APPENDIX A

COS-310 CHARACTER SET

In both source and data files, characters (alphanumeric and numeric)
are stored two characters per word in six-bit binary. Negative
numbers are stored with the high-order bit of the low-order digit set
to 1. For example, the number 1234- is stored as two words in the
following form:

22 23 WORD 1

1 2

24 65 WORD 2

3 4 (with high-order bit on)

This number is recognized as 123T. This means that any program 1in
which the numeric~to-alphanumeric conversion is not made might produce
negative numbers with letters. Refer to Table A-1 for a list of char-
acters representing negative numbers.

Table A-1l
Characters Representing Negative Numbers
Negative Equivalent Decimal Octal
Number Character Code Code
-0 P 49 61
-1 Q 50 62
-2 R 51 63
-3 S 52 64
-4 T 53 65
-5 U 54 66
-6 \' 55 67
=7 W 56 70
-8 X 57 71
-9 Y 58 72

Table A-2
COS-310 Character Set

Decimal Octal Decimal Octal
Code Code Character Code Code Character
00 00 Null 32 40 ?
01 01 Space 33 41 @
02 02 ! 34 42 A
03 03 " 35 43 B
04 04 # 36 44 C
05 05 $ 37 45 D
06 06 % 38 46 E
07 07 & 39 47 F
08 10 ! 40 50 G
09 11 (41 51 H
10 12) 42 52 I
11 13 * 43 53 J
12 14 + 44 54 K
13 15 ’ 45 55 L
14 16 - 46 56 M
15 17 . 47 57 N
16 20 / 48 60 (0]
17 21 0 49 6l P
18 22 1 50 62 Q
19 23 2 51 63 R
20 24 3 52 64 S
21 25 4 53 65 T
22 26 5 54 66 U
23 27 6 55 67 v
24 30 7 56 70 1Y
25 31 8 57 71 X
26 32 9 58 72 Y
27 33 : 59 73 pA
28 34 : 60 74 [
29 35 < 61 75 Tab
30 36 = 62 76]
31 37 > 63 77 ?

A-2 (COS-310 CHARACTER SET

APPENDIX B

C0sS-310 FILES

There are four types of files in the C0S-310 system: source, binary,
data, and system. Source, binary, and data files have similar struc-
ture. System files use standard 0S/8 SAVE format.

B.l1 COS-310 SOURCE FILES

Each line in a source command file or DIBOL source file must be input
with a 1line number. This makes all source files look the same and
makes them compatible with C0S-310. Each input line has the following
format:

word line n-1 words, two CO0S-310
count (n) number characters per word

The first word contains the word count for that line. It is computed
with the following expression.

n = ((number of characters on line +1)/2)+1

The second word 1is the statement line number, 0000-7777 octal
(0000-4095 decimal).

The third and successive words contain the text of the line packed two
C0S-310 characters per word. The total characters of data per line
does not include the two~-character (1 word) word count number.

B.2 COS-310 DATA FILES

Every block in a data file is completely devoted to the storage of
data. Each logical unit holds only one data file. Labels on data
files are associated with logical units by the Monitor in conjunction
with DIBOL or system programs.

The format of a line in a data file is similar to the format for a
line in a source file except there is no line number on a data file.

A line of text in a data file has the following format:

word n words, two characters
count (n) per word

The first word contains the word count for that line. 1It is computed
with the following expression:

n = (number of characters in record +1)/2

The second and successive words contain the text of the line, two
COS-310 characters per word.

B.3 CO0s-310 BINARY FILES

Although the contents of a binary file are interpreted differently
than the contents of a data file, externally the two files are struc-
tured exactly alike. That is, the binary code for each 1line of a
DIBOL source program is stored as a word count followed by the inter-
pretive code to be used by the run-time system.

B.4 COS-310 SYSTEM FILES

All system files are stored in 0S/8 SAVE format. The first block of
the file is a memory control block indicating where in memory the rest
of the blocks of the file are to be loaded. Each successive block is

a 256-word memory image. See the 0S/8 software Support Manual for de-
tails.

B.5 SYSTEM DEVICE FORMAT

COS-310 puts a label on all devices. This label occupies the first
256 words of each device; four words are the actual label, one word
is the date, and the other words may be a bootstrap.

Figure B-1 illustrates the layout of the Monitor portion of the system
device. As noted in the figure, COMP should be the first file in the

file area. The location of COMP is particularly important when the
binary scratch area is to be expanded.

B-2 (CO0S-310 FILES

BLOCK No.

(Octal)
0
Bootstrap
1
Directory
10
Monitor
14
Editor Overlay
20
Editor
34
Run-Time System
Loader
40
Edit Buffer
60
Run-Time System
70
Compiler Overlays
100
Binary Scratch Area
140
Files
END OF MEDIA

Figure B-1 Monitor Organization

CO8-310 FILES B-3

A label is automatically put on a system device. The directory of a
system device is organized as follows:

Word Contents

0 The negative number of directory entries in this block.

1 The starting block number for file storage.

2 The link word to the next directory block or empty if
end. There are seven directory blocks on all multifile
devices.

3 Empty (unused).

4 The negative number of auxiliary words per entry (al-
ways equals -1).

5 The first two characters of name.

6 The next two characters of name.

7 The last two characters of name.

8 A two-character extension.

9 The date.

10 Length of the file (negative).
11-~-255 Repeat of 5-10 for each file.

Space for other kinds of files is allocated on the disk beginning at
the first free block following the COS-310 system files. On an RKO5
disk, the system directory knows that the available space for file
storage only extends to block 4095.

Access to Data Files

Data Files are referenced by their logical unit numbers as assigned by
DFU. DFU actually sets up an internal table containing the following
information for each logical unit:

® Handler address

® Drive number

® Starting segment

® Length in segments

B-4 COS-310 FILES

The handler address is a pointer to the specific device handler to use
for a particular logical unit. The drive number indicates which disk
drive to reference. The starting segment is indicated by a 12-bit
number which points to the physical device space allocated for the

logical unit. The length is the number of segments reserved for this
logical unit.

Example:

If logical unit 14 is assigned to a 32-block area on DKl, the four-
teenth entry in the table might contain the following information:

DK handler drive starting segment length
address 1 212 (octal) -40 (octal)

Any references to logical unit 14 would refer to segments 212-251

(octal) of DK1l. The first block in segment 212 would have a label for
that logical unit.

COs8-310 FPILES B-5

APPENDIX C

ERROR MESSAGE INDEX

This index will refer you to the chapters where corrective and back-
ground information is located. Locate the error message you have en-
countered and go to the chapter referenced.
more than once, check the message listed with the program that you are
running.

Message

ACCEPT SECTION NOT FOUND

ALPHA LITERAL REQUIRED

ALREADY DEFINED

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

ALPHA VALUE
CHAIN
CHECKSUM
COMPILATION
DATE

DIGIT

DIGIT IN DATA

DIGIT IN NUMERIC INITIAL VALUE

DIRECTORY
DIRECTORY
DIRECTORY

DIRECTORY

Program

MENU
PRINT
PRINT
COMP
Run~Time
PATCH
Monitor
Monitor
Run-Time

DAFT

SORT
FILEX
Monitor
PATCH

PIP

If the message is 1listed

Refer to

Chapter 18
Chapter 16
Chapter 16
Chapter 5
Chapter 2
Chapter 11
Chapter 2
Chapter 2
Chapter 2
Chapter 15

Chapter 9
Chapter 10
Chapter 2
Chapter 11

Chapter 8

Message

BAD LABEL

BAD NUMBER

BAD NUMERIC VALUE
BAD PROC #

BAD PROGRAM

BAD RECORD SIZE

BAD RELATIONAL

BAD SWITCH

BAD SWITCH

BAD WORK UNIT COUNT
BLOCK TOO BIG

CANT BACKSPACE PAST

CANT BACKSPACE WITH

CCP ERROR

COMMA MISSING
COMMAND SECTION NOT
COMPARISON ERROR
DATA INITIALIZATION

DEVICE ERROR

BEGIN OF FILE

Program

Monitor
PATCH
COMP
COMP
Run-Time
SORT
COMP
SYSGEN
DFU
SORT
PATCH

DAFT

SEQUENTIAL INPUT

FOUND

MISSING

DAFT
COMP
COMP
MENU
PIP

COMP

FILEX

dev MUST BE INCLUDED IN CONFIGURATION

DIBOL FILE NUMBER IN USE

DIBOL FILE NUMBER NOT INITED

DISPLAY SECTION NOT

EDIT BUFFER FULL

FOUND

C-2 ERROR MESSAGE INDEX

SYSGEN
Run-Time
Run-Time
MENU

Monitor

Refer to

Chapter
Chapter
Chapter

2

11
5

Chapter 5

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter
Chapter
Chapter

Chapter

N

[S VS S ©) B Yo}

11
15

15

2
18

Chapter 2

Message

END OF FILE

END OF INPUT FILE AT RECORD nnnn

ERR IN CMD

ERROR

ERROR IN COMMAND

ERROR ON dev, RETRY?
EXCESSIVE GRID SIZE
EXPECTED LABEL IS MISSING
EXPRESSION NOT ALLOWED
EXTRA CHARS

EXTRA CHARS AT STMNT END
EXTRA CHARS AT STMNT END
FIELD NUMBER MISSING OR O
FIELD TOO LARGE OR 0
FILE ALREADY EXISTS

FILE NOT FOUND

FILE NOT FOUND

FULL

FULL

HEADER IS TOO LONG
ILLEGAL CURSOR POSITION
ILLEGAL DEVICE

ILLEGAL DEVICE

ILLEGAL DEVICE

ILLEGAL DEVICE SWITCH

Program

Run-Time
DAFT

DDT

"FLOW

Monitor
Monitor
DAFT
COMP
COMP
DAFT
COMP
SORT
SORT
COMP
FILEX
Monitor
PATCH
FILEX
SYSGEN
PRINT
MENU
DFU
FILEX
Run-Time

PIP

Refer to

Chapter 2
Chapter 15
Chapter 6
Chapter 17
Chapter 2
Chapter 2
Chapter 15
Chapter 5
Chapter 5
Chapter 15
Chapter 5
Chapter 9
Chapter 9
Chapter 5
Chapter 10
Chapter 2
Chapter 11
Chapter 10
Chapter 3
Chapter 16
Chapter 18
Chapter 4
Chapter 10
Chapter 2

Chapter 8

ERROR MESSAGE INDEX C(C-3

Message

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

ILLEGAL

OPERATOR

PROGRAM

RECORD - CLOSING FILE
RECORD #

SORT KEY

STATEMENT

STMNT

SUBSTRING

UNIT

UNIT

IMPROPER DEFINITION

IMPROPER LITERAL

IMPROPER USE OF DECIMAL PLACES

IN USE

INSUFFICIENT SPACE ON DEVICE

INSUFFICIENT SPACE ON DEVICE

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE

INITIAL
INITIAL
INITIAL
INTEGER
INTEGER
INTEGER

INVALID

VALUE TOO BIG

VALUE TOO SMALL
VALUE WRONG SIZE
FROM 1-15 REQUIRED
FROM 1-132 REQUIRED
REQUIRED

OPERATION

KEY ENTIRELY PAST END OF RECORD

C-4 ERROR MESSAGE INDEX

Program

COMP
Monitor
DAFT
Run-Time
SORT
MENU
COMP
Run-Time
Monitor
SORT
PRINT
PRINT
PRINT
Monitor
DFU

FILEX

SORT
SORT
SORT
COMP
PRINT
PRINT
PRINT
PATCH

DAFT

Refer to

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

5
2
15

2

16
16
lé6

16
16
13
15

Message

KEY EXTENDS PAST END OF RECORD
KEY TOO BIG

LABEL NOT ALLOWED

LINE TOO LONG

LINE # TOO LARGE

LINE TOO LONG

LITERAL TOO LONG

LOCATION TOO BIG

MISSING CLOSE PAREN

Program

DAFT
DAFT
comp
Monitor
Monitor
Run-Time
PRINT
PATCH

COoMP

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE

MISSING INITIAL VALUE
MISSING OPEN PAREN

MISSING OPERAND

MISSING OR BAD MODE
MISSING QUOTE

MISSING RELATIONAL

MOUNT filnam #nn FOR INPUT:
MOUNT filnam #01 FOR INPUT:
MOUNT filnam #nn FOR OUTPUT:
MUST BE IDENT

MUST BE NUMERIC ITEM

MUST BE S

NAME PREVIOUSLY DEFINED
NEED FILE NAME

nnn IS BEING IGNORED

SORT
SORT
COMP
COMP
CoMP
COMP
COMP
Monitor
Monitor
Monitor
PRINT
PRINT
PRINT
COMP
PRINT

CREF

Refer to

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

15
15

16
11

16
16

16

16

ERROR MESSAGE INDEX C-5

MNessage

NO

NO

NO

NO

NO

NO

NO

NO

NO
NO
NO
NO
NO
NO
NO
NO
. NO
NO
NO
NOT
NOT
NOT
NOT

NOT

Program

BOOT
BUFFERS LEFT Run-Time
CHANGE IN BLOCK PATCH
COMMA AFTER FIELD NAME SORT
DATA DAFT
END FILEX
ENDING QUOTE PRINT
FILE Run-Time

?NO FILE TO SAVE Monitor

INIT Monitor
INPUT FLOW
INPUT SORT
INPUT DIRECTIVE PRINT
INPUT FILE DAFT
LABEL NAME DAFT
LP BpFFER Monitor
OUTPUT FILE DAFT
PRINT ITEMS PRINT
ROOM FILEX
ROOM PIP
A OR D COMP
A ORD SORT
DEFINED PRINT
ENOUGH RIGHT PARENTHESES PRINT
ENOUGH ROOM FOR SYSTEM AND FILES

DFU

ERROR MESSAGE INDEX

Refer to

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter

12

11

15
10

15
15

15
16
10

16
16

4

Program

NOT ENOUGH ROOM FOR SYSTEM AND FILES

NOT FOUND

NOT LABEL

NOTHING AFTER FIELD NAME

NUMBER REPEATED OR OUT OF ORDER

TOO LARGE
NUMBER TOO LONG

OUTPUT ERROR

OUTPUT FILE ALREADY OPEN

OUTPUT FILE STILL OPEN
PICTURE TOO LONG
PROGRAM TOO BIG
PROGRAM TOO BIG
PUSHDOWN OVERFLOW
PUSHDOWN OVERFLOW
RECORD TOO BIG
REPLACE?

