
dlifgliltall

|

i

VAX-11 COBOL-74

Language

Reference Manual

Order No. AA-C985A-TE

VAXII

January 1979

This document is intended primarily for reference use. It describes the VAX-11

COBOL-74 language.

VAX-11 COBOL-74

Language

Reference Manual

Order No. AA-C985A-TE

OPERATING SYSTEM AND VERSION: VAX/VMS V01.5

SOFTWARE VERSION: VAX-11 COBOL-74 V04

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice and

should not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that

may appear in this document.

The software described in this document is furnished under a license, and

may only be used or copied it in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-

ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 Digital Equipment Corporation

The postage-paid READER’S COMMENTS form on the last page of this

document requests your critical evaluation to assist us in preparing future

documentation.

The following are trademarks of Digital Equipment Corporation:

DEC FOCAL

DECnet IAS

DECsystem-10 MASSBUS

DECSYSTEM-20 PDP

DECtape RSX

DECUS UNIBUS

DIBOL VAX

DIGITAL VMS

5/79-14

Contents

Page

Preface Lx

Acknowledgments 1X

Chapter 1 Overview of the COBOL Language

1.1 COBOL Language Elements 1-1

1.1.1 COBOL Character Set 1-2

1.1.2 COBOL Words o s 1-2

1.1.2.1 User-Defined Words. 1-2

1.1.2.2 Reserved Words. 1-2

1.1.3 Literalso 1-4

1.1.3.1 Numeric Literals 1-4

1.1.3.2 Alphanumeric Literals. 1-5

1.1.4 Separators. e, 1-5

1.1.4.1 Space e 1-5

1.1.4.2 Comma and Semicolon 1-5

1.1.4.3 Left and Right Parentheses 1-6

1.1.4.4 Quotation Marks 1-6

1.1.4.5 Horizontal Tab 1-6

1.1.5 Format Punctuation 1-6

1.2 Meta-Language Elements 1-6

1.2.1 Underline 1-6

1.2.2 Brackets and Braces .. 1-6

1.23 TheEllipsiso 1-7

1.3 Source Reference Format. ... 1-7

1.3.1 Conventional Reference Format. 1-7

1.3.1.1 Reference Format Areas. 1-7

1.3.1.2 Continuation of Lines 1-8

1.3.1.3 Blank Lines. 1-9

1.3.1.4 Comment Lines. 1-9

1.3.1.5 Short Lines and Tab Characters 1-9

1.3.2 Terminal Reference Format. 1-10

1.4 Language Organization. 1-10

1.4.1 Division Header 1-10

1.4.2 Section Headero ... 1-11

1.4.3 Paragraph, Paragraph Header, Paragraph-Name. 1-11

1.4.4 Data Division Entries 1-12

1.4.5 Declaratives Lo e 1-12

1.5 Sample Format Entry Page. 1-13

Chapter 2 Identification Division

2.1 PROGRAM-ID Paragraph 2-2

2.2 DATE-COMPILED Paragraph 2-3

n

Chapter 3 Environment Division

Chapter 4

Chapter 5

v

3.1

3.2

CONFIGURATION SECTION 3-2

3.1.1 SOURCE-COMPUTER Paragraph e e e 3-2

3.1.2 OBJECT-COMPUTER Paragraph 3-3

3.1.3 SPECIAL-NAMES Paragraph R 3-4

INPUT-OUTPUT SECTION 3-6

3.2.1 FILE-CONTROL Paragraph 3-8

3.2.2 I-O-CONTROL Paragraph. 3-14

Data Division

4.1

4.2

4.3

File Description - Complete Entry Skeleton 4-4

4.1.1 BLOCK CONTAINS Clause 4-5

4.1.2 CODE-SET Clause 4-7

4.1.3 DATA RECORDS Clause 4-8

4.1.4 LABEL RECORDS Clause 4-9

415 LINAGE Clause 4-10

4.1.6 RECORD CONTAINS Clause 4-13

417 VALUEOFIDClause 4-14

Data Description Concepts 4-15

4.2.1 Physical AspectsofaFile 4-15

4,22 Record Concepts. 4-15

423 Record Description. 4-15

4,24 Classesof Data 4-17

4.2.5 Selection of Numeric Character Representation 4-17

4.2.6 Algebraic Signso 4-17

4.2.7 Standard Alignment Rules 4-18

4.2.8 Item Alignment for Increased Object-Code Efficiency 4-18

