
UPDATE NOTICE 1

PDP-11 MACRO-11

Language Reference Manual

AD-V027A-T1

May 1984

NEW AND CHANGED INFORMATION

This update contains changes and additions to the PDP-11

MACRO-11 Language Reference Manual, AA-—V027A-TC.

To order additional documents from within DIGITAL, contact the Software Distribution

Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back

of this document.

digital equipment corporation - maynard, massachusetts

INSTRUCTIONS

The enclosed pages are replacements for or additions to current pages of the PDP-11

MACRO-11 Language Reference Manual. On replacement pages, changes and additions are

indicated by vertical bars (]); deletions are indicated by bullets ().

Keep this notice in your manual to maintain an up-to-date record of changes.

© Digital Equipment Corporation 1984.

All Rights Reserved.

Printed in U.S.A.

Old page

Title/Copyright

1-1/1-2

2-3/2-4

3-1/3—-2

3-11/3—-12

5-3/5—4

6—15/6—16 thru 6—19/6-20

6—-25/6—26 and 6—27/6—28

6—-55/6—56

6—61/blank

7-5/7-6

7-9/7-10

7-13/7-14 thru 7-19/7-20

8-7/8—-8

9-3/9-4

A-1/A-2

A-5/blank

J-1/J-2

Index—1/Index—2 thru Index—5/blank

Reader’'s Comments/Mailer

New page

Title/Copyright

v/ivi and vii/viii

1-1/1-2

2-3/2—4

3—2.1/blank

3-11/3-12

5-3/5-4

6-15/6—16 thru 6—19/6—20

6-25/6—26 and 6—-27/6—28

6—-55/6—56

6—61/blank

7-5/7-6

7-9/7-10

7-13/7-14 thru 7-19/7-20

8-7/8-8

9-3/9—4

A—-1/A-2

A-5/A-6

J-1/J-2

J—-2.1/blank

Index—1/Index—2 thru Index—5/Index—6

Reader's Comments/Mailer

PDP-11 MACRO-11

Language Reference Manual

AA-V027A-TC

March 1983

This document describes how to use the MACRO-11 relocatable as-

sembler to develop PDP-11 assembly language programs. Although no

prior knowledge of MACRO-11 is required, the user should be familiar

with the PDP-11 processor addressing modes and instruction set. This

manual presents detailed descriptions of MACRO-11’s features, includ-

ing source and command string control of assembly and listing func-

tions, directives for conditional assembly and program sectioning, and

user-defined and system macro libraries. The chapters on operating

procedures previously were found in two separate manuals (the

PDP-11 MACRO-11 Language Reference Manual and the IAS/RSX

MACRO-11 Reference Manual). This manual should be used with a

system-specific user’s guide as well as a Linker or a Task Builder man-

ual.

This manual supersedes previous editions, AA-5075B-TC, published

1980, AA-5075A-TC, published 1977, and DEC-11-OIMRA-B-D,

published 1976. This manual contains Update Notice 1, AD-V027A-T1.

Operating System: IAS Version 2

MICRO/RSX Version 1

MICRO/RSTS Version 1

VAX/VMS Version 4

RSTS/E Version 8

RSX-11M Version 4

RSX-11M-PLUS Version 2

RT—11 Version 5

Software: MACRO-11 Version 5.2

To order additional documents from within DIGITAL, contact the Software Distribution

Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back

of this document.

digital equipment corporation - maynard, massachusetts

First Printing, August 1977

Revised, January 1980

Updated, December 1981

Revised, March 1983

Updated, May 1984

The information in this document is subject to change without notice and should not

be construed as a commitment by Digital Equipment Corporation. Digital Equipment

Corporation assumes no responsibility for any errors that may appear in this docu-

ment.

The software described in this document is furnished under a license and may be used

or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is

not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1977, 1980, 1981, 1983, 1984.

All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’'S COMMENTS form is included on the last page of this

document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

dlijgliltiallj§
DEC MASSBUS RT-11

DECmate PDP UNIBUS

DECsystem—10 P/OS VAX

DECSYSTEM-20 Professional VMS

DECUS Rainbow VT

DECwriter RSTS Work Processor

DIBOL RSX

M32300

CHAPTER

PART IV

CHAPTER

CHAPTER

N
N

N
N

*

s

8

s

e

s

S
O
D

W

L]

LJ

»
*

-

&
]

*

|
]

[
*

W

N

®

*

L

»

»

N

d
d

S
N

d
a
d
d

]

-

N

L]

-

&

&

L]

W
O
~

Y

U

e

B

W
w
w
w
w
w
w
w

OPERATING

<
o

¢

s

s

»

b

W
N

B

W

N

&

*

L

*

C
O

OO

0
0
O

0
0

0
0

0
0

0
0

C
0

O

G
O

O

¢

¢

o

5

s

s

&

®

s

e

s

o

N

W
N
D
N
N
N
N

R

V
W
Y

W

.

-

b]
|

B

b

MACRO DIRECTIVES

DEFINING MACROS

.MACRO Directive

.ENDM Directive

.MEXIT Directive

MACRO Definition Formatting

CALLING MACROS

ARGUMENTS IN MACRO DEFINITIONS AND MACRO

CALLS

Macro Nesting

Special Characters in Macro Arguments

Passing Numeric Arguments as Symbols

Number of Arguments in Macro Calls

Creating Local Symbols Automatically

Keyword Arguments

Concatenation of Macro Arguments

MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND

+NTYPE

.NARG Directive

.NCHR Directive

.NTYPE Directive

.ERROR AND .PRINT DIRECTIVES

INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND

« IRPC

.IRP Directive

.IRPC Directive

REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

MACRO LIBRARY DIRECTIVE: .MCALL

MACRO DELETION DIRECTIVE: .MDELETE

PROCEDURES

IAS/RSX~-11M/RSX~-11M-PLUS OPERATING PROCEDURES

RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Initiating MACRO-11] Under RSX-11M/

RSX-11M-PLUS

Method 1 - Direct MACRO-11 Call

Method 2 - Single Assembly

Method 3 - Install, Run Immediately, and

Remove On Exit

Method 4 - Using the Indirect Command

Processor

Default File Specifications

MCR Command String Format

DCL Operating Procedures

MACRO-11 Command String Examples

IAS MACRO-11 OPERATING PROCEDURES

Initiating MACRO-11 Under IAS

IAS Command String

IAS Indirect Command Files

IAS Command String Examples

CROSS-REFERENCE PROCESSOR (CREF)

IAS/RSX-11M/RSX-11M-PLUS FILE SPECIFICATION

MACRO-11 ERROR MESSAGES UNDER IAS/RSX-11M/

RSX-11M-PLUS

RSTS/RT-11 OPERATING PROCEDURES

MACRO-11 UNDER RSTS

RT-11 Through RSTS

RSX Through RSTS

~
J |
e
t

I
T

T
B

I
T

T
N

N
N

N
N

N
N
N
N

N
N

|

=
0
0

B

B
B

W
N

-

9.2 INITIATING MACRO-11 UNDER RT-11

9.3 RT-11 COMMAND STRING

9.4 FILE SPECIFICATION OPTIONS

9.5 CROSS-REFERENCE (CREF) TABLE GENERATION

OPTION

9.5.1 Obtaining a Cross-Reference Table
9.5.2 Handling Cross-Reference Table Files

9.5.3 MACRO-11 Error Messages Under RT-11

APPENDIX A MACRO-11 CHARACTER SETS

A.l ASCII CHARACTER SET

A.2 RADIX-50 CHARACTER SET

A.3 DEC MULTINATIONAL CHARACTER SET

APPENDIX B MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER

DIRECTIVES

B.1l SPECIAL CHARACTERS

B.2 SUMMARY OF ADDRESS MODE SYNTAX

B.3 ASSEMBLER DIRECTIVES

APPENDIX C PERMANENT SYMBOL TABLE (PST)

c.1 OP CODES

C.2 MACRO-11 DIRECTIVES

APPENDIX D ERROR MESSAGES

APPENDIX E SAMPLE CODING STANDARD

LINE FORMAT

Version 5.2,

L

L

L4

B
B
B
B
D
W
W
W
W
W
W
W
W
W
W
W
W
N
-

|]

.

»

*

.

.

W
W
W
W
W
W
N
-

L]

L4

$

w

N

*

»

.

*

*

L

s

=

&

&

@

b
W

N

M
m
o
o
E
E
E

@
@

s

&

5

8

@

L]

L4

»
»

-
L]

.
.

.
L]

L J

s

&

e

s

b

W
N
)

&

&

o

s

s

s

s

®

&

s

@

S
N

N
N
T

T

b

D

COMMENTS

NAMING STANDARDS

Registers

General Purpose Registers

Hardware Registers

Device Registers

Processor Priority

Symbols

Symbol Examples

Local Symbols

Global Symbols

Macro Names

General Symbols

PROGRAM MODULES

The Module Preface

The Module

Module Example

Modularity

Calling Conventions (Inter-Module/

Intra-Module)

Exiting

Success/Failure Indication

Module Checking Routines

CODE FORMAT

Program Flow

Common Exits

Code with Interrupts Inhibited

Code in System State

INSTRUCTION USAGE

Forbidden Instructions

Conditional Branches

PROGRAM SOURCE FILES

vi

7
T
T

-

R
I

T
T

N
I

J
U
u
U
i
n
e
s

B
B

W
W
N
D
N
D
N
N
N
D
N
D

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

FIGURE

TABLE

- *

o

N

(
R

R
R

)
<

-
e

o

&

o

»

W
N

= .

o

N

=

A
W

W
| J

T
B
I

-

N

|
R

N
 B

O
W
N
H
H
J
O
M
U
B
T
®
»

W
K

Q
O

 o
o

N
I

O
I

|
N

b

I

PDP-11 VERSION NUMBER STANDARD

Displaying the Version Identifier

Use of the Version Number in the Program

ALLOCATING VIRTUAL MEMORY

GENERAL HINTS AND SPACE-SAVING GUIDELINES

MACRO DEFINITIONS AND EXPANSIONS

OPERATIONAL TECHNIQUES

WRITING POSITION-INDEPENDENT CODE

INTRODUCTION TO POSITION-INDEPENDENT CODE

EXAMPLES

SAMPLE ASSEMBLY AND CROSS-REFERENCE LISTING

OBSOLETE MACRO-11 DIRECTIVES, SYNTAX, AND

COMMAND LINE OPTIONS

OBSOLETE DIRECTIVES AND SYNTAX

OBSOLETE COMMAND LINE OPTION

RELEASE NOTES

CHANGES =-- ALL VERSIONS OF MACRO-1l1l

V5.2 Update Changes

V5.1 Changes

CHANGES -- MACRO-11/RSX VERSION ONLY

CHANGES -- MACRO-11/RT VERSION ONLY

FIGURES

Assembly Listing Showing Local Symbol Block

Sample Assembly Results

Example of Line Printer Assembly Listing

Example of Teleprinter Assembly Listing

Listing Produced with Listing Control

Directives

Assembly Listing Table of Contents

Example of .ENABL and .DSABL Directives

Example of .BLKB and .BLKW Directives

Example of .SAVE and .RESTORE Directives

Example of .NARG Directive

Example of .NCHR Directive

Example of .NTYPE Directive in Macro

Definition

Example of .IRP and .IRPC Directives

Sample CREF Listing

Example of Position-Dependent Code

Example of Position-Independent Code

TABLES

Special Characters Used in MACRO-11

Legal Separating Characters

Legal Argument Delimiters

Legal Unary Operators

Version 5.2, May 1984 vii

b N

=
N
U

|
I

T
N

N
D

H
W
N
O
H
E
B
W
N
D
H
F
I

O
w
U
v
i
d

W

W

W
Y

M

(o
)

W
o)

 W
e
)

(=
)
S
O
y
t
W Legal Binary Operators

Addressing Modes

Symbols Used in Chapter 5

Directives in Chapter 6

Symbolic Arguments of Listing Control

Directives

Symbolic Arguments of Function Control

Directives

Symbolic Arguments of .PSECT Directive

Program Section Default Values

Legal Condition Tests for Conditional
Assembly Directives

Subconditional Assembly Block Directives

File Specification Default Values
MACRO-11 File Specification Switches

DCL Command Qualifiers

DCL Parameter Qualifiers

Default File Specification Values
File Specification Options

/C Option Arguments

Old and New Directives and Syntax

viii

6-48

6-54

6-57

8-4

8-6

8-8

8-13

9-3

9-4

9-6

I-1

CHAPTER 1

THE MACRO-11 ASSEMBLER

MACRO-11 provides the following features:

l. Source and command string control of assembly functioné

2. Device and filename specifications for input and output files

3. Error listing on command output device

4. Alphabetized, formatted symbol table listing; optional

cross-reference listing of symbols

5. Relocatable object modules

6. Global symbols for linking object modules

7. Conditional assembly directives

8. Program sectioning directives

9. User-defined macros and macro libraries

10. Comprehensive system macro library

11. Extensive source and command string control of 1listing

functions.

