
DEC-8/1-HOCA-D

KE8/I

EXTENDED ARITHMETIC

ELEMENT

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright © 1969 by Digital Equipment Corporation

The material in this manual is for Informa-

tion purposes and is subject to change with-

out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

EXTENDED ARITHMETIC ELEMENT

INTRODUCTION

The KE8/I Extended Arithmetic Element (EAE)

option for the PDP-8/l enables the central

processor to perform arithmetic operations at

higher speeds . These higher speeds are made

possible by incorporating the EAE components

with the existing central processor logic in

such a way that they operate asynchronously.

The EAE components consist of: a 12-bit

Multiplier Quotient (MQ) register, a 5-bit

Step Counter (SC), a 3-bit Instruction Regis-

ter (EAE IR), and the EAE timing and control

logic

.

The EAE logic is contained in twenty-five

modules located in the central processor main-

frame, module locations C13 through C24

and D12 through D24. The MQ and SC regis-

ters are displayed on the PDP-8/l front panel

.

The instructions for the EAE are a class of

Group 3 Microinstructions containing binary

ones in MB bits 00 through 03 and 11 . These

bits, always being set, distinguish the EAE

instruction from all other instructions. These

instructions can be subdivided further into

two basic groups: the register load group

(single-cycle instructions not requiring EAE

timing) and EAE operation group (two cycle

instructions when EAE timing is started and

the central processor is set to the Pause state)

.

All register load instructions have a binary

one in MB bits 04, 05, 06, or 07 and binary

zeros in bits 08, 09, and 10 except SCL

which has a binary one in MB]0' All other

EAE instructions have binary zeros in MB bits

04, 05, 06 and 07 and a binary one in one

or more of MB bits 08, 09, and 10. The EAE

microinstructions are augmented instructions

and they are microprogrammable. Therefore,

they can be combined to perform non-conflict-

ing logical operations.

LOGIC DESCRIPTION

The KE8/1 EAE logic circuits are used asyn-

chronously to, but in conjunction with, the

accumulator (AC), link (L), and memory

buffer (MB) performing parallel arithmetic

operations on positive binary numbers. Figure

1 is a simplified block diagram of the KE8/I

EAE option

.

General Logic and Instructions

The transfer of information between most of

the KE8/I EAE registers and the PDP-8/I

central processor (CP) occurs during the EAE

instruction Fetch cycle. All arithmetic opera-

tions, with the exception of NMI (normalize),

require an Execute cycle for referencing the

next memory location, thereby, obtaining

one of the operands for a multiply (MUY),

divide (DVI), or the number of shifts to be

performed during the long-shift feature. The

PAUSE flip-flop, in the CP, is set by the

EAE microinstructions when microprogrammed

for arithmetic operations because the comple-

tion of an arithmetic operation requires at

least 7.8 ps. Setting the PAUSE flip-flop

prevents the CP from advancing in its cycle

until the arithmetic operation is completed.

At the finish of the arithmetic operation the

EAE logic sets the EAE END flip-flop which

direct sets the TS4 flip-flop, clearing the

PAUSE flip-flop, and allowing the CP to

continue the program.

EAE Instruction Register (EAE IR) Step Counter (SC) Register

The EAE IR Is a 3-bIt register consisting of

flip-flops that are set to the contents of MB
bits 08, 09, and 10 during the Fetch cycle

of an EAE Instruction . MB bits 08, 09, and
10 determine if the EAE instruction is an SCL,
MUY, DVI, NMI, SHL, ASR, or LSR instruc-

tion.

All EAE instructions cause MB bits 08-10 to

be loaded into the EAE IR at TP3 of the Fetch

cycle (D-BS-KE8I-0-2 B-1,2,3). The input

to the EAE IRO flip-flop data input Is MBqs/
EAE IRl flip-flop data Input is MBq^ , and

EAE IR2 flip-flop data Input Is MB^q. The

clock inputs are pulsed by the output of a

negative NOR gate whose Input is from a two-
input NAND gate , The two inputs of the

NAND gate are EAE INST and TP3 . EAE
INST is high during TP3 of the Fetch cycle of

an EAE Instruction (D-BS-KE8I-0-2 C-4). A
four-input NAND gate has B FETCH (l),OPR
(EAE instructions are a class of OPR instruc-

tion), MBo3(l), and MBii(l) as input and

EAE INST as Its output. The last two Inputs

are true only for the EAE instructions.

Multiplier Quotient (MQ) Register

The MQ Is a 12-bit bidirectional shift register

that acts as an extension of the AC during

EAE operations. The MQ contains the multi-

plier at the beginning of a multiplication

and the least significant half of the product

at the conclusion. The MQ contains the

least significant half of the dividend at the

start of a division and the quotient at the end.

The MQ contains the least significant part of

a number during a shift or a normalize opera-

tion.

The SC Is a 5-bit register loaded with the

complement of the contents of MB bits 07
through n for the ASR, LSR, SCL, and SHL
Instructions and Is set to contain ail zeros

for the DVI, MUY, and NMI instructions.

It is used to record the number of shifts per-

formed and stops the shifting process after

the correct number of shifts.

Single-Cycle Instructions

The single-cycle Instructions are CAM, CLA,
MQA, MQL, and SCA and require a Fetch

cycle only. These will be discussed first so

that the logic used by these and other instruc-

tions can be developed slowly and used as

steps for the more difficult instructions. Logic-

al sequence one is during or before TS3, logic-

al sequence two Is at TP3, and logical se-

quence three Is after TP3

.

Clear the Accumulator (CLA)

The CLA instruction (76018) clears the AC
during logical sequence 1, therefore, this

instruction can be microprogrammed with

other EAE instructions that load the AC during

logical sequence 2 such as SCA or MQA.
Since the EAE instructions are a class of group

3 instructions OPR Is always present during the

Fetch cycle of an EAE instruction and 0P2 Is

present during TS3 of the Fetch cycle. AC
ENABLE is inhibited by MB04 being set

(D-BS-8I-0-4 C-2) . AC ENABLE Is high

and present only when the four-Input AND
gate has all four i nputs high, that is, OP2,
AC- MQ ENABLE, and MB , (0). AC -MQ
ENABLE is Inhibited by MBqJ (0) and MBo7(l)

CO

AC
00 ACCUMULATOR

TU

CP
TIMING

MQ
00 MULTIPLIER QUOTIENT MQ

n

MQ SHIFT
GATING

CP REGISTER
SHIFT a TRANSFER

CONTROL

MEM STEP COUNTER

SCL n
SC CONTROL
a GATING

EAE
CONTROL

EAE
TIMING

Figure 1 Simplified Block Diagram, KE8/I EAE

(D-BS-KE8I-0-2 C-6). The NAND gate must

have all input signals high to produce AC *

MQ ENABLE from the negative NOR gate it

drives . MB^ , (1) and OP2 are high but MBo4(0)
and MBq7(1) are low (being Ts) therefore,

AC * MQ ENABLE is not present. AC LOAD
is generated by four-input AND gate (D-BS-

81-0-6, D-7) with TP3, B FETCH (1), and OPR
as inputs. This AND gate output is inverted

by a NOR gate and used to load the AC

.

Clear Accumulator and Multiplier Quotient

(CAM)

The CAM instruction (762 Ig) clears the AC
during logical sequence 1 , as in CLA, and

during logical sequence 2 (at TP3) the MQ
is cleared by MB bit 07 (1) and EAE INST.

AC ENABLE is inhibited by MB04 (D (D-BS-
81-0-4, C-2), AC -MQ ENABLE is also in-

hibited by MBq4 (1) (D-BS-KE8I-0-2, C-7).

MQ LOAD is present (D-BS-KE8I-&-2, D-2)

because MBqj (1) and EAE INST are both high

during TP3, therefore, MQ LOAD is present

during logical sequence 2. AC LOAD is pre-

sent during TP3 also (D-BS-8I-0-6, D-6 and 7)

the output of a four-input AND gate with in-

puts of TP3, B FETCH(I), and OPR drives a

NOR gate. The output of this NOR gate is

connected to a negative NOR gate whose out-

put Is AC LOAD.

= >AC,0 = >MQ.

Multiplier Quotient Load into Accumulator

(MQA)
~~

The MQA instruction (75018) '°*'^ the contents

of the MQ into the AC. This command is

given to load the 12 least significant bits of

the product into the AC after a multiplication

or to load the quotient into the AC after a

division . The AC should be cleared prior to

issuing this command or the CLA instruction

can be combined with the MQA to clear the

AC then load the MQ into the AC . If the

AC is not cleared prior to this command the

contents of the MQ are inclusively ORed
with the contents of the AC. During this

instruction MB bits 08 through 10 are loaded

into the EAE IR.

MQ ENABLE is developed by a three-input

NAND gate (D-BS-KE8I-0-2 D-3) with

MB05 0)/ OP2, and MBii(l) as inputs. The
output of this NAND gate is connected to a

negative NOR gate whose output, MQ EN-
ABLE, is developed by a four-input AND
gate (D-BS-8I-04 C-2) with inputs of OP2,
AC •> MQ ENABLE, and MBo4(0) . AC - MQ
ENABLE is high because (D-BS-KE8I-0-2 C-6)
MB07 is a 0. The output of this AND gate is

connected to a NOR gate whose output (low)

goes to a negative NOR giving AC ENABLE.
AC LOAD is developed by a four-input AND
gate (D-BS-8I-0-6 D-7) with inputs of TP3,

B FETCH (1), and OPR. The output of this

AND gate drives the input of a NOR gate

whose output is connected to a negative NOR
whose output signal is AC LOAD . AC LOAD
is developed for all EAE instructions in this

manner at TP3 of the Fetch cycle.

