deccocasystem

system

" reference
manudl

dlilgliltfall

COS-310
System Reference Manual

Order No. AA-D647A-TA

October 1978

This is a reference manual for
the C0S-310 system user who
wants to use the DIBOL
language in developing appli-
cation programs.

SUPERSESSION/UPDATE INFORMATION: This is a new manual.
OPERATING SYSTEM AND VERSION: C0S-310 v 8.00
SOFTWARE VERSION: C0s-310 Vv 8.00

To order additional copies of this document, contact
the Software Distribution Center, Digital Equipment
Corporation, Maynard, Massachusetts 01754.

digital equipment corporation - maynard. massachusetts

First Printing, October 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10

4/79-14

CONTENTS

Page
PREFACE xi
INTRODUCTION xii
CHAPTER 1 DIBOL LANGUAGE 1-1
1.1 SOURCE PROGRAM 1-1
1.2 STATEMENTS 1-3
1.2.1 ACCEPT - Input/Output Statement 1-4
1.2.2 CALL - Control Statement 1-6
1.2.3 CHAIN - Control Statement 1-7
1.2.4 Data Manipulation Statements 1-9
1.2.4.1 Data Conversion 1-11
1.2.4.2 Arithmetic Expressions 1-11
1.2.4.3 Clearing Fields and Records 1-13
1.2.4.4 Moving Alphanumeric Data 1-14
1.2.4.5 Moving Numeric Data 1-14
1.2.4.6 Moving Records 1-15
1.2.4.7 Data Formatting 1-16
1.2.5 DISPLAY - Input/Output Statement 1-18
1.2.6 END - Compiler Statement 1-20
1.2.7 FINI - Input/Output Statement 1-21
1.2.8 FORMS - Input/Output Statement 1-22
1.2.9 GO TO - Control Statement 1-23
1.2.9.1 Unconditional GO TO 1-23
1.2.9.2 Computed GO TO 1-23
1.2.10 IF - Control Statement 1-24
1.2.11 INCR 1-24
1.2.12 INIT - Input/Output Statement 1-26
1.2.13 ON ERROR -~ Control Statement 1-28
1.2.14 PROC ~ Compiler Statement : 1-29
1.2.15 READ - Input/Output Statement 1-30
1.2.16 RECORD - Data Definition Statement 1-31
1.2.17 RETURN - Control Statement 1-33
1.2.18 START - Compiler Statement 1-34
1.2.19 STOP - Control Statement 1-35
1.2.20 TRACE/NO TRACE - Debugging Statement 1-36
1.2.21 TRAP - Control Statement 1-37

iii

CONTENTS (Cont.)

Page
1.2.22 WRITE - Input/Output Statement 1-39
1.2.23 XMIT - Input/Output Statement 1-40
CHAPTER 2 THE MONITOR 2-1
2.1 MASTER CONTROL PROGRAM 2-1
2.1.1 MOUNT Messages 2-3
2.1.2 Operating Procedures 2-4
2.2 MONITOR COMMANDS 2-4
2.2.1 BATCH 2-5
2.2.2 DATE 2-6
2.2.3 DELETE 2-17
2.2.4 DIRECTORY 2-8
2.2.5 PLEASE 2-10
2.2.6 RUN 2-11
2.2.7 SAVE 2-13
2.3 EDITOR COMMANDS 2-14
2.3.1 ERASE 2-15
2.3.2 FETCH 2-16
2.3.3 LIST 2-17
2.3.4 Line Number 2-18
2.3.5 Number Commands 2-20
2.3.6 RESEQUENCE 2-21
2.3.7 WRITE 2-22
2.4 MONITOR ERROR MESSAGES 2-23
2.5 RUN-TIME ERROR MESSAGES 2-24
CHAPTER 3 SYSTEM GENERATION PROGRAM (SYSGEN) 3-1
3.1 SYSGEN/B OPERATING PROCEDURES 3-1
3.2 SYSGEN/C OPERATING PROCEDURES 3-3
3.3 SYSGEN ERROR MESSAGES 3-5
CHAPTER 4 DATA FILE UTILITY PROGRAM (DFU) 4-1
4.1 DFU OPERATING PROCEDURES 4-1
4.1.1 DFU,filnam Operating Procedures 4-2
4.1.2 DFU/B Operating Procedures 4-2
4.1.3 DFU/K Operating Procedures 4-3
4.1.4 DFU/D Operating Procedures 4-3
4.1.5 DFU/DL Operating Procedures 4-4
4.1.6 DFU/E Operating Procedures 4-5
4.1.7 DFU/EL Operating Procedures 4-6
4.2 LOGICAL UNIT ASSIGNMENTS ON THE
COS-310 SYSTEM 4-7
4,2.1 Determining Logical Unit Size 4-7
4,2.2 How Logical Units are Assigned by DFU 4-8
4.3 DISK USERS 4-9
4.4 DFU ERROR MESSAGES 4-10

iv

CONTENTS (Cont.)

Page
CHAPTER 5 DIBOL COMPILER (COMP) 5-1
5.1 COMP OPERATING PROCEDURES 5-1
5.1.1 Source Program Compilation Listing 5-2
5.1.2 Storage Map Listing 5-3
5.2 CONDITIONAL COMPILATION PROCEDURE (CCP) 5-5
5.3 SIZE OF THE BINARY PROGRAM 5-6
5.4 COMPILER ERROR MESSAGES 5-8
CHAPTER 6 DIBOL DEBUGGING TECHNIQUE (DDT) 6-1
6.1 DDT OPERATING PROCEDURES 6-1
6.2 DDT COMMANDS 6-2
6.3 DDT ERROR MESSAGES 6-3
CHAPTER 7 CROSS REFERENCE PROGRAM (CREF) 7-1
7.1 CREF OPERATING PROCEDURES 7-1
7.2 CREF ERROR MESSAGES 7-2
CHAPTER 8 PERIPHERAL INTERCHANGE PROGRAM (PIP) 8-1
8.1 PIP OPERATING PROCEDURES 8-1
8.1.1 Transfer Binary File (OPT- B) 8-3
8.1.2 Copy Device (OPT~ C) 8-3
8.1.3 Transfer Data Files (OPT- D) 8-~4
8.1.4 Consolidate Space in Directory (OPT- E) 8-5
8.1.5 Allocate Space to Binary Scratch Area
(OPT- E) 8-6
8.1.6 Copy and Verify (OPT- I) 8-7
8.1.7 Perform a Read/Check (OPT- R) 8-7
8.1.8 Transfer Source Files (OPT- S) 8-8
8.1.9 Transfer System Program (QPT- V) 8-8
8.1.10 Return to Monitor (OPT- X) 8-9
8.2 PIP ERROR MESSAGES 8-9
CHAPTER 9 SORT PROGRAM (SORT) 9-1
9.1 SORT OPERATING PROCEDURES 9-1
9.2 SORT COMMAND FILE 9-2
9.2.1 Record Descriptor Division 9-2
9.2.2 INPUT/OUTPUT Division 9-2
9.3 MERGE OPERATING PROCEDURE 9-4
9.3.1 Merge Using SORT and the /A Option 9-5
9.3.2 Merge Using SORT and the /M Option 9-5
9.3.3 Merge Using SORT and the /n Option 9-6
9.4 SORT ERROR MESSAGES 9-7

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

10

10.1
10.2
10.3
10.3.1

15.4

CONTENTS (Cont.)

FILE EXCHANGE PROGRAM (FILEX)

UNIVERSAL DISKETTE

FILEX OPERATING PROCEDURES

COPY (OPT:C)
0S/8 ASCII Input (Mode A)
COS-310 Data Input (Mode D)
Universal Input (Mode U)
Output Modes (A, D, S, U)
COS/8 ASCII Output (Mode A)

COS-310 Data File Output (Mode D)
COS-310 Source File Output (Mode S)
Universal Diskette Output (Mode U)

DELETE (OPT:D)

LIST (OPT:L)

EXIT (OPT:X)

ZERO (OPT:2Z)

FILEX ERROR MESSAGES

PATCH PROGRAM (PATCH)

PATCH OPERATING PROCEDURES
ERROR CORRECTION
CTRL/U or R (Restart)
Wrong 0l1d Value
Bad Checksum
PATCH ERROR MESSAGES

BOOT PROGRAM (BOOT)

BOOT OPERATING PROCEDURES
BOOT ERROR MESSAGES

LINE CHANGE PROGRAM (LINCHG)

LINCHG OPERATING PROCEDURES
LINCHG ERROR MESSAGES

FORMAT PROGRAMS (DKFMT, DYFMT)

FORMATTING RKO5 DISKS
FORMATTING RX02 DISKETTES

DUMP AND FIX TECHNIQUE (DAFT)
DAFT COMPILING PROCEDURE
DAFT OPERATING PROCEDURES

DAFT COMMAND FILE
DAFT COMMANDS

vi

Page
10-1
10-1

10-7

CHAPTER

CHAPTER

CHAPTER

15.4.1
15.4.2
15.5
15.6

16

16.1
16.2
16.2.1
16.2.2
16.2.3
16.3
16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6
16.4

17

17.1
17.2
17.3
17.3.1
17.3.2
17.3.3
17.3.4
17.3.5
17.3.6
17.3.7
17.3.8
17.3.9
17.3.10
17.3.11
17.3.12
17.4
17.5

18.1
18.2
18.2.1
18.2.2
18.2.3
18.3

CONTENTS (Cont.)

Symbols Used in DAFT Commands
DAFT Command Summary

DAFT OUTPUT

DAFT ERROR MESSAGES

REPORT PROGRAM GENERATOR (PRINT)

PRINT COMPILING PROCEDURE
PRINT OPERATING PROCEDURES
FILEX - Creation of Source File
Compilation
Program Execution
PRINT COMMAND FILE
IDENT Section
HEAD1 and HEADZ2 Section
INPUT Section
COMPUTE Section
PRINT Section
END Section
PRINT ERROR MESSAGES

FLOWCHART GENERATOR PROGRAM (FLOW)

FLOW COMPILING PROCEDURE
FLOW OPERATING PROCEDURES
FLOW COMMANDS

PROC Command

DISK Command

IF Command

CALL Command

START Command

STOP Command

GOTO Command

CGOTO Command

I/0 Command

TITLE Command

SBTTL Command

PAGE Command
FLOW EXAMPLE
FLOW ERROR MESSAGES

MENU PROGRAM (MENU)

MENU OPERATING PROCEDURES
MENU COMMAND FILE

Display Section

Command Section

Accept Section
MENU ERROR MESSAGES

vii

Page

15-2
15-3
15-5
15-7

16-1
l6-1

16-8
16-8

17-1

17-1
17-1
17-2
17-3
17-3
17-4
17-4
17-5
17-5
17-5
17-6
17-6
17-6
17-7
17-7
17-7
17-7

18-1

18-1
18-1
18-2
18-3
18-3
18-4

APPENDIX A

APPENDIX

APPENDIX

APPENDIX

B

e W

B
B
B
B
B
C

RN N

s« o & s+ s & e e

UDUOUUDUDOUDUDUDUUOUU DODUUDUODUODUUDUODO O
MUBWWWWWNNDNNDDODN

[} . [[. . » [3
B D B W N
* . 3 .

« v o
(VS S

e o o o o o
[Nole o JL N o W&, -9

e =

* o

.
—

.
w N =

W N -

CONTENTS (Cont.)

C0S-310 CHARACTER SET
COs-310 FILES

C0S-310 SOURCE FILES
COS-310 DATA FILES

COS-310 BINARY FILES
COS-310 SYSTEM FILES
SYSTEM DEVICE FORMAT

ERROR MESSAGE INDEX
ADVANCED PROGRAMMING TECHENIQUES

ACCEPT AND DISPLAY
Background Information
Interaction of ACCEPT and DISPLAY
Example Using ACCEPT and DISPLAY
Generalized ACCEPT Subroutines
Hardware Display Clear Feature
Clear Incorrect Data by Displaying Spaces
Other Desired Features
Escape Code Sequences as Terminators
DIRECT ACCESS TECHNIQUES
Background Information
The Reason for Direct Access
How the Direct Access Technique
Works in DIBOL
Unsorted File
Sorted File
Rough Table, No Index File
Rough Table Plus Index File
Summary
Record Count
DIRECT ACCESS NOTES
XMIT Statements (Extending a File)
Truncating a File
Appending to a File
Rewriting a File
NUMERIC FIELD VERIFICATION
CHAIN STATEMENT NOTES
Interaction of CHAIN and INIT
(channel, SYS)
Transferring Variable Values
Multiple CHAIN Entry Points
DIBOL PROGRAMMING OF SOURCE FILES
OPERATING PROCEDURES
Data Division
Procedure Division

viii

Page

w >
[} 1
-

I
=0 WOOONBNNNDHH = | ol |l NN - -

Oovoo UUUUUUU?UUUU O QO wwowow

D-19
D-20

CONTENTS (Cont.)

Page
D.7 CHECKDIGIT FORMULA D-21
D.8 VT50/VT52 ESCAPE SEQUENCES D-22
GLOSSARY Glossary-1
INDEX Index-1
FIGURES
1-1 Sample Source Program 1-1
10-1 Universal Diskette 10-3
10-2 Flowchart of FILEX OPT:C 10-10
B-1 Monitor Organization B-3
TABLES

Source Program Limitations 1-3
Terminating Characters 1-5
Special Characters 1-1
Monitor Keyboard Commands 2-2
5=-17
A-1
A-2

DIBOL Statement Words of Code Reguirements
Characters Representing Negative Numbers
C0S-310 Character Set

>3’U1YFHF4H
N WN -

PREFACE

This is a reference document for those interested in applying the
DIBOL language in a C0S-310 system environment. Readers of this manu-
al are assumed to possess a basic knowledge of programming and of the
DIBOL language. Additional background may be obtained, however, by
consulting the COS-310 New User's Guide (AA-D758A-TA).

This manual is constructed in a usable order, yet it is not intended
that it be read sequentially. Each chapter and major section is con-
structed to be as informationally independent from other sections as
possible. This method was followed to allow reference to specific in-
formation without the need for frequent cross-referencing.

In addition to the information in the chapters, additional reference
material and summaries are provided in Appendices A through D and in
the Glossary.