MACRO-11 assembles one or more source files containing MACRO-11

statements into a single relocatable binary object file. The output

of MACRO-11 consists of a binary. object file and a file containing the

table of contents, the assembly listing, and the symbol table. An

optional cross-reference listing of symbols and macros is available.

A sample assembly listing is provided in Appendix H.

1.1 ASSEMBLY PASS 1

During pass 1, MACRO-11 locates and reads all required macros from

libraries, builds symbol tables and program section tables for the

program, and performs a rudimentary assembly of each source statement.

In the first step of assembly pass 1, MACRO-11 initializes all the

impure data areas (areas containing both code and data) that will be

used internally for the assembly process. These areas include all

dynamic storage and buffer areas used as file storage regions.

Version 5.2, May 1984 1-1

THE MACRO-11 ASSEMBLER

MACRO-11 then calls a system subroutine which transfers a command line
into memory. This command 1line contains the specifications of all
files to be used during assembly. After scanning the command line for
proper syntax, MACRO-11 initializes the specified output files. These
files are opened to determine if valid output file specifications have
been passed in the command line.

MACRO-11 now initiates a routine which retrieves source lines from the
input file. If no input file is open, as is the case at the beginning
of assembly, MACRO-11 opens the next input file specified 1in the
command line and starts assembling the source statements. MACRO-11
first determines the length of the instructions, then assembles them
according to length as one word, two words, or three words.

At the end of assembly pass 1, MACRO-11 reopens the output files
described above. Such information as the object module name, the
program version number, and the global symbol directory (GSD) for each
program section are output to the object file to be used later in
linking the object modules. After writing out the GSD for a given
program section, MACRO-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACRO-11 then writes out GSD records to the object file for these
symbols. This process is done for each program section.

1.2 ASSEMBLY PASS 2

On pass 2 MACRO-11 writes the object records to the output file while
generating both the assembly listing and the symbol table listing for
the program. A cross-reference listing may also be generated.

Basically, assembly pass 2 consists of the same steps performed 1in
assembly pass 1, except that all source statements containing
MACRO-l1-detected errors are flagged with an error code as the
assembly 1listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records that hold the information necessary
for linking the object file.

The information in the object file, when passed to the Task Builder or
Linker, enables the global symbols 1in the object modules to be
associated with absolute or virtual memory addresses, thereby forming
an executable body of code.

The user may wish to become familiar with the macro object file format
and description. This 1information is presented in the applicable
system manual (see Section 8.3 in the Preface).

SOURCE PROGRAM FORMAT

The legal characters for defining labels are:

A through Z

@ through 9

. (Period)

$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and

period (.) are reserved for wuse 1in

defining DIGITAL system software

symbols. Therefore these characters

should not be used in defining labels in

MACRO-11 source programs.

A label may be any length; however, only the first six characters are

significant and, therefore, must be unique among all the labels in the

source program. An error code (M) is generated 1in the assembly

listing if the first six characters in two or more labels are the

same.

A symbol used as a label must not be redefined within the source

program. If the symbol is redefined, a 1label with a multiple

definition results, causing MACRO-11 to generate an error code (M) in

the assembly 1listing. Furthermore, any statement 1in the source

program which references a multi-defined label generates an error code

(D) in the assembly listing.

2.2.2 Operator Field

The operator field specifies the action to be performed. It may

consist of an instruction mnemonic (op code), an assembler directive,

or a macro call. Chapters 6 and 7 describe these three types of

operators.

When the operator is an instruction mnemonic, a machine instruction is

generated and MACRO-11 evaluates the addresses of the operands which

follow. When the operator is a directive MACRO-11 performs certain

control actions or processing operations during the assembly of the

source program. When the operator is a macro call, MACRO-11 inserts

the code generated by the macro expansion.

Leading and trailing spaces or tabs in the operator field have no

significance; such characters serve only to separate the operator

field from the preceding and following fields.

An operator 1is terminated by a space, tab, or any non-RAD50

character*, as in the following examples:

MOV A,B ;The space terminates the operator MOV.

MOV A,B ;The tab terminates the operator MOV,

MOVE@A,B ;The @ character terminates the operator MOV.

* Appendix A.2 contains a table of Radix-5# characters.

2-3

SOURCE PROGRAM FORMAT

Although the statements above are all equivalent in function, the
second statement is the recommended form because it conforms to
MACRO-11 coding conventions.

2.2.3 Operand Field

When the operator is an instruction mnemonic (op code), the operand
field contains program variables that are to be evaluated/manipulated
by the operator. The operand field may also supply arguments to
MACRO-11 directives and macro calls, as described in Chapters 6 and 7,
respectively.

Operands may be expressions or symbols, depending on the operator.
Multiple expressions used in the operand field of a MACRO-11 statement
must be separated by a comma; multiple symbols similarly used may be
delimited by any legal separator (a comma, tab, and/or space). An
operand should be preceded by an operator field; if it 1is not, the
statement 1is treated by MACRO-11 as an implicit .WORD directive (see
Section 6.3.2).

When the operator field contains an op code, associated operands are
always expressions, as shown in the following statement:

MOV RO ,A+2 (R1)

On the other hand, when the operator field contains a MACRO-11
directive or a macro call, associated operands are normally symbols,
as shown in the following statement:

.MACRO ALPHA SYM1,SYM2

Refer to the description of each MACRO-11 directive (Chapter 7) to
determine the type and number of operands required in issuing the
directive.

The operand field is terminated by a semicolon when the field is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ;Comment field

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the 1line. This field is optional and may contain any 7-bit
ASCII or 8-bit DEC Multinational characters except null, RUBOUT,
carriage-return, 1line-feed, vertical-tab or form-feed. All other
characters appearing in the comment field, even special characters
reserved for use in MACRO-11, are checked only for ASCII legality and
then included in the assembly listing as they appear in the source
text.

Version 5.2, May 1984 2-4

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions: the

character set, the conventions observed in constructing symbols, and

the use of numbers, operators, terms and expressions.

3.1 CHARACTER SET

The following characters are legal in MACRO-11 source programs:

1. The letters A through Z. Both upper- and lower—-case letters

are acceptable, although, upon input, lower-case letters are

converted to upper-case (see Section 6.2.1, .ENABL LC).

2. Characters in the DEC Multinational character set (MCS). A

chart showing the MCS is located in Appendix A, with a list

of directives that support the MCS. Specific support for the

MCS is included with the description of each directive.

3. The digits @ through 9.

4, The characters . (period) and §$ (dollar sign). These

characters are reserved for wuse as Digital Equipment

Corporation system program symbols.

5. The special characters listed in Table 3-1. i

Table 3-1

Special Characters Used in MACRO-11

Character Designation Function

: Colon Label terminator.

3 Double colon Label terminator; defines the

label as a global 1label.

= Equal sign Direct assignment operator and

macro keyword indicator.

== Double equal Direct assignment operator;

sign defines the symbol as a global

symbol.

(continued on next page)

Version 5.2, May 1984 3-1

SYMBOLS AND EXPRESSIONS

Table 3-1

Special Characters Used in MACRO-11

Character Designation Function

=2 Equal sign colon Direct assignment operator;

macro keyword indicator;

causes error (M) in listing if

an attempt 1is made to change

the value of the symbol.

==: Double equal Direct assignment operator;

sign colon defines the symbol as a global
symbol; causes error (M) in

listing if an attempt is made

to change the wvalue of the
symbol.

% Percent sign Register term indicator. ~~

Tab Item or field terminator.

Space Item or field terminator.

Number sign Immediate expression

indicator.

@ At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter.

’ Comma Operand field separator.

: Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or Y

bracket expression indicator.

+ Plus sign Arithmetic addition operator

or autoincrement indicator.

- Minus sign Arithmetic subtraction

operator or autodecrement

indicator.

* Asterisk Arithmetic multiplication

operator.

/ Slash Arithmetic division operator.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)

Special Characters Used in MACRO-11

Character Designation Function

& Ampersand Logical AND operator.

! Exclamation point Logical inclusive OR operator.

" Double quote Double ASCII character

indicator.

(continued on next page)

Version 5.2, May 1984 3-2.1

SYMBOLS AND EXPRESSIONS

The % character may be used with any 1legal term or expression to

specify a register. For example, the statement

CLR $3+1

is equivalent in function to the statement

CLR %4

and clears the contents of register 4.

In contrast, the statement

CLR 4

clears the contents of virtual memory location 4.

The accumulator registers used in floating-point instructions <can be

defined in a similar manner. For example, with the definition

ACP=%0

the statement

MULF (R@) ,ACO

multiplies the contents of floating-point accumulator register AC# by

the floating-point number addressed by R@.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a

block of coding that has been delimited as a local symbol block.

Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

13

27$

59$

1948$

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those

statements between two normally-constructed symbolic labels

(see Figure 3-1). Note that a statement of the form:

ALPHA=EXPRESSION

is a direct assignment statement (see Section 3.3) but does

not create a label and thus does not delimit the range of a

local symbol block.

2. The range of a local symbol block is normally terminated upon

encountering a .PSECT, .CSECT, .ASECT, or .RESTORE directive

in the source program (see Figure 3-1).

3. The range of a 1local symbol block 1is delimited through

MACRO-11 directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2.1)

Version 5.2, May 1984 3-11

. SYMBOLS AND EXPRESSIONS

Ending delimiter: .ENABL LSB

or

one of the following:

Symbolic label (see Section 2.2.1)

.PSECT (see Section 6.7.1)

.CSECT (see Section 6.7.2)

.ASECT (see Section 6.7.2)

.RESTORE (see Section 6.7.4)

encountered after a .DSABL LSB (see

Section 6.2.1).

Local symbols provide a convenient means of generating 1labels for

branch instructions and other such references within local symbol

blocks. Using local symbols reduces the possibility of symbols with

multiple definitions appearing within a user program. 1In addition,

the use of local symbols differentiates entry-point labels from local

labels, since 1local symbols cannot be referenced from outside their

respective local symbol blocks. Thus, local symbols of the same name

can appear in other 1local symbol blocks without conflict. Local

symbols do not appear in cross-reference 1listings and require 1less

symbol table space than other types of symbols. Their wuse is

recommended.

When defining local symbols, use the range from 1$ to 299998 first.

Local symbols within the range 30A008$ through 65535$, inclusive, can

be generated automatically as a feature of MACRO-11. Such local

symbols are wuseful in the expansion of macros during assembly (see

Section 7.3.5).

Be sure to avoid multiple definitions of local symbols within the same

local symbol block. For example, if the local symbol 10$ is defined

two or more times within the same 1local symbol block, each symbol

represents a different address value. Such a multi-defined symbol

causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear

in a source program, see Figure 3-1.

1 it

2 # Simrle illustration of locasl swumbolsi the second block is delimited

3 i by the label XCTFAS.

4 ;-

S

6 000000 012700 XCTPRG: MOV $IMPURERO iPoint to imrure ares

0000006

7 000004 005020 1s¢ CLR (RO)+ iClear a word

8 000006 020027 CMP ROs#IMPURT tTest if at tor of ares

0000006

? 000012 001374 BNE is tlterate if not

%? +1Fall in to rerform rass initialization

12 000014 012700 XCTPAS: MOV $IMPPASYRO tFoint to rass storage ares

0000006

13 000020 005020 1% CLR (RO>+ iClear the ares

14 000022 020027 CMP RO #IMPFPAT tTest if at tor oOf ares

0000006

15 0000286 001374 BNE 1% iIterate of not

16 000030 000207 RTS PC iReturn if so

Figure 3-1 Assembly Listing Showing Local Symbol BRlock

ADDRESSING MODES

5.3 AUTOINCREMENT MODE

Format:

(ER

The contents of the register (ER) are incremented immediately

being used as the address of the operand (see Note below).

Examples

CLR

CLR

CLR

)+

MOV

MOV

(RO)+ ;Each instruction clears

(R4)+ ;the word at the address

(R2)+ ;contained in the specified

;register and increments

;that register's contents

;by two.

NOTE

Certain special instruction/address mode

combinations, which are rarely or never

used, do not operate the same on all

PDP-11 processors, as described below.

In the autoincrement mode, both the JMP

and JSR instructions autoincrement the

register before its use on the PDP-11/40

but not on the PDP-11/45 or 11/10.

In double operand instructions having

the addressing form Rn, (Rn)+ or

Rn,-(Rn), where the source and

destination registers are the same, the

source operand 1is evaluated as the

autoincremented or autodecremented

value, but the destination register, at

the time it is used, still contains the

originally intended effective address.

In the following example, as executed on

the PDP-11/40, Register R@ originally

contains 1008(8):

RO, (RA)+ ;The quantity 180 is moved

;to location 108.

RA,- (RO) ;The quantity 102 is moved

;to location 100.

The use of these forms should be

avoided, since they are not compatible

with the entire family of PDP-11

processors.

An error code (Z) 1is printed in the

assembly 1listing with each instruction

which 1is not compatible among all

members of the PDP-11 family.

Version 5.2, May 1984 5-3

after

ADDRESSING MODES

5.4 AUTOINCREMENT DEFERRED MODE

Format:

@ (ER)+

The register (ER) contains a pointer to the address of the operand.

The contents of the register are incremented after being used as

pointer.

