
IDENTIFICATION

Product Name: Application Notes

Product Code: DEC—OB—NAAA-D

Date Created: July I2,I965

Maintainer: Special Systems Group

PUP-B
LIBRARY

A??LECATIGN NOTE 80i

SCALENG FGR FiXED-POINT, 2's COMPLEMENT ARETHMETEC

lNTRODUCTlON

in the programming at arithmetic operations on a Fixedepoint, 2‘s complement arithmetic com~

pater, the position of the scale point; that is, the decimai point in a decimal number or the

binary paint in a binary number, must be kept track at by the programmer“ ane numbers

have been entered in the computer, there is no hardware or movable machine point to repre—

sent the scale points. The scale point exists only in the mind at the programmer, and only by

keeping track at its imaginary position is he able to correctly interpret the machine's calculated

results .

The tundamentai properties of scaled numbers can be simply explained it we imagine a hypo~

thetical decimai machine that is capable of manipulating numbers consisting of a sign and five

decimal digits, in this hypothetical computer, as in real computers, the machine acts as it

there were a scale point between the sign and the leftmost decimal digit. It is called the

machine points Thus, every number contained in the computer can be thought of as a signed

decimal traction.

Example: +Al2345
machine point

However, the programmer is tree to assign a decimal point at any position in the numbers For

example, the above number could represent +l23e45 it the scale point were thought of as being

three pieces to the right at the machine point. in that case the number wauid be written

$2345 i323, where D3 indicates that the decimal point is three places to the right of the machine

points in other wards, D3 is the decimal scaie Factor. Any scale Factor may be chosen without

changing the contents of the machine.

Examples: +Al2345 D2 2 +l2 9345

+£2345 D4 = +l234i-85

+Al 2345 DO 2 +3. i2345

The scale factor need not be restricted by the size of the machine words Numbets in our

hypothetical computer can be assigned scaie factors that exceed five, or the scale factors can

even be negative.

Examples: $2345 D7 = +i234500 .

~5321345 D—A : +30000l2345

Of course, these are merely programmer‘s representations; the machine number is always re—

stricted to a sign and five digits.

Addition and Subtraction

In addition and subtraction, the scale factors of the numbers to be combined must be identical.

Thus, #142204 D3 added to —123332 D3 gives a sum of 165536 D3 (422.04 + 233332 = 655.36) a

This rule has the same basis as in ordinary arithmetic. if the scale factors differ, one number

must be shifted until the scale points are aiigneds

Examples: +Al427l Dl (+i Q4271)

+28496 D3 (+384.9o)

The number +Al427l Dl is brought into the accumulator and shifted right two decimal places

before addition or subtractione The scale point shifts with the numbers

+OOT e42 (+.OOi42 D3)
+384.96 (+ .38496 D3)
“+3"8""‘5';‘3" 8” ”(T38638“ 33"";

Notice that if the number of the higher scale factor had been shifted left instead, its two most

significant digits would have been test and the resulting sum wouid have been seriously in error.

The shifting of numbers off the ieft east at the accumulator in this manner is called overflow.

Multiplication

When two numbers are multiplied together, the scale factor of the product is the algebraic sum

of the scale factors of the multiplier and multiplicand.

Example: (:00200 D3) x (106000 D2): :OOOTZ DS, or l2.

Normally the most significant part of the product is in the AC and the least significant part is

in another register. Thus, the product in the above example would appear in the computer

with the machine point between the Sign and leftmost digit in the AC. The machine point for

the least significant portion of the product is ignored, since this involves double-precision

arithmetic.

+000 l 2 +00000 D5
A A

it is important to remember that the two decimal numbers, :00200 and 106000, when multiplied

in the computer will result in the machine product of :OOOTZ txOOOOO regardless of the positions

of the scale points in the multiplier and multiplicand. The scale points must be kept track of by

the programmer. Thus fractions, as well as integers, can be multiplied in exactly the same way.

