3.7 Understanding the Disk I/O Resource

Since the major determinant of system performance is the efficient use of the
CPU, and since a process typically cannot proceed with its use of the CPU
until a disk operation is completed, the key performance issue for disk I/O
performance is the amount of time it takes to complete an operation.

The principal measure of disk I/O responsiveness is the average amount
of time required to execute an I/O request on a particular disk—that disk's
average response time. It is important to keep average response times as low
as possible to minimize CPU blockage. If your system exhibits unusually
long disk response times, refer to Section 3.7.4 for suggestions on improving
disk I/O performance.

3-36

Managing System Resources

To help you interpret response time as a measure of disk responsiveness,
some background information about the components of a disk transfer
and the notions of disk capacity and demand is provided in the following
sections.

3.7.1 Components of a Disk Transfer

The following table shows a breakdown of a typical disk I/O request on a
VAX-11/780 processor running the VAX/VMS operating system. You will
find it helpful to understand the amount of time each system I/O component
consumes in order to complete an I/O request.

Table 3-1 Components of a Typical Disk Transfer on a VAX-11/780
(Four to Eight Block Transfer Size)

Component
Percentage of
Elapsed Time Greatest Influencing Factors

I/O Preprocessing 4 Host CPU speed

Controller Delay 2 Time needed to complete controller
optimizations

Seek Time 58 Optimization algorithms
Disk actuator speed
Relative seek range

Rotational Delay 20 Rotational speed of disk
Optimization algorithms

Transfer Time 12 Controller design
Data density and rotational speed

I/O Postprocessing 4 Host CPU speed

Note that the CPU time required to issue a request is only 8% of the elapsed
time, and that the majority of the time (for 4-8 block transfers) is spent
performing a seek and waiting for the desired blocks to rotate under the
heads. Larger transfers will spend a larger percentage of time in the "transfer
time" stage. It is easy to see why I/O-bound systems do not improve by
adding CPU power.

3-37

Managing System Resources

3.7.2 Disk Capacity and Demand

As with any resource, the disk resource can be characterized by its capacity
to do work and by the demand placed upon it by consumers.

In evaluating disk capacity in a performance context, the primary concern is
not the total amount of disk space available, but the speed with which I/O
operations can be completed. This speed is determined largely by the time
it takes to access the desired data blocks (seek time and rotational delay),
and by the data transfer capacity (bandwidth) of the disk drives and their
controllers.

3.7.2.1 Seek Capacity

Overall seek capacity is determined by the number of drives (and hence, seek
arms) available. Since most disk drives can be executing a seek operation
simultaneously with those of other disk drives, the more drives available, the
more parallelism you can obtain.

3.7.2.2 Data Transfer Capacity

A data transfer operation requires a data channel—the path from disk
through controller, across buses to memory. In this context, a channel
consists of all the disks on a MASSBUS, a UDA50, or a single K.sdi of a
Hierarchical Storage Controller (HSC). Data transfer on one channel may
occur concurrently with data transfer on other channels. For this reason, it is
a good idea to attempt to locate on separate channels disks that have large
data transfer operations. On a MASSBUS or UDA50, when the channel is
occupied with data transfer, seek initiation for other devices on the channel
must wait for the transfer to complete. On an HSC, seek operations may
be initiated for other devices on a channel transferring data. Thus, for the
MASSBUS and UDA50, it is generally a good idea to locate files that have
large data transfer operations on different channels from seek-intensive files,
if possible.

3-38

Managing System Resources

3.7.2.3 Demand

Demand placed on the disk resource is determined by the user workload and
by the needs of the system itself. The demand on a seek arm is the number,
size (distance), and arrival pattern of seek requests for that disk. Demand
placed on a channel is the number, size, and arrival pattern of data transfer
requests for all disks attached to that channel.

In a typical VAX/VMS timesharing environment, 90% of all I/O transfers are
smaller than 16 blocks. Thus, for the vast majority of I/O operations, data
transfer speed is not the key performance determinant; rather, it is the time
required to access the data (seek and rotational latency of the disk unit). For
this reason, the factor that typically limits performance of the disk subsystem
is the number of I/O operations it can complete per unit of time, rather than
the data throughput rate. One exception to this rule is swapping I/O, which
uses very large transfers. Certain applications, of course, can also perform
large data transfers; MONITOR does not provide information about transfer
size, so it is important for you to gain as much information as possible about
the I/O requirements of applications running on your system. Knowing
whether elevated response times are the result of seek/rotational delays or
data transfer delays provides a starting point for making improvements.

3.7.3 Evaluating Disk I/O Responsiveness

The MONITOR statistics of interest in this section are as follows:

• Response Time (calculated)

• DISK—I/O Operation Rate, I/O Request Queue Length

The principal measure of disk I/O responsiveness is the average response
time of each disk. While not provided directly by the Monitor Utility, it can
be estimated using the I/O Operation Rate and I/O Request Queue Length
items from the DISK class.

Note

Since, for each disk, the total activity from all nodes in the
VAXcluster is of primary interest, all references to disk statistics
will be to the Row Sum column of the MONITOR multifile
summary, instead of the Row Average.

Disk statistics are provided in the MONITOR DISK class for mounted disks
only. I/O Operation Rate is the rate of I/O operations completed on each
mounted disk. It includes system I/O (paging, swapping, XQP) and user
I/O. While operation rates are influenced by the hardware components of
each disk and channel, and depend upon transfer size, a general rule of
thumb for operations of the size typically seen on timesharing systems can
be stated: For RA-series and MASSBUS disks, an I/O rate less than 8 per

3-39

Managing System Resources

second represents a light load, 15 per second is moderate, and a disk with an
operation rate of 25 or more is heavily loaded. These figures are independent
of host CPU configuration.

The I/O Request Queue Length item is the average number of I/O requests
outstanding at any time during the measurement period, including those
being serviced and those waiting for service. So, for example, a queue
length of 1.0 indicates that, on the average, there was one request in service
throughout the measurement period.

Note

Although this item is an average of levels, or snapshots, its
accuracy is NOT dependent on the MONITOR collection interval,
since it is internally collected once per second.

As useful as these two measurements are in assessing disk performance, an
even better measure is that of average response time. It can be estimated
from these two items, for each disk, by using the following formula:

Average response time (in milliseconds) =
(Average queue length / average I/O operation rate) * 1000

Average disk response time is an important statistic, because it gives you
a means of ranking the relative performance of your disks with respect to
each other, and comparing their observed performance against a value in the
range of 25 to 40 milliseconds. Although faster response times are possible,
values in this range represent the best you can reasonably expect to achieve
for RA-series and MASSBUS disks on a timesharing system with little or no
contention. Situations that may increase response time include:

• Contention caused by multiple users accessing and transfering data on
the same drive or channel

• Large transfer sizes

Since a certain amount of disk contention is expected in a timesharing
environment, response times may be expected to be longer than the
achievable values.

The response time measurement is especially useful because it indicates
the perceived delay from the norm, independent of whether the delay was
caused by seek-intensive or data-transfer-intensive operations. Disks with
response time calculations significantly larger than achievable values are
good candidates for improvements, as discussed below. However, it is worth
checking their levels of activity before proceeding with any further analysis.
The response time figure says nothing about how often the disk has been
used during the measurement period. Improving disks that show a high
response time, but are used very infrequently, may not noticeably improve
overall system performance.

3-40

Managing System Resources

In most environments, a disk with a sustained queue length greater than
0.20 may be considered moderately busy, and worthy of further analysis.
You should try to determine whether activity on disks that show excessive
response times, and that are at least moderately busy, is primarily seek¬
intensive or data-transfer-intensive. Such disks exhibiting moderate to high
operation rates are most likely seek-intensive, whereas those with low
operation rates and large queue lengths (greater than 0.50) tend to be data-
transfer-intensive. (An exception is a seek-intensive disk that is blocked
by data transfer from another disk on the same channel; it may have a
low operation rate and a large queue length, but is not itself data-transfer-
intensive). If, after attempting to improve disk performance using the four
means discussed in Section 3.7.4, a problem still exists, you should consider
upgrading your hardware resources. An upgrade to address seek-intensive
disk problems usually centers around the addition of one or more spindles
(disk drives), whereas data transfer problems are usually addressed with the
addition of one or more data channels.

Note

All the disk measurements discussed in this chapter are averages
over a relatively long period of time, such as a "prime-time" work
shift. Significant response time problems may exist in bursts,
and may not be obvious when examining long-term averages.
If you suspect performance problems during a particular time,
obtain a MONITOR multifile summary for that period by playing
back the data files you already have, using the /BEGINNING
and /ENDING qualifiers to select the period of interest. If
you are not sure whether significant peaks of disk activity are
occurring, check the I/O Request Queue Length MAX columns of
individual summaries of each node. To pinpoint the times when
peaks occurred, play back the data file of interest, and watch
the displays for a CUR value equal to the MAX value already
observed. The period covered by that display is the peak period.

Disk I/O Statistics for MSCP-Served Disks

Special consideration must be given to MSCP-served disks in a VAXcluster.
For these disks, the MONITOR figures mean different things, depending on
whether you are examining the server node (the one to which the MSCP-
served disk is physically attached) or one of the client nodes (the remaining
VAX nodes in the cluster). For the client nodes, the I/O operation rate
and queue length refer to the pseudo-operations initiated on those nodes.
For the server node, they refer to the sum of the real operations initiated
locally on that node and the real operations initiated on behalf of the client
nodes. For this reason, it is best to compute a separate set of remote statistics
and local statistics (I/O operation rate, queue length, and response time).
The local statistics are those listed for the server node. The remote I/O
operation rate and queue length figures must be recalculated by subtracting

3-41

Managing System Resources

the contributions of the server node from the Row Sums. You can now use
these figures to calculate the average response time for remote requests.

3.7.4 Improving Disk I/O Responsiveness

It is always good practice to check the four methods for improving disk I/O
responsiveness to see whether there are ways to use the available capacity
more efficiently, even if no problem seems to exist currently.

3.7.4.1 Equitable Disk I/O Sharing

If you identify certain disks as good candidates for improvement, check
for excessive use of the disk resource by one or more processes. The best
way to do this is to use the MONITOR playback feature to obtain a display
of the top direct I/O users during each collection interval. The direct I/O
operations reported by MONITOR include all user disk I/O and any other
direct I/O for other device types. In many cases, disk I/O represents the
vast majority of direct I/O activity on VAX/VMS systems, so you can use
this technique to obtain information on processes that may be supporting
excessive disk I/O activity.

Issue a MONITOR command similar to the following:

$ MONITOR /INPUT=SYS$MONITOR:file-spec /VIEWING_TIME=1 PROCESSES /TOPDIO

You may want to specify the /BEGINNING and /ENDING qualifiers to
select a time interval that covers the problem period.

If it appears that one or two processes are consistently the top direct I/O
users, you may want to obtain more information about which images they
are running and which files they are using. Since this information is not
recorded by MONITOR, it must be obtained another way. One suggestion
is to run MONITOR in live mode and issue DCL SHOW commands when
the situation reoccurs. Another is to use the ACCOUNTING image report
described in Section 3.2. Finally, you can simply survey heavy users of
system resources.

To run MONITOR in live mode, choose a representative period, and use the
default three-second collection interval. When you have identified a process
that consistently issues a significant number of direct I/O requests, look for
more information about the process and the image being run by using the
SHOW PROCESS /CONTINUOUS command. In addition, you can use
the SHOW DEVICE /FILES command to show all open files on particular
disk volumes; it is important to know the file names of heavily used files
to perform the offloading and load balancing operations described in see
Sections 3.7.4.3 and 3.7.4.4.

3-42

Managing System Resources

3.7.4.2 Reduction of Disk I/O Consumption by the System

The VAX/VMS system uses the disk I/O subsystem for three activities:
paging, swapping, and XQP operations. This kind of disk I/O is a good
place to start when setting out to trim disk I/O load. All three types of
system I/O can be reduced readily by offloading to memory. Swapping I/O
is a particularly data-transfer-intensive operation, while the other types tend
to be more seek-intensive.

Paging I/O Activity

The MONITOR statistics of interest in this section are as follows:

• PAGE—Page Fault Rate, Page Read Rate, Page Read I/O Rate, Page
Write Rate, Page Write I/O Rate

Page Read I/O Rate, also known as the hard fault rate, is the rate of read
I/O operations necessary to satisfy page faults. Since the system attempts to
cluster several pages together whenever it performs a read, the number of
pages actually read will be greater than the hard fault rate. The rate of pages
read is given by the Page Read Rate. To compute the average transfer size
(in blocks) of a page read I/O operation, divide the Page Read Rate by the
Page Read I/O Rate.

Most page faults are soft faults. Such faults require no disk I/O operation,
because they are satisfied by mapping to a global page or to a page in the
secondary page cache (Free List and Modified List). For the cache to function
effectively, the rate of hard faults—those requiring a disk I/O operation—
should be less than 10% of the overall page fault rate, with the remaining
90% being soft faults. Even if the hard fault rate is less than 10%, you
should try to reduce it further if it represents a significant fraction of the disk
I/O load on any particular node or individual disk (see Section 3.6.1.1.1).
Note that the number of hard faults resulting from image activation can be
reduced only by curtailing the number of image activations, or by exercising
LINKER options such as /NOSYSSHR (to reduce image activations) and
reassignment of PSECT attributes (to increase the effectiveness of page fault
clustering).

The Page Write I/O Rate represents the rate of disk I/O operations to write
pages from the modified list to backing store (page and section files). As with
page read operations, page write operations are clustered. The rate of pages
written is given by the Page Write Rate. To compute the average transfer
size (in blocks) of a page write I/O operation, divide the Page Write Rate
by the Page Write I/O Rate. The frequency with which pages are written
depends on the page modification behavior of the workload and on the size
of the modified list. In general, a larger modified list must be written less
often than a smaller one.

3-43

Managing System Resources

You can obtain information on each page file, including the disks on which
they are located, with the DCL command SHOW MEMORY/FILES/FULL.

Swapping I/O Activity

The following MONITOR statistic is of interest in this section:

• IO—Inswap Rate

Swapping I/O should be kept as low as possible. The Inswap Rate item of
the IO class lists the rate of inswap I/O operations. In typical cases, for each
inswap, there may also be just as many outswap operations. Try to keep
the inswap rate as low as possible—no greater than 1. This is not to say
that swapping should always be eliminated. A very low level of swapping,
implemented by adjusting the SWPOUTPGCNT system parameter, may be
desirable to force inactive processes out of memory.

Swap I/O operations are very large data transfers; they can cause device
and channel contention problems if they occur too frequently. Issue the DCL
command SHOW MEMORY/FILES/FULL to list the swap files in use. If you
have disk I/O problems on the channels servicing the swap files, attempt to
reduce the swap rate (see Section 5.2.12).

File System (XQP) I/O Activity

The MONITOR statistics of interest in this section are as follows:

• FCP—Disk Read Rate, Disk Write Rate, Erase Rate

• FILE —SYSTEM —CACHE—All items

To determine the rate of I/O operations issued by the XQP on a nodewide
basis, add the Disk Read Rate and Disk Write Rate items of the FCP class for
each node and compare this number to the sum of the I/O Operation Rate
figures for all disks on that same node. If this number represents a significant
fraction of the disk I/O on that node, attempt to make improvements by
addressing one or more of the following three sources of XQP disk I/O
operations: cache misses, erase operations, and fragmentation.

First check the FILE_SYSTEM_CACHE class for the level of activity
(Attempt Rate) and Hit Percentage for each of the seven caches maintained
by the XQP. The categories represent types of data maintained by the XQP
on all mounted disk volumes. When an attempt to retrieve an item from a
cache "misses," the item must be retrieved by issuing of one or more disk I/O
requests. It is therefore important to supply memory caches large enough to
keep the hit percentages high and disk I/O operations low.

3-44

Managing System Resources

Cache sizes are controlled by the ACP/XQP system parameters. Data items
in the FILE—SYSTEM—CACHE display correspond to ACP/XQP parameters
as follows:

FILE_SYSTEM_CACHE Item ACP/XQP Parameters

Dir FCB ACP—SYSACC
ACP_DINDXCACHE

Dir Data ACP_DIRCACHE

File Hdr ACP_HDRCACHE

File ID ACP—FIDCACHE

Extent ACP—EXTCACHE
ACP-EXTLIMIT

Quota ACP—QUOCACHE

Bitmap ACP—MAPCACHE

The values determined by AUTOGEN should be adequate. However, if hit
percentages are low (less than 75%), you should increase the appropriate
cache sizes (using AUTOGEN), particularly when the attempt rates are high.

If you decide to change the ACP/XQP cache parameters, remember to
reboot the system to make the changes effective. For more information on
these parameters, refer to the VAX/VMS System Generation Utility Reference
Manual.

If your system is running with the default HIGHWATER—MARKING
attribute enabled on one or more disk volumes, check the Erase Rate item of
the FCP class. This item represents the rate of erase I/O requests issued by
the XQP to support the high-water marking feature. If you did not intend to
enable this security feature, see Section 1.6 for instructions on how to disable
it on a per-volume basis.

When a disk becomes seriously fragmented, it can cause additional XQP disk
I/O operations, and consequent elevation of the disk read and disk write
rates. You can restore contiguity for badly fragmented files by using the
Backup and Convert utilities or the DCL command COPY /CONTIGUOUS.
It is a good performance management practice to perform image backups
of all disks periodically, using the output disk as the new copy. BACKUP
consolidates allocated space on the new copy, eliminating fragmentation.
You can test individual files for fragmentation by issuing the DCL command
DUMP /HEADER to obtain the number of file extents. The fewer the
extents, the lower the level of fragmentation will be. Pay particular attention
to heavily used indexed files, especially those from which records are
frequently deleted. You can use the Convert Utility to reorganize the index
file structure.

3-45

Managing System Resources

3.7.4.3 Disk I/O Offloading

Following are some techniques for offloading disk I/O onto other resources,
most notably memory.

• Increase the size of the secondary page cache and XQP caches.

• Install frequently used images to save memory and decrease the number
of I/O operations required during image activation. (See Section 1.6.)

• Decompress library files (especially HELP files) to decrease the number of
I/O operations and reduce the CPU time required for library operations.
Users will experience faster response to DCL HELP commands. (See
Section 1.6.)

• Use global data buffers (if your system has sufficient memory) for
the following system files: VMSMAIL.DAT, SYSUAF.DAT, and
RIGHTSLIST.DAT.

• Tune applications to reduce the number of I/O requests by improving
their buffering strategies. However, you should make sure that you have
adequate working sets and memory to support the increased buffering.
This approach will decrease the number of accesses to the volume at the
expense of additional memory requirements to run the application.

Following are suggestions of particular interest to application
programmers:

— Read or write more data per I/O operation.

• For sequential files, increase the multiblock count to move
more data per I/O operation while maintaining proper process
working set sizes.

• Turn on deferred write for sequential access to indexed and
relative files; an I/O operation then occurs only when a bucket

is full, not on each $PUT. For example, without deferred write
enabled, 10 $PUTs to a bucket that holds 10 records require
10 I/O operations. With deferred write enabled, the 10 $PUTs
require only a single I/O operation.

— Enable read ahead/write behind for sequential files. This provides
for the effective use of the buffers by allowing overlap of I/O and
buffer processing.

— Given ample memory on your system, you may consider having a
deeper index tree structure with smaller buckets, particularly with
shared files. This approach sometimes reduces the amount of search
time required for buckets and may also reduce contention for buckets
in high-contention index file applications.

3—46

Managing System Resources

— For indexed files, you might try to cache the entire index structure in
memory by manipulating the number and size of buckets.

— If it is not possible to cache the entire index structure, you may
be able to reduce the index depth by increasing the bucket size.
This will reduce the number of I/O operations required for index
information at the expense of increased CPU time required to scan
the larger buckets.

3.7.4.4 Disk I/O Load Balancing

The objective of disk load balancing is to minimize the amount of contention
for use of the following:

• Disk heads available to perform seek operations

• Channels available to perform data transfer operations

You can accomplish that objective by moving files from one disk to another,
or by reconfiguring the assignment of disks to specific channels.

Contention causes increased response time, and, ultimately, increased
blocking of the CPU. In many systems, contention (and therefore response
time) for some disks is relatively high, while for others, response time is near
the achievable values for disks with no contention. By moving some of the
activity on disks with high response times to those with low response times,
you will probably achieve better overall response.

Use the guidelines in Section 3.7.3 to identify disks with excessively high
response times that are at least moderately busy, and attempt to characterize
them as mainly seek-intensive or data-transfer-intensive. Then use the
following techniques to attempt to balance the load—by moving files from
one disk to another or by moving an entire disk to a different channel.

• Separate data-transfer-intensive activity and seek-intensive activity
onto separate disks (and separate channels for MASSBUS and UDA50
devices).

• Distribute seek-intensive activity evenly among the disks available for
that purpose.

• Distribute data-transfer-intensive activity evenly among the disks
available for that purpose (on separate channels where possible).

Note

On an HSC controller, it is important to know which disks are
attached to which K.sdi data channels. This information may be
obtained at the HSC console.

3-47

Managing System Resources

To move files from one disk to another, you must know, in general, what
each disk is used for, and, in particular, which files are ones for which large
transfers are issued. You can obtain a list of open files on a disk volume
by issuing the DCL command SHOW DEVICE/FILES. However, since the
system does not maintain transfer-size information, your knowledge of the
applications running on your system must be your guide.

Following are some suggestions for load balancing system files:

• Use search lists to move read-only files, such as images, to different
disks. This technique is not well suited for write operations to the target
device because the write will take place to the first volume/directory for
which you have write access.

• Define volume sets to distribute access to files requiring read and write
access. This technique is particularly helpful for applications that perform
many file create and delete operations, because the file system will
allocate a new file on the volume with the greatest amount of free space.

• Move paging and swapping activity off the system disk by creating,
on a less heavily utilized disk, secondary page and swap files that
are significantly larger than the primary ones on the system disk.
This technique is particularly important for a shared system disk in a
VAXcluster, which tends to be very busy.

• Move frequently accessed files off the system disk. Use logical names
or, where necessary, other pointers to access them. (See Section 1.6 for
a list of frequently accessed system files.) This technique is particularly
effective for a shared system disk in a VAXcluster.

3.8 Summary of Important MONITOR Data Items

Table 3-2 provides a quick reference to the MONITOR data items you will
probably need to check most often in evaluating your resources.

Example 3-3, a typical VAXcluster "prime-time" multifile summary report,
provides an extended context for the data items in the table.

3—48

Managing System Resources

Table 3-2 Summary of Important MONITOR Data Items

Item Class Comment1 Section

Compute Queue
(COM + COMO)

STATES Good measure of CPU responsiveness in
most environments. Typically, the larger
the compute queue, the longer response
time will be.

