CHAPTER 5

DIBOL COMPILER (COMP)

The Compiler converts a DIBOL source program into a binary program and

reserves storage space for the constants, variables, and statements
used by the program.

The Compiler outputs a source program compilation 1listing and a
storage map listing of the records and fields used by the program.
Turn on the printer before running the Compiler.

5.1 COMP OPERATING PROCEDURES

To execute the Compilervprogram, type:
RUN COMP([,filnaml...,filnam7] [/xx]
where:

filnaml...,filnam7
are file(s) to be compiled into one binary program. If

no files are specified, the program in the edit buffer
is compiled.

/XX is one or a combination of the following option
switches:

/N stops output of the compilation 1listing and the
storage map listing.

/G compiles the program and, if no errors are detect-
ed, executes the binary program; implies /N. The
message LOADING is displayed when compiling is
successfully completed. If 1INIT SYS is used in
the program, the program must have an END state-
ment to be compiled and executed with the /G op-
tion. '

/T enables the TRACE function; implies /G.

/D transfers control to DDT; implies /G.

/0 creates a binary program that requires less memory
space by eliminating the TRACE feature and accu-~
rate error reporting. Execution speed of the com~
piled program is increased by as much as 20%.
This option can be combined with /N or /G.

The /O option saves memory space as follows:

® Saves one location for each executable
statement.

® Saves one location for each label.

® Uses one location for each ON ERROR
statement.

Use the /O option on thoroughly debugged programs.

Unless the /N or /G option is specified in the RUN COMP command, the
Compiler outputs a two-part compilation listing (Data Division and
Procedure Division) of the source program and a storage map either on
the printer or on the device specified in START, PROC, or END.

The Compiler underscores the number of the line where an error occurs
and inserts a caret (") pointing to the error. Other errors are list-

ed on the storage map. Errors must be corrected before the program
can be executed.

The Compiler displays the number of errors as nn ERRORS

5.1.1 Source Program Compilation Listing

COs DIBOL 12-JUL-78 WED COMPILATION LISTING Vv 8§.00 PAGE 01
DATA DIVISION OPTIONAL COMPILATION STATEMENT

0100 START ;Optional compilation statement.

0110 RECORD INBUF ;Record named INBUF.

0120 STOCKN, D4 ;:Numeric field named STOCKN.
0130 DESC, A25 ;Alphanumeric field named DESC.
0140 UucosT, D5 :Five-character numeric field.
0150 QORDER, D4 ;Four-character numeric field.
0160 , D9 ;Unreferencable unnamed field.
0170 RECORD OUTBUF sRecord named OUTBUF.

0180 , D4 ;Unnamed numeric field.

0190 , A25 1Twenty~five character field.
0200 s D5 :Unnamed field.

0210 , D4 ;Temporary storage field.

0220 ECOST, D9 ;Numeric field named ECOST.
0230 RECORD ;Unnamed record-temporary storage
0240 ;cannot be directly referenced.
0250 TITLE, A6, 'OVRHED' :Field initialized to 'OVRHED'.

5-2 DIBOL COMPILER (COMP)

COS DIBOL 12-JUL~78 WED

PROCEDURE DIVISION

0260
0270
0280
0290
0300
0310
0320
0340
0350
0360
0370
0380
0390
0400

PROC
INIT(1,I,TITLE)

COMPILATION LISTING V 8.00 PAGE 02

END DATA

INIT (2,0, 'OUTPUT')
LOOP, XMIT(1,INBUF,EOF)

OUTBUF=INBUF

IF (STOCKN.LT.100) GO

ECOST=UCOST*QORDER

XMIT (2,0UTBUF)

GO TO LOOP
EOF, FINI (2)
FINI (1)
STOP
END

5.1.2 Storage Map Listing

COS DIBOL 12-JUL-78 WED

#

0001
0002
0003
0004
0005
0006
0007
0010
0011
0012
0013
0014
0015
0016

NAME TYPE
INBUF RECORD
STOCKN DECMAL
DESC ALPHA
UCOoST DECMAL
QORDER DECMAL
OUTBUF RECORD
ECOST DECMAL
TITLE ALPHA
..l DECMAL
a2 DECMAL
..OUTP ALPHA
LOOP LABEL
EOR LABEL
..1000 DECMAL

0014 1labels

NO ERRORS DETECTED.

DIVISION-BEGIN PROCEDURE DIVISION

iBeginning of Procedure Division.
;Opens TITLE on channel l-input.
; '"OUTPUT' on channel 2-output,
iTransfer INBUF to EOF.

i INBUF moved to OUTBUF.

TO LOOP ;Conditional statement.

;UCOST times QORDER moved to ECOST.
iTransfer OUTBUF onto channel 2.

14

:Branch control to LOOP.
iIdentifies end of logical unit.
iWrites record and closes file.
;Stops program execution.

;Marks the end of the program.

STORAGE MAP LISTING V 8.00 PAGE 03
DIM SIZE ORIGIN
01 49 20000
01 04 20002
01 25 20006
01 05 20037
01 04 20044
01 49 20062
01 09 20132
01 06 20146
01 01 20154
01 01 20155
01 06 20156
00 01 10110
00 01 10144
01 04 20164

08 K CORE REQUIRED [3956 FREE LOCS ~14 BUFFERS]

The storage map lists the record and field names and the labels as

they were

processed by the Compiler.
six columns with the following headings:

The information is arranged in

contains the internal number of the name in column 2,
This number is only used in machine-level programming.

DIBOL COMPILER (COMP) 5-3

NAME is the name (field name, record name, program label) or
literal wused 1in the <compiled program. Literals are
numeric or alphanumeric characters which appear in the
Procedure Division of the source program. Only the
first four characters of a numeric 1literal are used.
Each numeric literal is preceded by two periods (..) to
distinguish as an internal name. Numeric literals with
four characters or less appear only once on the storage
map even though they may occur more than once in the
program. Numeric 1literals with more than four char-
acters are listed each time they occur in the program.

Record literals begin with a double gquote and end with
a single quote.

TYPE describes the use of name in the program.

ALPHA used as the name of an alphanumeric field or
as an alphanumeric literal.

DECMAL used as the name of a numeric field or as a
numeric literal.

RECORD used as a record name or as record literal.

LABEL used as a program label.

REDEF is multiply defined (redefined). All at-

tempts at definition after the first are
flagged as errors in the compiler listing.

UNDEF*** 1is an undefined label referenced by the pro-
gram. For example: GO TO TAGl in a program
where TAGl does not appear as a label.

This error is output to the printer even if
the /N option is in effect. The line number
where the label is used is displayed.
DIM contains the array dimension (number of fields) of the
alphanumeric or numeric labels. The column is meaning-
less for other types of labels.

SIZE lists the size of the name. The size of a RECORD is
the number of characters in all its labels plus 2.

ORIGIN gives the octal byte memory address of the name.

The number of labels used, number of errors detected, memory regquired,
and free Jlocations are listed at the bottom of the storage map. You
cannot get this information if you suppress listing of storage map.

Maximum number of labels allowed in a 16K-byte system is 365; in
24K-byte or larger systems, 511.

Use the SAVE command to store the binary program.

5-4 DIBOL COMPILER (COMP)

5.2 CONDITIONAL COMPILATION PROCEDURE (CCp)

The Conditional Compilation Procedure (CCP) is a feature which permits
you to include statements in a source program which will be compiled
only if you elect to have those statements compiled.

Statements included in a program for conditional compilation are en-
closed within angle brackets as in the following example.

RECORD A
B1, D5
Ccl, A4
PROMPT, D1

RECORD N
NAME, A6

PROC
<PROMPT

XMIT(8,"ENTER NAME:')
>

XMIT(7,N)

STOP

END

The left angle bracket (<) is followed by a control variable (in this
case PROMPT). Unless the control variable is turned on before the
left angle bracket is encountered, statements between the angle brack-
ets will be ignored. A right angle bracket marks the end of a condi-

tional area and is on a line by itself. The command to turn on a con-
trol variable is as follows:

=control variable

The above program requires the operator to type in a name on the key-
board. If this same program is recompiled with the control variable

PROMPT on, it produces a DIBOL program which first displays a message
to the operator.

RECORD A
Bl1, D5
cl, A4
PROMPT, D1
RECORD N
NAME, A6
PROC
=PROMPT ;Turn on prompt.
<PROMPT
XMIT (8, "ENTER NAME:')
>
XMIT(7,N)
STOP
END

Conditional compilation can also be used to debug statements in a
source program. Once the program has been tested, the control vari-
able can be removed by deleting the command to turn it on.

DIBOL COMPILER (COMP) 5-5

CCP also allows several similar (but not 1identical) programs to be
combined into one source program.

If the control variable used in a CCP statement is undefined, the com-
piler will automatically set aside space for it; this is wasteful of

space. For CCP, use variables that are already being used for some
other purpose.

The CCP value of a variable (on or off) 1is independent of the
variable's ordinary DIBOL value.

If a CCP variable is used in the middle of a record definition (in the
bData Division of a DIBOL program) the variable must have been previ-
ously defined, otherwise the Compiler will allocate additional space
for it in the middle of a record.

CCP sections can be nested to any depth. Any CCP section that is
turned off will be ignored by the Compiler. To indicate that certain
statements are not being used, the Compiler listing will not print the
line number for that statement. There must be a matching > for each <
used. If this condition is not met, the Compiler generates a CCP

ERROR message. This error 1is fatal if angle brackets do not match by
the end of the program.

5.3 SIZE OF THE BINARY PROGRAM

Each variable uses as many bytes of memory as specified in its data
definition statement. For example: a variable defined as 6D3 re~-

quires 18 bytes of storage. This is 9 words since a computer word
consists of 2 bytes.

Variables defined in an overlay record share memory with the variables
in the record being overlaid.

Each RECORD statement requires one additional word of memory. This

word is reserved for storing the COS-310 word count during I/0 opera-
tions.

Each record begins on a word boundary (an even—-numbered byte address).
If the record length is odd (in bytes), one byte of memory is wasted.

Each literal used in the Procedure Division of a DIBOL program re-
quires storage (in bytes) equal to the length of the literal. The
length of a numeric literal is equal to the number of digits in the
number, including leading zeros.

Each distinct literal with a length of four or fewer characters ap-
pears only once in the space reserved for literals. Thus, if the 1lit-
eral 32 appears three times in the program, it will appear only once
in the reserved data area. However, literals larger than four char-
acters require space each time they appear in the program.

5-6 DIBOL COMPILER (COMP)

Each statement requires an overhead of one word. Each statement label
requires one word. Unlabeled statements with line numbers 1000 more
than the previous line number require one additional word each.

The number of words of memory generated by an expression can be deter-
mined by the following formula:

Add together the number of variables and literals used.

Add in the number of binary operators which appear. The binary
operators include +, -, /, *, #.

Add one for each subscript reference.

The following table shows how many words of code are required by vari-
ous DIBOL statements.

Table 5-1
DIBOL Statement Words of Code Requirements
No. of Words of

Statement Code Generated
ACCEPT (y,x) y+x+1
CALL label 1
CHAIN chnum chnum+1
DISPLAY (line,column,expr) line+column+expr+l
END [/list control] 1
FINI (channel) channel+l
FORMS (channel,skipcode) channel+skipcode+l
GOTO label 1
GOTO (labell,...,labeln) ,key key+n+2
IF (exprl.rel.expr2)stmnt exprl+expr2+3
INCR var var+l
INIT (channel, dev) channel+2
INIT (channel, dev,filnam[,unit]) ! channel+3+filnam+unit
ON ERROR label 1
PROC [n] [/list control] 0
READ (channel,record,number) channel+number+record+l
RETURN 1
START [/list control] 0
STOP 1
[NO] TRACE 1
TRAP 2
var= var+l
var=expr var+expr+l¥*
var=exprl,expr?2 var+exprl+expr2+1
WRITE (channel,record,number) channel+number+record+1l
XMIT (channel,record[,label]) channel+record+2

For the statement marked with an asterisk (*) in the previous table,
subtract 1 if the principal operator of expr is binary + or -, and if
both types are numeric.

DIBOL COMPILER (COMP) 5=7

Example:

D = 345 takes 4 words of storage, while
D = 3*5 takes 5 words. Similarly,

D = 3+4+5 takes 6 words while

D = 3*%(4+45) takes 7 words.

Additional space is also required by the internal symbol table. This

table consists of two words for each distinct variable, statement
label, or literal used.

5.4 COMPILER ERROR MESSAGES

Most Compiler error messages are printed on the source listing direct-
ly after the line on which the error occurs. A caret (") in the error

message points to the approximate location of the error. Other errors
are listed in the storage map listing.

Message Explanation

BAD ALPHA VALUE Initial value in an alphanumeric data
' definition statement did not begin or
end with a single quotation mark.

Insert single guotes.

BAD NUMERIC VALUE The initial value for a numeric field
was incorrectly formed. Check and form
correctly.

BAD PROC # The number in a PROC statement was not a

digit from 0 to 7. Enter 0 through 7.

BAD RELATIONAL An illegal relational occurs in an IF
statement. For example, a .GX. instead
of a .GT. Retype correctly.

CCP ERROR Matching angle bracket (< or >) missing.
Insert brackets.

