CHAPTER 5

THE PAL8 ASSEMBLER

5.1 INTRODUCTION

PALS8, the 0S/78 Operating System assembler, generates binary object
files from source (ASCII) programs written in the PAL8 assembly
language.

PAL8 is a two-pass assembler. During pass 1, the source program is
read and an internal symbol table is produced that contains the PALS
permanent symbols and any new symbols that you define. During pass 2,
the assembler reads the source file again, generates the binary code
using the symbol table definitions created during pass 1, and
continues defining symbols as well. The binary file that is output
may be loaded into memory as the "current" executable program by the
LOAD command. Absolute binary format consists of 8-bit bytes,
containing field setting commands, address setting® commands, and
sequential data words. An optional third pass will produce a program
listing if one is desired. During pass 3, the assembler reads the
source file a final time and generates the assembly listing as an
ASCII (character string) file. The assembly listing consists of the
source statement together with its current location counter and the
generated code in octal. The first 40 (decimal) characters of the
first line of each page of the listing contain a title, the assembler
version number, the date and the listing page number.

Use the 0S/78 command PAL to call the assembler. You can also use the
commands CREF and EXECUTE as explained in this chapter.

The PAL command specifieé the binary and listing output devices and
file names, the input devices and file names, and any options that you
select. From one to nine input files may be specified. The typical
way to assemble, load, and then run a program called PROG is as
follows:

«PAL PROG -Assemble the program

+LOAD ~Load the program into memory
+SAVE SYS PROG -Save the program

R PROG -Run the program

The long form of the command string is
PAL dev:binary,dev:listing,dev:crefls<dev:input,.../options

If the extension to the file name is omitted, the following extensions
are assumed.

.PA for input files.

.BN for binary output file.

.LS for listing output file.
.TM for intermediate CREF file.

THE PAL8 ASSEMBLER

If an assembly or CREF listing is not desired, omit the listing file
or CREF file, respectively.

For example, to assemble, load, and run a PAL8 program named SAMPLE,
which is stored on diskette unit 1, type

+PAL. RXA1:SAMFLE/G~-T

After assembly the program is loaded and run (since the /G was
specified) with the starting address assumed to be location 0200 in
field 0; the binary file is stored on the DSK: device as SAMPLE.BN.
The -T General-Purpose Dash Option displays the assembled program
listing on the terminal (see Table 2-3).

If a binary file is not desired, specify the -NB option at the end of
the command 1line (NB stands for No Binary). For example, to get a
listing only, type

+FAL SAMPLE-L.S—NR
The -LS option indicates that a listing should be produced.

The assembler displays any error messages encountered in the program
on the terminal, even when a listing is not produced. Typing CTRL/O
at the keyboard during an assembly suppresses the display of error
messages. However, messages are still printed in the listing file (if
any) and occur immediately before the line that is in error.

For example, the command line

+FAL SAMPLE/S-LS

causes PALS to assemble SAMPLE.PA (or SAMPLE) , generating
DSK:SAMPLE.BN and putting the listing into the file SAMPLE.LS on the
default device DSK. The /S option suppresses listing of the symbol
table.

The command line
AL RINCSAMFPLE .FA/G=600

assembles SAMPLE.PA, creates a binary output file named BIN.BN, loads
the file BIN.BN, and starts it at location 600. The construction =600
is an option that specifies the starting address.

Assembly can be terminated at any time by typing CTRL/C on the
keyboard, and any output files being stored will be deleted.
Otherwise, PAL8 always returns to the monitor upon completion of
assembly.

A source program may consist of a number of source file modules to be
assembled together. You do this by specifying a string of input
device and file names separated by commas. For example,

AL PARTLYRXAL1IFPART2yRLOAIFART3
assembles a three-part program. This technigue is useful when it is

desired to assemble two programs that are identical except for a few
lines at the beginning of the programs. Different lines can be broken

THE PAL8 ASSEMBLER

out into a "prefix file". For example, two different file assemblies
may be generated by

JAL FPRFXL1FILE
and
AL PRFX2FILE

You can enter up to nine input files to be treated as one source input
in a command line.

If more than one input file is specified, and output files are desired
but not explicitly specified, the name of the first input file is used
for the output file names. For example,
FAL AYE
produces the binary file A.BN.
If a file name other than the first input file is desired for the
binary name, use the -NB General-Purpose Dash Option after the last
input file name not desired as the binary file name. For example,
JFal A-NESR
produces DSK:B.BN and
JFal. ArEByC~-NEyDsEsF
produces DSK:D.BN.
If a -LS option is specified, it must appear immediately after an

input file name. This is the name that will be used for the name of
the listing file. For example,

JFal ArR-LS
produces DSK:B.LS while
Al A-LSeB
produces DSK:A.LS
The -L or -T General-Purpose Dash Options used with a PAL or COMPILE
command send the listing output file to the line printer and terminal

respectively.

Note that the PAL command normally produces a binary file even when a
name is not given. Thus, typing

AL LPTHEfile
produces a binary file.

If you do not specify an extension, PAL assumes that the input file
extension is .PA. Thus, the command

Al TEST

causes the assembler to search for a file namel DSK:TEST.PA. If no
file with .PA is found on DSK:, the assembler then searches for a file
named TEST with no extension. It is good practice when creating a
PALS8 source file to include a .PA extension to remind you what type of
source file it is.

THE PAL8 ASSEMBLER

The COMPILE and EXECUTE commands may also be used to invoke PALS.
These commands search the directory of the specified device for the
file given with the command, and if one is found with a .PA extension,
PAL8 is invoked. For example,

*COMFILE TEST
will run PAL8 if TEST.PA is found. An unusual extension may be
explicitly specified by typing

*FAL. TEST.XX

which will assemble DSK:TEST.XX. To specify PAL8 as the processor in
the COMPILE command, use the ~PA General-Purpose Dash Option in the
command line as follows:

*COMPILE TEST.XX-PA

The EXECUTE command is similar to the COMPILE command except that the
EXECUTE command is supported by the /G option.

If an argument is not given with a PAL or COMPILE or EXECUTE command,
the argument used with the 1last such command is assumed when that
command is used again.

5.2 CREATING AND RUNNING A PAL8 PROGRAM

The following steps demonstrate the procedure for creating and running
a PAL8 program.

5.2.1 Creating a Program

Create the assembly language source file by calling the Editor as
follows:

*CREATE SAMFPLE.FA

Since a new program is being created, only a single file name need be
specified. The 0S/78 Editor will then display a number sign (#) to
indicate it is ready to accept a command. (See Chapter 4 for a
detailed discussion of the 0S/78 Editor.)

Type the A (Append) command to allow the Editor to accept text. Then
type in the program, one line at a time. Press the RETURN key after
each line.

#A
/ROUTINE TO TYPE A MESSAGE
%200
MONADR=7600
STARTy CLA CLL /CLEAR ACCUMULATOR AND LINK
TLS /CLEAR TERMINAL FLAG
TAD BUFADR /SET UP POINTER
DCA PNTR /FOR GETTING CHARACTERS

THE PAL8 ASSEMBLER

NEXTy TSF /SKIF IF TERMINAL FLAG SET
JMFP -1 /NO¢ CHECK AGAIN
TAD I PNTR /GET A CHARACTER
TLS /FRINT A CHARACTER
I8Z FPNTR /DONE YET?
CLA CLL /CLEAR ACCUMULATOR AND LINK
TAD I PNTR /GET ANOTHER CHARACTER
8ZAa CLA /JUMF ON ZERO AND CLEAR
JMF NEXT /BET READY TO PRINT ANOTHER
JMF T MON /RETURN TD MONITOR

BUFADRy BRUFF /RUFFER ADNDRESS

PNTR Y RUFF /FOINTER

RUFF » 21552125 "HI"Ei"Li*Li"0i"150

MON» MONADIR /MONITOR ENTRY FOINT

Now type a CTRL/L to terminate input. This command returns you to the
Editor command mode.

Type the L (List) command in response to the Editor's number sign (#)
to list the text that was inserted into the text buffer.

When you are satisfied that the input is correct, type the E (Exit)
command to store the file and return to the monitor.

5.2.2 Assembling a Program

Now assemble the source program just created. Use the command:

FaL SAMFLE~LS

This command creates two files, a binary file called SAMPLE.BN, and a
listing file (-LS option) called SAMPLE.LS. Use the TYPE command to
display the listing on the terminal or the LIST command to print the
listing on a line printer.

The assembly listing produced by PAL appears as follows:

/ROUTINE TO TYFE A MESSAGE FALB-V13A 14-MARCH-79 FAGE 1
/ROUTINE TO TYFE A MESSAGE

0200 Xx200

7600 MONADR=7600
000200 7300 START» CLA CLL /CLEAR ACCUMULATOR AND LINK
000201 6046 TLS /CLEAR TERMINAL FLAG
000202 12146 TADIl BUFADR /SET UF FOINTER
000203 3217 ncA PNTR /FOR GETTING CHARACTERS
000204 4041 NEXT» TSF /SKIF IF TERMINAL FLAG SET
000205 35204 JMP -1 /N0O$ CHECK AGAIN
000206 1617 TAD I FPNTR /GET A CHARACTER
000207 6046 TLS /PRINT A CHARACTER
000210 2217 ISZ PNTR /0ONE YET?
000211 7300 cLAa CLL /CLEAR ACCUMULATOR AND LINK
000212 1617 TAD I PNTR /GET ANOTHER CHARACTER
000213 7640 8ZA CLA /JUMF ON ZERO AND CLEAR
000214 5204 JMP NEXT /GET READY TO FRINT ANOTHER
000215 5631 JMP I MON /RETURN TGO MONITOR

000216 0220 BRUFADRs BUFF /BUFFER ADDRESS
000217 0220 FNTRy RUFF /POINTER
000220 0215 BUFF) 21552125 "Hs "Es"Ls"L3 "0 " 150

THE PAL8 ASSEMBLER

000221 0212
000222 0310
000223 0305
000224 0314
000225 0314
000226 0317
000227 0241
000230 0000

000231 7600 MON» MONADR /MONITOR ENTRY FOINT
/ROUTINE TO TYPE A MESSAGE FALB-V13A 14-MARCH-79 FAGE 2
RUFADLIR 0214

BUFF 0220

MON 0231

MONADR 7600
NEXT 0204
FNTR 0217
START 0200

ERRORS DETECTED?: O
LINKS GENERATED? 0O

The first column of the listing gives the field number and octal
address. The second column is the assembled object code. The symbol
table is printed at the end followed by the number of errors detected
and number of 1links generated. Link generation 1is described in
Section 5.12. Each error generates an error message (see Section
5.14).

If errors have been detected, the program has been written or typed
incorrectly. Check it again.

The COMPILE command may also be used to assemble the program by typing
+ COMFILE SAMPLE

Several options are available with the PAL command. The options are
described in Section 5.3.

5.2.3 Loading and Saving a Program

Load the binary file generated by assembling SAMPLE.PA into memory by
typing

+ LOAD SAMFLE
The SAMPLE program is now the "current" memory image.
Since programs in memory image format can be executed directly, it is
desirable to save this format of your program. Do this with the SAVE
command by typing :

+ SAVE 5YS SAMFLE

The memory image format of SAMPLE is now both in memory and on the
system device as a new file called SAMPLE.SV.

THE PAL8 ASSEMBLER

5.2.4 Executing the Program

Since the program now resides on SYS and in main memory, you can
execute it by typing

+START

Otherwise, you can load the file SAMPLE.SV into memory from SYS: and
run by typing

R SAMFLE
As the program runs, it displays the message HELLO!

You can also use the EXECUTE command to assemble, load and run the
program.

LEXECUTE SAMFLE

This command produces the binary file SAMPLE.BN, loads it into memory,
and starts it running.

Another load-and-go method that is available with the PAL command is
the /G option. Typing

AL SAMPLE/G

assembles the input file SAMPLE.PA, loads the binary file, and
executes the program. Also, the command

JLOAD SAMPLE/G

will load the binary file SAMPLE.BN and execute it.

5.2.5 Getting and Using a Cross-Reference Listing

The Cross-Reference Program (CREF) aids in debugging assembly language
programs by pinpointing all references to a particular symbol,

Generate the CREF listing by using the CREF command or the PAL command
with the /C option. Typing

+FAL SAMPLE/C-LS

will produce a binary file and the CREF 1listing as a file called
SAMPLE.LS. Using the TYPE or LIST command will display the listing on
the terminal or print it on a line printer, respectively. Further
information on CREF is given with the discussion of the CREF command
in Chapter 3.

The output of CREF is identical to the PAL8 assembler output except
that the CREF program numbers each line in decimal and generates after
the listing a cross-reference table that has the following format:

BUFALDR -} 184

RUFF i8 19 20%

MON 17 29%

MONADR 3% 29

NEXT 8% 16

PNTR 7 10 12 14 19%
START 4%

THE PAL8 ASSEMBLER

The cross-reference table contains every user-defined symbol and
literal, sorted alphabetically. If literals are used, each literal is
indicated by an underline followed by the field and address at which
it occurs. For each symbol and 1literal there appears a list of
numbers that specify the lines in which each 1is referenced. The
symbol # follows the number of the line where the symbol is defined.

5.2.6 Obtaining a Memory Map

Many times it is desirable to obtain a map of a program showing memory
locations used by the given binary file. Generate the map by using
the MAP command. Typing

« MAF SAMFLE-L
will print the map on a line printer from SAMPLE.BN, and typing

+ MAF SAMFLE

will display the map on the terminal (in effect, equivalent to the
command MAP SAMPLE-T).

The input file must always be a binary file (.BN extension). Use the
command

+ MAP MAFFIL<SAMFLE

to place the map in the file MAPFIL.MP. Display the map on the
terminal or print it on a line printer by using the commands TYPE and
LIST, respectively. The map for the program SAMPLE is shown below.

RITMAP V4 FIELD 0O

0000000011111111222222223333333344444444555550056666666677777777
01234567012345670123454670123456701234567012345670123456701234567

00000
00100

00200 1111111111111111111111111100000000000000000000000000000000000000
00300

00400
00500

00600
00700
L)
*

.

The output is a series of lines that are made up of a string of
digits. Each digit, which represents a single memory location, can
have a value of 0 to 3. A 0 means that the location is empty while a
1 means that the location was loaded into once. The appearance of a 2
means that a location was loaded into two times. A 3 means that the
location was loaded into three or more times. The appearance of a 2
or 3 may imply a programming error in that two or more separate
routines are each trying to load values into the same location. The
example program shows memory locations 0200 through 0231 being loaded
into once which is correct. Further information on the MAP command is
given in Chapter 3.

5-8

THE PAL8 ASSEMBLER

5.3 PAL8 OPTIONS
The command string typed for the PAL command may include several
options. The options are listed in Table 5-1.

Table 5-1
PAL8 Options

Option Meaning

/B This option makes the operator ! a 6-bit left shift
instead of an inclusive OR (Al!B equals A"100 B). This
allows you to pack two 6-bit ASCII characters into a
12-bit word. This effect applies for the entire

assembly.
/C Create a symbol cross-reference listing (runs CREF.SV
program) after assembly. The third output file

specified (optional) is the temporary output file passed
to CREF. The second output file is the listing file to
be produced. If no third output file is given,
SYS:CREFLS.TM is assumed and will be deleted after use.
The /C option supersedes the /G and /L options if
specified in the same command string.

/E Enable error messages if a link is generated. The LG
error message 1is generated as well as the link being
flagged.

/F Disable extra zero fill in TEXT pseudo-op. If the text

in the TEXT pseudo-op contains an even number of
characters, no word of zeros will be added to the end.

/G Load the binary file into memory and begin execution at
the indicated starting address. If no starting address
is indicated, start at 200.

/H Generate nonpaginated output. Headers (including page
numbers and page format) are suppressed.

/J Do not list 1lines of unassembled conditional source
code.
/K Used in assembling very 1large programs; allows more

space in field 1 to be used for symbol table storage.

/L Load the resulting binary file into memory but do not
start it.

(continued on next page)

THE PAL8 ASSEMBLER

Table 5-1 (Cont.)
PALS8 Options

Option Meaning
/N Generate the symbol table but not the rest of the
listing.
/0 Disable output of default (200) current location counter

(CLC) setting after a FIELD pseudo-op. The CLC remains
unchanged.

/S Omit the symbol table normally generated with the
listing.
/T Output a carriage return/line feed in place of form feed

character(s) in the program listing.

/W Do not remember the number of 1literals that were
previously stored on a page after changing the current
location counter to an off page value and then back
again.

When the /L or /G option is specified, you can also include any option
in the command line for the LOAD command, such as = starting address
option. If no address is specified, 00200 is assumed. If no binary
output file is specified {by using the -NB option) with a /L or /G, a
temporary file SYS:PAL8BN.TM is created and loaded.

5.4 CHARACTER SET
PAL8 programs are composed of physical 1lines containing assembly
language mnemonics that indicate processor instructions, user-defined
symbols, comments, listing control characters and pseudo-operators
(assembler directives). The following characters (see Appendix A
also) are used to specify these components.

1. The alphabetic characters A through 2

2, The numeric characters 0 through 9

3. The characters special characters and operators described
below

4. Characters that are ignored during assembly, such as LINE
FEED and FORM FEED

All other characters are illegal (except when used in a comment) and
cause the following error message to be printed during passes 1 and 2:

IC nnnn
where:

nnnn represents the octal location at which the illegal
character occurred.

5-10

THE PAL8 ASSEMBLER

As assembly proceeds, each instruction is assigned a location
determined by the current location counter. When an illegal character
or any other error is encountered during assembly, the value of the
current location counter is displayed in the error message.

NOTE
You cannot use lower case characters in
labels, instruction mnemonics and
operands.

5.5 STATEMENTS

A PAL8 source program is prepared at the terminal wusing the Editor
program (EDIT command) to enter a seqguence of statements. You must
enter each statement on a single line and terminate with a carriage
return. PAL8 statements have four elements. They are identified by
the order of their appearance in the statement and by the separating
(or delimiting) character that follows or precedes the element. These

elements are:
1. 1label
2. instruction
3. operand
4, comment

A statement must contain at least one of these elements and may
contain all four. The assembler interprets and processes the
statements, generating one or more binary instructions or data words,
or performing an assembly process.

5.5.1 Labels

A label is the symbolic name created by the programmer to identify the
location of a statement in the program. If present, the label is
written first in a statement. It must begin with an alphabetic
character, contain only alphanumeric characters, and be terminated by
a comma. There must be no intervening spaces between any of the
characters and the comma. A label may be of any length, but only the
first six characters are significant. If a label is the only element
on a line, it identifies the location of the next program location.

For example,

*200
A, Defines A as 00200
B,0 Defines B as 00200 and stores 0000 at location 00200

5.5.2 Instructions

An instruction may be one or more of the mnemonic machine instructions
or a pseudo-operation that directs assembly processing. (Assembly
pseudo-ops are described in Section 5.11.) Instructions are terminated
with zero or more spaces (or tabs) followed by a semicolon, slash, or
the end of the line.

THE PAL8 ASSEMBLER

5.5.3 Operands

Operands are the octal or symbolic addresses of an assembly language
instruction or the argument of a pseudo-operator, and can be any legal
expression. In each case, interpretation of an operand depends on the
instruction or the pseudo-op. Operands are terminated by a semicolon,
slash, or the end of the line.

5.5.4 Comments

Comments are arbitrary strings of any character in the ASCII set (see
Appendix A) that begin with a slash (/). Comments do not affect
assembly processing or program execution but are useful in the program
listing to record information for later analysis or debugging. The
assembler ignores all characters between the slash and the next
carriage return.

It is possible to have only a carriage return on a line, resulting in
a blank 1line in the final listing. Such a line is ignored, and the
current location counter is not incremented.

5.6 FORMAT CHARACTERS

The following characters are useful in controlling the format of an
assembly 1listing to improve readability. They allow a neat readable
listing to be produced by providing a means of spacing through the
program.

5.6.1 Form Feed

The form feed character causes the assembler to output blank lines (or
a form feed character if listing on the line printer) in order to skip
to a new page in the output listing during pass 3; this feature |is
useful in creating a page-by-page listing. The form feed is generated

by the Editor P (Page) command. The pseudo-op EJECT may also be used
to form pages in the assembly listing (see Section 5.11.7).

5.6.2 Tab

Tabs are used in the body of a source program to separate fields 1into
columns. For example, a line written

GOs TAD TOTAL/MAIN LOOF
is much easier to read if tabs are inserted to form
G0, TAD TOTAL /MAIN LOOF
Each occurrence of a tab character causes PAL8 to output enough spaces

to move to the next text column. Each text column is 8 characters
wide.

5-12

THE PAL8 ASSEMBLER

5.6.3 Statement Terminators

Each statement is terminated by the carriage return/line feed
character combination produced by the Editor when the RETURN key was
pressed during the Insert or Append modes. The semicolon (;) may also
be used as a statement terminator and is considered identical to a
carriage return except that it will not terminate a comment. For
example,

TAD A /THIS IS A COMMENTS TAD B

The entire expression between the slash and the end of the line is
considered a comment. Thus in this case the assembler ignores the TAD
B. If, for example, a sequence of instructions to rotate the contents
of the accumulator and link six places to the right is desired, it can
be written as follows:

RTR

RTR

RTR
However, as an alternative, all three instructions can be placed on a
single 1line by separating them with the special character semicolon

and terminating the entire line with a carriage return. The above
sequence of instructions can then be written

RTRIRTRIRTR
These multistatement lines are particularly useful when setting aside

a section of data storage. For example, a 4-word block of data could
be reserved by specifying either of the following:

LISTy 1525344
or

LISTy

D LIy

5.7 NUMBERS

Any sequence of digits delimited by a SPACE, TAB, semicolon, or the
end of a line forms a number. PAL8 initially interprets numbers in
octal (base 8). This can be changed to decimal ‘using the pseudo-op
DECIMAL (Section 5.11.10). Numbers are used in expressions,

5.8 SYMBOLS

A symbol is a string of alphanumeric characters beginning with a
letter and delimited by a nonalphanumeric character. Although a
symbol may be any length, only the first six characters are
significant. Since additional characters are ignored, symbols which
are identical in their first six characters are considered identical.

THE PAL8 ASSEMBLER

5.8.1 Permanent Symbols

The assembler symbol table initially contains definitions of the
symbols for all computer instructions and PAL8 psuedo-ops. These

‘symbols are permanently defined by PAL8 and need no further definition
by the user; they are summarized in Section 5.15. For example,

HLT This is a symbolic instruction assigned the value 7402 in
its permanent symbol table.

5.8.2 User-Defined Symbols

All desired symbols not defined by the assembler (in its permanent

'symbol table) must be defined within the source program. User symbols

may be defined in two ways:

1. As a statement label. Labels are assigned a value equal to
the current location counter.

2. As an explicitly defined symbolic value (for example, A =
33).

Permanent symbols (instructions, special characters, and pseudo-ops)

‘may not be redefined as a label or symbolic value. The following

examples are legal labels:

ADDR,
TOTAL,
SUM,
AL,

The following labels are illegal:

AD>M, (contains an illegal character)

7ABC, (first character not alphabetic)

LA BEL, (contains embedded spaces)

D+TAG, (contains a legal but non-alphanumeric character)
LABEL (a comma does not follow immediately after)

TAD, (instruction mnemonic)

5.8.3 Current Location Counter

As source statements are processed, PAL8 assigns consecutive memory

-addresses to the instructions and data words of the object program
(binary and listing) being produced.

The current location counter contains the address in which the next
“word of object code will be assembled and is automatically incremented
| each time a memory location is assigned. A statement that generates a
' single object program storage word increments the location counter by
'one. Another statement might generate six storage words, incrementing

the location counter by six.

‘The location counter is set or reset by typing an asterisk followed by

an expression giving the address in which the next program word is to
be stored. The expression may include symbols, but every such symbol

‘must have been defined at some previous point in the current source
' file(s) being assembled. If the origin is not set by the wuser, PALS
' begins assigning addresses at location 200.

THE PAL8 ASSEMBLER

The symbol TAG in the following example is assigned a value of 0300,
the symbol B a value of 0302, and the symbol A a value of 0303.

*300 /SET CURRENT LOCATION COUNTER TO 300
TAGy CLA

JMFEA
By 0
Ay nca g

If a symbol is defined more than once as a label, the assembler will
display the "illegal definition" error message:

ID address

where:

address is the octal value of the location counter at the
second occurrence of the symbol definition. The symbol
is not redefined. PALS8 error conditions are described
in Section 5.14.

Example:

*300
START» TAI A

ICA COUNTER
CONTIN» JMS LEAVE

JME START
COUNTERy O
START » CLa ClLlL

+
*

*

The symbol START would have a value of 0300; the symbol CONTIN would
have a value of 0302; the symbol A would have a value of 0304; and
the symbol COUNTER (considered COUNTE by the assembler, because the
assembler uses only the first six characters of a symbol) would have a
value of 0305. When the assembler processes the next. line, it will
display the error message:

ID COUNTE+0001

PAL8 will also display an error message if you refer to an undefined
symbol. For example,

xX7170
Ar Talr C

Cl.A CMA

HL.T

JMF AL
Cr 0

This would produce the "undefined symbol" error message
Us A+0003

since the symbol Al has not been defined.

THE PAL8 ASSEMBLER

5.8.4 Symbol Table

Initially, the assembler's symbol table contains the definitions of
the computer instructions and PAL8 pseudo-ops; these are PAL8's
permanent symbols. As the source program is processed, user-defined
symbols and their 12-bit binary values are added to the symbol table.
Entries in the symbol table are listed in alphabetic order at the end
of the assembly listing file.

During pass 1, if PAL8 detects that the symbol table is full (in other
words, there is no more memory space in which to store symbols and
their values), the "symbol table exceeded" error message is displayed
as follows:

SE address

and control returns to the monitor. The number of symbols defined in
the program may be reduced by using relative addressing for example,
JMP START+3).

You can also segment a program and assemble the segments separately,
taking care to define correct links between the segments. PAL8's
symbol capacity is 2621 (decimal) symbols of which 96 are permanent.
Where PAL8 is run under BATCH, 2357 symbols can be defined. (Use of
the /K option expands these to 2971 and 2719 respectively, but
assembly time is slower.)

Instructions for altering the permanent symbol table are in Section
5.11.8.

5.8.5 Direct Assignment Statements

New symbols and their assigned values may be inserted directly into
the symbol table by using a direct assignment statement.

Format:
SYMBOL=value
where:
value is a number or an expression.

No spaces or tabs may appear between the symbol to the 1left of the
equal sign and the equal sign itself but they may appear (and are
ignored) after the equal sign. The following are examples of direct
assignment statements:

A=6

EXIT=JMP I 0
C=A+B

COo=JMS I [.]

aAll symbols to the right of the equal sign must already be defined,
except that symbols are allowed to be undefined during pass 1. For
example,

A=B

B=3

THE PAL8 ASSEMBLER

During pass 1, A will equal 0, since it is undefined thus far. During
pass 2, A will equal 3, since B is given the value 3 at the end of
pass 1. The use of the equal sign does not increment the 1location
counter; it 1is an instruction to the assembler itself rather than a
data value.

A direct assignment statement may also equate a new symbol to the
value assigned to a previously defined symbol. For example,

BETA=17
GAMMA=BETA

The new symbol GAMMA is entered into the user's symbol table with the
value 17. The value assigned to a symbol may be changed as follows:

ALPHA=5
ALPHA=7

The second line of code shown changes the value assigned to ALPHA from
5 to 7.

Symbols defined by use of the equal sign may be used in any valid
expression. For example,

%200
A=100 /7DOES NOT UFDATE CURRENT LOCATION COUNTER
E=400 /00ES NOT UFPDATE CURRENT LOCATION COUNTER
AtR /THE VALUE 500 IS ASSEMELED AT LOC 200
TAD A /THE VALUE 1100 IS ASSEMBLED AT LOC 201

If the symbol to the left of the equal sign is in the permanent symbol
table, the "redefinition" diagnostic

Rl address
will be displayed as a warning (address is the value of the 1location
counter at the point of redefinition). The new value will be stored
in the symbol table. For example,

CLA=7600
will cause the diagnostic

RD+200

Whenever CLA is used after this point, it will have the value 7600.

5.8.6 Symbolic Instructions

Symbols used as instructions must be predefined by the assembler or
defined in the assembly by the programmer. If a statement has no
label, the instructions may appear first in the statement and must be
terminated by a space, tab, semicolon, slash, or carriage return. The
following are examples of legal instructions:

TAD (a mnemonic machine instruction)
PAGE (an assembler pseudo-op)
Z2IP (an instruction defined by the user)

5-17

THE PAL8 ASSEMBLER

5.8.7 Symbolic Operands

Symbols used as operands normally have a value defined by the user.
The assembler allows symbolic references to instructions or data
defined elsewhere in the ©program. Operands may be numbers or
expressions. For example,

TOTAL, TAD ACI+TAG

The values of the two symbols ACI and TAG (previously defined in the
program) are combined by a two's complement add. (See Section 5.9.1
on Operators.) This value is then used as the operand address.

5.9 EXPRESSIONS

Expressions are formed by the combination of symbols, numbers, and
certain characters called operators, which cause specific arithmetic
operations to be performed. An expression is terminated by either a
comma, carriage return, or semicolon. Expressions are evaluated by a
left-to-right scan.

5.9.1 Operators
Seven characters in PAL8 act as operators:
+ Two's complement addition

Two's complement subtraction
Multiplication (unsigned, 12-bit integer)

> 0

$ Division (unsigned, 12-bit integer)

! Boolean inclusive OR

& Boolean AND
Space Treated as a Boolean inclusive OR except
(or TAB) in a memory reference instruction

No checks for arithmetic overflow are made during assembly, and any
overflow bits are lost from the high-order end. For example,

7755+24
will give a result of 1.

The operators plus (+) and minus (-) may be used freely as unary
(prefix) operators.

Multiplication is accomplished by repeated addition. No checks for
sign or overflow are made. All 12 bits of each factor are considered
as magnitude. For example,

- 300072

will give a result of 6000.

5-18

THE PAL8 ASSEMBLER

Division is accomplished by repeated subtraction. The quotient is the
number of subtractions that are performed. The remainder is not saved
and no checks are made for sign. Division by 0 will arbitrarily yield
a result of 0. For example,

7000%1000

will yield a result of 7. This example could be written as:

-1000%1000

The answer might be expected to be -1 (7777), but all 12 bits are
considered as magnitude and the result is still 7.

Use of the multiplication and division operators requires more
attention to sign (on the part of the programmer) than is required for
simple addition and subtraction. Table 5-2 contains examples of
expressions using arithmetic operators.

Table 5-2

Use of Arithmetic Operators
Expression Also Written as Result
7777+2 -1+42 +1
7776-3 -2-3 7773 or -5
0°2 0
270 0
100077 7000 or -1000
0%12 0
1230 0
7777%1 -1%1 7777 or -1
7000%1000 -1000%1000 7
132 0

The ! operator causes a Boolean inclusive OR to be performed bit by
bit between the left-hand term and the right-hand term. Giving the /B
option changes the memory of "!" throughout the assembly to become a
6-bit left shift of the left term prior to the inclusive OR of the
right. According to this interpretation,

If A=1 and B=2
then

AlB=0102
Under normal conditions A!B would be 0003.

The & operator causes a Boolean AND to be performed bit by bit between
the left and right values.

5-19

THE PAL8 ASSEMBLER

SPACE is an operator that has special significance depending on the
context in which it is used. When the symbol preceding the space is
not a memory reference instruction as in the following example

SMA CLA

it causes an inclusive OR to be performed between them. In this case,
SMA=7500 and CLA=7600. The expression SMA CLA is assembled as 7700.
When SPACE is used following pseudo-operators, it merely delimits the
symbol. When it is used after memory reference operators, it has a
special function explained below.

User-defined symbols are treated as non-memory reference instructions.
For example,

A=1234
B=77
A B

stores a data value of 1277 (octal), the same as A!B.

If data values are generated, the current location counter is
incremented. For example,

B-7;A+4;A-B

produces three words of information; the current location counter is
incremented after each expression. The statement

HLTCLA=HLT CLA

produces no information to be loaded (it produces a value for "HLTCLA"
in the symbol table) and hence does not increment the current location
counter.

In the program

*4271
TEMP,
TEM2, 0

the location counter is not incremented after the line TEMP,; the two
symbols TEMP and TEM2 are assigned the same value, in this case 4721.

