\ ;‘%‘

INTRODUCTION TO
DECsystem-10 s
ASSEMBLER
LANGUAGE
PROGRAMMING

DOPPEL

fritz
New Stamp_1

INTRODUCTION
O
DECsystem-10
ASSEMBLER
LANGUAGE
PROGRAMMING

INTRODUCTION
TO
DECsystem-10
ASSEMBLER
LANGUAGE
PROGRAMMING

MICHAEL SINGER
Stanford University

JOHN WILEY & SONS
New York/Santa Barbara/Chichester/Brisbane/Toronto

Copyright © 1978, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:
Singer, Michael, 1942—

Introduction to DECsystem-10 assembler language
programming.

Includes indexes.
1. DECsystem-10 (Computer)—Programming.
2. MACRO-10 (Computer program language)

3. Assembler language (Computer program language)
I. Ticle.

QA76.8.D4S55 001.6'42 78-8586
ISBN 0-471-03458-4

Printed in the United States of America

10 9 87 65 43 21

PREFACE

With the widespread availability of higher level languages (such as ALGOL, COBOL,
FORTRAN, PL1) for computer programming, as well as packages put out by the major computer
manufacturers that, almost at the touch of a button, will perform a variety of complex tasks, it is
reasonable to ask why any other than a relatively small number of specialists should trouble to learn
assembler language programming at all.

There are good practical, theoretical, and aesthetic reasons for doing so. On some of the
excellent smaller machines now being used in scientific and commercial applications, the compiler
required to translate a higher level language into machine language would take up so much
computer memory space that little would remain for the user. Even when a higher level language is
in use, the diagnostic records put out by the machine are typically at the assembler language level.
In our opinion, however, the most useful function served by a knowledge of assembler language
programming is to give the user a much closer awareness of how the computer works, as well as
inestimably greater control over its workings, than is feasible with a higher level language. In our
experience, the higher level language user who is familiar with assembler language is a more
efficient—even a happier—programmer than the one who is not.

Every computer facility supplies booklets explaining the LOGIN procedure, by which the user
gains access to the computer. The novice is then too often left facing across a chasm, beyond which,
hopelessly out of reach, lie the manufacturers’ manuals and many superb texts on the theory and
practice of programming. This book is intended to serve as a bridge across that chasm. It is suitable
for use by the higher level language user who would like to learn assembler language; but also, we
would like to stress, by the complete beginner with no knowledge whatsoever of computers. The
notion that assembler language programming is esoteric and inherently difficult is, in our
experience, very much mistaken. On the contrary, for many people it seems to be the natural way to
start off with computers.

This book is equally suitable for commercial, scientific, and any other users. The path to an
easy-going facility with the basics of the subject is the same for all. There is no shortage of texts and
courses dealing with applications to any subject or task the reader may have in mind. But in the
first instance, every user must know how to perform input and output, store and retrieve
information, and manipulate texts and numbers at an elementary level; for these are the
fundamentals of communication with the machine.

All computers have a great deal in common, and much of what is said here applies equally well,
with only minor changes, to many other machines. Computer programming is, however, a practical
art, and must be learned by continual practice. Because the beginner at the computer terminal is a
good deal more aware of the practical differences between different machines than of their structural
similarities, we feel that an introduction of this kind should deal specifically with a particular
computer system.

vi Preface

Our choice of the DECsystem-10, based on the PDP-10 computer and manufactured by the
Digital Equipment Corporation, is no adverse reflection on other machines made by that company or
any other company. We do, however, feel that it is a suitable computer on which to base these
notes, for several reasons. It is widely and increasingly available, in universities as well as scientific
and commercial installations in the United States, Europe, and elsewhere. Its assembler language is
very flexible, and is equipped with an excellent utility for tracing and resolving program errors
(debugging). Furthermore, it was designed for use oz /ine; that is, the user sits at a terminal and
converses with the machine, rather than wait patiently while laboriously produced punched cards are
processed. And while many machines may be used on line, the design of this one frees the user from
the tedious concern with minor details of formatting, such as spacing, needed with machines
designed primarily to process punched cards. The assembler language of the DECsystem-10 is
commonly known as MACRO-10.

Our approach has the reader writing complete programs, although naturally rather trivial ones,
from the very beginning. Thus, access to a DECsystem-10 installation is helpful from the outset.
There are no other prerequisites. In our numerous examples we have striven for a combination of
comprehensibility and efficiency; but when necessary we have sacrificed the latter to protect the
former, for this is a study guide rather than a manual. We request the tolerance of those
professionals who cannot abide seeing twenty steps being taken when nineteen would suffice.

Chapter 1 is written with the novice particularly in mind, and the reader with any experience of
computers will pass through it rapidly. However,

study with care any statement centered like this one, as it may well be crucial.

Octal and binary numbers must be introduced, and indeed a programmer should ideally be able
to think with numbers in any base. Such a facility, however, may be acquired gradually, and so in
Section 1.3 we go no further than is necessary to understand what follows. At no stage do we
encourage the reader to gain skill in performing calculations in various bases, or in base conversion;
in our experience, once the principles are understood, the student’s time is better spent in learning
how to pass such drudgery to the computer.

Especially in the early stages, the reader may have a sense of being instructed to do things whose
function is not fully explained. It is hard to see how this could be avoided. Even the most trivial
program requires the support of a very complex system to create and to run it. The beginner must
learn the commands that invoke this system in order eventually to gain the experience necessary for
a proper understanding of those very commands. We have tried to foster in the reader an approach
in which thoughtful endeavor to understand what is presented is balanced by trust that dimly
perceived concepts will in due course be clarified.

MACRO-10 is too rich a language to be covered in its entirety in a book of this size.
Nevertheless, we have included virtually all the assembler language instructions with full
descriptions and many programming examples. The main features of creating macros are covered; so
also are FORTRAN subroutines called by MACRO-10 programs, and MACRO-10 subroutines
called by FORTRAN programs. The most frequently used monitor calls are discussed, including
those handling input/output, terminal control, and enabling traps. This is certainly enough for all
normal user programming needs. Those readers who want to proceed further, particularly into
systems programming, will be ready after reading this book to refer to the manuals. A warning
should be given that much less care goes into preparation of the descriptive literature than into the
machine itself and its software, and the manuals contain many obscurities and errors.

There are two appendices. In Section 1.2 we introduce the basic features of the editor TECO.
These are sufficient for the needs of this book, and a treatment of some of the more advanced
features is relegated to Appendix B. Nevertheless, the reader who studies this additional material
will not regret the time spent in acquiring greatly enhanced editing power. Although TECO is the
most complex of the DECsystem-10 editors, we feel that it alone is sufficiently comprehensive for
the assembler language programmer, whom we would discourage from using any other.

Appendix A treats DDT, the debugging facility of the DECsystem-10. Before the advent of

-

Preface vi

DDT and similar systems, half of a program could consist of routines to print out information as a
check on the functioning of the part doing the useful work. After all the bugs were removed, these
routines would be discarded. So the time saved by DDT can hardly be exaggerated. But DDT
occupies a more central role in this book; it is a basic tool in our investigation of the workings of
assembler language. Consequently, Appendix A is designed to be read in parallel with the main
body of the book. A start should be made on it when studying Chapter 2, and a first reading of it is
best concluded before beginning work on Chapter 4.

We have endeavored to minimize the possibility of errors, especially in our programming
examples. Every complete program in this book has been directly reproduced from computer
printout. These programs have all been run, and where relevant tested with a variety of input data.
Even our shortest illustrative routines are sections removed from thoroughly tested complete
programs. In this way we hope to have spared students one of the greatest frustrations all too often
engendered by programming texts.

This book will find its main use as a course text; however, a preliminary version has also been
used successfully by individuals working alone. Such persons are strongly encouraged to obtain access
to a DECsystem-10; computer time is a readily available commodity, and with reasonable care the
cost should be at most comparable with that of class instruction. For all users, it is worth
remembering that one of the easiest ways of wasting computer resources is to start thinking out a
program after sitting down at the terminal.

The text contains collections of exercises, at least some of which should always be done before
reading on. Most of the exercises are straightforward tests of understanding, although the time they
require varies greatly. The symbol * marks a few problems of somewhat greater difficulty.

It is a pleasure to acknowledge the encouraging comments and suggestions of students and
colleagues, past and present. Dr. David Ford of Ohio State University was especially helpful during
the early stages of manuscript preparation. Thanks are owed also to the University of Pennsylvania
for its generous provision of facilities, and to the staff of John Wiley & Sons for their understanding
support.

MICHAEL SINGER

CONTENTS

CHAPTER 1 PRELIMINARIES
1.1 The Terminal
1.2 The Editor
1.3 Octal Notation

CHAPTER 2 FUNDAMENTALS

2.1 The Accumulators
2.2 Jump Instructions
2.3 Memory

2.4 Word Format

CHAPTER 3 PROGRAM STRUCTURE

3.1 Subroutines

3.2 Pushdown Lists

3.3 Program Control

3.4 Extended Language Capabilities

CHAPTER 4 DATA MANAGEMENT

4.1 Bytes

4.2 Arithmetic

4.3 Input/Output

4.4 Monitor Assistance

APPENDIX A DDT
APPENDIX B TECO
ASCIl CODES

INDEX OF MACRO-10 INSTRUCTIONS

SUBJECT INDEX

-

INTRODUCTION
TO
DECsystem-10
ASSEMBLER
LANGUAGE
PROGRAMMING

CHAPTER ONE

PRELIMINARIES

1.1 THE TERMINAL

The computer terminal is rather like a typewriter, but with a few special features. There are a
number of different types of terminal; some display characters typed by the user, and the output of
the computer, on a TV-style screen rather than on the more usual paper roll. There are certain
special characters located in different places on different terminals, so the reader should spend a few
minutes in becoming familiar with the characteristics of any new or unfamiliar model.