REPLACE filnam #nn ?
RETURN WITHOUT CALL
STMNT TOO COMPLEX
SUBSCRIPT ERROR
SUBSCRIPT NOT NUMERIC
SUBSCRIPT TOO BIG
SYNTAX ERROR

SYNTAX ERROR

FILEX
FILEX
COMP
SORT
SORT

DFU
Run-Time
SORT
DAFT
DAFT
PRINT
COMP
Run-Time
DAFT
Run-Time
COMP
Monitor
Monitor
Run-Time
COMP
CoMP
COMP
Run-Time
DFU

PRINT

Refer to

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

10
10

15
15

o N

N NN

ERROR MESSAGE INDEX C-7

Message

TOO
TOO
TOO
TOO
TOO
TOO
TOO
TOO
TOO
TOO
TOO

TOO

MANY
MANY
MANY
MANY
MANY
MANY
MANY
MANY
MANY
MANY
MANY

MUCH

COLUMNS IN REPORT
COMMANDS

COMMANDS FOR 1 CODE
COMPUTE STATEMENTS
DATA ITEMS

FILES

ITEMS

LEFT PARENTHESES
LIST ITEMS

RIGHT PARENTHESES
SYMBOLS!!

DATA

UNDEFINED NAME

UNKNOWN DIRECTIVE

UNRECOGNIZABLE LINE

WRONG DATA TYPE

ZERO DIVISOR

0 NOT ALLOWED

C-8 ERROR MESSAGE INDEX

Program

PRINT
MENU
MENU
PRINT
PRINT
SORT
COMP
PRINT
PRINT
PRINT
COMP
COMP
COMP
PRINT
SORT
COMP
Run-Time

DAFT

Refer to

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

16
18
18
16
16
9

5

16
16
16

APPENDIX D

ADVANCED PROGRAMMING TECHNIQUES

D.1 ACCEPT AND DISPLAY

D.1.1 Background Information

XMIT statements were originally used when the terminal was a Teletypel
The VT52 display terminal uses newer concepts -~ programmable cursor
control and hardware display clear. ACCEPT and DISPLAY statments were
added to the DIBOL language to use these features. The terminal can
now be used in two ways:

l. As a Teletype by using XMIT statements.

2. As a powerful data entry tool by using ACCEPT and DISPLAY
statements.

(Refer to the ACCEPT and DISPLAY statements in Chapter 1 Dbefore
proceeding further.)

D.1.2 Interaction of ACCEPT and DISPLAY

ACCEPT and DISPLAY statements are used extensively in data entry pro-
grams. These data entry programs typically work one of two ways. The
first asks (DISPLAY) questions and interprets (ACCEPT) answers. This
method of operation closely simulates a Teletype. The second method
displays a format or heading on the screen and moves the cursor either
to the right or to a position below the question to be answered.

With the second method, the format is never cleared but data is en-
tered and cleared continuously from the screen. This method is used
in repetitive data entry and updating. Quite often the four keys up
arrow, down arrow, left arrow, and right arrow have special meanings.
For example, assume ten headings are displayed on the screen, indicat-
ing ten fields are to be entered or updated. The up arrow might be
used to re-enter information in the first field, no matter which field

is currently being entered; the down arrow might mean no more infor-
mation for any of the fields; the left arrow might restart entering
data into the current field; the right arrow might mean go on to the
next field without changing the current field.

D.1.3 Example Using ACCEPT and DISPLAY

To enter a six-digit customer number and a l1l5-character customer name,
the following program might be used:

RECORD
TCHAR,D2
ALPHA,AlS
CNO, D6
CNAME,AlS
PROC 1
DISPLAY(1,1,1) ;Clear screen and position cursor.
DISPLAY (0,0, 'CUSTOMER NO. CUSTOMER NAME')
LOOP, DISPLAY (2,1,2) ;Clear line 2 and position cursor.

ALPHA= ;Clear this field.

ACCEPT (TCHAR,ALPHA)

ON ERROR LOOP sRe-enter if not numeric.
CNO=ALPHA

ALPHA= ;Clear this field again.
DISPLAY(2,16,0) ;Position cursor.

ACCEPT (TCHAR,ALPHA)

CNAME=ALPHA

. ;Save data.

GO TO LOOP

D.l.4 Generalized ACCEPT Subroutines

D.1.4.1 Hardware Display Clear Feature - Although the previous exam-
ple works properly, it lacks features which would be useful:

1. Type RUBOUT to clear the previously entered character from
both the program and the display.

2. Type CTRL/U (a DIGITAL convention) to clear the entire cur-
rent line from both the program and the display.

Since data acceptance is getting more sophisticated, it can best be

performed by calls to a subroutine. The following two subroutines and
test programs will accept data from the keyboard and use the RUBOUT

D-2 ADVANCED PROGRAMMING TECHNIQUES

key and the CTRL/U key as previously specified. The first program
uses the clearing feature built into the hardware of the vT52.
Unfortunately, this feature destroys data if it is on the same line
and to the right of what is being accepted.

START ;Erases remainder of line for errors.

RECORD
KBDBUF, AS80 ;Storage for keyboard input.
RECORD ,X

KBDIN, 80Al

RECORD ;Work area.

ROW, D2 iCursor Y-coordinate on entry to subroutine VT52
; (needed for correction only).
coL, D2 iCursor X-coordinate on entry to subroutine VT52
i (needed for correction only).
TCHAR, D2 ;Terminating character in an accept statement.
CHAR, Al ;Input character from an accept statement.
VT52IN, D2 iNumber of characters accepted by subroutine VT52.
VTLIM, D2 iNumber of characters to be accepted by
isubroutine VT52.
PROC
BEGIN, DISPLAY(1,1,1) ;Clear screen. Fhkkkdkdkkkk
DISPLAY (1,40, 'ERASED IN CORRECTION') * *
DISPLAY (1,1, 'NAME:') * *
ROW=1 * SAMPLE *
COL=6 * TEST *
VTLIM=20 ;20 characters maximum. * PROGRAM *
CALL VT52 * ‘ *
IF (KBDBUF.EQ.'END') STOP * *
GO TO BEGIN khkkhkkkkkkkk

Calling sequence
ROW= Y coordinate
COL= X coordinate
VTLIM= Maximum number of characters to accept
CALL VT52

. w8 we we we

;Accept a maximum of VTLIM characters at location specified by
;ROW and COL. Return when either the maximum number of characters
: (VTLIM) has been entered, a termination character is entered,
jor a space is entered. Rubout deletes last character entered and
;CTRL/U eliminates the entire entry. RUBOUT and CTRL/U clear the
;remainder of the line faster than displaying spaces.

vT52, VT52IN=

KBDBUF=

VT522, ACCEPT(TCHAR,CHAR)
IF (TCHAR.EQ.0) GO TO VT523 ;Nonterminating character.
IF (TCHAR.EQ.21) GO TO VT524 ;CTRL/U.

ADVANCED PROGRAMMING TECHNIQUES D-3

IF (TCHAR.EQ.32) GO TO VT525 ; RUBOUT.

RETURN ;Terminating character other
;than rubout or CTRL/U.
VT523, IF(CHAR.EQ.' ') RETURN iSpace is a terminating

;character.

:To eliminate this feature,
iremove this statement and put
;label on next statement.

INCR VT52IN iVT52IN=# of input characters.

KBDIN (VT52IN)=CHAR

IF (VT52IN.EQ.VTLIM) RETURN :The specified number of
icharacters were input.

GO TO VT522

VT524, IF(VT52IN.EQ.0) GO TO VT52

DISPLAY (ROW,COL, 2) ;Clear characters entered
1to end-of-line.

GO TO VT52

vT525, IF(VT52IN.EQ.0) GO TO VT522
KBDIN (VT52IN)=
VT52IN=VT52IN-1
DISPLAY (ROW, COL+VT521IN, 2) i RUBOUT previous character

sto end-of-1line.
GO TO VT522

D.1.4.2 Clear Incorrect Data by Displaying Spaces - The following
program clears incorrectly entered data by displaying spaces. This is
slower than using the hardware display clear feature, but data on the
same line and to the right is not cleared.

START iCorrects only characters in error.

RECORD
KBDBUF, AS80 iStorage for keyboard input.
RECORD ,X

KBDIN, 80Al

RECORD ;Work area.

BLNK80, AS80 ;80 blank characters.

ROW, D2 ;Cursor Y coordinate on entry to subroutine vT52
; (needed for correction only).

coL, D2 ;Cursor X coordinate on entry to subroutine VT52
; (needed for correction only).

TCHAR, D2 ;iTerminating character in an ACCEPT statement.

CHAR, Al ;Input character from an ACCEPT statement.

VT52IN, D2 iNumber of characters accepted by subroutine vT52.

VTLIM, D2 ;Number of characters to be accepted by
ssubroutine VT52,

VT52XX, D2 i Temporary storage for subroutine VT52.

PROC

D-4 ADVANCED PROGRAMMING TECHNIQUES

BEGIN, DISPLAY(1,1,1) ;Clear screen. Akkkkkkhkhk

DISPLAY (1,40, 'NEVER ERASED') * *
DISPLAY (1,1, 'NAME:"') * *
ROW=1 * SAMPLE *
COL=6 * TEST *
VTLIM=20 ;20 characters maximum. * PROGRAM *
CALL VT52 * *
IF (KBDBUF.EQ.'END') STOP * *
GO TO BEGIN khkdkhkkhkkkhkkkxk

Calling sequence

ROW= Y-coordinate

COL= X-coordinate

VTLIM= Maximum number of characters to accept

CALL VT52
;jAccept a maximum of VTLIM characters at location specified by
iROW and COL. Return when either the maximum number of characters
i (VTLIM) has been entered, a termination character is entered,
;Or a space is entered. RUBOUT deletes last character entered and
;CTRL/U eliminates the entire entry. RUBOUT and CTRL/U display
ispace(s) to delete only the necessary characters ({not the
;remainder of the line).

we N8 wE we e

VT52, VT52IN=

KBDBUF=
VT522, ACCEPT(TCHAR,CHAR)
IF (TCHAR.EQ.0) GO TO VT523 ;Nonterminating character.
IF (TCHAR.EQ.21) GO TO VT524 ;CTRL/U.
IF (TCHAR.EQ.32) GO TO VT525 s RUBOUT.
RETURN ;Terminating character other
;than RUBOUT or CTRL/U.
VT523, IF(CHAR.EQ.' ') RETURN ;Space is a terminating
;character.
;To eliminate this feature,
sremove this statement.
INCR VT52IN ;VT52IN=# of input characters.
KBDIN (VT52IN)=CHAR
IF (VT52IN.EQ.VTLIM) RETURN ;The specified number of

jcharacters were input.
GO TO VT522
VT524, IF(VT52IN.EQ.0) GO TO VT52

DISPLAY (ROW,COL,BLNK80 (1,VT52IN)) ;Clear characters entered.
DISPLAY (ROW,COL, 0) ;Reposition cursor.
GO TO VT52

VT525, IF(VT52IN.EQ.0) GO TO VT522
KBDIN (VT52IN) =
VT52IN=VT52IN-1
VT52XX=VT52IN+COL
DISPLAY (ROW,VT52XX,' ") ;Rubout previous character.
DISPLAY (ROW,VT52XX,0) ;Reposition cursor.
GO TO VvT522

ADVANCED PROGRAMMING TECHNIQUES D-5

D.1.4.3 Other Desired Features - In addition to the features found in
the previous program, the following features might also be desired:

1. Right justification of numeric fields.

2. Automatic cursor positioning.

These features a

START

RECORD
KBDBUF, AS80

RECORD ,
KBDIN, 80Al

RECORD
BLNK80, A80
ROW, D2
CoL, D2
TCHAR, D2
CHAR, Al
VT52IN, D2
VTLIM, D2
VT52SwW, Dl

VT5215, D15

VT52XX, Alé6
PROC O
DISPLAY (

BEGIN, INCR ROW
IF (ROW
DISPLAY
DISPLAY
coL=7
VTLIM=20
CALL VTS
IF (KBDB
DISPLAY (
COL=34
VTLIM=15
CALL VTS
GO TO BE

Calling

WS we W ws we we

re used in the following subroutine and test program:

;Subroutine VT52A and VT52N.

iStorage for keyboard input.
X

;Work area.

