PDP-11
Paper Tape
Software Handbook
Order No. DEC-11-XPTSA-B-D

digital equipment corporation - maynard, massachusetts

First Printing, April 1970
Revised: March 1971
January 1972

February 1973

June 1975

April 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright@ 1970, 1971, 1972, 1973, 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11

5/76-34

CONTENTS

Page

1 PAL~-11S ASSEMBLY LANGUAGE AND ASSEMBLER 1-1
1.1 CHARACTER SET 1-2
1.2 STATEMENTS 1-2
1.2.1 Label 1-3
1.2.2 Operator 1-3
1.2.3 Operand - 1-4
1.2.4 Comments 1-4
1.2.5 Format Control 1-4
1.3 SYMBOLS 1-5
1.3.1 Permanent Symbols 1-5
1.3.2 User-Defined Symbols 1-5
1.3.3 Direct Assignment 1-6
1.3.4 Register Symbols 1-6
1.4 EXPRESSIONS 1-7
1.4.1 Numbers 1-8
1.4.2 Arithmetic and Logical Operators 1-8
1.4.3 ASCII Conversion 1-8
1.4.4 Mode of Expressions 1-9
1.5 ASSEMBLY LOCATION COUNTER 1-10
1.6 RELOCATION AND LINKING ‘ : 1-11
1.7 ADDRESSING 1-12
1.7.1 Register Mode 1-12
1.7.2 Deferred Register Mode 1-13
1.7.3 Autoincrement Mode . 1-13
1.7.4 Deferred Autoincrement Mod 1-13
1.7.5 Autodecrement Mode . 1-14
1.7.6 Deferred Autodecrement Mode) 1-14
1.7.7 Index Mode 1-14
1.7.8 Deferred Index Mode 1-14
1.7.9 Immediate Mode and Deferred Immediate

(Absolute) Mode L i 1-15
1.7.10 Relative and Deferred Relative Modes 1-15
1.7.11 Table of Mode Forms and Codes (6-bit(A)

, format only - see Section 1.7.12) 1-16
1.7.12 Instruction Forms 1-17
1.8 ASSEMBLER DIRECTIVES 1-18
1.8.1 .TITLE 1-18
1.8.2 . GLOBL 1-18
1.8.3 Program Section Directives (.ASECT and

.CSECT) 1-19
1.8.4 .EOT 1-20
1.8.5 .EVEN ‘ 1-20
1.8.6 .END 1-20
1.8.7 +WORD 1-20
1.8.8 .BYTE 1-21
1.8.9 +ASCII 1-21
1.8.10 .RADS50 1-22
1.8.12 Conditional Assembly Directives - 1-23

iii

CONTENTS (CONT.)

Page
1.9 OPERATING PROCEDURES 1-24
1.9.1 Introduction 1-24
1.9.2 Loading PAL-11S 1-24
1.9.3 Initial Dialogue : 1-24
1.9.4 Assembly Dialogue 1-28
1.9.5 Assembly Listing 1-30
1.9.6 Object Module Output 1-30
1.9.6.1 Global Symbol Directory 1-30
1.9.6.2 Text Block 1-31
1.9.6.3 Relocation Directory . 1-31
1.10 ERROR CODES 1-31
1.11 SOFTWARE ERROR HALTS 1-32
CHAPTER 2 WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS 2-1
2.1 CHARACTER SET 2-2
2.2 STATEMENTS 2-2
2.2.1 Label 2-3
2,2.2 Operator 2-3
2.2.3 Operand 2-3
2.2.4 Comments 2~4
2.2,5 Format Control 2-4
2.3 SYMBOLS 2-5
2.3.1 Permanent Symbols 2-5
2.3.2 User-Defined Symbols 2-5
2,3.3 Direct Assignment 2-5
2.3.4 Register Symbols 2~-6
2.4 EXPRESSIONS 2-7
2.4.1 Numbers 2-7
2.4.2 Arithmetic and Logical Operators 2-8
2.4.3 ASCII Conversion 2-8
2.5 ASSEMBLY LOCATION COUNTER 2-8
2.6 ADDRESSING 2-9
2.6.1 Register Mode 2-10
2.6.2 Deferred Register Mode 2~-10
2.6.3 Autoincrement Mode 2-10
2.6.4 Deferred Autoincrement Mode 2-11
2.6.5 Autodecrement Mode . 2-11
2.6.6 Deferred Autodecrement Mode 2-11
2.6.7 Index Mode 2-11
2.6.8 Deferred Index Mode 2-12
2.6.9 Immediate Mode and Deferred Immediate
(Absolute) Mode ' 2~12
2.6.10 Relative and Deferred Relative Modes 2-13
2.6.11 Table of Mode Forms and Codes (6-bit (A)
format only - see Section 3.7) 2-13
2.7 INSTRUCTION FORMS 2-14
2.8 ASSEMBLER DIRECTIVES 2-=15
2.8.1 .EOT 2-15
2.8.2 .EVEN 2-16
2.8.3 .END 2-16
2.8.4 .WORD 2-16
2.8.5 .BYTE 2-17
2.8.6 .ASCII 2-17
2.9 OPERATING PROCEDURES 2-17
2.9.1 Introduction 2-17
2.9.2 Loading PAL-11lA 2-18

iv

CONTENTS (CONT.)

Page

.9.3 Initial Dialogue 2-18

.9.4 Assembly Dialogue 2-23
.9.5 Assembly Listing 2-24
.10 ERROR CODES 2-25
.11 SOFTWARE ERROR HALTS 2-26
CHAPTER LINK-11S LINKER 3-1
.1 INTRODUCTION 3-1
.1.1 General Description 3-1
«1l.2 Absolute and Relocatable Program Sections 3-2
-1.3 Global Symbols 3-2
.2 INPUT AND OUTPUT 3-3
.2.1 Object Module 3-3
2.2 Load Modules 3-3
«2.3 Load Map 3-4
.3 OPERATING PROCEDURES 3-5
.3.1 Loading and Command String 3-5
.3.1.1 Operational Cautions 3-6
.3.2 Error Procedure and Messages 3-7
.3.2.1 Restarting 3-7
.3.2.2 Non-Fatal Errors 3-7
.3.2.3 Fatal Errors 3-7
CHAPTER EDITING THE SOURCE PROGRAM 4-1
COMMAND MODE AND TEXT MODE -1
COMMAND DELIMITERS -2
Arguments -2
The Character Location Pointer (Dot) -
Mark -

Line-Oriented Command Properties
The Page Buffer

COMMANDS
Input and Output Commands
Open - :
Read
List and Punch
Next ;
Form Feed and Trailer
Procedure with Low-Speed Punch
Commands to Move Dot and Mark
Beginning and End
Jump and Advance
Mark
Search Commands
Get
wHole
Commands to Modify the Text
Insert , '
Delete and Kill
Change and Exchange

OPERATING PROCEDURES
Exror Corrections
Starting
Restarting

s s o o 0
s o e
Ve

- . .
W N N W AU WN M
[

[}
HERHEMOOOO NNV dWWWN

e & o & @& ¢ B 8 ¥ & 8 S ¢ 9 0 9 e @

W LY X W ANEAENE S SE NN SRl ol ol ol ol Ndwh -

e b e B B B B B B D B B B B e B B o B B B e e B B b B e L) WWWwWwiwWwwwiwwwwwwww w NN

e 6 8 5 6 6 8 & 8 & & 8 ® 8 8 % 85 S & & & 8 & & " e 8 6 v &
BB RRWWWWWWWWWWWWWwWwwWwwwwwihdNNdNeNDN -

CONTENTS (CONT.)

Page
4.4.4 Creating a Paper Tape 4-11
4.4.5 Editing Example ' 4-12
4.5 SOFTWARE ERROR HALTS 4-17
CHAPTER 5 DEBUGGING OBJECT PROGRAMS ON-LINE 5-1
5.1 INTRODUCTION 5-~1
5.1.1 ODT-11 and ODT-11X 5-1
5.1.2 ODT's Command Syntax 5-2
5.2 COMMANDS AND FUNCTIONS 5-3
5.2.1 Opening, Changing, and Closxng Locations 5-4
5.2.1.1 The Slash (/) 5-4
5.2.1.2 The LINE FEED Key 5-4
5.2.1.3 The Up-Arrow (4) 5-5
5.2.1.4 The Back-Arrow (+) 5-5
5.2.1.5 Accessing General Registers 0-7 5-5
5.2.1.6 Accessing Internal Registers 5-6
5.2.2 Breakpoints 5-6
5.2.2.1 Setting the Breakpoint (n;B) 5-6
5.2.2.2 Locating the Breakpoint ($B) 5-7
5.2.3 Running the Program{(n;G and n;P) 5-7
5.2.4 Searches : 5-8
5.2.4.1 Word Seach (n;W) 5-8
5.2.4.2 Effective Address Search(n;:E) 5-9
5.2.5 Calculating Offsets(n;0) 5-9
5.2.6 ODT'S Priority Level($P) 5-10
5.3 ODT-11X 5-10
5.3.1 Opening, Changing and Closing Locations 5-10
5.3.1.1 Open the Addressed Location (8) 5-11
5.3.1.2 Relative Branch Offset (>) 5-11
5.3.1.3 " Return to Previous Sequence (<) 5-11
5.3.2 Calculating Offsets(n; O) 5-11
5.3.3 Breakpoints 5-12
5.3.4 Single-Instruction Mode 5-12
5.4 ERROR DETECTION : 5-13
5.5 PROGRAMMING CONSIDERATIONS 5-14
5.5.1 Functional Organization 5-14
5.5.2 Breakpoints 5~-14
5.5.3 Search : 5-18
5.5.4 Teletype Interrupt 5-19
5.6 OPERATING PROCEDURES 5-20
5.6.1 Linking Procedures (LSI-1l1 Systems Only) 5=-20
5.6.2 Loading Procedures (non-LSI-11 Systems
Only) 5-20
5.6.3 Starting and Restarting 5-21
CHAPTER 6 LOADING AND DUMPING MEMORY 6-1
6.1 PAPER TAPE BOOTSTRAPS 6-2
6.1.1 BM792-YA Paper Tape Bootstrap ROM 6-2
6.1.2 BM873~-YA Bootstrap Loader ROM 6-2
6.1.3 LSI-11 Firmware Paper Tape Bootstrap 6-3
6.1.4 M9301-YB Bootstrap Loader 6-3
6.1.5 M9301-YA Bootstrap Loader 6-4
6.1.6 Other Bootstrap Loaders 6-4
6.1.6.1 Loading the Loader into Core 6-5

vi

CONTENTS (CONT3)

Page
6.1.6.2 Loading Bootstrap Tapes . . . 6-6
6.1.6.3 Bootstrap Loader Oporatien _ 4 6~-8
6.2 THE ABSOLUTE LOADER - 6-10
6.2.1 Loading the Loader into Core ' 6-11
6.2.2 Using the Absolute Loader . : 6-11
6.2.3 Absolute Loader Oparation 6-13
6.3 CORE. MEMORY DUMPS - : . 6-14
6.3.1 Operating Procedures 6-14
6.3.1.1 Using DUMPABR on. Systems without Switch
Registers 6-15
6.3.1.2 ~ Using DUMPAB and DUMPTT on Systems with
Switch Registers 6-16
6.3.2 Output Formats ' R 6-17
6.3.3 Storage Maps N 6-17
CHAPTER 7 INPUT/OUTPUT PRDGR&HMING : : 7-1
7.1 INTRODUCTION : S 7-1
7.1.1 Using IOX with: ‘the LSI-11 Procassor 7-3
7.1.2 Using IOX with Unibus PDP~1l:-Processors 7-3
7.1.3 I0X Interrupt and Prap: Vectors , 7-3
7.2 THE DEVICE ASSIGNMENT TABLE : _ 7-3
7.2.2 Initialization T4
7.3 BUFPER ARRANGEMENT IN DATA TRANSFER COMMANDS 7-4
7.3.1 Buffer Size - 7-5
7.3.3 Status Byte _ 7-6
7.3.3.1 Non~Fatal Errxor de-s (Octal) 7-6
7.3.3.2 Done Bit 7-7
7.3.3.3 End-Of-Medium Bit 7-7
7.3.3.4 End~0f-File Bit 71-17
7.4 MODES - 71-8
7.4.1 - Pormatted ABCII 7-8
7.4.2 Unformatted ASCII _ 7-10
7.4.3 Formatted Binary o 7-10
7.4.4 Unformatted Binary L 7-11
7.5 DATA TRANSFERS 7-11
7.5.1 ‘Read . 7-11
7.5.3 Device Conflicts In Data Transfer Commands 7-12
7.5.4 Waitr (Wait, Return) 7-13
7.5.5 Waitr vs. Testing the Buffer Done Bit 7-13
7.5.6 single Buffer Transfer on One Device 7-14
7.5.7 Double Buffering 7-15
7.5.8 Readxr (Real-time Read) 7-15
7.5.9 Writr (Real-time Write) 7-16
7.6 ~ REENABLING THE READER AND RESTARTING 7-16
7.6.1 Seek . 7-16
7.7 FATAL ERRORB) 7-17
7.8 EXAMPLE OF PROGRAH USING IOX 7-17
7.9 I0X INTERNAL INFORMATION 7-19
7.9.1 Conflict Byte/Word 7 7-19
7.9.2 Device Interrupt Table (DIT) 7-20
7.9.3 Device Status Table (DST) 7-21

vii

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

oo wwmw [« » WOOVOVLOVWOVLVVOOVOLWOLOLY VU © NN

O 00NN 0 O oo

a & 8 o ¢ & & e o & * »

WWW N

s & & & 8o o s ¢

W Wwwwwwn -

WWwwwwwNn =

e o s e o o 0
B b B o W N
« o .

[SN o

[V RSN o

CONTENTS (CONT.)

Teletype Hardware Tab Facility
Adding Devices To IOX

Device Codes

Table Modification

Interrupt Routines

FLOATING POINT MATH PACKAGE OVERVIEW

PROGRAMMING TECHNIQUES

- WRITING POSITION INDEPENDENT CODE

Position Independent Modes
Absolute Modes
Writing Automatic PIC
Writing Non-Automatic PIC
Setting Up The Stack Pointer
Setting Up A Trap or Interrupt Vector
Relocating Pointers
LOADING UNUSED TRAP VECTORS
CODING TECHNIQUES -
Altering Register Contents
Subroutines

ASCII CHARACTER SET
PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

TERMINATORS

ADDRESS MODE SYNTAX

INSTRUCTIONS
Double Operand Instructions OP A,A
Single Operand Instructions OP A
Rotate/Shift
Operation Instructions Op
Branch Instructions Op E Where
-128 <(E— -2)/2<12710

Subroutine Call JSR ER,A
Subroutine Return

Extensions for the LSI-1l Version Of PAL-11S

ASSEMBLER DIRECTIVES
ERROR CODES
INITIAL OPERATING PROCEDURES

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

SPECIAL CHARACTERS

ADDRESS MODE SYNTAX

INSTRUCTIONS
Double-Operand Instructions Op A,A
Single-Operand Instructions Op A
Rotate/Shift Instructions Op A
Operate Instructions Op

Trap Instructions Op or Op E Where 0<E<377

Branch Instructions Op E where

viii

B-7
B-7
B-7
B-8
B-10
B-11

Cc-1

c-1
c-2
C-3
c-4
C-4
Cc-5
Cc-5
Cc-6

c-7

CONTENTS (CONT.)

Page
C.3.7 Subroutine Call Op ER, A c-17
c.3.8 Subroutine Return Op ER c-8
C.4 ASSEMBLER DIRECTIVES c-8
Cc.5 ERROR CODES . . Cc-8
C.6 INITIAL OPERATING PROCEDU c-9
APPENDIX D TEXT EDITOR, ED-ll D-1
D.1 INPUT/OUTPUT COMMANDS D-1
D.2 POINTER-POSITIONING COMMANDS : D-2
D.3 SEARCH COMMANDS - D-2
D.4 COMMANDS TO MODIFY THE TEXT D-2
D.5 SYMBOLS D-3
D.6 GROUPING OF COMMANDS D~-3
D.7 OPERATING PROCEDURES D-4
D.7.1 Loading D-4
D.7.2 Storage Requirements D-4
D.7.3 Starting D-4
D.7.4 Initial Dialogue ' D-4
D.7.5 Restarting D-4
APPENDIX E DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11
AND ODT-11X E-1
E.1l SUMMARY OF CONTENTS E-1
APPENDIX F LOADING AND DUMPING CORE MEMORY FP-1
F.l THE BOOTSTRAP LOADER F-1
F.1l.1 Loading The Bootstrap Loader F-1
F.2 THE ABSOLUTE LOADER F-3
F.3 CORE MEMORY DUMPS F-4
APPENDIX G INPUT/OUTPUT PROGRAMMING, IOX G-1
G.1 INSTRUCTION SUMMARY G-1
G.2 PROGRAM FLOW SUMMARY G~1
G.3 FATAL ERRORS G-2
APPENDIX H SUMMARY OF FLOATING POINT MATH PACKAGE,
FPMP-11 H-1
H.1 OTS ROUTINES ' H-2
H.2 NON-OTS ROUTINES H-7
H.3 ROUTINES ACCESSED VIA TRAP HANDLER H-7
APPENDIX 1 TAPE DUPLICATION) I-1
APPENDIX J ASSEMBLY AND LINKING INSTRUCTIONS J-1
J.1 SYSTEMS WITHOUT SWITCH REGISTERS J-1
J.1l.1 I0X/IOXLPT J-1
J.l.1.1 Assembling IOX J-1
J.1.1.2 Assembling IOXLPT J-1
J.1.1.3 Linking IOX and IOXLPT J-1
J.1l.2 ODT11X J-1

ix

CONTENTS (CONT.)

Page
J.1.2.1 Assembling ODTllx : : J-1
J.1.2.2 Linking ODTllx ‘ : J-2
J.1.3.1 Assembling ED-ll R J-2
J.1.3.2 Linking ED-11 J-2
J.1l.4 PAL~-11S J=2
J.1l.4.1 Assembling PAL-11S , ‘ CJ=-2
J.1.4.2 Linking PAL-llS J=-3-
J.1.5 LINK~118 . . a : J=-3
J.1.5.1 Assembling LINK*lls : J-4
J.1.5.2 Linking LINK-11S . ’ J-4
J.2 SYSTEMS. WITH SWITCH REGISTERS ; J-5
J.2.1 Assembling PAL-11A . J-5
J.2.2 Assembling ED=11 ~ ' J-6
J.2.3 OoDT-11/0DT-11X J-6
J.2.4 Assembling IOX/IOXLPT : J-7
J.2.5 Assembling and: Linking PAL-lls . J-8
J.2.6 Assembling and Linking LINK—lls . J-11
APPENDIX K STANDARD PDP-11 ABBREVIATIONS : K-1
APPENDIX L CONVERSION' TABLES . - b~1
L.1 OCTAL-DECIMAL INTEGER CONVERSIONS L-1
L.2 POWERS OF TWO .. . L-5
L.3 SCALES OF NOTATION L-6
L.3.1 2X In Decimal’ , L-6
L.3.2 10N In Octal L-6
L.3.3 n Log 2 and 10 In Decimal L-6
L.3.4 Addition and Multlplication, Blnary and
Octal L~-6
L.3.5 Mathematical Constants In Octal L-7
APPENDIX M NOTE TO USERS-OF SERIAL LA30 AND 600, 1200, ’
AND 2400 BAUD VTO05'S M-1
APPENDIX N USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT
SWITCH REGISTERS N-1
N.1l LSI~-11 T N-1.
N.2 M9301-YB BOOTSTRAP LOADER N-3
N.3 M9301-YA BOOTSTRAP LOADER N-4

INDEX Index~1

FIGURE

TABLE

11
W N R B N

: O\C\TC\U’I

'*1'*!'?"1

1-1

CONTENTS (CONT.)

FIGURES

Communication and Data Flow

Bootstrap Loader Imnstructions

Loading and Verifying the Bootstrap Loader
Loading Bootstrap Tapes Into Core

The Bootstrap Loader Program

Loading and Verifying the Bootstrap Loader
Loading Bootstrap Tapes into Core

Loading with the Absolute Loader

Dumping Using DUMPAB or DUMPTT

TABLES

Instruction Operand Fields
Instruction Operand Fields

xi

mﬁTmm

Page

(M)

TrTTg
N UTW N D 0~ b 4

1-17
2-14

CHAPTER 1

PAL~-11S ASSEMBLY LANGUAGE AND ASSEMBLER

PAL-11S Assembly (Program Assembly Language for the PDP-11,
Relocatable, Stand Alone Version) enables you to write source
(symbolic) programs using letters, numbers, and symbols which are
meaningful to you. The source programs, generated either on-line
using the Text Editor (ED-11), or off-line, are then assembled into
object modules which are processed by the PDP-11 linker, LINK-11S.
LINK-11S produces a load module which is loaded by the Absolute Loader
for execution. Object modules may contain absolute and/or relocatable
code and separately assembled object modules may be linked with global
symbols. The object module is produced after two passes through the
Asgsembler; an optional third pass produces a complete octal/symbolic
listing of the assembled program. This listing is especially useful
for documentation and debugging purposes.

This chapter not only explains how to write PAL-11S programs but also
how to assemble the source programs into object modules. All facets
of the assembly language are explained and illustrated with many
examples, and the chapter concludes with assembling procedures. In
explaining how to write PAL-11S source programs, it is necessary,
especially at the outset, to make frequent forward references.
Therefore, we recommend that you first read through the entire chapter
to get a “feel" for the language, and then reread the chapter, this
time referring to appropriate sections as indicated, for a thorough -
understanding of the language and assembling procedures.

Some notable features of PAL-11S are:

1. Selective assembly pass fﬁnctions.

2. Device specification for pass functions.

3. Optional error listing on the teleprinter.

4. Double buffered and concurrent I/O (provided by IOXLPT).

5. Alphabetized, formatted symbol table listing.

6. Relocatable object modules.

7. Global symbols for linking between object modules.

8. Conditional assembly directives.

9. Program Sectioning Directives.
The PAL-11S Assembler requires 8K of memory and provides for about 900
user-defined symbols (see Section 1.3.2). 1In addition, it allows a

line printer to be used for program listing and/or symbol table
listing.

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

The following discussion of the PAL-11S Assembly Language assumes that
you have read the PDP-11 Processor Handbook with emphasis on those
sections which deal with the PDP-11 instruction repertoire, formsts,
and timings -- a thorough knowledge of these is vital to efficient
assembly language programming.

1.1 CHARACTER SET

A PAL-11S source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, argument separators, and
line terminators written using the following ASCII' characters.

1. The letters A through Z. (Upper and lower case letters are
acceptable, although upon input, lower case letters will be
converted to upper case letters.)

2. The numbers 0 through 9.

3. The characters . and §. (These characters are reserved for
systems use.)

4. The separating or terminating symbols:
: = % & € () , ;" ' + - & !

carriage return tab space line feed form feed

1.2 STATEMENTS

A source program is composed of a sequence of statements, where each
statement is on a single 1line. The statement is terminated by a
carriage return character which must be immediately followed by either
a 1line feed or form feed character. Should a carriage return
character be present and not be followed by a line feed or form feed,
the Assembler will generate a Q error (Section 1.10), and that portion
of the line following the carriage return will be ignored. Since the
carriage return terminator is a required statement terminator, a line
feed or form feed not immediately preceded by a carriage return will
have one inserted by the Assembler. B

It should be noted that, if the Editor (ED-11) is being used to create
the source program, a typed carriage return (RETURN key) automatically
generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below ‘and summarized in Appendix B. The four fields are:

Label Operator Operand Comment
The label and comment fields are optional. The operator and operand

fields are inter-dependent -- either may be omitted depending upon the
contents of the other.

1
ASCII stands for American Standard Code for Information Interchange.

1-2

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.1 Label

A label is a user-defined symbol (see SBection 1.3.2) which is assigned
the value of the current location counter. This value may be either
absolute or relocatable depending .on whether - the location counter
value is absolute or relocatable. - In the latter case, the final
absolute value is assigned by the Linker, i.e., the value + the
relocation constant. A label is a symbolic means of referring to a
specific location within a program. I1f present, a label always occurs
first in a statement and must be terminated by a colon. For example,
if the current location is absolute 100 the statement:

ABCD: MOV A,B

will assign the value 100 to the label ABCD so that subsequent
reference to ABCD will be to location 100 .. In the above case if the
location counter were relocatable then the final value of ABCD would
be 100 +K, where K is the location of the beginning of the relocatable
section in which the label ABCD appears. More than one label may
appear within a single label field; each label within the field will
have the same value. For example, if the current location counter is
100 , multiple labels in the statement:

ABC: sDD: - A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100 ($ and . are reserved for system software). -

The error code M (multiple definifion of a symbél) will be generated
during assembly: if two or more labels have - the same first six
characters. . ; S

1.2.2 Operator

An operator follows the label field in a statement, and- may be an
instruction mnemonic or annassgmbler'di;egtivev(see Section 1.8 and
Appendix B). When it is an instruction mnemonic, it _specifies what
action is to be performed on any operand (s) which follows it. When it
is an assembler directive, it specifies a certain function or action
to be performed during assembly.

The operator may be preceded only by one or more ldbels and may be
followed by one or. more operands and/or.a comment. - An operator is
legally terminated by a space, tab, or any of the following
characters: _ L

P+ - @ (" s L& o, o5

line feed - form feed carriage return
The use of each character above will be explained in this chapter.
Consider the following examples:

MOV —s{ A,B 3 ———| (TAB) terminates operator MOV
MOVeA,B ;@ terminates operator MOV

When the operator stands alone without an operand or comment, it is

terminated by a carriage return followed by a line feed or form feed
character.

1-3

PAL~118 ASSEMBLY LANGUAGE AND ASSEMBLER

1.2.3 Operand

An operand is that part of a statement which is operated on by the
operator -- an instruction mnemonic or assembler directive. Operands
may be symbols, expressions, “or numbers. When multiple operands
appear within a statement, each is separated from the next by a comma.
An operand may be preceded by an operator and/or label, and followed
by a comment. :

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE,BOB sTHIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment,

1.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
the Assembler when used in the comment field.

The comment field may be preceded by none, any, or all- of the other
three fields. It must begin with the semicolon and end with a
carriage return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE sTHIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, but

they are wuseful in program listings for later analysis, checkout or
documentation purposes. '

1.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator field terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written:

LABEL:MOV(SP) +,TAG; POP VALUE OFF STACK
or, usihg formatting characters it can be written:
LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK
which is much easier to read.
Page size is controlled by the form feed character. A page of n lines
is created by inserting a form feed (CTRL/FORM keys on the keyboard) .

after the nth 1line. If no form feed is present, a page is
automatically terminated after 56 lines.

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

1.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored in the Assembler's symbol table. Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled, user-defined symbols are added to the table.

1.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics {see Appendix
B.3) and assembler directives (see Section 1.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

1.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 1.2.1)
or by direct assignment (see Section 1.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again $'s and .'s are reserved for system
software. Any other character is illegal and, if used, will result in
the error message I or QU (see Section 1.10). I is a 1low priority
error which may be flagged as QU first. The following rules also
apply to user-defined symbols:

1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also
user~defined, its user-defined value is associated with the
symbol. If the symbol is not found to be user-defined, then
the corresponding machine op-code value is associated with
the symbol.

User-defined symbols are either internal or global. All symbols are
internal unless they are explicitly typed as global with the .GLOBL
assembler directive (see Section 1.8.2). Global symbols are used to
provide 1links between object modules. A global symbol which is
defined (as a label or by direct assignment) in a program is called an
entry symbol or entry point. Such symbols may be referred to from
other object modules or assemblies. A global ' symbol which is not
defined in the current assembly is called an external symbol. Some
other assembly must define the same symbol as an entry point.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value.. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler’s .symbol table and the
specified value is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

The symbol takes on the relocatable or absolute attribute .of the
defining expression. However, if the defining expression is global,
the defined symbol will not be global unless- previously defined as
such (see Section 1.4). - ‘ o RN :
The general format for a direct assignment'statement is:

symbol = expression.
The following conventions apply:

1. An equal sign (=) must separate the symbol from the
expression defining the symbol. , e :

2. A diréct assignment statement may be preceded by a label and
may be followed by a comment. ' «

3.: Only one symbol can be defined by any one direct assignment
"statement. . ,

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

03 = D¢
HHH
(S~

X and Y are both undefined throughout pass 1 and will be listed on the
teleprinter as such at the end of that pass. X is undefined
throughout pass 2, and will cause a. U error message.

Examples:
A=l $ THE SYMROL A I8 EQUATED WITH THE VALUE 1
=’A~1SMASKLOW $THE SYMBOL B IS EQUATED WITH THE EXPRESSION’S
' sVALUE
c: D=3 $THE SYMBOL D IS EQUATED WITH 3. THE
E? MOV #1»ABLE $LABELS C AND E ARE EQUATED WITH THE
$NUMERICAL MEMORY ADDRESS OF THE MOV
s COMMAND :

1.3.4 Register Symbols

The eight general registers of the PDP-11 are numbered 0 through 7.
These registers may be referenced by use of a register symbol; that
is, a symbolic name for a register. A register symbol is defined by
means of a direct assignment, where the defining expression contains
at least one term preceded by a § or at least one term - previously
defined as a register symbol. In addition, the defining expression of
a register symbol must be absolute. For example:

1-6

PAL~11S ASSEMBLY LANGUAGE iﬂD.ASSEHBLER'

RO=X0 IBEFINE RO A8 REGISTER 0

R3=RO+3 $DEFINEB-R3 AS REGISTER 3
RA=14%3 $DEFINE R4 AS REGISTER 4
THERE=%2 SDEFINE °THERE® AS REGISTER 2

It is important to note that all register symbols :must be defined
before they are referenced. A forward reference to a register symbo
will generally cause phase errors (see Section 1.10). ‘ :

The % may be used iﬁlany'exétession‘thcfeby indicatiﬁg,a,teferenée to
a register. Such an expression-is a register expression. Thus, the
statement: ‘ . . ‘ ~

CLR %6
will clear register 6 while the statement:
CLR 6 -

will clear the word at memory address 6. In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the
statement and are thoroughly explained in Sections 1.7.11 and 1.7.12.
Two obvious examples of this are:

JSR 5»SUBR $THE FIRST OPERAND FIELD MUST ALWAYS
- JBE A REGISTER.

CLR X(2) $ANY EXPRESSION ENCLOSED IN ¢) MUST BE
34 REGISTER. IN THIS CASE, INDEX REGISTER
2 ‘ B ,

1.4 EXPRESSIONS

Arithmetic and logical operators (see Section 1.4.2) may be used to
form expressions. A term of -an expression may be a permanent or
user-defined symbol (which may be absolute, relocatable or global), a
number, ASCII data, or the present value of the assembly location
counter represented by the period (see Section 1.5). Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 1.8.8) are evaluated as word expressions before
truncation to the low-order eight bits. The evaluation of an
expression includes the evaluation of the mode of the resultant
expression; that is, absolute, relocatable or external. The
definition of the modes of expression are given below in Section
1.4.4. , : ~

A missing term, expressioﬁ or external symbol will be interpreted as
0. A missing operator will be interpreted as +. The error code Q
(Questionable syntax) will be generated for a missing operator. For
example, .

A + -100 ;OPERAND MISSING
will be evaluated as A + 0 - 100, and

TAG | LA 177777 ;OPERATOR MISSING

will be evaluated as TAG | LA+177777.
1-7

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

The value of an external expression will be the value of the absolute
part of the expression; e.g., EXT+A will have a value of A. This
will be modified by the linker to become EXT+A. :

1.4.1 Numbers

The . Assembler accepts both octal and decimal numbers. Octal numbers
consist of the digits 0 through 7 only. Decimal numbers consist of
the digits 0 through 9 followed by a decimal point. If & number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 1.10) will be printed and the number will be
interpreted as decimal. Negative numbers may be expressed as a number
preceded by a minus sign rather than in a two's complement - form.
Positive numbers may be preceded by a plus sign although this is not
required.

If a rumber is too large to fit into 16 bits, the number is truncated
from the left.. In the assembly listing the statement will be flagged
with a Truncation (T) error. Numbers are always considered to be
absolute quantities (that is, not relocatable).

1.4.2 Arithmetic And Logical Operators

The arithmetic operators are:
+ indicates addition or a positive number
- indicates subtraction or a negative number

The logical operators are:

& indicates the logical AND operation
i indicates the logical inclusive OR operation
AND OR
0&0=0 0!10=0
0&1=0 0t11=1
l1s0=0 110=1
l&el=1 111=1

1.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

'A
is assigned the value 1018'

When preceded by a quotation mark, two ASCII characters {not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit value 1is stored in an 8-bit byte and the bytes are combined to
form a word. For example "AB will store the ASCII value of A in the
low~order (even) byte and the value of B in the high-order (odd) byte:

1-8

PAL-11S ASSEMBLY LANGUAGE ARD ASSEMBLER

high-order byte ' low-order byte
B's value = 1 0 2 ' 1 0 1 = A's value
0 100 001 001 000 001
g S vr-' N a—p—
0 4 1l d o 1
“AB=041101 "

ASCII text is always absolute.

1.4.4 Mode of Expressions

The mode of an expression may be absolute, relocatable or external as
defined below:

A term of an expression is absolute, relocatable or external depending
on whether its definer (i.e., number, symbol, etc.) is absolute,
relocatable or external. Numbers, permanent symbols and generated
data are always treated as absolute. ‘

An absolute expression is defined as:

1. Absolute term (one whose value is defined at assembly time)
preceded optionally by a single plus or minus sign, or

2. Relocatable expression minus a relocatable term, or

3. Absolute expression followed by an operator followed by an
absolute expression.

A relocatable expression is defined as:

1. Relocatéble term (one whose value is not known until 1link
time), or ‘ :

2. Relocatable expression followed by an arithmetic operator
' followed by an absolute expression, or

3. Absolute expression followed by a plus operator followed by a
relocatable expression.

An external expression is defined as:

1. External term (one whose value is defined outside the
program), or

2. External expression followed by an arithmetic operator
followed by an absolute term, or

3. Absolute expression followed by a plus operator followed by
an external expression.

In the following examples:
ABS is an absolute symbol,
REL is a relocatable symbol,

EXT is an external symbol.

1-9

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Examples:
The following are valid expressions:
EXT + ABS - ;Externﬁl expressi&h
REL+REL-REL 4 ;Relocaﬁable expression
ABS+REL-REL & ABS ;Absolute expression
The following are illegal expressions:
EXT+REL

REL+REL
ABS-EXT -

1.5 ASSEMBLY LOCATION. COUNTER

The period (.) is the symbol for the assembly location counter. (Note
difference of Program Counter. "#PC. See Section 1.7.) When used
in the operand field of an instruction, it represents the address of
the first word of the instruction. When used in the operand field of
an assembler directive, it represents the address of the current byte
or word. For example, :

A: MOV #.,RO s.refers to location A,
si.e., the address of the
sMOV instruction

(# is explained in Section 1.7.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the 1location where
the object data is stored may be changed by a direct assignment
altering the location counter: : - Ny

.=expression

Similar to other symbols, the location counter symbol "." has a mode
associated with it. However, the mode cannot be external. Neither
can one change the existing mode of the location counter by .using. a
defining expression of a different mode.

The mode of the location counter symbol can be changed by the use of
the .ASECT or .CSECT directive as explained in Section 1.8.3.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:

+ASECT '
‘ +=3500 $SET LOCATION COUNTER TO ARSOLUTE 500
FIRST? MOV .+10,COUNT FTHE LAREL FIRST HAS THE VALUE 500
s (OCTAL) .+10 EQUALS 510 (OCTAL). THE
FCONTENTS OF LOCATION 510 (OCTAL) WILL
#BE DEPOSITED IN LOCATION COUNT,

+ =520 FTHE ASSEMBLY LOCATION COUNTER NOW .
FHAS A VALUE OF ABSOLUTE 520 (OCTAL).

1-10

PAL-118 ASSEMBLY ' LANGUAGE: AND ASSEMBLER

SECOND:! MOV .y INDEX $THE LABEL SECOND HAS THE VALUE 3520
$ (OCTAL)» THE CONTENTS OF LOCATION 520
i THAT I8+ THE BINARY CODE FOR
SINSTRUCTION ITSELFs. WILL BE DEPOSITED
$IN LOCATION INDEX.

.CSECT ,
=420 $SET LOCATION COUNTER TO RELOCATABLE
$20.

THIRD: . .WORD O $THE LABEL THIRD HAS THE VALUE OF
i : $RELOCATABLE 20.

Storage area may be reserved by advancing the lobation -counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100
will reserve 100 bytes of storage space in the program. The next
instruction will be stored at 1100.

1.6 RELOCATION AND LINKING

The output of the relocatable assembler is an object module which must
be processed by the PDP-11 Linker, LINK-11§, before loading and
execution. The Linker essentially fixes (i.e., makes absolute) the
values of external or relocatable symbols and creates another module
(load module) which contains the binary data to be 1loaded and
executed.

To enable the Linker to fix the value of an expression the assembler
issues certain directives to ‘the Linker together with the required
parameters. In the case of relocatable expressions the Linker adds
the base of the relocatable. section (the location in memory of
relocatable 0) to the value of the relocatable expression provided by
the Assembler. In the case of an external expression the value of the
external term in the expression is determined by the Linker (since the
external symbol must be defined in one of the other object modules
being linked and adds it to the value of the external- expression
provided by the Assembler.

All instructions that are to-be mbditied as deﬁcnibeb above wili be
marked by a .single apostrophe in the assembly listing. Thus the
binary text output will look as follows for the given examples:

005065° CLR EXTERNAL (5) i
000000 $VALUE OF EXTERNAL SYMBOL
F§ASSUMED ZERO$? WILL BE
. $MODIFIED BY THE LINKER.

005065’ CLR EXTERNAL+46(5) H

000006 H

005065’ CLR RELOCATABLE(S) $ASSUMING WE ARE IN THE
000040 3}ABSOLUTE SECTION AND

$#THE VALUE OF RELOCATABLE
$IS RELOCATABLE 40

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second.or .third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble, the action of the Program Counter must be understood. The
key rule is:

Whenever the processor implicitly uses the Program
Counter to fetch a word from memory, the Program
Counter is automatically incremented by two after
the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (see sections 1.7.7, 1.7.8 and 1.7.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word. :

The following conventions are used in this section:
1. Let E be any expression as defined in Section 1.4.
2. Let R be a register expression. This is any expression
-containing a term preceded by a % character of a symbol
previously equated to such a term.

Examples:

Z0 $GENERAL REGISTER O

RO =
R1 = RO+1 $GENERAL. REGISTER 1
R2 = 1+X%1 $ GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range
0 to 7 inclusive. :

4. Let A be a general address specification which produces a
6-bit mode address field as described in a PDP-11 Processor
Handbook.

The addressing specifications, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV,

1.7.1 Register Mode

The register contains the operand.
Format: R
Example:

RO=X0 sDEFINE RO AS REGISTER O
CLR RO $#CLEAR REGISTER 0

1-12

PAL~11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.2 Deferred Register Mode

The register contains the address of the operand.

Format: @R or (ER)

Example:
CLRE@R1 $CLEAR THE WORD AT THE
or $ADDRESS CONTAINED IN
CLR(1) SREGISTER 1

1.7.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand. . L

Format: (ER) +
Examples:

CLR (ROY+ $CLEAR WORDS AT ADDRESSES
. CLR (RO+3)+ $CONTAINED IN REGISTERS 0»3» AND 2
- CLR 2+ $AND INCREMENT REGISTER CONTENTS
iBY TWO,

NOTE
Both JMP and JSR instructions using mode
2 (non-deferred autoincrement mode),
execute differently on different PDP-1l1

processors. Avoid use of ‘these
instructions with mode 2 addressing.

Double operand instructions of the
addressing form %R, (R)+ or %R, ~{R)
where the source and destination
registers are the same, give different
results on different PDP-11 processors,
and should be avoided.

1.7.4 Deferred Autoincrement Mode

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used.

Format: @(ER)+
Example:

CLR @(3)+ $CONTENTS OF REGISTER 3 POINT
$TO ADDRESS OF WORD TO BE CLEARED
$BEFORE BEING INCREMENTED BY TWO

1-13

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.7.5 Autodecrement Mode

The contents of the register are decremented before being used as the
address of the operand (see note in Section 1.7.3).

Format: - (ER)
Examples: _ ‘
CLR ~(ROY - }DECREMENT CONTENTS OF REGISTERS

CLR ~(RO+3> 90y 3 AND 2 BEFORE USING
CLR -(2) §AS ADDRESSES OF WORDS TO BE CLEARED

l.7.6 Deferred Agtodecrement Mode

The contents of the register are decremented beforevbeing used as ‘the
pointer to the address of the operand.

Format: @-(ER)
Example:
CLR‘G-(Z) FDECREMENT CONTENTS OF REG. 2

#BEFORE USING AS POINTER TO ADDRESS
$OF WORD TO BE CLEARED.

1.7.7 Index Mode

Format: "E(ER)
The value of an exptessidnhE)iévstoted as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

Examples:

CLR X+2(R1) - JEFFECTIVE ADDRESS IS X+2 PLUS
$THE CONTENTS OF REGISTER 1

CLR -2(3) FEFFECTIVE ADDRESS IS -2 PLUS
#THE CONTENTS OF REGISTER 3

1.7.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand. ’

Format: @E(ER)
Example:

CLR @14(4) IF REGISTER 4 HOLDS 100y AND LOCATION
§114 HOLDS 2000y LOC.2000 IS CLEARED,

1-14

PAL-118 ASSEMBLY LANGUAGE AND ASSEMBLER

"1.7.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC.

Format:’ fE
Examples:
MOV #100,RO $MOVE AN OCTAL 100 TO REGISTER 0

MOV #XyRO #MOVE THE VALUE OF SYMBOL X TO
JREGISTER 0.

The operation of this mode is explained as follows:
The statement MOV $#100,R3 assembles as two words. These are:

012703
000100

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor. fetches the first
word and increments the PC by two. The source operand mode is 27
{(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

1.7.10 Relative and Deferred Relative Modes

Relative mode is the normal mode for memory references.
Format: E
Examples:

CLR 100 $CLEAR LOCATION 100
MOV Xy Y $MOVE CONTENTS OF LOCATION X TO
JLOCATION Y,

This mode is assembled as Index mode, using 7, the PC, as the
register. The base of the address calculation, which is stored in the
second or third word of the instruction, is not the address of the
operand. Rather, it is the number which, when added to the PC,
becomes the address of the operand. Thus, the base is X-PC. The
operation is explained as follows: :

If the statement MOV 100,R3 is assembled at absolute location 20 then
the assembled code is:

Location 20:

016703
Location 22 0000S54
The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,

the operand address.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Since the Assembler considers "." as the address of the first word of
the instruction, an equivalent statement would be

MOV 100 -.- 4(PC),R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by € the expression's value is the pointer to the
address of the operand.

1.7.11 Table of Mode
Section 1.7.12)

Forms and Codes (6-bit(A) format only - see

Each instruction takes at least one word. Operands of the first six
forms 1listed below, do not increase the length of an instruction.
Each operand in one of the other modes, however, increases the
instruction length by one word.

Form Mode Meaning
None R On Register
of @R or (ER) 1n Register deferred
these {ER) + 2n Autoincrement
forms Q@ (ER) + 3n Autoincrement deferred
increases - (ER) 4n Autodecrement
the @~ (ER) Sn Autodecrement deferred
instruc~
tion
length.
Form Mode Meaning
Any of these E(ER) 6n Index
forms adds a @E(ER) 7n Index deferred
word to the $E 27 Immediate
instruction e4E 37 Absolute memory reference
length. " E 67 Relative
@E 77 Relative deferred reference
Notes:

1. An alternate form for @R is (ER). However,
is equivalent to @O (ER).

2. The form @#E differs from the form E in that the
of the instruction contains the absolute address
of the operand rather than the relative distance between
the statement CLR @#100 will clear

third word

operand and the PC.

Thus,

form @O0 (ER)

second or

location 100 even if the instruction is moved from the point
at which it was assembled.

The Assembler is not particular about left and right and dangling +
and - signs in address fields. The following are some examples of
incorrect syntax that assemble as indicated, without an error
indication.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

Form Assembles As: Form Assembles As:
(R2)A A(R2) (R2) ~ -(R2)

A-(R2) A(R2) or A~-0(R2) € (R2)A @ A(R2)
A(Rw)+ A{R2) A(R2)+B A+B (R2)

+(R2) (R2) +

1.7.12 Instruction Forms

The instruction mnemonics are given in Appendix B. This section
defines the number and nature of the operand fields for these
instructions.

In the table that follows, let R, E, and ER represent expressions as
defined in Sections 1.4 and 1.7 and let A be a 6-bit address
specification of the forms:

E @E -(ER) @ -(ER)

R @R or (R) E (ER) @ E(ER)

(ER)+ @ (ER) + $E € $E
Table 1-1

Instruction Operand Fields

Instruction Form Example
Double Operand Op A,A MOV (R6)+, @Y
Single Operand Oop A CLR -(R2)
OPERATE OP HALT
Branch Op E BR X+2
BLO .-4

where -128<(E-.-2)/2<127
Subroutine Call JSR ER,A JSR PC,SUBR
Subroutine Return RTS ER RTS PC
EMT/TRAP Op or Op E EMT

where 0<E<377 EMT 31

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.
The Assembler performs the reverse operation to form the byte offset
from the specified address. Remeémber that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.
Byte offset = (E-PC)/2 truncated to eight bits.
Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

1-17

PAL-~11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE

It is illegal to branch to a 1location
specified as an external symbol, or to a
relocatable symbol when within: an
absolute section, or to an absolute
symbol when within a relocatable
section.

The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the
expression is too big(>377g) it is truncated to eight bits and a
Truncation (T) error occurs.

Do not try to micro-program the condition code operators (see Appendix
B, B.4). This makes sense in the PDP-11 hardware; however, the
current PAL-11S Assembler does not support this capability. Thus:

CLC!CLV

results in a Q error (see Appendix B, B.5) and the statement is
assembled as CLC.

Expressions in the Assembler do, however, allow logical operators and
the use of instruction mnemonics. Thus, the proper ways to write the
above statement:

+WORD CLC! f0rerand of +WORD
1CLCICLY i0rerand of default .WORD
ICLCICLY i0rerand of defasult JWORD

1.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the assembly
process and may generate data.

Assembler directives may be preceded by a 1label and followed by a
comment. The assembler directive occupies the operator field. Only
one directive may be placed in any one statement. One or more
operands may occupy the operand field or it may be void -- allowable
operands vary from directive to directive.

1.8.1 .TITLE
The .TITLE directive is used to name the object module. The name is

assigned by the first symbol following the directive. If there is no
-TITLE statement the default name assigned is ".MAIN.".

1.8.2 .GLOBL .

The .GLOBL directive is used to declare a symbol as being global. It
may be an entry symbol, in which case it is defined in the program, or
it may be a external symbol, in which case it should be defined in
another program which will be linked with this program by the linker.
The form of the .GLOBL directive is

.GLOBL NAMA, NAMB,...,NAMN

1-18

PAL~11S ASSEMBLY LANGUAGE AND ASSEMBLER

NOTE
A symbol cannot be declared global by

defining it as a global expression in a
direct assignment statement. :

If an illegal character is detected in the operand field of a .GLOBL
statement, an error message is not generated; and the Assembler may
ignore the remainder of the statement. Thus:

GLOBL A,B,@C,D
assembles without error as:

.GLOBL A,B

1.8.3 Program Section Directives (.ASBCTIand».CSBCTl

The relocatable assembler provides for two program sections, an
absolute section declared by an .ASECT directive and a relocatable
section declared by a .CSECT directive. These directives therefore
enable the programmer to specify that parts of his program be
assembled in the absolute section and others in a relocatable section.
The scope of each directive extends until a directive to the contrary
is given. The Assembler initially starts in the relocatable section.
Thus, if the first statement of a program were a

"A: .ASECT

the label "A" would be a relocatable symbol which is assigned the
value of relocatable zero. The absolute value of A will be calculated
by t?e Linker by adding the value of the base of the relocatable
section. ~

Example:
+ASECT #$ASSEMBLER IN ABSOLUTE SECTION
«=1000 $PC = 1000 ABSOLUTE
A? CLR X #A = 1000 ABRSOLUTE A
+CSECT : §ASSEMBLE IN RELOCATABLE SECTION
X3 JMP A iX=0 RELOCATABLE
+END

The absolute and/or relocatable section may be discontinued (by
switching to the alternate section) ‘and then continued where they left
off by using another .ASECT or .CSECT statement.

Example:

+CSECT

+WORD 0r152 $ASSEMBLED AT RELOCATABLE Oy 2 and 4
+ASECT :

+WORD 051,52 $ASSEMBLED AT ABSOLUTE 0y 2 and 4
<CSECT '

+WORD © $ASSEMBLED AT RELOCATABLE 6.

+END

If a label is defined twice, first in an absolute section and then in

a relocatable section, the symbol will be relocatable but its value
will be as defined in the absolute section.

1-19

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.4 .EOT

The .EOT directive indicates the physical End Of Tape though not' the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn't.

If a .EOT is embedded in a tape, and more information to be assembled
follows it, .EOT must be immediately followed by at least two line
feeds or form feeds. Otherwise, the first 1line following the .EOT
will be 1lost.

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape should be terminated by a .END directive
{see Section 1.8.6) but may be terminated with .EOT (see .END
emulation in Section 1.9.4).

1.8.5 LEVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored. '

1.8.6 .END

The .END directive indicates the 1logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's transfer address.

At load time, the load module will be 1loaded and program execution
will begin at the transfer address indicated by the .END directive.
If the address is not specified, the loader will halt after reading in
the load module.

1.8.7 .WORD

The .WORD assembler directive may have one or more operands, separated
by commas. Each operand is stored in a word of the object program.
If there is more than one operand, they are stored in successive
words. The operands may be any 1legally formed expression. For
example, :

+=1420

SAL.=0

+WORD 177335 .+4y8AL 3STORED IN WORDS 1420 1422 AND
#1424 WILL BE 177535, 1426+ AND O

Values exceeding 16 bits will be truncated from the 1left, to word
length.

1-20

PAL-115 ASSEMBLY LANGUAGE AND ASSEMBLER

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example,

+=1430 $ZERO» FIVE,» AND ZERO ARE STORED
+WORD »5» FIN WORDS 1430y 1432, AND 1434

An.operator field left blank will be interpreted as the .WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction mnemonic or assembler directive unless preceded by a +, -,
or one of the logical operators, ! or &. For example,

+ =440 $THE OP-CODE FOR MOVs WHICH IS 010000y
LABEL: +MOVsLABEL #1IS STORED IN LOCATION 440. 440 IS
iSTORED IN LOCATION 442.

Note that the default .WORD will occur whenever there is a leading
arithmetic or 1logical operator, or whenever a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B

Two error codes can result: A Q will occur because an expression
operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MOR A and one for B.

1.8.8 L.BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM=5 sSTORED IN LOCATION 410 WILL BE
+=410 §060 (THE OCTAL EQUIVALENT OF 48).
+BYTE 48.sSAM FIN 411 WILL BE 005,

If the expression has a result of more than 8 bits, it will be
truncated to its low-order 8 bits and will be flagged as a T error.
If an operand after the .BYTE directive is left wvoid, it will be
interpreted as zero. For example,

+=420 $ZERO WILL BE STORED IN
+BYTE » » FBYTES 420y 421 AND 422,

If the expression is relocatable, a warning flag, A, will be given.

1.8.9 .AsSCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. For example,

1-21

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

«=300 STHE ASCII CODE FOR Y WILL BE

+ASCII /YES/ $STORED IN 500, THE CODE FOR E
§IN 501y THE CODE FOR § IN 502.

+ABCII /5+3/2/7 #THE DELIMITING CHARACTER OCCURS

$AMONG THE OPERANDS. THE ASCII
$CODES FOR 5 » + » AND 3 ARE
sSTORED IN BYTES 503» G504+ AND
$505. 2/ IS NOT ASSEMBLED.

The .ASCII directive may be terminated by any legal terminator except
for = and :. Note that if the text delimiter is also a terminator,
the leading text delimiter can also serve as the .ASCII directive
terminator. For example,

+ASCII /ABCD/ $THE SPACE IS REQUIRED
$BECAUSE / IS NOT A TERMINATOR.
+ASCII+ABCD+ $ND SPACE IS REQUIRED.

1.8.10 .RADS0

PDP-11 system programs often handle symbols in a specially coded form
caled "RADIX 50" (this form is sometimes referred to as "MOD40").
This form allows 3 characters to be packed into 16 bits; therefore,
any symbol can be held in two words, the form of the directive is:

-RADS0 /CCC/

The single operand is of the form /CCC/ where the slash (the
delimiter) can be any printable character except for = and :. The
delimiters enclose the characters to be converted which may be A
through 2, 0 through 9, dollar ($), dot (.) and space (). If there
are fewer than 3 characters they are considered to be 1left-justified
and trailing spaces are assumed. Any characters following the
trailing delimiter are ignored and no_error results.

Examples:

+RADS0 /ABC/ $PACK ABC INTO ONE WORD
+RADSO /AB/ $PACK AB (SPACE) INTO ONE WORDj#
+RADNSO // $FACK 3 SFACES INTO ONE WORD

The packing algorithm is as follows:

A. BEach character is translated into its RADIX 50 ‘equivalent as
indicated in the following table:

Character RADIX 50 Equivalent (octal)
(SPACE) 0

A-Z - 1-32

$ 33

. 34

0-9 36-47

Note that another character can be defined for code 35.

B. The RADIX 50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

RESULT=((C1*50)+C2)*50+C3

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.8.11 .LIMIT

A program often wishes to know the boundaries of the relocatable code.
The .LIMIT directive generates two words into which the linker puts
the low and high addresses of the relocated code. The 1low address
(inserted into the first word) is the address of the first byte of
code. The high address 1is the address of the first free byte
following the relocated code. These addresses will always be even
since all relocatable sections are loaded at even addresses and if a
relocatable section consists of an odd number of bytes the linker adds
one to the size to make it even.

1.8.12 Conditional Assembly Directives

Conditional assembly directives provide the programmer with the
capability to conditionally include or not include portions of his
source code in the assembly process. In what follows, E denotes an
expression and S(i) denotes a symbol. The conditional directives are:

.IFZ E ;IF E=0

.IFNZ E ;IF E#0

.IFL E ;IF E<0

.IFLE E ;IF E<O

.IFG E ;IF E>0

.IFGE E ;IF E20

.IFDF S (1) [!,&] S (2) [t,&)...[1,&] S(N) (!=OR,&=AND)
.IFNDF S (1) [!,&] S (2) [!,&8)...[!,&] S(N)

If the condition is met, all statements up to the matching .ENDC are
assembled. Otherwise, the statements are ignored until the matching
.ENDC is detected.

In the above,.IFDF and .IFNDF mean "if defined®™ and "if undefined"
respectively. The scan is left to right, no parentheses permitted.

Example:

+IFDF SITRU Means assemble if either S or T is
defined and U is defined

+IFNDF T&UIS Means assemble if both T and U are
undefined or if S is undefined

General Remarks:

An errored or null expression takes the default value 0 for purposes
of the conditional test. An error in syntax, e.g., a terminator other
than ;, !, &, or CR results in the undefined situation for .IFDF and
.IFNDF, as does an errored or null symbol.

All conditionals must end with the .ENDC directive. Anything in the
operand field of .ENDC is ignored. Nesting is permitted up to a depth
of 127 . Labels are permitted on conditional directives, but the
scan is purely left to right. For example:

.IFZ2 1
A: « ENDC
A is ignored.
A: LIPZ 1
.ENDC

A is entered in the symbol table.
1-23

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If a .END is encountered while inside a satisfied conditional, a Q
flag will appear, but the .END directive will still be processed
normally. If more .ENDC's appear than are required, Q flags appear on
the extras.