INTRODUCTION

THE DIBOL LANGUAGE

DIGITAL's Business Oriented Language (DIBOL) is a COBOL-like language
used to write business application programs. The DIBOL language con-
sists of data definition and procedure statements.

OVERVIEW OF THE COS-310 SYSTEM

The COS-310 system is designed for the small system user. It is a
disk-based data processing system that is adaptable to a wide variety
of business-related processing tasks.

The COS-310 system is enhanced with use of diskettes, video display
terminals, and other DIGITAL hardware. Specially developed software
has been included to act as tools for both application programmers and
system operators.

Programs provided as part of COS-310 include but are not 1limited to
the following:

e MONITOR/EDITOR controls the calling and operating of all
other programs in the COS~310 system; provides the I/0 con-
trol for the peripheral devices; and contains editing capa-
bilities for correcting user programs. This program is re-
ferred to throughout the manual as the Monitor.

® SYSGEN builds and changes the system hardware configuration.

® DFU assigns logical units and displays or prints a logical
unit table.

e COMP translates DIBOL language source statements into a bina-
ry program which can be run on the Datasystem 308 or 310.

xiii

e PIP transfers data, source, or binary files between two de-
vices.

® SORT sequences records according to key characters or fields.
Records may be sorted into ascending (0-9 or A-Z) or descend-
ing (Z-A or 9-0) sequence.

THE COS-310 FILE STRUCTURE

Four types of files are used in C0S-310: data, source, binary, and
system. Source files, compiled binary files, and system files can be
saved in CO0S-310 directories. Data files cannot be saved in C0S-310
directories.

e Data files are completely devoted to the storage of data to
be processed by DIBOL or system programs.

e Source files contain control programs or DIBOL programs.

o Binary files are the output of the compiler and contain DIBOL
programs translated into COS-310 interpretive code.

e System files include programs (MONITOR, SYSGEN, DFU, PIP,
COMP, SORT, etc.) supplied as part of the COS-310 package.

MANUAL NOTATION CONVENTIONS

The following symbols, characters, and terms are used throughout this
manual.

Symbols Example Explanation

Lowercase PROC n User determined information to

characters be supplied.

Uppercase NO TRACE Words or characters to be

characters entered exactly as shown.

. RU CHAINO+...CHAIN7 Optional continuation of argu-
ments.

Characters «RU SYSGEN/C Your input to the system.

in red

;
i
1
:
{
p
[

Symbols Example
- RU,_,PIP
/T
START { /N
/L
0] PROC [n] [/X]
RETURN

C0S-310 CHARACTERS

Explanation

A space or blank.

Braces indicate that you must
make a choice of one of the
items enclosed.

Brackets indicate that you must
decide whether or not to use an
optional feature.

Information input via the key-
board must be followed by a RE-
TURN. The RETURN code indicates
that a line of information
(input) is complete. No symbol
for RETURN will be used in this
text., It will be assumed that
its use is understood.

C0S-310 characters include letters A-Z; numbers 0-9; and the special

characters:

V) s s

+ ——
PENE TSN
V— * ™D
— _/v

%
—
TERMS

Alphanumeric

Refers to the entire COS$-310 character set. Initialized values in
alphanumeric fields must be enclosed by single quotes.

Decimal, Octal

Refer to the numeric values associated specifically with base ten

(decimal) and base eight (octal).

xv

dev
Refers to a three-character designation for the device wupon which

data 1is located. The first two characters indicate the type of
device; the third character indicates the drive the device is
mounted on. The types of devices are listed below.

RX indicates RX01l diskettes.
DY indicates RX02 diskettes.
DK indicates RK05 disks.

Expressions
Refer to variables, constants, or arithmetic expressions made up of

variables, constants, and the operators $, +, -, *, /.

Filnam,pronam,label,cmndfl
Identify names assigned to files, programs, statements, and input

lines. These names may be of any length but only the first six
characters are significant.

Label can only contain alphabetic and numeric characters, but must
begin with an alphabetic character.

pronam and cmndfl can contain any C0s-310 character except
/r +, ey Tras a, and ,.

It is advisable not to use -, /, @,.,, tab, and , in a data filnam.
These characters may complicate or inhibit some program execution.

Logical Units
Refer to data file storage areas. These units are accessed via a
logical unit table which is referenced by logical unit numbers.

Numeric
Refers to the characters 0-9 and combinations thereof.

xXVvi

CHAPTER 1
DIBOL LANGUAGE

This chapter provides reference information on the DIBOL language as
used in the C0S-310 system. If other basic information is desired,

refer to the COS-310 New User's Guide.

1.1 SOURCE PROGRAM

A DIBOL source program (see Figure 1-1) consists of statements ar-
ranged in two divisions, Data and Procedure. Comments following a
semicolon document the contents and purpose of each statement.
Statement lines that begin with a semicolon contain only comments.
Tab settings are used in the program to improve clarity and ease of

reading.

The Data Division contains statements which define the type and size
of the information to be used in the program, and optionally contain
labels which identify the memory location where information can be
referenced. Initial values for these statements can be included in

this division.

The Procedure Division consists of statements which control program
execution. An alphanumeric label can be assigned to a statement with-
in the Procedure Division. A label must begin with a letter and can
have a maximum of six significant characters. Labels precede and are
separated from the statement by a comma. These labels are referenced
in other statements.

Each statement within a DIBOL program begins on a numbered line. Line
numbers are assigned manually or automatically when the program is
being typed. DIBOL does not use these numbers, but error messages,
editing functions, and debugging aids refer to them.

1-1

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400

START ;Optional compiler statement.
RECORD INBUF ;Record named INBUF.
STOCKN, D4 ;Numeric field named STOCKN.
DESC, A25 ;Alphanumeric field named DESC.
ucosT, D5 ;Five-character numeric field.
QORDER, D4 ;Four-character numeric field.
, D9 ;Unreferenceable unnamed field.
RECORD OUTBUF :Record named OUTBUF.
, D4 ;Unnamed numeric field.
, A25 ;Twenty-five character field.
, D5 :Unnamed field.
, D4 ;Temporary storage field.
ECOST, D9 ;Numeric field named ECOST.
RECORD ;Unnamed record-temporary storage
;cannot be directly referenced.
TITLE, A6, 'OVRHED' ;Field initialized to 'OVRHED'.
PROC ;Beginning of Procedure Division.
INIT(1,1,TITLE) ;Input 'OVRHED' on channel 1.
INIT(2,0,'OUTPUT") : "OUTPUT' on channel 2-output.
LOOP, XMIT (1,INBUF,EOF) ;Transfers INBUF to EOF.
OUTBUF=INBUF ; INBUF moved to OUTBUF.
IF (STOCKN.LT.1000) GO TO LOOP :Conditional statement.
ECOST=UCOST*QORDER sUCOST times QORDER moved to
; ECOST.
XMIT (2,0UTBUF) ;Transfer OUTBUF onto channel 2.
;Blank line.
GO TO LOOP :Branch control to LOOP.
EOF, FINI (2) ;Identifies end of logical unit.
FINI (1) ;Writes record and closes file.
STOP ;Stops program execution.

END

:Marks the end of the program.

Figure 1-1 Sample Source Program

1-2 DIBOL LANGUAGE

Table 1-1
Source Program Limitations

Maximum characters about 8,000 per file

Maximum number of source
files per program 7

Maximum number of symbols
16K byte system/24K byte
system or larger 365/511

Line numbers available 0-4095

Maximum characters
per line 120

1.2 STATEMENTS

There are six kinds of statements in DIBOL:

1. Compiler statements (START, PROC, and END) label the begin-
ning, division, and end of the program. These three state-
ments are non-executable. START and END are optional and
PROC marks the end of the Data Division and the beginning of
the Procedure Division.

2. Data definition statements (RECORD) describe the type and
size of data to be stored. Must include field information.

3. Data manipulation statements and INCR control the movement of
data within memory.

4., Control statements (CALL, CHAIN, GO TO, IF, ON ERROR, RETURN,
STOP, TRAP) effect the order of program statement execution.

5. Input/Output statements (ACCEPT, DISPLAY, READ, WRITE, and
XMIT) control data movement within memory or between memory
and peripheral devices. INIT and FINI associate and disasso-
ciate channel numbers used by the program. The FORMS state-
ment controls line spacing and paging on the printer.

6. Debugging statements (TRACE, NO TRACE) permit statement-by-
statement following of program execution.

These statements are discussed in alphabetical order rather than by
kind or by order of use.

DIBOL LANGUAGE 1-3

ACCEPT

l.2,1 ACCEPT - Input/Output Statement

The ACCEPT statement takes input from the keyboard, stores it in a
specified alphanumeric field, and stores the decimal value of the ter-
minating character (the last key typed) in a decimal field (see Table
1-2 Terminating Characters). The terminating value can be used in
statements later in the DIBOL program.

ACCEPT is primarily used with the DISPLAY statement and has the form:

ACCEPT (dfield, afield)

where:
dfield is the name of a numeric field where the decimal wvalue
of the terminating character is to be stored.
afield is the name of an alphanumeric field where the keyboard

input is to be stored.

When an ACCEPT statement is encountered, the system waits for input
from the keyboard. Program execution continues either after afield is
full or after a terminating character is typed. When ACCEPT is termi-
nated before afield is full, the remaining character positions in the
afield remain unchanged. It is desirable to clear the afield before
an ACCEPT statement is executed.

Example:

ACCEPT (A,B) ;Stores input from the keyboard in B and
;stores the value of terminating the char-
;acter in A.

ACCEPT (A(3),B(4,5)) ;Stores input from the keyboard in the 4th
s;and 5th characters of B, and stores the
;terminating value in the 3rd element of
sarray A.

1-4 DIBOL LANGUAGE

Table 1-2
Terminating Characters

Decimal
value Last Key Typed
00 Null or end-of-field
0l CTRL/A
02 CTRL/B
04 CTRL/D
05 CTRL/E
06 CTRL/F
07 CTRL/G
08 BACKSPACE or CTRL/H
09 TAB
10 LINE FEED
11 CTRL/K
12 CTRL/L
13 RETURN or ENTER
14 CTRL/N
16 CTRL/P
18 CTRL/R
20 CTRL/T
21 CTRL/U
22 CTRL/V
23 CTRL/W
24 CTRL/X
25 CTRL/Y
26 CTRL/Z
27 ESC
63 DELETE

DIBOL LANGUAGE 1-5

CALL

l1.2.2 CALL - Control Statement

The CALL statement branches program control to an internal subroutine.
CALL has the form:

CALL label

where:

label is the’ label of the first statement of a subroutine in
the Procedure Division of the program.

The CALL statement saves the return location in a pushdown stack so
that program control will return to that location when the subroutine
has been executed. Additional subroutine CALL statements may be nest-
ed within a subroutine to a depth of 50.

Example:
CALL SET
o W wm e a G o e s E e e ES ew oam un 1
.]
.]
STOP H
SET, PROFIT=PRICE-COST !
°]
.]
.]
CALL CTAX '
]
1
1
1
]
1

STOP
TAX=PROFIT/2
IF (TAX.GT.MAX)CALL ERROR

CTAX,

== -RETURN

This example shows how execution control branches to and returns from
one subroutine to the next. The solid lines show the result of CALL
statements while the broken lines show the result of RETURN state-

ments.

1-6 DIBOL LANGUAGE

CHAIN

1.2.3 CHAIN - Control Statement

The CHAIN statement allows a DIBOL program which has exceeded the
available user memory to be separated into two or more smaller DIBOL
programs which are executed sequentially. Each program is written and
compiled separately. CHAIN programs are executed beginning with the
statement immediately following the PROC statement.

The form of the CHAIN statement is:
CHAIN n
where:

n is a numeric variable (0-7) representing the sequence
number of DIBOL binary programs as specified in the RUN
command. A maximum of seven programs can be chained
together.

When the CHAIN statement is encountered in a DIBOL program, execution
of the current program is stopped, and the indicated CHAIN program is
loaded. All CHAIN programs must be' properly declared in a RUN com-
mand. The program loaded by CHAIN will not return to the place where
the initial program was stopped. A return to a program requires a
CHAIN statement to that program.

Example:

.RUN START+HELP+TRY+ACCT

START HELP TRY ACCT
Data Div. Data Div. Data Div. Data Div.
. . . PROC
. PROC . —.
. —) . .
PROC . . STOP
. . PROC
. CHAIN 2————r__>.
CHAIN 1 —4 .
CHAIN 3

In this example START is chain 0, HELP is chain 1, TRY is
chain 2, and ACCT is chain 3. Although this example executes the
program sequentially, the programs could be chained in any order.
A program could chain back into itself.

DIBOL LANGUAGE 1-7

All file status information is destroyed between chained programs.
Therefore, all output and update files should be closed with a FINI
statement before executing a CHAIN to prevent the loss of information.

Both the TRACE and TRAP features are turned off when a CHAIN statement
is executed. They may be turned on again in the CHAIN program by
using an appropriate TRACE or TRAP statement. If DDT 1is being used
when a CHAIN statement is executed, control returns to DDT.

Any DIBOL record in a program loaded by the RUN command is automati-
cally cleared. However, if the record is in a program loaded by the
CHAIN statement, the record retains whatever contents it had in the
previous program unless the clear option (,C) is specified for the
record.

Executing a CHAIN statement with an argument which does not correspond

to a valid DIBOL binary program in the RUN command results in the
error message ILLEGAL CHAIN.

1-8 DIBOL LANGUAGE

DATA MANIPULATION

1.2.4 Data Manipulation Statements

Data manipulation statements convert data from numeric to alphanumeric
and vice versa, calculate arithmetic expressions, clear fields and
records, move data between fields or records, and format data. The
contents of a source area are stored in a destination area. Record
names are used in data manipulation statements only when data is moved
or cleared. The form of the statement is:

destination = source

where:
source is a variable, literal, or an expression identifying
data which is to be manipulated and then copied into a
destination area.
destination

is the area where the manipulated data is stored.

The destination area must be defined in the Data Division. The source
is always converted and Jjustified to the data type defined for the
destination area. Data in the source remains unchanged; the destina-
tion area is always altered.