Examples: 4220000 05 x +90060 D3 1‘

+£300i2 +00000 D8 (+20,000 x +.6 = +12,000)

+00200 DO x +£6000 DO :

+IPOOl2 +OOOOO D0 (+ .002 x +.06 r: +.000i2)
A

+POQOO [3—2 x 160000 0-4 =

+9090 +00000 D-o (+.00002 x +.00006 = +.00000000l2)

Division

The remarks above for multiplication apply directly to division, with two exceptions. First,

the scale point of the result is the algebraic difference of the scale points of the operands.

Second, the scale point of the divisor must be smaller than the scale point of the dividend;

that is, the scale point of the quotient must be positive. Again, the contents of the registers

in our decimal computer will look the same no matter where scale points of the numbers are

located .

SCALlNG ON A BiNARY COMPUTER

The fundamentai atoperties of scaled numbers in a computer as outlined above can now be

angelied to the binary and octal numbering systems as used in a Ts complement, fixedepoint,

binary computer. The decimal scale factor becomes the binary scale factor and is indicated

by a B in front of the scale factor. The machine point is still between the sign and the leftmost

til", but in this case the sign is a binary digit. in a l2~bit computer such as PUP—8, then,

the leftmost bit is the Sign bit and there are eleven bits for the number, with the machine point

between the first and second bits.

Because the number system used by the machine is now different from that customarily used by

the programmer, conversion becomes one of our new considerations. The programmer may be

dealing with decimal or octal numbers, but because the machine is binary, the scale factors

must be determined from the binary equivalents. As will be explained below, a scaling analysis

is performed on each problem so that the binary scale factors chosen result in the most efficient

use of the lZebit word, Having selected the appropriate Scale factor for a given number, it is

expressed in decimal or octal form followed by the binary scale factor. For example, the

combination 975 BlO means that the decimal number 975, when converted to binary form, has a

binary point ten places to the right of the machine points

The decimal number 975 BlO when converted to binary would appear in the machine as:

on noon no
A A

machine point binary point

Grouping these bits into threes, it is more convenient to write this-number in its octal form:

3636 hit)

Notice that in this octal form, we cannot indicate the point which separates the integral from

the fractional part, because it comes within one of the octal digits, Also, the sign bit, bit 0,

becomes part of the leading digits.

Negafive numbere 5:52;”: be wr‘ifi'en eifher one of fwo wayse For exomfle; Momwier fhe ocfo1

number:

~32 86

AS a pos‘éfive octo! number, 3.2 86 wou1d be sfored 1n fhe compufer as:

000 001 101000
A.

binary poinf

As (1 negofive number in 2‘3 eomplemeni‘, it would be stored:

111110010111
A

+1

111110011000
A

binary poinf

1n the oc’ro1 form; 11 would. be wrifien:

7630 86

Again we conno’r separate 1he integro1 from ’rhe Frocfionoi pom and fhe Sign is Encorporofed

into ‘rhe leading ocfoi £11911“.

The summary of the above FU185 of binary scoiing Es given in Appendix 1 a

OVERFLOW

1n ocidifion fo shiffing digits off 1he 1ef’r end of fhe occumulai’or, overflow can e130 occug" 1n

orifhmefic operations, Suppose we are working with signed quanfifies and we odd fhe nembees:

Decimal Vo1ue Binary Represenfefion 0.6.2131 EquivaIenf

18 85 0/10 010 000 000 2200 85

5 BS ([100 101 000 000 500 85

23 BS 010 111 000 000 2700 85

Notice that there was no carry to the left of the first machine position (i ,e., into the sign bit) .

However, if we try to add the numbers:

Decimal Value Binary Representation Octai Equivalent

28 B5 OAll lOO 000 000 3400 B5

5 B5 090 lOl 000 000 500 B5

33 B5 lAOO CW 000 000 4100 35

The result as given in the machine would be erroneous because the magnitude portion of the

AC is not large enough to hold the sum. This situation is described as overflow.

lf overflow occurs in division, the link is set to i, no division takes place, and control returns

to the main program.

