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Preface

MANUAL OBJECTIVES AND READER ASSUMPTIONS

The Laboratory Subroutines Programmer’s Reference Manual describes the
Laboratory Subroutines Package (LSP), a set of eight data-processing
subroutines to be used in a laboratory environment.

To use this manual, you should be a laboratory-oriented programmer famil-
iar with the FORTRAN IV or FORTRAN 77 programming language. You
should also be familiar with either the RT-11 operating system (Single Job
(SJ) or Foreground/Background (F/B) monitor) or the RSX-1 1M or
RSX-11M-PLUS operating system. In addition, you must understand the
mathematics involved in explaining the subroutine algorithms. However,
although the laboratory subroutines are written in the MACRO program-
ming language, you do not need to be familiar with MACRO to use them.

MANUAL STRUCTURE

The Laboratory Subroutines Programmer’s Reference Manual contains nine
chapters and four appendixes.

Chapter 1 introduces the Laboratory Subroutines software and explains
how to use the manual.

Chapter 2 describes the peak-processing subroutine, PEAK.
Chapter 3 details the envelope-processing subroutine, NVELOP.
Chapter 4 discusses the interval histogramming subroutine, HISTT.

Chapter 5 describes the interval histogramming with reference points sub-
routine, RHISTI.

Chapter 6 details the fast Fourier transform subroutine, FFT.

ix



Chapter 7 discusses the phase angle and amplitude spectra subroutine,
PHAMPL.

Chapter 8 describes the power spectrum subroutine, POWRSP.
Chapter 9 details the correlation function subroutine, CORREL.

Appendix A explains how to install, verify, and use LSP under the RT-11
operating system.

Appendix B explains how to install, verify, and use LSP under the
RSX-11M operating system.

Appendix C contains an example of the interactive build procedure for
RT-11, LSPMAK.SAV. The appendix also shows the output from the
procedure.

Appendix D contains an example of the interactive build procedure for
RSX-11M, LSPMAK.TSK. The appendix also shows the output from the
procedure.

RELATED DOCUMENTS

The following documents provide more information about the RT-11,
RSX-11M, or RSX-11M-PLUS operating systems and the FORTRAN IV
and FORTRAN 77 programming languages:

Reference Order Number
PDP-11 FORTRAN 77 User’s Guide AA-1884D-TC
IAS/RSX-11 FORTRAN IV User’s Guide AA-1936E-TC
PDP-11 FORTRAN Language Reference Manual AA-1855D-TC
RSX-11M/M-PLUS MCR Operations Manual AA-H263A-TC
RSX-11M/M-PLUS Task Builder Manual AA-H266A-TC
RSX-11 Utilities Manual AA-H268A-TC
RT-11 Programmer’s Reference Manual AA-H378A-TC
RT-11/RSTS/E FORTRAN 1V User’s Guide AA-5749B-TC
RT-11 Software Support Manual AA-H379A-TC
RT-11 System User’s Guide AA-5279B-TC
RT-11 System Message Manual AA-5284C-TC

DOCUMENTATION CONVENTIONS

The following conventions are used in this manual.

e In programming examples, all information the computer prints appears
in black. All commands and responses you type appear in red.

° means you must press the RETURN key on your terminal.



® You produce certain characters by typing a combination of keys together.
For example, hold down the CTRL key and type the letter C to produce
the CTRL C character. Combinations such as this are represented by
CTRLC).

e Many commands in this manual contain the expression dvn:. When you
execute the commands, specify a device and unit number in place of dvn:.
If you do not include a unit number, the system uses unit 0 as a default.

For a list of devices and their abbreviations, see Chapter 3 of the RT-11
System User’s Guide or Chapter 2 of the RSX-1IM/M-PLUS MCR
Operations Manual.

e In descriptions of commands or file names, capital letters represent actual
commands, file names, or file types. You must type these exactly as they
appear. Lower case letters mean that you must supply a name.

e The term RSX-11M/M-PLUS means either or both the RSX-11M or
RSX-11M-PLUS operating systems.

e Brackets represent optional elements in a specification. When you use an
option, do not type the brackets in the command line.

NOTE
Under RSX-11M/RSX-11M-PLUS, brackets are also a
part of the User File Directory (UFD) portion of file specifi-
cations, that is [group, member]. When you type this por-
tion of a file specification, brackets are required syntax
elements. You must type the brackets in the command line.

xi






Chapter 1
Introduction to the Laboratory Subroutines

The Laboratory Subroutines Programmer’s Reference Manual accompanies
the Laboratory Subroutines Package (LSP), a set of eight laboratory, data-
processing subroutines.

This manual describes the eight subroutines and explains how to use them
with your FORTRAN programs. It contains nine chapters and four
appendixes.

You can use any chapter in this manual independently. Each chapter is a
self-contained document that deals with all the essential aspects of a partic-
ular subroutine. Each chapter outlines the algorithm and logic of a subrou-
tine. Each chapter describes the subroutine’s FORTRAN call, arguments,
and the options that can be used with the subroutine. Each chapter has a
special reference divider that precedes the chapter and that summarizes
the information contained in the chapter.

In addition, each chapter presents one or more example programs that use
the subroutines. Where necessary, certain chapters also present flowcharts
and glossaries to explain subroutine operation in greater detail.

The appendixes tell you how to install, verify, and use the Laboratory
Subroutines with your FORTRAN programs under the RT-11,
RSX-11M/M-PLUS operating systems.

1.1 The Laboratory Subroutines Package

The Laboratory Subroutines Package consists of eight subroutines that you
can call from any FORTRAN IV program running under the RT-11 opera-
ting system and from any FORTRAN IV or FORTRAN 77 program running
under the RSX-11M operating system. The eight subroutines perform a
variety of standard tasks commonly encountered in the laboratory.
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NOTE

FORTRAN 77 V4.0 is the next version of FORTRAN
IV-PLUS V3.0. FORTRAN 77 is so named because it adheres
to the 1977 ANSI subset standard for FORTRAN program-
ming languages. Because FORTRAN 77 is compatible with
FORTRAN IV-PLUS V3.0, your FORTRAN IV—PLUS V3.0
programs can run under FORTRAN 77.

The eight LSP subroutines are:

1. The peak-processing subroutine, PEAK, detects peaks in waveform
data.

2. The envelope-processing subroutine, NVELOP, detects peaks in discon-
tinuous segments (envelopes) of waveform data.

3. The interval histogramming subroutine, HISTI, counts the number of
elements in a data stream that fall into one or more predefined
categories.

4. The interval histogramming with reference points subroutine, RHISTI,
counts the number of elements in a data stream marked with reference
points that fall into one or more numerical intervals.

5. The fast Fourier transform subroutine, FFT, numerically approximates
the analytical or continuous Fourier transform.

6. The phase angle and amplitude spectra subroutine, PHAMPL, converts
complex numerical values to phase angles and amplitudes.

7. The power spectrum subroutine, POWRSP, determines the power spec-
trum (the relationship between power and signal frequency) in a set of
Fourier coefficients.

8. The correlation function subroutine, CORREL, provides a discrete
method of performing the correlation function.

Each subroutine has hardware and software options you can use to extend
the capabilities of the subroutine. The chapter dealing with each subrou-
tine explains which options the subroutine can use, what the options do,
and when and how you should use the options. The Laboratory Subroutines
Package also contains a simple, interactive procedure that lets you build
the subroutines in order to create a customized version of your LSP soft-
ware. “Building” consists of assembling the subroutines with the options
you choose enabled. The procedure does the following things:

1. Lets you select which subroutines you want to assemble and which
options you want to use.

2. Creates a file that sets the switches to enable options you choose.

3. Creates a file that builds each subroutine you requested with the op-
tions you chose enabled.

Introduction to the Laboratory Subroutines



4. Creates a file that tests the subroutines you built to make sure your
software works properly.

All of the laboratory subroutines are written in MACRO assembly lan-
guage, but you do not have to know MACRO to use them. You can invoke
any of the laboratory subroutines with a FORTRAN call statement as you
would invoke any FORTRAN subroutine.