Example:

CLR @(R3)+ ;The contents of register 3 point

;to the address of a word to be

;cleared before the contents of the

;register are incremented by two.

5.5 AUTODECREMENT MODE

Format:

- (ER)

The contents of the register (ER) are decremented before being used as

the address of the operand (see Note in Section 5.3).

Examples:

CLR - (RO) ;Decrement the contents of the speci-

;fied register (@, 3, or 2) by two

CLR - (R3) ;before using its contents

CLR - (R2) ;as the address of the word to be

;cleared.

5.6 AUTODECREMENT DEFERRED MODE

Format:

@- (ER)

The contents of the register (ER) are decremented before being used as

a pointer to the address of the operand.

Example:

CLR @-(R2) ;Decrement the contents of

;register 2 by two before

;using its contents as a pointer

;to the address of the word to be

;cleared.

GENERAL ASSEMBLER DIRECTIVES

|.TITLE |
6.1.2 .TITLE Directive.

Format:

.TITLE string

where string represents:

An identifier of one or more Radix-50 characters.

An identifier of one or more 8-bit DEC Multinational character

set (MCS) characters. Any MCS character must be preceded by six

Radix—-50 characters.

Appendix A.2 contains a table of Radix-5# characters. Appendix A.3

contains a table of MCS characters.

The .TITLE directive assigns a name to the object module. The name
assigned is the first six non-blank Radix-50 characters followed by

optional characters from the MCS. MACRO-11 ignores all spaces and/or
tabs up to the first non-space/non-tab character following the .TITLE

directive. Any characters beyond the first six Radix-56 characters

are evaluated for MCS legality.

The name of an object module (specified in the .TITLE directive)

appears in the 1load map produced at link time. This is also the
module name which the Librarian will recognize.

If the .TITLE directive is not specified, MACRO-11 assigns the default
name .MAIN. to the object module. If more than one .TITLE directive

is specified in the source program, the 1last .TITLE directive

encountered during assembly pass 1 establishes the name for the entire
object module.

If the .TITLE directive is specified without an object module name, or
if the first non-space/non-tab character in the object module name is
not Radix-58 character, the directive is flagged with an error code
(A) in the assembly listing.

[SBTTL]
6.1.3 .SBTTL Directive

Format:

.SBTTL string

where: string represents an identifier of one or more printable
7-bit ASCII or 8-bit DEC Multinational characters.

Version 5.2, May 1984 6-15

GENERAL ASSEMBLER DIRECTIVES

The .SBTTL directive 1is wused to produce a table of contents
immediately preceding the assembly 1listing and to print the text
following the .SBTTL directive on the second line of the header of
each page 1in the listing. The subheading in the text will be listed
until altered by a subsequent .SBTTL directive in the program. For
example, the directive:

.SBTTL Conditional assemblies

causes the text

Conditional assemblies

to be printed as the second 1line in the header of the assembly
listing.

During assembly pass 1, a table of contents containing the 1line
sequence number, the page number, and the text accompanying each
-SBTTL directive is printed for the assembly listing. The listing of
the table of contents is suppressed whenever an .NLIST TOC directive
is encountered in the source program (see Table 6-2). An example of a
table of contents listing is shown in Figure 6-4.

MTTEMT - RT-11 MULTI-TTY EMT SE MACRO V05.00 Saturday 08-Jan-83 10:00

TABRLE OF CONTENTS

50- 1 +MTOUT - Sindle character outrut EMT
51~ 1 +MTRCTO - Reset CTRL/0 EMT

92~ i +MTATCH - Attach to terminal EMT

S4- 1 +MTOTCH ~ Detach from a3 terminal EMT

SO 1 +MTFPRNT -~ Print message EMT

56~ 1 +MTSTAT - Return multi-terminsl sustem status EMT

57~ 1 MTYTIN - Sinsle character inrut

98- 1 MTTGET -~ Get a8 character from the ring buffer

59 - 1 TTRSET - Reset terminal status bits

60~ 1 MTTPUT -~ Sindgle character output

62~ i MTRSET - Stor and detasch all terminals attached to a3 .Job

63~ 1 ESCAPE SEGUENQE TEST SUBROUTINE

Figure 6-4 Assembly Listing Table of Contents

|.IDENT|
6.1.4 LIDENT Directive

Format:

.IDENT /string/

where: string represents a string of six or fewer Radix-50

characters which establish the program identification

or version number. This string is included ‘in the
global symbol directory of the object module and is

printed in the 1link map and librarian listing.

6-16

GENERAL ASSEMBLER DIRECTIVES

/ / represent delimiting characters. These delimiters may

be any paired printing characters, other than the

equal sign (=), the left angle bracket (<), or the

semicolon (;), as long as the delimiting character is

not contained within the text string itself (see Note

in Section 6.3.4). If the delimiting characters do

not match, or if an illegal delimiting character is

used, the L.IDENT directive is flagged with an error

code (A) in the assembly listing.

In addition to the name assigned to the object module with the .TITLE

directive (see Section 6.1.3), the .IDENT directive allows the user to

label the object module with the program version number.

An example of the .IDENT directive is shown below:

.IDENT /V01.00/

The character string is converted to Radix-50 representation and

included in the global symbol directory of the object module. This

character string also appears in the link map produced at 1link time

and the Librarian directory listings.

When more than one .IDENT directive is encountered in a given program,

the 1last such directive encountered establishes the character string

which forms part of the object module identification.

The RT-11 linker allows only one .IDENT string in a program. The

linker uses the first .IDENT directive encountered during the first

pass to establish the character string that will be identified with

all of the object modules.

The RSX-11M task builder allows an .IDENT string for each module in

the program. The TASK Builder uses the first .IDENT directive in each

module to establish the character string that will be identified with

that module. Like the RT-11 Linker, the RSX-11M Task Builder uses the

JIDENT directives encountered on the first pass.

|.PAGE|
6.1.5 JPAGE Directive/Page Ejection

Format:

« PAGE

The .PAGE directive is used within the source program to perform a

page eject at desired points in the listing. This directive takes no

arguments and causes a skip to the top of the next page when

encountered. It also causes the page number to be incremented and the

line sequence counter to be cleared. The .PAGE directive does not

appear in the listing.

When used within a macro definition, the .PAGE directive 1is 1ignored

during the assembly of the macro definition. Rather, the page eject

operation is performed as the macro itself is expanded. In this case,

the page number is also incremented.

6-17

GENERAL ASSEMBLER DIRECTIVES

Page ejection is accomplished in three other ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11
automatically performs a page eject to skip over page
perforations on 1line printer paper and to formulate
teleprinter output into pages. The page number 1is not
changed.

2. A page eject is performed when a form-feed character is
encountered. If the form-feed character appears within a

macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form-feed character causes the page number to be incremented
and the line sequence counter to be cleared.

3. A page eject is performed when encountering a new source

file. In this case the page number is incremented and the
line sequence count is reset.

.REM
6.1.6 .REM Directive/Begin Remark Lines

Format:

.REM comment-~character

where: comment-character represents a 7-bit ASCII or 8-bit DEC

Multinational character that marks the

end of the comment block when the

character reoccurs.

The .REM directive allows a programmer to insert a block of comments
into a MACRO-11 source program without having to precede the comment
lines with the comment character (;). The text between the specified
delimiting characters 1is treated as comments. The comments may span
any number of lines. For example:

«TITLE Remark example

.REM &

All the text that resides here is interpreted by MACRO-11
to be comment lines until another ampersand character is
found. Any character may be used in place of the ampersand.&
CLR PC

« END

6.2 FUNCTION DIRECTIVES

The following function directives are included in a source program to
invoke or inhibit certain MACRO-11 functions and operations incidental
to the assembly process itself,

Version 5.2, May 1984 6-18

GENERAL ASSEMBLER DIRECTIVES

[(ENABL]

| .DSABL|
6.2.1 .ENABL and .DSABL Directives

Formats:

. ENABL arg

.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-3.

Specifying any argument in an .ENABL/.DSABL directive other than those

listed in Table 6-3 causes that directive to be flagged with an error

code (A) in the assembly listing.

Table 6-3

Symbolic Arqguments of Function Control Directives

Argument Default Function

ABS Disable Enabling this function produces absolute
binary output in FILES-11 format. To

convert this output to Formatted Binary

format (as required by the Absolute

Loader), use the FLX utility.

AMA Disable Enabling this function causes all relative

addresses (address mode 67) to be assembled

as absolute addresses (address mode 37).

This function is useful during the

debugging phase of program development.

CDR Disable Enabling this function causes source

columns from 73 to the end of the line, to

be treated as a comment. The most common

use of this feature is to permit sequence

numbers in card columns 73-840.

CRF Enable Disabling this function inhibits the

generation of cross-reference output. This

function only has meaning if

cross-reference output generation is

specified in the command string.

FPT Disable Enabling this function causes floating-

point truncation; disabling this function

causes floating-point rounding.

LC Enable Disabling this function causes MACRO-11 to

convert all ASCII input to upper-—-case

before processing it.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of Function Control Directives

FunctionArgument Default

LCM Disable

LSB Disable

MCL Disable

PNC Enable

An example of the .ENABL LC and .DSABL LC

directives, as typically used in a source
program, is shown in Figure 6-5.

This argument, if enabled, causes the
MACRO-11 <conditional assembly directives

.IF IDN and .IF DIF to be alphabetically

case sensitive. By default, these
directives are not case sensitive.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block 1is normally
established by encountering a new symbolic

label, a .PSECT directive or a .RESTORE
directive 1in the source program, an .ENARL
LSB directive establishes a new local

symbol block which is not terminated until

(1) another .ENABL LSB is encountered, or

(2) another symbolic label, .PSECT

directive or .RESTORE directive is

encountered following a paired .DSABL LSB

directive.

The basic function of this directive with

regard to .PSECTS 1is 1limited to those

instances where it is desirable to leave a

program section temporarily to store data,

followed by a return to the original

program section. This temporary dismissal

of the current program section may also be

accompl ished through the .SAVE and .RESTORE
directives (see Sections 6.7.3 and 6.7.4).

Attempts to define 1local symbols in an

alternate program section are flagged with

an error code (P) in the assembly listing.

This argument, if enabled, causes MACRO-11

to search all known macro libraries for a

macro definition that matches any undefined

symbols appearing in the opcode field of a

MACRO-11 statement. By default, this

option 1is disabled. If MACRO-11 finds an
unknown symbol in the opcode field, it

either declares a (U) undefined symbol

error, or declares the symbol an external
symbol, depending on the .ENABL/.DSABL

option setting of GBL (described below).

Disabling this function inhibits binary
output until an LJ(ENABL PNC statement is

encountered within the same module.

Version 5.2, May 1984

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

If an expression following the .WORD directive contains a null value,

it is interpreted as a zero, as shown in the following example:

.=500 |

«WORD ' 5, :Stores the values @, 5, and @ in
;location 500, 502, and 504,

;respectively.

A statement with a blank operator field (one that contains a symbol

other than a macro call, an instruction mnemonic, a MACRO-11

directive, or a semicolon) is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=440

LABEL: 100,LABEL ;Stores the value 100 in location 4490
;and the value 440 in location 442.

NOTE

You should not use this technique to

generate .WORD directives because it may

not be included in future PDP-11

assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote (") characters are unary

operators that can appear in any MACRO-11 expression. Used in

MACRO-11 expressions, these characters cause a 16-bit expression value
to be generated.

When the single quote is used, MACRO-11 takes the next character in
the expression and converts it from its 7-bit ASCII or 8-bit DEC
Multinational value to a 16-bit expression value. The high-order byte

of the resulting expression value 1is always zero (#). The 16-bit
value is then used as an absolute term within the expression. For
example, the statement:

MOV #'A,R0O

moves the following 16-bit expression value into register 0:

[00000000|01000001|

t;mBinary Value of ASCII A

Thus the expression 'A results in a value of 101(8).

The single quote (') character must not be followed by a

carriage-return, null, RUBOUT, line-feed, or form-feed character; if
it is, an error code (A) is generated in the assembly listing.

Version 5.2, May 1984 6-25

GENERAL ASSEMBLER DIRECTIVES

When the double quote is used, MACRO-11 takes the next two characters

in the expression and :onverts them to a 16-bit binary expression

value from their 7-bit ASCII or 8-bit DEC Multinational values. This

16-bit wvalue is then used as an absolute term within the expression.

For example, the statement:

MOV #"AB,R@

moves the following 16-bit expression value into register 9:

|01000010|91000001|

t‘-k----v----B'J*".r'xary Value of ASCII A
Binary Value of ASCII B

Thus the expression "AB results in a value of 041101(8).

The double quote (") character, like the single quote (') character,

must not be followed by a carriage-return, null, RUBOUT, line-feed, or

form-feed character; if it is, an error code (A) is generated in the

assembly listing.

The ASCII character set is 1listed 1in Appendix A.l. The DEC

Multinational character set is listed in Appendix A.3.