Variables:

A quantity that can be assigned any of a given set of values. The
following three formats are used with variables:

name
name (subscript)
name (position m, position n)

where:

name is a label (maximum of six characters) used to identify
a record or field.

name (subscript)

represents a subscripted array; the subscript must be
a numeric or an arithmetic expression whose value is
between 1 and the dimension specified for the array in
the Data Division. If name does not identify an array,
or the value of the subscript exceeds the dimension of
that array, other locations in memory are referenced.
No error message 1is generated unless locations are
referenced ocutside of the Data Division.

DIBOL LANGUAGE 1-9

name (position m, position n)
This form of subscripting references those characters
from position m to position n inclusive. Position n
must be greater than or equal to position mj; position
n should be less than or equal to the dimension of the
array associated with name. Positions m and n must be
numeric characters with a value of 1 or greater. If
the variable name is subscripted, the successive array
elements should be considered strung out left to right.

Example:
Data Division defines A as 4D4

A(3,9) ;Wants 7 digits, 2 from A(l), all of
;A(2), and 1 from A(3).

Literals:
Numeric literals consist of a sequence of from 1 to 15 digits.

Alphanumeric literals consist of a sequence of C0S-310 characters (ex-
cept single quotes) enclosed in single quotes.

A RECORD literal is used anywhere in the Procedure Division where a
record is allowed for XMIT (on channels opened for 0O, T, or L by an
INIT statement), for WRITE, or as the source in a data manipulation
statement. It is similar to an alphanumeric literal except it begins
with a double quote (") and ends with a single quote (').

Example:
PROC
XMIT (8,"HELLO') :HELLO is a RECORD literal.
Example:
RECORD REC
FLD1, A5
, Al
FLD2, AS
PROC
FLD1 = 'HELLO' :HELLO is an alphanumeric literal.
FLD2 = 'THERE' ; PTHERE is an alphanumeric literal.
XMIT (8,REC)
Expressions:

An ordered set of characters treated in its totality as a symbol for
one idea or value.

1-10 DIBOL LANGUAGE

1.2.4.1 Data Conversion

Numeric values can be converted to alphanumeric and vice versa for the
purposes of input, output, calculations, and verification of numeric
data. This is done with the data manipulation statement:

destination = source

Alphanumeric to numeric conversions are right-justified, and spaces
are replaced by zeros. Numeric to alphanumeric conversions are
right-justified; and zeros are replaced by spaces. If the numeric ex-
pression equals zero, the alphanumeric field will contain only a zero.

alphanumeric destination alphanumeric source ;left-justified

alphanumeric destination = numeric source ;right-justified
numeric destination = numeric source ;right-justified
numeric destination = alphanumeric source ;right-justified

Alphanumeric values to be converted to numeric must be 15 or fewer
characters in length. If the alphanumeric field contains characters
other than digits, spaces, and the signs + or -, the message BAD DIGIT
results at run time. The data conversion statement should be preceded
by an ON ERROR statement if the contents of the alphanumeric source
may contain bad digits.

Data conversion is used to edit and verify numeric data following an
ACCEPT statement. Data is typed into an alphanumeric field and is then
converted to a numeric field by a data manipulation statement preceded
by an ON ERROR statement. Spaces and signs are not counted as char-
acters that are moved. Spaces in the alphanumeric field are ignored.
Signs may be imbedded anywhere in the alphanumeric field. If the ON
ERROR statement is executed, the data entered was not numeric.

1.2.4.2 Arithmetic Expressions

Arithmetic expressions are allowed only as the source in a data mani-
pulation statement. The expression can contain numeric elements, sub-
scripted data elements, constants, variables, and arithmetic opera-
tors.

There are five binary arithmetic operators which are executed in order
of priority. Operators with the same priority are executed left to
right.

(rounding) Order of priority:

/ (division) 1. rounding

* (multiplication) 2. multiplication and division
+ (addition) 3. addition and subtraction

- (subtraction)

DIBOL LANGUAGE 1-11

These operators are used with numeric values.

The signs -, +, # can be used in C0S-310 as binary or as unary opera-
tors. As binary operators they indicate the mathematical operation to
be performed in an expression. As unary operators, the + has no ef-
fect; the unary - negates the numeric value to which it is affixed.

The operator # can be used to convert an alphanumeric character to its
equivalent decimal code. This code can then be used by the program.
In this application, # appears before the character. For example:

A = §B ;A is a numeric field and B is an alphanumeric
;field. If B contains the characters XYZ, X is
;converted to its internal code, and the decimal
;equivalent, 57, is stored in A.

3 + B ;A is a numeric field and B is an alphanumeric field
;containing XYZ. After conversion, the decimal
;equivalent of the first character of B, 57, is
sadded to 3 and stored in A.

>
I

Since expressions in parentheses are executed first, the order of pri-
ority can be altered with the use of parentheses. 1In the following
expressions, A=10.

Fl= 100*A/2+3-1 502

700

Fl= 100* (A/2+3-1)

Rounding:
Rounding sets variables to specified character formats and increments
by 1 the least significant digit if the digit to the right before for-

matting was 5 or more (sign is unchanged). The sign # appears after
the character being rounded. The format for rounding is:

destination = A#B
A is rounded by B places; B is not greater than 7 (becomes modulo 8)
and is treated as a positive integer. The sign # appears after the
character that is being rounded.
TEMP=MONEY#2
If MONEY was 123456, TEMP becomes 1235.
If MONEY was 123446, TEMP becomes 1234.
If MONEY was —~1473, TEMP becomes -15.

Typically, this feature is used for rounding to the dollar.

1-12 DIBOL LANGUAGE

Division:
The result of a division operation is expressed in unrounded whole

numbers.

The result of 5/3 is 1 and -14/5 is -2. An error message occurs when
division by zero is attempted.

Multiplication, Addition, Subtraction:

These are basic arithmetic operations that will execute as requested.
If the resulting value (or an intermediate result) exceeds the size of
the destination field, the leftmost digits are dropped without an
error message being displayed.

1.2,4.3 Clearing Fields and Records

Data manipulation statements clear fields and records when used in the
form:

destination =

The destination can be a name designating a single field, a record, or
an array. Alphanumeric destinations are cleared to all spaces;
numeric destinations are cleared to all zeros. Any part of a field
can be accessed in a program statement by subscripting the beginning
and ending positions of the character string. An array name without
any subscripts clears only the first element in the array.

When a record is cleared, all numeric and alphanumeric fields are set
to spaces.

Examples:

F1(5,7)= ;Clears characters 5, 6, and 7 in field Fl.

Al (5)= ;Clears the fifth element in an array.
Al (A)= ;Clears element A in array Al.
F1(1,1)= ;Clears the first character in Fl.

Al= ;Clears the first element in array Al.
RECNAM= ;Clears RECNAM to all spaces.

Record names can be subscripted to allow reference to record areas as
though they were in an array. All records to be so referenced must
follow one another and be of the same length.

DIBOL LANGUAGE 1-13

Example:

RECORD CUSNAM
(A3

RECORD BYRNAM
,A3

PROC

RECORD (2) = :Clears RECORD BYRNAM.

1.2.4.4 Moving Alphanumeric Data

Use the data manipulation statement to move the contents of one al-
phanumeric field (source) to another alphanumeric field (destination).

destination = source

If source 1is shorter than destination, data from source is
left-justified, and the rightmost characters of destination are undis-
turbed. If source is longer than destination, the rightmost char-
acters in source are not moved into destination. The source remains
unchanged.

Example:

RECORD ALPHA
A,A5,'ABCDE'
B,A3,'FGH'

RECORD NAMES
NAME,A4,'FRED’
NAME1,A7, 'JOHNSON'

PROC
A=B ;Field A would contain FGHDE.

NAME=NAME1l ;:NAME would contain JOHN.

1.2.4.5 Moving Numeric Data
Use the data manipulation statement to move the contents of one numer-
jc field to another numeric field.
destination = source
If source is shorter than destination, zeros are inserted on the left.

1f source is longer, the most significant digits are not moved to des-
tination.

1-14 DIBOL LANGUAGE

Example:

RECORD A
FIGR, D3, 123
FIGR1,D5, 45678

RECORD B
NUMB1,D5, 45678
NUMB2,D3, 123

PROC
FIGR1
NUMB2

FIGR ;:FIGR1 would contain 00123.
NUMB1 ;NUMB2 would contain 678.

1.2.4.6 Moving Records

Movement of entire records can be accomplished with data manipulation
statements. All fields within a record are treated collectively as
alphanumeric fields during record manipulation. The manipulation
statement has the form:

destination = source

where:
destination
is a record label or a subscripted record label.
source is a record label, a subscripted record 1label, or a

record literal.

This data manipulation statement moves the contents of the source into
the space reserved in the destination. 1If the source is shorter than
the destination, the rightmost characters of destination are undis-
turbed. If source is longer, the rightmost characters of source will
not be moved into the destination.

Example:

RECORD PRTREC
+A92
RECORD DATA
NAME , AZ25
. AS
ADDR , A20
, A5
, A20
, A5
, A2

CITY

STATE
, A5
ZzIP , A5
PROC
PRTREC=DATA ;Move DATA into PRTREC.
XMIT (8,PRTREC)

DIBOL LANGUAGE 1-15

1.2.4.7 Data Formatting

Any numeric data field can be formatted into an alphanumeric field to
contain spaces and punctuation marks which are not stored with the
records on disk, and which cannot be present during arithmetic calcu-
lations. This is done with the following data manipulation statement:

Alphanumeric variable = numeric expression, format

Format specifies special characters to be inserted with the numeric
expression.

Example:
A = D, '-XXX,XXX.ZZ'

The eight-digit numeric at D is converted to alphanumeric code, refor-
matted with specified punctuation, and stored in alphanumeric field A.

The format string must be an alphanumeric expression. Most characters
on the printer or the keyboard can be used in a format string, but use
the following special characters with care: X, %, *, =, «, '. Table

1-3 explains the special use of these characters.

Examples:

AMT is an alphanumeric field the same size as the associated for-
mat string:

AMT=123, 'XXXXXX' :AMT contains 123
AMT=123,'2222%2' :AMT contains 123
AMT=123, ' *XXXXX' :AMT contains *%k*x]23
AMT=-1123,'-XXX, XXX' ;AMT contains - 1,123
AMT=123,'$*XXX.XX~"' ;AMT contains §$***1,23-
AMT=123456, '-XX.XX' :AMT contains -12.34

Each comma, period, slash, minus sign, or any other special notation,
must be counted as a character position. 1In the AMT=123,'S$*XXX.XX-'
example, AMT must be defined in a RECORD statement as a nine-character

alphanumeric field.

1-16 DIBOL LANGUAGE

Table 1-3
Special Characters

Character Explanation

X Used in a format to arrange a numeric field for
printout. Each X represents a digit and leading
zeros are automatically suppressed.

Z Used to suppress leading zeros when formatting out-
put.
* Used in a format string to replace leading zeros and

eliminate trailing spaces on printout. If the * is
anyplace except the first character in the string,
digits may also be replaced.

- Inserts an arithmetic sign in a number to be printed.
The sign can be placed before or after the number.
If the number is positive, a space is substituted for
the minus sign. If the minus sign is placed in a po-
sition following the first significant digit but pre-
vious to the last position of a format string, it is
printed like any other insertion character.

Inserts a decimal point in a format string and forces
zeros to the right of the decimal point to be signi-
ficant.

p Used to insert a comma in a format string if there
are significant digits to the left.

All other COS-310 characters are treated as unconditional inser-
tion characters.

DIBOL LANGUAGE 1-17

DISPLAY

1.2.5 DISPLAY - Input/Output Statement

DISPLAY is used to show messages on the screen and to move the screen
cursor to a specified line and character position. Numeric fields are
used only for special effects.

The form of the DISPLAY statement is:

literal

DISPLAY (y,x,{ afield)

where:

y

literal

afield

dfield

dfield

is a numeric expression representing the screen line
number. If the specified line number is greater than
the number of lines on a screen, the cursor is moved to
the last line on the screen.

A statement with y equal to 0 outputs a message begin-
ning at the present location of the cursor. If y is
zero, no positioning is done and x is ignored.

is a numeric expression representing the character po-
sition. If the specified character position is greater
than the width of the screen, the results are unpre-
dictable.

is an alphanumeric string or a numeric character
string. An alphanumeric string must be enclosed in
single quotes (') and is displayed at the character po-
sition specified. There 1is no carriage return/line
feed after the message; the cursor remains at the
character position at the end of the message.

is an alphanumeric field containing a message to be
displayed.

is a special numeric code that causes a particular op-
eration to occur.

The following numerics are recognized as special codes
by the C0S-310 system.

Position cursor.

Clear to end-of-screen.
Clear to end-of-line.
Sound terminal alarm.

~NNNH O

1-18 DIBOL LANGUAGE

If a number is to be displayed, the numeric field must
be converted to an alphanumeric field before it can be
displayed on the screen.

Examples:
DISPLAY(0,0,7)

DISPLAY(10,1,1)

DISPLAY (2,20,DAY)

DISPLAY(1,10,0)

DISPLAY(11,37,2)

DISPLAY (0,0, 'DATE')

DISPLAY (11,12,7)

DISPLAY (Y,X,ALARM)

DISPLAY (1,1, 'HELLO"')

;Sound terminal alarm.

:Clear from line 10, character position 1
;s to end-of-screen.

;Beginning on line 2, character position 2
;display the contents of DAY.

;Position cursor at first line,
;10th character position.

;Clears line 11 from character 37 to the end
;of the line.

;Starting at the current cursor position,
;display the word DATE.

;Position cursor at line 11, character
;position 12 and sound terminal alarm.

:If the Data Division contains:
RECORD
Y,D2,20
X,D2,36
ALARM, D1,7
:the cursor is set at line 20,
scharacter position 36 and an
saudible alarm is sounded.

;Display HELLO in the upper left-hand corner
:(line 1, character 1) of the screen.

DIBOL LANGUAGE 1-19

END

1.2.6 END - Compiler Statement

This optional statement is the last statement of a program. The
statement has the form:

END [/x]
where:
/X is one of the following option switches.

/N suppresses the printing of a compiler source pro-
gram storage map listing.

/T displays a compiler source program storage map
listing on the screen.

If no options are specified, a compiler source program storage map
listing is printed as usual.

An END statement option switch or lack of it can be overridden with an
option switch (/N, /G, /T) in the compiler RUN command. If no storage
map listing is printed, the label count and number of free 1locations

are not printed.