;80 blank characters.

;Cursor Y coordinate.

;Cursor X coordinate.

;Terminating character in an ACCEPT statement.
;Input character from an ACCEPT statement.

;Number of characters accepted.

iNumber of characters to be accepted.

iCleared for alpha input, set to 1 for numeric input.
;iContains numeric input for VT52N entry. Not changed
ior used in VT52A entry.

;iTemporary storage for redisplay of numeric input.

1,1,1) ;Clear screen. Fkkkkkkkhkk
* *

.GT. 24) sTOP * *
(ROW, 53, 'NOT ERASED') * *
(ROW,1, 'NAME: ') * SAMPLE *
%* *

;20 characters maximum. * TEST *

2A * *
UF.EQ.'END') STOP * PROGRAM *
ROW,30,'NO: ") * *
* *

* *

2N * *
GIN hkkokokokokokohokk

sequence
ROW= Y coordinate

COL= X coordinate

VILIM= Maximum number of characters to accept
CALL VT52A for alphanumeric input

CALL VT52N for numeric input

D-6 ADVANCED PROGRAMMING TECENIQUES

;Accept a maximum of VTLIM characters at location specified by ROW
;and COL. Return when VTLIM characters or a termination character
iis entered. For numeric input, a space is a terminator.

iRUBOUT deletes last character entered and CTRL/U eliminates the

sentire

entry. RUBOUT and CTRL/U display space(s) to delete only

ithe necessary characters (not the remainder of the line).

iFor numeric input, the entire entry is redisplayed right-justified
;with leading zeros suppressed. VT5215 contains the number

ion return to the calling program.

VT52A,
VT52N,
vT52,

V522,

VT522X,

vT522Y,

VT523,

VT523B,

VT523X,

VT524,

VT525,

VT52SW= +Entry for alphanumeric input.

GO TO VT52

VT528wW=1 ;Entry for numeric input.

VT52IN=

KBDBUF=

DISPLAY (ROW,COL, 0) :Position cursor.

ACCEPT (TCHAR, CHAR)

IF (TCHAR.EQ.0) GO TO VT523 ;Nonterminating character.

IF (TCHAR.EQ.21) GO TO VT524 ;CTRL/U.

IF (TCHAR.EQ.32) GO TO VT525 ;s RUBOUT.

IF (VT52IN.EQ.0) RETURN iNo input except terminating
;character.

IF (VT52SW.EQ.0) RETURN ;Alphanumeric input.

VT5215=KBDBUF (1,VT521IN) ;Numeric input (can't exceed

;15 digits).

VT52XX (1 ,VTLIM+1)=VT5215, ' XXXXXXXXXXXXXXX~" ;Allows negative
;numbers. ‘

DISPLAY (ROW,COL,VT52XX (1,VTLIM+1)) ;Display numeric input
;right-justified and zero
;suppressed.

RETURN
IF (VT52SW.NE.l1) GO TO VT523X ;Save alphanumeric input.
IF (CHAR.EQ.' ') GO TO VT522X 1Space as a terminating

;character for numeric input.
IF (CHAR.EQ.'-') GO TO VT523X ;Minus sign is acceptable.
IF (CHAR.LT.'0') GO TO VT523B ;Check for numeric input.
IF (CHAR.LE.'9') GO TO VT523X

DISPLAY (0,0,7) ;Sound alarm--bad input.
GO TO VTS52 ;Start over (don't clear
;the error).
INCR VT52IN ;VI52IN=# of input characters.
KBDIN (VT52IN)=CHAR
IF (VT52IN.EQ.VTLIM) GO TO VT526 ;The specified number of

_ ;characters were input.
GO TO VT522
IF (VT52IN.EQ.0) GO TO VT52
DISPLAY (ROW,COL,BLNK80 (1,VT52IN)) ;iClear characters entered.
GO TO VT52
IF (VT52IN.EQ.0) GO TO VT522
KBDIN (VT52IN)=
VT52IN=VT52IN-1
VT52XX=VT52IN+COL
DISPLAY (ROW,COL+VT52IN,"' ') ;Rubout previous character,

ADVANCED PROGRAMMING TECHNIQUES D-7

DISPLAY (ROW,COL+VT52IN, 0) ;Reposition cursor.
GO TO VT522

VT526, IF(VT52SW.EQ.1) GO TO VT522Y
RETURN

D.1.4.4 Escape Code Sequences as Terminators - A command protocol is
built around the Escape code (27 decimal) to implement commands needed
by the VT50 and VT52, but not found in 7-bit ASCII. Upon receiving
the Escape code 27, the terminal is set to Escape mode and treats the

next character received as a command. Commands created in this manner
are called Escape Sequences.

In order to use the VT50/VT52 cursor positioning keys as terminators
for an ACCEPT statement, the DIBOL program must check for the Escape
code (decimal 27) and then execute another ACCEPT statement into a one
character alphanumeric field. The contents of this variable can be
checked to determine which key was typed. The program then will erase
the alpha character entered in this manner and go to the routine asso-
ciated to the key that was typed.

SPECIAL ESCAPE SEQUENCES

27-A¢

27-By Cursor Positioning

27-C+ Functions

27-D~+

27-P Special function keys at top
27-Q of numeric keypad

27-R (Unlabeled at present)

D.2 DIRECT ACCESS TECHNIQUES

D.2.1 Background Information

A file contains records of fixed or variable length.

Regardless of the record size, the operating system automatically
writes the records into 512-character blocks. The size of a record
(in characters) is two plus the number of characters in all the fields
in the record. (The two added characters represent the record size in
characters divided by two.) If the resulting record size is odd, add
one character since only an even number of characters may be written.

Example:

If the two fields in a record are defined as a D9 field and an
A88 field, the record size is 100 (2+9+488+1) .

D~8 ADVANCED PROGRAMMING TECHNIQUES

Assuming that all of the records in this file are the same
length, the operating system will pack 5 records and the first 12
characters of the sixth record into the first block; the last 88
characters from the sixth record, 4 records, and the first 24

characters from the eleventh record into the second block; and
s0 on to the end.

When this file is later processed, either sequentially (defined
as input in an INIT statement) or through direct access (defined
as UPDATE in an INIT statement), the operating system will com-

pletely restore the record, even if it overlaps two blocks, be-
fore passing it to the DIBOL program.

D.2.2 The Reason for Direct Access

Many applications involve the sequential processing of data. For ex-
ample, a transaction file is entered in random order, sorted and then
used to update a master file sorted in the same sequence. Errors in
the transaction file cannot be found until the UPDATE program is run.
The errors are corrected and a new transaction file is made for the
corrected items, which is then sorted and run against the master file.
This process continues until no more errors exist. This type of pro-
cessing evolved 20 years ago with the age of electronic data process-
ing. Systems specialists have desired a better method of operation.

The best method is to verify that data is entered correctly. The op-
erator keying the data file should be able to interact with the master
file. For example, a program can be written in which an operator
entering payroll information could type an employee number and know
within a second or two whether this employee exists on the master
file. This would be impossible with sequential processing because of
the time involved in sequentially accessing every record. Direct ac-

cess permits retrieval of any desired record without processing any
other records.

D.2.3 How the Direct Access Technique Works in DIBOL

DIBOL uses a record number to access any record in a file. The pro-
gram has to convert operator input into a record number recognizable

by the operating system. This section on direct access will explain
several methods to make this conversion.

ADVANCED PROGRAMMING TECHNIQUES D-9

D.2.4 Unsorted File

Assume that you have an unsorted file containing 1 to 99 records.
Each record contains a KEY field as well as other fields. This key
will be used for direct access. The first thing done in the following
program 1is to fill up a table. There is a one-to-one correspondence
between each element in the table and each record in the file. No 1/0

is necessary to determine if a specified code is in the master file
since this code would not have a match in the table lookup.

RECORD MASTER

KEY, D5 ;Could be any size field.
' A90 :Remainder of file.
RECORD ;Working storage.
TABLE, 100D5 ;Table containing keys.
I, D3 ; Index.
LOOKUP, D5
PROC 1
INIT(1,INPUT, 'FILNAM')
LOAD, XMIT (1,MASTER, EOF)
INCR 1
TABLE (I)=KEY
GOTO LOAD
EOF, FINI (1)
INCR I
TABLE (1)=99999 ;Indicates end of table.

INIT(1,UPDATE, 'FILNAM')

. ; LOOKUP contains code for master
;file lookup.
I=
FINDIT, INCR I
IF (TABLE (I) .EQ.LOOKUP) GO TO FOUND ;Match.

IF (TABLE (I).EQ.99999) GO TO NONE ;No match.
GOTO FINDIT

NONE XMIT (8,'RECORD NOT FOUND')
STOP
FOUND, READ (1 ,MASTER,I) ;Read record I.

D-10 ADVANCED PROGRAMMING TECHNIQUES

D.2.5 Sorted File

Use the same circumstances as in Section D.2.4 except sort the file by
key. Filling the table is the same, but table lookup is faster since
the code is not compared to every element in the table. A "no match"
condition is known as soon.as the table element exceeds the code.

It is possible to cut down the number of comparisons in the table
lookup by comparing the middle of the table to the code, checking
which half of the table might contain the code, determining the middle
of that half of the table, and so on until the element is found. This

technique allows faster ‘access, but programming it is much more com-
plicated.

RECORD MASTER
KEY, D5
’ AS0
RECORD ;Working storage.
TABLE, 100D5
I, D3
LOOKUP, D5
PROC 1
INIT(1,INPUT, 'FILNAM')
LOAD, XMIT (1 ,MASTER, EOF)
INCR I
TABLE (1) =KEY
GOTO LOAD
EOF, FINI (1)
INCR I
TABLE (1)=99999 ;Indicates end of table.
INIT(1,UPDATE, 'FILNAM')

. ;Lookup contains code for master
file.

I=
FINDIT, INCR I
IF (TABLE (I) .EQ.LOOKUP) GO TO FOUND sMatch.
IF (TABLE (I) .GT.LOOKUP) GO TO NONE ;No match.
GOTO FINDIT
NONE, XMIT (8,'RECORD NOT FOUND')
STOP
FOUND, READ (1,MASTER,I) ;Read record 1I.

ADVANCED PROGRAMMING TECHNIQUES D-11

It is impractical to use direct access with DIBOL on an unsorted file

containing many records since an exceedingly large lookup table would
be needed.

D.2.6 Rough Table, No Index File

At some point, a file will contain too many records for every key to

be saved 1in a table. When this point is reached, two solutions are
available.

The first is to create a "rough" index table containing every 10th or
20th key. For 1lookup, the rough index will specify within 10 or 20
records on the master file which one is desired. These 10 or 20
records are then sequentially examined to find the desired record (see
the following example program).

The second solution is to create a "rough" index table and a "fine"
index file. 1In this method, the rough index table specifies to within
10 or 20 records of the file desired. The index file is then sequen-
tially examined to find the desired key. If a match occurs, the mas-
ter file is then read.

The proper use of an index file technique can cut down on the number
of 1/0 reads. For example, a master file of 98 characters per record
would take up to four I/O reads to find the desired record if the
rough index could narrow within 20 records. An index file technique
would take one I/0 read to find the master record. This technique be-
comes faster as the size of the master file record increases.

RECORD MASTER

KEY, D5
' A90
RECORD ;Working storage.
TABLE, 100D5 i1st,21st,41st key,etc.
I, D4
J, D4
LOOKUP, D5
PROC 1
INIT (1,INPUT,'FILNAM')
LOAD, XMIT (1 ,MASTER, EOF)
INCR I
IF (I.NE.I/20%20+1) GO TO LOAD
INCR J
TABLE (J)=KEY iSave only 1lst,2lst,4lst key, etc.
GO TO LOAD
EOF, FINI (1)
INCR J

TABLE (J)=99999 ;Indicates end of table.
INIT(l,UPDATE,'FILNAM')

D-12 ADVANCED PROGRAMMING TECHNIQUES

ROUGH,

FINE,

FOUND,

. ;LOOKUP contains code for master file.

