
soffare

Laboratory Subroutines

Programmer’s

Reference Manual

AA-C984C-TC

October 1981

This document describes the Laboratory Subroutines Package

available to users of FORTRAN/RT-11 and RSX-11M

FORTRAN IV and FORTRAN 77.

This manual replaces the Laboratory Subroutines

Programmer’'s Reference Manual, order number

AA-C984B-TC.

OPERATING SYSTEM: RT-11 Version 4.0

RSX-11M Version 3.2

SOFTWARE: FORTRAN IV Version 2.5

FORTRAN 77 Version 4.0

LSP Version 1.2

Software and manuals should be ordered by title and order number. In the United States. send orders to

the nearest distribution center. Outside the United States. orders should be directed to the nearest

DIGITAL Field Sales Office or representative.

Northeast/Mid—Atiantic Region Central Region Western Region

Technical Documentation Center Technical Documentation Center Technical Documentation Center

Cotton Road 1050 East Remington Road 2525 Augustine Drive

Nashua, New Hampshire 03060 Schaumburg, lllinois 60195 Santa Clara. Califorma 95051

Telephone: (800)258-1710 Telephone: (312)640-5612 Telephone: (408)984-0200

NH residents: (603)884-6660

digital equipment corporatione marlboro. massachusetts

First Printing, February 1978

Revised, June 1980

Revised, October 1981

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright ©, 1978, 1980, 1981, Digital Equipment Corporation.

All Rights Reserved.

The postage-prepaid READER’S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet IAS

DECUS DECsystem-10 MASSBUS

DECSYSTEM-20 PDT PDP

DECwriter RSTS UNIBUS

DIBOL RSX VAX

EduSystem VMS VT

alilg]i]t[al1] MINC-11 MINC-23

MINC/DECLAB23

Contents

Preface

Chapter 1

Chapter 2

Page

Introduction to the Laboratory Subroutines

1.1 The Laboratory Subroutines Package. | 1-1
1.2 The Laboratory Subroutines Package Distribution Kit 1-3

The Peak-Processing (PEAK) Subroutine

2.1 Definition of Basic Terms and Conventions. 2—1
2.2 The Peak-Processing Algorithm: Processing Raw Data 2-2

221 AveragingofInputData. 2-2
222 Use of the Digital Filter 2-3
2.2.3 Trend Detection — Application of the Gate Factor 2-3
2.2.4 Calculation of Area under the Peak 24
2.2.5 Algorithm Definition of the Width of a Peak 24
2.2.6 Algorithmic Detection of the Baseline 2-6
2.2.7 Flow Charts for the PEAK Subroutine 2-7

2.3 How to Call the Peak-Processing Subroutine 2—-17
2.4 Using the Peak-Processing Subroutine 2-20
2.5 Modifying the Subroutine — Using Options 2-22

2.5.1 EIS (Extended Instruction Set). 2-22
25.2 EAE (Extended Arithmetic Element). 2-22
2.5.3 AUTOGS (Autogaining) 2-22
2.54 DPP$ (Double Precision Integers) 2-24
25.5 NOFLT$ (NoFilter) 2-24

2.6 Examples Using the PEAK Subroutine. 2-24

111

Chapter 3 The Envelope-Processing (NVELOP) Subroutine

Chapter 4

3.1 Definition of Basic Terms and Conventions

3.2 The Envelope-Processing Algorithm

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.3 How to Call the Envelope-Processing Subroutine

3.4 Using the Envelope-Processing Subroutine

3.5 Modifying the Subroutine — Using Options

3.5.1

3.5.2

3.6 Examples Using the NVELOP Subroutine

4.1 Definition of Basic Terms and Conventions

4.2 Your Input to the Subroutine: Its Characteristics

4.2.1

4.2.2

4.2.3

4.2.4

4.3 How to Call the Interval Histogramming Subroutine

4.4 Input and Output — Using the Subroutine

4.5 Modifying the Subroutine — Using Options

4.5.1

4.5.2

4.5.3

454

oooooooooooooo

ooooooooooooooooo

The Baseline Value

Trend Detection — Application of the Gate Factor

The WidthofaPeak.

Calculating the AreaofaPeak.

Calculating the Centroid ofa Peak.

Flow Charts for the NVELOP Subroutine

oooooo

oooooooooo

ccccccccccc

oooooooooooooo

ooooooooooooo

oooooooooooooooo

oooooooooooo

oooooooooooooo

oooooooooooooo

ooooooooooo

The Relation between Data and Categories

Describing the Categories

Overflow and Underflow Counts

How the Subroutine Interprets Single-Precision Numbers. . .

000000000

..............

OOOOOOOOOOOOO

EIS (Extended Instruction Set).

EAE (Extended Arithmetic Element)

DPHS$ (Double-Precision Integers)

FREQS$ (Frequency Histogram)

0000000000000

oooooooooooooo

oooooooooooooooo

4.6 Examples of Input/Output Variation Using the HISTI

Subroutineoooooooooooooooooooooooooooooo

Chapter 5 The Interval Histogramming with Reference Points (RHISTI)

1v

Subroutine

5.1 Definitions of Basic Terms and Conventions

5.2 Your Input to the Subroutine: Its Characteristics

5.2.1

0.2.2

5.2.3

5.3 How to Present Your Problem to the Subroutine

5.3.1

5.3.2

5.3.3

5.3.4

ooooooooooooo

ooooooooooo

0000000000
The Reference Points — Their Significance

The Relation between Data and Categories.

How the Subroutine Interprets Single-Precision Numbers. . .

ooooooooooo

Number of Events to be Processed Following Each

Reference Point,

Describing the Categories for the Interval Histogram

Overflow and Underflow Count

Frequency Histogram

ooooo

oooooooooooooooo

oooooooooooooooooooo

Page

3-2

3-2

3-3

3-3

3-3

3—4

3—4

3—4

3-16

3-20

3-22

3-22

3-22

3-22

4-1

4-2

4-2

4-3

4-3

4-5

4-7

4-7

4-8

4-8

4-8

4-8

4-10

Chapter 6

Chapter 7

Chapter 8

5.4 How to Call the RHISTI Subroutine
5.5 Input and Output — Using the Subroutine.
5.6 Modifying the Subroutine — Using Options

5.6.1 EIS (Extended Instruction Set).
0.6.2 EAE (Extended Arithmetic Element)

5.6.3 DPRS$ (Double-Precision Integers)

5.7 Examples of Input/Output Variation Using the RHISTI
Subroutine

The Fast Fourier Transform (FFT) Subroutine

6.1 An Introduction to Fourier Transforms

6.1.1 Mathematical Definition of the Fourier Transform (CFD) . . .
6.1.2 Mathematical Definition of the Discrete Fourier

Transform (DFT)

6.2 Comparing the Continuous and Discrete Fourier Transform

6.2.1 Comparison of FFT and CFT Input.
6.2.2 Comparison of FFT and CFT Qutput
6.2.3 Similarities and Discrepancies between FFT and CFT

Results

6.3 Scaling the Results of the FFT Subroutine

6.3.1 Internal Subroutine Scaling Procedure

6.3.2 Relational Scaling Procedure

6.4 Useful Properties of the FFT.
6.5 How to Call the FFT Subroutine

6.5.1 Interpreting the Results of the Output Arrays

6.6 Modifying the Subroutine — Using Options

6.6.1 EIS (Extended Instruction Set).
6.6.2 EAE (Extended Arithmetic Element)

6.6.3 F.MAXN (Maximum I/O Array Size)

6.7 Example Using the FFT Subroutine ooooooooooooooooo

7.1 HowtoCal PHAMPL
7.2 Other Routines Used by PHAMPL
7.3 Modifying the Subroutine — Using Options

7.3.1 KIS (Extended Instruction Set).
7.3.2 EAE (Extended Arithmetic Element)

7.3.3 F4P$ (FORTRAN 77 Compiler).

7.4 Examples Using the PHAMPL Subroutine

ooooooooooooo

ooooooooooooo

81 HowtoCallPOWRSP
8.2 Modifying the Subroutine — Using Options

8.2.1 EIS (Extended InstructionSet). 8-2

8.2.2 EAE (Extended Arithmetic Element). 8-2

8.3 Examples Using the POWRSP Subroutine 8-2

Chapter 9 The Correlation Function (CORREL) Subroutine

9.1 Using the Correlation Function Subroutine. 9-2

9.2 Discrete Evaluationof CORREL 9-3
9.3 Calculating the Correlation Coefficients 9-4
94 HowtoCallCORREL 9-5

9.5 Other Routines Used. 9-6
9.6 Modifying the Subroutine — Using Options 9-7

9.6.1 EIS (Extended Instruction Set). 9-7

9.6.2 EAE (Extended Arithmetic Element). 9-7

963 FFTOptions. 9-7

9.7 Examples Using the CORREL Subroutine 9-7

Appendix A Installing, Verifying, and Using LSP Under RT-11

A.1 Installation Requirements A-1

A.2 Installing the Laboratory Subroutines Software A-2

A.2.1 Copying the Distribution Volume A-2

A.2.1.1 Copying with Three or More Mass Storage

Devices A-3

A.2.1.2 Copying only Two Mass Storage Devices A4

A.2.2 File Protection. A-5

A.2.3 Making Corrections A-5

A.2.4 Selecting the Form of SubroutinetoUse A-5

A.2.41 Using Distributed Object Files A-5

A24.2 Creating Customized Object Files —

LSPMAK, the Interactive Build Procedure A-6

A.3 Verifying the Laboratory Subroutines Software. A-9

A.3.1 Verifying the Distributed LSP Object Files. A-9

A3.2 Verifying the Customized Object Files A-10

A4 Storing the Laboratory Subroutines A-10

A5 Creating a Program that Calls the Laboratory Subroutines. A-10

A6 Using Libraries L. A-11

Appendix B Installing, Verifying, and Using LSP Under RSX-11M/M-PLUS

Vi

B.1

B.2

Installation Requirements B-1

Installing the Laboratory Subroutines Software B-2

B.2.1 Copying the Distribution Volume B-2

B.2.1.1 Copying a FILES-11 Distribution Volume with

Three or More Mass Storage Devices B-3

B.2.1.2 Copying a FILES-11 Distribution Volume with

Only Two Mass Storage Devices B-5

B.2.1.3 Copying a DOS-11 Distribution Volume

B.2.2 Making Corrections
B.2.3 Selecting the Form of Subroutine to Use

B.2.3.1 Using Distributed Object Files
B.2.3.2 Creating Customized Object Files — LSPMAK,

the Interactive Build Procedure

ooooooooooo

B.3 Verifying the Laboratory Subroutines Software.

B.3.1 Verifying the Distributed LSP Object Files
B.3.2 Verifying the Customized Object Files

B.4 Storing the Laboratory Subroutines
B.5 Creating a Program that Calls the Laboratory Subroutines
B.6 Using Libraries

oooooooooo

Appendix C Sample of the Interactive Build Procedure for RT-11,
LSPMAK.SAV

Appendix D Sample of the Interactive Build Procedure for RSX-11M,

Figures

LSPMAK.TSK

2-1 Flow of the PEAK Subroutine
2-2 Calculation of True Peak Width
2-3 Calculation of Estimated Peak Width
2—4 Flow Chart for Peak-Processing; Initialization, Data

2-6 Flow Chart for Peak-Processing; Area Calculation
2-7 Flow Chart for Peak-Processing; Determining the Baseline
2-8 NEXTPT Subroutine — Peak-Processing
2-9 RITOUT Subroutine — Peak-Processing
2-10 INPTR, INLAST, and NPEAKS Point to Slots
2-11 Actual Plot of the Input Data
3—-1 Envelopes of Data (may contain more than one peak)
3-2 Flow Chart for Envelope Processing; Data Entry
3-3 Flow Chart for Envelope Processing: Initialization,

Calculation of Peak Width, and Finding End of Envelope
3—4 Flow Chart for Envelope Processing; Count of Reject

Points and Reading Additional Values where Envelope Begins .
3-5 Flow Chart for Envelope Processing: New Minimum and

Crest Detection
3—6 Flow Chart for Envelope Processing; New Maximum;

Peak Beginsat Valley
3-7 NEXTPT Subroutine — Envelope Processing
3-8 RITOUT Subroutine — Envelope Processing
3-9 INPTR, NPEAKS, and INLAST Point to Slots
3-10 Actual Plot of Input Data, Showing Threshold
3-11 Plot of Input Data, Showing New Threshold Value
3-12 Plot of Input Data, Showing Threshold Value from

Example 2 and Assumed Baseline Offset

oooooooooo

ooooooooooooooo

Vil

4-1 Interrelation between DATA/CATEGORY and Page

INTEGER/INTERVAL Concepts 4-2

4-2 Relation between FORTRAN Integers and Unsigned Binary

Values. 44

5-1 Interrelation between DATA/CATEGORY and

INTEGER/INTERVAL Concepts 5-3

5-2 Relation between FORTRAN Integers and Unsigned

Binary Values, 5-4

6—-1 The Fourier Transform. 6-1

6—2 The Relationship Between FFT Input and CFT Input. 6-5

6-3 Output from the FFT 6—6

6—4 G(n - df) Returned by the FFT 67

6-5 Total Range of the Frequency Domain 6-14

6-6 Five Elements in the IREAL Output Array. 6-16

Tables

2-1 Switch Settings for Significant Events in Peak Definition 2-7

2-2 Definition of Symbols0 2-8

2-3 Definition of Peak Events 2-15

3—-1 Definitions of Symbols Used 3-5

3-2a Envelope-Processing Algorithm 3-14

3-2b How to Compile and Prepare Data for

Envelope-Processing Subroutine 3-16

Index

Preface

MANUAL OBJECTIVES AND READER ASSUMPTIONS

The Laboratory Subroutines Programmer’s Reference Manual describes the
Laboratory Subroutines Package (LSP), a set of eight data-processing
subroutines to be used in a laboratory environment.

To use this manual, you should be a laboratory-oriented programmer famil-
1ar with the FORTRAN IV or FORTRAN 77 programming language. You
should also be familiar with either the RT-11 operating system (Single Job
(SJ) or Foreground/Background (F/B) monitor) or the RSX-1 1M or
RSX-11M-PLUS operating system. In addition, you must understand the
mathematics involved in explaining the subroutine algorithms. However,
although the laboratory subroutines are written in the MACRO program-
ming language, you do not need to be familiar with MACRO to use them.

MANUAL STRUCTURE

The Laboratory Subroutines Programmer’s Reference Manual contains nine
chapters and four appendixes.

Chapter 1 introduces the Laboratory Subroutines software and explains
how to use the manual.

Chapter 2 describes the peak-processing subroutine, PEAK.

Chapter 3 details the envelope-processing subroutine, NVELOP.

Chapter 4 discusses the interval histogramming subroutine, HISTT.

Chapter 5 describes the interval histogramming with reference points sub-
routine, RHISTI.

Chapter 6 details the fast Fourier transform subroutine, FFT.

1X

Chapter 7 discusses the phase angle and amplitude spectra subroutine,

PHAMPL.

Chapter 8 describes the power spectrum subroutine, POWRSP.

Chapter 9 details the correlation function subroutine, CORREL.

Appendix A explains how to install, verify, and use LSP under the RT-11

operating system.

Appendix B explains how to install, verify, and use LSP under the

RSX-11M operating system.

Appendix C contains an example of the interactive build procedure for

RT-11, LSPMAK.SAV. The appendix also shows the output from the

procedure.

Appendix D contains an example of the interactive build procedure for

RSX-11M, LSPMAK.TSK. The appendix also shows the output from the
procedure.

RELATED DOCUMENTS

The following documents provide more information about the RT-11,

RSX-11M, or RSX-11M-PLUS operating systems and the FORTRAN IV

and FORTRAN 77 programming languages:

Reference Order Number

PDP-11 FORTRAN 77 User's Guide AA-1884D-TC

IAS/RSX-11 FORTRAN 1V User’s Guide AA-1936E-TC

PDP-11 FORTRAN Language Reference Manual AA-1855D-TC

RSX-1IM/M-PLUS MCR Operations Manual AA-H263A-TC

RSX-11M/M-PLUS Task Builder Manual AA-H266A-TC

RSX-11 Utilities Manual AA-H268A-TC

RT-11 Programmer’s Reference Manual AA-H378A-TC

RT-11/RSTS/E FORTRAN IV User’s Guide AA-5749B-TC

RT-11 Software Support Manual AA-H379A-TC

RT-11 System User’s Guide AA-5279B-TC

RT-11 System Message Manual AA-5284C-TC

DOCUMENTATION CONVENTIONS

The following conventions are used in this manual.

e In programming examples, all information the computer prints appears

in black. All commands and responses you type appear in red.

o means you must press the RETURN key on your terminal.

® You produce certain characters by typing a combination of keys together.

For example, hold down the CTRL key and type the letter C to produce

the CTRL C character. Combinations such as this are represented by

CTRLIC).

¢ Many commands in this manual contain the expression dvn:. When you

execute the commands, specify a device and unit number in place of dvn:.

If you do not include a unit number, the system uses unit 0 as a default.

For a list of devices and their abbreviations, see Chapter 3 of the RT-11

System User’s Guide or Chapter 2 of the RSX-1IM/M-PLUS MCR

Operations Manual.

e In descriptions of commands or file names, capital letters represent actual

commands, file names, or file types. You must type these exactly as they

appear. Lower case letters mean that you must supply a name.

e The term RSX-11M/M-PLUS means either or both the RSX-11M or

RSX-11M-PLUS operating systems.

e Brackets represent optional elements in a specification. When you use an

option, do not type the brackets in the command line.

NOTE

Under RSX-11M/RSX-11M-PLUS, brackets are also a

part of the User File Directory (UFD) portion of file specifi-

cations, that is [group, member]. When you type this por-

tion of a file specification, brackets are required syntax

elements. You must type the brackets in the command line.

X1

Chapter 1

Introduction to the Laboratory Subroutines

The Laboratory Subroutines Programmer’s Reference Manual accompanies
the Laboratory Subroutines Package (LSP), a set of eight laboratory, data-
processing subroutines.

This manual describes the eight subroutines and explains how to use them
with your FORTRAN programs. It contains nine chapters and four
appendixes.

You can use any chapter in this manual independently. Each chapter is a
self-contained document that deals with all the essential aspects of a partic-
ular subroutine. Each chapter outlines the algorithm and logic of a subrou-
tine. Each chapter describes the subroutine’s FORTRAN call, arguments,

and the options that can be used with the subroutine. Each chapter has a

special reference divider that precedes the chapter and that summarizes
the information contained in the chapter.

In addition, each chapter presents one or more example programs that use
the subroutines. Where necessary, certain chapters also present flowcharts
and glossaries to explain subroutine operation in greater detail.

The appendixes tell you how to install, verify, and use the Laboratory
Subroutines with your FORTRAN programs under the RT-11,
RSX-11M/M-PLUS operating systems.

1.1 The Laboratory Subroutines Package

The Laboratory Subroutines Package consists of eight subroutines that you
can call from any FORTRAN IV program running under the RT-11 opera-
ting system and from any FORTRAN IV or FORTRAN 77 program running
under the RSX-11M operating system. The eight subroutines perform a
variety of standard tasks commonly encountered in the laboratory.

1-2

NOTE

FORTRAN 77 V4.0 is the next version of FORTRAN
IV-PLUS V3.0. FORTRAN 77 is so named because it adheres
to the 1977 ANSI subset standard for FORTRAN programs-
ming languages. Because FORTRAN 77 is compatible with
FORTRAN IV-PLUS V3.0, your FORTRAN IV-PLUS V3.0
programs can run under FORTRAN 77.

The eight LSP subroutines are:

1. The peak-processing subroutine, PEAK, detects peaks in waveform
data.

The envelope-processing subroutine, NVELOP, detects peaks in discon-
tinuous segments (envelopes) of waveform data.

The interval histogramming subroutine, HISTI, counts the number of
elements in a data stream that fall into one or more predefined
categories.

The interval histogramming with reference points subroutine, RHISTI,
counts the number of elements in a data stream marked with reference
points that fall into one or more numerical intervals.

The fast Fourier transform subroutine, FFT, numerically approximates
the analytical or continuous Fourier transform.

The phase angle and amplitude spectra subroutine, PHAMPL, converts
complex numerical values to phase angles and amplitudes.

The power spectrum subroutine, POWRSP, determines the power spec-
trum (the relationship between power and signal frequency) in a set of
Fourier coefficients.

The correlation function subroutine, CORREL, provides a discrete
method of performing the correlation function.

Each subroutine has hardware and software options you can use to extend
the capabilities of the subroutine. The chapter dealing with each subrou-
tine explains which options the subroutine can use, what the options do,
and when and how you should use the options. The Laboratory Subroutines
Package also contains a simple, interactive procedure that lets you build
the subroutines in order to create a customized version of your LSP soft-
ware. “Building” consists of assembling the subroutines with the options
you choose enabled. The procedure does the following things:

1. Lets you select which subroutines you want to assemble and which
options you want to use.

Creates a file that sets the switches to enable options you choose.

Creates a file that builds each subroutine you requested with the op-
tions you chose enabled.

Introduction to the Laboratory Subroutines

4. Creates a file that tests the subroutines you built to make sure your
software works properly.

All of the laboratory subroutines are written in MACRO assembly lan-
guage, but you do not have to know MACRO to use them. You can invoke
any of the laboratory subroutines with a FORTRAN call statement as you
would invoke any FORTRAN subroutine.

The specific FORTRAN call format for a Laboratory Subroutine is outlined
in the chapter describing that subroutine. In all calls you make to any of
the Laboratory Subroutines, make sure you state all of the required argu-
ments explicitly. There are no default values for any of the arguments. If
you omit an argument, accidentally or on purpose, or if you supply too
many arguments, a FORTRAN error message results and no data is
processed.

1.2 The Laboratory Subroutines Package Distribution Kit

The distribution kit for the Laboratory Subroutines Package consists of a
mass-storage volume containing the Laboratory Subroutines Package, this
manual, a software product description (SPD), and other forms.

The subroutines are supplied to you on the distribution volume as both
source files and object files. If you decide to enable options, the interactive
build procedure creates customized versions of the subroutines from the
source files. If you decide not to enable any options, you can use the proce-
dure to build the subroutines without any options, or you can, in some
cases, use the distributed object files by linking or task building them to
your FORTRAN programs. The object files were built with no switches set,
and therefore, with no options enabled. To determine if you can use the
distributed object files, see Appendix A if you are using RT-11, or Appendix
B if you are using RSX-11M.

In addition, the distribution volume contains example programs that call
the subroutines. Example programs exist on the distribution volume as
FORTRAN source files. Example program file names have the form-

EXnsub.FOR or EXnsub.FTN

where: n stands for the number of the subroutine example program

sub stands for the first three letters of the subroutine’s file
name

For instance:

EX3RHI.FOR or EX3RHI.FTN

1s the third example program for the RHISTI subroutine.

Text of the example programs appears in each chapter along with the ter-
minal output that results when you run the programs.

Introduction to the Laboratory Subroutines 1-3

1-4

Files on the distribution volume are as follows:

Peak-processing subroutine files:

For RT-11

FPEAK.MAC

FPEAK.OBJ

EX1FPE.FOR

EX2FPE.FOR

EX3FPE.FOR

EX4FPE.FOR

Envelope-processing subroutine files:

For RT-11

FNVLOP.MAC

FNVLOP.OBJ

EX1FNV.FOR

EX2FNV.FOR

EX3FNV.FOR

Interval histogramming subroutine files:

For RT-11

HISTI.MAC

HISTI.OBJ

EX1HIS.FOR

EX2HIS.FOR

EX3HIS.FOR

EX4HIS.FOR

Interval histogramming with reference points subroutine files:

For RT-11

RHISTI.MAC

RHISTI.OBJ

EX1RHI.FOR

EX2RHI.FOR

EX3RHI.FOR

Fast Fourier transform subroutine files:

For RT-11

F4FFT MAC

F4FFT.OBJ

EX1F4F. FOR

Introduction to the Laboratory Subroutines

For RSX-11M

FPEAK.MAC

FPEAK.OBJ

EX1FPE.FTN

EX2FPE.FTN

EX3FPE.FTN

EX4FPE.FTN

For RSX-11M

FNVLOP.MAC

FNVLOP.OBJ

EX1FNV.FTN

EX1FNV.FTN

EX3FNV.FTN

For RSX-11M

HISTIMAC

HISTI.OBJ

EX1HIS.FTN

EX2HIS.FTN

EX3HIS.FTN

EX4HIS.FTN

For RSX-11M

RHISTIL.MAC

RHISTI.OBJ

EX1RHIL.FTN

EX2RHI.FTN

EX3RHI.FTN

For RSX-11M

F4FFT.MAC

F4FFT.OBJ

EX1F4F FTN

Phase angle and amplitude spectra subroutine files:

For RT-11 For RSX-11M

PHAMPL.MAC PHAMPL MAC
PHAMPL.OBJ PHAMPL.OBJ
EX1PHA.FOR EX1PHA.FTN
EX2PHA.FOR EX2PHA.FTN

Power spectrum subroutine files:

For RT-11 For RSX-11M

POWRSP.MAC POWRSP.MAC
POWRSP.OBJ POWRSP.OBJ
EX1POW.FOR EX1POW.FTN
EX2POW.FOR EX2POW.FTN

Correlation function files:

For RT-11 For RSX-11M

CORREL.MAC CORREL.MAC
CORREL.OBJ CORREL.OBJ
EX1COR.FOR EX1COR.FTN

Verification procedure files:

For RT-11 For RSX-11M

LSPVER.COM LSPVER.CMD

Interactive build procedure files:

For RT-11 For RSX-11M

LSPMAK.SAV LSPMAK.TSK

Files generated by the interactive build procedure:

For RT-11 For RSX-11M

LSPCND.MAC LSPCND.MAC
LSPBLD.COM LSPBLD.CMD
LSPVER.COM LSPVER.CMD

For instructions on installing, verifying, and using the Laboratory
Subroutines, see Appendix A if you use RT-11 or Appendix B if you use
RSX-11M/M-PLUS. Each appendix includes a description of the interac-
tive build procedure, LSPMAK, and instructions for using it.

Introduction to the Laboratory Subroutines 1-5

PEAK-PROCESSING (PEAK) SUBROUTINE

FORMAT:

CALL PEAK(TABLE,INPUT,INLAST,INPTR,OUTPUT,IDIMO,NPEAKS)

Where:

ITABLE is a 68-element integer array (a 79-element array if AUTOG$

| or DPP$ is enabled).

ITABLE(1) = original point density

ITABLE(2) = baseline test factor

ITABLE(3) = gate parameter

ITABLE(4) = minimum increase indicator

ITABLE(5) = output data type

ITABLE(6) = error indicator,

ITABLE(7) = reentry pointer

ITABLE(8) = input type indicator (if AUTOG$ or DPP$ is

enabled)

INPUT is an integer array containing input data.

INLAST is an integer variable specifying subscript of last data element

in INPUT. -

INPTR is an integer variable specifying subscript of last element in

INPUT processed.

OUTPUT is a double-subscripted array used to store output data.

OUTPUT(@(1,N) = area, Nth peak

OUTPUT((2,N) = crest height, Nth peak

OUTPUT(3,N) = crest time, Nth peak

OUTPUT(4,N) = leading minimum height, Nth peak

OUTPUT(,N) = leading minimum time, Nth peak

OUTPUT(6,N) = width, Nth peak

OUTPUT(7,N) = trailing minimum height, Nth peak

OUTPUT(8,N) = trailing minimum time, Nth peak

OUTPUT@H,N) =, ending indicator, Nth peak |

OUTPUT(10,N) = current number of input points:

averaged

IDIMO is an integer variable specifying number of peak data sets that

can be stored in OUTPUT.

NPEAKS is an integer variable specifying number of peak data sets al-

ready stored in OUTPUT.

FILE NAMES:

FPEAK.MAC (source file); FPEAK.OBJ (object file)

OPTIONS:

EIS

EAE

AUTOG$

DPPS$

NOFLT$

(Extended Instruction Set — KE11-E)

(Extended Arithmetic Element — KE11)

(Autogaining)

(Double Precision Integer Input)

(No Filter)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If you use the digital filter and enable the following options:

NONE

AUTOGS$S

DPP$

NONE |EIS EAE

1033 905 946

1237 1097 1150

1219 1079 1132

If you enable the No Filter (NOFLT$) option and the following options:

NONE

AUTOGS

DPP$

NONE

957

1118

1100

EIS

831

982

964

EAE

870

1031

1013

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 1000 Points/second.

With PDP-11/03 and EIS enabled: 450 Points/second.

Chapter 2

The Peak-Processing (PEAK) Subroutine

The peak-processing subroutine detects significant fluctuations, called
peaks, in data describing a waveform and reports definitive characteristics
for each peak found. The process is known as peak analysis.

Input to the subroutine is a series of discrete positive integers correspond-
ing to values of a waveform function at evenly spaced intervals. To elimi-
nate distortion-producing components in the data, the input is linearly
averaged and filtered before final processing (Figure 2-1). You can change
specified algorithm parameters to enhance detectability of directional
trends and baselines for a given set of data.

Figure 2-1: Flow of the PEAK Subroutine

PEAK-Processing Algorithm

INPUT; - Digital _ | Trend Width Baseline Detection:
Averaging Filter Area Width Calculation: OUTPUT

o |

PEAK Subroutine

MR-S-1600-81

Output from the subroutine is in the form of size and position for each peak
detected. Size is defined by area, height, and width, and position is ex-
pressed in terms of when a peak begins, crests, and ends. The subroutine
further reports how each peak ends — on a baseline or at a valley.

2.1 Definition of Basic Terms and Conventions

It is important to understand how some of the terms and conventions de-
scribing the PEAK subroutine are used throughout this chapter.

2-1

e The term data (input) stream describes all values presented to the sub-
routine for processing. Actual values processed by the algorithm are

sometimes called heights, for example, crest height, leading minimum
height.

¢ The duration axis of the waveform is the time axis. Time is measured as
the number of raw data points processed since the start of the input
stream. Thus, the term crest time means that crest height was observed
when a number of raw data points equal to crest time were processed.

e “Noise” is a generic term for all distortion-producing components in the

input data.

e Point-to-point changes are local changes, as contrasted with overall
changes during the course of the waveform, which are called trends.

e Changes are persistent in one direction if the number of changes in that
direction exceeds the number in the opposite direction.

2.2 The Peak-Processing Algorithm: Processing Raw Data

The peak-processing algorithm detects increasing and decreasing trends in
a set of data. Output from the PEAK subroutine is directly related to the
points where we observe changes in these trends. When we see an increas-
ing trend, the point where the increase begins is labelled the start of the
peak, and its value the leading minimum height. The point where a subse-
quent decreasing trend begins is the crest, or crest height, of the peak. And

the point where the decreasing trend stops — or a baseline is
detected — is taken as the end of the peak, or its trailing minimum height.

We can then use this information to calculate the area and width of the
peak. Under ideal conditions this sequence defines the total function of the
algorithm.

Actual conditions are seldom ideal, however. Environmental influences
during data collection tend to distort the pure function being analyzed. To a

great degree the algorithm and any controls that you can exercise over the

subroutine parameters are aimed at removing these distortions so that only

the real (dominant) trends in the data are visible.

2.2.1 Averaging of Input Data

The peak-processing algorithm first takes a linear average of input-data

points; you can specify the number of points to be averaged by means of the

first variable parameter, the Original Point Density (OPD). Thereafter the

subroutine deals only with averaged heights, which can represent several

raw data points. Keep in mind, however, that the time associated with each

averaged height is based upon the total number of raw data points aver-

aged since input began.

This averaging process smooths any “rough edges” from the data. Obvi-

ously you will want to give serious thought to the value you assign to the

OPD. If too many points are averaged, real information may be lost. In an

extreme case you might miss an entire true peak, but a more common

result is late detection of significant trend changes. By averaging too few
points, on the other hand, you could detect false trend changes.

In certain applications of the subroutine you may find that peaks are “tall
and thin” at the outset of the waveform, then tend to become “short and fat”
as 1t progresses. The algorithm compensates for this tendency by Increasing
automatically the number of points averaged when it detects a peak width
that exceeds a preset optimum.' Thus the algorithm makes wide, short
peaks more visible and increases the likelihood of detecting real data fluc-
tuations that might otherwise appear insignificant.

2.2.2 Use of the Digital Filter

The averaged data points are not processed directly by the trend-detecting
portion of the algorithm but are first filtered by means of a digital filter.
The equation for this nonlinear center-weighted filter involves seven
averaged-data points having coefficients of a modified least-squares fit.

Yo=[-(Yu+ Y. +4(Y, + Y. + 11(Y, + Y. + 14Y,)/42

The coefficients are tuned to prevent area distortion for small peaks in the
vicinity of large ones.

As each new averaged data point is calculated, it is placed in the filter as
the last, or Y., point. The new center point is calculated, after which the
points used in the filter are shifted down by one, that is, Y-, =Y,. Prerequi-
sites for this process are:

e Seven averaged points must be calculated before the digital filter may be
applied.

e The first point to be considered for directional-trend detection is the cen-
ter point resulting from application of the digital filter to these original
seven points.

e Each subsequent set of seven points used by the filter is chosen using a
sliding “window”, that is, each new averaged point (after the first six) is
used seven times in successive applications of the filter. There is a slight
twist to the sliding window in that once the filter has been applied three
times, four of the points in the current application of the filter are the
result of averaging raw data while the other three (Y, Yo, Y-)) are the
result of previous applications of the filter.

2.2.3 Trend Detection — Application of the Gate Factor

Although averaged and filtered data have been smoothed in earlier process-
ing, the resultant filtered data points may still exhibit slight point-to-point
fluctuations unrelated to the dominant trend of the data. You may set two

1 When the half-width-at-half-height measurement of a peak exceeds 25, the algorithm
doubles the number of points averaged.

The Peak-Processing (PEAK) Subroutine 2-3

24

parameters — the gate factor and the minimum increase — so that the
algorithm eliminates much of the effect of this fluctuation.

The gate factor (GT) specifies a valid directional trend in terms of the
number of changes in direction, either persistent or consecutive, over a
series of filtered points.

The minimum increase (IM) is a standard used to test for a real increase in
filtered data from point to point.

At the outset of the input stream and at points where crests are detected,
neither an increasing nor a decreasing directional trend has yet been estab-
lished. The next established trend is determined at these points as the first
direction in which the data change “gate” times.

At intermediate points a current trend is already established. Changes in
directional trend at these points may be established only if the number of
consecutive local changes in the new direction is equal to the gating factor.

A local change is defined in terms of the relation between a given data
point and the local minimum or maximum. If the current height is less
than the local minimum, the change is downward, and conversely, if the
height is greater than the sum of the local maximum and the minimum
increase value (IM), the change is upward. If the height is between the local

minimum and maximum, no change is indicated (although the area is

updated).

When processing is initialized, and at the crest of each peak, the local
minimum is set to a very high value and the maximum to a very low value.
Between crests the local minimum and maximum may be best described by
the flow diagram.

It should be stressed that the points of greatest interest on the

waveform — essentially the points that determine the peak — are found
at the points of trend change: the beginning of a peak, the peak crest, and
sometimes the end of a peak. This test is the heart of the algorithm.

2.2.4 Calculation of Area under the Peak

Two peak characteristics that are not entirely dependent on points of domi-

nant trend change are area and width. The area under the peak, or inte-

gral, is calculated by taking the sum of the area increments corresponding

to each filtered point and half the area increment at the first and last points

of a peak. The area increment at each filtered point is the product of its
height times the number of points currently being averaged.

2.2.5 Algorithm Definition of the Width of a Peak

Calculation of the peak width must be explained in a little more detail. The
peak-processing algorithm defines peak width as the difference between the

time when the crest occurs and the time when a point is reached on the

trailing side of the peak whose height is half the crest height as measured

from the height of the leading minimum (Figure 2-2).

The Peak-Processing (PEAK) Subroutine

It is possible that the data may establish an increasing trend on the trail-
ing side of a peak before the point is reached where width is normally

calculated. An increasing trend on the back of a peak is seen as terminat-
Ing the peak; the width calculation for the peak is then made at the point
where the increasing trend begins. The value calculated is called the
estimated peak width, and it is half the difference between time of crest
occurrence and time at which the increasing trend is observed (Figure 2-3).

Figure 2-2: Calculation of True Peak Width

|.

4

H
e
i
g
h
t

o

a Time b c

a = Leading Minimum Height d = b-a
b = Crest Height

e = Peak Width = Time c'-Time b’

¢ = Point Whose Value is '2(a+b) f =d2
MR-S-1601-81

Figure 2-3: Calculation of Estimated Peak Width

=
o

]
b o

a

a Time b’ c

a = Leading Minimum Height d = b-a
b = Crest Height e = Time ¢c'-Time b’
¢ = Trailing Minimum Height (Point at Which Peak f = e/2 (Estimated Width)

Ends Because Increasing Trend is Detected) g = Height at Which Peak Width Would Have Been
Calculated if Decreasing Trend Had Continued

MR-S-1602-81

The Peak-Processing (PEAK) Subroutine 2-5

2.2.6 Algorithmic Detection of the Baseline

A final and important step in peak analysis is to determine whether data
reported for a peak have been affected by similar data observed for another
peak. The algorithm checks to see whether recorded peak data indicate a
period of relative quiescence before a new peak begins or whether a new
peak begins with no intervening quiescent period. Such quiescence relative
to the overall peak contour is interpreted as a baseline; when it does not
occur, we say that the peak has ended at a valley. The problem thus be-
comes one of detecting when, or if, the baseline is reached.

Normally we assume that when the algorithm is initiated, input starts
from a quiescent state; therefore we may take the point at which an in-
creasing trend is first observed to be the current baseline height as well as
the leading minimum height of the first peak. Because baseline detection
thereafter involves a comparison of relative minimums, this first detected
minimum has a profound effect on the entire process.

Once a crest has been detected, any attempt to find a new baseline begins
only after the width has been calculated. The time past crest detection
when the baseline search begins is a function of the calculated width. Spe-
cifically baseline detection begins at a time equal to crest time plus the
product of the width and the baseline test factor (BT), an input variable
parameter. The interval between crest detection and the start of baseline
detection reflects the duration of a normal peak as it decays to a relatively
quiescent state.

To detect an actual baseline height, the slopes of successive tangent lines
from the current baseline point to each new filtered point are calculated. If
two successive increases in slope are observed before an increasing trend in
the filtered data is established, the second of these points is taken as the
termination of the peak, and the peak is seen as ending on a baseline.

If an increasing trend is established before two successive increases in slope
are observed, the peak is said to end at a valley, the new peak begins at the
point where the increasing trend is first observed, and the baseline data
remain unchanged.

Note that even though two successive increases in slope indicate a baseline,
the next peak does not begin until that point where another increasing
trend is established. The leading minimum point for the next peak is inter-
preted as defining the height and time of the new baseline. The area be-
tween the trailing minimum of the last peak and the leading minimum of
the new peak is ignored.’

! Data taken during this period indicates that there is no peak-producing activity.

2.2.7 Flow Charts for the PEAK Subroutine

The series of flow charts presented as Figures 2—4 through 2-9 gives de-

tailed logic for the PEAK subroutine. Supplementary information is pre-

sented in Tables 2-1 through 2-3. Table 2-1 lists the combinations of

switch/indicator settings that characterize significant events during peak

detection. Table 2-2 defines the symbols used in the flow charts and accom-
panying explanation. Table 2-3 reviews and summarizes flow-charted

events as they apply to three possible peak configurations:

e A peak starting on the baseline and ending on a “new” baseline

e A peak starting on the baseline and ending at a valley

e A peak starting at a valley and ending on either a baseline or a valley

Table 2-1: Switch Settings for Significant Events in Peak Definition

Significant Current Trend Indicators

Event Switch Decreasing Increasing What is Happening with
BS DI I1 Relation to Peak Processing

0 0 0 N/A

0 0 1 On front of peak that started on

current baseline

0 1 0 Detected a baseline value; look-

ing for a new peak to begin (ini-

tial conditions)

0 1 1 Crest detected for peak that

started on baseline

1 0 0 N/A

1 0 1 New peak begins before point is

reached at which width is to be

calculated (forced calculation of

width)

1 1 0 After crest, looking for point

where width is to be calculated

1 1 1 N/A

2 0 0 N/A

2 0 1 On front side of peak that

started at a valley

2 1 0 Testing for new baseline value

after width has been calculated

2 1 1 Crest detected for peak that

started at a valley

The Peak-Processing (PEAK) Subroutine 2-17

2-8

Table 2-2: Definition of Symbols

BH

BHT

BS

BT

CH

CHT

DC

DI

GT

IA

IC

11

IM

IPD

LMH

LMT

MNH

MNT

MXH

MXT

OMH

OMT

OPD

OS

PD

SC

SL

TA

TTM

WD

Current Baseline height

Time of current baseline height

Baseline switch:

0 Peak starts on baseline

1 Looking for width

2 Looking for end on baseline

Baseline test factor'

Height of last crest”

Time of last crest”

Current number of persistent decreases in filtered data

Switch that is set (=1) if signal is decreasing

Number of persistent changes (gating factor) that defines an

increasing/decreasing trend’

Accumulated area as signal increases

Current number of persistent increases in filtered data

Switch that is set (=1) if signal is increasing

Minimum differential between filtered data points that the algorithm inter-

prets as signifying a real increase’

Switch that indicates whether an increase is needed in the number of points

averaged:

IPD=PD if number of points is to be increased

IPD=0 if no increase is needed

Leading minimum height for peak®

Time of leading minimum height’

Current minimum height®’

Time of current minimum height”’

Current maximum height

Time of current maximum height

Old minimum height (before increasing trend is established)

Time of old minimum height

Original point density'

Old Slope

Point density; number of raw data points currently needed to obtain next

average point”’

Slope increase counter; baseline test

New or current slope

3
Accumulated total area during peak formation”TM

Raw point counter (current time)

Width of peak’

(Continued on next page)

The Peak-Processing (PEAK) Subroutine

Table 2-2: Definition of Symbols (Cont.)

XL Large number used to reset small number

Y Element of digital filter

Y, Current filtered point, that is, center point of current window

Type 0 Peak ends on valley

1 Peak ends on baseline”

I Value set by user

2 Value reported by algorithm

3 Value can change during peak detection; reported values are those that are current when
the end of a peak is detected.

Figure 2-4: Flow Chart for Peak-Processing; Initialization, Data
Averaging, and Application of Digital Filter

| Set Variables for Initial Entry

Indicate

Error if

Possible

,
Get First Six'S,e! ht‘ega:we
Values for Digitalointers to
Filter Via SixZero
Calls to NEXTPT

!

Go to IRESUM @
or

Go to ORESUM

1st

Call for Data

Stream

Reset Variables for Next Peak:
MNH = XL Set Current Minimum to Large Value

MXH =-XL Set Current Maximum to Small Value

DCC==00 } Neither Trend Established

L|)|==()1 fSet Last Established Trend to Decreasing

Get Next Point |Number of(l:nput \thllpes ::Iayége Doubled
Call NEXTPT PD=PD +IPD ncrement Current Time by

Set Y +3= TTMM=TM + PD No Need to Increase Number of Input Values

Results IPD=0

1
Yo:[—(Y_:,+Y+3)+4(Y_2+Y+2)+11(Y_1 +Y+1)+14Y0]42

l
Shift Window

Down Yi-1 = Yi

- Latest Minimum?

Yes

Check for Maximum

No

The Peak-Processing (PEAK) Subroutine 2-9

Apply Digital Filter

1=-2-10.+1,+2,+3

Center Point

MR-S-1603-81

Figure 2-5: Flow Chart for Peak-Processing;

Width and Search for Baseline

Does This Decrease Occur After A
Detection of Baseline?

Clear Current Area During Increase

Number of Minimums - Gate?

Yes

No

Establish Decreasing Trend

s This a Decrease After an Establii
increase?

DETECTED PEAK CREST

B

No

Yes

No Y

Yes

Y

WD = TM-CHT
BS=2

Yes

No

TA=TA+(Y,, 2)
IPD=PD

Found New Minimium

Look for Peak Width?

Is Y_,Low Enough to Find Width>

Calculate Peak Width
Start Checking for Baseline

Width 25 Fiitered Points?

Add Correction Factor to Accumulation Area
Increase Number of Input Values

MNH = Y,

PDC =0C + 1

TA=TA+ (Y_,‘PD) + 1A

Record Current Minimum Value
Record Current Time
Bump Number of Minimums Found

No

Number
shed

No MXH= -XL

Yes

CH=MXH

TA=0

Calculation of Peak

Accumulated Area + Current Area + Area During Increase

Has an Increasing Trend Been Established
Since Baseline Detection?

Disregard Area Between
Points at Which Baseline
Is Detected And Start of
Next Peak

Current Maximum is Very Small

Record Crest Height

Record Crest Time
Record Lendin? Minimum Height
Record Time of Leading Minimum Height
Look for Peak Width

Process Next Peak

2-10 The Peak-Processing (PEAK) Subroutine

MR-S-1604-81

Figure 2-6: Flow Chart for Peak-Processing; Area Calculation

Update Total Accumulated Area
During Increase by Current Area

IA=1A+ (Y_,'PD)

Current Point - Current
Maximum + Minimum N
Increase? °

Yes

Reset Current Maximum Height
Reset Time of Latest Maximum MXH=Y_,
Bump Current Number of MXT = TM

Persistent Increases in IC=IC +1
Filtered Data

Current Number of Increases Gate?
]

Yes_{ N200

No

Clear Counter for Number of Minimums

DC=0

Is Current Trend Increasing?

N
2 DI=1

Yes

Update Accumulated Area During Increase
IA=1A +'2PD*"MNM Save Time of Last Minimum

H=1 OMH = MNH Establish Increasing Trend

DI=0 OMT = MNT

NEW PEAK STARTS

Peak Started on Baseline Looking for Width
NEW BASELINE
Reset Baseline Height BH = OMH -0 =1

Regrtu‘léiirgn:t of Occurrence BHT = OMT 8S WD = /2(MNT-CHT) Forced Estimate of Width

=2 PEAK

ENDING
ON VALLEY

Checking for

End on

Baseline T -
| Type=0 —
CALL RITOUT

b
This Switch Combined With
Increasing Trend Suggests

BS =2 Search for Crest

{' Width - 25 Filtered Points?
Yes

—e{ N160)} WD PD- 25

No

Add Area Correction
Increase Number of input Values

WA:TA+(Y+1 2)
IPD=PD

MR-S-1605-81

The Peak-Processing (PEAK) Subroutine 2-11

Figure 2-7: Flow Chart for Peak-Processing; Determining the
Baseline

MNH= MXH

Set Current Minimum to Current Maximum Height

Baseline Test

Has Width Been Calculated?

