
4

m

$9S

digital equupment corporation mm

wwwwmfiwfiww
www

OOOOOOOOOOOOOOO_ 4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

.

O.

I.

O.

O.

O.

O.

O.

O.

O.

O.

.0

O.

O.

O.

.4.

DEC-OS-ODSMA-A-D

4K DISK MONITOR

SYSTEM‘

Order additional copies as directed on the Software

Information page at the back of this document.

digital equipment corporation - mognard.~mos$ochusetts

2nd Printing (Rev) February 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such

system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright <:) 1973, 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of

this document, explains the various services available to DIGITAL

software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in

preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8

COMTEX EDUSYSTEM LAB-B/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM

DECCOMM GLC-8 OS/8 RT-ll

DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8

UNIBUS

PREFACE

This printing of the 4K Disk Monitor System Reference Manual updates
the Disk Monitor System and Reference Manual (DEC—D8-SDAB—D) and

incorporates Chapter 8 of Introduction to Programming 1970, and Change
Notice (DEC-DB—SDAB-DN).

iii

CONTENTS

Page

CHAPTER 1 INTRODUCTION

EQUIPMENT REQUIREMENTS 1-1I-‘ H

CHAPTER MONITOR OPERATION

GENERAL DESCRIPTION 2 1

Monitor Residence 2-1

System Modes 2 2l

O

NH
BOOTSTRAPPING THE MONITOR 2-2

STARTING THE MONITOR

\p

m

u

axmtn

01mln

hi>hn§lsfifl>
I»

m

Heap

COMMAND STRINGS

1 Command String Format

1.1 Device Names

1.2 Filenames

1.3

1.4

2

Punctuation

Special Characters

Examples of Command Strings

I

I—Ioooo

\lmO‘U'IU'IIb-h
W

O

o

a

o

o

o

a

o

I

o

o

n

o

o

NNNNNNN
N

I

I

LOADING PROGRAMS-DISK SYSTEM BINARY LOADER

Binary Loader Operating Procedures
Binary Loader Error Messages0

c

.

NH NIFDN
SAVING PROGRAMS (SAVE COMMAND)
SAVE Command Format

SAVE Command Processing.

..
Mia NIT,” FJF‘H hJF'o

CALLING A PROGRAM (CALL COMMAND) 2-14

MONITOR START CONDITION 2-14

SYSTEM ERROR MESSAGES 2-15

CHAPTER SYSTEM PROGRAM LIBRARY

PIP

Loading and Saving
Operating Procedures

L and D Options
M and P Options
A, B, F, U and S Options
Using PIP in an RF08 System

I

I

I-‘I—‘H

HO‘MUNNN
mac

.0. UNF“not-0|. Wuwwwww I
NNN

HHHHHHH wNMNNHcaucus O

.EDITOR
Loading and Saving
Operating ProceduresWWW

wwwwwww
u

N

N

N

NNN

NNN

NNNNNNN
N

N

MNN

N

t

n

a

o

0

NH wtrw

.3 4K PAL-DISK ASSEMBLER

.3.1 Loading and Saving
3.2 Operating Procedureswww

FORTRAN-D

Compiler
1 Loading the FORTRAN Compiler
2 Operating Procedures

3 Compiler Diagnostics
4 Debugging Aid (Symbolprint)

1

2

3

n

o

.

Abnhubuh-li-b-h-bnb-h Operating System

Loading the FORTRAN Operating System
Operating Procedures

Operating System Diagnostics
ExamplesMNNNNl-‘I—‘HI-‘H
DDT-D

1 Loading and Saving
2 Operating Procedureswww

wwwwwwwuwww .ooc..
o

.

6 DISK MONITOR SYSTEM RESTORE
6.1 Assemble and Save RESTORE

.6.2 Operating Procedures
6.3 Bootstrap Sequencewwww

APPENDIX A SYSTEM GENERATION

l TOGGLING IN THE RIM LOADER
2 LOADING THE BIN LOADER
3 LOADING AND EXECUTING DISK SYSTEM BUILDER
4 LOADING AND SAVING SYSTEM PROGRAMS

APPENDIX B SYSTEM FORMATS.

SYSTEM DEVICE LAYOUTS

Directory Name (DN) Blocks

Storage Allocation Map (SAM) Blocks
DATA STRUCTURE

Source File (ASCII) Data Structure

Binary File (BINARY, FTC BIN) Data Structure
Saved File (SYS, USER) Data Structure
PIP DIRECTORY LISTING

MONITOR CORE USAGE DIAGRAMSwwwwmwwwm htuhoh)k)N}4F‘H wNI—I

NH

APPENDIX 0 COMMAND DECODER

LOCATIONS USED BY COMMAND DECODER

INPUT AND OUTPUT REQUIREMENTS FOR COMMAND
DECODER

SYSTEM PROGRAMS

()0 NH

APPENDIX U

LOADING PARAMETERS FOR SYSTEM PROGRAMS

SAVE STATISTICSUU mid
APPENDIX I/O PROGRAMMING

GENERAL

CALLING FOR BASIC I/O ROUTINE

GENERALIZED DISK/DECTAPE I/O ROUTINEramp:

I321

uimld

vi

HHW‘DOKDQU‘IHwwwwwmwmw (JON

wrara

APPENDIX F

APPENDIX G

G.

G.

Number

Illill

W”:W(lwtnu)?I»uiwtnu2wlu WIOFJHFJK)m~dO\UIALJL)H}A
Number

A-l

3-1

I

I

II

I

II

II

wawwwwNHHHHmmqmmaww HHom()0(30(30(1()?tflwtflwlflwtflmtfiw

VALID I/O DEVICES

PERMANENT SYMBOL TABLES

INSTRUCTION CODES

PSEUDO-OPERATORS

TABLES

System Error Messages

Special Key Functions

Summary of Editor Commands

PAL—D Pseudo-Operators
PAL-D Error Messages
Summary of FORTRAN Statements

Compiler Systems Diagnostics
Compiler Compilation Diagnostics
Operating System Diagnostics
DDT-D Commands

System Device and Core Capacities
Page 0 Locations Used by Command Decoder

Valid In/Out Devices For PAL-D, EDIT

Valid FORTRAN-D Input/Output
Valid I/O Devices for PIP

ILLUSTRATIONS

Disk Loader/Paper Tape Flowchart

Disk Storage Layout

DECtape Storage Layout
Directory Name (DN) Block Format

Storage Allocation Map (SAM) Block Format

Contiguous-Page Save File Format

Noncontiguous-Page Save File Format

Sample PIP Directory Listing
Monitor—Time vs User—Time Core Usage
Core Usage During SAVE Command Execution

Core Usage During CALL Command Execution

Monitor Flow Chart (Part 1)
Monitor Flow Chart (Part 2)

Output List Produced by Command Decoder

Command Decoder Core Usage
Command Decoder Flow Chart (Part 1)

Command Decoder Flow Chart (Part 2)

Command Decoder Flow Chart (Part 3)

Command Decoder Flow Chart (Part 4)

Command Decoder Flow Chart (Part 5)

Command Decoder Flow Chart (Part 6)

Calling Sequence of System Routine

vii

Page

I

I

U‘l

N

wv¢90900° NI—‘I—‘W‘DQO‘ I-‘O

CHAPTER 1

INTRODUCTION

The PDP-8 Disk/DECtape Monitor System is designed for any PDP-8

computer having at least one DECdisk or one DECtape. This system
consists of a keyboard-oriented Monitor, which controls the flow of

programs through the PDP-8, and a comprehensive software package,
which includes a FORTRAN Compiler, Program Assembly Language (PAL-D),
Edit program (Editor), Peripheral Interchange Program (PIP), and

Dynamic Debugging Technique (DDT—D) program. Also provided is a

program (Builder) for generating a customized monitor according to the

user's particular machine configuration (amount of core, number of

disks or DECtapes, etc.).
'

The system is modular and open ended, permitting the user to construct

the software required in his environment, and allowing full access to

the disk (or DECtape) - referred to as the SYSTEM DEVICE - for storage
and retrieval of programs. By typing appropriate commands to the

Monitor, the user can LOAD a program (construct it from one or more

units of binary coding previously punched out on paper tape or written

on the disk by the Assembler, and assign it core), SAVE it (write it

out, with an assigned starting address, on the system device), and

later CALL it (read it back into core from the system device) for

execution.

1. 1 EQUIPMENT REQUIREMENTS

The minimum equipment requirements of the PDP-8 Disk/DECtape Monitor

System are as follows.

A basic PDP-8, PDP-8/S, PDP-B/I, 8L, also runs on 8/E, 8/F, 8/M.

4K of core

Teletype (Teletype is a registered trademark of Teletype
Corporation)

3-Cycle Data Break (Option required with PDP-8/S)

At least one DF32 Random Access DECdisk File or at least one

RF08 Random Access DECdisk File or a TCOl Automatic Control

with a T055 or T056 DECtape transport. The DECtape must have

timing and mark tracks written on it prior to use.

NOTE

The system recognizes up to 32K of core, up to

four disks (one Type DF32 and three Type D832 or

one Type RFO8 and three Type R808) up to eight
DECtapes (TCOl's only) and a high-speed papertape
reader. 1-1

CHAPTER 2

MONITOR OPERATION

This chapter contains a discussion of the operation of the Monitor.

Succeeding chapters contain descriptions and operating procedures for

the system programs.

2.1 GENERAL DESCRIPTION

The 4K Disk Monitor System permits the user to control the flow of

programs through his computer and takes full advantage of the extended

memory capabilities of disk or DECtape. In addition to the Monitor,
the system also contains a library of system programs. Together, they
provide the user with the capabilities of compiling, assembling,
editing, loading, saving, calling, and debugging his own programs.

2.1.1 Monitor Residence

Monitor, as well as system and user programs, is stored on and

retrieved from the SYSTEM DEVICE. To obtain a working Monitor, the.

user must first build his own customized version, via the easy-to-use
dialogue technique of the System Builder program and store this

version on the system device. Following this, the System Program
Library is created on the system device. Both of these procedures are

described in Appendix A.

In core, the resident part of Monitor (called HEAD OF MONITOR) resides
in the top page (locations 7600 through 7777) of field 0. The starting
address of Monitor is 7600; 7642 is entry address to the system I/o
routine, which performs all reading and writing on the system device

(see Appendix F). Nonresident portions of Monitor, such as those

routines which perform SAVEs and CALLS, are automatically called in as

needed, and in core, they share the area from location 7000 through
7577. (These portions disappear after use, leaving this area for the

user.)

Specific diagrams showing the allocation of the system, both on the

system device and in core, are given in Appendix B.

2.1.2 System Modes

At any point in time, the system is running in one of two modes:
MONITOR MODE or USER MODE.

Monitor mode is entered (1) whenever the Monitor is started (see
Paragraph 2.2) or (2) when a CTRL/C is typed (this is accomplished by
holding down the CTRL key while typing C) while running any system
program. Monitor mode is signalled by the Monitor typeout of a dot
(.). At both Monitor and system program time, Monitor is able to sense
a CTRL/C causing the system to enter Monitor mode, return to Monitor
at location 7600, and respond with a dot (.). At this point, any
Monitor command can be issued via the Teletype keyboard.

User mode is present whenever the system is executing a system or user‘
program. System programs signal user mode by responding with an
asterisk (*).

2.2 BOOTSTRAPPING THE MONITOR

The following discussion assumes that a customized Monitor has been
built and stored on the system device, according to the procedure
described in Appendix A.

The bootstrapping of Monitor into core is necessary only when the
resident Monitor area (locations 7600 through 7777) has been cleared
or its contents otherwise destroyed. System Builder leaves the
resident portion of Monitor in core after building. Turning the
computer off and subsequently turning it on again does not normally
destroy the contents of core.

The bootstrap procedure is as follows, and is the same for both DF32
and RF08.

1. Toggle in one of the following bootstrap routines, depending
upon the type of system device.

Disk

Location Contents Symbolic

*200
0200 '

6603 DMAR
0201 6622 DFSC
0202 5201 JMP .-l
0203 5604 JMPI .+1
0204 7600 7600
7750 7576 *7750
7751

V 7576 7576

7576

DECtape
Location Contents Symbolic

*200

0200 7600 BEG, 7600

0201 1216 TAD MVB

0202 4210 JMS DO

0203 1217 TAD M201

0204 3620 DCA I CA

0205 1222 TAD RF

0206 4210 JMS DO

0207 5600 JMP I BEG

0210 0000 DO, 0000

0211 6766 DTXA DTCA

0212 3621 DCA I WC

0213 6771 DTSF

0214
’

5213 JMP .-1

0215 5610 JMP I Do

0216 0600 MVB, 0600

0217 7577 M201, -201

0220 7755 CA, 7755

0221 7754 WC, 7754

0222 0220 RF, 0220

2. After toggling in one of the above bootstrap routines, set

the switches to 200 and press LOAD ADDress and START.

Monitor should respond with a dot (.) after it has been

brought into core.

2.3 STARTING THE MONITOR

Monitor START is at location 7600. A jump to this location can be made

by either (1) stopping the machine, setting the switches to 7600, and

pressing LOAD ADDress and START, or (2) typing CTRL/C when in Monitor

mode or when a system program (or any user program which includes

coding to sense a CTRL/C) is running. Jumping to 7600 after loading
has been performed generates a START instruction (ST=7600). Certain

errors also cause a jump to this location.

Monitor START performs the following actions.

1. Saves the coding from location 7200 through 7577 in the first

two scratch blocks on the system device.

2. Reads blocks 1 and 2 (containing the rest of Monitor) from
the system device into these locations.

3. Transfers control to Monitor, which responds with a carriage
return, line feed, and a dot.

The Monitor can be restarted by typing the RUBOUT key. A Monitor

restart performs the same actions as described above except for step
1. A common use for RUBOUT is to terminate a command string when a

mistake is made. The command string is ignored, and Monitor responds
as described in step 3. The user core image on the system device is

not changed by RUBOUT (it is changed, however, by tC).

2.4 COMMAND STRINGS

Commands are typed in the form of command strings to direct the

Monitor, or a system program, to perform some action. Command strings
are simple in format and afford an easy means of communicating with
the system.

Monitor indicates its readiness to accept a command string by typing a

dot, and at this point, some Monitor command, such as CALL or SAVE can

be typed.

System programs indicate their readiness to receive information by
typing either an asterisk or a query. The most common queries are as

follows.

*OUT- Requests one output device name. In the case of disk or

DECtape the filename to be assigned to the output data must
also be specified (see Paragraph 2.4.1).

*IN- Requests one or more (up to five) input device names. For
disk and DECtape, filenames of input files must also be

specified (see Paragraph 2.4.1).

*OPT- Request one option or switch, entered as a single
alphanumeric character; see Chapter 3 for options available
in each system program.

This communication between the system and the user is handled by a

portion of Monitor known as the Command Decoder. The Command Decoder
is a system program (.CD.) which is saved on the system at build time.
Command Decoder is called into core by the system when needed and

occupies any four contiguous pages of core. A description of its core

allocation and calling procedure, plus a flow chart, is given in

Appendix C. Error messages produced by Command Decoder are listed in

Paragraph 2.8. Messages unique to individual system programs are given
in Chapter 3.

2.4.1 Command String Format

Command strings are composed of a few basic elements and follow
certain rules of punctuation. Their basic elements are as follows.

a. Device names

b. Filenames

c. Punctuation

d. Special characters

Each of these elements is described in the following paragraphs.

2.4.1.1 Device Names - Device names permitted in command strings are

as follows.

Dn: DECtape unit, if both disk and DECtape are present in the

system (n = unit number, 0 through 7)

S: System device (disk or DECtape unit 0)

SO: System Device in RF08 System (lower half of Disk 0)

Sn: Additional 128K segments of RFOB disk (n = unit number 1

through 7. Unit 1 is the upper half of disk 0,; unit 2 is the

lower half of disk 1; etc.)

R: High-speed paper tape equipment (reader or punch)

T: Low—speed paper tape equipment of the Teletype (reader or

punch)

2.4.1.2 Filenames - Filenames are limited to four characters in

length and can be composed of any combination of alphanumeric
characters or special characters with the following exceptions.
Although both printed and nonprinted keyboard characters. are

allowable, printed characters are recommended.

1. Imbedded spaces cannot appear in a filename (they are

ignored). It should be noted here that the Monitor is given
the filename EX C. One reason for this unconventional use of

an imbedded blank is to protect the Monitor from accidental

destruction (e.g., deletion via PIP).

2. A file name cannot be one of the following words or symbols.

CALL SAVE ! , 7 :

Extensions to the filenames specified by the user are automatically
appended by the system. They are used internally by the system and

cannot be referred to or modified. The data structure of these files

is described in Appendix B under I'DATA Structure". The extensions are:

SYS (n) Saved system program file in core bank n.

USER (n) Saved user program file in core bank n.

ASCII Source language program file (input to PAL-D Assembler or

FORTRAN Compiler).

BINARY Binary program file (output from PAL-D Assembler).

FTC BIN Interpretive binary file (output from FORTRAN Compiler).

Filenames (and extensions) are meaningful only for file structured

devices (disk and DECtape). If they are specified for other devices,
they are ignored. Both the filename and extension name appear on

directory listings produced by the list feature in PIP. (AF below

means version AF.)

Example:

2.4.1.3

follows.

-

2.4.1.4

below.

CTRL/C

CTRL/P

NAME TYPE BLK

AF

PIP .SYS(0) 0015

SRC1.ASCII [0007
BIN .BINARY 0001

SRC1.USER(0) 0001

Punctuation - Punctuation within command strings is as

Used to separate device names, when more than one is given in
a command string. The comma is also used to separate core

references in a SAVE command string, when more than one

continguous area of core is specified.

Precedes the entry point specification in a SAVE command.

Terminates each device name. The colon is also used

following the filename in a SAVE command to indicate that the
file is to be saved as a user program.

‘Separates the beginning and ending addresses of a contiguous
core area specification in a SAVE command.

Follows the filename in a SAVE command when a file is to be
saved as a system program.

Special Characters ~ Special characters are used as described

If given while the system is in Monitor mode or a system
program is running, control is returned to Monitor start

(location 7600). Monitor responds with a dot. Type
CTRL/C by holding down the CTRL key and striking C. 1C
does not echo (does not print).

Typed in response to a 1 typeout. Instructs the system
to proceed with the next operation. Type CTRL/P by
holding down the CTRL key and striking P. fP does not
echo (does not print). CTRL/P can also be used to

prematurely terminate certain operations while in

progress (e.g., the typing out of a file directory by the
list option in PIP). .

RETURN key Carriage return terminates current command string input.
When typed alone, in response to a system query, it
indicates that the user does not desire to specify the
item (e.g., device name) requested. RETURN does not

echo.

RUBOUT key Causes the current command string to be ignored, and the

system returns to the beginning of the command string and
is ready to receive a new command. RUBOUT does not echo.

2-6

2.4.2 Examples of Command Strings

These examples illustrate the elements and rules explained above.

Samples of both Monitor commands and system program commands are

given. For all the examples below, the system response (typeout) is

underlined for clarity.

Monitor Commands:

.CALL PRGl) Call the user program file, PRGl,
—

from the system device into core

for execution.

.SAVE PALD!O~7577; 6200) Save a program, previously loaded
—

by Loader into locations 0 through
7577 of core, on the system device

as a system program (I). Assign a

starting address of 6200 and a

filename, PALD.
-

System Program Commands:

*IN-S:PRO2 or *IN-SO:PR02‘) Use the file PROZ on the system
device as the input file. The "8:"

is used for a DF32 or DECtape

system, "Sn:" is used for RF08

system, see Table B1, Appendix B.

*IN-S:TST1,Rg)or *IN—SB:TST1,R:) Use the file TSTl on the system
device and one file from the

high-speed paper tape reader as the

input files.

(Note: "8:" is used for DF32 or

DECtape system, "Sn:" for RF08

system, see Table Bl, Appendix B.)

*OUT-DS:SPEC) Write the output file on DECtape

unit No. 5 and assign it the

filename SPEC.

*OUT-T:) Punch the output on the Teletype

(low-speed) paper tape punch.

*OPT-M Select option M. An automatic

carriage return occurs after user

response to an Opt-request.

Spaces in command strings are ignored. Thus, both examples below are

equally correct and perform the same function.

:SAVE PALD 10-7577; 6200)

:SAVEPALD10-7577; 6200)

2.5 LOADING PROGRAMS - DISK SYSTEM BINARY LOADER

The Disk System Binary Loader takes as input the binary coding
produced by the PAL-D Assembler and loads it into core in executable
form. This loader is a system program saved on disk at build time.
It is called by the user in the same manner as any system program. It
occupies locations 6200-7577 and has a starting address of 6200. When
loading is completed, Loader "disappears" after first entering the
loaded program at the starting address typed by the user just prior to
loading (see Paragraph 2.5.1). Loader accepts input from the system
device or paper tape. In 8K and larger systems Loader sets up
locations 7574 through 7577 to perform a start in fields other than 0.
It is the user's responsibility to protect these locations if he wants
to start in a field other than 0.

2.5.1 Binary Loader Operating Procedures

.LOAD,) Direct Monitor to bring Binary Loader from the"

system device into core for execution.

*IN- Loader requests source of input(s). Type one or

more device names, separated by commas. If an

input device is a file-structured device, include
filename(s).

Up to five files can be specified. An E or I
error message (see Table 2-1) may appear following
the entry of an IN command.

Examples

*IN-R:) Input one tape from the high-speed paper tape
reader.

*IN-R:,R:,R:) Input three tapes from the high-speed paper tape
reader.

*IN-S:INPT) Input the file INPT from the system device.

*IN—S:BIN2,R:) Input the file BIN2 from the system device and one

tape from the high-speed paper tape reader.

*IN-S:BIN1,S:BIN2) Input the files BINl and BIN2 from the system
device.