MQ V AC = >AC

Load Multiplier Quotient (MQL)

The MQL instruction (742] q) clears the MQ,
logical sequence 1 , loads the contents of
the AC into the MQ, logical sequence 2,
then the AC is cleared . AC - MQ ENABLE
(high) is developed by a four-input NAND
gate (D-BS-KE8I-0-2 C-6) with inputs of

MBn (1) , MBq7(]) / M^04(0) / q"d OP2 . This

output is AC -* MQ ENABLE and is connected

to a negative NOR gate whose output is AC -

MQ ENABLE. AC - MQ ENABLE causes the

AC bits to go directly to the data inputs of

the MQ flip-flops (D-BS-KE8I-0-3 C-8)

.

AC -* MQ ENABLE appears on one side of the

two-input AND gates with an AC bit on the

Cn

TP3 _J |_ —ee
—

EAE START U
EAE RUN (1) r

EAE ON (1) T"

B EAE ON |~

n

It

250 ns PULSE

EAE TP n _n _rL_ in_ |-|_„ |-L^ n n ^^ n _n n
•vV

EAE TP

350 ns PULSES

U
n

u
n

u
rL

u
n

u
n

U
n n ^^^ n

u
n n

jsr
EAE TG (1)

SC LOAD _._rL..

u
n

~i_r~

__rL_

n_r~

__rL__rL_
SC=6

"~|J

n

U cc u

n "»•» n

u

SC=0 SC=1 SC=2 SC = 3 SC = 4 SC=5 sc=x =X)6*-SC = 13

EAE END(I) 1 r"

—
ee
—CP PAUSE (0) 1 1

Figure 2 Timing Diagram, KE8/I EAE

other side. MQ LOAD is developed during

logical sequence 2 here the same as in

the CAM instruction . Zero's are loaded into

the AC by inhibiting AC ENABLE (D-BS-8I-
0-4 C-2) because AC -* MQ ENABLE is low

at this time.

= >MQ, AC = >MQ, = >AC

Step Counter Load into Accumulator (SCA)

The SCA instruction (74418) loads the contents

of the SC into the AC. The AC should be

cleared prior to this instruction or the CLA
instruction may be combined with the SCA to

clear the AC during logical sequence 1

.

The transfer of the SC to the AC happens during

logical sequence 2 so both instructions may
be combined. SC ENABLE is developed (D-BS-

KE8I-0-2 D-2) by a three-input NAND gate

with inputs of MB^^Cl), OP2, and MBo6(1).
The output of this NAND gate goes into a

negative NOR gate whose output is SC EN-
ABLE , AC LOAD is developed in this instruc-

tion exactly as in the MQA instruction.

SC VAC = >AC.

EAE Timing

All two cycle instructions start EAE timing

therefore, EAE timing is covered here with

the understanding that all of these instructions

accomplish the starting of EAE timing in a

similar manner. During this discussion of EAE
timing see drawing D-BS-KE8I-0-2, Figure 1

Block Diagram, KE8/I EAE, and Figure 2

Timing Diagram, KE8/I EAE.

During an NMI instruction or any one of the

two-cycle instructions one of two NAND
gates (D-BS-KE8I-0-2 A-5) is qualified either

by NMI (the normalize instruction) and NORM
(the normalize condition) or OPR and B EXE-
CUTE (1). When either of these NANDgates

qualifies, a negative NOR gate qualifies

giving EAE BEGIN. EAE BEGIN combines
with SCL giving EAE SET. EAE BEGIN also

combines with SCL and TP3 giving EAE START.
EAE START is inverted and applied to the

clock input of the EAE ON flip-flop and since

the data input is high (because EAE COMPLETE
is high) the EAE ON flip-flop is set. At the

same time EAE START is applied to the set in-

put of the EAE RUN flip-flop this transition

from high to low sets the EAE RUN flip-flop.

During this time the pulse applied to the

clock input of the EAE ON flip-flop is also

applied to a tapped time delay network.

Approximately 250 ns later this pulse comes
from the time-delay to an amplifier having

approximately a 100 ns delay. This pulse

(EAE TP) is applied to one side of a NAND
gate (D-BS-KE8I-0-2 6-5). The other side

of the NAND gate is high at this time be-
cause of EAE RUN (1) . The EAE TP pulse

is inverted through a negative NOR gate

and applied to the clock input of the EAE
ON flip-flop and to the input of the tapped

time-delay line. Therefore, approximately

each 350 ns this pulse will circulate through

this timing chain and EAE timing will continue.

Once EAE timing is started it is a continuous

cycle until stopped.

The tapped delay line also has a 350 ns out-

put . This output appears at nearly the same
time as the EAE TP and is applied to an ampli-

fier where it is delayed approximately 100 ns

and then applied to the clock input of the

EAE RUN flip-flop. The data input of the

EAE RUN flip-flop is connected to the EAE
ON flip-flop (1) output therefore, as long

as the EAE ON flip-flop is set the EAE RUN
flip-flop will be clocked and set approxi-

mately every 450 ns. Tliis ensures that the

EAE RUN flip-flop stays set during the circu-

lation of EAE TP throughout the EAE timing

chain and that EAE RUN is turned off after

EAE TP.

When the EAE TP pulse comes out of the

NAND gate we have an EAE TP that is applied,

through a negative NOR gate, to the clock

input of the EAE TG (time generator) flip-flop.

The EAE TG flip-flop data input is low as

long as DVI LAST and EAE RUN (1) are pre-

sent at the NAND gate connected to it. So

EAE TP resets this flip-flop, but approximate-

ly 100 ns later the 350 ns pulse appears from

the tapped time-delay network and is inverted

and applied to the set input of the EAE TG
flip-flop thereby, setting this flip-flop. EAE
TG (1) provides a pulse (pulse width 100 ns)

supplying an MQ LOAD and SC LOAD. This

happens approximately each 450 ns during

EAE timing

.

EAE Timing Termination

In order to terminate EAE timing EAE COM-
PLETE (D-BS-KE8I-0-2 C-6) must go low.

When EAE COMPLETE goes low it is inverted

and applied to a NAND gate (D-BS-KE8I-0-2

C-5). The other input of this NAND gate is

connected to the EAE RUN flip-flop (1) output.

This NAND gate's output, now low, is con-

nected to the data input of the EAE ON flip-

flop. The next EAE TP pulses the clock input

of this flip-flop causing it to reset. This same
EAE TP goes on to the time-delay line where it

appears again, in 350 ns, as another EAE TP.

This EAE TP again pulses the clock input of the

EAE ON flip-flop assuring that it is reset as the

data Input is still low. At this time at the 350 ns

time-delay line output, there appears another

pulse delayed approximately 100 ns by the

amplifier and then it pulses the EAE RUN flip-

flop clock input. At this time the EAE RUN
flip-flop data input, which is connected to

EAE ON flip-flop (1), is low, therefore, the

EAE RUN flip-flop Is reset. This same pulse

is inverted and applied to the set input of the

EAE TG flip-flop once more setting this flip-

flop. At this time, there is one more EAE TP

circulating In the time-delay line. When

this EAE TP is applied to the amplifier it

generates the last EAE TP pulse. This last

pulse is applied to the input of the NAND
gate, to clock EAE ON flip-flop, but at

this time the other input of the gate is low,

since the EAE RUN flip-flop (1) side is

having been reset, therefore, the EAE TP

pulse dies. One more pulse appears from

the delay network 350 ns output pulsing

the clock input of the EAE RUN flip-flop

and the direct set input of the EAE TG
flip-flop. The EAE TG flip-flop is set; the

EAE RUN flip-flop data input is low and

does not set

,

The fi rst EAE TP pulse, after EAE COM-
PLETE goes low, pulses the clock input of

the EAE END flip-flop. At this time the

EAE END da ta input, connected to EAE
COMPLETE, is low, therefore, this EAE
TP clocks the EAE END flip-flop resetting

it. When EAE END (1) goes low its output

pulse is applied to a negative NOR gate

(D-BS-8I-0-2 D-4) and then to a NAND
gate and applied to the TS 4 flip-flop direct

set input and CP timing is restarted.

EAE COMPLETE goes low, to end EAE
timing, under any of several conditions.

EAE COMPLETE is the output of a NOR
gate (D-BS-KE8I-0-2 C-6) . There are four

inputs which can cause it to qualify. On
the left hand side the input is tied to an

AND gate whose inputs are MUY, SCl(l),

SC3(1), and SC4(1). During an MUY instruc-

tion MUY is high. As soon as SCI , SC3,
and SC4all become ones, signifying the next

to the last operation of this instruction, this

AND gate qualifies giving EAE COMPLETE
low and thus EAE timing is terminated.