3.5.1.1

Idle Time MODES Good measure of available CPU cycles,
but only when processes are not unduly
blocked because of insufficient memory
or an overloaded disk I/O subsystem.

3.5.1.2

Inswap Rate 10 Rate used to detect memory management
problems. Should be as low as possible,
no greater than 1 per second.

3.6.1.2

Interrupt Stack Time
+ Kernel Mode Time

MODES Time representing service performed by
the system. Should normally not exceed
40% in most environments.

3.5.2.2
3.5.2.2.1

Executive Mode Time MODES Time representing service performed by
VAX RMS and some database products.
Its value will depend on how much you
use these facilities.

3.5.2.2

Page Fault Rate PAGE Overall page fault rate (excluding system
faults). Paging may demand further
attention when it exceeds the following
values:

3.6.1.1

• Between 30-60 per second for
MicroVAX 1, VAX-11/730, and
VAX-11/750 processors

• 100 per second for VAX-1 1/780-
class processors

• Proportionally higher for processors
faster than VAX-1 1/780

Page Read I/O Rate PAGE The hard fault rate. Should be kept below
10% of overall rate for efficient use of
secondary page cache.

3.6.1.1

^he values and ranges of values shown are averages. They are intended only as general
guidelines and will not be appropriate in all cases.

3-49

Managing System Resources

Table 3-2 (Cont.) Summary of Important MONITOR Data Items

Item Class Comment1 Section

System Fault Rate PAGE Rate should be kept to minimum, no more
than 1 fault per second.

3.6.2.2

Response Time (ms)
(computed)

DISK Expected value is 25-40 milliseconds for
RA-series and MASSBUS disks with no
contention and small transfers. Individual
disks will exceed that value by an amount
dependent on the level of contention and
the average data transfer size.

3.7.3

I/O Operation Rate DISK Overall I/O operation rate. Following are
normal load ranges for RA-series and
MASSBUS disks in a typical timesharing
environment, where the vast majority of
data transfers are small:

3.7.3

1 to 8—lightly loaded
9 to 15—light to moderate

16 to 25—moderate to heavy
More than 25—heavily loaded

Page Read I/O Rate PAGE System I/O operation rate. The sum of 3.7.4.2
+ Page Write I/O Rate PAGE these items represents the portion of
+ Inswap Rate (times 2) 10 the overall rate initiated directly by the
+ Disk Read Rate FCP system.
+Disk Write Rate FCP

Cache Hit Percentages FILE¬ XQP cache hit percentages should be 3.7.4.2
SYSTEM— kept as high as possible, no lower than
CACHE 75% for the active caches.

^he values and ranges of values shown are averages. They are intended only as general
guidelines and will not be appropriate in all cases.

3-50

Managing System Resources

» a
O -H

OS s
as

8CS Q ifl H O COO^OOCOOQ
OOCOOO COOOOO^OO

o o o o cd o oddodcoo-rH
CN CN

a O O O CO CD O ■d'OQOQWOiO
9 OOOOCOO ^OOOO-rHOO

s a.
O H OOOOCDO ^OOOO-HOO

OS a y-i

Q^OOO'rHiOO -hOOOOOOO

oddddo sodooNod
OH CN H
as a>

>

S a OOOCOCNO COOOOOCNOO
o 9.
as co oooocno oooooooooco

00 CD

£
(0

E
E
3

CO
0)

0

0?
3

o

X
<
>
0

E
■ ■■

H
0
E

■ H

CL

0
Q.

E
0

CO

CO
I

CO
0
a

E
0

X
LU

£

00 OOOOCOO 'tfOOOO-r-iOO

f-1 CO
o o

00 ••
wg

w
o co co

oo oo
o o

CN
o

co oo
H O

O ^ O O IO
-d* o o o o -rH

ID
o

O
O
H
CO I

X
■<
•—>

i

i
X
«<
*->

t-

8rH O h o id H Q COOOOOOOO
O OOOCOOO COOOOOLOOO

05 00
O T*

cd CO
00 00

woo
O rH ■*—4
2 I t

X X
•<«!

I I
t"- f*-

H CN
o o

O O O O CD O
CN

o o o o o
CN

§ 8 8 o So 8 S8888h88
o oo
O -H

CO CO
OS 00 00
ai O O

nH nH
W I I

25 25
< •<

I I
c- t-

~ 3 8
CN •• ••
W CN 00

OOOO'HO f'-OOOOCNOr-i
CN r-i

8 0 O CO CO O COOQQOCOQO
ooocoo COOOOOOOO

ddddcbd codoodcodd
>*
W CO CD
►J 00 00
OS o o

a>
T3
o

+ — +

1 1 P /—V
X X •H XJ
■«*: cd ©
1 > •-> :< X

i 1 p X
© •H P cd

4 o cd •H »
H » cd a

• • P 9 3* p
a •H o b0 S3
o t • cd n cd b0 O
u o V rH p cd
w H aS W •H rH

0) cd X bC
bO D P rH
cd CD rt P U*
X •H 0) p a

as > rH ©
t X) W 3 >

© <£* cd w w
'O a W
•H X o rH rH
rH 0) B <D cd cd
rH P g b0 U U
O S3 O cd o O
O as o X w ►J

T3
0)
x
Du
cd
*
m
p
3
o

a> v
+3 p
cd cd

g g
& £
•H -H
X X

X) Xl 01
<V H) bO

■O fl cd
a a x
a’ a>
X X ©
n oi o
d d h

co co w

3-51

Managing System Resources

t:
o
a

a>

(0

E
E
3

C/>
a>

a>
*■»

<0

_3

O

X
<
>
a)

E
■ IB

H

0)

E
■■■

£
a>

a
E
<u

C/>

c
o
o

n

i
CO
a>

a
E
(Q

X

£
+ - +

«* a
O -H

08 2
2

2* a
O -H

oe; a
•H
2

bO
£ cd
o P

PS a>
>

o

CO
^ o o
00 •• ••
^ g oo

W
O CO CO
O 00 00
o o> o>
H <rH
CO I I

I I
c- r^

CO O 00 § tH 8 LO CN LO LO 00

o CO 00 O
H 00

CN CN 00 o 8 o
O O

CN H o CO O H

00 CN 00 00 O CN

LO tH 00 H LO o CN
CN LO

CN 00 00 CN o 00

00 CN 00 o 00
CN H O O

CN

CN CN 00 o t- 8 0-
O O r- 00

CN H o co o

O 00
O tH

co co
00 00

woo
O ▼H I
s I I

•<
•"o »“>

I I

>* CO CO
ps 00 00
2 o o
W l I

< <

I I

CN C-
CN LO tH 5 LO

CN • • • • • • •
CN 00 LO H CN tH 00 H ▼H H

>■«
w CO CO
□ 00 00
p£ o o
5 <*H 1 H

1
:z;

1

«< -<
>->

I I

00

o CN 00 O 00 8 o
CN CN CO o

LO CN
▼H

o LO
CO

▼H CN CO o 00 r- 00 8 o o LO CN LO o CN

d
o

00 o
▼H

CO
▼H

o o
H

o C-
LO

o

• • • • CP
Q) a T3

o • • O
O p o 0) S

w E-* O 0) T3
cd XJ O >%
P o 2 P
CO 0) 2 •H

TJ P rH
P O 0) O a> •H 0)
CL, 22 > CO TJ a
? •H •H o •H •H
Ci rH P > s P H*
P 0) 3 P cd
0) u a> p a. 0)
P c 0) CL, a> a rH
a 0)

cd
P CO o T*

►H w CO S3 o hH

3-52

Managing System Resources

C
o
a

a>

cc
>
cS
E
E
3

(/)
0)

a>

to
J3

O

X
<
>
a)

E
■■■

i-

a>

E
■ H

CL
0)

a
E

o
Pi

&
o
Pi

£
o
Pi

o W

B
•H

3

a
•H a
•H

a)
to
cd
P 0)
>

CO

CN CD
CO tH o

LO ▼H
CN CN

O N* O) 00 CN CD
00 (N O o O H

CO CO
CN

00

00
O O

8 00

w
o <o co
□ 00 00
o o> o>
fc—« ▼H tH

CO I l

«<

I I

o

00

o CO CO o 00 0- o> o CN ID
CN H o

LD 00

8
rH

00 CO O ID 00 00 00 CO rH ID CN rH
o 00 r- O o o CO 00 O rH 00

o o CN o ID o o d CO
CN ID CO

^H

O 0- o H tH o o> 00 o 00 o o

CN 00 CN o ID d o o H 00
00 ▼H 00

0> CN
00
CN

O o CN ID CN 00 00 o 00 00 CN

00 ID 00 CO o 00 00 0- d o 00 0- CN
CN 0- *H CN CN 00 CN CO 00
▼H o>

ID
H

CN CO rH CO O g> o CN 00 co co
00 tH o o 00 CN o> o ID CN

O co ▼H 00 o 00 o o ID
CN H o

ID s

CO CO
00 CO

woo
O H
S I I

25 25
< <
*-> *-)

I I
h- 0-

CO CN LD ID 00 8 00 CN LD CN tH
LD O o CN CN ID CO o O ▼H 00

00
LD
CN

CO o CO o> o> o o d
LD 8

iH

H CN 0- 0^ 00 O o> 00 o r- CN CO 00 00
o o ▼H G> H O 00 00 o O *H O ID

CO
o o 00 CN CD 5rH LD o 0- CD 00 O CN 00 H
»H o ▼H 00 ^H 00

•P H 00 CN
•H CO >-» >~ CO CD
H W w aj oo 00
•H E-* 2 o> o>

CO
<*: *h

3 8
00 CD Oi LD oo 00 CN CD ▼H ID

8
o

CO G- CT> 00 0- o o O 00 o CD
<J UJ CN

CN 00 o 0- o CN o LD LD o O LD 00
tH H CN

w >~ Oi ^H
■ o w CD CD CN

> < 00 00

c CL, O
rH

o>
▼H

o 1
5z;

1 0)
-p

a
<
•->

a>
-p CD

i i cd 0) -P
w -p cd -p

rH H <D cd W rH

CO ♦ — ♦ , , , # 0)
a>

L>
•P
cd

■p
rH

Pi
■P

P
cd CD

1 1 1 CD a -p cd Pi P -P rH W CD N

CO

1 W i TO o • • cd W cd rH P •P •H
1 > 1 o p O CD Pi 0) -P W P cd CQ cd CO
1 *< 1 25 w E- -P 0) -P o rH cd W CO Pi CD

a>
1 1 cd -P o cd 53 •P W CD N -P
+ — + W cd W hH cd CQ no

U)
•P •H CO

a W •H O •H rH CO •H

a *P a? (V W p rH O P W
rH n0 no -p -P •P Q) cd

£
cd •P

#■ P cd cd •H •H CQ no M > W CQ TJ
e cd 0) Q) P •H 0) •H CD

<0
w w Pi W •H no rH P a W •H

HH g cd hH CD
<d 0) <D a) 0) 0) •H ■p CD •H

X b0 b0 b0 b0 b0 <P T> a O -P CO 0) no

UJ
cd cd cd cd cd P O 0) rH P >> P o

CL Pu CU CL CL W 2 Q O CO W

a>
U)
CD
a

s a>
c
c
o

■o

a>
3
C ■ MB +-•
c

o
O

3-53

Managing System Resources

CN

W
>

s
o
as

o
as

t- ^ 8 ^ o* a.
•H 0> CO O O r-i T-t

s

OlONlOHOtOtO
*"NO " CO rH o CN >cf CN

OC'JCOO^iO
cn o

ID CO

a

00 O 'f o
CO CN CO CD ^

CO CO 0> ID CO
Ol OO s o o

8
ID t-

C O O O Cf o ONOtNOOOMD
ID CO
■cf -rl

CN

CO

®
bO

* «J
O M
as 0)

> «<
s a
o 3
as co

co
o o

^ OO CO ■<# S S ONOHHOCOOO

f» CN o o c- o ncon^oothn
CO tH CO

O CN
CO
CN

C— CO LO O) 0> CO OONlO'fOlOcJ

0> H
CN ID

O CN
CO

OOlOOOOOOOH
N S -rH CO CO

N O)
ID

co ^ ^ <o s o
t*- t*- *d* ID ^ CN

CN CO
CO ^

t*-
o

CO CO
^ CN

8 00 CO CO O O *-c *-i

Ed
U CO CO
O 00 00
o o> o>
H H H
CO I I

Jz; 55 -< •<
I I c- r-

O®nc0OO^iD
r CN o

ID CO

rH
o

00
CD

00
o>

CN CO
CO 8 co

ID
CN
o

h-
o

ID
CN

rH
CN 8 ID

t"

00
rH

CO to
rH

o o CO o
CO

ID
CN

CO o o CT>
ID

CO CO
00 00

U O) oi
O tH *-h
5S I I

5s as •< ■<
I •

t*- C"

CN ^ ID ^ H s
tH N N1 N1 00 N*

t*- t'-
N1 0>

00 N1 O) O CD CO
O O ^ ^

O ■»H O O CO o CN CO
CO -»h

ID O O t"
00
00 CN

^ O N1 O H 00
H D CN CO (O CO

CO CO OJ ID CO O CO
o> CO t*- O O O 00

CO
CO

a> a
T) O ••
o p o

S5 U, f-<

N CO O O cf O

o>
P
id
as

Q)
® p
-p n)

« id id
P oJ
id <s>
as o p

O
CN

C- O CN o O ■'d'
^—4
o>
CN

CO t*-

0) 4)
bO bO
id id
a. cu

a» ©
T3 P P
cd *H *H
0) U M
as & »

® a> a>
bo b0 bO
id id id

cu cu cu

3-54

Managing System Resources

o
as

0
•H

3

00 00 CO 10(0 0 lO S CO
(O w H CD 00 O CD O CD

© O O T-t o O CN O O

t" o o>
^ n o

a (O CO 3 CN O Q Ot^-O 00 N H
3 t*- O O CO O' O -rH O ©

s a.
O H -H O O OOO -r-tOO ooo
as a

a>
hO
cd

CN rH o CN © o rH o Hi* © t*- o

3* CN o o rH o o CN o o o o o
O U

OS 0)
>

•<

* a rH © o CO o © © CT> © © CN
o 3
as co 0> o o © CN o © o rH © CN o

♦ — +

w
> «*:

©

CO
o o

oo oo CO
lO rt r(

8 00 CO o o

CN CO O
CN 00 O

h 6 o

O S CD
rH O ©

t" o
-*J* CN

rH O O H rH o
w
O CO CD
O 00 00
0 0)01
fn H rH
CO I

-t
<->

i

i

«<
i

8S

8 5
CD CD
oo oo

W O) O)
CD H rH

5E i •
25 2 < *«

l I

•rH CN
o o

ID O O
00 rH rH

O CN
CO LO

co s co
^ O (O

00 S CO
t- ^ o

•rH O O tHOO CN o o ooo

© CO o
S ri rH

LO CO
CO CO

cs s
Hi* O

co t*- in
t» H* o

00 tHOO tHOO CN o o ooo

►< © co
as co oo
2 oi o>
■*£ rH rH

_) I •
s: 25 < «< *-> *-»

• i
r- t*-

5 8
as rJ 1 CN
CL. 5 ► CN ©

rH rH
W >-
►J W © ©
►H TO ©
U. pcS O) o>

rH rH

25
«< «*:

•>#«-<?
0)0 0

•rH O O

CN O Q
00 O

OOO

LO O
© O CO

00 00 -rH
Hi1 © O

CN o o OOO

*->
I

f-

*->
I

f-

« a
TJ o ••
O M O
2 t. H

0)
P
cd

cC

cd
p
cd

P5

p cd cd a>
a> a> •H u. p p
p V p cd 5 cd CD

0) cd p cd a> a> as P
p 05 cd as p bO cd
cd 0) © cd cd a. ©
oi a P a> CJ cu L 5 CD

o cd TJ p o *3 a P
rH •H 05 cd •rH rj a *- o 0) cd
rH P a> CJ >» o Cl, as
cd cd a) as a> •H © * -J o
O CJ p a H o CD

O cd Mi 3 cd TJ 0) CD CD
CL. rH a) a CO rH © rH a rH rH cd
o r—I •H •H O CL, •H •H •H •rl

u3 u. << o a Q > o U. & U. U.

3-55

Managing System Resources

£
<Q

E
E
3

</>

CO
I

CO

0)

a
E
c0
X

III

a oo o> ID ID ID o> O
3 o ID 00 00 LD 00 ID

3* a •
o •H 00 CD o ID o 0- CN 00

PS X ID CN t*- 00 CD CD rH
cd ID o> O rH CD
S rH CN rH CN ID

o>
o 88 LD

00

H o H rH

00
CD

00
CN

CD CN
CN

n
8

00 CD O
8

LD o ID
8

O 00 CN

ca
CN CD CD CN 05

o
M

•H
8

CN rH 0- 0- LD CN 00 00 LD rH
o2 a 00 rH rH 00 00 rH rH

•H CN 00 05 CD CN
rH CD rH rH

00 00 CN
00

a>
bo
cd

o> o o> CN CN CD 05 CN CD 05

£ 00 rH

8
rH d

8
LD CN LD LD

o u LD o CN CN rH CD 05 rH rH
pc: 05 00 rH 00 00 o> CN LD

> CN 00 05 CN
ID

£ a 05 rH 0- 05 05 05 LD
o 3 •

02 CO LD CD t*- 00 00
00 rH 00 00 00 05 ID

CN ID rH CD
00 00 rH 00 ID

S O 00 S 00

00
CD
CN

00 o>

00 CN 00
CD CD CD
00
O
H
CN

00

rH 00
o o

00 ID
h- rH C- o> 8 CN O O CO 00 H

O ID CN ^ CN ID

8 00

W
O CO CO
O 00 00
o o> o>
H H H
CO I

*">
I

0-

00 o
CN CD
ID 00

CN

O

£ 8

i

*-5
i

rH 00 t*- rH ID LD
00 rH LD ID rH rH
05 CD 00
05 ID ID
00 00 CN

CD

00 00
o o>

SID O 05 ID 00 O Q Q ID
00 ^ ID ID^OOOOO

0- ID

S 8
05 h-
CN CD

W
>

♦ — +

8
05
LD

rH
LD

CN
05

ID
00

CN
05

t-
00 8

rH
00 8 8

CN
05

00 CD CD CN O d CN CN CD rH
00 CN LD CN 00 LD CD CD LD rH rH rH
CN rH 00 rH r-
rH CN CN 00

o CN
rH rH

8
8

00 CD O $ o O LD £ o CD CD
CN CD t*- CD CD LD

CN rH 0- 00 ID CN 00 00 ID 00
00 rH rH LD 00 00 rH rH
CN 00 05 CD CN
rH CD rH rH

00 00 CN

a> a
T3 O ••
O M O
2 U< H

00

0)
rH

cd a)
rH CO

■a&
> a

«< hH
0) 0) 05

rH rH rH CD CD rH o
P P P 05 05 O CJ o
cd 05 cd 0) cd 0) P P O O rH

rH CD rH CD rH CD >> a rH OQ
•H •H £3 •H S3 CQ CQ PQ
cd cd cd a P
> 0 > a > a U U H P CD

IH •< IH < hH •H *H CD 05
a a co 05 rH

CQ CD CD CD CD CO <d cd 05 b0 rH
a. a a a a a dan H cd
02 02 a: pe2 02 02 >> >> o cd a
CO CO hH IH P P Q Q X P CO

CO

a>
P
>>

00

CN
00

cr
w

M
O

CQ

CO
a>

u
o

3-56

Managing System Resources

co
I

CO
a>
a
E
(0
X

IU

s
o

05

a
•H

a

s LO
CO

CO to
CN 8 88 t"

CN
CN
o

00
H

00
▼H ▼H

o o o o o
o
CO o

a h ^
3 o <o

* a
O H CO CO

o5 g
•H
s

05 CO 00 CN
oo o o o

co o o o

8 0 O) 00
O S

o o to oo
CO o
LO CO

5
o

05

a>
b0
ctf
G
a>
>
-5

CN CO

CN O

O -H

CN O

■H O

o o

o o

o d
05 H

05 LO
CN ©
■H 05
H

:< s 00 o
o 3

05 CO 00 CN 00 o

LO CN o o 00

o o o o 05 o
n-H CN
LO CO

00

00

00
o o

LO LO
LO CO

LO o
00 H

00 CN
tH O

8 0 CN CN
O CO O

8 2
w
O CO CO
“ CO OO

05 05

00 00 OO O OO OO tH
▼H P LO t—

CN o

o
o
E-
co I I

z: z:

*“5 •“>
I I

8 tH
o

CO
CN s 8 05

o
H LO

o 88 H
00
co

05
o

00
▼H H

CO H
H

o o o o o 00

8
CN
CN
05

co co
00 00

U 05 05
O H H
2 i i

55 55
"< <
*-5 «->

I I
t- C*-

CN CO LO 05 88 o
o O O ▼H f- CN o CN LO

CO
o 05 00 00 t*- o o o o o G1 LO
HH o N—t ▼H nH o ▼H

P H cO o
•H CO >- CO CO ^H H
pH 5—1 00 00
•H E—' 2 05 05
p <
50 E-h p 1 1

CO p 25 55
Eh <
O E-
P 55 w 1 1
H p t" t-
a hH ▼H n-H
o fxJ u.
>: o 1

CO
*< h-4

1- 8 rH
o o

05
00 8 00

o
CO
o 8 8 05 CO

LO
X <1 CN • •
p* 'W* CN 00 CO o LO o o o o o LO CO
\ nH nH H CO 8 LO

o w CO cO
> o p 00 00

p ps 05 05
B npH H

55 z;
-< <5 05
•“5 ' 5 p

1 1 (d
t"- t- 05
ntH n-H 05 05

p p p
+ — + • • • • 0) •rH td <d 05

1 1 05 a P 05 <d 05 05 p
1 w i XI o • • td p •* <d
1 > i o Eh o 05 <d X) p 05 05
1 ■< i 55 u. E- 05 o 05 o 05
1 i car E- G Eh X) CJ
+ — + 05 z; E—1 05 cd G Eh