1 If device(s) are valid and filenames (if any) are

actually found on the system device, Loader
responds with one asterisk for each correct input.

*ST= Loader requests the starting address to which
control is to be transferred when loading is
completed. The address is typed in the form

fnnnn

Examples

*s'r=)
*ST=7600)

*sr=0)

*ST=30225)

*sr=1oooo)

where

f=field number; this forces Loader to start

loading into the specified‘ field until a

"field setting” is found in the input file or

tape (omitted if field 0),

and

nnnn=location within field

Load into field 0.

Return to Monitor after loading.

Load into field 3.

Jump to location 225, field 3, after loading.

Load into field 1.

Return to Monitor after loading into field 1.

Loader now prints a series of up—arrows, one at a

time, as explained below.

Following each up-arrow typeout, the user is

required to perform one or more actions.

First up—arrow: Loader is ready to load. If

paper tape input, put the tape in the reader.

Type CTRL/P.

Second up-arrow: Loading Computer. Type CTRL/P

again to bring in data temporarily stored on the

disk by the Loader and transfer to the specified
starting address. (Note: if Teletype paper tape

equipment is used, type CTRL/P before turning on

the reader.

Multiple Input Files

An up-arrow is typed out as the processing of each

input file is completed. If paper tape input,
insert the next file in the reader and type

CTRL/P.

Repeat the above step until all files given in

response to the *IN— request have been processed.

After all files have been entered, type CTRL/P to

jump to the previously specified starting address.

NOTE

After each input paper tape is read, the

high-speed paper tape version of Loader

loops until the user types CTRL/P to
continue. However, the low-speed paper
tape version HALTS. Thus, when using
the Teletype paper tape equipment for

input, the user need not type CTRL/P but
PRESS CONT on the console and START the

paper tape reader.

At this point, Binary Loader disappears and control is tranferred to
the previously specified starting address.

2.5.2 Binary Loader Error Messages

An illegal checksum error condition causes Loader to type

3

and return to Monitor after a CTRL/P or CTRL/C. Error messages for
illegal filenames or devices are as specified in Paragraph 2.9.

2.6 SAVING PROGRAMS (SAVE COMMAND)

The SAVE command enables the user to write core images of system or
user programs from core onto his system device for subsequent call-in
(CALL) and execution. For example, a program which has been loaded bythe Binary Loader can be stored on the system device by the SAVE
command; or a previously saved program which has been called in and
modified by DDT can be stored in its updated version on the system
device, overlaying the old version if desired.

Core images can be saved in units of one or more pages, each page
occupying one block on the system device. If a core specification
(see below) addresses only a portion of a page, the entire page is
written out. For example, the core specification 45-150 is treated as

though it were 0-177. Core areas to be saved may be contiguous or

noncontiguous as desired by the user. Up to 32(10) core

specifications, in any combination of monotonically increasing
single-page or multiple-page requests, can be entered in a single SAVE
command. when the system device is an RF08 disk, all SAVE's are
executed on SO. System and user files can be stored on 51, 52, etc.,
only by using PIP.

,10N I

2.6.1 SAVE Command Format

.SAVE filename {E} core-specifications,...; entry-point

SAVE

filename

core-specifications

Directs Monitor to call in the nonresident SAVE

routine.

The filename (program name) to be assigned to the

file on the systems device. This name will be

used to call the file later when the user wants to

read in and execute the program. Restrictions on

the formation of filenames can be found in

Paragraph 2.4.1.2. Any previously saved program

with the same "filename" and having the same

extension will be automatically overwritten.

l is typed immediately after the filename of a

file if the user desires to save it as a system

program (e.g., PIP). A program saved in this

manner can be called in by simply typing its name

to Monitor (the word CALL is not required).

;filename)

An extension name of .SYS is automatically

appended to the filename.

: is typed immediately after the filename of a

file if the user desires to save it as a user

program. A program saved in this manner can be

called in and executed later via the CALL command.

LCALL filename)

An extension name of .USER is automatically
appended to the filename.

Up to 32 core specifications can be entered in a

single SAVE command. Each core specification is

separated from the following one by a comma. The

last core specification in the series is followed

by a semicolon. Addresses are expressed in octal.

SINGLE-PAGE CORE SPECIFICATION

fnnnn

where

f=fie1d number (can be omitted if field

0).

nnnn=any location within the page which the

user desires to save.

Examples
0 Saves page 0 (locations 0 through

177) of field 0.

3570 Saves locations 3400 through 3577

of field 0.

30100 Saves page 0 (locations 0 through
177) of field 3.

MULTIPLE-PAGE CORE SPECIFICATION

When a user wishes to save a core area of several

contiguous pages, he can type a multiple-page core

specification in the format

fnnnn(l)—nnnn(2)

where

f=field number (can be omitted if field 0%

nnnn(l)=any location within the first page of
the series of contiguous pages to be

saved.

nnnn(2)=any location within the last page of

the series of contiguous pages to be

saved.

The following rules apply.

a. The beginning address of a multiple-page
request must be smaller than the ending
address (nnnn(l) must be smaller than

nnnn(2)).

b. Both addresses must be in the same field.

c. The field number (f) must be within the range
of your system; however, no check for the

validity of this number is performed at SAVE

time 0

Examples

0-7577 Saves all of field 0.

10000-7777 Saves all of field 1. Note that

this is the same as typing

10000-17777

See the following for explanation
of how the field number (5th

significant digit to the left of

the decimal point) is "remembered."

2—12

30425-745 Saves locations 400 through 777

(pages 3 and 4) of field 3.

NOTE

Only ONE field can be saved by each SAVE

command. If multiple fields are to be

saved, a separate SAVE command must be

given for each.

entry-point The entry point of the saved program, in the

“ format

annn (see explanation above)

An entry point of 0 causes a return to Monitor at

CALL time regardless of the field into which the

program was saved.

'The LAST nonzero field number encountered in a SAVE command string is

remembered and prefixed to all other addresses in the command string.

(Remember: only one field can be referred to in each command string.)

Example: The following entries are identical in meaning.

SAVE PRGA: 10000-10777, 11400, 1600-17777; 10200
SAVE PRGA: 30000-777, 51400, 26000-7777; 10200
SAVE PRGA: 10000-777,1400,6000-7777; 200

SAVE PRGA: 0-777, 1400, 6000-7777; 10200

In each of these examples, all addresses are treated as being in field

1, because the last S-digit entry seen contained a most significant

digit 1.

2.6.2 SAVE Command Processing

A list of the required pages is constructed from the information typed
and a block requirement count is kept. Typing the terminating

carriage return ()), to start the SAVE initiates a directory name

search on the system device. If a file having the same name as the

filename in the SAVE command is found, it is replaced by the file now

being saved. If no such file is found, a new file is created. Next,

a storage availability search finds a sufficient number of available

blocks on the system device to satisfy the block requirement count.

(See above.) These block numbers are stored in a corresponding block

list; the blocks are then filled with the contents of the pages to be

saved. When the SAVE process is completed, control returns to Monitor

(7600).

NOTE

The Monitor head contains a HLT instruction at

location 7606. This can be used as a start address

for a SAVEd program when it is desirable not to

have the program start automatically;

2.7 CALLING A PROGRAM (CALL COMMAND)

Once a file has been loaded and saved, It can be called into core as

desired. There are two types of CALL command strings: one for system
programs and the other for user programs.

The CALL command string format for system programs (programs saved by
a SAVE command string in which the filename was followed by a !) is

lfilename)

where filename is the same as the one used in the SAVE command string
which saved it.

The CALL command string format for user programs (programs saved by a

SAVE command string in which the filename was followed by a :) if

:CALL filename)

When a program is called, a directory name search is performed on the

system device. Associated with the directory entry is the entry point
of the program and information concerning file protection and memory
extension. If the appropriate directory name entry is found and the
file has the proper extension (.SYS or .USER), calling proceeds. If

not, the calling process is terminated, ? is printed and control is
returned to Monitor. When the system device is an RF08 disk, system
and user files can be called into core only if they reside on 50.

2.8 MONITOR START CONDITION

When a CTRL/C or start at 7600 has just occurred, the Monitor saves

three pages of old core on the disk scratch blocks. To recover this
core follow these steps:

1. Do not type a second CTRL/C, as the user core memory from
7000-7577 (the locations removed from core) are still on the
disk.

2. Type SAVE SCRATCH: 7000-7577; n) (n is the point in the

system program to which control returns, e.g., 200 for

FOCAL).

3. Type CALL SCRATCH. This restarts with core intact.

2.9 SYSTEM ERROR MESSAGES

As an input command string is being typed, Monitor recognizes any

incorrect syntax and remembers it. When a carriage return is typed,

Monitor responds with a ? to indicate invalid input.

Error messages output by Command Decoder are given in Table 2-1.

Table 2-1

System Error Messages

Message Meaning

Illegal syntax or miscellaneous error condition‘0

D Directory on the systems device is full

E Too many inputs or outputs were entered

I No such inputs

8 System I/O failure

Local errors in each system program are given in Chapter 3.

Monitor time read or write errors cause a HALT to occur. Persistence

of this condition indicates a hardware failure, as the system I/o

routine attempts to read or write three times before halting.

CHAPTER 3

SYSTEM PROGRAM LIBRARY

The Monitor System's library of programs presently consists of the

Peripheral Interchange Program (PIP), Disk System Editor (Editor),

PAL-D Disk Assembler (PAL-D), 4K Disk FORTRAN (FORTRAN-D), and Dynamic

Debugging Technique for Disk (DDT-D). All library programs have the

capability of accessing disk units other than unit 0; or in DECtape

systems any DECtape unit. Where disk is the system device, PIP is the

only program which can access DECtape. Builder must be used to record

a system directory on the DECtape before it can be accessed by PIP. A

section of this chapter is devoted to each program in the library.

To load a program using the Monitor System, the Loader makes certain

queries to which a reply must be typed. The queries are the same for

all programs. The replies will vary, however, depending on the

particulars of the program being loaded.

When loading a program into core, first check to see whether Monitor

is in core. This is done by typing CTRL/C (hold down the CTRL key

while typing the C key). The CTRL/C does not echo (print on the

teleprinter). If Monitor is in core, it responds by printing a dot (.)

at the left margin of the teleprinter paper. If a dot is not typed in

response to CTRL/C, Monitor is not in core. Refer to Chapter 2 for

information on building Monitor and putting it into core.

The library system includes the Disk System Binary Loader (LOAD) which

is automatically saved on the disk at build time. (For Loader

operating procedures see Paragraph 2.5.)

Any program on the disk may be saved by typing a SAVE command, with

the word SAVE; a four-character name of the program, the type of

program (user or system), whether it's a one or more page save, and

the location of its starting address in response to the Monitor's dot,

as described in Paragragh 2.6.

After each program is saved on the system device, it may be called

(i.e., transferred from the disk into core) merely by responding to

Monitor (to a dot) with the four characters designated as the name of

that program, as explained in Paragraph 2.7.

3.1 PIP

Peripheral Interchange Program (PIP) performs general utility
operations, such as listing the contents of specified directories,
deleting unwanted files from the system device, transferring files
between devices, and copying specified files.

PIP is designed for the PDP-S/I, -8/L, and -8 computers only and can

access any RFOB disk unit or DECtape unit. Before PIP can copy onto a

DECtape, the Disk/DECtape System Builder must be used to build Monitor
on the DECtape (see Section A.3).

3.1.1 Loading and Saving

PIP is loaded into core as indicated in Appendix D. Core requirements
and starting address of the Loader are also found in Appendix D.

To load PIP into core, Call LOAD, using Monitor, and reply to the

system responses as explained in Chapter 2.

When in core, PIP may be saved on the system 'device as a system
program by Monitor, as indicated in Appendix D. (See Paragraph 2.6.1
for a detailed description of the SAVE format.)

When PIP is loaded and saved, the printout resembles:

. LOAD)
TIN—12:)
1'.

*Smg)
1? (type CTRL/P)

zSAVE PIP : o-5177;1ooo)

3.1.2 Operating Procedures

Once PIP has been loaded into core and saved on the disk it can be
called in response to the Monitor dot. If a dot is not present as the
last system response, type CTRL/C. The printout appears as follows:

zPIP)

which transfers PIP from the disk into core. PIP responds with

*OPT-

gand waits for one of the following options.

OPTION MEANING

L List entire directory of device to be

specified

D Delete a file to be specified

M
y

Move copy of directory to write-locked

area of disk, as explained below

P Protect blocks 0-176 of disk 0

A or

RETURN

key Copy ASCII file (destination and

origin(s) to be specified)

B Copy binary file (destination and

origin(s) to be specified). PIP copies
relocatable binary-coded tapes (8K SABR

Assembler output) to and from paper tape

only.

F Copy FORTRAN binary file (destination
and origin(s) to be specified)

U Copy user file (file structured origin
and destination to be specified).

S Copy system file (file structured

origin(s) and destination to be

specified). The U and S commands may not

have paper tape as the destination

because the files are core images and

have no defined paper tape format.

Type only the option character; Monitor responds automatically with a

carriage return and line feed. The *OPT line is not terminated with

the RETURN key because it is a meaningful option.

It is illegal to type any character other than one of those listed

above. PIP ignores the request, types ? (question mark), and asks

for another option character. For example,

*OPT-G G is not a legal option character

? .

T'r'op'r-

Refer to Appendix F for a table of valid I/O devices for PIP.

3.1.2.1 L and D Options
- The L option lists the entire directory of

the system device or DECtape on which a directory exists, providing
the number of unused blocks and a report on each file. For example,

LPIP) User calls PIP

*OPT-L list option of the

*IN-Sz) system device directory
FB=126 PIP types number of free (unused) blocks

remaining on specified device

NAME TYPE 13g
AF AF represents the version
PKLD .SYS 0) 0037 number of the Monitor system
EDIT .SYS 0) 0016 being used, followed by
LOAD .SYS (0) 0011 filename and description;
.CD. .SYS 0 0007 e.g., PAL-D is a system
Egg .SYS 0 00g; program in field 0 and
DDT .ASCII 0052 occupies 37(8) blocks of
FOO .USER (0) 0001 storage
BAR (.SYS (0) 0037

When the user specifies the D (delete a file) option, PIP responds
with

*FILE TYPE (A,B,F,U,S)-

where A, B, F, U, and S are the legal options indicating ASCII,
binary, FORTRAN binary (compiler output), user program, and system
program, respectively. The option letter may be typed before PIP

completes the file type printout.

If the reply S (indicating a system file) follows the D option, PIP

replies:

REALLY?

PIP will not delete a system file unless

Y . (meaning yes)

is typed in answer to the question. Any reply other than Y causes PIP
to repeat the FILE TYPE request. When Y is typed, PIP responds with

*IN-

and waits for the device and filename of the system file to be
deleted. The printout would appear as:

*OPT-D delete option speci-
:PILE TYPE (A,B,F,U,S)-S fying system file,
REALLY?N user must reply with Y,
*FILE TYPE (A,B,F,U,S)-S PIP repeats request,
REALLY?Y user replied correctly,
*IN-S:BAR‘) PIP needs device and filename,
*OPT- file is deleted and PIP asks

for the next option.

When the file has been properly identified and deleted, PIP returns to
ask for another option. If filename BAR, in the example above, had
not been on the specified device, PIP would have ignored the request
and printed a ? before asking for another option. For example,

*INr;S:BAR) BAR is not the name of a

3 file on the specified
*OPTv device

NOTE

The user should not try to delete the

system files .CD. or LOAD.

When the reply to *FILE TYPE (A,B,F,U,S)- is other than S, PIP asks

* IN—

and waits for the device and filename of the file to be deleted. The

printout would appear as:

*OPT—D delete option specifying
*FILE TYPE (A,B,F,U,S)—B a binary file;

*IN-SzBAfi)’ device and file names:

*OPT- file is deleted, PIP asks

for the next option.

If the wrong option is specified, type the RETURN key in response to

PIP's request for data. PIP ignores the request, prints a ?, and

requests another option. Example:

*OPT-L user typed L by mistake

*IN—

?
)

*OPT- now specify another option

3.1.2.2 M and P Options
- Options M and P, in conjunction with the

hardware write-lock switch, are used to protect the lower 16K of the

disk while using the system software. Either the system device or a

DECtape unit numbered 0-7 can be specified. Since only input is

requested, the action Specified by the option is performed solely on

the device specified. For instance, it is not possible to use the M

option to move the system directory to another device.

The M option moves a copy of the first directory block (the first

25(10) filenames), block 177, of the device specified to block 3 of

the same device. It also moves a copy of the first SAM (storage

allocation map) block, block 200, of that device to block 4 of that

device. For example, to move a copy of the system file directory, the

printout is:

*OPT-M move option specifying

*INf53) the system device

*OPT- PIP asks for another option

The directory which is moved should be one which does not contain

files likely to be deleted from the working directory after the move.

The P option searches the first SAM block, block 200, for free or

unused blocks in the lower half of the first disk. All unused blocks
are marked as being used by Monitor, thus the lower half of the disk

appears to have no unused space-~it is protected. The write-lock
switch on the disk control unit can be activated and Monitor will not

attempt to write on the protected portion. If all blocks in the lower
half of the first disk are already used, the P option does nothing.
This option functions independently of the M option. Unless a copy of
the true directory has been previously moved, there is no way (short
of rebuilding the disk) to recover the space used by the P option.
The printout would look as follows:

*OPT-P protect option specifying
*IN-S:) the system device
*OPT- PIP asks for another option

Files .SYM and .DDT should g9; be in the protected area of the disk.

They are scratch files used by DDT-D and PAL-D during their operation
and require output to the disk. (See PAL-D DISK ASSEMBLER,
DEC-DB—ASAB-D, and Section 3.5.1 of this manual.)

Some typical uses for the M and P options are:

a. M, to save a specific disk (or DECtape) status.

b. M and P, to set write-lock switch and to operate protected.

3.1.2.3 A, B, F, U, and S Options - Options A, B, F, U, and S are

used to transfer (copy) files from one device to another. When any of

these five options is requested PIP responds with

*OUT-

and waits for input of the destination (output file or device), and,
if the destination is disk or DECtape, the name of the file. For

example,

*OPT-A copy an ASCII file

*OUT-S;ASCI) specifying the destination and

file name

Only one destination is legal; if more than one is specified, PIP

ignores the response, prints the error message E, and returns control
to Monitor. For example,

*OPT-A copy an ASCII file

*OUT-S:ASCI,§ PIP recognizes the comma, which is used

to separate file and device ‘names,
control returns to Monitor

NOTE

The L and D options return to PIP's

option request (*OPT-) when an illegal

response is entered, and all other

options return control to Monitor.

\

PIP indicates acceptance of the destination by \responding with *,

carriage return/line feed, and *IN—, and waits for the input

specification; that is, from where the input is to originate. An

attempt to specify more than one input to any but the A option causes

PIP to ignore the response, type the error message E, and return

control to Monitor. For example

*OPT-F copy a FORTRAN file

*0UT-S:FORT) specifying system device and filename

1 PIP accepts destination

*IN-S:,§ input to system device, comma is

used to separate device names

control returns to Monitor

If the input file specified to any option is not found on the

specified device, PIP prints an I in place of the * and returns

control to Monitor. For example:

*IN-S:FIL2) the file does exist; when CTRL/P is typed,

:1 copying begins
*IN-s;FIL3)

_I the file does not exist

L
control returns to Monitor

When input is from DECtape there is a noticeable pause between the

time the input device is specified and the time t is printed-~Monitor
is searching the DECtape directory. Always wait for the 1 before

typing CTRL/P. If CTRL/P is typed prematurely, PIP returns to the

option mode and ignores the current request.

If the B option is specified (copy a binary file), but the filename

specified appears as an ASCII file, it is not acceptable; and PIP

prints an I and control returns to Monitor. Use the L option to check

the file directory for file type.

The A option allows any combination of up to 11 ASCII input files Ito
be merged into one output file in the order specified by the input

list. Generalized subroutines can be written as separate files to do

often repeated operations and combined these with each specialized

program BEFORE assembly thereby eliminating the need to rewrite such

operations for each program. PIP acknowledges each legal input file

by printing an *.

A paper tape file should not be merged with a disk or DECtape file

when the output is going onto disk or DECtape--an illegal character

may be inserted between the two files. Instead, copy each paper tape

file onto disk or DECtape, and THEN merge the disk or DECtape files

into one file. PIP merges ASCII files only (see examples at end of

this Section).

The B, F, U, and S options are all formatted in the same fashion, and
each requires the destination and origin of the file to be copied.
The following example copies the system file PIP from disk to DECtape
3, using filename PIPX.

*OPT-S

*OUT-D3 :PIPX)
1 PIP acknowledges each legal file by
*IN—S:PIP) printing an * for each file

:1 User types CTRL/P after every 1
*OPT-

PIP copies only one segment (a section of paper tape delimited by
leader/trailer code) of a binary paper tape onto disk or DECtape. If
a multi-section binary tape is copied onto the disk using PIP, only
the first section of the tape is read onto the disk even though the
entire tape passes through the reader. Therefore, to copy all of a

multi-section binary tape onto the disk or DECtape, each section must
be copied as a separate file; for example, by physically cutting the
tape after each section and then copying each section separately.

PIP, however, copies a multi-section binary tape to the paper tape
punch.

'
'

'

A summary of the copy features is presented below.