1.9 OPERATING PROCEDURES

1.9.1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-11
statements into a relocatable binary tape (object module). To do
this, two or three passes are necessary. On the first pass, the
Assembler creates a table of user-defined symbols and their associated
values, and a list of undefined symbols is printed on the teleprinter.
On the second pass the Assembler assembles the program and punches out
an absolute binary tape and/or outputs an assembly 1listing. During
the third pass (this pass is optional), the Assembler punches an
absolute binary tape or outputs an assembly listing. The symbol table
{and/or a list of errors) may be output on any of these passes. The
input and output devices as well as various options are specified
during the 1initial dialogue (see Section 1.9.3). The Assembler
initiates the dialogue immediately after being loaded and after the
last pass of an assembly.

1.9.2 Loading PAL-11S

PAL-11S is loaded by the Paper Tape Software Absolute Loader. Note
that on systems with hardware switch registers, the start address of
the Absolute Loader must be in the Switch Register when 1loading the
Assembler. This is because the Assembler tape has an initial program
which clears all of core up to the address specified in the Switch
Register, and jumps to that address to start loading the Assembler.

1.9.3 1Initial Dialogue

After being loaded, the Assembler prints its name and version and then
initiates dialogue by printing on the teleprinter

*S

meaning "What is the Source symbolic input device?" The response may
be

use Low-speed reader (</denotes typing the RETURN key)
meaning High-speed reader

meaning Low~-speed reader

meaning Teleprinter keyboard

'-JL"'EEK

The device specification is terminated, as is all user response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will

erase the immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole line on which it occurs.

1-24

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

After the *S question and response, the Assembler prints:
*B

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S:

H meaning High-speed punch

L meaning Low-speed punch

</ meaning do not output binary tape {«/denotes typing
the RETURN key)

In addition to I/0 device specification, various options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Brrors
will be listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It is strongly suggested that the errors be listed on the
same pass as the binary output, since errors may vary from pass to
pass.

1f both /3 and /E are typed, /3 must precede /E. The response is
terminated by typing the RETURN key. Examples:

*B L/E Binary output on the low-speed punch and
the errors on the teleprinter, both
during the second pass.

*B BH/3/E Binary output on the high-speed punch
and the errors on the teleprinter during
the third pass.

*B </ The RETURN key alone will cause the
Assembler to omit binary output

After the *B question and response, the Assembler prints:
*L

meaning "What is the assembly Listing output device?” The response to
*1, may be: ~

meaning Low-speed punch

meaning High-speed punch

meaning Teleprinter

meaning Line Printer

meaning do not output listing @o/denotes typing RETURN)

t'uva:nr

After the I/O device specification, pass and error 1list options
similar to those for *B may be chosen. The assembly listing will be
output on the third pass unless /2 (indicating the second pass) is
typed following H, L, T, or P. Errors will be 1listed on the
teleprinter during the same pass if /E is typed. If both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples:

*L L/2/E Listing on low-speed punch and errors on
teleprinter during second pass.

*L H Listing on high-speed punch during third
pass

*L -/ The RETURN key alone will cause the

Assembler to omit listing output.

1-25

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

After the *L question and response, the final question is printed on
the teleprinter:

*T

meaning "what 1is the symbol Table output device?* The device
specification is the same as for *L question. The symbol table will
be output at the end of the first pass unless /2 or /3 is typed in
response to *T, The first tape to be assembled should be placed in
the reader before typing the RETURN key because -assembly will begin
upon typing RETURN to the *T question. The /E option is not a
meaningful response to *T. Example

*T T/3 ‘ Symbol table output on teleprinter at
end of third pass. ,

*T Typing the RETURN key alone will: cause
the Assembler to omit symbol table
output. -

The symbol table is printed alphabetically, three symbols per 1line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is undefined, six asterisks replace its
value. The 1identifying characters indicate the class of the symbol;
that is, whether it is a label, direct assignment, @register symbol,
etc. The following examples show the various forms.

ABCDEF 001244 (Defined Label)

R3 = 2000003 (Register Symbol)

DIRASM = 177777 (Direct Assignment)

XY2 = hkkkkk (Undefined direct assignment)
R6 = grA kLA (Undefined register symbol)
LABEL = Tk Rk ok {Undefined label)

Generally, undefined symbols and external symbols will be 1listed as
undefined direct assignments. Multiply-defined symbols are not
flagged in the symbol table printout but are flagged wherever they are
used in the program.

If the symbol is relocatable or global or both, the symbol's value
will be followed by an R, a G or both.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). This will happen . automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are
the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below).

Example 1. Runs 2 passes:
*S High-speed reader
High-speed punch
Line Printer
Teleprinter

b3 ool
3 wimm

Example 2. Runs 3 passes:

High~speed reader
High-speed punch
High-speed punch
Teleprinter

|31e%lles
M om

PAL-11S ASSEMBLY LANGUAGE AND ASSBNBLBR

Example 3. Runs 2 passes:

H High-speed reader

BH/2 High-speed punch on pass 2
H/2 High-speed punch on pass 2
T Teleprinter

1:31e%lesle3

Note that there are several cases where the binary output can be
intermixed with ASCII output: :

a. *B B/2 Binary and listing to punch on pass 2.
L H/2
b. *B L/E Binary to low-speed punch and error 1listing to
teleprinter (and low-speed punch).
c. *B L/2/E Binary, error listing, and '
*L T/2 - listing to low speed punch.

The object module so generated is acceptable to the Linker as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Linker
ignores all information until a 001 is detected. - Thus, all source
and/or error messages will be ignored if they do not contain any
CTRL/A characters (octal 001).

If a character other than those mentioned is typed in reponse to a
question, the Assembler will ignore it and print the question again.
Example:

*S H High-speed reader
Q Q is not a valid response
The question is repeated

|slesl

If at any time you wish to restart the Assembler, type CTRL/P. If the
low-speed reader is the source input device, turn it off before typing
CTRL/P.

When no passes are omitted or error options specified, the Assembler
performs as follows:

PASS 1:

Assembler creates a table of user-defined symbols and: their associated
values to be used in assembling the source to object program.
Undefined symbols (not including external globals) are listed on the
teleprinter at the end of the pass. The symbol table is also listed
at this time. If an illegal 1location statement of the form
.=expression 1is encountered, the line and error code will be printed
out on the teleprinter before the assembly proceeds. An error in a
location statement is usually a fatal error in the program and should
be corrected.

PASS 2:

Assembler punches the object module, and prints the pass error count
and undefined location statements on the teleprinter.

PASS 3:

Assembler prints or punches the assembly program listing, undefined
location statements, and the pass error count on the teleprinter.

PAL-11S5 ASSEMBLY LANGUAGE AND ASSEMBLER

The functions of passes 2 and 3 will occur simultaneously on pass 2 if
the binary and listing devices are different, and do not conflict with
each other (the low-speed punch and teleprinter conflict).
Furthermore, if the binary object module is not requested, the listing
will be produced on pass 2.

The following table summarizes the initial dialogue questions:

PRINTOUT) INQUIRY
*S What is the input device of the Source symbolic tape?
*B What is the. coutput device of the Binary object tape?
*L What is the output device of the assembly Listing?
*T What is the output device of the symbol Table?

The following table summarizes the legal responses:

CHARACTER - RESPONSE INDICATED

T Teleprinter keyboard

L Low-speed reader or punch

H High-speed reader or punch

P Line Printer ‘

/1 Pass 1

/2 Pass 2

/3 Pass 3

/E Errors listed on same pass (not meaningful
response to *S or *T)

</ Omit function (except in response to *S).

Typical examples of complete initial dialogues:
For minimal PDP-11 configuration:

*S L Source input on low-speed reader
*B L/E Binary output on low-speed punch
errors during same (second) pass
*I, T Listing on teleprinter during pass 3
*T T Symbol table on teleprinter at end of pass 1

For a PDP-11 with high-speed I/0 devices:

*S H Source input on high-speed reader
*B H/E Binary output on high-speed punch
errors during same (second) pass
*L. </ No listing
*T T/2 Symbol table on teleprinter at end of pass 2.

1.9.4 Assembly Dialogue

During assembly, the Assembler will pause to print on the teleprinter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTRL/P, at any
time, if you wish to stop the assembly process and restart the initial
dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the Assembler
prints

EQOF 2

and pauses. During this pause, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

1-28

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If the specified assembly listing output device is the ‘high~speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter

EOM ?
and waits for tape or paper to be placed in the device. Type the
RETURN key when the tape or paper has been replenished; assembly will
continue.

Conditions causing the EOM ? messages for an assembly listing device
are:

HSP LPT

No power No power

No tape Printer drum gate open
Too hot
‘No paper

There is no EOM if the line printer is switched off-line, although
characters may be lost for this condition as well as for an EOM.

If the binary output device is the high-speed punch and if it is out
of tape, the Assembler prints:

EOM ?
*S

The assembly process is aborted and the initial dialogue is begun
again.

When a .END assembler directive is read on the tape, the Assembler
prints: '

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly.

If you are starting the binary pass and the binary is to be punched on
the low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Linker will ignore them.

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then print

END ?

and wait for another RETURN before starting the next pass. Example:

EOF ? Es’/
END ?

Note that forcing a .END in this manner causes the error counter to be
incremented by one.

1-29

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.5 Assembly Listing

PAL-11S produces a side-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned addresses, and error
codes, as follows:

EELLLLLL OOOOOOASSS..ve+..5
000000 ‘
000000

The E's represent the error field. The L's represent the address.
The O's represent the object data in octal. The S's represent the
source statement. "A" represents a single apostrophe which indicates
that either the second, third or both words of the instruction will be
modified by the Linker. While the Assembler accepts 72 characters
Per line on input, the listing is reduced by the 16 characters to the
left of the source statement.

The above represents a three-word statement. The second and third
words of the statement are 1listed under the command word. No

addresses precede the second and third words since the address order
is sequential. '

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.
For a direct assignment statement, the value of the defining
expression is given in the object code field although it is not
actually part of the code of the object program.

The .ASECT and .CSECT directives cause the current value of the
appropriate location counter (absolute or relocatable) to be printed.

Each page of the listing is headed by a page number (octal).

1.9.6 Object Module Output

The output of the assembler during the binary object pass is an object
module which is meaningful only to the linker. What follows gives an
overview of what the object module contains and at what stage each
part of it is produced.

The binary object module consists of three main types of data block:

a) Global symbol directory {GSD)
b) Text blocks {(TXT)
Cc) Relocation Directory (RLD)

1.9.6.1 Global Symbol Directory - As the name suggests, the GSD
contains a 1list of all the global symbols together with the name of
the object module. Each symbol is in Radix-50 form and contains
information regarding its mode and value whenever known.

The GSD is created at the start of the binary object pass.

1-30

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1.9.6.2 Text Block - The text blocks consist entirely of the binary
object data as shown in the listing. The operands are in the
unmodified form. .

1.9.6.3 Relocation Directory - The RLD blocks consist of directives
to the Linker which may reference the text block preceding the RLD.
These directives control the relocation and linking process.

Text and RLD blocks are constructed during the binary object pass.
Outputting of each block is done whenever either the TXT or RLD buffer
is full and whenever the location counter needs to be modified.

1.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings:

Error Code Meaning

A Addtessing error. An address within the instruction
is incorrect. Also may indicate a relocation error.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location
counter is updated by +1.

D Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

I Illegal character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing.

L Line buffer ovetflow. Extra characters on a line
(more than 72) are ignored.

M Multiple definition of a 1label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

N Number containing 8 or 9 has decimal point missing.

P _pPhase error. A label's definition aor value varies
from. one pass to another. :

Q Questionable syntax. There are missing arguments or
the instruction scan was not completed or a carriage
return was not immediately followed by a line feed
or form feed.

R Register~type error. An invalid use of or reference
to a register has been made.

S Symbol table overflow. When the quantity of
user-defined symbols exceeds the allocated space
available in the user's symbol table, the assembler
outputs the current source line with the S error
code, then returns to the initial dialogue.

1-31

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

T ~ Truncation error. A number generated more than 16
bits of significance or an expression generated more
than 8 bits of significance during the use of the
.BYTE directive.

U Undefined -symbol. An undefined symbol was
encountered -during the evaluation of an expression.
" Relative to the expression, the undefined symbol is

assigned a value of zero. :

1.11 SOFTWARE ERROR HALTS

PAL-11S loads all of its unused trap vectors with the code
«WORD .+2,HALT
so that if the trap does occur, the processor will halt in the second

word of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt.

Address of Halt (octal) " Meaning
12 ‘ ’ Reserved instruction executed
16 ‘ , Trace trap occurred
26 - Power fail trap
32 EMT executed

A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identifying code:

Code in RO Meaning

0 Illegal memory reference, SP overflow or
illegal instruction.

Illegal IOX command.

Slot number out of range.

Device number illegal

Referenced slot not INITed.

Illegal bata Mode.

U1 b O N

IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the error.
If the error code is 1-5, Rl points to some element in the IOT
argument 1list or to the instruction following the argument list,

depending on whether IOXLPT has finished decoding all the arguments
when it detects the error. '

1-32

CHAPTER 2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS'

PAL-11A (Program Assembly Language for the PDP-11's Absolute
Assembler) enables you to write source (symbolic) programs using
letters, numbers, and symbols which are meaningful to you. The source
programs, generated either on-line using the Text Editor (ED-11), or
off-line, are then assembled into object programs (in absolute binary)
which are executable by the computer. The object program is produced
after two passes through the Assembler; an optional third pass
produces a complete octal/symbolic listing of the assembled program.
This listing is especially useful for documentation and debugging
purposes.

This chapter explains not only how to write PAL-1lA programs but also
how to assemble the source programs into computer-—acceptable object
programs. All facets of the assembly language are explained and
illustrated with many examples, and the chapter concludes with
assembling procedures. In explaining how to write PAL-11lA source
programs it is necessary, especially at the outset, to make frequent
forward references. Therefore, we recommend that you first read
through the entire chapter to get a "feel" for the language, and then
reread the chapter, this time referring to appropriate sections as
indicated, for a thorough understanding of the language and assembling
procedures.

Some notable features of PAL-11A are:
1. Selective assembly pass functions
2. Device specification for pass functions
3. Optional error listing on Teletype
4. Double buffered and concurrent I/O (provided by I0X)
5. Alphabetized, formatted symbol table listing

The PAL-11A Assembler is available in two versions: a 4K version and
an 8K version.

The assembly language applies equally to both versions. The 4K
version provides symbol storage for about 176 user-defined symbols,
and the 8K version provides for about 1256 user-defined symbols (see
Section 2.3).

In addition, the BK version allows a line printer to be used for the
program listing and/or symbol table listing.

'PAL-11A is not currently available for PDP-11 systems without switch
registers.

2-1

WRITING PAL~11A ASSEMBLY LANGUAGE PROGRAMS

The following discussion of the PAL-11A Assembly Language assumes that
you have read the PDP-11 Processor Handbook, with emphasis on those
sections which deal with the ©PDP-11 instruction set, formats, and
timings -- a thorough knowledge of these is vital to efficient
assembly language programming. -

2.1 CHARACTER SET

A PAL-11A source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, arguments separators, and
line terminators written using the following ASCII' characters.

1. The letters A through z. (Upper and lower case letters are
~ acceptable, although wupon input, lower case letters will be

converted to upper case letters.)
2. The numbers 0 throﬁgh 9,
3. The characters . and $ (reserved for system software).
4. The separating or terminating symbols:

PR H@ (), 5" -

carriage return tab space line feed form feed

2.2 STATEMENTS

A source program is composed of a sequence of statements, where each
statement is on a single 1line. The statement is terminated by a
carriage return character and must. be immediately followed by either a
line feed or form feed character. Should a carriage return character
be present and not be followed by a line feed or form feed, the
Assembler will generate a Q error (Section 2.10) and that portion of
the line following the carriage return will be ignored. Since the
carriage return is a required statement terminator, a line feed or
form feed not immediately preceded by a carriage return will have one
inserted by the Assembler.

It should be noted that, if the Editor (ED-11) is being used to create
the source program (see Section 4.4.4), a typed carriage return
(RETURN key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters
as explained below and summarized in Appendix B. The four fields are:

Label Operator Operand Comment
The label and comment fields are optional. The operator and operand

fields are interdependent -- either may be omitted depending upon the
contents of the other. ‘ : :

ASCII stands for American Standard Code for Information Interchange.

2-2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.2.1 Label

A label is a user-defined symbol (see Section 3.3.2) which is assigned
the value of the current location counter. it is a symbolic means .of
referring to a specific location within ‘a program. If present, a
label always occurs first in a statement and must be terminated by a
colon. For example, if the current location is 100(octal), the
statement ‘

ABCD: MOV A,B

will assign the value 100(octal) to the label ABCD so that subsequent
reference to ABCD will be to location 100 (octal). More than one label
may appear within a single label field; each label within the field
will have the same value. For example, if the current location is
100, multiple labels in the statement

ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value
100(octal). ($ and . are reserved for system software.)

The error code M (multiple definition of é symbol) will be generated
during assembly if two or more labels have the same first six
characters. ;

2.2.2 Operator

An operator follows the label field in a statement, and may be an
instruction mnemonic or an assembler directive (see Appendix B). when
it is an instruction mnemonic, it specifies what action is to be
performed on any operand(s) which follows it. When it is an assembler
directive, it specifies a certain function or action to be performed
during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is
legally terminated by a space, tab, or any of the following
characters.

$) + - € (" ' & 1 & . i
line feed form feed carriage return

The use of each character above will be explained in this chapter.
Consider the following examples:

MOV AsB :+{(TAB) terminates operator MOV
MOV@AsB ;@ terminates operator MOV

Wwhen the operator stands alone without an operand or comment, it is
terminated by a carriage return followed by a line feed or form feed
character.

2.2.3 Operand

An operand is that part of a statement which is operated on by the
operator -- an instruction mnemonic or assembler directive. Operands
may be symbols, expressions, or numbers. when multiple operands
appear within a statement, each is separated from the next by a comma.

2-3

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

An operand may be preceded by an operator and/or label, and followed
by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed
character when the operand ends the statement. For example,

LABEL: MOV GEORGE,BOB ;THIS IS A COMMENT

where the space between MOV and GEORGE terminated the operator field
and began the operand field; the comma separated the operands GEORGE
and BOB; the semicolon terminated the operand field and began the
comment.

2.2.4 Comments

The comment field is optional and may contain any ASCII character
except null, rubout, carriage return, line feed or form feed. All
other characters, even those with special significance are ignored by
Assembler when used in the comment field.

The c¢omment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon . and end with a
carraige return followed by a line feed or form feed character. For
example,

LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program exeéution, but

they are wuseful in program listings for later analysis, checkout or
documentation purposes.

2.2.5 Format Control

The format is controlled by the space and tab characters. They have
no effect on the assembling process of the source program unless they
are embedded within a symbol, number, or ASCII text; or are used as
the operator Ffield terminator. Thus, they can be used to provide a
neat, readable program. A statement can be written

LABEL:MOV (SP) +,TAG; POP VALUE OFF STACK
or, using formatting characters it can be written
LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK
which is much easier to read.
Page size is controlled by the form feed character. A page of n lines
is created by inserting a form feed (CTRL/FORM keys on the keyboard)

after the nth line. If no form feed is present, a page is terminated
after 56 lines.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.3 SYMBOLS

There are two types of symbols, permanent and user-defined. Both are
stored in the Assembler's symbol table. Initially, the symbol table
contains the permanent symbols, but as the source program is
assembled,. user-defined symbols are added to the table.

2.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
B.3) and assembler directives (see Section 2.8). These symbols are a
permanent part of the Assembler's symbol table and need not be defined
before being used in the source program.

2.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 2.2.1)
or by direct assignment (see Section 2.3.3). These symbols are added
to the symbol table as they are encountered during the first pass of
the assembly. They can be composed of alphanumeric characters, dollar
signs, and periods only; again, dollar signs and periods are reserved
for use by the system software. Any other character is illegal and,
if used, will result in the error message I (see Section 2.11). The
following rules also apply to user-defined symbols:

1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.

3. A symbol may be written with more than six 1legal characters
but the seventh and subsequent characters are only checked
for 1legality, and are not otherwise recognized by the
Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value
associated with a permanent symbol that is also user-defined depends
upon its use:

1. A permanent symbol encountered in the operator field is
associated with its corresponding machine op-code.

2. If a permanent symbol in the operand- field is also
user-defined, its user-defined value is associated with the
symbol. If the symbol is not found to be user—-defined, then
the corresponding machine op-code value is associated with
the symbol.

2.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the Assembler's symbol table and the
specified value 1is associated with it. A symbol may be redefined by
assigning a new value to a previously defined symbol. The newly
assigned value will replace the previous value assigned to the symbol.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The general format for a direct assignment statement is
symbol = expression
The following conventions apply:

1. An equal sign (=) must separate the symbol from the
expression defining the symbol.

2. A direct assignment statement may be preceded by a label and
may be followed by a comment.

3. Only one symbol can be defined by any one direct assignment
statement.

4. Only one level of forward referencing'is allowed.

Example of the two levels of forward referencing (illegal):

]
#oun
B3

X and Y are both undefined throughout pass 1 and will be listed on the
printer as such at the end of that pass. X is undefined throughout
pass 2, and will cause a U error message.

Examples:
A =1 s THE SYMBOL A IS EQUATED WITH THE VALUE 1

‘A~1EMASKLOW FTHE SYMBROL B IS EQUATED WITH THE EXFRES-
$SION’S VALUE.,

Cm
it

c: b=3 FTHE SYMBOL D IS EQUATED WITH 3. THE

E? MOV #1,yABLE FLABELS C AND E ARE EQUATED WITH THE
FNUMERICAL MEMORY ADDRESS OF THE MOV
COMMAND .

2.3.4 Register Symbols

The eight general registers of the PDP-11 are numbered 0 through 7.
These registers may be referenced by use of a register symbol, that
is, a symbolic name for a register. A register symbol is defined by
means of a direct assignment, where the defining expression contains
at least one term preceded by a % or at 1least one term previously
defined as a register symbol. ‘

RO=%0 - fDEFINE RO AS REGISTER 0
R3=R0+3 JDEFINE R3 AS REGISTER 3
R4=1+%3 JDEFINE R4 AS REGISTER 4
THERE=%2 FDEFINE °*THERE" AS REGISTER 2

It is important to note that all register symbols must be defined
before they are referenced. A forward reference to a register symbol
will generally cause phase errors (see Section 2.10).

WRITING PAL~11A ASSEMBLY LANGUAGE PROGRAMS

The % may be used in any expression thereby indicating a reference to
a register. Such an expression is a register expression. Thus, the
statement

CLR %6
will clear register 6 while the statement
CIR 6

will clear the word at memory address 6. 1In certain cases a register
can be referenced without the use of a register symbol or register
expression. These cases are recognized through the context of the
statement and are thoroughly explained in Sections 2.6 and 2.7. Two
obvious examples of this are:

JSR 52 SUBR §THE FIRST OPERAND FIELD MUST
sALWAYS BE A REGISTER.

CLR X(2) #ANY EXPRESSION ENCLOSED IN
§() MUST BE A REGISTER. IN
$THIS CASE» INDEX REGISTER 2.

2.4 EXPRESSIONS

Arithmetic and logical operators (see Section 2.4.2) may be used to
form expressions. A term of an expression may be a permanent or
user~defined symbol, a number, ASCII data, or the present value of the
assembly location counter represented by the period. Expressions are
evaluated from left to right. Parenthetical grouping is not allowed.

Expressions are evaluated as word quantities. The operands of a .BYTE
directive (Section 2.8.5) are evaluated as word expressions before
truncation to the low-order eight bits.’ S

A missing term or expression will -be interpreted as 0. A missing
operator will be interpreted as +. The error code Q (Questionable
syntax) will be generated for a missing operator. For example,

A+ =100 ;OPERAND MISSING
will be evaluated as A + 0 - 100, and
TAG ! LA 177777 ;OPERATOR MISSING

will be evaluated as TAG | LA+177777.

2.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers
consist of the digits 0 through 7 only. Decimal numbers consist of
the digits 0 through 9 followed by a decimal point. If a number
contains an 8 or 9 and is not followed by a decimal point, the N error
code (see Section 2.10) will be printed and the number interpreted as
decimal. Negative numbers may be expressed as a number preceded by a
minus sign rather than in a two's complement form. Positive numbers
may be preceded by a plus sign although this is not required..

If a number is too large to fit into 16 bits, the number is truncated

from the left. In the assembly listing the statement will be flagged
with a Truncation (T) error.

2-7

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.4.2 Arithmetic and Logical Operators

The arithmetic operators are:
+ indicates addition or a positive number
- indicates subtraction or a negative number

The logical operators are defined and illustrated below.

& indicates the logical AND operation
1 indicates the logical inclusive OR operation
AND OR
0&0=20 01 0=0
0&1=0 0! 1=1
1s0=0 110=1
l1sg1=1 1t11=1

2.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, 1line feed, or form feed) is assigned the
7-bit ASCII value of the character (see Appendix A). For example,

'A
is assigned the value 101 (octal).

When preceded by a quotation mark, two ASCII characters (not including
null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each
7-bit value 1is stored in an 8-bit byte and the bytes are combined to
form a word. For example, "AB will store the ASCII value of A in the
low-order (even) byte and the value of B in the high-order (odd) byte:

high-order byte low-order byte

B's value = 1 0 2 1 0 1 = A's value
N A . v —m—— "~ ——
0 100 001 001 000 001
S—— N—— N S—— -~
0 4 1 1 0 1

"AB = 041101

2.5 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. (Note
difference of Program Counter. . = PC. See Section 2.6.) When used
in the operand field of an instruction, it represents the address of
the first word of the instruction. When used in the operand field of
an assembler directive, it represents the address of the current byte
or word. For example,

2-8

WRITING PAL~11A ASSEMBLY LANGUAGE PROGRAMS

Al MOV #.sRO $. REFERS TO LOCATION A» IwE.;
$ THE ADDRESS OF THE MOV INSTRUCTION

(# is explained in Section 2.6.9).

At the beginning of each assembly pass, the Assembler <clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location vwhere
the object data is stored may be changed by a direct assignment
altering the location counter.

.=expression

The expression defining the period must not contain forward references
or symbols that vary from one pass to another. Examples:

+=300

FIRST! MOV .+10,COUNT 3 THE LAREL FIRST HAS THE VALUE(OCTAL)
$.+10 EQUALS S10(OCTAL). THE CONTENTS
0F THE LOCATION S10(0OCTAL) WILL BE DE-
$POSITED IN LOCATION COUNT.

«=520 5THE ASSEMBLY LOCATION COUNTER NOW
iHAS A VALUE OF S520(0CTAL).

SECOND: MOV . s INDEX $THE LABEL SECOND HAS THE VALUE S20(0CTAL).
$THE CONTENTS OF LOCATION S520(0CTAL)»
$THAT IS, THE BINARY CODE FOR THE
$ INSTRUCTION ITSELF, WILL BE DEPOSITED
§IN LOCATION INDEX.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100

will reserve 100(octal) bytes of storage space in the program. The
next instruction will be stored at 1100. ‘

2.6 ADDRESSING

The Program Counter (register 7 of the eight general registers) always
contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how they
assemble (see Section 2.6.11), the action of the Program Counter must
be understood. The key rule is:

Whenever the processor implicitly uses the Program Counter (PC) to
fetch a word from memory, the Program Counter is automatically
incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (see Sections 2.6.7, 2.6.8, and 2.6.10), the
processor uses the Program Counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word.

2-9

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The following conventions are used in this section:
a. Let E be any expression as defined in Section 3.4.
b. Let R be a register expression. This |is any expression
containing a term preceded by a % character or a symbol
previously equated to such a term.

Examples:

RO = %0 ;GENERAL REGISTER 0
Rl = RO + 1 ;GENERAL REGISTER 1
R2 =1 + %1 ;GENERAL REGISTER 2

¢c. Let ER be a register expression or an expression in the range
0 to 7 inclusive.

d. Let A be a general address specification which produces a
6~bit address field as described in the PDP-11 Handbook.

The addressing specification, A, may now be explained in terms of E,
R, and ER as defined above. Each will be illustrated with the single
operand instruction CLR or double operand instruction MOV.

2.6.1 Register Mode

The register contains the operand.

Format: R

Example: ‘ '
RO = %0 ;DEFINE RO AS REGISTER 0
CLR RO ;CLEAR REGISTER 0

2.6.2 Deferred Register Mode

The register contains the address of the operand.

Format: @R or (ER)
Example:
CLR @R1 SCLEAR THE WORD AT THE
or $ADDRESS CONTAINED IN
CLR (1) SREGISTER 1.

2.6.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand.!.

la. Both JMP and JSR instructions using mode 2 may increment the
register before or after its use, depending on what PDP-11 processor
is being used. This mode should be avoided. .

b. In double operand instructions of the addressing form %R, (R)+ or
%R,-(R) where the source and destination registers are the same, the
results may be different when executed on different PDP-11 processors.
The use of these forms should be avoided!

2-10

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Format: (ER) +

Examples:

CLR (ROO+ $CLEAR WORDS AT ADDRESSES ,
CLR (RO+3)+ $CONTAINED IN REGISTERS O» 3» AND 2 AND
CLR (2)+ $ INCREMENT REGISTER CONTENTS

$BY TWO.

2.6.4 Deferred Autoincrement Mode

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used.

Format: € (ER) +
Example
CLR @(3)+ $CONTENTS OF REGISTER 3 POINT

$TO ADDRESS OF WORD TO BE CLEARED
$BEFORE BEING INCREMENTED BY TWO

2.6.5 Autodecrement Mode

The contents of the registet are decremented before being used as the
address of the operand.’ '

Format: - (ER)

Examples:

CLR -(RQO) $ DECREMENT CONTENTS OF REG-
CLR - (RO+3) $ISTERS Or 3» AND 2 BEFORE USING
CLR —-(2) $AS ADDRESSES OF WORDS TO BE CLEARED

2.6.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format: @- (ER)
Example:
CLR @-(2) $ DECREMENT CONTENTS OF REG. 2

$BEFORE USING AS POINTER TO ADDRESS
$OF WORD TO BE CLEARED

2.6.7 Index Mode
Format: E(ER)
The value of an expression E is stored as the second or third word of

the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

‘See previous footnote.
2-11

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Examples:

CLR X+2(R1) FEFFECTIVE ADDRESS IS X+2 PLUS
FTHE CONTENTS OF REGISTER 1

CLR —-2(3) JEFFECTIVE ADDRESS IS -2 PLUS
$THE CONTENTS OF REGISTER 3

2.6.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the
address of the operand.

Format: QE (ER)
Example:
CLR @14(¢4) #IF REGISTER 4 HOLDS 100, AND LOCA-
FTION 114 HOLDS 2000, LOC. 2000 IS
s CLEARED

2.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC. ’
Format: #E
Examples:

MOV #1100, RO $MOVE AN OCTAL 100 TO REGISTER 0

MOV #X, RO FMOVE THE VALUE OF SYMROL X TO
FREGISTER 0

The operation of this mode is explained as follows:
The statement MOV $#100,R3 assembles as two words. These are:

01 2 7 0 3

0 0 0 1 0 O
Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch
the operand (the second word of the instruction) before being
incremented by two, to point to the next instruction.

If the #E is preceded by @, E specifies an absolute address.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.6.10 Relative and Deferred Relative Modes

Relative Mode is the normal mode for memory references.

Format : E
Examples:
CLR 100 sCLEAR LOCATION 100

MOV X»Y : #MOVE CONTENTS OF LOCATION X TO
SLOCATION Y

This mode is assembled as Index Mode, using 7, the PC, as the
register. The base of the address calculation, which is stored in the
second or third word of the instruction, is not the : address of the
operand. Rather, it is the number which, when added to the PC,
becomes the address of the operand. Thus, the base is X - PC. The
operation is explained as follows.

If the statement MOV 100,R3 is assembled at location 20, then the
assembled code is:

Location 20: 01 6 7 o0 3

Location 22: 0 0 0 0 5 4

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, Base + PC = 54 +
24 = 100, the operand address.

Since the Assembler considers . as the address of the first word of
the instruction, an equivalent statement would be

MOV 100-.-4(PC),R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance (in bytes)
between the operand and the current PC. If the operator and its
operand are moved in memory so that the distance between the operator
and data remains constant, the instruction will operate correctly.

If E is preceded by @, the expression's value is the pointer to the
address of the operand.

2.6.11 Table of Mode Forms and Codes (6-bit (A) format only - see
Section 3.7)

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruction. Each
operand in one of the other forms however, increases the instruction
length by one word.

Form Mode Meaning

R On Register
None of these €R or (ER) 1n Register n deferred
forms increase (ER) + 2n Autoincrement
the instruction @ (ER) + 3n Autoincrement deferred
length. - {ER) 4N Autodecrement

e~ (ER) 5N Autodecrement deferred

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

E(ER) 6n Index
Any of these @E (ER) In Index deferred
forms adds a $E 27 Immediate
word to the Q4E 37 Absolute memory
instruction reference
length E 67 Relative

@E 77 Relative deferred

reference

Notes:

1. An alternate form for @R is (ER). However, the form @ (ER) is
equivalent to @O0(ER).

2. The form @#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @#100 will clear
location 100 even if the instruction is moved from the point
at which it was assembled.

2.7 INSTRUCTION FORMS

The instruction mnemonics are given in Appendix B. This section

defines the number and nature of the operand fields for these
instructions.

In the table that follows, let R, E, and ER represent 'expressions as
defined in Section 3.4, and let A be a 6-bit address specification of
the forms:

E @E
R @R or (R)
(ER)+ @(ER)+

~(ER) @-(ER)
E(ER) @E(ER)
#E @#E
Table 2-1
Instruction Operand Fields
Instruction Form Example
Double Operand Op A,A MOV (R6)+,QY
Single Operand Op A CLR ~-(R2)
Operate Op HALT
Branch Op E BR X+2
BLO .-4
where -128 <(E~-.-2)/2<£127
Subroutine Call JSR ER,A JSR PC,SUBR
Subroutine Return RTS ER RTS PC
EMT/TRAP op EMT
or
Op E EMT 31
where 0<E<377 (octal)

2-14

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The branch instructions are one word instructions. The ‘high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch addtess as follows: '

a) Extend the sign of the offset through bits 8-15.

b) Multiply the result by 2. This creates a word offset rather
than a byte offset.

¢) Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.
Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.
The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the

expression is too big (>377(octal)) it is truncated to eight bits and
a Truncation (T) error occurs.

2.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops direct the assembly
process and may generate data. They may be preceded by a label and
followed by a comment. The assembler directive occupies the operator
field. Only one directive may be placed in any one statement. One or
more operands may occupy the operand field or it may be void --
allowable operands vary from directive to directive.

2.8.1 LEOT

The .EOT directive indicates the physical End-of-Tape though not the
logical end of the program. If the .EOT is followed by a single line
feed or form feed, the Assembler will still read to the end of the
tape, but will not process anything past the .EOT directive. If .EOT
is followed by at least two line feeds or form feeds, the Assembler
will stop before the end of the tape. Either case is proper, but it
should be understood that even though it appears as if the Assembler
has read too far, it actually hasn’'t.

if a .EOT is embedded in a tape, and more information to be assembled
follows it, .EOT must be immediately followed by at least two line
feeds or form feeds. Otherwise, the first 1line following the .EOT
will be lost.

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as
one program. The last tape is normally terminated by a .END directive
(see Section 3.8.3) but may be terminated with .EOT (see .END
emulation in Section 3.9.4).

2-15

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.8.2 .EVEN

The .EVEN directive ensures that the assembly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored.

2.8.3 L.END

The .END directive indicates the logical and physical end of the
source program. The .END directive may be followed by only one
operand, an expression indicating the program's entry point.

At load time, the object tape will be 1loaded and program execution
will begin at the entry point indicated by the .END directive. If the
entry point is not specified, the Loader will halt after reading in
the object tape.

2.8.4 .WORD

The .WORD assembler directive may have one or more operands, separated
by commas. Each operand is stored in a word of the object program.
If there is more than one operand, they are stored in successive
words. The operands may be any legally formed expressions. For
example,

+=1420

S5AL=0

+WORD 177535, .+4,5AL $STORED IN WORDS 1420, 1422, AND
#1424 WILL RE 177535, 1426y AND O.

Values exceeding 16 bits will be truncated from the left, to word
length.

A .WORD directive followed by one or more void operands separated by
commas will store zeros for the void operands. For example,

+=1430 fZEROy FIVEy AND ZERO ARE STORED
+WORD »5y FIN WORDS 1430, 1432, AND 1434,

An operator field 1left blank will be interpreted as the .WORD
directive if the operand field contains one or more expressions. The
first term of the first expression in the operand field must not be an
instruction or assembler directive unless preceded by a +, ~, or one
of the logical operators ! or &. For example,

+ =440 #THE OF-CODE FOR MOVs WHICH IS 010000,
LAEBEL ! +MOV,LABEL #IS STORED IN LOCATION 440, 440 IS
FSTORED IN LOCATION 442,

Note that the default .WORD will occur whenever there is a 1leading
arithmetic or 1logical operator, or whenever a leading symbol is
encountered which is not recognized as an instruction mnemonic or
assembler directive. Therefore, if an instruction mnemonic or
assembler directive is misspelled, the .WORD directive is assumed and
errors will result. Assume that MOV is spelled incorrectly as MOR:

MOR A,B
Two error codes can result: a Q will occur because an expression
operator is missing between MOR and A, and a U will occur if MOR is
undefined. Two words will be generated; one for MOR A and one for B.

2-16

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.8.5 .BYTE

The .BYTE assembler directive may have one or more operands separated
by commas. Each operand is stored in a byte of the object program.
If multiple operands are specified, they are stored in successive
bytes. The operands may be any legally formed expression with a
result of 8 bits or less. For example,

SAM=3 FSTORED IN LOCATION 410 WILL BE
+=410 1060 (THE OCTAL EQUIVALENT OF 48).
+BYTE 48.,SAM $IN 411 WILL BE 005.

If the expression has a result of more than 8 bits, it will be
truncated to its low-order 8 bits and will be flagged as a T error.
If an operand after the .BYTE directive is 1left void, it will be
interpreted as zero. For example,

+ =420 $ZERO WILL BE STORED IN
+BYTE » » $BYTES 420y 421 AND 422,

2.8.6 .ASCII

The .ASCII directive translates strings of ASCII characters into their
7-bit ASCII codes with the exception of null, rubout, carriage return,
line feed, and form feed. The text to be translated is delimited by a
character at the beginning and the end of the text. The delimiting
character may be any printing ASCII character except colon and equal
sign and those used in the text string. The 7-bit ASCII code
generated for each character will be stored in successive bytes of the
object program. PFor example,

» =500 sTHE ASCII CODE FOR *"Y" WILL BE
+ASCII /YES/ $STORED IN 500+ THE CODE FOR *E*
$IN 501y THE CODE FOR "S*" IN 502.

+ASCII /5+3/72/ HFTHE DELIMITING CHARACTER OCCURS
§AMONG THE OPERANDS. THE ASCII
fCODES FOR "S5"» "+"y AND *3" ARE
$STORED IN BYTES 503 504, AND
$505., 2/ IS NOT ASSEMBLED.

The ASCII directive must be terminated by a space or a tab.

2.9 OPERATING PROCEDURES

2.9.1 Introduction

The Assembler enables you to assemble an ASCII tape containing PAL-1llA
statements into an absolute binary tape. To do this, two or three
passes are necessary. On the first pass the Assembler creates a table
of user-defined symbols and their associated values, and a list of
undefined symbols is printed on the teleprinter. On the second pass
the Assembler assembles the program and punches out an absolute binary
tape and/or outputs an assembly listing. During the third pass (this
pass is optional) the Assembler punches an absolute binary tape or
outputs an assembly listing. The symbol table (and/or a 1list of
errors) may be output on any of these passes. The input and output
devices as well as various options are specified during the initial
dialogue (see Section 3.3.9). The Assembler initiates the dialogue
immediately after being loaded and after the last pass of an assembly.

2-17

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.9.2 Loading PAL-11A

PAL-11lA is loaded by the Absolute Loader (see Chapter 6 for operating
procedures). Note that the start address of the Absolute Loader must
be in the Switch Register when loading the Assembler. This is because
the Assembler tape has an initial portion which clears all of core up
to the address specified in the Switch Register, and jumps to. that
address to start loading the Assembler.

2.9.3 1Initial Dialogue

After being loaded, the Assembler initiates dialogue by printing on
the teleprinter: . ,

*S

meaning "What is the Source symbolic input device?" The response may
be:

H meaning High-speed reader
L meaning Low-speed reader
T meaing Teletype keyboard

If the response is T, the source program must be typed at the terminal
once for each pass of the assembly and it must be identical each time
it is typed.

The device specification is terminated, as is all user response, by
typing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will
erase the immediately preceding character if it is on the current
line. Typing CTRL/U will erase the whole line on which it occurs.

After the *S question and response, the Assembler prints:
*B '

meaning "What is the Binary output device?" The responses to *B are
similar to those for *S:

H meaning High-speed punch
L meaning Low-speed punch

-/ meaning do not output binary tape
(<’ denotes typing the RETURN key)

In addition to I/0 device specification, various options may be
chosen. The binary output will occur on the second pass unless /3
(indicating the third pass) is typed following the H or L. Errors
will be 1listed on the same pass if /E is typed. If /E is typed in
response to more than one inquiry, only the last occurrence will be
honored. It is strongly suggested that the errors be listed on the
Same pass as the binary output, since errors may vary from pass to
pass. If both /3 and /E are .typed, /3 must precede /E. The response
is terminated by typing the RETURN key. Examples:

2-18

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

*8B L/E Binary output on the low~speed punch and the
errors on the the teleprinter, both during
the second pass. ’ ’ '

*B H/3/E . Binary output on the high-speed punch and the
errors on the teleprinter, both during the
third pass.

*B o/ Typing just the RETURN key will cause the
- Assembler to omit binary output.

After the *B question and response, the Assembler prints:
*L

meaning "What is the assembly Listing output device?" The response to
*L may be:

L meaning Low-speed punch (outputs a tab as a tab-rubout)
H meaning High-speed punch

T meaning Teleprinter (outputs a tab as multiple spaces)
P meaning line Printer (8K vétsion only)

</ meaning do not output listing
{ </ denotes typing the RETURN key)

After the I/0 device specification, pass and error 1list options
similar to those for *B may be chosen. The assembly listing will be
output to the third pass unless /2 (indicating the second pass) is
typed following H, L, T, or P. Errors will be 1listed on the
teleprinter during the same pass if /E is typed. 1I1f both /2 and /E
are typed, /2 must precede /E. The response is terminated by typing
the RETURN key. Examples: '

*L L/2/E Listing on low-speed punch and errors
on teleprinter during second pass.

*I, H Listing on high-speed punch during
third pass.

o The RETURN key alone will cause the
Assembler to omit listing output.

After the *L question and response, the final question is printed on
the teleprinter:

*T

meaning "What is the symbol Table output device?" The device
specification is the same as for the *L question. The symbol table
will be output at the end of the first pass unless /2 or /3 is typed
in response to *T. The first tape to be assembled should be placed in
the reader before typing the RETURN key because assembly will begin
upon typing the RETURN key in response to the *T question. The /E
option is not a meaningful response to *T. Example:

*T T/3 Symbol table output on teleprinter at
end of third pass.

*T </ Tybing just the RETURN key will cause the
Assembler to omit the symbol table output.

2-19

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The symbol table is printed alphabetically, four symbols per line.
Each symbol printed is followed by its identifying characters and by
its value. If the symbol is undefined, six asterisks replace its
value. The identifying characters indicate the class of the symbol;
that is, whether it is a label, direct-assignment, register symbol,
etc. The following examples show the various forms:

ABCDEF 001244 (Defined label)

R3 = 2000003 (Register symbol)

DIRASM = 177777 (Direct assignment)

XYZ = tAkkkd (Undefined direct assignment)
R6 = FrRARNAR (Undefined register symbol)
LABEL = khkhkk (Undefined label)

Generally, undefined symbols (including labels) will be 1listed as
undefined direct assignments.

Multiply-defined symbols are not flagged in the symbol table ‘printout
but they are flagged wherever they are used in the program.

It is possible to output both the binary tape and the assembly listing
on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). ‘This will happen automatically unless the
binary device and the listing device are conflicting devices or the
same device (see Example 2 below). The only conflicting devices are
the teleprinter and the low-speed punch. Even though the Assembler
deduces that three passes are necessary, the binary and listing can be
forced on pass 2 by including /2 in the responses to *B and *L (see
Example 3 below).

Example 1. Runs 2 passes:

*S H High-speed reader
*B H High-speed punch
*L P Line Printer
*T T Teleprinter

Example 2. Runs 3 passes:

*S H High-speed reader
*B H High-speed punch
*L H High~speed punch
* T Teleprinter

Example 3. Runs 2 passes:

*S H High-speed reader

*B H/2 High-speed punch on pass 2
*L H/2 High-speed punch on pass 2
*T T Teleprinter

2-20

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2 Binary and
*L H/2 listing to punch on pass 2
b. *B L/E ~ Binary to low-speed punch and
error listing to teleprinter
{and low-speed punch)
¢c. *B L/2/E Binary, error listing, and
*L T/2 listing to low-speed punch.

The binary so generated is loadable by the Absolute Loader as long as
there are no CTRL/A characters in the source program. The start of
every block on the binary tape is indicated by a 001 and the Absolute
Loader ignores all information wuntil a 001 is detected. Thus, all
source and/or error messages will be ignored if they do not contain
any CTRL/A characters (octal 001).

If a character other than those mentioned is typed in response to a
question, the Assembler will ignore it and print the guestion again.
Example:

*S H High-speed reader
*B Q Q is not a valid response
*B The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P.

When no passes are omitted or error options specified, the Assembler
performs as follows:

PASS 1: Assembler creates a table of user-defined symbols and their
associated values to be used in assembling the source to
object program. Undefined symbols are 1listed on the
teleprinter at the end of the pass. The symbol table is also
listed at this time. If an illegal location statement of the
form .=expression is encountered, the line and error code
will be printed out on the teleprinter before the assembly
proceeds. An error in a location statement is usually a
fatal error in the program and should be corrected.

PASS 2: Assembler punches the object tape, and prints the pass error
count and undefined location statements on the teleprinter.

PASS 3: Assembler prints or punches the assembly program listing,
undefined 1location statements, and the pass error count on
the teleprinter.

The functions of passes 2 and 3 will occur simultaneously on pass 2 if

the binary and listing devices are different, and do not conflict with
each other (low-speed punch and Teleprinter conflict).

2-21

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

The following table summarizes the initial dialogue questions:

Printout
*S
*B
*L

*T

Inquiry

What is the input device of the Source symbolic tape?

What is the output device of the Binary object tape?

What is the output device of the assembly Listing?

What is the output device of the symbol Table?

The following table summarizes the legal responses:

Character

T
L
H
P
/1
/2
/3
/E

-/

Response Indicated

Teletype keyboard or printer

Low-speed reader or punch

High-speed reader or punch

Line Printer (8K version only)

Pass 1
Pass 2

Pass 3

Errors listed on same pass (not meaningful in response to *S

or *T)

Omit function

Typical examples of complete initial dialogues:

For minimal

*S L
*B L/E
*L T
*T T

PDP-11 configuration:

Source input on low-speed reader

Binary output on low-speed punch
Errors during same (second) pass

Listing on teleprinter during pass

Symbol table on teleprinter at end

For a PDP-11 with high-speed I/0 devices:

*S H
*B H/E
*L

£ T/2

Source input on high-speed reader

3

of pass 1

Binary output on high—speéd punch,

Errors during same (second) pass.
No listihg

Symbol table on teleprinter at end

of pass 2

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.9.4 Assembly Dialogue

During assembly, the Assembler will pause to print on the teleprinter
various messages to indicate that you must respond in some way before
the assembly process can continue. You may also type CTLR/P, at any
time, if you wish to stop the assembly process and restart the initial
dialogue, as mentioned in the previous section.

When a .EOT assembler directive is read on the tape, the assembler
prints: i

EOF ?

and pauses. During this pause, the next tape is placed in the reader,
and RETURN is typed to continue the assembly.

If the specified assembly listing output device is the high-speed
punch and if it is out of tape, or if the device is the Line Printer
and is out of paper, the Assembler prints on the teleprinter:

EOM ?
and waits for taperbr paper to be placed in the device. Type the

RETURN key when the tape or paper has been replenished; assembly wil
continue.

Conditions causing the EOM? message for an assembly listing device
are:

HSP LPT

No power | No péwer

No tape Printer drum gate open
Tbo-hot
No péper

There is no EOM if the line printer 1is switched off-line, although
characters may be lost for this condition as well as for an EOM. If
the binary output device is the high—speed punch and if it is out of
tape, the Assembler prints:

EOM 2
*S

The assembly process is abortéd and the initial diaioéue is begun
again.

When a .END assembler directive is read on the tape, the Assembler
prints:

END ?

and pauses. During the pause the first tape is placed in the reader,
and the RETURN key is typed to begin the next pass. On the last pass,
the .END directive causes the Assembler to begin the initial dialogue
for the next assembly.

If you are starting the binary pass and the binary is to be punched on
the 1low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters
will be punched onto the binary tape, but the Absolute Loader will
ignore them.

2-23

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by
the RETURN key. The Assembler will then print:

END ?
and wait for another RETURN before starting the next pass. Example:

EOF ? E
END ?

NOTE

When a .END directive is emulated with
an E response to the EOF? message, the
error counter is incremented.

To avoid incrementing the error counter,
place a paper tape containing only the
line .END in the reader and press the
RETURN key instead of using the E
response,

2,9.5 Assembly Listing

PAL-11A produces a side-by-side assembly listing of symbolic source
statements, their octal equivalents, assigned absolute addresses, and
error codes as follows:

EELLLLLL 000000 SSS.¢44++8
000000
000000

The E's represent the error field. The L's represent the absolute
address. The O's represent the object data in octal. The S's
represent the source statement. While the Assembler accepts
72(decimal) characters per 1line on input, the listing is reduced by
the 16 characters to the left of the source statement. ‘ '

The above represents a three-word statement. The second and third
words of the statement are 1listed under the command word. No
addresses precede the second and third word since the address order is
sequential. :

The third line is omitted for a two-word statement; both second and
third lines are omitted for a one-word statement.

For a .BYTE directive, the object data field is three octal digits.
For a direct assignment statement, the value of the defining
expression is given in the object code field although it is not
actually part of the code of the object program.

Each page of the listing is headed by a page number.

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the
assembly listing have the following meanings:

Error Code Meaning

A Addressing error. An address within the instruciton is
incorrect.

B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location counter
is updated by +1.

D Doubly-defined symbol referenced. Reference was made to a
symbol which is defined more then once.

I Illegal character detected. Illeqal characters which are
also non-printing are replaced by a ? on the listing.

L Line buffer overflow. Extra characters on a line (more than
72(decimal)) are ignored.

M Multiple definition of a label. A label was encountered
which was equivalent (in the first six characters) to a
previously encountered label.

N Number containing 8 or 9 has no decimal point.

P Phase error. A label's definition or value varies from one
pass to another.

Q Questionable syntax. There are missing arguments or the
instruction scan was not completed or a carriage return was
not immediately followed by a line feed or form feed.

R Register-type error. An invalid use of or reference to a
register has been made.

s Symbol table overflow. When the quantity of user-defined
symbols exceeds the allocated space available in the user's
symbol table, the assembler outputs the current source line
with the S error code, then returns to the initial dialogue.

T Truncation error. A number generated more than 16 bits of
significance or an expression generated more than 8 bits of
significance during the use of the .BYTE directive.

U Undefined symbol. An undefined symbol was encountered during

the evaluation of an expression. Relative to the expression,

" the undefined symbol is assigned a value of zero.

2-25

WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

2.11 SOFTWARE ERROR HALTS

PAL-11A loads all ‘unused trap vectors with the code

+WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second
word of the vector. The address of the halt, ‘displayed in the console
address register, therefore indicates the cause of the halt. In
~addition to the halts which may occur in the vectors, the standard 10X
error halt at location 40 may occur (see Chapter 7).

Address of Halt Meaning
‘ 12 Reserved instruction executed
16 Tr&ce trap occurred
26 Power fail trap
32 EMT executed
40 I0X detected error

8ee Appendix B for summaries of PAL~-11A features.

CHAPTER 3
LINK-11S LINKER

3.1 INTRODUCTION

3.1.1 General Description

LINK-11S (stand alone) is a PDP-11 system program designed to link and

relocate programs previously assembled by PAL-11S. The user can. -

separately assemble the main program and each of its various'
subroutines without assigning an absolute load address at assembly
time. The binary output of assembly (called an object module) is
processed by LINK-11S to:

1. Relocate each object module and assign abeolute addresses.

2, Link the modules by correlating globel synbols defined in one
module and referenced in other modules..

3. Print -a load map which displays the assigned absolute
: addresses. :

4. Punch a load nodule which can subsequently be loaded (by the
Absolute Loader) and: executed.

Some of the adventeqes of using PAL-11S and Llux-lls ares

1. The program is divided into segments {usually subroutines)
which are assembled separately. If an error is discovered in
one segment, only that segment needs to be reassembled. The
new object module is then 1linked with the other object
modules.

2. Absolute addresses need not be assigned at assembly <time.
The Linker automatically assigns absolute addresses. This
keeps programs from overlaying:each other. This also allows
subroutines to change size without influencing the placement
of other rontines.~

3. Separate easemblies allow the tatel number of synboie to
exceed the- nunber allowed in a single aase-bly.

4. Internal- aynbols (syuhols which are not. global) need not be
unique among object modules. Thus, naming rules are required
only for global symbols when separate progranners prepare
geparate subroutines of a single progran.

S. Subroutines may be provided for general use 1n object module
form to be linked into the user's program.

LINK-11S LINKER

LINK-11S is designed to run on an 8K PDP-11 with an ASR-33. A PCll
(high speed paper tape reader and punch) and an LPll (line printer)
may bé used if available. The PCll significantly speeds up the
linking process. An LPll provides a fast device for the load map
listing.

3.1.2 Absolute and Relocatable Program Sections

A program assembled by PAL-11S may consist of an absolute program
section, declared by the .ASECT assembler directive, and a relocatable
program section, declared by the .CSECT assembler directive. (If a
program has neither an .ASECT or .CSECT directive, the assembler
implicitly assumes a .CSECT directive.) The program and data in the
absolute section are assigned absolute addresses as specified by the
location counter setting statements (.=x). The Linker assigns
absolute addresses to the program and data in the relocatable section.
Addressses are normally assigned such that the relocatable section - is
at the high end of memory. The assignment of addresses may be
influenced by command string options (see Section 3.3.2).

The Linker appropriately modifies all instructions and/or data as
necessary to account for the relocation of the control section.

LINK-115 can handle object modules containing named control
(relocatable) sections as generated by PAL-11R. However, PAL-11S can
Create only the unnamed control section (which has the special default
name of 6 blanks) and the absolute section (with the special name
- ABS.). The unnamed control section is internal to each object
module. That is, every object module may have an unnamed control
section (each with the name 6 blanks) but the Linker treats them
independently. Each is assigned an absolute address such that they
occupy mutually exclusive areas of memory. Named control sections, on
the other hand, are treated globally. That is, if different object
modules each have control sections with the same name, they are all
assigned the same absolute load address and the size of the area
reserved or loading of the section is the maximum of the sizes of each
section. Thus, named control sections allow the sharing of data
and/or programs among object modules. This is very similar to- the
handling and function of labelled COMMON in FORTRAN IV. A restriction
of LINK-11S is that the name of a control section must not be the same
as the name of a "global entry symbol, as this results in multiple
definition errors.

3.1.3 Global Symbols

Global symbols provide the 1links for communication between object
modules (or assemblies). Global symbols are created with the .GLOBL
assembler directive. Symbols which are not global -are called internal
symbols. If the global symbol 1is defined (as a label or direct
assignment) in an object module it is called an entry symbol, and
other object modules may reference it. If the global symbol is not
defined in the object module it is an external symbol. It is assumed
to be defined (as an entry symbol) in some other object module.

As the Linker reads the object modules vit records all the global
symbol definitions and references. It then modifies the instructions
and/or data that reference the global symbols.

LINK-11S LINKER

3.2 INPUT AND OUTPUT

3.2.1 Object Module

Input to LINK-118 is the object module. This is the output of PAL-11S
(or any other program which can create an object module). The Linker
reads each object module twice; that is, it is a two-pass processor.