The specific FORTRAN call format for a Laboratory Subroutine is outlined
in the chapter describing that subroutine. In all calls you make to any of
the Laboratory Subroutines, make sure you state all of the required argu-
ments explicitly. There are no default values for any of the arguments. If
you omit an argument, accidentally or on purpose, or if you supply too
many arguments, a FORTRAN error message results and no data is
processed.

1.2 The Laboratory Subroutines Package Distribution Kit

The distribution kit for the Laboratory Subroutines Package consists of a
mass-storage volume containing the Laboratory Subroutines Package, this
manual, a software product description (SPD), and other forms.

The subroutines are supplied to you on the distribution volume as both
source files and object files. If you decide to enable options, the interactive
build procedure creates customized versions of the subroutines from the
source files. If you decide not to enable any options, you can use the proce-
dure to build the subroutines without any options, or you can, in some
cases, use the distributed object files by linking or task building them to
your FORTRAN programs. The object files were built with no switches set,
and therefore, with no options enabled. To determine if you can use the
distributed object files, see Appendix A if you are using RT-11, or Appendix
B if you are using RSX-11M.

In addition, the distribution volume contains example programs that call
the subroutines. Example programs exist on the distribution volume as
FORTRAN source files. Example program file names have the form:

EXnsub.FOR or EXnsub.FTN
where: n stands for the number of the subroutine example program

sub stands for the first three letters of the subroutine’s file
name

For instance:
EX3RHLFOR or EX3RHLFTN
is the third example program for the RHISTI subroutine.

Text of the example programs appears in each chapter along with the ter-
minal output that results when you run the programs.
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Files on the distribution volume are as follows:

Peak-processing subroutine files:

For RT-11

FPEAK.MAC
FPEAK.OBJ

EX1FPE.FOR
EX2FPE.FOR
EX3FPE.FOR
EX4FPE.FOR

Envelope-processing subroutine files:

For RT-11

FNVLOP.MAC
FNVLOP.OBJ
EX1FNV.FOR
EX2FNV.FOR
EX3FNV.FOR

Interval histogramming subroutine files:

For RT-11

HISTI.MAC
HISTI.OBJ
EX1HIS.FOR
EX2HIS.FOR
EX3HIS.FOR
EX4HIS.FOR

Interval histogramming with reference points subroutine files:

For RT-11

RHISTI.MAC
RHISTI.OBJ

EX1RHIFOR
EX2RHI.FOR
EX3RHI.FOR

Fast Fourier transform subroutine files:

For RT-11

F4FFT.MAC
F4FFT.OBJ
EX1F4F.FOR

Introduction to the Laboratory Subroutines

For RSX-11M

FPEAK.MAC
FPEAK.OBJ

EX1FPE.FTN
EX2FPE.FTN
EX3FPE.FTN
EX4FPE.FTN

For RSX-11M

FNVLOP.MAC
FNVLOP.OBJ
EX1FNV.FTN
EX1FNV.FTN
EX3FNV.FTN

For RSX-11M

HISTI.MAC
HISTI.OBJ
EX1HIS.FTN
EXZ2HIS.FTN
EX3HIS.FTN
EX4HIS.FTN

For RSX-11M

RHISTI.MAC
RHISTI.OBJ

EX1RHLFTN
EX2RHI.FTN
EX3RHIFTN

For RSX-11M

F4FFT.MAC
F4FFT.OBJ
EX1F4F FTN



Phase angle and amplitude spectra subroutine files:

For RT-11 For RSX-11M
PHAMPL.MAC PHAMPL.MAC
PHAMPL.OBJ PHAMPL.OBJ
EX1PHA.FOR EX1PHA FTN
EX2PHA FOR EX2PHA.FTN
Power spectrum subroutine files:

For RT-11 For RSX-11M
POWRSP.MAC POWRSP.MAC
POWRSP.OBJ POWRSP.OBJ
EX1POW.FOR EX1POW.FTN
EX2POW.FOR EX2POW.FTN
Correlation function files:

For RT-11 For RSX-11M
CORREL.MAC CORREL.MAC
CORREL.OBJ CORREL.OBJ
EX1COR.FOR EX1COR.FTN
Verification procedure files:

For RT-11 For RSX-11M
LSPVER.COM LSPVER.CMD
Interactive build procedure files:

For RT-11 For RSX-11M
LSPMAK.SAV LSPMAK.TSK
Files generated by the interactive build procedure:

For RT-11 For RSX-11M
LSPCND.MAC LSPCND.MAC
LSPBLD.COM LSPBLD.CMD
LSPVER.COM LSPVER.CMD

For instructions on installing, verifying, and using the Laboratory
Subroutines, see Appendix A if you use RT-11 or Appendix B if you use
RSX-11M/M-PLUS. Each appendix includes a description of the interac-

tive build procedure, LSPMAK, and instructions for using it.

Introduction to the Laboratory Subroutines
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PEAK-PROCESSING (PEAK) SUBROUTINE

FORMAT:

CALL PEAK{TABLE,INPUT,INLAST,INPTR,OUTPUT,IDIMO,NPEAKS)

Where:

ITABLE is a 68-element integer array (a 79-element array if AUTOG$

‘ or DPP$ is enabled).
ITABLE(1) = original point density
ITABLE(2) = baseline test factor
ITABLE(3) = gate parameter
ITABLE(4) = minimum increase indicator
ITABLE(5) = output data type
ITABLE(6) = error indicator
ITABLE(7) = reentry pointer
ITABLE(8) input type indicator (if AUTOGS$ or DPP$ is
enabled)

INPUT is an integer array containing input data.

INLAST is an integer variable specifying subscript of last data element
in INPUT.

INPTR is an integer variable specifying subscript of last element in
INPUT processed.

OUTPUT is a double-subscripted array used to store output data.
OUTPUT(1,N) = area, Nth peak
OUTPUT@2,N) = crest height, Nth peak
OUTPUT@3,N) = crest time, Nth peak
OUTPUT4,N) leading minimum height, Nth peak
OUTPUT(,N) = leading minimum time, Nth peak
OUTPUT(6,N) width, Nth peak
OUTPUT(7,N) = trailing minimum height, Nth peak
OUTPUT(8,N) = trailing minimum time, Nth peak
OUTPUTO,N) = ending indicator, Nth peak
OUTPUT(10,N) = current number of input points:

averaged

IDIMO is an integer variable specifying number of peak data sets that
can be stored in OUTPUT.

NPEAKS is an integer variable specifying number of peak data sets al-
ready stored in OUTPUT.

FILE NAMES:

FPEAK.MAC (source file); FPEAK.OBJ (object file)



OPTIONS:

EIS

EAE
AUTOG$
DPP$
NOFLT$

(Extended Instruction Set — KE11-E)
(Extended Arithmetic Element — KE11)
(Autogaining)

(Double Precision Integer Input)

(No Filter)

APPROXIMATE SIZE OF SUBROUTINE (IN WORDS):

If you use the digital filter and enable the following options:

NONE
AUTOG$S
DPP$

NONE EIS EAE
1033 905 946
1237 1097 1150
1219 1079 1132

If you enable the No F

ilter (NOFLT$) option and the following options:

NONE
AUTOGS$
DPP$

NONE

957
1118
1100

EIS

831
982

964

EAE

870
1031
1013

TYPICAL EXECUTION SPEED:

With PDP-11/34 and EIS enabled: 1000 Points/second.
With PDP-11/03 and EIS enabled: 450 Points/second.