[-Asci]
6.3.4 LASCII Directive

Format:

.ASCII /string l/.../string n/

where: string 1s a string of printable 7-bit ASCII or 8-bit DEC

Multinational characters. The vertical-tab, null,

line-feed, RUBOUT, and all other non-printable ASCII

characters, except carriage-return and form-feed,

cause an error code (I) if used in an .ASCII string.

The carriage-return and form-feed characters are

flagged with an error code (A) because these

characters end the scan of the 1line, preventing

MACRO-11 from detecting the matching delimiter at the

end of the character string.

/ / represent delimiting characters. These delimiters may

be any paired printing characters, other than the

equal sign (=), the left angle bracket (<), or the

semicolon (;) (see Note at end of section), as long as

the delimiting character is not contained within the

text string itself. If the delimiting characters do

not match, or if an illegal delimiting character is

used, the ASCII directive is flagged with an error

code (A) in the assembly listing.

Version 5.2, May 1984 6-26

GENERAL ASSEMBLER DIRECTIVES

The .ASCII directive translates character strings into their 7-bit

ASCII or 8-bit DEC Multinational equivalents and stores them in the

object module. A non-printing character can be expressed only by

enclosing 1its equivalent octal value within angle brackets. Each set

of angle brackets so used represents a single character. For example,

in the following statement:

LASCII <15>/ABC/<A+2>/DEF/<K5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the wvalues of

non-printing characters. Each bracketed expression must reduce to

eight bits of absolute data or less.

Angle brackets can be embedded between delimiting characters in the

character string, but angle brackets so used do not take on their

usual significance as delimiters for non-printing characters. For

example, the statement:

.ASCII /ABC<expression>DEF/

contains a single ASCII character string, and performs no evaluation

of the embedded, bracketed expression. This use of the angle brackets

is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ ;Stores the binary representation

;of the letters HELLO in five

;consecutive bytes.

.ASCII /ABC/<15><12>/DEF/ ;Stores the binary representation
‘ ;of the characters A,B,C,carriage

sreturn,line feed,D,E,F in eight

;consecutive bytes.

LASCII /A<15>B/ ;Stores the binary representation

;of the characters A, <, 1, 5, >,

;and B in six consecutive bytes.

NOTE

The semicolon (;) and equal sign (=) can

be wused as delimiting characters in the
string, but care must be exercised in so

doing because of their significance as a

comment indicator and assignment

operator, respectively, as illustrated

in the examples below:

.ASCII ;ABC;/DEF/ ;Stores the binary
;representation of

:the characters

;A, B, ¢, D, E, and

;F in six

;consecutive bytes;

;not recommended

;practice.

Version 5.2, May 1984 6-27

GENERAL ASSEMBLER DIRECTIVES

.ASCII /ABC/;DEF; ;Stores the binary

;representations of

;the characters A,

;B, and C in three

;consecutive bytes;

;the characters D,

;E, F, and ; are

streated as a

;comment.

.ASCII /ABC/=DEF= ;Stores the binary

;representation of

;the characters A,

;B, C, D, E, and

;F in six

;consecutive bytes;

;not recommended

;practice.

An equal sign is treated as an

assignment operator when it appears as
the first character in the ASCII string,

as illustrated by the following example:

.ASCII =DEF= ;The direct

;assignment

;operation

; cASCII=DEF is

;performed, and a

;syntax error (Q)

;1s generated upon

;encountering the

;second = sign.

|.AsCIZ]
6.3.5 .ASCIZ Directive

Format:

.ASCIZ /string 1/.../string n/

| where: string 1is a string of printable 7-bit ASCII or 8-bit DEC
Multinational characters. The vertical-tab, null,

line-feed, RUBOUT, and all other non-printable ASCII

characters, except carriage-return and form-feed,

cause an error code (I) if used in an .ASCIZ string.

The carriage-return and form-feed characters are

flagged with an error code (A) because they end the

scan of the line, preventing MACRO-11 from detecting

the matching delimiter.

Version 5.2, May 1984 6-28

GENERAL ASSEMBLER DIRECTIVES

Table 6-6 (Cont.)

Legal Condition Tests for Conditional Assembly Directives

Conditions

Positive Complement Arguments Assemble Block If:

IDN DIF Two 7-bit ASCII Arguments are identical

or 8-bit DEC (or different). The .IF

Multinational IDN/.IF DIF conditional

macro-type directives are not

arguments alphabetically case

sensitive by default.

The user may enable these

directives to be case

sensitive by wusing the

. ENABL option (. ENABL

LCM).

NOTE

A macro-type argument (which is a form

of symbolic argument), as shown below,

is enclosed within angle brackets or

denoted with an wup-arrow construction

(as described in Section 7.3).

<A,B,C>

~/124/

An example of a conditional assembly directive follows:

.IF EQ ALPHA+l ;Assemble block if ALPHA+1=0

-

»

« ENDC

The two operators & and ! have special meaning within DF and NDF

conditions, in that they are allowed in grouping symbolic arguments.

& Logical AND operator

! Logical inclusive OR operator

For example, the conditional assembly statement:

.IF DF SYM1l & SYM2

»*

L

« ENDC

results in the assembly of the conditional block if the symbols S¥YM1
and SYM2 are both defined. |

Version 5.2, May 1984 6-55

GENERAL ASSEMBLER DIRECTIVES

Nested conditional directives take the form:

Conditional Assembly Directive

Conditional Assembly Directive

»

« ENDC

« ENDC

For example, the following conditional directives:

.IF DF SyYM1

.IF DF SYM2

-

. ENDC

. ENDC

can govern whether assembly is to occur. In the example above, if the

outermost condition 1is unsatisfied, no deeper level of evaluation of

nested conditional statements within the program occurs.

Each conditional assembly block must be terminated with an J.ENDC

directive. An LENDC directive encountered outside a conditional

assembly block is flagged with an error code (0) in the assembly

listing.

MACRO-11 permits a nesting depth of 16(10) conditional assembly

levels. Any statement that attempts to exceed this nesting level

depth is flagged with an error code (0) in the assembly listing.

IFF

[IFT]

AFTF)
6.9.2 Subconditional Assembly Block Directives |

Formats:

.IFF

.IFT

. IFTF

Subconditional directives may be placed within conditional assembly

blocks to indicate:

l. The assembly of an alternate body of code when the condition

of the block tests false.

2. The assembly of a non-contiguous body of code within the

conditional assembly block, depending upon the result of the

conditional test in entering the block.

3. The unconditional assembly of a body of code within a

conditional assembly block.

Iy

iy

GENERAL ASSEMBLER DIRECTIVES

| .INCLUDE|
6.10.2 L.INCLUDE Directive

Format:

.INCLUDE string

where: string represents a delimited string that 1is the file
specification of a macro source file.

The .INCLUDE directive is used to insert a source file within the
source file currently being used. When this directive is encountered,
an implicit .PAGE directive is issued, the current source file Iis

stacked, and the source file specified by the directive is read into
memory. When the end of the specified source file 1is reached, an
implicit .PAGE directive is issued, the original source file is popped
from the stack, and assembly resumes at the 1line following the

directive. A source file can also be inserted within a source file
that has already been specified by the .INCLUDE directive. In this
case the original source file and the first source file specified by
the .INCLUDE directive are stacked and the second specified source
file 1is read into memory. When the end of the second source file is

reached, the first specified source file is popped from the stack and
assembly resumes at the line following the directive, and when the end
of the first specified source file is reached, the original source
file is popped from the stack and assembly of that file is started
again at the line following the .INCLUDE directive. An implicit .PAGE
directive precedes and follows each included source file. The maximum
nesting level of source files specified by the .INCLUDE directive |is
five.

If any information is omitted from the source file argument, default

values are assumed. The default file specification for MACRO-11/RT-11
is DK:.MAC, and for other systems it is SY:.MAC.

The ,INCLUDE directive is used as follows:

. INCLUDE /DR3:[1,2]MACROS/ ;File MACROS.MAC

. INCLUDE ?DK: SYSDEF?

. INCLUDE \CURRENT.MAC\

NOTE

If you are using MACRO-11] with an RT-11

operating system, the device driver for

the specified device that the .INCLUDE

file resides on must already be loaded,

either explicitly with the KMON LOAD

command, or implicitly by reference to

the device on the original MACRO-11

command line.

Version 5.2, May 1984 6-61

g,

MACRO DIRECTIVES

Macro definition arguments (dummy) and macro call arguments (real)

normally maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the first dummy
argument in a macro definition. Only the use of keyword arguments in
a macro call can override this correspondence (see Section 7.3.6).

For example, the following macro definition and its associated macro
call contain multiple arguments:

.MACRO REN A,B,C

-

-

»

REN ALPHA,BETA,<C1l,C2>

Arguments which themselves contain separating characters must be

enclosed in paired angle brackets. For example, the macro call:

REN <MOV X,¥>,#44 ,WEV

causes the entire expression

MOV X,Y

to‘replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro <call are considered to be character

strings and are treated as a single entity during the macro expansion.

The up-arrow (") construction allows angle brackets to be passed as

part of the argument. This construction, for example, could have been
used in the above macro call, as follows:

REN ~/<MOV X,Y>/,#44,WEV

causing the entire character string <MOV X,¥> to be passed as an

argument.

Because of the use of the up-arrow () shown above, care must be taken

when passing an argument beginning with a unary operator ("0, °D, "B,
"R, “F ...). These arguments must be enclosed in angle brackets (as

shown below) or MACRO-11 will read the character following the

up-arrow as a delimiter.

REN <°0 411>,X,Y

The following macro call:

REN #44 ,WEV~/MOV X,Y/

contains only two arguments (#44 and WEV"/MOV X,Y/), because the

up-arrow is a unary operator (see Section 3.1.3) and it is not
preceded by an argument separator.

As shown in the examples above, spaces can be used within bracketed
argument constructions to increase the legibility of such expressions.

When 8-bit DEC Multinational character set (MCS) characters are used

in argument strings, they must be enclosed in angle brackets (<>) or

the argument delimiter (/) must be preceded by an up-arrow (7). The
following are legal uses of the MCS characters in the argument string:

<This string can contain MCS characters>

“/This string can contain MCS characters/

Version 5.2, May 1984 7-5

MACRO DIRECTIVES

7.3.1 Macro Nesting o

Macro nesting occurs where the expansion of one macro includes a call

to another. The depth of nesting allowed depends upon the amount of

dynamic memory used by the source program being assembled.

To pass an argument containing legal argument delimiters to nested

macros, enclose the argument in the macro definition within angle

brackets, as shown in the coding sequence below. This extra set of

angle brackets for each 1level of nesting is required in the macro

definition, not in the macro call.

.MACRO LEVEL1 DUM1,DUM?2

LEVEL2 <DUM1>

LEVEL2 <DUM2>

. ENDM

.MACRO LEVEL2 DUM3

DUM3

ADD $10,40

MOV RO, (R1)+ e

. ENDM

A call to the LEVEL1 macro, as shown below, for example:

LEVEL1 <MOV X,R@>,<MOV R2,R0@>

causes the following macro expansion to occur:

MOV X, R0

ADD $10,R0

MOV R@, (R1)+

MOV R2, R0 —

ADD #10,RP

MOV RO, (R1)+

When macro definitions are nested, the 1inner definition <cannot be

called until the outer macro has been called and expanded. For

example, in the following coding:

.MACRO LV1 A,B

-

-

.MACRO LV2 C o

L

»

. ENDM

. ENDM

the LV2 macro cannot be called and expanded until the LVl macro has

been expanded. Likewise, any macro defined within the LV2 macro

definition cannot be called and expanded until LV2 has also been

expanded.

MACRO DIRECTIVES

This automatic generation is invoked on each call of a macro whose

definition contains a dummy argument preceded by the question mark (?)

character, as shown in the macro definition below:

.MACRO ALPHA, A,?B ;:Contains dummy argument B preceded by

;jquestion mark.

TST A

BEQ B

ADD #5,A

B:

. ENDM

A local symbol is created automatically by MACRO-11 only when a real

argument of the macro call 1is either null or missing, as shown in

Example 1 below. If the real argument is specified in the macro call,

however, MACRO-11 inhibits the generation of a local symbol and normal

argument replacement occurs, as shown in Example 2 below. (Examples 1

and 2 are both expansions of the Alpha macro defined above.)

EXAMPLE 1: Create a Local Symbol for the Missing Argument:

ALPHA R1 ;Second argument is missing.

TST R1

BEQ 30000$;Local symbol is created.

ADD #5,R1

30000S:

EXAMPLE 2: Do Not Create a Local Symbol:

ALPHA R2,XYZ ;Second argument XYZ is specified.

TST R2

BEQ XYZ ;Normal argument replacement occurs.

ADD #5,R2

XYZ:

Automatically created local symbols are restricted to the first 16(10)

arguments of a macro definition.

Automatically created local symbols resulting from the expansion of a

macro, as described above, do not establish a local symbhol block in

their own right.

When a macro has several arguments earmarked for automatic local

symbol generation, substituting a specific label for one such argument

risks assembly errors because MACRO-11] constructs its argument

substitution 1list at the point of macro invocation. Therefore, the

appearance of a label, the .(ENABL LSB directive, or the .PSECT
directive, 1in the macro expansion will create a new local symbol

block. The new local symbol block could leave local symbol references

in the previous block and their symbol definitions in the new one,
causing error codes in the assembly 1listing. Furthermore, a later

macro expansion that creates 1local symbols in the new block may

duplicate one of the symbols in question, causing an additional error

code (P) in the assembly listing.