COMMA MISSING No comma appeared where one was expect-
ed. Insert comma.

DATA INITIALIZATION MISSING No data initialization followed a comma
in a data definition statement. Remove
comma or input initial value.

5-8 DIBOL COMPILER (COMP)

Message

EXPECTED LABEL IS MISSING

EXPRESSION NOT ALLOWED

EXTRA CHARS AT STMNT END

FIELD TOO LARGE OR O

ILLEGAL OPERATOR

ILLEGAL STMNT

INITIAL VALUE WRONG SIZE

LABEL NOT ALLOWED

MISSING CLOSE PAREN

MISSING OPEN PAREN

MISSING OPERAND

Explanation

A required 1label 1is missing. Enter
label.

A complex expression or bad character
occurs to the left of an = or where only
a variable is allowed. Find and cor-
rect.

Extra characters occur at the end of a
legal statement. Eliminate extra char-
acters.

In a data description statement, the di-
mension was 0 or more than 3 digits
long, or the field size was 0 or larger
than 511, Bring size dimensions within
limits.

A bad character was encountered in an
expression where an operator would be
expected. Check and replace with cor-
rect character.

The statement was not a data manipula-
tion statement (it had no =) nor did it
start with a recognizable keyword. Use
appropriate keyword and use = sign.

The initial value in a data specifica-
tion statement had a length different
from the field size specified. Make in-
itial value agree with defined size.

A label in an expression was the wrong
type or a record or a label which had
been redefined was used. Use unique
label of the correct type.

No close parenthesis occurred where one
was expected. Add parenthesis.

No open parenthesis occurred where one
was expected. Add parenthesis.

A binary operator occurs in an expres-
sion with no operand following it; or
no expression at all occurs where one is
expected. Insert operand and/or appro-
priate expression.

DIBOL COMPILER (COMP) 5-9

Message

MISSING OR BAD MODE

MISSING QUOTE

MISSING RELATIONAL

NAME PREVIOUSLY DEFINED

NOT A OR D

NOT LABEL

PROGRAM TOO BIG

RECORD TOO BIG

STMNT TOO COMPLEX

SUBSCRIPT ERROR

SUBSCRIPT NOT NUMERIC

TOO MANY ITEMS

5-10 DIBOL COMPILER (COMP)

Explanation

The mode designation in an INIT state-
ment was missing or began with an ille-

gal character. 1Insert correct mode de-
signation.

The statement contained an odd number of

guotes ('). Delete or add quote when
appropriate.

No relational appeared in an 1IF
ment. Enter legal relational.

state-

An attempt was made to redefine a previ-
ously defined name. Use unique name.

A character other than A or D occurred
in a data specification statement where

A or D was expected. Replace character
with A or D.
A symbol which was not a ‘'label' oc-

curred where a
Enter proper label,

label was required.

Binary output too big for the
scratch area.
PIP OPT- E.

binary
Enlarge scratch area with

A named record exceeded 510 characters

in size. Either use unnamed record or
reduce the size of record.

The statement is too complex or is nest-~
ed too deep. Simplify the statement.

No comma or close parenthesis
after a subscript.
punctuation.

occurred
Enter appropriate

The type of a subscript was not numeric.
Use numeric subscript.

More elements were
array than are
dimension.

initialized in an
specified in the field
Eliminate excess elements.

Message

TOO MANY SYMBOLS!

TOO MUCH DATA

UNDEFINED NAME

WRONG DATA TYPE

Explanation

A fatal error message. Only 365 symbols
allowed in symbol table in 16K~-byte sys-
tem, and only 511 symbols allowed in
larger systems. The compiler stops com-
piling; no storage map can be produced.
Rewrite and shorten program.

Data Division exceeds 24K bytes.
Rewrite program.

A name is used which was not defined in
the Data Division. Define this name or
use a name already defined.

Mixed data types occurred in an expres-—
sion, an argument which was supposed to
be numeric was not, or one of the argu-
ments in a data manipulation statement

was of the wrong type. Replace the
data.

DIBOL COMPILER (COMP) 5-11

CHAPTER 6

DIBOL DEBUGGING TECHNIQUE (DDT)

The DIBOL Debugging Technique (DDT) is used to debug binary programs.
If a program is compiled with the DDT option (/D), the compiled binary
program automatically branches to DDT upon execution. The features of
DDT include breakpoint, variable examination, subroutine call trace~
back, and iteration.

6.1 DDT OPERATING PROCEDURES

To execute a binary program with DDT, type:

pronam
RUN [Il,filnaml...,filnam7]/D
chainO+chainl...+chain7
where:
pronam is the name of the binary program to be debugged.

If the program name is omitted, the Monitor 1loads and
executes the DIBOL program in the binary scratch area.

chainO+chainl...

are binary programs which constitute one large program
broken up into several chained programs. These are the
programs to be debugged.

filnaml...,filnam?7
are names of source files on the system device.

/D is the option switch that requests DDT.

An additional 768 words of memory plus 3 words for each

label in the Data Division are required because of the
/D option.

During execution of the program, control is passed to DDT. The DDT
program displays an appropriate DDT version number followed by a hy-
phen (-) to indicate that it is ready to accept commands.

6.2 DDT COMMANDS

Command

variable=

variable=v

>n

CTRL/Z

Explanation

Display the contents of variable (a label from the Data

Division). Variable can have single or double sub-
scripts.

Set variable equal to v (v is any legal alphanumeric
string).

If v has more characters than defined for variable, ERR
IN CMD is displayed.

Display the contents of the last variable examined.

Set the last variable examined equal to v.

Set a breakpoint at line nnnn. One breakpoint is ac~
tive at a given time. A breakpoint set at line 0 is

meaningless because the program never executes line 0,

Execute the breakpoint at the nth occurrence of line
nnnn.

For example:

-$300
->4

When the program starts to execute line 300 for the

fourth time, the breakpoint is executed and control is
transferred to DDT.

Start execution of DIBOL program. If a breakpoint, §,

is set at line number nnnn, control reverts to DDT when
nnnn is reached and the following message is printed:

BREAK!

Type additional commands in response to the hyphen (-).

6-2 DIBOL DEBUGGING TECHNIQUE (DDT)

1 Display the lines from which calls (CALL or TRAP com-
mands) were made (pushdown stack) during execution of
the DIBOL program. This command is generally used to
trace the execution of the program after a breakpoint
or system error has occurred. The is usually the
shift/six key.

While a DDT breakpoint is pending, if a DIBOL program error causes a
message such as ILLEGAL SUBSCRIPT or NUMBER TOO LONG to appear, con-
trol is transferred to DDT; DDT commands can be used for program ex-

amination. If an error is fatal, the DIBOL program cannot be restart-
ed by the CTRL/Z command.

Once a DIBOL program is running under DDT, DDT cannot be restarted un-
less a breakpoint occurs or an error occurs with a breakpoint pending.
Therefore, if you do not require a breakpoint but want to return to

DDT for program examination if an error occurs, set a breakpoint at a
line number which will not be executed.

6.3 DDT ERROR MESSAGES

Message Explanation

ERR IN CMD Entered an invalid DDT command. Correct the com-
mand and retry.

DIBOL DEBUGGING TECHNIQUE (DDT) 6-3

CHAPTER 7
CROSS REFERENCE PROGRAM (CREF)

The Cross Reference Program (CREF) is primarily an aid to program de-
velopment. It provides a table showing an alphabetical listing of all
labels used in a DIBOL source program, the 1line number where each
label is defined, and the line numbers where each label is used.

7.1 CREF OPERATING PROCEDURES

To execute CREF, type:
RUN CREF|[,filnaml...,filnam7]
where:

filnaml...,filnam?7
are the parts of a DIBOL source program (maximum 7).
If no files are specified, the program in the edit
buffer is used.

The CREF program reads the DIBOL program, lists the cross-reference
table on the line printer, and returns control to the Monitor.

CREF requires 16K bytes of memory and can handle any 16K-byte program
that does not have an excessive number of symbols and labels. If 24K
bytes or more is available, CREF expands its cross-reference table to

make use of the available space.
A minimal amount of error checking is performed by CREF; no attempt
should be made to cross reference programs having compilation errors.
If CREF finds a line it cannot work with, it prints:

nnnn IS BEING IGNORED

where:

nnnn is the number of the line CREF cannot work with.

Following is the cross-reference table for the DIBOL program in Figure

1-1 of Chapter 1.

CO0S-310 CREF vV 8.00 24-MAY-78 WED
LABEL DEF REFERENCES
DESC 130
ECOST 220 340
EOF 390 310
INBUF 110 310 320
LOOP 310 330 380
OUTBUF 170 320 360
QORDER 150 340
STOCKN 120 330
TITLE 260 280
UCoSsT 140 340
LABELS DEFINED BUT NEVER REFERENCED: 0l
where:
LABEL is the name of the label used in the program.
DEF is the line number in the program where the
defined.
REFERENCES

PAGE 1

label is

are the line numbers where each label is referenced.

7.2 CREF ERROR MESSAGES

Message

nnnn IS BEING IGNORED CREF detected
with, Usually means

statement.

Explanation

a line it cannot work

statement and retry.

7-2 CROSS REFERENCE PROGRAM (CREF)

an invalid DIBOL
Check line number for

valid

CHAPTER 8

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) moves files between two logi-
cal units, copies the contents of one device onto another, and consol-
idates files to remove free blocks. PIP is also used to allocate more
space to the binary scratch area.

8.1 PIP OPERATING PROCEDURES

To execute PIP,

type:

RUN PIP[,cmndfl] [/n]

where:

(cmndfl

is a previously stored file containing PIP commands.
Each command is on a separate line; no blank lines or
comments are used. When the command file is specified,
PIP reads a 1line from the file each time one of the
following prompts is displayed:

OPT-

IN-

ouT-

MORE?

TYPES OF FILES TO BE SKIPPED (S,B,V):

An end-of-file mark terminates the command file and re-
quires all responses to come from the keyboard.

The command file is ignored on machines with less than
24K bytes of memory capabilities.

Example:

If the cmndfl EXAMP contains:

0100 ¢
0110 RXO
0120 RX1
0130 X
Then:
.RUN PIP,EXAMP ;will copy RX0 to RX1.
/n indicates the number (0-9) of segments to allocate to

the binary scratch area. The /n switch is used in con-
junction with OPT- E, but is entered at the time that
the RUN PIP command is typed.

PIP responds to the RUN PIP command with:

PIP V 8.00 (or current version number)
OPT-

Respond with one of the following options:

Option Explanation

B transfer a binary file

C copy device

D transfer a data file

E consolidate directory space
I copy and verify data

R perform a read/check

] transfer source file

Y transfer system file

X return to Monitor

After you respond, PIP displays IN and OUT questions requesting
option-dependent information.

Following is a summary of the PIP options and the information being
requested by the IN and OUT questions.

8-2 PERIPHERAL INTERCHANGE PROGRAM (PIP)

OPT . IN our
B filnam[,dev] filnam[,dev]
C dev dev
filnam[/logical unit #] filnam([/logical unit #]

D /K /L

/T
E dev dev
I dev dev
R dev
S filnam|[,dev] filnam[,dev]
v filnam[,dev] filnam[,dev]

8.1.1 Transfer Binary File (OPT- B)

Type B in response to OPT- to
file~-oriented devices.

move a binary program between two

Answer the IN question with the name of the binary program to be moved
and, optionally, a comma and an input device designation. If no de-
vice is designated, the system device is assumed.

Answer the OUT question with the name to be assigned to the
file and, optionally, a comma and an output device designation.
device is designated, the system device is assumed.

output
If no

If you attempt to move data to or from a non-file-oriented device, the
IN or OUT message is repeated.

Example:

. RUN PIP

PIP V8.00
OPT- B

IN- TEST,DKO
ouT- TEST,DK1
OPT- X

;Request move of binary file.
;File named Test from DKO.
;File named Test to DK1.

8.1.2 Copy Device (OPT- C)

Type C in response to OPT- to copy the contents of one device

onto a
similar device.

Answer the IN question with a device designation.

Answer the OUT question with a device designation.

PERIPHERAL INTERCHANGE PROGRAM (PIP) 8-3

Example:

.RUN PIP

PIP V8.00

OPT- C iRequest a copy between devices.
IN- DKO ;Input device is DKO.

OUT- DK3 ;Output device is DK3.

OPT- X

8.1.3 Transfer Data Files (OPT- D)

Type D in response to OPT- to transfer data files between devices.

Answer the IN question with a file name and optionally, a logical unit
number (1-15) preceded by a slash, or answer the IN question with /K.

Answer the OUT question with a file name and optionally, a logical
unit number preceded by a slash, or answer the OUT question with a
device switch. Output device switches are:

/L printer
/T sScreen

When the end of the input file is reached, PIP asks:
MORE?

Type N and the RETURN key if there is no more input or Y and the RE-
TURN key to specify more input.

PIP transfers alphanumeric data only. A negative number is treated as
the letter which has the equivalent code.