1-20 DIBOL LANGUAGE

FINI

1.2.7 FINI - Input/Output Statement

A FINI statement disassociates the channel number from the mode as
specified in an INIT statement. FINI is only necessary for mass
storage output and update files, but it is good programming practice
to close each data file opened. If an output or an update file is not
closed, records may be lost.

The FINI statement has the form:
FINI (channel)

where:

channel is a numeric expression (1-15) which specifies a chan-
nel number which was associated with a mode by an INIT
statement.

The following information is useful in determining the effect of a
FINI statement on files associated for various uses.

INIT

mode Effect of FINI Statement

I Reading of the file stops. File may be reopened and
read from the beginning. Disassociates channel
number.

0 An end-of-file (EOF) mark is written, the file is
closed, and the length of the file is written in the
directory. Disassociates channel number.

U Reading/writing of the file stops. Disassociates
channel number.

K,T,L | Disassociates channel number.

] Reading of the file stops. Cannot be reopened.
Disassociates channel number.

Examples:

FINI (1) ;Disassociates channel 1 from a device and file.

FINI (A+B) ;Uses the sum of A+B as a channel number, and
;disassociates that channel from a device and file.

DIBOL LANGUAGE 1-21

FORMS

1.208 FORMS -

Input/Output Statement

The FORMS statement is used to format printer output and has the form:

FORMS (channel,skip-code)

where:

channel

skip~code

Example:

INIT(1,L)

FORMS (1,3)

Example:

INIT(5,L)

FORMS (5,0)

is a numeric expression (1-15) associated with the
printer in a previous INIT statement. If the channel
specified is not associated with a printer, the state-
ment is ignored.

is a numeric expression which causes the printer to go
to the top of the page (0) or to skip the number of
lines specified (1 to 4095).

Negative numbers cause unpredictable results.

If the code exceeds 4095, then 4096 is subtracted from
the code and the remainder is used as the skip-code.

;1 is the channel number specified in a previous
;INIT statement and 3 is the number of lines to be
;left blank.

;5 is the channel number and 0 sends the 1listing
;to the top of the printer page.

1-22 DIBOL LANGUAGE

G0 TO

1.2.9 GO TO - Control Statement

The GO TO statement branches program control to a line in the program
identified by the label. The GO TO statement has two forms:

unconditional and computed.

1.2.9.1 Unconditional GO TO

The form of the unconditional GO TO is:

GO TO label
where:
label is the label assigned to a statement line in the Proce-

dure Division where control is to be transferred.

Example:

GO TO SET :Transfers control to SET.

1.2.9.2 Computed GO TO

The computed GO TO has the form:
GO TO (labell...,labeln),variable

where:

labell...,labeln
are statement labels. There can be any number of la-
bels up to the 1limit that can be stored on one line
(120 characters).

variable is a decimal variable or expression representing a
value. This value identifies the label where control
is to branch.

Control is branched to the label corresponding to the sequence number
indicated by the variable. If the variable is negative, zero, or

greater than the number of labels, control passes to the next
statement in the program.

Example:

GO TO (LOOP,LIST,TOT),KEY ;Transfer control to LOOP if KEY=1,
sLIST if KEY=2, or TOT if KEY=3.

DIBOL LANGUAGE 1-23

IF

1.2.10 IF - Control Statement

An IF statement conditionally executes certain statements on the basis
of the result of a relational comparison between expressions. The
form of the statement is:

IF (expressionl.rel.expression2)statement
where:

expressionl and expression2
are literals, variables, or arithmetic expressions of
the same type.

.rel. is one of the following relational operators:

.EQ. Egual

.NE. Not equal

.LT. Less than

.LE. Less than or equal
.GT. Greater than

.GE. Greater than or equal

statement is one of the following control statements which is ex-
ecuted if the relationship is true.

GO TO label STOP
CALL label TRACE
RETURN NO TRACE

ON ERROR label

Expressionl and expression2 must be of the same data type: both num-
eric or both alphanumeric. In a numeric comparison, the shorter field
is internally filled to the length of the longer field, then the com-
parison is made between the longer field and the zero-filled field.
In an alphanumeric comparison, the comparison is made on the number of
characters in the shorter field.

If the result of the comparison is not true, the next statement in
program sequence is executed.

Examples:

IF (A.EQ.B) GO TO LABEL3 :If A is equal to B, control
:is transferred to LABEL3.

IF (SLOT.NE.2) CALL BAD ;If SLOT is not equal to 2,
;control is transferred to
;s BAD.

IF(SALES.LT.PROFIT+TAX—RENT) NO TRACE
;If SALES is less than PROFIT
;plus TAX minus RENT, the

: TRACE command will terminate.

1-24 DIBOL LANGUAGE

INCR

1.2.11 1INCR
The INCR (increment) statement adds 1 to the specified numeric vari-
able and has the form:

INCR variable
where:

variable is a numeric variable to be incremented by 1.
INCR should only be used with positive numbers and is typically used
to add one to a counter. Its use is faster than a data manipulation
statement.
Example:

INCR A2 :Add 1 to A2. This is identical in meaning to
;the data manipulation statement A2=A2+1.

DIBOL LANGUAGE 1-25

INIT

1.2.12 INIT - Input/Output Statement

The INIT statement associates a channel number with a logical unit on
a mass storage device or a character-oriented input/output device and
initializes the device. The form of the INIT statement is:

INIT (channel,model,filnam][,logical unit #])

where:

channel

mode

is a numeric expression which specifies a channel
number (1-15) to be associated with a logical unit or
character-oriented device. This channel number is used
in the program to refer to the associated device.

If the number specified exceeds 15, it 1is interpreted
modulo 16; 16 is subtracted from the number specified
and the remainder is used by the system.

The following channels are initially associated with
the specified devices at program startup. These as-
signments can be changed with an INIT statement.

6 is the channel number for the printer.
7 is the channel number for the keyboard.
8 is the channel number for the screen.

A channel that is associated with a logical unit on a
mass storage device must be closed by a FINI statement
prior to another INIT. Opening of an output file
causes the previous contents of the file to be deleted.

is the one-character mode designation of a device to be
associated with the channel number. The mode designa-
tions are:

Mode | Meaning Explanation

I IN Mass storage device (logical unit)
to be used for input.

0 ouT Mass storage device (logical unit)
to be used for output.

U UPDATE Mass storage device (logical unit)
to be used for direct access both
input and output.

(Continued on next page)

1-26 DIBOL LANGUAGE

Mode | Meaning Explanation

K KBD Input from keyboard.

T TTY Output to screen.

L LPT Qutput to printer.

] SYS Input from a source file located on

the system device. This file name
must have been specified in a RUN
command.

filnam is an alphanumeric literal or variable that identifies
the data file on the logical unit. A data file name is
necessary with the I, O, and U modes, and is illegal
with other modes.

If the file name is not present for an input, a MOUNT
message 1is displayed. On output, if another file is
already 1located on the designated logical unit,
REPLACE? is displayed.

A temporary file name such as a file name beginning
with $ may be used. When this file name is used, no
REPLACE? 1is generated because the program recognizes
this file name as temporary and replaces it.

logical unit #
is an optional numeric expression which specifies the
logical unit (1-15) where the data file is stored or is
to be stored.

If the number specified exceeds 15, then 16 is sub-
tracted from it and the remainder is used by the sys-
tem.

It is good programming practice to specify the logical unit number and
the data file name. Data file names should be unigue so that REPLACE?

messages are avoided.
Example:
INIT (15,I,'RENEW',6) ;Initializes channel number 15 for input.

;RENEW is the name of the input file found
;on logical unit 6.

DIBOL LANGUAGE 1-27

ON ERROR

1.2.13 ON ERROR - Control Statement

The ON ERROR statement branches program control to a specified state-
ment when a nonfatal executed error occurs in the statement following
the ON ERROR statement. ON ERROR can be written into the source pro-
gram immediately prior to a statement where a possible error might
occur. The form of this statement is:

ON ERROR label

where:
label is a label assigned to a statement 1in the Procedure
Division where control is to be transferred.
Example:
ON ERROR TRAP :Statement which would branch program

;control to TRAP if DEC =ALPHA creates a
;nonfatal error.
DEC = ALPHA

The ON ERROR statement prevents a return to the Monitor for the fol-
lowing run-time errors.

Message Explanation
BAD DIGIT A non~-numeric digit is used in an

alphanumeric-to-numeric conversion.

END OF FILE An end-of-file label was not specified in an XMIT
statement.

ILLEGAL RECORD Record number is too large or 0, or length speci-
fied 1in the record header word does not match the
length of the XMIT record.

LINE TOO LONG Input line overflowed the record into which it was
read.

NO FILE No file specified in RUN command to satisfy INIT
(SYS) statement.

NUMBER TOO LONG A field of more than 15 digits is used in a calcu-
lation.

ZERO DIVISOR Division by zero attempted.

1-28 DIBOL LANGUAGE

PROC

1.2.14 PROC - Compiler Statement

The PROC statement separates the Data and Procedure Divisions of a

DIBOL program.

It is of the form:

PROC [n] [/x] [;comment]

where:

n

/X

comment

Examples:

PROC

PROC 4/L;

is a single digit, 0-7 (not an expression), indicating
the maximum number of logical units which the program
will have open simultaneously. If no number is speci-
fied, the compiler assumes 7. The available memory is
divided into buffers to handle the number of 1logical
units specified. The more buffers specified, the
smaller they must be. Smaller buffers generally result
in slower sequential data file processing and faster
random data file processing.

If the program opens more logical units than were spec-
ified in the PROC statement, a run—-time error occurs.

is one of the following option switches:

/N suppresses compiler listing of source program.

/L lists source program and errors on the printer.
/T displays source program and errors on the screen.

The PROC option switch is active until disabled by a
START or END statement option switch. If no option
switch is specified, a compiler listing is printed.

A /N in the RUN COMP command overrides /L's or /T's in
the program; all printout except errors is suppressed.

is an optional string of text preceded by a semicolon
which 1is stored for output as a heading for the Proce-
dure Division of the compiler listing. When the com-
piler encounters the PROC statement, the printer moves
to the top of the next page and outputs the comment as
a header line.

;Printer will go to top-of-the-page.

TEST PROG. ;Four mass storage logical units will
;be open, source program listing and
;errors will be listed on the printer,
; the page heading will be TEST PROG.

DIBOL LANGUAGE 1-29

READ

1.2.15 READ - Input/Output Statement

The direct access READ statement allows a specified data record to be
moved from a named file to a specified area in memory. It has the
form:

READ (channel,record,rec#)

where:

channel is a numeric expression with a value of 1-15 specifying
a channel number which links the READ statement to the
related INIT statement. The INIT statement must speci-
fy Input or Update as the mode.

record is the name of the record into which data is to Dbe
read.
rec# is a numeric or arithmetic expression specifying the

number of the record to be read.

If the program reads past the end-of-file mark, the results are unpre-
dictable (see Section 1.2.22 for restrictions on READ and WRITE

usage.)
Examples:

READ (5,REX,88) ;Reads the 88th record of the device linked
;to the channel which was opened with the
:INIT (5,...) statement and places it in the
;memory area labeled REX.

READ (6,BLT,EXPR) ;: Reads the record specified by the

;expression EXPR and stores it in the memory
;area labeled BLT.

1-30 DIBOL LANGUAGE

RECORD

1.2.16 RECORD - Data Definition Statement

The RECORD statement reserves areas of memory where data is stored
during processing. A RECORD statement without field statement infor-
mation is of no use in the program. The total size of the data fields
within a named record cannot exceed 510 characters. An unnamed record
can contain no more than 4094 characters. Only named records can Dbe
used in an I/O operation. Without a name, the record can act only as
a temporary storage area. The RECORD statement has the form:

X
14
RECORD [name] []
C
14

where:

name names the record, begins with an alphabetic letter,
contains a maximum of six significant characters, and
is unique within the program. The name is optional un-
less the record is to be referenced for data transfer.

X allows one record to be overlayed into the same area as
another. The X must be preceded by a comma. More than
one overlay may define the same record, but the over-
laying record must be equal to or smaller than the rec-
ord being overlayed. A series of overlaying records
must be preceded by a record without a ,X. Overlaying
is useful in reformatting a previously defined data
record area.

,C clears the contents of a record loaded by a CHAIN com-
mand; all numeric fields are set to zeros and all al-
phanumeric fields are set to blanks if no initial value
has been specified. Do not use ,X and ,C in the same
record; no error will occur, but the program will ig-
nore the ,C.

Accompanying field information is of the form:
D

[fldnam], [mlxn[,initial valuel[§ ,P {]
'S

where:

fldnam, is an optional name that identifies the file. A comma
can be used without the fldnam if the program does not
reference the individual field.

DIBOL LANGUAGE 1-31

is an optional repetition count character used to indi-
cate an array of values that can be referenced with a
single field name. The values must be of the same type
and size and can be initially entered as a continuous
string separated by commas following the type and size
designation. Not all values of an array need to be in-
serted at the program's inception.

indicates the field type as either alphanumeric A or
numeric D.

indicates the number of characters (maximum 15 numeric,
510 alphanumeric) in the field.

(initial value

an optional value initially inserted in the field.
Must agree in type and size with the xn designation.

D an optional switch which calls the current date from
the Monitor and inserts it at the location designated
by the data field information. Cannot be used in the
same field as ,P.

/P an optional switch which, when the program is ready for
execution, asks for the insertion of information via
the keyboard. Cannot be used in the same field as a
,D. Enter all information as alphanumeric.

'S an optional character used to assign the value of a
variable equal to the options used at run time.

Example:
RECORD INVENT ;Record named INVENT.
THINKO, D5 :Field named THINKO with five numeric
;characters.
THINK1l, 4D7 ;Array named THINK1 with four
; 7-character values.
STKOPT, A6, 'OPTION';Field named STKOPT initialized to
;OPTION.
BNKBAL, D7,1234567 ;Numeric field initialized to 1234567.
TRNSDT, D6, D ;:Field to enter date from the Monitor.
INPUT, Al0, P ;Field to allow entry to ten characters
;from keyboard.
RUNSW, A2, S ;Field to allow entry of /xx values
;from R PROG /xx.
RECORD, C ;Clears record loaded by CHAIN command.
NAME, A20 ;Alphanumeric field with 20 characters.
RECORD, X ;Unnamed record to overlay preceding
;record.
LNAME, Al0 ;Alphanumeric field with 10 characters.
FNAME, Al0 sAlphanumeric field named FNAME.