On pass 1, the Linker reads each object module to gather enough
information to assign absolute addresses to all relocatable sections
and absolute values to all globals. This information appears in the
global symbol directory (GSD) of the object module.

On pass 2, the Linker reads all of each object module and produces the

load module (see Section 3.2.2). The data gathered on pass 1 guides
the relocation and linking process on pass 2.

3.2.2 Load Modules

The normal output of the Linker is a load module which may be loaded
and run.

A load module consists of formatted binary blocks holding absolute
load addresses and object data as specified for the Paper Tape System
Absolute Loader and the PDP-11 Disk Monitor. The first few words of
data are the communications directory (COMD) and have an absolute load
address equal to the lowest relocated address of the program. The
absolute loader 1loads the COMD at the specified address but the
program subsequently overlays it.! The disk monitor loader expects the
COMD and 1loads it where the monitor wants it.. The end of the load
module is indicated by a TRA block; that is, a block containing only
a load address. The byte count in the formatted binary block is 6 on
this block; on all other blocks the byte count is larger than 6. The
TRA (transfer address) is selected by the Linker to be the first even
transfer address seen. Thus, if four object modules are linked
together and if the first and second had a .END statement, the third
had a .END A and the fourth had a .END B, the transfer address would
be A of module three. -

'The overlaying of the COMD by the relocated program is a trick to
allow the Absolute Loader to handle 1load modules with a COMD.
However, a problem arises if a load module is to be 1loaded by the
absolute loader and either of the following conditions exists:

a. The object modules used to construct the 1load module
contained no relocatable code; or

b. The total size of the relocatable code is less than 20
(decimal) bytes (the size of the COMD).

In either case, there is not enough relocatable code to overlay the
COMD which means the COMD will load into parts of memory not intended
to be altered by the user. The COMD's load address, selected by the
Linker in the above cases, is such that it will be up against the
current top of memory (see *T option in section 3.3.1). - If the top
happens to be very 1low, the Linker does not allow the COMD to be
loaded below address 0; it loads it at 0.

LINK-11S LINKER

3.2.3 Load Map

The load map provides several types of information concerning the load
module's make-up. The map begins with an indication of the low and
high limits of the relocatable code and the transfer address. Then
there is a section of the map for each object module included in the
linking process. Each of these sections begins .with the module name
followed by 'a 1list of the control sections and the ‘entry points for
each control section. Por each. control section, the base of the
section (its 1low address) and its size (in bytes) is printed to the
right of the section name (enclosed in angle brackets). Following
each section name is a 1list of entry points and their addresses.
After all information has been printed for each object module, any
undefined symbols are listed. Note that modules are loaded such that
if modules A, B and C are linked together, A is 1lowest and C is
highest in memory.:

The format is quite self-explanatory as can be seen from the following
example:

LOAD MAP

TRANSFER ADDRESS: £37434

LOW LIMIT: 68374066 .

HIGH LIMIT: @374680

3K e e o e e e ok e sk

MODULE MODI .
SECTION ENTRY ADDRESS SIZE

<« ABS.>» 000008 o000
< > 837406 OCOBAL
X3 837452 :
X4 837440
X5 837450
X7 237430
e e e o 3 e 3 e ol)

MODULE - MOD2
SECTION ENTRY ADDRESS SIZE

< > 237452 002006
X1 837452
X2 837452

e e s ol sk o ok

etk e e o e e ok ok

UNDEFINED REFERENCES

X6

PASS 2

*

LINK-11S LINKER

3.3 OPERATING PROCEDURES

3.3.1 Loading and Command String

The Linker is lgaded by the Absolute Loader and is self-starting. It
uses a simple command dialogue which allows the object module, load
module and load map devices to be specified. During pass 1 and pass
2, the Linker asks for each object module individually.

Operation beginé,by the linker typing its name and version. This is
followed by the input option printed as *IA. The responses are:

</ : Read object module from HSR.
He/ . Read object module from HSR.
L</ ~ Read object module from LSR. -

The input option is followed by the output option *0A. The responses
are: : , .

</ Punch load module on HSP.
He' Punch load module on HSP.
Lo/ Punch load module on LSP.

LINK-11S asks if a load map is desired by typing‘ *MA, The 1legal
responses are </ for no map, T./ or H,/ or P./for a map on the
teleprinter, high-speed punch, or line printer, respectively.

The next two options concern the placement of the relocated object
program in memory. The standard version of the Linker assumes it is
linking for an 8K machine. It relocates the program such. that it 1is
as high as possible in 8K but leaves room for the Absolute and Boot
Loaders. These assumed values may be changed by altering parameters
HGHMEM (highest legal memory address +1) and ALODS2Z (number of bytes
allocated for Absolute Loader and Boot Loader) and reassembling the
Linker. The user may control where a preogram is relocated to with the
*T and *B options. After the option *TA has been typed, the user may
respond as follows:

</ Relocate so that program is up against the
current top of memory. If the top has not
been changed, then the top is the assembled-in
top (HGHMEM-ALODSZ). The standard assumption
is 16272 decimal (16384-112) or 37460 octal.

N./ N is an octal number (unsigned) which defines
a new top address.

If a new top is specified, the *B option is suppressed.
After the optiqn *BA has been bzintéé the usé: méy respond as follows:
;J ' Use currént tbp of memory. | |
N</ N is an unsigned octal number which defines
. . the bottom address of the program. That is, a

new top of memory is calculated so that the
bottom of the program corresponds with N. :

Once a top of memory has been calculated (by *T or *B), that value is
used until it is changed.

LINK-11S LINKER

LINK-11S indicates the start of pass one by typing PASS 1. The input
is requested by the Linker, one tape at a time, by typing *A. The
legal responses are: :

</ Read a tape and request more input.

Us/ List all undefined globals on the teleprinter
and request more input.

EL/ - End of input. 1If there are undefined globals,
list them on the teleprinter and request more
input. Otherwise print the 1load map, if
requested, and enter pass 2.

Ce’ End of input. Assign 0 to any undefined
globals, print the 1load map (if requested),
and enter pass 2.

The Linker indicates the start of pass 2 by typing PASS 2. It then
requests each input tape as in pass 1. : '

A carriage return is the only useful response to * on pass 2. The
modules must be read on pass 2 in the same order as pass 1. When the
last module has been read the Linker automatically finishes the load
module and restarts itself.

Leader and trailer are punched on the load module.

If the LSP is being used for the load module output, it should be
turned on before pass 2 begins. Thus, turn it on before typing E_/or
Ce{ The echo of these characters (and the 1load map, if printed on the
TTY) is punched “on the load module but may be easily removed since
leader is punched on the load module. 1In any case, ASCII information
in a load module 'is ignored by the Absolute and Disk Monitor loaders.
However, the LSP can be turned on while leader is being punched (after
the 1linker has typed PASS 2) to keep the load map, etc., from being
punched onto the tape.

Note:

On all command string options, except for *T and *B, the linker

examines only the last character typed preceding the carriage return.

Thus, :
ABCDEFGH../

is equivalent to Hud

3.3.1.1 Operational Cautions - The Linker does not give a warning if
a program 1is linked s6 low in memory that it goes below address 0.
However, this case is easily seen by examining the low and high limits
which are always printed (on the load map or on the teleprinter).

The Linker reads object modules until an end of medium is detected.
Object modules from the DEC Program Library contain a special checksum
at the end of the tape which must be removed before they are 1linked.
Failure to remove this checksum can result in fatal Linker errors.

LINK~11S LINKER

3.3.2 Error Procedure and Messages

3.3.2.1 Restarting - CTRL/P (sxmbolized as “P) is wused for two
purposes by LINK-11. If a P is typed while a load map is being
printed, the load map is aborted and the Linker continues. A “P typed
at any other time causes the Linker to restart itself.

3.3.2.2 Non-Fatal Errors -

1. Non-unique object module name - this error is detected during
pass 1; an error message is issued and the module is
rejected. The message is:

PMODULE NAME sooanae NOT UNIQUE
The Linker then asks for more input.

2. Load map device EOM - this error allows the user to fix the
device and continue or abort the map listing. The Linker
prints:

?MAP DEVICE EOM.
TYPE <CR> TO CONTINUE

Any response, terminated by </ or + causes the Linker to
continue. A + P causes the map to be aborted.

3. A byte relocation error - the Linker tries to relocate and
link byte quantities. However, relocation usually -fails and
linking may fail. Failure is defined as the high byte of the
relocated value (or the linked value) not being all zero. In
such a case, the value is truncated to 8 bits and the
following message is printed:

?BYTE RELOC ERROR AT ABS ADDRESS HHRRKK »
The Linker automatically continues.

4. If the object modules are not read in the same order on pass
2 as pass 1, the Linker indicates which module should be
loaded next by typing:

?LOAD xxxxxx NEXT!
The linker then asks for more input.

5. Multiply-Defined Globals - this results in the following
error message during pass 1l:

Taxxkk MULTIPLY DEFINED BY MODULE »3:XxxXe

The second definition is ignored and the Linker continues.

3.3.2.3 Patal Errors - BEach of the following errors causes the
indicated error message to be printed and the Linker to be restarted.

1. Symbol Table overflow - the message is:
?G5YMBOL TABLE OVERFLOW ~ MODULE xxxxxxs SYMBOL XXXXXX

3-7

LINK-11S LINKER

2. System Errors - this class of errors printss
PESYSTEM ERROR x

where xx is an identifying number as follows:

Number Meaning

01 Unrecognized symbol table entry was found.

02 A relocation directory references a global
name which cannot be found in the symbol
table.

03 A relocation ‘directory contains a location
counter modification command which is not
last.

04 Object module does not start with a GSD.

05 The first entry in the GSD is not the module

~ ‘name. : g : :

06 An RLD references a section name which cannot
be found. '

07 The TRA specification references a
non-existent module name.

08 The TRA specification references a
non-existent section name.

09 An internal jump table index is out of range.

10 A ‘'checksum error occurred on the object
module.

11 An object module binary block is too big

(more than 64 decimal words of data).

12 A device error occurred on the load module
output device.

All system errors except for numbers 10 and 12 indicate a program
failure either in the Linker or the program which generated the object
module. Error 05 can occur if a tape is read which is not an object
module. ' '

3.3.2.4 Error HALTs - LINK-11S loads all of its unused trap vectors
with the code: . :

+«WORD .+2, HALT
so that if the trap occurs, the processor halts. in the second word of

the vector. The address of the halt, displayed in the console lights,
therefore indicates the cause of the halt.

LINK-11S LINKER

Address of HALT (octal) Meaning
12 Reserved instruction executed.
16 Trace trap occurred.
26 Power fail trap.
32 EMT executed.

A halt at address 40 indicates an IOXLPT detected error. RO
(displayed in the console lights) contains an identifying code:

Code in RO Meaning

0 Illegal memory reference, SP overflow or
illegal instruction.

Illegal IOX command.

Slot number out of range.

Device number illegal.

Referenced slot not INIT ed.

Illegal data mode.

U e G DO b

IOXLPT also sets Rl as follows:

If the error code is 0, Rl contains the PC at the time of the error.
If the error code is 1-5, Rl points to some element in the IOT
argument 1list or to the instruction following the argument list,

depending on whether IOXLPT has finished decoding all the arguments
when it detects the error.

3-9

CHAPTER 4

EDITING THE SOURCE PROGRAM

The PDP-11 Text Editor program (ED-11) enables you to display your
source program (or any text) on the teleprinter, make corrections or
additions to it, and punch all or any portion of the program on paper
tape. This is accomplished by typing simple one-character commands on
the keyboard.
The Editor commands can be grouped according to function:

1. input/output;

2. searching for strings of characters;

3. positioning the current character location pointer;

4. inserting, deléting, and exchanging text portions.

All input/output functions are handled by 10X, the PDP-11 Input/Output
Executive ' (see Chapter 7).

4.1 COMMAND MODE AND TEXT MODE

Whenever ED-1l1 prints an * on the teleprinter, you may type a command
to it. (Only one command per line is acceptable.) The Editor is then
said to be in Command Mode. While most commands operate exclusively
in this mode, there are five ED-11 commands that require additional
information in order for the commands to be carried out. The Editor
goes into Text Mode to receive this text.

Should a nonexistent command be typed or a command appear in incorrect
format, ED-11 prints a ?. This is followed by an * at the beginning
of a new line indicating that the Editor is in Command Mode.

Editor processing begins in Command Mode. When you type a command, no
action occurs until you follow it by typing the RETURN key (symbolized
as o/). If the command is not a text-type command, typing the RETURN
key initiates the execution of the command and ED-1ll remains in
Command Mode. However, if the command is a text-type command (Insert,
eXchange, Change, Get, or wHole), typing the RETURN key causes the
Editor to to into Text Mode. At this time you should type the text to
be operated ‘on by the command. This can include the non-printing
characters discussed below, as well as spaces and tabs (up to eight
spaces generated by the CTRL/TAB keys).

Note that typing the RETURN key always causes the physical return of
the Teletype print element to the beginning of the 1line, and
automatically generates a line feed, thereby advancing the carriage to
a new line. In Text Mode, the RETURN key not only serves these

4-1

EDITING THE SOURCE PROGRAM

mechanical functions, allowing you to continue typing at the beginning
of a new line, but at the same time it enters a carriage return and
line- feed character into the text. (A carriage return not followed by
a line feed cannot, therefore, be entered from the keyboard.)

RETURN and LINE FEED are both counted as characters and can be edited
along with the printing characters (as can the form feed, discussed in
Section 4.2.5). When you wish to terminate Text Mode .and reenter
Command Mode, you must type the LINE FEED key symbolized as +). A
typed LINE FEED is not considered to be part of the text unless it is
the first character entered in Text Mode.

4.2 COMMAND DELIMITERS

4.2.1 Arguments

Some ED-11 commands require an argument to specify the particular
portion of text to be affected by the command or how many times to
perform the command. In other commands this specification is implicit
and arguments are not allowed.

The ED-11 command arguments are described as follows:

1. n stands for any number from 1 through 32767 (decimal) and
may, except where noted, be preceded by a + or ~.

If no sign precedes n, n is assumed to be a positive number.

Where an argument is acceptable, its absence implies an
argument of 1 (or -1 if a - is present).

The role of n varies according to the command with which it
is associated.

2. 0 refers to the beginning of the current line.

3. @ refers to a marked (designated) character 1location (see
Section 4.2.3).

4. / refers to the end of text in the Page Buffer.

The roles of all arguments are explained further with the
corresponding commands which qualify them.

4.2.2 The Character Location Pointer (Dot)

Almost all ED-11 commands function with respect to a movable reference
point, Dot. This character pointer is normally located between the
most recent character operated upon and the next character and, at any
given time, can be thought of as "where the Editor is" in your text.
There are commands which move Dot anywhere in the text, thereby
redefining the "current location” and allowing greater facility in the
use of the other commands.

EDITING THE SOURCE PROGRAM

4.2.3 Mark

In addition to Dot, a secondary character pointer known as Mark also
exists in ED-1l. This less agile pointer is used with great effect to
mark or "remember"™ a location by moving to Dot and conditionally
remaining there while Dot moves on to some other place in the text.
Thus, it is possible to think of Dot as "here"™ and Mark as “"there".
Pogsitioning of .Mark, which is referenced by means of the argument @,
is discussed below in several commands. o

4.2.4 Line-Oriented Command Properties

ED~11 recognizes a line as a unit by detecting a 1line terminator in
the text. This means that ends of lines (line feed or form feed
characters) aré counted in line-oriented commands. This is important
to know, particularly if Dot, which is a character location pointer,
is not pointing at the first character of a line.

In such a case, an argument n does not affect the same number of lines
(forward) as its negative (backward). For example, the argument -1
applies to the character string beginning with the first character
following the second previous end-of-line character and ending at Dot;
argument +1 applies to the character string beginning at Dot and
ending at the first end-of-line character. If Dot is located, say, in
the center of a line, notice that this affects 1-1/2 lines back or 1/2
line forward, respectively: ‘

Example of List Commands -1lL and +1L:

Text Command , Printout
CMPB. ICHAR,#033 *-1L BEQ $ALT
BEQ SALT “ CMPB 1

CMPB JCHAR, #175 *+1L :
BNE ég:cz' CHAR ;'B\Dot remains
t is here ‘ here

4.2.5 The Page Buffer

The Page Buffer holds the text being edited. The unit of source data
that is read into the Page Buffer from a paper tape, is the page.
Normally a page is terminated, and therefore defined, by a form feed
(CTRL/FORM) in the source text wherever a page is desired. (A form
feed is an acceptable Text Mode character.) Overflow, no-tape, or
reader-off conditions can also end a page of input (as described in
Section 4.3.1.2). Since more than one page of text can be in the
buffer at the same time, it should be noted that the entire contents
of the Page Buffer are available for editing. -

4-3

EDITING THE SOURCE PROGRAM
4.3 COMMANDS

4.3.1 'Input and Output Commands

Three commands are available for reading in a page of text. The Read
command (Section- 4.3.1.2) 1is a specialized input command; the Next
command (Section 4.3.1.4) reads in a page after punching out the
previous page; and the wHole command (Section 4.3.3.2) reads in and
punches out pages of text as part of a search for a specified
character string.

Output commands either list text or punch it on paper tape. The List
command causes specified lines of text to be printed at the terminal
so that they may be examined. Paper tape commands (Next and wHole
also perform input) provide for the output of specified pages, lines,
form feeds (for changing the amount of data that constitutes a given
page), and blank tape. Note that the process of outputting text does
not cause Dot to move.

4.3.1.1 Open - The Open command (O) should be typed whenever a new
tape is put in the reader. This is used when the text file being
edited is on more than one paper tape.

Note also that if the reader is off at the time an input command is
given, turning the reader on must be followed by the Open command.

4.3.1.2 Read - One way of getting a page of text into the Page Buffer
so that it can be edited is the Read (R) command. The R command
causes a page of text to be read from either the low-speed reader or
high-speed reader (as specified in the starting dialogue, Section
4.4.2), and appended to the contents (if any) of the Page Buffer.

Text is read in until either:
1. A form feed character is encountered;

2. The page buffer is 128 characters from being filled, or .a
line feed 1is encountered after the buffer has become 500
characters from being filled;

3. The reader is turned off, or runs out of paper tape (see Open
command, Section 4.3.1.1).

Following execution of an R command, Dot and Mark are located at the
beginning of the Page Buffer.

A 4K system can accommodate about 4000 characters of text. Each
additional 4K of memory provides space for about 8000 characters.

NOTE

An attempt to overflow the storage area
causes the command (in this case, R) to
stop executing. A ? is then printed,
followed by an * on the next 1line
indicating that a command may be typed.
No data is lost.

EDITING THE S8OURCE PROGRAM

4.3.1.3 List and Punch - Output commands List (L) and Punch (P) can
be described together, as they differ only in that the device
addressed by the former is the terminal, and the device addressed by
the latter 1is the paper tape punch. Dot is not moved by these
commands.

nL Lists } the character string beginning at Dot and

nP Punches ending with the nth end-of-line

-nL Lists } the character string beginning with the

-nP Punches first character following the (n+l)th pre-
vious end-of-line and terminating at Dot

oL Lists } the character string beginning with the

op Punches first character of the current line and
ending at Dot

eL Lists } the character string between Dot and the

ep Punches Marked location

/L Lists } the character string beginning at Dot and

/P Punches ending with the last character in the Page
Buffer

In addition to the above List commands, there are three special List
commands that accept no arguments. The current line is defined as the
line containing Dot, i.e., from the line feed (or form feed) preceding
Dot to the line feed (or form feed) following Dot.

v Lists the entire line containing Dot
<) Same as -1L. If Dot is located at the

beginning of a line, this simply lists
the line preceding the current line

> Lists the line following the current line
Examples:
TEXT COMMANDS - PRINTOUT

CMPB ICHAR,#033 \'2 CMPB _ICHAR,$#175

BEQ SALT < BEQ SALT~

CMPB CHAR, $#175 CMPB 1

BNE LACE > BNE PLAC
Dot is here! ~ Dot remains here.

4.3.1.4 Next - Typing nN punches out the entire contents of the Page
Buffer (followed by a trailer of blank tape if a form feed is the last
character in the buffer), deletes the contents of the buffer, and
reads the Next ~page into the buffer. It performs this sequence n
times. If there are fewer than the n pages specified, the command is
executed for the number of pages actually available, and a ? is
printed out. Pollowing execution of a Next, Dot and Mark are 1located
at the beginning of the Page Buffer.

EDITING THE SOURCE PROGRAM

4.3.1.5 Form Feed. ang Trailer -

F‘ Y‘Punches out a Form feed character and fout inches of blank
tape : . :

nT Punches out four inches of Trailer (blank) tape n times

4.3.1.6 Procedure with Low-Speed Punch - If the low speed punch is
the specified output device (see Section 4.4.2), the Editor pauses
before executing any tape command just typed (Punch, Form feed,
Trailer, Next, wHole). The punch must be turned on at this time,
after which typing the SPACE bar initiates the execution of the
command. Following completion of the operation, the Editor pauses
again to let you turn the punch off. When the punch has been turned
off, typing the SPACE bar returns ED-11 to Command Mode.

4.3.2 Commands to Move Dot and Mark

4.3.2.1 Beglnning and End -

B S Moves Dot to the Beg1nn1ng of the Page Buffer

E Moves Dot to the End of the Page Buffer (see also /J
and /A below)

4.3.2.2 Jump and Advance -

nJ Jumps Dot forward past n characters
-ndJ Moves Dot backward past n characters
naA Advances Dot forward past n ends-of-lines to the

beginning of the succeeding line

-nA Movés Dot . ‘backwards across n ends-of-lines and
positions Dot immediately after n+l ends-of-lines,
i.e., at the beginning of the -n line.

0J or OA Moves Dot to the beginning of the current line
@J or @A Moves Dot to the Marked location

/J or /A Moves Dot to the end of the Page Buffer - (see also E
above)

Notice that while n moves Dot n characters in the Jump command, its
role becomes that of a line counter in the Advance command. However,
because 0, @, and / are absolute, their use with thesé commands
overrides. 11ne/character distinctions. That is, Jump and Advance
perform identical functions if both have either 0, @ or / for an
argument.

EDITING THE SOURCE PROGRAM

4.3.2.3 Mark - :The M command marks ("remembers") the current position
of Dot for later reference in a command -using the argument @. Note
that only one position at a time can be in a marked state. Mark is
also affected by the execution of those commands which alter the
contents of the Page Buffer:

c p ® I K N R X
4.3.3 Search Commands

4.3.3.1 Get - The basic search command nG starts at Dot and Gets the
nth occurrence of the specified ‘text in the Page Buffer. If no
argument is present, it is assumed to be 1. When you type the
command, followed by the RETURN key, ED-1l1 goes into Text Mode. The
character string to be searched for must now be typed. (ED-11 will
accept & search object of up to 42 characters.) Typing the LINE FEED
key terminates Text Mode and initiates the search. :

This command sets Dot to the position immediately following the found
character string, and a OL listing 1is performed by ED-1}, If a
carriage return, line feed, or form feed is specified as part of the
search object, the automatic OL displays only a portion of text -- the
part-defined as the last line. Where .any of these characters is the
last character of the search object, the OL of course yields no
printout at all. :

If the search is unsuccessful, Dot is at the end of the Page Buffer
and a ? 1is printed out. The Editor then returns to Command Mode.

Examples:
1. Text " Command Printout
MOV @RMAX, @RS 2G</ BEQ CK
ADD . %6, (R5) + : CK
CLR $CK3
TST R2
BEQ CKCR
Dot was here. Dot is now here\
2. CMPB ICHAR, $RUBOUT G</ BR
BEQ “SITE TEL/
eg PUT BRV
Do Dot

4.3.3.2 wHole - A second search command, H, starts at Dot and looks
through - the wHole text file for the next occurrence of the character
string you have specified in Text Mode. It combines a Get and a Next
such that if the search is not successful in the Page Buffer, the
contents of the buffer are punched on tape, the buffer contents are
deleted, and a new page is read in, where the search is continued.
This continues until the search object is found or until the complete
source text has been searched. In either case, Mark is at the
beginning of the Page Buffer.

4~7

EDITING THE SOURCE PROGRAM

If the search object is found, Dot is located immediately following
it, and a OL is performed by ED-11. As in the Get command, if the
search is not successful Dot is at the end of the buffer and a ?
.appears on the teleprinter. Upon completion of the command, the
Editor will be in Command Mode. No argument is allowed. Note that an
H command specifying a nonexistent search object can be used to close
out an edit, i.e., copy all remaining text from the input tape to the
output tape.

4.3.4 Commands to Modify the Text

4.3.4.1 Insert - The Insert command (I) allows text to be inserted at
Dot. After I is typed (followed by the typing of the RETURN key), the
Editor goes into Text Mode to receive text to be inserted. Up to 80
characters per 1line are acceptable. Execution of the command occurs
when the LINE PEED key (which does not Insert a 1line feed character
unless it is the first key typed in Text Mode) is typed terminating
Text Mode. At this point, Dot is located in the position immediately
following the 1last inserted text character. If the Marked location
was anywhere after the text to be Inserted, Dot becomes the new Marked
location.

During an insert, it sometimes happens that the user accidentally
types CTRL/P rather than SHIFT/P (for @), thus deleting the entire
insert (see Section 4.4.1). To minimize the effect of such a mistake,
the insert may be terminated every few lines and then continued with a
new Insert command.

As with the Read command, an attempt to overflow the Page Buffer
causes a ? to be printed out followed by an * on the next line
indicating that a command may be typed. All or part of the last 1line
typed may be 1lost. All previously typed 1lines are inserted.
Examples:

Text Command Effect

1. MOV #8.,EKO{) MOV #8.,EKOCNT
CN
Dot Dot ‘

2. 1Inserting a carriage return (and automatic line feed):

CLR RICLR R2 ' I/ CLR R1
-/ CLR R2
Do ¥

3. 1Inserting a single line feed:

1./
LOOK WHAT HAPPENS HERE + LOOK WHAT
+ : HAPPENS HERE

Dot \

Dot

EDITING THE SOURCE PROGRAM

4.3.4.2 Delete and Kill - These commands are closely related to each
other; they both erase specified text from the Page Buffer. The
Delete command (D) differs from the Kill command (K) only in that the
former accepts an argument, n, that counts characters to be removed,
while the latter accepts an argument, n, that counts 1lines to be
removed. 0, @, and / are also allowed as arguments. After execution
of these commands, Dot becomes the Marked location.

nD Deletes the following n characters
-nD Deletes the previous n characters
nkK Kills the character string beginning at Dot and ending

at the nth end-of-line

-nkK Kills the character string beginning with the first
character following the (n+l)th previous end-of-line
and ending at Dot

0D or 0K Removes the current line up to Dot
@D or @K Removes the character string bounded by Dot and Mark

/D or /K Removes the character string beginning at Dot and
ending with the last character in the Page Buffer

Text Command Effect
1. ;CHECK THE M:j}DE -2D ;CHECK THE MODE

Do Dot

2. ;IS IT A TAB OR 2K ;IS ITA T
;IS IT A CR\
: Dot pot

4.3.4.3 Change and exchange - The Change (C) and eXchange (X)
commands can be thought of as two-phase commands combining,
respectively, an Insert followed by a Delete, and an Insert followed
by a Kill. After the Change or eXchange command is typed, ED-11 goes
into Text Mode to receive the text to be inserted. If n is used as
the argument, it is then interpreted as in the Delete
(character-oriented) or Kill (line-oriented), and accordingly removes
the indicated text. 0, €, and / are also allowed as arguments.

nC Changes the following

XXXX n characters

XXXX

-nC Changes the previous

XXX n characters

nX eXchanges the character

XXXX string beginning at Dot and

XXXX ending at the nth end-of-line

-nX eXchanges the character

xxx string beginning with the first character

following the (n+l)th previous end-of-line and
ending at Dot

4-9

EDITING THE SQURCE PROGRAM'

0C or 6X Replaces the current line up to Dot
XXXX XXXX :
XXXX XXXX

eC or @ex Replaces the character string bounded by Dot
xXx XXX and the Marked location » »
XXX XXX , o ‘

/C or /X Replaces the character string beginning at Dot
XXX XXX and ending with the last character in the Page
Buffer.

Again, the use of absolute arguments 0, and @, and / overrides the
line/character distinctions that n and -n produce in these commands.

If the Insert portion of a Change or eXchange is terminated because of
attempting to overflow the Page Buffer, data from the latest line may
have been lost, and text removal does not occur. Such buffer overflow
might be avoided by separately executing a Delete or Kill followed by
an Insert, rather than a Change or eXchange, which does an 1Insert
followed by a Delete or Kill. Examples:

Text Command Effect

< ;A LINE FEED . 1S HERE -9Co/ ; A TAB. IS HERE
TAB+Y
;s THIS 2X,/ ; THIS
;IS ON Dot PAPER ;IS ON
: FOUR : PAPE
:LINES ‘ -
Dot Dot

4.4 OPERATING PROCEDURES

4.4.1 Error Corrections

Durihg the course of editing a page of the program, it may become
necessary to correct mistakes in the commands themselves. There are
four special commands which do this: : :

1. Typing the RUBOUT key removes the preceding typed character,
if it is on the current line. Successive RUBOUTs remove
preceding characters on the line (including the SPACE), one
character for each RUBOUT typed. . :

2. The CTRL/U combination (holding down the CTRL key and typing
U) removes all the characters in the current line.

3. CTRL/P cancels the current command in its entirety. This
includes all the current command text just typed, if ED-11
was in Text Mode. .Do not use another CTRL/P before typing a
line terminator as this will cause an:ED-11 restart (see 4.
below). 1If CTRL/P is typed while a found search object of a
Get or wHole is being printed out, the normal position of Dot
(just after the specified search object) is not affected.

CTRL/P should not be useé while a>‘punch operation is in

progress as it is not possible to know exactly how much data
will be output.

4~-10

EDITING THE SOURCE PROGRAM

4. Two CTRL/P's not interrupted by a typed 1line terminator
restart ED-11, initiating the dialogue described in Section
4.4.2.

After removing the incorrect command data, the user can directly type
in the desired input.

4.4.2 Starting

The Editor is loaded by the Absolute Loader (see Chapter 6, Section
6.2.2) and starts gutomatically. Once the Editor has been loaded, the
following sequence occurs:

ED-11 Prints User Types

*I L </ (if the low-spéed Reader is to be used
for source input)

H,/ (1f the high-speed Reader is to be used
for source input)

*Q L </ (if the low-speed Punch is to be used
for edited output)

H/ (if the high-speed Punch is to be wused
for edited output) :

If all text is to be entered from the keyboard (i.e., via the Insert
command), either L or H may be specified for Input.

If the output device is the hiQh-Spéed punch (HSP), the Editor enters
Command Mode to accept input. Otherwise, the sequence continues with:

LSP OFF L’/ (whenh low-speed Punch (LSP) is off)

Upon input of ./ from the keyboard, the Editor enters Command Mode and
is ready to accept input.

4.4.3 Restarting

To restart ED-11, type CTRL/P twice. This initiates the normal
starting dialogue described in Section 4.4.2. If the Low-speed Reader
(LSR) is in operation it must first be turned off. The text to be
edited should be loaded (or reloaded) at this time.

4.4.4 Creating a Paper Tape

Input commands assume that text is to be read from a paper tape by the
low-speed reader or high-speed reader. However, the five commands
that go into Text Mode enable the user to input from the keyboard.
The Insert command, in particular (Section 4.3.4.1) can be useful for
entering large guantities of text not on paper tape. The Page Buffer
can thus be -filled from - the ‘keyboard, -and a paper tape actually
created by using a command- to punch out the buffer contents.

EDITING THE SOURCE PROGRAM

4.4.5 Editing Example

The following example consists of three parts:

1. The marked up source program listing indicating the desired
changes.
2. The ED-11 commands to implement those changes (with
on the editing procedure).
NOTE
Typing the RETURN key terminates Command Mode in all
cases. In commands which then go into Text Mode,
typing the LINE FEED key (symbolized as ¢) produces
the terminator.
3. The edited text.
Part I Original Source for Edit
sCOMMON INPUT ROUTINE FOR USE BY NON FILE DEVICES
$INFUT: ADC ICHAR» (RS) + FUFPDATE CKSUM
CLR -({L8) sCLEAR DONE
Moy (R3)+sRMAX iGET ADR MAX
MOV (R5)+y»MODADR sGET AR MODE
#RS NOW POINTS TO POINTER
$CKMODEtRITER @MODADBY #ASCII $I8 THIS ASCII
BENE CKBIN iNO*—TTRY BINARY
$CRNUL.: TSTR ICHAR FASCII-—-IS CHAR A NULL
REQ CK s YES-—-NO GO
fLOOK AT MODE TO SEE IF
$CKFAR? BITR @MODADR » #PARBRIT $SUFFPOSED TO CHECK PARITY?
ENE FAROK , FNO
MOVR ICHAR» OCHAR $YES--—-CK IT
JSR R7 » FARGEN
SUB ICHAR s OCHAR $
BREQ FARDK FOK?
RIS #FARERR y 2MODADR $NO--~-SET ERR BIT
PAROK: CLR OCHAR
RIC $177200y ICHAR $STRIP PARITY
CMFE @10(RADD) »#KBD IS THIS KBD INPUT
BNE OKO #ND
TSTR ERKOCNT }YES—-—~~NONE EKO OF LAST?
BEQ $0K #YES
CLR ICHAR §NO-~--DROP NEW CHAR
$JP2CK: JMP CKA ‘I
SWHAT IS THE CHAR D"
$0K ¢ CMPB ICHAR s #CTRLC 318 IT A ~C
ENE Sl *NO Okf
MOV FUPCy OCHAR: $YES--ECHO ~C
INC RDUN
MoV #ABRTAD»20(R6) SDILDLE RETURN ADR
ER FLUS1

comments

EDITING THE SOURCE PROGRAM

RESTAD.QO(R6)
ICHAR
RDUN

#UFPFP» OCHAR

; . o
) :THIS IS NOT KBD INPUT , ;M‘
R K g e,
CMPB ICHAR» #RUBOUT $1IS5 THIS A RUBOUT
BEQ CK $ YES—--—IGNORE IT
BEH FUT FNQ~—-

$NO

e e LR i B — —_
BEQ cK 3 YES--—FORGET IT
$BSLASH» OCHAR

(RS)+

CKUPU:Z

$ECHO A N\
$ POINTER=POINTER~1 f

~u?
ES-~-ECHO ~
s FOINTER=BUFADR+6

#67(RS)+
@RS $ BC=0
EKO $ECHO
CKTAR: CMPB ICHAR» #HTAB $IS IT A TAB
BNE CKCR $NO
MOV #BLNKS» OCHAR $ YES-——ECHO BLANKS
MOV TABCNTyEKOCNT $SET UP COUNTER
BB PUT 3
CKCR: CMPB ICHAR» #CR $IS IT A CR?
- BNE $CK3 $NO
MOV #CRLF » OCHAR $YES--—-ECHO CRLF
INC RDUN
BB PLUS1 3
ALT
scxj? CMPB ICHAR »#033 "
REQ $ALT » 25 Chan
CMPB ICHAR» #175 ?
'
BEQ $ALT ATMe0g
CMPR ICHAR, #1764
BRNE CKir— X

BTt Ot DOV AR ——e g

Y v #1755 ICHAR
%%~ aer;

4-13

CKLF¢ CMFB
BNE
INC

RR

MOV
CMPR
EBNE
MOV
MOV
EB

CKFF?

‘Part II:

Assume that ED-11 has been started, is in Command Mode, and

EDITING THE SOURCE PROGRAM

ICHAR» #LF

CK
RI

FF
UN

PUT

ICHAR » DCHAR
ICHAR s #FF

FUT
#8. yEKOCNT
$LFLF OCHAR

is in the reader.

PUT

Editing Session

the tape

Underlined matter indicates ED-11 output.

OK0 replaces last 5 characters (CKUPP)
;Dot is moved 6 lines ahead (including

;9 lines are killed starting with CRUPP:

;Next line is listed - Dot is not moved

;Dot is moved 1 line ahead to point to

;Following comments replace the next 4

*R ;Reads in a page of text
*H -Searches entire program for 2CK: -
2CK:+ ;when found ED-11 performs a OL
$JP2CK:
*G :1Searches current page for next CK -
CK ;when found ED-11 performs a OL
$JP2CK JMP CK
*1 ;Inserts DUN following CK
DUN+
*G ;Searches for next CKUPP -
CKUPP+ ;when found ED-11 performs a OL
BNE CKUPP .
*-5C
OKO
*6A
;a blank line)
*9K
*L
; THIS IS NOT KBD INPUT
*I ;Blank line is inserted
</
+
*A
;character 0 of OKO:
*4x
;lines o
; FORMATTED AND UNFORMATTED
sASCII ARE'HANDLED’THE SAHE#
*G ;Searches’ for: next CKINP:Jf’
CKINP:+¢ OL printout occurs when- found
CKINP:

4-14

EDITING THE SOURCE PROGRAM

*0J :Dot is moved to the beginning of the
scurrent line.

*/K :The rest of the page is killed (3 lines)

*N ;Current paée is'punchéd out on paper tape -
;a new page is read in

*L :The next line is listed - Dot is not moved

TST 2(RS) ;BC=0?

*15K ;15 lines are killed starting with TST

*2L $1 blank line and 1 line of text
;are listed -~ Dot is not moved

CKTAB: CMPB ICHAR,$HTAB ;IS IT A TAB

*2G ;Searches. for 2nd occurrence of $CK3 -

CK3+ sOL printout verifies it is found

CK3

*-C ;ALT replaces preceding character

ALT+

*y ;Lists entire current line to verify

$CKALT: CMPB ICHAR,#033 ;the above-C result

*G ;Searches for the 033 to position Dot

033+ ;for next command -- OL occurs

SCKALT: CMPB ICHAR,#033 ~

*I ;The following text is inserted in the
scomment field

IS CHAR AN ALTMODE?
*G ;Searches for next CKLF -~ OL occurs
CKLF+
BNE CKLF

*-2C ;EX replaces the preceding two characters

EX s (LF)

*2J3 ;Jumps Dot past the carriage return and
s:line feed characters

*K :Kills next line (starting with $ALT:)

*I s;Inserts $ALT: at beginning of the fol-

SALT:+ ;lowing line

*A ;Advances Dot past 1 line feed to the
sbeginning of the next line

*M tMarks the position of Dot

*B

sMoves Dot to the begxnning of the cur-
;rent page _

4-15

EDITING THE SOURCE PROGRAM

*arp ;Punches out the lines from Dot to the
;position just marked - Dot not moved

*@a ;Moves Dot from the beginning of the
;page to the marked position

*2K :Kills the next 2 lines

PART 111 Edited Source

s COMMON INPUT ROUTINE FOR USE BY NON FILE DEVICES

$INFUT? ADD ICHAR»y (R3)+ sUPDATE CKSUM
CLR ~{L8) i CLEAR DONE
MOV (R3)+sRMAX sGET ADR MAX
MOV (RS)+»MODADR iGET ADR MODE

yRS NOW POINTS TO POINTER

$CRMODE (RITR @MODADR, #ASCII IS THIS ASCII

BNE CKBIN §NO---TRY BRINARY
$CKNULS TSTR ICHAR FASCII-~~1I8 CHAR A NULL
BEQ cK $YES—-~NO GO

$LOOK AT MODE TO SEE IF
$CKPAR? BITE @MODADR s #PARBRIT $SUPPOSED TO CHECK FARITY?

EBNE FAROK FNO

MOVE ICHAR » OCHAR FYES—-—-CK IT

JER R7 yPARGEN

SuUp ICHAR OCHAR i

BEQ FAROK FOK?

RIS #FARERR » @MODADR $NO---SET ERR BIT
FAROK: CLR OCHAR

BIC #177200, ICHAR iSTRIP FARITY

CHMFR C1LO(RADD) »#KBD #IS THIS KEBD INFUT

BNE 0OKO $NO

TSTR EROCNT s YES~—-~DONE EKO OF LAST?

BEQ $0OK $YES

CLR ICHAR #NO-~--DROF NEW CHAR
$JF2CKT JUMF CRIDUN

sWHAT IS THE CHAR
$0K 3 CMPR ICHARy #CTRLC IS IT A C

BNE oKo #NO

MOV FUFPCy»OCHAR $YES~—-ECHO ~C

INC RIUN

MOV #ABRRTADy 20(R4&) HDIDDLE RETURN ADR

RE PLUS1

sTHIS IS NOT KERD INPUT
FFORMATTED AND UNFORMATTED

FASCII ARE HANDLED THE SAME

CMFPE ICHAR » #RUROUT IS THIS A RUROUT
BEQ CK $ YEG~——-IGNORE IT
RE PUT § NQ-—-

CKTAR: CMFB ICHARy #HTAR IS IT A TAR
BNE CKCR iNO
MOV #BLNKS » OCHAR }YES—~~ECHO BLANKS
MOV TARCNT s EKOCNT §SET UP COUNTER
RE PUT H

EDITING THE SOURCE PROGRAM

CKCR: CMFB ICHAR» #CR 518 IT A CR?
BNE $CK3 $NO
MOV #CRLF y OCHAR $ YEG—-—ECHO CRLF
INC RDUN
BR PLUS1 3
$CKALT: CMPB ICHAR s $#033 $IS CHAR AN ALTMODE?
BEQ $ALT
CMPR ICHAR s #175
BEQ $ALT
CMPR ICHAR»#176
BNE CKEX
$ALT: MOV #1755 ICHAR
CKLF$ CMPB ICHAR s #LF
ENE CKFF
INC RDUN
BB CPUT
CKFF$ MOV ICHAR» OCHAR
CMBP ICHAR» #FF
BNE PUT
MOV #8EKOCNT
MOV $LFLF y OCHAR
BB PUT

4.5 SOFTWARE ERROR HALTS

ED-11 loads all unused trap vectors with the code
-WORD ++2,HALT

so that if the trap does occur, the processor halts in the second word
of the vector. The address of the halt, displayed in the console
address register, therefore indicates the cause of the halt. In
addition to the halts which may occur in the vectors, the standard IOX
error halt at location 40 may occur (see Chapter 7).

Address of HALT Meaning
12 Reserved instruction executed
16 Trace trap occurred
26 Power fail trap
32 EMT executed
36 TRAP executed
40 IOX detected error

CHAPTER 5

DEBUGGING OBJECT PROGRAMS ON-LINE

5.1 INTRODUCTION

ODT-11 (On~line Debugging Technique for the PDP-11l) is a system
program which aids in debugging assembled object programs. From the
Teletype keyboard you interact with ODT and the object program to:

. print the contents of any location for examination or
alteration

. run all or part of an object program using the breakpoint
feature :

. search the object program for specific bit patterns

. search the object program for words which reference a
specific word

. calculate offsets for relative addresses

During a debugging session you should have at the terminal the
assembly 1listing of the program to be debugged. Minor corrections to
the program may be made on-line during the debugging session. The
program may then be run under control of ODT to verify any change
made. Major corrections, however, such as a missing subroutine,
should be noted on the assembly 1listing and incorporated in a
subsequent updated program assembly.

A binary tape of the debugged program can be obtained by use of the
DUMPAB program (see Chapter 6, section 6.3).

5.1.1 ODT-11 and ODT-11X

There are two versions of ODT included in the PDP-11 Paper Tape
‘Software System: a standard version, ODT-11, and an extended version,
-ODT-11X.'" Both versions are independent, self-contained programs.
ODT-11X has all the features of ODT-11, plus some additional features.
Each version is supplied on two separate paper tapes: a source tape
and an absolute binary tape. The purpose of the tapes, and loading
and starting procedures are explained in a 1later section of this
chapter.

ODT~11 is completely described in section 5.2, and the additional
features of ODT-11X are covered in section 5.3. 1In all sections of
this chapter, except where specifically stated, reference to ODT

'Only ODT-11X is available for the LSI-11 or the PDP-11/03.

5-1

i

DEBUGGING OBJECT PROGRAMS ON-LINE

applies to both versions. Concluding sections discuss ODT's internal
operations -~ how it effects breakpoints, how it uses the "trace trap”
and the T-bit, and other useful data.

The following discussion assumes that the reader is familiar with the

PDP-11 introduction formats and the PAL-11A Assembly Language as
described in Chapter 3.

5.1.2 ODT's Command Syntax

ODT's commands are composed of the following characters and symbols.
They are often used in combination with the address upon which the
operation is to occur, and are offered here for familiarization prior
to their thorough coverage which follows. Unless indicated otherwise,
n below represents an octal address.

n/ open the word at location n

/ reopen last opened location

n\ (SHIFT/L) open the byte at location n (ODT-11X only)
\ reopen the last opened byte (ODT-11X only)

(LINE FEED key) open next sequential location

+! open previous location
RETURN close open location and accept the next command
+«? take contents of opened location, index by contents of

PC, and open that location

@ take contents of opened location as absolute address
and open that location (ODT-11X only)

> take contents of opened location as relative branch
instruction and open referenced location (ODT-11X only)

< return to sequence prior to last @, >, or _ command and
open succeeding location (ODT-11X only)

$n/ open general register n (0-7)

separates commands from command arguments (used with
alphabetic commands below)

~e

;B remove Breakpoint(s) (see description of each ODT
version for particulars)

n;B set Breakpoint at location n

'The circumflex appears on some keyboards and printers in place of the
up-arrow.

’The underline appears on some keyboards and printers in place of the
back-arrow.

DEBUGGING OBJECT PROGRAMS ON-LINE

n;rB set Breakpoint r at location n (ODT-11X only)

;B remove r(th) Breakpoint (ODT-11X only)

n;E search for instructions that reference Effective
address n

n;w search for Words with bit patterns which match n

;nsS enable Single-instruction mode (n can have any value
and is not significant); disable breakpoints

:S disable Single-instruction mode

n;G Go to location n and start program run

;P Proceed with program execution from breakpoint; stop
when next breakpoint 1is encountered or at end of
program

In Single-instruction mode only (ODT-11X), Proceed to
execute next instruction only

n;p Proceed with program execution from breakpoint; stop
after encountering the breakpoint n times.

In single-instruction mode only (ODT-11X), Proceed to
execute next n instructions.

n/(word)n;O calculate Offset from location n to location m

$B/ open Breakpoint status word (ODT-11)
open BREAKPOINT O STATUS WORD (ODT-11X)
$M/ open search Mask
$s/ open location containing user program's Status register
$p/ open location containing ODT's Priority level

With ODT-11, location references must be to even numbered 16-bit

words. Wwith ODT-11X, location references may be to 16-bit words or
8~bit bytes.

The semicolon in the above commands is ignored by ODT-11l, but is used

for the sake of consistency, since similar commands to ODT-11X require
it.

5.2 COMMANDS AND FUNCTIONS

When ODT is started as explained in section 5.6, it indicates its
readiness to accept commands by printing an asterisk (*) on the left
margin of the terminal paper. In response to the asterisk, you can
issue most commands; for example, you can examine and, if desired,
change a word, run the object program in its entirety or in segments,
or even search core for certain words or references to certain words.
The discussion below first explains some elementary features, and then
covers the more sophisticated features.

All commands to ODT are issued using the characters and symbols shown
above in Section 5.1.2.

DEBUGGING OBJECT PROGRAMS ON-LINE

5-2.1 Opening, Changing, and Closing Locations

An open location is one whose contents ODT has printed for
examination, and whose contents are available for change. A closed
location is one whose contents are no longer available for change.
Any even-numbered location may be opened using ODT-11.

The contents of an open location can be changed by typing the new

contents followed by a single character command, which requires no

argument (i.e. + 4+ RETURN +« @ > <}. Any command typed to open a

location when another location is already open causes the currently
open location to be closed.

5.2.1.1 The Slash (/) - One way to open a location is to type its
address followed by a slash:

*1000/012746

Location 1000 is open for examination and is available for change.
Note that in all examples ODT's printout is underlined; vyour typed
input is not.

Should you not wish to change the contents of an open location, merely
type the RETURN key and the 1location will be closed; ODT prints
another asterisk and waits for another command. However, should you
wish to change the word, simply type the new contents before giving a
command to close the location.

*1000/012746 012345
x

In the example above, location 1000 now contains 012345 and is closed
since the RETURN key was typed after entering the new contents, as
indicated by ODT's second asterisk. .

Used alone, the slash reopens the last location opened:

*1000/012345 2340
*/002340

As shown in the example above, an open 1location can be closed by
typing the RETURN key. In this case, ODT changed the contents of
location 1000 to 002340 and then closed the location before printing
the *, A single slash then directed ODT to reopen the last location
opened. This allowed us to verify that the word 002340 was correctly
stored in location 1000. (ODT supplies the leading zeroes if not
given.)

Note again that opening a location while another is currently open
automatically closes the currently open location before opening the
new location.

5.2.1.2 The LINE FEED Key - If the LINE FEED key is typed when a
location 1s open, ODT closes the open location and opens the next
sequential location:

*1000/002340 + (+ denotes typing the LINE FEED key)
001002/012740

DEBUGGING OBJECT PROGRAMS ON-LINE

In this example, the LINE FEED key instructed ODT to print the address
of the next location along with its contents and to wait for further
instructions. After the above operation, location 1000 is closed and
1002 1is open. The open location may be modified by typing the new
contents.

5.2.1.3 The Up-Arrow(+) - The up-arrow (or curcumflex) symbol is
effected by typing the SHOFT and N key combination. If the up-arrow
is typed when a location is open, ODT closes the open location and
opens the previous location (as shown by continuing from the example
above) :

0010027012740 + (+ is printed by typing SHOFT and N)
001000/002340

Now location 1002 is closed and 1000 is open. The open location may
be modified by typing the new contents.

5.2.1.4 The Back-Arrow(+) - The back-arrow (or underline) symbol is .
effected by typing the SHIFT and O key combination. If the back-arrow
is typed to an open location, ODT interprets the contents of the
currently open 1location as an address indexed by the Program Counter
(PC) and opens the location so addressed:

*1006/000006 + (+ is printed by typing SHIFT and O)

o——

001016/100405

Notice in this example that the open location(1006) was indexed by the
PC as if it were the operand of an instruction with address mode 67 as
explained in Chapter 3.

A modification to the opened location can be made before a+, +, or <«
is typed. Also, the new contents of the location will be used for
address calculations using the _ command. Example:

*100/000222 44 (modify to 4 and open next location)
OOOIOZZOOOQL; 64 (modify to 6 and open previous location)
000100§OOOQQQ 100« (change to 100 and open location indexed
000202/ (contents) by PC)
5.2.1.5 AcceSsing General Registers 0-7 - The program's general
registers 0-7 can be opened using the following command format:
*$n/

where n is the integer representing the desired register (in the range
0 through 7). When opened, these registers can be examined or changed
by typing in new data as with any addressable location. For example:

*$0/000033 (RO was examined and closed)
*

and

*$4/000474 464 (R4 was opened, changed, and closed)
*

DEBUGGING OBJECT PROGRAMS ON-LINE

The example above can be verified by typing a slash in response to
ODT's asterisk: '

*/000464

The + , 4+, +«, or @ commands may be used when a register is open (the @
is an ODT-11X command).

5.2.1.6 Accessing Internal Registers - The program's Status Register
contains the condition codes of the most recent operational results
and the interrupt priority level of the object program. It is opened
using the following command:

*$5/000311

where $S represents the address of the Status Register. In response
to $5/ in the example above, ODT printed the 16-bit (of which only the
low-order 8 bits are meaningful): Bits 0-3 indicate whether a carry,
overflow, zero, or negative (in that order) has resulted, and bits 5-7
indicate the interrupt priority level (in the range 0-7) of the object
program.

The $§ is used to open certain other internal locations:

$B internal breakpoint status word (see section 5.2.2.2)

SM mask location for specifying which bits are to be
examined during a bit pattern search (see section
5.2.4)

$P location defining the operating priority of ODT (see

section 5.2.6)

$s location containing the condition codes (bits 0-3) and
interrupt priority level (bits 5-7)

5.2.2 Breakpoints

The breakpoint feature facilitates monitoring the progress of program
execution. A breakpoint may be set at any instruction which is not
referenced by the program for data. When a breakpoint is set, ODT
replaces the contents of the breakpoint 1location with a trap
instruction. Thus, when the program is executed and the breakpoint is
encountered, program execution is suspended, the original contents of
the breakpoint location are restored, and ODT regains control.

5.2.2.1 Setting the Breakpoint(n;B) - ODT-1ll provides only one
breakpoint; ODT-11X provides eight. Breakpoint(s) may be changed at
any time. A breakpoint is set by typing the address of the desired
location of the breakpoint followed by ;B. For example:

*1020;B
*

sets a breakpoint at location 1020. The breakpoint above is changed
to location 1120 as shown below.

*1020;B
*¥1120;B
*

DEBUGGING OBJECT PROGRAMS ON-LINE

Breakpoints should not be set at locations referenced by the program
for data, nor at an IOT, EMT, or TRAP instruction. This restriction
is explained in section 5.5.2.

The breakpoint is removed by typing ;B without an argument, as shown
below.

20;B (sets breakpoint at location 1120)

11
:B (removes breakpoint)

Fo *| *

5.2.2.2 Locating the Breakpoint($B) - The command $B/ causes ODT-11
to print the address of the breakpoint (see also section 5.3.3 on $B
in ODT-11X):

*$B/001120

The breakpoint was set at location 1120. $B represents the address
containing ODT-11's breakpoint location. Typing the RETURN key in the
example above leaves the breakpoint at location 1120 and returns
control to ODT-11. The breakpoint could be changed to a different
location:

*$B/001120 1114
%$8/001114
*

The breakpoint was found in location 1120, changed to 1location 1114,
and the change was verified.

If no breakpoint is set, $B contains an address internal to ODT-11.

5.2.3 Running the Program(n;G and n;P)

Program execution is under control of ODT. There are two commands for
running the program: n;G and n;P. The n;G command is used to start
execution (GO) and n;P to continue (Proceed) execution after halting
at a breakpoint. For example:

*1000;G

starts execution at location 1000. The program runs until it
encounters a breakpoint or until program completion. 1If the program
enters an infinite loop, it must be restarted or reentered as
explained in section 5.6.2.

When a breakpoint is encountered, execution stops and ODT-11 prints B;
followed by the address of the breakpoint. Desired locations can then
be examined for expected data. For example:

*1010;B {breakpoint is set at location 1010)
*1000;G (execution started at location 1000)
B;001010 (execution stopped at location 1010)

*

To continue program execution from the breakpoint, type ;P in response
to ODT-11's last *,

When a breakpoint is set in a loop, it may be desirable to allow the
program to execute a certain number of times through the loop before

5-7

DEBUGGING OBJECT PROGRAMS ON-LINE

recognizing the breakpoint. This may be done by typing the n;P
command and specifying the number of times the breakpoint is to be
encountered before program execution is suspended (on the n(th)
encounter). (See section 5.3.3 for ODT-11X interpretation of this
command when more than one breakpoint is set in a loop.)

Example:
B;001010 (execution halted at breakpoint)
*1250;B (set breakpoint at location 1250)
*4;P (continue execution. 1loop through
B;001250 breakpoint 3 times and halt on the
* 4 (th) occurrence of the breakpoint)

The breakpoint repeat count can be inspected by typing $B/ followed by
LINE FEED. The repeat count is then printed. This also provides an
alternative way of specifying the count. Since the location is open,
its contents can be 'modified in the wusual manner by typing new
contents followed by the RETURN key.

*$B/001114 + (address of breakpoint is 1114)
nnnnnn/000003 6 (repeat count was 3, changed to 6)
*

Breakpoints are inserted when performing an n;G or n;P command. Upon
execution of the n;G or n;P command, the general registers 0-6 are set
to the values in the locations specified as $0-$6 and the processor
status register is set to the value in the location specified as $S.

5.2.4 Searches

With ODT you can search all or any specyfied portion of core memory
for any specific bit pattern or for references to a specific location.

The location represented by $M is used to specify the mask of the
search. The next two sequential locations contain the lower and upper
limits of the search. Bits set to 1 in the mask are examined during
the search; other bits are ignored. For example,

*3$M/000000 177400 + (+ denotes typing LINE FEED)
nnnnnn/000000 1000 + (starting address of search)
nnnnnn/000000 1040 (last address in search)

*

where nnnnnn represents some location in ODT. This location varies
and is meaningful only for reference purposes. Note that in the first
line above, the slash was used to open $M which now contains 177400,
and that the LINE FEEDs opened the next two sequential locations which
now contain the lower and upper limits of the search.