Chapter 2
The Peak-Processing (PEAK) Subroutine

The peak-processing subroutine detects significant fluctuations, called
peaks, in data describing a waveform and reports definitive characteristics
for each peak found. The process is known as peak analysis.

Input to the subroutine is a series of discrete positive integers correspond-
ing to values of a waveform function at evenly spaced intervals. To elimi-
nate distortion-producing components in the data, the input is linearly
averaged and filtered before final processing (Figure 2-1). You can change
specified algorithm parameters to enhance detectability of directional
trends and baselines for a given set of data.

Figure 2-1: Flow of the PEAK Subroutine

PEAK-Processing Algorithm

INPUT; Digital Trend Width Baseline Detection:
Averaging Filter Area Width Calculation: OUTPUT
[ ]

PEAK Subroutine

MR-S-1600-81

Output from the subroutine is in the form of size and position for each peak
detected. Size is defined by area, height, and width, and position is ex-
pressed in terms of when a peak begins, crests, and ends. The subroutine
further reports how each peak ends — on a baseline or at a valley.

2.1 Definition of Basic Terms and Conventions

It is important to understand how some of the terms and conventions de-
scribing the PEAK subroutine are used throughout this chapter.
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e The term data (input) stream describes all values presented to the sub-
routine for processing. Actual values processed by the algorithm are
sometimes called heights, for example, crest height, leading minimum
height.

¢ The duration axis of the waveform is the time axis. Time is measured as
the number of raw data points processed since the start of the input
stream. Thus, the term crest time means that crest height was observed
when a number of raw data points equal to crest time were processed.

¢ “Noise” is a generic term for all distortion-producing components in the
input data.

¢ Point-to-point changes are local changes, as contrasted with overall
changes during the course of the waveform, which are called trends.

e Changes are persistent in one direction if the number of changes in that
direction exceeds the number in the opposite direction.

2.2 The Peak-Processing Algorithm: Processing Raw Data

The peak-processing algorithm detects increasing and decreasing trends in
a set of data. Output from the PEAK subroutine is directly related to the
points where we observe changes in these trends. When we see an increas-
ing trend, the point where the increase begins is labelled the start of the
peak, and its value the leading minimum height. The point where a subse-
quent decreasing trend begins is the crest, or crest height, of the peak. And
the point where the decreasing trend stops — or a baseline is
detected — is taken as the end of the peak, or its trailing minimum height.
We can then use this information to calculate the area and width of the

peak. Under ideal conditions this sequence defines the total function of the
algorithm.

Actual conditions are seldom ideal, however. Environmental influences
during data collection tend to distort the pure function being analyzed. To a
great degree the algorithm and any controls that you can exercise over the
subroutine parameters are aimed at removing these distortions so that only
the real (dominant) trends in the data are visible.

2.2.1 Averaging of Input Data

The peak-processing algorithm first takes a linear average of input-data
points; you can specify the number of points to be averaged by means of the
first variable parameter, the Original Point Density (OPD). Thereafter the
subroutine deals only with averaged heights, which can represent several
raw data points. Keep in mind, however, that the time associated with each
averaged height is based upon the total number of raw data points aver-
aged since input began.

This averaging process smooths any “rough edges” from the data. Obvi-
ously you will want to give serious thought to the value you assign to the
OPD. If too many points are averaged, real information may be lost. In an



extreme case you might miss an entire true peak, but a more common
result is late detection of significant trend changes. By averaging too few
points, on the other hand, you could detect false trend changes.

In certain applications of the subroutine you may find that peaks are “tall
and thin” at the outset of the waveform, then tend to become “short and fat”
as it progresses. The algorithm compensates for this tendency by increasing
automatically the number of points averaged when it detects a peak width
that exceeds a preset optimum.' Thus the algorithm makes wide, short
peaks more visible and increases the likelihood of detecting real data fluc-
tuations that might otherwise appear insignificant.

2.2.2 Use of the Digital Filter

The averaged data points are not processed directly by the trend-detecting
portion of the algorithm but are first filtered by means of a digital filter.
The equation for this nonlinear center-weighted filter involves seven
averaged-data points having coefficients of a modified least-squares fit.

Yo=[-(Yq+ Yo + 4o+ Yoo + 11(Y, + Y.)) + 14Y,]/ 42

The coefficients are tuned to prevent area distortion for small peaks in the
vicinity of large ones.

As each new averaged data point is calculated, it is placed in the filter as
the last, or Y., point. The new center point is calculated, after which the
points used in the filter are shifted down by one, that is, Y, = Y, Prerequi-
sites for this process are:

e Seven averaged points must be calculated before the digital filter may be
applied.

e The first point to be considered for directional-trend detection is the cen-
ter point resulting from application of the digital filter to these original
seven points.

e Each subsequent set of seven points used by the filter is chosen using a
sliding “window”, that is, each new averaged point (after the first six) is
used seven times in successive applications of the filter. There is a slight
twist to the sliding window in that once the filter has been applied three
times, four of the points in the current application of the filter are the
result of averaging raw data while the other three (Y., Y-, Y-)) are the
result of previous applications of the filter.

2.2.3 Trend Detection — Application of the Gate Factor

Although averaged and filtered data have been smoothed in earlier process-
ing, the resultant filtered data points may still exhibit slight point-to-point
fluctuations unrelated to the dominant trend of the data. You may set two

1 When the half-width-at-half-height measurement of a peak exceeds 25, the algorithm
doubles the number of points averaged.
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parameters — the gate factor and the minimum increase — so that the
algorithm eliminates much of the effect of this fluctuation.

The gate factor (GT) specifies a valid directional trend in terms of the
number of changes in direction, either persistent or consecutive, over a
series of filtered points.

The minimum increase (IM) is a standard used to test for a real increase in
filtered data from point to point.

At the outset of the input stream and at points where crests are detected,
neither an increasing nor a decreasing directional trend has yet been estab-
lished. The next established trend is determined at these points as the first
direction in which the data change “gate” times.

At intermediate points a current trend is already established. Changes in
directional trend at these points may be established only if the number of
consecutive local changes in the new direction is equal to the gating factor.

A local change is defined in terms of the relation between a given data
point and the local minimum or maximum. If the current height is less
than the local minimum, the change is downward, and conversely, if the
height is greater than the sum of the local maximum and the minimum
increase value (IM), the change is upward. If the height is between the local
minimum and maximum, no change is indicated (although the area is
updated).

When processing is initialized, and at the crest of each peak, the local
minimum is set to a very high value and the maximum to a very low value.
Between crests the local minimum and maximum may be best described by
the flow diagram.

It should be stressed that the points of greatest interest on the
waveform — essentially the points that determine the peak — are found
at the points of trend change: the beginning of a peak, the peak crest, and
sometimes the end of a peak. This test is the heart of the algorithm.

2.2.4 Calculation of Area under the Peak

Two peak characteristics that are not entirely dependent on points of domi-
nant trend change are area and width. The area under the peak, or inte-
gral, is calculated by taking the sum of the area increments corresponding
to each filtered point and half the area increment at the first and last points
of a peak. The area increment at each filtered point is the product of its
height times the number of points currently being averaged.

2.2.5 Algorithm Definition of the Width of a Peak

Calculation of the peak width must be explained in a little more detail. The
peak-processing algorithm defines peak width as the difference between the
time when the crest occurs and the time when a point is reached on the
trailing side of the peak whose height is half the crest height as measured
from the height of the leading minimum (Figure 2-2).

The Peak-Processing (PEAK) Subroutine
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b
c

It is possible that the data may establish an increasing trend on the trail-
ing side of a peak before the point is reached where width is normally
calculated. An increasing trend on the back of a peak is seen as terminat-
ing the peak; the width calculation for the peak is then made at the point
where the increasing trend begins. The value calculated is called the
estimated peak width, and it is half the difference between time of crest
occurrence and time at which the increasing trend is observed (Figure 2-3).

