%@@ﬂﬂﬁ*@ﬁﬂ@@*@

=
S
@
Y
©
QL

operating
environment

®
&
|
»®

DEC-15-GFZA-D

PDP-15 FORTRAN IV
OPERATING ENVIRONMENT

For additional copies of this manual, order DEC-15-GFZA-D from Digital Equipment

Corporation, Program Library, Maynard Mass. 01754 Price $6.00

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

Ist Edition September 1971

Copyright © 1971 by Digital Equipment Corporation
The material in this manual is for informa-
tional purposes and is subject to change
without notice.
The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:
DEC PDP —
FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

CHAPTER 1

.ﬂ._.._.._._._..
WRNRNNNNR —~
O hwN o

CHAPTER 2

W N — N =

NPNNDNDMNNNNODNNDNMNDNDNNNDNDNOMNNDDND
O

NNVNOCULUARRARMMWW WWRN =

CHAPTER 3

WWwwww
NDMNDNN —
W N —

o

W W W WL W W
PWWWN NN
N —

CHAPTER 4

4.1
4.2

CONTENTS

INTRODUCTION

Operating Procedures

Software Environments

DOS-15

ADVANCED Monitor Software System (ADSS)
PDP-15/30 Background,/Foreground Monitor System
RSX-15 Real-Time Execution

BOSS-15

Hardware Environment

INPUT-OUTPUT PROCESSING

General Information

Device Assignment

Data Structures

Data Transmission

OTS IOPS Communication (FIOPS)
Sequential Input-Output

OTS Binary Coded Input/Output (BCDIO)
OTS Binary Input/Qutput (BINIO)

OTS Auxiliary Input/Output (AUXIO)
Direct Access 1/O

The DEFINE Routine

Formatted Input/Output (RBCDIO)
Unformatted Input/Output (RBINIO)
Initialization and Actual Data Transfer (RANCOM)
Data-Directed Input=Output (DDIO)
Encode/Decode (EDCODE)

User Subroutines

Magnetic Tape Input=Output Routines
Directoried Subroutines

THE SCIENCE LIBRARY

Intrinsic Functions

External Functions

Square Root (SQRT, DSQRT)

Exponential (EXP, DEXP)

Natural and Common Logarithms (ALOG, ALOG10,
DLOG, DLOG10)

Sine and Cosine (SIN, COS, DSIN, DCOS)
Arctangent (ATAN, DATAN, ATAN2, DATAN2)
Hyperbolic Tangent

Sub~Functions

Logarithm, Base 2 (.EE, .DE)

Polynominal Evaluator (.EC, .DC)

The Arithmetic Package

UTILITY ROUTINES

OTS Routines
Floating Point Processor Routines

Page

R
LU U N U |
NNNOYOO0 0N —

et OONOCOBAEWWONN —
—

1
N

NN N
1 1 1

—_ o —
W w

4.3
4.4
CHAPTER 5
5.1
5.2
5.3

APPENDIX A

APPENDIX B

B.1
B.2
B.3
APPENDIX C

C.1
C.2
C.3

APPENDIX D

D.1
D.2

APPENDIX E

Figure No.

1-1

CONTENTS (Cont)

FORTRAN = Callable Utility Routines
RSX Library (.LIBRX BIN) Routines
FORTRAN-IV AND MACRO

Invoking MACRO Subprograms from FORTRAN
Invoking FORTRAN Subprograms from MACRO
Common Blocks

APPENDICES

LANGUAGE SUMMARY

ERROR MESSAGES

Compiler Error Messages

OTS Error Messages

OTS Error Messages in FPP Systems
PROGRAMMING EXAMPLES

MACRO-FORTRAN Linkages
IFLOW and IDZERO Examples
Input-Output Examples

SYSTEM LIBRARIES

.LIBR ~ Page Mode Non-FPP
.LIBRF - Page Mode FPP

PDP-15 FORTRAN FACILITIES

ILLUSTRATIONS

Title

Sample DOS-15 Session

TABLES

Title

Intrinsic Functions

External Functions

Sub=Functions

Arithmetic Package

FORTRAN-Callable Utility Routines

FORTRAN-Callable RSX Routines

Versions of the Extended Compiler

Versions of the OTS Libraries for the Extended Compiler
Compilers and Libraries for Extended FORTRAN Distributed
with PDP-9/15 Systems

5-1
5-2
5-3

B-1
B-7
B-9

C-1
C-5
C-6

Page

1-4

o,

PREFACE

This manual describes the system software facilities which support the PDP-15 FORTRAN IV compilers
together with hardware features which affect the FORTRAN programmer. Included are discussions of
monitor features which are of interest to the FORTRAN programmer, the FORTRAN 1V Object Time
Sysfem] (OTS), and the Science Libraryz. All descriptions presented are based on the most compre-
hensive version of the FORTRAN compiler. Appendix E presents overall outlines and descriptions and
detailed data specifying the differences between the various compilers for all of the FORTRAN IV

versions offered.

A companion manual "PDP-15 FORTRAN 1V LANGUAGE MANUAL", order code DEC-15-GFWA-D,
describes the elements, syntax and use of the FORTRAN IV language as implemented for the PDP-15

computer.

]The Object Time System is a set of subroutines which are automatically invoked by certain FORTRAN
language elements. A FORTRAN input-output statement, for example is not compiled directly into
executable object code but becomes a call to the appropriate OTS input-oufput routine.

2The Science Library is a set of intrinsic functions, external functions, subfunctions, and subroufines
which the user may invoke explicitly in a FORTRAN statement,

T,

CHAPTER 1
INTRODUCTION

A FORTRAN-IV program may be compiled and run in several different environments. The EORTRAN
programmer need not be concerned with the details of his environment since the FORTRAN Object-Time
System (OTS) will ensure that his statements invoke the appropriate computer instructions. For example,
an arithmetic statement such as A = A*B will appear the same in any FORTRAN-IV program. In the
object program it may be transformed to a subroutine call, an EAE instruction, or a floating point

instruction, depending on the hardware configuration on which the program is produced.

He will need to know procedures for compiling and loading his program and for using the peripheral
devices available to him. In addition, a number of software facilities may be of interest to a
FORTRAN programmer who requires maximum program efficiency or functions not performed by
FORTRAN statements. In this case, he may invoke FORTRAN=callable functions and subroutines from
the FORTRAN library or augment his program by linking to MACRO assembler programs and invoking
the OTS utility routines.*

In this chapter, we describe the basic procedures for using FORTRAN and the major facilities
available fo a FORTRAN program. These facilities are described in greater detail in subsequent
chapters, and Appendix C contains a collection of illustrative programming examples. The main

discussion is based on the DOS~15 monitor, and differences for other environments are nofed.

1.1 OPERATING PROCEDURES

The FORTRAN-IV compiler is a two-pass system program which produces relocatable object code.

This code is then linked with user-specified FORTRAN-compiled or MACRO-15 assembled routines

and with required OTS library routines. Program linkage may be accomplished via the linking

loader, LOAD, which loads the resulting program directly into core in absolute format. The user may,
alternatively, use one of the overlay linkage editors - CHAIN (DOS-15, ADSS, B/F, Basic I/O

Monitor) or TKB (RSX). These construct core images onto auxiliary storage.

*In all MACRO calling sequences given - when an address is required as an argument, it may be
expressed as +400000 to indicate indirection.

1-1

The FORTRAN-IV compiler is called by typing F4 after the monitor has issued a $. When FORTRAN

has been loaded, the version name is typed at the left margin as in:

F4X Vnn

A carriage return is issued and the character > at the left margin indicates that ¢ command siring is
expected with the FORTRAN source program on the appropriate input.
The command string has the form:

optionlist « filename
where the options are delimited by a left arrow and may optionally be separated by commas, and the
string is terminated by a carriage return or ALT MODE. A carriage return specifies that FORTRAN-IV

should be restarted after the current program has been compiled. ALT MODE returns control to the

monifor.

The option list may be blank or contain any of the following options:

Option* Meaning
o object listing
S symbol map
L source listing
B binary output
D output listing on DECtape unit 2
U write output on DECtape unit 1

Filename must be a legal FORTRAN symbol. The output listing always has the extension LST.

At the end of pass 1, the compiler types

END PASS1

to accomodate the repositioning of a paper-tape source file in the reader. When compiling from
paper tape, to initiate pass 2, the user types P (control P). Otherwise, pass 2 is initiated auto-

matically.

*Refer to Appendix E for list of options applicable to each version of FORTRAN

The following error messages indicate that the command procedures cannot be carried out:

Message Meaning

? Bad command string - retype
IOPS 4 1/O device not ready - type CTRL R when ready
IOPS See PDP-15/20 User's Guide for IOPS error codes

Other diagnostics which may be printed at compile time are FORTRAN error messages (see Appendix B,
Section B.1). OTS errors are given at run time for those routines whose calls are generated by the

compiler (see Appendix B, Section B.2).

When the user program has been successfully compiled, it may be relocated and made absolute
(executable) via LOAD, CHAIN, or TKB (the RSX Task Builder).

The Linking Loader is called by typing LOAD or GLOAD (load-and-go) after a monitor~issued §.
The Linking Loader types

LOADER Vnn
>

and awaits a command string specifying programs to be loaded and output options. See the

PDP-15/20 User's Guide] for detailed instructions. Figure 1-1 shows the printout from a typical

DOS-15 session from source-program preparation to loading.

With CHAIN, the user generates a system of overlays - a resident main program which may include
resident subprograms, a resident blank COMMON storage area, and a set of subroutines which
overlay each other at the user's request. Subroutines are organized into units called LINKS which
may overlay each other. Several LINKS may overlay a larger LINK without overlaying each other.
A LINK is loaded into core when a subroutine within the LINK is called and it remains resident until
overlayed, A LINK's core image is not recorded or "swapped out" when it is overlayed, The same
image is brought into core each time a LINK is loaded. See the PDP-15 CHAIN and EXECUTE
manual for detailed instructions (DEC-15-YWZA-DN2).

]Order code DEC-15-MG2C-D

DOS-15 vo2
ENTER DATE (MM/DD/YY) - 6/8/71

SLOGIN DEM
P IP
DOSPIP VIA

>N DK

>1C

DOS-15 V92
FEDIT

EDITOR V1@A
>0PEN IOTST
FILE IOTST SRC NOT FOUND.

INPUT

C

C TTY: «DAT 6
c

WRITE (6,100)

126 FORMAT (1X,3IN:%)
READ (6s) R1,R2
WRITE (6,220)

ona FORMAT (1Xs 'QUT:')
R3=P | %x%R2
WRITE (65) R3
STOP
END
EDIT
>CLOSE

EDITOR VI1BA
>tC

DOS-15 vo2
SF 4

F4X V15A

>B-I0TST
END PASS1

DOS-15 voz2
A TT é

SLOAD

Figure 1-1 Sample DOS-15 Session

(continued next page)

BLOADER Vi1A

>P«10TST

P I0TST 77535
P DDIO BT 75463
P «BE b6 15430
P W.EE ne2 75337
P «EF BrR4 15221
P +EC B21 75155
P BCDIO p2& 71230
P .SS B95 71150
P STOP P83 71135
P SPMSG @04 71042
P «FLTB 904 708554
P FIOPS @16 67652
P DBLINT O5B 67246
P INTEAE P0& 67112
P DOUBLE 004 66727
P RELEAE #16 65576
P OTSER 999 65366
P .CB PpB3 65346
t 513

IN:

11.253.8

OUT:

'‘R3'= 1404 .9282

STOP o000

DOsS-15 vo2
$

Figure 1-1 Semple DOS-15 Session (Cont)

TKB is similar to CHAIN. Its function is to record core images in a file in the format expected by
the RSX INSTALL MCR Function. The task name is used as the file name, and TSK is used as the
extension. TKB uses the same .DAT slots and accepts the same overlay descriptions as CHAIN.
It is called by typing "TKB" following the Monitor's $ request. When loaded, TKB types its name
and version number and makes the following requests:

LIST OPTIONS

NAME TASK

SPECIFY DEFAULT PRIORITY

DESCRIBE PARTITION

DESCRIBE SYSTEM COMMON BLOCKS

DEFINE RESIDENT CODE
DESCRIBE LINKS AND STRUCTURE

For further information, see RSX-15 Reference Manual (DEC-15-GRQA-D).

1.2 SOFTWARE ENVIRONMENTS

Each version of FORTRAN-IV has its own version of OTS and the Science Library so that routines may
utilize both hardware and software features. Each of the monitor systems under which FORTRAN

operates is summarized below.

1.2.1 DOS-15

DOS-15 is a single-user, interactive, disk-resident Operating System. I includes the DOS-15
Monitor, 1/O device handlers, and an integrated set of system programs including FORTRAN-IV.
Program editing, loading, and debugging facilities are provided as well as powerful file manipulation
capabilities. The DOS-15 disk file structure supports both direct and sequential access to disk files,
dynamic disk storage allocation, and file protection. The DOS-15 Monitor itself provides the
interface between the user and peripheral devices via Monitor calls and allows the user to load system
or user programs, for example, FORTRAN programs, via simple commands from the user terminal. The
reader is directed to the DOS-15 Software System User's Manual , DEC-15-MRDA-D, for more detailed

information.

1.2.2 ADVANCED Monitor Software System (ADSS)

The ADVANCED Monitor Software System is an integrated system of programs which includes the
ADVANCED Monitor, an Input-Output Processor (IOPS), and a set of system programs which prepare,
compile, assemble, debug, and operate user programs. The monitor itself serves as the interface
between FORTRAN and peripheral devices and between the user console and the system. Detailed
information on the components of ADSS may be obtained in the ADVANCED Monitor Software System
Manual, DEC-15-MR2B-D.

1.2.3 PDP-15/30 Background/Foreground Monitor System

The Background/Foreground Monitor (B/F) is an extension of the ADVANCED Monitor which permits
concurrent, time-shared use of the PDP-15/30. This is done through protected, foreground user
programs with a background of batch processing, through program development, or through low-priority
user programs. Details are available in the PDP-15/30/40 Background/Foreground Monitor Software
System manual (DEC-15-MR3A-D).

1.2.4 RSX =15 Real=~Time Execution

RSX-15 is a monitor system designed to handle real-time information in a multiprogramming environment.
RS§X-15 controls and supervises all operations within the system including any number of core- and disk=
resident programs (called tasks), The user can dynamically schedule tasks via simple time-directed
commands issued from the terminal or from within a task. RSX uses the ADVANCED Software Monitor
(1.2,2) and a Real~Time Monitor, System software includes the FORTRAN-IV compiler, the MACRO
Assembler, the TASK BUILDER, and numerous utility programs required to edit, compile, debug, and

run user programs. Details are available in the RSX~15 Real/Time Executive Reference Manual
(DEC-15-GRQA-D).

1.2.5 BOSS-15

BOSS=15 is a batch-processing monitor which is part of DOS-15; it, therefore, utilizes the DOS-15
system program and file structures. DOS-15 itself has a facility to batch commands from cards or
paper tape; BOSS-15, however, is a separate entity from DOS~15 batch, BOSS-15's command

language is batch~oriented, noniterative, easy to use, and highly flexible.

Some highlights of BOSS=15 are:

. Procedure driven command language
. Job timing for accounting purpose
Line editor

. Facility for user-defined commands

BOSS-15 provides the user with the ability to use any system program (with exception of some programs

that work only in an interactive environment) and the disk-file structure of DOS-15.

1.3 HARDWARE ENVIRONMENT

Systems with a Floating-Point Processor (FPP) have a special version of the FORTRAN -1V compiler and
OTS which utilizes hardware instructions rather than software calls. For example, RELEAE, the REAL
arithmetic package, is not included in FPP systems since REAL arithmetic expressions may be compiled

into computer instructions.

The FPP F4X System consists of the standard DOS-15 FORTRAN-IV compiler and Object-Time System
(OTS) interfaced (via conditional assembly, and additional routines) to the hardware PDP-15 FPP
(Floating-Point Processor). The interface applies to Single and Double Precision Floating-Point
Arithmetic and Extended Integer Arithmetic (double integers). Single integer arithmetic is still

handled by software.

Floating-Point (FPP) FORTRAN-IV is available in different forms for use in PDP-15 software systems
other than the DOS-15 system. See Appendix E for descriptions of the available types of FORTRAN-IV.

The following points should be noted with respect to the software modifications which accompany the

FPP software systems:

(1) The calling sequence for integer power involution (raising numbers to integer powers) has
been changed. The associated OTS routines will have to be updated throughout any
systems using F4X.

(2) All systems that support a bank mode will require a bank mode version of the FAX compiler
to go along with their respective OTS libraries in order to suppress generation of PDP-15
instructions (see Appendix D). Note that a bank mode version of the FPP F4X is not
needed because the FPP cannot be added to a PDP-9.

The FPP libraries (given in Appendix D) include the program .FPP which contains a special FPP
error-handling routine, and routines which handle communication between the hardware CPU AC

used by FORTRAN and the FPP accumulator.

All routines described in the science library and OTS utility programs are available in FPP versions

with the exception of RELEAE, DOUBLE and DBLINT which are no longer required.

CHAPTER 2
INPUT-OUTPUT PROCESSING

FORTRAN data-transmission statements automatically invoke a number of OTS subroutines which serve
as an interface between the user program and the Monitor. These routines may also be explicitly

referred to in @ MACRO program,

The actual transmission of data between memory and a peripheral device is, in general, performed by
the FIOPS package, a set of routines which communicate directly with the Monitor. Other packages,

each associated with a particular type of data-transmission statement, perform three major functions:

a, Initialization,
b, Transmission of data to and from the FORTRAN line-buffer in the appropriate structure, and
c. Termination;
The packages are:
(1) BCDIO, processes formatted sequential READ or WRITE statements;
(2) BINIO, processes unformatted sequential READ or WRITE statements;
(3) AUXIO, processes auxiliary input-output statements;

(4) RBCDIO and RBINIO, processes formatted and unformatted direct-access READ and
WRITE statements;

(5) DDIO, manages data-directed input-output;
(6) ENCODE, processes ENCODE and DECODE statements.

Also described in this chapter is a set of FORTRAN=callable subprograms which support OTS input-

output functions.

2.1 GENERAL INFORMATION
The three major 1/O functions:

a. To associate logical devices with physical devices,
b. To associate user data structures with device data structures, and

c¢. To perform actual transfer of data

are described in the following paragraphs.

2-1

2.1.1 Device Assignment

In all systems except RSX, device assignment is managed through the monitor Device Assignment
Table (.DAT) which associates logical device units to physical ones. .DAT has "slot" numbers which
correspond to the logical device numbers. Each slot, at run time, contains the physical device
number and a pointer to the appropriate device handler. Sixteen* entries in .DAT may be used for
user-program device assignment performed via monitor ASSIGN commands at run time. Default

assignments are defined during system generation.

2.1.2 Data Structures

Each peripheral device has an associated data structure which governs the manner in which data are
stored. There are basically two modes in which data may be stored externally - serially or directoried.
For a sequential file, either structure may be used. If it is serial, the physical sequence of records is
identical to the logical sequence. If it is directoried, the logical sequence is established by pointers
which link one record to another although their physical locations need not be in sequence. For a

direct-access file, only directoried devices may be used.

Serial devices used for FORTRAN Input-Output include magnetic tape and DECtape. Records are
transmitted directly from the user buffer to the device and an end-of-file is written after the last

record by @ CALL CLOSE or ENDFILE n. A file is accessed simply by virtue of device assignment,

DECtape may also be used in a directoried mode. In this case, a directory containing file information
is maintained. Each entry contains a filename and extension and a pointer to the first block of the

file. Files stored in this way may be referenced in the OTS directoried subroutine calls.

Directoried FORTRAN input-output to a disk, using DOS-15 file structure, is a special case, This
structure is based on a hierarchy of directories with a Master File Directory (MFD) pointing to user
file directories (UFDs). User files are created sequentially but may be accessed either sequentially
or directly . Data blocks (4008 words per block) which comprise a file are chained via a forward

link word (3778) and backward link word (3768). Forward links are also stored in a refrieval
information block (RIB) for direct access. Files stored in this mode are accessed by name. This name
may be assigned by the user via directoried subroutines (e.g., SEEK and ENTER). If this is not done,
default names are used. A default name has the form .TMOmn OTS where mn is the logical device

number.

*This number is the standard size for DOS~15 but may be changed by system generation and assembly
parameters.

2-2

2.1.3 Data Transmission

Data is transmitted to and from the FORTRAN-IV 1/O buffer via the OTS FIOPS package. A single
1I/0 buffer of 4008 words is used, The size of the buffer which is to be fransmitted for a particular

device is set in accordance with information provided in an .INIT to the device used.

2.2 OTS IOPS COMMUNICATION (FIOPS)
The FIOPS package provides the necessary communication between OTS and Input-Output Processor.

Its two main functions are device assignment and the transfer of data to and from the FORTRAN
internal 1/0 buffer.

FIOPS maintains a status table with one~word entries for each file that is opened. A table entry is

as shown below.

