MACRO XVM ASSEMBLER
LANGUAGE MANUAL

DEC-XV-LMALA-A-D

- ystems
’* Joligli[tiali

MACRO XVM ASSEMBLER
LANGUAGE MANUAL

DEC-XV-LMALA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, December, 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright(:>l975 by Digital Equipment Corporation, Maynard, Mass.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM TYPESET-11

1/76-15

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

(R
. .
[(RE N

N
.

D T T T
L S
N =

.
AU WN =

o« .
.

.
N

L T
. . e e e . .
=W N = B w N e

NNONPONNNDNONPODNONPDONNNONRONNDNNDNODNOPODNNNNDNDNONNODNNDND DN
.
OO UNTUTUNUUIE B BRDBBRWWWNNONNNNDNDNONRF B

.
>N

w

.
N

CONTENTS

INTRODUCTION

MACRO XVM LANGUAGE
HARDWARE REQUIREMENTS
ASSEMBLER PROCESSING

ASSEMBLY LANGUAGE ELEMENTS

PROGRAM STATEMENTS
Basic Statement Format
Direct Assignment Statement
SYMBOLS
Evaluation of Symbols and Globals
Special Symbols
Memory Referencing Instruction Format
Variables
Setting Storage Locations to Zero
Redefining the Value of a Symbol
Forward Reference
Undefined Symbols
NUMBERS
Integer Values
Expressions
ADDRESS ASSIGNMENTS
Referencing the Location Counter
Indirect Addressing
Indexed Addressing
Literals
STATEMENT FIELDS
Label Field
Operation Field
Address Field
Comments Field
STATEMENT EVALUATION
Numbers
Word Evaluation
Word Evaluation of the Special Cases
Assembler Priority List

PSEUDO OPERATIONS

LISTING CONTROL PSEUDO-OPERATIONS

Program Segment Identification (.TITLE)

Listing Control (.EJECT)

Listing Output Control (.NOLST and .LST)

OBJECT PROGRAM OUTPUT PSEUDO-OPERATIONS
Absolute Format (.ABSP and .ABS) (Not
available on XVM/RSX)

Full Binary Format (.FULL and .FULIP)
available in XVM/RSX)

iii

Page

ix

e
!
NN

!
HE YOOI WWHRH

(@]

LSS T |
o

l
[
=

[SENESECENENESE SE NSRS RN R SE SR SRR N
1 f

=

w N

CHAPTER

CHAPTER

.
w

. * v .
.

WWwwWwwwwww
. . T .
BWWWWwwwN
» PR
Ul W N

P
T
b W=

.
el i O e IO N N RO G IV, 0 6
.

o

. e .
[y

WWWWwWwWwWwwwwwwwww
)

.
Y
Sw N

3.15

3.16
3.17

3.18

.
.

.
w N =

[S S A A I TG i =
. e

OO WWwWwwNE
.

Ul
.

(S N NG NC S, RO O, RO V) RO RN
b bR WNDNDNDRE

Contents (Cont)

Relocation Mode (.EBREL and .DBREL)
TEXT HANDLING PSEUDO OPERATIONS

IOPS ASCII Packed Format (.ASCII)

Trimmed Six-Bit Format (.SIXBT)

.ASCII and .SIXBT Statement Syntax

Text Delimiter

Non-Printing Characters

MACRO DEFINITION PSEUDO-OPERATIONS (.DEFIN,

.ETC, and .ENDM)
COMMON BLOCK PSEUDO-OPERATIONS
Cormmon Block Definition (.CBD)

Common Block Definition--Relative (.CBDR)
Common Block Initialization Start (.CBS)
Common Block Initialization Constant (.CBC)

Common Block Initialization End (.CBE)
CONDITIONAL ASSEMBLY (.IFxxx and .ENDC)
LOCAL SYMBOLS (.LOCAL AND .NDLOC)
LITERAL ORIGIN (.LTORG)

SETTING THE LOCATION COUNTER (.LOC)
RADIX CONTROL (.0OCT and .DEC)
RESERVING BLOCKS OF STORAGE (.BLOCK)
END OF PROGRAM (.END)

END OF PROGRAM SEGMENT (.EOT)

GLOBAL SYMBOL DECLARATION (.GLOBL)
REQUESTING AN I/O DEVICE HANDLER .IODEV
(Not supported in XVM/RSX)
DESIGNATING A SYMBOLIC ADDRESS (.DSA)
REPEAT OBJECT CODE (.REPT)

REQUEST PROGRAM SIZE (.SIZE)

MACROS

DEFINING A MACRO
MACRO BODY
MACRO CALLS
Argument Delimiters
Created Symbols
Concatenation
NESTING OF MACROS
REDEFINITION OF MACROS
MACRO CALLS WITHIN MACRO DEFINITIONS
RECURSIVE CALLS

OPERATING PROCEDURES

INTRODUCTION
CALLING PROCEDURE
XVM/DOS
RSX/XVM
GENERAL COMMAND CHARACTERS
COMMAND STRING
Program File Name
Options
Multiple Filename Commands

Examples of Commands for Segmented Programs

ASSEMBLY LISTINGS
SYMBOL TABLE OUTPUT

iv

Page

1

N S S I N - =
|
N b= = =00 IO W

OO 3

[

Sw O

RO EGEGEOEGEG R NS NG R RS
|
HFRPBJdbhWWND R R

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

C

D

E

Contents (Cont)

RUNNING INSTRUCTIONS
Paper Tape Input Only
Cross-Reference Output
PROGRAM RELOCATION
SYSTEM ERROR CONDITIONS AND RECOVERY
PROCEDURES
XVM/DOS and BOSS XVM
XVM/RSX
Restart Control Entries (DOS only)
ERROR DETECTION BY THE ASSEMBLER

CHARACTER SET
PERMANENT SYMBOL TABLE
MACRO CHARACTER INTERPRETATION

SUMMARY OF MACRO XVM PSEUDO-OPS

Page

5-17
5-17
5-18
5-19
5-20

5-20
5-21
5-21
5-21

A-1

SOURCE LISTING OF THE ABSOLUTE BINARY LOADER E-1

Index-1

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in-
cluding the latest version available. Within this manual, other XVM

manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL
DDT XVM UTILITY MANUAL
EDIT/EDITVP/EDITVT XVM UTILITY MANUAL
8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL
FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL
LINKING LOADER XVM UTILITY MANUAL
MAC1l1 XVM ASSEMBLER LANGUAGE MANUAL
MACRO XVM ASSEMBLER LANGUAGE MANUAL
MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP15SA XVM GRAPHICS SOFTWARE MANUAL
VT15 XVM GRAPHICS SOFTWARE MANUAL
XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READER'S GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS V1A SYSTEM INSTALLATION GUIDE
XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

vii

DEC-XV-OBUAA~A-D
DEC-XV-UCHNA-A-D
DEC-XV-UDDTA-A-D
DEC~XV-UETUA-A-D
DEC-XV-UTRNA-A-D
DEC-XV-LFLGA-A-D
DEC~XV~-LF4MA-A-D
DEC-XV-LF4EA-A-D
DEC-XV-ULLUA-A-D
DEC-XV-LMLAA-A-D
DEC~XV-LMALA-A-D
DEC-XV-UMTUA-A-D
DEC-XV-UPUMA-A-D
DEC-XV-UPPUA-A-D
DEC-XV-USUTA-A-D

DEC~XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A~D
DEC-XV-GVTAA-A-D
DEC-XV~-0ODKBA-A-D
DEC~-XV-ODGIA-A-D

DEC-XV-ODSAA-A-D
DEC-XV-ODMAA-A-D
DEC-XV-ODSIA-A-D
DEC-XV-IRSMA-A-D
DEC-XV-XUSMA-A-D

PREFACE

The DIGITAL XVM (XVM) MACRO Assembler program, MACRO XVM, provides the
user with the symbolic programming capabilities of an assembler plus

the added compiler capabilities of a many-for-one macro instruction
generator. This manual describes the syntax, application and operations
performed by the MACRO XVM assembler.

In the preparation of this manual it was assumed that the reader was

familiar with the basic XVM symbolic instruction set.
The MACRO XVM program may be operated in:
a. Disk Operating System (XVM/DOS)
b. Batch Operating Software System, BOSS, a component of XVM/DOS

c. XVM/RSX Software System

It is assumed in this manual that the reader is familiar with the manual

describing the software system under which MACRO is to be used.
The manuals involved are:

a. XVM/DOS Users Manual

b. BOSS XVM Users Manual

c. XVM/RSX System Manual

Differences in the use of MACRO in the available monitor systems are

described, where applicable, in this manual.

ix

CHAPTER 1
INTRODUCTION

1.1 MACRO XVM LANGUAGE

MACRO is a basic XVM symbolic assembler language which makes machine
language programming on the XVM easier, faster and more efficient. Tt
permits the programmer to use mnemonic symbols to represent instruction
operation codes, locations, and numeric quantities. By using symbols

to identify instructions and data in his program, the programmer can
easily refer to any point in his program, without knowing actual machine

locations.

The standard output of the Assembler is a relocatahle binary object
program that can be loaded for debugging or execution by the Linking
Loader. MACRO prepares the ohject program for relocation, and the
Linking Loader, CHAIN or Task Ruilder, CHAIN (DOS), or Task Builder
(RSX) provides relocation and sets up linkages to external subroutines.
Optionally, the binary program may be output either with absolute
addresses (non-relocatable) or in the full binary mode (see Chapter 3
for a description of the binary output modes).

The programmer directs the Assembler processing by using a powerful set
of pseudo-operation (pseudo-op) instructions. These pseudo-ops are
used to set the radix for numerical interpretation by the Assembler,

to reserve blocks of storage locations, to repeat object code, to
handle strings of text characters in 7-bit ASCII code or a special
6-bit code, to assemble certain coding elements if specific conditions
are met, and to perform other functions which are explained in detail

in Chapter 3.

The most advanced feature of the Assembler is its powerful macro instruc-
tion generator. This facility permits easy handling of recurring in-
struction sequences, changing only the arguments. Programmers can use
macro instructions to create new language elements, adapting the Assem-
bler to their specific programming applications. Macro instructions

may be recursively called up to three levels, nested to any level,
limited only by available memory, and redefined within the program.

The technique of defining and calling macro instructions is discussed

in Chapter 4.

Introduction

An output listing, showing both the programmer's source code and the

object program produced by the Assembler, is printed if desired. This
listing may include all the symbols used by the programmer with their
assigned values. If assembly errors are detected, erroneous lines are
marked with specific alphabetic error codes, which may be interpreted

by referring to the error list in Chapter 5 of this manual.

Operating procedures for the MACRO XVM assembler are described in
*
detail in Chapter 5.

1.2 HARDWARE REQUIREMENTS

The MACRO XVM assembler program may be run in any configuration which
meets the minimum hardware requirements for the following XVM software

systems:

a. Disk Operating System (XVM/DOS)
b. Batch Operating Software System (BOSS XVM)
c. Resource Sharing Executive (XVM/RSX)

1.3 ASSEMBLER PROCESSING

The Assembler processes source programs in either a two-pass or three-
pass operation. In the two-pass assembly operation the source program
is read twice, with the object program and printed listed (both op-
tional) being produced during the second pass. During PASS 1, the
locations to be assigned the program symbols are resolved and a

symbol table is constructed by the Assembler. PASS 2 uses the infor-

mation computed during PASS 1 to produce the final object program.

In an optional three-pass assembly operation, PASS 2 calls in PASS 3,
which performs a cross referencing operation during which a listing
is produced that contains: (a) all user symbols, (b) where each
symbol is defined, and (c) the number of each program line in which

a symbol is referenced. On completion of its operation, PASS 3 calls
the PASS 1 and PASS 2 portions of the assembler program back into
core for further assembly operations.

*

These procedures are also described in the XVM/DOS Keyboard Command
Guide and in the On-Line Task Development section of the XVM/RSX
System Manual.

Introduction

The standard object code produced by the Assembler is in a relocatable
format which is acceptable to the Linking Loader, CHFAIN, PATCH and

TKB Utility programs. Relocatable programs that are assembled sepa-
rately and use global symbols* where applicable, can be combined by

the Linking Loader, CHAIN, and TKB into an executable object program.
MACRO XVM reserves one additional word in a program for every external
symbol**. This additional word is used as a pointer (called a transfer
vector) to the actual data word in another program. The Linking Loader
CHAIN or task builder sets up these transfer vectors when the programs
are loaded with the actual address of the global symbol.

Some of the advantages of having programs in relocatable format are as

follows:

a. Reassembly of one program, which at object time was linked with
other programs, does not necessitate a reassembly of the en-

tire system.

b. Library routines (in relocatable object code) can be requested

from the system device or user library device.

c. Only global symbol definitions must be unique in a group of

programs that operate together.

*
Symbols which are referenced in one program and defined in another.

* %
Symbols which are referenced in the program currently being assembled
but which are defined in another program.

1-3

CHAPTER 2
ASSEMBLY LANGUAGE ELEMENTS

2.1 PROGRAM STATEMENTS

One or more statements may be written on a line of up to 75 characters
where the last character is a carriage-return. Since the carriage
return is a non-printing character, it is graphically represented as <’

in this manual, e.g.,
STATEMENT </

Several statements may be written on a single line, separated by semi-

colons
STATEMENT;STATEMENT;STATEMENT-*j

Only the last statement may have a comments field, since semicolons
are allowed in and do not delimit comments. Also, macro calls (a type
of statement described in a later chapter) should not appear in a multi-

statement line since they cause subsequent statements to be ignored.

Normally, a single statement must fit on one line. The exception to
this rule is a macro call whose arguments may be continued on a subse-

quent line. This is described in the chapter on macros.
2.1.1 Basic Statement Format

A basic statement may contain up to four fields that are separated by

a space, spaces, or a tab character. These four fields are the label
(or tag) field, the operation field, the address field, and the com-
ments field. Because the space and tab characters are not printed, the
space is represented byra, and the tab by-ﬁ in this manual. Tabs are
set 8 spaces apart on DEC-supplied teleprinter machines, and are used

to line up the fields in columns in the source program listing.
This is the basic statement format:
LABEL -+ OPERATION =+ ADDRESS = /COMMENTS =

2-1

Assembly Language Elements

where each field is delimited by a tab or space, and each statement is
terminated by a semicolon or carriage-return. The comments field is
preceded by a tab (or space) and a slash (/).

Note that a combination of a space and a tab will be interpreted by the

Assembler as two field delimiters.

Example:

TAG = OP L - ADR~" |both are
TAG tu | OP —-| ADR<- Jincorrect

These errors will be flagged by the assembler, but will not show on

the listing because the space is hidden by the tab.

A MACRO statement may have an entry in each of the four fields, or

three, or two, or only one field. The following forms are acceptable

op —| ADDR - (s) /comments =’
op -] (s)/comments <’/

~| ADDR -/

- ADDR - (s)/comments <’

(where the character(s) indicates one or more of the preceding char-
acter):
TAG =
TAG - op=
TAG = OP | ADDR~’
TAG = OP | ADDR ua (s)/comments </
TAG -] OP «a (s)/comments <=/
TAG - ~| ADDR </
™ ~| ADDR wa (s)/comments </
TAG - (s)/comments <’/
- op-’
~ op - ADDR =/
-ﬂ
_.|
-
-

/comments =
- (s) /comments =’

A label (or tag) is a symbolic address created by the programmer to
identify the statement. When a label is processed by the Assembler,
it is said to be defined. A label can be defined only once. The oper-
ation code field may contain a machine mnemonic instruction code, a

pseudo-op code, a macro name, a number, or a symbol. The address field

Assembly Lanquage Elements

may contain a symbol, number, or expression which is evaluated by the
assembler to form the address portion of a machine instruction. 1In
some pseudo-operations, and in macro instructions, this field is used
for other purposes, as will be explained in this manual. Comments are
usually short explanatory notes which the programmer adds to a state-
ment as an aid in analysis and debugging.l Comments do not affect the
object program or assembly processing. They are merely printed in the
program listing. Comments must be preceded by a slash (/). The slash

(/) may be the first character in a line or may be preceded by:

a. Space (wa).
b. Tab ()

c. Semicolon (:)
2.1.2 Direct Assignment Statement

The Direct Assignment Statement causes no object code to be generated
by the assembler, but rather equates a value to a symbol at assembly

time. The format of this statement is:
symbol=expression /comments

The symbol is the symbolic name specified to receive the value of the
expression. The expression is any legal combination of symbols and/or
constants connected by operators as described in Section 2.3.2. Com-

ments are optional, as described in Section 2.1.1.

The direct assignment statement is useful for assigning a symbolic

name to a constant and controlling conditional assembly. These features
are explained in detail later on. Unlike labels defined in basic state-
ments, which must be defined only once, the symbol defined in a direct
assignment may be redefined at will.

2.2 SYMBOLS

The programmer creates symbols for use in statements to represent
addresses, operation codes and numeric values. A symbol contains one

to six characters from the following set:

The letters A through 2
The digits 0 through 9

Two special characters, period (.) and the percent sign (%).

2-3

Assembly Language Elements

The first character of a symbol must be a letter, a period, or percent
sign. A period may not be used alone as a symbol. The letter 'X' alone
may not be a symbol. ('X' and period alone have a special meaning to

the Assembler, as explained later.)

The following symbols are legal:

MARK1 ..1234 WA
A% %50.99 %
P9.3 INPUT

The following symbols are illegal:

TAG: 1 : is not a legal symbol character.
5ABC First character may not be a digit.
X Letter 'X' alone is illegal.

1 1

. .' alone is illegal as a symbol.

Only the first six characters of a symbol are meaningful to the Assem-

bler, but the programmer may use more for his own information. If he
writes,

SYMBOL1
SYMBOL?2
SYMBOL3

as the symbolic labels on three different statements in his program,
the Assembler will recognize only SYMBOL and will print "M" error flags
on the lines containing SYMBOL1l, SYMBOL2 and SYMBOL3. To the Assembler
they are duplicates of SYMBOL. Note that '"M" errors are not produced

if the duplicate symbols appear in direct assignment statements.

2.2.1 Evaluation of Symbols and Globals

When the Assembler encounters a symbol during processing of a source
language statement, it evaluates the symbol by referring to two tables:
the user's symbol table and the permanent symbol table. The user's
symbol table contains all symbols defined by the user. The user defines
symbols by using them as labels, as variables, as macro names and
globals, and by direct assignment statements. A label is defined when
first used, and cannot be redefined. (When a label is defined by the
user, it is given the current value of the location counter, as will

be explained later in this chapter.)

2-4

Assembly Langquage Elements

All permanently defined system symbols (excluding the index register
symbol, X), including system macros (except for XVM/RSX) and all Assem-
bler pseudo-instructions use a period (.) as their first character.

The Assembler also has, in its permanent symbol table, definitions of
the symbols for all of the XVM memory reference instructions, operate
instructions, the basic EAE instructions, and some input/output trans-
fer instructions. (See Appendix B for a complete list of these instruc-

tions.)

XVM instruction mnemonic symbols may be used in the operation field of

a statement without prior definition by the user.
Example:

-ﬂ LACLJA</ LAC is a symbol whose appearance in the
operation field of a statement causes the
Assembler to treat it as an op-code rather
than a symbolic address. It has a value
of 2000008 which is taken from the opera-
tion code definition in the permanent

symbol table.

The user can use instruction mnemonics or the pseudo-instruction mne-

monics code as symbol labels. For example,
DZM - DZMuiaY <’/

where the label DZM is entered in the symbol table and is given the
current value of the location counter, and the op-code DZM is given the
value 140000 from the permanent symbol table. The user must be careful,
however, in using these dual purpose (field dependent) symbols. Sym-
bols in the operation field are interpreted as either instruction codes
or pseudo-ops, not as symbolic labels, if they are in the permanent
symbol table. Macro names cannot also be defined as labels or symbols
by the user. 1In the following example, several symbols with values
have been entered in the user's symbol table and the permanent symbol
table. The sample coding shows how the Assembler uses these tables to

form object program storage words.

Assembly Lanquage Elements

User Symbol Table Permanent Symbol Table
Symbol Value Symbol Value
TAG1 100 LAC 200000
TAG2 200 DAC 040000
DAC 300 JMP 600000
X 010000

The following statements generate the following code:

Statement Code
TAGl1 -+ DAC -+ TAG2 040200
TAG2 - LAC | DAC 200300
DAC | JMP | TAGI 600100
DAC) TAGL,X 050100
~| TAG1 000100

2.2.1.1 Special Symbols - The symbol X is used to denote index register
usage. It is defined in the permanent symbol table as having the value

of 10000. The symbol X cannot be redefined and can only be used in the

address field.

2.2.1.2 Memory Referencing Instruction Format - When operating in page
mode the XVM uses 12 bits for addressing, 1 bit to indicate index reg-
ister usage, 1 bit to indicate indirect addressing, and 4 bits for the

op-code.

lo[1[2[3]4a]s5[e6[7]8 o011 121314 [15[16 [17]

-
Op Code 1- Address
Index Register Bit

Indirect Addressing

PAGE MODE MEMORY REFERENCE INSTRUCTION

When operating in bank mode on the XVM, 13 bits are used for address-
ing, there is no index register bit, 1 bit is for indirect addressing,

and 4 bits are for the op-code.