Since a CPU instruction has an operation code of three bits as well as
one indirect bit, one page bit, and seven address bits, the assembler
must combine memory reference instructions in a manner somewhat
differently from the way in which it combines operate or IOT
instructions. The assembler differentiates between memory reference
instructions and user-defined symbols. The following symbols are the
memory reference instructions:

AND 0000 Logical AND

TAD 1000 Two's complement addition

ISZ 2000 Increment and skip if zero
DCA 3000 Deposit and clear accumulator
JMS 4000 Jump to subroutine

JMP 5000 Jump

When the assembler has processed one of these symbols, the space or
tab following it acts as an address field delimiter. 1In the example,

*4100
JMP A
A, CLA

THE PAL8 ASSEMBLER

A has the value 4101, JMP has the value 5000, and the space acts as a
field delimiter. These symbols are represented in binary as follows:

A: 100 001 000 0O1
101 000 000 000

o
=
o

The seven address bits of A are taken, for example,
000 001 000 001

The remaining bits of the address are tested to see if they are =zeros
(page zero reference); if they are not, the current page bit is set:

000 011 000 001

The operation code is then ORed into the JMP value to form
101 011 000 001

or, in octal

5301

In addition to the above tests, the page bits of the address field are
compared with the page bits of the current location counter. TIf the
page bits of the address field are nonzero and do not equal the page
bits of the current 1location counter, an out-of-page reference is
being attempted, and the assembler will take action as described in
Section 5.12, on Link Generation and Storage.

5.9.2 Special Characters

In addition to the operators described in the previous section, PALS

recognizes several special characters that serve specific functions in
the assembly process:

= equal sign
comma

asterisk

. period

double quote
) parentheses

[] sguare brackets
/ slash

: semicolon

<> angle brackets
$ dollar sign

¥ =

The equal sign, comma, asterisk, slash, and semicolon have been
previously described. The remaining special characters are described
in the following sections.

5.9.2.1 Period (.) - The period character (.) represents the value
contained in current location counter. It may be wused in any
expression (except to the 1left of an equal sign). It must be

separated from other symbols by a space or other operator. For
example,

*200
JMP .+2

THE PAL8 ASSEMBLER

is equivalent to JMP 0202. Also,

%300
++2400

will produce in location 0300 the quantity 2700. Consider

%140
FPRINT=JMS I.
2200

The second line (PRINT=JMS I.) does not increment the current location
counter; therefore, 2200 is placed in location 140 and PRINT is
placed in the user's symbol table with an associated value of 4540
(the octal equivalent of JMS 1I.). This technique is useful in
creating "global" subroutine calls.

Large buffers may be defined by using a format such as the following:

%1200 /BUFFER LOCATION

BUFFERy 0O /FIRST WORD OF BUFFER
X.+400 /DEFINE A 401 WORD EBUFFER
NEXT» 0 /PROGRAM CONTINUES

5.9.2.2 Double Quote (") - When a double quote (") precedes an ASCII
character, PAL8 assembles the 8-bit ASCII equivalent of the character.
(ASCII codes are listed in Appendix A.) For example,

CLA
TAD ("a)

The constant 0301 is placed in the accumulator when these two
instructions are eventually executed. The character must not be a
carriage return or one of the characters that are ignored on input
(discussed at the end of this section).

5.9.2.3 Parentheses () and Brackets[] - Left and right parentheses,
(), enclose a current page literal. The right parenthesis is
optional.

%200

CLA

TAD INDEX
TAD (2)
DCA INDEX

*

.

The left parenthesis is a signal to the assembler that the expression
that follows is to be evaluated and assigned a word in the literal
area of the current page. This is the same area in which the indirect
address linkages are stored. In the above example, the quantity 2 is
stored in a word in the literal area beginning at the end of the
current memory page. The instruction in which the literal appears is
given the address of the literal. A literal is assigned to storage
the first time it is encountered; subsequent references to the same
literal from the current page are made to the same location. The use

THE PAL8 ASSEMBLER

of 1literals frees symbol storage table and makes programs much more
readable. Literal allocation starts with the last location on the
page and works towards the first location. If the literal area
reaches the instruction/data area, a PE (Page Exceeded) error message
is generated and assembly continues.

If square brackets ([and]) are used in place of parentheses, the
literal is assigned to page zero rather than the current page. This
enables a value to be referenced from any address within the field.
For example,

TANL21]

*

TADL2]

*

The closing member is optional. Literals may contain any expression.

NOTE

Literals can be nested, for example:

*200
TAD (TAD (30))

This type of nesting may be continued to
as many as six levels, depending on the
number of other literals on the page and
the complexity of the expressions within
the next. If the limits of the
assembler are reached, the error message
BE (too many levels of nesting) or PE
(too many literals) will result.

5.9.2.4 Angle Brackets (<>) - Angle brackets (<>) are used as
conditional delimiters. The code enclosed in the angle brackets is
assembled or ignored, depending on the definition of the symbol or
value of the -expression preceding the angle brackets. (The IFDEF,
IFNDEF, IFZERO, and IFNZRO pseudo-operators are used with angle
brackets and are described in Section 5.11.9.)

NOTE

Programs that wuse conditionals should
avoid angle brackets in comments as they
will be interpreted as beginning or
terminating the conditional.

THE PAL8 ASSEMBLER

5.9.2.5 Dollar Sign($) - The dollar sign ($) character is optional at
the end of a program and 1is interpreted as an. unconditional
end~of-pass. It may, however, occur in a text string, comment, or
double quote (") term, in which case it is interpreted in the same
manner as any other character. This feature is provided for
compatibility with. older PDP-8 assemblers, and its wuse is not
recommended.

5.9.3 Other Characters

The following characters are handled by the assembler-for the pass 3
program listing but are otherwise ignored:

FORM FEED Skips to a new page

LINE FEED Creates a line spacing without causing a carriage
return :

SPACE Spaces to next character position

TAB Spaces to next "tab column” of 8 characters

RETURN Terminates each line

BELL (CTRL/G) Sounds the terminal buzzer

5.10 INSTRUCTION SET

The instruction set for PAL8 includes processor instructions,
input/output (1/0) instructions, and assembler instructions
(pseudo-ops). The processor instructions are further divided into two

basic groups of instructions: memory reference and microinstructions.
(See Section 5.15 for detailed listing of instructions.)

5.10.1 Memory Reference Instructions

Memory reference instructions have the following format:

0 1 2 3 4 5 6 7 8 9 10 1

OPERATION ceal maa MaL
, CODE, : Ly

CONTAINS A1TO
SPECIFY GROUP 3

CONTAINS A1 TO SPECIFY GROUP 3

Memory Reference Bit Instructions

Bits 0 through 2 contain the operation code of the instruction to be
performed. Bit 3 indicates whether the memory reference is indirect.
Bit 4 indicates whether the instruction is . referencing the current
page rather than page =zero. Bits 5 through 11 (7 bits) specify an
address. Using these seven bits, 200 octal (128 decimal) locations
can be directly specified; the page bit increases accessible
locations to 400 octal or 256 decimal. A list of the memory reference
instructions and their codes is given at the end of this chapter.

5-24

THE PAL8 ASSEMBLER

In PAL8, a memory reference instruction must be followed by one or
more spaces and tabs, an optional I and/or 2 designation, and any
valid expression.

when the character I appears in a statement between a memory reference
instruction and an operand, the operand, is interpreted as the address
(or location) containing the address of the operand to be used in the
current instruction. Consider:

TAD 40

which is a direct address statement, where 40 is interpreted as the
location on page zero containing the quantity to be added to the
accumulator. References to locations on the current page and page
zero may be done directly. For compatibility with older PDP-8
assemblers, the symbol 2 is also accepted as a way of indicating a
page zero reference, as follows: ’

TAD Z 40

This is an optional notation, not differing in effect from the
previous example. Thus, if location 40 contains 0432, then 0432 is
added to the accumulator when the code is executed. Now consider:

TAD I 40

which is an indirect address statement, where 40 is interpreted as the
address containing the address of the gquantity to be added to the
accumulator. Thus, if location 40 contains 0432, and location 432
contains 0456, then 456 is added to the accumulator when the
instruction is eventually executed.

NOTE

Because the letter I is used to indicate
indirect addressing, it may not be
redefined as a 1label or variable.
Likewise the letter Z, which |is
sometimes used to indicate a page zero
reference, may not be redefined.

5.10.2 Microinstructions

Microinstructions are divided into two classes: operate and
Input/Output Transfer (I0T) microinstructions. Operate
microinstructions are further subdivided into Group 1, Group 2, and
Group 3.

NOTE

1f an illegal combination of
microinstructions is specified, the
assembler will perform an inclusive OR
between them, resulting in an unexpected
operation., For example,

CLL SKP is interpreted as SPA
(7100) (7410) (7510)

THE PAL8 ASSEMBLER

5.10.2.1 Operate Microinstructions - Operate instructions are divided
into three groups of micro instructions. Although it is possible to
combine instructions within a group, it is not logically possible to
combine instructions from different groups. Group 1l microinstructions
perform clear, complement, rotate and increment operations on the
Accumulator and Link registers, and are designated by the presence of
a 0 in bit 3 of the machine instruction word.

1 1 1 0 | CLA] CLL |CMA | CML BSW | IAC

ROTATE AC AND L RIGHT
ROTATE AC AND L LEFT
ROTATE 1 POSITION IF A0, 2 POSITIONS IF A1
{BSW IF BITS 8, 9 ARE 0)

LOGICAL SEQUENCE: 1-CLA, CLL 2-CMA, CML
3-I1AC 4 - RAR, RAL, RTR, RTL, BSW

Group 1 Operate Microinstruction Bit Assignments

The following constants can be produced in the accumulator by a single
instruction:

Constant Instruction

0 CLA

1 CLA IAC

2 CLA CLL CML RTL

3* CLA CLL CML IAC RAL

4* CLA CLL IAC RTL

6* CLA CLL CML IAC RTL
100* CLA IAC BSW
2000 CLA CLL CML RTR
3777 CLA CLL CMA RAR
4000 CLA CLL CML RAR
57717 CLA CLL CMA RTR
6000* CLA CLL CML IAC RTR
7775 CLA CLL CMA RTL
7776 CLA CLL CMA RAL
7777 STA (=CLA CMA)

Instructions that are starred (*) must not be used on software to be
transported onto old (non-omnibus) PDP-8 computers.

Group 2 microinstructions check the contents of the Accumulator and
Link and, based on the <check, continue to or skip the next
instruction. Group 2 microinstructions are identified by the presence
of a1l in bit 3 and a 0 in bit 11 of the machine instruction word.

THE PAL8 ASSEMBLER

1 1 1 1 | CLA| SMA | SZA | SNL OSR|HLT | O

REVERSE SKIP SENSING OF BITS 5, 6, 7 IF SET

LOGICAL SEQUENCE: 1 (BIT 81S0)-SMA OR SZA OR SNL
(BIT 81S 1) - SPA AND SNA AND SZL

2-CLA
3-0SR, HLT

Group 2 Operate Microinstruction Bit Assignments

Group 3 microinstructions reference the MQ register. They are
differentiated from Group 2 instructions by the presence of al in
bits 3 and 11 of the machine instruction word.

0 1 2 3 4 5 6 7 8 9 10 11

OPERATION ceal maoa MaL
. CODEl

)
CONTAINS A1 TO

SPECIFY GROUP 3
CONTAINS A1 TO SPECIFY GROUP 3

Group 3 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined since bit 3
determines either one or the other. Group 2 has two groups of skip
instructions. They can be referred to as the OR group and the AND
group.

OR Group AND Group
SMA SPA
SZA SNA
SNL SZL

The OR group is designated by a 0 in bit 8, and the AND group by a 1
in bit 8. OR and AND group instructions cannot be combined with each
other since bit 8 determines either one or the other.

If skip instructions are combined, it 1is important to note the
conditions under which a skip may occur.

1. OR Group -- If these skips are combined in a statement, the
inclusive OR of the conditions determines the skip. For
example:

SZA SNL

The next statement is skipped if the Accumulator contains
0000 or the link is a 1 or both.

THE PAL8 ASSEMBLER

2, AND Group -- If the skips are combined in a statement, the
logical AND of the conditions determines the skip. For
example:

SNA SZL

The next statement is skipped only if tke accumulator differs
from 0000 and the link is 0.

5.10.2.2 Input/Output Transfer Microinstructions - Input/output
transfer microinstructions initiate operation of peripheral equipment
and effect an information transfer between the central processor and
the input/output device(s).

DEVICE CODE SELECTION
CONTROL BITS

IOT Instruction Bit Assignmerts

5.10.3 Autoindexing

Consecutive address references are often necessary for obtaining data
values when processing 1large amounts of data. Autoindex registers
(locations 10-17 of each memory field) are used for this purpose.
When one of the absolute 1locations from 10 through 17 (octal) is
indirectly addressed, the contents of the location are incremented and
then used as an indirect operand address. This allows consecutive
memory locations to be addressed, using a minimum of instructions. It
must be remembered that initially these locations (10 through 17 on
page 0 of each field) must be set to one less than the first desired
address. No incrementation takes place when locations 10 to 17 are
addressed directly. For example, if the instruction to be executed
next 1is 1in location 300 and the data to be referenced is on the page
starting at location 5000, autoindex register 10 can be used to
address the data as follows:

0276 1377 TAD (4777) /=5000-1

0277 3010 nca 10 /8ET UF AUTO INDEX

0300 1410 TAD I 10 /INCREMENT TO 5000

. . . /BEFDRE USE OF AN INDIRECT
. N ' /ALDRESS

0377 4777 (Literal Ares of Fadge 1)

Note that the Data Field must be set to the field of the data being
referenced, in this case, Field 0.

When the instruction in location 300 is executed, the contents of
location 10 will be incremented to 5000, and the contents of location
5000 will be added to the contents of the accumulator. If the
instruction TAD I 10 is executed again, the contents of location 5001
will be added to the accumulator, and so on.

THE PAL8 ASSEMBLER

5.11 PSEUDO-OPERATORS

Pseudo-operators are used to direct the assembler to perform certain
processing operations or to interpret subsequent coding in a certain
manner. Some pseudo-ops generate storage words in the object program,
other pseudo-ops direct the assembler on how to proceed with the
assembly. The pseudo-ops are defined in the permanent symbol table.

5.11.1 Indirect and Page Zero Addressing

The pseudo-operators I and Z specify the type of addressing to be
performed. These are discussed in Section 5.10.1.

5.11.2 Extended Memory

5.11.2.1 FIELD Pseudo-Operator - The pseudo-op FIELD instructs the
assembler to output a field setting so that it may assemble code into
more than one memory field. This field setting is output during pass
2 in the object binary file and is recognized by the LOAD command
which in turn causes all subsequent information to be loaded into the
field specified by the expression.

Format:

FIELD ff
where:

£ff is an integer, a previously defined symbol, or an
expression whose terms have been defined. The value
must be in the range 0 to 37.

This field setting is output to the binary file during pass 2 along
with a default current location counter setting of 200. These
settings are read by the LOAD command when it is executed to begin
loading information into the new field.

The field setting is never remembered by the assembler except as the
high-order digit of the Location Counter on the listing. A binary
file produced without field settings will be loaded into field 0 when
using the LOAD command.

A symbol in one field may be used to reference the same location in
any other field. The field to which it refers is determined by the
use of the CDF and CIF instructions. CDF and CIF instructions must be
used prior to any instruction referencing a location outside the
current field, as shown in the following example: N

*x200

TAD F301

COF 00

CIF 10

JMS FRINT

CIF 10

JMP NEXT
FP301y 301

FIELD 1

*200

THE PAL8 ASSEMBLER

NEXT» TAD F302
COF 10
JMS FRINT
HLT
P302y 302
PRINTsy O
TLS
TSF
JMF o1
cL.A
RIDF
TAD FCDIF
pecA +1
000
JMP I FRINT
PCOIFy CDF CIF O

When FIELD is used, the assembler follows the new FIELD setting with
an origin at location 200, For this reason, to assemble code at
location 400 in field 1, it would be necessary to write

FIELD1 /CORRECT EXAMFLE
%400

The following is incorrect and will not generate the desired code:

X400 /INCORRECT
FIELD1

Specifying the /0 option to PAL8 inhibits the output of the default
current location counter setting of 200 after a FIELD pseudo-op. This
leaves the current location counter at its previous value.

5.11.2.2 Specifying Data and Instruction Fields - The PDP-8's memory
addresses are specified by the contents of the Memory Reference
Instruction modified by the Data Field and Instruction Field
Registers. Direct addressing, specified by bit 3=0, causes reference
to the address given in bits 5-11 in page 0 of the current field, if
bit 4=0, or to the current page, if bit 4=1., 1Indirect addressing,
specified by bit 3=1, causes reference to the indirect address
contained in the location specified by bits 4-11, used as above. The
indirect address for AND, TAD, ISZ, and DCA refers not to the current
field, but to the field specified in the Data Field Register. The JMP
and JMS instructions refer to locations in the field specified in the
Instruction Field Register.

The Data Field Register and Instruction Field Register can be set
under program control by means of the CIF and CDF instructions. The
CIF instruction causes the Instruction Field Buffer to be set to the
specified field. The CDF instruction causes the Data Field Register
to be changed immediately. Other instructions allow the program to
read, save, and restore the Data Field and Instruction Field
Registers. Completion of execution of a JMP or JMS instruction causes
the 1Instruction Field Register to be set to the contents of the
Instruction Field Buffer. This procedure permits a program to choose
a new field, then execute a jump from the current field to a chosen
address in the new field.

5-30

THE PAL8 ASSEMBLER

The CDF and CIF instructions let you specify fields 0 to 37 as data
and instruction fields. Entering the argument requires knowledge of
the bit arrangement of these two instructions.

Mnemonic I0T Bit Arrangement
CDF 6201 110 0la cdeb01
CIF 6202 110 0la cdebl0

Bits a cde b indicate the data or instruction field. (The positioning
of the bits is eccentric as to maintain compatibility with older PDP-8
systems.)

To specify a field from 0 to 7, use bits ¢, d, and e only. The format
of the instructions are:

CDF nO
CIF nO
where:
n0 is an octal number that PAL8 ORs with the instruction
code
n is an octal digit from 0 to 7 (bits cde)

For example, this instruction
CDF 60

specifies field 6 by causing PAL8 to do the following OR.

a cde b
Instruction code 6201 110 010 000 001
Argument 60 000 000 110 000

6261 110 010 110 001

Keep in mind that to call for fields above field 7 (above 32K) with
CDF and CIF, you must first load the KT8A Extended Mode Register with
the LXM instruction (see the KT8A Memory Management Control User's
Guide). For example, the following code deposits 7777 in field 12,
location 1000.

LXM

CDF 24

TAD (7777
DCA I (1000

KT8A users must also ensure that their programs and device handlers do
not contain the following combination of instruction steps.

CIF /Change instruction field
I0T /Any PDP8 IOT instruction
JMP 1 /The instruction that does the CIF

If you enable the KT8A and turn on the interrupts, the KT8A hardware
will return to the wrong place on traps between the CIF and JMP I
instructions.

5-31

THE PAL8 ASSEMBLER

To specify a field from 10 to 17, use bits cde and set bit b. The
format of the instructions are:

CDF n4
CIF n4
where:
n4 is an octal number that PAL8 ORs with the instruction
code
n is an octal value from 0 to 7 (bits cde)
4 is an octal value indicating a field range of 10 to 17

(sets bit b)
For example, this instruction
CDF 64
indicates field 16.

To specify a field from 20 to 27, use bits cde and set bit a. The
formats are:

CDF 1n0
CIF 1n0
where:
1no0 is an octal number that PAL8 ORs with the instruction
1 i? an octal value indicating field range 20 to 27 (sets
n is a value from 0 to 7 (bits CDE)

For example, this instruction
CDF 160
indicates field 26.

To specify a field from 30 to 37, use bits CDE and set bit A and B.
The formats are:

CDF 1n4
CIF 1ln4
where:
1n4 is an octal number that PALB ORs with the instruction
1...4 are octal values indicating a field range of 30 to 37
(set bits A and B)
n is an octal digit in the range 0 to 7 (bits CDE)

5-32

THE PAL8 ASSEMBLER

For example, this instruction
CDF 164
specifies field 36

One way to avoid confusion with this unusual bit configuration 1is to
define high fields with convenient mnemonics. For example:

F36=164
CDF F36

5.11.3 Resetting the Location Counter

The PAGE n pseudo-op resets the location counter to the first address
of page n, where n 1is an integer, a defined symbol, or a symbolic
expression whose terms have been defined previously and whose value is
from 0 to 37 inclusive. If n is not specified, the location counter
is reset to the beginning of the next page of memory. For example,

PAGE 2 sets the location counter to 00400
PAGE 6 sets the location counter to 01400

If the pseudo-op is used without an argument and the current location
counter is at the first location of a page, the current location
counter will not be reset. In the following example, the code TAD B
is assembled into location 00400:

x377
JMF‘ * "'3
FAGE
TAD B

If several consecutive PAGE pseudo-ops are given, the first will cause
the current location counter to be reset as specified. The rest of
the PAGE pseudo-ops will be ignored.

5.11.4 Reserving Memory
ZBLOCK instructs the assembler to reserve n words of memory containing
zeros, starting at the address indicated by the current location
counter. It is of the form

ZBLOCK n
For example,

ZBLOCK 40
causes the assembler to reserve 40 (octal) words and store zeros in

them. The n may be an expression. If n=0, no locations are reserved.
A ZBLOCK statement may have a label.

THE PAL8 ASSEMBLER

5.11.5 Relocation Pseudo-Operator

It is sometimes desirable to assemble code at a given location and
then move it at run time to another location for execution. This may
result in errors unless the relocated code is assembled in such a way
that the assembler assigns symbols their execution-time addresses
rather than their load-time addresses. The RELOC pseudo-op
establishes a virtual location counter without altering the actual
location counter. The line

RELOC eXxpr

sets the virtual location counter to expr. The line
RELOC

resets the virtual 1location counter back to the actual 1location
counter value and terminates the relocation section.

For example, the following program causes the assembler to 1load the
word at CODE into location 204, but assembles it as if it were loaded
into 1371. The asterisks after the location values indicate that the
virtual and the actual location counters differ for that line of code.
Only the virtual location counter is listed. Do not use current page
literals in code that is affected by a RELOC.

0200 %200
000200 1205 TADI' CHAR
000201 7402 HLT

1367 RELOC 1367
001367% 1371 TAD CODE
001370% 7402 HLT
001371% 0000 CODE» 0

0205 RELOC
0002035 0000 CHAR>» 0

5.11.6 Suppressing the Listing

The portions of the source program enclosed by XLIST pseudo-ops will
not appear in the listing file; the assembled binary will be output,
however.

Two XLIST pseudo-ops may be used to enclose the code to be suppressed
in which case the first XLIST with no argument will suppress the
listing, and the second will allow it again. XLIST may also be used
with an expression as an argument. The listing will be inhibited if
the expression is not equal to zero, or allowed if the expression is
equal to zero. XLIST pseudo-ops never appear in the assembly listing.

5.11.7 Controlling Page Format

The EJECT pseudo-op causes the listing to skip to the top of the next
page. A page eject is done automatically every 55 lines; EJECT is
useful if more frequent paging is desired. If this pseudo-op is
followed by a string of characters, the first 40 (decimal) characters
of that string will be used as a new title at the top of each page of
the listing.

THE PAL8 ASSEMBLER

5.11.8 Altering the Permanent Symbol Table

If your DECsystem includes one or more optional devices that you want
to program directly whose instruction sets are not defined in the
permanent symbol table, then you would have to alter the symbol table
to include the IOT instructions for these devices.

In another situation, programmed-defined symbols might reguire more
space than is available in the symbol table. Again, the symbol table
- would have to be altered by removing all definitions not needed in the
program being assembled. PAL8 has three pseudo-ops that can be used
to alter the permanent symbol table. These pseudo-ops are recognized
by the assembler only during pass 1. During either pass 2 or pass 3,
the assembler ignores them, and they have no effect.

EXPUNGE deletes the entire permanent symbol table except pseudo-ops.

FIXTAB appends all currently defined symbols to the permanent symbol
table. All symbols defined before the occurrence of FIXTAB are made
part of the permanent symbol table for the current assembly.

To append the following instructions to the symbol table, you have to
generate an ASCII file called SYM.PA. This file contains the
following:

CLSK=6131 /SKIF ON CLOCK INTERRUFT
FIXTAR /S0 THAT THIS WON‘T EBE
/PRINTED IN THE SYMBOL TAELE

The ASCII file is then entered in the PAL8 input designation. By
placing the definitions at the beginning of the source file, you can
avoid loading an extra file. Each time the assembler is 1loaded, the
PAL8's initial permanent symbol table is restored.

The third pseudo-op used to alter the permanent symbol table in PALS
is FIXMRI. FIXMRI defines a memory reference instruction and is of
the form:

FIXMRI name=value

The letters FIXMRI must be followed by one space, the symbol for the
instruction to be defined, an equal sign, and the value of the symbol,
The symbol will be defined and stored in the symbol table as a memory
reference instruction. The pseudo-op must be repeated for each memory
reference instruction to be defined. For example,

EXPUNGE

FIXMRI TAL=1000
FIXMRI LCA=3000
CLA=7200

FIXTAR

When the preceding program segment is read by the assembler during
pass 1, all symbol definitions are deleted, and the three symbols
listed are added to the permanent symbol table. Notice that CLA is
not a memory reference instruction. This process can be performed to
alter the assembler's symbol table so that it contains only the
symbols used at a given installation or by a given program.

THE PAL8 ASSEMBLER

5.11.9 Conditional Assembly Pseudo-Operators
The IFDEF pseudo-op takes the form

IFDEF symbol <source code>
If the symbol indicated is previously defined, the code <contained in
the angle brackets is assembled; if the symbol is undéfined, this
code is ignored. Any number of statements or lines of code may be

contained in the angle brackets. The format of the IFDEF statement
requires a single space before and after the symbol

Example:

IFDEF A <TAD A
DCA B>

The IFNDEF pseudo-op is similar in form to IFDEF and is expressed as:
IFNDEF symbol <source code>
If the symbol indicated has not been previously defined, the source
code in angle brackets is assembled. If the symbol is defined, the
code in the angle brackets is ignored.
The IFZERO pseudo-op is of the form
IFZERO expression <source code>
If the evaluated expression is equal to =zero, the code within the
angle brackets 1is assembled; if the expression is nonzero, the code
is ignored. Any number of statements or lines of code may be
contained in the angle brackets. The expression may not contain any
embedded spaces and must have a single space preceding and following
it.
IFNZRO is similar in form to the IFZERO pseudo-op and is expressed as
IFNZRO expression <source code>
If the evaluated expression is not equal to =zero, the source code
within the angle brackets is assembled; if the expression is equal to
zero, this code is ignored.
Pseudo-ops can be nested. For example,

IFDEF SYM <IFNZRO X2<...>>

The evaluation and subsequent inclusion or deletion of statements are
done by evaluating the outermost pseudo-op first.

Conditional code that is not assembled can be deleted from the listing
output by the /J option.

5.11.10 Radix Control

Numbers used in a source program are initially considered to be octal
numbers. However, the program may change the radix interpretation by
the use of the pseudo-operators DECIMAL and OCTAL. The DECIMAL
pseudo-op interprets all following numbers as decimal until the
occurrence of the pseudo-op OCTAL. The OCTAL pseudo-op resets the
radix to octal.

5-36

THE PAL8 ASSEMBLER

5.11.11 Entering Text Strings

The TEXT pseudo-op allows a string of text characters to be entered as
data -and stored in 6-bit ASCII. The format reqguired is the pseudo-op
TEXT followed by one or more spaces or tabs, a delimiting character
(must be a printing character), the string of text, and the same
delimiting character. If the number of characters in a specified
string is odd, the last word will contain zero in its right half. If
the number of characters is even, a final word of =zero will be
appended. Either way, a final 6-bit character of zeros is generated
providing a convenient "end-of-string" indication. Note that the /F
option prevents the extra word of zero when the number of characters
is even. Note also that six bits are sufficient to encode only the
printing characters. For example: '

TAGy TEXT"123%"
The string would be stored as

6162
6352
0000

The /F option inhibits the generation of the extra 6-bit =zero word.
Alternatively, the statement "*.-1" may be used to eliminate the extra
zero word (when the number of characters is even).

5.11.12 End-of-File Signal

PAUSE signals the assembler to stop processing the file being read.
The current pass is not terminated, and processing continues with the
next file. The PAUSE pseudo-op is present only for compatibility with
paper tape assemblers, and its use is not recommended.

5.11.13 Use of DEVICE and FILENAME Pseudo~Operators

The pseudo-operators DEVICE and FILENAME may be used by calls to the
User Service Routine (see Appendix C), or may be used for other
purposes. They store 6-bit ASCII strings at the current location.
The form for these pseudo-ops is

DEVICE name
FILENAME name.extension

The name used with DEVICE can be from 1 to 4 alphanumeric characters.
These are trimmed to 6-bit ASCII and packed into two words, filled-in
with zeros on the right if necessary. With FILENAME (FILENA is also
acceptable), the name (or name.extension) may be from 1 to 6
alphanumeric characters and the optional extension may be l or 2
characters. The characters are trimmed to 6-bit ASCII and packed two
to a word. Three words are allocated for the file name, filled with
zeros on the right if fewer than 6 characters are specified, followed
by one word for the extension. The example

Ly FILENAME ARC.DA

5-~37

THE PAL8 ASSEMBLER

is equivalent to the following coding:

L» 0102
0300
0000
0401

The symbols DEVICE and FILENAME may not be used as labels since they
are predefined pseudo-ops.

5.12 LINK GENERATION AND STORAGE

In addition to handling symbolic addressing on the current page of
memory, PAL8 automatically generates "links" for off-page references.
If a direct memory reference is made to an address not on the page
where an instruction is located or on page 0, the assembler sets the
indirect bit (bit 3), and an indirect address literal (a "link") will
be stored on the current memory page. If the specified reference is
already an indirect one, the error diagnostic II (Illegal 1Indirect)
will be generated. In the following example,

x2117
Ay CLA

*

%2600
JMF A

the assembler will recognize that the register labeled A is not on the
current page and will generate a link to it as follows:

1. In location 2600 the assembler will place the word 5777
(equivalent to JMP I 2777).

2. In address 2777 (the last available location on the current
page), the assembler will place the word 2117 (the actual
address of A).

In the listing, the octal code for the instruction will be followed by
a single quote (') to indicate that a link was generated.

Although the assembler will recognize and generate an indirect address
linkage when necessary, the program may indicate an explicit indirect
address by the pseudo-op I, for example:

x2117
Ay CLA

+

*

%2600
JMPOT (A)

5-38

THE PAL8 ASSEMBLER

The assembler cannot generate a link for an instruction that is
already specified as being an indirect reference, since the computer
supports no such instruction format. For the example shown below, the
assembler will print the error message II (Illegal Indirect).

x2117
Ay CLA

.

*2600
JMF I A

NOTE

The option /E makes 1link generation a
condition that produces the LG (Link
Generated) error message.

The above coding will fail because A is not defined on the page where
JMP I A is attempted, and the indirect bit is already set.

Literals and links are stored on each page starting at page address
177 (relative) and extending toward page address 0 (relative).
Whenever the origin is then set to another page, the literal area for
the current page is output. There is room for 160 (octal) literals
and links on page zero and 100 (octal) literals on each other page of
memory. Literals and links are stored only as far down as the highest
instruction on the page. Further attempts to define literals will
result in a PE (Page Exceeded) or 2ZE (page Zero Exceeded) error
message.

5.13 TERMINATING ASSEMBLY

PAL8 will terminate assembly and return to the monitor under any of
the following conditions:

1. Normal exit: The end of the source program was reached on
pass 2 (or pass 3 if a listing is being generated).

2. Fatal error: One of the following error conditions was found
and flagged (Section 5.14):

BE DE DF PH SE

3. CTRL/C: 1If typed, control returns to the monitor. Any
partial output files are deleted.

5.14 DIAGNOSTIC ERROR MESSAGES

PAL8 will detect and flag error conditions and display error messages
both on the console terminal and in the program listing. The format
of the error message is:

code address

THE PAL8 ASSEMBLER

where:
code is a 2~-letter code that specifies the type of error. -
address is either the absolute octal address where the error

occurred or the address of the error relative to the
last label (if there was one) on the current page.

For example, the instruction sequence:

REG» TAD LEBL
ATAD LBL

would produce the error message

IC BEG+0001
since % is an illegal character because of its placement.
In the listing, error messages are output as 2-character messages on
the 1line just prior to the line in which the error occurred. Table
5-3 lists the PAL8 error codes. Fatal errors cause PAL8 to terminate

the assembly immediately (deleting any output files produced so far)
and return to the monitor.

Table 5-3
PAL8 Diagnostic Error Codes

Error Code Meaning

BE A PAL8 internal table has overflowed. This situation
can usually be corrected by decreasing the level of
literal nesting or the number of current page
literals used prior to this point on the page. Fatal
error: assembly cannot continue.