I=1

INCR I

IF (TABLE (I) .LE.LOOKUP) GO TO ROUGH ;No rough match yet.
I=(I-2)*20 ;iSet I to beginning of rough index-1.
INCR I

READ(1,MASTER,I)

IF (KEY.LT.LOOKUP) GO TO FINE ;No match yet.
IF (KEY.EQ.LOOKUP) GO TO FOUND ;No match.
XMIT (8, 'RECORD NOT FOUND')

STOP

D.2.7 Rough Table Plus Index File

LOAD,

EOF,

RECORD MASTER

D5

A90

RECORD ;Working storage.

100D5 ;1st,21st,41st key, etc.
D4

D4

D5

RECORD INDEX :Index file.

D5

PROC 2

INIT(1,INPUT,' 'FILNAM')

INIT (2,0UTPUT, 'XFILE"')

XMIT (1,MASTER,EOF)

INCR I

XKEY=KEY

XMIT (2, INDEX) ;Create fine index file.
IF(I.NE.I/20*20+1) GO TO LOAD

INCR J

TABLE (J)=KEY ;Save only 1lst,21st,41st key.
GO TO LOAD

FINI (1)

FINI (2)

INCR J

TABLE (J)=99999 ;Indicates end of table.
INIT(1,UPDATE, 'FILNAM")

INIT(2,UPDATE, 'XFILE")

;LOOKUP contains code for master file.

e o o
L]
i

ADVANCED PROGRAMMING TECHNIQUES D-13

ROUGH, INCR I
IF (TABLE (I) .LE.LOOKUP) GO TO ROUGH ;No rough match yet.

I=(I-2)*20 ;Set to beginning of rough index-1.
FINE, INCR I .
READ (2,INDEX,I) ;Read index record.

IF (XKEY.LT.LOOKUP) GO TO FINE ;No match yet.
IF (XKEY.EQ.LOOKUP) GO TO FOUND ;No match.
XMIT (8,'RECORD NOT FOUND')

STOP

READ(1,MASTER, I) ;Match.
FOUND, .

D.2.8 Summary

This discussion on direct access does not include information about
all possible situations. In cases where the master file is between
2,000 and 40,000 records, the approach might be to have a very rough
table, a rough index file, a fine index file, and a master file.

It is possible to work with a large unsorted master file by creating
an index file containing two fields: the key field and the record
number of the master file. Sort the index file by key. When a
match is found on the key field of the index file, the program uses

the record number field to read the proper record of the unsorted mas-
ter file.

Creation of an index table or an index file can be done in a separate
program, This separate program can save from several seconds to sev-
eral minutes each time the program is run. The index file would only

need to be changed when a master file is updated (perhaps on a weekly
or monthly basis).

D.2.9 Record Count

To keep track of the number of records in a master file, reserve one
field in the first record to contain the record count. The record
count is the number of records in the file. When a record is added to
this file, the record count in the first record is incremented by one

and written out. This technique will work fine with a master file
that is out of order.

D-14 ADVANCED PROGRAMMING TECHNIQUES

D.3 DIRECT ACCESS NOTES

D.3.1 XMIT Statements (Extending a File)

XMIT statements can be interspersed with direct access operations on a
file. An XMIT following a READ with record n is equivalent to a READ
of record n+l. Successive XMIT's read records n+2, n+3, etc.

An XMIT following a WRITE of record n transmits data to record n+l.

Records n+2 to the end of the file may be changed by successive XMIT's

after a WRITE. However, to change a series of records in the middle
of the file, do not use a WRITE followed by several XMIT's.

The XMIT statement used after a WRITE statement has the following use-
ful applications.

D.3.1.1 Truncating a File - To truncate a file after record N, use
the following sequence:

READ (channel,record,n)
WRITE (channel,record,n)
XMIT (channel ,NULL, EOF)

EOF, FINI (channel)
where NULL is a record with no contents defined by:

RECORD NULL
RECORD

D.3.1.2 Appending to a File - To append records to the end of a file
with n records, use the following sequence:

READ (channel,record,n)
WRITE (channel,record,n)

XMIT (channel ,record) ;Append records to file.
XMIT (channel,record)

XMIT (channel ,NULL, EOF)
EOF, FINI (channel)

ADVANCED PROGRAMMING TECHNIQUES D-15

D.3.1.3 Rewriting A File - To rewrite a file from record n to the end
of the file, use the following sequence:

WRITE (channel,record,N)
XMIT (channel,record)
XMIT (channel,record)

. ;Rewrite records to end-of-file.

XMIT (channel ,NULL, EOF)
EOF, FINI (channel)

D.4 NUMERIC FIELD VERIFICATION

Any numeric field that is entered in a DIBOL program should be checked
to determine if it contains only numeric data. The numeric field
should be read as an alphanumeric field through an XMIT or ACCEPT
statement. Then it is moved to a numeric field. This move is preced-

ed by an ON ERROR statement to check for non-numeric data. For exam-
ple:

RECORD
TCHAR, D2
DECMAL, D5
ALPHA, A5
PROC

ALPHA=

ACCEPT (TCHAR,ALPHA)
ON ERROR FIX
DECMAL=ALPHA

With an alphanumeric-to-numeric move, many checks are done. The fol-
lowing examples illustrate most cases:

ALPHANUMERIC NUMERIC
‘123! 00123
'123 ¢ 00123
'00123" 00123
' o-123" 0012s
' 123-" 0012s
'-123-" 00123
''12~3" 0012s
'1-2-3" 00123
'1+2+3" 00123
'1+2-3" 0012s
'1 23! 00123
'0012s" illegal

D-16 ADVANCED PROGRAMMING TECHNIQUES

The only legal characters in an alphanumeric-to-numeric move are 0 to
9, ., +, and -,

If a data file contains numeric fields, these fields must be read as
numeric. If they contain a negative number, the least significant
character contains a minus sign and 1is 1listed with its equivalent
character. For example, -37 would look like 3W. If 3W were read as
alphanumeric, and then converted to numeric, a run-time error would
occur since any letter of the alphabet 1is illegal in an
alphanumeric-to-numeric conversion.

D.5 CHAIN STATEMENT NOTES

D.5.1 1Interaction of CHAIN and INIT (channel,SYS)

Source input files can be specified in a RUN command containing chain-

ed programs. Accessing such files must be done according to the fol-
lowing rules.

1. All CHAIN files must be listed in the RUN command before the
source files.

.RUN PRONAM+CHAIN1+CHAIN2,INP1l,INP2

2. Any CHAIN statement which is to open the first source input
file must first "skip over" the remaining chained files by
issuing dummy INIT (channel,SYS) statements. In the above RUN
command, in order to read file INP1, PRONAM would have to
issue two dummy INIT(channel,SYS) statements. Because CHAIN2

is the last chain program, it would not have to issue any
dummy statements.

If the RUN command were:
RUN pronam, filnaml...,filnam7

the source files could be processed more than once by executing a
CHAIN 0 statement in pronam.

D.5.2 Transferring Variable Values

For the value of a variable to be successfully transmitted £from one
chained program to another, the variable in which the value appears
must occupy the same location in both CHAIN programs. This may be ac-
complished by either of the two following methods.

ADVANCED PROGRAMMING TECHNIQUES D-17

2.

Define all records which are to be
and make the defi

programs first,

for variable names which may be different).

Example:
Chainl Chain2
RECORD RECORD CPINFO
CUST, A30 CUST, A30
PROD, D2 PCODE, D2
RECORD INVENT RECORD INVENT
STOCK, D4 QUANTY, D4

Use the compiler storage maps listin
verify that the desired

grams to
storage location.

passed between
nitions identical (except

g for the two CHAIN pro-
variables occupy the same

D.5.3 Multiple CHAIN Entry Points

Sometimes it is desirable to have several entry points into a CHAIN
program. However, the CHAIN statement always starts execution of the
chained program at the first statement following the PROC statement.
Using the technique of transferring variable values between chained

programs, multiple entry points can be programmed as indicated in the
following example.

Chainl Chain2
RECORD RECORD
WHERE,D2,01 WHERE , D2
RETURN,D2 RETURN,D2

PROC
GO TO(L1,L2,L3,L4),WHERE
L1,RETURN=2

CHAIN 2
L2,...

D-18 ADVANCED PROGRAMMING TECHNIQUES

PROC

GO TO(E1,E2,E3) ,WHERE

El,...

WHERE=RETURN
CHAIN 1

D.6 DIBOL PROGRAMMING OF SOURCE FILES

D.6.1 Operating Procedures

Up to seven source files can be used in a DIBOL program. They are
specified at run time by:

RUN pronam, filnaml...,filnam7

The edit buffer is not available to a DIBOL program,

D.6.2 Data Division

The RECORD description would be as follows:
RECORD recnam

LINENO, A2
CHAR, Al20

LINENO contains a two-character line number in binary. Most programs
ignore the 1line number. However, it can be converted to decimal by

the statement:
varnam = #LINENO*64+#LINENO(2,2)

Varnam must be a four-digit field.

CHAR contains the characters of one line created by the editor. The
DIBOL program may want to determine the number of characters in the
record. This can be done by preceding the RECORD statement with the
lines:

RECORD
TRICK, 2Al

and adding the following line in the Procedure Division:

varnam = (4096-64*#TRICK(3)~#TRICK (4)*2
Varnam must be a three-digit field.
There is no tabbing within CHAR. The tabbing seen by output from the
Monitor command LIST or LIST/L is done by the operating system. Tabs
are internally stored as characters with a decimal equivalent of 61l.

Any character may be checked for a tab by the statement:

IF (#CHAR(n,n) .EQ.61) GO TO TAB

ADVANCED PROGRAMMING TECHNIQUES D-19

D.6.3 Procedure Division

The first source file specified in the RUN command is opened by the
following statement:

INIT (channel,SYS)

Each record is accessed by the following statement:

XMIT (channel,record,eof label)

When an end-of-file condition occurs, the program transfers to the EOF
label of the XMIT statement. At that EOF label, a FINI channel state-
ment must be executed prior to an INIT (channel,SYS) to open a second
source file. To handle a variable number of source files, precede the
INIT (channel,SYS) statement by an ON ERROR statement. The program
will transfer to the ON ERROR statement when an INIT (channel,SYS)
statement is executed and there are no more source files.

The only way to process a source file more than once is to execute a

CHAIN n statement which resets the operating system pointers to the
source files.

This example combines up to seven source files into a single data
file. The resulting data file can be converted to a source file using
FILEX.

Example:
RECORD
SIZE, D3
RECORD
TRICK, 2A1
RECORD LINE ;Line from source file.
' Al22
PROC 2
ON ERROR NOFILE
INIT(1,SYS) ;Open system file.
INIT(2,0,'$FILE',1) ;Open output file on logical unit 1.
NEXT, XMIT (1,LINE,EOF) ;Read a line from source file.
SIZE=(4096-64*#TRICK(3)-#TRICK(4))*2 ;Get size of line.
XMIT(2,LINE(3,SIZE+2)) ;Output line without line number.
GO TO NEXT
EOF, FINI (1) ;Close system file.
ON ERROR DONE
INIT(1,SYS) ;Open next system file.
GO TO NEXT
DONE, FINI (2) ;Close output file.

NOFILE, STOP

D-20 ADVANCED PROGRAMMING TECHNIQUES

D.7 CHECKDIGIT FORMULA

In most applications involving identification numbers, each number may
be verified for accuracy by a checkdigit, a redundant digit added to
the normal number. The checkdigit is determined by performing an ar-
ithmetic operation on the number in such a way that the usual errors
encountered in transcribing a number are detected. The checkdigit is
determined as follows:

Step 1 Start with a number....5764.

Step 2 Multiply the first digit and every other digit by 2 (left to
right). 5 * 2 =10 6 * 2 =12

Step 3 Add the digits in the resulting numbers and the digits not
multiplied. 140+7+1+2+4 =15

Step 4 Subtract the sum from Step 3 from the next higher number end-
ing in zero. 20-15=5

Step 5 Add the checkdigit to the end of the original number. 57645

(This is the correct checkdigit if the number is entered in a
D4 field.)

Note that a checkdigit procedure is not completely error proof. In
the example given above, 5764 or 5673 give the same checkdigit. It is
unlikely, however, that transpositions of this sort will occur. The
checkdigit does not guard against the possible assignment of an incor-
rect but valid code, such as the assignment of a wrong valid identifi-
cation code to a customer.

If the number entered for a checkdigit calculation is shorter than the
field, the rightmost digit is used as the checkdigit and the remainder
of the number is right-justified and padded with zeros on the left.
The zeros are considered when the checkdigit formula is calculated.