1/O Flag For dir.
0=READ 0=SEQU. ace. only not Buffer size
T1=WRITE 1 =DIR. ACC. 1=DELETE used (from .INIT)
0=NO
0 1 2 3 89 17

The routines of the FIOPS package and their functions are given below.

FIOPS Package
External Calls: OTSER

Errors: OTS ERROR 10 - illegal device number
Routine Function
.FC .DAT slot numbers are initialized by .FC. The
(initialize 1/O Device) first call to .FC for any device generates a
Call monitor ,INIT call which opens the file for I/0O
all:

and enters the buffer size and 1/O flag in the
LAC DEVICE (address of slot number) device status table. Subsequent calls to .FC
JMS* EC call .INIT only if the I/O flag has been changed
: or the file has been closed.
To set 1/O flag:

DZM* FH (input)
LAC (1) (output)
DAC* ,FH

(continued next page)

FIOPS Package (Cont)

Routine

Function

FQ
Call:

LAC (address of .DAT slot number (bits 9-17)
TIOPS mode (bits 6-8)

Data are transferred between the 1/O buffer and
an I/O device. .FQ checks the monitor I/O flag.
If it is zero, a .READ call is made; if it is one, a
.WRITE call is made. A call to .WAIT is made in

either case.

JMS* FQ
.FP Sets all words in the device status table to zero.
Call: Called at the beginning of all FORTRAN main
’ programs to indicate that all devices are
JMS* FP initialized,
JZR Initializes END or ERR exits. The AC is saved
Call: and restored to accomodate direct access. If one
) of the two exit addresses is not fo be specified, an
JMS* [ZR address of 0 should be passed.

.DSA END addr
.DSA ERR addr

.

JMS* FF (.FG)(.RF)(.RG)

Direct and sequential access BCD and BINIO
terminate routines reinitialize OTSER.

An integer function - IOERR (N) is available to the user and may be invoked at an ERR exit to

determine the 1/O error which has occured. The value of IOERR will be one of the following:

Value

OTS error number

2.3 SEQUENTIAL INPUT-OUTPUT

-1
-2

Error
Parity error
Checksum
Shortline
End-of-file
End-of-medium

Other errors (up to 77)

Sequential input-output operations access consecutive records of a file, beginning with the first

record and then record-by-record until the end of the file. A file which is accessed sequentially may

be stored serially (on magnetic tape or DECtape) or in directoried mode (on disk and DECtape). That

is, the physical sequence of records may or may not conform to the logical sequence.

2.3.1 OTS Binary Coded Input/Qutput (BCDIO)

The formatted READ and WRITE statements generate calls to routines in the BCDIO package. Input

and output operations are performed on a characterto-character basis under the control of @ FORMAT
statement. All BCDIO routines use FIOPS to perform transfer of data. BCDIO routines may also be
called directly by MACRO programs.

Each formatted record is an IOPS ASCII line with a two-word header pair. The first character after
the header is always a forms-control character. Record length, given in the header, is always in

terms of word-pairs. The last character in the last word—pair is always a carriage return,

BCDIO routines are described below.

BCDIO Package
External Cadlls: FIOPS, OTSER, REAL, RELNON or RELEAE

Errors: OTS 10 - illegal 1/O device number
OTS 11 - bad input data (IOPS mode incorrect)
OTS 12 - illegal format

Routine Function

FR (.FW) Inputs (outputs) a data item,
Call:

JMS* FR (.FW)

+DSA (address of .DAT slot number)

.DSA (address of first word of FORMAT
statement or array)*

.FE Inputs or outputs a data item using format decoder
Call: (.FD).
JMS* FE

.DSA (address of data item (first word))

.FA Inputs or outputs an entire array using format
Call: decoder (.FD).
JMS* [FA
.DSA (address of last word in array descriptor
block)

(continued next page)

*This word is 0 for data-directed I/O

BCDIO Package (Cont)

Routine Function
.FD Decodes format into four parameters:
Call: .D - decimal places
W - field width
S* ,FD :
M F .SF - scale factor
.S =~ mode
.FF Terminates the current logical record.
Call:
JMS* FF

As described in the language manual*, FORMAT statements may be entered or changed at run time,
at which point they are interpreted by BCDIO. In addition to providing the FORTRAN programmer
with greater flexibility, this feature permits the MACRO programmer to use the formatted I/O
capabilities of BCDIO. (See Appendix C for examples.)

2.3.2 OTS Binary Input/Output (BINIO)

The BINIO package processes unformatted READ and WRITE statements. Data transfer is on a word-
to -word basis. A logical record, the amount of data associated with a single READ or WRITE
statement, may consist of several physical records whose size (except for the last) is always the
standard IOPS 1/O buffer size. Thus, when a WRITE statement is processed, each physical record
generated contains an ID word (word 3) in addition to the two required header words. This word
contains a record identification number. For the first record, this is zero. The last record is
indicated by setting bit 0 of the ID word to 1. Up fo 3777778 physical records may be generated

for a single logical record.

For example, if four physical records are generated, the four ID words would be:

000000
000001
000002
400003

If only one record is generated, its ID word will be 400000 signifying the first and last of a set.

An unformatted READ statement accepts logical records of the form described above until its I/O list
has been satisfied. If this occurs in the middle of a logical record, the remainder of the record is

ignored. That is, the next READ will access the beginning of the next logical record.

*DEC-15-GFWA-D

2-6

~~

The routines of BINIO are described below.

BINIO

External Calls: FIOPS, OTSER

Errors: OTS 10 - illegal 1/O device number
OTS 11 - illegal input data (IOP mode)
Routine Function
.FS Initializes a device for binary input and reads
first record.
Call:
JMS* [FS
.DSA (address of .DAT slot)
.FX Initializes a device for binary output; initializes
line buffer.
Call:
JMS* FX
.DSA DEVICE
.FJ Transfers a data item to or from the line buffer
(all modes). Mode of item indicated by bits
Call:
1 = 2 of argument are:
JMS* FJ :
s . . 00 = INTEGER
.DSA (address of item (first) word) 01 = REAL

10= DOUBLE PRECISION
11 = DOUBLE INTEGER

.FB Transfers an array.
Call:

JMS* FB

.DSA (address of last word in array descriptor
block)

.FG Terminates current logical record. For WRITE,
Call: packs the line buffer with zeroes as required and

atk sets bit O of the ID word.

JMS* FG

2.3.3 OTS Auxiliary Input/Output (AUXIO)

The AUXIO package processes the commands BACKSPACE, REWIND, and ENDFILE which have

different meanings for magnetic tape and disk. AUXIO routines issue . MTAPE monitor calls giving

.DAT slot and a code specifying the magnetic tape function desired:

Code Magnetic Tape Disk

00 Rewind to load point Close file associated with .DAT slot.
02 Backspace record Pointers resumed for previous ASCII or binary line.
04 Write end~of -file N.A,

For magnetic tape, these operations require only calls to system macros. In order to simulate magnetic
tape functions on disk, a file active table (.FLTB) must be referenced. This contains four-word
entries for every positive .DAT slot indicating whether the file is active (open for input or output)

or inactive. The routines of AUXIO and their serial and file-oriented functions are given below.

AUXIO
External Calls: FIOPS, .FLTB
Errors: OTS 10 - illegal 1/O device
OTS 11 - illegal input data (IOPS mode incorrect)
Routine Magnetic Tape Disk
FT Repositions device at a point just prior to the Resumes pointer to
(BACKSPACE) first physical record associated with the current previous ASCII or
Call: logical record. binary line.
JMS* L FT
.DSA (address of
.DAT slot)
.FU Repositions device at load point. Closes file. If no
(REWIND) file is open,
Call nothing is done,
JMS* FU
.DSA (address of
DAT slot)
FV Closes file. Writes an end-of-file mark on tape. | Closes file, zeroes
(ENDFILE) words 0-3 of the
Call associated .FLTB
atts entry.
JMS* _FV
.DSA DEVICE

On a REWIND to disk, the filename is saved; thus, subsequent sequential input-output operations will

open that file. On an ENDFILE, the filename is lost and subsequent operations will open a default file.

2-8

2.4 DIRECT ACCESS I/O

Direct access input-output files are referenced by name; records are retrieved or accessed by number.
The OTS routines which perform direct-access transmission of data are similar fo their sequential

counterparts. Before they are invoked, however, the user must provide a detailed description of
his file,

2.4.1 The DEFINE Routine

The FORTRAN user establishes a direct-access file by calling the DEFINE routine which was described

in Part I, Chapter 6. The meanings of its arguments are iterated below for the call:

CALL DEFINE (D, S, N, F, V, M, A, L)

The parameters provided to OTS for performing direct-access functions are:

D - .DAT slot

S - record size
number of ASCII characters
or
number of binary words

N - number of records (53777778)
F - array reference to file name and extension = if 0, default name
V - associated variable - set to number of the last accessed record plus one

M - mode -0 = IOPS binary
non-0 = IOPS ASCII

A - file size adjustment indicator
0 = no adjustment
non-0 = adjust
L - deletion indicator

0 = no deletion
non=0 = delete temporary file

The DEFINE routine initializes a file for direct-access in one of four ways, depending on the
combination of parameters supplied.

a. Simple Initialization - If F specifies a file which already exists and no adjustment has
been indicated, DEFINE opens the file for direct access. The mode and record length
parameters must conform to the file's characteristics. The associated variable is set to 1.
The number of records N must be less than or equal to the actual number of records.

b. Named File Creation - If F specifies a file which does not exist on .DAT slot D, a file
is created according to the characteristics given in the calling arguments. If the mode
is ASCII, the data portion is filled with spaces (040g). If the mode is binary, all data
words are set to 0 and the ID word for each record to 4000008.

2-9

c. Default-Named File Creation - If F=0 in the DEFINE call, a file is created as above but
given a default name of the form .TMOab OTS (unless a file of that name already exists
on .DAT slot D) where ab specifies .DAT slot. If 1=1, a bit is set in the FIOPS status
table signifying that the file is to be deleted after an ENDFILE or CALL CLOSE to the
. DAT slot.

d. File Size Adjustment - If a file F exists and A is not zero, N is used to adjust the number
of records in the file. This is done by creating a temporary file (. .TEMP OTS) on .DAT
slot D via .DAT slot =1 which is temporarily loaded with the .DAT slot D handler address
and UIC, The file is copied info it one record at a time up to the number N. If the file
is to be lengthened, null records are added. The adjusted file is then assigned a name
according to F. V is set to 1 if the file is reduced. If it is lengthened, it is set to the
old length plus one.

The algorithm used for determining the function of DEFINE from its arguments is illustrated in the

following flowchart.

DOES
DEFINE FILE
NAME ARGUMENT
=0
?

NO, FILE NAME IS
SPECIFIED

YES, DEFAULT NAME IS
INDICATED

y

BUILD DEFAULT NAME
FROM .DAT SLOT
(.TMOab OTS}

IS

FILE OF INDI-

CATED NAME FOUND OF

INDICATED DEVICE

{VIA .FSTAT)
?

DOES
DEFINE ADJUST

AREA =0
?

YES

NO
CREATE
FILE
3 l
INITIALIZE FILE FOR A ADJUST S1ZE
RANDOM ACCESS o OF FILE
VIA .RAND

‘ DONE ’

From user-supplied arguments, the DEFINE routine establishes o parameter table (PRMTB) which is

available to direct-access input-output routines.

Each device which has a file open for direct-access will have an active four-word entry composed as

follows:
Word Bits Information
1 0 File active bit (1 if active - always set for ASCII files)
2-11 Number of blocks per record
12-17 .DAT slot number
2 0 mode - O if binary; 1 if ASCII
5-11 Word pairs per record
12-17 Records per block (0 for binary records larger than one physical block)
3 1-17 Records/file
4 3-17 Address of associated variable

.PRMTB will generally have four such entries but this number may be varied with an assembly

parameter,

DEFINE also initializes the file in FIOPS, setting the appropriate bits in the FIOPS status table.

2.4.2 Formatted Input/Output (RBCDIO)

Direct-access operations may be performed on any formatted data file conforming o DOS-15 file
structure and with a fixed record length. A direct-access WRITE will output formatted records which
have the same form as with sequential operations. The distinction is that the direct-access records are
transmitted into a series of records which already exist on the selected file. A single READ or WRITE
will access records on the 1/ device only as specified in the associated F ORMAT statement. This
means that a long 1/O list will not cause a new record to be accessed, regardless of the length of

the list, unless this access is indicated by the FORMAT statement. A carriage return is, as with
sequential 1/O, appended to each ASCII line. Any information from a previous WRITE mode to a record
which remains after the carriage return, is inaccessible. The FIOPS buffer and tables are used as

with sequential 1/O. Data transfer, however, is performed using the .RTRAN system MACRO.

The RBCDIO routines described below correspond to the sequential 1/O routines of BCDIO. Control

is transferred to BCDIO for data transmission via the global entry points given.

RBCDIO

External Calls: FIOPS, BCDIO (.FE, .FA), OTSER, RANCOM

Errors: None

Routine Purpose
.RW (.RR) BCD direct-access WRITE (READ) sets the direct-
Call: access flag; sefs mode switch to ASCII; initializes

JMS* .RW (RF)

.DSA (address of .DAT slot)
.DSA (address FORMAT)

(AC holds integer record number)

direct-access READ/WRITE (.INRRW in RANCOM);
checks mode of existing record; initializes - .STEOR
and BFLOC in BCDIO for direct-access, line buffer,
and form at decoder; sets .HILIM in BCDIO, RW
loads record number into .RCDNM and sets 1/O

flag in FIOPS to write. .RR loads record number
into .RCDNM, sets I/O flag to read.

.RF Terminates current logical record. Sets last record
Call: flag, reinitializes .ER in OTSER and, for WRITE,
.RTRAN out last record.
JMS* _RF

Entry points to BCDIO are:

RBCDIO Entry

.RE
.RA

2.4.3 Unformatted Input/Output (RBINIO)

BCDIO Routines

.FE
FA

Unformatted direct-access I/O differs from formatted in two respects. If a binary record does not

totally fill the record into which it is written, the previous contents are still accessible. 1f a direct-

access WRITE requires more words than exist in each record, successive records are accessed and

written until the I/O list is exhausted. Records are linked by ID words as for sequential files.

The routines of RBINIO are described below. Direct-access entry points to BINIO follow.

RBINIO
External Calls: FIOPS, RANCOM, BINIO
Errors: None
Routine Function
.RS (.RX) Binary direct -access WRITE (READ) sets direct-
Call: access flag; sets mode switch to binary; inifializes

JMS* RS (.RX)

.DSA (address of .DAT slot)
(AC holds integer record number)

direct READ/WRITE (.INRRW in RANCOM); checks
mode of existing record; initializes .BUFLC, .RDTV,
and .WRTV in BINIO for direct access; initializes
1/0O buffer; loads record number info .RCDNM.

.RX sets I/O flag to WRITE; .RS sets it to READ.

(continued next page)

RBINIO (Cont)

Routine Function
.RG Terminates current logical record, Increments
Call: associated variable, reinitializes .ER in OTSER; if

WRITE, sets last record flag and outputs final records.

JMS* FG

2.4.4 Initialization and Actual Data Transfer (RANCOM)

RANCOM contains two major routines which are used by both RBCDIO and RBINIO. These routines

perform initialization and data transfer functions which are identical to those performed for ASCII and
Binary I/O.

RANCOM
External Calls: FIOPS, OTSER, DEFINE
Errors: OTS 10 - illegal 1/O device
OTS 24 - illegal record number
OTS 25 - mode discrepancy
OTS 11 - illegal input data (IOPS mode incorrect)
OTS 21 - undefined file
OTS 23 - size discrepancy
Routine Function
.INRRW Initializes a direct access READ or WRITE
Call:
JMS* [INRRW
(AC holds address of slot number.)
RIO For I/O cleanup:
Call s Set up header pair and .RTRAN out block of data.
For end-of -record routines:
JM5* .RIG Output (if WRITE) and set pointers to new record.

2.5 Data-Directed Input-Output (DDIO)

The Data-Directed Input-Output package permits input or output of ASCII data without reference to a
FORMAT statement. On input, DDIO extracts individual data fields by scanning the line buffer for
terminators. It then determines the mode of the variable to which the item is to be transferred and
converts the item to that mode if necessary. Unlike the format decoder, DDIO does not reject an item
which is too large but simply assigns the maximum value which the variable can accomodate. On out-

put, DDIO has a set of default format parameters for each type of variable.

The same buffer is used for both data-directed and formatted 1/O, and the 1/O action for both takes
place between device and 1/O list variables or vice versa in both cases. Thus, DDIO uses the same I/0O
initialization and termination routines as regular formatted 1/O (found within BCDIO for sequential
access and within RBCDIO for direct access). DDIO control routines are, however, unique due to the

special features described above.

The routines of DDIO are given below,

DDIO
External Calls: BCDIO, .SS, OTSER, FIOPS, REAL, DBLINT
Errors: OTS 42 - bad input data*
Routine Function
.GA Outputs a data item in the 'NAME' = value form.
Call Mode is obtained from bits 1-2 of the pointer word;
atl: if the mode is O (integer-logical), bit 0 of the name
JMS* _GA / radix 50 word indicates which (0 for integer, 1 for logical).

name 1 first 3 characters
name 2 last 3 characters

.DSA address item

.GC Outputs an array element in 'NAME (I)' = value
Call: form. Also uses bits 1-2 for mode. .GC should
only be used when . SS has been used to calculate

JMS* ,GC / radix 50 the subscript address.

name 1

name 2

.DSA item
.GB Outputs an entire array in 'NAME(I)' = value form,
Call:

JMS* ,GB / radix 50

name 1

name 2

.DSA array description block
(word #4 address)

.GD Inputs an item. Mode is in bits 1-2 of argument.
Call:

JMS* GD
.DSA item

.GE Inputs an array. Mode is in bits 1-2 of argument.

Call:
IJMS* | GE
.DSA addr. of array discriptor block word 4

*For Teletype input - 'BAD INPUT DATA - RETYPE FROM INPUT WITH ERROR' is typed.
2-14

2.6 ENCODE/DECODE (EDCODE)

Encode and Decode perform memory~-to-memory transfers and conversions using the apparatus established
for formatted input-output. That is, data is fransferred from memory to the I/O buffer to memory. Since
no peripheral device is involved, the initialization and termination mechanisms of EDCODE are unique

while the data transfer is the same as for BCDIO.

The routines of EDCODE are given below.

EDCODE
External Calls: OTSER, BCDIO
Errors: OTS 40 - illegal number of characters
OTS 41 - array exceeded
Routine Function
. GF Encode,
Call: -
JMS* GF
.DSA number of characters
.DSA array
.DSA format
.GG . Decode.
Call:
JMS* GG
+DSA number of characters
.DSA array
.DSA format

2.7 USER SUBROUTINES

The subroutines given below are FORTRAN-callable subroutines which support input-output operations.

"2.7.1 Magnetic Tape Input-Output Routines™

Routine Call Function
EOF CALL EOF(d,@n.| ’ @nZ) Control is passed to n; if
Where: EQOF was encountered on last

input operation; otherwise to n,
d = ,DAT slot (must be

assigned to tape)

nyn, = statement numbers

*Not supported with RSX. END, ERR exits can be used in place of EOF. (continued next page)

2-15

Routine Call Function

IOCHECK | CALL IOCHECK (d,@n,,@n,) Same

UNIT CALL UNIT (d,@n] ,@nz,@n3, Control is passed to:

@n,) .

4 ny - device not ready

n, - device ready, no
previous error

ny - EOF sensed

ny - parity or lost data
error

2.7.2 Directoried Subroutines

The directoried subroutines described below comprise a package named FILE. These routines interact

with the DOS-15 file~oriented data structure and with DECtape file structure.

FILE
External Calls: FIOPS, .DA
Errors: OTS 10 - illegal device number

OTS 13 - file not found (SEEK)
OTS 14 - directory full (ENTER)

Routine Call Purpose

SEEK CALL SEEK (n,A) Finds and opens a named input file.
Where:
n = device number

A = name of array containing the
9—character 5/7 ASCII file
name and exfension

ENTER CALL ENTER (n,A) Creates and opens a named output file.
CLOSE CALL CLOSE (n) Terminates an input or output file
(required when SEEK or ENTER are
used).
FSTAT CALL FSTAT (n,A,D) Searches for named file.
Where:

I = 0 if the file not found;
=1 if found and action complete

(continued next page)

Routine

Call

Purpose

RENAM

CALL RENAM (n,A,B,T)
Where:

A is an array containing exist-
ing name

B is an array containg a new
file name

I =0 if file not found; 1 if
found and action complete

Searches for named file and renames if.

DLETE

CALL DLETE (n,A,l)
Where:

A is an array containing exist-
ing file name

I =0 if file not found; 1 if
found and action complete

Searches for named file and deletes it.

CHAPTER 3
THE SCIENCE LIBRARY

The FORTRAN Science Library is a set of pre~defined subprograms which may be invoked by @

F ORTRAN-IV subprogram reference. These include intrinsic functions, external functions, the
arithmetic-package functions, and external subroutines. Each of these may also be referenced by
MACRO program as may the sub-functions and OTS routines which are also part of the FORTRAN
library.