CF Chain to CREF error. CREF.SV was not found on SY¥S.
DE Device error. An error was detected when ¢trying to
read or write a device. Fatal error: assembly

cannot continue.
DF Device full. Fatal error: assembly cannot continue.

IC Illegal character. The character is ignored and the
assembly is continued.

ID Illegal redefinition of a symbol. An attempt was
made to give a previous symbol a new value by means
other than the equal sign. The symbol is not
redefined.

I1E Illegal equals. An attempt was made to equate a
variable to an expression containing an undefined
term. The variable remains undefined.

II Illegal indirect. An off-page reference was made; a
link could not be generated because the indirect bit
was already specified.

(continued on next page)

THE PAL8 ASSEMBLER

Table 5-3 (Cont.)
PAL8 Diagnostic Error Codes

Error Code Meaning

IP Illegal pseudo-op. A pseudo-op was used in the wrong
context or with incorrect syntax.

17 Illegal page zero reference. The pseudo-op 7 was
found in an instruction which did not refer to page
zero., The Z is ignored.

LD The /L or /G options have been specified but the
Absolute Loader system program is not present.

LG Link generated. This code is displayed only if the
/E option was specified to PALS.

PE Current nonzero page exceeded. An attempt was made
to

1. Override a literal with an instruction.
2. Override an instruction with a literal.

3. Use more literals than the assembler allows on
that page.

This can be corrected by decreasing either the number
of literals on the page or the number of instructions
on the page.

PH A conditional assembly bracket is still in effect at
the end of the input stream. This is caused by
nonmatching < and > characters in the source file.

RD Redefinition. A permanent symbol has been defined
with =. The new and old definitions do not match.
The redefinition is allowed.

SE Symbol table exceeded. Too many symbols have been
defined for the amount of memory available. Fatal
error: assembly cannot continue.

uo Undefined origin. An undefined symbol has occurred
in an origin statement.

Us Undefined symbol. A symbol has been processed during
pass 2 that was not defined before the end of pass 1.

ZE Page 0 exceeded. This is the same as PE except
occurs in page 0.

5.15 PAL8S8 PERMANENT SYMBOL TABLE

The following mnemonics represent the central processor's instruction
set found in the permanent symbol table within the PALS8 Assembler.
For additional information on these instructions, refer to the
DECstation 78 User's Guide.

5-41

THE PAL8 ASSEMBLER

Mnemonic Code Operation

Memory Reference Instructions

AND 0000 Logical AND

TAD 1000 Two's complement add

ISz 2000 Increment and skip if zero
DCA 3000 Deposit and clear AC

JMS 4000 Jump to subroutine

JMP 5000 Jump

I0T 6000 In/Out transfer

OPR 7000 Operate

Group 1 Operate Microinstructions

NOP 7000 No operation

IAC 7001 Increment AC

BSW 7002 Byte swap

RAL 7004 Rotate AC and Link left one
RTL 7006 Rotate AC and Link left two
RAR 7010 Rotate AC and Link right one
RTR 7012 Rotate AC and Link right two
CML 7020 Complement the link

CMA 7040 Complement the AC

CLL 7100 Clear Link

CLA 7200 Clear AC

Group 2 Operate Microinstructions (1 cycle)

HLT 7402 Halts the computer

SKP 7410 Skip unconditionally

SNL 7420 Skip on nonzero Link

SZL 7430 Skip on zero Link

SZA 7440 Skip on zero AC

SNA 7450 Skip on nonzero AC

SMA 7500 Skip on minus AC

SPA 7510 Skip on positive AC (zero is positive)

Group 3 Operate Microinstructions

MQL 7421 Load MQ, clear AC
MQA 7501 MQ OR into AC
SWP 7521 Swap AC and MQ

Combined Operate Microinstructions

CIA 7041 Complement and increment AC

STL 7120 Set Link to 1

GLK 7204 Get Link (put Link in AC, bit 11)
STA 7240 SET AC to -1 (7777)

Internal IOT Microinstructions

SKON 6000 Skip with interrupts on and turn them off
ION 6001 Turn interrupt facility on

IOF 6002 Turn interrupt facility off

GTF 6004 Get flags

RTF 6005 Restore flag, ION

CAF 6007 Clear all flags

5-42

THE PAL8 ASSEMBLER

Memory Extension IOT Instructions

CDF 62nl Change to Data Field n (n=00 to 07)
62n5 Change to Data Field n (n=10 to 17)
63nl Change to Data Field n (n=20 to 27)
63n5 Change to Data Field n (n=30 to 37)
CIF * 62n2 Change to Instruction Field n (n=00 to
07)
62n6 Change to Instruction Field n (n=10 to
17)
62n2 Change to Instruction Field n (n=20 to
27)
63n6 Change to Instruction Field n (n=30 to
37)
CDI 62n3 Change to Data and Instruction Fields n
(n=00 to 07)
62n7 Change to Data and Instruction Fields n
(n=10 to 17)
63n3 Change to Data and Instruction Fields n
(n=20 to 27)
63n7 Change to Data and Instruction Fields n
) (n=30 to 37)
CDF CIF 62n3 Combine CDF and CIF

Bit assignments for n are as follows.

Field Number (0-37) = abcde

bit 0 bit 11
CDF { 110 O0la | cde | b0l
CDF CIF (110 , 0Ola | cde | bll
RDF 6214 Read (OR) the Data Field into bits 6-8
of AC
RIF 6224 Read (OR) the Instruction Field into
bits 6-8 of AC
RSB 6234 Read Instruction Save Field into bits
7-8 and Data Save Field into bits 10-11
of AC
RMF 6244 Restore memory fields to state prior to

last interrupt by loading the Data Save
Field into DF register and the
Instruction Save Field into the 1IB
register and inhibiting interrupts. At
the next JMP or JMS, IB is loaded into
the IF register and the interrupt
inhibit is removed.

* Executed at next JMP or JMS instruction.

THE ,PAL8 ASSEMBLER

Keyboard (1 cycle)

KCF 6030 Clear keyboard flag

KSF 6031 Skip on keyboard flag

KCC 6032 Clear keyboard flag and AC

KRS 6034 OR keyboard buffer into AC

KIE 6035 Set/clear interrupt enable

KRB 6036 Clear AC, read keyboard buffer

Clear keyboard flag

Terminal (1 cycle)

TSF 6041 Skip on terminal flag

TCF 6042 Clear terminal flag

TSK 6045 Skip on keyboard or terminal flag

TLS 6046 Load terminal, display character, and

clear terminal flag

5-44

CHAPTER 7

FORTRAN 1V

7.1 OVERVIEW

The FORTRAN (or FORmula TRANSlator) programming language enables you
to express mathematical operations in a form similar to standard
mathematical notation as well as perform a variety of such
applications as process control, information retrieval, and commercial
data processing.

This chapter describes the components of the FORTRAN system--the
Compiler, Loader, Run-Time System, and Library--and the elements of
the language.

0S/78 FORTRAN IV conforms generally to the specifications for American
National Standard FORTRAN. Several enhancements have been added, and
these are described in Section 7.2.

To create and run a FORTRAN program, use the following procedure.

1. Write the program in source code, using the statements and
other features of the FORTRAN language as they are described
in this chapter. Divide the program into logical wunits--one
for the main program and one for each subroutine you need.
Use the 0S/78 Editor to create a file for each program unit.

2. Use the COMPILE command to compile and assemble the FORTRAN
source program. The Compiler (which chains automatically to
the assembler) accepts one program unit--a main program or a
subroutine--and produces one module of relocatable code;
that is, assembled code which has not yet been assigned
permanent addresses in memory. The Compiler also produces an
optional listing file. (For complete details on the FORTRAN
Compiler, see Section 7.1.1.) ’

3. Use the LOAD command to link the program units and assign
permanent memory locations to the complete program. The
FORTRAN Loader accepts up to 128 modules of relocatable code.
It links subroutines to the main program, assigns permanent
addresses, and produces a loader-image file, which contains
the complete program in 1linked and relocated form. 1In
addition, it determines if the program requires any functions
from the FORTRAN library and copies them in relocated form
into the loader-image file. The Loader also produces an
optional 1loader symbol map, showing the areas in memory that
the program will use. (For details on the Loader, see
Section 7.1.2.)

7-1

FORTRAN 1V

4. Load the program into memory and run it with the EXECUTE
command. The EXECUTE command summons the Run-Time System,
which accepts a loader-image file, places it in memory,
determines the I/O requirements of the program, and starts
execution. (For details on the Run-Time System, see Section
7.1.3.)

The Compiler and Loader provide options that enable you to compile,
load, and run a program with a single command. In addition, the
EXECUTE command accepts source code or relocatable code, performs the
necessary operations, and causes execution.

For example, assume you have written a short program called POWER that
you want to enter as a file on your system device and run. To enter
the file, summon the Editor with the CREATE command, naming the file
in the command 1line and adding the extension FT, the standard 0S/78
extension for a file containing a FORTRAN source program.

.CREATE FOWER.FT

As soon as the Editor displays its prompt (#) to indicate that it is
ready to receive your first instruction, type I (to put the Editor
into text mode) and a carriage return and enter the program.

+1

c FORTRAN DEMONSTRATION

c COMPUTE AND FRINT FOWERS OF TWO
DIMENSION A(16)
WRITE(4,13)

15 FORMAT(iH »FOWER OF TWO’)
D0 20 N=1s16é
A(N) =2 XXN

20 CONTINUE
WRITE (4s25) (NsA(N)sN=1y14)

25 FORMATC(1IH »“2%X “+sI12y/=/3F10.1)
STOP
END

Now type CTRL/L to put the Editor in command mode and issue the EXIT
instruction. The Editor will write file POWER.FT on your system
device and return control to the monitor.

To compile and assemble the source program, use the COMPILE command,
entering POWER.FT as the input file. If you wish to generate an
annotated listing file and send it to the lineprinter, enter LPT: as
the second output specification.

LCOMPILE POWERyLFT$<POWERS.FT

The Compiler will send the binary file to SYS: (which it wuses as a
default devicey, adding an RL extension to indicate that the file
contains relocatable FORTRAN code, and produce the following annotated
listing on the lineprinter.

C FORTRAN DEMONSTRATION
, C COMPUTE AND PRINT FOWERS OF TWO
8883 DIMENSION A(16)
WRITE (4r15)
0004 15 FORMAT (1H » ‘FOWER OF TWD’)
0005 [0 20 N=1s16
838? ACN)Y =2, KXN
20 CONTINUE
0010 WRITE (4r25) (NsACN) rN=1716)
0011l a5 FORMAT (1H »/2KK ‘9125 /=7 9F10,1)
oo
END

7-2

FORTRAN IV

To create a loader-image file--containing the program in absolute
binary form and a copy of the exponentiation library function--use the
LOAD command, specifying the RL file as input. To send a
loader-symbol map--showing the areas of memory the program uses--to
the lineprinter, enter LPT: as the second output specification.

LLOAD FOWERsLFT$<FOWER.RL

The Load command creates a loader-image file (adding the LD extension)
on SYS and the following map.

LOALER V24A 17-AFR-79
SYMROL VALUE LVL OVLY
ARGERR 00204 0 00
EXIT 00223 0 00

£MAIN 10000 0 00
11000 = 18T FREE LOCATION

LVL OVLY LENGTH
0 00 10601

The optional loader symbol map lists all symbols defined in the loader
image file. The LVL and OVLY entries apply only to 0S/8, a superset
of 0S/78 FORTRAN.

Following the alphabetical list of symbols, the loader prints the
address of the first free memory location and the length, in octal
words. This information is useful for optimizing memory requirements.

To execute this program, call the Run-Time System with the EXECUTE
command, specifying POWER.LD for input.

LEXECUTE FOWER.LD
The program output will appear on the terminal screen.

FOWER OF TWO

2%k 1= 2.0
2%k 2= 4.0
2%kx 3= 8.0
2%% 4= 16.0
2%%x 0= 32.0
2%% 6= 44.0
2%x 7= 128.0
2%k 8= 256.0
2%%x 9= 512.0
2%% 10= 1024.0
2%% 11i= 2048.0
2%% 12= 4096.0
2%k 13= 8192.0
2%X 14= 16384.0
2%k 15= 327468.0
2%X 1é6= 6553640

7-3

FORTRAN 1V

FORTRAN programs are usually saved as loader-image files and then run
with the EXECUTE command. To produce a loader-image file with a
single command--that is, to instruct the Compiler/Assembler to chain
automatically to the Loader--use the Compiler /L option.

COMFILE FOWER.FT/L.

The FORTRAN system consists of the following components: the Compiler
(plus Assembler), the Loader, the Run-Time system, and the FORTRAN
library of functions. These components are described fully in
Sections 7.1.1 through 7.1.4.

7.1.1 The COMPILER

The 0S/78 FORTRAN IV Compiler/Assembler accepts one FORTRAN source
language program or subroutine as input, examines each FORTRAN
statement for validity, and produces a list of error messages plus a
relocatable assembly-language version of the source program, along
with an optional annotated source listing, as output.

If your program contains one or more subroutines, compile and assemble
the main program and each subroutine separately, then use the Loader
to link them together.

The FORTRAN Compiler terminates a compilation by chaining
automatically to the Assembler.

To summon the FORTRAN compiler, use the COMPILE command. The Compiler
accepts 1 to 3 output file specifications and 1 to 9 files for input,
along with several run-time options. If you omit the device name, the
Compiler assumes SYS. If you omit the extensions on the output
filenames, the Compiler adds .RL and .LS to the binary file and the
listing.

The format is

COMPILE out:file.RL,out:file.LS,out:file.MP<in:fi1el.FT...,file9.F

where:
file.RL is the relocatable binary code
file.LS is an optional listing file
file.MP is an optional loader symbol map (to obtain it,

you must chain to the Loader with the /L option)

filel.FT...9 is a single program unit--a main program or a
subroutine--written as 1 to 9 files

The Compiler assigns an internal statement number (ISN) to each
FORTRAN IV statement sequentially, in octal notation, starting with
ISN 2 at the first FORTRAN statement. When the Compiler encounters an
error during compilation, it prints a 2-character error code, followed
by the ISN of the offending statement, on the terminal. An extended
error message 1is printed below every erroneous statement in the
annotated listing. Certain errors causes the Compiler to return
immediately to the monitor, thereby preventing the output of a listing
file.

FORTRAN 1V

7.1.1.1 Compiler Options - Compiler options are described in Table
7-1. If you chain automatically to the Loader (with the /L option)
you can also add Loader options to the command line.

Table 7-1
FORTRAN IV Compiler Run-Time Options

Option Operation

/G Chain to the loader when assembly is complete and
chain to the run-time system following creation of a
loader image file (equivalent to the EXECUTE command)
(see Section 7.1.3).

/L Chain to the loader when assembly is complete to
create a loader-image file. If the /L option is not
specified, the system will return to the monitor upon
completion.

/N suppress compilation of ISNs. This option reduces
program memory requirements by two words per
executable statement; however, it also prevents full
error traceback at run time.

/Q Optimize cross—statement subscripting during
compilation. This option should not be requested
when any variable that appears in a subscript is
modified either by referencing a variable equivalent
to it or via a SUBROUTINE or FUNCTION call (whether
as an argument or through COMMON).

7.1.1.2 Compiler Error Messages - During pass 2, the Compiler
displays error messages On the terminal as a 2-character message
followed by the ISN of the erroneous statement. To suppress the
messages, type CTRL/O at the terminal. If you request a listing, it
will contain an extended error message following the erroneous
statement. Except as noted, errors located by the Compiler do not
halt processing. Error messages are described in Table 7-2.

Table 7-2
. Compiler Error Messages
Error
Code Meaning
AA More than six subroutine arguments are arrays.
AS Bad ASSIGN statement.
BD Bad dimensions (too big or syntax) in DIMENSION,
COMMON or type declaration.
BS Illegal in BLOCK DATA Program.
CL Bad COMPLEX literal.
Co Syntax error in COMMON statement.
DA Bad syntax in DATA statement.
DE This type of statement illegal as end of DO 1loop
(that is, GO TO, another DO).

(continued on next page)

FORTRAN IV

Table 7-2 (Cont.)
Compiler Error Messages

Error

Code Meaning

DF Bad DEFINE FILE statement.

DH Hollerith field error in DATA statement.

DL DATA list and variable list are not same length.

DN DO-end missing or incorrectly nested. This message
is not printed during pass 3, if it is followed by
the statement number of the erroneous statement,
rather than the ISN.

DO Syntax error in DO or implied DO.

DP DO loop parameter not integer or real.

EX Syntax error in EXTERNAL statement.

GT Syntax error in GO TO statement.

GV Assigned or computed GO TO variable must be integer
or real.

HO Hollerith field error.

IE Error reading input file. Control returns to the
monitor.

IF Logical IF statement cannot be used with DO, DATA,
INTEGER, etc.

LI Argument of logical IF is not type Logical.

LT Input line too long, too many continuations.

MK Misspelled keyword.

ML Multiply defined line number.

MM Mismatched parenthesis.

MO Expected operand is missing.

MT Mixed variable types (other than integer and real).

OF Error writing output file. Control returns to the
monitor.

OP Illegal operator.

oT Type / operator use illegal (for example, A.AND.B
where A and/or B not typed Logical).

PD Compiler stack overflow; statement too big and/or
too many nested loops.

PH Bad program header line.

QL Nesting error in EQUIVALENCE statement.

QS Syntax error in EQUIVALENCE statement.

RD Attempt to redefine the dimensions of a variable.

RT Attempt to redefine the type of a variable.

RW Syntax error in READ/WRITE statement.

SF Bad arithmetic statement function.

SN Illegal subroutine name in CALL.

ss Error in subscript expression, that is, wrong number,
syntax. ‘

ST Compiler symbol table full, program too big. Causes
an immediate return to the monitor.

[2)'4 System error, that is, PASS20.SV or PASS2.SV missing,
or no room on system for output file. Causes an
immediate return to the monitor.

TD Bad syntax in type declaration statement.

us Undefined statement number. This message is not
printed during pass 3. It is followed by the
statement number of the erroneous statement, rather
than the ISN.

VE Version error. One of the compiler programs is

absent from SYS or is present in the wrong version.

7-6

FORTRAN IV

7.1.2 The LOADER

The FORTRAN IV Loader accepts up to 128 relocatable binary modules as
input. It links all modules, including any routines from the FORTRAN
library that the program may require, to form a loader-image file of
the complete program-—that is, an image of the binary code with
absolute addresses assigned. This loader-image file can be passed
directly to the Run-time system, which loads it into memory and
executes it.

In addition to the loader-image file, the Loader generates an optional
symbol map, which shows the areas the program occupies in memory.

You can call the Loader automatically by adding the /L option to the
COMPILE command line.

The format of the Load command is

LOAD out:file.LD,out:map.LS<in:filel.RL...,file9.RL

where:
file.LD is a loader image file
map.LS is an optional symbol map

filel...,9.RL are relocatable binary modules

0S/78 permits a maximum of nine input files in a command line. If you
wish to specify more than nine relocatable modules for input, use the
Loader /C (continue) option. This option enables you to add
additional file names on the following line.

7.1.2.1 Specifying I/0O Devices - The LOAD /G option causes the Loader
to chain directly to the FORTRAN Run-Time System. If you use the /G
option and terminate the LOAD command with the RETURN key, execution
begins immediately. If you use the /G option and terminate the
command with the ESCAPE key, the system calls a special program called
the Command Decoder (described in Appendix D). The Command Decoder
prints an asterisk (*) to indicate that it is ready to accept your
special device and file I/0 specifications. This feature makes it
possible for you to change the devices used in a FORTRAN program,
making the program device-independent.

For example, if the POWER.FT program were written with 3 as the output
unit designation, that is,

WRITE (3,15)
the output generated by program execution would be sent to the line
printer. However, if your system does not have a line printer
available, you could change the output unit designation by typing

,LOAD POWER.LD<FOWER.RL/G (B

FORTRAN 1V

Press the ESCape key (which echoes as a dollar sign) to call up the
Command Decoder, which prompts with an asterisk. Then type /3=4 which
assigns I/0 unit 3 to the console terminal instead of the 1line
printer. Pressing the ESCape key again executes the program and
program output is sent to the terminal. The command line will appear
as follows:

JLOAD FOWER,.LIPOWER RL/ZG (B %/ 34

The Command Decoder program also allows you to store the output of an
executed program in a file that has not been created at load time.

For example,
.LOAD POWER.LD<POWER.RL/G (isc) *RXAl:HOLD.TM</4

will output the results of the program into a file called HOLD.TM on
RXAl. Typing

.TYPE RXA1l:HOLD.TM

will display the contents of this file, that is, the results of the
program POWER.FT on the terminal screen.

For further information on I/O specifications at run-time, see the
FORTRAN compiler.

7.1.2.2 Running Subprograms - The LOAD command is especially useful
to 1link subprograms. Consider the program shown in Figure 7-1, which
computes the volume of a reqular polyhedron when given the number of
faces and the length of one edge. It consists of a main program and a
subroutine. The subprogram does the required computation, using a
computed GO TO statement to determine whether the polyhedron is a
tetrahedron, cube, octahedron, dodecahedron, or icosahedron, then
transfers control to the proper arithmetic expression for performing
the calculation.

MAIN FROGRAM:

c COMPUTE THE VOLUME OF A REGULAR FOLYHEDIRON GIVEN
C THE NUMEER OF FACES AND LENGTH OF ONE ELDNGE
COMMON NFACESyEDGE
WRITE(C(4y10)
0 FORMATC(IH »/TYFE IN NO.OF FACES AND ONE LENGTH EDRGE’)
READC(4+20) NFACESsEDGE
20 FORMAT(I2F8.5)
CALL SOLVE
GO TO &
STOF
END

=

Figure 7-1 Main Program and Subprogram for Calculating the Volume
of a Regular Polyhedron

7-8

FORTRAN IV

SUBFROGRAM SOLVE!

c SURROUTINE TO SOLVE FPROEBLEM AND FRINT ANSWER
c CALLED SOLVE.FT
SURROUTINE SOLVE
COMMON NFACESyEDGE » VOLUME
IF(NFACES.GT.20)60T0 8
CUREDL=EDGEXX3
GO0 T0(6y6!6r1r67216r396767674!616v6y6967696!516)yNFﬁCES

1 VOLUME=CUBEDX0.1178%5
GO TO 20
2 VOL.UME=CURED
GO TO 20
3 VOLUME=CUREIIX0.,47140
GO TO 20
4 VOLUME=CUBEIIX7.66312
GO TO 20
1 VOLUME=CUREIIX2.,18170
GO TO 20
b WRITE(4y10) NFACES
10 FORMAT (1HO» NO REGULAR FOLYHEDRON HAS »I3v1Xy 'FACES’)
RETURN
20 WRITE(4,30) VOLUME
30 FORMAT (1HOy VOLUME="yF10.2)
RETURN
8 WRITE(4r10)
40 EORMAT (1HO»*DO NOT SFECIFY MORE THAN 20 FACES)
RETURN
END
Figure 7-1 (Cont.) Main Program and Subprogram for Calculating the Volume

of a Regular Polyhedron

If the number of faces of the solid is other than 4, 6, 8, 12, or 20,
or if more than 20 faces are specified, the subroutine displays an
error message on the terminal. If the correct input parameters are
typed in at the terminal keyboard, the calculation is performed, and
the answer is displayed on the terminal screen.

When subprograms are used, the main program and the subprograms must
be individually compiled. For the example program, both the main
program and subprogram are compiled as follows:

+COMPILE MAIN.FT
and

+COMFILE SOLVE.FT

which create relocatable binaty files.

FORTRAN IV

The modules must now be loaded to make a single image file that can be
executed. This is done as follows:

+LOAD POLY.LD<MAIN.RLsSOLVE.RL

This command creates a file POLY.LD and returns to the monitor.
Execute the program by typing

+EXECUTE POLY.LD

which results in the program calling for the required input parameters
as follows:

TYPE IN NO. OF FACES AND ONE LENGTH EDGE

Typing a "6" to represent a cube (preceded by a space since the field
specification 1is 1I2) and "20" as one length edge in accordance with
the field specification requirement as follows:

b6 20.0

results in the answer being displayed on the terminal screen, and a
prompt for the next set of input parameters as follows:

VOLUME = 8000.00
TYPE IN NO. OF FACES AND ONE LENGTH EDGE

Do not specify blanks or zeroes for the NFACES and EDGES variables.
Type CTRL/C to return to the monitor.

7.1.2.3 LOADER Options - Loader options are described in Table 7-3.
The examples following the table illustrate their use.

Table 7-3
Loader Run-Time Options

Option Operation

/C Continue the current line of input on the next line
of input. When specifying input files to the loader,
there may be more than nine files in a command 1line.
The /C option permits the additional files to be put
on the following line. Terminate each continuation
line (except the last) with a RETURN. Terminate the
last line with an ESC.

/G Treat the current line as the last line of input, and
chain to the FORTRAN IV run-time system when finished
(see Section 7.1.3).

/S Include system symbols in the 1loader symbol map.
System symbols are identified by an initial number
sign (#). This option is only valid when a symbol
map output file was specifically defined.

7-10

FORTRAN IV

Examples:

L.0AD FOWERJ.RL
Loads POWER.RL and produces a loader image file
POWER.LD.

LOAD RXALSFOWER.RL/G
Loads POWER.RL, produces a loader image file POWER.LD,
chains to the run-time system, and executes the
program.

LOAD PROG.LIRLOBSMAR<MAIN.RL »SURARL
Loads and links MAIN.RL and SUBA.RL to produce PROG.LD,
and produces MAP.LS, a loader symbol map output file,
on disk RLOB. Using the type command

LTYFE RI.OBIMAF

will display the MAP file on the screen. Typing .EXE
PROG.LD will execute the program.

LOAD PROG.LO<PROG.RLsFROGL.RLBD x(more file srecifications)(Cec)
Loads and links two input files to produce PROG.LD,
then calls a special system program for accepting file
I1/0 specifications (see Section 7.2.3). The second
ESCape executes the entire command.

7.1.2.4 Loader Error Messages - The Loader displays error messages on
the terminal during generation of a loader-image file. Except where
indicated in Table 7-4, Loader errors are fatal. When it encounters a
fatal error condition, the Loader returns control to the monitor.

Table 7-4
Loader Error Messages

Error Message Meaning
BAD INPUT FILE An input file was not a relocatable binary
module.
BAD OUTPUT DEVICE The loader image file device was not a

directory device, or the symbol map file
device was a read-only device. The entire
line is ignored.

EX The symbol is referenced but not defined.

INVALID 0S/78 OPTION Attempt to use an option that is not
available.

ME Multiple entry. The symbol is multiply
defined.
MIXED INPUT The L option was specified on a 1line that

contained some file other than a library
file. The library file (if any) is
accepted. Any other input file
specification is ignored.

(continued on next page)

7-11

FORTRAN 1V

Table 7-4 (Cont.)
Loader Error Messages

Error Messages Meaning

NO MAIN No relocatable binary module contained the
section #MAIN.

OVER CORE The loader image requires more than 16K of
memory.

OVER IMAG Output file overflow in the 1loader image
file.

OVER SYMB Symbol table overflow. More than 253

(decimal) symbols in one FORTRAN job.

TOO MANY RALF FILES More than 128 input files were specified.

7.1.3 The Run-Time System (FRTS)

The run~time system reads, loads, and executes a loader image file
produced by the 1loader. It evaluates - arithmetic and logical
operations. It also configures a software I/O interface between the
FORTRAN IV program and the 0S/78 operating system, and then monitors
program execution to direct I/0O processes and identifies certain types
of run~time errors.

The run-time system is automatically called to load and execute the
loader image file produced by the loader whenever the /G option is
specified to the loader. When chained to the 1loader, the run-time
system reacts in one of two ways. If the LOAD command line was
terminated by pressing the RETURN key, the program is executed. If
the LOAD command line was terminated with an ESCape, a system program
called the Command Decoder is called and indicates that it is running
by printing an asterisk (¥*).

In response to the asterisk, you can supply file specifications to the
run-time system. This allows a source program to be written that
refers to I/0 devices as integer constants or variables. Such a
program may be compiled, assembled, and loaded into an image file.
This image file may be run any number of times, each time specifying
different actual peripheral devices. Thus logical unit 8 may refer in
one run to the console terminal and in another run to a diskette file.

Of the nine I/0 unit numbers available under FORTRAN IV, two are
initially assigned to FORTRAN internal device handlers by the system:

I/0 Unit Internal Handler Comments
3 Line printer LA78 only.
4 Console terminal Double buffered output,

single character input.
The FORTRAN internal handlers listed above are not the same as the

0S/78 device handlers. The FORTRAN internal handlers are designed for
ASCII text only and will not transfer noncharacter data.

7-12

FORTRAN IV

Additional unit numbers may be assigned, in addition to those 1listed
above, to the FORTRAN internal device handlers by typing (in response
to the asterisk generated by the Command Decoder):

/n=m
where:
n is a different unit number (1 to 9) that is also to be
assigned to that internal handler; and
m is the I/0 unit number (3 or 4) of the internal

handlers.

This specification causes all program references to logical unit n to
perform I/0 to device m. For example,

/6=3 Assigns the FORTRAN internal line printer handler as
I/0 unit number 6, in addition to unit number 3.

/3=4 Assigns I/0 unit number 3 to the FORTRAN console
terminal handler instead of the internal line printer
handler.

I/0 unit numbers may be assigned to O0S/78 device handlers for
nondirectory devices by typing (in response to the asterisk generated
by the Command Decoder):

dev:/n
where:
dev: is the standard or assigned designation for any
supported nondirectory device; and
n is an I/0 unit number (1 to 9).
Example:
LQP:/3 Specifies the 0S/78 LQP line printer handler to be used

as device #3 instead of the FORTRAN internal line
printer handler.

Existing directory device files may be assigned I/0 unit numbers by
typing (in response to the asterisk generated by the Command Decoder):

dev:file.ex/n

where:
dev:file.ex is the standard 0S/78 designation for an existing
directory device file; and
n is an I/0 unit number (1 to 9).

FORTRAN IV

Example:

RXAl:FORIO.TM/4 Assigns unit number 4 to Diskette file FORIO.TM
rather than to the FORTRAN internal console
terminal handler, where FORIO.TM is an existing
file on Diskette unit 1.

A directory device file that does not presently exist may be assigned
a FORTRAN I,/0 unit number in the same manner by entering it as an
output file on the specification line; however, only one such file
may be created on any particular device. For example:

FORIO.TM</9 Assigns unit number 9 to file DSK:FORIO.TM,
which has not been created at load time.

In any case, only one device or file specification is permitted on
each line, and no more than six directory device files may be created
by the FORTRAN program. Excess files after the sixth are accepted and
written, but they will not be closed. If a file created by the
program has the same file name and extension as a pre-existing file,
the old file is automatically deleted when the new file is closed.

The Command Decoder "[n]" specification may be used to optimize
storage allocation when assigning files that do not yet exist, where n
is a decimal number that indicates the maximum expected length of the
file, in blocks.

Each time a run-time I/O specification is terminated by pressing the
RETURN key, the Command Decoder is recalled to accept another
specification. When a specification is terminated by the ESCape key,
the program is run.

The following examples illustrate the use of device and file
specifications.

C WRITE.FT PROGRAM
DIMENSION ILT(200)
INTEGER ILT
C SPECIFY LOGICAL UNIT NUMBER FOR TTY AS 2 INSTEAD OF 4

1 WRITE (2,102

10 FORMAT (1Xs "WRITING AND READING ASCII SEQ. DATA FILE’)
no 3 I=1,200

3 ILTCI) =I%%2
WRITE (8s20) (ILTC(I)»I=1+200)

20 FORMAT (1H»//920C1017+/))

REWIND 8

NOW READ DATA FILE DATA.DA FROM MASS STORAGE DEVICE

READ (8,20) ILT

QUTPUT FILE TO TTY

WRITE (4,20) ILT

END

[B

The above program raises 200 sequential numbers to the power of two.
The following sequence of specifications are typed using the COMPILE
command as follows:

+COMFILE WRITE.FT/G */2=4
XRXA13DATA.DA</8

7-14

FORTRAN IV

The /G option in the command line will call the run-time system to
execute the program. Pressing the ESCape key after the command calls
the Command Decoder, allowing device and file specifications to be
declared. In this case, the terminal (4) is assigned to unit number 2
while the load image file is assigned number 8. A file DATA.DA is
created on diskette 1 that contains the results of the program. The
contents of this file are then displayed on the terminal screen. The
command and the specification strings are executed by the second
ESCape.