As on a regular typewriter, there is a SHIFT key. It should be observed, however, that many
terminals have only uppercase (capital) letters available. This need not trouble the programmer since
computer instructions do not distinguish between upper and lowercase letters. With these terminals,
do not use the SHIFT key to obtain regular letters, because other characters will sometimes result.
For example, on some terminals @ is SHIFT-P,] is sHIFT-M, while [is SHIFT-K. Anything of this
kind is normally clearly marked on the respective keys.

Be careful always to distinguish: | (capital 1), | (lowercase L) and 1 (one); O (capital o) and O
(zero); parentheses (. .) and square brackets [. .].

An important feature is the CONTROL key. Like SHIFT, this does nothing on its own; but when
held down while other keys are struck, it produces a whole new set of characters. Some CONTROL
characters are just plain characters. If you type CONTROL-A, you will just see A appear on the _
paper or screen. If, however, you type CONTROL-C while a program is running, "C will appear, and
in addition the program will stop (if calculation is in progress two "*C are needed for this effect).
Several other CONTROL characters have “break” or “interrupt” functions, which we shall study
individually as we need them.

In this book CONTROL will be denoted by the " symbol. Warning: this is not the “up-arrow,” or
on some keyboards “circumflex” symbol (this symbol is often sHIFT-N). Typing ”, followed by C,
will also appear as "*C, but will not have the special effects of CONTROL-C.

in this book "“A etc. always means type the character while holding down CONTROL, unless
specifically stated otherwise.

2 Introduction to DECsystem-10 Assembler Language Programming

On keyboards without a special tabulator key, "l produces a tab, normally set at every eighth space.

The ESCAPE (also known as ALTMODE) key has special functions that we explore in the next
chapter. Observe carefully that, although striking it produces a $ sign, it is not the same as the key
marked $. They produce the same symbol on the paper, but not at all the same internal effects. The
same danger of confusion exists as with CONTROL and up-arrow. In this book

$ always means ESCAPE key, unless specifically stated otherwise.

If you type a wrong character by mistake, press the RUBOUT (also known as DELETE) key. You
will see the wrong character appear once more; this may appear preceded by a \ sign. This indicates
that the character will not be transmitted to the computer. You can »ot delete characters by
backspacing and “typing over.” Any number of characters can be deleted by pressing the RUBOUT
key the appropriate number of times. Remember that spaces are characters too!

It may be easier to delete a whole line and start again. Typing ""U (remember that this means
coNTROL-U) will delete the line you are currently typing. The machine will automatically move on
to the beginning of the next line on the paper.

To start your session, type "'C. This ensures that you are in communication with the monitor.
The monitor may be regarded as the organizing center of the computer. You know that you are
dealing with the monitor when your terminal of its own accord goes on to the beginning of the next
line, and types a period

You now type LOGIN, using the RUBOUT key to rectify any errors. But nothing will happen until
you press the CARRIAGE RETURN key, denoted here by __J, for only then is the whole line that you
have typed sent to the monitor. The response is

#
whereupon you type in the identifying number issued to you, followed by a . |. Then

PASSWORD?

is self explanatory. Note that what you now type is not echoed, to preserve secrecy of your password.
Any messages from the (human) operator to all users will now appear, after which you will see

which indicates that the monitor is ready for your instructions.

You have now started a job. As part of a job you may write and run any number of programs.
The job goes on until you £:// it. This must be done by giving the monitor a specific instruction. It
is not enough just to switch off the terminal and walk away. On some installations a job is killed
automatically if there is no activity for some time; but on others a job continues, and accumulates
connection charges indefinitely.

Although we have done nothing constructive yet, it is as well to learn immediately how to kill a
job. The first thing to do is to get in touch with the monitor. If a period has just been typed by the
machine at the beginning of a line, the monitor is already waiting for an instruction. Otherwise,
typing "\C twice will always cause the monitor to intervene and stop whatever else is going on in
your job, and type a period. Now you type KJ/F followed by | to kill the job. KJ is a mnemonic
for Kill the Job. Various letters can follow after /, but an F ensures that nothing you may have
put into store is destroyed. A message will appear detailing how much time you have used. In some
installations, you will also be told how much money you have spent.

Exercise: Practice starting and killing a job using the RUBOUT (or DELETE) key and U, and using
"C

You do not have to LOGIN for the remainder of this section.

Preliminaries 3

Another useful CONTROL key is "*O. If you are not interested in whatever is being typed out at
your terminal, O will stop the output. Try giving to the monitor the command SYSTAT
followed by a _|. The monitor will type out information about the current usage of the system;
when you have seen enough, type "O.

Make sure the SHIFT key is not down, and type a letter of the alphabet. If an uppercase letter
appears, get in touch with the monitor and give it the instruction SET TTY LC followed by a _|.
TTY is a standard code representing the terminal, and LC is the mnemonic for lowercase. There
must be at least one space between SET and TTY, and between TTY and LC. You will now be able
to type lowercase letters, as long as your terminal is equipped to produce them. If you later give the
monitor the command SET TTY UC only uppercase letters will then be available. Observe that these
commands have no effect on the action of the SHIFT key to produce symbols other than letters of the
alphabet.

Press the TAB key. If nothing happens, you must tell the monitor that your terminal does not
itself produce tabs, by entering SET TTY NO TAB followed by . |. This command looks
paradoxical, but there is logic in it nevertheless.

Try SET TTY NO ECHO __|. To undo the effect of this, issue the monitor command SET TTY
ECHO _. Since this time you cannot see what you are typing in, before entering the line with .|
type "'R. This character will always have displayed for you the line you are currently typing to the
monitor. Correct any errors with RUBOUT and enter the line with ..

Now LOGIN, and go on to the next section.

1.2 THE EDITOR

The function of the editor is to render what you type at the terminal into a form with which the
machine is equipped to deal. In other words, you use the editor to create a file. Some of your files
will be lists of instructions to the computer—that is, programs. Others may be collections of data to
be processed by programs.

The editor will also transfer your file from the temporary storage area (memory, or core) in which
it is housed as you write it, to permanent disk storage.

Since we do not yet know how to issue instructions to the computer we cannot write a program;
we can nevertheless write a simple file.

Let us write a file called, for example, TEST, which will contain the information.

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

To summon the editor to make a new file, we type after the period issued by the monitor the
command MAKE TEST | followed by a carriage return. Remember that the initial period comes
from the monitor, not from you. We shall stress that something is typed by the machine rather than
by the user by underlining it. The underlining does not appear at the terminal. So what happens is

-~ MAKE TEST _|

. indicates that you press a CARRIAGE RETURN. Do not type a period after TEST ; there must be
at least one space between MAKE and your program name, but more will do no harm. Your
program name can be any collection of up to six letters and numbers that you care to choose, as
long as the first character is a letter.

The machine will now print an asterisk

Output of an asterisk tells you that you are in contact with TECO, the editor. TECO understands a
wide range of commands, enabling you to insert, amend, or delete text with great ease.

Warning: TECO commands are letters of the alphabet, and it is very easy to confuse them with
the text of the file. TECO command strings in this section should be studied with the greatest care,

4 Introduction to DECsystem-10 Assembler Language Programming

letter by letter. Your own command strings should be typed with similar care, and re-vead before being
entered (with $$ as explained below). Be careful: a wrongly typed letter might be a command you do
not yet know that could destroy your entire file!

What you have created so far is an empty file named TEST. To insert text, use the TECO
command | followed by the text you want to write. Finish your text by pressing the $ (ESCAPE) key.
Everything between | and $, including spaces and carriage returns, becomes part of your text.
So the line looks like this

#ITHE QUICK BROWN FOX JUMPS OVER THE LAZY DOG$

If you make a mistake while typing, use the RUBOUT (or DELETE) key to erase individual
characters. To delete the line on which you are working, use *U. The terminal will go on to the
beginning of the next line, and you will get a new asterisk. Your session might go something like
this

*ITHE QYICK VROMNU
*ITHE QUICK BROVVWN FOX JUMPS OVER THWWE LAZY DOGS$

You become disconcerted by all the mistakes on the first line, and use U so that you can start
again. Remember that this erases the whole line, which includes the | command; so you need to
issue another | command before your text. In the next line you accidentally type V in place of W,
and W in place of E. Both of these are corrected using the RUBOUT key, which echoes the original
error.

This is all you planned to put in your file, so you can exit from TECO. The command EX does
this. To actually get your commands performed, however, you must type $$ (ESCAPE twice in
succession). This instructs TECO to carry out all the commands you have issued (since the last $3,
if any). So your whole session, if no errors were made, would look like

#ITHE QUICK BROWN FOX JUMPS OVER THE LAZY DOGS$EX$$

As you see, EX$$ takes you back to the monitor.
If you forgot the $ before EX, the final $$ would cause the performance of the instruction to
insert the text

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOGEX

and you would still be with TECO.
Back with the monitor, type DIR to list the directory of your files.