Is Trend Decreasing?

Width Test

_ Current Point-Current Baseline Height
Current Slope= Current Time-Current Baseline Time

SL= (Y_{'BH) (TM-BHT)

Old Slope Current Slope?

Update Old SlopeYes os=st |- e
SC=0 Clear Slope

Increase Counter

No

Increment Slope Increase Counter

SC=SC+1

Is Slope Increase Counter -2?

SC -2 No -

Yes

Type=1
CALL RITOUT

1
Clear Counter

Set Old Siope Value SC=0
Clear Baseline Switch 0S=XL »{ N100

BS=0

MR-S-1606-81

2-12 The Peak-Processing (PEAK) Subroutine

Figure 2-8: NEXTPT Subroutine — Peak-Processing

Subroutine NEXTPT (Not Accessible to User)

Prepare to Average

Clear Sum

Copy PD

Y
increment Input Pointer

Reentry From Increment INPTRMain Program

Any Input Left in INPUT Array?[Set INPTR = -1

Return to Set Next Entry From No ;Main Line Code Main 16 IRESUM NPTR- INLAS
Transparent to User)

Yes

Add Next Point tol
Sum; Decrement
Copy of PO

More Points
to Sum

Get Averaged Point

Divide Sum

by PD

)

Return to
Algorithm with

Average Point

MR-S-1607-81

The Peak-Processing (PEAK) Subroutine 2-13

Figure 2-9: RITOUT Subroutine — Peak-Processing

Subroutine RITOUT (Not Accessible to User)

Add Correction

Factor to Ares
TA=TA + .5"MNH*PD

Increment OUTPUT Array Pointer

Reentry From increment
Main Program NPEAKS

Set NPEAKS =-1

Return to

(Transparent to User)

Store

TA MNH

CH MNT Floating
CHY T Point
LMH P
LMY

WD

Convert to
Return to Single-Precision Double

Algorithm Floating Point Precision

Any Room Left in OUTPUT Array?

iConvert to

Double-Percision|

Floating Point

MR-S-1608-81

Table 2-3: Definition of Peak Events

{

¢ |

|
: I

T ' | __—-1 I : ||

' o BE% Peak 1 Peak 2 ——w{e—Peak 3 —s|
| | 1] 1 1 1] | .

b C d’ Time e’ f g i’ I k' I’
MR-S-1611-81

Point/Section Flow Chart

of Curve Description Referencel(s)

a Input begins Flowchart begins

a-b Decreasing trend in data after baseline |BS=0.DI=1.11=0

detection DC=>GT IC<GT

b Increasing trend established; leading |[OMH=b BH-=b

minimum height'time of Peak 1 de- |OMT=b’ BHT-=b’

tected; “new” baseline data (height and

time) defined

b-¢ Increasing trend in data: change in es- | BS=0,DI =0,I1=1

tablished trend will indicate crest |DC<GT.ICGT

detection

c Decreasing trend established; crest | LMH-OMH CH -¢

height and time detected and recorded; | LMT ~=OMT CHT =¢'

leading minimum data recorded; start

looking for point where width is

calculated

c-d Decreasing trend in data after crest de- |BS=1DI=1.11-0

tection and before width calculation DC>GT,IC<GT

d Point where width is calculated: |WD—=d'-¢’

d=(b+c¢)2

d-e Decreasing trend in data after width is | BS=2,DI=1.11-0
calculated and before baseline is |DC>GT.IC<GT

detected

e Baseline detected; Peak 1 ends at this | MNH =e

point, which is recorded as trailing | MNT=e’

minimum Type =1

END OF PEAK 1

e-f Decreasing trend after baseline detec- |BS=0DI—=1.1=0
tion and before start of next peak:; area | DC >GT,IC<GT

under curve ignored

The Peak-Processing (PEAK) Subroutine

(Continued on next page)

2-15

2-16

Table 2-3: Definition of Peak Events (Cont.)

Point/Section Flow Chart
of Curve Description Reference(s)

START OF PEAK 2

f Increasing trend established: leading |OMH=f BH=f
minimum (height and time) of Peak 2 |OMT=f BHT={
detected; baseline data (height and

time) redefined

g Height on Peak 2 (after crest detected) | No corresponding point on
where width would be calculated if data | flow chart
were to decrease to this point before

start of Peak 3:

g=(h+f)2=(CH,-OMH)2

f-h Increasing trend in data; change in es- BS=0,DI=0,II=1
tablished trend will indicate crest detec- DC<GT,IC>GT
tion (see b-c)

h Decreasing trend established; crest |LMH=OMH CH=h
height and time detected and recorded; | LMT=OMT CHT="h'
leading minimum data recorded: start

looking for data value g

h-i Decreasing trend in data after crest | BS=1DI= 1,II=0
detection and before width calculation DC>GT,IC<GT
(see c-d)

i Increasing trend established before | WD =(MNT-CHT)/2
width of Peak 2 calculated; forced esti- |MNH=i BH=f OMH =i
mation of width of peak 2 as (i'-n')/2; |MNT=i' BHT=f OMT =i’
Peak 2 ends at valley with i as trailing | Type=0

minimum for Peak 2; Peak 3 begins

with 1 as leading minimum: baseline

data remain unchanged

END OF PEAK 2/START OF PEAK 3

1-j Increasing trend in data; change in es- | BS=2,DI=0I1=1
tablished trend will indicate crest detec- | DC<GT.,IC>GT
tion (see b-c,f-h)

] Decreasing trend established; crest | LMH=0OMH CH =]
height and time detected and recorded; | LMT =OQMT CHT=)’
leading minimum data recorded: start

looking for point where width is to be

calculated

J-k Decreasing trend in data after crest | BS=1,DI=11II1=0
detection and before width calculation DC>GT,IC<GT
(see c-d)

k Point where width is calculated: WD=k'-’
k=(j+1)2

The Peak-Processing (PEAK) Subroutine

(Continued on next page)

Table 2-3: Definition of Peak Events (Cont.)

Point/Section Flow Chart

of Curve Description Reference(s)

k-1 Decreasing trend in data after width is | BS=2DI=111=0

calculated and before baseline is de- | DC>GT,IC<GT

tected (see d-e)

] Increasing trend established before |MNH=1BH=f OMH=1

baseline is detected; peak 3 ends at val- |MNT =1" BHT =f"

ley with 1 as trailing minimum; Peak 4 |OMT =1’

begins with 1 as leading minimum; | Type=0

baseline data remain unchanged

END OF PEAK 3/START OF PEAK 4

Peak 4 not shown in illustration

2.3 How to Call the Peak-Processing Subroutine

The symbolic name for the peak-processing subroutine is PEAK, and the
general format for the FORTRAN call is:

CALL PEAK(TABLE,INPUT,INLAST,INPTR,OUTPUT,IDIMONPEAKS)

For reference, argument names in the call to PEAK have been assigned
arbitrarily. You may supply your own argument names, but you must state
all of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument, either accidentally or on purpose, or if
you supply too many arguments, a FORTRAN error message results, and
no data is processed. The arguments are described in the following
discussion.

ITABLE is an integer array used to store intermediate results and other
information required by the algorithm; its dimension is normally 68.
You must set the values of the following array elements to transmit
variable parameters and other information to the subroutine.

ITABLE(1) Number of raw input values to be averaged to determine a
point for use by the digital filter; this variable parameter
1s called the original point density (OPD) in the descrip-
tion of the algorithm. In general, the OPD should be so
chosen that the number of averaged data points on the
first peak is about 100.

I See Section 2.5 for the options you can use with the peak-processing subroutine.

The Peak-Processing (PEAK) Subroutine 2-17

ITABLE(2)

ITABLE(3)

ITABLE(4)

ITABLE(5)

ITABLE(6)

The baseline test (BT) factor (Section 2.2.6); on a peak
whose width is WD, baseline detection begins at time?
WD-ITABLE(2) past crest time. In general, suggested val-
ues can range from 3 to 5.

The number of either persistent or consecutive local
changes in one direction needed to establish a new domi-
nant directional trend. It is the gate parameter discussed
in Section 2.2.3. In general, suggested values can range
from 3 to 8.

Minimum differential (IM) between filtered data points
that the algorithm interprets as a real increase; this ele-
ment, with ITABLE(3), determines real changes in domi-

nant directional trends (Section 2.2.3). In general,

suggested values can range from 1 to 5.

The data type of the output array:

=(output type is double-precision integer

=1 output type 1s single-precision floating-point

=-1 output type is double-precision floating-point

Error indicator in the calling sequence or input

parameters

=0 Indicates no error

=N Indicates ITABLE(N) is in error, for example,

ITABLE(1)<0

ITABLE(2)<0

=-N Indicates the Nth argument is in error, for exam-

ple, INPTR>INLAST (see the following discussion)
=-8 Indicates that the calculated area to this point has

caused an overflow. That is, it exceeds 2% - 1.

When the overflow is detected, PEAK returns with

INPTR and NPEAKS set as usual. However,

OUTPUT (1, NPEAKS +1) will contain the value

of the area of the current peak up to and including

the point of overflow. You must take corrective ac-

tion by saving this value and returning to the

PEAK subroutine for further processing. PEAK

calculates the remaining area and peak character-

1stics. When PEAK returns again, the peak area

reported is the area of the peak from the last point

of overflow. To determine the actual area of the

peak, simply convert the overflowed value to a pos-

itive, double precision, real number and add to it

the remaining area of the peak.

2 Refer to conventions defined in Section 2.1 of this chapter.

ITABLE(7)

ITABLE(8)

ITABLE(68)

This element must be set to zero before the initial call is

made to the subroutine for each new stream of data. When

the subroutine processes a data stream in “parts” (Section

2.4), 1t uses ITABLE(7) for reentry to process each subse-

quent part. This element should thus not be altered by a

user until all parts have been processed.

Elements used exclusively by the subroutine while the

data stream is being processed.

INPUT is an integer array containing the raw data to be processed. Note

that all data must be positive and in the range 0 through 32767(2'° - 1).!

INLAST is an integer variable having the value of the subscript of the last

element of INPUT containing data.

INPTR is an integer variable having the value of the subscript of the last
element processed by PEAK. We can also think of it as having a value

one less than the subscript of the next datum in INPUT to be processed.

For example, if the first element of the array is to be processed, INPTR
should be set to zero. You must set the value of INPTR before calling
PEAK; however, PEAK changes the value before returning.

OUTPUT is a double-subscripted array used to store the results of apply-
ing the peak-processing algorithm. The first dimension specifies the

number of data elements to be output for each peak detected; there are

always ten. The second dimension specifies the number of sets of peak
data that can be stored by the algorithm while processing the input
data and is defined by IDIMO.

The data type of the output array is optional and can be any of those

specified by ITABLE(5).

The ten data elements reported for each peak are:

OUTPUT(1,N) Area of Nth peak

OUTPUT(2,N) Height of crest, Nth peak

OUTPUT(3,N) Time of crest, Nth peak

OUTPUT4,N) Height of leading minimum for Nth peak

OUTPUT(5,N) Time of leading minimum for Nth peak

OUTPUT(6,N) Width of Nth peak

OUTPUT(7,N) Height of trailing minimum for Nth peak

OUTPUT(8,N) Time of trailing minimum for Nth peak

I See Section 2.5 for the options you can use with the peak-processing subroutine.

The Peak-Processing (PEAK) Subroutine 2-19

OUTPUT(9,N) Indicator of how peak ended:

OUTPUT(10,N)

IDIMO is an integer variable that transmits to the subroutine the second
dimension of the output array. It defines the number of peaks that can

=0 ended on valley

=1 ended on a baseline

be reported before the output array is filled.

NPEAKS is an integer variable giving the number of peak data sets stored
in the output array. We can also think of it as having a value of one less
than the second subscript for the next set of output data to be stored.
For example, for the initial set of peak data to be stored, NPEAKS
should be set to zero.

You must set the value of this argument before calling the subroutine;
however, the subroutine can change the value before returning.

NOTE

PEAK returns (assuming there are no errors) after either of
the following events:

1.

2.

All input data elements have been processed.

The output array is filled, and there is another set of
peak data to report.

The arguments INPTR and NPEAKS indicate which
event caused the return and the current status of I/O

processing:

e If condition 1 occurred then, INPTR=-1 and

NPEAKS=< IDIMO, that is, the subroutine has set

NPEAKS to the proper value for the next subroutine

call.

o If condition 2 occurred, NPEAKS=-1 and INPTR

equals the proper subscript value for reentry — one less

than the subscript of the next element to be processed.

If the subroutine is called again with either INPTR or

NPEAKS equal to -1, the subroutine interprets the value

as zero.

2.4 Using the Peak-Processing Subroutine

2-20

You can use several inherent features of the peak-processing subroutine to
process data produced in real time. Thus, you may use PEAK in conjunc-
tion with other routines that monitor and digitize real phenomena. The
particular arguments that make possible this real-time application are
INPTR, INLAST, and NPEAKS (see Section 2.3). Let us visualize the input
and output arrays as a series of “pigeonholes”, and INPTR and NPEAKS as

The Peak-Processing (PEAK) Subroutine

Current number of input data points being averaged

pointers to the next available data element to be processed and the next
slot for outputting data, respectively (Figure 2-10). INLAST is a pointer to
the last INPUT element containing data.

Figure 2-10: INPTR, INLAST, and NPEAKS Point to Slots

INPUT

f
INPTR INLAST

-
—
b

NPEAKS
MR-S-1609-81

The subroutine returns when all data in the input buffer have been pro-
cessed, that is, INPTR= INLAST, or the output array 1is filled, whichever
occurs first. If all data in the input buffer have been processed, INPTR will
equal -1 and NPEAKS will point to the last slot (subscript) in the output
array that was filled. If, conversely, all slots in the output array have been
filled, NPEAKS=-1 and INPTR points to the last element (subscript) in
the input array that was processed. Neither is an error condition, and nei-
ther is more advantageous outside the context of your specific application.

These conditions give you great flexibility in handling subroutine input
and output. When you have large quantities of data to process, you need not
allocate space for all data at once because the subroutine is designed to
process a given data set in sequential parts. In fact, all data need not be
known before processing begins, as is true in real-time processing. Data can
be asynchronously collected into one buffer at the same time that a previ-
ously collected buffer is processed.

Handling of output is also flexible. It might, for example, be printed or
stored after each return from the subroutine, or it might be further pro-
cessed only when the output buffer was filled, that is, NPEAKS=-1. You
may choose the procedure that is most convenient for you.

Further flexibility is introduced by the fact that all arguments in the call-
ing statement except ITABLE can be changed between successive calls to
the subroutine to reflect the origin of the remaining input data and where
the output is to be stored. ITABLE must not be tampered with during the
intervals between calls for a given data stream because it contains the
current information needed to resume processing at the point where pro-
cessing was stopped on the previous call.

The Peak-Processing (PEAK) Subroutine 2-21

The subroutine is position-independent and reentrant. Although these fea-
tures are of interest mainly at the system level, they do result in additional
advantages at the user level. Perhaps most significant is the possibility of
processing several data streams simultaneously. All pertinent information
concerning the history of a data stream is contained in the ITABLE array
rather than in the code for the subroutine. Imaginative use of the argu-
ments in the subroutine call should make the subroutine functionally com-
patible with any application that uses the peak-processing algorithm.

2.5 Modifying the Subroutine — Using Options

2-22

The following sections explain which options you can use with the peak-
processing subroutine. If you want to use any of the options, you must
enable them when you build the subroutine from the source file using the
interactive build procedure (see Section 1.1).

2.5.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any
other floating-point option available. Enabling this option increases the
execution speed and decreases the memory requirements for the subroutine
by approximately 139 words if AUTOGS$ or DPP$ is enabled or by approxi-
mately 129 words if AUTOGS$ or DPP$ is not enabled.

2.5.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE (KE11) hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 87 words.

2.5.3 AUTOGS (Autogaining)

Enable the autogaining option only if you have a bipolar 12-bit A/D con-
verter supplied by DIGITAL that has four, program-selectable gain values:
1, 4, 16, 64. The converter has optional features that allow the dynamic
range to collapse under software control as the analog signal being moni-
tored approaches zero volts. This feature effectively increases the resolution
of the converted value as the analog signal becomes weaker.

Autogaining allows you to magnify the analog signal by a factor of one of
these gain values, so that the resulting converted value becomes as signifi-
cant as possible without causing an overflow. As an example, once a signal
decreases (in absolute value) to a voltage 1/4 the maximum convertible
voltage at a gain of 1, the gain is increased to 4. Thus the full digital range
of the converter is implemented. As the real voltage of the analog signal
continues to decrease in absolute value, the software increases the gain
appropriately.

The Peak-Processing (PEAK) Subroutine

It should be pointed out, however, that while the resolution of the converted
values increases, some analog signals differing exactly by magnifications of
4, 16, or 64 continue to be represented by the same 12-bit number. To
distinguish values converted at different hardware gain settings, the auto-
gaining software sets two additional bits in words that contain the con-
verted values. These are bits 12 and 13, which indicate the gain value for a
particular datum, as follows:

Gain Value Used

Bit 13 Bit 12 for Conversion

0 0 1

0 1 4

1 0 16

1 1 64

When the peak-processing subroutine is assembled to process data collected
using the autogaining algorithm, input data must still be positive; negative
values are set to zero. A characteristic of the bipolar converter used in
autogalning is to represent converted values in the range of zero to maxi-
mum positive voltage as 40004 to 7777,, and those in the range of zero to
maximum negative voltage as 3777, to 0000,.

To deal with all converted values in their proper relation, the subroutine
normalizes them before processing begins; all values are effectively repre-
sented as if sampled at a gain of 64. For example, all values sampled at a
gain of 1 are multiplied by 64; those sampled at a gain of 4 are multiplied
by 16, and so on. Consequently the resulting heights and areas are in-
creased by a factor of 64 over those produced by sampling and processing
the same analog signal with a gain of 1 (no gain).

Multiplying a 12-bit number by 64 results in an 18-bit number, which is a
double-precision word. Consequently:

e The size of the required code increases by approximately 195 words.

® You must increase the dimension of ITABLE, the first argument in the
call to PEAK, from 68 to 79.

¢ You must set another element in ITABLE:

ITABLE(8)=0 input data not autogained

=1 1nput data autogained

By using this parameter, input that is not autogained can still be
processed.

® You should select ITABLE(3) and ITABLE(4) with an awareness that all
data processed can be as much as 64 times more sensitive than if collected
with a gain of 1. For instance, if two values differ by one when collected
at a gain of 1, they could be interpreted as differing by as much as 64
when their values have been normalized.

The Peak-Processing (PEAK) Subroutine 2-23

2.5.4 DPPS$ (Double Precision Integers)

If the upper range of data points to be processed exceeds 32767 but is less
than 33554431 decimal (2*°-1), you must enable this option. If you enable
this option, all input data can be double precision integer, that is, the
second argument in the FORTRAN call statement, INPUT, can be an
INTEGER*4 array (or equivalent). Consequently:

e The size of the required code increases by approximately 195 words.

® You must increase the dimension of ITABLE, the first argument in the
call to PEAK, from 68 to 79.

e You must set another element in ITABLE:

ITABLE(8)=0 input data single-precision

=1 1nput data double-precision

2.5.5 NOFLTS$ (No Filter)

This option disables the software digital filter that the subroutine normally
uses. Enable this option if you want to average and process data points
without filtering them, or if you want to apply your own filter to the raw
data before calling the PEAK subroutine.

Enabling the no filter option results in quicker processing of data points
and decreases the size of the subroutine.

2.6 Examples Using the PEAK Subroutine

2-24

The four examples presented here process the same waveform — the sum of
four Gaussian curves — represented by the identical 1024 points. The vari-
able input parameters are likewise the same for both examples, and the
resulting output is printed on the terminal. Figure 2-11 is a graphic repre-
sentation of the input data.

Figure 2-11: Actual Plot of the Input Data

MR-S-1610-81

The Peak-Processing (PEAK) Subroutine

PEAK Example #1

Example 1 is idealized in several respects. Normally you will not know that
the input array will be empty upon return from the subroutine or that the
output array had sufficient room for all output data. You must therefore
provide for these possibilities by checking INPTR and NPEAKS. Also, no
provision is made for error checking because the input and output are
known and the program has been debugged with respect to these types of
errors. In practice, ITABLE(6) should always be checked.

This type of example was chosen to illustrate 1) minimal requirements for
implementation and 2) how the subroutine and its parameters affect a
given set of data.

In Example 1 the data are input as four 256-point parts; the subroutine
processes each part as it is received, placing the results in the output array,
which is large enough to accommodate the complete set of processed data.
Upon return from the subroutine, the input array 1s always empty
(INPTR =-1) and the output array is never filled (NPEAKS# -1).

The Peak-Processing (PEAK) Subroutine 2-25

2-26

PEAK Example #1

1
O

O
O

(
<
)

J
o
l
o
k

O

r
d

g00

1000

4

2000

A

DIMENSIDNINPUT(ZSB),OUTPUT(lO,B):EMU(&),SIGMA(Q):SIZE(a)

DIMENSION ITABLE(BB) sUTYPE(Z2,2)

DATAVTYPE/ VA’ ,'LLEY','BASE’,'LINE’/

DATA EMU/20, 47043800, ,1000,/

DATA SIGMA/204 10,4200, ,100,/

DATA ITABLE/1+2+3+1+1+63%0/

DATA INLASTyINPTR»IDIMO 'NPEAKS/256 013 ,0/

\/ =
(A} "C) 1

DO 3 K=1,4

DO 1 I=1,256

A=0,

K=K+1,

DO2 J=1.4

A=A+STZE(J)*EXP (-, S*#((X-EMU(J))/SIGMA(J)) *%2)

INPUT(I)=A

CALL PEAK(ITABLE »INPUT »INLAST ,INPTR ,OUTPUT +IDIMO NPEAKS)

CONTINUE

TYPE 900

FORMAT(1H1,T24) 'PEAK ExampPle #1'//)

TYPE 1000

FORMAT (* PEAK NO. ‘' 48Xy "AREA ' 414Xy 'P HEIGHT ' +6¥,'P TIME ‘ ,4Y ,

"LHEIGHT " »BX 'L TIME' /113, "HALF WIDTH’ +d4¥,’'T HEIGHT ‘' ,6Y ,

‘T TIME' +8X s 'TYPE' +8X'RATE'/ /)

DO 4 L=1)NPEAKS

KK=0UTPUT(9,L)+1

TYPEZOOO:(L:(DUTPUT(I;L),I=1,8)9(UTYPE(K»KK):K=1,2),OUTPUT(IOoL))
FORMAT (I9,SF12.04/9% 3F12,.044%2A4,F12,0)

END

The Peak-Processing (PEAK) Subroutine

@

©

6
0

0
0

@

Define array variables and their size.

VTYPE is used to print a word describing how the peak ended (TYPE).

Arrays EMU, SIGMA, and SIZE are used to produce the waveform to
be processed, which is the sum of four Gaussian curves,

Data statements initializing the variable input parameters to the
algorithm (ITABLE) and the arguments for the call to PEAK.

Section producing values that represent the waveform: as X increases,
the next 256 values are calculated and PEAK is called. Four waveform
segments are produced.

Each time 256 values are produced, PEAK is called.

ITABLE is not affected by the program but is used by the subroutine.

INPUT contains the input data; actual values change each time PEAK
1s called.

INLAST is the subscript of the last element in INPUT that contains
data; always 256 in this example.

INPTR is either O (initially) or -1; subroutine looks for data to start in
the first element in the INPUT array.

OUTPUT is the array where data for each peak is stored; space is
allocated to accommodate all data produced: argument remains
unchanged by program.

IDIMO specifies the number of sets of peak data that can be stored
before the OUTPUT array is filled.

NPEAKS specifies the number of sets of peak data produced thus far;
because results are known, no check is made for a full condition with
respect to the output array.

Loop for each of four sections of waveform. All elements of INPUT
array are processed (INPTR=-1), but OUTPUT array still has room

(NPEAKS<IDIMO).

This section types the results on the terminal.

The Peak-Processing (PEAK) Subroutine 2-27

Terminal output with digital filter enabled:

PEAKR Example #1

PEAK NO. AREA P HEIGHT P TIME L HEIGHT L TIME
HALF WIDTH T HEIGHT T TIME TYPE RATE

1 35795, 951, 19, 692, a.

12, 345, 23, BASEL INE 1.
2 11803, 451, G8. 343, o4,

7 a1, 93, BASELINE 1.
3 134928, 299, 096, 13, 106,

124, 200, 845, VALLEY 1.

Terminal output with No Filter option enabled:

PEAR Example #1

PEAK NO. AREA P HEIGHT P TIME L HEIGHT L TIME
HALF WIDTH T HEIGHT T TIME TYPE RATE

1 38147, 953, 19, GO8. 1.,

14, 342, od., BASELINE 1.
2 11835, 4354, 68. 342, od.,

7 a1, 93. BASEL INE 1,

3 132652, 300, 297, 14, 106,

117, 201, 831, VALLEY 1.

2-28 The Peak-Processing (PEAK) Subroutine

PEAK Example #2

Example 2 is also idealized because the input and output are known and
the program has been debugged. Therefore no error checking is done. The
variable input parameters (ITABLE) are set to the same values and in the
same manner as in Example 1.

All input for this example is presented to the subroutine in one large array.
However the output array is large enough for only one set of peak data.
Thus each time the subroutine returns to the main program (except for the
last return), the output array is full (NPEAKS =-1) but the input array has
not been completely processed (INPTR# -1, <INLAST). On return from the
subroutine, the data in the output array must be further processed (in this
example printed on the terminal) before another call is made to the subrou-
tine to process input data.

The Peak-Processing (PEAK) Subroutine 2-29

2-30

PEAK Example #2

R
O

 N
R
O
I
O
L
C
;

900

G) 1000

®

1

O
F

ONNy
2000

—
(
©
—

A

B

DIMENSION INPUT(1024) ,OUTPUT(10) ,EMU(4) »SIGMA(A) ,SIZE(Y)

DIMENSION ITABLE(GB) »UTYPE(2,2)

DATAVUTYPE/" WA’ ,'LLEY’,'BASE’,'LINE"/

DATAEMU/20. 70,1600, 41000,/

DATASIGMA/Z0,410, 4,200, ,100,/

DATA SIZE/9S0.400, 4300, 4200,/

DATA ITABLE/14+2+3+141 y63%#0/

DATA INLAST»INPTR,,IDIMO INPEAKS/1024,0,1,0/

L=0

TYPE 900

FORMAT(1H1 ,T24, 'PEAK Example #2'//)

TYPE 1000

FORMAT (' PEAK NO. ', W "AREA »dX» P HEIGHT " 48X+ 'P TIME ’ 4%,

"L HEIGHT X9’LTIME'9/911X»'HALFNIDTH':QK:’THEIGHT'r X

‘T TIME' »8X s 'TYPE ' 8%, 'RATE’'/ /)

DO 1 I=1,1024

A=0,

"=l

D0 2 J=1.+4

A=A+STZE(J)*EXP(- . S*((X-EMU(J))/SIGMA(J)) #%2)

INPUT(I)=A

CALL PEAK(ITABLE INPUT yINLAST,INPTR »OUTPUT,IDIMO 'NPEAKS)

IFCINPTR.LT.O.AND.NPEAKS,EQ.0)STOP

L=L+1

KK=0UTPUT(9)+1

TYPE 2000, (L (DUTPUT(I) »I=1+8) y(UTYPE(K +KK) +K=1+2; »OUTPUT(10))

FORMAT(I SF12.04/ 39X s3F12.04,4X2A4F12,0)

IFCINPTR.GE.O)GD TO 3

STOP

END

The Peak-Processing (PEAK) Subroutine

®

®

®

®
Q
O
O

O
J
C
,

Define array variables and their size.

VTYPE is used to print a word describing how the peak ended (TYPE).

Arrays EMU, SIGMA, and SIZE are used to produce the waveform to
be processed, which is the sum of four Gaussian curves.

Data statements initializing the variable input parameters to the
algorithm (ITABLE) and the arguments for the call to PEAK.

Type headings for peak output.

Produce 1024 values representing the waveform.

Call the PEAK subroutine to continue processing the input array. If
the input array is empty and no new peak data are in the output array,
exit.

ITABLE is not affected by the program but is used by the subroutine.

INPUT contains data to be processed, some of which may already have
been processed.

INLAST is the subscript of the last element in INPUT containing data;
it is always 1024.

INPTR is always equal to the subscript of the last element in the input
array that was processed. Initially it is zero, but in subsequent calls it
points to the last element in the input array that was processed when
the output array was filled. The PEAK subroutine manages this
element.

OUTPUT is array where data for each peak is stored. Space is
available for only one set of peak data. Therefore each time an
additional set of peak data is available, the subroutine returns to the
main program so that more space can be made available to store data.

IDIMO specifies the number of sets of peak data that can be stored
before the OUTPUT array is filled; it is set to one.

NPEAKS is zero (initially), 1 (if one peak was found but the input was
exhausted), or -1 if two sets of peak data are ready to be reported.

Print peak data.

If input data is not completely processed, call PEAK again to continue
processing.

The Peak-Processing (PEAK) Subroutine 2-31

2-32

Terminal output with digital filter enabled:

PEAK Example #2

PEAK NO. AREA P HEIGHT P TIME L HEIGHT L TIME
HALF WIDTH T HEIGHT T TIME TYPE RATE

1 35795, 951. 19, G9Z, 4.

2 345, o3, BASEL INE 1.
2 11803, 451 , 68. 343. od.,

7 a1, 93. BASELINE 1.
3 1348928, 299, 296, 13, 106,

124, 200, 845, VALLEY 1,

Terminal output with No Filter option enabled:

PEAK Example #2

PEAK NO, AREA P HEIGHT P TIME L HEIGHT L TIME
HALF WIDTH T HEIGHT T TIME TYPE RATE

1 38147, 953, 19. 608, 1.

14, 342, od, BASELINE 1.,
2 11835, 434, 68. 342, od.,

7 a1, 93, BASEL INE 1.

3 132652, 300, 297, 14, 106,

117, 201, 831, VALLEY 1.

The Peak-Processing (PEAK) Subroutine

PEAK Example #3

Example 3 is almost identical to Example 1. But, because Example 3 pro-
cesses autogained data, the peak-processing subroutine had to be built with
AUTOGS enabled. Three changes were made to the source code of
example 1:

1. In Section 1, the size of ITABLE was increased to 79 elements.

2. In Section 4, elements 6 and 7 of ITABLE have been set to 0 and
element 8 has been set to 1 to specify autogained data.

3. In Section 5, each element in INPUT has had 4000 octal added to it to
simulate bipolar zero and 30000 octal added to it to simulate the high-
est gain value possible and to eliminate the need for normalization.

The Peak-Processing (PEAK) Subroutine 2-33

PEAK Example #3

DIMENSION INPUT(256) yOUTPUT(10,3) ,EMU(4) ,SIGMA(U) »SITE(4)

DIMENSION ITABLE(79) yUTYPE(2,2

DATA VTYPE/" WA’ ,'LLEY','BASE’','LINE"/

DATAEMU/20, 470,600, 1000,/

DATA SIGMA/20., 410,200, ,100,/

DATA SIZE/9S0.,4400, 4300, 4200,/

DATA ITABLE/ 1424391 41 42%0,1,71%0/

DATA INLAST ,INPTR,IDIMO 'NPEAKS/2S6 0 43,0/
1
1R

O
O

{=0,

DO 3 K=1,4

DO1 I=1,256

) A=0,

R=X+1,

DO 2 J=1.+4

A=A+STZE(J)*EXP(-, S*((X-EMU(J))/SIGMA(J)) %%2)

)} INPUT(I)=A+"34000

(
<
)

)

CALL PEAK(ITABLE »INPUT »INLAST ,INPTR ,OUTPUT ,IDIMO ;NPEAKS)

CONTINUE

1
0
0

TYPE 900

900 FORMAT(1H1,T24,'PEAK Example #37//)

TYPE 1000

1000 FORMAT(’ PEAK NO.’ +8X s 'AREA’ 14X, 'P HEIGHT/' »6% ‘P TIME' ,4Y%,

8) A 'L HEIGHT’ 6X+»'L TIME' /111X, HALF WIDTH’ »4X,'T HEIGHT’ ,6Y ,

B 'TTIME'8Xy'TYPE' 8BXs'RATE'//)

DO 4 L=1/NPERKS

KK=0UTPUT(9,yL)+1

4 TYPE 2000, (L »(OUTPUT(I L) +1I1=1+8) s (UTYPE(K KK) yK=1,+2) yOUTPUT(10,L))

2000 FORMAT(IOSF12.04/49X 13F12,044%y2A4,F12.,0)

END

(
o
)

2-34 The Peak-Processing (PEAK) Subroutine

@

©
®

©
®

0
0

@

Define array variables and their size.

VTYPE is used to print a word describing how the peak ended (TYPE).

Arrays EMU, SIGMA, and SIZE are used to produce the waveform to
be processed, which is the sum of four Gaussian curves.

Data statements initializing the variable input parameters to the
algorithm (ITABLE) and the arguments for the call to PEAK.

Section producing values that represent the waveform: as X increases,
the next 256 values are calculated and PEAK is called. Four waveform
segments are produced.

Each time 256 values are produced, PEAK is called.

ITABLE is not affected by the program but is used by the subroutine.

INPUT contains the input data; actual values change each time PEAK
1s called.

INLAST is the subscript of the last element in INPUT containing data;
always 256 in this example.

INPTR is either O (initially) or -1; subroutine looks for data to start in
the first element in the INPUT array.

OUTPUT is array where data for each peak is stored:; space 1s allocated
to accommodate all data produced; argument remains unchanged by
program.

IDIMO specifies the number of sets of peak data that can be stored
before the OUTPUT array is filled.

NPEAKS specifies the number of sets of peak data produced thus far;
because results are known, no check is made for a full condition with
respect to the output array.

Loop for each of four sections of waveform. All elements of INPUT
array are processed (INPTR=-1), but OUTPUT array still has room

(NPEAKS<IDIMO).

This section types the results on the terminal.

The Peak-Processing (PEAK) Subroutine 2-35

2-36

Terminal output with digital filter enabled:

PEAK NO,

r-
J

Terminal

PEAK NO,

r
J

AREA

HALF WIDTH

35795,

12,

11803,

7

134928,

124,

output with No

AREA

HALF WIDTH

38147,

14,

11835,

70

132652,

117,

P HEIGHT

T HEIGHT

951,

345,

451,

a1,

299,

200,

P HEIGHT

T HEIGHT

953,

342,

434,

a1,

300,

201,

The Peak-Processing (PEAK) Subroutine

PEAK Exameple #3

P TIME

T TIME

190

23,

880

93,

296,

845,

Filter option enabled:

PEAK Example #3

P TIME

T TIME

19,

od.,

68,

93,

297,

831,

L HEIGHT

TYPE

692,

BASEL INE

343,

BASEL INE

13,

VALLEY

L HEIGHT

TYPE

608,

BASELINE

342,

BASEL INE

14,

VALLEY

L TIME

RATE

a’

1 ¢

od.

1 ¢

106,

1]

L TIME

RATE

1,

1,

o4,

106,

1.

PEAK Example #4

Example 4 is almost identical to Example 3. But because Example 4 pro-
cesses double precision input data, the peak-processsing subroutine had to
be built with DPP$ enabled. Four sections of Example 3 were changed:

1. In Section 1, INPUT was changed to a double precision integer array

and some additional elements were defined for the purpose of generat-
ing the input data.

2. In Section 3, the values of the parameters used to produce the input
waveform for PEAK were changed to yield double precision values.

3. In Section 4, ITABLE(5) was changed to -1 so that the output would be
given in double precision, floating-point values.

4. In Section 5, the algorithm to calculate the input to PEAK was changed
to produce double precision integer values.

The Peak-Processing (PEAK) Subroutine 2-37

2-38

PEAK Example #4

1
’

F
O
R

O
 —
O

®

|

TM
~

900

1000

4

2000

A

B

REAL*B OUTPUT(10,3) yEMU(4) ySIGMA(4) ySIZE(4) yA 4B s

INTEGER TEMP(512)

DIMENSION ITABLE(79) yUTYPE(2,2

INTEGER*4 INPUT (256)

EQUIVALENCE (TEMP,INPUT)

DATA B/B5536.D0/

DATA VTYPE/’ WUA’,'LLEY’','BASE’,'LINE"/

DATA EMU/20.D0+70.,D0,600,D0,1000,D0/

DATA SIGMA/20.,D00,10,D0,200,D0,100,D0/

DATA SIZE/950.D3+400,D3,300,D3,200,D3/

DATA ITABLE/1+2+341 +-142%041,71%0/

DATA INLAST,INPTR»IDIMO NPEAKS/256 /0,3 ,0/

X=0,D0

DO 3 K=1,4

DO11I=2,512,2

A=0,D0

X=X+1.DO

DO 2 J=1.,4

A=A+STZE(J) *DEXP(-,SDO*((X-EMU(J))/SIGMA(J)) %%2)

TEMP(II)=A/B

C=A-B*TEMP(II)

IF(C.GE.32768.D0) TEMP(II1-1)=C-B

IF(C.LT.32768.D0) TEMP(II-1)=C

CONTINUE

CALL PEAK(ITABLE INPUT »INLAST,INPTR »OUTPUT,IDIMO NPEAKS)

CONTINUE

TYPE 900

FORMAT(1H1»T24+ 'PEAK Example #4'//)

TYPE 1000

FORMAT (* PEAK NO. ' +8X»'AREA’ +d4X P HEIGHT ' +GX+'P TIME ' +4¥,

"LHEIGHT " 46X 'L TIME' v/ +11X» "HALF WIDTH' y4% ‘T HEIGHT ’ 46 »

‘TTIME +8Xy'TYPE’ +8Xy'RATE'//)

DO 4 L=1,+NPEAKS

KK=0UTPUT(9,L)+1

TYPE 2000, (L (OUTPUT(I L) +»I=1,+8) 1 (UTYPE(K KK) »K=1,+2) ,0UTPUT(10,L))

FORMAT(I9SF12,0+9/39X 93F12,044X12A4F12,0)

END

The Peak-Processing (PEAK) Subroutine

®

®

®

®

®

®

@

Define array variables and their size.

VTYPE is used to print a word describing how the peak ended (TYPE).

Arrays EMU, SIGMA, and SIZE are used to produce the waveform to

be processed, which is the sum of four Gaussian curves.

Data statements initializing the variable input parameters to the

algorithm (ITABLE) and the arguments for the call to PEAK.

Section producing double precision integer values that represent the

waveform: as X increases, the next 256 values are calculated and

PEAK is called. Four waveform segments are produced.

Each time 256 values are produced, PEAK is called.

ITABLE is not affected by the program but is used by the subroutine.

INPUT contains the double precision input data; actual values change

each time PEAK is called.

INLAST is the subscript of the last element in INPUT containing data;

always 256 in this example.

INPTR is either O (initially) or —-1; subroutine looks for data to start in

the first element in the INPUT array.

OUTPUT is array where data for each peak is stored; space is allocated
to accommodate all data produced; argument remains unchanged by

program.

IDIMO specifies the number of sets of peak data that can be stored

before the OUTPUT array is filled.

NPEAKS specifies the number of sets of peak data produced thus far;

because results are known, no check is made for a full condition with
respect to the output array.

Loop for each of four sections of waveform. All elements of INPUT

array are processed (INPTR=-1), but OUTPUT array still has room

(NPEAKS=<IDIMO).

This section types the results on the terminal.

The Peak-Processing (PEAK) Subroutine 2-39

2-40

Terminal output with digital filter enabled:

PEAK NO.

r
J

Terminal

PEAK NO,

r-
J

AREA

HALF WIDTH

32158219,

11,

10732416,

70

134705883,

119,

PEAK Example #4

P HEIGHT

T HEIGHT

952958,

483071,

4522958,

189827,

300062,

201630,

P TIME

T TIME

20,

a4,

68.

830

BOO,

839.

output with No Filter option enabled:

AREA

HALF WIDTH

35898677,

13,

10745955,

7

134706424,

119,

P HEIGHT

T HEIGHT

954478,

398766,

4534131,

1890897,

300068,

201624,

The Peak-Processing (PEAK) Subroutine

PEAK Examprle #4

P TIME

T TIME

20,

a8.

68.

83,

GO0,

839,

L HEIGHT

TYPE

693113,

BASEL INE

344193,

BASEL INE

14923,

VALLEY

L HEIGHT

TYPE

608373,

BASEL INE

342397,

BASEL INE

14877,

VALLEY

L TIME

RATE

4.

1.,

o4,

107,

1.

L TIME

RATE

1.

1,

24,

1.

107,

1.,

ENVELOPE-PROCESSING (NVELOP) Subroutine

FORMAT:

CALL NVELOP(ITABLE,INPUT,INLAST,INPTR,OUTPUT,IDIMO,NPEAKS)

Where:

ITABLE 1s a 51l-element integer array.

‘ ITABLE(1) = number of additional values supplied
ITABLE(2) = gate parameter

ITABLE(3) = baseline value indicator

ITABLE(4) = output data type

ITABLE(5) = error indicator

ITABLE(6) = reentry pointer

INPUT 1s an integer array containing input data.

INLAST 1s an integer variable specifying subscript of last data element

in INPUT processed.

INPTR is an integer variable specifying subscript of last element in
INPUT processed.

OUTPUT is a double-subscripted array used to store output data.

OUTPUT(1,N) = ending indicator, Nth peak

OUTPUT(2,N) = area, Nth peak

OUTPUT(3,N) = centroid, Nth peak

OUTPUT4,N) = width, Nth peak

OUTPUT(,N) = crest time, Nth peak

OUTPUT(@6,N) = crest height, Nth peak

OUTPUT(7,N) = Ileading minimum time, Nth peak

The following elements appear if ITABLE(1)=1 or 2.

OUTPUT(8,N) = first additional value preceding current

envelope

OUTPUT@,N) = second additional value preceding cur-

rent envelope

IDIMO is an integer variable 'specifying number of peak data sets that
can be stored in OUTPUT.

NPEAKS is an integer variable specifying number of peak data sets al-

ready stored in OUTPUT.

FILE NAMES:

FNVLOP.MAC (source file); FNVLOP.OBJ (object file)

OPTIONS:

@ EIS (Extended Instruction Set — KE11-E)

@ EAE (Extended Arithmetic Element — KE11)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If the following options are enabled:

NONE | EIS | EAE

669 620 | 644

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 4300 Points/second.

With PDP-11/03 and EIS enabled: 2000 Points/second.

Chapter 3

The Envelope-Processing (NVELOP) Subroutine

This subroutine detects significant fluctuations, called peaks, in sets of
data. These data represent discontinuous segments, or envelopes, of a
waveform (Figure 3-1). The envelopes are chosen arbitrarily, but they
should be presented sequentially to the original waveform.

Figure 3-1: Envelopes of Data (may contain more than one peak)

[

Beginning

of First Beginning of
Envelope \ New Envelope

ANFirst Envelope

N

H
e
i
g
h
t ; to be Processéa N

/
\\/

\//

NN/

]

,//
v/

’/’
Time- & Between Envelopes

Time —
MR-S-1612-81

Each envelope is represented by a series of discrete positive integers corre-
sponding to values of a waveform at evenly spaced intervals. For the result
of applying the algorithm for this subroutine to be correlated with the
overall waveform, you must supply the distances (elapsed times) between
envelopes. You can also supply as many as two additional data values for
related functions at the critical point where a new set of envelope data
starts.

3-1

The subroutine reports definitive characteristics for all peaks found; output
is the area, width, and centroid for each peak, as well as the height and
time of its crest. The time at which each peak starts and where it ends — at
envelope termination or at a valley — is also reported. The additional val-
ues supplied at the start of a new envelope are reported with each peak
detected in that envelope.

3.1 Definition of Basic Terms and Conventions

It is important to understand how some of the terms and conventions de-
scribing the NVELOP subroutine are used throughout this chapter.

® The term data stream describes all values presented to the subroutine for
processing.

e Data values that represent the peak being processed are referred to as
heights, for example, crest height is the maximum data value for a given
peak.

e The duration axis of the waveform is the time axis, for example, the time
at which an envelope begins is the leading time of a peak. Time is meas-
ured as the number of input values processed since input began.

e Point-to-point changes are local changes, as contrasted with overall
changes during the course of a waveform, which are trends.

e Changes are persistent in one direction if the number of changes in that
direction exceeds the number in the opposite direction.

e “Noise” is a generic term for all distortion-producing components in the
input data.

3.2 The Envelope-Processing Algorithm

3—2

The envelope-processing algorithm detects increasing and decreasing
trends (which may define peaks) in a set of data representing a segment of
a waveform. OQutput from the subroutine is directly related to the times at
which the envelope begins and ends and the points where changes in the
Increasing/decreasing trends take place. We define the point where an en-
velope begins or where a subsequent increasing trend appears as the
leading minimum of a peak. A point where the data first show a decreasing
trend preceded by an increasing trend is called the crest of a peak. Each
peak ends either at the end of an envelope or at the start of a new peak (at a
valley).

A functional description of how the algorithm applies to each envelope of
data follows; details of how the envelope is defined are presented in Section
3.3, which describes the input stream.

The Envelope-Processing (NVELOP) Subroutine

3.2.1 The Baseline Value

A baseline value for the waveform data can be either the first element in
the input data stream or the third parameter in the input parameter table

(Section 3.3). Setting this baseline value is intended to be a mechanism for
eliminating the “constant” noise level inherent in input data: it should
therefore be less than any of the waveform data values to be processed.

This value is subtracted from each data value before the trend-detection
portion of the algorithm is applied. If the result of this subtraction is nega-
tive, it is treated as a zero.

3.2.2 Trend Detection — Application of the Gate Factor

Data points may exhibit slight point-to-point fluctuations unrelated to the
dominant trend of the data. You may eliminate much of this undesirable
fluctuation by selecting an appropriate gate factor. The gate factor specifies
a valid directional trend in terms of the number of either persistent or
consecutive changes in direction over a series of input data points.

At points where a peak begins or where a crest is detected, neither an
increasing nor a decreasing directional trend has yet been established. The
next current trend is the first direction in which the data change “gate”

number of times.

At intermediate points current trends are already established. Changes in
directional trend at these points can be established only if the number of
consecutive local changes in the new direction is equal to the gate factor.

A local change is defined in terms of the relation between a given data
point and the local minimum and maximum. If the current height is less
than the local minimum, the change is downward, and conversely, if the
height is greater than the local maximum, the change is upward. If the
height is between the local minimum and maximum, no change is indicated
(although the area and centroid are updated).

At points of trend change, such as the beginning of a peak or its crest, the
local minimum is set to a very high value and the maximum to a very low
value. Between points of trend change the local minimum and maximum
can be best described by the flow diagram.

