
SOFTWARE
MANUAL

BPfTf f I
fT|T]-rf,-T:-pi ^pi]

DEC-14-ISUMA-B-D

INDUSTRIAL 14

SOFTWARE MANUAL

digital equipment corporation • maynard. massachusebts

1st Edition, July 1974

Copyright © 1974 by Digital Equipment Corporation

The material in this manual is for Informational

purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon-

sibility for any errors which may appear in this

manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

CONTENTS

Page

CHAPTER 1 INTRODUCTION TO INDUSTRIAL 14 PROGRAMMING

PROGRAMMING THE INDUSTRIAL 14 1-1

INPUT/OUTPUT AND INTERNAL FUNCTION ORGANIZATION 1-1

Industrial 14 Inputs 1-1

Industrial 14 Outputs 1-2

Internal Functions 1-3

BOOLEAN REPRESENTATIONS OF MACHINE CONTROL 1-3

Equations Containing NOT 1-3

Evaluating Equations 1-4

Equations with Variable Groups 1-4

Equation Simplifications 1-5

INDUSTRIAL 14 PROGRAM DESCRIPTION 1-5

INTRODUCTION TO THE INDUSTRIAL 14 SOFTWARE 1-6

BOOL-143 1-6

SET-143 1-6

PAL-143 1-6

ODP-143 1-6

CHAPTER 2 INDUSTRIAL 14 BASIC INSTRUCTIONS

BASIC INSTRUCTION CLASSES 2-1

INDUSTRIAL 14 TEST FLAG 2-1

INDUSTRIAL 14 TEST INSTRUCTIONS 2-1

INDUSTRIAL 14 SET OUTPUT INSTRUCTIONS 2-2

ADDRESSING MEMORY IN THE INDUSTRIAL 14 2-2

Memory Organization 2-2

Absolute Address and Page Addresses 2-3

Industrial 14 Program Flow 2-3

INDUSTRIAL 14 JUMP INSTRUCTIONS 2-4

ConditionalJump Instructions 2-4

Unconditional Jump Instructions 2-6

Subroutine Jump Instructions 2-6

CHANGE FIELD INSTRUCTIONS 2-7

SAMPLE INDUSTRIAL 14 EQUATION AND ANALYSIS 2-8

PROGRAM EXAMPLES 2-10

Boolean OR Control Function 2-10

Example 1 -Control Function 2-10

Boolean and Control Function 2-11

Example 2 — Control Function 2-11

Control Functions with Normally Open (NO) and Normally Closed (NC) Contacts 2-12

Example 3- Control Function 2-12

Latching Control Function 2-13

Example 4 -Control Function 2-13

Relay Controlled Function 2-13

Example 5 — Control Function 2-13

Simplifications 2-14

Example 5, Simplified -Control Function 2-14

CONTENTS (Com)

Page

CHAPTER 3 INTERNAL FUNCTIONS

INTERNAL I/O GROUPINGS 3-1

ADJUSTING THE INTERNAL I/O GROUPING 3-1

RETENTIVE MEMORIES 3-3

SHIFT REGISTERS 3-4

TIMERS 3-6

EVENT COUNTERS 3-7

UP/DOWN COUNTERS 3-8

CASCADING A TIMER AND COUNTER 3-8

NON-RETENTIVE INTERNAL FUNCTIONS 3-9

CHAPTER 4 BOOL-143 CONTROL EQUATION TRANSLATOR

VT14 COMPATIBILITY 4-1

BOOL-143 STATEMENT 4-1

Input, Output, and Internal Function Specification 4-2

Operators 4-2

Variable Groups 4-3

Statement Continuation 4-3

Comments 4-4

SUBROUTINES AND STORAGE OUTPUTS 4-4

Intermediate Results 4-4

Z-Functions 4-4

R-Functions 4-5

SUBROUTINE EXAMPLES 4-6

CONTROL STATEMENTS 4-7

Shift Circuits .SR mmmm, nnnn 4-7

Field 1 .FLD 4-7

Partition .PRTN = nnnn 4-7

Timer Preset .SEC mmm and .TSEC mmm 4-7

Counter Preset .CNTR mmm 4-7

End of Program - .END or .ENDN 4-8

End of Tape - .EOT 4-8

Memory Allocation 4-8

Start of Program - .LOC 4-10

Spacing Between Equations- .F I XS or .VARS 4-10

MONITORING PROVISIONS IN BOOL-143 4-10

Monitor Transitions to ON — .MN 4-1

1

Monitor Transitions to OFF — .MF 4-11

Monitor All Transitions - .MFN . 4-11

Monitoring Input Transitions 4-11

ERROR MESSAGES 4-12

OPTIMUM FORM FOR BOOL-143 EQUATIONS 4-15

SAMPLE BOOL-143 PROGRAM 4-17

CONTENTS (Cont)

Page

CHAPTER 5 SET-143 SYMBOLIC EQUATION TRANSLATOR
Hardware Requirements 5.^

Symbols 51
Symbol Definition 51
Symbol Table 5.2
Symbolic Equations 5.3
Handlingof BOOL-1 43 R and Z Functions 5.3
Comments 5.4
BOOL-143 Control Statements 5.4
Error Messages 5.4
Error Listing 5.5
Sorted Symbol Table 5.5

Sample SET-143 Program 5.5

CHAPTER 6 PAL-143 SYMBOLIC PROGRAM ASSEMBLER

PAL-143 GENERAL FEATURES 6-1

Location Assignment g.2

Symbolic Addresses g.2
ASSIGNMENT STATEMENTS 6-3
PAL-143 PROGRAM CONVENTIONS 6-4

Comments g.4
Multiple Location Instructions 6.4
Permanent Symbol Table g.4

User Symbol Table g.7

Special Characters and Operators g.7

Addition and Subtraction g.g
Logical OR g.g
Period . .

, g.g
Pseudo-Instructions gg

END '..'.
6-9

EOT g.g

LOC 6.9
PAGEJ 610
^^^ 6-10
FLD 1 6-10

PAL-143 INTERROGATION gl.
Binary Output g1^
Assembly Listing g1

1

Symbol Table 61

1

Error Messages g.12
Error Listing g15
Sample Output g15

CONTENTS (Cont)

Page

CHAPTER 7 ODP-143 ONLINE DEBUGGING PROGRAM

MODES OF OPERATION ^''

CONVENTIONS ^ ''

ODP-143 COMMAND DESCRIPTION ^"^

SWITCH REGISTER 5 ^'^

RUBOUT KEY ^'^

PROGRAM COMMANDS ^'"^

7 3
Interface Commands

7 3
Zero Memory Command

7-3
Read Commands

7 3
Low-Speed Reader

High-Speed Reader ^'^

Change Memory Field

Open Location Commands

Open a Location Symbolically

Open a Location Numerically

Open I/O Status Word ^"^

7 fi

List Commands

List Symbolically ^"^
7-7

List Numerically

Interrogation Command

I/O Interrogate Disables
7 R

Start Command
7 8

Punch Commands

Low Speed Punch
^'°

High Speed Punch ^"^
7-9

Verify Commands

RUN MODE COMMANDS ^'^
7 9

Interrogation Command

ID Interrogate Disables Command ^"^"

Disable and Enable Commands

Force Commands
7 1 n

Halt Program Execution Command
7 11

Using the Disable/Force Feature

ODP-143 SUMMARY ^^''

CHAPTER 8 PDP-8 OPERATIONS

PDP-8 SWITCH AND SWITCH REGISTER OPERATIONS 8-1

PDP-8 LOADER PROGRAM ^-^

Loading the RIM Loader
8-2

8 3
Loading a Binary Tape

PDP-8 EDITOR ^'^
Q A

Composing Source Program

Updating Source Programs

Text Buffer ^"*

Modes ot Operation " ^
Q C

Transition Between Modes

Adding Text to the Buffer
8-5

CONTENTS (Cont)

Page

Editing Keys 8-5
Reading a Paper Tape g.g
Listing a Program g.g
Inserting a New Line of Text 8-6
Deleting Lines from the Text Buffer 8-6

Changing Lines of Text 8-6

Moving Lines of Program Text 8-7

Search Feature 8-7

Special Characters 8-8

Punching a Source Tape 8-8
Editor Summary Tables 8-8

Loading the Editor 8-9

Starting the Editor 8-9
SET-143/8 OPERATIONS 8-^^

Loading and Starting SET-143 8-11

Using SET-143 8^^
BOOL-143/8 OPERATIONS 8-^1

BOOL- 143/8 Options
! ! ^ ! !

'

8-11

Binary Output 8-12
Compiler Listing 8-12
Source Program 8-13
VTMCompatability 8-13
Loading and Starting BOOL-143/8 8-13

PAL-143/8 OPERATIONS 8-14
Loading and Starting PAL-1 43/8 8-14
Assembly Passes 8-16
Error Halt 8-16

ODP-143 OPERATIONS 8-16
USING OS/8 SYSTEM TO DEVELOP INDUSTRIAL 14 PROGRAMS 8-16

Saving 143/OS8 Programs 8-16
Command Decoder Input Strings 8-17

143/OS8 Program Differences 8-17
143/OS8 I/O Errors 8-18

CHAPTER 9 MONITORING

INTRODUCTION g.-,

MONITORING FACILITIES 9-1

MONITORING APPROACHES 9-1

DUAL INTERFACE PORTS 9-3

INTERNAL INSTRUCTIONS 9-3
MEMORY INSTRUCTIONS 9-3
I/O CONTROL INSTRUCTIONS 9-6
I/O MANIPULATION INSTRUCTIONS 9-6

I/O POLLING 9-9

PROCESSOR STATUS WORD 9-10
ERROR CONDITIONS "

'

g.^g
INSTRUCTION EXAMPLES 9-11

INTERFACE OPTIONS 9-12
GENERAL CHARACTERISTICS 9-13

CONTENTS (Cont)

Page

DA14-E PARALLEL INTERFACE 9-14

DC14-F SERIAL INTERFACE 9-16

PROGRAM EXAMPLES 9-18

APPENDIX A INPUT ASSIGNMENT SHEET

APPENDIX B OUTPUT ASSIGNMENT SHEET

APPENDIX C INTERNAL FUNCTION ASSIGNMENT SHEET

APPENDIX D INDUSTRIAL 14 PROGRAM COMPATIBILITY WITH THE VT14

Figure No.

1-1

1-2

1-3

1-4

1-5

1-6

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8a

2-8b

2-9

2-10

2-11

O 10
£.- I £.

2-13

3-1

3-2

3-3

3-4

3-5

3-7

ILLUSTRATIONS

Title Page

Input Assignment Sheets 1-2

Output Assignment Sheet 1-2

Ladder Diagram 1-3

Ladder Diagram Illustrating NOT Function 1-3

Evaluating Equations 1-4

Industrial 14 Program Execution Cycle 1-6

Octal Counting Technique 2-3

Industrial 14 Memory Organization 2-4

Ladder Diagram for Boolean OR Function 2-10

Typical Industrial 14 Wiring Diagram for Example 1
2-11

Ladder Diagram for Boolean AND Function 2-11

Typical Industrial 14 Wiring Diagram for Example 2 2-11

Ladder Diagram with NO and NC Contacts 2-12

Typical Industrial 14 Wiring Diagram for Example 3

Using Normally Closed Contacts 2-12

Typical Industrial 14 Wiring Diagram of Normally Open

Input for Example 3 2-12

Ladder Diagram for Latched Control Function 2-13

Typical Industrial 14 Wiring Diagram for Example 4 2-13

Ladder Diagram for Relay Controlled Function 2-13

Typical Industrial 14 Wiring Diagram for Example 5 2-14

Typical Industrial 14 Wiring Diagram for Example 5, Simplified 2-14

Internal I/O Groupings 3-1

Retentive Memory Circuit and Boolean Equations to Record

Full-Depth Reached 3-3

Shift Register Circuit and Boolean Equations to

Track a Reject Part 3-4

General SR Parallel-Load Circuit Ladder Diagram 3-5

Industrial 14 Memory Allocation for Shift Registers 3-5

Uduucf Ljfiavji an la aiiu uuuicait i^L^uaLiwiia \.\j

Link Two Shift Registers 3-5

Timing Circuit Operation Timing 3-6

VIM

ILLUSTRATIONS (Cont)

Figure No. Title Page

3-8a Turn-On Delay Circuit Timing 3.6

3-8b On-Delay Timer Operation Ladder Diagram 3-6

3-9a Timer Lockup Circuit Timing 3-6

3-9b Timer Loci<up Circuit Ladder Diagram and Boolean Equations 3-7

3-1 Oa OFF Delay Timer Circuit Timing 3.7

3-10b OFF Delay Timer Circuit Ladder Diagram and Boolean Equations 3-7

3-1 la Circuit Timing for Energizing an Output for a Fixed

Interval Following De-energization of an Input 3.7

3-11 b Circuit and Boolean Equations to Energize an Output for a

Fixed Interval After De-energization of an Input 3-8

3-12 Up Counter Circuit and Boolean Equations to Shut Down
a Station on Three Successive Bad Parts 3-8

3-13 Up/Down Counter Circuit and Boolean Equation Parts

on a Conveyor to a Maximum of Six 3-9

3-14 Circuit and Boolean Equations to Cascade a 60 Second

Timer With a 60 Minute Counter 3-10

3-15 Clear Timer if Power is Lost Ladder Diagram 3-10

3-16 Circuit to Clear One Bit of a Shift Register on Power Failure 3-10
4-1 BOOL-1 43 Programming Procedure 4-2

4-2 VT14 Screen (Circuit Diagram Too Wide for Display) 4-16

4-3 VT14 Screen (Circuit Diagram Too High for Display) 4-16

5-1 InputSymbol Table to SET-143 5-2

5-2 SET-143 Input Program 5-6

5-3 SET-143Translated Symbol Table (Optional) 5-7

5-4 SET-143 Translated Program 5-8

5-5 Sorted Symbol Table (Optional) 5-9

6-1 Procedure for Developing Programs Using PAL-143 6-1

7-1 Disabling Inputs and Outputs 7-10
7-2 Automatic Cycle Light Control Circuit, Boolean Equation

and Industrial 14 Instructions 7-11

8-1 PDP-8/1, 8/L, 8/E, 8/F and 8/M Switch Settings for

Octal Digits 0-7 8-1

8-2 Switches Set to Octal Number 5 8-2

8-3 Switch Register Set to 1634g 8-2

8-4 Switch Register Set to 22008 8-2

8-5 Switch Register Set to 02008 8-2

8-6 Paper Tape Load Point 8-4

8-7 Transitions Between Editor Modes 8-5

8-8 BOOL-143/8 Operational Flowchart 8-15

9-1 Industrial 14 Monitoring Facilities 9-1

9-2 Status Reporting 9-2

9-3 Polling 9-2

9-4 Computer Command 9-2

9-5 Down Line Loading 9-2

9-6 Industrial 14 Dual Interface Ports 9-3

9-7 I/O Storage Memory Organization 9-8

9-8 Disable Storage Memory Organization
, 9-9

9-9 Organization of Bit-Oriented Internal Functions 9-9

9-10 Internal Function Storage Format 9-10

IX

ILLUSTRATIONS (Cont)

Figure No. Title Page

9-11 Read I/O Output Register Format 9-11

9-12 Processor Status Word Format 9-11

9-13 DA14-E Execute Subroutine 9-16

9-14 DC14-F Receiver Data Format 9-17

9-15 DC14-F Transmitter Data Format 9-17

9-16 KL8-JA Receiver Word 9-17

9-17 DC14-F Execute Subroutine 9-19

9-18 Polling a Single Point 9-21

9-19 Polling Eight Points in Parallel 9-22

9-20 Setting a Single I/O Bit 9-23

9-21 Loading Eight I/O Points in Parallel 9-23

9-22 Loading a Timer Preset 9-24

9-23 Reading a Timer Preset 9-24

9-24 Reading a Memory Location Within the Industrial 14 9-25

9-25 Writing a Memory Location Within the Industrial 14 9-25

D-1 JFN Restriction Ladder Diagram, Boolean Equation

and Equivalent Industrial 14 Instructions D-1

D-2 Circuit Diagram D-3

D-3 Shift Register Circuits for VT14 Compatibility D-3

TABLES

Table No. Title Page

2-1 Industrial 14 Test Instructions 2-1

2-2 Industrial 14 Set Output Instructions 2-2

2-3 Industrial 14 ConditionalJump Instructions 2-5

2-4 Industrial 14 Unconditional Jump Instructions 2-6

2-5 Industrial 14 Subroutine Jump Instructions 2-7

2-6 Change Field Instructions 2-8

2-7 Sample Industrial 14 Program 2-8

3-1 Typical Assignment of Internal I/O Numbers 3-2

3-2 Possible Internal Function Groupings 3-3

3-3 Up/Down Counters 3-9

4-1 BOOL-143 Equation Characters 4-3

4-2 Summary of Control Statements 4-12

4-3 Errors Detected and Diagnosed by BOOL-143 4-13

5-1 SET-143 Error Messages 5-4

6-1 PAL-143 Permanent Symbol Table Industrial 14 Instructions 6-5

6-2 PAL-143 Special Characters 6-8

6-3 Inclusive OR For Octal Numbers 6-8

6-4 Errors Recognized by PAL-143 6-12

7-1 Use of the LS Command 7-6

7-2 Program Mode Commands 7-11

7-3 @ Run Mode Commands 7-12

7-4 ODP-143 Error Messages And Causes 7-13

8-1 Special Editor Keys 8-9

8-2 Summary of Editor Commands 8-10

TABLES (Cont)

Table No. Title Page

8-3 143/OS8 Program Specifications 8-17

8-4 143/OS8 I/O Error IVIessages 8-18

9-1 IVIemory Control Instructions 9-4

9-2 I/O Control Instructions 9-5

9-3 I/O Manipulation Instructions 9-7

9-4 Possible Internal Function Partitions 9-11

9-5 Industrial 14 Interface Characteristics 9-13

9-6 Industrial 14 Interface Flag Meanings 9-14

9-7 DA14-E Interface Instructions 9-15

9-8 KL8-JA lnstructionsforDC14-F Communication 9-18

9-9 I/O Number Ranges 9-21

D-1 Industrial 14 Instructions Compatible With the VT14 D-2

CHAPTER 1

INTRODUCTION TO

INDUSTRIAL 14 PROGRAMMING

Anyone who has designed machine controls has actually

functioned as a progrannmer. Although relays are used

rather than a computer, the designer must specify a series

of events (in a certain sequence) to control machine

operations. In a general sense, this specification of a

sequence of events is equivalent to performing a program-

ming task in conjunction with a computer.

PROGRAMMING THE INDUSTRrAL 14

The Industrial 14 System has been specifically designed for

controlling machines and processes. The programmer speci-

fies only the control function to be performed in a

particular application; this function can be specified in

relay symbology and entered via the VT14 Programming

Terminal or, as described in this manual, specified in

equations or instructions and entered via a digital com-

puter. In either instance, the control engineer is specifying

the content of the Industrial 14's memory rather than

directing the actions of an electrician in wiring a relay

panel. Once the control function is specified, the Industrial

14 controls a machine (or a series of machines) in the same

manner as relays in the same application.

Distinct advantages are evident in programming machine

control with an Industrial 14 compared with

"programming" with relays. For example, logic errors are

easier to find and to correct; system changes are accommo-

dated painlessly. Programming the Industrial 14 does not

require previous computer experience although experience

in machine control is necessary.

Industrial 14 programs provide relationships between input

devices (limit switches, pushbuttons, selector switches, etc.)

and output devices (solenoids, motor contactors, indicator

lights, etc.) and devices associated with internal functions

(counters, retentive memories, timers and shift registers).

These relationships, or control functions, can be expressed

as Boolean equations, circuit diagrams or machine language

instructions, which, when solved for particular input values,

specify the state (ON or OFF) of an output or internal

function.

INPUT/OUTPUT AND INTERNAL FUNCTION
ORGANIZATION
Machine inputs and outputs must be assigned to the

Industrial 14 input (I) and output (0) converters before an

Industrial 14 control program can be written; internal

functions must be assigned within the Industrial 14. These

assignments permit the Industrial 14 instructions to test the

state of specific inputs, outputs, and internal functions.

Technical descriptions of the I/O converters are contained

in the Industrial 14 Systems Manual (DEC-14-HSIV1AA-

A-D). A maximum of 32 input panels are available, each

panel containing 16 input converters, allowing a maximum
of 512 Industrial 14 inputs. Sixteen possible output panels

are available; each panel containing 16 output converters,

for a total of 256 available outputs.

A total of 256 internal functions are available within the

Industrial 14 Controller. These functions retain the current

state (ON or OFF) even if primary power to the Industrial

14 fails.

Industrial 14 Inputs

The inputs to the Industrial 14 System are limit switches,

selector switches, pushbutton switches, etc. Each input can

have only one of two values at any one time, ON or OFF.
These machine inputs are wired to an input converter. An
input is ON if 115 Vac is present at the specific input

terminal. The input is OFF to show the absence of

11 5 Vac. For programming purposes, all Industrial 14

inputs are denoted by numbers 0-777, designated in octal

(base 8) representation. Specifically, the number 15 desig-

nates a machine input (e.g., a limit switch) which is wired

to terminal 14 on the first input panel. Program inputs are

numbered octally; 8s and 9s never appear in the number
system.

The normal procedure for assigning input numbers is to

complete an Input Assignment Sheet, as shown in Figure

1-1. This sheet is completed for each input panel used in

1-1

the Industrial 14 system. The Input Assignment Sheet

for one panel records the following:

a. Machine input number (0-777)

b. LS201 (Limit Switch 201). (This will be a

familiar symbol to the user.)

c. The function of this input (activated when slide

2 is in the full return position).

d. Normal condition of the contacts wired to the

Industrial 14 input converter (normally open or

normally closed).

devices, etc. These outputs are placed ON or OFF by the

Industrial 14, depending on the current state of inputs or

outputs. For programming purposes, these 256 Industrial

14 outputs are designated by octal numbers 1000-1377

inclusive.

The procedure for assigning output numbers is similar to

that used for assigning input numbers. A sample Output

Assignment Sheet is shown in Figure 1-2. This sheet should

be completed for each output panel in the Industrial 14

System. The machine output device (solenoid, motor

contactor, etc.) wired to each output converter terminal is

recorded along with the following information:

a. I/O Number (1000-1377)

Industrial 14 Outputs

Output devices controlled by the Industrial 14 System are

solenoids, motor contactors, small motors, indicators, signal

b. Symbol (SOLA for Solenoid A)

c. Function (clamps part at beginning of cycle)

INPUT AS*GNMENT SHEET

I/O Number Symbol

LS20r

Z5-202

Function

ACTi/Ar£.p ¥^HeN iUOe. Jt At

AcTiVATSiO WM(£^ Si-IOE. £ Ar POi-L.

INPUT ASSIGNMENT SHEET

Normal

Condition

rt/o

rt/o

I/O Number Symbol Function

Normal

Condition

ZO pe>^ CYCt-6, ST/l«T PUSH e>UrTON r\/o

Zl ?i^iz. srAK^ Morcfzs fc/sh 3urro\i n/o

^-"K^--^^_^-^^-^ ^-—^^^ .-^-^ ^^

I/O Number

IIZO

1121

H2Z

Symbol

Figure 1-1 Input Assignment Sheets

OUTPUT ASSIGNMENT SHEET

50LA

SOl-5

SOLF

Function

CL^ffiPS fAKT AT &E.<i,lKHtNQr OP C.^CL.e.

;i?en/KN5 WEAP, /{crWAT^O 6V L5I^

UNCLAMf^ P!Afn WHEN ^5^ 'S XfKxfPeX}

Figure 1-2 Output Assignment Sheet

1-2

Internal Functions

A similar assignment procedure is followed for internal

functions as described in Chapter 3.

BOOLEAN REPRESENTATIONS OF MACHINE
CONTROL
Programming the Industrial 14 System requires familiarity

with simple Boolean equations for control functions. These
equations comprise operators and variables; variables of
Industrial 14 control equations are inputs, outputs, and
internal functions. Each variable has only two states: ON
and OFF. The operators in these equations are as follows:

The asterisk(*) denotes the logical AND function

The plus sign (+) denotes the logical OR function

The slant sign (/) denotes the logical NOT function.

For example, the equation

1010 = 23+21*1007

is read "output 1010 is set ON when input 23 is ON, or

when both input 21 and output 1007 are ON". This
equation instructs the Industrial 14 to test input 23, and if

it is ON, to set output 1010 ON; if input 23 is OFF, to test

input 21 and output 1007 and if these are both ON, to set

output 1010 ON. If neither set of conditions is satisfied,

output 1010 is set OFF. This equation could be represented

by the ladder diagram shown in Figure 1-3 and the

following circuit:

SOLF = 2LS+3LS*7CR

SOLF corresponds to output 1010; 2LS corresponds to

input 23; 7CR corresponds to output 1007; and 3LS
corresponds to input 21. It is important to remember that

input and output numbers are determined by the terminals

to which these devices are wired.

Equations Containing NOT
The equation operator / (NOT) is often used in control

functions.

For example, the equation

1027 = 5*/ 30

could represent the control function "solenoid A is

energized if limit switch 5 is tripped and pushbutton 12 is

not activated". This function is equivalent to the following

equation and the ladder diagram in Figure 1-4.

SOLA = 5LS*/12PB

where SOLA corresponds to output 1027; 5LS corresponds

to input 5; and 12PB corresponds to input 30.

NOTE
A normally closed set of contacts for 12PB is

shown in the ladder diagram. The NOT sign in

the equation means NOT tripped or NOT
pushed; it is a physical description.

12PB SOLA
5LS

Figure 1-4 Ladder Diagram Illustrating NOT Function

SOLF
2LS

3LS 7CR

Figure 1-3 Ladder Diagram

The NOT sign in the Industrial 14 System relates to the

absence of 115 Vac at an input or output; it does not
specify physical switch positions. Normally open or normal-

ly closed contacts can be wired to the Industrial 14,

depending on the user's choice. This is possible because the

Industrial 14 can test an input for the ON state or the OFF
state; therefore, only one set of contacts need be wired to

the Industrial 14.

The choice of a normal condition for input contacts must
be made before writing the control equations for the

Industrial 14 and the normal condition of the contacts

should be noted on the Input Assignment Sheet. When

1-3

normally open contacts are used, the equation 1005 = 15

specifies that output 1005 is set ON when machine input

15 is activated (e.g., a limit switch is tripped) and 115 Vac

is applied. It also specifies that output 1005 is set OFF

when input 15 is not activated. Using normally closed

contacts reverses the sense of the logic. When normally

closed contacts are wired to the Industrial 14, the equation

1005 =/15 specifies that output 1005 is set OFF when

input 15 is activated and is set ON when input 15 is not

activated.

Because normally closed contacts result in equations which

appear contrary to common sense, it is suggested that all

normally open contacts be used in the Industrial 14 system.

When considerations such as safety dictate that a normally

closed contact must be used, simply reverse the logic;

therefore, 10 would be represented as /10 and /1 would be

10.

Evaluating Equations

When an equation contains more than one variable, it is

important to note the manner in which the output state is

determined. For example, consider the following equation:

1001 = 1*2+3

Does this equation represent 1001 = (1*2) +3 or 1001 = 1*

(2+3)?

It is obvious from the two ladder diagrams in Figure 1-5

that the two interpretations are not equivalent.

To eliminate possible ambiguities when evaluating equat-

ions, variables grouped by the AND (*) operator are always

combined before variables grouped by the OR (+) operator

(when the order of combination is not clearly indicated by

parentheses). In the preceding example, (1*2) +3 (the

second ladder diagram) is the correct interpretation of the

expression 1*2+3.

The following examples show the use of parentheses:

27+/1 7*20 =27+(/1 7*20)

11 '23+31*14 = (11*23) + (31*14)

(12+15) */21+22=(12+15)*/21+22

21+22*23+24*25= 21+ (22*23) + (24*25)

Parentheses can be added wherever necessary to define an

expression more clearly.

When the NOT operator (/) precedes a single variable, the

equation checks for the absence of the input (or output) at

the I or converter.

^^<

1001 = I • (2*3)

H-023S

Figure 1-5 Evaluating Equations

Equations with Variable Groups

Many control equations contain groups of variables which

are separated from the rest of the equation by parentheses.

Thic nrniininn cimnlv mpanK that the Content Of the

parentheses is to be evaluated (for ON or OFF) and the

result is to be treated as a single variable of the whole

equation. For example, consider the following equation:

1021 =/(121*26)

The states of inputs 121 and 26 are tested and the resultant

state of the quantity in parentheses is inverted by the NOT

operator to determine the value of output 1021. The

following truth table summarizes the function:

121 26 121*26 1021=7(121*26)

ON ON ON OFF

ON OFF OFF ON
OFF ON OFF ON
OFF OFF OFF ON

NOTE
Output 1021 is ON if either 121 or 26 is OFF.

The following equation expresses this relation-

ship:

1021 =/121+/26

1-4

Thus, the following substitution can always be made in

control equations:

/ (A*B) is always equivalent to /A+/B

A similar substitution is possible for the following equa-

tion:

1022 = /(107+12)

The following truth table determines the state of output
1022 for all states of inputs.

107 12 (107+12) 1022=7(107+ 12)

ON
ON
OFF
OFF

ON
OFF
ON
OFF

ON
ON
ON
OFF

OFF
OFF
OFF
ON

Restating this relationship, output 1022 is ON only if input

107 and input 12 are both OFF. Thus, the equation can be

rewritten as

1022 = /107*/12

and the following substitution is always possible:

/(A+B) can always be replaced by /A*/B

Equation Simplifications

Several methods exist to simplify equations before they are

programmed for the Industrial 14. Equations need not be in

the simplest form; in many instances memory locations can

be conserved and executing time for the program can be

lessened.

Consider the following equation:

1005= 1+(1*2) + (3*5)

The expression 1 *2 adds no meaning to the equation. If 1 is

ON, output 1005 will be set ON, regardless of the state of

2; if 1 is OFF, the state of 2 can in no way affect 1005.

Thus, the equation can be simplified to:

1005= 1+(3*5)

and the following rule is established:

A+(A*B)=A

The following equation can also be simplified:

1006={1*2f3) *4*/3

Because of the last element of the equation (/3), output
1006 can never turn ON when 3 is ON. Thus, the last

element within the parentheses (+3) is meaningless (3
cannot be ON and OFF at the same time). The simplified

equation is

1006=1*2*4*/3

and the following rules are established:

A*/A can never be true

A+/A is always true

INDUSTRIAL 14 PROGRAM DESCRIPTION
After recording the input, output and internal assignments
and their functions, the programmer codes the program for

all control functions. In general, an Industrial 14 control

program consists of separate instruction groups. Each
instruction group solves a Boolean equation by testing

Industrial 14 inputs, outputs and internal functions; at its

conclusion an output is set either ON or OFF. The final

instruction group in the program ends with an uncondi-
tional jump to the start of the first instruction group;
therefore, the Industrial 14 program is a closed loop.

For example, if a machine control requires 20 outputs, 20
instruction groups must appear in the control program.
Figure 1-6 illustrates the execution of an Industrial 14
program.

The instruction groups are often separated by several no
operation instructions (NOPs). The Industrial 14 NOP
instruction is simply a space filler which leaves room for

future program modifications or corrections.

The jump to the start of the program is important. If there

was no instruction to return control to the beginning of the

program, the Industrial 14 would stop executing instruc-

tions when it reached the instruction at the end of its

memory and there would be no way for the program to

automatically start again.

Each instruction group is independent of all other instruc-

tion groups. For example, in the same program, instruction

groups can be controlling one device while other instruction

groups are controlling a second device. The sharing of an

1-5

Industrial 14 System between many devices can be

extended until any of the following limits are reached:

Inputs (512)

Outputs (256)

Internal functions (256)

Memory locations (4000 or 8000)

INTRODUCTION TO THE INDUSTRIAL 14 SOFTWARE

Two PDP-8 based software kits are available for the

Industrial 14: one includes programs that operate on a

PDP-8 paper tape system, the other includes programs that

operate on an OS/8 (Operating System on the PDP-8)

System. The Industrial 14 Paper Tape Software Kit (option

number QLR08-AB) contains binary tapes for the

following programs:

SET 1001

SOLVE FOR
OUTPUT
100)

ON

SET 1002

'

OFF

SOLVE FOR
OUTPUT
1002

ON

OFF

SOLVE FOR
OUTPUT

SET 1020

ON

1020

OFF

GO TO 1001

Figure 1-6 Industrial 14 Program Execution Cycle

BOOL-143-a compiler which translates special Boolean

equations into Industrial 14 machine instructions. This

program is discussed in Chapter 4.

SET-143-an optional Symbolic Equation Translator

(preprocessor) for BOOL-143. This program translates

6-character alphanumeric symbols into associated pre-

defined Industrial 14 I/O numbers (0-1777) for processing

by BOOL-143. Therefore, all Boolean equations may be

written with symbols that enable the user to describe

physical input and output components and internal

function types (i.e., SRTPB1, CLPSOL, and DWLTMR).

This program is discussed in Chapter 5.

PAL-143-the assembler for the Program Assembly

Language of the Industrial 14. An assembly language is a set

of instructions in mnemonic or symbolic form (letters)

which have direct counterparts in the machine code of the

Industrial 14. In other words, the PAL-143 assembler

translates the symbolic representations into Industrial 14

machine code. This program is discussed in Chapter 6.

ODP-143-a debugging program for Industrial 14 machine

language instructions stored in the Industrial 14's memory.

The user may examine and change instructions when the

Industrial 14 program is halted, or examine and set input

and output states during program execution. This program

is discussed in Chapter 7.

1-6

The Industrial 14 OS/8 Software Kit (option number
QLR01) contains binary paper tapes of OS/8 versions of

BOOL-143 {BOOL-143/OS8), SET-143 (SET-143/OS8),

PAL-143 {PAL-143/OS8), and ODP-143 (ODP-143/OS8).
These programs are discussed in Chapters 4, 5, 6 and 7

respectively. Loading and operation of these OS/8 versions

are discussed in Chapter 8.

Before the system software can be understood, the reader

must gain an understanding of the basic Industrial 14
instruction set and its operation. The instructions used to

solve equations are described in Chapter 2; other Industrial

14 and PDP-8 instructions used by an external computer to

monitor an Industrial 14 are described in Chapter 9.

Chapter 8 describes operating procedures for the PDP-8
loaders and introduces a Text Editor program which is

useful for Industrial 14 programming.

The control engineer who is using the computer simply to

program the Industrial 14 will find BOOL-143 to be a

practical approach. He can write Industrial 14 programs in

equation form and have BOOL-143 generate the machine
code instructions. These machine code instructions are

debugged with ODP-143. BOOL-143 also enables the user

to perform transition checking, (one form of computer-

monitoring the Industrial 14).

PAL-143 can be used if greater flexibility in programming
the Industrial 14 is required. PAL-143 provides the user

with greater flexibility in the approach to monitoring and
more efficient use of memory. ODP-143 is also used to

debug this translated program.

In general, BOOL-143 and PAL-143 are mutually exclusive;

the user chooses one or the other, although this is not

absolutely necessary. If the required industrial 14 program
is a combination of straightforward equations and more
complicated instruction sequences, the user can compile
part of the program with BOOL-143 and assemble the

remainder with PAL-143. The two partial programs are

merged by ODP-143. Care must be exercised to ensure that

the same memory locations are not used by both the

BOOL-143 compiled program and the PAL-143 assembled
program.

ODP-143 is a powerful tool for debugging and changing

Industrial 14 machine language programs. The majority of

Industrial 14 users will find ODP-143 helpful, regardless of

whether BOOL-143 or PAL-143 is chosen to translate the

program.

1-7

CHAPTER 2

INDUSTRIAL 14

BASIC INSTRUCTIONS

Industrial 14 basic instructions specify the state (ON or

OFF) of outputs as a consequence of the changing states of

both inputs and outputs. They are the primary operating

instructions of the Industrial 14 System.

An Industrial 14 program can be written as either equations
for BOOL-143 or as instructions for PAL-143; however, the

program's final form always uses the basic instructions.

Industrial 14 instructions used for computer monitoring are

discussed in Chapter 9.

BASIC INSTRUCTION CLASSES
Three classes of basic instructions are used in Industrial 14
programs:

Test Instructions- sample the current state (ON or OFF)
of an input or output.

Set Instructions- set outputs ON or OFF. The state of

inputs is changed by the controlled equipment, not •by the

Industrial 14.

Jump Instructions - execute instructions out of sequence,

i.e., "branch" the Industrial 14 program. Instructions are

always executed in sequence unless a jump occurs.

INDUSTRIAL 14 TEST FLAG
The TEST flag is the element of the Industrial 14 System
which records the results of each test command. The TEST
flag has two values: ON and OFF. It is raised (set ON) by a

true test and left unchanged by a false test. (True tests and
false tests are defined later.) The condition of the TEST
flag is sampled by jump instructions to cause outputs to be
set ON or OFF. In this manner, basic instructions are used
in conjunction with the TEST flag to control the operations
of a machine.

The TEST flag is sometimes referred to as the test flip-flop

or simply the test flop. This terminology is often used when

describing the Industrial 14 processor hardware, in which
the TEST flag is actually a solid-state flip-flop circuit.

INDUSTRIAL 14 TEST INSTRUCTIONS
The Industrial 14 test instructions are:

Test an input, output, or an internal function for the

ON state.

Test an input, output, or an internal function for the

OFF state.

The symbolic and numeric forms of these instructions and
their precise definitions are listed in Table 2-1.

Table 2-1

Industrial 14 Test Instructions

Instruction

Symbolic Numeric

TF 10 4000 +10

TN 10 6000 + 10

Definition

Test an input, output, or inter-

nal function for the OFF state.

If input, output or internal

function is OFF and the TEST
flag is currently OFF, the TEST
flag is set ON; otherwise the flag

remains unchanged.

Test an input, output or internal

function for the ON state. If

input, output or external

function is ON and the TEST
flag is currently OFF, the TEST
flag is set ON; otherwise the flag

remains unchanged.

NOTE: 10 represents the numeric values of inputs

(0-777), outputs (1000-1377) and internal functions

(1400-1777).

2-1

The definitions are explained by defining the terms "true

test" and "false test" in the following example:

Current Result of Test

State Test For ON Test For OFF

ON
OFF

True

False

False

True

Using these definitions, the action of the test instructions

can be summarized by the following statement: Test

instructions which result in a true test set the TEST flag

ON; those which result in a false test leave the TEST flag

unchanged. The TEST flag is not cleared by a false test, as

shown in the following example:

Current TEST Flag State After Test

State True Test False Test

ON
OFF

ON
ON

ON
OFF

INDUSTRIAL 14 SET OUTPUT INSTRUCTIONS

Set instructions turn an output ON or OFF at the end of a

sequence of test Instructions. The symbolic and numeric

forms of these instructions and definitions are listed in

Table 2-2. The SN and SF instructions reference outputs

(1000-1377) and internal functions (1400-1777). Output

designations are determined by the position of the output

converter within the output panel and output rack, and by

the selection of the output cable connector. Internal

function designations have no real physical significance;

they are discussed in Chapter 3.

Table 2-2

Industrial 14 Set Output Instructions

Instruction Definition

Symbolic Numeric

SNO 2000 + Set output or internal function

to the ON state. remains

ON until it is set OFF by an SF

or CLR instruction.

SFO 0000 + Set output or internal function

to the OFF state. remains

OFF until it is set ON by an SN

instruction.

NOTE: represents numeric values of outputs

(1000-1377) and internal functions (1400-1777).

ADDRESSING MEMORY IN THE INDUSTRIAL 14

In any computer-like device, it must be possible to specify

particular portions of a control program. For example,

jump instructions cause the transfer of program control to a

section of the program other than the next sequential

program. Therefore, the jump instruction must be capable

of specifying the section of the program (memory location)

to which it is transferring control.

All instructions are stored in the Industrial 14 memory. The

storage processor is not of concern at this point in the

discussion, although it should be noted that the instructions

are stored in numeric order (in a first, second, third

location, etc., through to the last memory location). Each

of these memory locations has an assigned number, or

address. Thus, an Industrial 14 program consists of instruc-

tions (each has an address) which are stored in memory

locations. This numbering system (addressing scheme)

permits jump instructions to direct the Industrial 14 to

"jump to memory location 305" for instance, (begin

execution of the instructions starting in memory location

305).

Industrial 14 memory locations are not numbered in the

decimal numbering system. They are numbered in the octal

numbering system wherein the digits 8 and 9 never appear.

Counting in octal is similar to counting in the familiar

decimal numbering system except that any number which

nnn+oinf on fi r>r Q !n anu nncitinn i<: fiyrillried. Thus, theOUI I Lull lO Ull «J "• -^ •'» M" J f.v-«....— .. .- . ,

number which follows 7 in octal is 10, and the number

which follows 77 is 100.

Where confusion could occur, octal numbers are usually

subscripted with an 8 (lOg). Thus, lOs is not the same as

the decimal number 10. Figure 2-1 illustrates the technique

for counting in the octal numbering system.

Memory Organization

The main memory of the Industrial 14 is subdivided into

two fields. A field is 4096 (4K) locations* which are

numbered Og — 77778, An Industrial 14/30 Controller can

have one field (4K memory) or two fields (two 4K

memories). An Industrial 14/35 Controller has two fields

(one 8K memory). The lower or first field is designated

Field 0; the upper or second field is designated Field 1

.

The Industrial 14 memory is further subdivided into pages;

each page contains 256 locations. This further subdivision is

used for addressing memory by conditional jump instruc-

tions. Sixteen pages are in a 4K system; 32 pages are in an

8K system. The 256 locations of a page are numbered

08-3778.

*4096,Q = 7777g 2-2

Absolute Address and Page Addresses

Each location in the Industrial 14 memory has an

"absolute" address and a "relative" or "page", address.

Figure 2-2 shows the relationship between the numbering

of locations through all of memory (absolute addresses) and

the numbering of locations within each page of memory

(relative or page addresses). For example, the location with

absolute address 4377 has page address 377. IVIany locations

have the same relative or page address, but each Industrial

14 location has a unique absolute address, within a memory

field.

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

1

72

73

74

75

76

77

100

101

102

103

777

1000

Because the octal numbering

system contains no 8s or 9s,

after counting to the digit 7,

place a in the Is column

and carry 1

.

The carry out of the Is place

produces a second carry out

of the next place. Hence,

77+1 = 100 in the octal

number system.

1 1 Result Page Address

234 234

347 347

652 252

521 121

400

Figure 2-1 Octal Counting Technique

The page address of a location can easily be determined

from its absolute address by using the following procedure:

Disregard the memory field; if the absolute

address is 1000 or greater, cross off the first

(most significant) digit.