~-DIR_]
As you see, TEST is there! To find out what is in TEST
-~ TYPE TEST_|

and see for yourself.
Suppose you want to amend what you have written in your file. If you have exited from TECO,
you get back like this

- TECO TEST_|

Perhaps you want to change JUMPS to JUMPED. This is done by the FS command. You follow
FS by old text, then $, then new text, then $ again. So you could type

* FSJUMPS$JUMPED$
or, more economically,
“FSPSPED

or even

2 FSSEDS

Preliminaries 5

It will always be the first occurrence of the text that is changed, starting from wherever the
editor’s file position indicator, or pointer is set. Calling in TECO for an already existing file sets the

pointer to the beginning of the file.
After changing JUMPS to JUMPED, the pointer is set after the final D of JUMPED. The
command T will type out a line from the pointer to the end of the line, but

ZFSJUMPS$JUMPEDS$TS$$
results in the editor typing out

OVER THE LAZY DOG

To see that you have in fact made the proper correction, set the pointer to the beginning of the line
with the command OL (remember that O is zero, not letter O). So the whole command string is

“ FSJUMPS$JUMPED$OLTS$

Notice that the concluding $$ is necessary to actually get things done! It is the command to carry
out the instructions that until this point have merely been noted.

Perhaps you would like a period after DOG? Use the S command to search for G (there is only
one G; but if there were more, you could always search for OG). This sets the pointer after G, so
you can insert your period. Notice that with S , you end the text with $, just as with FS and I.

2SGH1.S0LTSS

will have the line typed out as you want it.
Perhaps you dislike the format? A new line after JUMPED might be more pleasing. No
problem.

= SEDSI
$0LTSS

After | the required text was just a _|, which is exactly what gets typed by you at the terminal.
The editor’s response is now

OVER THE LAZY DOG.

because T types the current line; and after inserting the _| the current line is now the second line of
our text. Notice that we forgot to delete the space between JUMPED and OVER. Since the text is
already entered in the file, the RUBOUT key no longer works, as the function of RUBOUT is to
prevent the character just typed from being entered. However, the D command deletes the next
character after the position of the pointer. So in place of the previous command sequence

= SEDSI
$D%$
would give us the text we want, and the pointer is set to the beginning of line two of our file. To

check, set the pointer back a line with the command —L, and type two lines with the command
2T. Observe that

the T command types from the position of the pointer, but does not itself move the pointer.

After carrying out the last command,
E—L2T$$
yields output of

THE QUICK BROWN FOX JUMPED
OVER THE LAZY DOG.

6 Introduction to DECsystem-10 Assembler Language Programming

The pointer is once again at the beginning of the file. Observe carefully that the same type-out is
obtained, starting with the pointer at the beginning of line 2, by

= -TT$$

but this does not move the pointer at all.
With the pointer at the beginning of line 2, the command string

*FSQUICK$QUICKEST$$
would produce something like this:

?SRH Cannot Find “QUICK"”

because the editor searches only from the pointer onwards. (Note that an unsuccessful S command sets
the pointer back to the beginning of the file.) So first set the pointer back a line by —L; or, to save
the trouble of counting, simply set the pointer to the beginning of the file, using the command |

*JFSQUICK$QUICKEST$OL2T$S

produces what you wanted, and types out both lines.
Suppose you now change your mind about spreading the text over two lines. So let us delete the
). No problem, as long as we are aware that

pressing the CARRIAGE RETURN key produces two characters; first a carriage return, then a line feed.

Carriage return is the mechanism that sends the terminal back to the start of the same line; line feed
moves it down one line.
The correct command string is thus

*SJUMPED$2DI $%
in which we remembered to replace the space. And now
Z0LT$S

will type out the whole text, once again on one line.

In the unlikely event that it is needed, a carriage return alone is produced by typing “M. This
returns the terminal to the beginning of the current line. To advance a line, the LINE FEED key, or
equivalently "), will serve. Normally, of course, the carriage return key is used — but remember,
for editing purposes, that it “echoes” a line feed.

Exercise: Practice using these commands with various texts.

Any whole number, positive or negative, may be used with D, L, and T. Note that L and T are
for lines, while D is for characters. To delete whole lines use K, with or without a whole positive or
negative number preceding it.

Observe that —25L sets the pointer 25 lines back. If there are not that many lines, the pointer
is set to the beginning of the file. 30L advances the pointer 30 lines, or, if there are not that many
lines left, to the end of the file.

Counting back from the end is easier if you end your file with _|.
So, in our example, we would insert text as follows

*1THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
$

This method is preferable. Using it, you can have the last line of a file (of less than 100 lines) typed

Preliminaries 7

out by
*100L-T$$

Of course, 100 can be amended as necessary. The pointer would now be in the correct position to
append new lines of text to the file.

If your file is long, TECO will load only the first part of it unless instructed otherwise. So your
first command to TECO should be A, which causes more of the file to be loaded at once. If more
core space is taken up in doing this, you will be informed accordingly.

A$$
[3K Core]

When using D, remember that spaces and punctuation marks are also characters, and that _|
comprises two characters. A TAB, or ", is one character. —3D would delete the three characters
preceding the position of the pointer; 100D deletes the 100 characters following the position of the
pointer. —3D100D or 100D —3D would do both.

With K it is most important to be aware of the position of the pointer. K will delete the
current line from the position of the pointer to the end, including the _| that terminates the line.
To delete the whole line use OLK. 3K will delete from the pointer to the end of the current line
plus the whole of the next two lines. —K will delete the whole of the previous line, —2K the
previous two lines, and so on; in addition, the current line will be deleted, up as far as the pointer.

T will type out whatever K would delete.

Suppose that throughout your file you have written THRU, and would now prefer to have
THROUGH. Estimate beyond the maximum number of times THRU occurs, say, 1000 times. Put
the command you want between brackets like this <...>, with 1000 in front of it and $$ after it,
and the command will be carried out as many times as possible up to 1000. (You will not be
informed how many times it was actually possible to carry it out.)

21000<FSTHRU$THROUGH$>%$%

However, since this will result in changing any occurrence of THRUSH to THROUGHSH, more
care is needed.

Exercise: Devise a foolproof way of doing this. (Observe that the separate word THRU can be
followed by only a few possible characters, such as space, comma, period, ., and so on.)

To delete a given text string without troubling to set the pointer, use FS to replace it by a nu//
text. For example, if the first occurrence in your file of IT IS A FACT THAT is superfluous
(including the space after THAT), then

XJFSIT IS A FACT THAT $$

will delete it. Since the form of this command includes two successive $ characters (to delimit the
null text), this command is carried out at once and you get the response of a new line and a fresh
asterisk.

A final words about the RUBOUT key. Suppose you type

#ITHE QUIC)
BROW

and notice your error only now. You can simply carry on, and later use
ZJFSCI$CKSS

or, since you have not yet had the current command performed by issuing a $$, you can rRUBOUT all
the way back to J, then re-type. As you press the RUBOUT key, the characters deleted will be
echoed. This just looks a little strange at first with spaces, TAB, and _|.

In our example, U would merely delete BROW. If you prefer to delete the whole of the

8 Introduction to DECsystem-10 Assembler Language Programming

current command (back to after the last $%$, if any), type "G twice; this character also rings the
margin warning bell, which you will hear as you type it! You will be issued a new asterisk, and can
start your command again.

After all this amending, if you ask the monitor to list your directory, you will find not only
TEST but also TEST.BAK, the back-up file which is created while you are amending an already
existing file. Have it typed out by

~TYPE TEST.BAK_

and see for yourself. You must enter TEST.BAK exactly like that, with the period, and with no
spaces around the period. The file name TEST has now acquired the extension .BAK . This is one of
many file name extensions that convey information, to both user and machine, regarding the file.

If you have no further use for a file such as, say, TEST.BAK, you should

-~ DELETE TEST.BAK_|

You type the word DELETE, rather than press the RUBOUT (or DELETE) key. You should always
conserve disk space by deleting superfluous files.

Exercises: (i) Create a file containing the text

ALL THAT GLISTERS IS NOT GOLD
SHAKESPEARE
1596
and exit from TECO.
(i1) Amend the file to contain

ALL IS NOT GOLD THAT GLISTERS
CERVANTES
1615
and exit from TECO.
(ii1) Amend the file again to contain

ALL IS NOT GOLD THAT GLISTENETH
MIDDLETON
1617

and exit from TECO.

(iv) If your terminal has lowercase letters available, change all but the first letters of
each word in the file to lowercase. (In a search command, the text is searched
without regard to upper or lowercase.)

(v) Devise a single sequence of TECO commands to change a file
(a) from single line spacing to double line spacing;

(b) from double line spacing to single line spacing.

(vi) The C command moves the pointer forward one character. It may be preceded by
a positive or negative number, to specify how far, forward or backward, the
pointer is to be moved. Write a file in a “secret” code, as follows: replace all
spaces by letter S, all _] by letter C; insert a __| after every fifth character; type
out the lines of the file, starting from the last line and working backwards (using
one command string); retype the file in this form, and destroy the old version.

Can you now “decode” the file? If not, improve the coding method so that
you can.

(vii) Reduce the storage space taken up by a file, by allowing only one space between
words, after punctuation marks, and at the start of a line to indicate a paragraph.
Also, remove any blank lines.

(viii) Restore the format of a file treated as in the last example. Allow two spaces after
a semicolon or colon, three after a period. Indent new paragraphs five spaces, with
a blank line preceding.

Preliminaries 9

1.3 OCTAL NOTATION

A computer is a machine that deals exclusively with numbers. In order to instruct a computer to
carry out an operation, the operation itself must be encoded as a number meaningful to the
computer. Letters of the alphabet, as part of the text of a file, must also, somehow, be encoded as
numbers. Much of the encoding process is done by the machine without necessitating the
programmer’s concern; but we do need to consider not only how the computer encodes alphabetic
and other symbols as numbers, but also the way in which it registers numbers themselves.