It should be stressed that the points of greatest interest on the waveform —
essentially the points that determine the peak — are found at the points of
trend change, the beginning of the peak and its crest. This test is the heart
of the algorithm.

3.2.3 The Width of a Peak

Peak width is measured as elapsed time between its start and the end of the
peak or the end of the envelope. Time is measured in units of distance
between input data values; therefore peak width is the count of the number
of input data values that describe the peak.

The Envelope-Processing (NVELOP) Subroutine 3-3

3—4

Operation of the gate factor makes it imperative that at least “gate” num-
ber of data values be recorded on either side of the crest before a peak is
detected; that is, the width of each peak must be at least twice the gate
parameter. The single exception is a peak that ends because the envelope
terminates; the width of such a peak must be at least six! for it to be
reported. The gate factor is not involved, and the output data are reported
even if no crest has been detected.

3.2.4 Calculating the Area of a Peak

The area under a peak is found simply by summing the corrected points on
the peak. Thus if the width is N,X; represents the ith input data point on
the peak, and BAS is the baseline value

N

AREA = > X;-BAS

i=1

3.2.5 Calculating the Centroid of a Peak

The centroid is the time axis component of the two-dimensional center of
mass of a peak. It is calculated as the sum of the products of the current
time and corrected points, divided by the area of the peak. Thus if T, repre-
sents time of input of the ith data point, and other symbols are as defined in
Section 3.2.4, then

N

CENTROID = > T, - (X,- BAS)/ AREA

i=1

The centroid is the best approximation of the real position of the peak with
respect to the entire waveform.

3.2.6 Flow Charts for the NVELOP Subroutine

The series of flow charts in Figures 3—-2 through 3-8 gives detailed logic for
the NVELOP subroutine. Supplementary information is presented in
Tables 3—1 and 3-2. Table 3-1 defines the symbols used in the flow charts
and accompanying explanations; Table 3-2a reviews and summarizes flow-
charted events and associated waveform phenomena as they relate to data
on possible peak configurations:

e A peak starting and ending at the boundaries of an envelope

» A peak starting at the beginning of an envelope and ending at a valley

e A peak starting at a valley and ending at the termination of an envelope

1 An arbitrarily chosen number that is twice the nominal gate factor; it is part of the
algorithm and therefore may not be changed without modifying the code.

The Envelope-Processing (NVELOP) Subroutine

Table 3-2b presents significant data-collection events on your part as they

relate to a waveform like that presented in Table 3—2a.

Note that the flow charts and accompanying illustrations and examples
assume that you impose an arbitrary threshold value to delimit data enve-

lopes to be processed.

Table 3-1: Definitions of Symbols Used

BAS Baseline height' NEW Next input value (height)

CH Crest height’ NOFC Number of extra values recorded
at beginning of new envelope'

Cl Crest-found indicator PA Partial area accumulated during

Increase

CT Time of crest height® PC Partial centroid accumulated dur-

Ing increase

DC Counter for number of per- TA Total area summation®
sistent decreases in height

DI Trend indicator (decreasing) TC Total centroid summation®*

1 = decreasing

0 = not decreasing

GT Number of persistent in- TTM Local time

creases or decreases to be

considered a valid change in

trend’

IC Counter for number of per- TT True time

sistent increases in height

II Trend indicator (increasing) T, Time of start of envelope

1 = increasing

0 = not increasing

LMT Time of start of peak’ WD Width of peak®

MN Current minimum height XL Large value

X1 First extra value recorded”"

MX Current maximum height X2 Second extra value recorded”’

MXT Time of current maximum Type 0 Peak ends at end of envelope
height 1 Peak ends at valley2

1 Value set by user

2 Value reported by algorithm

3 Value can change during peak detection; reported values are those that are current when
the end of the peak is detected.

The Envelope-Processing (NVELOP) Subroutine 3-5

Figure 3-2: Flow Chart for Envelope Processing; Data Entry

Indicate Error

if Possible

Set Negative

Pointers to Zero

Y

Go to IRESUM

| or

Go to ORESUM

Put it in

Parameter Table

No]

initialize True Time

MR-S-1613-81

3—6 The Envelope-Processing (NVELOP) Subroutine

Figure 3-3: Flow Chart for Envelope Processing;

Initialization, Calculation of Peak Width,

Ci=0

PA=0

PC=0

TM=0

LMT=TT+1

and Finding End of Envelope

Clear Crest-Found Indicator

Clear Partial Area Accumulated

During Increase

Clear Partial Centroid

Accumulated During

Increase

Clear Local Time

Set Time of Start of Peak

Clear Crest Height

Clear Crest Time

Clear Total Centroid

Clear Total Area

Set Current Minimum Very High

Set Current Maximum Very Low

Clear Counter for No. of

Persistent Decreases

Clear Counter for No. of

Persistent Increases

Set Current Trend to Decreasing

Clear Increasing Trend Indicator

!

Call NEXTPT

NEW = Value

Returned|

Get Next Input Value

Is This the End of the Envelope?

WD =TT-LMT

Calculate Width of Peak

Is Current Peak Large Enough

to Report?

Type=1

Call RITOUT

Y

N101

Peak Ends at End of Envelope
Record Information

MR-S-1614-81

The Envelope-Processing (NVELOP) Subroutine 3-7

Figure 3—4: Flow Chart for Envelope Processing;

Count of Reject Points and Reading Additional Values
where Envelope Begins

!
Call NEXTPT Get Double-Precision Time of Rejected Data

TT =TT + Values JUpdate True Time to Include Period of Data
Returned Rejection

Start of Envelope

0 N Are There Extra Values when Envelope Begins?o @

Yes

Call NEXTPT Get and Store First Extra Value

X1 =Value

Returned

Are There Two Extra Values?

Yes

Call NEXTPT Get and Store Second Extra Value

X2 = Value

Returned

|

MR-S-1615-81

Figure 3-5: Flow Chart for Envelope Processing;

New Minimum and Crest Detection

EW=NEW-BA

NEW=0 | NC

MN =NEW

DC=DC+1

TC=TC+PC+TM*NEW

Increment Local

Time

increment Total

Time

Subtract Baseline
Height from

Height of Next

Point

Is New Height >

Baseline”

Is New Height -

Current Minimum
Height?

Reset Minimum
Increment Decrease

Counter

Update Total

Centroid

Summation
Update Total Area
Clear Partial

Centroid

Summation
Clear Partial Area

Does the Decrease
No Counter Exceed

Minimum (Gate)?

Yes‘

Is Current Trend
ina?Yes Increasing?

No

Set Trend Indicator
DI = to Decreasing

IC _ 0 Clear Increase
MX= —XL Counter

Set Current

Maximum Very Low

CREST DETECTED

. CH =MX Save Crest Height

CT=MXT Save Crest Time

MR-S-1616-81

The Envelope-Processing (NVELOP) Subroutine 3-9

Figure 3-6: Flow Chart for Envelope Processing; New Maximum;

Peak Begins at Valley

PA=PA+NEW

PC=PC +TM*NE

Update Partial Area

Update Partial Centroid

Yes

MX =NEW

MXT=TT

IC=IC+1

DC=0

MN =MX

Is New Height:~Current

Maximum?

Reset Maximum

Reset Maximum Time

Increment Increase

Counter

Is Number of Persistent

Increases >Minimum

Needed to Change Trend?

Clear Decrease Counter
Set Current Minimum

to Maximum

3-10

Yes

=1

Cl=0

WD =TT-LMT

Type=0

Call RITOUT

LMT=TT

The Envelope-Processing (NVELOP) Subroutine

Is Current Trend

Decreasing?

Set Trend Indicator

to increasing, not

Decreasing

Has a Crest Been

Detected Previously?

Clear Crest-Found
Indicator

Calculate Width of

Peak

Peak Ends at Valley

Record Peak Data

Reset Time of Start

of Peak

MR-S-1617-81

Figure 3-7: NEXTPT Subroutine — Envelope Processing

Return to

Main Program

Set INPTR=-1

Set Next Entry From

h Main to IRESUM

(Transparent to User)

INPTR=INPTR +1

INPTR<INLAST

Return to

Subroutine

with Next

Value in NEW

Increment Input Pointer

Any Input Left in INPUT Array?

MR-S-1618-81

The Envelope-Processing (NVELOP) Subroutine 3-11

3-12

Figure 3-8: RITOUT Subroutine — Envelope Processing

Subroutine RITOUT

(Not Accessible to User)

TC=(TC/TA)+TO

Return to

Main Program

Do Final

Calculation

for Centroid

lgfiggment
PUT Array

A NPEAKS = Pointer
NPEAKS +1

Any Room

Set NPEAKS =-1 Left in

Set Next Entry From
Main to ORESUM

(Transparent to User)

NO

e Single-Precision

Floating

Point

Convert to
Double-

Floating Point Precision

Convert to

Double-Precision

Floating Point

OUTPUT Array?

Store

Type CT

TA CH

TC LMT

WD

\

Store X1 or

X1 and X2

If Necessary

Return to

Algorithm

The Envelope-Processing (NVELOP) Subroutine

MR-S-1619-81

The Envelope-Processing (NVELOP) Subroutine 3-13

Table 3-2a: Envelope-Processing Algorithm

Peak 2

-

7
O

7 Q
/
4

w
7

i Threshold

\
\ _ 2
.

//

//
/

////
////

////
////

_

N\

N \

N

es
t
H
e
i
g
h
t
 %

r
d ~

r
e
s
t
 H
e
i
g
h
t
 #

r C

P
R

_ % _Ba_selineZ . [/

— |
i:

MR-S-1624-81

Time ———»

a

Point/Section Flow Chart

of Curve Description of Event Reference

b New envelope begins; look for

1) Elapsed time since last data point

processed (or beginning of wave-

form) and update current total time

2) Values other than waveform data, |TT=TT +time since

supplied when new envelope begins; |last envelope=Db’

save values to be output with data

for each peak detected during cur-

rent envelope

New peak begins; save time of start LMT=TT+1=b"+1

b-c Increasing trend in data; change in es- |DI=01II=1

tablished trend will indicate crest |DC<GT,IC>GT

detection

C Decreasing trend established; detect |CH=c

and record crest height and time CT=c¢

c-d Decreasing trend continues; change in |DI=1]11=0

established trend will indicate end of |DC>GT,IC<GT

peak and start of next peak

d Envelope of data ends; peak ends on |WD=TT-LMT=d'-b’

threshold; calculate width and centroid; |Type=0

enter peak data into output array

NOTE

The NVELOP subroutine must receive information describing the length

of interval d’-e’. Table 3-2b details this information.

(Continued on next page)

Table 3-2a: Envelope-Processing Algorithm (Cont.)

Point/Section Flow Chart
of Curve Description of Event Reference

e New envelope begins: look for

1) Elapsed time since last data point

processed and update current total

time

2) Values other than waveform data, | TT =TT+ time since
supplied when new envelope begins: | last envelope
save values to be output with data | =TT =(e'-d")
for each peak detected during cur-
rent envelope

New peak begins; save time of start LMT=TT+1=¢" +1

e-f Increasing trend in data: change in es- | DI=0,Il=1
tablished trend will indicate crest DC<GT,IC>GT
detection

f Decreasing trend established: detect | CH=f
and record crest height and time CT=f

f-g Decreasing trend continues: change in |DI=1,I1=0
established trend will indicate end of DC>GT,IC<GT
peak and start of next peak

g Increasing trend established: current WD =TT-LMT=g'-¢’
peak ends; calculate width and centroid Type=1
and enter peak data in output array LMT =TT =g’
Next peak begins; save time of start

g-h Increasing trend in data: change in es- | DI=0,I1=1
tablished trend will indicate crest DC<GT,IC>GT
detection

h Decreasing trend established: detect |CH=h
and record crest height and time CT=h'

h-i Decreasing trend continues: change in | DI=111=0
established trend will indicate end of DC>GT,IC<GT
current peak and start of next peak

Envelope of data ends; peak ends on
threshold; calculate width and centroid
and enter peak data into output array

WD =TT-LMT=i'-g’

Type=0

The Envelope-Processing (NVELOP) Subroutine 3-15

Table 3-2b: How to Compile and Prepare Data for

Envelope-Processing Subroutine

Pertinent Data Supplied

Times Description of Event to the Subroutine

a’ Start of data stream; data below | None (unless baseline value

threshold entered)

a’-b’ Monitor data and test against threshold | None

value; count number of data samples be-

low threshold (rejected)

b’ Data break threshold; ascertain values | Supply reject count (double-

of auxiliary functions to be input precision) and additional val-

ues (if required)

b’-d’ Data above threshold Place each value in data

stream

d’ Data fall below threshold Place zero in data stream

d’-e’ Monitor data and test against threshold | None

value; count number of data samples be-

low threshold (rejected)

c’ Data break threshold; ascertain values | Supply reject count (double-

of auxiliary functions to be input precision) and additional val-

ues (if required)

e'-i’ Data above threshold Place each value in data

stream

Data fall below threshold Place zero in data stream

3.3 How to Call the Envelope-Processing Subroutine

3-16

The symbolic name for the envelope-processing subroutine is NVELOP,

and the general format for the FORTRAN call is:

CALL NVELOP(ITABLE,INPUT,INLAST,INPTR,OUTPUT,IDIMO,NPEAKS)

For reference, argument names in the call to NVELOP have been assigned

arbitrarily. You may supply your own argument names, but you must state

all of the arguments explicitly. There are no default values for any of the

arguments. If you omit an argument, either accidentally or on purpose, or if

you supply too many arguments, a FORTRAN error message results and no

data is processed. The arguments are described in the following discussion.

ITABLE is an integer array of 51 elements and is used by the subroutine

to store intermediate results and other information required by the algo-

rithm. You must set the values of the following array elements to

transmit variable parameters and other information to the subroutine.

ITABLE(1) Number of additional values (no more than two) that you

supply in the data stream each time a set of data for a new

envelope begins. These values are presumably related to,

but not representative of, the waveform being processed.

The Envelope-Processing (NVELOP) Subroutine

ITABLE(2)

ITABLE(3)

ITABLE4)

ITABLE(5)

ITABLE(6)

ITABLE(7)

ITABLE(51)

This parameter defines the number of either persistent or
consecutive local changes in one direction needed to estab-

lish a new dominant directional trend. It is the gate para-
meter discussed in Section 3.2.2. In general, suggested
values may range from 2 to 5.

The parameter that indicates the baseline value BAS
(Section 3.2.4) to be used with the waveform data:

If ITABLE(3)=0, it is used as the baseline value.
If ITABLE(3)<O0, the first element in the data stream is

the baseline value; when this value is

detected in the data stream, the subrou-
tine inserts it into ITABLE(3).

The element that defines the data type of the output array:

=0 Output is double-precision integer

=1 Output is single-precision real

=-1 Output is double-precision real

The element used by the subroutine to indicate errors in
the calling sequence or input parameters:

=0 Indicates no error

=N Indicates ITABLE(N) is in error, for example,

ITABLE(1)>2

ITABLE(2)<0

=-N Indicates the Nth argument is in error or miss-
ing; for example, INPTR>INLAST (see the fol-
lowing discussion)

Element that must be set to zero before the initial call to
the subroutine to process a new waveform. When a data
stream 1s processed in parts (see Section 3.4), the subrou-
tine uses ITABLE(6) for reentry to process each subse-
quent part. For this reason you should not alter this

element until all parts have been processed.

Elements used exclusively by the subroutine while the
data stream is being processed.

INPUT is an integer array containing the raw data to be processed by the
subroutine. There may be as many as five different types of data for a
single waveform:

Baseline Value If ITABLE(3) is nonnegative, this value is omitted
from the data stream. If ITABLE(3) is negative, the
first element in the input stream is taken to be the
baseline value to be used; if the baseline value is neg-
ative, it is treated as a zero (Section 3.2.1).

The Envelope-Processing (NVELOP) Subroutine 3-17

Reject Count

Auxiliary Values

Waveform

Data Values

Zero Values

This double-precision integer provides the elapsed

time, in terms of data samples, between envelopes of

data. Actually it is the count of data values rejected

by the subroutine since the last value of the previous

envelope. Because the array is single-precision inte-

ger, two elements are needed for each reject count;

the least significant part (low order) is entered first,

followed immediately by the most significant part

(high order) in the next element. For example, if the

reject count is R, and the subscript for the preceding

element is N:

INPUT (N + 2) = R/ 2"

INPUT (N + 1) = R-(INPUT (N+2)) - 2'°

Keep in mind that R is real, INPUT is integer, and

that fractional truncation takes place when a real

number is equated to an integer.

If ITABLE(1) is zero, no auxiliary values will appear

in the data stream. Otherwise as many as two values,

not representative of the waveform, may be supplied

and associated with each set of data corresponding to

an envelope to be processed. These values may be any

single-precision integers, and there must be as many

as specified in ITABLE(1).

Heights of the waveform at evenly-spaced intervals
must be supplied for each envelope of data to be pro-

cessed; heights that do not exceed the baseline value

are treated as equal to the baseline value and greater

than zero.

Because all waveform data to be processed must be

greater than zero, detection of a zero value has spe-

cial significance in that it indicates the end of an en-

velope (if it is obviously not a baseline value).

The subroutine distinguishes between these various kinds of data in the

input stream on the basis of the order in which they are expected to appear:

__BASELINE VALUE

REJECT COUNT (LOW) Time since start of input data

REJECT COUNT (HIGH—
AUXILIARY INPUT VALUE #1 — Optional

AUXILIARY INPUT VALUE #2

Waveform Data Values As supplied to subroutine

_ZERO

Optional

End of waveform data for envelope

The subset of input values designated by the bracket is repeated for each
envelope of data to be processed until the data stream ends.

INLAST is an integer variable that equals the value of the subscript of the
last array element that contains data.

INPTR is an integer variable that points to the value of the subscript of
the last element processed by the subroutine. We may also think of it as
having a value one less than the subscript of the next datum in the input
array to be processed. For example, if the first element of the array is to
be processed, INPTR should be set to zero.

You must set the value of this argument before calling the subroutine;
however, the subroutine changes the value before returning.

OUTPUT is a double-subscripted array used to store the results of apply-
ing the envelope-processing algorithm. The first dimension specifies the
number of data elements to be output for each peak detected. There are
always at least seven. In addition the ITABLE(1) auxiliary values pro-
vided with each envelope are reported for each peak found in that enve-
lope. The second dimension specifies the number of sets of peak data
that can be stored by the algorithm while processing the input data.
Thus the first dimension is 7 + ITABLE(1), and the second is defined
by IDIMO. Possible data elements reported for each peak are:

OUTPUT(1,N) Indicator of how peak ended:

= 0 ended at termination of envelope

= 1 ended at a valley

OUTPUT(2,N) Area of Nth peak

OUTPUT(3,N) Centroid of Nth peak

OUTPUT(4,N) Width of Nth peak

OUTPUT(5,N) Position of Nth peak (time of crest height)

OUTPUT(6,N) Height of Nth crest

OUTPUT(7,N) Starting position of Nth peak (time of leading min-
imum height)

The following elements are optional:

OUTPUT(8,N) First additional value at start of envelope (if
ITABLE(1)>0)

OUTPUT(9,N) Second additional value at start of envelope (if
ITABLE(1)=2)

IDIMO is an integer variable that transmits to the subroutine the second
dimension of the output array. It defines the number of peaks that can
be reported before the output array is filled.

The Envelope-Processing (NVELOP) Subroutine 3-19

NPEAKS is an integer variable giving the number of sets of peak data

stored in the output array. We may also think of it as having a value of

one less than the second subscript for the next set of output data to be

stored. For example, for the initial set of envelope data to be stored,

NPEAKS should be set to zero.

You must set the value of this argument before calling the subroutine;

however, the subroutine can change the value before returning.

NOTE

NVELOP returns (assuming there are no errors) after either

of the following events:

1. All input data elements have been processed.

2. The output array is filled, and there is another set of

peak data to report.

The arguments INPTR and NPEAKS indicate which event

caused the return and the current status of I/O processing:

e If condition 1 occurred then, INPTR=-1 and NPEAKS<

IDIMO, that is, the subroutine has set NPEAKS to the

proper value for the next subroutine call.

e If condition 2 occurred, NPEAKS=-1 and INPTR equals

the proper subscript value for reentry — one less than the

subscript of the next element to be processed.

If the subroutine is called again with either INPTR or

NPEAKS equal to -1, the subroutine interprets the value

as zero.

3.4 Using the Envelope-Processing Subroutine

3-20

You can use several inherent features of the envelope-processing subrou-

tine to process data produced in real time. Thus, you can use NVELOP in

conjunction with other routines that monitor and digitize real phenomena.

The particular arguments that make possible this real-time application are

INPTR, INLAST, and NPEAKS (see Section 3.3).

Visualize the input and output arrays as a series of “pigeonholes”, and

INPTR and NPEAKS as pointers to the next available data element to be

processed and the next slot for outputting data, respectively (Figure 3-9).

INLAST is a pointer to the last INPUT element containing data.

The subroutine returns when all data in the input buffer have been pro-

cessed, that is, INPTR =INLAST, or the output array is filled, whichever

occurs first. If all data in the input buffer have been processed, INPTR will

equal -1 and NPEAKS will point to the last slot (subscript) in the output

The Envelope-Processing (NVELOP) Subroutine

array that was filled. If, conversely, all slots in the output array have been
filled, NPEAKS =-1 and INPTR points to the last element (subscript) in
the input array that was processed. Neither is an error condition, and nei-
ther is more advantageous outside the context of your specific application.

These conditions give you great flexibility in handling subroutine input
and output. When you have large quantities of data to process, you need not
allocate space for all data at once because the subroutine is designed to
process a given data set in sequential parts. In fact, all data need not be
known before processing begins, as illustrated by real-time processing; data
can be asynchronously collected into one buffer at the same time that a
previously collected buffer is processed.

Handling of output is also flexible. It might, for example, be printed or
stored upon each return from the subroutine or it might be further pro-
cessed only when the output buffer was filled, that is, NPEAKS=-1. You
may choose the procedure that is most convenient for you.

Furthermore, you can change all arguments in the calling statement except
ITABLE between successive calls to the subroutine to reflect the origin of
the remaining input data and where the output 1s to be stored. You must
not tamper with ITABLE during the intervals between calls for a given
data stream. ITABLE contains the current information needed to resume
processing at the point where processing was stopped on the previous call.

The subroutine is position-independent and reentrant. Although these fea-
tures are of interest mainly at the system level, they do result in additional
advantages at the user level. Perhaps most significant is that several data
streams can be processed simultaneously. All pertinent information con-
cerning the history of a data stream is contained in the ITABLE array
rather than in the code for the subroutine. Imaginative use of the argu-
ments in the subroutine call should make the subroutine functionally com-
patible with any application that uses the envelope-processing algorithm.

Figure 3-9: INPTR, NPEAKS, and INLAST Point to Slots

INPUT

INPTR INLAST

-
b

NPEAKS MR-S-1620-81

The Envelope-Processing (NVELOP) Subroutine 3-21

3.5 Modifying the Subroutine — Using Options

The following sections explain which options you can use with the

envelope-processing subroutine. If you want to use any of the options, you

must enable them when you build the subroutine from the source file using

the interactive build procedure (see Section 1.1).

3.5.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS(KE11-E) hardware avail-

able. Enabling this option increases the execution speed and decreases the

memory requirements for the subroutine by approximately 100 words.

3.5.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE(KE11) hardware available.

Enabling this option increases the execution speed and decreases the mem-

ory requirements for the subroutine by approximately 50 words.

3.6 Examples Using the NVELOP Subroutine

3—22

The three examples presented here all use the same code and process the

same 1024 data points — the sum of six Gaussian waveforms. The code

compares the composite waveform against a preset threshold value (Figure

3-10) and supplies the results to the NVELOP subroutine. Each time the

input array is filled (256 elements), the subroutine is called to process the

data and place the results in the output array. Upon return from the sub-

routine to the main program, the input array is always empty

(INPTR=-1), and the output array has never overflowed (NPEAKS # -1).

The code for these examples is idealized in several respects. Normally you

will not know that the input array will be empty upon return from the

subroutine or that the output array had sufficient room for all output data.

You must therefore provide for these possibilities by checking INPTR and

NPEAKS. Also, no provision is made for error checking because the input

and output are known and the program has been debugged. In practice,

ITABLE(5) should always be checked.

This type of example was chosen to illustrate 1) minimal requirements for

implementation and 2) how the subroutine and its parameters affect a

given set of data.

The Envelope-Processing (NVELOP) Subroutine

Figure 3-10: Actual Plot of Input Data, Showing Threshold

THRESHOL

MR-S-1621-81

The Envelope-Processing (NVELOP) Subroutine 3-23

NVELOP Example #1

The Envelope-Processing (NVELOP) Subroutine 3-25

NVELOP Example #1

11—

O

O

-

21

30

10

900

1002

11

1003

DIMENSION INPUT (256) »OUTPUT(7+3) sEMU(B) »SIGMA(B) »SIZE(B)

DIMENSION ITABLE(S1) »UTYPE(3,2)

DATA VUTYPE/' "' VA YLLEY'+ T'’+'HRES’» "HOLD '/

DATA EMU/20., ,75.,,200, ,500, ,G00, ,900,/

DATA SIGMA/20. 410, 375,130, 35,4100,/

DATA SIZE/SO0. 100,200, ,800, ,700, ,300,/

DATA IT»IC+X/300:,0,0,/

DATA ITABLE/0 3401 ,47%0/

DATA J»INPTR+IDIMO 'NPEAKS/0 0,340/

DO3I=1,1024

A=0,

X=X+1,

DO 2 JJ=1,46

A=A+STZE(JJ)*EXP(- S* ((X-EMU(JJ))/SIGMA(II)) ##2)

IF(A.LE.IT) GO TO4

IF(IC.EQ.0) GO TO6

J=Jd+1

INPUT(J)=1IC

ASSIGN 21 TO IRET

GO 7O 30

J=J+1

INPUT (J)=0

ASSIGN 22 TO IRET

GO 70O 30

IC=0

J=Jd+1

IF(I.NE.1) GO TO7

INPUT(1)=0

INPUT(2)=0

J=3

INPUT (J)=A

ASSIGN3 TO IRET

GO TO 30

IF(JJ,EQ,O0,OR.IC.NE.O) GO TO 20

J=Jd+1

INPUT(J)=0

ASSIGN 20 TO IRET

GO TO 30

IC=1C+1

CONTINUE

IF(J.EQ.0) GO TO 10

ASSIGN 10 TO IRET

IF(J.NE.256.AND.I.,LT,1024) GO TO IRET

CALL NVELOP(ITABLE +INPUT »J+INPTR»OUTPUT »IDIMO ,NPEAKS)

J=0

GO TO IRET

TYPE 900

FORMAT(1H1»T16, 'NVELOP Example #1',//)

TYPE 1002

FORMAT (" PEAK NO. ' +8X»'TYPE' +8X ' AREA’' »dX +» 'CENTROID' +SX

‘P WIDTH'»/ s1SX+’P TIME' »d4X»’'P HEIGHT' 3% 'LEAD TIME ")

DO 11 L=1,NPEAKS

KK=1+0UTPUT(1,L)

TYPE 1003Ly (UTYPE(K +KK) yK=1,3) »(OUTPUT(IsL) +I=2+7)

FORMAT(I9,3AR4,3F12.0,/+9X3F12.0)

END

The Envelope-Processing (NVELOP) Subroutine

©

O

@

©

Define array variables and their size.

VTYPE is used to print a word describing how the peak ended (TYPE).

Parameters external to the NVELOP subroutine are initialized.
Arrays EMU, SIGMA, and SIZE are used to produce the waveform to
be processed, which is the sum of six Gaussian curves. IT is the
threshold value; IC and X are used for preparation of the data.

Data statements initializing the variable input parameters to the
algorithm (ITABLE) and the arguments for the call to NVELOP.

Section producing values that represent the waveform as a function
of X.

Raw data are prepared for processing by comparing them to the
threshold value (IT), then either incrementing the reject count (IC), if
the datum is below threshold, or entering the datum in the input array
if above threshold.

Each time 256 input values are produced, or when all 1024 raw data
points have been produced, NVELOP is called.

ITABLE is not affected by the program but is used by the subroutine.

INPUT contains the input data; actual values change each time
NVELOP is called.

J is the subscript of the last element in INPUT that contains data;
always 256 except on last call.

INPTR is either O (initially) or -1; subroutine looks for data to start in
the first element in the INPUT array.

OUTPUT is the array where data for each peak are stored; space is
allocated to accommodate all data produced:; argument remains
unchanged by program.

IDIMO specifies the number of sets of peak data that can be stored
before the OUTPUT array is filled.

NPEAKS specifies the number of sets of peak data produced thus far;
because results are known, no check is made for a full condition with
respect to the output array.

After NVELOP is called, all elements of the INPUT array are
processed (INPTR =-1).

This section types the results on the terminal.

The Envelope-Processing (NVELOP) Subroutine 3-27

Terminal Output

PEAK NO.

r-
J

NVELOP Example #1

TYPE

P TIME

THRESHOLD

20,

VALLEY

501,

THRESHOLD

5299,

AREA

P HEIGHT

17882,

211,

27935,

B12,

53617,

706,

CENTROID

LEAD TIME

20,

10

S04,

458,

597,

o594,

P WIDTH

4o,

96,

NVELOP Example #2

Example 2 processes the same raw data points but the threshold value is
lower (Figure 3—11). More of the data points are now above threshold than
in Example 1, and more peaks are recorded. Thus we have enlarged the
output array so that we can use the same code as in Example 1. Note the
following changes in the source code.

In Section 1, the size of OUTPUT is increased:

DIMENSION INPUT(256) yOUTPUT(7+6) yEMU(B) ySIGMA(B) sSIZE(E)

In Section 2, the threshold value (IT) is changed:

DATA ITH»ICX/1504,0,0,/

In Section 3, the value of IDIMO is changed to indicate that QUTPUT has
more room:

DATA J»INPTR yIDIMO sNPEAKS/04046 0/

Figure 3-11: Plot of Input Data, Showing New Threshold Value

v"v/\\j THRESHOLD \//\«—
MR-S-1622-81

Note that Peaks 1, 4, and 5 correspond to those in Example 1. Peak heights
are not affected by the lowered threshold value, but because more data are
“exposed”, almost every other data value is changed.

The Envelope-Processing (NVELOP) Subroutine 3-29

3—30

Terminal Output

PEARK NO.

I
3

8
]

NUVELOP Example #2

TYPE

P TIME

THRESHOLD

20,

THRESHOLD

7&0

THRESHOLD

193,

VALLEY

S01,

THRESHOLD

599,

THRESHOLD

892,

AREA

P HEIGHT

20890,

o111,

1730,

161,

20376,

199,

BOSGG6.

B12.

07374,

706,

27046,

299,

CENTROID

LEAD TIME

24,

10

74,

890

200,

144,

D02,

446,

GO1l,

ood.,

900,

783,

The Envelope-Processing (NVELOP) Subroutine

P WIDTH

108,

109,

234,

NVELOP Example #3

In Example 3 it is assumed that there is a nonzero baseline offset of 50
input units in the same raw data processed in Examples 1 and 2 (Figure
3-12). Using the code as modified for Example 2, we may eliminate the
assumed baseline offset by setting the third value in the ITABLE array to
90 (Section 4):

DATA ITABLE/0 13,5041 447%0/

Figure 3-12: Plot of Input Data, Showing Threshold Value from
Example 2 and Assumed Baseline Offset

/\A /\ THRESHOLD ——
YN /N_———BASELINE

MR-S-1623-81

Because the only change introduced to Example 2 is the baseline correction,
the only output values that change are the heights, and indirectly, the
areas.

The Envelope-Processing (NVELOP) Subroutine 3-31

Terminal Output

PEAK NO.

r-
J

o

NUELOP Example #3

TYPE

P TIME

THRESHOLD

20,

THRESHOLD

74,

THRESHOLD

193,

UVALLEY

201,

THRESHOLD

299,

THRESHOLD

892,

AREA

P HEIGHT

18140,

a61.

1180,

111,

14926,

149,

09266,

762,

21774,

636G,

43296,

249,

CENTROID

LEAD TIME

24,

1 ¢

74,

69.

200,

144,

D02,

446.,

BOO,

o094,

oo,

783,

P WIDTH

INTERVAL HISTOGRAMMING (HISTI) SUBROUTINE

FORMAT:

CALL HISTICTABLE,INPUT,IHGRAM)

Where:

ITABLE is an integer array of at least 10 elements.

ITABLE(1) = first interval lower limit

ITABLE(2) = gpecified interval length

ITABLE(3) = specified number of contiguous intervals

considered

ITABLE4) = total number of input array elements

containing data

ITABLE(5) = initialization flag

ITABLE(6) = underflow count

ITABLE(7) = overflow count

ITABLE(8) = number of IHGRAM elements exceeding

largest possible single-precision integer

ITABLE(9) = error indicator

ITABLE(10) = temporary internal storage element

INPUT i1s an integer array containing input data.

IHGRAM is an integer array used to store output data.

FILE NAMES:

HISTI.MAC (source file); HISTI.OBJ (object file)

OPTIONS:

e EIS (Extended Instruction Set — KE11-E)

e EAE (Extended Arithmetic Element — KE11)

e DPHS$ (Double-Precision Integers)

e FREQ$ (Frequency Histogram)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If the following options are enabled:

NONE

DPHS$

FREQ$

DPH$ AND FREQ$

NONE EIS EAE

218 87 131

287 164 200

279 158 192

368 245 281

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 20000 Points/second.

With PDP-11/03 and EIS enabled: 6500 Points/second.

Chapter 4

The Interval Histogramming (HISTI) Subroutine

The interval histogramming subroutine counts the number of data ele-
ments that fall into one or more predefined categories or data types. Sets of
such counts are often presented graphically as bar-graphs or histograms. In
the context of this subroutine, a category is a defined numeric interval, and
a set of categories for a given application must be representable as a contig-

uous group of intervals of equal length. Data to be processed must be repre-

sented as integers.

Results are presented as an array in which each output element corre-

sponds to a specific category. The output element reports the number of

data elements that fall into that category. Reported separately is a count of
the number of input data elements that do not belong in any of the prede-
fined categories. In addition, the subroutine can optionally produce a fre-
quency histogram.

4.1 Definition of Basic Terms and Conventions

It is important to understand how some of the terms and conventions de-
scribing the HISTI subroutine are used throughout this chapter.

e The term data stream (or input data stream) describes all data to be
processed to produce one histogram. Note that the entire data stream

need not be processed at once; it may be processed in sequential parts.

o Interval describes a subset of integers. If N is taken to be its length, the

interval is defined in terms of its lower boundary point and the next N-1

integers in ascending order.

¢ Category is a unique classification of data.

4-1

e Two areas that are outside the total range of interest are: those values
that are smaller than the minimum, or underflow values, and those
larger than the maximum, or overflow values.

o Event means something that generates a valid data element.

¢ Continuum means a continuous entity, parts of which can be distin-
guished from neighboring parts only by arbitrary division.

4.2 Your Input to the Subroutine: Its Characteristics

4-2

4.2.1 The Relation between Data and Categories

Input to the subroutine is an array of Integers that are related in some way
to the actual data they represent. If the data are numerical, such as meas-
ures of height, temperature, or time, this relation is immediately meaning-
ful and obvious. However, the relation may be purely arbitrary, as when
the data deal with an abstract condition that is represented by an integer
for convenience in processing; for example, if balls of different colors are
being counted, an integer might be assigned to represent one color and
distinguish it from other colors.

Data categories are also numerical; each is represented by an interval of
integers. And like the data/integer relation, the relation between a cate-
gory and the interval representing it may be meaningful or completely
arbitrary. Values assigned to these interrelated entities (Figure 4-1) must
be mutually consistent. For instance, an integer representing a data ele-
ment must be in the numeric interval corresponding to the particular cate-
gory to which that data element belongs. Figure 4-1 illustrates that
relations 1 and 2 are fixed, and that once relation 3 or 4 is chosen, the
remaining relation is no longer completely arbitrary.

Figure 4-1: Interrelation between DATA/CATEGORY and
INTEGER/INTERVAL Concepts

e —_————————————e —————— -

! I
: Real World :

| DATA <— 1 = CATEGORY |
[(Fixed) |
b AU,S J

3 4

—————

—q

2
INTEGER e = INTERVAL

r

|

|

: (Fixed)

I

| Subroutine World
|
|

-

MR-S-1625-81

The Interval Histogramming (HISTI) Subroutine

4.2.2 Describing the Categories

The numeric intervals representing the categories of interest to the subrou-
tine are defined by an integer array of parameter values that you set. The
first three values in the parameter table define the intervals (see
Section 4.3):

e The first element of the parameter table defines the lower numeric limit
of the first interval. Data values smaller than this limit do not fall into
any predefined category and are reported separately (see Section 4.2.3).

* The second element of the parameter table defines the numeric length of
each interval. Therefore the first interval spans integers greater than or
equal to the first element but smaller than the sum of the first and second
elements. Symbolically, if the first element is I and the second is J, the
first interval spans all integers, K1., for which

I<=sKl. <I+J

The second interval spans all integers, K2., for which

[+d=<K2<I+2-J

and so on. Note that there are J elements in each interval.

e The third element of the parameter table tells the subroutine how many
intervals — starting with the value of the first element — to consider.
This element also specifies the minimum dimension of the output array
because each interval has a corresponding output array element. The
implication of this value is that the last interval of interest spans all
integers, KN., for which

I+ (N-1)+J<KN,<I+N-J

where N is the integer value of the third element and I and J are the
integer values of the first and second elements, respectively.

4.2.3 Overflow and Underflow Counts

Because the intervals of interest may not span the entire range of legal
integer input, it is possible that the input data stream may contain values
that do not fall within any specified category. The subroutine counts the
number of data values outside the upper and lower limits of the specified
categories. The number of data values that are smaller than the minimum
specified in the first element of the parameter table is called the underflow
count and is reported in the sixth element of the parameter array.' The
number of values that exceed the maximum value in the interval of inter-
est 1s called the overflow count and is reported in the seventh element of
the parameter table.

I See Section 4.3, the subroutine call.

The Interval Histogramming (HISTI) Subroutine 4-3

4.2.4 How the Subroutine Interprets Single-Precision Numbers

Acceptable input and output values for the HISTI subroutine can be single-

precision integers in the range of 0 to 65535; single-precision positive in-

tegers in FORTRAN have a range of only 0 to 32767. This apparent conflict

1s actually a matter of interpretation and decimal representation of the

negative integers in FORTRAN; it is easily resolved, as we shall explain.

In theory a 16-bit binary number can represent a decimal number as large

as 65535. In FORTRAN this range is divided into two parts: values from 0

to 32767 are interpreted and used as positive integers; values in the other

half of the range are interpreted and used as negative integers. In

FORTRAN negative numbers ranging from -32768 to -1 correspond di-

rectly to binary numbers ranging from 32768 to 65535.

The HISTI subroutine does not process or report values less than zero.

Therefore all input and output values are treated as unsigned so that we

can use the full positive range of the 16-bit word.

You may well ask “How does this interpretation of the data by the subrou-

tine affect my particular application?” The answer is that:

1. All input values and all resulting output data less than 32768 (2'°) are

treated in exactly the same way by the subroutine and by FORTRAN

(Figure 4-2).

2. If either your input or output data contain values greater than 32767

(but not greater than 65535), they are interpreted as negative by

FORTRAN but not by the subroutine. For example, if the subroutine

outputs a single-precision integer value of 40,000, FORTRAN inter-

prets it as —25536.

Figure 4-2: Relation between FORTRAN Integers and Unsigned

Binary Values

FORTRAN Interpretation (2s Complement)

32767 —-32768. . .

0... 32767. .. 65535

Unsigned 16-Digit Binary Value
MR-S-1626-81

4-4 The Interval Histogramming (HISTI) Subroutine

We shall now present a simple mechanism for converting an integer that
FORTRAN interprets as negative to a floating-point number equal to the
unsigned interpretation of the value. This conversion may not always be
necessary; some operations, such as addition and subtraction, are unaf-
tected by the signs of the operands. The unsigned results of such an opera-
tion would be correct so long as the results were not less than 0 or greater
than 2'°. However, operations such as division and multiplication, or print-
ing and typing, are affected by the FORTRAN interpretation of unsigned
integers larger than 32767 as negative numbers.

The following two methods can be used to convert unsigned single-precision
integers to floating-point numbers:

R = (1 - N/IABS(N)) /2 * 65536. + N

or

R =N

IF (N.LT.0)R = 65536. + N

where R is the floating-point variable equivalent to the unsigned single-
precision integer stored in N, and IABS(N) is a function available from the
FORTRAN library.

To convert a floating-point number less than 65536 to an unsigned integer
you can use one of the following equations:

N = R-65536 * IFIX (R/32768.)

or

N = R-65536.

IF (R.LT.32768.) N = R

where R is again the floating-point variable, N the unsigned integer stored
in N, and IFIX is a function available from the FORTRAN library.

4.3 How to Call the Interval Histogramming Subroutine

The symbolic name for the interval histogramming subroutine is HISTI,
and the general format for the FORTRAN call is:

CALL HISTIITABLE,INPUT,JHGRAM)

For reference, argument names in the call to HISTI have been assigned
arbitrarily. You may supply your own argument names, but you must state
all of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument, either accidentally or on purpose, or if
you supply too many arguments, a FORTRAN error message results and no
data is processed. The arguments are described in the following discussion.

1 Format for the distributed version; it may change if the option FREQ$ is enabled (see
Section 4.5.4).

The Interval Histogramming (HISTI) Subroutine 4-5

4-6

ITABLE is an integer array of at least 10 elements, used to:

e Transmit information to the subroutine from the user (ITABLE(1)
through ITABLE(5))

* Return information from the subroutine to the user (ITABLE(6) through
ITABLE(9))

e Store information on an interim basis (by the subroutine) (ITABLE(10))

You must set the array elements that transmit information to the
subroutine.

ITABLE(1)

ITABLE(2)

ITABLE(3)

ITABLE(4)

ITABLE(5)

The lower limit of the first interval (see Section 4.2.2)

The specified interval length (see Section 4.2.2)

The total number of contiguous intervals to be considered

(see Section 4.2.2)

The total number of array elements containing data (start-

ing with the first element in the input array (INPUT))

A value that must be set to zero before the initial call to

the subroutine; it signals the subroutine to initialize the

output array and other output elements in the parameter

table. On subsequent calls to the subroutine, if a different

segment of the same data stream is being processed, opera-

tion continues, and there is no reinitialization.

The next group of elements is used to report information not included in the

actual histogram.

ITABLE(6)

ITABLE(7)

ITABLE(8)

ITABLE(9)

The underflow, or count of the number of input data values

that are smaller than ITABLE(1)

The overflow, or count of the number of input data values

that exceeds the upper limit of the last interval; the num-

ber of data values exceeding

ITABLE(1)+ITABLE(2) - ITABLE(3)

are reported here.

The number of output array elements that have exceeded

the largest possible single-precision integer (65535). In

FORTRAN this integer is 32767; however, this subroutine

can report integers as large as 65535 by treating all data

as unsigned positive integers (see Section 4.2.4).

An element used to report error conditions:

= Indicates no errors

=1 Indicates that ITABLE(1)+ITABLE(2)-

ITABLE(3)>65535

= Indicates ITABLE(N) is in error, for example,

ITABLE(2)=0

The Interval Histogramming (HISTI) Subroutine

The following element is used by the subroutine for its own operation:

ITABLE(10) An element used for internal storage on a temporary basis.

INPUT is an integer array containing the data to be processed. All data
are treated as positive and unsigned (see Section 4.2.4). The number of
array elements to be processed is ITABLE(4), and processing always
begins with the first element of the array. Note, however, that all data
need not be placed in the array at one time. Instead, one array of data
can be processed, the array refilled with new data, and the subroutine
called again to process the array a second time. It is possible to continue
in this piecemeal fashion until all data have been processed. In real-time
applications such a processing cycle becomes an ongoing function.

IHGRAM is an integer array to store the results of processing; each array
element is devoted exclusively to one of the numerical intervals that
represent a single category. The order of the array elements corresponds
to the numeric order of the intervals, that 1s, the Nth element of the
output array will have a value equal to the number of data elements in
the input stream that belong in the interval.

ITABLE(1) + (N-1)-ITABLE(2) to ITABLE(1) + N ITABLE(2)-1

4.4 Input and Output — Using the Subroutine

As previously stated, all data for a particular histogram need not be avail-
able, or even known, before processing begins. Initialization takes place (all
counters are set to zero) only when ITABLE(5) equals zero. Parameter table
elements are also checked for correctness when ITABLE(5) equals zero.
Before the subroutine returns, it automatically changes ITABLE(5) so that
if a subsequent call is made to process new data for the same histogram,
processing continues as though no interruption had taken place. Thus an
entire set of data for one histogram may be processed at one time, memory
space permitting; or, if the user wishes, the data may be processed one
segment at a time. The value assigned to ITABLE(4) should indicate the
number of elements in the input array to be processed for a specific call.

The subroutine is position-independent and reentrant. Although these fea-
tures are of interest mainly at the system level, they do result in additional
advantages at the user level. Perhaps most significant is the possibility of
processing several data streams in parallel. All pertinent information con-
cerning the history of a data stream is contained in the ITABLE array
rather than in the code for the subroutine. Imaginative use of the argu-
ments 1n the subroutine call should make the subroutine functionally com-
patible with any application that uses interval histogramming.

4.5 Modifying the Subroutine — Using Options

The following sections explain which options you can use with the interval
histogramming subroutine. If you want to use any of the options, you must
enable them when you build the subroutine from the source file using the
interactive build procedure (see Section 1.1).

The Interval Histogramming (HISTI) Subroutine 4-7

4-8

4.5.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any
other floating-point option available. Enabling this option increases the
execution speed and decreases the memory requirements for the subroutine
by approximately 121 words if DPH$ is not enabled, and by approximately
123 words if DPHS$ is enabled.

4.5.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE (KE11) hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 87 words.

4.5.3 DPHS$ (Double-Precision Integers)

If the data values to be histogrammed exceed 65535 (2'°-1), this option
must be enabled. If you are using a copy of the subroutine with the option
enabled, you must provide your data to the subroutine as follows:

e All input data must be double-precision integer, that is, the second argu-
ment in the FORTRAN CALL statement, INPUT, must be an

INTEGER*4 array (or equivalent).

o Because this option expands the possible range of input values by a factor
of 65536 (2'°), the range of variables used to define the exact range of
interest must also be expanded by 2'°. Therefore the first argument in the
FORTRAN CALL statement, ITABLE, must also be an INTEGER*4 ar-
ray or the equivalent. ITABLE(1) and ITABLE(2) may then select the
range of interest.

Enabling this option has no effect on output because the range of input

values does not affect the size of output values.