Examples:

.RUN PIP

PIP V8.00

OPT~ D

IN- EMPNAM/1 iDump EMPNAM from logical unit 1 onto the printer.
ouT- /L

MORE? N

OPT- X

-RUN PIP

PIP Vv8.00

OPT- D

IN- HRPAY, 2 iCombines two data files into one output file.
OUT~ PAYFIL/1

MORE? y

IN- saLPAY, 3

MORE? N

OPT- x

8-4 PERIPHERAL INTERCHANGE PROGRAM (PIP)

8.1.4 Consolidate Space in Directory (OPT- E)

Type E in response to OPT- to consolidate the free blocks on the input
device and store the files on the output device. It is possible to
erase one or two of the kinds of files (source, binary, or system)
during the consolidation. Free blocks are shown in the file directory

and are created when a file is deleted from the directory. The boot-
strap, Monitor, and logical units are not copied by OPT- E.
Answer the IN question with a device designation.
Answer the OUT question with a device designation.
When consolidating the system device onto itself, PIP OPT- E elimi-
nates the free space as shown below:
SYSTEM DEVICE (SYS)
£ f logical | logical | logical
before files |r | files | r | files unit unit unit
e e 8 9 10
e e
logical | logical | logical
after files free unit unit unit
8 9 10
When consolidating a device other than the system device onto another

device, PIP OPT- E consolidates the free space but does not copy logi-

cal units.

NONSYSTEM DEVICE

f f logical | logical | logical
before files |r | files | r | files unit unit unit
e e 8 9 10
e e
after files free

The following message asks which files you do not want copied, consol-~-

idated,

and stored.

TYPES OF FILES TO BE SKIPPED (S,B,V):

The files you choose to skip will be erased.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

8-5

If all files are to be copied, consolidated, and stored, type the
RETURN key. If one or two of the types of files are to be skipped
(erased), type one or a combination of two of the characters S, Vv, B
separated by a comma and followed by the RETURN key.

The following example will consolidate free space but will not copy
source files from DKO to DK1.

Example:
«RUN PIP
PIP V 8.00
OPT- E
IN- DKO
OUT- DK1

TYPES OF FILES TO BE SKIPPED (s,v,B): 8

All CTRL keys are ignored until the PIP OPT- E consolidation operation
is completed.

8.1.5 Allocate Space to Binary Scratch Area (OPT- E)

The PIP OPT- E is used in conjunction with /n to change the size of

the binary scratch area. The /n is typed along with the RUN PIP com-
mand.

Extremely large DIBOL programs may need more space than available in
the two segments (32 blocks) usually allocated to the binary scratch
area. Up to nine segments can be allocated with PIP OPT- E.

The following PIP operation will allocate two additional segments (32
blocks) to the binary scratch area on DKO. This particular operation
uses /2 as the /n option typed in the RUN PIP command.

-RUN PIP/2

PIP V 8.00

OPT- E

IN- DK1

OUT- DKO

TYPES OF FILES TO BE SKIPPED (S,V,B):

The following information is helpful when using OPT- E to change the
size of the binary scratch area.

e If the output device is not the input device, the size of the
binary scratch area on the output device equals the sum of
the two segments normally in the binary scratch area plus the

number of segments stipulated by the /n in the RUN PIP com-
mand.

8-6 PERIPHERAL INTERCHANGE PROGRAM (PIP)

8.1.6

Type
devic

Answe

e If a device is consolidated onto itself, the binary scratch
area is set either to the size of the current area or to 2+n,
whichever is less. Compressing a device onto itself can
shrink the binary scratch area. The binary scratch area can-
not be expanded if a device is being compressed onto itself
because that would require writing over existing files.

e If /n is not specified in the RUN PIP command, the binary

scratch area is assumed to be the same size as the binary
scratch area of the input device.

Copy and Verify (OPT- I)

I in response to OPT- to copy an entire device onto a similar
e and verify the copy.

r the IN question with a device designation.

Answer the OUT question with a device designation.

Example:
.RUN PIP
PIP V8.00
OPT- I ;Request copy and verify.
IN- DKI1 ;Input device is DK1.
OUT- DK2 ;Output device is DK2.
OPT- X

If your machine configuration includes an LQP printer, PIP OPT- I will

requi

8.1.7

Type

re 32K bytes of memory.

Perform a Read/Check (OPT- R)

R in reply to OPT- to verify the readability of a device.

Answer the IN question with the designation of the device to be read.

No OUT question is displayed.

Example:
.RUN PIP
PIP V8.00
OPT- R ;Request Read/Check.
IN- DKl ;Read contents of DK1.
OPT- X

PERIPHERAL INTERCHANGE PROGRAM (PIP) 8-7

8.1.8 Transfer Source Files (OPT- S)

Type S in response to OPT- to transfer source files between two
file-oriented devices.

Answer the IN question with the name of the source file to be trans-
ferred and, optionally, a comma and the input device designation. If
no device is specified, the system device is assumed.

Answer the OUT question with the name to be assigned to the output
file and, optionally, a comma, and the output device designation. If
no device is specified, the system device is assumed.

Example:

«.RUN PIP

PIP V8.00

OPT- S iRequest transfer of source file.
IN- TEST,DKO ;Transfer TEST from DKO.

OUT~ TEST,DKl ;Receive TEST into DKI.
OPT- X

If you attempt to transfer to or from a non-file-oriented device, the
IN or OUT question is repeated.

8.1.9 Transfer System Program (OPT- V)

Type V in response to OPT- to move a system program between two
file-oriented devices.

Answer the IN question with the name of the system program to Dbe
transferred and, optionally, a comma and the designation for the input
device. If no device is specified, the system device is assumed.

Answer the OUT gquestion with the name to be assigned to the output
file, and, optionally, a comma and the output device designation. If
no device is specified, the system device is assumed.

Example:

. RUN PIP

PIP V8.00

oPT- V iRequest transfer of system program.
IN- SORT,DK1 sTransfer SORT from DKI1.

OUT- SORT,DK3 ;Transfer SORT to DK3.
OPT- X

If you attempt to transfer to or from a non-file-oriented device, the
IN or OUT question is repeated.

8-8 PERIPHERAL INTERCHANGE PROGRAM (PIP)

8.1.10 Return to Monitor (OPT- X)

Type X in response to OPT- to terminate PIP and return to the Monitor.

This OPT- X feature is useful when PIP is included in a string of Mon-
itor commands in a BATCH program. The OPT- X signals the end of the
PIP program and the next Monitor command in the BATCH program is exe-

cuted.

8.2 PIP ERROR MESSAGES

Message

BAD DIRECTORY

COMPARISON ERROR

ILLEGAL DEVICE SWITCH

NO ROOM

Explanation

Attempted to reference or store a file on a
device with a damaged or nonexistent directo-
ry. Only files with directories can be used.
If the directory 1is damaged, call your
Software Specialist.

The verification part of OPT- I found a dis-
crepancy of information between the original
text and its copy. Retry the operation. If
discrepancies continue, you have a media
problem or a hardware problem.

A switch was specified for OPT- D that was
not /K for input or /L or /T for output. Use
one of the allowable switches.

Attempted to store a file on a full device.
Stipulate another device.

PERIPHERAL INTERCHANGE PROGRAM (PIP) 8-9

CHAPTER 9

SORT PROGRAM (SORT)

SORT is a utility program that arranges the records within C0S-310
data files according to your needs. The data files must contain
fixed-length records.

Before you can execute SORT you must write a SORT command file that
defines the records to be sorted, specifies labels for input and out-
put files, and designates the arrangement (key) to be used in the
sort.

SORT uses a command file to rearrange one data file at a time. There
must be a separate SORT command file for each file sorted.

The SORT command file sorts each volume of a multivolume file separ-
ately. A merge pass must then be done to combine the volumes into one
file.

9.1 SORT OPERATING PROCEDURES

To execute SORT, type:
RUN SORT,cmndfll...,cmndfl7[/L]
where:

cmndfll...,cmndfl7
is the SORT command file which can be stored as more
than one file. This file defines the records to be
sorted, specifies the 1labels for input and output
files, and designates the arrangement (key) to be used.
If no files are specified, the command file in the edit
buffer is used.

/L lists the SORT command file on the printer.

9.2 SORT COMMAND FILE

The SORT command file is created with editor commands and written on a
mass storage device. The command file consists of a Record Descriptor
Division and an INPUT/OUTPUT Division.

9.2.1 Record Descriptor Division

The Record Descriptor Division defines the fields within the records
to be stored. This division has the form:

DEFINE

Fs, xn

where:

DEFINE is the division heading (must be DEFINE) and is the
first statement in the file.

Fs are the fields in the record (must be F). All fields
must be defined in the Record Descriptor Division and
numbered in the order they appear in the record. These
numbers (s) begin with 1, are nonskipped sequential,
and cannot exceed 511. Total record size cannot exceed
510 characters.

Xn represents the field type (alphanumeric or numeric),

and the number of characters (1-510) in the field.

Each field descriptor statement (Fs) is entered on consecutive lines
and is terminated with the RETURN key.

9.2.2 INPUT/OUTPUT Division

The INPUT/OUTPUT Division specifies the names of input and output
files and how many logical units are to be used for work areas during
the SORT operation. This division has the following format:

INPUT [filnam][/logical unit #][,filnam] [/logical unit #]
[SORT n /logical unit #,...logical unit #]

KEY Fs[(m,n)} [-],...

OUTPUT [filnam] [/logical unit #]

END

9-2 SORT PROGRAM (SORT)

where:

INPUT [filnam] [/logical unit #1[,filnam] [/logical unit #]

is the name of the file containing the records to be
sorted. If no name is specified, SORTIN is assumed.
If the command file is used for a separate merge opera-
tion, the second file name is the name of a file to be
merged with the first. The logical units identify the
storage location of the file.

[SORT n /logical unit #...,logical unit #]

is the number (n) of logical units (3 to 7) to be used
as work areas during the sort. These work areas are
labeled $SWORK1l, $WORK2...,etc. If the SORT statement
is not present, 4 units are assumed. The size of the
work units should be as large as one volume of the
input file. The logical unit numbers are default work
units. Using default units bypasses the MOUNT message.

KEY Fs[(m,n)][-],...

Fs is the field name (F) and number (s) of the field to
be used as the SORT key. The [(m,n)] delimit the part
of the field to be used as a SORT key. If no char-
acters are specified, the entire field is used as a
SORT key. The ~ requests a SORT in descending order.
Up to eight fields or parts of fields can be specified
for the SORT key. The total size of the fields which
comprise the key cannot be larger than 510 characters.
The SORT is done left to right. The leftmost key is
most significant, and the leftmost character in each
key field is most significant for sorting purposes.

OUTPUT [filnam] [/logical unit #]

END

is the file name to be given to the sorted records. 1If
this statement is missing, SORT assigns the name SRTOUT
to the output. For multivolume files, the names $TMPnn
(nn can be any two-character numeric from 00 to 99) are
used. The /logical unit number is the default unit for
the output file.

terminates control program.

SORT PROGRAM (SORT) 9-3

Following is an example of a SORT command file:

0010
0020
0030
0040
0050
0060
0070
0080
0090

0100
0110

DEFINE

F1l,D6 ;Part number.

F2,A30

F3,D7

F4,D6 ;Date.

F5,D6

INPUT PRTFIL/1 ;Data file name.

SORT 4/2,3,4,5 ;Work units.

KEY Fl-,F4 ;Sort part numbers in descending order,

;Sort date in ascending order.
OUTPUT PRTFIL/1 ;Sorted data file name.
END

9.3 MERGE OPERATING PROCEDURE

To execute SORT as a merge operation, type:

RUN SORT,cmndfll...,cmndfl17/x[L]

where:

cmndfll...,cmndfl?’

/X

/L

is the command file (possibly stored in two or more
files).

is one of the following switches:

/A names of files to be merged are entered from the
keyboard in answer to the message INPUT FILE LA-
BELS:. The output data file and default unit name

are specified in the OQOUTPUT line of the command
file.

/M names of files to be merged are 1listed in the
INPUT 1line of the SORT command file. This option
bypasses the message INPUT FILE LABELS:.

/n name of files to be merged (all files must have
the same name) is listed in the INPUT line of the
SORT command file. This checks for the number of
files with the same name on the number of default
units as specified. If the number of units speci-
fied is more than the number of units shown on the
SORT control INPUT line, a MOUNT message is dis-
played for those files not on the INPUT line.

can optionally be used with any of the above switches
and lists the SORT control program on the printer.

9-4 SORT PROGRAM (SORT)

9.3.1 Merge Using SORT and the /A Option

To use the SORT program with the /A option to merge data files, first
write a SORT command file.

Following is a sample command file named PAYKEY:

0100 DEFINE

0110 Fl,A6

0120 F2,D5

0130 F3,D11

0140 INPUT

0150 SORT 3/1,2,3
0160 KEY F2

0170 OUTPUT PAYROL/6
0180 END

To execute this sample command file with the SORT program and the /A
option, type:

+RUN SORT,PAYKEY/A

The program displays the following message to request the names of the
data files to be merged:

INPUT FILE LABELS:

Enter up to a maximum of six data file names and default units. Enter
at least two names or the error message NO INPUT is displayed.

After you enter the file names and default units, the program is exe-
cuted. There are three SORT work units: logical units 1, 2, and 3.
The output data file is PAYROL; the sorted file is stored on unit 6.

9.3.2 Merge Using SORT and the /M Option

To use the SORT program with the /M option to merge data files, first
write a command file.