Descriptions of each type of subprogram are given in the following subsections. Information given for
these include errors, accuracy, size, and external calls (fo other library subprograms). Each function
description also includes the MACRO calling sequence. Where there are two arguments, it is assumed
that the appropriate accumulator has been loaded (accumulators are described in Section 3.4). For
calling sequences which use the .DSA pseudo-operation to define the symbolic address of arguments,

400000 must be added to the address field for indirect addressing.

FORTRAN library subprograms are called by FORTRAN programs in the manner described in the
Language Manual (DEC-15-GFWA-D). Subprograms called by MACRO programs must be declared
with a . GLOBL pseudo-operation as in:

Examples:
Standard System Floating Point (FPP) System
.TITLE .TITLE
.GLOBL SIN, .AH .GLOBL SIN
. FST = 713640
JMS* SIN .
JMP +2 /JUMP beyond argument JMS SIN
.DSA A /+400000 if indirect JMP +2
JMS* AH /store in real format at .DSA A
.DSA X /X FST
. .DSA X
X .DSA O

. .DSA O

X .DSAO
.DSA O

The number and type of arguments in the MACRO program must agree with those defined for the sub-

program. 3 -1

3.1 INTRINSIC FUNCTIONS
Table 3-1 contains a description of each of the intrinsic functions in the FORTRAN library.

An intrinsic function's type and arguments cannot be changed. It is referenced via an Arithmetic

statement, as in:

X = ABS (A)

(Table 3~1 appears on the following page.)

0> dxa pup (= 9509 §i Gl

INI18Q ‘318N 0OQa ‘va* (da)INIar=1a INIar
INIT8a ‘319n0Oa ‘va- oYV j0 yaav vsa- (M)LNIr=Ia INIF
319n0Oa “1vy ‘va: Z+* dNr (da)INIQI=1 INIaI
v ‘va ENS =SWI MINI=I INI |ouy| > Jebajul
vay ‘va: VN suoN (¥) LNIV=Y¥ INIV 4s8bup| sawy DYy Jo ubis uopduNI|
379n0a ‘va- oYYV #° ¥aav vsa- (da)sava=da s4va
INITga ‘va: rASEE (1@)savr=1a savr
va- ANS «SWI (Nsavi=I Sgvl an|pA
v 'va: AN auoN ()sav=y sgv |o¥v| an|osqy
Lesl=l Mg
ZOYY 40 yaav vsa- [esl=l rg:
¥ANS «SWI (exl=] 18
ININga "V°N suoN ((OW PUR) DV NI LO¥Y IO wxl vl 19"
a1enoa ‘4a*‘a; Z¢ | 0> 9s0qy1 Qx+0=a He"
3179N0a ‘4a°‘3a- Ze | 0580941y | ZOWY 40 ¥aAQY vSA” Y#x0=a 09"
318N0A ‘40 33" 92 | 0> 2931 gl 48NS «SWI Qxx3= 48
vay ‘4a°733° 97 | 0> 9spq 41| Yrxd=Y ag
DDV "I NI O3V
ZOUY §0 yaav vsa- (+x0=Q we*
49NS «SWI I+« 0=0 ag”
Tvay AN suop DOV "1 NI 193V {F 191.+d ag’
ZONY j° ¥yaav <8.v (=Y 18
auoN dANS =SWI Lex¥=Y ol:N
vy "V°N 20V "1 NI 1O¥Y (r 19)1%xY LR
05> “dxe puo | zoyv §0 ¥aQv vsa"
0=29s0q }1 G| 99" xSWI _
YIDIINI AN DOV 14 NI 193V T xl=I 99"
W
s|joD puteyg xocmﬂ.._vmuv,q sio41] souanbag Buljjpd spow u:ogﬂxm uoyulyeQq uoljoung

sUoI4OUNY DIsULLU]

i-€ 2[9PL

3-3

(((
Qwps ayy
s1 uBys asoym pud Zy /v 40
INITEGQ ‘va- ZOYY jo yaav vsa- (1a‘10)aowr=I1a AQOWr apnyubow ayy psadxe jou
379N0a ‘va* LOY¥Y 40 ¥yaayv vsa- (da’dQ)aOWa=da QOWQ | seop epnjtubow asoym 4aB3)
¥I93INI‘va- e+ dWr (I'Daows=l aow -uj up st [ZV/1V] F919YM
vy ‘va° VN auoN ANS «SWI ("9 AOWV=Y AOWY | 2O¥V [ZO¥V/1D38V1-1D¥y | Bulepuipwsy
INIT8a’va: 3 (10)r319a=da 3190
ININ8Q ‘va- (1Q)FLlVOH=y | rlvyOH
INI18a ‘3719n0a ‘va- (da)X1dar=1d Xar
va: (D31gar=1a 31901
ININga‘va: OYV 0 ¥aQv vsa: (10)1ONSI=I 1ONSI
‘va- LAY\ (da)xidr 4o
INIT8@‘319N0Oa ‘va-: YANS «SWI (W Xidr=ia Xl
vy ‘va (¥)3190=a 118a
378n0aq ‘va- (@1ONS=¥ TONS
vy ‘va- Q) XHI=1 X141
vy ‘va- ‘V*'N SUoN J Nivo1d=y IvoH oYV~ IAOWA uoISIaAUCD
ZOWY 40 ¥aayv vsa-
INIT8Q’'va-: LO¥Y o ¥aav vsa* (1a’1a)wiar=1q wiar
YIOIINI ‘va- e+t dWr (‘nwiai=l wiail aouaiay)id
v ‘va: *V'N auoN| YANS«SWI M wIia=y WIa (ZOWV’ LDYVINIW-L DYV aAl}Isog
INITgQ ‘va- ZOWY j0 ¥aagyv vsa’ (10’ 1IQNDISr=1a NOISP LOYY 4o ubis
379n0a ‘va- LOYY 40 ¥aav vsa: (da’da)NoDIsd=dd NOISa »
va- e+ dWF (' DNOISI=I NOISI ubig
Ivay ‘va- AN auoN ¥ANS «SWI M YNODIS=Y NOIS ZOuY $o ubig 30 saysundf
siig EDVIN]
s}ipD {pulapq \Aqu:uqu siory aouanbag Buij|p) apow 51 |0quIAS uoyiuyeq uoyoung

SUOIOUNY DISU LI4U]

(fuoD) I-€ 3|qm]

3-4

(1a* - hia)oNmwr=1a| oNWF
(1a:- - lia)oxwwr=1a| _oXWYWC
(XWNWT)
18Ba4ul
INI18d s|gnog
u .z _
(,9a dd) INIWQ=dQ
("da" "' lda)Ixvwa=da| IXywd
(XWNWQ)
uoisoaud
3719N0Qa -ajgnog
unyy 30 ¥aav vsa:
:) (Mg Ly INIW=I INIW
1O¥Y 40 ¥yqQav vsa- (Mg LY LXYW=I LXYW
L+Ut dWF (ML) INIWY=Y | INIWY
YINS=SWI (B by ixvwv=d | Ixvwy
(XWNWY)
XoW /Ut
Tv3¥ ‘43 DILINI {0sy
(e lpoNmwv=d | oNIWY
C1lDoxywv=Y | OXYWY
(U1 LpoNIw=I ONIW
(Mo lpoxww=I| oxXww
(XWNWI)
Xpui /uiw Is11Bap | anjoA wnwiuiw
VN “Y4393INI AN LN eBagup | 40 °N[BA LW 10 XOW = YYA /unw Xy
s|[PD [pussg xom___.hmvu< siodn] wuconvmm m::_cU apow u_m_wnw“n”t_/_Am uoyiuyaqg uolouny

SUOLJOUNG DISULIJU]

(uop) |-¢ 9|90y

3-5

3.2 EXTERNAL FUNCTIONS

Table 3-2 describes the external functions of the FORTRAN library, An external function is a sub=-
program which is executed whenever a reference to it appears within a FORTRAN expression and which

returns a single value,

A description of the algorithm applied in implementing each of these functions is given below.

3.2.1 Square Root (SQRT, DSQRT)
A first—guess approximation of the square root of the argument is obtained as follows:

If the exponent (EXP) of the argument is odd:

EXP-1 (EXP-1,
P0 =.5 2 +ARG 2

If EXP is even:
P0 .5 (Eép)+ARG (Eép)

Newton's iterative approximclfion, below, is then applied four times.
P, (P ARG)

3.2.2 Exponential (EXP, DEXP)
The following description also applies to the sub~functions .EF and .DF.

The function ¢ is calculated as 2XI092E (xlong will have an integer portion (I) and fractional portion
(F).
Then:

=2 ()
Where:

F_(S cgh2

2 ‘(i=oCiF)

n= 6 for EXP and .EF

n = 8 for DEXP and .DF

(continued page 3-7)

juabupy

oYV 40 yaav vsa:* d1]oq
Ivay’43°‘va: 9z BuopN| T+ dWr (IHNVI=Y HNVL | (D¥v)yucs ~1adAY
HNVLSWI
ZOYV 4° ¥aav vsa- (da’da) (zouv (A/X)
¥e 1O¥YV $° ¥aav vsa-: INVLYa=da | ZNV1va /1O¥Y) jusbuny
auwng 9z auopN| €+ dWr (" WZNVLIV=Y INVLY e o1y
YIS xSWI
31enoa‘aa*‘va- e (da)NvVLva=da | Nvlva juabuoy
vay'a3t‘va: 9 SuoN swng (INVLY=Y NVLV | (D¥Y), _uri o1y
Janoa’ea ‘va* ¥E (da)sODa=da SOJa
Tvay‘gat‘va: 9z auonN| awog (¥)soo=y SOD | (9yv)sod auso)
3ignoa’‘ea‘va-* ¥€ {da)NIsa=daq NIsa
Tvay‘ga-‘va- 9C auoN awng (MNIS=Y NIS (9¥v)uis aulg
(da)ol901a=da | o1901a ol wyj1ioboj
awpg awng awpg awng (AoLD01v=Y | 01901V | 9¥y" bo7 | uowwo)
I19N0Oa‘¥3"‘1a”‘va- AN (d@)9o01a=da 9071a 5 wytioboy
v ¥3I'33‘va: 9z awpg awog ¥)o01v=Y 201V | 9¥y boq jodnjoN|
319NOa’‘y¥3"‘4a°‘va- 143 0> 9¥V 4 ¥l (da)dxaa=da dX3aa 5 |pi4
vy 43t ‘va- 9% 0> UV # €l awng (¥)dx3=y dx3 oYy | -ueuodxg
oYV jo ¥yaav vsa:*
I1noa‘ya‘va- 0>9Uv #19 Z+" dWr (da)1yosa=da 1yosa jooul
Ivad‘¥3 ‘va- 9z 0> 94V 3¢ YINS=SWI (3)LyOs=y Lios z _9_< apnbg
m:UU _U:.._v.*Xm >Um_._.nmmwu< m._o._._m mu:v:_uww mcm:UU 0v0<< U:GAN_”W_Am :O_._._C_.._mh_ CO_._OCDH_

SUOLJOUNY [oUISYX]
<€ 2|9°1

3-7

The values of Ci are given below,

Valuve of i

W N O o AW N —= O

Value of Ci

1.0

0.34657359
0.06005663
0.00693801
0.00060113
0.00004167
0.00000241
0.00000119
0.00000518

3.2.3 Natural and Common Logarithms (ALOG, ALOG10, DLOG, DLOG10)

The exponent of the argument is saved as the infegral portion of the result plus one. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

Z _X=V2
X+v/72

Then:

oo X =+ (3 c... .22

%97 27 LA o
Where:

n=2 (ALOG)

n =3 (DLOG)

The values of C are given below:

ALOG and ALOG10

C] = 2.8853913

3~ 0.96147063

C 5= 0.59897865

3-8

DLOG and DLOG10

C] = 2,8853900
C3 = 0.,96180076
C5 = 0.57658434

C7 = 0.43425975 .

(continued next page)

The final computation is:
ALOG and DLOG:

ALOGI10 and DLOG10:

3.2.4 Sine and Cosine (SIN, COS, DSIN, DCOS)

|ogeX = (|092X) (Ioge2)

log]OX = (|og2X) (log]OZ)

This description also applies to the sub-functions .EB and .DB.

integral portion determine the quadrant of the argument and produce a modified value of the fractional

portion (Z) as follows.

- Low=Order Bits Quadrant
00 1
01 I

10 11
11 v

The argument is multiplied by 2/ for conversion to quartercircles. The two low-order bits of the

Modified Value (Z)

The value of Z is then applied to the polynomial expression:

h

. _ 2i+1
sin X = (;Eo C21+1Z

)

n=4for SIN, COS, .EB
n= 6 for DSIN, DCOS, .DB

The values of C are as follows:

SIN, COS, .EB
C1 = 1.570796318
C3 = -0,645963711
C 5~ 0.079689677928
C7 = -0,00467376557
C9 =0,00015148419

3-9

DSIN, DCOS, .DB

= 1.5707932680
= -0.6459640975

= 0,06969262601

Il

¢ 1
C3
C5
C., = -0.004681752998

7
C9 = 0.00016043839964

C] 17 -0.000003595184353

C] 37 0.000000054465285

(continued next page)

The argument for COS and DCOS is adjusted by adding n/2. The sin subfunction is then used to

compute the cosine according to the following relationship:

COS X =sin &2 +X)

3.2.5 Arctangent (ATAN, DATAN, ATAN2, DATAN2)

The following description also applies to the sub-functions .ED and .DD.

For arguments less than or equal to 1, Z = arg and:

5 2i+1
arctangent arg = (EZ:O C2i+]Z :

)

n=7 for ATAN and ATAN2
n = 3 for DATAN and DATAN2
For arguments greater than 1, Z = 1/arg and:
n
SLAD 21

arctangent arg == (i=0 C2i+]Z)
n =8 for ATAN and ATAN2

n =3 for DATAN and DATAN2

The values of C are given below.

ATAN and ATAN2 DATAN and DATAN2
C] = 0,9992150

C] = 0,9999993329

C3 = -0,3211819 C3 = -0.3332985605

C5 = 0.1462766 C5 = 0. 1994653599

C7 = -0,0389929 C7 = -0.1390853351
C9 = 0,0964200441

C] 1= -0.0559098861

C]3= 0.0218612288

C 15" -0.0040540580

3.2.6 Hyperbolic Tangent

The hyperbolic tangent function is defined as:

2
tanh ‘X‘ = (1- —5—o)
'I+e2 I X1
e is calculated as 2)(")"32e (xlogge will have an integral portion (I) and a fractional portion (F)).

(continued next page)
3-10

Then:
& = 2
Where:
n .
F=(s cF)?
i=0
n==6

The values of C, are:
i

Value of i Value of Ci
0 1.0
- 1 0.34657359
2 0.06005663
3 0.00693801
4 0.00060113
5 0.00004167
) 0.00000241

3.3 SUB-FUNCTIONS

Table 3-3 describes the sub-functions which are included in the FORTRAN library. These functions
are referenced by intrinsic and external functions but are not directly accessible to the user via
FORTRAN. The sub-function .EB, for example, performs the computation of sine and is invoked by
the external function SIN. MACRO programs may reference sub-functions directly. Algorithms for

all sub-functions which have counterparts among external functions were given in the previous sub-
section. This leaves the two general sub-functions Logarithm, base 2 and polynomial evaluator. Their

algorithms are given below.

3.3.1 Logarithm, Base 2 (.EE, .DE)

The exponent of the argument is saved as the integer portion of the result plus one. The fractional

portion of the argument is considered to be a number between 1 and 2. Z is computed as follows:

_X-v2
X+ /2

{continued page 3-14)

3-11

(ebrd jxeu panuijuod)

6
wJiay t_\ o)
uiay _ocN\ —U

1+, 0=!

: 1hg? 2%

§s0j 04 *xmc\—ucu =3qVYA

wiaf §spj \ cU u
—.+ A &O oo
swaey Jo saquint ~ /N-1ST1d ‘Lya’Caq)par=da | oa’

' Uoeaarlys . . L+2. 0=1

. (¥ ¥¥)0I=d | O3 _+_NN J M
319noa 18I7d 1D = WA uolpNibA
Ty “V'N auoN YANS=SWI |otwoukjod
3714N0a 143 (da)da=da | 4a° o uoondwon)
TV 9¢ SucN swng (3)43°=y 43° oYY [p1yusuodxg
uotipjndwon)
31enoa’¥y” 4> 0> O¥v ‘vl (d@3a’=da | 3a° Z (¢ #s09)
2RI EN 9 0> O¥Y ‘€l auwng (¥)33°=y 13° oYy Boj wyyranbor]
ve (da)ag'=da | aa’ uopyndwory
sung| 92 BUoN auiog (aa'=y| a3’ (Oyy),_uot | Jusbunyaly

|NS84 SUIDJUOD LN I :
{6}y SulPJUOD JOId|NWNJOD
31gnoa’oa’ 8¢ Butypo|y Ayyus 1y (da)ga*=da|{ €a° uoypindwor)
vI¥'oa° 6l SuoN AINS=SWI (Wea"=y | €3 (D¥v) uis auig
s|1°D (s1g) SwoN
[ouseyxy | Aopinody s40413 aouanbag Bul|[pD Spow 51]0quiks uojiulyeq uoljouny

mCO_._.UCDu_l&DW

€-€ 3I9rl

3-12

¢OYv vsa’
LYWV vsa’
L+Y9+* dWF
YINS«SWI

Ag ps||pD 8|

(uDYy jo ssauppp)

(ZO4Y j0 ssaippo)
(1DYY jo ssaippp)

L+U+* dWP
va’«SWrI
01vD ¥8Ns wownbuy
SUON| v'N SuUoN| auLNoy m:___cU V'N va* V'N 109 |plBULD
(s419) QWb
|oulaixg Aopinooy sJ0.44] souanbag Buljjed apow a1 joquig uoljlugeg uoyjoung

(fuoD) g-¢ 8|9p]

mCO_.—OCDu“I&Dm

3-13

Then:

log. X =1+(% c . ZZ
2 2 L= 721+
i=0
n= 2 (.EE)
n= 3 (.DE)
The values of C are:
.EE .DE

C] = 2.8853913 C] = 2,8853900

C3 = 0.96147063 C3 =0.96180076

C 5= 0.59897865 C5 =0,57658434
C7 = 0,43425975

3.3.2 Polynominal Evaluator (.EC, .DC)

A polynomial is evaluated as:

] 2 2, 2
X=Z(Cy+ 2% (C et Z°(C 7 +C)

0

3.4 THE ARITHMETIC PACKAGE

The arithmetic package contains the OTS arithmetic routines which are invoked by FORTRAN arith-
metic expressions. These routines may also be called directly by MACRO programs. Versions of
F ORTRAN-IV designed for use with the Floating Point Processor (FPP) require only single integer

arithmetic routines. Double (extended) integer arithmetic will be handled by the hardware.

The three major routines of the arithmetic package are INTEAE, RELEAE, and DOUBLE. INTEAE
contains integer arithmetic routines; RELEAE, real and floating arithmetic; and DOUBLE, double-

precision arithmetic.

A description of these routines is given in Table 3-4. In the "calling sequence" column, reference

is made to three accumulators - the A-register, the floating accumulator, and the held accumulator.
The A-register is the standard PDP-15 hardware accumulator. The floating and held accumulators are
software accumulators which are part of the RELEAE package. The held accumulator is used as tempo=
rary storage by some routines. Both consist of three consecutive PDP-15 words and have the format

shown below. (Negative mantissae are indicated by a change of sign.)

Held AC Labels Floating AC Labels

CEO1 JAA Exponent (2's complement)
0 V4
CE0? AB Sign .oF High.-order
mantissa mantissa
0 1 17
CEO03 AC Low order mantissa
0 17

The format shown dabove is that used for double-precision numbers. Single-precision numbers must be

converted before and after use in the floating accumulator to the single-precision format:

Low-order Exponent
mantissa (2's complement)
0 89 17
Sign of High-order
mantissa mantissa
0 1 17

RELEAE routines check for underflow and overflow and set a flog (. QVUDF) in the REAL store routine

.AH as follows:

Flag Meaning Action
non-0 positive value overflow - an attempt to store * largest representable real
a REAL constant whose binary value stored (DOS-15);

exponent is greater than 3778

negative value underflow ~ an attempt to store zero is stored
a REAL constant whose binary
exponent is less than —4008

zero default value value is stored

The user may test this flag under program control using the logical function IFLOW, Recoverable OTS

messages are also given (see Appendix B, Section B.2).

Division by zero is also checked and a flag .DZERO set to zero (default value is 777777) in the
general floating divide routine (.CI). The result of the division is + the largest representable value.
An OTS error message is also given for this condition. The user may test .DZERO under program

control using the logical function IDZERO.

The flags .OVUDF and .DZERO can only be initialized by reloading the program, by a separate
user program, or by IFLOW or IDZERO. These functions are described below.