Data Description - Complete Entry Skeleton 4-19

4.3.1 BLANK WHEN ZERO Clause 4-22

4.3.2 Data-Name or FILLER Clause 4-23

4.3.3 JUSTIFIED Clause L 4-24

4.34 Level-Number 4-25

4.3.5 OCCURS Clause. 4-26

43.6 PICTURE Clause 4-29

4.3.7 REDEFINES Clause. 4-38

4.3.8 RENAMES Clause. 4-40

439 SIGN Clause 4-42

4.3.10 SYNCHRONIZED Clause 4-44

4.3.11 USAGE Clause, 4-46

4312 VALUE Clause 4-49

Procedure Division

5.1

0.2

9.3

General Descriptiono 5-1

5.1.1 Declaratives Lo L 5-1

5.1.2 Procedures. e e e e e e s e 5-1

Procedure Division Header.52

Procedure Division Bodyo, 5-3

54 Statements and Sentences o . e e 5-3

54.1 Conditional Statement oo 5-4

54.2 Conditional Sentence. o . o oo e 5-4

5.4.3 Compiler-Directing Statement 5-4

5.4.4 Compiler-Directing Sentence 5-4

5.4.5 Imperative Statemento 5-5

5.4.6 Imperative Sentenceo 5-5

5.4.7 Statement Categories oo 5-5

5.4.8 Uniqueness of Reference 5-6

5.4.8.1 Qualification oo L. =T

5.4.8.2 Subscriptingo o0 o e e e e 5-8

5.4.8.3 Indexingo oo 5-9

5.4.8.4 Internal Formats of Subscripts, Index-Names and

Index-Data- Items. « « « « « o o o oo 5-9

5.4.85 Identifier oo 0o oo 5-10

54.86 Condition-Name« . .« . 5-10

5.4.9 Explicit and Implicit Specifications. 5-11

5.4.9.1 Explicit and Implicit Procedure Division References. . 5-11

5.4.9.2 Explicit and Implicit Transfers of Control 5-11

5.4.9.3 Explicit and Implicit Attributes 5-12

5.5 Arithmetic Expressions. oo 5-12

5.5.1 Arithmetic Operators. « . . 5-13

5592 Formation and Evaluation Rules 5-13

5.6 Conditional Expressions o000 5-14

56.1 Simple Conditionso o0 5-15

56.2 Relation Condition.« . o . . oo 5-15

5.6.3 Comparison of Numeric Operands 5-16

56.4 Comparison of Alphanumeric Operands 5-16

5.6.5 Comparisons Involving Index-Names and/or Index Data Items . 5-17

56.6 Class Condition« o e e e e e 5-18

5.6.7 Condition-Name Condition (Conditional Variable) 5-18

56.8 Switch-Status Condition« . o oo 5-19

5.6.9 Sign Condition. 5-19

5.6.10 Complex Conditions 5-19

5.6.11 Negated Simple Conditions. 5-20

5.6.12 Combined and Negated Combined Conditions. 5-20

56.13 Abbreviated Combined Condition Relations 5-21

56.14 Condition Evaluation Rules. 5-22

57 Common Phrases and General Rules for Statement Formats 5-23

571 ROUNDED Phrase.« . « « v v v o v v v v v 5-23

572 SIZE ERROR Phrase« 5-24

573 CORRESPONDING Phrase« .. 5-24

5.7.4 Arithmetic Statements ee 5-25

5.7.5 Multiple Results in Arithmetic Statements 5-25

5.7.6 Overlapping Operands« .« .« . . 5-26

5.7.7 Incompatible Data.o 5-26

58 ACCEPT Statement« . o o o v o o oo e 5-217

59 ADD Statement o o oo e e e e e e e e e e e 5-29

510 ALTER Statement.« . o o« o o e e e e e e e 5-31

5.11

5.12

5.13

5.14

9.15

5.16

5.17

5.18

0.19

5.20

0.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

0.31

5.32

5.33

5.34

5.35

5.36

5.37

5.38

5.39

0.40

0.41

5.42

5.43

5.44

CALL Statement 5-32

CLOSE Statement (Sequential) 5-34

CLOSE Statement (Indexed & Relative) 5-39

COMPUTE Statement. 5-40

DELETE Statement (Indexed & Relative) 5-41

DISPLAY Statement. 5-43

DIVIDE Statement e 5-44

EXIT Statement.o 5-47

GO TO Statement. 5-48

IF Statement oo 5-49

INSPECT Statement 5-51

MOVE Statement o 5-58

MULTIPLY Statement. 5-62

OPEN Statement (Sequential) 5-64

OPEN Statement (Indexed & Relative) 5-68