Figure 2-2: Calculation of True Peak Width

Height
aQ

AN

a

a’ Time b’ c’

a = Leading Minimum Height d=
b = Crest Height e =
¢ = Point Whose Value is '2(a+b) f =

b-a
Zezak Width = Time ¢'-Time b’
/

MR-S-1601-81

Figure 2-3: Calculation of Estimated Peak Width

o

Height

a’ Time b’ c’
= Leading Minimum Height d = b-a
= Crest Height e = Time c'-Time b’
= Trailing Minimum Height (Point at Which Peak f = e/2 (Estimated Width)
Ends Because Increasing Trend is Detected) g = Height at Which Peak Width Would Have Been

H
Calculated if Decreasing Trend Had Continued
MR-S-1602-81
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2.2.6 Algorithmic Detection of the Baseline

A final and important step in peak analysis is to determine whether data
reported for a peak have been affected by similar data observed for another
peak. The algorithm checks to see whether recorded peak data indicate a
period of relative quiescence before a new peak begins or whether a new
peak begins with no intervening quiescent period. Such quiescence relative
to the overall peak contour is interpreted as a baseline; when it does not
occur, we say that the peak has ended at a valley. The problem thus be-
comes one of detecting when, or if, the baseline is reached.

Normally we assume that when the algorithm is initiated, input starts
from a quiescent state; therefore we may take the point at which an in-
creasing trend is first observed to be the current baseline height as well as
the leading minimum height of the first peak. Because baseline detection
thereafter involves a comparison of relative minimums, this first detected
minimum has a profound effect on the entire process.

Once a crest has been detected, any attempt to find a new baseline begins
only after the width has been calculated. The time past crest detection
when the baseline search begins is a function of the calculated width. Spe-
cifically baseline detection begins at a time equal to crest time plus the
product of the width and the baseline test factor (BT), an input variable
parameter. The interval between crest detection and the start of baseline
detection reflects the duration of a normal peak as it decays to a relatively
quiescent state.

To detect an actual baseline height, the slopes of successive tangent lines
from the current baseline point to each new filtered point are calculated. If
two successive increases in slope are observed before an increasing trend in
the filtered data is established, the second of these points is taken as the
termination of the peak, and the peak is seen as ending on a baseline.

If an increasing trend is established before two successive increases in slope
are observed, the peak is said to end at a valley, the new peak begins at the
point where the increasing trend is first observed, and the baseline data
remain unchanged.

Note that even though two successive increases in slope indicate a baseline,
the next peak does not begin until that point where another increasing
trend is established. The leading minimum point for the next peak is inter-
preted as defining the height and time of the new baseline. The area be-
tween the trailing minimum of the last peak and the leading minimum of
the new peak is ignored.!

! Data taken during this period indicates that there is no peak-producing activity.



2.2.7 Flow Charts for the PEAK Subroutine

The series of flow charts presented as Figures 2—4 through 2-9 gives de-
tailed logic for the PEAK subroutine. Supplementary information is pre-
sented in Tables 2-1 through 2-3. Table 2-1 lists the combinations of
switch/indicator settings that characterize significant events during peak
detection. Table 2-2 defines the symbols used in the flow charts and accom-
panying explanation. Table 2-3 reviews and summarizes flow-charted
events as they apply to three possible peak configurations:

e A peak starting on the baseline and ending on a “new” baseline
e A peak starting on the baseline and ending at a valley

e A peak starting at a valley and ending on either a baseline or a valley

Table 2-1: Switch Settings for Significant Events in Peak Definition

Significant Current Trend Indicators

Event Switch Decreasing Increasing What is Happening with

BS DI 1I Relation to Peak Processing

0 0 0 N/A

0 0 1 On front of peak that started on
current baseline

0 1 0 Detected a baseline value; look-
ing for a new peak to begin (ini-
tial conditions)

0 1 1 Crest detected for peak that
started on baseline

1 0 0 N/A

1 0 1 New peak begins before point is
reached at which width is to be
calculated (forced calculation of
width)

1 1 0 After crest, looking for point
where width is to be calculated

1 1 1 N/A

2 0 0 N/A

2 0 1 On front side of peak that
started at a valley

2 1 0 Testing for new baseline value
after width has been calculated

2 1 1 Crest detected for peak that
started at a valley
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Table 2-2:

Definition of Symbols

BH
BHT
BS

BT
CH
CHT
DC
DI
GT

IA
IC
II

IM

IPD

LMH
LMT
MNH
MNT
MXH
MXT
OMH
OMT
OPD
(O
PD

SC
SL
TA
™
WD

Current Baseline height
Time of current baseline height

Baseline switch:

0 Peak starts on baseline

1 Looking for width

2 Looking for end on baseline

Baseline test factor'

Height of last crest’

Time of last crest’

Current number of persistent decreases in filtered data
Switch that is set (=1) if signal is decreasing

Number of persistent changes (gating factor) that defines an
increasing/decreasing trend'

Accumulated area as signal increases
Current number of persistent increases in filtered data
Switch that is set (=1) if signal is increasing

Minimum differential between filtered data points that the algorithm inter-
prets as signifying a real increase’

Switch that indicates whether an increase is needed in the number of points
averaged:

IPD=PD if number of points is to be increased
IPD=0 if no increase is needed

Leading minimum height for peak®

Time of leading minimum height’

Current minimum height®*

Time of current minimum height®’

Current maximum height

Time of current maximum height

Old minimum height (before increasing trend is established)
Time of old minimum height

Original point density'

Old Slope

Point density; number of raw data points currently needed to obtain next
average point®’

Slope increase counter; baseline test
New or current slope
3

Accumulated total area during peak formation®’

Raw point counter (current time)

Width of peak”

(Continued on next page)
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Table 2-2: Definition of Symbols (Cont.)

XL Large number used to reset small number
Y Element of digital filter
Y, Current filtered point, that is, center point of current window
Type 0 Peak ends on valley
1 Peak ends on baseline®

1 Value set by user
2 Value reported by algorithm

3 Value can change during peak detection; reported values are those that are current when
the end of a peak is detected.

Figure 2—4: Flow Chart for Peak-Processing; Initialization, Data
Averaging, and Application of Digital Filter
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Results IPD=0

l

Yo=IYog+ Y g+ AV 5+ Y )+ 11(Y_ 4 Y, )+ 14Yy] a2

1
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° MR-S-1603-81
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Figure 2-5: Flow Chart for Peak-Processing; Calculation of Peak
Width and Search for Baseline
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Figure 2-6: Flow Chart for Peak-Processing; Area Calculation

Current Point - Current
Maximum + Minimum
Increase?