ADVANCED PROGRAMMING TECHNIQUES D-21

D.8 VT50/VT52 ESCAPE SEQUENCES

A command protocol is built around the escape code (027) to implement
those commands needed by the VT50/VT52 but not found in 7-bit ASCII.
Upon receiving the escape code 027, the terminal is set to escape mode
and treats the next character received as a command. Commands created
in this manner are called Escape Sequences. The VT50/VT52 recognizes
the following Escape Sequences:

Code Character Action Taken

27 ESC The first 027 changes the mode, the second 027
changes it back.

65 A Moves cursor up one line.

66 B Moves cursor down one line.

67 C Moves cursor right one position.

68 D Moves cursor left one position.

72 H Moves cursor to the home position.

74 J Erases from cursor position to the end-of-
screen.

75 K Erases line from cursor to right margin.

90 yA Requests the terminal to identify itself. The

VT50 terminal will respond with 027 047 072;
VT52 terminal will respond with 027 047 075.
Other terminals will respond in different
ways.

1Teletype is a registered trademark of the Teletype Corporation.

D-22 ADVANCED PROGRAMMING TECHNIQUES

GLOSSARY

alphanumeric
A character set that contains letters, digits, and other characters
such as punctuation marks. The COS-310 alphanumeric character set
includes the uppercase letters A-Z, the digits 0-9, and most of the
special characters on the terminal keyboard. Two of these char-
acters, back slash (\) and back arrow (=—) (shown on some termi-
nals as an underscore), are illegal.

array
A DIBOL technique for specifying more than one field of the same
length and type. The array 5D3 reserves space for five numeric
fields, each to be three digits long. The array 2A10 describes two
alphanumeric fields, each to be ten characters long.

ASCII
American Standard Code for Information Interchange. This 1is one
method of coding alphanumeric characters.

batch file
A file containing a sequence of commands. A command to execute the

file will cause the commands within the file to be executed sequen-
tially.

batch processing

The technique of automatically executing a group of previously
stored Monitor commands.

binary operator
An operator, such as + or -, which acts upon two or more constants
or variables (e.g., A=B-C).

binary program
The kind of program which is output by the compiler.

binary scratch area

The area in memory where the binary program is stored during execu-
tion.

Glossary-1

bit
A binary digit (0 or 1).

block

The basic C0S-310 unit of mass storage capacity. A block consists
of up to 512 characters.

bootstrap

A short routine loaded at system start-up time which enables the
system software to be read into machine memory.

branch

A change in the sequence of execution of C0S-310 program state-
ments.

buffer

A temporary storage area usually used for input or output data
transfers.

bug
An error or malfunction in a program or machine.

byte
A group of bits considered as a unit. A byte is the smallest unit
of information that can be addressed in a DIBOL program.

channel

A number between 1 and 15 used to associate an input/output state-
ment with a specified device.

character

A letter, digit, or other symbol used to control or to represent
data.

character string
A connected linear sequence of characters.

clear

Setting an alphanumeric field to spaces or a numeric field to
zeros.

command

An operator request for Monitor services; usually to be executed
following a RETURN Kkey.

comments

Notes for people to read; they are ignored by the compiler.
Comments are optional and follow a semicolon on a statement line.

concatenated
Strung together without intervening space.

2~Glossary

conversational program

A program.that prompts responses from an operator and reacts de-
pending upon the response from the operator.

cursor

The flashing light indicator which appears at the point on the
screen where the next character will be displayed.

data
A representation of information in a manner suitable for communica-

tion, interpretation, or processing by either people or machines.
In COS-310 systems, data is represented by characters.

data entry

The process of collecting and inputting data into the computer data
files. Data entry is key to disk.

data management
The planning, development, and operation of a system 1like COS-310
by an organization to mechanize its information flow and make
available the data needed by the organization.

debug
To detect, locate, and remove errors or malfunctions from a program
or machine.

DEC
Acronym for Digital Equipment Corporation.

decimal
Refers to a base ten number.

delimiting
The bounds (beginning and end) of a series or string.

device designation
A three-character designation for a mass storage device. The first
two characters designate the type of device; the third character
designates the number of the drive on which the device is mounted.

device independence
CO0S-310 system design permits data files and programs to be stored
on either diskettes or disks. At run time, the operator chooses
the most suitable or most available input and output devices.

device designations
A three-character abbreviation used to name the C0S-310 I/O0 dev-

ices.
TTY = Screen
KBD = Keyboard
LPT = Printer
DKO0O-DK3 = Disk drives
RX0-RX3 = Disk drives
DYO-DY3 = Disk drives

Glossary-3

DIBOL
Digital's Business Oriented Language is a COBOL-like language used

to write business application programs. The source language of the
C0S-310 system.

direct access

The process of obtaining data from, or placing data into, a storage
device where the availability of the data requested is independent
of the location of the data most recently obtained or placed in
storage. Direct access is available to users of COS-310 systems by
writing the position number of any record in a data file. For ex-
ample, you can request the 5th, 35th, and 711th records in a file.

directory

A place for listing information for reference. Displayed or print-
ed with the DI command.

dump

To copy the contents of all or part of storage, usually from memory
to external storage.

edit buffer
The work area in memory where source files are created and edited.

end-of-file mark
A control character which marks the physical end of a multivolume
file. For both input and output files, the Monitor detects this

EOF mark and types a message for the operator asking that the next
volume in the file be mounted.

fatal error
An error which terminates program execution.

field

A specified area in a data record used for alphanumeric or numeric
data; cannot exceed the specified character length.

file .
A collection of records, treated as a logical unit.

fixed-length records
Each record in a data file is the same length. Fixed-length rec-
ords are the only type handled by COS-310 utility programs and the
only type on which direct access to data files is allowed.

flowchart
A pictorial technique for analysis and solution of data flow and
data processing problems. Symbols represent operations, and con-
necting flowlines show the direction of data flow.

4-Glossary

handlers
A specialized software function which interfaces between the system
and peripheral devices.

illegal character
A character that is not valid according to the COS-310 design
rules. DIBOL will not accept back slash (\) and back arrow (=—)
(back arrow is replaced on some terminals with underscore) in al-
phanumeric strings.

initialization
Putting a device into the correct format or position where it can
successfully function in a configuration.

input
Data flowing into the computer.

input/output
Either input or output, or both. I/0.

jump
A departure from the normal sequence of executing instructions in a
computer.

justify
The process of positioning data in a field whose size is larger
than the data. 1In alphanumeric fields, the data is left-justified
and any remaining positions are space-filled; in numeric fields
the digits are right-justified and any remaining positions to the
left are zero-filled.

key
One or more fields within a record used to match or sort a file.
If a file is to be arranged by customer name, then the field that
contains the customers' names is the key field. 1In a sort opera-
tion, the key fields of two records are compared and the records
are resequenced when necessary.

load
To enter data or programs into main memory.

load-and-go
An operating technique in which there are no stops between the
loading and executing phases of a program.

location
Any place where data may be stored.

logical unit number
A number (1-15) which identifies an entry in a logical unit table.
The table references the number to a location on a mass storage
device.

Glossary-5

logical units
An area of storage on a mass storage device. Up to 15 1logical
units may be assigned at system start-up by the data file utility

program (DFU). These areas and their assigned sizes are listed in
the logical unit table printed by DFU.

loop
A sequence of instructions that is executed repeatedly until a ter-

minal condition prevails. A commonly used programming technique in
processing data records.

machine-level programming

Programming using a sequence of binary instructions in a form exe-
cutable by the computer.

mass storage device
A device having large storage capacity.

master file

A data file that is either relatively permanent or that is treated
as an authority in a particular job.

memory
The computer's primary internal storage.

merge
To combine records from two or more similarly ordered strings into

another string that is arranged in the same order. The latter
phases of a sort operation.

mnemonic

Brief identifiers which are easy to remember. Examples are KBD,
LPT, and TTY.

mode

A designation used in INIT statements to indicate the purpose for

which a file was opened or to indicate the input/output device
being used.

modulo
A condition where the specified number exceeds the max imum
condition in a wvariable. The maximum allowable number is then
subtracted from the specified number and the remainder is used by
the processor. 1In modulo 16, if 17 were specified (maximum is 15),
16 would be subtracted from 17 and the processor would use 1 as the
variable.

Monitor

A COS-310 system program that loads and runs programs and performs
other useful tasks.

nest

To embed subroutines, loops, or data in other subroutines or pro-
grams.

6-Glossary

nonfatal error
An error which will not completely terminate program execution.

nonsystem device

A device that does not contain the operating system and the Moni-
tor. A device used exclusively for data storage.

option switch
A one- or two-character designation indicating a special function

in conjunction with a command. Usually preceded by a slash (/) in
CO0s-310.

output
Data flowing out of the computer.

overlay

The technique of specifying several different record formats for
the same data. Special rules apply.

parameter

A variable that is given a constant value for a specific purpose or
process.

peripheral equipment
Data processing equipment which is distinct from the computer.

pushdown stack
A list of items where the last item entered becomes the first item
in the 1list and where the relative position of the other items is
pushed back one.

random access
Similar to direct access.

RECORD
A statement that reserves memory for DIBOL data language programs.

segment
Sixteen blocks of storage. A block is 512 bytes long.

sequential operation
Operations performed, one after the other.

serial access
The process of getting data from, or putting data into, storage
where the access time is dependent upon the location of the data
most recently obtained or placed in storage.

screen line number

The number which indicates the order of the horizontal lines on the
screen.

Glossary-7

sign
Indicates whether a number is negative or positive. Positive

numbers do not require a sign, but negative numbers are prefixed
with the minus sign (-).

significant digit
A digit that is needed or recognized for a specified purpose.

source program
A program written in COS-310 DIBOL language.

statement
An instruction in a source program.

string
A connected linear sequence of characters.
subscript
A designation which clarifies the particular parts (characters,

values, records) within a larger grouping or array.

switch character
A single letter specified in a command following a slash (/).

syntax
The rules governing the structure of a language.

system configuration
The combination of hardware and software that make up a usable com-
puter system.

system device

A mass storage device reserved for Monitor, Run-Time System, and
other system and source programs.

systems directory

A list of programs on the systems device with lengths, dates of
creation, and other useful information.

system handlers
The specialized software which interfaces between the system and
peripheral devices.

terminal alarm
A signal emitted from the terminal.

unary operator

An operator, such as + or -, which acts upon only one variable or
constant (e.g., A=-C).

utility program

A system program which performs common services and requires format
programs. Examples are SORT and PRINT.

8-Glossary

variable
A quantity that can assume any one of a set of values.

variable-length record

A file in which the data records are not unifor

m in length. Direct
access to such records is not possible.

verify

To determine if a transcri

ption of data has been accomplished accu-
rately.

word
A string of 12 binary bits representing two C0S-310 characters.

zero fill

To fill the remaining character positions in a numeric field

with
zZeros.

Glossary-9

INDEX

A

/A, Sort, 9-4
ACCEPT,
clear afield before, 1-4
generalized subroutines,
D-2
ACCEPT - Input/Output statement,
1-3, 1-4, 1-37
subroutines, D-2
used with DISPLAY, 1-4
ACCEPT and DISPLAY, interaction,
D-1
Access to Data files, B-4
Add one to counter, 1-25
Addition (+), 1-11
Addition of lines, RESEQUENCE,
2-21
Advanced Programming Techniques,
D-1
Afield,
clear before ACCEPT, 1-4
defined, 1-4
stores keyboard entry, 1-4
Aid to program development, 7-1
Alarm,
terminal, 1-18, 1-19
terminal is sounded (PLEASE),
2-10
Algorithm for calculating segments
of logical units, 4-7
Allocate space to binary scratch
area, 8-1, 8-6
Alphanumeric,
data, moving, 1-14
definition, xv
destination cleared to spaces,
1-13
fields formatted to numeric
fields, 1-16
fields with embedded signs, 1-11
label, 1-1
literal, 1-9, 1-10
string, 1-18
Alphanumeric values to numeric
values, 1-11, 1-15
Angle brackets (CCP), 5-5
Appending a file, D-15
Arithmetic expressions, 1-11
Arithmetic expressions,
addition, 1-13
calculate, 1-9
division, 1-13
multiplication, 1-13
rounding, 1-12
subtraction, 1-13

Arithmetic operations, basic, 1-13
Arithmetic operators, binary, 1-11
Arrange records, 9-1
Array,
dimensions specified, 1-9
names without subscripts, 1-13
subscripted, 1-9
Arrays, 1-32
Arrow key,
down, D-1
left, D-1
right, D-1
up, D-1
ASCII,
files transferred in format,
10-1
FILEX OS/8 input, 10-5
FILEX 0S/8 output, 10-7
Assignment of logical units, 4-1,
4-7
Assignments,
logical unit on COS-310, 4-7
table of logical unit, 4-2, 4-3,
4-5, 4-6
Automatic cursor positioning, D-6
Automatic line numbers, 2-19

B

BATCH,
certain programs terminate, 2-5
Monitor command, 2-5
restart after error, 2-5
BATCH command file, 2-4, 2-5
Batch file, terminate with CTRL/C,

2-5

Batch file START (SYSGEN), 3-2,
3-4

Batch file START, space required,
3-2

Batch stream, not accept input
from, 2-5

Batching commands, 2-1
Binary arithmetic operators, 1-11
Binary file, transfer, 8-3
Binary files, C0S-310, xiv, B-2
Binary operators,
addition (+), 1-11
Ccos-310, 1-12
division (/), 1-11
multiplication (*), 1-11
priority of execution, 1-11
rounding (#), 1-11
subtraction (-), 1-11

Index-1

INDEX (Cont.)