1-32 DIBOL LANGUAGE

RETURN

1.2.17 RETURN - Control Statement

The RETURN statement 1is placed at the logical end of an internal
subroutine. It has the form:

RETURN

The RETURN statement returns control to the statement immediately fol-
lowing the 1last CALL statement or to the location from which a TRAP
statement transfered control.

A RETURN WITHOUT CALL error message results if a RETURN is attempted
when no CALL or TRAP has been executed.

Example:

CALL SET

STOP
SET, PROFIT=PRICE-COST

STOP
CALL CTAX
- —eA=,.,.

RETURN === === === ==
TAX=PROFIT/2
IF (TAX.GT.MAX) CALL ERROR

CTAX,

- =RETURN
This example shows how execution control branches to and returns from

one subroutine to the next. The solid lines show the result of CALL
statements and the broken lines show the result of RETURN statements.

DIBOL LANGUAGE 1-33

START

1.2.18 START - Compiler Statement

This optional statement can be used any number of times and can be in-
serted anywhere in the source program. Each time a START statement is
encountered during compilation, a top-of-page command occurs and a new
page heading 1is printed. START is frequently used to segment major
sections of programs. It has the form:

START[/x] [; comment]
where:
/x is one of the following option switches:
/N suppresses compiler listing of source program.

/L. resumes listing source program and errors on
printer.

/T resumes display of source program and errors on the
screen.

The START option switch is active until disabled by
another option switch. If no option switch is speci-
fied, a compiler listing is produced on the printer.
The switches can be overridden with an option switch in
the RUN COMP command.

;comment is an optional method to stipulate a line of text to be
output as a heading on the compiler listing.

If /N is specified in the RUN COMP command, it overrides /L or /T in
the source program and stops output of everything except errors. The
/L and /T will still determine to what device errors are output.

Example:

START ; WAREHOUSE INFORMATION
;The printer will begin at the top of the page and
;will 1list WAREHOUSE INFORMATION as the title of the

ipage.

START/T ;Resumes display of source program and errors on the
;screen.

1-34 DIBOL LANGUAGE

STOP

1.2.19 STOP - Control Statement

STOP terminates program execution and returns control to the Monitor.
It can be inserted anywhere in the Procedure Division. The form of
the statement is:

STOP
There can be more than one STOP statement in a program. STOP does not
close files; a FINI statement must be inserted before the STOP to
close files previously opened by an INIT statement.

The STOP statement has the same effect as END, but END can only be
used as the last statement in a program.

DIBOL LANGUAGE 1-35

TRACE/NO TRACE

1.2.20 TRACE/NO TRACE - Debugging Statement

These statements are debugging tools used to follow the order of
statement execution. TRACE/NO TRACE canh be written any place in the
Procedure Division of a program. The appearance of TRACE statements
in a program does not cause any TRACE output to be generated unless
the /T option is specified when the RUN command is given. The form of
the statement is:

TRACE

NO TRACE

Between the TRACE and NO TRACE statements are program statements which
are being debugged.

When program tracing is enabled, TRACE lists the order in which state-
ments are executed. TRACE causes the following message to be output
on the printer (xxxx is the line number):

AT LINE xxXxX

If the line number identifies a data manipulation statement, the value
which is produced and stored by the statement is printed on the fol-
lowing line. Tracing continues until a NO TRACE statement is encoun-
tered.

Example:

AT LINE 0200
000006

Indiscriminate placement of TRACE statements causes excessive output
to the printer. To use the TRACE statement to best advantage, use IF
statements to isolate the problem to a certain part of the program and
then use TRACE on that part of the program.

1-36 DIBOL LANGUAGE

TRAP

1.2.21 TRAP - Control Statement

The TRAP statement allows a DIBOL program to be executed at the same
time that output is being printed. The format of the statement is:

TRAP label

where:

label is the label of a printer subroutine in the Procedure
Division of the program.

Because the printer is much slower than the central processing unit
(CPU), the TRAP statement is implemented to allow the CPU to continue
to execute rather than having to wait for material to be printed. A
buffer holds the characters until the printer can use them.

Whenever the print buffer empties, DIBOL statement execution temporar-
ily halts and a call is made to the label specified in the last TRAP
statement executed. When a RETURN is made from this call, normal pro-
gram execution resumes. The TRAP statement normally precedes a FORMS

or XMIT statement.

The following information is necessary to effectively use the TRAP
statement.

1. If the printer buffer empties during execution of an INIT,
XMIT, READ, WRITE, DISPLAY, or FINI statement while I/0 is in
progress, the TRAP is delayed until execution of the 1I/0
statement is complete.

2. If the printer buffer empties during execution of an ACCEPT
statement, the ACCEPT statement is interrupted while the
printer buffer is loaded. A noticeable delay occurs only if
the keyboard buffer is filled during the time that the TRAP
subroutine is being executed. Since the keyboard buffer is
approximately 18 characters long, this filling usually takes
several seconds.

3. Always construct a TRAP subroutine so that output to the
printer is immediately followed by a RETURN statement.

DIBOL LANGUAGE 1-37

4. Printers are limited to output lines of 126 characters in
length when using the TRAP statement. Outputting longer
lines results in the program spending all of its time servic-
ing printer TRAPs, thus cancelling the advantage of the TRAP
statement.

5. A DIBOL program is slowed down approximately 5 to 10% by the
TRAP processor.

Example:

The following example program outputs numbers 1-500 on the printer
while some other task is being performed:

RECORD A
N, D3
PROC
TRAP SUB
FORMS (6,0) ;Start LPT.

. ;Perform task.

LOOP, IF (N.LT.500) GO TO LOOP
STOP

SUB, N=N+1
IF (N.GT.500) RETURN
XMIT (6,A)
RETURN

1-38 DIBOL LANGUAGE

WRITE

1.2.22 WRITE - Input/Output Statement

A direct
memory to

access WRITE statement moves a data record from an area in
a specified file. It has the form:

WRITE (channel,record,rec#)

where:
channel is a numeric value of 1-15, specifying a channel which
relates the WRITE statement to an INIT statement. The
INIT statement must have specified Update as the device
mode.
record is the record from which data is output.
rec# is an expression specifying the number of the record on
which data is to be written.
Example:
WRITE (5,REX,88) ;Returns the 88th record from the memory area

Several r

; REX to the device associated with the
;channel specified by INIT (5,...).

estrictions have been placed upon the use of READ and WRITE

statements.

1.

2.

The channel involved must refer to a logical unit on a mass
storage device.

The file to be accessed with READ or WRITE operations must
contain records of uniform size.

Only one volume of a multivolume file (the one currently
mounted) can be accessed by a READ/WRITE statement.

The record which is specified from the Data Division must be
the same size as the records of the file being accessed.

Attempting to READ or WRITE over the end-of-file mark results
in an error message and program termination.

Reading or Writing a record after end-of-file usually results
in an error message. Certain unpredictable conditions will
not crash the COS-310 system but will cause garbled data (on
a READ) or the loss of the output record (on a WRITE) .

Unless a FINI statement is used before terminating a DIBOL

program which has Update files, the data from the last few
WRITE statements will not be output properly.

DIBOL LANGUAGE 1-39

XMIT

1.2.23 XMIT - Input/Output Statement

The XMIT statement transfers a data record and is of the form:

XMIT (channel,record[,eof labell)

where:

channel

record

is a numeric expression (1-15) specifying a channel
number which associates the XMIT statement with the re-
lated INIT statement.

is a name previously used in a RECORD statement which
identifies the area in memory to which or from which
data is to be transmitted. It may be a simple or sub-
scripted variable, or a record literal.

Subscripted record names must be used with care. A
single subscript, such as REC(3), should only be used
if there are equal length consecutive records. The
first record must have a name but the others may be un-

named.
Examples:

RECORD REC ;REC(1)
,D6
,Al0

RECORD ;REC (2)
,D6
(Al0

RECORD ;REC(3)
,D6
,Al0

1f a double subscript form is used, e.g., REC (n,m),
then n must be less than m-1l, n must be odd and m must
be even (or the last character in the record). This
double subscript form refers to characters n-2 through
m-2 inclusive in the record. If n=1, it refers to
characters 1 through m-2. Whenever an XMIT occurs
referring to the record, two characters before char-
acter n in the record are destroyed; this is the
CO0S-310 word count. Do not be concerned about this if

n=1.

1-40 DIBOL LANGUAGE

eof label is the label of a statement to which the program

Examples:

branches if an end-of-file is read. It is used with
input files only. The input file is closed automati-
cally when an end-of-file is read. If a label is not
specified, an error message is output when an
end-of-file occurs. The same effect of an end-of-file
label can be achieved by an ON ERROR statement preced-
ing the XMIT without an end-of-file.

XMIT (3,INV,EOF) ;Transfers a record from the input file

XMIT

XMIT

XMIT

XMIT

;associated with the statement INIT
;(3,IN,..), to the record area in memory
;labeled INV. If end-of-file is
:reached, control branches to the
;Procedure Division statement labeled
;s EOF. If the 1length of the record
;being read is greater than the defined
;size, an error message is output at run
;time. If the size of the record being
;read is smaller than the defined size,
;the record is left-justified and padded
;with spaces on the right. This format
iis just the opposite of the data
;manipulation statement which does an
;alphanumeric-to-alphanumeric operation.

(1,CUST,NEXT) ;Transfers a record from the input file

;associated with the INIT(1,I,...)
;statement to the RECORD area CUST. At
;end-of-file, it branches to the
;statement labeled NEXT.

(2,BUFF) :Takes a record from RECORD area BUFF

(8,

;and puts it in the file associated
;with the INIT(2,...) statement
; (assuming channel 2 is initialized for
;output, printer, etc.).

"HI THERE') sWould output the message HI THERE on

;the operator's terminal if channel 8
;was INITed to the TTY.

(8,cust(l,7),EOF) ;Accesses the first five characters of

;the record area CUST.

DIBOL LANGUAGE 1-41

CHAPTER 2

THE MONITOR

2.1 MASTER CONTROL PROGRAM

The Monitor is the master control program for the C0S-310 system. It
contains all the system I/0 handlers:

® Terminal
® Mass Storage
e Printer

The Monitor enables you to edit, compile, save, and execute programs.
It also maintains a directory of all programs stored on the system
device and lets you label, open, and close files as needed.

During program execution, the Monitor produces the messages which in-
struct the user to mount files. It also provides the means for batch-

ing commands for sequential execution.

The editing feature of the Monitor can be used to create DFU (Data
File Utility) tables and source files on the system device. These
tables and files may be stored for later use.

Table 2-1 lists the Monitor Keyboard Commands that are available in
on-line operations.

2-1

Table 2-1
Monitor Keyboard Commands

Keyboard

Command Function

CTRL/C Returns control to the Monitor. The Monitor displays
a dot and awaits a command. If the Monitor is al-
ready in control, CTRL/C has the same effect as a
CTRL/U.

CTRL/O Suppresses terminal echo of typed output. If echo is
already suppressed, CTRL/O restores the terminal
echo. CTRL/O is also used to halt and resume output
from an LI command or the compiler. The echo always
resumes the next time the dot is printed. All sup-
pressed output is lost.

CTRL/Q Resumes output to the screen from the point at which
it was halted by CTRL/S.

CTRL/S Halts output to screen. No output data 1is 1lost.
CTRL/Q will resume output.

CTRL/U Deletes the current input line.

CTRL/2Z Signals the end of input and returns control to the
Monitor. Halts output of 1line numbers from an LN
‘command.

DELETE Erases the last character typed and moves the cursor
to that character's position.

RETURN Indicates that a line of input is complete.

2=-2 THE MONITOR

2.1.1 MOUNT Messages

The Monitor displays MOUNT messages on the screen whenever an input or
output logical unit number must be specified. These messages have the
form:

MOUNT filnam #nn FOR INPUT:

MOUNT filnam #nn FOR OUTPUT:

where:
filnam is the name of the data file desired by the program
currently executing.
#nn is the volume number (1 to 63) of the data file.

Respond to this message with the logical unit number (1-15) which indi-
cates the 1location of the data storage unit. If an error is made in
the reply, type CTRL/U and the correct reply.

The MOUNT message is displayed and the volume number 1is incremented
whenever the program reaches the end of the mass storage device yet
more information remains to be read or written.

When logical unit numbers specified in control programs are not avail-
able, a question mark precedes the MOUNT message:

?MOUNT filnam #01 FOR INPUT:
Respond to this message with a different logical unit number.

The following message is displayed when a file is already stored on
the logical unit specified in a MOUNT message:

REPLACE filnam #nn ?

Answer REPLACE with a Y to replace the old file; answer with any
other <character to keep the old file. File labels beginning with any
character other than 2-%Z,], ~, or [, are considered to be temporary
files, and no REPLACE message is displayed.

If output is to a previously unused logical unit, a garbled file name
or volume number may be displayed in the REPLACE message. This is be-
cause random characters are on the storage unit where the label should
be. Answer the REPLACE message with YES to replace the garbled file.

THE MONITOR 2-3

2.1.2 Operating Procedures

The Monitor is loaded via a bootstrap routine each time the system is
started. The Monitor signals that it is loaded into memory by dis-
playing the message:

COS MONITOR V 8.00 (or current version number)
DATE?

To proceed, type DATE (or DA), a space, the current date in the form
DA dd-mmm-yy. The date must be entered before proceeding. This date
is used during program execution to date reports, files, and newly
created programs.

The Monitor indicates that it is ready to accept other commands by
displaying either a dot (.) or by executing the batch file START.

START is executed if you selected the batch file option in the SYSGEN
operation (see Section 3.1 for SYSGEN operation).

2.2 MONITOR COMMANDS

The following commands apply to Monitor functions.

BATCH sequentially executes a string of monitor commands
DATE stores a date
DELETE erases programs from a device directory

DIRECTORY prints the names of stored files

PLEASE displays text on screen during program execution
RUN loads and executes programs
SAVE stores binary programs on a storage device

Only the first two characters of the command must be typed (R is suf-
ficient for the RUN command). Any additional characters up to the
first blank are ignored. All commands must be followed by the RETURN
key before execution will begin.