A computer does not have ten fingers. As a result, the number nineteen, say, is not considered
by the computer as being in any essential way one ten plus nine ones. The computer does not
“think decimal.” In fact, the computer “thinks binary,” that is, in the number system in which two
replaces ten as base. In such a system, instead of successive columns, from right to left, denoting
units, tens, hundreds, thousands, and so on, they represent instead units, twos, fours, eights,
sixteens, and so on.

In binary notation, since nineteen is equal to sixteen plus two plus one, it is represented by
10 011. Just as with decimal representation, we group digits in threes for ease of reading. We
write this succinctly as

D19 =B10011

where D stands for decimal, B for binary. In the binary representation, observe the 1 on the left in
the sixteens column, O in both the eights column and the fours column, 1 in the twos column, and
1 in the units column.

These are merely two different ways of representing the same number; one is more convenient to
a human being with ten fingers, the other more convenient to a machine with electrical switches, or
other devices, that have just two “states” (for a switch, the two states are ON and OFF).

The trouble with binary notation is that even quite small numbers are very unwieldy for human
beings to read and interpret. For example, not only is it tedious to find the decimal equivalents of
10010 110 101 and 10 010 101 101, it takes more than a glance to see even that they are
distinct numbers! The decimal equivalents are the much more compact 1205 and 1197.

Exercise: Have a try at checking out the equivalence between these binary and decimal
representations.

Nevertheless, communication between user and machine must take into account that the
machine holds numerical information in binary notation. The machine with which we are dealing
has as its number holding unit the word, each of which contains thirty-six individual binary digits;
that is, thirty-six positions each of which can represent a 0 or a 1. “Binary digit” is abbreviated to
bit. You can see from our discussion above that eleven bits are needed to represent D 1205, five for
D 19.

There is a special code, which we shall learn later, that instructs the machine to interpret the
following number as a decimal number. Since performing tedious calculations is the job of a
machine rather than of a human being, we would, for example, write in 1205 as a decimal number,
instead of laboriously converting it into another base.

We do, however, need to know more about how the machine holds information within its
words, in order to take full advantage of the power of assembler language. To make this somewhat
easier, the machine is set up to deal readily with numbers not only in binary form, but also in octa/
form, in which the base is eight.

It is very easy to convert binary representation to octal. Consider again B 10 011. Notice that B
011 is D 3, which is the same thing as octal O 3 (counting to three is the same process with eight
fingers as with ten). B 10 is D 2, so also O 2; but because there are three more columns of binary
digits remaining to the right, this actually means O 2 multiplied by 2 X 2 X 2, that is, by eight.
So B 10011 = O 23, because in base eight, the digit 2 is in the position that means “multiply
by eight.”

10 Introduction to DECsystem-10 Assembler Language Programming

We worked out earlier that this is D 19, which is also obvious from the octal notation: twice
eight plus three equals nineteen.

Consider again D 1205 = B 10 010 110 101. The binary triads are, from left to right, O 2,
O 2,06, O 5. So the octal representation of this number is O 2265, which means 2 X (eight X
eight X eight) + 2 X (eight X eight) + 6 X (eight) + 5.

To convert octal to binary, reverse the process. For example, O 734: O 7 =B 111,03 =B
011,04 =B 100. S0 O 734 =B 111011 100.
In decimal notation, thisis 7 X (8 X 8 + 3 X (8) + 4 = D 476.

It is important to be alert to:

D10 =012
D8=010
D 64 = O 100.

Octal representation is the normal mode in which the machine regards a number. Anything else
must be specifically declared.

Exercises: (i) Why is it so easy to convert between base two and base eight?
(i) Is it equally easy to convert between
(a) base three and base twelve?
(b) base three and base nine?
(c) base two and base six?
(d) base two and base four?
In the cases where conversion is easy, describe how it is done.
(iii) If you were asked to convert the base seven number 59 to base ten, what
comment would you make?
(iv) Convert to decimal representation
@ O37, (b) O40; (© B1111;) B11110.
(v) Convert to octal representation
(@ D37; (b)y D40; (¢ B1111; (d) B11110.
(vi) Convert to binary representation
(@ D37; (b)) O37; (¢ D-=32; (d) O -32.
(vii) What is O 100 — 1
(a) in octal notation?
(b) in decimal notation?
(viii) Is O 15 — O 60 positive or negative? Why?

Now we are ready to discuss how the machine encodes the various symbols that appear on the
keyboard of the terminal. There is a comprehensive code in which to every single symbol there
corresponds a number. This code, which is widely used on many different machines, is called the
American Standard Code for Information Interchange. It is commonly referred to by its acronym
ASCII (pronounced az-key). On the full standard terminal there are in all 127 distinct symbols (this
is D 127). This includes not only upper and lowercase letters, numerals, and special symbols, but
also special combinations such as CONTROL characters, which are regarded as one symbol by ASCII.
When you press a key on the terminal, the corresponding ASCII code number is electronically
transmitted to the monitor. For example, the ASCII code for "*A is 1. Suppose that we have
somehow contrived to make a certain word in the computer contain the number 1. By this we mean
that, reading from right to left, the first bit in the word is set to 1, and all the rest are O.
Depending on what we are doing, we might want this 1 to mean "*A, or we might want it to mean
simply the number 1. It is important to realize at the outset that the computer cannot “know”
which we mean until we instruct it accordingly.

Let us now write our first, very simple program. We shall instruct the machine to print the
letter B, then stop. We need to know the ASCII code for B, which is 102. The program is very
short, but contains several new things, which we shall examine one by one.

Preliminaries 11

START: OUTCHR [1021]
EXIT
END START

The very first word of our program, START, is, in spite of appearances, not an instruction to
the computer. It is merely a /abe/, which serves only to identify the line on which it is found. When
a line has a label, the label must be on the extreme left and followed by a colon, with no
intervening space. After the colon there must be at least one space, but it is convenient to reserve a
column for labels as we have done above, using the TAB key freely to obtain an easily readable
format.

We label this line because we want to refer to it later in the program. To see where we refer to
it, look at the last line of our program. END | which is assembler language terminology, is the
indication to the machine that no further instructions or designations are to follow. What follows
END , on the same line, is a direction to the computer as to where operations are to commence
when the program is executed. In our program, this is to be at the line labeled START

The choice of label is virtually at our disposal. We may use any combination of up to six letters
and digits, as long as the first character is a letter. START is an obvious and suggestive candidate.

OUTCHR is an instruction to the monitor to send the contents of the appropriate word to the
terminal, as an ASCII character. What is the appropriate word? That is what the square brackets
[...] are for. The assembler will find a word within the computer, and set its bits to represent what
it finds between the brackets; in other words, it will create an address for the data between the
brackets.

EXIT is a necessary part of the program. It instructs the monitor to perform certain routine
functions necessary to stop the program, and then to stop it. If you write a program that reaches its
END statement without first encountering EXIT | you will get an error message when you try to
execute the program. (Try it!)

You can see below a reproduction of the terminal session in which the above program was
created and executed. We called the program TEST.MAC . TEST was chosen as a name for obvious
reasons. The extension .MAC should always follow the name of any MACRO (assembler language)
program, as it enables us to use a very simple procedure to execute the program. Nothing should
come between the program name and .MAC | exactly as shown.

To remind you that it is up to us to choose labels, we used a different one for the line at which
operations are to commence.

The command to the monitor to execute a program is EXECUTE, which is conveniently
abbreviated to EX ; this should not be confused with the TECO exit command. Notice that it is
not necessary to use the file name extension in the EX instruction.

+MAKE TEST.MAC

*®ICOMNCE: OUTCHR [1021]
EXIT
END COMNCE
EXS

+EX TEST

MACRO: JMAIN

LINK? Loading

CLLNKXCT TEST Executionl
E

EXIT

We now know that the ASCII code for B is 102. We also need to be aware that this means octa/
102. The ASCII code interprets the symbols of the terminal as octal numbers between O and O
177.

Observe that D 128 is 2 X (eight X eight), and so is equal to O 200. Subtracting 1 from this
number gives D 127 = O 177 as the number of distinct ASCII symbols.

It is important to understand why O 200 — 1 = O 177.

12 Introduction to DECsystem-10 Assembler Language Programming

Consider what happens when we try to add 1 to O 7. The quantity in the units column is
increased to eight, so we must carry to the left, into the eights column. So O 7 + 1 = O 10.
Similarly, O 17 + 1 = O 20. If we try to add 1 to O 77, carrying 1 into the eights column
increases the quantity there to eight, so we must carry one more column to the left, into the (eight
X eight) column. So O 77 + 1 = O 100. Similarly, O 177 + 1 = O 200, and so on.

Of course it is possible to convert these ASCII codes into decimal representations, but this is not
necessary. It is a much better idea to get used to these numbers in the octal form in which they are
always quoted. Just remember that no digit may exceed 7; and so adding 1 into a column with a 7
in it produces 0, with a 1 carried to the left.

The ASCII codes for A through G are

101
102
103
104
105
106
107

What do you suppose is the ASCII code for H? As you have doubtless guessed, it is the code for
G increased by 1; which of course means

OmMMmMgO®>

H 110
and so on sequentially through to
W 127
X 130
Y 131
VA 132
The numerals on the terminal have as ASCII codes
0 60
1 61
and so on, through to
7 67
8 70
9 71

It is very convenient that the ASCII codes for successive numerals are themselves successive octal
numbers; observe that one can be obtained from the other by adding or subtracting O 60.