P w CO X) G 05 •H 05 G
<d "< 05 car CO u. p o

05 T3 cj CJ CO
05 05 ho u p p p o 05

car P p G o o o o p 05
55 Eh td •H Un z: o o

. W 05 05 J* rH rH rH rH
> CJ 05 05 X) X) cd cd

•* G car o car car <d <d p p
05 O w rH 25 55 05 05 o o

55 O Q 03 w w Q Q E- E-
I

3-57

Managing System Resources

» a
o -H

* 3
35

oo o>
00 f-

00 o
00 o
o o

8 oo

o o 00

I 8
* a
O *H H

otf a
•H
35

3 8 8 8 8
-h o o o f-

0) (D O
b0 •

tH *H

o p
as a>

> ■<

o o o oj
o o

CN

•*
o

to CD

05 CO CD CO

00 O

o o
o o
o m

oo

oo

8

00
o
00

oo o>
00 f-

w
O CD CO
O 00 00
O 05 05
H H tH
CO I I

*4 *4
*“5

i i

t- t*-

8 8 8 8
o o o

o oo

i

° §

05 00
O -r*

CD CD
oo 00

W 05 05
O i-H tH
35 I

*4 *4

i i
C" t*-

8 8 8 3
o o O 05

CN

CN -rH
00 t*- co 8 8 ^ CO 00

>"■
W CD CO
hJ OO CO
P5 05 05
P tH

k i
I I

t-~- t-

oj s
tj o ••
o P o

55 U« H

a> a>
■P -p

cS ,5

■p
a>

u <0
a,

o
o

o o

■p 05 >5
o
cd
cl

cd
CJ
o
►4

b0 bO
a a

•H -P

45 £
P Du,

4j 8

a> a>
■p -P

■P oo
a> oo
M O
o
cd

Ou,

n

s
p

(->

p)
o

o o
CO

8 3 8 8 8 8
-r-1 -rH o O O f-

a>
■P
cd

aS

05

£
cd

a
b0 O a o

•H
> 00

t %
Z ft

■P «H
00 «H
05 D
bo CD

p
05
>

•H
05
U
a>

as

05
rH
JO
cd

i—<
•H
cd
>

00
CL,
as
rJ

3-58

Managing System Resources

0
o?

o
X
<
>

CO
I

CO
0

a
E
0
x

Ul

LO co CO CO N1 CN CN CN CN 05 8 CO r*- CO a>
a o> . in H O 00 O H rH in rH rH m o 05 •r-
S $ H t*- 00 CO CO CN 8 o 8 o 8 o 00 CN o <0

Q.
3E

o> 05 t- CO m o> r rH m 8 CO *0* 8
S a>

CO 00 CO co CO t- o •t H o 00 c
o 05

n •r- a •H 8 o 8 rH o t-- H 05 o in 05 o 00 05 o CO o c
o 3S T3
a> a> o> b0 • Cd CN

05 05 in o o CN o CN ■r in o t" o 3
i o CN CN CN 00 o t*> o 8 o in o C o 06 a o> f- t*- 05 05 rH ■ ■■■

> C ■< o
O co CO o> co H CN H CO 00 co CN CN o CN o 05 CO -rH CO H o 8 00 CO o 00 rH 00 o CO o r- O rH 05 00 05 co CO CN CN CO CO CO

+ — +

rH CO
/-N O O
co •• ••

oo

w
U CO CO
~ oo oo

o> o>

lOWrtOOHWNCS 05 05 in CO "cf CO
OlOH^tOCONH CO to Ol n 00 h

s S CO lO M N O
oo t- o> $ ° 8 O CO o

o
o H
CO I I

z 2; ■<
i i
t- f-

(OCOcfS^OOlDOl
SCO^COOOO^O ^ CO

O O CO S ^
o t*- o

00

co co
co 00

U OMJ
O H H
S I I

Z Z << «<
I I t-

O O -T CN CO
05 CO t*-

00 o
05

LC5 o
05

O 00 o
CN

OIOSCNMOiStH
COCOOOrlrlCOCOn

o» O CS CD ^ cs
co u> co o o

05 O
00

CO Tf t*- t- o
o>

t*- o o> O CO o
Ol (J CN

OOlCOCpiOlOCN^1
ifl^TirteocooO

OJ LO CO CO
▼H rH CO O CO 8

•r o 05
05 t"

a> p

o 8 o> O 00 o o 05 0>

p (X

05
» %

05
1 N

05
I N

05
1 t

05
1 ■>

05
* N

•H

<3
+■* cd 06

4-*

£
■H cd 06 £

p P p P p P
1 05 a X a S-* a SC a X a a a X a U3 l TJ o • • 05 05 05 05 0) 05 05 >• 1 o u o P P P P p p P P P p p p P P «< 1 z Uh 8-* •H P •H P •H p •H P •H p •H p •H P i x •< SC ■«< X *6 X *< X •< X «< X *6 — + N—' v—» •«—/

n cd P 4 o o cd X »H Q 05 0 M M r—1 rH •H •H •H •H Q Q U« Un

p
a 0) p
3

cd p
o s»

car

{X cd
a p •H

CQ

3-59

Managing System Resources

o
ceS

S
■H

s

^co(OiH(QOHONcoio(oo(on
LOOLO-rHlOOiO'^'COOOOOCOO

THO-rHt-tCS^COO-^tOOOO^HO

a t^-rHOLOocsiotHtooooooo
3 OOOOO-rH-rHO-rHOOOOOOO

O H OOOOOCNOOOOOOOOO
as a

3*
O
as

a>
bO
cti
u
®
> «<

T-touocomcO'rHCNcoooooooo

■•hOOOtHCOiHOOOOOOOO

S 0 lO-r-tCO^^CN^'OJCSOOOOcOO
o 3.
as co ^ocN-rH<ooo-^ocooooO"-io

co

co
o o

LOOOOLOCDf-^'OOOOOOQQQOO
■r-tOO-r-tCOCOT-l'r-ICOOOOOOO

■r-tOOOCNCNiHOT-tOOOOOO 8 2 (ll
O CO CO
O CO 00
0 0)0)
H H tH
CO I I

55 55 •< -<
I I

t*> t'-

§ ^ -H
o> o

00
lO

THOOOcOOt^-QLOOOOQQ
■rHOOiO^cOOOOOOO

8 00 OO'rH-H-^’^OO'-HOOOOOO

co co
00 00

W CD CD
O tH -r-i
3S • •

55 55

I I
0- t~-

•H CN
o o
CD 00
O T-t

CD CO
a? oo oo
Cd CD O)

►J I I
55 25 ««»:

I I c- f-

^-tHCOlOOOOtHCNCOOOQQOOQ
OOOcOOoOoOOOOOOOOOOO

OOOOCN0000OOOOOOOO

CN
■<* CN O CO O CN LO

LO O -rH -r-t ▼-(T-t CN
CN 8 g CO
O O O co O

w CN 00 -HOOOOCNOOOOOOO-rHO
f-H

u co co
i-J 00 00
as OJ o>

• I
25 2
■< -<

I I
N- t*~

+ — +0)
+3 a) a
flj *C3 O ••

Otf O M O
55 U< f- a

+ — + o
•H
■p flj
Jh
a>
a.
o

Uh CO
05 PC
W Q
a. a,
Q 2
co 5
H Q

CO
t—t
Q

2c «
^ CO
CO t-t

s §
*< Ou
Ol, 00

>

s
I-1 »■
CO CO u
Eo h cq aS J

Q _J Q Q W CO
3 o w co cl,
< J! 2! h Q
D a h 2 co
a co h a H H

.H CN CO 00 ••
CSCO^lOCOSHrtHHOO • • • •

QQQQQQQQQQQcrf>]

H H rH H H H H rH H H H O O

•<
Q

o

Q

8 o
CO
S3

3-60

Managing System Resources

t
<u

E
E
3

CO
0)

■

o
o

CO
I

CO
a>
a
E
c0
X

LU

o
at s

ss

COOuO^CTl'^'O'-i'^OQQQCOO
OOOOOCN-rHOOOOOOOO

ddddddddddddodd

a cooooooooooooooo
3 ooooooooooooooo

» a.
o h ooooooooooooooo

CtJ A
■H
55

© OOOOOOOOOOOOOOO
t»0.

s a ooooooooooooooo
o ^
at ©

>

s a ooooooooooooooo
OP.

W CO ooooooooooooooo

CO

CO U3QOQO>cO-<fQ'tfOOOOQO
OO OOOOO-rHOOOOOOOOO

00 ooooooooooooooo
w
O CD CD
O 00 00
o o> o>
[—i th h
CO • •

55 55
•< -< ►“> >-»

I I
C-- c-

O) 00
O o

CO CO
00 00

woo
O O hH
55 I I S s;

•“> l—>
I I

t*-

0 CN
o o

C'OQiO-'tfcO’tfOoeOOOOOOO
OOOOOCNOOOOOOOOO

oodoooooodooood

CO
o

CN
o

t— CD O o
O H H O 888 o o

o o

CN

O CO
O O

co co
00 00
o o

55 S5
< <

I I
c^- f-

* 8

ooooooooooooooo

CN 00

8ooqqo-<-iqcooooocoo
OOOOthOOOOOOOOO

ooooooooooooooo
>-
W CO CD
-J 00 00
Pt o> o>
3 rH tH

.a < <
-p •->*-)
bO I i
rt r- t*-
© H O
►J

+ — +
1 1
i w 1

©
p

W
T3

a
o

Oh
Q
CO

• > ■ © O o H
t ■< 1
1 1

p
Or

'at W

w
CO t—t
a
a.

w
CO
t—I
a a,
*<

S3 o
•< a,
a. oq

w
CO

-"31 >"•
> at

s 1
H W o CQ
CO CO W t-H
O H M pi iJ 2

q_JQ0WOT-<0
W O W CO OU S W
5 55 S tH Q a W
OCTH^COlijpiW
CT CO H Of H H O

4-> oo
V
& ©
at

.H CN CO 00 ••
CSCON'lOCSHHHHCO •• •• 1-*

QQQQQQQQQQQCJrtSQ
Q «»

THlHrHrlrliHrHHrlr(r(W W -rH
OOOOOHHH-tOOt-tTHWWo
H H H H hH H H rH H rH H CD O H

554*

O
•<
o Q
4»

8 O
CO
«

a>
a)
CD
a.

-4-»
x
0)
c

a)
3
C

■ ■■

-4-»
c
o
o

3-61

Managing System Resources

E
o
a
a>

DC

£
<0

E
E
3

<0

0)

<D

CO

J3
o
X
<
>
o
E
H
0)

E
■■■

a
o
a
E
<0
(0

o
o

CO
I

CO
0)

a
E
<Q

X
LU

S3
■<

*
o
a! 3

s

(onoarKOQcooou)
ocNoot^t--ooocDOoocNco
oocoiotfcnooooiooooncoo

* * 8

0 00 CO CO rH •fl* CN 00 t- o> rH CN 8 o> CN 8 P t- CO rH LO C- c- CN CO o o in
j* a •
o
os

•H rt CN O H CN o o CN o rH o o o rH rH o

•H
2

®
to
fl

to rH LO 00 o in o o o o CO CO o

s m CO CO CO CN -fl* in CO CO o o o CN CN o

OS ®
>
x:

a O o CO o> CN o CO co rH rH rH CN -fl* o
o P

OS co CN CN •fl* LO o co CN CN CO o o o d o> o
CN rH H rH rH rH CN rH rH

ft CO
*-N O O
CO •• ••
^ g 00

0(0(0
O 00 00
o o> o>
H ft ft
CO I I

25 25
•< <
•-» *->

I I
C- C-

8S
§ S

to to
00 00

u o> o>
O ft ft
3S i •

55 55
•fl «<

I l
t*- t*-

I
55

I
25
*<

I I
t- C-

CN

♦ — +

HOOMOeOHiOOO^««ONO
soo5ojnot>-oi(0000'#(o0

lONifl^HcoiflwiooOOnrtO

iOHiosuj(oio8'#boo«9

lotNn'fomoNndoocsrio

ft CN
o o

8 2

>- CO CO
as oo oo
2 o> o>

(OCOtOtNHCSQCOltpCSOlHrHO
OCNt^HCOt>-OOcOOOOCNOO

OOCOH^CSOtOCOrlOOOCNcio

3 8
CN 00

COMOlHHSCOSCNHifl
SCOOOtHStHSCNOOOO

^1* CN
CN LO

MOCNCSOriCNOCNOOOffJriO

<o co
00 00
o> cr>
H

I l
25 55
•<
»-> •->

I •
f- h-

® a
xj o ••
o u o

55 U« H

(0
O
O
►J

b0 bO rH
a a <d

•H -H O
a o o
o boj
O P w
fl fl
HO®
^ w p

<d

DO h0 H
fl fl fl

•H -H CJ
a o o
O bO >-]
O P w

fl fl
H-t o

®
p
fl

OS

u

«
25

car

w

s
P
fl
V
>
fl
o
o

®
p
fl

OS

w
Q

» ton
fl fl fl

•H -H O
a o o
OH)-}
O P w

fl fl
H O

V_^ Q)
p
fl
os

H
CO
•<

to
fl

•H

o
o

rH
CQ

to to to to
fl fl fl fl

•H *H *H -H
a o a o
o to o to ®
o P O P P
fl fl fl fl fl
►—(O t-1 O 06

V
p
fl

OS

fl
p
o

Ul

fl
•H
Q

®

SP
n
co
«

2E

o
o

rH
T3
fl
®
a

3-62

Managing System Resources

CO
I

CO
0)

a
E
(0

X
UJ

p

s
o

OS

s
o

OS

to o>
•r-t 00

co o m
O O 00

CO

a

a
•H
2

a>
hO

■e «J
o P
at (V

>
■<

5 a
o 9
os co

H CO
^ O O
CO
w g

u
0(0(0
o 00 00
o o> O)
H rH H

CO i l
:z: 2)
< *«

oloooooocn
CO CN

8"888888
OOOOOOOOO

CN

OCDOOOCNOCD

OOOOOLOOO
CO

T-tioOOOOO-'S*

OCNOOO'POCN
CN CN

O CT>
O 00

o o
o o

00 O CO
O -S'

00 OLOOOOOOCN
CO

I I
t- t»

O) 00
O T-t

CO CO
00 00

WOO)
CD rH tH
s I I

55
-*»: •<
>-) •->

I I
r-

T-t CN
o o

loloOOOOOOO
-H-r-tOOOOOO

OOOOOOOOO
CN

O) co
O -rH

oooooooo
oooooooo
oooooooo

CN

•H >- >* CO co
rH 00 00
•H CO O) o>
p o N—< ▼H
O hH s w 1 1

H 5 55 55
P CO 5 < <
o t—(O *“)
p H w 1 1
•H -< —J t-
a F-> hH n-H rH
o CO Un
s 1

CO »—1 2? co o E- rr O
CO CN

CN co
n—4 npH

>*
w CO co

> -J 00 00
o> O)
n-H ▼H

55 55
<< *<
o

t-
rH ▼H

+ _ + • • . .
1 i a> a
1 w I T3 o • •
1 > i a> O p o
1 ■< i p 55 Up E—'
1 i aJ
+ — + as

o
LO

o
o

to o
00 o

00)000000
CN CN

CL,
cd
2

00
a>

£
W H PO S
O H-l o o
o as w o o

55 w o 2 o o o
< O H 3 U CO CO
> 2 CO J Q X 3!

3-63

Managing System Resources

t:
o
a
a>

o

X
<
>
a>

E

co

i

CO
a>

a
E
<u

X
ill

» a
O -H

02 S

CD O CO Q
LO CN LO CO LD CO

O CN s O 00 CN ^
CN CO O H O H S

O CD ^ ^ 00 O ^
t- 00

O) O N* OO CO O CO
**2* O ^ rH

ID CO

§

I
s* a
O H

02 d
•H

CN CN 00 O S
o o>

o>
00 o> S 00 CN CO 8

CN rH O CD O rH O O Cb O CD CD
CN 00 00

0)
bO

£ cd
o u

02 0)
>

-a:

00 CN H 00 00 O CN O* O O O rH r* 00

LD CO ID O CN
CN ID

O CN CN CO d1 N
^ CO CD LD

C> CN
00
CN

CN

CO

W
o
o
o
H
CO

£ CN 00 CO CN O 00 CD O CN o CO
o p

02 CO CO CN CO d 00 CO 00 00 CN CD Cb rH
CN rH O o CD CN LD rH CN LD

H CN H rH 00 o
LD H
rH
H

rH CO CN CN 00 o 8 t- CN H O 00 00
o o O O «2* ^2* CO 00 CO rH o

8 00 CN ^2* ■H o CD o ^2* o rH CO CD CD CD
H CO CO t2* o rH

LD CO
CD CD
00 00
o> o>
rH H

I I
^ 55
<* <

I

O CN 00 O 00
^ CN CN CD Oi

O O CD S S CN 00 00
CN ID O 00 CN CD O

O 00
O ▼H

CD CD
00 00

woo
O rH rH

s I I
^ 55
«< <

i i

ID CN N1 N1 N O ID
rH CD

O N* N1 O O CD ID
N* CO 00 00 rH

^ <rH

^ CN
o o

CD O CO S CO
LD CN ID O CN «2*

CN S 00 00 CN CN N1
d1 H o H H s

00 O CD ^2* o o o r-
rH tH LD

CN CN
^2* CO

>~ CD CD
02 CO CO
2 o o

55 55

•"> ►“>
i i

00 ID O

O CN

CN
* 8 H CN S

CN ID H 8 LD
8 0 CO CO O CD

rl O) s 00 S 2 8
CN 00
rH H

>"•
W CD CD
J 00 00
^ o o

rH tH

55 55

I I

ID H CN H 00 O h- O O O ID
C0 CN ID rH

O CN
CN

CD

£

• • • • 0) 0) 0)
0) a T* P N 0)

T2 o • • O cd •H p
O u o 0) :s 0) D2 CO 0) cd

55 w H u a> T2 P 0) P 02
cd O >> P cd o N P cd
p o 2 p d w •H CO D2 O
CO 0) 2 •H d HH CO •H

T3 rH o p W O hH
p O 0) O 0) •H a> o rH T2 P \
o. s > CO TO a d cd CO T2 hH T2
p •H •H o •H •H CO cd 0) •H <D 0)

rH P > 2 P H CO W W W •H P
0) d U cd 0) MH U 0)

Q> p u & a, 0) u 0) 0) 0) •H 0) HH
P c <D 0) a rH o bO bO 0) T2 u HH
a 0) X d CO o T2 cd cd Sh O •H d
►H w w CO JD o hH Dr Dr 0u w 2S Q OQ

3-64

4 Diagnosing Resource Limitations

When you suspect that your system performance is suffering from a
limited resource, you can begin to investigate which resource is most likely
responsible. In a correctly behaving system that becomes fully loaded, one
of the three resources, memory, I/O, or CPU becomes the limiting resource.
Which resource assumes that role depends on the kind of load your system
is supporting.

4.1 Diagnostic Strategy

If you are uncertain where to begin, you may want to proceed by first
checking the possibility of memory limitations. You can next check
I/O limitations, followed by CPU limitations. It may be that your final
investigations will lead you to conclude that the real source of the problem is
human error, possibly misuse of the resources by one or more users.

This section describe how to investigate each of these possibilities. The
investigative procedures are summarized in Figure 4-1. Note that the
diagram includes command recommendations to help you obtain required
information. The recommended commands appear in parentheses below the
description of the information required.

The procedures use the process of elimination to determine the source of
performance problems. That is, there are some fairly simple tests you can
use to rule out certain classes of problems. However, you must be able to
observe the undesirable behavior while you are running these tests. You can
determine nothing with these methods unless your system is exhibiting the
problem.

Be aware that it is possible to have overlapping limitations; that is, you could
find that you have a memory limitation and an I/O limitation occurring
simultaneously. With the methods outlined here, reiterating as necessary,
you should be able to detect all major limitations for further resolution.

4-1

Diagnosing Resource Limitations

Figure 4-1 Steps in the Preliminary Investigation Process

INVESTIGATE MEMORY
LIMITATION

ERROR - SEE
SECTION 3.5

ZK-1132-82

4-2

Diagnosing Resource Limitations

Following are general descriptions of the resource limitations that most
commonly lead to performance degradation.

• Memory limitations—Memory limitations are manifestations of such
diverse problems as too little physical memory for the work attempted,
inappropriate use of the memory management features, improper
assignments of memory resources to users, and so forth.

You can rule out memory limitations if you use the DCL commands
MONITOR IO or MONITOR SYSTEM and observe a substantial amount
of free memory (see the entries for Free List Size and Modified List Size)
and then also find that little or no paging (see Page Fault Rate) and little
or no swapping (see Inswap Rate) are occurring. However, when you
observe swapping, little free memory, or significant paging, you should
investigate memory limitations further. See Section 4.2.

• I/O limitations—This type of limitation occurs when the number or
speed of devices is insufficient. You will also find an I/O limitation
when application design errors either place inappropriate demand on
particular devices, or do not employ sufficiently large blocking factors or
numbers of buffers.

To determine if you can rule out an I/O limitation, issue the DCL
command MONITOR IO or MONITOR SYSTEM and observe the rates
for direct I/O and buffered I/O. If your system is not performing any
direct I/O, you do not have a disk I/O limitation. If you observe that
there is no buffered I/O, you do not have a terminal I/O limitation.
If, however, you see that either or both operations are occurring, you
cannot rule out the possibility of an I/O limitation. In this case, you
should proceed to Section 4.3.

• CPU limitations—The CPU may become the binding resource when the
workload places extensive demand on it. Perhaps all the work becomes
heavily computational, or there is some condition that gives unfair
advantages to certain users.

To determine if you may be suffering from a CPU limitation, use the
DCL command MONITOR STATES. If many of your processes are in the
computable state, you can definitely conclude you have a CPU limitation.
(If you find that many processes are in the computable outswapped state,
be sure to address the issue of a memory limitation first. See Section 4.4.)

You might also use the DCL command MONITOR MODES to observe
the amount of user mode time. If the user mode time is high, there is
likely a limitation occurring around the CPU utilization. The MONITOR
MODES display also reveals the amount of idle time, which is sometimes
called the null time. If there is almost no idle time, it is fair to conclude
that the CPU is being heavily utilized.

4-3

Diagnosing Resource Limitations

m
A third indicator of a CPU limitation that the MONITOR MODES display
provides is the amount of kernel mode time. A high percentage of time
in kernel mode may indicate excessive consumption of the CPU resource
by the operating system. This problem is more likely the result of a
memory limitation, but could indicate a CPU limitation as well. If you
decide to investigate the CPU limitation further, proceed through the
steps in Section 4.4.

When you have completed your preliminary investigation, you are ready
to pinpoint the cause of the observed behavior and to conclude, in general
terms, what remedies are available to you. The next sections included
suggestions for observing and isolating the particular kinds of problems that
can occur, by category of resource limitation. After isolating the problems,
you can proceed to one or more of the specific corrective procedures outlined
in this chapter or Chapter 5.

Once you take the appropriate remedial action, you must monitor
the effectiveness of the changes, and, if you do not obtain sufficient
improvement, try again. In some cases, you will need to repeat the same
steps, but either increase or decrease the magnitude of the changes you
made. In other cases, you will proceed further in the investigation and
uncover some other underlying cause of the problem and corrective steps to
take. The diagrams and text do not attempt to depict this looping. Rather,
repetition is always implied, pending the outcome of the changes. Tuning
is frequently an iterative process. The approach to tuning presented by this
chapter and the following one assumes that multiple causes of performance
problems are uncovered by repeating the steps shown until you achieve
satisfactory performance.