The second example shows an output file RAY.DA being created on the
diskette by PROGl.FT, and then being read from the diskette by
PROG2.FT.

c THIS FROGRAM WRITES A RECORD OF 400 VARIAELES
C INTO A FILE CALLED RAY.DA
DIMENSION RAY(400)
INTEGER RAY
DEFINE FILE 1 (1,4005UsJ)
J=1
DO 5 I=1,400
] RAY(I)=2%I
WRITE (1/J4) (RAY(I)»I=1s400)
CALL EXIT
END

The above program writes a record into file RAY.DA. The following
command and specification strings are typed to accomplish this.

+COMPILE PROG1.FT/G XRAY.DA</1

c READ 'DIRECT ACCESS FILE RAY.DA FROM MASS STORAGE
C DEVICE CREATED BY FREVIOUS PROGRAM
DIMENSION RAY(400)
INTEGER RAY DEFINE FILE 1(1s4005U,J)
J=1
READ <(1/J) (RAY(I)»I=1y400)
100 FORMAT (1Hy//240(10169/))
c DUMP CONTENTS OF DATA FILE ONTO TTY
WRITE (4,100) RAY
CALL EXIT
END

The above program then reads out the results of PROGL.FT, and displays
the contents of file RAY.DA on the terminal screen. This is done by
typing the following command line.

+COMPILE FPROG2.FT/G XRAY.DA/1

Although existing files are specified as though they were input files
and nonexistent files are specified as though they were output files,
any file that has been assigned a unit number may be used for either
input or output.

7.1.3.1 Runtime System Options - Run-time system option
specifications are described in Table 7-5.

FORTRAN IV

Table 7-5
Run-Time System Options

Option Operation

/C Carriage control switch. The first character on
every output line is processed as a carriage control
character by all FORTRAN internal handlers and also
by the 0S/78 handlers TTY and LPT. The first
character on every output line is processed as data,
in the same manner as any other character, by all
0S/78 handlers except TTY and LPT. Entering a C
option specification on the command line that assigns
an I/0 unit number to a particular handler reverses
the processing of carriage control characters for
that device. Thus,

TEMP (2C)

assigns file DSK:TEMP. as I/O unit 2. The /C option
causes the first character of every output line to be
processed as a carriage control character. If C were
not specified, these characters would be processed as
data.

/C/6=3

assigns the FORTRAN internal line printer handler as
I/0 unit 6, as well as unit 3. The first character
of every line will be processed as a carriage control
character on unit 3, and as a character of data on
unit 6.

/E Ignore the following run-time system errors, any of
which indicates that an error was detected earlier in
the compilation loading process:

1. Illegal subroutine call.
2. Reference to an undefined symbol.

The console terminal serves as FORTRAN I/0 unit 4 for both input and
output. Terminal input is automatically echoed on the console screen.
In addition, the run-time system monitors the keyboard continually
during execution of a FORTRAN program. Typing CTRL/C at any time
causes an immediate return to the monitor. Typing CTRL/B branches to
the system traceback routine, and then exits to the monitor. This
traceback routine generates a printout, similar to the error
traceback, including the current subroutine, the line number in the
next higher level subroutine from which it was called, and so forth,
to the main program. This facilitates locating infinite loops when
debugging a program. The following additional special characters are
recognized by the console terminal handler and processed as shown:

DELETE Deletes last character accepted.
CTRL/U Deletes current line of input.
CTRL/Z Signals end-of-file on input.

7-16

FORTRAN 1V

Tentative output files (that is, files created by the FORTRAN program)
are closed automatically upon successful completion of program
execution provided that one of the following conditions occurs:

1. An END FILE statement referencing the file was executed.
FRTS assigns a file length equal to the actual length of the
file.

2. The last operation performed on the file was a write
operation. FRTS proceeds as though an END FILE statement had
been executed.

3. A DEFINE FILE statement referencing the file was executed but
an END FILE statement was not executed. Upon completion of
program execution, FRTS assigns a file length equal to the
length specified in the DEFINE FILE statement.

Execution of a REWIND statement does not close a tentative file, nor
does it modify the tentative file length.

7.1.3.2 Run-Time System Error Messages - The run-time system
generates two classes of error messages. Messages listed in Table 7-6
identify errors that may occur during execution of a FORTRAN program
and errors that may be encountered when the run-~time system is reading
a loader image file into memory in preparation for execution, or
accepting I/O unit specifications. Except where indicated, all
run-time system errors cause full traceback and an immediate return to
the monitor. Nonfatal errors cause partial traceback, sufficient to
locate the error, and execution continues.

The run-time system error traceback feature provides automatic
printout of statement numbers ISNs corresponding to the sequence of
executable statements that terminated in an error condition. At least
one statement number is always printed. This numker identifies the
erroneous statement or, in certain cases, the last correct statement
executed prior to the error. When a statement was compiled under the
/N option, however, the system cannot generate meaningful statement
numbers during traceback. When a statement is reached through any
form of GOTO, the line number for error traceback is not reset. Thus,
an error in such a line will give the number of the last executed line
in the error traceback.

Table 7-6
Run-Time System Error Messages

Error Message Meaning
BAD ARG Illegal argument to library function.
CAN'T READ IT! I/0 error on reading loader image file.
D.F. TOO BIG Random access file requirements exceed

available storage.

DIVIDE BY 0 Attempt to divide by zero. The resulting
quotient is set to =zero and execution
continues.,

(continued on next page)

7-17

FORTRAN IV

Table 7-6 (Cont.)

Run-Time System Error Messages

Error Messages

Meaning

EOF ERROR

FILE ERROR

FILE OVERFLOW
FORMAT ERROR
INPUT ERROR

I/0 ERROR
MORE CORE REQUIRED

NO DEFINE FILE
NO NUMERIC SWITCH

NOT A LOADER IMAGE
OVERFLOW

PARENS TOO DEEP
SYSTEM DEVICE ERROR
TOO MANY HANDLERS
UNIT ERROR

UNKNOWN INTERRUPT

USER ERROR

End of file encountered on input.
Any of the following conditions occurred:

1. A file specified as an existing
file was not found.

2. A file specified as a nonexistent
file would not fit on the
designated device.

3. More than one nonexistent file was
specified on a single device.

4., The file specification contained
an asterisk (*) as name oOr
extension.

Attempt to write outside file boundaries.
Illegal syntax in FORMAT statement.
Illegal character received as input.

Error reading or writing a file, tried to
read from an output device, or tried to
write on an input device.

The space required for the program, the I/0
device handlers, the 1/0 buffers, and the
monitor exceeds the available memory.

Direct access I/0 attempted without a
DEFINE FILE statement.

The referenced FORTRAN I/0 unit was not
specified to the run-time system.

The first input file specified to the
run-time system was not a loader image
file.

Result of a computation exceeds upper bound
for that class of variable. The result is
set equal to zero and execution continues.

Parentheses nested too deeply in FORMAT
statement.

I/0 failure on the system device.

Too many I/0 device handlers are resident
in memory, or files have been defined on
too many devices.

I/0 unit not assigned, or incapable of
executing the requested operation.

A hardware interrupt occurred from a device
that the run-time system is not using.

Illegal subroutine call, or call to
undefined subroutine. Execution continues
only if the E option was requested.

7-18

FORTRAN IV

7.1.4 The Library

The 0S/78 FORTRAN IV system contains a general purpose FORTRAN library
named FORLIB.RL. FORLIB.RL contains mathematical functions and
miscellaneous subroutines.

Library functions and subroutines are called in the same manner as
user written functions and subroutines. Section lists the library
components that are available to FORTRAN programs and illustrates
calling sequences, where ne-essary.

7.2 THE FORTRAN IV SOURCE LANGUAGE

A FORTRAN source program consists of statements wusing the language
elements and the syntax described in this chapter. A statement
performs one of the following functions:

e Causes operations such as multiplication, division, and
branching to be carried out

e Specifies the type and format of data being processed
e Specifies the characteristics of the source program

FORTRAN statements are composed of keywords (that is, words that the
FORTRAN compiler recognizes) that you use with elements of the
language set. These elements are constants, variables and
expressions. There are two basic types of FORTRAN statements:
executable and nonexecutable.

Executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and subprograms
that you may include in the program. The compilation of executable
statements results in the creation of executable code. Nonexecutable
statements provide information only to the compiler; they do not
create executable code.

The 0S/78 FORTRAN IV language generally conforms to the specifications
for American National Standard FORTRAN X3.9-1966. The following
enhancements are included in 0S/78 FORTRAN:
e You may use any arithmetic expression as an array subscript.
If the expression is not of integer type, FORTRAN converts it
to integer form.
e You may use alphanumeric literals (character strings delimited
by apostrophes or quotation marks) in place of Hollerith
constants.

e The statement label list in an ASSIGNed GO TO statement is
optional.

e The following Input/Output (I/O) statements have been added:
DEFINE FILE Device~oriented I/0

READ {(u'r)
WRITE (u'r) Unformatted Direct Access I/O

7-19

FORTRAN IV

® You may use any arithmetic expression as the initial value,
increment, or limit-parameter in the DO statement, or as the
control parameter in the COMPUTED GO TO statement.

e 0S/78 FORTRAN permits constants and expressions in the 1I/0O
lists of WRITE statements.

All FORTRAN statements are listed in Section 7.13.

In this chapter, the FORTRAN language statements are grouped into
eight categories, each of which is described in a separate section.
The name, definition, and section references for each statement
category are given in Table 7-7.

Table 7-7
FORTRAN Statement Categories

Category Function Section
Assignment Assign values to named variables 7.5
Statement and array elements.

Specification Declare the properties of 7.6
Statement variables, arrays, and functions.
DATA Statements Assign initial values to variables 7.7

and array elements.

Control Statements Determine order of execution of 7.8
the object program and terminate
its execution.

Subprogram Define functions and subroutines. 7.9
Statements
Input/Output Transfer data between internal 7.10
Statements storage and specified input/output
devices.
FPORMAT Statements Specify formats for data on 7.11
input/output.

7.2.1 The FORTRAN Character Set

The FORTRAN character set consists of:
e The upper case letters A through 2
e The numerals 0 through 9

e The special characters in Table 7-8

7-20

FORTRAN 1V

Table 7-8
FORTRAN Special Characters
Character Name Character Name

Space () Parentheses
- Tab ' Comma
= Equals . Decimal Point
+ Plus ! Apostrophe
- Minus " Quote
* Asterisk $ Dollar Sign
/ Slash

You may type other printable characters such as &, _, and @ only as
part of Hollerith constants, alphanumeric literals, or comments.

7.2.2 Elements of a FORTRAN Program

A FORTRAN program consists of FORTRAN statements and optional
comments. You group the statements into logical units called program
units (a program unit being a sequence of statements which you
terminate with an optional END statement).

A program unit can be either a main program or a subprogram. One main
program and possibly one or more subprograms form the executable
program.

7.2.2.1 Statements - Statements are grouped into two general classes:
executable and nonexecutable. Executable statements are the action
statements of the program; nonexecutable statements describe data
arrangement and data characteristics. Nonexecutable statements may
also contain editing and data conversion information.

A program consists of a series of statements, written one statement to

a line. (A line is a string of up to 72 characters.) If a statement
is too long to fit on one line, you may continue it on up to five
additional lines (called continuation lines). (For further

information, see Section 7.2.3.4, Continuation Indicator Field.)

A statement can refer to another statement. FORTRAN refers to such a
statement by an integer number (called a label) ranging from 1 to
99999, Such a statement is most often referenced for the information
it may contain or so that program execution can continue at that
statement.

FORTRAN IV

7.2.2.2 Comments - Comments are lines of text which document program
action, indicate program sections and processes, and provide greater
ease in reading the source program listing by identifying variables.

The FORTRAN compiler ignores comments; the comments exist only so
that you can document what the program is doing.

7.2.3 FORTRAN Lines
A FORTRAN line consists of four fields:
e Statement Label Field
e Continuation Indicator Field
® Statement Field
e Identification Field

You may skip any of these fields when entering statements, but, except
for the identification field, the spaces allotted to each field must
remain present. In the case of the identification field, you may type
a carriage return before reaching it.

Each printing space represents a single character. The following
sections describe the entering of the source program and the
information contained in each field.

7.2.3.1 Using a Text Editor - When creating a source program with the
0S/78 text editor, you type the lines on a "¢haracter-per~column”
basis. You may also use the character to format lines.

NOTE

The text editor and terminal advance the
terminal print carriage to a predefined
print position when you type a .
This action, however, is not related to
FORTRAN's interpretation of the
character. The FORTRAN system
interprets a as one character, not
the number of characters (up to eight)
that it will print.

For example, you may format the following lines in either of the ways
shown:

C- INITIALIZE ARRAYS or C INITIALIZE ARRAYS

10- w=3 or 10 wW=3
- SEL(1)=111200022D0 or SEL(1)=111200022D0
where:

- represents a » and
represents a space character.

7-22

FORTRAN 1V

Use space characters in a FORTRAN statement to improve the legibility
of a 1line. The compiler ignores all spaces in a statement field
except those within a Hollerith constant or alphanumeric literal.

Example:
GO TO and GOTO are equivalent.

The compiler also ignores a in a statement field; it regards a

TAB to be the same as a space. However, in the compiler generated
source listing, FORTRAN prints the character following the at
the next tab stop (located at columns 9,17,25,33, etc.).

7.2.3.2 Statement Label Field - A statement label is a number which
FORTRAN uses to reference one statement from another statement.

A statement label (sometimes also called a statement number) consists
of from one to five decimal digits ranging from 1 through 99999.
Place this label in the first five positions of a statement's first
line. Any source program statement that is referenced by another
statement must have a statement number.

FORTRAN ignores spaces and 1leading zeros preceding the statement
label, e.g., FORTRAN interprets the following as statement label 105:

105
00105
105

You may assign statement numbers in any order; however, each
statement number must be wunique in the program or subprogram. In
contrast, a main program and a subprogram may contain identical
statement numbers. In this case, FORTRAN understands that reference
to these numbers means the numbers in the program unit in which the
reference is made.

Example:

Assume that the main program and a subprogram both contain
statement number 105. A GOTO statement in the main program will
refer to statement number 105 in the main program, not to
statement 105 in SUBl1. A GOTO in SUBl will transfer control to
105 in SUBI.

An all-zero statement label is illegal.

You cannot label non-executable statements other than FORMAT
statements.

When you type a source program with a terminal, an initial <TAB> skips
over the label and continuation field.

7.2.3.3 Comment Indicator - A comment indicator tells FORTRAN that
the text on a line is a comment and that, therefore, it should not
process that line.

Type the letter C in column one to indicate that the line is a
comment. The compiler will print the contents of that line in the
source program listing. However, it ignores the line when it compiles
the program.

FORTRAN IV

The following are restrictions on comments.
e All comment lines must begin with the letter C in column one.

® You cannot continue comment lines; consequently each comment
line must begin with a C.

® Unlike other statements, the text of a comment can begin in
the second space of a line.

e Comment lines must not intervene between a statement's initial
line and its continuation 1line (or 1lines), or between
successive continuation lines.

7.2.3.4 Continuation Indicator Pield - A continuation indicator tells
FORTRAN that the text on that line is part of the same statement as
the preceding line.

You must reserve column six of a FORTRAN 1line for the continuation
indicator even if you do not type a continuation indicator.

FORTRAN defines any character except a space in column 6 to be a
continuation indicator.

The following are rules for using continuation indicators:
® You may divide a statement into distinct lines at any point.

@ You may precede the continuation indicator with space
characters only; you may not precede it with a as an
initial skips over the continuation field.

® The characters beginning in column seven of a continuation
line are considered to follow the 1last character of the
previous line as if there were no break at that point.

® You may enter no more than 5 continuation 1lines for one
statement.

e You cannot continue comment lines.

® A comment line must not intervene between a statement's
initial 1line and its continuation line (or lines), or between
successive continuation lines.

® You cannot assign statement numbers to continuation lines.

7.2.3.5 Statement Field - Type the text of a FORTRAN statement in
columns 7 through 72. A may precede the statement field rather
than spaces. Note that because the compiler ignores <TAB>s and spaces
(except in Hollerith constants and alphanumeric literals), you can
space the text of the statement in any way desired for maximum
legibility.

7-24

FORTRAN IV

7.2.3.6 Identification Field - Type a sequence number or other such
identifying information in columns 73-80 of any line in a FORTRAN
program. FORTRAN ignores the characters in this field.
NOTE

The FORTRAN compiler ignores text in

these positions. Moreover, FORTRAN does

not print a warning message if you

accidently type text in this field.

This 1is sometimes the source of

inexplicable errors.

You might use this feature

punched card input.
with terminals.
7.2.4 Blank Lines
You may insert 1lines consisting only
characters anywhere in your source

preceding a continuation line.

the readability of a source listing:;
them.
7.2.5 Line Format Summary

Table 7-9.

You would

when typing

It is seldom used

of blanks, (*)s, or no
program except immediately
use a blank line to improve
the FORTRAN compiler ignores

The fields and the columns in which they may appear are listed in
Table 7-9
Field Summary
Field Column
Statement Label 1 through 5
Continuation Indicator 6

Statement

Identification

7 through 72

73 through 80

This example shows the placement of
column numbers):

fields

(the numbers represent

2
3

1 67
DIMENSION ACL12)yE(10y10510)C(13513),0(17y00000001
121+5)

10 READ (1510005) (AyEsCHyID

C THE DATA IS STORED ON DECTAFES$
C TIME SYSTEM TO ASSIGN LUN 1 TO DTAx:
CALL UFDATECASD)
IF (.NOT. ENIN) GO TO 10

00000002

USE THE FORTRAN RUN 03

00000004
00000005
00000006

FORTRAN IV

7.3 FORTRAN STATEMENT COMPONENTS
The elements of FORTRAN statements are:
® Constants
A constant is a fixed, self-describing value.
e Variables
A variable is a symbolic name that represents a stored value.
® Arrays

An array is a group of variables that you may refer to
individually or collectively. The individual values are
called array elements. Use a symbolic name to refer to the
array.

e Expressions

An expression can be a constant, variable, array element, or
function reference. It may also be a combination of those
components and certain other elements (called operators). The
operators indicate computations which FORTRAN will perform on
the values represented by those components. The result of the
computation is a single value.

® Function References

A function reference is the name of a function (often followed
by a list of arguments). After FORTRAN performs the
computation indicated by the function definition, it
substitutes the computed value in place of the function
reference.

7.3.1 Symbolic Names

You use symbolic names to identify many entities within a FORTRAN
program unit. Symbolic names consist of a combination of from one to
six alphanumeric characters. If you use more than six characters in a
symbolic name, FORTRAN reads only the first six.

The first letter of a symbolic name must be a letter. The special
characters listed in Table 7-8 may not appear in symbolic names.

Examples of valid and invalid symbolic names are:

valid Invalid
NUMBER 50 (Begins with a numeral)
K9 B.4 (Contains a special character)

Table 4-1 indicates the types of variables which FORTRAN identifies by
symbolic names.

Except as specifically mentioned in this manual, you may not wuse the
same symbolic name to identify more than one FORTRAN entity.

Each variable indicated as "Typed" in Table 7-10 has a data type. The

means of specifying the data type of a name are presented in Sections
7.3.2, Data Types, and 7.6.1, Type Declaration Statements.

7-26

FORTRAN IV

Within a subprogram, you may use symbolic names as dummy arguments. A
dummy argument may represent a variable, array, array element,
constant, expression, or subprogram. However, all subprograms must be
uniquely named.

Table 7-10
Classes of Symbolic Names

Entity Typed
Variables yes
Arrays yes
Arithmetic statement functions yes
Processor-defined functions yes
FUNCTION subprograms yes
SUBROUTINE subprograms no
Common blocks no
Block data subprograms no

7.3.2 Data Types

The data type of a FORTRAN element may be inherent in its
construction, implied by convention, or you may declare it explicitly.
The data types available in FORTRAN, and their definitions, are listed
in Table 7-11.

Table 7-11
FORTRAN Data Types

Data Type Meaning

/;r . .
INTEGER ! A whole number.

\
REAL W A decimal number; it can be a whole number, a

decimal fraction, or a combination of the two.

LOGICAL The logical value "true" or "false".
OCTAL An integer number in radix 8.

7.3.3 Constants

A constant represents a fixed value; that is, a constant can
represent numeric values, logical values, or character strings. You
can specify five types of constants in an O0S/78 FORTRAN program:
integer, real, octal, logical, and Hollerith.

7-27

FORTRAN IV

7.3.3.1 Integer Constants - An integer constant is a whole number
with no decimal point. It may have a leading sign.

Format:
snn
where:

nn is a string of from 1 to 7 decimal digits, and
s is an optional algebraic sign.

In 0OS/78 FORTRAN, an integer constant is a whole signed or unsigned
number which contains no more than 7 decimal digits. Integer
constants must fall within the range -2**23 to 2**23-1 (-8,388,608 to
8,338,607). When you use integer constants as subscripts, FORTRAN
uses them at modulo 2**12 (4,096 decimal).

FORTRAN ignores leading zeros in integer constants.

Precede a negative integer constant by a minus symbol. A plus symbol
is optional before a positive number because FORTRAN assumes an
unsigned constant to be positive; e.g., +27 and 27 are identical.

With the exception of a plus or minus sign, an integer constant cannot
contain any character other than the numerals 0 through 9.
Specifically, embedded commas and decimal points are not allowed.

Examples:
valid Invalid
Integer Constants Integer Constants
0 99999999999 (Too large)
=127 3.14 (Decimal point and
+32123 32,767 comma not allowed)

7.3.3.2 Real Constants - A decimal real constant is a string of
decimal digits with a decimal point. An exponential real constant is
a decimal real constant followed by an exponent.

A Decimal Real Constant is a decimal number. It may have a 1leading
sign.

Format:

s.nn
snn.nn
snn.

where:

nn is a string of numeric {characters.
. is a decimal point.
s is an optional algebraic sign.

A decimal real constant is a string of decimal digits with a decimal
point. Note that you do not always have to type a number following
the decimal point, but you must always type the decimal point. The
decimal point can appear anywhere in the digit string.

FORTRAN IV

FORTRAN does not 1limit the number of digits in a decimal real
constant, but only the leftmost six digits are significant. For
example, in the constant 0.000012345678, all of the non-zero digits
are significant (note that FORTRAN only stores 0.000012). However, in
the constant 000507, the first three zeros are not significant.

You must precede a negative constant with a minus sign. The plus sign
is optional preceding a positive real constant.

Except for algebraic signs and a decimal point, a real decimal
constant cannot contain any character other than the numerals 0
through 9.

Examples:

valid Invalid

Real Constants Real Constants

3.14159 1,234,567 (Commas not allowed)
71712. 879877399. (Too large)

-.00127 100 (Decimal point missing)

0.0

An exponential real constant is a decimal real constant followed by a
decimal exponent.

Format:
mmEsnn
where:

mm is an integer or real constant,
nn is a 1- to 3-digit integer constant,

E indicates that the constant is an exponential real constant,
and
s is an algebraic sign.

An exponential real constant is a decimal number which you type in
scientific notation, that 1is, in powers of ten. The number, nn,
represents a power of 10 by which the preceding real or integer
constant is to be multiplied (e.g., 1E6 represents the value
1.0 x 10**6). The magnitude of a real constant cannot be smaller than
10**-615 nor greater than 10**615. The number mm is an integer or
real constant.

A real constant occupies three words (i.e., six bytes) of storage.
FORTRAN interprets this number as having a degree of precision
slightly greater than seven decimal digits.

In 0S/78 FORTRAN, a real exponential constant need not contain a
decimal point.

A minus symbol must appear between the letter E and a negative
exponent; a plus symbol is optional for a positive exponent.

Except for algebraic signs, a decimal point, and the letter E, a real
exponential constant cannot contain any character other than the
numerals 0 through 9. However, you may omit the decimal point if the
number does not have a fractional part.

7-29

FORTRAN IV

Examples:
Valid Invalid
Real Constants Real Constants
2E-3 -47.E645 (Too large)
+5.0E3 325E-801 (Too small)
5E3.2 (decimal point misplaced)

7.3.3.3 Logical Constants - A logical constant specifies a logical
value, that is, "true" or "false". Therefore, there are only two
possible logical constants. They are:

.TRUE.
and

.FALSE.

NOTE
You may abbreviate .TRUE. and .FALSE.
as .T. and .F.
You must type the delimiting periods as they are part of each
constant.

Only logical operators can operate on logical constants.

7.3.3.4 Octal Constants - An octal constant 1is a string of octal
digits (0-~7 only) preceded by the letter O.

Format:
DATA /Onum/
where:

num is an octal number, and
(6] identifies the number as an Octal constant.

An octal constant is a digit string (0-7 only) which you may use only
in DATA statements to enter numbers in radix eight. An octal constant
may be of any length, but the FORTRAN compiler uses only the 12 1low
order digits.
You generally use octal constants to set bits for masking purposes.
Examples:

DATA JOB/01032/

DATA BASE /07777/

NOTE
The character following the first / in

each of these examples is the letter O,
not a zero.

7-30

FORTRAN 1V

7.3.3.5 Hollerith Constants and Alphanumeric Literals - A Hollerith
constant is a string of ASCII characters preceded by 1) a character
count, and 2) the letter H.

Format:

nHccce...C

where:

n is an unsigned, non-zero integer constant indicating the
number of characters in the string (including spaces and
tabs),

c is any ASCII character, and

H identifies this as a Hollerith constant.

A Hollerith constant is a string of alphanumeric and/or special
characters preceded by a number which states how many characters are
in the constant and the letter H. You may use any ASCII character
(including those which are not part of the FORTRAN character set).

Hollerith constants have no data type. They assume the data type of
the context in which they appear.

Examples:
valid Invalid
Hollerith Constants Hollerith Constants
16HTODAY'S DATE IS: 3HABCD (wrong number of characters.
18 This will be stored as ABC.)

An alphanumeric literal is a string of ASCII characters delimited with
apostrophes or quotation marks.

Format:

‘ccCoe..C'
"ccc...C"

where:

c is a printable ASCII character, and you must type both
delimiting apostrophes or quotes.

An Alphanumeric literal is an alternate form of Hollerith constant.
Like Hollerith constants, you may use any ASCII character (including
those which are not part of the FORTRAN character set).

Alphanumeric literals have no data type. They assume the data type of
the context in which they appear.

If you need to type an apostrophe within an alphanumeric literal, type
it as two consecutive apostrophes.

Examples:
'CHANGE PRINTER PAPER TO PREPRINTED FORM NO. 721'

'TODAY''S DATE IS: '

FORTRAN 1V

You may use a gquotation mark (") instead of an apostrophe. However,
~ you may not mix quotation marks and apostrophes. For example, the
following literal is not allowed:

"THIS IS A MIXED LITERAL'
but you may type

"THIS ISN'T A MIXED LITERAL"

7.3.4 Variables

A variable is a symbolic name that FORTRAN associates with a storage
location. (The FORTRAN compiler assigns the storage locations.) The
value of the variable is the value currently stored in that location;
you can only change that value by assigning a new value to the
variable with an assignment statement.

FORTRAN classifies variables by data type, in the same manner as
constants. The data type of a variable indicates

e The type of data it represents,
e Its precision, and
e Its storage requirements.

You may specify the data type of a variable either by type declaration
statements (see Section 7.6.1), or by FORTRAN default typing rules
(Section 7.3.4.2).

FORTRAN associates two or more variables with each other when each
variable uses the same storage location; or, partially associates
variables when part (but not all) of the storage which one variable
uses 1is the same as part or all of the storage which another variable
uses. You create associations and partial associations with:

e COMMON statements,
e EQUIVALENCE statements, and
e Actual and dummy arguments in subprogram references.

A variable is defined if the storage with which it 1is associated
contains a datum of the same type. You can define a variable prior to
program execution by typing a DATA statement or during execution by
means of assignment or input statements.

Before you assign a value to a variable, it is an undefined variable,
and you should not reference it except to assign a value to it. If
you reference an undefined variable, an unknown value (garbage) will
be obtained.

If you associate variables of differing types with the same storage
location, then defining the value of one variable (for example, by
assignment) causes the value of the other variable to become not
defined.

FORTRAN IV

7.3.4.1 Data Type Specification - Declaration statements (Section
7.6.1) associate given variables with specified data types. For

example:
INTEGER VARI1

This statement indicates that FORTRAN will associate the integer
variable VARl with a 3-word storage location.

You can only explicitly declare the data type of a variable once in a
program unit.

An explicit specification takes precedence over default specification.

7.3.4.2 Default Data Types - FORTRAN assumes all variables having
names beginning with I, J, K, L, M, or N represent integer data;
variables having names beginning with any other 1letter are real
variables. For example:

Real Variables Integer Variables
ALPHA KOUNT
BETA ITEM
TOTAL NTOTAL

7.3.5 Arrays
An array is a group of contiguous storage locations which you
reference with a single symbolic name, the array name. You reference
the individual storage locations, called array elements, by a
subscript appended to the array name.
An array can have from one to seven dimensions.
The following FORTRAN statements establish arrays:

e Type declaration statements (Section 7.6.1),

e DIMENSION statements (Section 7.6.2), and

® COMMON statements (Section 7.6.3).
Each of these statements defines

e The name of the array,

e The number of dimensions in the array, and

e The number of elements in each dimension.

FORTRAN 1V
7.3.5.1 Array Declarations - Use an array declaration to instruct
FORTRAN to reserve storage for an array.
Format:
[[typ]] a(d [[,d]] c.l)
where:
is the array name, and

is a number specifying the number of elements in that
part of the array.

ﬂtypﬂ is a data type declaration,
a
d

An array is a group of variables that have the same symbolic name;
you address the elements of the array by means of a subscript.

Declare a variable to be an array by specifying the symbolic name
which identifies the array within a program unit and which indicates
the properties of that array. The number of dimension declaratorg 4
indicatés the number of dimensions in the array. The minimum number
of dimensions is one and the maximum number is seven.

You must declare the size (that is, the number or elements) of an
array 1in order to reserve the needed amount of locations in which to
store the array. The value of a dimension declarator specifies the
number of elements in that dimension. For example, a dimension
declarator value of 50, for example, TABLE(50), indicates that the
dimension contains 50 elements. The dimension declarators can be
constant or variable.

The rules governing the dimensioning of arrays are as follows
(characters enclosed within parentheses represent subscripted
characters). 1In the equation:

L(n)=M(1) [1+M(2)+M(2)M(3)+M(2)M(3)M(4)...M(n-1)m(n)]

let:
L = length of the entire array
n = total number of dimensions in the array
M(i) = maximum subscript for each dimension in the array, where i

specifies which dimension in the array 1is being
referenced.

In the above equation, L must not exceed 4095 in any case.

For example,

L(l) = M(1)<4096

L(2) = M(1)[1+M(2)]1<4096

L{(3) = M(1)[1+M(2)+M(2)M(3)]<4096
etc.

In the above equation, L must not exceed 2047 when transmitting
arrays, individual arrays, elements, or subportions of an array to
subprograms.

For example,

L(1) = M(1)<2047

L(2) = M(1)[1+M(2)]1<2047
L(3) = M(1)[1+M(2)M(3)]1<2047
etc.

7-34

FORTRAN 1V

The number of elements in an array is always equal to the product of
the number of elements 1in each dimension. More specifically, the
array IAB dimensioned as (3,4) has 12 elements (3 x 4 = 12) and takes
48 words of storage. Although FORTRAN stores arrays as a series of
sequential storage locations, you may best visualize and reference
arrays as if they were a single or multi-dimensional rectilinear
matrices, dimensioned on a row, column, and plane basis. For example,
Figure 7-2 represents a 3-row, 3-column, 2-plane array.

3 ROWS

3 COLUMNS

Figure 7-2 Array Representation

Specify the size of an array by an array declaration written as a
subscripted array name. In an array declaration, however, each
subscript quantity is a dimension of the array and must be either an
integer variable or an integer constant.

An array name can appear in only one declaration statement within a
program unit.

Use variable dimension declarations to define adjustable arrays (see
Section 7.3.5.6).

7.3.5.2 Array Storage (Order of Subscript Progression) - 0S/78
FORTRAN always stores arrays in memory as a linear seguence of values.
For example, FORTRAN stores a l-dimensional array with its first
element in the first storage location and its last element in the last
storage location of the sequence. FORTRAN stores a multi-dimensional
array such that the leftmost subscripts vary most rapidly. For
example, in the array ARRAY(3,2,2) the progression is:

ARRAY(1,1,1)
ARRAY (2,1,1)
ARRAY (3,1,1)
ARRAY(1,2,1)
ARRAY (2,2,1)
ARRAY (3,2,1)
ARRAY (1,1,2)
ARRAY (2,1,2)
ARRAY (3,1,2)
ARRAY (1,2,2)
ARRAY (2,2,2)
ARRAY (3,2,2)

This is called the "order of subscript progression®. For example,

consider in Figure 7-3 the array declarators and the arrays that they
create.