Following is a sample command file named PAYKEY:

0100 DEFINE

0110 F1l,A6

0120 F2,D5

0130 F3,D11

0140 INPUT PAYROL/4, PAY1/2
0150 SORT 3/1,2,3

0160 KEY F2

0170 OUTPUT PAYROL/6

0180 END

SORT PROGRAM (SORT) 9-5

To execute this sample command file with the SORT program and the /M
option, type:

.RUN SORT,PAYKEY/M

The input data file names to be merged are found in the INPUT line of
the control file:

PAYROL on logical unit 4
PAYl on logical unit 2

The output data file, PAYROL, is put on logical unit 6.

9.3.3 Merge Using SORT and the /n Option

To use the SORT program with the /n option to merge data files with
the same name, first write a command file. The INPUT line contains

the name common to the files and the default units where the files are
found.

Following is a sample command file named PAYKEY:

0100 DEFINE

0110 F1l,A6

0120 F2,D5

0130 F3,D11

0140 INPUT PAYROL/4,2
0150 SORT 3/1,2,3
0160 KEY F2

0170 OUTPUT PAYROL/6
0180 END

To execute this sample command file with the SORT program and the /n
option, type:

.RUN SORT, PAYKEY/2
The input data files to be merged are:

PAYROL on logical unit 4
PAYROL on logical unit 2

9-6 SORT PROGRAM (SORT)

9.4 SORT ERROR MESSAGES

Message

Explanation

BAD DIGIT IN NUMERIC INITIAL VALUE

BAD RECORD SIZE

BAD WORK UNIT COUNT

EXTRA CHARS AT STMNT END

FIELD NUMBER MISSING OR 0

ILLEGAL SORT KEY

ILLEGAL UNIT

Alphanumeric character in a numeric ini-
tial value. Use only numeric characters
in initial numeric values.

File contains records of variable
length. All records to be stored must
be the same 1length. Redefine record
length.

Number of work units not in range 3-7.
Specify work units within allowable
range,

Characters not relating to statement ap-
pear on the statement line. Delete any
nonessential characters from statement
lines.

Field number is missing, is 0, or is
greater than or equal to 512. Enter the
missing number or enter a number between
1 and 511.

Bad syntax on KEY statement, KEY too
complex, or KEY statement missing.
Review key information and correct com-
mand file.

Default unit is 0 or greater than 15.
Correct command file.

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE

INITIAL VALUE TOO BIG

INITIAL VALUE TOO SMALL

Beginning quotation mark missing for in-
itial alphanumeric value. Put single
quotation at the beginning of the ini-
tial value.

The initial value specified is larger
than the field size. Either define a
larger field size or reduce the size of
the initial value.

The initial value specified is smaller
than the field size. Either redefine
the field size or increase the size of
the initial value.

SORT PROGRAM (SORT) 9-7

Message

Explanation

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE

MISSING INITIAL VALUE

NO COMMA AFTER FIELD NAME

NO INPUT

NOT A OR D

NOTHING AFTER FIELD NAME

Quotation mark not specified at the end
of an alphanumeric initial value. Add
the missing close quotation marks.

Comma was inserted after type and size
but initial value was not specified.

Either delete comma or insert initial
value,

No comma or a character other than comma
was specified after the field name.
Enter the missing comma or delete incor-
rect character and then enter the comma.

Input file is null or not enough input
files specified for a merge. Two files
are needed to execute a merge. Use two
nonempty files.

A character other than A or D occured in
a data specification statement where A

or D was expected. Correct the command
file.

Field type and size are not specified
after field name and comma. Correct the
command file.

NUMBER REPEATED OR OUT OF ORDER

OUTPUT ERROR

TOO MANY FILES

UNIT xx IS FREE

UNRECOGNIZABLE LINE

9-8 SORT PROGRAM (SORT)

A field sequence number is used more
than once or is out of ascending order
sequence. Correct the command file.

Indicates an I/0 error. Start SORT
over. If it continues, check for media
or hardware problem.

Merge only, more than 6 input files
specified. Specify no more than six
files for merge command file.

This is not an error. It is an informa-
tive message showing the logical units
that are free. xx is a COS logical unit
number .

Parameter line did not start with a good
keyword. Correct the command file.

CHAPTER 10

FILE EXCHANGE PROGRAM (FILEX)

The File Exchange Program (FILEX) transfers files between diskettes in
universal format and any COS-310 file storage device or any 0S/8 file
on an RK05 disk (0S/8 files cannot be transferred to or from disk-
ettes).

Files are transferred in one of three formats: ASCII, IMAGE, or EBCD-
IC (universal format). The EBCDIC format is compatible with diskettes
produced by an IBM 3741 except when using multivolume universal inter-—
change files or when mapping bad sectors.

10.1 UNIVERSAL DISKETTE

A universal diskette contains 77 tracks (some of which cannot be used
for data). Each track has 26 sectors numbered from 1 to 26. A sector
contains one record of 128 characters or less. (See Figure 10-1 for a
visual representation of a universal diskette.)

A record in a COS-310 file is assumed to be a string of characters
preceded by a word count and independent of sector boundaries. A
record on a universal diskette in EBCDIC format must begin on a sector
boundary and only one record is allowed per sector. If the record
does not fill a sector, the remainder of the sector is filled with
blanks. Since these restrictions make EBCDIC format inefficient and
wasteful of space, only use EBCDIC when you must read or write disk-
ettes compatible with IBM 3741 format.

Track 0 of the wuniversal diskette contains the information which

describes the files on the diskette. Each of the 26 sectors on a
diskette has a specific function.

10-

]
W

Sector Function

1-6 Reserved.
7 Identifies the diskette format.

If bytes 0-3 contain VOL1 in EBCDIC characters, the

diskette is assumed to have a universal interchange
format directory.

The remainder of sector 7 contains other information
which FILEX does not use.

8-26 Contain the labels or the directory entries. These
sectors contain information such as record length (up
to 128 characters) and creation date. For further de-

tails on these sectors refer to the IBM manual, form
number GA21-9128-0.

Each byte in sectors 8-26 has a special function.

Bytes Function

0-3 Are for label identification and contain
HDR1 (DDR1 if the file has been delet-
ed) .

6-13 Contain the file name.

23-27 Specify the record length.

29-30 Contain two EBCDIC characters which

identify the track number at the begin-
ning of the data.

31 Must be EBCDIC 0 (360 octal).
32-33 Contain two EBCDIC characters which

identify the sector number at the begin~-
ning of data.

35-36 Contain the number of the 1last track
reserved for this file. Byte 37 must be
EBCDIC 0.

38-39 Contain two EBCDIC characters which

identify the number of the last sector
reserved for this file.

48-53 Contain creation year, month, and day.

10~2 FILE EXCHANGE PROGRAM (FILEX)

Bytes

75-76
77
78~79

R

‘dﬁQj§ 16

20

Function

Contain the track number.
Must be EBCDIC 0.

Contain the number of the
sector.

4
5 1 13

next

unused

o

Figure 10-1 Universal Diskette

FILE EXCHANGE PROGRAM (FILEX)

TIFICATION

/Dgp FORMAT

10-3

C0S-310 character codes are never used in a universal interchange
file. All data on a universal diskette is stored in either 7-bit
ASCII or 8-bit EBCDIC. ASCII format is eguivalent to data written as
a continuous string of bytes ignoring sector boundaries; records are
terminated by a carriage return/line feed. The first record of a file
must begin on a sector boundary. All character code translation and

record blocking is done implicitly by FILEX and need not be explicitly
specified.

File name extensions are not normally recognized in universal inter-~
change format; instead, a single eight-character file name is used.
In order to provide some degree of compatibility with 0S/8, FILEX has
been designed to accept a six-character file name with a two-character
extension. If a file name on a universal diskette has more than six
characters, it must be entered in the format of filnam.ex. File names

must not include spaces anywhere within the file name or between it
and the extension.

10.2 FILEX OPERATING PROCEDURES

To execute FILEX, type:
RUN FILEX [,cmndfl]

where:

(cmndfl is the name of a previously created file containing a
table of desired logical unit assignments.

If the command file option is not used, FILEX uses the
logical unit assignments already in the system.

If the command file is used, FILEX uses a special RX02
handler that reads and writes RX0l compatible diskettes
and assigns logical unit numbers on RX01 and RX02 disk-
ettes in the same system, provided the system is con-
figured for RX02s. Assignments of this kind usually
cannot exist on the same system.

These RX02 assignments remain in effect. When FILEX is

completed, however, all logical units assigned to RX0Ols
become undefined.

Following the RUN FILEX command, the program displays:

FILEX V8.00 (or current version number)
OPT (C, D, L, X, Z):

Enter one of the options; C, Copy; D, Delete; L, List; X, eXit;
or Z, Zero (clear).

10-4 FILE EXCHANGE PROGRAM (FILEX)

10.3 COPY (OPT:C)

OPT:C copies the contents of one file onto another. If you select op-
tion C, the system requests the input mode (the directory structure
and the file format) of the file to be copied.

INPUT MODE (A, D, U):

Type the letter corresponding to the input mode to be used: 0Ss/8
ASCII (A), COS-310 Data (D), or Universal (U).

10.3.1 0s/8 ASCII Input (Mode A)
ASCII format is that used by 0S/8. If you select input mode A, the
program displays:
FILE NAME:
Type the file name and the device designation in the following form:
filnam[.ex] [,dev]
where:
filnam[.ex]
is a six-character or less file name plus an optional
two-character extension identifying the file to be
input.
,dev is a three-character device designation. 0S/8 RX0l1 and
COS5-310 RX0l diskettes are incompatible so do not spec-

ify an RXn device designation.

If the device is not specified, the system device 1is
assumed.

If the file name given already exists, FILEX displays:
REPLACE?

Type Y for YES, N or any other character for NO.

Having established the input file name, the program displays:
OUTPUT MODE (A, D, S, U):

Sections 10.3.4 through 10.3.4.4 explain the OUTPUT MODE.

FILE EXCHANGE PROGRAM (FILEX) 10-5

10.3.2 CO0S-310 Data Input (Mode D)

If you select input mode D, the program displays:

FILE NAME:

Type the file name and the logical unit # in the following form:
filnam [/logical unit #}

where:

filnam is a six-character or less name identifying the file to
be input.

[/logical unit #] .
identifies the logical unit where the file is found.

Having been given the input file name, the program displays:
OUTPUT MODE (A, D, S, U)

Sections 10.3.4 through 10.3.4.4 explain the OUTPUT MODE.

10.3.3 Universal Input (Mode U)

If you select input mode U, the program displays:

DISKETTE DATA MODE (A, I, U):

Type the letter corresponding to the diskette data mode to be used:
A, ASCII; I, Image; U, Universal.

If you select any one of the diskette data modes A, I, or U, the pro-
gram displays:

FILE NAME:

Type the input file name in the following form:
filnam[.ex] [,RXn]

where:

filnam[.ex]

is a six-character or less name plus an optional
two~-character extension. This name 1identifies the
input file.

10-6 FILE EXCHANGE PROGRAM (FILEX)

,RXn is a three-character device designation. Must be RX;
n represents the drive on which it is mounted.

After you type the file name, FILEX displays:

OUTPUT MODE (A, D, S, U):

Sections 10.3.4 through 10.3.4.4 explain the OUTPUT MODE.

10.3.4 Output Modes (A, D, S, U)

The four output modes are: A, 0S/8 ASCII; D, COS-310 data file; S,
C0S-310 source file; and U, Universal diskette.

10.3.4.1 0S/8 ASCII Output (Mode A)

If you select output mode A, the program displays:

FILE NAME:

Type the file name and the device designation in the following form:

filnam[.ex] [,dev]

where:

filnam{.ex]
is a six-character or less file name plus an optional
two-character extension. This file name identifies the
file where output is to go.

,dev is a three-character designation of the device where
the output is to go. 0S/8 RX01 and COS-310 RX0l disk-
ettes are incompatible so do not specify an RXn device
designation.

If the device is not specified, the system device is
assumed.

Type the file name; FILEX executes the transfer and returns to:

OoPT (C, D, L, X, Z):

05/8 files are always multiples of 16 blocks long. For this and other
reasons, the resulting 0S/8 output files may be longer than necessary.
Use the 0S/8 PIP program /A to recover the unnecessary space.

PILE EXCHANGE PROGRAM (FILEX) 10-7

10.3.4.2 CO0S-310 Data File Output (Mode D)

If you select output mode D, the program displays:
FILE NAME:

Type the file name and logical unit # in the following form:
filnam([/logical unit #]

where:

filnam is a six-character or less name identifying the file
where output is to go.

/logical unit #
identifies the logical unit where the output file is
found.

Type the file name; FILEX executes the transfer and returns to:

OPT (C, D, L, X, 2)):

10.3.4.3 C0s-310 Source File Output (Mode 8)

If you select output mode S, the program displays:
FILE NAME:

Type the file name in the following form:
filnam

where:

filnam is a six-character or less name to be assigned to the
COS-310 output file.

The output file is generated 16 blocks long.

To correct the directory entry to reflect the actual 1length of the
file, do a FETCH and a WRITE as follows:

FE filnam ;Fetch the file you have just created.
WR filnam/Y ;iThe WRITE command enters the correct file
ilength into the directory. The /Y switch

;bypasses the REPLACE? message response when
;ja duplicate file name is encountered.