Binary program, 2-13
compiler converts source program

to, 5-1
copied and stored on device,
2-13

debug with DDT, 6-1

erase with DELETE, 2-7

RUN executes, 2-11

size of, 5-6

use SAVE to store, 5-4
Binary scratch area, 2-12
Binary scratch area, allocate

space to, 8-6

Blank line, to obtain, 2-19
BOOT,

error messages, 12-1

operating procedures, 12-1

program, 12-1
Bootstrap, BOOT is, 12-1
Bootstrap, Monitor loaded via, 2-4
Braces notation conventions, xv
Brackets, angle (CCP), 5-5
Brackets notation conventions, xv
Branch program control, 1-6, 1-23
Breakpoint, DDT, 6-1

C

+C option (clear record), 1-31
Calculate arithmetic expressions,
1-9
Calculating the segments for a
logical unit, 4-7
CALL - Control statement, 1-3, 1-6
CALL to subroutine, 1-6
CALL traceback, subroutine, (DDT),
6-1
Caret points to error, 5-8
CCP (Conditional Compilation
Procedure), 5-5
CCP sections nested to any depth,
5-6
CCP value independent of DIBOL
value, 5-6
CHAIN and INIT, interaction, D-17
CHAIN - Control statement, 1-3,
1-7
CHAIN,
control returns to DDT, 1-8
DIBOL program, 1-7
multiple entry points, D-18
programs declared in RUN
command, 1-7
program example, 1-7
TRACE and Trap turned off, 1-8
with valid binary program, 1-8

2-Index

Character Set, C0S-310, xv, A-11
Characters,

line number limitations, 2-20
lowercase, xiv
maximum in source program, 1-3
maximum number on line, 2-18
maximum per line, 1-3
red, xiv
special C0S-310, xv
special in formatting, 1-17
terminating, 1-5 '
uppercase, xiv
Channel (definition), 1-21
Channel in INIT, 1-26
Channel number associates mode,
1-26
Channel number disassociates mode,
1-21
Change system handlers, 3-1, 3-3
Change system date, 2-6
Changes to lines-per-page
configuration, 13-1
Changes using line numbers, 2-14
Check, perform a Read/, 8-2, 8-7
Checkdigit formula, D-21
Clear data from line, 2-20
Clear fields and records, 1-9,
1-13, 1-19

Clear function, hardware display,

D-2

Clear incorrect data, D-4
Clear text from edit buffer, 2-15
Clearing feature of VT52, D-3
Close data files, 1-21
Cmndfl (definition), xvi

BATCH, 2-5

DAFT, 15-1

FILEX, 10-4

FLOW, 17-1

MENU, 18-1

PATCH, 11-1

PIP, 8-1

PRINT, 1l6-2

SORT, 9-1, 9-2
Code,

C0S-310 interpretive, xiv

requirements, 5-7

skip-code, 1-22

words of required, 5-7
Command file,

BATCH, 2-5

DAFT, 15-2

FILEX, 10-4

FLOW, 17-1

MENU, 18-1

PIP, 8-1

INDEX (Cont.)

PRINT, 16-2, 16-3
SORT, 9-1, 9-2
Commands, DDT, 6-2
Commands entered in response to
Monitor, 2-4, 2-14
Commands, Monitor Keyboard, 2-2
Commands, orderly execution of
(MENU) , 18-1
Comments,
following semicolon, 1-1
on statement line, 1-1
with PROC, 1-29
with START, 1-34

COMP,
/D, 5-2
/G, 5-1
/N, 5-1
/C, 5-2
/T, 5-1

COMP (compiler),
accessed by RUN, 2-11
defined, xiii, 5-1
DIBOL, 5-1
operating procedures, 5-1
Comparison between expressions,
1-24
Comparison between relational
expressions, 1-24
Compatibility with 0S/8, 10-4
Compilation procedure,
conditional (CCP), 5-5
Compilation, source program
listing, 5-2
Compiler,
converts to binary program, 5-1
DIBOL, 5-1
error messages, 5-8
operating procedures, 5-1
statement, END, PROC, START,
1-3, 1-20, 1-29
statements, 1-3, 1-20
storage map listing, 5-3
Compiling procedure,
DAFT, 15-1
FLow, 17-1
PRINT, l6-1
Computed GO TO, 1-23

Conditional compilation (CCP), 5-5

Consolidate space in directory,
8-2, 8-5

Consolidate files, 8-1

Control,
branches by CALL, 1-6
branches to RETURN, 1-6
branches with GO TO, 1-23
master program, 2-1

Control statements (DIBOL), 1-3

CALL, 1-6

CHAIN, 1-7

GO TO, 1-23

IF, 1-24

ON ERROR, 1-28

RETURN, 1-33

sSTOP, 1-35

TRAP, 1-37
Conventions,

braces, xv

brackets, xv

manual notation, xiv
Conversational program, 3-1
Conversion, data, 1-11
Conversions, justification of,

1-11
Convert to equivalent decimal
code, 1-12

Converting data, 1-9
Converts and justify source data,
1-9
Copy and verify, 8-2, 8-7
Copy binary program onto device,
2-13
Copy device, 8-3
Copy Monitor and/or files, 3-3
Cos-310,
arranges records in files, 9-1
binary files, B-2
binary operators, 1-12
character set, A-1
characters, xv
data files, B-1
data input, FILEX, 10-6
data output, FILEX, 10-8
file structure, xiv
files, B-1
interpretive code, xiv, 2-14
line number editor, 2-14
logical unit assignments, 4-7
records in, 10-1
source file output, FILEX, 10-8
source files, B-1
storage hierarchy, 4-7
system files, B-2
unary operators, 1-12
COS MONITOR, 2-4
Create system on new device, 3-1
Creation of report programs, 16-1
Creation of source file (PRINT),
FILEX, 16-2
CREF (Cross Reference) program,
7-1
error messages, 7-2

Index-3

INDEX (Cont.)

operating procedures, 7-1
table, 7-1
CTRL/C
Monitor Keyboard command, 2-2,
to terminate batch file, 2-5
CTRL/O, 2-2, 2-17
CTRL/Q, 2-2, 2-17

CTRL/S, 2-2, 2-17

CTRL/U, 2-2, 2-19, 11-4, D-1

CTRL/Z, 2-2, 2-19, 6-3

Current date specification (,D),
1-32

Cursor positioning, 1-18, D-6

D

D RECORD (data specification),

1-32
DAFT (Dump and Fix), 15-1
command file, 15-2
compiling procedure, 15-1
error messages, 15-7
keyword, 15-2
operating procedure, 15-1
output, 15-5
Data,
clear from line, 2-20
clear incorrect, D-4
copy and verify, 8-2, 8-7
Data conversion, 1-9, 1-11
Data definition statement
(RECORD), 1-3, 1-31
Data division, 1-1, D-19
Data division, define destination
area in, 1-9
Data entry programs, D-1
Data file output, C0S-310 (FILEX),
10-8
Data file, transfer a, 8-2, 8-4
Data File Utility program (DFU),
4-1
Data files, xiv
access to, B-4
C0s-310, B-1
CO0S-310 arranges records in, 9-1
replace, 2-7
transfer, 8-4
Data,
format, 1-9
formatting, 1-16
input, C0S-310 (FILEX), 10-6
move between fields, 1-9
move from memory with WRITE,
1-39

4-Index

moving alphanumeric, 1-14
moving numeric, 1-14
transfer with XMIT, 1-40
Data manipulation,
expressions, 1-10
literals, 1-10
statements (DIBOL), 1-3, 1-9
variable name, 1-9
variables, 1-9
Datasystem 308 or 310, xiii
DATE command, 2-4, 2-6
DATE, Monitor command, 2-6
Date, system stores, 2-6
Dates, valid, 2-8
DDT
(DIBOL Debugging Technique), 6-1
commands, 6-2
error messages, 6-3
in CHAIN, 1-8
operating procedures, 6-1
Debug binary programs, 6-1
Debug statements with CCP, 5-5
Debugging aids use numbers, 1-1
Debugging (DIBOL) statements 1-3
Debugging statements, TRACE/NO
TRACE, 1-36
Debugging technique, DIBOL, 6-1
Debugging tools, 1-36
Decimal (definition), xv
Decimal value, stores in dfield,
1-4
Decimal value, terminating
characters, 1-5
Decimal code, equivalent, 1-12
Default conditions, line number,
2-18
Default, DFU/B, 4-2
Default, lines-per-page (SYSGEN),
13-1
Default value (SYSGEN), 3-2
DELETE command, 2-2, 2-4, 2-7
Delete, FILEX, 10-11
DELETE key, 2-2, 2-19
Deletion of lines (RESEQUENCE),
2-21
Deletions with line numbers, 2-14
Destination,
area defined, 1-9
alphanumeric cleared to spaces,
1-13
defined in Data Division, 1-9
numeric cleared to zeros, 1-13
stores source data, 1-9
Determining logical unit size, 4-7
Dev (definition), xv

INDEX (Cont.)

Development, aid to program, 7-1
Device,
copy, 8-3
create system on new, 3-1
designation, xv
order of logical units on, 4-8
store binary program on, 2-3
system format, B-2
Dfield (defined), 1-4
Dfield, stores decimal values, 1-4
DFU (Data File Utility), xiii, 4-1
DFU,
error messages, 4-10
logical unit assignments, 4-8
operating procedures, 4-1
DIBOL compiler (COMP), 5-1
DIBOL debugging technique (DDT),
6-1
DIBOL (DIGITAL's Business Oriented
Language), xiii
DIBOL,
direct access, D-9
kinds of statements in, 1-3
language, 1-1
programs in CHAIN, 1-7
slowed by TRAP, 1-38
table of symbols, 7-1
programming of source files,
D-19
source program, 1-1
statement, words of code
required, 5-7
statement, use terminating
value, 1-4
DIBOL statements,
compiler, 1-3
control, 1-3
data definition, 1-3
data manipulation, 1-3
debugging, 1-3
Input/Output, 1-3
DIGITAL's Business Oriented
Language (DIBOL), xiii
Dimensions of an array, 1-10
Direct address in DIBOL, D-9
Direct access,
KEY field for, D-9
access, reason for, D-9
access, READ statement, 1-30
access techniques, 8-5
access, WRITE statement, 1-39
DIRECTORY command, 2-4, 2-8
Directory entry dates, valid, 2-8
DIRECTORY, Monitor command, 2-4
Directory space, consolidate, 8-5

Directory, system device, B-4
Disk, formatting an RK05 (DKFMT),
14-1
Disks, logical unit assignments on
RK05, 4-9
Diskette,
data mode, 10-6
compatible with IBM 3741 format,
10-1
formatting an RX02 (DYFMT), 14-2
functions of sectors on
universal, 10-1
in universal format, 10-1
DISPLAY, ACCEPT used with, 1-4
Display clear feature, hardware,

D-2

DISPLAY - Input/Output statement,
1-18

DISPLAY, interaction with ACCEPT,
D~-1

DISPLAY, numeric fields for
special effects, 1-18
DISPLAY statement, 1-3, 1-8, 1-37
Division
/), 1-1, 1-13
Data, 1-1, D-19
Procedure, 1-1, D-20
results of, 1-12
DKMFT (format RKO5 disk), 14-1
Dollar, rounding to the, 1-12
Down arrow key, D-1
Dump and Fix Technique (DAFT),
15-1
Duplicate line numbers, 2-21
DYFMT (format RX02 diskette), 14-2

E

EBCDIC format, files transferred
in, 10-1
Edit buffer,
contents returned to memory,
2-12
contents stored in editing
scratch area, 2-12
erase (clear) text from, 2-15
lines edited in, 2-20
list from, 2-17
output to screen or printer,
2-17
separated into files, 2-19
source files loaded into, 2-16
Editing,
features of the Monitor, 2-1
functions refer to line numbers,
1-1

Index-5

INDEX (Cont.)

scratch area, 2-12

Editor commands,
ERASE, 2-14, 2-15
FETCH, 2-14, 2-16
LIST, 2-14, 2-17
Line Number, 2-14, 2-18
Number Commands, 2-14, 2-20
RESEQUENCE, 2-14, 2-21
WRITE, 2-14, 2-22