5.2.4.1 Word Search(n;W) - Before initiating a word search, the mask
and search 1limits must be specified as explained above. Then the
search object and the initiating command are given using the n;W
command where n is the search object. When a match is found, the
address of the unmasked matching word is printed. For example:

*$M/000000 177400 ¥ (test high order eight bits)
nnnnnn/000000 1000 +
nnnnnn/000000 1040
*400;W :

001010/000770
0 000404

*

(initiating word search)

DEBUGGING OBJECT PROGRAMS ON-LINE

In the search process, the word currently being examined and the
search object are exclusive ORed (XORed), and the result is ANDed to
the mask. If this result is zero, a match has been found, and is
reported at the terminal. Note that if the mask is zero, all
locations within the limits are printed.

5.2.4.2 Effective Address Search(n;E) - ODT enables you to search for
words which address a specified location. After specifying the search
limits (section 5.2.4), type n;E (where n is the effective address) to
initiate the search.

Words which are either an absolute address (argument n itself), a
relative address offset, or a relative branch to the effective address
are printed after their addresses. For example:

*$M/177400 +
nnnnnn/001000 1010 +
nnnnnn/001040 1060

*1034;E (initiating search)
001016/001006 (relative branch)
001054/002767 (relative branch)

*1020;E {initiating a new searhc)
001022/177774 (relative address offset)
001030/001020 (absolute address)

*

Particular attention should be given to the reported references to the
effective address because a word may have the specified bit pattern of
an effective address without actually being so used. ODT will report
these as well.

5.2.5 Calculating Offsets(n;0)

Relative addressing and branching use an offset - the number of wrods
or bytes forward or backward from the current 1location of the
effective address. During the debugging session it may be necessary
to change a relative address or branch reference by replacing one
instruction offset with another. ODT calculates the offsets in
response to the n;O command.

The command n;O causes ODT to print the 16-bit and 8-bit offsets from
the currently open location to address n. In ODT-11, the 8-bit offset
is printed as a 16-bit word. For example:

*346/000034 414;0 000044 000022 22
%/000022 |

*20/000046 200;0 000156 000067 67
*20/000067

In the first example, location 346 is opened and the offsets from that
location to location 414 are calculated and printed. The contents of
location 346 are then changed to 22 and verified on the next line.
The 16-bit offset is printed followed by the 8-bit offset. 1In the
example above, 000156 is the 16-bit offset and 000067 is the 8-bit
offset.

The 8-bit offset is printed only if the 16-bit offset is even, as in
the case above. With ODT-11 only, the user must determine whether the
8-bit offset is out of the range 177600 to 000177 (-128 decimal to 127
decimal). The offset of a relative branch is calculated and modified
as follows:

5-9

DEBUGGING OBJECT PROGRAMS ON-LINE

*1034/103421 1034;0 177776 177777 103777
*

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte. Location 1034 was still open after the
calculation, thus typing 103777 changed its contents; the 1location
was then closed.

5.2.6 ODT'S Priority Level ($P)

$P represents a location in ODT that contains the priority level at
which ODT operates. If $P contains the value 377, ODT operates at the
priority level of the processor at the time ODT is entered. Otherwise
$P may contain a value between 0 and 7 corresponding to the fixed
priority at which ODT operates.

To set ODT to the desired priority level, open $P. ODT prints the
present contents, which may then be changed:

*$P/000006 377
* -

If $P is not specified, its value is seven.

Breakpoints may be set in routines at different priority levels. For
example, a program running at a low priority level may use a device
service routine operating at a higher priority level. 1If a breakpoint
occurs from a low priority routine, if ODT Operates at a low priority,
and if an interrupt does occur from a high priority routine, then the
breakpoints in the high priority routine will not be executed since
they have been removed.

5.3 ODT-11lx

ODT-11X has all the commands and features of ODT-11 as explained in
section 5.2, plus the following.

5.3.1 Opening, Changing and Closing Locations

In addition to operating on words, ODT-11X operates on bytes.

One way to open a byte is to type the address of the byte followed by
a backslash:

*1001/025 (\ is printed by typing SHIFT and L)

A backslash typed alone reopens the last open byte. If a word was
previously open, the backslash reopens its even byte.

*1002/000004\004

The LINE FEED and up-arrow (or circumflex) keys operate on bytes if a
byte is open when the command is given. For example:

*1001\025 +
001002\004 +

001001\025
*

DEBUGGING OBJECT PROGRAMS ON-~LINE

5.3.1.1 Open the Addressed Location(g@) - The symbol e optionally
modifies, closes an open word, and uses its contents as the address of
the location to open next.

*1006/001024 e (open location 1024 next)
001024/000500 '

*1006/001024 2100 @ (modify to 2100 and open
002100/177774 location 2100)

5.3.1.2 Relative Branch Offset(>) - The right angle bracket, >,
optionally modifies, closes an open word, and uses its even byte as a
relative branch offset to the next word opened.

*1032/000407 301 > {modify to 301 and interpret
000636/000010 as a relative branch)

Note that 301 is a negative offset (-77). The offset 1is doubled
before it is added to the PC; therefore, 1034 + -176 = 636.

5.3.1.3 Return to Previous Sequence (<) - The left angle bracket, <,
optionally modifies, closes an open location, and opens the next
location of the previous sequence interrupted by a +, €, or > command.
Note that « , @, > cause a sequence change to the word opened. 1If a
sequence change has not occurred, < simply opens the next location as
a LINE FEED does. The command operates on both words and bytes.

*1032/000407 301 > (> causes a sequence change)

000636/000010 < (<causes a return to original
sequence)

001034/001040 € (@ causes a sequence change)

001040/000405\005 < (< now operates on byte)

001035\ 002 < (< acts like +)

001036\ 00

5.3.2 Calculating Offsets(n;0)

The command n;0 causes ODT to print the 16-bit and 8-bit offsets from
the currently open 1location to address n. The following examples,
repeated from the ODT-11 section describing this command (see section
5.2.5), show a difference only in printout format:

*346/000034 414;0 000044 022 22
*/000022

*1034/103421 1034;0 177776 377\021 377
*/103777

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

DEBUGGING OBJECT PROGRAMS ON-LINE

5.3.3 Breakpoints

With ODT-11X you can set up to eight breakpoints concurrently,
numbered 0 through 7. The n;B ‘command used in ODT-11 to set the
breakpoint at address n sets the next available breakpoint in ODT-11X.
Specific breakpoints may be set or changed by the n;mB command where m
is the number of the breakpoint. For example:

*1020;B (sets breakpoint 0)
*1030;B (sets breakpoint 1)
*1040;B (sets breakpoint 2)
*1032;1B (resets breakpoint 1)
*

The ;B command used in ODT-11 to remove the only breakpoint removes
all breakpoints in ODT-11X. To remove only one of the breakpoints,
use the ;nB command, where n is the number of the breakpoint. For
example:

;2B {removes the second breakpoint)

1% %

The $B/ command opens the location containing the address of
breakpoint 0. The next seven locations contain the addresses of the
other breakpoints in order, and thus can be opened using the LINE FEED
key. (The next location is for single-instruction mode, explained in
the next section.) Example:

*$B/001020 +

nnnnnn/001032 +

nnnnnn/ (address internal to ODT)

In this example, breakpoint 2 is not set. The contents are an address
internal to ODT. After the table of breakpoints is the table of
Proceed command repeat counts for each breakpoint and for +the
single-instruction mode (see Section 5.3.4).

. +

nnnnnn/001036 + (address of breakpoint 7)
nnnnnn/nnnnnn ¥ (single-~instruction address)
nnnnnn/000000 15 + (count for breakpoint 0)
nnnnnn/000000 (count for breakpoint 1)

It should be noted that a repeat count in a Proceed command refers
only to the most recent breakpoint. Execution of other breakpoints
encountered is determined by their own repeat counts.

5.3.4 Single-Instruction Mode

With this mode you can specify the number of instructions you wish
executed before suspension of the program run. The Proceed command,
instead of specifying a repeat count for a breakpoint encounter,
specifies the number of succeeding instructions to be executed. Note
that breakpoints are disabled when single-instruction mode is
operative. Commands for single-instruction mode follow:

;nS Enables single-instruction mode (n can have any value
and serves only to distinguish this form from the form
;S): breakpoints are disabled.

DEBUGGING OBJECT PROGRAMS ON-LINE

n;P Proceeds with program run for next n instructions
before reentering ODT (if n is missing, it is assumed
" to be 1). (Trap instructions and associated handlers
can affect the Proceed repeat count. See section
5.5.2.)

;S Disables single-instruction mode

When the repeat count for single-instruction mode is exhausted and the
program suspends execution, ODT prints:

B8;n
*

where n is the address of the next instruction to be executed. The $B
breakpoint table contains this address following that of breakpoint 7.
However, unlike the table entries for breakpoints 0-7, the B8 entry is
not affected by direct modification.

Similarly, the repeat count for single-instruction mode follows the
repeat count for breakpoint 7. This table entry, however, may be
directly modified, and thus is an alternative way of setting the
single-instruction mode repeat count. in such a case, ;P implies the
argument set in the $B repeat count table rather than the argument 1.

5.4 ERROR DETECTION

ODT-11 and ODT-11X inform you of two types of errors: illegal or
unrecognizable command and bad breakpoint entry.

Neither ODT-11 nor ODT-11X checks for the legality of an address when
commanded to open a location for examination or modification.

Thus, the command

177774/
references nonexistent memory, and causes a trap through the vector at
location 4. If this vector has not been properly initialized (by IOX,
or the user program if IOX is not used), unpredictable results occur.
Similarly, a command such as

$20/

which references an address eight times the value represented by $2,
may cause an illegal (nonexistent) memory reference.

Typing other than a legal command causes ODT to ignore the command ,
print

IRV

and wait for another command. Therefore, to cause ODT to ignore a
command just typed, type an illegal character (such as 9 or RUBOUT)

and the command will be treated as an error, i.e., ignored.

ODT suspends program execution whenever it encounters a breakpoint,
i.e., a trap to its breakpoint routine. If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BEQO01542"
*

5-13

DEBUGGING OBJECT PROGRAMS ON-LINE

and waits for another command. 1In the example above, BE001542 denotes
Bad Entry from 1location 001542, A bad entry may be caused by an
illegal trace trap instruction, setting the T-bit in the status
register, or by a jump to the middle of ODT.

5.5 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
oDT. However, its content does provide a better understanding of how
ODT performs some of its functions.

5.5.1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: command decoding, command execution, and various
utility routines.

The command decoder interprets the individual commands, checks for
command errors, saves input parameters for use in command execution,
and send control to the appropriate command execution routine.

The command execution routines take parameters saved by the command
decoder and use the utility routines to execute the specified command.
Command execution routines exit either to the object program or back
to the command decoder.

The utility routines are common routines such as SAVE-RESTORE and I/0.
They are used by both the command decoder and the command executers.

Communication and data flow are illustrated in Figure 5-1.

5.5.2 Breakpoints

The function of a breakpoint is to pass control to ODT whenever the
user program tries to execute the instruction at the selected address.
Upon encountering a breakpoint, the user can utilize all of the ODT
commands to examine and modify his program.

When a breakpoint is executed, oDT removes the breakpoint
instruction(s) from the user's code so that the locations may be
examined and/or altered. ODT then types a message to the user, in the
form Bn(Bm:n for ODT-11X), where n is the breakpoint address (and m is
the breakpoint number). The breakpoints are automatically restored
when execution is resumed.

A major restriction in the use of breakpoints is that the word

DEBUGGING OBJECT PROGRAMS ON~LINE

MANUAL
ENTRY
- BREAKPOINT -
HANDLER
| 1 8
‘]
PROGRAM INTERNAL
Pagsnm EXAMINATION 8 TABLE MAIN-
- ggumuos MODIFICATION PULATION
COMMANDS COMMANDS
USER Y
')
- e - - ————— ——— - 1
4 i
ooT
- ———— INTERNAL
I TABLES
PROGRAM f
'
[
UTILITY
Bk e -- ROUTINES
{1/0,ETC.)
USER ENVIRONMENT oDT
LEGEND

Figure

Fiow of controf — — -

Flow of data

5-<1 Communication

and Data Flow

11 -0063

DEBUGGING OBJECT PROGRAMS ON-~LINE

where a breakpoint has been set must not be referenced by the program
in any way since ODT has altered the word. Also, no breakpoint should
be set at the location of any instruction that clears the T-bit. For
example: '

MOV #240,177776 ;SET PRIORITY TO LEVEL 5.
A breakpoint occurs when a trace trap instruction (placed in the user
program by ODT) is executed. When a breakpoint occurs, ODT takes the
following steps: :

1. Set processor priority to seven (automatically set by trap
instruction).

2. Save registers and set up stack.
3. If internal T-bit trap flag is set, go to step 13.
4. Remove breakpoint(s).-

5. Reset processor priority to ODT's priority or user's
priority.

6. Make sure a breakpoint or Single-instruction mode caused the
interrupt.

7. If the breakpoint did not cause the interrupt, go to step 15.
8. Decrement repeat count.

9. Go to setp 18 if non-zero, otherwise reset count to one.

10. Save Teletype status.

11. Type message to user about the breakpoint or
Single-instruction mode interrupt.

12. Go to command decoder;

13. Clear T-bit in stack and internal T-bit flag.
14. Jump to the "GO" processor.

15. Save Teletype status.

16. Type "BE" (Bad Entry) followed by the address.

17. Clear the T-bit, if set, in the user status and proceed to
the command decoder.

18. Go to the "Proceed", bypassing the TTY restore routine.
Note that steps 1-5 inclusive take approximately 100 microseconds
during which time interrupts are not permitted to occur (ODT is
running at level 7).
When a proceed (;P) command is given, the following occurs:

1. The proceed is checked for legality.

2. The processor priority is set to seven.

3. The T-bit flags (internal and user status) are set.

4,
5.

6.

DEBUGGING OBJECT PROGRAMS ON-LINE

The user registers, status, and Program Counter are restored.
Control is returned to the user.
When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 of the

breakpoint sequence are executed, breakpoints are restored,
and program execution resumes normally.

When-a breakpoint is placed on an 10T, EMT, TRAP, or any instruction
causing a trap, the following occurs:

1.

2.

When the breakpoint occurs as described above, ODT is
entered.

When ;P is typed, the T-bit is set and the IOT, EMT, TRAP, or
other trapping instruction is executed.

The current PC and status (with the T-bit included) are
pushed on the stack.

The new PC and status (no T-bit set) are obtained from the
respective trap vector.

The whole trap service routine 1is executed without any
breakpoints.

When an RTI is executed, the saved PC and PS (including the
T-bit) are restored. The instruction following the
trap-causing instruction is executed. If this instruction is
not another trap-causing instruction, the T-bit trap occurs,
causing the breakpoints to be reinserted in the user program,
or the Single~-instruction mode repeat count to Dbe
decremented. If the following instruction is a trap-causing
instruction, this sequence is repeated, starting at step 3.

NOTE

Exit from the trap handler must be via the RTI
instruction. Otherwise, the T-bit will be lost. ODT
will not gain control again since the breakpoints
have not been reinserted yet.

In ODT-11, the ;P command is illegal if a breakpoint has not occurred
(ODT responds with ?). In ODT-11X, ;P is legal after any trace trap

entry.

WARNING

Since ODT-11 ignores all semicolons,
typing the ODT-11X form of breakpoint
command number to ODT-11, specifying a
breakpoint number n, causes the
following error:

100;B (sets the breakpoint at location

100)
100;0B (sets the breakpoint at
location 1000)
100;4B (sets the breakpoint at location
1004)

DEBUGGING OBJECT PROGRAMS ON-LINE

ghe internal breakpoint status words for ODT-11 have the following
ormat:

1. The first word contains the breakpoint address. If this
location points to a location within ODT, it is assumed no
breakpoint is set for the cell (specifically, ODT has set a
dummy breakpoint within itself).

2. The next word contains the breakpoint repeat count.
For ODT-11X (with eight breakpoints) the formats are:

1. The first eight words contain the breakpoint addresses for
breakpoints 0-7. (The ninth word contains the address of the
next instruction to be executed in Single-instruction mode.)

2. The next eight words contain the respective repeat counts.
(The following word contains the repeat count for
Single~instruction mode.)

The user may change these words at will, either by using the
breakpoint commands or by direct manipulation with $B.

When program runaway occurs (that is, when the program is no 1longer
under ODT control, perhaps executing an unexpected part of the program
where a breakpoint has not been placed) ODT may be given control by
pressing the HALT key to stop the machine, and restarting ODT (see
Section 5.6.2). ODT prints *, indicating that it is ready to accept a
command .

If the program being debugged uses the terminal for input or output,
the program may interact with ODT to causes an error since ODT also
uses the terminal. This interactive error does not occur when the
program being debugged is run without ODT.

1. If the terminal output interrupt is enabled upon entry to the
ODT break routine, and no output interrupt is pending when
ODT is entered, ODT is entered, ODT generates an unexpected
interrupt when returning control to the program.

2. 1If the interrupt of the terminal input (the keyboard) is
enabled upon entry to the ODT break routine, and the program
is expecting to receive an interrupt to input a character,
both the expected interrupt and the character will be lost.

3. If the terminal input (keyboard) has just read a character
into the reader data buffer when the ODT break routine is
entered, the expected character in the input data buffer will
be lost.

5.5.3 Search

The word search allows the user to search for bit patterns in
specified sections of memory. Using the $M/ command, the user
specifies a mask, a lower search limit ($M+2), and an upper search
limit (SM+4). The search object is specified in the search command
itself.

The word search compares selected bits (where ones appear in the mask)
in the word and search object. If all selected bits are equal, ODT
prints the unmasked word.

DEBUGGING OBJECT PROGRAMS ON-LINE

The search algorithm is:
1. Fetch a word at the current address.
2. XOR (exclusive OR) the word and search object.
3. AND the result of step 2 with the mask.
4, If the result of step 3 is zero, type the address of the
unmasked word and its contents. Otherwise, proceed to step
5.
5. Add two to the current address. If the current address is
greater than the upper 1limit, type * and return to the
command decoder, otherwise go to step 1.
Note that if the mask is zero, ODT prints every word between the
limits, since a match occurs every time (i.e., the result of step 3 is
always zero).
In the effective address search, ODT interprets every word in the
search range as an instruction which is interrogated for a possible
direct relationship to the search object.

The algorithm for the effective address search is (where (x) denotes
contents of x, and k denotes the search object):

1. Fetch a word at the current address X.
2. If (x)=k [direct reference], print contents and go to step 5.

3. If (x)+x+2=k [indexed by PC], print contents and go to step
5.

4. If (x) is a relative branch to k, print contents.
5. Add two to the current address. If the current address is
greater than the upper limit, perform a carriage return/line

feed and return to the command decoder; otherwise, go to
step 1.

5.5.4 Teletype Interrupt

Upon entering the TTY SAVE routine, the following occurs:
1. Save the LSR status register (TKS).
2. Clear interrupt enable and maintenance bits in the TKS.
4, Clear interrupt enable and maintenance bits in the TPS.
To restore the TTY:
1. Wait for completion of any I/0 from ODT.
2. Restore the TKS.

3. Restore the TPS.

DEBUGGING OBJECT PROGRAMS ON-LINE

NOTES

If the TTY printer interrupt is enabled
upon entry to the ODT break routine, the
following may occur:

1. If no output interrupt is pending
when ODT 1is entered, an additional
interrupt always occurs when ODT
returns control to the user.

2. If an output interrupt is pending
upon entry, the expected interrupt
occurs when the user regains
control.

If the TTY reader (keyboard) is busy or
done, the expected character in the
reader data buffer will be lost.

If the TTY reader (keyboard) interrupt
is enabled upon entry to the ODT break
routine, and a character is pending, the
interrupt (as well as the character)
will be lost.

5.6 OPERATING PROCEDURES

This section describes procedures for linking ODT on LSI-11 machines,
and for loading ODT on other PDP-11 machines. It describes starting,
restarting, error recovery, and setting the priority level of ODT.

5.6.1 Linking Procedures (LSI-11 Systems Only)

For LSI-11 systems, ODT-11X is supplied on relocatable object tapes.
Binary tapes are produced by linking the ODT-11X object tape with the
object tapes of the program to be debugged (using LINK-11S). The
ODT-11X tape should be the first tape processed by LINK-11S; in this
manner, ODT-11X is started first when the binary tape is loaded.

5.6.2 Loading Procedures (non-LSI-11 Systems Only)

For all systems other than LSI-11, ODT is supplied on source and
binary tapes. Appendix N explains assembly instructions for source
tapes. Binary tapes are loaded with the Absolute Loader. Since ODT
is started as soon as it is loaded, the program to be debugged should
be loaded prior to ODT.

When supplied on binary tape, ODT-11 loads beginning at 1location
13026, and@ occupies about 533 (decimal) words of memory. ODT-11X
loads beginning at location 12054, and requires about 800 (decimal)
words of memory.

DEBUGGING OBJECT PROGRAMS ON-LINE

5.6.3 Starting and Restarting

The Absolute Loader starts ODT automatically after 1loading it into
core. ODT indicates its readiness to accept input by printing an *.

The starting address for ODT-11 on binary tape is 13026; the starting
address for ODT-11X on binary tape is 12054. If ODT is reassembled
using PAL-11A, the starting address in indicated in the symbol table
as the value of the symbol 0.0DT. If ODT is linked using LINK-11S,
the starting address is indicated in the link map as the value of the
global symbol 0.ODT.

When ODT is started at its start address, the SP register is set to an
ODT internal stack, registers RO-R5 are left untouched, and the trace
trap vector is initialized. If ODT is started after breakpoints have
been set in a program, ODT ignores the breakpoints and leaves the
program modified, i.e., the breakpoint instructions are left in the
program.

There are two ways to restart ODT:
1. Restart at start address+2
2. Reenter at start address+4

To restart, key in the start address+2, press LOAD ADDRess and then
START. A restart saves the general registers, removes all the
breakpoint instructions from the user program and then ignores all
breakpoints, i.e., simulates the ;B command.

To reenter, key in the load address+4, press LOAD ADDRess and then
START. A reenter saves the general registers, removes the breakpoint
instructions from the user program, and types the BE (Bad Entry) error
message. ODT remembers which breakpoints were set and resets them on
the next ;G command (;P is illegal after a Bad Entry).

CHAPTER 6

LOADING AND DUMPING MEMORY

This chapter describes procedures for 1loading programs into memory
{using the Bootstrap Loader and Absolute Loader) and for dumping the
contents of memory (using the DUMPAB and/or DUMPTT programs).

The Bootstrap Loader, which loads short paper tape programs (162 or
fewer octal words), appears on one of three forms, depending upon the
system configuration:

1. Hardware - on some CPUs, the Bootstrap Loader is present as a
ROM chip.

2. Software - on some CPUs, the Bootstrap Loader must be toggled
in via console switches.

3. Firmware - on LSI-1ls, the Bootstrap Loader is a firmware
loader, present as a programmable ROM chip.

Once familiar with the operation of the Bootstrap Loader, the user can
load other programs (such as the Absolute Loader, DUMPAB, and DUMPTT).

The Absolute Loader (see section 6.2) is a system program that enables
the user to load data punched on paper tape in absolute binary format
into any available memory bank. It is used primarily to 1load the
paper tape system software, binary programs assembled with PAL-11a,
and binary tapes produced by LINK-11S from object tapes produced by
PAL-~11S.

The loader programs are loaded into the upper-most area of available
core and are available for use with system and user programs.
Programs should not use the locations used by the 1loaders without
restoring their contents; otherwise, the loaders must be reloaded
since they will have been altered by the object program.

Core memory dump programs (see section 6.3) print or punch the
contents of specified areas of core. For example, when developing or
debugging user programs it is often necessary to get a copy of the
program or portions of core. There are two dump programs supplied in
the paper tape software system: DUMPTT, which prints or punches the
octal representation of specified portions of core, and DUMPAB, which
punches specified portions of core in absolute binary format suitable
for loading with the Absolute Loader.

LOADING AND DUMPING MEMORY

6.1 PAPER TAPE BOOTSTRAPS

Procedures for operating the various PDP-11 paper tape bootstraps are
described below:

6.1.1 BM792-YA Paper Tape Bootstrap ROM

1.
2.

4.
5.
6.

Set the console ENABLE/HALT switch to HALT.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) is to be used, and a
high-speed reader is, present on the system, turn the high
speed reader OFF. If the high-speed reader is to be used,
turn it ON.

Set the console ENABLE/HALT switch to ENABLE.

Set the console switch register to 773000.

Press the console START switch. The contents of the
bootstrap tape will be loaded into the highest locations of
memory.

The bootstrap transfers control to the program just loaded.
Typically, this program halts.

6.1.2 BMB873-YA Bootstrap Loader ROM

1.
2.

Sa.

5b‘

Set the console ENABLE/HALT switch to HALT.

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

If the low-speed reader (ASR-33) is to be used, and a
high~-speed reader is present on the system, turn the
high-speed reader OFF. If the high-speed reader is to be
used, turn it ON.

Set the console ENABLE/HALT switch to ENABLE.

If the low-speed reader is to be used, set the console switch
register to 773210.

If the high-speed reader is to be used, set the console
switch register to 773312.

Press the console START switch. The contents of the
bootstrap tape will be loaded into the highest locations of
memory.

The bootstrap transfers control to the program just loaded.
Typically, this program halts.

LOADING AND DUMPING MEMORY

6.1.3 LSI-11 Firmware Paper Tape Bootstrap

1.

2.

Press the front panel BOOT/INIT switch. This enables the
micro-ODT; an @ prints at the terminal. :

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors {(under the reader station).

If the low-speed reader (ASR-33) is to be used, and a
high-speed reader 1is present on the system, turn the
high-speed reader OFF, If the high-speed reader is to be
used, turn it ON.

Type the command/status register address of the input device
followed by L to load the tape.

For example, when loading from the console terminal
reader, type:

@ 177560L
After reading the contents of the tape, the LSI1-11
microprocessor starts the program, which typically halts. In
this case, the micro-ODT automatically restarts and prints @
followed by the address of the instruction after the HALT
instruction. For example, after loading the Absolute Loader
on an 8K system, the micro-ODT prints:

2375000
e

The starting address of the Absolute Loader in this case is
375000.

6.1.4 M9301-YB Bootstrap Loader

la.

1b.

If the system does not have a switch register, press the
front panel BOOT/INIT switch.

If the system does not have a BOOT/INIT switch, set the
console switch register to 773000; press LOAD/ADDR; then
press START.

Four numbers are printed at the terminal, followed by a §.
These numbers are the contents of the general registers RO,
R4, R6, and RS5, respectively. For CPUs thout switch
registers (such as the 11/04), RS contains the contents of
the program counter (PC) at the time BOOT/INIT was pressed.

For example:

007740 012450 00546 004054
$

Place the bootstrap tape in the desired paper tape reader
with the special bootstrap leader code over the reader
sensors (under the reader station).

LOADING AND DUMPING MEMORY
4. Type the device code (PR for high-speed reader, TT for
terminal reader), and type RETURN, as follows:
$PR,/ or $TTL/
After reading the contents of the tape, the Bootstrap Loader

transfers control to the program just loaded. Typically,
this program halts.

6.1.5 M9301-YA Bootstrap Loader

If a console terminal is available, boot instructions for the M9301-YA
Bootstrap Loader are the same as for the M9301~-YB Bootstrap Loader
(Section 6.1.4).

If no console terminal is available, the auto-boot feature of the
M9301-YA must be used. See the M9301 Maintenance Manual for
instructions on placing the appropriate paper tape bootstrap in the
M9301 module micro-switch. Then follow the procedure below:

1. Place the bootstrap tape in the desired paper tape reader
with the special bootstrap 1leader code over the reader
sensors (under the reader station).

2. Set the console HALT/CONT switch to CONT.
3. Press the console BOOT/INIT switch. After reading the

contents of the tape, the Bootstrap Loader transfers control
to the program just loaded. Typically, this program halts.

6.1.6 Other Bootstrap Loaders

This section is for users without any of the bootstrap aids listed
above.

The Bootstrap Loader should be loaded (toggled) into the highest core
memory bank. The 1locations and corresponding instructions of the
Bootstrap Loader are listed and explained below.

Location Instruction
xx7744 016701
xx7746 000026
xx7750 012702
xx7752 000352
xx7754 005211
xx7756 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 YYYYYY

Figure 6-1 Bootstrap Loader Instructions

LOADING AND DUMPING MEMORY

In Figure 6-1, xx represents the highest available memory bank. For
example, the first 1location of the Loader would be one of the
following, depending on memory size, and xx in all subsequent
locations would be the same as the first.

Location Memory Bank Memory Size
017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

Note also in Figure 6-1 that the contents of 1location xx7766 should
reflect the appropriate memory bank in the same manner as the
location.

The contents of location xx7776 (yyyyyy in the Instruction column of
Figure 6-1) should contain the device status register address of the
paper tape reader to be used when 1loading the bootstrap formatted
tapes. Either paper tape reader may be used, specified as follows:

Teletype Paper Tape Reader - 177560
High-Speed Paper Tape Reader - 177550

6.1.6.1 Loading the Loader Into Core - Toggle in the Bootstrap Loader
as explained below.

1. Set xx7744 in the Switch Register (SR) and press LOAD ADDRess
(xx7744 is displayed in the ADDRESS REGISTER).

2. Set the first instruction, 016701, in the SR and lift DEPosit
(016701 is displayed in the DATA register).

NOTE

When DEPositing data into consecutive words, the
DEPosit automatically increments the ADDRESS REGISTER
to the next word.

3. Set the next instruction, 000026, in the SR and 1lift DEPosit
(000026 is displayed in the DATA register).

4. Set the next instruction in the SR, press DEPosit, and
continue depositing subsequent instructions (ensure that.
location xx7766 reflects the proper memory bank) until after
000765 has been deposited in location xx7774.

5. Deposit the desired device status register address in
location xx7776, the last location of the Bootstrap Loader.

It is good programming practice to verify that all instructions are
stored correctly. This is done by proceeding at step 6 below.

6. Set xx7744 in the SR and press LOAD ADDRess.

LOADING AND DUMPING MEMORY

7. Press EXAMine (the octal instruction in location xx7744 is
displayed in the DATA register so that it can be compared to
the correct instruction, 016701. If the instruction is
correct, proceed to step 8; otherwise go to step 10.

8. Press EXAMine (the instruction of the location displayed in
the ADDRESS REGISTER 1is displayed in the DATA register;
compare the DATA register contents to the instruction for the
displayed location. ’

9. Repeat step 8 until all instructions have been verified or go
to step 10 whenever the correct instruction is not displayed.

When an incorrect instruction is displayed, it can be corrected by
performing steps 10 and 11.

10. With the desired location displayed in the ADDRESS REGISTER,
set the correct instruction in the SR and lift DEPosit (the
contents of the SR are deposited in the displayed location).

11. Press EXAMine to ensure that the instruction was correctly
stored (it is displayed in the DATA register).

12. Proceed at step 9 until all instructions have been verified.

The Bootstrap Loader is now loaded into core. The procedures above
are illustrated in the flowchart of Figure 6-2.

6.1.6.2 Loading Bootstrap Tapes - Any paper tape punched in bootstrap
format is referred to as a bootstrap tape (see Section 6.1.3) and is
loaded into core using the Bootstrap Loader. Bootstrap tapes begin
with about two feet of special bootstrap leader code (ASCII code 351,
not blank leader tape as required by the Absolute Loader).

With the Bootstrap Loader in core, the bootstrap tape is loaded into
core starting anywhere between location xx7400 and location xx7743,
i.e., 162 (octal) words. The paper tape input device used is that
which is specified in location xx7776 (see section 6.1.6.1).

Bootstrap tapes are loaded into core as explained below.
1. Set the ENABLE/HALT switch to HALT.
2. Place the bootstrap tape in the specified reader with the
special bootstrap leader code over the reader sensors (under

the reader station).

3. Set the console switch register to xx7744 (the starting
address of the Bootstrap Loader) and press LOAD ADDRess.

4. Set the ENABLE/HALT switch to ENABLE.

5. Press START. The bootstrap tape passes through the reader as
data is being loaded into core.

6. The bootstrap tape stops after the last frame of data (see
Figure 6-5) has been read into core. The program on the
bootstrap is now in core.

The procedures above are illustrated in the flowchart of Figure 6-3.

LOADING AND DUMPING MEMORY

(wmauze)
. SET SR TO
1 xx7744

!

PRESS
LOAD ADDR
LOAD
LOAD OR VERIFY VERIFY
INSTRUCTIONS
?
1
SETSR TO :
016701 o PRESSEXAM |=
Y
LIFT DEP NO INSTRUCTION
CORRECT
! SET SR TO
CORRECT
SETSR TO INSTRUCTION
NEXT
INSTRUCTION
Y
\
LIFT DEP
LIFT DEP

ALL
INSTRUCTIONS
DEPOSITED

Figure 6-2 Loading and Verifying the Bootstrap Loader

LOADING AND DUMPING MEMORY

WITH BOOTSTRAP

LOADER IN CORE i

SEE FIGURE 6-2

{) SET ENABLE/HALT

I TO ENABLE
SET ENABLE/HALT '
TO HALT
PRESS START
PLACE BOOTSTRAP
TAPE IN SPECIFIED
READER (CODE 351 i
MUST BE OVER TAPE READS IN
READER SENSORS) AND STOPS AT
END OF DATA
y
SET SR TO 1
xx7744 DATA IS
IN CORE
Y
PRESS
LOAD ADDR

Figure 6-3 Loading Bootstrap Tapes into Core
Should the bootstrap tape not read in immediately after depressing the
START switch, one of the following conditions may exist:
l. Bootstrap Loader not correctly loaded.
2. Wrong input device used.
3. Code 351 not directly over the reader sensors.

4. Bootstrap tape not properly positioned in reader.

6.1.6.3 Bootstrap Loader Operation - The Bootstrap Loader source
program 1s shown below. The starting address in the example denotes
that the Loader is to be loaded into memory bank zero (a 4K system).

—_-ORINNE WD -

19
20

22
23

25

17744

17750
17752

17754
17756
17760
17762

17778

17774
17776

oceeop
oBeeal
gaeena2
oovas7
317400

617744

p167€1
sege2¢
p12762
s8@352

0e5211
185711
188376
116162
poaee?2
01740606
085267
177756

2¢e765
177560

feoael’

LOADING AND DUMPING MEMORY

R1

PC
LOAD
START:

LOOP:
DSPMNT:

YAIT:

BRNCH:
DEVICE:

«ASECT

= %1

= 2

= 7

= 17400

$POINTER TO DEVICE ADDRESS
$LOAD ADDRESS DISPLACEMENT

3 PROGRAM COUNTER

3 DATA CANNOT BE LOADED BELOV
3 TH1S ADDRESS

= LOAD+ 344 ; STARTING ADDRESS

MOV DEVICE,R]

MOV (PC)+,R2

++.~LOAD

INC eR}
TSTB @Rl
BPL VAIT

3 COPY DEVICE ADDRESS

3 COPY ADDRESS DI SPLACEMENT
3INITIALLY OFFSET TO THIS LOC
3NOTE THAT THIS LOC 1S PART OF
3 PREVIQUS INSTRUCTION

3 START THE PAPER TAPE READER

3 FRAME READY?

3BR IF NOT

MOVB 2(R1),LOADC(R2) 3 STORE FRAME READ IN MEMORY

INC DSPMNT

BR LOOP
177560

+«END

3 INCREMENT DISPLACEMENT TO NEXT

3LOCATION

3 READ NEXT BYTE

3 ADDRESS OF INPUT DEVICE, MAY BE
3177556 IF HIGH SPEED READER

Figure 6-4 The Bootstrap Loader Program

The program above is a brief example of the PAL-1lA Assembly Language
which is explained in Chapter 2.

Bootstrap tapes are coded in the following format.

351

351
XXX
AAA

BBB
cCcC

222

Special bootstrap leader code (at least two feet
in length)

Load offset (see text below)

Program to be loaded (up to 162 words or 344

frames)

Boot overlay code, as shown.

Jump offset (see text below)

Figure 6-5

Bootstrap Tape Format

LOADING AND DUMPING MEMORY

The Bootstrap Loader starts by loading the device status register
address into Rl and 352g into R2. The next instruction indicates a
read operation in the device and the next two instructions form a loop
to wait for the read operation to be completed. When data is
encountered it is transferred to a location determined by the sum of
the index word (xx7400) and the contents of R2.

Because R2 is initially 352g, the first word is moved to 1location
xx7752, and it becomes the immediate data to set R2 in the next
execution of the loop. This immediate data is then incremented by one
and the program branches to the beginning of the loop.

The leader code, plus the increment, is equal in value to the data
placed in R2 during the initialization; therefore, leader code has no
effect on the loader program. Each time 1leader code 1is read the
processor executes the same loop and the program remains unmodified.
The first code other than leader code, however, replaces the data to
be loaded into R2 with some other value which acts as a pointer to the
program starting location (loading address). Subsequent bytes are
read not into the location of the immediate data but into consecutive
core locations. The program will thus be read in byte by byte. The
INC instruction which operates on the data for R2 puts data bytes in
sequential locations, and requires that the value of the 1leader code
and the offset be one less than the value desired in R2.

The boot overlay code overlays the first two instructions of the
Loader, because the 1last data byte is placed in the core location
immediately preceding the Loader. The first instruction is unchanged
by the overlay, but the second instruction is changed to place the
next byte read, jump offset, into the 1lower byte of the branch
instruction. By changing the offset in this branch instruction, the
Loader can branch to the start of the loaded program or to any point
within the program.

The Bootstrap Loader is self-modifying, and the program loaded by the
Loader restores the Loader to its original condition by restoring the
contents of locations xx7752 and xx7774 to 000352 and 000765
respectively. -

6.2 THE ABSOLUTE LOADER

The Absolute Loader is a system program that enables the user to 1load
data punched on paper tape in absolute binary format into any
available memory bank. It is used primarily to load the paper tape
system software, binary programs assembled with PAL-11A, and binary
tapes produced by LINK~11lS from object tapes produced by PAL-11S. The
major features of the Absolute Loader include:

1. Testing of the checksum on the input tape to assure complete,
accurate loads.

2. Starting the 1loaded program upon completion of loading
without additional user action, as specified by the .END in
the program just loaded.

3. Specifying the load bias of position independent programs at
load-time rather than at assembly time, by using the desired
Loader switch register option.

LOADING AND DUMPING MEMORY

6.2.1 Loading the Loader Into Core

The Absolute Loader is supplied on punched paper tape in bootstrap
format. Therefore, a Bootstrap Loader is used to load the Absolute
Loader into core. It occupies locations xx7474 through xx7743, and
its starting address 1is xx7500. The Absolute Loader program is
72 words long, and is loaded adjacent to the Bootstrap Loader as
explained in section 6.1.6.2.

6.2.2 Using the Absolute Loader

Paper tapes punched in absolute binary format are also called absolute
tapes, binary tapes, or .LDA tapes. These are the tapes loaded by the
Absolute Loader.

In the following discussion, reference is made to a "switch register.”
For systems without switch registers (such as the LSI-11 and
PDP-11/04), this term refers to a software switch register, which is a
memory location internal to the Absolute Loader for systems without
hardware switch registers. The location within the Absolute Loader is
xxx516, where xxx reflects memory size as follows:

Memory XXX
4K 017
8K - 037

12K 057
16K 077
20K 117
24K 137
28K 157

When text indicates that a value be placed in a switch register, users
without hardware switch registers must use either the M9301 console
emulator or the LSI-11 micro-ODT, as appropriate, to store the switch
register value in location xxx516. Once this value has been stored,
the user starts the Absolute Loader at location xxx500. Once the
Absolute Loader is loaded, it initializes the value of location xxx516
to 0. This value changes only when modified by the user.

A normal load occurs when data is loaded into memory according to the
load addresses on the binary tape. The user must set bit 0 of the
switch register to 0 immediately before starting the load.

There are two types of relocated loads:

1. Loading to continue from where the loader left off after the
previous load -

This is used, for example, when the object program being
loaded 1is contained on more than one tape. It is specified
by setting the switch register to 000001 immediately before
starting the load.

2. Loading into a specific .area of core -

This is normally used when loading position independent
programs. A position independent program is one which may be
loaded and run anywhere in available core. The program is
written using the position independent instruction format
(see Chapter 9). This type of load is specified by setting
the switch register to the 1load bias and adding 1 to it

6-11

LOADING AND DUMPING MEMORY

(i.e., setting bit 0 to 1). The effect of this is to add the
value in the switch register to the start address on the
tape.

Optional switch register settings for the three types of 1loads are
listed below.

Switch Register

Type of Load Bits 1-14 Bit 0
Normal (ignored) 0
Relocated - continue 0 1

loading where left off

Relocated - load in nnnnn 1
specified area of core {specified
address)

The absolute tape may be loaded using either of the paper tape

readers. The desired reader 1is specified in the last word of

available core memory (xx7776), the input device status word, as

explained in section 6.1.6. The input device status word may be
changed at any time prior to loading the absolute tape.

With the Absolute Loader in core as explained in section 6.1.6.2,
absolute tapes are loaded as explained below.

1. Set the ENABLE/HALT switch to HALT.

To use an input device different from that used when 1loading
the Absolute Loader, change the address of the device status
word (in location xx7776) to reflect the desired device,
i.e., 177560 for the Teletype reader or 177550 for the
high-speed reader.

2. Set the switch register to xx7500 and préss LOAD ADDR.

3. Set the switch register to reflect the desired type of load
(Figure E-3 in Appendix E).

4. Place the absolute tape in the proper reader with blank
leader tape directly over the reader sensors.

5. Set ENABLE/HALT to ENABLE.

6. Press START. The absolute tape begins passing through the
reader station as data is being loaded into core.

If the absolute tape does not begin passing through the reader
station, the Absolute Loader 1is not in core correctly. Reload the
Loader and start over at step 1 above. If it halts in the middle of
the tape, a checksum error occurred in the last block of data read in.

Normally, the absolute tape stops passing through the reader station
when it encounters the transfer address as generated by the statement,
.END, denoting the end of a program. If the system halts after
loading, check that the low byte of the DATA register is zero. If so,
the tape 1is correctly 1loaded. If not zero, a checksum error
(explained 1later) has occurred in the block of data just loaded,
indicating that some data was not correctly loaded. Reload the tape
starting at step 1 above.

LOADING AND DUMPING MEMORY

When loading a continuous relocated load, subsequent blocks of data

are loaded by placing the next tape in the appropriate reader and
pressing the CONTinue switch.

The Absolute Loader may be restarted at any time by starting at step 1
above.

6.2.3 Absolute Loader Operation

The Loader uses the eight general registers (R0-R7) and does not
preserve or restore their previous contents. Therefore, caution
should be taken to restore or 1load these registers when necessary
after using the Loader.

A block of data punched on paper tape in absolute binary format has
the following format.

FRAME 1 001 start frame
2 000 null frame
3 XXX byte count (low 8 bits)
4 XXX byte count (high 8 bits)
5 YYy load address (low 8 bits)
6 Yyy load address (high 8 bits)
. data is
. placed
. here
222 last frame contains a block checksum

A program on paper tape may consist of one or more blocks of data.
Each block with a byte count (frames 3 and 4) greater than six causes
subsequent data to be loaded into core (starting at the address
specified in frames 5 and 6 for a normal load). The byte count is a
positive integer denoting the total number of bytes in the block,
excluding the checksum. When the byte count of a block is six, the
specified load address is checked to see whether the address is to an
even or to an odd location. If even, the Loaded transfers control to
the address specified. Thus the loaded program runs upon completion
of loading. If odd, the loader halts.

The transfer address (TRA) may be explicitly specified in the source
program by placing the desired address in the operand field following
the .END statement. For example,

.END ALPHA

specifies the symbolic location ALPHA as the TRA, and

.END
causes the Loader to halt. With

.END nnnnnn
the Loader also halts if the address (nnnnnn) is odd.
The checksum is displayed in the low byte of the DATA register of the
computer console. Upon completion of a load, the low byte of the DATA
register should be all zeros (unlit). Otherwise, a checksum error has
occurred, indicating that the load was not correct. The checksum is
the low-order byte of the negation of the sum of all the previous

bytes in the block. When all bytes of a block including the checksum
are added together, the low~order byte of the result should be zero.

6-13

LOADING AND DUMPING MEMORY

If not, some data was lost during the load or erroneous data was
picked up; the load was incorrect. When- a checksum error is
displayed, the entire program should be reloaded, as explained in the
previous section. The 1loaders occupy core memory as illustrated
below.

xx7776 1/0 DEVICE WORD
xx7744 '~ BOOTSTRAP LOADER
xx7500 ABSOLUTE LOADER
xx7474 LOADER STACK
USER AND
SYSTEM
PROGRAMS

6.3 CORE MEMORY DUMPS

A core memory dump program. is a system program whith enables the user
to dump (print or punch) the contents of any specified portion of core
memory onto the Teletype printer and/or punch, line printer or
high-speed punch. There are two dump programs available in the Paper
Tape Software System:

1. DUMPTT', which dumps the octal representation of the contents
of specified portions of core onto the teleprinter, low-speed
punch, high-speed punch, or line printer.

2. DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed punch or
high-speed punch.

Both dump programs are supplied on punched paper tape in bootstrap and
absolute binary formats. The bootstrap tapes are loaded over the
Absolute Loader as explained in section 6.1.6.3, and are used when it
would be undesirable to alter the contents of user storage (below the
Absolute Loader). The absolute binary tapes are position independent
and may be 1loaded and run anywhere in core as explained in section
6.2.2.

DUMPTT and DUMPAB are similar in function, and differ primarily in the
type of output they produce.

6.3.1 Operating Procedures

Neither dump ptogram punches leader or trailer tape, but DUMPAB always
punches ten blank frames of tape at the start of each block of data
dumped.

' DUMPTT is not available for systems without switch registers.
6-14

6.3.1.1

LOADING AND DUMPING MEMORY

Using DUMPAB on Systems Without Switch Registers - Operating

procedures for DUMBAE on systems without switch registers are as

follows:

- 1.

2a.

2b.

a.

7b.

9.

Select either the absolute binary or the bootstrap version of
DUMPAB and place it in the reader specified by location
xx7776 (see section 6.1).

If using a bootstrap tape, load the tape using the procedure
outlined in section 6.1. When the computer halts, go to step
3.

If using an absolute binary tape, load the tape using the
procedure outlined in section 6.2.2, relocating as follows:

a. Select the address to which the program is to be
relocated. The relocation offset is then equal to the
loading address. For example, if the desired relocation
address is 000400, the relocation offset is 000401.

b. Deposit the relocation offset with bit 0 set in the
Absolute Loader's software switch register. Using the
example from the previous step, the user would deposit
000401 into location xxx516.

Start the Absolute Loader.

When the program halts, find the address in the program
counter. For LSI-11 machines, the value is printed at the
console terminal by the micro-ODT. For UNIBUS PDP-11
machines, the user must press the BOOT/INIT switch to obtain
register values at the console terminal (see section 6.1.4).
The last of the four values displayed is the PC contents.

Add 2 to the value of the PC. (For example, the PC contents
for the bootstrap version of DUMPAB are xxx516; adding 2 to
this value gives xxx520.) This new value is the address of
the first of these succeeding parameters, described in
subsequent steps.

Deposit the address of the first byte to be dumped into the
first parameter (whose address was determined in the previous
step).

Deposit the address of the last byte to be dumped into the
second parameter (next sequential location).

The third parameter contains the value 177564 (a default
specifying the ASR-33 punch). If this is the first time this
step is executed and the high-speed reader is the desired
output device, change the value of the third parameter to
177554.

If using the LSI-11, type P to proceed.

If using a UNIBUS PDP-11, restart the program (at xxx510 if
bootstrap tape); press CONT when the program halts.

DUMPAB dumps the specified segment of memory and halts.

Repeat steps 4 through 8 until all desired memory segments
have been dumped.

6-15

LOADING AND DUMPING MEMORY

10. A transfer block for DUMPAB must be generated to terminate
the dump. This value must be deposited in the first
parameter (step 4) to terminate DUMPAB. If the tape is not
to be self-starting, use 000001 as the transfer address.
Under no conditions can 000000 be used as the transfer
address.

11. Deposit 000000 in the second parameter (as in step 5).

12. Repeat step 7a or 7b, as appropriate, to punch the transfer
block.

6.3.1.2 Using DUMPAB and DUMPTT on Systems with Switch Registers -

1. Select the dump program desired and place it in the reader
specified by location xx7776 (see Section 6.1).

2. 1If a bootstrap tape is selected, load it using the Bootstrap
Loader, section 6.1.6.2. When the computer halts go to step
4.

3. 1If an absolute binary tape is selected, 1load it using the
Absolute Loader (section 6.2.2), relocating as desired.

Place the proper start address in the switch register, press
LOAD ADDRess and START. (The start addresses are shown in
section 6.3.3).

4. When the computer halts, enter the address of the desired
output device status register in the switch register and
press CONTinue (low-speed punch and teleprinter = 177564;
high-speed punch = 177554; 1line printer = 177514).

5. When the computer halts, enter in the switch register the
address of the first byte to be dumped and press CONTinue.
This address must be even when using DUMPTT.

6. When the computer halts again enter in the switch register
the address of the last byte to be dumped and press CONTinue.
When using the low-speed punch, set the punch to ON before
pressing CONTinue.

7. Dumping proceeds on the selected output device.
8. When dumping is complete, the computer halts.

If further dumping is desired, proceed to step 5. It is not necessary
to respecify the output device address except when changing to another
output device. In such a case, proceed to the second paragraph of
step 3 to restart.

If DUMPAB is being used, a transfer block must be generated as
described below. If a tape read by the Absolute Loader does not have
a transfer block, the loader will wait in an input loop. In such a
case, the program may be manually initiated. However, this practice
is not recommended, as there is no guarantee that load errors will not
occur when the end of the tape is read.

The transfer block is generated by performing step 5 with the transfer
address in the Switch Register, and step 6 with the transfer address
minus 1 in the Switch Register. If the tape is not to be
self-starting, an odd-numbered address must be specified in step 5
(000001, for example).

6~-16

LOADING AND DUMPING MEMORY

The dump programs use all eight general registers and do not restore
their original contents. Therefore, after a dump the general

registers should be loaded as necessary prior to their use by
subsequent programs.

6.3.2 Output Formats

The output from DUMPTT is in the following format:

XXXXXXDYYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY

where xxxxxx is the octal address of the first location printed or
punched, and yyyyyy are words of data, the first of which starts at
location xxxxxx. This is the format for every line of output. There
will be no more than eight words of data per line, but there will be
as many lines as are needed to complete the dump.

The output from DUMPAB is in absolute binary, as explained in section
6.2.3.

6.3.3 Storage Maps

The DUMPTT program is 87 words long. When used in absolute format the
storage map is:

xx7776

BOOTSTRAP LOADER
xx7744

ABSOLUTE LOADER
xx7500
xx7474 LOADER STACK SPACE
XxXxxxx+256

DUMPTT

X000 TWO-WORD STACK SPACE

xxxxx = desired load address = start address

When used in bootstrap format the storage map is:

LOADING AND DUMPING MEMORY

xx7776
BOOTSTRAP LOADER
xx7744
DUMPTT
start address = xx7440
xx7434 TWO-WORD STACK SPACE

The DUMPAB program (for systems with a switch register) is 65(10)
words long. When used in absolute format the storage map is:

xx7776
BOOTSTRAP LOADER
xx7744
ABSOLUTE LOADER
xx7500
xx7474 LOADER STACK SPACE
AXXXXX+244

DUMPAB

XXXXXX
THREE-WORD STACK SPACE

xxxxxx = desired load address = start address

When used in bootstrap format the storage map is:

The DUMPAB program (for systems without a switch register)

words long.

LOADING AND

xx7776

xx7744

start address = xx7510
xx7500

xx7776

xx7744

xx7500
xx7474

xXXxxx+202

AAXXXX

DUMPING MEMORY

BOOTSTRAP LOADER

DUMPAB

THREE-WORD STACK SPACE

B8O0OTSTRAP LOADER

ABSOLUTE LOADER

LOADER STACK SPACE

DUMPAB

TWO-WORD STACK SPACE

xxxxxx = desired load address = start address

is

When used in absolute format the storage map is:

82(10)

LOADING AND DUMPING MEMORY

When used in bootstrap format the storage map is:

xx7776
BOOTSTRAP LOADER
xx7744
DUMPAB
start address = xx7500
7474
x> TWO-WORD STACK SPACE

CHAPTER 7

INPUT/OUTPUT PROGRAMMING

7.1 INTRODUCTION

The PDP-11 Input/Output eXecutive (IOX), frees the user from dealing
directly with I/0 devices. It provides programming formats that allow
programs written for the paper tape software system to be used later
in a monitor environment with only minor coding changes.

I0X provides asynchronous I/0 service for the following
non-file-oriented devices:

1. Teletype keyboard, printer, and tape reader and punch
2. High-speed paper tape reader and punch

For line printer handling, in addition to all IOX facilities, IOXLPT
is available.

Simple I/0 requests can be made, specifying devices and data forms for
interrupt-controlled data transfers, that can occur concurrently with
the execution of a user program. Multiple I/O devices can run single-
or double-buffered 1/0 processing simultaneously.

Real-time capability is provided by allowing wuser programs to be
executed at device priority levels upon completion of a device action
or data transfer. :

Communication with IOX is accomplished by IOT (Input/Output Trap)
instructions in the user's program. Each IOT is followed by two or
three words consisting of one of the IOX commands and its operands.
The IOX commands can be divided into two categories:

1. those concerned with establishing necessary conditions for
performing input and output (mainly initializations), and

2. those concerned directly with the transfer of data.

When transfer of data is occurring, IOX is operating at the priority
level of the device. The calling program runs at its priority level,
either concurrent with the data transfer, or sequentially.

Programming format for commands is:

10T
.WORD (an address)
.BYTE (a command code), (a slot number)

Before using the data transfer commands, two preparatory tasks must be
performed:

INPUT/OUTPUT PROGRAMMING

l. Since device specifications are made by referring to "slots"
in IOX's Device Assignment Table (DAT) rather than devices
themselves, the slots specified in the code must have devices
assigned to them.

2. The buffer, whose address is specified in the code, must be
set up with information about the data.

In those non-data-transfer commands where an address or slot number
does not apply, a 0 must be used. Addresses or codes indicated can,
of course, be specified symbolically.

The following program segment illustrates a simple
input-process-output sequence. It includes:

1. The setting up of a single buffer

2. All necessary initializations

3. A formatted ASCII read into the buffer
4. A wait for completion of the read

5. Processing of data just reéd

6. A write command from the buffer.

RESET=2 FASSIGN IOX COMMAND CODES
READ=11
WAITR=4
WRITE=12
10T $I0X RESET TO DO NECESSARY
+WORD O SINITIALIZATIONS INCLUDING
+BYTE RESET:»0 SINITING SLOT O FOR KBDls AND 1 FOR TTY
10T FTRAFP TO IOX
+WORD BUFFER $SPECIFY BUFFER ;
+BYTE READ:O sREAD FROM KED (SLOT O0) TILL
sLINE FEED OR FORM FEED
WAITS I0T FTRAF TO 10X
+WORD WAIT #BUSY RETURN ADDRESS WHILE WAITING
$FOR KRD TO FINISH
+BYTE WAITR»O SWAIT FOR KBD (SLOT 0) TO FINISH
(rrocess BUFFER)
10T sTRAP TO IOX
«WORD BRUFFER $SPECIFY BUFFER
+BYTE WRITE.1 SWRITE TO TELEPRINTER (SLOT 1)
BUFFER? - 100 fBUFFER SIZE IN BYTES
(o] sCODE FOR FORMATTED ASCII MODE
O $10X WILL SET HERE THE NUMRER OF BYTES READ
+=,+100 " STORAGE RESERVED FOR 100 RYTES

In more complex programming it is likely that more than one buffer
will be set up for the transfer of data, so that data processing can
occur concurrently rather than sequentially, as here. Note too, that
there are five I0X commands not used in this example that will help
meet the requirements of 1/0 problems not as straightforward as this.