MACRO DIRECTIVES

7.3.6 Keyword Arguments

Format:

name=string

where: name represents the dummy argument,

string represents the real symbolic argument.

The keyword argument may not contain embedded argument separators
unless delimited as described in Section 7.3.

Macros may be defined with, and/or called with, keyword arguments.

When a keyword argument appears in the dummy argument list of a macro
definition, the specified string becomes the default real argument at
macro call. When a keyword argument appears in the real argument list

of a macro call, however, the specified string becomes the real
argument for the dummy argument that matches the specified name,

whether or not the dummy argument was defined with a keyword. If a
match fails, the entire argument specification is treated as the next
positional real argument.

The DEC Multinational character set can be used in keyword arguments
if enclosed in angle brackets (<>).

A keyword argument may be specified anywhere 1in the dummy argument

list of a macro definition and is part of the positional ordering of
argument. A keyword argument may also be specified anywhere in the

real argument list of a macro call but, in this case, does not affect
the positional ordering of the arguments.

1 .LIST ME

2 ;
3 ; Define a macro having keywords in dummy argument

4 ;: list

5 ;
6 .MACRO TEST CONTRL=1,BLOCK,ADDRES=TEMP
7 « WORD CONTRL

8 .WORD BLOCK

9 . WORD ADDRES

10 . ENDM

11

12

13 :

14 ; Now invoke several times

15 H

16

17 400000 TEST A,B,C

gRneA0a8 QPOBRAAG .WORD A

goaRaz @a0eeaG .WORD B

900004 QP00QBAG .WORD C

18

19 200006 TEST ADDRES=20,BLOCK=30,CONTRL=40
00006 @ag040 .WORD 40

00010 @00030 . WORD 30

gO0B12 000020 «WORD 20

20

21 Popola TEST BLOCK=5

000014 Q00001 .WORD 1

gAPB16 QOOAOAS .WORD 5

000020 QPOO0BAG «.WORD TEMP

Version 5.2, May 1984 7-10

C
O
N
O
G
U
A
D
M
U
H
U
N
M

24

000000

2 000000

000000

000002

000004

000006

000010

000012

MACRO DIRECTIVES

000000

000001

0000046

0002490

000240

000240

000240

000240

000240

000001

+

R

W
E

W

+MACRO

+ENDM

+TITLE NARG

+ENABL _LC

LIST

Examrle of the

NULL

+NARG

+IF EQ

+MEXIT

+IFF

+REFPT

NOP

+ENDM

+ENDC

NULL

+ NARG

+IF EQ

+MEXIT

« IFF

+REFT

NOF

+ENDM

+ENDC

NULL

+NARG

+IF EQ

+MEXIT

. IFF

+REFT

NOF

+ENDM

NOF

NOF

NOP

NOFP

NOF

NOF

+ENDC

«END

ME

+ NARG

NUM

SYM

SYM

NUM

SYM
SYM

SYM

SYM

b

Figure 7-1 Example of .NARG Directive

| .NCHR]|
7.4.2 .NCHR Directive

Format:

[label:] .NCHR symbol,<string>

where: label represents an optional statement label.

symbol represents any legal symbol. This symbol is

equated to the number of characters in the

specified character string. If a symbol 1is not

specified, the .NCHR directive is flagged with an

error code (A) in the assembly listing.

represents any (comma,

and/or tab).

legal separator space,

7-13

<{string>

MACRO DIRECTIVES

represents a string of printable 7-bit ASCII or
8-bit DEC Multinational characters. If the
character string contains a legal separator
(comma, space, and/or tab) the whole string must
be enclosed within angle brackets (<>) or be
delimited wusing the wup-arrow (") construction,
explained 1in Section 7.3. If the delimiting
characters do not match or if the ending delimiter
cannot be detected because of a syntactical error
in the character string (thus prematurely
terminating its evaluation), the .NCHR directive
is flagged with an error code (A) in the assembly
listing.

The .NCHR directive, which can appear anywhere in a MACRO-11 program,
is used to determine the number of characters in a specified character
string. This directive is useful in calculating the length of macro
arguments,

An example of the .NCHR directive is shown in Figure 7-2.

1 +TITLE NCHR

2

3 +ENABL LC

4 +LIST ME

5 it

é $ Illustrate the NCHR directive

7 ;-

8

9 +MACRO STRING MESSAG

10 + NCHR $$$,MESSAG

i1 +WORD $%8

12 +ASCII /MESSAG/

13 +EVEN

14 +ENDM

15

16 000000 MSG1¢ STRING <Hello>

000005 +« NCHR $$%$,)Hello

000000 00000% «WORD $$¢

000002 110 +ASCII /Hello/

000003 14%

000004 154

000008 154

000006 157

+EVEN

17

i8 000001 +END

Figure 7-2 Example of .NCHR Directive

7.4.3 JNTYPE Directive

Format:

[label:]

where: label

symbol

|-.NTYPE]

.NTYPE symbol ,aexp

represents an optional statement label.

represents any legal symbol. This symbol is

equated to the 6-bit addressing mode of the

following expression (aexp). If a symbol 1is not
specified, the .NTYPE directive is flagged with an
error code (A) in the assembly listing.

Version 5.2, May 1984 7-14

N

MACRO DIRECTIVES

’ represents any legal separator (comma, space,

and/or tab).

aexp represents any legal address expression, as used
If no argument is specified, an

will appear 1in the assembly
opcode.

(A)

with an

error code

listing.

The .NTYPE directive is used to determine the addressing mode of a

specified macro argument. Hence, the .NTYPE directive can appear only

within a macro definition; if it appears elsewhere, it is flagged

with an error code (0) in the assembly listing.

An example of the use of an .NTYPE directive in a macro definition |is

shown in Figure 7-3.

1 +TITLE NTYPE

2

3 +ENABL LC

4 +LIST ME

b

& it

7 i Illustrate the NTYPE directive

8 i

9

10 +MACRO SAVE ARG

11 +NTYPE $$%,ARG

12 +IF EQG $$$370

13 MOV ARG~ (SP) iSave in redgister wmode

14 +IFF

1% MOV $ARG» - (SP) $Save in non-redister wmode

14 +ENDC

17 +ENDM

18

19 000000 SAVE R1

000001 +NTYPE $$$:R1

+IF EQ $3%%870

000000 010146 MOV R1s-(SP) $Save in redgister mode
+IFF

MOV $R1,»~-(SP) $Save in non-register wmode

+ENDC

20

21 000002 SAVE TEMP
000067 +NTYPE $$$»TEMP

+IF EQ $%$%%70

MOV TEMFP»-(SP) iSave in redgister mode

s IFF

000002 012746 MOV $TEMP,-(SP) iSave in rnon-redister mode

000006

+ENDC

22

23 0000086 000000 TEMP: +WORD 0

24

2% 000001 +END

Figure 7-3 Example of .NTYPE Directive in Macro Definition

For additional information concerning addressing modes, refer to

Chapter 5 and Appendix B.2.

7-15

MACRO DIRECTIVES

[.ERROR]7.5 <ERROR AND .PRINT DIRECTIVES

Format:

[label:] . ERROR [expr] ;text

where: label represents an optional statement label.

expr represents an optional expression whose value is
output when the .ERROR directive is encountered
during assembly.

-
~ denotes the beginning of the text string.

text represents the message associated with the .ERROR
directive. The text can be 7-bit ASCII or 8-bit
DEC Multinational characters.

The .ERROR directive is used to output messages to the 1listing file
during assembly pass 2. A common use of this directive is to alert
the user to a rejected or erroneous macro call or to the existence of
an 1llegal set of conditions in a conditional assembly. If the
listing file is not specified, the .ERROR messages are output to the
command output device.

Upon encountering an .ERROR directive anywhere in a source program,
MACRO-11 outputs a single line containing:

l. An error code (P)

2. The sequence number of the .ERROR directive statement

3. The value of the current location counter

4. The value of the expression, if one is specified

5. The source line containing the .FERROR directive.

For example, the following directive:

«.ERROR A iInvalid macro argument

causes a line in the following form to be output to the listing file:

Seq. Loc. Exp.

No. No. Value Text

P 512 005642 0QP@A76 .ERROR A ;iInvalid macro argument

Version 5.2, May 1984 7-16

MACRO DIRECTIVES

[.PRINT]

The .PRINT directive is identical in function to the .ERROR directive,

except that it is not flagged with the error code (P).

7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND .IRPC

An indefinite repeat block is similar to a macro definition with only

one dummy argument. At each expansion of the indefinite repeat range,

this dummy argument is replaced with successive elements of a real

argument 1list. Since the repeat directive and its associated range

are coded in-line within the source program, this type of macro

definition and expansion does not require calling the macro by name,

as required in the expansion of the conventional macros previously

described in this chapter.

An indefinite repeat block can appear either within or outside another

macro definition, indefinite repeat block, or repeat block. The rules

for specifying indefinite repeat block arguments are the same as for

specifying macro arguments (see Section 7.3).

7.6.1 JIRP Directive .IRP]
Format:

[label:] .IRP sym,<argument list>

»

(range of indefinite repeat block)

»

. ENDM

where: label represents an optional statement label.

NOTE

Although it is legal for a label to appear

on an .IRP directive, this practice is

discouraged, especially in the case .of

nested macro definitions, because invalid

labels or Jlabels constructed with the

concatenation character will cause the

macro directive to be ignored. This may

result in improper termination of the

macro definition.

This NOTE also applies to .IRPC and .REPT.

Version 5.2, May 1984 7-17

MACRO DIRECTIVES

sym represents a dummy argument that is replaced with

successive real arguments from within the angle
brackets. If no dummy argument is specified, the

.IRP directive 1is flagged with an error code (2)
in the assembly listing.

’ represents any legal separator (comma, space,

and/or tab).

{argument list> represents a 1list of real arguments enclosed

within angle brackets that is to be used in the
expansion of the indefinite repeat range. A real
argument may consist of one or more 7-bit ASCII or

8-bit DEC Multinational characters; multiple

arguments must be separated by any legal separator

(comma, space, and/or tab). If no real arguments

are specified, no action is taken.

range represents the block of code to be repeated once

for each occurrence of a real argument in the
list. The range may contain other macro
definitions, repeat ranges and/or the MEXIT
directive (see Section 7.1.3).

. ENDM indicates the end of the indefinite repeat block

range.

The .IRP directive is used to replace a dummy argument with successive
real arguments specified in an argument string. This replacement
process occurs during the expansion of an indefinite repeat block

range.

An example of the use of the .IRP directive is shown in Figure 7-4.

7.6.2 JIRPC Directive lRPC |

Format:

[label:] .IRPC sym,<string>

»

(range of indefinite repeat block)

»

. ENDM

where: label represents an optional statement label (see Note

in Section 7.6.1).

sym represents a dummy argument that is replaced with

successive real arguments from within the angle

brackets. If no dummy argument is specified, the

+IRPC directive is flagged with an error code (A)

in the assembly listing.

Version 5.2, May 1984 7-18

MACRO DIRECTIVES

’ represents

and/or tab).

any legal separator (comma, space,

<string> 7-bit ASCII or 8-bit DEC
enclosed within angle

the expansion of the

Although the angle

represents a list of

Multinational characters,

brackets, to be used 1in

indefinite repeat range.

brackets are required only when the string

contains separating characters, their wuse 1is

recommended for legibility.

range represents the block of code to be

for each occurrence

The range may contain

ranges and/or the

7.1.3).

repeated once

of a character in the list.

macro definitions, repeat

MEXIT directive (see Section

. ENDM indicates the end of the indefinite block

range.

repeat

The J.IRPC directive 1is available to permit

substitution, rather than argument substitution.

the indefinite repeat range, the dummy argument

successive characters in the specified string.

single character

On each iteration of

is replaced with

An example of the use of the .IRPC directive is shown in Figure 7-4.

P

O
N
O
S
N
O
U

S

-

-

12

13

14

15

16

17

Figure 7-4

000000

000000

000002

000004

000006

000010

000012

000014

000016

000020

000020

000022

000024

000026

000030

000032

000034

000036

062170

074500

072770

072720

072650

072600

072530

072460

073110

073040

072770

072720

072650

072600

072530

072460

000001

Version 5.2, May 1984

it

i Illustrate the .IRP and +IRPC directives

; by creating a rair of RADSO tables
;w

REGS:

REGS2:

+TITLE

+LIST

« IRF

+RADSO

+ENDIR

»RADSO

+RADSO

«RADSO

+RADSO

+RADSO

+RADSO

+RADSO

+RADSO

+ IRPC

+RADSO

+ENDR

+RADSO

«RADSO

+RADSO

+RADSO

+RADSO

+RADSO

+RADSO

+RADSO

+END

7-19

IRPTST

ME

REG»<PCs»SFyRSsR4,R3IsR2,R1+RO>

/REG/

/PC/

/SP/

/R3S

/R4/

/R3/

/R2/

/RY/

/RO/

NUM»<76543210>

/R‘NUM/

/R7/

/Ré&/

/RS/

/R4/

/R3/

/R2/

/R1/

/RO/

Example of .IRP and .IRPC Directives

MACRO DIRECTIVES

|.ENDR]7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR

Format:

[label:] .REPT exp

(range of repeat block)

. ENDR

where: label represents an optional statement label (see Note
in Section 7.6.1).

exp represents any legal expression. This value

controls the number of times the block of code is

to be assembled within the program. When the

expression value 1is 1less than or equal to zero

(8), the repeat block is not assembled. If this

expression 1is not an absolute value, the .REPT
statement is flagged with an error code (A) in the
assembly listing.

range represents the block of code to be repeated. The

repeat block may contain macro definitions,
indefinite repeat blocks, other repeat blocks
and/or the .MEXIT directive (see Section 7.1.3).