Assembly Lanquage Elements

o] 1]2]3]als]e]7]8]o]10]11]12]13]1a]15]16]17]

A ~
Op Code ' Address
Indirect Addressing

BANK MODE MEMORY REFERENCE INSTRUCTION

2.2.2 Variables

A variable is a symbol that is defined in the user's symbol table by
using it in an address field or operation field with the number sign
(#) . Symbols with the # may appear more than once in a program (see
items 1, 3, 4, and 5 of example given below). A variable reserves a
single storage word which may be referenced by using the symbol at
other points in the program with or without the #. TIf the variable
duplicates a user-defined label, it is multiply defined and is flagged

as an error during assembly.
Variables are assigned memory locations at the end of the program.
The initial contents of variable locations are unspecified. The # can

appear any place within the symbol character string as in the example.

Example:

2.2.3 Setting Storage Locations to Zero
Storage words can be set to zero as follows:
A"’.O;"|0;"|O,)

In this way, three words are set to zero starting at A.

Assembly Langquage Elements

2.2.4 Redefining the Value of a Symbol

The programmer may define a symbol directly in the user's symbol table

by means of a direct assignment statement written in the form:

SYMBOL=n =~
or
SYM1=SYM2 =

Where n is any number or expression. There should be no spaces between
the symbol and the equal sign, or between the egual sign and the

assigned value, or symbol. The Assembler enters the symbol in the

symbol table, along with the assigned value. Symbols entered in this way

way may be redefined. These are legal direct assignment statements:
XX=28;A=1;B=2 =’/

A symbol can also be assigned a symbolic value; e.g., A=4, B=A, or
SET=ISZwusSWITCH =’

In the previous example, the symbol B is given the value 4, and when
the symbol SET is detected during assembly the object code for the
instruction ISZwaSWITCH will be generated. This type of direct assign-
ment cannot be used in a relocatable program. Direct assignment state-

ments do not generate storage words in the object program.

In general, it is good programming practice to define symhols before
using them in statements that gererate storage words. The assembler

will interpret the following sequence correctly.

Assembly Lanquage Elements

2.2.5 Forward Reference

A symbol may be defined after use. For example,

This is called a forward reference, and is resolved properly in PASS 2.
When first encountered in PASS 1, the LAC Y statement is incomplete
because Y is not yet defined. Later in PASS 1, Y is given the value 1.
In PASS 2, the Assembler finds that Y=1 in the symbol table, and forms
the complete storage word.

Since basic assembly operations are performed in two passes, only one-
step forward references are allowed. The following example is illegal
because the symbol Y is not defined during PASS 2.

Forward references to internal .GLOBL symbols (see Paragraph 3.9) are
illegal because the internal globals are output at the beginning of
PASS 2 for library searching. Globals must be defined during PASS 1,
otherwise they will be flagged. The following example is illegal:

Assembly lLanguage Elements

2.2.6 Undefined Symbols

If any symbols, except global symbols, remain undefined at the end of
PASS 1 of assembly, they are automatically defined as the addresses of
successive registers following the block reserved for variables at the
end of the program. All statements that referenced the undefined symbol
are flagged as undefined. One memory location is reserved for each un-
defined symbol with the initial contents of the reserved location being

unspecified.

2.3 NUMBERS

The initial radix (base) used in all number interpretation by the
Assembler is octal (base 8). To allow the user to express decimal
values and then restore to octal values, two radix-setting pseudo-ops
(.OCT and .DEC) are provided. These pseudo-ops, described in Chapter
3, must be coded in the operation field of a statement. If any other
information is written in the same statement, the Assembler treats the
other information as a comment and flags it as a guestionable line.
All numbers are decoded in the current radix until a new radix control
pseudo-op is encountered. The programmer may change the radix at any

point in the program.

Examples:

2-10

Assembly L.anquage Elements

2.3.1 1Integer Values

An integer is a string of digits, with or without a leading sign.
Negative numbers are represented in two's complement form. The range

of integers is as follows:

18

Unsigned 0 —»—26214310 (7777778) or 27 -1
Signed 0 —>-13107110 (3777778) or 217—1
17
- -2
0 - 13107210 (4000008) or
An octal integer* is a string of digits (0-7), signed or unsigned. If

a non-octal digit (8 or 9) is encountered the string of digits will be
assembled as if the decimal radix were in effect and it will be flagged

as a possible error.

Example:

ST

FREL

A decimal integer** is a string of digits (0-9), signed or unsigned.

Examples:

*
Preceded at some point by an .OCT pseudo-op and is also the initial

assumption if no radix control pseudo-op is encountered.
* %

Preceded at some point by a .DEC pseudo-op.

Assembly Language Elements

2.3.2 Expressions

Expressions are strings of symbols and numbers separated by arithmetic
or Boolean operators. Expressions represent unsigned numeric values
ranging from 0 to 218—1. All arithmetic is performed in unsigned inte-
ger arithmetic (two's complement), modulo 218. Division by zero is
regarded as division by one and results in the original dividend.
Fractional remainders are ignored; this condition is not regarded as

an error. The value of an expression is calculated by substituting

the numeric values for each symbol of the expression and performing

the specified operations.

The following are the allowable operators to be used with expressions:

Character
Name Symbol Function

Plus + Addition (two's complement)

Minus - Subtraction {(convert to two's
complement and add)

Asterisk * Multiplication (unsigned)

Slash / Division (unsigned)

Ampersand & Logical AND

Exclamation ! Inclusive OR

point

Back slash AN Exclusive OR Boolean

Comma , Exclusive OR

Operations are performed from left to right (i.e., in the order in which
they are encountered). For example, the assembly language statement
A+B*C+D/E-F*G is equivalent to the following algebraic expression
(((((A+B) *C)+D)/E) -F) *G.

Examples:

Assume the following symbol values:

Symbol Value (Octal) Comments
A 000002
B 000010
C 000003
D 000005
X 010000 Index Register Value

Assembly Language Elements

The following expressions to be evaluated:

Expression Evaluation (Octal) Comments
A+B-C, X 010007 Index Register Usage
A/B+A*C 000006 (The remainder of A/B
is lost)

B/A-2*A-1+X 010003 Index Register Usage

A& B 000000

C+A&D 000005

B*D/A 000024

B*C/A*D 000074

A,X+D,X 010007 Index Register Usage
Error

In the last example the expression is evaluated as follows:

Sequence of arithmetic

a. A,X = 000002 XORed with 010000 = 010002
b. A,X+D = 010002 + 000005 = 010007
c. A,X+D,X = 010007 XORed with 010000 = 000007

Note that arithmetic produces 000007 yet the value given in the example
is 010007. Regardless of how the index register is used in the address
field, the index register bit will always be turned on by the Assembler.
In the sequence of address arithmetic above, the line would be flagged

with an X because of the illegal use of the index register symbol (X).

Using the symbol X to denote index register usage causes the following

restrictions:
a. X cannot appear in the TAG field X - LAC - a
b. X cannot be used in a .DSA statement -~ .DSA—| A, X
c. X can be used only once in an expres- - LAC - A,X+D,X

sion (see 2.4.3)

2.4 ADDRESS ASSIGNMENTS

As source program statements are processed, the Assembler assigns con-
secutive memory locations to the storage words of the object program.
This is done by reference to the location counter, which is initially

set to zero and is incremented by one each time a storage word is formed

Assembly Lanquage Elements

in the object program. Some statements, such as machine instructions,
cause only one storage word to be generated, incrementing the location
counter by one. Other statements, such as those used to enter data or
text, or to reserve blocks of storage words, cause the location counter

to be incremented by the number of storage words generated.
2.4.1 Referencing the Location Counter

The programmer may directly reference the location counter by using the

symbol period (.) in the address field. He can write,
- IMP . -1

which will cause the program to jump to the storage word whose address
was previously assigned by the location counter. The location counter
may be set to another value by using the .LOC pseudo-op, described in
Chapter 3.

2.4.2 1Indirect Addressing

To specify an indirect address, which may be used in memory reference
instructions, the programmer writes an asterisk immediately following
the operation field symbol. This sets the defer bit (bit 4) of the

storage word.

If an asterisk suffixes either a non-memory reference instruction, or

appears with a symbol in the address field, an error will result.

Two examples of legal indirect addressing follow.

- TAD* | A
- LAC* + B

The following examples are illegal.

-ﬂ CLA* Indirect addressing may not be specified

*{LAW*L417777 in non-memory reference instructions.

Assembly Langquage Elements

2.4.3 1Indexed Addressing

To specify indexed addressing an X is used with an operator directly
after the address. No spaces or tabs may appear before the operator.
The Assembler will perform whatever operation is specified with the
index register symbol, and then continue to evaluate the expression.

At completion of the expression evaluation, if the index bit (bit 5)

is not on and the location counter is pointing to page 0 of any bank,
the line is flagged with a B for bank error because the address (aside
from indexing modifications) must have been greater than 77778 (i.e.,
it pointed to another page). The standard code used to indicate index-

ing is:
- LAC —+A,X

The indexed addressing operation is illustrated in the following

example.

Expression evaluation where A = 000000, B = 000001, C = 010000,
D = 010001, X = 010000

NOTE: (P = exclusive OR
Location Address Field Discussion
0 X The value of X is added to O.

Absence of an operator always
implies addition.

1 A,X+1,7-1 000000 (3® 010000 = 010000
010000 000001 = 010001
010001 000007 = 010006
010006 - 000001 = 010005
2 B+X 000001() 010000 = 010001

Assembly Language Elements

Location Address Field Discussion

10000 X,D OlOOOOC) 010001 = 000001

The index bit has been
turned off during expres-
sion evaluation. Because
the location counter (10000)
is pointing to Page 1, this
line is not flagged, and the
index register bit is turned

on.

10001 C,X 010000() 010000 = 000000
Same as example at Location
10000.

2.4.4 Literals

Symbolic data references in the operation and address fields may be
replaced with direct representation of the data enclosed in parentheses.
This inserted data is called a literal. The Assembler sets up the
address link, so one less statement is needed in the source program.

The following examples show how literals may be used, and their equiv-
alent statements. The information contained within the parentheses,
whether a number, symbol, expression, or machine instruction, is
assembled and assigned consecutive memory locations after the locations
used by the program, unless a .LTORG pseudo-instruction appears in the
program. (See section 3.2.5.) The address of the generated word will

appear in the statement that referenced the literal.

Duplicate literals, completely defined when scanned in the source pro-
gram during PASS 1, are stored only once so that many uses of the same
literal in a given program result in the allocation of only one mem-
ory location for that literal. Nested literals, that is, literals
within literals, are illegal and will be flagged as a literal (L) error.

The following is an example of a nested literal.

LAC w1 (ADD1(3))

Usage of Literal Equivalent Statements

~| ADD (1) —| ADDLIONE
One _41

—| LAC 1 (TAG) = LACWLJTAGAD
TAGAD— TAG

- LACu(DAC —| TAG) - LAC oy INST
INST - DAC - TAG

~ LAC ca(adMp | .+2) HFRE —| LAC ., INST

INST -+ JMP o HERE+2

2-16

Assembly Laaguage Elements

The following sample program illustrates how the Assembler handles
literals.

e e
920 K
WRSLE L

2.5 STATEMENT FIELDS

The following paragraphs provide a detailed explanation of statement

fields, including how symbols and numbers may be used in each field.
2.5.1 Label Field

If the user wishes to assign a symbolic label to a statement in order
to facilitate references to the storage word generated by the Assembler,
he may do so by beginning the source statement with any desired symbol.
The symbol must not duplicate a system or user defined macro symbol and
must be terminated by a space or tab, or a statement terminating semi-

colon or carriage-return.
Examples:

TAG— @ ; TAG2 +{ #; TAG3 | J; TAGA—~| ¢

A new logical line starts after each semicolon. This line is equivalent
to

T™aG1 *| 0+’

TAG2 | 0=/

TAG3 = 0</

TAGA —| 0=’

Assembly Language Elements

If there were a tab or a space after the semicolon the symbol would be

evaluated as an operation instead of a label. The sequence:
TAG 1+ 0; = TAG2:TAG3 = 0; - TAG4

is evaluated as follows:

TAGL - 0=/
~ -~ TaG2 «/
TAG3 =] 0 =~
~| TAGA =

When writing numbers separated by semicolons, the first number must be

preceded by a tab (=) or a space (wa). The sequence
TABLEw1:;2;3;4:5

produces symbol (S) errors because the first symbol of a tag cannot be

numeric. The correct way to write the table sequence is as follows:
TABLEwal ;a2 3ie04: 05

Symbols used as labels are defined in the symbol table with a numerical
value equal to the present value of the location counter. 2 label is
defined only once. If it was previously defined by the user, the cur-
rent definition of the symbol will be flagged in error as a multiple
definition. All references to a multiply defined symbol will be con-

verted to the first value encountered by the Assembler.

Anything more than a single symbol to the left of the label-field
delimiter is an error; it will be flagged and ignored. The following

statements are illegal.

Assembly Langquage Elements

TAG+1 - LAS=’
LOC*2 = RAR-’

The line will be flagged with an S for symbol error. The label will
be ignored but the rest of the line will continue to be processed.

The only time that an error tag is not ignored is when the error occurs
after the sixth character.

The statement:
TAGERROR*1, ,NOP
will be assembled as:
TAGERR —| NOP
and the line will be printed and flagged with an S.

Redefinition of certain symbols can be accomplished by using direct
assignments; that is, the value of a symbol can be modified. If an
Assembler permanent symbol or user symbol (which was defined by a direct
assignment) is redefined, the value of the symbol can be changed with-
out causing an error message. If a user symbol, which was first de-
fined as a label, is redefined by either a direct assignment or by

using it again in the label field, it will cause an error. Variables

also cannot be redefined by a direct assignment.

Examples:

Assembly Language Elements

2.5.2 Operation Field

Whether or not a symbol label is associated with the statement, the
operation field must be delimited on its left by a space(s) or tab.

If it is not delimited on its left, it will be interpreted as the label
field. The operation field may contain any symbol, numker, or expression
which will be evaluated as an 18-bit quantity using unsigned arithmetic
modulo 218. In the operation field, machine instruction op codes and
pseudo-op mnemonic symbols take precedence over identically named user
defined symbols. The operation field must be terminated by one of the
following characters:

- orwi(s) (field delimiters)
< or (statement delimiters)
Examples:

The asterisk (*) character appended to a memory reference instruction
symbol, in the operation field, causes the defer bit (bit 4) of the
instruction word to be set; that is, the reference will be an indirect
reference. If the asterisk (*) is appended on either a non-memory
reference instruction or any symbol in the address field, it will cause
an error condition which will be flagged as a symbol error (S-flag).

The asterisk will be ignored and the assembly process will continue.

Examples:

where A = 1 and B = 2

However, the asterisk (*) may be used anywhere as a multiplication

operator.

Assemblyv Language Elements

Examples:

2.5.3 Address Field

The address field, if used in & ctatement, must be separated from the
operation field by a tab, or space(s). The address field may contain
any symbol, number, or expression which will be evaluated as an 18-bit
18. If op code or pseudo-op
code symbols are used in the address field, they must be user defined,

otherwise they will be undefined by the Assembler and will cause an

gquantity using unsigned arithmetic, modulo 2

error message. The address field must be terminated by one of the

following characters:

*1 or wa{s) (field delimiters)
</ or ; (statement delimiters)
Examples:
LAW -1 /Correctly assembled as 777777
LAW-1 /No separation from the operation field; assembled

as 757777 since -1 is treated as part of the oper-
ation field.

TAG2 =] DAC = .+3
- - TAG2/5+3 1u(s)

The address field may also be terminated by a semicolon or a carriage-
return.

Examples:

| gMP | BEGIN =’

- TaD - A; —{pac - —|1ac

In the last example, a tab or space(s) is required after the semicolon
in order to have the Assembler interpret DAC as being the operation
field rather than the label field.

2-21

Assembly Langhage Elements

In the second line of the preceding example, the address field B is
delimited by a tab. The LAC after the B *{ is ignored and is treated
as a comment; but the line is flagged as questionable because only a
comment field may occur on a line after the address field. If the LAC

had been preceded by a slash (/), the line would have been correct.

When the address field is a relocatakle expression, an error condition
may occur. If the program is being assembled to run in page mode, it
could not execute properly if its size exceeded 4K (4096) words because
it would have to load access a memory page or bank boundary. In prac-
tice, the binary loaders restrict the size to 4K-16 (4080) to avoid
loading a program into the first 16 locations in a memory page or bank.
This avoids a possible ambiguity where indirect memory references would
be mistaken for autoincrement register references. Consequently, any

relocatable address field whose value exceeds 4095 (7777,) is meaningless

8
in page mode and will be flagged by the Assembler as an error.

There is a similar size restriction for programs being assembled to
operate in bank mode. The Assembler flags in error any relocatable
address field whose value exceeds 8191 (177778). The binary loaders
restrict the size of bank mode program to 8K-16 (8176) words.

When the address field is an absolute expression, an error condition
will exist if the extended memory and page address bits (3, 4, and 5)
do not match the corresponding bits of the address of the page currently

being assembled into.

NOTE

In absolute mode, the page bits do not have to
be equal if the .ABS or .FULL pseudo-ops are used
instead of the .ARSP or .FULLP pseudo-ops.

Assembly Language Elements

The Linking Loader will not relocate any absolute addresses; thus,
absolute addresses within a relocatable program are relative to that
page in memory in which the program is loaded.

Example:

Assume that the following source line is part of a relocatable program

that was loaded into bank 1 (200008->377778).
Source Statement Effective Address
- LACL300 20300

An exception to the above rule is the auto-index registers, which occupy

locations 108 - 178 in page 0 of memory bank 0. The hardware will
always ensure that indirect references to 108 - 178 in any page or bkank

will access 108 - 178 of bank O.
2.5.4 Comments Field

Comments may appear anywhere in a statement. They must begin with a

slash (/) that is immediately preceded by one of the following:

a. v (s) space(s)
b. - tab
c. </ carriage return/line feed (end of previous line)
d. semicolon
Comments are terminated only by a carriage-return or when 74 char-

10
acters have been encountered in a line.

Examples:

i (s8) /THIS IS A COMMENT (rest of line is blank)
TAGl =+ LAC
/THIS IS A COMMENT

~| RTRL/COMMENT =

- RTR; ~|RTR;/THIS IS A COMMENT

Observe that; -ﬂ A/COMMENT<V}is not a comment, but rather an operation
field expression. A line that is completely blank (containing 0 to 75
blanks/spaces) is treated as a comment by the Assembler.

Assembly Language Elements

A statement 1is terminated as follows:
</ or; or rest of line is completely blank.

Examples:

- Lac <’/

—| DAC (the rest of the line is blank)
- TAG+3

~ RTR; - RTR; = RTR =’

In the last example, the statement-terminating character, which is a
semicolon {;) enables one source line to represent more than one word

of object code. A tab or space is required after the semicolon in order
to have the second and third RTRs interpreted as being in the operation
field and not in the label field.

2.6 STATEMENT EVALUATION

When the Assembler evaluates a statement, it checks for symhols or
numbers in each of the three evaluated fields: 1label, operation, and

address. (Comment fields are not evaluated.)
2.6.1 Numbers

Numbers are not field dependent. When the Assembler encounters a num-
ber (or expression) in the operation or address fields (numbers are
illegal in the label field), it uses those values to form the storage

word. The following statements are equivalent:

All three statements cause the Assembler to generate a storage word
containing 200010. A statement may consist of a number or expression

which generates a single 18-bit storage word; for example:

,.| 2304503570362

Assembly Language Elements

This group of four statements generates four words interpreted under

the current radix.

2.6.2 Word Evaluation

When the Assembler encounters a symbol in a statement field, it deter-
mines the value of the symbol by reference to the user's symbol table
and the permanent symbol table, according to the priority list shown in

paragraph 2.6.4.

The operation field is scanned for the following special cases:

Mnemonic Operation Field Value
LAW 760000

AAC 723000

AXR 737000

AXS 725000

EAE instructions 64xxxx

If the operation field is not one of the special cases, the object word

value is computed as follows:

If assembling for page mode:

(Operation Field +(Address Field & 7777))=Word Value

If assembling for bank mode:

(Operation Field +(2Address Field & 17777))=Word Value

If the index register is used anhywhere in the address field, the index
register bit is set to one in the word value. If it is not used, and
You are assembling for page mode then the index register bit is set to

zero in the word value regardless of the address field value.

a. If index register usage is specified, the result of ¥ORing
bit 5 of the location counter and bit 5 of the address field
value must be non-zero. (Otherwise the address without index
modification was in a different page than the location counter,

and the line is flagged with a B for bank error).

Assembly TLanguage Elements

Example:

The result of statement evaluation has produced the following results:

10001 A
00001 B

A, X
B, X

00001
10001

Note that when index register usage is specified, the index register
bit may or may not be on. For R,X above, the index register bit was
turned off during statement evaluation. The Assembler turns this bit

on after the word is evaluated, not at statement evaluation time.

At location 10001, the result of XORing bit 5 of A,X and bit 5 of the
location counter is 0. This signals the Assembler that the address

reference (A) is in a different page.

b. TIf index register usage is not specified and the program is
not assembled for bank mode*, the result of XORing kit 5 of
the location counter and the address field value must be O,

otherwise the line is flagged with a B for bank error.

*
See pseudo-ops .ABS, .ABSP, .FULL, .FULLP, .EBREL, .DBREL.