The second input from the left is connected

to a two-input AND gate. One of these

inputs is high when performing a DVI instruc-

tion; the other input is DIV LAST. DIV LAST
is given by a negative NOR gate when either

input goes low. The left input comes from a

NAND gate whose inputs are SCO -3 = 0,

ADDER L, and SC4(0); these inputs, when
high, qualify this NAND gate giving EAE
COMPLETE and terminating EAE timing. In

other words if the AC is equal to or larger

than the MB this gate stops EAE timing. The

right hand input is SCl(l), SC4(1), and SC2(1);

this condition is met when only one operation

remains to be performed by the DVI instruction.

EAE timing is halted and the one remaining

shift is performed thus completing the EAE
DVI instruction.

The third input from the left of the NOR
gate remains low at all times. The fourth

input from the left is connected to an AND
gate with inputs of SC FULL and SCOO)

.

This condition is met during an ASR, LSR,

or SHL instruction when only one shift re-

mains to be performed. When one of these

instructions is being performed, the SC is

loaded with the complement of the number

of shifts to be performed . SC FULL is gener-

ated (see D-BS-KE8I-0-3 B-7) by SCI, SC2,

SC3, and SC4 all being set to ones. These

inputs qualify a NAND gate that, in turn,

qualifies a negative NOR gate giving SC
FULL. This signal qualifies one input to

the AND gate on the fourth input. When
SCO(l) goes high both inputs of this AND
gate are qualified giving EAE COMPLETE
terminating EAE timing.

The fifth input from the left or the extreme

right hand input of the NOR gate causes

termination of EAE timing during the NMI
instruction. This input receives its levels

from a three-input AND gate. One input

is tied high, the middle input is high at all

times during the NMI instruction, and the

third input is connected to a negative NOR
gate. This NOR gate has three inputs each

being driven by a NAND gate, therefore,

any time one of the following three condi-

tions is met EAE timing is terminated. First

condition: ACq] (0) and ACq2(1) . Second

condition: ACo3(0), MQ & LOW AC=0, and

MID AC = 0. The last two signals are develop-

ed (D-BS-KE8I-0-2 B-8) by NAND gates that

sample the contents of different MQ bits and

(D-BS-8I-0-6 B and C-4) NAND gates that

sample AC bits 4 through 1 1 . When AC bits

08 through 11 are all O's (D-BS-8I-0-6 C-4)

a NAND gate qualifies giving a low out

which is inverted by a negative NOR gate

giving LOW AC =0. Immediately above

these gates is another pair. One of these,

a NAND gate, samples AC bits 04 through

07 and when all are zero this gate has a low

output qualifying a negative NOR gate whose

output signal is MID AC = 0. When MQqq
through Q3 (D-BS-KE8I-0-2 B-8) are all Os

a NAND gate qualifies a negative NOR gate
whose output is connected to one input of a

four-input NAND gate. The second Input

of this NAND gate receives a signal from

a negative NOR gate when MQ04 through

07 are all Os. The third input, of the four-

input NAND gate, receives a signal from

a negative NOR gate when MQqq through

1] are all Os. The fourth input is high when
LOW AC =0. When these four conditions

are met simultaneously and the activated

NAND gate turns on the negative NOR
gate above it, the signal MQ & LOW AC =

is present. This signal is connected to

the middle input of the three-input NAND
(D-BS-KE8I-0-2 A-5 and 6) combining with

ACo3(0) and MID AC=0, developed above,

thus terminating EAE timing. A number is

loaded into the AC and the MQ and is shift-

ed left until ACqq /^ ACqi . Since ACqq
is the sign bit, ACqi is the first data bit.

Therefore, shifting occurs until the most

significant bit reaches ACq] • The control

of EAE timing thus depends on ACqi and

AC02 because there is one more shift per-

formed after EAE COMPLETE is generated.

The middle NAND gate terminates EAE
timing if all bits to the right of ACqo are

zeros. Third condition: When ACq 1 0)
and ACq2 (0) EAE timing is terminated by

the lost EAE TP

.

Special Case InstrucHons

There are two EAE instructions that do not fit

into either the single-cycle or two-cycle

instruction group. These are the Normalize

(NMI) and Step Counter Load from Memory

(SCL). These, with their differences, are

discussed below.

Normalize (NMI)

The NMI instruction (7411g) is used, in part,

to convert a binary number to a fraction (and

its exponent) for use in floating-point arith-

metic . The AC and MQ are acted on as one

long register and their contents are shifted left,

by this command, until the content of ACqO
is not equal to ACqi . A "zero" is shifted

into bit 11 of the MQ each shift. When this

instruction is completed, the SC contains a

number equal to the number of shifts perform-

ed . Tlie contents of the L are lost. During

the NMI instruction EAE timing is started but,

the CP stays in the Fetch cycle and the PAUSE
flip-flop is set. This is the only EAE instruc-

tion that starts EAE timing, but does not re-

quire an Execute cycle. During logical se-

quence 1 MB bits 08, 09, and 10 are loaded

into the EAE IRas in all EAE instructions. At

this time the SC is cleared. A normalize test

tree (D-BS-KE8I-0-2 B, C, and D-8) checks

the number contained in the AC and MQ to

determine if it is already in the normalized

condition. There are three NAND gates

(D-BS-KE8I-0-2 C-8) with outputs connected

to a three-input negative NOR gate. The

NAND gate on the left-hand side checks

AC00(0) and ACqi (1) and the right-hand

NAND gate checks ACoi(0) and ACqo(1).

If ACqo cbes not equal ACqi neither of

these NAND gates will turn on. The center

NAND gate has inputs of MQ & LOW AC =

0, MID AC=0, ACo3(0), and ACo2(0),if none

of these conditions exist this NAND gate does

not qualify. The output of the three-input

negative NOR gate is low and i s Inverted by

a NAND gate giving the signal NORM.

NORM and NMI combine in a two-input

NAND gate (D-BS-KE8I-0-2 A-5) whose

output is connected to a negative NOR gate.

The output of this NOR gate is the signal EAE
BEGIN and at TP3, of the Fetch cycle, EAE

START is generated and EAE timing is started.

This is the only condition where EAE timing is

started without an Execute cycle. The normal-

ize test tree (D-BS-KE8I-0-2 B, C, and D-8)

keeps constantly testing the AC and MQ for

the normalized condition. When this condi-

tion is reached EAE timing is terminated as

was discussed under EAE Timing Termination.

For each shift during NMI the following signals

are generated: AC ENABLE, AC LOAD, AC
LEFT SHIFT, MQ LOAD, MQ LEFT SHIFT,

SC LOAD, and increment SC. AC ENABLE
is produced by EAE AC ENABLE (D-BS-KE8I-
0-2 D-5). A two-input NAND gate with in-

puts of B EAE ON, always present with EAE
timing , and EAE AC ENABLE. EAE AC EN-
ABLE comes from the three-input NAND gate

to the left. This NAND gate's output is always

high except during an EAE DVI instruction.

This i nput, EAE AT ENABLE and B EAE ON
gives EAE AC ENABLE during EAE timing.

EAE AC ENABLE is one of the inputs to a

four-input negative NOR gate (D-BS-8I-0-4

D-1) gi ving AC ENABLE. AC LOAD is gener-

ated by EAE TP (D-BS-8I-0-6 D-7) . During

EAE timing each EAE TP pulse into the nega -

tive NOR gate gives AC LOAD. EAE LEFT

SHIFT ENABLE is generated by a four-input

NAND gate (D-BS-KE8I-0-2 D-7) . The in-

puts of th is gate are: EAE RIGHT SHIFT

ENABLE, B EAE ON, DIV LAST, and the

output of another three-input NAND gate.

EAE RIGHT SHIFT ENABLE is high when
either EAE IRl (1) orWTis low. EAE IRl(l)

is low during the NMI instruction, therefore,

the output of this NAND gate is high during

this EAE instruction . B EAE ON is always

present during EAE timing . DIV LAST is high

at all times except the last division process

of the EAE DVI instruction. The other input

is connected to the output of a three-input

NAND gate. The three inputs to this NAND
gate are: SC1(1), DVI, and 502(1). The
output of this NAND gate will be high except

under these conditions during the EAE DVI
instruction, therefore, tAE LEFT SHIFT EN-
ABLE is one of the Inputs to a four-input

negative NOR gate (D-BS-8I-0-5 D-4)
which gives AC LEFT SHIFT. MQ LOAD is

developed as the output of a four-input nega-
tive NOR gate (D-BS-KE8I-0-2 D-2) one
input is EAE TG(1). As was shown in the

discussion of EAE tinning EAE TG (1) goes low
for approximately 100 ns at each EAE TP pulse,

therefore, during this time pulse MQ LOAD
Is generated. LEFT SHIR is generated by a

two-input NAND gate (D-BS-KE8I-0-3 B-8)

.

The two inputs are: EAE RIGHT SHIR EN-
ABLE, developed earlier, and B EAE ON,
also developed earlier, giving LEFT SHIR
which Is inverted by a negative NOR gate
and goes to one side of a bus connecting six

two-input NAND gates. The other inputs

of these NAND gates are MQqi through

MQq^. There are six other two-Input NAND
gates bussed together and connected to the

output of a negative NOR gate (D-BS-K E8I-
0-3 C-1 , 2, 3, and 4) with LEFT SHIFT as

its Input. The other inputs of these NAND
gates are MQq^ through MQ, , and the out-

put of a four-input NOR gate . The right-

hand Input Is from a four-input AND gate
with three inputs tied high . The fourth Input

is DVI. DVI is high except during an EAE
DVI instruction therefore, the output of this

AND gate Is high except for this Instruction,

making the output of the NOR gate low so

zeros are placed Into MQ,, during any left

shift operation.