Overflow occurs'in the PDP—8 when:

l . In addition, the sign of the addend and augend are the same and the

sign of the sum is different and/or the link is set.

2 . in division, the magnitude of the divisor is less than that of the dividend

when the scale factors are the same (iv.e., when the quotient _>_ l «0 BO).

3. A digit is shifted off the left end of the accumulator.

Overflow is something which must be avoided in all normal circumstances. To accomplish this,

the programmer must have some knowledge of the magnitude of the numbers with which he is

working and, accordingly, must locate each number at such a scale that overflow cannot occur

even in the “worst case.”

ln this connection, the concept of ”minimum binary scale” is helpful . At a binary scale of 5,

the largest positive integer that can be contained is:

Oil iiiAOOO 000

binary point

5
which in decimal is 3i (Lee, 2 ml).

The lorgesr posifive integers which con be conroinecl or orher binory scales ore robulared in

Appendix 2% ii, For exomple, we have rhe number 75 re piece in rhe computer, the rcble in

Appendix 2 indicates rhor if con be conroined or o binory scole of 7 or higher. A binary scale

of 6 or lower would nor be sufficienr io hold o number oi fhar magnitude.

ii: o binary scole rector greorer then 7 were used, rhe number would be shifrecl far’rher re the

righr rhon neceseary resulring in underfiow‘. The number of significonr iiguree rhar can be

corried in rhe froc’rionol parr is rhereby reduced” if ihe number 75 were carried as 75 B7,

rhere is room in the machine word ior irociionol resulrs since four binary birs can follow rhe

binary poinr; if if were carried 75 El l
,

there is no provision For (3 fractionol por’r in single-n

precision orirhme’ric .

The programmer may no? always be successful in his attempts ro arrange numbers so rhor over~

flow will nor occur. if overflow does occur, rhe PDP~8 does not holr bur an indicaiion of some

rype is given. The rype oi indicorion depends upon the operorion which produced rhe overflow.

if a programmer suspecrs rhor overflow moy occur as o resulr of on oddirion or division, he

should follow such an operorion by c program sequence rhor would correct rhe error or or leosf

indicore fhaf such on overflow rook place.

The proper locorion of the binary poini‘ oncl rhe avoidance of overflow, or bear, roices some

eiiorf on ihe par? of fire programmer.

PROGRAMMlNG TECHNlQUES FOR SCALENG

General

A complete ser oi shifr subrourines in borh single and double precision is ovailable from rhe

PDPwB Library (DigirolmgwgmUwSy/m) for use in scaling numbers borh before and after ori’rhmeric

operorions. When using rhe rourinesr ii is imporroni‘ to keep in mind rhor o lefr shifr of one

posirion ciecreoses rhe binory scole iocror by one., Similoriy a righr shift“ of one position 1r:

creases rhe binory scole Focror by oner

One technique used in scaling is to express numbers in a symbolic form that would clearly

imply the position of the binary point. The general form is:

x2"q = x“

where: X is the absolute value of the number.

2q is the factor such that q is the smallest integer that makes 2Q

greater than the maximum value of X.

q corresponds to the minimum binary scale factor which was pre~

viously discussed .

X' is the scaled form of X (i.e.’, X is X' with the binary point

q places to the right of the machine point) .

A scaling analysis should be performed on each problem to insure maximum accuracy (i .e., the

most efficient use of the binary word so that there are no leading insignificant bits) . At the

same time, the programmer must insure that there will be no loss of the most significant bits by

overflow at any step in the calculation. These are the two bounds within which the programmer

must keep the numbers as they are stored and manipulated in the machine.

Analysis

in the programming of any given problem or equation, there are three steps prior to the actual

coding which should be taken to insure maximum accuracy and to prevent error due to over—

flow.

Step l: Determine the limits of the values of all numbers to be used in the

problem (maximum and minimum).

Step 2: Determine the scale factors and set up the relationships between the

true numbers and the scaled fractions.