10-8 FILE EXCHANGE PROGRAM (FILEX)

Type the file name; FILEX executes the transfer and returns to:

OPT (C, D, L, X, 2):

10.3.4.4 Universal Diskette Output (Mode U)

If you select output mode U, the program displays:
DISKETTE DATA MODE (A, I, U):

The three diskette data modes are: A, ASCII; I, Image; U, Univer-
sal.

Select diskette data mode A (ASCII), I (Image), or U (Universal), and
the program displays:

FILE NAME:

Type the file name in the following form:
filnam[.ex] [RXn]

where:

filnam[.ex]
is a six-character or 1less name plus an optional
two-character extension to be assigned to the output
file.

RXn is a three-character device designation. Must be RX;
n represents the drive on which it is mounted.

If you selected diskette data mode A or I, FILEX performs the transfer
and returns to:

OPT (C, D, L, X, 2):

In diskette data mode A or I, sector boundaries are ignored. An ASCII
transfer (A) deletes nulls and rubouts, removes parity, and terminates
each record with a RETURN. An Image transfer (I) reads and writes
each byte exactly. The net effect of an Image transfer is similar to,
and, in most cases, indistinguishable from an ASCII transfer.

If you selected diskette data mode U, the program displays:

OUTPUT RECORD SIZE (DEFAULT=80):

Type a number (1-128) representing the size of the output record. If
you respond with RETURN, the record size defaults to 80. In this uni-~
versal diskette data mode, one sector is equal to one record which is
equal to one line.

FILE EXCHANGE PROGRAM (FILEX) 10-9

Type the output record size; FILEX performs the transfer and returns
to:

OPT (C, D, L, X, 2):
Figure 10-2 is a visual representation of the execution of the C op-
tion in FILEX.

OPT (C, D, L, X, 2):

4
INPUT MODE (A, D, U):

b

DISKETTE DATA MODE (A, I, U):

FILE NAME:

OUTPUT MODE (A, D, S, U):

Py

!

FILE NAME:

DISKETTE DATA MODE (A, I, U):

t — |

FILE NAME:

FILE NAME:

OUTPUT RECORD SIZE (DEFAULT = 80):

Figure 10-2 Flowchart of FILEX OPT:C

10-10 PILE EXCHANGE PROGRAM (FILEX)

10.4 DELETE (OPT:D)

OPT:D deletes a single file from the universal diskette directory. If
you select option D, the program displays:

FILE NAME:

Type the file name in the following form:
filnam[.ex] ,RXn
where:

filnam{.ex]

is a six-character or less file name plus an optional
two-character extension which identifies the file to be
deleted.

RXn is the three-character designation of the device on
which the file is found. Must be RX; n identifies the
drive on which the device is mounted.

Type the file name; FILEX deletes the file and returns to:

OPT (C, D, L, X, Z):

10.5 LIST (OPT:L)

OPT:L displays a listing of all the files in the universal diskette
directory. 1If you select option L, the program displays:

DISKETTE DRIVE NUMBER:

Type the number corresponding to the drive on which the diskette is

mounted. After you type the number, FILEX displays a table similar to
the following:

NAME RESERVED USED DATE
IMAGE 73 73 03-JUN-76
ASCII 73 73 03-JUN-76
IBM 576 576 03-JUN-76
ASC2 73 73 03-JUN-76
IBM2 193 193 03-JUN-76
<EMPTY> 910 0

<EMPTY> 0 0

<EMPTY> 0 0

<EMPTY> 0 0

<EMPTY> 0 0

<EMPTY> 0 0

<EMPTY> 0 0

FILE EXCHANGE PROGRAM (FILEX) 10-11

<EMPTY> 0 0
<EMPTY> 0 0
<EMPTY> 0 0
<EMPTY> 0 0
<EMPTY> 0 0
<EMPTY> 0 0
<EMPTY> 0 0
where:
NAME is either the file name or a designation for an empty

area.

RESERVED is either the number of sectors reserved for a file or
the number of sectors available for additional files.

There is space for a total of 19 files using a total of
1898 sectors.

USED is the number of sectors actually used by the file.
DATE is the creation date of the file.

FILEX then returns to:

OPT (C, D, L, X, 2):

10.6 EXIT (OPT:X)

OPT:X returns control to the C0S-310 Monitor.

10.7 ZERO (OPT:Z)

OPT:Z zeros (clears) an entire universal diskette and makes it ready
for new files. If you select option Z, the program displays:

DISKETTE DRIVE NUMBER:

Type the number corresponding to the drive on which the diskette to be
zeroed is mounted. When zeroing is completed, FILEX returns to:

OPT (C, D, L, X, Z):

A zeroed universal diskette has one file name entry (DATA) in the di-
rectory. This reserves 1898 sectors (the entire diskette). Before

any files can be transferred to this diskette, DATA must be deleted
using OPT:D of FILEX.

10-12 FILE EXCHANGE PROGRAM (FILEX)

10.8 FILEX ERROR MESSAGES

The most common error message is a return to the options. This is
caused by inputting an answer, usually a file name, in the wrong for-
mat. Check the format of your answer and retry.

Message

BAD DIRECTORY

DEVICE ERROR

FILE ALREADY EXISTS

FULL

ILLEGAL DEVICE

Explanation

Attempted to reference or store a file on a
device without a directory or on a device
where the directory has been destroyed. Only
devices with directories can be used. If the

directory is damaged, call your Software Spe-
cialist.

The system failed in an attempt to read from
or write to a device. Retry the operation.
Check for media problem (use PIP OPT- R), or
check for hardware problem.

A file name already on the universal diskette
was entered 1in response to the output FILE
NAME: message. The system returns to OPT
(C, D, L, X, Z): Start the option sequence
again and use a unique file name.

COS-310 source output file exceeds 16 blocks;
IBM output file too large for device. The
system outputs as much as it can and then
displays the error message. Use larger de-
vice, reduce the size of output, or determine
if the loss is worth the change.

The file name information contains a device
that is not in agreement with the logical
unit information. Stipulate new device in-
formation.

INSUFFICIENT SPACE ON DEVICE

NO END

Attempted to allocate more segments than are
available on a device. Either allocate fewer
segments, make more segments available, or
use a larger device.

No end-of-file mark in the 0s/8 input file.
Correct the input file.

FILE EXCHANGE PROGRAM (FILEX) 10-13

Message

NO ROOM

Explanation

No room is available for the file in the out-

put device directory (0S/8, IBM). Delete to

make space or use a device with directory

space.

NOT ENOUGH ROOM FOR SYSTEM AND FILES

NOT FOUND

NOT UNIVERSAL DISKETTE?

TOO LARGE

SYNTAX ERROR

TOO BIG

Designated a device that is too small to ac-
comodate both the system program and the
files. Use PIP OPT- E to put system program
on one device and files on another.

The input file name was not found. The sys-
tem displays FILE NAME: Check the directory
for the name of a file on the system. Enter
a name. found in the directory.

Requested a device that does not contain

universal floppy. Request a device with un-
iversal floppy.

The number of segments in a logical unit ex-
ceeded 4095.

The file containing the logical unit assign-
ments is formatted incorrectly. Reformat the
file.

The record is too large. It exceeds 120
characters for source file output or 510
characters for data file output. Reduce the
size of the record.

10-14 FILE EXCHANGE PROGRAM (FILEX)

CHAPTER 11

PATCH PROGRAM (PATCH)

PATCH is used to fix (patch) either a system program or the Monitor on
a CO0S5-310 system. All input information for the PATCH operation is
distributed as official patches from Digital Equipment Corporation.
The patch information is a line-by-line dialogue. No other informa-
tion should be used.

System programs (files) and the Monitor consist of blocks of numerical
information coded into machine language instructions and stored on the
system device. These machine language instructions are numbered from
0 to 377 octal. PATCH reads one of these blocks, allows you to exam-
ine and/or change individual words within the block, and writes the
block back out to the system device,.

11.1 PATCH OPERATING PROCEDURES

To execute PATCH, type:
RUN PATCH[,cmndfl) [/C]

where:

(cmndfl is a previously stored file of PATCH commands. Each
command is on a separate line; there can be no blank
lines or comments. When the command file option is
specified, PATCH reads a 1line from the command file
each time one of the following prompts is displayed:

FILE NAME:

BLOCK:

LOCATION:

NEW VALUE:
RELATIVE CHECKSUM:

After the last line of the command file has been used

or an error 1is encountered, all responses must come
from the keyboard.

11-1

/C changes the blocks on the system device. Without /¢,
PATCH simulates the patching operation but does not
change the file on the system device. When run without
the /C option, PATCH displays:

CHECKSUM CORRECT--USE OPTION C TO UPDATE
After the RUN PATCH command, the program displays:

PATCH V8.00 (or current version number)
FILE NAME:

Respond with the following information as provided by DIGITAL:

® The name of the file to be patched.

® /N to indicate a patch for the Monitor. The system responds
PATCHING MONITOR.

® /X to indicate the end of the PATCH -operation. The message
EXIT is printed and control returns to the Monitor.

If you enter a file name or /N, PATCH displays:

BLOCK:

Answer with either the number corresponding to a block within a file,
or END to indicate that no more blocks are to be patched.

If the block number is typed, the program displays:

LOCATION:

Respond with either the number corresponding to a location to be
patched, or END to indicate that no more locations are to be patched

If a location number is typed, the program displays:
OLD VALUE: nnnn
where:
nnnn is the old (current) value at the location.

This display requires no input and is followed by:

NEW VALUE:

11-2 PATCH PROGRAM (PATCH)

Enter the new value as indicated in the information supplied by DIGI-
TAL. The program displays:

LOCATION:

Answer with either the number corresponding to a 1location to be
patched, or END to indicate that no more locations are to be patched

If END is typed, the program displays:
RELATIVE CHECKSUM:

Enter the checksum from the information supplied by DIGITAL. If this
checksum is correct, the program displays either:

NEW BLOCK PATCHED OK

or
CHECKSUM CORRECT--USE OPTION C TO UPDATE

The patch has been accurately entered. Use option C to update the
program. Once the program is updated it cannot be changed except by

another PATCH routine. Following the OK statement, the program asks
for another block number where patching is to be done:

BLOCK:

If further patching information is available, enter it. If no more
patching information is provided, type END. Following END the program
displays the number (nn) of blocks patched within the file:

nn BLOCK(S) PATCHED IN THIS FILE

With this statement the program requests the name of another file to
be patched.

FILE NAME:

Enter the file name as supplied by DIGITAL. If patching is complete,
type /X.

Following /X, the program displays:
EXIT

COS MONITOR V 8.00 (or current version number)
11.2 ERROR CORRECTION

Much of the seriousness of errors while patching can be eliminated
with the use of the command file option.

PATCH PROGRAM (PATCH) 11-3

11.2.1 CTRL/U or R (Restart)

If at any time prior to the end of the checksum statement an error is
discovered, type R (for Restart) and PATCH will return to the FILE
NAME question. During the PATCH operation, the DELETE key is inoper-

able. If you make an error on a line, type CTRL/U and the correct in-
formation.

11.2.2 Wrong 0ld Value

The old value displayed by the program must be the same as the old
value supplied in the PATCH information. If it is not, go through the
following procedure.

Step 1 Be sure that everything previously typed is 1letter perfect.
If the wrong BLOCK number was typed, type R and restart at
FILE NAME. If the wrong LOCATION was typed, type RETURN in
answer to NEW VALUE. This makes no change to the location

specified. Type the correct location number in answer to LO-
CATION.

Step 2 If everything typed was correct, check the version number of
the Monitor or the system program in question.

Step 3 If everything seems in order but the dialogue doesn't agree,
save all output and consult your Software Specialist.

11.2.3 Bad Checksum

If an error in the checksum is detected, the following message is dis-
played:

BAD CHECKSUM
LOCATION:

The faulty block is not written to the system device.
The newly changed block is still in memory. Review the numbers and
the 1locations to see if they are correct. If the error is found, fix

it and then type END to the LOCATION: message. If an error 1is not
found, type R to restart the program and patch the entire block again.

11-4 PATCH PROGRAM (PATCH)

11.3 PATCH ERROR MESSAGES

Most error messages result from incorrect entries. Check each entry
for accuracy. All entries must be exactly as supplied by DIGITAL.

Message

BAD CHECKSUM

BAD DIRECTORY

BAD NUMBER

BLOCK TOO BIG

FILE NOT FOUND

LOCATION TOO BIG

NO CHANGE IN BLOCK

Explanation

An attempt was made to write a block which

was incorrectly patched. Type R and restart
the program.

Attempted to reference or store a file on a
device with a damaged or nonexistent directo-
Iy. Only files with directories can be used.
If the directory is damaged, call your
Software Specialist.

A number with either more than 4 digits, a
nondigit, or the digits 8 or 9 was typed.
Enter number correctly.

An incorrect block number was typed. It can-
not be 1larger than the length of the file

being patched. Enter the correct block
number.

The file was not found on the system device.
Check the directory for the file name. If
the file name is not found, check for correct
version number.

A location greater than 377 was typed.
Retype location number.