SC LOAD is caused by one input of a nega-
tive NOR gate being pulsed low by EAE TG(1)
each time the EAE TG flip-flop clears (D-BS-
KE8I-0-2 D-1). The SC register (D-BS-KE8I-
0-3 B and C-2 through 7) has a negative NOR
gate connected to the data input of each flip-

flop . Each of these NOR gates has three In-

puts except the one driving the data input of

the SC4 flip-flop. The left-hand and center
inputs are connected to a three-input NAND
gate. One input of each NAND gate Is

bussed to EAE ON(l) giving a high to each
of these inputs during EAE timing . The other

Input(s) samples either one side or the other

of the associated flip-flop and the "one" side

of each flip-flop following it, that is, SCO
samples SCI , SC2, SC3, and SC4; SCI
samples SC2, SC3, and SC4; SC2 samples

SC3, SC4, and etc. The set (one) and reset

outputs of the flip-flops are sampled directly

by one NAND gate and the reset and set

outputs are sampled by the other NAND gate.

Thus, for each SC LOAD generated the SC
will count one binary number higher, record-

ing the number of shifts performed.

AC.=AC. -1,ACqq=L,

MQqq=AC^^, MQ. =MQ.-1,

= MQ^^ until ACqqt^ACq^.

Step Counter Load From Memory (SCL)

The SCL instruction (7403g) requires two
sequential memory locations, one containing

the Instruction and the following one contain-

ing the number to be loaded into the SC. This

instruction loads the complement of the memory
word bits 07 through 11, the word located In

the next sequential memory address, into the

SC. This instruction is a two-cycle instruc-

tion since It goes into an Execute cycle but,

it does not start EAE timing. During the

Fetch cycle, the memory address Is Increment-
ed by one and loaded into the PC; then the

memory word is loaded Into the MB and IR.

The contents of the PC are loaded into the

MA and the Execute state is entered. During

the Execute cycle, the contents of the mem-
ory word (next memory address) are comple-
mented and loaded into the SC.

During the Fetch cycle, the signal EAE INST
is generated (D-BS-KE8I-0-2 C-4) by a four-

10

input NANDgate with B FETCH(l), OPR,

MBosO), MB,,(1); inverting the output

gives EAE INbt. All EAE instructions during

TP3, MBns , 09^ and 10 are loaded in the

EAE IR. EAE E SET (D-BS-KE8I-0-2 C-3)

goes low because of the negative NOR gate

whose inputs are MBo9(0) (now high), and

MB^q(0) (now low). This output combines

with EAE INST in a NAND gate giving EAE"

E SET. During logical sequence 3 PC

ENABLE is generated by EAE E SET (D-BS-8I-

0-4 A-70 (inverted by a negative NOR gate)

and combined with TS4 (1) and a NANDgate.
The output of this NAND gate qualifies a

negative NO R giving PC ENABLE. E SET is

generated by EAE E SET into a negative NOR
gate (D-BS-8I-0-3 C-4) whose output is E

SET. Therefore, at TP4 of the Fetch cyle

the EXECUTE flip-flop is set. During the

Execute cycle, B EXECUTE(I) combines with

OPR in a NAN D gate (D-BS-KE8I-0-2 C-2)

whose output is EAE EXECUTE . The PC is

incremented by one, as in two cycle instruc-

tions, by EAE EXECUTE as an input to a

negative NOR gate (D-BS-8I-0-5 A-5 and 6)

whose output is PC INCREMENT. MBqj
through -ii are complemented and loaded

into the SC. MUY +DVI, EAE ON(0), OPR,
and B EXECUTIVE (1) are the four inputs to a

NAND gate (D-BS-KE8I-0-2 C-7) whose

output is inverted and applied to a negative

NOR gate giving MB- SC ENABLE. It should

be noted that the SCL instruction is the only

instruction which will give B EXECUTE(I) and

EAE ON(0) concurrently. SC LOAD is de-

veloped by a two-input NAND gate (D-BS-

K ESI-0-2 D-1) with inputs of TP3 and EAE

BEGIN.

The output of this NAND gate is connected

to a negative NOR gate giving SC LOAD.
EAE BEGIN is generated by a negative NOR
gate (D-BS-KE8I-0-2 B-4) . One of the inputs

to this NOR gate is the output of a two-input

NAND gate with OPR and B EXECUTE(l) as

inputs. In order to prevent EAE timing from

starting, EAE BEGIN combines with SCL in

two NAND gates. Thus, when in the SCL
instruction Execute cycle SCL is low and
prevents the generation of EAE SET and EAE
START. This is the circuit that inhibits EAE
timing during the SCL instruction.

MBo7 through
]] are loaded into the SC by

two-input NAND gates (D-BS-KE8I-0-3 B-2

through 7) . The right-hand NAND gate for

each SC flip-flop has one input bussed to

MB - SC ENABLE. The other input is connect-

ed to the "zero" output of MBq7 through ,•

flip-flops. When MB -SC ENABLE is gener-

ated, all NAND gates which are high on

both inputs (that is, if the MB bit sampling

is not set), have outputs inverted by negative

NOR gates and these outputs are applied to

the data-input of their respective flip-flops.

Thus if MBo7 is actually a zero, the MBo7(0)
side will be high, qualifying its NAND gate,

inverted by the NOR gate, and applied to

the data-input of the SCO flip-flop. When
the clock input is pulsed the SCO flip-flop

will set ("one" side high) giving the comple-

ment of MBo7

.

The contents of the PC will be loaded into

the MA because F SET (D-BS-8I-0-3 D-5) is

now present. Although the CP is in the

Execute cycle and B FETCH (1) is now low,

EAE INST, and therefore, EAE E SET are no

longer available to cause E SET. F SET is an

input to a negative NOR gate (D-BS-8I-0-4

A-7), the output combines with TS4(1); in a

NAND gate giving PC ENABLE and when
inverted by a negative NOR gate it gives

PC ENABLE.

AC. =AC -1, ACqq = L,

MQqq^AC^^, MQ. =MQ.-1,

MQ^^ until ACqqT^ ACq^

IT

Two-Cycle Instructions

There are five two-cycle instructions that

start EAE timing. These are: ASR, LSR, SHL,
MUY, and DVI. These instructions are coded

in bits 08 through 10 of the instruction word.

This coding transfers timing from the CP to

EAE timing at TP3 of the Fetch cycle with

the operation being performed during the

Execute cycle. Some EAE microinstructions

con be microprogrammed to perform one two-
cycle and one or more single-cycle micro-

instructions if they are logically compatible.

Arithmetic Shift Right (ASR)

The ASR instruction (7415g) causes the com-
bined contents of the AC and MQ to shift

right one position more than the number con-
tained in the next sequential core memory
location . MQ bits shifted past MQ]] are

lost and the sign bit, contained in ACoQ/ >s

placed in the L and ACoQ- During the Fetch

cycle, the contents of MB bits 08 through 10

are loaded into the EAE IR, the L is zeroed,

the contents of the AC are loaded directly

back into the AC, and the EXECUTE flip-

flop is set. During the Execute cycle the

contents of MBqo through ,, are complement-
ed and loaded into the SC. EAE timing is

then started, setting the PAUSE flip-flop,

and causing CP timing to be suspended during

the rest of this instruction.

During logical sequence 1 of the Fetch cycle,

the Lis zeroed by AC ENABLE, AC LOAD, NO
SHIFT, and L ENABLE (Inhibited). AC ENABLE
is generated by AC - MQ ENABLE, MB04(0),

and OP2 as inputs to an AND gate the output

of which is inverted (D-BS-8I-0-4 C-2) and
applied to a negative NOR gate whose output

is AC ENABLE. AC - MQ ENABLE is inhibit-

ed by MBo4(0) (D-BS-KE8I-0-2 C-6). AC
LOAD is developed by a four-input AND gate

(D-BS-8I-0-6 D-6) with TP3, B FETCH(l),

and OPR as inputs. The output of this AND

gate is inverted and applied to a negative
NOR gate giving AC LOAD. NO SHIFT is

generated by a four-input NAND gate (D-BS-
81-0-5 D -2) with inputs of EAE NO SHIFT
ENABLE, TT SHIFT ENABLE and the high out-
put of a NAND gate. EAE NO SHIFT
ENABLE is generated by B EAE ON (D-BS-
K £81 -0-2 D-6) when applied to a negative
NOR gate whose output is EAE NO SHIFT
ENABLE. This signal is generated during the

Fetch cycle of all EAE instructions and is

present until approximately 100 ns after TP3
of the Fetch cycle.

L ENABLE is inhibited by EAE L DISABLE
(D-BS-8I-04 A-2) . EAE L DISABLE is gener-
ated by EAE INST and MBo9(l), inputs to a

NAND gate (D-BS-KE8I-0-2 D-4) whose
output is connected to a NOR gate giving

EAE L DISABLE. When L ENABLE goes low
the L is not enabled because L ENABLE is

one of the inputs to an AND gate; therefore,

the output of this AND gate goes low (D-BS-
81-0-8 A-8) and the L is "zeroed".