Assembly Language Elements

Example:

c. The bank bits (3,4) of the address field value in a relocatable
program must never be on. The bank bits are always lost when

the address field value and the operation are combined to form

the object word value.

Example:

d. The bank bits of an absolute program must equal the bank bits
of the location counter. If not, the B flag alerts the pro-

grammer that he is referencing another bank.

Example:

e.

2.6.3

Assembly Language Elements

The bank bits of lines 3 and 5 do not match those of the loca-

tion counter, therefore, the lines are flagged.

Word Evaluation of the Special Cases

LAW - The operation field value and the address field value

are combined as follows:

Operation Value + (Address Field Value & 17777) = Word Value

A validity check is then performed on the address field value

as follows:

Address Field Value & 760000 = validity PBits

If the validity bits are not equal to 760000 or 0, the line

is flagged with an E to signal erroneous results.

AAC, AXR, AXS - The operation field value and the address

field value are combined as follows:

Operation Value + (Address Field Value & 000777) = Word

Value
The validity check:
Address Field Value & 777000 = Validity Bits
If the validity bits are not equal to 777000 or 0, the line
is flagged with an E to signal erroneous results. The address
field value for this type of instruction cannot be relocated.

The line is flagged with an R if the address field value is

relocatable.

EAE class instructions - The operation field value and the

address field value are combined as follows:

Operation Value + Address Field Value = Word Value

The validity check:

word value and 640000 = Validity Bits

2-28

Assembly Languadge Elements

A validity check is then performed on the word value. If the
validity bits differ from 640000, the line is flagged with an

E error to signal erroneous results.

If numbers are found in the operation and address fields, they are

combined in the same manner as defined symbols. For example,

-2 -5 - /GENERATES 000007
The value of a symbol depends on whether it is in the label field, the
operation field, or the address field. The Assembler attempts to
evaluate each symbol by running down a priority list, depending on the
field, as shown below.

2.6.4 Assembler Pricrity List

Operation Field Address Field

1. Pseudo-op 1. The indexing symbol, X

2. User or System macro 2. User symbol table {includ-
in macro table ing direct assignments)

3. Direct assignment in 3. Undefined
user symbol table

4. Permanent symbol
table

5. User symbkol table
Undefined

Assembly ILanguage Elements

This means that if a symbol is used in the address field, it must be
defined in the user's symbol table before the word is formed during

PASS 2; otherwise, it is undefined. (See section 2.2.4)

In the coperation field, pseudo-ops names take precedence. Direct
assignments allow the user to redefine machine op codes, as shown in
the example below.

Example:

DPOSIT = DAC

System macros may be redefined by user macros, but may not be redefined

as user symbols by direct assignment or by use as statement labels.

The user may use machine instruction codes and pseudo-op codes in the

label field and refer to them later in the address field.

CHAPTER 3
PSEUDO OPERATIONS

The Assembler has definitions in its permanent symbol table of the
symbols for all the XVM memory reference instructions, operate instruc-
tions, the basic EAE instructions, and many commonly used IOT instruc-
tions which may be used in the operation field without prior defini-
tion by the user. Also contained in the permanent symbol table are a
class of symbols called pseudo-operations (pseudo-ops) which, instead
of generating instructions, generate data or direct the Assembler on

how to proceed with the assembly.

By convention, the first character of every pseudo-op symbol is a
period (.). This convention is used in an attempt to prevent the
programmer from inadvertently using, in the operation field, a pseudo-

instruction symbol as one of his own.

The following is a summary of MACRO XVM Pseudo-ops.

Pseudo-op Section Function

.ABS 3.2.1 Object program is output in absclute, blocked,

.ABSP 3.2.1 checksummed format for loading by the Absolute
Rinary Loader. (Neither is supported with
¥VM/RSX.)

.ASCII 3.8.1 Input text strings in 7-bit ASCII code, with

the first character serving as delimiter. Octal
codes for non-printing control characters are
enclosed in angle brackets.

.BLOCK 3.5 Reserves a block of storage words equal to the
expression. If a label is used, it references
the first word in the block.

.CBC 3.5.4 Initializes a word of a common block to a con-
stant.

.CBD 3.18 Common Block Definition.

.CBDR 3.19 Common Block Definition Relative.

.CBE 3.5.5 End common block initialization section.

.CBS 3.5.3 Start common block initialization section.

.DBREL 3.2.3 Disable bank mode relocation.

Pseudo-op Section
.DEC 3.4
.DEFIN 3.16
.DSA 3.11
.EBREL 3.2.3
.EJECT 2.14
. END 3.6
.ENDC 3.13
.ENDM 3.16
.EOT 3.7
.ETC 3.16
.FULL 3.2.2
.FULLP

.GLOBL 3.9

L IFxxx 3.13
. IODEV 3.10
. LOC 3.3

. LOCAL 3.2.4
.LST 3.17
.LTORG 3.2.5
.NDLOC 3.2.4

Pseudo Operations

Function
Set prevailing radix to decimal.
Macro definition.

Generates a transfer vector for the specified
symbol.

Enable bank mode relocation.
Skip to head of form on listing device.

Must terminate every source program. The
address field contains the address of the first
instruction to be executed.

Terminates conditional coding resulting from
.IF statements.

Terminates the body of a macro definition.

Must terminate physical program segments, ex-
cept the last, which is terminated by .FEND.

Used in macro definitions to continue the list
of dummy arguments on succeeding lines.

Produces absolute, unblocked, unchecksummed
binary object programs. Used only for paper
tape output. (Neither supported with ¥VM/RSX.)

Used to declare all internal and external
symbols which reference other programs.

If a condition is satisfied, the source coding
following the .IF statement and terminating with
an .ENDC statement is assembled.

Specifies .DAT slots and associated I/0 handlers
required by this program. (Not supported with
XVM/RSX.)

Sets the location counter to the value of the
expression.

Allows deletion of certain symbols from the user
symbol table.

Continues requested assembly listing output of
source lines. Lines between .NOLST and .LST
are not listed.

Allows the user to specifically state where
literals are to be stored.

Terminates deletion of certain symbols from the
user symbol table contained between .LOCAL and
.NDLOC.

Pseudo-op Section Function

.NOLST 3.17 Terminates requested assembly listing output of
source lines of code contained between .NOLST
and .LST.

.OCT 3.4 Sets the prevailing radix to octal. Assumed at

start of every program.

.REPT 3.12 Repeats the object code of the next object code
generating instruction.

.SIXBT 3.8.2 Input text strings in 6-bit trimmed ASCII with
first character as delimiter.

.SIZE 3.15 Outputs the address of last location plus the one
occupied by the object program.

.TITLFE 3.1 Causes the assembler to accept characters to be
printed at the top of each page of assembly
listing and in the Table of Contents.

3.1 LISTING CONTROL PSEUDO-OPERATIONS
3.1.1 Program Segment Identification (.TITLE)

The program name (or any text) may be written in a .TITLF statement
as shown in the following examples. The Assembler will accept up to
5010 characters typed until a carriage return. A form feed is output
to the listing when .TITLE is encountered in the source program. The
text will appear at the top of each form (page) until the next .TITLE
pseudo-op. The .TITLE pseudo-op has no effect on the listing file

name.

*{.TITLELJNAME OF PROGRAM
*{.TITLELJNAME OF SUBSECTION IN PROGRAM

If subsections in a program are headed by .TITLE statements, these
can be used to produce a table of contents at the head of the assembly

listing by use of the T option.

3.1.2 Listing Control (.EJECT)

Label Field Operation Field Address Field

Not used .EJECT Not used

When .EJECT is encountered anywhere in the source program, it causes

the listing device that is being used to skip to top-of-form.

Pseudo Operations

3.1.3 Listing Output Control (.NOLST and .LST)

Label Field Operation Field Address Field
Not used .NOLST Mot used
LLST

If, while performing an assembly listing operation (L, or N assembly
parameters), the Assembler encounters a .NOLST, the listing operation
will be terminated until a .LST is found. These pseudo-ops are useful
when the user wishes to assemble all of a program, but only needs a
listing of certain modules of the program (e.g., those which may not
yvet work properly). All symkols occurring between .NOLST and .LST
will appear in the cross reference and symbol table listings when re-

quested (A, V, X, or S assembly parameters).

3.2 OBJECT PROGRAM OUTPUT PSEUDO-OPERATIONS

The normal object code produced by the Assembler is relocatable binary
which is loaded at run time by the Linking Loader or loaded to build an
executable task by CHAIN or TKB. In addition to relocatable output, the
user may specify other types of output code to be generated by the

Assembler.
3.2.1 Absolute Format (.ARSP and .ARS) (Not available on XVM/RSX)
LABSP and .ABS, although accepted by the Assembler, will not work

properly in XVM/RSX systems because none of the I/0 handlers accept

dunp mode data.

Label Field Operation Field Address Field
Not used .ARSP NLD orwasor not specified
Not used .ABRS NLD orwuor not specified

Both pseudo-ops cause absclute, checksummed binary code to be output
(no values are relocatable). If no value is specified in the address
field and if the output device is the paper tape punch, the Assembler
will precede the output with the Absolute Binary Loader (ARL), which
will load the punched output at object time. The ARL is loaded, via
hardware readin, into location 17720 of any memory bhank. (The ABL
loads only the paper tape which follows it.) If the address field of
the pseudo-op contains NLD, indicating "no loader", or if the binary
output device is not the paper tape punch, the ABRL will not precede

the output.
3-4

Pseudo Operations

17720 3
.ABS
LOADFR

USER PROGRAM PAPFR TAPE

.END START

NOTE

.ARS(P) output can be written on directoried
devices. The Assembler assumes .ARS(P) NLD for
all .ABS(P) output to file-oriented devices and
appends an extension of ARBS to the filename.
This file can be punched with PIP, using Dump
Mode. (There will be no absolute loader at the
beginning of the tape.)

a. The .ABS, .ARSP, .FULL, and .FULLP pseudo-ops, specifying the
type of output, must appear before any statements generating
object code, otherwise the line will be flagged and ignored.
Once one of these four pseudo-ops is specified, the user is not

allowed to change output modes.

k. The NLD option provided in the address field of .ARS and .ABSP

is meaningful only if the output device is paper tape.
A description of the absolute output format follows.

Binary Data Rlock (variable length, up to 34q words)

WORD 1 Starting address to load the block body which follows.
WORD 2 Number of words in the block body (two's complement).
WORD 3 Checksum of block body (two's complement of words

1 and 2, 4 through n).
WORD 4 Rinary data to load.

WORD 3+n Binary data to load.
Starting Block - (two binary words)

WORD 1 Location to start execution of program. It is distin-
guished from the binary data block by hraving bit 0 set
to 1 (negative).

WORD 2 Dummy word.

If the user requests the absoclute loader and the value of the expres-
sion of the .END statement is equal to 0, the ABL halts after it has

loaded in the object program. To start the program the user must set

Pseudo Operations

the starting address in the console address switches ard press START.
"his allows manual intervention by the user, typically to ready I/0
devices prior to starting his program. If the value of the .FEND expres-
sion is non-zero, it is treated as the program start address to which
the ABL will autcmatically transfer control after loading the object

program.

The .ARSP pseudo-op causes all memory referencing instructions whose

addresses are in a different page to ke flagged as hank errors. 2 DBRA
instruction is executed by the ahsolute loader hefore control is given
to the user program. Word values which have bit 5 on will signal tbre

processor to use the index register to compute effective addresses.

The .ARS pseudo-op does not flag memory referencing instructions whose
addresses are in a different page. An FRA instruction is executed,
and control is givenr to the user in bank addressing mode. Complete
bank addressing of 8K is allowed. The processor will interpret bit 5
of all memory referencing instructions as the high order address bhit.

A listing of the Aksolute Rinary Loader is given in Appendix F.
3.2.2 Full Rinary Format (.FULL and .FULLP) (Mot available in XVM/RSX)
.FULL and .FULLP, although accepted hy the Assembler, will not work

properly in XVM/RSX systems because none of the I/0 handlers accept

dump mode data.

Label Field Operation Field Address Field (Only useful
if output is
Not used .FULL Not used paper tape)
Not used .FULLP Mot used

The .FULL and .FULLP pseudo-ops cause full binary mode output to be
produced. The program is assembled as uncrecksummed abhsolute code andgd
each physical record of output contains nothing other than 18-bit
binary storage words generated by the Assembler. This mode is used to
produce paper tapes whicl can be loaded via hardware readin mede.

If no address is specified in the .END statement or if the acddress
value is zero, at the end of tape the Assemhler will punch a HLT in-
struction with channel 7 punched in the third frame. If thre .FND
address value is non-zero, the Assembler will punch a JMP to that ad-

dress, also with channel 7 of the third frame punched.

Pseudo Operations

In addition, with .FULLP assembly direct memory references in page 1
to addresses in page 1 will have bit 5 set to 0 unless indexing is
specified.

The only difference between the .FULL and .FULLP pseudo-ops is that
memory references across page boundaries are flagged in .FULLP mode:

in .FULL mode they are not.

The following specific restrictions apply to programs assembled in
.FULL or .FULLP mode ocutput.

.LOC Should be used only at the beginning of the program

-BLOCK May be used once and only if no literals, variables or
undefined symbols appear in the program, and must imme-—
diately precede .END.

Variables and undefined symbols may be used if no literals or
-BLOCKS appear in the program.

Literals may be used only if the pregram has no variakles,
.BLOCKs, or undefined symkols.

The reason for these restrictions, not alleviated by the use of .LTORG,
is the fact that .FULL(P) mode output contains no addressing informa-
tion for storing binary words other than in sequence. The .LOC and
-BLOCK pseudo-ops do not generate kinary output, hence there is no way
to indicate skipped locations in the output. This is also true of

variables and undefined symbols.

3.2.3 Relocation Mode (.EBRFL and .DRREL)

Label Field Operation Field Address Field
Not used .ERREL Not used
Not used .DBREL Not used

The following two pseudo-ops (.FEBRRFL and .DBREL) enable relocation
mode switching. They canr be used anywhere and as often as thke pro-
grammer wishes in a relocatable program. In the absence of one of
these mode declaration pseudo-ops, the page mode assembler assumes it
is assembling 12-bit (page mode) relocatalble addresses for memory
reference instructions and the bank mode Assembler assumes 13-bit

addresses (bank mode).

Pseudo Operations

A typical user program may omit the use of these pseudo-ops and simply
prepare his object code by using the desired (bank or page mode) ver-

sion of the Assembler.

For XVM page mode programs which contain display code to be interpreted
by the VT15 graphics processor, it is necessary to bracket the display
code with .EBREL, .DBREL. Unlike the Central Processor, the VT15
processor runs only in bank mode; hence its instruction addresses must

be relocated as 13-bit wvalues.

Mnemonic Description
.EBREL Fnable Bank mode RELocation

Regardless of the type of Assembler being used (bank or
page mode version), .EBREL causes all subsequent memory
reference instruction addresses to be treated as 13-bit
values, i.e., bank mode. Although in this mode, the
page mode assembler will still output the "PROG>4K"
warning message if the program size exceeds 4096. The
12- or 13-bit relocation is performed by the loaders.
.EBREL signals the loaders to switch to 13-bit reloca-
tion by causing a dummy data word (which is not loaded)
to be inserted in the binary output and having a loader
code of 318.

.DBREL Disable Bank mode RELocation

.DBREL is the counterpart to .EBREL. It signals the
loaders, with & dummy data word (which is not loaded)
and loader code of 328 to switch to 12-bit (page mode)
relocation.

NOTE

The previous mode is not saved when an .ERREL or
.DBREL is encountered; for this reason, a .DRREL
pseudo-op goes directly to page mode relocation
rather than entering the previous mode.

3.3 TEXT HANDLING PSEUDC OPERATIONS

The two text handling pseudo-ops enable the user to represent the
7-bit ASCII or 6-bit trimmed ASCII character sets. The Assembler
converts the desired character set to its appropriate numerical equiv-

alent (see Appendix A).

Label Field Operation Field Address Field
Delimiter - character
. CIT
SYMBOL AS string - delimiter -
.SIXRT <expression>.....

Pseudo Operations

Only the 64 printing characters (including space) may be used in the
text pseudo-instructions. See nonprinting characters, Section 3.8.5.
The numerical values generated by the text pseudo-ops are left-justified
in the storage word(s) they occupy with the unused portion (bits) of a
word filled with zeros.

3.3.1 1IOPS ASCII Packed Format (.ASCII)

-ASCII denotes 7-bit ASCII characters. (It is the character set used
by the operating system monitor or executive.) The characters are
packed five per two words of memory with the rightmost bit of every
second word set to zero. An even number of words will always be out-

put:

First Word Second Word
0 6 7 13 14 17]0 2 3 9 10 16 17
1st Char. 2nd Char. 3rd Char. 4th Char. 5th Char. 0

3.3.2 Trimmed Six-~Bit Format (.SIXBT)

.SIXBT denotes 6-bit trimmed ASCII characters, which are formed by
truncating the leftmost bit of the corresponding 7-bit character.

Characters are packed three per storage word.

0 516 11412 17
1st Char. 2nd Char. 3rd Char.

3.3.3 .ASCII and .SIXRT Statement Syntax

The statement format is the same for both of the text pseudo-ops.

The format is as follows.

LASCII

MYTAG { SIXBT

}—ﬂbelimiterlcharacter string|{delimiter |<expression>.....

3.3.4 Text Delimiter

Spaces or tabs prior to the first text delimiter or angle bracket (<)
will be ignored; afterwards, if they are not enclosed by delimiters

or angle brackets, they will terminate the pseudo-instruction.

Pseudo Operations

Any printing character may be used as the text delimiter, except those
listed below.
a. < as it is used to indicate the start of an expression.
b. ‘) as it terminates the pseudo-instruction.
(The apostrophe (') is the recommended text delimiting character.)
The text delimiter must be present on both the left-hand and the right-

hand sides of the text string:; otherwise, the user may get more char-

acters than desired.

3.2.5 VNon-Printing Characters

The octal codes for non-printing characters may be entered in .ASCII
statements by enclosing them in angle bracket delimiters. In the
following statement, five characters are stored in two storage words.

-+ .ASCITa'AB' <015> 'CD')

Octal numbers enclosed in angle brackets will be truncated to 7 bits
(.ASCII) or 6 bits (.SIXRT).

EFxample:
B . .
Source Line Recognized Text Comments
TAG - . ASCIT1w'ABC' ARC
.SIXBETea'ARC' ABC
_4.SIXBTL4'ABC'#’/# ARC'/ The # is used as a
delimiter in order
that (') may be
interpreted as
text.
—+{.ASCITI ' ABCD'EFGE ARCDFG
ASCITe'AB'<11> AB-ﬂ <11> used to repre-
_4.ASCIILJ'AB<11>' AR<11> sent tab. There is
no delimiter after
B, therefore,
(<11>) is treated
as text.
\
-|.ASCITeu<15 x 012> 'ABC' JAABC
-+ ASCTItw<15 x 12>ABCm(s) A ;wBCLJ(S) A is interpreted as
the text delimiter.

The following example shows the binary word format which the 2Assembler

generates for a given line of text.

Pseudo Operations

Example:

—~|.ASCII~|'ARC'<015 x 12>'DEF'

Generated Coding

Word Number Octal Binary
Word 1 406050 1000001 | 1000010 | 1000
Word 2 306424 011 | 0001101 [0001010 | 0
Word 3 422130 1000100 [1000101]1000
Word 4 600000 110 | c000000 | 000cn0d] 0

3.4 MACRO DEFINITION PSEUNO-OPFRATIONS (.DEFIN, .FTC, and .ENDM)

The .DFFIN pseudo-op is used to define macros ({described in Chapter 4).
The address field in the .DEFIN statement contains the macro name,
followed by a list of dummy arguments. If the list of dummy arguments
will not fit on the same line as the .DEFIN pseudo-op, it may be con-
tinued by means of the .ETC pseudo-op in the operation field and addi-
tional arguments in the address field of the next line. The coding
that is to constitute the body of the macro follows the .DFEFIN state-
ment. The body of the macro definition is terminated by an .FNDM
pseudo-op in the operation field. (See Chapter 4 for more details on

the use of macros.)

3.5 COMMON BLOCK PSEUDO-OPERATIONS

This class of pseudo-operations allows the programmer to define,
reference and initialize FORTRAN-style COMMON blocks. Special Loacder
Codes are placed in the object output of the Assembler to allow thre
Linking Loader, CHAIN, or TKR to allocate memory for the specified
COMMON blocks and link their addresses to transfer vectors in all pro-
grams which reference them. Additionally, the programmer may specify
the initial contents of the COMMON blocks (a facility similar to the
FORTRAN BLOCK DATA function).

3.5.1 Common Block Definition (.CRD)
The pseudo-op .CBD enables the programmer to declare a COMMON area of

an indicated name and size and to specify the word to be set to its

base address. The general format of this pseudo-op is:

Pseudo Operations

Label Field Operation Field Address Field

User Symbol .CBD Name, Size

The .CBD pseudo-op takes a COMMON name and size as arguments, reserves
one word of core for the base address, and outputs loader codes and
parameters to direct the Linking Loader, CHAIN or TKB programs to set
a transfer vector to the base address (first element) of the named

COMMON array. For example, the statement:

BASFE~|. CED+ABCD, 6

provides location BASE with the address of the first word of the
COMMON area named ABCD whose size is 6. FORTRAN blank COMMON is
given a special name by the system software, .XX. To reference blank

COMMON in a .CBD statement, .XX should be given as the COMMON name.
3.5.2 Common Block Definition -~ Relative (.CBDR)

The pseudo-operation .CBDR (common block definition relative) takes

an offset as its only argument. The general format of this pseudo-op
is:

Label Field Operation Field Address Field

User Symbol .CBDR Displacement

This pseudo-op directs the Linking Loader, CHAIN or TKB to enter the
starting address of the last COMMON block specified in a .CBD plus

the offset given in the .CBDR into the word corresponding to the loca-
tion of the .CBDR.