Reset Current Maximum Height

Reset Time of Latest Maximum

Bump Current Number of
Persistent Increases in
Filtered Data

Current Number of Increases  Gate?
Yeso{' N20o
No

1A=1A +(Y_,"PD),

Update Total Accumulated Area
During Increase by Current Area

MXH=Y_

MXT=TM
IC=IC+1

No
1

DC=0

Clear Counter for Number of Minimums

Is Current Trend Increasing?
Mo bi=1
Yes

Update Accumulated Area During Increase
IA = 1A + '/,PD*MNH Save Time of Last Minimum
=1 OMH = MNH Establish Increasing Trend
DI =0 OMT = MNT
NEW PEAK STARTS
Peak Started on Baseline Looking for Width
:EW BASELINE
eset Baseline Height
BH = OMH =0 =1 =, =
R’:f',,,:','g":f' Occurrence | gir oMt 8BS WD = 2(MNT-CHT Forced Estimate of Width
=2 PEAK
ENDING
ON VALLEY
C g for
End on
Baseline Type=0
CALL RITOUT
This Switch Combined With
Increasing Trend Suggests
BS=2 Search for Crest
/\ Width - 25 Filtered Points?
Yes
Qw/ = wopo: 25
No
Add Area Correction
Increase Number of Input Values
TA=TA+ (o, 2
IPD = PD
MR-S-1605-81

The Peak-Processing (PEAK) Subroutine 2-11



Figure 2-7: Flow Chart for Peak-Processing; Determining the

Baseline
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Figure 2-8: NEXTPT Subroutine — Peak-Processing
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Figure 2-9: RITOUT Subroutine — Peak-Processing
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Table 2-3: Definition of Peak Events
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Point/Section Flow Chart
of Curve Description Reference(s)
a Input begins Flowchart begins
a-b Decreasing trend in data after baseline |BS=0.DI=11I1=0
detection DC>GT,IC<GT
b Increasing trend established; leading |OMH=b BH-=b
minimum height'time of Peak 1 de- |OMT=b’ BHT=b'
tected; “new” baseline data (height and
time) defined
b-¢ Increasing trend in data: change in es- | BS=0,DI=011-1
tablished trend will indicate crest | DC<GT.IC~GT
detection
c Decreasing trend established;: crest | LMH-OMH CH - ¢
height and time detected and recorded; | LMT ~OMT CHT =¢’
leading minimum data recorded; start
looking for point where width is
calculated
c-d Decreasing trend in data after crest de- |BS=1,DI=111-0
tection and before width calculation DC>GT,IC<GT
d Point where width is calculated; |WD-=d'-c¢’
d=(b+c12
d-e Decreasing trend in data after width is | BS=2,DI=111-0
calculated and before baseline is | DC>GTIC<GT
detected
e Baseline detected; Peak 1 ends at this | MNH=e
point, which is recorded as trailing | MNT=¢’
minimum Type=1
END OF PEAK 1
e-f Decreasing trend after baseline detec- | BS=0,DI=111=0
tion and before start of next peak; area | DC>GT,IC<GT
under curve ignored

The Peak-Processing (PEAK) Subroutine
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Table 2-3: Definition of Peak Events (Cont.)

Point/Section Flow Chart

of Curve Description Reference(s)
START OF PEAK 2

f Increasing trend established; leading |OMH=f BH=f
minimum (height and time) of Peak 2 |OMT=f BHT=f
detected; baseline data (height and
time) redefined

g Height on Peak 2 (after crest detected) | No corresponding point on
where width would be calculated if data | flow chart
were to decrease to this point before
start of Peak 3;
g=(h+f)12=(CH,-OMH)2

f-h Increasing trend in data; change in es- BS=0,DI=01II=1
tablished trend will indicate crest detec- DC<GT,IC>GT
tion (see b-c)

h Decreasing trend established; crest | LMH=OMH CH=h
height and time detected and recorded; | LMT=OMT CHT=h'
leading minimum data recorded; start
looking for data value g

h-i Decreasing trend in data after crest | BS=1DI= 1,II=0
detection and before width calculation DC>GT,IC<GT
(see c-d)

i Increasing trend established before | WD =(MNT-CHT)/2
width of Peak 2 calculated; forced esti- | MNH=i BH=f OMH =i
mation of width of peak 2 as (i'-n')/2; | MNT=i' BHT=f OMT=1i"
Peak 2 ends at valley with i as trailing | Type=0
minimum for Peak 2; Peak 3 begins
with i as leading minimum; baseline
data remain unchanged

END OF PEAK 2/START OF PEAK 3

i-j Increasing trend in data; change in es- | BS=2,DI=011=1
tablished trend will indicate crest detec- DC<GT,IC>GT
tion (see b-c,f-h)

] Decreasing trend established; crest | LMH=OMH CH =j
height and time detected and recorded; | LMT = OMT CHT = J
leading minimum data recorded; start
looking for point where width is to be
calculated

J-k Decreasing trend in data after crest | BS= 1,DI=11II=0
detection and before width calculation DC>GT,IC<GT
(see c-d)

k Point where width is calculated; | WD=k'-j'
k=(j+1)/2
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Table 2-3: Definition of Peak Events (Cont.)

Point/Section Flow Chart
of Curve Description Reference(s)
k-1 Decreasing trend in data after width is | BS=2,DI=1I1=0

calculated and before baseline is de- | DC>GT,IC<GT
tected (see d-e)

1 Increasing trend established before | MNH=1BH=f OMH=1
baseline is detected; peak 3 ends at val- | MNT=1" BHT =f"
ley with 1 as trailing minimum; Peak 4 | OMT =1’

begins with 1 as leading minimum; | Type=0

baseline data remain unchanged

END OF PEAK 3/START OF PEAK 4

Peak 4 not shown in illustration

2.3 How to Call the Peak-Processing Subroutine

The symbolic name for the peak-processing subroutine is PEAK, and the
general format for the FORTRAN call is:

CALL PEAK(ITABLE,INPUT,INLAST,INPTR,0UTPUT,IDIMO,NPEAKS)

For reference, argument names in the call to PEAK have been assigned
arbitrarily. You may supply your own argument names, but you must state
all of the arguments explicitly. There are no default values for any of the
arguments. If you omit an argument, either accidentally or on purpose, or if
you supply too many arguments, a FORTRAN error message results, and

no data is processed. The arguments are described in the following
discussion.

ITABLE is an integer array used to store intermediate results and other
information required by the algorithm; its dimension is normally 68.’
You must set the values of the following array elements to transmit
variable parameters and other information to the subroutine.

ITABLE(1) Number of raw input values to be averaged to determine a
point for use by the digital filter; this variable parameter
is called the original point density (OPD) in the descrip-
tion of the algorithm. In general, the OPD should be so
chosen that the number of averaged data points on the
first peak is about 100.

1 See Section 2.5 for the options you can use with the peak-processing subroutine.
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ITABLE(2)

ITABLE(3)

ITABLE(4)

ITABLE(5)

ITABLE(6)

The baseline test (BT) factor (Section 2.2.6); on a peak
whose width is WD, baseline detection begins at time?
WD-ITABLE(2) past crest time. In general, suggested val-
ues can range from 3 to 5.

The number of either persistent or consecutive local
changes in one direction needed to establish a new domi-
nant directional trend. It is the gate parameter discussed

in Section 2.2.3. In general, suggested values can range
from 3 to 8.

Minimum differential (IM) between filtered data points
that the algorithm interprets as a real increase; this ele-
ment, with ITABLE(3), determines real changes in domi-
nant directional trends (Section 2.2.3). In general,
suggested values can range from 1 to 5.

The data type of the output array:

= output type is double-precision integer
= output type is single-precision floating-point
== output type is double-precision floating-point

Error indicator in the calling sequence or input
parameters

=0 Indicates no error
=N Indicates ITABLE(N) is in error, for example,

ITABLE(1)<0
ITABLE(2)<0

=-N Indicates the Nth argument is in error, for exam-
ple, INPTR>INLAST (see the following discussion)

=-8 Indicates that the calculated area to this point has
caused an overflow. That is, it exceeds 2% - 1.
When the overflow is detected, PEAK returns with
INPTR and NPEAKS set as usual. However,
OUTPUT (1, NPEAKS +1) will contain the value
of the area of the current peak up to and including
the point of overflow. You must take corrective ac-
tion by saving this value and returning to the
PEAK subroutine for further processing. PEAK
calculates the remaining area and peak character-
istics. When PEAK returns again, the peak area
reported is the area of the peak from the last point
of overflow. To determine the actual area of the
peak, simply convert the overflowed value to a pos-
itive, double precision, real number and add to it
the remaining area of the peak.