Let us write a program that will add 1 to a number to be chosen by us at execution time. To
instruct the machine to get from the terminal a character that we type in at the appropriate
moment, we need the command INCHWL . This instructs the monitor to take in a character, in
the “wait on line” mode—after typing in the characters, the machine does not receive them until
you enter a __|. There is another instruction that sends characters as you type them, but it has the
disadvantage that if you make a mistake you have no opportunity to amend it with the RUBOUT key.

Our program is

START?! INCHWL

ADDI 1
OUTCHR

EXIT

END START

The command ADDI is used for ADDition in the “Immediate” mode; that is, when the number
at the end of the line is the actual (octal) number to be added on. You might wonder what other
mode of addition there could possibly be, but the answer to this must wait awhile.

Preliminaries 13

Let us consider what happens when we create this program with TECO (you must choose a name
for it), then EXecute it. Nothing at all will happen, after the message

[LNKXCT TEST Execution]

until we type in a character. Suppose we type in 5. Then the ASCII code for 5, which is O 65, is
taken in by the machine; 1 is added to it, yielding 66; this is the ASCII code for 6, so the
OUTCHR command causes 6 to appear at the terminal, whereupon the machine will EXIT.

Notice that this program does not manipulate the numbers we type in; rather, it manipulates
their ASCII codes. It will add 1 perfectly well to numbers 0 through 8. But if we type in 9, it will
return the character whose ASCII code is O 72. Try it, and discover which character has that code.
If we type in 10, the first character we type is 1; the program will therefore print out 2. The
remaining O will puzzle the monitor, which will consequently print out, after exiting from the
program, the message

.20¢

Even if we could somehow carry out the process of adding 1 successively on each digit of 10, this
would not achieve the result of adding 1 to the number D 10 itself. There is no reason why it
should: we have given the machine no indication that 10 is the representation of a number in some
“positional” notation. Until we do so, 10 is simply entered as symbol 1 followed by symbol O.

Since the above program manipulates ASCII codes, we can enter any symbol. If we enter A, then
B is printed out. B would result in C, and so forth. Entering Z (ASCII code 132) results in [
(ASCII code 133).

What follows is an incomplete program fragment, which does nothing at the terminal. It merely
reads a numeral between 0 and 9, which we type in at the terminal, as the actual number, not its
ASCII code.

INCHWL
SUBI 60

The second line is SUBtract Immediate: the number O 60 is subtracted from whatever is there
already. If we have typed in 7], its ASCII code of 67 will have been entered by the INCHWL
command. The subtraction command reduces this to 7.

Suppose we type in 8 _|; then O 70 is entered. The subtraction command reduces this to
O 10, which, again, is D 8.

With practice, you will soon find yourself using the SUBI 60 command to convert the ASCII
representation of a digit to the number itself virtually automatically.

Of course, to convert back to ASCII code before using OUTCHR, the quantity O 60 must be
added back on. This is done by the command ADDI 60 .

The following complete program doubles a number. We introduce the IMULI command, for
Integer MULtiply, Immediate.

START:! INCHWL

SUERI 60
IMULI 2
ADDI 60
OUTCHR

EXIT

END START

Let us follow through what happens when 3 is typed in. Its ASCII code of O 63 is entered.
From this, subtraction of O 60 yields 3. Multiplication by 2 gives 6. Adding O 60 gives O 66.
This is the ASCII code for 6, so 6 is printed out. The machine will now EXIT.

This program works perfectly well on 0, 1, 2, 3, 4. What happens if we type in 5? Its ASCII
code of O 65 is entered. Subtraction of O 60 gives 5. Doubling 5 gives D 10; remember that this
is O 12. Adding O 60 gives O 72. This is the ASCII code for the symbol : which is therefore
printed out. It is clear that dealing with numbers that run into more than one digit will require a
certain amount of care! Observe that, in the last example, the machine does indeed contain the

14 Introduction to DECsystem-10 Assembler Language Programming

correct result of doubling 5. The problem comes when we try to print it out in the usual positional
notation by which we represent numbers.

Typing in other symbols with this program yields meaningless, but nevertheless instructive
results. Type in A, so that O 101 is entered. Subtracting O 60 from this gives O 21 (why?).
Doubling gives O 42. Adding O 60 gives O 122 (why?). This is the ASCII code for R, which
gets printed out.

It must by now be getting tedious to have to EXecute the program for every single input. It is
also wasteful, and we shall learn how to overcome this later.

Exercises: (i) Write a program to print out the text PROGRAM.

(ii) Write a program to accept input of a character, then print out THE CHARACTER
YOU TYPED WAS followed by that character.

(i11) Write a program to treble a number typed in at the terminal. For what range of
input does your program work? What result does your program yield when p is
input? Why?

(iv) Write a program to accept input of a two digit number, add one to the number,
and print out the result. How do you explain your program’s action
(a) when the second digit is 9?

(b) when a single digit number is input?

CHAPTER TWO

FUNDAMENTALS

2.1 THE ACCUMULATORS

In the previous chapter we learned the command INCHWL | which instructs the monitor to take a
character typed in at the terminal and hold it in the computer. Our programs will be very trivial,
however, if we can only hold one character at a time in the computer. In fact, there is room in the
computer’s memory, or core, for a program to have at its disposal many thousands of locations, or
addresses, in which characters may be placed.

Sixteen of the memory locations available to the user are called accumulators and are of particular
importance. Most of the arithmetical operations can be performed on a number only if that number
is held in an accumulator. If we want, for example, to double a number currently held in some
memory location other than an accumulator, we must do as follows: move the number to an
accumulator; double it in the accumulator; move the new contents of the accumulator back to the

memory location.
The sixteen accumulators are numbered, and are identified by their numbers. Note carefully that

accumulators are numbered octally, starting at 0: 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17.

If no accumulator number is given in your program, the assembler will assume that accumulator
O is intended. Thus in Chapter 1, the “action” took place in accumulator O.

Let us rewrite the program of Section 1.3 that doubles a number between 0 and 4, using
accumulator 1 instead of accumulator O.

START?! INCHWL 1

SUBI 1,60
IMULI 1,2
ADDI 1,60
OUTCHR 1
EXIT

END START

Notice how, in the second, third, and fourth lines, the number of the accumulator comes before
any other number, and it is followed by a comma if there is more to come on that line.

15

16 Introduction to DECsystem-10 Assembler Language Programming

Be careful not to be confused by a line like
IMULI 1,2

in which 1 is the accumulator number, and 2 is the actual quantity by which the contents of
accumulator 1 are to be multiplied. A good way to avoid confusing the roles of the numbers in lines
like this is to give names to the accumulators your program is going to use. Names are of your own
choosing: up to six letter or number characters, starting with a letter. It is useful to choose a name
having some association with what you are doing. Let us suppose that we want to use accumulator 1
again, and that we will give it the name INT. We must declare INT=1 before the program
instructions; then, whenever the assembler encounters INT, it will understand that 1 is meant. The
above program now looks like this:

INT=1

START: INCHWL INT
SURI INT»60
IMULI INT,»2
ADDI INT»60
OUTCHR INT
EXIT
END START

The declaration INT=which is then followed by the accumulator number is one of the few places
where putting in spaces is not allowed. The = sign must follow the chosen name immediately.

Having the accumulators at our disposal will now enable us to increase the scope of the above
program. First, we shall amend it to deal with a two-digit output.

Suppose that our input is 9. Then after the line IMULI INT,2 accumulator INT contains the
number eighteen. But ADDI INT,60 followed by OUTCHR INT will lead to print out as
follows: D 18 = O 22, O 22 + 60 = O 102, and 102 is the ASCII code for B (try it!).

In order to print out the number eighteen in the form 18, we must examine the meaning of this
decimal notation. The symbol 1 gives the number of tens in the number eighteen; the symbol 8
tells us how many units are left over. If we divide eighteen by ten, the result is 1, with remainder
8.

There is a division instruction available that is perfect for our requirements. Suppose we have a
number stored in an accumulator, say, in accumulator 2. Then

IDIVI 2,5

will divide that number by 5, leaving the whole number quotient in accumulator 2; the original
number is lost in this process.

But the division instruction does something else at the same time, which is very useful for our
purposes: the remainder in the division calculation is put in the next accumulator. In our example,
this would be accumulator 3.

Don’t forget that carrying out a division on the contents of accumulator 7 puts the remainder in
accumulator 10 (the next one!). Accumulator 17 has no next one; if its contents are divided by
anything, the remainder goes into accumulator O.

To print out numbers between ten and ninety-nine, what we must do, therefore, is divide by
ten. Then we print out the quotient, followed by the remainder. Remember that the number ten,
by which we want to divide, is to be entered in our program as an octal number; D 10 = O 12,

INT=1
REM=2

START: INCHWL INT
SUBI INT»60

IMULI INT»2
PRINT?! IDIVI INT»12
ADDI INT»60
OUTCHR INT
ADDI REM» 60
OUTCHR REM
EXIT
END START

Fundamentals 17

This program uses two accumulators. Division is carried out on the contents of accumulator 1,
so the remainder appears in accumulator 2; hence our choice of the name REM for accumulator 2.

The label PRINT could be omitted; it serves no function in the program. We have included it
solely to mark the point at which, with calculation completed, the process of printing out begins.

Experiment with this program, and see that it will double numbers up to and including 9;
although now if we input, say, 4, the result of doubling is printed out as 08 (why?). We still
cannot input larger numbers.

Now we shall extend the program in another direction. Instead of multiplying always by 2, we
shall choose the number by which to multiply when the program runs. In effect, our program will
now form the product of two single-digit numbers.