Editor, C0S-310 line numbers, 2-14

Effective use of TRAP, 1-37
Eight-bit EBCDIC, 10-4
End of subroutine, RETURN, 1-33
END, same effect as STOP, 1-35
Erase edit buffer, load source
file, 2-16
Eliminate free space, 8-5
End-of-file, 1-28, 1-40, 2-25
END compiler statement, 1-3, 1-20
Equivalent decimal code, 1-12
ERASE command, 2-14, 2-15
Erase program, DELETE, 2-7
Erase text from edit buffer, 2-15
Error, caret points to, 5-8
Error checking, minimal by CREF,
7-1
Error correction (PATCH,) 11-3
Error during automatic line
numbering, 2-19
Error, line with underscored, 5-2
Error messages, C-1
Error messages, Appendix C
BOOT, 12-1
COMP, 5-8
CREF, 7-2
DAFT, 15-7
bDT, 6-3
DFU, 4-10
FILEX, 10-13
FLOW, 17-7
LINCHG, 13-2
MENU, 18-4
Monitor, 2-23
PATCH, 11-5
PIP, 8-9
PRINT, 16-8
Run-Time, 2-24
SORT, 9~7
SYSGEN, 3-5
Error terminates BATCH, 2-5
Errors, fatal, 2-24

Errors, trappable (nonfatal), 2-24

Escape code sequences as
terminators, D-8
Escape sequences, VT50/VT52, D-22

6~Index

Examination of variables with
SORT, 6-1
Exit, FILEX, 10-12
Expressions,
arithmetic, 1-11
calculate arithmetic, 1-9
data manipulation, 1-10
(definitions), xvi, 1-10
parentheses in, 1-12
relational comparisons, 1-24
Extending a file, D-15

F

Fatal error, 2-24
Fatal error, DIBOL program under
DDT, 6-3
FETCH command, 2-14, 2-16
Field descriptor statement, SORT,
9-1
Field, numeric verification, D-16
Field, part accessed by
subscripting, 1-13
Field statement information, 1-31
Fields, clear, 1-9
Fields, clearing, 1-13
File,
appending, D-15
batch START (SYSGEN), 3-4
batch START, space required, 3-2
exchange program (FILEX), 10-1
extending a, D-15
index technique, use of, D-12
name extension, 0S/8
compatibility, 10-4
output, C0S-310 data (FILEX),
10~-8
output, COS-310 source (FILEX),
10-8
replace an old, 2-13
rewriting a, D-16
source loaded into edit buffer,
2-16
source stored on specified
device, 2-22
START batch, to execute, 3-2
status information destroyed
(CHAIN), 1-8
structure, xiv

transfer a binary, 8-2, 8-3
transfer a data, 8-2, 8-3

transfer a source, 8-2, 8-3
transfer a system, 8-2, 8-3

truncating, D-15
File name, garbled, 2-3

INDEX (Cont.)

File name extensions, 10-4
Files,
binary, xiv, B-2
consolidate, 8-1
C0s-310, B-1
data, xiv, B-4
source, xiv, B-1
system, xiv, B-2
Files,
DIBOL programming of source,
D-19
maximum number in program, 2-12
multiples passed as one file,
2-12
skipped (erased), 8-5
sorted, D-11
edit buffer separated into two,
2-19
source per program, 1-3
transferred in ASCII format,

10-1

transferred in EBCDIC format,
10-1

transferred in IMAGE format,
10-1

unsorted, D-10
FILEX (File Exchange program),
10-1
command file, 10-4
creation of source file (PRINT),
16-2
error messages, 10-13
Input Mode, 10-5
operating procedures, 10-4
Option C flowchart, 10-10
FILEX options,
C, Copy, 10-4, 10-5
D, Delete, 10-4, 10-11
L, List, 10-4, 10-11
X, exit, 10-4, 10-12
2, Zero (clear), 10-4, 10-12
FILEX Output Modes, 10-7
Filnam, xvi
FINI statement, 1-3, 1-21, 1-37
Fix technique, Dump and, (DAFT),
15-1
Fixed-length records, 9-1
FLOW (Flowchart Generator),
command file, 17-1
commands, 17-2
compiling procedures, 17-1
error messages, 17-7
example of, 17-7
Flowchart Generator program
(FLOW), 17-1

Format data, 1-9
Format, diskettes compatible with
IBM 3741, 10-1
Format for rounding, 1-12
Format printer output, 1-22
Format system device, B-2
Formats,
files transferred in, 10-1
programs, 14-1
Formatting data, 1-16
RKO5 disks (DKFMT), 14-1
RX02 diskettes (DYFMT), 14-2
numeric fields to alphanumeric
fields, 1-16
special characters, 1-17
Forms hardware, printers without,
3-4
FORMS statement, 1-3, 1-22

G

Garbled file name, 2-3

Generalized ACCEPT subroutines,
D-2

GO TO - Control statement, 1-3,
1-23

H

Handler address, B-5
Handlers,
change in system, 3-3
contained in Monitor, 2-1
Hardware display clear feature,
D-2
Hardware, printers without forms
(SYSGEN) , 3-4
Hierarchy, COS-310 storage, 4-7

IBM 3741 format, diskettes
compatible with, 10-1

IF - Control statement, 1-3, 1-24

IF, to make best use of TRACE,
1-36

IMAGE format, files transferred,
10-1

Incorrect data, clear, D-4

Increment, rounding, 1-12

INCR (increment) statement, 1-3,
1-25 :

Index, error messages, C-1

Index file technique, D-12

INIT - Input/Output statement,
1-3, 1-26, 1-37

Index-7

INDEX (Cont.)

INIT, interaction of CHAIN and,
D-17
INIT, logical unit No. in, 1-27
Initial values for statements,
1-1, 1-32
Initialization, 14-1
Input,
C05-310 data (FILEX), 10-6
line limitations, 2-20

maximum characters on line, 2-18

0S/8 ASCII (FILEX), 10-5

universal diskette (FILEX), 10-6

Input/Output statements (DIBOL),
ACCEPT, 1-4
DISPLAY, 1-18
INIT, 1-26
READ, 1-30
WRITE, 1-39
XMIT, 1-40
I/0 handlers, 2-1
I/0 statements, 1-3
Input/Output division (SORT), 9-2

Insertions with line numbers, 2-14

Interaction of ACCEPT and DISPLAY,
D-1
Interaction of CHAIN and INIT,
D-17
Internal subroutine, 1-6
symbol table, 5-8
Iteration, DDT, 6-1

J

Justification of numeric fields,
right, D-6

Justified conversions, 1-11

Justify source data, 1-9

K

KEY field for direct access, D-10

Key, last typed, 1-5

Keyboard commands, Monitor, 2-2

Keyboard input, stores in afield,
1-4

Keyword, DAFT, 15-2

KREF, FLOW, 17-2

KRFSRT, FLOW, 17-2

L

Label (definition), xvi, 1-1
Labels,
maximum allowed in 16K byte
system, 5-4

8-Index

maximum allowed in 24K byte

system, 5-4

referenced in statements, 1-1
separated from statements, 1-1
table of, used in DIBOL program,

7-1
Language,

DIBOL, xviii, 1-1
Last key typed, 1-5
Left arrow key, D-1
Limitations,

input line, 2-20

source program, 1-3

LINCHG (Line Change program), 11-1
Line, characters per, 1-3

LINCHG,
error messages, 13-2
operating procedures

r 13

-1

Line Change program (LINCHG), 13-1
Line Number (LN) command,

2-18

Line Number Editor, 2-13
Line Number Editor commands, 2-18
Line number exceeds 4095,

Line number default conditions,

2-18

2-14,

2-21

Line numbers automatically output,

2-18
Line numbers,
changes with, 2-14
deletions with, 2-14
insertions with, 2-1

4

Lines-per-page configuration,

change, 13-1
List programs for revi
LIST command, 2-14, 2-

ew,
17,

Listing, source program

compilation, 5-2
Literals
alphanumeric, 1-10
data manipulation, 1
(defined), 1-10, 5-6
numeric, 1-10
RECORD, 1-10

~-10

LN (Line Number) command,

2-14, 2-18
Logical units, xvi

2-8
10-11

Logical unit assignments, 4-1
from the edit buffer, 4-2

from a stored file,
from the keyboard, 4
displayed on screen,
listed on printer, 4
on RKO5 disks, 4-9,

4-2
-3
4-3
-4
4-10

INDEX (Cont.)

Logical unit,
assigned by DFU, 4-8
calculating segments for, 4-7
defined, xvi
pushdown, 4-8
size, 4-7
table, maximum entries, 4-2
Logical unit size, 4-7
Logical units,
maximum open, 1-29
order on a nonsystem device, 4-8
order on a system device, 4-8
Lowercase characters, xiv

M

Machine language instructions,
11-1
Mapping bad sectors, 10-1
Master control program, 2-1
Master file, records in, D-14
Memory, contents of edit buffer
returned to, 2-12
Memory, move data with WRITE, 1-39
Memory, record,moved to, 1-30
Memory requirements because of DDT
option (/D), 6-1
Memory saved by COMP/O, 5-2
MENU,
command file, 18-1
error messages, 18-4
operating procedures, 18-1
program, 18-1
program file, 18-1
Merge pass, combine volumes, 9-1,
9-4
Messages, MOUNT, 2-3
Messages, show on the screen, 1-18
Mode,
associates, 1-26
designations, 1-26
disassociate, 1-21
input (FILEX), 10-4
output (FILEX), 10-9
Modulo 16, 1-26
Monitor, 2-1
commands, 2-4
copy files and (SYSGEN), 3-3
error messages, 2-23
keyboard commands, 2-21
organization, B-3
Monitor commands,
BATCH,2-4, 2-5
DATE, 2-4, 2-6
DIRECTORY, 2-4, 2-8

PLEASE, 2-4, 2-10
RUN, 2-4, 2-11
SAVE, 2-4, 2-13
Monitor commands, sequential
execution of, 2-5
Monitor, copy (SYSGEN), 3-3
Monitor dot, commands in response
to, 2-14
Monitor, editing features of, 2-1
MONITOR/EDITOR Programs, xiii
Monitor Keyboard commands,
CTRL/C, 2-
CTRL/O,
CTRL/Q,
CTRL/S,
CTRL/U,
CTRL/Z,
DELETE,
RETURN, 2-
Monitor loaded via bootstrap, 2-4
Monitor, ON ERROR prevents return
to, 1-28
Monitor error messages, 2-23
Monitor operating procedures, 2-4
Monitor organization, B-3
Monitor, to patch, 11-1
Monitor, return to, 8-2, 8-9
MOUNT messages, 2-3
Move data between fields, 1-9
Moving,
alphanumeric data, 1-14
numeric data, 1-14
records, 1-15
Multiple CHAIN entry points, D-18
Multiple definition of fields,
1-31
Multiple files passed as one file,
2-12
Multiplication (*), 1-11, 1-13
Multivolume universal interchange
files, 10-1

DO N
DD N

N

Name (defined), data manipulation,
1-9

Negative numbers, characters
representing, A-1

Nested, CCP sections to any depth,
5-6

Nested, subroutine CALLS, 1-6

Nested to depth of 50, 1-6

No index file, rough table, D-12

NO TRACE statement, 1-3, 1-34

Nonsystem device, order of logical
units, 4-8

Index-9

INDEX (Cont.)