INPUT/OUTPUT PROGRAMMING

7.1.1 Using IOX With The LSI-11 Processor

IOX (IOXLPT) is supplied on source and relocatable object tapes. It
is thus unnecessary to assemble IOX unless the program is to be
modified. User object tapes can be linked with the 10X object tape
(using LINK-11S) to produce an absolute binary tape. Appendix J
describes assembly procedures for source tapes.

10X requires approximately 633 (decimal) words of core; JOXLPT
requires approximately 724 (decimal) words.

7.1.2 Using IOX with Unibus PDP-l1l]1l Processors

10X (IOXLPT) is supplied on source and binary tapes. Appendix J
describes assembly procedures for source tapes. Binary tapes are
loaded prior to user programs by the Absolute Loader. After I0X is
loaded, the Absolute Loader halts.

IOXLPT is used instead of IOX if the program uses a line printer.

10X is supplied on an absolute binary tape with a loading address of
15100; the 1load address for IOXLPT is 34600. 1f the user desires
different load addresses, the programs must be reassembled as
described in Appendix J.

10X requires approximately 634 (decimal) words of core; IOXLPT
requires approximately 725 (decimal) words.

7.1.3 10X Interrupt and Trap Vectors

I0X (IOXLPT) loads the following interrupt and trap vectors:

Console terminal

high speed reader and punch
timeout and other errors
I0T

line printer (IOXLPT only)

7.2 THE DEVICE ASSIGNMENT TABLE

The Device Assignment Table (DAT) makes programs device-independent by
allowing the user to refer to a slot to which a device has been
assigned, rather than a specific device itself. Thus, changing the
input or output device becomes a simple matter of reassigning a
different device to the slot indicated in the program.

The DAT is created by means of the Reset and/or Init commands. The
10X codes for devices (listed in the description of the Init command
below) are assigned to the slots.

INPUT/OUTPUT PROGRAMMING

7.2.1 Reset

I0T
+WORD 0
.BYTE 2,0

This command must be the first IOX command issued by a user program.
It clears the DAT, initializes IOX, resets all devices to their state
at power-up, enables keyboard interrupts, and initializes DAT slots 0
and 1 for the keyboard and teleprinter, respectively.

7.2.2 1Initialization

10T
-WORD (address of device code)
.BYTE 1, (slot number)

The device whose code (stored as a byte) is found at the specified
address is associated with the specified slot (numbered in the range
0-7). The device interrupt is turned off when necessary. (The
keyboard interrupt always remains enabled.) There is no restriction on
the number of slots that can be initialized to the same device.

DEVICE
DEVICE CODE
Teletype Keyboard (KBD) 1
Teletype printer (TTY) 2
Low-Speed Reader {LSR) 3
Low-Speed Punch (LSP) 4
High-Speed Reader (HSR) 5
High-Speed Punch (HSP) 6
Line Printer

(IOXLPT only) (LPT) 10

Note that a device code is used only in the 1Initialization {(INIT)
command. All other commands that refer to a device do so by means of
a slot. Example:

INIT=1
Iar sTRAF TO IOX
+WORD HSRCOD SINIT SLOT 3
+BYTE INIT,3 sFOR HSR
*
HSRCOD? +BYTE 5 +HSR CODE

7.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS

Use of data-transfer commands (Read, Write, Real-time Read, Real-time
Write) requires the creation of at least one buffer. This buffer is
used not only to store data for processing, but to hold information
regarding the quantity, form, and status of the data. The non-data

7-4

INPUT/OUTPUT PROGRAMMING

portion of the buffer is called the buffer header, and precedes the
data portion. In data transfer commands, it is the address of the
first word of the buffer header that is specified in the word
following the IOT of the command.

NOTE

I0OX uses the buffer header while
transferring data. The user's program
must not change or reference it.

The buffer format is:

Location Contents
Buffer Maximum number of data bytes (unsigned
integer)
BUFFER Buffer+2 Mode of data (byte)
HEADER
Buffer+3 Status of data (byte)
Buffer+4 " Number of data bytes involved in transfer

(unsigned integer)

Buffer+6 Actual data begins here

BUFFER SIZE (IN BYTES)

STATUS MODE

BYTE COUNT

DATA

7.3.1 Buffer Size

The first word of the buffer contains the size (in bytes) of the data
portion of the buffer as specified by the user. 1IOX will not store
more than this many data bytes on input. Buffer size has no meaning
on output.

7.3.2 Mode Byte

The low-order byte of the second word holds information concerning the
mode or transfer. A choice of four modes exists:

Coded as
1. Formatted ASCII (V] (or 200 to suppress echo)
2. Formatted Binary 1
3. Unformatted ASCII 2 (or 202 to suppress echo)
4. Unformatted Binary 3

INPUT/OUTPUT PROGRAMMING

The term echo applies only to the KBD. Data transfers from other
devices never involve an echo.
MODE BYTE
Bits 7 8 5 4 3 2 1 0 Bits
i UNFOR- _
1= NO ECHO MATTED BINARY =1
FOR-

0= ECHO matten | A" =0
7.3.3 Status-Byte
The high-order byte of the second word of the buffer header contains

information set by IOX on the status of the data transfer:

Bits 0-4 contain the non-fatal error codes (coded octally)

Bit 5 1 = End-Of-File has occurred (attempt at reading data
after an End-Of-Medium)
Bit 6 1 = End-of-Medium has occurred (see Section 7.3.3.3)
Bit 7 l = Done (Data Transfer complete)
STATUS BYTE
7 6 5 4 3 2 1 0
1 ¥ I J
= 1= = SEE CODES
DONE EOM EOF
L] 1 1

NON-FATAL ERRORS

7.3.3.1 Non-Fatal Error Codes (Octal) -

2 = checksum error
3 = truncation of a long line
4 = an improper mode

l. A checksum error can occur only on a Formatted Binary

(see Section 7.4.3).

read

INPUT/OUTPUT PROGRAMMING

2. Truncation of a long line can occur on either a Formatted
Binary or Formatted ASCII read (Section 7.4.1). This error
occurs when the binary block or ASCII line is bigger than the
buffer size specified in the buffer header. In both cases,
IOX continues reading characters into the last byte in the
buffer until the end of the binary block or ASCII line is
encountered. :

3. An improper mode can occur only on a Formatted Binary read.
Such occurrence means that the first non-null character
encountered was not the proper starting character for a
Formatted Binary block (see Section 7.4.3)

7.3.3.2 Done Bit - When the data transfer to or from the buffer is
complete, the Done Bit is set by IOX.

7.3.3.3 End-Of-Medium Bit - The following conditions cause the EOM
bit to be set in the buffer Status byte associated with a data
transfer command. An EOM occurrence also sets the Done Bit.

HSR HSP LSR - LPT
No tape No tape Timeout No paper
detected
Off line No ‘power No power
No power) : Printer drum gate open

Overtemperature condition

An End-Of-Medium condition on an output device is cleared by a manual
operation such as putting a tape in the high-speed punch. IOX does
not retain any record of an EOM on an output device. However, an EOM
on an input device is recorded by IOX so that succeeding attempts to
read from that device will cause an End-Of-File (see Section 7.3.3.4).
To reenable input the device must be manually readied and a Seek
command (Section 7.6) executed on the proper slot. The INIT and RESET
commands will also clear the EOM condition for the device.

See Section 7.5.3 for information on detection of conditions causing
LSR timeouts.

When an End-Of-Medium has occurred on a Read, there may be data in the
buffer. If an EOM has occurred on a Write, there is no way of knowing
how much of the buffer was written.

7.3.3.4 End-Of-File Bit - An EOF condition appears in the Status byte
if an attempt to read is made after an EOM has occurred. EOF cannot
occur on output. When an EOF has occurred, no data. is available in
the buffer.

INPUT/OUTPUT PROGRAMMING

7.3.4 Byte Count
The third word contains the Byte Count:

Input: In unformatted data modes, 10X reads as many data bytes
as the user has specified. 1In formatted modes, IOX
inserts here the number of data bytes available in the
buffer. In all modes, if an EOM occurs, IOX will set
the Byte Count equal to the number of bytes actually
read. If an EOF occurs, Byte Count will be set to 0.

Output: Byte Count determines the number of bytes output, for
all modes. An HSP end-of-tape or LPT out-of-paper
condition will also terminate output, and EOM will be
set in the Status byte. IOX does not modify the Byte
Count on output. '

7.4 MODES

7.4.1 Formatted ASCII

A Formatted ASCII read transfers 7-bit characters (bit 8 will be zero)
until a line feed or form feed is read. IOX sets the Byte Count word
in the buffer header to indicate the number of characters in the
buffer. If the 1line 1is too long, characters are read and overlaid
into the last byte of the buffer until an end-of-line (a line feed or
form feed) or EOM is detected. Thus, if there is no error, the buffer
will always contain a line feed or form feed.

A Formatted ASCII write transfers the number of 7-bit characters
specified by the buffer Byte Count. Bit 8 will always be output as
zero.

Device-Dependent Functions

Keyboard

Seven-bit characters read from the keyboard are entered in the buffer
and are echoed on the teleprinter except as follows:

Null - Ignored. This character is not echoed or
transferred to the buffer.
Tab - Echoes as spaces up to the next tab stop. "Stops”
{(CTRL/TAB are located at every 8th carriage position.
keys)
RUBOUT - Deletes the previous character on the current line

and echoes as a backslash (\). If there are no
characters to delete, RUBOUT is ignored.

CTRL/U — Deletes the current line and echoes as 4U.
Carriage - Echoes as a carriage return followed by a line feed.
Return Both characters enter the buffer.

(RETURN key)

CTRL/P - Echoes as 4P and causes a Jjump to the restart
address, if non-zero (see 7.6.2).

The echo may be suppressed by setting bit 7 of the buffer header Mode
byte.
7-8

INPUT/OUTPUT PROGRAMMING

If the buffer overflows, only the characters which fit into the buffer
are echoed. Of course, characters which are deleted by RUBOUT or
CTRL/U do not read into the buffer even though they are echoed. If a
carriage return causes an overflow, or is typed after an overflow has
occurred, a carriage return and line feed will be echoed but only the
line feed will enter the buffer.

In the following Formatted ASCII examples:
1. assume there is room for five characters

2. </ indicates:
.in left column, the RETURN key
-in center column, the execution of a carriage return
in right column, the ASCII code for carriage return

3. + indicates:
in center column, the execution of a line feed
in right column, the ASCII code for line feed

4. RUB indicates the RUBOUT key
ouT

5. CTRL indicates the CTRL and U keys.

U
Typed Echoed Entered Buffer

ABC./ ABC/+ ABC.L/+

ABCD./ ABCD /+ ABCD+

ABCDEF./ ABCD/+ ABCD +

ABCDEF RUB_/ ABCD\ /¥ ABC/+
ouT

CTRL RUB_/

4] our tU/+ -/t

ABCDEF RUB RUB_J ABCD\\ </ + AB/+
OUT OUT

ABCDEF RUB RUB RUB _ ABCD \\\X../+ AX/+

ouT ouT out X

Low-Speed Reader and High-Speed Reader

All characters are transferred to the buffer except that nulls and
rubouts are ignored.

Teleprinter

Characters are printed from the buffer as they appear except that
nulls are ignored and tabs are output as spaces up to the next tab
stop.

Low-Speed Punch and High-Speed Punch

Characters are punched from the buffer as they appear except that
nulls are ignored and tabs are followed by a rubout.

INPUT/OUTPUT PROGRAMMING

Line Printer (IOXLPT only)

Characters are printed from the buffer as they appear except as
follows:

Nulls - Ignored

Tab - Output as spaces up to the next tab stop.
Carriage - Ignored. It is assumed that a line feed or form
Return feed follows. These characters cause the 1line

printer "carriage" to advance.

All characters beyond the 80th are ignored except a line feed or form
feed. .

7.4.2 Unformatted ASCII

Unformatted ASCII transfers the number of 7-bit characters specified
by the header Byte Count.

Device-Dependent Functions
Keyboard
Characters are read and echoed except as follows;
Tab : - Echoes as spaces up to the next tab stop.

CTRL/P - Echoes as "P and causes a jump to the restart
address, if non-zero (see 7.6.2).

7.4.3 Formatted Binary

Formatted Binary is used to transfer checksummed binary data (8-bit
characters) in blocks. A Formatted Binary block appears as follows:

Byte (Octal) Meaning

001 - Start of block

000 - Always null

XXX - Block Byte Count (low-order followed by
XXX - high-order). Count includes data and

preceding four bytes.

DDD ™

. ? - Data bytes

CcCcC - Checksum. Negation of the sum of all
preceding bytes in the block.

7-10

INPUT/OUTPUT PROGRAMMING

IOX creates the block on output, from the buffer and buffer header.
The Byte Count word in the buffer header specifies the number of data
bytes following, which are to be output. Note that the Byte Count
output is four 1larger than the header Byte Count. As the block is
output, IOX calculates the checksum which is output following the last
data byte. ’

On Formatted Binary reads, IOX ignores null characters until the first
non-null character is read. If this character is a 001, a Formatted
Binary block is assumed to follow and is read from the device under
control of the Byte Count value. If the first non-null character is
not 001, the read is immediately terminated and error code 4 is set in
the Status byte. As the block is read a checksum is calculated and
compared to the checksum following the block. If the checksum is
incorrect, error code 2 is set in the Status byte of the buffer
header. If the binary block is too large (Byte Count less 4, larger
than the Buffer Size specified in the header), the last byte of the
buffer is overlaid until the last data byte has been read; error code
3 is set in the Status byte.

Device~-Dependent Functions

None. Eight-bit data characters are transferred to and from the
device and buffer exactly as they appear.

7.4.4 Unformatted Binary

This mode transfers 8-bit characters with no formatting or character
conversions of any kind. For both input and output, the buffer header
Byte Count determines the number of characters transferred.

Device-Dependent Functions

None

7.5 DATA TRANSFERS

7.5.1 Read

10T

.WORD (address of first word of the buffer header)
.BYTE 11, (slot number)

This command causes IOX to read from the device associated with the
specified slot according to the information found in the buffer
header. 1I0X initiates the transfer of data, clears the Status byte,
and returns control to the <calling program. If the device on the
selected slot is busy, or a conflicting device (see Section 7.5.3) is
busy, IOX retains control until the data transfer can be initiated.
Upon completion of the Read, the appropriate bits in the Status byte
are set by IOX and the Byte Count word indicates the number of bytes
in the data buffer. Note that use of the KBD while an LSR Read is 1in

progress will intersperse KBD characters into the buffer
unpredictably.

INPUT/OUTPUT PROGRAMMING

7.5.2 Write

IO0T -

.WORD (address of first word of the buffer header)
.BYTE 12, (slot number)

I0OX writes on the device associated with the specified slot according
to the information found in the buffer header. Transfer of data
occurs in the amount specified by Byte Count (Buffer+4). IOX returns
control to the calling program as soon as the transfer has been
initiated. If the device on the selected slot is busy, or a
conflicting device is busy, IOX retains control until the transfer can
be initiated. Upon completion of the Write, IOX will set the Status
byte to the 1latest conditions. If a Write causes an EOM condition,
the user has no way of determining how much of his buffer has been
written (the Byte Count remains the same.)

7.5.3 Device Conflicts In Data Transfer Commands

Because there is a physical association between the devices on the ASR
Teletype, certain devices cannot be in use at the same time. When a
data transfer command is given, I0X simultaneously checks for two
conditions before executing the command:

1. 1Is the device requested already in use? and,

2, 1Is there some other device in use that would result in an
operational conflict?

IOX resolves both conflict situations by waiting until the first
device 1is no 1longer busy, before allowing the requested device to
start functioning. (This is an automatic Waitr command. See next
section.}) For example, if the LSR is in use, and either a KBD request
or a second request for the LSR itself is made, IOX will wait until
the current LSR read has been completed before returning control to
the calling program. In the particular case of the LSR, I0X also
performs a timeout check while waiting for it to become available.

When a Read command has been issued for the LSR, IOX waits about 100
milliseconds for each character to be read. If no character is
detected by this time (presumably because the LSR is turned off, or
out of tape), a timeout is declared and IOX sets EOM in the
appropriate buffer Status byte.

The following is a table listing the devices. Corresponding to each

device on the left is a list of devices (or the echo operation) which
would conflict with it in operation.

All Possible Conflicting

Device Devices or Operations
KBD CHO, KBD, TTY, LSR, LSP
TTY Echo, KBO, TTY, LSP
LSR KBD, LSR
LSP Echo, KBD, TTY, LSP
HSR HSR
HSP HSP

LPT (IOXLPT only)LPT

INPUT/OUTPUT PROGRAMMING

7.5.4 Waitr (Wait, Return)

10T
.WORD (busy return address)
.BYTE 4, (slot number)

Waitr, like device conflict resolution, causes 10X to test the status
of the device associated with the specified slot. If the device (or
any possible conflicting device) is not transferring data, control is
passed to the instruction following the Waitr. Otherwise, IOX
transfers program control to the busy return address. If it is
desired to continuously test for completion of data transfer on the
device, the busy return address of the immediately preceding IOT
instruction can be specified, effecting a Wait loop.

If a slot is inited to any device other than the LSR, control is
returned to the calling program about 150 microseconds after execution
of a Waitr. For the LSR, however, the time is about 100 milliseconds.

Note that a not-busy return from Waitr normally means the device is
available. However, in the case of a Write, this only means that the
last character has been output to the device. The device is still in
the process of printing or punching the character. Thus, care must be
exercised when performing an I0X Reset, hardware RESET, or HALT after
a Write-Waitr sequence, since these may prevent the last character
from being physically output.

7.5.5 Waitr vs. Testing the Buffer Done Bit

Since 10X permits you to have device-independent code, it may not be
known, from run to run, what devices will be assigned to the slots in
your program. Waitr tests the status, not only of the device it
specifies, but also of all possible conflicting devices.

This means that when Waitr indicates that the device is not busy, the
data transfer on the device of interest may have been done for some
time. Depending on the program and what devices are assigned to the
slots for a given run, the Waitr could have been waiting an additional
amount of time for a conflicting device to become free.

Where this possibility exists and buffer availability is what 1is of
interest, testing the Done bit of the Status byte (set when buffer
transfer is complete) would be preferable to Waitr; whereas Waitr
would be preferable if device availability is what is of interest.

This distinction is made in order to write device-independent code.
In the example below:

1. If the devices at slots 2 and 3 could be guaranteed always to
be conflicting, neither Waitr nor testing the Done bit would
be necessary, because IOX would automatically wait for the
busy device to finish before allowing the other device to
begin.

2. 1If these devices could be guaranteed never to be conflicting,
it wouldn't matter which of these methods was used, because
Waitr couldn't be waiting extra time for a conflicting device
(of no interest) to become free.

INPUT/OUTPUT PROGRAMﬁiNG

Example: PROGRAM A PROGRAM B
10T 10T
+WORD RUF2 +WORD RUF2
+BYTE READ, SLOT2 +BYTE READy SLOT2
10T E 10T
+WORD BUF1 +WORD BUF1
+BYTE READ» SLOTZ2 +BYTE READs SLOT2
10T 10T
+WORD BUF2 +WORD RUF2
+RYTE WRITE» SLOT3 +BYTE WRITEy SLOT3
DUNTST? TSTB BUF1+43 DREVTST! 10T
BPL DUNTST +WORD DEVTST

+BYTE WAITR,SLOT2

IoT
+WORD SLOT2DEV
+BYTE INIT, SLOTA4

Programs A and B do two successive reads from the same device into two
different buffers. Since the devices are the same, IOX waits for the
first read to finish before allowing the second to begin.

In Program A, we wish to process buffer 1. To have issued a Waitr for
the device associated with slot 2 could have meant waiting also for
the device at slot 3 if that device were in conflict. Hence, testing
the Done bit in the buffer header is the proper choice.

In Program B, we wish control of the device at slot 2, so that it can

be assigned to another slot and so we must know its availability.
Therefore, Waitr is appropriate.

7.5.6 Single Buffer Transfer on One Device

Al 10T #TRAP TO IOX
+WORD BUF1 sSPECIFY BUFFER
+BYTE READ»SLOT3 sREAD FROM DEVICE AT
FSLOT 3 INTO BUFFER
BUSY?! 10T $TRAFP TO I0X
+WORD RUSY SPECIFY BUSY RETURN ADDRESS
+BYTE WAITR,SLOT3 fWAIT FOR DEVICE AT SLOT

#3 TO FINISH READING
(rrocess buffer 1)

JMFP A

The program segment above includes a Waitr which goes to a Busy Return
address that is its own IOT ~- continuously testing the device at slot
3 for availability. 1In this instance, involving only a single device
and a single buffer, a Done condition in the Buffer 1 Status byte can
be inferred from the availability of the device at slot 3. This
knowledge assures us that all data requested for Buffer 1 is available
for processing.

Testing the Done Bit of Buffer 1 might have been used instead, but was
not necessary with only one device operating. Moreover, a Waitr,
unlike a Done Bit test, would detect a timeout on the LSR if that
device happened to be associated with slot 3.

7-14

INPUT/OUTPUT PROGRAMMING

7.5.7 Double Buffering

I0T $TRAP TO I0X
+WORD BUF1 JSPECIFY BUFFER 1
+BYTE READsSLOT3 $READ FROM DEVICE AT
$SLOT 3 INTO BUFFER 1
Al I0T sTRAP TO IO0X
+WORD EBUF2 $SFECIFY BUFFER 2
+BYTE READ,SLOT3 READ FROM DEVICE AT SLOT

#3 INTO BUFFER 2

(process BUF1 concurrent with Read into BUF2)

B 10T sTRAP TO IOX
+WORD BUF1 $SPECIFY BUFFER 1
+BYTE READ»SLOT3 $READ FROM DEVICE AT

$§SLOT 3 INTO BUFFER 1
{(process BUF2 concurrent with Read into BUF1)
JMP A '

The example above illustrates a time-saving double-buffer scheme
whereby data is processed in Buffer 1 at the same time as new data is
being read into Buffer 2; and, sequentially, data is processed in
Buffer 2 at the same time as new data is being read into Buffer 1.

Because 1IO0X ensures that the requested device 1is free before
initiating the command, the subsequent return of control from the IOT
at A implies that the read prior to A is complete; that 1is, that
buffer 1 1is available for processing. Similarly, the return of
control from the IOT at B implies that buffer 2 is available. Waitr's
are not required because I0X has automatically ensured the device's
availability before initiating each Read.

7.5.8 Readr (Real-time Read)

I0T -

.WORD (address of first word of the buffer header)
.BYTE 13, (slot number)

.WORD (done-address)

The Readr command functions as the Read except that upon completion of
the data transfer, program control goes to the specified Done-address
at the priority level of the device. Readr is used when you wish to
execute a segment of your program immediately upon completing the data
transfer. IOX goes to the Done address by executing a JSR R7,
Done~address.

The general registers, which were saved when the 1last character
interrupt occurred, are on the SP stack in the order indicated below:

(SP)~» Return address to IOX
R5
R4
R3
R2
Rl
RO

INPUT/OUTPUT PROGRAMMING

Return to IOX is accomplished by an RTS R7 instruction. 1IOX will then
restore all registers and return to the interrupted program.-*Care
should be taken in initiating another data transfer if the specified
device can conflict with device requests at other priority levels.
Waitr cannot be used to resolve conflict situations between priority
levels.

7.5.9 Writr (Real-time Write)

I0T

-WORD (address of first word of the buffer header)
.BYTE 14, (slot number of device)

«WORD (done address)

The Writr command functions as the Write except that, upon completion
of the data transfer, program control goes to the specified
Done-address at the priority level of the device. IOX goes to the
Done-address by executing a JSR R7, Done-~address. The condition of
the general registers and the return to IOX are the same as for Readr.
Writr 1is wused when you wish to execute a segment of your program
immediately upon completing the data transfer.

As in the Readr, care should be taken in initiating another data

transfer if the specified device can conflict with device requests at
the priority level of the calling program.

7.6 REENABLING THE READER AND RESTARTING

7.6.1 Seek

IO0T
.WORD 0
.BYTE 5, (slot number of LSR or HSR)

The Seek command clears IOX's internal End-Of-Medium (EOM) indicator
on the LSR or HSR, making possible a subsequent read on those devices.
With no EOM, an EOF cannot occur. The device associated with the
specified slot remains Inited.

7.6.2 Restart

I0T

.WORD (address to restart)
.BYTE 3,0

This command designates an address at which to restart your program.
After this command has been issued, typing CTRL/P on the KBD will
transfer program control to the restart address, providing there is no
LSR read in progress. In such a case, the LSR must be turned off
(causing a timeout) before typing a CTRL/P. If the Restart address is
designated as 0, the CTRL/P Restart capability is disabled.

The Restart command does not cancel any I/0 in progress. It is the
program's responsibility in its restart routine to clean up any I/O by
executing a RESET command and ensuring that the stack pointer is
reset.

INPUT/OUTPUT PROGRAMMING

7.7 FATAL ERRORS

Fatal errors result in program termination and a jump to location 40g
(loaded with a HALT by IOX), with RO set to the error code and Rl set
as follows:

If the fatal error was due to an illegal memory reference (code
0), Rl will contain the PC at the time of the error.

If the fatal error was due to an error coded in the range 1-5, Rl
will point to some element in the IOT argument list or to the
instruction following the argument list, depending on whether I0X
has finished decoding the arguments when it detects the error.

Fatal Error Code Reason
0 Illegal Memory Reference, SP overflow, illegal
instruction
1 Illegal IOX command
2 Slot out of range
3 Device out of range
4 Slot not inited

5 Illegal data mode

Note that the SP stack contains the value of the registers at the time
of the error, namely

(SP)> RS
R4
R3
R2
Rl
RO
PC
Processor Status (PS)

(See Section 7.3.3.1 for a discussion of non-fatal errors.)

7.8 EXAMPLE OF PROGRAM USING IOX

This program is used to duplicate paper tape. Note that it could be
altered by changing the device code at RDEV or PDEV. For instance,
the program could easily be made to list a tape.

RO=%0
R1=%1
R2=%2
R3=%3
R4=%4
R6=%6
KSLOT=0
TSLOT=1
RSLOT=3
FSLOT=4
RESET=2
RESTRT=3
INIT=1

INPUT/QUTPUT PROGRAMMING

WAITR=4

READ=11

WRITE=12

EQF=20000

CR=15 CR ASSIGNED ASCII CODE FOR CARRIAGE RETURN

LF=12 fLF ASSIGNED ASCII CODE FOR LINE FEED
+=1000

MSG1: 0 5§ CANNED MESSAGE
0 ~ sFORMATTED ASCII

MSG1RC?! END1-~MSG1BC-2 $BYTE COUNT

+BYTE CRyLF

+ASCII / PLACE TAPE IN READER/

+BYTE CRyLF

+ASCII / STRIKE CR WHEN READY/
ENDI? +EVEN

RUF3: 2 $BUFFER SIZE
0 sFORMATTED ASCII MODE
0 sRC
0 sCR LF
RIDEV? S +DEVICE CODE FOR HSR
FDEV? & FDEVICE CODE FOR HSP
BUF1¢ 100 s BUFFER SIZE
3 $CODE FOR UNFORMATTED RINARY
100 FSPECIFIES NUMRER OF BYTES FOR TRANSFER
+=4+100 FRESERVES STORAGE FOR DATA
BUF2? 100 #BUFFER SIZE
3 sCODE FOR UNFORMATTED BRINARY
100 #+SPECIFIES NUMBER OF BYTES FOR TRANSFER
+=++100 RESERVES STORAGBE FOR DATA
BREGIN: MOV *#500rR6 FSPECIFY ADDRESS FOR ROTTOM OF STACK
1aT
0
+BYTE RESET»0 SINITIALIZATION
Iar
BREGIN F"BEGIN" SPECIFIED AS RESTART
+BYTE RESTRTs0 #ADDRESS FOR CTRL P
MOV #100yBUF1+4 ¥SET UP INITIAL BRC ON BUF1
MOV $#100yBUF2+4 #SET UP INITIAL BC ON RUF2
107 STYPE OUT DIRECTIONS
ME6G1
+BYTE WRITE,TSLOT
107 fREAD A CRsLF
BUF3
+BYTE READKSLOT
Al 10T $WAIT FOR HIM TO TYFE A CARRIAGE RETURN»
fLINE FEED
A
+BYTE WAITRyKSLOT
IoT FINIT READER
RDEV ‘
+BYTE INIT,»RSLOT
10T §INIT PUNCH

FDEV
+BYTE INIT»PSLOT

INPUT/OUTPUT PROGRAMMING

107 $START FIRST READ
BUF1
+BYTE READsRSLOT
L.OOF ¢ 10T $READ INTO 2ND BUFFER
RUF2
+BYTE READYRSLOT
BIT $EOQF BUF1+2 $END OF FILET
BNE BEGIN $YES
$NO
107 SWRITE OUT THIS BUFFER
BUF1
+BYTE WRITE»FSLOT
c? I0T sWAIT TILL DEVICE HAS FINISHED
C
+BYTE WAITRsPSLOT
IoT $READ INTO 1ST BUFFER
BUF1
+BYTE READyRSLOT
BIT $EQF » BUF 242 $END OF FILET
BNE BEGIN
T FWRITE OUT BUFFER 2
BUF2
+BYTE WRITE.PSLOT
B: 107 SWAIT TILL DEVICE HAS FINISHED
B
+BYTE WAITRyPSLOT
BR LoorP

+END REGIN

7.9 I0X INTERNAL INFORMATION

7.9.1 Conflict Byte/Word

The IOX Conflict byte (in IOXLPT, Conflict Word) contains the status
(busy or free) of all devices as well as whether or not an echo is in
progress. Bit 0 is the echo bit, bits 1-6 (and 8 in IOXLPT) refer to
the corresponding codes for devices:

If Bit is Set

Bit 0 = Echo in progress
Bit
1 = KBD busy
Device
Bit
2 = TTY busy
Device
Bit
3 = LSR busy
Device

7-19

INPUT/OUTPUT PROGRAMMING

Bit

4 = LSP busy
Device
Bit

5 = HSR busy
Device
Bit

6 = HSP busy
Device
Bit 8

= LPT busy

Device 108

In IOXLPT, the Conflict Byte is expanded to a word in order to
accommodate the line printer, there being no bit 8 to correspond with
that device's code of 10 (octal) (the lowest available code for an
output device - see Section 7.9.5.1).

. All Possible Conflict
Device Conflicting Devices Number
KBD Echo, KBD, TTY, LSR, LSP 37
TTY Echo, KBD, TTY, LSP 27
LSR KBD, LSR 12
LSP Echo, KBD, TTY, LSP 27
HSR HSR 40
HSP HSP 100
LPT LPT 400

For each of the devices in the left hand column, all the possible
conflicts are 1listed along with their respective conflict numbers.
These numbers, representing bit patterns of the devices 1listed in
column two above, are used to resolve any conflicting requests for
devices. The appropriate number is masked with the conflict byte. 1If
the result is zero, there are no conflicts and the device being tested
has its bit set allowing data transfer to begin.

7.9.2 Device Interrupt Table (DIT)

Each device interrupt handler has associated with it a Device
Interrupt Table (DIT) containing information that the handler needs:

DIT Checksum

DIT+2 Byte size from buffer header

DIT+4 Address of Mode byte in buffer header
DIT+6 Byte Location Pointer

DIT+10 Byte Count

DIT+12 Device code

INPUT/OUTPUT PROGRAMMING

DIT+14 Real time done-address
DIT+16 Address of device's data buffer register
The device interrupt routines gain access to the proper data by means

of the DIT entry. when a transfer 1is complete, they set the
appropriate bits in the buffer header pointed to by the DIT contents.

7.9.3 Device Status Table (DST)

The Device Status Table (DST) is used by IOX to check for EOF
conditions. This table contains a word for each device indicating an
EOM condition with a 1. When an EOM condition is recognized on input,
I0OX not only sets the appropriate bit in the buffer status byte
associated with the data transfer, it also records this occurrence in
the DST. When a data transfer command is given, IOX checks the DST
for the EOM condition. If the appropriate word has a value of 1, IOX
sets EOF in the Status byte of the current-command buffer. Since EOF
is only possible for the LSR (code 3), and HSR (code 5), the words
corresponding to those devices are the only ones that can ever be set
to 1.

7.9.4 Teletype Hardware Tab Facility

If the Teletype model has a hardware tab facility, teleprinter output
can be speeded up by:

1. For IOX, deleting the code from I.TTYCK+6 through I.TAB3+3.

2. For IOXLPT, skipping the code from I.IOLF through I.TAB3+3
{(for the teleprinter only - not the line printer).

7.9.5 Adding Devices To IOX

In order to add a device to IOX the following tasks must be done:
1. Assign a legal code to the device
2. Modify the IOX tables
3. Provide an interrupt routine to handle data for the device.

The line printer (in IOXLPT) will be used as an example throughout
this discussion.

7.9.5.1 Device Codes - The numbers from 7 to 17 (octal) are available
for new-device codes, with the exception of 10 (octal) in the IOXLPT
version. This code has been assigned to the line printer. The device
code must be odd for an input device and even for an output device.
This is so a check can be made for command/device correspondence;
i.e., for a Read from an input device or a Write to an output device.

If the newest device was assigned a number that is higher than the
codes of all the other devices, I.MAXDEV must be redefined to that
value. This is so an out-of-range device specification in an Init
command can be detected. In IOXLPT, I.MAXDEV=10.

7-21

INPUT/OUTPUT PROGRAMMING

Since each device code functions as an index in several word tables,
the entries relating to a given device must be placed at the same
relative position in each appropriate table. That is, the code mumber
must indicate how many words into the table the entry for that device
will be found. This, of course, means accounting for any unused space
Preceding the entry, if the codes are not assigned in strict sequence.
Table entries for the line printer are found at the 10th (octal) word
past the table tag, i.e., at Table+20.

7.9.5.2
1.

Table Modification -

I.FUNC - Each entry is the octal value of the bit pattern in
the device Control/Status Register that enables the
corresponding device and/or any interrupt facility it has.
Bit setting this number into the device's Control/Status
register turns the device on; bit clearing turns it off.
Determine this value for the device to be added, and place
the entry in the appropriate device position in the table.
For example, the line printer Control/Status Register has an
Interrupt Enable facility in bit 6. This pattern of 100 is
the LPT entry, and is located at I.FUNC+20.

I.SCRTAB - This table contains the addresses of the device
Control/Status registers. The 1line printer entry I.LPTSCR
has the value 177514, and is located at I.SCRTAB+20.

I.DST - (Refer to Section 7.9.3.) Create an entry of 0 for
the device in ‘the proper table location. Inserting a word of
0 at I.DST+20 created a device status entry for the line
printer. ;

I.CONSIT - An entry in this table is used to set or clear a
device's busy/free bit in the Conflict Byte (Conflict Word in
IOXLPT). (See Section 7.9.1, and 5. below.) Each value is
obtained by setting one bit only - the bit number
corresponding to the device number. The line printer, being
device 10(octal), has a value of 400(octal) (bit 10 set) and
is located at I.CONSIT+20.

In the IOX version without the line printer, entries to this
table are found in the high-order bytes of Table I.CONFLC.
One more input device entry can be added to it. In IOXLPT,
however, I.CONSIT is a separate word table, allowing eight
more devices (four input and four output) to be added. Byte

‘operations in the 1IOX 1I.CONSIT became word operations in
IOXLPT to adapt to this expansion.

I.CONFLC - (Refer to Section 7.9.1 on Conflict Byte/Word.)
Entries are bit patterns of conflicting devices. Since the
line printer can only conflict with itself, the I.CONFLC
entry is equal to the I.CONSIT entry. As in the I.CONSIT
table, byte operations were changed to word operations for
I.CONFLC in IOXLPT. y

Create a DIT for the device (refer to Section 7.9.2) by
assigning a DIT 1label and seven words of 0. If it is an
output device, the address of the Device Buffer Register must
be added as an eighth word.

INPUT/OUTPUT PROGRAMMING

7. I1.INTAB - This is a table of DIT addresses. Place the label
of the DIT (mentioned in 6. above) in the correct position
in the table. I.INTAB+20 contains the 1line printer entry
I.LPTDIT.

7.9.5.3 Interrupt Routines - Write (and assign a label to) an
interrupt routine for the device to:

l. Get a character

2. Check for errors by means of the device Control/Status
register

3. Do character interpretation according to the device and mode
4. Get a character in or out of the buffer
5. Update IOX's Byte Count

6. Compare IOX's Byte Count to User's Byte Count and Buffer size
specification

7. Return for next character

Place the label of the interrupt routine at the address of the device
vector, and follow it with the value of the interrupt priority in bits
7, 6, and 5. I.LPTIR, the address of the 1line printer interrupt
routine, 1is at location 200. Location 202 contains the value 200
(indicating priority level 4).

If the device to be added is similar to the other single-character
devices, steps 3-7 above can be performed by IOX as indicated below:

There are two routines, I.INPUT and I.OUTPUT, that are called from the
interrupt routines. These routines mainly perform common functions
for input and output devices. They are called as follows: .

JSR R5,I.INPUT and JSR R5,I.0OUTPUT

At the location following one of these calls is the DIT for the proper
device. The - routine is thus able to use R5 to reference the DIT
entries.

I.INPUT and I.QUTPUT also contain device-dependent code to perform
functions such as tab counters for the teleprinter and line printer,
and deletion of carriage returns in Formatted ASCII mode for the 1line
printer. The device index value is used to identify the device. For
the line printer, a symbol I.LPT, has been assigned the value 20 for
convenient reference to the device index.

CHAPTER 8

FLOATING POINT MATH PACKAGE OVERVIEW'

The new Floating-Point Math Package, FPMP-11, is designed to bring the
2/4 word floating point format of the FORTRAN environment to the paper
tape software system of the PDP-1l. The numerical routines in FPMP-11
are the same as those of the DOS/BATCH FORTRAN Operating Time System
(OTS) . TRAP and error handlers have been included to aid in
interfacing with the FORTRAN routines.

FPMP-11 provides an easy means of performing basic arithmetic
operations such as add, subtract, multiply, divide, and compare. It
also provides transcendental functions (SIN, COS, etc.), type
conversions (integer to floating-point, 2-word to 4-word, etc.), and
ASCII conversions (ASCII to 2-word floating-point, etc.).

Floating-point notation is particularly useful for computations
involving numerous multiply and divide operations where operand
magnitudes may vary widely. FPMP-11 stores very large and very small
numbers by saving only the significant digits and computing an
exponent to account for leading and trailing zeros.

To conserve core space in a small system, FPMP-11l can be tailored to
include only those routines needed to run a particular user program.

For more information on FPMP-11, refer to the FPMP-11 User's Manual
(DEC~11-NFPMA-A-D) and to Appendix H of this manual.

'FPMP is not currently available for the LSI-11 (PDP-11/03).
8-1

CHAPTER 9

PROGRAMMING TECHNIQUES

This chapter presents various programming techniques. They can be
used to enhance your programming and to make optimum use of the PDP-11
processor. The reader is expected to be familiar with the PAL-11
assembly language (Chapters 1 & 2).

9.1 WRITING POSITION INDEPENDENT CODE

When a standard program is available for different users, it often
becomes wuseful to be able to load the program into different areas of
core and to run it there. There are several ways to do this:

1. Reassemble the program at the desired location.

2. Use a relocating loader which accepts specially coded binary
from the assembler.

3. Have the program relocate itself after it is loaded.
4. Write code which is position independent.

On small machines, reassembly is often performed. When the required
core is available, a relocating loader (usually called a linking
loader) is preferable. It generally is not economical to have a
program relocate itself since hundreds or thousands of addresses may
need adjustment. Writing position independent code is usually not
possible because of the structure of the addressing of the object
machine. However, on the PDP-~11, position independent code (PIC) is
possible.

PIC is achieved on the PDP-11l by using addressing modes which form an
effective memory address relative to the Program Counter (PC). Thus,
if an instruction and its object(s) are moved in such a way that the
relative distance between them 1is not -altered, the same offset
relative to the PC can be used in all positions in memory. Thus, PIC
usually references locations relative to the current location. PIC
may make absolute references as long as the locations referenced stay
in the same place while the PIC is relocated. For example, references
to interrupt and trap vectors are absolute, as are references to
device registers in the external page and direct references to the
general registers.

PROGRAMMING TECHNIQUES

9.1.1 Position Independent Modes

There are three position independent modes or forms of instructions.

They are:

1.

Branches -- the conditional branches, as well as the
unconditional branch, BR, are position independent since the
branch address is computed as an offset to the PC.

Relative Memory References -- any relative memory reference
of the form

CLR X

MOV X,Y
JMP X

is position independent because the assembler assembles it as
an offset indexed by the PC. The offset is the difference
between the referenced location and the PC. For = example;
assume the instruction CLR 200 is at address 100:

100/ 005047 $FIRST WORD OF CLR 200
102/ 000074 sOFFSET = 200-104

The offset is added to the PC. The PC contains 104, i.e.,
the address of the word following the offset.

Although the form CLR X is position independent, the form CLR
@X is not. Consider the following:

§!¢ CLR @X fCLEAR LOCATION A

X! +WORD A #POINTER TO A

Al WORD O

‘The contents of location X are used as the address of the

operand in the location labeled A. Thus, if all of the code
is relocated, the contents of location X must be altered to
reflect the new address of A. If A, however, was the name
associated with some fixed location (e.g., trap vector,
device register), then statements S and X would be relocated
and A would remain fixed. Thus, the following code is
position independent.

A = 36 JADDRESS OF SECOND WORD OF
FTRAP VECTOR
8! CLR @ex $CLEAR LOCATION A
X! WORD A sFOINTER TO A

Immediate Operands -- The assembler addressing form #X
specifies immediate data, that 1is, the operand is in the
instruction. Immediate data is position independent since it
is a part of the instruction and is moved with the

9-2

PROGRAMMING TECHNIQUES

instruction. Immediate data is fetched using the PC in the
autoincrement mode.

As with direct memory references, the addressing form @#X is
not position independent. As before, the final effective
address is absolute and points to a fixed location not
relative to the PC. ‘ ‘

9.1.2 Absolute Modes

Any time a memory location or register is used as a pointer to data,
the reference is absolute. If the referenced data is fixed in memory,
independent of the position of the PIC (e.g., trap-interrupt vectors,
device registers), the absolute modes must be ugsed.! If the data is
relative to the PIC, the absolute modes must not be used unless the
pointers involved are modified. The absolute modes are:

ex Location X is a pointer

a#X The immediate word is a pointer

(R) The register is a pointer

(R) + and -(R) The register is a pointer

@(R)+ and @-(R) The register points to a pointer

X(R) R#6 or 7 The base, X, modified by (R) is
the address of the operand

@X(R) The base, modified by (R), is a
pointer

The non-deferred index modes and stack operations require a little
clarification. As described in Sections 3.6.10 and 9.1.1, the form
X(7) is the normal mode to reference memory and is a relative mode.
Index mode, using a stack pointer (SP or other register) is also a
relative mode and may be used conveniently in PIC. Basically, the
stack pointer points to a dynamic storage area and index mode is used
to access data relative to the pointer. The stack pointer may be
initially set up by a position independent program as shown in Section
9.1.4.1. In any case, once the pointer is set up, all data on the
stack is referenced relative to the pointer. It should also be noted
that since the form 0 (SP) is considered a relative mode so is its
equivalent @SP. In addition, the forms (SP)+ and -(SP) are required
for stack pops and pushes.

9.1.3 Writing Automatic PIC

Automatic PIC is code which requires no alteration of addresses or
pointers. Thus, memory references are 1limited to relative modes
unless the location referenced is fixed (trap-interrupt vectors,
etc.). In addition to the above rules, the following must be
observed:

1. Start the program with .=0 to allow easy relocation using the
Absolute Loader (see Chapter 6).

'Wwhen PIC is not being written, references to fixed locations may be
performed with either the absolute or relative forms.

9-3

PROGRAMMING TECHNIQUES

2. All location setting statements must be of the form .=.1iX or
.= function of tags within the PIC. For example, .=A+10
where A is a local label.

3. There must not be any absolute location setting statements.
This means that a block of PIC cannot set up trap and/or
interrupt vectors at load time with statements such as:

=34
+WORD TRAPH» 340 $TRAP VECTOR

The Absolute Loader, when it is relocating PIC, relocates all
data by the 1load bias (see Chapter 6). Thus, the data for
the vector would be relocated to some other place. Vectors
may be set at execution time (see Section 9.1.4).

9.1.4 Writing Non-Automatic PIC

Often it is not possible or economical to write totally automated PIC.
In these .cases, some relocation may be easily peformed at execution
time. Some of the required methods of solution are presented below.
Basically, the methods operate by examining the PC to determine where
the PIC is actually located. Then a relocation factor can be easily
computed. In all examples, it is assumed that the code is assembled
at zero and has been relocated somewhere else by the Absolute Loader.

9.1.4.1 Setting Up The Stack Pointer - Often the first task of a

program 1s to set the stack pointer (SP). This may be done as
follows:

) FBEG IS THE FIRST INSTRUCTION OF
$ THE PROGRAM
BEG? MOV PCsSP iSP=ADR BEG+2
T8T ~(SP) $DECREMENT SP RY 2,
#A PUSH ONTO THE STACK WILL STORE
§THE DATA AT BEG-2.

9.1.4.2 Setting Up A Trap or Interrupt Vector - Assume the first word
of the vector is to point to location INT which is in PIC.

X MOV PCsRO FRO = ADR X+2
ADD #INT-X~2yRO $ADD OFFSET
MOV RO,@#VECT #MOVE POINTER TO VECTOR

The offset INT-X-2 is equivalent to INT- (X+2) and X+2 is the value of
the PC moved by statement X. If PC is the PC that was assumed for
the program when loaded at 0, and if PC is the current real PC, then
the calculation is:

INT-PCq +PCpp =INT+ (PC, ~PC,)

Thus, the relocation factor, PC'-PCO, is added to the assembled value
of INT to produce the relocatednvalue of INT.

PROGRAMMING TECHNIQUES

9.1.4.3 Relocating Pointers -~ If pointers must be used, they may be
relocated as shown above. For example, assume a list of data is to be
accessed with the instruction

ADD (RO)+,R1

The pointer to the list, list L, may be calculated at execution time
as follows:

M MOV PCsRO $GET CURRENT PC
ADD $L-M-2»RO F#ADD OFFSET

Another variation is to gather all pointers into a table. The
relocation factor may be calculated once and then applied to all
pointers in the table in a loop.

X3 MOV PC»RO $RELOCATE ALL ENTRIES IN PTRTBL
SUBR #X+2yRO $CALCULATE RELOCATION FACTOR
MOV #PTRTBLsR1 $GET AND RgLDCATE A POINTER

ADD ROsR1 $ TO PTRTBL

MOV #TBLLENsR2 $GET LENGTH OF TABLE
LOOFP?3 ADD ROs{(R1)+ SRELOCATE AN ENTRY

DEC R2 § COUNT

BGE LOOFP $BRANCH IF NOT DONE

Care must be exercised when restarting a program which relocates a
table of pointers. The restart procedure must not include the
relocating again, i.e., the table must be relocated exactly once after
each load.

9.2 LOADING UNUSED TRAP VECTORS

One of the features of the PDP-11 is the ability to trap on various
conditions such as illegal instructions, reserved instructions, power
failure, etc. However, if the trap vectors are not loaded with
meaningful information, the occurrence of any of these traps will
cause unpredictable results. By loading the vectors as indicated
below, it is possible to avoid these problems as well as gain
meaningful information about any unexpected traps that occur. This
technique, which makes it easy to identify the source of a trap, is to
load each unused trap vector with:

.=trap address
-WORD .+2,HALT

This will load the first word of the vector with the address of the
second word of the vector (which contains a HALT). Thus, for example,
a halt at location 6 means that a trap through the vector at location
4 has occurred. The old PC and status may be examined by looking at
the stack pointed to by register 6.

The trap vectors of interest are:

Vector Halt At
Location Location Meaning
4 6 Bus Error; Illegal Instruction;
Stack Overflow; Nonexistent
Memory; Nonexistent Device; Word
Referenced at 0Odd Address
10 12 Reserved Instruction

PROGRAMMING TECHNIQUES

14 16 Trace Trap Instruction (000003) or
- T-bit Set in Status Word (used by
oDT) !
20 22 IOT Executed (used by I10X)
24 26 Power Failure or Restoration
30 32 EMT Executed (used by FPP-11)
34 © 36 TRAP Executed

9.3 CODING TECHNIQUES

Because of the ' great flexibility in PDP-11 coding, time- and
space-saving ways of performing operations may not be immediately
apparent. Some comparisons»follow.

9.3.1 Altering Register Contents

The techniques described in this section take advantage of the
automatic stepping feature of autoincrement and autodecrement modes
when used especially in TST and CMP instructions. These instructions
do not alter operands. However, it is important to make note of the
following:

e These alternative ways of altering register contents
affect the condition codes differently.

® Register contents must be even when stepping by 2.

® These techniques work properly only if the registers are
pointing to an existing memory location; otherwise, a
trap is generated.

1. Adding 2 to a register might be adcomplished by ADD #2,R0.
However, this takes two words, whereas TST (RO) + which also
adds 2 to a register, takes only one word.

2. Subtracting 2 from a register can be done by the
complementary instructions SUB $#2,R0 or TST -(RO) with the
same conditions as in adding 2.

3. This can be extended to adding or subtracting 2 from two
different registers, or 4 from the same register, in one
single~-word instruction:

CMP (RO)+»(RO)+ $AID 4 TO RO
CMP ~(R1)>s—-(R1) $SUBTRACT 4 FROM Ri

. CMP (RO)+»—~(R1) FADD 2 TO ROs» SUBTRACT 2 FROM R1
CMP ~(R3)s—(R1) FSUBTRACT 2 FROM BOTH R3 AND R1
CMFP (R3)+s(RO)+ $ADD 2 TO BOTH R3 AND RO

or

PROGRAMMING TECHNIQUES

variations of the examples above can be employed if the
instructions operate on bytes and one of the registers is the
Stack Pointer. These examples depend on the fact that the
Stack Pointer (as well as the PC) is always autoincremented
or autodecremented by 2, whereas registers RO-R5 step by 1 in
byte instructions.

CMPB (SF)+s(R3)+ FJADD 2 TO SP AND 1 TO R3

CMPB —(R3)»~(SP) $SUBTRACT 1 FROM R3 AND 2 FROM SP
CMPB (R3)+,—(SP) $ADD 1 TO R3» SUBTRACT 2 FROM SP

Popping an unwanted word off the processor stack (adding 2 to
register 6) and testing another value can be two separate
instructions or one combined instruction:

TST (SP)+ $POP WORD
TST COUNT $SET CONDITION CODES FOR COUNT
MOV COUNTs (SP)+ $POP WORD & SET CODES FOR COUNT

The differences are that the TST instructions take three
words and clear the Carry bit, and the MOV instruction takes
two words and doesn't affect the Carry bit.

9.3.2 Subroutines

1.

Condition codes set within a subroutine can be used to
conditionally branch upon return to the calling program,
since the RTS instruction does not affect condition codes.

JSR PCsX jCALL SUBROUTINE X
BNE ABC $BRANCH ON CONDITION SET
N #IN SUBROUTINE X
*
X3 $ SUBROUTINE ENTRY
CMP R2sDEF $TEST CONDITION
RTS PC $RETURN TO CALLING PROGRAM

When a JSR first operand register is not the PC, data stored
following a subroutine call can be accessed within the
subroutine by referencing the register. {The register
contains the return address.)

JSR RS»Y
+WORD HIGH
+WORD LOW .
. FLATEST RS VALUE WILL POINT HERE
Y MOV (R5)+sR2 $VALUE OF HIGH ACCESSED
MOV (RS)>+sR4 $VALUE OF LOW ACCESSED
RTS RS $RETURN TO LOCATION

$CONTAINED IN RS

PROGRAMMING TECHNIQUES

Another possibility is:

' JSR RS»SUB
| BR PSTARG

+WORD A
+WORD B
+WORD C
PSTARG?
*

*

SuUB? MOVEB@RSy COUNT

MOV @14(RS)sR2
MOV @64(R5)yR1

.

*

RTS RS

In the example above, the branch
advantages:

1. If R5 is unaltered when the

#LOW-ORDER BYTE IS OFFSET TO RETURN
FADDRESSs, WHICH EQUALS NO. OF ARGS.
JADDRESS OF ARG A
$ADDRESS OF ARG B
$ADDRESS OF ARG C

JRETURN ADDRESS

FGET NO. OF ARGS FROM LOW BYTE
$0F BR (IF DESIRED).

SE+Ges GET 6TH ARGUMENT

$GET 3RD ARGUMENT

JRETURNS TO BRANCH WHICH JUMPS PAST
#ARG LIST TO REAL RETURN ADDRESS

instruction contributes two main

RTS 1is executed, return will

always be to the branch instruction. This ensures a return
to the proper location even if the length of the argument
list is shorter or longer than expected.

2. The operand of the branch, being an offset past the argument
list, provides the number of arguments in the list.

Arguments can be made sharable by separating the data from the main
code. This is easily accomplished by treating the JSR and its return

as a subroutine itself:

CaLL: .

+

JSR PCsARGLST

ARGLST? JSR RS5sSUR
BR PSTARG

+WORD A
L.

.

.

3. The examples above all demonstrate the calling of subroutines
from a non-reentrant program. The called subroutine can be
either reentrant or non-reentrant in each case. The
following example illustrates a method of also allowing
calling programs to be reentrant. The arguments and linkage
are first placed on the stack, simulating a JSR R5,SUB, so
that arguments are accessed from the subroutine via X(RS).
Return to the calling program is executed from the stack.

PROGRAMMING TECHNIQUES

CALLS

MOV RS,-(SP) $GAVE RS ON STACK.

MOV JSBRy-(SP) $PUSH INSTRUCTION JSR Ré6s@RS ON
. $STACK. PUSH ADDRESSES OF ARGU-
. $MENTS ON STACK IN REVERSE ORDER
. $ (SEE BELOW).

MOV BRN»~(SP) $PUSH BRANCH INSTRUCTION ON STACK

: MOV SPsRS $MOVE ADDRESS OF BRANCH TO RS.

JSR PCySUB $CALL SUB AND SAVE RETURN ON STACK.
RET? MOV (SP)+sRS $RESTORE OLD RS UPON RETURN.

*

. $DATA AREA OF PROGRAM.

JSER?: JSR R6y@RS
BRN3$ BR ++N+N+2 § BRANCH PAST N WORD ARGUMENTS

The address of an argument can be pushed on the stack in
several ways. Three are shown below.

The arguments A, B, and C are read-only constants which are
in memory (not on the stack):

MOV #Cy-(SP) $PUSH ADDRESS OF C
MOV #B»~(SP) $PUSH ADDRESS OF B
MOV #A,—-(SP) $PUSH ADDRESS OF A

Arguments A, B, and C have their addresses on the stack at
the Lth, Mth, and Nth bytes from the top of the stack.

MOV N(SP),-(SP) $PUSH ADDRESS OF C
MOV M+2(SP)s~(SP) #PUSH ADDRESS OF B
MOV L+4(SP)»—(8P) $PUSH ADDRESS OF A

Note that the displacements from the top of the stack are
adjusted by two for each previous push because the top of the
stack is being moved on each push.

Arguments A, B, and C are on the stack at the Lth, Mth, and
Nth bytes from the top but their addresses are not.

MOV #N+2,-(SP) $PUSH DISPLACEMENT TO ARGUMENT

ADD SPs@SP $CALCULATE ACTUAL ADDRESS OF C
MOV #M+4s-(SP)

ADD SP,@5P $ADDRESS OF B

MOV $L+6,—-(SP)

ADD SFy@SP " $ADDRESS OF A

PROGRAMMING TECHNIQUES

When subroutine SUB is entered, the stack appears as follows:

RET
BR +N+N+2
A
B

JSR R6,@R5 ;BRANCH IS TO HERE
OLD R5 ’

Subroutine SUB returns by means of an RTS R5, which places R5
into the PC and pops the return address from the stack into
R5. This causes the execution of the branch because R5 has
been 1loaded (at location X) with the address of the branch.
The JSR branched to then returns control to the calling
program, and in so doing, moves the current PC value into the
SP, thereby removing everything above the o0ld R5 from the
stack. Upon return at RET, this too is popped, restoring the
original R5 and SP values.