We shall need another accumulator to receive the second number. Let us use accumulator 3, and
give it the name NUM . When we have put our numbers into INT and NUM, we want to
multiply the contents of these two accumulators. The instruction for this is

IMUL INT,NUM

and the product goes into INT, because INT is the one that comes before the comma.
The difference between IMUL and IMULI is crucial. Compare

(a) IMULI INT,2
(b) IMUL INT,2

(a) multiplies the contents of the accumulator named INT by the number 2

(b) multiplies the contents of the accumulator named INT by the contents of accumulator number 2.

In both cases, the result of the multiplication is put in accumulator INT. In case (b) the
contents of accumulator number 2 are unaffected (unless in our program we have set INT=2, in
which case the result is to multiply the contents of INT by themselves; in other words, to square the
contents of INT).

The following program now takes in our two numbers, multiplies them together, and prints out
the result. When you EXecute this program (having chosen a name for it and created it with
TECO), the machine will wait until you type in two numbers followed by a .|, then print out the
product and exit.

INT=1
REM=2
NUM=3

START: INCHUWL INT
INCHWL NUM
SUBI INT»60
SUBI NUM» 60
IMUL INT»NUM

PRINT: IDIVI INT»12
ADODI INT»60
OUTCHR INT
ADDI REM» 60
OUTCHR REM
EXIT
END START

If you type in number—space—number, you will not get the correct result. (Why not?)

The instruction for adding the contents of two accumulators is ADD. You should amend the
above program, to make it add two numbers together, by changing

IMUL INT,NUM
to

ADD INT,NUM

Observe that the distinction between ADD and ADDI is analogous to that between IMUL and
IMULI.

18 Introduction to DECsystem-10 Assembler Language Programming

Separator Characters and Skip Instructions

Let us return to the question raised above. Suppose that we execute the above program, with the
desire to multiply 3 by 8. If we type 38_ then 24 correctly appears. But if we type 3;._|, with a
semicolon used to separate 3 and 8, the result is 33, plus, after exiting, a very enlightening
message from the monitor (Try it!). Other separating characters will produce various exotic results.

We can follow through what happens line by line of the program. The first instruction received
is INCHWL INT . Because INCHWL is a “wait on line” instruction, the machine can do nothing
until a _J is received. Then it has the characters 3 followed by ; then 8 and the two characters
comprising | in its “buffer” ready to be processed. Now the instruction INCHWL INT has the
first character, in the form of its ASCII code, placed in INT. The first character is 3 and its ASCII
code is O 63, so O 63 goes into INT. The next instruction is INCHWL NUM . Now the next
character in the buffer is ; and its ASCII code happens to be O 73; this number is placed in
accumulator NUM.

INT=1 O 63
REM=2
NUM=3 O 73

Ny

The next two lines, subtracting O 60 from each, leave us with O 3 in INT, O 13 in NUM. Now
O 13 =D8+ 3 =D 11, so the result 33 is “correct.” The program will reach its end without
having the character 8 in the buffer ever reached; it remains there to puzzle the monitor.

As we proceed, it will become plain that the use of assembler language gives precise and total
control over the operations of the computer. For the present, however, the process of actually
exercising that control may appear burdensome, and the rewards nonexistent. As we progress, this
balance will gradually change in our favor.

We must find a way to enable the computer to recognize separator characters in our input. This
is absolutely necessary for even trivial problems. Suppose we extend our last program to multiply
together two numbers of any size. Then somehow the machine must distinguish input of 35 and 62
from input of 3 and 562. This depends on where the separator character occurs.

To begin with, we shall separate our numbers by a __|. Our program must recognize that .|
indicates that input of a number has just ended. It must also refrain from treating the .| itself as if
its characters were the next two characters of the input data.

Now .| comprises the two characters:

CARRIAGE RETURN—ASCII code O 15
LINE FEED—ASCII code O 12

We shall prepare the ground for input of a number of more than one digit. We shall input a
character and check whether it is a carriage return. If so, we ignore it, and the following line feed,
and input the next character.

This brings us to the most far-reaching power of the computer: the ability to take alternative
courses of action, depending on the result of a previous step. This is usually achieved by an
instruction that compares two quantities, and depending on the comparison, either skips over the
following line in the program or does not.

We first consider a class of instructions that compare the contents of an accumulator with an
actual number; these are four or five letter codes, of which the first three letters are CAl—acronym

Fundamentals 19

for Compare Accumulator Immediate. The remaining letters give the circumstances under which the
next instruction in the program is to be skipped. We have

CAIL accumulator,number

which means: skip if the contents of the accumulator are less than the number. Similarly, CAIl can
be followed by

LE less than or equal to

G greater than

GE greater than or equal to
E equal to

N not equal to

Thus, for example, the instruction
CAIG INT,71

will cause a line skip if accumulator INT contains a number greater than O 71, and not otherwise.
The following amended form of our program enables the two single-digit inputs to be separated

bya _|.

INT=1
REM=2
NUM=3

START! INCHWL INT
INCHWL NUM
CAIN NUM»s 15
INCHWL NUM

CAIN NUM»12
INCHWL NUM
SURI INT» 60

and so on, as before.

Let us follow through carefully what happens. The first character goes into INT. The next
character goes into NUM, and is then compared with 15, the ASCII code of carriage return. If our
character was not a carriage return, then NUM does not contain 15, so we skip. If NUM does
contain 15, we do not skip, and the next line tells the monitor to move on to the next character,
and take it into NUM. The procedure is now repeated, this time so as to exclude 12 (line feed) as
well as 15.

Note what happens on the instruction INCHWL NUM | when accumulator NUM already
contains something. The previous contents are discarded, and replaced with the next character in
line for input.

Our program still suffers from the inelegance of printing out 2 times 4 as 08. This is because
the instruction OUTCHR INT is carried out even if INT (which here contains the number in the
tens column) is zero. We can suppress this leading zero by first comparing the contents of INT with
O 60, the ASCII code for O, and skipping the instruction to print out in case of equality. So the
printing routine becomes

FRINT: IDIVI INT»12

ADDI INT» 60
CAIE INT» 60
OUTCHR INT

and so on. Of course we do not want to suppress the printing out of a zero from REM as well!
(Why not?)

To print out numbers of possibly more than two digits, the process of dividing by ten and
saving the remainder must be repeated the appropriate number of times. Suppose we know that the
contents of INT may be a number of at most four digits; in that case, we must divide by ten three
times over, then print out the contents of INT followed by the three remainders (suppressing INT

20 Introduction to DECsystem-10 Assembler Language Programming

ieself if it contains zero). For example, if INT contains 2174, successive division by ten gives

INT REMAINDERS
2174

after 1st division 217 4

after 2nd division 21 7 4

after 3rd division 2 1 7 4

We will need four accumulators: INT itself, and three for the remainders that give the hundreds,
tens, and units. Let us call these three HREM, TREM, UREM. We shall begin by designating

INT=1
HREM=2
TREM=3
UREM=4
If, initially, we suppose that INT contains 2174, then
IDIVI INT,12

puts 217 in INT, and 4 in the next accumulator, HREM. We must move the contents of HREM
into UREM. This is done by

MOVE UREM,HREM

Note the order! Note also that the contents of HREM are not changed by this instruction. The
whole print routine for a four-digit number now looks like this:

FRINT: IDIVI INT»12

MOVE UREMyHREM
IDIVI INT»12
MOVE TREMyHREM
IDIVI INT»12
ADDI INT» 60
CAIE INT»60
OUTCHR INT

ADDI HREM» 60
OUTCHR HREM

AlDI TREM» 60
OUTCHR TREM

AIDI UREM» 60
OUTCHR UREM

EXIT

END START

This will print out four-digit numbers correctly, and also three-digit numbers, since it suppresses
the leading zero. It will, however, print out 27 as 027, 3 as 003, and zero as 000. At present it
would be complicated to correct this stylistic defect. It is a good exercise to endeavor to do so; it
will familiarize you with the problems involved. Observe that a program that prints 27 as such,
instead of 027, is not much use if as a result it prints 1027 as 127.

Leaving this point for later, let us consider how to input a two-digit number. We have already
managed to mark the end of the input of a number by a carriage return. So we can proceed as
follows, using, for example, 26. We type in 26, |. The machine takes 2 and 6 into different
accumulators; multiplies 2 by ten and adds 6 to the result. This procedure will work if the input is
a single digit, as long as we are careful not to put it into the “tens” accumulator. The following
routine puts a one- or two-digit number correctly into INT. HREM is accumulator 2, as designated
above.

INCHWL INT
INCHWL HREM
SURI INT 60
SURI HREM» 60
CAIL HREM» O
IMULI INT»12
CAIL HREM» O
ADD INTyHREM

Fundamentals 21

The difficulty in writing this was to ensure that both one- and two-digit numbers are interpreted
correctly. Let us follow through the above routine for both cases. First, suppose we try to input
twenty-seven; so we type 27 __|. Then the ASCII code for 2, which is O 62, goes into INT;
similarly, O 67 goes into HREM. Subtraction of O 60 now puts 2 in INT, 7 in HREM.

The next line compares the contents of HREM with zero, and will skip if HREM contains a
quantity less than zero (we shall see the purpose of this step below). Since HREM contains 7, the
program does not skip. The next instruction multiplies the contents of INT by O 12; that is, by
ten. INT now contains twenty, HREM still contains 7. The next skip instruction is the same as the
previous one, and is not effective in this case. So the ADD instruction is carried out. The contents
of HREM are added to the contents of INT, which now, as desired, contains twenty-seven.