Note that effective tuning requires that you be able to observe the
undesirable performance behavior while you test.

You will find it especially helpful to keep a listing of the current values of all
your system parameters nearby as you conduct the following investigations.
One method for obtaining the list is the following, in which you specify a file
name:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN> SET/OUTPUT=fi1ename

SYSGEN> SHOW/ALL

SYSGEN> SHOW/SPECIAL

SYSGEN> EXIT

t PRINT/DELETE filename

(See the VAX/VMS System Generation Utility Reference Manual.)

Diagnosing Resource Limitations

4.2 Isolating Memory Limitations

The key to successful performance management of a VAX/VMS system is
to keep the memory management activity to a minimum. You will find
that memory limitations cause paging and/or swapping, precisely the
activities you want to minimize. It requires skillful balancing of the memory
management mechanism to reduce one without incurring too much of the
other.

Whenever you detect paging or swapping on a system with degraded
performance, you should investigate a memory limitation. If you observe
instead a lack of free memory, but no serious paging or swapping, the system
may be just at the point where it will begin to experience excessive paging or
swapping if demand grows any more. In this case, you have a bit of advance
warning, and you may want to examine some preventive measures. Section
4.2.5 describes the situation of scarce free memory without excessive paging
or swapping.

4.2.1 Analyzing the Excessive Page Faulting Symptom

There are no universally applicable scales that rank VAX/VMS page faulting
rates from moderate to excessive. Although the only good page faulting rate
is zero page faults per second, you need to think in terms of the maximum
tolerable rate of page faulting for your system. Once you have defined this
maximum value, you should view any higher page fault rate as excessive.
Remember that, since paging always consumes system resources (CPU and
I/O), its harmfulness depends entirely on the availability of the resources
consumed.

In judging what page faulting rate is the maximum tolerable rate for your
system, you must consider your configuration and the type of paging
that is occurring. For example, on a system with slow disks, what might
otherwise seem to be a low rate of paging to the disk could actually represent
intolerable paging because of the response time through the slow disk. This
is especially true if the percentage of page faults from the disk is high
relative to the total number of faults. You can only judge page fault rates in
the context of your own configuration. Furthermore, the numbers must be
examined in the context of both the overall faulting and the apparent system
performance. The system manager who knows the configuration can best
evaluate the impact of page faulting.

Once you have determined that the rate of paging is excessive, you need to
determine the cause. As Figure 4-2 shows, you can begin by looking at the
number of image activations that have been occurring.

4-5

Diagnosing Resource Limitations

Figure 4-2 Investigating Excessive Paging—Phase I

INVESTIGATE MEMORY LIMITATION

o
HIGH PAGE FAULT RATE FROM DISK

OR CACHE? (MONITOR PAGE)

TOO MANY IMAGE
ACTIVATIONS?
(ACCOUNTING)

YES

INVESTIGATE SWAPPING
BEHAVIOR

APPLICATION
DESIGN

ERROR - SEE
SECTION 4.2 1

HIGH RATE OF HARD PAGE FAULTS?
(MONITOR PAGE)

OVERALL FAULT
RATE HIGH?

(MONITOR PAGE)

PAGING IS
SATURATING

SYSTEM DISK;

TOTAL OF
WORKING SET SIZES

IS TOO SMALL

ERROR -
PAGING IS

NOT EXCESSIVE -
SEE SECTION 3 5

(SHOW MEMORY, MONITOR IO, MONITOR PAGE)

NO

DECREASE
SIZE OF

PAGE CACHE
SEE SECTION

4.2.3

TOTAL OF WORKING SET
SIZES IS TOO SMALL

ZK-1133-82

4-6

Diagnosing Resource Limitations

4.2.1.1 Image Activations Are Excessive

If you happen to have had image-level accounting enabled as described in
Section 1.1, you can use the Accounting Utility to examine the total number
of images started. If, in your judgment, this number is in the low-to-normal
range for typical operations at your site, you can assume that the problem
lies elsewhere. However, if you suspect your system is suffering from
excessive image activations, but you have not been collecting the information
for ACCOUNTING to process, you can check the display produced by the
MONITOR PAGE command for demand zero faults. Whenever you find that
50 percent or more of all faults are demand zero faults, you have evidence
that corroborates the possibility that image activations are too frequent. You
should enable image-level accounting at this time and collect enough data to
confirm the conclusion.

You can determine how to reduce the number of image activations by
reviewing the design of the applications according to the guidelines presented
in Section 5.2. Note that the problem of paging induced by image activations
is unlikely to respond to any attempt at system tuning. The appropriate
action involves application design changes.

If, in spite of corrective action, your performance degradation persists, it is
the result of multiple conditions. As is generally the case when you are not
fully satisfied with the improvement obtained from any of the procedures,
you should return to Section 4.1 to pursue further investigations.

4.2.1.2 Characterizing Hard Versus Soft Faults

Next you should characterize your page faulting. There are two kinds of
paging, which you can think of as hard paging and soft paging. Paging
from the disk is hard paging, and it is the less desirable of the two kinds of
paging. Soft paging refers to paging from the page cache in main memory.
Although soft paging is also undesirable when excessive, it is normally much
less costly to overall system performance than disk paging, simply because it
is faster.

All the system tuning solutions for excessive paging involve a reallocation of
the memory resource, and nothing more. However, you should not reduce
the size of the operating system's working set and offer that memory to the
process working sets or the page cache, because it is much more costly to
performance when the system incurs page faults than when other processes
experience either hard or soft page faults. In fact, you should always strive
to keep the system page fault rate below two faults per second. (You can
observe the system fault rate with the MONITOR PAGE command.) Thus,
rather than reducing the system's working set and risking the possibility
of introducing system page faulting, you should consider purchasing more
memory first.

4-7

Diagnosing Resource Limitations

Page Cache Is Too Small

In situations of excessive paging not due to image activations, you should
determine what kinds of faults and faulting rates exist. Use the MONITOR
PAGE command and your knowledge of your workload. If you are
experiencing a high hard fault rate (represented by Page Read I/O Rate),
evaluate the overall faulting rate (represented by Page Fault Rate). If the
overall faulting rate is low while the hard fault rate is high, the page cache is
ineffective, that is, the size of the free page list and/or the modified page list
is too small. You need to increase the size of the cache. This relatively rare
problem occurs when a system has been mistuned. (Perhaps AUTOGEN was
bypassed.)

Before deciding to acquire more memory, you could try increasing the
values of MPW_LOLIMIT, MPW_THRESH, FREEGOAL, and FREELIM. (See
Section 5.2.2.) Optionally you might also try reducing the system parameter
BALSETCNT (Section 5.2.13) or reducing the working set characteristics
(Section 5.2.4). However, be forewarned. If these changes result immediately
in the problems described below when the cache is too large and the working
sets are too small (and lowering the cache parameter values a bit does not
bring them into balance), you have no other tuning options. You must
reduce demand or acquire more memory. (See Section 5.2.26.)

System Disk Is Saturated by Page Faulting

If you have the combination of a high hard fault rate with high faulting
overall, it is quite possible the load is too high on your system, which means
that the system disk activity is saturated and you must reduce the page
faulting to disk.

However, first perform the checks described in Section 4.2.1.3 for small
working set sizes. This action will rule out or correct the limited possibility
that the combination of heavy overall faulting with heavy hard faulting is
due to too large a page cache while too many processes attempt to work with
small working sets. The solution will require you to reduce the cache size
and increase the WSQUOTA values.

If this investigation fails to produce results, you can conclude that the system
disk is saturated. You should consider

• Adding another page file on another disk

• Reducing demand

• Adding more memory

Since adding more memory (Section 5.2.26) is less costly than acquiring a
disk, it is usually preferable, unless you have another disk drive available
that is underutilized. See Section 5.2.25.

4-8

Diagnosing Resource Limitations

Page Cache Is Too Large

On the other hand, if you find that your faults are mostly of the soft
variety, check to see if the overall faulting rate is high. If so, you may
have the relatively rare problem of an unnecessarily large page cache. As a
guideline, you should expect the size of your page cache to be one order of
magnitude less than the total memory consumed by the balance set under
load conditions.

The only way to create a page cache that is too large is by seriously
mistuning a system. (Perhaps AUTOGEN was bypassed.) Section 5.2.3
describes how to reduce the size of the page cache through the MPW_
LOLIMIT, MPW—THRESH, FREEGOAL, and FREELIM system parameters.

4.2.1.3 Total Working Set Size Is Too Small—Overview of the Problem

If your page cache size is appropriate, you need to investigate the likelihood
that excessive paging is induced when a number of processes attempt to
run with working set sizes that are too small for them. If the total memory
for the balance set is too small, one of the following three possibilities (or a
combination thereof) is at work:

1 The working set size may be inappropriate because

• The working sets have been set too small with the WSDEFAULT and
WSQUOTA characteristics in the UAF

• The effective working set quota has been lowered by DCL commands
or system services that were invoked as the process ran

• The processes are not succeeding in borrowing working set space (in
the loan region)

2 Perhaps the automatic working set adjustment feature (AWSA) has been
turned off or is for some reason not as effective as it could be.

3 Swapper trimming may be reducing the working set sizes too vigorously.

Figures 4-3, 4-4, and 4-5 summarize the procedures that follow for isolating
the cause of working set sizes that are too small.

4—9

Diagnosing Resource Limitations

Figure 4-3 Investigating Excessive Paging—Phase II

TOTAL OF WORKING SET

SIZES IS TOO SMALL

DETERMINE WHICH PROCESSES ARE

FAULTING MOST

(MONITOR PROCESSES /TOPF)

WHAT ARE OTHER PROCESSES DOING?

HOW MUCH MEMORY DO THEY USE?

(SHOW SYSTEM, MONITOR PROCESSES,

SHOW PROCESS/CONTINUOUS)

DETERMINE WORKING
SET CHARACTERISTICS

OF THESE PROCESSES

(FSGETJPI)

OBSERVE HOW WORKING SET

SIZE CHANGES OVER TIME

(SHOW PROCESS/CONTINUOUS)

ANALYZE THE DATA

ZK-1134-82

4-10

Diagnosing Resource Limitations

Figure 4—4 Investigating Excessive Paging—Phase III

ANALYZE THE DATA

WSQUOTA AND WSEXTENT
TOO SMALL/LARGE FOR SOME

PROCESSES?

MODIFY VALUES
OF WSQUOTA

AND WSEXTENT-

SEE SECTION
4.2.4

TOO FEW PROCESSES BORROW
BEYOND WSQUOTA VALUE?

MIGHT INCREASE WSEXTENT
OR DECREASE PFRATH
BORROWLIM. AND/OR

GROWLIM -
SEE SECTION 4 2 5

IS AWSA ENTIRELY TURNED
OFF?

(WSINC=0)

NO

IS AWSA
RESPONSE

TOO SLOW?

SET WSINC>0 -
SEE SECTION 4 2 6

EXAMINE
VOLUNTARY

DECREMENTING

ZK-1135-82

4-11

Diagnosing Resource Limitations

4.2.1.4 WSDEFAULT, WSQUOTA, and WSEXTENT Values Are Inappropriate

Begin to narrow down the possible causes of too small a total working set
size by looking first at your system's allocation of working set sizes. To gain
some insight into the workload and which processes have too little memory,

1 Issue the MONITOR PROCESSES/TOPFAULT command to learn which
processes are faulting because their working set sizes are too small

2 Use the SHOW PROCESS/CONTINUOUS command to learn what the
top faulting processes are doing and how much memory they are using

3 Look at the memory consumed by the other larger processes with the
SHOW SYSTEM and MONITOR PROCESSES commands.

Perhaps you can conclude that one large process (or perhaps several) does
not need as much memory as it is using. If you reduced its WSQUOTA
and/or WSEXTENT values, the other processes could use the memory the
large process currently takes. (See Section 5.2.4.)

However, to form any firm conclusions at this point, you need to learn more
about the process's behavior as its working set size grows and shrinks. Use
the MONITOR PROCESSES command and the lexical function F$GETJPI for
this purpose.

To look at the current values as the process executes, follow these steps:

1 Note the process identification number (PID) on the MONITOR
PROCESSES display

2 Ensure that you have the WORLD privilege

3 For each heavily faulting process you want to investigate, request these
items:

Working set quota size
Process page count
Global page count
Working set extent

To request the items, enter in quotation marks (") the process
identification number (pid), as shown in the following commands:

WSQUOTA = F$GETJPI("pid», ''WSQUOTA")
SHOW SYMBOL WSQUOTA
WSSIZE = F$GETJPI("pid","WSSIZE")
SHOW SYMBOL WSSIZE
PPGCNT = F$GETJPI("pid","PPGCNT")
SHOW SYMBOL PPGCNT
GPGCNT = F$GETJPI("pid","GPGCNT")
SHOW SYMBOL GPGCNT
WSEXTENT = F$GETJPI("pid"."WSEXTENT")
SHOW SYMBOL WSEXTENT

4-12

Diagnosing Resource Limitations

(Suggestion: write a program or command procedure that requests the
process identification number and then formats and displays the resulting
data.)

The lexical function item PPGCNT represents the process page count,
while GPGCNT represents the global page count. You need these values
to determine how full the working set list is. The sum of PPGCNT plus
GPGCNT is the actual amount of memory in use, and should always be
less than or equal to the value WSSIZE. By sampling the actual amount of
memory in use while processes execute, you can begin to evaluate just how
appropriate the values of WSQUOTA and WSEXTENT are for each.

If the values of WSQUOTA and WSEXTENT areeither unnecessarily
restricted or too large in a few obvious cases, they need to be adjusted;
proceed next to Section 5.2.4.

4.2.1.5 Borrowing Is Ineffective

If you observe that few of the processes are able to take advantage of loans,
then borrowing is ineffective. Section 5.2.5 discusses how to make the
necessary adjustments so that borrowing is more effective.

4.2.1.6 AWSA May Be Disabled

Next, you need to investigate the status of automatic working set adjustment
(AWSA). Check the value of the system parameter WSINC. If you find
WSINC is greater than zero, you know that automatic working set
adjustment is essentially turned on. (More precisely, the part of automatic
working set adjustment that permits working set sizes to grow is turned
on). However, at the same time, you should also check whether or not
WSDEC and/or PFRATL are zero. While setting WSINC=0 turns the full
automatic working set adjustment mechanism off, setting PFRATL=0 when
WSINC is greater than zero will disable just that part of automatic working
set adjustment that provides the voluntary decrements in the working set
sizes. (For example, in Figure 4-7, if PFRATL and WSDEC equaled zero, the
actual working set limit line would have leveled off at Q4 and would not
have changed until Q20.)

If automatic working set adjustment is disabled, processes are unable to
increase their working set sizes. You will observe that although processes
have WSQUOTA values greater than their WSDEFAULT values, those
processes that are currently active (doing some computing) do not show
a working set size count above their WSDEFAULT value. At the same
time your system is experiencing heavy page faulting. You should enable
automatic working set adjustment, by setting WSINC greater than zero, so
that working set growth is possible. See Section 5.2.10.

4-13

Diagnosing Resource Limitations

4.2.1.7 AWSA Is Ineffective—Overview

Now, if automatic working set adjustment is turned on, there are four ways
that it may be performing less than optimally, and you must evaluate them.

1 AWSA may not be responding quickly enough to increased demand.
That is, when page faulting increases significantly, working set sizes are
not increased quickly enough to sufficiently large values.

2 AWSA with voluntary decrementing enabled may be causing the working
set sizes to oscillate.

3 AWSA with voluntary decrementing enabled may be shrinking the
working sets too quickly, thereby inducing unnecessary paging.

4 AWSA may not be decrementing the working set sizes where possible
because voluntary decrementing is disabled.

AWSA Is Not Responsive to Increased Demand

If you use the SHOW PROCESS/CONTINUOUS command for those
processes that MONITOR PROCESSES/TOPFAULT shows are the heaviest
page faulters, and you find that the automatic working set adjustment is
not increasing their working set sizes quickly enough in response to their
faulting. If the default values of WSINC, PFRATH or AWSTIME have been
changed, you should restore them to their original values, and consider
adjusting the WSDEF and WSQUO values of the offending process.

AWSA with Voluntary Decrementing Enabled Causes Oscillations

It is possible for the voluntary decrementing feature of automatic working
set adjustment to cause processes to go into a form of oscillation where the
working set sizes never stabilize, but rather keep growing and shrinking
while accompanied by page faulting. When you observe this situation,
through the SHOW PROCESS/CONTINUOUS display, you should disable
voluntary decrementing by setting PFRATL=0. See Section 5.2.7.

AWSA Shrinks Working Sets Too Quickly

From the SHOW PROCESS/CONTINUOUS display you can also determine
if the voluntary decrementing feature of automatic working set adjustment is
shrinking the working sets too quickly. In that event, you should consider
decreasing WSDEC and decreasing PFRATL. See Section 5.2.8.

4-14

Diagnosing Resource Limitations

AWSA Needs Voluntary Decrementing Enabled

You might observe the case of one or more processes that rapidly achieve a
very large working set count and then maintain that size over some period of
time. However, you know or suspect that those processes should not require
that much memory continuously. Although those processes are not page
faulting at all, other processes are. You should check whether voluntary
decrementing is turned off (PFRATL=0 and optionally WSDEC=0). See
Figure 4-5. It may be that for your workload, voluntary decrementing would
bring about improvement, since it is time based, not load based. You could
enable voluntary decrementing according to the suggestions in Section 5.2.9
to see if any improvement is forthcoming.

If you decide to take this step, keep in mind that it is the exception rather
than the rule. You could make conditions worse rather than better. Be
certain to monitor your system very carefully to ensure that you do not
induce working set size oscillations in your overall workload, as described
above. If no improvement is obtained, you should turn off voluntary
decrementing. Probably your premise that the working set size could be
reduced was incorrect. Also, if oscillations do result that do not seem to
stabilize with a little time, you should turn voluntary decrementing off again.
You must explore instead, ways to schedule those processes so that they least
disrupt the workload.

4-15

Diagnosing Resource Limitations

Figure 4-5 Investigating Excessive Paging—Phase IV

SET WSDEC>0,
PFRATL>0 -

SEE SECTION
4.2.9

4.2.1.8 Swapper Trimming Is Too Vigorous

Perhaps there are valid reasons why at your site WSINC has been set to zero

to turn off automatic working set adjustment. For example, the applications

may be well understood, and the memory requirements for each image may

be so predictable that the values for WSDEFAULT and WSQUOTA can

be accurately set. Furthermore, it is possible that if automatic working set

adjustment is enabled at your site, you are satisfied that your system is using

appropriate values for WSQUOTA, WSEXTENT, PFRATH, BORROWLIM,

and GROWLIM. In these situations, perhaps swapper trimming is to blame

for the excessive paging. In particular, perhaps trimming on the second level

may be too severe.

4-16

Diagnosing Resource Limitations

Figure 4-6 illustrates the investigation for paging problems induced by
swapper trimming. Again, you must determine the top faulting processes
and evaluate what is happening and how much memory is consumed
by these processes. Use the MONITOR PROCESSES/TOPFAULT and
MONITOR PROCESSES commands. By selecting the top faulting processes
and scrutinizing their behavior with the SHOW PROCESS/CONTINUOUS
command, you can determine if there are many active processes that seem to
display working set sizes at

• Their WSQUOTA value

• The system-wide value set by the system parameter SWPOUTPGCNT

Either finding indicates that swapper trimming is too severe.

If such is the case, consider increasing the system parameter
SWPOUTPGCNT, at the same time evaluating the need to increase the
system parameter LONGWAIT. The swapper uses LONGWAIT to detect
those processes that are truly idle. If LONGWAIT specifies too brief a time,
the swapper may swap temporarily idle processes that would otherwise
have become computable again soon. See Section 5.2.11. For computable
processes, the same condition may occur if DORMANTWAIT is set too low.

Figure 4-6 Investigating Excessive Paging—Phase V

INCREASE SWPOUTPGCNT.
MIGHT INCREASE LONGWAIT

OR DORMANTWAIT -
SEE SECTION 4.2.11

4-17

Diagnosing Resource Limitations

4.2.2 Analyzing the Swapping Symptom

Experience with VAX/VMS systems has shown that swapping of active
processes is less desirable than modest paging. This is true because swapping
involves disk accesses (true of only hard page faults). Swapping requires
each process and its context to be written out to disk, an event that is
normally slower than the average paging operation, since it involves more
blocks. There is additional system overhead for swapping caused by stopping
and starting processes. Finally, in using the disk resource heavily, the
swapper may cause additional entries in the queue on its disk, thus delaying
other processes that need access to that disk.

Not only is swapping costly in terms of performance, but its relative cost is
higher for slower processors. In fact, the single-disk, slower-speed system
pays the highest price of all for swapping, since all other access to the disk is
delayed while the disk is used for swapping. For example, swapping is much
more costly to system performance on the slower VAX-11/730 processors
than it is on the VAX-11/780 processors.

If your processor speed is an issue, you may decide to reduce swapping and
make yours a system that primarily pages. First, however, be certain that
swapping is truly harming performance for your workload.

4.2.3 Detecting Harmful Swapping

Harmful swapping manifests itself in heavy consumption of the CPU
resource and the disk, to the detriment of other processes. You should
use the following tests to check for any symptoms that indicate swapping is
harmful:

• Issue the DCL command MONITOR IO and examine the inswap rate. If
the rate is zero, you have no swapping, and you need not pursue this
series of tests any further.

• Check the MONITOR PROCESSES/TOPCPU display to see if the NULL
process receives a significant amount of service from the CPU. If you find
this condition in conjunction with swapping, the swapping is definitely
harmful and needs to be remedied.

• Issue the DCL command MONITOR STATES. If you observe few
processes in the COMO state, swapping is not affecting CPU operations.

If your swapping passes these three tests, you can conclude that swapping is
not so harmful on your system that you should eliminate it.

4-18

Diagnosing Resource Limitations

However, indications of harmful swapper activity, such as heavy disk or
CPU consumption, warrant some attention. (Figures 4-7, 4-8, and 4-9
summarize the investigation for swapping.) You may want to consider
converting your system to one that only pages and rarely if ever swaps,
particularly if your system is a small configuration. You accomplish this by

• Lowering the system parameter SWPOUTPGCNT

• Setting the system parameter BALSETCNT equal to a value that is two
less than the value of the system parameter MAXPROCESSCNT

• Adding more memory

Optionally, you may decide to reduce the process working set quotas (in the
UAF). See Section 5.2.12.

Even if you tune your system so that it rarely swaps, you still need a swap
file on your system. However, the space requirement for the swapping file
is reduced. If disk space is at a premium, you can adjust your swapping file
space requirement to 75 percent of its previous value with the AUTOGEN
command procedure. (See the VAX/VMS System Manager's Reference Manual.)