Step 3: Substitute the scaled quantities into the original equation and can-

cel where possible“ The scale factors that do not cancel specify the number

of required shift operations. it the scole factor of a term is negotivef the

number must be shifted right before manipulation is performedi if the scale

factor is positive, the number must be shifted left if it is to be stored at

minimum binary scale .

Addition Scaling

As emphasized before, quantities to be added (or subtracted) must have the same scale factors.

However, in order to prevent an overflow in the summing process, it is not enough to scale the

final sum according to its limit. Generally the program must be scaled by the largest limit

which applies to any element in the sum or partial sum generated during the summing process.

Example 'l

Program the operation specified by:

n

A: 2 Ci
i=i

where ail< K for i = l, 2, 3, n. The maximum vaiue of A is i K
‘

n, that is, the maxi-

mum value of the sum is obtained by multiplying the Upper iimit of any element in the list to

be summed by the number of elements in the list.

i. Statement

Solve the above problem for n
Z 10 and K = iO0.0.

2. Analysis

Step l: of: iO0.0 tori: i, 2, 3, l0

Therefore, A i K, ’n iOOiO
‘ i0: i000

Step 2: A I 2
i

A‘

Step 3: 2

3, Machine Instruction Coding

Assume that the ten values of the numbers are stored in consecutive loca-

tions starting «at location AT as

a3
B7 and that the sum is stored in A.

ADDUP, CLA

DCA

TAD

DCA

TAD

DCA

LOOP, TAD

JMS

POINTR

TAD

DCA

ISZ

lSZ

JMP

POTNTR, 0

M3, Ow3

COUNTR, 0

M12, 0-42

ADRT, A]

A, O

A

M12

COUNTR

ADR]

POlNTR

M3

SPSR

A

A

POINTR

COUNTR

LOOP

/lN|T|ALlZE

/SUMMATION LOOP

/ENTER SHIFT RIGHT SUBROUTINE

/EXIT

/CONSTANTS

Multiplication Scaling

When multiplication is performed in digitai computers, note that the product of two ”n” bit

numbers is one ”2n“ hit number, UsuoHy the high—order portion is left in the AC and the

Eow~order portion is stored 3r; e epechéed register. The fundamental rule, again, is:

10

Scale focfor of mulfipHer + scale {Cider of: mumpiicend 2 scale Facing? of:

producf ,

I . Sfcfemenf

Program ’rhe mulfipiicaf‘ion operation:

x
Z cub

2. Anaiysis

Step I: 04400.0

b<IOO0.0

Therefore x<400,000.

Step 2: a I 29 c1

bzflob

x
= 217 x

Step 3: 217x 2290 ' 210E)

x =22a " b

3. Machine Insfrucfion Coding

Assume Hm? fhe values of c: and b are sfored En iocations A and B. Assume

fhaf‘ ’rhey are scaled B9 and BIO, respecfively.

SETMUL: CLA

TAD A

JMS MULT

B, O

DCA SVA /MOVE PRODUCT TO TEMP STORE

TAD MP"!

DCA SVA +1

TAD M2

JMS DPSL /SHEFT PRGDUCT LEFT 2 PLACES

SVA

H

SVA,

000*M2, n2

drifter the multiplication (22-bit signed product), the shitt brings two more significant bits into

the high~order portion of the product. Knowing the maximum value at y more definitely (i .e.,

if a and b could never be maximum at the some time) would allow tor even more accuracyg in

this example, the iimit oi y was not known so it was assumed to be 400, 000 as calculated in

Step l of the analysis.

Division Scaling

When division is performed in digital computers, the dividend is a ”2n” bit word and the

divisor is an ”n“ bit word.

Remember that in division the divisor must be greater than the dividend for division to occur

without overtiow. Therefore, the programmer should scale the values so that division will
occur with maximum dividend and minimum divisor. For example, it both dividend and div-

isor are stored at minimum binary scale, the dividend should be shifted one position to the

right by a doublewshitt subroutine before division to insure that overflow does not take place.

i . Statement

Program the division operation:

\<
H

2:533

2. Analysis

Step i : m<24, GOO

60<n<l
,
000

Therefore, 24<y<400

l2

Step2: m:2 m'

n~210n‘
<5.

y”2>/

6 ‘215m‘w25 ‘

Step3: 2 y‘-—- .

i0I n

2 n

y222”i ms

in this exompie, the 2“] impiies that the quotient wouid have one significant bit to the ieft

of the machine point (i.e., in the sign bit). Thus, the division wouid resuit in overfiow.