. ENDM indicates the end of the repeat block range.

or

« ENDR

The .REPT directive is used to duplicate a block of code, a certain
number of times, in line with other source code.

[.MCALL]7.8 MACRO LIBRARY DIRECTIVE: .MCALL

Format:

.MCALL argl,arg?2,...argn

where: arqgl, represent the symbolic names of the macro
arg2,... definitions required in the assembly of the source
argn program. The names must be separated by any legal

separator (comma, space, and/or tab).

7-20

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

Table 8-2 (Cont.)

MACRO-11 File Specification Switches

Switch Function

/ML (Cont.) beginning with the 1last user macro file

specified, continuing in reverse order with each

such file specified, and terminating, if

necessary, with a search of the system macro

library file. If a required macro definition is

not found upon completion of the search, an

error code (U) results in the assembly 1listing.

This means that a user macro library file must

be specified in the command line or by using the

MACRO-11 .LIBRARY directive (see Section 6.10.1)

prior to the source file(s) that wuse macros

defined in the library file.

MACRO-11 does not pre-scan the command line for

macro libraries; when a new source file is

needed, it parses the next input file

specification. If that file specification

contains the /ML switch, it is appended to the

front of the library file list. As a result, a

user macro library file must be specified in the

command 1line prior to the source files which

require it, in order to resolve macro

definitions.

/SP Spool listing output (default value).

/NOSP Do not spool output.

/CR: [arg] grg?uce a cross-reference listing (see Section

Switches for the object file are 1limited to /EN and /DS; when

specified, they apply throughout the entire command string. Switch

options for the listing file are limited to /LI, /NL, /SP, /CR, and
/NOSP. Switches for input files are limited to /ML, /EN, and /DS;

the option /ML applies only to the file immediately preceding the

option so specified, whereas the /EN and /DS options, as noted above,

are also applicable to subsequent files in the command string.

Multiple occurrences of the same switch following a file specification

must be avoided, because the accompanying values of a subsequent like

switch specification override any previously-specified values. If two

such switch wvalues are desired, they can be specified in the form

shown below:

/LI:SRC:MEB

IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES

8.1.4 DCL Operating Procedures

RSX-11M/RSX-11M-PLUS indicates its readiness to accept a command by

prompting with the DCL prompt. In response to the prompt, enter the

command string in one of the formats shown below:

>MACRO[/qualifiers]

FILE? filespec[/qualifier[s]][,filespec[/qualifier(s]]...]

or

[DCL]>MACRO[/qualifiers] filespec[/qualifier(s]][,filespec[/qualifier[s]]...]

where: qualifiers affect either the entire command string

(command qualifiers) or the filespec

(parameter qualifiers). See Table 8-3 for a

description of the command qualifiers and

Table 8-4 for a description of the parameter

qualifiers.

filespec is the standard file specification shown 1in
Section 8.4.

You use the comma (,) to separate file specifications. MACRO-11
concatenates all the files and then performs the assembly.

Table 8-3

DCL Command Qualifiers

Qualifier Function

/[NO]JCROSS REFERENCE Suppresses or generates a

cross-reference 1listing (see Section

8.3). When the cross-reference 1is

generated, a listing file 1is also

generated, whether or not the /LIST

qualifier 1is present 1in the command

string.

/NOCROSS REFERENCE is the default.

/DISABLE:arg Overrides the .DISABLE or . ENABLE

/ENABLE:arg assembler directives 1in the source

/DISABLE: (arg,arg...) program. When more than one argument

/ENABLE: (arg,arg...) is entered, arguments must be enclosed

in parentheses and separated Dby

commas.

You can specify any of the following

arguments with the /DISABLE or /ENABLE

qualifier.

Argument

ABSOLUTE Enabling this function causes all

relative addresses (address mode

67) to be assembhled as absolute

addresses (address mode 37).

(continued on next page)

Version 5.2, May 1984 8-8

RSTS/RT-11 OPERATING PROCEDURES

srcl, represent the ASCII source (input) files containing the

src2,... MACRO-11 source program Or the user-supplied macro

srcn library files to be assembled. You can specify as many
as six source files.

The following command string calls for an assembly that wuses one

source file plus the system MACRO library to produce an object file

BINF.OBRJ and a 1listing. The 1listing goes directly to the 1line

printer.

*DK:BINF.OBJ,LP:=DK:SRC.MAC

All output file specifications are optional. The system does not

produce an output file wunless the command string® contains a

specification for that file.

The system determines the file type of an output file specification by

its position in the command string, as determined by the number of

commas in the string. For example, to omit the object file, you must

begin the command string with a comma. The following command produces

a listing, including cross-reference tables, but not binary object

files.

* LP:/C=(source file specification)

Notice that you need not include a comma after the final output file

specification in the command string.

Table 9-1 lists the default values for each file specification.

Table 9-1

Default File Specification Values

Default Default Default

File Device File Name File Type

Object DK: Must specify . OBJ

Listing Same as for object Must specify .LST

file

Cref DK: Must specify . TMP

First source DK: Must specify .MAC

Additional source Same as for preceding Must specify .MAC

source file

System MACRO System device SY: SYSMAC . SML

Library

User MACRO DK: if first file, Must specify .MLB

Library otherwise same as for

preceding source file

Version 5.2, May 1984 9-3

RSTS/RT-11 OPERATING PROCEDURES

NOTE

Some assemblies need more symbol table

space than available memory can contain.

When this occurs the system

automatically creates a temporary wo rk

file called WRK.TMP to provide extended

symbol table space.

The default device for WRK.TMP 1is DK.

To cause the system to assign a

different device, enter the following

command:

,ASSIGN dev: WF

where: dev is the file-structur

device that will ho

WRK. TMP.

9.4 FILE SPECIFICATION OPTIONS

At assembly time you may need to override certain

ed

1d

MACRO directives

appearing in the source programs. You may also need to direct

MACRO-11 on the handling of certain files during assembly. You can

satisfy these needs by using the switches described in Table 9-2.

Table 9-2

File Specification Options

Option Usage

/L:arg Listing control switches; these options accept ASCII

/N:arg switch values (arg) which are equivalent in function

and name to the arguments of the .

directives specified 1in the source

LIST and .NLIST

program (see

Section 6.1.1). This switch overrides the arguments

of the directives and remains in effect for the

entire assembly process.

/E:arg Function control switches; these options accept ASCII

/D:arg switch values (arg) which are equivale

directives specified 1in the source

of the directives and remains 1in e

entire assembly process.

nt in function

and name to the arguments of the .ENABL and .DSABL

program (see

Section 6.2.1). This switch overrides the arguments
ffect for the

(continued on next page)

APPENDIX A

MACRO-11 CHARACTER SETS

A.l ASCII CHARACTER SET

Even 7-Bit

Parity Octal

Bit Code Character Remarks

2 oo NUL Null, tape feed, CONTROL/SHIFT/P.

1 gal SOH Start of heading; also SOM, start

of message, CONTROL/A.

1 332 STX Start of text; also EOA, end of

address, CONTROL/B.

) A3 ETX End of text; also EOM, end of

message, CONTROL/C.

1 go4 EOT End of transmission (END); shuts

off TWX machines, CONTROL/D.

) ags ENQ Enquiry (ENORY) ; also WRU,

CONTROL/E.

) g6 ACK Acknowledge; also RU, CONTROL/F.

1 aa7 BEL Rings the bell. CONTROL/G.

1 310 BS Backspace; also FEOQ, format

effector. backspaces some

machines, CONTROL/H.

) g1l1 HT Horizontal tab. CONTROL/I.

Y] 912 LF Line feed or Line space (new line);

advances paper to next line,

duplicated by CONTROL/J.

1 p13 VT Vertical tab (VTAB). CONTROL/K.

4] P14 FF Form Feed to top of next page

(PAGE). CONTROL/L.

1 g15 CR Carriage return to beginning of

line; duplicated by CONTROL/M,

1 @16 SO Shift out; changes ribbon color to

red. CONTROL/N.

) a17 SI Shift in; changes ribbon color to

black. CONTROL/O.

1 G20 DLE Data link escape. CONTROL/P (DC#).

] 221 DC1 Device control 1; turns

transmitter (READER) on, CONTROL/0Q

(X ON).

) A22 DC2 Device control 2; turns punch or

auxiliary on. CONTROL/R (TAPE, AUX

ON).

1 P23 DC3 Device control 3; turns

transmitter (READER) off, CONTROL/S

(X OFF).

@ n24 DC4 Device control 4; turns punch or

auxiliary off. CONTROL/T (AUX

OFF).

Version 5.2, May 1984 A-1

MACRO-11 CHARACTER SETS

Even 7-Bit

Parity Octal

Bit Code Character Remarks

1 A25 NAK Negative acknowledge; also ERR,

ERROR. CONTROL/U.

1 P26 SYN Synchronous file (SYNC).

CONTROL/V.

0} @27 ETB End of transmission block; also

LEM, logical end of medium.

CONTROL/W.

230 CAN Cancel (CANCL). CONTROL/X.

231 EM End of medium. CONTROL/Y.

B32 SUB Substitute. CONTROL/Z.

P33 ESC Escape. CONTROL/SHIFT/K.

A34 FS File separator. CONTROL/SHIFT/L.

@35 GS Group separator. CONTROL/SHIFT/M.

@36 RS Record separator. CONTROL/SHIFT/N.

@37 us Unit separator. CONTROL/SHIFT/O.

p4agQ SP Space.

= > N

Accent acute or apostrophe.

=

=

19
2]

N
N

w

18
)

i
=

k
.

=

1

G
O

e

= (o
))

e
t

W
O

W
R
H
R
N

191

182

103

104

145

106

110

111S
R
R

R

R
Y
R

Y
R

S

T

S

S
R

N
S

S

R

I
~

I

R

S

S

R
e

S
W

R
T

S

S

S

= o
)

o
t

H
I
Z
I
O
M
D
M
B
O
Q
O
W
I
P
D
E
D

I
O
V

I

A

o

MACRO-11 CHARACTER SETS

Single Char.

or Second Third

First Char. Character Character

v 104600 \'2 PB1560 \' PA0026

W 107700 W @01630 W a00027

X 113000 X 001700 X P00030

Y 116100 Y 01750 Y PAg031

yA 121200 Z P02020 Z Po0032

S 124300 $ Pa2070 $ PP0033

. 127400 . 2149 . P00034

Unused 132500 Unused 002210 Unused 000835

@ 135600 1) PB2260) PP0036

1 140700 1 dp2330 1 paaa37

2 144000 2 02400 2 P3040

3 147100 3 302450 3 geaa41

4 152200 4 382520 4 2eea42

5 155309 5 Ae2570 5 AAGA43

6 160400 6 @32640 6 2AQ044

7 163500 7 ge2710 7 d00045

8 166600 8 pe2760 8 dPB046

o 171760 9 AP3030 9 a00n4a7

A.3 DEC MULTINATIONAL

MACRO-11 CHARACTER SETS

CHARACTER SET

pjo Jo fo Jo Jo fo fo fo Jr |1 |1 |1 {1 |1 |1 |1

bfo o Jo Jo |1 |11 1t Tolo oo 1111

by o of v vt of of 1| 1| of of 1 [1| o o] 1] 1

by of 1| ol 1| o 1| of 1| o 1| o 1| o 1| of 1

b, | b, | b, | b, 00101102103 (04]05[06|07(08]09]10] 11|12} 13| 14} 15

of o] o] o] ofnNuLiDLElSP| O |@ | P DCS "l A - a

o]l oo | 1| 1f0soH|pCci] ' | 1| A| Q]| a pui1l | *|A| N| 4| a

oo |1]o]| 2 fsx|pczl " | 2| B|R|b|r puz|l ¢ | * | Al O] al| o

0 0 1 1 3 JETX 13(33‘ 3| C| S| ¢ s STS| £ "IA|l O] al o

o| 1|0 | o 4 Jeoripcal $| 4| D| T| d | t |IND|ccH AlO]| al e

o 1o | 1|5)ENQINAK| % | 5| E| U| e | u |NEL| MW]| ¥ AlOo| a]| e

ol 1| 1] 0| 6 JACK|SYN| & | 6 | F| V| f | v |ssa|spra ¢ | Z|O| 2] ¢

0 1 1 1 7 JBEL|ETB 71 G| W]| g | w |ESA|EPA| § ClE]| ¢ | c

1 o] o|o]| 8}fBsfcan] « | 8| H| X | h | x |HTS o] E| Q| e| ¢

1 oflo |t 9lur|em| |9l 1]|Y]|i]|y|um ol "|E|JU| é| u

1 1o 1| o|10}LF|suB| * J|lz]|j | z |vrs alo | E|U| el u

1ol 1|1 |1a]vrlese] +| ;| K| 1] k]| { |pp|csi] E|U| e| a

11 |o o f12Fr|Fs| , | <|L|]| 1] | |pu|sr v | T 10U 1| a

11 lo 1|13 cr|las] -] =|M|[1|m]| } |nri|osc v | T Y| 1]y

1] 1|1 |0 |14)so]|Rrs > | N| ~ | n ss2 | PM I i

1 | 1|1 {1 |15st|us| /| ?] 0] —1] o [DEL|ss3|arc o | T B8] i

ASCII ASCII Add’l DEC Supplemental

Control Graphic Character Control Graphic

Set Set Set Set

- DEC Multinational Character Set -

Empty positions are reserved for future standardizations

Version 5.2, May 1984

g

APPENDIX J

RELEASE NOTES

This appendix explains the changes that have been made to MACRO-11

since the last version release. The new features mentioned are fully

documented in chapters one through nine of this manual.