2-4 THE MONITOR

BATCH

2.,2.1 BATCH

A BATCH command sequentially executes a string of Monitor commands.
As soon as a command file associated with a Monitor command is com-
pleted, another Monitor command is executed. Certain system programs
started by the RUN command may either terminate BATCH or will not ac-
cept input from the batch stream; these require operator interaction.

The form of the BATCH command is:
BA cmndfl
where:

cmndfl is the name assigned to a previously stored file con-
taining a list of Monitor commands.

Following is an example of a command file:

0090 RUN COMP,JOBl
0100 SAVE JOBl

0110 RUN DFU, SYSTAB
0120 RUN JOBl

0130 RUN JOB2

0140 RUN SORT, SRCL
0150 RUN DFU,OLDTAB
0160 DE JOB1l/B

All batch command files must be on the system device. A batch command
file should contain a BATCH command only as its last line.

A Monitor command read from a batch file is displayed on the screen
and executed. Type CTRL/C to terminate a batch command file; the
batch can then be restarted only at the beginning of the file.

All of the necessary programs and data files must be available during
BATCH execution. If an error occurs, BATCH terminates, control re-
turns to the Monitor, and a dot is displayed on the screen.

After the error is corrected, the entire batch command file can be
restarted or each remaining command can be individually typed.

When the batch command file is finished, control returns to the Moni-
tor and a dot is displayed on the screen.

THE MONITOR 2-5

DATE

2.2.2 DATE

The DATE command stores .a date which is assigned to all programs that
are created or to reports that are printed. This date remains the
same until a new DATE command is issued or the system is rebooted.

The form of the DATE command is:

DA d4dd-mmm-yy

where:
dad is a two-digit decimal number representing the day.
mmm is a three-character alphabetic string which must be
the first three letters of the month.
vy is a two-digit decimal number representing the last two

digits of the year.
After the system is booted, the Monitor displays the message:

COS MONITOR V 8.00 (or current version number)
DATE?

If anything is typed before the date is entered, the Monitor repeats:
DATE?

If the date is entered incorrectly, the Monitor displays:
BAD DATE

Enter the date whenever the Monitor is booted. It 1is also used to
change the system date.

Examples:

*DA 25-SEP-76
*DATE 5-JUL-77

2-6 THE MONITOR

2.2.3 DELETE

DELETE

The DELETE command erases the named source, binary, or system program
from the specified device directory.

The form of the DELETE command is:

DE pronam|,dev]/x

where:

pronam

dev

/X

is the name of the program to be removed from the di-
rectory.

is the three-character designation for the physical
device where the program is stored. 1If no device is
specified, the system device is assumed.

Is a one- or two-character <code indicating that the
program to be deleted is either a source (S), binary
(B) , or system (SV) program. This code is necessary to
differentiate between three programs with the same name
but of different types. The code SV 1is used rather
than V to make it more difficult to mistakenly delete a
system program.

Data files are not deleted, they can only be replaced.

Examples:

.DE JOBl, RX3/B ;Delete binary program named JOBl from device
sRX3.
.DE PROGA,DK3/5 ;Delete source program named PROGA from
;device DK3.
.DE INV/S ;Delete source program named INV from system
- 3device.
.DE FILEX/SV ;Delete system program named FILEX from

;system device.

THE MONITOR 2-7

DIRECTORY

2.2.4 DIRECTORY

The DIRECTORY command prints a list of programs stored on a physical
device or the name of the data file stored on a logical unit. Be sure
the printer is on-line before issuing the DI command.

The form of the DIRECTORY command is:

[dev][/T]
DI
/logical unit #
where:
dev is a three-character designation for the mass storage
device on which the directory is stored, and must be
preceded by a comma or space. If not specified, the
system device is assumed.
/T is an optional switch which causes the directory to be

displayed on the screen. If /T is not specified, the
directory will be listed on the printer.

/logical unit #
is the number (1-15) of the logical unit assigned with
DFU (Data File Utility). A logical unit # must be pre-
ceded by /. Specifying a logical unit # causes a label
to be 1listed on the printer. The DI command must be
repeated each time a logical unit # is to be printed.

The directory contains the current date, names of programs, types of
programs, length (LN) in 512-byte blocks, and the date each program

was stored.

A logical unit label contains the file name, sequence number (if a
multivolume file), the date the file was created, file length in seg-
ments, and the number of the logical unit where the file was stored
when the 1label was requested. Segments are sixteen 512-byte blocks
long.

The only directory entry dates that are valid are those for the cur-
rent year and seven years preceding the current date. Any dates prior
to this time will be printed incorrectly.

2-8 THE MONITOR

Examples:
The command:
.DI DKO ;Directory from physical device DKO.

causes a directory similar to the following to be output on the
printer:

DIRECTORY 15-FEB-72

NAME TYPE LN DATE

COMP vV 14 19-JAN-78

MORE S 10 15-FEB-78
<0006 FREE BLOCKS>

TST2 S 07 12-FEB-78
<0007 FREE BLOCKS>

TST4 S 07 15-FEB-78

GLOP S 10 15-FEB-78

<0579 FREE BLOCKS>
The command:
.DI/3 :Directory from logical unit 3.
outputs a file label similar to the one below.
hkhkkhhkhkkhhhkhkhhkkhkhkhhkkhkkkkkkk
NAME SEQ. DATE
DEP #01 18-NOV-75

*
*
*
*
*
LENGTH: 0046 UNIT: 3 *
*
*

*
*
*
*
*
*
*
*

kAR AXA ARk Ak hhkhhhhkhhkhhkk

THE MONITOR 2-9

PLEASE

2.2.5 PLEASE

The PLEASE command displays text on the screen during execution of a
batch command file.

The form of the PLEASE command is:

PLEASE text

The text is displayed exactly as entered and the terminal alarm is
sounded. Do as requested by the PLEASE text and type any key (includ-
ing CTRL/C) to continue the batch program.

To make a two-line PLEASE command, the first line is terminated with
AND and the second line begun with another PLEASE. The AND lets the

operator know more text is to follow.
Example:

0020 ROUN JOBl1

0030 PLEASE PUT INVOICES IN PRINTER AND

0040 PLEASE TYPE 3 TO THE NEXT MOUNT MESSAGE
0050 RUN JOB3

0060 PLEASE PUT REGULAR PAPER IN PRINTER

When this batch command file is executed, JOBl will be run, the
first PLEASE text will be displayed, and the terminal alarm will
be sounded. The system waits for a key to be typed in reply to
the PLEASE text, then it displays the next PLEASE command. When
a key is typed in reply to the text, JOB3 is executed and the
last PLEASE text 1is displayed. Control returns to the Monitor
when a key is typed in reply to the last PLEASE text.

If a PLEASE command is given in a non-BATCH mode, the terminal alarm
sounds and the system waits for a RETURN key to be typed.

2-10 THE MONITOR

RUN

2,2.6 RUN

The RUN command loads and executes a system program or a binary pro-
gram using the named file. This command provides access to all other
system programs, such as:

RUN SYSGEN To build a new system or change system handlers.

RUN SORT To sort data files.

RUN PIP To move information between physical devices.

RUN COMP To compile a user source program into a binary
program.

The RUN command has the form:

pronam
RUN | 1[,filnaml...,filnam7] [/xx]
chainO+chainl...+chain?7
where:
pronam is the name of the program to be run.

If the program name is omitted, the Monitor loads and
executes the DIBOL program in the binary scratch area.

chainO+chainl...
are binary files which are part of one large program
which has been divided into several chained programs.
For example:

.RUN CHAINO+CHAIN1+CHAIN2+CHAIN3
would execute program CHAINO. CHAINO would then deter-

mine whether program CHAIN1, CHAIN2, or CHAIN3 would be
run next.

THE MONITOR 2-11

filnaml...,filnam?7
are source files which must be on the system device.
If one of the system programs is executed via the RUN
command and no source files are specified as input, the
file in the edit buffer is used as input (system pro-
grams only).

The maximum number of binary and source files per pro-
gram is eight (including pronam or chain0). Multiple
files are concatenated and passed to system programs as
one large file.

/XX is one or a combination of option switches associated
with the program being run.

If the program file specified is not found, the following error mes-
sage is displayed.

FILE NOT FOUND

When a program is loaded into memory by a RUN command, the Monitor
temporarily stores the contents of the edit buffer in the editing
scratch area on the system device. The contents of the edit buffer
are returned to memory when program execution is complete.

Examples:
« RU ;Executes most recently compiled DIBOL
;program.
. RU JOB1 ;Runs program called JOBI.

. RUN COMP, CHECK ;Compiles the source program CHECK.

.RUN ,BIN1,BINZ2 ;Runs the program from the binary scratch
;area using BIN1l and BIN2 as input files.

2-12 THE MONITOR

SAVE

2.2.7 SAVE

This command copies the binary program from the binary scratch area
and stores it on the named device. The saved binary will be of

type B.
The form of the SAVE command is:

SA pronam|,dev] [/Y]

where:
pronam is the name to be assigned to the binary program being
stored.
dev is the three-character designation for any mass storage
device which has a directory. If no device is given,
the system device is assumed.
/Y is used to bypass the REPLACE? message when a dupli-

cate name 1is ‘encountered. Normally used in a batch
mode to bypass operator response.

If the program name specified is a name already in the directory, the
Monitor displays:

REPLACE?

Type Y or YES to replace the old file with the new file. Type N or
any other character to leave the old file and return to the Monitor.

THE MONITOR 2-13

2.3 EDITOR COMMANDS

The COS-310 Monitor contains a line number editor. Every line of text
input to the Monitor is assigned a line number.

Example:
0100 START
0110 RECORD A
0120 A1, Ab4
0130 PROC 2
0140 INIT (2,IN,'MINT')
0150 LOOP, XMIT (2,A,EOF)
0160 XMIT (8,A)
0170 GO TO LOOP
0180 EOF, FINI(2)
0190 STOP
0200 END

Insertions, changes, and deletions are done with these line numbers.

The following commands are functions of the editor.

ERASE clears text from the edit buffer
FETCH loads a source file into memory
LIST outputs text to the screen or printer
Line Number outputs incremented line numbers

Number Commands edits text within the edit buffer

RESEQUENCE renumbers program lines

WRITE stores source files for later editing
These commands can be entered in response to the Monitor dot. Only
the first two characters of the command are needed. The exceptions to

this first-two-letter convention are in the 1line number and number
commands. All commands must be followed by the RETURN key.

2-14 THE MONITOR

2.3.1 ERASE

ERASE

The ERASE command erases (clears) text from the edit buffer.

Thg form of the ERASE command is:

ER [n1]1[,n2]

where:

nl

,n2

is the number of the line to be erased or the first of
two line numbers which delimit the lines to be erased.
If omitted, erasing starts at the beginning of the edit
buffer.

is the second of the two delimiting line numbers; it
indicates where erasing ends. If n2 is omitted but the
comma is included, erasing continues to the end of the
edit buffer.

If no line numbers are specified, the ERASE command clears the entire

edit buffer.
ing any material to be edited.

Examples:
. ER
.ER
. ER
«ER

.ER

,5
5,10

5,

Use this command to erase the edit buffer before enter-

;Clears the entire edit buffer.

;Clears line 5.

;Clears from the start of the buffer through line 5.
;Clears from line 5 through line 10.

;:Clears from line 5 through the end of the buffer.

THE MONITOR 2-15

FETCH

2.3.2 FETCH

The FETCH command erases the edit buffer and loads the named source
file from the specified device into memory.

The form of the FETCH command is:

FE filnam|[,dev]

where:
filnam is the name of a previously stored source file which is
to be brought into memory.
dev is the three-character designation for the mass storage

device where the file is stored. If the device desig-
nation-is omitted, the system device is assumed.

If the source file is not found, the Monitor displays the message:
FILE NOT FOUND

Retype the command with the correct source file name or device desig-
nation. Consult the directory to find the proper name.

Examples:

.FE RICH ;Moves file RICH from the system device to the
;edit buffer.

.FE PAYROL,DK2 ;Moves file PAYROL from an RK05 disk on drive 2 to
;the edit buffer.

2-16 THE MONITOR

LIST

2.3.3 LIST

The LIST command outputs the specified lines or the entire contents of
the edit buffer to the printer or to the screen.

The form of the LIST command is:

LI [nl][,n2][/L]

where:
nl is the number of the line to be output or the first of
two 1line numbers which delimit the lines to be output.
If omitted, output starts at the beginning of the edit
buffer.
,n2 is the second of two line numbers; it indicates where
' output ends. If n2 is omitted but the comma is includ-
ed, output continues to the end of the edit buffer.
/L is the one-letter switch which will output the list to

the printer. If /L is not indicated, the list is dis-
played on the screen.

If no line numbers are specified, the entire contents of the edit
buffer is output. CTRL/O stops output from an LI command; CTRL/S
halts display on the screen; CTRL/Q resumes display halted by CTRL/S.

Examples:
.LI/L :List entire edit buffer on printer.
LI 5 ;Display line 5 on the screen.

.LI ,5 :Display from beginning of buffer through line 5.
.LI 5,10 ;Display line 5-10, inclusive, on the screen.

.LI 5, ;Display from line 5 through the end of the buffer.

THE MONITOR 2-17

LINE NUMBER

2.3.4 Line Number

The Line Number command automatically outputs incremented line numbers
so new lines can be entered without manually typing each line number.

The form of the Line Number command is:
LN [n]{,inc]
where:

n is the number of the starting 1line. If no starting
line number is specified, 100 is assumed.

If the comma after the starting number and the incre-
ment number are omitted, the starting number and incre-
ment number are the same.

If the command is LN 100, the start line number is 100
and the increment remains unchanged from the last LN
command. Once in memory, the increment returns to 10.

inc is the increment between line numbers. If no increment
is specified, 10 is assumed.

If Line Number command is terminated and some editing has been done,
type the Line Number command (LN) with no arguments to display the
next number in sequence.

The LN command does not clear the edit buffer. Line Numbers 0 to 4095
are available. Under the default conditions (start at 100, increment
by 10), the program can be approximately 400 lines long.

The maximum number of characters on an input line, including the 1line
number and space, 1is 120. The line number and space are counted as

two characters.