For example, the statements

BASE - .CBD - ABCD,5
BASE3 = .CBDR—| 3

will cause the task builder to enter the starting address of the
COMMON block ABCD into the location corresponding to the tag BASE;
in addition, the location corresponding to BASE3 will contain the

starting address of ABCD plus 3.

Pseudo Operations

Note that .CBDR is relative to the last COMMON definition only. Any
other assembler instructions or pseudo-operations may intervene

between the .CBD and .CBDR.
3.5.3 Common Block Initialization Start (.CRS)
The pseudo-operation .CBS is used to prepare the Assembler to accept

COMMON block initialization statements. The general format of this

pseudo-op is:

Label Field Operation Field Address Field

Not used .CBS name [,size]

The name parameter specifies the name of the COMMON block which is to

be initialized, see description in .CBD (Section 3.5.1) for details
regarding blank COMMON. The size parameter is optional, and if speci-

fied represents the minimum size of the COMMON block.

This pseudo-op, unlike .CBD or .CBDR does not generate a transfer
vector, hence, a label on this operation is meaningless. After a .CBS
instruction and up to the next .CBE instruction (i.e., between .CPS
and .CBE operations), the following rules apply to the type of state-

ments which may be specified.

1. .CBC statements are allowed.

2. .DEC, .EJECT, .IFxxx, .ENDC, .LST, .NOLST, .OCT, .REPT,
.TITLE, .DEFIN, .ENDM, .ETC are allowed.

3. Macro instructions which generate only statements belonging
to 1. or 2. above are allowed.

4. Direct assignment statements are allowed.
5. Machine instructions and transfer vectors are not allowed.

6. Pseudo-operations other than those listed in 1 and 2 above
are not allowed.

7. Macro instructions which generate statements belonging to
5 or 6 above are not allowed.

Example:

-|.CBS —|ABCD, 6

Pseudo Operations

indicates that a COMMON block named ABCD with a minimum length of

6 words is to be initialized by statements which follow.

3.5.4 Common Block Initialization Constant (.CRC)

The .CBC statement is used to initialize a single word of the COMMON

block declared in the preceding .CRS statement. The format of the

.CBC statement is:

Label Field Operation Field Address Field

Not used .CEC Displacement, Constant

The displacement parameter specifies the offset from the start of the

COMMON block of the word to be initialized. The constant parameter

is an absolute expression, the value of which will bhe used as the ini-
tial contents of the specified word in the COMMON block. If the .CRC
statement is used outside the .CBS - .CRF instructions, it is flagged
and jgnored by the Assembler. TIf a .CBC statement is preceded by a
.REPT statement which has a non-zero increment, the data will be in-
cremented, and the displacement will be incremented by one. Therefore,

the data generated will be placed in succeeding locations in common.

Example:
.CBC 2,4

will set the third word (base address+2) of the COMMON block specified
by the preceding .CBS to the initial value of 4.

3.5.5 Common Block Initialization End (.CRBF)

The .CBE pseudo-op is used to terminate the COMMON block initialization

section initiated by the .CRS operation. The general format is:
Label Field Operation Field Address Field
Not used .CRE Not used

A COMMON block initialization section (consisting of one .CBS followed
by one or more .CBC's followed by a .CRE) may appear anywhere in a
program without affecting the flow of the object program. Also, the
same COMMON block may be initialized any number of times by any number

of programs.

Pseudo Operations

3.6 CONDITIONAL ASSEMBLY (.IFxxx and .ENDC)

It is often useful to assemble some parts of the source program on an
optional basis. This is done in MACRO by means of conditional assem-

bly statements, of the form:
-|. IFxxx-| expression

The pseudo-op may be any of the eight conditional pseudo-ops shown
below, and the address field may contain any number, symbol, or expres-
sion. If there is a symbol, or an expression containing symbolic ele-
ments, such a symbol must have been previously defined in the source
program or the parameter file (except for .IFDEF and .IFUND). TIf not,
the value of the symbol or expression is assumed to be @, thereby

satisfying three of the numeric conditionals.

If the condition is satisfied, that part of the source program starting
with the statement immediately following the conditional statement and
up to but not including an .ENDC (end conditicnal) pseudo-op is assem-

bled. TIf the condition is not satisfied, this coding is not assembled.

The eight conditional pseudo-ops (sometimes called IF statements) and

their meanings are shown below.

Pseudo-op Assemble IF x is:
~|.IFPNZ,_,x Positive and non-zero
-4.IFNEGLJX Negative

—|. IFZERLIx Zero

. IFPOZax Positive or zero

—~|. IFNOZ L ux Negative or zero

~}. IFNZRuax Not zero

-|. IFDEFLx A defined symbol
-4.IFUNDLJx An undefined symbol

In the following sequence, the pseudo-op .IFZER is satisfied, and the

source program coding between .IFZFR and .ENDC is assembled.

Pseudo Operations

ROO00000 A &

(9

4 HUOFREROR

Conditional statements may be nested. For each IF statement there

must be a terminating .ENDC statement. If the outermost IF statement
is not satisfied, the entire group is not assembled. If the first IF
is satisfied, the following coding is assembled. If another IF is
encountered, however, its condition is tested, and the following coding
is assembled only if the second IF statement is satisfied. Logically,
nested IF statements are like AND circuits. TIf the first, second, and
third conditions are satisfied, then the coding that follows the third

nested IF statement is assembled.

Example:

DO0E ®

NP

beIsTelnd

Conditional statements can be for a variety of purposes. One of the
most useful is in terminating recursive MACRO calls (descriked in

Chapter 4). In general, a counter is changed each time through the
loop, or recursive call, until the condition is not satisfied. This

process concludes assembly of the loop or recursive call.

Pseudo Operations

3.7 LOCAL SYMBOLS (.LOCAL AND .NDLOC)

Label Field Operation Field Address Field
Not used .LOCAL Not used
Not used .NDLOC Not used

The size of a program that can be assembled with the Assembler is
determined by the number of user symbols in that program and therefore
by the amount of core available at assembly time in which to store
those symbols. Each user symbol requires three words of core in the
assembler’'s symbol table. This additional core is not required at
run-time (unless using a debugging program like DDT) because user

symbols are not loaded into core along with the object code.

The .LOCAL and .NDLOC pseudo-ops enable deletion of certain symbols
from the user symbol table. 1In so doing, larger programs can be assem-—
bled without increasing core size. The area between these two pseudo-
ops is defined as having a number of symbols, most of which are used
only in this area and which can be deleted, once this area has been

passed by the Assembler.

The Assembler creates a separate symbol table (local users symbol
table) when the .LOCAL pseudo-op is encountered. Only labels and
direct assignments may be stored in this table. Labels whick have

the # sign as part of the symbol are stored in the resident users
symbol tabkle (RUST). This feature is useful where a subroutine name

is part of a local area but must go into the RUST because of subroutine
calls from without the local area (see Section D of the following
example) . Symbols which are forward references (used before defined)
are stored as part of the resident users symbol table. When the

-NDLOC pseudo-op 1s encountered the local table disappears and the

resident UST is left unchanged.

An example of a program which uses the .LOCAL and .NDLOC pseudo-ops
follows. The symbols that are stored in the tables are represented

in the comment field in the order that they are stored during PASS 1.

3-18

Pseudo Operations

For purposes of illustration, lines 1-11, 12-26, 27-29, and 30-36 are
broken into sections A, B, C, and D respectively. The following
tables show the resident and local users symbhol tables (UST) at the
end of each section (PASS 1 only).

RESIDENT UST LOCAL UST
SECTION A
A (NO SYMBOLS)
AA
C
D
KK
TTYIN
SECTION B
A X
AA X1
C Y
D Z
KK
TTYIN
SECTION C
A (NO SYMBOLS)
AA
C
D
KK
TTYIN
X1
SECTION D
A SYM1
AA SYM2
C
D
KK
TTYIN
X1
TSUBR

In Section A, the symbol TTYIN is used. TTYIN is in a local area yvet
it is put into the resident user symbol table because it is a forward
reference. The same is true of symbol X1 from Section C. Once the
.NDLOC pseudo-op is encountered, the local UST no longer exists. For
that reason, the X1 reference from line 28 is a forward reference.

At the end of PASS 1, X1 would be represented as an undefined symbol.
When Section B is processed during PASS 2, the symbol X1 would not be
stored in the local UST because it already has been put into the
resident table.

3-19

Pseudo Operations

LIMITATIONS
The .LOCAL pseudo-op causes the local UST to be built just above the
macro definitions. Consequently, the .DEFIN pseudo-op is illegal in

a local area.

3.8 LITERAL ORIGIN (.LTORG)

Label Field Operation Field Address Field

Not used .LTORG Not used

As previously stated, a literal is an item of data with its value as
stated or listed. The pseudo-op .LTORG allows the user to specifically
state where he wants his literal table(s) to be stored; thus enabling
the user to store literal tables in different pages or banks. As

many as eight literal tables are allowed. ©Notice in the following

example that literals are not saved from one .LTORG to the next.

The literals 1 and 2 are stored twice even though they appear in the

same bank.

If more than eight .LTORG statements appear in a program, the excess
ones will be ignored and flagged with an 1 error. Subsequent literals
will be assigned core locations following the end of the program in

the normal manner.

Pseudo Operations

3.9 SETTING THE LOCATION COUNTER (.LOC)

Label Field Operation Field Address Field

Not used .LOC defined expression

The .LOC pseudo-op sets or resets the location counter to the value of
the expression contained in the address field. The symbolic elements
of the expression must have been defined previously; otherwise, phase
errors will occur in PASS 2. The .LOC pseudo-op may be used anywhere

and as many times as required.

Examples:

A program headed by an absolute statement, e.g., .LOC 100 is an ab-

solute binary program and the binary is output in link-loadable format.

3.10 RADIX CONTROL (.OCT and .DEC)

The initial radix (base) used in all number interpretation by the
Assembler is octal (base 8). In order to allow the user to express
decimal values, and then restore to octal values, two radix setting

pseudo-ops are provided.

Pseudo Operations

Pseudo-op Code Meaning

.OCT Interpret all succeeding numerical values in
base 8 (octal)

.DEC Interpret all succeeding rumerical values in
base 10 (decimal)

These pseudo-instructions must be coded in the operation field of a
statement. All numbers are decoded in the current radix until a new
radix control pseudo-instruction is encountered unless the pseudo-op
occurs within a macro expansion (see Section 4.2). The programmer

may change the radix at any point in a program.

1N

If a number is encountered which contains a decimal digit while in
octal mode, the number is evaluated as if the Assembler were in decimal

mode, and the line is flagged with an N.

3.11 RESERVING BLOCKS OF STORAGE (.BLOCK)

.BLOCK reserves a block of memory equal to the value of the expression
contained in the address field. If the address field contains a
numerical value, it will be evaluated according to the radix in effect.
The symbolic elements of the expression must have been defined pre-

viously, i.e., no forward referencing is allowed: otherwise, phase

Pseudo Operations

errors might occur in PASS 2. The expression is evaluated modulo

[~
21”(777778). The user may reference the first location in the block
of reserved memory by defining a symbol in the label field. The

initial contents of the reserved locations are unspecified.

Label Field Operation Field Address Field

User Symbol .BLOCK defined expression

Examples:

BUFF — -BLOCKwu12
- - BLOCKwaA+B+65)

3.12 END OF PROGRAM (.END)

One pseudeo-op must be included in every source program. This is the
-END statement, which must be the last statement in the main program.
This statement marks the physical end of the source program, and also
may contain the locaticon of the first instruction in the object pro-

gram to be executed at run-time.
The .END statement is written in the general form
—. ENDLJSTART

START may be a symbol, number, or expression whose value is the address
of the first program instruction to he executed. In relocatable pro-
grams to be loaded by the Linking Loader, CHAIN or TKE, only the main
brogram requires a starting address; all other subprogram starting

addresses, if specified, will be ignored.

A starting address may appear in absolute or self-loading programs;
if not, the program will halt after being loaded and the user must
manually start his program.

These are legal .END statements

-. ENDJREGTN+5)
- END1200

If no .END statement is included, the Assembler will treat it as if

a .EOT was included.

Pseudo Operations

3.13 END OF PROGRAM SEGMENT (.EOT)

If a program is physically segmented (on paper tape, disk, DECtape or
magtape), each segment except the last may terminate with an .FOT (end-
of-tape) statement or with nothing at all (neither .FOT nor .FND).
Termination with nothing is equivalent to termination with .EOT. The
last segment must terminate with an .END statement. The .EOT state-

ment is written without label and address fields, as follows,

-|.EOD

The following are typical reasons for segmenting programs:

1. A source program isg prepared on three different paper tapes
because one tape alone would be too large to fit in the

reader.

2. A source program is split in two and stored on two DECtapes

because it is larger than the capacity of a single tape.

3. To simplify program preparation, a disk file containing
commonly used macro definitions is kept physically separate
from user main programs. Thus, one does not have to include

the macro definitions in each main program.

4. Programs can be conditionally assembled for different machine
configurations or different software options. This is done by
defining conditional assembly parameters at assembly time.

The process can be simplified if one prepares paper tapes or
mass storage files defining all parameters for a given set of
options. The main program and parameter file are physically

segmented one from the other but can be assembled together.

3.14 GLOBAL SYMBOL DFCLARATION (.GLOBL)

Label Field Operation Field Address Field

Not used .GLOBL symbol[,symbol...]

The standard output of the Asssmbler is a relocatable object program.
The Linking Loader, CHAIN or TKB joins relocatable programs by supply-
ing definitions for global symbols which are referenced in one program
and defined in another. The pseudo-op .GLOBL, followed by a list of
symbols, is used to define to the Assembler those global symbols which

are either

Pseudo Operations

a. internal globals - defined in the current program and refer-

enced by other programs

b. external symbols - referenced in the current program and de-

fined in another program

The loader (Linking lLoader, CHAIN or TKB) uses this information to
include in the locad and then link the relocatable programs to each
other.

All references to external symbols must be indirect references since
XVM software systems use transfer vectors for referencing external
symbols. FEach external symbol causes an additional word (the transfer
vector word) to be reserved in the user program. The loading pro-
gram will store the actual address of the external symbol in the trans-
fer vector word. Thus, an indirect reference (through the transfer

vector) will cause the external symbol location to be addressed.

Example:

-| .GLOBL —=| A,B,C
A-|LAC - D /A is an internal global
D—|JMS* = B
-]gMs* | C
D

.END

/These two instructions reference

/External symbhols indirectly

The .GLOBL statement may appear anywhere within the program.

The example above is assembled as follows:

The real values for locations 3 and 4 will be supplied by the loading
program: these two words will contain the addresses in memory of
external symbols B and C.

Pseudo Operations

3.15 REQUESTING AN I/O DEVICE HANDLER .IODEV (Not supported in XVM/
RSX)

The .IODEV pseudo-op appears anywhere in the program and is used to
cause the Assembler to output code for the Linking Loader or CHAIN
which specifies the slots in the Monitor's device assignment table
(DAT) whose associated device handlers are required by the program.
This is used in XVM/DOS where device handlers are brought into core

at the time a program is loaded to run.

Label Field Operation Field Address Field
Not used .IODEV datslot [,datslot...]
The arguments may be numeric or symbolic. If the argument is symbolic,

the symbol must be defined by a direct assignment statement.

3.16 DESIGNATING A SYMBOLIC ADDRESS (.DSA)

.DSA (designate symbol address) is used in the operation field when
it is desired to create a word composed of just a transfer vector
(17-bit address). It is useful when a user tag symbol is also a

permanent instruction or pseudo-op symbol.

Label Field Operation Field Address Field

User Symbol .DSA expression

Examples:

JMP = LAC —|TAG

-4.DAS—4JMP Fquivalent methods of designating the user
- ~mMp symbol JMP (rather than the instruction JMP)
to be in the address field.

3.17 RFEPEAT OBJECT CODE (.REPT)

Label Field Operation Field Address Field

Not used .REPT count [,increment]

The .REPT pseudo-op causes the object code of the next sequential
object code generating instruction to be repeated '"count" times.
Optionally, the object code may be incremented for each time it is

repeated by specifying an increment. The count and increment may be

3-26

Pseudo Operations

represented by a numeric or symbolic value. If a symbol is used, it
must be defined by an absolute direct assignment statement which must
cccur before the symbol is used. The repeated instruction may contain
a label, which will be associated with the first statement generated.

Note that arithmetic expressions in the increment field are illegal.

Examples:

NOTE
If the statement to be repeated generates more than

one location of code, the .RFPT will repeat only the
last location. For example,

—-I. REPT w3
_.I.ASCII A

will generate the following:

404000 5/7 A

000000

000000 last word is
000000 repeated

3-27

Pseudo Operations

3.18 REQUEST PROGRAM SIZE (.SIZE)

Label Field Operation Field

Address Field

user symbol .STZE

not used

When the assembler encounters .SIZE, it outputs one word which contains

the address of the last location plus one
gram. This is normally the length of the
However, if a given program is 1218 words
statement at the head of the program, the

be 5218.

occupied by the object pro-
object program (in octal).
long and has a .LOC 4g@
value of the .SIZE word will

CHAPTER 4
MACROS

When a program is being written, it often happens that certain coding
sequences are repeated several times with only the arguments changed.
It would be convenient if the entire repeated sequence could be gen-
erated by a single statement. To accomplish this, it is first nec-
essary to define the coding sequence with dummy arguments as a macro
instruction, and then use a single statement referring to the macro
name along with a list of real arguments which will replace the dummy

arguments and generate the desired sequence.

Consider the following coding seguence.

- LAC—lA
- TAD B
~| DAC—{C

-|LAé—-|D
- TAD | E
~{DAC | F

The sequence

~| LAC—| x
- TAD-| ¥
~{pac-| z

is the model upon which the repeated sequence is based. The characters
X, ¥, and 2z are called dummy arguments and are identified as such by

being listed immediately after the macro name when the macro instruc-
tion is defined.

Macros

4.1 DEFINING A MACRO

Macros must be defined before they are used. The process of defining

a macro is as follows.

(Macro Name) (Dummy " Arguments)
(Definition Line) —|.DEFIN-+MACNME,ARG1,ARG2,ARG3~ /comment
- LAC -+ arRG1
(Body) -|TAD —{ARG2
-{pac —|ARG3
(Terminating Line) =4 .ENDM

The pseudo-op .DEFIN in the operation field defines the symbol follow-
ing it as the name of the macro. ©Next, follow the dummy arguments,
as required, separated by commas and terminated by any of the following

symbols.

a. space (1)
b. tab (=)

c. carriage return (,)

The macro name and the dummy arguments must be legal assembler symbols.
Any previous definition of a dummy argument is ignored while in a
macro definition. Comments after the dummy argument list in a defini-

tion are legal.

If the list of dummy arguments cannot fit on a single line (that is,
if the .DEFIN statement requires more than 7210 characters) it may be
continued on the succeeding line or lines by the usage of the .ETC

pseudo-op, as shown below.

- DEFIN—MACNME, ARGl, ARG2,ARG3 /comment
- .ETC —4ARG4,ARG5 /argument continuation

—| . DEFIN-+| MACNME
-|.ETC —|ARG1
—|.ETC -ARG2
~.ETC —|ARG3
-{.ETC —|ARG4
~|.ETC ARG5S

lacros

4.2 MACRO BODY

The body of the macro definition follows the .DEFIN statement. Appear-
ances of dummy arguments are marked and the character string of the
body is stored, five characters per two words in the macro definition
table, until the macro terminating pseudo-op .ENDM is encountered.

Comments within the macro definition are not stored.

Dummy arguments may appear in the definition lines only as symbols or
elements of an expression. They may appear in the label field, opera-
tion field, or address field. Dummy arguments may appear within a
literal or they may be defined as variables. They will not be recog-

nized if they appear within a comment.

The following restrictions apply to the usage of the .DEFIN, .ETC and
.ENDM pseudo-ops:

a. If they appear in other than the operation field within the
body of a macro definition, they will cause erroneous results.

b. If .ENDM or .ETC appears outside the range of a macro defini-
tion, it will be flagged as undefined.

Tf index register usage is desirable, it should be specified@ in the

body of the definition, not in the argument string.

.DEFIN XUSE,A,B,C
LAC A

DAC B,X

LAC C

« ENDM

If .ASCII or .SIXBT is used in the body of a macro, a slash (/) or
number sign (#) must not appear as part of the text string or as a de-
limiter (use <57> to represent a slash and <43 > to represent a number
sign). Be careful when using a dummy argument name as part of the

text string. For example,

.DEFIN TEXT A
. SIXBT A,

. SIXBT A

« ENDM

Macros

followed by the macro call,
TEXT XYZ
will generate the following code

.SIXBT , XYZ,
.SIXBT A

In the first .SIXBT statement, A is recognized as a dummy argument re-
sulting in the substitution of XYZ. In the second statement, A is not
recognized as a dummy argument because the string delimiter, period,

is itself a legal symbol constituent.