The next example is a recursive subroutine (one that calls
itself). Its function is to 1look for a matching right
parenthesis for every left parenthesis encountered. The
subroutine is called by JSR PC,A whenever a left parenthesis
is encountered (R2 points to the character following it).
When a right parenthesis is found, an RTS PC is executed, and
if the right parenthesis is not the last legal one, another
is searched for. When the final matching parenthesis is
found, the RTS returns control to the main program.

L H MOVB (R2)+sRO $GET SUCCESSIVE CHARACTERS.

CMPB #7(yRO §LOOK FOR LEFT PARENTHESIS.
BNE B §FOUND?
JBR PCyA fLEFT PAREN FOUND, CALL SEL.
BR A FG0 LOOK AT NEXT CHARACTER
B: CMFB #/)sRO JLEFT PAREN NOT FOUNDs LOOK FOR
$RIGHT PAREN.
BNE A sFOUNDT IF NOT» GO TO A.
RTS PC JRETURN PAREN FOUND, IF NOT LAST»

#G0 TO B. IF LASTy GO TO MAIN PROGRAM.

The example below illustrates the use of co-routines, called
by JSR PC,@(SP)+. The program uses double buffering on both
input and output, performing as follows:

Write 01 Write 02
Read Il concurrently Read 12 concurrently
Process 12 Process 1I1

JSR PC,@(SP)+ always performs a jump to the address specified
on top of the stack and replaces that address with the new
return address. Each time the JSR at B is executed, it jumps
to a different 1location; initially to A and thereafter to
the location following the JSR executed prior to the one at
B. All other JSR's jump to B+2.

PROGRAMMING TECHNIQUES

PC=%7
REGIN? (do I/0 resetss initsy etc.)
*
10T $READ INTO I1 TO START PROCESS
+WORD Il
+BYTE READs INSLOT
MOV #Ar—-(8&) FINITIALIZE STACK FOR FIRST JSR
Bt JSR PCsB(6)+ D0 I/0 FOR 01 AND I1 OR 02 AND I2
N rerform Processing
BR R $MORE I/0
$END' OF MAIN LOOP
#I/0 CO-ROUTINES
Al 107 $READ INTO I2
+WORD I2

+BYTE READ»INSLOT
. . set rarameters to erocess Ils 01

JSR PCr@<4+ $RETURN TO PROCESS AT Bi2

10T $WRITE FROM 01
+WORD 01

+BRYTE WRITE,OUTSLOT

107 FREAD INTO Il
+WORD I1

+BYTE READ» INSLOT

*

N set rarameters to process I2» 02

JSR PCr@CO)+ §RETURN TO PROCESS AT B+2

107 FWRITE FROM 02
+WORD 02

+BYTE WRITE» OUTSLOT

BR A FREAD INTO I2

The trap handler, below, simulates a two-word JSR instruction
with a one-word TRAP instruction. In this example, all TRAP
instructions in the program take an operand, and trap to the
handler address at location 34. The table of subroutine
addresses (e.g., A, B, ...) can be constructed as follows;

TABLE?
CALA=,-TABLE
+WORD A sCALLED BY: TRAP CALA

CALB=.-TABLE
<WORD R sCALLED BY: TRAP CALB

*
Another way to construct the table:

TABLE?
CALA=,~-TABLE+TRAP
+WORD A fCALLED BY: CALA

*
*

+

PROGRAMMING TECHNIQUES

The TRAP handler for either of the above methods follows:

TRAP34: MOV @SF»2(5F) sREPLACE STACKED PS WITH PC'.
SUB #2,@SF ‘ FGET POINTER TO TRAP INSTRUCTION,
MOV @(SF)+»~(SP)REPLACE ADDRESS OF TRAP WITH
' § TRAP INSTRUCTION ITSELF,
Al #TABLE-TRAP»@SP $CALCULATE SUBROUTINE ADDR.
MOV @(SP)+,PC FJUMP TO SUBROUTINE.

In the example above, if the third instruction had been written
MOV @(SP), (SP) it would have taken an extra word since @(SP) is in
Index Mode and assembles as @0(SP)j. 1In the final instruction, a jump
was executed by a MOV @(SP)+,PC because no equivalent JMP instruction
exists.

Following are some JMP and MOV equivalences (note that JMP does not
affect condition codes).

JMP (R4) = MOV R4,PC

JMP @ (R4) = MOV (R4),PC
(2 words) (1 word)

none = MOV @ (R4),PC

JMP - (R4) = none

JMP @ (R4)+ = MOV (R4),PC

JMP @-(R4) = MOV -(R4),PC

none = MOV @ (R4)+,PC

none = MOV @-(R4),PC

JMP X = MOV #X,PC

JMP @Xx = MOV X,PC

none = MOV @Xx,PC

The TRAP handler can be useful, also, as a patching technique.
Jumping out to a patch area is often difficult because a two-word Jump
must be performed. However, the one-word TRAP instruction may be used
to dispatch to patch areas. A sufficient number of slots for patching
should first be reserved in the dispatch table of the TRAP handler.
The jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made.

JReplacing the saved PS loses the T-bit status. If a breakpoint has
been set on the TRAP instruction, ODT will not gain control again to
reinsert the breakpoints because the T-bit trap will not occur.

9-12

EVEN

7-BIT

PARITY OCTAL

BIT

(=N =] OO [l (=] (el -0

OMMHO Ok H O kM © OkM © K H oM

CODE

000
001

002
003
004
005
006
007
010
011
012
013
014
015
016
017

020
021

022
023
024
025

026
027

030
031
032
033

CHARACTER

NUL
SOH

STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
S0
SI

DLE

SYN
ETB

CAN

SuUB
ESC

APPENDIX A

ASCII CHARACTER SET

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.

START OF HEADING; ALSO SOM, START OF
MESSAGE, CONTROL A,

START OF TEXT; ALSO EOA, END OF ADDRESS,
CONTROL B,

END OF TEXT: ALSO EOM, END OF MESSAGE
CONTROL C,

END OF TRANSMISSION (END): SHUTS OFF TWX
MACHINES, CONTROL D,

ENQUIRY (ENQRY); ALSO WRU, CONTROL E,
ACKNOWLEDGE. ALSO RU, CONTROL F.

RINGS THE BELL. CONTROL G.

BACKSPACE: ALSO FEO, FORMAT EFFECTOR.
BACKSPACE SOME MACHINES, CONTROL H.
HORIZONTAL TAB. CONTROL I.

LINE FEED OR LINE SPACE (NEW LINE):
ADVANCES PAPER TO NEXT LINE, DUPLICATED
BY CONTROL J.

VERTICAL TAB (VTAB). CONTROL K.

FORM FEED TO TOP OF NEXT PAGE (PAGE).
CONTROL L.

CARRIAGE RETURN TO BEGINNING OF LINE.
DUPLICATED BY CONTROL M.

SHIFT OUT: CHANGES RIBBON COLOR TO RED.
CONTROL N.

SHIFT IN: CHANGES RIBBON COLOR

TO BLACK. CONTROL O

DATA LINK ESCAPE. CONTROL P (DCO).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL Q (XON).

DEVICE CONTROL 2, TURNS PUNCH OR AUXI-
LIARY ON, CONTROL R (TAPE, AUX ON).
DEVICE CONTROL e, TURNS TRANSMITTER
(READER) OFF, CONTROL S (XOFF).

DEVICE CONTROL 4. TURNS PUNCH OR AUXI-
LIARY OFF. CONTROL T (TAPE, AUX OFF)
NEGATIVE ACKNOWLEDGE: ALSO ERR. ERROR.
CONTROL U.

SYNCHRONOUS IDLE (SYNC). CONTROL V.

END OF TRANSMISSION BLOCK: ALSO LEM.
LOGICAL END OF MEDIUM. CONTROL W.
CANCEL (CANCL). CONTROL X.

END OF MEDIUM. CONTROL Y.

SUBSTITUTE. CONTROL 2.

ESCAPE. PREFIX.

M OO IMOOMOHO HOOMOMHMHOOHHOROO RO RO OO OO RO HOHOOHORHOOHOHOONKOO KM

057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102

103

104
105

106

107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133

IS & i «aD PO

~NKRXESCHNIOWOZINRUHIEQAMBUOEP®UV A v VOOV EWNHON:.

ASCII CHARACTER SET

FILE SEPARATOR. CONTROL SHIFT L.
GROUP SEPARATOR. CONTROL SHIFT M.
RECORD SEPARATOR. CONTROL SHIFT N.
UNIT SEPARATOR. CONTROL SHIFT O.
SPACE.

ACUTE ACCENT OR APOSTROPHE.

SHIFT K

A-2

HOOOOMMO

O OO O HOO O MMOHOONHOO MO M

134
135
136
137
140
175
176
177

$r—

DEL

NMXESCC IR QT ODH HIUMKDIDAMOOLODTD

ASCII CHARACTER SET

SHIFT L
SHIFT M
SHIFT N

ACCENT GRAVE.

THIS CODE GENERATED BY ALT MODE.

THIS CODE GENERATED BY ESC KEY (IF PRESENT)
DELETE, RUB OUT.

LOWER CASE ALPHABET FOLLOWS (TELETYPE
MODEL 37 ONLY).

APPENDIX B

PAL~-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.1 TERMINATORS

The list below defines all characters which are considered to be
terminators. The order of the list implies the descending hierarchy
of significance.

Character Function
CTRL/FORM ‘Source line terminator.
LINE FEED - Source line terminator.
RETURN Source line terminator
H Label terminator

= Direct assignment delineator
% Register term delineator

TAB Item terminator
Field terminator

BLANK or Item terminator

SPACE Field terminator

Immediate expression field indicator
@ Deferred addressing indicator

{ Initial register field indicator

) Terminal register field indicator

Operand field separator

H Comments field delimiter

+ Arithmetic addition operator

- Arithmetic subtraction operator
& Logical AND operator

! Logical OR operator

" Double ASCII text indicator

! Single ASCII text indicator.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.2 ADDRESS MODE SYNTAX

r is an integer between 0 and 7.

R is a register expression, E
register expression or an absolute expression in the range of 0 to 7.

an expression, ER 1is either a

Address Address Mode Symbol in
Mode Name Operand
Number Field Meaning
Or Register R Register R contains the operand. R
is a register expression.
1r Deferred Register @R or (R)Register R contains the operand
address.
2r Autoincrement (ER) + The contents of the register
specified by ER is incremented
after being used as the address of
the operand.
Deferred
3r Autoincrement @ (ER) + ER contains the pointer to the
address of the operand. ER is
incremented after use.
4r Autodecrement ~ (ER) The contents of register ER is de-
cremented before it is used as the
address of the operand.
Deferred
Sr Autodecrement @~ (ER) The contents of register ER is de-
cremented before it is used as the
pointer to the address of the oper-
Index by the and.
register
6r Specified E (ER) E plus the contents of the register
specified, ER, is the address of
Deferred index the operand.
: by the register
7c specified @E (ER) E added to ER gives the pointer to
the address of the operand. '
27 Immediate Operand {E E is the operand.
37 Absolute address @4E E is the operand address.
67 Relative address E E is the address of the operand.
77 Deferred rela-
tive address. eE E is the pointer to the address of
the operand.
B.3 INSTRUCTIONS

The tables of instructions which follow are grouped according to the
they take and according to the bit patterns of their

operands

op-codes.

B-2

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

In the representation of op-codes, the following symbols are used:

ss Source operand specified by a 6-bit
address mode
DD Destination operand specified by a 6-bit
address mode
XX 8-bit offset to a
location (branch instructions)
R Integer between 0 and 7 representing a general

register

Symbols used in the description of instruction operations are:

SE Source effective address

DE Destination effective address
() contents of

-+ becomes

PS Processor Status word

The condition codes in the processor status word (PS) are affected by
the instructions; these condition codes are represented as follows:

N Negative bit: set if the result is negative

2 Zero bit: set if the result is zero

v oVerflow bit: set if the result had an overflow
C Carry bit: set if the result had a carry

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

* Conditionally set
- Not affected

0 Cleared

1 Set

To set conditionally means to use the instruction's result to
determine the state of the code.

Logical operators are represented by the following symbols:

t Inclusive OR
(:) Exclusive OR
& AND
- (used over a symbol) NOT (i.e., 1's complement)

PAL~11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.3.1 Double Operand Instructions. OP A,A

. Condition Codes
Op~code MNEMONIC Stands for Operation N Z2 Vv C
Olssdd mov move {SE)-+DE * * 0 -
llssdd movb move Byte
02SSDD CMP CoMPare (SE) - (DE) * * k&
128SDD CMPB . CoMPare Byte
03Ssbp BIT BIt Test (SE) & (DE) * * 0 -
13SSDD BITB BIt Test Byte
04SSDD BIC BIt Clear (SE) & (DE)-DE * x 0 -
14SsDbD BICB BIt Clear Byte
058SDD BIS BIt Set k (SE) | (DE)->DE * * 0 -
15SSDD BISB BIt Set Byte
06SSDD ADD ADD (SE) + (DE)~»DE * x x &%

16SSDD SUB SUBtract (DE) -~ (SE)+DE * & & x

B.3.2 Single Operand Instructions OP A

Condition Codes

Op-code MNEMONIC Stands for Operation: N zZ Vv C
0050DD CLR CLeaR 0-+DE 0 1 0 o0
1050DD CLRB CLeaR Byte

0051DD COM COMplement (DE)-+DE * % 0 1
1051DD COMB COMplement . Byte :

0052DD INC INCrement (DE) + 1+DE * x %]
1052DD INCB INCrement Byte

0053DD DEC DECrement (DE) -1+DE * x *x
1063DD DECB DECrement Byte

0054DD NEG NEGate (DE) + 1+DE * o x &
1054DD NEGB NEGate Byte

0055DD ADC . ADd Carry (DE) + (C)+DE LA T S
1055DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE)-(C)-»DE ¥ k& x %
1056DD SBCB SuBtract Carry Byte

0057DD TST TeST (DE) - 0»DE * * 0 0
1057DD TSTB TeST Byte

B.3.3 Rotate/Shift

0060DD
1060DD

0061DD
1061DD

0062DD

1062DD

0063DD

1063DD

0001DD
0003DD

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

ROR

RORB-

ROL -

ROLB

ASR

ASRB

ASL

ASLB

JMP

SWAB

C
Rotate Right ol - oy * * * *

ROtate Right
Byte ‘

ROtate Left

ROtate Left
Byte :

Arithmetic
shift Right

Arithmetic
Shift Right
Byte B

Arithmetic
Shift Left

Arithmetic
Shift Left
Byte
JuMP

SWAp Bytes

B.3.4 Operation Instructions

Op-Code
000000

000001

000002

000003

000004

000005

* * * *

c.

=)o Oo

op

MNEMONIC

HALT

WAIT

RTI

000003

I0T

RESET

Stands for

HALT

WAIT

ReTurn from
Interrupt

breakpoint
trap

Input/Output

Trap

RESET

* * * *
* * ® ®
* * %*
* * *

Condition
Operation N 2 V

The computer stops - - =
all functions.

The computer stops - - -
and waits for an
interrupt.

The PC and PS are - - =
popped off the SP

stack:

((SP))+PC

{SP) +2+SP

((SP))+PS

* * *
Trap to location 14.
This is used to
call ODT-1l.

Trap to location * X 0k
20. This is used
to call I0X.

Returns all 1/0 -
device handlers to
power—on state.

Codes
C

PAL-118 ASSEMBLY LANGUAGE AND ASSEMBLER

Trapping Op or Op E where 05E537%

104000- EMT EMulator . Trap to location L .
104377 Trap 30. This is used

to call system

programs.
104400- TRAP TRAP Trap to location * x &k &

104777 34. This is used
: to call any routine
desired by the pro-

grammer.
CONDITION CODE OPERATES
Op-code MNEMONIC Stands for
000241 CLC CLear Carry bit in PS.
000261 SEC SEt Carry bit.
000252 CLv CLear oVerflow bit.
000262 SEV SEt oVerflow bit.
000244 CLZ CLear Zero bit.
000264 SEZ SEt Zero bit.
000250 CLN CLear Negative bit.
000270 SEN SEt Negative bit.
000254 CNZ CLear Negative and Zero bits.
000257 ccC CLear all Condition Codes.
000277 sCC Set all Condition Codes.
000240 NOP No-operation.

B.3.5 Branch Instructions Op E Where -128y9<(E-.-2)/2<127;59

Condition to be

Op-Code MNEMONIC Stands for met if branch is to occur
0004XX BR BRanch always
0010xx BNE Branch if Not Equal to Zero z=0
0014XxX BEQ Branch if EQual (to zero) z=1
0020xXx BGE Branch if Greater than or N(:)V=0
equal (to zero)
0024XX BLT Branch if Less Than (zero) N(Dv = 1
0030xXx BGT Branch if Greater Than Z!(N<:>V)=0
(zero)
0034XX BLE Branch if Less than or 21 (N(1)v) =1

Equal (to zero)

B-6

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

1000Xx BPL Branch if PLUS N=0
1004XxX BMI Branch if MInus N=1
1010XX BHI Branch if HIgher C(:)Z=0
1014XxX BLOS Branch if LOwer or Same Ciz=1
1020xx BVC Branch if oVerflow Clear =0
1024Xx BVS Branch if oVerflow Set V=1

1030XX BCC (or BHIS)
Branch if Carry Clear C=0
(or Branch if HIgh or Same)

1034XX BCS (or BLO)
Branch if Carry Set (or C=1
Branch if LOw)

B.3.6 Subroutine Call JSR ER,A

Op-code MNEMONIC Stands for Operation
004RDD JSR Jump to Sub- Push register on the SP stack, put
Routine the PC in the register:

DE + TEMP -a temporary storage reg-
ister internal to proc-
essor

(SP)-2+SP

(REG) + (SP) .

(PC)+m REG -m depends upon the ad-
dress mode.

(TEMP) » PC
B.3.7 Subroutine Return
Op-code MNEMONIC Stands for Operation
00020R RTS ReTurn from Put register contents in PC and
Subroutine pop o0ld contents from SP stack

into register.

B.3.8 Extensions for the LSI-11 Version Of PAL-11lS

Op-code MNEMONIC Stands for Operation Condition Codes
N 2 VvV C
0067dd SXT Sign eXTend . Nx(-~1) DE - * 0 -
1067d4d MFPS Move byte (PS) DE * *x 0 -
From PS

'These extensions are available only with the LSI-11 version of
PAL-11S.

1064ss

074rdd
070rss
071rss

072rss

073rss

0064nn

077rnn

000006

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

MTPS

XOR
MUL
DIV

ASH

ASHC

MARK

SOB

RTT

Move byte
To PS

eXclusive OR
MULtiply
DIvide

Arithmetic
SHift

Arithmetic
SHift
Combined

MARK

Subtract One
and Branch
if 0

ReTurn from
Trap

B.4 ASSEMBLER DIRECTIVES

MNEMONIC

.EOT

«EVEN

.END
(E

.WORD

+BYTE

.ASCII

.TITLE

+ASECT

.CSECT

-LIMIT

Operand

none

none

E
optional)

E,E,...
E,E,...

E,E...

/XXX...X/

NAME

none

none

none

Stands for

End Of Tape

EVEN

END

WORD
(the void
operator)
BYTE

ASCII

TITLE

ASECT

CSECT

LIMIT

(SE) PS * x x
r ! (DE) DE * * 0 -
r x (SE) r * * 0 *
r / (SE) r * * * *

SP+2xnn SP
R5 PC
SP" RS

(r)-1r; if
(r) 0 then
(PC)-2xnn PC
((SP)) PC loaded from stack
{(SP))+2 SP

((SP)) PS

(SP)+2 SP

Operation
Indicates the physical end of the
source input medium

Insures that the assembly location
counter is even by adding 1 if it
is odd.

Indicates the physical and logical
end of the program and optionally
specifies the entry point (E)

Generates words of data
Generates words of data

Generates bytes of data

Generates 7-bit ASCII characters
for text enclosed by delimiters.
the

Generates a name for

module.

object

Initiates the Absolute section.

Initiates the Relocatable Control

section.

Generates two words containing the

.GLOBL

.RADS50

+IFZ

+IFNZ

.IFL

.IFLE

.IFG

.IFGE

. IFDF

« IFNDF

.ENDC

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

NAME ,NAME, ...

GLOBAL
/XXX/ RADIX 50
E IF E=0
E IF E#0
E IF E<O
E IF Es50
E IF E>0
E IF E20
NAME IF NAME
defined
NAME IF NAME
, undefined
none End of
Conditional

low and high limits of the reloca-
table section.

Specifies each name to be a global
symbol

Generates the RADIX 50
representation of the ASCII
character in delimiters.

Assemble what follows up to the
terminating .ENDC if the expres-
sion E is 0.

Assemble what follows up to the
terminating .ENDC, if the expres-
sion E is not 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than 0.

Assemble what follows up to the
terminating .ENDC, if the
expression E is less than or equal
to 0.

Assemble what follows up to the
terminating - .ENDC, if the
expression E is greater than 0.

Assemble what follows up to the
terminating - .ENDC, if the
expression E is greater than or
equal to 0.

Assemble what follows up to the
terminating .ENDC if the symbol
NAME is defined.

Assemble what follows up to the
terminating .ENDC if the symbol
NAME is undefined.

Terminates the range of a condi-
tional directive.

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.5 ERROR CODES

Error Code

A

Meaning
Addressing error. An address within the
instruction is incorrect. Also includes

relocation errors.

Bounding error. Instructions or word data are
being assembled at an odd address in memory.

Doubly~defined symbol referenced. Reference was
made to a symbol which is defined more than once.

Illegal character detected. Ilegal characters
which are also non-printing are replaced by a ?
on the listing.

Line buffer overflow. All extra characters beyond
72 are ignored.

Multiple definition of a 1label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing an 8 or 9 was not terminated by
a decimal point.

Phase error. °'A label's definition or value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed, or a
carriage return was not followed by a linefeed or
form feed.

Register~type error. An invalid use of or
reference to a register has been made.

Symbol table overflow. When the quantity of
user~-defined symbols exceeds the allocated space
available in the user's symbol table, the
assembler outputs the current source line with the
S error code, then returns to the command string
interpreter to await the next command string to be
typed.

Truncation error. More than the allotted number
of bits were input so the leftmost bits were
truncated. T error does not occur for the result
of an expression.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol is assigned a value of zero.

B-10

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

B.6 INITIAL OPERATING PROCEDURES

Loading: Use Absolute Loader. The start address of the
Loader must be in the console switches.

Storage Requirements:PAL-11S uses 8K of memory.

Starting: Immediately upon loading, PAL-11S8 will be in
‘ control and initiate dialogue.

Initial Dialogue:

Printout Inquiry
*S What is the input device of the Source symbolic tape?
*B What is the output device of the Binary object tape?
*L What is the output device of the assembly Listing?
*T What is the output device of the symbol Table?

Each of these questions may be answered by any one of the following
characters:

Character Answer Indicated
T Teleprinter keyboard
L Low-speed reader or punch
H High-speed reader or punch
P Line Printer

Each of these answers may be followed by the other characters
indicating options:

Option Typed Function to be performed
/1 on pass 1
/2 on pass 2
/3 on pass 3
/E errors to be listed on the Teletype on the same pass

(meaningful only for *B or *L).

Each answer is terminated by typing the RETURN key. A RETURN alone as
answer will delete the function.

Dialogue During Assembly:

Printout Response

EOF ? Place next tape in reader and type RETURN. A .END
statement may be forced by typing E followed by
RETURN.

END ? Start next pass by placing first tape in reader and

typing RETURN.

B~11

EOM ?

Restarting:

PAL-11S ASSEMBLY LANGUAGE AND ASSEMBLER

If the end-of-medium is on the 1listing device, the
device may be readied and the assembly may be
continued by typing RETURN.

If the end-of-medium is on the binary device, the
assembler will discontinue the assembly and restart
itself.

Type CTRL/P. The initial dialogue will be started
again.

APPENDIX C

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.1 SPECIAL CHARACTERS

Character

form feed
line feed
carriage return

%
tab

space

Function

Source line terminator
Source line terminator
Source statement terminator
Label terminator

Direct assignment indicator
Register term indicator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator

Comment field indicator
Arithmetic addition operator
Arithmetic subtraction operator
Logical AND operator

Logical OR operator

Double ASCII character indicator
Single ASCII character indicator

Assembly location counter

PAL~11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7 representing a register. R is a

register expression, E 1is an expression, ER is either a register
expression or an expression in the range 0 to 7.

Address Address

Mogde Mode

Format Name Number Meaning

R Register On Register R contains the
operand. R is a
register expression.

@R or (ER) Deferred Register in Register R contains the
operand address.

(ER) + Autoincrement 2n The contents of the

: register specified by ER
are incremented after
being used as the
address of the operand.

@ (ER)+ Deferred Auto- 3n ER contains the pointer

increment to the address of the
‘ operand. ER is
incremented after use.

- (ER) Autodecrement 4n The contents of register
ER are decremented
before being used as the
address of the operand.

@~ (ER) Deferred Auto- 5n The contents of register

decrement ER are decremented
before being used as the
pointer to the address
of the operand.

E (ER) Index 6n E plus the contents of
the register specified,
ER, is the address of
the operand.

@E (ER) Deferred Index n E added to ER gives the
pointer to the address
of the operand.

$E Immediate 27 E is the operand.

€4E Absolute 37 E is the address of the
operand.

E Relative 67 E is the address of the
operand.

@E Deferred Relative 77 E is the pointer to the

address of the operand.

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3 INSTRUCTIONS

The instructions whi¢h follow are grouped according to the operands
they take and the bit patterns of their op-codes.

In the representation of op-cbdes, the following symbdls are used:

Ss Source operand specified by a S—bit address modé.

DD Destination operand specified by a 6-bit address
mode. « '

XX 8-bit offset to a location (branch instructions)

R Integer between 0 and 7 representing a general
register. ‘

Symbols used in the description of instruction operations are:

SE Source Effective address

DE Destination Effective address
) Contents qf

+ Is transferred to

PS Processor Status word

The condition codes in the processor status word (PS) are affected by
the instructions. These condition codes are represented as follows:

N Negative bit: set if the result is negative

2 Zero bit: set if the result is zero

v oVerflow bit: get if the operation caused an
overflow

C Carry bit: set if the operation caused a
carry

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

* Conditionally set
- Not affected

0 Cleared

1 Set

To set conditionally means to use the instruction's result to
determine the state of the code (see the PDP-11 Processor Handbook).

hogical operations are represented by the follqwing symbols:

! Inclusive OR
(:) Exclusive OR
& AND
- (used over a symbol) NOT (i.e., 1's complement)

c-3

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.1 Double-Operand Instructions Op A,A

Status Word
' ' Condition Codes
Op-Code MNEMONIC Stands for Operation N A \'4 C

01SSDD MOV MOVe (SE) + DE * x 0 -
11SSDD MOVB MOVe Byte

02SSDD CMP CoMPare (SE) - (DE) * ok x
12S8sDD CMPB CoMPare Byte

03SSDD BIT BIt Test (SE) & (DE) * x 0 -
13SSDD BITB BIt Test Byte

04SSDD BIC BIt Clear (SE) & (DE) + DE * x* 0 -
14SSbD - BICB BIt Clear Byte

05SSDD BIS BIt Set (SE) ! (DE) + DE * x 0 -
15SSDD BISB BIt Set Byte

06SSDD ADD ADD (SE) + (DE) + DE - ok x %
16SSDD SUB SUBtract (DE) - (SE) + DE * ox x ok

C.3.2 Single-Operand Instructions Op A

Status Word
Condition Codes

Op-Codes MNEMONIC Stands for Operation N Z v (o
0050DD CLR CLeaR 0 DE 0 1 0 0
1050DD CLRB CLeaR Byte

0051DD coM COMplement (DE) DE *x x 0 1
1051pb COMB COMplement Byte

0052DD INC INCrement (DE)+1 DE * * * -
1052DD INCB INCrement Byte

0053DD DEC DECrement (DE)-1 DE * * * -
1053DD DECB DECrement Byte

0054DD NEG NEGate (DE)+1 DE L I
1054DD NEGB NEGate Byte

0055DD ADC ADd Carry (DE)+(C) + DE * * * *
1055DD ADCB ADd Carry Byte

0056DD SBC SuBtract Carry (DE)-(C) + DE * * * *
1056DD SBCB SuBtract Carry Byte

0057DD TST TeST (DE)~-0 + DE * * 0 0
1057DD TSTB TeST Byte

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.3 Rotate/Shift Instructions

Op~Code MNEMONIC

0060DD

1060DD

0061DD

1061DD

0062DD

1062DD

0063DD

1063DD

0001DD

0003DD

Oop A

ROR

RORB

ROL

ROLB

ASR

ASRB

ASL

ASLB

JMP

SWAB

Stands for

ROtate Right r{]»r

ROtate Righ
Byte

ROtate Left

ROtate Left
Byte

Arithmetic
Sshift Right

Arithmetic
shift Right

Byte

Arithmetic
Shift. Left

Arithmetic
Shift Left
Byte

JuMp

SWAp Bytes

C.3.4 Operate Instructions

Op-Code
000000

000001

t

Op

HALT

WAIT

MNEMONIC Stands for

HALT

WAIT

The computér stops all
functions.

The computer stops and
waits for an inter-
rupt.

Status Word
Condition Codes

Operation N 2 \'4 C
c 15 0
}.l %* * ® *
even or odd byte
{ * * * *
r{jq
'j * * * %*
even or odd byte
r[]q - * * ® *
El lelf Il;ol—
WY N * * * *
qg 111 i1
even or odd byte
O [[T} *» *= *x *
qp M|
éﬁ 11 Il:_
4 ’Q{O * * * *
‘Ejﬁ 11 1]
even or odd byte
{JT11 1), * * * *
£l
T 111
DE » PC - - - -
15 g7 1 0
mE }
—— I * * 0 0
L
Status Word
Condition Codes
Operation N / \'4 C

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

000002 RTI ReTurn The PC and PS are popped * * * *
from off the SP stack:
Inter-
rupt ((SP))+ PC
(SP)+2~+ SP
((SP)) + PS
(SP)+2+ SP

RTI is also used to re-
turn from a trap.

000005 RESET RESET Returns all I/0 devices - - - -
to power-on state.

€.3.5 Trap Instructions Op or Op E Where 05E53778

Status Word
‘ Condition Codes
Op-Code MNEMONIC Stands for Operation N Z \'4 C

*000003 (none) (breakpointTrap to location 14. This * * * =
‘ trap) is used to call ODT.

*000004 10T Input/Out- Trap to location 20. This * * * *

‘put Trap: 1is used to call IOX.

104000~ EMT EMulator Traﬁ to location 30. This * * * *

104377 " Trap is used to call system pro-

) grams.

104400 TRAP TRAP Trap to location 34. This * * # #

104777 is used to call any routine

desired by the programmer.

*Op (only)

CONDITION CODE OPERATES

Op-Code MNEMONIC Stands for

000241 CLC CLear Carry bit in PS.
000261 SEC SEt Carry bit.

000242 CLv CLear oVerflow bit.

000262 ~ SEV SEt oVerflow bit.

000244 CLz CLear Zero bit.

000264 SEi SEt Zero bié.

000250 CLN CLear Negative bit.

000270 SEN SEt Negative bit.

000254 CN2Z CLear Ne§ative and zéro bits.
000257 ccC Clear all Condition Codes.
000277 scC Set all Condition Codes.

C-6

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.6 Branch Instructions Op E where-lZBlo < (E-.-Z)/2_<_12710

Op-Code MNEMONIC Stands for

0004XxX

0010XxX

0014XxX

0020XX

0024XX

0030XxX

0034XX

1000XxX
1004XX%
1010XX
1014XX
1020xXx

1024XX -

1030XX

1034xX

004RDD

Condition to be met if

branch

is to occur

BR BRanch always
BNE Branch if Not Equal Z2=0
(to zero)
BEQ Branch if EQual (to z2=1
zZero)
BGE Branch if Greater than N(:)Vao
or Equal (to zero)
BLT Branch if Less Than N(Dv=1
{zero)
BGT Branch if Greater Than zZ1 (NC:)V)=0
(zero) ‘
BLE Branch if Less than or zZ1 '(N@V) =1
Equal (to zero)
BPL ‘Branch if PLus N=0
BMI _Branch if MInus " N=1
BHI Branch if HIgher C132 =20
BLOS Branch if LOwer or Same C12 =1
BVC Branch if oVerflow Clear v=0
BVS Branch if oVerflow Set V=1
BCC (or Branch if Carry Clear C=0
BHIS) (or Branch if HIgher or
Same) ‘
BCS (or Branch if Carry Set (or C=}
BLO) Branch if LOwer)
C.3.7 Subroutine Call Op ER, A
Op-Code MNEMONIC Stands for Operation
JSR k Jump to SubRoutine Push register on the SP
stack,put the PC in the
register:

DE (TEMP) - a temporary
storage register
internal to
processor.

(SP)-2 + SP

(REG) » (SP)

(PC) + REG

{TEMP) + PC

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

C.3.8 Subroutine Return Op ER

Op-Code MNEMONIC Stands for ' Operation
00020R RTS ReTurn from Sub- Put register contents into PC
routine and pop old contents from SP

stack into register.

C.4 ASSEMBLER DIRECTIVES

Op-Code MNEMONIC Stands for Operation
.EOT End Of Tape Indicates the physical end of
the source input medium
.EVEN EVEN Ensures that the assembly
location counter is even by
adding 1 if it is odd
.END m END Indicates the physical and
{m optional) logical end of the program and
) optionally specifies the entry
point (m)
«WORD WORD Generates words of data
E,E,.. .
E,E,... (the void operator) Generates words of data
.BYTE BYTE Generates bytes of data
E'E,oco
LASCII ASCII : Generates 7-bit Ascii
/XXX...X/ character for the text

enclosed by delimiters

C.5 ERROR CODES

Error Code

A

Meaﬁing

Addressing error. An address within the instruction is
incorrect.

Bounding error. Instructions or word data are being
assembled at an odd address in memory.

Doubly-defined symbol referenced. Reference was made to a
symbol which is defined more than once.

Illegal character detected. Illegal characters which are
also non-printing are replaced by a ? on the listing.

Line buffer overflow. Extra characters (more than 7210)
are ignored.

Multiple definition of a label. A label was encountered
which was equivalent (in the first six characters) to a
previously encountered label.

Number containing an 8 or 9 has a decimal point missing.

Phase error. A label's definition or value varies from
one pass to another.

c-8

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

gpestionable'syntax. There are missing arguments or the
instruction scan was not completed, or a carriage return
was not followed by a line feed or form feed.

Register-type error. An invalid use of or reference to a
register has been made.

Symbol-table overflow. When the quantity of user-defined
symbols exceeds the allocated space available in the
user's symbol table, the assembler outputs the current
source line with the S error code, then returns to the
command string interpreter to await the next command
string to be typed.

Truncation error. A number was too big for the allotted
number of bits; the leftmost bits were truncated. T
error does not occur for the result of an expression.

Undefined symbol. An undefined symbol was encountered
during the evaluation of an expression. Relative to the
expression, the undefined symbol is assigned a value of
zero.

C.6 INITIAL OPERATING PROCEDURES

Loading:

Storage Re-
quirements:

Use Absolute Loader (see Chapter 6). Make sure that the
start address of the absolute loader is in the switches
when the assembler is loaded.

PAL-11A exists in 4K and 8K vetsiqns.

Starting Immediately upon loading, PAL-11A will be in control and
initiate dialogue.
Initial
Dialogue: Printout Inquiry
*S What is the input device of the Source
symbolic tape?
*B What is the output device of the Binary object
tape?
*L What is the output device of the assembly
Listing?
*T what is the output device of the symbol Table?
Each of these questions may be answered by one of the following
characters:
Character Answer Indicated
T Teletype keyboard
L Low-speed reader or punch
H High-speed reader or punch
P line Printer (8K version only)

PAL-11A ASSEMBLY LANGUAGE AND ASSEMBLER

Each of these answers may beé followed by other characters indicating
options: ‘

Option Typed Function to be Performed
/1 on pass 1
/2 on pass 2
/3 . on pass 3
/E errors to be listed on the Teletype
on the same pass (meaningful or *B
or *L only)

Each answer is terminated by typing the RETURN key. A RETURN alone as
answer will delete the function.

Dialogue during assembly:
Printout Response
EOF ? Place next tape in reader and type RETURN. A
.END statement may be forced by typing E
followed by RETURN.

END ? Start next pass 'by placing first tape in
reader and typing RETURN.

EOM ? If listing on HSP or LPT, replenish tape or
paper and type RETURN. If binary on HSP,
-start assembly again.

Restarting: Type CTRL/P. The initial dialogue will be
started again.

C-10

e}

DO

-]

N®Oo

APPENDIX D

TEXT EDITOR, ED-11

INPUT/OUTPUT COMMANDS

R

nT

nN

Reads a page of text from input device, and appends it ¢to
the contents (if any) of the page buffer. Dot is moved to
the beginning of the page and Marked. (See B and M below.)

Opens the input device when the user wishes to continue
input with a new tape in the reader.

ARGUMENTS

{n) beginning at Dot and ending
, with nth line feed character.
Lists the character
string (-n) beginning with 1st character
following the (n+l)th previous
line feed and terminating at
Dot.

(0) beginning with 1st character
of current line and ending at
Dot. .

{Q) bounded»by,Ddt and the Marked
location (see M).
Punches the character

string (/) beginning at Dot and ending
with the last character in the
page.

Outputs a Form Feed character and four inches of blank
tape.

Punches four inches of Trailer (blank tape) n times.

Punches contents of the page buffer (followed by a trailer
if a form feed is present), deletes the contents of the
buffer, and reads the next page into the page buffer. It
does this n times. At completion, Dot and Mark are located
at the beginning of the page buffer.

Lists the entire line containing Dot (i.e., from previous
line feed to next line feed or form feed).

Same as -1L. If Dot is located at the beginning of a line,
this simply lists the line preceding the current line.

Lists the line following the current line.

TEXT EDITOR, ED-11

D.2 POINTER-POSITIONING COMMANDS

B Moves Dot to the beginning of the page.
E Moves Dot to the end of the page.
M Marks the current position of Dot for later reference in a

command using the argument @.

move Mark.

Certain commands implicitly

n (n) forward past n characters

-n (-n) backward past n characters

0 J Moves Dot: (0) to the beginning of the current line

e . (@) to the Marked location

/ (/) to the end of the page

n (n) forward past n ends-of-lines

-n {(~n) to first character following the (n+l)th
previous end-of-line

0 A Moves Dot: (0) to the beginning of current line

e (@) to the Marked location

/ (/) to the end of the page

D.3 SEARCH COMMANDS

nG Gets (searches for) the nth occurrence of the specified
XXXX character string on

immediately after

are listed on th

the

current page.

Dot 1is set

the last character in the found text,
and the characters from the beginning of the line to Dot

e

teleprinter.

If the search is

unsuccessful, Dot will be at the end of the buffer and a

? will be printed o

ut.

H Searches the wHole file for .the next

XXXX specified character string.

occurrence of the
Combines G and N commands.

If search is not successful on current page, it continues

on Next page. Dot i

s

set

immediately

after the 1last

character in the found text and the characters from the

beginning of the

line

to Dot are

listed on the

teleprinter. If the Search object is not found, Dot will
be at the end of the buffer and a ? will be printed out.
In such a case, all text scanned is copied to the output

tape.

D.4 COMMANDS TO MODIFY THE TEXT

Character-Oriented

nD Deletes }the following
nC Changes f n characters
XXXX
-nD Deletes }the previous
-nC . Changes §f n characters
XXXX

Line-Oriented

nk Kills
nX eXchanges
XXXX

-nK Kills
-nX eXchanges
XXXX

}
}

the character string
beginning at Dot

and ending at the
nth end-of-line.

the character string
beginning with the
first character fol-
lowing the (n+l)th
previous end-of-line
and ending at Dot.

TEXT EDITOR, ED-11

0D Deletes }the current line 0K Kills } the current line up
ocC Changes f up to Dot 0X eXchanges to Dot.
XXXX XXXX
ép Deletes }The character @K Kills } the character string
ecC Changes f string begin- ex eXchanges beginning at Dot and
XXXX ning at Dot and XXXX ending at a previ-
ending at a pre- ously Marked loca-
viously Marked tion.
location.
/D Deletes}'the character /K Kills } the character
/C Changes § string begin- /X eXchanges string begin-
XXXX ning at Dot and XXXX ning at Dot and
ending with the ending with the
last character last character
of the page. of the page.
I Inserts the specified text. LINE FEED terminates Text Mode and
XXXX causes execution of the command. Dot is set to the location
immediately following the last character inserted. If text was
inserted before the position of Mark, ED-11 performs an M
command .
SYMBOLS
Dot Location following the most recent character operated
upon.
+ , Holding down the CTRL key (not the * key) in
combination with another keyboard character.
RETURN If in command mode, it executes the current command;
goes into Text Mode if required. If in Text Mode, it
terminates the current line, enters a carriage return
and line feed into the buffer and stays in text mode.
At all times causes the carriage to move to the
beginning of a new line. (RETURN.is often symbolized
as /).
¥ (Typing the LINE FEED key) Terminates Text Mode
unless the first character typed in Text Mode;
executes the current command.
CTRL/FORM A Form feed which terminates, and thus defines, a
page of the user's text.
GROUPING OF COMMANDS

No Arguments Argument n only

All Arguments (n,-n,0,@,/)

v {(Verify: G (Get) A (Advance)
Lists current line) N (Next) C (Change)

< (Lists previous line) T (Trailer) D (Delete)

> (Lists next line) J (Jump)

B (Begin) K (Kill)

E (End) L (List)

F (Form feed) P (Punch)

H (wHole) X (eXchange)

I (Insert)

M (Mark)

(0] (Open)

R (Read)

TEXT EDITOR, ED-11

Requiring
Text Mode

C (Change)
G (Get)

H (wHole)

I (Insert)
X eXchange)

D.7 OPERATING PROCEDURES

D.7.1 Loading: Use Absolute

D.7.2 Storage Requirements:

D.7.3 Starting: Immediately

D.7.4 Initial Dialogue:

Program Types

*T L/ (if
He/ (if
*0 Lo/ (if
H</ (if

If the output device is the
command mode to accept input.

LSP OFF?

Upon input of ./ from the keyboard, Editor enters command mode and

ready to accept input.

D.7.5 Restarting:

Line Character
Oriented Oriented
A (Advance) J (Jump)
K (Kill) D (Delete)
L (List) '
P (Punch)
X eXchange) C (Change)

Binary Loédet {see Chapter 5).
ED-11 uses all of core.

upon loading, ED-11 will be in control.

User Response

LSR is to be used for source input)
HSR is to be used for source input)

LSP is to be used for edited output)
HSP is to be used for edited output)

high~speed punch (HSP), Editor enters
Otherwise the sequence continues with:

</(when LSP is off)

is

Type CTRL/P twice, initiating the normal
initial dialogue. The text to be edited
should be lcaded (or reloaded) at this
time.

APPENDIX E

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11 AND ODT-11X

E.1 SUMMARY OF CONTENTS

ODT indicates readiness to accept commands by typing * or by opening a
location by printing its contents.

1. o0bT-11
n/ opens word n
\ . reopens last word opened

RETURN key closes open location

+ opens next location

+ opens previous location

- opens relatively addressed word

$n/ opens general register n (0-7)

n;G goes to word n and starts execution

n;B sets breakpoint at word n

;B removes breakpoint

$B/ opens breakpoint status word

P proceeds from breakpoint, stops again on next
encounter

n;p proceeds from breakpoint, stops again on nth
encounter

SM/ opens mask for word search

n;w searches for words which match n in bits specified
in $M

n;E searches for words which address word n

n/ (con- calculates offsets from n tom

tents) m;O0

$s/ opens location containing user program's status
register

S$P/ opens location containing ODT's priority level

BE~1

2. ODT-

In addit

version has the following:

n\ opens byte

\ reopens last byte opened
opens the absolutely addressed word

> opens the word to which the branch refers

< opens next location of previous sequence

n;rB (r between 0 and 7) sets breakpoint r at word n

;rB removes breakpoint r

;B removes all breakpoints

$B/ opens breakpoint 0 status word. Successive LINE
FEEDs open words for other breakpoints and single-
instruction mode.

;nS enables Single-instruction mode (n can have any
value and is not significant)

n;P in single-instruction mode, Proceeds with program
run for next n instructions before reentering ODT
(if n is missing, it is assumed to be 1)

;S disables Single~instruction mode

DEBUGGING OBJECT PROGRAMS ON-LINE, ODT-11 AND ODT-11X

NOTE

If- a word 1is currently open, new
contents for the word may be typed
followed by any of the commands
RETURN,V,4, «or . The open word will be
modified and closed before the new
command is executed.

11X

ion to the commands of the regular version, the

extended

| LOADING AND DUMPING CORE MEMORY

F.1 THE BOOTSTRAP LOARER

APPENDIX F

This appendix pertains only ﬁo systems with a Switch Register.

F.1.1 Loading The Bootstrap poader'

bank.

The Bootstrap Loader shpuldbbévtoggled into the highest core memory

xx7744
xx7746

xx7750

xx7752
xx7754
xx7756
xx7760
xx7762
xx7764
xx7766
xx7770
xx7772
xx7774
xx7776

016701

. 000026

012702
000352
005211
105711
100376
116162
000002
xx7400
005267
177756
000765

YYYYYY

xx represents the highest available memory bank.
first 1location of the loader would be one of the following, depending
on memory size, and xx in all subsequent locations would be the same

as the first.
Locatio

017744
037744
057744
077744
117744
137744
157744

n

AW O

V Memory Bank

The contents of location xx7776 (yyyyyy)
above should contain the device status register address of the paper
bootstrap formatted tapes

tape reader to be used when

specified as follows

Teletype Paper Tape Reader -- 177560

loading

the

in the

For example, the

Memory Size

4K

8K
12K
16K
20K
24K
28K

Instruction column

High-speed Paper Tape Reader -- 177550

LOADING AND DUMPING CORE MEMORY

Set SR to xx 7744
Press LOAD ADDR

Load

or Verify

Instructions
?

Load Verify

Set SRto 016701
Lift DEP

Lift DEP

) ‘sn SR
" 'Set SR to next ln%trucﬁon
Instruction -

Lift DEP

Al
Instructions
Deposited

H-o0068

Figure F-1 Loading and Verifying the Bootstrap Loader

LOADING AND DUMPING CORE MEMORY

With Bootstrap

gl R [t]
Set ENABLE /HALT
To HALT

!

Place Bootstrap :
Tape in Code 351 must be
specified reader over reader sensors v

Prees LOAD ADDR

Set ENABLE/HALY
to ENABLE

Press:START

Tape Reads in

ondstops |- _ __ see Figure 5-5
At snd of Dota

11-0067

Figure F-2 Loading Bootstrap Tapes into Core

F.2 THE ABSOLUTE LOADER

1.

Loading the Absolute Loader

The Bootstrap Loader is used to load the Absolute Loader into
core. (See Figure F-2.) The Absolute Loader occupies
locations xx7474 through xx7743, and its starting address is
xx7500.

Loading with the Absolute Loader
When using the Absolute Loader, there are three types of

loads available: normal, relocated to specific address, and
continued relocation.

Optional switch register settings for the three types of 1loads are
listed below.

LOADING AND DUMPING CORE MEMORY

Switch Register

Type of load Bits 1-14 Bit 0
Normal ' {ignored) 0
Relocated - continue loading 0 1
where left off

Relocated - load in specified nnnnn 1
area of core (specified address)

F.3 CORE MEMORY DUMPS

The two dump programs are

DUMPTT, which dumps the octal representation of the contents
of all or specified portions of core onto the teleprinter,
low-speed or high-speed punch, or line printer.

DUMPAB, which dumps the absolute binary code of the contents
of specified portions of core onto the low-speed (Teletype)
or high-speed punch.

Both dumps are supplied on punched paper tape in bootstrap and
absolute binary formats. The following figure summarizes loading and
using the Absolute binary tapes.

LOADING AND DUMPING CORE MEMORY

INITIALIZE

LOAD ABS
LOADER |~ ~~"~""~ SEE FIGURE F-2
SET
ENABLE/HALT
TOHALT
‘ HSR = 177660 {This is necessary only
SET xx7778 LSR = 177560 f using & resder different
TOSPECIFY |- - -~ - -~ xx IS HIGHEST from thet wed by the
READER CORE MEMORY bootstrap loader.}
'
PLACE TAPE
IN READER
SETSR TO
xx7500. PRESS
LOAD ADDR
SETBITOOF | RELOCATE TYPE NORMAL
SO e T P =
"1 ADDR
CONTINUING | RELOCATION
SETRITO
OF SR.CLEAR
BITS 1-14
FIRST ves “SET
TAPE ENABLEMHALY
2 TO ENABLE
"o !
PRESS
PRESS START
CONTINUE
RELOAD
LOADER
PLACE NEXT
TAPE IN
READER

Figure F-3 Loading with the Absolute Loader

LOADING AND DUMPING CORE MEMORY

INITIALIZE
LSA = 177660
SPECIFY | | Hsr=177550
READER IN xx IS HIGHEST CORE
xx7768 MEMORY BANK

DuUmMP

LOAD
ABS LOADER

FORMAT
?

TOGGLE IN
BOOT LOADER

) LOAD LOAD

SETSR TO
TRANSFER
ADDRESS.

{

PRESS
LOAD ADDR
AND START

OUTPUT

TTY OR LSP DEVICE FOR
DUMP
{ ?
SETSR TO P SET SR TO
177568 177554
SETSRTO
177514
™Y
Lsp
PRESS
PUNCH ON
PRESS
CONTINUE

T

Figure F-4 Dumping Using DUMPAB or DUMPTT

LOADING AND DUMPING CORE MEMORY

y

SETSRTO
FIRST BYTE
ADDRESS
DUMPED

PRESS
CONTINUE

SET SR TO
LAST BYTE
ADDRESS
DUMPED

'

PRESS
CONTINUE

!

CORE IS
DUMPED

Figure F-4 (continued).

DUMPAB

YES

SETSRTO

TRANSFER

ADDRESS
{TRA)

!

PRESS
CONTINUE

!

SETSR TO
TRA-1

Y

PRESS
CONTINUE

!

TRA BLOCK
IS DUMPED

NO

An odd transfer address
causes absolute ioader
to halt

Dumping Using DUMPAB or DUMPTT

" APPENDIX G

INPUT/OUTPUT PROGRAMMING, IOX

G.1 INSTRUCTION SUMMARY

l. Format

10T

.WORD (an address)

.BYTE (a command code, a slot number of a device)

.WORD (done address) s READR AND WRITR ONLY

2. Command Codes:

INIT =1
RESET = 2
RSTRT =3
WAITR = 4

SEEK =5

READ = 11
WRITE = 12
READR = 13
WRITR = 14

G.2 PROGRAM FLOW SUMMARY

1. Set up buffer header:

Location Contents
(Buffer and Maximum number of data bytes (unsigned
Buffer+l integer)
BUFFER < Buffer+2 Mode of data (byte)
HEADER '
Buffer+3 Status of data (byte)
Buffer+4 and Number of data bytes involved in trans-
_Buffer+5 fer (unsigned integer)
Buffer+6 Actual data begins here.

Mode Byte Format

Niode Byte Format

Bits 7 8] 4 3 2 1 0 Bits
UNFOR-

1= NO ECHO MATTED| BINARY =1
FOR-

. Echo MATTED| ASCH =0

G-1

INPUT/OUTPUT PROGRAMMING, IOX

Coding Mode Byte

Formatted ASCII (or 200 to suppress echo)

Unformatted ASCII

0

Formatted Binary 1
2 (or 202 to suppress echo)
3

Unformatted Binary

Status Byte Format

Status Byte Format

7 6 5 4 3 2 1 0
I I ! 1

SEE CODES
DONE EOM EOF |] i

1= 1= =

NON-FATAL ERRORS

Coding Non-Fatal Errors

2 = checksum error (formatted binary)
3 = truncation of a long line
4 = an improper mode

2. Assign devices to slots in Device Assignment Table:
(RESET and INIT commands)
Slot numbers are in the range 0 to 7.

Device Codes:

KBD = 1 LSP = 4 LPT = 10
TTY = 2 HSR = 5
LSR = 3 HSP = 6
3. Use a data transfe; command to initiate the transfer.

G.3 FATAL ERRORS

Fatal errors result in a jump to 40 with RO set to the error code.
Rl is set to the value of the PC for error code 0. Errors 1-5 cause
Rl to be set to an IOT argument or to the instruction following the
arguments.

Fatal Error Code Reason

0 Illegal Memory Reference, SP overflow, illegal
instruction

Illegal command
Slot out of range
Device out of range

Slot not inited

oo W

Illegal data mode
G-2

APPENDIX H

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

This appendix lists all the global entry points of FPMP-11 and
provides a brief description of ‘the purposes of each. ~Sections ‘H.1
and H.2 are for reference when it is desired to call FPMP-1l1 ' routines
directly (i.e., without the use of the TRAP handler). Entry names
preceded by an octal:number-can be ‘referenced via the TRAP handler.
The number is the "routine number" referred to in the FPMP-11 manual.
If the number ‘{8 énclosed in ‘parentheses, the ‘routine- cannot be
accessed by the present TRAP handler, but has been assigned a number
for future use. Por a more-detailed explanation of the Ploating Point
Math Package, refer to the FPMP-11 User 's Manual DEC-11-NFPMA-A-D.

Examples of the calling conventions are:

POLISH MODPE: =~ .
JSR R4,$POLSH ;enter Polish mode
'$subrl ;call desired subroutines
$subr2 '
$subrn ;call last subroutine desired
.WORD .+2 ;leave Polish mode
J5RR: .
JSR R5,subr scall desired subroutine
BR XX '
".WORD argl ;subroutine argument address

.WORD arg2

: .WORD argn ;last argument
XX: . ‘ sreturn point

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

JpC: .

push args onto stack
JSR PC,subr

H.1 OTS ROUTINES

These are the routines taken from the FORTRAN operating time system.
The codes used in the following table are:

S = Routine is included in the standard single precision (2-word)

package.

D = Routine is included in the standard double precision (4-word)

package.

- SD = Routine is included in both standard packages.

Octal codes shown in parentheses are not yet implemented.

OCTAL $ OF
NAME CODE PKG ARGU MODE
$ADD 14 D 2 Polish
SADR 12 s 2 Polish
AINT 26 s 1 J5RR
ALOG 53 s 1 JSRR
ALOG10 54 s 1 J5RR
ATAN 42 S 1 J5RR
ATAN2 (43) s 2 JSRR
$CMD 16 D 2 Polish

DESCRIPTION

The double precision add
routine. Adds the top stack
item (4-words) to the second
item (4-words) and leaves the
four word sum in their place.

The single precision add
routine. Same as $ADD except
it uses 2 word numbers.

Returns sign of arqument *
greatest real integer =
absolute value of the argument
in RO,R1.

Calculates natural 1logarithm
of its single argument and
returns a two word result in
RO,R1.

Same as ALOG, except
calculates base-10 logarithm.

Returns the arctangent of its
argument in RO,R1.

Returns ARCTAN (ARG1/ARG2) in
RO,R1.

Compares top 4 word items on
the stack, flushes the two
items, and returns the
following condition codes:
4 (SP) @sp N=1,2Z=0

4(SpP) = @sp

N=0,2Z2=1
4 (SP) asp N=0,2Z=0

$CMR

cos

DATAN

DATAN2

DBLE

$DCI

$DCO

DCOS

DEXP

$DI

SDINT

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

17

37

44

(45)

(34)

(57)

(61)

41

52

(11)

(76)

s 2
) 1
D 1
D 2
1
sb 4
SD 5
D 1
D 1
SD
D 1

Polish

J5RR

JS5RR

JSRR

J5RR

JPC

JPC

J5RR

JSRR

Polish

Polish

Same as $CMD except it is for

2 word arguments.

Single precision version of
DCOS.

Double precision version of
ATAN.

Double precision version of
ATAN2.

Returns in RO-R3 the double
precision equivalent of the
single precision (two word)
argument.