2 If the number resulting from step 1 is less than

400, it is the page address.

3 If the number resulting from step 2 is 400 or

greater, the page address is found by subtract-

ing 400 from the step 1 result.

The examples below illustrate the procedure.

Absolute Address

1234

3347

2652

7521

7400

5000

This procedure disregards the memory field. However,

location 2652 in Field and location 2652 in Field 1 are in

different places in memory where different data is stored.

An absolute address, therefore, should include a or a 1

preceding the address to specify the memory field (for

example 01234,1 2075).

As will be discussed later, addresses beginning with 7400

and comprising the last page of Field 1 (or Field in a 4K
system) are used for storage of internal functions and are

not available for programming.

Industrial 14 Program Flow

When first powered up, the Industrial 14 automatically

begins program execution with the instruction stored in

location of Field 0. It then proceeds to location 1, then 2,

etc. The result of testing operations often causes the

program to jump over groups of instructions; however, the

program continually proceeds toward the end of memory.

When the end of the first memory field is encountered, the

Industrial 14 automatically passes on to the second field.

When the program cycle has been completed, control is

passed bacl< to the beginning of memory and the cycle

begins again.

2-3

Memory Absolute Page

Field Address Address

0000 000^

0377 377^

0400 000

1

>i

0777

1000

7377

777

0000

0377

0400

377

000

377

One Memory Page

(256 locations)

One Memory Field (4K)

(4096 locations; 16

pages).

377 ^
000

377

000

Two Memory Fields

(8K).

7777 377 J

Figure 2-2 Industrial 14 Memory Organization

INDUSTRIAL 14 JUMP INSTRUCTIONS
Jump instructions cause departures from the sequential

execution of instructions. These departures can be condi-

tional (dependent upon the result of I/O tests) or uncondi-

tional.

Conditional Jump Instructions

The Industrial 14 has two conditional jump instructions.

The state of the TEST flag determines if the jump will

occur. The symbolic and numeric forms of the conditional

jump instructions, with definitions, are listed in Table 2-3.

Conditional jump instructions cause an SN (set output ON)

instruction to occur for one state of the TEST flag and an

SF (set output OFF) for the other TEST flag state.

NOTE
The JFF and JFN instructions always set the

TEST flag OFF. After execution of a JFF or

JFN instruction, the TEST flag is always OFF,

regardless of whether or not the jump was

executed.

2-4

Table 2-3

Industrial 14 Conditional Jump instructions

Instruction

Symbolic

JFF NNN

Numeric

2000+ NNN

Definition

JFN NNN 2400 + NNN

Jump to location NNN If the

TEST flag is now OFF and

execute the instructions

beginning with the instruc-

tion in location NNN. (If the

TEST flag is ON, the instruc-

tions following the JFF
continue to be executed in

sequence). The TEST flag Is

set OFF, regardless of its

original state.

Jump to location NNN if the

TEST flag is now ON and

execute the Instructions

beginning with the Instruc-

tion In location NNN. (If the

flag Is OFF, the instructions

following the JFN continue

to be executed in sequence).

The TEST flag Is set OFF,
regardless of Its original state.

NOTE: NNN represents the relative or page address to

which control can be transferred. Legal values are Os to

377g.

The Instruction JFN 300 illustrates the use of a conditional

jump Instruction. This instruction causes a jump to relative

location 300 on the current page if the TEST flag is ON.
Remember that several absolute addresses have the same
relative or page address; a conditional jump instruction,

therefore, has different meanings when it is stored on
different pages of Industrial 14 memory. Refer to the

examples in the following paragraphs to properly under-

stand the memory locations to be addressed. The following

examples are the first and last addresses contained on each

page of each field.

0000 2000 4000 6000
0377 2377 4377 6377

0400 2400 4400 6400
0777 2777 4777 6777

1000 3000 5000 7000
1377 3377 5377 7377

1400 3400 5400 7400

1777 3777 5777 7777

If the instruction address and the location to be addressed

are on the same page, the conditional jump Instruction Is

valid. The following are examples of valid and invalid

conditional jump instructions:

Location of Instruction: 500

Location to be Addressed: 750

Correct Instruction: JFN 350

Location of Instruction: 50

Location to be Addressed: 372

Correct Instruction; JFF 372

Location of Instruction: 2005

Location to be Addressed: 2345

Correct Instruction: JFN 345

Location of Instruction: 5500

Location to be Addressed: 5675

Correct Instruction: JFF 275

Location of Instruction: 2311

Location to be Addressed: 2450

Correct Instruction: Invalid (off-page reference)

Location of Instruction: 4251

Location to be Addressed: 5300
Correct Instruction: Invalid (off-page reference)

Location of Instruction: 5631

Location to be Addressed: 5237

Correct Instruction: Invalid (off-page reference)

Location of Instruction: 435
Location to be Addressed: 776

Correct Instruction: JFN 376

Location of 1 nstruction

:

2722

Location to be Addressed

:

3010

Correct Instruction: Invalid (off-page reference)

2-5

NOTE
The foregoing examples which were shown to

be invalid cannot be performed with condi-

tional jump instructions; modifications in the

program are required. The program can be

changed to use unconditional jump instructions

to pass from memory page to memory page.

Unconditional jump instructions are described

in the following section.

Unconditional Jump Instructions

The Industrial 14 has two unconditional jump instructions.

The symbolic form, numeric form and definition of each

instruction is listed in Table 2-4.

Table 2-4

Industrial 14 Unconditional Jump Instructions

Definition

Jump to location NNNN
unconditionally. Execution

of the Industrial 14 program

proceeds sequentially, begin-

ning with the instruction in

location NNNN. JMP is a

two-location instruction; the

absolute address of the

"jump-to" location is stored

in the location following that

location which contains the

JMP instruction.

Skip the following memory

location unconditionally.

This instruction causes the

Industrial 14 to disregard the

instruction stored in the next

sequential location. Sequen-

tial execution continues with

the instruction stored in the

second location following the

SKP instruction.

Clear the program counter.

Causes an unconditional jump

to location 0, Field 0.

As stated in Table 2-4, the JMP is a two-location instruc-

tion. The first part of the instruction directs the Industrial

14 to jump to the address given in the second part of the

instruction. The first instruction executed after the jump is

the one stored in the location in the second part of the

instruction.

The JMP instruction can reference any Industrial 14

memory location within its memory field using an absolute

address. Thus, whenever the program must pass between

memory pages, the unconditional jump is used.

For example, to transfer control to location 1523 from

location 1375, use the instruction:

Location Content

1375 JMP

1376 1523

1523 (Contains next instruction

to be executed.)

NOlE: NNNN represents an absolute address within une

field of the Industrial 14 memory. No page restriction

exists for the JMP instruction.

The SKP instruction is an unconditional skip of one

Industrial 14 memory location. Its use is convenient

because the address of the location to which control is

passed need not be specified. The SKP instruction has no

need to reference memory. The SKP instruction skips only

one Industrial 14 location; therefore, it can be used to skip

any one-location instruction but cannot be used to skip a

two-location instruction (such as a JMP).

The CLRPC instruction is used at the end of the Industrial

14 program to complete the cycle by transferring control

back to the beginning of memory. It is a single-location

instruction that unconditionally causes the instruction in

location of Field to be executed next. This occurs

regardless of where in memory the CLRPC instruction is

located.

Subroutine Jump Instructions

Jump instructions that enable subroutines to be used in a

program are included in the Industrial 14 basic instruction

set. A subroutine is simply a set of instructions to be

nvrr.«..+Qri mrtro thon nnr^ nn parh naQs: thrniiah the

Industrial 14 memory. Instead of repeating the instruction

set for each time it is to be executed in the program, the

2-6

instructions are written only once, in the form of sub-

routine. Repeated execution of the same instructions is

permitted by an instruction to jump to the start of the

subroutine Instruction. Another instruction causes a return

to the main program after all instructions in the subroutine

have been executed.

The Industrial 14 permits only one level of subroutines

because only one return address can be stored atone time.

If a subroutine jumps to a second subroutine, the first

return address is lost, and return to the original program is

impossible.

Table 2-5 lists the jump instructions used for subroutines.

The JMS instruction is similar to the JMP instruction; both

are two-location instructions which can address any Indus-

trial 14 memory location within its memory field. The JMS
differs from the JMP in that it enables the subroutines to

return to the next sequential location following the second

part of the JMS instruction by saving the address of the

next sequential instruction.

Table 2-5

Industrial 14 Subroutine Jump Instructions

Industrial 14 subroutines are written in the following

manner:

Instruction

Symbolic Numeric Definition

JMS

NNNN

JMR

0124

NNNN

0054

Jump to the subroutine

beginning in location NNNN.
The Industrial 14 executes, in

sequence, the instructions

beginning with the instruc-

tion stored in location

NNNN, and terminated by a

JMR instruction. The JMS
instruction is a two-location

instruction which can directly

address all 4K of Industrial

14 memory.

Jump return to the location

following the second part of

the JMS instruction. The

JMR must always be paired

with a JMS instruction.

Main Program Subroutine

1200TN27
1201 TN 30

TN5 ;

TF7 .

JFF 250 JMR
JMS
1200

JFN 250

TN12

NOTE: NNNN (0-7777) represents the absolute address

of the start of a subroutine. No page restriction exists for

the JMS instruction.

In this example, the JMS causes transfer to the subroutine

which starts at location 1200. The instructions of the

subroutine are then executed, in sequence, until the JMR
instruction is encountered. Control is then returned to the

instruction which follows the second part of the two-

location JMS instruction. Subroutine transfers must always

be within a single memory field.

CHANGE FIELD INSTRUCTIONS
Industrial 14 Controllers equipped with 8K of memory
must have the capability of passing from one memory field

to the other. Normally, this is accomplished by permitting

the program counter to simply overflow from memory
Field into memory Field 1. The normal return to Field

is via a CLRPC instruction. However, requirements exist for

passing between fields by other methods; these require-

ments are served by the CIF instructions in Table 2-6.

2-7

The GIF instructions tal<e effect only when a JMP, JMS,

JMR, JFF, or JFN instruction is executed. Thus, normal

useage has a GIF followed by a JMP NNNN, to transfer to

location NNNN in the other memory field.

Table 2-6

Change Field Instructions

Instruction

Symbolic Numeric Definition

GIFO 0020 Ghange to executing instruc-

tions in Field on the next

JMP, JMS, JMR, JFF, or JFN

instruction.

GIF 1 0030 Ghange to executing instruc-

tions in Field 1 on the next

JMP, JMS, JMR, JFF, or JFN

instruction.

For example, to transfer control to 1 :0100 (location 100 in

Field 1 from Field 0).

Location Content

5200 GIF1

5201 JMP

5202 100

1:0100 (Contains next instruction

to be executed).

SAMPLE INDUSTRIAL 14 EQUATION AND ANALYSIS

The following equation represents a typical control require-

ment to be programmed:

1001 = 123-^54*1003

This equation could represent the control function,

"Solenoid A (1001) is energized when pushbutton 43 (123)

is ON, or when both limit switch 12 (54) is activated and

Solenoid C (1003) is energized."

The equation can be solved by the Industrial 14 with the

instructions in Table 2-7. Note that the user must record

the location of each instruction and refer to each input and

output by its I/O number.

To demonstrate that the instructions in Table 2-7 actually

solve the equation for all possible values of the variables,

three cases are analyzed. In each case, the TEST flag is

assumed to be OFF as the result of a previously executed

JFF or JFN instruction.

CASE 1 -Input 123 0FF, input 54 OFF, and output 1003

OFF; Result: 1001 OFF.

Location Content

300 TF 123

Program Execution

Input 123 is tested for the OFF
state. Because it is OFF, the TEST
flag is set ON, and program execu-

tion proceeds to the instruction

contained in location 301.

(continued on next page)

Table 2-7

Sample Industrial 14 Program

Symbolic

Location Content Comment

300 TF123 If input 123 is OFF, the flag is set ON.

301 JFF 305 If the flag is OFF, jump to 305 and set

302 TF54 1001 ON. Otherwise, if either input 54

303 TF 1003 is OFF, or if output 1003 is OFF, the

304 JFN 307 flag is set ON. If the flag is ON, jump

305 SN 1001 to 307 and set 1001 OFF. Otherwise set

306 SKP output 1001 ON and skip the set outpuL

307 SF 1001 OFF instruction.

2-8

Location Content

301 JFF 305

302 TF54

303 TF 1003

304

307

Program Execution

If the TEST flag is OFF at this

point, the program proceeds to

location 305. The flag is ON, how-

ever, and program execution pro-

ceeds to the instruction contained

in location 302.

The program tests input 54 for the

OFF state. Because input 54 is

OFF, the TEST flag is now set ON.
Program execution proceeds to the

instruction contained in location

303.

The program tests output 1003 for

the OFF state. Because output

1003 is OFF, the TEST flag would

be set ON if it had not been set ON
by the previous instruction. Pro-

gram execution proceeds to the

instruction contained in location

304.

If the TEST flag is OFF at this

point, the program proceeds to

location 305 to set output 1001

ON. The TEST flag is ON, however,

and program execution proceeds to

the instruction contained in loca-

tion 307. (The TEST flag is set

OFF by the JFN before

proceeding).

Output 1001 is set OFF (as it

should be). Program execution pro-

ceeds to the instruction contained

in location 310.

NOTE
The instructions in locations 305 and 306 are

not executed.

JFN 307

SF 1001

CASE 2 - Input 123 ON, input 54 ON, and output 1003

OFF; Result 1001 ON.

Location Content

300 TF 123

301 JFF 305

Program Execution

Input 123 is tested for the OFF
state. Because input 123 is ON, the

TEST flag remains OFF and pro-

gram execution proceeds to the

instruction contained in location

301.

Because the TEST flag is OFF at

this point, program execution pro-

ceeds to the instruction contained

in location 305. (The TEST flag is

set OFF by the JFF before pro-

ceeding).

Output 1001 is set ON (as it should

be). Program execution proceeds to

the instruction contained in loca-

tion 306.

This instruction causes program

execution to skip location 307 and

proceed to the instruction con-

tained in location 310.

NOTE
The instruction in locations 302, 303, 304, and

307 are not executed.

CASE 3 - Input 123 OFF, input 54 ON, and output 1003

ON; Result: 1001 ON.

305 SN 1001

306 SKP

Location Content

300 TF 123

Program Execution

Input 123 is tested for the OFF
state and because it is OFF, the

TEST flag is set ON and program

execution proceeds to location 301.

2-9

Location Content Program Execution An explanation of the control function.

301 JFF 305 Because the TEST flag is ON at this

point, program execution does not

proceed to location 305, but rather

proceeds to the instruction con-

tained in location 302.

302 TF 54 Input 54 is tested for the OFF
state. Because input 54 is ON, the

TEST flag remains OFF and pro-

gram execution proceeds to the

instruction in location 303.

303 TF 1003 Output 1003 is tested for the OFF
state. Because output 1003 is ON,

the TEST flag again remains OFF
and program execution proceeds to

the instruction contained in loca-

tion 304.

304 JFN 307 Because the TEST flag is OFF at

this point, program execution pro-

ceeds to the instruction contained

in location 305.

305 SN 1001 Output 1001 is set ON (as it should

be). Program execution then pro-

ceeds to the instruction contained

in location 306.

306 SKP This instruction causes program

execution to skip location 307 and

proceed to the instruction con-

tained in location 310.

NOTE
The instruction in location 307 is not executed.

The ladder diagram which would be used to perform

this function.

A Boolean representation of the control function.

A wiring diagram for the Industrial 14 input and

output terminals.

The Industrial 14 machine instructions for the con-

trol function.

In each example, the TEST flag is assumed to be initially

OFF.

Boolean OR Control Function — A simple control circuit in

which a solenoid is energized by either of two limit

switches is present in Example 1. To solve this problem

with an Industrial 14, test for either input's ON state.

Because a positive test from either input sets the TEST flag

to 1, the output should be turned ON when the TEST flag

is ON, and OFF when the TEST flag is OFF.

NOTE
Normally-open contacts of each switch are

wired to the Industrial 14. Thus, testing for ON
means testing for an activated switch. Testing

for OFF means testing for a nonactivated

switch.

Example 1 — Control Function

If either Limit Switch 1 or Limit Switch 2 is ON, energize

Solenoid D (otherwise. Solenoid D should be OFF).

Industrial 14 programs can be written as in Table 2-7, or

they can be written in formats which are more convenient

to work with. Techniques for writing Industrial 14 pro-

grams are fully described in Chapters 4, 5 and 6. However,

an understanding of the material described in this chapter is

necessary to perform the debugging procedure required for

all BOOL-143 and PAL-143 developed Industrial 14 pro-

grams.

PROGRAM EXAMPLES
The following examples shovv* tuc relationship uetween tnc

circuit diagram, the Boolean representation and Industrial

14 programs. Each example contains five parts. Figure 2-3 Ladder Diagram for Boolean OR Function

2-10

Boolean Equivalent

Input

1 LS (n/o) 1

1

2LS(n/o) 12

Output

SOLD 1007

Equation: 1007=11 + 12or

SOLD= 1LS+2LS

program jumps to the set output OFF instruction. If the
flag remains OFF during the testing, the output for

Solenoid A is turned ON, and the solenoid is energized.

Example 2 - Control Function

If Pushbutton 1 and Limit Switch 3 are ON, energize

Solenoid A (otherwise Solenoid A should be de-energized).

1LS (n/o)

2LS (n/o)

^^^ 12

INDUSTRIAL 14

SOLD

1007

1PB
SOLA

3LS

Figure 2-4 Typical Industrial 14 Wiring Diagram for

Example 1

Figure 2-5 Ladder Diagram for Boolean AND Function

Boolean Equivalent

Industrial 14 Program

Location Content

TF 11

1 JFF4
2 TF 12

3 JFN6
4 SN 1007

5 SKP
6 SF1007

Input Output

Comments

Test input 11 for OFF. If it is ON,
set output 1007 ON. If input 11 is

OFF, test input 12 for OFF. If

input 12 is ON, set output 1007

ON, if not, set output 1007 OFF.

Boolean and Control Function - Example 2 illustrates a

control function where two inputs are in series to drive an

output. In other words, both Limit Switch 3 and Push-

button 1 must be activated for Solenoid A to be energized.

Normally open contacts are wired to the Industrial 14

input.

The Industrial 14 program checks for the condition which

is not wanted. If either input is OFF, Solenoid A must not

be energized. Thus, the program tests both inputs, setting

the TEST flag if either is OFF. If the TEST flag is ON, the

1PB (n/o) 1 SOLA 1004

3LS(n/o) 13

Equation: 1004= 1
* 13or

SOLA= 1PB *3LS

-• •-

1PB
(n/o)

3LS
(n/o) ,3^^

INDUSTRIAL 14

SOLA

1004

Figure 2-6 Typical Industrial 14 Wiring Diagram for

Example 2

2-11

Industrial 14 Program

Location Content

7 TF 1

10 TF 13

11 JFN 14

12 SN1004
13 SKP

14 SF 1004

Comment

Test inputs 1 and 13. If either is

OFF, output 1004 will be set OFF;

otherwise 1004 will be set ON.

Output

SOLC1006

Boolean Equivalent

Input

6PB (n/o) 6

7PB (n/c) 7

4LS (n/o) 14

5LS(n/c) 15

Equation: 1006= (6 * 14) + (7 * 15) or

SOLC = (6PB*4LS) + (7PB*5LS)

Control Functions with Normally Open (NO) and Normally

Closed (NO Contacts - Example 3 is a control function

which (in ladder diagram form) has both normally open and

normally closed contacts. The Industrial 14 does not

require two types of contacts for such control functions.

All normally open contacts can be used, as illustrated in

Example 3. Normally open contacts for both Pushbutton 7

and Limit Switch 5 are wired to the Industrial 14. Thus, an

ON input means that the button or switch is activated; an

OFF input means that the button or switch is not activated.

The example also illustrates the combination of AND and

OR functions. Each leg is an AND function and the output

results from the OR of the legs.

The Industrial 14 program could also be written to test

normally closed contacts. The program merely tests for the

opposite state (ON or OFF) of the input. Thus, if normally

closed contacts are used in the wiring, all TFs become TNs

for the input and all TNs become TFs. An ON input from

normally closed contacts specifies that the switch is not

activated; an OFF input specifies that it is activated.

Example 3 — Control Function

' If Pushbutton 6 and Limit Switch 4 are ON, or if

Pushbutton 7 and Limit Switch 5 are both OFF, Solenoid C

is energized (otherwise Solenoid C is de-energized).

4LS
(n/o)

SOLC

6PB
(n/o)

7PB
(n/c)

•^^^

5LS
(n/c)

Figure 2-7 Ladder Diagram with NO and NC Contacts

tuniy inputs sensing emergency or

wired normally closed.

6Pa (n/o)

7P8 (n/c)

4LS (n/o)

14

15

5LS (n/c)

INDUSTRIAL 14

SOLC

1006

Figure 2-8a Typical Industrial 14 Wiring Diagram for

Example 3 Using Normally Closed Contacts

Inputs and outputs are often sensed many times throughout

an Industrial 14 program. To avoid confusion, these inputs

and outputs should be wired normally open.t

Boolean Equivalent

Input Output

6PB (n/o) 6 SOLC 1006

7PB (n/o) 7

4LS(n/o) 14

5LS(n/o) 15

Equation: 1006= (6*14) -i- (/7*/15)

SOLC = (6PB*4LS) -i- (/7PB * /5LS)

1
6PB (n/o)

7PB (n/o)

14

4LS (n/o)

15

INDUSTRIAL 14

SOLC

1006

5LS (n/o) 14 - 0z44

Figure 2-8b Typical Industrial 14 Wiring Diagram of

Normally Open Input for Example 3

2-12

Industrial 14 Program

Location Content

15 TF6
16 TF 14

17 JFF23
20 TN7
21 TN15
22 JFN24
23 SN 1006

24 SKP
25 SF 1006

Comment

If either input 6 or 14 is OFF, the

other leg must be tested. If both are

ON, the output should be set ON.
If either input 7 or 15 is ON and
the other leg fails, set output OFF.
Set output OFF if both legs fail.

Set output ON if either leg solves.

Latching Control Function - Example 4 is a motor
contactor latching function. Pushbutton 2 (2PB) is the start

button, and Pushbutton 3 (3PB) is the stop button for

controlling a motor contactor. Normally open contacts are

assumed for all inputs; however, the normally closed

contact for Pushbutton 3 could be used by replacing TF 3
by TN 3 in the Industrial 14 program.

The program uses a test output instruction, TF 1010, to
latch the motor contact on. The output then remains ON as

long as it is currently ON and Pushbutton 3 is not
depressed. An Industrial 14 input for the motor contacts Is

not required because outputs can be tested as inputs.

Example 4 - Control Function

The motor (IM) is started if Pushbutton 2 is pressed, and
continues to operate until Pushbutton 3 is pressed.

2PB (n/o)

3PB (n/o)

Figure 2-10 Typical Industrial 14 Wiring Diagram for

Example 4

Location Contents

26

27

30

31

32

33

34

35

TF2

JFF33
TN3
TF1010
JFN 35

SN 1010

SKP
SF 1010

Comment

If input 2 is OFF, test input 3;

otherwise, set output 1010 ON. If

input 3 is ON or output 1010 is

OFF, set output 1010 OFF; other-

wise, set the output ON.

Relay Controlled Function - Example 5 uses a control
relay to energize a solenoid. All inputs to the Industrial 14
are normally open contacts. (As explained in the two
preceding examples, normally closed contacts could be used
by reversing the sense of the test instructions.) Control
Relay 2 is energized by inputs, and latches in the engaged
position. The output for Control Relay 2 is then tested to
energize Solenoid B.

Example 5 - Control Function

If Pushbutton 4 is not ON and Limit Switch 2 is actuated,

and if either Pushbutton 5 is ON or Control Relay 2 is

already ON, then Control Relay 2 is set ON. If Control
Relay 2 is ON, Solenoid B is energized.

Figure 2-9 Ladder Diagram for Latched Control Function

Boolean Equivalent

Input Output

2PB (n/o) 2 IM 1010

3 PB (n/o) 3

Equation: 1M = 2PB -f- (3PB*1M) or 1010 = 2 +
(/3*1010)

OFF ON
2LS

4PB

2CR

5PB

2CR

^^^- 2CR

SOL

Figure 2-1
1 Ladder Diagram for Relay Controlled Function

2-13

Boolean Equivalent

Inputs Outputs

4PB(n/o)4 2CR1277

5PB (n/o) 5 SOLB 1005

2LS(n/o) 12

Equation: 1377 = /4* (5 + 1377) * 12

1005= 1377 or

2CR = /4PB*(5PB + 2CR)*2LS

SOLB = 2CR

1 4

INDUSTRIAL 14

1377 ^^
4PB (n/o)

1

^7

SOLB5PB(n/o)

12 ,005 A

2LS (n/o)

V
14-0248

Figure 2-12 Typical Industrial 14 Wiring Diagram for

Example 5

Industrial 14 Program

Location Contents

36 TN4
37 TF 12

40 TF5
41 JFF44

42 TF1001

43 JFN46
44 SN1001

45 SKP

46 SF 1001

47 TF 1001

50 JFN 53

51 SN 1005

52 SKP

53 SF 1005

Comment

If input 4 Is ON, or input 12 is

OFF, or input 5 is OFF, test output

1001; otherwise, set output 1001

ON. If output 1001 is OFF set

output 1001 OFF; otherwise, set

output 1001 ON.

If output 1001 is OFF, set output

1005 OFF; otherwise set 1005 ON.

Example 5 illustrates an important Industrial 14 concept;

although the original equation was

2 CR = 4PB*(5PB+2CR)*2LS. the program was written for

the equation 2CR = 4PB*2LS* (5PB+2CR). Program-

ming is more efficient when single variables, connected by

the same operator, (AND or OR) are grouped together.

Simplifications - The control program for Example 5 could

be greatly simplified by noting that Control Relay 2 is an

unnecessary output. The control relay is needed in the

ladder diagram to latch the circuit ON. In the Industrial 14,

however, the output to energize the solenoid may be tested

itself as an input. Thus, as shown in Example 5, Simplified

(following), output 1001 can be eliminated and the control

relay can be removed. In this case, the test of output 1005

is equivalent to testing output 1001

.

Example 5, Simplified - Control Function

If Pushbutton 4 is not ON and Limit Switch 2 is actuated,

and either Pushbutton 5 is ON or Solenoid B is ON already,

then Solenoid B is engaged.

Boolean Equivalent

Inputs

4PB (n/o) 4

5PB (n/o) 5

2LS(n/o) 12

Outputs

SOLB 1005

Equation: 1005 = /4 * (5 + 1005) * 12

SOLB = /PB* (5PB + SOLB) *2LS

4PB (n/o)

5PB (n/o)

2LS (n/o)

INDUSTRIAL 14

SOLB

1005

Figure 2-13 Typical Industrial 14 Wiring Diagram for

Example 5, Simplified

Industrial 14 Program

Location Contents

36 TN4
37 TF 12

40 TF5
41 JFF44

42 TF 1005

43 JFN 46

44 SN 1005

45 SKP

46 SF 1005

Comments

If input 4 is ON and Input 12 is

OFF, test output 1005; otherwise,

set output 1005 ON. If output

1005 is OFF, set output 1005 OFF;

otherwise, set output 1005 ON.

Simply set output 1005 ON or OFF

directly, without using intermediate

control relay.

2-14

CHAPTER 3

INTERNAL FUNCTIONS

This chapter describes Industrial 14 internal functions, I/O

groupings, and typical applications. These typical applica-

tions are discussed both in terms of circuit diagrams and

Boolean equation logic. Except for the shift register

application. Industrial 14 machine language is not given for

these applications because the instruction format is similar

to that of output circuits. Timing diagrams are included

with all timer applications to illustrate the sequence of

operations.

INTERNAL I/O GROUPINGS
The 256 internal functions which use I/O numbers

1400—1777 are subdivided as to type: retentive memories,

shift registers, timers, counters, and up/down counters. This

group can be easily adjusted to provide a "best fit" for each

application. The normal groupings and I/O number alloca-

tions for internal I/O functions are shown in Figure 3-1.

General assignments are as follows:

I/O Numbers

1400-1577

1600-1757

1760-1777

Use

Retentive memories or shift registers

In pairs for timers or event counters

In groups of 4 for up/down counters

1400 1577 1600 1757 1760 1777

128 RETENTIVE MEMORIES
OR SHIFT REGISTER BITS

56 TIMERS OR
COUNTERS

4 UP/DOWN
COUNTERS

+ 16 -H8

Figure 3-1 Internal I/O Groupings

The I/O numbers from 1400-1577 may be used for either

retentive memories or shift registers, at random. When

timers are required, the lower I/O numbers between

1600—1757 must be used, beginning at 1600, and consecu-

tively up through the last timer. Counters must use I/O

numbers greater than the last timer, and up through 1757.

A typical assignment of internal functions using 1600 as the

I/O partition is shown in Table 3-1 . The following are of

particular importance:

a. Each retentive memory and shift register bit

requires one I/O number.

All timers and counters require two I/O

numbers.

The bits of a shift register must be consecutive;

however, shift registers and retentive memories

may be intermixed.

Timers must begin at tfie I/O partition (in this

instance, 1600) and must be in consecutive

order using I/O numbers below any counter

circuit. (For this reason, several spare timers are

provided.)

Four permanent up/down counters are

provided in the Industrial 14.

ADJUSTING THE INTERNAL I/O GROUPING
While the grouping of internal functions, shown in Figure

3-1, and Table 3-1, is suitable for a great number of

applications, it may be necessary to modify this grouping in

certain instances. This can be accomplished by adjusting

switches within the Industrial 14 Control Unit and the

necessary procedure is described in the Industrial 14

Systems Manual. This modification provides additional (or

fewer) retentive memories and shift register bits, by

sacrificing (or obtaining additional) timers and counters.

This corresponds to relocating the starting point of the

timer circuits from 1600 to some other I/O partititon.

However, because two I/O numbers are required for a timer

or counter, and only one is required for a retentive

memory, the gain (or loss) of retentive memories is always

double the loss (or gain) of timers and counters.

3-1

The internal I/O groupings that can be achieved are shown

in Table 3-2. Quantities of timers and counters are gained

or lost, in multiples of 8, by sacrificing or increasing

retentive memories and shift register bits, in multiples of

16.

Table 3-1

Typical Assignment of Internal I/O Numbers

I/O No. Use Comment

1400

1401

1402

1403

1404

1450

1451

1452

1670

1671

1672

1676

1677

1700

1701

1702

1703

}

}

)

}

}

1757

1760

1777

Retentive memory

Retentive memory

Shift register

Retentive memory

Retentive memory

Retentive memory

Shift register

Timer

Timer

Timer — spare

Timer — spare

Timer — spare

Counter

Counter

Counter

4 up/down counters

Random retentive memories

and shift registers

Adjustable I/O partition

Timers used consecutively

Several timers left as

spares

Event counters

up/down counters

3-2

Table 3-2

Possible Internal Function Groupings

Quantity

Retentive Memories Timers I/O Partition

or or Up/Down (First Timer
Shift Register Bits Counters Counters Circuit)

120 4 1400
16 112 4 1420
32 104 4 1440
48 96 4 1460
64 88 4 1500
80 80 4 1520
96 72 4 5140
112 64 4 1560
128* 56 4 1600
144 48 4 1620
160 40 4 1640
176 32 4 1660
192 24 4 1700
208 16 4 1720
224 8 4 1740
240 4 1760

'Normal grouping as shipped by Digital Equipment Corporation.

RETENTIVE MEMORIES
Retentive memory circuits replace latching relays for

recording operations or status when power failures occur.

All outputs (I/O numbers between 1000-1377 inclusive)

are cleared when the Industrial 14 loses power. Retentive

memory outputs having I/O numbers between 1400-1577
inclusive, however, are not cleared and retain the previous

state when the Industrial 14 is powered up again.

The retentive memory circuit in Figure 3-2 records the

full-depth state of a drill-head or probe; the second circuit

retracts the head or probe upon reaching the full-depth

position.

NOTE
A retentive memory may be programmed to

clear in the event of a power shutdown. Refer

to "Non-Retentive Internal Functions" pre-

sented later in this chapter.

HEAD ADVANCE
LSI

1

HEAD RETURNED
LS2
2

RTMEM1
1400

RTMEM1
1400

FULL DEPTH REACHED

RTMEM1
1400

RETRACT HEAD

LOGIC TO
RETRACT HEAD

INPUTS

LSI 1

LS2 2

OUTPUTS

SOLR (200

SOLR
1200

INTERNAL FUNCTION

RTMEMt 1400

1400 » 1 + (1400 */2)
1200 = 1400 » (LOGIC TO RETRACT HEAD)

Figure 3-2 Retentive Memory Circuit and Boolean Equations

to Record Full-Depth Reached

3-3

SHIFT REGISTERS

The Industrial 14 allows any consecutive group of external

outputs (I/O numbers 1000-1377) or internal functions

(normally I/O numbers 1400-1577) to be used as a shift

register. When external outputs are used, the shift register is

cleared whenever the Industrial 14 is shut down. When

internal functions are used, the shift register holds its state

during an Industrial 14 shutdown. (Internal I/O numbers

may also be used for a non-retentive shift register. Refer to

"Non-Retentive Internal Functions".)

The shift circuit transfers the data from each location to

the next higher location (higher in terms of I/O numbers).

The shift occurs when the coil of the shift circuit is first

energized. The shift circuit remains energized so long as its

circuit conditions are satisfied; the next shift occurs when

the coil has been de-energized, then re-energized.

The shift register bits can be formed either from a series of

retentive memories or from unused outputs; however, in

either instance they must form a consecutive group.

Because the shift register is comprised of individual I/O

numbers, a circuit may be designed to parallel-load into any

position of the shift register.

Shift registers are useful for numerous applications. One

example is in identifying parts in a manufacturing transfer

operation - either for acceptance testing or for performing

an additional operation. As each part is transferred to a new

station, a corresponding register bit is shifted. Figure 3-3

shows 3 circuits that keep track of parts moving through 8

stations and finally reject the part that is bad. The first

circuit is the shift circuit; the second loads the reject status

into the first bit in the shift register, and the third rejects

the bad part based on the state of the last bit in the shift

register.

PART INDEX
SOLP
1201

CLEAR FIRST
POSITION

AFTER SHIFT

SRBIT1
1420

SRI
1402

-if-

SRBIT8
1427

REJECT IN LAST
POSITION

LOGIC TO
EJECT PART

SHIFT SIGNAL
SRI
1402

SR

LOWLIM
1420
HILIM
1427

SRBITI
1420

PARALLEL LOAD
OF FIRST SHIFT

SOLO
1202

INPUTS

LS3 3

OUTPUTS

SOLP 1201

SOLO 1202

1402= 1201

1420= 3+(l420-«-/l402)
1202= 1427* (Logic toeject part)

EJECT BAD PART

INTERNAL FUNCTIONS

SRI 1402
SRBITI 1420
SRBIT8 1427

14-0252

The Industrial 14 machine language instruction format for

the shift signal circuit differs from the format of other

output or internal function circuits. Prior to setting an

output ON when a shift circuit solves. Industrial 14

instruction (TN) tests the shift signal output to determine if

an OFF-to-ON transition has occurred. If so, the MOVBIT

instruction transfers the contents of the next-to-last shift

register location to the last location. The second MOVBIT

instruction transfers the contents of the next preceding

shift register location to the next-to-last location. Thus, for

a total of N shift registers, a total of N-1 MOVBIT

instructions should always be executed. The following is

the Industrial 14 machine language for the shift signal

circuit just described.

TF 1201

JFN .+3

JFF .+4

SKP
SF 1402

JFF NEXT OFF-to-ON transition has occurreu

TN 1402

SN 1402

JFN NEXT
MOVBIT
1426

1427

MOVBIT
1425

1426

Instead of setting 1402 ON, the

program jumps to test 1402 for

ON. This checks to determine if an

and then sets 1402 ON.

If OFF-to-ON transition occurred,

execute MOVBIT instructions.

Figure 3-3 Shift Register Circuit and Boolean Equations

to Track a Reject Part (continued on next page)

3-4

MOVBIT
1420

1421

NEXT,

The circuit for 1420 in this example illustrates the general

form for a shift register parallel-load circuit (Figure 3-4). If

the application had called for a cancel signal to clear the

shift register bit, it would have appeared in series with the

output.

LOAD CANCEL
SRBIT

SRBIT = /CANCEL»{ LOAD + SRBIT "/SHIFT)

Figure 3-4 General SR Parallel-Load Circuit Ladder

Diagram

The amount of controller memory required for a shift

register includes the memory locations needed for storing

the shift circuit plus the locations needed for moving each

bit of the shift register (Figure 3-5). The total amount of

memory for a shift register is therefore limited to 256
locations. The smaller the shift circuit, the more bits the

shift register can include; larger shift registers possess

commensurately fewer bits. The smallest shift circuit allows

approximately 81 shift register bits, the largest shift circuit

allows approximately 56 shift register bits. If the combina-

tion of the shift circuit and the instructions for moving

each bit is too great, this condition is detected when the

equation of instructions are read in BOOL-143 or PAL-143.

If this occurs, simply break the shift register into 2 separate

segments.

For example, 2 shift register circuits must be used to shift

120 bits. One circuit might shift the first 40 consecutive

bits. The other senses the output coil of the first circuit and

then shifts the last 81 consecutive bits (a total of 120 bits

plus 1 bit to link the 2 shift registers). Figure 3-6 is a ladder

diagram of this circuit.

MAXIMUM
SHIFT
REGISTER
SIZE

MINIMUM ALLOCATION
FOR SHIFT CIRCUIT

MINIMUM SHIFT
CIRCUIT SIZE
(ONE CONTACT)-,
MAXIMUM SHIFT
REGISTER
LENGTH, 81 BITS

MAXIMUM SHIFT
CIRCUIT SIZE
(FULL 8x10 CIR-
CUIT); MINIMUM
SHIFT REGISTER
LENGTH, 57 BITS

Figure 3-5 Industrial 14 Memory Allocation for

Shift Registers

LOGIC TO
CAUSE SHIFT

40 BITS

SR2
1100

81 BITS-^

LINK BETWEEN THE TWO
SHIFT REGISTERS

SRBIT40
1450

SRBIT41
1451

INTERNAL FUNCTIONS

SR2 1100
SR3 1101

SRBIT40 1450
SRBIT41 1451

1160= (LOGIC TO
CAUSE SHIFT)

1101 = 1100
1451= 1450

14-0255

Figure 3-6 Ladder Diagrams and Boolean Equations

to Link Two Shift Registers

3-5

TIMERS
Industrial 14 timer circuits each require two I/O numbers;

these are usually in the range 1600-1757 {Internal I/O

Groupings, presented in this chapter). The timer circuit is

programmed using the first, even numbered, I/O number.

When this I/O number (for instance, 1600) is energized, the

timer starts; when it is de-energized, the timer clears,

regardless of whether or not the full time interval has

elapsed.

The contact for the even I/O number (1600) senses the

instantaneous state of the timer. The contact for the odd

I/O number (1601) senses the delayed timed-out state, lue

states of these 2 contacts are shown in Figure 3-7. Notice

the results when the timer circuit is de-energized prior to

completing the full delay.

LS4
200

TMR1
1620

TMR1D
1621

MOTORI
1000

>
INPUTS

LS4 200

OUTPUTS

MOTOR 1 1000

INTERNAL FUNCTIONS

TMR1 1620

1620 = 200
1000= 1621

TIMER ON
CONTROL
CIRCUIT OFF

INSTAN- ON
TANEOUS
CONTACT OFF

i

J

DELAYED
CONTACT

ON

DELAY DELAY

L

L
I

OFF-

I TOO I

SHORT n
Figure 3-7 Timing Circuit Operation Timing

A timer can be used in conjunction with external outputs

to delay the turn-on of power devices, such as solenoids or

motor starters. Figure 3-8a shows timing in such a timer

circuit. Notice that an input condition starts the timer and

the timed-out state turns on output 1000. Figure 3-8b is a

ladder diagram of the circuit.

TIMER INPUT CONDITION
LS4 (NUMBER 0200)

ON

OFF

ON

J
INSTANTANEOUS
CONTACT TMR1
(NUMBER 1620) OFFJ

TIMED OUT CONTACT
TMR1D (NUMBER 1621)

ON

OFF

Tl MIN(3
PERIOD

L

L

ONOUTPUT CIRCUIT
a CONTACT MOTORI

(NUMBER 1000) OFF

L

L

Figure 3-8a Turn-On Delay Circuit Timing

Figure 3-8b On-Delay Timer Operation Ladder Diagram

Occasionally, it is useful to sense the instantaneous contact

(even number) of a timer in a lock-up (latch) circuit to turn

on an external output at a given time after an input

condition is sensed. An example of this is a package on a

conveyor that passes a photoswitch and moves on to an

elevator. A time delay must exist between the photoswitch

detecting the package and the elevator starting to move.

The instantaneous contact maintains the timer coil

energized even though the input is no longer present.

Figures 3-9a and 3-9b are timing and ladder diagrams

respectively, for this example.

TIMER INPUT CONDITION
PS1 (NUMBER 240) OFF

ON

OFF

INSTANTANEOUS ON
CONTACT TMR2
(NUMBER 1640) OFF

TIMED OUT CONTACT
TMR2D (NUMBER 1641)

OFF

OUTPUT CIRCUIT
SOLR (NUMBER 1200) Qpp

Figure 3-9a Timer Lockup Circuit Timing

Timers are also used in applications to extend the ON time

of an output (Figures 3-1 Oa and 3-1 Ob) or to set an output

ON for a given time after de-energizing an input (Figures

3-1 la and 3-1 lb).

3-6

DELAYED CONTACT RAISE ELEVATOR

INPUTS

PS1 240

OUTPUTS

SOLR 1200

INTERNAL FUNCTIONS

TMR2 1640
TMR2D 1641

1200 = 1641 + (1200 LOGIC TO TURN OFF ELEVATOR)
1640= 240 + (1640 « /1200)

Figure 3-9b Timer Lockup Circuit Ladder Diagram

and Boolean Equations

requires a higher I/O number than the highest timer I/O

number. Two control circuits with consecutive numbers are

required for each event counter: the even numbered circuit

increments the counter when set ON and the odd numbered
circuit clears the counter when energized. Increments that

occur while the clear circuit is ON have no effect on the

counter.