2 Refer to conventions defined in Section 2.1 of this chapter.



ITABLE(7) This element must be set to zero before the initial call is

made to the subroutine for each new stream of data. When
the subroutine processes a data stream in “parts” (Section
2.4), it uses ITABLE(7) for reentry to process each subse-
quent part. This element should thus not be altered by a
user until all parts have been processed.

ITABLE(8)

ITABLE(68)

Elements used exclusively by the subroutine while the

data stream is being processed.

INPUT is an integer array containing the raw data to be processed. Note
that all data must be positive and in the range 0 through 32767(2°- 1).!

INLAST is an integer variable having the value of the subscript of the last
element of INPUT containing data.

INPTR is an integer variable having the value of the subscript of the last

element processed by PEAK. We can also think of it as having a value
one less than the subscript of the next datum in INPUT to be processed.
For example, if the first element of the array is to be processed, INPTR
should be set to zero. You must set the value of INPTR before calling
PEAK; however, PEAK changes the value before returning.

OUTPUT is a double-subscripted array used to store the results of apply-

ing the peak-processing algorithm. The first dimension specifies the
number of data elements to be output for each peak detected; there are
always ten. The second dimension specifies the number of sets of peak
data that can be stored by the algorithm while processing the input
data and is defined by IDIMO.

The data type of the output array is optional and can be any of those
specified by ITABLE(5).

The ten data elements reported for each peak are:

OUTPUT(1,N)

Area of Nth peak

OUTPUT(,N) Height of crest, Nth peak

OUTPUT(@3,N) Time of crest, Nth peak

OUTPUT4,N) Height of leading minimum for Nth peak
OUTPUT(5,N) Time of leading minimum for Nth peak
OUTPUT(6,N) Width of Nth peak

OUTPUT(7,N) Height of trailing minimum for Nth peak
OUTPUT(8,N) Time of trailing minimum for Nth peak

1 See Section 2.5 for the options you can use with the peak-processing subroutine.
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OUTPUT(9,N) Indicator of how peak ended:

OUTPUT(10,N)

IDIMO is an integer variable that transmits to the subroutine the second
dimension of the output array. It defines the number of peaks that can

=0 ended on valley
=1 ended on a baseline

be reported before the output array is filled.

NPEAKS is an integer variable giving the number of peak data sets stored
in the output array. We can also think of it as having a value of one less
than the second subscript for the next set of output data to be stored.
For example, for the initial set of peak data to be stored, NPEAKS

should be set to zero.

You must set the value of this argument before calling the subroutine;

however, the subroutine can change the value before returning.

NOTE

PEAK returns (assuming there are no errors) after either of
the following events:

1.

All input data elements have been processed.

2. The output array is filled, and there is another set of

peak data to report.

The arguments INPTR and NPEAKS indicate which
event caused the return and the current status of I/O
processing:

e If condition 1 occurred then, INPTR=-1 and
NPEAKS=< IDIMO, that is, the subroutine has set
NPEAKS to the proper value for the next subroutine
call.

o If condition 2 occurred, NPEAKS=-1 and INPTR
equals the proper subscript value for reentry — one less
than the subscript of the next element to be processed.

If the subroutine is called again with either INPTR or
NPEAKS equal to -1, the subroutine interprets the value
as zero.

2.4 Using the Peak-Processing Subroutine

2-20

You can use several inherent features of the peak-processing subroutine to
process data produced in real time. Thus, you may use PEAK in conjunc-
tion with other routines that monitor and digitize real phenomena. The
particular arguments that make possible this real-time application are
INPTR, INLAST, and NPEAKS (see Section 2.3). Let us visualize the input
and output arrays as a series of “pigeonholes”, and INPTR and NPEAKS as

The Peak-Processing (PEAK) Subroutine
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pointers to the next available data element to be processed and the next
slot for outputting data, respectively (Figure 2-10). INLAST is a pointer to
the last INPUT element containing data.

Figure 2-10: INPTR, INLAST, and NPEAKS Point to Slots

INPUT
[ [ . L4 e o o . [} °
INPTR INLAST

1

2

3

. . . ° . . °

9
10

NPEAKS

MR-S-1609-81

The subroutine returns when all data in the input buffer have been pro-
cessed, that is, INPTR =INLAST, or the output array is filled, whichever
occurs first. If all data in the input buffer have been processed, INPTR will
equal -1 and NPEAKS will point to the last slot (subscript) in the output
array that was filled. If, conversely, all slots in the output array have been
filled, NPEAKS=-1 and INPTR points to the last element (subscript) in
the input array that was processed. Neither is an error condition, and nei-
ther is more advantageous outside the context of your specific application.

These conditions give you great flexibility in handling subroutine input
and output. When you have large quantities of data to process, you need not
allocate space for all data at once because the subroutine is designed to
process a given data set in sequential parts. In fact, all data need not be
known before processing begins, as is true in real-time processing. Data can
be asynchronously collected into one buffer at the same time that a previ-
ously collected buffer is processed.

Handling of output is also flexible. It might, for example, be printed or
stored after each return from the subroutine, or it might be further pro-
cessed only when the output buffer was filled, that is, NPEAKS=-1. You
may choose the procedure that is most convenient for you.

Further flexibility is introduced by the fact that all arguments in the call-
ing statement except ITABLE can be changed between successive calls to
the subroutine to reflect the origin of the remaining input data and where
the output is to be stored. ITABLE must not be tampered with during the
intervals between calls for a given data stream because it contains the
current information needed to resume processing at the point where pro-
cessing was stopped on the previous call.
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The subroutine is position-independent and reentrant. Although these fea-
tures are of interest mainly at the system level, they do result in additional
advantages at the user level. Perhaps most significant is the possibility of
processing several data streams simultaneously. All pertinent information
concerning the history of a data stream is contained in the ITABLE array
rather than in the code for the subroutine. Imaginative use of the argu-
ments in the subroutine call should make the subroutine functionally com-
patible with any application that uses the peak-processing algorithm.

2.5 Modifying the Subroutine — Using Options
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The following sections explain which options you can use with the peak-
processing subroutine. If you want to use any of the options, you must
enable them when you build the subroutine from the source file using the
interactive build procedure (see Section 1.1).

2.5.1 EIS (Extended Instruction Set)

Enable this option if your installation has EIS (KE11-E) hardware or any
other floating-point option available. Enabling this option increases the
execution speed and decreases the memory requirements for the subroutine
by approximately 139 words if AUTOG$ or DPP$ is enabled or by approxi-
mately 129 words if AUTOG$ or DPP$ is not enabled.

2.5.2 EAE (Extended Arithmetic Element)

Enable this option if your installation has EAE (KE11) hardware available.
Enabling this option increases the execution speed and decreases the mem-
ory requirements for the subroutine by approximately 87 words.

2.5.3 AUTOGS (Autogaining)

Enable the autogaining option only if you have a bipolar 12-bit A/D con-
verter supplied by DIGITAL that has four, program-selectable gain values:
1, 4, 16, 64. The converter has optional features that allow the dynamic
range to collapse under software control as the analog signal being moni-
tored approaches zero volts. This feature effectively increases the resolution
of the converted value as the analog signal becomes weaker.

Autogaining allows you to magnify the analog signal by a factor of one of
these gain values, so that the resulting converted value becomes as signifi-
cant as possible without causing an overflow. As an example, once a signal
decreases (in absolute value) to a voltage 1/4 the maximum convertible
voltage at a gain of 1, the gain is increased to 4. Thus the full digital range
of the converter is implemented. As the real voltage of the analog signal
continues to decrease in absolute value, the software increases the gain
appropriately.
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It should be pointed out, however, that while the resolution of the converted
values increases, some analog signals differing exactly by magnifications of
4, 16, or 64 continue to be represented by the same 12-bit number. To
distinguish values converted at different hardware gain settings, the auto-
gaining software sets two additional bits in words that contain the con-
verted values. These are bits 12 and 13, which indicate the gain value for a
particular datum, as follows:

Gain Value Used

Bit 13 Bit 12 for Conversion
0 0 1
0 1 4
1 0 16
1 1 64

When the peak-processing subroutine is assembled to process data collected
using the autogaining algorithm, input data must still be positive; negative
values are set to zero. A characteristic of the bipolar converter used in
autogaining is to represent converted values in the range of zero to maxi-
mum positive voltage as 40004 to 7777, and those in the range of zero to
maximum negative voltage as 3777, to 0000,.