7-35

FORTRAN IV

19 | COS(1,1,3) | 22 | COS (1,2,3) | 26 | COS (1,3,3)
20 | COS(2,1,3) | 23 | COS(2,2,3) | 26 | COS (2,3,3)
10{cos(1,1,2) | 13 [cos(1,2,2) [16 | COS(1,3,2) | 27 | COS (3,3.3)
11| C0S(2,1,2) | 14 | COS(2,2,2) | 17 | COS (2,3,2)
Cos (1,1,1) | 4] COS (1,2,1) | 7] COS (1,3,1) 18 | COS (3,3,2)
COS (2,1,1) | 5| COS (2,2,1) | 8| COS (2,3,1)
COS (3,1,1) | 6{COS (3,2,1) [9] COS (3,3,1)
!

e [N

Memory Positions

Figure 7-3 Array Storage

The arrows labeled "memory positions" show the order in which FORTRAN
stores information in memory. This order is critically important when
you use an unsubscripted array name in a READ or WRITE statement as
this is the order in which FORTRAN fills memory or prints data.

7.3.5.3 Subscripts - A subscript is the means by which you address
individual elements in an array.

Format:
(s ﬂ,sﬂ cee)
where:
s is an integer subscript expression.

Use a subscript following the array to specify which element in the
array FORTRAN will reference.

In any subscripted array reference, you must type one subscript
expression for each dimension you define for that array (i.e., one for
each dimension declaration). For example, you could use the following
entry to refer to the element located in the first row, third column,
second level of the array TEMP in Figure 7-2 (which 1is the element
occupying memory position 16).

TEMP(1,3,2)

Note, however, that an array reference such as TEMP(1,3) would be
illegal because the third subscript is not indicated.

Each subscript expression can be any valid integer expression. If the
value of a subscript expression is not an integer, FORTRAN converts it
to integer before using it.

A subscript can be a compound expression, that is,

e Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (I+J3,K*5,L/2) and
(I**3, (J/4+K)*L,3) are valid subscripts.

® A subscript may contain function references. For example,
TABLE (IABS (N) *KOUNT, 2,3) is a valid array element identifier.

® Subscripts may contain nested array element identifiers as
subscripts. For example, in the subscript
(I(J(K(L)) ,M+N,ICOUNT), the first subscript guantity given is
a nested 3-level subscript.

7-36

FORTRAN 1V

7.3.5.4 Data Type of an Array - Specify the data type of an array in
the same way as the data type of a variable; that is, implicitly by
the initial letter of the name, or explicitly by a type declaration
statement. (See Section 7.6.1.)

All of the values in an array are of the same data type. FORTRAN
converts any value you assign to an array element to the data type of
the array.

7.3.5.5 Array References without Subscripts - In the following
statements, you may type an array name without a subscript to specify
that you wish to use the entire array.

Type Declaration Statements
COMMON statement
DATA statement
EQUIVALENCE statement
FUNCTION statement
SUBROUTINE statement
CALL statement
Input/Output statements

Using unsubscripted array names in any other statement is illegal.

7.3.5.6 Adjustable Arrays - Use an adjustable array in a subprogram
so that the subprogram can process arrays of different sizes. Do this
by passing the bounds as well as the array name as subprogram
arguments or dummy arguments.

An adjustable array declarator differs from a standard array
declarator in that the adjustable declarator has variable dimension
declarators (which are simply integer variables). In such an array
declaration, each dimension declarator must be either an integer
constant or an integer dummy argument. This array name must also
appear as a dummy argument. (Consequently, you may not use adjustable
array declarators in main program units.)

Upon entry to a subprogram containing adjustable array declarators,
FORTRAN associates each dummy argument in a dimension declarator with
an integer actual argument. FORTRAN uses these values to form the
actual array declaration. These integer variables determine the size
of the adjustable array for that single execution of the subprogram.

You must not change the values of the dummy adjustable array
declarator arguments within subprogram.

The effective size of the dummy array must be equal to or less than
the actual size of the associated array.

FORTRAN IV

The function in the following example computes the sum of the elements
of a two-dimensional array. Note the use of the integer variables M
and N to control the iteration.

FUNCTION SUM(A,M,N)
DIMENSION A (M,N)

SUM = 0.
DO 10, I =1,M
Do 10, J = 1,N
10 SUM = SUM + A(I,J)
RETURN
END

Following are sample calls on SUM:

DIMENSION Al1(10,35), A2(3,56)

SUM1 = SUM(Al1l,10,35)
SUM2 = SUM(A2,3,56)
SUM3 = SUM(A1l,10,10)

If there are more dimensions in the adjustable array than in the array
being passed to the subroutine, you must indicate a value of 1 for
that dimension declaration.

7.4 EXPRESSIONS

An expression is a combination of elements which represents a single
value. FORTRAN relates an element in an expression to another element
in the same expression by operators and parentheses. The expression
can be a single basic component, such as a constant or variable, or a
combination of basic components with one or more operators. Operators
specify computations to be performed (using the values of the basic
components) to obtain a single value.

Expressions can be classified as arithmetic, relational, or logical.

Arithmetic expressions yield numeric values; relational and logical
expressions produce logical values.

7.4.1 Arithmetic Expressions
Form arithmetic expressions with arithmetic elements and arithmetic
operators. The evaluation of such an expression yields a single
numeric value.
An arithmetic expression element may be any of the following:

® A numeric constant,

e A numeric variable,

® A numeric array element,

® An arithmetic expression within parentheses,

® An arithmetic function reference.
Arithmetic operators specify a computation which FORTRAN will perform
using the values of arithmetic elements; they produce a numeric value

as a result. The operators and their meanings are 1listed 1in Table
7-12.

FORTRAN 1V

Table 7-12
Arithmetic Operators

Operator Function
* X Exponentiatioﬁ
* Multiplication
/ Division
+ Addition and Unary Plus
- Subtraction and Unary Minus

The operators listed in Table 7-12 are called binary operators,
because you would use each in conjunction with two elements. You can
also use the + and - symbols as unary operators because, when you
write them immediately preceding an arithmetic element, they indicate
a positive or negative value.

7.4.1.1 Rules for Writing Arithmetic Expressions - Observe the
following rules in structuring compound arithmetic expressions:

e An expression cannot contain two adjacent and unseparated
operators. For example, the expression A*/B is not permitted.

e You must include all operators; no operation is implied. For
example, the expression A(B) does not specify multiplication
although this is implied by standard algebraic notation. You
must type A*(B) to obtain a multiplication of the elements.

e When you use exponentiation, the base guantity and its
exponent may be of different types. For example, the
expression ABC**13 involves a real base and an integer
exponent. The permitted base/exponent type combinations and
the type of the result of each combination are given in Table
7-13.

e You must assign a value to a variable or array element before
you use it in an arithmetic expression. If you do not, the
elements are undefined.

Table 7-13
Base/Exponent Combinations

EXPONENT
BASE
Integer Real
Integer Yes No
Real Yes Yes

FORTRAN IV

In addition, you can only exponentiate a negative element by an
integer element; you cannot exponentiate an element having a value of
zero by another zero-value element.

In any valid exponentiation, the result is of the same data type as
the base element.

7.4.1.2 Evaluation Hierarchy - FORTRAN evaluates arithmetic
expressions in an order determined by a precedence it associates with
each operator. The precedence of the operators is listed in Table
7-14.

Table 7-14
Binary Operator Evaluation Hierarchy
Operator Precedence
** First
* and / Second
+ and - Third
= Fourth

Whenever two or more operators of equal precedence (such as + or =)
appear, FORTRAN evaluates them from left to right. However, FORTRAN
evaluates exponentiation from right to left. For example, A**B**C is
evaluated as A**(B**C) where FORTRAN computes the parenthetical
subexpression (B**C) first.

7.4.1.3 Date Type of an Arithmetic Expression - The way in which
0S/78 FORTRAN determines the data type of an expression is as follows:

e Integer operations - FORTRAN performs integer operations only
on integer elements. (When you use octal constants and
logical entities in an arithmetic context, FORTRAN treats them
as integers.) In integer arithmetic, any fraction that results
from a division is truncated, not rounded. For example, the
value of the expression in integer arithmetic

1/3 + 1/3 + 1/3
is zero, not one.

® Real operations - FORTRAN performs real operations on real
elements or a combination of real and integer elements.
FORTRAN converts integer elements to real by giving each a
fractional part equal to zero. It then evaluates the
expression using real arithmetic. Note, however, that in the
statement Y = (I/J)*X, FORTRAN performs an integer division
operation on I and J and then performs a real multiplication
on the result and X.

7-40

FORTRAN IV

7.4.2 Relational Expressions

A relational expression consists of two arithmetic expressions which
you separate by a relational operator. The value of the expression is
either true or false, depending on whether or not the stated
relationship exists.

A relational operator tests for a relationship between two arithmetic
expressions. These operators are listed in Table 7-15.

Table 7-15
Relational Operators

Operator Relationship
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or egual to

The delimiting periods preceding and following a relational operator
are part of the operator and must be present.

In a relational expression, FORTRAN evaluates the arithmetic
expressions first to obtain their values. It then compares those
values to determine if the relationship stated by the operator exists.
For example, the expression:

APPLE+PEACH .GT. PEAR+ORANGE

tests the relationship, "The sum of the real variables APPLE and PEACH
is greater than the sum of the real variables PEAR and ORANGE." If
this relatlonshlp does exist, the value of the expression is true; if
not, the expression is false.

All relational operators have the same precedence. Thus, if two or
more relational expressions appear within an expression, FORTRAN
evaluates the relational operators from 1left to right. Note that
arithmetic operators have a higher precedence than relational
operators.,

Use parentheses to alter the evaluation of arithmetic expressions in a
relational expression exactly as in any other arithmetic expression.
However, as FORTRAN evaluates arithmetic operators before relational
operators, it 1is unnecessary to enclose an arithmetic expression
preceding or following a relational operator in parentheses.

FORTRAN IV

7.4.3 Logical Expressions
A logical expression may be a single logical element, or it may be a
combination of 1logical elements and 1logical operators. A logical
expression yields a single logical value, either true or false.
A logical element can be any of the following:

° logical constant,
) logical variable,

logical array element,

logical expression enclosed in parentheses,

logical function reference (functions and function

A
A
A
e A relational expression,
A
A
references are described in Chapter 8).

The logical operators are listed in Table 7-16.

Table 7-16
Logical Operators

Operator Example Meaning
.AND. A .AND, B Logical conjunction. The expression is
true if, and only if, both A and B are
true.
.OR. A .OR. B Logical disjunction (inclusive OR).

The expression is true if, and only if,
either A or B, or both, is true,.

.XOR. A .XOR. B Logical exclusive OR. The expression
is true if A is true and B is false, or
vice versa. It is false if both

elements have the same value.

.EQV. A .EQV. B Logical equivalence. The expression is
true if, and only if, both A and B have
the same logical value, whether true or
false.

.NOT. .NOT. A Logical negation. The expression is
true if, and only if, A is false.

NOTE

A and B can be expressions or constants.
You must type the delimiting periods of logical operators.

A logical expression, like an arithmetic expression may consist of
basic elements.

7-42

FORTRAN 1V

For example:

.TRUE.
X .GE. 3.14159

or

TVAL .AND. INDEX

BOOL (M) .OR. K .EQ. LIMIT
where:

BOOL is either a logical function with one argument or a
one-dimensional logical array.

You may enclose logical expressions within parentheses, e.g.,
A .AND. (B .OR. C)
or
(A .AND. B) .OR. C
Note that these expressions evaluate differently, e.g., if A is false

and C is true, then the first yields a false value while the second
yields a true.

7.4.3.1 Logical Operator Hierarchy - A summary of all operators that
may appear in a logical expression, and the order in which FORTRAN
evaluates them is listed in Table 7-17.

Table 7-17
Logical Operator Hierarchy

Operator Precedence
*x First
*,/ Second
+,- Third

Relational

Operators Fourth
.NOT. Fifth
.AND., Sixth
.OR. Seventh

.XOR., .EQV. Eighth

7-43

FORTRAN IV

7.4.4 Use of Parentheses

In an expression, FORTRAN evaluates all subexpressions you place
within parentheses first. When you nest parenthetic subexpressions
(that is, one subexpression is contained within another) the most
deeply nested subexpression is evaluated first, the next most deeply
nested subexpression is evaluated second, and so on, until FORTRAN
computes the entire parenthetical expression.

When you type more than one operation within a parenthetical
subexpression, FORTRAN performs the required computations according to
a hierarchy of operators.

Parentheses do not imply multiplication. For example, (A+B) (C+D) |is
illegal.

The following illustrates a typical numeric expression using numeric

operators and a function reference is the familiar formula for
obtaining one of the roots of a quadratic equation.

-b +\/b**2 - 4dac

2a

which might be coded
(-B + SQRT(B**2-4*A*C))/(2*A)

Note how the parentheses affect the order or evaluation. Also note
that one parentheses pair is required by the SQRT function. An
example of the effect of parentheses is shown below (the numbers below
the operators indicate the order in which FORTRAN performs the
operations).

4 +3 % 2 -6 /2 =1
2 1 4 3

(4 + 3) * 2 - 6 { 2 =11
1 2 4 3

(4 +3 *2 - 6) / 2 =2

2 1 3 4
((4+3) *2-6) /2=4
1 2 3 4

Evaluation of expressions within parentheses takes place according to
the normal order of precedence.

Nonessential parentheses, such as in the expression

4 + (3*%2) - (6/2)
have no effect on the evaluation of the expression.
The use of parentheses to specify the evaluation order is often
important where evaluation orders that are algebraically equivalent
‘-might not be computationally equivalent when carried out on a
computer.

FORTRAN evaluates operators of equal rank from left to right.

7-44

FORTRAN 1V

7.5 ASSIGNMENT STATEMENTS

Assignment statements evaluate expressions and assign their values to
variables or elements in an array.

There are three types of assignment statements:
e Arithmetic assignment statement,
e Logical assignment statement,

® ASSIGN statement (see Section 7.2.3.1).

7.5.1 Arithmetic Assignment Statement

The arithmetic assignment statement assigns a numerical value to a
variable or array element.

Format:
v = e

where:
v %s a variable.or array element name.
e is an expression.

The arithmetic assignment statement assigns the value of the
expression on the right of an equal sign to the variable or array
element on the left of the equal sign. If you had previously assigned
a value to the variable, an assignment statement replaces it with the
value on the right side of the equals sign.

Note that the equal sign does not mean "is equal to", as in
mathematics. It means "is replaced by". Thus, the statement:

KOUNT = KOUNT + 1

means, "Replace the current value of the integer variable KOUNT with
the sum of that current value and the integer constant 1".

Although the symbolic name to the left of the equal sign can be
undefined, you must previously have assigned values to all symbolic
references in an expression (i.e., the right side of the equals sign).

An expression must yield a value that conforms to the requirements of
the variable or array element to which you assign it (for example, a
real expression that produces a value greater than 8,338,608 is
illegal if the entity on the left of the equal sign is an INTEGER
variable).

If the data type of the variable or array element on the left of the
equal sign is the same as that of the expression on the right, FORTRAN
assigns the value directly. If the data types are different, FORTRAN
converts the value of the expression to the data type of the entity on
the left of the equal sign before it is assigned.

7-45

FORTRAN IV

Examples:

Valid Statements

BETA = -1./(2.*X)+A*A/(4.*(X*X))
PI = 3.14159
SUM = SUM+l.

Invalid Statements

3.14 = A-B (Entity on the left must be a variable
or array element.)

-J = I**4 (Entity on the left must not be signed.)

ALPHA = ((X+6)*B*B/(X-Y) (Invalid; 1left and right parentheses do
not balance.)

7.5.2 Logical Assignment Statements

Use a logical assignment statement to assign a true or false value to
a logical variable.

Format:
v =e

where:
v is a variable or array element of type logical, and
e is a logical expression.

The logical assignment statement is similar to the arithmetic
assignment statement, but it operates on logical data. The logical
assignment statement evaluates the expression on the right side of an
equal sign and assigns the resulting logical value, either true or
false, to the variable or array element on the left.

The variable or array element on the left of the equal sign must be of
type LOGICAL; its value can be undefined before the assignment.

You must have previously assigned values, either numeric or logical,
to all symbolic references that appear in an expression. The
expression must yield a logical value.

Examples:
PAGEND = ,FALSE.
PRNTOK = LINE .LE. 132 .AND., .NOT. PAGEND

ABIG = A .GT. B .AND. A .GT. C .AND. A .GT. D

7.6 SPECIFICATION STATEMENTS

This section discusses FORTRAN specification statements.
Specification statements are nonexecutable statements which provide
information necessary for the proper allocation and initialization of
variables and names you use in a program.

7-46

FORTRAN IV

7.6.1 Type Declaration Statements

Type declaration statements explicitly define the data type of
symbolic names.

Format:
typ v ﬂ,vn . e
where:
typ 1is one of the following data type specifiers:
LOGICAL

INTEGER
REAL

\4 is a typed variable or array.
A type declaration statement causes the specified symbolic names to
have the specified data type; it overrides the data type implied by
the initial letter of a symbolic name.
A type declaration statement can define arrays by including array

declarators in the 1list. In each program unit, an array name can
appear only once in an array declarator. Note, however, that

DIMENSION ISUM(3,4)
INTEGER ISUM

is legal.

Type declaration statements should precede all executable statements
and all specification statements. You must precede the first use of
any symbolic name with its declaration statement if you do not use the
default type declaration.

You can explicitly declare the data type of a symbolic name only once.

You must not label type declaration statements. The FORTRAN entities
which you may type are:

Arithmetic Statement Functions
Arrays
functions
Variables
Examples:
INTEGER COUNT, MATRIX(4,4), SUM

REAL MAN,IABS
LOGICAL SWITCH

7.6.2 DIMENSION Statement

The DIMENSION statement defines the number of dimensions in an array
and the number of elements in each dimension.

Format:

DIMENSION a (d) [[,a(d)...]]

7-47

FORTRAN 1V

where:
a is the symbolic name of an array
d is the dimension declarator
Example:

DIMENSION ARRAY(6,7,4)

The DIMENSION statement allocates storage locations, one for each
element in each dimension, for each array in the DIMENSION statement.
You may declare any number of arrays in one dimension statement. Each
storage location is six or twelve bytes in length as determined by the
data type of the array. The amount of storage FORTRAN assigns to an
array is equal to 6 or 12 times the product of all dimension
declarators in the array declarator for that array. For example,
DIMENSION ARRAY (4,4), MATRIX(5,5,5)

defines ARRAY as having 16 real elements of 6 words each, and MATRIX
as having 125 integer elements, also of 6 words each.

You cannot declare more than 7 dimensions to an array. There is also
a 1limit of 4095 elements to any array. Each size specification must
be a non-zero positive integer constant.

For further information concerning arrays and the storage of array
elements, see Section 2.6.

Array declarators can also appear in type declaration and COMMON
statements; however, in each program unit, an array name can appear
in only one array declarator.
You must not label DIMENSION statements.
Examples:

DIMENSION BUD(12,24,10)

DIMENSION X(5,5,5),Y(4,85),Z(100)

DIMENSION MARK (4,4,4,4,4)

7.6.3 EXTERNAL Statement

The EXTERNAL statement permits the use of external procedure names
(functions, subroutines, and FORTRAN library functions) as arguments
to other subprograms.

Format:

EXTERNAL v [[,v]] e

where:
v is the symbolic name of a subprogram or the name of a dummy
argument which is associated with a subprogram.
Example:

EXTERNAL SIN, COS, ABS

7-48

FORTRAN IV

Any subprogram which you use as an argument to another subprogram must
appear in an EXTERNAL statement in the calling subprogram. Thus, the
purpose of the EXTERNAL statement is to declare names to be subprogram
names. This distinguishes the external name v from other variable or
array names.

The subprogram may be ones that you write or those which are part of
the FORTRAN library. The EXTERNAL statement declares each name v to
be the name of a procedure external to the program unit. Such a name
can then appear as an actual argument to a subprogram.

NOTE

If you use a complete function reference
such as a call to the SQRT external
function in a reference such as CALL
SORT (A, SQRT (B) ,C), the function
reference is a value (the square root of
B) and you do not need to define it as
an external statement. You would only
have to define it if you were passing
the function name, i.e., CALL
SORT (A,SQRT,C) .

FORTRAN reserves the names you declare in an external statement
throughout the compilation of the program; you cannot use it in any
other declaration statement, with the exception of a type statement.

Example:
Main Program Subprograms
EXTERNAL SIN,COS,TAN SUBROUTINE TRIG (X,F,Y)
. Y = F(X)
. RETURN
CALL TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

FUNCTION TAN (X)

CALL TRIG (ANGLE,TAN,TANGNT) TAN = SIN(X) / COS (X)
. RETURN
. END

The CALL statements pass the name of a function to the subroutine
TRIG. The function is subseguently invoked by the function reference
F(X) in the second statement of TRIG. Thus, the second statement
becomes in effect:

Y = SIN(X)
Y = COS (X)
Y = TAN(X)

depending upon which CALL statement invoked TRIG. The functions SIN
and COS are examples of trigonometric functions supplied in the
FORTRAN Library.

FORTRAN IV

7.6.4 COMMON Statement

Use a COMMON statement so that programs and subprograms can share
information.

Format:
common [7 [[ep]] /] niist/ [eo]/ niist] ...
where:
cb is a symbolic name or is blank. If the first cb is
blank, you can omit the first pair of slashes, and
nlist is a list of variable names, array names, and array
declarators separated by commas.
Example:

COMMON /AREAl/A,B //C,D

The COMMON statement enables you to establish storage that two or more
programs and/or subprograms may share and to name the variables and
arrays that will occupy the common storage. The use of common storage
conserves storage and provides a means to implicitly transfer
arguments between a calling program and a subprogram. The transfer is
implicit because no actual tranferral takes place; instead, the
program unit references the common storage area.

FORTRAN determines the length of a COMMON block by the number of
components and the amount of storage each component requires. COMMON
blocks may be of any length, subject to the limitations of available
memory.

nlist, which appears after each common name cb, lists the names of the
variables and arrays that will occupy the common area cb. FORTRAN
places the items for a common within common storage area in the order
in which you list them in the COMMON statement or statements.

Elements you place into common storage in one program unit should
agree in data type with elements reference in a second. This is
because assignment of storage is on a storage unit-for-storage unit
basis, not variable-for-variable.

Either label COMMON storage areas or leave them blank (unlabeled). If
you label the common area, type a symbolic name within slashes
immediately before the list of items that will occupy the cb area.
For example, the statement

COMMON/AREAl/A,B,C/AREA2/TAB(13,3,3)
establishes two labeled common areas (i.e., AREAl and AREA2).
If you are declaring a common storage area to be blank common, then
you may omit the double slashes (//) if and only if it is the first
declaration of any common statement. Unlabeled common area is called
"blank common". If the blank common declaration is not the first

declaration in a COMMON statement, then the double slashes are
mandatory.

For example, the statement
COMMON/AREAl1/A,B,C//TAB(3,3,3)
establishes one labeled area (AREAl)} and one unlabeled common area.

7-50

FORTRAN IV

A given labeled common name may appear more than once in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.

During compilation of a source program, FORTRAN will bring together
all items you list for each labeled and blank common area in the order
in which the items appear in the source program statements.

For example, the series of source program statements:

COMMON/ST1/A,B,C/ST1/TAB(2,2)//C,D,E

COMMON/ST1/TST (3,4) //M,N

COMMON/ST2/X,Y,2//0,P,Q
has the same effect as the single statement
COMMON/STl/A,B,C,TST(3,4)/ST2/TAB(2,2),X,Y,Z//C,D,E,M,N,O,P,Q

FORTRAN treats each labeled common area as a separate, specific
storage area. You assign the contents of a common area, i.e.,
variables and arrays, initial values by DATA statements in a BLOCK
DATA subprogram. Declarations of a given common area in different
subprograms must contain the same number, size, and order of variables
and arrays as the reference array.

Common block names must be unique with respect to all subroutine and
function names.

The largest definition of a given common area must be loaded first.
Storage allocation for blocks of the same name begins at the same
location for all program units FORTRAN executes together. For
example, if a program contains:

COMMON A,B,C/R/X,Y,2
as its first COMMON statement, and a subprogram has:

/

COMMON /R/U,V,W //D,E,F
as its first COMMON statement, the values represented by X and U are
stored in the same location. A similar correspondence holds for A and
D in blank common.
If one program unit references a part of a common block, then you must
use dummy variables to establish the proper correspondence. For
example, if you declare a common block to contain:

A,B,C,D,E,F,G,H,I,J,K

and a subprogram wishes to reference the storage location pointed to
by K, then you must declare a common block as follows in the
subprogram:

COMMON A,B,C,D,E,F,G,H,I,J,K
The declaration COMMON K in the subprogram would cause a
correspondence between variable A in the main program and variable K

in the subprogram. (Note that any other sequence of variables names
would also be correct.)

7-51

FORTRAN 1V

Instead of declaring each variable contained in the COMMON block, you
may substitute a dummy array (provided that you are careful to
match-up proper storage lengths).

You may also define an array in a COMMON statement. You may not

otherwise subscript array names. Also, you cannot assign individual
array elements to COMMON.

7.6.5 EQUIVALENCE Statement

Use an EQUIVALENCE statement to associate different variables with the
same storage.

Format:

EQUIVALENCE (nlist) [I,(nlist)]]

where:
nlist is a list of variables and array elements, separated by
commas. At least two components must be present in
each list,
Example:

EQUIVALENCE (A,B),(C,D(16) ,E,F)

The EQUIVALENCE statement declares two or more entities to be
associated (either totally or partially) with the same storage
location.

NOTE

EQUIVALENCE differs from COMMON in that
EQUIVALENCE associates different
variable names with the same storage
area 1in a program unit. COMMON may
associate different variable names with
the same storage area but it always
makes the association between program
units.

The EQUIVALENCE statement causes FORTRAN to allocate all of the
variables or array elements contained in one parenthesized list
beginning at the same storage location.

You can also use the EQUIVALENCE statement to equate variable names.
For example, the statement

EQUIVALENCE (FLTLEN, FLENTH, FLIGHT)

causes FLTLEN, FLENTH, and FLIGHT to have the same value provided they
are also of the same data type.

FORTRAN IV

An EQUIVALENCE statement in a subprogram must not contain dummy
arguments.

Examples:

EQUIVALENCE (A,B), (B,C) (has the same effect as EQUIVALENCE
(4,B,C))

EQUIVALENCE (A(1l),X), (A(2),Y), (A(3),2)

7.6.5.1 Making Arrays Eguivalent - When you make an element of an
array egquivalent to an element of another array, the EQUIVALENCE
statement also sets equivalences between other elements of the two
arrays. Thus, if you make the first elements of two equal-sized
arrays equivalent, both arrays share the same storage space.
Moreover, if you make the third element of a 5-element array
equivalent to the first element of another array, the 1last three
elements of the first array overlap the first three elements of the
second array.

The EQUIVALENCE statement must not attempt to assign the same storage
location to two or more elements of the same array, nor to assign
memory locations in any way that is inconsistent with the normal
linear storage of array elements (for example, making the first
element of an array equivalent with the first element of another
array, then attempting to set an equivalence between the second
element of the first array and the sixth element of the other).

In the EQUIVALENCE statement only, it is possible to identify an array
element with a single subscript (that is, the linear element number) ,
even though you have defined one as being multi-dimensional.

For example, the statements:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE (4), TRIPLE(7))

result in the entire array TABLE sharing a portion of the storage
space FORTRAN allocates to array TRIPLE as illustrated in Figure 7-4.
In Figure 7-4, the elements with asterisks are those explicitly
mentioned in the above EQUIVALENCE statement.

Array TRIPLE Array TABLE
Array Element Array Element

Element Number Element Number

TRIPLE(1,1,1) 1
TRIPLE(2,1,1) 2
TRIPLE (1,2,1) 3
TRIPLE(2,2,1) 4 TABLE (1,1) 1
TRIPLE(1,1,2) 5 TABLE (2,1) 2
TRIPLE (2,1,2) 6 TABLE (1,2) 3
TRIPLE (1,2,2) 7% TABLE (2,2) 4*
TRIPLE (2,2,2) 8

Figure 7-4 Equivalence of Array Storage

FORTRAN IV

Figure 7-4 also illustrates that the following two statements

EQUIVALENCE (TABLE(l),TRIPLE (4))
EQUIVALENCE (TRIPLE(1,2,2), TABLE(4))

result in the same alignment of the two arrays.

7.6.5.2 EQUIVALENCE and COMMON Interaction - When you make components
equivalent to entities in common, it can cause FORTRAN to extend the
common block beyond its original boundaries.

An EQUIVALENCE statement can only extend common beyond the last
element of the previously established common block. It must not
attempt to increase the size of common in such a way as to place the
extended portion before the first element of existing common. (See
Figure 7-5.)

Valid Extension of Common

DIMENSION A(4),B(6) A(l) A(2) A(3) A(4)

COMMON A

EQUIVALENCE (A(Z),B(l)L B(1l) B(2) B(3), L5(4) B(5) B(G)I
Exiting Common Extended Portion

Illegal Extensions of Common

DIMENSION A(4),B(6) A(l) A(2) A(3) A(4)

COMMON A

EQUIVALENCE(A(Z),B(3))‘B(l) v7B(2)‘ L?(3) B(f) B(S{l B(6)
Extended Existing Common Extended
Portion Portion

Figure 7-5 Legal and Illegal Common Extensions

If you assign two components to the same or different common blocks,
you must not make them equivalent to each other.

7.7 DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

The DATA initialization statement permits the assignment of initial
values to variables and array elements prior to program execution.

Format:

DATA nlist/clist/ |[|I,]] nlist/clist/]]

where:
nlist is a list of one or more variable names, array names,
or array element names separated by commas,
is an optional separator, and
clist is a list of constants.

FORTRAN 1V

Example:
DATA A,B,C(3),C(7)/4.0,8.1,16.0,28.0/

The DATA statement causes FORTRAN to assign the constant values 1in
each clist to the entities in the preceding nlist. FORTRAN assigns
values in a one-to-one manner in the order in which they appear, from
left to right. [[IS COMMA OPTIONAL OR MANDATORY]]

When an unsubscripted array name appears in a DATA statement, FORTRAN
assigns values to every element of that array. The associated
constant list must therefore contain enough values to fill the array.
FORTRAN fills array elements in the order of subscript progression.
(See Section 2.6.1.)

When you assign Hollerith data to a variable or array element, the
number of characters that you can assign depends on the data type of
the component. If the number of characters in a Hollerith constant or
alphanumeric literal 1is 1less than the capacity of the variable or
array element, the constant is padded on the right with spaces. If
the number of characters in the constant is greater than the maximum
number that the variable can hold, it ignores the rightmost excess

characters.

when you assign the same value to more than one item in nlist, you may
use a repeat specification. Write the repeat specification as N*D
where N is an integer that specifies how many times the value of item
D is to be used. For example, a DATA specification of /3%20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. Also, the statement

DATA M,N,L /3*20/

assigns the value 20 to the variables M, N, and L. The number of
constants in a constant list must correspond exactly to the number of
entities specified in the preceding name list. The data types of the
data elements and their corresponding symbolic names must agree.

FORTRAN IV converts the constant to the type of the variable being
initialized.
Example:

INTEGER A (10) ,BELL,K(5,5,5)
DATA A,BELL,STARS/10%*0,7, Tkkkk /K /25%0,25%1,25%2,25%3,25%4,25*5/

The DATA statement assigns zero to all ten elements of array A, the
value 7 to the variable BELL, and four asterisks to the real variable
STARS. The 125 element array, K, is initialized so that each of the
five planes (i.e., the third dimension declarator) has a different
value.

When you initialize an array, you must initialize the entire array,
e.g., the DATA statement in the following

DIMENSION K
DATA K /10*1/

is illegal.

FORTRAN IV

You could effect the same thing as follows:

DIMENSION I(30),K(10)
EQUIVALENCE (I,K)
DATA K/10*1/

The values you assign with a DATA statement may also be assigned with
a BLOCK DATA subprogram. However, note that initial values for
variables in COMMON storage may not be specified in subprograms which
may be overlaid at execution time. If a subprogram will be overlaid,
then you should only initialize these variables in a BLOCK DATA
subprogram. (DIGITAL recommends that you only initialize variables in
COMMON storage with BLOCK DATA subprograms.)

Use a BLOCK DATA to initialize variables you place into COMMON
storage.

Format:
BLOCK DATA

Use the BLOCK DATA subprogram to assign initial values to entities 1in
common blocks, at the same time establishing and defining those
‘blocks. It consists of a BLOCK DATA statement followed by a series of
specification statements.