J.l CHANGES -- ALL VERSIONS OF MACRO-11

J.1l.1 V5.2 Update Changes

MACRO-11 now provides support for the 8-bit DEC Multinational

character set (MCS). A chart showing the MCS is located in Appendix

A,

The following directives support the MCS. For specific support

information, consult the description of each directive.

Macro Section

.ASCII directive 6.3.4

.ASCIZ directive $.3.5

.ERROR directive 7.5

.IF directive 6.9.1

.IF DIF

+.1IF IDN

.IFF directive 6.9.2

.IFF DIF

.IFF IDN

. IRP directive 7.6.1

.IRPC directive 7e6.2

.NCHR directive 7.4.2

.PRINT directive 7.5

« REM directive 6.1.6

.SBTTL directive 6.1.3

.TITLE directive 6.1.2

Further information on the 8-bit DEC Multinational character set |is

located in sections:

2.2.4 Comment field

6.3.3 ASCII conversion characters

7.3 Arguments in macro definitions and macro calls

7.3.6 Keyword arguments

Version 5.2, May 1984 J=-1

RELEASE NOTES

J.1.2 V5.1 Changes

1. The opcode, CALLR addr (Call-Return), has been added to the
permanent symbol table (PST). This opcode is equivalent to

the JMP addr opcode. The CALLR addr opcode was added to
complement the CALL addr opcode -- which is equivalent to the
JSR PC,addr opcode.

The previous version of MACRO-11 used a range of 64$% to 127$
for automatic 1local symbol generation. MACRO-11 now uses a
range of 300P0S to 655358 when generating local symbols.

Most assembler generated listing text is now in
upper/lowercase, This change was made to increase the
readability of MACRO-11 code. Lines of code that include the
. SBTTL or the L.TITLE directive are not converted to
uppercase.

Lines of code that include the .SBTTL directive are listed in
the table of contents of an assembly listing, even if a
.NLIST statement is in effect at the time the .SBTTL 1lines
are encountered. You may specify the .NLIST directive with

the TOC argument to prevent the table of contents from being
printed.

The symbol table is printed at the end of an assembly, even
if the .NLIST directive is in effect. You may specify the
-NLIST directive with the SYM argument to prevent the symbol
table from being printed.

All page headers include the day of the week.

The assembler statistics information that appears at the end
of the assembly listing file has been updated to include the
following additional information:

e Total number of virtual work file reads

e Total number of virtual work file writes

e Maximum amount of virtual memory used (in words and pages)

e Size of physical memory freespace (in words and pages)

e Operating system and environment that the assembler is
running under

@ Total elapsed assembly time

e MACRO-11] command line

The PSECT synopsis that is printed in the listing file, after
the symbol table, includes the psect attributes,

The maximum number of relocatable terms 1in a complex
expression has been changed. The maximum size of an .OBJ
record that MACRO-11 can produce was increased from 42. bytes
to 128. bytes.

RELEASE NOTES

Do not compare .0BJ files that have been created by different

versions of MACRO-11 when verifying whether your code

generation is correct. Changes that have been made for this

version of MACRO-11 (mentioned above) will invalidate a

direct comparison of assembler .0OBJ output. Verify code

generation by linking or taskbuilding the .OBJ files involved

and then comparing the .SAV or the .TSK image files.

NOTE

Because the .0OBRJ files produced by this new version

of MACRO-11 are different, users of the PAT (object

file patch utility) are warned that checksums must be

recomputed on any object patches assembled with this

new version of MACRO-11.

18. The default for the LC argument has been changed from .DSABL

LC to .ENABL LC.

11. The following .ENABL/.DSABL options have been added:

1. .ENABL LCM/.DSABL LCM

2. .ENABL MCL/.DSABL MCL

12. The following directives have been added to MACRO-1ll. These

new directives are documented in this manual.

1. .CROSS

2. INCLUDE

3. J.LIBRARY

4, .MDELETE

5. .NOCROSS

6. .REM

7. WEAK

Version 5.2, May 1984 J-2.1

e

e,
gy

INDEX

A error, 3-10, 3-13, 5-10, 6-15, Autoincrement indicator, 3-2

6-25, 6-26, 6-28, 6-29, 6-32, Autoincrement mode, 5-1, 5-3,

6-33, 6-38, 6-40, 6-42, 6-44, B-2, G-1

6-47, 6-56, 7-2, 7-12 to 7-14,

7-16, 7-17, 7-20

Absolute address, D-2 Base level, E-14

Absolute binary output, 6-19 BCC instruction, E-13
Absolute expression, 3-17 BCS instruction, E-14

Absolute mode, 5-1, 5-7, BEQ instruction, H-2

B-2, G-2, G-4 BGE instruction, E-13

Absolute module, 6-42 BGT instruction, E-14
Absolute program section, 6-42 to BHI instruction, E-14

6-45, B-4. See also .ASECT BHIS instruction, E-13

directive BIC instruction, E-13

ADD instruction, E-12, G-3, H-2 Binary operator, 3-4, 3-5, 3-16
Addition operator, 3-2, 3-5, B-1 Blank line, 2-1

Address boundaries, 6-39 BLE instruction, E-14

Addressing modes, 5-1 .BLKB directive, 3-14, 6-2, 6-36

Apostrophe, G-4 to 6-38, B-4, D-3

ASCII .BLKW directive, 3-14, 6-2, 6-36,
character set, A-1 6-38, 6-48, B-4, D-3

conversion characters, 6-23 to BLO instruction, E-13
6-26 BLOS instruction, E-13

.ASCII directive, 6-1, 6-21, 6-26 BLT instruction, E-13, H-2

to 6-28, 6-36, B-3 BNE instruction, E-106, G-3, H-2

.ASCIZ directive, 6-1, 6-28, BR instruction, E-108, E-11, G-3
6-36, B-4 Branch instruction

.ASECT directive, 3-11, 3-13, addressing, 5-9, D-2

3-14, 6-2, 6-44 to 6-47, B-4 use of, E-13

Assembler directives. See Permanent ,BYTE directive, 6-2, 6-23, 6-36,

symbol table B-4, D-4

version number, 5-4

Assembly

error. See A error C bit, E-9

listing symbols, 4-1 CALL instruction, H-2
pass 1, 1-1, 1-2, 6-12, 6-15, Calling convention, E-8

6-16, 6-49, 8-14, 8-12, Character set

D-3 ASCII, A-1 to A-3

pass 2, 1-2, 6-12, 6-21, 7-15, DEC Multinational, A-6

D-3 legal, 3-1 to 3-3

Assignment operator. See Direct Radix-5#, A-5, A-6

assignment operator CLR instruction, G-3, G-3, H-2

Assignment statement. See Direct CMP instruction, E-13, H-2

assignment statement Coding standard, E-1

Autodecrement deferred mode, 5-1, Comment, E-1, E-5

5-5, B-2, G-1 delimiter, 3-2, B-1, E-12

Autodecrement indicator, 3-2 field, 2-1, 2-4, 2-5, E-1

Autodecrement mode, 5-1, 5-4, Commercial instruction set, C-3

B-1, B-2, G-1 Common exit, E-11

Autoincrement deferred mode, 5-1, Complex relocatable expression,

5-4, B-2, G-1 3-18

Version 5.2, May 1984 Index~1

INDEX

Complex relocation, 4-1, G-4

Concatenation indicator, 3-3,

B-1, B-3.

Conditional assembly, 6-51 to

6-56, 7-8, 7-16, D-4

immediate, 6-56

Conditional assembly block, 7-3,
B-4, B-5

Conditional assembly directive,

6-49

Copyright statement, E-5

.CROSS directive, 6-2, 6-22,

B-4, C-5

Cross-reference listing, 3-12,

5-19, 8-8, 8-9, 8-14, 8-16 to
8§-18, 9-2, 9-3, 9-5 to 9-7

.CSECT directive, 3-11, 3-13,

6-2, 6-44 to 6-47, 9-6, B-4
Current location counter, 2-2,

3-2, 3-12 to 3-14, 3-17, 5-8,

6-11, 6-36 to 6-38, 6-43 to

6-44, B-5, B-7, D-2, D-3

D error, 2-3

Data

sharing, 6-45

storage, 6-2

storage directives, 6-23

DEC Multinational character

set, A-6

Argument strings, 7-5, 7-1¢

ASCII conversion characters,

6-25 to 6-27

Comment field, 2-4

Directive support for

LASCII, 6-26

.ASCIZ, 6-28

« ERROR, 7-16

.IF, 6-55

.IFF, See

.IRP, 7-18

.IRPC, 7-19

.NCHR, 7-13

.PRINT. See

.REM, 6-18

«.SBTTL, 4-15

«.TITLE, 6-15

Default radix, 3-14

Default register definitions,

3-10, 6-21

Deferred addressing indicator,

3-2, B-1

Delimiting characters, 3-3, 6-17,

56-29, B-3 to B-5, B-8

Device register, E-2

Direct assignment

operator, 3-1, 3-2, 3-9, B-1

statement, 3-6 to 3-9, 3-13, 6-37

Directives. See Permanent

symbol table

IF directive

.ERROR directive

Version 5.2, May 1984

DIV instruction, H-2

Division operator, 3-2, 3-5, B-1

Double ASCII character indicator,

3-2, B-1

.DSABL directive, 6-2, 6-19 to

6-21, 8-6, 8-8, 9-4, B-4,

D-1

Dummy argument, 7-2, 7-11, 7-17

E error, 6-40

EMT instruction, 5-9, D-4

.ENABL directive, 6-2, 6-19 to

6-21, 8-5, 8-8, 9-4, B-4,

D-1, D-2, D-4, F-2

.END directive, 6-2, 6-48,

D-3, H-2

.ENDC directive, 6-2, 6-12,

to 6-56, 6-59, 7-3, B-4

.ENDM directive, 6-13, 6-21,

7-3, 7-6 to 7-8, 7-14,

7-17 to 7-19, B-4,

.ENDR directive, 7-19,

B-8

Entry point symbol, 6-52

.FRROR directive, 7-16, B-5, D-4

Error messages, D-1 to D-5

.EVEN directive, 6-2, 6-29,

B-5

Expression, evaluation of,

Expression indicator,

3-2, B-1

External expression, 3-17

External symbeol, 6-52. See also

Global symbol

B"4'

6-53

7-2,

7-11,

B-8, F-3

7-2¢, B-5,

6'38}

3-16

immediate,

Field terminator, 3-2, B-1

FILES-11, 6-19

Floating-point directives, B-5.