Routine IFLOW

Purpose Checks underflow and overflow
Call IORLY = IFLOW(I)

External Calls .DA

Errors None

The argument I indicates the check to be performed and values are returned as follows:

I Action Value
0 no check 0(.FALSE) flag unchanged
<0 underflow check -1(.TRUE) if underflow - flag set to 0;

else 0 (.FALSE) and flag unchanged

>0 overflow check -1(.TRUE) if overflow - flag set to zero;
else 0 (LFALSE)

Routine IDZERO

Purpose Checks for division by zero
Call IORLV = IDZERO (I)
External Calls .DA

Errors None

If I=0, no check is made, IORLV = O(.FALSE) and the flag is unchanged. If A0, a check is made.
If an attempt at division by zero was made, 1ORLV = -1 (.TRUE) and the flag is reinitialized. Other-
wise the flag is unchanged and IORLV = O(.FALSE).

(ebnd 1xou panu) juoo)

*(393LNI) oHewyily 18Baju] Ajuo 211nbai SUOISIBA dddsy

~ oplAlp
pusplAlp Josialp | dQ/dd=da AV" | 1O¥V/2OuY asiensy
JOSIALP puspialp | da/da=dd V" | 2odv/19¥Y aplAld
Jot|dyyjow puooyjdiyjow | 4Qxda=dd SV° | ZO¥VxLO¥V Aldunw
jopngns
Zodv vsa- pusenuiw pusypuqns | dg-dd=dd nv* | LO¥V-Zo¥V asiandy
YINS«SWF) pusypuyqns pusnuiw | d(d-dQ=dd AN 4o\ A X 4 $opHqng
pusppp pusbno | 4Q+dd=da OV* | ZO¥V+L OV PPV
ss2.ppp anppA | (dd)dV"=dd dv* V°'N 81045
ssa.ppo (da)ov-=da ov* VN poo
2517 oV 14
. WYY
LO¥v uoIsioaiy
v -2]qnoq
— uoy}onaqgns
pusnujw pusynuiqns I-I=1 ZV" | Lo¥v-zouv 3SIBAY
pusypuiiqns pusnuiw I-1=l AV® | ZOuv-1O¥v | uonopugng,
UOISIAIP
puspiALp JOSIAIP 1/i=1 v | 1O¥V/2ouv 9519ARY 4
ZO¥V DV1 J0SIAIP puspiAlp 1/1=1 IV | ToUV/1OYY UOISIALQ«
4GNS «SWI uo}4od
Jor|dyyjnw pupdtjdiyjnw Ixl=] av" | Zo¥vxlo¥v AL W
ZO¥y Jesibey-y o1
.._.QEF_.__.;(
SUON| ~ 1O¥v Jebaju]
o”‘__oﬂwm_ aouanbag Buifjo) apowy o__morﬂﬂﬂm uoijiuLye(q uoljouny

/

Y 378N0Q

AN

> IVALNI

« 960 opg 2ijpWyIY
¥-€ ®19p1

3-17

> V13

(/ (_
(eBrd jxau panuljuod)
¥AAY ¥V ¥YO4 IOVYOLS 01vD 5
8D xSWI . . . uswnbio
LIX3-AYLNT ¥8NS 01vD W54 8 v'N 496 pioyg
an|oA anjoA oo =y 92" (L®1oN) | [onuoD ubig
onjoA @40°=d 40° V°N PIoH
YANS=SWI anjoA @)ao =y ao’ v'N 82} |oulIoN
pusppo pusBno =Y DD | TOUV+HLOWY PPY
Jof|diyjnw pupdyjdijjaw Y= d=Y VD' | ZOuVxLO¥Y A|duyjon
OV @13H ov°14
(¥)ve =y ve- OUvY ¥ a406aN
wnu d° 4)XV =1 XV* oy 1 xid
ANS+SWI wau g° 4 Jabajuy (DMmv *=Y Mmv* oYVl ¥ 40o|4
oV 14 Jesibey-y
SljBWYY
Buijpo|d
e SpiAlp
puspiAlp dosiA1p /4=y NV" | 19¥v/2ouv os19ASY
JostAlp puspiAlp U= IV | 2Ouv/1DYY opIAL(
soj|digjnw puooijdijjnu Y=Y AV | 20UV« 1O¥Y Adiynw
Joouyqns
ZO¥v vsa* pusnuiw pusyoyqns ¥-¥=Y Wy* | LO¥V-zouv asJonSY
AINS=SWI) Puaypagns pusnuiw 3-¥=y rv: | zo¥v-19¥v Joougng
pusppo pusbno A=Y IV | Z9¥V+HIO¥Y PPV
$s2.4ppo en|oA (WHV "=y HY* V'N aJoig
sseJppp (Wov- =y ov* V'N _omO._
- A ui
ZoNY oV 14
-}po|§ sapn|>
~ Lo¥y _ui) oiyew
-Yiy |y
$11°0 SuPN uoijiu1ge uoijoun
|pUIaIXg @ouanbag Buij|eD apow o1 joquidg Huied : 3

abn3jopgd d14oWyiay

(4u0D) #-¢ °|9p)

3-18

*(uoysioeud o|qnop Joj | ‘uoisioaad oBuis 4oy OOp) 4tq uaigonb
4updy1ubLs 4s09] BYy s1 ZJSNOD *(uoisioaud 3|qnop 1oy iy~ ‘uoisioasd a|Buls 4oy g-) pesoususb aq o4 spiq 40 Jaquinu ay4 sa4polpul | 1SNOD
"I1D° 30 uoisieA 3y3-NON Yt Aq Ajuo pasn aup Aeyy ‘aenemoy ‘suoiypsado 3y3-NON PUD Jy3 Yioq 4oy paiinbas oo ZLSNOD pup [ISNODxx

"G03D Ul paADs S| gy " jo uBis 8y] 3" ul paJoys si (Z0ID PUP gy Jo sHq ubis ay4 Jo YO SAISN|Ox®) jjnsaa sy} jo ubis ay|

(Nvre=r vre oYVl a3oBaN
WVAY [YINS«SWI < JoquinN *d° 4 @)Xre=r Xre DYV F|
v’ ao: oquaN“dtd "] "qnrog (OMr-=Y Mre OYVr-y 400| 4
oVl OW’ DOV
s 3pialp
puaplAtp dosiALp r/r=r NI | 19¥v/2odv as1aAY
Josialp puaplAip r/r=r U | 2O¥V/1D¥V aplAalqg
so)|dyyjw pupoyjdiyjnu Cxl=r AT | 79¥Vx1O¥Y Aldujnw
}opuyqns
Zo¥v vsa- pusnuiw pusynagns r=r=r Wr* | 1O¥V-ZodY 3510/
4NS=SWI) pusypsiqns puenuiw r-r=r rr* | z0¥v-1o¥y 1oo1qng
pueppo pusbno r+r=r Ir | zo¥v+lo¥v PPY
ssalppo an|oA (CYHr=r Hr* V°'N 2104g
i (ror-=r or- VN proT]
Zo¥VY OW’2oV
LO¥Y
¢ISNOD ubis
LLISNOD on|oA YHO"=Y HO" V'N pup punoy,
+» JANS+SWI pusplalp J0s1Alp /4=y ID° | Z9¥v/1o¥Y mM_o_zov
o)
UIwEr_.:._<
oV* a13H V14 Buiioo|4
m:UU BWDBN
uIBIxg souanbag Buij|op apow o1]oquikg uoituiieg uoljoun4

abo>ong o) oy iay
(0D) p-¢ 2|90y

INI

3-19

CHAPTER 4
UTILITY ROUTINES

Two types of subprogram are described in this chapter - OTS routines, automatically invoked by
FORTRAN statements; and external subprograms which may be invoked via a FORTRAN CALL statement.
Both types are accessible to MACRO programs.

4,1 OTS ROUTINES

OTS utility routines perform a number of functions specified by FORTRAN statements. These functions
of FORTRAN, like the input-output functions discussed previously, use OTS as an interface between

the user program and the monitor environment in which it will operate.

Each of these routines is described below.

Routine .SS
Purpose Calculates the address of an array element
Calling .GLOBL .,SS
Sequence JMS* .S§S
.DSA ARRAY / addr wd. 4 - array descriptor block
LAC (K.) / subscript i
.SS i
LAC (Kk) / subscript k
DAC ALOC / return with element address in AC
External Calls None
Errors None

.SS references the array-descriptor block associated with the array whose element is fo be located.

An array descriptor block is a four-word table with the contents depicted below.

Word 1 0 Data Size (in words)
mode
0-2 3-4
Word 2 0 - for one-dimensional array

Size of first dimension

Word 3

0 - for one- and two~dimensional arrays
Size of the first two dimensions

Word 4

Address of first word of array with mode in bits 1-2,

Size is determined by multiplying the dimensions of the array by the number of words (N) used for a
data item of the specified mode (M). Thus, an INTEGER array defined by DIMENSION (2,2,2) has

the size 8 in word 1, the size 2 in word 2, and the size 4 in word 3. A REAL array of the some

dimensions will have 16, 4, and 8 in these locations.

The values of M and N for the various data modes are:

Array Mode

INTEGER, LOGICAL
DOUBLE INTEGER
REAL

DOUBLE PRECISION

The address of an array element A(K]

IK2I

M N
00 1
1 2
01 2
10 3

K3) is calculated by .SS using the following formula:

addr = WD4 + (K.‘ =1) * N+ (Kz-l) * WD2 + (K3—l) * WD3

Routine .GO
Purpose Computes index of computed GO TO
Calling LACV / index value in A-register
Sequence JM§* GO
-N / number of statement address
GOTO STMT(1)
STMT(2)
STMT(N)
External Calls OTSER
Errors OTS 7 - illegal index (<0)

4-2

STOP

PAUSE

SPMSG

OTSER

Recoverable errors are indicated when bit O of the error number is a 1. In this case, the AC and link

are restored to their original contents and control is returned to the calling program at the first loca-

Routine

L ST

Purpose Processes STOP statement (returns to monitor)

Calling LAC /octal number to be printed

Sequence JMS* ST

External Calls .SP

Errors None

Routine .PA

Purpose Processes PAUSE, Waits for tP and returns control
to user program

Calling LAC /octal number

Sequence JMS* [PA

External Calls .SP

Errors None

Routine .SP

Purpose Prints octal number for PAUSE and STOP.
Zero assumed if none supplied,

Calling LAC /octal integer

Sequence JMS* [SP

.DSA (control return for PAUSE)
LAC (first character)

L/;\C (sixth character)

External Calls None

Errors None

Routine .ER

Purpose To print error messages on Teletype and take
action according to class of error

Calling JMS* [ER

Sequence . DSA (error number)

External Calls None

Errors None

tion following the error.

4-3

Unrecoverable errors are indicated when bit 0 of the error number is 0. Control is returned to the
monitor by means of an .EXIT function. In the case of an unrecoverable error in a FORMAT statement,
the current 5/7 ASCII word pair of the erroneous FORMAT is also printed. The calling sequence for
.ER for a FORMAT statement differs from other calls and is:

JMS* _ER
.DSA 12 / error number
LAC chars / current 5 characters
LAC chars
PARTWD
Routine .PB
Purpose Part word fetch result in AC or ACMQ
Calling JMS* [PB
Sequence .DSA address
External Calls None
Errors None
PARTWD
Routine .PC
Purpose Stores contents of AC or ACMQ
Calling JMS* PC
Sequence . DSA address
External Calls None
Errors None

4,2 FLOATING POINT PROCESSOR ROUTINES

Routine AX
Purpose FPP version of software .AX
Routine AW
Purpose FPP version of software .AW
General Routine JZA
;nfer- Purpose Loads high order mantissa of FPP AC into the
ace, regular AC
Routine
.FPP Routine .ZB
Purpose Initializes FPP ervor handling
Routine
Purpose Error handling

Extended Routine .ZC

Integer Purpose Converts integer in CPU AC to extended integer in

(Double FPP AC

}nteger) Routine .ZD

nterface

Routines Purpose Converts extended integer in FPP AC to single
integer in CPU AC

4.3 FORTRAN - CALLABLE UTILITY ROUTINES

These routines are described in Table 4-1,

4.4 RSX LIBRARY (.LIBRX BIN) ROUTINES

A special set of routines is provided for use with the RSX-15 real-time monitor system. This library
includes, in addition to the subprograms described previously, the FORTRAN-callable external sub-

routines given in Table 4-2. The even variable values have the following meaning:

a. Positive values signal successful completion.
b. Zero indicates a request is still pending.
c. Negative values indicate rejection or unsuccessful completion.

-5 Illegal header word from device (data mode incorrect or data validity bits improperly
set) (DVH)

-6 Unimplemented or illegal function (DVH)
-7 lllegal data mode (DVH)
-10 File still open (DVH)
~11 File not open (DVH)
-12 DECtape error (DVH)
-13 File not found (DVH)
-14 Directory full (DVH)
-15 Medium full (DVH)
-16 Output word-pair-count or input-buffer-size error (DVH)
~-23 Input word-pair-count error (DVH)

~24 LUN has been REASSIGNed while an ATTACH or DETACH request was in an I/O
request queue (DVH)

-101 Out of range Logical Unit Number (10.)

-102 Unassigned Logical Unit Number (10.)

-103 Non-resident Device Handler (I0.)

~104 Control Table argument error (DVH)

-201 Task not in system (RQ., SC,. RN., SY., DA,, EA,, FX,. UF., CN.)

(continued page 4-15)

(8Bod jxou psnuijuod)

- asodund sjyj Joy pasn aq upd seulynos pai|ddns XY SO T XSY YHIM pajsoddns JoN

* ;ndyno sebossew
ou ‘0> N 4l
*Z = N sewnssp
YISLO ‘usmib
ou 51 13544
J1 “uoissaiddns
aJoyaq yndino ¥ISLO
oq o4 obpssaw Aq jndgno sioue
souwyy Jo Jequinu D1JoWY}IID Swiy
Bula1b sebeyul = N :@J0UpM -uni jJo Jequinu Bui |pupy
(N)13s¥¥3 11vD ey sjoquoy - 13S¥AA Joug
3o0}2 sdoys
osez-uou = 4401
SPUODS
30 syiusy = QLD3sI
spuodes = H3SI 5puooas Jo Syjus]
soouIW = NWI ‘949UM pup “spuooas
8uoN YIWIL® (1d01°010381 ‘sajnuiw ul awi}
va: IWILL ®8S *D3SINIWIDOLIWIL T1VD pasdojo spioday |, OLIWIL
wosBoad
d §,49sn D U}
v m._:ooxw o4 mEtm syndyno] Jurod Aup
SI'WI(00L"7)LIIM 300)> doys o} aulyooWw o 9ALJOD
L w..._OH osez~uou= JJOI 9]240~(9 aq Aow ||p2
. spuodas = DISI uo SpuUODSs pup suo Ajuo
YIWIL® . v sosnuIW = NIWI *otoYym sonuIW Ul dwiy - Bujjpupy
SuoN va: (4O1'SI"WDAWIL 1IvD (4401 23SI'NIWDIWIL 11vD pasdoja spioday | L IWIL 301>
s||o awp
sodig o _.“.__mwam_ so|dwpxy asuanbag Bul|jpD asodung >E.7Z_m_ aulnoy

seulynoy AN 9[9RIPD-NVILIO 4

l-¥ ®l9pL

4-6

(ebpd yxsu penuijuoo)

oAy
~o8dsar “(0] “ 0g) Pu (0L“01)
pauoisuawip usaq poy Aayy 41
So peduaisjas @q Aouwl 7 pup g

(oz’(1o1)v’d)erav 11vd

g ul
Joaddp o) smou

(oL (Lv*gerav 11vd J0 soquin oys = N
. Lrav
. 40§ SD 81D g pUD 7 :auaYp Aoup (#uoD)
av* (1'D)> (IN ~.ﬁlmvw_.n_{ 1IvD |ouoisusulp Bujuoisuswiq
SUON var | “(L'1)g"(00€)V NOISNIWIGQ (L'1)8 NOISNIWIa | -omip snlpooy | zray e|qpisnlpy
aujjnoiqns o
uy yuewnbBio Awwnp o
8q Aow 7 *g Apaio
40 se1jus |jo pjoy
Of JUD1Di44Ns aq SN
yoos (oQ}) so Y JO suoisuswip oy :ajoN
pauotsuswip ussq poy Kayy ji (g j0 uoipo0]
SD pedUsIa el 9q Aow 5 pup g #Bpuoys Bujuuibaq
y S44 st yorym
: sowwu '*6%9)
s . juswsje Aouo g jo
((toe)v’ D) Lrav 11vo uo! *__80_ %omow
((to)v*g) Lrav 11v>d " BupuuiBeq =y
. swpu Aolp = g :aIdYM Apuip
. (v'a)lrav 1vo [puoisusuilp Bujuotsueuilq
SUON va" | (1)27(1)e"(00€)V NOISNIWIG (1)d NOISNawIa -suo ssnipo of lray a|qpisnlpy
sJodlg _c”w _M.Wm sajdwoxg aouanbag Buij|oo ssoding Mw_c._”h/__m aulnoy

seuiinoy AN 9f9e||PD-NVILYIO 4

(o)) |-y @|9p]

4-7

>_m>:umo_m0._ g Aoup
‘(ol'oL*g) pup (5‘0L'2) uy Joeddo
_uwcommcoc.__u cwwﬂ 10& \Awr_._ ..: ol m:E:_oo
sp _umucw‘_mmw._ 00_ >OE U ﬁco m ..*O ..0&:.5: = UZ
(oL‘oL“(LoL)V‘D)erav 11vo Zray 4oy so
(oL’ (L)V’Q)erav 1vo aip YN pup ‘g’y ieddym (4uoD)
av’ (') (ON“UIN‘V*9)erav 11yD | Apup ouotsusullp Bujuoisuswiq
auoN va’ ‘(1"1)9" (00€)Y NOISNIWIA (1“1°1)9 NOISNawIa | —°9yi P jsnlpo o) erav ajqpisnlpy
m__UU OEDZ
sJodlg ouIeIg so|dwoxg aouanbag Bul|jpD ssoding AYING au1Lnoy

seunoy A1|tiN 2|qRIIPD-NVILIO S

(uoD) 1-¥ 1901

4-8

(ebpd jxou panuijuod)

*juawnBip |puoljdo UD S| S|GDLIDA JUSAS B} JOY} ©OD1pUl S§exopIq aapnbg .,

LL[- pPup ‘g0z~ “10Z- ‘L+

s{un a|npayosal = ()11
(Aop suo o} dn) |pAtequr o npayosal = () 1]
(stnoy = “sejnuw = ¢ ‘spuodas = g
'$fo14 = |) suun 2npayos py|ep = (Z)11
(Aop auo o4 n_:v
MOU woly B} pj|ap |Npayds = (}) 1]
Aouao 19bajul piom—y jo awpu = |1

SIETYY
(IA311d1° LI'WYNISLHUNNY T11VD

owly bijep ul djspy uny

NNy

LLL- PuR ‘€02~ ‘10T~ ‘1+

(sinoy = ¢ “seynuiwi = ¢ “spuodes =g
‘s214 = |) shun sjnpayosal = (G)11
(Aop suo o} dn) |patejul o|npaydsal = ()11
(66~0) puodss jo oinpayos = (g)11
(66-0) @4nuiw jo a|npayds = (g) 11
(€2-0) 4noy jo Bnpayds = (1) L]

a|npayos

Buiqiuosep Aoaip seboyu piom-G jo swpu = ||

SEIEETIYY
(IA31’ 1dI’ LIYWYNDISLHY)AIHDS 11VvD

uoty
- D3 X0 v_mU.— mO_DTULUW

I1NA3IHOS

LL/- ‘y0C- “20C- “10Z- L+

9|qPLIDA JUSAD = AJ]
JupysUOD Jo 9|qRLIPA aq Aow
(¢ls-1) Aponad sps04 = 4]

(s194004DYd G 0} |) sp} JO BWPU = WYNSL
SWDU 3D} U} SI94ODJDYD JO *OU = U

"m._o..._>>
(AL I WYNDISIHU)LSOIY 11vD

uo1}NDeX® sby sisenbay

1S3INOIY

pauInisy mo_ﬁ_o DA JusA]

sousnbag Bui|jpD

ssodung

aulinoy

£SOULINOY XSY B|9P|[PO~-NVILIOL
¢ 2IPL

4-9

(ebod yxsu panuijuod)