Number of High Speed
Option Input Files Disk DECtape Reader/Punch Teletype

ASCII A 11 Yes Yes Yes Yes

Binary B 1 Yes Yes Yes Yes
FORTRAN

Binary F 1 Yes Yes Yes Yes
User U 1 Yes Yes No No

System S 1 Yes Yes No No

Examples:

;PIP) User calls PIP

and requests the list option
*OPT-L of the system device directory
*IN-S:) PIP types number of free (unused)
FB=0121 blocks remaining on specified device

NAME TYPE fl
AF followed by filename and description;
PALD .SYS 0 0037 'e.g.,vPAL-D IS A SYSTEM PROGRAM
EDIT .SYS 0 0010 in field 0 and occupies 37(8) blocks
LOAD .SYS (0} 0011 of storage
.CD. .SYS 0! 0007

PIP .SYS 02 0025

DDT =ASCII 0052

F00 ,USER‘O! 0091
BAR .SYS 0 0037

*OPT-D User requests the delete option
*FILE TYPE (A B,F,U,S)-U and specifies type of file, U(user)

*IN-SzFfifi) and device and filename; file is

deleted

*OPT-D User requests the delete option
*FILE TYPE(A,B,F,U,s)-S and specifies type of file, S

REALLY?! (system) (PIP double checks); Y is the

only meaningful answer

*IN-S:BAR.) User specifes file and filename; file

is deleted

*OPT-L User request list option

*IN-S:) and system device directory,
FB=0161 Note increase of 40(8) free blocks (see

above)

*OPT-D User requests delete option
*FILE TYPE (A,B,F,U,S)-S
EEZLLY?N Y is only response for deletion of

*FILE TYRE (A,B,F,U,S)-S a system file; other responses

fiEKEEY7W cause PIP repeat the file type
*FILE TYPE (A,B,F,U,S)-S request
REALLY?Y

*IN-S:EX(:) Even if user responds to REALLY?

3_ with Y, PIP does not delete the

Monitor file

*OPT-D

*FILE TYPE (A,B,F,U,S)-U
*IN—S:fi5NES ‘

PIP knows NONE is not an existing
? user filename on the system device

*OPT-D and responds with ?

*FILE TYPE (A B,F U S)-A User requests ASCII file option

*Ifi-SzEDIT) PIP also knows when the filename

3
"

and file type don't match; EDIT is

*OPT-D a system program
*FILE TYPE (A‘BgFIUlS)-B
IN-S:EDIT)

?

*OPT-

Merge into an ASCII paper tape on the high speed punch, one tape from

the reader, one tape from the Teletype, one file from disk called SRC,

and one file from DECtape 7 called SRCl.

*OPT-A

*OUT—R:)
*l*IN-R:,T:,S:SRC,D7:SRC1)

Hslflx1??? (TYPE CTRL/P after each file)
'1‘—&Om

Copy the system file PIP from disk to DECtape using filename PIPX.

*OPT-S

OUT-D33PIPX)
*

;IN-S:PIP)
:_ (TYPE CTRL/P)
*OPT-

3.1.3 Using PIP in an RF08 System

With an RF08 disk as system device, inputs and outputs are specified
by SO:,Sl:,etc.

Examples:

*OPT-S

*OUT-51:LLDR)
*

*IN-SO :LLDR)
*

3.2 EDITOR

Editor (Disk System Editor) enables the user to generate and edit

symbolic programs on-line from the Teletype keyboard. The symbolic
program may be either printed on the Teletype, punched on paper tape
using the high- or low-speed punch, or stored on the system device as

an ASCII file.

Editor operates either in command or text mode. In command mode, each

typed input is interpreted as a command to perform a certain

operation. In text mode, all typed input is interpreted as text to

replace, to be inserted into, or to be appended to the contents of the
text buffer.

The command language of the Disk System Editor is identical to that of
the PDP-8 Symbolic Editor (Chapter 5 of Introduction to Programming)
with the following exceptions.

CTRL Commands:

CTRL/P

CTRL/C

Commands:

P

n?

m,nP

During output, progress stops and control

returns to command mode.

Always returns control to Monitor.

Output entire contents of the buffer followed

by a form feed and return to command mode.

Output line n, followed by a form feed,

return to command mode.

Output lines m through n, followed by a form

feed, return to command mode.

Illegal command

Process entire file (perform enough NEXT

commands to transfer the remaining input to

the output file) and create an end—of-file

indicator (legal only for output to the

system device).

Certain keys have special operating functions. These keys and their

associated functions are listed in Table 3-1.

Table 3-1

Special Key Functions

Key Mode Functions

(RETURN) Text Enter the line in the text buffer.

Command Execute the command.

RUBOUT Text Delete from right to left one

character for each rubout typed (is

not in effect during a READ

command).

Command Delete entire command.

FORM FEED Text End of input, return to command

mode.

Command List the next line.

CTRL/U Text Deletes the entire line of text

currently being entered and

performs a carriage return/line
feed. Line counter is unchanged.

Command Cancels commands just typed and

performs a carriage return/line

feed. * is displayed.

. (period) Command Current line counter used as ar-

gument alone or in combination with

+ or - and a number.

3-11 (Continued on next page)

Table 3-1 (Cont.)

Special Key Functions

Key Mode Functions

/ (slash) Command Value equal to number of last line

in buffer and used as argument.

LINE FEED Text Used in SEARCH command to insert a

carriage return/line feed

combination into the line being
searched.

Command List the next line.

ESCape Command List the next line.

< (left angle bracket)

> (right angle bracket)

:(colon)

CTRL/TAB

(equal sign) Command

Command

Command

Command

Text

List the previous line.

List the next line.

Used in conjunction with . and / to

obtain their value (.=0027).

Lower case character, same function

as =.

On output, is interpreted as a

tab/rubout combination.

Table 3—2 is a summary of Editor commands.

Table 3—2

Summary of Editor Commands

Command Format(s) Meaning

READ R) Read incoming text and append to

buffer until a form feed is

encountered. If the low-speed
reader is used, Editor pauses when

a form feed is encountered so the

reader can be turned off. Type any
'character to return to command

mode.

APPEND A) Append incoming text from Teletype
to any already in the buffer until
a form feed is encountered.

LIST L) List the entire buffer.

nL) List the line n.

m,nL) List lines m through n.

(Continued on next page)

Table 3-2 (Cont.)

Summary of Editor Commands

Command Format(s) Meaning

OUTPUT

(PUNCH)

TRAILER

NEXT

KILL

P)

nP)

m,nP)

'1')

N)

nN)

K)

Output the entire contents of the

buffer followed by a form feed and

return to command mode. When input

is from the low-speed reader and

output is to the low-speed punch, a

P command causes Editor to pause,

to allow time to turn on the punch.

Any character may be typed to begin

punching. When the specified
amount has been punched, the Editor

pauses so the punch can be turned

off. Type any character to return

to command mode. Using a P and

then an E, without typing a K in

between, causes the buffer to be

written twice.

Output line h, followed by a form

feed.

Output lines m through n, followed

by a form feed.

Punch four inches of trailer.

Punch the entire buffer and a form

feed; kill the buffer and read

next page. When the input is from

the low-speed reader, Editor pauses

at the end of an N command so that

the reader may be turned off. Type

any character to return to command

mode with text in the buffer. If

the tape runs out before the N

command is completed, Editor prints
a ? and returns to command mode

with an empty buffer. The ?

indicates that Editor tried to read

past the physical end of the input

tape. When output is to the

low-speed punch,‘ an N command

causes Editor to pause before the

first punch operation only. If the

N command is completed before the

entire tape is processed, the

Editor pauses after the specified
number of N's have been processed.
At this point, both the reader and

the punch should be shut off. Type

any character to return to command

mode.

Repeat the above sequence n times.

Kill the buffer.

3_13
(Continued on next page)

Table 3-2 (Cont.)

Summary of Editor Commands

Command Format(s) Meaning

DELETE nD) Delete line n. Editor does not use

the core locations made available

by line deletion until an N or K

command is given.
m,nD) Delete lines In through n.

INSERT I) Insert before line 1 all text until
a form feed is encountered.

nI) Insert before line n until a form

feed is encountered.

CHANGE rut) Delete line n and replace it with

any number of lines from the

keyboard until a form feed is

,
encountered.

m,nC) Delete lines m through n, replace
from keyboard as above until form
feed is encountered.

MOVE m,n$kbl) Move and inSert lines m through n

before line k.

GET (E) Get and list the next line

beginning with a tag.
IK;) Get and list the next line which

begins with a tag. Start search

with line n.

SEARCH 8‘) Search the entire buffer for the

character specified (but not

echoed) after the carriage return;
allow modification when found.

nS) Search line n, as above, allow

modification.

m,nS) Search lines m through n, allow

modification.

END FILE El) Process the entire file (perform
enough NEXT commands to pass the

remaining input to the output file)
then output two form-feed
characters signifying an end-of

file; legal only for output to the

system device. If the low-speed
reader is used, the E command
causes Editor to pause until the

low-speed reader is turned on.

After the tape is read and

processed the Editor closes the

file and returns to Monitor

control. If there is no additional

tape to be read, typing any
character causes the file to be

closed normally.

3-14

NOTE

If the low speed reader runs out of

tape, or if the reader is turned off

before a form feed is read, the Editor

prints a ? and returns to command mode.

The buffer contains material already
read. Text entries should be terminated

with the FORM FEED character. The text

buffer has capacity for 50 to 60 lines

of text or 3,600 characters; and the

source should be limited to this number

of lines or characters. This ensures

that no buffer overflow will occur.

If a tape is prepared off-line, care must be taken with respect to

form feeds. If input is from the low-speed reader, the Editor ignores
the next character after the form feed. For this reason, AT LEAST one

blank space should be punched after a form feed in an off-line tape.

(Using Editor prepared tapes eliminates this problem.)

Editor prints an error message consisting of a question mark whenever

nonexistent information is requested or an inconsistent or incorrect

format is used to type a command. The question mark is followed by a

carriage return/line feed and the command is ignored.

Editor performs a failsafe operation to preclude the loss of data when

the output of text to the disk exceeds the space available. The

failsafe technique causes the message FULL to be printed to indicate

the buffer is filled. The failsafe operation continues as follows:

1. The E and N commands are disabled. A ? is printed when

either is attempted.

2. A P command causes Editor to attempt to save the text by

punching it on the high-speed punch. If there is no

high-speed punch and a P command is issued the Editor loops,

waiting for the high-speed punch flag. At this point the

program should be stopped and restarted at location 0177,

putting Editor into command mode with the buffer still

intact. The buffer can be recovered by using the L command

with the low-speed punch turned on.

NOTE

Before the punched output is reloaded

into the buffer, the first and last

lines of the buffer should be inspected.
If the punch was turned on beforehand,
the first line is L.RETURN; and the

last line is * because Editor returned

to command mode. These lines should be

deleted.

3. All standard editing functions are available after the

failsafe technique has occurred.

3—15

If the computer halts at location 2330, a system error has occurred

while reading from the disk. Run disk maintenance tests to determine

cause of error.

3.2.1 Loading and Saving

Editor is loaded into core from punched paper tape by the Binary
Loader. When Editor is in core, it occupies locations shown in

Appendix D.
‘

To load Editor into core, call LOAD, using Monitor, and reply to the

system responses as explained at the beginning of this chapter and in

Paragraph 2.5.

When in core, Editor may be saved on the system device as a system
program by Monitor as indicated in Appendix D.

(See Paragraph 2.6.1 for detailed description of the SAVE format.)

A sample printout for loading and saving Editor is:

;LOAD)
*IN-R:)
*

;ST=7600)
1.3

AVE EDIT!0-3377;2600)(See Appendix D.)

"ml

3.2.2 Operating Procedures

Editor is transferred from the system device into core by Monitor when

EDIT)

is typed.

Editor is now in core and responds by typing

*OUT-

Type one of the following output devices: (T:) for low-speed
reader/punch; (R:) for high-speed reader/punch; (S:name) for output
to the system device on a file called NAME immediately after OUT-. (E
must be typed to properly close the output file.) If the specified
device is not valid, that is, not declared when building Monitor,
Editor responds with an error message (see Paragraph 2.9) and returns

control to Monitor. Refer to Appendix F for a table of valid I/O
devices for EDIT.

When Editor recognizes a valid device, it responds with asterisk,

carriage return/line feed and *IN-, as shown below.

*

* IN—

Specify the input device by typing T: , R: , or S:name or in the same

manner as when replying to *OUT-, above.

The Editor responds with

*OPT-

Specify one of the following options.

B Preserve blanks. Editor normally replaces multiple blanks

(spaces) with tabs, resulting in considerable saving of

space on the system device.

D Enter dynamic deletion mode if input is from the system

device, thus allowing space for output if desired. (File

name remains on the directory but without any assigned
blocks.)

C Combine the functions of B and D options.

RETURN None of the above options; assume conversion of two or more

blanks to tabs, and not D.

Editor responds to one of the above options with a carriage

return/line feed and asterisk. The entire printout might appear as

follows.

The appearance of the last asterisk in the example above indicates

that Editor is ready to accept and operate on the user's symbolic

program.

The symbolic program can now be read into core with the R command or

typed into core with the A command (see Table 3-2).

Examples:

4LOAD)
*IN-R:)
t

TST=)
11

:sAVE EDIT!0-3377;2600)
;EDIT)
*OUT-

*

SzSRCl)

:IN-R:)
*

709T-
*R

sln

5" waI

IN-S:SRC1)

wltln:I*RIOo"\’ o

Call Loader using Monitor

Input to be from high-speed reader

Input device valid

Return to Monitor after loading
Editor is loaded

and saved on the system device

Call Editor using Monitor

Output to be on system device, file

nmwdsml

Input to be from high-speed reader

Input device valid

No blanks, no dynamic deletion mode

Read incoming text

Process entire file

Call Editor using Monitor

No output, (Don't use dynamic deletion

mode or file will be lost.)

Input from filename SRCl

File name valid

No option desired

Read incoming text

List the entire buffer

/STARTING ADDRESS OF PROGRAM

2

/L

hlflflt

Cmx

LOCK

(IOIEClalgls
9|

/GET LOEER LIMIT

ET UPPER LIMIT(G
(CTRL P was typed here, stopped listing of buffer)

(CTRL/C was typed here)

The Disk Editor does not always require specific input or output. For

example,
valid :

when creating

LEDIT)
*OUT-S:FILE)
*

int)
*

:OPT-)
*Au)

file from the keyboard the following is

—TEXT MAY BE KEYED-IN DIRECTLY FROM THE

KEYBOARD......

When lines are deleted the value of the current line counter is not

set to the number of the line preceding the deletion. The counter is

set to the number of the line deleted, or in the case of multiple

deletion, it is set to the number of the line first deleted.

Example:

m.)
TAD(-l

:.=0024
*.D

1.=0024
:2,5L)

TAD S-Z
DCA CNT

TAD TEMP

JMP .-1

:2,50)
*.=0002

3.3 4K PAL-D DISK ASSEMBLER

The grogram Assembly Language for the Qisk system (PAL-D), is the

symbolic assembly program designed primarily for the 4K PUP-8 family
of computers with disk or DECtape. (8K PAL-D is an expanded version

of 4K PAL-D and both binary tape and documentation are available from

DECUS (Digital Equipment Corporation User's Society) upon request.)

/

PAL-D is compatible with PAL III except in the way it recognizes
Memory Reference Instructions, and with MACRO-8 in respect to the

following features: Boolean operators, linkage generation, literals,
and a text facility. It does not have user-defined macros, floating

point constants, or double precision numbers. The reader should

review the 4K ASSEMBLER MANUAL (DEC-08-LAS4A-A-D) before proceeding.

The 4K PAL-D Assembler performs many useful functions, making machine

language programmming easier, faster, and more efficient. Basically,
the Assembler processes the user's source program statements by

translating mnemonic operation codes into the binary codes needed in

machine instructions, relating symbols to numeric values, assigning
absolute core addresses for program instructions and data, and

preparing an output listing of the program which includes notification

of any errors detected during the assembly process.

Pseudo-operators (pseudo-ops) may be used to direct PAL-D to perform
certain tasks or to interpret subsequent coding in a certain manner.

Instead of generating instructions or data, pseudo-ops direct the

Assembler on how to proceed with the assembly. Pseudo-ops are

maintained in the Assembler's permanent symbol table.

The following is a summary of PAL-D's pseudo-ops.

Table 3-3

PAL-D Pseudo-Operators

Pseudo-

Operator Explanation

PAGE Set current location counter to first location on next

page.

PAGE n Set current location counter to first location on page

n.

FIELD n Punch all literals (a FIELD mark is punched followed by
an origin at location 200). To assemble code at

location 400 in field 1 write:

FIELD 1

*400

DECIMAL Interpret subsequent integers as decimal.

OCTAL Interpret subsequent integers as octal.

XLIST Data enclosed is not to appear on third pass listing.

TEXT Input text strings in ASCII code trimmed to six bits.

$ End of symbolic program, terminate current pass.

PAUSE End-of-file or paper tape, suspend processing, proceed
to next file or paper tape and resume processing.

EXPUNGE Erase permanent symbol table, except pseudo~ops.

FIXTAB Append to permanent symbol table all symbols defined

before the FIXTAB.

I Indirect Addressing.

Z Page zero reference.

COGNITION OF MEMORY REFERENCE INSTRUCTIONS

3 PAL-D Disk Assembler uses a different criterion for recognizing
nory reference instructions than does PAL III.

van a line of code such as:

SYMBl SYMBZ

where neither SYMBl nor SYMBZ is an assembler pseudo-op, PAL-D will

treat this line as a memory reference instruction only if SYMBl is a

permanent symbol and SYMBZ is not a permanent symbol. Note that the

category "permanent symbol" includes user-defined symbols that have

been added to the PAL-D permanent symbol table via the FIXTAB

pseudo-op.

All other combinations of permanent and non-permanent symbols for

SYMBl and SYMBZ will cause the line to be treated as a

microinstruction. The values of SYMBl and SYMBZ will be inclusively
ORed together and this resultant value will be generated as code for

the line. Because of these considerations, users should be cautious

in their use of FIXTAB pseudo-op.

Note especially that, the floating point instructions

(FADD, FSUB...... FPUT) must be defined at the beginning of a program

and must be followed by a FIXTAB pseudo-op, as follows:

FADD=1000

FSUB=2000

FPUT=6000

FIXTAB

Refer to Appendix G for a complete list of all the permanent symbols
contained in PAL-D.

4K PAL-D PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The information on PAL III Program Preparation and Assembler Output is

applicable to PAL-D with the following exceptions:

The symbol table is punched after the listing and is preceded and

followed by a small amount of leader/trailer (200) code. The symbol
table tape will be punched whether or not a listing is requested, and

will appear either on the terminal punch or on the high-speed punch

output, depending upon the device being used.

It is possible to terminate any pass of the assembly by typing a

CTRL/P on the console terminal. CTRL/P causes PAL-D to go on to the

next pass of the assembly. Assembly can be terminated at any time by

typing a CTRL/C.

During the listing pass note that blank lines will remain in the

listing and the form feed (214 ASCII) character is ignored.

The 4K PAL-D symbol table has room for 161 symbols in core (about 6 to

8 pages as an average). That number can be expanded as explained in

paragraph 3.3.1.

Following pass 2, the binary output can be loaded into core by the

Disk Monitor System Binary Loader.

3.3.1 Loading and Saving

PAL-D is loaded into core -from punched paper tape by the Binary
Loader. Appendix D illustrates the locations occupied when PAL-D is

in core.

To load PAL-D into core, call LOAD using Monitor and reply to the

system responses as explained at the beginning of this chapter.

When in core, PAL-D may be saved on disk or DECtape. Saving PAL-D on

the system device as a system program by Monitor is described in

Appendix D. (See Paragraph 2.6.1 for a detailed description of the

SAVE format.)

2 :ample
printout for loading and saving PAL-D' is: (see Paragraph

.LOAD)

:IN-R:

*

sT=7500)
3"

.SAVE PALD10-757736200)

The user's core resident symbol table can hold 160(decimal)
user-defined symbols under the Disk Monitor System. This may be

expanded by saving on the system device a user file named .SYM which
can be used by PAL-D to store extra symbols. Each user-defined symbol
occupies four words. The symbol table can be expanded by 128(decimal)

'or 200(octal) locations (one core page) by saving a file with the

following statement.

_._SAVE .sm:o—177;o) (192 user symbols)

If a larger symbol table area is needed, simply specify additional

pages, where each page saved provides storage for 32 additional

symbols. For example:

;SAVE .SYM:O-377;0) (224 user symbols)

will save two core pages, and

;SAVE .SYM:0-l777;0) (416 user symbols)

will save eight core pages for symbol storage.

3.3.2 Operating Procedures

Monitor is used to transfer PAL-D from the ‘system device to core.

Begin by typing
«

.PALD)

PAL-D responds with a request for the output device

*ou'r-)

Select the output device by specifying one of the following.

T:) for the low-speed reader/punch

R:) for the high-speed reader/punch

S:name) for output to the system device as a file called

NAME

Refer to Appendix F for a table of valid I/O devices.

PAL-D then responds with:

I

* IN—

and waits for specification of the input device(s). Up to five input
devices may be specified (for example, R:, T:, R:, R:, T:), but in

this example input from the high-speed reader was selected.

R:)

If the devices in the parenthetical example above had been specified,
PAL-D would have typed an asterisk for each input device that it found

valid.

When PAL-D is satisfied that the input device ris valid (i.e., the

device does exist or the file is present on the file-structured

device), it requests the third-pass listing option by printing

*OPT-

Type one of the following.

T meaning listing and symbols are to be

produced on the terminal

R meaning listing and symbols are to be

produced on the high-speed punch

RETURN key meaning no third pass desired, symbols are

printed on the terminal

any other character means no third pass desired.

3-23

Note that blank lines remain in the listing and that form-feed (214)
which could not be treated properly, because of limited core, is

ignored in the present version.

The entire printout might appear as follows.

. PALD)

*OUT-T:)

*

*IN-Rz)

*

*OPT-T)

When the high-speed punch is selected as a listing device, the

alphabetic symbol table produced at the end of pass 3 is also produced
on the high-speed punch.

PAL-D is now ready to proceed with the assembly, pausing only when
user intervention is required (i.e., placing a new paper tape in the

reader, turning off the punch, etc.). On these occasions, PAL-D prints
an up-arrow (f) on the terminal and waits for a CTRL/P to continue
with the assembly. When using the low-speed reader on input i.e.,
(IN-T:), a CTRL/P must be typed BEFORE turning the reader on. CTRL/P
terminates any pass and automatically begins the next one. (CTRL/P
does not echo.)