Accumulator HREM still contains 7. This will be obliterated later when we divide the contents
of INT by ten, which puts the remainder into HREM in place of any former contents.

Now suppose we want to input five; so we type 5_|. Then the ASCII code for 5, which is
O 65, goes into INT. This time, however, HREM receives O 15, the ASCII code for carriage
return. After subtraction of O 60, INT contains 5; HREM contains a negative number. (It is in fact
O —43, but there is absolutely no reason to perform this octal calculation. It is quite enough to
observe that it must be negative.)

This time the skip instruction does take effect; the skip takes us to the next skip instruction,
which is again effective, and the program skips to whatever follows the above routine. Thus we
finish with INT containing 5. As before, we are not now concerned with the contents of HREM.

INT=1

HREM=2
TREM=3
UREM=4

START: INCHWL INT i(a)

INCHWL HREM

SUBI INT»60

SUBI HREM» 60

CAIL HREM»O

IMULI INT»12

CAIL HREM»O

ADD INT»HREM

INCHWL TREM 3 (b)
CAIN TREM» 15

INCHWL TREM

CAIN TREM»12

INCHWL TREM i(c)
INCHWL UREM

SUBI TREM» 60

SUBI UREM» 60

CAIL UREM»O

IMULI TREM»12
CAIL UREM»O

ADD TREM»UREM
IMUL INT» TREM P (d)
PRINT: 1IDIVI INT»12 i(e)

MOVE UREM» HREM
IDIVI INT»12
MOVE TREM» HREM
IDIVI INT»12

ADDI INT»60
CAIE INT»60
OUTCHR INT
ADDI HREM» 60
OUTCHR HREM
ADDI TREM» 60
OUTCHR TREM
ADDI UREM» 60
OUTCHR UREM
EXIT

END START

FIGURE 2.1 A program to multiply two one- or two-digit numbers.

22 Introduction to DECsystem-10 Assembler Language Programming

We conclude this section with a program that will multiply together any two numbers of one or
two digits each. When the program is executed, the numbers are entered with a | after each of
them. The program is in Figure 2.1.

Input of the first number is handled using accumulators INT and HREM, with the number
finally reaching INT. For the second number, we use TREM and UREM for its digits, finally
getting the number into TREM. Although we chose these names with printout in mind, they do
not restrict the use to which we can put the accumulators.

Now we multiply the contents of INT by the contents of HREM. Finally, we use our printout
routine on the new contents of INT.

It is vital for your progress that you study this program until you fully understand the effect of
each single step. Make out a table with four columns headed INT, HREM, TREM, UREM. Take
some particular examples for input, and work through the program line by line. In successive lines
of your table, write in what the contents of the four accumulators will be after the corresponding
line of the program has been reached. Doing this exercise thoroughly is very beneficial later on.

After you have done this, try putting these notes aside and constructing the program again for
yourself. Does it run properly for various choices of input? If not, create a table again for your
program, and check through, line by line, what happens to a given input. When you have corrected
all the errors you can find (using TECO), execute the program again. If it still does not work,
repeat the process until it does! Learning to tolerate patiently the tedious chore of “debugging” is
one of the least enjoyable, but regrettably one of the most essential aspects of programming.

When you have done this, you might refer to Appendix A on debugging, and try it over again
using DDT.

Notes on Figure 2.1:

(a) Input first number

(b) Discard carriage return and line feed separating numbers
(¢) Input second number

(d) Form product

(e) Output product

Comments

In longer programs it can be helpful to include brief notes explaining the purpose of a line or a
collection of lines. This is particularly useful if programs written by one person are to be read by
another. To include comment on a line, precede the comment by a semicolon, just as we did above.
A whole line of comment must begin with a semicolon as its first-nonspacing character. The above
program might include

; now follows the printout routine
PRINT: IDIVI INT,12 ;012 =D 10

How much comment should be included is to some extent a matter of individual taste. Few
programmers would include as much as in the above example. After all, choosing the label PRINT
obviates further comment on the purpose of the routine. Some would include the comment on
division by O 12; for others, such a frequently occurring line requires no comment. Certainly the
comment in such a line as

PRINT: IDIVI INT,10 ;octal printout

is worthwhile; otherwise on later reading, by the programmer who wrote it or anyone else, the
natural assumption would be that a blunder had been made. In general, lines of comment should
indicate program flow from one stage to another. Individual instructions deserve a comment if their
function is not fairly clear, and most certainly if any subtle trickery is involved. It can also be

Fundamentals 23

helpful to explain accumulator usage:
CT=1 :character count

Although you should develop your own style regarding comments, be sure it conforms with the
general principles we have outlined.

We have purposely been very sparing with comments in several of the programs in this book,
particularly in the early stages. These programs are exercises as well as illustrations. Your first
approach to each of them should be careful line by line study, writing comments where apt for what
is clear to you, reserving queries for any instruction whose purpose you cannot fathom. Then, and
not before, copy the program as your own file, and work through it using DDT. Try various inputs,
and see that the program does what it should. Do not be satisfied until you understand the function
of every single line. Finally, make and keep a copy of the program that is fully annotated with your
own comments. This approach will rapidly develop your own program writing skills.

Exercises: Werite a program that . . .

(i) accepts input of two numbers of up to two digits each, and prints out

(a) the larger of them;

(b) the (positive) difference between them;

(c) the smaller, a semicolon, then the greater.

Be sure that your program can cope when the numbers are equal.

(i1) accepts input of a number of up to three digits followed by a single digit number,
and prints out the quotient when the former is divided by the latter. Have your
program just EXIT if the divisor is zero.

(iii) accepts input of two octal numbers of up to two digits each, and prints out their
product as an octal number. Have your program exit if the numerals 8 or 9 appear
in the input.

(iv) accepts input of an octal number of up to four digits, and prints it out as a
decimal number.

(v) the opposite of (iv).

2.2 JUMP INSTRUCTIONS

The computer carries out the instructions in a program successively, line by line. In the last section
we learned the CAl- instructions, which cause this sequential mode of operation to be changed.
Depending on the result of a certain comparison, the instruction next following may be passed over.
But this hardly helps us if we want the carrying out of a whole routine to depend on a certain
comparison of quantities—a frequent need in programming. Consider the section marked (a) in the
program at the end of Section 2.1, and see the clumsy way in which we managed to make the
performance of the two instructions IMULIINT,12 and ADD INT,HREM depend on the
contents of HREM. Such matters are handled more elegantly using an instruction to jump to
another point in the program. The usual format of instructions is

skip depending on a comparison
jump to appropriate point

so that whatever instruction follows this fragment is carried out in case of a skip. Otherwise, the
jump instruction takes effect, and some special routine, to be found elsewhere in the program, is
performed. The conclusion of this routine might be a jump instruction returning us to the next
instruction after the point of departure.

We introduce the jump instruction JRST. A label at the beginning of the destination line is
used to complete the instruction. The label itself is always followed by a colon, but reference to it in

24 Introduction to DECsystem-10 Assembler Language Programming

the jump instruction must not include the colon. Thus, incorporating the instruction

JRST PRINT
would cause a jump to the line labeled PRINT
PRINT: IDIVI INT,12

in the last program of Section 2.1. It does not matter whether the jump instruction is placed in the
program before or after the destination of the jump.

As an example of how availability of the jump instruction increases our programming
capabilities, we shall write a more general routine to input a number. We want to be able to type
in a number of any size, in the usual decimal notation, and finish with a __|. So the number of
digits to be entered is not predetermined. Our routine will take in the number, digit by digit. At
each stage, if the character taken in is a carriage return, then input is finished, and the number
already stored is what is wanted. Otherwise, the latest digit is added to ten times the number
already stored. Let us examine this process with an example (in decimal notation), say, 234. Input
is successively 2, 3, 4, _|. First, 2 is stored. Since 3 is seen to be the next digit, we form (2 X 10)
+ 3 = 23. The next digit is 4, so we form (23 X 10) + 4 = 234. There follows the _|, so we
are done. Of course, our routine must convert from ASCII codes to the corresponding numbers.
Here is such an input routine. The first command SETZM sets the contents of the stated location
to zero. We then take characters into accumulator DGT. On finding a carriage return, we jump to
some line elsewhere in our program; the line must bear the label DONE . Otherwise, we know
that DGT contains the next digit, and we proceed as indicated above. You should work through
this routine carefully, line by line, for various choices of input.

INT=1

DGT=2

. . .

SETZM INT
LABREL: INCHWL DGT

CAIN DGT»15
JRST DONE

SURI DGT» 60
IMULI INT»12
ADD INT»DGT

JRST LABEL

This routine will input any whole number not too large to be contained in a single word of the
computer. The 36 bits (this is D 36) of a computer word are numbered O through 35, and all but
bit O can be used in the representation of a positive whole number. It turns out that this permits
holding all decimal numbers of up to ten digits. (Exercise for the reader with some mathematical
knowledge: what precisely is the largest integer that can be held in a single computer word?)

If you try to input too large a number, you will not set an error message, but your results will
be incorrect. Output of numbers comprising varying numbers of digits is somewhat more difficult.
We have to divide by ten, and store the successive remainders. When division by ten has reduced
the original number to zero, we print out the remainders, starting with the last and ending with the
first. You should confirm this method by trying it on a few examples. The trouble is that since we
do not know how large the number to be output may be, we cannot anticipate the number of
accumulators needed for the successive remainders.