*juswnBip [puolido UD S| S|GPIIDA JUDAD B} JDY} B40DIPUL 549>001q a4pnbg

0J8Z-UOU USYm dWnsas
!0 = 9|qPLIDA JUSAD

(AID¥ILIVM 1TVD 31 >fso} puadsng 404 1IvM
(** "SP4 = 1) sHun o8P = (7)1
(App ouo o} dn) [pAssjul RYBP = (1)1I
Aoiip jebajul pJom-z jo awou = ||
“SIBUM awij py|ep ul
LL/- PuP "€0Z- “1+ , (AJL LDXAVYW T1TVD 9|qPIIPA JUIAS UD {35 HIVW
S0¢- pup ‘goz- ‘L+ (A1 TWYNMISLHY)IWNSIY T1VD UO14ND8XS SO} BUINSTY IWNS3d
[1P2 IWNSTY P [Hun
poiytwiad jou uolynoaxy
* [|p2 s1yt Buinssy >soy
aN3adsns 11vo Jo uoyynoexs puadsng aN3dsns
(>1sp4
: SA1JOD UD JOj }28}48 OU)
LL/- PUP "L0Z- 1+ (LA3I* IWVYNISIHUY)TIDNVYD T1IVD Uoi4Ndaxa >sb} |33URT 1IDONVD
(*** ‘s}o14 = |) siun sjnpaydsal = (G)1]
(Aop auo oy dn) [pAsBiul B|NPaYDsaL = (})]1]
(Aop auo o4 dn) awly uol}
~DZJUOIYOUAS WOl |PAIDJUL B|NPBYDS = (Z)LI
Ao .
‘3914 = |) sylun uoi4pzIuoIyouAs = ()il
Aoiip 1eBajui pJIOM-G 4O dwbu = |]
F9434M [PAlBjU] paljioads
LLL- PYP “g0C- LOZ- ‘Lt (TA3L* 1dI” LI“WYNSLTHU)DNAS 11VD D 0 04 84N09X] ONAS
pauinjay SO [gPIIDA JUSAY asusnbag Bui||pD asoding aulynoy

¥SOULINOY XSy 2|9P}PD-NVULIO
(u0D) -7 ®|9PL

4-10

(8Brd yxau panu 14uod)

*juawnBip [puoijdo U SI B|GPIIDA JUBAD B} 4OY} 2J0D1pUl S42X9DIq S1pnbg,

Jolle uo Jajsibal
SMYDIS JSIP BY4 JO SjUSJUOD Y4 = N

patsajsupay oq
o} pypp Buluipjuod Aoup Jo swbu = AVIYY
J9JSUDI} O} (|PW]DSP) SPIOM JO J8qUNU = PN
$sadppp 195430 Asip = YOI
(1v3Isg Buipuodsaiod 1oy
SD SWPS) 2D} JOMUOD BDIASP = 1D

I =RETTTTY
N= pue |+ (IAI1" JIAVRIV MN ' VOI' V12D LNdNSA TIVD ASIp U0 D4Op 4ng L1ndysa
(T¥>sq Butpuodseuios ayy ui pasn
SD $S2.ppR SWDS) B|qP} |0IUO0D = g]
18J9YMm

LLL- Pue “pOL~ “1OL- ‘G1~ “9- “I+ (A1 19LD1)TVaNSA TIVD | 9Brioss ysip a4poojjpeq vadsa

(spaom uy) abpioys pausep = pAN

Jequinu jiun dsip [pa1sAyd of
SA14D[o) U000 9o0nds ayy

4o ssaippo Buiupis aynjosqo = (g)g101

Jaquinu jiun dstp |poisAyd = (2)g10I

pajpoo|ip x__u:._oo junowp = (1)g1D1

(uongpiedo jo pus 4o pauinjas
Aouip 19Bayui) 9|qo} [o4uod = g| I
tadoym
LL/-PYP "yOL- “10L- ‘Gl- ‘9- ‘1+ (A1 IMN“LDDIVISa TIVD abpJoys ysip 94000||y 1vsa
1IX3 TTvD | Uolnooxa >sof ajpuiisg 1IX3
JuaAe jups1ubls yxau o
S5UBLINDD0 |LjuUn SO}
LIVM T1VvD 30 uolynoexe pusdsng LIVM
souenbag Buijjp) asodung aulnoy

pouINaYy SO|CDIIDA JuaA]

¥SPULINOY XY 2|9P|IPD~NVILIO 4
(o) z-¥ °|90)

4-1

(eBpd yxau panujijuod)

* juawnBip [puclydo UD S| S[GPIIDA JUDAD B4 JDY S4PJIpU] §}9%I0Iq a4pnbg,,

(pasn usaq

9ADY YJINF pup 3IIS) pasusiio
-3]i4 §1 | O4 495 - pajuaLIO-3[Y - ¢ 4Ig

jndyno
9q UPD Dyop 41 | Of 485 — yndjno - Z 4ig
Jnduy
9q UDD D4Rp 41 | Of Jos - yndul - Z Hig
pesnun - o Hg

‘Uojjbwaojul Jejpuby

(NN7)

JequinN Hiupn |paiBon
Jojnotod b yjm
pejpidossD Jo|pudH
O/1 @Y+ pup 921A3p
|poisAyd ay4 jnogo

Buimo||o; ays Buluipjuod piom ajbuig (AJI'NNT)ANIH 11D UOl DULIOJUL SSPIACIY ANIH
£ol- ‘zol-
“Lot- ‘pl-‘el- ‘gl- ‘11- ‘9= 1+ (AL’ 1LX3HY WYNT4HU /N NT)ASOTD T1VD 3|1} s8s0|D 1SO1D
L1/~ pup ‘€0~
‘Z01- ‘10L= ‘1= ‘TL- “LL- ‘9- CL+ (ALY 1LXTHY WYNTHY NATYEFINT TIVD sndjno oy a1y uadQ RERINE]
UoISUDIXS Ja}opIoyo £~ = | X3
aupu Q_E ._m._UU._Ur_U ml_. = <<<Z.._u_
co_mcm+x0
JO awpu 0__..— c_ m.._w._oo..cr_o .._0 g@o_EDC =Uu
Joqunu jiun |paiBo| = N
/41~ pup ‘€01~ FoISHM
‘zol- ‘10L- ‘¢€1- ‘Zl- ‘oi- ‘9- ‘1+ (EAZT* JLXTHY WYNTIHU N O1)MIIS T1vD | 4ndul doj o)1y uado yeeg M33s
L4/~ pue ‘gol- “l0L- ‘9- ‘L+ [AJI’ INNT)HOVLIA T1vD | ’fsedsejpurH O/1 yopieq HOV13da
Joquinu jiun |paiBo| = N1
"m._mr_\S
LLL-pup ‘€0L- “10L- ‘¥g- ‘9- 1+ (A" INOHDOVLLY T1vD | ise4 49|pucH O/1 YdPhY HDVLLY
N- pue L+ (IAI1 JAVEEY ‘MN YOI/ Y1OD13DMNSA TIVD sip woly pjop 189 13938a
pauJaniay sajqPIIPA JUSA] eouanbag Buijpd esoding auljnoy

£SPUHNGY XSY 9]9P|[PD~NVYYLIOL
A._couv 2 @19°1

4-12

abod yxou psnuijuos
penuijuod)

*juawnBup |popydo ub s) 9|qoLIDA JuBAD 9Y4 Joy4 o4polpul s4oxoRIq aapnbg

(65-0) spuodes = (£)IWILI
(65-0) sesnuiw = (Z)IWILI

(€2-0) s4noy = (1)IWILI
Apup Jobajul piom-¢ = JWIL]

1aaym
(AWILLDAWIL 11vD

9A1}ND9X]
wouj swly UIRgO

IWIL

dV123a 1vD

JUSAD JUDD
-131ubis o saio |23

dv1234a

£02- 102~ 1+

(A3’ IWVYNDISIHUXIANA 11VD

2102 U] >sD} XU

XIdNN

20Z- ‘102- 1+

(AL IWYNDISLHU)XIE T1VD

9402 ul sp} X1 4

XId

olz- ‘102- ‘1+

([ATT* IWYNASLHY)ITEYNT 11VD

v_m_u.— a|qpuj

319vN3

olz- “10e- "1+

(AL IWYNMSLHU)TI8VSI TTVD

sy 8|qpsig

31avsia

opq Bupsjiom pup g9 4o Buipps sediAsp
UMO 13y} o} sopod ubissp plnoys stesn
Aofdsip GLIA - IA - €1
adoos 8BpJoys GIdA ~ dA - Z1
4oqupid aut| 6id7 - 471~ 11
yound adoy-sadpd g[Hg = d4d - 01

dsppal pIpd geoyd - gD - £
19ppal adpj-sodod Glod -¥d -9
adoio W 6601 - IW - G
adoyy3@ @z0dL - La - ¥
ood sip ZodYy - dd - €
SIPD3Q ProY-pexyy Gl - NG - Z
(6111 “GLLY “®josuod) o)1 - |
S901A9p papp
~UDJs Jo} poxiy 84b mojaq
$9po) °(s9diAsp |pwidep
€9 04 |) 9pod @o1ASp ~ /|~Z| sig
Jequinu giun - | [-4 shg

(#oD)INIH

pauInN}oy S9|GRLIDA JUSAT

@ousnbag Buijjoy

asodung

sui4noy

+SOUHNOY XSY 8190][PD-NVILYO
(1u0D) Z-¥ ®[9eL

4-13

* juswnbip |po14do UD S| S|QDLIDA JUSAS B} 40U} BJDDIpU} S§939RIq sJonbg,

(66-0) spuodss = (9)3Lvdal
(66-0) sesnuiw = (G)31v Al
(€2-0) s4noy = (y)3Lval
(66-0) 4024 = (€)3Lval
(te-1) 4op = (Z)aLval

(ZL-1) ysuow = (1)31val
Aoup Jabajul plom-9 = 31y Al

"m._we_>>
(31vanialva 1vo

DALINDSX] WOk}
2]pp pup dwly uiniqoO

iiva

pauINISY mm_ ﬂOm._U> JusA]

souanbeg Bul|jpD

asoding

su14noy

FUHNOY XSY 2|9R|[PD~-N VY L¥OA
(uoD) Z-7 °l9pL

4-14

-202
-203
-204
-205
-207
=210
-301
~-302
=777
DVH
10.
RQ.
SC.
RN.
SY.
CN.
RS.
Cl.
DI.
FX.
UF.
DA.
EA.
MT,

Task is active (RQ., FX.) or not active (RS.)
CAL not Task issued (SC., RN., SY., MT.)
Task is DISABLED (RQ., SC., RN., SY., FX.)
Task not suspended (RS.)

Task already FIXed (FX.) or not FIXed (UP.)
Partition occupied (FX.)

Line number rejected (CI., DI.)

Line is CONNECTed (CI.) or DI CONNECTed (D1.)
Pool is empty

Device Handler

'QUEUE 1/O' Directive

'REQUEST' Directive

'SCHEDULE' Directive

'RUN' Directive

'SYNC' Directive

'CANCEL' Directive

'RESUME' Directive

'CONNECT' Directive

'DISCONNECT' Directive

'FIX IN CORE' Directive

'UNFIX' Directive

'DISABLE' Directive

'ENABLE' Directive

'"MARK' Directive

OTS routines which have been modified for RSX are:

FIOPS

SPMSG

STOP
PAUSE
OTSER

modified fo use the RSX 1/O CAL'S. .FP, which initializes the 1/O status table
has been converted to a dummy subroutine.

If a Negative Event Variable occurs as a result of a FIOPS issued 1/0O request, an
error message (OTS 20) is issued and the task is EXITed.

rewritten to include the task name. The message is output to LUN 4 in the follow-
ing format:

STOP - 000000 - TSKNAM

uses RSXEXIT CAL
SUSPEND:s the issuing task. To continue, the RESUME MCR function is used.

passes its name and an octal OTS error message number to SPMSG.

Additional routine used by RSX for bank/page mode determination is .BP.

4-15

Two additional OTS routines are given below:

Routine FTSB
Purpose To convert two words from .ASCII to . SIXBT
+ASCII Calling Sequence: SUBA 0
to JMS* _DAA / get call args
. SIXBT JMP ARGEND
gg:"e" FROM 0 / PTR to ASCII word-pair
ARGEND JMS* FTSB
.DSA FROM
.DSATO
TO BLO.CK 2 / two 6-bit words

.DAA is a routine which performs the argument list transfer function formerly performed by .DA. The

calling sequence has not been changed, but the transfer stops with the end of the shortest argument.

4-16

CHAPTER 5
FORTRAN-IV AND MACRO

In previous chapters, MACRO calling sequences have been given for OTS and Science Library Sub-
programs. This general form is used in a MACRO program to call any FORTRAN external subroutine
or function. A FORTRAN program may also invoke MACRO subprograms. The method for each type

of linkage is given below.

5.1 INVOKING MACRO SUBPROGRAMS FROM FORTRAN

A FORTRAN program may invoke any MACRO program whose name is declared in a MACRO .GLOBL
statement. The MACRO subprogram must also include the same number of open registers as there are

arguments. These will serve as transfer vectors for arguments supplied in the FORTRAN CALL statement

or function reference. A FORTRAN-IV program and the MACRO subprogram it invokes are shown

below. More extensive examples are given in Appendix C.

FORTRAN MACRO
.TITLE MIN
C TEST MACRO SUBR .GLOBL MIN, .DA
MIN O / entry/exit
Cc READ A NUMBER(A) JMS* DA / general get
/ argument
1 READ(1, 100)A / (OTS)
JMP +2+1 / jump around
100 FORMAT(E12.4) argument
registers
C NEGATE THE NUMBER
C AND PUTITINB MIN1 .DSA 0 / ARG1
MIN2 ,DSA O / ARG2
CALL MIN(A, B) LAC* MINT1 / first word of A
DAC* MIN2 / store at B
C WRITE QUT NUMBER(B) ISZ MIN1 / point to second word
ISZ MIN2 / of Aand B
WRITE(2,100)B LAC* MIN1 / second word of A
TAD (400000) / sign bit =1
STOP DAC* MIN2 / store in second
/ word of B
END JMP* MIN / exit
.END

5-1

The FORTRAN statement CALL MIN(A,B) is expanded by the compiler to:

00013 JMS* MIN / to MACRO subprog
00014 JMP$ 00014
00015 .DSA A
00016 .DSAB
$00014 = 00017

When the FORTRAN-IV program is loaded, the addresses (plus relocation factor) of A and B are stored
in registers 15 and 16, respectively. When the MACRO program invokes .DA, these addresses are

stored in MIN1 and MIN2 and the values themselves are accessed by indirect reference.

Arguments are, as described above, transmitted by .DA using a single word. Bits 3-17 contain the
15-bit address of the first word. Bits 0-2 serve as flag. FORTRAN uses bit 0 to indicate that the word
specifying the argument contains the address of a word containing the address of the first word of the
argument. The MACRO argument word always contains the address of the first word of the argument.
For array name arguments (unsubscripted), the address of the fourth word of the array descriptor block

is given. .SS must be invoked to locate the element.

For external functions, the MACRO subprogram must return with a value in the AC (LOGICAL,
INTEGER), AC-MQ (DOUBLE INTEGER) or in the floating accumulator (REAL or DOUBLE PRECISION).

5.2 INVOKING FORTRAN SUBPROGRAMS FROM MACRO

The MACRO calling conventions for FORTRAN subprograms are: the name of the subprogram must be
declared as global; there must be a jump around the argument address; and the number and mode of

arguments in the call must agree with those of the subprogram. This form is shown below.

TITLE

.GLOBL SUBR

JMS* SUBR

JMP ANET / jump around arguments ignored by .DA
.DSA ARGI / address of first argument - bit 0 set to 1
.DSA ARG2 / indicates indirect reference

DSA ARGN

When the subprogram is compiled, a call is generated to .DA which performs the transmission of

arguments from MACRO. The beginning of a subroutine might be expanded as follows.

C TITLE SUBR
SUBROUTINE SUBR(A, B)

000000 CALO
000001 JMS* DA
000002 JMP $000002
000003 .DSA A
000004 .DSA B

$ 000002 = 000005

If a value is to be returned by the subroutine, it is most convenient to have this be one of the calling
arguments, An external function is called in the same manner as o subroutine but returns a value in

the AC (single integers), AC-MQ (double integers), or floating accumulator (real and double-precision).
To store the AC, the MACRO program uses a DAC instruction. Values from the floating accumulator
may be stored via the OTS routines .AH (real) and . AP (double-precision). For FPP systems, values

are returned in a hardware accumulator and stored with an FST instruction.

A number of examples of MACRO-FORTRAN linkage are given in Appendix C.

5.3 COMMON BLOCKS

FORTRAN COMMON blocks (and block-data subprograms) may be linked to MACRO programs. When
the MACRO program is loaded, global symbols are first sought in the user and system libraries. Any

remaining are matched, where possible, to COMMON block names. For example:

FORTRAN MACRO
INTEGER A,B,C .GLOBL NAME, . XX / .XX isname given to blank COMMON
COMMON/NAME/C / by the F4 Compiler
COMMON A,B DZM* XX / CLEAR A - NOTE INDIRECT REFERENCE
. 1SZ XX / BUMP COUNTER
: DZM* XX / CLEAR B
¢ DZM* NAME ./ CLEARC

Note that if the values are REAL (two words) or DOUBLE PRECISION (three words), the MACRO program
must account for the number of words when accessing specific variables. This cannot be done if programs

are loaded via CHAIN and EXECUTE.

5-3

APPENDIX A
LANGUAGE SUMMARY

Text
Statement Model Effect Reference
Arithmetic var = value value is assigned to 2.1
array (i) = value var or array (i)
ASSIGN ASSIGN n TO label Statement n is assigned 2.2
the symbol name label
BLOCK DATA BLOCK DATA Identifies subprogram 4.4
which enters data into
COMMON block at run time
CALL CALL subr(a.' sGpreeed) Control is transferred to the 5.2.2
CALL subr n subroutine; a.,a,,...a are
substituted for dirhmy variables
COMMON COMMON/ b, Alist. /b, / vlist items are allocated to b 4,2.2
. 1 1772 T
: vllsi'2 /oo blocks where they are shared
by other programs
CONTINUE CONTINUE Dummy statement used to 3.2.3
prevent illegal termination
of DO loops
DATA DATA vlist, /clist /,vlist2 / clist is assigned to its corre- 4.3
clisi-2 /... .vlisfn }clisfn sponding vlist
DECODE DECODE(c,v,f,ERR=n) list Converts character data stored 6.3.4
in the array (v) info binary and
assigns them to variables in list
DIMENSION DIMENSION a. (1,),0,{.), ... Storage is allocated for array 4.2.1
1Y17772%2 . . oo
a () (a__) to the dimensions specified
nn by the subscript list (I) -
DO DO n i=m,,m,,m Statements following the DO 3.2
. 3
DOn i=my,m, are executed repeatedly for
DOn i=m],m2,-m3 values m. through m, in incre-
ments or decrements of m,

Statement

Model

Effect

Text
Reference

ENCODE

ENCODE(c,v,f,ERR=n)list

Converts binary data repre-
sented by variables in list
into characters according
to FORMAT specification
(f) or data-directed I/0O
rules and stores them in the
array (v)

6.3.4

EQUIVALENCE

EQUIVALENCE('I)’(|2)’ ces
()

Elements of each list (1)

are assigned fo the same
storage location

4,2.3

EXTERNAL

EXTERNAL a.,qa.,...q
1772 n

Defines subprograms
named a for use as argu-
ments of other subpro-
grams

4.1.3

FORMAT

n FORMAT(s] sSgres .sn)

F ORMAT statement n estab-
lished as field-specification
reference

FUNCTION

m FUNCTION f(a] sGgree .an)

Defines FUNCTION named
f with dummy arguments a
and optional mode speci-
fication m

GO TO

GO TOn

Control is unconditionally
transferred to statement n

GO TO(n.I,nz,. ..nk),i

Control is transferred
to the il statement in
the list of n's

GO TO label

GO TO label ,(n] Ngres .nk)

Control is transferred to the
location specified by label; the
list of n's may specify legally
ASSIGNable statement numbers

IF

IF(expr)n] MyiNy

IF (expr)s

Control is transferred to
statement number or ASSIGNed
label n,, n,, or n, if evaluated
expr is <0,”= 0, or >0 respec-
tively

Statement s is executed if expr
is .TRUE. (non-zero), ignored
if .FALSE. (zero)

. IMPLICIT

IMPLICIT m_ (1,),m,(1,), - ..
mn(ln)

Declares mode (m) for variables
beginning with alphabetic char-
acters in list (1)

4.1.2

PAUSE

PAUSE
PAUSE n

Interrupts program execution;
if present, integer n is printed
on the console to distinguish
one PAUSE from another

3.4.1

Statement

Model

Effect

Text
Reference

PRINT

PRINT(d, f)list

The values of variables in
list are converted to ASCII
according to FORMAT
reference (f) and transferred
to external device (d)

6.3.2

PRINT(d)ist

The values of variables in
list are written in binary on
external device (d)

6.3.2

PRINT(d, Jlist

The variable names in list
are written on external
device (d), each followed
by its value in the form
'A' = value

6.3.2

PRINT(d, f)

F ORMAT reference (f) is

written on external device

@

6.3.2

READ

READ(d,f)list

The values represented by
variables in list are read
from external device (d)
and converted according

to FORMAT reference (f)

6.3.2

READ(d)list

The binary values repre-
sented by variables in list
are read from external
device (d)

6.3.2

READ(d,)ist

The values represented by
variables in list are read
from external device (d)

6.3.2

READ(d,f)

Values are read into FORMAT
reference (f)

6.3.2

READ(d)

A binary record is read from
external device (d) and
ignored

6.3.2

STOP

STOP
STOP n

Signifies the logical end of
a program and returns control
to the MONITOR after n is
printed; if present, n distin-
guishes one STOP from
another

3.4.2

SUBROUTINE

SUBROUTINE name
(c] ,02, .e .an)

SUBROUTINE name

Defines an external subroutine
named name; a's are dummy
arguments representing values
supplied by the calling program
or returned by the subroutine

5.2.1

A-3

Statement

Model

Effect

Text
Reference

TYPE

TYPE(d, f)list

The values of variables

in list are converted to
ASCII according to FORMAT
reference (f) and transferred
to external device (d)

6.3.2

TYPE(d)list

The values of variables in
list are written in binary on
external device (d)

6.3.2

TYPE(,)list

The variable names in |ist are
written on external device (d),
each followed by its value in
the form 'A' = value

6.3.2

TYPE(d,f)

FORMAT reference (f) is
written on external device (d)

6.3.2

WRITE

WRITE(d, f)list

The values of variables in
list are converted to ASCII
according to FORMAT refer-
ence (f) and transferred to
external device (d)

6.3.2

WRITE(d)list

The values of variables in
list are written in binary on
external device (d)

6.3.2

WRITE(d,)list

The variable names in list are
written on external device (d),
each followed by its value in
the form 'A' = value

6.3.2

WRITE(d, f)

FORMAT reference (f_) is
written on external device (d)

6.3.2

APPENDIX B
ERROR MESSAGES

B.1 COMPILER ERROR MESSAGES

In the F4X version of FORTRAN, compiler error messages are printed in the form:

>mnA<

where:

mn is the error number
A is the alphdabetic mnemonic

characterizing the error class.