See also .FLT2 directive

Floating-point indicator, B-3
Floating—-point processor, 3-14,

6”34' 6“35’ C“4

Floating-point rounding, 45-19,

6—-32

Floating-point truncation, 6-19,

6-35

.FLTz direCtive, 6”2’ 6“35' B*S

.FLT4 directive, 6-2, 6-35, B-5

FLX, 6-19

Forbidden instructions, E-13

Format control, 2-5

Formatted binary, 6-19

FORTRAN, 6-47, E-15, G-2

Forward reference, 3-8,

3-16, 3-13, D-4

illegal, D-3

Function control switches. See

Switches, function control

Function directive, 6-18

3"9'

Index-2

INDEX

Global expression evaluation,

3-17

Global label, 6-51

Global reference, 6-21, 6-51,

F-4, G-4

Global symbol, 1-2, 3-7, B-5,

D-2, D-3, E-4

Global symbol definition, 2-2,

3-1, 3-2, 3-8, 6-51. See

also .GLOBL directive

Global symbol directory, 1-2

.GLOBL directive, 3-7, 6-2, 6-51,

B-5, E-4

Hardware register, E-2

I error, 6-28, 6-30

IAS, 6-48, 7-21, 8-14 to 8-17,

8-19 to 8-22, G-1

.IDENT directive, 6-2, 6-16, B-5,

D-2, E-5, E-7, E-15, H-1

.IF directive, 6-2, 6-12, 6-53 to

- 6-59, 7-3, 7-8, B-5, D-1, D-2

.IFF directive, 6-2, 6-556 to

6-58, B-5

+IFT directive, 6-2, 6-56 to

6-58, B-5 -

.IFTF directive, 6-2, 6-56, 6-57,

B-5

.IIF directive, 6-2, 6-59, B-6,

D-1, D=2

Illegal characters, 3-3, D-2, D-3

Illegal forward reference, D-3

Immediate conditional assembly,

6-59

Immediate expression indicator,

3-2, B-1

Immediate mode, 5-1, 5-6, B-2,

G-2, G-4

Implicit .PAGE directive, /-61

Implicit .WORD directive, 2-1,

2-4, 6-25

+INCLUDE directive, 6-2, 6-61,

9-8, B-6, C-6

Indefinite repeat block. See

Repeat block, indefinite

Index deferred mode, 5-1, 5-5,

B-2, G-2, G-4

Index mode, 5-1, 5-5, 5-7, B-2,

Initial argument indicator, 3-2,

B-1

Initial expression indicator, 3-2

Initial register indicator, 3-2,

B-1

Instruction set

commercial, C-3

pPDP-11, C-1

Interrupts, E-12

.IRP directive, 7-2, 7-17 to

7-19, B-6, D-2

Version 5.2, May 1984

Item terminator, 3-2, B-1

JMP instruction, 5-3, E-13

JSR instruction, 5-3, E-9

L error, 2-1

Label

field, 2-1 to 2-3, E-1

multiple definition, 2-3

terminator, 3-1, B-1

.LIBRARY directive, 6-2, 6-54,

9-9, B-6, C-6

.LIMIT directive, 6-3, 6-39, B-5

Line format, E-1

Line printer listing format, 6-5,

6-6, 6-12. See also Listing

control

Linker, 1-2, 2-2, 6-17, 6-43,

6-47, 6-51, F-4, G-1, G-4

Linking, 4-1, 6-40

.LIST directive, 6-3, 6-9 to

6-14, 6-21, 8-6, 8-11,

8-13, 9-4, B-6, D-1

Listing control, 6-4 to 6-14.

See also .LIST directive,

.NLIST directive

Listing control switches. See

Switches, listing control

Listing level count, 6-9, 6-10,

6-12, B-6, B-7

Local symbol, 3-11, 3-12, 7-8,

7-9, D-4, E-4, F-2

Local symbol block, 3-11, 3-12,

6-20, D-4, F-2

Location counter. See Current

location counter

Location counter control, 6-34 to

6-36

Logical AND operator, 3-2, 3-5,

6-55, B-1

Logical inclusive OR operator,

3-2, 3-5, 6-55

Logical OR operator, B-1

M error, 2-3, 3-1, 3-2, 3-8

Macro

argument, 7-7, 7-14, 7-15, B-3

argument concatenation, 7-11

attribute directive, 7-12

definition, 6-33, 7-1 to 7-13,

7-15, 7-17, 7-18, 7-20, B-4,

B-6, B-7, E-6, F-2

directive, 7-1, 7-2, 7-4. See

also .MACRO directive

expansion, 7-1, 7-3, 7-5 to

7-7, 7-9, 7-11, 7-17, B-7,

D-4, F-2

Index-3

INDEX

Micro (Cont.)

expansion listing, 6-9,

keyword argument, 7-4,

keyword indicator, 3-1

name, 7-1, 7-2, 7-4, D-4, E-4

nesting, 7-2, 7-3, 7-6, 7-17

numeric argument, 7-7

redefinition, F-3

symbol, 3-6

Macro call, 7-1, 7-4 to 7-11,

7-12, 7-20, B-1, B-6. See

also .MCALL directive

Macro call argument, 7-4

Macro call numeric argument,

+MACRO directive, 6-13, 6-21,

to 7-9, 7-10¢, 7-11, 9-6,

D-1, F-3

Macro library directive.

.MCALL directive

Macro symbol table, 3-6,

MACRO-11 character set.

Character set, legal

.MCALL directive, 7-20, 8-6,

8-15, 9-5 to 9-6, B-5,

D-4, F-1 to F-3

.MDELETE directive, 7-21,

C-7

Memory

allocation,

F-2

conservation,

.MEXIT directive,

7-20, B-7

Modularity, 6-44, E-8,

Module checking routine,

Module preface, E-5

Monitor console routine, 8-1,

6-12

7-10

3-3

7-1

8“6'

See

3-7

See

B”?,

6"42' 6“47' F”l,

F-1

F-1

E-9

8-2

MOV instruction, 3-13, 3-14,

6“37' 6"58' D”l, E“lBy G“z t0

G“Q' H”Z

MOVB instruction, H-2

Multinational character set. See

DEC Multinational character set

Multiple definition. See M error

Multiple expression, 2-4

Multiple label, 2-2

Multiple symbol, 2-4

Multiplication operator, 3-2,

« NOCROSS directive, 6-3, 6-22,

B-7, C-6

.NTYPE directive, 7-12, 7-14,

B-7, D-2

Number of arguments. See .NARG

directive

Numeric argument indicator, B-1

Numeric control

operator, 6-33

temporary, 6-36, B-3

Numeric directive, 6-34

O Errflf, 6“4@, 6“56'

7"12' 7”15' 7“21

Object module name, 1-2

6“57' 7”4’

nDDD dif&ctive, 6”3' 6”37’ 6“38'

B-7

Operand field, 2-1, 2-4, E-1

Operand field separator, 3-2, B-1

Operation field, E-1

Operator field, 2-1,

Overlay, 6-42, 6-44

2*3’ 2“4

P error, 6-20, 7-16

. PACKED directive,

6-37, B-7, C-7

.PAGE directive, 6-3,

7-4, B-7

Page

header, 6-4

number, 6-17

Patch, E-15

Permanent symbol table, C-1 to

c-3, 3-6, 3-7

Position-independent code, G-1 to

G-4

. PRINT directive, 7-17,

Processor priority, E-2

Program counter, 5-1, E-2, G-4

Program counter definition, 3-10

Program development system, 8-14

Program module, E-5

Program section directive.

.PSECT directive

Program section name, 6-41

Program section table, 1-1

Program version number. See

6”3, 6”31'

6“17' 6”61'

B-7

See

3-5, B-1 Version identifier, program

Programming standard, E-1

.PSECT directive, 3-12, 3-14,
N error, 3-15 6-2, 6-3, 6-20, 6-41 to

Naming standard, E-2 6-48, 7-9, 9-6, B-7, D-1,

.NARG directive, 7-8, 7-12, 7-13, D-2, H-2

B-7, D=2 |

.NCHR directive, 7-12, 7-13, B-7,

D-2 Q error, 6-29, 6-34, 6-38

Nested conditional directive,

6-55, 6-58, 7-3

.NLIST directive, 6-3, 6-9 to R error, 3-10

o-14, 6-15, 6-21, 8-5, 8-11, .RAD5@ directive, 6-3, 6-29,

8-13, 9-4, B-7, D-1 B~-8, H-2 o

Version 5.2, May 1984 Index-4

INDEX

Radix control, 3-15, 6-32, 6-34,

B-8

temporary, 6-31, 6-33, B-3

.RADIX directive, 3-15, 6-3,

6-32, B-8, D-1

Radix-50, 3-5, 6-3¢, 6-41, B-3,

B-5, B-8

character set, A-4

temporary operator, 6-31

Read-only access, 6-41

Read/write access, 6-41

Register

conventions, E-9

definitions, default, 3-10,

6-21

expression, 5-2, B-1

symbol, 3-10, D-4

term indicator, 3-2, B-1

Register deferred mode, 5-1, 5-2,

B-2, G-1

Register mode, 5-1, 5-2, B-2, G-1

Relative deferred mode, 5-1, 5-8,

B-2, G-2, G-4

Relative mode, 5-1, 5-7, 5-8,

B-2, G-2, G-4

Relocatable expression, 3-17

Relocatable module, 6-43

Relocatable program section, 6-44

to 6-47, B-4

Relocation, 4-1, 6-43

Relocation bias, 2-2, 3-17, 3-18,

4-1, 6-43

.REM directive, 6-3, 6-18, B-8,

C-7

Repeat block

directive. See .REPT directive

indefinite, 7-3, 7-17 to 7-28,

B-4, B-6

.REPT directive, 7-2, 7-17, 7-20,

B-8, D-3

Reserved symbols, 2-3, 3-1, 3-7

.RESTORE directive, 3-11, 3-14,

6-3, 6-208, 6-49, B-8, C-7,

D-3

.RETURN directive, H-2

RSTS, 9-1 to 9-9

RSX run-time system, 9-1, 9-2

RSX-11M, 6-17, 6-41, 6-48, 7-21,

8-1 to 8-13, 8-19 to 8-22,

E-12, F-3, G-1

RSX-11M-PLUS, 8-1 to 8-13, 8-19

to 8-22, G-1

rRT-11, 6-17, 6-41, 6-43, 7-21,

9-1 to 9-9

RT-11 run-time system, 9-1

.SAVE directive, 6-3, 6-20, 6-49,

6-5¢, B-8, C-7, D=3

.SBTTL directive, 6-3, 6-4, 6-15,

B-8, H-2

Separating characters, 3-3

Sequence number, 6-19

Version 5.2, May 1984

w

Single ASCII character indicator,

3-3, B-1, B-3

Source line format, 2-5

Source line terminator, B-1

Special characters, 3-1 to 3-3,

7-7

Stack pointer, E-2

definition, 3-10

Statement format, 2-1

SUB instruction, E-13

Subconditional assembly, 6-56 to

6-59

Subtraction operator, 3-2, 3-5,

B-1

Success/failure indicator, E-9

Switches

file specification, 8-6

function control, 8-6, 9-4

listing control, 8-6, 8-7,

9-4

Symbol name syntax, E-3

Symbol table, 1-1, 1-2, F-1

Symbolic argument, 6-41

SYsLIB, F-4

System macro library, 1-1, 7-20,

8-4, 8-14, 9-3, 9-5. See

also .MCALL directive

T error, 3-15, 6-24

Table of contents, 6-12, 6-16,

B-8

Task huilder. See Linker

Teleprinter listing format, 6-7,

6-13. See also Listing

control

Temporary numeric control. See

Numeric control, temporary

Temporary radix control. See

Radix control, temporary

Temporary Radix-50 operator, 6-31

Term, definition of, 3-15

Terminal argument indicator, 3-2,

B-1

Terminal expression indicator,

3-2

Terminal register indicator, 3-2,

B-1

Terminating directive. See .END

directive

Thrashing, F-1

.TITLE directive, 6-3, 6-4, 6-13,

6-15, 6-21, B-8, D-2, E-5,

E-7, E-16, H-1

TRAP instruction, 5-9, D-4

TST instruction, E-10, E-11, H-2

U error, 3-8, 3-9, 3-15, 6-21,

7-21, 8-7, 8-9, 8-15

Unary operator, 3-4, 3-16, 7-5,7-7

control, 6-32, 6-34

universal, 3-3, 3-5, B-1

Index-5

INDEX

Unconditional assembly, 6-56 file, 8-20

Undefined symbol, 3-8, 6-21, D-2, program, 6-17, B-5

D-4, See also U error standard, E-14 to E16. See also

Universal unary operator. See . IDENT directive

Unary operator, universal

Upper-case ASCII, 6-19

User-defined symbol, 3-6 to 3-8 .WEAK directive, 6-3, 6-52, B-8,C-7

User-defined symbol table, 2-2, .WORD directive, 3-13, 3-14, 6-3,

also Implicit .WORD directive

Version identifier

assembler, 6-4 Z error, 5-3

Version 5.2, May 1984 Index-6

PDP-11 MACRO-11

Language Reference

Manual

AD-V027A-T1

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

— Assembly language programmer

— Higher-level language programmer

— Occasional programmer (experienced)

— User with little programming experience

— Student programmer

— Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

Do Not Tear — Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG/ML PUBLICATIONS, MLO5-5/E45

DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MA 01754

O NI R OSSR WSS NN WS ABRSRMES AT SRR WSS SSRGS NS WORREES. OB SRR ORI e

No Postage

Necessary

if Mailed in the

United States

L

.
 T
R
~

v

I

T

e

A
N

O
O

e
 r
a
p
e

S

 £
V

O
—

o

—

Cu
t
Al
on
g
Do

tt
ed

 L
in

e

e

c
o
a
e
m
s
s

d
e
k
d
e
s
s

0

S
N
B
S
S

0

S
N
M
I
D
W
E
E

GR
EM

ON
SS

w
e
w
e
e
w
s
s

G
G
G

N
I

W
W
m
R
E
A
R
E

R
N

s
e
e
e
d
e
o
s
i
s

S
E
W
R
E
S

J
e
E
S
R
E
G

e

e

SK
OM
GN
SN
R

d
R
G
R
e
G

s

S
e
s
e
e
n
s