The statements FORTRAN allows in a BLOCK DATA subprogram are:

Type Declaration
DIMENSION

COMMON
EQUIVALENCE

DATA

The specification statements in the BLOCK DATA subprogram establish
and define common blocks, assign variables and arrays to those blocks,
and assign initial values to those components.

A BLOCK DATA statement must be the first statement of a BLOCK DATA
subprogram. You must not label the BLOCK DATA statement. .

A BLOCK DATA subprogram must not contain any executable statements.

If you initialize any entity in a common block in a BLOCK DATA
subprogram, you must enter a complete set of specification statements
to establish the entire block, even though some of the components in
the block do not appear in a DATA statement. You can define initial
values for more than one common area with the BLOCK DATA subprogram.

7.8 CONTROL STATEMENTS

FORTRAN normally executes statements in the order in which you write
them. However, it 1is frequently desirable to change the normal
program flow by transferring control to another section of the program
or to a subprogram. Transfer of control from a given point in the
program may occur every time that point 1is reached in the program
flow, or may be based on a decision made at that point.

7-56

FORTRAN IV

Transfer of control, whether within a program unit or to another
program unit, 1is performed by control statements. These statements
also govern iterative processing, suspension of program execution, and
program termination. The types of control statements discussed in
this chapter are:

ASSIGN

CONTINUE

DO

END

IF

GO TO

PAUSE

STOP

A second kind of statement for transferring control, subprograms, are
discussed in Chapter 8.

7.8.1 GOTO Statements
GOTO statements transfer control within a program unit, either to the
same statement every time or to one of a set of statements, based on
the value of an expression.
The three types of GOTO statements are:

e Unconditional GOTO statement,

e Computed GOTO statement, and

e Assigned GOTO statement.

7.8.1.1 Unconditional GOTO Statement - Transfers control to the same
statement every time executed.

Format:
GOTO st
where:

st is the label of an executable statement in the same program
unit as the GOTO statement.

Example:

GOTO 50
The unconditional GOTO statement transfers control to the statement
identified by the specified label. The statement label must identify
an executable statement in the same program unit as the GOTO
statement.
Examples:

GOTO 7734

GOTO 99999

GOTO 27.5 (Invalid; the statement label is improperly
formed.)

FORTRAN IV
7.8.1.2 Computed GOTO Statement - Transfers control to a statement
based on the value of an expression within the statement.

Format:

GOTO (slist) [[,]] e

where:
slist is a 1list of one or more executable statement labels
separated by commas,
' is an optional separator, and
is an integer expression the value of which falls
within the range 1 to n (where n is the number of
statement labels in slist).
Example:

GOTO (10,200,25), NUMBER

Use the computed GOTO to transfer control to one statement out of a
list of statements. The computed GOTO thus acts as a
multi-directional switch.

The computed GOTO statement evaluates the integer expression e. The
GOTO statement then transfers control to the e'th statement label in
slist. That is, if the list contains (30,20,30,40), and the value of
e 1is 2, the GOTO statement transfers control to statement 20, and so
on.

You may include any number of statements in slist but you must use
each number as a label within the program.

The comma following (slist) is optional.

If the value of the expression is less than 1, or greater than the
number of labels in the slist, unpredictable results occur.

Examples:
GOTO (12,24,36) ,INCHES

GOTO (320,330,340,350,360)ISITU(J,K)+1

7.8.1.3 ASSIGN and ASSIGNed GOTO Statement - Use the ASSIGN statement
to assign a statement label to a variable name.

Format:
ASSIGN st to v
where:
st is the label of an executable statement in the same program
unit as the ASSIGN statement, and
v is an integer variable.

Example:

ASSIGN 50 TO NUMBER

FORTRAN 1V

Use the ASSIGN statement to associate a statement label with an
integer variable. You can then use the variable as a transfer
destination in a subsequent ASSIGNed GOTO statement.

NOTE

The statement number must be in the same
program unit.

The statement label st must not be the label of a FORMAT statement.
The ASSIGN statement assigns the statement number to the variable in a
manner similar to that of an arithmetic assignment statement, with one
exception: the variable becomes defined for use as a statement 1label
reference and becomes undefined as an integer variable.

FORTRAN must execute an ASSIGN statement before the ASSIGNed GOTO
statement in which it will use the assigned variable. The ASSIGN

statement and the ASSIGNed GOTO statement must occur in the same
program unit.

For example, the statement

ASSIGN 100 TO NUMBER
associates the variable NUMBER with the statement label 100.
Arithmetic operations on the variable, such as in the statement

NUMBER = NUMBER + 1
then become invalid, as FORTRAN cannot alter a statement label. (This
is because a statement refers to a location in memory and is not a
number.) The statement:

NUMBER = 10
disassociates NUMBER from statement 100, assigns it an integer value
10, and returns it to its status as an integer variable. After you
make such an assignment, you can no longer use it in an ASSIGNed GOTO
statement.
Examples:

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR (ERROR must have been defined as an
integer variable.)

The ASSIGNed GOTO transfers control to a statement which is
represented by a variable.

Format:
coro v[[[[.] tstist)]
where:
\4 is an integer variable,
’ is an optional separator, and
slist (when present) is a list of one or more executable

statement labels separated by commas.

7-59

FORTRAN IV

Example:
GOTO NUMBER, (10,35,15)
The ASSIGNed GOTO statement transfers control to the statement whose

label was most recently assigned to the variable v by an ASSIGN
statement. (See Section XXX.)

The variable v must be of integer type. 1In addition, you must have
previously assigned to it a statement label number with an ASSIGN
statement (not an arithmetic assignment statement).

The ASSIGNed GOTO statement and its associated ASSIGN statement must
reside in the same program unit. Also, statements to which FORTRAN
transfers control must be executable statements in the same program
unit.

Examples:

ASSIGN 50 TO IGO
GOTO IGO

GOTO INDEX, (300,450,1000,25)
If the statement label value of v is not present in the 1list slist
(and a list 1is specified), control transfers to the next executable
statement following the ASSIGNed GOTO statement.
NOTE
You must label the statement following

an ASSIGNed GOTO; otherwise, FORTRAN
can never execute that statement.,

7.8.2 1IF Statements
An IF statement causes a conditional control transfer or the
conditional execution of a statement. There are two types of IF
statements:

e Arithmetic IF statements, and

e Logical IF statements.

7.8.2.1 Arithmetic IF Statement - Use the arithmetic IF as a
three-way branching statement. The branching depends on whether the
value of an expression is less than, equal to, or greater than zero.
Format:

IF (e) stl, st2, st3

where:

e is an arithmetic expression, and
stl, st2, st3 are the labels of executable statements in the
same program unit.

FORTRAN IV

Example:
IF (I-K) 10, 20, 30

Use the arithmetic IF statement for conditional control transfers.
This statement can transfer control to one of three statements, based
on the value of an arithmetic expression.

You may use logical expressions in arithmetic IF statements. In such
a case, FORTRAN first converts the logical expression value to an
integer. 1If you use a complex expression, FORTRAN only uses the real
portion.

Normal use of the arithmetic IF requires that all three labels, stl,
st2, and st3, must be present. However, they need not refer to three
different st. If desired, one or two labels can refer to the same
statement.

0S/78 FORTRAN allows you to type less than three numbers. If you type
either one or two numbers, then if a condition is not met (e.g., e is
greater than zero), then control passes to the next statement.

Example:

IF (ALPHA) 10
STOP

In this statement, control transfers to statement number 10 if ALPHA
is negative. If ALPHA is positive or equal to zero, execution stops.

The arithmetic IF statement first evaluates the expression in
parentheses and then transfers control to one of the three statement
labels that follow expression e. The values upon which FORTRAN makes
the selection are listed in Table 7-18.

Table 7-18
Arithmetic IF Transfers

If the Value is: Control Passes to:
Less than 0 Labels stl
Equal to 0 Label st2
Greater than 0 Label st3

Examples:

IF (THETA-CHI) 50,50,100
This statement transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI. Control passes
to statement 100 only if THETA is greater than CHI.

IF (NUMBER/2*2-NUMBER) 20,40

This statement transfers control to statement 40 if the value of the
integer variable NUMBER is even and to statement 20 if it is odd.

7-61

FORTRAN 1V

7.8.2.2 Logical IF Statement - Use a 1logical IF statement for
conditional execution of statements.

Format:
IF (e) st
where:
e is a logical expression, and

st is a complete FORTRAN statement. The statement can be any
executable statement except a DO statement or another
logical IF statement.
Example:
IF(X .EQ. Y) z=4
A logical IF statement causes a conditional statement execution.
FORTRAN bases the decision to execute the statement on the value of a
logical expression within the statement.
The logical IF statement first evaluates the logical expression. If
the value of the expression is true, FORTRAN transfers control to the
executable statement within the IF statement. If the value of the
expression is false, control transfers to the next executable
statement following the logical IF; in this case, FORTRAN does not
execute statement st.
Examples:
IF (J .GT. 4 .OR. J .LT. 1) GOTO 250
IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K)*A(K,J)

IF (.NOT. X) CALL SWITCH(S,Y)

7.8.3 DO Statement
Use the DO statement to repeatedly execute a block of statements.
Format:
DO st i=el,e2 ﬂ,e3ﬂ
where:

st is the label of an executable statement which physically
follows in the same program unit,

i is an unsubscripted real or integer variable,

el (the initial value of i) is an integer or real constant or
expression,

e2 {the terminal value of i) is an integer or real constant or
expression and must be greater than el, and

e3 (the value by which i will be incremented each time it

executes the statements in the range of the DO loops) an
integer real constant or expression.

FORTRAN IV

Example:
Do 10 1=1,10,2
DO 20 I=J,K,L

The DO statement causes FORTRAN to repeatedly execute the statements
in its range a specified number of times.

The range of a DO statement is defined as the series of statements
that follow the DO statement up to and including its specified
terminal statement st, that is, the statements that follow the DO
statement, up to and including the terminal statement are in the range
of the DO loop.

The variable i is called the control (or index) variable of the DO and
el, e2, e3 are the initial, terminal, and increment parameters
respectively.

The terminal statement of a DO loop is identified by the label st that
appears in the DO statement. This terminal statement must not be a
GOTO statement, an arithmetic IF statement, a RETURN statement, PAUSE
statement, STOP statement, or another DO statement. A logical IF
statement is acceptable as the terminal statement, provided it does
not contain any of the above statements.

The DO statement first evaluates the expressions el, e2, e3 to
determine values for the initial, terminal, and increment parameters.
FORTRAN then assigns value of the initial parameter to the control
variable. FORTRAN then repeatedly executes the statements in the
range of the DO loop.

The increment parameter must be positive, and the value of the
terminal parameter must not be less .than that of the initial
parameter.

The value of the increment parameter must not be zero.

After each execution of the range of the DO 1loop, FORTRAN adds the
increment value to the value of the index. It then compares the
result to the terminal value. If the index value is not greater than
the terminal value, FORTRAN reexecutes the range using the new value
of the index i.

The number of executions of the DO range, called the iteration count,
is given by

MAX (1, ((e2-el)/e3) + 1

FORTRAN always executes the range of a DO statement at least once.

7.8.3.1 DO Iteration Control - You can terminate the execution of a
DO by a statement within the range that transfers control outside the
loop. When you transfer out of the DO 1loop's range, the control
variable of the DO remains defined with its current value.

When execution of a DO loop terminates, if other DO 1loops share the
same terminal statement, control transfers outward to the next most
enclosing DO loop in the DO nesting structure (Section 7.4.2). If no
other DO loop share this terminal statement, or if this DO is the
outermost DO, control transfers to the first executable statement
following the terminal statement.

FORTRAN 1V

You may alter the values of i, el, e2, and e3. 1If you alter the value
of i, the 1loop will not be executed the number of times which you
originally specified. If you alter the values of the expressions, you
do not affect the looping as FORTRAN "remembers" these values. The
control variable i is available for reference as a variable within the
range.

The range of a DO loop can contain other DO statements, as long as
those "nested" DO loops conform to certain requirements.

You can transfer control out of a DO loop, but you cannot transfer
into a loop from elsewhere in the program. Exceptions to this rule
are described in the following sections.

Examples:
DO 100 K=1,50,2 (25 iterations, K=49 during final iteration)
DO 25 IVAR=1,5 (5 iterations, IVAR=5 during final iteration)
DO NUMBER=5,40,4 (Invalid; statement label missing)
DO 40 M=2,10 (Invalid; decimal point instead of comma)

The last example illustrates a common clerical error. It is a wvalid
arithmetic assignment statement in the FORTRAN language; 1i.e.,

DO40M = 2.10

7.8.3.2 Nested DO Loops - A DO loop may contain one or more complete
DO 1loops. The range of an inner nested DO must lie completely within
the range of the next outer loop. Nested loops may share the same
terminal statement. (See Figure 7-6.)

Correctly Nested Incorrectly Nested
DO Loops DO Loops
DO 45 K=1,10 DO 15 K=1,10
DO 35 L=2,50,2 DO 25 L=1,20
35 CONTINUE 15 CONTINUE
DO 45 M=1,20 DO 30 M=1,15

45 CONTINUE .
25 CONTINUE

30 CONTINUE

Figure 7-6 Nesting of DO Loops

FORTRAN 1V

In the correctly nested DO loops, note that the diagrammed 1lines do
not cross. They do, however, share the same statement (45). In the
incorrectly nested DO loops, the loop defined by DO 25 crosses the
ranges of the other two DO loops.

Note that you may nest loops to a depth of (at least) 10 levels.

7.8.3.3 Control Transfers in DO Loops - Within a nested DO 1loop
structure, you can transfer control from an inner loop to an outer
loop. A transfer from an outer loop to an inner loop is illegal.

If two or more nested DO loops share the same terminal statement, you
can transfer control to that statement only from within the range of
the innermost loop, that is, the terminal statement belongs solely to
the innermost DO statement. Any other transfer to that statement
constitutes a transfer from an outer loop to an inner loop because the
shared statement is part of the range of the innermost loop.

The following rules govern the transfer of program control from within
the DO statements range or the ranges of nested DO statements.

e FORTRAN permits a transfer out of the range of any DO
statement at any time. When such a transfer executes, the
controlling DO statement's index variable retains its current
value.

® FORTRAN permits a transfer into the range of a DO statement
from within the range of any:

1. DO loop;
2. nested DO loop; or

3. extended range loop (in which you leave the loop via a
GOTO, execute statements elsewhere, and return to the
original loop).

7.8.3.4 Extended Range - A DO loop is said to have an extended range
if it contains a control statement that transfers control out of the
loop and if, after the execution of one or more statements, another
control statement returns control back into the loop. 1In this way,
FORTRAN extends the range of the loop to include all of the executable
statements between the destination statement of the first transfer and
the statement that returns control to the loop.

Figure 7-7 illustrates valid and invalid control transfers.

FORTRAN IV

valid Invalid
Control Transfers Control Transfers
DO 35 K=1,10 GOTO 20
DO 15 L=2,20 DO 50 K=1,10
GOTO 20 20 A=B+C
15 CONTINUE DO 35 L=2,20
20 A=B+C 30 D=E/F
DO 35 M=1,15 35 CONTINUE
GO TO 50 GO TO 40
30 X=A*D DO 45 M=1,15
35 CONTINUE 40 X=A*D
. 45 CONTINUE
50 D=E/F .
Extended . 50 CONTINUE
Range . .
GOTO 30 GOTO 30

Figure 7-7 Control Transfers and Extended Range

The following rules govern the use of a DO statement extended range:

The transfer out statement for an extended range operation
must be contained by the most deeply nested DO statement that
contains the location to which the return transfer is to be
made.

A transfer into the range of a DO statement is permitted only
if the transfer is made from the extended range of that DO
statement.

The extended range of a DO statement must not contain another
DO statement.

The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

You may execute subprograms within an extended range.

7.8.4 CONTINUE Statement

Insert a CONTINUE statement where you do not wish any statement to be
executed.

Format:

st

CONTINUE

7-66

FORTRAN IV

where:
st is a statement label.

A CONTINUE statement is a statement that holds a place in the program
without performing any operations.

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GOTO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a logical 1IF statement
containing one of the previous statements. However, they are valid
throughout a source program.

Note that you also use a CONTINUE as a transfer point for a GOTO
statement within the DO 1loop that is intended to begin another
repetition of the loop.

Example:

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

.

no 45 ITEM=1,1000

STOCK=NUNTRY(ITEM)

IF (STOCK .EQ. TALLY) GO TO 435

CALL UFDATE(STOCK,»TALLY)

IF (ITEM .EQ. LAST) GO TO 77
45 CONTINUE

+

*

77 WRITE (4,20) HEADING» FAGENO

*
*

*

7.8.5 PAUSE Statement

The PAUSE statement temporarily suspends program execution to permit
some action on the part of the user.

Format:
PAUSE IInum]]
where:

num is an optional integer variable or expression containing one
to five digits.

The PAUSE statement prints the display (if you have specified one) at
your terminal, suspends program execution, and waits for you to type
the RETURN key. This causes program execution to resume with the
first executable statement following the PAUSE.

7-67

FORTRAN IV

Examples:
PAUSE "13731

PAUSE 'MOUNT TAPE REEL #3'

7.8.6 STOP Statement
Use the STOP statement to terminate program execution.
Format:

STOP
The STOP statement terminates program execution and returns control to
the operating system. If you do not type a STOP statement, a "stop"
occurs when FORTRAN transfers control to an END statement in the main
program unit.
A CALL EXIT statement is equivalent to STOP and closes any temporary
files at the last block written on the file. Control returns to the
0S/78 Monitor.
Examples:

STOP

99999 STOP

7.8.7 END Statement

The END statement marks the end of every program unit and it must be
the last source line of every program unit.

Format:

END
In a main program, if control reaches the END statement, execution of
the program terminates; in a subprogram, a RETURN statement is
implicitly executed.

In the main program, END is equivalent to STOP. In a subprogram, it
is equivalent to RETURN.

A program cannot reference an END statement.

Control returns to the 0S/78 Monitor after FORTRAN executes an END
statement.

If you do not type an END statement as the last statement in your
program, FORTRAN appends one.

7-68

FORTRAN IV

7.9 SUBPROGRAMS

Procedures you use repeatedly in a program may be written once and
then referenced each time you need the procedure. Procedures that you
may reference are either internal (written and contained within the
program in which they are referenced) or external (self-contained
executable procédures that you may compile separately). The kinds of
procedures that you may reference are:

e Arithmetic Statement Functions,
e External Functions,
® Subroutines, and

e Intrinsic functions (FORTRAN-defined functions).

7.9.1 Subprogram Arguments

Since you may reference subprograms at more than one point throughout
a program, many of the values which the subprogram uses may be changed
each time the subprogram is called. Dummy arguments in subprograms
represent the actual values which the subprogram will use. The
arguments are passed to the subprogram when FORTRAN transfers control
to it.

Functions and subroutines use dummy arguments to indicate the type of
the actual arguments they represent and whether the actual arguments
are variables, array elements, arrays, subroutine names, or the names
of external functions. You must use each dummy argument within a
subprogram as if it were a variable, array, array element, subroutine,
or external function identifier. You enter dummy arguments in an
"argument list" which you associate with the identifier assigned to
the subprogram; actual arguments are normally given in an argument
list which you associate with a call made to the subprogram.

The position, number, and type of each dummy argument in a subprogram
must agree with the position, number, and type of each argument in the
argument list of the subprogram reference.

Dummy arguments may be:
e Variables,
e Array names,
e Subroutine identifiers, or
e Function identifiers.

When you reference a subprogram, FORTRAN replaces its dummy arguments
by the corresponding actual arguments which you supply in the
reference. All appearances of a dummy argument within a function or
subroutine are related to the given actual arguments. Except for
subroutine identifiers and 1literal constants, a valid association
between dummy and actual arguments occurs only if both are of the same
type; otherwise, the result of the subprogram will be unpredictable.
Argument associations may be carried through more than one level of
subprogram reference if a valid association is maintained through each
level. FORTRAN terminates the dummy/actual argument associations
which it establishes when you reference a subprogram. This occurs
when FORTRAN completes the operations defined in the subprogram.

FORTRAN IV

The following rules govern the use and form of dummy arguments:

e The number and type of the dummy arguments of a procedure must
be the same as the number and type of the actual arguments
given each time you reference the procedure.

e Dummy argument names may not appear in EQUIVALENCE, DATA, or
COMMON statements.

e A variapble dummy argument should have a variable, an array
element identifier, an expression, or a constant as its
corresponding argument.

e An array dummy argument should have either an array name or an
array element identifier as its corresponding actual argument.
If the actual argument is an array, the length of the dummy
array should be 1less than or equal to that of the actual
array. FORTRAN associates each element of a dummy array
directly with the corresponding elements of the actual array.

e A dummy argument representing an external function must have
an external function as its actual argument.

e A dummy argument representing a subroutine identifier should
have a subroutine name as its actual argument.

® You may define (or redefine) a dummy argument in a referenced
subprogram only if its corresponding actual argument is a
variable. If dummy arguments are array names, then you may
redefine the elements of the array.

7.9.2 User-written Subprograms

FORTRAN transfers control to a function by means of a function
reference. It transfers control to a subroutine by a CALL statement.
A function reference is the name of the function, together with its
arguments, appearing in an expression. A function always returns a
value to the calling program. Both functions and subroutines may
return additional values via assignment to their arguments. A
subprogram can reference other subprograms, but it cannot, either
directly or indirectly, reference itself (that is, FORTRAN is not
recursive).

7.9.2.1 Arithmetic Statement Functions (ASE) - Use an Arithmetic
Statement - Function to define a one statement, self-contained
computational procedure.
Format:

nam (ﬂa ﬁ,aﬂ ...ﬂ) =e
where:

nam is the name you assign to the ASF,

a is a dummy argument, and
e is an expression.
Examples:

PROOT (A,B,C)
NROOT (A,B,C)

(-B+SQRT (B**2 - 4*A*C))/(2*A)
(-B-SQRT (B**2 — 4*A*X))/(2*A)

7-70

FORTRAN 1V

An arithmetic statement function is a computing procedure which you
define by a single statement, similar in form to an arithmetic
assignment statement. The appearance of a reference to the function
within the same program unit causes FORTRAN to perform the computation
and make the resulting value available to the expression in which the
ASF reference appears.

The expression e 1is an arithmetic expression that defines the
computation to be performed by the ASF.

You reference an ASF in the same manner as an external function.

Format:

nam ([[a[[,a]]]])
where:

nam 1is the name of the ASF, and
a is an actual argument.

NOTE

You must define all ASFs before you type
any executable statements.

When a reference to an arithmetic statement function appears in an
expression, FORTRAN associates the values of the actual arguments with
the dummy arguments in the ASF definition. FORTRAN then evaluates the
expression in the defining statement and uses the resulting value to
complete the evaluation of the expression containing the function
reference.

Specify the data type of an ASF either implicitly by the initial
letter of the name or explicitly in a type declaration statement.

Dummy arguments in an ASF definition only indicate the number, order,
and data type of the actual arguments. You may use the same names to
represent other entities elsewhere in the program unit. Note also
that with the exception of data type, FORTRAN does not associate
declarative information (such as placement in COMMON or declaration as
an array) with the ASF dummy arguments. Note that you cannot use the
name of the ASF to represent any other entity within the same program
unit.

The expression in an ASF definition may contain function references.

Any reference to an ASF must appear in the same program unit as the
definition of that function. You cannot use an ASF name in an
EXTERNAL statement.

An ASF reference must appear as, or be part of, an expression; you
must not use it as the left side of an assignment statement.

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments. You must assign values to actual
argument before the reference to the arithmetic statement function.

FORTRAN 1V

Examples:

Definitions
VOLUME (RADIUS) = 4.189*RADIUS**3
SINH (X) = (EXP(X)-EXP(-X))*0.5

AVG(A,B,C,3.) = (A+B+C)/3. (invalid; constant as dummy
argument not permitted)

ASF References

AVG(A,B,C) = (A+B+C) /3. (definition)

GRADE = AVG(TEST1,TEST2,XLAB)

IF (AVG(P,D,Q).LT.AVG(X,Y,Z)) GOTO 300

FINAL = AVG(TEST3,TEST4,LAB2) (Invalid; data type of third
argument does not agree with dummy
argument)

7.9.2.2 FUNCTION Subprogram — A FUNCTION is an external computing
procedure that returns a value. You use this value as an expression
or as part of an expression.

Format:

IItyp]] FUNCTION nanm(a II ,a..]])
where:

typ is an optional data type specifier,
nam is a name of the function, and
a is one of a maximum of six dummy arguments.

A FUNCTION subprogram is a program unit that consists of a FUNCTION
statement followed by a series of statements that define a computing
procedure. FORTRAN transfers control to a FUNCTION subprogram by a
function reference and returns to the calling program unit when it
encounters a RETURN statement.

You must always specify at least one argument to a FUNCTION. You may
specify other arguments explicitly or place them in COMMON.

A FUNCTION subprogram returns a single value to the calling program
unit by assigning that wvalue to the function's name. FORTRAN
determines the data type of the returned value by the function's name
unless you have explictly specified the data type.

A function reference that transfers control to a FUNCTION subprogram
has the form:

nam (ﬂa ﬂ,aﬂ ...B)
where:

nam 1is the symbolic name of the function, and
a is an actual argument.

7-72

FORTRAN IV

When FORTRAN transfers control to a function subprogram, FORTRAN
associates the values you supply by the actual arguments (if any) with
the dummy arguments (if any) in the FUNCTION statement. FORTRAN then
executes the statements in the subprogram.

NOTE

You may not pass an array to a
subprogram if it contains more than 2047
elements. You must implicitly pass
larger arrays in COMMON.

You must assign a value to the name of the function before FORTRAN
executes a RETURN statement in that function. When FORTRAN returns
control to the calling program unit, it makes the value you have
assigned to the function's name available to the expression that
contains the function reference; it then uses this value to complete
the evaluation of the expression.

NOTE

You can store variables that a FUNCTION
requires in COMMON rather than passing
them explicitly.

You may specify the type of a function name implicitly, explicitly in
the FUNCTION statement, or explicitly in a type declaration statement.

The FUNCTION statement must be the first statement of a function
subprogram. You may not label a FUNCTION statement.

A FUNCTION subprogram must not contain a SUBROUTINE statement, a BLOCK
DATA statement, or a FUNCTION statement (other than the initial
statement of the subprogram). A function may, however, call another
function or subroutine so long as the call 1is not directly or
indirectly recursive.

7.9.2.3 SUBROUTINE Subprograms - A SUBROUTINE is an external
computing procedure that you may repeatedly call from a program or
subprogram.

Format:

SUBROUTINE nam [I(l[aﬂ,a]]]])]]

where:

nam is the name of the subroutine, and
a is a dummy argument.

A SUBROUTINE subprogram is a program unit that consists of a
SUBROUTINE statement followed by a series of statements that define a
computing procedure. FORTRAN transfers control to a SUBROUTINE
subprogram by a CALL statement and returns to the calling program unit
by a RETURN statement.

FORTRAN IV

When FORTRAN transfers control to a subroutine, it associates the
values you supply with the actual arguments (if any) in the CALL
statement with the corresponding dummy arguments (if any) 1in the
SUBROUTINE statement. You may not specify more than six arguments in
a subroutine call. FORTRAN then executes the statements in the

subprogram.

The SUBROUTINE statement must be the first statement of a subroutine;
it must not have a statement label.

A SUBROUTINE subprogram cannot contain a FUNCTION statement, a BLOCK
DATA statement, or a SUBROUTINE statement (other than the initial
statement of the subprogram).

Example:

c MAIN PROGRAM
COMMON NFACESs EDNGE» VOLUME
READ (4:65) NFACES, EDGE
6% FORMAT(IZ2sF8.3)
CALl. PLYVOL
WRITE (4+66) VOLUME
&6 FORMAT ¢’ VOLUME=’,F)
S8TOF
ENI

SURROUTINE PLYVOL

COMMON NFACESy EDGEy VOLUME

CUBED = ENGEXX3

GOTO (6!696!1!6va673y61696!476767676761676!516)7NFACES
1 VOLUME = CURED X 0.117835

RETURN
2 VOLUME

RETURN
3 VL UME

RETURN
4 VOLUME

RETURN
5 VOLUME

RETURN
6 WRITE (4r100) NFACES
100 FORMAT(’ NO REGULAR FOLYHEDRON HAS ‘»I3y FACES.”)

RETURN

END

CURED

CURED % 0.47140

i

it

CURED % 7.66312

CURED x 2,18170

it

The subroutine in this example computes the volume of a regular
polyhedron, given the number of faces and the length of one edge. It
uses a computed GOTO statement to determine whether the polyhedron is
a tetrahedron, cube, octahedron, dodecahedron, or icosahedron, and to
transfer control to the proper procedure for calculating the volume.
If the number of faces of the body is other than 4, 6, 8, 12, or 20,
the subroutine transmits an error message to logical unit 4 as
indicated in the WRITE statement.

7.9.3 CALL Statement

The CALL statement causes the execution of a SUBROUTINE subprogram;
it can also specify an argument list for use by the subroutine.

Format:

cart s [([a] [2] .- 1]

FORTRAN IV

where:

s is the name of a SUBROUTINE subprogram, a user-written
assembly language routine, or a DEC-supplied system
subroutine, or a dummy argument associated with one of the
above.

a is an actual argument.

The CALL statement associates the values in the argument list (if the
list is present) with the dummy arguments in the subroutine and then
transfers control to the first executable statement of the subroutine.

The arguments in the CALL statement must agree in number, order, and
data type with the dummy arguments in the subroutine definition. They
can be variables, arrays, array elements, constants, expressions,
alphanumeric literals, or subprogram names (if those names have been
specified in an EXTERNAL statement, as described in Section 5.4).
Note that an unsubscripted array name in the argument list refers to
the entire array.

Examples:

CALL CURVE (BASE,3.14159+X,Y,LIMIT,R(LT+2))
CALL PNTOUT (A,N,'ABCD')

7.9.4 RETURN Statement

Use the RETURN statement to return control from a subprogram unit to
the calling program unit.

Format:
RETURN

When FORTRAN executes a RETURN statement in a FUNCTION subprogram, it
returns control to the statement that contains the function reference
(see Section XXX). When FORTRAN executes a RETURN statement in a
SUBROUTINE subprogram, it returns control to the first executable
statement following the CALL statement which initiated execution of
the subprogram.

A RETURN statement must not appear in a main program unit.

Example:
SUBROUTINE CONVRT (NsALFHsDATAsFRNT»K)
DIMENSION DATA(N) s FRNT(N)
IF (N .LT. 10) GOTO 100
DATACK+2) = N~(N/10)X%N
N = N/1O
DATA(K+1) = N
FRNT(K+2) = ALFH(DATA(K+2)+1)
FRNT(K+1) = ALFH{(DATA(K+1)+1)
RETURN

100 PRNT(K+42) = ALFH(N+1)

RETURN
END

FORTRAN IV

7.9.5 FORTRAN Library Functions

The FORTRAN library functions are listed and described in Section
7.12. You write function references to FORTRAN library functions in
the same form as function references to user-defined functions. For
example,

R = 3.14159 * ABS(X-1)

causes the absolute value of X-1 to be calculated, multiplied by the
constant 3.14159, and assigned to the variable R.

The data type of each library function and the data type of the actual
arguments is specified in Appendix B. Arguments you pass to these
functions may not be array names or subprogram names.

Processor-defined function references are local to the program unit in
which they occur and do not affect or preclude the use of the name for
any other purpose in other program units.

7.10 INPUT/OUTPUT STATEMENTS

You specify input of data to a program by READ statements and output
by WRITE statements. You use some form of these statements in
conjunction with format specifications to control translation and
editing of the data between -internal representation and character
(readable) form.

Each READ or WRITE statement contains a reference to the logical unit
to or from which data transfer is to take place. You may associate a
logical unit to a device or file.

READ and WRITE statements fall into the following three categories:

e Unformatted Segquential I/0
Unformatted sequential READ and WRITE statements transmit
binary data without translation.

e Formatted Sequential I/0
Formatted seguential READ and WRITE statements transmit
character data using format specifications to control the
translation of data to characters on output, and to internal
form on input.

e Unformatted Direct Access I/0
Unformatted direct access READ and WRITE statements transmit
binary data without translation to and from direct access
files.

The auxiliary I/O statements, REWIND and BACKSPACE do not perform data
transfer, but perform file positioning. The ENDFILE statement writes
a special record that will cause an end-of-file condition when read by
a READ statement. The BACKSPACE statement repositions a file to the
previous record. The DEFINE FILE statement declares a logical unit to
be connected to a direct access file and specifies the characteristics
of the file.

7 10.1 Defining I/0 Operations

FORTRAN I/O operations require knowledge of logical wunit numbers,
format specifiers, and record transmission.