To deal with all converted values in their proper relation, the subroutine
normalizes them before processing begins; all values are effectively repre-
sented as if sampled at a gain of 64. For example, all values sampled at a
gain of 1 are multiplied by 64; those sampled at a gain of 4 are multiplied
by 16, and so on. Consequently the resulting heights and areas are in-
creased by a factor of 64 over those produced by sampling and processing
the same analog signal with a gain of 1 (no gain).

Multiplying a 12-bit number by 64 results in an 18-bit number, which is a
double-precision word. Consequently:

e The size of the required code increases by approximately 195 words.

® You must increase the dimension of ITABLE, the first argument in the
call to PEAK, from 68 to 79.

® You must set another element in ITABLE:

ITABLE(8)=0 input data not autogained
=1 input data autogained

By using this parameter, input that is not autogained can still be
processed.

* You should select ITABLE(3) and ITABLE(4) with an awareness that all
data processed can be as much as 64 times more sensitive than if collected
with a gain of 1. For instance, if two values differ by one when collected
at a gain of 1, they could be interpreted as differing by as much as 64
when their values have been normalized.
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2.5.4 DPPS$ (Double Precision Integers)

If the upper range of data points to be processed exceeds 32767 but is less
than 33554431 decimal (2”-1), you must enable this option. If you enable
this option, all input data can be double precision integer, that is, the
second argument in the FORTRAN call statement, INPUT, can be an
INTEGER*4 array (or equivalent). Consequently:

e The size of the required code increases by approximately 195 words.

¢ You must increase the dimension of ITABLE, the first argument in the
call to PEAK, from 68 to 79.

e You must set another element in ITABLE:
ITABLE(8)=0 input data single-precision

=1 input data double-precision

2.5.5 NOFLTS$ (No Filter)

This option disables the software digital filter that the subroutine normally
uses. Enable this option if you want to average and process data points
without filtering them, or if you want to apply your own filter to the raw
data before calling the PEAK subroutine.

Enabling the no filter option results in quicker processing of data points
and decreases the size of the subroutine.

2.6 Examples Using the PEAK Subroutine
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The four examples presented here process the same waveform — the sum of
four Gaussian curves — represented by the identical 1024 points. The vari-
able input parameters are likewise the same for both examples, and the
resulting output is printed on the terminal. Figure 2-11 is a graphic repre-
sentation of the input data.

Figure 2-11: Actual Plot of the Input Data

MR-S-1610-81
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PEAK Example #1

Example 1 is idealized in several respects. Normally you will not know that
the input array will be empty upon return from the subroutine or that the
output array had sufficient room for all output data. You must therefore
provide for these possibilities by checking INPTR and NPEAKS. Also, no
provision is made for error checking because the input and output are
known and the program has been debugged with respect to these types of
errors. In practice, ITABLE(6) should always be checked.

This type of example was chosen to illustrate 1) minimal requirements for
implementation and 2) how the subroutine and its parameters affect a
given set of data.

In Example 1 the data are input as four 256-point parts; the subroutine
processes each part as it is received, placing the results in the output array,
which is large enough to accommodate the complete set of processed data.
Upon return from the subroutine, the input array is always empty
(INPTR=-1) and the output array is never filled (NPEAKS # -1).
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PEAK Example #1

DIMENSION INPUT(256) ,0UTPUT(10,3) JEMU(4) ,SIGMA (L) 1STZE ()
DIMENSION ITABLE(BB) »UTYPE(2,2)

DATA WTYPE/’ WA’ ,'LLEY’,’BASE’,'LINE’/

DATA EMU/Z204 170, 4600, ,1000,/
DATA SIGMA/20, 110,200, 4100,/
DATA SIZE/950, 4400, 4300, ,200,/

DATA ITABLE/1+24+3+1+1,63%0/
DATA INLAST +INPTR »IDIMO 'NPEAKS/256 10,3 ,0/

K=0,

DO 3 K=1,4

DO 1 I=1,256

A=0,

K=K+1,

DO 2 J=1.+4

A=A+STZE(J)*EXP (- S*((X-EMU(J))/SIGMA(J) ) #%2)
INPUT(I)=A

CALL PEAK(ITABLE »INPUT »INLAST ,INPTR OUTPUT »IDIMO 'NPEAKS)

3 CONTINUE

Q@ —©@— O O

TYPE 900
9goo FORMAT(1H1,T24,'PEAK Example #1°//)
TYPE 1000
1000 FORMAT (* PEAK NO. ‘8% 'AREA’ 14X+ P HEIGHT ' 46}, 'P TIME * 143Xy
A 'LHEIGHT 48X 'L TIME’ +/ +11% "HALF WIDTH' 44} ,’'T HEIGHT “ 4G},
Cc'!) B ‘T TIME' +8Xy'TYPE’ 8%,y 'RATE "/ /)
DO 4 L=1,NPEAKS
KK=0UTPUT(9,L)+1
4 TYPE 2000, (L (OUTPUT(I L) +I=1+8) »(UTYPE (K +KK) 'K=142)y0UTPUT(10,L))
2000 FORMAT(I9SF12.0+/ 9 3F12,0,4%,2A4,F12,0)
END
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Define array variables and their size.
VTYPE is used to print a word describing how the peak ended (TYPE).

Arrays EMU, SIGMA, and SIZE are used to produce the waveform to
be processed, which is the sum of four Gaussian curves.

Data statements initializing the variable input parameters to the
algorithm (ITABLE) and the arguments for the call to PEAK.

Section producing values that represent the waveform: as X increases,
the next 256 values are calculated and PEAK is called. Four waveform
segments are produced.

Each time 256 values are produced, PEAK is called.
ITABLE is not affected by the program but is used by the subroutine.

INPUT contains the input data; actual values change each time PEAK
is called.

INLAST is the subscript of the last element in INPUT that contains
data; always 256 in this example.

INPTR is either O (initially) or -1; subroutine looks for data to start in
the first element in the INPUT array.

OUTPUT is the array where data for each peak is stored; space is
allocated to accommodate all data produced; argument remains
unchanged by program.

IDIMO specifies the number of sets of peak data that can be stored
before the OUTPUT array is filled.

NPEAKS specifies the number of sets of peak data produced thus far;
because results are known, no check is made for a full condition with
respect to the output array.

Loop for each of four sections of waveform. All elements of INPUT
array are processed (INPTR=-1), but OUTPUT array still has room
(NPEAKS<IDIMO).

This section types the results on the terminal.
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Terminal output with digital filter enabled:

PEAK NO.

-

Terminal

PEAK NO.

(]

AREA

HALF WIDTH

35795,
12,
11803,
70
134928,
124,

output with No

AREA
HALF WIDTH

38147,
14,
11835,
7.
132652,
117,

PEAK Example #1

P HEIGHT
T HEIGHT

951,
345.
451,

a1,
299,

200,

P TIME
T TIME

19,
530
680
93.
596.
845,

Filter option enabled:

PEAK Example #1

P HEIGHT
T HEIGHT

953,
342,
454,

at.,
300,

201,
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P TIME
T TIME

19.
54,
68.
93.
597,
831.