PERFORM Statement 5-71

READ Statement (Sequential) 5-80

READ Statement (Relative) 5-83

READ Statement (Indexed) 5-87

REWRITE Statement (Sequential) 5-91

REWRITE Statement (Relative) 5-93

REWRITE Statement (Indexed) 5-95

SEARCH Statement.o 5-98

SET Statement oo 5-103

START Statement (Relative). 5-105

START Statement (Indexed) 5-107

STOP Statement e 5-109

STRING Statement« .. 5-110

SUBTRACT Statement« 5-113

UNSTRING Statement ... 5-115

USE Statemento o 5-119

WRITE Statement (Sequential) 5-121

WRITE Statement (Relative). 5-125

WRITE Statement (Indexed) 5-128

Chapter 6 The Library Module

Appendix A Reserved Words

Appendix B Character Sets

Appendix C File Status Key Values

Glossary

Index

Figures

)

VARYING Phrase for PERFORM with One Condition. 5-75

VARYING Phrase for PERFORM with Two Conditions 5-76

VARYING Phrase for PERFORM with Three Conditions. 5-T7

Format 1 SEARCH with Two WHEN Phrases. 5-102

Tables

3-1 Access Modes and File Organization 3-7

3-9 Possible Combinations of Status Keysland 2. 3-11

4-1 Classes and Categories of Elementary and Group Data Items. 4-17

4-2 Types of Editing by Data Category 4-33

4-3 Editing with Sign-Control Symbols 4-34

4-4 PICTURE Character Precedence Table 4-37

5-1 Symbol Combinations in Arithmetic Expressions 5-14

5-9 Combinations of Conditions, Logical Operators, and Parentheses5-21

5-3 Relationship of CLOSE Statement Formats to File Categories 5-35

5-4 Permissible MOVE Statements. 5-61

5-5 Permissible Input-Output Statements for Sequential Files 5-65

5-6 Permissible Input-Output Statements for Indexed and Relative Files . .5-69

5-7 Permissible Operand Combinations in the SET Statement 5-104

B-1 Character Sets.« o e e e e e e e e e B-2

C-1 Sequential I/O File Status Key Values C-1

C-2 Relative and Indexed I/O File Status Key Values C-2

Commercial Engineering Publications typeset this manual using DIGITAL’s

TMS-11 System.

955ALL

Vil

Preface

This reference manual describes the COBOL language as implemented in

VAX-11 COBOL-74 for the VAX-11 system. It adheres to the 1974 ANSI

standard. Furthermore, the text of this manual is based on American

National Standard Programming Language COBOL, ANSI Document

X3.23-1974. |

You should have a working knowledge of the COBOL language before using

this book, which is a reference document; it is not a tutorial guide for begin-

ning COBOL programmers.

Chapter 1 contains an overview of the COBOL language. Chapters 2 through 5

detail the four COBOL divisions. A discussion of the Library module appears

in Chapter 6. Appendixes A, B, and C contain the COBOL reserved word list,

character set tables, and FILE STATUS codes.

Frequent references to the VAX-11 COBOL-74 User’s Guide (User’s Guide)

appear in the text. The User’s Guide and the VAX-11 SORT User’s Guide

contain additional information about the compiler, the runtime system, error

messages, and utility programs.

Acknowledgments

COBOL is an industry language. It is not the property of any company or

group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the

CODASYL COBOL Committee as to the accuracy and functioning of the

programming system and language. Moreover, no responsibility 1s assumed by

any contributor or by the committee in connection therewith.