In FAL and F4A versions, only the alphabetic character is printed, in the form:

>A<

All error messages and the version(s) of FORTRAN to which they are applicable are given below.

Number Letter Meaning
Common, equivalence, data errors:
01 C No open parenthesis ofter variable name in DIMENSION
statement
02 C No slash after common block name
03 C Common block name previously defined
04 C Variable appears twice in COMMON
05 C EQUIVALENCE list does not begin with open parenthesis
06 C Only one varicble in EQUIVALENCE closs
07 C EQUIVALENCE distorts COMMON
08 C EQUIVALENCE extends COMMON down
09 Cc Inconsistent EQUIVALENCing
10 C EQUIVALENCE extends COMMON down
11 Cc Illegal delimiter in EQUIVALENCE list

(continued on next page)

Number Letter Meaning
Common, equivalence, data errors: (cont)
12 C Non=-COMMON variables in BLOCK DATA
15 C Illegal repeat factor in DATA statement
16 C DATA statement stores in COMMON in non-BLOCK DATA
statement or in non~COMMON in BLOCK DATA statement
DO errors:
01 D Statement with unparenthesized = sign and comma not a DO
statement
04 D DO variable not followed by = sign
05 D DO variable not integer
06 D Initial value of DO variable not followed by comma
07 D Improper delimiter in DO statement
09 D llegal terminating statement for DO loop
External symbol and entry-point errors:
01 E Variable in EXTERNAL statement not simple non-COMMON
variable
02 E ENTRY name non-unique
03 E ENTRY statement in main program
04 E No = sign following argument list in arithmetic statement
function
05 E No argument list in FUNCTION subprogram
06 E Subroutine list in CALL statement already defined as variable
08 E Function or array name used in expression without open
parenthesis
09 E Function or array name used in expression without open
parenthesis
Format errors:
01 F Bad delimiter after FORMAT number in 1/O statement
02 F Missing field width, illegal character or unwanted repeat
factor
03 F Field width is 0
04 F Period expected, not found
05 F Period found, not expected
06 F Decimal length missing (no "d" in "Fw.d")
07 F Unparenthesized comma

(continued on next page)

Number Letter Meaning
Format errors: (cont)
08 F Minus without number
09 F No P after negative number
10 F No number before P
12 F No number or 0 before H
13 F No number or 0 before X
15 F Too many left parentheses
Hollerith errors:
03 H Number preceding H not between 1 and 5
04 H Carriage return inside Hollerith field
05 H Number preceding H not an integer
06 H More than five characters inside quotes
07 H Carriage return inside quotes
Various illegal errors:
01 I Unidentifiable statement
02 I Misspelled statement
03 I Statement out of order
04 I Executable statement in BLOCK DATA subroutine
05 I Illegal character in I/O statement, following unit number
06 | IHegal delimiter in ASSIGN statement
07 I Illegal delimiter in ASSIGN statement
08 I Illegal type in IMPLICIT statement
09 1 Logical IF os target of logical IF
10 I RETURN statement in main program
11 I Semicolon in COMMON statement outside of BLOCK DATA
12 I Illegal delimiter in IMPLICIT statement
13 I Misspelled REAL or READ statement
14 I Misspelled END or ENDFILE statement
15 I Misspelled ENDFILE statement
16 I Statement function out of order or undimensioned array
17 I Typed FUNCTION statement out of order
18 I Illegal character in context
19 I Illegal logical or relational operator

(continued on next page)

Number Letter Meaning

Various illegal errors: (cont)

20 I Iilega! letter in IMPLICIT statement

21 | Illegal letter range in IMPLICIT statement

22 1 Illegal delimiter in letter section of IMPLICIT statement

23 I Illegal character in context

24 1 INegal comma in GOTO statement

26 I Illegal varicble used in multiple RETURN statement
Pushdown list errors:

01 L DO nesting too deep

02 L Illegal DO nesting

03 L . Subscript/function nesting too deep

04 L Backwards DO loop (also caused by some illegal I/O lists).

Appears after END statement.

Overflow errors:

01 M EQUIVALENCE class list full

02 M Program size exceeds 8K

03 M Array length larger than 8K

04 M Element position in array larger than 8K (EQUIVALENCE,

DATA)

06 M Integer negative or larger than 131071

07 M Exponent of floating point number larger than 76

08 M Overflow accumulating constant = too many digits

09 M Overflow accumulating constant - too many digits

10 M Overflow accumulating constant = too many digits
Statement number errors:

01 N Multiply defined statement number or compiler error

02 N Statement erroneously labeled

03 N Undefined statement number

04 N FORMAT statement without statement number

05 N Statement number expected, not found

07 N Statement number more than five digits

08 N Illegal statement number

(continued on next page)

N

Number Letter Meaning

Partword errors:

01 P Expected colon, found none

02 P Expected close bracket, found none

03 P Last bit number larger than 35

04 P First bit number larger than last bit number

05 P First and last bit numbers not simple integer constants
Subseripting errors:

01 S Illegal subscript delimiter in specification statements

02 S More than three subscripts specified

03 S Illegal delimiter in subroutine argument list

04 S Non-integer subscript

05 S Non-scalar subscript

06 S Integer scalar expected, not found

10 S Two operators in a row

11 S Close parenthesis following an operator

12 S Non-~integer subscript

13 S Non-scalar subscript

14 S Two arguments in a row

15 S Digit or letter encountered after argument conversion

16 S Number of subscripts stated not equal to number declared
TcEIe overflow errors:

01 : T ~ Arithmetic statement, computed GOTO list, or DATA state-

ment list too large

02 T Too many dummy variables in arithmetic statement function

03 T Symbol and constant tables overlap
Variable errors:

01 A% Two modes specified for same varidble name

02 \% Variable expected, not found

03 \' Constant expected, not found

03 \' Array defined twice

05 \Y Error: variable is EXTERNAL or argument (EQUIVALENCE,

DATA)
07 Y More than one dimension indicated for scalar variable

(continued on next page)

Number Letter Meaning
Variable errors: (cont)

08 \Y First character after READ or WRITE not open parenthesis in
1/O statement

09 Y Iilegal constant in DATA statement

11 \ Variables outnumber constants in DATA statement

12 A Constants outnumber variables in DATA statement

14 Y Illegal dummy varicble (previously used as non-dummy variable)

16 A Logical operator has non-integer, non-logical arguments

17 Vv Illegal mixed mode expression

19 A Logical operator has non~integer, non=logical arguments

21 A Signed varicble left of equal sign

22 \Y Iilegal combination for exponentiation

25 \'% .NOT. operator has non-integer, non-logical argument

27 A Function in specification statement

28 v Two exponents in one constant

29 \ lllegal redefinition of a scalar as a function

30 \ No number after E or D in a constant

32 \'% Non-integer record number in random access I/O

35 \" Hllegal delimiter in I/O statement

36 \ Illegal syntax in READ, WRITE, ENCODE, or DECODE
statement

37 v END and ERR exists out of order in 1/O statement

38 \ Constant and variable modes don't match in DATA statement

39 Vv ENCODE or DECODE not followed by open parenthesis

40 \Y% Illegal delimiter in ENCODE/DECODE statement

41 v Array expected as first argument of ENCODE/DECODE
statement

42 Y Illegal delimiter in ENCODE/DECODE statement

Expression errors:

01 X Carriage return expected, not found

02 X Binary WRITE statement with no I/0 list

03 X Illegal element in /O list

04 X Illegal statement number list in computed or assigned GOTO

05 X Illegal delimiter in computed GOTO

07 X Illegal computed GOTO statement

(continued on next page)

Number Letter Meaning
Expression errors: (cont)
10 X Illegal delimiter in DATA statement
11 X No close parenthesis in IF statement
12 X Illegal delimiter in arithmetic IF statement
13 X Illegal delimiter in arithmetic IF statement
14 X Expression on left of equals sign in arithmetic statement
15 X Too many right parentheses
16 X Illegal open parenthesis (in specification statements)
17 X lllegal open parenthesis
19 X Too many right parentheses
20 X Illegal alphabetic in numeric constant
21 X Symbol contains more than six characters
22 X -TRUE., .FALSE., or .NOT. preceded by an argument
23 X Unparenthesized comma in arithmetic expression
24 X Unary minus in I/O list
26 X lllegal delimiter in I/O Iist
27 X Unterminated implied = DO loop in I/O list
28 X lllegal equals sign in 1/O list
29 X Illegal partword operator
30 X Illegal arithmetic expression

B.2 OTS ERROR MESSAGES

Following is a list of OTS error messages. (R) indicates a recoverable error; (T) a terminal error.

Error Number Error Description Possible Source
05 R) Negative REAL square root argument SQRT
06 R) Negative DOUBLE PRECISION square root DSGRT
argument

07 R) Illegal index in computed GO TO .GO

10 (T) Illegal 1/O device number .FR, .FW, .FS, .FX,
DEFINE, RANCOM

1t m Bad input data - IOPS mode incorrect .FR, .FA, .FE, .FF, .FS,
RANCOM, RBINIO,
RBCDIO

(continued on next page)

Error Number

Error Description

Possible Source

12
13

14
15

20
(21

22

direct

23
access
errors

24
25
.26
30

#+3]

*%39
*#%33
*%34
*%35
**36
*%%37
40

41
42
*%50
51

™
M

R)
R)

M)
M
M
M
M
M
M
R)
®)

R)
R)
®R)
R)
R)
R)
M

R)
)
M
M

Bad FORMAT

Negative or zero REAL logarithmic argument
(terminal)

Negative or zero DOUBLE PRECISION loga-

rithmic argument

Zero raised to a zero or negative power (zero
result is passed)

Fatal 1/0 error (RSX only)
Undefined file

Illegal record size

Size discrepancy

Illegal record number
Mode diserepancy

Too many open files
Single integer overflow*®

Extended (double) integer overflow****

Single flt. overflow
Double flt. overflow.r
Single flt. underflow
Double flt. unclerflowlr
Flt. divide check
Integer divide check

Illegal number of characters specified [legal:
0<c<625]

Array exceeded
Bad input data
FPP memory protect/non-existent memory

(READ to WRITE Illegal 1/O Direction Change
to Disk) without intervening CLOSE or REWIND

.FA, .FE, .FF
.BC, .BE, ALOG

.BD, .BF, .BG, .BH,
DLOG, DLOG10

.BB, .BC, .BD, .BE, .BF,
.BG, .BH

FIOPS

RANCOM

DEFINE

RANCOM

DEFINE, RANCOM
RANCOM

DEFINE

RELEAE, .FPP

DBLINT, JFIX, JDFIX,
ISNGL

RELEAE

RELEAE

RELEAE
INTEAE
ENCODE

ENCODE
DD10

BCDIO, BINIO

*Only detected when fixing a floating point number .

**Also prints out PC with FPP system

#**[f extended integer divide check, prints out PC with FPP system.
#xx#\With software F4 system only detected when fixing a floating point number.
tNot detected by software system (only by FPP system).

B-8

B.3 OTS ERROR MESSAGES IN FPP SYSTEMS

In software systems, arithmetic errors resulting in the OTS error messages summarized above are de-
tected in the arithmetic package (RELEAE and INTEAE). In the hardware FPP systems, these errors
are detected by the hardware (with the exception of single integer divide check) and serviced by a

trap routine in the FPP routine .FPP.

Where applicable, on such error conditions, the result is patched for both software and hardware sys-

tems as summarized in the following table.

E PATCHED VALUE***
rror
FPP Hardware System Software System
Single Floating Overflow * largest single floating value same
(.OTS 32)
Double Floating Overflow £ largest single floating value not detected
(.OTS 33)
Single Floating Underflow zero same
(.OTS 34)
Double Floating Underflow zero not detected
(.OTS 35)
Floating Divide Check + largest single floating value same
(. OTS 36)
Integer Overflow limited detection* same
(.OTS 30)
Double Integer Overflow none** limited detection*
(.OTS 31)
Integer Divide Check none same
(.OTS5 37)

*When fixing a floating point number, integer and extended integer overflow is detected. In these
instances, plus or minus the largest integer for the data mode is patched as result,
**With the FPP system all extended integer overflow conditions are detected, but the results are
meaningless. -
***Where "none" is specified, the result is meaningless unless otherwise indicated.

Further, when converting an extended integer, the magnitude of which is >2]7—1 , to asingle
integer, no error is indicated and the high order digits are lost.

B-9

APPENDIX C

PROGRAMMING EXAMPLES

C.1 MACRO-FORTRAN Linkages

Example 1. A New Dimension Adjustment Routine

The present versions of the OTS routines ADJ1, ADJ2, and ADJ3 do not alter the size of the array

being adjusted. If only the array name of an adjusted array is given in a READ-or WRITE argument list

r

FORTRAN uses this size information; therefore, undesired results can occur. A new routine (ADJ) can

be loaded with a user program which completely handles all cases of dimension adjustment, although it

occupies 72 octal locations. (ADJ3 occupies 41 octal locations.) Consider the following programs:

c

PROGRANM 1
DIMENSION A(453,2)
MAKE ARRAY A ACT LIKE IT
WAS DIMENSIONED A (25354)
CALL ADJCASAC1»151)525354)

PROGRAM 2

DIMENSION A(3,2)

ADJUST ARRAY A TO BE A (2,3)
CALL ADJ (AL A(151)525350)
THE LAST ARGUMENT MUST BE @

PROGRAM 3
DIMENSION A(2)

ADJUST ARRAY A TC BE A(1)
CALL ADJ(ASAC1),1,0,0)

THE LAST 2 ARGUMENTS MUST BE ZEKO

THE NO. OF SUBSCKRIPTS IS NOT ADJUSTABLE

(confinued on next page)

.TITLE ADJ

/
/SUBROUTINE TO PERFORM DIMENSION ADJUSTMENT
/
/MACRO-15 CALLING SEQUENCE
«GLOBL ADJ
/ JMS* ADJ
/ JMP «+6
/ «DSA ARRAY /ADDRESS OF WD4
/ .DSA B /NEW WD4
/ .DSA KlI /ADDRESS OF NEW MAXIMUM 1ST SUBSCRIPT
/ «DSA K2 /ADDRESS OF NEW MAXIMUM 2ND SUBSCRIFT
/ «DSA K3 /ADDRESS OF NEW MAXIMUM 3RD SUBSCRIPT
/

«GLORL ADJs «DAsAD
ADJ 1%
JMS% .DA /GET ARGUMENTS
JMP .+5+1 /# OF ARGUMENTS = 5

ARRAY 5]
B ?
Ki g
K2 0
K3 4]
LAC (LAC* B ZINITIALIZE SUBSCRIPT POINTER
DAC C
LAC B /SET NEW STARTING ADDRESS
DAC* ARRAY
LAW =3
DAC CTR# /MAXIMUM OF 3 SUBSCRIPTS
TAD ARRAY
DAC ARRAY /POINT TO FIRST WORD
DAC ARRAYP# /O0F ARRAY DESCRIPTOR BLOCK
LAC* ARRAY /BRKAY TYPE IN BITS 3-4
AND (63000 /ZERO OUT ARRAY SIZE
DAC * ARRAY /SAVE CLEAN ARRAY TYPE
RTL
RTL
RTL
TAD 1 /ADD 1 FOR # OF WORDS
AND (3 /AND TREAT DOUBLE INTEGER
SNA /AS 2 WOkD PEKR ARRAY ELEMENT
LAC (2
LOOP 1s2 C /POINT TO NEXT SUBSCRIPT
JMS* .AD /MULTIPLY INTEGERS
c LAC* Kl /PROGKAM MODIFIED
SNA /1S SUBSCRIPT PRESENT
JMP D /RAN OUT OF SUESCRIPTS

DAC SIZE# /UPDATE SIZE
I1SZ CTK /ARE WE FINISHED?

SKP
JMP E /YES
1SZ ARRAYP /STORE INTO ARKRAY
DAC * ARRAYP /DESCRIPTOR BLOCK
JMP LOOP /OFFSET WORDS (2,3)

D DzZM* ARRAYP /ZERO THE KEST
1SZ ARRAYP /0F THE OFFSET WORDS

(continued on next page)

1Sz CTR /ARE WE FINISHED
JMP LOCP /NO

E LAC SIZE /FINISHED
AND 17777 /PACK SIZE
XOR* ARRAY /ARKAY DESCRIPTCOR BLOCK

DAC* ARRAY
JMP*x ADJ /RETURN
«END

Example 2. A Function to Read the AC Switches

It is very often desirable to use the AC switches to alter the sequence of instructions executed in a
FORTRAN program. The following program can be used as a function in an arithmetic IF statement to

conditionally branch.

+TITLE ITOG
/
/SURROUTINE TO READ AC SWITCHES
/
/MACRO=-15 CALLING SEQUENCE

/ «GLOBL ITOG

/ JMS* ITOG

/ JVP o2 /JUMP OVER ARGUMENT

/ .DSA (MASK /ADDRESS OF MASK
/

/RETUKN WITH MASKED ACS IN AC

«GLOBL ITOG,.DA
ITOG 7 /INTEGEK FUNCTION

JMS* JDA /GET ARGUMENTS

JVP .+1+1 /1 ARGUMENT
MASK 154 /MASK ADDRESS
LAS /LCAD AC FROM SWITCHES
AND* MASK /MASK AC
JMP* ITOG /RETUKN WITH MASKED AC SWITCHES
.END

Example 3. A Routine to Read an Array in Octal
A MACRO subroutine which reads octal information (REDAR) is as follows:

«TITLE REDAR
/
/SUBROUTINE TO READ ARRAY IN OCTAL
/
/MACRO=~15 CALLING SEQUENCE

/BLOCK WORD 4

/ +GLORL REDAR

/ JMS* REDAR

/ JMP . +5

/ .DSA SLOT /ADDRESS OF SLOT #

/ «DSA FORMAT /ADDRESS OF FORMAT STATEMENT ADDRESS
/ +DSA DIGITS /ADDRESS # OF DIGITS

/ «DSA ARKRAY /ADDKESS OF AKRAY DESCRIPTOR

/

/

(continued on next page)

C-3

REDAR

SLOT
FORMAT
DIGITS
ARRAY

«GLOBL REDAR> eDAs sFRs e FE s oFF

2

JMS* DA /GET ARGUMENTS

JMP e+4+1 /#ARGUMENTS = 4

1%

a

1]

?