LS5
220

SOLT
1050

TMR3
1650

3»-

LS5
220

SOLT
1050

SOLT
1050

TMR3D
1651

INPUTS

LS5 220

OUTPUTS

SOLT 1050

INTERNAL FUNCTIONS

TMR3 1650
TMR3D 1651

1650 = /220 » 1050
1050= 220 + (1050 * /1651)

LS5 INPUT 220)
OFF

INSTANTANEOUS ON
CONTACT TMR3
(NUMBER 1650) OFF •

ON r

3FF 1

TIMED OUT CONTACT
TMR3D (NUMBER 1651)

OUTPUT CIRCUIT
SOLT (NUMBER 1050)

ON

OFF

ON

OFFJ

I
ITIMING I

PERIOD

14-0261

Figure 3-10a OFF Delay Timer Circuit Timing

Another timer application is in energizing an output for a

fixed interval following de-energization of an input. The
timing and ladder diagrams for this application are shown in

Figures 3-1 la and 3-1 i b respectively.

Figure 3-10b OFF Delay Timer Circuit Ladder Diagram

and Boolean Equations

TIMER INPUT CONDITION °^

LS6 (NUMBER 250)

INSTANTANEOUS ON
CONTACT TMR4
(NUMBER 1660) OFF

TIMED OUT CONTACT °^

TMR4D (NUMBER 1661) Qpp .

J

STORAGE\GE OUTPUT CIRCUIT "'^ f

1CR (NUMBER 1377) ^pp

J

ON

OFF-

OUTPUT CIRCUIT
'^^

SOLU (NUMBER 1060) Qpp

L
TIMING
PERIOD

L_

EVENT COUNTERS
Event counters (up-count only) share I/O numbers
1600-1757 with timer circuits; however, each counter

Figure 3-1 la Circuit Timing for Energizing an Output

for a Fixed Interval Following De-energization

of an Input

3-7

INPUTS

LS6 250

OUTPUTS

SOLU 1060
1CR 1377

INTERNAL FUNCTIONS

TMR4 1660
TMR4D 1661

1060=/250 1377
1377= 250 + (1377«/1661)
1660=/250 « 1060

BAD PART DETECTED
LS7

^==>r

GOOD PART DETECTED
LS8
10

COUNT LESS
THAN THREE

CLCTR1
1701

4f

INCREMENT COUNTER

CTRI
1700

LOGIC TO
OPERATE
STATION

COUNT
0001

PRESET
0003

CLEAR COUNTER

C LCTR

1

1701

OPERATE STATION
M0T0R2
1003

INPUTS

LS7 7

LS8 10

OUTPUTS

M0T0R2 1003

INTERNAL FUNCTIONS

CTRI 1700
CLCTR1 1701

Figure 3-1 lb Circuit and Boolean Equations to Energize

an Output for a Fixed Interval After De-energization

of an Input

The odd-numbered contact of the up-counter senses

whether the count equals or exceeds the preset count. This

sensed contact can be used in parallel or in series with other

contacts within control circuits.

1700=7
1701 =10

1003=/1701 » (LOGIC TO OPERATE STATION)

Figure 3-12 Up Counter Circuit and Boolean Equations

to Shut Down a Station on Three Successive Bad Parts

Figure 3-12 is an example of an up-counter to shut down a

station after three successive bad parts are detected. Notice

that the normally closed contact (1701) senses whether the

number of parts is less than 3 and stops the station

operation if the count is 3 or more.

UP/DOWN COUNTERS
The Industrial 14's selection of internal functions always

includes 4 up/down counters. These counters are

permanently assigned the I/O numbers listed in Table 3-3.

Up/Down Counters are programmed using 3 I/O numbers;

the first to increment, the second to clear, and the third to

decrement the counter. The fourth I/O number is not

available for use.

Contacts for the first I/O number (1760, 1764, 1770, and

1774) are used in other control circuits to indicate that the

preset value has been reached. Contacts for the second I/O

number (1761, 1765, 1771, and 1775) are used to test for a

zero counter value.

A typical up/down counter application is in limiting parts

on a conveyor. In the following example (Figure 3-13), the

contact (1760) senses whether or not six parts are in a

particular conveyor zone. If six parts are on the conveyor, a

gate is activated to prevent additional parts from entering.

CASCADING A TIMER AND COUNTER
A timer interval greater than 999 seconds can be obtained

by cascading a timer with a counter. The preset value of

each can be determined with the following equation:

TOTAL ELAPSED TIME = (TIMER PRESET VALUE) X

(COUNTER PRESET VALUE)

For example, if a 1-hour (3600 second) timer is desired,

preset the timer to 60 seconds and the counter to 60. This

example is illustrated in Figure 3-14.

3-8

Table 3-3

Up/Down Counters

I/O Number

Function

Counter As An Output As A Contact

1 1760 Count up = Preset

1761 Clear =0

1762 Count down N/A

1763 Do not use N/A

2 1764 Count up = Preset

1765 Clear =0

1766 Count down N/A
1767 Do not use N/A

3 1770 Count up = Preset

1771 Clear =0

1772 Count down N/A
1773 Do not use N/A

4 1774 Count up = Preset

1775 Clear =0

1776 Count down N/A
1777 Not used in

Counter

Initialize

NON-RETENTIVE INTERNAL FUNCTIONS
Although all external output circuits turn OFF if the

Industrial 14 loses power, all internal functions normally

retain the current state or value during and after a power

failure. This means, for example, that a timer which is

interrupted part way through its interval by a shut-down of

the Industrial 14 will continue (not reset) when power

returns. However, the Industrial 14 has an I/O number

(1777) which acts as a system initialize signal to reset

timing or to initiate some special action when the Industrial

14 is first powered up. This contact designated "not

initialize" (INITIALIZE) is OFF following a power

shutdown for the first pass through Industrial 14 Controller

memory and ON thereafter. If a pneumatic type timer is

desired, i.e., one that resets with a power failure, the

normally open, not initialize (1777) contact should be

programmed in series with the control circuit (Figure 3-15).

To make a shift register non-retentive, a circuit must be

entered for each bit (Figure 3-16).

ENTERING PHOTOCELL
PS2
12

INCREMENT COUNTER
CTR2
1760

LOGIC TO
CLEAR

COUNTER

COUNT
0003

PRESET
0006

CLEAR COUNTER

LEAVING PHOTOCELL
PS3
13

CLCTR2
1761

DECREMENT COUNTER

CONVEYOR FULL
CTR2
1760

LOGIC TO
ACTIVATE
GATE

DECTR2
1762

ACTIVATE GATE
SOLG
1205

INPUTS OUTPUTS INTERNAL FUNCTIONS

PS2 12 SOLG 1205 CTR2 1760
PS3 13 CLCTR2 1761

DECTR2 1762

1760 = 12

1761 = (LOGIC TO CLEAR COUNTER)
1762 •13
1205 • 1760 » (LOGIC TO ACTIVATE GATE)

Figure 3-13 Up/Down Counter Circuit and Boolean

Equation Parts on a Conveyor to a Maximum of Six

3-9

TIMER
CONTROL SECONDS TIMER

(PRESET VALUE
= 60.0)

CLEAR

TIMER
OVERFLOW
INCREMENTS
COUNTER MINUTE COUNTER

(PRESET VALUE
= G0) CLEAR

OVERFLOW HOUR
i

TIME OUT

RESET_TIMER_WHEN_
COUNTtK INCKtMtNlb

TMR5
1600

CTR3
1700

LOGIC TO
START TIMING TIMER

TIMED OUT
TMR5D
1601

COUNT
INCREMENT

TIME.1
100

PRESET
600

CTR3
1700

>-

1 HOUR DELAY

COUNT
020

PRESET
060

SOLZ
1100

INITIATE

CLCTR3
1701

OPERATION
STARTED

CLEAR
COUNT

CLCTR3
1701

OUTPUTS

SOLZ ilOO

INTERNAL FUNCTIONS

TMR5 1600
TMR5D 1601
CTR3 1700
CLCTR3 1701

I w J I M n 11600 =1700 « (LOGIC
1700 = 1601
1100=1701
1701 '{OPERATION STARTED)

LOGIC FOR
TIME DELAY

INITIALIZE
1777

TIMER
1662

Figure 3-15 Clear Timer if Power is Lost Ladder Diagram

1500
INITIALIZE

1777
1500

Figure 3-16 Circuit to Clear One Bit of a Shift Register

on Power Failure

Figure 3-14 Circuit and Boolean Equations to Cascade

a 60 Second Timer With a 60 Minute Counter

3-10

CHAPTER 4

BOOL-143 CONTROL EQUATION

TRANSLATOR

Control equations, written with symbols similar to Boolean

notation are translated using BOOL-143, the Control

Equation Translator, into the Industrial 14 machine code
instructions presented in Chapter 2. A series of these

equations constitutes an Industrial 14 program. The
program of control equations is prepared using the Editor

and a "source program paper tape" is generated. Use of the

Editor enables the source program to be corrected and
easily revised during the stages of program development.

BOOL-143 reads the source program paper tape and
translates (compiles) the equations into an Industrial 14
machine-code program containing the instructions in

Chapter 2.

The programming procedure used with BOOL-143 is shown
in Figure 4-1. The importance of correcting errors in the

source program with the Editor cannot be overemphasized.

The user should maintain a current, correct version of the

program, in equation form, throughout the life of the

system. Failure to do this can result in many lost hours if

changes must be made to the system and an accurate

representation of the program is not available.

VT14 COMPATIBILITY
The output tape from BOOL-143 can be read into the

Industrial 14 and debugged using the VT14 Programming
Terminal (Figure 4-1). However, the format of the

Industrial 14 program prepared by BOOL-143 must be

compatible with VT14 format. A yes (y) response to

BOOL-143 query, VT14-NY?, enables BOOL-143 to flag

(E69) certain VT14 incompatible commands and generates

one NOP instruction between each Boolean equation. These

incompatible commands are listed under Error Number 69

in Table 4-3 (Errors Detected and Diagnosed by
BOOL-143). BOOL-143 will not flag Boolean equations
with circuit diagrams too wide or too high for display on
the VT14 screen. Examples of these two types of equations
are explained later in this Chapter. Circuits with too many
nested variable groups should be avoided.

BOOL-143 STATEMENT
The body of BOOL-143 source programs is a series of

control equations such as the following:

1010=(1 +2)* 3

Each character in the control equation has a special

meaning to BOOL-143. For example, the nonprinting

carriage return character ()) signals BOOL-143 that the

complete source statement has been read. The acceptable

equation characters and the use of each are listed in Table
4-1; this table includes all legal BOOL-143 characters.

Functional descriptions of these characters are presented

later in this chapter.

The characters SPACE, TAB, LINE FEED, and FORM
FEED may be included in BOOL-143 programs to format
the source program. These characters are ignored during

processing by BOOL-143. Blank leader/trailer (null) tape is

also ignored by BOOL-143. All characters other than these

formatting characters and the characters listed in Table 4-1

are illegal and cause errors if included in the statement

portion of the BOOL-143 source program. All illegal

nonprinting characters are replaced by a question mark (?)

in the BOOL-143 listing.

4-1

ASSIGN INPUTS
AND OUTPUTS TO
INDUSTRIAL 14

I/O CONVERTERS
AND INTERNAL
I/O GROUPINGS

EXPRESS THE
MACHINE
SEQUENCE IN

EQUATION FORM

TYPE THE
EQUATIONS IN
PROGRAM FORM
WITH EDITOR

GENERATE THE
SOURCE TAPE
FOR BOOL- 143

COMPILE THE
INDUSTRIAL 14
PROGRAM WITH
BOOL-143

YES

LOAD THE
COMPILED PRO-
GRAM PAPER
TAPE INTO THE
INDUSTRIAL 14

USING ODP-143
OR THE VT14
PROGRAMMING
TERMINAL

READ SOURCE
TAPE BACK
INTO EDITOR

CORRECT
THE PROGRAM
ERRORS

YES

GENERATE
PAPER TAPE FOR
DOCUMENTATION

Figure 4-1 BOOL-143 Programming Procedure

Input, Output, and Internal Function Specification

Particular input and output numbers are determined by the

selection of the input (or output) converters. These are

octal numbers between 0-777, and 1000-1377. Internal

functions stored in the Industrial 14's memory are

designated by octal numbers 1400-1777. The state of an

output or an internal function is determined by the state of

inputs, outputs, and internal functions. For example, a

single output number (1017 for instance) is the left-hand

member of an equation, while the right-hand member of the

equation is a combination of inputs, outputs, and internal

functions. These inputs, outputs, or internal functions are

combined as variables of an equation using the operators

described in the next paragraph.

To be compatible with old BOOL- 14, users can also express

inputs as X0-X777, outputs as Y0-Y377 or

Y1000-Y1377, and internal functions as Y400-Y777 or

I I 4uU— I till.

Operators

The BOOL-143 operators are * (Boolean AND), -t- (Boolean

OR, inclusive), and / (Boolean NOT). These operators

combine input, output, and internal function values to

determine the value of an output or internal function.

Thus, the equation:

1017= 1017*/4-i-23

means that output 1017 is set ON if the following

conditions are satisfied:

a. Output 1017 is already ON and input 4 is not

ON, or

b. Input 23 is ON; otherwise, 1017 is set OFF.

NOTE
The equation specifies the ON and OFF

conditions for an output. Specifically, the

output is set ON if the conditions are satisifed

(true); otherwise it is set OFF (the conditions

are false). The fact that an output is set OFF

when the conditions are not satisfied is not

always expressed explicitly, but is always

implied in a BOOL-143 equation.

The NOT operator (/) can negate the sense of single

variables or variable groups. For example the equation:

1021 = 12-1- /31

meansthat output 1021 is set ON if:

a. Input 12 is ON, or

b. Input 31 is OFF; otherwise output 1021 is set

OFF.

4-2

Table 4-1

BOOL-143 Equation Characters

Character

1000-1377 ^

or

Y1000-Y1377[.

or

Y0-Y377

1400-1777 "^

or

Y1400-Y1777

or

Y400-Y777

Meaning/Use

/

(,[

),]

R

Z

0-9

RETURN

TAB

Input numbers

Output numbers

Internal function numbers

Equation indicator

Boolean R operator

Boolean AND operator

Boolean NOT (negates a single

variable or a variable group)

Start of a variable group

End of a variable group

Repetitive equation indicator

Repetitive variable indicator

Identify specific repetitive

equations or variables.

Indicates start of repetitive

equation

Comment indicator

Line break indicator

Control statement indicator

End of statement (often rep-

resented by " ")

Formatter, converted to 8 spaces

or less

Variable Groups

Input and output variables can be grouped with either

parentheses or square brackets. (The square bracket ([) is

SHIFT/K and (]) is SHIFT/M on the Teletype keyboard.)

For example:

1012 = (12 -I- 13) * [27+1015].

Square brackets and parentheses are treated identically by
BOOL-143 and are available for the user's convenience in

distinguishing between variable groups; however,

BOOL-143 requires that these symbols be used in pairs.

Any grouping opened with a square bracket must also be

closed with a square bracket. For example:

1012= (12+ 13] * [27+1015)

will generate an error because each grouping is closed with

the wrong bracket type.

The equations:

1012= (12+ 13) * [27+1015]
and

1013= (22+ 1017* [42+3])
* 15

are in proper form.

Statement Continuation

Extremely long equations which do not fit on one line in

the source program can be broken into two or more parts

using the dollar sign ($) as the statement continuation

character. Each incomplete line is terminated with a $. The
equation is part of a source program paper tape generated

with the Editor, in which the user has typed a carriage

return after the $ on the source tape. Whenever a $
precedes a carriage return, BOOL-143 does not treat the

carriage return as an end of statement indicator. It simply

provides a new input line and accepts additional characters

until it encounters a carriage return not preceded by a $.

For Example:

1021 =/(1+2 + 3) * [(4+ [5*6]

+1012* (27 + 5 + /21)

77]$

The dollar sign/carriage return combination can be used

anywhere within the statement line; otherwise, all other

statement rules are followed.

4-3

Comments

Program comments are text lines included in the BOOL-143

source program to clarify the function of an equation or to

document the program in general. Comments are merely

typed by BOOL-143 as they appear in the source program.

The comments have no affect on the machine code

generated for an equation.

BOOL-143 comments must be preceded by a semicolon {;).

When a semicolon is encountered, all characters to the right

are treated as a comment. Any Teletype character can be

included in the comment except the $. This character can

be used to write comments on more than one line. Any

characters to the right of the $ are ignored by BOOL-143.

For Example:

1015 = 1 + 2* (3-I-/4) SOLA = PB1 + PB2* (LS13$

-H/LS14)

;LS14TRIPPED WHEN SLIDE IS FULL FORWARD.

In this example the first comment is broken into two lines

using the $.

NOTE
BOOL-143 can handle approximately 160 input

characters (equation and comment) in one

statement. If this maximum is exceeded,

BOOL-143 types:

BUFFER OVERFLOW
If the buffer overflow occurs within a

comment, it should be ignored. If it occurs

within an equation, the equation must be

divided using a Z-function, as described later in

this chapter, and recompiled.

SUBROUTINES AND STORAGE OUTPUTS

Subroutines serve two functions in BOOL-143 equations:

a. Z-functions solve for an intermediate value or

result. A Z-function does not directly turn an

output ON or OFF; rather, it is part of a larger

equation which does perform this function.

b. R-functions solve for an output or internal

function state. R-functions are identical to

normal output equations except that provisions

exist for solving for the output more than once

on each pass through the program.

A BOOL-143 program can contain 64 subroutines

(specifically, R- and Z-functions) for each 4K field of the

Industrial 14 program.

Intermediate Results

In many instances, the storage of an intermediate result is

required within Industrial 14 programs. For example, one

set of inputs energizes or de-energizes Control Relay 1; a

second set of inputs energizes or de-energizes Control Relay

2; and a third set of inputs energizes or de-energizes Control

Relay 3. These control relays are then used in various

combinations with other inputs and outputs to control

Solenoids A, B, and C. The following are three possible

approaches for controlling such functions:

Complete coding - Control equations are written,

within which, the variables that determine the state

of the control relay are substituted for the control

relay. Thus, the equation for each solenoid separately

tests the control relay inputs to determine the state

of the solenoid and the actual control relays are

eliminated from the system.

Z-functions - A Z-function is written to solve for the

state previously represented by a control relay. (No

Industrial 14 output is set by the Z-function.) The

solenoid equations can then contain Z-functions as

variables. Only one set of Industrial 14 instructions is

needed in solving for each Z-function. These same

instructions are used to solve for every output which

contains the Z as an equation variable.

Storage outputs — A normal output equation is

written which sets an unwired output or internal

function ON or OFF. These outputs can then be used

as variables in other equations.

NOTE
Before proceeding, review Subroutine Jump

Instructions in Chapter 2.

Z-Functions

Z-functions are repetitive variables which are solved

whenever they are needed in normal output equations.

They do not set an output to record the result of the

testing; instead, the result is recorded by setting the

Industrial 14 TEST flag ON or OFF. Z-functions usually

represent values which must be solved in many different

equations. For example, suppose the following equations

were compiled by BOOL-143:

1001 =1*(21 -H3*/42-i-1017*11)

1002= 2* (21 -H3*/42+ 1017* 11)

1003= 3* (21 H3*/42-H017* 11)

1004=4* (21 -US* /42 -I- 1017* 11)

4-4

This set of equations would cause BOOL-143 to generate

Industrial 14 machine codes to test each variable for each

equation. Many of the instructions would be the same for

all four outputs; specifically, those instructions which test

the state of the variables vyithin parentheses.

The same machine control function can be represented by
the following group of equations with a considerable saving

in the number of memory locations required for the

program.

Z1 = 21 + 13*/42+ 1017* 11

1001 =1*Z1
1002 = 2*Z1

1003 = 3*Z1

1004=4*Z1

The new form is analogous to a control relay in a ladder

network which represents the combined state of a group of

inputs (Z1). The contacts from the relay are then included

in the circuits for solenoids, motor starters, etc. The
number following Z is arbitrary and can be any decimal

number between 0-2047. The Z-function must be defined

only once per memory field. It can be referenced as many
times as necessary from that same field.

Given this group of equations, BOOL-143 generates the

series of instructions to establish Z1 as a subroutine. The
Z1 instruction tests the inputs as a normal output equation

would; however, no actual output is set. The subroutine

sets the TEST flag ON if the equation is true; otherwise, it

sets the TEST flag OFF. BOOL-143 then tests the state of

the TEST flag to determine the result of the subroutine.

The subroutine instructions for a Z-function are terminated

in the following manner (compared to the termination of a

normal equation):

Z-function
"^

Test and

'' Normal equation

* conditional <

TN 377

TF377
JMR

jump

instructions

SN output

SKP

SF output

If the result of the Z-function is not true, BOOL-143
generates a JFF or JFN instruction that jumps past the TN
377 and TF 377 to the JMR, thereby returning with the

TEST flag OFF. If the result of the Z-function is true, the

TN 377 and TF 377 instructions are executed. Because

input 377 must be in one of the two states, one of the tests

must be true and the TEST flag is therefore set before the

JMR is executed.

The instructions for solving equations which contain

Z-functions differ greatly from the original equations. In

place of the instructions which test variables in the

Z-function, BOOL-143 generates a JMS (jump to

subroutine) to the beginning location of the subroutine that

solves the Z-function. The subroutine returns to the main
program with the result shown by the TEST flag. The main
program then tests the result with a JFF or JFN
instruction; thus, the JMS instructions serve a purpose
similar to a test instruction.

Instead of testing a single variable, the logical combination
of a group of variables is tested and the result is stored in

the TEST flag.

The Industrial 14 accommodates only one level of

subroutines; therefore, a subroutine cannot contain a JMS
instruction. In terms of BOOL-143, this means that a

Z-function cannot contain another Z-function as a variable

of its equation. If a second level is needed, it must be
written as a storage output and tested with a TN or TF
instruction in the subroutine, as described later in this

chapter.

R-Functions

R-functions (repetitive equations) are subroutines which set

an output ON or OFF (as opposed to Z-functions which set

the TEST flag). Characteristically, R-functions are outputs
which must be checked often and cannot wait for a

complete memory cycle. The state of these outputs could
be determined simply by compiling the complete
instruction sequence to solve the equation in several places

in the source program. This technique is inefficient if the

same equation is solved more than once. Defining an
R-function causes BOOL-143 to generate the equation as a

subroutine. Whenever the output state is to be determined,

BOOL-143 generates a JMS (jump to subroutine)

instruction to the R-function to set the output ON or OFF.
Thus, the instructions to solve the equation are stored in

only one area in memory, but are executed as many times

as necessary.

An R-function is defined as having the following form:

Rn: m= 1*

where n is any decimal number between 0-2047 and m
specifies a specific output or internal function to set by the

subroutine.

4-5

The subroutine is referenced by writing the R-function

designation. For example, the following statement defines

an R-function to set output 1053:

R32: 1053= 32* (41 + 12* 1013) + 21

BOOL-143 generates the machine code instructions for

solving this equation for 1053 in the same form as for a

normal output equation.

After the set output instructions, BOOL-143 compiles a

.IMR Instruction as follows:

SN 1053

SKP

SF 1053

JMR

Whenever the R-function is solved in the main program, the

user writes the following statement In the source program.

R32

BOOL-143 then compiles a JMS instruction to the

subroutine which solves for 1053.

In the following examples, all R- and Z-functions must be

defined at the beginning of the source program (not

following an output equation). Any R- or Z-function

defined following an output equation (1001 = 4 for

instance) generates an error. Each R- or Z-function must

possess a unique decimal-identifying number.

SUBROUTINE EXAMPLES

R 1 3: 1 006 = 2+4 ;Defines the subroutine

R13

Z8= 2+4*1007

Z9= 31+4+12

References the subroutine,

equivalent to writing 1006= 2 +

4

Z8= 21*1007

1001 =21+R8

R21:1010=Z1*17

Z1 = 1+31*1021

Z2=3*(2r31)+Z1

1012= 12*(13+15)

R14:1012= 15+1013

Error; the Z8 function has

already been defined in this

field.

Error; the R-functions cannot be

variables in equations. (Only

Z-functions may.)

Error; an R-function cannot

contain a Z-function as a

variable. (A subroutine cannot

jump to another subroutine.)

Error; the equation for a

Z-function cannot contain

another Z-function. (A

subroutine cannot jump to

another subroutine)

Error; definition of all R- and

Z-functions must precede any

output equations.

Storage outputs are designated as unused output numbers

or retentive memory outputs of the Industrial 14 and are

programmed exactly as other outputs except that these

outputs do not drive solenoids, motor starters, etc. Once a

storage output is set, however, it can be tested with the

Industrial 14 TN and TF instructions. A retentive memory

will hold its state if power to the controller is lost; an

unused output will clear on a power loss.

By using storage outputs to record the test result, the

instructions required for solving the result are executed

only once for each pass through the program. The storage

output itself can then be tested whenever it is needed.

However, subroutines must be executed at each instance

that the result is required In an output equation.

Storage outputs can also be tested by a subroutine. Thus, if

one intermediate result is a function of another, a storage

output could be used to record the second result. As

previously stated, a subroutine cannot jump to a second

subroutine.

A storage output must be used in place of a subroutine

whenever the control function itself is an element of the

equation, (a latched function).

4-6

The equation to establish a storage output is of the form:

1333 = 23*21 + 1017

where output 1333 corresponds to a non-existent output

converter. The result is tested by including the output as a

variable in an equation.

For example,

1016= 1333+(3+5 + 7).

BOOL-143 then generates a TN 1333 instruction to solve

this equation for 1016.

CONTROL STATEMENTS
Control statements are directions to BOOL-143 which

either affect the machine code instructions generated

during compilation or affect the binary output tape

generated by BOOL-143. Specifically, control statements

affect the allocation of memory locations for BOOL-143
generated Industrial 14 program instructions and mark the

end of source program tapes.

Shift Circuits .SR mmmm, nnnn.

The .SR control statement designates that the following

equation is a shift circuit with consecutive shift register bits

from mmmm to nnnn.

The shift circuit and shift register bits may consist of

external outputs (I/O numbers 1000-1377) or internal

functions (normally, I/O numbers 1400-1577). A control

statement to establish a shift register is of the form:

.SR 1501, 1517

1460=200*/370+ 1460

The amount of memory required to store a shift register

consists of the memory locations to store the shift

equation, plus the locations to move each bit of the shift

register. The smaller the shift equation, the longer the shift

register can be. The smallest shift equation allows

approximately 81 shift register bits; the largest shift

equation allows approximately 56 shift register bits.

Field 1 .FLD

BOOL-143 can store the program in either Field Oor Field

1. The .FLD control statement notifies BOOL-143 that the

remainder of the program is to be stored in Field 1, and

that all R- and Z-functions defined in Field must be

redefined in Field 1, if referenced. If the Industrial 14

program overflows Field 0, BOOL-143 automatically

provides a .FLD statement and stores the remainder of the

program in Field 1.

Partition .PRTN = nnnn

The partition control statement enables the user to increase

(or decrease) the number of retentive memories and shift

register bits by decreasing (or increasing) the number of

timers and event counters available. The Industrial 14

partition, set at 1600 when the unit is shipped, defines the

first I/O number at which timers and counters may be

designated. This partition may be changed by adjusting

switches within the Industrial 14 Control unit. This

adjustment must be specified to BOOL-143 by entering a

.PRTN = nnnn (where nnnn is an octal number ranging

from 1400-1760, in multiples of 20 I/O numbers). This

partition statement must be entered at the beginning of the

Industrial 14 program and should not be changed anywhere

within the program. An example of a partition statement is:

PRTN 1520

where 1520 indicates the I/O number at which timers or

counters may be designated. Table 3-2 indicates that there

are 80 retentive memories or shift register bits and 80

timers or counters available.

Timer Preset .SEC mmm and .TSEC mmm
Timers can be preset in seconds or tenths of seconds. The
timer preset, .SEC mmm or .TSEC mmm, control statement

should be entered on the line preceding its associated timer

equation. The preset value is a decimal number from 1-999
seconds or 0.1-99.9 seconds. I/O numbers from

1600-1757 must be preset as timers, beginning at 1600,

and at every consecutive even I/O number, up through the

last timer; otherwise, these I/O numbers are assumed to be

up-counters. Two examples of timer presets follow:

Timer Preset

.SEC 360

1600 = 200* 1600*/1 000

.TSEC 305

1602= 1060*/250

Explanation

Timer 1600 is preset to

360 seconds

Timer 1602 is preset to

30.5 seconds

Counter Preset .CNTR mmm
The event and up/down counter preset statement .CNTR
mmm must be entered on the line preceding its associated

counter equation. The counter preset value is a decimal

number from 1-999. All counter equations must use a

higher I/O number than any timer and only the even I/O

number of a counter equation should be preset. An
example of a counter preset follows:

Counter Preset Explanation

.CNTR 25 Up/down counter 1 760 is preset to 25

1760 = 6*1020

4-7

End of Program - .END or .ENDN

Each BOOL-143 source program must be terminated with

an END or ENDN statement to indicate the end of

compilation. The .END statement completes the BOOL-143

program by compiling a CLRPC instruction.

The .ENDN (end-no-jump) statement may be used to

terminate an incomplete program where no CLRPC

instruction is needed. This statement marks the end of the

source program, but generates no machine code instruction.

Examples of .END and .ENDN statements follow:

Statement Instruction Generated

.END 50 Error-no value allowed

CLRPC Generated

.END CLRPC

.ENDN Nongenerated

.ENDN 50 Error-no value allowed

End of Tape - .EOT

The BOOL-143 source tape can be physically segmented,

using the .EOT (end of tape) statement, to terminate all but

the last paper tape in a series. The last segment must be

terminated with an .END or .ENDN statement.

When BOOL-143 encounters an .EOT statement it types

"EOT" and halts the computer system, allowing the user to

load the paper tape reader with the next tape. Pressing the

CONT switch permits the compilation to proceed.

For example, if the program is on three tapes, the end of

the tapes is as follows:

.EOT ^ Tape 1 is terminated by an .EOT

statement.

.EOT ^ Tape 2 is also terminated by an

.EOT statement.

.END ^ Tape 3 is terminated by an .END or

an ENDN statement.

Memory Allocation

800L-143 compiles all subroutines (R- and Z-functions) as

the first elements of the program. This allows BOOL-143 to

generate JMS instructions to these subroutine locations

from the main program. BOOL-143 places a JMP to the

start of the main program which follows the subroutines

immediately before the subroutines.

An example of memory assignment follows:

Location assigned

by BOOL-143

1

15

16

Content

31

32

57

215

216

JMP
231

Z15

R29

Z5

R42

The JMP instruction goes to the first instruction

of the first output equation (in this case 1012).

The Z- and R-function definitions can be in any

order and can be assigned any decimal number

less than, or equal to 2047.

4-8

230

231

247

250

263

264

275

1012

1013

1016

Once the first output equation is encountered,

further R- or Z-function definitions cause errors.

1720

1723

1735

1736

7760

Location assigned

by BOOL- 143

1:0005

1:0006

1:0056

Program overflows into Field 1

1:0250

1:0300

1:0301 The program was terminated by an .END
statement, causing a CLRPC, which changes

the location to 0:0000

4-9

BOOL-143 assigns generated machine code instructions to

consecutive memory locations, beginning witli location 0.

The first instruction of a new equation is assigned to the

next sequential memory location after the previous

equation. This sequential assignment does not provide space

for changes with ODP-143. The .LOC, .FIXS and .VARS

control statements, described later, enable the user to start

the program at a location other than and to leave space

after each Instruction sequence.

When compiling an equation, BOOL-143 checks the

number of remaining locations on the current page. If

insufficient Industrial 14 memory locations exist for the

machine code instructions to solve the equation, BOOL-143

compiles NOPs in the remaining locations of the current

memory page and starts the equation in the first location of

the next page; the NOPs are not typed as part of the listing.

The user must remember that Industrial 14 program

execution starts in location 0. The content of the location

beginning with must control "start-up", either with

instructions to initialize the system, or with a JMP to an

initialize or start-up routine.

Start of Program - .LOC

The initial location of a program is specified by the .LOG

(location) statement. BOOL-143 generates machine code

instructions for the locations beginning with the value

specified by .LOG. For example:

.LOG 50

1001 = 1+2

yields the compiled instructions:

0050 4001 TF 0001

0051 2054 JFF 0054

0052 4002 TF 0002

0053 2456 JFN 0056

0054 3001 SN 1001

0055 0010 SKP

0056 1001 SF 1001

NOTE
The instructions begin in location 50. If no

.LOG statement were given, a .LOG is assumed

and the first instruction is placed in location 0.

More than one .LOG statement is permitted in a BOOL-143

program. The value of .LOG can be any octal number

between 0—7777.

Spacing Between Equations - .FIXS or .VARS

BOOL-143 is directed to compile a specified number of

NOP (no operation) instructions after equations by the

.FIXS (fix spacing) and .VARS (vary spacing) control

statement. The NOP instructions allow for program changes

in ODP-143 during debugging. For example, the statement

.FIXS 5

results in five NOP instructions at the end of all subsequent

instruction sequences. The value of the .FIXS statement

can be any decimal number between 0-2047. As many

.FlXSstaterr1^1 I LJ U<9
naariari r-an hp nla/H»H In 3 nmnram

The .VARS control statement affects only the equation

which immediately follows it and overrides, for that one

equation, any .FIXS statement currently in effect. The

.FIXS statement is reinstated after each .VARS statement

and remains in effect until overridden by another .VARS

statement or replaced by a new .FIXS statement.

The value of .VARS is a decimal number between 0-2047.

The .VARS statement can be used to suppress the output

of NOP instructions after an equation by specifying a value

of 0:

VARSO

Spacing Examples:

Equation and Control

Statements

Z1 = (27* 100) * 13-H4

.FIXS 5

R12: 1001 = 23* 14+0
.VARS 2

1001 = 23 * Z1

R12

.FIXS 10

1002=27*3+30*2

Number of NOPs after

the equation

none

2

5

10

The NOP instructions are not part of the compiler listing.

MONITORING PROVISIONS IN BOOL-143

Using control statements, BOOL-143 can be directed to

automatically supply monitoring instructions If the

operation of the Industrial 14 System is to be monitored by

an external computer. The instructions used and the

techniques involved are described in Chapter 9. The

procedure involved in BOOL-143 to generate these

instructions follows.

4-10

BOOL-143 can be directed to add instructions to monitor

the transition state of an output. Specifically, instructions

can be added to monitor OFF to ON transitions, ON to

OFF transitions, or both, for any Industrial 14 output,

internal function, or R-function.

The user chooses the RDBIT or RDMEM instruction for

monitoring. The RDBIT instruction outputs a specific

12-bit word to the monitoring computer; the word is

determined by the Industrial 14 (Chapter 9). RDMEM is a

two-location instruction which outputs a 12-bit word

specified by the user.

Monitor Transitions to ON — .MN

The .MN control statement causes BOOL-143 to add

instructions to the first following output equation to

monitor transitions from OFF to ON. These instructions

load a 12-bit word into the Industrial 14 output register

only when the output transitions from OFF to ON; no

12-bit word is loaded when the output remains the same, or

when the output transitions from ON to OFF.

Example:

.MN

1005 = /2*(3+ 1005)

(the instructions generated include a RDBIT 1005)

Only the equation immediately following the .MN control

statement contains the sequence of monitoring instructions.

The instructions generated are described in Chapter 9,

Monitoring the Industrial 14.

If the output is to be monitored with a RDMEM
instruction, the user must supply an octal number (four

digits or less) following the .MN statement.

Example:

.MN4123
1005 = /2*(3+1005)

(instructions generated include a RDMEM 4123)

If the user supplies less than four digits following the

control statement, BOOL-143 assumes leading zeros.

Monitor Transitions to OFF — .MF

The .MF control statement allows the user to monitor the

transition of an output from ON to OFF. Instructions are

added which load a 12-bit word into the output register

whenever the output is changed from ON to OFF. The

output register is not loaded if no transition occurs or if the

transition is from OFF to ON.

Example:

.MF

1006=3*(4*5 + /10* 11)

(the instructions generated include a RDBIT 1006)

The .MF control statement shown has effect only for the

first following equation (1006).

If the output is to be monitored using a RDMEM
instruction, the user must supply an octal number (four

digits or less) following the .MF statement.

Example:

.MF 103

1006=3*(4*5 + /10* 11)

(the instructions generated include a RDMEM 0103)

Monitor All Transitions - .MFN
The .MFN control statement is used to monitor all

transitions in output state (specifically both ON to OFF
and OFF to ON). Instructions are added which load a

12-bit word into the Industrial 14 output register on all

transition states of the output. The output register is not

loaded if the output remains ON or OFF.

Example:

.MFN

1007 = 21 + 15* 1005

(the instructions generated include two RDBIT 1007

instructions)

If the output is to be monitored with RDMEM instructions,

the user must supply two octal numbers following the

.MFN statement.

Example:

.MFN 2007, 1007

(the instructions generated include:

RDMEM 2007 - Executed on transition to OFF
RDMEM 1007 - Executed on transition to ON)

NOTE
The first number is used in transitions to OFF
(.MFN); the second number Is used in

transitions to ON (.MFN).

Monitoring input Transitions

As previously stated, BOOL-143 allows monitoring of

output states. If the user desires to monitor transition states

4-11

of an input, he must assign a storage output to record the

previous state of the input. He can then monitor the

transition states of the storage output to provide

monitoring information concerning the input.

Example:

.MF

1040= 1

(the instructions generated include a RDBIT 1040)

In this example, the transition states of output 1040 are

used to monitor the transition state of input 1. Table 4-2

provides a summary of control statements and their

meanings.

Table 4-2

Summary of Control Statements

Table 4-2 (Cont)

Summary of Control Statements

Command Control Operation

.LOG 250 Start the program compilation at

location 250.

.FIXS5 Leave 5 (decimal) NOPs after all

equations beginning with the next

equation.

.VARS 30 Ignore any .FIXS statement

currently in effect and leave 30

(decimal) NOPs after the next

equation only.

.MN Monitor the next equation for

transitions to the ON state.

.MF Monitor the next equation for

transitions to the OFF state.

.MFN Monitor the next equation for all

transitions.

.EOT End of tape - interrupt the

compilation while a new tape is

loaded.

.END End of program — compile a

CLRPC instruction.

Command Control Operation

.ENDN End of program — do not compile

any CLRPC instruction.

.SR 1560, 1565 The Boolean equation on the next

line is a shift circuit whose

consecutive shift register bits are

from I/O number 1560-1565.

.FLD The following Boolean equations

will be stored in Field 1. All R- and

Z-functions that will continue to be

referenced should be redefined

before any output or internal

function equations are translated.

.PRTN 1660 The Partition designating the

starting address of timers and

counters has been adjusted to I/O

number 1660.

.SEC120 Preset the timer equation

referenced on the next line to 120

seconds.

.TSEC 104 Preset the timer equation

referenced on the next line to 10.4

seconds.

.CNTR 160 Preset the counter (up or up/down)

equation referenced on the next

line to 160 counts.

ERROR MESSAGES
Table 4-3 contains a list of all errors that can be detected

and diagnosed by BOOL-143. The error numbers are typed

under the associated equation in the form "Ennnn" where

nnnn is the error number. All errors stop compilation of the

erroneous equation; BOOL-143 then proceeds to the next

equation.

No machine code instructions are generated for erroneous

equations, unless they are first corrected.

4-12

Table 4-3

Errors Detected and Diagnosed by BOOL-143
Table 4-3 (Cont)

Errors Detected and Diagnosed by BOOL-143

Error Number Cause

A required number is missing after a

Z-function, R-function, or control

statement.

Examples:

Z = 3+ 1001

1017=5*Z
R: 1012 = 27* 1

.FIXS

A non-octal digit is encountered after

an .END, .LOG.

Illegal number error caused by: A
decimal number greater than 2047
following an R, Z, .VARS, or .FIXS;

an octal number greater than 7777
following a .LOG or .END statement.

The first or second character of an

equation is not valid. The first

character must be an octal number or

ay.

Examples:

8=1
/Y14=27*1003

The equal sign (=) is either missing or

is not in the proper place within an

equation, Z-function, or R-function.

Examples:

100

Y1 1
'2

10

15/ = 3

A variable grouping is not closed with

the character type with which it was
opened.

Examples:

[1+2)

[3 +(5* 6] +1007)

Error Number

10

11

12

13

Cause

The character following a negation

sign {/) is not valid.

Examples:

1023 = /B1 *2

The character following a left

parenthesis or left bracket is not valid.

Example:

1010= (R5* 2)

The character following an AND (*) or

OR (+) sign is not valid.

Examples:

1011 = 1 + *

1012= 10* R1

The character following an equal sign

(=) is not valid.

Example:

1021 = R1

The character following a number is

not valid.

Example:

1032=1/ '2

The character following a right

parenthesis or right bracket is not

valid.

Example:

1007=12*(5+7)/*2

A Z-function is contained as a variable

in an R-function or Z-function,

Examples:

Z29 = 3 + Z50
RIO: 73= 1 *Z12

4-13

Table 4-3 (Cont)

Errors Detected and Diagnosed by BOOL-143

Error Number

14

15

16

17

18

19

20

21

Cause

An R-function or Z-function is

referenced which has not been defined

previously.

An equation contains more right

parentheses and brackets than left

parentheses and brackets.

Example:

1037= 1
* (2* 24 + 25] * 4)

An equation contains fewer right

parentheses and brackets than left

parentheses and brackets.

Example:

1042= 12* 2* (2* [23+17] * 14

A control statement is not recognized.

Examples:

.MZN

.MNF

.SAZ

A control statement contains an illegal

character.

Examples:

.M#N

.M.N

No control statement follows the

period {.).

At least one .LOG statement must

precede all equations, R-functions and

Z-functions.

Examples:

Z12= 1
* 2

.LOG 50

A subroutine definition is encountered

after at least one equation has been

compiled.

Examples:

1012=3* 15

R12: 1005 = 27 * /51

Table 4-3 (Cont)

Errors Detected and Diagnosed by Bool-143

Error Number

22

23

24

48

49

50

51

Cause

The statement defines an R-function

or Z-function which has been defined

previously.

Examples:

Z129=25+3* 12

Z129= 1003* 21 +5 * 12

The source program contains too

many R- and Z-functions per memory

field. The maximum is 64 R-functions

and Z-functions per 4K memory field.

The character following a colon (:) is

not valid.

Examples:

R15: Z5=27* 12

R29: R5=121 + 1013* 122

Shift register (containing shift

equation plus locations to move each

bit of the shift register) is too large.

Partition Address is bad: (Address is

greater than 1 760 or less than 1400, or

I/O address is not an octal multiple of

20 between I/O number range

(1400-1760).

Example:

.PRTN 1630

.PRTN 1360

Preset of counters (GNTR) or timers

(SEC or TSEG) is greater than 999.