An attempt was made to write a block with no

changes in it. Make proper changes using
patch information.

PATCH PROGRAM (PATCH) 11-5

CHAPTER 12
BOOT PROGRAM (BOOT)

BOOT is used to bootstrap the system from one device to another, i.e.,
if the system has been moved from one type of device to another, boot
is run to start the system on the new device.

12.1 BOOT OPERATING PROCEDURES

To execute BOOT, type:
RUN BOOT/xx
where:

/XX is the two-character designation for the device which
you want to get into operation.

/DK is the RK05 disk unit 0.
/RX is the RX01 diskette unit 0.
/DY 1is the RX02 diskette unit 0.

An attempt to bootstrap a device which is not ready or does not exist
will produce unpredictable results.

12.2 BOOT ERROR MESSAGES

Message Explanation
NO No device or an illegal device designation was
specified. Control returns to the Monitor.

Specify a legal device designation.

12-1

CHAPTER 13

LINE CHANGE PROGRAM (LINCHG)

The Line Change Program (LINCHG) is a utility program which temporari-
ly changes the lines-per-page configuration of printed programs with-
out affecting the SYSGEN lines-per-page default value of 66. Its use
is limited to printers without forms hardware.

13.1 LINCHG OPERATING PROCEDURES

To execute LINCHG, type:
RUN LINCHG[/n]
where:
/n is the number of lines you want on a page.
If you do not use the /n option, the program displays:
HOW MANY LINES PER PAGE?
Type the number (1-99) of lines you want. LINCHG installs this speci-
fied number as the number of lines-per-page. The system defaults to

66 lines-per-page.

The LINCHG number will remain in effect unless a further call to
LINCHG is made, the system is rebooted, or the system is closed down.

Example:
Following is a batch program with a SYSGEN default of 66 lines-per-

page. Line change commands change the lines-per-page of various pro-
grams.

13-1

.RUN JOB1 ;66 lines-per-page.
.RUN LINCHG/10

.RUN JOB2 110 lines-per-page.
.RUN LINCHG/33

.RUN JOB3 ;33 lines-per-page.
.RUN LINCHG/99
-.RUN JOB4

+RUN LINCHG
HOW MANY LINES PER PAGE?

50

.RUN JOBS5 ;50 lines-per-page.
.RUN LINCHG/66

99 lines-per-page.

-

The above example shows how a series of programs may be run starting
with the normal default for the first program, then incorporating a

variety of changes for the programs which follow, and finishing with
the default number,

The 66 lines-per-page can also be reestablished
by rebooting the system.

13.2 LINCHG ERROR MESSAGES

Message Explanation

INVALID OPERATION Attempted to change lines-per-page on a

printer with forms hardware. Such a change
cannot be made.

13~2 LINE CHANGE PROGRAM (LINCHG)

CHAPTER 14

FORMAT PROGRAMS (DKFMT, DYFMT)

Before an RKO5 disk or an RX02 diskette can be wused on CO0S-310, it
must be initialized. 1Initialization consists of formatting the disks.
Do not initialize a disk or diskette containing any important informa-
tion such as the Monitor or other such files. Initialization destroys
the data on the disk.

Formatting the RK05 and RX02 means writing the necessary timing and
sense marks onto the disk or diskette and erasing any other informa-
tion.

An RX01 diskette can be formatted to become an RX02 diskette. This

procedure cannot be reversed. The RX0l diskette does not need to be
formatted to be used on an RX01l drive.

14.1 FORMATTING RK05 DISKS

To format an RKO5 disk, type:
RUN DKFMT
The program displays:

DKMFT V 8.00
DRIVE?

Respond with the number (0-3) of the drive where the disk is mounted.
After you type this number the following message is displayed:

ARE YOU SURE?

Any response other than Y (Yes) brings back the DRIVE? question. A Y
(Yes) response causes the program to display:

WRITE PASS
READ PASS

14-1

These two phrases indicate that the program is in operation; they re-
guire no response from the keyboard. Some time (a matter of seconds)

elapses after each phrase appears while the program completes that
particular phase of operation.

When the formatting operation is complete, the program displays:

DRIVE?

This is a cue to begin formatting another disk. Time is allowed
the physical changing of disks.
CTRL/C to return to the Monitor.

for
If the formatting is complete, type

14.2 FORMATTING RX02 DISKETTES

To format an RX02 diskette, type:
RUN DYFMT
The program displays:

DYFMT V 8.00
DRIVE?

Respond with the number (0-1) of the drive where the disk is mounted.
The program displays:

ARE YOU SURE?

Any response other than Y (Yes) brings back the DRIVE question. A Y
(Yes) response causes the program to display:

FORMATTING DRIVE n

where:

n is the number (0-1) of the drive previously indicated.

This statement remains on the screen until formatting is completed.
When the formatting is completed, the program displays:

DRIVE?

This is a cue to begin formatting another diskette. Time 1is allowed
for the physical changing of the diskettes. If the formatting is com-
pleted, type CTRL/C to return to the Monitor.

14-2 FORMAT PROGRAMS (DKFMT, DYFMT)

CHAPTER 15

DUMP AND FIX TECHNIQUE (DAFT)

The Dump and Fix Technique (DAFT) program is similar in function to an
editor, but it is used for data records. DAFT allows you to search
for, examine, and change records, and to 1list records or parts of
records on the printer or on the screen.

DAFT allows one input and one output file to be open at the same time.
These two files can be the same file when in UPDATE mode. Memory al-
ways contains a record from the input file known as the
current record. The current record can be modified by the CHANGE com-
mand before being written on the output file. An output file 1is not
needed if records from the input file are only being examined.

15.1 DAFT COMPILING PROCEDURE

Because the DAFT program is distributed as two DIBOL source files,
these two source files must be compiled into one binary file before
DAFT can be executed. To compile DAFT, type:

-RUN COMP,DAFTA,DAFTB
.SAVE DAFT

15.2 DAFT OPERATING PROCEDURES

To execute DAFT, type:
RUN DAFT[,cmndfll...,cmndf17]
where:

cmndfll...,cmndfl7
are previously stored files which contain DAFT commands
to be used to dump or fix a data file. If the optional
command files are not present, commands are entered via
the keyboard. After the last command in the last file

15-1

is executed, additional commands can be entered through
the keyboard. An asterisk (*) is displayed to indicate
that the DAFT program is ready for a command.

15.3 DAFT COMMAND FILE

mands. The entries in the command file are ordered according to a se-
quence of needs within individual records. To create an "effective
command file you must know the contents of the record and the possible
areas needing correction.

15.4 DAFT COMMANDS

The first word in a DAFT command is a keyword consisting of any number
of nonblank characters, only the first of which is significant. Some
commands involve both a keyword and arguments. These arguments are
separated from each other and from the keyword by one or more spaces.

15.4.1 Symbols Used in DAFT Commands

n represents an unsigned nonzero positive integer. If it
is optional in a command and is omitted, n=1 is as-
sumed.

<a,b> represents a key field of character positions a through
b inclusive. Both a and b are unsigned nonzero posi-
tive integers and b must not be smaller than a. If
this 1is optional in a command and is omitted, the sub-
scripted area specified in the KEY command is used.

+ indicates that before a record is read from the input
file, the current record in memory (if there is one) is
written on the output file. The + sign does not have a
space before it unless it is the only argument.

data represents a piece of data. Alphanumeric data has the
form:

'characters...'
Numeric data has the form:

[-] digits...

15-2 DUMP AND FIX TECHNIQUE (DAFT)

Before being used in executing a command, data is ad-
justed to the same length as the key field <a,b>. If
the data is smaller and alphanumeric, it is
left-justified in the field and filled with spaces on
the right. If data is smaller and numeric, it is
right-justified and filled with zeros on the left. If
data is larger and alphanumeric, excess characters on
the right are ignored. 1If it is larger and numeric,
excess characters on the left are ignhored.

15.4.2 DAFT Command Summary

Commands are entered after DAFT displays an asterisk (*).

Command Function
Advance [n] [+] Advances the input file n records.
Backspace [n] Backspaces n records if the input file was

opened with the UPDATE command.

Change [<a,b>]data Replaces the data in the current key field of
the record currently in memory with the data
specified. 1If <a,b> is used, it temporarily

overrides the key field specified in the key
statement.

Display [n] Sets the width of the 1line of the listing
device (screen or printer) to n characters
(maximum 130). If n is omitted, this command
turns the grid on if it is off and turns it
off if it is on.

Exit Returns control to the C0S-310 Monitor if no
output file is open.

Fini [+] Closes the output file. If + |is specified,
the current record and the remainder of the
input file are first copied to the output
file. To write data to a file opened for UP-
DATE, the + must be specified.

Goto n[+] Makes record n the current record.

Help Displays a summary of DAFT commands.

DUMP AND FIX TECHNIQUE (DAFT) 15-3

Command Function

Input filnam[/logical unit #]
Opens the specified file for input. The
first record is read and becomes the current
record.

Key a,b Sets the key to character positions a through
b inclusive.

List [n] [<a,b>] [+] Prints n consecutive records beginning with
the current record. The subscript <a,b> rep-
resents the consecutive characters that are
to be considered.

Output filnam[/logical unit #]
Opens the specified file for output.

Put [n] Writes n copies of the record currently in
memory onto the output file.

Query Displays the names of the input and output
files, the units where the files are located,
the record currently in memory, and the ver-
sion number of the DAFT program.

Rewind Reopens the input file. The first record be-
comes the current record.

Search [<a,b>]datal[+] Searches the current record and then succeed-
ing records for an occurrence of the speci-
fied data appearing in the key field.

Type [n] [<a,b>][+] Same as List except output is displayed on
the screen.

Update filnam[/logical unit #]
Opens the specified file for updating. This
command can only be specified for a file with
fixed-length records since direct access I/0
is used to move records.

Version Displays the version number of DAFT.

Write [n] Performs the same function as Advance [n]
[+]. The nth record after the current record
becomes the new current record.

X Outputs the record number and size of the
current record on the output device (either
screen or printer depending on whether the
last record was output by a Type or List DAFT
command) . The printer is the initial output
device.

15-4 DUMP AND FIX TECHNIQUE (DAFT)

15.5 DAFT OUTPUT

Records can be listed with a grid above them. The grid has two lines
of numbers which show the character positions. The lower of the two
lines represents the ones digits of the column counts. The upper line
represents the tens digits. The tens digits are printed for the first
and last column in the record (or part of the record) or whenever the
tens digit increments. If there is a hundreds digit, it is printed in
column 1 or whenever it increments.

Following is an example of a DAFT program in operation.

.R DAFT
*HELP

ADVANCE N+
BACKSPACE N
CHANGE <A,B> DATA
DISPLAY N

EXIT

FINI +

GOTO N+

HELP

INPUT LABEL/UNIT
KEY A,B

LIST N KEY+
OUTPUT LABEL/UNIT
PUT N

QUERY

REWIND

SEARCH <A,B> DATA +
TYPE N <A,B>+
UPDATE LABEL/UNIT
VERSION

WRITE N

X

*VERSION

DAFT VERSION 8.00
*INPUT MAILING/1
*DISPLAY 70

*T 1

RECORD 000001 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

DIGITAL EQUIPMENT CORP. D. F. PAVLOCK 12-3

146 MAIN ST. MAYNARD MAQ17540s/8~1 (0012345A1l1
*D
*T 2

RECORD 000001 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

DUMP AND FIX TECHNIQUE (DAFT) 15-5

0 1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890

DIGITAL EQUIPMENT CORP. D. F. PAVLOCK 12-3

7 8 9 10 1 2 3 4

1234567890123456789012345678901234567890123456789012345678901234567890
146 MAIN.

ST. MAYNARD MA017540S/8-1 0012345A11

RECORD 000002 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

0 1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890
DIGITAL EQUIPMENT CORP. K. RICHER 12-3

7 8 9 10 1 2 3 4

1234567890123456789012345678901234567890123456789012345678901234567890
146 MAIN ST. MAYNARD

MA01754C0Os 300 0001972T 3

*T 2<25,50>

RECORD 000002 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

2 3 4 5
56789012345678901234567890
K. RICHER

RECORD 000003 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS
2 3 4 5
56789012345678901234567890
S. RABINOWITZ

*A 1l
*KEY 1,50

*T 2

RECORD 000004 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

0 1 2 3 4 5
12345678901234567890123456789012345678901234567890
DIGITAL R. LARY

RECORD 000005 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

0 1 2 3 4 5
12345678901234567890123456789012345678901234567890
DEC S. G. WELCOME

15-6 DUMP AND FIX TECHNIQUE (DAFT)

*Q

INPUT FILE: MAILNG OPEN
UNIT: 01

OUTPUT FILE: /NONE /

UNIT: 00

KEY=<001,050>

RECORD 000005 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS
DAFT VERSION 8.00

15.6 DAFT ERROR MESSAGES

Message Explanation

BAD DIGIT IN DATA In a Change or Search command, a character
other than digits or a minus sign
is contained in a numeric data field.

Remove bad characters.

CANT BACKSPACE PAST BEGIN OF FILE

Attempted to backspace past the beginning of
file. The first record in the file becomes
the current record.

CANT BACKSPACE WITH SEQUENTIAL INPUT

Attempted to backspace with sequential input.
Backspace only possible when file is in up-
date mode.