The PC is loaded into the MA (as discussed

under the SCL instruction) during TS4 of the

Fetch cycle. The EXECUTE flip-flop is set

by B FETCH (1), OPR, MBo3(l), and MB]i(1)
(D-BS-KE8I-0-2 C-4). These inputs to a

NAND gate give a low output inverted by a

negative NOR giving EAE INST. EAE INST
combines with the output of a negative NOR
gate (high because of MBio(0) in a NAND
gate whose output is EAE E SET. EAE E SET
is applied to a negative NOR gate (D-BS-8I-
0-3 C-4) giving E SET. At TP4 the EXECUTE
flip-flop is set too "1".

During TS3 of the Execute cycle MBq-^ through

1] are complemented and loaded into the SC
as was discussed in the SCL instruction. EAE
timing is started by OPR and B EXECUTE(l),
now high (D-BS-KE8I-0-2 A-4) . The PAUSE
flip-flop is set to a "1

" as was discussed in

EAE timing. When EAE timing is started,

EAE IR(1), DVI, and B EAE ON combine in

12

g NAND gate (D-BS-KE8I-0-2 D-8) generating

EAE RIGHT SHIFT ENABLE. When the output

of this NAND gate goes low it disables the

NAND gate to the right, thereby inhibiting

EAE LEFT SHIFT ENABLE. It also inhibits

LEFT SHIFT (D-BS-KE8I-0-3 B-8) by causing

the output of this NAND gate to go high. At
the same time it is applied to a negative NOR
gate (D-BS-8I-0-5 D-5) giving RIGHT SHIFT.

EAE AC ENABLE is generated by a two-input

NAND gate (D-BS-KE8I-0-2 D-5) with inputs

of B EAE ON and the high output of a NAND
gate to the left. The output of this NAND
gate is EAE AMENABLE. It is now high be-

cause one of the inputs is DVI, which is high

only during the EAE DVI instruction. EAE AC
ENABLE is applied to a negative NOR gate

(D-BS-8I-0-4 D-1) generating AC ENABLE.

ASR ENABLE is generated by a negative NOR
gate driven by a three-input NAND gate

(D-BS-KE8I-0-2 D-4). This NAND gate has

inputs of B EAE ON, EAE IRO(l), and EAE
IRl 0) . ASR ENABLE is applied to a three-

input NAND gate (D-BS-KE8I-0-2 A-8) and

combines with EAE IR2(0) and ACqII). When
ACqO) is high ASR L SET is low, but when
ACq(I) is low ASR L SET is high . ASR L SET

is applied to a four-input AND gate (D-BS-8I-

0-8 C-8) where it combines with RIGHT SHIFT
and the output of a NAND gate (high because

EAE ON(0) is low) . The output of this AND
gate is inverted by a NOR gate and applied

to the data-input of the LINK flip-flop. With

each AC LOAD generated the LINK flip-flop

will set if ACoo is a "1" and will reset if ACqo
is a "0". Each time ACqq is a "1" the NAND
gate turns on (D-BS-KE8I-0-2 A-8) . ASR L

SET goes low, turning off the AND gate,

giving a high (D-BS-8I-0-8 C-8) out of the

NOR gate, and putting a high on the data-

input of the LINK flip-flop. ASR ENABLE,
along with ACqoO), B EAE ON, and EAE
IR2(0) qualifies an AND gate (D-BS-8I-0-8

A-7) whose output (high when ACqq 'S a "1
" ,

low when ACqq is a "0") is inverted by a NOR
gate and appears at the inputs of two different

gates. The NAND gate has the other input

tied high so it inverts the signal and applies

it to an AND gate. The other input of this

gate is connected to CARRY OUTO. The

second gate (an AND gate) has CARRY OUT
for its other input, therefore, when CARRY
OUT and ACqoCI) are both either high or

low one of the two AND gates qual ifies turn-

ing on the NOR gate above giving ADDER L

(low). When CARRY OUT or ACoq(1) are

opposite (one high and the other low) the

AND gates are inhibited and the output of

the NOR gate (ADDER L) is high. ADDER L

and RIGHT SHIFT are inputs to an AND gate

(D-BS-8I-0-9 sheet 1 C-8) . When ADDER L

is high and this AND gate qualifies, a NOR
gate is turned on and puts a on REG BUSS 00.

REG BUSS 00 is connected to the data-input

of the ACqq flip-flop. Therefore, if ACqq is

a 1, the L is set too "1" (ASR ENABLE and

ACo(l) giving ASR L SET low thus a high is

applied to the data-input of the LINK flip-

flop), and a "1" is set back into ACqq. (ASR

ENABLE and ACqq (1) combine and the result-

ant combines with CARRY OUT giving

ADDER L low; ADDER L then combines with

RIGHT SHIFT applying a "1", through the

REG BUSS 00, to the data-input of the ACqq
flip-flop.) At the same time each AC bit is

shifted right one place . This operation is

repeated until the number in the SC register

generates SC FULL and SCO (1) and causes

termination of EAE timing .

ACqq = ACqq , AC. = AC. + 1

,

AC,,= MQ^^ MQ. =MQ. + 1,n 00,
I I

MQ,, lost.

Logical Shift Right (LSR)

The LSR instruction (741 7g) causes the com-
bined contents of the AC and the MQ to shift

right one position more than the number In

the next sequential core memory location

after the instruction. MQ bits shifted past

13

MQ]
I
are lost and fhe L is loaded with a "0"

during this operation. During the Fetch cycle

the contents of MB bits qq through ,q are load-

ed into the EAR IR register, the L is 'zeroed",

the contents of the AC are loaded directly

back into the AC, and the EXECUTE flip-flop

is set. The contents of MBq7 through -.-^ are

complemented and loaded into the SC during

the Execute cycle. Then EAE timing is started

and CP timing is suspended. The contents of

the AC and MQ are then shifted the required

number of times to the right.

During logical sequence 1 of the Fetch cycle

the L is "zeroed" by AC ENABLE, AC LOAD,
NO SHIFT, and L ENABLE (inhibited) as dis-

cussed under the ASR instruction . The PC is

loaded into the MA (as discussed under the

SCL instruction) during TS4 of the Fetch cycle.

EAE timing is started and CP timing is suspend-

ed as discussed under EAE timing . The logic

for this instruction is the same as the logic for

the ASR instruction with the following except-

Ion: ASR ENABLE is generated, (ASR L SET

remains high at all times during this instruc-

tion because the four-input NAND gate (D-

BS-KE8I-0-2 A-8) is disqualified by EAE IR2

(0)) . The NAND gate is disqualified as it is

a "1" for the LSR instruction. Thus the data-

input of the LINK flip-flop remains low and

the L stays reset. The proper gates for the

shifting of the AC and MQ bits to the right

are discussed under the ASR instruction.

(1) the content of the L is lost,

(2) the content of ACqq is loaded into the L

(3) all other AC bits move one place left,

(4) MQqi is loaded into AC]]; all other MQ
bits move one place left, and

(5) MQ]] is loaded with a "0".

During the Fetch cycle the contents of MB^q
through ,q are loaded into the EAR IR, the

contents of the PC are loaded into the MA,
and the EXECUTE flip-flop is set. The contents

of MBq7 through , t are complemented and
loaded into the SC during the Execute cycle.

Then the CP PAUSE flip-flop is direct set and
EAE timing is started. The contents of theAC
and MQ are then shifted left the required

number of times.

The logic Is the same as for the ASR and LSR

instructions during the Fetch cycle. During

the Execute cycle the logic is the same as the

ASR and LSR, until the EAE timing is started.

AC ENABLE Is generated by EAE AC ENABLE.
EAE AC ENABLE Is generated by a NAND
gate (D-BS-KE8I-0-2 D-5) with B EAE ON
and EAE ACENABLE (because DVI is low).

EAE LEFT SHIFT ENABLE is generated by a

four-input NAN D gate with inputs of B EAE
ON, DIV LAST, EAE RIGHT SHIFT ENABLE,
and the high output of a NAND gate (D-BS-

KE8I-0-2 D-7) (high because one Input is

DVI which is low).

=ACoO/ AC. =AC. + 1,uu
I I

MQ. = MQ. + 1

.