Enabling DPH$ alone increases the memory requirement by 69 words.

4.5.4 FREQS$ (Frequency Histogram)

A frequency (or zeroth) histogram usually has meaning only when input

data elements represent contiguous measurements of a continuum and are
input sequentially. The frequency histogram then tells, for each contiguous

interval along the continuum, how often an event occurred that produced

one data element for the subroutine.

For example, suppose we are studying the distribution of discarded beer

cans on the side of a road. Let the input data be the distance between cans.

The interval histogram would then describe the number of times cans were

found within certain preset intervals, that is, how many were 5 feet apart

or less, how many were between 6 and 10 feet apart, and so on. The
frequency histogram would describe the distribution over sections of the

road; how many beer cans (events) were found in the first quarter mile, how

many in the second, and so on.

The Interval Histogramming (HISTI) Subroutine

Another example might be to determine how often two events occur within

specified time intervals: for instance, how often do the two events occur
within 2 seconds, how often between 2 and 4 seconds, and so on. The fre-

quency histogram would show how many events occurred within each sub-

sequent time slice.

Mathematically, if the interval length in the continuum is chosen to be K,

and if an input, which represents contiguous measurements of that contin-

uum, is taken to be N;, the first element of the frequency histogram is M,,

where:

M,+1M,

> N <K= > N

i=1 i=1

The second element would be M,, where:

M,+M, M, +M,+1

> N <2-K-= > N

i=1 i=1

and so on.

If a frequency histogram is to be produced by the subroutine, this option
must be enabled. When it is enabled, the length of the ITABLE array
(Section 4.3) must be increased from 10 to 17, and additional parameters
must be defined before implementation of the subroutine. The first nine
parameters are defined exactly as if FREQ$ were not enabled, but

ITABLE(10) through ITABLE(17) must be defined as follows:

ITABLE(10) Indicator of whether to produce a frequency histogram:

=0 Do not produce a frequency histogram

=1 Produce a frequency histogram

ITABLE(11) Length (dimension) of array where results of the frequency

histogram are to be stored; it should be large enough to
hold all input data for one call.

ITABLE(12) Length of the interval of the continuum to be used in con-

structing the frequency histogram; corresponds to value of

K in the preceding equations.

ITABLE(13) Number of frequency histogram elements already calcu-
lated; will be set to 0 by the subroutine for the initial call
to HISTI, when ITABLE(5) is 0. ITABLE(3) is updated

continuously as input is processed by the subroutine. Be-

cause elements of this histogram are calculated sequen-

tially, data from the storage array can be extracted each
time the subroutine has processed all data in the input

array and returned to the calling routine. If elements are

extracted, ITABLE (13) can then be adjusted to reflect

where the next element of the frequency histogram is to be
stored.

The Interval Histogramming (HISTI) Subroutine 4-9

ITABLE(14) Current partial count for the next entry in the frequency
histogram; as soon as the number of input elements satis-
fies the requirements for completing the current interval
of the frequency histogram, ITABLE(13) is incremented by
1, and the next entry is placed in the histogram.

ITABLE(15) Elements used exclusively by the subroutine for internal
storage.

ITABLE(17)

NOTE

If you enable FREQ$ when you build the subroutine, you
must still dimension ITABLE to 17 even if ITABLE(1)=0.
The subroutine uses ITABLE(15) through ITABLE(17).

The subroutine also needs another array to store the frequency histogram
data. If ITABLE(10)=1, the FORTRAN CALL statement takes the form:

CALL HISTIITABLE,INPUT,IHGRAM,IFREQ)

IFREQ is the array to contain the frequency histogram data. This integer
array must be at least as long as specified by ITABLE(11); upon return,
ITABLE(13) will notify the user how many elements in this array contain
data.

If you remove data from the array before a subsequent call to the subrou-
tine, you may adjust ITABLE(13) before reentry to reflect the additional
storage space now available.

If the number of array elements available for storage 1s not large enough,
that is, if ITABLE(13) becomes larger than ITABLE(11), the subroutine
stops computing the frequency histogram (but continues to process data for
the interval histogram). You can take corrective action by making
ITABLE(13) smaller than ITABLE(11) when the subroutine returns. Note
that ITABLE(13) also indicates the number of elements lost in the fre-
quency histogram calculation (ITABLE(13)-ITABLE(11)).

If FREQ$ is enabled, memory requirements are increased by approximately
58 words if DPHS$ is not enabled and by approximately 78 words if DPHS$ is
enabled.

4.6 Examples of Input/Output Variation Using the HISTI Subroutine

4-10

The four examples presented here process equivalent sets of data in similar
ways but focus on different capabilities of the HISTI subroutine. Example 1
is based on the distributed version of the subroutine. A set of 10,000 ran-
dom integers ranging from 15 to 225 is processed, 500 at a time. Each
sequential set of input points is stored in alternate halves of the input
array to simulate real-time applications, which conserve processing time by
collecting and processing data in parallel.

The Interval Histogramming (HISTI) Subroutine

NOTE

If you use FORTRAN 77 and you want to duplicate the termi-
nal output for the example programs, replace the standard
random-number generator in F4POTS with FAPRAN.OBJ.
Terminal output for the example programs 1s based on the
FORTRAN IV random-number generator. The FORTRAN 77
random-number generator is different from that for
FORTRAN IV and will not produce the same output. See
Section B.1.

Categories of interest comprise 40 intervals of five integers each; the mini-
mum value for the first interval is 20. When processing is complete, the
following output is printed:

e Total count of data items belonging to each category, that is, the interval
histogram (IHGRAM)

e The number of data items smaller than the total interval of interest, that
1s, the underflow count (ITABLE(6))

® The number of data items larger than the total interval of interest, that
18, the overflow count (ITABLE(7))

® The total number of output counters that have exceeded 65535.

The Interval Histogramming (HISTI) Subroutine 4-11

HISTI Example #1

The Interval Histogramming (HISTI) Subroutine 4-13

4-14

HISTI Example #1

(
=

1000
Y

r
J
3

900

2000

3000

4000

1

1

DIMENSION ITABLE(10) ,INPUT(1000) ,IHGRAM(40)

EQUIVALENCE (ITABLE(1)+IS) y(ITABLE(2) JIW)

DATA ITABLE/2045,40,+,500,6%0/

DATA I14I2/7040/

DO 2 J=2,21

N=300#MOD(J,2)+1

DO 1 I=N,N+499

INPUT(I)=RAN(I1,I2)%#210+15

CALL HISTI(ITABLE »INPUT(N) yIHGRAM)

IF(ITABLE(9) .,EQ.0) GO TO 2

TYPE 1000,ITABLE(9)

FORMAT (' ERROR INDICATOR = ‘,13)

STOP

CONTINUE

TYPE 900

FORMAT(1H1 »T30) ‘HISTI Example 817 ,//)

TYPE 2000

FORMAT (24X +» "RESULTING INTERVAL HISTOGRAM'/ /

ac’ INTERVAL COUNT") /)

TYPE 3000, ((N-1)#IW+IS/N*IW+IS»IHGRAM(N) yN=1,40)

FORMAT(4(I74'-"»14+16))

TYPE 4000, (ITABLE(I) +1=6,8)

FORMAT(// ' UNDERFLOW COUNT = * 13,4/’ OVERFLOW COUNT = *,I3,/,

" NO, OF COUNTERS WHICH OVERFLOWED = *,12,//)

CALL EXIT

END

The Interval Histogramming (HISTI) Subroutine

®

®

@
O

O
O

@

Q

Define array elements and their sizes; use equivalence for
convenience.

Set parameter table elements: there are 40 intervals of interest,
starting at 20, and comprising 5 elements each; input array contains
500 data elements; set ITABLE(5) to zero to signal initialization.
Initialize random number generation variables.

Provide 20 sets of data (500 points each) for processing.

Determine which half of the input array is to receive the next set of
input data.

Calculate next set of random numbers for processing.

Process next set of input values:

ITABLE contains parameter table

INPUT contains input for processing, starting at subscript N
IHGRAM is array where interval histogram is stored

Check for error on return.

End of data generation and processing loop

Print output:

Interval histogram (IHGRAM)

Underflow (ITABLE(6)); overflow (ITABLE(7)); counter overflow count
(ITABLE(8))

The Interval Histogramming (HISTI) Subroutine 4-15

4-16

Terminal Output

INTERVAL COUNT

20- 25 218

do- 45 248

BO- BS 244

Bo- 85 271

100- 105 231

120- 125 237

140- 145 232

160- 165 241

180~ 185 240

200- 205 240

UNDERFLOW COUNT= 249

OVERFLOW COUNT= 231

HISTI Example #1

RESULTING INTERVAL HISTOGRAM

INTERVAL COUNT

29- 30

45- B0

65- 70

B5- 80

105- 110

125- 130

145- 150

165- 170

185- 190

205- 210

234

299

226

235

246

217

224

231

231

219

NO. OF COUNTERS WHICH OVERFLOWED= 0

INTERVAL COUNT

30~

20~

70~

90 -

110-

130-

150-

170-

190-

210-

The Interval Histogramming (HISTI) Subroutine

33

23

75

95

115

135

155

173

195

215

2
—

216

245

217

229

242

298

268

232

220

INTERVAL COUNT

35-

29-

75-

95-

115-

135-

1535-

175-

195-

215-

40

GO

80

100

20

140

160

180

200

Law 2 2

st)

242

228

242

256

233

229

249

295
~

[Ay

239

HISTI Example #2

Example 2 is identical to Example 1 except that a frequency histogram is
produced in addition to the results output in Example 1. The distributed
version of the object file for the HISTI subroutine cannot be used to produce
a frequency histogram. The subroutine must be built from the source file
with the FREQ$ option enabled in order to produce a frequency histogram
(see Section 4.5.4 and Section 1.1).

Once FREQ$ has been enabled and the correct form of the subroutine is
available, the parameter table must be expanded to include definitions for
the interval size of the frequency histogram and the size of the array in
which the frequency histogram data are to be stored. The name of the array
to be used to store the frequency histogram data (IFREQ) must also be
added to the FORTRAN CALL statement.

Upon completion of processing, the output includes the elements of the
frequency histogram in addition to the values output in Example 1.

The Interval Histogramming (HISTI) Subroutine 4-17

4-18

HISTI Example #2

1
Q
OO

©

h

Gy

1000

r
J

900

2000

3000

4000

SO00

7000

1

1

1

DIMENSION ITABLE(17) »INPUT(1000),IHGRAM(40O),IFREQ(120)

EQUIVALENCE (ITABLE(1),IS) ,(ITABLE(2) yIW)

DATA ITABLE/Z0,5+d40,500,5%#0,1,120,10000,5%0/

DATAI1 4127040/

DO 2 J=2,21

N=SO0*#MOD (J,2)+1

DO1 I=NsN+499

INPUT(I)=RAN(I1,I2)%210+15

CALL HISTIC(ITABLEINPUT(N) yIHGRAM,IFREQ)

IFCITABLE(9),EQ.0)GO TO 2

TYPE 1000,ITABLE(9)

FORMAT(*ERROR INDICATOR = *,13)

STOP

CONTINUE

TYPE 900

FORMAT (1H1 yT30, 'HISTI Example #2/,//)

TYPE 2000

FORMAT(24X '"RESULTINGINTERVAL HISTOGRAM '/ /

ac’ INTERVAL COUNT ") /)

TYPE 3000, ((N-1)%#IW+IS N*#IW+IS,IHGRAM(N) yN=1 ,40)

FORMAT(4(I7,'-"414,16))

TYPE 4000, (ITABLE(I)1=6,8)

FORMAT (// ' UNDERFLOWCOUNT = 413/, OVERFLOWCOUNT = “,13,/,

' NO. OF COUNTERS WHICH OVERFLOWED = *,12)

TYPE SO0

FORMAT (///20X,’CORRESPONDINGFREQUENCY HISTOGRAM ' // ,

S’ ENTRY COUNT ") /)

I=ITABLE(13)

IF(ITABLE(13).GT.ITABLE(11)) I=ITABLE(11)

TYPE 7000, (N»IFREQ(N)yN=1,1)

FORMAT(S(IB,16))

CALL EXIT

END

The Interval Histogramming (HISTI) Subroutine

®

®

@
O

O
O

@

Q@

Define array elements and their sizes; use equivalence for
convenience

Set parameter table elements: there are 40 intervals of interest, start-
ing at 20, and comprising 5 elements each; input array contains 500
elements; set ITABLE(5) to zero to signal initialization; indicate fre-
quency histogram should be produced, set number of elements in fre-
quency histogram array, and specify length of frequency histogram
interval.

Initialize random number generation variables.

Provide 20 sets of data (500 points each) for processing.

Determine which half of the input array is to receive the next set of
input data.

Determine next set of random numbers for processing.

Process next set of input values:

ITABLE contains parameter table

INPUT contains input for processing, starting at subscript N
IHGRAM is array where interval histogram is stored
IFREQ is array where frequency histogram is stored

Check for error on return.

Note that ITABLE(13) is assumed to be less than ITABLE(11), which
1s set at 120; therefore ITABLE(13) is not checked.

End of data generation and processing loop

Print output:

Interval histogram (IHGRAM)

Underflow ITABLE(6)); overflow (ITABLE(7)); counter overflow count
(ITABLE(8))
Frequency histogram (IFREQ(), where I ranges from 1 to
ITABLE(13))

The Interval Histogramming (HISTI) Subroutine 4-19

4-20

Terminal Output

INTERVAL COUNT

20-

40-

60O-

BO-

100-

120-

140-

160-

180-

200-

218

248

244

271

291

237

232

241

240

240

UNDERFLOW COUNT =

OVERFLOW COUNT - 0
s

249

31

HISTI Example 82

RESULTING INTERVAL HISTOGRAM

INTERVAL

25- 30

45- SO

B5- 70

85- 90

105- 110

125- 130

145- 150

165- 170

185- 190

205- 210

COUNT

234

239

226

2395

246

217

224

231

231

219

NO., OF COUNTERS WHICH OVERFLOWED = O

ENTRY

1

6

11

16

21

26

31

36

41

46

o1

o6

61

66

71

76

81

86

91

96

101

106

111

116

COUNT

81

B2

85

79

86

85

86

79

90

78

81

85

83

85

83

88

81

83

85

79

84

77

87

85

EN

CORRESPONDING FREQUENCY

TRY

92

>7

102

107

112

117

COUNT ENTRY

3

8

13

18

23

28

33

38

a3

48

o3

o8

63

68

73

78

83

88

93

98

103

108

113

118

INTERVAL COUNT

1

1

1

1

1
~
o

COUNT

89

795

85

85

87

82

80

87

g0

8.2

86

89

83

77

g0

77

85

88

77

82

78

79

79

94

The Interval Histogramming (HISTI) Subroutine

30- 35 226

o0- 55 216

70- 73 245

go- 95 217

10- 115 229

30- 135 242

°o0- 155 258

70- 1795 268

90- 195 232

10- 215 290

HISTOGRAM

ENTRY COUNT

4 80O

9 84

14 82

19 87

2d 82

29 88

34 91

39 88

a4 84

49 84

5d 78

59 80

64 82

69 85

74 88

79 88

84 88

89 89

94 87

99 86

104 79

109 B2

114 92

119 77

INTERVAL COUNT

35-

29-

75-

95-

115-

135-

155-

175-

195-

215-

ENTRY

)

10

15

20

29

30

39

40

45

SO

29

GO

65

70

75

80

85

90

a5

100

105

110

115

40

GO

80

100

120

140

160

180

200

29oo)

COUNT

81

78

92

86

87

82

79

85

84

82

B2

91

76

93

82

80

83

80

77

83

87

82

76

242

228

242

206

233

229

249

299

228

239

HISTI Example #3

The processing scheme used in Example 3 is identical to that for Example
1. One major variation in Example 3 is that each input data element is
increased by a factor of 65536 (2'°) and must therefore be treated as a
double-precision integer. Because the distributed version of the object file
for the HISTI subroutine cannot process double-precision integers, the
source file must be built with the DPH$ option enabled (see Section 1.1).

Example 3 illustrates how the proper version of the subroutine processes
double-precision integers. Input values are exactly 2'° (65536) times larger
than those values processed in the previous examples, and output is analo-
gous to that in Example 1.

Note that when double-precision integers are processed, both the input ar-
ray and certain of the parameter table values must be double-precision
integer arrays (data type INTEGER*4). Because the 1st, 2nd, and 12th
parameters of ITABLE are all increased by 2'®, categories and intervals of
interest are increased so that their relation to the input remains the same
as in Example 1. Thus output from Example 3 is identical to that from
Example 1.

Because this example uses FORTRAN 1V, double-precision arrays ITABLD
and INPUTD are equivalenced to single-precision arrays ITABLE and
INPUT of the same word length. As a result values for the double-precision
elements can be set via their single-precision equivalents.

The Interval Histogramming (HISTI) Subroutine 4-21

4-22

HISTI Example #3

DIMENSION ITABLE(20) » INPUT(2000) yIHGRAM(40)

INTEGER*4 ITABLD(10) »INPUTD(1000)

1 (INPUT »INPUTD)

DATA ITABLE/0O 12040 ,+5,4040,500,13%0/

DATA INPUT/2000%0/

DATAI1,12/0,0/

DO 2 J=2,21

N=300#MOD(J,2)+1

DO1 I=N*»2,(N+499)%2,2

1 INPUT(I)=RAN(I1,I2)%#210+15

CALL HISTI(ITABLD »INPUTD(N) IHGRAM)

IFCITABLE(17).,EQ.,0)GO TO 2

TYPE 1000,ITABLE(17)

1000 FORMAT(’ ERROR INDICATOR = “,13)

STOP

CONTINUE~
)

1
O

1

1
 E

@
r
o
n

O

TYPE 900

900 FORMAT(1H1,T30,'HISTIExample #3',//)

TYPE 2000

2000 FORMAT (24X, 'RESULTING INTERVAL HISTOGRAM'//

=

3000 FORMAT(4(I74+'-"4144+16))

TYPE 4000 »(ITABLE(I) »I=11,15,2)

1 " NO. OF COUNTERS WHICH OVERFLOWED = “,I2)

CALL EXIT

END

The Interval Histogramming (HISTI) Subroutine

EQUIVALENCE (ITABLE(2),IS)»(ITABLE(4) ,IW) »(ITABLE ITABLD) »

1 4(¢7 INTERVAL " yBX) »/ 14 (" N2**16 COUNT ") /)

TYPE 3000, ((N-1)%IW+IS /N*#IW+IS,IHGRAM(N)yN=1,40)

4000 FORMAT(//+' UNDERFLOW COUNT = 4,13,/ ' OVERFLOWCOUNT =

®

®

©

&

©

@

Q

Define array elements and their sizes; use equivalence for conven-

ience; note that ITABLD and INPUTD are double-precision.

Set parameter table elements: there are 40 intervals of interest, start-

ing at 20-2'° = 1,310,720, and comprising 5-2'® = 327,680 elements
each; input array contains 500 elements; set ITABLD(5) to zero to

signal initialization.

Clear high and low parts of double-precision input.

Initialize random number generation variables.

Provide 20 sets of data (500 double-precision points each) for

processing.

Determine which half of the input array is to receive the next set of

input data.

Determine next set of random numbers for processing; place random

number range from 15 to 225 in the high order part of the double-

precision integer array ITABLD via ITABLE, effectively producing

random numbers in the range of 15-2'¢ to 225-216.

Process next set of input values:

ITABLD contains parameter table

INPUTD contains input for processing, starting at subscript N

IHGRAM is array where interval histogram is stored

Check for error on return.

End of data generation and processing loop

Print output:

Interval histogram (IHGRAM)

Underflow (ITABLD(6)); overflow (ITABLD(7)); counter overflow count

(ITABLD(8))

The Interval Histogramming (HISTI) Subroutine 4-23

4-26

HISTI Example #4

K
N

 O
O

O
n

(
)
N

1000

900

2000

3000

4000

5000

7000

1

1

DIMENSION ITABLE(34) »INPUT(2000) yIHGRAM(A0) ,IFREQ(120)
INTEGER#4 ITABLD(17) INPUTD(1000)

EQUIVALENCE (ITABLE(2),IS)»(ITABLE(4) yIW) s (ITABLE »ITABLD) ,

(INPUT,INPUTD)

DATA ITABLE/0120,0+5,4040,500,11%0,1 10+1204904,0,10000,10%0/

DATA INPUT/2000%0/

DATA I1,12/0,0/

DO 2 J=2,21

N=500%#MOD(J,2)+1

DO 1 I=N#*2,(N+499)%2,2

INPUT(I)=RAN(I1/I2)%#210+15

CALL HISTI(ITABLD» INPUTD(N) »IHGRAMIFREQ)

IF(ITABLE(17).EQ.,0) GO TO 2

TYPE 1000,,ITABLE(17)

FORMAT (' ERROR INDICATOR = ‘' 413)

STOP

CONTINUE

TYPE 900

FORMAT(1H1 T30, 'HISTI Example 4’ ,//)

TYPE 2000

FORMAT (24X +» "RESULTING INTERVAL HISTOGRAM‘// ,

ac’ INTERVAL ' yBX) s/ 44 (" X 2Z2#%16 COUNT") /)

TYPE 3000,((N-1)#IW+IS N*#IW+IS,IHGRAM(N) sN=1,40)

FORMAT(4(I7,'-",14+16))

TYPE 4000, (ITABLE(I) yI=11,15,2)

FORMAT(//+’ UNDERFLOW COUNT = *,13,/,' OVERFLOW COUNT = * 134/,

NO. OF COUNTERS WHICH OVERFLOWED = “,12)

TYPE S000

FORMAT(///20X+'CORRESPONDING FREQUENCY HISTOGRAM'// ,

S’ ENTRY COUNT) /)

I=ITABLE(25)

IFC(ITABLE(25) .GT,.ITABLE(21)) I=1TABLE(21)

TYPE 7000 ,(N»IFREQ(N) +N=1,1)

FORMAT(S(I8,16))

CALL EXIT

END

The Interval Histogramming (HISTI) Subroutine

®

O

®

©

@

Q

Define array elements and their sizes; use equivalence for conven-
ience; note that ITABLD and INPUTD are double-precision.

Set parameter table elements: there are 40 intervals of interest, start-
ing at 20-2' = 1,310,720, and comprising 5-2'¢ = 327,680 elements
each; input array contains 500 elements; set ITABLD(5) to zero to
signal initialization; indicate frequency histogram should be produced,
set number of elements in frequency histogram array, and specify
length of frequency histogram interval (10000-2!¢ = 655,360,000).
Clear high and low parts of double-precision input.
Initialize random number generation variables.

Provide 20 sets of data (500 double-precision points each) for
processing.

Determine which half of the input array 1s to receive the next set of
input data.

Determine next set of random numbers for processing; place random
number range from 15 to 225 in the high order part of the double-
precision integer array ITABLD via ITABLE, effectively producing
random numbers in the range of 15:2'¢ to 225-2'6,

Process next set of input values:

ITABLD contains parameter table
INPUTD contains input for processing, starting at subscript N
IHGRAM is array where interval histogram is stored
IFREQ is array where frequency histogram is stored

Check for error on return.

Note that ITABLD(13) is assumed to be less than ITABLD(11), which
1s set at 120; therefore ITABLD(13) is not checked.

End of data generation and processing loop

Print output:

Interval histogram (IHGRAM)

Underflow (ITABLD(6)); overflow (ITABLD(7)); counter overflow count
(ITABLD(8))
Frequency histogram (IFREQ(I), where I ranges from 1 to
ITABLD(13)=ITABLE(25))

The Interval Histogramming (HISTI) Subroutine 4-27

4-28

Terminal Output

INTERUAL

M Z%%16

20- 25

40- 45

BO- GBS

8O- 85

100- 105

120- 125

140- 145

160- 1G5

180- 185

200- 205

UNDERFLOW COUNT= 249

COUNT

218

248

244

271

251

237

232

241

240

240

OVERFLOW COUNT= 231

NO., OF COUNTERS WHICH OVERFLOWED= 0

ENTRY COUNT

81

82

85

79

86

83

86

79

90

78

81

85

83

85

HISTI Example #4

RESULTING INTERVAL HISTOGRAM

INTERVAL

N 2*%16

29- 30

45- 50

65- 70

B5- 90

105- 110

125- 130

145- 150

165- 170

185- 190

205- 210

COUNT

234

295

226

235

246

217
o Xe
L &

231

231

219

CORRESPONDING FREQUENCY HISTOGRAM

ENTRY

52

S7

102

107

112

117

COUNT

76

88

86

88

ENTRY COUNT

INTERVAL INTERVAL

"N 2%#% 16 COUNT X 2#%16 COUNT

30- 35 226 35- 40 242

S0- 895 216 295~ 6O 228

70- 75 43S 75- 80 242

90- 95 217 95- 100 256

110- 115 229 115- 120 233

130- 135 242 135- 140 2295

150- 155 2598 155- 160 249

170- 175 268 175- 180 2995

190- 195 232 195- 200 228

210- 2195 250 215~ 220 239

ENTRY COUNT ENTRY COUNT

89 4 80 S 81

75 9 84 10 78

895 14 82 15 92
85 19 87 20 86

87 2 l 29 87

82 29 88 30 82

80 34 91 35 79

87 39 88 40 85

90 44 84 as 84

82 49 84 20 82

86 o4 78 29 82

89 929 80 GO 91

83 64 82 65 76

77 69 85 70 93

90 74 88 79 82

77 79 88 80 80

85 84 88 895 83

88 89 89 90 80

77 94 87 95 77

82 99 86 100 83

78 104 79 108 87

79 109 82 110 82

79 114 92 115 76

94 119 77

The Interval Histogramming (HISTI) Subroutine

INTERNAL HISTOGRAMMING WITH REFERENCE POINTS

(RHISTI) SUBROUTINE

FORMAT:

CALL RHISTIITABLE,INPUT,IHGRAMI[,IFREQ])

Where:

ITABLE i1s an integer array of at least 16 elements.

ITABLE(1) = first interval lower limit

ITABLE(2) = specified interval length

ITABLE(3) = total number of contiguous intervals

considered

ITABLE(4) = total number of array elements con-

taining data

ITABLE(5) number of data values to be processed

after each reference is

detected

ITABLE(6) initialization flag

ITABLE(7) = number of reference points

detected

ITABLE(8) = underflow count

ITABLE(9) = overflow count

ITABLE(10) = number of output array elements

exceeding largest possible single-

precision integer

ITABLE(11) = error flag

ITABLE(12) frequency histogram indicator

0 = no frequency histogram

1 = frequency histogram

ITABLE(13) number of array elements used to store

frequency histogram ITABLE(12)=1)

ITABLE(14) number of frequency histogram ele-

ments already calculated (if

ITABLE(12)=1)

ITABLE(15) current partial count for next entry

into the frequency histogram (@f

ITABLE(12)=1)

ITABLE(16) internal storage

INPUT 1s an integer array containing input data.

IHGRAM 1s an integer array used to store output data.

IFREQ 1s an integer array used to store frequency histogram data

(required only when ITABLE(12)=1).

FILE NAMES:

RHISTI.MAC (source file); RHISTI.OBJ (object file)

OPTIONS:

e EIS (Extended Instruction Set — KE11-E)

e EAE (Extended Arithmetic Element — KE11)

e DPRS$ (Double-Precision Integers)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If the following options are enabled:

NONE |EIS |EAE

NONE 286 165 | 199

DPR$ 360 237 | 273

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 15000 Points/second.

With PDP-11/03 and EIS enabled: 5000 Points/second.

Chapter 5

The Interval Histogramming with Reference Points

(RHISTI) Subroutine

The interval histogramming with reference points subroutine counts the

number of data elements that fall into one or more predefined categories, or

data types. Sets of such counts are often presented graphically as bar-

graphs or histograms. The subroutine interprets preset numerical intervals

as categories; a set of categories for a given application must be represent-

able as a contiguous group of intervals of equal length.

Data to be processed must be represented by unsigned integers not equal to

zero. Data elements equal to zero are interpreted by the subroutine as

reference points. Processing of input data begins only after the first refer-

ence point is detected. Additional reference points are significant in that

they partition the data stream.

Interval histogramming results are presented as an array in which each

output element is associated with a specific category. A count is also kept of

input elements that do not belong in any predefined category; this count is

reported separately.

If a frequency histogram is also produced, each element of its output array

contains the total number of data elements that appear in the data stream

in the segment described by each pair of reference points.

5.1 Definitions of Basic Terms and Conventions

It is important to understand how some of the terms and conventions de-

scribing the RHISTI subroutine are used throughout this chapter.

® Data stream (or input data stream) describes all data to be processed to

produce one histogram. Note that the entire data stream need not be

processed at once; it may be processed in sequential parts.

-1

e Interval describes a subset of integers. If N is taken to be its length, the
interval is defined in terms of its lower boundary point and the next N-1
integers in ascending order.

e Category is a unique classification of data.

® Two areas that are outside the total range of interest are: those values
that are smaller than the minimum, or underflow values, and those
larger than the maximum, or overflow values.

e Event means something that generates a valid data element

9.2 Your Input to the Subroutine: Its Characteristics

52

Your input to the subroutine should have the form of a stream of integers,
divided into like segments by a set of reference points. This section deals
with how this data stream is seen in the real world and in the subroutine
world; it also explains how the subroutine interprets the single-precision
integers in the input stream.

9.2.1 The Reference Points — Their Significance

Reference points serve two purposes:

e They indicate the point in the input data stream where the interval histo-
gram should begin, that is, at the first reference point.

e They denote boundary points in the input stream which are used in the
production of a frequency histogram (see Section 5.3.4).

Reference points are normally used to signify events that subdivide the
input data stream into related partitions. For example, reference points
can signity ticks of a clock at a preset rate during a sampling process. Or,
if you are monitoring responses to a series of stimuli, the occurrence of
each stimulus could be recorded as a reference point, and the data charac-
terize the response being observed.

9.2.2 The Relation between Data and Categories

Data to be histogrammed are nonzero integers related in some way to the
actual data they represent. If the data are numerical, such as measures of
height, temperature, or time, this relation is immediately meaningful and
obvious. However, the relation may be purely arbitrary, as when the data
deal with an abstract condition that is represented by an integer to be
processed by the subroutine; for example, if balls of different colors are
being counted, an integer must be assigned to represent one color to distin-
guish it from other colors.

Data categories are also numerical; each is represented by an interval of
integers. And like the data/integer relation, the relation between a cate-
gory and the interval representing it may be obvious or completely arbi-
trary. Values assigned to these interrelated entities (Figure 5-1) must be

The Interval Histogramming with Reference Points (RHISTI) Subroutine

mutually consistent; for instance, an integer representing a data element

must be in the numeric interval corresponding to the particular category to

which that data element belongs. Figure 5-1 illustrates that relations 1

and 2 are fixed, and that once relation 3 or 4 is chosen, the remaining

relation is no longer completely arbitrary.

Figure 5-1: Interrelation between DATA/CATEGORY and

INTEGER/INTERVAL Concepts

r———F—FF~F~ F«~F~F~—~~"~"""""~""~""""~/"—/—"7 7777~ a3

| |
: Real World |
: DATA = 1 » CATEGORY |
i (Fixed) I
[(N 4

3 4

r-——=—"f""TM"~%¢~ "~ ~~"~"~"~—~F"~"~"~""~V"—/~—~"~"~7V"~""%§¢—————— 7

2

INTEGER = — INTERVAL
(Fixed)

Subroutine World

MR-S-1627-81

5.2.3 How the Subroutine Interprets Single-Precision Numbers

Acceptable input and output values for the RHISTI subroutine are single-
precision integers in the range of 0 to 65535; single-precision positive in-

tegers in FORTRAN have a range of 0 to 32767. This apparent conflict is

actually a matter of interpretation and decimal representation of the nega-
tive numbers in FORTRAN; it is easily resolved, as we shall explain.

In theory a 16-bit binary number can represent a decimal number as large

as 65535. In FORTRAN this range is divided into two parts: values from 0

to 32767 are interpreted and used as positive integers; values in the other

half of the range are interpreted and used as negative integers. In
FORTRAN negative numbers ranging from -32768 to -1 correspond di-
rectly to binary numbers ranging in decimal value from 32768 to 65535.

The RHISTI subroutine does not process or report values less than zero.
Therefore all input and output values are treated as unsigned so that we

can use the full positive range of the 16-bit word.

You may well ask “How does this interpretation of the data by the subrou-
tine affect my particular application?” The answer is:

1. All input values and all resulting output data less than 32768 (2) are

treated in exactly the same way by the subroutine and by FORTRAN

(Figure 5-2).

2. If either your input data or the resulting output contain values greater

than 32767 (but not greater than 65535), they are interpreted as nega-
tive by FORTRAN but not by the subroutine. For example, if the sub-
routine outputs a single-precision integer value of 40,000, FORTRAN
interprets it as -25536.

The Interval Histogramming with Reference Points (RHISTI) Subroutine -3

Figure 5-2: Relation between FORTRAN Integers and Unsigned
Binary Values

FORTRAN Interpretation (2s Complement)

32767 =-32768. . .

32767. . .,

65535

Unsigned 16-Digit Binary Value

MR-S-1628-81

We shall now present a simple mechanism for converting a value that
FORTRAN interprets as negative to a floating-point number equal to the
unsigned interpretation of the value. This conversion may not always be
necessary; some operations, such as addition and subtraction, are unaf-
fected by the signs of the operands. The unsigned results of such an opera-
tion would be correct so long as the results were not less than 0 or greater
than 65535. However, operations such as division and multiplication, or
printing and typing, are affected by the FORTRAN interpretation of un-
signed numbers larger than 32767 as negative numbers. The following two
methods can be used to convert unsigned single-precision numbers to
floating-point numbers:

R = (1-(N/IABS(N))/2) * 65536. + N

or

R=N

IF (N.LT.0)R = 65536. + N

where R is the floating-point variable equivalent to the unsigned single-
precision integer stored in N, and IABS(N) is a function available from the
FORTRAN library.

To convert a floating-point number less than 2'° to an unsigned integer, you
can use one of the following equations:

N = R-65536. * IFIX (R/32768.)

or

N = R-65536.

IF (R.LT.32768.) N = R

where R is again the floating-point variable, N the unsigned integer stored
in N, and IFIX is a function available from the FORTRAN library.

5-4 The Interval Histogramming with Reference Points (RHISTI) Subroutine

5.3 How to Present Your Problem to the Subroutine

You can control the type and scope of the histogram(s) output by this sub-
routine by setting the appropriate parameter table elements. You must
specify the number of data elements to be processed following each refer-
ence point and define your categories of interest so that the resulting inter-
val histogram meets your requirements. You can also specify whether a
corresponding frequency histogram is to be produced. An array of para-
meter values is used to pass your processing requirements to the subroutine
(Section 5.4).

5.3.1 Number of Events to be Processed Following Each

Reference Point

The number of events to be counted into the interval histogram following
detection of each new reference point is specified by the fifth element of the
parameter array (ITABLE(5)), Section 5.4. If this element is set to zero, all
data elements following each reference point are counted into the interval
histogram. Regardless of the value of ITABLE(5), all data elements follow-
ing each reference point are counted into the frequency histogram, if one is
produced.

This particular feature of the RHISTI subroutine is useful for applications
In which statistical information involves a fixed number of data elements
related to each reference point. In such applications the reference point
often represents an event that causes, or provides the stimulus for, the data
to be histogrammed. Such data elements often represent measures of time
or space relative to the causing event.

For example, suppose you wish to study the arrival times of the first four
pieces of fire-fighting apparatus at the scene of a fire after the alarm
sounds. The sounding of the alarm is the stimulus, and is represented by a
reference point in the data stream; the data elements represent the elapsed
time between the sounding of the alarm and the arrival of the pieces of
equipment. Thus, if ITABLE(5) is set to 4 and the data are input chronolog-
ically, the arrival times of the first four pieces of equipment are counted
into the interval histogram. A corresponding frequency histogram would
record the total number of pieces of equipment responding to the alarm.

9.3.2 Describing the Categories for the Interval Histogram

The numerical intervals representing the categories of interest to the
subroutines are defined by means of a table of parameter values set by the
user. The first three values in the parameter table define these intervals
(see Section 5.3):

e The first element of the parameter table defines the lower limit of the
first interval. Data values smaller than this limit do not fall into any
predefined category and are reported separately (see Section 5.2.3).

The Interval Histogramming with Reference Points (RHISTI) Subroutine 5-5

e The second element of the parameter table defines the numerical length
of each interval. Therefore the first interval spans values greater than or
equal to the first element but smaller than the sum of the first and second
elements. Symbolically, if the first element is I and the second is J , the
first interval spans all data, K1,, for which

I=sKl, <I+J

The second interval spans all values, K2,, for which

I+Jd=<K2<I+2-J

and so on. Note that there are J values in each interval.

e The third element of the parameter table tells the subroutine how many
intervals — starting with the value of the first element — to consider.
This element also specifies the minimum dimension of the output array
because each interval has a corresponding output array element. The
implication of this value is that the last interval of interest spans all
values, KN,, for which

I+ (N-1)-J<KN, <I+N-J

where N is the value of the third element and I and J are the values of the
first and second elements, respectively.

5.3.3 Overflow and Underflow Count

Because the intervals of interest may not span the entire range of legal
Integer input, it is possible that the input data stream may contain values
that do not fall within any specified category. The subroutine counts the
number of data values outside the upper and lower limits of the specified
categories. The number of data values that are smaller than the minimum

specified in the first element of the parameter table (Section 5.3) is called
the underflow count and is reported in the eighth element of the parameter
table. The number of values that exceed the maximum value in the interval
of interest is called the overflow count and is reported in the ninth element
of the parameter table.

9.3.4 Frequency Histogram

In addition to the other processing characteristics described, an optional
frequency or zeroth histogram can also be produced. It takes the form of an
additional output array that indicates the level of activity between each
pair of reference points. Specifically the number of input elements following
the nth reference point and preceding the n+ 1th reference point are re-
ported as the nth element of the frequency histogram array.

5.4 How to Call the RHISTI Subroutine

The symbolic name for the interval histogramming with reference points

subroutine is RHISTI, and the general format of the FORTRAN call is:

56 The Interval Histogramming with Reference Points (RHISTI) Subroutine

CALL RHISTIITABLE,INPUT,IHGRAM[,IFREQ))

For reference, argument names in the call to RHISTI have been assigned
arbitrarily. You may supply your own argument names, but you must state
all of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument either accidentally or on purpose, or if

you supply too many arguments, a FORTRAN error message results and no
data is processed. The arguments are described in the following discussion.

ITABLE is an integer array of at least 16 elements used to:

e Transmit information from the user to the subroutine (ITABLE(1)
through ITABLE(6))

e Return information from the subroutine to the user ITABLE(7) through
ITABLE(11))

* Transmit/report information to/from the subroutine on the optional fre-

quency histogram (ITABLE(12) through ITABLE(15))

e Store information on an interim basis (by the subroutine) (ITABLE(16),
ITABLE(17))

You must set the array elements that transmit information to the
subroutine.

ITABLE(1) The lower limit of the first interval (see Section 5.3.2)

ITABLE(2) The specified interval length (see Section 5.3.2)

ITABLE(3) The total number of contiguous intervals to be considered
(see Section 5.3.2)

ITABLE(4) The total number of array elements containing data (start-
ing with the first element of the input array (INPUT))

ITABLE(5) The number of data values to be processed after each refer-
ence point is detected; if set to zero, all values are pro-

cessed (see Section 5.3.1)

ITABLE(6) A value that must be set to zero before the initial call to
the subroutine; it signals the subroutine to initialize the
output array and other output elements in the parameter

table. On subsequent calls to the subroutine, if a different
segment of the same set of data is being processed, opera-
tion continues and there is no reinitialization.

The next group of elements is used to report information not included in the
actual histogram:

ITABLE(7) The number of reference points detected

ITABLE(8) The underflow, or the count of the number of input data
values that are smaller than ITABLE(1)

The Interval Histogramming with Reference Points (RHISTI) Subroutine -7

58

ITABLE(9) The overflow, or the count of the number of input data
values that exceed the upper limit of the last interval; data
values exceeding

ITABLE(1) + (ITABLE(2)- ITABLE(3))

are counted.

ITABLE(10) The number of output array elements that have exceeded
the largest possible single-precision number (65535) (or
overflow/underflow count) (see Section 5.2.3)

ITABLE(11) An element used to report error conditions:

= Indicates no errors

= Indicates that ITABLE(1)+ITABLE(2)-
ITABLE(3)>65535

= Indicates the ITABLE(N) is in error, for example,

ITABLE(2)=0

=-N Indicates incorrect number of arguments in call

The next group of elements is used to transmit/report information concern-
ing the optional frequency histogram. Note that you must set ITABLE(12),
and that ITABLE must be dimensioned to 17 regardless of whether a fre-
quency histogram is produced.

ITABLE(12) Indicator of whether a frequency histogram should be
produced:

=0 Do not produce a frequency histogram

=1 Produce a frequency histogram

It ITABLE(12)=1, the fourth argument in the

call statement must be present (IFREQ).

ITABLE(13) The number of elements in the array used to store the
frequency histogram (the dimension of IFREQ in the
CALL statement)

ITABLE(14) Number of frequency histogram elements already calcu-
lated; will be set by the subroutine to 0 for the initial call
to RHISTI, when ITABLE(6) is 0. ITABLE(14) is updated
continuously as input is processed by the subroutine. Be-
cause elements of this histogram are calculated sequen-
tially, data from the storage array may be extracted each
time the subroutine has processed all data in the input

array and returned to the calling routine. If elements are

extracted, ITABLE(14) may then be adjusted to reflect
where the next element of the frequency histogram is to be
stored.

ITABLE(15) The current partial count for the next ITABLE(14)+1)

entry in the frequency histogram; each time another refer-

ence point is detected, ITABLE(14) is updated and the next

entry is placed in the histogram.

The Interval Histogramming with Reference Points (RHISTI) Subroutine

The next elements are used only by the subroutine:

ITABLE(16), Elements used exclusively by the subroutine for internal
storage

ITABLE(17)

INPUT is an integer array containing the data to be processed. All data
are treated as positive and unsigned (see Section 5.2.3). All input ele-
ments equal to zero are interpreted as reference points (see Section
5.2.1). The number of array elements to be processed is ITABLE4), and
processing always begins with the first element of the array. Note, how-
ever, that all data need not be placed in the array at one time. Instead,
one array of data can be processed, the array refilled with new data, and
the subroutine called again to process the array of data a second time. It
1s possible to continue in this piecemeal fashion until all data have been
processed. In real-time applications such a processing cycle becomes an
ongoing function.

IHGRAM is an integer array to store the results of interval histogram
processing; each array element is devoted exclusively to one of the nu-
merical intervals that represents a single category. The order of the
array elements corresponds to the numeric order of the intervals, that is,
the Nth element of the output array will have a value equal to the
number of data elements in the input stream that belong in the interval.

LITABLE(1)+ (N-1)-ITABLE(2)] to [ITABLE(1)+ N-ITABLE(2) - 1]

IFFREQ is an array required only when ITABLE(12)=1 and is used to
store the frequency histogram data. This integer array must be at least
as long as specified by ITABLE(13). Upon return, ITABLE(14) notifies
the user how many elements in the array contain data.

If you remove data from the array before a subsequent call to the subrou-
tine, you can adjust ITABLE(14) before reentry to reflect the additional
storage space now available.

If the number of array elements available for storage is not large
enough, that is, if ITABLE(14) becomes larger than ITABLE(13), the
subroutine stops computing the frequency histogram (but continues to
process interval histogram data). If this condition arises, frequency his-
togram data may be lost. To correct this problem, make ITABLE(14)
smaller than ITABLE(13). ITABLE(14) indicates the number elements
lost ITABLE(14)-ITABLE(13)).

9.5 Input and Output — Using the Subroutine

As previously stated, all data for a particular histogram need not be avail-
able, or even known, before processing begins. Initialization takes place (all
counters are set to zero) only when ITABLE(6) equals zero. Parameter table
elements are also checked for correctness when ITABLE(6) equals zero.

The Interval Histogramming with Reference Points (RHISTI) Subroutine -9

Before the subroutine returns, it automatically changes ITABLE(6) so that
if a subsequent call is made to process new data for the same histogram,
processing continues as though no interruption had taken place. Thus an
entire set of data for one histogram can be processed at one time, memory
space permitting; or, if the user wishes, the data can be processed one
segment at a time. The value assigned to ITABLE(4) should indicate the
number of elements in the input array to be processed for a specific call.

The subroutine is position-independent and reentrant. Although these fea-
tures are of interest mainly at the system level, they do result in additional
advantages at the user level. Perhaps most significant is that several data
streams can be processed simultaneously. All pertinent information con-
cerning the history of a data stream is contained in the ITABLE array
rather than in the code for the subroutine. Imaginative use of the argu-
ments in the subroutine call should make the subroutine functionally com-
patible with any application that uses interval histogramming of data
relative to reference points.

9.6 Modifying the Subroutine — Using Options

5-10

The following sections explain which options you can use with the interval
histogramming with reference points subroutine. If you want to use any of
the options, you must enable them when you build the subroutine from the
source file using the interactive build procedure (see Section 1.1).

9.6.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any
other floating-point option available. Enabling this option increases the
execution speed and decreases the memory requirements for the subroutine
by approximately 121 words if DPRS$ is not enabled, and by approximately
123 words if DPRS$ is enabled.

5.6.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE (KE11) hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 87 words.

9.6.3 DPRS$ (Double-Precision Integers)

If the range of data values to be histogrammed exceeds 65535 (2'°-1), this
conditional option must be enabled. Note that if you are using a copy of the
subroutine in which the symbol DPR$ has been enabled, you must provide
your data to the subroutine as follows:

e All input data must be double-precision integer, that is, the second argu-
ment in the FORTRAN CALL statement, INPUT, must be an
INTEGER*4 array (or equivalent).

The Interval Histogramming with Reference Points (RHISTI) Subroutine

e Because this option expands the possible range of input values by a factor

of 2'°, the range of variables used to define the exact range of interest

must also be expanded by 2'°. Therefore the first argument in the

FORTRAN CALL statement, ITABLE, must also be an INTEGER*4 ar-

ray or the equivalent. ITABLE(1) and ITABLE(2) can then select the

range of interest.

Enabling this option has no effect on the output because the range of input

values does not affect the size of output values.

If DPR$ is enabled, the size of the subroutine increases by approximately

74 words.

5.7 Examples of Input/Output Variation Using the RHISTI

Subroutine

The three examples presented here process equivalent sets of data in simi-

lar ways but focus on different capabilities of the RHISTI subroutine.

Example 1 is based on the distributed version of the subroutine. A set of

10,000 random integers ranging from 15 to 225 is processed, 500 at a time.