END OF INPUT FILE AT RECORD nnnn
Attempted to read past the end-of-file mark
on the input file. This is not necessarily
an error. nnnn was the last record read.
The input file is closed. Reopen the file.

EXCESSIVE GRID SIZE The grid (printer width) may not be greater
than 130 characters. Reduce the grid size.

EXTRA CHARS Extra characters were found after the end of
a command. Remove extra characters.

ILLEGAL RECORD - CLOSING FILE
The file being updated contains a bad record
(one not the same size as record 1). Only
fixed-length records are permitted on such
files. The file is closed. Reopen the file.

DUMP AND FIX TECHNIQUE (DAFT) 15-7

Message

KEY ENTIRELY PAST END OF

Explanation

RECORD

The key specified in a List or Type DAFT com-
mand began with a character greater than the
record size. Reduce the size of the key.

KEY EXTENDS PAST RECORD END

KEY TOO BIG

NO DATA

NO INPUT FILE

NO LABEL NAME

NO OUTPUT FILE

OUTPUT FILE ALREADY OPEN

OUTPUT FILE STILL OPEN

PUSHDOWN OVERFLOW

0 NOT ALLOWED

Attempted a change with a key that extends
past the end of a record. However, a list
with such a key is possible. 1In such a case,

the 1list 1is terminated at the end of the
record.

The key exceeded 100 characters. Reduce the
size of key.

Data was not specified in a CHANGE or SEARCH
command. Specify required data.

The command does not have an input file.
Open an input file.

The file name was omitted in an INPUT, OUT-
PUT, or UPDATE command. Implement a name.

The command requires an output file but one
is not open. The command is terminated at
the point just prior to writing the current

record on the output file. Open an output
file.

A request was made to open an output file
while one was already open. Only one output
file can be open at a time. The request is
ignored. Close the current output file be-
fore opening a new file.

An EXIT cannot be made when the output file

is open. The output file can be closed with
the FINI command or CTRL/C.

The program will abort with this message when
too many errors are made. Restart DAFT.

The 0 (zero) is not a permissible argument.
Don't use 0.

15~-8 DUMP AND PIX TECHNIQUE (DAFT)

CHAPTER 16

REPORT PROGRAM GENERATOR (PRINT)

PRINT eases the creation of report programs. Using a command file
which describes the report, PRINT generates a DIBOL program which pro-
duces the report.

PRINT is two programs chained together. The first program reads and
validates the command file while creating memory table entries. If no
command file errors are detected, the second program produces the
DIBOL report program. The two programs which generate the report pro-
gram require a total of 16K bytes of memory.

16.1 PRINT COMPILING PROCEDURE

PRINT is distributed as several source files. The files must be com-
piled into two programs before PRINT can be executed.

The PRINT source files contain the following information:

o PRINT1, PRINT2 are the data sections.

® PRINT3, PRINT4, PRINTS5, PRINT6 are the procedure sections of
the parsing (reading and validating) phase.

e PRINT7, PRINT8, PRINT9, PRINTO are the procedure sections of
the generation phase.

Use the following procedure to compile the distributed PRINT source
files into binary programs.

. RUN COMP,PRINT1,PRINT2,PRINT3,PRINT4,PRINTS,PRINT6
.SAVE PRINTA
.RUN COMP,PRINTI1,PRINT2,PRINT7,PRINTS,PRINTY,PRINTO
.SAVE PRINTB

16-1

16.2 PRINT OPERATING PROCEDURES

To execute PRINT, type:

RUN PRINTA+PRINTB,cmndfl[/xy]

where:

cmndfl is the name of a previously stored command file.

PRINTA+PRINTB
are the compiled PRINT DIROL programs.

X is a switch which determines whether the command file
is to be 1listed on the printer; N means no list, L
means list.

y is a switch which determines whether the DIBOL program

(data file) created by executing PRINT is to be listed
on the printer; N means no list, L means list.

If x and y are both N, the switches and their preceding slash can be
omitted.

The output from the RUN PRINT command is a data file which must be
converted to a source file with the use of FILEX.

16.2.1 FILEX - Creation of Source File

Use the following FILEX command Sequence to create a source file from

the data file created by PRINT. (See Chapter 10 for FILEX informa-
tion.)

-RUN FILEX

FILEX V 8.00

OPT (C, D, L, X, 2): C

INPUT MODE (A, D, U): D

FILE NAME: $RPG/logical unit #
OUTPUT MODE (A, D, S, U): §
FILE NAME: pronam

OPT (C, D, L, X, Z): X

Pronam is any name desired, but it is usually the same name as is used
in the IDENT line of the command file.

16~2 REPORT PROGRAM GENERATOR (PRINT)

16.2.2 Compilation
To compile the DIBOL source program created by running the PRINT out-
put through FILEX, type:

. RUN COMP,pronam
. SAVE pronam

16.2.3 Program Execution

To execute the compiled DIBOL program, type:
- RUN pronam
where:

pronam is the name of the source program created by FILEX and
compiled in Section 16.2.2

The execution of this program produces the report.

16.3 PRINT COMMAND FILE

The Print Command File has six sections:

IDENT identifies the program and author

HEAD1,HEAD2 provides page headings for the report

INPUT describes the input file

COMPUTE describes any computation to be done

PRINT describes the report column headings

END is an optional directive at the end of the Print

Command File

16.3.1 IDENT Section

The form of the IDENT section is:
IDENT pronam[/logical unit #][,author]
where:

pronam is the name of the DIBOL source program to be generat-
ed.

/logical unit#

is the number referencing the storage location of the
program.

REPORT PROGRAM GENERATOR (PRINT) 16-3

rauthor any text from 1 to 24 characters in length.

Example:

IDENT TEST41/14, JOHN DOE iProgram named TEST41, on logical unit
i14, written by John Doe.

16.3.2 HEAD1 and HEAD2 Section

HEAD] is the first heading line on each page of the report. HEAD2 is
the second line. HEAD1 and HEAD2 are both optional. The only differ-
ence between HEAD1 and HEAD2 is that HEAD] information will be expand-
ed (if space permits) by inserting a space between each character.
HEAD2 has no such expansion capability.
The form is:

[HEAD1 'text')

[HEAD2 'text']

where:

text is a string of up to 132 characters from the CO0S-310
character set, exclusive of single quotes.

There can be more than one HEAD1 or HEAD2 line. If this is the case,
the individual texts are 1inked together.

Example:
HEAD1 'COMPUTATION AND SUMMARY RESULTS'

HEAD1 'FOR AUGUST, 1973

16.3.3 INPUT Section
The INPUT section consists of the INPUT statement on one line followed
by field description lines describing the fields of the input record.
The form of the input statement is:

INPUT [filnam[/logical unit #]][,S]
where:

filnam is the name of the input file.

16-4 REPORT PROGRAM GENERATOR (PRINT)

/logical unit

'S

is the logical unit on which the input file resides.

summarizes rather than describes the report.

If the file name is omitted, the generated program will request it
when the report is run.

The form of each field description line is:

[fldnam],

where:
fldnam
A
D

n

.M

yLr

A
n{.m] [,Lr[P]]

is the name of the field.
is an alphanumeric field.
is a numeric field.

is the size of the field, expressed in characters (510
maximum for A field, 15 maximum for D field).

is the number of decimal places in the field and is
valid only for numeric fields.

is used only for the break fields (a break field is
used in conjunction with ACCUMULATE to print totals).
The r is a single digit expressing the relative impor-
tance of the field; 1 indicates least important and 9
indicates most important. When totals are printed for
a more important break, totals for all lesser breaks
are also printed.

starts a new report page after the totals for this
break are printed.

The maximum number of fields is 20.

16.3.4 COMPUTE Section

This optional section starts with a line containing only one word:

COMPUTE

DIBOL statements appear on succeeding lines in the following form:

fldnam

expression

REPORT PROGRAM GENERATOR (PRINT) 16-5

where:

fldnam is the name of a destination field and @ust not dup}i-
cate any input field name nor any previous computation
result name.

expression _ _
is any valid DIBOL expression. It may be a single al-
phanumeric field or literal, or any numeric expression.

Unlike DIBOL, PRINT uses decimal places. It will not allow addition
and subtraction of expressions with different numbers of decimal
places. The result of such an expression will have the same number of
decimal places as the elements of the expression.

The number of decimal places in the result of a multiplication expres-
sion is the sum of the decimal places in the two expressions.

The number of decimal places in the result of a division expression is
the difference in decimal places between the number being divided and
the divisor.

To- adjust the number of decimal places for any expression, multiply by
the constant 1.00 with the number of decimal places equal to the long-
est number of decimal places in the other values. For example, expr 1
has 2 places, and expr 2 no places, then

expr 1 * expr 2 * 1,00
has four decimal places.

PRINT allows decimal places in numeric constants.

16.3.5 PRINT Section

The PRINT section begins with a line containing only one word:

PRINT

The next 12 lines describe the fields to be printed (not all 12 1lines
must be used). The form of these field descriptions is:

fldnam, 'text'[,A}[,format]

where:

fldnam is the name of the field and must be either an input
field or the result of a computation.

16-6 REPORT PROGRAM GENERATOR (PRINT)

'text' is an alphanumeric string of COS-310 characters delim-
ited by single quotes. This text is used as the head-

ing of the report columns and on the total 1lines for
break fields.

/A is present only if the field is to be accumulated and

the sum is to be printed on total lines. The field
must be numeric.

format is a string of text showing the format for the numeric
fields. If the format is not included, PRINT will cre-
ate one using the description of the field (if this is
an accumulated field, two extra places will be as-
sumed) . That created format will use an appropriate

number of decimal and integer places in the following
form:

XX, XXX . XX~

The text used for titles may be several words separated by asterisks.
This centers each word over a column in separate lines. For example:

GPAY, 'GROSS*pPAY'
will cause

GROSS
PAY

to be placed over the GPAY column. If GPAY is also a break field,
then:

GROSS PAY TOTAL

will be used on the total line instead of GROSS*PAY TOTAL.
The field descriptor lines may also be of the form:

+An

Where n is the size of the field. This will produce n blank columns
in the report.

If any two field descriptors are not separated by a filler descriptor,
then two blank columns will separate the fields in the report.

Example:

PRINT

NAME, 'EMPLOYEE NAME'

DEPT, 'DEPARTMENT'

GPAY, 'GROSS*PAY',A,XX,XXX.XX

REPORT PROGRAM GENERATOR (PRINT) 16-7

16.3.6 END Section

The END section is optional and consists of a line containing only the
word:

END

16.4 PRINT ERROR MESSAGES

Most errors in PRINT result from incorrect information in the command
file. These are correctable with the editor and Monitor commands.

PRINT evaluates each statement in the command file for correctness.
Whenever errors occur, the entire line where the error occured and a
message are printed. The number printed near the error message indi-
cates the character position where the error occurred. The following
error messages are used by PRINT.

Message Explanation

ALPHA LITERAL REQUIRED Expected alphanumeric literal is miss-
ing. Insert where appropriate.

ALREADY DEFINED Attempt to name a field in the INPUT or
COMPUTE section with a name that was

previously used. Correct the command
file.

HEADER IS TOO LONG The header line exceeds 132 characters.
Correct the command file.

IMPROPER DEFINITION Filler item in the PRINT section is used
incorrectly. Correct the command file.

IMPROPER LITERAL Literal too long. Shorten the literal.

IMPROPER USE OF DECIMAL PLACES
The number of decimal places exceeds the
size of the field being defined. Reduce
the number of decimal places.

INTEGER FROM 1-15 REQUIRED The size of a numeric field specified in
the INPUT section must be between 1-15.
Correct the command file.

16-8 REPORT PROGRAM GENERATOR (PRINT)

Message

INTEGER FROM 1-132 REQUIRED

INTEGER REQUIRED

LITERAL TOO LONG

MUST BE IDENT

MUST BE NUMERIC ITEM

MUST BE S

NEED FILE NAME

NO ENDING QUOTE

NO INPUT DIRECTIVE

NO PRINT ITEMS

NOT DEFINED

NOT ENOUGH RIGHT PARENTHESES

PICTURE TOO LONG

Explanation

The expected numeric fields out of
range. Reduce the field size to fewer
than 132 characters.

Integer missing where expected. Check
and insert as needed.

Field description exceeds 30 characters.
Reduce to fewer than 30 characters.

The first section in the command file

must be IDENT. Correct the command
file.

An item expected to be numeric is de-
fined incorrectly. Redefine.

S is the only legal option in the INPUT
statement that follows the comma.
Insert S.

File name missing from IDENT statement.
Correct the command file.

No closing quote for a HEAD1, HEAD2, or
PRINT statement. Insert closing quote.

The INPUT statement is missing. Correct
the command file.

No fields are specified following the
PRINT statement. Correct the command
file.

Attempted to print a field that has not
been defined. Correct the command file.

A statement in the COMPUTE section has
too few right parentheses. Correct the
command file.

The picture or edit mask for printing

exceeds 22 characters. Reduce to fewer
than 22 characters.