Definition Comments

- .DEFIN = MAC,A,B,C,D,E,F

- LAC - A#

-+ SPA
—-{Jmp - B
-4ISZ -4 TMP /E E is not recognized as an argument

- LAC - (c
~{pac - D+1
-~

-.AscII = E

B=.

-| . ENDM

4.3 MACRO CALLS

A macro call consists of the macro name, which must be in the operation
field, followed by a list of real arguments separated by commas and

terminated by one of the characters listed below.

a. space ()

b. tab (-)

c. carriage ()
return

If the real arguments cannot fit on one line of coding, they may be

continued on succeeding lines by terminating the current line with a

Macros

dollar sign ($). When they are continued on succeeding lines they must
start in the label field.

Example:

—~|MAC+REAL1,REAL2,REAL3,$
REAL4, REALS

If there are n dummy arguments in the macro definition, all real argu-
ments in the macro call beyond the nth dummy argument will be ignored.
A macro call may have a label associated with it; this label will be

assigned to the current value of the location counter.

Example:

v

The prevailing radix will be saved prior to expansion and restored
after expansion takes place. Default assumption will be octal for the
macro call. It is not necessary for the macro definition to have any

dummy arguments associated with it.

Example:

Macros

4.3.1 Argument Delimiters

It was stated that the list of arguments is terminated by any of the
following symbols.

a. space ()
b. tab (-

c. carriage return (.)

These characters may be used within real arguments only by enclosing
them in angle brackets (<>). Angle brackets are not recognized if

they appear within a comment.

Example:

All characters within a matching pair of angle brackets are considered
to be one argument, and the entire argument, with the delimiters (<>)
removed, will be substituted for the dummy argument in the original
definition.

The Assembler recognizes the end of an argument only on seeing a ter-
minating character not enclosed within angle brackets.

If brackets appear within brackets, only the outermost pair is deleted.
If angle brackets are required within a real argument, they must be
enclosed by argument delimiter angle brackets.

Example:

SOTRROR TH LTNE

Macros

Often, it is desirable to attach a label to a line of code within a
macro definition. As this label is defined each time the macro is
called, a different symbol must be supplied at each call to avoid

multiply defined symbols.

This symbol can be explicitly supplied by the user or the user can
implicitly request the Assembler to replace the dummy argument with a
created symbol which will be unique for each call of the macro. For

example,
-|.DEFIN-{MAC, A, ?B

The question mark (?) prefixed to the dummy argument B indicates that
it will be supplied from a created symbol if not explicitly supplied

by the user when the macro is called for.

The created symbols are of the form ..0000+..9999., Like other symbols,

they are entered into the symbol table as they are defined.

Unsupplied real arguments corresponding to dummy arguments not preceded
by a question mark are substituted in as enpty strings; and supplied
real arguments corresponding to dummy arguments preceded by a question

mark suppress the generation of a corresponding created symbol.

Example:

Q0 Gidod Y

001 Q200

00 SO0006

10 2000006

gy NEA VRG] PR S TO LV

Q0 DA0004 MY T el
GOOG0&

00

If one of the elements in a real argument string is not supplied, that
element must be replaced by a comma, as in the call above. A real argu-

ment string may be terminated in several ways as shown below:

Example:

M Fefly et
MAL folies J
M Aol b
[RTET™ By i P
M ok)

4.3.3 Concatenation

If a dummy argument in a definition line of the macro body is delimited
by the concatenation operation '@' and immediately preceded or followed
by other characters or another dummy argument, the characters that cor-
respond to the value of the dummy argument (real argument) are combined
(juxtaposed) in the generated statement with the other characters or
the real argument that corresponds to the other dummy argument. This
process is called concatenation.

The following example illustrates this operation.

1 LT

QOO0 R HGUO0CE RORG

o

I
b o

1A
18

3

s B

Macros

The dummy argument TYPE is used to vary the mnemonic operation code of
the generated statement. The character P, which is the corresponding
value of TYPE in the first call to the macro, will be concatenated with
the characters JM to form the mnemonic JMP. This action occurs because
a dummy argument (i.e., TYPE) is delimited by the concatenation opera-
tor (i.e., is preceded by @ and is immediately preceded or followed

by other characters or another dummy argument).

Of course, in the case where other characters are to be concatenated
with the value of a dummy argument, and the first of the other chara-
cters is a delimiter, it is not necessary to further delimit the dummy
with the concatenation operator. The following example illustrates
this rule.

M T LA

Macros

In this example concatenation is used to test the existence of a named
temporary location, and, if necessary, output code to define it. Then
the concatenation operator - Assembler delimiter rule is presented by
concatenating two dummy arguments and other characters beginning with
a delimiter. 1In detail, one such concatenation string is a delimiter
(i.e.,*l)[a dummy argument (i.e., FROM), the concatenation operator
(i.e., @), a second dummy argument (i.e., LVL), finally followed by
other characters beginning with a delimiter (i.e., ,X).

The general case of real argument for dummy argument substitution per-
formed by MACRO is the application of the "other characters beginning
with a delimiter" rule presented above. In other words, argument sub-
stitution may be thought of as concatenation when the dummy argument
is bounded by delimiters, rather than a concatenation operator.

Note that one ambiguous case can arise in use of the concatenation opera-
tor when the other character string to be concatenated with an argument
value is the same as a dummy argument name. The following example
illustrates this problem.

This macro was written with the intention of satisfying the following
flow diagram.

Macros

MACRO
WAIT

OUTPUT A
"CAL WTCPlun"

9
EXIT

ENTRY

"WTCPlun"
DEFINED

OUTPUT WAITFR
CODE, 1674 WITH
LABEL "WTCPlun"

WAS
EV SPEC-
IFIED IN MACRO

YES

OUTPUT THE ADDRESS OUTPUT THE VALUE 7
OF LABEL "EVlun" OF EV HE SPECIFIED

For instance, if the following call to the WAIT macro were coded (with
WTCP1l@Z undefined):

a0 B O0GGLT W

Macros

Note that according to box 6 of the preceding flow chart, under these

conditions it was desired to output:

-{EV1g

for line 7 of the above expansion rather than what was actually gener-
ated. This discrepancy occurs because the characters EV on the appro-
priate line of the body of the definition are not recognized as "other
characters". EV is also a dummy argument which is bounded by an Ass-
embler delimiter (i.e.,—ﬂon the left) and the concatenation operator
(i.e., @ on the right). This will cause the concatenation of the value
of dummy argument EV (i.e., null) and the value of the dummy argument
LUN (i.e., 1#), thus producing the output shown on line 7 of the ex-
pansion. The only solution to this problem is to choose the names of
dummy arguments to be different from any character strings to be used

for concatenating.

Following is a comprehensive example of the use of the concatenation
operation in defining user macros: the definition of two macros,
ERRMSG and MESSAGE. The purpose of ERRMSG is to cause a subroutine to

be called (named ER.PRO) which will print an error message.

It has as arguments the error number (from g to 778) and an optional
return address. The label of the error message to be output is created
by concatenating 'ERM.' with the error number. (FRM.#, ERM.1, etc.) If
no return address is specified, control is transferred to a lahel named
ER.NOR by default. The second macro, MESSAGE, is used to create an
IOPS ASCII line buffer with the error message to be printed, presumably
via the ERRMSG macro. It also has two arguments: the error number,
and the message text. The output of the macro is a properly set up
header word pair labeled 'ERM.xx' where 'xx' is the specified error
number, and a .ASCII statement which contains the text specified, pre-
ceded by 'ERR#xx--', where 'xx' once again is the error number. The
reader should examine the example noting the use of the conditional

assembly parameters to accomplish macro-time error detection.

Macros

JTITLE CONCATENATION EXAMPLE FNOR MACRO MANUAL
MACRD 'FRAMSG' DEFTINITION , FHRROR MESSAGE QUPUT MACRO,

CALLING SEQUENCE:

FRRMSG EFRNOI,RFTURN]

“HERE?

FRANO = AN DCTAL NUMBER FROM & YO 77 REPRESENTING
THE ERRUR CODE,

RETURN = (OPTIOWAL) THE LOCATIOM TO WHICH CONTROL
SHQULN HE RETURNED FOLLOWING OQUTPUT 0F
THE ERKOR MESSAGE. IF NOT SPECIFIED,
CONTROL WILL BE GIVEN T0O LOCATION 'ER.NOR',

rUTPUT e

rUTPUT NF ERRMSG COMSISTS OF A JMS TO THE ERROR PROCESSOR
TERLPRO!, FOLLOWED Ry A ,DSA ERM, XX WHERE XX = ERRNOD,
FRAL,XX I8 ASSUMED T0 BE A STANNDARD IQPS ASCII LINE RUFFER
~HICH CONTAINS THE [ESIKED MESSAGE, IT MAY RE DEFINED USING
THE 'MESSAGE' MACRO (SEE BELOW),

FRROR DETZCTION:

THE ERROR NUMRER ('ERRNUO') 15 CHECKED TO HE RETWEEN

» AND 77, NDTHERWISE AN ASSEMBLER ERROR LINE IS

PLUTPUY RATHER TraN THE CaLL TO 'ER,PRU', THF ILLEGAL
ASSEMBER LINE WILL CAUSE AN 'N' ERROR (AMONG OTHERS) TQ RE
REMERATED BY THE ASSEMRER, THUS INDICATING A 'NUMBER!
“RROR,

NN N N N N N N N N N N N N YN N N NN Y N NN NN N NN N N NN

.DEFIN ERRMSG,ERRNO,RTN

JIFNEG ERRMQO=140 /VALIDATE ERROR CODE NUMBER

JIFPNZ ERRND /T BE 72 <= ERRND <= 77
22RTINCERTN+Q /SETUP RETURN ADDR, IF SPECIFIED

IFZER ZZRTNC
ZIRTINC=2FR,HOR /IF NO RETURN, SET TO STD, ADDR.

JENDC

1™§ ERGPRO /CALL THE ERROR PROCESSOR

Y EFM, ®ERRND /POINT TO RIGHT MESSAGE

JHP 2ZRTNC /EITHER RETURN TN 8Th, EXIYT, OR WHERE I SAID

JENDC

JENDC

.IFNEG ERRNQ /PUT OUT ERPOR IF NECESSARY

G #»*EQROR CODF 1S <« @ OR > 77«x

.ENDC

.IFPOZ ERPRNQ=177

g w«EPROR COUF 1§ < @ UR > 77%%

LENDC

JENDM

/MACRO 'MESSAGE' DEFINITION, BRUILD AN ERROR MESSAGE LINE BUFFER,
CALLING SEQUENCE:S
MESSAGE EPFNQ,<TEXT>

WHERE

ERRNO = THE ERROR NUMBER, FRUM 0 TO 77 (OCTAL)

«<TEXT> = THE MESSAGE TEXT (ENCLOSED IN ANGLE
BFACKETS, AS SHUAN) TO BRE ASSOCIATED WwITH THIS
YERPNOY,

NN N NN NN NN,

Macros

/ rUTPUT
/
/ 4 STANDARDN I0PS ASCTIY LINE RUFFER IS CREATED WITH THE NAME
/ TEIM XX WHFRE XX ® 'ERRNO' (SEE ABOVE), THE ACTUSL MESSAGE
/ WILL HAVE THE FORMAT TERR&XX== TEXT ', WHERE XX AND TEXT ARE AS
/ ABOVE, OF COURSE, THE LINE BUFFER HEADER PATR WILL BE PROVIDED,
/
/ ERROR DETECTINNS
/
/ 'ERRNOY WILL RE CHECKED TO RE RETWEEN @ AND 77.
/ IF THE CKECK SHOWS AN FRRMOR, AN ASSEMBLER ERROR
/ LINE WILL BE GEVNERATED RATHER THE THE MESSAGE CODE, THE ERROQOR
/ f INE WILL CAUSE AT LEAST AN 'N' FLAG, INDICATING A 'NUMBER!
/ FRROR,
/

LOFFIN MESSAGE,ERRMD, TEXT,?4A

JIFNEG ERRNO=10R

JIFPNZ ERRND
ERM,mFRRNO A=ERM, OERRNN /2% 100042

)]

JASCII 'ERRHGERRNDmwTEXT'<{5>
Az,

LJENDC

LJENDE

JIFNEG ERRMD

-] **ERRNOKR CODF IS <« @ OR > 77w+#

LENRC

LIFPOZ ERRMO=140

9 **EPROR CODF IS < P QR > 77w

LENDC

LENDM

LJEJECT

ERRMSG 4 /0UTPUT FRROR MESSAGE #4, TAKE STANDARD EXIT
*G JIFNEG 4=122
G JIFPOZ 4
vG 7IRTINC=+Q
*G LIFZEK ZZRTNC
«G ZIRTNC=ER,NOR
"5 JENDC
3 Jms ERGPRD
*G .03 ERM, 4
G JMP ZZRTNC
G JENDC
e JENDC
v JIFNEG 4
0 9 *»*EPRIOR COUE IS <« @ OR > 77#w
e R
G LIFPOT 4=100
«G [**ERROR COUF 1S <« @ OR > 77w+
*(; JENDRC
ERRMSG 45,RECOV /GIVE ERROR #45, ANU RETURN TO LOC 'RECOV' WHEN DONE

*G .IFNEG 45=127
* JIFPOZ 45
G ZIRTNC2RECCOV4?
*G IFZER Z7RTNC
«G ZZRTINC=ER,NOR
0 JENDC
* G JM3 ERL.PRD
* 0 EY: ERM, 45
G JHP ZZRTINC
*G JENDC
*l LENDC

*G
* 0y
*0
w (s
L1¢)
*G
.
140
.G
*G
L 20
.l

w0
*G
* G
.G
119
o5
0
* (s
*0
w(s
.G
(s
*G
*(s
"3
*(G
110
*h
v
* 0
(s
.
*(

*G

(s
G
»G
"0
G
* (0
* (s
*G
G
*(
G
wly
(s
* G
L2
G

w0

*
v(
w (3
*(5
vG

ake,
t LENDE
ENDE
CIFNEG

Yexoc
JIFPOZ

?ENDC

MESSARE
. IFNEG
JIFPOZ

Macros

77 «%
f*ERRuR CADE IS <« O (R >

Enn 77 %%
:*éRROR CODE IS <« 4 QR >

: YWORD>
5,<AMBIGUOLS USE OF A COMPILER KE
45, <AME .
45«10
45

&M 45 AAPO=ERM ,45/2+ 1200 +2
F Lt LR

e
LASCTI

JIFNES
9
JENDC
JIFPDZ

9E”OC
;PQMSG
IFNEG
C1FPN2
eRFCOVaeR
zERTNe .IFZER
\ T MOR
ZZRTJC=C.EHDC
ms
L05A
JMP
ENDC
:ENDC
IFNEG

e

LENDE
JIFP0Z
9

JENDC
ERRMSG
JIFMNEG
JIFPOZ
RTMCear
2 .IFZER
ZIRTMC=ER NOR

3 YWORND'<15>
S==AMRTIGUOUS USE OF A COMPILER KE
'FRRE45we]

X > 77w
fiERRUR rUODE IS <« @ OR

- a 77w
:fﬁégoﬁ CODE IS <« 2 OR »

OR NO, IT
/SHOW THAT A NEGATIVE ERR
«-34,RECDV

«3dmlAD

=34

ZZRTING
ER PRN

ERM, w34
ZIZRTNC

- ‘ 7*‘
t:éRROR COOF IS <« 2 QR > 7
=3d4wiidi

7wn
**ERROR CNDE IS <« 2 QR > 7

S TLLEGAL
THAT AN ERROR NO, » 77(8) IS I

SHO W

456 /8HD

456=120

456

27ZRTNC

ILLEGAL

Macros

11 JENDC
0 IMS ER,PRN
*0 .054 ERM, 456
*G JHP ZZRTINC
G JENDC
w3 JENDC
oG JIFNEG 456
wi; +] **ERROR CODF IS <« @ OR > 77ww
(G JENDC
*G LIFPOZ 456100
w (s 9 #»*ERROR CODE IS <« @ DR > 77ww
G JENDC
JEJECT

MESSAGE 4,<ILLEGAL NR UNRECDGNIZABLE SYNTAX IN STMNT>
G JIFNEG 4109
*G JIFPOZ 4
«G FRM_4 LeCRRE=ERM,4/2% 102042
w
.E ?ASCII 'FRRE4==TLLFGAL OR UNRECOGNIZABLE SYNTAX IN STMNT'«<i5>
G
*0G
*G
*G
«
*G
*G
*G
*G
*G
G
*G
w{
* (s
0
G
L A7)
(s
G
*G
G ,.0000=,
w5 .ENDC
*G JENDC
*G JIFHEG 45
14 9 **ERRNR CODE IS « @ OR » 77%¢
.0 LoihNDC
*G JIFPDZ 45=100
»G () **ERROR CODF IS < @ OR > 77 4%
*{3 JENDC
MESSAGE =1,<THIS SHOULD GIVE A MACRO=DETECTED EWRROR>
“G JIFNER wl=10m

*G JIFPOZ =)
*G FRM a) | O0012=ERY,w]1/2%1700+2
*0G 2
*G LASCI] !'FRRH=1==THIS SHOULD GIVE A MACRO-DETECTED ERROR!<{5>
6 L. 2012e,
*G JENDC
*G JENDC
*G JIFNEG e
‘0 9 **ERROR CODF IS < @ OR > 77w
G LENDC
*0 JIFPOZ =t=yipa
.5] **ERROR CUDE IS < @ DR > 77w«
v JENDC
.EJECTY

Macros

4.4 NESTING OF MACROS

Macros may be nested; that is, macros may be defined within other mac-
ros. For ease of discussion, levels may be assigned to these nested
macros. The outermost macros (those defined directly) will be called
first-level macros. Macros defined within first-level macros will be
called second-level macros; macros defined within second-level macros
will be called third-level macros, etc. Fach nested macro requires an
+.ENDM pseudo-op to denote its termination.

Example:

Level 1

- .DEFIN—| LEVELL,A, B
~irac—+ a

~{TaD~I B Level 2

—|.DEFIN-|LEVEL2,C,D
-{1sz—+c

~|pac—{ D Level 3

-| .DEFIN=|LEVEL3,E, F
—~|AND +{E
~|XOR—| F

- . ENDM ’ LEVEL 3 .ENDM
—pac— 7z
-] . ENDM LEVEL 2 .ENDM
~lpac <y
- . ENDM LEVEL 1 .ENDM

|

At the beginning of processing, first-level macros are defined and may
be called in the normal manner. Second and higher level macros are

not yet defined. When a first-level macro is called, all its second-
level macros are defined. Thereafter, the level of definition is irre-
levant and macros may be called in the normal manner. If the second-
level macros contain third-level macros, the third-level macros are

not defined until the second-level macros containing them have been
called.

Using the example above, the following would occur:

Macros

ool sty RN Y B R

If LEVEL3 is called before LEVEL2 it would be an error and the line
would be flagged as undefined.

When a macro of level n contains another macro of the level n + 1, call-
ing the level n macro results in the generation of the body of the macro
into the user's program in the normal manner until the .DEFIN statement
of the level n + 1 macro is encountered; the level n + 1 macro is then
defined and does not appear in the user's program. When the definition
of the level n + 1 is completed (.ENDM encountered), the Assembler con-
tinues to generate the level n body into the user's program until, or

unless, the entire level n macro has been generated.
4,5 REDEFINITION OF MACROS
If a macro name, which has been previously defined, appears within

another definition, the macro is redefined and the original definition

is eliminated. For example,

When the macro INDXSV is called for the first time, the subroutine call-
ing sequence 1is generated and followed immediately by the subroutine
itself. After the subroutine is generated, a .DEFIN that contains the
name INDEXSV is encountered. This new macro is defined and takes the

place of the original macro INDEXSV. All subsequent calls to INDXSV

Macros

cause only the calling sequence to be generated. The original defini-
tion of INDXSV will not be removed until after the expansion is complete.

(19191414]

AL

LA N]

OG04

G

4.6 MACRO CALLS WITHIN MACRO DEFINITIONS

The body of a macro definition may contain calls for other macros which
have not yet been defined. However, the embedded calls must be de-
fined before a call is issued to the macro which contains the embedded

call. Embedded calls are allowed only to three levels.

Example:

The call

causes generation of

Macros
4.7 RECURSIVE CALLS
Although it is legal, avoid making a macro definition.containing an
embedded call to itself because the expansbon will cause more than
three levels to occur.

Example:

MACe Ayl
1)
B

Nl SRE

SRRV S8l .

When a call for MAC is encountered, the Assembler searches memory

for the definition and expands it. Since there is another call for

MAC contained within the definition, the Assembler goes back once again
to obtain the definition; this process would never cease if more than
three levels were allowed. A conditional assembly statement could be
used, however, to limit the number of levels as in the following

example.

Example:

EESCE)

Cdd .

Names and arguments of nested macros and arguments of embedded calls

may be substituted and used with perfect generality.

Macros

MAalleae By Ul
&
B

AM
MALL Mo lie e 3

PO
AL i

CHAPTER 5
OPERATING PROCEDURES

5.1 INTRODUCTION

Detailed descriptions of the assembler calling procedure, command
string format, general operating procedures, and printouts are given

in this chapter.
5.2 CALLING PROCEDURE
5.2.1 XVM/DOS

In the XVM/DOS systems, the MACRO Assembler is called by typing MACRO)
after the Monitor's $ request. When the Assembler has been loaded, it

identifies itself by typing:

MACRO XVM Vnxnnn or BMACRO XVM Vnxnnn
> >
on the teleprinter. The >character indicates that the Assembler is

waiting for the user to type in a command string.