If you find that your system is showing symptoms of harmful swapping and
that performance has degraded, there are two possible causes:

1 No free balance slots—If there are no free balance slots, use the DCL
command SHOW MEMORY to check the number of free balance slots.
If the number available is small, and you know there is still adequate
free memory (which you can also check with SHOW MEMORY), then
you should be able to alleviate the swapping by increasing the system
parameter BALSETCNT. See Section 5.2.13.

2 Insufficient free memory for all the working sets—If there are free
balance slots, but the total of the working set sizes exceeds available
memory, you can safely conclude that there is not enough free memory
to support all the working sets at once. This condition can result from
one or more of the following factors:

• Improper partitioning of memory due to a page cache that is too
large

• Situations where some users use unreasonably large amounts of
memory

• Demand that is simply too high for capacity

Use the SHOW MEMORY display to determine the total usable memory
(the total physical memory less the memory used by VAX/VMS). Next,
determine how much memory is allocated to the page cache, by adding

4-19

Diagnosing Resource Limitations

the values for the two system parameters FREEGOAL and MPW_
THRESH. If the page cache size is more than 15 percent of the total
usable memory, the page cache may be too large.

Only when a system has been seriously mistuned should you find
that the page cache is too large. (Perhaps AUTOGEN was bypassed.)
Section 5.2.14 describes how to reduce the size of the page cache through
the MPW—LOLIMIT, MPW_THRESH, FREEGOAL, and FREELIM system
parameters.

If you determine that the page cache is not too large, or having reduced its
size, you find that there is still insufficient free memory for all the working
sets, you need to investigate other potential causes for the problem. These
are described in the next sections.

4.2.4 Investigating Why Processes Consume Unreasonable Amounts

of Memory

Swapping can be induced whenever one or a small number of processes
devour memory at the expense of other processes. You can find out if a few
users are using large amounts of memory by examining the display produced
by the MONITOR PROCESSES command.

4—20

Diagnosing Resource Limitations

Figure 4-7 Investigating Swapping—Phase I

4-21

F
ig

u
re

 4
-8

In
v
es

ti
g
at

in
g
 S

w
a
p

p
in

g
—

P
h

a
se

 I
I

Diagnosing Resource Limitations

x
o
z> ..

O O ID

H- LD CO

CC ^ •

C\J

n

*
INJ

LD
CO W
o ^

CL
<
§
CO

I
CL
o
<
h-
co
Z>

C30

csi
^y

Z
o

o »-
o o
m w
L1J CO

LD
►—
CO
>
CO

Q Q
< z

<

4-22

Diagnosing Resource Limitations

Figure 4-9 Investigating Swapping—Phase III

DETERMINE IF

MOST PROCESSES

ARE COMPUTABLE

ARE COMO PROCESSES
AT BASE PRIORITY?

(SHOW SYSTEM)

YES

REDUCE DEMAND

OR ADD MEMORY -

SEE SECTION 4 4 4

TOO MANY COMPUTING PROCESSES

ARE SWAPPED TOO

FREQUENTLY; ARE THERE

LARGE BATCH JOBS?

(SHOW SYSTEM/BATCH)

YES

SWAPPER

TRIMMING IS

INEFFECTIVE:

REDUCE

SWPOUTPGCNT -

SEE SECTION 4 2 22

CONSIDER INCREASING SWPRATE

(IF CURRENT PRIORITY <DEFPRI)

SEE SECTION 4 2 23

SYSTEM SWAPS

RATHER THAN

PAGES: REDUCE WSQUOTAS:

INCREASE PRATH:

DECREASE WSINC -

SEE SECTION 4 2.24

REDUCE WSQUOTAS:

INCREASE PFRATH: MIGHT

DECREASE WSINC -

SEE SECTION 4.2 24

MIGHT ENABLE SWAPPING

FOR PROCESSES LOCKED

IN MEMORY -

SEE SECTION 4.2.19

ZK-1144-82

4.2.4.1 Large, Compute-Bound Process Gains Inordinate Control of Memory

At this point you should be particularly alert for the situation where one or
more very large, compute-bound processes at low priority consume memory
at the expense of a number of smaller processes. Typically the smaller
processes may be trying to perform some terminal I/O, such as editing.
When memory becomes tight, the large process that is compute-bound is less
likely to be selected for outswapping than any process that is in the local
event flag wait state. Consequently, in this situation, VAX/VMS will select
processes running the editor for outswapping as soon as they start to wait
for I/O. As a result, the editing processes will experience symptomatically
poor response times due to frequent outswapping. The SHOW SYSTEM

4-23

Diagnosing Resource Limitations

command provides a valuable tool for checking the priority and state of the
large process.

Note the process identification number from the MONITOR PROCESSES
display and ensure that you have the WORLD privilege. Then for each
large process you want to investigate, use the lexical function F$GETJPI, as
described in Section 4.2.1.4, to request the working set quota, size, process
page count, global page count, and working set extent.

If you that find any of the processes are above their working set quota, you
may want to decrease DORMANTWAIT and monitor performance for a
time. If decreasing DORMANTWAIT proves ineffective, you can issue the
DCL command SET PROCESS/SUSPEND (as described in Section 5.2.16)
to suspend the large, compute-bound process that is over WSQUOTA.
This action offers a rapid means of restoring other process activities.
(Once the process is suspended, the swapper can trim the process to its
SWPOUTPGCNT value.) As soon as SHOW PROCESS/CONTINUOUS
reveals that the process has been trimmed, you can safely resume it. If the
AWSA is set correctly, the problem should not recur, since the process will
be unable to grow beyond its quota while memory is scarce.

However, you must determine the underlying cause of the problem (for
example, the working set quota may be too large for the process) and take
corrective action. You could, for example, increase WSEXTENT. Borrowing
will then be reclaimed by the swapper. If the large, compute-bound process
is not above its working set quota, suspending the process might provide
temporary relief, but as soon as you allow the process to resume, it can start
to devour memory again. Thus, the most satisfactory corrective action is the
permanent solution, as discussed in Section 5.2.4.2.

4.2.4.2 Large Waiting Process Is Never Outswapped

While using the SHOW SYSTEM command to look for large processes
that are compute-bound, you may instead observe that one or more large
processes are hibernating or are in some other wait state. Possibly swapping
has been disabled for these processes. You could use the SHOW PROCESS
/CONTINUOUS command for each process to determine if any inactive
process escapes outswapping. As a next step, you could invoke the System
Dump Analyzer (SDA) with the DCL command ANALYZE/SYSTEM, to see
if the process status line produced by the SDA command SHOW PROCESS
reveals the process status of PSWAPM.

If you find a process that is not allowed to swap, yet apparently consumes
a large amount of memory when it is inactive, you may conclude that
swapping should be enabled for it. Enabling swapping would give other
processes a more equitable chance of using memory when memory is scarce
and the large process is inactive. You should discuss your conclusions with
the owner of the process to determine if there are valid reasons why the

4-24

Diagnosing Resource Limitations

process must not be swapped. (For example, most real-time processes should
not be swapped.) If the owner of the process agrees to enable the process
for swapping, use the DCL command SET PROCESS/SWAPPING (which
requires the PSWAPM privilege). See Section 5.2.19.

If the offending process is a disk ACP (ODS-1 only), you need to set the
system parameter ACP—SWAPFLGS appropriately and reboot the system.
See Section 5.2.18.

4.2.4.3 Too Many Processes Compete for Available Memory

If the data you collected with the F$GETJPI lexical function reveals that the
working set counts (the actual memory consumed by the processes) are not
particularly large, you may simply have too many processes attempting to
run concurrently for the memory available. At this point, you should ensure
that ACP_XQP_RES is set to 1 (default) so that sharing of XQP pages is
enabled. If it is, and the problem persists, you may find that performance
improves if you reduce the system parameter MAXPROCESSCNT, which
specifies the number of processes that can run concurrently.
See Section 5.2.20.

However, if MAXPROCESSCNT already represents the number of
users who must be guaranteed access to your system at once, reducing
MAXPROCESSCNT is not a viable alternative. Instead, you must explore
other ways to reduce demand (redesign your application, for example) or add
memory. See Section 5.2.26.

4.2.4.4 Borrowing Is Too Generous

For the processes that seem to use the most memory, use the SHOW
PROCESS/CONTINUOUS command to check if the processes are operating
in the WSEXTENT region; that is, their working set sizes range between
the values of WSQUOTA and WSEXTENT. if not, it might be beneficial to
increase the values of BORROWLIM and/or GROWLIM. Increasing both
BORROWLIM and GROWLIM discourages loans when memory is scarce.
By judiciously increasing these values, you will curtail the rate of loans to
processes with the largest working sets, particularly during the times when
the workload peaks. See Section 5.2.21.

4-25

Diagnosing Resource Limitations

4.2.4.5 Swapper Trimming Is Ineffective

If memory is insufficient to support all the working set sizes of active
processes, ineffective swapper trimming may be the cause.

In this case, the value of SWPOUTPGCNT may be too large. You should
compare the value of SWPOUTPGCNT to the actual working set counts you
observe. If you decide to reduce SWPOUTPGCNT, be aware that you will
increase the amount of memory reclaimed every time second-level trimming
is initiated. Still, this is the parameter that most effectively converts a system
from a swapping system to a paging one and vice versa. As you lower
the value of SWPOUTPGCNT, you run the risk of introducing excessive
paging. If this situation occurs, and you cannot achieve a satisfactory balance
between swapping and paging, you must reduce demand or add memory.
See Section 5.2.26.

4.2.4.6 Many Working Sets Are Too Large

If you conclude that SWPOUTPGCNT is not too large, you have already
determined that the working sets are fairly large but not above quota and
that few processes are computable. You will probably discover that one or
more of the following conditions exist:

• The working set quotas are too large in some cases.

• The parameter WSINC is too large or PFRATH is too low.

• Too many working sets are locked in memory and cannot be
outswapped.

The first two conditions can be determined from information you have
collected. However, if you suspect that too many users have used the DCL
command SET PROCESS/NOSWAPPING to prevent their processes from
being outswapped (even when not computable), you need to invoke the

F$GETJPI lexical function for suspicious processes. (Suspicious processes
are those that remain in the local event flag wait state for some time while
the system is swapping heavily. You can observe that condition with the
SHOW SYSTEM command.) If the flag PSWAPM in the status field (STS)
is on, the process cannot be swapped. (The documentation for the system

service $GETJPI specifies the status flags. See the VAX/VMS System Services
Reference Manual).

As an alternative, you can use the ANALYZE/SYSTEM command to invoke
SDA to issue its SHOW PROCESS command for the suspicious processes.
Those that cannot be swapped will include the designation PSWAPM in the
status line at the top of the display.

4-26

Diagnosing Resource Limitations

If you determine that one or more processes should be allowed to swap,
you should seek agreement and cooperation from the users. (If agreement
is reached, but users do not follow through, you could remove the users'
PSWAPM and/or SETPRV privileges with the /PRIVILEGES qualifier of the
Authorize Utility.) See Section 5.2.19.

4.2.4.7 Disk Thrashing Occurs

If you find that a large number of processes are computable at this point
in your investigation, you should ensure that disk thrashing is not initiated
by the outswapping of processes while they are computing. (Disk thrashing
means excessive reading and writing to disk that accomplishes little; in this
case, it is the outswapping of processes rapidly followed by the inswapping
of the same processes.)

Processes in the computable outswapped (COMO) state on the MONITOR
STATES display are normally those that have finished waiting for a local
event flag and are ready to be inswapped. On a system without swapping,
they are new processes. However, you may find computable outswapped
processes that were swapped out while they were computable. Such
undesirable swapping is harmful if it occurs too frequently.

A particular workload problem must exist to provoke this situation. Suppose
a number of compute-bound processes attempt to run concurrently. The
processes will not be changing states while they compute. Moreover,
since they are computing they escape second-level swapper trimming
to the SWPOUTPGCNT value. This condition can result in memory
becoming scarce, which then could force the processes to begin swapping
in and out among themselves. Whenever an outswapped process becomes
computable, the scheduler is awakened to begin rescheduling. A process that
is outswapped while it is computable also prompts immediate rescheduling.
Thus, if the processes can not gain enough processing time from the CPU
before being outswapped, and if they are outswapped while they are
computable, thrashing occurs.

If you issue the SHOW SYSTEM command and note that many of the
computable outswapped processes are at their base priority, you should
check to be sure that the processes are not being swapped out while they
are computable. (The fact that the processes are at their base priority implies
they have been attempting to run for some time. Moreover, a number of
COMO processes all at base priority strongly suggests that there is contention
for memory among computable processes.)

You can issue the SHOW PROCESS/CONTINUOUS command for the
COM processes and observe whether they fail to enter the LEF state before
they enter the COMO state. Alternatively, you might observe whether their
direct and buffered I/O rates remain low. Low I/O rates also imply that the
processes have seldom gone into a local event flag wait state.

4-27

Diagnosing Resource Limitations

If you observe either indication that processes are being outswapped while
computable, it is probable that too many highly computational processes
are attempting to run concurrently, or that DORMANTWAIT is set too low.
However, you should rule out the possible effects of too many batch jobs
running at the same time, before you attempt to adjust the rate at which
processes are inswapped.

Issue the DCL command SHOW SYSTEM/BATCH to determine the number
of batch jobs running concurrently and the amount of memory they consume.
If you conclude that the number of concurrent batch jobs could be affecting
performance, you can reduce the demand they create by modifying the batch
queues with the /JOB_LIMIT qualifier. Include this qualifier on the DCL
command you use to establish the batch queue (INITIALIZE/QUEUE or
START/QUEUE).

If you have ruled out any possible memory contention from large concurrent
batch jobs, you can conclude that the solution involves correcting the
frequency at which the system outswaps then inswaps the computable
processes. Assuming the system parameter QUANTUM represents a suitable
value for all other workloads on the system, you can draw the second
conclusion. If you find the current priorities of the compute-bound processes
are less than or equal to DEFPRI, you should consider increasing the special
parameter SWPRATE, so that inswapping of compute-bound processes
occurs less frequently. In that way, the computing processes will have a
greater amount of time to run before they are outswapped to bring in the
COMO processes. See Section 5.2.23.

4.2.4.8 System Swaps Rather Than Pages

If you have found a large number of computable processes that are not at
their base priority, and if their working sets are fairly large yet not above
their working set quotas, you should investigate whether any real paging is
occurring. Even when there is no real paging, there may be paging induced
by swapping activity. You can identify paging due to swapping whenever a
high percentage of all the paging is due to global valid page faults. Use the
display produced by the MONITOR PAGE command to evaluate the page
faulting.

If you conclude that most of the paging is due to swapper activity, your
system performance may improve if you induce some real paging by
decreasing the working set sizes, an action which may reduce swapping. To
induce paging, you might also reduce the automatic working set adjustment
growth by lowering WSINC or increasing PFRATH. See Section 5.2.24.

Diagnosing Resource Limitations

4.2.4.9 Demand Exceeds Available Memory

If you reach this point in the investigation and still experience swapping
in combination with degraded performance, you have ruled out all the
appropriate ways for tuning the system to reduce swapping. The problem is
that the available memory can not meet demand.

4.2.5 Analyzing the Limited Free Memory Symptom

If you find that your system seems to run low on free memory at times, you
are receiving advance warning that you are likely to encounter paging or
swapping problems in the near future.

You should carefully investigate your capacity and anticipated demand. If
you see little future growth in demand, then you are unlikely to experience
a problem in the near future. However, if you see that your future demand
will soon exceed your capacity, it is time to review all possible options. If
you conclude that the only suitable option is to order memory, you may
want to order it now, so that it can be installed before serious performance
problems occur.

Before you decide to order more memory, you might want to look at how
you have allocated memory. See Figure 4-10. Perhaps you could benefit
by adjusting physical memory utilization so that the page cache is larger
and there is less disk paging. To make this adjustment, you may have to
relinquish some of the total working set space.

If working set space has been too generously configured in your system, you
have found an important adjustment you can make before problems arise.
Section 5.2.4.2 describes how to decrease working set quotas and working
set extents.

4-29

Diagnosing Resource Limitations

Figure 4-10 Investigating Limited Free Memory

THERE IS NO MEMORY
LIMITATION - INVESTIGATE

I/O LIMITATION

ZK-1142-82

4.2.6 Special VAX—11/782 Tuning Considerations

If you have a VAX-11/782 attached processor system, you will find that
excessive paging and/or swapping is a severe liability to performance. The
handling of the page faults incurred on the secondary processor places on
the primary processor scheduling overhead as well as memory management
overhead. The most important single action you can take on a VAX-11/782
system to improve performance is to reduce paging and swapping, even if it
means purchasing more memory.

4.3 Isolating I/O Limitations

At this point you have observed either a direct I/O rate or a buffered I/O
rate, and need to determine if there could be an I/O limitation causing
degraded system performance. Direct I/O (Section 4.3.1) is generated by
disks, tapes, and some other types of high-speed communication links (such
as the DR780). Buffered I/O (Section 4.3.4) can be produced by a number
of devices, including terminals, line printers, the console disk drive, and
communications devices (such as the DMR11).

4-30

Diagnosing Resource Limitations

4.3.1 Disk or Tape Operation Problems (Direct I/O)

Direct I/O problems for disks or tapes reveal themselves in long delay times
for I/O completions. The easiest way to confirm a direct I/O problem is
to detect a particular device with a queue of pending requests. A queue
indicates contention for a device or controller. For disks, the MONITOR
command MONITOR DISK/ITEM=QUEUE _LENGTH provides this
information.

Since direct I/O refers to direct memory access (DMA) transfers that require
relatively little CPU intervention, the performance degradation implies one
or both of the following device-related conditions:

• The device is not fast enough.

• The aggregate demand on the device is so high that some requests are
blocked while others are being serviced.

For a disk or tape I/O limitation that degrades performance, the only
relatively low-cost solution available through tuning the software uses
memory to increase the sizes of the caches and buffers used in processing the
I/O operations, thereby decreasing the number of device accesses. The other
possible solutions all involve purchasing additional hardware, which is much
more costly.

4.3.2 Determining I/O Rates

When you issue the MONITOR IO command and observe evidence of
direct I/O, you will probably be able to determine whether the rate is
normal for your site. A direct I/O rate for the entire system that is either
higher or lower than what you consider normal warrants investigation. See
Figures 4-11 and 4-12.

You should proceed in this section only if you deem the operation rates of
disk or tape devices to be significant among the possible sources of direct
I/O on your system. If necessary, rule out any other possible devices as

the primary source of the direct I/O with the lexical function F$GETDVI, as
shown above.

Compare the I/O rates derived in this manner or observed on the display
produced by the MONITOR DISK command, with the rated capacity of
the device. (If you do not know the rated capacity, you should find it in
literature published for the device, such as a peripherals handbook or a
marketing specifications sheet.)

4-31

Diagnosing Resource Limitations

4.3.2.1 Device I/O Rate Is Below Capacity

Sometimes you may detect a lower direct I/O rate for a device than you
would expect. This condition implies that either very large data transfers are
not completing rapidly (probably in conjunction with a memory limitation
centered around paging and swapping problems), or there are some other
devices are blocking the disks or tapes.

If you have already investigated the memory limitation and taken all possible
steps to alleviate it (which is the recommended step before investigating an
I/O problem), then you should try to determine the source of the blockage.

A blockage in the I/O subsystem suggests that I/O requests are queueing up
because of a bottleneck. For disks, you can determine that this condition is
present with the MONITOR DISK/ITEM=QUEUE—LENGTH command.

When you find a queue on a particular device, you cannot necessarily
conclude that that device is the bottleneck. At this point, simply note all
devices with queues, for later reference. (You will need to determine which
processes are issuing the I/O operations for the device with queues.)

As the next step, you should rule out the possibility of an ancillary control
process (ACP)-induced lockout situation. (Note that this condition arises
only if you have ODS-1 disks.) If the system attempts to use a single ACP
for both slow and fast devices, I/O blockages may occur when the ACP
attempts to service a slow device. This situation can only occur if you have
mounted a device with the /PROCESSOR qualifier.

4.3.2.2 Direct I/O Rate Is Abnormally High

An abnormally high direct I/O rate for any device, in conjunction with
degraded system performance, suggests that I/O demand for that device
exceeds its capacity. First, you need to find out where the I/O operations
are occurring. Issue the MONITOR PROCESSES/TOPDIO command. From
this display, you can determine which processes are heavy users of I/O,
and, in particular, which processes are succeeding in completing their I/O
operations—not which processes are waiting.

Next, you must determine which of the devices used by the processes that
are the heaviest users of the direct I/O resource also have the highest
operations counts, so that you can finally identify the bottleneck area. Here,
you must know your workload sufficiently well to know the devices the
various processes use. If you note that these devices are among the ones you
found queued up, you have now found the bottleneck point(s).

4-32

Diagnosing Resource Limitations

Figure 4-11 Investigating Disk I/O Limitations—Phase I

INVESTIGATE I/O LIMITATION

HIGH DIRECT

I/O RATE?

(MONITOR 10)

INVESTIGATE

FILE SYSTEM

ACTIVITY

I/O DEMAND ON HIGHLY

ACTIVE DEVICES

EXCEEDS CAPACITY?

MONITOR DISK/ITEM=

OPERATION RATE

ANY QUEUES OF I/O

REQUEST PACKETS

ON DEVICES?

MONITOR DISK/ITEM=

QUEUE_LENGTH

ISOLATE AND REMOVE

BLOCKAGE ON ACP,

CONTROLLER, OR BUS -

SEE SECTION 4.3.1

NOT A DIRECT I/O

LIMITATION -

INVESTIGATE

TERMINAL I/O

LIMITATION

ZK-1145-82

Once you have identified the device that is saturated, you need to determine
the types of I/O activities it experiences. Perhaps some of them are being
mishandled and could be corrected or adjusted. Possibilities are file system
caching, VAX RMS buffering, use of explicit QIOs in user programs, and
paging or swapping. After you eliminate these possibilities, you may
conclude that the device is simply unable to handle the load.

4-33

Diagnosing Resource Limitations

Figure 4-12 Investigating Disk I/O Limitations—Phase II

INVESTIGATE FILE

SYSTEM ACTIVITY

IS THERE A

HIGH PERCENTAGE OF

FILE SYSTEM CACHE HITS?

(MONITOR FILE_SYSTEM_CACHE)

DO USER PROGRAMS

INTRODUCE TOO MUCH

EXPLICIT QIO?

RECONFIGURE TO

REDUCE I/O DEMAND

OR ADD CAPACITY -

SEE SECTION 4.3.1

IS DISK TRAFFIC DUE TO

SWAPPING AND/OR PAGING?

(MONITOR IO)

ADJUST

ACP_HDRCACHE.