REPORT PROGRAM GENERATOR (PRINT) 16-9

Message

SYNTAX ERROR

TOO MANY COLUMNS IN REPORT

TOO MANY

TOO MANY

TOO MANY

TOO MANY

TOO MANY

COMPUTE STATEMENTS

DATA ITEMS

LEFT PARENTHESES

LIST ITEMS

RIGHT PARENTHESES

UNKNOWN DIRECTIVE

Explanation

Statement contains illegal characters or
options. Correct the command file.

More than 132 columns under HEADI1,
HEAD2, or PRINT sections. Correct the
command file.

More than eight COMPUTE statements were
specified. Correct the command file.

More than 20 data items in the INPUT
section. Correct the command file.

A statement in the COMPUTE section is
too complicated to be deciphered by
PRINT. Simplify the command file.

More than 20 list items in the INPUT
section. Correct the command file.

A statement in the COMPUTE section has
too many right parentheses. Correct the
command file.

An invalid section statement. Only
IDENT, HEAD1l, HEAD2, INPUT, COMPUTE,
PRINT, and END are legal. Check your

statements for incorrect statements;
correct the command file.

16-10 REPORT PROGRAM GENERATOR (PRINT)

CHAPTER 17

FLOWCHART GENERATOR PROGRAM (FLOW)

The flowchart generator program (FLOW) produces a flowchart from a set
of input commands.

The flowchart is always written to a file named $PASS1 located on log-
ical unit 1. A printed flowchart can also be produced by using the

appropriate option switches. The flowchart generator programs are
distributed as source programs and must be compiled before use.

17.1 FLOW COMPILING PROCEDURE

FLOW consists of several DIBOL programs.
To compile the FLOW programs, type:
-RUN COMP,FLOW1,FLOW2,FLOW3,FLOW4
.SAVE FLOW

-RUN COMP,KREF
.SAVE KREF

17.2 FLOW OPERATING PROCEDURES

The commands to execute FLOW have the form:
RUN FLOW,cmndfll...,cmndfl7[/xx]
RUN SORT,KRFSRT
RUN KREF

where:

cmndfll...,cmndf17
are previously stored source files containing the FLOW
commands to be used in generating a flowchart.

/XX is one of the following option switches:

17-1

/L lists the flowchart on the printer. If /L s
omitted, the flowchart will only be placed in file
SPASS]1 on logical unit 1.

/P indicates that the input files are DIBOL programs
with the FLOW commands imbedded in the program.
When the /P option is used, only input lines be-
ginning with a semicolon followed by any number of
periods followed by a space or a tab are treated
as FLOW commands. No semicolon - period - space
configuration is needed if the FLOW commands are
not part of a DIBOL program.

KRFSRT is a special sort command file that will sort the
cross-reference scratch file. KRFSRT is distributed as
part of the COS-310 software.

KREF is a cross-reference DIBOL program that works specifi-
cally with FLOW. This produces a cross-reference table
containing an alphabetical listing of all 1labels used
in the flowchart, the page number where each label is
defined, and the page numbers where each label is used.
KREF is distributed as part of the C0S-310 software.

FLOW uses logical units 1, 2, 3, 4, and 5. Logical unit 1 must be
large enough to contain the flowchart print image (usually 10 segments
is sufficient). Logical units 2, 3, 4, and 5 must each be large

enough to contain the KREF scratch file (usually 5 segments in each
logical unit).

17.3 PLOW COMMANDS

Although some FLOW commands look like DIBOL statements, they are de-

fined and used differently. FLOW commands have the following general
format:

[;.. 1[labell{,] command

where:
Tee is the special indicator, used with the /P option to
distinguish between FLOW commands and DIBOL statements.
label is the FLOW statement label.

command is one of the following FLOW commands:

PROC [;][text]
DISK [;][text]
YES
IF) NO tlabel {;][text]

17-2 FLOWCHART GENERATOR PROGRAM (FLOW)

CALL label [;][text]
START [;][text]

STOP [;][text]

GOTO label

CGOTO labell,label2,...
I/0 [;][text]

TITLE [;][text]

SBTTL [;]1[text]

PAGE

text is the information to be placed in the flowchart
block. This text is usually centered within the
blocks. Some commands require the text in a
specific format.

Spaces and/or tabs may be inserted for legibility.

17.3.1 PROC Command

The PROC (process) command allows you to put up to 65 characters in-

side a process block. The following process block will be generated
by the command line:

PROC ;BUILD A TAB CHARACTER

hhkkhkkhkkhkhkkdkkhx

* *
* *
* BUILD A TAB *
* CHARACTER *
* *
* *

kkdhdkdkokkkkhkdhkkk

17.3.2 DISK Command

The DISK command allows you to put up to 55 characters inside a disk

block. The following disk block will be generated by the command
line:

DISK ;OPEN SYS FILE FOR INPUT

kkkkkhhkrkkkkk
* *
* OPEN SYs «*

* FILE FOR *

* INPUT *
* *

dkokk ok okokokkkkkk

FLOWCHART GENERATOR PROGRAM (FLOW) 17-3

17.3.3 1IF Command

The IF command allows you to put up to 37 characters inside a decision

block. The IF command requires that the text field be preceded by the
following field:

YES

:label to branch to
NO

The following decision block will be generated by the command line:

IF NO:ERROR ;IS THERE A SYS FILE?

*

* *
* * NO I EITTIT T
* IS THERE A *---->* ERROR *
SYS FILE? hkkkkkkhkk
* *
* YES

17.3.4 CALL Command

The CALL command allows you to put up to 33 characters inside
a subroutine block. The CALL command requires that the text field be
preceded by the subroutine name.

The following subroutine block will be generated by the command line:

CALL HOF ;OUTPUT PAGE MARKER

Kk dkokkkkk

* HOF *
Kok dokokk ok ok kKK k
* QUTPUT PAGE *
* MARKER *

* *
khkkhkkkkxk

17-4 FLOWCHART GENERATOR PROGRAM (FLOW)

17.3.5 START Command

The START command allows you to put up to 13 characters inside a start
block. The following start block will be generated by the command line:

START 1HOF ROUTINE

hkhkkkkkdkkkdkkxk

* HOF ROUTINE *
Kkkkhkrhhkhkdhk

17.3.6 STOP Command

The STOP command allows you to put up to 13 characters inside a stop
block. The following stop block will be generated by the command
line:’

STOP ; RETURN

khkkkkkhkhhkkkk

* RETURN *
Kkkdkkkkkhkhkk

17.3.7 GOTO Command

The GOTO command allows you to put up to six characters inside a GOTO
block. The following GOTO block will be generated by the command line:

GOTO NEXT
Kkkkkkkkkk

————————— >* NEXT *
*hkhkkhkkkkkk

FLOWCHART GENERATOR PROGRAM (FLOW) 17-5

17.3.8 CGOTO Command

The CGOTO (computed GOTO) command allows you to flowchart multiway
branches. The text field consists of labels separated by commas with-
out imbedded spaces. The following blocks will be generated by the
command lines:

PROC ;BRANCH BASED ON COMMAND NUMBER
CGOTO PROCES,DISK,IF,SUBR

khkkhkdkhhhkkkkkkkk
*

*
*BRANCH BASED *
* ON COMMAND *
* NUMBER *
* *
Khkkkhkkkhkhkhkhkkx

! Kkkrkkkkkk

R >* PROCES *
] dekdekdkkkkkk
lm——mm e >* DISK *
! % %k % %k % k k k k %k
Lo >* IF *
1 khkkkdhkkkkkk
R e >* SUBR *

hhkhkdkhkhkkkkk

17.3.9 1/0 Command
The I/0 command allows you to put up to 47 characters inside an 1I/0
block. The following I/O block will be generated by the command line:

I/0 ;DISPLAY 'ERROR'

khkkkkkkkkkhkkk

* *

DISPLAY
* 'ERROR' *

khkkkkkhkkkkk

17.3.10 TITLE Command

The TITLE command allows you to specify up to 40 characters as a
flowchart title. The title will appear at the top of all subsequent
pages.

17-6 FLOWCHART GENERATOR PROGRAM (FLOW)

17.3.11 SBTTL Command

The SBTTL command allows you to specify up to 40 characters as a sub-

title. The subtitle is printed on the line below the title. The
SBTTL command implies a top~of-page command.

17.3.12 PAGE Command

The PAGE command advances the listing to the top of the next page.

FLOW automatically generates new pages when necessary, making the PAGE
command unnecessary in most instances.

17.4 FLOW EXAMPLE

The best example of the use of the flowchart generator is FLOW itself.
FLOW commands have been inserted into the FLOW source files (FLOW1,

FLOW2, FLOW3, FLOW4). To produce a flowchart of FLOW, use the follow-
ing procedure:

® Assign the necessary logical units using DFU.
e Compile the flowchart programs.
® Enter the following commands:

-RUN FLOW,FLOW1,FLOW2,FLOW3,FLOW4/PL

«RUN SORT, KRFSRT
« RUN KREF

17.5 FLOW ERROR MESSAGES
Message Explanation

NO INPUT FLOW has no information to build a flowchart.
Build a command file.

ERROR An error has occurred. The 1line of text
where the error occurred will be displayed on
the next line. Check the 1line and correct
the error.

FLOWCHART GENERATOR PROGRAM (FLOW) 17-7

CHAPTER 18

MENU PROGRAM (MENU)

The MENU program allows you to select and execute commands from a pre-
viously created command file. MENU permits more orderly execution of
commands.

18.1 MENU/ OPERATING PROCEDURES

To run MENU, type:
RUN MENU,cmndfl

where:

cmndfl is the name of the MENU command file stored on the sys-
tem device. If none is specified, the file in the edit
buffer is used.

MENU displays the text found in the Display Section of the command
file and will accept a six-character operator response at the screen
location specified in the Accept Section. The operator response is
compared to the list of valid responses specified in the Command Sec-
tion. If a match is found, the corresponding Monitor or editor com-
mands are then executed by C0S-310.

MENU can be included in a batch command file only as the last command
in the file.

18.2 MENU COMMAND FILE

The MENU command file is created using COS-310 editor commands and is
stored on the system device. It consists of three sections: Display,
Command, and Accept. The order of these sections within the file is
vital.

18-1

Example:

DISPLAY
COPY COPY RX0 TO RX1
DIR PRINT DIRECTORY OF RXO0
COMMAND
COPY =ER
=1 C
=2 RXO0
=3 RX1
=4 X
=WR S$SCOPY/Y
=PLEASE MOUNT DISKETTE ON DRIVE 1
=R PIP,S$COPY
=DE $COPY/S
=R MENU,cmndfl
DIR =DI,RXO0
=R MENU,cmndfl
ACCEPT (24,10)

18.2.1 Display Section

The Display Section has the form:

DISPLAY {[/N]

text
where:
DISPLAY is the first statement in the command file (must be
DISPLAY) .
/N is an optional switch to suppress clearing the screen
prior to displaying the text. Without /N the screen is
cleared.

text is text to display on the screen beginning on line one.

Each 1line of text begins with a new line number. 1If a
line of text contains more characters than can be dis-
played on a screen line, the extra characters are lost.
Any line beginning with a semicolon is assumed to be a
comment and is not displayed.

18-2 MENU PROGRAM (MENU)

18.2.2 Command Section

The Command Section has the form:

COMMAND

code=command

where:

COMMAND

code

command

is the first line in the section (must be COMMAND) .

is an operator response that contains a maximum of six
characters. The Command Section may contain up to
sixty codes.

is a COS-310 Monitor or editor command that is executed
when its corresponding code is entered as the operator
response. There can be no spaces or tabs between the
equal sign and the command.

A series of commands may be executed by listing the
commands on subsequent lines with no code to the left
of the equal sign. The series of commands is combined
to produce a batch command file. This batch command
file cannot be longer than one block.

There may be as many as 3995 characters in the Command
Section.

18.2.3 Accept Section

The Accept Section has the form:

ACCEPT (y,x) [/N]

where:

ACCEPT

y

is the first line in the section (must be ACCEPT) .

is a decimal number (cannot be an expression) designat-
ing the screen line number where the operator response
is to be entered. 1If Y is greater than the number of
lines on the screen the results are unpredictable.

MENU PROGRAM (MENU) 18-3

X is a decimal number (cannot be an expression) repre-
senting the screen column number where the operator
response is to be entered. If x plus the operator re-
sponse (maximum of six) is greater than the screen
width, the results are unpredictable,

/N is an optional switch to suppress clearing the screen

prior to executing the selected command from the Com-
mand Section.

The location (y,x) may fall within the text displayed by the Display
Section.

18.3 MENU ERROR MESSAGES

Message Explanation

ACCEPT SECTION NOT FOUND No Accept Section in the command file.
Correct command file.

COMMAND SECTION NOT FOUND No Command Section in the command file,
Correct command file.

DISPLAY SECTION NOT FOUND No Display Section in the command file.
Correct command file.

ILLEGAL CURSOR POSITION An illegal cursor position (or none) was

requested in the Accept Section.
Correct command file.

ILLEGAL STATEMENT Command file contains a meaningless
statement. Correct commahd file.

TOO MANY COMMANDS The Command Section is too large,
Reduce size of Command Section.

TOO MANY COMMANDS FOR 1 CODE The series of commands under one code

exceeds 1 block in length. Correct com-
mand file.

18-4 MENU PROGRAM (MENU)