LAC SLOT

DAC A

LAC* FORMAT

DAC R

JMS % OFR /FCORMATTED WRITE

XX /BDDRKESS DAT SLOT #

XX /ADDKRESS OF FORMAT STATENMENT
LAW =3

TAD ARRAY

DAC SLCT /ADDKRESS OF ARKAY DESCKIPTOK BLOCK WOKD
LAC* SLCT /PICK UP PACKED SIZE OF AKRAY

AND 17777 /CLEAN OFF MODE #
SNA

JMP E /NO ELEMENTS IN ARRAY

chAa

DAC SLOT

ISZ SLOT /COUNTER FOR # WORDS IN AKRAY
LAC* DIGITS /#DIGITS IN EACH WORD
AND (7 /CLEAN ARGUMENT

SZA

SAD (7

JMP E /9 OR 7 DIGITS ILLEGAL

C M

TAD (1

Dac c ZINITIALIZE LAW INSTRUCTION
ILAC* ARRAY

DAC ARRAY /PCINTER TO FIRST WORD OF ARRAY
XX /LAW -DIGITS

DAC DIGITS

CLA ZINITIALIZE DIGIT PACK

DAC TEMP# /STGRE DIGIT PACK
JMS* JFE /KREAD DIGIT

+DSA FORMAT /DIGIT READ INTO FORMAT

LAC TEMP /LOAD DIGIT PACK

CLL

CTL /MULTIPLY BY &

RAL

TAD FORMAT /ADD DIGIT

I1SZ DIGITS /COUNT DIGITS

JvP D /G0 BACK FOk NMOKE

DAC* ARKRAY /STORE VALUE IN ARKRAY ELEMENT

ISZ ARRAY /POINT TC NEXT ARRAY WOKD
ISZ SLOT /COUNT ARRAY WORDS

JMP C /READ ANOTHER WORD
JMS* FF /END OF READ

JMP * REDAR JEXRIT
«END

1

Example 4. A FORTRAN Program Using the Foregoing Programs

This FORTRAN program uses the preceding three MACRO programs fo read in an array from the
Teletype in octal and type it in decimal. The Teletype should be assigned to .DAT slot 4. Note
how the arguments are specified. Notice that EQUIVALENCE performs the array element calcu=

lation of compile time.

C FORTRAN PROGRAM TO READ AN AKBITKAKY INTEGEK AKKAY IN OCTAL
C AND WRITE IT IN DECIMAL
DIMENS ION J(2000)
C USE EQUIVALENCE TO GET J(1) WITHOUT USING .SS
EQUIVALENCE (J(1),K)
C I CONTAINS ADDKESS OF FOKRMAT
C STATEMENT + 1 TO MOVE OVER JMP INSTRUCTION
ASSIGN 1 TO I
I=1+1
FORMAT (61151 Xs6I151X561151Xs61151X561151X561151X5611,51Xs
1611)
TO SIMULATE FORMATC(D6s1Xs0651%>0651Xs0651X50651Xs0651X>
D6s1Xs06)
WRITE SOMETHING TO SHOW INFORMATION NEEDED
WRITE(4,53)
FORMAT(/19H READ Kl K2 K3(314))
READ IN DIMENSION INFORMATION
READ(4,4) K1,K2,K3
FORMAT(314)
ADJUST ARRAY J TO THE PROPER S1ZE
CALL ADJC(JsKsK15K2,K3)
READ IN ARRAY IN OCTAL
CALL REDAR(451s65J)
WRITE OUT ARRAY
WRITEC(4,6) J
6 FORMAT(817)
C WAIT FOR 1P
PAUSE
C IF A@S17-9 READ IN IDENTICAL ARRAY TYPE
IF CITOGC(1)) 255,2
END

QuNDOOa —

[@ IS

(¢ N e

C.2 IFLOW AND IDZERO EXAMPLES

The following is a programming example of both the IFLOW and IDZERO functions.

Cc MAIN PROGRAM TO SHOW USE OF IFLOW AND IDZEKGQ
A=tQ*%x70
B=10.%x%x10
1 C=A*R
C CALL SUBROUTINE TO CHECK FOR UNDEKRFLOW, OVERFLOW
Cc AND DIVISION BY ZEKO.
CALL CHECK (1)
PAUSE 1
2 C=C1@ e (=T@))*1Bs%%(=-20)

CALL CHECK (1)

(continued on next page)

PAUSE 2

3 C=A/0.

CALL CHECK (1)

PAUSE 3

STOP

END
c SUBROUTINE TO CHECK FOR UNDEKRFLOW» OVERFLOW OR
c DIVISION BY ZERO IN FLOATING POINT ARITHMETIC.
c PASSING A NON-ZERO POSITIVE ARGUMENT WILL CHECK
C FOR AlLL. A ZERO ARGUMENT RESULTS IN NO
c CHECKING.

SUBROUT INE CHECK (N)
LOGICAL IFLQOW,IDZERO
IF CIFLOW(N)) WRITE (1,18)
IF CIFLOW(-N)) WRITE (1,11)
IF (IDZERO(N)Y) WRITE (1,12)

19 FORMAT (/9H OVERFLOW)

11 FORMAT (/19H UNDERFLOW)

12 FORMAT (/13H DIV. BY ZERO)
RETURN
END

The result of running those programs is (with .DAT slot 1 assigned to the TTY):
QVERFLOW

PAUSE #A0001
P
UNDERFLOW

PAUSE 00@002
1P
DIV, BY ZERO

PAUSE ann@na3

LI
STOP Q200800

C.3 INPUT-OUTPUT EXAMPLES

The following is a program composed mainly of /O statements with no connected purpose. The pro-
gram is presented to illustrate the possible combinations of the different types of 1/O (sequential access,

direct access, data~directed, ENCODE/DECODE).

eel
en2
ge3
pe4
eas
2ees
gez
@ees

s RaReReky]

PROGRAM EXAMPLE TO SHOW DOBJECT CODE QUTPUT FQR

VARIOUS TYPES OF I/0 STATEMENTS

IMPLICIT REAL (N) .
DIMENSION RL1(2), RL2(3), ARR(22), NM1(2), NM2(2)
DATA NM1/SHNAMEL, 4HASRC/,NM2/5HNAME2, 4HASRC/

2@6@3 47231 542542
ee6a% 426472 2415en
20613 472931 542544
20615 406472 24150m

aes
Lo
pepon
2onnl
rona2
22083
BRp04
2po05
panas
2on07
ponin
senpee’
@1
pea1l
nen12
ean1d
pon1é
22015
@geLe
enn17
R@R20
app21
“pp22
poe23
$092011
@12
gepn24
Po025
pon2s
eae27
200302
22031
pen32
20033
pond4
20Q35
213
e@R36
20037
9eRae
enR41
PpR42
P0043
PRRA4
22045
2eB46
20047
814
gaasn

c
lve
JMP
D54
D384
«D8A
«0SA
D54
.085A
«D5A
“DSA

FORMAT (15,610.3,2(E12,2))
$¢Apne
242226
526216
3e54ud
63153¢
311219
530544
271445
124502

= pagyl

22a

JMP

DSA
«DSA
+DSA
«DSA
«DSA
«DSA
«DSA
«DSA
«D3A
DSA

FORMAT (iX,15,G612,3,2(E12,2))
secall
241433
p26222
325312
732540
271468
431128€
2425426
227144
245224
BneRLra

s gAg24

JHMS»
JMP

«DSA
L0084
.DSA
«D8A
~0SA
«D8A
+DSA
.DSA

JME*
JMP

«DSA
«DSA
JD8A
+D8A
«08A
«0SA
«DSA
.DSA

JMS*

CALL DEFINE (2,102,5,2,JVB,0,0,0)
DEFINE
2ea38
(2agra2
(Gem144
(roaepsd
(agzan
JVB
(CR@ER20
(ecagenn
(zepaan
CALL DEFINE (4,620,19,08,JVA,5,0,0)
DEFINE
wease
(enpodd
(F21132
(eegaiz
(¢2a000
JVA
(GRQPUS
(eapeeon
(capaap
caLl SEEK (5,NM1)
SEEK

geesy JMP peesd
pees52 LD3A (PoQRES
o053 LDSA 1202000 +NM)

215 CALL ENTER (6,NM2)
@16 c

217 € 1) BINARY

@18 C A) RIRECT ACCESS
819 c

Ap@54 JMS* ENTER

¢3255 JMP QRC6C

22256 JDSA (CREPrO6
Aen57 JDSA 102008 +NM2
220 READ (24JVB) INT, RL2(3), RL1
@o260 LAC JVB

eoR61 JMS¥ RS

¢or62 JDSA (GPANE2
PGO63 JMSw R

e¢064 ,DSA INT

09865 LJOSA 777776
PAR66 TAD (2UpO3
?8867 TAD (FiA@nE3
een7? TAD RL2

Mee71 DAC seza7i
@ap72 JMS+ .RJ

$Q0971 = R@R73

P@@73 ,DSA 3P3073
0P974 JMSe ,RB

#9@75 JDSA 1ePare +RL1
@pe76 JMSe _RG
221 WRITE (2'3) INT, RL2(3), RL1
@en77 LAC (2r2P03
ea1ee JMS* _FRX

eo121 LDSA (Pepee2
20102 JMS* ,RJ

2r103 L,DSA INT

peina ,DSA 777776
ga1a5 TAD (¢ereoe3
2e106 TAD (capee3d
¢e187 TAD RL2

@A110 DAC 527110
@0111 JMSw _RJ

$20112 » ¢a112

eg112 LDSA spag1?

@22 c
Qe23 c B) SEQRUENTIAL ACCESS
024 c

113 JMS+ _RB

?9114 ,L08A 1peene +RL1
28115 JMSw _RG
@25 READ (1) INT, RL2(3), RL1
@A116 JMS* FS

e0117 .DSA (unorat
2e120 JMSe FJ

ee121 ,DSA INT

pn122 ,LDSA 777776
R@123 TAD (¢2geed
fa124 TAD (e2@r23
@p125 TAD kL2

Pg126 DAC $0@126
PR127 JMSw FJ

$ppie6 = gN13D .
eR13e LDSA SB2130

Pe131 JMS+ _FB

P2132 LD5A 120002 +RL{
02133 JMS¥ _FG
226 WRITE (3) INT, RL2(3), RL1
92134 JMSw _FX

0B135 L,USA (e72pm@3
20136 JM8w FJ

P2137 LDSA INT

0142 ,L,DSA 777776
fa141 TAD (eupRel
eRa142 TAD (ra2003
@3143 TAD RL2

@@144 DAC #0144
B@145 JM8w« FJ

$OP144 = 20146

#p146 ,DSA s¢p148

@27 o

028 C II) Ascll

nes C A) DIRECT ACCESS
232 c 1) FORMATTED
@31 c

20147 JMS» _FB

2152 L0SA 1¢200¢ +RL{
22151 JMS* FG
g2 READ (4#JVA,1m@) INT, RL2(3), RL1
gei152 LAC JvaA

P@153 JM3+ _RR

pe154 LDSA (eopea4
02155 LDSA .17¢

Ao156 JMS« _RE

#8157 LDSA INT

cpi16e L,0S5A 777776
20161 TAD (v2pRed
PoL162 TAD (@z@r23
28163 TAD RL2

20164 DAC 520164
ea185 JIMS« RE

$00164 = nB166

nQ166 LDSA 302166
28167 JMS+ _RA

@e17e LDSA 1¢2p00 +RLI
£0171 JMS+ _FF
733 WRITE (4'5,202) INT, RL2(3), RL1
e2172 LAC (eaaees
AP173 JMS+ _RW

2@174 LD8A (e2p0R24
20175 .DSA ,229

¢2176 JMS» _RE

02177 L0SA INT

nagae ,D8A 777776
p@281 TAD (@22p2@3
?@202 TAD (RZp243
gp203 TAD RL2

ep2nd4 DAC $02204
e@2a5 JMS+ RE

spa2rd = 0296

noz2a6 .D3A 500206

¥34 9
235 C 2) DATA«DIRECTED
¢3s c

gp2@7 JMSe RA
ee212 LDSA juugee +RL1

re211
a3z
bp212
om213
en214
op215
¢p216
ag217
ve22n
rp221
0g222
ee223
BB224
p@225
500224
@g226
raz27
ppa3e
20231
038
r@232
70233
nRa234
Pp235
29236
ra237
ep24s
2a241
en242
fQ243
Q@244
ag245
0R246
2247
pa2se
$00245
a0251
@39
AR
041
242
egase
7253
?@254
0a285
2@2%56
243
peas7
zo26¢0
2261
20262
ng2s63
Pa264
PQ2ss
09266
en267
60272
2@271
00270
e@g272
#0273
62274

JHSw

LAC
JHMS
D54
.DSA
JMS*
«DSA
+08A
TAD
TAD
TAD
DAC
JMSw

<FF
READ (4'7,) INT, RL2(3), RL1

(caerg?
» KR
(2R2QGL4
RERARR
GD

INT
777776
(Arerny
(evannld
RL2
§:0224
GO

= pug2é

+DSA
JMSw
«DSA
JHMGw

LAC

JMS+
«DSA
+D8A
JMS#
«DSA
D54
+D8A
JMS»
o DSA
LAC

DAC

JMS»
«DSA
«D8A

$2226
.GE
168000 +RLY
.RF

WRITE (4%88,) INT, RL2(3), RL}
(Hgpain
JRu
(eape04
PRRER P
JGA
235204
pOAARY
INT
.58
RL2
(r2prel
s¢ap45
GC
673177
PRZARR

= GResy

«DSA
c
c
c
c
JMSw
LY
«DSA
«DSA
JMS*

JMS*
«DSA
«DSA
JMSw
«DSA
«DSA
TAD
TAD
TAD
DAC
JMEw

s00251

BE) SEQUENTIAL ACCESS
1) FORMATTED

. GB
771176
perepneg
100028 +RLYL
. RF

READ (5,180) INT, RL2(3), RL!
.FR
(eag00s
.14n
.FE
INT
777776
(22003
(eopaed
rL.2
$20278
.FE

= pr2ze

HEY
JMSw
«D8A

3Pp272
FA
129@gee +RL1

c-10

@@275 JMSv _FF

paa WRITE (6,282) INT, RL2(3), RL}
P@276 JMS% Fd

20277 LJDSA (CAQQOE
ee3oy ,L,DSA 229

20301 JMSw _FE

@322 ,DSA INT

@323 L,USA 777776
e0324 TAD (e2peo3
20325 TAD (00003
03086 TAD RL2

ee3n7 DAC $ea3p?
0310 JMSw FE

$09307 = 00311

9311 LDSA spa3il
@312 JMSw _FA

9313 L,DSA 127pge *RL}
@314 JMSw FF
@45 ENCODE (13,ARR,100) INT, RL2(3), RL1
@315 JMSw _GF

@316 ,LDSA (@22Q12
@317 L.DSA 18U@RZ +ARR
@328 ,LDSA .1@p

@321 JMs+ FE

#0322 ,DSA INT

?@323 L,DSA 777776
0324 TAD (92p7Q3
@325 TAD (o20203
20326 TAD RL2

#9327 DAC s¢u327
2033y JMSw FE

$¢0327 = 7A331

28331 L.DSA $@AB33I1
@332 JMSw FA

20333 DSA jen@eg +RL1Y
P@334 JMSw _FF
P46 DECODE (19@,ARR,1@2) INT, RL2(3), RL!
#@335 JMS« GG

@336 LDSA (erpp12
?e337 ,DSA 120pP2 +ARR
@342 L0SA ,10p

ge34a1 JMS« _FE

20342 «DSA INT

@343 L,DSA 777776
Pe344 TAD (0@p023
@345 TAD (e2aPel
@346 TAD RL2

@347 DAC s0@347
PR35¢ JMSsw FE

$e@347 = aA351

¥p351 L.DSA £¢2351

@47 c
pag c 2) DATA~DIRECTED
049 c

20352 JMSw« _FA

2353 LDSA 102272 +RL1

B0354 JMS+ FF

250 READ (5,) INT,RL2(3), RL1Y
ap3s5 JMS+ _FR

eR356 LD8A (@Bgras

@r3s5?7 LDSA arzape

p@aa6y JMS+» ,GD

c-1

PR361
Be362
ea363
np3s4
22365
PA3EE
70367
308366
Ga37@e
PR3zl
20372
ep373
251
20374
#9375
e@a37¢€
2377
20400
nQ4apy
vadn2
f4n3
PR404
PRaas
20446
@Q4a7
ap4die
22411
520406
ep412
204413
20414
20415
hg416
00417
252
BR4z2e
e2g421
nRa22
20423
202424
2@a28
@e426
2R4az7
2R43¢
2p4a3t
gedsz
79433
R@434
#R4a3s
28436
$00433
rQa4a37
Ro4d4p
eead)
7442
20443
2Qa44
253
00n445
PQ44t
Ppad7
20450

D54
.D8A
TAD
TAD
TAD
DAC
JMSw

INT
777776
(zaareld
(roaeed
RL2
$C3IE6
.GD

= @2237@

+DSA
JMSw
«DSA
JMSw»

JMS#
«DSA
«DSA
JMSw
«.DSA
+DSA
«DSA
JMSw
»D54
LAC

Dag

JMS#
+D5A

$C2370
L GE

107902 +RL1
WRITE (6,) INT, RL2(3), RL1%
JFW

(zzanes

aeCRes

.GA

735204

202000

INT

.55

RL2

(zApea3

520406

LGC

271177

2¢2000

T pp4q2

084
JMSw
«D8A
«D84
«DS54A
JMSw

JMS*
+DSA
054
-DSA
JMS+
«0SA
+D8A
«DSA
JMSw
«D8A
LAC

DAC

JMS+
«DSA
«D5A

5¢Aa12
LGB
271176
peA0Ce
102PE +RLY
.FF

DECODE (15,ARR,) INT, RL2(3), RL!
GG
(reani7
168220 +ARR
CYELLL
LGA
#35204
ARBABD
INT
.58
RL2
(22223
$22433
.6C
p71177
20N000

= 0437

D84
JMS*
«DSA
«DSA
«DSA
JMS*

JMSw
+DSA
LDSA
«DSA

522437

LGB

P71176
2RnRAR
17220022 +RLY
JFF

ENCODE (25,ARR,) INT, RL2(3), RL}

.GF

(e2pe3y
12A370 +ARR
ePoRrd

C-12

P@45y
0452
20453
20454
Ap485
pa4ase
Bp4s7
P0460
$pe4b7
2481
@54
AQd62
Pp463
2464
055
720465
2R466
256
eaas7
ro4’o
a57
20471
pe472
258
20473
2474
259
Q475
20476
a6Q
eaaz7
easan
261
pa521
pa592
rasad
?a504
RA5QE
79511
nesi2
o513
514
22515
Pa523
pa524
pas525
Pp326
op527
2a577
pas6gn
Pa6al
epenz
pe6as
ea6Q7
ea610
ee611
#2612
9613
eae6L7
nR62¢
2a621
20622

JMS
«DSA
.DSA
TAD
TAD
TAD
DAC
JHMS*

6D

INT
777776
(r2ees3
(PRpee3
RL2
$00457
6D

3 Padsy

«DSA
c

JMSw
»08A
JMS»

JMEw
'DSA

JMS»
.DSA

JMS#
«0SA

JMS*
«D8A

JMSw
«0SA

JMS
«DSA

CLA

JMPw
JMS
JMP

«BLK
+NSA
«DSA
+DSA
2DSA
«BLK
2DSA
+08A
+D5A
.DSA
D84
«DSA
«DSA
«DSA
«BLK
.DSA
+DSA
.DS84A
«DSA
o BLK
+D5A
«DSA
.DSA
+DSA

302461

. BE
1202 +RL1
oFF
ENDFILE
FV
(e2ge@y
ENDFILE
oFV
(¢apre2
ENDFILE
oFV
(e29ea3
ENDFILE
.FV
(¢2pnRd
ENDFILE
FV
(220005
ENDFILE
FV
(coeens
END

.ST
FP

becae
e0ogn4
p2apnd
000000
aeepaAd
1g2pee +RL14
LDRRE
62906
wnapen
ApOpeY
170000 +RL2
2eeg52
p22n50
onngen
Apa090
102000 +ARR
wragwa
n2encd
ITLLL
progne
100008 +NM1
peannrd
p20p04
00000
PRAPAY
127a2% +NM2

C-13

Pe623 LDSA DEFINE
ap624 BLK pranel
2@625 LBLK pnapnel
29626 L,D8A SEEK
Pn627 LDSA ENTER
2Q637 LDSA RS
29631 BLK a¢2p@)
PAa632 LDSA RJ
20633 L,DSA RB
pPR634 ,08A RG
22635 ,DSA RYX
#6335 ,DSA FS
¢e6ed7 ,L,DSA FJ
rpa6az ,DSA FB
09641 LDSA FG
20642 LDSA FX
23643 LDSA _RR
2p644 L,DSA RE
e9645 ,L,DSA ,RA
Pa646 LDSA RF
2p647 LDSA R
ees65e L,DSA ,GD
ga651 L,DSA ,GE
@652 LDSA ,Ga
U653 LDSA S8
pa654 ,D3A ,GC
#p655 ,L,DS8A _GB
ep658 LDSA FR
20657 LDSA FE
rp662 L,DSA FA
02661 ,L,0DS8A FF
03662 LDSA Fu
PQ663 DSA GF
29664 ,LDSA GG
20665 LDSA LFV
gp666 L,DSA ST
@p667 ,LD3A FP
Pe672 JDSA prupr2
np671 LDSA puri4d
Q672 «DSA Q02205
Pa673 LDSA péopRR
ep674 LO0SA oeenp4
Pas75 JDSA pE11d@
gas76 LDSA pepglz
70677 LDSA geogné
pazae LDSA peaevd
@701 LDSA perpel
70782 .DSA pgnan?
ga793 L,DSA veante
ng7@a ,DSA peanl?7
ep785 JDSA a@ardl