Each sequential set of input points is stored in alternate halves of the

INPUT array to simulate real-time applications, which conserve processing

time by collecting and processing data in parallel.

NOTE

If you use FORTRAN 77 and you want to duplicate the termi-

nal output for the example programs, replace the standard

random-number generator in F4POTS with F4PRAN.OBJ.

Terminal output for the example programs is based on the

FORTRAN IV random-number generator. The FORTRAN 77

random-number generator is different from that for

FORTRAN IV and will not produce the same output. See

Section B.1.

Categories of interest comprise 40 intervals of five integers each; the mini-

mum value for the first interval is 20. When processing is complete, the

following output is typed on the terminal:

e The total count of data items belonging to each category, that is, the

interval histogram (IHGRAM)

e The total number of reference points detected (ITABLE(7))

¢ The number of data items smaller than the total interval of interest, that

1s, the underflow count (ITABLE(8))

e The number of data items larger than the total interval of interest, that
is, the overflow count (ITABLE(9))

e The total number of output counters that have exceeded 65535

(ITABLE(10))

The Interval Histogramming with Reference Points (RHISTI) Subroutine 5-11

RHISTI Example #1

The Interval Histogramming with Reference Points (RHISTI) Subroutine o—-13

o-14

RHISTI Example #1

DIMENSION ITABLE(17) »INPUT(1000) ,ITHGRAM(40)

EQUIVALENCE (ITABLE(1),1S8) (ITABLE(2) +IW)

DATA ITABLE/20+5+40+500,13%0/

DATAI1+12/0,0/

DO 2 J=2,21

N=300#MOD(J2)+1

DO 1 I=NsN+499

K=RAN(I1,12)%#210+1S

M=K/80

IF(M*B0.EQ.K) K=0

INPUT(I)=K

CALL RHISTI(ITABLE »INPUT(N) »IHGRAM)

IF(ITABLE(11).EQ.0) GO TO 2

TYPE 1000,ITABLE(11)

I
O
lm
i
m
C
m
I
C
I
O
N
O
L
S

1000 FORMAT(’ ERROR INDICATOR = ’413)

STOP

2 CONTINUE

TYPE 900

900 FORMAT(1H1T30+ 'RHISTI Example 81’ ,//)

TYPE 2000

2000 FORMAT(2BX)» 'RESULTING HISTOGRAM'//

1 4c¢’ INTERVAL COUNT ") /)

TYPE 3000, ((N-1)*IW+IS ,N#IW+IS,IHGRAM(N)sN=1,40)

é) 3000 FORMAT(A(I7,'-'414,18))
TYPE 4000, (ITABLE(1) y1=7,10)

4000 FORMAT(//,’ NO, OF REFERENCE POINTS= “ 13/

(
o
)

" UNDERFLOW COUNT = 4,134/’ OVERFLOW COUNT = ' ,13,/,

2 " NO., OF COUNTERS WHICH OVERFLOWED = *,12,/7/)

CALL EXIT

END

The Interval Histogramming with Reference Points (RHISTI) Subroutine

@ Define array elements and their sizes; use equivalence of convenience.

@ Set parameter table elements: there are 40 intervals’of interest, start-
ing at 20, and comprising five elements each; input array contains 500
data elements; set ITABLE(6) to zero to signal initialization (no fre-
quency histogram is produced); set number of data values to be pro-
cessed after each reference point to zero to signify that all values are to
be processed.

Initialize random number generation variables.

Provide 20 sets of data (500 points each) for processing.

Determine which half of the input array is to receive the next set of
input data.

Determine next set of random numbers for processing; produce some
zero values (reference points).

Process next set of input values:@

©

0
O

ITABLE contains parameter table

INPUT contains input for processing, starting at subscript N
IHGRAM is array where interval histogram is stored

End of data generation and processing loop

Type output:

Interval histogram (IHGRAM)

Number of reference points detected ITABLE(7))
Underflow (ITABLE(8)); overflow (ITABLE(9)); counter overflow count
(ITABLE(10))

@
 Q

The Interval Histogramming with Reference Points (RHISTI) Subroutine 15

5-16

Terminal Output

INTERVAL COUNT

20- 25

40- 45

GO- B5

BOo- 85

100- 105

120- 125

140- 145

160- 165

180- 1895

200- 2095

214

248

243

199

248

239
i
Py

191

237

237

RHISTI Example #1

RESULTING HISTOGRAM

INTERVAL COUNT

29- 30

45- 50

GB5- 70

85- 90

105- 110

125- 130

145- 150

165- 170

185- 190

205- 210

NO. OF REFERENCE POINTS = 114

UNDERFLOW COUNT= 240

OVERFLOW COUNT = 228

232

253

226

234

245

212

220

229

225

213

NO. OF COUNTERS WHICH OVERFLOWED= 0O

The Interval Histogramming with Reference Points (RHISTI) Subroutine

INTERUVAL COUNT

30 -

20-

70-

90-

110-

130-

150-

170-

190-

210-

35

i)

75

95

115

135

135

175

195

215

224

215

242

216

225

240

254

264

226

247

INTERVAL COUNT

35-

23-

75-

95-

115-

135-

155-

175-

195-

215-

40

BO

80

100

120

140

160

180

200

~ e

a9

239
2
o i

239

253

231

225

247

250
~

o

236

RHISTI Example #2

Example 2 is identical to Example 1 except that a frequency histogram is
produced in addition to the results output in Example 1.

The Interval Histogramming with Reference Points (RHISTI) Subroutine 5-17

RHISTI Example #2

DIMENSION ITABLE(17) yINPUT(1000) ,IHGRAM(40) JIFREQ(120)

EQUIVALENCE (ITABLE(1),IS) +(ITABLE(2) »IW)

DATA ITABLE/20,+,5,40,S500,7%#0,1,120,4%0/

DATA I1,12/70,0/

DO 2 J=2,21

N=300%#MOD(J,2)+1

DO 1 I=N,N+499

K=RAN(I1,I2)%#210+13

M=K/80

IF(M*BO.EQ,K) K=0

INPUT(1) =K

CALL RHISTI(ITABLE»INPUT(N) yIHGRAM,IFREQ)

IF(ITABLE(11),EQ.0O)GO TO 2

TYPE 1000,ITABLE(11)

1000 FORMAT(’ERROR INDICATOR = *,13)

STOP

~ CONTINUE

TYPE 900

900 FORMAT(1H1T30 'RHISTI Example 82/ ,//)

TYPE 2000

2000 FORMAT(28X)»'RESULTING HISTOGRAM '/ /,

1 4¢’ INTERVAL COUNT ") /)

TYPE 3000 ((N-1)%#IW+IS,N*#IW+IS»IHGRAM(N)yN=1,40)

3000 FORMAT(A(I74'-",144+18))

TYPE 4000, (ITABLE(I) »1=74+10)

4000 FORMAT(//4+’ NO, OF REFERENCE POINTS= 4134/,

(§) 1 “ UNDERFLOW COUNT = ' y13+/ ' OVERFLOW COUNT = ' 4,134/
2 " NO. OF COUNTERS WHICH OVERFLOMWED = ’412,4//)

TYPE 5000

5000 FORMAT(///20X,'CORRESPONDINGFREQUENCY HISTOGRAM '/ /

1 5¢7 ENTRY COUNT ") /)

I=ITABLE(14)

IFC(ITABLE(14) .GT.ITABLE(13)) I=1ITABLE(13)

TYPE 7000, (N»IFREQ(N)yN=1,1)

7000 FORMAT(S(18+16))

CALL EXIT

END

5-18 The Interval Histogramming with Reference Points (RHISTI) Subroutine

@ Define array elements and their sizes; use equivalence for
convenience.

@ Set parameter table elements: there are 40 intervals of interest, start-
ing at 20, and comprising five elements each; input array contains 500
elements; set number of data values to be processed after each refer-
ence point to zero to signify that all values are to be processed; set
ITABLE(6) to zero to signal initialization; indicate that frequency his-
togram should be produced and set number of elements in frequency
histogram array.

Initialize random number generation variables.

Provide 20 sets of data (500 points each) for processing.

Determine which half of the input array is to receive the next set of
input data.

Determine next set of random numbers for processing; produce some
zero values (reference points).

@

©

0

Process next set of input values:

ITABLE contains parameter table

INPUT contains input for processing, starting at subscript N
IHGRAM is array where interval histogram is stored

IFREQ is array where frequency histogram is stored

Check for error on return.

End of data generation and processing loop

@
O

Type output:

Interval histogram (IHGRAM)

Number of reference points detected (ITABLE(7))

Underflow (ITABLE(8)); overflow (ITABLE(9)); counter overflow count
(ITABLE(10))

Frequency histogram (IFREQ(N), where N ranges from 1 to
ITABLE(14))

The Interval Histogramming with Reference Points (RHISTI) Subroutine 5-19

o—-20

Terminal Output

INTERVAL COUNT

145

165

185

203

214

248

243

199

248

235
e
Py

191

237

237

RHISTI Example #2

RESULTING HISTOGRAM

INTERVAL COUNT

29-

as-

65-

85-

105-

125-

145-

165-

185-

205-

30

SO

70

90

110

130

150

170

190

210

NO. OF REFERENCE POINTS = 114

UNDERFLOW COUNT= 240

OVERFLOW COUNT= 22

NO. OF COUNTERS WHICH OVERFLOWED= 0

ENTRY

1

6

11

16

21
o
s

31

36

a1

46

o1

56

61

66

71

76

81

86

91

96

101

106

111

COUNT

19

a6

91

161

95

73

323

68

21

34

a7

192

164

87

8

149

68

3

15

113

9

135

77

253
A
& s

234

245

220

229
2y
ee

213

INTERVAL COUNT

30-

S0-

70-

90-

110-

130-

150-

170-

190-

210-

35

)

73

95

115

135

155

175

195

215

272

215

242

216

223

240

254

264
e
<o

247

CORRESPONDING FREQUENCY HISTOGRAM

ENTRY

o2

S7

102

107

112

COUNT

119
~
<

130

101

o1

126

67

37
k)
[.

88

22

a7

69

133

29

18

18

46

15

166

430

26

ENTRY

3

8

13

18
2
<

28

33

38

43

a8

53

o8

63

73

78

83

88

93

98

103

108

113

COUNT

80

124

17

a4

29

1295

o2

a2

33

209

16

89

18

158

1351

376

103

147

13

85

70

13

67

ENTRY COUNT

4

9

14

19

24

29

34

39

a4

49

2d

59

64

69

74

79

84

89

94

99

104

109

206

24

72

9

96

73

28

36

10

84

20

37

90

72

36

29

245

61

181

306

275

82

INTERVAL COUNT

35-

29-

75-

95-

115-

135-

155-

175-

195-

215-

ENTRY

5

10

15

20

25

30

35

40

4s

20

55

5O

65

70

75

80

85

90

95

100

105

110

The Interval Histogramming with Reference Points (RHISTI) Subroutine

40

GO

80

100

120

140

160

180

200

220

COUNT

31

40

433

13

11

11

224

a4

1

10

47

6

98

10

134

81

92

139

38

42

>

60O

239

239

233

231
~

229

247

2350
”y

229

236

RHISTI Example #3

Example 3 is identical to Example 2 except that each input data element is
increased by a factor of 65536(2'®) and must therefore be represented as a
double-precision integer. The distributed version of the subroutine cannot
process double-precision integers. The subroutine must be built from the
source file with DPR$ enabled in order to produce an object file capable of
processing double-precision input (see Section 5.6.3 and Section 1.1).

Example 3 illustrates how the proper version of the subroutine processes
double-precision integers. Input values are exactly 65536 times those pro-
cessed in previous examples, and output is analogous to that in Example 2

Note that when double-precision integers are processed, both the input ar-
ray and certain of the parameter table values must be double-precision
integer (data type INTEGER*4). Because the 1st and 2nd parameters of
ITABLE are increased by 65536, categories of interest are increased so that
their relation to input remains the same as in Example 2. Thus output from
Example 3 is identical to that from Example 2.

Because this example uses FORTRAN 1V, double-precision arrays ITABLD
and INPUTD are equivalent to single-precision arrays ITABLE and INPUT
of the same length; thus values for the double-precision elements can be set
via their single-precision equivalents.

The Interval Histogramming with Reference Points (RHISTI) Subroutine 5-21

RHISTI Example #3

DIMENSION ITABLE(34) »INPUT(2000) ,JHGRAM(40) ,IFREQ(120)

INTEGER*4 ITABLD(17) +INPUTD(1000)

EQUIVALENCE (ITABLE(2)+IS)s(ITABLE(4),IW) »(ITABLE,ITABLD) ,

1 (INPUT»INPUTD)

\DATA ITABLE/0,20,015+404+0,+500,15%0,140,120 ,9%0/

DATA INPUT/2000%0/

DATA I1,12/0,0/

DO 2 J=2,21

N=300#MOD(J,2)+1

DO1 I=N#2,(N+499)%2,2

K=RAN(I1,12)%#210+15

M=K/80

IF(M*B0.,EQ.K)K=0

1 INPUT(I)=K

(
D
O

@
O

|

CALL RHISTI(ITABLD»INPUTD(N) »IHGRAMIFREQ)

IF(ITABLE(21).EQ,0)GO TO 2

TYPE 1000,ITABLE(21)

1000 FORMAT(’ERROR INDICATOR = *,13)

STOP

r CONTINUE

TYPE 900

900 FORMAT(1H1,T30)'RHISTIExample #3’,//)

TYPE 2000

2000 FORMAT(28X»'RESULTING HISTOGRAM'//

1 4¢’ INTERVAL " +vBX) +/d ("’ X Z##16 COUNT ") /)

TYPE 3000, ((N-1)*#IW+IS N*#IW+IS,IHGRAM(N)yN=1,40)

3000 FORMAT(A(I7,'-",14,16))

TYPE 4000 (ITABLE(I) »1=13,19,2)

4000 FORMAT(//' NO., OF REFERENCE POINTS= ' 413,/

€) 1 * UNDERFLOW COUNT = 413,/ OVERFLOW COUNT = *,I3,/,
2 ' NO., OF COUNTERS WHICH OVERFLOWED = “4y12,//)

TYPE 5000

5000 FORMAT(///20%,'CORRESPONDINGFREQUENCY HISTOGRAM '/ /

1 5¢7 ENTRY COUNT ") /)

I=ITABLE(27)

IF(ITABLE(27).GT.ITABLE(25)) I=ITABLE(25)

TYPE 7000 (NsIFREQ(N) yN=1,1)

7000 FORMAT(5(18+16))

CALL EXIT

L END

(
)

522 The Interval Histogramming with Reference Points (RHISTI) Subroutine

@ Define array elements and their sizes; use equivalence for conven-
1ence; note that ITABLD and INPUTD are double-precision.

@ Set parameter table elements: there are 40 intervals of interest, start-
ing at 20-2'° = 1,310,720, and comprising 5-2'¢ = 327,680 elements
each; input array contains 500 elements; set number of data values to
be processed after each reference point; set ITABLE(6) to zero to signal
Initialization; indicate that frequency histogram should be produced,
and set number of elements in frequency histogram array.
Clear high and low parts of double-precision input.
Initialize random number generation variables.

Provide 20 sets of data (500 double-precision points each) for
processing.

®

©

Determine which half of the input array is to receive the next set of
input data.

© Determine next set of random numbers for processing; place random
number range from 15 to 255 in high order part of the double-precision
integer array ITABLD via ITABLE, effectively producing random
numbers in the range of 15-2'° to 225-2'¢; produce random zero values
(reference points).

@ Process next set of input values:

ITABLD contains parameter table

INPUT contains input for processing, starting at subscript N
IHGRAM is array where interval histogram is stored
IFREQ is array where frequency histogram is stored

Check for error on return.

End of data generation and processing loop

@

Q

Type output:

Interval histogram (IHGRAM)

Number of reference points detected (ITABLD(7))
Underflow (ITABLD(8)); overflow (ITABLD(9)); counter overflow count
(ITABLD(10))
Frequency histogram (IFREQ(N), where N ranges from 1 to
ITABLD(13)=ITABLE(25))

The Interval Histogramming with Reference Points (RHISTI) Subroutine 5-23

o024

Terminal Output

INTERVAL

N 2%*16

20- 25

40- 495

60- GBS

go- 85

100- 105

120- 125

140- 145

160- 1695

180- 185

200- 205

COUNT

214

248

243

199

248

235

229

191

237

237

KHISTI Example #3

RESULTING HISTOGRAM

INTERVAL

X 2%%16

25- 30

45- 50

65- 70

85- 90

105- 110

125- 130

145- 150

165- 170

185- 190

205- 210

NO. OF REFERENCE POINTS = 114

UNDERFLOW COUNT= 240

OVERFLOW COUNT= 22

NO. OF COUNTERS WHICH DVERFLOWED= O

ENTRY COUNT

1 19

C} a6

11 91

16 161

21 g3

26 73

31 323

36 G8

41 21

46 34

o1 a7

36 192

61 164

66 87

71 8

76 149

81 68

86 3

91 15

96 113

101 9

106 135

111 77

CORRESPONDING FREQUENCY HISTOGRAM

ENTRY

o2

27

62

67

72

77
s
L

87

97

102

107

112

COUNT

119
2
&

130

101

o1

126

67

37
i
“ e

88
2
<L

47

69

133

29

18

18

46

13

166

430

26

COUNT

253
2
[y

234

245

220
A
[.

~

229

213

INTERVAL

X 2%%16

30- 35

S50~ 855

70~ 75

90- 95

110- 115

130~ 135

150- 155

170~ 175

190~ 195

210- 215

ENTRY COUNT

3

8

13

18

23

33

38

43

48

o3

o8

63

68

73

78

83

88

93

98

103

108

113

80

124

17

a4

29

125

92

a2

33

209

16

89

18

158

151

376

103

147

13

835

70

13

67

COUNT

215

242

216

229

240

2354

264
oo
[y.

247

INTERVAL

K 2%%106

35- 40

99~ B0

75- 80

95- 100

115- 120

135- 140

1535- 160

175- 180

195- 200

215- 22¢

ENTRY COUNT

4

9

14

19

24

29

34

39

a4

49

°d

o9

G4

69

74

79

84

89

94

99

104

109

206

24

72

9

96

75

28

36

10

84

20

37

90

72

36

23

245

61

181

306

275

82

ENT

1

1

1

The Interval Histogramming with Reference Points (RHISTI) Subroutine

COUNT

RY

S

10

13

20

29

30

35

40

a3

50

o)

GO

65

70

75

80

85

90

95

Q0

03

10

239
2
Py

239

2393

231

225

247

2390

225

236

COUNT

31

a0

433

13

11

11

224

44

1

10

a7

6

98

10

134

81

92

139

38

42

>

60O

FAST FOURIER TRANSFORM (FFT) SUBROUTINE

FORMAT:

CALL FFTOIERROR,N,IREAL,IMAG,INVRS,ISCALE)

Where:

IERROR 1s an integer variable used to report errors. |

N 1s an integer variable specifying the number of elements to be

transformed.

IREAL ~ 1s an integer array containing the real portion of input or

output data.

IMAG 1s an integer array containing the imaginary portion of the

input or output data.

INVRS 1s an integer variable indicating whether FFT is to perform a

forward or inverse transform.

0 = a forward transform

1 = an inverse transform

ISCALE 1s an integer variable set by FFT to indicate scaling factor

(number of times results have been divided by 2).

FILE NAMES:

FAFFT.MAC (source file); FAFFT.OBJ (object file)

OPTIONS:

e EIS

e EAE

e F MAXN

(Extended Instruction Set — KE11-E)

(Extended Arithmetic Element — KE11)

(Maximum Array Size)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If the following options are enabled:

NONE EIS EAE

F.MAXN=1024 798 662 668

F.MAXN =2048 1004 918 924

F.MAXN =4096 1516 1430 1436

F.MAXN =8192 2540 2454 2460

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 900 Points/second.

With PDP-11/03 and EIS enabled: 320 Points/second.

Chapter 6

The Fast Fourier Transform (FFT) Subroutine

The fast Fourier transforms (FFT) subroutine provides an efficient means
of numerically approximating analytical or continuous Fourier transforms.

This chapter discusses the fast Fourier transform (FFT) subroutine, de-
scribes the subroutine’s FORTRAN call, and outlines the requirements for
the subroutine’s use. Before discussing the FFT subroutine, however, this
chapter presents an introduction to Fourier transforms.

6.1 An Introduction to Fourier Transforms

The Fourier transform converts functions in the time domain to expressions
in the frequency domain. Figure 6-1 shows the effect of the Fourier
transform.

Figure 6-1: The Fourier Transform

| #(t) = COS(t) F(f) FY iF(j)
1

1900 =5 SIN (21) o G iG()
5

h(t) =sc|:r:)(§t) +.5° H(f) H(f) |iH(f)
) I

6-1

6-2

The Fourier transform separates a function of time into a set of sinusoids

that are represented by a complex-valued frequency function. Each non-

zero value of the frequency function indicates that a sinusoid at that fre-

quency is a component of the original time function. The value of the

frequency function for a given frequency is equal to the amplitude of the

associated sinusoid.

The real components of the complex-valued frequency function indicate

sinusoids that are even functions, that is, are functions having the property

ft) =1(t)

Conversely, the imaginary components of the complex-valued frequency

function indicate sinusoids that are odd functions; that is, they are func-

tions having the property

ft) =-f(-t)

There 1s also an inverse Fourier transform. The inverse Fourier transform

converts a function in the frequency domain to an expression in the time

domain.

6.1.1 Mathematical Definition of the Fourier Transform (CFT)

The analytical expression of the Fourier transform is called the continuous

Fourier transform (CFT). Mathematically, the CFT is represented as:

o0

H(f)=| ht)-e?> tdt

-0

The inverse CFT function is represented mathematically as

o0

—Q0

Where: isV1.

h(t) is the time function to be transformed.

H(f) is the Fourier transform of h(t).

t 1s time.

f is frequency.

6.1.2 Mathematical Definition of the Discrete Fourier Transform

(DFT)

A digital computer cannot perform the integration indicated by the expres-

sion for the CFT. A digital computer only can deal with discrete data

The Fast Fourier Transform (FFT) Subroutine

points. Thus, the FFT subroutine must use a method known as the discrete
Fourier transform (DFT) to approximate the CFT at discrete frequencies.

The DFT does not process a continuous function. Instead, it processes dis-
crete points that give only an approximation of the continuous function.

The DFT is represented mathematically as

N-1 -

H(R.gi) = O hlkedt)e 5275 for n=0,12,..,N-1
k=0

The mathematical expression of the inverse DFT is

N-1
1 0 _n_ i.2.mn-k N .hed= &+ > H(Reqt)e " fork=0,12,..N-1

n=0

Where (in addition to those terms explained for the CFT in Section 6.1.1): N
is the number of sample input values from h(t) or H(f).

Although the FFT subroutine uses the DFT algorithm as a model, it also
takes advantage of certain computational shortcuts to reduce the time re-
quired to evaluate the resulting values. Because of this computational time
reduction, the shortcut method used by the subroutine is known as the fast
Fourier transform (FFT).

The results of FFT algorithm differ from the results of DFT algorithm only
by a known scale factor. (See Section 6.3 for a description of the scale
factor.)

6.2 Comparing the Continuous and Discrete Fourier Transform

In general, largely because of different inputs, the results of the FFT and
the DFT only resemble the expected results of the CFT. Only under certain
special conditions do the FFT and the DFT produce the same results as the
CFT for corresponding frequencies.

The following sections describe the special conditions in which the FFT and
the CFT produce identical output. They also explain, without formal proof,
how and why some discrepancies arise between the CFT and the FFT.

NOTE

These sections do not provide an exhaustive explanation of
the discrete approximations to the Fourier transform, the dis-
crepancies that generally result, or the methods needed to
minimize these discrepancies. For such a description, see a
good, general text such as The Fast Fourier Transform by
E. Oran Brigham.

The Fast Fourier Transform (FFT) Subroutine 6-3

6—4

6.2.1 Comparison of FFT and CFT Input

The input to the DFT or the FFT for a function differs significantly from

the input to the CFT for the same function. Input to the CFT is typically a
continuous function defined for all values of time. Input to the FFT for the

“same” function must be a finite set of discrete samples of the input func-
tion to the CFT.

This inherent difference between the actual input to the CFT and the
actual input to the FFT is the most significant element causing discrepan-
cies between the expected and the actual results of the FFT.

To determine what the expected results of the FFT should be, you should

examine the results of the analytic CFT performed on the actual input to
the FFT. Mathematically, an expression for the input to the FFT would be:

g(t) = h(t) Ay (t) - x(t)

Where: t 1s time.

g (t) is the input to the FFT.

1s the multiplication operation.

h (t) is the original assumed input.

A, (t) is the sampling function.

The mathematical representation of the sample

function is

oC

Z o (t—-k - dt)
k = ¢

where: d 1s the impulse or the Dirac delta

function.

dt 1s the time interval between

samples.

X (t) 1s the truncation function.

The truncation function defines the total length of the sampling period. If

the function h(t) is to be sampled during a time duration, T,, then:

-dt d
x (t)= 1, for ?St<TO-—-§-

and

x (t) = O for all other values of t.

Figure 6-2 shows the relationship between FFT and CFT input. It also

provides a graphic representation of the relationship of h, A,, x and the

resulting g (t).

The Fast Fourier Transform (FFT) Subroutine

In Figure 6-2,

h(t) = A-COS (Bt)

To=2n/B

dt = T,/ 16

Figure 6-2: The Relationship Between FFT Input and CFT Input

.h(t) = A *COS (BY) X(1)

|]

| |t
-— T —) T0

MR-S-1630-81

6.2.2 Comparison of FFT and CFT Output

Given the mathematical expression for g(t), the actual CFT of g(t) can be
derived analytically. Three facts allow this derivation.

1. The CFT of h(t) is assumed to be known.

2. The Fourier transforms of Ay(t) and x(t) are well known.

3. The Fourier transform of the product of two functions is demonstrably

equal to the convolution of the transforms of the functions.

Thus, a mathematical expression for the CFT of the actual input to the
FFT is

G (f) = H(f) = Ay (f) * X (f)

Where: G (f) is the Fourier transform (CFT) of g (t).

* 1s the convolution function.

H (f) is the Fourier transform of h (t).

A, (f) 1s the Fourier transform of A, (t).

X (f) is the Fourier transform of x (t).

Its mathematical representation is

[Tg« SIN (- Ty)]/ (w+ T, f)

f is frequency.

The Fast Fourier Transform (FFT) Subroutine 6-5

6-6

Figure 6-3 illustrates the transformed output of the input functions shown
in Figure 6-2.

Figure 6-3: Output from the FFT

H
;X(f)

|
|

- AT f |-1/To | 1:’T0
I

l

LY 17, 3T,

AL(f) G(f)

t1 dt L ATO.'zdt

\ { !

' : |
L f 'u‘ 1 l

-1/dt T 1 dt --X- +H+¢+ —.f
i

!]
_ Y
17, P17y 3T,

MR-S-1631-81

As Figure 6-3 shows, the expected output from the DFT or FFT — a CFT of
the continuous function h(t) — bears little resemblance to the results that
should be obtained from the CFT of the discrete samples of h(t) that are the
actual input to the FFT.

The result of the CFT, G(f), does not appear to be good enough to make the
FFT a useful algorithm. However, the actual result of the FFT is not G(f)
but rather is a set of discrete samples of G(f).

When N input values are sampled with a time interval of dt, that is:

the sample values of G (f) that result from the FFT are at frequencies of

1 2 .., n-1

T, T, T,
0,

For convenience, is referred to as df.
1
T,

Figure 64 shows G(n - df) returned by the fast Fourier transform.

As shown in Figure 64, the output from the FFT (indicated by the large
dots) is:

Gn-df),for0<n<N-1

and the values yielded are

A'TO
Gn-df) = 9 dt forn=1andn=N-1

and

G (n - df) = O for other n between 0 and N - 1

The Fast Fourier Transform (FFT) Subroutine

Figure 6—4: G(n * df) Returned by the FFT

- - --G(f)

eeooeoG(n)

iG(n/To)

|
|

-+ \ATg 2l

S

~
—
—

-

”

-

§
~

-

-
-

-

—

I /

_/ 1,.-1'0 VS 3.1’0 (S
= \ / N-1

\/ ~/
To

MR-S-1832-81

Thus, the sampled results of G(f) returned by the FFT seem to correspond
well with those of H(f), the expected result for frequencies in the range 0 to
[(N - 1)/2 - df]. However, in the frequency range [N/2 - df] to [N - 1) - df],
even the sampled results of the FFT still do not render a close approxima-
tion of H(f).

Nevertheless, because of the periodicity of G(f) caused by the convolution of
H(f) with X(f), this problem area can be interpreted as part of the desired
solution. As Figure 6-3 shows, G(f) is periodic. The period of G(f) is equal
to N - df. Thus, G(f) in the range [(-N)/2 - df] to —df is identical with G(f) in
the range [N/2 - df] to [N-1 - df]. Therefore, the last N/2 values returned by
the FFT can be interpreted as representing this negative frequency range.
In this case, if the output is considered to be associated with the following
frequency range:

-[N/2.dfJto[(N-1)/2- df]

or

—[1/(2-dt)] to 1/(2- dt)

the FFT gives a close approximation of H(f).

6.2.3 Similarities and Discrepancies between FFT and CFT

Results

The case illustrated in Figure 6-3 is an unusual one. Normally, the actual
results of the FFT do not match the expected results to within a scale
factor. In fact, the example illustrated in Figure 6-3 represents the one
class of functions and uses the one sampling technique for which the results
of the FFT and the results of the CFT agree within a known scale factor.

Three conditions must be satisfied to get such agreement between the re-
sults of the FFT and the results of the CFT.

1. The function to be transformed must be periodic and band-limited; that
is, the function’s highest frequency component must be finite.

The Fast Fourier Transform (FFT) Subroutine 67

2. The function to be transtormed must be truncated at exactly one non-
zero integer multiple of the function’s period.

3. The function to be transformed must be sampled at a rate greater than
twice the function’s highest frequency component.

All of these conditions are met in the example illustrated in Figure 6-3.

1. The expression, h(t)=A + COS(Bt) satisfies the first condition.

2. Because T;=2 - n/B, the expression x(t) satisfies the second condition.

3. Because dt = (2-w)/B - 16) (implying a sampling rate of
(B - 16)/(2 -), dt is greater than twice B/2 - r, the highest frequency
component of h(t)), and the expression A, (t) satisfies the third condition.

If these three conditions are not met, discrepancies in the results begin to
accumulate. For example, if the third requirement is not met — if the
chosen value for dt is too large — then the period for G(f) is too short. This
shortened period causes aliasing, that is, overlapping representations of the
expected transform that produce false frequency contributions.

If the second requirement is not met, that is, if T or N is not chosen so that
the original function is truncated at an exact integer multiple of the period
of the h(t), the results of the FFT show a distorting effect known as leakage.

If T is an integer multiple of the period of h(t), it causes the form of X(f) to
be such that the samples of G(f) returned by the FFT that are not related to
H(f) coincide with the zero’s of X(f) (see Figure 6-4). However, if T is not
an integer multiple of the period of h(t), the results returned by the FFT are
due in large part to the transform of the function x(t) and not just to the
transform of the intended function h(t).

If the first requirement is not met, then either the second or the third
condition cannot be met. This failure causes the associated discrepancies in
the results.

In general, these discrepancies cannot be totally resolved. But you should
recognize their causes and possible effects so that you can use this FFT
subroutine effectively.

6.3 Scaling the Results of the FFT Subroutine

6-8

As mentioned in Section 6.1, the FFT subroutine uses a scaling procedure
that is not used in the DFT algorithm.

There are two types of scaling procedure that are especially applicable to
the FFT subroutine. The first type is peculiar to the subroutine itself and
not to the FFT or DFT algorithms. The second type relates the actual sub-
routine results to those expected from the original CFT function.

The following sections describe both types of scaling procedure.

The Fast Fourier Transform (FFT) Subroutine

6.3.1 Internal Subroutine Scaling Procedure

The FFT subroutine uses internal scaling procedures that cause it to vary

from the DFT algorithm in two ways.

1. To maximize speed, the FFT subroutine performs all operations in inte-

ger arithmetic. Thus the input and output of the subroutine are single-

precision, integer values.

However, the FFT subroutine generally cannot represent its output in

the legal integer range (+32767) of FORTRAN. Because of this limita-

tion, the FFT subroutine must scale the output internally to fit the

FORTRAN legal range.

The fast Fourier transform subroutine indicates the scaling factor it

uses in the argument ISCALE (see Section 6.5). To obtain the actual

results of the FFT, you must scale all data by multiplying them by

2**[SCALE.

2. When performing an inverse transform, the FFT does not include the

factor 1/N that appears in the expression for the inverse DFT. Thus,

you must multiply the output of the inverse FFT by 1/N to duplicate the

results of the inverse DFT.

6.3.2 Relational Scaling Procedure

The relational scaling procedure is relatively simple. Its rationale however

1s complicated and must be explained in some detail. Thus, a review of

some of the information presented in previous sections is appropriate.

In Section 6.2.1, the continuous function of time, h(t) was set equal to

A - COS(Bt). It was then stated that:

CFT A 1 Bht) =A-COSB:t)e—H(f)= = for+ = =+ —=

O,fOI‘f—rJ:i TO

Where: CFT is the continuous Fourier transform.

Then h(t) was sampled and truncated to produce g(t), the input to the DFT

for the continuous function of time.

It was also shown that:

CFT
g (t) «<—>G (f)

Although G(f) bears little resemblance to H(f), the DFT produces values
G(f) that give a good approximation for the same value of H(f) when dt and
T, are chosen correctly.

The Fast Fourier Transform (FFT) Subroutine 6-9

For example

g (n - dt) 2111; Gk-df)=C:-H(k-d
Where: n 1s0,...,N-1.

k is0,...,(N-1)/2,-N/2,...1.

df is 1/(N - dt).

C is the scaling component.

is the multiplication operation.

In the above example, because h(t) is periodic and band-limited, and be-
cause dt and T, were chosen correctly,

G(k-df)= C:-H k- df)

In Section 6.2.2, it was shown that

1 n
G(k-df) = _g_g‘_to for k-df= =+ "fi; + Ty n=0, 1, £2, +3, ... +x

= 0, fork-df#t—%; + B

From the above expression, and from H(f) given previously, it follows that

C="T,/dt

Furthermore, because

dt = T,/N

it follows that

C=N

Where: N is the total number of samples.

Thus, for the example we have

Gk-df) = N-Hk- df)

or

1/N-G(k-df) = H(k-df)

In general, if h(t) is periodic,

1/N-G(k-df)=H(k - df)

Here it must be stressed that factor 1/N is not part of the DFT. Factor 1/N
1s a direct result of the approximation that resulted in g(t) from h(t). The
DFT of g(t) is G(f), not 1/N + G(f). To summarize, if

CFT
h (t) «<—H (f)

then

6-10 The Fast Fourier Transform (FFT) Subroutine

DFT
h(t)=g(n- dt) «<—G (k - df)

Where: n =0,...N-1

k =0,...(N-1)/2,-N/2,...-1

The description given above also applies to the output of the FFT subrou-
tine for a forward transform (from time to frequency domain) because the
results of the DFT and the results of the FFT subroutine are identical in
the forward direction.

However, this description does not apply to the output of the FFT subrou-
tine for an inverse transform. The output from the FFT subroutine and the
output from the DFT differ by a factor of 1/N for the inverse transform. This
difference is directly attributable to the DFT algorithm. (See Section 6.1.2.)

Therefore, if

DFT
gn-dt) «—>G k -df),n=0,...N-1

k=O,...,(N—l)/2,—N/2,...,—1

then

FFT
g(n-dt)— G (k - df)

but

FFT
(1/N)-g(n-dt)«<— G (k - df)

or

FFT
gn-dt)«<— (1 /N) -G (k- df)

But we have just determined that 1/N + G(k - df) is approximately H(k - df)
and, under special circumstances, is exactly H(k - df). Thus

FFT
gn-dt) <—(1/N)-Gk -df) ~ H (k - df)

or

CFT
g(n-dt)=~ H (k- df)

To summarize the scaling procedure that fast Fourier transform subroutine
uses, we have

FFT
ht)~gm-dt)— G(k-df)=N - H (k - df)

and

FFT
h(t)~g(n-dt)<— (1 /N): Gk -df)~H (k - df)

The Fast Fourier Transform (FFT) Subroutine 6-11

Thus, if one understands the assumptions that must be made, the scaling of

the output from the FFT subroutine can be performed as follows

CFT ISCALEh(t-dt) ~7 FFT (h(t))-1/N-2 t=k-dtk=0,1,... N-1

ISCALE CFT
FFT(H(f))-2 “~ H{)f=k-dfk=0,...(N-1)/2-N/2, ... -1

Where: h (t) is the assumed function of time.

FFT (h(t)) is the output of the FFT subroutines for a for-

ward transform.

CFT . _
> 1s an approximate forward CFT.

N 1s the number of samples.

H (f) 1s the assumed frequency function to be

transformed.

FFT (H(f)) is the output of the FFT subroutine on inverse

transform.

CFT) . :
& i1s an approximate inverse CFT.

ISCALE is the scaling indicator the subroutine returns

to the calling program.

6.4 Useful Properties of the FFT

The fast Fourier transform has a number of useful properties. These proper-

ties are listed as follows: The fast Fourier transform has a number of useful

properties. These properties are listed as follows:

® Linearity: h(n) + g(n) «<—H (m) + G (m)

® Symmetry: 1/NH(@m)<— h(n)

® Time Shifting: h (n - k) «— H (m) e 7#TMN

® Frequency Shifting: h (n) e TMY «—— H (m - k)

® Even Function: h (n) «<— Re [H (m)]

® Odd Function: h (n) «— jIm [H (m)]

® Time Convolution: h (n) * g (n) «<— H (m) G (m)

® Frequency Convolution: h (n) g (n) «— %I— H (m) * G (m)

6-12 The Fast Fourier Transform (FFT) Subroutine

6.5 How to Call the FFT Subroutine

The general format of the FORTRAN call to the FFT subroutine is:

CALL FFTAIERROR,N,IREAL,IMAG,INVRS,ISCALE)

For reference, argument names in the call to FFT have been assigned arbi-
trarily. You may supply your own argument names, but you must state all
of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument, either accidentally or on purpose, or if
you supply too many arguments, a FORTRAN error message results and no
data is processed. The arguments are described in the following discussion.

IERROR is an integer variable used to report error conditions. The values
that IERROR can return and their meanings are given below.

0O = Noerror

1 = N isless than eight

2 = N is greater than 8192 or FMAXN

3 = N s not a power of two

—n = Incorrect number of arguments in call

N is an integer variable that specifies the number of elements to be trans-
formed. N must be a value that is a power of two between eight and
whatever maximum array size you specified in the conditional assembly
parameters F.MAXN. (See Section 6.6.3 for an explanation of F.MAXN.)

IREAL is an integer array N elements long that contains the real portion
of the input data to be transformed. FFT returns the real results to this
array, replacing the input data.

IMAG is an integer array N elements long that contains the imaginary
portion of the input data to be transformed. FFT returns the lmaginary
results to this array, replacing the output data.

INVRS is an integer variable that indicates whether the subroutine is to
perform a forward or an inverse transform. The two values that you can
use in INVRS, and their meanings are given below.

INVRS =0 The subroutine is to perform a forward transform
INVRS =1 The subroutine is to perform an inverse transform

ISCALE is an argument set by the FFT subroutine. It is an integer vari-
able that indicates the number of times the results of the FFT subroutine
have been divided by two. The FFT subroutine sets the scaling factor as
necessary to overflow.

To obtain the unscaled results of the fast Fourier transform, multiply
each output element in IREAL and IMAG by (real) 2!SCALE

The Fast Fourier Transform (FFT) Subroutine 6-13

6.5.1 Interpreting the Results of the Output Arrays

Each output element returned to IREAL and IMAG as a result of applying
the FFT corresponds to the transformed function evaluated at a given fre-
quency value. The frequency value at which the function is evaluated de-
pends on the length of the period of the input function, T,. Thus, frequency
values are evaluated at evenly spaced intervals of 1/T,, which is referred to
as df. For convenience, the following explanation discusses IREAL only, but
applies equally to IMAG.

The total frequency domain consists of values in the range —(N/2)-(df) to
[(N/2)-1]-(df). Figure 6-5 shows the total range of the frequency domain
expressed as a graph where the x axis represents frequency and the y axis
represents amplitude.

Figure 6-5: Total Range of the Frequency Domain

Amplitude

l : Frequency
~(N/2)-df |= -t —= (N/2-1).df

N
_

—_

Total Range of the Frequency Domain

MR-S-1633-81

Although evaluated at evenly spaced intervals, values returned in the first
half of IREAL represent values in the second half of the frequency domain;
that is, they represent values in the range 0 to [(N/2)-1]-(df). Thus, values
returned in IREAL beginning with the first element, or IREAL(1), can be
expressed as:

IREAL(1) = G(f)

where f = 0

IREAL(2) = G(f)

where f = df or 1/T,

IREAL3) = G(f)

where f = 2 - df

IREAL(N/2) = G(f) N

where f = (—-2- —-1) - df

6-14 The Fast Fourier Transform (FFT) Subroutine

Values returned in the second half of IREAL represent values in the first
half of the frequency domain; that is, they represent values in the range
—(N/2) - (df) to —(df). Thus, values returned in IREAL beginning with the
first element in the second half of the array or IREAL(N/2 + 1) can be
expressed as:

IREAL(N/2 + 1) = G(f)

where f = - dfE []
2

IREAL(N/2 + 2) = G(f)

where f = (— N, 1) . df
)

IREAL(N/2 + 3) = G(f)

where f = (— g + 2) - df

IREAL(N) = G(f)

where f = (— l;- + % —1) . df or df

For an explanation of why the FFT output works this way, see
Section 6.2.2.

Figure 6-6 shows five elements of the IREAL output array, each of which
represents a transformed function. The figure shows which values in the
frequency domain each element (transformed function) corresponds to. The
five elements are:

IREAL(1) The first element in the output array

IREAL(2) The second element in the output array

IREAL(N/2) The last element in the first half of the output array

IREAL(N/2 + 1) The first element in the second half of the output
array

IREAL(N) The last element in the second half of the output ar-
ray. IREAL(N) is also the last element of the entire
output array.

The Fast Fourier Transform (FFT) Subroutine 6-15

Figure 6-6: Five Elements in the IREAL Output Array

IREAL(N) ——=\ =———IREAL(2)
\

|
/

II ”
IREAL(N/2 + 1) Y VA IREAL(N/2)

Vi i|
N \ ’| \L—: N 4 e

o Rt ‘\./' \ ‘\,’r pET ==

IREAL(1)

MR-S-1634-81

6.6 Modifying the Subroutine — Using Options

6-16

The following sections explain which options you can use with the fast
Fourier subroutine. If you want to use any of the options, you must enable
them when you build the subroutine from the source file using the
interactive build procedure (see Section 1.1).

6.6.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any

other floating-point option available. Enabling this option increases the

execution speed and decreases the memory requirements for the subroutine

by approximately 86 words.

6.6.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE (KE11) hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 80 words.

6.6.3 F.MAXN (Maximum I/O Array Size)

The F.MAXN option specifies the maximum number of complex elements

that the FFT subroutine can process at one time. The maximum number of

complex elements is limited to those multiples of 1K (1024) that are powers
of 2 in the range 1K to 8K (8192). In other words, F.MAXN is limited to the
values 1024, 2048, 4096, and 8192.

F.MAXN allows you to control the size of the FFT subroutine. The FFT

subroutine uses a quarter-sine-wave, look-up table that requires a number

of elements directly proportional to the maximum size of the FFT subrou-

tine input array.

The Fast Fourier Transform (FFT) Subroutine

F.MAXN is not enabled on the distributed object file. If you do not choose to

enable F.MAXN, the FFT subroutine uses a default value of 1024 for

F.MAXN.

If you want to use a larger maximum number of complex values, you should
redefine F.MAXN as 2048, 4096, or 8192 in the distributed source file.

Redefining F.MAXN increases the memory requirements for the FFT sub-

routine. Specifically:

1. Changing F. MAXN from 1024 to 2048 increases the FFT subroutine

size by 256 words.

2. Changing F.MAXN from 1024 to 4096 increases the FFT subroutine

size by 768 words.

3. Changing F.MAXN from 1024 to 8192 increases the FFT subroutine
size by 1792 words.

6.7 Example Using the FFT Subroutine

The following FORTRAN program example illustrates how the FFT sub-
routine produces both forward and inverse transforms of a specific set of

input data.

The Fast Fourier Transform (FFT) Subroutine 6-17

FFT Example #1

The Fast Fourier Transform (FFT) Subroutine 6-19

FFT Example #1

DIMENSION IR(32) +IM(32)

DATAPI/3.,141593//)IM/32%0/C/ .01/

n=0,

DO1I=1,32

T=SIN(X)

IRCI)=T*#1000,+SIGN(C.,T)

1 XK=X+DELX

TYPE 800

TYPE 900

TYPE 1001,1IR

TYPE 1002,1IM

CALLFFT(IE»329IR+IM,0O,ISF)

IF(IE) 99,2,99

2 IF(ISF.NE.O)TYPE 999,ISF

TYPE 1000

TYPE 1001 IR

TYPE 1002,1IM

CALLFFT(IE32yIR+IM»1,ISI)

IF(IE) 99,3,99

3 IF(ISI.NE.O)TYPE 999,151

TYPE 2000

TYPE 1001 ,IR

TYPE 1002,1IM

SCAL=2.#%#(ISF+ISI)

0041=1,32

IRCI)=SCAL*#(IR(I)/32)

i} IMCI)=SCAL*(IM(I)/32)

TYPE 3000

TYPE 1001 IR

TYPE 1002,IMF
E
I

@

 r

O

r

D

O
O

r
O

O

STOP

@ 99 TYPE 998, 1E

STOP

B 80O FORMAT(1H1 »T25'FFT Example 81’ ,//)
900 FORMAT (" DATA TO BE TRANSFORMED - SINE WAVE SCALED BY 1000, /)

998 FORMAT(//’' THE ERROR CODE RETURNED = ’,14)

999 FORMAT(// ' THE SCALE FACTOR RETURNED = ‘' ,14)

1000 FORMAT(// ' RESULTS FROM THE FORWARD FOURIER TRANSFORM OF 32/,

@ 1 " POINTS OF A SINE WAVE ')

1001 FORMAT (/' - REAL PART -’/,(BI18))

1002 FORMAT(/’ - IMAGINARY PART - '/ ,(818))

2000 FORMAT(//,’ RESULTS FROM THE INVERSE FOURIER TRANSFORM *

1 //+32%,’- BEFORE SCALING

3000 FORMAT(//,32X,’- AFTER SCALING - ')

END

6-20 The Fast Fourier Transform (FFT) Subroutine

®

0
0

@

0
O

O

@

@

0
6

®

Define array variables and their sizes; initialize parameters external
to the subroutine, and set the value of array IM to zero.