ASCII to double conversion.

Calling sequence:
Push address of start of
ASCII field. Push length
of ASCII field in bytes.
Push format scale D (from
W.D) position of assumed
decimal point (see FORTRAN
manual). Push P format
scale (see FORTRAN
manual). JSR PC,$DCI.

Returns 4 word result on top
of stack.

Double precision to ASCII

‘conversion. Calling sequence:

Push address of start of
ASCII field. Push length
in bytes of ASCII field (W
part of W.D) Push D part
of W.D position of decimal
point). Push P scale.
Push 4 word value to be
converted, lowest order
word first. JSR PC,$DCO.

Calculates the cosine of its
double precision argument and
returns the double precision
result in RO-R3.

Calculates the exponential of
its double precision argument,
and returns the double
precision result in RO-R3.

Converts double precision
number on the top of the stack
to integer. Leaves result on
stack.

OTS internal function to find
the integer part of a double
precision number.

DLOG
DLOG10

$DR

DSIN

DSQRT

$DVD

$DVI
$DVR

$ECO

EXP

$FCALL
$FCO

FLOAT

$GCOo

SUMMARY .OF FLOATING POINT MATH. PACKAGE, FPMP-11

55
56

(6)

40

47

23

(24)

25

(62)

51

(64)

{32)

(63)

D

SD

SD

SD

1

JS5RR

J5RR

Polish

JSRR

J5RR

Polish

Polish

Polish

JPC

J5RR

JPC

J5RR

JPC

Double precision (4 word)
version of ALOG.

Double: precision {4 word)
version of ALOG10.

. Replaces the double ' precision

item at the top of the stack
with its two word, rounded

form.

Calculates the sine of its
double precision. arg. and
returns the double precision
result in RO-R3.

Calculates the square root of
its double pPrecisjon arg. and
returns the double precision
result in RO-R3.

The double precision division
routine. Divides the second
4-word item on the stack by
the top item and leaves the
quotient in their place.

The integer division routine.
Calculates 2(SP)/esSP and
returns the integer quotient
on the top of the stack.

The single precision division
routine. Same as $DVD, but
for 2 word floating point
numbers.

Single precision to ASCII
conversion according to E
format. Same calling sequence
as $DCO except that a 2-word
value is to be converted.

Single precision version of
DEXP. Returns result in
RO,R1.

Internal OTS routine.

Same as $ECO except uses F
format conversion.

Returns in RO-R1, the real
equivalent of its integer
argument.

Same as $ECO except uses G
format conversion.

$ICI

$1CO

IDINT

$1D

IFIX

INT

$INTR

$IR

S$MLD

SMLI

SMLR

$NGD

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

(65)

(67)

(31)

(3)

(35)

(30)

(27)

(4)

22

(20)

21

(3)

SD

SD

SD

JPC

JPC

J5RR

Polish

J5RR

J5RR

Polish

Polish

Polish

Polish

Polish

Polish

ASCII to integer conversion
calling sequence:
Push address of start of
ASCII field. Push length
in bytes of ASCII field.
JSR PC,$ICI
Returns with integer result on
top of stack.

Integer to ASCII conversion.
Calling sequence:
Push address of ASCII
field. Push 1length in
bytes of ASCII field.
Push integer value to be
converted. JSR PC,$ICO
Error will return with C bit
set on. Ro-R3 destroyed.

Returns sign of arg * greatest
integer <= arg in RO. Arg
is double precision.

Convert full word argument on
the top of the stack to double
precision and return result as
top 4-words of stack.

Returns the truncated and
fixed real argument in RO.

Same as IDINT for single
precision args.

Same function as AINT, but
called in Polish mode with
argument and returns result on
the stack.

Convert full word argument on
the top of the stack to single
precision and return result as
top 2-words of stack.

Double precision multiply.
Replaces the top two doubles
on the stack with their
product.

Integer multiply. Replaces
the top 2 integers on the
stack with their full word
product.

Single precision multiply.
Replaces the top two singles
on the stack with their
product.

Negate the double precision
number on the top of the
stack.

$NGI

$NGR

$0C1

$0Co

$POLSH

$POPR3

$POPR4

$POPRS

$PSHR1

$PSHR2
$PSHR3
$PSHR4
$PSHR5

$RCI

$RD

$RI

$SBD

SUMMARY OF FLOATING POINT MATH PACKAGE,‘PPHP-II

(1)

(2)

(66)

(70)

(60)

(7

(10)

15

SD

SD

SD

SD

SD
SD
SD

SD

Polish

Polish

JPC

JPC

Polish

Polish

Polish

Polish

Polish
Polish
Polish
Polish

JPC

Polish

Polish

Polish

Negaté the integer on the top
of the stack.

Negate the single precision
number on the top of the
stack.

ASCII to octal conversion.
Same call as S$ICI.

Octal to ASCII conversion.
Same call as $ICO.

Called whenever it is desired
to enter Polish mode from
normal in-line code. It must
be called via a JSR R4,$POLSH.

Internal routine to pop
2-words from the stack and
place thenm into RO,R1.

Internal routine to pop
4-words from the stack and
place them in RO-R3.

Internal routine to pop
4-words from the stack and
Place them in registers RO-R3.

Internal routine to push the
contents of RO onto the stack.

Same as $PSHRI.
Push RO,Rl onto stack.
Push RO-R3 onto stack.
Same as $PSHR4.

ASCII to single Precision
conversion. Same calling
sequence as $DCI. Returns
2-word result on top of stack.

Converts the single precision
number on the top of the stack
to double precision format.
Leaves result on stack.

Converts single precision
number on the top of the stack
to integer. Leaves result on
stack.

The double precision subtract
routine. Subtracts the double
precision number on the top of
the stack from the second
double precision number on the
stack and leaves the result on
the top of the stack in their
place.

SUNMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

$SBR 13 s Polish Same as $SBD but for single
precision. -

SIN 36 s 1 JSRR Single precision version of
DSIN.

SNGL (33) 1 JSRR Rounds double precision

argument to single precision.
Returns result in RO,Rl.

SQRT 46 s 1 JSRR Single precision version of
DSQRT.

TANH 50 s 1 JSRR 8ingle precision hyperbolic
tangent function. Returns
(EXP (2*ARG) -1/ (EXP (2*ARG) +1)
in RO,R1.

H.2 NON-OTS ROUTINES

These routines are written especially for FPMP-11 and should not be
called directly by the user.

OCTAL
NAME CODE PKG DESCRIPTION
SERR - sD Internal error handler.
SERRA - sD Similar to $ERR.
SLDR 71 S Load FLAC, single precision.
$LDD 72 D Load FLAC, double precision.
$STR 73 s Store FLAC, single precision.
$STD 74 D Store FLAC, double precision.
TRAPH - SD The TRAP handler routines and tables.

H.3 ROUTINES ACCESSED VIA TRAP HANDLER

The following is a table of the FPMP-1ll routines which can be accessed
via TRAPH, the trap handler. Each routine name (entry point) is
preceded by its TRAP code number to be used to access it, and followed
by a brief description of its operation when called via the TRAP
handler. Those entries which are preceded by an asterisk (*) perform
operations only on the FLAC, and address no operands. For exaaple, a

TRAP call to the single precision square root routine can be coded as
follows:

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

The net effect of the above TRAP instruction is to replace the
contents of the FLAC with its square root and then set the condition
codes to reflect the result. Note that since the FLAC is implicitly
addressed in ‘this instruction, the TRAP call supplies no other
address. For such a TRAP call, the addressing mode bits (bits 6 and 7
of the TRAP instruction) are ignored.

All entries not marked by an asterisk require an operand when called.
The operand is addressed in one of the four addressing modes explained
in section 3.1.1. of the FPMP-11 User's Manual. The addressing mode
is specified in bit 6-7 of the TRAP instruction.

("Operand” is the contents of the 1location addressed in the TRAP
call.) '

OCTAL NAME DESCRIPTION

CODE

14 $ADD Double precision addition routine. Adds
operand to the FLAC. Assumes 4-word
operand. ‘

12 $ADR Single precision addition routine. Adds
operand to the FLAC. Assumes 2-word
operand.

* 26 AINT 'Replaces contents of the FLAC by its
integer part. SIGN(FLAC) * greatest
integer <= |FLAC| . ' Assumes 2-word
argument in FLAC.

* 53 ALOG Replaces contents of the FLAC by its
natural logarithm. Assumes 2-word
argument in FLAC.

* 54 ALOG10 Same as ALOG, except calculates base-10
log.

* 42 ATAN Replaces contents of the FLAC by its
arctangent. Assumes 2-word argument in
FLAC.

16 $CMD ~ Compares operand to the contents of the
FLAC, and returns the following condition
codes.

FLAC<operand, N=1,%2=0
FLAC=operand, N=0,Z=1
FLAC>operand, N=0,Z2=0

Assumes 4-word operands.

17 SCMR Same as $CMD, but for 2-word operands.
* 37 Ccos Same as DCOS, but for 2-word argument.
* 44 DATAN Same as ATAN, but for 4-word argument.
* 52 DEXP 'Replaces the contents of the FLAC by its
exponential. Assumes 4-word argument in
the FLAC.

55

56

41

40

47

23

25
51
72
71

22

21
15

13
36
46
73

74

50

SUMMARY OF FLOATING POINT MATH PACKAGE, FPMP-11

DLOG

DLOG10

DCOs

DSIN

DSQRT

$DVD

$DVR
EXP
$SLDD

$LDR

MLD

$MLR
$SBD

$SBR
SIN

SQRT
$STR

$STD

TANH

Same as ALOG, but for 4-word argument.
Same as ALOGl0, but for 4-word argument.
Replaces the contents of the FLAC by its
cosine. Assumes 4-word argument in the
FLAC.

Same as DCOS, but calculates sine instead
of cosine.

Replaces the contents of the FLAC by its
square root. Assumes 4-word argument in
the FLAC.

Double precision division routine.
Divides the FLAC by the operand and
stores the result in the FLAC. Assumes
4-word operands.

Same as $DVD, but for 2-word operands.
Same as DEXP, but for 2-~word argument.
Same as $LDR, but assumeé 4-word operand.

Replaces the contents of the FLAC by the
operand. Assumes 2-~word operand.

Double precision multiplication routine.
Multiplies the contents of the FLAC by
the operand and stores the result in the
FLAC. Assumes 4-word operands.

Same as $MLD, but for 2-word operands.
The double precision subtraction routine.
Subtracts the operand from the contents
of the FLAC. Assumes a 4~word operand.
Same as $SBD, but for 2-word operand.
Same as DSIN, but for 2-word argument.
Same as DSQRT, but for 2-word argument.

Stores the contents of the FLAC into the

-operand location. The contents of the

FLAC are unchanged.

Same as $STR, but assumes 4-word operand
location.

Replaces the contents of the FLAC by its
hyperbolic tangent. Assumes 2-word
argument.

APPENDIX I

TAPE DUPLICATION

Duplication of paper tapes can be accomplished via low- or high-speed
I/0 devices by toggling (as with the Bootstrap Loader) the following
program directly into memory through the Switch Register. {(Refer to
Section 6.1.1 in Chapter 6 if necessary, for toggling procedure.)

1.

2.
3‘

4.

6.
7.

Turn on appropriate device switches and place tape in desired
reader.

Set ENABLE/HALT switch to HALT.

Set Switch Register to the desired starting address and press
LOAD ADDR.

Set Switch Register to each value 1listed in the CONTENTS
column below, 1lifti the DEP switch after each setting.
(Addresses are automatically incremented.) The desired input
device (either Low- or High-Speed Reader) and output device
(Low- or High-Speeéd Punch) are specified in the 1last two
words.

ADDRESS CONTENTS
0 016700
2 000024
4 016701
6 000022
10 005210
12 105710
14 100376
16 105711
20 100376
22 022021
24 111011
26 000764
30 177560 (LSR) or 177550 (HSR)
32 177564 (LSP) or 177554 (HSP)

Set Switch Register to starting address specified in 3 above
and press LOAD ADDR.

Set ENABLE/HALT switch to ENABLE.

Press START switch.

TAPE DUPLICATION

NOTE

This program is recommended as a simple
way of duplicating the system tapes.
However, for extensive tape duplication,
the program shown in section 7.8 is
recommended.

I-2

APPENDIX J

ASSEMBLY AND LINKING INSTRUCTIONS

J.1 SYSTEMS WITHOUT SWITCH REGISTERS

J.1l.1 IOX/IOXLPT

I0OX/IOXLPT is provided in both source and relocatable object form.
Unless modifications are made to the source it is not necessary to
assemble the source tapes. The object tape may be 1linked with ' the
user's object tapes to produce an absolute tape (.LDA).

J.1.1.1 Assembling IOX - IOX consists of three source tapes (-PAl to
-PA3). These tapes are assembled together in sequence with PAL-11S.

J.1l.1.2 Assembling IOXLPT - IOXLPT consists of two source tapes (-PAl
to PA2). These tapes are assembled together in sequence with PAL-11S.

J.1.1.3 Linking 10X and IOXLPT -~ IOX and IOXLPT are linked by
LINK~11S with the user's object tapes to produce an absolute tape.

J.1.2 ODT11X

ODT11X is provided in both source and relocatable object form. Unless
modifications are made to the source, it is not necessary to assemble
the source tape. The object tape may be linked with the user's object
tapes to produce an absolute tape.

J.1l.2.1 Assembling ODT11X - ODT11lX consists of one source tape (-PAL)
which is terminated with the following:

.EOT
form feed
.END 0.0DT

When PAL-11S indicates that it has encountered the .EOT, type return
so that it will process the .END statement.

ASSEMBLY AND LINKING INSTRUCTIONS

J.1.2.2 Linking ODT11X - ODT11X is linked with user object tapes. It
is self starging and should be the first object tape input to LINK-118
so that it will be the program started by the Absolute Loader when the
program is loaded.

J.1.3 ED-11

The ED-11 source file is available only in RT-11 format on a flexible
diskette. The RT-11 MACRO assembler is required to assemble ED-11. .
The RT-11 linker (LINK) is used to produce the absolute tape.

J.1.3.1 Assembling ED-11 - The RT-11 commands to assemble ED-11 are
as follows: '

.R MACRO
*EDIT11=DX1:EDIT11

J.1.3.2 Linking ED-11 - The RT-11 commands to 1link ED-11 are as
follows:

.R LINK
*PP:EDIT11/L=EDIT11

J.l.4 PAL-11S

The PAL-11S source file is available only in RT-11 format on a
flexible diskette. The RT-11 MACRO assembler is required to assemble
PAL-11S. The RT1l linker (LINK) or LINK-11S may be used to produce
the absolute tape.

J.1l.4.1 Assembling PAL-11S - There are three sources which are
assembled separately for PAL-11S. One of these, the symbol table
source, is available in three versions: 8K, 12K, and 16K. The RT-11
commands to assemble PAL-11S source files are as follows:

«R MACRO

*RELMEM=DX1 : RELMEM . PAL Clear Memory Program
*PSYM08=DX1:PSYM0OS.PAL 8K Symbol Table
*PSYM12=DX1:PSYM12,.PAL 12K Symbol Table
*PSYM16=DX1:PSYM16.PAL 16K Symbol Table
*PAL11S=DX1:PAL11S.PAL Assembler

In addition to the above, IOXLPT is wused by PAL-11S. The IOXLPT
source is also available in RT-11 format on a flexible diskette. The
commands to assemble JOXLPT are:

+«R MACRO
*IOXLPT=DX1 : IOXLPT.PAL

ASSENBLY AND LINKING INSTRUCTIONE

J.1.4.2 Linking PAL-11S - PAL-11S may be linked with LINK-11S or the
RP-11 1linker, . The PAL-118 tape actually contains two programs:
. RELMES and PAL-11S. RELMEM precedes PAL-11S on the tape.

Using LINK-118, link PAL-118 as follows:

1. Link RELMEM as a separate program and do not remove the tape
from the punch when finished. ‘

2. Link PAL11S.0BJ, IOXLPT.OBJ, and one of the symbol table
object tapes (PSYM08.0BJ, PSYM12.0BJ, or PSYM16.0BJ) in that
order. The symbol table tape is selected depending on the
sigze of the memory of the computer on which the program is to
be executed. If the target computer has 8K words of memory
then PSYM08.0BJ, if 12K then PSYM12.0BJ, and if 16K then
PSYM16.0BJ. Specify a top address of 57460 for 12K and 77460
for 16K.

Do not link PAB-11S to run above 16K. The size of the symbol
table is fixed, and there is no need to re-link at a higher
address even on large systems.

Using RT-11 LINK, link PAL-11S as follows:
1. Link RELMEM as a separate program as shown

«R LINK
*RELMEM/L=RELMBM

2. Link 8K, 12K, and 16K versions of PAL-11S

+R LINK

XPALOB/L/B:204=PAL11Sy IOXLPTyPSYMOSB
XPAL12/L/B$204=PAL11Sy IOXLPT»PSYM12
*PAL16/L/B2204=PAL11Sy IOXLPT,PSYM16

3. Use RT-11 PIP to punch the tapes. Remember not to remove the
tape from the punch after punching RELMEM.

+R PIP
¥PP {=RELMEM.L.DA/B
*PP!=PALOB.L.DA/B

remove 8K PAL11S.LDA from punch

*PP{=RELMEM.LDA/B
*PP=FAL12.LDA/B

remove 12K PAL11S.LDA from punch

*PF{=RELMEM.LDA/R
*%PP{=PAL16.LDA/B

J.1.5 LINK-11S

The LINK-11S source file is available only in RT-11 format on a
flexible diskette. The RT-11 MACRO assembler is required to assemble
LINK-11S. LINK-11S is composed of two components: LINK-11S proper
and IOXLPT. See Section N.l.4.1 for instructions on how to assemble
IOXLPT using RT-11l.

ASSEMBLY AND LINKING INSTRUCTIONS

g,l.s.l Assembling LINK-11S - The RT~11l commands to assemble LINK-11S
ollow: T i i o ‘ ' ‘

+R MACRO
ALINK11=DX13LINK11

J.1.5.2 Linking LINK-11§ - LINK-11S may be linked with LINK-11S or
the RT-11 1linker, LINK. There are two object tapes which are linked
together to produce LINK-11S: LINK11.0BJ and IOXLPT.OBJ.

Using LINK-11S to link LINK-11S, link the following two tapes in
order: LINK11.0BJ and IOXLPT. If versions are desired for systems
with more than 8K, specify a top address of 57460 for 12K and 77460
for 16K. o - o o

Using RT-11 LINK to link LINK-11S is a two step process because of a
difference in philosophy. Aan initial link is required which produces
a link map so that the size of LINK11S can be determined. A final
link ‘is then made with the information obtained in the initial link
used to compute the bottom address. '

The initial link is executed as follows:

+R LINK
X TT:=LINK11y IOXLPT

The value displayed for "HIGH LIMIT" is used 't6 compuée the bottom
address for the final link. Assume for an example that the following
was displayed: ‘ : ‘ - ‘

HIGH LIMIT = 015572

Select 37460, 57460, or 77460 depending on whether an 8K, 12K, or 16K
top addre§s is desired. The bottom address is computed as follows:

i

B =T - 4+ 1000

Where: B = bottom address
: T = top address
H = high limit
Example: B = 37460-15572+1000
o B = 22666 |

Using the figures in the example above, the finél link for an 8K

-, ~8ystem would be executed as follows:

+R LINK
*PP:/B:22666/LvTT2=LINK11vIOXLPT

As a check, examine the link map produced and verify that the high
limit matches the one used in the calculations above. 1In the example,
the high limit value must be 37460.

ASSEMBLY AND LINKING INSTRUCTIONS

J.2 SYSTEMS WITH SWITCH REGISTERS

J.2.1 Assembling PAL-11A

The following procedures are for assemblihg the PAL-11 Assembler
source tapes. An 8K version of the PAL-11lA (V007A) Assembler is
required, thus also requiring at least an 8K PDP-]1 system.

The Assembler consists of two programs. The first program, on tape 1,
is a memory clear program and is very short (DEC-11-UPLAA-A-PAl). The
seconid program is the Assembler proper, and consists of eleven ASCII
tapes (DEC-11-UPLAA-A-PA2-PAl2). They are assembled as follows:

1. Generate a sufficient amount of blank leader tape.

2, Assemble the memory clear program _ source tape
(DEC-11-UPLAA-A-PAl) and assign the 'binary output to the
high-speed punch. For example, PAL-11A's initial dialogue to
specify the 2-pass assembly would be:

*S H
¥B H/E
*L

4

. (PAl assembly -~ 1lst pass)
END?)

|

. (PAl assembly - 2nd pass)
000000 ERRORS (No errors - Do not remove
C S the binary tape from the punch.)

3. Assemble the rest of the Assembler's source tapes (PA2 -
PAl2) in numerical sequence.

Assign the binary output to the high-speed punch. For
example, the initial dialogue should be answered as follows:

*S H
*B H/E
*L
*T
EOF ? (Enter tape PA2 for lst pass)
EOF ? (End of tape PA2, enter PA3)
EQOF 2 (End of tape PA3, enter PA4)
EOF ? (End of tape PA4, enter PAS)
EOF ? (End of tape PA5, enter PA6)
EOF ? (End of tape PA6, enter PA7)
EOF ? (End of tape PA7, enter PAS8)
EOF ?° (End of tape PAB, enter PA9)
EOF ? (End of tape PA9, enter PAl0)
EQF ? (End of tape PAl0, enter PAll)
EOF 2 - (End of tape PAll, enter PAl2)
MAXCL13 kkkkkk STMBC = **%%%* ' (End of first pass)
END ? X .
EOF ? (Enter tape PA2 for 2nd pass)
EOF ? (End of tape PA2, enter PA3)
EOF ? (End of tape PA3, enter PA4)
EQF ? (End of tape PA4, enter PA5)
EOF ? (End of tape PA5, enter PA6)
EOF ? (End of tapeé PA6, enter PA7)
EOF ? (End of tape PA7, enter PAS8)

- EOF 2 (End of tape PA8, enter PA9)
EOF 2 (End of tape PA9, enter PAlQ) .

OF 2 . (End of tape PAl0, enter PAll)

ROF ? (End of tape PAll, enter PAl2)

ASSEMBLY AND LINKING INSTRUCTIONS

000000 ERRORS (End of 2nd pass)
C
*s

Note that at the end of the first pass there are two undefined
symbols: MAXC13 and SIMBC. These undefined symbols are resolved so
that there are no errors reported during the second pass.

Be sure that there is sufficient blank trailer tape on the binary
output tape before removing the assembled tape from the punch.

Normally, using high-speed paper tape input and output, this process
requires about 45 minutes. If a symbol table and listing are
requested, there will be about 750 symbols and about 4500 lines of
listing.

J.2.2 Assembling ED-11

ED-11 consists of five source tapes (PAl to PA5) which are assembled
together in sequence with 8K PAL-11A.

J.2.3 ODT-11/0DT-11X

In subsequent discussion, reference to ODT applies to both versions.
ODT is supplied on both source and absolute binary tapes.

If the program being debugged requires storage where the version of
ODT being used is normally loaded, it is necessary to reassemble ODT
after changing the starting location.

The source tape of ODT is in three segments, each separated from the
next by blank tape. The first segment contains:

.=n (standard location setting statement)
.EOT

where n=13026 for ODT-11 or n=12054 for ODT-11X. This statement tells
the Assembler to start assembling at address n. To relocate ODT to
another starting address, substitute for segment one a source tape
consisting of: :

.=n (n is the new load address for ODT)
.EOT

The .EOT statement tells the Assembler that this is the end of the
segment but not the end of the program -- the Assembler will stop and
wait for another tape to be placed in the reader.

The second segment of tape contains the ODT source program. This
segment is also terminated with .EOT.

The third segment of the tape consists of the statement:
.END 0.0DT

where .END means "end of program” and O.ODT represents the starting
address of the program (see Section 6.2.3).

When relocating ODT, the first segment of the source tape must be
changed to reflect the desired load address. The third segment may be
changed to .END without a start address. The latter will cause the
Loader to halt upon completion of loading.

J=-6

ASSEMBLY AND LINKING INSTRUCTIONS

The segmentation allows the following assembly forms:

1. Assemble alone but at a new address. A new segment one must
be generated and assembled with segments two and three.

2. Assemble immediately after the user's program to be debugged.
Assemble the tape of the user's program (ending with .EOT)
followed by ODT's segment two and either segment three or a
new segment three. .

3. Assemble inside the program to be debugged. Assemble the
first part of the user program (ending with .EOT) followed by
ODT's second segment followed by the second part of the user
program.

When setting locations before assembling, it must be noted that
immediately preceding ODT a minimum internal stack of 40g bytes is
required for the ODT-11 and 116 bytes is required for ODT-1llX.
Additional room must be allocaged for subroutine calls and possible
interrupts while ODT is in control. Twelve bytes maximum will be used
by ODT proper for subroutine calls and interrupts, giving a minimum
safe stack space of 52 bytes for ODT-11 or 130g bytes for ODT-11X.

Once a new binary tape of ODT has been assembled, load it using the
Absolute Loader as explained in Section 6.2.2. Normally, the program
to be debugged is loaded before ODT, since ODT will automatically be
in control immediately after loading, unless the third segment of
ODT's source tape was altered before assembly. As soon as the tape is

read in, ODT will print an * on the Teletype to indicate that it is
ready for a command.

J.2.4 Assembling IOX/IOXLPT

In subsequent discussion, reference to IOX applies to both versions.
I0X is supplied on both source and absolute binary tapes.

If there is more than 4K of core available and it is desired to load
IOX (or 1IOXLPT) in other than the normal 1location, IOX must be
reassembled.)

The code

+=15100
+EOQT

appears at the beginning of the first IOX tape (PAl) and contains the
starting address. Create a new tape containing the new starting
address desired; be sure to allow enough room for 63419 words for
I0X, 72510 for IOXLPT. For example,

+=25100
+EOT

Use PAL-11A to assemble 10X and substitute the new section of tape for
the first part of the old tape (PAl). After the new section is read,
insert the IOX tape in the reader so the read head is past the old
starting address and .EOT and type the RETURN key to read in the rest
of the tape.

Now read in the second tape (PA2). An EOF? message is output at the

end of the second tape. Type the RETURN key and the EWD? message is
primted. Put the tapes through for the second pass of the assembler.

J-7

ASSEMBLY AND LINKING INSTRUCTIONS

IOX (IOXLPT) can also be assembled with a user program if desired.
The .=15100 and .EOT 1lines must be deleted before IOX is assembled
with a user program. S o :

IOX can be assembled into the program wherever desired but if it is
the first tape read by the assembler, remove it from the reader before
typing’ the RETURN key (after the EOF? message of the second tape.
IOX.-and IOXLPT have a .END code which would cause the assembly pass to
end when read). Assembling a user program and IOX together eliminates
the need to read in IOX each time the program is run.

J.2.5 Assembling and Linking PAL-11S

PAL-11S consists of two independent programs. The first program is a
memory clear program. The'second is the assembler. All programs are
available as ASCII source tapes, object modules and as a load module.

The memory clear program, MEMCLR, (DEC-11-UPLSA-A-PAl) consists of one
ASCII tape. This program should never need to be assembled. The
object module may be used when constructing a new load module of
PAL-11S.

The assembler consists of three program modules “which are assembled
separately - and then 1linked together. The first is the main program
called PAL-11S. It consists of 13 ASCII tapes (DEC-UPLSA-A-PA2-PAl4).
The second module is the symbol table, PALSYM, which consists of 2
ASCII tapes (DEC-11-UPLSA-A-PA15-PAl6). The third is IOXLPT
consisting of 2 ASCII tapes (DEC-11~-UPLSA~-A-PAl17-PAl18). Also included
is PALSYM, specially created for 12K and 16K, consisting of one tape
each (DEC-11-UPLSA-A-PA19-PA20).

If changes are made in any of these modules, that module must be
assembled by PAL-11S (V003A) and the new object module can be linked
with the other object modules. It should be noted that assembly of
these programs will result 1in:)

Program- Pages of Listing (Decimal) ~ Number of Symbols (Decimal)
PAL-11S8 160 756
PALSYM 11 32
IOXLPT 29 191

Also note that there will be two undefined symbols listed at the end
of pass 1. These are forward references on direct assignments which
get defined properly in pass 2.

An example of the PAL-11S assembly follows:

PAL-11S = V003A

*S H
*B H
*LP .
*T P/2 (first pass on PAl)
" END ? ‘ o * (2nd ‘pass on PAl) o

000000 ERRORS : " (End of tape #1 assembly)
' : ' (Remove tape from punch)

ASSEMBLY AND LINKING INSTRUCTIONS

PAL-11S VO0O03A

*S H

"*B B

*L P _
*T P/2 s . v (Insert PA2 for lst pass)
EOF ? ' , (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4)
EOF ? (End of PA4, insert PA5)
EOF ? (End of PAS, insert PA6)
EOF ? " (End of PA6, insert PA7)
EOF ? (End of PA7, insert PAB)

- EOF ? (End of PA8, insert PA9)
EOF ? -(End of PA9, insert PAl0D)
EOF ? (End of PAl0, insert PAll)
EOF ? {(End of PAll, insert PAl2)

.EOF ? . (End of PAl2, insert PAl3)
EOF ? (End of PAl3, insert PAl4)

'BINCNT=****** SIMBCa***##* ¥ (End of PAl4 and lst pass)

END ? (Insert PA2 for 2nd pass)
EOF ? (End of PA2, insert PA3)
EOF ? (End of PA3, insert PA4)"
EOF ? (End of PA4, insert PAS5)
EOF ? (End of PAS, insert PA6)
EOF ? (End of. PA6, insert PA7)
EOF ? (End of PA7, insert PAS8)
EOF ? (End of PA8, insert PAY)
EOF ? {End of PAY9, insert PAlOQ)
EOF ?2 (End of PAl0, insert PAll)
EOF ? (End of PAll, insert PAl2)
EOF ? (End of PAl2, insert PAl13)
EOF ? (End of PAl3, insert PAl4)

000000 ERRORS (End of PAl4 and 2nd pass)
{Remove tape from punch)
PAL-11S VO0O3A '

*S H

*B H

*L P . L

*T P/2 (1st pass on PAl5).

EOF ? (End of PAl5, insert PAl6)

END ? (End of PAl6, insert PAl5 for 2nd pass)
EOF ? (End of PAl5, insert PAl6)

000000 ERRORS v (End of 2nd pass) .

(Remove tape from punch)
PAL-11S VO03A

*S H

*B H

*L P , ,

*T p/2 (1st pass on PAl7)

EOF ?2 (End of PAl7, insert- PAl8)

"END ? . (End of PAl8, insert PAl7 for 2nd pass)
EOF ? ' (End of PAl7, insert PAlS8)

000000 ERRORS ~ (End of 2nd pass) '

{Remove tape from punch)
PAL-11S VO003A '

*S H

*B H

*L P

*T P/2 (Pass 1 on PA20)
END 2 (Pass 2 on PA20)
000000 ERRORS (End of pass 2)

(Remove tape from punch)

ASSEMBLY AND LINKING INSTRUCTIONS

The final load module is constructed by LINK-11S.

clear program

and

In order to take advantage of core sizes larger than 8K,
specially
object modules are included with the assembler.
substitute
DEC-11~UPLSA-A-PR5 for 12K or DEC-11-UPLSA-A-PR6 for
to LINK-11S of 57460 for 12K (77460 for 16K) and link as
described in the preceding paragraph.

symbol table,

16K), simply

top address

Do not relink PAL~11S to run above 16K.

is
large systems.

object module

is

First
processed by the
resulting load module is left in the punch while the PAL-11S,

PALSYM,

the memory
linker and the

PALSYM,

IOXLPT object modules are linked to create a second load module.
The resulting tape contains two load modules.

The first clears memory
and then jumps to the absolute loader to load t

he second.

the

created for 12K core and 16K core, and the

To link for

12Kk (or

the appropriate object tape for PALSYM (use

The supplied tapes are identified as follows:

Library Code
DEC-11-UPLSA~A~PAl

DEC-11-UPLSA-A-PA2
DEC-11-UPLSA~A-PA3
DEC-11-UPLSA~A-PA4
DEC-11-UPLSA~A-PAS
DEC-11-UPLSA-A-PA6
DEC-11-UPLSA-A-PA7
DEC-11-UPLSA-A-PAS8
DEC-11-UPLSA-A-PAS
DEC-11-UPLSA-A-PA10
DEC-11-UPLSA-A-PAll
DEC-11-UPLSA-A-PAl2
DEC-11-UPLSA-A-PAl3
DEC-11-UPLSA-A-PAl4

DEC-11-UPLSA-A-PAlS
_DEC-11-UPLSA-A~-PAL6.

DECl11-UPLSA-A-PAl7

DEC-11-UPLSA-A-PAlS8
DEC-11-UPLSA-A-PAl9
DEC~11-UPLSA-A-PA20

DEC-11-UPLSA-A-PR1
DEC-11-UPLSA-A-PR2
DEC-11-UPLSA-A-PR3
DEC-11-UPLSA~-A-PR4
DEC-11-UPLSA-A-PR5

DEC~11-UPLSA-A-PRé6

DEC-11-UPLSA-A-PL

Tape

Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape

Tape

. Tape

Tape
Tape
Tape
Tape

Tape
Tape
Tape
Tape
Tape

Tape

1

WO WU W

of

N OO

One
Assembly

One
Assembly

One
Assembly

One

Assembly

One Assembly
One Assembly

16K)

The size of the symbol
fixed, and there is no need to re-link at a higher address even on

RELMEM

specify a

table

Contents

(Memory Clear Program)

PAL-11S (Main Program)

PALSYM

IOXLPT
PALSYM
PALSYM

RELMEM

(Symbol Table) for

(Symbol Table) for
(Symbol Table) for

Object Module

PAL-11S Object Module

PALSYM
IOXLPT
PALSYM

Object Module for
Object Module
Object Module for

assembler

PALSYM

Object Module for

Assembler

PAL-11S Load Module'

1
This tape is the concatenation of a link of the RELMEM object module

followed by a
modules.

J-10

link of the PAL-11S, PALSYM for 8K, and IOXLPT object

ASSEMBLY AND LINKING INSTRUCTIONS

J.2.6 Assembling And Linking LINK-118

LINK-11S is available as an absolute load module (for an 8K machine),
as two object modules (for relinking) and as several ASCII source
tapes. There is one object module for the Linker and one for IOXLPT.
The supplied object modules may be relinked (using the supplied load
module) to load into any size machine larger than 8K. However, the
resulting Linker will still assume a top of memory corresponding to an
8K machine (this can be overridden in the command string options).
The assumed top of memory and reserved Absolute Loader space may. be
changed by editing the first linker ASCII tape with ED-11. The
parameters to be changed are HGHMEM (high memory address +1 (always
even)) and ALODSZ (Absolute Loader size (always even)). The source
tapes for the Linker may then be assembled with PAL-11S and the new’
object module can then replace the supplied Linker object module.

The tapes are identified as follows:

Library Code

DEC-11-ULKSA-A-PAl Tape 1 of 6 LINK-11S (Main Program)
DEC-11-ULKSA-A-PA2 Tape 2 of 6 One

DEC-11-ULKSA-~-A-PA3 Tape 3 of 6 Assembly

DEC-11-ULKSA-A-PA4 Tape 4 of 6

DEC-11-ULKSA-A-PAS Tape 5 of 6 } One IOXLPT
DEC-11-ULKSA-A-PA6 Tape 6 of 6 Assembly

DEC-11-ULKSA-A-PR1 Tape 1 of 2 LINK-11S Object Module
DEC-11-ULKSA-A-PR2 Tape 2 of 2 IOXLPT Object Module
DEC-11-ULKSA-A-PL LINK-11S Load Module

J-11

Abbreviation

ABS
A/D
ADC
ADRS
ASCII

ASL
ASR

BAR
BBSY
BCC
BCS
BEQ

BGE
BGT
BHI
BHIS
BIC
BIS
BIT
BLE
BLOS
BLT
BMI
BNE
BPL
BR
BRD
BRX
BSP
BSR

BSY
BVC
BVS

CBR
CLC
CLK
CLN
CLR
CLv

APPENDIX K

STANDARD PDP-11 ABBREVIATIONS

Definition

absolute

analog-to~digital

add carry

address

American Standard Code
for Information Inter-
change

arithmetic shift left

arithmetic shift right
automatic send/receive

byte

bus address register

bus busy :

branch if carry clear
branch if carry set
branch if equal

bus grant

branch if greater or equal
branch if greater than
branch if higher

branch if higher or same
bit clear

bit set

bit' test

branch if less or equal
branch if lower or same
branch if less than
branch if minus

branch if not equal
branch if plus

branch

bus register data

bus request

back space

bus shift register

back space record

busy

branch if overflow clear
branch if overflow set

console bus request
clear carry

clock

clear negative
clear

clear overflow

STANDARD PDP~11 ABBREVIATIONS

CLZ clear zero
CMP compare
CNPR console nonprocessor regquest
CNTL control
CoM complement
COND condition
CONS : console
CONT contents
continue
CP central processor
CSR control and status register
D . data
D/A digital-to-analog
DAR device address register
DATI data in
DATIP data in, pause
DATO data out
DATOB data out, byte
DBR data buffer register
DCDR decoder
DE destination effective address
DEC decrement
Digital Equipment Corp.
DEL delay
DEP deposit
DEPF deposit flag
DIV divide
DMA direct memory access
DSEL device select
DST destination
DSX display, X-deflection register
EMT emulator trap
ENB enable
EOF end-of-file
EOM end-of-medium
ERR error
EX external
EXAM examine
EXAMF examine flag
EXEC execute
EXR external reset
F flag (part of signal name)
FCTN function
FILO first in,last out
FLG flag
GEN generator
INDIVR integer divide routine
INC increment
increase
INCF increment flag
IND indicator
INH inhibit
INIT initialize
INST instruction
INTR interrupt
INTRF . interrupt flag
I/0 input/output
10T input/output trap
I0X input/output executive routine

K-2

IR
ISR

JMP
JSR

LIFO
LKS
LOC

LSB
LSBY
LSD

MAR
MBR
MEM

MOV
MSB .
MSBY
MSD
MSEL
MSYN

ND
NEG
NOR
NPG
NPR
NPRF
NS

PS

PTR
PTS
PUN

STANDARD PDP-11 ABBREVIATIONS

instruction register ‘
instruction register decoder
instruction shift register

jump
jump to subroutine

last in,first out

line time clock status register
location

line printer

least significant bit

least significant byte

least significant digit

memory address

memory address register
memory buffer register
memory

memory location

move

most significant bit
most significant byte
most significant digit
memory select

master sync

negative driver

negate

normalize

nonprocessor grant

nonprocessor request

nonprocessor request flag
. negative switch

octal debugging technique
operate

operation

operator

operand

parity available

program assembly language

parity bit

program counter

positive driver

programmed data processor

peripheral

program

paper tape punch

paper tape punch buffer register

paper tape punch status register

paper tape reader

paper tape reader buffer:
register

processor

paper tape reader status
register

processor status

positive switch

priority transfer

paper tape software system

punch

STANDARD PDP-11 ABBREVIATIONS

RD read
RDR reader
REG register
REL release
RES reset
ROL rotate left
ROM read-only memory
ROR rotate right
R/S rotate shift
RTI ; return from interrupt
RTS return from subroutine
R/W read/write
R/WSR read/write shift register
s single
SACK selection acknowledge
SBC SUBTRACT CARRY
sC single cycle
SE source effective address
SEC set carry
SEL select
SEN set negative
SEV set overflow
SEX sign extend
SEZ set zero
SI single instruction -
sp stack pointer
spare
SR switch register
SRC source
SSYN . slave sync
ST start :
STPM set trap marker
STR strobe
SUB subtract
svVC service
SWAB swap byte
TA trap address
track address
TEMP temporary
TK teletype keyboard
TKB teletype keyboard buffer register
TKS teletype keyboard status register
TP teletype printer
TPS teletype printer status register
TRT trace trap)
TSC timing state control
TST test
UTR user trap
VEC vector
wC word count
WCR word count register
XDR X-line driver
XRCG X-line read control group
XWCG X-line write control group
YDR ; Y-line driver
YRCG Y-line read control group
YWCG Y-line write control group

K-4

APPENDIX L

CONVERSION TABLES

L.1 OCTAL-DECIMAL INTEGER CONVERSIONS

o 1 12 3 s & 7 o 1t 2 3 4 S5 &

4
0002 0003 0004 0005 0008 0007 |! 0400 {0256 0257 0158 0239 0260 0261 02
0000 0000 0010 [0008 0009 0010 00Il 0012 0013 Q014 0015 || 0410 0264 0285 0286 0267 02¢8 0289 0270
to to 0020 (0018 0017 0018 0019 0020 0021 0022 0023 || 04200272 0213 0274 0273 0228 0277 0178
0777 0511 {0030 |002¢ 0023 0026 0027 0028 0029 0030 0031 |/ 0430|0200 0281 0201 0383 0284 0283 o
(Octal) | (Decimal)} 0040 (0032 0033 0034 0035 0036 0037 0038 0039 || 04400208 0209 0290 0291 0292 0203 0294

0050 {0040 0041 0042 0043 0044 0843 0046 0047 || 0450|0296 0297 0298 0299 0300 0301 0302

0080 |0048 0049 0030 00SI 0052 0053 0034 008 (i 0460|0304 0305 0306 0307 0308 0308 o030
Octal Decimal | 0070|0058 0057 0038 0039 0060 0061 0062 0043f oa7o|0312 0313 0314 0N3 0N ONT NS
10000 - 4096 0100 {00se e0ss 0oes 0067 0088 008w 0970 007 10500 0320 0321 0322 0323 0324 0333 06
20000 8192 |o1to{oers eers oore 001s 0uv6 0877 0078 0079|0810 (028 0329 0330 03D 0332 0333 03N
3000012288 0120|0000 goe1 coe2 003 0064 0083 006S 0087|0530 [0334 0337 033 03N OMQ OMI OM2
o090 . 0130|0008 0069 0000 0081 0092 0033 0094 0095 {(0530 (0344 0345 0348 0347 0348 029 0350
0000 - 20490 |0140{0096 0097 0os 0089 0100 G101 0102 0103 || 0340 (0352 0353 0334 0355 0356 0357 0338
60000 24378 |0150[010¢ 0105 0108 0167 0108 0109 0110 o111 ||0350 0360 0361 0362 0363 0I64 0365 0366

01800112 0113 0114 0113 0116 0117 0118 0318 || 036070368 0369 0370 0371 0372 0373 0374
0170/0120 012t 0122 0123 0124 0123 0126 0127{0370{0376 0377 03718 0319 0380 0381 0M2

02000128 0128 0130 0131 0132 0133 0134 0133 0800|0304 0385 0386 0387 0348 0389 0390
0210/0136 0337 0138 0139 0140 O141 0142 0143]]0610]0392 0293 0394 035 0296 0397 0398
0220|0144 0145 0146 0147 0148 0149 0150 015) {1 062010000 0401 0402 0403 0404 0405 0406
0230|0152 0153 0154 0155 0156 0157 0158 0159 (| 0820 /0408 0609 0410 0411 0412 0413 0414
02400160 0161 0162 0163 0164 0185 0166 0167 |/ 0840/0416 O4IT 0418 0418 0420 0421 0422
0250 |C168 0169 0170 0171 0172 0173 D174 0175)/ 085010424 0425 0426 0427 0428 0429 0430
0260|0176 0171 0178 0179 0180 0181 0182 0183] 0600|0432 0433 0434 0435 0436 0437 0438 °
02700184 0183 0196 0187 0188 0189 0190 0191 || 0670, 0440 0441 0442 0443 0444 0445 0446

03000192 0193 0194 0195 0196 0197 0198 0199 0100!0“0 0449 0450 0451 0452 0453 0454
0201 0203 0303 0204 0205 0208 0207;!0710)0456 04ST 0458 0439 0460 0a6i 0482

; 0720 0464 0465 D4SE 0467 0468 0489 0470

03300216 0217 0218 0219 0220 0I2) 0222 0213|073010472 0473 0474 O4TS 0476 0477 0478
0340|0224 0225 0226 0227 0238 0228 0230 0231 || 0740] 0480 0481 0482 0483 0484 0485 0408
0350|0233 0233 0234 0235 0236 0237 0238 0239]/0750) 0488 0489 0490 D491 0492 0433 GaM
0380|0240 0241 0242 0243 0244 0245 0248 0247} 0760|0496 0497 0498 6499 0300 0301 0502

0370|0248 02¢8 0250 0251 0252 0253 0254 0255]/0770{0504 0305 0308 0301 0508 0509 0510

e 1 2 3 ¢« s 6 11 To 4 2 3 a4 s s

1000/ 0512 0313 0514 0315 0316 0517 0518 03191] 1400|0768 0769 0770 0771 0772 0713 0714
1000 0512 |1010]0520 0521 0522 0323 032¢ 0525 0528 0521]11410,0776 OT77 0178 0179 0780 0781 0702

to 11020{ 0320 0s2e 083 0531 0332 0533 0334 03353) 14200784 0785 086 OTBT CT68 0789 0790
1777 10, 10301 0336 OSIT 0338 0539 0S40 0341 0542 0343] 1430 0792 0793 0794 0795 0198 OMT C1
(Octal) | (Decimal)]| 1040|0564 0345 0546 0547 0548 0549 0350 035111 1442/0800 0801 OS02 0803 0004 005 0808
105010552 0353 0354 0355 0556 0357 0358 0559|) 1450{0808 080% 0810 ONIL 0812 0813 0814
1060|0360 USE 0352 0343 0564 585 0566 0567]| 1460|0816 0817 OBIS D19 D620 0821 0821
1070} 0588 0569 0370 OST) 0572 0573 0574 0575|! 1470 0824 0825 0826 OB 0826 0829 0830

0731 0732 0733 0734 0735] | 1730 {098+ 0883 0084 ONO7 0988 0988 0990
0739 0740 0741 0742 0743] [1740|0932 0993 0984 0995 096 0997 008
0747 0748 0749 0730 O0751] {1750[100C 1001 1002 1003 1004 1005 1008
0798 0156 0157 0738 0T38] [1760 11008 1009 1010 1011 1012 1013 i0i¢
0763 0764 0765 0768 07T67| [1770{1016 1017 1018 1018 1020 1031 3032

| L :
1100} 0576 0577 0378 0379 0380 0381 0383 0583| ;300.0832 0833 0834 083 0838 0837 0838
1110{ 0584 0505 0588 0597 0388 OS89 0390 0391|] 151010840 OB41 0943 0B43 0844 OMS 0846
1120/ 0592 0593 0SB4 0595 0596 OS9T 0398 0399]| 1520|0848 0889 09SO CUSL 0832 0853 DRS¢
11300600 0sa) 0602 003 0804 0803 0806 0007|| 1530,0856 OBST DBSE 0SS 0880 OM41 0893
1140] 0608 0009 0610 OS11 0612 0813 0814 0815] 1 1540|0864 0865 0B6S OBEY 0868 0889 08T0
1150/ 0816 0617 0618 0819 0820 0821 0822 08231} 1550 0872 0873 0874 0875 0876 0877 0878
1160/ 0824 0625 0627 0676 0829 0630 0831]| 1560|0890 0631 085 0883 0884 0805 08NS
1170|0632 0833 0634 0635 0836 0637 OIS 06XV || 1570(0S88 OBS9 DNSO 0891 ON92 0SS 088S
1200|0840 0841 0843 0843 0644 0845 0846 0047! | 1600 Jos9s 0897 OBsS 0099 0900 0901 0802
1210|0643 OS4D 0850 051 0S5 OS53 0854 0835 1610|0904 0905 090G 0807 0S08 0BOP 0910
1220] 0638 0837 0638 OBSS 0860 0661 0562 0663| | 1820 [O912 OF13 0914 OP1S OHIE 0917 ORI
1230|0864 0863 0868 0667 OK6S 0869 0870 0671 | | 1630 (0920 3;; 0922 0923 0324 (SIS 0938
1240| 0672 0673 0674 0673 06TE 08TT OSTE 0879 | 16eo (0826 0529 0930 0931 0931 0933 0934
1250|0680 0681 0682 0603 0684 0885 0886 0607 | 16450 ,0938 0937 0938 0939 0940 0941 0942
1260|0680 0689 0890 0691 0492 0693 0694 0895 | [1660 10944 0945 0946 0947 0948 0949 0950
1270|0896 0637 0838 0699 07100 0701 0702 O703! [1670 ;0952 0051 0954 0955 0956 0957 0958
1300|0706 0705 0708 0707 0108 0709 0710 OTi1] | 1700 {0960 0061 0962 0983 0964 0965 096¢
1310{ 0712 0713 0714 0715 0716 ONIT OB 0719] [1710 109648 0969 0070 0971 0972 0973 0974
132010720 0T2) o‘lgz 0723 0724 0725 0726 0727] 11720 /0976 0917 0978 0979 0940 OF81 0982

07

0738

0748

0T34

0762

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIONS (Continued)

lo 1+ 2 3 « s 6 2] Jo v 2 3 « s & 1

2000 2000|1024 1025 102¢ 1027 1028 1029 1030 1031 [|2400| 1200 1281 1282 1203 1284 1285 1286 1207
to “g’f‘ 20101032 1033 1034 1035 1036 1037 1030 1029[2¢410/1288 1209 1390 1291 1292 1203 1294 1295
2777 1535 |2020[1040 1041 1042 1043 1044 1045 3048 1047[2420]1298 1297 1298 1299 1300 1301 1302° 1303
(Octal) | (Decimat) [203011048 1049 1050 1051 1052 1053 1054 3055)/24301.1304- 1303 1306 1307 1308 1308 1310 1311

2040|1056 1057 1058 1059 1060 1061 1062 1063}{ 2440|1312 1313 1314 1315 1316 1317 1318 1319
2050|1064 1065 1066 1067 1068 1069 1070 1073 [/ 2450|1320 1328 $322 1323 132¢ 1325 1326 1327
2060|1072 1073 1074 1075 1076 1077 1078 1079|2460 1328 1329 £330 1331 1332 1333 13M4 1335
Octal Decimal. |2070[1080 1081 1082 1083 1084 1085 1086 1067]/24701 1336 1337 1338 1339 1340 1341 1342 143
10000 - 4096
. 8192 21001088 1089 1090 1091 1092 1093 1094 1095]]2500] 1344 1343 IM6 1347 1348 1349 1350 1351
12288 2110{1096 1097 1098 1099 1100 1101 1102 1103}}2510] 1352 1353 1354 1355 1356 1357 1358 1359
- 16384 2120{1104 1205 1106 1107 1108 1109 1110 1311{{2920]1360 1361 1352 1363 1364 1365 1368 1367
- 20480 21301112 1203 1114 1115 FIIE MIIT 1108 11191]2530711368 1369 1370 1371 1372 1373 1IN 1315
- 24576 206401120 3121 1122 1323 1124 1125 15026 1127]]2940113768 11771378 1379 1380 1301 1362 1383
70000 - 28672 21501128 1129 1130 1131 2132 1133 1134 1135]12550f 1384 1385 3306 1387 1308 1389 1390 1391
2160]1136 1137 1138 1138 1140 1141 1142 1143/{2560| 1302 1393 1394 1395 1296 1297 1398 1399
2170/ 1144 1145 1146 1147 1148 1349 1150 1151]{2570] 1400 1401 2402 1403 1404 1405 140€ 1407

22001152 1153 1154 1155 1156 1357 1158 1139]12600]1408 1409 3410 1411 1412 1413 1414 1415
221011160 1161 1162 1163 1164 1165 1166 1167][2610] 1416 1487 1418 1419 1420 1420 1422 1423
212011168 1169 1176 1171 1172 1173 1174 1175][2620] 1424 1425 1436 1427 1428 1429 1430 141
223[1176 1177 1170 1179 1180 1181 1182 1183[[2630]1432 1433 $434 1435 1436 1437 1438 140
224011184 1185 1186 1187 1188 1189 1190 1191]]2640]1440 1445 1442 144 1444 1445 1446 1447
22901192 1193 1194 1195 1196 1197 1198 1199]|2050] 1448 1449, 1450 1451 1452 1453 1454 1453
226011200 1208 1202 1203 1204 1205 1206 1207]{2060] 1456 1457 3438 . 1459 1460 1461 1462 1463]
2270[1208 1209 1210 1211 1212 1213 1214 1218[[2670] 1484 1465 1468 1467 1468 1469 1470 14T1| -

BEdEs

2300[1216 1217 1218 1219 1220 1221 1222 1223][2700] 1472 1473 $474 1475 1476 1477 1470 149
3N0[1224 1225 1226 1227 1228 1229 1230 1231{[2710] 1480 148} 1402 1483 1488 1485 1406 1487
232011202 1233 1234 1235 1236 1237 1238 1239]]2720] 1488 1489 £490 1481 1492 1493 1494 1495
2330[1240 1241 1242 1243 1244 1245 1246 1247 [2730]{ 1496 1497 1498 1499 1500 1501 1502 1503
234011248 1249 1250 1251 1252 1253 1254 1235](2740] 1504 1303 1306 1507 1508 1509 1510 1511
23501256 1257 1258 1299 1260 1261 1262 1263) [2730] 1512 1383 1514 1505 1516 1517 1518 1519
2360[1264 1265 1268 1267 1268 1269 1270 1271]{2760§1520 1333 1322 1523 1524 1525 1526 1527
2370[1272 1273 1274 1275 1276 1277 1278 1219) [2TT0] 1528 1529 1530 1531 1532 1533 1534 1535

] [2 3 4 s [? [} ! 2 3 4 S [] ?