RL1 pased

RL2 ea515

ARR gas27

NM1 na6ed

NM2 22613

« 170 noepa

. 200 paeil
v DEFINE 20623

JvB noe24

JVA 22625
* SEEK RR626

C-14

*

% ¢ & % & % ¥ % * & & % £ & % % % & ® &t FE ¢ SRS RE R

pe627
Pe630
Pe631
pasan
eeead
r@63a
Ga63s
gR636
pRe37
2o64¢
ea6aY
pR6a2
P0643
pe6asa
PR640
20646
LYY
RRESH
a2651
ra6%2
28653
gRES4
PR658
n2ss6
BA6S7
pacea
06661
pR6s2
ee66d
wa6s4a
20665
¢NE66
PA6E7

C-15

APPENDIX D
SYSTEM LIBRARIES

D.1 .LIBR - Page Mode Non-FPP

LIBRARY FILE LISTING FOR ,LIBR PAGE 1
PROGRAM SOUKCE PROGRAM ACTION
NAME EXTELSION 512E
RBCDIOD L6 136
RBINIO ¢es 113
RANCOM ?5:9 Baa4
DEFINE *11 1130
poIn 712 2037
EDCODE are 258
EOF 2eB RY]
UNIT 20y 66
JARS ooy 15
JOFIX AR 13
JFIX a1 13
FLOATJ 71 13
JOBLE 261 i9
ISNGL nee 30
JSIGN 2¢3 23
JDIM #el 21
JMOD ey 23
JMNMX A1P 123
ERRSEY PER 25
IDERR pee 42
FILE 2ra 376
TIME AEd 45
TIMELS ars 72
ADJ1 A 17
ADJ?2 ABE 35
ADJ3 Ane 41
ABS PE2 16
1ABS rCR 14
DARS ney 18
AINT ne2 15
INT A% 13
IDINT P25 13
AMOD nea a7
MDD REa 24
oMop Ay 4 3
FLOAT 202 11
IFIX 2E2 13
SIGN 224 31
DSIGN 304 31
ISIGN 2ea 20
DIM ne g 22
IDIM 2eo 15
SNGL a4 27
DBLE net i1
IMAMX nHP 147
RMNMY 2BP i29

LIBRARY FILE LISTING FOR ,LIBR PAGE 2

PROGRAM SOUFKRCE PROGRAM ACTION
NAME EXTENSION SIZE
DMNMX BEP 1a6
. B8 774 50
.8C frg 132
.89 nes 132
«BE puh KR
« BF 1] 34
«.BG Bee 38
» BH 265 34
.81 203 120
SART pes 73
SIN 7e3 13
cos pad en
ATAN av? 13
ATAN2 oe7 44
EXP we2 13
ALOG re2 22
ALOGL2 ne2 20
TANH 204 47
.EB ped 1n2
»ED Ul] 87
.EE er2 74
oEF ¢4 116
.EC ael 44
DSGRT ae? 71
DSIN el 13
pcos 113} 21
DATAN aet 13
DATANZ2 g7 46
DEXP UB | 13
pLaG 2e3 21
DLOG1LE el 21
IDZERD avt 16
ISENSH 178§ 3@
IFLOW ret 22
«DD Bes 146
.0B pea 12¢
»DE res 191
«DF 0zl 137
«DA PE6& 36
BCDIO 233 3724
BINIOD 215 363
AUXIO r1e 133
.55 705 ="
GATO 223 26
STOP zed 13

LIBRARY FILE LISYING FOR ,LIBR PAGE 3

PROGRAM SCURCE PROGRAM ACTION
NAME EXTENSION SI17E

PAYUSE 225 14

SPMSG ¢4 73

LFLTB pr4a 266

FIOFS %47 735

PARTKD nap 140

DBLINT ¢7P 377

INTEAE a7F 131

DOLBLE ngd 223

RELFAE 1P 1477

OTSER 7e9 21@

.CB 4 P2 CLOSE

D-3

D.2 .LIBRF - Page Mode FPP

LIBRARY FILE LISTING FOR _LIBRF PAGE 1
PROGRAM SOUFCE PROGRAM ACTION
NAME EXTENSION SIZE
RBCDIO 2es 138
RBINIDQ 205 113
RANCOM reo 574
DEFINE #it 11382
DDIC Fi2 2012
EDCODE an2 255
EOF 20 3a
UNIT ael 66
JABS Fot 14
JDFIX Fp1 12
JFIX Fey 12
FLOATJ Fel 12
JOBLE FG1 12
ISNGL Fg2 13
JSIGN Fu3 i6
JDIM Fet 17
JMQD FG1 17
JMNMY FiP 1a0
ERRSET ae2 25
I0EFR anz 4¢
FILE feR8 376
TIME] 45
TIMELQ nga 72
ADJY 20 17
ADJ2 aen is
ADJ3 nee 41
ABS Fn2 13
IABS a2 14
DABS Fel 13
AINT Fe2 14
INT Fg2 12
IDINT Fas 12
AMOD Fg3 23
MoD pea 24
DMOD Fea 23
FLOAT 202 11
IFIX Fp2 12
SIGN Fo4 24
OSIGN Fra 24
ISIGN €00 24
DIM Fi 17
IDIM AR 15
SNGL Fra 16
DBLE Fay 12
IMNMYX 75p 127
RMNMY FRP 115

LIBRARY FILE LISTING FOR LIBRF PAGE 2

PROGRAM SCURCE PROGRAM ACTION
NAME EXTENSION SI2E
DMMNMY FBP 124
+BB a4 83
,BC FEQ 1246
«BD Fag 126
«BE F26 32
»BF FZ5 3
«BG FUR 31
«BH F&S 31
«BI Fg3 113
SART FGa 73
SIN Fea 12
cos FEd 16
ATAN Fe2 12
ATANZ Fe7z 38
Exp Feg 12
ALOG Fag 16
ALQGLE Fiag 16
TANH Fid 46
«EB Fid 77
+ED F@5s 56
«EE Fp2 72
«EF Fod 114
+EC F¢1 42
DSART Fi7 70
DSIN Fel 12
DCos Fiy 17
DATAN Fu 12
DATAN2 FG7 42
DEXP Fil 12
pLOG Fe3 17
DLOGL® Fgl 17
IDZ2ERG 1) 16
JISENSH nJaN | 32
IFLCGW 7y 22
DD Fis 137
DB Fgd 115
.DE» FV:’ l.'ﬂﬂ
JOF FE 13g
.DC Fey 43
DA PRE 58
BCDIO F33 3634
BINID 7215 363
ALXIO 212 133
+ 35 a3 €2
GOTO 0pe3 26
STOP ned 13

D-5

LIBRARY FILE LISTING FOR LIBRF PAGE 3

PROGKAM SCURCE PROGRAM ACTION
NAME EXTELSION SIZE

PAUSE Bes 14

SPMSG 2074 73

LFLTB A4 266

FIOPS "17 738

PARTWLD F3P 146

INTFAE n7P 131

.FPF F12 4n7

OTSER Ang 212

.CB ava 22 CLOSE

APPENDIX E
PDP-15 FORTRAN FACILITIES

The extended FORTRAN language described in this manual and in the companion manual (Operating
Environmental Manual DEC-15-GFZA~D) is available only on the systems described below. The
FORTRAN existing on other PDP-15 systems is described in a manual entitled "PDP~15 FORTRAN IV
Programmer's Reference Manual" (DEC-15-KFZB-D).

The following tables describe the existing versions of the extended compiler, the extended Object
Time System Libraries, ond the compiler=library pairs available for different systems. All versions of
the compiler are written in PDP-9 code, however, 'PDP-9 mode' versions produce only PDP-9 code as
output while 'PDP-15 mode' versions may produce PDP-15 instructions where suitable. Page and Bank
Mode libraries differ not only in the use of the PDP~15 versus PDP=9 code, but also in the values of
address masking constants used in a few of the routines. Note that the Floating Point Processor (FPP)

is supported only on the PDP-15, thus there is no PDP-9 mode version.

The library names used in the following tables are given for designational purposes within this appendix

only and do not necessarily reflect the names under which the libraries are distributed.

Table E=1
Versions of the Extended Compiler

Main . Approx.
Version Features Version System Size (8)
FAX All F4X Non-FPP, PDP-15 mode DOS-15 15406

F4X9 Non-FPP, PDP-9 mode DOS-15 15363
FPFAX FPP, PDP-15 mode DOS~15 15661
FAB All except FAB Non=-FPP, PDP-15 mode, ADSS (V5B) 15251
direct-access /O F4B9 Non-FPP, PDP-9 mode ADSS (V5B) 15226
FPF4B FPP, PDP-15 mode ADSS (V5B) 15522
F4RX All except FARX Non-FPP, PDP-15 mode RSX
direct-access 1/O FPF4RX | FPP, PDP-15 mode RSX

Table E~2
Versions of the OTS Libraries for the Extended Compiler

System Contents Libraries Subsystem
DOS-15 (BOSS-15) | Contains all routines, assembled for DOS~15 .LBXP Non-FPP, Page
operation. .LBXB Non=FPP, Bank
.LBXPF | FPP, Page
.LBXBF | FPP, Bank
ADSS Contains all routines except direct-access .LBRP Non-FPP, Page
(DEFINE, RANCOM, RBINIO, RBCDIO) .LBRB Non=FPP, Bank
assembled for ADSS operation. .LBRPF | FPP, Page
.LBRBF FPP, Bank
RSX Contains all routines except direct-access
(DEFINE, RANCOM, RBINIO, RBCDIO) LIBRX Non=-FPP, Page/
and magtape subroutines (UNIT, EOF), as- .LIBFX Bank
sembled for RSX operation and includes ' FPP, Page/Bank
added routines applicable to RSX only.
Table E-3
Compilers and Libraries for Extended FORTRAN
Distributed with PDP-9/15 Systems
Svetem Non~FPP FPP
ys Page Bank Page Bank
DOS-15 Compiler FAX FAX or F4X9 FPF4X FPF4X
(BOSS-15 Library .LBXP .LBXB .LBXPF .LBXBF
ADSS V5B Compiler F4B F4B or F4B9 FPF4B FPF4B
Library .LBRP .LBRB .LBRPF .LBRBF
RSX Compiler FARX FARX FPF4RX FPF4RX
Library .LIBRX .LIBRX .LIBFX .LIBFX

INDEX

A C (cont)

A~-register, 3-13 Command string format, 1-2
Accumulators, 3-13 Command string options, 1-2
Address calculation for array elements, 4~1 Command (BACKSPACE, ENDFILE, REWIND),
Adjustment of array dimension, C=1 2-7,2-8
ADVANCED Monitor Software COMMON blocks, 5-3

System (ADSS), 1-6 storage area, 1-3
ALT MODE, 1-2 Compiler, 1-1
Arctangent (ATAN, DATAN, ATANZ, Control P (tP), 1-2

D -
ATAN2), 3-9 Conversion, .ASCII to .SIXBT, 4-16
" . K " - _
Arithmetic package functions, 3-1, 3-13 Cosine - see Sine and cosine

Arrays

data mode values, 4-2 D

dimension adjustment, C~1 .DAT see Device assignment

;'Z"’:e:i;ddress' 41 Data~directed Input/Output (DDIO), 2-13, 2-14

unsubscripted, 5-2 Data storage, external, 2-2
LASCII to .SIXBT conversion, 4-16 Data structures of peripheral devices, 2-2
ASSIGN command, 2-2 Data transfer
AUXIL (OTS Auxiliary Input/Output, 2-7 EDCODE {memory to memory) 2-15

FIOPS, 2-3
B RANCOM, 2-13
Background/Foreground Monitor System, 1-6 Data transmission, 2-1, 2-3
BACKSPACE command, 2-7, 2-8 DDIO data~directed input/output routines, 2-13,
2-14

Backward links, 2-2
Batch processing monitor (BOSS~15), 1-7
BCDIO (OTS Binary coded 1/0), 2-5, =6

DECODE routine, 2-15
DECtape, 2-2

global entry points, 2-12 DEFINE routine, 2~9, 2-11

routines, 2=5 parameter table, 2~11
BINIO (OTS binary input/output), 2-6, 2-7 Device assignment, 2-2
BOSS~15 batch processing monitor, 1-7 FIOPS, 2-3
Buffer size, OTS FIOPS package, 2-3 Device data structure 2-2
C Direct access to formatted file, 2-11
Carriage return, 1-2 \I}VEI?I%EI,ZQ-]]]]

CHAIN (overlay linker) 1-1, 1-3
CHAIN and EXECUTE loading, 5-3

Direct access input/output, 2-9

Directoried storage, 2-2

Comma (,) usage,, 1-2 Directoried subroutines, 2-16

Command error messages, 1-3

Division by zero in RELEAE routine, 3-14

Dollar sign ($) usage, 1-2
DOS~15

FORTRAN directoried I/O, 2-2
operating system, 1-6
sample session, 1-4, 1-5

DOUBLE function, 3~16
Double integers, 1-7

Double precision floating=point arithmetic, 1-7

Double precision number format, 3-14
DOUBLE PRECISION values, 5-3

E
EDCODE routines, 2-15
ENCODE routine, 2-15
ENDFILE command, 2-7, 2-8
Error messages

command, 1=3
FORTRAN Appendix B
OTS Appendix B

Errors, unrecoverable, 4-4

Examples

IFLOW and IDZERO, C-5
input/output, C-6
programming , C-1

LEXIT function, 4-4

Exponential (EXP, DEXP), 3-5
Extended integer arithmetic, 1-7
External functions, 3-1, 3-5, 3-6
External storage, 2-2

External subroutines, 3-1

F
File access on serial devices, 2-2
FILE package, 2-16

Filename, 1-2

INDEX (Cont)

FIOPS (OTS IOPS communication, 2-1, 2-3

routines, 2-3
status table, 2-3

Floating accumulator, 3=13

Floating=point processor (FPP), 1-7, 1-8
routines, 4-4

Format for single (double) precision numbers, 3-14

FORMAT statements, 2-5, 2-6

errors, 4~4
READ, 2-5
record length, 2-5
WRITE, 2-5

Formatted input/output (RBCDIO), 2-11

FORTRAN calldble utility routines, 4~5 through
4-8

FORTRAN sequences called by MACRO, 5-2
Forward links, 2-2

FPP see Floating=point processor

FPP F4X system, 1-7

Functions, 3-16, 3-17, 3-18

G
Global entry points BCDIO, 2-12
.GLOBL pseudo operation, 3-1

H
Hardware, 1-7, 1-8
Header pair, 2-5
Held accumulator, 3~13

I
ID word (BINIO), 2-6
IDZERO, logical function, 3-14

IFLOW and IDZERO, programming
examples, C-5

Initialization and actual data transfer

(RANCOM), 2-13

INDEX (Cont)

Input/output M
direct access, 2-9 MACRO-15, 1-1
examples, C-6 .
formatted (RBCDIO), 2-11 MACRO~FORTRAN linkages, C-1
sequential , 2-4 MACRO sequences called by FORTRAN, 5-1

fi tred - -
unformatted (RBINIO), 2-12, 2-13 Magnetic fape, 2-2

Input/output processing

data directed I/O (DDIO), 2-13
direct access, 2-9

input/output routines, 2-15
Magtape tape functions simulated on disk, 2-8

ENCODE/DECODE (EDCODE), 2-15 Master File Directory (MFD), 2-2
general , 2-1

OTS IOPS communication (FIOPS), 2-3 Memory to memory transfers, 2-15
sequential , 2-4 MFD see Master File Directory

user subroutines, 2-15 Modes, array , 4-2

Input/output routines, Magtape, 2-15 Monitor confrol, 1-2

INSTALL MCR (RSX function), 1-5
INT function, 3-18

INTEAE function, 3-16

. _ Natural and common logarithms
INTEGER array size, 4-2 (ALOG, ALOG10, DLOG, DLOG10), 3-7

Number formats, single/double precision, 3-14

Multiprogramming environment, 1-7

N

Intrinsic functions, 3~1, 3-2

IOERR(N) integer function (FIOPS), 2-4
O

L Operating procedures, 1-1

Language summary , Appendix A OTS arithmetic routines, 3-13
OTS Auxiliary input/output (AUXIO), 2-7

QTS binary coded input/output (BCDIO), 2-5,

Left arrow (+) usage, 1-2

Libraries, System, D-1

.LIBR, D-1 2-6
-LIBRF, D-4 OTS binary input/output (BINIO), 2-6, 2-7
Linkage OTS error messoges, Appendix B
MACRO~-FORTRAN, C-1 OTS IOPS communication (FIOPS)
program, 1-1 Buffer size, 2-3
Linking loader, 1-1, 1-3 :::::?the_,sz-s
LINKS, 1-3 OTS routines, 4~1 through 4~4, 4-15, 4-16
Links, backward/forward , 2-2 direct access, 2-9
Loading FORTRAN 1V, 1-2 floating point processor, 4-4, 4-5

FORTRAN callable utility, 4-5 through 4-8
Logarithm, Base 2 (.EE, .DE) subfunction, 3-10 RSX library, 4=9 through 4~14

Logarithms, natural and common Output listing, 1-2
(ALOG, ALOGI10, DLOG, DLOGI10), 3-7 Overflow, 3-14
Logical function IDZERO, 3-14 Overlay linkage editors, 1-1

Logical record size unformatted statements, 2-6 Overlaying of LINKS, 1-3

INDEX (Cont)

P
Paper-tape source file, 1-2

PDP-15/30 Background/Foreground Monitor
System, 1=6

Polynomial evaluator (.EC, .DC)
subfunction, 3-13

Program linkage, 1-1
examples, C-1

Pseudo-operation, .GLOBL, 3-1

R

RANCOM (initialization and actual data
transfer), 2~13

RBCDIO, formatted input/output, 2-11
RBINIO, unformatted input/output, 2-12, 2-13
READ statement

formatted, 2=5
formatted direct access, 2=11
unformatted, 2-6

REAL array size, 4~2

REAL values, 5~3

Real-time execution, see RSX=15
Record identification number, 2-6
Record length, formatted records, 2-5

RELEAE, REAL arithmetic package, 1-7, 3-14,
3-17, 3-18

Relocation of program, 1-3

Restart FORTRAN 1V, 1-2

Retrieval information block (RIB), 2-2
REWIND command, 2-7, 2-8

RIB see Retrieval informoﬁor; block
Right angle bracket (>) usage, 1-2
Routines, MACRO-15, 1-1

Routines, OTS, 1-1, 4-1 through 4-4, 4-14,
4-16

floating point processor, 4-4, 4-5

FORTRAN callable utility, 4=5 through 4-8

RSX library (.LIBRX BIN), 4-5, 4-9
through 4~15

R (cont)
RSX=15 real-time execution, 1-7
RSX library (.LIBRX BIN) routines, 4-5,
4-9 through 4-15
S
Sample DOS-15 session, 1-4, 1-5
Science library, 3-1
Sequential file storage, 2-2
Sequential 1/O, 2-4
Serial file storage, 2-2

Sine and cosine (SIN, COS, DSIN, DCOS), 3-8

Single integer arithmetic, 1-7

Single precision number format, 3-14

Single precision floating point arithmetic, 1-7
Software environments

ADVANCED Monitor (ADSS), 1-6
BOSS-15, 1-7

DOS-15, 1-6

PDP-15/30 B/F Monitor, 1=6
RSX-15, 1-7

Square root (SQRT, DSQRT), 3-5

Statements

READ, 2-5, 2-6
WRITE, 2-5, 2-6

Storage, external, 2-2

directoried mode, 2-2
sequential files, 2-2
serial mode, 2-2

Subfunctions in FORTRAN library,

logarithm, base 2 (.EE, .DE}, 3-10
polynomial evaluator (.EC, .DC), 3-13

Subprograms, science library, 3-1
System generation, 2~2

System libraries, D=1

T
TKB (task builder), 1-1, 1=5
filename, 1-5

Time sharing, 1-6

I-4

INDEX (Cont)

u
UFD see User File Directory Utility routines, 4-1 through 4-16
Underflow, 3-14 FORTRAN callable utility, 45, 4~9 through
Unformatted input/output (RBINIO), 2-12, 2-13 F:P' ,]i_ .
Unformatted statements, 2=6 OTs, 4-1
READ, 2-6 RSX library (.LIBRX BIN), 4-5, 4-15
WRITE, 2-6 W
Unsubscripted array name arguments, 5-2 Word pairs, 2-5
User file directory (UFD), 2-2 WRITE statement
User subroutines, input/output formatted, 2-5
directoried subroutines, 2-16 formatted direct access, 2-11

magtape 1/O, 2-15 unformatted, 2-6
operations, 2-15

.

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information applicable to software available from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your installation,
please check with the Software Specialist or Sales Engineer at your nearest
Digital office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to facilitate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U.S.A. customers may order
directly from the Program Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

——————————————— — FoldHere — - -~ -~ — — — - — = — = — — — — — —

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

)

)

1Y

)

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy. organization, usability and read-
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Depariment:

City: State: Zip or Country

——————————————— — FoldHere = - — — = — = = -~ — — — —— —_ __ _

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

G,“