There are two differences between MACRO XVM (the Page Mode Assembler)
and BMACRO XVM (the Bank Mode Assembler). MACRO XVM starts each as-
sembly assuming page mode relocation (.DBREL implied) and BMACRO XVM
assumes bank mode relocation (.EBREL implied). When program sizes
exceed 4096, MACRO outputs the warning message "PROG 4K" in the assembly
listing but BMACRO does not. This message will appear even i1f the pro-
gram is assembled under influence of .EBREL. This warning message has
no other effect; the program will be assembled and output will be pro-
duced anyway.

5.2.2 RSX/XVM

In the RSX systems, MACRO is invoked by typing in the Assembler's name

and also the command string on the same line following the prompting

Operating Procedures

message "TDV ", For example:

TDV>MAC BLXR*—FILE,>
MACRO XVM Vnxnnn

The Assembler identifies itself, as just shown, only if the R option is
designated in the command. The RSX version of the Assembler is equival-
ent to BMACRO in that it assumes .EBREL to begin with and does not
print "PROG>4K".

5.3 GENERAL COMMAND CHARACTERS

The following characters are frequently used in the entry and control
of MACRO programs.

Character Printout

RUBOUT (Echoes \\) delete single character

CTRL U (Echoes @) delete current line

CTRL P (Echoestp) a. If the input source is physically segmented
so that all but the last segment end with .EOT
or nothing, the Assembler will print out the
message

EOT

when the end of a segment is reached. In XVM/
RSX, the Assembler does not type any such mes-
sage.

b. If the source is segmented in such a way that
operator intervention is required to load
another segment, MACRO will print

+P

(MAC-4P in XVM/RSX? and wait for the user to key
in CTRL P (CTRL P, in XVM/RSX). Except in
XVM/RSX, the user response will be printed also
and the line will appear as

4+ PtP

In XVM/RSX if no other tape is to be loaded,
terminate assembly by typing CTRL QA)-

c. At the start of PASS 2 or PASS 3 if input is
on paper tape or if the source is segmented on
DECtape or Magtape with segments being read via
the same .DAT slot, the Assembler will request a
CTRL P response as above.

Operating Procedures

d. If the Assembler is not waiting for more input,
or is not waiting to start the next pass,
typing CTRL P causes the Assembler to restart
at PASS 1. This is true for all systems except
XVM/RSX.

CTRL D (Echoes + D) If the user specifies the Teleprinter as the
input parameter device, he can delimit the param-
eter code by typing CTRL D (4D) (followed by
with the XVM/RSX Monitor). MACRO responds with
EOT. MACRO immediately begins assembling the
program from the device assigned to .DAT-11
(LUN 15 with XVM/RSX).

5.4 COMMAND STRING

The command string format consists of a string of options, followed by

a left arrow, followed by the program name(s), followed by a terminator.
options<«filnml,filnm2,...

The following sections describe the rules for forming proper command
strings and show typical assembly examples. The character terminating
the command line has significance. Terminating the line with a carriage
return will cause the Assembler to re-initialize itself to PASS 1 at
completion of the assembly; the Assembler is thus ready to accept an-
other command string. Terminating the command with an ALT MODE will
cause a return to the monitor at the end of assembly. In the XVM/RSX
systems these line terminators have a different meaning. Termination
with carriage return causes TDV to be called; termination with ALT MODE
does not. 1In either case, the Assembler exits after executing the com-
mand line. If a command string error occurs, the entire command must

be retyped.
5.4.1 Program File Name

To the right of the back arrow in the command string, one or more pro-
gram file names may be required, depending upon the options used and
the type of I/0 devices. Where several names are needed, they are
separated by commas.

Program names are required for files which are to be input from or out-

put to directoried devices. The two proper forms for a file name are

filnamegext
or

filnam

Operating Procedures

where

filnam 1 to 6 character name

ext 1 to 3 character extension

These may be formed from any of the legal printing characters shown in
Appendix A and may appear in any order.

If the file name extension is omitted, the Assembler assumes SRC in

default. Following are examples of single name command strings.

Examples:
User Command String Assembler Interpretation
Name Extension
« uABCDEFulﬂ,@) ABCDEF 188
+ABuafl11 AB g11
«A,/ A SRC
«ABCDEFG ABCDEF G
+ABCDEFGull ABCDEF H
*ABC._‘;_..VIA‘) ABC SRC

The last three examples illustrate how the Assembler interprets im-
properly formed file names. If the file name is longer than six char-
acters but is not followed by a space, the seventh, eighth and nineth
characters are used as the extension. If it is followed by a space,
characters beyond the sixth and before the space are ignored. If two
spaces follow the file name, the extensiocn is assumed to be SRC. 1In

general, if too many characters are given the excess characters are
ignored.

The extension name of the main program is output (unless the O option
is present) as a special code in the relocatable binary file. This
enables programmers to easily identify different versions of the same
program by merely assigning unique extension names. If the P- option
is utilized, the Linking Loader and UPDATE print out the source file
names, including extension.

Regardless of the source file extension, such as TEST #@1, the binary
file extension will be either BIN, meaning relocatable binary, or ABS,

meaning absolute binary.

5.4.2 Options

Assembler options direct the course of the assembly. They describe

Operating Procedures

the types of input and output desired. Option characters are listed to
the left of the back arrow. They may be listed in any order and are
typically not separated one from the other (although commas and spaces,
which are ignored, may be used as separators). Option characters which
appear more than once and invalid characters are ignored.

Examples:

Command Meaning

B+FILE,) Assemble FILE SRC and produce a
binary object file.

BLS*NAME;) Assemble NAME SRC and produce a

binary object file and an assembly
listing followed by a symbol table
listing.

+PROGLJﬂ1X,) Assemble PROG f1X producing no out-
put except a list of assembly er-
rors, if any, on the listing device
assigned to .DAT -12 (LUN 16 in
XVM/RSX) .

The following table shows the action and the default of the options.

Option Action Default Action
A Print symbols at end of PASS 2 Symbols are not printed
in alphanumeric sequence on in alphanumeric sequence.
listing device.
B Generate a binary file to DAT -13 A binary file is not gen-

with extension BIN or ABS, as re- erated.
quired. (LUN 17 in RSX).
c Program areas that fall between All source lines are
unsatisfied conditionals are printed.
not printed. It is not nec-
essary to type the L option if
this option is used.

E This option enables the user Assembly errors are not
to have any errors occurring printed on the console
during assembly printed on the printer.

console printer in addition

to the device assigned to .DAT
-12 (LUN 16 in RSX). The L or
N switch should be used with
the E option. This option is
particularly useful to users
who assign non-printing de-
vices to .DAT -12.

F Read macro definition file from No macro definition file
.DAT -14 (LUN 18 in RSX) during is processed.
PASS 1. Terminate input with
.EOT or CTRL D if Teletype’

(CTRL D) if RSX).

G Print only the source line of Cenerate printouts for
a8 macro expansion. It is not macro expansions and ex-
necessary to type the L option. pandable pseudo-ops (e.g.,
+REPT) .

'Teletype is a registered trademark of the Teletype Corporation.

5-5

Option

Operating Procedures

Action

The H-option is used in con-
junction with the &, V, or S
options. User symbols are
normally printed horizontally
at the end of PASS 2, four
symbols to a line. If the H-
option is used the symbols

will be printed one to a line.
Ignore .EJECT's. The .EJECT
pseudo-op is treated as a
comment.

Generate a listing file on the
requested output device, DAT
-12., (LUN 16 in RSX). If the
output device is directoried,
then the listing file extension
will be LST.

Number each source line (dec-
imal). If this option is used,
it is not necessary to type the
L option.

Causes the assembler to omit
the source extension and the
linking loader code 33 from the
binary file., This option must
be used when assembling pro-
grams in the DOS or RSX systems
to be run in ADSS or B/F.
Before assembly begins, read
program parameters from DAT -10
(LUN 20 in RSX). Terminate
input with .EOT or CTRL D {(if
Teletype). The parameter file
is read only once; for this
reason, only direct assignments
may be used.

Identify the Assembler version
number, print END PASS 1 and
END PASS 2, and print the er-
ror count on the teleprinter
(RSX only).

Same as selecting both A and V.

The T option causes a "Table
of Contents table to be gener-
ated during PASS 1. The table
will contain the page number
and text of all assembled
.TITLE statements in the pro-
gram.

Print symbols at end of PASS 2
in value sequence on listing
device.

Default Action

Print symbols four to a
line.

Skip to head of form when
.EJECT is encountered.

A listing file is not gen-
erated (see options N,C).

Source lines are not num-
bered.

Loader code 33 is included
in the binary output.

No parameters, begin assem-
bly immediately after com-
mand string termination.

These items are not printed
in order to speed up batch
processing.

Symbols are not printed.
(If neither option VvV, §
nor A is requested, sym-
bols are not printed.)

A table of contents is not
generated at the head of
the assembly listing.

Symbols are not printed
in value sequence.

Operating Procedures

Option Action Default Action
X At completion of PASS 2, PASS 3 A cross-reference is not
is loaded to perform the cross- provided and PASS 3 is
referencing operation. At com- not called in.

pletion of PASS 3 the Assembler
will call in PASS 1 and 2, to
continue assembling programs.

If the command string was termin-
ated by an ALT MODE, control will
return to the Monitor at the end
of assembly. Without the N op-
tion the user would obtain a
cross reference which would be
effectively useless since the
source lines of the listing are
not numbered. The N option is
automatically entered if you
enter L and X.

Z The Z option is related to the The F option, if specified,
macro definition file option F. causes the Macro definition
Z has no effect if F is not also file to be read only during
specified. F and 72 are used in PASS 1.

combination when the main program
is segmented into two parts.

The first part containing in-
structions other than simply
macro definitions, must be read
both during PASS 1 and PASS 2.
This is the function of the 2
option.

5.4.3 Multiple Filename Commands

In the general case a command may require up to three file names, de-
pending upon the options specified, to produce a single binary output
file. As will be illustrated later on, the Assembler in XVM/RSX sys-
tems allows multiple assemblies to be specified in a single command,
which may require more than three file names. For the other software
systems, the limit is three. Names may be needed to specify parameter
files, macro definition files and program files. The use of these
names and the manner in which they are interpreted by the Assembler

are described in the following paragraphs.

NOTE

In the following descriptions any file which is
processed by both PASS 1 and PASS 2 of the As-
sembler is also processed during PASS 3 if the
cross~reference option (X) is specified.

Operating Procedures

NAME 1: PARAMETER FILE

If the P option is used and the device assigned to .DAT slot -10 (LUN

20 in XVM/RSX) has a directory, the first name is interpreted as being
the parameter file name. The name of the file must be explicitly stated
if it is on a directoried device. If the device assigned to the para-
meter file is non-directoried, the first name typed would follow the
rules for name 2. The parameter file is passed over only once during
PASS 1,

If the P option is not used, only two names are accepted by the com-
mand string processor. The first name then would follow the rules
for name 2.

NAME 2: MACRO DEFINITION FILE

If the F option is used, the second name (or the first if the P option
is not used) is interpreted as being the macro definition file or part
one of a two part program (assuming the device assigned to .DAT -14
(LUN 18 in RSX) has a directory). If the device is non-directoried,
the second file name (or first if the P-option is not used or doesn't
require one) would follow the rules for name 3. The macro definition
is normally passed over only once, during PASS 1. However, unlike the
main program file, macro definitions on .DAT slot -14 are recorded in
core during PASS 1. Hence, PASS 2 is unnecessary. If the Z option is
used with the F option this file will be passed over twice, allowing
source files in two parts on two different devices. The Z-switch has

no effect if F is not specified.

If the F option is not used, the first name (second if P option is used)

is interpreted as the file name of the program to be assembled.

The macro definition file may also be used as an additional parameter
file. A second parameter file is useful where a program is conditionally
assembled to produce different versions according to many assembly par-

ameters.

NOTE

The RSX MACRO does not contain definitions of sys-
tem directives and I/0 calls. MACRO definitions
or RSX are in a file called RMC.v SRC, where v
changes with each release.

Operating Procedures

NAME 3: PROGRAM FILE NAME (Name of the Program to be Assembled)

This file is processed from .DAT slot -11 (LUN 15 in RSX) and always
by both PASS 1 and PASS 2, If the P and F options are not used and

multiple names are typed, only the first name will be processed. If
a binary output file is requested, it will be directed to .DAT slot

=13 (LUN 17 in RSX). 1If either of the two devices has a directory,

a file name must be specified. The binary file will assume the name
of the program file and an extension of either BIN or ABS.

MULTIPLE NAME INTERPRETATION

Before processing, the Assembler uses the .FSTAT function (SEEK in RSX)
to determine whether or not the named files are on the input devices.
If not, the message "NAME ERROR" is typed. In all but the RSX and
BOSS XVM systems the Assembler then expects the command string to be
retyped. 1In RSX, the Assembler exits and calls TDV so that the com-
mand string can be given to TDV., 1In BOSS XVM the Assembler exits to
the monitor. Assuming that enough names have been typed to satisfy
the ccmmand string options, MACRO interprets the file names as follows:

a. Current name = NAME 1.
b. Was the P option used? 1If not, go to step f.

c. Is the device assigned to .DAT slot -10 (LUN 20 in RSX)
directoried? If not, go to step f.

d. Use the current name (NAME 1) to .SEFK the parameter file
via .DAT slot ~10 (LUN 20 in RSX).

e. Current name = NAME 2.
f. Was the F option used? 1If not, go to step j.

g. Is the device assigned to .DAT slot -14 (LUN 18 in RSX)
directoried? If not, go to step j.

h. Use the current name (NAME 1 or NAME 2) to .SEEK the MACRO
definition file via .DAT slot -14 (LUN 18 in RSX).

i. Current name = NAME 3 (or NAME 2 in P option not used).

Jj. Use the current name (NAME 1 or NAME 2 or NAME 3) to .SEEK the
program file via .DAT slot -11 (LUN 15 in RSX).

RULES FOR MULTIPLE NAMES IN THE COMMAND STRING

1. 1Initial blanks positioned after the back arrow are ignored.

2. Files are processed sequentially. The first name after the
left arrow is the first file read, the second file is next
and so on.

Operating Procedures

3. Once a string of legal name characters is started, a space
has the following effect on a name.

a@. The first space delimits the proper name and indicates to
the command string processor that the extension name is
next. The proper name is defined as the first six char-
acters of a file name, excluding the extension.

b. Two consecutive blanks delimit the name. An extension of
'SRC' is implied if no extension was typed.

4. A comma or line terminator delimits the name. (Same as 3b
above.)

5. Any name given after the third name is ignored, except in XVM/
RSX. The XVM/RSX assembler allows multiple assemblies to be
specified in a single command. Where the options require one,
two or three file names, the command may contain multiples of
one, two or three. Each such group of one, two or three names
represents a single assembly.

RESTRICTIONS CAUSED BY MULTIPLE FILE INPUT (not relevant to XVM/RSX)

The .FSTAT system macro is used by the MACRO Assembler to determine
whether or not the input device has a directory and whether or not the
argument names are on the assigned devices. For this reason, only
those I/0 handlers which honor or which ignore the .FSTAT function may
be used with MACRO. The "A" handlers for directoried devices (e.g.,
DTA, DKA) honor .FSTAT. The paper tape punch and reader handlers ig-
nore .FSTAT, but the effect is as if they accept it. Device handlers
which treat .FSTAT as illegal may not be used.

5.4.4 Examples of Commands for Segmented Programs

Below are typical assembly situations which illustrate the usage of
some of the assembly options and show the resulting teleprinter output.
The output for XVM/RSX differs slightly from what is shown. That is

explained in section 5.3.

1. Segmented Program on Paper Tape

A source main program is segmented onto three paper tapes to
make loading in the reader easier. Tapes one and two termin-
ate with an .EOT statement and tape three terminates with
+END. All three segments are read from the primary input,
.DAT -11 (LUN 15 in RSX). The command to MACRO to produce

a binary program is:

>B « ANYNAM))

Note that tape 1 must be ready in the reader before the com-
mand string is entered. Were it not, the reader would return
an end of tape condition anyway and erroneous results would

Operating Procedures

be obtained. The resulting teleprinter output is shown below.
The comments to the right are not part of the output; these
are included here as explanatory remarks. User responses are
underlined.

>B + ANYNAMA)

EOT /End of tape 1.

+P4+P /Ready tape 2. Type CTRL DP.
EOT /End of tape 2.

4P+ P /Ready tape 3. Type CTRL P.
END OF PASS 1

4P+ P /Ready tape 1. Type CTRL P.
EOT /End of tape 1.

+PAt P /Ready tape 2. Type CTRL P.
EOT /End of tape 2.

1Pt P /Ready tape 3. Type CTRL P.

SIZE=g12¢3 NO ERROR LINES
Segmented Program on DECtape

A source main program cannot fit onto a single DECtape. It is
split in two on two different DECtapes and given the same file
name: MAIN SRC. The tape one file ends with .EOT; the tape
two file ends with .END. The file names must be identical if
both segments are to be read via the primary input, .DAT -11
(LUN 15 in RSX). Example 3 illustrates an alternate method.
However, example 2 must be used if one also is to include a
MACRO definition file, as in example 4. The following com-
mand to MACRO produces a binary program and the subsequent
teleprinter output:

>B + MAIN
EOT /End of file 1. Mount second
+P4 P /DECtape on same unit. Type
/CTRL P.
END OF PASS 1 /End of file 2. Mount first
AP+ P /DECtape on same unit. Type
/CTRL P.
EOT /End of file 1. Mount second
tptp /DECtape on same unit. Type
/CTRL P.

SIZE=£g783 NO ERROR LINES

Segmented Program on Disk

This example is a variation of number 2. A two part main
program resides on disk. It doesn't matter whether the two
files are on the same or separate disk units. Part one ter-
minates with .EOT; part 2, with .END. PART]l SRC will be
read via the secondary input, .DAT -14 (LUN 18 in RSX); and
PART 2 SRC will be read via the primary input, .DAT -11

(LUN 15 in RSX). The resultant binary file, produced by

the following command to MACRO, will assume the name of the
second (primary) file: PART2 BIN or PART2 ABS, as the case
may be:

>BFZ < PART1, PART2A)

EOT /End of PART1 SRC.
END OF PASS 1 /End of PART2 SRC.
EOT /End of PART1 SRC.

SIZE=@2883 NO ERROR LINES

Operating Procedures

Several points can be made about the differences between
examples 2 and 3. First, note that CRTL P type in is not
required unless input is from a device like paper tape.
Next, note that example 2 is impractical on disk because it
requires physically interchanging disks. Example 3 is not
restricted to usage with disk, but can be used with other
media as well.

Use of a Macro Definition File

MACDEF SRC, which terminates with .EOT, contains only macro
definitions. It is read from the secondary input, .DAT =14
(LUN 18 in RSX). The user has a main program, USEMAC 002,
which terminates with .END and which calls some of these
macros but does not itself define them. This is just an ex-
ample. It is perfectly legal for the main program to redefine
macros which also appear in the macro definition file.
USEMAC @@2 is read from the primary input, .DAT -11 (LUN 15
in RSX). Below is the appropriate command string to produce
& binary program. Note that the F option without the Z op-
tion (see example 3) instructs the Assembler to read the
first file (the Macro definition file) only during PASS 1.

>BEF + MACDEF, USEMAC 2224)

EQT /End of MACDEF SRC.
END OF PASS 1 /End of USEMAC gg2.
SIZE=g1144 NO ERROR LINES

Note that EOT is not printed during PASS 2 because MACDEF
SRC is read only during PASS 1. The preceding example as-
sumes that the files are on directoried devices.

Parameter File on Paper Tape

A main program, MAIN SRC, which terminates with .END is con-
ditionalized to produce different binary code based on the
values or existence of certain assembly parameters. It is
read via the primary input, .DAT -11 (LUN 15 in RSX), which,
for this example, is assigned to DECtape. A paper tape con-
taining parameter definitions (direct assignments) terminates
with .EOT and is read via the auxiliary input, .DAT -1f

(LUN 2@ in RSX). The following command to MACRO produces a
binary program:

>BP+ MAINI)
EOT /End of parameter tape.

END OF PASS 1 /End of MAIN SRC.
SIZE=gg6g2 NO ERROR LINES

Note, although input is partly from paper tape, a CTRL P res-
ponse is unnecessary because the parameter tape is read only
during PASS 1.

Multiple File Assemblies in XVM/RSX

Using the Assembler in XVM/RSX, several assemblies, using
the same set of options for each, may be specified in a sin-
gle command. Unless the R option is used, no printout on the

5.5

If the us

will produce an output listing on the requested output device.

Operating Procedures

teleprinter will occur to signal the various stages of assem-
bly. Below are listed two typical commands in RSX.

>MAC BL + P1,P2..883,P3, 4.

This requests four assemblies.
are produced for Pl SRC, P2 #gg3,

)
>MAC PB +« PARI,FILl,PAR2,FIL2.

A separate binary and listing
P3 SRC and P4 SRC.