Indexing

We can overcome this by indexing. We can set aside one accumulator—Ilet us call it N—for
indexing. This may be any accumulator except accumulator number 0. Accumulator N will never hold
a remainder; rather, it will hold the number of the accumulator into which a particular remainder is
to go. For example, suppose in the accumulator called REM we have a number we want to put in
accumulator 7. Then we first make sure that the contents of N are set equal to the number 7. This

Fundamentals 25

is achieved by a MOVE Immediate instruction
MOVEI N,7
and now

MOVEM REM,(N)

puts the contents of REM into accumulator 7. There are two new things in this last instruction.
MOVEM is similar to MOVE, except that it goes in the opposite direction, moving the contents of
the location on the left to the one on the right; we shall have more to say about this in the next
section. The notation (N) causes the contents of REM to be moved, not to accumulator N itself, but
to the accumulator whose number is given by the contents of accumulator N. Distinguish carefully
between

(a) MOVEM REM,N
(b) MOVEM REM,(N)

(a) moves the contents of the accumulator named REM into the accumulator named N
(b) moves the contents of the accumulator named REM into the accumulator whose number is
gtven by the contents of N.

In each case, the contents of REM are unchanged.

Of course MOVE 7,REM or MOVEM REM,7 would each be a simpler way to do this. The
power of indexing, however, lies in our ability to increase the contents of N at each successive step,
stringing out the successive remainders in sequence.

We shall use accumulator 1 for the number to be printed out. On division by ten, the
remainder gets put into accumulator 2. Accumulator N=3 will serve for indexing. This leaves, for
holding the successive remainders, accumulators 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17;
twelve in all, which is more than enough for the decimal digits corresponding to the contents of a
single accumulator word.

We start by setting the contents of accumulator N equal to 3. Thus, accumulator number 3 also
contains the number 3. Since N is to be used as a sort of pointer, we can think of it as starting off
pointing to itself. Each time we divide by ten, we increase the contents of N by 1, so that N points
to the next accumulator; and into that accumulator we put the remainder from the division. We
repeat the process until all remainders are found. Accumulator N now points to the last remainder
found: so we print it out, and decrease the contents of N by 1. This process is repeated until,
finally, the contents of accumulator 4 are printed out. Note how carefully we must ensure that
accumulator N points to exactly the right place: it is all too easy to be inaccurate in this by one
place. (What happens if we start off with N containing 4, the first location to be used for holding
remainders? Rewrite the program below, starting in this way.) Here is such an output routine:

INT=1

REM=2

N=3

MOVEI N»3
L1: IDIVI INT»,12

ADDI Nri1

ADDI REM» 60
MOVEM REM» (N)

CAIE INT»O
JRST L1
L2 CAIGE N»4
JRST DONE
OUTCHR (N)
SURI N»1
JRST L2

You should pay particularly careful attention to this routine; study it with the aid of several
numerical examples.

26 Introduction to DECsystem-10 Assembler Language Programming

A Multiplication Program

Let us use our input and output routines to write a complete program (Figure 2.2). We shall write a
multiplication program more general than that of Section 2.1, in that any two whole numbers can
be multiplied together. If the result of multiplication is too large to be held in one word, this
program will produce incorrect printout.

Notice how we keep a block structure of separate routines. Once we know how to perform a certain
kind of operation, we can carry the routine for it virtually intact from one program to another.

We leave blank lines to stress the block structure. Although TECO is aware of a blank line as
being a line, such lines are wholly ignored when your program is run. In the above routine, if INT
contains zero the instruction CAIE INT,0 will cause a skip to the line bearing the label L2.

Instead of letting our program exit after just one multiplication, we jump from the printout
routine back to the start. At this point we put in a carriage return and two line feeds for a pleasing
format. As a refinement, we have the symbol ¢ (ASCII code O 77) printed out whenever the
program is waiting for input. So, on executing the program, wait for a ¢ then input the first
number followed by . |. A second ? will appear, and you then type in the second number followed
by .. The product will now appear, and the whole process will start again.

Since this program never reaches its END statement, there is no need for an EXIT instruction
(refer to Section 1.3). To escape from the program, press "C; if the machine is actually calculating
when you do so, you will need a further *C.

Observe how we enable the program to expect input of precisely two numbers. Our input

INT=1
REM=2
NUM=3

START: SETZIM

LO? SETZM INT
OUTCHR [771]

L1 INCHWL REM
CAIN REM» 15
JRST L2
SURI REM» 60
IMULI INT»12
ADD INT»REM
JRST L1

L23 CAIE 0
JRST L3
MOVE NUM» INT
ADDI 1
INCHWL REM
JRST Lo

L3 IMUL INT»NUM

PRINT: MOVEI NUM» 3

F12 IDIVI INT»12
ADDI NUM» 1
ADDI REM» 60
MOVEM REM» (NUM)
CAIE INT»O
JRST F1

F23 CAIGE NUM» 4
JRST REFEAT

OUTCHR (NUM)
SUEI NUM>» 1
JRST F2

REPEAT! OUTCHR C[15]
OUTCHR [12]
OUTCHR [12]

INCHWL REM
JRST START
END START

FIGURE 2.2 A program to multiply any two numbers.

Fundamentals 27

routine puts a number into INT. We move the first input from INT to NUM, then repeat the
input routine. So we end up with our two numbers in INT and NUM. We make sure that there is
no attempt to carry out the input routine more than twice by using accumulator O as a counter.
(What would happen if we did not take this precaution?) Work out for yourself how this is done,
remembering that instructions referencing an accumulator, but not mentioning any one specifically,
refer to accumulator 0. Thus CAIE O causes a skip if the contents of accumulator O are equal to
zero; and ADDI 1 adds 1 to the contents of accumulator O.

The purpose of the INCHWL REM instructions to be found in routines L2 and REPEAT is to
dispense with the line feeds between and after the two numbers. How does this work? And why is it
necessary?

Notes on Figure 2.2:

L1: This routine puts into INT a number typed at the terminal in normal decimal notation,
and followed by _|. The contents of INT must be zero at the start of this routine. It may
be described as a routine to rezd a number.

L2: This routine transfers the contents of INT to NUM; sets INT to contain zero; disposes of
the line feed between the two numbers being input; and uses accumulator O to ensure that
this routine is carried out exactly once, so that just two numbers are read.

L3: This one line is the whole arithmetical calculation!

PRINT: The print routine was examined previously.

REPEAT: Formats ready for input of further numbers.

Exercises: Write a program that . . .
(i) reads a number and prints out its square;
(ii) reads a number and prints out its cube;

(iii) reads a number # and prints out »! where n! = n(n—1)n—2)...2.1;
(iv) reads two numbers and prints out the remainder when the larger is divided by the
smaller;

(v) reads two numbers 7 and 7, and prints out the »th power of .
Include in your programs any comments you consider suitable.

Counting Data Items

In the above examples, the number of items of data was known in advance. As an example of how
to escape this restriction, we shall construct a program to read a collection of numbers and compute
their mean (average). This program is in Figure 2.3.

To calculate the mean, we will need to know how many data items were input. This is done by
using an accumulator as counter, increasing its contents by 1 every time a number is read.

It is not a good idea to terminate the entire input with _|, since input may need to extend
beyond just one line of type. As convenient a system as any is to use $ (ESCAPE—ASCII code O 33)
to signal the end of all data input, and to let any other nonnumeric character serve as a separator
between numbers. Recall that numerals have ASCII codes O 60 through 71, so it is a simple
matter to check if a character is a numeral or not.

The program must take care of the possibility of more than one separator character between
numbers, or of a separator character before the terminating $. Otherwise, excessive care in typing
will be required at execution time. So, on finding a separator character, the program must go to a
routine that discards any further separator characters, before attempting to read the next data item.

To begin, we set out counter CT to contain 0. Our READ routine reads a number, using
accumulators INT and DGT. On finding a separator character, routine SEP increases the contents
of CT by 1; adds the contents of INT to the running total held in NUM; resets the contents of INT
to zero in preparation for reading the next data item; discards any further separator characters; and,
if a numeral turns up, returns it to the appropriate point in READ (returning to the start of

28

START?

READ?

SEP?

S1:

MEAN?

FRINT:

Introduction to DECsystem-10 Assembler Language Programming

CT=0

INT=1

DGT=2

NUM=3

REM=4

SETZM cT
SETZM INT
SETZM NUM
INCHWL DGT
CAIGE DGT» 60
JRST SEP
CAILE DGT»71
JRST SEFP
SUBI DGT» 60
IMULI INT»12
ADD INT»DGT
JRST READ
ADDI CT»r1
ADD NUM» INT
SETZM INT
CAIN DGT» 33
JRST MEAN
INCHWL DGT
CAIGE DGT» 60
JRST Ss1
CAILE DGT»71
JRST S1
JRST R1
IDIV NUM,CT
IMULI REM»2
SuUB CTyREM
CAIG CT»0
ADDI NUM» 1
JRST FRINT

surrly for svourself a routine to
rrint out the contents of NUM.

Then finish the rFrodram.

FIGURE 2.3 A program to compute the mean of a collection of numbers.

READ would lose the character!); if $ turns up, the program jumps to MEAN . The process is
illustrated by a flow chart in Figure 2.4.
The mean is calculated to the nearest whole number; analyze for yourself how this is achieved.
The jump instructions of SEP should be studied with especial care.

Notes:

SUB CT,REM subtracts the contents of REM from the contents of CT. The contents of REM

are unchanged.

Observe how we “round up” the result if the remainder indicates that a fractional part of one

half or more has been lost.

Exercise: Write a program to read a collection of numbers and print out the least and the greatest

of them.

SECTION 2.3 MEMORY

In Secti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>