Compute 32 values of a sine wave scaled by 1000.

Print the real and imaginary parts of the numbers to be transformed.

Call the FFT subroutine to perform a forward transform on values
stored in IR and IM.

If IE(RROR) is not equal to zero, print an error message; if ISCALE is
not equal to zero, print the scaling factor.

Print the real and imaginary parts of the forward transform.

Call the FFT subroutine to perform an inverse transform on values
stored in IR and IM.

If IE(RROR) is not equal to zero, print an error message; if ISCALE is
not equal to zero, print the scaling factor.

Print the real and imaginary parts of inverse transforms (before
scaling).

Compute the scaling factor.

Multiply the real and imaginary parts of the inverse transform of data
by the scaling factor.

Print the real and imaginary parts of the inverse transform of data
(after scaling).

Print error messages (error code returned).

Format statements

The Fast Fourier Transform (FFT) Subroutine 6-21

Terminal Output

FFT Example %1

DATATO BE TRANSFORMED

- REAL PART -

0 195 382

1000 980 923

0 -195 -382

-1000 -980 -923

- IMAGINARY PART -

0 O 0

0 0 0

0 0 0

0 0 0

RESULTS FROM THE FORWARD

- REAL PART -

0 -7 0

0 1 0

0 1 0

0 1 0

- IMAGINARY PART -

0 -15981 0

0 -5 0

0 -1 0

0 -1 0

RESULTS FROM THE INVERSE

12200

29327

-12200

-29527

-9

-6

9

6

381

922

-381

-922

0

0

- REAL PART -

-4 6217

31972 31354

4 -6217

-31972 -31354

- IMAGINARY PART -

-12 -8

-4 -5

12 8

4 S

- REAL PART -

0 194

999 979

0 -194

~-999 -979

- IMAGINARY PART -

0O 0O

9] 9)

Q 0

0 0

6-22

i

o
o

W

w
u
n

—

O
S
]

=

O
]

- SINE WAVE SCALED BY 1000,

707 831

707 555

-707 -831

-707 -555

O §)

0O O

0 0

0O 0

923 980

382 195

-923 -980

-382 -193

0 0

0 0

0 0

0 0

FOURIER TRANSFORMOF 32 POINTS OF A SINE WAVE

R
O

(R
0
I

 o
0

 I

o0
B
A
N

17749

26582

-17749

-26582

-6

-17

17

054

830

-334

-830

0

)
-

0

§) 0O

0 <

Q) 0

0 1

y -1

0 1

0 -5

FOURIER TRANSFORM

- BEFORE SCALING -

22598 26578

22604 17752

-22598 -26578

-22604 -17752

-6 4

0 -14

G -4

0 14

AFTER SCALING -

706 830

706 554

-706 -830

-706 -554

O O

0O 0

0 0

0O 0O

The Fast Fourier Transform (FFT) Subroutine

Q -2

0 0

0O 2

O o)

0 0

0 -4

0 0

0 15984

293531 31336

1222 6254

-29531 -31356

-12223 -6254

-2 -2

-15 -20

S 2

15 20

922 979

381 195

-922 -979

-381 -195

O 0

§ 0

Q 0

0 0

PHASE ANGLE AND AMPLITUDE SPECTRA (PHAMPL)

SUBROUTINE

FORMAT:

CALL PHAMPL(N,IR,IM,PH,AM)

Where:

N is an integer variable that specifies the length of the input and

output arrays.

IR is an integer array containing the real parts of the input data.

IM is an integer array containing the imaginary parts of the input

data.

PH is a real array used to store phase angles.

AM is a real array used to store amplitudes.

FILE NAMES:

PHAMPL.MAC (source file); PHAMPL.OBJ (object file)

OTHER ROUTINES USED:

FLOAT, ATAN2, and SQRT from the FORTRAN library.

OPTIONS:

® EIS (Extended Instruction Set — KE11-E)

@ EAE (Extended Arithmetic Element — KE11)

@ F4P$ (FORTRAN 77 compiler)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If the following options are enabled:

NONE EIS EAE

182 138 157

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 180 Points/second.

With PDP-11/03 and EIS enabled: 70 Points/second.

Chapter 7

The Phase Angle and Amplitude Spectra (PHAMPL)
Subroutine

The phase angle and amplitude spectra (PHAMPL) subroutine deals with
complex values of the type produced by the fast Fourier transform (FFT)
subroutine. (See Chapter 6 for more information on the FFT subroutine.)
PHAMPL converts such complex values into phase angles and amplitudes.

The input to PHAMPL consists of two Integer arrays. One integer array
contains the real parts of the complex values to be converted. The other
Integer array contains the imaginary parts of the complex values to be
converted.

The output from PHAMPL consists of two real arrays. One real array con-
tains the phase angles of the complex values. The other real array contains
the amplitudes of the complex values. All values in both real arrays are
related through their subscripts.

Mathematically, the function of the subroutine can be described as:

A, = VIR + IMZ

P, = TAN" (IM/IR,)

Where: P 1s the real array containing the related phase angles.

A is the real array containing the related amplitudes.

IR is the integer array containing the real parts of the com-
plex values.

IM is the integer array containing the imaginary parts of the
complex values.

7-1

7.1 How to Call PHAMPL

The general format for the FORTRAN call is:

CALL PHAMPL(N,IR,IM,PH,AM)

For reference, argument names in the call to PHAMPL have been assigned
arbitrarily. You may supply your own argument names, but you must state
all of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument, either accidentally or on purpose, or if
you supply too many arguments, a FORTRAN error message results, and
no data is processed. The arguments are described in the following
discussion.

N 1s an integer that defines the length of the input and output arrays.

IR 1s an integer array containing the real parts of the complex values
to be converted.

IM 1s an integer array containing the imaginary parts of the complex
values to be converted.

PH 1s a real array in which the subroutine stores the phase angles
from the conversion.

PH(I) = ATAN2(FLOATIM(I))/FLOATIR())

AM 1s a real array in which the subroutine stores the amplitudes re-
sulting from the conversion.

AM(D = SQRT(FLOATIR() - IR(I) +IM() - IM(D)))

7.2 Other Routines Used by PHAMPL

PHAMPL requires the FORTRAN library routines FLOAT, ATAN2, and
SQRT. However, you do not have to take any special steps to access these
library routines. Because the FORTRAN library is required by all
FORTRAN programs, the necessary library routines are accessed automat-
ically when you link or task-build the program that calls PHAMPL.

PHAMPL accesses the FORTRAN 77 library and the FORTRAN IV library
differently. See Section 7.3.3 if you are using FORTRAN 77.

7.3 Modifying the Subroutine — Using Options

7-2

The following sections explain which options you can use with the phase
angle and amplitude spectra subroutine. If you want to use any of the
options, you must enable them when you build the subroutine from the

source file using the interactive build procedure (see Section 1.1).

The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine

7.3.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any
other floating-point option available. Enabling this option increases the
execution speed and decreases the memory requirements for the subroutine
by approximately 44 words.

7.3.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE (KE11) hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 25 words.

7.3.3 F4P$ (FORTRAN 77 Compiler)

The distributed object file is intended for use with the FORTRAN IV com-
piler. Enable this option if you are using the FORTRAN 77 compiler.

7.4 Examples Using the PHAMPL Subroutine

The two examples presented here illustrate how to use PHAMPL to convert
complex values to their corresponding phase angles and amplitudes. Exam-
ple 1 uses random, complex numbers generated by a random-number gen-
erator. Example 2 uses output from the FFT subroutine.

NOTE

If you use FORTRAN 77 and you want to duplicate the termi-
nal output for the example programs, replace the standard
random-number generator in F4POTS with FAPRAN.OBJ.
Terminal output for the example programs is based on the
FORTRAN IV random-number generator. The FORTRAN 7 7
random-number generator is different from that for
FORTRAN IV and will not produce the same output. See
Section B.1.

The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine 7-3

PHAMPL Example #1

The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine 7-5

7-6

PHAMPL Example #1

O
<2> 10

11

800

1002

1003

1004

C‘S) 1005
1006

1007

DIMENSION IR(32) ,IM(32)+P(32)+A(32)

DATANM/0:+0/

NEXT(V)=(RAN(N,M)#1000,)-500,

DO 101I=1,32

IRCIN=NEXT(X)

IMCI)=NEXT(X)

TYPE 900

TYPE 1002,1IR

TYPE 1003,1IM

DO111I=1,32

X0=IR(I)

X1=IMC(I)

P(I)=ATANZ2(X1 +X0)

ACI)=SQRT(X1%#X1+XO0#X0)

TYPE 1006,P

TYPE 1007,A

CALL PHAMPL(32,IR»IMyP,A)

TYPE 1004 ,P

TYPE 1005,A

FORMAT(1H1+720,'PHAMPL Example 81’ ,//)

FORMAT (* RANDOM INPUT DATA'/’ REAL PART' +/+(4115))

FORMAT (/' IMAGINARY PART' +/» (4115))

FORMAT(// ' PHASE ANGLES FROM SUBROUTINE' +»/+»(4F15.,5))

FORMAT (/' AMPLITUDES FROM SUBROUTINE ',/ »(4F15.,5))

FORMAT(// ' PHASE ANGLES FROM DIRECT CALCULATIONS ' 4/ +(4F15,.5))

FORMAT (/' AMPLITUDES FROM DIRECT CALCULATIONS’ 4/ ,(4F15.5))

STOP

END

The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine

Define array variables and their sizes; initialize parameters external
to PHAMPL subroutine; define real and imaginary values of 32 ran-
dom numbers to be processed.

Compute 32 random values and print real and imaginary parts.

Calculate phase angles and amplitudes for random input values and
print results.

Call the PHAMPL subroutine to calculate phase angles and ampli-
tudes for random input values and print results.

©
@

0

e

0
Format statements

The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine -7

Terminal Output

PHAMPL Example #1

RANDOM INPUT DATA

REAL PART

-499 -499 -487
302 22 338
148 -393 -106
158 426 -173
-86 15 241

-182 1 -194
-45 147 360

448 -423 29

IMAGINARY PART

-499 -496 455

-493 373 -329

490 22 326

-190 277 461

206 229 384
-106 -29 99

122 -218 130

269 36 -151

PHASE ANGLES FROM DIRECT CALCULATIONS

-2.35619 -2.35921 -2.39015
-1,02118 0.85865 -0,77191

V27747 2.61971 1,88517

-0.,87709 0.57654 1,92980
1,96628 1,50539 1,01033

-2.61420 -1,53633 2,66973

1,92417 -0,97752 0.34654

0,54075 3,05669 -1,38105

AMPLITUDES FROM DIRECT CALCULATIONS

705,69257 703,57446 666.47882

578.,14618 492,76059 471.68317
511,86325 453,34866 342,80023

247.,11131 508,13876 492,39212
223,23082 229,49074 453,36188
210,61813 29,01724 217.,80037
130,03461 262,93155 382.,75317

522,55621 424,52914 153,75955

PHASE ANGLES FROM SUBROUTINE

-2+.35619 -2.,35921 -2+39015
-1,02118 0.85865 -0,77191

1.27747 2.61971 1.,88517

-0.,87709 0.5765%4 1.92980
1.96628 1.,50539 1.01033

-2.61420 -1.,33633 2.66973

1,92417 ~0,97752 0.34654

0,354075 3.05669 -1,38105

AMPLITUDES FROM SUBROUTINE

705.,69257 703.57446 666.47882

578.14618 492.76059 471.68317

211.86325 453.34866 342.80023

247.11131 208.13876 492.,39212

223.,23082 229.49074 4533.36188

210,61813 29.01724 £17.80037

130,03461 262,93155 382.75317

022.95621

7-8 The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine

424.,52914 153.7595%5

-344

-23

-81

326

132

346

-462

-180

33

-177

-428

-191

334

178

a7

283

3.04596

-1,70002

-1.75784

-0,52998

1.19443

0.47514

3.04021

2.13730

345.57922

178.,48810

435.59729

377.83197

359.,13785

389.10153

464 .,38455

335,39380

3.04596

-1,70002

-1.753784

-0,52998

1.19443

0.47514

3.04021

2+.13730

345.,57922

178.,48810

435.,59729

377.83197

359.13785

389.10153

464.,3845%5

335.,39380

PHAMPL Example #2

The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine -9

PHAMPL Example #2

DIMENSION AMP(32) yPHASE(32) s IMAG(32)

INTEGER REAL(32) ySCALE +ERROR

DATANI1+I2+T+»A+BC+sD/32+0+0+,0, 100, 4200, ,.5 124/

DATAPI/3.141593/IMAG/32%0/

DT=PI1/8.

CALL RANDU(I1 yI2,X)

DO1 I=1,N

REAL (1) =A*SIN(C#*T)+B#COS(D*T)+(-1, #%1) %15, #RAN(I1,12)
2 1 T=T+DT

TYPE 900

TYPE 1000

TYPE 1001 REAL

TYPE 1002, IMAG

CALL FFT(ERROR »N»REAL »IMAG 0 ,SCALE)

IF(ERROR.NE.O) PRINT 3000 ,ERROR

)

CALL PHAMPL (N+sREAL »IMAG PHASE »AMP)

TYPE 2000

TYPE 1001 »REAL

TYPE 1002 ,IMAG

TYPE 2001 »PHASE

TYPE 2002 ,AMP

STOP

900 FORMAT(1H1,T722,'PHAMPL Example 82/ ,//)

1000 FORMAT(' INPUT DATAFORFFT')

1001 FORMAT(/' #%*REAL PART*%%’,/,(4116))

1002 FORMAT(' ##*%*IMAGINARY PART*##',/,(4116))

@) 2000 FORMAT(//’ RESULTS OF THE FFT ")
2001 FORMAT (/' #*%»%PHASE ANGLES#*#*%’,/,(d4F16,5))

2002 FORMAT (' #%*AMPLITUDES**%’,/,(4F16.,5))

3000 FORMAT(///’'ERROR CODE FROMFFT= *,16+///)

END

7-10 The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine

@ Define array variables and their sizes; initialize variables external to
the subroutine; specify input as integer.

@ Generate 32 random values for input to the FFT subroutine and print
the real and imaginary values:

Values =100.*SIN(X/2.) + 200.*COS(2.*X) + NOISE

@ Call FFT subroutine to process these input values; print any error
messages.

@ Call PHAMPL subroutine to process the output from the FFT subrou-
tine; print the real and imaginary results of the FFT and the corre-
sponding phase angles and amplitudes.

@ Format statements

The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine 7-11

Terminal Output

INPUT DATA FOR FFT

*x*REAL PART* %

199

-129

299

-131

185

-283

95

-285

%x IMAGINARY PART*

Q

0

RESULTS OF THE FFT

*%x%*NEAL PART%% %

-221

3188

4

21

13

22

4

3189

*%x % IMAGINARY PART ***

0

8

-3

-29

0

%%xPHASE ANGLES%%

3.,14159

0.,00251

-0.89606

-0.,94405

0.,90483

0,89606

-0.,00220

xAMPLITUDES%

221.,00000

3188.01001

6.40312

35.80503

13.00000

35.60899

6.40312

3189.00737

7-12 The Phase Angle and Amplitude Spectra (PHAMPL) Subroutine

PHAMPL Example #2

160

-60

227

-93

120

-230

2
<

-209

QO

0

Q

Q

0

23

1

-7

29

13

3

19

19

-1611

-4

-13

14

-13

6

-37

32

-1.,35632

-1.,32582

-2.,00742

0.44976

-0,783%40

1.,10713

-1,08640

1,03489

1611.16418

4,12311

16.55295

32.20248

18.,38478

6.70820

41.,39327

37.215589

38

84

79

33

-49

-93

-104

-42

25

-9

-32

-29

-27

-29

-6

27

-39

-14

-20

15

14

40

-1,00076

-2+14213

-3.,07917

-2+253784

2.63449

3.07274

1.,97369

0.97705

46.32494

16.64332

32.,06244

35.22783

30.88689

29.06888

15.23135

48.25971

-86

227

-70

151

-202

33

-229

115

O
O

O
O
0

0
0
0

11

16

1

10

31

-12

>

30

-31

35

-7
4

-19

11

1

1615

-1.,22982

1.,14202

-1.42890

0.61073

-0.,34985

2,3996°5

0.,19740

1,55222

32.89377

38.48376

7.07107

12.20656

36.,35932

16.27882

2,08902

1615.27856

POWER SPECTRUM (POWRSP) SUBROUTINE

FORMAT:

CALL POWRSP(N,IR,IM,P)

Where:

N 1s an integer variable that specifies the length of the input arrays.

IR is an integer array containing the real parts of the input data.

IM is an integer array containing the imaginary parts of the input

data.

P is a real array used to store power spectrum results.

FILE NAMES:

POWRSP.MAC (source file); POWRSP.OBJ (object file)

OPTIONS:

@ EIS (Extended Instruction Set — KE11-E)

& EAE (Extended Arithmetic Element — KE11)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If the following options are enabled:

NONE EIS EAE

119 75 94

TYPICAL EXECUTIONS SPEED:

With PDP-11/34 and EIS enabled: 5500 Points/second.

With PDP-11/03 and EIS enabled: 2400 Points/second.

Chapter 8

The Power Spectrum (POWRSP) Subroutine

The power spectrum (POWRSP) subroutine deals with complex values of

the type produced by the fast Fourier transform (FFT) subroutine. (See

Chapter 6 for a detailed description of the FFT subroutine.) POWRSP com-

putes the power spectrum — the relationship between power and signal

frequency — of a set of Fourier coefficients by calculating the squares of the

magnitudes of that set of Fourier coefficients.

The input to POWRSP consists of two integer arrays. One integer array

contains the real parts of the Fourier coefficients. The other integer array

contains the imaginary parts of the Fourier coefficients.

The output from POWRSP consists of one real array that contains the

calculated power spectrum.

Mathematically, the function of the subroutine can be described as

Where: P is the real array used to store the power spectrum.

IR is the integer array containing the real parts of the

Fourier coefficients.

IM is the integer array containing the imaginary parts of the

Fourier coefficients.

8.1 How to Call POWRSP

The general format for the FORTRAN call is:

CALL POWRSP(N,IR,IM,P)

8-1

For reference, argument names in the call to POWRSP have been assigned
arbitrarily. You may supply your own argument names, but you must state
all of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument, either accidentally or on purpose, or if
you supply too many arguments, a FORTRAN error message results and no
data is processed. The arguments are described in the following discussion.

N is an integer that defines the length of the input and output arrays.

IR 1s an integer array containing the real parts of the complex Fourier
coefficients.

IM 1s an integer array containing the imaginary parts of the complex
Fourier coefficients.

P 1s a real array in which POWRSP stores the power spectrum re-
sults. Values for the array elements in P are computed as follows

P(I) = IR(M*IR) + IMD*IM(I)

8.2 Modifying the Subroutine — Using Options

The following sections explain which options you can use with the power
spectrum subroutine. If you want to use any of the options, you must enable
them when you build the subroutine from the source file using the
interactive build procedure (see Section 1.1).

8.2.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any
other floating-point option available. Enabling this option increases the
execution speed and decreases the memory requirements for the subroutine
by approximately 44 words.

8.2.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 25 words.

8.3 Examples Using the POWRSP Subroutine

8-2

The following example FORTRAN program illustrates how to use
POWRSP to calculate the power spectrum of complex Fourier coefficients.
Example 1 uses random, complex numbers generated by a random-number
generator. Example 2 uses output from the FFT subroutine.

The Power Spectrum (POWRSP) Subroutine

NOTE

If you use FORTRAN 77 and you want to duplicate the termi-

nal output for the example programs, replace the standard

random-number generator in F4POTS with F4APRAN.OBJ.

Terminal output for the example programs is based on the

FORTRAN IV random-number generator. The FORTRAN 77

random-number generator is different from that for

FORTRAN IV and will not produce the same output. See

Section B.1.

The Power Spectrum (POWRSP) Subroutine 8-3

POWRSP Example #1

The Power Spectrum (POWRSP) Subroutine 8-5

8-6

POWRSP Example #1

1
O

—
@
O
/

—
®
—G

—
©

r
10

900

1002

1003

1004

1005

DIMENSION IR(32) +IM(32),P(32)

DATA NsM/0 40/

NEXT(V)=(RAN(NM) #300,)-250,

DO 10 I=1,32

IRCINI=NEXT(X)

IMCI)=NEXT(X)

TYPE 900

TYPE 1002IR

TYPE 10031IM

DO 11 1=1,32

XO0=IR(I)

X1=IM(I)

PCI)=X0#XO0+X1%X1

CONTINUE

TYPE 1004 ,P

CALL POWRSP(32+IR+»IM,P)

TYPE 1005,P

FORMAT(1H1»T20) 'POWRSP ExampPple #1',//)

FORMAT (RANDOM INPUT DATA’/ '’ REAL PART' +/»(d4115))

FORMAT (/' IMAGINARY PART "/ » (4113))

FORMAT(// ' POWER FROM DIRECT CALCULATIONS '/ »(4F15,5))

FORMAT(// ' POWER FROM SUBROUTINE' »/ +(4F15.,5))

STOP

END

The Power Spectrum (POWRSP) Subroutine

O
,

®

O
O

Define array variables and their sizes; initialize parameters external
to POWRSP subroutine; define real and imaginary values of 32 ran-
dom numbers to be processed.

Compute 32 random values and print real and Imaginary parts.

Calculate power spectrum for random input values and print results.

Call the POWRSP subroutine to calculate power spectrum for random
input values and print results.

Format statements

The Power Spectrum (POWRSP) Subroutine 8-7

Terminal Output

POWRSP Example 1

RANDOM INPUT DATA

REAL PART

-249 -249 -243 -172
151 161 169 -11
74 -196 -53 -40
79 213 -86 163

-43 7 120 GG
-91 Q -97 173
-22 73 180 -231
224 -211 14 -90

IMAGINARY PART

-249 -24d8 -22 16
-246 186 -164 -88
2435 113 163 -214
-95 138 230 -9%
103 114 192 167
-93 -14 49 89
61 -109 65 23
134 18 -75 141

POWER FROM DIRECT CALCULATIONS

124002,00000 123505,00000 110578.,00000 29840,00000
83317.,00000 BOS17.,00000 23457 .,00000 7865,00000
63301.00000 51185.00000 29378,00000 47396.,00000
153266.,00000 64413.,00000 B0Z296.,00000 33294,00000
12458,00000 13045,00000 21264 .,00000 32245,00000
11090,00000 196.00000 11810.,00000 37850.,00000
4205.,00000 17210,00000 36625.,00000 238890,00000

68132.,00000 44845.00000 °821.,00000 27981.,00000

POWER FROM SUBROUTINE

124002,00000 123505.00000 1105378.00000 29840,00000
83317,00000 B0O317.,00000 234537.00000 7865.,00000
B3301,00000 21185.,00000 29378.,00000 47396.,00000
15266,00000 64413.,00000 BOZ296.,00000 39594,00000
12458.,00000 13045,00000 21264.,00000 32245,00000
11090,00000 196,00000 11810,00000 37850,00000
4205,00000 17210,00000 36625,00000 23890.,00000

68132.,00000 44845.,00000 0821.,00000 27981,00000

8-8 The Power Spectrum (POWRSP) Subroutine

POWRSP Example #2

The Power Spectrum (POWRSP) Subroutine 8-9

8-10

POWRSP Example #2

DIMENSION PSPECT(32) ,IMAG(32)

INTEGER REAL(32) »SCALE yERROR

DATANI1+I2+4T+A4B+C+D/32+0+0+04 1100, 1200, +.5,2./
DATAPI/3.141593/,IMAG/32%0/

DT=P1/8.,

CALL RANDU(I1,12,X)

DO1 I=1,N

REAL(I)=A*SIN(C#T)+B*COS(D*T)+(-1, #%I) %15, %RAN(I1,12)
2 1 T=T+DT

TYPE 900

TYPE 1000

TYPE 1001 ,REAL

TYPE 1002+ IMAG

CALL FFT(ERROR sN»REAL +IMAG 0 ,SCALE)

IF(ERROR.NE.O) PRINT 3000 /ERROR

CALL POWRSP(N,REAL +IMAG,PSPECT)

TYPE 2000

TYPE 1001 ,REAL

TYPE 1002+ IMAG

TYPE 2001 ,PSPECT

STOP

900 FORMAT(1H1+722,'POWRSP Example #2°',//)

1000 FORMAT(’ INPUT DATAFOR FFT ')

1001 FORMAT(/' »**REAL PART*#%',/,(4116))

1002 FORMAT(’ ##*%IMAGINARY PART#*#%',/,(4116))@) 2000 FORMAT(//’ RESULTS OF THE FFT")
2001 FORMAT(//' POWER SPECTRUM RESULTS '/ +s(4F16.1))

3000 FORMAT(///'ERROR CODE FROMFFT= ' ,16+//7/)

END

The Power Spectrum (POWRSP) Subroutine

@ Define array variables and their sizes; initialize variables external to
the subroutine; specify input as integer.

@ Generate 32 random values for input to the FFT subroutine and print
real and imaginary values:

Values=100.*SIN(X/2.) + 200.*COS(2.*X) + NOISE

@ Call FFT subroutine to process these input values; print any error
messages.

@ Call POWRSP subroutine to process the output from the FFT subrou-
tine; print the real and imaginary results of the FFT and the corre-
sponding power spectrum.

@ Format statements

The Power Spectrum (POWRSP) Subroutine 8-11 .

Terminal Output

POWRSP Example #2

INPUT DATA FOR FFT

#REAL PART *

199 160

-129 -60O

299 227

-131 -93

185 20

-283 -230

as 29

-285 -209

*%x% IMAGINARY PART%% %

0 0

0 0

§) 0

Q 0

0 0

O 0

@) O

0 0

RESULTS OF THE FFT

¥ *REAL PART* %%

-22 23

3188 1

4 -7

21 29

13 13

22 3

4 19

3189 19
¥%##IMAGINARY PART#*x

0 -1611

8 -4

-3 -15

-29 14

0 -13

28 G

> -37

-7 32

POWER SPECTRUM RESULTS

48841 .0 2595850,0

10163408.0 17.0

41,0 274.0

1282.0 1037.0

169.0 338.0

1268.0 45,0

41.0 1730,0

10169770.,0 1385.,0

8-12 The Power Spectrum (POWRSP) Subroutine

25

-9

-32

-29

-27

-29

-6

27

-39

-14

-20

15

14

a0

2146.,0

277.0

1028.0

1241.,0

954.0

845.,0

232.0

2329.0

-86

227

-70

151

-202

33
A

i A

115

11

16

10

31

-12

S

30

-31

35

-7

-19

11

1615

1082.,0

1481.0

20,0

149.0

1322.0

265.0

26,0

2609125.,0

CORRELATION FUNCTION (CORREL) SUBROUTINE

FORMAT:

CALL CORREL(IERROR,N,IA1,JA2,IFFTA ISCALE)

Where:

IERROR 1s an integer variable used to report errors.

N is an integer variable used to specify the number of samples to

be correlated.

IA1 1s an integer array N elements long containing the samples of

the first function to be correlated.

IA2 1s an integer array N elements long containing samples of the

second function to be correlated.

IFFTA 1s an integer array used to hold the imaginary part(s) of the

input to the FFT subroutine.

ISCALE 1s an integer variable set by CORREL to indicate the scaling

factor (number of times results have been divided by 2).

FILE NAMES:

CORREL.MAC (source file); CORREL.OBJ (object file)

OTHER ROUTINES USED:

Fast Fourier Transform (FFT) Subroutine

OPTIONS:

@ EIS

@ EAE

(Extended Instruction Set — KE11-E)

(Extended Arithmetic Element — KE11)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If the following options are enabled:

NONE

266

EIS EAE

240 246

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 420 Points/second (for auto-

correlation)

280 Points/second (for cross-

correlation)

With PDP-11/03 and EIS enabled: 150 Points/second (for auto-

correlation).

100 Points/second (for cross-

correlation).

Chapter 9

The Correlation Function (CORREL) Subroutine

The correlation function subroutine (CORREL) produces an estimate for
the correlation function. The correlation function measures the similarity
of two functions as one of the functions is shifted in time. The value of the
correlation function for any time shift, “t,” is the integral over all time of
the product of the first function multiplied by the second function after it is
shifted by an amount “t.”

Mathematically, the correlation function can be described as:

o0

R, =] x(®y(@ +t)dp

Where: x(B) and y(B) are the two functions to be compared.

t 1s the time shift.

R,,(t) is the resulting correlation function.

When x(B) =y(B), R,,(t) is called an auto-correlation function. When x(B)
y(B), R,,(t) is called a cross-correlation function.

As this formula indicates, the correlation function yields useful information
only when the functions being correlated have finite content:

o0

f f2(t) dt < oo

—00

But, because the functions to be correlated do not normally have finite
content, the correlation function does not generally yield useful informa-
tion. Under these circumstances, an estimate of the correlation function,
called the average -correlation function, must provide the desired
information.

9-1

The mathematical formula for the average correlation function is:

1 T

Ry() = = jo x(B)y(B + t)dp

Where: R,, (t) is the estimated average correlation function.

x (B) and y (B) are the two functions to be correlated.

T is a representative time interval.

It is this average correlation function that CORREL estimates.

The input to CORREL consists of two integer arrays. One integer array

contains the samples of the first function to be correlated. The other integer

array contains the samples of the second function to be correlated.

The output from CORREL (that is, the estimates of the average correlation

function at various time shifts) is returned in the first input integer array.

9.1 Using the Correlation Function Subroutine

9-2

The discrete evaluation of the correlation function implies a large number

of mathematical operations. Indeed, the number of mathematical opera-

tions increases linearly as the number of values of ny(t) to be calculated

increases.

When you use CORREL, however, this situation is improved. CORREL

calls the fast Fourier transform (FFT) subroutine to process the input data,

significantly decreasing the number of mathematical operations required to

approximate the average correlation function. In fact, this method of evalu-

ation becomes more efficient as the number of values of ny to be calculated

increases.

See Chapter 6 for a full description of the FFT subroutine.

To use CORREL, the two functions you want to correlate should meet the

following requirements:

1. They must have a Fourier transform.

2. They must be real (not complex) functions.

3. They must be sampled at the same evenly spaced intervals. (The num-

ber of samples must be a power of two.)

4. They must be periodic.

5. They must have a sample period that represents a non-zero, integer-

multiple of their periods.

There are exceptions to these requirements. You can also use CORREL to

correlate functions that are non-zero over only a finite-term interval.

The Correlation Function (CORREL) Subroutine

To correlate such a function, first sample the function over the non-zero
intervals. Then, double the number of sample values to be processed.
Finally, set the extra samples to zero.

9.2 Discrete Evaluation of CORREL

The following is a brief summary, without proof, of the derivation of the
technique used by CORREL.

Convolution, represented by the symbol *, is defined as

oC

S,® =x®*y®t)=[x®)yE-tdt

—00

Correlation, represented by the symbol ® , 1s defined as

o0

Ry@®=x®®y®t) =] x®yE+t)dt

—00

These two functions are related as shown

X)) *xy () =x({t)® y(t)

since

oo

X(O*y@) =] x(t)y(E-t)dt

—00

Now, let B = -t, and

—00

X()*y®) =-[x@yE+p) dp

oo

o0

=] x® yE+p)dp

—0Q0

=xX(B)® y(B)orx(t)® y(t)

It can also be shown that

FT
x(t)*y(t) «— X(f) Y (f)

FT
Where: <> represents the Fourier transform and

FT FT
Xx(t) «—>X(f) and y (t) «<—— Y (f)

The Correlation Function (CORREL) Subroutine 9-3

Furthermore, it can be observed that if

FT
x(t) «e—> X ()

then

FT A
X (-t) «—> X (f) = X (f) (the conjugate of X (f))

since the real of portion of X (f) is an even function and the imaginary
portion is an odd function of f.

Finally, assuming all the preceeding statements are true, we have

FT
Ry =x®)® yt) =x(t)*yt)«—>X ()Y ()

or

FT _.
R, (&) = <>X" ()Y ()

CORREL uses this final relationship to produce the correlation function.

The specific steps are:

1. Transform x (t).

x (t) F—T-) X (f)
2. Transform y (t).

y (t) E‘L Y (f)

3. Calculate the conjugate of X (f).

X' (f) = X (-

4. Multiply X" (f) by Y (f)

X' ()Y)

5. Perform an inverse transform on the result of Step 4.

FT .
R, () <X () Y (f)

9.3 Calculating the Correlation Coefficients

The results obtained by CORREL provide an estimate for the discrete auto-

correlation function or the discrete cross-correlation function. The normal-

ized results of the auto-correlation function and of the cross-correlation

function are known as correlation coefficients.

The following equation provides the algorithm by which you can derive the

correlation coefficients from the results of the subroutine.

94 The Correlation Function (CORREL) Subroutine

S., R,, (n)
C,,(n) =

VS, * Ry(0) - S,, « R, ,(0) Forn=0,1,2,... N-1
Where: N 1s the number of points.

ny(n) are the calculated correlation coefficients in
the range -1, 1 for the functions x(t), y(t).

ny(n) 1s the raw integer result for the correlation
function estimate returned by CORREL for
the functions x(t), y(t).

RXX(O) 1s the value of the auto-correlation function
estimate for x(t) for a zero displacement,
that is, for n=0.

Ryy(O) 1s the value of the auto-correlation function
estimate for y(t) for a zero displacement,
that is, for n=0.

S ,S are the scale factors indicated by CORREL
- when calculating ny, R _, and Ryy respec-

tively. (For an illustration, see the pro-
gramming example in Section 9.7.)

xy’

For many applications, the scaled results of the correlation function provide
as much, if not more, information than do the correlation coefficients.

9.4 How to Call CORREL

The general format for the FORTRAN call to CORREL is:

CALL CORREL(IERROR,N ,IA1,IA2 IFFTA ISCALE)

For reference, argument names in the call to CORREL have been assigned
arbitrarily. You may supply your own argument names, but you must state
all of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument, either accidentally or on purpose, or if
you supply too many arguments, a FORTRAN error message results, and
no data is processed. The arguments are described in the following
discussion.

IERROR is an integer variable used to report error conditions.
Because CORREL calls the FFT subroutine, the values IERROR can
return are the same as those returned by the IERROR argument in the
FFT subroutine.

The values that IERROR can return, and their meanings are as follows:

0O = No error

1 = Nis less than eight

2 = Nis greater than F. MAXN (see Section 6.6.3 for a description of
F.MAXN)

The Correlation Function (CORREL) Subroutine 9-5

3 = N is not a power of two

-N = Incorrect number of arguments in call

N is an integer variable that specifies the number of samples in both func-

tions to be correlated. N must be a value that is a power of two in the

range of 8 to F.MAXN.

IAl is an integer array at least N elements in length that contains the

samples of the first function to be correlated. CORREL returns its results

to this array, replacing the input values.

IA2 is an integer array at least N elements in length that contains the

samples of the second function to be correlated.

If the array specified for IA1 has the same name and/or occupies the

same location as the array specified for IA2 (in other words, if the two

arrays are equivalenced), CORREL performs the average auto-

correlation function. If IA1 has a different name and occupies a different

location from the array specified for IA2, CORREL performs the average

cross-correlation function.

IFFTA is an integer array used for the imaginary part(s) of the input to

the FFT subroutine.

The length of IFFTA depends on whether CORREL is to perform an

auto-correlation or a cross-correlation. If CORREL is to perform an auto-

correlation, then IFFTA must be N elements long. If CORREL is to

perform a cross-correlation, then IFFTA must be 2 -+ N elements long.

NOTE

The original values in IA1, IA2, and IFFTA are altered upon

return from the subroutine.

ISCALE is an integer variable that is set by CORREL. It indicates the

scaling factor, that is, the number of times the results of the correlation

function have been divided by two. CORREL sets ISCALE as necessary

to avoid overflow.

To obtain the unscaled results of the correlation function, you must mul-

tiply the real and imaginary output of the subroutine by 2°“4F.

9.5 Other Routines Used

9-6

CORREL uses the FFT subroutine. Thus, you must include both the

CORREL object module and the FFT object module when you link or task-

build a FORTRAN program that calls CORREL.

See Appendixes A and B for a detailed description of how to build a

FORTRAN program.

The Correlation Function (CORREL) Subroutine

9.6 Modifying the Subroutine — Using Options

The following sections explain which options you can use with the correla-
tion function subroutine. If you want to use any of the options, you must
enable them when you build the subroutine from the source file using the
interactive build procedure (see Section 1.1).

9.6.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any
other floating-point option available. Enabling this option increases the
execution speed and decreases the memory requirements for the subroutine
by approximately 26 words.

9.6.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE (KE11) hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 20 words.

9.6.3 FFT Options

Because CORREL calls the FFT subroutine, the FFT options have a direct
influence on CORREL’s operation. Thus, you should take the FFT options
into consideration whenever you modify CORREL.

See Section 6.6 for a description of the FFT options.

9.7 Example Using the CORREL Subroutine

The example presented here illustrates how to use CORREL to find both
the average cross-correlation and the average auto-correlation functions of
a specific set of input data.

The example program computes the unscaled and scaled average Cross-
correlation function of 32 sine values and 32 cosine values scaled by 1000.
Then, the example program computes the value of the average auto-
correlation function, with zero shift, of 32 sine values and 32 cosine values.
Finally, the example program computes the average cross-correlation coef-
ficients of the 32 sine and 32 cosine values.

The Correlation Function (CORREL) Subroutine 9-7

CORREL Example #1

The Correlation Function (CORREL) Subroutine 9-9

CORREL Example #1

DIMENSION IC0S(32) ,ISIN(32),I1C0S2(32) v ISIN2(32)
DIMENSION ISTORE(64) ,COR(32)

COMPLEX%*8 ERRMES(2,3)

<1> DATA ERRMES/ ‘LESS THA' ‘N EIGHT ’, "EXCEEDS ’,'F.MAXN
1’NOT APO’y'WEROF 2/

DATAPI/3.14159/,T/0./C/.01/

DT=P1/186.

14

TYPE 900

r DO 1 I=1,32
D=COS(T)

E=SIN(T)

ICOS(1)=D*#1000,+SIGN(C+0)

(? ISIN(I)=E*1000,+SIGN(C E)
1COS2(1)=1COS(1)

ISINZ(I)=ISIN(I)

1 T=T+DT

B CALL CORREL(IERROR,32/+ISIN,ICOS,ISTORE » ISCALE)
IF (IERROR.NE.O) GO TO 20

10 TYPE 1000,ISIN

C FAC=2,%#%IABS(ISCALE)
3) IF(ISCALE.LT.0) FAC=1,/FAC

D021=1,32

2 COR(I)=FAC*#ISIN(I)

TYPE 1001,COR

CALL CORREL(IERROR32,ISIN2,ISIN? »ISTORE »ISCALE)
IF(IERROR.NE.O) GO TO 20

FAC=2.,%#%*IABS(ISCALE)

IF(ISCALE.LT.0)FAC=1,/FAC

CSINO=FAC*ISIN2(1)

CALL CORREL (IERROR+32,1C0S2,1C0OS2 »ISTORE » ISCALE)
IF(IERROR.NE.O) GO TO 20

FAC=2.,#*IABS(ISCALE)

IF(ISCALE.LT.0)FAC=1./FAC

CCOSO=FAC*ICODS2(1)

e

FAC=SQRT(CSINO*CCOS0)

D03 1I=1,32

3 COR(I)=COR(I)/FAC

TYPE 1002,CSINO,CCOS0O,COR

STOP

20 TYPE 2000, (ERRMES(I yIERROR) 11=1,2)

STOP

900 FORMAT(1H1+T25, 'CORREL Example #1 ')

1000 FORMAT(///' UNSCALED RESULTS OF CORRELATION OF SINE AND COSINE '/,
1 /,04117))

1001 FORMAT(///' SCALED RESULTS OF CORRELATION OF SINE AND COSINE‘//,
1 (1P4E17.5))

(8) 1002 FORMAT(///' VALUE OF AUTO-CORRELATION OF SIN#1000 WITH ZERO SHIFT
1 ='41PE10.4+//,' VALUE OF AUTO-CORRELATION OF COS#1000 WITH ZERD
2 SHIFT = '41PE10.4,+// ' CROSS-CORRELATION COEFFICIENTS FOR SIN#100
3 0BY COS#1000 ARE AS FOLLOWS: ' +//+(1PAEL17.5))

2000 FORMAT(///' #%%#%ERROR**%% ARRAY LENGTH 1dAqg)
END

9-10 The Correlation Function (CORREL) Subroutine

O
,

©
®

©

®

@

Dimension array variables and initialize the error message variable
ERRMES.

Initialize arrays for input to the subroutine. Sine and cosine values -
1000 for one period.

Call CORREL to produce the unscaled results of cross-correlation of
sine values and cosine values. Print unscaled results of cross-
correlation of sine and cosine values. If IERROR 1s not zero, print the
proper error message. Compute the scaling factor. Print scaled results
of cross-correlation of sine values and cosine values.

Call CORREL to produce auto-correlation of sine values scaled by
1000. If IERROR is not equal to zero, print the appropriate error mes-
sage. Compute auto-correlation of sine values scaled by 1000.

Call CORREL to produce auto-correlation of cosine values scaled by
1000. If IERROR is not equal to zero, print the appropriate error mes-
sage. Compute value of auto-correlation of cosine values scaled by
1000.

Compute the cross-correlation coefficients for scaled sine and cosine
values.

Print error message (if error code returned).

Format statements

The Correlation Function (CORREL) Subroutine 9-11

Terminal Output

CORREL Example #1

UNSCALED RESULTS OF CORRELATION OF SINE AND COSINE

-3 6085 11938 17335

22065 20943 28828 30603

31213 30608 28833 25948

22065 17337 11940 6089

> -6085 -11939 -17335

-220653 -25943 -28828 -30605

-31213 -30608 -28833 -25948

-220695 -17337 -11940 -6089

SCALED RESULTS OF CORRELATION OF SINE AND COSINE

-8,00000E+01 9.73600E+04 1.91024E+00 2+77360E+05

3+33040E+03 4,15088E+05 4.61248BE+05 4.,89680E+05

4,99408E+05 4.,8972Z28BE+05 4,6132BE+03 4,15168E+03

3+33040E+03 2+77392E+053 1,91040E+03 9.74240E+04

8.,00000E+01 -9.73600E+04 -1.91024E+05 -24+77360OE+0D

-3,23040E+03 -4,135088E+05 -4.61248E+05 -4.,89680E+05

-4.,99408BE+03 -4.,89728E+05 -4.,61328E+03 -4,15168BE+05

-3.93040E+03 -2+77392E+05 -1.,91040E+03 -9.74240E+04

VALUE OF AUTO-CORRELATIONOF SIN*#1000 WITH ZERO SHIFT= 4,9930E+05

VALUE OF AUTO-CORRELATION OF COS*1000 WITH JERO SHIFT= 4,9928E+03

CROSS-CORRELATION COEFFICIENTS FOR SIN*#1000 BY COS*#1000 ARE AS FOLLOWS:

-1,60228E-04 1.,94998E-01 3.825893E-01 S.95511E-01

7.07087E-01 8.,31360E-01 9,23811E-01 9.807537E-01

1, 00024E+00 9.80853E-01 v 23972E-01 8.31520E-01

7.07087E-01 5.+03375E-01 3.826253E-01 1.,995126E-01

1.60228E-04 -1.,94998E-01 -3.82593E-01 -3.33511E-01

-7,07087E-01 -8.31360E-01 -9.23811E-01 -9.807537E-01

~-1.,00024E+00 -9.80853E-01 -9.23872E-01 -8.31520E-01

-7.07087E-01 -9.,335375Ek-01 -3.826253E-01 -1.,95126E-01

9-12 The Correlation Function (CORREL) Subroutine

Appendix A

Installing, Verifying, and Using LSP Under RT-11

This appendix explains how to install and verify the Laboratory
Subroutines Package (LSP) software and how to create a FORTRAN IV
program that calls the Laboratory Subroutines under the RT—11 operating
system.

However, the appendix provides only general information about creating
programs. It does not include detailed information about the FORTRAN IV
programming language, the FORTRAN IV compiler, the MACRO assem-
bler, or the RT-11 operating system. For additional information on these
topics, refer to the appropriate RT-11 or FORTRAN IV documentation
cited in this appendix.

A.1 Installation Requirements

Instructions in this appendix require that:

1.

2.

All files acted upon by system programs are on the default device, DK:,
unless otherwise noted in this appendix.

You use the default files types which are:

.FOR FORTRAN source files

.MAC MACRO source files

.OBJ object files and object library files
SAV image (executable) background files

The system MACRO library, SYSMAC.SML, and the MACRO assem-
bler, MACRO.SAV, have already been built and reside on the system
device, SY:.

4. The FORTRAN IV compiler, FORTRA.SAV, has already been built and

resides on the system device, SY:.

5. The FORTRAN Object Time System, OTS.SAV, has been built and

added to the system library, SYSLIB.OBJ, which resides on the system

device, SY:.

6. The system utility programs, PIP.SAV, DUP.SAV, the RT-11 linker,
LINK.SAV, and the RT-11 librarian, LIBR.SAV, have been installed
and reside on the system device, SY:.

7. All necessary system programs and files are installed and reside on the

system device, SY:.

A.2 Installing the Laboratory Subroutines Software

A-2

Installing the Laboratory Subroutines software consists of copying the LSP

distribution volume and making any necessary corrections to the LSP

software.

If you wish to enable any of the options described in this manual, you must

also run the file LSPMAK.SAV which is part of your distributed LSP soft-

ware. LSPMAK builds the subroutines by assembling them with the op-

tions enabled. You can also use LSPMAK to build the subroutines without

any options, but if you do not wish to use options, you do not need to run

LSPMAK. Section A.2.4.2 explains how to use LSPMAK.

A.2.1 Copying the Distribution Volume

Because all storage media can be adversely affected by environmental con-

ditions, vandalism, and human error, you should keep several copies of any

software that cannot be easily re-created. Copy the LSP distribution vol-

ume and then store it in a safe place. Use the distribution volume only

when copying the LSP software. Use only copies for all other procedures

described in this appendix.

The LSP software is distributed on a single volume that RT-11 can read.

The procedure for copying the distribution volume varies depending on how

many mass storage devices you have. If you have three or more mass

storage devices, follow the procedure in Section A.2.1.1. If you have only

two mass storage devices, follow the procedure in Section A.2.1.2.