This requests two assemblies. A separate binary is produced
for FIL1 SRC and FIL2 SRC. The parameter file PAR1 SRC is
applied to the assembly of FIL1 SRC and PAR2 SRC to that of
FIL2 SRC.

ASSEMBLY LISTINGS

er requests a listing via the command string, the Assembler
The

top of the first page of the listing will contain the name of the pro-

gram as given in the command string.

The body of the listing will be

formatted as follows:

Line Error Loca- Address Object |Address | Line State-
No. Flags tion Mode Code Type Type |Source ment
XXXX XXX XXXXX R XXXXXX R *G X X
A *L
E *R
*F
where:

Line Number = LFach source line and comment line is
numbered (decimal); generated lines
are not included. Lines are not num-
bered unless the X or N option is
specified.

Flags = Errors encountered by the assembler

Location = Relative or absolute location assign-
ed to the object code.

Address Mode = Indicates the type of user address.

A = absolute
R = relocatable

Line Type = *G = Generated *L = Literal
*R = Repeated *F = External

Object Code = The contents of the location (in
octal)

Address Type = Indicates the classification of the

object code.

Operating Procedures

absolute
relocatable
external

= o>
LR 1

The object codes assigned for literals and external symbols are listed

following the program.

5.6 SYMBOL TABLE OUTPUT

At the end of PASS 2, the symbol table may be output to the listing
.DAT -12 (LUN 16 in RSX) device. If the A option is used, the table
will be printed in alphanumeric sequence; if the V option is used,

the symbol table will be printed in numeric value sequence; if the S
option is used, the symbol table will be output in both alphanumeric

and numeric sequence. The format is as follows:

Symbol Value Type
SYMBL1 XXXXX E
SYMBL2 XXXXX R
DIRECT XXXXXX A

The Xs represent the octal value assigned to the symbol. This is the
location where the symbol is defined, except for external symbols.

For these, the value is the location of the transfer vector, whose
contents are set at program load time with the actual value of the
symbol. Note that for SYMBL1 and SYMBL2 there are five Xs but that
there are six Xs for the symbol DIRECT. Symbols having six octal num-

bers to represent their values are the result of direct assignments.

The symbol table shows the type of symbol:

absolute
relocatable

A
R
E external

o n

Locations assigned to variables immediately follow the last object

code producing statement in the assembled program. Locations assigned
for literals not under .LTORG influence and transfer vectors are listed
immediately following the variables; if no variables are used in

the program, literals and transfer vectors immediately follow the pro-
gram output.

PAGE

R A N T S e
OBNORAGUN NOBIRNOWUE UGN

WEND VRN NN
— Y O ONOARLENN-S

b O Gl GGl GGl
OC®NOCRL UGN

nkhb
N e ©

43
44
45
46

SAMPLF SRC

LY LL1]

naondd
fANANR R ARANNG
anomy R Agny16
a0mMa2 R 200123
nAMEY B 120122
nnopd ® 220116
fRanS p 741200
AnA0s » Spmyy7
PAPRT R RANDRD
apage R 723777
ammyy R p6py24
29019 R 777740
AMAIN p A4OLYS
a0M14 B 738000
29018 p 220010
A8 p 25255
MMe1Y n 44m115
nan20 n Spam1d
nan21 @ SpAN24
anm22 R 200125
aaM23 R 04n123
NOp24 R 740000
2% R pei1pnS
aamr8 © naopdl
NP7 R PANNCD
ARAIN P OARARD
aMa3y P 2an126
"Anx2 P mdnp24

»

DT> P>

P OVDODVDO>>»0> D>V »>0MUVDT>»

Operating Procedures

SAMPLE PRGGRAM

G

«G
+G

W

B

/
P

L

N

c

+TITLE SAMPLE PROGRAM

SAMPLE SUBROUTINE, NOT CLAIMED TO WORK OR TO HAVE ANY PRACTICAL
VALUE, USED v0 ILLUSTRATE THE OUTPUT ON AN ASSEMBLY LISTING,
THESE LINES ARE COMMENTS,

THIS LISTING WAS OBTAINED USING BMACRN~15 IN DOS=15 WITH THE

FOLLOWING COMMAND NPTIONS TO MACRO: L SX

utes /.DAT SLOT 5,
L10DEV OUT
,GLOBL PRINT,SAVE,RESTOR
<IFUND WIDTH JCONDITIONAL ASSEMBRLY,
. DEC

IDTHE72 /DECIMAL NUMBER,
.0CT
JENDC

UFSIZsWIDTH#4 54242 /DIRECT ASSIGNMENT,

RINT] /SUBROUTINE ENTRY POINT,
DAC ACSAVSH /VARTIARLE,
LAC (SAVBUF) /LITERAL .
JMS* SAVE JEXTERNAL CALL,
LACw ACSAV /BUFFER ADDORESS,
SNA
JMP NOBUFF /UNDEF INED SYMBOL (MISSPELLED),
DAC WRITE+3 /JUNDEFINED SYMBOL BECAUSE OF
AAC - /2 FORWARD REFERENCES,
DACw (18) /AUTDINDEX REGISTER,
LAW =BUFSIZ
DAC COUNT
cLX

0OP LACY 14
DAC BUF , X /INDEX REGISTER REFERENCE,
1s7 COUNT
JMP LOOP
IMP CHANGE

0BUF LAC (ERRMSG)

DAC WRIT+3 JUNDEFINED (MISSPELLED),

HANGE NOP

JINIT OUT, 1,0
CAL+ts10A0 OUTA777
1

/SYSTEM MACRO CALL,

fed

2

LAC (JMP AROUND)

DAC CHANGE

+EJECTY /PAGE EJECT,

PAGE

47
48

49
50

51

83
S4
55
S6
87
58

59
6o
64
62
83
84
65
66
67
L1
69
70

SAMPLF SRC
LL-LI AR
LELA A
23033 ? mp2pnS
anm34 O mpamptl
AAN3I% R 74040
AANIE A ARAP0R
a0n37 R NAnEnS
fNRN40 P MOON12
nam4y B 2an123
nAN4e> R 12m121
fan4ay p 20mi46
ANR44 R R2MQAGAD
NOM4AS R AQRXAN2
nAN4R R ARANAD
AAMAY? P 428452
NAASA R 247644
NSy R AB4AND
anns2 R apmpnQ@
LLLLE
anns2 R
AANES R
20115 R NOARPQ
AARAMR
AN421 R NB0121
AN122 p NQML22
n012% o 20MRS2
AN124 p 7RON10
2N12% o PA0QE4S
AN128 p SAORII
slyEseny30

R

XM D> >

» > PP D

» >

DO > D MM P

Operating Procedures

SAMPLE PROGRAM

G
G
L1
*G
.G

*G
*G

+E
*E
vl
vl
L
*i

WRITE=AROUND
AROUND ,WRITE o0uT,2,Xxx,@

CAL+2¢1000 OUTA?77
11
XX
+DEC
-9

/
JWAIT ouT
CAL OuTa???
12
LAC (SAVBUF)
JMS# RESTOR
LAC ACSAV
IMPw PRINT

/FORWARD REFERENCE,
/SYSTEM MACRN CALL,

/SYSTEM MACRO CALL,

/EXTERNAL CALL,

/
/ THE NEXT LINF CONTAINS THREE STATEMENTS,

/

ERRMSG 0@d002p #) ,ASCII /ERROR/<{5>»

.Lac o=t
SAVBUF ,BLOCK 3
BUF .BLOCK BUFSIZ
COUNT @

/

/CHANGE LOCATION COUNTER,
/M@, XR AND LR,

FOLLOWING THE LEND STATEMENT ARE THREE LOCATIONS (NOT SHOWN)
FOR ONE VARIABLE (ACSAV) AND TWO UNDEFINEDC SYMBOLS (NOBUFF

FOLLOWING THAT (SHOWN) ARE TWn EXTERNAL TRANSFER VECTORS

AND FOUR LITFRALS,

/
/
/ AND WRITE, TWE LATTER BECAUSE OF A DOUBLE FORWARD REFERENCE),
/
/
/

JEND

3 ERROR LINES

Operating Procedures

SAMD| & _RF R4MPLE PROGRAM
ACSaAvV ANLIR B ARGIIND 2AN3Y K auF npnss R BUFSIZ wron4e A
CHANGE 2Q724 @ CAaLT AAL1S K ERRMSGK 20a4b R LOOP PRRLS R
:gg$;k aAgn22 o NARUEF ALY R nuyY ALY A PRINT ?0QA0 R
(P12y F SAVRUF 272052 K SAVE nei22 E WwlD ¢

WRIY A2 R VOTTE 2w AL3d R ! toTH Reat A
PRINT AQAUM not A2ANAE A (ool ArN1s R NOBUF oAR2¢ R
cHApsg aMN24 R AR0UADN AR II R WRITE @2onv3d R HUFSIZ AAapdd A
ERRMSG 2u74% 2 QAVRUF %82 R BUF ngass R wIDTH @ro3110 A
COUNT 2118 R ar3ay eAllo w NCGRUFF pel1y7 R WRIT *@12e¢ R
RESTOR 2m121 F QAVE An122 &

SAMPIE £oNSS REFERENCE

ACSAY LEBOY.] 3] 25 53
AROULND 20231 an 17 4B w
BUF ann5s as Ry
BUFSIZ p2nmdaa 10w A A1
CHANGE 2p024 18 Alw a4
COUNY ANL1% v 16 K2 w
ERRMSG nap4s R Sgw

Loop ANNLR 4. a7

NQBUF nan2o G,
NOBUFF omy17 57

ouT anpe2s 10 1" 42 a8 Sv
PRINMT APOG N 49 21w 54

RESTOR 99121 12 52

SAVEBLF oan5»2 21 51 R w

SAVE anmy22 12 24

WIDTK onongynm 14 1R 19

WRIT 29122 ér

WRITE oa2nannly »R A7 w

5.7 RUNNING INSTRUCTIONS

Once the Assembler has identified itself, it is ready to perform an

assembly. Proceed as follows:

a. Place the source program to be assembled on the appropriate
input device.

b. Type the command string.

5.7.1 Paper Tape Input Only

The following steps are required when the source program is encountered
in the paper tape reader:
a. At the end of a source tape segment which is not terminated

with a .END statement of at the beginning of PASS 2 or PASS 3,
the Assembler types

+ P

b. Place the proper source tape in the reader.

Operating Procedures

c. In XVM/DOS type CTRL P to continue. For RSX, type CTRL P).
5.7.2 Cross-Reference Output

At the end of PASS 2, PASS 3 will be performed by the Assembler for the
cross-referencing operation if the X option is requested. At completion,
the assembler will be restarted (except in RSX systems) to permit addi-
tional assemblies if the command string is terminated by a CARRIAGE
RETURN () entry.

When a cross reference output is requested, the symbols are listed in
alphabetic sequence. The first address after the symbol is the location
where the symbol is defined or its 6-digit value if it is a direct
assignment. All subsequent locations represent the line number (deci-
mal) where the symbol was referenced. The line number with the
asterisk is that in which the symbol is defined. Leading zeroes are
suppressed for the cross-reference symbol table. Nine line numbers

are printed on one line and subsequent line numbers are continued on

the next line.

Example:
PAGE 1 PRGA CROSS REFERENCE
A 1 XXXXX XXXXX¥ oo oo e XXXXX
XXXXX XXXXX
B 5000 XKXXXX*
SYMBOL 100 XXXXX*

Cross referencing can be a useful tool even without the aid of a line
printer. It is possible to put the source assembly listing with line
numbers onto a directoried device, such as DECtape, and the cross
reference table (by a separate assembly) on a teleprinter. Then,
desired lines in the "LST" file can be accessed by using the EDITOR.

LIMITATIONS

A. Before cross reference output can begin, PASS3 of the Assem-
bler must first have read the entire source file(s) and
stored the reference line numbers in core memory. Should
available core be too limited, the Assembler will output the
following message to the listing:

CORE EXHAUSTED AT LINE DDDD
where D is a decimal digit. Then the Assembler outputs all

the references found up to that point.

5-18

Operating Procedures

B. For programs with more than 9999 lines of source code,
line numbers begin again at #@g@¢ on line 18878@. 1In the
cross-reference listing, 1040@ is represented as :844,
1188# as ;89¢, and so on. These special characters are
simply those which follow the numerals in the ASCII char-
acter set (Appendix A). Below is a list of characters
and their meanings.

19
11
12
13
14
15

Wovll Ase w

c. To conserve core space, PASS3 of the Assembler does not
maintain a permanent symbol table. Consequently, if user
defined symbols are identical to permanent symbols, ref-
erences to the permanent symbols will be included in the
cross reference, For example:

LAC A
TAD LAC

LAC 5
Three references to LAC will be listed.

D. Conditionals (.IFxxx through .ENDC) are treated during
PASS 3 as if they are always satisfied. Consequently,
although a conditional might not be satisfied during
PASS1 and PASS2, references within to defined user sym-—
bols will appear in the cross-reference output.

Note that undefined symbols which are referenced in .IFDEF
and .IFUND statements remain undefined; hence, these do
not appear in the cross reference.

5.8 PROGRAM RELOCATION

The normal output from the MACRO XVM Assembler is a relocatable object
program, which may be loaded into any part of memory regardless of

which locations are assigned at assembly time. To accomplish this,

the address portion of some instructions must have a relocation con-
stant added to it. This relocation constant is added at load time by
the Linking Loader, CHAIN or TKRB; it is equal to the difference be-
tween the memory location that an instruction is actually loaded into
and the location that was assigned to it at assembly time. The As-
sembler determines which storage words are relocatable (marking them
with an R in the listing), which are absolute (making these non-relocat-

able words with an A) and which are external (marking these with an E).

Operating Procedures

The rules that the Asserbler follows to determine whether a storage

vord 1s ahsolute or relocatable are as follows:

a. If the address is a numher (not a symbol), the address is
absoliute.

b. TIf the address is a symbol which is defined by a direct assign-
ment (i.e.. =) and the righthand side of the assignment is a
number, all references to the symbkol will be absolute.

c. If a user symbol is defined within a block of coding that is
absclut=z, the value of that symbol is absolute.

d. Variables, ndefined syminls, external transfer vectors, and
literals get the same relocation as was in effect when .END
was encountered in PASS 1.

e. If the location counter (.LOC pseudo-op) references a symbol
which is not defined in terms of a relocatable address, the
symbol is absolute.

f. All others are relocatable.

The following table depicts the manner in which the Assembler handles

expressions which contain both absolute and relocatable elements.

(A=absolute, R=relocatable)

A+A=A A~R=R R+R=R and flagged as possible error
A-A=A R+A=R R-R=A
A+R=R R-A=R

If multiplication or division is performed on a relocatable symbol, it

will be flagged as a possible relocation error.
If a relocatable program exceeds 4K, and the assembler is a page mode
version, the feollowing warning message will be typed at the end of
PASS 2:

PROG > 4K
5.9 SYSTEM ERROR CONDITIONS AND RECOVERY PROCEDURES

5.9.1 XVM/DOS and BOSS XVM

See the XVM/DOS User's Manual, Appendix D or the XVM/DOS Keyboard

Command Guide, Appendix C for descriptions of IOPS error messages.

Operating Procedures

5.9.2 XVM/RSX

Printout Recovery Procedure

MAC-I/0 ERROR LUN xX yyYVVyYy is produced on LUN 3: xx represents
the Logical Unit Number (decimal)
and yyyyyy the octal Event Variable
value indicating the cause of the
error. See the XVM/RSX System Man-
ual for the meaning of the error
Event Variables. Control is auto-
matically returned to TDV.

5.9.3 Restart Control Entries (DOS only)

CTRL P Restart Assembler, if running
CTRL C Return to Monitor

5.10 ERROR DETECTION RY THE ASSEMBLER

MACRO XVM examines each source statement for possikle errors. The
statement which contains the error will be flagged by one or several
letters in the left-hand margin of the line, or, if the lines are num-
bered, between the line number and the location. The following table

shows the error flags and their meanings.

Flag Meaning

A Error in direct symbol table assignment - assignment
ignored

B 1. Memory bank error (program segment too large)
2. Page error - the location of an instruction and

the address it references are on different mem-
ory pages (error in page mode only)

C A .ENDC appears before an unsatisfied .IPxxx.
D Statement contains a reference to a multiply-defined
symbol - the first value is used.
E 1. Symbol not found in user's symbol table during
PASS 2
2. Operator combined with its operand may produce
erroneous results
F Forward reference - symbol value is not resolved by
PASS 2
I Line ignored:

1. Relocatable pseudo-op in .ABS program

2. Redundant pseudo-op

3. .ABS pseudo-op in relocatable program

4. .ABS pseudo-op appears after a line has been
assembled

Operating Procedures

5. A second .LOCAL pseudo-op appears before a
matching .NDLOC pseudo-op

An .NDLOC appears without an associated .LOCAL
pseudo-op
. Too many
. . JODEV pseudo-op in
. Illegal statement within

[e))
.

.LTORG pseudo-ops (more than 8)
.ABS or .FULL program
.CBS and .CBE

O 0

L Literal error:

1. Phase error - literal encountered in PASS 2 does
not equal any literal found in PASS 1
2. Nested literal (a literal within a literal)

M Multiple symbol definition - first value defined is
used

N Error in number usage (digit 8 or 9 used under .0OCT
influence)

P Phase error:

1. PASS 1 symbol value not equal to PASS 2 symbol
value (PASS 2 value ignored)

2. A tag defined in a local area (.LOCAL pseudo-op
is also defined in a non-local area

Q Questionable line:

1. Line contains two or more sequential operators
(e.g., LAC A+*B)

2. Bad line delimiter - address field not terminated
with a semicolon, carriage return or a comment

3. Bad argument in .REPT pseudo-op

4., Unrecognizable symbol with .ABS(P) pseudo-op

R Possible relocation error
S Symbol error - illegal character used in tag field
U Undefined symbol
W Line overflow during macro expansion
X Illegal use of macro name or index register
1. Unmatched .IFxxx and .ENDC
2. Unmatched .DEFIN and .ENDM
3. Unmatched .CBS and .CBE

In addition to flagged lines, there are certain conditions which will

cause assembly to he terminated prematurely.

Message Meaning
SYNTAX ERR Bad command string, control returns to TDV
(RSX only)
? Bad command string, retype (not RSX)

NAME ERROR File named in command string not found. In
DOS, the Assembler will restart and accept

another command string. RSX MACRO will re-

turn to TDV. BOSS will return to the Monitor.
TABLE OVERFLOW Too many symbols and/or macros
CALL OVERFLOW Too many embedded macro calls

CORE EXHAUSTED
AT LINE nnn

PASS 3 error - too many

symbol references

APPENDIX A
CHARACTER SET

6-bit 6-bit
Printing 7-bit | Trimmed Printing 7-bit Trimmed
Character ASCII ASCII Character ASCII ASCII
@ 100 00 Form Feed 014
A 101 01 Carriage Return 015
B 102 02 ALT MODE (ESC) 175
C 103 03 Rubout 177
D 104 04 (Space) 040 40
E 105 05 ! 041 41
F 106 06 " 042 42
G 107 07 # 043 43
H 110 10 S 044 44
I 111 11 % 045 45
J 112 12 & 046 46
K 113 13 ! 047 47
L 114 14 (050 50
M 115 15) 051 51
N 116 16 * 052 52
0 117 17 + 053 53
P 120 20 ! 054 54
o] 121 21 - 055 55
R 122 22 . 056 56
S 123 23 / 057 57
T 124 24 0 060 60
U 125 25 1 061 61
v 126 26 2 062 62
W 127 27 3 063 63
X 130 30 4 064 64
Y 131 31 5 065 65
Z 132 32 6 066 66
[* 133 33 7 067 67
AN 134 34 8 070 70
* 135 35 9 071 71
3* 136 36 s ¥ 072 72
«* 137 37 ; 073 73
Null 000 < 074 74
Horizontal Tab 011 = 075 75
Line Feed 012 > 076 76
Vertical Tab 013 ? 077 77

*Illegal as source,

except in a comment or text.

Any characters not

in this table are illegal to MACRO XVM and are flagged and ignored.