No terminal screens are 120 characters wide. When the screen is full,
the Monitor executes a carriage return/line feed but does not display
the next line number. If the 120-character input line length is ex-
ceeded, the Monitor gives the error message LINE TOO LONG and the en-
tire input line is lost.

2-18 THE MONITOR

If RETURN is the first key typed after an automatic line number, the
line number increments but a blank line is not generated. To obtain a
blank line, type the SPACE bar and the RETURN key. To obtain a blank
line after you manually enter a line number, type two spaces and the
RETURN key.

Tabs can be used to increase the readability of a program. The TAB
key on most terminals is set to produce up to 8 spaces. The first tab
goes to column 13 because the line number and space take the first
five spaces.

Type CTRL/Z to indicate the end of input and to halt the automatic
line numbering.

Examples:

.LN ;Requests line numbers starting at 100 with increments
;0f 10.

.LN 10,5 ;Reqguests line numbers starting at 10 with increments
;of 5.

.LN ,100 ;Requests line numbers starting at 100 (default) with
;increments of 100.

.LN 50 ;Requests line numbers starting at 50 with increments
;of 50.

If an error is made when using automatic line numbers, use the DELETE
key or CTRL/U prior to typing the RETURN key. The DELETE key erases

the last character typed. CTRL/U erases the entire line; the Monitor
redisplays the line number.

If the edit buffer is full, the error message EDIT BUFFER FULL ap-
pears, and the last line entered is lost.

The edit buffer can be separated into two or more source files. This
is done with the following procedure:

WRITE the edit buffer as file B.

ERASE the last half of the edit buffer.
WRITE the edit buffer as file A.

FETCH file B.

ERASE the first half of the edit buffer.

WRITE the edit buffer as file B.

THE MONITOR 2-19

NUMBER COMMANDS

2.3.5 Number Commands

Any line beginning with a number can be edited in the edit buffer.
Lines are edited using the following form:

nnnn [text]

where:
nnnn is the number of a line you want to work on.
text is data to be input on the line. The data must be sep-

arated from the line number by one SPACE or a TAB. A
TAB becomes the first character of text.

If text is already at that line number, the new text replaces it.
Lines are stored in increasing line number order. Type the line
number and RETURN right after the line number to clear data from that
line.

An input line is limited to 116 characters plus the four-character
line number (a total of 120 characters).

Examples:
Text before editing:
LI
0035 PROC
0040 INIT(I,V,IN)
0047 XMIT(6,B)
0060 END

Editing commands:

.35 PROC 1 sInserts PROC1l at line 35.
.40 INIT(1,IN,'LABEL',2) ;Inserts new text at line 40.
47 ;Erases text and line number.

Text after editing:
LI
0035 PROC 1
0040 INIT(1,IN,'LABEL',2)

0060 END

2-20 THE MONITOR

RESEQUENCE

2.3.6 RESEQUENCE

The RESEQUENCE command renumbers the program lines to adjust for addi-
tion and deletion of lines.

The form of the RESEQUENCE command is:
RE [n][,inc]
where:

n is the starting 1line number. If no starting 1line
number is specified, 100 is assumed.

If the comma after the starting number and the incre-
ment number are omitted, the starting number and incre-
ment number are the same. If the comma is included,
the starting number is as designated and the increment
remains unchanged unless the Monitor is read back into
memory; once in memory, the increment returns to 10.

inc is the increment between line numbers. If no increment
is specified, 10 is assumed.

If the line number exceeds 4095 following a RESEQUENCE command, the
error message LINE # TOO LARGE results. Enter another RESEQUENCE com-
mand with smaller increments. If this is not done, the text will be
only partially resequenced and duplicate line numbers may result.

Examples:

.RE ;Resequences line numbers of a program in the edit
;buffer using 100 as the starting line number and 10
;as the increment.

.RE 10,5 ;Resequences line numbers of a program in the edit
;buffer using 10 as the starting line number and 5 as
;the increment.

.RE ,100 ;Resequences line numbers of the program in the edit
;buffer wusing 100 or the last specified line number as
;the starting line and 100 as the increment.

.RE 50, ;Resequences line numbers of a program in edit buffer

;using 50 as the starting line number without changing
;the increment.

THE MONITOR 2-21

WRITE

2.3.7 WRITE

The WRITE command stores a source file on the specified device so it
can later be compiled or fetched for editing.

The form of the WRITE command is:

WR filnam[,dev] /Y]

where:

filnam is the name (up to six characters) of the source file
to be stored.

,dev is the three-character designation for the mass storage
device where the program is to be stored. If no device
is specified, the system device is assumed.

/Y bypasses the REPLACE? message when a duplicate name is

encountered. Normally wused in a batch file to bypass
operator response.

If the filnam specified is a duplicate name, the Monitor displays:
REPLACE?

Type Y or YES to replace the o0ld file with the new file. Type N or
any other character to leave the o0ld file and return to the Monitor.

2-22 THE MONITOR

2.4 MONITOR ERROR MESSAGES

Message

BAD COMPILATION

BAD DATE

BAD DIRECTORY

BAD LABEL

EDIT BUFFER FULL

ERROR IN COMMAND

ERROR ON dev, RETRY?

FILE NOT FOUND

ILLEGAL PROGRAM

ILLEGAL UNIT

IN USE

Explanation

Attempted to SAVE a compiled binary that
had errors. Correct errors before com-
piling.

Typed an unrecognizable date. Retype.
Attempted to reference or store a file
on a device with a damaged or nonexis-
tent directory. Only devices with di-
rectories can be used. If the directory
is damaged, call your Software Special-
ist.

No data file label, or label's form is
incorrect. Check for correct label.
Greater than 8,150 characters (see Sec-
tion 2.3.4 Line Number).

command

Miscellaneous. Check previous

for form and accuracy.

The wrong device was designated. Type N
for no retry. Any other input causes
the device handler to retry.

The file specified was not found on the

directory that was specified. Re-enter
file name or review directory for file
existence.

Attempted to run a system program that

has a different version number than the
Monitor. Version numbers must be the
same.

Either the specified logical unit number
is illegal (not 1-15) or the specified
device is not currently part of the sys-

tem. Replace the illegal number with a
correct unit number. Stipulate a cor-
rect device designation.

The specified logical unit 1is already

open. Select another logical unit.

THE MONITOR 2-23

Message Explanation

LINE TOO LONG More than 120 characters entered on an
input line. Line must be shortened.

LINE # TOO LARGE Line number greater than 4095.
Resequence 1line numbers or reduce the
total number of lines.

?NO FILE TO SAVE Nothing in the edit buffer when WRITE
command is issued. New data must be en-
tered.

NO INIT Program attempted to read or write on a

device that was not opened by the system
program. Device must be opened with an
INIT statement.

NO LP BUFFER Not enough memory to support the select-
ed printer (e.g., LQP printer requires
24K bytes of memory). Add more memory
or select another type of printer.

2.5 RUN-TIME ERROR MESSAGES

All errors are fatal unless the error is trapable and the statement in
which it occurs is immediately preceded by an ON ERROR statement with
a valid label (see Section 1.2.13 ON ERROR) .

The messages marked with an asterisk (*) cannot be checked with an ON
ERROR statement.

AT LINE nnnn is displayed under all run-time error messages; nnnn is
the DIBOL source program line number where the error occurred. If
COMP/0O was specified for a program, nnnn is meaningless.

Message Explanation

*BAD CHAIN CHAIN argument does not match .RUN com-
mand. All chained programs must be stip-
ulated in the RUN command.

BAD DIGIT A character other than +, -, space, or
the digits 0-9 was encountered in an al-
phanumeric-to~numeric conversion. Check
and delete bad digits.

2-24 THE MONITOR

Message

*BAD PROGRAM

*DIBOL FILE NUMBER IN USE

*DIBOL FILE NUMBER NOT INITED

END OF FILE

*ILLEGAL DEVICE

ILLEGAL RECORD #

*ILLEGAL SUBSTRING

LINE TOO LONG

*NO BUFFERS LEFT

Explanation

Attempted to run a binary program which
contains a compilation error. Check
compilation listing for errors. Correct
errors and recompile.

In INIT, the channel number is already
associated with a device. Enter new
channel number/device combination.

An attempt was made to XMIT, READ, or
WRITE with a channel number that was not
associated with a device. Either 1INIT
the channel number or use a channel
number already opened.

The last record of an input file has
been read and the end-of-file mark en-
countered, but no EOF label was speci-
fied in the XMIT statement or in the ON
ERROR statement preceding the XMIT
statement. Rewrite XMIT statement.

Attempted to WRITE on a file that was
not opened for UPDATE or attempted to
READ from a file that was not opened for
INPUT or UPDATE. INIT file properly.

Either the record number is 0, past the
end of the logical unit, or the records
are not all the same length when you are
using UPDATE mode.

A DIBOL Procedure Division statement at-
tempted to access a subscripted data
field, F1 (m,n), but m<l or m>n.
Redefine data field.

Attempted to XMIT a record that is too
long for the area defined in the Data
Division. Redefine the area in the Data
Division.

Not enough memory available for 1I/O
bufféers (e.g., DIBOL program is too
big). An I/O buffer of some multiple of
512 characters is set up for each active
mass storage file. Another possibility:
too few files were specified in the PROC
statement. Specify more files.

THE MONITOR 2-25

Message

NO FILE

NUMBER TOO LONG

*PROGRAM TOO BIG

*PUSHDOWN OVERFLOW

*RETURN WITHOUT CALL

*SUBSCRIPT TOO BIG

ZERO DIVISOR

2-26 THE MONITOR

Explanation

No file specified in RUN command to
satisfy INIT (SYS) statement Specify
file.

A numeric field longer than 15 digits
was used in a calculation. Reduce to
within 15-digit limitation.

Binary program does not fit in available
memory. Reduce program size, or chain
program.

Statement is too complex and/or subrou-
tines are nested to a depth greater than
50. Simplify statement, reduce nesting,
or both.

The program tried to execute a RETURN,
but there was no place to go. Implement
CALL or TRAP statement or delete the RE-
TURN statement.

Program attempted to wuse a subscript
larger than that defined in the Data
Division. Note that the run-time system
does not detect all illegal subscripts,
only those which would cause the program
or the system to be destroyed. Redefine
subscript.

The program attempted to divide by zero.
Eliminate division by zero.

CHAPTER 3

SYSTEM GENERATION PROGRAM (SYSGEN)

The System Generation Program (SYSGEN) is a conversational program
used to create a system on a new device or to change the system
handlers in the current system. The SYSGEN statement has the follow-
ing form:

/B
RUN SYSGEN
/C
where:
/B builds a system in a new device.
/C changes handlers on the current system.

3.1 SYSGEN/B OPERATING PROCEDURES

Use SYSGEN/B to build a system on a new device.

At least two drives must be running and loaded on the system in order
to perform this operation. To execute SYSGEN/B, type:

RUN SYSGEN/B
After this command, SYSGEN displays the following question:
WHAT IS THE NEW SYSTEM DEVICE?

Respond by typing the three-character designation for the device that
you want to build a new system on. A message similar to the following

then appears on the screen.

ENTER NUMBER CORRESPONDING TO DESIRED CONFIGURATION

1 DK RKO5 CARTRIDGE DISK DRIVES
2 RX RX01 FLOPPY DISK DRIVES
3 DY RX02 FLOPPY DISK DRIVES

4 DK & RX RK0O5 AND RX01 DISK DRIVES
5 DK & DY RKO5 AND RX02 DISK DRIVES

Type the number corresponding to the kind of drive(s) that you want,
SYSGEN responds with:

PLEASE TYPE NUMBER OF PRINTER MODEL ON SYSTEM

1 LASA DECPRINTER I USING DKC8-AA INTERFACE
2 LA35 DECWRITER 1II

3 LA36RO DECWRITER II

4 LQP LETTER-QUALITY PRINTER

5 LPO5 300 LPM PRINTER

6 LAS DECPRINTER 1

7 LA120 DECWRITER III

8 NONE NO PRINTER

Type the number corresponding to the printer you want. If you select
a printer that does not have forms hardware, SYSGEN asks:

HOW MANY LINES PER PAGE?

Type the number of lines you want on each page. The default value is
66 lines. After lines-per-page has been specified, the system asks:

DO YOU WANT START-UP BATCH FILE?

Answer YES if you want the Monitor to execute the batch file START
every time you use the Monitor DATE command. Answer NO if you do not

3-2 SYSTEM GENERATION PROGRAM (SYSGEN)

want to automatically execute the batch file. This option does not
require any additional memory for the COS-310 Monitor or space on the
system device except for the space needed for the START file. You
create START by writing a batch file and naming it START.

After you enter YES or NO, SYSGEN responds by asking:
DO YOU WANT TO TRANSFER YOUR FILES?

Answer YES to copy the Monitor and the system, source, and binary
files onto the new system device. This transfer destroys anything
previously stored on the new system device. Answer NO to empty the
new device's directory and to copy the COS-310 Monitor onto the new
device; no files are transferred.

SYSGEN then asks:
IS EVERYTHING CORRECT?

Type YES if your answers are correct. Type NO and SYSGEN repeats the
questions starting at the request for the new system device.

The new system is built only after you give a YES response to SYSGEN's
last question.

If you chose not to transfer files, the COS MONITOR message is immedi-
ately displayed. If you chose to transfer files, the time needed to
make the transfer delays the COS MONITOR messade.

SYSGEN/B does not reset the logical unit assignments to reflect the
new area occupied by the system on a disk. Use DFU to make new logi-
cal unit assignments.

The SYSGEN/B operation will fail if you attempt to transfer your files
to a device that does not have enough room for both the system and the
files. The operation can be done by rebooting the system and running
SYSGEN/B without transferring files onto one device and then running
SYSGEN/B without transferring files a second time onto another device.
Then use PIP OPT- E to put source files on one device and binary files
on the other device.