I I

Shift Left (SHL)

The SHL instruction (741 3g) causes the com-
bined contents of the AC and the MQ to shift

left one position more than the number in the

next sequential core memory location after

the instruction. The following occurs for

each shift:

EAE LEFT SHIFT ENABLE Is applied to the

input of a negative NOR gate (D-BS-8I-0-5
D-4) giving LEFT SHIFT. EAE RIGHT SHIFT
ENABLE (high) combines with B EAE ON in

g NAND gate (D-BS-KE8I-0-3 B-8) giving

LEFT SHIFT. This signal is Inverted and
applied to two negative NOR gates (D-BS-
KE8I-0-3 C-1 and 8). This high output is

bussed to one Input of a series of two-Input
NAND gates . The other Input to each of
these NAND gates (except the one for MQ]])

is MQj -1 . The NAND gate for MQ^, is

connected to a NOR gate (D-BS-KE8I-0-3 B-1)

14

and this NOR gate has inputs from four AND
gates . The right-hand AND gate has inputs

of -3V and DVI. Since DVI is high except

during the DVI instruction, this AND gate

has a high output. The output of this AND
is connected to the input of a NOR gate

whose output is connected to the input of a

NAND gate with LEFT SHIFT as the other

input. Since this NAND gate remains "turn-

ed off" except during the DVI instruction

the negative NOR gate it is driving will

keep the data input of the MQ]] flip-flop

low for each MQ LOAD pulse. Therefore,

each time LEFT SHIFT is present and we are

not doing a DVI instruction the MQii flip-

flop will reset to a "0". This means that

for each shift Os are loaded into MQ^
^

and transferred from MQ^ , to the vacated

positions in the MQ.
*11

AC. -AC. -1, AC^^-L,
I I

00

MQqq =AC^^, MQ MQ. -1

,

=MQ
11

Multiply (MUY)

The MUY instruction (74058) multiplies the

number in the MQ by the number held in

the next successive core memory location

after the MUY instruction . At the end of

the instruction, the twelve most significant

bits of the product are contained in the AC
and the twelve least significant bits of the

product are contained in the MQ. During

the Fetch cycle the usual operations neces-

sary for an EAE instruction are performed:

MA + 1 - PC, MEM - MB, MEM - IR,

MBgg through ^q "'EAE IR, -L, and the

Execute major state is entered. During the

Execute cycle the usual operations for the

two-cycle instructions are performed: MA +

1 - PC, MEM - MB, 1 - EAE ON, 1
-

PAUSE, PC - MA, and 1 - F. The only

difference during the Execute cycl e for MUY
and DVI is that instead of loading MBZ-ll -

SC, the SC is cleared to receive the number

of multiply operations. For each operation

the SC is incremented. As will be shown

the SC will never need to count more than

Before discussing the actual logic of the MUY
instruction some discussion of binary multi-

plication, as performed by the EAE, is neces-

sary. To multiply two numbers together

(12^0 times 12^o) with the EAE, the follow-

ing operations are necessary. These numbers

in binary form are: 001 lOO^.

Step 1

001

XOOl

100

100

000 000 partial product

Step 2

001

XOOl

100

100

000 000

0000 00

0000 000

Step 3

(from Step 1)

second partial product

001 100

XOOl 100

000 000

0000 00 (from Step 2)

00110

00110 000 third partial product

15

Step 4

001

XOOl
100

100

000 000

0000 00

00110

0011 00

010010 000

Step 5 and 6

001 100

XOOl 100

000 000

0000 00

00110

0011 00

000000

000000

(from Step 3)

fourth partial product

00010010 000

(from Step 1)

(from Step 2)

(from Step 3)

(from Step 4)

(from Step 5)

(from Step 6)

final product
(144iq)

In Step 1 the least significant bit in the multi-

plier is multiplied by the multiplicand and
forms a partial product. Since binary numbers
(Os and Is) are being used by the computer

some definite rules can be established. When
the least significant bit in the multiplier is a 1

the multiplicand is added to the partial prod-

uct. When the least significant bit in the

multiplier is a then Os are added to the par-

tial product. The number of operations nec-
essary to perform this multiplication is six.

When the same multiplication is performed

using 12-bit numbers, the number of operations

necessary is twelve. Since the SC must incre-

ment one time less than the number of opera-
tions performed, the SC reaches 12 to terminate

EAE timing. Even when multiplying the largest

binary numbers that can be expressed in 12-bits

the number of operations is the same, and the

number of bits in the product will not exceed
twenty-four. When an addition of either

Os or the multiplicand is made to the partial

product, the least significant bit does not

change. In order to determine whether to add
Os or to add the multiplicand to the partial

remainder, the least significant bit of the

multiplier is examined, and if it contains a 1

the signal EAE MEM ENABLE must be gene-
rated . If it contains a then EAE MEM
ENABLE must be inhibited, allowing Os to be
added to the contents of the AC . The EAE
actually shifts the contents of the AC and MQ
to the right to add Os. The least significant

bit is examined, and if it is a 0, then the L,

AC, and MQ are shifted to the right. If the

LSB is a 1 , then the MEM is added to the AC

,

and the L, AC and MQ are shifted to the

right.

When MQ]
^

(the LSB) is a MEM ENABLE is

inhibited and AC ENABLE, AC LOAD, MQ
LOAD, and SHIFT RIGHT are generated.

When MQ^
] is a 1 , MEM ENABLE, AC

ENABLE, AC LOAD, MQ LOAD, SHIFT
RIGHT are generated . During an MUY in-

struction, if MQ^^ is a 1 then EAE MEM EN-
ABLE (D-BS-KE8I-0-2 D-6) is low. MQ,^ (0)

and MUY are two inputs to a NAND gate

.

When MQ^
^

(0) is low this NAND gate has a

high output giving EAE MEM ENABLE (low).

EAE MEM ENABLE Is one of the inputs to a

negative NOR gate (D-BS-8I-0-4 D-7) giving

MEM ENABLE 0-4 and MEM ENABLE 5-1 1

.

Therefore, if MQ^ is o 1 MEM ENABLE 0-11
is generated. AC ENABLE is generated by
EAE AC ENABLE (D-BS-8I-0-4 D-1). EAE AC
ENABLE is generated by B EAE ON, and EAE
Ac ENABLE (D-BS-KE8I-0-2 D-5). AC LOAD
is generated by EAE TP (D-BS-8I-0-6 D-7).
MQ LOAD and SC LOAD are generated by
EAE TG(1) (D-BS-KE8I-0-2D-1). RIGHT
SHIFT is generated by EAE RIGHT SHIFT EN-
ABLE (D- BS-8I-0-5 D-5). EAE RIGHT SHIFT
ENABLE is generated by EAE IRl(l), DVI, and
B EAE ON (D-BS-KE8I-0-2 D-8). As each
operation is performed, a four-input AND gate
tests the SC register until MUY, SCl(l),
SC3(1), and SC4(1) are all high (D-BS-KE8I-0
-2 B-7). When this condition exists, it signi-

fies that the multiplication is finished and ter-

minates EAE timing.

YX MQ = AC, MQ. 0-L

16

Divide (DVI)

The DVI instruction (74078) divides the 24-bit

dividend contained in the AC (12 most signifi-

cant bits) and the MQ (12 least significant

bits) by the number located in the next se-

quential core location after the DVI instruc-

tion.

remainder (now in the AC) may have to be

corrected, and the LINK cleared. The correc-

tion depends upon the last two bits in the quo-

tient. If the last two bits are MQiq = and

MQii = 1, the remainder is correct as is. If

the last two bits are both Is, the remainder

must be complemented. Other combinations

of MQ]Q MQ]] result in an extra addition or

subtraction.

Divide Algorithm

The simplest divide algorithm, although not

the one used in the KE8/I, is that of sub-

traction test, subtractions and shifts. Assume

that a double-precision number has been

loaded into the AC and MQ, and that the

dividend is present in the MEM register. A
trial subtraction is taken (for example, MEM
+ AC is placed on the register bus) . If an

overflow results, the subtraction cannot be

made without causing a change in sign. The

entire AC and MQ are shifted left without

actually executing the subtraction, and a

is shifted into MQ]] to form a part of the

quotient. If overflow does not result, the

subtraction is performed before, or as a part

of, the shift, and a 1 is loaded into MQ..

.

The process is very similar to long-hand

decimal division.

In the KE8/I, the algorithm used is slightly

more complicated, although faster. A sub-

traction and shift is performed . If overflow

does not result (indicated at ADDER L), a

1 is loaded In MQ]] . Subtractions and shifts

continue until overflow occurs. When over-

flow occurs, a is loaded in MQ]] , and the

next arithmetic operation is an add and shift.

The adding process continues until another

overflow is encountered and Os are loaded

inka MQ^
^
for each addition. The Os are

loaded into the MQ for each addition. Over-
flow indicates that the partial remainder is

now positive and that the arithmetic operation

should become a subtraction. At the conclus-

ion of the divide operation (SC = 13), the

The first subtraction in any divide must produce

a negative result; otherwise, a condition known
as "divide overflow" exists. If divide over-

flow occurs (division by zero Is a classical

example), the resulting quotient cannot be

contained in 12 bits, and the EAE signifies

this fact by Immediately exiting from the divi-

sion with the LINK set.

Before EAE timing is started at TP3 of the

Execute cycle TP3 and EAE BEGIN combine

In a NAND gate (D-BS-KE8I-0-2 D-1) giving

SC LOAD. Therefore, the SC is cleared be-

fore the DVI instruction Is started. Figure 3,

KE8/I EAE DVI Algorithm, shows the operat-

ions performed by the EAE to divide 145,0

by 12]o. The quotient will be 12]q (in the

AAQ) with a remainder of 1 ,q (in tne AC).