This probiem couid be averted by shifting the dividend right one position, as previously

mentioned, before division takes piece.

3. Machine instructions

Assume that the singie~precision division subroutine (Digital 8~i2~F)

is used. The dividend is stored in iocotions numi and numi + i at c:

scoie factor of Bi5 and the divisor is stored in num2 at o scoie factor

of Bio.

SETDIV, CLA CMA /LOAD --i [NTO AC

3M3 DPSR /SHiFT RIGHT SUBROUTINE

NUMi

DCA SVA /SAVE MSB

TAD L3H /MOVE LSB

DCA CALDIV + i

TAD SVA

CALDIV, JMS DiV /DiViDE Bié/BiO 2 86

O

NUM2, O

DCA ANS /SAVE QUOTiENT

APPENDIX I

RULES OF BINARY SCALING

ADDITION

The binary scale Factor at the addend, augend, and sum are alike.

23.9 B8 + I69.7 88:146I2 B8

SUBTRACTION

The binary scale Factor of the minuend, subtrahend, and difference are alike,

107.8 B7 - 23.2 B7: 84,.6 B7

MULTIPLICATION

The binary scale factor of the product is the sum at the binary scale factor of the multiplier

and multiplicand.

12.2 B6 x 3 87: 36.6 BI3

24.9 85x I35.5 88 = 3373.95 BI3

(minimum binary scale)

DIVISION

The binary scale Factor of the quotient is the binary scale Factor of the dividend minus the

binary scale Factor of the divisor.

88 BIB—3H 85:8 BIO

I4

APPENDIX 2

MINIMUM BINARY SCALE

Binary ScaIe Maximum DecimaI Capacity (2n wI)

I I

2 3

3 7

4 I5

5 3I

6 63

7 I27

8 255

9 5H

I0 I 023

II 2 047

I2 4 095

I3 8 WI

I4 I6 383

I5 32 767
I6 65 535

I7 I3I O7I

I8 262 I43

I9 524 287

20 I 048 575

2I 2 097 ISI

22 4 I94 303

23 8 388 607

I5

APPHCATTON NOTE 802

The question of matrix inversion comes up occasionally concerning the PDP—B,

There is na general answer ta the matrix-«inversion problem. The approach depends upon the

”behaviar“ at the given matrix. Basically, the problem is:

Given a matrix A! tind a matrix B, such that

AB 2 l where l is the unit matrix.

There are three basic approaches. All numbers below are decimal, all operations
are Floating-point without EAE.

GAUSS -— JQRDAN METHOD

Time % (2.5) (l .46 mils) (M3) where the matrix is M x M

Storage $15 3M2 + 630 t about 550

(This does not include input/output which would require about

450 locations.)

For a ll) x TO (well behaved) matrix:

Time i"*e"*"3.é>o seconds

Storage a: T480 words + 450 tor 1/0

For a 20 x 20 (well behaved) matrix:

Time ”A“! 29.28 seconds

Storage % 2380 words "i“ 450 “For l/G

RANK ANNlHlLATlON

Time % 5M3 (l .96 mils) where the matrix is M x M

Storage 5:36M2 + l2M t 630 t about 400 words

(This does not include l/O which would require about 450

locations.)

For a TC x l0 well behaved nonsymmetric matrix:

Time 539.80 seconds

Storage ’3‘“? T750 t 4:50 tor l/O

For a 20 x 20 well behaved eoneymetric matrix:

Time ”$78.4 seconds

Storage $323670 t 450 tor l/O

re

@AUSS - SElDEL (lTERATlVE METHOD)
2

U 6 G .