NOTE

Instructions for copying one volume to another use the

SQUEEZE command rather than the COPY command. The

SQUEEZE command copies the protection code of files; the

COPY command does not. For additional information on

removing and restoring the protection code of files, see

Section A.2.2.

Installing, Verifying, and Using LSP Under RT-11

A.2.1.1 Copying with Three or More Mass Storage Devices — To copy the LSP

distribution volume with three or more mass storage devices, do the

following:

1. Load the distribution volume.

2. Load a blank storage volume.

3. Format the blank storage volume if necessary. If you use RK05 disks,

format each disk. If you use RX02 drives, format each diskette to be

either single density or double density. Other storage media cannot be

formatted.

Use the FORMAT command to format your disks and diskettes. The

following example formats an RK05 disk:

+FORMAT RK1:®ED

kK1:/FORMAT-Are vou sure?YRLD

"FORMAT-I-Formatting compPlete

When you use the FORMAT command, diskettes on RX02 drives are

formatted to be double density by default. If you want them to be single

density, use the /SINGLEDENSITY switch with the FORMAT com-

mand. The following example formats a diskette to be single density:

+FORMAT/SINGLEDENSITY DY1 :@T

D¥1:/FORMAT-Are vou sure?YRE

?"FORMAT-I-Formatting compPplete

See the RT—-11 System User’s Guide for more information about the

FORMAT command.

4. Initialize the blank storage volume using the /BADBLOCKS switch to

search for and isolate bad blocks. Type:

+INITIALIZE/BADBLOCKS dun: @

Juns/Initializes Are vou sure? YRED

DUP-I-No bad blocks detected dun:

See the RT-11 System User’s Guide for more information about the

INITIALIZE command and what the system does if it finds bad blocks.

5. Use the SQUEEZE command with the /OUTPUT switch to copy files

from the distribution volume to the blank storage volume. Using the

SQUEEZE command with the /OUTPUT switch copies all files from the

input (distribution) volume to the beginning of the output (storage)

volume and consolidates all empty space on the output volume at the

end of that volume. The following example copies all files from dv1: to

dv2:

+SQUEEZE/QUTPUT:duZ: dul :RED

See the RT-11 System User’s Guide for more information about the

SQUEEZE command and copying files.

Installing, Verifying, and Using LSP Under RT-11 A-3

A4

A.2.1.2 Copying with only Two Mass Storage Devices — If you have only two
mass storage devices, you cannot copy the LSP distribution volume directly
since the RT-11 system volume occupies one of your mass storage devices.
To copy the distribution volume under these circumstances, do the
following:

1. Load a blank storage volume.

2. Format the storage volume if necessary. If you use RK05 disks, format
each disk. If you use RX02 drives, format each diskette to be either
single density or double density. Other storage media cannot be
formatted.

Use the FORMAT command to format your disks and diskettes. The
following example formats an RK05 disk:

FORMAT RK1 ¢ Rem

RR1:/FORMAT-Are vou sure’TMy -

"FORMAT-I-Formatting complete

When you use the FORMAT command, diskettes on RX02 drives are
formatted to be double density by default. If you want them to be single
density, use the /SSINGLEDENSITY switch with the FORMAT com-
mand. The following example formats a diskette to be single density:

+FORMAT/SINGLEDENSITY DV 1R

DY1:/FORMAT-Are vou sure?,&>

?"FORMAT-I-Formatting complete

See the RT-11 System User’s Guide for more information about the
FORMAT command.

3. [Initialize the blank storage volume using the /BADBLOCKS switch to
search for and isolate bad blocks. Type:

+INITIALIZE/BADBLOCKS dup &
dJun:/Initialize’ Are vou sure’? R

DUP-I-No bad blocks detected dun:

See the RT-11 System User’s Guide for more information about the
INITIALIZE command and what the system does if it finds bad blocks.

4. Use the SQUEEZE command with both the /WAIT and the /OUTPUT
switches to copy files from the distribution volume to the blank storage
volume. Using the /WAIT switch causes RT-11 to pause before copying
files, allowing you to load a blank storage volume, if necessary, and to
remove the RT-11 system volume from the system device. Then you can
load the LSP distribution volume in the system device. RT—11 prompts
you with messages telling you when to do each of these things. Answer
YG®ED to each message when you are ready to continue.

The /OUTPUT switch causes RT-11 to copy all files from the input
(distribution) volume to the beginning of the output (storage) volume

Installing, Verifying, and Using LSP Under RT-11

and consolidates all empty space on the output volume at the end of
that volume. After RT-11 finishes copying the files, it prompts you with
a message telling you to replace the system volume in the system de-
vice. The following example copies all files from dv0: to dvl:

+OQWUEELZE/WATIT/0UTPUT= dul s du ke

Mount output volume in dul:i Continue? Y&

Mount inpPut volume in du0s3 Continue? YR
-—

At this point, RT-11 copies the files and then types the following mes-
sage on your terminal:

Mount s¥stem volume in du0:3 Continue? Y RET;

See the RT-11 System User’s Guide for more information about the
SQUEEZE command and copying files.

A.2.2 File Protection

Remember that all files in the LSP distribution volume have been pro-
tected. Never remove this protection. However, after copying the distribu-
tion volume, you may remove the protection of files from your copies, if you
wish, by using the RENAME command with the/ NOPROTECTION switch.
To protect an unprotected file, use the /PROTECTION switch with the
RENAME command.

See the RT-11 System User’s Guide for more information about the
RENAME command.

A.2.3 Making Corrections

From time to time, the RT-11 Software Dispatch publishes corrections that
you must make to the LSP software. The dispatch also publishes instruc-
tions on how to make the corrections.

You only need to make corrections published in the dispatch for version 1.2
of the LSP software. Corrections that were published in the dispatch for
previous versions of LSP have already been included in version 1.2.

Never make corrections to your distribution volume. Make corrections to
your copies. After making any corrections, copy your software again.

A.2.4 Selecting the Form of Subroutine to Use

You receive the Laboratory Subroutines as both object files and MACRO
source files. Read the following sections to determine which form of the
subroutine to use.

A.2.4.1 Using Distributed Object Files — If you do not want to enable any of
the options described in this manual, you can use the distributed object files
by linking them to your FORTRAN programs. (See Section 1.2 for a list of

Installing, Verifying, and Using LSP Under RT-11 A-5

A-6

the LSP files.) Before you do so, however, test them to verify that they work
correctly by running the program LSPVER.COM which is part of your dis-
tributed LSP software. See Section A.3 for information about how to run
LSPVER.COM.

A.2.4.2 Creating Customized Object Files — LSPMAK, the Interactive Build
Procedure — If you do want to enable any of the options described in this
manual, use the interactive build procedure, LSPMAK.SAV, to create cus-
tomized object files of the Laboratory Subroutines from the distributed
source files. (See Section 1.2 for a list of the LSP files.)

LSPMAK.SAV is part of your distributed LSP software. It lets you specify
the subroutines you want to assemble and the options you want to use.
Options available include:

1. library option — lets you place the subroutines in a library which you
create by supplying a library name.

2. hardware options — let you make use of EIS hardware (or any floating-
point option) or EAE hardware if you have any.

3. subroutine options — let you specify which subroutines you want to
assemble and which option you want to use for each subroutine.

When you run LSPMAK.SAV, it prompts you with questions. Most ques-
tions give the name of a subroutine or option. Answer “yes” if you want to
build the subroutine or enable the option. Answer “no” if you do not. Some
questions request information and tell you how to type your answers. Fol-
low the instructions given when you respond. After you answer all the
questions, LSPMAK creates three files on your output device as follows:

LSPCND.MAC — This file sets the switches to enable the options you
requested.

LSPBLD.COM — This indirect-command file builds each subroutine you
requested. Building consists of assembling each subroutine you specifed
with the switches set to enable the options you chose. If you specified a
library while running LSPMAK, LSPBLD creates that library and includes
in it the subroutines you specified.

LSPVER.COM — This indirect-command file verifies that your LSP soft-
ware 1s in good working order. It does this by running an example program

that tests each subroutine you asked to build.

Before you attempt to run LSPMAK.SAV, assign logical device names to:

1. The device containing all the Laboratory Subroutines software. Assign

this device the logical name “IN” for “input device.” Type:

+ASSIGN dun: IN:Q@D

2. The device receiving the assembled object files. Assign this device the
logical name “OU” for “output device.” Type:

+ASSIGN dun: OU:RD

Installing, Verifying, and Using LSP Under RT-11

Now run the file LSPMAK.SAV. Type:

JRUN IN:LSPMAKRE

The build procedure runs and begins typing questions and information on
your terminal. The following text shows all the questions and information
that LSPMAK can type. However, when you run LSPMAK, not all the
questions and information will appear since some of it depends on your
responses to previous questions. A sample of LSPMAK .SAV and its output
appears in Appendix C.

Laboratory Subroutines Ui,?2 Build Procedure for RT-11

Have vyouw assidgned devices for input (IN:) and outeut (OU:)? [Y/N]

NOTE: This procedure assumes that all distributed files for
the Laboratory Subroutines pacKade are on deuvice "IN",

This procedure directs all output and temporary files
(except library files) to device "OU",

LIBRARY OPTION

Do »ou want to build a NEW library file from these subroutines?
LY/N]

Erter the specification (maximum of 14 characters) of the
desired library file, (example DK:LSPLIB.OBJ)
ENTER NAME:

As each subroutine is added to the library, its corresponding
obdect file is normally Jeleted from device "QU":
Is this acceptable? CY/N]

HARDWARE OPTIONS

Does vour machine have the EIS option (or any floatind Point opPtion)?
(the EIS ortion) [Y/N]

Does vour machine have the EARE oPtion?
(the EAE oPtion) [Y/N]

SUBROUTINE AND ALGORITHM OPTIONS

Do You want to build the subroutine "PEAK"? [Y/N]
Do vyou want to disable the software digital filter?

(enable the NOFLTS$ orPption) CY/N]

Installing, Verifying, and Using LSP Under RT-11 A-7

Do youwant to enable double precision inPut data processing by PEAK?

(the DPP% oprtion) [Y/N]

Do rouwant to enable processing of coded A/D inrPut data by PEAK?

(the AUTOG® option) [Y/N]

Do youwant to build the subroutine "NUVELOP"? [Y/N]

Do vou want to build the subroutine "HISTI"? [Y/N]

Do youwant toenable HISTI to produce a frequency histodram?

(the FREQ$ orption) [Y/N]

Do youwant to enable double precision inPut data processing by HISTI®?

(the DPH% option) [Y/N]

Do vouwant to buuild the subroutine "RHISTI"? [Y/N]

Do youwant to enable double precision inPut data processing by RHISTI®

(the DPR$ option) [Y/N]

Do vouwant to build the subroutine "FFT"? [Y/N]

What is the maximum length of any inPut array to be processed by FFT

(the F.MAXN oprtion)

10247 [Y/N]

20487 [Y/N]

40967 [VY/N]

81927 [Y/N]

*#¥THE DEFAULT INPUT ARRAY LENGTH WILL BE USED (1024) 1 %%%

Do vou want to build the subroutine-"PHAMPL"? [Y¥/N]

Do vouwant to build the subroutine "POWRSP"? [Y/N]

NOTE: CORREL needs subroutine FFT to function!

Do vyouwant to build the subroutine "CORREL"? [Y/N]

This first portion of the Labtoratory Subroutines build

procedure 1s complete.,

File LSPCND.MAC has beern created on device "0OU", This file

sets the switches required toenable the oprtions that vou

have requested.,

File LSPBLD.COM has also been created on device "0OU", You

should execute this indirect command file next., It will

build each subroutine requested on device "0OU" and create

the library file specified,

Finallvys the file LSPVER.COM has beern created on device "0OU",

You should execute this command file after using LSPBLD.COM

tobuild vyourcustomized Laboratory Subroutines obdect files,

This command file will verify that vour software has been

successfully installed,

STOP --

A-8 Installing, Verifying, and Using LSP Under RT-11

Now run the indirect-command file LSPBLD.COM. This file builds the subroutines you
requested on device “OU” and creates a library file on that device if you specified one.
Type:

A.3 Verifying the Laboratory Subroutines Software

After installing the LSP software, test it to verify that you performed the
installation procedure correctly, and that your LSP software was delivered
In good working order. To do so, run the indirect command file,
LSPVER.COM. Instructions for running LSPVER.COM follow. If you plan
to use the distributed object files, follow the instructions in Section A.3.1. If
you used LSPMAK, follow the instructions in Section A.3.2.

A.3.1 Verifying the Distributed LSP Object Files

To verify the distributed LSP object files, use the distributed version of
LSPVER.COM. The distributed version of LSPVER.COM runs the first ex-
ample program in each chapter of this manual. These programs call the
distributed subroutine object files thus indicating whether they work cor-
rectly. Before attempting to run LSPVER, do the following:

1. Make sure that your system meets the requirements listed in
Section A.1.

2. Assign logical device names. Assign the logical name “IN” to the device
containing the Laboratory Subroutines software. Assign the logical
name “OU” to the device which will be your output device.

To assign an input device type:

v ASSIGNdun: IN:GkT

To assign an output device, type:

v ASSIGN doun: QU: &R

3. Copy all object files for the Laboratory Subroutines to your output de-
vice. See Section 1.2 for a list of the LSP files.

4. Now run LSPVER. Type:

, BIN:LSPYERRED

LSPVER types the name and number of each example program it runs
along with the output from that program on your terminal. Compare the
output with that of the corresponding example program in the manual. If
they do not agree, and if you are sure you have not neglected any of the
requirements listed in Section A.1, you may have received a defective copy
of your LSP software. Contact DIGITAL for more information.

Installing, Verifying, and Using LSP Under RT-11 A-9

A.3.2 Verifying the Customized Object Files

To verify your customized object files, use the indirect-command file

LSPVER.COM that was created when you ran LSPMAK. LSPVER.COM

runs the example program that calls the version of the subroutine with the

options you enabled. To run LSPVER, do the following:

1. Make sure that the device assignments for “IN” and “OU” in Section

A.2.4.2 are still in effect. If they are not, assign them so they are the

same as when you ran LSPMAK.

2. Now run LSPVER. Type:

, BOU:LSPVERGRED

LSPVER types the name and number of each example program it runs

along with the output from that program on your terminal. Compare the

output with that of the corresponding example program in the manual. If

they do not agree, and if you are sure you have not neglected any of the

requirements listed in Section A.1, you may have received a defective copy

of your LSP software. Contact DIGITAL for more information.

A.4 Storing the Laboratory Subroutines

After determining that the Laboratory Subroutines you want to use are

sound, copy them to your system volume or to the development volume

where you store your FORTRAN programs, or put them in a library (see

Section A.6).

A.5 Creating a Program that Calls the Laboratory Subroutines

To create a FORTRAN IV program that calls the Laboratory Subroutines,

do the following:

1. Write and check your program.

2. Use one of the RT-11 editors, such as EDIT, to enter your program into

a source file. The EDIT command with the /CREATE switch invokes

EDIT and tells it to create a new file. Type:

+EDIT/CREATE Prod.,FORRED

where: prog 1s the name of your FORTRAN source program.

For information about entering the text of your file, making changes,

and displaying the file, see the Introduction to RT-11 and the RT-11

System User’s Guide.

NOTE

Always specify a file type when you use an RT-11 editor.

RT-11 editors do not use default file types. In this case,

give your source file the type .FOR since that is the de-

fault file type the FORTRAN IV compiler uses when it

compiles your program.

A-10 Installing, Verifying, and Using LSP Under RT-11

3. Use the FORTRAN IV compiler to create an object file of your program.
Type:

+FORTRAN P ro g

where: prog 1s the name of your FORTRAN source program.

4. Use the RT-11 linker to link the object file of your program with the
object files of your Laboratory Subroutines. Type:

vLINK Progssublsysub2,,,.¢ubn@l

where: prog is the name of your FORTRAN program.

subl is the name of the first Laboratory Subroutine object
file you want to link.

subn is the name of the last Laboratory Subroutine object
file you want to link.

To avoid linking individual subroutines to your program, you can place
the subroutines in a library. See Section A.6.

5. Run the program. Type:

+RUN P o9&

where: prog 1s the name of your executable program.

For more information about compiling, linking, and running FORTRAN IV
programs, see the RT—-11 System User’s Guide, and the RT—-11/RSTS/E
FORTRAN 1V User’s Guide.

A.6 Using Libraries

Once you decide which of the Laboratory Subroutines you will use most
frequently, you can link them more easily to your programs by placing
them in a library. When you place them in a library, you do not need to list
each individual subroutine in the link command line. You only need to list
the library name. When vyou place them in the system library,
SYSLIB.OBJ, you do not even need to list the library name in the link
command line. The RT-11 linker automatically searches the system library
for a subroutine or function needed by a program.

For example, suppose your compiled program, MYPROG.OBJ calls the
subroutines FPEAK.OBJ and FAFFT.OBJ. To link MYPROG, you have to
type:

+LINK MYPROG »FPEAK sF4FF TEE)

If you place the subroutines in a library called, for example, MYLIB.OBJ :
you link MYPROG by typing:

+LINK MYPROGyMYL IBGRD

Installing, Verifying, and Using LSP Under RT-11 A-11

A-12

If you add the subroutines to the system library, SYSLIB.OBJ, you link

MYPROG by typing:

+LINK MYPROGEE

The RT-11 librarian program, LIBR.SAV lets you add object files or object

file libraries to SYSLIB. When you do so, however, you must remove cer-

tain global symbols from SYSLIB’s directory for the library to function

properly. Remove the global symbol $OVRH each time you add files or

libraries to SYSLIB. Also remove $ERRS and $ERRTB if you previously

added the FORTRAN IV OTS library to SYSLIB.

To add individual object files or a library to a system library containing the

distributed SYSLIB.OBJ file and the FORTRAN IV OTS library, use the

LIBRARY command with the /REMOVE switch. The LIBRARY command

invokes LIBR.SAV. The /REMOVE switch allows you to remove a global

symbol from a library directory. The following example adds an object file

residing on dvl: to SYSLIB on dv0: and removes the appropriate global

symbols:

+LIBRARY/REMOVE du0:SYSLIB dul:file.,O0BJRE

Global? $0VRHRDD

Global? $ERRSRED

Global? $ERRTBRE

Global®? (anvy other global Ppreviously removed from either

library)@D

Global®RED

where: file is the name of the file or library you want to place in the

library.

If you fail to remove any of the necessary global symbols when you execute

this command, you will get a warning message for each symbol you failed

to remove. An example of the warning message is:

?LIBR-W-Illegal insert of $0VRH

If you forget which global symbols to remove, create a dummy library file

by typing a command such as the following:

+LIBRARY/CREATE dummy SYSL IBRED

where: dummy is the name of a dummy library file.

Executing this command will produce error messages that list all the global

symbols you should remove. After noting the names of the global symbols,

delete the dummy library file and type the correct command for adding files

to SYSLIB.

For more information about the LIBRARY command and the RT-11 librar-

ian program LIBR.SAV, see the RT-11 System User’s Guide.

Installing, Verifying, and Using LSP Under RT-11

Appendix B

Installing, Verifying, and Using LSP Under

RSX-11M/M-PLUS

This appendix explains how to install and verify the Laboratory
Subroutines Package (LSP) software and how to create a FORTRAN pro-
gram that calls the Laboratory Subroutines under the RSX-11M/M-PLUS
operating systems.

However, the appendix provides only general information about creating
programs. It does not include detailed information about the FORTRAN IV
or FORTRAN 77 programming languages, the FORTRAN IV or FORTRAN
77 compilers, the MACRO assembler, or the RSX-11M/M-PLUS operating
systems. For additional information on these topics, refer to the appropriate
RSX-11M/M-PLUS, FORTRAN IV, or FORTRAN 77 documentation cited
in this appendix.

B.1 Installation Requirements

Instructions in this appendix require that:

1. All files acted upon by system programs are on the default device, SY:,

under your UIC, unless otherwise noted in this appendix.

2. You use the default file extensions which are:

JFTN FORTRAN source files

MAC MACRO source files

.OBJ object files

.OLB object library files

TSK task-image (executable) files

3. The system MACRO libraries, RSXMAC.SML and EXEMC.MLB, have
already been built and reside on the system device, SY:.

4. Either the FORTRAN IV or the FORTRAN 77 compiler has already
been built and resides on the system device, SY:.

5. Either the FORTRAN Object Time System (FOROTS) or the
FORTRAN 77 Object Time System (F4POTS) has been built and added
to the system library, SYSLIB.OLB, which resides on the system de-
vice, SY:. Make sure that only the object time system you will use is
added to the system library.

6. If you use FORTRAN 77 and you want to duplicate the terminal output
for the example programs, replace the standard random-number gener-
ator in F4POTS with F4PRAN.OBJ. Terminal output for the example
programs is based on the FORTRAN IV random-number generator. The
FORTRAN 77 random-number generator is different from that for
FORTRAN IV and will not produce the same output. To replace the
standard random-number generator with FAPRAN.OBJ , set the UIC to
[1,1] and use the following command:

sLBR SYSLIB=dun:[9.:mIF4PRAN/RPREN

where: dvn: is the device where FAPRAN.OBJ resides

[g,m] is the UIC that F4PRAN.OBJ is stored under

7. System utility programs, for example DSC, FLX, LBR, and the
RSX-11M task-builder, TKB, have been installed and reside on the
system device, SY:.

8. All necessary system programs and files are installed and reside on the
system device, SY:.

9. All tasks and MCR functions are installed.

B.2 Installing the Laboratory Subroutines Software

B-2

Installing the Laboratory Subroutines software consists of copying the LSP
distribution volume and making any necessary corrections to the LSP
software.

If you wish to run any of the options described in this manual, you must
also run the file LSPMAK.TSK which is part of your distributed LSP soft-
ware. LSPMAK builds the subroutines by assembling them with the op-
tions enabled. You can also use LSPMAK to build the subroutines without
any options. Section B.2.3.2 explains how to use LSPMAK.

B.2.1 Copying the Distribution Volume

Because all storage media can be adversely affected by environmental con-
ditions, vandalism, and human error, it is a good idea to keep several copies
of any software that cannot be easily recreated. Copy the LSP distribution
volume and then store it in a safe place. Use the distribution volume only
when copying the LSP software. Use only copies for all other procedures
described in this appendix.

Installing, Verifying, and Using LSP Under RSX-11M

The LSP software is distributed on a single volume. Most of the LSP distri-
bution volumes are in FILES-11 format which RSX-11M/M-PLUS can
read. Magnetic tape distribution volumes, however, are in DOS-11 format
which RSX-11M/M-PLUS cannot read.

Copy procedures vary depending on the type of distribution volume and the
number of mass storage devices you have:

e If your distribution volume is a FILES-11 volume such as an RKO5,
RKO06, RLO1, or RL02 disk and you have three or more mass storage
devices, follow the instructions in Section B.2.1.1.

e If your distribution volume is a FILES—11 volume and you have only two
mass storage devices, follow the instructions in Section B.2.1.2.

o If your distribution volume is a DOS-11 formatted magnetic tape, follow
the instructions in Section B.2.1.3.

B.2.1.1 Copying a FILES-11 Distribution Volume with Three or More Mass
Storage Devices — To copy a FILES-11 distribution volume, do the
following:

1. Load the distribution volume. Allocate the drive and mount the distri-
bution volume. The volume label for the Laboratory Subroutines is
LSP. The User Identification Code (UIC) is [200,200]. Type:

>ALL dun @D

>MOU dun: LSPRE

2. Load a blank storage volume. Allocate the drive. Type:

>ALL dun s RED

3. If you use RSX-11M-PLUS, mount the blank storage volume foreign
since it has not yet been initialized as a FILES-11 volume. Type:

*MCU durn s /FORGEED

4. Format the blank storage volume if necessary. If you use RKO05 disks,
format each disk. If you use RX02 drives, format each diskette to be
either low (single) or high (double) density. Other storage media cannot
be formatted.

Use the RSX utility FMT to format your disks and diskettes. The fol-
lowing example formats an RK05 disk:

>FMT OK2:ReD

** WARNING - DATA WILL BE LOST ON DK2: #%

CONTINUE? [Y OR NJ V@D

START FORMATTING

OPERATION COMPLETE

>

Installing, Verifying, and Using LSP Under RSX-11M B-3

B4

When you use FMT, diskettes on RX02 drives are formatted to be low

(single) density by default. If you want them to be high (double) den-

sity, use the /DENS= HIGH option. The following example formats an

RXO02 diskette to be double density:

+FMT DY1:/DENS=HIGHED

**% WARNING - DATAMWILL BELOSTONDY1: #*#

CONTINUE? [Y OR N3] YED

START FORMATTING

OPERATION COMPLETE

See the RSX-11 Utilities Manual for more information about FMT.

Run the Bad Block Locator Utility (BAD) to search for bad blocks on

the storage volume. The /LI switch causes BAD to list at your terminal

the decimal number of any bad blocks found. Type:

SBAD dun s /LIED

If BAD finds bad blocks, it types a message for each one found. An

example of the message is:

BAD -- dun: BAD BLOCK FOUND - LBN = pmnnnnmn

LBN means Logical Block Number, and nnnnnn is the decimal number

of the bad block found. When BAD finishes reading the storage volume

it types a message telling how many bad blocks it found:

BAD -- dun: TOTAL BAD BLOCKS= n

If BAD found none, it types 0. If your volume has bad blocks, isolate

them using the /BAD=[AUTO] option with the INI command (see

step 6).

If BAD types any other message, see Chapter 9 of the RSX-11 Utilities

Manual to find out what the message means and what to do about it.

Initialize the blank storage volume so it will be in FILES-11 format.

Use the MCR command INI with the /BAD =[AUTO] option to isolate

bad blocks on the volume. Type:

sINI dun:/BAD=LAUTOIRED

INI -- NO BAD BLOCK DATA FOUND

If you use RSX-11M-PLUS, INI does not type the above message; it

just displays its prompt to indicate it found no bad blocks.

See the RSX-11M/M-PLUS MCR Operations Manual for more infor-

mation about using the MCR command INI.

Installing, Verifying, and Using LSP Under RSX-11M

7. If you use RSX-11M-PLUS, your storage volume is still mounted for-
eign although it is now in FILES-11 format. Dismount it. Type:

>DMOUdunr : RET

8. For both RSX-11M and RSX-11M-PLUS, mount the volume as a
FILES-11 volume. Type:

*MOUdun ;@B

9. Use the RSX Disc Save and Compress Utility (DSC) to copy files from
the distribution volume to the storage volume. The following example
copies files from a distribution volume on drive 1 to a storage volume on
drive 2:

>DSC du2:=4dul:BT

See the RSX-11 Utilities Manual for more information about using
DSC to copy files.

B.2.1.2 Copying a FILES-11 Distribution Volume with only Two Mass Storage
Devices — If you have only two mass storage devices, you can not copy the
LSP distribution volume directly since the RSX-11M/M-PLUS system vol-
ume occupies one of your mass storage devices.

To copy the distribution volume under these circumstances, use the RSX
utility program DSCS8. DSCSS8 is a stand alone version of DSC. Once
booted, DSCS8 no longer needs the system volume. You can unload the
system volume thus freeing the system device. Then you can load the LSP
distribution volume in the system device and begin copying files. The fol-
lowing procedure explains how to copy the distribution volume using
DSCSS.

NOTE

Since this procedure requires you to remove the system vol-
ume, and halt the processor, make sure that no one else is

using the system when you execute the procedure.

1. Load a blank storage volume. Allocate the drive it is on. Type:

>ALLdur GO

2. If you use RSX-11M-PLUS, mount the blank storage volume foreign
since it has not yet been initialized as a FILES-11 volume. Type:

>MOU dun:/FORRED

3. Format the blank storage volume if necessary. If you use RK05 disks,
format each disk. If you use RX02 drives, format each diskette to be
either low (single) or high (double) density. Other storage media can
not be formatted.

Installing, Verifying, and Using LSP Under RSX-11M B-5

Use the RSX utility FMT to format your disks and diskettes. The fol-
lowing example formats an RK05 disk:

>FMT DK1 :ReED

% WARNING - DATA WILL BE LOST ONDK1: #%*

CONTINUE? [Y OR N1 Y@

START FORMATTING

OPERATION COMPLETE

When you use FMT, diskettes on RX02 drives are formatted to be low

(single) density by default. If you want them to be high (double) den-

sity, use the /DENS = HIGH option. The following example formats an

RX02 diskette to be double density:

*FMT DY1:/DENS=HIGHGRED

*% WARNING - DATA WILL BELOSTONDY1: *=*

CONTINUE? [Y OR NJ YRED

START FORMATTING

OPERATION COMPLETE

See the RSX-11 Utilities Manual for more information about FMT.

4. Run the Bad Block Locator Utility (BAD) to search for bad blocks on

the storage volume. The /LI switch causes BAD to list at your terminal

the decimal number of any bad blocks found. Type:

*BAD dur /L IGD

BAD -- NO BAD BLOCK DATA FOUND

If BAD finds bad blocks, it types a message for each one found. An

example of the message is:

BAD -- durn: BAD BLOCK FOUND - LBN = nnnnnn

LBN means Logical Block Number, and nnnnnn is the decimal number

of the bad block found. When BAD finishes reading the storage volume,

it types a message telling how many bad blocks it found:

BAD -- dun: TOTAL BAD BLOCKS= n

If BAD found none, it types 0. If your volume has bad blocks, isolate

them using the /BAD=[AUTO] option with the INI command (see

step 6).

If BAD types any other message, see Chapter 9 of the RSX-11 Utilities

Manual to find out what the message means and what to do about it.

5. Initialize the blank storage volume so it will be in FILES-11 format.

Use the MCR command INI with the /BAD =[AUTO] option to isolate

bad blocks on the volume. Type:

B-6 Installing, Verifying, and Using LSP Under RSX-11M

#INI dun:/BAD=CAUTOIGD

INI -- NO BAD BLOCK DATA FOUND

If you use RSX-11M-PLUS, INI does not type the above message; it
Just displays its prompt to indicate it found no bad blocks.

See the RSX-11M/M-PLUS MCR Operations Manual for more infor-
mation about using the MCR command INI.

6. Boot DSCSS8. The UIC is [1,51]. Type:

#BOOT [1,511DSCSBERD

RAS115 V2,2 BL26 DISC SAYE AND COMPRESS UTILITY Y 3,7

DSCS8 displays its prompt. It is now booted and ready for input.

DSCS8

7. Remove the RSX-11M/M-PLUS system volume and load a copy of the
LSP distribution volume in the system device. Now instruct DSCSS8 to
begin copying files. The following example copies files from a distribu-
tion volume, on drive 0 to a storage volume on drive 1:

DSCS8>dul:=du0:RN

Copying now begins. When it completes, DSCSS8 displays its prompt.

DSCS8:

8. Now halt the processor. Remove the LSP distribution volume from the
system device and replace the system volume. Boot RSX-11M or
RSX-11M-PLUS.

See the RSX-11 Utilities Manual for more information about using
DSCSS to copy files if you have only two mass storage devices. Informa-
tion about DSCS8 (sometimes called “stand-alone DSC”) is in the
chapter on DSC.

B.2.1.3 Copying a DOS-11 Distribution Volume — To copy a DOS-11 distribu-
tion magnetic tape, do the following:

1. Load the distribution volume. Allocate the drive and mount the distri-
bution volume. The User Identification Code (UIC) is [200,200]. Type:

>ALL dun @D

*MOU dun : RED

2. Load a blank storage volume. Allocate the drive it is on. Type:

ALL dun RO

3. If you use RSX-11M-PLUS, mount the blank storage volume foreign
since it has not yet been initialized as a FILES—11 volume. Type:

>MOU dun: /FORGRE)

Installing, Verifying, and Using LSP Under RSX-11M B-7

B-8

4. Format the blank storage volume if necessary. If you use RK05 disks,

format each disk. If you use RX02 drives, format each diskette to be

either low (single) or high (double) density. Other storage media cannot

be formatted.

Use the RSX utility FMT to format your disks and diskettes. The fol-

lowing example formats an RK05 disk:

>FMT DK1 : GED

#% WARNING - DATAWILL BE LOST ONDK1: **

CONTINUE? [Y OR N1 YRET

START FORMATTING

OPERATION COMPLETE

When you use FMT, diskettes on RX02 drives are formatted to be low

(single) density by default. If you want them to be high (double) den-

sity, use the /DENS=HIGH option. The following example formats an

RXO02 diskette to be double density:

>FMT DY1:/DENS=HIGHGRT

WARNING - DATAWILL BE LOSTONDY1: *#

CONTINUE? [Y OR N1 Y@

START FORMATTING

OPERATION COMPLETE

>

See the RSX-11 Utilities Manual for more information about FMT.

Run the Bad Block Locator Utility (BAD) to search for bad blocks on

the storage volume. The /LI switch causes BAD to list at your terminal

the decimal number of any bad blocks found. Type:

>BAD dun: /L IRED

BAD -- NO BAD BLOCK DATA FOUND

If BAD finds bad blocks, it types a message for each one found. An

example of the message is:

BAD -- dun: BAD BLOCK FOUND - LBN = nnnnnn

LBN means Logical Block Number, and nnnnnn is the decimal number

of the bad block found. When BAD finishes reading the storage volume,

it types a message telling how many bad blocks it found:

BAD -- dun: TOTAL BAD BLOCKS= n

If BAD found none, it types 0. If your volume has bad blocks, isolate

them using the /BAD=[AUTO] option with the INI command (see

step 6).

Installing, Verifying, and Using LSP Under RSX-11M

10.

11.

If BAD types any other message, see Chapter 9 of the RSX—11 Utilities
Manual to find out what the message means and what to do
about it.

Initialize the blank storage volume so it will be in FILES—11 format.
Use the MCR command INI with the /BAD =[AUTO] option to isolate
the bad blocks on the volume. Type:

*INI dun:/BAD=LAUTOIR

INI -- NO BAD BLOCK DATA FOUND

If you use RSX-11M-PLUS, INI does not type the above message; it
Just displays its prompt to indicate it found no bad blocks.

See the RSX-11M/M-PLUS MCR Operations Manual for more infor-
mation about using the MCR command INI.

If you use RSX-11M-PLUS, your storage volume is still mounted for-
eign although it is now in FILES-11 format. Dismount it. Type:

*DMOU dunr :RED

For both RSX-11M and RSX-11M-PLUS, mount the volume as a
FILES-11 volume. Type:

*MOU dun : R

Create a UIC of [200,200] on the storage volume. Use the MCR com-
mand UFD (User File Directory). Type:

UFD dun:[200 4,200 1R

Use the RSX utility FLX to copy files from the DOS-11 distribution
tape to your FILES-11 storage volume. The /RS switch identifies the
storage volume as a FILES-11 volume, and the /DO switch identifies
the distribution volume as a DOS-11 volume. The wildcard construc-
tion, *.*, tells RSX-11M/M-PLUS that you wish to copy the most recent
version of all files. (You cannot specify version numbers on a DOS—11
formatted volume.)

The following example copies files from a DOS—11 distribution volume
on drive 0 to a FILES-11 storage volume on drive 1:

PRLX vl :[2004,2001/RS=du0:[200,2001%, %/D0G
>

See the RSX-11 Utilities Manual for more information about FLX.

Use the RSX-11M utility program PIP to create a contiguous file from
LSPMAK.TSK, the interactive build procedure. Type:

>PIP /CO=C200,2001LSPMAK . TSKGRED

See the RSX-11 Utilities Manual for more information about PIP.

Installing, Verifying, and Using LSP Under RSX-11M B-9

B-10

B.2.2 Making Corrections

From time to time, the RSX-11M/S-RSX-11M-PLUS Software Dispatch
publishes corrections you must make to the LSP software. The dispatch also
publishes instructions on how to make the corrections.

You only need to make corrections published in the dispatch for version 1.2
of the LSP software. Corrections that were published in the dispatch for
previous versions of LSP have already been included in version 1.2.

Never make corrections to your distribution volume. Make corrections to
your copies. After making any corrections, copy your software again.

B.2.3 Selecting the Form of Subroutine to Use

You receive the Laboratory Subroutines as both object files and MACRO
source files. Read Sections B.2.3.1 and B.2.3.2 to determine which form of
the subroutine to use.

B.2.3.1 Using Distributed Object Files — You can use the distributed object
files if:

1. Youdo not want to enable any of the options described in this manual.

2. You are using FORTRAN IV.

3. Your system does not have a hardware floating-point unit.

You use the distributed object files by task-building them to your
FORTRAN programs. (See Section 1.2 for a list of the LSP files.) Before you
do so, however, test them to verify that they work correctly by running the
program LSPVER.CMD which is part of your distributed LSP software. See
Section B.3 for information about how to run LSPVER.CMD.

B.23.2 Creating Customized Object Files — LSPMAK, the Interactive Build

Procedure — If you want to enable any of the options described in this
manual, use the interactive build procedure, LSPMAK.TSK, to create cus-
tomized object files of the Laboratory Subroutines from the distributed
source files. You can also use LSPMAK to build the subroutines without
any options. (See Section 1.2 for a list of the LSP files.)

LSPMAK.TSK is part of your distributed LSP software. It lets you specify
the subroutines you want to assemble and the options you want to use.
Options available include:

1. library option — lets you place the subroutines in a library which you
create by supplying a library name.

2. hardware options — let you make use of EIS hardware (or any floating-
point option) or EAE hardware if you have any.

3. FORTRAN options — let you specify whether or not you will be using
FORTRAN 77.

Installing, Verifying, and Using LSP Under RSX-11M

4. subroutine options — let you specify which subroutines you want to
assemble and which options you want to use for each subroutine.

When you run LSPMAK.TSK, it prompts you with questions. Most ques-
tions give the name of a subroutine or option. Answer “yes” if you want to
build the subroutine or enable the option. Answer “no” if you do not. Some
questions request information and tel] you how to type your answers. Fol-
low the instructions given when you respond. After you answer all the
questions, LSPMAK creates three files on your output device under the
current UIC as follows:

LSPCND.MAC — This file sets the switches to enable the options you
requested.

LSPBLD.CMD — This indirect-command file builds each subroutine you
requested. Building consists of assembling each subroutine you specified
with the switches set to enable the options you chose. If you specified a
library while running LSPMAK, LSPBLD creates that library and includes
In it the subroutines you specified.

LSPVER.CMD — This indirect-command file verifies that your LSP soft-
ware 1s in good working order. It does this by running an example program
that tests each subroutine you asked to build.

Before you attempt to run LSPMAK.TSK, assign logical device
names to:

1. The device containing all the Laboratory Subroutines software. Assign
this device the logical name “IN” for “input device.” Type:

*ASN dur:=IN;:RE

2. The device receiving the assembled object files. Assign this device the
logical name “OU” for “output device.” Type:

*ASN dun:=0U:RD

Now run the file LSPMAK.TSK. Type:

RUN IN:[200,2001LSPMAKGED)

The build procedure runs and begins typing questions and information on
your terminal. The following text shows all the questions and informationthat LSPMAK can type. However, when you run LSPMAK, not all the
questions and information will appear since some of it depends on your
responses to previous questions. A sample of LSPMAK.TSK and its output
appears in Appendix D.

Laboratory Subroutines YU1,?2 Build Procedure for RSX-11M

Have vou assidned dJevices for input (IN:) and outeput (OU:)? LY/N]

Installing, Verifying, and Using LSP Under RSX-11M B-11

NOTE: This procedure assumes that all distributed files for

the Laboratory Subroutines packade are on dJevice "IN"

under UIC [200,2001].,

This procedure directs all output and tempPorary files

(excert library files) to device "OU" under the

default UIC.

LIBRARY OPTION

Do vouwant tobuild aNEWIlibrary file from these subroutines?

CY/N]

Enter the specification (maximumof 30 characters) of the

Jesired library file, (example SYO:[1,1]LSPLIB.OLB)

ENTER NAME:

As each subroutine is added to the librarvs its corresponding

obdect file is normally deleted from device "0OU",

Is this accerptable? [Y/N]

HARDWARE OPTIONS

Does vyour machine have the EIS option (or any floatingd Point opPtion)?

(the EIS option) [Y/N]

Does vyour machine have the EAE ortion?

(the EAE option) [Y/N]

FORTRAN OPTIONS

Will vou bhe using FORTRAN 777 (the F4P% option) [Y/N]

NOTE: The software verification command files OU:LSPVER.CMD

will use FORTRAN IV to compile the Laboratory Subroutines

test programs. The task build procedure for these test

programs will assume that the appropriate FORTRAN IV

obJject time svystem library is added to the svystem library,

SYSLIB.OLB.

Also,s since vou have responded that vour svystem does not

have a floating-pPoint units, the task build procedure

Wwill assume that vour FORTRAN IV obJect time svystem

dJoes not require a floating-rPoint unit,

NOTE: The software verification command files» OU:LSPVER.CMD, will

nuse FORTRAN 77 to compile the Laboratory Subroutines

test prodrams. The task build procedure for these test

prodrams will assume that the approprriate FORTRAN 77

obJject time system library is added to the svrstem library,

SysLIB.OLB.

B-12 Installing, Verifying, and Using LSP Under RSX-11M

SUBROUTINE AND ALGORITHM OPTIONS

Do vou want to build the subroutine "PEAK"? LY/N]Do vou want to disable the software digital filter?
(enable the NOFLTS orPtion) [Y/N]

Do you want to enable double Pprecision inPut data Processing by PEAK?(the DPP$ option) [Y/N]
Do you want to enable Processing of coded A/D input data by PEAK?(the AUTOGS option) [Y/N]

Do vouwant to build the subroutirne "NUVELOP"? [Y/N]

Do vou want to build the subroutine "HISTI"? [Y/N]Do you want to enable HISTI to produce a frequency histogram?(the FREQ$ option) LY/N]
Do vou want to enable double Pprecision inPut data Processing by HISTI?(the DPH$ oPtion) [Y/N]

Do you want to build the subroutine "RHISTI"? [Y/N)]Do youwant to enable double Precision inPut data Processing by RHISTI?(the DPR% ortion) CY/N]

Do youwant to build the subroutine "FFT"? CY/N]
What is the maximum lendth of anvy inPut arravy to be processed by FFT(the F.MAXN option):

10247 [Y/N]

20487 [Y/N]

40967 [Y/N]

81927 [Y/N]
**%*THE DEFAULT MAXIMUM INPUT ARRAY LENGTH WILL BE USED (1024) | %%

Do vou want to build the subroutine "PHAMPL"? [Y/N]

Do youwant to build the subroutine "POWRSP"? [Y/N]

NOTE: CORREL needs subroutine FFT to function!

Do youwant to build the subroutine "CORREL"? [Y/N]

This first po rtionof the Laboratory Sub routines buildProcedure is comrplete,

File LSPCND.,MAC has been created on device "OU", Thig filesets the switches required to enable the oPtions that vouhave requested,

File LSPBLD.CMD has also been created on device "QU", Youshould execute this indirect command filenext, It willbuild each sub routine requested on device "OU", and createthe library file spPpecified,

Installing, Verifying, and Using LSP Under RSX-11M B-13

Finallvys the file LSPUER.CMD has bheenrn created on device "0OU",

You should execute this command file after using LSPBLD.CMD

tobuild vyour customized Laboratory Subroutines obbdect files,

This command file will verify that vrour software has been

successfully installed,

TTran -- STOP

Now run the indirect-command file LSPBLD.CMD. This file builds the subroutines you

requested on device “OU” and creates a library on that device if you specified one.

Type:

+»@0U: LSPBLDGRED

B.3 Verifying the Laboratory Subroutines Software

After installing the LSP software, test it to verify that you performed the

installation procedure correctly, and that your LSP software was delivered

in good working order. To do so, run the indirect-command file,

LSPVER.CMD. Instructions for running LSPVER.CMD follow. If you plan

to use the distributed object files, follow the instructions in Section B.3.1. If

you used LSPMAK, follow the instructions in Section B.3.2.

B.3.1 Verifying the Distributed LSP Object Files

To verify the distributed LSP object files, use the distributed version of

LSPVER.CMD. The distributed version of LSPVER.CMD runs the first ex-

ample program in each chapter of this manual. These programs call the

distributed subroutine object files thus indicating whether they work cor-

rectly. Before attempting to run LSPVER, do the following:

1. Make sure that your system meets the requirements listed in

Section B.1.

2. Assign logical device names. Assign the logical name “IN” to the device

containing the Laboratory Subroutines software. Assign the logical

name “OU” to the device which will be your output device.

To assign an input device, type:

ASN dun:=IN:RED

To assign an output device, type:

“ASN dunzs= ou :

3. Copy all of the object files for the Laboratory Subroutines to your out-

put device. (See Section 1.2 for a list of the LSP files.)

4. Now run LSPVER. Type:

s@IN:[200,200]1LSPUVERRED

B-14 Installing, Verifying, and Using LSP Under RSX-11M

LSPVER types the name and number of each example program it runs
along with the output from that program on your terminal. Compare the
output with that of the corresponding example in the manual. If they do not
agree and you are sure you have not neglected any of the requirements
listed in Section B.1, you may have received a defective copy of your LSP
software. Contact DIGITAL for more information.

B.3.2 Verifying the Customized Object Files

To verify your customized object files, use the version of LSPVER.CMD
that was created when you ran LSPMAK. This version of LSPVER.CMD
runs the example program that calls the version of the subroutine with the
options you enabled. To run LSPVER, do the following:

1. Make sure that the device assignments for “IN” and “OU” in Section
B.2.3.2 are still in effect. If they are not, assign them so they are the
same as when you ran the LSPMAK.

2. Now run LSPVER. Type:

#B0U: LSPVERRE

LSPVER types the name and number of each example program it runs
along with the output from that program on your terminal. Compare the
output with that of the corresponding example program in the manual. If
they do not agree, and if you are sure you have not neglected any of the
requirements listed in Section B.1, you may have received a defective copy
of your LSP software. Contact DIGITAL for more information.

B.4 Storing the Laboratory Subroutines

After determining that the Laboratory Subroutines you want to use are
sound, copy them to your system volume or to the development volume
where you store your FORTRAN programs, or place them in a library (see
Section B.6).

B.5 Creating a Program that Calls the Laboratory Subroutines

To create a FORTRAN program that calls the Laboratory Subroutines, do
the following:

1. Write and check your program.

2. Use one of the RSX-11M/M-PLUS editors, such as EDI, to enter your
program into a source file. Type:

*EDI Prog.FTNGRE

where: prog 1s the name of your FORTRAN source program.

For information about entering the text of your file, making changes
and displaying the file, see the RSX—11 Utilities Manual and the
RSX-11M/M-PLUS Guide to Program Development.

Installing, Verifying, and Using LSP Under RSX-11M B-15

B-16

NOTE

Always specify a file extension when you use an editor.

RSX-11M/M-PLUS editors do not use default file exten-

sions. In this case, give your source file the extension

FTN since that is the default extension the FORTRAN

IV or FORTRAN 77 compiler uses when it compiles your

program.