During the first operation AC ENABL E is

always generated because SCO-3 = is one of

the inputs to a three- input negative NOR
gate (D-BS-KE8I-0-2 D-5) . This output is

connected to a NAND gate above giving

EAE AC ENABLE. EAE AC ENABLE is one

input to a n^ative NOR gate (D-BS-8I-0-4

B-1) giving AC ENABLE. Therefore JC EN-

ABLE gates the AC flip-flop "0" outputs to

the ADDER bus giving the complement of the

AC which combines with the contents of MEM.
The result is a subtraction with the complement

of the result left In the AC. MEM ENABLE
0-11 Is generated by EAE MEM ENABLE as

inputs to two negative NOR gates (D-BS-8I-

0-4 D-5 and 6). EAE MEM ENABLE is gener-

ated by a NAND gate (D-BS-KE8I-0-2 D-6)

with inputs of EAE IRO, B EAE ON, and the

high outputs of two NAND gates. The

17

Link Carry Accumulafor Multiplier Quotient Memory
Step

Counter Comments

000 000 000 000
111 in I'll 111

000 000 001 100

000 OOO 001 01

1

000 000 010 111

000 010 010 001

000 100 100 010

000 000 001 100

000 000 001 100 00 001

SC ENABLE
MEM ENABLE
Output of ADDERS
AC and MQ LEFT SHIFT

End of 1st operation

111 111 101 000

000 000 001 100

001 001 000 100 000 000 001 100 00 010

AC ENABLE
MEM ENABLE

111 111 110 100

111 111 101 000

Output of ADDERS
AC and MQ LEFT SHIFT

End of 2nd operation

111 111 101 000

000 000 001 100

010 010 001 000 000 000 001 100 00 011

AC ENABLE
MEM ENABLE

111 111 110 100

111 111 101 000

Output of ADDERS
AC and MQ LEFT SHIFT

End of 3rd operation

111 111 101 000

000 000 001 100

100 100 010 000 000 000 001 100 00 100

AC ENABLE
MEM ENABLE

111 111 110 100

111 111 101 000

Output of ADDERS
AC and MQ LEFT SHIFT

End of 4th operation

111 111 101 000

000 OOO 001 100

001 000 100 000 000 000 001 100 00 101

AC ENABLE
MEM ENABLE

111 111 110 100

111 111 101 001

Output of ADDERS
AC and MQ LEFT SHIFT

End of 5th operation

111 111 101 001

000 000 001 100

010 001 000 000 000 000 001 100 00 110

AC ENABLE
MEM ENABLE

111 111 110 101

111 111 101 010

Output of ADDERS
AC and MQ LEFT SHIFT

End of 6th operation

111 111 101 010

000 000 001 100

100 010 000 000 000 000 001 100 00 111

AC ENABLE
MEM ENABLE

mill no 110

in 111 101 100

Output of ADDERS
AC and MQ LEFT SHIFT

End of 7th operation

111 111 101 100

000 000 001 100

000 100 000 000 000 000 001 100 01 000

AC ENABLE
MEM ENABLE

111 111 111 000

111 111 110 001

Output of ADDERS
AC and MQ LEFT SHIFT

End of 8th operation

111 111 110 001

000 000 001 100

001 000 000 000 000 000 001 100 01 001

AC ENABLE
MEM ENABLE

111 m m 101

111 111 111 010

Output of ADDERS
AC and MQ LEFT SHIR
End of 9th Operation

111 111 111 010

000 000 001 100

000 OOO OOO no
000 000 001 100 010 000 000 001 000 000 001 100 01 010

AC ENABLE
MEM ENABLE
Output of ADDERS
AC and MQ LEFT SHIFT

End of 10th operation

111 111 110 011

000 000 001 100

111 in 111 111

111 111 111 111 100 000 000 011 000 000 001 100 01 oil

SC ENABLE
MEM ENABLE
Output of ADDERS
AC and MQ LEFT SHIFT

End of 11th operation

111 111 111 111

000 000 001 100

000 000 001 01

1

000 000 010 no 000 000 000 110 000 000 001 100 01 100

AC ENABLE
MEM ENALBE
Output of ADDERS
AC and MQ LEFT SHIFT

End of 12th operation

111 111 101 001

000 000 001 100

HI 111 no 101

111 111 no 101 OOO 000 001 100 0OOOOO0O1 100 01 101

SC ENABLE
MEM ENABLE
Output of ADDERS
MQ LEFT SHIFT ONLY
End of 13th operation

111 111 no 101

000 000 001 100

000 000 000 001

000 000 000 001 000 000 001100 000 000 001100 01101

Figure 3 KE8/1 EAE DVI Algorithm

18

Since 5C = 13 and MQI^O
and MQ11=0 MEM and AC -AC.

NO SHIFT

right-hand NAND gate has a high output be-

cause one of its inputs is MUY. The left-hand

NAND gate has four Inputs: MQnO), SC|(1),

(low until at least the 8th operation when the

SC = 8), and DIV LAST (low until the SC =13

or divide overflow occurs) . SC^ (1) is an input

for this gate because if divide overflow occurs

then SCo_3 = 0, ADDER L, and SC4(0) (D-BS-

KE8I-0-2 A-7) are inputs to a NAND gate

giving DIV LAST. Since SCi(1) Is low for

divide overflow this gate is inhibited at this

time. Also since one or more of these inputs

is high until DIV LAST goes high EAE MEM
ENABLE is present until the SC = 13. Figure

4, KE8/I EAE DVI Flow Chart, shows the de-

cisions made by the EAE logic for each divide

operation . If the SC = or MQ]
i
= 1 and

MQqo = then the necessary gates are enabled

to place a "0" in AC]] . It follows that, the

number Is complemented as it Is shifted from

MQqo to AC] , If a subtraction is being per-

formed . This step Is necessary because the

AC is, in effect, complemented Instead of

complementing MEM. A NAND gate with

Inputs of SCq_3 = and SC4(0) (D-BS-KE8I-

0-2 C-3) has an output of SC = 0. Since the

SC = 1 or more during the DVI Instruction

operation 2 through 13 this gate has a high

output except during operation number 1 . A
negative NOR gate, to the right, has MQii(O)

as an input so that MQ]] is set to a "1" this

input is low giving a high output that combines

with DVI In a two-Input NAND gate. Tlie

output of this gate is applied to two (2) three-

input NAND gates. The left-hand NAND
gate has MQo(0) and B EAE ON as its other

inputs. MQo(O) is high if MQoQ is a "0".

Therefore when MQii(0) is high (MQ]]
= 0)

and MQqo = 0, EAE MQO ENABLE is gener-

ated. The NAND gate on the right has inputs

of B EAE ON, and MQo(l), while the NAND
gates output is inverted. It follows that when

MQn(0) is low (MQii = 1), a high is applied

to this NAND gate . If MQ]] = 1 and MQo(l)

is high (MQOO = 1) then EAE MQO ENABLE

is generated . Consequently if MQ^
^
= and

MQqo = or MQ] |
= 1 and MQqq = 1 , one

of these two signals Is generated . A three-

input negative NOR gate (D-BS-8I-0-9 sheet

4 C-1) has inputs of: EAE MQO ENABLE, and

the output of NAND gate (high during DVI be-

cause EAE ON (0) is low during EAE timing).

When either of these signals is low this NOR
gate has a high output which combines with

LEFT SHIFT in an AND gate and is Inverted by

the above NOR gate causing AC]] to be

cleared. If neither of these signals is low

(MQ]] = and MQqq = 1 or MQ]] = 1 and

MQqq = 0) then AC]] is set.

ADDER L Is generated by a series of gates

(D-BS-8I-08 A, B, C - 7 and 8) . The two

AND gates at the bottom of the series have

inputs sampling the condition of the LINK

flip-flop. When AC ENABLE is present L

ENABLE is generated by a negative NORgate

(D-BS-8I-0-4 B-4) with EAE AC ENABLE as

an input. L ENABLE is generated by a NOR

gate because when EAE AC ENABLE is high

EAE L DISABLE is low giving a low out of the

AND gate it drives making L ENABLE go high.

The AND gates (D-BS-8I-0-8 A-7 and 8) will

have low outputs unless eitlier LINK(l) and

L ENABLE or LINK (0) and L ENABLE are

high . The outputs of these gates go to a NOR
gate above whose output is applied to two

AND gates (one through an inverter) and com-

bine with CARRY OUT O. When there Is a

carry from ADDER 00, CARRY OUT i s low

turning off the right-hand AND gate . CARRY

OUTO is inverted and applied to the left-

hand AND gate. Therefore, one of these

AND gates will olways have one input high,

or low, depending on CARRY OUT 0. The

other Input is either h igh or low depending

on the status of L^ If CARRY OUT Is high

and LINK(O) and L ENABLE or LINK (1) and

L ENABLE are high the low output of the

NOR Is inverted turning on the right-hand

AND gate making ADDER L low. ADDER L

will be low if there is a carry and L ENABLE

and LINK(0) are both high or L ENABLE and

LINK(l) are both high. ADDER L will also

be low if there is not a carry and if either

19

'

ADDER L M011=1

M0H = O

ADDER L M01 1 = 1

ADDER LM0I1=0 ADDER L

\

MQ11=0 MQ11 = 1

DIV LAST BY DEFINITION

MEM a AC
ADDERS

M010=1 • M01 1- 1 V MO 10= 1 • M010=

AC "AC MEM a AC— AC

M010 = 0- M01 1 = 1 M010 = 0- MQ1I=0

MEM a AC—»AC

ZI
MQ LEFT SHIFT

:
'

EAE ON

1

EAE END

i

0-—-PAUSE

Figure 4 KE8/I EAE DVI Flow Chart

20

L ENABLE or LINK(O) is low or if L ENABLE
or LlNK(l) is low.