Example:

.TSEG 1 200

1630= 1 + (2 1200)

Preset counter or timer at an address

below designated partition address.

Example:

PRTN 1640

.GNTR 60

1600 = 40+41 * (1200+ 1201).

4-14

Table 4-3 (Cont)

Errors Detected and Diagnosed by BOOL-143

Error Number

52

53

54

69

Cause

Preset timer at an up/down counter

address or at initialize address 1 777.

Example:

.SEC 60

1760= 100+ 101 * 1001

Shift register limits bad. (Upper I/O

address limit is lower than lower I/O

address limit).

Example:

.SR 1457, 1451

1400 = 200 + /370+ 1400

Wrong control statements preceding

shift circuit equation. (6 .MF, .MN,

.MFN)

All Z- and R-function equations and

references, monitoring transition

commands, and statements controlling

spacing between equations (e.g., .FIXS

and .VARS) are incompatible with the

VT14.

Examples:

.MF

.MN

.MFN
Z4=1+2
.VARS5
.FIXS10

1003=Z2*X10
R5:Y2=1+3+5
R3

OPTIMUM FORM FOR BOOL-143 EQUATIONS
Although equations can be written in many forms, the

optimum form for BOOL-143 equations is achieved by
observing the following rules. Rules 1 and 2 affect the

number of memory locations used to solve the equation.

Rules 3-6 affect the amount of time required to execute

the program. Rules 7 and 8 must be followed if Boolean
equations are to be VT14 compatible. These rules are not

flagged by responding positively to the "VT14 YN?" query.

Adherence to these rules is not mandatory for proper

Industrial 14 operation. The rules serve only to increase the

efficiency and speed of program execution in the Industrial

14 and provide compatibility with the VT14 programmable
controller.

Rule 1 - All single variables (inputs or outputs) combined
with the same operator, should be grouped.

Examples:

1001 = 1+2-H(3*4*5) + 1012+15

should be rewritten:

1001 = 1 + 2+1012+ 15+ (3*4*5)
and

1012 = 3* 1007* (4+ 27+ 21) * 1005*32

should be rewritten:

1012=3* 1007 * 1005* 32* (4+ 27+ 21).

Rule 2 - BOOL-143 generates a test instruction for every

variable occurrence on the right-hand side of the equation;

therefore, equations should be factored to eliminate

repeated variable occurrences.

Examples:

1015 = 3* 1005+6* 1005+12* 1005+1017+1005

should be rewritten:

1015= 1005 * (3+6+ 12+ 1017)

Rule 3 - Where a single variable is ANDed with an

expression, the single variable is placed before the

expression.

Example:

1006= (31 +4*52) * 27

should be rewritten:

1006 = 27* (31 +4*52)

Rule 4 - Variables and expressions should be grouped in

order of complexity, with single variables at the beginning

of equations and the large and more complex expressions at

the end.

4-15

Example:

1031 =
[(5 * 7 + 3) * 21 + (1052 * 1012) +

(13* 1017*/ 1005)] '22

should be rewritten:

1031 = 22*[(1052*1012) + (13*1017 */1 005) +21'

(3+5*7)]

Rule 5 — vvhen exptessiurii ui aiJ^duAimaicij >.i-^ ^a,,,^

complexity are combined using either the OR operator or

the AND operator, the expression representing the set of

conditions which is more often true should precede the

other expression.

Example:

1005= (12*4 + /27)+ (21 * [3 + /51])+ (1007 */23)

true 30% of true 20% of time true 50% of

time time

should be rewritten:

1005=(1007*/23) + (/27+12*4) + (21 * [3+/511)

123456789
00

10

20

30

40

50

60

70

^l-^h^h^h^h^h^l-!l-^h
_t__2--3-_4--5--6--7--tO--n-

12 14 1001W

Figure 4-2 VT14 Screen (Circuit Diagram Too Wide

for Display)

Solution: 1376= 1*2*3*4*5*6*7*10*11

1001 = 1376* (12+13) '(14+15)

Rule 8 - Boolean equations with circuit diagrams too high

for display on the VT14 screen must be divided into two

equations; again the first equation drives a storage output

and the second equation senses the storage output and

drives the original output.

Example:

1002 = 20* (21+22+234-24+25+26+27+30+31)

Rule 6 - Subroutines should be grouped near the end of

equations or expressions. Subroutines take longer to test

than a single variable.

Example:

1011=(Z3*/21) + ([Z7 + 4] *3*5) + 1
'2

should be rewritten:

1011 = 1 *2+(/21 *Z3) + (3*5* [4+Z7])

Rule 7 - Boolean equations whose circuit diagrams are too

wide when displayed on the VT14 screen must be divided

into two equations. The first equation drives a storage

output and the second equation senses the storage output

and drives the original output.

Example:

1001 = 1*2*3*4*5*6*7*10*11*(12+13) * (14+15)

3 4 6 7 8

00

10

20

30

40

50

60

70

20-

Hl-

--^--

21-

-31-

1002
,

-(H

Figure 4-3 VT14 Screen (Circuit Diagram Too High

for Display)

Solution: 1375 = 21+22+23+24+25+26+27+30

1002 = 20* (1375 + 31)

4-16

If the foregoing rules sometimes appear contradictory,

remember that they are presented only as guidelines to

assist in writing equations in the form which permits the

Industrial 14 to determine as quickly as possible whether an

output is to be set ON or OFF. The rules attempt to limit

the amount of testing the Industrial 14 must perform

before it can make the ON/OFF decision.

SAMPLE BOOL-143 PROGRAM
A BOOL-143 program representing a simple control circuit

follows. Comments are used to indicate the physical input

or output which is represented. The control statements
.LOG, .FIXS, .VARS, and .END are illustrated. Z-functions

and R-functions are included with the regular output and
internal equations. The output listing from BOOL-143
follows the program. BOOL-143 output is generated in

8-1/2 X 11 page format. Each page has a heading and a

dashed line to indicate where the pages should be cut apart.

4-17

BOOL-143/8 Output Listing

iP0UL14/8 SAMPLE PROURAM
i COMMENTS TU IDENTIFY THE PRUbRAM WOULD APPEAR HERE.

J CONTROL STATEMENTS WHICH AFFECT THE WHOLE PROGRAM FOLLOW.

.PRTN 1600

.LOCS50

.FIXS5
; SUBROUTINES PRCEED THE MAIN PRObRAM.
; 2CR=/6PB*/7PB*/1PS*/1 FS*/5CR
ZP = / 13*/ 14*/ 6*/ 7* /I 01

1

;S0LE=3CR=(8PP*CRH+CRA>*7CR*8CR*9CR*/3LS*/4LS*/5LS
Rl ; 1004=(15*100 7+1006)*101S*10 13*/10 14*/a*/3*/4
;S0LF=4CR=/7CR*<CRA*5CR+/9CP+9PP*CRH)
Pg:l00 5=/1018*(100 6*101 1+1014+16*1007)
J NORMAL EQUATIONS FOLLOW.
;2LT=CRA=RESET*/CRH*(AUTU+CRA)
1006=10*100 7*C1 1+1006)
;CALL TU REPETITIVE EQUATIONS.
.UARS0
Rl

R2
JNORMAL EQUATIONS CONTINUE BELOW.
;3LT=CRH=RESET*(MAN+CRH)
1007=10*(18+1007)
;SOLA=SOLC=CRl=/6CR*(6PR*7PB*gCR*/lLS*/2LS*5LS*6LS*7CR+lCR)
1000=/ 100 3* (13*14*22* /0*/l*4* 5* 1012+1 000)

1002=0
;4LT=/6PB*/7PB*(IPS+IFS)
1010=/l3*14*<6+7)
; 5LT=5CR=3LS*/4LS+5CR*8CR
101 l=2*/3+101 1*1013
;SOLB=SOLD=6CR=7CR*(CRA*/5LS*/6LS*(6CR+5CR*8CP)+PB10*CRH)
100 2=1012*<1006*/4*/5*(100 2+1011*10l3)+17*100 7)

;6LT=7CR=4LS
1012=3
;7LT=8CR=1LS*2LS
1013=0*1
;8LT=9CR = /nPB*C9CR+12PB)*(7CR+8CR)
1014=/20*C1014+21)*(1012+1013)
.SEC 60
;TMP1 =1FS*2LT*4LT*/6LS*(8LS+3LS+4LS)
1600=7* 1006* 10 10*/5*(1+2+3)
;SULU=TMR0T1
1016=1601
.SR 1401*1403
>SHFT1=(SOLA+SOLR+SOLF)*1FS
1400=(1000+1002+1014)*7
;CALL TO REPETITIVE EQUATIONS.
.VAFS0
Fl
P2
.END

4-18

b n (J - L h ? L
b 1 1\ - ,-g L H .•• L

V 1 1 4-.\iY?,\

I UMV* Pu>N(Ch J,^

BOCL-143/e V0 Page 0001

»bcoli4/p sample program
ICOMKENiTS TO iDEf^TlFY THE PROGRAM WOULD APPEAR HtRt.
ICCNTRCL STATEMENTS WhICH AFFECT THE WHOLE PROGRAM FOLLOW
.PRTN 1600

•

.'LOCSSe
VFIXSS
ISUBROLTINES PRcEED ThE MAIN PROGRAM,
J2CRs/6PB«/7PB»/lPS«/iFS»/5CR
H2s/l3«/14«/6«/7#/i0ii

2252 6313 TN 0013
2253 6014 TN ^014
2254 6306 JN 0006
2255 6007 TN 0007
2256 7311 TN 1011
2257 2662 JF^ 0262
2260 4377 TF 0377
2261 6377 TN 0377
2262 0i)54 jmH

;SCLEs3CRs<QPb»cRH*CRa)«7CR#8CR#9CR»/3LS»/4lS»/5LS
Rl

I

ie04»(15*1007*1006) •i0i2#1013»/1014»/2«/3*/4

2270 4^15 TF 0015
2271 5kJ07 TF 1007
2272 2275 jpF 0275
2273 5006 TF 1006
2274 2736 JF^ 0306
2275 5312 TF 1012
2276 5313 TF 1013
2277 7014 TN 1014
2320 6002 TN 0002
2321 6303 TN 0003
2322 6004 TN 0004
2323 2706 jFN 0306
2304 3004 SN 1004
2325 0310 SKP
2326 1034 SF 1004
2307 0354 jmH

4-19

|SCLFe4CR«/7CR»(CRA*5cR*/9CR*9PB»CRH)
R2liei?5"/lC112t(1006»1011*10i4 + 16»1007)

Z3i5 7312 TN 1012
2316 2731 JFN 0331
e3i7 5306 TF 1006
e32e 5011 TF 1011
2321 2327 JFF 0327
Z322 5314 TF 1014
8323 2327 JFf 0327
e324 4316 TF 0016
e325 5007 TF 1007
2326 2731 JFN 0331
2327 3005 SN 1005

2330 0010 skp
2331 10125 SF 1005
2332 0054 jmR

INCRNAL EQUATIONS FQULOwi
l2LTsCRAsRESET*/CRH»(AUT0*CRA>
102 6a 1Z«1037» (11*1006)

BOCL-143/8 V*' P*GE 0002

2250 0024 jmp
2251 0340 0340

2340 4010 TF 0010
2341 5007 TF 1007
2342 2751 JFN 0351
2343 4311 TF 0011
2344 2347 JFF 0347
2345 5026 TF 1006
2346 2751 JFN 0351
234.7 3026 SN 1006
2350 0310 skp
2351 1006 SF 1006

ICALL TO REPETITIVE EQUATIONS,
'.VARS0
Rl

2357 2124 jmS
2360 2270 P<270

R2

2361 2124 jmS
2362 iZ3l5 ?I315

4-20

INCRNAL EQUATIONS CONTINUE BELOW,
I3LT=CRH=RESET»(MAM*CRH)

2400 4010 Tr Pi010

0421 2410 JFN |?||gi0

2422 4012 If 0012
2423 2006 JFF 000g
2424 5007 TF 1007
2425 2410 JF^J 0010
2426 3007 SN 1007
2427 0010 SKP
2410 1007 SF 1007

ISCLA»S0LC=CR16/6CR«<6PB»7PB»2CR»/1LS»/2LS»5LS»6LS»7CH+1CR)
1020s /1 003* (13«l4»22«/0»/i»4»5»1012* 1000)

2416 7303 TN 1003
24l7 2440 JFN 0040
2420 4313 TF 0013
2421 4.114 TF 0014
2422 2434 JFN 0034
2423 0124 JMS
2424 2252 0292
2425 2J34 JFF 0034
2426 6300 TN 0000
2427 6001 TN 0001
2430 4 004 TF 0004
2431 4O0S TF 0005
2432 55312 TF 1012
2433 2036 JFF 0036

BOCL-143/8 V0 page 0003

2434
2433
2436
2437
2440

5000
2440
3000
0010
1000

TF
JFN
SN
skp
SF

1000
0040
1000

1000

102280

2446
2447
245i
2451
2452

4000
2452
3002
0310
1002

TF
JFN
SN
SKP
SF

0000
0052
1002

1002

4-21

j4LTs/6PR«/7PB»(lPS+lFS)
I»10s/l3»l4«(6*7)

2460
e461
Z462
2463
2464
2<»65

2466
2467
24718

2471

:113 TN
014 TF
471 JFN
306 TF
067 JFF
337 TF
471 JFN
310 SN
010 skp
310 SF

C013
0014
0071

0067
0007
0071
1010

1010

j9LTa5CRs3LS«/4LS*5CR«8CR
1«11«2«/3*1011»1013

2477
2528
2521
2522
2523
2524
2525
2526
2527

4002
632)3

2105
5011
5013
2507
3011
0010
1311

TF

JFF
TF
TF
JFN
SN
skp
SF

0002
0003
0105
1011
1013
0107
1011

1011

lSGLessoLD=6CRs7CR»(CRA«/5US»/6LS*{6CR*5CR*8CR)*pB10«CHH)
1022=iel2»(1006»/4«/5«(l002*1011«1013)*17«1007)

2515 5312 TF 1012
e5i6 2535 JFN 0135
2517 5306 TF 1006
2520 6004 TN 0004
2521 6005 TN 0005
2522 2530 JFN 0130
2523 5302 TF 1002
2524 2133 JFf^ 0133
2525 5311 TF 1011
2526 5013 TF 1013
2527 2133 JFF 0133
2530 4317 TF 0017
2531 5007 TF 1007
2532 2535 JFN 0135
2533 3302 SN 1002
2534 0010 SkP
2535 13Z2 SF 1032

4-22

bool-143/8 v0 page: 00f)4

»6LT«7CRs4uS
IB12=3

2543 40^3 TF
2544 2547 jpN
2545 3312 SN
2546 0010 SKP
2547 1012 SF

0003
0147
1012

1012

)7LT=8cR=lLS»2LS
1013s0«l

2555 4300 TF
2556 4001 TF
2557 2562 JFN
2568 3013 SN

0000
0001
0162
1013

2561 0010 SKP
2562 1013 SF 1013

;8LT»9CR»/11PB#(9CR*12PB)*(7CR*8CR)
Iil4=/20»(1014*21)»(1012*1013)

257» 6020 TN 0020
2571 2604 JFN 0204
2572 5014 TF 1014
2573 2176 JFF 0176
2574 4021 TF 0021
2575 2604 JFN 0204
2576 5012 TF 1012
2577 2202 JFF 0202
262i 5013 TF 1013
2621 2604 JFN 0204
2622 3314 SN 1014
2623 0010 SkP
2624 1014 SF 1014

'.'SEC 62
JlHRl «1FS«2LT#4UT»/6lS»(2I,S + 3LS + 41,S)
1*008 7« 100 6»1310*/5#{12*3)

2612 4007 TF 0037
2613 5006 TF 1006
2614 5010 TF 1010
2615 6005 TN 0005
2616 2627 JFN 0227
2617 4001 TF 0001
2620 2225 JFF 0225
2621 4002 TF 0002
2622 222!5 JFF 0225
2623 4003 TF 0003
2624 2627 JFN 0227
2625 3600 SN 1600
2626 0010 SKP
2627 1600 SF 1600

4-23

;SCLG=TMR0T1

(?635 5601 Jf

e636 2641 JFN
e637 3016 SN
26Ai 0310 SkP

16131

0241
1016

BOCL-143/8 Vt^ PaGF 1^005

2641 1016 Sf 1016

VSR 1401,1403
)SHFT1=(SOUA+SOLB*SOLF)«1FS
14208 (1000*1002*1014)«7

e647
2650
e651
e652
2653
2654
£655
2656
2657
2660
2661
2662
2663
2664
2665
2666
2667
2670
2671
2672
2673
2674

530B
22&5
5022
2255
5014
2661
43£7
2661
2263
0010
1400
2274
7402
3400
2674
0133
1402
1403
0133
1401
1402
0000

TF
JFF
TF
JFF
TF
JFN
TF
JFN
JFF
SKP
SF
JFF
TN
SN
JFN
MOVBIT
1402
1403
MOVBIT
1401
1402
NOP

1000
0255
1002
0255
1014
0261
0007
0261
0263

1400
0274
1400
1400
0274

4-24

jcALL TO repetitive: equations,
VVARS0

R2

27Z2 Z124 jmS
2703 e270 027?

e7e4 0124 jmS
I?7e5 0.315 fi315

VE^D

0713 12004 clRPC

ERROR LiNESt 0000

LAST LOCATION} 1C713

4-25

CHAPTER 5

SET-143

SYMBOLIC EQUATION TRANSLATOR

Industrial 14 programming, using BOOL-143, requires that

the control equations be written in terms of input numbers
= 777 (X0-X777 optional), output numbers 1000-1377

(Y0-Y377 or Y1000-Y1377 optional) and internal

function numbers 1400-1777 (Y400-Y777 or

Y1400-Y1777 optional). Input numbers are obtained by
assigning inputs (pushbuttons, limit switches, etc) to input

converters and selecting the corresponding input numbers
from a chart. A similar procedure is followed for assigning

output numbers. Internal Function* numbers are assigned

according to function (retentive memory, shift register,

timer and counter). The user then translates control

expressions in terms of input and output physical

components and internal function types.

Because some find this translation cumbersome, and

because the translation is subject to human error, an

optional preprocessor for BOOL-143 is available. This

preprocessor, designated as SET-143 (for Symbolic
Equation Translator), accepts symbolic equations in terms

meaningful to BOOL-143 and the Industrial 14 System.
The translation is performed according to a user-supplied

symbol table, which provides the I/O number equivalents of

the equation elements.

SET-143 is completely optional. The user may choose to

work directly with BOOL-143, performing any necessary

translations. SET-143 uses the computer to perform and
document the translation from meaningful user symbols to

the I/O numbers required by BOOL-143 and the Industrial

14. The SET-143 output listing is a useful system

document, especially from a maintenance point of view.

The input tape to SET-143 is prepared with the PDP-8
Editor program; this input tape can be saved for editing

when future developments change the control equations.

The output tape from SET-143 can also be corrected with

the PDP-8 Editor.

'Chapter 3 contains details concerning Internal Function I/O

assignment.

Hardware Requirements

SET-143 translates an Industrial 14 program of any length

using an 8K PDP-8 family computer. SET-143 utilizes

low-speed Teletype or high-speed paper tape input and
output. No provision exists in SET-143 for keyboard input.

Symbols

Symbols in a SET-143 equation must be unique and are

limited to 6 characters. Each character must be either a

letter (A-Z) or a number (0-9); no other characters are

allowed within a symbol. A symbol can begin with either a

number or a letter. Some sample symbols follow; many
others are possible.

LS12 BCKLS NEXT ST2MAN
SPINMT FUNDEP CHECK MIXRUN
15PB AUTOPB RUNLT LIQFUL
SOLA 157TMR ST10N 15ST0P

The following are examples of illegal symbols:

MANUALPB More than 6 characters

STA#1 Illegal character within the symbol

Symbol Definition

SET-143 uses symbol definitions to associate symbolic
names with the I/O number (X, Y optional), R, and Z
values required by BOOL-143. The user can assign any legal

symbol to an I/O number in the range 0-1777 octal. The
following are typical assignments:

LS12= 10

SPINMT =57

FULDEP= 123

AUTOPB = 50

NEXT =

RUNLT = 1200

MIXRUN = 1023

LIQFUL = 12

The symbol must be followed by an equal sign, and the

equal sign must be followed by an I/O number (X or Y
optional), R or Z. Spaces are allowed within the statement

and have no affect on the processing.

5-1

SET-143 does not permit the user to assign a symbol to an

I/O number value that contains an 8 or 9, or which is

greater than 1777. In addition, SET-143 does not permit

the same symbol to be defined for two different values {for

example, AUTO = 1 and AUTO = 321). In these instances,

SET-143 generates error messages.

A symbol can be defined as equal to either a BOOL-143 R-

or Z-function. The value of the R- or Z-function can be any

decimal number from 0-51 1

.

The symbol table should be organized as shown in Figure

5-1 with inputs, outputs, R-functions, and Z-functions

separated. This separation simplifies checkout and limits

the possibility of duplicating assignments. The symbol table

is especially useful when the inputs and outputs are listed

by numerically increasing input and output values. The

wiring of inputs and outputs to the Industrial 14 input and

output converters can then be checked against this list.

Comments, preceded by a semicolon, can also be used to

further identify the input or output assignments.

Symbol Table

The SET-143 symbol table contains definitions of user's

symbols in terms of I/O numbers 0-1777, X, Y, Z or R

numbers. These symbol definitions allow equations to be

written in a format other than the I/O number format

required by BOOL-143. The program may contain several

symbol tables in which symbols are defined in terms of I/O

numbers, Z-values, or R-values. All SET-143 symbol tables

must be preceded by a number sign (#) as the first

character of a line. The # sign must also appear at the end

of the symbol table. Other characters on the line containing

the number signs are ignored and may be used for

comments.

A sample symbol table is in Figure 5-1

.

The symbol table must be separated from the rest of the

program with number signs (#) both preceding and

following the symbol table. In particular, BOOL-143

control statements (LOG, VARS, etc.) or symbolic

equations should not appear within the two number signs.

The symbol table permits the definition of 1088 input,

output, internal function, Z- and R-functions combined. If

the program contains more than 1088 symbols (an

extremely unlikely eventuality) the program must be

translated by SET-143 in two sections. Each part of the

program must contain the definition for each symbol used

in that section.

#START Uh SYMBOL TABLE
* TABLE OF OUTPUT
SS1 = 1000
SS2 = 1001
Lt;L = 100S
LUi.MCL = 1003
PCL = 1004
PUlMCL = 1005
; TABLE 01- INPU
FbSLT=
AUTtJPB = 1

MANPB= 2

CLPTL= 3

CLPTR= 4

HDi-WD= b

HLRfcl= 6
«
3 TABLE Oh 7. FU\
CLMPL\< = ?,1

HLFT = 7.8

* TABLE Ui- R l-UiX

fciV;HEl = Rl

fULLtP= R2
iHlHU Lh S YMi'UL TABLE

VALUES
; START SPINDLE MOTOR 1

;START SPINDLE MOTOR 2

;LE1'T CLAMP
;lei'T unclamped
i RIGHT clamp
J RIGHT UNCLAMPED

t VALUES
;auto/man reset pushbutton
; automatic mode pushbutton
; MANUAL MODE PUSHEUllON
;clamped part left limit switch
jclamped part right limit switch
;head forward limit swiich
;head returned limit switch

CTIONS
;CLAMPS IN PLACE INDICATION
;ALL HEADS RETRACTED INDICATION

CT10>\)S

;emergency return shutdown chech
;FULL DEPTH ACHIEVED

Figure 5-1 Input Symbol Table to SET-143

5-2

SET-143 copies the symbol table onto the output tape and
causes the symbol assignments to become a permanent part

of the BOOL-143 listing. SET-143 precedes each line that

contains a symbol assignment with a line containing ;$.

These two characters inform BOOL-143 that the following

line is a comment. (The ; specifies "start of comment"; the

$ specifies "continued on next line").

Symbolic Equations

Once the symbol table has been supplied to SET-143, the

user can provide symbolic equations to be tranlated. Three
examples of symbolic equations follow:

AUTOLT ^

STMTR1
SLD1FD
VLV10P
MIXRUN

AUTOPB -I- AUTOLT*/RESTPB
= SLD1RT * TRNSDN -i- STNTR1 */

= (MIXDN* /0PLS1 + VLV10P) *

The symbols used in the equations should be selected in a

manner meaningful to the control system designer and
easily understood by those who use and maintain the

system. The symbolic equations become part of the

BOOL-143 source program just as the symbolic

assignments. That is, SET-143 precedes each symbolic

equation by a ;$, thereby specifying that the equation is a

comment.

A symbolic equation can contain a maximum of 250
characters; therefore, a lengthy equation can be written on
up to 3-1/2 lines. Any intermediate line is ended by a $,

and the last line ends with the normal carriage return. If an
equation exceeds 250 characters, SET-143 types the

following message:

;??LINE TRUNCATED

and translates only those symbols contained in the first 250
characters. This message is typed before the offending line.

SET-143 processes each symbolic equation according to the

following procedure:

1. Output the complete symbolic equation as a

comment.

2. Read each symbol of the equation.

3. Search the symbol table for the I/O number (X

or Y optional) R- or Z-value of each symbol.

4. Output the translated value for each symbol in

a BOOL-143 equation format.

All internal equation characters such as =, *, +,

I, (,), [, and] are not changed whenever they

are found in the symbolic equation.

Any symbols that are part of the symbolic

equation and are not found in the symbol table

are not changed when they are inserted in the

I/O numbers equation. This permits the user to

intermix an I/O number, R- or Z-value with an

equation to be translated.

Handling of BOOL-143 R and Z Functions

R- and Z-functions can be included in the program to be

translated by SET-143. The values of the functions must be

in the range 0-511 decimal (R0-R511, Z0-Z511). A
symbol can be assigned to the R- or Z-function in the same
manner as an I/O number value, or the R- or Z-value can be

used alone. For example, suppose that MTRI is to be an

R-function. One approach is as follows:

#
MTRI = 1012

AUTO
CLAMP

= 31

= 1057

FULDEP = 107

RMTRI

#
R5; REPEAT MOTOR 1

RMTRI: MRTI = AUTO * CLAMP '

' FULDEP

;STARTOF MAIN PROGRAM
RMTRI; CALL TO MRTI SUBROUTINE

Alternatively, the R-function need not be assigned a

symbolic value and the arbitrary R -number can be used. If

this approach is chosen, the RMTRI = R5 entry is deleted

from the symbol table, and R5 is used throughout the

program in place of RMTRI.

The same procedure is used for Z-functions. A Z-function is

a group of Industrial 14 variables (inputs, outputs, or

internal functions) that are tested and the result recorded

by setting the TEST flag, rather than setting an output. A
symbolic value can be assigned to the Z-function, such as

AHDRET (all heads returned) or AVALCL (all values

closed). The Z-function subroutine could test a group of

limit switches or, perhaps, pressure sensors. The Z-function

could also be identified with the arbitrary Z-number, which

does not require translation by SET-143.

5-3

Comments

Normal BOOL-143 comments can be inserted in the source

program to SET-143 by simply preceding each comment

with a semicolon. SET-143 outputs any existing comments

unchanged.

NOTE
Everything on the SET-143 source tape, except

BC)OL-143 control statements, becomes a

comment on the output tape from SET-143.

All symbol assignments and symbolic equations

become comments to BOOL-143.

BOOL-143 Control Statements

SET-143 processes BOOL-143 control statements by simply

transferring them, unaltered, onto the BOOL-143 source

tape. SET-143 recognizes a control statement by the period

that precedes each statement {VARS5, .LOC50, etc.).

The .END .ENDN, and .EOT statements affect the

operation of SET-143 in addition to being output on the

BOOL-143 source tape. The .END and .ENDN statements

halt SET-143 and the translation process. The .EOT

statement acts as a normal end-of-tape statement to allow a

new tape to be loaded. The translation process continues

after an .EOT when the PDP-8 CONT switch is pressed.

Error Messages

SET-143 errors are detected only during symbol

definitions. The error message is typed on the line

immediately after the offending definition. Table 5-1 lists

the errors that can be detected.

Whenever an error is detected, the definition that caused

the error is ignored and SET-143 continues with the

processing. The error messages are typed as comments on

the output listing and/or tape in the following format:

; ??Enn

where nn is one of the error codes listed in Table 5-1

.

The following message is typed if the program exceeds

1088 symbols:

SYMBOL TABLE OVERFLOW

SET-143 halts in the unlikely instance that this condition

arises. The program should then be segmented with the

BOOL-143 control statement .EOT to permit its translation

by SET-143 in two parts. The symbols required for each

"rogram part must be defined in that section.

Table 5-1

SET-143 Error Messages

Error Number Cause

01 First character of a user symbol is not

an alphanumeric character.

Examples:

/LSI 2=1

=23

02 The user symbol contains more than 6

alphanumeric characters.

Examples:

STA1MTR = 1053

03

04

05

06

07

The user symbol is not followed by an

equal sign.

HDRET-27
CONVOK; 1053

The equal sign is followed by an illegal

character (not an X, Y, R, Z or I/O

number).

Examples:

MIXRUN = ;1057

12TIMR = P27

A non-octal number (8 or 9) is

contained in an I/O number. A

non-octal digit (8 or 9) follows an X,

Y; or a non-numeric character follows

anX,Y, Zor R.

An illegal value is assigned to an I/O

number X, Y, Z or R (I/O number X

or Y greater than 1777, R or Z greater

than 511).

Examples:

TMR23=2407
RSOLB = R2000

An illegal character other than ; or) or

space follows the variable number.

Examples:

0PVLV3 = 1050 OPEN VALVE
BACKLS = 27:BACK LIMIT SWITCH

5-4

Table 5-1 (Cont)

SET-143 Error Messages

Error Number Cause

08 A user symbol Is defined equal to two

different values.

Examples:

MTR53= 1005

MTR53 = R20

09 A previously defined I/O number (X,

Y), Z or R-number has been used

again.

Examples:

RUNLT = 1036

SOLB=1036

Error Listing

At the end of every SET-143 symbol table (after the second

#) SET-143 types the following message:

;**SYMBOL ERRORS: n

where n is the number of errors in the preceding table of

symbolic definitions. The number n is the decimal error

total and is greater than or equal to zero.

When the high-speed punch is used as the output device, the

symbol error message allows the translation to be stopped

by pressing the PDP-8 STOP switch if any errors are

detected in the program. Thus, the program can be

corrected before the equations are translated.

Sorted Symbol Table

An additional listing of the symbol table is typed after

SET-143 has completed the translation process (after an

.END statement). This symbol table is an alphabetic sort of

all defined symbols and associated I/O number, R- and

Z-values.

This optional symbol list is only generated on the output

device (Teletype or high-speed punch). The symbol list is

not in the form of BOOL-143 comments and is not read by

BOOL-143 because the symbol list follows an .END

statement. However, the symbol list is a permanent part of

the output tape and can be listed off-line at any time.

If the original symbol table is written in increasing I/O, R-

or Z-numbers, two approaches are provided for identifying

a symbol. To determine which output is 1057, for example,

refer to the original symbol table. To determine which

output light is associated with motor starter STMTR 1 , refer

to the alphabetically-organized symbol table supplied by

SET-143.

Any defined symbols not referenced in an equation are

followed by a question mark in the alphabetized symbol

list. For example, the statement

STOPPB 27?

signifies that the symbol STOPPB was defined, but was

never used in a symbolic equation.

Sample SET-143 Program

Figures 5-2 through 5-5 show a sample program and its

translation by SET-143. Figure 5-2 is the program as read

into SET-143. Figure 5-3 is the Translated Symbol Table

(optional). Figure 5-4 is the translated control equations

program which will be read into BOOL-143. Figure 5-5 is

the optional symbol table listing which is arranged

alphabetically.

5-5

STAPT
; TABLF U

MSTSTP=
KSTRST=
1KC0NT=
2MCUNT=
SPNSTP=
SPNST=
LEVF.N(i =

CLUENU=
DECSPD=
I>JCSPD=
LUBPRS=
LUBLEV=

UF SYMBOL TABLE
F INPUTS

;t«'jASTEP STOP PUSHBUTTON
1 ;MASTER START PUSHBUTTON
2 iCUNTACT UN MOTOR 1

3 ; CONTACT ON MOTOR 2

H ;SPINDLE STOP PUSHBUTTON
5 ; SPINDLE START PUSHBUTTON
6 ;LEVEP ENOAUED fop spindle DIRECTION
7 ; CLUTCH ENUAbED PRESSURE SWITCH
10 ; DECREASE SPINDLE SPEED
11 ; INCREASE SPINDLE SPEED
12 ;PRESSURE SWITCH ACTIVATED BY ADEQUATE LUBE PRESSURE
13 ;LEVEL switch activated by ADEQUATE LURE SUPPLY

; TABLE OF OUTPUTS
SPNCLU= 1000
FFEDCL= 1001
SPDINC= 1002
SPDDEC= 1003
LUBSOL= 1004
LBFAIL= 1005
TFDCLU= 1020
TLUBIN= 1021
TLUBFL= 1022
END OF SYMBOL TABLE

;SULENUID 1 TO ENUAOE SPINDLE CLUTCH
i SOLENOID 2 TO ENUAUE FEED CLUTCH
; SOLENOID 3 TO INCREASE SPINDLE SPEED
; SOLENOID H TO DECREASE SPINDLE SPEED
;S0LEN0ID 5 TO PROVIDE SPINDLE LUBRICATION
iLUBF FAILURE LIbHT

J FEED CLUTCH TIME DELAY
JLUBRICATION INTERVAL TIME DELAY
;LUBRICATI0N FAILTBE SNDICATION DELAY

; CONTROL EQUATIONS FOLLOW.
.LOC200
.FIXS5
SPNCLU=/MSTSTP*(MSTRST+1MC0NT*2MC0NT)*/SPNSTP*LEVENG*[SPNST+SPNCLU3
TFDCLU=CLUEN(i
.MEN
FEEDCL=TFDCLU
SPDINC=SPNCLU*INCSPD*/DECSPD
SPDDEC=SPNCLU*DECSPD*/INCSPD
LUBS0L=TLUBIN
.MN
LBFAIL=TLUBFL
TLUBIN=LUBPRS
TLUBFL=LUBLEV*TLUBI N
.END800

Figure 5-2 SET-143 Input Program

5-6

;s
START OF SYMBOL TABLE
STABLE OF INPUTS

MSTSTP=
;$
MSTRST= 1

;s
1MC0NT= S
a
2MC0NT= 3

;s
SPNSTP= 4
;s
SPNST= 5

i$
LEVENG= 6
;s
CLUENG= 7

JS
DECSPD= 10
;s
INCSPD= 11

LUBPRS= 12
;s
LUBLEV= 13

JMASTER STOP PUSHBUTTON

;MASTER START PUSHBUTTON

; CONTACT UN MOTOR 1

; CONTACT ON MOTOR 2

; SPINDLE STOP PUSHBUTTON

> SPINDLE START PUSHBUTTON

;LEVER ENGAGED FOP SPINDLE DIRECTION

; CLUTCH ENGAGED PRESSURE SWITCH

^DECREASE SPINDLE SPEED

J INCREASE SPINDLE SPEED

^PRESSURE SWITCH ACTIVATED BY ADEQUATE LUBE PRESSURE

; LEVEL SWITCH ACTIVATED BY ADEQUATE LUBE SUPPLY

J TABLE OF OUTPUTS
;$
SPNCLU= 1000
;s
FEEDCL= 1001

SPDINC= 1002
;$
SPDDEC= 1003
;s
LUBSOL= 0004
;$
LBFAIL= 1005
;s
TFDCLU= 1020
i$
TLUBIN= 1021
;$
TLUBFL= 1022
i$
END OF SYMBOL TABLE

; SOLENOID 1 TO ENGAGE SPINDLE CLUTCH

i SOLENOID 2 TO ENGAGE FEED CLUTCH

; SOLENOID 3 TO INCREASE SPINDLE SPEED

; SOLENOID 4 TO DECREASE SPINDLE SPEED

iSOLENOID 5 TO PROVIDE SPINDLE LUBRICATION

;LUBE FAILURE LIGHT

>FEED CLUTCH TIME DELAY

i LUBRICATION INTERVAL TIME DELAY

^LUBRICATION FAILURE INDICATION DELAY

Figure 5-3 SET-143 Translated Symbol Table (Optional)

5-7

; CONTROL EQUATIONS FOLLOW.
.LOC200
.FIXS5
i$
SPNCLU=/KSTSTP*(MSTRST+1MCONT*8MCONT>*/SPNSTP*LEVENU*[SPNST+SPNCLU3
1000=/0*C l+2*3)*/A*6*C5+1000 3

; s

TFDCLU=CLUENG
1020=7

• MFN
;$
FEEDCL=TFDCLU
1001=1020

• *

SPpiNC=SPNCLU*lNCSPD*/DECSPD
1002=1000*1 1*/10

; s

SPDDEC=SPNCLU*DECSPD*/INCSPD
1003=1000*10*/! 1

J$
LUBSOL=TLUBIN
1004=1021

.MN
;$
LBFAIL=TLUBFL
1005=1022

i S

TLUBIN=LUBPRS
1021=12

iS
TLUBFL=LUBLEV*TLUB1N
1022=13*1021
.END 800

Figure 5-4 SET-143 Translated Program

5-8

IMCUNT 8

2MCUiNIT 3

CLUENG 7

DECSPD 10
FEEDCL 1001
INCSPD 1 1

LDFAIL 1005
LEVENU 6

LUBLEV 13
LUBPRS 12
LUBSOL 1004
MSTRST 1

MSTSTP Z0
SPDDEC 1003
SPDINC 1002
SPNCLU 1000
SPNST 5

SPNSTP A

TEDCLU 1020
TLUBFL 1022
TLUBIN 1021

Figure 5-5 Sorted Symbol Table (Optional)

5-9

CHAPTER 6

PAL-143

SYMBOLIC PROGRAM ASSEMBLER

The PAL-143 Symbolic Program Assembler translates

programs into binary machine code for the Industrial 14.

Industrial 14 programs can be written with the Editor and
"assembled" (translated into machine code) by PAL-143,

enabling the user to correct program errors with the Editor

and to reassemble the program with PAL-143. This

capability simplifies the debugging procedure because

sections of the source program can be moved, or new lines

can be inserted, without retyping the remainder of the

program. Figure 6-1 shows the procedure for developing

programs using PAL-143.

PAL-143 GENERAL FEATURES
Chapter 2 of this manual describes the Industrial 14

machine code instructions. Test instructions refer to

specific input, output, and internal function numbers; jump
instructions reference locations by an address number
(specifically, an absolute address for a JMP or JMS and a

relative or page address for a JFF or JFN). Consider the

following Industrial 14 program segment:

227 TN 15

230 JFN 233

231 SN1012
232 SKP
233 SF1012

234 JMP

235 437

NOTES:

1. Each instruction is assigned to a numbered location.

2. The JFN and JMP instructions refer to locations by
specific address numbers.

3. The TN, SN, and SF instructions refer to inputs or

outputs by specific number.

ASSIGN INPUTS
a OUTPUTS TO
INPUT/OUTPUT
TERMINALS

TYPE THE
INSTRUCTIONS
IN PROGRAM
FORM WITH
EDITOR

GENERATE THE
SOURCE TAPE
FOR PAL-143

ASSEMBLE THE
INDUSTRIAL 14
PROGRAM WITH
PAL-143

LOAD THE
ASSEMBLED PRO-
GRAM PAPER
TAPE INTO THE
INDUSTRIAL 14

USING ODP-143
OR THE VT14
PROGRAMMING
TERMINAL

GENERATE
PAPER TAPE FOR
DOCUMENTATION

YES

YES

READ SOURCE
TAPE BACK
INTO EDITOR

CORRECT
THE PROGRAM
ERRORS

Figure 6-1 Procedure for Developing Programs

Using PAL-143

6-1

Changing Industrial 14 programs written with numeric

addresses and references is cumbersome. For instance, in

the preceding program example, assume that a TN 1027

instruction is required following the TN 15 instruction

stored in location 227. To correct the program with

ODP-143, each instruction is moved to the next sequential

location by typing it into that location, thereby enabling

TN 1027 to be inserted at location 230. However, moving

each instruction to the next successive location does not

solve the problem.

The result of moving the instructions is as follows:

LOG 227

TN 15

TN 1027

JFN 234

SN 1012

SKP
SF 1012

JMP
437

PAL-143 recognizes LOG 227 as an origin statement and

assigns the instructions which follow to sequential

locations, beginning with location 227. Hence, TN 15 is

stored in 227; TN 1027 is stored in 230; JFN 234 is stored

in 231; etc. The need to write location numbers is

eliminated by using PAL-143.

227 TN 15

230 TN 1027

231 JFN 233

232 SN 1012

233 SKP

234 SF 1012

235 JMP

236 437

Inspection shows that by relocating the program segment,

the sense of the JFN 233 instruction has changed.

Originally the jump caused a transfer to the SF 1012

instruction; now it causes transfer to the SKP instruction.

The JFN instruction must be changed to a JFN 234 to

preserve the original sense of the program. Dangers are

involved in simply relocating programs with ODP-143.

These dangers can be avoided by using PAL-143 and

reassembling, as described in the paragraphs that follow.

Symbolic Addresses

The LOG statement alone does not eliminate problems that

arise when Industrial 14 programs are altered. However,

automatic location assignment using the LOG statement

permits symbolic addresses which do eliminate some of the

problems. Symbolic addresses are name tags or labels used

to identify memory locations. Instead of writing jump

instructions with numeric addresses, jump instructions are

written with symbols for addresses. These symbols are then

identified (defined) elsewhere in the program. The symbol

is assigned a numeric value by PAL-143 during the assembly

of the program.

The instruction JFN 234, for example, can be written as

JFN TAG. The location to be jumped to is assigned the

address label TAG, followed by a comma, and precedes the

reference instruction. Consider the following:

JFN TAG

Location Assignment

Industrial 14 programs are stored in consecutive memory

locations; therefore, the need to specify the address of each

instruction is unnecessary. The locations can be assigned by

PAL-143 using an origin statement for the sequence of

instructions. The statement is LOG NNNN where NNNN is

an absolute Industrial 14 address. This statement instructs

PAL-143 to assign the instructions which follow to

consecutive Industrial 14 locations, beginning with location

NNNN. For example:

TAG.SF 1012

The JFN instruction references the symbolic address TAG

while the statement TAG, SF 1012 defines the symbolic

address.