Time is: M (.88 mils) per Iteration (M x M matrix)

(it would be impossible to estimate the number at iterations re-—

quired. The method may not work in some cases.)

Storage 3 3M2 + 6M + 630 + about 200 (not including l/O)

For a l0 x l0 matrix:

Time 2388 mils / iteration

Storage x l WO + 450 for l/O

For 20 x 20 matrix:

Time 2:352 mils/ iteration

Storage 7/2l50 + 450 for [/0

Generally, a matrix is well behaved it the elements along the maiar diagonal
dominate are greater than the other elements at the matrix. As nandiagonal elements become

larger than the diagonal elements, the matrix becomes ill behaved and it becomes increasingly
difficult to invert,

l7

APPLlCATlON NOTE 804

THROUGHPUT TO lBMwCOMPATlBLE MAGNETTC TAPE

A common data—acquistion situation is the realwtime conversion of an analog
signal(s) to digital form together with the recording of the resulting digital information on mag—-

netic tape in lBM~compatible format (lBM Binary);

A typical system consists of a l388 Converter, PDP-8, 57A and 570 Tape Trans-

port. The use of the 57A permits the controlling program to load one core buffer while the

57A writes (via the data break) the data in a second core buffer on tape and produces the in—

terrecord gap. The function of the buffers is then reversed by the program.

Within a record, the character density must conform to lBM standards; 200, 556,
or 800 characters to the inch. IBM specifications govern the longitudinal tolerance as each

character may be recorded. Each interrecord gap must be regardless of density (within allow-=-

able tolerance) 3/4 inch to conform to lBM standardss These comments apply for tape that will

be processed on TBM Magnetic Tape Units lBM 729 ll, lV, V, and Vi.

In a given file on tape (disregarding the end~of-file gap and character), the

effective density of recorded information is a function of the relationship between record length
as compared to gap length. For example a file consisting of a single long record with no record

gaps would consist entirely of‘data or would be TOGO/o efficiento On the other hand, a file con-

sisting of many 3/4—inch records would be only 50% efficient since half of the available tape
would be used for the 3/4vinch interrecord gaps required by each recordo

While the 57A is writing the contents of the one buffer on tape and then writing
the blank interrecord gap, the second buffer is being filled by information coming from the

A-to—D converters Since the conversion rate must be constant, this process continues both dur—-

ing the emptying of the first buffer and during gapping. There is, therefore, a difference in

the rate at which data enters one bLTffe—r from the Auto—D converter and the rate at which data

as distinguished from gap is written on tape from the second buffera

Consider a 570 Transport with a speed of 75 ips recording at 200 cpi . The number

of characters that may be recorded per second is equal to:

75 x 200 = 15000 cps

Suppose, though, that the situation discussed above (3/4—inch records separated

by 3/4~inch gaps) existed. The actual conversion rate (assuming a l2—bit conversion) would

be;

l5,000 x l/2 x 1/2 = 3750 conversions per second

The second factor of l/2 arises because only half of the tape is available for

actual data (0.50 duty factor) due to the interrecord gaps.

Figure l illustrates the duty factor as a function of characters per record for all

three standard lBM densities. A 3/4—inch interrecord gap is assumed.

18

DUTY FAC‘E’OR {EFFEC‘FE‘JENESS}

253 5l2 $025 204% $000

200 bpt ,63t .773 .872 .932 .335

555 bpi .3“ .55t ,‘i’lé .834 $66

800 bpf .299 A8 ‘53 3'73 .372

LOO
*

200
‘MW

,

4 W ;(I 0
556 a
W

o .80”cw—W‘BOV.g. o e

U .
o

< /
/

800
u” 0 O

>- /
S

‘50 4

/9
c3

‘

°/

T

2048 '

CHAR] RECORD

Y t r

256 {Hz l024

i

4096

Note that these rates could never be realized in practice with a double—buffer

type of throughput since the assumption of the necessity of a double buffer implies that at least

two records-an ideal case and therefore one interrecord gapwwill be written.