When SC = there are three gates (D-BS-

KE81-0-3 B-1) which check the status of the

SC. The bottom gate has inputs of EAE TP,

SCl(O), SC2(0), and SC3(0) giving an output

of SCO-3 = which combines with SC4(0).

This output is connected to a NOR gate with

its output connected to a NAND gate, invert-

ed and applied to the data-input of the MQi i

flip-flop. Thus when SC = MQi-i is clear-

ed. During Steps 2 through 12 the other three

NAND gates determine the content of MQ^]

.

ADDER L is an input to an AND gate and a

negative NOR gate (D-BS-KE8I-0-3 B-1).

The outpu t of the negative NOR is ADDER L.

Therefore ADDER L is combined with MQii,
determining whether to set or clear the MQi -i

flop -flop. As an example, during operation

two ADDER L is high because CARRY OUT
is low, L ENABLE is high and LINK(Q) is high

(since the L is a "0") giving ADDER L high.

ADDER L is combined with MQi ^(1) in an

AND gate. Since MQ^i = 1 before the shift,

the AND gate's output is high when inverted

by a NOR and applied to a NAND gate above.

This turns the previously mentioned NAND
gate off, its high output is inverted by a nega-

tive NOR and clears the MQ^, flip-flop.

Thus MQ]] contains a "0" at the end of the

second operation.

During operation 10 (see Figure 4) CARRY
OUT is low, L ENABLE is high, and LINK(l)

is high giving ADDER L high (D-BS-8I-0-8).

ADDER L puts a high input on the left-hand

AND gate and a low input on the right-hand

AND gate (D-BS-KE8I-0-3 B-1), but MQii =

0, therefore, MQii(l) is low and both AND
gates have low outputs. The NOR gate above
has a high output which turns on the NAND
above it setting MQ^

^

.

After each operation the SC is incremented by

one and tested to see if it equals thirteen.

When the SC reaches thirteen EAE timing is

terminated as discussed under EAR timing. If

SC = 13 then a series of gates (D-BS-KE8I-0-

2 C and D-5) test to determine if the AC is

to be complemented. A NAND gate (with

inputs of DIV LAST and DVI) has a high out-

put until the last operation, or until DIV
LAST goes high. This output combines with

MQio(0) in another NAND gate. If MQio(O)
is high (MQio= 0) this NAND gate has a low

output, which is inverted and combined with

MQ^iO). Consequently if DIV LAST is low,

and_MQjo= 0, MQn = 1, then EAE SC
ENABLE is generated. An AND gate to the

right has inputs of MQio(l) and MQii(0).
When these inputs are high (MQiq = 1 and

MQ^i = 0) this AND gate generates EAE
AC ENABLE. A NAND gate, further to the

right, goes low on the last division if MQiq =

1 thus generating EAE AC ENABLE. Therefore

if it is not the last operation and MQiq/
MQi I

or if it is the last operation and MQ]q =

1 the AC is complemented.

During the lost operation, or when SC = 13,

a four input NAND gate (D-BS-KE8I-0-2
D-6) tests MQ bit 1 1 to determine whether or

not MEM ENABLE is to be generated. DVI

is high for all of the DVI instruction, DIV
LAST is high only during the last operation or

divide overflow. SCl(l) is also high during

the last instruction so if MQii(l) is high

MEM ENABLE is inhibited, but if MQtt(1) is

low or if MQii = then MEM ENABLE is

generated

.

During operation 12, a three-input NAND
gate (D-BS-KE8I-0-2 D-7) with inputs of

SCl(l), DVI, and SC2(1) qualifies and in-

hibits lArLEFTSHlFTENABLE then generates

EAE NO SHIFT ENABLE giving NO SHIFT.

However, since EAE RIGHT SHIFT ENABLE
is still high (MQ) LEFT SHIFT is still present.

During operation 13 since EAE LEFT SHIFT

ENABLE and EAE NO SHIFT ENABLE are

still high, NO SHIFT is still present, there-

fore, the AC is either complemented and

21

loaded back into the AC or just loaded back.

NO SHIFT combines with ADDER L in an

AND gate (D-BS-8I-0-8 C-7) clearing the L

to a "0" indicating no overflow.

As soon as the DVI instruction is completed

EAE timing is stopped and CP timing is started

as explained under EAE Timing Termination.

AAAINTENANCE

The maintenance procedures for the PDP-8/l

should be followed for the KE8/1 control logic.

ENGINEERING DRAWINGS

The following drawings pertaining to the

KE8/1 are included in this section .

Drawing No. Title Rev.

D-BS-KE8I-0-1 EAE Flow Diagram A
D-BS-KE8I-0-2 EAE Control K
D-BS-KE8I-0-3 Multiplier Quotient E

and Step Counter

22

drawing and »p»cific«tioni, herein, are tftt prop-

erty at Digital Equipment COfpontion atid «h»ll not lie

reproauced or copted or ustd in whot* or in tart as

le tMti* tor the manuracture or sate of it*m« witMut

Tl

T2

T3

T4

MA + I

—PC

MEM—MB

MEM—IR
-\

MB04(0).MBCS (0)»MB0 6 (0)»MB07(0) AC —AC

MB04(0)»MB05(I) AC +MQ—AC

MB04(0).MB06 (0 AC + SC—AC

MB04(0«MBO5(O)»MBO6C0) + MB07CI) O—AC

MB04(I>MB05(I) MQ—AC

MB04 (0»MB06 (I) SC—AC

MB07(I) AC—MQ

MB8-I0—EAE IR

MUY + DVI -t- ASR + LSR n WIUY + DVI + ASR + LSR

T

I— PAUSE

I —EAE ON

MA + 1—^PC

MEM—MB

SCL+ASR+LSR + SHL ,, MUY+DVI

MB 7-1
I

—SC —SC

SCL

I I
— PA USE ']

I
—EAE ON

\-
MUY + DVI + ASR+LSR+SHL4-SCL if MUY+DVI+ASR + LSR+SHL+SCL

BRK REQ I BRK REQ

BRK REQ ^ BRK REQ

DATA i PROGRAM
i

-—

^

DATA ADD-^MA

I CYCLE

I WC

1

—MA 1

^
1 JMS IR

I

i

1
I^E

1

PROGRAM DATA

1

MA
1

i

1

JMS IR
]

i

I CYCLE 3 CYCLE

<N'

MUY

0— I83X QJ a 2

DVI

CSC^O OR I Il»

|j/QIO=MQ!l D

[SC=0 OR G -r

QMaiOiitMQIjIl

MEM ADD TO AC MEM ADD TO AC

lSC=O.L(lI] Csct'q + L(Ol]

0—EAE ON MQ ROTATE LEFT

SC = I2 SCit|2

L & AC
ROTATE LEFT

+ I—SC

J SC=IJ

MQlO(O) MOIOCO)

MQII (0) MQ I I (I)

SC?t|3

MQ 10(1)
«

MQI 1(0)

MQIO (I)

MQII (I)

MEM ADD AC AC AC MEM ADD AC AC —AC

0—EAE ON ;<

t
EAE En'd"

S »j
I

AC

E pH AC -»
|

mIT

SHL
AND
NMI

MUY

DVI

-—{T},
1

AC |
<-

LOST ' '
' '

M Q [<-

LOST

LOST

MQ |
<-

-»
|
invert"}

jJNLESS OTHERWISE SPECIFIED

UNLESS OTHERWISE SPECIFIED
DIMENSION IN INCHES

TOLERANCES
DECIMALS FRACTIONS ANGLES
± 005 * 1/64 ± 0°30'

FINAL SURFACE QUALITV V
REMOVE BURRS AND BREAK SHARP

CORNERS

'=>"''?
J-,

MATERIAL

DRN^

DATE

y^'c^
nT^
PROD. DATE
^^ -';.., 7.,....,..'i(I? i/y?
FIRST JSED ON
E — UA-BI— 0—0

DATE
/' "

SHEET I OF I

EQU
CORP

P M E NT
ORATION

EAE FLOW
DIAGRAM

SIZE CODE NUMBER

D FD KE8I- -I Anrxnumn
DEC FORM NO

23

25

?-0-I83><|S9|o|2
This drawing and specifications, hereir. are the prop-

erty af Dtgital Eaulpmtnt Cor^orMlon and shall fioI be

produced or copied or uud in whole of in part as

e basis for the menutacture or silt ot items without

NOTE;
SIGNAL NAMES INDICATE

ASSERTED STATES FOR,

HIGHM LEVELS PER DEC
STD 05 4

UNLESS OTHERWISE SPECIFIED

UNLESS OTHERWISE SPECIFIED
DIMENSION IN INCHES

TOLERANCES
DECIMALS FRACTIONS ANGLES
S ooa ± l/M - o*30'

FINAL SURFACE QUALPTY
REMOVE BUnnS AND BREAK SH>(rP

,'Y P. l2ih,^

(?A^rM^

DATE,

C)j. C^foA.^

DATE

pjraj. zm

7!„/Y,^.^S*

DATE
In- 1'- ^

DATE

FIRST USED ON
E -UA -81— 0-0

SDIDDiDI

EQUIPMENT
CORPORATION

MULTIPLIER QUOT
$ STEP COUNTER

CODE

BS
NUMBER

KE8I- -3
I I I I

REV.

E

27