3.2 SYSGEN/C OPERATING PROCEDURES
Use SYSGEN/C to change handlers within the current system. To execute
SYSGEN/C, type:

RUN SYSGEN/C

SYSTEM GENERATION PROGRAM (SYSGEN) 3-3

SYSGEN displays the following statement:

ENTER NUMBER CORRESPONDING TO DESIRED CONFIGURATION

1 DK RKO5 CARTRIDGE DISK DRIVES
2 RX RX01 FLOPPY DISK DRIVES

3 DY RX02 FLOPPY DISK DRIVES

4 DK & RX RK05 AND RX01 DISK DRIVES
5 DK & DY RK05 AND RX02 DISK DRIVES

Type the number corresponding to the kind of drive(s) that you want.
SYSGEN responds with:

PLEASE TYPE NUMBER OF PRINTER MODEL ON SYSTEM

1 LASA DECPRINTER I USING DKC8-AA INTERFACE
2 LA35 DECWRITER II

3 LA36RO DECWRITER II

4 LQP LETTER-QUALITY PRINTER

5 LPO5 300 LPM PRINTER

6 LAS8 DECPRINTER I

7 LAl120 DECWRITER III

8 NONE NO PRINTER

Type the number corresponding to the printer you want. If you select
a printer that does not have forms hardware, SYSGEN asks:

HOW MANY LINES PER PAGE?

Type the number of lines you want on each page. The default value is
66 lines. After lines-per-page has been specified, the system asks:

DO YOU WANT START-UP BATCH FILE?

Answer YES if you want the Monitor to execute the batch file START
every time you use the Monitor DATE command. Answer NO if you do not
want to automatically execute the batch file. This option does not
require any additional memory for the COS-310 Monitor or space on the
system device except for the space needed for the START file. You
create START by writing a batch file and naming it START.

3-4 SYSTEM GENERATION PROGRAM (SYSGEN)

After you enter YES or NO, SYSGEN asks:
IS EVERYTHING CORRECT?

Type NO and the entire sequence of questions begins again. Type YES
and SYSGEN responds:

SYSGEN COMPLETE--PLEASE RE-INITIALIZE SYSTEM

The system automatically halts and must be rebooted. The new handlers
are now in the system and SYSGEN/C is completed.

3.3 SYSGEN ERROR MESSAGES

Message Explanation

BAD SWITCH Attempted to use a switch other than B or C.
Use /B or /C.

dev MUST BE INCLUDED IN CONFIGURATION
Attempted to operate SYSGEN/C without desig-
nating a device handler. Enter the device
designation where needed.

FULL Ran out of room for files on new device. Run
SYSGEN/B twice without transferring files and
use PIP OPT- E to put source files on one
‘device and binary files on the other device.

The most common indication of error is the repeat of the question.
Answer the question again.

SYSTEM GENERATION PROGRAM (SYSGEN) 3-5

CHAPTER 4

DATA FILE UTILITY PROGRAM (DFU)

Use the Data File Utility Program (DFU) to make logical wunit assign-

ments or to

print

a table of these assignments for reference. The

C0S-310 system is shipped with logical units unassigned.

4.1 DFU OPERATING PROCEDURES

To execute DFU, type

RUN DFU

where:

,filnam

/XX

,E£ilnam

/XX

is the name of a previously created file containing a

table

of logical unit assignments. This file is stored

on the system device.

is an
tion
/B
/K
/D

/DL

/E

option switch which determines the specific func-
of DFU.

makes logical unit assignments from a table creat-
ed in the edit buffer.

makes new logical unit assignments directly from
the keyboard.

displays the table of current logical unit assign-
ments on the screen.

lists the table of current 1logical wunit assign-
ments on the printer.

displays an expanded table of current logical unit
assignments. Similar to /D with the addition of

the file name, volume sequence number, creation
date, and length of the data file.

/EL lists the expanded table of logical unit assign-
ments on the printer.

If neither file name nor option switch is specified, DFU defaults
to /B.

4.1.1 DFU,filnam Operating Procedures

DFU,filnam takes the logical unit assignments from a table stored as a
file on the system device. To execute DFU, filnam type:

RUN DFU,filnam

The table is created with editor commands and contains the device de-
signation and the number of segments in each logical unit. The se-~-
quence of the entries determines the number associated with the 1logi-
cal unit. The table is created in the edit buffer and stored as a
named file. The table is similar to the following:

RXO, 41

RK3, 21

A maximum of 15 entries can be made in the table.

The DFU program makes the assignments on the appropriate devices but
produces no output on the screen or printer.

4.1.2 DFU/B Operating Procedures
DFU/B makes logical unit assignments from a table in the edit buffer.
To execute DFU/B, type:
RUN DFU/B
The table is the same as the one used by DFU,filnam. The table must

be in the edit buffer. The processor makes the assignments on the ap-
propriate devices but produces no output on the screen or printer.

4-2 DATA PILE UTILITY PROGRAM (DFU)

4.1.3 DFU/K Operating Procedures

DFU/K makes new logical unit assignments from the keyboard.

cute DFU/K,

type:

RUN DFU/K

DFU responds by prompting you to enter the logical

For example:

4.1.4 DFU/D Operating Procedures

DFU/D displays the table of current logical unit
To execute DFU/D,

screen.

.RUN DFU/K

DFU V 8.00

1 = RX0,41
2 = RX1,41
3 = RX2,41
4 = RX3,41
5 = END

RUN DFU/D

type:

To

exe-

unit assignments.

assignments on the

A table similar to the following is displayed on the screen.

UNIT

DEV. SEGS.

RXO0 41

RX1 41

RX2 41

RX3 41

~UNDEFINED~
~UNDEFINED-
—=UNDEFINED-
~UNDEFINED-
-=UNDEFINED-
~UNDEFINED~-
-UNDEFINED-
-UNDEFINED-
~UNDEFINED-
-UNDEFINED-
-UNDEFINED-

DATA FILE UTILITY PROGRAM (DFU) 4-3

where:
UNIT

DEV.

SEGS.

is the

is the
device

is the
unit.

logical unit number.

three-character designation of the mass
where the unit is located.

number of segments assigned to each

4.1.5 DFU/DL Operating Procedures

DFU/DL lists a table of current logical unit assignments.
table as in DFU/D except the table is listed on the printer.

execute DFU/DL,

same

type:

RUN DFU/DL

A table similar to the following is listed on the printer.

UNIT

where:
UNIT

DEV.

SEGS.

DEV. SEGS.

41
41

RX0
RX1
RX2 41

RX3 41

-UNDEFINED-
-UNDEF INED-
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-
~UNDEFINED-
~UNDEFINED-
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-
-UNDEFINED-

is the

is the
device

is the
unit.

logical unit number.

three-character designation of the mass
where the unit is located.

number of segments assigned to each

4-4 DATA FILE UTILITY PROGRAM (DFU)

storage

logical

This is the

To

storage

logical

4.1.6 DFU/E Operating Procedures

DFU/E displays the expanded table of current logical unit assignments.

This 1is

similar to

DFU/D with

the addition of the file name, the

volume sequence number (1-63), the creation date, and the data length.
To execute DFU/E, type:

RUN DFU/E

A table similar to the following is displayed on the screen.

UNIT

where:
UNIT

DEV.

SEGS.

NAME

SEQ.

DATE

LEN.

When using DFU/E or DFU/EL, failure to mount each mass storage

DE

RX
RX
RX

V. SEGS.

1 0037

1 0002

1 0002

UNDEFINED
UNDEF INED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEF INED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED

is the logical unit number.

NAME SEQ.
FILE1l 1
FILE2 1

1

FILE3

LEN.

0010
0002
0002

is the three-character designation of the mass
device where the unit is located.

is the number of

unit.

segments

is the name assigned to the data file.

is the sequence number (what volume

file) of that specific data file.

is the creation date of the data file.

is the number of segments used by the data file.

storage
assigned to each 1logical
in a multivolume

device

where logical units are assigned will either cause an error message or
will cause the system to stop processing until the mass storage device

is mounted.

DATA FILE UTILITY PROGRAM (DFU) 4-5

4.1.7 DFU/EL Operating Procedures

DFU/EL lists the expanded table of current logical

This 1is the same as
To execute DFU/EL,

RUN DFU/EL

A table similar to the following is listed on

unit assignments.
DFU/E except the table is listed on the printer.

type:

the printer.

UNIT DEV. SEGS. NAME SEQ. DATE LEN.
1 RX1 0037 FILE1l 1 2/ 4/76 0010
2 RX1 0002 FILE2 1 1/28/76 0002
3 RX1 0002 FILE3 1 3/ 1/76 0002
4 UNDEFINED -
5 UNDEFINED -
6 UNDEFINED -
7 UNDEFINED -
8 UNDEFINED -
9 UNDEFINED -
10 UNDEFINED -
11 UNDEFINED -
12 UNDEFINED -
13 UNDEFINED -
14 UNDEFINED -
15 UNDEFINED -
where:
UNIT is the logical unit number.
DEV. is the three-character designation of the mass storage
device where the unit is located.
SEGS. is the number of segments assigned to each logical
unit.
NAME is the name assigned to the data file.
SEQ. is the sequence number (what volume in a multivolume
file) of that specific data file.
DATE is the creation date of the data file.
LEN. is the number of segments used by the data file.

The number of segments in a logical unit is up to you.

C0s-310 allows

one file in each logical unit.

4-6 DATA FILE UTILITY PROGRAM (DFU)

4.2 LOGICAL UNIT ASSIGNMENTS ON THE COS-310 SYSTEM

The assignment of logical wunits to mass storage devices provides
greater utilization of the storage area.

The COS-310 system handles storage using the following hierarchy:

2 characters 1 word
256 words 1 block
16 blocks 1 segment

RX01 storage capacity
RX02 storage capacity
RK0O5 storage capacity

41 segments
61 segments
406 segments

o un

Do not assign logical units to devices not currently part of the sys-
tem configuration.

4,2.1 Determining Logical Unit Size

The following procedure works when all records within a file are the
same size.

The size of a logical unit is dependent upon the record size and the
number of records required in the data file. To determine the number
of segments required for a logical unit, use the following steps:

Step 1 Determine the number of data characters in a record (maximum
of 510 characters). The number must be even. If the number
is odd, add one to make it even.

Step 2 C0S-310 requires two characters to store the number deter-
mined in Step 1l; add these two characters to the total from
Step 1. This new total is the record size.

Step 3 Determine the total number of characters required in the file
by multiplying the record size found in Step 2 by the number
of records desired.

Step 4 Add 512 characters for a file header and 2 characters for a
file trailer. This plus the total from Step 3 is the total
number of characters to be used in the logical unit.

Step 5 Because the logical unit size is expressed in segments rather
than in characters, the number from Step 4 must be divided by
8192. Round up any remainder.

The following algorithm can be used to perform this calculation by as-
signing values to fields DATA and RECS.

DATA FILE UTILITY PROGRAM (DFU) 4-7

RECORD

DATA, D3 ;Number of data characters per record.
RECS, D5 ;s Number of records in file.
FSIZE, D15 ;Number of characters in file.

RECORD RESULT
Al8, 'TRUE RECORD SIZE: !

r
RSIZE, D3
’ A26, ' CHARACTERS FILE SIZE: '
SIZE, D5
’ A9, ' SEGMENTS'
PROC
RSIZE 2 + ((DATA + 1)/2)*2

FSIZE 512 + RECS * RSIZE + 2
SIZE = FSIZE/8192
IF (FSIZE.EQ.SIZE*8192)G0O TO OK
SIZE = SIZE + 1

OK XMIT (8, RESULT)

4.2.2 How Logical Units are Assigned by DFU

On the system device, logical units are assigned in a pushdown order
beginning, at the end of the device. For example, a disk with three
logical units would be arranged, starting from the beginning, as:
Directory; Monitor; System programs; User programs; Unused space
to which new user programs may be added; Logical Unit 1; Logical
Unit 2; Logical Unit 3. As more logical units are assigned, Logical
Unit 1, Logical Unit 2, etc., move closer to the beginning of the dev-
ice.

On nonsystem devices, logical units are assigned in sequential order
starting at the beginning of the device. For example, a disk with 4
logical units might be arranged: Logical Unit 1; Logical Unit 2;
Logical Unit 3; Logical Unit 4; Unused space.

Example:
Logical Unit Device Size (Segments)
1 DKO 5
2 DKO 5
3 DKO 5
4 DK1 20
5 DK1 21
6 DK1 20

4-8 DATA FILE UTILITY PROGRAM (DFU)

The preceding logical unit assignments would cause an RK05 system disk
(DKO) and nonsystem disk (DK1l) to be organized as follows:

System Disk Non-system Disk

DKO DK1

LU3

LU2

LUl

70 SEGMENTS

UNUSED UNUSED
SPACE SPACE

USER
PROGRAM
(SOURCE
&

286 SEGMENTS

BINARIES)

SYSTEM
PROGRAMS

336 SEGMENTS

MONITOR LU6

120
SEGMENTS

LUS

DIRECTORY LU4

It is advisable to create logical units only slightly larger than the
actual data file size since a short file in a large logical unit

wastes storage.

4.3 DISK USERS

The RKO05 disk cartridges each contain 406 segments. Up to four RKO5
drives can be mounted on a system. Approximately 200 blocks (or 12
segments) must be left unassigned to hold the operating system and
system programs. In addition, 50 segments should be left to store
source programs, control programs, and binary programs. This leaves
344 segments for logical unit assignments.

DATA FILE UTILITY PROGRAM (DFU) 4-9

DKO

1 12 62 406
system source and 344 segments
programs binary files for logical unit

assignments

A sample logical unit assignment might be:

DKO
1 12 62 268 314 360 406
system source and free |logical logical logical
binary files | space|unit 8 unit 9 unit 10

The area between logical unit 8 and the system can be left unassigned
for system program overflow.

4.4 DFU ERROR MESSAGES
Message Explanation

BAD SWITCH Attempted to use an option switch other than
/B, /X, /D, /DL, /E, or /EL. Use only allow-
able option switches.

ILLEGAL DEVICE A device other than one usable by the system
was designated in the 1logical unit table.
Enter correct device designation.

INSUFFICIENT SPACE ON DEVICE
Attempted to allocate more segments than are
available on a device. Either allocate fewer
segments, make more segments available, or
use a larger device.

NOT ENOUGH ROOM FOR SYSTEM AND FILES
Device designated was too small to hold sys-

tem program and files. Use PIP OPT- E to put
system on one device and files on another.

TOO LARGE Number entered was larger than 4095. Enter
number smaller than 4095.

SYNTAX ERROR Missing commas, extra characters, etc.
Correct error and reenter.

4-10 DATA FILE UTILITY PROGRAM (DFU)