When using the disk as an output device, the compiled binary is ready
to be loaded for execution following pass 2.

The symbol table will be output at the end of pass 2 if the third pass
has not been requested. If pass 3 is requested, PAL-D will follow the

assembly listing with the user's symbol table in alphabetical order
(in addition to the assembled binary output).

Type CTRL/C to terminate assembly and return control to Monitor at any
time. The Symbol Table is punched after the listing and is preceded
and followed by 38 frames of leader/trailer (200) code. The symbol
tape is punched whether or not a listing is requested, and appears
either on the terminal or high-speed punch. When assembly is

complete, control is automatically returned to Monitor.

PAL-D makes many error checks as it processes source language
statements. When an error is detected the Assembler prints an error

message. The format of the error messages is

nn xxxx

where nn is a two-letter code which specifies the type of error, and

xxxx is either the absolute octal address where the error occurred or

the address of the error relative to the last symbolic tag (if there
was one) on the current page.

PAL-D's error messages are listed and explained in Table 3-4.

3-24

Table 3-4

PAL-D Error Messages

Error Code Explanation

BE

DE

DF

IC

ID,

IE

II

Two PAL—D internal tables have overlapped. This

situation can usually be corrected by decreasing
the level of literal nesting or the number of

current page literals used prior to this point on

the page.

System device error. An error was detected when

trying to read or write the system device; after

three failures, control is returned to the

Monitor.

System device full. The capacity of the system
device has been exceeded; assembly is terminated

and control is returned to the Monitor.

Illegal character. An illegal character was

encountered other than in a comment or TEXT field;
the character is ignored and the assembly
continues.

Illegal redefinition of a symbol. An attempt was

made to give a previously defined symbol a new

value by means other than an equal sign; the

symbol was not redefined.

Illegal equal sign. An equal sign was used in the

wrong context.

Examples:

TAD A+=B

A+B=C

The expression to the left of the equal sign is

not a single symbol.

Illegal indirect address. An off-page reference

was made; a link could not be generated because

the indirect bit was already set.

Example:

*200

TAD I A

IPAGE

A, 7240

(Continued on next page)

Table 3—4 (Cont.)
PAL-D Error Messages

Error Code Explanation

ND

PE

PH

SE

US

ZE

The program terminator, $, is missing (with TSS/8
only).

Current nonzero page exceeded. An attempt was

made to:

l. Override a literal with an instruction, or

2. Override an instruction with a literal; this
can be corrected by

a. Decreasing the number of literals on the

page, or

b. Decreasing the number of instructions on

the page.

Phase error. PAL-D has received input files in an

incorrect order; program terminator ($) is either

missing or misplaced. Assembly is terminated and

control is returned to the Monitor.

Symbol table exceeded. Assembly is terminated and
control is returned to the Monitor; the symbol
table may be expanded to contain up to 1184 user

symbols by saving a file named .SYM on the system
device. (Disk Monitor System only.)

Undefined symbol. A symbol has been processed
during pass 2 that was not defined before the end
of pass 1.

Page zero exceeded. Same as PE except with
reference to page 0.

Examples:

The following
section.

.LOAD)

*IN-R:)

*

*ST=)

example shows the entire process covered in this

Call Loader

Input to be from high-speed reader

Loader found input device valid

Return to Monitor after loading

fl

_._SAVE PALD10-757776200)

_._PALD)

*o_U'r-_S:BIN)

*

*IN-R:)

*

*OPT-R

11

;LOAD)

*IN-S :BIN)

It

*s-r=7606)

_1_1_

PAL-D is loaded

PAL-D is saved on disk (see Appendix D)

Call PAL-D

Output to filename BIN on system device

Filename and system device valid for

output

Input from high-speed reader

Reader is valid input device

Output listing and symbols on high-speed
punch

CTRL/P should be typed after inserting
source tape in reader for each pass.

(If both input and output are to system
device, no f's are typed.)

Assembly is finished; control returns

to Monitor; user called the Loader.

Input from filename BIN on system device

Filename and system device valid for

input

Transfer control to the HALT in the

Monitor after loading the user program

CTRL/P typed two times in response to

each 1

User program is loaded; the computer
halts with user program in core

3.4 FORTRAN-D

FORmula TRANslation for the Disk System (FORTRAN-D), is a modified

version of PDP-8 4K FORTRAN designed for PEP-8 computers with disk or

DECtape units and 4K words of core memory.

FORTRAN-D contains a compiler and an operating system. The FORTRAN

compiler is used to convert a source program into an object program.
The FORTRAN operating system is used to execute the object program.

This version of FORTRAN is designed to facilitate user/system
communication. Appropriate commands can be typed at the terminal

keyboard, eliminating the need .to toggle input using the switch

registers.

FORTRAN statements specify the computations required to carry out the

processes of the FORTRAN program. There are four types of statements

provided for by the FORTRAN language:

1. Arithmetic statements define numerical calculations.

2. Control statements determine the sequence of operation in the

program.

3. Specification statements define the properties of variables,
functions, and arrays appearing in the source program. They
also enable the user to control storage allocation.

4. Input-output statements are used to transmit information

between the computer and related input-output devices.

For more detailed information on FORTRAN-D refer to DEC Library
document 4K FORTRAN, DEC—OS-AFDO-D.

A summary of the FORTRAN statements is given in Table 3-5.

Table 3-5

Summary of FORTRAN Statements

Statement and Form Explanation

Arithmetic Statements

v=e v is a . variable (possibly

Control Statements

GO TO n

GO TO (n(1),n(2),...,n(n)),i

IF (e)n(1),n(2),n(3)

DO n. i=k<1),k(2),k(3)

CONTINUE

PAUSE

PAUSE n

STOP

END

Specification statements

DIMENSION v(1)(n(1)).v(2)(n(2

DEFINE device

FORMAT (s(1),s(2),...,s(n))

subscripted): e is an expression.

n is a statement number.

are statement

a nonsubscripted
n(l),...,n(n))
numbers; 1 is

integer variable.

expression;
statement

an

[11(3)

e is

n(l) .n(2)
numbers.

are

statement number of a

i is an integer
k(l),k(2),k(3) are

integers or nonsubscripted integer
variables. K(3) if omitted is

assumed to be 1.

n is the
CONTINUE;

variable;

Proceed.

Temporarily suspend execution.

subroutine

at the

n is a decimal address;

execution will commence

octal equivalent of n.

Terminate execution.

Terminate compilation; last

statement in program.

))....,v(n)(n(n))
v(1),...,v(n) are variable

n(l),...,n(n) are integers.

names;

Device is DISK or TAPE, system I/O
device.

field

and A

specification.
are accepted by

s is a data

(I, E, F

FORTRAN-D.)

(Continued on next page)

Table 3-5 (Cont.)
Summary of FORTRAN Statements

Statement and Form Explanation

COMMENT Designated by C as first character
on line.

Input-Output Statements

ACCEPT f,list f is a FORMAT statement number;
list is a list of variables.

TYPE f,list f is a FORMAT statement number;
list is a list of variables.

READ u,f,1ist u is an integer, representing
device from which data is to be

read. f is a FORMAT statement

number; list is a list of

variables.

WRITE u,f,list u is an integer, representing
device onto which data will be

written. f is a FORMAT statement

number; list is a list of

variables.

The following functions are allowed:

Format Meaning

SQTF(x) square root of x

SINF(x) sine of x

COSF(x) cosine of x

ATNF(x) arctangent of x (in radians)

EXPF(x) exponential of x

LOGF(X) logarithm of x

ABSF(x) absolute value of x

Certain input-output statements have special characteristics when used
with disk or DECtape units.

1.

2.

The READ and WRITE statements perform sequential input and

output either on paper tape or on the system device.

A DEFINE statement must precede 'the first executable
statement in any program using the system device to input or

output data.

3-30

when the Operating system is called, the input or output
filename must be specified by using the 5 option if data is

to be read from or written on the system device.

When a READ statement used with the terminal, the

statement differs from the ACCEPT statement in that the data

being read is not echoed on the printer.
\

A WRITE statement used with the teleprinter differs from a

TYPE statement in that

carriage return-line feed.

it always terminates by typing a

The READ and WRITE statements input and output data on either

the teleprinter,
device.

When the ACCEPT statement

deletes the preceding
examples.

Typed and Corrected

Integer Numbers:

128R1028

128R-28

-128R128

'R' indicates a rubout.

Floating-point numbers:

2R42

+2.R42

-2.0R2.0

42R-42.2

20E6R5

When the READ statement is

completely ignored.

The device assignments
statements are:

the high-speed reader/punch, or the system

used, the rubout character

input as shown in the following

Read

+1028

-28

+128

+42.0

+42.0

+2.0

-42.2

+2.0 x 10(6)
+2.0 x 10(5)

the rubout character is

FORTRAN-D READ and WRITE

Device

Code Device

1 Terminal

2 High-speed reader/punch
3 System device

For example:

READ 2,f,1ist

reads from the high-speed reader.

The following examples show how the READ and WRITE statements might be

used in a typical FORTRAN program. (The example programs which use

the system file must be assembled then run with FOSCL as shown in

Example 4, section 3.4.2.2. Specify the input data file and output
data file.)

C EXAMPLE PROGRAM TO READ COORDINATE PAIRS

C FROM THE TELETYPE AND STORE THEM ON

C THE SYSTEM DEVICE

DEFINE DISK

TYPE 100

100 FORMAT("ENTER THE NUMBER OF COORDINATE PAIRS"/)
ACCEPT 10,N

10 FORMAT(I)
TYPE 102

102 FORMAT("NOW ENTER THE COORDINATES"/)
DO 20 I=1,N
ACCEPT 30,x,y
WRITE 3,3o,x,y

20 CONTINUE

STOP

30 FORMAT (E,E)
END

Several READ and WRITE statements may occur within a single DO loop
and may refer to different devices. The data is written in ASCII
format regardless of the device used. The following program
demonstrates how information previously stored on the disk might be

read, processed, and punched using the high-speed punch.

C FORTRAN EXAMPLE PROGRAM

DEFINE DISK

DIMENSION X(100),Y(100)
C READ DATA FROM THE DISK DEVICE 3

IDEV=3

6 SUMX=0

SUMY=0

DO 10 I=l,100
READ IDEV,20,X(I),Y(I)
WRITE 2,20,X(I),Y(I)
SUMX=SUMX+X(I)
SUMY=SUMY+Y(I)

10 CONTINUE

TYPE 30,SUMX,SUMY
ACCEPT 40,J
IF (J) 12,12,6

12 STOP

20 FORMAT (3,3)
30 FORMAT("SUM OF x VALUES = ",E,”SUM OF Y VALUES =",E,

1//"TYPE 0 To STOP, 1 TO CONTINUE")
40 FORMAT (I)

END

3.4.1 Compiler

The compiler consists of a loader (FORT) and the main portion of the

compiler (.FT.). This version of the compiler differs from the PDP-8

4K FORTRAN compiler in the following ways.

1. It uses the disk or DECtape unit during its operation.

2. It compiles programs which have been stored on the system
devices or programs which have been prepared on punched paper

tape.

3. It generates a FORTRAN binary output Vfile either on the

system devices or on punched paper tape.

4. Significant improvements have been employed with the READ and

WRITE Statements.

5. Input and output devices are determined using the Command

Decoder.

6. It is possible to terminate compilation at any time by typing

CTRL/C, thus returning control to Monitor.

7. Within certain restrictions, a program compiled on a system
device may be executed immediately by typing CTRL/P after

compilation of the program.

8. A statement number need not be delimited by a semicolon,
unless the user wishes it to be employed for appearance.

9. Statements without preceding numbers must be preceded by a

space, a tab, or a semicolon.

3.4.1.1 Loading the FORTRAN Compiler - The FORTRAN compiler loader

(FORT) is loaded into core from punched paper tape in one pass through
the Binary Loader. FORT may be saved on the system device as

described in Appendix D.

The main portion of the FORTRAN compiler (.FT.) is loaded into core

with the Binary Loader. .FT. may be saved on the system device by
the same method as FORT. ‘When the compiler (both FORT and .FT.) is

loaded and saved on the system device, the entire procedure generates
the following printout:

3ST=7600)

LSAVE’FORTlo-l777: 200) (See Appendix D.)

.LoAD)

;SAVE.FT.!200-7377; 0) (See Appendix D.)

3-33

The loader occupies core locations 0-1777 with a starting address at
200. The compiler occupies core locations 200-7377, its starting
address is not specified since the loader (not the user) calls .FT.
when needed.

V

3.4.1.2 Operating Procedures - The FORTRAN compiler is transferred
from the system device into core when

4FORT)

is typed in. In response, the Command Decoder then prints

*OUT-

and waits for one of the following to be specified:

T:) Output on low-speed punch/printer,
.

Rz) Output on high-speed punch

Szname) Output on system device and assign name

RETURN No output desired

Refer to Appendix F for a table of valid I/O devices for FORTRAN-D.

Command Decoder responds with an
* when it recognizes a valid output

device, and then prints

* IN—

and waits for one of the following:

T:) Input to be from low-speed reader

R:) Input to be from high-speed reader

S:name‘) Input to be from system device file named

Command Decoder prints an
* when it recognizes a valid input device.

The compiler now assumes control, and if the program to be compiled is
on paper tape, the compiler prints 1 when it is ready to receive the

tape for compilation.

Type CTRL/P, to initiate compilation. At the end of compilation the

compiler prints any error diagnostics necessary, a carriage
return/line feed, and 1.

The process described above produces the following printout.

JORT)
*ou'r-R:)
*

EN-R:
_*

)

lehd (CTRL/C typed here; compilation finished)

3.4.1.3 Compiler Diagnostics - Certain errors can make it impossible
for the compiler to proceed in the normal manner. These are referred

to as system errors. They may be caused by improperly loading the

compiler, by not having an END statement on a source file, by a

machine malfunction, or various other reasons.

There are two types of system errors: those which occur before the

compiler has been loaded into core, and those which occur after the

compiler has been loaded into core. In the first case, the compiler
prints a four-digit error code and returns control to the Monitor. In

the second case, the compiler prints SYS followed by a four-digit
error code. Type CTRL/C to return control to the Monitor.

A complete list of the system error messages and their explanations is

shown in Table 3-6.

Table 3-6

Compiler Systems Diagnostics

Error

Code Explanation

0227 Could not find Command Decoder on system device

0231 Same as above

0326 Could not find .FT. on system device

0330 Same as above

1425 READ error during directory or SAM block search

(Continued on next page)

Table 3-6 (Cont.)

Compiler Systems Diagnostics

Error

Code Explanation

1521 Same as above

1626 Same as above

1726 WRITE error during SAM block search

3100 Illegal operator on compiler stack or machine

malfunction.

3417 Pre-precedence error. (Compiler error or machine

malfunction.)

4737 No input device or invalid input device specified

6141 Attempt to execute a program not compiled onto the

system device

6145 Could not find FOSL on system device; if the error

occurs, it may be necessary to reload FORT and FOSL.

6207 READ error while loading FOSL

6211 Error while doing SAM block manipulation or a machine

malfunction.

6223 Error while loading .FT.

6226 Same as above

6257 Same as above

6407 Illegal overlay request or a machine malfunction.

6416 Same as above

6467 System device READ error

6724 No END statement on source device

6746 Same as above

7114 Same as above

7136 READ error on system device source file

7150 System device full

7173 WRITE error on system device output file

The example below illustrates the appearance of the error codes.

:FORT)
0227 Command Decoder not on system device

VIN-Szname)
SYS 6141 CTRL/C typed; no output file specified

Error messages for errors which occur during compilation of a program

are typed out upon completion of the compilation. These errors are

referred to as compilation errofis and take the form:
\

xx xx

I
LThe error code

The number of statements since the appearance

of last numbered statement (octal)

XXXX

The statement number of the last numbered statement

For example, during compilation of the statements

10 A=I(J+1)

B=A*(B+SINF(THTA))

the error message

10 l 11

would be printed, indicating that an error exists in a statement which

occurs 1 statement (octal) after the appearance of statement 10. The

message corresponding to error code 11 shows that the number of left

and right parentheses in the statement is not equal. The statement is

examined and corrected, then compilation is resumed.

Table 3-7 lists the compilations error messages and their

explanations.

Table 3-7

Compiler Compilation Diagnostics

Error

Code Explanation

00 Mixed mode arithmetic expression

01 Missing variable or constant in arithmetic expression

03 Comma was found in an arithmetic expression

04 Too many operators in this expression

05 Function argument is in fixed-point mode

06 Floating-point variable used as a subscript

07 Too many variable names in this program

10 Program too large, core storage exceeded

11 Unbalanced right and left parentheses

12 Illegal character found in this statement

13 Compiler could not identify this statement

14 More than one statement with same statement number

15 Subscripted variable did not appear in a DIMENSION

statement

16 Statement too long to process

17 Floating-point operand should have been fixed-point

20 Undefined statement number

21 Too many numbered statements in this program

22 Too many parentheses in this statement

23 Too many statements have been referenced before they

appear in the program

25 DEFINE statement was preceded by some executable

statement

26 Statement does not begin with a space, tab, C, or

number

3.4.1.4 Debugging Aid (Symbolprint) - Symbolprint is a program which

may be used with the FORTRAN compiler. It helps create and debug user

FORTRAN programs by providing certain information about the

compiler-generated interpretive code. Symbolprint may be used only

immediately after a program has been compiled by using the

Disk/DECtape FORTRAN compiler.

Symbolprint provides the following information:

1. The limits of the interpretive code.

2. A list of variable names and their corresponding locations

(the symbol table).

3. A list of statement numbers and their corresponding locations

(the statement number table}.

Symbolprint is loaded into core from punched paper tape and may be

saved on the system device approximately as shown below (see Paragraph
2.5).

H

I§AVE STBL!600-777;600) (See Appendix D.)

When in core, Symbolprint occupies locations 600-777 with its starting
address at location 600.

When Symbolprint is called into core, it prints the interpretive code

limits, symbol table, statement number table, carriage return/line

feed, and 1. Type CTRL/P to execute a user program or CTRL/C to return

to Monitor.

In the following example, a program named SRC is compiled with no

output specified. Symbolprint is then used as shown above.

JORT)
*ou'r-)
*

7IN-s :SRC
1,—-

(CTRL/C typed here)

I.

I->|
3w

OH." H U1 .5; \I U1 a‘ U!

\l U! \l O'\

\l U1 \1 U1 (Symbol Table)
‘1 01 ‘1 [.-Ir<l><IHIz \l

|

01 Ch as
|

O H O O 0‘ O u: U)

D O H O O O 0‘ O

O H O N 0" O 0‘ m (Statement Number Table)
0 O N O 0‘ H .5 U!

0 o w 0 m g... A \l

(CTRL/C typed here.}

I'

I».

3-39

In the example above, location 6154 is the highest location used for

interpretive code and location 7565 is the lowest location used for

data, indicating that the part of core between 6145 and 7565 is

unused. Interpretive code starts at location 600 if a DEFINE

statement appears in the program; otherwise, the code starts at

location 5200.

3.4.2 Operating System

The FORTRAN operating system consists of a loader (FOSL) and the

interpreter and arithmetic subroutine package (.08.). This version of

FOSL differs from the paper tape FORTRAN operating system in the

following ways.

1. It loads and executes programs which have been compiled and

saved on the system device or programs which have been

compiled on paper tape.

2. FOSL may be called directly by the compiler when a program
has been compiled and saved on the system device. This is

referred to as compile-and-go mode.

3. FOSL recognizes READ and WRITE statements which may read and

write data in ASCII format on either the low-speed paper tape

reader/punch, the high-speed paper tape reader/punch, or the

system device.

4. The execution of a FORTRAN program may be interrupted at any
time by typing CTRL/C; control returns to Monitor.

3.4.2.1 Loading the FORTRAN Operating System
- The FORTRAN Operating

System Loader (FOSL) is loaded into core in one pass. It may be saved

on the system device as described under SAVE Command Format.

The operating system interpretive and arithmetic package (.05.) is

loaded into core in one pass through the Loader. .05. may be saved

on the system device by the same methods as FOSL. When the FORTRAN

operating system (both FOSL, and .OS.) is loaded and saved on the

system device, the entire procedure will generate the following
printout:

4LOAD .9
*IN-R:)
*

*s'r=)
11
_._SAVE FOSL10-17777200) (See Appendix D.)

LLOAD)
*IN-R:)
‘—

:ST=)
11

SAVE.OS.!0-5177;0) (See Appendix D.)

The Loader occupies core locations 0-1777 with its starting address at

200. The arithmetic and subroutine package occupies core locations

0-5177; its starting address is not specified since the Loader (not

the user) calls .OS. when needed.

3.4.2.2 Operating Procedures - The FORTRAN operating system may be

transferred from the system device into core in one of two ways: by

typing CTRL/P immediately after compiling a FORTRAN program onto the

system device, or by typing FOSL immediately after Monitor prints a

dot.

_._FOSL)

If the operating system is called from Monitor, specify the desired

input device by typing

T:) for low-speed reader

R:)
> for high-speed reader

Szname) for system device input

FOSL prints
* when it recognizes a valid input device and prints

*OPT-

If input or output is to be to or from the system device, type S. Any

other character indicates that the system device is not to be used.

However, if the S option is used, FOSL prints

*OUT-

Specify the desired output filename (if any) by typing Sgname) (name

is the name of the file). FOSL again prints

* IN—

Respond with S:name)(where name is the filename of the data file), and

the RETURN key.

If the FORTRAN program is on paper tape, Loader prints ? when it is

ready to begin loading. Type CTRL/P and the tape loads.