6-2

PAL-143 assigns an address value to each instruction of the

program using a Location Counter (LC). The LOC
statement sets the LC to a specific value; for instance, LOC
200 sets the LC to 200. PAL-143 then assigns each
successive instruction of the source program to the

locations specified by the LC. The LC is incremented for

each instruction, thereby storing the program in sequential

locations of Industrial 14 memory. Whenever a symbolic
address is encountered, (recognized because it is followed

by a comma) it is assigned the value of the LC. If the LC is

equal to 234 when the line TAG, SF 1012 is encountered in

the source program, the SF 1012 is stored in Industrial 14
memory location 234, and TAG is assigned the value of

234. The instruction JFN TAG becomes JFN 234 when
assembled by PAL-143.

NOTE
Programs in this form can be readily changed to

eliminate bugs. The program can be completely

relocated by changing the LOC statement. Parts

of the program may be inserted or deleted

without affecting address references made by
jump instructions. Upon reassembly, PAL-143
correctly assigns all symbolic addresses and any
references to them.

Symbolic addressing does not eliminate the need to

consider paging for JFF and JFN instructions. An address

error results if a PAL-143 program contains instructions

which reference symbolic addresses that are not defined

within the same Industrial 14 memory page. Only the JMP
or JMS instruction can directly cross page boundaries.

The selection of the symbol TAG is arbitrary and could be
any group of letters and numbers subject to the rules for

symbols which follow. For example, SETY10N is a valid

PAL-143 symbol because it contains 7 characters; however,

only the first six are recognized by PAL-143. Thus, if the

symbols SETY10N and SETY10FF are both used as

symbolic addresses in a PAL-143 program, a multiple

definition error would occur. PAL-143 recognizes only the

first six characters, and cannot distinguish between two
identical symbols in these first six characters. The error

results because the same symbol is defined twice in the

program. Note that the symbols SOLAON and SOLAOFF
are perfectly acceptable because they differ in the first six

characters.

Rule 1 - The first character of a symbol must be a

letter.

Rule 2 — The successive characters in the symbol can

be letters or numbers only; no special characters such

as *,+,-, /, and $ are permitted within symbols.

Rule 5 - A symbol must be defined at only one point

in a program. Symbols can be referenced as many
times as necessary.

Rule 4 - Only the first six characters of the symbol
are meaningful to PAL-143 although more characters

may be used.

Rule 5 - No spaces or tabs are allowed within the

symbol.

ASSIGNMENT STATEMENTS
PAL-143 assignment statements equate a six-character

symbol with a numeric value. Symbols used in assignment

statements are subject to the rules just given. Assigning a

value to a symbol, which is also used as a symbolic address,

is illegal in PAL-143; however, the same symbol can be used

in more than one assignment statement. The last assigned

value is used whenever a symbol has been redefined in this

manner.

The most common use of assignment statements in

PAL-143 programs is to identify input and output
assignments. It is easier to remember that "LSI is limit

switch 1" rather than "17 is limit switch 1". Since

Industrial 14 programs must refer to inputs and outputs by
the numbers which are determined by the I/O terminal

assignments (17 for instance), the following PAL-143
assignment statement is used:

LSI = 17

Instructions can then test "LSI" in place of testing "17".

The Industrial 14 program may include, usually at its

beginning, a list of such assignments to be used throughout

the program. This allows the program to be written in a

completely symbolic form. For example:

LSI = 17

LS2 = 30

SOLA= 1011

SOLB= 1012

PB1 = 10

PB2= 11

LOC 250

Y11,

SOLAN,

SOLAF,

END

TN LSI

TFLS2
JFF SOLAN
TF PB1

TN SOLB
JFN SOLAF
SN SOLA
SKP

SF SOLA

6-3

The END statement is necessary to mark the end of the

program for PAL-143. Assignment statements need only be

made at one point in the program and the symbols thus

assigned can then be used throughout the program. (This

example controls only one output.) Note that LSI = 17 is

used in place of input 17.

PAL-143 PROGRAM CONVENTIONS

PAL-143 programs are free-form; spaces and tabs can be

used to organize and format the program as desired. At

least one space (or a tab) must be used between an

instruction such as TN or SF and the reference symbol or

operand (SL1 or SOLE for instance). Tabs and spaces

cannot be used within a symbol or instruction; they can

only be used between symbolic addresses, instructions,

operands, and comments. Otherwise, these characters have

no affect on the machine code generated by PAL-143 and

are only used to format the source program. For example:

TN PB1 /PB1 IS SHUT DOWN BUTTON

SOLA, TF LSI

generates the same machine code as

SOLA,TF LSI

where the comma is needed to identify SOLA as a symbolic

address.

Comments

Program comments are lines of text included in the

PAL-143 program to clarify the function of an instruction

or a group of instructions. Comments do not affect the

machine code generated by PAL-143; these are only

reminders for later reference to the program listing.

Comments can be added within the PAL-143 program by

preceding them with a slash {/). Comments can either

conclude lines of a program, or they can be on separate

lines by themselves. PAL-143 instructions, or assignment

statements, must not be included on a line started with a

comment because all information would then be treated as

part of the comment.

The following are examples of PAL-143 comments:

/THE FOLLOWING PROGRAM CONTROLS

/SOLENOID A

LOC 200

Y1, TF LSI

Multiple Location Instructions

Industrial 14 two-location instructions (JMP, JMS, TRM)

are written in the PAL-143 source program with both parts

of the instruction on one line. These instructions require

two Industrial 14 memory locations when translated into

machine code instructions. Other two-location instructions

and some three-location instructions are introduced in

Chapter 8. The following example illustrates the

two-location translation process by PAL-143. The input to

PAL-143 appears at the left; the translated output in

machine code is at the right. The symbols 0UTPT5 and

NEXT are symbolic addresses which have been assigned the

values 1323 and 1401, respectively, by the current location

counter of PAL-143.

STAIN = 2002

LOC 200

TRM STAIN

JMS 0UTPT5

JMP NEXT

0UTPT5,TN LSI

6

NEXT.TNSOLB

200 TRM
201 2002

202 JMS
203 1323

204 JMP

205 1401

/LSI ACTIVATED WHEN SLIDE 2

/IS FULL FORWARD

Permanent Symbol Table

PAL-143 must "know" what Industrial 14 machine code to

generate for each symbol of a source program before it can

translate that program into a complete Industrial 14

machine code program which is acceptable to ODP-143.

(Numbers are the only elements of PAL-143 source

programs that require no definition; all symbols must be

defined in terms of these numbers.) Definitions can be in

the form of assignment statements (for instance, LSI =27)

and symbolic addresses (values of which are defined by the

location counter and LOC statements).

6-4

In addition to user-defined symbols, PAL-143 has a table of

permanently-defined symbols and numeric equivalents. The
permanent symbol table enables the user to write
statements such as TN 15 without previously defining the
symbol TN. This symbol and all others given in Table 6-1

are permanently defined within PAL-143. The list includes

the basic Industrial 14 instructions, introduced in Chapter

2, as well as the extended instructions introduced in

Chapter 9.

Table 6-1

PAL-143 Permanent Symbol Table Industrial 14 Instructions

Range

Symbolic Octal Meaning Argument
of

Argument

TF 4000 Test input, output or internal

function for OFF
Input, output or internal

function number

0-1777

TN 6000 Test input, output or internal

function for ON
Input, output or internal

function number

0-1777

SF 0000 Set output or internal function

OFF
Output or internal function 1000-1777

SN 2000 Set output or internal function

ON
Output or internal function 1000-1777

JFF 2000 Jump if test flag is OFF Page address 0-377

JFN 2400 Jump if test flag is ON Page address 0-377

JMP 0024 Jump unconditional Absolute address 0-7777

JMS 0124 Jump to subroutine Absolute address 0-7777

SKP 0010 Skip next location None —

JMR 0054 Jump return from subroutine None —

NOP 0000 No operation None —

CLR 0170 Clear all external outputs None —

LEM 0040 Leave external mode None —

EEM 0060 Enter external mode None —

CLRPC 0004 Clear 13-bit PC None —

RDPC 0046 Read Industrial 14 Program

Counter

None -

EOL 0130 Enable output loop None —

6-5

Table 6-1 (Cont)

PAL-143 Permanent Symbol Table Industrial 14 Instructions

Range

of

Symbolic Octal Meaning Argument Argument

DOL 0140 Disable output loop None -

EOM 0150 Enable output multiplexer None
—

DOM 0160 Disable output multiplexer None
-

CIFO 0020 Change to instruction field None -

CIF1 0030 Change to instruction field 1 None -

CDFO 0600 Change to data field None -

CDF1 0700 Change to data field 1 None -

CLRWD 0003 Clear I/O word I/O word 0-1777

SETWD 0013 Set I/O word to 7777 I/O word 0-1777

LDMEM 0022 Load into memory Absolute address 0-7777

LDWD 0023 Load I/O word with absolute

address

Absolute address, I/O word 0-1777

RDMEM 0026 Read memory to output register Absolute address 0-7777

MOVWD 0033 Move I/O word from I/O

address to I/O address

I/O word, I/O word 0-1777

RDWD 0036 Read I/O word to output

register

I/O word 0-1777

CLRBIT 0103 Clear I/O bit I/O word 0-PA*

SETBIT 0113 Set I/O bit I/O word 0-PA*

LDBIT 0123 Load I/O bit with absolute

address

Absolute address, I/O word 0-PA*

MOVBIT 0133 Move I/O bit from I/O

address to I/O address

I/O word, I/O word 0-PA*

RDBIT 0136 Read I/O bit to output register I/O word 0-1777

*PA = Assigned Partition Address

6-6

Table 6-1 (Cont)

PAL-143 Permanent Symbol Table Industrial 14 Instructions

Symbolic Octal Meaning Argument

Range

of

Argument

The following instructions are compatible with first generation PDP-14:

TXF 4000 Test input for OFF Input number 0-777

TXN 6000 Test input for ON Input number 0-777

TYF 5000 Test output for OFF Output number (9 bit) 0-777

TYN 7000 Set output for ON Output number (9 bit) 0-777

SYF 1000 Set output OFF Output number (9 bit) 0-777

SYN 3000 Set output ON Output number (9 bit) 0-777

TRM 0026 Transfer memory to output

register

Value to be transferred 0-7777

Each of these symbols can be used in PAL-143 source

programs without definition by the user. These symbols
must not be used in PAL-143 source programs as symbolic
addresses or in assignment statements.

The following are pseudo-instructions.

Symbolic Meaning

END End of source program

EOT End of tape in a segmented program

FLD 1 Memory Field 1

LOG Set location counter

PAGEJ Page jump to start of next page

PRE Preset timers and counter

CNTR - Counter

SEC - Timer with 1 sec increments

TSEC - Timer with .1 sec increments

User Symbol Table

The PAL-143 symbol table can accommodate 792 symbols.

Both symbolic addresses and assigned symbol values are

entered in the user symbol table. Thus, the number of

symbols defined as addresses, added to the number of

symbols with assigned values, may not exceed 792. When
this symbol capacity is exceeded, the following message is

typed

:

*SMBOFLW

Recovery requires the user to segment his program and to

assemble it in parts.

Special Characters and Operators

Several characters of the Teletype keyboard have special

meaning to PAL-143. An example is the slash (/) which
denotes the start of a comment. Another example is the

carriage return, which terminates a statement line. Table

6-2 contains all legal characters in the operation portion of

a PAL-143 statement (namely, the statement exclusive of

any comment field). If any other character appears in the

operation portion of a PAL-143 statement, the "I" error

(illegal character) is generated.

6-7

Table 6-2

PAL-143 Special Characters

Character

+ (plus)

(minus)

I (logical OR)

> (shift)

(space)

(tab)

Use in PAL-143

Combines symbols or values by

2's complement addition

Combines symbols or values by

2's complement subtraction

Combines symbols or values by a

logical OR

Shifts a value one octal digit left

Separates instructions from

operands and otherwise formats

the source program

Separates instructions from

operands and otherwise formats

the source program

(carriage return) Terminates a statement

/ (slash) Terminates the operation part of

a statement and starts a

comment

(comma) Identifies symbols used as

symbolic addresses

(equals) Assigns values to symbols

directly

(period) When encountered in the

program, is assigned a value

equal to the present value of the

PAL-143 location counter

The following characters are ignored in the PAL-143 source

program, but they do not generate errors:

Line feed

Form feed

Rubout

Leader/trailer (null)

Addition and Subtraction — The + and - characters can be

used with symbols and octal numbers - usually for

addressing purposes. The statement JMP START +2 in the

following program segment causes an unconditional jump

to the second location after the location labeled START

(location 102 and the TN PB3 instruction).

LOC 100

START, TN PB 1

JFN OUT
TNPB3

JMP START -H2

The minus sign can also be used; for example, JFF

SOLAN-2 causes a JFF to the second location before the

location labeled SOLAN. The location counter of PAL-143

assigns a value to each label; PAL-143 then computes the

values of all symbolic addresses which contain operators

and symbols.

Logical OR - The logical OR character (!) can be used in

PAL-143 programs to combine values of symbols or octal

numbers. The result is the bit-by-bit inclusive OR of the

two values. Table 6-3 lists the resultant value when any two

octal digits are combined with the I character.

Table 6-3

Inclusive OR For Octal Numbers

Octal

Digit

Resultant Value

1 2 3 4 5 6 7

1 1 1 3 3 5 5 7 7

2 2 3 2 3 6 7 6 7

3 3 3 3 3 7 7 7 7

4 4 5 6 7 4 5 6 7

5 5 5 7 7 5 5 7 7

6 6 7 6 7 6 7 6 7

7 7 7 7 7 7 7 7 7

6-8

When numbers containing two or more digits are combined,

each digit in the result is obtained by combining the

corresponding digits in the original numbers using Table

6-3.

1234:2460=3674

The operator can be used in PAL-143 in the following

manner:

RDMEM 15 : 27 translates to RDMEM 0037

The values of symbols can also be combined with the colon

(:) character. For example:

0N = 1

SOLA= 1500

RDMEM SOLA : ON translates to RDMEM 1501

Period - The period (.) is a special symbolic address used in

PAL-143. Its value changes for each instruction and is

always equal to the present value of the PAL-143 location

counter. Jump instruction operands can contain the period

(often read "dot") and the -i-, -, and : operators. For

example, JFF .H2 (read, JFF dot plus 12) specifies JFF to

the twelfth octal (tenth decimal) location after the JFF
instruction. The period is most useful with small (less than

10) octal numbers; large jumps are best performed in

PAL-143 with true symbolic addresses.

JFF .-H is a variation of this instruction, which causes the

next instruction to be executed for both states of the TEST
flag. Because the TEST flag is cleared in both instances, the

instruction JFF .-i-l can be used to unconditionally clear

the TEST flag.

The period can also be used with two-location instructions

such as JMP or JMS. However, the value of the period is the

value of the location counter when the second half of the

instruction is assigned to its location; JMP .-H2, therefore,

causes a transfer to the third location which follows the

JMP. Assuming that no two-location instruction follows the

JMP, the jump is to the second instruction in the sequence.

For example:

LOC 200 translates to 203 JMP
JMP .+2 201 203 (201 -1- 2)

TN 1 202 TN 1

TN2 203 TN 2

Pseudo-Instructions

Pseudo-instructions are included in the PAL-143 program

listing, stored on the source paper tape, to direct the

assembly process. Pseudo-instructions are not translated

into Industrial 14 machine code. However, they do affect

translation of other instructions into machine code.

PAL-143 has six pseudo-instructions, including the LOC
and END statements, mentioned earlier in this chapter.

END - The END pseudo-instruction marks the end of a

source program and directs PAL-143 to terminate the

current assembly pass. The complete assembly process

requires either two or three passes (depending on the

assignment of I/O devices). During the assembly process,

the source tape is read by PAL-143 and translated into

Industrial 14 machine code. The END statement terminates

the current pass and causes PAL-143 to halt while the

source tape is reloaded to begin the next assembly pass.

Because the END statement halts the reading of a paper

tape during assembly, any information present on the

source tape after the END statement is not read by

PAL-143. However, the comments are a permanent part of

the source program and can be read with the Editor. The

assembly process is faster if lengthy comments and program

documentation are written after the END statement.

EOT — The pseudo-instruction EOT (end of tape) enables a

long PAL-143 program to be segmented and recorded on

more than one source paper tape. The EOT is typed as the

last statement on all source tapes except the last tape; the

last tape must be concluded with the END
pseudo-instruction. At each instance that the EOT
statement is read during an assembly pass, PAL-143 stops

and types EOT. The next source tape is then loaded and

assembly continues. This procedure is repeated for each

source tape in the complete program.

LOC - The LOC pseudo-instruction directs PAL-143 to set

its location counter to the operand value of the LOC. As

many LOC statements as desired can be used; however, if

no LOC statement is present, PAL-143 assumes a LOC
0000 statement at the beginning of the program.

The LOC statement can advance or reset the location

counter to any desired value. If the LOC statement returns

6-9

the location counter to an earlier value, any previously

assembled instruction at that location is lost. For example.

LOG 50

TN LSI

TN LS2

PAGEJ — The PAGEJ (page jump) pseudo-instruction

causes PAL-143 to include in the assembled program

whatever instruction is necessary to transfer control to the

first location of the next Industrial 14 memory page. The

actual code generated depends on the current value of the

location counter.

LOG 50

SN SOLA

Current Location

First location in a memory page

Last location in a memory page

Any other memory location

Instruction

Generated

none

NOP
JMP .: 377+1

results in the assembly of two instructions for the same

location. The first instruction {TN LSI) is lost from the

assembly; Industrial 14 location 50 will contain the

assembled instruction for SN SOLA.

If the next instruction is not assembled as the first or last

instruction in the page, PAL-143 supplies a JMP

instruction. The operand of the JMP instruction is 1 plus

the OR of the current location counter value with 377. The

JMP instruction always jumps to the first location of the

next memory page.

The LOG statement can have an expression or a symbolic

operand. All terms of the expression must be previously

defined to enable PAL-143 to set the location counter to

the proper value. For example:

The PAGEJ pseudo-instruction also acts as a LOG .: 377-H

in instances where a JMP instruction was assembled. Thus,

PAGEJ supplies the necessary Industrial 14 instruction to

transfer control to the beginning of the next memory page

and also sets the PAL-143 location counter to that location.

SOLAF.SFSOLA

PRE - (Preset) pseudo-instruction causes PAL-143 to

preset a timer or counter (up or up/down) at a particular

I/O address to an octal preset value.

/LEAVE 8 LOCATIONS BEFORE STARTING
/NEXT PROGRAM SEGMENT

PRE (I/O NUMBER) (FUNCTION TYPE)

(PRESET VALUE)

LOCSOLAF-i-10 Where I/O Number =

1400-1776 (even number only)

The value of SOLAF is assigned at assembly time and the

LOG statement sets the location counter to the value of

SOLAF plus 10 (octal). Thus, the value of a LOG statement

may be determined at the time of assembly.

Function Type =

CNTR — up or up/down counter

SEC — Timer using 1 sec increment.

TSEC — Timer using .1 sec increment.

Preset value, in octal =

0-1777.

The pseudo-instruction LOC.:377-i-1 causes PAL-143 to

advance the location counter to the first location of the

next Industrial 14 memory page. The statement is evaluated

by PAL-143 as: "The current value of the location counter

(.) OR'ed with 377 (octal) plus 1." If the location counter

is 1312, for example, the result of the OR is 1377 and the

LOG statement sets the location counter to 1400

(13778 -Hg).

The PRE instruction does not generate machine language

but is punched on the binary output tape to preset the

internal function when the tape is used to load the

Industrial 14 memory.

FLD 1 - (Field 1) pseudo-instruction causes PAL-143 to

store the Industrial 14 instructions that follow in Field 1,

starting with location 0000.

6-10

PAL-143 INTERROGATION
The input of PAL-143 consists of an ASCII source tape of

the Industrial 14 instructions generated from the Editor.

The input device is requested by the user in response to the

PAL-143 message:

Location field - the four-digit octal address of the

Industrial 14 location which

contains the assembled instruction.

Only assembled instructions have

entries in the field.

*SRC - The Industrial 14 program should be read-in

with what device? The output of PAL-143 consists of

an assembly listing with error messages, a symbol

table, and a punched binary tape. The outputs are

requested by the user in response to two PAL-143

messages:

*BIN - Is binary output required; if so, on

what device?

*LST — Is an assembly listing required; if so, on
what device?

The responses to the three messages are:

Code field -

Source statement

contains the numeric value of the

code for assembled instructions,

assignment statements, or the LOC
pseudo-instruction.

contains the line of user program as

read from the source tape. If the

source statement exceeds 54

characters, one output line is too

short and PAL-143 will break the

statement into two or more output

lines, preceding the second and

later lines with an asterisk.

L — The input or output is requested and directed to

the low-speed device.

H — The input or output is requested and directed to

the high-speed paper tape punch.

RETURN - The output is not requested.

Binary Output

The PAL-143 binary output is a paper tape. This can be

used as input to ODP-143 where the program can be

debugged. A punched code at the end of the paper tape

(checksum) is used by ODP-143 when the tape is read Into

memory to verify reading accuracy.

At the end of the program listing PAL-143 types:

ERR LINES— denotes the number of lines (in

decimal) in the source program

which contain at least one error.

MEM BRK - specifies the actual number of

memory locations (in octal)

occupied by the assembled

program. ^This is not the largest

address; it is a count of the

locations used.)

Assembly Listing

The assembly listing contains the original source

statements, the numeric value of the generated Industrial

14 machine code, and error codes. PAL-143 formats the

assembly listing into pages of 66 lines (approximately 1

1

in.) and types the page number (in octal) at the top of each

output page.

The assembly listing contains four fields:

Error Field — contains letters which identify all

assembly errors detected in the

lines of the source program.

Symbol Table

The PAL-143 symbol table is an alphanumeric listing of all

user-defined symbols in the source program (namely, all

symbolic addresses and assigned values). Any undefined

symbol is typed with the letter U in the column of values.

Symbols which are defined by equating them with

undefined symbols are assigned the value -i-O. Thus, if the

statement PB1=PB0 + 1 is used and no statement defines

PBO, the symbol table contains PBO-U and PB1 -i-O. The

values of directly assigned symbols are typed as five-digit

numbers (with leading zeros) to distinguish them from

symbolic address values which are typed as four-digit

numbers.

6-11

Error Messages

Error messages are single letters typed as the first entry of

the line containing the source statement in error. If more

than one error is detected, a list of all error codes is typed,

in alphabetical order. A maximum of six error codes is

typed for each line. If the same error occurs at more than

one place in the source statement, the error code is typed

only once.

PAL-143 stops processing the source statement when it

encounters an S (syntax) error, (Table 6-4). Thus, the

source statement can contain undetected errors if they

occur after the cause of the syntax error. These errors can

be detected after the cause of the syntax error is removed

and the statement is reassembled.

Table 6-4 lists all errors recognized by PAL-143. The table

includes examples of source statements which cause the

particular error and the action taken by PAL-143 when the

error occurs.

Table 6-4

Errors Recognized by PAL-143

Error Code Meaning Action Taken

A Address Error — the page address of a JFF The machine code is generated for JFF or

or JFN instruction is not on the same page JFN 0; therefore, the code for the example

as the instruction. is JFN 0.

Example:

At location 376

A LEAVE, JFN.-I-3

D Double Defined Symbol Error — an instruction PAL-143 uses the first definition. The JMP A

references a symbol which has been defined in the example would jump to the TN SOLA

more than once in the source program. instruction.

Example:

A,

A,

TN SOLA
JFN OUT
JMP A

Illegal Character Error - the statement

contains a character which is not acceptable

to PAL-143.

Example:

I A, JMP A#BC

Label or Assignment Error — the first

character of a symbol used in assignments or

labels is not a letter (A-Z) or the left-hand

member of an assignment statement is

numeric.

PAL-143 Ignores the illegal character. Thus the

example is interpreted:

A, JMP ABC

The label or assignment is ignored by PAL-143.

Example:

L 50= LSI

L 47, JMP RESTART

6-12

Error Code

IVI

Table 6-4 (Cont)

Errors Recognized by PAL-143

Meaning

Multiple Definition Error - a label is defined

more than once In the source program.

Example:

M A,

IVI A,

TN SOLB
JFN SOLBN

Action Taken

Operation Error — the source program contains

an illegal operation e.g., two Instructions in

the same statement.

Example:

START, JMP TEST JMP

Phase Error - A label has a different Pass 1

and Pass 2 value. This error is normally caused

by a symbolic LOG statement in which the

operand is defined after it Is used.

Example:

P LOG GDE
P XYZ, JMP.+2

GDE=50

Redefinition Error — the source program

attempts to redefine (using an assignment

statement) a PAL-143 permanent symbol

(see Table 6-1) or a previously defined

label.

Examples:

R

ABC,

LOC50
JMP=400

TN LSI

ABG=70

The first definition is used and all others are

Ignored by PAL-143. In the examples, A is

equal to the location which contains TN SOLB.

PAL-143 ignores the operation and all

subsequent information. In the example,

the machine code Is generated as If the

statement were:

START, JMP TEST

The current value of the location counter Is

used to define the label for each pass. Since

GDE is undefined at the start of assembly,

LOG Is assumed; thus, GDE=0 and XYZ=0.
During the first pass, however, GDE is

given the value 50 and on the second pass,

LOG GDE becomes LOG 50 and XYZ=50,
thereby causing the phase errors.

The symbols retain the original values and

the assignment statement is ignored.

6-13

Error Code

Table 6-4 (Cont)

Errors Recognized by PAL-143

Meaning

Syntax Error - the source statement is

not meaningful to the assembler.

Example:

S ABC, JMP.+

S LS1 + LS2,

S LSI =

S SOLA , TN+=3

S JFN SOLAN,

Truncatior) Error - a single value exceeds 7777

octal, or the maximum argument value for

the instruction (Table 6-1) if maximum is less

than 7777.

Examples:

C = 3

A=40543-HC

ABC=375-t-100

TN ABC

Undefined Symbol Error - an instruction

references an undefined symbol.

Example:

XYZ = 50

U JMP XZZ+3

where XZZ is not defined

Illegal Value Error - a value given in the

source program cannot be evaluated by

PAL-143.

Example:

V ABC=8402-i-5

LV 4LS, TN LS4

Action Taken

The statement is evaluated from left-to-right,

up to the point where the error occurred.

Thus:

ABC, JMP.-^

assigns ABC the current value of the location

counter and generates the machine code for

JMP.; The value of LSI plus LS2 is stored in

the next memory location (without any

symbolic address). The statement LS1=does

not generate any machine code. The location

with label SOLA contains the machine code

for TN 0. The JFN SOLAN, is assembled as

JFN SOLAN.

In assigned values, the excess right-hand digits

are ignored. Thus, the result of A=40543 -•- C

is A=4054 -H C. If the truncated value is used

as the operand of an instruction, PAL-143

substitutes the value when the value is too

large. Thus the value of:

ABC = 375 +100

TN ABC

is the following:

ABC=475
TNO

The undefined portion of the statement is set

equal to 0. Thus:

JMP XZZ -I- 3 becomes

JMP -I- 3 or JMP 3

The illegal digit is ignored, and the remainder of

the expression is evaluated. Thus:

ABC = 402+5 = 407

However, in the second case, the whole label

is ignored.

6-14

Error Listing

The assembly listing typed during Pass 2 of PAL-143

includes error messages for all errored lines. However,

PAL-143 also types a partial error listing of all lines

containing errors detected during Pass 1. In general, this

listing does not report all errors, because some errors are

detected only during Pass 2. Furthermore, the listing may
report undefined symbols which are properly defined

during Pass 2. For example,

ABC=CDE
CDE=27

results in ABC being undefined at the end of Pass 1. ABC is

therefore included in the table of undefined symbols (with

a value of +0). However, since CDE is defined later in Pass

1, ABC will be defined equal to 27 on Pass 2 of the

assembly and an error is not generated for Pass 2.

Although the Pass 1 error listing may be incomplete, it does

enable the user to detect errors at an early stage of the

assembly and to correct them without wasting time on Pass

2 of the assembly process. Although Pass 1 errors are

generated, the user can proceed to Pass 2 without

correcting the errors and thereby generate a complete error

listing.

If the assembly listing is to be punched on the high-speed

punch, all error lines detected on Pass 2 are typed on the

Teletype unit, in addition to being punched as part of the

complete listing on the high-speed punch.

The error table output is controlled by two characters

typed during the query sequence which is described later. If

N is typed, the separate error tables are not typed. If the

assembly listing is to be output on the high-speed punch,

typing E causes Pass 1 errors to be recorded there also.

Sample Output

A sample assembly output including the assembly listing

and symbol follows. Several errors are included

intentionally to illustrate the error codes in the assembly

listing and symbol table.

6-15

/THE FOLLOWING PROGRAM SOLVES THE EQUATION
/S0LA=(LS1*PB2*/PB3+S0LA*/LS2)
/

*/PB5

/

SOLA=1005
LS1=41

5

LS2=16
PB2=7
PB3=10
PB5=12

LOC 200
SOLA* TF LSI

>• SOURCE
PROGRAM

TF PB2
TN P*B3
JFF CK5
TF SOLA
TN LS2
JFF SOLAN

5CHK, TN
J FN

PB5
SOLAF

SOLAN, SN
SKP

SOLA /TURN SOLA ON

30LAF*
END

SF SOLA TURN SOLA OFF
-/

*BIN-L
*LST-L
*SRC-L

COMMAND STRING

P 0200 4415 SOLA* TF LSI
I 0208 6010 TN F*B3
LV 0207 6012 5CHK* TN PBS
ERF LINES- 0003 MEM BRK-0014

UNDEFINED SYMBOLS

CK5 -U
OFF -U
TURN -U

J
PASS 1

ERRORS

PASS 1

SYMBOL TABLE

*PAS

6-16

PAGE- 0001 - PAL- 1 43/8 V0

/THE FOLLOWING PROGRAM SOLVES THE EQUATION
/S0LA=<LS1*PB8*/PB3+S0LA*/LS2>*/PB5
/

/

SOLA=1005
0415 LS1=415
0016 LS2=16
0007 PB2=7
0010 PB3=10
0012 PB5=12

0S00 LOG 800
0200 4415 SOLA* TF LSI
0201 4007 TF PB2

I 0202 6010 TN P*B3
u 0203 2000 JFF CK5

0204 4800 TF SOLA
0205 6016 TN LS2
0206 821 1 JFF SOLAN

LV 0207 6012 5CHK> TN PBS
0210 2613 JFN SOLAF
0211 3200 SOLAN> SN SOLA /TURN SOLA ON
0212 0010 SKP

U 0213
>

1400 SOLAF*
END

SF SOLA TURN SOLA OFF

\
ERROR CODES

> PASS 2

LISTING

ERR LINES-0005 MEM BRK-0014

SYMBOL TABLE

CK5 -u
LSI -00415
LS2 -00016
OFF -u
PB8 -00007
PB3 -00010
PBS -00012
SOLA - 0200
SOLAF - 0813
SOLAN - 0811
TURN -u

PASS 2

SYMBOL TABLE
(ADDRESSES ARE 4-DIGIT NUMBERS;
ASSIGNED VALUES ARE 5-DIGIT NUMBERS)

*PAS
• 8BS0

PAS

Spurious characters are typed
while binary is punched.

Pressing CONT will restart PAL-143/8,

6-17

CHAPTER 7

ODP-143

ONLINE DEBUGGING PROGRAM

ODP-143 is a computer-based debugging program for the

Industrial 14 system. It is used primarily to assist the

Industrial 14 user in debugging programs compiled by

BOOL-143 or assembled by PAL-143.

MODES OF OPERATfON
Two basic modes of ODP-143 operation exist: Program

and Run. Program mode is used to manipulate and modify
Industrial 14 programs. In this mode. Industrial 14

programs can be loaded, verified, listed, altered, and

punched out on paper tape. The Run mode is used for

interacting with the Industrial 14 program as it is

controlling the equipment. In this mode, inputs and

outputs can be disabled and forced ON or OFF to check

field wiring and equipment operation. Interrogation of

input, output and internal functions can be achieved in

both modes.

CONVENTIONS
The following conventions are used to describe the dialogue

between the user and ODP-143.

a. All characters typed by ODP-143 are identified

in this manual by an underline.

Examples:

NOP Typed by ODP-143
TNI Typed by user

b. The nonprinting character RETURN is noted in

this manual by a curved arrow (^). No
character appears on the teleprinter when this

character is typed.

Example:

TNI^ User concluded typing with a

carriage return.

The nonprinting character LINE FEED is noted

in this manual by a straight arrow pointing

downward (i).

Example:

TNI i- User concludes typing with a

line feed.

ODP-143 COMMAND DESCRIPTION
ODP-143 has many commands to control program

debugging. Some commands are recognized only in Program

mode; others are recognized only in Run mode; still others

are recognized in both modes. If the user types a command
that is not recognized in the present mode of operation,

ODP-143 types the error message M? (mode error). The
command that caused the error is then ignored and the user

may either change modes or type a new command.

All commands in ODP-143 are terminated by a carriage

return. When the carriage return is typed, ODP-143 acts on
the command. Any spaces typed by the user are ignored.

Three types of commands exist in ODP-143. If a command
is not typed in its proper form, the error message S?

(syntax error) is typed. The three ODP-143 command type
forms are:

a. One or two letters that stand alone.

b. One or two letters followed by a single number.

c. One or two letters, followed by two numbers,

separated by a minus sign {-]. The first number

must be less than the second number.

7-1

Any command given in form c. can also be typed in form b.

Specific examples of these command forms are covered in

the following pages. It is important that the reader

understand the three forms, and that a command must be

typed in the form expected by ODP-143.

Commands in this manual are presented as specific

examples without presenting the general form. Commands

that have limits (for instance, form c.) can be typed in form

b. if only one entity is affected by the command.

For illustration purposes, the user can substitute any

Industrial 14 program address. Industrial 14 input or

output number, or other parameter for those given in this

manual.

SWITCH REGISTER 5

To halt any printing (for a List or Interrogate command)

set Switch Register 5, on the front panel of the computer,

to 1 . To issue further commands, set SR 5 back to to

return to Program or Run mode. The following example

demonstrates the use of this command.

#LS 200-250

0200 TN Oil

0201 JFF 207

0202 TN 001

0203 TN 002

0204 JFN 207

0205 SN 1001

0206 SKP

0207 SF 1001

0210 JMS

#

List symbolically the contents of

locations 200 through 250

After location 210 is listed

symbolically, the user sets Switch

Register 5 = 1 on the computer

console to omit the printing of

locations 021 1 through 0230.

He then sets SR5 = and ODP-143

returns to Program Mode - Ready

to accept further commands

RUBOUT KEY
If the user types a command incorrectly or wishes to have

ODP-143 disregard a command for any reason, he can strike

the Teletype RUBOUT key, provided that he has not

already typed a carriage return to terminate the command.

ODP-143 records the RUBOUT as the character ?

#ZN?_(Rubout) The user intended to type ZM

#ZM and therefore strikes the
"
done RUBOUT key at this point.

ODP-143 ignores the

command and types ?, the

carriage return, and a number

sign to signal readiness to

accept a further command.

The user then types ZM,

followed by a carriage return.

NOTE
The RUBOUT key can only be used to ignore

commands that have not been acted on by

ODP-143 (specifically, those which have not

been followed by a carriage return).

PROGRAM COMMANDS
The following set of ODP-143 commands enables the user

to:

a. Specify interface used

b. Zero Industrial 14 memory

c. Read paper tape programs

d. Change memory field

e. Change these programs

f . List these changed programs

g. Interrogate input, output, and internal

functions states

h. Start Industrial 14 execution ectuion

i. Punch and verify new paper tape records of the

changed program.

Except for the Interrogation commands, these commands

are always used in the Program mode.

7-2

Because Industrial 14 programs can be readily changed with
ODP-143, the user must maintain an accurate record of the
current state of his program. This record may be in the
form of ODP-143 generated listings; however, it is strongly

recommended that the user maintain a correct, current
version of this program in its original "source" form
(BOOL-143 or PAL-143 input). If major program changes
are required at a later date, the user will need a correct and
debugged version of his original program, in the format of
the BOOL-143 compiler, or the PAL-143 assembler, so that
he can make changes with the Editor. A correct, current
program listing and paper tape record of each Industrial 14
program in BOOL-143 or PAL-143 source form is essential

if changes are to be made.

Interface Commands
Installation of the Industrial 14 and the interface between
the external computer and the Industrial 14 must be
completed before using ODP-143. Upon start-up, ODP-143
will assume that an SO (Serial One) command has been
issued and that it is communicating with the Industrial 14
via serial line interface through the utility port (output
register 1). If ODP-143 is to use the parallel interface or the
serial line interface via the monitoring port (output register

6) the user should enter the Interface Command PA
(Parallel) or SS (Serial Six) respectively. The utility port
and the monitoring port are discussed in Chapter 9.

#SS)
#

Specifies that the

ODP-143 communicate

with the Industrial 14

through the serial line

interface via the

monitoring port
(output register 6).

If ODP-143 attempts to communicate with the Industrial

14 via a non-existent interface, a "14 HUNG" or "14
STOPPED" message will be printed on the Teletype.

Zero Memory Command
To zero all locations in Industrial 14 memory, type ZM
(zero memory) followed by a carriage return. ODP-143 will

zero all locations in the Industrial 14 4K or 8K memory.
Before reading a program into the Industrial 14, a ZM
command should be issued to avoid adding any irrelevant

instructions to the program.

#ZM ^
DONE

The user types ZM,
followed by a carriage

return. ODP-143 zeroes

all locations in memory
and types DONE,

followed by a carriage

return and a number

sign (#) when it is fin-

ished.

Read Commands

Low-Speed Reader - The user types R, followed by a
carriage return, to direct ODP-143 to read a paper tape
from the low-speed reader unit of the Teletype console.
The paper tape must be in the binary form obtained from
the BOOL-143 compiler, the PAL-143 assembler or ODP-
143.

The procedure for reading paper tapes with the low-speed
reader is as follows:

1. Type R, followed by the RETURN key

2. Place paper tape in the Teletype's low-speed

reader. The leader section of the tape must be
positioned over the reading head

3. Switch the reader to START

4. The tape is read by ODP-1 43

5. When the tape stops, switch the reader to STOP

6. Remove the paper tape from the reader

7. Press the CONT switch on the computer con-

sole

#R^
OK

The user types R, fol-

lowed by a carriage re-

turn, then places a bin-

ary program tape in the

low-speed reader and

switches the reader to

START. After the tape

is read, ODP-143 prints

OK. The user switches

the reader to OFF, re-

moves the tape and de-

presses the PDP-8 or

PDP-11 console switch

marked CONT. ODP-
143 then types the

number sign (#) to

signal readiness to

accept further com-

mands.

7-3

High-Speed Reader - The RH command is used to read

paper tapes with the high-speed reader, provided that the

PDP-8 or PDP-1 1 computer is equipped with this device.

The binary paper tape (output from ODP-143, BOOL-143

or PAL-143) is first placed in the reader unit; the user then

types RH, followed by a carriage return. ODP-143 reads the

paper tape record into memory and types the period at the

left margin to signal readiness for a new command. (The

user need not press the CONT switch of the computer as in

the R command).

#RH
^

OK
#

After placing the paper

tape in the high-speed

reader, the user types

RH, followed by a car-

riage return. The tape is

read and ODP-143

prints OK, carriage re-

turn, and then a

number sign when it is

ready for a new com-

mand.

The leader section of the paper tape must be positioned

over the reader head before the RH command is typed.

ODP-143 types the error message "Checksum Error" when

a checksum error occurs while reading a paper tape with the

R or RH command. This error message indicates that the

tape was incorrectly read and should be reread. If the same

tape generates this error consistently, the paper tape is bad

and should be repunched from BOOL-143 or PAL-143.

Change Memory Field

An FO or F1 is typed previous to an Open or List command

to enable the user to change or to list contents of locations

in memory field or 1, respectively. Upon startup,

ODP-143 assumes access to memory field 0.

#F1^
#

Open Location Commands

User can now change or

list contents of loca-

tions in memory field

by typing the appro-

priate command.

that location to be typed symbolically (with its instruction

mnemonic). The user can then alter the content of that

location by typing a legal Industrial 14 instruction, next to

the content typed by ODP-143, before terminating the line

with a carriage return. If it is not necessary to change the

content of the location, the user simply types a carriage

return after the instruction typed by ODP-143.

#10:NOPTN7J
#

The user changes the

content of location 10

from NOP to TN7:

modification is termina-

ted by a carriage return

and ODP-143 waits for

a new command.

Alternatively, a line feed can be used to terminate a line

that is typed by ODP-143 and which may or may not have

been modified. This causes the next sequential location to

be automatically opened for modification. If a line which

was opened symbolically is closed with a line feed, the next

location is also opened symbolically. This feature can be

used to scan a series of Industrial 14 instructions by

continually typing line feed.

#10:TN 007 \

0011:NOP TN10 ^
#

Open a Location Symbolically - A colon (:) typed

following a legal Industrial 14 address causes the content of

The user opens location

10 but does not modify

the content. Termina-

tion by a line feed

causes the next sequen-

tial location to be

opened for modifica-

tion. The user termina-

tes this second line with

a carriage return and

ODP-143 responds by

typing a number sign to

request a new com-

mand.

The following example shows the manner in which an

Industrial 14 program could be completely typed. Each line

is terminated by the line feed key to automatically open

the next sequential location. If a line is terminated by a

carriage return, the line feed can be typed at any time to

open the next location, as illustrated.

7-4

#60:NOPTN2 }

0061:NOP JFF65;

0062:NOP TN3I
0063:NOP TF10;

0064:NOP JFN67i

0065:NOP SN1010I

0066:NOP SKP|
0067 : NOP SF 1010 ^

The user types a car-

riage return after modi-

fying location 60;

ODP-143 responds witli

a number sign. Tlie user

really wants to enter a

group of instructions;

he types a line feed and

the next location (61)

is opened. The user

continues to type pro-

gram instructions, ter-

minating each line with

a line feed.

Open a Location Numerically - A slash (/) following a legal

Industrial 14 address causes the content of that location to

be typed numerically. The user can alter the content, close

the location unaltered, or close the location (altered or

unaltered), and open the next sequential location. This

command can also be used with the colon (:) to open
locations in both symbolic and numeric form.

At location 65, the user

reverts to opening loca-

tions numerically. Line

71 is terminated by a

carriage return.

Open I/O Status Word

A right hand caret (>) following a legal Industrial 14 I/O

address causes ODP-143 to print the type of preset internal

function and its I/O status word. This command is normally

used to examine or alter timer and counter presets and

counts. Opening a timer and counter even address I/O

status word reveals the current time or count, in decimal.

Opening a timer and counter odd address I/O status word
reveals the timer or counter preset.