7-76

FORTRAN IV

7.10.1.1 Input/Output Devices and Logical Unit Numbers - 0S/78
FORTRAN uses the I/0O services of the operating system and thus
supports all peripheral devices that are supported by the operating
system. I/0 statements refer to I/0 devices by means of logical unit
numbers which are integer constants or variables with a positive
value.

The default logical unit numbers are:

3 Line Printer
4 Terminal
The logical unit number must be in the range 1 through 9. For more

information, see Sections 7.1.2.1 and 7.1.3.

7.10.1.2 Format Specifiers - Use format specifiers in formatted 1I/0
statements. A format specifier 1is the statement label of a FORMAT
statement. Section 7.11 discusses FORMAT statements.

7.10.1.3 Input/Output Record Transmission - I/O statements transmit
data in terms of records. The amount of information that one record
can contain, and the way in which records are separated, depend on the
medium involved. v

For unformatted I/0O, specify the amount of data which FORTRAN will
transmit by an I/0 statement. FORTRAN determines the amount of
information it will transmit by the 1/0 statement and by
specifications in the associated format specification.

If an input statement requires only part of a record, the excess
portion of the record is lost. 1In the case of formatted seguential
input or output, you may transmit one or more additional records by a
single I/0 statement.

7.10.2 Input/Output Lists

An I/O list specifies the data items to be manipulated by the
statement containing the 1list, The I/0 list of an input or output
statement contains the names of variables, arrays, and array elements
whose values FORTRAN will transmit. In addition, the I/0 list of an
output statement can contain constants and expressions.

Format:
s[.s] -
where:
s is a simple list or an implied DO 1list.

The I/0O statement assigns input values to, or outputs values from, the
list elements in the order in which they appear, from left to right.

FORTRAN IV

7.10.2.1 Simple Lists - A simple I/O list consists of a single
variable, array, array element, constant, or expression.

When an unsubscripted array name appears in an I/O 1list, a READ
statement inputs enough data to fill every element of the array; a
WRITE statement outputs all of the values contained in the array.
Data transmission starts with the initial element of the array and
proceeds in the order of subscript progression, with the leftmost
subscript varying most rapidly. For example, if the unsubscripted
name of a 2-dimensional array defined as:

DIMENSION ARRAY(3,3)

appears in a READ statement, that statement assigns values from the
input record(s) to ARRAY (1,1), ARRAY(2,1), ARRAY (3,1), ARRAY(1l,2), and
so on, through ARRAY(3,3).

If, in a READ statement, you input the individual subscripts for an
array, you must input the subscripts before their use in the array.
If, for example, FORTRAN executes the statement:

READ (1,1250) J,K,ARRAY (J,K)
1250 FORMAT (I1,X,I1,X,F6.2)

and the input record contains the values:
1,3,721.73

FORTRAN assigns the value 721.73 to ARRAY(1l,3). FORTRAN assigns the
first input value to J and the second to K, thereby establishing the
actual subscript values for ARRAY (J,K). Variables that you wuse as
subscripts in this way must appear to the left of their use in the
array subscript. ‘

You may use any valid expression in an output statement I/O 1list.
However, the expression must not cause FORTRAN to attempt further I/O
operations. A reference in an output statement I/O list expression to
a FUNCTION subprogram that itself performs input/output is illegal.

You must not include an expression in an input statement I/0 list
except as a subscript expression in an array reference.

7.10.2.2 Implied DO Lists - Use an implied DO 1list to specify
iteration within an I/O list.

Format:
(list,i=el,e2)
where:

list is an 1/0 list,

i is a control variable definition,
el is the initial value of i, and

e2 is the terminal value of i.

You use an implied DO list to specify iteration within an I/O list, to
transmit only part of an array, or to transmit array elements in a
sequence other than the order of subscript progression. The implied
DO 1list functions as though it were a part of an I/0 statement that
resides in a DO loop. ‘

FORTRAN IV

When you use nested implied DO 1lists, the first control variable
definition is equivalent to the innermost DO of a set of nested loops,
and therefore varies most rapidly. For example, the statement:

WRITE (5,150) ((FORM(K,L), L=1,10), K=1,10)
150 FORMAT (F10.2)

is similar to:

DC 50 K=1,10

DO 50 L=1,10

WRITE (5,150) FORM(K,L)
150 FORMAT (F10.2)
50 CONTINUE

Since the inner DO loop is executed ten times for each iteration of
the outer loop, the second subscript, L, advances from one through ten
for each increment of the first subscript. This is the reverse of the
order of subscript progression.

The implied DO uses the control variable of the imaginary DO statement
to specify which value or values are to be transmitted during each
iteration of the loop.

i, el, and e2 have the same form as that used 1in the DO statement.
The rules for the control, 1initial, and terminal variables of an
implied DO list are the same as those for the DO statement. Note,
however, an implied DO loop cannot use an increment parameter. The
list may contain references to the control variable as 1long as the

value of the control variable is not altered. There is no extended
range for an implied DO list.

Examples:
WRITE (3,200) (A,B,C, 1I=1,3)
WRITE (6,15) L,M,(I,(J,P(I),Q(1,3),J=1,L),I=1,M)
READ (1,75) (((ARRAY(M,N,I), I=2,8), N=2,8), M=2,8)

FORTRAN transmits the entire 1list of the 1implied DO before the
incrementation of the control variable. For example:

READ (3,999) (p(I), (Q(I1,J), J=1,10), I=1,5)
assigns input values to the elements of arrays P and Q in the order:

p(1), Q(1,1), Q(1,2), ... , Q(1,10),
P(2), Q(2,1), Q(2,2), ... , Q(2,10),

P(5), Q(5,1), Q(5,2), ... , Q(5,10)
When processing multi-dimensional arrays, you may use a combination of
a fixed subscript and subscript or subscripts that varies according to
an implied DO. For example:

READ (3,5555) (BOX(1,d), J=1,10)

assigns input values to BOX(l,l) through BOX(1l,10), then terminates
without affecting any other element of the array.

FORTRAN IV

It is also possible to output the value of the control wvariable
directly, as in the statement:

WRITE (6,1111) (I, I=1,20)

which simply prints the integers 1 through 20.
7.10.3 Input/Output Forms

7.10.3.1 Unformatted Sequential Input/Output - FORTRAN provides two
types of I/0--unformatted and formatted. Unformatted input and output
is the transfer of data in internal (binary) format without conversion
or editing. Use unformatted I/0 when data output by a program is to
be subsequently input by the same program (or a similar program).
Unformatted I/O saves execution time because it eliminates the data
conversion process, preserves greater precision in the external data,
and usually conserves file storage space.

7.10.3.2 Formatted Sequential Input/Output - Use formatted input and
output statements 1in conjunction with FORMAT statements to translate
and edit data on output for ease of interpretation, and, on input, to
convert data from external format to internal format.

7.10.3.3 Unformatted Direct Access Input/Output - Use unformatted
direct access READ and WRITE statements to perform direct access I/O
with a file on a direct access device. Use the DEFINE FILE statement
to establish the number of records, and the size of each record, in a
file to which FORTRAN will perform direct access 1I/0. Each direct
access READ or WRITE statement contains an integer expression that
specifies the number of the record to be accessed. The record number
must not be less than one nor greater than the number of records you
define for the file.

In 0S/78 FORTRAN, the expression that specifies the record number can
be of any type. FORTRAN converts it to integer type if necessary.

7.10.4 READ Statements

FORTRAN provides the following READ statements.

7.10.4.1 Unformatted Sequential READ Statement - Use unformatted
sequential read statements to assign fields to a record without
translating stored information into external form.

Format:
READ (u) [[list]]
where:

u is a logical unit number from 1 to 9, and
list is an I/0 1list.

FORTRAN IV

The unformatted sequential READ statement inputs one unformatted
record from a logical unit and assigns the fields of the record
without translation to the I/O list elements in the order in which
they appear, from left to right.

An unformatted sequential READ statement transmits exactly one record.
If the I/O list does not use all of the values in the record, FORTRAN
discards the remainder of the record. If FORTRAN exhausts the
contents of the record before the I/0 list is satisfied, an error
condition results.

You must only use the unformatted sequential READ statement to read
records that were created by unformatted sequential WRITE statements.

If you use an unformatted WRITE statement that does not contain an I/0
list, FORTRAN skips the next record.

Examples:

READ (1) FIELDl, FIELD2 Read one record from logical unit 1;
assign values to variables FIELDl and

FIELD2.
READ (8) Advance logical unit 8 one record.
7.10.4.2 Formatted Sequential READ Statement - Use formatted

sequential read statements to transmit information in external format.
Format:

READ (u,f) [[nst]]

where:
u is a logical unit number from 1 to 9,
f is a format statement number, and

list is an I/0 1list.

The formatted sequential READ statement transfers data from the
indicated 1logical unit. FORTRAN converts transmitted characters to
internal format as specified by the format specification. FORTRAN
assigns the resulting values to the elements of the I/O list.

If the FORMAT statement associated with a formatted input statement
contains a Hollerith constant or alphanumeric literal, input data will
be read and stored directly into the format specification. For
example, the statements

READ (5,100)
100 FORMAT (5H DATA)

cause five characters to be read and stored in the Hollerith format
descriptor. If the character string were HELLO, statement 100 would
become:

100 FORMAT (5HHELLO)

If there is no H field, the record is skipped.

7-81

FORTRAN IV

If the number of elements in the I/0 list is less than the number of
fields in the input record, the excess portion of the record is
discarded. If the number of elements in the list exceeds the number
of input fields, an error condition results unless the format
specifications state that one or more additional records are to be
read (see Section 10.8).

If no I/0 list is present, data transfer is between the record and the
format specification.

Examples:
READ (1,300) ARRAY Read a record from
300 FORMAT (20F8.2) logical unit 1,
assign fields to
ARRAY.
READ (5,50) Read 25 characters
50 FORMAT (25H PAGE HEADING GOES HERE) from logical unit 5,

place them in the
FORMAT statement.

The CHKEOF subroutine returns a non-zero value if the logical end of a
file is encountered during a formatted READ operation.

CHKEOF accepts one real, integer, or logical argument. After the next
formatted READ operation, this argument will be set to a non-zero
value if the logical end-of-file was encountered. Otherwise, it will
be set to zero.

Only use CHKEOF when reading one record from the logical unit.

The fol lowing is an example of the use of CHKEOF.

CALL CHKEOF (EOF)
READ (N,101)DATA
IF (EOF .NE. 0) GO TO 9999

7.10.4.3 Unformatted Direct Access READ Statement - Use an
unformatted direct access read statement to transmit a value or values
to a direct access device in internal format.

Format:

READ (u'r) ﬂlistﬂ

where:
u is a logical unit number from 1 to 9,
r is the record number, and

list is an I/0 list.

The unformatted direct access READ statement positions the input file
to a specified record and transfers the fields in that record to the
elements in the I/O list without translation.

FORTRAN IV

u may be an unsigned integer constant or a positive integer variable.
r may also be a variable. If there are more fields in the input
record than elements in the I/O list, FORTRAN discards the excess
portion of the record. If there is insufficient data in the record to
satisfy the requirements of the I/0 list, an error condition results.

The unit number in the unformatted direct access READ statement must
refer to a unit that you have previously

Examples:
READ (1'10) LIST(1),LIST(8) Read record 10 of a file on logical

unit 1, assign two INTEGER values
to specified elements of array

LIST.
READ (4'58) (RHO(N),N=1,5) Read record 58 of a file on logical
unit 4, assign five real values to
array RHO.

7.10.5 WRITE Statements

7.10.5.1 Unformatted Sequential WRITE Statement - FORTRAN includes
the following formatted and unformatted WRITE statements. Use as
unformatted seguential write statement to transmit values 1in their
internal representation to a logical unit.

Format:
WRITE (u) IIlistI]
where:

u is a logical unit number from 1 to 9, and
list is an I/0 list.

The unformatted sequential WRITE statement transmits the values of the
elements in the I/0 1list to the specified logical unit, without
translation, as one unformatted record.

The logical unit specifier is an integer variable or an integer
constant from 1 to 9.

If an unformatted WRITE statement contains no I/0 1list, one null
record is output to the specified unit.

A record may hold 85 single precision variables. If the list elements
£ill more than one record, FORTRAN writes successive records until the
list is completed. Thus, if there are 100 variables on the 1list,
FORTRAN uses two records; one record contains 85 variables and the
second contains 15 variables. For example

DIMENSION X (200)
WRITE (6) X

will produce three records on logical unit 6, the first containing
X(1) to X(85), the second X (86) to X(170), and the third X(171) to
X(200). If the amount of data FORTRAN will transmit exceeds the
record size, an error condition results. If the WRITE statement does
not completely fill the record with data, FORTRAN zero fills the
unused portion of the record.

FORTRAN 1V

- Examples:
WRITE (1) (LIST(K),K=1,5) Output the contents of elements 1
through 5 of array LIST to logical
unit 1.
WRITE (4) Write a null record on logical unit
4,

7.10.5.2 Formatted Sequential WRITE Statement - Use a formatted
sequential write statement to translate a value from its internal
representation to character format and then transmit it to a logical
unit.

Format:

WRITE (u,f) IIlist]]

where:
u is a logical unit number from 1 to 9,
f is a format statement number, and

list is an I/0 list.

The formatted sequential WRITE statement transfers data to the
specified 1logical wunit. The I/O list specifies a sequence of values
which FORTRAN converts to characters and positions as specified by a
format specification.

The logical unit specifier may be an integer variable.

If no I/0 list is present, data transfer is entirely between the
record and the format specification.

The data FORTRAN transmits by a formatted sequential WRITE statement
normally constitutes one formatted record. The format specification
can, however, specify that additional records are to be written during
the execution of that same WRITE statement.

FORTRAN rounds numeric data output under format control during the
conversion to external format. (If such data is subseguently input
for additional calculations, loss of precision may result. In this
case, unformatted output is preferable to formatted output.)

The records FORTRAN transmits by a formatted WRITE statement must not
exceed the length that the specified device can accept. For example,
a line printer typically cannot print a record that is longer than 132
characters. |[If longer, run to next line]

Examples:

WRITE (6, 650) (Output the contents of the
650 FORMAT (' HELLO, THERE') FORMAT statement to logical
unit 6.)
WRITE (1,95) AYE, BEE, CEE (Write one record of three
95 FORMAT (F8.5, F8.5, F8.5) fields to logical unit 1.)
WRITE (1,950) AYE, BEE, CEE (Write three separate records
950 FORMAT (f8.5) of one field each to 1logical
unit 1.)

FORTRAN IV

In the last example, format control arrives at the rightmost
parenthesis of the FORMAT statement before all elements of the I/O
list have been output. Each time this occurs, FORTRAN terminates the
current record and initiates a new record. Thus, FORTRAN writes three
separate records. (See Section 10.5.)

7.10.5.3 Unformatted Direct Access WRITE Statement - Use an
unformatted direct access write statement to transmit a value in its
internal representation to a specific record on a direct access
device.

Format:

WRITE (u'r) ﬂlistﬂ

where:
u is a logical unit number from 1 to 9,
r is the record number, and

list is an I/0 list.

The unformatted direct access WRITE statement transmits the values of
the elements in the I/0 1list to a particular record position on a
direct access file. The data is written in internal format without
translation.

The logical unit specifier r may be an unsigned integer constant or
integer variable.

A record may hold a maximum of 85 single precision variables. If the
list elements fill more than one record, FORTRAN writes sugcessive
records until the list is completed. Thus, if there are 100 variables
on the 1list, FORTRAN uses two records; one record contains 85
variables and the second contains 15 variables. For example

DIMENSION X (200)
WRITE (6) X

will produce three records on unit 6, the first containing X(1) to
X (85), the second X(86) to X(170), and the third X(171) to X(200). If
the amount of data FORTRAN will transmit exceeds the record size, an
error condition results. If the WRITE statement does not completely
£ill the record with data, FORTRAN zero fills the unused portion of
the record.

Examples:

WRITE (2'35) (NUM(K),K=1,10) (Output ten integer values to
. record 35 of the file connected to
logical unit 2.)

WRITE (3'J) ARRAY (Output the entire contents of
ARRAY to the file connected to
logical wunit 3 into the record
indicated by the value of J.)

7.10.6 Auxiliary Input/Output Statements

You use statements in this category to perform file management
functions.

FORTRAN IV

7.10.6.1 BACKSPACE Statement -~ Use the BACKSPACE statement to
reposition a file to the previous record accessed.
Format:

BACKSPACE u
where:

u is a logical unit number from 1 to 9.
The BACKSPACE statement repositions a currently open seguential file
backward one record and repositions it to the beginning of that
record. On the execution of the next I/0 statement for that unit,

that record is available for processing.

The unit number must refer to a directory-structured device (e.g.,
disk). A file must be open on that device.

If the file is positioned at the first record, FORTRAN ignores the
BACKSPACE statement.

Example:
BACKSPACE 4 (Reposition open file on 1logical unit 4 to
beginning of the previous record.)
7.10.6.2 DEFINE FILE Statement - The DEFINE FILE statement

establishes the size and structure of a file upon which FORTRAN will
perform direct access I/O.

Format:

DEFINE FILE u (m,n,U,v) ﬂ,u(m,n,u,v)ﬂ e

where:

u is an integer constant or variable that specifies the
logical unit number,

m is an integer constant or variable that specifies the number
of records in the file,

n is an integer constant or variable that specifies the
length, in words, of each record,

U specifies that the file is unformatted (binary) and the
letter U is the only acceptable entry in this position, and

\% is an integer variable, called the associated variable of
the file.

The DEFINE FILE is the means by which you specify the attributes of a
direct access device. Once the file characteristics have been
established, you should always specify them in the same manner.

At the conclusion of each direct access I/0 operation, FORTRAN assigns
the record number of the next higher numbered record in the file to v.

The DEFINE FILE statement specifies that a file containing m
fixed-length records of n words each exists or is to exist, on logical
unit u. The records in the file are sequentially numbered from 1
through m.

You must type the DEFINE FILE statement before the first direct access
I/0 statement that refers to the specified file.

FORTRAN IV

The DEFINE FILE statement also establishes the integer variable v as
the associated variable of the file. At the end of each direct access
1/0 operation, the FORTRAN 1/0 system places in v the record number of
the record immediately following the one just read or written.
Because the associated variable always points to the next sequential
record in the file (unless you redefine it by an assignment or input
statement), you can use direct access I/0 statements to perform
sequential processing of the file. The logical unit number u cannot
be passed as a dummy argument to a DEFINE FILE statement in a
subroutine. ’

If more than one program unit processes the file, or in an overlay
environment, the associated variable should be placed in a resident
common block.

Example:
DEFINE FILE 3 (1000,48,U,NREC)

This statement specifies that logical unit 3 is to be connected to a
file of 1000 fixed-length records, each record of which is 48 words
long. The records are numbered sequentially from 1 through 1000, and
are unformatted. After each direct access 1/0 operation on this file,
the integer variable NREC will contain the record number of the record
immediately following the one just processed.

7.10.6.3 ENDFILE Statement - The ENDFILE statement writes an end-file
record to the specified sequential unit.

Format:
ENDFILE u
where:
u is a logical unit number from 1 to 9.

Use the ENDFILE statement to write an end-of-file mark on a
directory-structured device. [Note that you cannot write additional
information to that device after the ENDFILE statement.]

The ENDFILE statement must be written to a formatted output file.

No rewind occurs after this statement.

Examéle:

ENDFILE 2 (Output an end-file record to logical unit 2.)

7.10.6.4 REWIND Statement - The REWIND statement repositions a
currently open sequential file to be repositioned to the beginning of
the file.

Format:
REWIND U
where:
u is a logical unit number from 1 to 9.

FORTRAN 1V

Use the REWIND statement to position a directory-structured device to
its first record.

If the file is already at its first record, FORTRAN ignores the REWIND
statement.

The wunit number in the REWIND statement must refer to a
directory-~structured device (e.g., disk). A file must be open on that
device.

Example:

REWIND 3 (Reposition logical unit 3 to beginning of currently
open file.)

7.11 FORMAT STATEMENTS
FORMAT statements are nonexecutable statements wused in conjunction
with formatted 1I/0 statements. The FORMAT statement describes the

format in which FORTRAN transmits data fields, and the data conversion
and editing to be performed to achieve that format.

The FORMAT statement has the form:

st FORMAT (glflsl ﬂf2521] [[fnqn]])

where:
f is a field descriptor, or a group of field descriptors
enclosed in parentheses,
s is a field separator (either a comma or slash),
q is zero or more slash (/) record terminators

st is a mandatory statement number.

including the parentheses is called the format specification. You
must enclose the list in parentheses.

A field descriptor in a format specification has the form:

Hrﬂcwﬂ.dﬂ

where:
r represents a repeat count which specifies that FORTRAN is to
apply the field descriptor to r successive fields. If you
omit the repeat count, FORTRAN assumes it to be 1.
c is a format code,
w is the field width, and
d is the number of characters to the right of the decimal

point, and should be less than w.

The terms r, w, and d must all be unsigned integer constants less than
or equal to 255.

The field separators are comma and slash. A slash <can also be a
record terminator. Use a slash to skip records or lines in a record.

The field descriptors used in format specifications are as follows:
l. 1Integer: Iw

2. Logical: Lw

7-88

FORTRAN IV

3. Real: Fw.d, Ew.d, Dw.d, Gw.d, Bw.d
4. Literal and editing: Aw, nH, nP, nX, Tn, $, '...', /

(In the alphanumeric and editing field descriptors, n specifies the
number of characters or character positions.)

You can precede the F, E, D, or G field descriptors by a scale factor
of the form:

np
where:

n is an optionally signed integer constant in the range =127
to +127 the scale factor specifies the number of positions
the decimal point is to be scaled to the left or right.

During data transmission, FORTRAN scans the format specification from
left to right. FORTRAN then performs data conversion by correlating
the values in the I/0 list with the corresponding field descriptors.
In the case of H field descriptors and alphanumeric literals, data
transmission takes place entirely between the field descriptor and the
external record.

For example, consider the following data for input (where b equals a
blank space).

bl0.2bb6732bb3967.61

To read this data, use the following FORMAT statement in conjunction
with a READ statement.

20 FORMAT (1X,F3.1,2X,I4,2X,F6.2)

where the field descriptor:

' 1X Indicates a blank space.
F3.1 Indicates a 3-digit real number with 1 decimal place.
2X Indicates 2 blank spaces.
I4 Indicates a 4-digit integer number.
2X Indicates 2 blank spaces.
F6.2 Indicates a 6-digit real number with 2 decimal places.

7.11.1 Field Descriptors

The individual field descriptors that can appear in a format
specification are described in detail in the following sections. The
field descriptors ignore leading spaces in the external field, but
treat embedded and trailing spaces as zeros.

FORTRAN 1V

7.11.1.1 I Field Descriptor - The I field descriptor governs the
translation of integer data.

Format:
Iw
Input

The I field descriptor causes an input statement to read w characters
from an external record. FORTRAN then assigns the character as an
integer value to the corresponding integer element of the I/O 1list.
The external data must be an integer; it must not contain a decimal
point or exponent field.

The I field descriptor interprets an all-blank field as a zero value.

If the value of the external field exceeds the range of the
corresponding integer 1list element, an error occurs. If the first
non-blank character of the external field is a minus symbol, the I
field descriptor causes the field to be stored as a negative value;
FORTRAN treats a field preceded by a plus symbol, or an unsigned
field, as a positive value.

Examples:

Format External Field Internal Representation
I4 2788 2788
I3 -26 -26
I9 312 312
I9 3.12 not permitted; error
I3 -871 -87

(one is lost)
Output

On output, the I field descriptor transmits the value of the
corresponding integer I/0 1list element, right Jjustified, to an
external field w characters in length. It also replaces any leading
zeros with spaces. If the value does not fill the field, FORTRAN
inserts leading spaces. If the value of the list element is negative,
the field will have a minus symbol as its leftmost non-blank
character. Space must therefore be included in w for a minus symbol
if you expect one to be output. FORTRAN suppresses plus symbols and
you need not account for them in w. If w is too small to contain the
output value, FORTRAN fills the entire external field with asterisks.

Examples:
Format Internal Value External Representation
I3 284 284
I4 -284 -284
I5 174 174
I2 3244 *%
I3 -473 * ok
17 29.812 not permitted; error

7-90

FORTRAN IV

7.11.1.2 F Field Descriptor - The F field descriptor specifies the
data conversion and editing of real values.

Format:
Fw.d
Input

On input, the F field descriptor causes FORTRAN to read w characters
from the external record and to assign the characters as a real value
to the <corresponding I/O 1list element. If the first non-blank
character of the external field is a minus sign, FORTRAN treats the
field as a negative value; FORTRAN assumes a field preceded by a plus
sign (or an unsigned field) to be positive. FORTRAN considers an
all-blank field to have a value of zero. In all appearances of the F
field descriptor, w must be greater than or equal to d+ where the
extra character is the decimal point.

If the field contains neither a decimal point nor an exponent, FORTRAN
treats it as a real number of w digits, in which the rightmost d
digits are to the right of the decimal point. 1If the field contains
an explicit decimal point, the location of that decimal point
overrides the location you specify in the field descriptor. If the
field contains an exponent, FORTRAN uses the exponent to establish the
magnitude of the value before it assigns the value to the list
element.

Examples:

Format External Field Internal Representation
F8.5 123456789 123.45678
F8.5 -1234.567 -1234.56
F8.5 24 .77E+2 2477.0
F5.2 1234567.89 123.45
Output

On output, the F field descriptor causes FORTRAN to round the value of
the corresponding I/O 1list element to d decimal positions and to
transmit an external field w characters in length, right Jjustified.
If the converted data consists of fewer than w characters, FORTRAN
inserts leading spaces; if the data exceeds w characters, FORTRAN
fiils the entire field with asterisks.

The field width must be large enough to accommodate 1) a minus sign,
if you expect one to be output (FORTRAN suppresses plus signs), 2) at
least one digit to the left of the decimal point, 3) the decimal point
itself, and 4) d digits to the right of the decimal. For this reason,
w should always be greater than or equal to (d+3).

Examples:

Format Internal Value External Representation
F8.5 2.3547188 2.35472

F9.3 8789.7361 8789.736

F10.4 ~23.24352 ~23.2435

F5.2 325,013 *kkkk

F5.2 -.2 -0.20

7-91

FORTRAN IV
7.11.1.3 E Field Descriptor - The E field descriptor specifies the
transmission of real values in exponential format.
Format:
Ew.d
Input
The E field descriptor causes an input statement to input w characters

from an external record. It interprets and assigns that data in
exactly the same way as the F field descriptor.

Examples:
Format External Field Internal Representation
E9.3 734.432E3 734432.0
El12.4 1022.43E-6 1022.43E-6
E15.3 52.37596 52.37596
Output

The E field descriptor causes an output statement to transmit the
value of the corresponding list element to an external field w
characters in width, right justified. If the number of characters in
the converted data is less than w, FORTRAN inserts leading spaces; if
the number of characters exceeds w, FORTRAN fills the entire field
with asterisks. The corresponding I/0 list element must be of real

type.

FORTRAN transmits data output under control of the E field descriptor
in a standard form, consisting of

1. a minus sign if the value is negative (plus signs are
suppressed) ,

2. a zero,
3. a decimal point,
4, d digits to the right of the decimal, and
5. a 3-character exponent of the form:
E+nnn
or
E-nnn
where:
nn is a 2-digit integer constant.

The d digits to the right of the decimal point represent the entire
value, scaled to a decimal fraction.

Because w must be large enough to include a minus sign (if any are
expected), a zero, a decimal point, and an exponent, in addition to d
digits, w should always be equal to or greater than d+7.

FORTRAN IV

Examples:

Format Internal Value External Representation
E9.2 475867.222 0.48E+06

E12.5 475867.222 0.47587E+06

El2.3 0.00069 0.690E-03

E10.3 -0.5555 ~0.556E+00

E5.3 56.12 *E KKk

7.11.1.4 G Field Descriptor - The G field descriptor transmits real
data in a form that is in effect a combination of the F and E field
descriptors.

Format:
Gw.d
Input

On input, the G field descriptor functions identically to the F field
descriptor.

Output

On output, the G field descriptor causes FORTRAN to transmit the value
of the corresponding I/0 list element to an external field w
characters in length, right justified. The form in which the value is
output is a function of the magnitude of the value, as described in
Table 7-19.

Table 7-19
Effect of Data Magnitude on G Format Conversions

Data Magnitude Effective Conversion
m < 0.1 Ew.d
0.1 <m«< 1.0 F(w-4).d, 4X
1.0 <m < 10.0 F(w-4).(d-1), 4X
10d-2 < m < 104-1 F(w-4).1, 4X
10d-1 < m < 104 F(w-4).0, 4X
m > 10d Ew.d

The 4X field descriptor is inserted by the G field descriptor for
values within its range, and means that four spaces are to follow the
numeric data representation.

FORTRAN IV

The field width, w, must include

1. space for a minus sign, if any are expected (plus signs are
suppressed) ,

2. at least one digit to the left of the decimal point,
3. the decimal point itself,
4. d digits to the right of the decimal, and

5. (for values that are outside the effective range of the G
field descriptor) a 4~-character exponent.

Therefore, w should always be equal to or greater than d+7.

Examples:

Format Internal Value External Representation
G13.6 0.01234567 0.123457E-01
G13.6 -0.12345678 -0.123457

Gl3.6 1.23456789 1.23457

G13.6 12.34567890 12,3457

G13.6 123.45678901 123.457

Gl13.6 -1234.56789012 -1234.57

Gl3.6 12345.,67890123 12345.7

G13.6 123456.78901234 123457.

Gl3.6 -1234567.89012345 -0.123457E+07

For comparison, consider the following example of the same values
output under the control of an equivalent F field descriptor.

Format Internal Value External Representation
F13.6 0.01234567 0.012346
F13.6 -0.12345678 -0.123457
F13.6 1.23456789 1.234568
F13.6. 12.34567890 12.345679
F13.6 123.45678901 123.456789
F13.6 -1234.56789012 -1234.567890
F13.6 12345.67890123 12345.678901
F13.6 123456.,78901234 123456.789012
F13.6 -1234567.89012345 Akkkkkhkkkkkk
NOTE

Only the first 6 digits in external
representation are accurate.

7.11.1.5 L Field Descriptor - The L field descriptor specifies the
transmission of logical data.

Format:

Lw

FORTRAN IV

Input

The L field descriptor causes an input statement to read w characters
from external record. If the first non-blank character of that field
is the letter T or the string .T, FORTRAN assigns the value .TRUE. to
the corresponding I/0 1list element. (The corresponding I/0 list
element must be of logical type.) If the first non-blank character of
the field is the letter F or the string .F, or if the entire field is
blank, FORTRAN assigns the value .FALSE. . Any other value 1in the
external field causes an error condition.

Output

The L field descriptor causes an output statement to transmit either
the letter T, if the value of the corresponding list element is .TRUE.
or the letter F, if the value is .FALSE., to an external field w
characters wide. The letter T or F is in the rightmost position of
the field, preceded by w-1 spaces.

Examples:

Format Internal Value External Representation
L5 .TRUE. T
Ll .FALSE. F

7.11.1.8 A Field Descriptor - The A field descriptor specifies the
transmission of alphanumeric data.

Format:
Aw
Input

On input, the A field descriptor causes w characters to be read from
the external record and stored in ASCII format in the corresponding
I/0 list element. (The corresponding I1/0 list element may be of any
data type.) The maximum number of characters that FORTRAN can store in
a variable or array element depends on the data type of that element,
as listed in Table 7-20.

Table 7-20
Character Storage

I/0 List Maximum Number
Element of Characters
Logical 6
Integer 6
Real 6

If w is greater than the maximum number of characters that FORTRAN can
store 1in the <corresponding I/O list element, only the rightmost six
characters are assigned to that entity; the leftmost excess
characters are lost. If w is less than the number of characters that
FORTRAN can store, it assigns w characters to the list element, left
justified, and adds trailing spaces to fill the variable or array
element.

FORTRAN IV

Examples:

Format External Field Internal Representation
A6 PAGE # PAGE # ({Integer)
A6 PAGE # GE # (Real)
Output

On output, the A field descriptor causes FORTRAN to transmit the
contents of the corresponding I/O list element to an external field w
characters wide. If the 1list element contains fewer than w
characters, the data appears in the field right-justified with leading
spaces. If the list element contains more than w characters, FORTRAN
transmits only the leftmost w characters.

Examples:

Format Internal Value External Representation
A5 OHMS OHMS
A5 VOLTS VOLTS
A5 AMPERES AMPER

7.11.1.7 H Field Descriptor
Format:

nHcce...C

where:
n specifies the number of characters that are to be
transmitted, and
c is an ASCII character.
Input

When the H field descriptor appears in a format specification, data
transmission takes place between the external record and the field
descriptor itself.