When the FORTRAN program or file is loaded, FOSL prints

*READY

Place data tapes in the appropriate reader and type CTRL/P to begin

executing the program. (If the low-speed reader is used, turn the

reader ON AFTER typing CTRL/P.)

When a STOP or END statement is executed, or when an end-of—file is

read on the system device, the operating system prints 1 and control

returns to the Monitor.

The following examples show how the FORTRAN operating
used.

Example 1

AFOSL)
*IN-S :FBIN,)
*

Top'ra)
*READY

1

Example 2

_’

:FOSL)
*IN-R: ,R:)
*

BPT-)
*

fl
ERROR 01

*READY

f

Example 3

_.FORT)
*ou'r-‘s : SMSQ)
*

I- IN-S :SMSQ)

l»|»
éUN

[-9

Example 4

_.FOSL)
*IN-S :BIN)
*

system may be

(Program execution occurs here)

(CTRL/P typed here)

(Program execution begins here)

Compile
and

Go

(Program execution begins here)

(Program execution begins here)

In Example 2 a checksum error was detected on the second input tape.
This error will always occur when a PAL routine is assembled with a

FORTRAN program. In this case the operator decided to attempt to

execute the program in spite of the checksum error.

The following methpd for saving FORTRAN—D object programs enables the

user to call his program with the FORTRAN-D operating system as a

Monitor system program.

1. Compile the FORTRAN-D source program as usual.

2. Load and run the compiler output'under FOSL.

3. At the end of a successful run, control will return to the

Monitor. The user should then call FOSL to reload the

compiler output as if to run the program again.

4. When FOSL has loaded the program (and subroutines, if any) it

types

READY

T

Type CTRL/C to return to the Monitor.
'

5. A core image of the user's program in FOSL may now be saved

on disk as a system program by typing

SAVE NAME!0-7577;5043)

Note that the starting address must be 5043.

6. When the Monitor has returned control to the user, the core

image may be called at any time as a system program. On

starting, the program types

READY

f

7. CTRL/P initiates execution. When execution is complete the

program types ”I" and returns to the Monitor.

Users who run FORTRAN-D with binary subroutines will find this method

especially time saving. Execution times of tested FORTRAN programs
can be increased by changing location 212 of .OS. from 4664 to 7000.

3.4.2.3 Operating System Diagnostics - When an error occurs during
program execution, the operating system prints ERROR followed by a

two-digit error code number which indicates the cause of the error.

Depending on the nature of the error, it may be possible to continue

program execution by typing CTRL/P or it may be necessary to return to

the Monitor by typing CTRL/C.

Table 3-8 lists the operating system error messages. The message

indicates .08. a system device read error.

Table 3-8

Operating System Diagnostics

Error

Code Explanation

Ol Checksum error on FORTRAN binary input

02 Illegal origin or data address on FORTRAN binary input

04 System device input-output error or machine malfunction

05 High-speed reader error

06 Illegal FORTRAN binary input device

11 Zero divide error

12 Floating-point input data conversion error -

13 Illegal op code

14 System device input-output error or machine malfunction

15 Non-FORMAT statement used as a FORMAT

16 Illegal FORMAT specification

17 Floating-point number larger than 2048

20 Square root of a negative number

21 Exponential negative number

22 Logarithm of a number less than or equal to zero

40 Illegal device code used in READ or WRITE statement

41 System device full, could not complete a WRITE

statement

76 Stack underflow error

77 Stack overflow error

Errors 76 and 77 may be caused by source program or

loading error; to correct do the following

(Continued on next page)

Table 3-8 (Cont.)

Operating System Diagnostics

Error

Code Explanation

a. Use Diagnose to determine where the error

occurred.

b. Recompile the source program

c. Examine the source program (in particular the

arithmetic and subscripted variables).

When an error occurs, execution stops and the operating system waits

for a CTRL/P or CTRL/C.

3.4.2.4 Debugging Aid (Diagnose) - Diagnose is a basic system program
used to debug FORTRAN programs. It is intended to be used in

conjunction with the PDP-8 4K FORTRAN Operating System and revised

FORTRAN Symbolprint. Diagnose provides the following information.

1. If stack overflow or underflow has occurred, it prints a

message indicating which of the five run-time stacks caused

the error.

2. It prints a message indicating the contents of the current

location counter (CLC).

3. If the counter stack is nonempty, it prints the contents of

that stack.

4. If location zero is nonzero, it prints the contents of that

location (minus one), indicating the point at which some

FORTRAN systems error occurred.

Diagnose is loaded into core from punched paper tape and may be saved

on the system device as shown in Appendix D. A sample printout is:

4LOAD)
*IN-R:)
*

3%)
11
LSAVE DIAG!200-ll77;200) (See Appendix D.)

When in core, Diagnose occupies locations 200-1177 with its starting
address at location 200.

Diagnose is called by typing the letters DIAG in response to the

Monitor's dot. It may be used any time the FORTRAN 4K Operating
system is in core. (If it is called any other time, the information

printed is meaningless.)

3—45

The use of Diagnose is demonstrated by the example of the following
test program which contains a large amount of arithmetic calculations.

(In”programs l and 2, examples of system output are not underlined.)

Program 1:

*L

FORTST

PDP-8 ADVANCED SOFTWARE

FORTRAN TEST 1/2/68
DIMENSION ADIFE(6),AFAC(3),APIPE(6),IMRCD(3),PP(27),ACPRI(3)
TYPE 1

-

1 FORMAT ("PDP-B 4-K FORTRAN TEST"/)
ASPVA=.60

APIPE(1)=12.09

APIPE(3)=6.66
APIPE(4)=5.
APIPE(5)=5.0
IMRCD (1) =30

IMRCD(2)=30
ADIFE(1)=47.
ADIFE(2)=47.

ADIFE(4)=508.
ADIFE(5)=3857048.
AF=37.96

SC=3.1416

AMEAS=9.02

FSUBB=10.0

ASUVA=100.98

DO 200 1:1,27
READ 2,199,PP(I)

199 FORMAT(E)
200 CONTINUE

AGAST=38

INORU=2

25 BSPVA=(1./ASPVA)**.5
DO 550 JCB=1,INORU
AVEDE=IMRCD(JCB)

BE=APIPE(JCB+3)/APIPE(JCB)
IF(BE—.75)471,472,472

,

472 AK=.731
GO TO 16

471 AG=.075

DO 100 IE=1,27
AG=AG+.025

IF(AG-BE)100,100,110
100 CONTINUE

110 TOTA=FF(IE)

TOTB=PP(IE-l)

SC=.025-(AG-BE)
WRITE 2,991,TOTA,TOTB,SC,AG,BE,IE

991 FORMAT(/"1",E,E,E,E/" ',E,I)
IF(TOTA-TOTB)120,120,130

120 AK=TOTA

GO TO 16

130 AK=TOTB+(SC*(TOTA—TOTB))/.025

GOO

16

992

550

38

14

993

6360

ADIF

AFAC

APIP

IMRC

ACPR

ASPV

SC

AMEA

FSUB

ASUV

AGAS

INOR

BSPV

JCB

AVED

BE

AK

AG

TOTA

FRD=830.-5000.*BE+9000.*BE**2-4200.*BE**3+(530./APIPE(JCB)**.5)
BMEAS=AMEAS+14.4

FR=1.+((FRD/(12835.*AK))/((BMEAS*AVEDE)**.S))
XSUBZ=AVEDE/(27.7*BMEAS)
YTTA=(XSUB2+1.)**.5
YTTB=.35*BE**4.+41.

YTTC=XSUB2/(l.3*YTTA)
YSUBZ=YTTA-YTTB*YTTC

ACPRI(JCB)=YSUBZ*FR*1. 0177*FSUBB

AFAC(JCB)=ADIFE(JCB)*BSPVA
WRITE 2, 992 ,AK, FRD, AMEAs, BMEAS, FR, XSUBZ, YTTA ,YTTB,‘
l,'YTTC, YSUBZ ,ACPRI(JCB), JCB

FORMAT(/"2",E,E,E,E)
CONTINUE

AFTF=(520./(460.+AGAST))**.5
AFPV=(1.+(ASUVA*AMEAS)/((AGAST+460.)**3.825))**.5
FLOW=0

RATE=0

DO 38 I=1,INORU
AMWP=(ADIFE(1)*AMEAS)**.5/1000.
RATE=RATE+ACPRI(I)

FLOW=FLOW+AFTF*(AFAC(I)*AFPV*AMWP)
CONTINUE

WRITE 2,993,AFTF,AFPV,AMWP,FLOW,RATE
TYPE 14,FLOW,RATE
FORMAT(E,E/)
STOP

FORMAT(/E,E,E,E)
END

.STBL

6756

7555 W

7544

7522

7517

7376

7365

7362

7310

7302

7274

7266

7260 > Symbol Table

7254

7246

7244

7240

7231

7225

7222

7213

7205

7201

7171 J

TOTE 7166 W
FRD 7153

. BMEA 7124

FR 7116

XSUB 7102

YTTA 7074

YTTB 7063 .

YTTC 7047 > Symbol Table (Cont d.)

YSUB 7041

AFTF 7032

AFPV 7016

FLOW 6777

RATE 6773

AMWP 6766
J

0001 5203 N

0199 5411

0200 5414

0025 5426

0472 5507

0471 5515

0100 5547

0110 5550

0991 5615 > Statement Number Table

0120 5650

0130 5656

0016 5676

0992 6147

0550 6162

0038 6323

0014 6342

0993 6350 J

EXAMPLE 1 A

f

*READY

f

PUP-8 4‘K FORTRAN TEST

0.255323E+1 -0.825572E+l

1

.DIAG

CURRENT LOCATION COUNTER AT 6247

EXAMPLE 1 B

.FOSL

*IN-S:BIN
*

*OPT-

*READY

?

PDP-B 4-K FORTRAN TEST
'

ERROR 05 (CTRL/C typed here)
.DIAG

CURRENT LOCATION COUNTER AT 5407

3-48

EXAMPLE 1(C)

.FOSL

*IN-S:BIN
*

*OPT-

*READY

?

PDP-8 4-K FORTRAN TEST (CTRL/C typed here)

.DIAG

CURRENT LOCATION COUNTER AT 4404

COUNTER STACK...

4733

4716

4673

6024

In example 1(a), the program was run to completion after which

Diagnose was called. Diagnose indicated that the current location

counter contained 6347. Refer to the statement number table (top of

page 3—29), and note that the CLC was pointing to an address just
above statement 993 (address 6350), verifying that the program

terminated normally at that point.

In example 1(b), program execution was attempted without paper tape in

the high-speed reader. After observing the error diagnostic 05,

Diagnose was called, indicating that CLC=5407. Refer to the statement

number table again and note that the address 5407 must refer to a

statement just before statement number 199 which is indeed the READ

statement at which the error occurred.

In example 1(c), program execution was arbitrarily stopped when CTRL/C

was typed. It should be noted that in this case the CLC contained a

4404 which is outside the user's interpretive code area. In such

cases it is necessary to refer to the counter stack in order to

determine where the program interruption occurred. The laSt address

on the counter stack points to location 6024. Refer to the statement

number table and note that the program was interrupted at some point
between statements 16 and 992.

Program 2 is a FORTRAN program in which a missing operator appears on

the 6th line. When program execution is attempted a stack overflow

(error 77) occurs. Diagnose indicates that the operand stack has

overflowed, which suggests some noncompiler detected error in the

source program. As shown in the statement number table, which is

typed afterwards, the CLC points just before statement 10, which

happens to be the source of the error. It should be pointed out,

however, that when stack overflow or underflow occurs the CLC will not

always point to the source of the error. It may be necessary to

examine the entire program for errors of this type.

Program 2:

.EDIT

*OUT-S:SRC
*

* IN-
*

*OPT-B

*1

c FORTRAN TEST

B=l

c=2

D=3

DO 10 I=1,160
A=B(C+D)

10 CONTINUE

TYPE 20,A
20 FORMAT(E)

STOP

END

*E

.FORT

*OUT-S:BIN
*

*IN-S:SRC
*

T

*READY

f

ERROR 77 »

(CTRL/C typed here)
.DIAG

OPERAND STACK OVERFLOW

CURRENT LOCATION COUNTER AT 5231

.FORT

*OUT-
*

*IN-S:SRC
*

1
‘

(CTRL/C typed here)
.STBL

5251 7555

B 7574

C 7570

D 7564

I 7562

A 7555

0010 5237

0020 5244

i

C

When Diagnose finishes typing the appropriate information control
returns to the Monitor since it is impossible to resume FORTRAN

program execution.
3-50

3.4.3 Examples

LLOAD)
*IN-R:)
*

*sr=)
1 t

3m: FORT!0-l777;200)
__._LOAD)
:IN-R:)
*

ff

'Tszws .FT.1200-7377;0)
:LOAD)
*IN-R:)
*

?ST=
f 1

)

_._SAVE FOSL!0-l777;200)

_,_LOAD
*IN-R:)
*

*s'r=)
n
.gSAVE STBL!600-777;600)
_._EDIT)
*ou'r-swon'r)
*

3110-11:
7_

.>

*OPT-B

*E

_=FORT)
*ou'r-smon'r)

*

TIN-s :FORT)
*

:1:

4STBL)

6177 7565

M 7576

A 7573

B 7570

ANS 7565

0001 5200

Call Loader

Input to be from high-speed reader

Input device is valid

Return to Monitor after loading
Loader-driver is loaded

and saved on the system device

Call Loader

Input to be from high-speed reader

Input device is valid

Return to Monitor after loading

Compiler is loaded

and saved on the system device

Call Loader

Input to be from high-speed reader

Input device is valid

Return to Monitor after loading

Operating system loader is loaded

and saved on the system device

Call Loader

Input to be from high-speed reader

Input device is valid

Return to Monitor after loading

Interpretive and arithmetic package is

loaded
4

and saved on the system device

Call Loader

Input to be from high-speed reader

Input device is valid

Return to Monitor after loading
Symbolprint is loaded

and saved on the system device

Call Editor

Output to be on system device

Output device is valid

Input to be from high-speed reader

Input device is valid

Leave blanks (spaces) unchanged
Write the program on the system device

then write an end-of-file

Call FORTRAN compiler
FORTRAN binary output to be on system
device

Output device is valid

ASCII input to be from system device

Input device is valid

CTRL/C was typed. Compilation is

finished, return to Monitor

Call FORTRAN Symbolprint

Core between 6200 and 7564 is unused

Symbol table (typed by Symbolprint)

0002

0003

0004

0005

0006

0009

0100

0200

0300

0400

0500

1000

2000

3000

4000

1500

0008

0007

l

*READY)

1

5257

S413

5570

5717

5754

5760

5763

5766

5771

5774

5777

6027

6040

6051

6062

6071

6077

6123

Statement number table (typed by
Symbolprint)

Symbolprint is finished, load operating
system and interpretive code

Operating system and interpretive code

are loaded

Execute the program

THIS IS A DEMONSTRATION OF PDP FORTRAN,
THIS PROGRAM WAS COMPILED IN ONE PASS (CTRL/C typed here)

_._F0$L)
*IN-S_:FORT)
*

7OPT-)

*READY)

l

Call operating system and loader

FORTRAN binary input is on system device

Input device is valid

No input or output to be done on system
device during program execution

Operating system and interpretive code

have been loaded

Begin program execution

THIS IS A DEMONSTRATION OF PDP FORT (CTRL/C typed here)

4mm)
*OUT-S :FORT)
I'

7IN-s :FORT)
t

i

*READY)

1

Call FORTRAN compiler
Output to be on the system device

Output device is valid

Input to be from the system device

Input device is valid

Compilation is finished, loading
operating system and interpretive code

Operating system and interpretive code

are‘loaded

Begin program execution

THIS IS A DEMONSTRATION 0F (CTRL/C typed here)

3.5 DDT-D

Dynamic Debugging Technique for the Disk/DECtape System (DDT-D)

provides on-line checking, testing, and altering of object programs

through the terminal keyboard. On-line debugging allows program

checking at the computer, control of program execution, and insertion

of corrections or changes while the program is running.

When using DDT-D, it is important to have a listing of the program and

its symbols which can be updated as corrections and changes are made

to the program. Variables and tags may be referred to by their

symbolic names or by their octal values.

Refer to Chapter 5 of Introduction to Programming for information on

the operation of DDT-D.

DDT-D can be considered as being in three sections.

DDT Proper A slightly modified version, of DDT-8

(Low), occupies core location 200-4577

and the three breakpoint locations.

Driver Resident in core with its origin set

above DDT proper (above 4577); it is a

two-page program plus a one-page

once-only ‘program, and it contains

breakpoint insertion and removal logic,

overlay routines, continuation iteration

count and control, and breakpoint list.

User Core Image File Occupies same storage area as DDT proper

and is used for swapping DDT proper and

the user program to and from the system
device.

DDT-D is an expanded version of DDT-8 with the following exceptions.

1. Three breakpoints (as opposed to only one in DDT-8)

2. No punching (program may be output on the system device)

3. No switch Options (user direction is via keyboard)

4. No halts (continues when user types CTRL/P)

Variations in commands from DDT-8 follow. ([represents the ALT MODE

character)

[0, [S, (Y, [L, [M Are temporary modifications to their

respective constants; are reset at

every entrance to DDT-D from a [G or [C

CTRL/P Continue (DDT prints 1 to indicate that

it is waiting for CTRL/P)

CTRL/C Restore user core image and return to

Monitor *

n[Bk

n[BI [TI anIPI [E

[R

Set breakpoint; where n is the address

of the break, [B is the breakpoint

command, and k is l, 2, or 3
-

NOTE

If user tries to set two

breakpoints at the same

address, a ? is typed and

no action occurs.

Have been removed

Is switch independent

The following subroutines have been added.

ADDCHK

ADDMOD

DDTB

STOSYM

READS and SYMIO

Finds word to be examined and puts it in WORD

2; remembers if last virtual word referenced

was in same buffer as present virtual word

and reads only if required.

Updates real or virtual core.

Updates symbol table pointer, gets value of

breakpoint and its contents, prints

breakpoint number and a hyphen (—) if a

breakpoint, and goes to TRAP or prints

nothing and goes to START if breakpoint
number = 0. ‘

Updates DDT proper symbol area (DDT proper

must be on unprotected disk).

Input-output routines for disk; a failure in

either prints S and goes to start of DDT.

The following subroutines have been modified as indicated.

REDTAB
V

Assumes user wants to add to existing symbol

table; [X must be typed to clear the symbol
table.

FINIS Does not halt, instead, it waits for a CTRL/P.

CHANGE Allows lookup of values to change limit of search

and search mask.

TODDT ‘ Handles breakpoint insertion; transferred to DDT

driver.

TRAP Breakpoint handler; transferred to DDT driver.

The following subroutines have been removed.

PUNWOR

FSTPUN

FUN

PUNCHK

PUNLDR

WHICH

CHKS UM

From the terminal keyboard, the user program can be automatically
stopped at up to three strategic points by setting breakpoints, which
may be set before the debugging run is started or during another

breakpoint stop. To set a breakpoint, Type the absolute address or

symbolic tag of the location where the program is to stop, the ALT
MODE key, the B key, and then the breakpoint number. For example,

3400[Bl (absolute address, ALTMODE, B,1)

HERE[BZ (symbolic tag, ALTMODE, B, 2)

Locations 3, 4, and 5 on page zero are used as the breakpoint
locations. The breakpoint locations can be reset to any three

contiguous locations on page zero by reassembly of the furnished DDT

Driver source Changing the breakpoint locations is done by setting
BRKCEL=n, where n is the lowest of the three locations desired.

The following symbols' represent certain registers in DDT-D whose
contents are available to the user by typing:

[A Accumulator storage (at breakpoints)

[Y Link storage (at breakpoints)

[M Mask used in search

[L Lower limit of search

[U Upper limit of search

Table 3-9 lists the DDT—D commands.

n

Table 3-9

DDT-D Commands

Character Action

(space) Separation character.

+ Arithmetic plus.

- Arithmetic minus.

/ Location examination character; when it
follows the address of a location, it causes

the contents of that location to be printed.

RETURN key Make modifications, if any.

LINE FEED key

(period)

(left arroW)T

[S

[O

n[W

k[Bn

[Bn

n[C

k[G

[R

[x

Make modifications, if any, and print the

contents of the next sequential location.

Print last quantity as an octal integer.

Current location.

Delete the line currently being typed.

Set DDT-D to type out in symbolic mode.

Sets DDT-D to type out in octal mode.

Word search for all occurrences masked with

C([M) of the expression n.

Insert breakpoint n at location k (n=1, 2, or

3).

Remove breakpoint n(n=1, 2, or 3).

Continue n times automatically; if n is

absent, it is assumed to be 1.

Go to location k.

Append symbol table into external symbol
table or define symbols on line.

Clear symbol table.

3.5.1 Loading and Saving

DDT-D is loaded into core from punched paper tape. The tape is in two

sections. The first section contains DDT proper which loads in one

pass, occupies core locations 200-4577 (See Appendix D) and uses three

locations on page 0 for the breakpoint locations. The binary tape of

.the DDT driver uses locations 3, 4, 5 and 7200-7577. After loading DDT

proper, reserve on the system device a user core image file name .SYM,
which should also be assigned to core locations 200-4577. PAL—D also

uses SYM to store additional symbol table entries.

The next section of DDT (the driver) loads in two passes and occupies
two pages in core with its origin anywhere above DDT proper, that is,

anywhere above location 4577. The driver is resident in core. For

setup, it uses five more pages: one for once-only code plus four for

Command Decoder. Command Decoder expects two inputs to be assigned as

files to be used by the driver. These files are assigned only once

unless the system is changed or destroyed, in which case these two

files must be reassigned.

The sections of DDT are loaded and saved as described below.

&LOAD) Call Loader using Monitor

*IN-R:) Input to be from high-speed reader

1 Loader found input device valid

*ST=) Return to Monitor after loading

11 DDT proper is loaded

_;SAVE .DDT:200-4577;0) Saved as a user program (See

Appendix D.)