After opening the I/O status word, the user can alter the

type of internal function (CNTR to TSEC) and/or preset or

count, close the location (altered or unaltered), or open the

next sequential location.

#65/30101

0066/0010 ;

0067/2010 ^

#

The user opens three

sequential locations,

numerically, by placing

a line feed after each

line except the last. No

modifications are per-

formed in this example

although the user does

have this option.

The following example illustrates both the symbolic and

numeric opening of registers. The same register can be

opened in both forms on the same line. No modifications

are performed in the example although they could be made
at any time.

Example 1

To examine preset of Timer 1601 , type:

#1601 > TSEC 0600 Open Timer 1601 odd

status word. ODP-143

prints that the internal

function is a 1/10

second timer (TSEC)

and that its preset is 60

seconds.

Example 2
To examine current count and preset of Counter 1740,

type:

#60/60021

0061/2065 1

0062/6003 ;

0063/5010 TF1 01 0;

0064:JFN070 ;

0065:SN 101 0/3010 ;

0066/1110;

0067/2010;

0070/2010 ;

0071/0010 ^
#

The user opens location

63, symbolically, after

it had been opened

numerically, by simply

typing the colon (:). By

following the line with

a line feed, the next

location is opened in

the same form; thus,

locations 64 and 65 are

opened symbolically.

#1 740 > CNTR 0022;

1741 > CNTR 0040

Open up Counter 1740

even I/O status word.

ODP-143 prints that

the internal function is

a counter and that its

current count = 22. By

typing a line feed,

ODP-143 prints again

that the internal func-

tion is a CNTR and that

its preset = 40.

7-5

Example 3

To alter a Counter 1660 with a preset of 20 to a timer with

a preset of 40 seconds, type:

#1 660 > CNTR0011 SEC

1661 >CNTR 0020 SEC 40

Open Counter 1660

status word. ODP-143

prints "CNTR" and the

current count "0011".

The user types SEC,

changing the counter to

a timer and sets the

current time to zero.

After pressing the line

feed key, ODP-143

prints "CNTR" and the

counter preset "0020".

The user then types

SEC and timer 1660's

preset (40 seconds).

Further discussion concerning I/O status words is presented

in Chapter 9.

0216:1000

0217:JFF227

0220:JMS

0221:1012

0222:JFF227

0223:TN1001

0224:JFF227

0225 :SN 1005

0226:SKP

0227 :SF 1005

0230:JFF234

The user can modify the function of the LS command to

list only certain program instructions, or he can list all

program instructions within the limits by not exercising the

option. The user controls the locations listed by changing

the contents of two special registers, W (word) and M
(mask). When locations W and M are modified, the LS

command types only certain locations within the limits

specified, thereby searching for particular instructions.

Table 7-1 lists the LS command useage.

List Commands

List Symbolically — Once a program is loaded into

memory, the LS command is used to list the program

symbolically. The program is listed with instruction

mnemonics for all locations within the limits specified by

the LS command. The user specifies the limits of the listing

by following the LS with two numbers.

NOTE
The carriage return ^ must be typed after the

LS command and after all other commands

described in this chapter.

Table 7-1

Use of the LS Command

#LS200-230^
0200:TN011

0201:JFF207

0202:TN001

0203:tN002

0204:JFF207

0205:SN1001

0206:SKP

0207 :SF 1001

0210:JFF215

0211:NOP

0212:NOP

0213:NOP

0214:NOP

0215.JMS

The user requests that

ODP-143 list the loca-

tions from 200 to 230,

inclusive. If the user has

not altered the content

of M and W, all loca-

tions within these limits

are typed.

The user lists the com-

plete set of instructions

by not altering the

initial values of M and

W (specifically

M = 0000 and W=NOP).

Change Change

To List: Mto: Wto:

All SF instructions 7000 SF or 1000

All SN instructions 7000 SN or 3000

All JMP instructions 7777 JMP or 0024

All JMS instructions 7777 JMS or 0124

All JMR instructions 7777 JMR or 0056

All JFF or JFN instructions 7000 JFF or 2000

All JFF instructions 7400 JFF or 2000

All JFN instructions 7400 JFN or 2400

All TN or TF instructions 4000 TF or 4000

All TF instructions 6000 TF or 4000

All TN instructions 6000 TN or 6000

Any particular instruction 7777 The instruction

All locations within limits 0000 NOP or 0000

A particular I/O number 1777 The I/O number

The user alters the locations M and W In the same manner

that Industrial 14 program locations are altered. The colon

or slash is used to open the location; after the location is

changed, it is closed with a carriage return.

7-6

8000^#M/0000

#
#W:NOPSF;i

#

The mask is changed to

7000.

The word is changed to

SF.

The following examples list different instructions within

the same limits by changing the M and W locations.

#M/0000 7000
;)

m-.SF OOP SN^
#LS200-267^
0205:SN1001

0225 :SN 1005

0244:SN1006

0261 :SN 1007

#
#M/7000 7777 ^
#W:SN000 JMP j
#LS200-267^
0267 :JMP

#
#M/7777

#W:JMPJFF264J
#LS200-267 ^

#M/7777^

#W:JFF264JFN264^
#LS200-267^

0256:JFN 264

#

The user changes M and

W so that only the SN
instructions are listed.

The user changes M and

W to list only the JMP
instructions within the

limits of the command.

The user changes the

content of M and W to

have DP- 143 type all

the JFF 264 instruc-

tions within the limits.

No such instructions

exist, however, and

ODP-143 types the

period to request a new

command.

The user changes the

content of W to list the

JFN 264 instructions

and ODP-143 types the

single JFN 264 instruc-

tion contained within

the specified limits.

List Numerically - If a section of the Industrial 14 program
is to be listed in numeric form, the LN command is used.

All locations within the limits specified will be typed. The
LN command is subject to the M and W locations described

for the LS command.

The following examples illustrate the use of the LN
command.

#LN200-235^
0200/601

1

0201/2207

0202/6001

0203/6002

0204/2207

0205/3001

0206/0010

0207/1001

0210/2215

0212/0000

0213/0000

0214/0000

0215/0124

0216/1012

0217/2227

0220/0124

0221/1012

0222/5227

0223/7001

0224/2227

0225/3005

0226/0010

0227/1005

0230/2234

0231/0000

0232/0000

0233/0000

0234/0124

0235/1000

#
#M/0000 7777^
^:NOPJMS ^
#LN200-235 ^
0215/0124

0220/0124

0234/0124

#
#M/7777 >
#W:JMSSKP^
#LN200-235

^
0206/0010

0226/0010

#

The user requests that

ODP-143 list the loca-

tions from 200 to 235,

inclusive. All locations

are typed (numerically)

if the user has not

altered the content of

M and W. Otherwise,

each instruction within

the limits is taken from

memory, masked with

the content of M, and

then compared with W.

The original content of

all matches are then

typed numerically on

the Teletype.

The user requests that

ODP-143 type numeri-

cally all JMS instruc-

tions within the limits

specified.

The user requests that

ODP-143 type all SKP
instructions numeri-

cally.

Interrogation Command
To interrogate consecutive' input, output and internal

function states, type I, followed by the limits of inputs,

outputs, or internal function states desired. ODP-143 will

output the desired input, output, or internal function

number and then its state, N or F. This command can be
issued in both Program and Run modes.

#1 200 ^

200 N

Interrogate the single

input 200 and type its

state. ODP-143 types

the input (200) and its

state (N).

7-7

#

#1 1200-1210 ^

1200N

1201 N

1202 F

1203 F

1204F

1205 F

1206F

1207 F

1210N

#1 1450 }
1450 F

#

A number sign (#) is

typed whenODP-143 is

ready for the next com-

mand.

Interrogate outputs

1200 through 1210 and

type out the respective

states. ODP-143 types

outputs 1200 through

1210 and the state of

each.

Interrogate the single

internal function 1450

and type its state.

ODP-143 types the

internal function

(1450) and its state (F).

A number sign is typed

when ODP-143 is ready

for the next command.

I/O Interrogate Disables

The Interrogate Disables command interrogates and lists all

inputs or outputs that are currently disabled. This com-

mand is helpful when the user desires to reenable inputs

and outputs before or during execution of the Industrial 14

program. The following example illustrates a typical re-

sponse to this command.

Start Command

To enter Run mode and start Industrial 14 program

execution, type S, followed by a carriage return. ODP-143

starts execution of the program in Industrial 14 memory at

location (places the Industrial 14 in internal mode.) To

restart program execution following a halt of the program,

the S command turns outputs ON that were ON when the

program was halted.

@

The user types S^ .

ODP-143 starts execu-

tion of the program in

Industrial 14 memory

and types an @, indica-

ting that it has entered

Run mode.

Punch Commands

Low Speed Punch - The user can generate a paper tape

record of his Industrial 14 program on the low-speed punch

by using the following ODP 1 43 procedure:

1 Type P, followed by a carriage return.

2 Turn the paper tape punch unit of the Teletype

ON.

3 Press the CONT switch of the PDP-8 or PDP-1

1

computer console.

4 After the tape is punched, turn the punch unit

OFF, and remove the punched tape.

5 Press the PDP-8 or PDP-1 1 CONT switch.

#ID^

10 D

47D
500
66D
150

15? D

3^D
711 D
721 D
723 D
1127 D

1300D

User types ID^ .

ODP-143 prints each in-

put or output I/O

number and the letter

D, indicating that the

input or output is dis-

abled.

This procedure is illustrated as:

#P^

DONE
#

The user requests that

ODP-143 punch a paper

tape record of the pro-

gram instructions in

Industrial 14 memory.

When the tape has been

punched, ODP-143

types DONE, carriage

return, and then a

number sign (#) to re-

quest a new command.

7-8

High Speed Punch - To punch a paper tape record on the
high-speed punch, type PH (punch high) followed by a

carriage return. ODP-143 punches the paper tape without
further operator action (it is not necessary to follow the
operating procedure given for the P command).

#PH J

DONE
#

The user types PH fol-

lowed by the limits to

be punched. The com-

mand is terminated by

a carriage return. ODP-
143 punches the tape,

and types DONE,
carriage return and then

a number sign (#) when
it is ready for a new
command.

The high-speed punch button must be activated to punch
the paper tape. It can be shut off after the tape is punched.

Verify Commands
Once the user has punched a paper tape record of his

program, the following command can be used to validate
that no punching errors have occurred.

#v;
#0K

#vh;>

#0K

Verify the paper tape in

the low-speed reader by

comparing it with In-

dustrial 14 memory.

ODP-143 prints OK
when the tape is veri-

fied.

Verify the paper tape in

the high-speed reader

by comparing it with

Industrial 14 memory.

ODP-143 prints OK
when the tape is veri-

fied.

The first command (V) uses the low-speed reader unit of
the Teletype console. When using the V command, the
following procedure applies:

1 Type the command V, followed by a carriage

return.

2 Place the paper tape in the low-speed reader.

3 Switch the low-speed reader to START.

4 When the tape is read, switch the low-speed
reader to FREE, and remove the paper tape.

5 Press the PDP-8 or PDP-1 1 CONT switch.

When using the VH command, it is not necessary to follow
the above procedure. Instead, simply place the paper tape
in the reader and type VH, followed by a carriage return.
The tape is then read and ODP-143 prints OK after
error-free verification.

The tape Verify commands compare the tape being read
with the Industrial 14 memory. If the content of the tape
does not agree with the content of memory, ODP-143 types
"Data Error".

Whenever this message occurs, a new paper tape should be
punched and the old tape destroyed. If the error message
"Checksum Error" is typed, the paper tape has a bad
checksum punched at its end, and a new tape should be
punched.

It is good practice to verify the paper tapes, generated
during the debugging state, to be certain that they are
accurate. Punching errors, which cause tape verification

errors, do not occur often, but such errors can change the
user's program with dangerous results.

RUN MODE COMMANDS
The following set of ODP-143 commands enables the user
to:

a. Interrogate input, output, and internal function
states

b. Enable and disable inputs and outputs

c. Force ON and OFF inputs or outputs

d. Halt Industrial 14 program execution.

Except for Interrogation commands, these commands may
only be used in Run mode. The presence of Run mode is

exemplified when an @ is typed on the Teletype.

Interrogation Command
To interrogate one, or a series of consecutive input, output
and internal function states, type I, followed by the limits

of the I/O number of inputs, outputs or internal functions
desired. As in the Program mode, ODP-143 will output the
desired input, output or internal function I/O number and
then its state. Refer to Interrogation Command in Program
mode for example.

7-9

ID Interrogate Disables Command

The Interrogate Disables Command interrogates and lists all

inputs or outputs that are currently disabled during

execution of the Industrial 14 program. This command is

identical to the Interrogate Disables Command, available in

Program mode. Refer to Interrogation Disables Command

in Program mode for examples.

Disable and Enable Commands

ODP-143 can logically override the input or output state of

devices wired to the Industrial 14 Controller; internal

functions cannot be overridden in this fashion. The logical

override is accomplished by first disabling the input or

output and then forcing it to either the ON or OFF state.

Figure 7-1 illustrates this feature.

For an input, the state, as tested by the controller, is that

state of the input converter when the input is not disabled

and is the forced state when the input is disabled. For an

output, the state of the output converter is as set by the

control program when the output is not disabled and is the

forced state when the output is disabled.

To disable an input or output, type Dl, followed by the

desired input or output number (I/O numbers range from

0-1377). To enable a disabled input or output, type EN,

followed by the desired input or output number.

@DI 275 J
@EN 1312)

Disable input 275

Enable output 1312

Any combination of inputs and outputs may be disabled at

the same time. The "disable" remains until it is removed.

Force Commands

After the input or output is disabled, it can be forced either

ON or OFF. The current state of an input or output (found

by issuing an interrogation command) is the forced state if

it is disabled, or the true state if it is not disabled. This state

is also used by the controller when processing Industrial 14

instructions.

Any output or internal function may be forced to its

opposite state, whether disabled or not. However, if the

output is currently enabled, the control program can return

the output to its original state, almost immediately. This

feature is particularly useful for clearing or setting internal

functions such as timers, counters, retentive memories, shift

registers, etc., which cannot be disabled. It is also helpful

for turning ON an output that uses a sealing contact.

flNPUT 1

jDISABLE .

FORCED STATE

-

INPUT
STATE AS
'tested by
controller

L::r_^

OUTPUT
STATE AS

SET BY
CONTROLLER

loUTPUT I

.DISABLE
I

FORCED STATE

o-

I

Figure 7-1 Disabling Inputs and Outputs

To force an input, output, or internal function ON, type

FN, followed by the desired I/O number (I/O numbers

range from 0—1777).

To force an input, output, or internal function OFF, type

FF, followed by the desired I/O number.

@FN 1612)

@FF 15)
@

Assuming the timer and

counter partition to be

1600, force timer or

counter 1612 ON.

Force input 15 OFF.

Halt Program Execution Command

The execution of an Industrial 14 program can be halted by

typing HP. ODP-143 turns all outputs electrically OFF but

retains the logic state for interrogation; it then enters

Program mode and places the Industrial 14 into External

mode. Thus, all outputs should be forced OFF before

halting the Industrial 14 program. Internal functions retain

the current state. If the program is restarted again (by

typing S)) all outputs are switched ON according to their

7-10

previously established states. If program execution is to
start with all outputs OFF, simply power the Industrial 14
down, then back up.

NOTE
ODP-143 must be in Run mode

#

Industrial 14 program

execution stops
Enter Program mode

Using the Disable/Force Feature

A practical example of the preceding discussion follows.

Figure 7-2 shows a control circuit, a Boolean equation, and
Industrial 14 machine language that turns ON the auto-

matic cycle light for one station on a transfer line. To turn

the automatic cycle light ON, without actually having

either the MAIN CYCLE or CYCLE START pushbutton
ON, first disable and then force ON the CYCLE START
and MAIN CYCLE contacts.

CYCLE START
0245

AUTOMATIC
CYCLE

MAIN LIGHT
CYCLE 1212
1251

AUTOMATIC CYCLE
CYCLE STOP
1212 0246

1212 = 1251 »(245 +[12I2»/ 246])

200 TF 1251 205 TN 246
201 JFN 211 206 JFN 211
202 TF 245 207 SN 1212
203 JFF 207 210 SKP
2 04 TF 1212 211 SF 1212

Figure 7-2 Automatic Cycle Light Control Circuit,

Boolean Equation and Industrial

14 Instructions

To validate that the automatic cycle circuit remains ON
after the CYCLE START pushbutton is released, force the

CYCLE START contact 245 OFF. To turn the automatic
cycle light OFF, disable the CYCLE STOP contact 0246
and force it OFF. After the circuit is checked, the disabled

inputs and outputs must be reenabled.

Other Disable and Force features follow:

a. During checkout, to prevent an output from
energizing at all, disable it and force it OFF.

b.

c.

During checkout, to achieve a dry run when the

logic requires that a part be in place, disable the

part-in-place input and force it ON.

During checkout, when some inputs required

are not yet wired into the controller, disable

the inputs that should be ON, and force them
accordingly.

When an input is suspected to be intermittent,

disable it and force it to the state it should be
in. If the problem disappears, the input is

intermittent, and the switch and/or input con-

verter should be checked.

I/O disables only remain in effect as long as the Industrial

14 is powered up. To clear all I/O disables, power down the

controller with the power supply ON/OFF switch.

ODP-143 SUMMARY
Tables 7-2 through 7-4 summarize the commands and error

messages for ODP-143. Specific values for inputs, outputs
and program numbers have been used to describe the

commands and error messages. Any Industrial 14 location

address, input number or output number may be substitu-

ted in place of those used for illustration.

Table 7-2

Program Mode Commands

Command

RUBOUT

Function

VH

23:

Ignore the previously typed command
(up to the last carriage return).

Verify the paper tape in the low-speed

reader by comparing it with Industrial

14 simulated memory, noting any

discrepancies.

Verify the paper tape in the high-speed

reader by comparing it with the

Industrial 14 simulated memory,
noting any discrepancies.

Open location 23, symbolically, and

allow the user to modify its contents.

7-11

Table 7-2 (Cont)

Program Mode Commands

Command

57/

1620>

RETURN }

LINEFEED|

LSO-30

LNO-10

PH

RH

M/

W:

Function

Open location 57, numerically, and

allow the user to modify its contents.

Open status word for I/O address 1620

and allow the user to modify its

contents.

Close the currently open location and

enter any legal modifications typed by

the user.

Close the cun-ently open location;

enter any legal modifications typed by

the user; open the next sequential

Industrial 14 location in the same

form (symbolically or numerically)

and allow the user to modify its

content.

List the contents of locations 0-30,

symbolically, (by typing the

instructions in mnemonic form).

List the contents of locations 0-10,

numerically, (by typing the

instructions in numeric octal form).

Punch a paper tape record of the

contents of Industrial 14 memory on

the low-speed punch.

Punch a paper tape record of the

contents of Industrial 14 memory on

the high-speed punch.

Read a paper tape from the low-speed

reader.

Read a paper tape from the high-speed

reader.

Open a mask location and allow

modification.

Open a work location and allow

modification.

Table 7-2 (Cent)

Program Mode Commands

Command

ZM

140-45

ID

PA

SO

SS

F1

Function

Zero Industrial 14 memory

Interrogate the current states of inputs

40-45

Interrogate and list all cun-ently

disabled inputs and outputs.

Start Industrial 14 program execution

at address (places Industrial 14 in

"internal" mode).

Specifies that ODP-143 will

communicate with the 14 via the

DA14-E parallel interface.

Specifies that ODP-143 will

communicate with the 14 through the

serial line interface via the utility port

(output register 1).

Specifies that ODP-143 will

communicate with the 14 through the

serial line interface via the monitoring

port (output register 6).

Change to memory field 1 , in order to

open or list contents of locations in

that field.

Table 7-3

@ Run Mode Commands

Command

11200-1220

ID

Function

D150

EN1300

Interrogate the current state of

outputs 1200-1220. This command

can also be issued in Program mode.

Interrogate and list all currently

disabled inputs and outputs.

Disable input 50.

Enable output 1300.

7-12

Table 7-3 (Cont)

@ Run Mode Commands

Command

FN 1660

FF1050

HP

Function

Assuming timer and counter partition

to be at address 1 600, force timer or

counter 1660 ON

Force output 1050 OFF

Halt Industrial 14 program; ODP-143
enters Program mode

Table 7-4

ODP-143 Error Messages And Causes

Error Message

S?

N?

Cause

Syntax Error - The user has

violated a syntax rule for

ODP-143 commands. Each

ODP-143 command is in one of

the following forms:

a. One or two letters witKno

following numbers (for

instance, ZM)

b. One or two letters

followed by a number (for

instance, Dl 1234)

c. One or two letters,

followed by two numbers,

separated by a minus sign

(for instance, I 1-20). The

first number must be less

than the second number.

When a command is not typed in

its specified format, the S? error

results. Commands of form c can

be typed in form b without error

(for instance, 15 is the same as

15-5).

Number error - The user has

included an illegal number in his

program. The following

conditions produce the code N?:

Table 7-4 (Cont)

ODP-143 Error Messages And Causes

Error Message

DATA ERROR

NO FIELD 1

14 STOPPED

14 HUNG

CHECKSUM ERROR

Cause

a. A non-octal digit is used in

a program (8 or 9).

b. A test or set instruction

references an illegal input

or output number (greater

than 1777).

c. The address of a JFF or

JFN is illegal (greater than

377).

d. A JMP or JMS instruction

references a location

which is not in the

simulated memory.

e. The second part of a

two-word instruction is

typed on the same line as

the first part (for instance,

JMP 1567).

A data error has occurred on a

tape read by ODP-143 with the

V or VH command. The tape

should be repunched.

An attempt has been made to

read or verify an 8K Industrial

14 memory.

ODP-143 has attempted to

communicate with an Industrial

14 that is not running or is not

interfaced to the proper output

port.

ODP-143 has attempted to

communicate with an Industrial

14 that is not interfaced to the

proper output port.

A checksum error has occurred

on a tape read by ODP-143 with

the R, RH, V or VH command.
The tape should be reread. (If R

or RH, ZM should be executed

first).

7-13

Table 7-4 (Cont)

ODP-143 Error Messages And Causes

Error Message

M?

C?

Cause

Mode error - The user has typed

a command which is illegal in

the present mode of ODP-143.

ODP-143 has two such

modes: Program and Run.

Command Error - The user has

typed a command that ODP-143

does not recognize.

7-14

CHAPTER 8

PDP-8 OPERATIONS

This chapter describes the use of PDP-8 utility programs

developed for the Industrial 14 System (Loader and

Editor). The operation of the PDP-8 hardware system

(computer console and 33 ASR Teletype) Is described in

the PDP-8/E, PDP-8/M, and PDP-8/F Small Computer

Handbook.

PDP-8 SWITCH AND SWITCH REGISTER OPERATIONS
The PDP-8 is operated by a series of switches on the

computer console. For Industrial 14 programming

purposes, the user should be familiar with the START,
STOP, CONT (continue), LOAD ADD (load address), DEP
(deposit) and EXAM (examine) switches. The descriptions

in this chapter specify when these switches are to be used.

The switches are all spring-loaded and return to the normal

position after release.

The Industrial 14 software will not run if the SING STEP
or SING INST switches are set on the PDP-8 console. These

switches must always remain OFF. (The SING INST switch

does not exist on the PDP-8/L, 8/E, 8/F, or 8/M consoles.)

In the PDP-8/1, the top of these two switches should be in

the IN position, with the bottom OUT. In the PDP-8/L,

8/E, 8/F and 8/M, the SING STEP switch should be in the

UP position.

The twelve switches of the PDP-8 Switch Register are

arranged in four groups of three switches each. Adjacent

groups of switches are of different colors to aid in

identification.

Figure 8-1 shows every possible switch pattern for a

3-switch group. Eight patterns exist and these are numbered

0—7. The chart is essentially the octal-binary equivalents

for the digits 0-7, with switch representations. For

example, to set a 3-switch group to the number 4, the first

switch is set ON, and the second and third switches are set

OFF.

NOTE
A PDP-8/1 switch is ON when the top is OUT
and the bottom is IN. A PDP-8/L, 8/E, 8/F and

8/M switch is ON when it is in the UP position.

OCTAL
NUMBER

7

IN IN OUT

^

t

IN OUT IN

OUT OUT OUT

PDP-8/L,8/E,
8/F a 8/M

DOWN DOWN DOWN

I

DOWN DOWN UP

0QS
I

DOWN UP DOWN

01
DOWN UP UP

Q§
1

UP DOWN DOWN

10
1 I

UP DOWN UP

u

1 1

UP UP DOWN

UP UP UP

00^

DISPLAY LIGHTS

OFF OFF OFF

m m m

f

OFF OFF ON

m m Q

1

OFF ON OFF

® © ®

1 I

OFF ON ON

1

ON OFF OFF

m

1 I

ON OFF ON

#

ON ON OFF

m

ON ON ON

Figure 8-1 PDP-8/1, 8/L, 8/E, 8/F and 8/M
Switch Settings for Octal Digits 0-7

8-1

The following example further illustrates the use of Figure

8-1 . To specify the octal number 5 (corresponding to the

binary code 101), the switches, as shown in Figure 8-2. are

set as follows:

Switch 1 = ON
Switch 2 = OFF
Switch 3 = ON

010 01 000 000
PDP-8/I

1 1

OUT IN OUT

PDP-8/I

PDP-8/L,8/E,
8/F a 8/M

1 1

UP DOWN UP

u u

Figure 8-2 Switches Set to Octal Number 5

Figure 8-4 Switch Register Set to 22008

PDP-8/I

As previously stated, the Switch Register consists of 12

switches, arranged in four 3-switch groups. Each group of

switches represents an octal digit. Thus, a four-digit octal

number defines the settings for all 12 switches. Figures 8-3,

8-4 and 8-5 show the switch settings for three octal values.

Figure 8-5 Switch Register Set to 02008

Loading the RIM Loader

To store the RIM loader in memory, proceed as follows.

PDP-8/I

Figure 8-3 Switch Register Set to 16348

PDP-8 LOADER PROGRAM
Before any PDP-8 based program can be loaded into the

PDP-8 memory, a loader program must be stored that will

read the binary format paper tape on which these programs

are stored. The loader program is then used to transfer

BOOL-143/8, ODP-143/8 and all other system software

into the PDP-8 memory.

Before the loader program is stored in PDP-8 memory, the

Data Field and Instruction Field switches should be set to

(if the computer has 4K of memory) or to 1 (if the

computer has 8K of memory). If a PDP-8/E, 8/F, or 8/M is

used, the Data and Instruction Fields are set by Switch

Register switches SR 6-11 and Extended Address Load

Key (EXTD ADDR LOAD). First, set the Indicator

Selector switch to STATUS, then set SR 6-8 for the

desired Instruction Field. SR 9-11 should be used to

indicate the desired Data Field. To specify both Instruction

Field 1 and Data Field 1, set only bits 8 and 1 1 to 1; then

press the EXTD ADDR LOAD key. If a PDP-8/L is used,

the MEM PROT (memory protection) switch must be in the

DOWN position (off) while the loader program is being

stored in memory.

Set the Switch Register to either the low-speed or the

high-speed RIM Loader settings, listed in the following

table, depending on whether the system is equipped with a

low-speed Teletype reader or a high-speed paper tape

reader. After each setting, press the operation switch noted

at the right of the setting.

8-2

Switch Register Setting

Low Speed High Speed Operation Switch

7756 7756 LOAD ADD
6032 6014 DEP

6031 6011 DEP
5357 5357 DEP

6036 6016 DEP
7106 7106 DEP
7006 7006 DEP

7510 5510 DEP
5357 5374 DEP
7006 7006 DEP
6031 6011 DEP
5367 5367 DEP
6034 6016 DEP
7420 7420 DEP
3776 3776 DEP
3376 3376 DEP
5356 5357 DEP

The first number listed is the initial address where the

instructions are to be stored. The numbers that follow are

instructions to be deposited in the PDP-8 memory.

When the instructions are loaded, validate that the program

was loaded correctly by examining the stored instructions.

When the EXAM switch is pressed, the lamps of the

memory buffer console display light, indicating the stored

instruction. The light patterns correspond to the following

table, if the instructions have been correctly loaded.

Switch Register Setting

7756

Operation Switch

EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM
EXAM

Operation Switch

LOAD ADD

Memory Buffer Display

Low Speed High Speed

6032 6014

6031 6011

5357 5357

6036 6016

7106 7106

7006 7006

7510 7510

5357 5374

7006 7006

6031 6011

5367 5367

6034 6016

7420 7420

3776 3776

3376 3376

5356 5356

If the instructions have been loaded incorrectly, restart the

switch-setting process. If the RIM instructions have been

loaded correctly, the Binary Loader can be stored in

memory using the RIM load program.

Loading a Binary Tape

All Industrial 14 System paper tape software contains the

self-starting Binary Loader program at its beginning. The

self-starting Binary Loader, however, can only be loaded

into PDP-8/E, 8/F and 8/M computers. The regular Binary

Loader Program (DEC-08-LBAA-LM) must be loaded into

the PDP-8/1 or 8/L computers.

Procedure for loading the regular Binary Loader

1. Place the Binary Loader paper tape

(DEC-08-LBAA-LM) in the paper tape reader

and turn the reader ON

2. Set the Switch Register to 7756 and press the

LOAD ADDR and START switches on the

computer console.

3. The paper tape containing the loader will then

be read.

4. When the tape has been read, turn off the

reader and remove the tape.

Now any system program can be stored in PDP-8/1 or 8/L

memory.

If a PDP-8/L is used for programming, the MEM PROT
switch on the PDP-8/L console should be moved to the UP

position once the loader is in memory. This prevents

unwanted destruction of the loader program. This switch is

not available on the PDP-8/1 computer.

Procedure for loading a system software paper tape into ttie

PDP-8/L or 8/1 memory

1

.

Place the system tape in the paper tape reader

and turn the reader ON. The tape must be

positioned with the leader/trailer code between

the Binary Loader and the Binary System

Program over the reading head (Figure 8-6).

2. Set the PDP-8/L or 8/1 Switch Register to 7777

and press the LOAD ADDR switch on the

computer console.

3. If the high-speed reader is being used, set SR
= 0.

8-3

4. Press the START switch on the computer

console.

5. If this procedure has been followed correctly,

the tape is read into memory.

6. When the tape reaches the end, it will stop. If

any lamp of the accumulator display on the

PDP-8/1 or 8/L console (not LINK display)

remains lit, a reading error has occurred and the

tape must be reread. If a lamp remains lit, a

checksum error has occurred.

BINARY
LOADER LOAD POINT

BINARY
SYSTEM
PROGRAM

" '

1^
:p'j;:il;;'j::i:il'-:mi:z;: ''m

Figure 8-6 Paper Tape Load Point

Procedure for loading self-starting binary tapes

1

.

Place an Industrial 14 System tape in the reader

and turn the reader ON.

2. Set Instruction Field and Data Field on the

PDP-8/E, 8/F or 8/IVI console to the field where

the RIM loader was deposited.

3. Set the Switch Register on the computer

console to 7756 and press the LOAD ADDR
switch on the PDP-8/E, 8/F, or 8/M console.

4. If the high-speed reader is being used, set SR
= 0.

5. Press the START switch on the computer

console and the Industrial 14 System tape will

read in.

6. When the Industrial 14 System tape has been

read in, the system program will self-start,

activating the printer.

7. If there is no response, check the PDP-8/E, 8/F

or 8/M accumulator for a checksum error

(lamps lit in the accumulator) and reload the

Industrial 14 System program.

PDP-8 EDITOR
Industrial 14 users of BOOL-143 and PAL-143 must

prepare a tape record of their program. This paper tape is

referred to as a program source tape or source language

tape. BOOL-143 and PAL-143 translate the source tape

into the machine language or binary tape used by the

Industrial 14. Machine language is the form in which

Industrial 14 programs are debugged with ODP-143.

Composing Source Programs

The PDP-8 Editor program can be used to compose

programs in the BOOL-143 and PAL-143 source language.

The Editor enables the Industrial 14 user to type the

program on the Teletype keyboard and to correct typing

errors as they occur. Sections of the program can be moved

or deleted by typing single Editor commands. Program

source tapes are generated by the Editor and are used as

input to BOOL-143 or PAL-143.

Updating Source Programs

A second, and important function of the Editor is updating

user programs. During the life of an Industrial 14 program,

many changes will be made to the original version. Errors

uncovered with ODP-143, changes in machine function, and

additions of new inputs or outputs to the machine all

require changes to the Industrial 14 program. These changes

can be made with ODP-143; however, no permanent record

of the altered program will exist. The user should always

correct the source tape of his program by reading it back

into the Editor, making the necessary changes and

corrections to the source program, and generating a new

program listing and tape.

Text Buffer

A buffer is a computer storage area. The text buffer stores

the text of Industrial 14 programs typed by the user,

organized by lines of text. A text line is a collection of

typed characters up to and including the carriage return at

the end of the line. The lines of the text buffer are

decimal-numbered; each line is referenced by its line

number. By referring to specific line numbers, the Editor

commands can be used to change, list, and delete lines of

text, and to insert lines of text before a specified line.

Modes of Operation

Because the Editor accepts both commands and text from

the Teletype keyboard, it must recognize whether the

characters currently being typed are program text, being

created or modified by the user, or commands, directing

the Editor to perform text functions. The Editor makes this

distinction by dividing its operation into two modes. In

Command mode, all characters typed on the Teletype

keyboard are interpreted as commands to the Editor to

8-4

perform some operation on the content of the text buffer,

or to allow the user to operate on the text. In Text mode,

all characters typed on the keyboard are entered Into the

text buffer. Text can replace, be inserted into, or be added

to the current content of the text buffer.

The current mode of the Editor must always be noted. If a

command is typed while the Editor is in Text mode, it will

not be recognized as a command by the Editor and will be

entered into the text buffer. Likewise, if text is typed while

the Editor is in Command mode, it will be treated as a

command.

Transition Between Modes

The Editor enters the Command mode when it is first

loaded and is ready to accept the first command from the

user. Only legal commands are accepted; any other typed

characters cause the Editor to type a question mark (?) and

wait for a legal command to be typed. Some commands
cause the Editor to enter Text mode. In Text mode, all

characters typed are entered in the text buffer. To exit

from Text mode, press the CTRL key of the Teletype

keyboard while striking the FORM key (CTRL/FORM).
The Editor responds by ringing the Teletype bell and waits

for a new command (Figure 8-7).

^co

TYPE A COMMAND THEN
PRESS RETURN KEY.

UMAND MODE

T
) c TEXT MODE

TYPE DESIRED PROGRAM
TEXT, THEN PRESS THE
CTRL/FORM KEYS.

3

Example 1

Character removed by each RUBOUT

, \
1050 5 23* 17\\1017 * (43+1050)

2 characters 2 RUBOUTS

Example 2

Character removed by each RUBOUT

START, TN LSI \\\\\ F SOLA

7^ \
4 characters

and one space

5 RUBOUTS

In the above examples, the user enters Text nrxjde with the

A command and begins typing a BOOL-143/8 program

(Example 1) or a PAL-143/8 program (Example 2). An
error is made, however, and the user deletes the incorrect

information by repeatedly striking the RUBOUT key,

erasing all characters back to the * in the BOOL-143
program and back to the T in the PAL-14 program. The

correct characters are then typed and the line is terminated

by typing RETURN. The correct versions of the above

examples are as follows:

1050 = 23* 1017(43+ 1050)^
or

START, TF SOLA ^

Figure 8-7 Transitions Between Editor Modes

Adding Text to the Buffer

To compose Industrial 14 programs with the Editor, type

A. The A command instructs the Editor to enter Text mode
and to add all of the text typed on the keyboard to the text

buffer. The new text is added at the end of any text

currently in the buffer.

Editing Keys

Typing errors can be erased with the RUBOUT key. This

key deletes (to the left) one character, or space, each time

it is struck. The RUBOUT key can delete characters in only

one line of text. The Editor types a backslash (\) each time

the RUBOUT key is struck. The following examples

illustrate the use of the RUBOUT key.

The backarrow (*-) is also used to erase typed characters

from the text buffer. It is typed by holding the SHIFT key

down and striking the letter O key. This special character

deletes the complete line of characters between the left

margin and itself. The following example illustrates the use

of the backarrow:

1005 = 2+7(16* 1003) THE FOLLOWING
EQUATION CONTROLS
SOLENOID A.^

In the above example, a complete line of text is deleted,

using the backarrow, and a comment is inserted in its place.

The line of the text buffer reads as follows:

;THE FOLLOWING EQUATION CONTROLS
;SOLENOID A.

8-5

Reading a Paper Tape

Source tapes, previously generated by the Editor, can be

read into the text buffer for modification or addition by

using the command:

R

The R command (read) causes the paper tape to be read

from the low-speed reader into the text buffer. If the buffer

is not empty, the information will be added at the end of

the previously stored text. After the R is typed and the

tape is read, the Editor rings the Teletype bell and enters

Command mode.

The R command reads a paper tape from the high-speed

reader when the last switch of the Switch Register (SR 11)

is set ON. Otherwise, the tape is read from the low-speed

reader of the Teletype.

Listing a Program

Once the program has been typed or read from a tape, the

complete text can be typed by issuing the following

command.

l;

The complete content of the text buffer is typed on the

Teletype printer.

The L command can be modified to type only certain lines

by specifying limits for the list. The limits are typed

preceding the L, separated by a comma. For example:

1 , 1 5L ^ List the content of text buffer lines

1 through 15 inclusive.

12L^ List line 12 of the text buffer.

Remember that the lines of the text buffer are decimal

numbered, starting with line 1. After the Editor has typed

the text, it enters Command mode.

Inserting a New Line of Text

Industrial 14 programs can be modified with the Editor by

inserting new lines of text, using the I command. This

command is typed, preceded by the decimal number of the

line before which the new text will be placed. For example,

the command

151 ^

allows one or more new lines of text to be typed before line

15 of the current text buffer.

Editor remains in Text mode and accepts all characters and

lines typed by the user into the text buffer. When all lines

are inserted in the text buffer, type CTRL/FORM to return

the Editor to Command mode.

The Editor "pushes down" text in the buffer when the I

command is used. The new text is automatically numbered,

thereby changing the previously assigned line numbers.

Thus, if one line is inserted before line 15 (151 J), line 15

becomes line 16 and the newly typed line becomes line 15.

Deleting Lines from the Text Buffer

Industrial 14 programs can also be modified by deleting

lines with the D command. The D command is typed,

preceded by the line or lines to be deleted. For example,

the command

1,15D^

removes the first 15 lines of the text buffer. Line 16

immediately becomes line 1 and all other line numbers are

adjusted accordingly. After executing the D command, the

Editor returns to Command mode.

When a line has been deleted, the remaining line numbers

are adjusted immediately. For example, the two commands

listed below actually delete lines 16 and 17 of the original

text buffer:

16D^
16D^

The complete buffer is deleted by the K (kill) command.

This command can be used after punching one program and

before reading another program tape.

Changing Lines of Text

The C (change) command is a combination of the D and I

commands and enables the user to replace a line, or a group

of lines, by text typed on the keyboard. For example, the

command

15, 17C ^

deletes lines 15 through 17 and then causes the Editor to

enter Text mode. The text typed by the user is then

inserted as lines 15, 16, 17, 18, etc. The user can type as

many lines as needed. When the new text has been typed,

strike CTRL/FORM to return to Command mode.

8-6

The C command can be used to replace one line with many
lines, or many lines with only one; no equivalence is

required between the total number of lines deleted and the

total number of lines added in their place.

NOTE
Line numbers are automatically adjusted for

the new text when the user presses the

CTRL/FORM key to return to Command
mode.

Moving Lines of Program Text

Occasionally, Industrial 14 programs must be completely

reorganized, for instance, to better fit the page structure of

the Industrial 14. This reorganization can easily be

accomplished with the M (move) command. The M
command has a special command format that specifies the

line, or group of lines, to be moved and the line number on
which the moved lines will be placed. For example, the

command

15,27$30M'^

moves lines 15 through 27 before line 30. The line numbers
are automatically adjusted and the Editor returns to

Command mode. In the example, line 30 remains line 30;

line 28 becomes line 15; line 29 becomes line 16; and lines

15 through 27 become lines 17 through 29.

The M command can move one or more lines before the

line number that is preceded by a $ in the command. The
Editor automatically returns to Command mode after an M
command is executed.

b. Delete the entire line to the left of the search

character using the backarrow (<-).

c. Delete the entire line to the right of the search

character using the RETURN key.

d. Delete one character (moving from right to left)

for each RUBOUT typed.

e. Insert a CARRIAGE RETURN/LINE FEED,
thereby dividing the line into two lines.

f. Press CTRL/FORM to search for the next

occurrence of the search character.

For example, consider the following equation:

101 1 = 21 * 35 * 1010 • (131 + 21 + 44)

Assume that 131 should be 1031.

In the example, the number can be selected as the search

character. However, since there are six occurrences of

number 1 prior to the one to be altered, the CTRL/FORM
keys must be used to bypass the six preceding number Is.

Once the seventh 1 is reached, the numbers 1 and are

inserted. The CTRL/FORM keys are used to continue the

search until the end of the line, thereby completely

retyping the line. If the RETURN key was used after the

letter was changed, the remainder of the line would be

deleted.

Search Feature

The search feature is a helpful feature, available with the

Editor, which enables the user to modify a line of text

without completely retyping the line. The line number of

the line to be searched is typed, followed by S and a

carriage return. The user then types the "search character".

This character can be any keyboard character (a letter,

number or symbol). The search character is not printed on
the teleprinter when the key is struck. Instead, the Editor

begins typing the searched line up to, and including, the

first occurence of the designated search character. When the

Editor locates and types the search character, typing stops

and any combination of the following operations can be

typed by the user:

a. To change the entire line to the right of the

search character, enter new text and terminate

the line with the RETURN key.

RUBOUT

1011 =21 *35* 1010* (1/1031 + 21 +44)

lit t It t t t

CTRL/FORM

The intelligent choice of a search character can ease the

editing task when the search feature is used. For example, if

the number 3 is selected as the search character, one
CTRL/FORM is required to get to the second 3. Two
RUBOUTS are then typed, thereby removing the 3 and 1.

After 103 is typed, CTRL/FORM is used to repeat the

remainder of the line.

8-7

Special Characters

In most cases, use of the Editor commands requires the user

to type line numbers. These line numbers are computed by

counting the number of preceding lines, or the following

special characters can be used:

.(period) Has a value equal to the line number

of the last edited line. Thus after a line

is edited, it can be listed by typing .L

and a carriage return.

6. Press LSP OFF.

7. Type F and RETURN keys. Turn LSP ON. A
special character is typed to signal the end of

the tape for the Editor.