Figure 2 lists the throughput rates which could be achieved if no interrecord gaps

were required. Next, the duty factor is used to calculate actual (or effective) character rates

as a function of characters per record and this information is plotted. Consider the top curve of

Figure 3. in this case the nominal (or ideal) character rate is 90, 000 cps. The vertical bars

at the two "ends” of the curve illustrate how far below the nominal character rate the actual

character rate is at any point. Note that for small records the actual character rate falls off

very rapidly.

Writing Rates (c ps)

200 bpi 556 bpi 800 bpi

45 ips 9, 000 25, 000 36, 000

75 ips l5, 000 4i
, 700 60, 000

il2.5 ips 22,500 62,500 90, 000

Effect of Record Length

256 Si 2 i024 2048 4096

45 ips 200 bpi 5, 670 6, 960 7, 850 8, 380 8, 680

556 hpi 9,520 l3,800 l7,8i0 20,800 22,700
800 bpi l0,770 l6,600 22,700 27,850 3i,400

75 ips 200 bpi 9, 450 ii, 600 13, iOO i3, 990 i4, 490

556 bpi i5, 900 23, 000 29, 530 34, 670 37, 870

800 hpi i7, 950 27, 640 37, 800 46, 400 52, 300

ii2.5 ips 200 lopi l4,l80 l7,400 l9,620 20,970 2l,730
556 bpi 23, 800 34, 500 44, 500 52, 000 56, 800

800 bpi 26, 900 4i
,
500 56, 700 69, 600 78, 400

i9

One interesting aspect oi Figure 3 Es that by proper choice of record length (or
core buffer size, see oelow), tape speed! and density? a desired AQC conversion rate may be

selecteda Note the horizontai line at 40,000 cpso Assuming Habit conversions, the conver—

sion rate here wooid be 20,000 conversions per second and this couid be achieved by using a

double butter, each one at which was capobie oi holding the number of characters indicated on

the lower scale below the intersection of the horizontai iine (at 40578063 cps) with the respective

equipment curves.

'

ii

80,000 1

q i

C

I
I

I

l v . 22251300
I

l
I

I

ro,ooo~ , ,

.
I

3

i
|

a sorooo~ .2

Z ‘1 . ..——~—e ”35/558
0 a

{‘3
'

l

.
0M°75/800

m 50,000-
-

a:
0

if .

m
“0'000

M

r
.————-e 75/558

33 .

5 30 000
¢m° 43/800

E
l

'
'

<1 a
. \(r- w .z.

48/556

1
M /B “2.5/200

U 20,000 4/.M—1.
.7./ .

"'5 w—«a 75/200

./.

l0,000
-

: we
owe 45i200

/
.9

O 1 y
r

255 5l2 [024 2098 4096

CHARACTERS / RECORD

Figure 4 defines certain details of EBM-«cornpotibie tapess Note that the longi-
tudinal check character of the end of a record is separated from the other characters in a record

by a gap that is about four times as large as the intercharacter spacing within a record (regard-
less at density) and that the record gap proper starts following the check character. (No longi—
tudinal check bit is written it the iongitudinai coent in the associated trock is even).

This fact is of consequence only it records composed at an extremely few characters

are of concern and would effect the numerical data used to construct Figure 2 in the immediate

vicinity (irew just to the right) of the vertical scales

Figure 5 illustrates the time availabie between onalog~to-digital conversions as

a function of tape speed, density and butter sizes, Figure 5 may be used to determine how many

machine cycles are available for programming in throughput situations of this nature.

2Q

Longitudina Cheek Chemo?"

Gay
(Note 33

200 CPI K .0207 + .p—OIZS 003

556 CW: .00‘(5‘l + 40046 0029::
800 Cpl: 005‘+ .0033

— .HOOZE

Notes 5 0 § Record Gap Record 3 4n: 03.. “a 200 CF! : >005”
$0025 ”*0" 4)

to rinse mm 555 CHLOOPB:
Reteronce Edge (833.cgi

=
. 0012

[Wind
guide as.)