;SAVE .SYM:200-4577;0) User core image file also saved as

a user program. (See Appendix D.)

ALOAD) Call Loader using Monitor

*IN-R:) Input to be from high-speed reader

1: Loader found input device valid

*ST=7000) Transfer to once-only code after

loading

11 Driver is loader

§;<.DDT),S:<.USER> DDT Loader expects names of 2 input
files saved above for use by driver

(See Appendix D.)

*IN-S:.DDT,S:.SYM.) Inputs to be from DDT proper and

user core image files

I:- Loader found input files valid (an
asterisk is printed for each valid

file (device))

Is

:fiAVE DDT!7200-7577;7200) Saved as a system program (See
Appendix D.)

The error message DDT? is printed whenever an error is encountered
while loading DDT-D. Errors may be caused by the following.

1. User file too large

2. System device read error

3. No Command Decoder found

3.5.2 Operating Procedures

DDT-D is now saved on the system device. The user must now load into
core the program to be debugged. This is done as described in
Paragraph 2.5.

When the program to be debugged is in core type DDT in response to
Monitor's dot as shown below.

LDDT

DDT-D can now be used in debugging the program, directing execution
and making modifications as described above and in Chapter 6 of
Introduction to Programming.

A brief example of using DDTeD follows:

Example:

;LOAD) Call Loader

*IN-Rz) Input to be from high-speed reader

:_ Loader found input device valid
ST=) Return to Monitor after loading

13_ DDT proper is loaded

;SAVE .DDT:200-4577;0) DDT proper is saved on disk (See
Appendix D.)

4SAVE .SYM:200-4577;0)
'

User code image file also saved

_._LOAD) Call Loader

*IN-Rz) Input to be from high-speed reader

1_ Loader found input device valid

ST=7000) Transfer to once-only code after

loading

11 Driver is loaded

I§i<.DDT>,S:<.SYM> DDT Loader expects names of 2 input
files saved above for use by driver

3-58

3.6 DISK MONITOR SYSTEM RESTORE

This program restores a protected portion of the Disk Monitor System

after it has been destroyed, or removes all but a protected group of

programs from the disk.

RESTORE may be used only in a DISK MONITOR SYSTEM built on a DF32 or

RF08 Disk with Disk Monitor version "AF". The program is supplied as

an ASCII source on paper tape, and must be assembled using PAL-D.

Assembly of the source as it is yields a version of the program

suitable for a single 32K disk unit. By making minor changes to the

source,a version suitable for a 2, 3, or 4-disk unit configuration, or

for the RF08/R508 with 1 to 4 disk units can be created.

Due to repacking of system tables on INDAC system do not use or run

RESTORE or option M of PIP on INDAC systems.

RESTORE

1. reads a fresh image of the Monitor into core 7600-7777.

2. recreates the first Directory Name block and first storage

Allocation Map block by using the DN and SAM Backup blocks.

3. clears all other DN and existing SAM blocks.

If RESTORE has been saved on the disk before a crash occurs, it can be

called into core and executed by a simple bootstrap which can easily
be toggled in. For this purpose RESTORE needs to be saved on the disk

in a known block; preferably, it should be saved as the first program

on the disk (after the Monitor, Loader, and Command Decoder). Normally
RESTORE is used in conjunction with the P (Protect) and M (MOVE DN and

SAM to Backup blocks) options of PIP, and with the write—lock switches

of the unit.

If the user has 2, 3, or 4 unit DF32 disk he should edit, using the

PUP-8 Editor, the RESTORE source tape which is supplied in order to

produce a version of the source suitable to his configuration. The

original version is suitable only for the user having a single unit

disk. The editing required consists of removing slashes which precede
certain additional lines of code which are already in the source. The

lines which should be edited are clearly indicated in the source

itself.

3.6.1 Assemble and Save RESTORE

Assemble the proper version of the RESTORE source tape using the PAL-D

Assembler to produce a binary paper tape of RESTORE.

Using the Disk Monitor System Builder build a new system on disk.

Now load the RESTORE binary paper tape into core in the usual fashion.

Save RESTORE on the disk as follows:

SAVE REST!200;200

*IN-S:.DDT,S: .SYM)

In

*

_._SAVE DDT17200-7577;7200)

.LDDT‘)

3400/AND 0007 me)
3401/AND JMP 3400)

3400 [31)

3400 [6)

1-340010000

IC)

1-340020001

700 (c)

1-34OOQO701

O
—.

Inputs from DDT proper and user

code image file

Loader found both input files valid

Driver is saved on disk (See

Appendix D.)

Call DDT using Monitor

Examine contents of

location 3400 and 3401

Set breakpoint No. l at location
3400

Start execution at location 3400

Location 3400 contains 0000

Continue

Location 3400 now contains 0001

Pass through location 3400 700

times

Location 3400 now contains 0701

CTRL/C was typed here

NOTE

User Symbol Table extends from location

400 to 1574. This gives a total of 160

decimal symbols and may be cleared by
typing IX.

3.6.2 Operating Procedures

Load and save PIP in the usual manner.

Load and save other programs to be placed in the protected system.
These programs should not require a total of more than 123 (octal)
disk blocks. This keeps all programs to be protected in the lower

half of disk unit 0.

Duplicate the directory with the M-option of PIP as follows:

*OPT-M

*IN-S)

This copies the existing state of the first Directory Name block and

the first Storage Allocation- MAP block into the DN and SAM backup
area. This backup area is in the lower half of disk unit 0. At this

point Directory Name blocks 2 and 3 and any existing additional blocks

are still clear.

Protect the monitor with the P-option (see section 3.1.2) of PIP as

follows:

This marks all unused blocks in the lower half cf disk unit 0 as

restricted, so this area may be write locked.

Although the M and P options are generally used together as shown in

the above example, either may be used separately or they may be used

in reverse order. The important facts to remember are:

l. The M option must always be executed before lthe RESTORE

program can be run.

2. The P option must always be executed before the disk monitor

can run with the lower 16K of the disk write-locked.

3. That portion of the disk reserved by the P option can be

recovered only by using the RESTORE program and only when the

M option was executed before the P option.

4. If the user file .SYM is to be used by the PAL-D assembler or

by DDT with the lower 16K of the disk write-locked, it must

be created (with the SAVE command) after the P option has

been executed.

Write-lock the lower half of disk unit 0 by putting Disk Unit 0 Switch

ON and the Lower 16K write-lock switch ON.

At any future time when the system is still running, all programs

except the protected programs and data can be deleted from the disk by

typing

;REST

When the Monitor responds with a carriage return/line feed and dot

(.), the protected system has been restored.

3.6.3 Bootstrap Sequence

If at any time the unlocked portion of the disk including the DN and

SAM blocks is destroyed, the protected system may be restored by
toggling in the following bootstrap:

0171/5427 (Disk address of disk block 26 where RESTORE will

reside if it is the first program saved after the

system is built. The formula is BLKNO*201(8)+1)

0172/1171 (TAD disk address)

0173/6603 (DMAR disk read)

0174/6622 (DFSC skip on completion)

0175/5174 (JMP .-1)

0176/6621 (DFSE skip if no error)

0177/7402 (HLT on error)

7750/7600 (Data Break Word Count)

7751/0177 (Data Break Current Address)

START the bootstrap at 0172. This bootstrap reads RESTORE into core

and automatically executes it.

NOTE

RESTORE halts on any disk error.

APPENDIX A

SYSTEM GENERATION

This appendix describes the creation of a Disk System (Disk Monitor
and system programs) on an empty disk.

The steps involved in system generation are as follows.

1.

2.

3.

4.

Toggling in the Readin Mode (RIM) Loader.

Loading the Binary (BIN) Loader.

Loading and executing Disk System Builder to create Monitor.

Loading and saving any system programs.

A.l TOGGLING IN THE RIM LOADER

The Readin Mode (RIM) Loader

program in RIM format on

Loader has various uses, its

process is to load the Binary

There are two versions of the

short program which loads any

Although the RIM

is a

paper tape into core.

sole purpose in the System Building
Loader.’

RIM Loader, one for loading programs
from the high-speed paper tape reader and the other for loading from
the Teletype paper tape reader.

High-Speed Reader

Lgcatigg Instrustign

7756 6014

7757 6011

7760 5357

7761 6016

7762 7106

7763 7006

7764 7510

7765 5374~

7766 7006

77674 6011

7770 5367

7771 6016

7772 7420
7773 3776

7774 3376

7775 5357

7776 0000

A detailed description of the

Teletype Reader

Lesatign Instrugtignv

7756 6032

7757 6031

7760 5357

7761 6036

7762 7106

7763 7006

7764 7510

7765 5357

7766 7006

7767 6031

7770 5367

7771 6034

7772 7420
7773 3776

7774 3376
7775 5356

7776 0000

toggling and checking procedures for the
RIM Loader can be found in Chapter 6 and Appendix E-l of Introduction
to Programing.

A.2 LOADING THE BIN LOADER

The Binary (BIN) Loader loads any program in binary format on paper
tape into core. Its purpose in the System Building process is to load
the Disk System Builder. The procedure for loading BIN is as follows.

1. Check that the RIM Loader is in core.

2. Place the paper tape containing BIN in the paper tape reader

(high—speed or Teletype, according to version of RIM).

3. If Teletype reader is to be used, turn it on.

4. Place the address 7756 into the SWITCH REGISTER and press
LOAD ADD.

5. Press START. Tape should begin reading (if it does not,
check that the SING INST and SING STEP switches are off and
that the reader is on line). (Note: The Teletype reader is

always on line.) If the Teletype begins to print, flip
Teletype switch from LOCAL to LINE and back up the tape to

the leader/trailer.

6. After paper tape reads in, Press STOP on console and the BIN

Loader will be in core.

A detailed description of BIN and its use can be found in Appendix 3-1

of Introduction to Programming.

A.3 LOADING AND EXECUTING'DISK SYSTEM BUILDER

. Next, the Disk System Builder program, in binary format on paper tape,
is loaded by the Binary Loader. System Builder (DEC-D8-SBAF) is

compatible only with versions DEC-DS-PDAD and DEC-D8-PDZE of the

Peripheral Interchange Program. Loading procedures are as follows.

1. Place the address 7777 (starting address of BIN) into the
SWITCH REGISTER. Press LOAD ADD.

2. If the high-speed paper tape reader is to be used, put down

(or set to 0) bit 0 of the SWITCH REGISTER, place the System
Builder tape in the reader.

If the Teletype reader is to be used, leave up bit 0 of the
SWITCH REGISTER, place the System Builder tape in the reader,
put the Teletype to line, and set reader to START.

3. Press START on the console. Tape should read in.

4. When tape has been read, the accumulator should contain all
zeroes (if not, the program has loaded incorrectly; begin
the loading procedure from the beginning).

5. Turn off WRITE PROTECT on the disk (if present). Otherwise,
mount a DECtape reel on one of your DECtape units, set the

unit selector to 8, and set the WRITE switch to WRITE and the
REMOTE switch to REMOTE.

A-2

NOTE

To rebuild the monitor without

destroying previously stored programs on

the system device make the following

patch.

L99 9L9 HEW
375 0400 7600

6. To begin System Builder execution, place the address 0200

into the SWITCH REGISTER, press LOAD ADD, and then START.

7. As the following questions are typed out, answer them

according to your machine configuration.

BUILDER Dialogue Explanation

*SIZE 92 9933 8 User enters size of core K in

(4,8,12,16,20,24,28, or 32).

*HIGH SPEED PAEEB IAREZ Y User answers Y(yes) or N(no).

*RF082 N User answers Y(yes) or N(no). vaY, next

question is omitted.

*DF332 Y User answers Y or N. If N, the Builder

assumes the user wishes to build a

DECtape system on unit 0. In this case

the next 2 questions are omitted.

*NUMBER OF DISK UNITS? 2 User types number of physical disk units

on his machine 1,2,3 or 4 in addition to

disk. Multiples of 32K for DF32, 256K

for RF08 units.

*DECTAPE? Y
‘

User types Y if he has DECtape, (in
addition to his disk) otherwise N.

Monitor creation is completed, the

resident portion is moved to the

appropriate core area (7600 through

7777), and the nonresident portions are

written on the system device.

NOTE

If specified as present, the disk is

automatically selected as the system
device; if not, DECtape unit 8 is

selected.

Monitor is loaded and ready.
If the response

WRITE ERROR

occurs 3

1. If disk, start over at Paragraph
A.2; there may be a hardware

problem.

2. If DECtape, try a new DECtape and

start at Paragraph A.2. or, rewrite

the timing and mark tracks and

start at Paragraph A.2.

A.4 LOADING AND SAVING SYSTEM PROGRAMS

Binary Loader is one of the nonresident portions of Monitor and is
used to load system and user programs into core. It is fully
described in Chapter 2. Figure A-l illustrates the Binary Loader

procedures with the low -

speed reader. An example of the saving
procedure follows:

zLOAD) Calls Binary Loader from the system
device.

*IN-R:) Input device is paper tape reader

(high-speed reader if specified as

present at System Builder time;
otherwise Teletype reader).

1 Device is valid.
*§T=7600) Return to Monitor after loading.
11 After each up-arrow typeout, user types

'CTRL/P to continue (also must press
CONTinue on console if Teletype reader
is being used).

;SAVE PIP10-5177; 1000) Save program (in this case, PIP) on

system device. Note that a ! must

follow name of system program. The SAVE
command is explained in Chapter 2. The
SAVE command program is given in

Appendix D.

Repeat the procedure above for each system program to be saved.

Binary Loader Procedures (Low Speed, or ASR, Reader)

With Monitor In Operation

@—~.{ Type _._LOAD

¢
Answer Loader Queries

Interpret, correct Responses
error; go to ® Acceptable

Up arrow is typed

®_p[Put LSR Switch at FREE

Jr
Put Binary Tape in LSR

With Leader Code

Over Read Head

J,
Type CTRL/P

Jr
Position LSR Switch

at START

L
Tape Reads in;

Computer Halts

J
Position LSR Switch

at STOP/FREE; press

Console CONTinue Switch

Jr
Up arrow is typed

Type CTRL/P to

Return to Monitor

Figure A-l Disk Loader/Paper Tape Flowchart

A—5

APPENDIX B

SYSTEM FORMATS

This appendix contains the following information.

1. System Device Layouts

Disk Storage Layout

DECtape Storage Layout

Directory Name (DN) Block Format

Storage Allocation Map (SAM) Block Format

Table of System Device and Core Capacities

2. Data Structure

Source File (ASCII)

Binary File (BINARY, FTC BIN)

Saved Files (SYS, USER)

3. PIP Listing of System Device Map (for Disk)

4. Monitor Core Usage Diagrams

5. Monitor Flow Chart (Figure B-ll)

B.1 SYSTEM DEVICE LAYOUTS

Figures 8-1 and B-2 illustrate the layout of the system device for

both disk and DECtape. Note that, although the layouts differ in

arrangement, they are logically equivalent.

An RF/RSOB disk unit contains 256K 13-bit (12 bits-plus-parity) words

of storage capacity. Each physical unit is divided into two "logical
units", each equal in size to four DF/DS32 disk units. Table 3-1

lists the capacities of the various devices which may be part of the

system.

A relatively sophisticated file structure is used for all automatic

retrieval of storage by the system. Two special types of blocks are

required: Directory Name (DN) Blocks, and Storage Allocation Map
(SAM) Blocks. Each logical unit has its own directory, utilizing
three Directory Name (DN) blocks and four Storage Allocation Map (SAM)
blocks.

INTERNAL BLOCK

FILE # #

// = AVAILABLE FOR
,

. FIRST DISK LOCATION USER STORAGE
$1 MONITOR fl IS NOT USED

Fl MONITOR 1

fll MONITOR 2

Fl DN, BACKUP 3 774
‘

1372

fll SAM, BACKUP 4

a1 MONITOR 5
'

a1 MONITOR 6

a1 MONITOR 7 Bl SAM3 1¢¢1 /
h

a1 MONITOR lfl JQZZALLLLL g1 SAM4 14¢1

a $1 MONITOR 11

¢4 LOADER 12

g g4 LOADER 13

5 F4 LOADER 14

a as .CD. 15 /
¢5 -CD. 16 ////////// 773 ////////// 1371 ///////// 1767

5 .CD. 17

52 :gg: 3? FIRST 3 FIRST 5 7 UNUSED

$5 .CD. 22
WORDS OF WORDS OF LOCATIONS

LQQQZZZZLLLLLL“
BLOCK 774 BLOCK 1372

\SECOND DISK THIRD DISK FOURTH DISK/
V

W i};
{

(OPTIONAL)

HI DN 2¢l
BI DN3 2fl2In

a /

g /
2 Fl SCRATCH 373
D ¢1 SCRATCH 374

i 1 SCRATCH 375

FIRST DISK

FIRST WORD

OF BLOCK 376

Figure B—l Disk Storage Layout in the Disk Monitor System

NOTE

The odd accumulations at the end of each disk are

due to the fact that dividing the disk into

129-word blocks leaves a remainder of two words.

On the first disk only, the first location is

unused. This allows the write lock boundary to

fall between two blocks.

Blocks 1770-1777 do not exist. Do not attempt to

use them.

In systems with less than four disks, SAM block

entries corresponding to nonexistent blocks are

set to 01 (the Monitor file number).

All blocks which are available but unassigned are

given an internal file number of 0.

There may be 60(decimal) user files in the total

system.

BLOCK

1g

11

12

13

14

15

16

17

2fl

21

22

23

24

25

26

27

3fi

31

32

33

34

MONITOR HEAD

MONITOR (lST PAGE OF SAVE)

MONITOR (START)

DN (BACKUP)

SAM (BACKUP)

SCRATCH BLOCK

SCRATCH BLOCK

SCRATCH BLOCK

MONITOR (2ND PAGE OF CALL)

MONITOR (3RD PAGE OF SAVE)

MONITOR (2ND PAGE OF SAVE)

MONITOR (lST PAGE OF CALL)

MONITOR (4TH PAGE OF SAVE)

LOADER

LOADER

LOADER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

COMMAND DECODER

LOADER

'

LOADER

LOADER SCRATCH BLOCK

LOADER SCRATCH BLOCK

LOADER SCRATCH BLOCK

LOADER SCRATCH BLOCK

’///////////////////////////////

DN

SAM

BLOCK

177

Zfifl

2¢1

2g2

2¢3

2¢4

2¢5

2¢6

2¢7

27¢l8

Map B

/

%

Directory Name Block

Storage Allocation

lock

AREA AVAILABLE

FOR SAVING CORE

IMAGES

7

fl
DNl (USER)

SAMl (USER)

DN2 (USER)

SAM2 (USER)

SAM3 (USER)

SAM4 (USER)

SAM5 (USER)

SAM6 (USER)

DN3 (USER)

7

Figure 3—2 DECtape Storage Layout (Revised)

B-4

Table B-1

System Device and Core Capacities

Highest Page (Block)
Unit Words Number (lst Page = 0)

l DISK(DF32) 32,768 (375(8))

2 DISKS(DF32) 65,536 (773(8))

3 DISKS(DF32) 93,303 (1371(8))

4 DISKS(DF32) 131,072 (1767(8))

l DECTAPE 190,146 (2701(8))

l RF08 DISK 262,144 80:1767(8) S1:1767(8)

2 RF08 DISKS 524,288 SZ:1767(8) S3:1767(8)

3 RFO8 DISKS 786,432 S4:1767(8) 85:1767(8)

4 RF08 DISKS 1,048,432 SG:1767(8) S7:l767(8)

NOTE

Each RF08 disk is divided into two 128K

logical units, Each logical unit is

structured as if it were four DF32's.

3.1.1 Directory Name (DN) Blocks

The format of a Directory Name Block is illustrated in Figure 3-3.

Each file has an entry in one of the three DN blocks on the system
device.

DNl - Contains entries for internal file numbers 01 through
31(octal)(25(decima1)) and a link to DN2.

DN2 - Contains entries for internal file numbers 32 through
62(octa1)(50(decimal)) and a link to DN3.

DN3 - Contains entries for internal file numbers 63 through
77(octa1)(63(decima1)) and an end-of-chain link of 0.

Thus, the system device can contain up to 63 files. Each file entry
contains the filename, start address, entry point address, file type,
and an internal file number (1 through 77(octal)). When a file is to

be added on the system device, an entry for the file is created in the

first open entry slot found in the DN blocks. When a file is deleted,
its DN entry is cleared and the slot is made available for some other

file.

BLOCK NUMBER OF FIRST SCRATCH BLOCK

(DISK = 0373; DECTAPE = 0005)

2-DIGIT VERSION NUMBER (AF)

BLOCK NUMBER OF FIRST SAM BLOCK (0200)

DN ENTRY FOR FIRST FILE

(INTERNAL FILE NUMBER = 01)

DN ENTRY FOR SECOND FILE

(INTERNAL FILE NUMBER = 02)

25 DN ENTRY FOR THIRD FILE
1°

(INTERNAL FILE NUMBER = 03)
ENTRIES

PER DN

DN ENTRY FOR TWENTY-FIFTH FILE

(INTERNAL FILE NUMBER = 318)

FIRST DIRECTORY NAME (DN) BLOCK

lST DN BLOCK ONLY;
OTHER BLOCKS CONTAIN

ZEROES IN THESE WORDS

(files 018+318[25101)

LINK +_._{Link to DNZ (files 328
through 628)

{DN3 (files 638 through
77 8 [6310])

Link of H (end—of—

chain).