8. Turn LSP OFF.

9. Type T and RETURN keys. Turn LSP ON.

Leader/trailer tape will be generated.

/(slash)

+, -(plus, minus)

Has a value equal to the line number

of the last line in the buffer. Thus, /D

means delete the last line.

Used with the . or / characters to

represent line numbers. For example,

.+5L means list the fifth line after the

last edited line.

10- Turn LSP OFF and remove the source tape.

The following procedure generates a source tape using the

high-speed punch (HSP).

1. Set the next-to-last switch of the Switch

Register (SR 10) ON.

= (equals) Used with the . or / characters to find

the value of these characters. When the

user types .=, the Editor types the

decimal number of the current line.

When the user types /=, the Editor

types the decimal value of the last line

in the buffer.

Punching a Source Tape

When the Industrial 14 program has been prepared with the

Editor, a paper tape is punched with the P command. This

command can be used to punch the complete program

(P ?)) or a group of lines within the program (15,30P^).

The following procedure generates a source tape using the

low-speed punch (LSP) on the Teletype:

1.

2.

3.

Type T and quickly press LSP ON. The

leader/trailer tape will be punched.

Press LSP OFF.

Type the Punch command P^, nP^, or

m,nP'i (where m and n are decimal line

numbers).

4. Turn LSP ON.

5. Press the CONT switch, located on the PDP-8

console. The program will now be punched.

2. Turn HSP ON.

3. Type T and RETURN keys.

4 Type the Punch command P^, nP^ , or

m,nP J (where m and n are decimal line

numbers).

5. Press the PDP-8 CONT switch. The program

text will now be punched.

6. Type F and RETURN keys.

7. Type T and RETURN keys.

8. Remove the generated source tape.

A program can be segmented and punched in sections using

the .EOT (BOOL-143/8) or EOT (PAL-143/8) control

statements to conclude all but the final segment. Thus, the

foregoing procedures can be used to punch all, or part of,

an Industrial 14 program. This enables the user to edit and

generate tape for programs that are not small enough to fit

completely within the text buffer.

Editor Summary Tables

Tables 8-1 and 8-2 summarize the characters and symbols

used with the Editor. Note that the characters have

different meanings when used in Command or Text mode.

8-8

Table 8-1

Special Editor Keys

Key

RETURN

RUBOUT

CTRL/FORM

LINE FEED

>

<

CTRL/TAB

Command iVIode

Execute preceding command

Cancel preceding command (Editor responds

with a ? followed by a carriage return and
line feed)

Same as <-

Respond with question mark and remain

in Command mode

Value equal to decimal value of current

line (used alone or with + or - and a

number, e.g., +8)

Value equal to number of last line in

buffer; used as an argument

List next line

List next line

List previous line

Used with = or / to obtain their value

Same as = (gives value of legitimate

argument)

Text Mode

Enter line in text buffer

Cancel line to the left margin

Delete to the left one character for each

depression, a backslash (\) is echoed (not

used in Read (R) command)

Return to Command mode and ring

teleprinter bell

Legal text character

Legal text character

Used in Search (S) command to insert

CR/LF into line

Produces a tab which on output is

interpreted as 8 spaces or a tab/rubout,

depending on SR option

Loading The Editor

The Editor is supplied as a binary paper tape

(DEC-08-ESAB-PB) and is loaded with the Binary loader

program. It operates in any field of a PDP-8.

Starting the Editor

When the Editor has been loaded and no checksum error

has occurred, the PDP-8 Switch Register is set to 200 and
the Instruction Field is set equal to the Data Field if an 8K
PDP-8 is used. The LOAD ADDR and START switches are

then pressed, in that order. The Editor prints a carriage

return and waits for a typed command from the user. All

further operation is controlled by commands.

The paper tape input and output are controlled by the last

two switches of the Switch Register. If the high-speed

reader/punch is used, these switches should be set ON. If

the low-speed reader/punch of the Teletype is used, these

switches should remain OFF.

NOTE
Further information on the Editor, including

features not described in this manual, is

available in the DEC publication Introduction

to Programming (Pages 5-11 through 5-42).

8-9

Table 8-2

Summary of Editor Commands

Type

Input

Editing

Output

Command

A

R

L

nL

m,nL

nC

m,nC

I

nl

nD

m,nD

m,n$klVI

S

nS

m,nS

P

nP

m,nP

T

F

Function

Append incoming text from keyboard into text buffer

Append incoming text from tape reader into text buffer

List entire text buffer

List line n

List lines m through n inclusively

Change line n

Change lines m through n inclusively

Insert before first line

Insert before line n

Delete line n

Delete lines m through n inclusively

Move lines m through n to before line k

Search buffer for character specified after RETURN

key and allow modification (search character is not

echoed on printer)

Search line n, as above

Search lines m through n inclusively, as above

Punch entire text buffer

Punch line n

Punch lines m through n inclusively

Punch about 6 inches of leader/trailer tape

Punch a FORM FEED onto tape

m and n are decimal numbers; m is smaller than n; k is a decimal number.

The P command halts the Editor to enable the programmer to select I/O control; press

CONT to execute these commands.

Commands are executed when the RETURN key is depressed, excluding the P and N

commands.

8-10

SET-143/8 OPERATIONS

Loading and Starting SET-143

SET-143 is supplied as a self-starting binary paper tape and

is loaded into Field of the PDP-8 with the RIM loader. To
load the tape, use either the paper tape reader on the 33

ASR Teletype or the high-speed reader.

If the high-speed reader is to be used for input, the source

program paper tape should be loaded in the high-speed

reader before answering the queries described in the

following:

When started, SET-143 responds by typing three queries:

*IN-LH? What device will be used to supply the

source tape? Will it be the low-speed

paper tape reader (L) or the high-speed

paper tape reader (H)?

*OUT-LH? What device will be used to punch the

output tape? Will it be the low-speed

punch (L), the high speed-punch (H), or

will there be no punched output (N)?

*SYM-Y, N? Does the user want both the symbol table

and the sorted symbol table output, yes

(Y),orno(N)?

When the third query has been answered, SET-143 types

the message:

TURN ON PUNCH

and halts. Always validate that the input tape is loaded in

the proper reader, and turn on the proper punch according

to the query responses (L or H). When the PDP-8 CONT
switch is pressed, SET-143 punches the leader tape and

begins the translation.

If the low-speed output is used, a copy of the output tape is

typed as the tape is being punched. Any error messages are

typed and punched in the format of BOOL-143 comments.

At the end of each symbol table input, the number of

errors detected is also typed as a comment. If high-speed

output is used, no record is typed during translation. A
record can be listed off-line on the Teletype at any time.

The only message typed on the Teletype is the number of

errors detected after the symbol table input.

SET-143 halts on each .EOT statement to allow a new
input tape to be loaded. Pressing CONT causes SET- 1 43 to

continue with the translation process, ignoring all blank

tape (leader and trailer).

SET-143 stops processing on an .END or .ENDN statement

and punches the trailer tape. At this time, a complete,

alphabetized, symbol-assignment listing is generated if the

user has answered the query SYM-Y, N? with a Y (yes).

Using SET-143

Because SET-143 generates a symbolic tape, both the

output tape and the input tape can be edited with the

PDP-8 Editor. Program mistakes in BOOL-143 and

ODP-143 can be corrected by using the Editor to change

the input to SET-143 or to change the output from

SET-143 (which is the input) to BOOL-143. When the

SET-143 input tape is edited, only the symbolic equation

and/or symbol table must be changed. When the output

tape is edited, the symbolic equation and/or symbol table

and the control equations must be changed.

SET-143 also facilitates major changes to the input or

output terminals, which are wired to machine inputs and

outputs. The symbol table can be modified and the tape

translated to incorporate the new I/O numbers.

SET-143 also allows the user to store proven control

approaches in an untranslated form. The control for

standard units or processes can be recorded in a SET-143
input format of symbolic equations. When a particular

application arises for the unit or process (as part of a larger

system, for example), the symbols may be assigned an input

and output designation, and the control equations for

BOOL-143 can be generated.

BOOL-143/8 OPERATIONS

BOOL-143/8 Options

Options available to the user are requested through a series

of four queries which are typed to start the BOOL-143/8
compilation process. If the user types a response other than

a legal response to a query, BOOL-143/8 will retype the

query.

Example:

*SRC-LH? N ^ N is not a legal response to the

SRC query,

*SRC-LH? BOOL-143/8 will retype the query.

If the user types more than one character in response to a

query, BOOL-143/8 recognizes only the last character

typed before the carriage return. Therefore, if a wrong
response is typed, the user can correct it by typing the

correct character, prior to the carriage return.

8-11

Binary Output

The binary paper tape output from BOOL-143/8, which is

input to ODP-143/8, or to the VT14 Programming

Terminal, is requested in response to the query:

*BIN-NLH?

N, L, and H are the possible user-supplied responses and

have the following meanings:

N No binary output is wanted.

L The binary paper tape is requested on the

low-speed paper tape punch associated with the

Teletype unit.

H The binary paper tape is requested on the

high-speed paper tape punch.

The user types one of the three possible responses, followed

by a carriage return. For example, the user may not want a

binary tape if he expects errors in his program. By typing

N, he can compile the program and obtain an error listing

without wasting time generating an incomplete binary tape.

The other two possible responses request the binary output

and specify the device to be used.

Compiler Listing

The compiler listing contains error messages and generated

machine code instructions for solving the equations of the

source program. The compiler listing is output according to

the following query:

*LST-NLH?

where N, L, and H have the following meanings:

N No listing output is requested; BOOL-143/8

types only the lines which contain errors and

the applicable error number.

L The complete listing of source statements,

compiled machine code instructions and error

messages is typed on the Teletype.

H The complete listing is punched by the

high-speed paper tape punch. Errors are typed

on the Teletype.

The user types one of the three responses, followed by a

carriage return. If only an error listing is wanted, the user

types N. BOOL-143/8 types only those lines of the source

program which contain errors. For example, BOOL-143/8

might type:

1010= 27 (1003-1-21) * 4 Note that an operator is

missing after 27.

E011

The user could then correct this and any other error

detected during compilation and generate an updated,

correct source program tape with the Editor. When all

errors have been corrected, the program is recompiled with

BOOL-143/8 and a complete compiler listing should be

requested.

The L response causes BOOL-143/8 to generate the

complete compiler listing on the low-speed teleprinter. All

lines of the source program are typed (followed by an error

number if the line contains an error). If there is no error,

the generated Industrial 14 machine code instructions are

listed below the equation.

The H response causes BOOL-143/8 to generate a listing on

the high-speed punch. This allows off-line generation of

several Teletype listings. If the listing is generated on the

high-speed punch, errors are also typed on the Teletype.

The compiler listing contains the Industrial 14 generated

machine code instructions following each equation. These

instructions are typed in four columns: the first column is

the octal absolute address in memory where the instruction

is stored, the second column is the numeric form of the

instruction and the third and fourth columns are the

symbolic form of the instruction. For example:

• LUC ;l

loni = !-(.(3W+3+101P)

0'^')00 /ifi'.i I IF
CT^'^1 '?'?i'?.i JFh
«(1:1P 403P Tf
f.

-•,,•1 o a'M^2 if
'7)f10/t Pi'V.:i7 JFF
O'/l'/i'i sni p IF

i) <=' ?/4l 1 JF.Ni

(7ic;ii^7 T
'
1 1 S.M

i^<7i\'^ (^fllfl .S.KP

nr'H 1 ri ':i 1 ?F

i) 11 7

?i -^ .? P

;vi;'i0 7

101 P

^'^l 1

100 1

8-12

m 1 3 = P * ''J + 1 i"! 1 3 * (/ /i + / S)

1-1 '-1 1 p H9,'A9 Yi' ofinp
;i p) 1

3

Ix 'A r\ ii If 00 A

7i 1 ^ Pi'1P3 J>-f 93
'7! 1 5 50 1 3 Tf 10 13
c^ :^ 1

6

P4P5 Jf^i OOPS
00 17 f^r^iAii T^J ^J

;i0?':^ P'3P3 JFF 0P3
p!':iPl 60f^5 TiM 00 OS
C-?!lPP P/)P5 JFN OOPS
30P3 30 1 3 Si^J 1013
30P4 '?^1 T SKI-

?] .:i p s 1013 Sf 10 13

At the end of the program listing, BOOL-143/8 types the

following messages:

ERROR LINES: The decimal number of lines in

the source program which

contained errors.

PROGRAM BREAK: The highest absolute Industrial

14 memory address used by the

compiled program.

Source Program

The source program can be supplied to BOOL-143/8 from

one of two devices: the low-speed paper tape reader or the

high-speed paper tape reader, if the PDP-8 System is so

equipped. The source is specified in response to the query:

*SRC-LH?

where the L and H have the following meanings:

monitor transition commands (.MN, .MF, and .MFN), and

certain control statements (.FIXS and .VARS).

Loading and Starting BOOL-143/8

BOOL-143/8 is supplied as a self-starting binary tape and is

loaded into Field of the PDP-8 memory with the RIM
loader. Either the paper tape reader on the 33 ASR
Teletype or the high-speed reader can be used to load the

tape.

If the high-speed reader is to be used, the source program

paper tape should be loaded in the high-speed reader before

the queries are answered.

When started, BOOL-143/8 responds by typing a sequence

of queries, for example:

*SRC-LH? What is the source device from which the

program will be supplied to

BOOL-143/8? Will it be the low-speed

reader of the Teletype (L), or the

high-speed paper tape reader (H)?

*BIN-NLH? What device is to be used for the binary

output tape? Is it no binary output

requested (N); binary output on the

low-speed paper tape punch (L); or

binary output on the high-speed paper

tape punch (H)?

*LST-NLH? What listing form is required? No listing is

required (N). In this case, only error

messages are typed. A low (L) speed

listing is requested. A high (H) speed

punched tape listing is requested.

The source program is in paper tape form and is

to be read with the low-speed reader of the

Teletype unit.

*VT14-NY? Is VT14 compatability requested, (N) No
or (Y) Yes?

H The source program is in paper tape form and is

to be read with the high-speed reader.

VT14 Compatability

The VT14 compatability option query enables

BOOL-143/8 to detect BOOL commands whose machine

language cannot be executed in the VT14 programming

terminal. The query is:

VT14-NY?

where the possible responses N and Y specify No and Yes

respectively. With the VT14 compatability option,

BOOL-143/8 will detect all R- and Z-function commands.

When the VT14-NY? query has been answered, compilation

begins. If the low-speed reader is used to read a source

paper tape, the reader must be switched to START before

compilation begins. If the high-speed reader is used, and it

was not loaded prior to answering the final query,

BOOL-143/8 must be stopped and restarted at 200, after

the tape to be translated is loaded into the reader.

As BOOL-143/8 reads and compiles the source tape, it

outputs a listing and a binary tape. If the listing and the

binary output devices are the same, the binary output tape

will be created first. As soon as the binary tape is punched,

press the PDP-8 CONT switch to start the listing, with the

first source tape in the reader.

8-13

BOOL-143/8 normally completes the compilation after

reading the source paper tape once. However, if the

program has been segmented with the .EOT statement,

BOOL-143/8 halts after the incomplete tape and types

EOT. The next tape should then be loaded and the PDP-8

CONT switch pressed.

When compilation begins BOOL 143/8 types the message

TURN PUNCH ON, if a binary tape is to be punched. The

proper punch should then be turned ON and the PDP-8

CONT switch depressed. The binary output tape will then

be punched.

If more than one source tape is to be assembled, the user

can simply press the PDP-8 CONT switch after the binary

paper tape is punched. If no second pass is needed for a

listing, BOOL-143/8 then begins the option queries by

typing *SRC-LH?.

Figure 8-8 is a flow chart for BOOL-143/8 operation.

PAL-143/8 OPERATIONS

Loading and Starting PAL-143/8

PAL-143/8 is supplied as a self-starting binary tape and is

loaded into the PDP-8 memory with the RIM loader

program. Either the paper tape reader on the Teletype or

the high-speed reader can be used to load the tape.

If the high-speed reader is to be used, the source program

paper tape should be loaded in the high-speed reader before

the queries are answered. When started, PAL-143/8 types

the following queries to determine the devices to be used

during assembly.

*BIN Type the letter signifying the device on

which the binary tape will be punched. The

binary tape is the assembly output.

*LST Type the letter signifying the device on

which the assembly listing will be typed (or

punched).

*SRC Type the letter signifying the device on

which the program source tape will be read.

The responses are:

L

H

The low-speed Teletype unit is to be used as

the device.

The high-speed paper tape reader/punch is to

be used as the device.

RETURN The particular output is not wanted; the

RETURN key is typed, without being

preceded by either an L or H.

If the PDP-8 system is not equipped with a high-speed

reader/punch unit and all outputs are wanted, the responses

to all questions will be L and the query sequence will be:

*BIN-L

*LST-L

*SRC-L

To generate an error listing only, request no binary, no

listing, and specify only the source device.

If a mistake is made while typing a response to a query, the

user may change the response before typing the terminating

carriage return, simply by typing the correct response. Only

the last character is recognized. For example:

*BIN-LH

'LST-HL

is the same as typing:

*B1N-H

*LST-L

The user can erase all previous query responses and restart

the sequence of queries by typing the response X. For

example:

'BIN-L

*LST-X

*BIN- The query sequence has been restarted.

Two additional responses (N and E) are used to control the

output or optional error listings. These character responses

can be typed, along with the required response to any

query. They can be erased by typing the X response and

restarting the query sequence.

N No separate error listing is desired on the

Teletype. PAL-143/8 suppresses the output of

the Pass 1 error listing to the Teletype. If the

high-speed punch is used to output the

assembly listing, the output of the Pass 2 error

listing to the Teletype is also suppressed.

E If the high-speed punch is used to output the

assembly listing, typing E requests that the Pass

1 error listing be punched on the high-speed

punch also.

8-14

[START
]

-

•r

s^^NO

LOAD BOOL 143/8
INTO POP -8

/bool
PRI

143/8N
MTt;

SRC-LH

YES

PLACE SOURCE
TAPE IN READER

ANSWER ALL
QUERIES

BOOL 143/8
PRINTS "TURN
PUNCH ON" AND
COMPUTER
HALTS

TURN PUNCH ON

TURN READER ON

PRESS COUNT"
ON PDP-8

SOURCE TAPE
READS IN AND
BINARY TAPE
IS PUNCHED

YES

1
PLACE NEXT
TAPE IN

READER

YES

SOURCE TAPE
READS IN AND
LISTING AND
BINARY TAPE
ARE OUTPUT

1
COMPUTER
HALTS UPON
COMPLETION

TURN PUNCH ON

PLACE SOURCE
TAPE IN READER

PRESS "COUNT"
ON PDP-8

SOURCE TAPE
READS IN AND
LISTING IS

PRINTED

ERROR MESSAGE
PRINTED
(IF APPLICABLE)

COMPUTER HALTS

Figure 8-8 BOOL- 143/8 Operational Flow Chart

8-15

For example, the following sequence of queries and

responses results in binary output on the high-speed punch:

1. The assembly listing is punched on the

high-speed punch

2. The source tape is read from the high-speed

reader

If a PAL-143/8 source program is contained on two or

more source tapes, the assembler stops after reading all but

the last source tape and types the following message:

*EOT(endof tape)

Whenever this message is typed, the user should load the

next sequential tape and press the PDP-8 CONT switch.

3. (No Pass 1 or Pass 2 error listings are typed on

the Teletype)

4. The Pass 1 error listing is punched on the

high-speed punch.

*BIN-HN)
*LST-HE }
*SRC-H >

Error Halt

Symbol table overflow is the only error which will halt the

assembly. If this occurs, PAL-143/8 types the following

message:

*SMB OFLW

Recovery is possible only if the user segments the program

and reassembles it, in parts.

Assembly Passes

PAL-143/8 must read the program source tape possibly two

or three times, depending on the selection of assembly

devices. The first pass of PAL-143/8 defines symbols and

checks for errors. The second pass types the listing and the

symbol table. If separate devices are designated for the

listing and the binary output, the binary output will also be

punched on the second pass. If the same device (for

instance, the Teletype) is used for the listing and the binary

output, a third pass will be required to punch the binary

tape and thereby complete the assembly process.

PAL-143/8 types the message:

*PAS

and halts when it has completed an assembly pass. If a

further pass is required, the user reloads the paper tape in

the reader and presses the PDP-8 CONT switch. If the

low-speed reader is used as the SRC device, the reader must

be switched to START before the pass will start. Before

beginning the pass which punches the binary tape output

(either Pass 2 or Pass 3) the punch designed in the BIN

query must be turned ON.

More than one program can be assembled without reloading

PAL-143/8 by pressing CONT in response to the *PAS

statement, typed after the binary output has been punched.

PAL-143/8 responds by typing the initial queries (*BIN,

*LST, and *SCR) and the assembly process may be

restarted.

ODP-143 OPERATIONS
ODP-143/8 is supplied as a self-starting binary tape and is

loaded into Field of an 8K PDP-8 memory with the

toggled-in RIM loader. Either the paper tape reader on the

model 33 ASR Teletype or a high-speed reader can be used

to load the tape. Before loading and starting ODP-143/8,

installation of the Industrial 14 and the PDP-8 to Industrial

14 serial interface must be completed. If this is not done,

ODP-143/8 will print "INDUSTRIAL 14 HUNG".

To restart ODP-143/8, set the Switch Register to 0200, and

press the START switch (es) on the PDP-8 console. Upon

starting or restarting, ODP-143/8 will enter Program mode

and place the Industrial 14 into External mode.

USING OS/8 SYSTEM TO DEVELOP INDUSTRIAL 14

PROGRAMS
BOOL-143/8, SET-143/8, PAL-143/8 and ODP-143/8 can

be used with the powerful OS/8 system to develop

Industrial 14 programs more efficiently. This section

describes briefly, the loading, accessing, and operation of

BOOL-143/OS8, SET-143/OS8, PAL-143/OS8, and

ODP-143/OS8 programs. It is assumed that the user has a

thorough knowledge of the OS/8 system. If not, before

continuing, it is recommended that the user read the "OS/8

User's Guide", (DEC S8-0SRMA-A-D).

Saving 143/OS8 Programs

The BOOL-143/OS8, SET-143/OS8, PAL-143/OS8 and

ODP-143/OS8 Programs are supplied on paper tape. These

143/OS8 programs should be loaded into core and then

stored in Save Format on the system DECtape or disk unit

8-16

with the Keyboard Monitor before running them. When
Saving each program on the system device, core limits

(locations in memory), starting address, and the job status

word must be specified. Table 8-3 lists core limits (locations

in memory), the starting address, and job status word for

each 143/OS8 program.

For example, to Save a paper tape of BOOL-143/OS8 on
the system device type:

.SAVE SYS 0S8B0L 2000-2777, 10000-16577;

102005 = 4002

To access and run the BOOL-143/OS8 Program, type:

.R 0S8B0L

The OS/8 System enters the Command Decoder and prints

an asterisk (*) when it is ready to accept a command string.

Command Decoder Input Strings

OS/8 Command Decoder expects the following input string

for BOOL-143/OS8and PAL-143/OS8:

file. BIN, file. LS < file . PA

Where file .BIN is the binary (assembled or compiled)

output files.

file .LS is the output (assembled or compiled) listing.

file .PA is the input source file.

OS/8 Command Decoder expects the input string for

SET-143/OS8and ODP-143/OS8 to be:

file .BN<file. BN

Where the Input and output files are both binary format.

To read the input file, type R ^ . To punch the output file,

type P ^.

143/OS8 Program Differences

The OS/8 Command Decoder eliminates all queries of

BOOL-143/8, SET-143/8 and PAL-143/8 except:

VT14-NY? - for BOOL-143/8

and

SYM-YN?- for SET-143/8

These queries are printed after the Command Decoder

input string has been issued.

Upon SET-143/OS8's translation, BOOL-143/OS8's
compilation, or PAL-143/OS8's assembly of the Industrial

14 source program, each program will exit automatically to

the Keyboard Monitor (printing a tC). To exit from the

ODP-143/OS8 program to the Keyboard Monitor, or to halt

any printing (for a List or Interrogate command) the user

must press the CONTROL and C keys, simultaneously. To
restart the ODP-143 program, type ST^ .

Table 8-3

143/OS8 Program Specifications

6 Character Status

143/088 Programs Filename Core Limits Starting Address Word

BOOL-143/OS8 0S8B0L 2000 - 2777 10200 4002
DEC14-IB0LB-A-PB 10000-16577

SET-143/OS8 0S8SET
DEC14-ISETB-A-PB 0-3777 00200 2000

PAL-143/OS8 0S8PAL 0-5577

DEC14-IPALB-A-PB 17000- 17577 00200 2000

ODP-143/OS8 0S80DP
DEC14-I0DP-A-PB 0-5177 00200 2001

8-17

143/OS8 I/O Errors

The I/O error messages, shown in Table 8-4, may appear

when reading, writing, opening or closing OS/8 files.

If one of these error messages occur:

a. Check the input and output device in use for

proper mode of operation.

b. Validate that all necessary input or output

devices were issued to the Command Decoder.

Once this error message is printed, control returns to the

OS/8 Keyboard Monitor. To reenter the Command

Decoder, type "ST" (Start).

Table 8-4

143/OS8 I/O Error Messages

I/O Error Messages Meaning

Open Error 143/OS8 System cannot

output file.

open an

Read Error 143/OS8 System cannot

input character.

read an

Write Error 143/OS8 System cannot

output character.

write an

Close Error 143/OS8 System cannot

output file.

close an

818

CHAPTER 9

MONITORING

Although the Industrial 14 is primarily a stand-alone

control system, its use in conjunction with a computer

offers an added dimension to a control system. This chapter

details the manner in which the Industrial 14 can

communicate with a computer.

INTRODUCTION
This chapter introduces the instructions which are executed

within the Industrial 14 to cause it to react to computer

input, and the instructions that cause it to send information

to the computer. Later sections of the chapter describe the

available communication interfaces. The instructions which

are executed within the monitoring computer to pass the

previously mentioned Industrial 14 instructions to the

controller, and receive data from the controller, are also

described.

MONITORING FACILITIES

The Industrial 14 has two primary facilities for computer

connection: a memory port and an output register (Figure

9-1).

The output register holds data returning from the Industrial

14 controller to the computer. This data word Is 12-bits in

length and can be generated by either internal- or

externally-supplied instructions. Associated with the output

register is an output flag which sets whenever a new data

word is loaded into the output register.

C^
OUTPUT

REGISTER^
COMPUTER

INDUSTRIAL 14

CONTROLLERC^
MEMORY

^;;;i---_ MEMORY
PORT ^^~~~~-

14-0348

Figure 9-1 Industrial 14 Monitoring Facilities

The memory port can be equated to an opening in memory
through which externally supplied instructions are passed.

In actuality, the memory port is a three-word by 12-bit

register which passes the externally supplied instruction to

the control logic for execution. The memory port is

permitted to interrupt the internal program and supply

instructions on a cycle-stealing basis.

Associated with the memory port is the external flag which

signals the status of the memory port. When a new
instruction is supplied to the memory port, the flag is

cleared. The memory port then waits for the controller to

complete its current instruction; at this time, the

externally-supplied instruction is executed by the

controller. The external flag is set after the full one-, two-

or three-word instruction is executed; at this time, the

controller executes the next instruction of its internal

program.

MONITORING APPROACHES
Four general approaches to monitoring are available with

the Industrial 14; they can be used individually or

collectively to fulfill particular application requirements.

Status reporting is achieved by placing instructions in the

controller's memory which report changes in state of

outputs to the computer. The controller is programmed

(usually with BOOL-143) to recognize that a meaningful

change has occurred; an appropriate data word is then

loaded into the output register and transmitted to the

monitoring computer.

Polling allows the computer to read the status of controller

inputs and outputs at any time. The computer supplies

instructions through the memory port which interrupt the

Industrial 14 and cause it to test the required points,

loading their status into the output register. A single point.

9-1

or a consecutive group of eight points, may be polled in a

single transfer. Once the controller has loaded the output

register, it returns to its internal program until it is again

polled.

.^» 1 OUTPUT 1

|register|Nj
COMPUTER

1^ INDUSTRIAL 14

y
^ CONTROLLER

MEMORY
!^;^]^--~_ MEMORY

PORT^~"~-^

14-0347

Figure 9-2 Status Reporting

^^^J OUTPUT ^^^
IV^^REGISTER^^^^ INDUSTRIAL 14

CONTROLLER
c5>COMPUTER

^^^^ MEMORY k^^l^^^ PORT ^^^^
MEMORY

14-0348

Figure 9-3 Polling

Computer command of an Industrial 14 Controller is

achieved by interrupting the controller and supplying an

instruction through the memory port which sets an I/O

point ON or OFF. The I/O point, set by the computer, can

be either an external or internal I/O number. The particular

point chosen can be an unused input number, which the

computer must disable before forcing it ON or OFF; it also

could be an unused external output number, which could

be reset by the controller to signal completion of the task.

In each case, the Industrial 14 loses the computer command

if power is lost. The use of a retentive memory allows

retention of the computer command.

The controller reacts to this command simply by testing the

I/O number in its internal program and reacting according

to the computer-supplied input. The computer command

does not cause a return transmission through the output

register. The external flag is sampled to determine if the

controller is ready to accept a new command.

COMPUTER

INDUSTRIAL 14

CONTROLLER

MEMORY

Figure 9-4 Computer Command

Down line loading is used to supply a partial or a complete

program to the controller. It is achieved by interrupting the

controller and locking it into external mode, in which only

externally-supplied instructions are accepted. After turning

the controller's outputs OFF, the computer loads the

controller's memory as necessary, through the memory

port. Once loaded, memory can be verified for proper

content by supplying instructions to read back memory

content through the output register. The computer then

releases the controller from external mode and the

Industrial 14 begins execution of the new control program.

9
OUTPUT
REGISTER

COMPUTER

INDUSTRIAL 14

CONTROLLER
c<5^

^^^J MEMORY L^B
MEMORY

^^^ PORT 1^^
a. LOADING PROGRAM

COMPUTER

INDUSTRIAL 14

CONTROLLER

b. VERIFYING THE LOAD

Figure 9-5 Down Line Loading

9-2

DUAL INTERFACE PORTS
The Industrial 14 is capable of communication with two

separate external devices through dual interface ports. The

two ports supply instructions through a common memory
port; priority logic prevents any confusion of

externally-supplied instructions. Each port has an output

register to hold data for the external device.

The utility port is a DC14-F 9600 baud, serial interface,

built into the Industrial 14 and is primarily used for

programming or maintenance operations. This is the

low-priority interface; output register 1 is used for

communicating with a VT14, PDP-8, PDP-11 or other

device.

The monitoring port is available for dedicated computer

connection and is utilized by separately-purchased options,

described later in this chapter. It has the highest priority of

access to the memory port and uses output register 6.

These priorities are for the infrequent occurrence when
both ports want to supply an instruction to the Industrial

14 at the same time. The monitoring port is granted access

to the memory port for its instruction, then the utility port

is serviced. This added wait is only a few microseconds.

Although the memory port is shared, each port has an

external flag (Figure 9-6).

The output register designations (1 and 6) do not imply

availability of any other output registers; the Industrial 14

is only capable of supporting two external interfaces at any

one time.

UTILITY^ OUTPUT
PORT r REGISTER 1 \

\ \ INDUSTRIAL 14
CONTROLLER\ OUTPUT

REGISTER 6\ /
MEMORYY /

MONITORING / ^ MEMORY
PORT

/
PORT ---», ^

Figure 9-6 Industrial 14 Dual Interface Ports

INTERNAL INSTRUCTIONS
In addition to the instructions introduced in Chapter 2 for

normal control functions, the Industrial 14 has an

additional repertoire of instructions, many of which are

useful for monitoring and computer-connected operations.

The following paragraphs introduce these instructions,

which unlike the normal testing and setting instructions,

often require two or three 12-bit memory words to express

the complete operation.

In general, these instructions can be stored in the Industrial

14's memory for execution, or they can be supplied by an

external computer, over any of the interface options

described later in this chapter.

MEMORY INSTRUCTIONS
A number of internal Industrial 14 instructions are available

for reading, writing, and controlling memory operations;

they are summarized in Table 9-1.

The first two instructions deal with the program counter

(PC); this is a 13-bit register, which sequences through

internal memory by pointing to the next location to be

executed. The CLRPC instruction is used at the end of a

program to cycle back to the beginning. The RDPC
instructions allows the external computer to obtain the

current PC value through the appropriate output register.

The next two instructions are used throughout normal

Industrial 14 programs. The NOP is stored in every

unprogrammed location. The SKP is used to bypass SF
instructions when an SN has been executed.

The CIF instructions are used to pass from one memory
field to the other; these take effect only on jump type

instructions. Normally, these instructions are not needed

because the program counter automatically starts at the

beginning of the second memory field when it reaches the

end of the first. (Similarly, the CLRPC instruction links

back to field location 0, regardless of where in memory it

is executed.) Normal programming procedures are

concerned with instruction fields.

9-3

Table 9-1

Memory Control Instructions

Symbolic Octal

CLRPC 0004

RDPC 0046

0041

NOP 0000

SKP

CIFO

CIF1

EEM

0010

0020

0030

LEM

LDMEM
Word

0060

0040

0022

Word

RDMEMorTRM
AAAA

0026 or

0021

AAAA

Meaning

Clear PC - forces the next instruction to be

tal<en from location in field . CLRPC also

sets ON internal function 1777 (INITIALIZE).

Read PC - reads the 12-bit value of the

program counter into the output register,

specified by the least-significant octal digit.

No operation — used to occupy unprogrammed

memory locations.

Skip - increments the program counter,

thereby causing the next memory location to

be bypassed.

Change to instruction field - causes the

Industrial 14 to begin executing instructions

from field after the next JMP, JMS, JMR,

JFF or JFN instruction.

Change to instruction field 1 — causes the

Industrial 14 to begin executing instructions

from field 1 after the next JMP, JMS, JMR,

JFF, or JFN instruction.

Enter External Mode - causes the Industrial 14

to suspend operations from its internal memory

and to execute only externally-supplied

instructions (e.g. to allow memory to be

written.)

Leave External Mode — causes the Industrial 14

to begin operation from internal memory at the

location specified by the current value of the

program counter.

Load Memory - loads the 12-bit word that

follows into memory at the location specified

by the program counter. (This instruction can

only be executed when supplied externally and

when the Industrial 14 is in external mode.)

Read Memory - causes the content of memory

location AAAA of the memory field, set with

CDF instructions, to be read into the output

register, specified by the last octal digit.

9-4

Table 9-1 (Cont)

Memory Control Instructions

Symbolic Octal Meaning

CDFO 0600 Change to data field - causes all memory

reading by an external computer to be from the

first 4K of memory.

CDF1 0700 Change to data field 1 - causes all memory

reading by an external computer to be done

from the second 4K of memory.

Table 9-2

I/O Control Instructions

Symbolic Octal Meaning

CLR 0170 Clear all outputs - clears the I/O state memory

for all external outputs (1000-1377).

DOM 0160 Disable Output Multiplexer - prevents the

logical states of outputs, as set in I/O storage

memory, from being supplied to the actual

output converters. Input states continue to be

updated.

EOM 0150 Enable Output Multiplexer - allows output

states to be read to the output converters.

EOL 130 Enable Output Loop - for diagnostic purposes,

this instruction logically connects each output

to two inputs in an inverse manner. After an

EOL, when output 1000 is on, inputs and

400 will be off; 1001 turns off 1 and 401; etc.

External input states have no effect on this

operation.

DOL 140 Disable Output Loop - allows the input to

reflect actual input conditions, rather than the

inverse of the associated output.

The CIF instructions are required to specify the memory

field for memory writing operations. An EEM instruction

locks the Industrial 14 into External Mode to allow writing

of memory; a CIF instruction, followed by a JMP

instruction, loads the program counter with the memory

field and location to be written; a LDMEM transfers the

new content of memory; and finally, an LEM releases the

Industrial 14 to begin execution of the new program.

9-5

The last three instructions in Table 9-1 are used for reading

memory. The CDF instructions specify the memory field to

be read; the RDMEM instruction supplies the specific

address to be read into either output register 1 or 6, as

indicated in the instruction. Reading of Industrial 14

memory can be performed in Interrupt Mode without any

effect on the internal operation of the controller.

Detailed procedures for reading and writing memory are

given later in this chapter.

I/O CONTROL INSTRUCTIONS
In addition to the normal testing and setting I/O

instructions covered in Chapter 2, additional I/O related

instructions listed in Table 9-2, are available that control

the operation of the I/O multiplexer logic.

The CLR instruction is used to logically (electrically) turn

off all external outputs. It is equivalent to issuing 256 SF

instructions, one for each output number from

1000-1377.

The DOM instruction has the same external effect as CLR;

however, it does not clear the logical state of the output, it

merely halts the multiplexing of the output drivers such

that they turn off electrically. The DOM/EOM instruction

pair can therefore be used to switch all outputs off for

some period of time and later return them to the original

state.

The EOL instruction is only used diagnostically to check

the I/O circuitry within the control unit. It inversely

connects each output to two inputs: turning output 1000

ON turns OFF inputs and 400; 1001 turns 1 and 401

OFF, etc.

As noted in Chapter 7, I/O points can be disabled. This

capacity is achieved through a second I/O storage memory

which holds a disable state for each of the external I/O

points. Writing a 1 for a point in the disable memory

disables the point. These disable bits are accessed by adding

2000 to the respective I/O point. Figure 9-8 illustrates this

disable memory. It can be accessed by the load, clear, read,

set and move instructions in both bit and word mode.

Internal functions (I/O numbers beginning with 1400) are

not stored in I/O storage memory; they are stored in the

last 256 words of main memory. However, these functions

are accessed directly by the I/O numbers, not by reading

memory.

The functions before the I/O partition are accessed and

manipulated identically to external I/O points (both word

and bit mode instructions are available). However, these

points do not have an associated I/O disable memory and

cannot be disabled or forced. Although these points are

stored in the Industrial 14 12-bit main program memory,

the first four bits are zero and only the last eight bits are

meaningful (Figure 9-9).

Beyond the I/O partition, the information stored for

internal functions is considerably different (Figure 9-10).

All 12 bits are used and two words are associated with each

function. The first word (even address) holds the current

value as a straight 10-bit binary value. The second word

(odd address) holds the preset value also as a straight 10-bit

binary value. The leading two bits of the even address are

used to record the status of the function; the leading two

bits of the odd address record the type of function.

I/O MANIPULATION INSTRUCTIONS
Inputs, outputs and internal functions can be accessed by

the TN, TF and SN, SF instructions, described in Chapter

2; however, additional access and manipulation of I/O

states is possible in the Industrial 14, using the instructions

listed in Table 9-3. These instructions make use of the

Industrial 14's unique structure for storing I/O states.

External I/O states are stored in the manner represented in

Figure 9-7. They can be read, loaded, moved, cleared and

set individually with the bit-mode instructions in Table 9-3

by referencing the particular point. Similarly, they can be

manipulated in words of eight points, using the WD-mode
instructions by referencing any point within the group.

The state of internal functions beyond the I/O partition, as

stored in bits and 1 of the even address, are established in

response to SN and SF instructions. Timers increment

during "clock ticks"; bit of the even address is set ON
during the clock tick, which causes the current value to

equal the preset. Counters increment on the first SN
instruction following an SF; bit of the even address for

counters will be set ON only during the increment which

causes equivalence between the current value and the

preset. Specifically, the preset-reached bits, and the states

tested by the Industrial 14's control program, are not set by

loading a number into the current value which equals or

exceeds the preset.

9-6

Table 9-3

I/O Manipulation Instructions

Symbolic

CLRWD
AAAA

SETWD
AAAA

LDWD
DDDD
AAAA

MOVWD
AAAA
BBBB

RDWD
AAAA

CLRBIT
AAAA

Octal

0003

AAAA

0013

AAAA

0023

DDDD
AAAA

0033

AAAA
BBBB

0036 or

0031

AAAA

0103

AAAA

Meaning

Clear I/O Word - when referencing external
I/O, I/O disables, or internal functions up to
the I/O partition, all eight points with the same
first three octal digits AAAX are set OFF.
When referencing an I/O function beyond the
partition, the complete 12-bit data word is

cleared.

Set I/O Word - when referencing external I/O,

I/O disables, or internal functions up to the I/O
partition, all eight points with the same first

three octal digits AAAX are set ON. When
referencing an I/O function beyond the I/O
partition, the complete 12-bit word is set to
7777.

Load I/O Word - when referencing external
I/O, I/O disables, or internal functions up to
the I/O partition, the eight points with the
same first three octal digits AAAX are set

according to the last eight bits of the data word
XDDD. When referencing an I/O function
beyond the partition, the complete 12-bit data
word is loaded into the timer or counter as

shown in Figure 9-10.

Move I/O Word - when referencing external
I/O, I/O disables, or internal functions up to
the I/O partition, the eight points with the
same first three octal digits AAAX are parallel

transferred to the points BBBX. When internal

functions beyond the I/O partition are

referenced, the complete 12-bit word is

transferred. Move operations leave the source
word unchanged.

Read I/O Word - transfers the I/O word
referenced to the specified output register, in

the format of Figure 9-9, for all points except
internal functions beyond the I/O partition,

which are read in the format given in Figure
9-10.

Clear I/O Bit - sets off the single point
specified by AAAA. This instruction is not
defined for values of AAAA beyond the I/O
partition (timers and counters).

9-7

Table 9-3 (Coot)

I/O Manipulation Instructions

Symbolic

LDBIT

MOOO
AAAA

MOVBIT

AAAA
BBBB

RDBIT

TDor
AAAA

SETBIT

AAAA

Octal

0123

MOOO
AAAA

0133

AAAA
BBBB

0136 or

0131

AAAA

0113

AAAA

Meaning

Load I/O Bit - loads I/O point AAAA with the

most-significant bit of mask M. This

instruction is not defined for values of AAAA

beyond the I/O partition (timers and counters).

Move I/O Bit - transfers the state of I/O point

AAAA to I/O point BBBB. The source point is

unaffected by the move. This instruction is not

defined for values of AAAA and BBBB beyond

the I/O partition (timers and counters).

Read I/O Bit - loads the specified output

register with the state of the I/O point AAAA

in the format given in Figure 9-11. RDBIT is

defined for all I/O points including internal

functions beyond the partition.

Set 1/0 Bit - sets on the single point specified

by AAAA. This instruction is not defined for

values of AAAA beyond the I/O partition

(timers and counters).