News l a 2

Track:

tum
.498

r

em
~Wma~

,%

6M?

t

Writ.

.o4a"+.oooo
llW~W+~H+H++H~~w++i®rem.

ream-w

WWIESOM“flu—”$20
WW

._

i;l i

l E
a ruin”:

.. “m“

'“

a HHHH ‘l‘ml‘l’i‘iiii'l’i ‘ §§
if? n“a

innit
Q"

rnnrrr
_ ‘l‘ '” 3 33

Iiiiiltll 2;
”HUSH

”" i”
*“ A

g:D
intuit!

“ Mme“
" 3’“.

rrrrrrrrr i W 3
.030 +0000

~.0003

M

Top. Marian

NOiES:

i. Tape is shown with oxide side up, Read/Write head on same side as oxide.

2. Tape shown representing i b” in all tracks, NRZl recording; 1 bit produced by reversal of flux polarity, tape

fully saturated in each direction.

3. Variation permitted in the location of the Check Character assuming nominal values For tape speed and all as-

cillator timings in the Tape Control. No longitudinal check bit is written it longitudinal count in the track is even.

4. Myiar Tape: 3/4”, +5/32", ~l/i6". Acetate Tape. 3/4", 46/32“, ~l/8”. Zero Backward creep. Forward

creep less than 0.2“ per cycle.

5. Dimensions of tape measured at 50% relative humidity and 70°F. Tape thickness (Mylar or iBM HD) is 0.0022“,

+.0003", -.0004”.

a. To insure complete interchangeability, skew of each tape unit is adiusted to 0.25 user: or less at the read bus of

the tape unit when readingwhile—writing continuous l bits. Maximum skew for any reel of tape, read by any tape
unit connected to any tape control, must be equal to or less than the read character gate for the bit density and tape

speed at which the tape was written.

Time from First Bit

7. Write Skew Gate. i5% R358 Fall

729 ll or V, 550 (:92 6,3 Psec l6,l riser:

729 ll or V, 200 cpi l6.9 usec 44.0 usec

729lV or Vl, 556 cpi 4.3psec l0.8usec
729EVor Vi, 200 cpl H.4usec 29.5 usec

729 V, 800 Cpi 6.3usec l0.4usec
729 Vl, 800 cpl 4.0 usec 6.8 usec

When reading, while writing coded information, all bits within a character must be received before the rise at the

write skew gate.

8.. Read or Write Character Gate, 6%

729 H or l\/, 556 cpi iO.5 usec

729 ll or V, 200 cpi 29.2 usec

72‘? lV or Vl, 556 cpi 7.5 usec

729 lV or Vl, 200 cpi 2i .0 usec

72‘? V, 800 cpi 7.9 psec

729 Vl, 800 cpi 5.4usec

9. Time Between Characters: Writing~shallnotbeless than tall at the skew gate timing pius i usec, including vori~

ations due to tape speed, skew and bit configuration. Reading—eshall not be less than read character gate timing plus
i usec, including variations due to tape speed, skew, and bit configuration.

2i

O

\,W-
“rm—w 45/200

225*

200 «

:75
<

3
2

“219 :50

U)

Efih
M~-~- ~«*5/200

'

Q:

$§§ 125

00
00

0

N

El:
v

[00 :\.mm W... ”25/200

m‘l‘ It? 5/200
"“

45/556

E 75 4 ::\°\\\:t»- \
"N. 45/800

._._.._.___________

5O 4

..........__. 75/556

\me‘m 75/900

.~.______
M“

”2.5/555

25 « ’M°~—-——-———~ ”2.5/800

I l v T T

t28 256 5t2 t024 2048

BUFFER StZE

WORDS

It must be emphasized that the data graphed as continuous lines in Figures l, 3,
and 5 actually consists for each curve of a series of discrete points, which are shown as con-

tinuous lines for convenience only. For example there can never be a record consisting of

356.l35 characters, and no point associated with this number of characters is actually present

or intended to be present in the curves of Figure l.

22