ACP_M A PC ACHE,

ACP_D IRC ACHE,

AND REBOOT SYSTEM

SEE SECTION 4.3.3

ERROR - SEE

SECTION 3.5

IMPROVE VAX RMS
CACHING OR FILE

DESIGN - SEE

SECTION 4.3.2

RECONFIGURE TO REDUCE

DEMAND OR ADD CAPACITY

SEE SECTION 4.3.1

ZK-1150-82

File System Caching Is Suboptimal

To evaluate the effectiveness of caching, observe the display produced by the
MONITOR FILE—SYSTEM—CACHE command. If cache hits are 70 percent
or greater, caching activity is normal. A lower percentage, combined with

4-34

Diagnosing Resource Limitations

large numbers of attempts, indicates that caching is less than
optimally effective.

First, you should be certain that your applications are designed to minimize
the opening and closing of files. You should also verify that the file
allocation and extent sizes are appropriate. Use the DCL command
DIRECTORY/SIZE=ALL to display the space used by the files and the
space allocated to them. If the proportion of space used to space allocated
seems close to 90 percent, no changes are necessary. However, significantly
lower utilization should prompt you to set more accurate values, either
explicitly or by changing the defaults, particularly on critical files. You
use the RMS_EXTEND_SIZE system parameter to define the default file
extents on a system-wide basis. The DCL command SET RMS-DEFAULT
/EXTEND_QUANTITY permits you to define file extents on a per-process
basis (or on a system-wide basis if you also specify the /SYSTEM qualifier).
For more information, see the Guide to VAX/VMS File Applications.

If these are standard practices at your site, then you should see Section 5.3.3
for a discussion of how to adjust the following ACP system parameters:
ACP—HDRCACHE, ACP-MAPCACHE, and ACP-DIRCACHE.

VAX RMS Errors Induce I/O Problem

Misuse of VAX RMS can cause direct I/O limitations. If users are blocked on
the disks because of multiblock counts that are unnecessarily large, instruct
the users to reduce the size of their disk transfers by lowering the multiblock
count with the DCL command SET RMS—DEFAULT/BLOCK_COUNT. See
Section 5.3.2.

If this course is partially effective, but the problem is widespread, you may
decide to take action on a system-wide basis. You can alter one or more
of the system parameter(s) in the RMS—DFMB group with AUTOGEN, or
you can include the appropriate SET RMS—DEFAULT command in the
system-wide login command procedure. See the Guide to VAX/VMS File
Applications.

Explicit QIO Usage Is Too High

Next you need to determine whether any process using a device is executing
a program that employs explicit specification of QIOs rather than VAX RMS.
If you issue the MONITOR PROCESSES/TOPDIO command, you can
identify the user processes worth investigating. It is possible that the user-
written program is not designed properly. It may be necessary to redesign
the program to use caching to improve the efficiency of the QIOs. Note that
VAX/VMS does not provide any automatic caching for QIOs.

4-35

Diagnosing Resource Limitations

4.3.2.3 Disk Activity Is Due to Paging or Swapping

If you do not detect processes running programs with explicit user-written
QIOs, you should suspect that the operating system is generating disk
activity due to paging and/or swapping activity. The paging and/or
swapping may be quite appropriate and not introducing any memory
management problem. However, some aspect of the configuration is allowing
this paging and/or swapping activity to block other I/O activity, introducing
an I/O limitation. Issue the MONITOR IO command to inspect the Page
Read I/O Rate and Page Write I/O Rate (for paging activity) and the Inswap
Rate (for swapping activity). Note that since system I/O activity to the disk
is not reflected in the direct I/O count that MONITOR provides, MONITOR
IO is the correct tool to use here.

If you find indications of substantial paging and/or swapping at this point in
the investigation, you need to consider whether the paging and/or swap
files are located on the best choice of device, controller, or bus in the
configuration. You should also consider whether introducing secondary
files and separating the files would be beneficial. A later section discusses
relocating the files to bring about performance improvements.

4.3.3 Reduce I/O Demand or Add Capacity

The only low-cost solutions that remain require reductions in demand. You
could try to shift the workload so that less demand is placed simultaneously
on the direct I/O devices. Or you might reconfigure the magnetic tapes and
disks on separate buses to reduce demand on the bus. (If there are no other
available buses configured on the system, you may want to acquire buses so
that you can take this action.)

If none of the above solutions improved performance, you may need to
add capacity. You probably need to acquire disks with higher transfer rates
rather than simply add more disks. However, if you have been employing
magnetic tapes extensively, you may want to investigate ways of shifting
your applications to use disks more effectively. Section 5.3.1 provides a
number of suggestions for reducing demand or adding capacity.

4-36

Diagnosing Resource Limitations

4.3.4 Terminal Operation Problems (Buffered I/O)

Terminal operation, when improperly handled, can present a serious drain on
system resources. However, the resource that is consumed is the CPU, not
I/O. Terminal operation is actually a case for CPU limitation investigation,
but is included here because it may initially appear to be an I/O problem.

You will first suspect a terminal I/O problem when you detect a high
buffered I/O rate on the display for the MONITOR IO command. See
Figure 4-13. Next you should issue the MONITOR STATES command to
check if processes are in the COM state. This condition, in combination with
a high buffered I/O rate, suggests that the CPU is constricted by terminal
I/O demands. If you do not observe processes in the computable state, you
should conclude that while there is substantial buffered I/O occurring, the
system is handling it well. In that case, the problem lies elsewhere. Proceed
to Section 4.4 to investigate other forms of CPU limitation.

If you do observe processes in the COM state, you must verify that the high
buffered I/O count is actually due to terminals, not to communications
devices, line printers, graphics devices, non-DIGITAL devices or
instrumentation, or devices that emulate terminals. You must examine the
operations counts for all such devices with the lexical function F$GETDVI.
(See Section 4.3.2.) A high operations count for any device other than a
terminal device indicates that you should explore the possibility that the
other device is consuming the CPU resource.

If you find that the operations count for terminals is a high percentage
of the total buffered I/O count, you can conclude that terminal I/O is
degrading system performance. To further investigate this problem, issue
the MONITOR MODES command. From this display you should expect to
find much time spent either on the interrupt stack or in kernel mode. Too
much time on the interrupt stack suggests that too many characters are being
transmitted in a few very large QIOs. Too much time in kernel mode may
indicate that too many small QIOs are occurring.

4.3.4.1 Interrupt Stack Time Is Excessive

If interrupt stack time is excessive, if you know that most of the terminal
I/O is for output, you might achieve improvement by replacing DZlls or
DZ32s with a device capable of burst output, such as the DMF32. Burst
output means the output of a large number of characters at once for each
interrupt. The DMF32 is an example of a device that offers two forms of
burst output: silo mode transfers and direct memory access (DMA) transfers.
A device that can handle burst output can reduce time on the interrupt stack
for terminal I/O output, by transferring larger numbers of characters at once
and interrupting only when the transfer is completed. Thus, you potentially
eliminate a significant number of interrupts, plus the time spent in the

4-37

Diagnosing Resource Limitations

Figure 4-13 Investigating Terminal I/O Limitations—Phase I

HIGH BUFFERED

I/O RATE?

(MONITOR IO)

ARE THERE

PROCESSES IN COM

STATE?

TOO MANY CHARACTERS

IN A FEW LARGE QIOS

INVESTIGATE TERMINAL I/O

LIMITATION

INVESTIGATE

CPU LIMITATION

ARE TERMINALS

GREATEST SOURCE OF

BUFFERED I/O?

(FSGETDVI

FOR OPCNT)

YES

INVESTIGATE

CPU LIMITATION

IS THERE

MUCH TIME SPENT

ON INTERRUPT STACK?

(MONITOR MODES)

OTHER DEVICE

PRODUCES MOST

BUFFERED I/O;

INVESTIGATE THAT

DEVICE

THERE IS

EXCESSIVE KERNEL

MODE TIME; IS IT POSSIBLE

TO REDESIGN APPLICATION

TO REDUCE NUMBERS OF

QIOS?
NO

REDESIGN
APPLICATIONS

REDUCE TERMINAL I/O DEMAND
OR ADD CPU CAPACITY -

SEE SECTION 4 4 4

ZK-1149-82

interrupt service routine for each interrupt. Section 5.3.4 discusses burst
output devices, including the applications where they provide the maximum
benefit, in much greater detail.

4-38

Diagnosing Resource Limitations

If you find that burst transfers are not likely to reduce the primary source
of your terminal I/O limitation, you must either explore ways to reduce
demand or add CPU capacity. See Section 5.3.4.4.

4.3.4.2 Kernel Mode Time Is Excessive

If the MONITOR MODES display shows much time spent in kernel mode,
perhaps the sheer number of QIOs involved is burdening the CPU. See
Figure 4-14. You should explore whether the application can be redesigned
to group the large number of QIOs into smaller numbers of QIOs that
transfer more characters at a time. Such a design change could alleviate the
condition, particularly if burst output devices are in use. It is also possible
that some adjustment in the workload is feasible that would balance the
demand.

If neither of these approaches is possible, you need to reduce demand or
increase the capacity of the CPU. See Section 5.3.4.4.

Figure 4-14 Investigating Terminal I/O Limitations—Phase II

ZK-1146-82

4-39

Diagnosing Resource Limitations

4.4 Isolating CPU Limitations

The surest way to determine whether a CPU limitation could be degrading
performance is to check for a state queue with the MONITOR STATES
command. If any processes appear to be in the COM or COMO state, a CPU
limitation may be at work. However, if no processes are in the COM or
COMO states, you need not investigate the CPU limitation any further.

If processes are in the COM or COMO state, they are being denied access to
the CPU. One or more of the following conditions is occurring:

• Processes are blocked by the execution of another process at higher
priority.

• Processes are time-slicing with other processes at the same priority.

• Processes are blocked by excessive activity on the interrupt stack.

• Processes are blocked by some other resource. (Note that this last
possibility means the limitation is not a CPU limitation but is instead a
memory or I/O limitation.)

4.4.1 Processes Are Blocked by a Higher-Priority Process

If you suspect the system is performing suboptimally because processes
are blocked by a process running at higher priority, you need access to an
account that is already running. As a first step, ensure you have the ALTPRI
privilege; then set your priority to 15 with the DCL command SET PROCESS
/PRIORITY=15. Note that without this much access, it may not be possible
to further investigate the problem, unless you crash the system and look
at a crash dump. However, assuming you can gain access to the system,
as Figure 4-15 shows, you can check for a high priority lockout by issuing
the MONITOR PROCESSES/TOPCPU command. If you then examine
(with the SHOW PROCESS/CONTINUOUS command) the current and base
priorities of those processes that you found were the top users of the CPU
resource, you can conclude whether any process is responsible for blocking
lower-priority processes.

If you find that this condition exists, your option is to adjust the process
priorities. See Section 5.4.1 for a discussion of how to change the process
priorities assigned in the UAF, to define priorities in the login command
procedure, or to change the priorities of processes while they execute.

Remember to restore the priority of the process you used for the
investigation. Otherwise, you may find that process causes its own system
performance problem.

4-40

Diagnosing Resource Limitations

4.4.2 Time-Slicing Occurs Between Processes

Once you rule out the possibility of preemption by higher-priority processes,
you need to determine if there is a serious problem with time-slicing between
processes at the same priority. Using the list of top CPU users, compare the
priorities and assess how many processes are operating at the same one. If
you conclude that the priorities are inappropriate, you can follow the steps
outlined in Section 5.4.1 to change them.

However, if you decide that the priorities are correct and will not benefit
from such adjustments, you are confronted with a situation that will not
respond to any form of system tuning. Again, the only appropriate solution
here is to adjust the workload to decrease the demand or add CPU capacity.
See Section 5.4.4.

4.4.3 Interrupt Stack Activity Is Excessive

If you discover that blocking is not due to contention with other processes
at the same or higher priorities, you need to find out if there is too much
activity on the interrupt stack. In other words, is the rate of interrupts so
excessive that it is preventing processes from using the CPU?

You can determine how much time is spent on the interrupt stack from
the MONITOR MODES display. If the percentage of time on the interrupt
stack is less than 10 percent, you could view this as moderate. However,
should you observe percentages of 20 percent or more on processors other
than VAX-11/780s, you should consider this time excessive. (The higher
the percentage, the more effort you should dedicate to solving this resource
drain.)

If the interrupt stack time is excessive, you need to explore which devices
cause significant numbers of interrupts on your system and how you might
reduce the interrupt rate. For example, if terminals provide the primary
source of interrupts, perhaps the system performance would benefit by using
DMF32s instead of DZlls or DZ32s, so that terminal I/O is transferred in
a burst. (See Sections 4.3.4 and 5.3.4 for a discussion of the use of burst
output devices to reduce excessive time on the interrupt stack.)

The decisions you make will depend on the source of heavy interrupts.
Perhaps they are due to communications devices or special hardware used in
real-time applications. Whatever the source, you need to find ways to reduce
the number of interrupts, so that the CPU can handle work from other
processes. Otherwise, the solution may require you to adjust the workload
or acquire CPU capacity. See Section 5.4.4.

4-41

Diagnosing Resource Limitations

Figure 4-15 Investigating Specific CPU Limitations—Phase I

4.4.3.1 Memory Limitation Is Disguised

Once you have either ruled out or resolved the above types of CPU limitation
block, you need to determine which other resource limitation produces the

4—42

Diagnosing Resource Limitations

block. Your next check should be for the amount of idle time. See Figure
4-16. Use the MONITOR MODES command. If there is any idle time,
another resource is the problem, and you may be able to tune for a solution.
If you reexamine the MONITOR STATES display, you will likely observe
a number of processes in the COMO state. You can conclude that this
condition reflects a memory limitation, not a CPU limitation. Follow the
procedures described in Section 4.2 to find the cause of the blockage, and
then take the corrective action recommended in Chapter 5.

4.4.4 Operating System Incurs Overhead

If, however, the MONITOR MODES display indicates that there is no idle
time, your CPU is 100 percent busy. You will find that processes are in the
COM state on the MONITOR STATES display. You must answer one more
question. Is the CPU being used for real work or for nonessential operating
system functions? If you detect there is operating system overhead, you may
be able to reduce it.

You must analyze the MONITOR MODES display carefully. If your system
exhibits excessive kernel mode activity, it is possible that the operating
system is incurring overhead in the areas of memory management, I/O
handling, or scheduling. You should investigate the memory limitation and
I/O limitation (Sections 4.2 and 4.3), if you have not already done so.

Once you rule out the possibility of improving memory management or
I/O handling, the problem of excessive kernel mode activity may be due to
scheduling overhead. However, you can do practically nothing to tune the
scheduling function. There is only one case that might respond to tuning.
The clock-based rescheduling that can occur at quantum-end is costlier
than the typical rescheduling that is event driven by process state. Explore
whether the value of the system parameter QUANTUM is too low and
can be increased to bring about a performance improvement by reducing
the frequency of this clock-based rescheduling (Section 5.4.3). If not, your
only other recourse is to adjust the workload or acquire CPU capacity. See
Section 5.3.4.4

4.4.5 VAX RMS Is Misused

If the MONITOR MODES display indicates that a great deal of time is spent
in executive mode, it is possible that VAX RMS is being misused. If you
suspect this problem, proceed to the steps described in Section 4.3.1 for VAX
RMS-induced I/O limitations, making any changes that seem indicated. You
should also consult the Guide to VAX/VMS File Applications.

4-43

Diagnosing Resource Limitations

Figure 4-16 Investigating Specific CPU Limitations—Phase II

REDUCE DEMAND

OR ADD CPU CAPACITY -

SEE SECTION 4.4 4

ZK-1148-82

4.4.6 CPU Is Operating at Full Capacity

If, however, at this point in your investigation the MONITOR MODES
display indicates that most of the time is spent in supervisor mode, user
mode, or compatibility mode, you are confronted with a situation where the
CPU is performing real work and the demand exceeds the capacity. You
must either make adjustments in the workload to reduce demand (by more
efficient coding of applications, for example), or you must add CPU capacity.
See Section 5.4.4.

4—44

Diagnosing Resource Limitations

4.5 Conclusion

At this point, you should know what particular resource is limited, and you
should know which section of Chapter 5 suggests one or more possible
remedies. If not, you may be making an error interpreting the output of one
or more of the suggested tools. You should repeat the work you did for this
chapter and then, if necessary, consider consulting your DIGITAL software
specialist.

After you perform the recommended corrective actions in Chapter 5, you
should repeat the steps in this chapter to observe the effects of the changes.
As you repeat the steps, watch for the introduction of new problems
introduced by the corrective actions or the discovery of previously undetected
problems. Your goal should be to complete the steps in this chapter without
uncovering a single serious symptom or problem.

4—45

5 Compensating For Resource Limitations

This chapter describes corrective procedures for each of the various categories
of resource limitations described in Chapter 4.

Wherever the corrective procedure suggests changing the value of one
or more system parameters, the description explains briefly whether the
parameter should be increased, decreased, or given a very specific value.
Relationships between parameters are identified and explained, if necessary.
However, to avoid duplicating information available in the VAX/VMS System
Generation Utility Reference Manual, complete explanations of parameters
are not included. You should review descriptions of system parameters, as
necessary, before changing the parameters.

5.1 Changing System Parameters

In most cases, you will want to use AUTOGEN to change system parameters,
since AUTOGEN adjusts related parameters automatically. (For a discussion
of AUTOGEN, refer to the VAX/VMS System Manager's Reference Manual.) In
the few instances where it is appropriate to change a parameter in the special
parameter group, more explanation of the parameter is given in this chapter,
since special parameters are otherwise undocumented. Before you make any
changes to your system parameters, however, make a copy of the existing
version of the file that is in the SYSGEN work area, using a technique such
as the following:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN> WRITE SYS$SYSTEM:file-spec

SYSGEN> EXIT

You may want to use a date as part of the file name you specify for file-spec,
to readily identify the file later.

By creating a copy of the present values, you can always return to those
values at some later time. Generally you use the following technique,
specifying your parameter file for file-spec:

$ RUN SYStSYSTEM:SYSGEN

SYSGEN> USE SYS$SYSTEM:file-spec

SYSGEN> WRITE ACTIVE

SYSGEN> EXIT

5-1

Compensating For Resource Limitations

However, if some of the parameters you changed were not dynamic,
to restore them from the copied file you must instead use the SYSGEN
command WRITE CURRENT, and then reboot the system.

If your tuning changes involve system parameters that are dynamic, plan to
test the changes on a temporary basis first. This is the only instance where
the use of SYSGEN is warranted for making tuning changes. (Once you are
satisfied that the changes are working well, you should invoke AUTOGEN
with the REBOOT parameter to make the changes permanent.)

If you are planning to change a system parameter and you are uncertain of
an ultimate target value and also of the sensitivity of the specific parameter
to changes, you should err on the conservative side in making initial changes.
As a guideline, you might make a 10 percent change in the value first, so that
you can observe its effects on the system. If you see little or no effect, you
might try doubling or halving the original value of the parameter, depending
on whether you are increasing or decreasing the parameter. If this magnitude
of change has no effect, you should restore the parameter to its original value
with the parameter file you saved before starting. If you cannot affect your
system performance with changes of this magnitude, it is doubtful that you
have selected the right parameter for change.

You should change only a few parameters at a time.

After you change system values or parameters, you must monitor the results,
as described in Section 1.4. You have two purposes for monitoring. First,
you must ensure that the changes are not inducing new problems. Second,
you must evaluate the degree of success achieved.

You may want to return to the appropriate procedures of Chapter 4, as you
evaluate your success after tuning and decide whether to pursue additional
tuning efforts. However, always keep in mind that there is a point of
diminishing returns in every tuning effort (see Section 1.5).

Whenever your changes are unsuccessful, make it a practice to restore the
parameters to their previous values before you continue tuning. Otherwise,
it can be difficult to determine which changes produce currently
observed effects.

5.2 Compensating for Memory-Limited Behavior

The following sections describe procedures to remedy specific conditions
that you may have detected as the result of the investigation described in
Section 4.2.

5-2

Compensating For Resource Limitations

5.2.1 Reduce Number of Image Activations

There are several ways to reduce the number of image activations. You and
the programming staff should explore them all and apply those you deem
feasible and likely to produce the greatest results.

Excessive image activations can result from running large command
procedures frequently, since all DCL commands (except those performed
within the command interpreter) require an image activation. If command
procedures are introducing the problem, consider writing programs to replace
them.

When code is actively shared, the cost of image startups decreases. Perhaps
your installation has failed to design applications that share code. You
should examine ways to employ code sharing wherever suitable. See
Sections 1.1.3 and 2.2.3. (Note that you will not see the number of image
activations drop when you begin to use code sharing, but you should see an
improvement in performance. The effect of code sharing is to shift the type
of faults at image activation from hard faults to soft faults, a shift that results
in performance improvement.)

Yet another source of excessive image activations is migration of programs
from other operating systems to a VAX/VMS system without any design
changes. For example, programs that employ the chaining technique on
another operating system will not use memory efficiently on a VAX/VMS
system if you simply recompile them and ignore design differences. When
converting applications to run on a VAX/VMS system, always consider the
benefits of designing and coding each application for native mode operation.

5.2.2 Increase Page Cache Size

You can enlarge the page cache by simply increasing the four page cache
parameters: FREEGOAL, FREELIM, MPW_THRESH, and MPW_LOLIMIT. It
is not necessary to remove balance slots or to reduce the working set size of
any of the processes.

You should first increase the number of pages on the free page list, by
augmenting FREELIM and FREEGOAL. Aim to provide at least one page
on the free page list for every process. FREEGOAL must always be greater
than FREELIM. Generally a good target size for FREEGOAL is three times
FREELIM. If you feel your workload warrants it, you can increase the
modified page list size by increasing MPW_THRESH and MPW—LOLIMIT.
Generally MPW—LOLIMIT should be less than 10 percent of physical
memory.

You may optionally decide to reduce the number of balance slots, as
described in Section 5.2.13.

5-3

Compensating For Resource Limitations

5.2.3 Decrease Page Cache Size

You decrease the size of the page cache by reducing the values for the system
parameters MPW_LOLIMIT, MPW_THRESH, FREEGOAL, and FREELIM,
maintaining the ratios suggested in Section 5.2.2 above.

In general, acceptable performance can be obtained by a page cache size that
is one order of magnitude less than the available space for it and the working
sets.

5.2.4 Adjust Working Set Characteristics (for Quota and Extent)

You have concluded that the working set quota and/or working set extent
characteristics are incorrect in some cases. The corrective action depends on
how the values were established. You must know whether the values affect
a process, subprocess, detached process, or batch job.

Furthermore, if you need to fix a situation that currently exists, you must
evaluate the severity of the problem. In some cases, you may have to stop
images or processes, or ask users to log off to permit your changes to become
effective. You would only take such drastic action if the problem creates
intolerable conditions that demand immediate action.