1 2 3 4 5 6 7

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

770

1000

771

1001

772

1002

773

1003

774

1004

775

1005

776

1006

777

1007

1360

1370

1361

1371

1362

1372

1363

1373

1364

1374

1365

1375

1366

1376

1367

1377

Inputs

Outputs

Figure 9-7 I/O Storage Memory Organization

9-8

2000 2001 2002

2010 2011 2012

2020 2021 2022

2003 2004 2005 2006

2013 2014 2015 2016

2023 2024 2025 2026

2007"^

2017

2027

Input

Disables

2770

3000

2771

3001

2772

3002

2773

3003

2774

3004

2775

3005

2776

3006

2777->

3007""

f

3360

3370

3361

3371

3362

3372

3363

3373

3364

3374

3365

3375

3366

3376

3367

3377

Output

^ Disables

Figure 9-8 Disable Storage Memory Organization

1 2 3 4 5 6 7 8 g 10 11
X X X X 1400 1401 1402 1403 1404 1405 1406 1407
X X X X 1410 1411 1412 1413 1414 1415 1416 1417
X X X X 1420 1421 1422 1423 1424 1425 1426 1427
X X X X 1430 1431 1432 1433 1434 1435 1436 1437
X X X X 1440 1441 1442 1443 1444 1445 1446 1447

X X X X 1560 1561 1562 1563 1564 1565 1566 1567
X X X X 1570 1571 1572 1573 1574 1575 1576 1577

NOTE: I/O Partition is assumed to be 1600.

Figure 9-9 Organization of Bit-Oriented Internal Functions

Up/down counters use three I/O addresses but only two
real data words. The "state" of the up/down counter is not
directly stored in these words. Bits and 1 store the enable
bits for the bi-directional counter. The state of the preset
equalling the current value is not stored in memory; it is

determined only when tested by TD (RDBIT), TN and TF
instructions.

In working with timers and counters, always keep in mind
that timers must have I/O numbers below all counters. This
means that the Industrial 14 will treat all functions beyond
the I/O partition as counters after the first I/O function
which has bit of the odd address equal to 0.

I/O POLLING
Polling of I/O states by an external computer can be done
either singly or in a group of eight. The RDBIT and RDWD
instructions cause the specified output register to be loaded
with the words given in Figure 9-11.

The RDBIT instruction is used for all I/O points. When
RDBIT addresses a timer or a counter, it receives as the
current state the same state as would be read by a TN
instruction.

The RDWD instruction reads eight bits, in-parallel, for all

external I/O {including I/O disables) and for internals up to

9-9

EVEN ADDRESS ODD ADDRESS

CURRENT TIME (OCTAL)

r:;IMER ACTIVE (INSTANTANEOUS CONTACT)

1: TIMER EQUALS PRESET VALUE

PRESET TIME (OCTAL)

UT

TIMER DATA FORMAT

EVEN ADDRESS

IMER INCREMENTS ARE 0.1 sec.

1:TIMER INCREMENTS ARE I.Osec.

1: TIMER INTERNAL FUNCTION

ODD ADDRESS

CURRENT COUNT (OCTAL)

r:
D

COUNTER =0

1 : COUNTER 9*0

0: COUNTER < PRESET
I: COUNTER >. PRESET

EVEN ADDRESS

PRESET COUNT (OCTAL)

I— UNU

COUNTER DATA FORMAT

SED

0: COUNTER INTERNAL FUNCTION

ODD ADDRESS

CURRENT COUNT (OCTAL)

— DOWN COUNT ENABLE

UP COUNT ENABLE

PRESET COUNT (OCTAL)

I— UNUSED

0: COUNTER INTERNAL FUNCTION

NOTE :

Third and fourth up/down counter words are not accessible

and contain no useful information

UP/DOWN COUNTER DATA FORMAT

Figure 9-10 Internal Function Storage Format

the I/O partition. Beyond the i/0 partition, RDWD accesses

the full timer or counter data words as given in Figure 9-10.

Notice that the timer or counter value is in octal, not

binary-coded decimal, or any other form.

ERROR CONDITIONS

One requirement of any monitoring system is the ability to

determine current status within the Industrial 14; this is

particularly true if the controller is inoperative.

PROCESSOR STATUS WORD
I/O address 7777 {not memory address 7777) is used to

read the Industrial 14 processor status word. Figure 9-12

illustrates the bit format with an explanation of the internal

function partition bits. The processor status word is only

read with the RDWD instruction. It can never be altered by

a move or load instruction.

A loss of either ac power to the controller or dc power

within the controller will stop the Industrial 14 and cause

all external outputs and I/O disables (if any) to be cleared.

Internal functions retain their state unless programmed to

clear when power returns. In the event of power loss, no

communication with the industrial 14 is possible until

power returns.

9-10

00 01 02

I/O NUMBER OF TESTED POINT :
- TYPE OF READ : - CURRENT STATE (I/O MEMORY)

I -DISABLE CONDITION (DISABLE
MEMORY)

STATE: 0- OFF (NOT DISABLED)
t - ON (DISABLED)

RDBIT OUTPUT FORMAT

00 01 02 03 04 05 06 07 08 09 10 11

XX kO xxxl xxx2 xxx3 xxx4 xxxS xxx6 xxx7

CURRENT STATE OF I/O POINT:
0-OFF
I -ON

RDWD OUTPUT FORMAT
(UP TO I/O PARTITION)

00 01 02
11

10-BIT VALUE

STA
Bl

TUS
TS

RDWD OUTPUT FORMAT
(BEYOND I/O PARTITION)

Detection of an error condition within the Industrial 14
will not prevent communication to the controller. Error

traps cause the Industrial 14 to enter external mode, which
can be read via the processor status word. Simultaneously,
the output multiplexer is disabled, causing the output
converters to be turned off, although their logic state at the

time Of the error trap is preserved in the I/O memory.
Likewise, ail internal functions and ail I/O disables remain
fixed from the time the error was detected. Therefore, the
monitoring computer can access any of this status, if

desired. Error traps will occur if the Industrial 14 has a loss

of internal timing or has a short circuit on the memory data
bus. A third error trap is caused by the Industrial 14
program counter referencing the first location of internal

function storage (location 7400 in the last memory field

installed in the controller). The computer can read the
program counter to determine if this trap has occurred.

INSTRUCTION EXAMPLES
A series of instruction examples follow to illustrate the use

of some of the extended instructions of the Industrial 14.

Figure 9-1 1 Read I/O Output Register Format

00 01 02 03 04 05 06 07 08 09 10 11

I

•INTERNAL FUNCTION
PARTITION NOT USEDJ

14 MODE STATUS : 1= 14 RUNNING IN

EXTERNAL MODE
0=14 RUNNING IN

INTERNAL MODE

8K MEMORY STATUS: 1 = SK 14 MEMORY
0=4K 14 MEMORY

EXTENDED MEMORY
ADDRESS: 1 = PROGRAM RUNNING

IN UPPER 4K
MEMORY FIELD

0=PROGRAM RUNNING
IN LOWER 4K
MEMORY FIELD

TEST FLAG STATUS; 1=SET
0=CLEARED

^POSSIBLE INTERNAL FUNCTION PARTITIONS ARE
LISTED IN TABLE 9-4 14-0354

Figure 9-12 Processor Status Word Format

Table 9-4

Possible Internal Function Partitions

Bit 4 Bits Bite Bit? I/O Partition

1400

1 1420

1 1440

1 1 1460
1 1500
1 1 1520
1 1 1540
1 1 1 1560

1600

1 1620

1 1640

1 1 1660
1 1700

1 1 1720

1 1 1740
1 1 1 1760

9-11

Example 1:

Instructions

TN 1777

JFN .+11

CLRWD
1400

CLRWD
1410

CLRBIT
1420

CLRBIT

1421

JFN .+ 11

Clear consecutive retentive memory

addresses 1400-1421 upon initial

start-up.

Explanation

Perform the clear on start-up only.

Clears retentive memories or shift registers

1400-1407.

Clears retentive memories or shift registers

1410-1417

Clears individual retentive memories 1420

and 1421

Example 4:

Instructions

CLRWD
1700

LDWD
0074

1701

Example 5:

Instructions

Clear counter 1700 and preset it to 60.

Explanation

Clear counter overflows, counter enable and

current count bits; then preset counter

to 60 (74 octal).

Shift data in registers 1420, 1421. 1422,

1423 and 1424 when 1402 transitions to

ON.

Explanation

Test conditions for 1402 shift circuit

Example 2: Reset timer 1620 by clearing its

instantaneous and delayed contacts and

current value.

Instructions Explanation

CLRWD Totally clears the current timer word, leaving

1620 its preset and timer type unchanged.

Example 3: Disable and force on the consecutive

outputs 1000 -1012.

Instructions Explanation

SETWD Disable outputs 1000-1007

3000

SETWD Force ON 1000-1007

1000

SETBIT Disable 1010

3010

SETBIT Force ON 1010

1010

SETBIT Disable 1011

3011

SETBIT Force ON 1011

1011

SETBIT Disable 1012

3012

SETBIT Force ON 1012

1012

JFN .+3

SF 1402 Because 1402 is being set off, bypass the shift

JFFNEXT
TN 1402 Check if 1402 is already ON; if not, set ON.

SN 1402

JFN NEXT Is this an OFF-to-ON transition? If not, bypass

MOVBIT"^
1423

1424

MOVBIT
1422

1423

MOVBIT
1421

1422

MOVBIT
1420

1421

shift.

Shift instructions if this is a transition to ON.

J

INTERFACE OPTIONS

Interfaces are required in both the Industrial 14 and within

the computer to allow them to pass data in the form of the

specific instructions just introduced. The available

interfaces vary as to their capability and performance;

Table 9-5 summarizes these capabilities.

More information describing these hardware options,

including installation procedures, is contained in the

Industrial 14 Systems Manual.

9-12

Table 9-5

Industrial 14 Interface Characteristics

Industrial 14 Interface: DA14-E (EL) DC14-F

Connecting to: PDP-8 PDP-8 PDP-11

Using Computer Interface: (8/L External

bus) KA8/E
KL8-JA DL11-C

Transfer Type: Parallel Serial - 9.6K baud

Maximum Distance: 50' 50'

Number of 14s:
1 1/KL8 1/DL11

Error Detection: None Parity

Interrupt Capability: Yes Individual

Capable of Controller

Initiated Transmissions: Yes Limited

Time to Poll One I/O Point

or Word (Transmission only): ».02 ms «*6.6 ms

Time to Set One I/O Point

or Word (Transmission only): ».02 ms '*4.1 ms

GENERAL CHARACTERISTICS
All Industrial 14 interfaces use the memory port and an
output register. For computer monitoring, the monitoring
port and output register 6 are normally utilized by
whichever interface option is selected.

Another characteristic is the manner in which instructions
can be supplied to the Industrial 14. The most common
technique for supplying instructions is in Interrupt Mode
This operation allows an external computer to interrupt the
internal program of the controller, and to cause a single
instruction of any length to be executed by the controller-
the controller then returns, unaffected, to its internal
program.

When it is necessary to prevent the controller from
returning to its internal program. Interrupt Mode is used to
load the EEM (Enter External Mode) instruction.
Thereafter, all instructions are supplied externally until the
LEM (Leave External Mode) instruction, is given to the
Industrial 14 controller.

While in External Mode, instructions can be supplied in two
ways. The first, and more common approach, is to continue

to transfer instructions as if using Interrupt Mode. The
second is to use the External Load Mode, which allows the
program counter to increment as it would if the
externally-supplied instructions were actually stored in
internal memory. However, it is usually easier to prevent
the program counter from operating, even when in External
Mode, by always supplying instructions as in Interrupt
Mode. This manual uses the Interrupt Mode for supplying
all examples, forcing the controller into External Mode
where necessary.

Another characteristic found in all interfaces is the ability
to sample the external flag to determine that the controller
has executed the instruction supplied to it by the
computer. All interfaces also have the ability to sample the
output flag to determine that data has been loaded which
now should be read. The manner in which these flags are
actually sampled by a specific interface varies; the
techniques used include skip instructions, program
interrupts and bit test operations.

The various logical combinations of flag states have
different meanings (Table 9-6).

9-13

Table 9-6

Industrial 14 Interface Flag Meanings

Meaning

An externally-supplied instruction

has loaded the output register with

data to be read by the monitoring

computer. In this case, the flags will

be set simultaneously.

An externally-supplied instruction

has been completed. This

instruction did not load data into

the output register.

An internal instruction within the

Industrial 14 has loaded data to be

read by the monitoring computer.

This combination is used in some

interfaces to signal a transmission

error.

DA14-E PARALLEL INTERFACE

The DA14-E (and DA14-EL) interface is available for

connecting a single Industrial 14 to a PDP-8 family

computer. Selection of the -E or -EL model is dependent

upon the PDP-8 configuration. Refer to the Industrial 14

Systems Manual for details. The DA14-E passes data at

extremely high speeds, but it is restricted to a maximum

cable length of 50 feet. A further restriction is that only

one Industrial 14 can be connected to a PDP-8 family

computer via a DA14-E at one time.

The DA14-E instructions used by the PDP-8 to

communicate with the Industrial 14 are listed in Table 9-7;

the first two instructions are used to pass instructions to

the Industrial 14. The GNI is used to pass instructions in

Interrupt Mode, or in External Mode, without affecting the

program counter within the Industrial 14. Each word of the

instruction is passed to the Industrial 14 with a GNI

instruction. When all words have been supplied to the

interface, the internal program is interrupted at the

conclusion of its present instruction and the

externally-supplied instruction is loaded through the

memory port for execution. When the complete instruction

has been executed, the external flag is set and the controller

returns to its internal memory for the next instruction.

The LDE instruction can only be used after the Industrial

14 has been forced into External Mode using a GNI

instruction. Once this is accomplished, the LDE or the GNI

can be used to supply all subsequent instructions. Using the

LDE results in the program counter incrementing as it

would if the instructions were supplied from internal

memory. Using the GNI leaves the program counter

unchanged unless it is directly affected by the instruction

supplied by the GNI (a JMP instruction, for example).

The ROR instruction is used to read into the PDP-8's

accumulator any data that has been loaded into the output

register by either internal memory or by externally-supplied

instructions. The ROR instruction is usually preceded in

the program by a test of the output flag, using the SOF

instruction to determine if data is present. The ROR clears

the output flag when executed. Because the output register

is not buffered, any subsequent loading of the register will

destroy whatever had been loaded, therefore, it is

important that the output register be read before another

instruction, which causes a second data transfer, is

executed.

The SEF and CEF instructions sample and clear the

external flag, respectively; the SOF and COF instructions

sample and clear the output flag, respectively. The external

and output flags are both connected to the PDP-8 skip bus

and the program interrupt bus. This means that if the

program interrupt facility is enabled and either of these

flags is set, the PDP-8 will receive a program interrupt.

Refer to the PDP-8 Introduction To Programming for

details.

The SCR is used to determine that the Industrial 14 is

running before attempting to give it any command. A loss

of Run in the Industrial 14 will cause an interrupt of the

PDP-8 computer for a maximum of five milliseconds until

the SCR instruction is executed.

Figure 9-13 is a sample program using the DA14-E to pass

instructions to the Industrial 14. The routine is called by

the following instruction sequence:

JMS XECUTE
#0F WORDS
WORD 1

WORD 2

WORD 3

(If needed)

(If needed)

The XECUTE routine passes all words of the instruction to

the Industrial 14, then waits for the external flag before

returning. If data is loaded into the output register, it is

returned in the accumulator. If the output flag is not set,

the routine returns with accumulator zero.

9-14

Symbolic Octal

GNI 6165

LDE 6164

ROR

SEF

6176

6161

CEF 6172

SOF 6171

COF 6167

SCR 6175

Table 9-7

DA14-E Interface Instructions

Meaning

Generate an Interrupt - clears the external flag

and loads one word Into the memory port from
the PDP-8 accumulator. When all words of the
instruction have been loaded individually with the
GNI, the instruction is executed and the external
flag is set. GNI has no effect on the internal

Industrial 14 program except as a direct result of
the instruction it is used to supply.

Load and execute External - with the Industrial

14 in External Mode, LDE loads the memory port
from the PDP-8 accumulator identically to the
GNI. The LDE allows the program counter within
the Industrial 14 to increment normally with each
word loaded by the LDE.

Read Output Register - clears the output flag,

clears the PDP-8 accumulator, then loads the

output register value into the accumulator.

Skip on External Flag - skip the next PDP-8
memory location if the external flag is set within
the Industrial 14. The external flag is set at the
conclusion of each externally-supplied instruction.

Clear External Flag - clear the external flag, to
remove an interrupt request once it is detected by
the PDP-8.

Skip on Output Flag - skips the next PDP-8
memory location if the Industrial 14 output flag is

set, indicating that new data has been loaded into

the output register.

Clear Output Flag - clear the output flag to

remove an interrupt request once it is detected by
the PDP-8. It is unnecessary to use the COF
instruction when an ROR is used to read the

output register.

Skip on Controller Running - skips the next
PDP-8 memory location if the Industrial 14 is

running. It is not possible to enter external mode
or to have any effect on the Industrial 14 if it is

not running.

9-15

/DA14-E EXECUTE SUBROUTINE

XECUTE,

XECUTE1,

CNTR,

CLA
TAD
CIA

DCA
ISZ

TAD
GNI

CLA
ISZ

JMP
ISZ

SEP

JMP

SOF
SKP

ROR
JMP

I XECUTE /GET WORD COUNT

CNTR
XECUTE
XECUTE

CNTR
XECUT1
XECUTE

-1

I XECUTE

/SET UP COUNTER
/INCREMENT POINTER

/PICK UP NEXT WORD
/SEND TO THE 14

/ALL WORDS SENT?

/NO: GET NEXT
/YES: SET UP RETURN
/WAIT FOR EXTERNAL FLAG

/OUTPUT FLAG SET?

/NO: RETURN WITH AC=0

/YES: READ OUTPUT REGISTER INTO AC

/RETURN

Figure 9-13 DA14-E Execute Subroutine

Program examples at the end of this chapter make use of

this routine to poll I/O points, load memory, etc. This

routine does not make use of the program interrupt facility,

nor does it handle an Industrial 14-initiated transfer. If the

monitoring computer expects to receive status reporting

data from the Industrial 14, it is recommended that

program interrupt techniques be used. The skip chain for

handling an interrupt would include the SOF instruction to

detect the presence of an Industrial 14-initiated transfer.

}
SOF
SKP

JMP DATA 14

:]

Save program constants

/is Industrial 14 interrupting?

/No: Check other devices

/Yes: Service by reading output

/register

Service slower devices.

It is recommended that the Industrial 14's output register

be serviced as early in the skip chain as possible to protect

against lost data.

DC14-F SERIAL INTERFACE

The DC14-F is a standard EIA interface for the Industrial

14 that normally transmits data at 9600 baud. It can

communicate to a PDP-8/E, M or F, using a KL8-JA

Teletype interface, or to a PDP-11, using a DL11 interface.

{Consult Digital Equipment Corporation for information on

the use of the DC14-F at rates other than 9600 baud.)

Each word to be transmitted to the Industrial 14 is split

into two separately-transmitted characters as shown in

Figure 9-14. Two mode bits specify the form in which the

instruction is to be executed: Interrupt Mode (no PC

increment) or External Load Mode (PC increment). Setting

both mode bits to 1 when using the DC14-F is equivalent to

transferring the word with a GNI when using the DA14-E.

Similarly, setting ON only Mode Bit when using the

DC14-F is equivalent to transferring the word with an LDE

instruction when using the DA14-E. Normally, only

Interrupt Mode (both mode bits = 1) is used, since it is

undesirable to affect the program counter except by a

direct JMP instruction.

When transmitted, an optional eighth bit can be added for

parity, depending upon switch selection in the DC14-F

interface and in the computer interface (KL8-JA or

DL11-C). A start and a stop bit complete the number of

bits in the character transmitted.

Notice that two-word instructions require the transmission

of four characters and three-word instructions require six

characters. Similarly, data received from the Industrial 14

comprises two seven-bit characters as shown in Figure 9-15

(plus parity, start, and stop bits). The six most-significant

bits are received first, together with the equivalent of the

9-16

external flag. The six least-significant bits are received in

the second character with the equivalent of the output flag.

Parity is generated and can be checked by the receiving

computer interface.

Several error checks are performed by the DC14-F
interface; parity is checked for each character as it is

received. If a parity error is detected, the DC14-F clears its

buffers without causing the controller to execute the

instructions, and returns two all-zero characters to the

computer. This is equivalent to external flag = 0, output
flag = 0, and data word = 0.

FIRST 6 BITS LAST 6 BITSD
MODE BIT 0: ALWAYS 1 MODE BIT I

0: LDE EQUIVALENT
TRANSFER

1. GNI EQUIVALENT
TRANSFER

Figure 9-14 DC14-F Receiver Data Format

EF FIRST 6 BITS

TZTERNAL FLAG

OF SECOND 6 BITS

T•OUTPUT FLAG

Figure 9-15 DC14-F Transmitter Data Format

A second check ensures proper synchronization between
the controller and the computer. Because multiple

characters (two, four or six) are required for a single

interrupt of the Industrial 14, the hardware must protect

against the execution of misconstructed instructions. This
protection is provided by restricting the amount of time

allovred between characters of an externally-supplied

instruction. Once the first character of an instruction is sent

to the Industrial 14, each successive character must be

transmitted within one-half character time. At the normal
transmission speed of 9600 baud, this means that no more
than 500 microseconds can be tolerated between XMIT
instructions until the complete instruction of up to six

characters has been sent. If the Industrial 14 does not
receive each character within the allotted time, it ignores all

the characters and initializes itself. The computer can
detect this loss of transfer as it will not receive the

transmission of the external flag, which will occur if the

complete instruction is received and executed.

The KL8-JA instructions, used to transfer data to the
Industrial 14, are listed in Table 9-8. These instructions

include a group for the transmitter to the Industrial 14
(octal codes 631X) and for the receiver from the Industrial

14 (octal codes 630X). The XMIT instruction is used to
send a character to the Industrial 14 and the STDF checks
to determine if the interface is ready to accept the next
character. The SRCF is used to determine if data has
returned from the Industrial 14 and the RDRD reads the
received data into the PDP-8 accumulator.

The LDSE instruction allows the program to disconnect the
KL8-JA interface from the interrupt bus.

This permits use of the program interrupt facility for other
devices without causing interrupts for the Industrial 14.

The LDSE also controls the reading of error status with
each data word read by an RDRD instruction. The error

status obtained when it is enabled is shown in Figure 9-16.

For a further discussion of these errors, consult the KL8-JA
Asynchronous Data Terminal Control Manual
(DEC-8E-HRJC-D-KL8-JA).

Figure 9-17 is a sample program using the DC14-F and
KL8-JA to pass instructions to the Industrial 14. Its

function is identical to the similar routine presented in

Figure 9-13 for the DA14-E. It splits all words of the

instruction into two characters, transmits all characters,

receives both characters of the return transmission and
returns with the output register value (if any) in the

PDP-8's accumulator. Like the DA14-E XECUTE routine, it

is usable for all examples presented at the end of this

chapter.

00 01 02 03 04 05 06

I
6 BIT DATA WORD

FLAG BIT

NOT USED

OVERRUN ERROR
FRAMING ERROR
PARITY ERROR
ERROR DETECTED

Figure 9-16 KL8-JA Receiver Word

9-17

Table 9-8

KL8-JA Instructions for DC14-F Communication

Symbolic

STTF

STDF

CTDF

SKPI

Octal

6310

6311

6312

6315

XMIT

SRCF

CRCF

RDCO

LOSE

RDRD

6316

6301

6302

6304

6305

6306

Meaning

Set Transmitter Flag - sets the transmit done flag

without transmitting a character.

Sl<ip on Transmit Done Flag

Clear Transmit Done Flag

Skip on Interrupt - skips the next sequential

PDP-8 memory location if either the transmit or

receive flag is set, provided the interrupt enable is

set.

Transmit - clears the transmit flag and transfers

the character from the seven least-significant bits

of the accumulator to the Industrial 14.

Skip on Receiver Flag

Clear Receiver Flag - also clears the PDP-8

accumulator.

Receive Data ORed - reads the receiver data

inclusively ORing it with any data already in the

PDP-8 accumulator.

Load Status Enable - set interrupt enable

according to AC bit 11 and status word enable

according to bit 10. (1) = enable, (0) = disable.

Receiver Data Read - read data from the

Industrial 14 into the PDP-8 accumulator. Error

status is also read provided it is enabled.

The DC14-F is not recommended for status reporting

(transition monitoring) from the Industrial 14 to the

computer because it does not double buffer the output

register. If several instructions in the Industrial 14's

memory could all load the output register within one

transmission time (approximately 1.1 ms), lost data would

result. Therefore, initiated transfers for status reporting are

possible over the DC14-F only if two such reports can never

occur within the same 1.1 ms period.

PROGRAM EXAMPLES
This section presents examples of monitoring functions

with the Industrial 14. The examples make use of the

"XECUTE" subroutines, introduced previously, and are

therefore independent of the selected interface.

Figure 9-18 is an instruction sequence to read the state of a

single I/O point. It can be used to read the state of any

input, output, internal function or disable state using the

proper value for lONUM (Table 9-9).

The program in Figure 9-19 will read eight points in

parallel. Only the I/O functions appended by an asterisk

may be read in parallel.

9-18

The program in Figure 9-20 will set an input, output,
retentive memory, or I/O disable ON. A similar routine
could be used for CLRBIT or LDBIT. This routine would
only be used for the I/O numbers followed by an asterisk
(Table 9-9).

The technique for loading, clearing or setting eight points in

parallel is illustrated in Figure 9-21.

Loading and reading timers uses the technique shown in

Figures 9-22 and 9-23.

/DC14-F/KL8-JA EXECUTE SUBROUTI
XECUTE,

NE

XECUT1,

XECUT2,

WAIT,

CLA
TAD
CIA

DCA
ISZ

TAD
DCA

I XECUTE /GET WORD COUNT

CNTR
XECUTE
XECUTE
SAVE

CLA CLL CMA RAL
DCA
TAD
BSW
AND
TAD
XMIT
STDF
JMP .-

1

CLA
TAD
ISZ

JMP

CLA
ISZ

JMP

ISZ

CNTR2
SAVE

K77

K100

SAVE
CNTR 2

XECUT2

CNTR
XECUT1
XECUTE

CLA CLL CMA RAL
DCA
DCA
SRCF
SKP

JMP
ISZ

JMP
JMP

CNTR 2

CNTR3

XECUT3
CNTR3
WAIT-HI

ERR0R1

/SET UP COUNTER
/INCREMENT POINTER
/PICK UP NEXT WORD
/STORE IT TEMPORARILY
/SET AC =-2

/SET UP CHARACTER COUNTER
/GET WORD
/RTR;RTR,RTR, INPDP-8/L
/GET NEXT CHARACTER
/SET INTERRUPT MODE BITS
/SEND CHARACTER
/WAIT FOR TRANSMITTER DONE

/GET WORD
/SENT BOTH CHARACTERS?
/NO: SEND NEXT
/YES

/ALL WORDS SENT
/NO: GET NEXT WORD
/YES: SET UP RETURN
/SET AC = -2

/SET UP RECEIVED CHARACTER COUNTER
/SET UP OVERTIME COUNTER FOR 4K

/WAITED LONG ENOUGH?
/NO: CHECK FLAG AGAIN
/YES: ERROR

(Continued on next page)

Figure 9-17 DC14-F Execute Subroutine

9-19

XECUT3,

XECUT4,

ERROR,

CLA CLL CML RTL

LOSE
RDRD
SPA

JMP ERR0R2

ISZ CNTR2
JMP XECUT4

AND K177

TAD K7700

AND K77

TAD OUTREG

JMP i
XECUTE

CLL RTL
RTL
RTL
AND K7700

DCA OUTREG
SZL
JMP WAIT

/SET AC = 2

/SET TO READ ERROR STATUS

/READ CHARACTER AND STATUS

/COMMUNICATIONS ERROR

/NO ERRORS: WHICH CHARACTER?

/FIRST HALF
/STRIP TO 7 BITS AND ADD CONSTANT

/TO SET LINK = OUTPUT FLAG

/STRIP TO 6-BIT DATA WORD
/COMBINE WITH FIRST HALF

/RETURN WITH VALUE IN AC

/FIRST WORD - MOVE LEFT

/TO PUT FLAG IN LINK AND WORD

/IN THE MOST SIG. BITS

/STRIP TO SIX BITS

/SAVE FIRST HALF

/IF EXTERNAL FLAG NOT SET

/PROBABLY DUE TO PARITY ERROR

/AT RECEIVING DC14-F. SHOULD RETRANSMIT

/COMPLETE INSTRUCTION

ERR0R1, /NO RETURN IN REASONABLE DELAY

/FAULTY INTERFACE OR STOPPED 14.

ERR0R2, /ERROR DETECTED ON INCOMING

/WORD FROM 14.

CNTR,
SAVE,

CNTR 2,

K77, 77

K100, 100

CNTR3,

K177, 177

K7700, 7700

OUTREG,

XMIT = 6316

STDF = 6311

SRCF = 6301

LDSE = 6305

RDRD = 6306

/KL8-JA TRANSMIT INSTRUCTION

/KL8-JA SKIP ON TRANSMIT DONE

/KL8-JASKIP0N RECEIVER FLAG

/KL8-JA LOAD STATUS DISABLE

/KL8-JA READ RECEIVED DATA

Figure 9-17 DC14-F Execute Subroutine (Continued)

9-20

POLL, JMS

2

RDBIT
POINT, lONUM

CIA

TAD POINT
SNA
JMPOFF
CLLRAL
SNA
JMPON
JMP ERROR

RDBIT = 0136

IONUM =

XECUTE /CALL EXECUTE ROUTINE

/CHECK FOR PROPER RETURNED WORD

/I/O POINT IS OFF

/I/O POINT IS ON
/I/O POINT IMPROPERLY READ

/POINT TO BE TESTED

Figure 9-18 Polling a Single Point

Table 9-9

I/O Number Ranges

Polled State Range For lONUM

Input* 0-777

Output* 1000-1377

Retentive Memories* 1400 -I/O Partition

Timers

instantaneous

Delayed

Event Counters

Preset reached

Up/Down Counters

Equal preset

Equal

External I/O Disables*

Odd Address Beyond I/O Partition

Even Address Beyond I/O Partition

Odd Address Beyond I/O Partition

1760, 1764, 1770, 1774

1761, 1765, 1771, 1775

2000-3377

*Valid for both BIT and WD operations

9-21

READS.
2

RDWD
lONUM
CLL RAL
SPASZL
JMP ERROR /YES: ERROR

RTL
SPA SZL /EITHER OF NEXT TWO BITS SET?

JMP ERROR /YES: ERROR

RTL /MOVE WORD LEFT

SZL /I/O POINT ON?

JMS ONO /YES

SPA /I/O POINT 1 ON?

JMS 0N1 /YES

RTL /MOVE WORD LEFT

SZL /I/O POINT 2 ON?

JMS 0N2 /YES

SPA /I/O POINT 3 ON?

JMS 0N3 /YES

RTL /MOVE WORD LEFT

SZL /I/O POINT 4 ON?

JMS 0N4 /YES

SPA /I/O POINT 5 ON?

JMS 0N5 /YES

RTL /MOVE WORD LEFT

SZL /I/O POINT 6 ON?

JMS 0N6 /YES

SPA /I/O POINT 7 ON?

JMS 0N7 /YES

RDWD =

lONUM
0036

/ONE POINT IN GROUP OF 8 TO BE

/TESTED

Figure 9-19 Polling Eight Points in Parallel

9-22

FORCE, JMS

2

SETBIT

lONUM
SZA
JMP

XECUTE

ERROR

/FOR CLRBIT, OR SETBIT: 3 FOR LDBIT

/ALSO SUPPLY A MASK FOR LDBIT

SET BIT

lONUM =

0113 /COULD USE CLRBIT OR LDBIT
/POINT TO BE SET ON

Figure 9-20 Setting a Single I/O Bit

FORCES, JMS

3

LDWD
MASK
lONUM
SZA
JMP

XECUTE

ERROR

/FOR LDWD; 2 FOR SET WD OR CLRWD

/FOR LDWD ONLY

LDWD =

MASK =

lONUM =

0023 /COULD USE SETWD OR CLRWD
/STATE OF POINTS TO BE SET
/I/O POINTS TO BE LOADED

Figure 9-21 Loading Eight I/O Points in Parallel

9-23

TMRSET, JMS XECUTE
3

LDWD
VALUE
lONUM
SZA
JMP ERROR

LDWD = 0023

VALUE = mWIER VALUE IN OCTAL WITH PROPER CONTROL BITS

IONUM= /ODD I/O NUMBER OF TIMER

Figure 9-22 Loading a Timer Preset

TMRRD, JMS XECUTE
2

RDWD
lONUM

RDWD = 0036

lONUM = /ODD ADDRESS TO READ PRESET

/EVEN ADDRESS TO READ CURRENT VALUE

Figure 9-23 Reading a Timer Preset

9-24

Figure 9-24 shows a technique for reading memory content

from the Industrial 14. A simple looping routine could be

added to successively compare memory content read from

the Industrial 14 to a core image stored within the

monitoring computer. Reading of memory does not require

the controller to be in External Mode and can actually be

done without affecting the control of the system by the

Industrial 14.

Writing memory as seen in Figure 9-25 requires the

Industrial 14 to be in External Mode. Note the use of the

CLR instruction to turn all outputs off while memory is

written. Simple modifications would load a whole section

of memory rather than just a single location. Once loaded,

memory should be verified, then the internal program is

started by setting the program counter and causing the

Industrial 14 to leave External Mode.

/READ 14 MEMORY ROUTINE
READM, CLA

JMS

1

CDFZ14

XECUTE

SZA
JMP ERROR
JMS XECUTE
2

RDMEM
LOCADD
DCA MEM14

/SET DATA FIELD TO EITHER
/FIELD ZERO OR ONE AS DESIRED

/NO OUTPUT REGISTER SHOULD HAVE
/BEEN RETURNED
/READ MEMORY CONTENT AT
/SPECIFIED LOCATION

/LOCATION TO BE READ
/MEMORY CONTENT AS IN AC

CDFZ14 =

LDMEM =

LOCADD =

0600 or 0700

0026

/EITHER CDFOorCDFI FOR THE 14

/ADDRESS OF LOCATION TO BE READ

Figure 9-24 Reading a Memory Location Within the Industrial 14

/WRITE 14 MEMORY ROUTINE
WRITEM, CLA

JMS
1

EEM

XECUTE

SZA
JMP ERROR
JMS
1

XECUTE
1

CLR
SZA
JMP ERROR
JMS
1

XECUTE
1

CIFZ14

SZA

/FORCE 14 INTO EXTERNAL MODE

/A RETURNED VALUE IS AN ERROR
/CLEAR ALL 14 OUTPUTS

/A RETURNED VALUE IS AN ERROR
/SET INSTRUCTION FIELD FOR LOAD

(Continued on next page)

Figure 9-25 Writing a Memory Location Within the Industrial 14

9-25

JMP ERROR
JMS XECUTE
2

JMP14

LOCADD
SZA
JMP ERROR
JMS XECUTE
2

LDMEM
LOCVAL
SZA
JMP ERROR

/A RETURNED VALUE IS AN ERROR
/SET PROGRAM COUNTER FOR
/LOCATION TO BE WRITTEN

/A RETURNED VALUE IS AN ERROR
/WRITE ONE WORD OF 14 MEMORY

/A RETURNED VALUE IS AN ERROR
MODIFY OTHER LOCATIONS AND VERIFY

PROPER LOADING BY READING MEMORY

JMS XECUTE
1

CLRPC
SZA
JMP ERROR
JMS XECUTE
1

LEM
SZA
JMP ERROR

/SET PROGRAM COUNTER TO
/STARTING LOCATION

/A RETURNED VALUE IS AN ERROR
/RELEASE 14 FROM EXTERNAL MODE

/A RETURNED VALUE IS AN ERROR

EEM = 0060

CLR = 0170

CIFZ14 = 0020 or 0030

JMP 14 = 0024

LDMEM = 0022

LOCADD =

LOCVAL =

CLRPC = 0004

LEM = 0040

/EITHER CIFOOR CIF1 FOR THE 14.

/MEMORY ADDRESS TO BE LOADED
/MEMORY VALUE TO BE STORED

Figure 9-25 (Continued) Writing a Memory Location Within the Industrial 14

9-26

APPENDIX A

INPUT ASSIGNMENT SHEET

I/O Number Symbol

INPUT ASSIGNMENT SHEET

Function
Normal

Condition

APPENDIX B

OUTPUT ASSIGNMENT SHEET

OUTPUT ASSIGNMENT SHEET

I/O Number Symbol Function

APPENDIX C

INTERNAL FUNCTION

ASSIGNMENT SHEET

INTERNAL FUNCTIONS ASSIGNMENT SHEET

I/O Number Symbol Function
Preset or

Limits
Type

APPENDIX D

INDUSTRIAL 14

PROGRAM COMPATIBILITY

WITH THE VT14

Industrial 14 programs prepared by PAL-143 and

BOOL- 143 and debugged by ODP-143 may not be

compatible with the VT14 Programming Terminal and are

therefore incapable of being changed.

The VT14 Programming Terminal recognizes only the

instructions in Table D-1. Special attention must be given

to the restrictions posed by these instructions within the

Industrial 14 Program.

NOTE
Industrial 14 monitoring, subroutine, and

change field Instructions are incompatible with

the VT14.

JFN Restriction

The JFN instruction is caused by the last or only entry into

a branch (going from left to right) or the last instruction

before the set output ON position in a circuit diagram;

otherwise a JFF instruction should be used.

For example, the JFN instructions in locations 401, 403,

and 411 (Figure D-1) are caused by the last entry into

branches A, B, and C.

If a JFN instruction is inserted incorrectly, it is displayed as

a dummy branch on the VT14 Programming Terminal. If an

attempt is made to store a circuit with dummy branches,

the VT14 will output a "FORMAT ERROR" message.

CLRPC Restriction

Binary tapes read by the VT14 have only one CLRPC
instruction in memory; this is always stored in location

7377 of the highest memory field. To ensure this, the VT14
should be used to clear memory first, and then load the

program tapes via the Teletype and VT14.

1000= H«[]2*{3 + 4)+5]] » 6

400 TF 0001 410 TF 0005
401 JFN 16 411 JFN 16
402 TF 0002 412 TF 0006
403 JFN 10 413 JFN 0016
404 TF 0003 414 SN 1000
405 JFF 12 415 SKP
406 TF 0004 416 SF 1000
407 JFF 12

Figure D-1 JFN Restriction Ladder Diagram,

Boolean Equation and Equivalent

Industrial 14 Instructions

If ODP-143 is used to load the Industrial 14 program, the

user must validate that only one CLRPC instruction is in

memory (location 7377 of the highest available memory
field).

NOP Restriction

To omit sensing a contact (TF or TN) using ODP-143, a

NOP instruction must not be inserted in its place. The
VT14 interprets the NOP instruction as the end of a circuit.

Thus, in Figure D-2, if input 2 is not needed, insert an

instruction sensing one of the adjoining inputs (TF1 or

TF3) instead of a NOP instruction.

D-1

Table D-1

industrial 14 Instructions Compatible With the VT14

Instruction

Symbolic

TF 10

TN 10

SF

SN

JFF NNN

JFN NNN

SKP

CLRPC

NOP

MOVBIT

Numeric

4000+ 10

6000+ 10

0000 +

2000 +

2000 + NNN

2400+ NNN

0010

0004

0000

0133

Meaning

Test an input, output, or internal

function for the OFF state.

Test an input, output, or internal

function for the ON state.

Set output or internal function

OFF.

Restriction

Set output or internal function

ON

Jump to location NNN if the test

flag is OFF.

Jump to location NNN if the test

flag is ON.

Skip the following memory

location unconditionally.

Clear the program counter. Causes

an unconditional jump to Location

in Field 0.

No operation

Move I/O bit from I/O address

to I/O address.

None

None

Instructions must always be programmed

in the order:

SN

SKP

SF

The SN instruction must always occupy

a location whose address is divisible

by 4

Only the last entry into a branch

left-to-right causes a JFN instruction;

otherwise, all other jump instructions

should be JFF.

A JFN instruction must always precede

an SN position.

None

This instruction must occupy only

location 7377 in the highest memory

field.

This instruction signifies the end of a

circuit to the VT14.

This instruction should only be used in

a shift circuit. Refer to the format

described in the Movbit Restriction

(following).

D-2

1000

Figure D-2 Circuit Diagram

The original and corrected Industrial 14 instructions

follow:

1400

LOWLIM
1420

MILIM
1425

1400

LOWLIM
1420

HILIM
1423

Origina 1 Corrected

200 TF 0001 TF 0001

201 TF 0002 TF 0001

202 TF 0003 TF 0003

203 JFN 006 JFN 006

204 SN 1000 SN 1000

205 SKP SKP
206 SF 1000 SF 1000

Movbit Restrictions

Before changing the shift register limits with ODP-143, the

user should become familiar with the Industrial 14

instruction format for a shifter circuit (Chapter 3). The
following example illustrates the method for changing shift

register limits while still maintaining VT14 compatibility.

To reduce the shift register limits to 1420 as the'low limit,

and 1423 as the high limit, movbit instructions and two
conditional jump instructions must be altered.

Figure D-3 Shift Register Circuits for

VT14 Compatibility

The following are the original and changed Industrial 14

instructions:

Original Industrial 14 Changed Industrial 14

Instructions Instructions

1000 TF 0001 1000 TF 0001

1001 JFN .+3 1001 JFN .+3

1002 JFF .+4 1002 JFF .+4

1003 SKP 1003 SKP
1004 SF 1400 1004 SF 1400
1005 JFF .+23 1005 JFF .+15

1006 TN 1400 1006 TN 1400

1007 SN 1400 1007 SN 1400
1010 JFN .+20 1010 JFN .+12

1011 MOVBIT 1011 MOVBIT
1012 1424 1012 1422

1013 1425 1013 1423

1014 MOVBIT 1014 MOVBIT
1015 1423 1015 1421

1016 1424 1016 1422

1017 MOVBIT 1017 MOVBIT
1020 1422 1020 1420

1021 1423 1021 1421

1022 MOVBIT 1022 NOP
1023 1421

1024 1422

1025 MOVBIT
1026 1420

1027 1421

1030 NOP

D-3

INDUSTRIAL 14 SOFTWARE MANUAL T?^o^«t.»o n^^^ j.

DEC-14-ISUMA-B-D
Keader s Comments

Your comments and suggestions will help us in our continuous effort to improve the quaUty and usefulness of
our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

^^^^ _____ Organization

Street _ _— Department

^ity State _ Zip or Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation

Technical Documentation Department

146 Main Street

Maynard, Massachusetts 01754