Notation conventions,

braces, xv

brackets, -xiv

manual, xiv

RETURN, xv

symbols, xiv
Number commands, 2-14, 2-20
Number, editing functions refer

tO, l_l
Numbered line begins statement,
1-1

Numbers, debugging aids refer to,

1-1

Numbers, error messages refer to,

1-1
Numbers, negative, A-1
Numeric,
data, moving, 1-14
data verification, 1-11
(definition), xvi
destinations cleared to zeros,
1-13
fields, formatting to
alphanumeric, 1-16
fields, special effect in
DISPLAY, 1-18
field verification, D-16

fields, right justification, D-6

literals, 1-10

values converted to
alphanumeric, 1-11

variable, add one to, 1-25

variable, CHAIN, 1-7

o

Octal (definition), xv
0ld file, replace, 2-13, 2-22
ON ERROR - Control statement,
1-3, 1-28
ON ERROR, preceding a data
conversion statement, 1-11
ON ERROR presents return to
Monitor, 1-28
Operating procedures,
BOOT, 12-1
CoMP, 5-1
CREF, 7-1
DAFT 15-1
DDT, 6-1
DFU, 4-1
DKFMT, 14-1
DYFMT, 14-2
FILEX, 10-4
FLOW, 17-1

10-Index

LINCHG, 13-1
MENU, 18-1
Merge, 9-4
Monitor, 2-4
PATCH, 11-1
PIP, 8-1
PRINT, 16-2
SORT, 9-1
SYSGEN, 3-1 _
Operations, basic arithmetic, 1-13
Operator interaction, BATCH may
require, 2-5
Operators,
binary arithmetic, 1-11
binary and unary, 1-12
binary, priority of execution,
1-11
Order of program execution, 1-36
Orderly execution of commands
(MENU) , 18-1
Organization of the Monitor, B-3
0s/8,
ASCII Input (FILEX), 10-5
ASCII Output (FILEX), 10-7
compatibility, 10-4
file name extensions for
compatibility, 10-4
files on RKO05 disk, 10-1
Output, ‘
COS-310 source file (FILEX),
10-8
DAFT, 15-5
Modes (FILEX), 10-7
0S/8 ASCII (FILEX), 10-7

Universal diskette (FILEX), 10-9

Overlay record, 1-31

P

P (RECORD) (information
insertion), 1-32
Parentheses in arithmetic
expressions, 1-12
PATCH,
cmndfl, 11-1
error correction, 11-3
error messages, 11-5
operating procedures, 11-1
program, 11-1
restart, 11-3
Perform a Read/Check, 8-2, 8-7
PIP (Peripheral Interchange
Program),
accessed by RUN, 2-11
error messages, 8-9

INDEX (Cont.)

operating procedures, 8-1
PIP options,

B, 8-2, 8-

c, 8-2,

D, 8-2,

A

X, 8-2, 8-
PLEASE command, 2-4, 2-10
PRINT (Report program generator),
16-1
compiling procedure, 16-1
error messages, 16-8
Print logical unit table, 4-1
Printer,
contents of edit buffer output
to, 2-17
limitations because of TRAP,
1-38
on-line, 2-8
slower than processor, 1-37
without forms hardware, 3-2
without forms hardware (SYSGEN),
3-4
Priority of execution, binary
operators, 1-11
PROC, comment with, 1-29
PROC statement, 1-3, 1-29
Procedure, conditional compilation
(CCP), 5-5
Procedure Division, 1-1, D-20
Program,
binary copied and stored, 2-13
binary executed by RUN, 2-11
CHAIN, example of, 1-7
control, branches with GO TO,
1-23
development aid, 7-1
DIBOL binary sequence, 1-7
DIBOL CHAIN, 1-7
DIBOL slowed by TRAP, 1-38
erase with DELETE, 2-7
examination, DDT, 6-3
execution, Monitor, 2-1
execution, order of, 1-36
execution terminated with STOP,
1-35
last statement in, 1-20
master control, 2-1
maximum number of files in, 2-12
readability, 2-19
renumber lines within, 2-21

NN
-~ % w o=

o]
~
o @ 0o

size of binary, 5-6
source (DIBOL), 1-1
source files per, 1-3
source compilation listing, 5-2
source limitations, 1-3
System executed by RUN, 2-11
table of labels used in DIBOL,
7-1
tracing, 1-36
Programs,
ACCEPT and DISPLAY in, D-1
binary debugged with DDT, 6-1
certain terminate BATCH, 2-5
directory of stored, 2-8
list for review, 2-8
segment sections, 1-34
type of, 2-7
Programming, DIBOL source files,
D-19
Programming techniques, advanced,
D-1
Pronam (definition), xvi
Pushdown, order of logical units,
4-8
Pushdown stack, 1-6

R

READ - Input/Output statement,
1-3, 1-30
READ, restrictions on use, 1-39
Read/Check, perform a, 8~-2, 8-7
Readability of program, 2-19
Record,
C0S-310 file (defined), 10-1
count, D-14
Descriptor Division (SORT), 9-2
moved to memory, 1-30
names in data manipulation, 1-9
names, subscripted, 1-40
names subscripted in an array,
1-13
overlaying, 1-31
size dependent on logical units,
4-7
RECORD - Data definition
statement, 1-3, 1-31, 5-6
literals, 1-10
Records,
arrange COS-310 data, 9-1
clear, 1-9
clearing, 1-13
master file, D-14
moving, 1-15
subscripted, use with care, 1-40

Index-~11

INDEX (Cont.)

Red characters, xiv

Relational comparisons between
expressions, 1-24

Renumbering program lines, 2-14,
2-21

Repetition count character, 1-32

Replace an old file, 2-13

Replace an o0ld source file, 2-22

Report programs, creation of, 16-1

Report program generator (PRINT),
l6-1

RESEQUENCE command, 2-14, 2-21

Restart (PATCH), 11-4

Restrictions on READ and WRITE,
1-39

Return after LN, 2-19

RETURN at end of subroutine, 1-33

RETURN key, xv, 2-2, 2-19

RETURN - Control statement, 1-3,
1-33

RETURN, control branches to, 1-6

Return to Monitor, PIP, 8-2, 8-9

RETURN without CALL or TRAP, 1-33

Rewriting a file, D-16

Right arrow key, D-1

Right justification of numeric
fields, D-6

RKO05 disk, format (DKFMT), 14-1

RKO05 disk, logical unit
assignments on, 4-10 :

Rough table, no index file, D-12

Rounding of numbers (#), 1-12

RUN command,

CHAIN declared in, 1-7
Monitor, 2-4, 2-11 ,
Run-Time error messages, 2-24
RX02 diskette, format (DYFMT), 4-2

S

+S (RECORD) (assign value of
variable), 1-32
SAVE command to store binary
program, 2-4, 2-13, 5-4
Scratch area (binary)
modification, 2-12, 8-6
Screen,
contents of edit buffer output
to, 2-17
line number, 1-18
move cursor on, 1-18
when full, 2-18
Search for records, 15-1
Sectors on universal diskette,
10-1, 12-1

12-Index

Segment programs, 1-34
Segments, calculating for logical
unit, 4-7
Semicolon, comments after, 1-1
Sequential execution of Monitor
commands, 2-5
Seven-bit ASCII, 10-4
Signs embedded in alphanumeric
fields, 1-11
Size,
binary program, 5-6
defined in RECORD statement, 1-1
determining logical unit, 4-7
Six-bit binary word, A-1
Skip-code (definition), 1-22
Skip (erase) files, 8-5
SORT program, xiv, 9-1
accessed by RUN, 2-11
command file, 9-1, 9-5
error messages, 9-7
key, 9-3
operating procedures, 9-1
Sorted file, D-11
SORTIN, 9-3
Source (defined) data
manipulation, 1-9
Source area stored in destination,
1-9
Source area converted and
justified, 1-9
Source files, xiv, D-19
C0s-310, B-1
C0S-310 output (FILEX), 10-8
DIBOL programming of, D-19
creation of, 16-2
load into edit buffer, 2-16,
2-16
per program, 1-3
replace old, 2-22
stored on device, 2-22
separate edit buffer into two,
2-19
transfer, 8-2, 8-8
Source program,
compilation listing, 5-2
compiler converts to binary, 5-1
debug with CCP, 5-5
DIBOL, 1-1
erase with DELETE, 2-7
limitations, 1-3
maximum characters in, 1-3
Space,
allocate to binary scratch area,
8~6
consolidate directory, 8-2, 8-5

INDEX (Cont.)

Special characters, xv, 1-17

Special characters in formatting,

1-17
Special codes in DISPLAY, 1-18
Special DISPLAY codes, 1-18
START - Compiler statement, 1-3,
1-34
START system on new device, 12-1
START with comment, 1-34
START,
batch file, 2-4, 3-2
batch file space required, 3-3
batch file (SYSGEN), 3-4
with comment, 1-34
Statement,
CHAIN encountered, 1-7
comments in, 1-1
define size of, 1-1
define type of, 1-1
last in program is END, 1-20
lines with comments, 1-1
separated from label, 1-1
Statements,
Data Division, 1-1
data manipulation, 1-
initial values for, 1
reference labels, 1-1
six kinds in DIBOL, 1
Statements, DIBOL
ACCEPT, 1-3
CALL, 1-6
CHAIN, 1-6
DISPLAY, 1-18
END, 1-20
FINI, 1-21
FORMS, 1-22
GO TO, 1-23
IF, 1-24
ON ERROR, 1-28
PROC, 1-29
READ, 1-30
RECORD, 1-31
START, 1-34
sTop, 1-3, 1-35
TRACE/NO TRACE, 1-36
TRAP, 1-37
WRITE, 1-39
XMIT, 1-40
STOP - Control statement, 1-3,
1-35
STOP,
SAME EFFECT AS END, 1-35
terminates program execution,
1-35
Storage hierarchy, 4-7

9
1

3

Storage map, listing, 5-1, 5-3
Store binary program on device,
2-13
Store system date, 2-6
Subroutine, ACCEPT, D-2
Subroutine, branches control to,
1-6
Subroutine,
CALL statements, 1-6
call traceback, 6-1
internal, 1-6
nested in, 1-6
TRAP, 1-37
Subroutines, generalized ACCEPT,
D-1
Subscripted array in data
manipulation, 1-9
Subscripted record names, 1-13,
1-40
Subscripting to access parts of
fields, 1-13
Subtraction (-), 1-11, 1-13
Symbol table, internal, 5-8
Symbols,
DAFT command, 15-2
maximum in system, 1-3
notation convention, xiv
SYSGEN (System Generation
PROGRAM) , XIII, 3-1
SYSGEN default, 3-2, 13-1
SYSGEN/B, 3-1
SYSGEN/C, 3-3
System,
boot to start on new device,
12-1
change handlers in, 3-3
C0S-310 logical units on, 4-7
create on new device, 3-1
date change, 2-6
date stored by DATE, 2-7
device directory, B-4
device holds BATCH cmndfl, 2-5
device, order of logical units,
4-8
encounters ACCEPT, 1-4
device format, B-2
files, xiv, B-2
files, C0S-310, B-2
files, transfer, 8-2, 8-8

generation program (SYSGEN), 3-1

I/0 handlers in Monitor, 2-1
maximum symbols per, 1-3
program, erase with, 2-7
program, transfer, 8-8
programs accessed by RUN, 2-11
programs executed by RUN, 2-11

Index-13

INDEX (Cont.)

T

TAB key produces 8 spaces, 2-19
Tab settings, 1-1
Table, labels used in DIBOL
program, 7-1
Table, logical unit assignments,
4-2, 4-6
Table lookup, direct access, D-10,
D-11
Tabs used for readability, 2-19
Terminal alarm is sounded
(PLEASE), 2-10
Terminal BATCH, certain programs,
2-5
Terminate program execution with
STOP, 1-35
Terminating character, 1-4, 1-5
Terminating value, used by DIBOL,
1-4
Terminators, escape sequences, D-8
Text, erase (clear) edit buffer,
2-15
Text, lines of assigned a line
number, 2-14
308, Datasystem, xiii
310, Datasystem, xiii
Top-of-page command, 1-34
TRACE - Debugging statement, 1-3
TRACE,
indiscriminate placement of,
1-36
turned off in CHAIN, 8-3
use of IF to isolate, 1-36
Trace/No Trace statements, 1-36
Traceback, subroutine call (DDT),
6-1
Transfer,
binary file, 8-2, 8-3
data (XMIT), 1-40
data files, 8-4
data records, 1-40
files, ASCII format, 10-1
files, SYSGEN, 3-3
files, universal format, 10-1
source files, 8-2, 8-8
system files, 8-8
Transferring control through IF
statement, 1-24
Transferring variable values, D-7
TRAP - Control statement, 1-3,
1-37
TRAP,
information for effective use
of, 1-37

l4-Index

limitations on printers, 1-38
normally precedes FORMS or XMIT,
1-37
slows DIBOL programs, 1-38
subroutine construct, 1-37
turned off in CHAIN, 1-8
Trappable error, 2-24
Truncating a file, D-15
Two-line PLEASE command, 2-10
Type, define in RECORD statement,
1-1

U

Unary operators in C0S-310, 1-12
Unconditional GO TO, 1-23
Underscores line number with
errors, 5-2
Universal diskette,
(definition), 10-1
format for, 10-1
functions of sectors, 10-1
input (FILEX), 10-4, 10-6
interchange format directory,
10-2
output (FILEX), 10-9
Unsorted file, D-10
Up arrow key, D-1
Uppercase characters, xiv

\

Valid directory entry dates, 2-8
Value,

default (SYSGEN), 3-2

initial (definition), 1-32

terminating used by DIBOL, 1-4
Values,

CCP different than DIBOL, 5-6

transferring variable, D-17
Variable,

add one to numeric, 1-25

examination in DDT, 6-1

name, 1-9

numeric in CHAIN, 1-7

values, transferring, D-17
Variables (defined), 1-9, 5-6
Verfication, numeric field, D-16
Verify data, copy and, 8-2, 8-7
Verify numeric data, 1-11
VT50/VT52 Escape Sequences, D-22
VT52 clearing feature, D-3

W

INDEX (Cont.)

Word boundry, 5-6
Word count number, B-1
Words of code requirement, 5-7
WRITE - editor command, 2-14, 2-22
WRITE - Input/Output statement,
1-3, 1-37, 1-39
WRITE,
move data with, 1-39
restrictions on use, 1-39

X
XMIT - Input/Output statement,
1-3, 1-37, 1-40

XMIT statement, extending a file
with, D-15

Z
Zero, divison by, 1-28, 2-26

15-Index

is line

Please cut along th

COS-310 System Reference Manual
AA-D647A-TA
READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltiall

Business Products

Software Development Group
MK1-2/H32

Continental Blvd.

Merrimack, New Hampshire 03054