The H field descriptor causes an input statement to read n characters
from the external record and to place them in the field descriptor,
with the first character appearing immediately after the letter H.
FORTRAN replaces any characters that had been in the field descriptor
prior to input by the input characters.

Output

The H field descriptor causes an output statement to transmit the n
characters in the field descriptor following the letter H to the
external record. An example of the use of H field descriptors for
input and output follows:

WRITE (4,100)

100 FORMAT (41H ENTER PROGRAM TITLE, UP TO 20 CHARACTERS)
READ (4,200)

200 FORMAT (20H TITLE GOES HERE)

7

96

FORTRAN IV

The WRITE statement transmits the characters from the H field
descriptor in statement 100 to the user's terminal. The READ
statement accepts the response from the keyboard, placing the input
data in the H field descriptor in statement 200. The new characters
replace the string TITLE GOES HERE; 1if the user enters fewer than 20
characters, FORTRAN fills the remainder of the H field descriptor with
spaces to the right.

7.11.1.8 Alphanumeric Literals - You may use an alphanumeric 1literal
in place of an H field descriptor. For output, both types of format
specifiers function identically. However, you cannot use an
alphanumeric literal on input.

You write an apostrophe character within an alphanumeric 1literal as
two apostrophes. For example:

50 FORMAT (' TODAY''S DATE 1Ss: ',I12,'/',12,'/',12)

FORTRAN treats a pair of apostrophes used in this manner to be a
single character.

7.11.1.9 X Field Descriptor - The X field descriptor causes spaces to
be skipped in a record.

Format:
nX
Input

The X field descriptor causes an input statement to skip over the next
n characters in the input record.

Output

The X field descriptor causes an output statement to transmit n spaces
to the external record. For example:

WRITE (5,90) NPAGE
90 FORMAT (13H1PAGE NUMBER ,12,16X,23HGRAPHIC ANALYSIS, CONT.)

The WRITE statement prints a record similar to:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.
where "nn" is the current value of the variable NPAGE. FORTRAN does
not print the numeral 1 in the first H field descriptor, instead using

it to advance the printer paper to the top of a new page. Printer
carriage control is explained in Section 10.5.

7.11.1.10 T Field Descriptor - The T field descriptor is a tabulation
specifier.

Format:

Tn

FORTRAN 1V

where:
n indicates the character position of the external record.
The value of n must be greater than or egual to one, but not
greater than the number of characters allowed in the
external record.
Input

On input, the T field descriptor causes FORTRAN to position the
external record to its nth character position. For example, if a READ
statement inputs a record containing:

ABC XY7Z
under control of the FORMAT statement:
10 FORMAT (T7,A3,T1,A3)

the READ statement would input the characters XYZ first, then the
characters ABC.

Output

On output to devices other than the line printer or terminal, the T
field descriptor states that subsequent data transfer is to begin at
the nth character position of the external record. For output to a
printing device, data transfer begins at position n-1). This is
because FORTRAN reserves the first position of a printed record for a
carriage control character (see Section 10.5) which is never printed.

Example the statements:

WRITE (4,25)
25 FORMAT (T51,'COLUMN 2',T21,'COLUMN 1')

would cause the following line to be printed:
Position 20 Position 50

COLUMN 1 COLUMN 2

7.11.1.11 § Descriptor - The character § (dollar sign) appearing in a
format specification modifies the carriage control specified by the
first character of the record. The § descriptor is intended primarily
for interactive I/O and causes the terminal print position to be left
at the end of the text written (rather than returned to the left
margin) so that a typed response will appear on the same line
following the output.

Example:

A=5

WRITE (4,100) A

READ (4,200) B
100 FORMAT (' SAMPLE NO.', I2, ' IS: ',8)
200 FORMAT (A6)

WRITE (4,200) B

END

This program outputs

SAMPLE NO. 5 IS: RED
RED

FORTRAN 1V

7.11.2 Scale Factor

You can alter the location of the decimal point in real values during
input or output through the use of a scale factor.

Format:
nP
where:

n is a signed or unsigned integer constant in the range ~127
to +127 specifying the number of positions the decimal point
is to be moved to the right or left.

You may place a scale factor anywhere in a format specification, but
it must precede the field descriptors with which it 1is to be
associated. It has the forms:

nPFw.d nPEw.d nPGw.d

Data input under control of one of the above field descriptors is
multiplied by 10**-n before FORTRAN assigns it to the corresponding
I/0 list element. For example, a 2P scale factor multiplies an input
value by .01, moving the decimal point two places to the left; a -2P
scale factor multiplies an input value by 100, moving the decimal
point two places to the right. If the external field contains an
explicit exponent, however, the scale factor has no effect.

Examples:
Format External Field Internal Representation
3PE10.5 37.614 .037614
3PE10.5 37.614E2 3761.4
-3PE10.5 37.614 37614.

The effect of the scale factor on output depends on the type of field
descriptor with which it is associated. For the F field descriptor,
FORTRAN multiplies the value of the I/O list element by 10**N before
it transmits it to the external record. Thus, a positive scale factor
moves the decimal point to the right; a negative scale factor moves
the decimal point to the left.

FORTRAN adjusts values output under control of an E or D field
descriptor with a scale factor by multiplying the basic real constant
portion of each value by 10**N and subtracting n from the exponent.
Thus a positive scale factor moves the decimal point to the right and
decreases the exponent; a negative scale factor moves the decimal
point to the left and increases the exponent.

FORTRAN suspends the effect of the scale factor while the magnitude of
the data to be output is within the effective range of the G field
descriptor, since G supplies its own scaling function. The G field
descriptor functions as an E field descriptor when the magnitude of
the data value is outside its range; the effect of the scale factor
is therefore the same as described for that field descriptor.

Note that on input, and on output under control of an F field
descriptor, a scale factor actually alters the magnitude of the data;
on output, a scale factor attached to an E or G field descriptor
merely alters the form in which the data is transmitted. Note also
that on input a positive scale factor moves the decimal point to the
left and a negative scale factor moves the decimal point to the right,
while on output the effect is just the reverse.

7-99

FORTRAN IV

If you do not attach a scale factor to a field descriptor, FORTRAN
assumes a scale factor of =zero. Once you specify a scale factor,
however, it applies to all subsequent real field descriptors in the
same format specification, unless another scale factor appears. You
may only reinstate a scale factor of =zero by an explicit 0P
specification.

Some examples of scale factor effect on output are:

Format Internal Value External Representation
1PE12.3 -270.139 -2.701E+02
1PE12.2 -270.139 -2,70E+02
~-1PE12.2 -270.139 -0.03E+04

7.11.3 Grouping and Group Repeat Specifications
You can apply any field descriptor (except H, T, P, or X) to a number
of successive data fields by preceding that field descriptor with an
unsigned integer constant, called a repeat count, that specifies the
number of repetitions. For example, the statements:

20 FORMAT (El12.4,E12.4,E12.4,15,15,15,15)
and

20 FORMAT (3E12.4,415)
have the same effect.
Similarly, you may repeatedly apply a group of field descriptors to
data fields by enclosing those field descriptors in parentheses, with
an unsigned integer constant, called a group repeat count, preceding
the left parenthesis. For example:

50 FORMAT (218,3(F8.3,E15.7))
is equivalent to:

50 FORMAT (I8,18,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7)

1 2 3

You can enclose an H or X field descriptor, which could not otherwise
be repeated, in parentheses. FORTRAN then treats it as a group repeat
specification, thus allowing it to be repeated a desired number of

times.

If you omit a group repeat count, FORTRAN assumes it to be 1.

7.11.4 Carriage Control

FORTRAN never transmits the first character of a record to a printing

device; instead, FORTRAN interprets this first character as a
carriage control character. The FORTRAN I/0 system recognizes certain
characters for this purpose; the effects of these characters are

shown in Table 7-21.

7-100

FORTRAN 1V

Table 7-21
Carriage Control Characters

Character Effect
space Advance one line
0 zero Advance two lines
1 one Advances to top of next page
+ plus Do not advance (allows overprinting)

FORTRAN treats any character other than those described in Table 10-2
as though it is a space, and deletes it from the print line.

7.11.5 Format Specification Separators

You generally separate field descriptors in a format specification
from one another by commas. You may also use the slash (/) record
terminator to separate field descriptors. A slash causes FORTRAN to
terminate the input or output of the current record and to initiate a
new record.

You may omit the comma when using a slash. Also, you need not type a
comma after a Hollerith constant.

Example:

WRITE (5,40) K,L,M,N,O,P
40 FORMAT (3A6/16,2F8.4)

is equivalent to:

WRITE (5,40) K,L,M
40 FORMAT (3A6)

WRITE (5,50) N,O,P
50 FORMAT (I6,2F8.4)

It is possible to bypass input records or to output blank records by
the use of multiple slashes. If n consecutive slashes appear between
two field descriptors, they cause FORTRAN to skip n-1 records on input
or n-l1 ‘blank records to be output. (The first slash terminates the
current record; the second slash terminates the first skipped or
blank record, and so on.) If n slashes appear at the beginning or end
of a format specification, however, they result in n skipped or blank
records, because the initial and terminal parentheses of the format
specification are themselves a record initiator and record terminator,
respectively. An example of the use of multiple record terminators
is:

WRITE (5,99)
929 FORMAT ('l1'T51'HEADING LINE'//T51'SUBHEADING LINE'//)

7-101

FORTRAN 1V

The above statements output the following:
Column 50, top of page

HEADING LINE
(blank line)

SUBHEADING LINE
(blank line)
(blank line)

7.11.6 Short Field Termination

A field descriptor such as fw.d specifies that an input statement is
to read w characters from the external record. If the data field in
question contains fewer than w characters, the input statement would
read some characters from the following field unless the short field
were padded with leading zeros or spaces. To avoid the necessity of
doing so, you may terminate an input field containing fewer than w
characters by a comma. The comma overrides the field descriptor's
field width specification. This practice, called short field
termination, is particularly useful when entering data from a terminal
keyboard. You may also use it in conjunction with I, F, E, D, G, and
L field descriptors.

Examples:

READ (6,100) I,J,A,B
100 FORMAT (216,2F10.2)

If the external record input by the above statements contains:
1,-2,1.0,35

Then the following assignments take place:

I=1
J = -2
A=1.0
B = 0.35

Note that the physical end of the record also serves as a field
terminator. Note also that the d part of a w.d specification is not
affected as illustrated by the assignment to B.

You may only terminate fields of fewer than w characters by a comma.
If you follow a field of w characters or greater by a comma, FORTRAN
will consider the comma to be part of the following field.

Two successive commas, or a comma following a field of exactly w
characters, constitutes a null (zero-length) field. Depending on the
field descriptor in gquestion, the resulting value assigned is 0, 0.0,
0p0, or .FALSE.

You cannot use a comma to terminate a field that is to be read under
control of an A, H, or alphanumeric literal field descriptor. If
FORTRAN encounters the physical end of the record before it has read w
characters, however, short field termination 1is accomplished and
FORTRAN assigns the characters that were input successfully. It also
appends trailing spaces to fill the corresponding I/0 list element or
the field descriptor.

7-102

FORTRAN 1V .

7.11.7 Format Control Interaction with Input/Output Lists

FORTRAN initiates format control with the beginning of execution of a
formatted 1I/0 statement. The action of format control depends on
information provided jointly by the next element of the I/0 1list (if
one exists) and the next field descriptor of the FORMAT statement.
FORTRAN interprets both the I/0 list and the format specification from
left to right.

If the I/0 statement contains an I/0O 1list, at least one field
descriptor of a type other than H, X, T, or P must exist in the format
specification. An execution error occurs if this condition is not
met.

When FORTRAN executes a formatted input statement, it reads one record
from the specified unit and initiates format control; thereafter,
additional records can be read as indicated by the format
specification, Format control demands that a new record be input
whenever a slash is encountered in the format specification, or when
the last outer right parenthesis of the format specification is
reached and additional I/O list elements remain.

FEach field descriptor of types I, F, E, G, L, and A corresponds to one
element in the I/0 list. No list element corresponds to an H, X, P,
T, or alphanumeric literal field descriptor. 1In the case of H and
alphanumeric 1literal field descriptors, data transfer takes place
directly between the external record and the format specification.

When format control encounters an I, F, E, G, L, or A field
descriptor, it determines if a corresponding element exists in the I/0
list. If so, format control transmits data, appropriately converted
to or from external format, between the record and the list element,
then proceeds to the next field descriptor (unless the current one is
to be repeated). If there is no corresponding list element, format
control terminates.

When FORTRAN reaches the last outer right parenthesis of the format
specification, it determines whether or not there are more I/O list
elements to be processed. If not, format control terminates. If
additional 1list elements remain, however, FORTRAN terminates the
current record, initiates a new one, and format control reverts to the
right-most top-level group repeat specification (the one whose left
parenthesis matches the next-to-last right parenthesis of the format
specification). 1If no group repeat specification exists in the format
specification, format control returns to the initial left parenthesis
of the format specification. Format control then continues from that
point.

7.11.8 Summary of Rules for Format Statements

The following is a summary of the rules pertaining to the construction
and use of the format statement and its components, and to the
construction of the external fields and records with which a format
specification communicates.

General
1. You must always label a FORMAT statement.
2. In a field descriptor such as rIw or nX, the terms r, w, and

n must be unsigned integer constants greater than zero. You
may omit the repeat count and field width specification.

7-103

Input

FORTRAN 1V

In a field descriptor such as Fw.d, the term d must be an
unsigned integer constant. It must be present in F, E, D,
and G field descriptors even if it 1is =zero. The decimal
point must also be present. The field width specification w
must be greater than d. The w and d must either both be
present or both omitted.
1

In a field descriptor such as nHecc...c, exactly n characters
must be present following the H format code. Any ASCII
character may appear in this field descriptor (an
alphanumeric literal field descriptor follows the same rule).

In a scale factor of the form nP, n must be a signed or
unsigned integer constant in the range =127 to 127 inclusive.
Use of the scale factor applies to F, E, D, and G field
descriptors only. Once you specify a scale factor, it
applies to all subsequent real or double precision field
descriptors in that format specification until another scale
factor appears; FORTRAN requires an explicit op
specification to reinstate a scale factor of zero.

FORTRAN does not permit a repeat count in H, X, T or
alphanumeric 1literal descriptors unless you enclose those
field descriptors in parentheses and treats them as a group
repeat specification.

If an I/0 list is present in the associated I/0 statement,
the format specification must contain at least one field
descriptor of a type other than H, X, P, T or alphanumeric
literal.

You must precede an external input field with a negative
value by a minus symbol; you may optionally precede a
positive value by a plus sign.

An external field whose input conversion is governed by an I
field descriptor must have the form of an integer constant.
It cannot contain a decimal point or an exponent.

FORTRAN handles an external field whose input conversion by
an F, E, or G field descriptor must have the form of an
integer constant or a real or double precision constant. It
can contain a decimal point and/or an E or D exponent field.

If an external field contains a decimal point, the actual
size of the fractional part of the field, as indicated by
that decimal point, overrides the d specification of the
corresponding real field descriptor.

If an external field contains an exponent, it causes the
scale factor (if any) of the corresponding field descriptor
to be inoperative for the conversion of that field.

The field width specification must be large enough to
accommodate, in addition to the numeric character string of
the external field, any other characters that can be present
(algebraic sign, decimal point, and/or exponent).

A comma is the only character that is acceptable for use as
an external field separator. You use it to terminate input
of fields that are shorter than the number of characters
expected, or to designate null (zero-length) fields.

7-104

FORTRAN 1V

Output

1. A format specification must not demand the output of more
characters than can be contained in the external record (for
example, a line printer record cannot contain more than 133
characters including the carriage control character).

2. The field width specification w must be large enough to
accommodate all characters that FORTRAN may generate by the
output conversion, including an algebraic sign, decimal
point, and exponent. (The field width specification in an E
field descriptor, for example, should be 1large enough to
contain d+7 characters.)

3. FORTRAN uses the first character of a record output to a line
printer or terminal for carriage control; FORTRAN never
prints it. The first character of such a record should be a
space, 0,1,$, or +. FORTRAN treats any other character as a
space and deletes it from the record.

7.12 LIBRARY FUNCTIONS AND SUBROUTINES

Library functions and subroutines are called in the same manner as
user written functions and subroutines. This section 1lists the
library components that are available to FORTRAN programs and
illustrates calling sequences, where necessary. Arguments must be of
the correct number and type, but need not have the same name as those
shown in the illustrative examples. Certain library routines are used
by the FORTRAN system programs and are not available to a wuser's
FORTRAN program. These routines may be identified by a number sign
(#) in the entry point or section name, and are not 1listed in the
following section.

7.12.1 ABS (Single-Precision Absolute Value)
ABS calculates the absolute value of a real variable by leaving the

variable wunchanged if it 1is positive (or =zero) and negating the
variable if it is negative.

7.12.2 ACOS (Single-Precision Arc-Cosine Function)

ACOS calculates and returns the primary arc-cosine (in radians) of a
real argument less than or equal to 1.0 according to the relation:

If x > 0.0, ACOS (x)=ATAN SQRT (1-X"2)
X

If x < 0.0, ACOS(x)= +ATAN SQRT (1-X"2)
X

If x = 0.0, ACOS(x) = /2.0

7-105

FORTRAN IV

7.12.3 AINT (Single-Precision Floating-Point to Integer

AINT is a floating-point truncation function. Given a real argument,
it truncates the fractional part of the argument and returns the
integral part as an integer. This is accomplished by taking the
absolute value of the argument, aligning and normalizing this result,
then restoring the original sign. AINT, IFIX, and INT perform
identical functions.

7.12.4 ALOG (Single-Precision Natural Logarithm)
ALOG calculates and returns the natural (Naperian) logarithm of a real
argument greater than zero. Any negative or zero argument returns an

error message and a value of 0.0. The algorithm used 1is an 8-term
Taylor series approximation.

7.12.5 ALOGl0 (Single-Precision Common Logarithm)

ALOGl0 calculates and returns the common (base 10) logarithm of a real
argument greater than zero. Any negative or zero argument returns an
error message and a value of 0.0. The calculation is accomplished by

calling ALOG to compute the natural logarithm and executing a change
of base.

7.12.6 AMAX0 (Single-Precision Maximum Value)

AMAX0 accepts an arbitrary number of integer arguments and returns a
real value equal to the largest of the arguments.

7.12.7 AMAX1 (Single-Precision Maximum Value)

AMAX1 accepts an arbitrary number of real arguments and returns a real
value equal to the largest of the arguments.

7.12.8 AMINO (Single-Precision Minimum Value)

AMINO accepts an arbitrary number of integer arguments and returns a
real value equal to the smallest of the arguments.

7.12.9 AMINl (Single-Precision Minimum Value)

AMINl accepts an arbitrary number of real arguments and returns a real
value equal to the smallest of the arguments.

7.12.10 AMOD (Single-Precision A Modulo B)

AMOD accepts two real arguments and returns a real value equal to the
remainder when the first argument is divided by the second argument.
If the second argument is not sufficiently large to prevent overflow,
an error message and a value of 0.0 are returned.

7-106

FORTRAN IV

7.12.11 ASIN (Single-Precision Arc-Sine)

ASIN calculates and returns the arc-sine (in radians) of a real
argument in the range [-1, 1] according to the relation:

ASIN (X) = ATAN (X/SQRT (1-X**2))

If the argument falls outside the range [-1, 1], an error message
results.

7.12.12 ATAN (Single-Precision Arc-Tangent)

ATAN calculates and returns the primary arc-tangent (in radians) of a
real argument. The argument is first reduced according to the
relations:

(1) If x<2"-14, atan(x) = x

(2) If x>27-14, atan(x) = 1/x

(3) If x>1.0, atan(x) = /2 - atan(l/x)
(4) If x<0, atan(x) = =-atan(-x)

and the arc-tangent is then computed by a power series approximation.

7.12.13 ATAN2 (Single-Precision Arc-Tangent of Two Arguments)

ATAN2 accepts two real arguments, assumed to be an abscissa and an
ordinaté respectively, and calculates the arc-tangent of the quotient
of the first argument divided by the second argument. This is
accomplished by calling ATAN to find the principal arc-tangent of the
quotient and then adjusting the result, depending upon the quadrant in
which a point defined by the arguments falls, according to the
relations:

argument in first quadrant atan2(y,x) = atan(y/x)

argument in second quadrant atan2(y,x) = atan(y/x)-
argument in third quadrant atan2(y,x) = atan(y/x)-
argument in fourth gquadrant atan2(y,x) = atan(y/x)+

7.12.14 CGET (Character Get Subroutine)
The calling sequence:
CALL CGET (STRING,N,CHAR)
causes the Nth character to be unpacked from STRING and stored in CHAR

as a variable in the range 0, 63, where STRING is a character string
in A6 format.

7-107

FORTRAN IV

7.12.15 CHEKEOF (Check for End-of-File Subroutine)

CHKEOF accepts one real, integer or logical argument. After the next
formatted read operation, this argument will be set to non-zero if the
logical end-of-file was encountered, or to 0 if the logical
end-of-file was not encountered. The following is an example of the
use of CHKEOF:

CALL CHKEOF (EOF)
READ (N,101)DATA
IF (EOF.NE.0) GO TO 999

7.12.16 CLOCK* (Initialize Clock Subroutine)

The purpose of the CLOCK subroutine is to initialize the KK8-B
real-time clock. The calling sequence is:

CALL CLOCK (FUNCTN,RATE)

Where functn can have a value of 0 or 8, specifying multiple or single
A/D channel input, respectively. The value of rate is preset to 100
Hz. Any value of rate other than 0 or 8 causes an error message; any
value of rate other than 100 is ignored. .

7.12.17 COS (Single-Precision Cosine Function)

COS calculates and returns the cosine of a real argument (in radians)
by applying the identity:

COS (X) = SIN(X+ /2)

7.12.18 COSH (Single-Precision Hyperbolic Cosine Function)

COSH calculates and returns the hyperbolic cosine of a real argument
according to the relations:

If |x| <88.029
COSH(x) = 1/2 EXP(x) +—2
EXP(x)
If x| > 88.028 and x| — log,2<88.028
COSH(x) = EXP(jx| - log_2)

If [x| ~ log,2>88.028
COSH(x) = 377737777771

The third relation produces an error message.

7-108

FORTRAN IV

7.12.19 CPUT (Character Put Subroutine)
The calling sequence:
CALL CPUT (STRING,N,CHAR)

causes CPUT to insert CHAR as the Nth character in STRING, where
STRING is a character string stored in A6 format, and CHAR is a number
in the range [0, 63] which 1is interpreted as a character. The
following program illustrates the use of CGET and CPUT.

DATA STR/HEY !/
WRITE(4,100) STR

100 FORMAT(HEY! IN ASCII ‘»Aé)
WRITE (4,101

101 FORMAT(/ HEY! IN DECIMAL’)
no 10 I=1-4
CALL CGET(STRy Iy ICHAR)
WRITEC(4y102) ICHAR

10 CONTINUE

102 FORMAT(IA)
neg 20 Is=lyé
NES)
CALL. CPUT(STRs IsJ)

20 CONTINUE
WRITE(4y103) STR

103 FUORMATC(” NEW STRING ‘rAb)
cabl EXIT
END

+R F4
XTCHRC/G%
MEY! IN ASCIT HEY!
HEY! IN DECIMAL
g
o
2%
5
NEW STRING ROFHJL

7.12.20 DATE (0S/78 Date Subroutine)

DATE accepts three integer arguments, accesses the current 05/78
system date, and returns an integer from 1 to 12 corresponding to the
current month as the first argument, an integer from 1 to 31
corresponding to the current day as the second argument, and an
integer from 1970 to 1977 corresponding to the current year as the
third argument.

7.12.21 DIM (Single~Precision Positive Real Difference)

DIM calculates and returns the positive difference of two real
arguments. That 1is, if the first argument is larger than the second
argument, DIM returns the difference between the arguments; if the
first argument 1is - less than or equal to the second argument, DIM
returns 0.0,

7-109

FORTRAN IV

7.12.22 EXP (Single-Precision Exponential Function)

EXP calculates and returns the exponential function of a real
argument. The algorithm uses a numerical method after Kogbetliantz
(IBM Journal of Research and Development, April, 1957, pp 110-5).
EXP3 (Base Raised to an Exponent) Exp3 accepts two real or integer
arguments, that is, a base and an exponent and performs the
calculation

a=b"e

If the first argument is outside the range [0, 12], the value returned
in the second argument is unpredictable. If EXTLVL is called on a
PDP-8, the second argument will always be set to zero.

7.12.23 FLOAT (Integer-to-Floating-Point Conversion)

FLOAT accepts an integer argument and returns a real variable equal to
the argument.

7.12.24 1IABS (Integer Absolute Value Function)

IABS calculates and returns the absolute value of an integer variable
by 1leaving the wvariable unchanged if it is positive (or zero), and
negating the variable if it is negative.

7.12.25 IDIM (Integer Positive Difference Function)

IDIM calculates and returns the positive difference of two integer
arguments. That 1is, if the first argument is larger than the second
argument, IDIM returns the difference between the arguments; if the
first argument is less than or equal to the second argument, IDIM
returns a value of 0.

7.12.26 IFIX (SinglefPrecision Floating-Point-to-Integer Function)

IFIX is a floating-point truncation function. Given a real argument,
it truncates the fractional part of the argument and returns the
integral part as an integer. IFIX, AINT and INT perform the same
function.

7.12.27 INT (Single-Precision Floating-Point-to-Integer)

INT is a floating-point truncation function that performs the same
function as AINT and IFIX.

7.12.28 ISIGN (Integer Transfer of Sign Function)

ISIGN accepts two integer arguments, calculates the absolute value of
the first argument, and returns this value if the second argument is
positive (or zero), or the negative of this value if the second
argument is negative.

7-110

FORTRAN IV

7.12.29 MAX0 (Single-Precision Maximum Value)

MAX0 accepts an arbitrary number of integer arguments and returns an
integer result eqgual to the largest of the arguments.

7.12.30 MAX1l (Single-Precision Maximum Value)

MAX1l accepts an arbitrary number of real arguments and returns an
integer result equal to the largest of the arguments.

7.12.31 MINO (Single-Precision Minimum Value Function)

MINO accepts an arbitrary number of integer arguments and returns an
integer value equal to the smallest of the arguments.

7.12.32 MIN1l (Single-Precision Minimum Value Function)

MIN1 accepts an arbitrary number of real arguments and returns an
integer value equal to the smallest of the arguments.

7.12.33 MOD (Integer A Modulo B Function)

MOD accepts two integer arguments and returns an integer value equal
to the remainder when the first argument is divided by the second
argument. If the second argument is not sufficiently large to prevent
overflow, an error message and a value of 0 are returned.

7.12.34 SIGN (Single-Precision Transfer of Sign)

SIGN accepts two real arguments, calculates the absolute value of the
first argument, and returns this value if the second argument is
positive (or zero), or the negative of this value if the second
argument is negative.

7.12.35 SIN (Single-Precision Sine Function)
SIN calculates and returns the sine of a real argument (in radians).

The argument 1is reduced to the first quadrant, and the sine is then
computed from a Taylor series expansion.

7-111

FORTRAN IV

7.12.36 SINH (Single-Precision Hyperbolic Sign)

SINH calculates and returns the hyperbolic sine of a real argument
according to the relations:

1
If 0.10</xI<87.929, SINH(x) = 1/2[EXP() - Expr)]
If |xi<0.10, SINH(x) = x+x3/6+ x>/120

If |x[>88.028, SINH(x) = [EXP({x| - log,2)] * [signum(x)]

7.12.37 SQRT (Single-Precision Square Root Function)

SORT calculates and returns the (positive) square root of a positive
real argument. Any negative argument results in an error message.

7.12.38 TAN (Single-Precision Tangent Function)

TAN calculates and returns the tangent of a real argument (in
radians). This is accomplished by computing the gquotient of the sine
of the arqument divided by the cosine of the argument; thus, if the
cosine of the argument is zero, an error message is returned.

7.12.39 TANH (Single-Precision Hyperbolic Tangent)
TANH calculates and returns the hyperbolic tangent of a real argument

by computing the quotient of the hyperbolic sine of the argument
divided by the hyperbolic cosine of the argument.

7.12.40 TIME (Read Time of Day)
TIME may be called as a subroutine with one real or integer argument,

or as a function with a dummy argument. It returns the elapsed time
since the clock was started. This result will be in seconds.

7.13 FORTRAN LANGUAGE SUMMARY

Statement Form Effect
Arithmetic a=b The value of expression b

is assigned to the
variable a.

Arithmetic t nam(al...)=x The value of expression x
Statement is assigned to f(al...)
Function after parameter
Definition substitution.

7-112

Statement

ASSIGN

BACKSPACE
BLOCK DATA

CALL

COMMON

CONTINUE

DATA

DEFINE FILE

DIMENSION

DO

END

END FILE

EQUIVALENCE

FORTRAN IV

Form

ASSIGN n TO v

BACKSPACE u

BLOCK DATA

CALL prog
CALL prog(al...)

COMMON/blockl/a,b../..

CONTINUE

DATA varlist/var/...

DEFINE FILE
a(b,c,U0,v)

DIMENSION array
(vl...,v7)

DO st l-el,e2,e3

END

END FILE u

EQUIVALENCE
(vl,v2,...,)

7-113

Effect

Statement number n is
assigned as the value of
integer variable v for
use in an assigned GOTO
statement.

Peripheral device u is
backspaced one record.

Identifies a block data
subprogram.

Invokes subroutine named
prog, supply arguments
when required.

Variables (a,b,...) are
assigned to a common
block.

No processing, target for
transfers.

Assigns initial or
constant values to
variables.

Describes a mass storage
file for direct access
I1/0.

Storage allocated
according to dimensions
specified for the array.

Statements following the
DO up to statement st are
iterated for values of
integer variable i,
starting at i=el,
incrementing by e3, and
terminating when i>e2.

Cease program

compilation; equivalent
to STOP in main program
or RETURN in subprogram.

Writes END-OF-FILE
character in file u.

Identifies same storage
location for variables
within parentheses.

Statement

EXTERNAL

FORMAT

FUNCTION

GO TO

IF

IF

Logical
Assignment

PAUSE

READ

RETURN

REWIND

STOP

FORTRAN IV

Form

EXTERNAL subprogram

FORMAT
(specl,spec2,.../...)

FUNCTION name(al,...)

(1) GO TO n
(2) GO TO (nl,...nk),e
(3) GO TO v

GO TO v, (nl,...nk)

IF(arith expr)nl,n2,n3

IF(logical expr)st

PAUSE [num]

READ(u,f) list
READ (u, f)

READ (u) list
READ(a'r) list

RETURN

REWIND u

STOP

7-114

Effect

Declares a subprogram for
use by other subprograms.

Specifies conversions
between internal and
external representations
of data.

Indicates an external
function definition.

Transfers control to:

(1) statement n

(2) to statement nl if
e=1, to statement nk
if e=k.

(3) transfers control to
state-number assigned
to v optionally
checking that v is
assigned one of the
labels nl,...nk.

Transfers control to nl
if expr<0, n2 if = 0, or
n3 if > 0.

Executes statement if
expression has a value
.TRUE., otherwise
executes the next
statement.

Value of expression E is
assigned to variable V.

Program execution
interrupted and number
printed, if given.

Reads a record from a

a peripheral device
according to
specifications given in
the argument of the
statement.

Returns control from a
subprogram to the calling
program.

Repositions designated
unit to the beginning of
the file.

Terminate program
execution.

Statement

SUBROUTINE

WRITE

Operators in

Type

Arithmetic

Relational

Logical

FORTRAN IV

Form

SUBROUTINE nam[{al...)]

WRITE (u,f) list
WRITE (u, £f)
WRITE (u) list

WRITE(a'r) list

Effect

Declares name to be a
subroutine subprogram and
al,..., if supplied are
dummy arguments.

Writes a record to a
peripheral device
according to
specifications given in
the arguments of the
statement.

each type are shown in order of descending precedence.

Operator Operates Upon
** exponentiation arithmetic or logical constants,
* multiplication variables, and expressions
/ division
+ addition
- subtraction
.GT. greater than arithmetic or logical constants
.GE. greater than or variables, and expressions (all
equal to relational operators have equal
.LT. less than priority)
.LE. less than or
equal to
.EQ. equal to
.NE. not equal to

.NOT.A is true
if and only if

A is false
A.AND.B is true
if and only if

A and B are true
A.OR.B is true
if and only if
either A or B

is true.

A.EQV.B is true
if and only if

A and B are both
true or A and B
are both false.
A.XOR.B is true
if and only if

A is true and B
is false or B is
true and A is
false

.NOT.

.EQV.

.XOR.

7-115

logical constants, variables,
and expressions

(precedence same as .XOR.)

(precedence same as .EQV.)