In addition to making specific changes in the working set quota and working
set extent values, you should also address the need to modify the values of
the system parameters BORROWLIM and GROWLIM. Section 5.2.5 includes
a discussion of these changes.

Whenever you increase the values for working set extents, you should
compare your planned values to the system parameter WSMAX, which
specifies (on a system-wide basis) the maximum size that the working sets
can achieve. It will do no good to specify any working set extent that exceeds
WSMAX, since the working set can never actually achieve a count above the
value of WSMAX. If you specify such a value, you should also increase
WSMAX.

5-4

Compensating For Resource Limitations

5.2.4.1 Establish Values for Ancillary Control Processes (ODS-1 Only)

This section will be of interest only if you are using ODS-1 disks.

Before studying the considerations for adjusting working set sizes for
processes in general, consider the special case of the ancillary control process
(ACP). (Note that you will be using an ACP for disks only if you have ODS-
1 disks.) The default size of the working set (and, in this case, the working
set quota, too) for all ACPs is determined by the system parameter ACP_
WORKSET. If ACP—WORKSET is zero, the system calculates the working
set size for you. If you want to provide a specific value for the working set
default, you just specify the desired size in pages with AUTOGEN. (If your
system uses multiple ACPs, remember that ACP—WORKSET is a system-wide
parameter: any value you choose must apply equally well to all ACPs.)

If you decide to reduce ACP—WORKSET (with the intent of inducing modest
paging in the ACP), use the SHOW SYSTEM command to determine how
much physical memory the ACP currently uses. Then simply calculate the
value that is 90 percent of the ACP's current usage. Set the system parameter
ACP—WORKSET to the reduced value you calculate. However, to make the
change effective for all ACPs on the system, not just the ones created after
the change, you must reboot the system.

Once you reduce the size of ACP—WORKSET, observe the process with the
SHOW SYSTEM command to verify that the paging you have induced in
the ACP process is moderate. Your goal should be to keep the total number
of page faults for the ACP below 20 percent of the direct I/O count for the
ACP.

5.2.4.2 Establish Values for Other Processes

The following discussion applies to all processes other than ACPs. If the
values were established for processes based on the defaults in the UAF, you
should seek out the user, describe the intended change, and ask the user
to issue the DCL command SET WORKING-SET/EXTENT and/or SET
WORKING_SET/QUOTA, as appropriate.

If you observe satisfactory improvement from the new values, you must
decide if the benefit would apply whenever the process runs or just during
some specific activities. For specific cases, the user should issue the SET
WORKING—SET command when needed. For a more consistent change,
you would need to modify the UAF.

To modify values in the UAF, you invoke AUTHORIZE and use the
SHOW and MODIFY commands to modify the values /WSQUOTA and
/WSEXTENT for one or more users. If the SHOW command reveals that the
values are the same as the defaults, probably the defaults have been applied.
You should change all the assigned values in the existing records in the UAF,

5—5

Compensating For Resource Limitations

as appropriate. Then you should also modify the DEFAULT record in the
UAF so that new accounts will receive the desired values.

If the working set characteristic values were adjusted by the process through
the DCL command SET WORKING—SET or by a system service, you must
convince the owner of the process that the values were incorrect and should
be revised.

If the values were adjusted with the SET WORKING—SET comand, the
user can simply issue the command again, with revised values. However,
if values were established by system services, and the process is currently
running and causing excessive paging, either the user must stop the image
with CTRL/Y or else you must stop the process with the DCL command
STOP. (Changing values set by system services typically requires code
changes in the programs before they are run again.)

5.2.4.3 Establish Values for Detached Processes or Subprocesses

If the problem is introduced by a detached process or subprocess, you
must also determine how the values became effective. If the values were
established by the RUN command, they can only be changed if the user
stops the detached process or subprocess (if it is running) and thereafter
always starts it with a revised RUN command. (The user can stop the
detached process or subprocess with the DCL command STOP.)

If the values were introduced by a system service, it is also necessary to
stop the running detached process or subprocess, but code changes will be
necessary as well.

If, however, the values were established by default, you may want to revise
the values of the system parameters PQL_DWSEXTENT and/or
PQL—DWSQUOTA, particularly if the problem appears to be widespread. If
the problem is not widespread, you can to request users to use specific values
that are less than or equal to their UAF defaults. (Unprivileged users cannot
request values that will exceed their authorized values in the UAF. If such an
increase is warranted, change the UAF records.)

5-6

Compensating For Resource Limitations

5.2.4.4 Establish Values for Batch Jobs

If the problem is introduced by a batch job, you must determine the source

of the working set values.

If the values are those established for the queue when it was initialized, you
cannot change them for this job while it is running. You must reinitialize
the queue if you determine the changes would be beneficial for all future
batch jobs. To reinitialize a batch queue, you must first stop it with the DCL
command STOP/QUEUE, then restart it with the DCL command START
/QUEUE. If the new working set values produce good results, you should
ask the user to submit the job with the appropriate values in the future.

If the working set characteristics are obtained by default from the user's
UAF, you might consider assigning values to the batch queues or creating
additional batch queues. If you prefer to have values assigned from the
UAF, but have discovered instances where the best values are not in effect,
before you change the UAF records, you need to determine if the changes
would be beneficial at all times, or only when the user submits certain jobs.
It is generally better to ask the users to tailor each submission than to either
change UAF values that affect all the user's activities or change batch queue
characteristics that affect all batch jobs.

5.2.5 Tune to Make Borrowing More Effective

If you have found few processes are taking advantage of loans, you should
consider making the following adjustments:

• Decrease PFRATH

• Decrease BORROWLIM and/or GROWLIM

• Increase the process limit WSEXTENT

In decreasing PFRATH, you will increase the rate at which processes increase
their working sets with automatic working set adjustment. (See Section
2.2.1 for a complete description of automatic working set adjustment and
its parameters. See Section 5.2.6 for guidelines for initial settings of the
parameters.)

When you decrease BORROWLIM and/or GROWLIM, consider how much
working set space you would like all processes to be able to obtain, according
to the guidelines presented in Section 2.2.1. As a rough guideline, you
could target for a BORROWLIM value between one-third to one-half of
available memory, and a GROWLIM value between one-sixth to one-fourth
of available memory.

5-7

Compensating For Resource Limitations

Be generous in establishing values for the working set extents, since the
memory is only used when needed. As a general practice, set the working
set extent value to the largest value you expect will be needed. Section 5.2.4
describes the various ways you adjust the working set extent characteristic.
(You might also need to increase WSMAX.)

5.2.6 Tune AWSA to Respond Quickly to Increased Demand

You may want to increase the response from automatic working set
adjustment to paging so that AWSA rapidly establishes a working set size
that keeps paging to a reasonable rate for your configuration and workload.
To do so, you need to reduce PFRATH and/or increase WSINC.

Think of PFRATH as the target maximum paging rate for any process in the
system. PFRATH should always be greater than PFRATL. As a rule, values
of PFRATH larger than 500 (which specifies a desired maximum rate of 50
page faults per second of CPU time) or smaller than 10 are unreasonable.

The system parameter WSINC defines the number of pages by which the
working set limit increases when AWSA determines that it needs to expand.
The maximum practical value for this parameter is therefore the difference
between WSMAX (which is the maximum size increase that any working set
can experience) and MINWSCNT (which is the minimum working set size).
In practical terms, however, to avoid wasting memory, it makes sense to set
WSINC smaller than this difference. A fairly good rule of thumb is to set
WSINC to match an approximation of a typical user's WSDEFAULT value.
Such a value allows the processes to increase fairly rapidly, while limiting
the potential maximum waste to the amount needed to minimally support
one user.

If you are not fully satisfied with the results produced by tuning WSINC
and PFRATH, you could decrease AWSTIME. However, do not decrease the
value of AWSTIME below the value of QUANTUM. Your goal should be
to achieve a value for AWSTIME that follows the overall trend in the total
size of all the working sets. If you establish too small a value for AWSTIME,
automatic working set adjustment may be responding to too many frequent
drastic working set size changes and not to the overall trend the changes
describe.

5-8

Compensating For Resource Limitations

5.2.7 Disable Voluntary Decrementing

If you find that some of the working set sizes are oscillating continuously
while the processes should be in a stable state of memory demand, it is
possible that voluntary (time-based) decrementing is forcing paging. To
avoid this, set PFRATL to zero. This will effectively turn off voluntary
decrementing. As a result, your system will rely solely on load-based
memory reclamation (swapper trimming or outswapping).

Optionally you may want to set WSDEC to zero. If you do, it will be more
obvious to you or others at some future time that voluntary decrementing
is turned off on the system. However, setting only WSDEC to zero does
not disable the checking that automatic working set adjustment performs for
voluntary decrementing.

5.2.8 Tune Voluntary Decrementing

It may be the case that some time-based working set trimming is desirable to
reclaim memory that is not really needed (to avoid taking needed memory
away from other processes, for example). However, the parameters are set
so high that too much paging occurs. In this case, you should decrease
WSDEC or PFRATL. Setting just PFRATL to zero or setting both WSDEC and
PFRATL to zero turns off time-based decrementing. However, if you choose
to maintain some voluntary decrementing, remember that to avoid fixed
oscillation, WSDEC should be smaller than WSINC. In addition, WSINC
and WSDEC should be relatively prime (that is, WSINC and WSDEC should
have no common factors). A good starting value for WSDEC would be an
order of magnitude smaller than a typical user's WSDEFAULT value.

5.2.9 Turn on Voluntary Decrementing

There is also the case where time-based shrinking is completely turned
off when it should be turned on. To turn WSDEC and PFRATL on, set
WSDEC and PFRATL both greater than zero and observe the guidelines in
Section 5.2.8.

5.2.10 Enable AWSA

To turn on the part of automatic working set adjustment that permits
processes to increase their working set sizes, you must set WSINC to a value
greater than zero. The default parameter settings established by AUTOGEN
at system installation are good starting values for most workloads
and configurations.

5-9

Compensating For Resource Limitations

5.2.11 Adjust Swapper Trimming

When you determine that a paging problem is caused by excessive swapper
trimming, SWPOUTPGCNT is too small. There are two approaches you
can use. The first is to increase SWPOUTPGCNT to a value that is large
enough for a typical process on the system to use as its working set size.
This approach effectively causes the swapper to swap the processes at this
value rather than reduce them to a size that forces them to page heavily.

The second approach completely disables second-level swapper trimming by
setting SWPOUTPGCNT to a value equal to the largest value for WSQUOTA
for any process on the system. This has the effect of shifting the bulk of
the memory management to outswapping, with no second-level swapper
trimming.

In conjunction with swapper trimming, the system uses the system
parameter LONGWAIT to control how much time must pass before a
process is considered idle. The swapper considers idle processes to be better
candidates for memory reclamation than active processes. The ideal value
for LONGWAIT is the length of time that accurately distinguishes an idle
or abandoned process from one that is momentarily inactive. Typically this
value is in the range of 3 to 20 seconds. You would increase LONGWAIT to
force the swapper to give processes a longer time to remain idle before they
become eligible for swapping or trimming. This approach will prove most
productive when the workload is mixed and includes interactive processes.
If the workload is composed primarily of non real-time processes, you may
consider increasing DORMANTWAIT.

5.2.12 Convert to a System That Rarely Swaps

To reduce the swapping activity on a system severely, you can set the system
parameter BALSETCNT equal to a value that is two less than the value of the
system parameter MAXPROCESSCNT, thus allowing the maximum number
of processes to operate concurrently. At the same time you should set the
system parameter SWPOUTPGCNT to a minimum value, such as 60 pages.

As a secondary action, you would reduce the working set quotas, following
the recommendations included in Section 5.2.4.

These actions produce a system that primarily pages.

5-10

Compensating For Resource Limitations

5.2.13 Adjust BALSETCNT

You may want to use the BALSETCNT system parameter as a tuning control
for paging or swapping. Reducing BALSETCNT may reduce paging, while
increasing BALSETCNT can be used to decrease swapping. BALSETCNT
is a parameter that affects a number of other parameters, so you should be
conservative in changing it.

5.2.13.1 Reduce BALSETCNT to Reduce Paging

If you reduce the number of balance set slots by decreasing the parameter
BALSETCNT, you can potentially reduce the demand for memory by limiting
the number of processes that compete for memory at a given time.

From the output provided by the DCL command SHOW MEMORY under a
very heavy workload, you know the number of balance slots available and
in use. If balance slots are available under heavy load, it is safe to reduce
the value of BALSETCNT by that amount. However, if no balance slots are
available and you reduce BALSETCNT, you are likely to force swapping to
occur while the system is loaded.

5.2.13.2 Increase BALSETCNT to Decrease Swapping Problems

If active swapping is being caused by a lack of balance slots when there is
available memory, the first step is to increase BALSETCNT. The easiest thing
to do is to set BALSETCNT equal to a value that is two less than the system
parameter MAXPROCESSCNT. This guarantees that a balance slot will be
available for any process that can be created. Swapping will then be forced
only when memory is insufficient to meet the demand.

Rather than immediately setting BALSETCNT equal to a value that is two
less than MAXPROCESSCNT (which is the largest useful value), you
might try a more gradual approach. Divide the remaining free memory
(as displayed by the SHOW MEMORY command) by the size of a typical
working set, and then increase BALSETCNT by this number.

5-11

Compensating For Resource Limitations

5.2.14 Reduce Large Page Caches

If active swapping is caused by a lack of free memory, which in turn is
caused by unnecessarily large page caches, as a first step reduce the size of
the caches by lowering FREELIM and FREEGOAL, or MPW_LOLIMIT and
MPW_THRESH. (Remember that MPW—HILIMIT relates to the maximum
size of the modified page list, rather than the target minimum size.)

Good starting ratios for these parameters are given in Section 5.2.2. Keep
in mind that the problem of overly large caches is caused by mistuning in
the first place. The AUTOGEN command procedure will not generate page
cache values that are excessively large.

5.2.15 Curtail Large, Compute-Bound Process

Before suspending a large, low-priority, compute-bound process, it is strongly
recommended that you curtail its memory allocation. If the process has not
had a significant event for 10 seconds or more (page fault, direct or buffered
I/O, CPU time allocation), you can decrease DORMANTWAIT to make the
process a more likely outswap candidate.

5.2.16 Suspend Large, Compute-Bound Process

When you decide to suspend a large, compute-bound process, be sure that
it is not sharing files with other processes. Otherwise, the large, compute-
bound process may have a shared file locked when you suspend it. If this
should happen, you will soon observe that other processes become stalled.
You must resume the large, compute-bound process as soon as possible
with the DCL command SET PROCESS/RESUME. If you are unable to
achieve the benefit suspending offers. In this case, refer to Section 5.2.4.2 for
appropriate corrective action.

5.2.17 Control Growth of Large, Compute-Bound Processes

When it becomes clear that a large, compute-bound process gains control
of more memory than is appropriate, you may find it helpful to lower the
process's working set quota. You would take this action if you conclude that
this process should be the one to suffer the penalty of page faulting, rather
than forcing the other processes to be outswapped too frequently. Section
5.2.4.2 describes how to make adjustments to working set quotas.

5—12

Compensating For Resource Limitations

5.2.18 Enable Swapping for Disk ACPs (ODS-1 Only)

If a disk ACP has been set up so that it will not be outswapped and you
determine that the system would perform better if it were, you must use
AUTOGEN to modify the system parameter ACP—SWAPFLGS and then
reboot the system. The VAX/VMS System Generation Utility Reference Manual
describes how to specify the flag value for ACP—SWAPFLGS that will permit
swapping of the ACP.

5.2.19 Enable Swapping for Other Processes

If you determine that users have been disabling swapping for their processes
and that the effect of locking one or more processes in memory has been
damaging to overall performance, you must explore several options.

Should there be no valid reason to disable swapping for one or more of
the processes, you must convince the users to stop the practice. If you are
unable to win their cooperation, you can remove privileges so they can not
disable swapping. (The PSWAPM privilege is required to issue the SET
PROCESS/NOSWAPPING command.) You use the Authorize Utility to
change privileges.

However, if the users have valid reasons for disabling swapping, you should
carefully examine what jobs are running concurrently when the performance
degrades. It is possible that rescheduling a few of the jobs will be sufficient
to improve overall performance. See Section 5.2.25.

5.2.20 Reduce Number of Concurrent Processes

You can reduce the number of concurrent processes by lowering the value of
MAXPROCESSCNT. A change in that value has implications for the largest
number of system parameters. Therefore, you should change the value of
MAXPROCESSCNT in conservative steps.

5.2.21 Discourage Working Set Loans When Memory Is Scarce

If working sets are too large because processes are using their loan regions
(above WSQUOTA), you can curtail loaning by increasing GROWLIM
and BORROWLIM. (To completely disable borrowing, just set GROWLIM
and BORROWLIM equal to the special system parameter PHYSICALPAGES,
which is the upper bound on the amount of physical memory that VAX/VMS
will configure when the system is booted.)

You might also consider reducing the WSEXTENT size for some processes in
the UAF file. If you go so far as to set the WSEXTENT values equal to the
WSQUOTA values, you completely disable borrowing for those processes.

5-13

Compensating For Resource Limitations

5.2.22 Increase Swapper Trimming Memory Reclamation

If you lower the value of SWPOUTPGCNT, you increase the amount of
memory reclaimed every time second-level trimming is initiated. However,
this is the parameter that most effectively converts a system from a
swapping system to a paging one and vice versa. As you lower the value of
SWPOUTPGCNT, you run the risk of introducing severe paging.

5.2.23 Reduce Rate Of Inswapping

If you increase the special system parameter SWPRATE, you will reduce the
frequency at which outswapped processes are inswapped. SWPRATE is the
minimum real time between inswaps of compute-bound processes. For this
calculation, any process whose current priority is less than or equal to the
system parameter DEFPRI is considered to be compute-bound.

5.2.24 Induce Paging To Reduce Swapping

To induce paging on a system that swaps excessively, you need to lower
the working set quotas, as described in Section 5.2.4.2. In addition, you
should increase the value of PFRATH and you might also reduce the value of
WSINC. With these modifications you will slow down the responsiveness of
automatic working set adjustment to paging. The processes will not acquire
additional working set space as readily.

It might be worthwhile to check the number of concurrent jobs in the batch
queues. Use the DCL command SHOW SYSTEM/BATCH to examine the
number and size of the batch jobs. If you observe many concurrent batch
jobs, you might decide to issue the DCL commands STOP/QUEUE and
START/QUEUE/JOB_LIMIT to impose a restriction on the number.

5.2.25 Add Page Files

In the case where the system disk is saturated by paging, as described in
Section 4.2.1, you may want to consider adding one or more page files, on
separate disks, to share the activity. This option is more attractive when
you have space available on a disk that is currently underutilized. Use the
SYSGEN commands CREATE and INSTALL to add page files on other disks.
(See the VAX/VMS System Generation Utility Reference Manual.)

The discussion of AUTOGEN in the VAX/VMS System Manager's Reference
Manual includes additional considerations and requirements for modifying
the size and location of the page file.

5-14

Compensating For Resource Limitations

5.2.26 Reduce Demand or Add Memory

At this point, when all the tuning options have been exhausted, there
are only two options: reduce the demand for memory by modifying the
workload, or add memory to the system.

5.2.26.1 Reduce Demand

Section 1.1.2 describes a number of options you can explore to shift the
demand on your system so that it is reduced at peak times.

5.2.26.2 Add Memory

If you conclude you need to add memory, your next concern is to determine
how much memory. You should add as much memory as you can afford.
If you need to establish the amount more scientifically, you could try this
empirical technique.

• Determine or estimate a paging rate you believe would represent a
tolerable level of paging on the system. (You should make allowances
for global valid faults if many applications share memory, by deducting
the global valid fault rate from the total page fault rate.)

• Turn off swapper trimming (set SWPOUTPGCNT to the maximum value
found for WSQUOTA).

• Give the processes large enough working set quotas so that you achieve
the tolerable level of paging on the system while it is under load.

The amount of memory required by the processes that are outswapped
represents an approximation of the amount of memory your system would
need to obtain the desired performance under load conditions.

Once you add memory to your system, be sure to invoke AUTOGEN so that
new parameter values can be assigned on the basis of the increased physical
memory size.

5.3 Compensating for I/O-Limited Behavior

This section describes procedures to remedy specific conditions that you may
have detected as the result of the investigation described by Section 4.3.

All the tuning solutions for performance problems based on I/O limitations
involve using memory to relieve the I/O subsystem. The two most accessible
mechanisms are the ACP caches and VAX RMS buffering.

5-15

Compensating For Resource Limitations

5.3.1 Remove Blockage Due to ACP

Of the four sources of bottlenecks, the ACP lockout problem is the easiest to
detect and solve. Moreover, it responds to software tuning.

The solution for an ACP lockout caused by a slow disk sharing an ACP
with one or more fast disks requires that you dismount the slow device with
the DCL command DISMOUNT, then issue the DCL command MOUNT
/PROCESSOR=UNIQUE, to assign a private ACP to the slow device. Note
that you will be using an ACP for disks only if you have ODS-1 disks.
However, be aware that each ACP has its own working set and caches.
Thus, creating multiple ACPs requires the use of additional memory.

Also, there are situations that may share some of the symptoms of an ACP
lockout that will not respond to adding an ACP. For example, when there
is substantial I/O activity all directed to the the same device, so that the
activity is in effect saturates the device, adding an ACP for another device
without taking steps to redirect and/or redistribute some of the I/O activity
to the other device yields no improvement.

5.3.1.1 Blockage Due to a Device, Controller, or Bus (ODS-1 Only)

When you are confronted with the situation where users are blocked by a
bottleneck on a device, a controller, or a bus, your first step should be to
evaluate whether you can take any action that would make less demand on
the bottleneck point.

Reduce Demand on the Device That Is the Bottleneck

If the bottleneck is a particular device, you might try any of the following
suggestions, as appropriate. The suggestions begin with areas that are of
interest from a tuning standpoint, but progress to application design areas.

One of the first things you should determine is whether the problem device
is used for paging or swap files and if this activity is contributing to the
I/O limitation. If so, you need to consider ways to shift the I/O demand.
Possibilities include moving either the swapping or page file (or both, if
appropriate) to another disk. However, if the bottleneck device is the system
disk, you cannot move the entire page file to another disk; a minimum page
file is required on the system disk. See the discussion of AUTOGEN in the
VAX/VMS System Manager's Reference Manual for additional information and
suggestions.

Another way to reduce demand on a disk device is to redistribute the
directories over one or more additional disks, if possible. As described
earlier in this section, you may decide to allocate memory to multiple ACPs
(ODS-1 only) to permit redistributing some of the disk activity to other
disks. Section 5.3.2 discusses some of the implications of using VAX RMS to

5-16

Compensating For Resource Limitations

alleviate the I/O on the device. Also consider that if the disks have been in
use for some time, the files may be fragmented. You should run the Backup
Utility to eliminate the fragmentation. (See the VAX/VMS Backup Utility
Reference Manual.) If this approach is highly successful, institute a more
regular policy for running backups of the disks.