N = 4-CHARACTER

FILENAME

N N

N N

DN
LOW CORE ADDRESS

ENTRY

FORMAT
ENTRY POINT

INTERNAL FILE

J I I NUMBER

O 1 2 3 4 5 6 7 8 9 10 ll

EXTENDED MEMORY BITS

PROGRAM TYPE

00 ASCII 10

01 BINARY ll

FTC BIN

l

__
LOWEST CORE ADDRESS

OR -1 IF NON-

CONTIGUOUS

~‘--\\ADDRESS OF lST

INSTR. TO BE OBEYED

ON CALLING

= SYSTEM PROGRAM

SYS OR USER SAVE FILE

Figure 8-3 Directory Name (DN) Block Format

8.1.2 Storage Allocation Map (SAM) Blocks

SAM blocks contain a record of which files are occupying which blocks

on the system device. Each SAM block contains a record of a

377(octa1)-block area. (See Figure 8-4.)

SAM(l) contains the map for blocks 0 through 377(octal) and a

link to SAM(2).

SAM(2) contains the map for blocks 400 through 777(octal) and

a link to SAM(3).

SAM(3) contains the map for blocks 1000 through 1377(octal)
and a link to SAM(4).

SAM(4) contains the map for blocks 1400 through 1777(octal)
and either and end-of—chain link of 0 (if disk) or a link to

SAM(5) (if DECtape).

The next two SAM blocks are present only if a DECtape is the

system device.

SAM(S) contains the map for blocks 2000 through 2377(octa1)
and a link to SAM(6). .

SAM(6) contains the map for blocks 2400 through 2701(octa1)
and an end-of-chain link of 0.

0n disk, one SAM block is present for each disk unit (up to four

allowed) and each SAM block resides on the disk which it maps (SAM(1)
on the first disk, SAM(2) on the second disk, etc.). When a file is to

be added, a search is made through the SAM blocks for an entry
containing 0 (block is unoccupied), the internal file number of the

file is placed in that entry (and in as many other unoccupied entries

as are needed for the file), and the storage block linking is

adjusted. When a file is deleted, all SAM block entries containing
the file's internal file number are set to 0. The block number of the

beginning block of the SAM chain (200) is stored in the third word of

the first DN block. On an RF08 disk each pseudo-unit (SO-S7) has its

own set of three DN blocks and four SAM blocks.

SPECIAL INTERNAL FILE NUMBERS: 01 ALL MONITOR, DN, SAM,
AND SCRATCH BLOCKS

LOADER BLOCKS

COMMAND DECODER BLOCKS

04

05

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

= internal file

number of file

occupying
block nnn (0 =

unoccupied)

nnn

COxlONmubLDNI—‘O
WORD 122

WORD 123

WORD 124

WORD 125

WORD 126

WORD 127

LINK TO SAM2
(BLOCKS 400-777)

WORD 128

STORAGE ALLOCATION MAP (SAM)

EXAMPLE

FILE #1 - BLOCKS O, 1, 2 15 01 0

FILE #3 - BLOCKS 5, 6', 11 13 01

FILE#4-BLOCK10 13 01 2

FILE#13-BLOCK8201, 15 00

202,206,207 00 00 4

FILE#15-BLOCKSZOO,

203, 205, 210
15 03

UNUSED - BLOCKS 3, 4, 7,
13 03 6

204, 211 13 0°

15 04 10

00 03 12

Figure 8-4 Storage Allocation Map (SAM) Block Format

B.2 DATA STRUCTURE

The data structure of each type of program file is described in the

following paragraphs.

8.2.1 Source File (ASCII) Data Structure

All characters are stored in 6-bit ASCII code as two words per three

paper tape frames as described below. All nonprinting characters (200

through 237 and 340 through 377) have their two most significant bits

dropped and a 77 prefixed to them. (The one exception to this rule is

RUBOUT, 377, which is nonexistent.) A11 printing characters are

trimmed to six bits, except for ? (277), which is packed as 7777.

B.2.2 Binary File (BINARY, FTC BIN) Data Structure

All binary (BINARY) and FORTRAN binary (FTC BIN) files are stored as

two words per three paper tape frames. Frame 1 is contained within

the rightmost eight bits of word 1, frame 2 is contained within the

rightmost eight bits of word 2, and frame 3 is contained within the

leftmost four bits of words 1 and 2 (the most significant bits of

frame 3 are those of word 2).

Example:
4

Paper tape Meaning Disk(0ctal) Disk(Bina£y)

200 Leader 5600 1011 10000000

102 ORG 0502 0001 01000010

033 Second half
of ORG word

This procedure is repeated until a trailer code is found.

8.2.3 Saved File (SYS,USBR) Data Structure

Saved files are stored on the system device as an integral number of

pages 'and each page occupies one disk or DECtape block. Storage
conventions differ between saved files of contiguous pages of core and

those of noncontiguous pages.

Contiguous Pages

All system device blocks contain core images (Figure B-S). The Start

Address word in the Directory Name (DN) entry for the file is set to

the starting page address.

SAVE FILC:200-600;433

Contains core

Block 1 image of Iocations

200 through 377

Filenome

Start Address

Entry Point

File Type/File Number

. DIRECTORY NAME ENTRY
Contains core

Block 2 image of locations
‘ 400 through 577

Block 3 Contains core

image of locations

600 through 777

Figure 3-5

Contiguous-Page Save File Format

Noncontiguous Pages

The first system device block of a saved file composed of

noncontiguous pages of core contains a list of core page assignments
and the core images stored in subsequent blocks. The last entry in

this list is set to 7777 (Figure 3-6). The Start Address word in the

Directory Name entry for the file is set to 7777 to indicate that the

first block does not contain a core image but a page assignment
listing.

'

SAVE FILN: 0,400,1000;433

Block 1

End of

List

Block 2

Block 3

Block 4

0000 List of

0400 page
1000 assign—
7777 ments

Contains core

image of

locations 0

through 177

Contains core

image of

locations 400

through 577

Contains core

image of

locations 1000

through 1177

SYSTEM DEVICE BLOCKS

DIRECTORY NAME ENTRY

Figure B-6

Noncontiguous-Page Save Format

Filename

Start Address

Entry Point

File Type/File
Number

3.3 PIP DIRECTORY LISTING

A directory listing of the system device can be obtained by running
PIP (Figure B-7). A sample output is given below.

LPIP)

*opT-L)

*IN-s:)

FB=0121 121 free blocks remain

PALD.SYS (0) 0030

EDIT.SYS (0) 0016

LOAD.SYS (0) 0011

.CD..SYS (0) 0007

PIP .SYS (0) 0025

FORT.SYS (0) 0010

.FT..SYS (0) 0035

.OS..SYS (0) “0024

FOSL.SYS (0) 0006

STBL.SYS (0) 0001

.DDT.USER (0) 0022

.USR.USER (0) 0023

DDT .SYS (0) 0002
\cJ

\TJ
\‘v=i———————Number of blocks used

-—-——————————Field number

Extension name

Filename

Figure 8-7

Sample PIP Directory Listing

B.4 MONITOR CORE USAGE DIAGRAMS

The following illustrations show Monitor usage of locations 7000

through 7777 at

a. Monitor Time and User Time (Figure 8-8)

b. SAVE Command Processing (Figure 8-9)

c. CALL Command Processing (Figure 3-10)

7777 7777

SYSTEMS I/O ROUTINE SYSTEMS I/O ROUTINE

MONITOR HEAD MONITOR HEAD

7600 7600

MONITOR
USER AREA

TELETYPE SERVICE

7400 7400

SAVE COMMAND DECODER

AND USER AREA

PAGE STACK BUILDER

7200 7200

X USER AREA

7000 7000

(a) Monitor-Time Core Usage (b) User—Time Core Usage

Figure B-8 Monitor-Time vs User-Time Core Usage

7777

7600

7400

7200

7000

7777

7600

7500

7400

7200

7000

.SAVE filename:core-specifications,...:entry—point

SYSTEMS I/O

MONITOR HEAD

SYSTEMS I/O

MONITOR HEAD

PAGE STACK BUILT HERE ‘

DIRECTORYNAMEENTRYBUIDTHERE

MONITOR AND TTY SERVICE

ROUTINES ARE NOW DESTROYED;
VARIOUS STATUS REGISTERS ARE

HELD HERE.

PAGE STACK MOVED HERE

SAVE COMMAND DECODER

AND

PAGE STACK BUILDER

BUFFER FOR DN SEARCH

CODE HERE IS SWAPPED OUT TO

SYSTEM DEVICE SCRATCH BLOCK;

DN BLOCK SEARCH AND UPDATE

ROUTINE LOADED HERE

(a) "SAVE filename:" Processing (b) "Core—specifications,..;entry-
point" Processing

SYSTEMS I/O

MONITOR HEAD

SYSTEMS I/O

MONITOR HEAD

BLOCK STACK

PAGE STACK

BLOCK STACK

PAGE STACK

SAM BLOCK SEARCH AND UPDATE

ROUTINES LOADED HERE

(CREATE BLOCK STACK)

ACTUAL SAVE ROUTINE LOADED HERE

(RETURNS TO MONITOR START -

7600-WHEN FINISHED)

SAM BUFFER SWAPPED-OUT CODE BROUGHT BACK

(c) SAM Search (d) Actual Save Time

Figure 8-9 Core Usage During SAVE Command Execution

.CALL filename) or .filename)

7777

SYSTEMS I /o
MONITOR HEAD

7600

BUFFER FOR DN AND SAM BLOCKS

7400

CALL: DN AND SAM SEARCH

ROUTINES

(LOCATE FILE AND DEFINE RANGE OF CALL)

7200

X

7000

(a) "CALL filename" Processing

7777

SYSTEMS I/O
MONITOR HEAD

7600

READ ROUTINE

(PERFORMS ACTUAL CALLING IN OF FILE;

CAN DISAPPEAR AT USER TIME)

7400

CONTIGUOUS-PAGE PROGRAM:

THIS AREA IS NOT TOUCHED.

NONCONTIGUOUS-PAGE PROGRAM:

SCATTER—GET READS CORE

ALLOCATION (BLK 1) INTO HERE

7200

X

7000

(b) Actual CALL Time

Figure B-lo Core Usage During CALL Command Execution

MONITOR START

SWAP OUT CORE

(7200-7577) AND

READ MONITOR

SAVE

?

NO

EXPLICIT

CALL ?

NO

YES

YES SET NONSYSTEM-
PROGRAM

MOOEIND

YES

PROPER

moo:

?

YES

EXTRACT
DN ENTRYL READ SAM

BLOCK F

Figure 8-”

WHOLE

CORE ?

NO

SYSTEM
PROG ?

NO

YES

YES
SET SYSTEM

MODE INDICATOR

CONSTRUCT
PAGE LIST

CONSTRUCT
ENTRY POINT

ADDRESS

NO

YES

Monitor Flow Chart (Part I)

B-16

[READ IN ON BLOCKI
YES

NO
SEARCH FOR

V FILENAME

RE 100‘AD 1

(CORE ALLOC. LIST)
INTO 7200

READ BLOCK 0F
.

AN OLD VERSIONSAVE FILE mm

A man PAGE semen FOR EMPTY 0‘ "'5 F'LE

on SLOT EXISTS AND IS

BEING OVER—
WRITTEN av

A NEW VERSION

TYPE “Fuui'

II

JUMP TO ENTRY

POINT ADDRESS

WRITE our UPDATED.
N BLOCKD

READ IN SAM BLOCK

Figure 8-” Monitor Flow Chart (Part 2)

EXTRACT A

SAM ENTRY

E NTRY

CONTAIN O

7

DOES

ENTRY CONTAIN

FILE NO. OF FILE
BEING OVERWRITTEN

?

YES

YES

PLACE FILE NUMKR

OF FILE BEING SAVED

INTO SAM ENTRY

IF AN OLD FILE IS

BEING OVERWRITTEN
CONTINUE SEARCHING

SAMS FOR OLD FILE

NUMBER AND CHANGE

TO 0

YES

BLOC K

REQUIREMENTS

SATIgFIED

YES

PICK UP

PAGE FROM

PAGE LIST

7777

7

NO

YES

PICK UP BLOCK
NUMBER FROM

BLOCK LIST

I
WRITE PAGE

CONTENTS

INTO BLOCK

TYPE

'FULL'

SET LINK

WORD TO 0

WRITE BLOCK

Figure 8-” Monitor Flow Chart (Part 3)

APPENDIX C

COMMAND DECODER

Command Decoder is a general-purpose program used by all system

programs to read in and interpret command strings entered via the

Teletype keyboard. Command Decoder is generated and stored on the

system device by System Builder.

Command Decoder user four pages of core (see Figure C-1) and is called

in by a system program as follows.

1. The internal file number of Command Decoder (filename=.CD.)
is obtained. (05)

2. The starting block of the Command Decoder file is obtained.

lS-Disk, 20-DECtape

3. This block is then read into the second of the four pages to

be used by Command Decoder. Command Decoder is

position-independent and can be read into any four contiguous
pages of core between locations 200 and 7577 inclusive.

4. Command Decoder is then entered by jumping to the second

location of page 2 (the first location is an error return).

C.l LOCATIONS USED BY COMMAND DECODER

Locations 167 through 177, page 0, are used as shown in Table C-l.

Table C-l

Page 0 Locations Used by Command Decoder

Location - Purpose

167 Preloaded with 7777 if input and output filenames and

extension names are different.

170 Scratch location.

171 Scratch location.

172 Points to the first block of Command Decoder.

173 Scratch location.

174 Points to the output list. Information concerning each

device request is placed in this list by Command Decoder.

175 Contains the option bits. This location is not left in

its original state upon exit from Command Decoder.

176 Scratch location.

177 Contains the address of the return from Command Decoder.

PAGE 1 PAGE 2 PAGE 3 PAGE 4

DEVICE LOOKUP* .. *IN ’ OUT
COMMAND AND VALIDITY CK

ERROR ROUTINE

TYPEOUTS
__________ _ __________

___________ DECODER INIT
TYPE OUT IF

TYPE
__________ _ TYPE OUT RTE

ROUTINE
VALID

READROUTINE

"READ—BITOCK-E~
*"""“‘

TIME 1 FOR PAGES 1, I/O DEVICE
CHARACTER

3, AND 4 _ _I_N_T9 SEE}... CHECK ROUTINE
FETCH AND

DISPATCH
"""""""" 0N CHECK _________

_________ __
COMMA, CARRIAGE

""""“‘

ROTATE
RETURN HANDLER _ _R‘E“_D_]3_L.OC_K_E_ DECTAPE 1/0

ERROR DISPATCH

BLOCK 2 BLOCK 1 BLOCK 3 BLOCK 4

CHECK FOR

TIME 2 BUFFER DEVICE As ABOVE As ABOVE

VALIDITY

BLOCK 3A BLOCK 3 BLOCK 4

DN SEARCH

ROUTINE

TIME 3 BUFFER
""""""""

As ABOVE As ABOVE

DIRECTORY

UPDATE

BLOCK 5 BLOCK 3 BLOCK 4

SAM BLOCK

SEARCH ROUTINE

(INPUT ONLY)

READ IN BLOCK

TIME 4 BUFFER 1 INTO PAGE 2 As ABOVE As ABOVE

(OUTPUT ONLY)

OPT - READ IN

OPTION CHAR

EXIT To USER

BLOCK 6 BLOCK 3 BLOCK 4

Figure C-l Command Decoder Core Usage (Revised)

C-2

C.2 INPUT AND OUTPUT REQUIREMENTS FOR COMMAND DECODER

Location 174 (CDPTRP), the output list pointer, must point to a block

of code, the length of which must be 3*n+l, where n is the total

number of device requests expected. For example, a program with one

output file plus three input files requires 13 locations. (Refer to

Figure C-Z.)

The option bit location (175) is constructed as follows:

Bits 0 and l

Bits 2 and 3

Contain output file extension code (or input, if

no output is requested).

Contain the input file extension.

1 = Output file is expected (Command Decoder will

1 = Saved output file is a system program (bit 5

l = Option is available (Command Decoder will type

1 = Saved input file is a system program (bit 5 of

Bit 4

type *OUT- query (in addition to *IN-)).

Bit 5

of word 4 in DN entry is set to 1).

Bit 6

*0PT-).

Bit 7

word 4 in DN entry is checked for a 1).

Bits 8-11 (Total number of input files allowed)-l.

0
l

2
I

4 5 6 7 8 11

1Extension codes:

(Number of input files)—1

System/user inputz

‘— OPT - option

-—-—System/user output2

Output option

Input extension1

Output extension1

00 = ASCII

01 = BINARY

10 = FIC BIN

11 = Saved file (USER,SYS)

21 = System, 0 = User

This option word must be set up by the system program before calling
Command Decoder.

The first block of the Command Decoder is read into the second of the

four blocks into which it is to run. In the following examples,
assume Command Decoder is to be run in locations 2000-2777; that you
have already loaded FBLK with the first block number of the Command

Decoder; output list is in 3000; return is at 203 and you are looking
for user file output, system file input, no *OPT- is desired, and

three input files are allowed.

(Example 1

*1700

TAD (203
»

DCA 177 /RETURN
TAD (7622 /111 110 010 010=BITS

DCA 175

TAD (3000
DCA 174 /POINTER To LIST

TAD FBLK

DCA 172 /BLOCK 1 OF .CD. (DISK)
CMA

DCA 167

JMS I (7642
3 /READ

FBLK, 0 /BLOCK 1 OF COMMAND DECODER
2200 /INTO LOCATION 2200

0 /LINK
HLT /BAD READ

JMP I .+1

2201 /ENTER .CD.

Example 2

*2200

TAD (203
DCA 177 /RETURN
TAD (7622 /111 110 010 010=BITs
DCA 175

TAD (3000
DCA 174 /POINTER To LIST

TAD FBLK

DCA 172 /BLOCK 1 OF .CD.

CMA

DCA 167

JMS I (7642
1003 /READ AND RETURN THRU

FBLK, 0 /ADDRESS IN ERROR RETURN

2200 /IF ERROR, OR ERROR RETURN

0 ‘

/+1 IF CORRECT RETURN

2200 /NOTE THIS CODE IS

OVER-WRITTEN

OUTPUT

(OR INPUT I

IF NO OUTPUT)

INPUT I

(OR INPUT 2

IF NO OUTPUT)

FOR DISK OR DECTAPE:

WORD A
DEVICE UNIT INTERNAL FILE

WORD B CODE NUMBER NUMBER

L-
0-7

6 = System Device
WORD A {4 = Not System Device

WORD B

FOR TELETYPE OR HIGH SPEED READER:

O 0 0 DEVICE

CODE

I = Teletype
2 = High Speed Reader

0 = NuII Device

7777 END OF LIST

ASCII DISK OR DECTAPE (INPUT):
OPTION

CHARACTER

START BLOCK NUMBER

DISK OR DECTAPE (OUTPUT):

0

PAPER TAPE:

0

Figure C—2 Output List Produced by Command Decoder

PAGE 2 (BLOCK 1) PAGE 2 (BLOCK I)

(COMMA FOUND IN

INPUT STRING)

READ BLK 2 STORE LAST
INTO PAGEI DEVICE/

NAME VALUE

READ BLK 3

INTO PAGE 3

RELOCATE INDIRECT

REFERENCES ON

PAGES 1. 3, 4
ERRORn .-

PLACE E IN AC
(PAGE 4)

PAGE I (BLOCK 2)

PAGE I (BLOCK 2)

TYPEX

TYPE Mom»u

GET CHARACTER

TYPE CHARACTER

WAIT FOR COMMA

OR CARRIAGE

RETURN

Figure C-3 Command Decoder Flow Chart (Part I)

PAGE \

(BLOCK 2)
(READ A CHARACTER FROM THE TELETYPE KEYBOARD)

SET U P

COUNTERS
AND POINTERS

READ ONE

CHARACTER

CONTROL

CHARACTER
PAGE ‘

?
(BLOCK 2)

CONVERT TO GE 2PA

(BLOCK ‘)G-BlT

FORMAT

(CARRIAGE

~°

K"? 253:3"
? “WC" 2’

IN INPUT

STRING)

vzs

STORE LAST

DEVICE/NAME

VALUE

Figure C-3 Command Decoder Flow Chart (Part 2)

PAGE 3

(BLOCK 3) '

READ BLOCK 5

CDPHA 2 INTO PAGE

2

DEVICE N0
pLAcE '7" ERROR

"WE?“L'D m AC (PAGE 4)

YES

SET UP FILE

NAME AND

EXTENSION

(DNSRCH) l
on BLOCK SEARCH

(PAGE 2

BLOCK 5)

(CDNODN)

no ATTEMPT To MAKE

”3"” NEW on ENTRY
-

(PAGE 2, BLOCK 5)

DIRECTORY YES
FULL ' "'

PLACE IID'
IN AC

YES

TYPE

I?" ERROR

(PAGE 4)

NO

YES

READ BLOCK 6

INTO PAGE

2

PAGE 2

(BLOCK 6)

Figure C-3 Command Decoder Flow Chart (Part 3)

(DN BLOCK SEARCH)

INITIALIZE POINTERS

AND COUNTERS

A

(COIOX)

READ DN BLOCK

(PG 4
. BLK 4)

SET INTERN FILE

NUMBER IN AC

Figure C-3 Command Decoder Flow Chart (Part 4)

PAGE 2

(BLOCK 6)

INITIAL|ZE

SET UP TO READ
BLOCK I

(CDIOX)

READ SAM BLOCK
lNTO PAGE 1

FILE

NUMBER MATCH

7

FLIP

SAMEuAsx

RESET

COUNTER

CLEABRYOUTPUT ms: 2
I m

LOCATION 115
“9'4”” "

vzs

a

N0

PUT START END
BLOCK NUMBER or LIST

m AC ?

vas

OPTION

FLAG SET

?

no

l
TYPE

In?-

YES
TYPE

-

*OPT¢'

GET OPTION

CHARACTER

EXI T

TO USER

Figure C-3 Command Decoder Flow Chart (Part 5)

PAGE 4 (BLOCK 4)

DEPOSIT

CHARACTER

FROM AC
\

\
\

TYPE \

CARRIAGE LINE

RETURN FEED

PAGE 4 (BLOCK 4)

SIMULATE

JMS SYSIO

PAGE 2 (BLOCK 5)

(MAKE DN ENTRY IF
CDNODN

OUTPUT FILE)
TYPE

@ ROUTINE

DECTAPE

SYSTEM DEVICE

GET CHARACTER

NO (DIRECTORY FULL)

CREATE NEW ON

ENTRY IN SLOT

WRITE OUT

ON BLOCK

GET INTERN,

FILE NUMBER

TYPE
CHARACTER

SIMULATE JMS

DECTAPE I/O

Figure C-3 Command Decoder Flow Chart (Parf 6)

D.l

APPENDIX D

SYSTEM PROGRAMS

LOADING PARAMETERS FOR SYSTEM PROGRAMS

Name

PIP

EDIT

PALD

FORT

.FT.