L HEIGHT
TYPE

692.
BASEL INE
343,
BASELINE
13,
VALLEY

L HEIGHT
TYPE

608,
BASELINE
342,
BASEL INE
14.
VALLEY

L TIME
RATE

4.
1.
54,
1.
106,
10

L TIME
RATE

n
[N SO
. o e+

106,



PEAK Example #2

Example 2 is also idealized because the input and output are known and
the program has been debugged. Therefore no error checking is done. The
variable input parameters (ITABLE) are set to the same values and in the
same manner as in Example 1.

All input for this example is presented to the subroutine in one large array.
However the output array is large enough for only one set of peak data.
Thus each time the subroutine returns to the main program (except for the
last return), the output array is full (NPEAKS =-1) but the input array has
not been completely processed (INPTR # -1,<INLAST). On return from the
subroutine, the data in the output array must be further processed (in this
example printed on the terminal) before another call is made to the subrou-
tine to process input data.
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PEAK Example #2

DIMENSION INPUT(1024) ,0UTPUT(10) ,EMU(4) ySIGMA(A) ,SIZE(4)
DIMENSION ITABLE(G8) yUTYPE(2,2)

DATA VTYPE/' WA’ ,'LLEY’,’'BASE’,'LINE "/
DATA EMU/20, 170, 4,800, ,1000,/

DATA SIGMA/20, 410,200, 4,100,/

DATA SIZE/950, 400, 4300, 4,200,/

DATA ITABLE/1:2+3+1+1,63%0/
DATA INLAST »INPTR,IDIMO 'NPEAKS/1024,0 41,0/

lI’@'lF@'I@F@'I

L=0
TYPE 900
900 FORMAT(1H1 ,T24+'PEAK Example #27//)
5 TYPE 1000
1000 FORMAT (' PEAK NO. ‘18X, 'AREA’ yX s 'P HEIGHT * 46X, 'P TIME’ 143,
A 'L HEIGHT’BX 'L TIME'+/ 11X 'HALF WIDTH’ 4%+ 'T HEIGHT’ 163,
B ‘T TIME' 48X,y 'TYPE ' 8%y 'RATE’//)

11

DO 1 I=1,1024
A=0,
R=1

D02 J=1.44

A=A+STZE(J)I*EXP (- . S* ((X-EMU(J))/SIGMA(J) ) *%2)
INPUT(I)=A

3 CALL PEAK(ITABLE »INPUT INLASTINPTR,OUTPUT ,IDIMO NPEAKS)
IFC(INPTR.LT.O.AND.NPEAKS,EQ.0) STOP

& —@

L=L+1
KK=0UTPUT(9) +1
4 TYPE 2000, (L, (OUTPUT(I) »1=1,8) +(UTYPE(K KK) »K=1,25 y0UTPUT(10))
2000 FORMAT(I9,SF12,0,/,9%,3F12,044%2A4 F12,0)

©

IFCINPTR.GE.0) GD TO 3

STOP
END

@
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Define array variables and their size.
VTYPE is used to print a word describing how the peak ended (TYPE).

Arrays EMU, SIGMA, and SIZE are used to produce the waveform to
be processed, which is the sum of four Gaussian curves.

Data statements initializing the variable input parameters to the
algorithm (ITABLE) and the arguments for the call to PEAK.

Type headings for peak output.
Produce 1024 values representing the waveform.

Call the PEAK subroutine to continue processing the input array. If

the input array is empty and no new peak data are in the output array,
exit.

ITABLE is not affected by the program but is used by the subroutine.

INPUT contains data to be processed, some of which may already have
been processed.

INLAST is the subscript of the last element in INPUT containing data;
it is always 1024.

INPTR is always equal to the subscript of the last element in the input
array that was processed. Initially it is zero, but in subsequent calls it
points to the last element in the input array that was processed when
the output array was filled. The PEAK subroutine manages this
element.

OUTPUT is array where data for each peak is stored. Space is
available for only one set of peak data. Therefore each time an
additional set of peak data is available, the subroutine returns to the
main program so that more space can be made available to store data.

IDIMO specifies the number of sets of peak data that can be stored
before the OUTPUT array is filled; it is set to one.

NPEAKS is zero (initially), 1 (if one peak was found but the input was
exhausted), or -1 if two sets of peak data are ready to be reported.

Print peak data.

If input data is not completely processed, call PEAK again to continue
processing.
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Terminal output with digital filter enabled:

PEAK NO.

)

Terminal

PEAK NO.

rJ

AREA

HALF WIDTH

35795,

el
<o

11803,
7.
134928,
124,

output with No

AREA
HALF WIDTH

38147,
14,
11835,
7.
132652,
117,

P HEIGHT
T HEIGHT

951,
345,
451,

a1,
299.

200,

PEAK Example #2

P TIME
T TIME

19.
53,
68.
93.
596,
845,

Filter option enabled:

PEAK Example #2

P HEIGHT
T HEIGHT

953,
342,
454,

al.
300,

201,
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P TIME
T TIME

190
54,
68.
93,
597.
831.

L HEIGHT
TYPE

692,
BASELINE
343.
BASEL INE
13,
VALLEY

L HEIGHT
TYPE

608,
BASELINE
342,
BASELINE
14,
VALLEY

L TIME
RATE

4,

54,
1.
106,
1.

L TIME
RATE

1.
1,
540
10
106,
10



PEAK Example #3

Example 3 is almost identical to Example 1. But, because Example 3 pro-
cesses autogained data, the peak-processing subroutine had to be built with
AUTOG$ enabled. Three changes were made to the source code of
example 1:

1. In Section 1, the size of ITABLE was increased to 79 elements.

2. In Section 4, elements 6 and 7 of ITABLE have been set to 0 and
element 8 has been set to 1 to specify autogained data.

3. In Section 5, each element in INPUT has had 4000 octal added to it to
simulate bipolar zero and 30000 octal added to it to simulate the high-
est gain value possible and to eliminate the need for normalization.
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PEAK Example #3

DIMENSION INPUT(256) ,OUTPUT(10,3) JEMU(4) ,SIGMA(4L) 1SIZE(4)
DIMENSION ITABLE(79) ,UTYPE(2,2)

DATA VTYPE/’ VA’,’LLEY’','BASE’,'LINE"'/

DATA EMU/20.,,70, 46800, ,1000,/

DATA SIGMA/204 10,4200, ,100,/

DATA SIZE/950. 400, ,300, 4,200,/

DATA ITABLE/ 1412134191 24041 ,71%0/
DATA INLAST »INPTR»IDIMO NPEAKS/256,0,3,0/

1 1O OO

K=0,

DO 3 K=1,4

DO 1 I=1,256

A=0,

X=X+1,

D02 J=1.4

A=A+STZE(J)*EXP (- S*((X-EMU(J))/SIGMA(J) ) %*2)
1 INPUT(I)=A+"34000

o
A\

[

CALL PEAK (ITABLE »INPUT »INLAST ,INPTR,OUTPUT,IDIMO sNPEAKS)

CONTINUE

100

TYPE 900
900 FORMAT (1H1,T24, 'PEAK Example #3°//)

TYPE 1000
1000 FORMAT (* PEAK NO. * 48X+ "AREA’ +4X ‘P HEIGHT * ,B8X, ‘P TIME ’ 44},
<8> A 'L HEIGHT 46X 'L TIME' /11X "HALF WIDTH' »4X%,'T HEIGHT ' ,6Y

[ ]

‘T TIME' +8X+'TYPE'+8X s 'RATE’//)
DO 4 L=1,NPEAKS
KK=0UTPUT(9,L)+1
4 TYPE 2000, (L»(OUTPUT(I L) +sI=1,8) (UTYPE(K KK) 1K=1,2) yOUTPUT(10,L))
2000 FORMAT(I9,SF12.0+/ 49X 3F12,0 44X 12AdF12.0)
END
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Define array variables and their size.
VTYPE is used to print a word describing how the peak ended (TYPE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>