3000 1836 3000 {1336 1537 1538 1539 1540 1541 3400{ 1792 1793 1794 1795 1796 1797 1798 1799

to to 2050|1544 1545 1546 1547 1548 341011800 1801 31002 1003 1804 1805 1808 1807
3777 2047 |3020]1552 1553 1554 1555 1556 34201808 1909 1910 1811 1813 1813 1014 1815
(Octal) | (Decimal) 2020 /1560 1561 1562 1363 1564 34301816 1817 1018 1819 1820 1821 1822 1823
2040 1 1568 1569 1570 1571 1572 3440] 1824 1075 1826 1827 1828 1829 1930 1831
3050 | 1576 1577 1572 1579 1580 34501832 1833 1834 1835 1836 1837 1838 1839
3060|1584 1585 1588 1507 1588 3460 1640 1041 1842 1843 1844 1845 1846 1847
3070|1592 1593 1594 1595 1596 3470 1048 1849 1850 1851 1952 1853 1854 1855

3500 1856 1857 1858 1859 1880 1861 1862 1063
3510] 1864 1865 1866 1067 1060 1049 1870 1871
35201872 1673 1874 1875 1876 1877 1878 1879
3530/ 1080 1881 1882 1883 1884 1885 1886 1087
3540 1888 1889 1890 1091 1092 1893 189¢ 1895
3550{ 16906 1897 1888 1099 1900 1901 1902 1903
356011904 1903 1906 1907 1908 1909 1910 1911
35701912 1913 1914 1915 1916 1917 1918 1939

30011920 1921 1922 1923 1924 1925 1926 1927
31011928 1929 1930 1931 1932 1933 1934 1935
3620|1936 1937 1938 1939 1940 1941 1942 1943
3630 1944 1945 1046 1947 1948 1949 1950 1951
364011952 1933 1954 19,5 1956 1957 1958 1959
3850 11960 1961 1962 1963 1964 1965 1966 1967
36601968 1968 1970 1971 1972 1973 1974 1975
W01 1976 1977 1978 1979 1980 198¢ 1982 1903

310011600 1601 1602 1803 1604
315011608 1609 1610 1811 1812
31202616 1617 1618 1619 1620
31301624 1625 1626 1627 1628
31401632 1633 1604 1835 1836
315011640 1641 1642 1843 1044
316011648 1649 1650 1651 1852
3TO[1656 3657 1658 1459 1880

3200 {1664 1665 1668 1667 1688
3210 {1672 1673 167¢ 1675 1678
3220 (1680 1681 1682 1603 18604

3240 (1696 1697 1698 1499 1700
3290|1704 1705 1706 1707 1708
3260 11732 1713 1714 1T1S 1NE
32701720 1721 1722 1723 1724

3300 1728 1729 1730 1731 17132
3101738 1737 1128 179 1740
332011744 1745 1746 1747 1740
333011752 1753 1754 1755 4758
33401760 1761 1762 1763 1764
33301768 1288 1770 1111 172
{3300]17176 1777 2770 1718 1700
3370/ 1784 1705 1706 781 1388

37001 1964 1965 1986 1987 1988 1009 1990 1991
ST10/ 1982 1993 1904 1995 19956 1997 1996 1999

3730]2008 2009 2010 2011 2012 2013 2014 201°
3140{2016 2017 3018 2019 2020 2021 2022 2025
230/ 2024 2025 2036 2027 208 2029 2030 203

mee) 2032 2032
M0/ 2060 204: IMI_3043_2044 2043 346 2047

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERS IONS (Continued)

o 1 e 1 2 3 ¢ s s 71
4000 | 2048 2048 2049 4400 2305 2308 2307 2308 1300 1N NI
to to 4010} 2056 2057 10l 2012 2313 2314 2Mm5 ans BT 231898310
4777 | 2389 2084 3085 «uzmm:wmwmnﬂg
Octal) | (Decimat) {4030} 2012 2073 "N 2320 2330 333 2302 3333 13
: 40401 2000 2081 sie0l 2396 2337 2338 2339 20 2Mi 233 1
Octsi 501 2088 2089 4450} 2344 2345 2346 2347 2048 20 330 2331
10000 4oso| 2098 sqon] 2352 2353 2954 2355 2356 2357 2350 1399
20000 . 8192 4070| 2104 2105 470! 2360 2361 2362 2363 2304 2263 M6 2387
30000 - 1225% |a100f 2112 2113 4500|2368 2369 2370 2371 2373 2313 3314 237
S0000 - 20480 4110] 2120 121 451012376 2371 2378 23719 2300 2381 3203 2383
m'm 41 2128 2129 4520] 2384 2388 2308 2387 2308 2309 230 IM
70000 - 20672 4130} 2138 1N 45302392 2393 2394 1395 INe 2397 21308 230%
4140] 2144 2145 4540] 2400 2401 2602 2403 2¢04 2405 3408 240
150} 2152 2153 45501 2408 2600 2410 2011 2612 2413 2414 2413
4180} 2180 2161 458012416 2617 2418 2419 2420 2421 2422 2423
at70] 2188 2169 4570] 242¢ 2625 2426 2427 2428 2429 2430 2431
4200| 2176 2177 uoo‘.wz 2433 2434 2435 2436 2437 2438 UM
4210] 2184 2185 4610|2440 2441 2442 2043 3044 2443 3446 2447
4220 2192 2193 462012448 2448 2450 2451 2452 2433 2454 2488
4230} 2200 2201 4630} 2456 2457 2458 2459 2440 2461 2462 243
4240} 2208 2200 46402464 2465 2406 2467 2468 2469 2T M
4250 2218 2217 46502472 2473 2474 2473 2476 24T7 U M
4200 2924 2225 4680 2480 2481 2482 2083 2484 24085 2408 2487
az70] 2032 2233 467012488 2489 2490 2491 2992 2493 2094 2483}
4300} 2240 2243 4700 2406 2497 2498 2499 2500 2501 2502 2503
4310] 2248 2749 4710|2504 2505 2306 2507 2508 2509 2310 2511
43201 2156 (2257 41202512 2513 2514 2315 2516 2317 2518 2519
4330} 2264 12265 413012520 2331 2522 2523 252¢ 2525 2526 25}
4340} 2272 12213 47402528 2529 2530 2331 2332 2533 2334 2535
4350{ 2200 2281 . 4750 2536 2537 2538 2539 2540 2541 2543 2543
4360 | 2208 2289 4760 2544 2545 2546 2547 2948 2549 2550 2351
4370} 2296 2297 147701 2852 2553 2354 7555 psse 2551 2558 5
,fo t 2 3 4 S5 & 11 o t 2 3 ¢« 5 & 7
8000 2560 |3000| 2380 2561 2562 2563 33642565 2968 2567 ‘uoo 2816 2017 2016 2819 2020 2821 2822 2823
to oy <010/ 2568 2360 3570 2571 2572 2573 2574 257%]|3410(202¢ 2035 2026 2027 2828 2829 2030 BN
5777 son W 2576 2577 2570 1379 2500 2341 4582 2 542012832 2033 2034 2835 2036 2837 2838 NV
(Octat) | (Decimat) 50302584 3505 2306 2561 3358 2500 2390 3991|5430 2840 2841 2042 2043 2844 2045 2048 3M47
$060{ 2502 2903 2394 2905 2508 2997 2308 2399| {5440 2848 2049 2050 2851 2053 2033 2054 2938
mtmmnmmammwm 5450|2056 285T 3058 2859 2040 2061 2062 2063
3060|2606 3600 3610 2611 2612 2613 2614 2613] 13460 2864 2865 2066 2067 2068 2060 2070 18N
5070|2616 2617 2618 2619 2620 2621 2622 2613 $470{ 2872 2873 2074 2075 2876 2877 2076 WM
5100|2624 2625 2626 2627 2628 2629 2630 2631] 350012080 2831 2882 2883 2084 2885 2006 2087
311012632 2633 2634 2635 2636 2637 2638 2038{ 5510|2088 2089 2090 2091 2097 2083 2004 2093
3120|2640 2641 2642 2643 2644 2645 2646 2647] [5530| 2096 2097 2098 2099 2900 2901 2902 2903
3130|2648 2649 2650 2651 1652 2653 2854 2655 (3530|2904 2905 2008 2907 2008 2909 1910 2911
$140|2656 2657 2058 2659 2680 2651 3662 26831 [3540 2912 2913 2914 2915 2916 2917 2918 2019
5150|2664 2685 2666 2667 2668 2089 2070 2671 ssso‘mo 2921 2912 2923 2924 2925 293¢ ¥
51602672 2673 2674 2615 2076 2671 2678 2679] [sse0|2928 2929 2930 2931 2932 2933 2934 2938
$17012680 2681 2882 2683 2604 2685 2686 2607 $57012036 2937 2938 2039 2940 2941 2942 2843
5300 | 2608 2689 2630 2691 2692 2893 2684 2948 2949 2950 2951
5210|2006 2697 2698 2699 2100 270t 2702 2056 2951 2958 1939
522012704 2705 2701 2708 2109 310 2964 2943 2966 2967
s230 {2712 2T13 ms 2972 2973 214 TS
2726 2080 2981 2981 2043
214 2988 2989 2990 2991
762 2006 2991 2998 2998
2750 3004 3005 3008 3007
2758 3012 2013 3014 3015
1% 3020 3021 3032 3023
27174 3028 3019 3030 031
72 2036 3037 303 309
2044 3045 3046 047
3052 3053 3084 2055
3000 3061 2063 3063
2008 3000 3070 3071

CONVERSION TABLES

OCTAL-DECIMAL INTEGER CONVERSIONS (Concluded)

4 $

6000 3072
to

to
6777 | 3383 0 0020
1) | (Dec: 6030
(Octal) | (Decima!

70000 - 28672 [gi30

|l!ﬂb
0210
6220

6300
(211
8320
6330
4340
4350
360
370

i)l?l
13184
usn

3200
13208
13216
3324
319
3240
1N
1256

L3284
13272
13260

308
i 3198
3304
13012
13320

322
1%

13
e

- 3154

62
e
nn
3186
3194

3202
210
218
322
324
3242
3250
3258

326¢
3274
202
3190
290

334
3322

075

3003 .

3099
nor
nis
ana
nn

33
e
A5S
3183
an
E1k{
Jer
3195

3203
ann
321
2217
3235
3243
3251
3259

3267
213
3203
291
3299
307
ms
phrE)

2

4

3

4400
8410
20
630
440
450
460
470

§500]

510
CS)Oi
530!
8540,
6350,
8560

es570

GIOO’
6810,
6620
6630
6640
4650,
$660|
1070;

6700
§110]
6720
7130
8740
6750
l6760'

L8770}

3408
k111
M2
3432
40
3448

3456
3464
472
3400
408
3496
3304
512

3520
528
3336
3544
3532
3560
3568
3516

3330
3338
3346
335

3%

o
3378
3388

3394
3402
3410
3418
3426

3442
3450

3458
3466
474
82
3490

3332

3356

3333
331

- 3349

3357
3365
1713
338
389

3397
3408
413
Jan
3429
un
3445

3453

3461
3469
417
485
93
3501
3509
117

3525
353
3541
3549
3587
3565
3573
3581

33
3342
3350
3358

3374
-3382
330

3398
3406
414
J422
3430
4%
3448
3454

3462
3470
k¥{]
486
3494
3502
3510
p 11

3526
3534
542
3550
3558
3586
3574
3582

3338
3343
3%
3359
3367
3378
3383
M

3299
3407
3415
3423
un
439
447
2455

3483
4
479
487
34935
3503
s
519

as27
3535
3543
3551
3559
3587
3575
3583

0

7000 | 3584 [7000

to to 7010
7727 4095 1:go

(Octat) | (Decimat) [4930
7040
1050

070
T100
nioe
7130

T140

3584
3592

e
3624
3840

3648
385¢

2
b aad
T4

mnz
3130

N
3744
e
780
new

e
784
2

nie
3¢

S
80

N4

377
3104

3809 3o

1y
3833

aie
B4

3387
3595
3603

m
37180
3788
12
3820
bt]

7410
1420

4017
4025

4033

4011
4019
4027

4035
4043

- 4051

4050
4087
07

4091

84S
3883

3889
817
3885
3893
3s01

3909
9117
3925
3933
341

3957
3965

3973
981
398
3997
4005
4013

4029

4037
4045
4053
406}

4085
4083

1054

3841,
3855/
3863
un
3879,
e
3895
3903,

3911
819
3921
3935
3942
3951
3959
3967

3975

CONVERSION TABLES

L.2 POWERS OF TWO

w08

~aB¥ES

~935883R8

~q8E328K8358

~n8588383RIR8RE

. .aB3RBISATITRINEY
LRI R EES 1 £
ZoB3IFFRENISBYRACRRIESR
LaSSREESRREINCBENSEIE2BE8EY
summmmmmmmwmmwmmmmmmmmmmmmmmmm

oSS 8382875R20E2RBERRNYETREIRESE
o085 oREI2 ST RIR2BIRIVRANIRIRILER
L RS IR HE R FR EEE R B LR R

LoR3EREIRIRIRIRCIRIESRRSRIRINARRISSRANRIRG
summummmmmmmmmmwmwwwmmmmmmmmmmmmmmummmmmmmmmm
summmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmwmmmm
summmmmmmmmwmmmmmmmmmummmmmmmwmmmmmwmmmmmmmmmmmmmmm

- mmmmmmwmwmmmmmmmmmwmmmmmmmmmmwmmwmmmmmmmmmmmmmwmmmmm

2383 mmmmmwmmwmmmmmmmmwﬂﬁmmwmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
e

13
4
15
%
17
18
19
20

nnnunnvunmmuuuuuuxnwunuuuununmﬂnﬁuﬁxvuww

[o.lol\-‘;"’e'wnu\
.

A LR P L EE R FEL L L LE R IR 1A RN SR EEERELALL.
~nveoengs YRR RRABRREIRIINIRSSRRCHIRNGRTIRRTEZ
~~ve2R33RARSERRGESEACIRARIYRORSRRES
SRR TR $33 131 HEER 3133330 .
1248V$mmmmm&m7un
o 40 suamod “neeea

576 460 752 303 423 408

1 152 921 504 606 846 976

288 230 376 151 741 744

CONVERSION TABLES

L.3 SCALES OF NOTATION

L.3.1 2* 1n Decimal

-l-ll..ll.-ll.ll.

333333333

I gt 0 ont gt e o

§38388838

oodoosc60

L.3.2 10*® 1n octal

10~

10

10~

n Log 2 and 10 In Decimal

L.3.3

n log; 10
3.32192 80949

nilogie 2

LY 1 1-]
-

9.96578 42847

13.28771 23798

6.64385 61898
16.60964 04744

—Nm TN

L.3.4 Addition and Multiplication, Binary and Octal

Muitiplication

Addition

Binary Scale

0+1=1

X X X

Ot

OxX1=

(-2 1-]
-

ihph
QO

+++

-2 L]

Octal Scale

s|le 8328z
gl=ss 83y
gless a8
|2 2R =3x8 2
3|8=x~q e
Sjl3g2xxe
- fN ™ @« b OV ~
s|e s 2axme
gls S anvnew
8|85 2 zcynmy
3ls g2z
8|3 8852«
81838585 °2 =
HEE-EEE R
0]23‘557

L.3.5 Mathematical

Constants In Octal

nnm
loga n

V10

3.11037

0.24276

1.61337

1.11206

1.51544

3.12305

552421,
301556,

611067,

404435,
163223,

407267,

e-!

Ve

logie e
log: ¢

fog: 10

2.55760

0.27426

1.51411

0.33626

1.34252

3.24464

CONVERSION TABLES

521305,
530661,
230704
754251
166245,

741136,

<
i

v2 =

n2=

in10 =

0.44742 147707,

— 0.43127 233602,

— 0.62573 030645,

1.32404

0.54271

2.23273

746320,
027760,

067355,

APPENDIX M

NOTE TO USERS OF SERIAL LA30 AND 600, 1200, AND 2400 BAUD VT05'S

The serial LA30 requires that filler characters follow each carriage
return; the 600, 1200, and 2400 baud VT05's require that filler
characters follow each line feed. The following table 1lists the
filler characters needed. The byte at location 44 has been
established as the filler count and the byte at location 43g contains
the character to be filled. These locations are initially set to zero
by PAL-11A and ED-11 to allow normal operation of the program.

Depending on the terminal, change the locations as follows:

LOC 44 LOC 45 Resulting Word (binary)
LA30 011 015 0000110100001001
VT05 600 Baud 001 012 0000101000000001
VTO05 1200 Baud 002 012 0000101000000010
VT05 2400 Baud 004 - 012 0000101000000100

The proper binary word can be stored at location 44 by using the
console switches as described in section 2.1.2 of this manual.
Furthermore, users with a 2400 baud VT05 should avoid the use of
vertical tab characters in their programs. Vertical tabs will not be
properly filled and may cause characters to be lost.

Once the changes have been made, the program may be dumped to paper
tape by using the bootstrap version of DUMPAB (see section 6.3 in this
manual). However, since programs change each time a new version |is
released, it "is necessary to have a program listing to determine the
exact memory limits to be dumped.

The above changes only affect output to the console teleprinter.

Users of IOX or IOXLPT source tapes will find the byte at location 44
tagged "I.44:" and the byte at location 45 tagged "I.45:". These
locations are defined near the end of the second source tape and can
be changed to appropriate values using ED-11.

ODT-11 uses the locations (44 and 45) but does not set them to zero
initially.

APPENDIX N

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REGISTERS

This appendix describes the procedures for 1loading and using the
Absolute Loader on PDP-1l1's without switch registers. The procedures
are divided into LSI-11, M9301-YB bootstrap 1loader, and M9301-YA
bootstrap loader. Chapter 6 describes the procedures for machines
with switch registers. :

N.1l LsSI-11

The following are instructions for loading and using the Absolute
Loader on an LSI-11. ~

1. Press the BOOT/INIT switch on the LSI-11 front panel to
enable the bootstrap loader. An € prints at the terminal.

2. Place the Absolute Loader tape (DEC-11-UABLB-A-PO) in the
reader.

3. Type the status register address of the input device and L to
load the Absolute Loader.

For example, when loading from the console terminal paper
tape reader, type:

@177560L

When the tape has been read, an @ followed by the start
address of the Absolute Loader prints at the terminal.

For example, on a machine with 8K memory, type:
@177560L

The Absolute Loader prints the address of the Absolute
Loader:

@37500
B

4. Place the tape to be loaded via the Absolute Loader in the
reader.

5. Select the type of loading from the following:
a. Normal Loading

For normal loading, type the address of the Absolute
Loader (printed at the terminal), followed by G, e.g.,

2xxx500G

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

where xxx is the memory size of the system and is:

XXX Memory Size
017 4K
037 8K
057 12K
077 16K
117 20K
137 24K
157 28K

For example, in an 8K system, type:
@37500G

Normal loading can also be achieved by typing the P
command, e.g., ;

ep
Relocated Loading

Type the software switch register value and deposit the
relocation value as follows:

@xxx516/YYYYYY 22222Zs/
8xxx500G

or type:

@xxx516/yyyyyy zz2zzz</
ap

where xxx516 is dependent on memory size and is the
address of the software switch register, yyyyyy is the
old content of the switch register, and zzzzzz is the new
relocation value.

The value of zzzzzz is explained in Section 6.2.2 for the
value of the switch register for relocated loading. For
example, in an 8K system, the dialogue would be:

@37516/YYYYYY 22222Z</
@

The following is an example of a normal 1load on an 8K
machine.

;sboot system and put Absolute Loader
:in reader

@177560L ;Absolute Loader tape is read
@37500 ;put tape to be loaded in reader
ep ;tape is read in.

The following is an example of a relocated load on an 8K
machine:)

sboot system

@177560L ;put Absolute Loader tape
@37500 ;in reader

€37516/000000 1001 ;put tape in reader

ep ;tape is read

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

To continue loading, change 1001 in the above example to
1.

If more tapes are to be loaded as explained in Section 6.2.2,
gut the next tape in the reader and repeat section a or b of
tem 5.

If the tape is not self-starting, the halt address of the
Absolute Loader is printed, followed by an €. Type the
starting address followed by a G to start the program.

@37500
@xxxxxxG

where xxxxxx is the starting address of the program.

N.2 M9301-YB BOOTSTRAP LOADER

The following are instructions for 1loading and using the Absolute
Loader on a PDP-11 (e.g., PDP-11/04) without a switch register.

1.

2.

Press the BOOT/INIT switch on the PDP-11 front panel to
enable the bootstrap loader. A $ and four numbers print at
the terminal. The four numbers are the values of RO, R4, R6,
and the PC, respectively.

For example:

0077400 012450 000546 004054
$

Place the Absolute Loader (DEC~11~UABLB-A-PO) in the reader.

Type the device code (PR for the PCll high-speed reader or TT
for the terminal reader) to load the Absolute Loader.

$PR./
or
$TTL/
when the tape has read in, the machine halts.

Place the tape to be loaded by the Absolute Loader in the
reader. :

Select the type of loading from the following:
a. Normal Loading

For normal loading, press the CONT switch on the PDP-11
front panel.

b. Relocated Loading

1) Press the BOOT/INIT switch; a $ followed by the four
numbers explained in item 1 prints at the terminal.

2) Load the address of the software switch register as
follows:

$L xxx516./
N-3

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

3) Deposit the relocation value in the software switch

register as follows:

$D YYYYYY<'/

where yyyyyy is the value explained in Section 6.2.2

for relocated loading.

4) Load the starting address of the Absolute Loader
follows: ‘

$L xxx500</

5) Type S to start running the Absolute Loader.
$S</

as

If more tapes are to be loaded as explained in Section 6.2.2,
put the next tape in the reader and repeat section a or b of
item 5.
If the tape is not self-starting,
a. Press the BOOT/INIT switch.
b. Load the starting address of the program with the L
command, i.e.,
SL xxxxxx/
c. Start the program with the S command:
$s</

The following are examples for PDP-1l1l with 16K words of memory.

Relocated - continuous loading:

$L 77516/
$D 1./

$L 775004/
$s5</

Relocated - load in specified area of core:

$L 775164/
$D 1001/

SL 77500,/
$5/

N.3 M9301-YA BOOTSTRAP LOADER

The instructions for loading and using the Absolute Loader on a PDP-11
PDP-11/04) without a switch register but with a console
terminal are the same as described in Section 0.2.

{e.g.,

USING THE ABSOLUTE LOADER ON PDP-11'S WITHOUT SWITCH REG

PDP-11's without console terminals may only be loaded with normal
loading methods. See the M9301 Maintenance Manual for instructions on
placing the address of the paper tape bootstrap in the micro switch on
the M9301 module. The following instructions are for PDP-11's without
console terminals.

1. Place the Absolute Loader tape (DEC-11-UABLB-A-PO) in the
reader.

2. Press the BOOT/INIT switch. When the tape has read in, the
machine halts.

3. Place the self-starting tape to be 1loaded by the Absolute
Loader in the reader.

4. Press the CONT switch.

Abbreviations, standard

Absolute and relocatable
program sections,
LINK-11S, 3-2

Absolute expressions, PAL-1l1lS,
1-9

Absolute Loader, 6-1, 6-10, F-3

PAL-11lS, 1-24
Accessing internal registers,
opT-11, 5-6
Adding devices to IOX, 7-21
Address Mode syntax,
PAL-11A, C-2
PAL-11S, B-2
Addressing,
PAL-11lA, 2-9
PAL-11lS, 1-12
Altering register contents,
9-6
Arithmetic and logical
operators,
PAL-1lA, 2-8
PAL-11lS, 1-8
ASCI1I, :
character set, A-1l
conversion, PAL-1lA, 2-8
conversion, PAL-11lS, 1-8
.ASCII directive,
PAL-11A, 2-17
PAL-11S, 1-21
.ASECT and .CSECT program
section directives,
Assembler directives,
PAL-11A, 2-3, 2-15
PAL-11lS, 1-18, B-8
Assembly and linking instruc-
tions, J-1
Assembly dialogue, PAL-11lA,
2-23
Assembly listing,
PAL-11A, 2-24
PAL-11lS, 1-30
Assembly Location Counter,
PAL~11A, 2-8
PAL-11S, 1-10
Assignment, direct,
PAL-11A, 2-5
Autodecrement Mode,
PAL-11A, 2-11
PAL-11S, 1-14
Autoincrement Mode,
PAL~-11lA, 2-10
PAL~-11A deferred, 2~-11
PAL-11S, 1-13

INDEX

Blank operator field, PAL-1lA,
2-16
Bootstrap Loader, 6-1, F-1
loading and verifying the, 6-7
Bootstrap tapes, loading into
core, 6-8
Bootstraps, paper tape, 6-2
Breakpoints,
opT~-11, 5-6
Buffer arrangement in data
transfer command, 7-4
Buffer size, 10X, 7-5
Buffering, double, 7-15
Byte count, IOX, 7-8
.BYTE directive,
PAL"llA' 2-17
PAL~-11lS, 1-21
Byte offset, PAL-11S, 1-17

Calculating offsets,
opr-11, 5-9
OoDT-11X, 5-11
Changing, opening, and closing
locations,
oDpT-11 ’ 5-4
opT-11X, 5~-10
Character location pointer (Dot),
ED-11, 4-2
Character set,
ASCII, A-1
PAL-11lS, 1-2
Closing, opening, and changing
locations,
OoDT-11X, 5-10
Codes, PAL~1llA error, 2-25
Coding techniques, 9-6
Commands and functions, 0DT-11,
5-3
Command delimiters, ED-11, 4-2
Command Mode and Text Mode, ED-11,
4-1
Command properties, line-oriented,
ED-11, 4-3
Commands, ED-11, 4-4
to modify the text, 4-8
to move Dot and Mark, 4-6
Comments,
PAL-11A, 2-4
PAL~11S, 1-4
Communication and data flow,
ODT-11X, 5-15
Communication with IOX, 7-1

Index-1l

INDEX (Cont.)

Conditional assembly directives,
PAL-11S, 1-23

Control format, PAL-11S, 1-4

Conversion, PAL-11S ASCII, 1-8

Conversion tables, L-1 v

Core memory dumps, 6-14, F-4

Counter, PAL-11S program, 1-12

Creating a paper tape, ED-11,.
4-11

CTRL/U, PAL-11S, 1-24

Data transfer commands,
buffer arrangement in, 7-4
device conflicts in, 7-12

Data transfers, I0x, 7-11

Decimal numbers, PAL-11lS, 1-8

Deferred Autodecrement Mode,
PAL-11A, 2-11
PAL-11S, 1-14

Deferred Autoincrement Mode,
PAL-11Aa, 2-11
PAL~-11S, 1-13

Deferred Immediate (Absolute)

and Immediate Mode, PAL-11lA,
2-12
Deferred Index Mode,
PAL-11A, 2-12
PAL-11S, 1-14
Deferred Register Mode, PAL~11lS,
1-13
Deferred Relative and Relative
Mode, PAL-11lA, 2-13
Device Assignment Table, IOX,
7-3
Device conflicts in data
transfer commands, 7-12
Device Interrupt Table (DIT),
7-20
Device Status Table, (DST),
7-21

Dialogue,

PAL-11A assembly, 2-23
PAL-11A initial, 2-18
PAL~-11S initial, 1-24

Direct assignment,
PAL-11A, 2-5
PAL-11S, 1-6

Directives,

PAL-11A .ASCII, 2-17
PAL-11A .BYTE, 2-17
PAL-11lA .END, 2-16
PAL-1l1A .EOT, 2-15
PAL-11A .EVEN, 2-16
PAL-11A .WORD, 2-16
PAL-11S .ASCII, 1-21
PAL-11S .ASECT, 1-19
PAL-11S .BYTE, 1-21

Directives (cont.),
PAL-11S .CSECT, 1-19
PAL-11S .END, 1-20
PAL-11S .EOT, 1-20
PAL~11S .EVEN, 1-20
PAL-11S .GLOBL, 1-18
PAL-11S .LIMIT, 1-23
PAL-11S .RAD50, 1-22
PAL-11S .TITLE, 1-18
PAL-11S .WORD, 1-20
Directory, PAL-~11S global symbol,
1-30

Done bit, 10X, 7-7

(Dot) character ‘location pointer,
ED-11, 4-2

Double buffering, 7-15

Dumps,
core memory, 6-14, F-4
output formats, 6-17
storage maps, 6-17

Duplication, tape, I-1

ED-11,
Character location pointer,
(Dot), 4-2

command delimiters, 4-2

Command Mode and Text Mode, 4-1

commands, 4-4

commands to modify the text, 4-8

commands to move Dot and Mark,
4-6

creating a paper tape, 4-11

editing example, 4-12

error corrections, 4-10

grouping of commands, D-3

input and output commands, 4-4,
D-1

line-oriented command properties,

4-3
Mark, 4-3
operating procedures, 4-10, D-4
prage buffer, 4-3
pointer-positioning commands,
D-2
restarting, 4-11
search commands, 4-7, D-2
software error halts, 4-17
starting, 4-11
symbols, D-3
Editing example, ED-11l, 4-12
Editor (ED-11l), PAL-11S, 1-2
.END directive,
PAL-11a, 2-16
PAL-11S8, 1-20
End-of-File Bit, IOX, 7-7
End-of-Medium Bit, 10X, 7-7

Index-2

INDEX (Cont.)

.EOT directive,
PAL-11A, 2-15
PAL-11S8, 1-20
Error codes,
10X, 7-6
PAL-11A, 2-7, 2-25, C-8
PAL-11S, 1-31, B-10
Error corrections, ED-11, 4-10
Error detection, ODT-11X, 5-13
Error halts, PAL-1lA software,
2-26
Error procedure and messages,
LINK-11S, 3-7
Error, Q, PAL~-11lS, 1-2
.EVEN directive,
PAL-11aA, 2-16
PAL~11S, 1-20
Example of program using IOX,
7-17
Expressions,
absolute, PAL-11lS, 1-9
external, PAL-11lS, 1-9
mode of, PAL-11lS, 1-9
PAL-11A, 2-7
PAL-11S8, 1-7
relocatable, PAL-11lS, 1-9
External expression, PAL-11S,
1-9
.External symbol, PAL-11S, 1-5

Fatal errors, IOX, 7-17, G-2
Fields, PAL-1lA instruction
operand, 2-14
Format control,
PAL-11A, 2-4
PAL-11lS, 1-4
Format, PAL-11S statement, 1-2
Forms, PAL-1lA instruction,
2-14
non-0TS routines, H-7
OTS routines, H-2
routines accessed via trap
handler, H-7
summary, H-1
Functions and commands, ODT-11,
5~3

General registers, PAL~1llS,
1-6
Global symbol directory,
PAL-11S, 1-30
Global symbols,
LINK~-11ls8, 3-2
PAL~11lS, 1-5

.GLOBL directive, PAL~11lS, 1-18
Grouping of commands, ED-11, D-3

Halts, PAL-11A software error,
2-26

Immediate and Deferred Immediate
~{(Absolute) Mode,
PAL-11lA, 2-12
PAL-11S, 1-15
Index Mode,
PAL-11A, 2-11
PAL~-11S, 1-14
Initial dialogue,
PAL-11A, 2-18
PAL-11S, 1-24
Initial operating procedures,
PAL-11A, C-9
PAL-11S, B-1ll
Initialization, 7-4
Input and output, LINK-11S, 3-3
Input/output commands, ED-11, 4-4,
D-1
Instruction forms,
PAL-11lA, 2-14
PAL~-11S, 1-17
Instruction mmnemonic, PAL-llA,
2-3
Instruction operand fields,
PAL-11lA, 2-14
PAL-11S, 1-17
Instruction summary, IOX, G-1
Instructions,
Assembly and linking, J-1
PAL-11S, B-2
Integer conversions, octal-decimal,
L-1 .
Internal information, IOX, 7-19
Internal registers, accessing,
opT-11, 5-6
Internal symbol, PAL~-11S, 1-5
Introduction, 0DT-11, 5-1
10X,
adding devices to, 7-21
buffer size, 7-5
byte count, 7-8
communication with, 7-1
data transfers, 7-11
device assignment table, 7-3
Done Bit, 7-7
End~of-File Bit, 7-7
End-of-Medium Bit, 7-7
error codes, 7-6
example of program using, 7-17

Index-3

INDEX (Cont.)

IOX (cont.),
fatal errors, 7-17, G-2
instruction summary, G-1
internal information, 7-19
Mode Byte, 7-5
modes, 7-8
program flow summary, G-1
reenabling the reader and

restarting, 7-16

Status Byte, 7-6
using, 7-3

Label,
PAL-11A, 2-3
PAL-11lS, 1-3
.LIMIT directive, PAL~118, 1~23
Line-oriented command
properties, ED-11, 4-3
absolute and relocatable
program sections, 3-2
error procedure and
messages, 3-7
global symbols, 3-2
input and output, 3-3
load map, 3-4
load modules, 3-3
loading and command string,
3-5
object module, 3-3
operating procedures, 3-5
Linking and assembly instruc-
tions, J-1
Linking and relocation,
PAL~-11S, 1-11
Listing, assembly,
PAL-11A, 2-24
PAL-11lS, 1-30
Load map, LINK-11S, 3-4
Load modules, LINK-11S, 3-3
Loader,
Absolute, 6-~1, 6-10, F-3
Bootstrap, 6-1, F-1
PAL-11S Absolute, 1-24
Loading,
bootstrap tapes into core,
6-8
PAL~11A, 2~18
PAL-11S, 1-24
unused trap vectors, 9-5
Loading and command string,
LINK~11l8, 3-5
Loading and verifying the
Bootstrap Loader, 6-~7
Location counter, PAL-11S,
assembly, 1-10 ‘

Logical and arithmetic operators,
PAL-11A, 2-8
PAL-11S, 1-8

Mark, ED-11, 4-3
Mathematical constants in octal,
L-7
Mnemonic, PAL-1lA instruction,
2-3
Mode,
I0X, 7-8
PAL~11A, Autodecrement, 2-11
PAL~11A, Autoincrement Deferred,
2-11
PAL-1lA, Deferred Autodecrement,
2~11 '
PAL-11A, Deferred Index, 2-12
PAL-11A, Immediate and Deferred
Immediate (Absolute), 2-12
PAL~11A, Relative and Deferred
Relative, 2-13
Mode Byte, IO0X, 7-5
Mode of expressions, PAL-11S, 1-9

Negative numbers, PAL-11S, 1-8
Non-OTS routines, FPMP-11, H-7
Notation, scales of, L-6
Numbers,

decimal, PAL-11lS, 1-8

negative, PAL-11lS, 1-8

octal, PAL-11S, 1-8

PAL~11A, 2-7

positive, PAL~11lS, 1-8

Object module, LINK-11S, 3-3
Object module output, PAL-11S,

1-30 .
Octal-decimal integer conversions,
L-1 B ,
Octal numbers, PAL-11S, 1-8
oDT, :

command syntax, 5-2

priority level, 5-10

accessing internal registers,
5-6

breakpoints, 5-6

calculating offsets, 5-9

commands and functions, 5-3

introduction, 5-1

opening, changing, and closing
locations, 5-4

Index-4

INDEX (Cont.)

opT-11 (cont.),
operating procedures, 5-20
running the program, 5-7
searches, 5-8, 5-18

starting and restarting, 5-21

summary, E-1
teletype interrupt, 5-10
breakpoints, 5-12, 5-14
calculating offsets, 5-11
communication and data flow,
5-15
error detection, 5-13
opening, changing, and
closing locations, 5-10
programming considerations,
5-14
single-Instruction Mode,
5-12
Offsets,
calculating, ODT-11, 5-9
calculating, ODT-11X, 5-11
PAL-11S byte, 1-17
One device, single buffer
transfer on, 7-14
Opening, changing, and closing
locations,
opT-11, 5-4
opT-11X, 5-10
Operand,
PAL-11A, 2-3
PAL-11S, 1-4
Operand fields, instruction,
PAL~11lA, 2-14
PAL~-11S, 1-17
Operating procedures,
ED-11, 4-10, D-4
LINK-118, 3-5
opT-11, 5-20
PAL-11A, 2-17
PAL-11A initial, C-9
PAL~11S8, 1-24
PAL~11S initial, B-11l
Operator,
PAL~11A, 2-3
PAL-11S, 1-3
Operators,
PAL-11A, arithmetic and
logical, 2-8
PAL-11lS, arithmetic and
logical, 1-8
OTS routines, FPMP-11, H-2
Output formats, dumps, 6-17
Output, PAL-11S object module,
1-30

Page size,

PAL-11A, 2-4
PAL-11S, 1-4

Index~5

Address Mode syntax, C-2

addressing, 2-9

arithmetic and logical operators,
2-8

ASCII conversion, 2-8

.ASCII directive, 2-17

assembler directives, 2-3, 2-15

assembly dialogue, 2-23

assembly listing, 2-24

Assembly Location Counter, 2-8

Autodecrement Mode, 2-11

Autoincrement Mode, 2-10

blank operator field, 2-16

.BYTE directive, 2-17

character set, 2-2

comments, 2-4

Deferred Autodecrement Mode,
2-11

Deferred Autoincrement Mode,
2-11

Deferred Index Mode, 2-12

direct assignment, 2-5

.END directive, 2-16

.EOT directive, 2-15

error code, 2-7

error codes, 2-25, C-8

.EVEN directive, 2-16

expressions, 2-7

format control, 2-4

Immediate and Deferred Immediate
(Absolute) Mode, 2-12

Index Mode, 2-11

initial dialogue, 2-18

initial operating procedures,
c-9

instruction forms, 2-14

instruction mnemonic, 2-3

instruction operand fields, 2-14

instructions, C-3

loading, 2-18

numbers, 2-7

operand, 2-3

operating procedures, 2-17

operator, 2-3

page size, 2-4

permanent symbols, 2-5

Program Counter, 2-9 -

Register Mode, 2-10

register symbols, 2-6

Relative and Deferred Relative
Mode, 2-13

software error halts, 2-26

special characters, C-1

statements, 2-2 '

INDEX (Cont.)

PAL-11A (cont.),
user-defined symbols, 2-5
.WORD directive, 2-16
PAL-11S
absolute expression, 1-9
Absolute Loader, 1-24
Address Mode syntax, B-2
addressing, 1-12
ASCII conversion, 1-8
<ASCII directive, 1-21
assembler directives, 1-18,
B~-8
assembly listing, 1-30
Autodecrement Mode, 1-14
Autoincrement Mode, 1-13
.BYTE directive, 1-21
byte offset, 1-17
character set, 1-2
comments, l1-4
-conditional assembly direc-
tives, 1~23
control format, 1-4
CTRL/U, 1-24
decimal numbers, 1-8
Deferred Autodecrement
Mode, 1-14
Deferred Autoincrement
Mode, 1-13
Deferred Index Mode, 1l-14
Deferred Register Mode, 1-13
direct assignment, 1-6
Editor (ED-11), 1-2
.END directive, 1-20
.EOT directive, 1-20
error codes, 1-31, B~1l0
.EVEN directive, 1-20
expressions, 1-7
external symbol, 1-5
general registers, 1-6
global symbol, 1-5
global symbol directory, 1-30
.GLOBL directive, 1-18
Immediate and Deferred
Immediate (Absolute) Modes,
1-15
Index Mode, 1-14
initial dialogue, 1-24
initial operating procedures,
"B-11
instruction forms, 1-17
instruction operand fields,
1-17
instructions, B-2
internal symbol, 1-5
label, 1-3
.LIMIT directive, 1-23
loading, 1-24 .
negative numbers, 1-8
object module output, 1-30

PAL-11S (cont.),
octal numbers, 1-8
operand, 1-4
operating procedures, 1-24
operator, 1-3
page size, 1-4
permanent symbols, 1-5
positive numbers, 1-8
Program Counter, 1-12
program section directives
(.ASECT and .CSECT), 1-19
.RAD50 directive, 1-22
Register Mode, 1-12
register symbols, 1-6
Relative and Deferred Relative
Modes, 1-15
relocatable expression, 1-9
relocation and linking, 1-11
relocation directory, 1-31
RUBOUT, 1-24
software error halts, 1-32
statement format, 1-2
statements, 1-2
symbol table, 1-5
symbols, 1-5
terminators, B-1l
text block, 1-31
.TITLE directive, 1-18
truncation, 1-8
user~defined symbols, 1-5
.WORD directive, 1-20
Paper tape bootstraps, 6-2
Permanent symbols,
PAL-11A, 2-5
PAL-11lS, 1-5
Pointer-positioning commands,
ED-11, D-2

Position~independent code, writing,

9-1
Positive numbers, PAL-11S, 1-8
Powers of two, L-5
Priority level, ODT, 5-10
Program Counter,
PAL-11A, 2-9
PAL-11s, 1-12
Program flow summary, IOX, G-1
Program section directives
(.ASECT and .CSECT) PAL~1l1lS,
1-19
Programming considerations,
oDT-11X, 5-14

Q error, PAL-11lS, 1-2

Index-6

INDEX (Cont.)

.RAD50 directive, PAL-11S, 1-22
Real-time capability, 7-1
Reenabling the reader and
restarting, IOX, 7-16
Register contents, altering,
9-6
Register Mode,
PAL-11A, 2-10
PAL-11lS, 1-12
Register symbols,
PAL~11lA, 2-6
PAL-11S, 1-6
Registers, general, PAL-11S,
1-6
Relative and Deferred Relative
Mode,
PAL-11A, 2-13
PAL-11lS, 1-15
Relocatable expression,
PAL-11S, 1-9
Relocation and linking,
PAL-11lS, 1-11
Relocation directory, PAL-1l1S,
1-31
Restarting and starting ODT-1l1,
5-21
Restarting ED-11, 4-11
Routines accessed via trap
handler, FPMP-11, H-7
RUBOUT, PAL-11lS, 1-24
Running the program, ODT-1l1,
5-7

Scales of notation, L-6
Search commands, ED-11, 4-7,
D-2
Searches, ODT-11, 5-8, 5-18
Single buffer transfer on
one device, 7-14
Single-Instruction Mode,
oDT-11X, 5-12
Software error halts,
ED-11, 4-17
PAL-11lA, 2-26
PAL-11S, 1-32
Special characters, PAL-11A,
c-1 :
Standard PDP-11 abbreviations,
K~-1
Starting and restarting ODT-11,
5-21 .
Starting ED-11, 4-11
Statement format, PAL-11S, 1-2
Statements,
PAL-11A, 2-2
PAL-11S8, 1-2
Status Byte, IOX, 7-6

Storage maps, dumps, 6-17
Subroutines, 9-7
Summary,
FPMP-11, H-1
Symbol,
external, PAL-1l1lS, 1-5
global, PAL-11S, 1-5
internal, PAL-11S, 1-5
Symbol table, PAL-11S, 1-5
Symbols,
ED-11, D-3
PAL-11A permanent, 2-5
PAL-11lA register, 2-6
PAL-11A user-defined, 2-5
PAL-11S, 1-5
permanent, PAL-11S, 1-5
register, PAL-11S, 1-6
user-defined, PAL-11S, 1-5

Table, symbol, PAL-11S, 1-5
Tables, conversion, L-1

Tape duplication, 1-1
Techniques, coding, 9-6

Teletype interrupt, ODT-11l, 5-19
Terminators, PAL-11S, B-1

Text block, PAL-11lS, 1-31

.TITLE directive, PAL-11S, 1-18
Trap vectors, loading unused, 9-5
Truncation, PAL-11lS, 1-8
Two, powers of, L-5

Unused trap vectors, loading, 9-5

User~defined symbols,
PAL-11A, 2-5
PAL-11S, 1-5

Using IOX, 7-3

Verifying and loading the boot-
strap loader, 6-7

.WORD directive,
PAL~11A, 2-16
PAL-11S, 1-20
Writing position-independent
code, 9-1

Index-7

¢
—— o — — - - - e e e e SAE AW M MM G WS AR G W mm Gun G D WS e e e

this line.

Software Handbook
DEC-11~-XPTSA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name : Date
Organization
Street
City State Zip Code
, or
Country

If you require a written reply, please check here. Ej

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltiall

Software Communications
P, 0. Box F
Maynard, Massachusetts 01754

	1 PAL-11S Assembly Language and Assembler
	1.1 Character Set
	1.2 Statements
	1.2.1 Label
	1.2.2 Operator
	1.2.3 Operand
	1.2.4 Comments
	1.2.5 Format Control

	1.3 Symbols
	1.3.1 Permanent Symbols
	1.3.2 User-Defined Symbols
	1.3.3 Direct Assignment
	1.3.4 Register Symbols

	1.4 Expressions
	1.4.1 Numbers
	1.4.2 Arithmetic and Logical Operators
	1.4.3 ASCII Conversion
	1.4.4 Mode of Expressions

	1.5 Assembly Location Counter
	1.6 Relocation and Linking
	1.7 Addressing
	1.7.1 Register Mode
	1.7.2 Deferred Register Mode
	1.7.3 Autoincrement Mode
	1.7.4 Deferred Autoincrement Mode
	1.7.5 Autodecrement Mode
	1.7.6 Deferred Autodecrement Mode
	1.7.7 Index Mode
	1.7.8 Deferred Index Mode
	1.7.9 Immediate Mode and Deferred Immediate (Absolute) Mode
	1.7.10 Relative and Deferred Relative Modes
	1.7.11 Table of Mode Forms and Codes (6-bit (A) format only)
	1.7.12 Instruction Forms

	1.8 Assembler Directives
	1.8.1 .TITLE
	1.8.2 .GLOBL
	1.8.3 Program Section Directives (.ASECT and .CSECT)
	1.8.4 .EOT
	1.8.5 .EVEN
	1.8.6 .END
	1.8.7 .WORD
	1.8.8 .BYTE
	1.8.9 .ASCII
	1.8.10 .RAD50
	1.8.11 .LIMIT
	1.8.12 Conditional Assembly Directives

	1.9 Operating Procedures
	1.9.1 Introduction
	1.9.2 Loading PAL-11S
	1.9.3 Initial Dialogue
	1.9.4 Assembly Dialogue
	1.9.5 Assembly Listing
	1.9.6 Object Module Output
	1.9.6.1 Global Symbol Directory
	1.9.6.2 Text Block
	1.9.6.3 Relocation Directory

	1.10 Error Codes
	1.11 Software Error Halts

	2 Writing PAL-11A Assembly Language Programs
	2.1 Character Set
	2.2 Statements
	2.2.1 Label
	2.2.2 Operator
	2.2.3 Operand
	2.2.4 Comments
	2.2.5 Format Control

	2.3 Symbols
	2.3.1 Permanent Symbols
	2.3.2 User-Defined Symbols
	2.3.3 Direct Assignment
	2.3.4 Register Symbols

	2.4 Expressions
	2.4.1 Numbers
	2.4.2 Arithmetic and Logical Operators
	2.4.3 ASCII Conversion

	2.5 Assembly Location Counter
	2.6 Addressing
	2.6.1 Register Mode
	2.6.2 Deferred Register Mode
	2.6.3 Autoincrement Mode
	2.6.4 Deferred Autoincrement Mode
	2.6.5 Autodecrement Mode
	2.6.6 Deferred Autodecrement Mode
	2.6.7 Index Mode
	2.6.8 Deferred Index Mode
	2.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode
	2.6.10 Relative and Deferred Relative Modes
	2.6.11 Table of Mode Forms and Codes (6-bit (A) format only)

	2.7 Instruction Forms
	2.8 Assembler Directives
	2.8.1 .EOT
	2.8.2 .EVEN
	2.8.3 .END
	2.8.4 .WORD
	2.8.5 .BYTE
	2.8.6 .ASCII

	2.9 Operating Procedures
	2.9.1 Introduction
	2.9.2 Loading PAL-11A
	2.9.3 Initial Dialogue
	2.9.4 Assembly Dialogue
	2.9.5 Assembly Listing

	2.10 Error Codes
	2.11 Software Error Halts

	3 LINK-11S Linker
	3.1 Introduction
	3.1.1 General Description
	3.1.2 Absolute and Relocatable Program Sections
	3.1.3 Global Symbols

	3.2 Input and Output
	3.2.1 Object Module
	3.2.2 Load Modules
	3.2.3 Load Map

	3.3 Operating Procedures
	3.3.1 Loading and Command String
	3.3.1.1 Operational Cautions

	3.3.2 Error Procedures and Messages
	3.3.2.1 Restarting
	3.3.2.2 Non-Fatal Errors
	3.3.2.3 Fatal Errors
	3.3.2.4 Error HALTs

	4 Editing the Source Program
	4.1 Command Mode and Text Mode
	4.2 Command Delimiters
	4.2.1 Arguments
	4.2.2 The Character Location Pointer (Dot)
	4.2.3 Mark
	4.2.4 Line-Oriented Command Properties
	4.2.5 The Page Buffer

	4.3 Commands
	4.3.1 Input and Output Commands
	4.3.1.1 Open
	4.3.1.2 Read
	4.3.1.3 List and Punch
	4.3.1.4 Next
	4.3.1.5 Form Feed and Trailer
	4.3.1.6 Procedure with Low-Speed Punch

	4.3.2 Commands to Move Dot and Mark
	4.3.2.1 Beginning and End
	4.3.2.2 Jump and Advance
	4.3.2.3 Mark

	4.3.3 Search Commands
	4.3.3.1 Get
	4.3.3.2 wHole

	4.3.4 Commands to Modify the Text
	4.3.4.1 Insert
	4.3.4.2 Delete and Kill
	4.3.4.3 Change and Exchange

	4.4 Operating Procedures
	4.4.1 Error Corrections
	4.4.2 Starting
	4.4.3 Restarting
	4.4.4 Creating a Paper Tape
	4.4.5 Editing Example

	4.5 Software Error Halts

	5 Debugging Object Programs On-Line
	5.1 Introduction
	5.1.1 ODT-11 and ODT-11X
	5.1.2 ODT's Command Syntax

	5.2 Commands and Functions
	5.2.1 Opening, Changing, and Closing Locations
	5.2.1.1 The Slash (/)
	5.2.1.2 The LINE FEED Key
	5.2.1.3 The Up-Arrow (âƒ‚)
	5.2.1.4 The Back-Arrow (âƒ’)
	5.2.1.5 Accessing General Registers 0--7
	5.2.1.6 Accessing Internal Registers

	5.2.2 Breakpoints
	5.2.2.1 Setting the Breakpoints (n;B)
	5.2.2.2 Locating the Breakpoints ($B)

	5.2.3 Running the Program (n;G and n;P)
	5.2.4 Searches
	5.2.4.1 Word Search (n;W)
	5.2.4.2 Effective Address Search (n;E)

	5.2.5 Calculating Offsets (n;O)
	5.2.6 ODT's Priority Level ($P)

	5.3 ODT-11X
	5.3.1 Opening, Changing and Closing Locations
	5.3.1.1 Open the Addressed Location (@)
	5.3.1.2 Relative Branch Offset (>)
	5.3.1.3 Return to Previous Sequence (<)

	5.3.2 Calculating Offsets (n;O)
	5.3.3 Breakpoints
	5.3.4 Single-Instruction Mode

	5.4 Error Detection
	5.5 Programming Considerations
	5.5.1 Functional Organization
	5.5.2 Breakpoints
	5.5.3 Search
	5.5.4 Teletype Interrupt

	5.6 Operating Procedures
	5.6.1 Linking Procedures (LSI-11 Systems Only)
	5.6.2 Loading Procedures (non-LSI-11 Systems Only)
	5.6.3 Starting and Restarting

	6 Loading and Dumping Memory
	6.1 Paper Tape Procedures
	6.1.1 BM792-YA Paper Tape Bootstrap ROM
	6.1.2 BM873-YA Bootstrap Loader ROM
	6.1.3 LSI-11 Firmware Paper Tape Bootstrap
	6.1.4 M9301-YB Bootstrap Loader
	6.1.5 M9301-YA Bootstrap Loader
	6.1.6 Other Bootstrap Loaders
	6.1.6.1 Loading the Loader into Core
	6.1.6.2 Loading Bootstrap Tapes
	6.1.6.3 Bootstrap Loader Operation

	6.2 The Absolute Loader
	6.2.1 Loading the Loader into Core
	6.2.2 Using the Absolute Loader
	6.2.3 Absolute Loader Operation

	6.3 Core Memory Dumps
	6.3.1 Operating Procedures
	6.3.1.1 Using DUMPAB on Systems without Switch Registers
	6.3.1.2 Using DUMPAB and DUMPTT on Systems with Switch Registers

	6.3.2 Output Formats
	6.3.3 Storage Maps

	7 Input/Output Programming
	7.1 Introduction
	7.1.1 Using IOX with the LSI-11 Processor
	7.1.2 Using IOX with Unibus PDP-11 Processors
	7.1.3 IOX Interrupt and Trap Vectors

	7.2 The Device Assignment Table
	7.2.1 Reset
	7.2.2 Initialization

	7.3 Buffer Arrangement in Data Transfer Commands
	7.3.1 Buffer Size
	7.3.2 Mode Byte
	7.3.3 Status Byte
	7.3.3.1 Non-Fatal Error Codes (Octal)
	7.3.3.2 Done Bit
	7.3.3.3 End-Of-Medium Bit
	7.3.3.4 End-Of-File Bit

	7.3.4 Byte Count

	7.4 Modes
	7.4.1 Formatted ASCII
	7.4.2 Unformatted ASCII
	7.4.3 Formatted Binary
	7.4.4 Unformatted Binary

	7.5 Data Transfers
	7.5.1 Read
	7.5.2 Write
	7.5.3 Device Conflicts In Data Transfer Commands
	7.5.4 Waitr (Wait, Return)
	7.5.5 Waitr vs. Testing the Buffer Done Bit
	7.5.6 Single Buffer Transfer on One Device
	7.5.7 Double Buffering
	7.5.8 Readr (Real-time Read)
	7.5.9 Writr (Real-time Write)

	7.6 Reenabling the Reader and Restarting
	7.6.1 Seek
	7.6.2 Restart

	7.7 Fatal Errors
	7.8 Example of Program Using IOX
	7.9 IOX Internal Information
	7.9.1 Conflict Byte/Word
	7.9.2 Device Interrupt Table (DIT)
	7.9.3 Device Status Table (DST)
	7.9.4 Teletype Hardware Tab Facility
	7.9.5 Adding Devices to IOX
	7.9.5.1 Device Codes
	7.9.5.2 Table Modification
	7.9.5.3 Interrupt Routines

	8 Floating Point Math Package Overview
	9 Programming Techniques
	9.1 Writing Position Independent Code
	9.1.1 Position Independent Modes
	9.1.2 Absolute Modes
	9.1.3 Writing Automatic PIC
	9.1.4 Writing Non-Automatic PIC
	9.1.4.1 Setting Up the Stack Pointer
	9.1.4.2 Setting Up a Trap or Interrupt Vector
	9.1.4.3 Relocating Pointers

	9.2 Loading Unused Trap Vectors
	9.3 Coding Techniques
	9.3.1 Altering Register Contents
	9.3.2 Subroutines

	A ASCII Character Set
	B PAL-11S Assembly Language and Assembler
	B.1 Terminators
	B.2 Address Mode Syntax
	B.3 Instructions
	B.3.1 Double Operand Instructions
	B.3.2 Single Operand Instructions
	B.3.3 Rotate/Shift
	B.3.4 Operation Instructions
	B.3.5 Branch Instructions
	B.3.6 Subroutine Call
	B.3.7 Subroutine Return
	B.3.8 Extensions for the LSI-11 Version of PAL-11S

	B.4 Assembler Directives
	B.5 Error Codes
	B.6 Initial Operating Procedures

	C PAL-11A Assembly Language and Assembler
	C.1 Special Characters
	C.2 Address Mode Syntax
	C.3 Instructions
	C.3.1 Double-Operand Instructions
	C.3.2 Single-Operand Instructions
	C.3.3 Rotate/Shift Instructions
	C.3.4 Operate Instructions
	C.3.5 Trap Instructions
	C.3.6 Branch Instructions
	C.3.7 Subroutine Call
	C.3.8 Subroutine Return

	C.4 Assembler Directives
	C.5 Error Codes
	C.6 Initial Operating Procedures

	D Text Editor, ED-11
	D.1 Input/Output Commands
	D.2 Pointer-Positioning Commands
	D.3 Search Commands
	D.4 Commands to Modify the Text
	D.5 Symbols
	D.6 Grouping of Commands
	D.7 Operating Procedures
	D.7.1 Loading
	D.7.2 Storage Requirements
	D.7.3 Starting
	D.7.4 Initial Dialogue
	D.7.5 Restarting

	E Debugging Object Programs On-Line, ODT-11 and ODT-11X
	E.1 Summary of Contents

	F Loading and Dumping Core Memory
	F.1 The Bootstrap Loader
	F.1.1 Loading the Bootstrap Loader

	F.2 The Absolute Loader
	F.3 Core Memory Dumps

	G Input/Output Programming, IOX
	G.1 Instruction Summary
	G.2 Program Flow Summary
	G.3 Fatal Errors

	H Summary of Floating Point Math Package, FPMP-11
	H.1 OTS Routines
	H.2 Non-OTS Routines
	H.3 Routines Accessed Via Trap Handler

	I Tape Duplication
	J Assembly and Linking Instructions
	J.1 Systems Without Switch Registers
	J.1.1 IOX/IOXLPT
	J.1.1.1 Assembling IOX
	J.1.1.2 Assembling IOXLPT
	J.1.1.3 Linking IOX and IOXLPT

	J.1.2 ODT11X
	J.1.2.1 Assembling ODT11X
	J.1.2.2 Linking ODT11X

	J.1.3 ED-11
	J.1.3.1 Assembling ED-11
	J.1.3.2 Linking ED-11

	J.1.4 PAL-11S
	J.1.4.1 Assembling PAL-11S
	J.1.4.2 Linking PAL-11S

	J.1.5 LINK-11S
	J.1.5.1 Assembling LINK-11S
	J.1.5.2 Linking LINK-11S

	J.2 Systems With Switch Registers
	J.2.1 Assembling PAL-11A
	J.2.2 Assembling ED-11
	J.2.3 ODT-11/ODT-11X
	J.2.4 Assembling IOX/IOXLPT
	J.2.5 Assembling and Linking PAL-11S
	J.2.6 Assembling and Linking LINK-11S

	K Standard PDP-11 Abbreviations
	L Conversion Tables
	L.1 Octal-Decimal Integer Conversions
	L.2 Powers of Two
	L.3 Scales of Notation
	L.3.1 2^x in Decimal
	L.3.2 10^Â±n in Octal
	L.3.3 n Log 2 and 10 In Decimal
	L.3.4 Addition and Multiplication, Binary and Octal
	L.3.5 Mathematical Constants In Octal

	M Note to Users of Serial LA30 and 600, 1200, and 2400 Baud VT05s
	N Using the Absolute Loader on PDP-11s Without Switch Registers
	N.1 LSI-11
	N.2 M9301-YB Bootstrap Loader
	N.3 M9301-YA Bootstrap Loader