Operate
OPR 740000
NOP 740000
CMA 740001
CML 740002
OAS 740004
RAL 740010
RAR 740020
IAC 740030
HLT 740040
XX 740040
SMA 740100
SZA 740200
SNL 740400
SML 740400
SKP 741000
SPA 741100
SNA 741200
SZL 741400
SPL 741400
RTL 742010
RTR 742020
SWHA 742030
CLL 744000
STL 744002
CCL 744002
RCL 744010
RCR 744020
CLA 750000
TCA 740031
CLC 750001
LAS 750004
LAT 750004

APPENDIX B

PERMANENT SYMROL TABLE

GLK
LAW

ALSS
NORM
NORMS
MUL
MULS
DIV
DIVS
IDIV
IDIVS
FRDIV
FRDIVS
CLAC
LACQ
LACS
CLQ
ARS
GSM
QsC
OMQ
CMQ
LMQ

IoT
TIORS

750010
760000

EANOND
640500
FEG500
40600
560600
640700
660700
640444
660444
653122
657122
€40323
644323
AE2323

6557322

650323
654323
641000
641002
641001
650000
644000
664000
640001
640002
640004
€52000

700000
700314

DRK 703304
DBR 703344
I0OF 700002
ION 700042
CAT 703302
RRE TOTT4Z

Memory Reference

CAT, 000000
DAC n4annoo
JINMS 100000
DZM 140000
LAC 200000
XOR 240000
ADD 300000
TAD 340000
XcT 400000
ISZ 440000
AND ROO0O1
SAD 540000
JMP ANC000
Automatic Priority
Interrupt
RPL 705512
SPI 705501
ISA 705504

Index Instructions
Which Take an Immediate
Nine-bit Operand

ARC 723000

AXR 737000

AXS 725600
Mode Switching

EBRA 707764

DB2A TOTTA2

Permanent Symbol Table

Index and Limit Register
Instructions Which do
not use Operands

CLLR 736000
PAL 722000
PAX 721000
PLA 730000
PLX 731000
PXA 724000
PXL 726000
CLX 735000

Index Register Value
X 10000

APPENDIX C

MACRO CHARACTER INTERPRETATION

Character
Name

Space

Horizontal tab

Semicolon
Carriage return
Plus

Minus

Asterisk

Slash

Ampersand
Exclamation point
Back slash

Opening parenthesis
Closing parenthesis
Equals

Opening angle
bracket

Closing angle
bracket

Comma

Question mark
Quotation mark
Apostrophe
Number Sign
Dollar sign
Line feed

Form feed
Vertical tab

Commercial At

Symbol

el

-

+ % o~

-~ -

non-printing
non-printing

non-printing

e

Function

Field delimiter. Designated by «u
in this manual.

Field delimiter. Designated by -
in this manual.

Statement terminator
Statement terminator

Addition operator (two's comple-
ment)

Subtraction operator (addition of
two's complement)

Multiplication operator or indirect
indicator

Division operator or comment
initiator

Logical AND operator
Inclusive OR operator
FExclusive OR operator
Initiate literal

Terminate literal

Direct Assignment

Argument delimiter
Argument delimiter

An argument delimiter in macro
definitions or an exclusive OR
operator

Created symbol designator in macros
Text string indicator

Text string indicator

Variable indicator

Real argument continuation
not applicable

Concatenation operator in macro
definitions

c-1

Macro Character Interpretation

Character Function
Name Symbol
Null Blank Character Ignored by the Assembler
Delete Blank Character Ignored by the Assembler

Illegal Characters

Only those characters listed in the preceding table are legal in MACRO

¥VM source programs, all other characters will be ignored and flagged

as errors. The following characters, although illegal as source, may

be used within comment lines and in text preceded by .ASCII or .SIXBT
pseudo-o0ps.

Character Name Symbol
Left bracket
Right bracket

Up arrow

¢—>I_II_|

Left arrow

Colon :

Pseudo-op
(Section)

.ABS (3.2.1)
.ABSP (3.2.1)

.ASCII (3.3.1)

.BLOCK (3.11)

.CBC (3.5.4)

.CBD (3.5.1)

.CBE (3.5.5)

.CBDR (3.5.2)

APPENDIX D

SUMMARY OF MACRO XVM PSEUDO-OPS

Format

~|.ABS —f NLDS
~|- ABSP| N.LD)

label*— . BLOCK exp)

Function

Object program is output
in absolute, blocked,
checksummed format for
loading by the Absolute
Binary Loader. Not
supported in RSX.

label*-ﬂ.ASCII*{/text/<octalg)

Input text strings in
7-bit ASCII code, with
the first character
serving as delimiter.
Octal codes for nonprint-
ing control characters
are enclosed in angle
brackets.

Reserves a block of
storage words equal to
the expression. If a
label is used, it refer-
ences the first word in
the klock.

~ﬂ.CBC—4displacement,value)

label*—| .CBD —|NAME, /size)

- .CBE)

label*a{.CBDRa{displacement

Initialize a word of a
common block to a con-
stant.

Sets up a COMMON area
having the name and size
specified. The first
element in the COMMON
area is also given (base
address) .

End of common block ini-
tialization sect%on.

Enters the starting
address of the last
common block specified
in a .CBD plus the argu-
ment into the location
of the .CRDR.

*
All pseudo-ops shown with a label generate binary output code.

D-1

Summary of MACRO XVM Pseudo-ops

Pseudo-op

(Section) Format Function

.CBS (3.5.3) .A.CBS-qname[,size]) Start common block ini-
tialization section.

.DBREL (3.2.3) ~|.DBREL) Disable bank mode relo-
cation.

.DEC (3.10) —-|.DEc) Sets prevailing radix to
decimal.

.DEFIN (3.4) -ﬂ.DEFIN—ﬁmacroname,args)

Defines macros.

.DSA (3.16) label* —|.DSAwaexp./ Generates a transfer
vector for the specified
symbol.

.EBREL (3.2.3) -H.FBREL) Enable bank mode relo-
cation.

LEJECT (3.1.2) -A.FJECT) Skip to head of form on

listing device.

.END (3.12) -ﬂ.END—ﬁstart) Must terminate every
source program. START
is the address of the
first instruction to ke
executed.

.ENDC (3.6) a}ENDC) Terminates conditional
coding in .IF statements.

.ENDM (3.4) -ﬂ.ENDM) Terminates the body of a
macro definition.

L.EOT (3.13) *LEOT) Must terminate physical
program segments, except
the last, which is
terminated by .END.

.ETC (3.4) aLETC—{args,argq) Used in macro definition
to continue the list of
dummy arguments on
succeeding lines.

LFULL (3.2.2) -4.FULL,) Produces absolute, un-

.FULLP (3.2.2) .A.FULLE) blocked, unchecksummed
binary object programs.
Used only for paper tape
output. Not supported
in RSX.

.GLOBL (3.14) ﬂ.GLOBL—ﬂsym,sym,sym) Used to declare all
internal and external
symbols which reference
other programs.

*
All pseudo-ops shown with a label generate binary output code.

Pseudo-op

{Section)

LIFPxxx (3.6)

.IODEV (3.15)

.LOC (3.9)

.LOCAL (3.7)

LLST (3.1.3)

.LTORG (3.8)

.NDLCC (3.7)

LNOLST (3.1.3)

.OCT (3.10)

.REPT (3.17)

Summary of MACRO XVM Pseudo-ops

Format

-ﬂ.IFxxx-{exp)

—|. IODEV —| . DAT numbers)

—|-LOC | exp)

~.LocaL,/

~.LST,)

- LTORG,

~.rpLoc,

-I. NOLST)

—-|.OCT)

-ﬂ.REPT-{count,n)

Function

If a condition is satis-
fied, the source coding
following the .IF state-
ment and terminating with
an .FNDC statement is
assembled.

Specifies .DAT slots and
associated I/0 handlers
required by this pro-
gram. Not supported in
RSX.

Sets the location counter
to the value of the ex-
pression.

Allows deletion of cer-
tain symbols from the
user symbol table.

Continue requested assem-
bly listing output of
source lines. Iines
between .NOLST and .LST
are not listed.

Allows the user to
specifically state where
literals are to be stored.

Terminates deletion of
certain symbols from the
user symbol table con-
tained between .LOCAL
and .NDLOC.

Terminates requested
assembly listing output
of source lines of code
contained between .NOLST
and .LST.

Sets the prevailing radix
to octal. Assumed at
start of every program.

Repeats the object code
of the next object code
generating instruction
Count times. Optionally,
the generated word may be
incremented by n each
time it is repeated.

Summary of MACRO XVM Pseudo-ops

Pseudo-op

Section) Format

Function

-SIXBT (3.3.2) 1label .SIXBT-|/text/<octal>,

Input text strings in
6-bit trimmed ASCII, with
first character as de-
limiter. Numbers enclosed
in angle brackets are
truncated to one 6-bit
octal character.

.SIZE (3.18) label = .SIZE,) MACRO outputs the address
of last location plus one
occupied by the object
program.

.TITLE (3.1.1) —-|.TITLE- any text string)

Causes the Assembler to
accept up to 501 typed
characters. During
source program assenmbly
operations, a .TITLE
causes a form feed code
to be output to place the
text starting with .TITLE
at the top of a page.

1000 4
vet112
700144
0101
17720
703362
100003 4
0012
78550 4
T42000
07702
217726
157775
117753
A57776
741100
617747
117753
0577717
117753
217736
117753
B17776
4577176
4577717
617736
3577175
740220
74002 40
617726
217747
257777
457717
617763
7480 40
G17753

APPENDIX E
SOURCE LISTING OF TEE ABSOLUTE BINARY LOADER

/*¥*+xABSOLUTE BINARY LOADER #*x
/ +FULL

CLOF=700004

kkB=700112

RSB=700144
RSF=700101
LDSTRT=17720
BINLDR CAF /CLEAKR FLAGS
CLOF /CLOCK OFF
I0F+10 /INTERRUPT OFF
I5A /TUKN OFF API
LODMOD NOP /CEBA)YSs (DBAY, (NOP)
167792 /PDP =9 COMPATIBILITY (EEM)
LDNXBK=17726
DZM LDCKSM /CHECKSUMMING LOCATION
JMS LDKEAD
DAC LDSTAD /GET STARTING ADDRESS
SPA /BLOCK HEADING Ok
JMP LDXFR /STAKT BLOGCK
JMS LDREAD
DAC LDWDCT WORD COUNT (2'S CCMPLEMENT)

JMS LDREAD
LDNXWD=17736
JMS LDKEAD

DAC* LDSTAD /LCAD DATA INTO APPROPKIATE
ISZ LDSTAD /MENMOKRY LOCATIONS

ISZ LDWDCT /FINISHED LOADING

JMP LDNXWD /NO

TAD LDCKSM™

SZA /LDCKSM SHCULD CONTAIN @
HLT /CHECKSUM ERKKOK HALT

JMP LDNXBK /PRESS CONTINUE TGO IGNOKE

LDXFR=17747
DAC LDWDCT
I1SZ LDWDCT

JMP LDWAIT /EXECUTE START ADDKESS
HLT /NGO ADDRESS ON END STATEMENT
LDREAD=17753 /VANUALLY STAKT USER PROGRAM

Source Listing of the Absolute Binary Loader

000000 0
100144 RSB
357775 TAD LDCKSM
257775 DAC LDCKSM
0101 RSF
617757 JMP LDREAD+4
700112 RRB
637753 JMP* LDREAD

/THE LAST FRAME OF EVERY .ABS(P)> PROG IS GARBAGE.
017763 LDWAIT=17763
117753 JMS LDREAD /PASS OVER LAST FRAME (PDP-9
6377176 JMP* 1.DSTAD /COMPATIBILITY).
ARE23S ENDLDR=.
203500 HRMWD 90835803 0 /HEADEK
200000
200261 2613 277 /HRM START
0av271
PR320 3203 %]
020000
P17775 LDCKSM=17775
17776 LDSTAD=17776
217777 LDWDCT=17777

/ «END BINLDR

/*x% END OF LOADER *%%

AAC, AXR, AXS evaluation, 2-28
Absolute
address, 5-20
format, 3-4, 3-5
mode, 2-22
symbol, 5-20
Absolute Binary Loader (ABL),
3u4
.ABSP pseudo-op, 3-4, 3-5, 3-6
.ABS pseudo-op, 3-4, 3-5, 3-6
Addition operator, 2-12
Address assignments, 2-13
Address field, 2-1, 2-2, 2-21
Addressing,
indexed, 2-15
indirect, 2-14
Angle bracket (<>) delimiters,
3-9, 3-10, 4-6
Argument delimiters, see
Delimiters
Arguments,
dummy, 3-11, 4-1, 4-2, 4-3
real, 4-4

Arithmetic operators, 2-12
ASCII character sets, 3-8, A-1
.ASCII pseudo-op, 3-9, 4-3

Assembler restart, 5-3
Assembly listings, 5-13
Assembly, optional, 3-15
Asterisk (*) (multiplication
operator), 2-20
Asterisk (*) usage, 2-14, 2-20
At symbol (@) usage, 4-8
Auto-index registers, 2-23

Bank bits, 2-27

Bank mode, 2-22

Bank Mode Assembler, 5-1
Base address, 3-12

Basic statement, 2-1
.BLOCK pseudo-op, 3-22
Boolean operators, 2-12

Calling procedure, 5-1
Carriage~return, 2-1
.CBC pseudo-op, 3-14
.CBD pseudo-op, 3-11
.CBE pseudo-op, 3-14
.CBDR pseudo-op, 3-12
.CBS pseudo-op, 3-13
Characters,

ASCII, 2-1

command, 5-2

INDEX

Characters, {(cont.)
MACRO, C-1
nonprinting, 3-10
Command characters, 5-2
Command string format, 5-3
Command string terminators, 5-3
Comma (,) usage in argument
string, 4-8
Comments, 2-1, 2-3, 2-23, 4-2
Common block
definition, 3-11, 3-12
initialization, 3-13, 3-14
pseudo-operations, 3-11
Concatenation, 4-8
Conditional assembly pseudo-
operators, 3-15
Conditionals, 5-19
Configuration, 1-2
Created symbols, 4-7
Cross-reference output, 5-18
CTRL C, 5-21
CTRL D, 5-3
CTRL P, 5-2, 5-21
CTRL U, 5-2

.DBREL pseudo-op, 3-7
Decimal values, 2-10
.DEC pseudo-op, 3-21
.DEFIN pseudo-op, 3-11, 4-2
Delete current line, 5-2
Delete single character, 5-2
Delimiters,
argument, 4-6
field, 2-2, 2-20, 2-21
statement, 2-2, 2-20, 2-21
text, 3-9
Devices, directoried, 3-5, 5-10
Direct assignment statement, 2-3
Division by zero, 2-12
Division operator, 2-12
Dollar sign ($) used as
terminator, 4-5
.DSA pseudo-op, 3-26
Dummy arguments, 3-11, 4-1, 4-2,
4-3

EAE class instructions
evaluation, 2-28

.EBREL pseudo-op, 3-7

.EJECT pseudo-op, 3-3

Embedded macro calls, 4-19

.ENDM pseudo-op, 3-11, 4-3

End of program pseudo-operation,
3-23

Index-1

INDEX (Cont.)

End of program segment pseudo-
operation, 3-24

.END pseudo-op, 3-23

.EOT pseudo-op, 3-24

Equal sign (=) usage, 2-8

Error conditions, 5-20

Error detection, 5-21

.ETC pseudo-op, 3-11, 4-2

Exclusive OR operator, 2-12

Executable object program, 1-3

Expressions, 2-12

External symbols, 3-25

External transfer vectors, 5-20

Field delimiters, 2-2, 2-20,
2-21
Field-dependent symbols, 2-5
Fields in statements, 2-1
address, 2-21
comments, 2-23
label, 2-17
operation, 2-20
Filename commands, multiple,
5-7
Filenames, 5-3, 5-9
Forward reference, 2-9, 3-17
Fractional remainders, 2-12
.FSTAT system macro, 5-10
Full binary format, 3-6
.FULLP pseudo-op, 3-5, 3-6
.FULL pseudo-op, 3-5, 3-6

Globals, evaluation of, 2-4

Global symbol declaration
pseudo-operation, 3-24

Global symbol definitions,
1-3

.GLOBL pseudo-op, 3-24

Handlers, 5-10
Hardware, 1-2

.IFxxx pseudo-ops, 3-15

Inclusive OR operator, 2-12

Indexed addressing, 2-15

Index register, 2-25, 2-26, 4-3

Indirect addressing, 2-14

Instruction mnemonic symbols,
2-5

Integer values, 2-11

Internal globals, 3-25

Internal .GLOBL symbols, 2-9
.IODEV pseudo=-op, 3-26
IOPS ASCII packed format, 3-9

Label field, 2-1, 2-17
Labels, 2-2, 2-4

LAW evaluation, 2-28
Library routines, 1-3
Line numbers, 5-19
Linking Loader, 1-1, 2-23

Listing control pseudo-operations,

3-3

Listing output control, 3-4

Literal origin pseudo-operation,
3-20

Literals, 2-16, 5-20

.LOCAL pseudo-op, 3-17

Local symbols pseudo-operators,
3-17

Location counter, 2-13, 2-14,
5-20

Location counter pseuvdo-
operation, 3-21

.LOC pseudo-op, 3-21

Logical AND operator, 2-12

.LST pseudo-op, 3-4

.LTORG pseudo-op, 3-20

Macro
body, 4-3
call, 4-19

definition, 4-2
definition file, 5-8, 5-12
definition pseudo-operations,
3-11
instructions, 4-1
nesting, 4-17
redefinition, 4-18
MACRO characters, C-1
Memory, 3-17, 3-22, 5-19
Memory references across page
boundaries, 3-7
Memory referencing instruction
format, 2-6
Mnemonics, 2-5
Multiple file assemblies in
XVM/RSX, 5-12
Multiple filename commands, 5-7
Multiplication operator, 2-12

Name of program, 3-3

.NDLOC pseudo-op, 3-17

Nested conditional statements,
3-16

Index-2

INDEX (Cont.)

Nested literals, 2-16
Nesting of macros, 4-17
NLD option, 3-5
NOLST pseudo-op, 3-4
Non-printing characters, 3-10
Numrbers, 2-10
evaluation of, 2-24
Number sign (#) usage, 2-7, 4-3

Object code, 1-3
Object program output pseudo-
operations, 3-4
Octal values, 2-10
.OCT pseudo-op, 3-21
Operating procedures, 5-1
Operation field, 2-~1, 2«2
2-20
Operators,
arithmetic, 2-12
Boolean, 2-12
Options, 5-4
Cutput, 1-1, 5-19
code, 3-4
listing, 5-13

r

Page mode, 2-22
Page Mocde Assembler, 5-1
Paper tape
input, 3-§
output, 3-5
source program, 5-17
Parameter file, 5-8
Parentheses usage, 2-16
Passes, 1-2, 2-9, 5-18
Period (.) usage, 2-5, 3-1
Permanent symbol table, 2-4, 3-1
5-19, B-1
Pointex, 1-3
Processing, 1-2
Program
end, 3-23
filename, 5-3, 5-9
relocation, 5-19
segment end, 3-24
segment identification, 3-3
size, 3-17
Programs, relocatabkle, 1-3
Pseudo-operations,
common block, 3-11
conditional assembly, 3-15
designate a sywbolic -~
address, 3-26
end of program, 3-23
end of program segment,
3-24

Pseudo-operations (Cont.),
global symbol declaration, 3-24
listing control, 3-3
literal origin, 3-20
location counter, 3-21
macro definition, 3-11
object program output, 3-4
radix control, 3-21
repeat object code, 3-26
request I/0 device handler, 3-26
request program size, 3-28
reserve blocks of storage, 3-22
summary, 3-1, D-1
text handling, 3-8

Question mark (?) usage, 4-7

Radix, 2-10

Radix control pseudo-operation,
3-21

Real arguments, 4-4

Reassembly, 1-3

Recursive macro calls, 3-16, 4-20

Redefinition of macros, 4-18

Redefinition of symbols, 2-8,

2-19

Referencing the location counter,
2-14

Relocatable programs, 1-1, 1-3,
5-19

Relocaticon mode, 3-7

Repeat object code pseudo-
operation, 3-26

.REPT pseudo-op, 3-26

Requesting an I/0 device handler
pseudo-operations, 3-26

Request program size pseudo-
operations, 3-28

Reserving blocks of storage
pseudo~-operations, 3-22

Restart assembler, 5-21

RSX system MACRO call, 5-1

RUBOUT, 5-2

Running instructions, 5-17

Segmented source, 5-2

Segmenting programs, 3-24

Semicolon (;) used as separator,
2-1

.SIXBT pseudo-op, 3-9, 4-3

Size of program, 3-17

.SIZE pseudo-op, 3-28

Slash (/) usage, 2-2, 2-3, 4-3

Index-3

INDEX (Cont.)

Software, 1-2
Source listing of the
absolute binary loader, E-1
Source, segmented, 5-2
Space character (wa), 2-1
Spaces in filename, 5-10
Special symbols, 2-6
Statement -
delimiters, 2-20, 2-21
evaluation, 2-24
fields, 2-17
format, 2-1
line length, 2-1
terminator, 2-24
Statement, direct assignment,
2-3
Storage words, 2-13
Subtraction operator, 2-12
Symbol
definition, 2-4
evaluation, 2-4, 2-29
redefinition, 2-8, 2-19
Symbolic address pseudo-
operation, 3-26
Symbolic label, 2-17, 2-18
Symbols, 2-3
created, 4-7
special, 2-6
undefined, 2-10
Symbol table output, 5-14
Symbol tables, 2-4

Tab character (-), 2-1
Tag, 2-2
field, 2-1
symbol, 3-26
Terminators, command string,
5-3
Text delimiter, 3-9
Text handling pseudo-operations,
3-8
.TITLE pseudo-op, 3-3
Transfer vector, 1-3, 3-12
Trimmed six-bit format, 3-9
Two's complement, 2-12

Undefined symbels, 2-10, 5-20
User's Symbol, 3-26
table, 2-4

Validity bits, 2-28
Variables, 2-7, 5-20
VT1l5 processor, 3-8

Word evaluation, 2-25, 2-28

X option, 5-18
X used as symbol, 2-6, 2-13

Zero, division by, 2~12
Zeroing a storage location, 2-7

Index-4

Please cut along this line.

MACRO XVM Assembler Language Manual
DEC-XV-LMALA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

00000o

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. [j

Fold Here ~——~--am e

- Do Not Tear - Fold Here and Staple ~—--~~— e oo

FIRST CIL.ASS
PERMIT NO. 33
MAYNARD. MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

digital equipment corporation