STBL

FOSL

.OS.

DIAG

.DDT

.SYM

DDT

REST

SAVE

Name

PIP

EDIT

PALD

FORT

.FT.

STBL

Core Limits

0-5177

0-3377

0-7577

0-1777

200-7377

600-777

0-1777

-0-5177

200-1177

200-4577

200-4577

7200-7577

200-377

STATISTICS

Save Command String

SAVE PIP10-5177;1000

SAVE EDIT10—337732600

SAVE PALD!0-7577;6200

SAVE FORT!0-l777;200.

SAVE .FT.!200-7377;0

SAVE STBL!600;600

Entgx Point

1000

2600

6200

200

7200

200

Eggg

FOSL

.os.

DIAG

REST

.DDT

.SYM

DDT

Save Command String

SAVE FOSLIO-l777;200

SAVE .OS.!0-5177;0

SAVE DIAGIZOO-11773200

SAVE REST1200-3777200

SAVE .DDT1200-457770

SAVE .SYM!200-4577;0

SAVE DDTI7200-7577;0

(User may assemble anywhere above location 4577)

APPENDIX E

1/0 PROGRAMMING

3.1 GENERAL

The modular concept of input/output (I/O) handling of the disk system
provides for easy maintenance and programming. The system device 1/0
is found in the following places (all I/O routines must be in field

0).

1. Top page of field 0 (location 7642) which is the I/O routine

used by all system programs for normal 1/0. A copy of this

page is on block 0 of the system device. Block 0 of each

DECtape is the DECtape I/O routine.

2. Interrupt versions of disk and DECtape routines are found in

PIP.

3. Paper tape 1/0 is handled by individual programs.

E.2 CALLING SEQUENCE FOR BASIC I/O ROUTINE

The basic I/O routine (see Paragraph E.1.1.) is called as shown in

Figure E—l. It is called in two ways, as determined by bit 2 of the

function word.
'

1. Normal - The 1/0 routine returns to JMS+6 (normal) or JMS+5

(error). For example, the following routine would read

consecutive blocks from a file on the system device. The

routine is initialized by putting the first block number of

the desired file into location LINK. If an attempt is made

to read past the last block of the file, an exit is made to a

routine called ENDFIL.

GETBLK, o

TAD LINK /GET LINK FROM LAST READ

SNA /IS THIS END OF FILE?

JMP I (ENDFIL I /YES
DCA BLOK

JMS I (7642 /CALL DISK I/O ROUTINE

3 /FUNCTION=READ

BLOK, o

BUFFAD /BUFFER ADDRESS

LINK, o

JMP I (ERROR /ERROR RETURN

JMP I GETBLK

2. Indirect - The 1/0 routine returns to the 12-bit address in

the error return word+1 (normal) or the 12-bit address in the

(ERROR).

Calling Sequence Explanation

JMS I SYSIO Location SYSIO points to I/O

BLOCK Block to be accessed

CORE Low-order core address

LINK Filled by READ, used by WRITE

ERROR Error return here

RETURN Normal return here

*Function word: Bits 0-1 unused

Bit 2 = 0, normal return
a 1, indirect return at end of

read/write to address+l in error

return

Bits 3-5 unit no. if DECtape or RF08 disk

Bits 6-8 memory field

Bits 9-11 function: READ = 3; WRITE = 5

Figure E-l Calling Sequence of System Routine

E.3 GENERALIZED DISK/DECTAPE I/O ROUTINE

The user or system programs may use the generalized I/O routine in

Appendix C. The calling sequence to this routine is the same as that
used by the basic I/O routine, except for certain restrictions

explained below.

The Command Decoder must be called as shown in Examples 1 and 2 in

Section C.2. The entry point for the generalized I/O routine is the

first location of the Command Decoder plus 603(octal) locations, i.e.,
in the previously mentioned examples the entry point would be at

location 2603.

The generalized I/O routine uses location 0171 on page zero. This
location must contain the address which points to the I/O list created

by the Command Decoder. If the JMS instruction which calls the

routine is at an even numbered location, location 0171 must point to

Word B (refer to Appendix C) of a Command Decoder list entry. If the
JMS is at an odd numbered location, location 0171 must point to word A

of a Command Decoder list entry. The contents of Word A then

determines whether the DECtape or system device will be used.

The contents of the function word in the ‘calling sequence determine

whether information is to be read from or written on the selected

device and DECtape unit (if applicable) as shown in Figure E-l.

The following examples illustrate the use of the generalized I/O

routine. It is assumed that the Command Decoder was called and placed
in locations 2000-2777, and that its list begins at location 3000.

3000 4312
_

(Word A) Output device - DECtape #3,
3001 0000 (Word B) internal file #12

3002 6007 (Word A) Input - system device, internal

3003 0065 (Word B) file #7, starting at block6

3004 7777

3005 0215 Option - carriage return was typed

300 4777 JMS I (2603
301 0305 FUNCTION WORD

302 0160 BLOCK NR

303 7000 BUFFER ADDRESS

304 0161 LINK NR

305 - 7402 ERROR HALT

171 3001

377 2603 ENTRY POINT

The above code writes the contents of locations 7000-7177 onto block

160 of DECtape unit 3 and writes link word of 161.

501 4777 JMS I (2603)
502 0003 FUNCTION

503 0065 BLOCK NR

504 7200 BUFFER ADDRESS

505 0000 LINK NR

506 7402 ERROR HALT

171 3002
577 2603 EN#RY POINT

The above code reads the contents of block 65 of the system device

into locations 7200-7377 and places the link to the next block of this

file in location 505.

NOTE

There are two versions of the disk

Monitor head (Block 0) for the DF32. One

(Version A) is used for all 4K, non-S/S
systems and the other (Version B) for

everything else. The distinguishing
difference between the two is the fact

that version A does only one disk read

for every block gtransfer (i.e., -

one

disk revolution), compared with two disk

reads per block with Version B (one to

read the block, one to fetch the link

word into memory field 0). This is

necessary because of the technique used

to fetch the link word in Version A

(switching DATA-BREAK pointers on the

fly) which would not be used in Version

B (the PDP-8/S is too slow and altering
the extended memory register on the fly
in an 8K machine may lead to

transmission errors) .

E-3

APPENDIX F

VALID I/O DEVICES

The Table below illustrates the valid I/O Device Combinations for the

three system devices (DF32 Disk, RFO8 Disk, and the DECtape Systems).

Table F-l

Valid IN/OUT Devices for PAL-D, EDIT

(Star indicates valid device

designation)

0
0

I/O 5
5

DEV
‘1’

g: a, E

E s E a
SYS I m c I

DEVIC T: R: v S:name g ,1; g ,3
m m a a

DF32 * * * N/A N/A N/A N/A

RF08 * * * * * N/A N/A
Same

as Sfl

DECTAPE * * * N/A N/A * *

Same

as D”

Table F—2

Valid FORTRAN-D INPUT/OUTPUT

u l:
b O

.. “f .. I.

é: a? :3 2% 3 ‘3‘ 5'
m

DF32 * * * N/A N/A N/A N/A

RF08 * * * * N/A N/A N/A

TAPE * * * N/A N/A * N/A

Table F-3

VALID I/O DEVICES FOR PIP

I/o g “sf E t”: 5
EV B m

n G g E: a
SYS m

a. Q 3
DEV m n

DF32 * * * N/A N/A * *

RFflS * * *1 * * * *

DECTAPE * * * N/A N/A * *

1The designation "3:" may not be used in place of "S¢:" when deleting
files and listing directories. This is a‘temporary restriction.

APPENDIX G

PERMANENT SYMBOL TABLES

The following are the most commonly used elements of the PDP-8

instruction set. For that reason they are found in the permanent

symbol table within the assemblers. These instructions are already
defined within the computer. For additional information on these

instructions and for a description of the symbols used when

programming other, optional, I/O devices, see the SMALL COMPUTER

HANDBOOK, available from the DEC Software Distribution Center.

Times shown below are representative of the PDP-8/E.

G.l INSTRUCTION CODES

Mnemonic Code Operation Time (usec.)

Memory Reference Instructions

AND 0000 Logical AND 2.6

TAD 1000 Two's complement add 2.6

152 2000 Increment and skip if zero 2.6

DCA 3000 Deposit and clear AC 2.6

JMS 4000 Jump to subroutine 2.6
JMP 5000 Jump 1.2

Mnemonic Code Operation Seguence

Group 1 Operate Microinstructions (1 cycle) (1 cycle is equal to 1.2

microseconds.)

OPR 7000 Same as NOP —

NOP 7000 No operation —

IAC 7001 Increment AC 3

RAL 7004 Rotate AC and link left one 4

RTL 7006 Rotate AC and link left two 4

RAR 7010 Rotate AC and link right one 4

RTR 7012 Rotate AC and link right two 4

CML 7020 Complemented link 2

CMA 7040 Complement AC 2

CLL 7100 Clear link 1

CLA 7200 Clear AC 1

Mnemonic

Group 2 Operate

HLT

OSR

SKP

SNL

SZL

SZA

SNA

SMA

SPA

Code

7402

7404

7410

7420

7430

7440

7450

7500

7510

Operation Seguence

Microinstructions (1 cycle)

Halts the computer
Inclusive 0R SR with AC

Skip unconditionally
Skip on nonzero link

Skip on zero link

Skip on zero AC

Skip on nonzero AC

Skip on minus AC

Skip on positive AC

(zero is positive)

HHHHHHwa
Combined Operate Microinstructions

CIA

STL

GLK

STA

ms

7041

7120

7204

7240

7604

Complement and increment AC

Set link to 1

Get link (put link in AC, bit 11)
Set AC to 1

Load AC with SR NNHI-‘N usu
w

th

Internal IOT Microinstructions

IOT

ION

IOF

6000

6001

6002

Turn interrupt processor on

Disable interrupt processor

Keyboard/Reader (1 cycle)

KSF

KRB

Teleprinter/Punch (l

TSF

TCF

TPC

TLS

High Speed

RSF

RRB

RFC

High Speed

PSF

PCP

PPC

PLS

6031

6036

6041

6042

6044

6046

Reader --

6011

6012

6014

Skip on keyboard/reader flag
Clear AC, read keyboard buffer

(dynamic), clear keyboard flags

cycle)

Skip on teleprinter/punch flag
Clear teleprinter/punch flag
Load teleprinter/punch and print
Load teleprinter/punch, print, and clear

teleprinter/punch flag

Type PR8/E (1 cycle)

Skip on reader flag
Read reader buffer and clear reader flag
Clear flag and buffer and fetch character

Punch --

Type PPB/E (1 cycle)

6021

6022

6024

6026

Skip on punch flag
Clear flag and buffer

Load punch buffer and punch
character

Clear flag and buffer, load

buffer and punch character

G-2

Mnemonic Code Operation Time (usec.)

DECtape Transport Type TUS and DECtape Control Type TC08

DTRA 6761 Read status register A 2.6

DTCA 6762 Clear status register A 2.6

DTXA 6764 Load status register A 2.6

DTSF 6771 Skip if error flag is l or

if DECtape control flag is l 2.6

DTRB 6772
,

Read status register B 2.6

DTLB 6774 Load status register B 2.6

Disk File and Control, Type DF32D

DCMA 6601 Clear disk memory address reg- 2.6

ister, and interrupt flags
DMAR 6603 Load disk memory address reg- 3.6

ister and read

DMAW 6605 Load disk memory address reg- 3.6

ister and write

DCEA 6611 Clear disk extended address reg- 2.6

ister and memory address extension

DSAC‘ 6612 Skip on address confirmed flag 2.6

DEAL 6615 Load disk extended address and 3.6

memory address extension

DEAC 6616 Read disk extended address reg- 3.6

ister

DFSE 6621 Skip on zero error flag 2.6

DFSC 6622 Skip on data completion flag 2.6

DMAC 6626 Read disk memory address reg- 3.6

ister

Memory Extension Control, Type MC8/E (1 cycle)

CDF 62N1 Change to data field N

CIF 62N2 Change to instruction field N

RDF 6214 Read data field

RIF 6224
'

Read instruction field

RIB 6234 Read interrupt buffer

RMF 6244 Restore memory field

6.2 PSEUDO-OPERATORS

The following is a list of the 4K PAL-D assembler pseudo-ops. The

first section consists of those pseudo-ops which have counterparts in

the other assemblers.

DECIMAL

OCTAL

FIELD

PAUSE

I

Z

$
EXPUNGE

FIXTAB

PAGE

*

XLIST

TEXT

G-3

INDEX

ACCEPT statement (FORTRAN), 3-31

Angle brackets (<>), 3-12

A option, PIP, 3-6

APPEND command, 3-12

ASCII code, B-9

Assemble and save Restore, 3-60

Assembler,
8K SABR, 3-3

PAL-D, 3-19

Asterisk (*) usage, 2-2

Binary file data structure, B—9

Binary Loader, 2-8

error messages, 2—10

Binary tape copy, multisection,
3-8

Blocks, B-3

Bootstrapping
Monitor, 2-2

Restore program,
B option, PIP, 3-6

Breakpoints, 3-53, 3-55

3-62

CALL command, 2-14

Characters, special control, 2—6

Colon (z) usage, 2-6, 2-11, 3-12

Command Decoder program (.CD), 2-4,

C—1, C—2, E-2

Commands,

DDT-D, 3-56

Editor, 3-12

Command strings,
examples, 2—7

format, 2-4

punctuation, 2-6

Comma (,) usage, 2-6

Compiler, FORTRAN-D, 3-33

compilation diagnostics,
system diagnostics, 3-35

Contiguous-page save file format,
B—lO

Control characters, 2-6

Core capacities, B-5

Core locations, FORTRAN D, 3-34

Core specifications, 2-11, 2—12

Core usage, B-13, B—l4, B-lS

CTRL characters, 2-6

CTRL/C, 2-2

CTRL/TAB, 3-12

CTRL/U, 3-11

3-38

Data structure of files, B-9

DDT-D commands, 3-56

Debugging FORTRAN programs (DDT—D),

DECIMAL pseudo-op, 3-20

DECtape storage layout, B-4

DEFINE statement (FORTRAN),
Deletion mode, Editor, 3-17

3-30

Device assignments FORTRAN D, 3-31

Device layouts, B-l

DeVice names, 2+5

Diagnose program, 3-45, 3—46

Diagnostics, FORTRAN compiler,
Directory Name (DN) blocks, B—5

format, B—6

Disk/DECtape I/O routines, E-2

Disk monitor head, E-3

Disk storage layout, B-2

Disk system binary loader, 2—8

Disk System Builder program, A-Z

$ (dollar sign), 3-20

DO loops, FORTRAN D, 3-32

D option, PIP, 3-4, 3-7

3-35

Editor program, 3-10

command summary, 3-12

8K SABR assembler, 3-3

Entry point of saved program,

Equal sign (=), 3—12

Equipment requirements, l-l

Error messages,

Binary Loader, 2-10

PAL-D, 3-25, 3-26, 3-27

Errors, system, 2-15

Escape, 3-12

Example programs, FORTRAN,

through 3—52

Examples, FORTRAN operating
system, 3—42

Exclamation point (1) usage,
2—11

Executing Disk System Builder, A-2

EXPUNGE pseudo-op, 3-20

Extensions to filenames, 2-5

2-13

3-46

2-6,

Failsafe operation, 3-15

FIELD pseudo—op, 3-20

File merging, 3-7

Filenames, 2-5, 2-11

FIXTAB pseudo—op, 3-20

Floating point instructions,
F option, PIP, 3-6

Form feed, 3-11

FORTRAN D, 3-28

binary files data structure, B-9

compilation diagnostics, 3-38

compiler system diagnostics, 3-35

functions, 3-30

operating system examples,
statement summary, 3-29

FOSL (FORTRAN Operating System
Loader), 3-40

4K PAL—D Disk Assembler,
Functions, FORTRAN, 3-30

3-21

3-42

3-19

Hardware, l-l

Hardware write lock, 3-5

INDEX-l

Header of Monitor, 2-1

Hyphen (-) usage, 2-6

Input/Output,
Command Decoder requirements, C-3

Command Decoder system routine,
E-2

devices, F-l

disk/DECtape routines, E-2

FORTRAN statements, 3-30

PAL-D devices, 3-23

programming, E-l

I (pseudo-op), 3-20

Key functions, Editor, 3-11

Line Feed, 3-12

LIST command, 3-12

Loading,
BIN loader, A-2

Disk System Builder, A-2

FORTRAN compiler, 3-33

FORTRAN Operating System, 3-40

library program, 3-1

PIP, 3-2

programs, 2-8

system programs, A-4

Loading and saving,
DDT-D, 3-57

Editor, 3—16

PAL-D, 3-22

Loading parameters for system
programs, D-l

L option, PIP, 3-3, 3-7

Low speed reader, 3-15

Memory reference instructions, 3-20

Merging of files, 3-7

Monitor core usage, B-13

Monitor mode, 2-2

Monitor operation, 2-1

M option, PIP, 3—5

Multiple—page core specification,
2-12

Multi—section binary tape copy, 3-8

Names of files, 2-5

NEXT command, 3-13

Noncontiguous pages, B-lO, B-ll

OCTAL (pseudo-op). 3-20

Operating PIP, 3-2

Operating procedures,
DDT-D, 3-58

Editor, 3-16

FORTRAN, 3-41

FORTRAN compiler, 3-34

PAL-D, 3-23

Restore, 3-61

Operating system (FORTRAN), 3-40

diagnostics, 3—43, 3-44

Operation of monitor, 2-1

Options,
Editor, 3-17

Restore program, 3-61

OUTPUT command, 3-13

PAGE (pseudo-op), 3-20

PAL-D Assembler, 3-19

compatability, 3-19

error messages, 3-25, 3-26,
3-27

pseudo-operators, 3-20

PAUSE (pseudo-op), 3-20

PDP-8 instruction set, G-l

Period (.), 3-11

Peripheral Interchange Program
(PIP), see PIP

Permanent symbol tables, G-l

PIP, 3-2

directory listing, B-12

in RF08 system, 3-10

options, 3-3

P option, PIP, 3-5

Program library, 3-1

Pseudo-operators, PAL-D, 3—20

Punched output, 3—15

Punctuation in command strings,
2—6

Queries from system programs, 2-4

READ command, 3-12

Read errors, 2-15

READ statement (FORTRAN), 3-30

Rebuilding monitor, A-3

Registers in DDT-D, 3-55

Relocatable binary-coded tapes,
3-3

Requirements, equipment, 1-1

Restore program, 3~60

RETURN key, 2-6

RF08 system using PIP, 3-10

RIM loader, A-l

RUBOUT key, 2—3, 2-6, 3—11

used in FORTRAN ACCEPT statement,
3-31 »

'

SABR assembler, 3-3

SAM£(Storage Allocation Map) blocks,
B-7

block entries, B-3

SAVE command. 2-10, 2-13, 3-1

Save files data structure, B—9

Saving FORTRAN-D object programs,
3-43

Saving system programs, A-4

Semicolon (7) usage, 2-6

Single-page core specification, 2-11

Slash (/), 3-12

Software, 1—1

S option, PIP, 3-6, 3-7

Source File data structure, B-9

INDEX-2

Spaces
in command strings, 2-7

in filename, 2—5

Special characters, 2-6

Start condition, 2—14

Starting Monitor, 2—3

Storage, 2-1

Storage allocation map blocks, B-7

Symbolprint program, 3-39

Symbol table, PAL—D, 3-24

System Builder, 2-2

device capabilities, B-5

error messages, 2-15

errors, FORTRAN D, 3-35

formats, B-l

generation, A—l

load and save programs, A-4

modes, 2-2

programs, D—l

system restore, 3-60

Tabs, 3-17

Tape preparation, 3-15

TEXT, 3-20

TRAILER command, 3-13

U option, PIP, 3-6

¢ (Up-arrow) usage, 2-6, 3-24

User core usage, B-l3

User mode, 2-2

User symbol table, 3-59

Write errors, 2-15

Write-lock switch, PIP, 3-6

WRITE Statement (FORTRAN), 3-30

XLIST (pseudo-op), 3-20

Z (pseudo-op): 3-20

INDEX-3

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in

Maynard, publishes newsletters and Software Performance Summaries (SP8)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and reVISed software, programming
notes, software problems and solutions, and documentation corrections.

Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi—
cally. For information on the distribution of these documents and how

to get on the software newsletter mailing list, write to:

Software Communications

P. O. Box F

Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each

Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy
Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland

Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In

the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest

Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-

change center for user-written programs and technical application in-

formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the

United States, Canada, Europe, and Australia. For information.on the

society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Equipment, S.A.

146 Main Street 81 Route de lfAire
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

4K Disk Monitor System

DEC-08-0DSMA-A—D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems

with software should be reported on a Software

Problem Report (SPR) form (see the HOW TO OBTAIN

SOFTWARE INFORMATION page).
‘

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher—level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer.

Non-programmer interested in computer concepts and capabilitiesDDDDDD
Name

X

Date

organization

Street

City State
’

Zip Code

or

Country

If you do not require a written reply, please check here. [3

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications

P. O. Box 1“

Maynard, Massachusetts 01754