3. Use the FORTRAN IV or FORTRAN 77 compiler to create an object file
of your program.

If you are using the FORTRAN IV compiler, Type:

’’’’

PREOR mreog=eg L PY

If you are using the FORTRAN 77 compiler, Type:

2877 prog=oggR

where: prog is the name of your FORTRAN source program.

4. Use the RSX-11M/M-PLUS task builder to task-build the object file of
your program with the object files of your Laboratory Subroutines. The

/FP switch tells the task-builder to use the floating-point unit. Use the
/FP switch if you use FORTRAN IV and your system has a floating-

point unit. Always use the /FP switch if you use FORTRAN 77 since

your system always has a floating-point unit. Type:

PTRB progl/FPI=pProg. ronlsenb2 0 subn®

where: prog is the name of your FORTRAN program.

subl is the name of the first Laboratory Subroutine object

file you want to task build.

subn is the name of the last Laboratory Subroutine object

file you want to task build.

You can specify as many object files as you wish for input. However, if

your list of input files will use more than one line on your terminal, you

should see the RSX-11M/M—-PLUS Task Builder Manual for informa-

tion about how to input files using multiple lines.

To avoid linking individual subroutines to your programs, you can

place the subroutines in a library. See Section B.6.

5. Run the task. Type:

>RUN progRD

where: prog 1is the name of your executable program.

For more information about compiling, linking, and running FORTRAN

programs, see the RSX-11M/M-PLUS Guide to Program Development, the

IAS/RSX-11 FORTRAN 1V User’s Guide, and the PDP-11 FORTRAN 77

User’s Guide.

Installing, Verifying, and Using LSP Under RSX-11M

B.6 Using Libraries

Once you decide which of the Laboratory Subroutines you will use most
frequently, you can task-build them to your programs more easily by plac-
ing them in a library. When you place them in a library, you do not need to

list each individual subroutine in the TKB command line. You only need to
list the library name. When you place them in the system library,

SYSLIB.OLB, you do not even need to list the library name in the TKB
command line. The RSX-11M/M-PLUS task builder automatically

searches the system library for a subroutine or function needed by a
program.

For example, suppose your compiled program, MYPROG.OBJ calls the sub-
routines FPEAK.OBJ and F4FFT.OBJ. To task-build MYPROG, you have

to type:

*TKB MYPROGL/FPI=MYPROG»FPEAK «FAFF TRED

If you place the subroutines in a library called, for example, MYLIB.OLB,
you task-build MYPROG by typing:

*TKB MYPROGL/FP1=MYPROG yMYLIB/LBRE

You have to use the /LB switch to tell RSX—11M/M-PLUS that MYLIB is a
library file. However, if you add the subroutines to the system library,
SYSLIB.OLB, you task-build MYPROG by typing:

>TKB MYPROGL/FP1=MY
PROGGRE

Note that the interactive build procedure, LSPMAK, allows you to create a
library of your own. If you use this option, LSPMAK places in the library
those subroutines you tell it to build in response to later questions. If you do
not use this option when you first run LSPMAK, but later decide you want
to use a library, you can either rerun LSPMAK or use the RSX utility
program LBR to create a new library or add to an existing one.

See the RSX-11 Utilities Manual for information about using LBR. The
RSX-11 Utilities Manual also tells you how to use the system library.

Installing, Verifying, and Using LSP Under RSX-11M B-17

Appendix C

Sample of the Interactive Build Procedure for
RT-11, LSPMAK.SAV

The following example shows the interactive build procedure,
LSPMAK.SAV with its output.

The example does the following:

1. Places the subroutines in a new library called LSPLIB.OBJ.

2. Enables the EIS option.

3. Builds the following subroutines:

e PEAK — with the double-precision integers option (the DPP$ option)
enabled.

o FFT — with a maximum input array length of 8192.

C-1

+ASSIGN DMO: IN:&S

+ASSIGN DLO: QU :ReT

+RUN IN:LSPMAKERED)

Laboratory Subroutines Y1.2Build Procedure for RT7-11

Have vyou assidned devices for inPut (IN:) and outeput (OU:)? [Y/N]I YR

NOTE: This procedure assumes that all distributed files for

the Laboratory Subroutines packade are on dJevice "IN",

This procedure directs all output and temrporary files

(exceprt library files) to device "0OU",

LIBRARY OPTION

Do vouwant to build a NEW library file from these subroutines?

Enter the specification (maximumof 14 characters) of the

desired library file, (example DK:LSPLIB.OBJ)

ENTER NAME: DLO:LSPLIB,OBJRD

As each subroutine is added to the librarvsy 1ts corresponding

obJect file is normally deleted from device "OU":

Is this acceptable? [Y/N] NGED

HARDWARE OPTIONS

Does vyour machine have the EIS oprtion (or anvy floatind point oprtion)?

(the EIS option) [Y/N] YR

SUBROUTINE AND ALGORITHM OPTIONS

Do vouwant to build the subroutine "PEAK"? [Y/N] YGRE

Do vyou want to disable the software didgital filter?

(enable the NOFLT$ option) [Y/N] NERD

Do youwant to enable double precision inpPut data processing by PEAR?

(the DPP$ option) [Y/N] YERET

Do you want to build the subroutine "NVELOP"? [Y/N] NGED

Do vou want to build the subroutine "HISTI"? [Y/N] NERE

Do youwant to build the subroutine "RHISTI"? [Y/N] NGEED

Do youwant to build the subroutine "FFT"? [Y/N] YG&ED

What 1s the maximum lendth of any inpPut array to be processed by FFT

(the F.MAXN orPtion)

10247 [Y/N] NGEE

20487 [Y/N]1 NGEED

C-2 Sample of the Interactive Build Procedure for RT-11, LSPMAK.SAV

81927 [Y/N] V&

Do vouwant to build the subroutine "PHAMPL"? [Y/N] N6

Do vouwant to build the subroutine "POWRSP"? [Y/N] NE

Do vouwant to build the subroutine "CORREL"? [Y/N] NET

This first portion of the Laboratory Subroutines build
Procedure is complete,

File LSPCND.MAC has beern created on dJevice "OU", This file
sets the switches reauired to enable the oPptions that vyou
have requested,

File LSPBLD.COM has also been created on Jevice "OU", You
should execute this indirect command file next, It will
build each subroutine reauested on device "QU" and create
the library file specified, DLO:LSPLIB.OBJ.

Finallv, the file LSPUER.COM has been created on Jevice "0OU",
You should execute this command file after using LSPBLD.COM
tobuild vour customized Laboratory Subroutines obJect files,
This command file will verify that vyour software has been
successfully installed,

STOP --

+MACRO/0BJECT:0U:FPEAK OU:LSPCND+IN:FPEAK
ERRORS DETECTED: ©

+LIBRARY /CREATE DL:LSPLIB.0OBJ OU:FPEAK

+MACRO/OBJECT:0U:FA4FFT OU:LSPCND+IN:FAFFT

ERRORS DETECTED: ©

+LIBRARY DL:LSPLIB.OBJ OU:FAFFT

+FORTRAN/OBJECT:0U:LSPEX IN:EX4UFPE

+MAIN,

+LINK/EXECUTE:OU:LSPEX OU:LSPEX DL:LSPLIB.0OBJ

+RUN OU:LSPEX

Sample of the Interactive Build Procedure for RT-11, LSPMAK.SAV C-3

C-4

PEAK NO.

1

3

STOP --

+DELETE/NOQUERY OU:LSPEX . %

AREA

HALF WIDTH

32158219,

11,

10732416,

70

134705883,

119,

P HEIGHT

T HEIGHT

952958,

483071,

432238,

189827,

300062,

201630,

+FORTRAN/OBJECT :0U:LSPEX IN:EX1FAF

+MAIN,

PEAK Example #4

P TIME

T TIME

20,

a4d.

G8.

83.

BOO,

+LINK/EXECUTE:OU:LSPEXOU:LSPEX DL:LSPLIB.OBJ

+RUN OU:LSPEX

FFT Example#1

DATA TO BE TRANSFORMED - SINE WAVE SCALED BY 1000,

- REAL PART -

0 195 382

1000 980 923

0 -195 -382

-1000 -980 -923

- IMAGINARY PART-

RESULTS FROM THE FORWARD FOURIER

Q 0

0 0

0)

0 0

- REAL PART -

0

0

0

O

- IMAGINARY PART-

0

0

0

Q0

-7 O

1 O

1 0

1 0

-15981 0

-5 O

-1 0

-1 O

(s
s
QU
GQ
s
JN
O)

W
U
n
w
a

—

N

e

N

r
R
M

G

r
r

o
l

707

707

-707

=707

831

555

-831

-555

L HEIGHT

TYPE

693113,

BASELINE

344193,

BASEL INE

14923,

VALLEY

923

382

-923

-382

Sample of the Interactive Build Procedure for RT-11, LSPMAK.SAV

L TIME

RATE

ao

1,

od.

10

107,

1,

980

195

-980

-195

§)

0

0

O
M
N
O
M
N

0

-4

0

15984

RESULTS FROM THE INVERSE FOURIER TRANSFORM

- BEFORE SCALING -

- REAL PART-

-4 6217 12200 17749 22598 26578 29531 31356
31972 31354 29952 26582 22604 177352 1222 6254

4 -6217 -12200 -17749 -22598 -26578 -29531 -31356
-31972 -31354 -298952 -26582 -22604 -17752 -1222 -62%54

- IMAGINARY PART-

-12 -8 -9 -6 -6 4 -5 -2
- -9 -6 -17 0 -14 -15 -20
12 8 9 6 5) -4) 2
4) 6 17 0 14 15 20

- AFTER SCALING -

- REAL PART -

0 194 381 o094 706 830 22 979
999 979 922 830 706 o9d 381 195

0 -194 -381 -394 -706 -830 -922 -979
-999 -979 -922 -830 -706 -554 -381 -195

- IMAGINARY PART-

0 O 0 O O 0 @] 0
O O O O O O @) O
O O § O O O O O
O) O O O O O OSTOP --

DELETE/NOQUERY OU:LSPEX.,

¢

Sample of the Interactive Build Procedure for RT-11, LSPMAK .SAV C-5

Appendix D

Sample of the Interactive Build Procedure for
RSX-11M, LSPMAK.TSK

The following example shows the interactive build procedure
LSPMAK.TSK with its output.

’

The example does the following:

1. Places the subroutines in a new library called LSPLIB.OLB.

2. Enables the EIS option.

3. Enables the FORTRAN 77 option (the F4P$ option).

4 Builds the following subroutines:

e PEAK — with the double-precision integers option (the DPP$ option)
enabled.

FFT — with a maximum input array length of 8192.

*ASN DM1:=1IN:@

*ASN DR2:=0U:RD

*RUN IN:[200,200]1LSPMAKRE)

Laboratory Subroutines V1,2 Build Procedure for RS¥-11M

Have vou assidned devices for input (IN:) and outeut (OU:)? [Y/N] Y RED)

NOTE: This procedure assumes that all distributed files for

the Laboratory Subroutines packade are on device "IN"

under UIC [200,2007,

This procedure directs all output and temporary files

(exceprt librarv files) to device "OU" under the

dJefault UIC.,

LIBRARY OPTION

Do vouwant to build a NEW librarv file from these subroutinesg?

[Y/N] YRED

Enter the specification (maximum of 30 characters) of the

desired librarv file, (example SYO:[1,+11LSPLIB.OLB)

ENTER NAME: DRZ2:[201,2011LSPLIB,OLBRY

As each subroutine is added to the librarv,s its corresponding

obJect file is normally deleted from device "QU":,

Is this acceptable? [Y¥Y/N] NG

HARDWARE OPTIONS

Does vour machine have the EIS ortion (or any floating Ppoint oPption)?

(the EIS option) [Y/N] Y@e

FORTRAN OPTIONS

Will vou be using FORTRAN 777 (the FAP% option) [Y/N] YR

NOTE: The software verification command filey OU:LSPYER.CMD, will

use FORTRAN 77 to compile the Laboratory Subroutines

test prodrams, The task build procedure for these test

Prodrams will assume that the appProprriate FORTRAN 77

obJect time system library is added to the system library

SYSLIB.OLB.

SUBROUTINE AND ALGORITHM OPTIONS

Do vouwant to build the subroutine "PEAK"? [Y/N] Y@

Do you want to disable the software digital filter?

(enable the NOFLT$ option) [Y/N] NRED

Do you want to enable double precision inPut data processing by PEAK?

(the DPP$ option) [Y/N] Y@

D-2 Sample of the Interactive Build Procedure for RSX-11, LSPMAK.TSK

Do vou want to build the subroutine "NUVELOP"? [Y/N] N@RET

Do vouwant to build the subroutine "HISTI"? [Y/NJ NGRED

Do vouwant to build the subroutine "RHISTI"? [Y/N] NRET

Do vouwant to build the subroutine "FFT"? [Y/N] Y (RETWhat is the maximum length of any input array to be processed by FFT(the FIMAXN ortion)

10247 [Y/NI NET

20487 [Y/N]1 NGE

40967 [Y/N] NRD

B1927 [Y/N]1 YR

Do vou want to build the subroutine "PHAMPL"? [Y/N] NQRET

Do ou want to build the subroutine "POWRSP"? [Y/N] NEe)

Do vyou want to build the subroutine "CORREL"? CY/N] NRE

This first po rtion of the Latbo ratory Subroutines buildProcedure is complete,

File LSPCND.MAC has beeri created on device "OU", Thisg filesets the switches required to enable the oPtions that vouhave requested,

File LSPBLD.CMD has also beern created on Jevice "QU", Youshould execute this indirect command file next, It willbuild each subroutine requested on device "OU" and createthe library file specified) DR2:[201 »2011LSPLIB,OLB,

Finallv,y the file LSPUYER,CMD has been created on device "QU",You should execute this command file after using LSPBLD.CMDtobuild vour customized Laboratory Subroutines object files,This command file Will verify that vour software has beensuccessfully installed,

TT41 -- STOP

*@0U:LSPBLDEED

*MAC OU:FPEAK =0U:LSPCND,IN:[200,200]1FPEAK*LBR DRZ:[201,2011LSPLIB.OLB/CR=0U:FPEAK
*MAC OU:FAFFT =0U:LSPCNDIN:[200,2001F4FFT
*LBR DRZ:[201,2011LSPLIB,OLB=0U:FA4FFT
*@ <{EOF:

*@OU:LSPVERGED

*F77 OU:LSPEX=IN:[200,2001EXAFPE
}TKBOU:LSPEX/FP=OU:LSPEX,DR2:[201,201]LSPLIB.DLB/LB*RUN OU:LSPEX

Sample of the Interactive Build Procedure for RSX-11, LSPMAK.TSK D-3

D4

PEAK NO.

r-
J

AREA

HALF WIDTH

32158219,

11,

10732416,

7

134705883,

119,

>PIP OU:LSPEX.*3%/DE

>F77 OU:LSPEX=IN:[200,200]EX1F4F

>TKB OU:LSPEX/FP =0QU:LSPEXDR2:[201,2011LSPLIB.OLB/LB

>RUN OU:LSPEX

PEAR Example #d

P HEIGHT

T HEIGHT

952958,

483071,

452258,

189827,

300062,

201630,

FFTExample#1

P TIME

T TIME

20,

a4,

68.

83.

GO0,

839.

DATA TO BE TRANSFORMED - SINE WAVE SCALED BY 1000,

- REAL PART-

0 195 382

1000 980 923

0 -195 -382

1000 -980 -923

- IMAGINARY PART-

0 O 0O

0 0O 0O

O 0 O

0 0 0

RESULTS FROM THE FORWARD

- REAL PART -

0

0

0

0

- IMAGINARY PART-

0

0

0

0

RESULTS FROM THE INVERSE FOURIER

-7 0

1 0

1 0

1 0

-15981 0

-3 0

-1 0

-1 0

- REAL PART -

-4 6217 12200

31972 31354 29527

4 -6217 -12200

-31972 -3135%4 -29527

- IMAGINARY PART-

-12 -8 -9

-4 -3 -6

12 8 9

4 > 6

Sample of the Interactive Build Procedure for RSX-11, LSPMAK.TSK

atedal 70

831 70

-959%5 -70

-831 -70

O

0O

0O

0O

FOURIER

-6

2

-2

5

5

5

.

831

299

-831

-335

TRANSFORM

- BEFORE SCALING -

17749 2259

26582 2260

17749 -2259

_26582 -22B60

-B -

-17

6

17

8

4

8

4

6

0

6

0

26578

17732

-26578

-17732

-14

-4

14

L HEIGHT

TYPE

693113,

BASEL INE

344193,

BASEL INE

14923,

VALLEY

923

382

-923

-382

0

0O

0

29531

12223

-29331

-1222

{ —

|

5

3
I

3
,

[
y

L TIME

RATE

A0

10

od,

10

107,

1.,

980

195

-980

-1995

0

0

0

0O

'?
- L

L
o

A
N

0

-4

0

15984

31356

6254

-31356

-6254

r
J

O
M
R
N
O
N

r~
J

- REAL PART-

0 194 381

999 979 922

0 -194 -381

-999 -979 -922

- IMAGINARY PART-

Q O 0

0 §) 0

0 0 0

0 0 0
TT41-- STOP

>PIP OU:LSPEX.,*i%/DE

>@ <EOF>

>

Sample of the Interactive Build Procedure for RSX-11, LSPMAK.TSK

- AFTER SCALING -

294

830

-334

-830

706

706

-706

-706

QO

0

830

354

-830

-394

0

O

0

922

381

-922

-381

0

0

879

195

-979

-195

0

O

D-5

IndeXx

Algorithm,

envelope-processing, 3—1

peak-processing, 2—1

PHAMPL, 7-1

POWRSP, 8-1

Aliasing, 6-8

ALL command, B-3, B-5, B-7

Amplitude spectra, 7-1

Amplitudes, 7-1 to 7-12

Angle,

phase, 7-1 to 7-12

Approximate Fourier transform, 6-2, 6-13

Area,

peak, 2-1, 24, 3—4

Arguments,

CORREL, 9-5 to 9-6

FFT, 6-13

HISTI, 4-5 to 4-6

NVELOP, 3-16 to 3-20

PEAK, 2-17 to 2-20

PHAMPL, 7-2

POWRSP, 8-2

RHISTI, 5-7, 5-8

ASN command, B-11, B-14

Assembler,

RSX-11M MACRO, B-1

RT-11 MACRO, A-1

ASSIGN command, A-6, A-9

ATAN2, 7-2

Auto-Correlation, 9-1, 9-2

AUTOGS option, 2—22, A-8, B-3

Autogain, 2-22, A-8, B-3

Average correlation function, 9-1 to 9-5

Axis,

definition of time, 2-2, 3—-2

/BAD =[AUTO]switch, B4, B-7, B-9

BAD command, B—4, B-6, B-8

BAD utility, B4, B-6, B-8

/BADBLOCKS switch, A-3, A4

Bar-graph, 4-1, 5-1

Baseline

definition of, 2—6

Baseline correction, 3—22

Baseline value,

NVELOP, 3-3, 3-17, 3-18

BOOT command, B-7

Build procedure,

Interactive, 1-3, 1-5, A-6 to A-9, B-10 to

B-14, C-1, D-1

Category,

data and, 4-2

definition of, 4-1, 4-2, 5-2

Centroid,

definition of, 3—4

CFT,

comparing, 6-3

DFT and, 6-3

FFT and, 6-3

definition of, 6—2

input, 6—4

output, 6-5

Change,

definition of local, 21, 2—-2

local, 2-2, 24, 3-2

trend, 2-3, 24, 3-2

Characteristics,

Input,

HISTI, 4-2 to 4-5

RHISTI, 5-2 to 5-5

/CO switch, B-9

Coefficients,

correlation, 9-1

Fourier, 8-1

Command files,

Indirect,

LSPBLD, A-6, B-11

LSPCND, A-6, B-11

LSPMAK, A-6, B-11

LSPVER, A-6, B-11

Index-1

Commands,

RSX-11M,

ALL, B-3, B-5, B-7

ASN, B-11, B-14

BAD, B4, B-6, B-8

BOOT, B-7

DMOU, B-5, B-9

DSC, B-5, B-7

DSCSS8, B-7

EDI, B-15

FLX, B-9

FMT, B-3, B4, B-6, B-8

FOR, B-16

F77, B-16

INI, B—4, B-7, B-9

LBR, B-2

MOU, B-3, B-5, B-7

PIP, B-9

RUN, B-11, B-16

TKB, B-16, B-17

UFD, B-9

RT-11,

ASSIGN, A-6, A-9

COPY, A2

EDIT, A-10

FORMAT, A-3, A4

FORTRAN, A-11

INITIALIZE, A-3, A4

LIBRARY, A-12

LINK, A-11, A-12

RENAME, A-5

RUN, A-7, A-11

SQUEEZE, A-2, A-3, A-5

Comparing,

DFT and CFT, 64

FFT and CFT input, 64

FFT and CFT output, 6-5

Compiler,

FORTRAN IV, A-1, A-2, A-11, B-2, B-16

FORTRAN 77, B-2, B-16

Continuous Fourier transform, 6-2

Continuum,

definition of, 4-2

COPY command, A-2

Copying the distribution volume

under RSX-11M, B-2

under RT-11, A-2

Correction,

baseline, 3—-22

Corrections,

making, A-5, B-5

Index-2

CORREL,

arguments, 9-5 to 9-6

example program, 9-9

file, 1-5, 9-7

FORTRAN call, 9-5

input, 9-2

output, 9-2, 9-12

terminal output, 9-2, 9-12

using, 9-2

Correlation coefficients, 9-1

Correlation function,

average, 9-1 to 9-5

definition of, 9-1

description, 9-1 to 9-12

subroutine, 9-1 to 9-12

CORREL.MAC, 1-5

CORREL.OBJ, 1-5

Count,

HISTI overflow, 4-3, 4-16, 4-20

HISTI underflow, 4-3

NVELOP reject, 3-18

RHISTI overflow, 5-6

RHISTI underflow, 5-6

/CREATE switch, A-10

Creating,

customized object files, A—6, B-10

programs,

under RSX-11M, B-15

under RT-11, A-10

Crest,

peak, 2-1, 24, 2-6

PEAK, 2-1, 24, 2-6

Cross correlation, 9-1 to 9-12

Customized object files,

creating, A-6, B-10

Data,

averaging, 2—2

definition of, 2—-1, 2-2

raw, 2—-1, 2-2

Data and category, 4-2

Data/integer relation, 5-1, 5-2

Default,

file types,

RSX-11M, B-1, B-16

RT-11, A-1, A-10

Definition of,

baseline, 2—6

category, 4-1, 4-2, 5-2

centroid, 3—4

CFT, 6-2

Definition of, (Cont.)

continuum, 4-2

correlation function, 9-1

data, 2-1, 2-2

DFT, 6-2

event, 4-2, 5-2

FFT, 6-1

FORTRAN 77, 1-2

Fourier transforms, 6-1

interval, 5-1, 5-2

local change, 2-2, 24, 3-2

noise, 2—-2, 3-2

overflow values, 4-2, 5-2

peak height, 2-1, 3-1, 3-2

reference points, 5-1, 5-2

time axis, 2-2, 3-2

trends, 2-3, 2—4, 3-2

underflow values, 4-2, 5-2

valley, 2-1, 2-6, 2-7, 3-2, 3—4

/DENS= HIGH switch, B-4, B-6, B_8
Description,

correlation function, 9-1

Device,

storage, A-2, B-3

DOS-11-formatted, B-3, B-5

FILES-11-formatted, B-3, B—7
DFT,

definition of, 6-2

inverse, 6-3

Digital filter,

software, 2—-3

Discrete,

evaluation of CORREL, 9-3

~ Fourier transform, 6-2, 6-3

Distributed files,

object, 14, 1-5, A-5, B-10

source, 1-4, 1-5, A—6, B-10

Distribution volume,

contents of, 1-3 to 1-5

copying the,

under RSX-11M, B-2

under RT-11, A-2

DMOU command, B-5, B-9

/DO switch, B-9

DOS-11 formatted device, B-3, B-5
Double-precision integers, 2-24 4-8 5-17
DPHS$ option, 4-8, A-8, B-13

DPP$ option, 2-24, A-8, B-12, C-2, D-2
DPRS$ option, 5-17, A-8, B-13

DSC,

command, B-7

utility, B-5, B-7

DSCSS8 utility, B-5

DUP utility, A-2

EAE option, 2-22, 3-22, 4-8, 5-10, 6-186,

7-3, 8-2, 9-7, A-7, B-12

EIS option, 2-22, 3-22, 4-8, 5-10, 6186, 7-3,

8-2, 9-7, A-7, B-12, C-2, D-2

EDI command, B-15

EDIT command, A-10

Editor,

RSX-11M, B-15

RT-11, A-10

Envelope-processing,

algorithm, 3-1

subroutine, 3—-1 to 3-32

terms and conventions, 3—2

Estimated peak width, 2-1, 2-5, 3-3

Evaluation of CORREL,

discrete, 9-3

Event,

definition of, 4-2, 5-2

Events,

NVELOP, 3-14

Example program file names, 1-3 to 1-5

Example programs,

CORREL, 9-9 to 9-12

FFT, 6-19 to 6-22

HISTI, 4-12 to 4-28

NVELOP, 3-22 to 3-28

PEAK, 2-24 to 2-40

PHAMPL, 7-5 to 7-12

POWRSP, 8-5 to 8-12

RHISTI, 5-13 to 5-24

EXEMC.MLB, B-1

F4FFT.MAC, 14

F4FFT.OBJ, 14

F4P$ option, B-12, D-1, D-2

F77 command, B-16

F4PRAN.OBJ, 4-11, 5-11, 7-3, 8-3, B-2

Factor,

PEAK gate, 2-3

scaling, 6-8 to 6-12

Fast Fourier transform subroutine, 6-1

to 6-22

FFT,

definition of, 6-1

arguments, 6-13

example program, 6-19 to 6-22

file, 14, 6-16

FORTRAN call, 6-13

input, 6—4

maximum [/O array size, 6-16

output, 6-5, 622

properties, 6-14

terminal output, 6-22

using, 6—1 to 6-22

Index-3

File,

CORREL, 1-5, 9-7

FFT, 1-4, 6-16

HISTI, 1-4, 4-7

LSPBLD, A-6, B-11

LSPCND, A-6, B-11

LSPMAK, A-6, B-11

LSPVER, A-6, B-11

NVELOP, 14, 3-22

PEAK, 1-4, 2-22

PHAMPL, 1-5, 7-2

POWRSP, 1-5, 8-2

RHISTI, 1-4, 5-10

File names,

distribution kit, 1-3 to 1-5

example programs, 1-3 to 1-5

subroutine,

object, 1-3 to 1-5

source, 1-3 to 1-5

File protection, A-5

File types,

default,

RSX-11M, B-1, B-16

RT-11, A-1, A-10

Files,

indirect-command,

LSPBLD, A-6, B-11

LSPCND, A-6, B-11

LSPMAK, A-6, B-11

LSPVER, A-6, B-11

object, 1-3 to 1-5, A-5, B-10

source, 1-3 to 1-5, A-5, B-10

verifying, A-9 to A-10, B-14 to B-15

FILES-11-formatted device, B-3, B-7

Filter,

software digital, 2-3

FLOAT, 7-2

Flowchart,

NEXTPT, 2-13, 3-11

RITOUT, 2-14, 3-12

NVELOP, 3-6 to 3—10

PEAK, 2-9 to 2-12

FLX,

command, B-9

utility, B-2

F.MAXN option, 6-16, A-8, B-13, C-2, D-3

FMT utility, B-3, B—4, B-6, B-8

FNVLOP.MAC, 14

FNVLOP.OBJ, 14

FOR command, B-16

/FOR switch, B-3, B-7

FORMAT,

command, A-3, A—4

utility, A-3, A4

Index—4

FORTRAN command, A-11, B-16

FORTRAN IV,

compiler, A-1, A-2, A-11, B-2, B-16

library, 4-5, 7-2, A-12

object time system, A-2, B-2

random-number generator, 4-11, 5-11,

7-3, 83

FORTRAN 77,

compiler, B-2, B-9

definition of, 1-2

library, 4-5, 7-2

object time system, A-2, B-2

random-number generator, 4-11, 5-11,

7-3, 8-3, B-2

Forward transform, 6-1

Fourier coefficients, 8-1

Fourier transform subroutine,

fast, 6-1 to 622

/FP switch, B-16, B-17

FPEAK. MAC, 1-4

FPEAK.OBJ, 1-4

FREQ$ option, 4-8, A-8, B-13

Frequency functions, 4-9, 6-2

Frequency histogram, 4-1 to 4—4

Function,

average correlation, 9-1 to 9-5

definition of correlation, 9-1

Functions,

frequency, 4-9, 6-2

Gate factor,

NVELOP, 3-3

PEAK, 2-3

Graphs,

bar, 4-1, 5-1

Height,

definition of peak, 2-1, 3-1, 3-2

peak, 2-1, 3-1, 3-2

peak baseline, 3-1, 3-2

HISTI,

arguments, 4-5 to 4—-6

example programs, 4-12 to 4-28

file, 1-4, 4-7

FORTRAN call, 4-5 to 4-7

input, 4-2

input characteristics, 4-2 to 4-5

output, 4-7

overflow count, 4-3

terminal output, 4-16, 4-20, 4-24, 4-28

terms and conventions, 4-1

underflow count, 4-3

using, 4-7

HISTI.MAC, 1-4

HISTI.OBJ, 14

Histogram,

frequency, 4-1

interval, 4-1

zeroth, 5—6

Histogramming,

interval, 4-1 to 4-28

Histogramming subroutine,

interval, 4-1 to 4-28

Histograms, 4-1 to 4-28

Indicator,

scaling, 6-9

Indirect-command files,

LSPBLD, A-6, B-11

LSPCND, A-6, B-11

LSPMAK, A-6, B-11

LSPVER, A-6, B-11

INI command, B—4, B-7, B-9

INITIALIZE command, A-3, A—4

Input,

CORREL, 9-2

FFT, 64

HISTI, 4-2

NVELOP, 3-17

PEAK, 2-2

PHAMPL, 7-1

POWRSP, 8-1

RHISTI, 5-9

Input characteristics,

HISTI, 4-2 to 4-5

RHISTI, 5-2 to 5-5

Input data averaging, 2-2

Installation,

using RSX-11M, B-1

using RT-11, A-1

Integer and interval, 4-2, 5-2

Integers,

double-precision, 2—24, 4-8, 5-17

single-precision, 2-24, 4-8, 5-17

signed, 44, 5-3

unsigned, 44, 5-3

Interactive build procedure, 1-3, 1-5, A—6 to

A-9, B-10 to B-14, C-1, D-1

Internal scaling procedure, 6-9

Interval,

definition of, 5-1, 5-2

integer and, 4-2, 5-2

Interval histogramming, 4-1, 5-1

Interval histogramming subroutine, 4-1

to 4-28

Interval histogramming with

reference points

subroutine, 5-1 to 5-24

Inverse DFT, 6-3

Inverse Fourier transform, 6-2, 6-3

/LB switch, B-17

LBR utility, B-2, B-17

Laboratory Subroutines package,

definition of, 1-1 to 1-5

Leakage, 6-8

/LI switch, B—4, B-6, B-8

LIBR utility, A-12

Libraries,

FORTRAN IV, 4-5, 7-2, A-12

FORTRAN 77, 4-5, 7-2

System,

MACRO, A-1, B-1

object, A-1, A-11, A-12, B-1, B-17

using, A-12, B-17

LIBRARY command, A-12

LINK command, A-11, A-12

Linker, A-2, A-11

Local change,

definition of, 2—-2

Local maximum, 24

Local minimum, 2—4

LSPBLD, A-6, B-11

LSPCND, A-6, B-11

LSPMAK, A-6, B-11

LSPVER, A-6, B-11

MACRO,

assembler,

RSX-11M, B-1

RT-11, A-1

Making corrections, A-5, B-5

Maximum,

local, 2—4

Minimum,

local, 2—4

MOU command, B-3, B-5, B-7

NEXTPT,

flowchart, 2-13, 3-11

subroutine, 2-13, 3-11

NOFLTS$ option, 2-24, A-7, B-13, C-2, D-2

Noise,

definition of, 2-2, 3—-2

/INOPROTECTION switch, A-5

Numbers,

see Integers

NVELOP,

arguments, 3-16 to 3-20

baseline value, 3-3, 3-17, 3-18

events, 3—-14

example programs, 3—-25 to 3—32

Index-5

NVELOP, (Cont.)

file, 1-4, 3-22

flowcharts, 3-6 to 3—10

FORTRAN call, 3-16

gate factor, 3-3

input, 3-17

options, 3-22

output, 3-19, 3-20

reject count, 3—18

symbol definition, 3-5

terms and conventions, 3-2

terminal output, 3-28, 3-30, 3—32

threshold value, 3-22, 3-23, 3-29, 3-31
using, 3-20 to 3-22

zero values, 3-18

NVELOP.MAC, 14

NVELOP.OBJ, 1-4

Object files,

list of, 1-3 to 1-5

creating customized, A—-6, B-10

distributed, 1-4, 1-5, A-5, B-10

Operating system,

RSX-11M, 1-1 to 1-5, B-1, D-1

RT-11, 1-1 to 1-5, A-1, C-1

Options,

AUTOGS, A-22, A-8, B-3

DPH$, 4-8, A-8, B-13

DPP$, 2-24, A-8, B-13, C-2, D-2

DPRS$, 5-17, A-8, B-13

EAE, 2-22, 3-22, 4-8, 5-10, 6-16, 7-3,

8-2, 9-7, A-7, B-12

EIS, 2-22, 3-22, 4-8, 5-10, 6-16, 7-3, 8-2,

9-7, A-7, B-12, C-2, D-2

F.MAXN, 6-16, A-8, B-13, C-2, D-3

F4P$, 7-3, B-12, D-1, D-2

FREQS$, 4-8, A-8, B-13

NOFLTS, 2-24, A-7, B-13, C-2, D-2

using, 1-1 to 1-3, 2-22, 3-22, 4-7, 5-10,

6-16, 7-2, 8-2, 9-7, A-5 to A-9, B-10

to B-14, C-1, D-1

Output,

CORREL, 9-2, 9-12

FFT, 6-5, 6-22

HISTI, 4-16, 4-20, 4-24, 4-28

NVELOP, 3-28, 3-30, 3-32

PEAK, 2-28, 2-32, 2-36, 2—40

PHAMPL, 7-12

POWRSP, 8-8, 8-12

RHISTI, 5-16, 5-20, 5-24

/OUTPUT switch, A-3, A-5

Overflow count,

HISTI, 4-3, 4-16, 4-20

RHISTI, 5-6

Index-6

PEAK,

arguments, 2-17 to 2-20

autogain, 2-22, A-8, B-3

baseline, 2—6

crest, 2-1, 2—4, 2-6

digital filter, 2-3

example programs, 2-24 to 2—40

flowcharts, 2-9 to 2—12

file, 14, 2-22

FORTRAN call, 2-17

gate factor, 2-3

input, 2-2

local,

change, 2-2

maximum, 2—4

minimum, 2—4

output, 2-21

switch settings, 2—7

symbols, 2—-8, 2-9

terminal output, 2-28, 2-32, 2-36, 2-40

terms and conventions, 2—-1, 2-2

using, 2-20

peak,

area, 2-1, 24, 34

area calculation, 3—4

baseline, 2-6

centroid, 3—4

centroid calculation, 3—4

crest, 2-1, 2-4, 2-6

height,

definition of, 2—-1, 3-1, 3-2

width, 2-1, 2-5, 3-3

Peak-processing,

algorithm, 2-1

subroutine, 1-2, 2—-1 to 2—40

PHAMPL,

algorithm, 7-1

arguments, 7-2

example programs, 7-5 to 7-12

file, 1-5, 7-2

FORTRAN call, 7-2

input, 7-1

output, 7-1

terminal output, 7-12

using, 7-1

PHAMPL.MAC, 1-5

PHAMPL.OBJ, 1-5

Phase angle and amplitude spectra

subroutine, 7-1 to 7-12

Phase angles, 7-1

PIP,

command, B-9

utility, A-2, B-9

Points,

reference, 5-1, 5-2

Power spectrum subroutine, 8~1 to 8-12
POWRSP,

algorithm, 8-1

arguments, 82

example programs, 85 to 8-12

file, 1-5, 8-2

FORTRAN call, 8-1

input, 8-1

output, 8-1

terminal output, 8-8, 8-12

using, 8-1

POWRSP.MAC, 1-5

POWRSP.OBJ, 1-5

Procedure,

interactive build, 1-3, 1-5, A—6 to A-9,

B-10 to B-14, C-1, D-1

internal scaling, 6-9

relational scaling, 6-9

Properties,

FFT, 6-14

Protection of files, A—5

/PROTECTION switch, A-5

Random-number generator, 4-11, 5-11, 7-3,
8-3, B-2

Raw data, 2-1, 2-2

Reference points, 5-1, 5-2

Reject count,

NVELOP, 3-18

Relation,

data/integer, 5-1, 5-2

integer/interval, 4-2, 5-2

of FFT to CORREL, 9-2

Relational scaling procedure, 6-9

/REMOVE switch, A-12

RENAME command, A-5

RHISTI,

arguments, 5-7 to 5-8

characteristics, 5-2 to 5-5

example programs, 5-13 to 5-24

file, 14, 5-10

FORTRAN call, 5-7

input, 5-9

output, 5-11

overflow count, 5-6

terminal output, 5-16, 5-20, 5-24

terms and conventions, 5-1 to 5-2

underflow count, 5-6

using, 5-5, 5-9

RHISTI.MAC, 1-5

RHISTI.OBJ, 1-5

RITOUT,

flowchart, 2—14, 3—-12

subroutine, 2-14, 3-12

/RP switch, B-2

/RS switch, B-9

RSX-11M,

BAD utility, B4, B-6, B-8

creating programs under, B-15

default file types, B-1, B-16

DSC utility, B-5, B-7

DSCS8 utility, B-5

editor, B-15

FLX utility, B-2

FMT utility, B-3, B-4, B—6, B—8

FORTRAN IV compiler, B-2, B-16

FORTRAN 77 compiler, B-2, B-16

LBR utility, B-2, B-17

MACRO assembler, B—1

operating system, 1-1 to 1-5, B-1, D-1

PIP utility, B-9

task-builder, B-1, B-2, B-16, B-17

RSXMAC.SML, B-1

RT-11,

creating programs under, A—10

default file types, A—1, A—10

DUP utility, A-2

editor, A-10

FORMAT utility, A-3, A—4

FORTRAN IV compiler, A-1, A-2 A-11
LIBR utility, A-12

linker, A-2, A-11

MACRO assembler, A-1

operating system, 1-1 to 1-5, A-1, C-1

PIP utility, A-2

RUN command, A-7, A-11, B-11, B-16,
C-2, D-2

Scaling,

factor, 6-8 to 6-12

FFT results, 6-8 to 6—12

indicator, 6-9

Selecting the form of subroutine to use, A-5,
B-10

Signed integers, 44, 5-3

/SINGLEDENSITY switch, A-3, A—4
Single-precision integers, 4-8, 517
Software digital filter, 2-3

Source files, 1-3 to 1-5, A-5 B-10

Spectra,

amplitude, 7-1

Spectra subroutine,

Phase angle and amplitude, 7-1 to 7—12

Index-7

Spectrum subroutine,

power, 81 to 8-12

SQRT, 7-2

SQUEEZE command, A-2, A-3, A-5

Storage devices, A-2, B-3, B-5, B-7

Subroutine,

correlation function, 1-2, 9—1 to 9-12

envelope-processing, 1-2, 3-1 to 3-32

fast Fourier transform, 1-2, 6-1 to 6-22

interval histogramming, 1-2, 4-1 to 4-28

interval histogramming with reference

points, 1-2, 5-1 to 5-24

NEXTPT, 2-13, 3-11

peak processing, 1-2, 2-1 to 2-40

phase angle and amplitude spectra, 1-2,

7-1 to 7-12

power spectrum, 1-2, 8-1 to 8-12

RITOUT, 2-14, 3-12

selecting the form of, A-5, B-10

Subroutine example program names, 1-4

to 1-5

Subroutine file names, 1-4 to 1-5

Switches,

/BAD =[AUTO], B4, B-7, B-9

/BADBLOCKS, A-3, A4

/CO, B-9

/CREATE, A-10

/DENS= HIGH, B4, B-6, B-8

/DO, B-9

/FOR, B-3, B-7

/FP, B-16, B-17

/LB, B-17

/LI, B—4, B-6, B-8

/NOPROTECTION, A-5

/OUTPUT, A-3, A-5

/PROTECTION, A-5

/REMOVE, A-12

/RP, B-2

/RS, B-9

/SINGLEDENSITY, A-3, A4

/WAIT, A4, A-5

SYSLIB.OBJ, A-1, A-11

SYSLIB.OLB, B-2

SYSMAC.SML, A-1

System libraries,

MACRO, A-1, B-1

object, A-1, A-11, A-12, B-1, B-17

using, A-12, B-17

Task, B-16

Task-builder,

RSX-11M, B-1, B-2, B-16, B-17

Index-8

Task-image file, B-1, B-2

Terminal output,

CORREL, 9-12

FFT, 6-22

HISTI, 4-16, 4-20, 4-24, 4-28

NVELOP, 3-28, 3-30, 3-32

PEAK, 2-28, 2-32, 2-36, 2—40

PHAMPL, 7-12

POWRSP, 8-8, 8-12

RHISTI, 5-16, 5-20, 5-24

Testing software

see verifying

Threshold value, 3-22, 3-23, 3-29, 3-31

Time axis,

definition of, 2-2, 3-2

TKB command, B-16, B-17

Transform,

approximate Fourier, 6-2, 6-13

forward, 6-1, 6-2

inverse, 62

Transform subroutine,

fast Fourier, 6-1 to 6-22

Transforms,

continuous Fourier, 6-2

discrete Fourier, 6-2, 6-3

inverse Fourier, 6-2

Trend,

change, 2-3, 2—4, 3-2

definition of, 2-3, 2—4, 3-2

True peak width, 2-5

UFD command, B-9

Underflow count,

HISTI, 4-3

RHISTI, 5-6

Underflow values, 4-2, 5-2

Unsigned integers, 44, 5-3

Using,

CORREL, 9-2

customized object files, A-6, B-10

distributed files, A-5, B-10

FFT, 6-1 to 6-22

HISTI, 4-7

Libraries, A-12, B-17

NVELOP, 3-20

options, 1-1 to 1-3, 2-22, 3-22, 4-7, 5-10,

6-16, 7-2, 8-2, 9-7, A-5 to A-9, B-10

to B-14, C-1, D-1

PEAK, 2-20

PHAMPL, 7-1

POWRSP, 8-1

RHISTI, 5-5, 5-9

Utilities, Value,
RSX-11M, NVELOP baseline, 3-3, 3-17, 3—-18
BAD, B4, B-6, B-8 threshold, 3-22, 3-26, 3-27
DSC, B-5, B-7 Values,
DSCSS8, B-5 NVELOP zero, 3-18
FLX, B-2 Verifying,
FMT, B-3, B-4, B-6, B-8 Laboratory Subroutines software, A-9 to
LBR, B-2, B-17 A-10, B-14 to B-15
PIP, B-9

RT-11, Width,
gUPM‘;&z A peak, 2-1, 2.5 3_3
L%;, T A /WAIT switch, A4, A_5
PIP, A-2

Zero values,
Valley, NVELOP, 3-18

definition of, 2-1, 2-6, 2-7, 3-2, 3—4 Zeroth histogram, 5-6

Index-9

Laboratory Subroutines

Programmer’s Reference Manual

AA-C984C-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments sub-
mitted on this form at the company’s discretion. If you require a written reply
and are eligible to receive one under Software Performance Report (SPR) ser-
vice, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[J Student programmer

[J Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

il I
No Postage

Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR1-2/E37

MARLBOROUGH, MASSACHUSETTS 01752

C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
i
n
e

Printed in U.S.A.

	A001
	A002
	A003
	A004
	A005
	A006
	A007
	A008
	A009
	A010
	A011
	A012
	A013
	A014
	A015
	A016
	A017
	A018
	A019
	A020
	A021
	A022
	A023
	A024
	A025
	A026
	A027
	A028
	A029
	A030
	A031
	A032
	A033
	A034
	A035
	A036
	A037
	A038
	A039
	A040
	A041
	A042
	A043
	A044
	A045
	A046
	A047
	A048
	A049
	A050
	A051
	A052
	A053
	A054
	A055
	A056
	A057
	A058
	A059
	A060
	A061
	A062
	A063
	A064
	A065
	A066
	A067
	A068
	A069
	A070
	A071
	A072
	A073
	A074
	A075
	A076
	A077
	A078
	A079
	A080
	A081
	A082
	A083
	A084
	A085
	A086
	A087
	A088
	A089
	A090
	A091
	A092
	A093
	A094
	A095
	A096
	A097
	A098
	A099
	A100
	A101
	A102
	A103
	A104
	A105
	A106
	A107
	A108
	A109
	A110
	A111
	A112
	A113
	A114
	A115
	A116
	A117
	A118
	A119
	A120
	A121
	A122
	A123
	A124
	A125
	A126
	A127
	A128
	A129
	A130
	A131
	A132
	A133
	A134
	A135
	A136
	A137
	A138
	A139
	A140
	A141
	A142
	A143
	A144
	A145
	A146
	A147
	A148
	A149
	A150
	A151
	A152
	A153
	A154
	A155
	A156
	A157
	A158
	A159
	A160
	A161
	A162
	A163
	A164
	A165
	A166
	A167
	A168
	A169
	A170
	A171
	A172
	A173
	A174
	A175
	A176
	A177
	A178
	A179
	A180
	A181
	A182
	A183
	A184
	A185
	A186
	A187
	A188
	A189
	A190
	A191
	A192
	A193
	A194
	A195
	A196
	A197
	A198
	A199
	A200
	A201
	A202
	A203
	A204
	A205
	A206
	A207
	A208
	A209
	A210
	A211
	A212
	A213
	A214
	A215
	A216
	A217
	A218
	A219
	A220
	A221
	A222
	A223
	A224
	A225
	A226
	A227
	A228
	A229
	A230
	A231
	A232
	A233
	A234
	A235
	A236
	A237
	A238
	A239
	A240
	A241
	A242
	A243
	A244
	A245
	A246
	A247
	A248
	A249
	A250
	A251
	A252
	A253
	A254
	A255
	A256
	A257
	A258
	A259
	A260
	A261
	A262
	A263
	A264
	A265
	A266
	A267
	A268
	A269
	A270
	A271
	A272