As a next step, you should try to schedule work that heavily accesses the
device over a wider span of time or with a different mix of jobs, so that the
demand on the device is substantially reduced at peak times. Moving files
to other existing devices to achieve a more even distribution of the demand
on all the devices is one possible method. Modifications to the applications
might also help distribute demand over several devices. Greater changes may
be necessary if the file organization is not optimal for the application. For
example, perhaps the application employs a sequential disk file organization,
when an indexed sequential organization would be preferable.

Reduce Demand on the Controller That Is the Bottleneck

When a controller or MASSBUS is the bottleneck, examine the activity at
the slowest device on the controller and its relationship to the other devices.
For example, when tapes and disks operate on the same MASSBUS, the
tapes can overburden the MASSBUS and result in poor disk performance.
You may find it helpful to group the slower devices together on the same
controller or MASSBUS (when you have more than one available).

Reduce Demand on the Bus That Is the Bottleneck

If the controllers are located on a UNIBUS, another suggestion is to place
controllers on separate buses. Again, you want to segregate the slower
speed units from the faster units. For example, you will find the greatest
improvement if you can put tape controllers on one UNIBUS and disk
controllers on a separate UNIBUS.

When a UNIBUS becomes the bottleneck, the only solution is to acquire
another bus so that some of the load can be redistributed over both buses.

5.3.1.2 Enlarge Hardware Capacity

If there seem to be few appropriate or productive ways to shift the demand
away from the bottleneck point using available hardware, you may have
to acquire additional hardware. Adding capacity can refer to either
supplementing the hardware with another similar piece, or replacing the
item with one that is larger, faster, or both.

5-17

Compensating For Resource Limitations

Try to avoid a few of the more common mistakes. It is easy to conclude that
more disks of the same type will permit better load distribution, when the
truth is that providing another controller for the disks you already have may
bring much better results. Likewise, rather than acquiring more disks of the
same type, the real solution may be replacing one or more existing disks with
a disk that has a faster transfer rate. Another mistake to avoid is acquiring
disks that immediately overburden the controller or bus you place them on.

To make the correct choice, you must know whether your problem is due
to limitations in space and placement or to speed limitations. If you need
speed improvement, be sure you know whether it is needed at the device or
the controller. You must invest the effort to understand the I/O subsystem
and the distribution of the I/O workload across it, before you can expect
to make the correct choices and configure them optimally. You should try
to understand at all times just how close to capacity each part of your I/O
subsystem is.

5.3.2 Improve VAX RMS Caching

The Guide to VAX/VMS File Applications is your primary reference for
information on tuning VAX RMS files and applications. VAX RMS reduces
the load on the I/O subsystems through buffering. Both the size of the
buffers and the number of buffers are important in this reduction. In trying
to determine reasonable values for buffer sizes and buffer counts, you
should look for the optimal balance between minimal VAX RMS I/O (using
sufficiently large buffers) and minimal memory management I/O. Note that
if you define VAX RMS buffers that are too large, you can more than fill
the process's entire working set with these buffers, ultimately inducing more

process paging.

5.3.3 Adjust File System Caches

The considerations for tuning disk file system caches are similar to those
for tuning VAX RMS buffers. Again the issue is the minimizing of I/O. A
disk file system maintains caches of various file system data structures such
as file headers and directories. These caches are allocated from paged pool
when the volume is mounted for ODS-2 volumes (default). (For an ODS-1
ACP, they are part of the ACP working set.) File system operations that only
read data from the volume (as opposed to those that write) can be satisfied
without performing a disk read if the desired data items are in the file system
caches. It is important to seek an appropriate balance point that matches the
workload.

5-18

Compensating For Resource Limitations

To evaluate file system caching activity, issue the MONITOR FILE¬
SYSTEM-CACHE command and examine the data items displayed. (For
detailed descriptions of these items, refer to the VAX/VMS Monitor Utility
Reference Manual.) You can then invoke SYSGEN and modify, if necessary,
appropriate ACP system parameters. Data items in the FILE-SYSTEM-
CACHE display correspond to ACP parameters as follows:

FILE-SYSTEM—CACHE
Item ACP/XQP Parameters

Dir FCB ACP—SYSACC

ACP—DINDXC ACHE

Dir Data ACP—DIRC ACHE

File Hdr ACP—HDRCACHE

File ID ACP—FIDC ACHE

Extent ACP—EXTC ACHE

ACP—EXTLIMIT

Quota ACP—QUOC ACHE

Bitmap ACP—MAPC ACHE

When you change the ACP cache parameters, remember to reboot the system
to make the changes effective.

5.3.4 Reduce Interrupts for Terminal I/O

If your earlier investigation has led you to consider the use of burst transfers
to reduce the interrupt stack time for your terminal I/O, there are several
additional considerations you should investigate prior to making a final
choice. The discussion in the next section pertains to the DMF32. Similar
considerations might apply to other devices.

5.3.4.1 Choose the Appropriate Environment For DMF32s

It turns out that when an application writes 200 or more characters at a
time in the mode known as NOFORMAT, the DMA feature of the DMF32
is most beneficial. (Note that DMA transfers are only permitted when the
output buffer size is at least as large as the value established by the system
parameter TTY_DMASIZE. Also, the standard formatted writes require the
terminal driver to perform certain operations, such as wraparound, that
preclude the use of DMA transfers.)

5-19

Compensating For Resource Limitations

When an application writes less than 200 characters at a time but more
than 10 characters, the silo transfer feature of the DMF32 is still 30 to 60
percent more efficient than a DZ11 or DZ32 transfer. When applications
write out less than 10 characters at a time, there is no significant performance
improvement of the DMF32 over the DZ11 or DZ32.

To summarize, if you do not observe time spent on the interrupt stack in
your investigation, acquiring DMF32s probably will not relieve the terminal
I/O problem. Furthermore, DMF32s improve terminal I/O operations only
for output, and only if the size of the output buffers is at least 10 characters.

Since most record-oriented terminal writes transfer fewer characters than
the value of TTY_DMASIZE, applications must be specially designed to take
advantage of the DMA feature offered by the DMF32. As always, you must
know your workload well to make an appropriate selection of equipment.

5.3.4.2 Consider Application Design

Among additional methods of reducing interrupt activity for terminal I/O are
redesigning the applications and lowering the baud rate.

Programmers can reduce the number of interrupts for terminal I/O if they
design applications that collect the QIOs into large operations that write as
many characters as possible. In fact, the programmers may want to use QIOs
that write as many characters as allowed by the system parameter MAXBUF,
which identifies the maximum number of characters permitted for buffered
I/O transfers (see the VAX/VMS System Generation Utility Reference Manual).
If you can identify several offending programs that are used frequently that
do not collect the QIOs, you may find the benefits warrant the expenditure
of time for redesigning and recoding the programs.

Wherever possible, programmers should design applications for video
terminals that update the affected portions of the screen, rather than
designing applications that rewrite the whole screen.

5.3.4.3 Lower the Baud Rate if Terminals Smooth Scroll

If many of the applications at your site write characters to terminals in
the smooth scrolling mode using the DZ11 or DZ32 interface, you might
consider reducing the baud rate to lower the frequency with which the DZ11
interrupts for another character. In this particular environment (smooth scroll
writing with DZlls or DZ32s), lowering the baud rate effectively decreases
the CPU time spent processing interrupts. For example, you could operate
two terminals at 4800 baud and incur the same number of interrupts that one
terminal would generate at 9600 baud, while the decrease in the baud rate
would be barely perceptible to the users.

5-20

Compensating For Resource Limitations

5.3.4.4 Reduce Demand or Increase CPU Capacity

You have detected the need to reduce demand on the CPU or increase
the CPU capacity as the result of terminal I/O activity. At this point you
have no tuning solutions left, and in fact, if you have followed all previous
suggestions that applied, you seem to need capacity more than anything else.
Section 5.4.4 describes a few additional ways you might reduce the demand
on your CPU and then discusses the topic of increasing CPU capacity.

5.4 Compensating for CPU-Limited Behavior

This section describes procedures to remedy specific conditions that you may
have detected as the result of the investigation described by Section 4.4.

There are only two ways to apply software tuning controls to alleviate
performance problems related to CPU limitations: specify explicit priorities
(for jobs or processes) and modify the system parameter QUANTUM. Your
other two options are really not tuning solutions.

5.4.1 Adjust Priorities

When a given process or class of processes receives inadequate CPU service,
the surest technique for improving the situation is to raise the priority of
the associated processes. To avoid undesirable side-effects that can result
when a process's base priority is raised permanently, it is often better to
simply change the application code to raise the priority only temporarily.
You shoult adopt this practice for critical pieces of work.

Priorities are established for processes through the UAF value. Users with
appropriate privileges (ALTPRI, GROUP, or WORLD) can modify their own
priority or those of other processes with the DCL command SET PROCESS
/PRIORITY. Process priorities can also be set and modified during execution
with the system service $SETPRI. See Section 2.2.4.

Priorities are assigned to subprocesses and detached processes with the DCL
command RUN/PRIORITY or with the $CREPRC system service at process
creation. The appropriately privileged subprocess or detached process can
modify its priority while running with the $SETPRI system service.

Batch queues are assigned priorities when they are initialized (INITIALIZE
/QUEUE/PRIORITY) or started (START/QUEUE/PRIORITY). While you can
adjust the priorities on a batch queue by stopping the queue and restarting it
(STOP/QUEUE and START/QUEUE/PRIORITY), the only way to adjust the
priority on a process while it runs is through the system service $SETPRI.

5-21

Compensating For Resource Limitations

5.4.2 Reduce Interrupts

Section 5.3.4 discusses numerous ways to reduce terminal interrupts.

5.4.3 Increase QUANTUM

By reducing QUANTUM, you can reduce the maximum delay a process
will ever experience waiting for the CPU. The tradeoff here is that, as
QUANTUM is decreased, the rate of time-based context switching will
increase, and therefore the percentage of the CPU used to support CPU
scheduling will also increase. When this overhead becomes excessive,
performance will suffer. In general, do not adjust QUANTUM unless you
know exactly what you expect to accomplish, and you are aware of all the
ramifications of your decision.

5.4.4 Reduce Demand or Add CPU Capacity

Very few tuning controls that reduce demand on the CPU; you need to
explore ways to schedule the workload so that there are fewer compute-
bound processes running concurrently. Section 1.1.2 includes a number of
suggestions for accomplishing this goal.

You may find it possible to redesign some applications with improved
algorithms to perform the same work with less processing. When the
programs selected for redesign are those that run frequently, the reduction in
CPU demand can be significant.

You also want to control the concurrent demand for terminal I/O.
Section 5.3.4 addresses the effects of terminal I/O on the CPU and good
terminal I/O management techniques.

If you find that none of the previous suggestions or workload management
techniques satisfactorily resolve the CPU limitation, you need to add
capacity. It is most important to determine which type of CPU capacity
you need, since there are two different types that apply to very different
needs.

Workloads that consist of independent jobs and data structures lend
themselves to operation on multiple CPUs. If your workload has such
characteristics, you could add a processor to gain CPU capacity. The
processor you choose might be of the same speed or faster, but it could
also be slower. It takes over some portion of the work of the first processor.
(Separating the parts of the workload in optimal fashion is not necessarily a
trivial task.)

5-22

Compensating For Resource Limitations

Other workloads must run in a single-stream environment since many pieces
of work depend heavily on the completion of some previous piece of work.
These workloads demand that CPU capacity be increased by increasing the
CPU speed with a faster model of processor. Typically the faster processor
performs the work of the old processor, which is replaced rather than
supplemented.

To make the correct choice, you must analyze the interrelationships of the
jobs and the data structures.

5—23

Index

A

Accounting report

interpreting image-level data*3-5
sample image-level data *3-4

using to evaluate VAX/VMS resource
utilization • 3-3

ACP (ancillary control process)

establishing values for *5-5

for ODS-1 disks*5-5

removing blockage*5-16

Ancillary control process

See ACP
AUTOGEN

using to change system paramters* 5-1
AWSA (automatic working set adjustment)

•2-8
adjusting *2-17
enabling • 5-9
in relation to performance management

•2-18
in relation to system parameters*2-17

investigating status *4-13

overview* 2-8
page faulting • 2-9

tuning to respond to increased demand

•5-8

B

Backup Utility (BACKUP)
using to restore contiguity on fragmented

disks* 3-45

BALSETCNT parameter

adjusting *5-11
artificially induced swapping • 3-32
increasing *5-11
reducing* 5-1 1

Batch jobs
establishing values for *5-7

Borrowing

analyzing problems *4-13
deciding when too generous • 4-25
tuning to make more effective • 5-7

BORROWLIM parameter

page faulting • 2-9

Buffered I/O

in relation to terminal operation problems
•4-37

c
Code sharing

overview* 1-5

Compute-bound process
controlling growth *5-12
curtailing *5-12
suspending* 5-12

Compute queue
measure of CPU responsiveness *3-12

Convert Utility (CONVERT)

using to restore contiguity on fragmented

disks *3-45

CPU (central processing unit)
adding capacity • 4-44

determining when capacity is reached
•4-44

time spent in compatibility mode *4-44
time spent in supervisor mode *4-44

CPU limitation
compensating for *5-21

isolating *4-40
CPU resource

affected by swapping • 3-32
equitable sharing *3-17

estimating available capacity • 3-14
evaluating responsiveness • 3-12
function *3-12
improving responsiveness*3-17
load balancing in a VAXcluster • 3-24
offloading • 3-23

Index—1

Index

CPU resource (cont'd.)

reducing consumption by the system

•3-18

D

Detached process
establishing values for *5-6

DFM32
choosing appropriate environment • 5-19

Disk activity
due to paging or swapping • 4-36

Disk fragmentation

correcting • 3-45

effect of system performance • 3-45

Disk I/O resource

disk capacity and demand *3-38

data transfer capacity • 3-38

demand by users and the system

•3-39

seek capacity *3-38
equitable sharing *3-42
evaluating responsiveness • 3-39
factors limiting performance • 3-39
function • 3-36
improving responsiveness • 3-42
load balancing • 3-47

offloading • 3-46
reducing consumption by the system

•3-43
Disk thrashing

investigating • 4-27

Disk transfer

components • 3-37
DORMANTWAIT parameter • 5-12

E

Equitable sharing
of CPU resource*3-17
of disk I/O resource *3-42
of memory resource • 3-33

F

File system (XQP) I/O activity • 3-44

File system caches
adjusting *5-18

FREEGOAL parameter

page faulting • 3-31
FREELIM parameter

page faulting *3-31
Free page list

evaluating • 3-31

H

Hard faults
characterizing • 4-7

Hardware

when to enlarge capacity • 5-17

High-water marking

disabling to improve system performance

• 1-13

i

I/O limitation

adding capacity • 4-36
compensating for *5-15
device I/O rate below capacity • 4-32

direct I/O rate abnormally high *4-32

for disk and tape operations*4-31

isolating *4-30

reducing demand *4-36

I/O rates
determining *4-31

Image activation
analyzing • 4-7

reducing* 5-3
Image-level accounting data

collecting • 3-3, 3-5
Inswapping

reducing rate *5-14

Interrupt stack

excessive activity • 4-41
excessive time *4-37

Index—2

Index

Interrupts
reducing • 5-22

K

Kernel mode

excessive time *4-39

L

Load balancing

of CPU resource in a VAXcluster* 3-24

of disk I/O resource *3-47

of memory resource • 3-29, 3-33, 3-36

M

Memory availability

analyzing limits *4-29

competition for *4-25

recognizing when demand exceeds *4-29

Memory consumption

by large compute-bound processes • 4-23

investigating • 4-20

Memory limitation

compensating for*5-2

disguised *4-42

isolating *4-5

reducing image activations • 5-3

Memory management

advanced concepts *2-7
basic concepts *2-1

Memory resource
equitable sharing *3-33

evaluating responsiveness • 3-29

function • 3-26

improving responsiveness*3-33

load balancing • 3-36

offloading • 3-35
reducing consumption by the system

•3-34

Memory sharing

overview • 2-22

Modified page list

evaluating • 3-31

MONITOR data

summary of most important items *3-48

MONITOR DECNET data

kernel mode *3-21

MONITOR DISK data

responsiveness of disk I/O subsystem

•3-39

using to evaluate MSCP-served disk *3-41

MONITOR DLOCK data

interrupt stack *3-20

MONITOR FCP data

file system I/O activity • 3-44

MONITOR FILE—SYSTEM_CACHE data

file system I/O activity • 3-44

relationship to ACP/XQP system

parameters *3-45

MONITOR 10 data

kernel mode *3-21

swapping and swapper trimming • 3-32

MONITOR LOCK data

kernel mode • 3-21

voluntary wait states *3-15

MONITOR MODES data

compatibility mode *3-19

CPU consumption by the system *3-18

CPU load balancing in a VAXcluster • 3-24

executive mode *3-19, 3-23

idle time *3-19
available CPU capacity • 3-14

interpreting *3-19
interrupt stack *3-19, 3-20

kernel mode *3-19, 3-21
supervisor mode *3-19

user mode *3-19

MONITOR PAGE data

disk I/O consumption by the system

•3-43

kernel mode *3-21
memory consumption by the system

•3-34

page faulting • 3-29

Index—3

Index

MONITOR POOL data

memory consumption by the system
•3-34

MONITOR PROCESSES data
involuntary wait states *3-16

MONITOR SCS data
interrupt stack *3-20

MONITOR STATES data
available CPU capacity *3-14
compute queue *3-12
involuntary wait states *3-16
secondary page cache *3-31
swapping and swapper trimming • 3-32
voluntary wait states • 3-15

Monitor summary report
interpreting* 3-8
maintaining • 3-8

MSCP-served disk
using MONITOR DISK data to evaluate

•3-41

o
Offloading

of CPU resource*3-23
of disk I/O resource *3-46
of memory resource • 3-35

p

Page cache size
adjusting related SYSGEN parameters

•5-3, 5-4
decreasing • 5-4, 5-12
increasing • 5-3

Page faulting • 3-29
accecptable hard fault rate *3-30
accecptable soft fault rate • 3-30
analyzing • 4-5
function of secondary page cache03-43
hard and soft *3-29, 3-43

Page file
adding *5-14

Paging symptom
for disks *4-36

Performance complaints
evaluating* 1-6
traced to hardware problems* 1-6
traced to MWAIT state* 1-6
traced to unrealistic expectations* 1-8

Performance diagnostic strategy
overview *4-1

Performance management
approaching as management of resources

•3-1
definition* 1-1

PFRATH parameter
page faulting • 2-9, 3-6

PFRATL parameter
page faulting • 2-9

Process
adjusting priorities *5-21
blocked by higher-priority process *4-40
compute-bound *5-12
curtailing *5-12
priority *4-40
reducing delay waiting for CPU *5-22
time-slicing *4-41

Q

Quantum
allocating to process by the system *3-12

QUANTUM parameter
increasing* 5-22

R

Resource evaluation strategy *3-1
Resource limitation

compensating for *5-1
diagnosing *4-1

Resource management
definition *3-1
ground rules *3-2
review of VAX/VMS mechanisms*2-1

Index—4

Index

s
Scheduling

overview* 2-25
Scheduling states *3-14

involuntary wait *3-16
isolating CPU limitations • 4-40
voluntary wait *3-15

Secondary page cache
evaluating *3-31, 3-43

Soft faults
characterizing • 4-7

Subprocess
establishing values for *5-6

Swapper trimming
adjusting* 5-10
alternative to swapping • 3-32
analyzing when ineffective*4-26
investigating *4-16
memory reclamation • 5-14
overview *2-19

Swapping
artificially induced *3-32
converting to system that rarely swaps

•5-10
effect on CPU resource *3-32
effect on disk subsystem • 3-32
enabling for disk ACPs*5-13
inducing paging to reduce *5-14

Swapping I/O activity • 3-44
Swapping symptom

analyzing *4-18
diagnosing *4-18
for disks *4-36
for large waiting process *4-24

SWPOUTPGCNT parameter
swapping and swapper trimming • 3-32,

3-35
SYSGEN parameters

adjusting page cache size *5-3, 5-4
changing • 5-1

SYSMWCNT parameter
adjusting to curtail page thrashing • 3-34

System

responsiveness dependent on resources
•3-10

System libraries
decompressing* 1-13

System resources
evaluating and improving • 3-11

T

Terminal baud rate
lowering • 5-20

Terminal I/O
reducing iterrupts • 5-19

Terminal operation
improper handling • 4-37
in relation to CPU limitation • 4-37
in relation to I/O limitation • 4-37

Time-slicing
between processes *4-41

Tuning
deciding when to stop* 1-11
definition* 1-9
evaluating success* 1-11
predicting when required* 1-10

v
VAX-11/782

tuning *4-30
VAX RMS

blocking used to reduce I/O operations
•3-1 1

buffer parameters *3-6
consumption of executive mode

processing time *3-19, 3-23
improving caching *5-18
misuse • 4-43
performance implications of file design

•3-23
Voluntary decrementing

disabling • 5-9
tuning • 5-9
turning on • 5-9

Index—5

Index

w
Working set

adjusting *2-17, 5-4
with AUTHORIZE • 2-24

analyzing problems *4-9
automatic adjustment • 2-8
determining when too large *4-26
discouraging loans when memory is

scarce* 5-13
establishing sizes *2-14
specifying values *4-12
suggested initial limits *2-16

Working set information
obtaining *3-26

Workload
importance of knowing* 1-2
managing* 1-4

WORKSET.COM command procedure
using to obtain working set information

•3-26
WSINC parameter

page faulting *2-9
WSQUOTA parameter

page faulting *2-9

Index—6

Guide to VAX/VMS
Performance Management

AI-Y515B-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date_

Organization _

Street _

City _State_Zip Code .
or Country

Do Not Tear - Fold Here and Tape

GOSDDBD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage

Necessary

if Mailed in the

United States

IiiimIIiIImiiIIimiIiIIiIiiIiIiiIiIiiIIimiiIiI

Do Not Tear - Fold Here

C
ut

 A
lo

ng
 D

ot
te

d
L

in
e

Guide to VAX/VMS
Performance Management

AI-Y515B-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

□ Assembly language programmer
□ Higher-level language programmer
□ Occasional programmer (experienced)
□ User with little programming experience
□ Student programmer
□ Other (please specify) _

Name _Date_

Organization _

Street _

City _State_Zip Code .
or Country

Do Not Tear - Fold Here and Tape

mum
BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage
Necessary

if Mailed in the
United States

I.II, .1.11.1. ,1.1. ,1.1. .11.1,11

Do Not Tear - Fold Here

i

C
u
t

A
lo

n
g
 D

o
tt

e
d
 L

in
e