The authors and copyright holders of the copyrighted material used herein

are: FLOW-MATIC (trademark of Sperry Rand Corporation), programming

for the Univac (R) I and II, Data Automation Systems copyrighted 1958, 1959,

by Sperry Rand Corporation; IBM Commercial Translator Form No.

F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted

1960 by Minneapolis-Honeywell. | -

They have specifically authorized the use of this material, in whole or in part,

in the COBOL specifications. Such authorization extends to the reproduction

and use of COBOL specifications in programming manuals or similar

publications.

X

Chapter 1

Overview of the COBOL Language

This chapter contains general information about the language and structure

of COBOL source programs. It describes the elements of COBOL and its

meta-language, reference formats, and language organization. A sample for-

mat entry concludes the chapter and introduces the source language state-

ments discussed in later chapters.

1.1 COBOL Language Elements

The COBOL language consists of the following components:

e Divisions

e Sections

e Paragraphs

e Sentences

e Clauses

e Statements

e Entries

e Words

e Characters

There are four divisions in COBOL programs: the Identification Division,

the Environment Division, the Data Division, and the Procedure Division.

Each division can contain sections, which in turn can contain paragraphs.

Each paragraph can contain one or more sentences, clauses, statements, or

entries.

The basic building blocks of these COBOL components include the COBOL

character set, character-strings, COBOL words, separators/punctuation and

literals.

1-1

1-2

1.1.1 COBOL Character Set

The basic and indivisible unit of the COBOL language is the character. Indi-

vidual characters combine to form character-strings of one or more contiguous

characters, and separators, which are punctuation character-strings. The

character set for character-strings and separators includes the letters

A through Z, digits, and special characters. The complete COBOL character

set appears in Appendix B.

For nonnumeric literals, comment entries, and comment lines, the character

set is expanded to include the entire computer character set except for some

special characters (such as the carriage return) that control I/0 devices. The

computer character set and its subsets appear in Appendix B.

NOTE:

If special characters, other than commas and semicolons, ap-

pear in general formats, you must use them in your source

program as well.

1.1.2 COBOL Words

A COBOL word is a character-string of not more than 30 ASCII characters.

There are two classes of words: user-defined words and reserved words. A

COBOL word can belong to one and only one of these classes.

1.1.2.1 User-Defined Words — COBOL words that you must supply to satisfy

the format of a clause or statement. User-defined words consist of characters

selected from the set A through Z, the digits 0 through 9, and the hyphen (-).

A hyphen can neither begin nor end a user-defined word.

There are 12 types of user-defined words:

condition-name paragraph-name

data-name program-name

file-name record-name

index-name section-name

level-number segment-number

mnemonic-name text-name

Each of these types is defined in the glossary.

1.1.2.2 Reserved Words — A specific list of COBOL words that you can use

only as specified in the general formats. Do not use a reserved word as a user-

defined word. (See Appendix A for a complete list of COBOL reserved words.)

There are six types of reserved words:

1. Key words — Words that you must use in a particular format. Key words

are upper case and underlined in general formats. Consider the following

example.

COMPUTE identifier-1 [ROUNDED)] [, identifier-2 [ROUNDED]] ...

= arithmetic-expression [; ON SIZE ERROR imperative-statement]

In this case, COMPUTE, ROUNDED, SIZE, and ERROR are key words.

Overview of the COBOL Language

9. Optional Words - Words you can use or omit without altering the seman-

tics of the COBOL program. Optional words are upper case, but not under-

lined, in general formats. In the previous example, the word ON 1s an

optional word.

3. Connectives - There are three types of connectives:

a. Qualifier connectives - associate a data-name, a condition-name,

or a text-name with its qualifiers: OF, IN. (See Section 5.4.8.1,

Qualification.)

b. Series connectives - link two or more consecutive operands: separa-

tor comma or separator semicolon.

c. Logical connectives - express the following four conditions: AND,

OR, AND NOT, OR NOT.

4. Special Registers - Compiler-generated storage areas, such as LINAGE-

COUNTER, that are named and referred to by reserved words. (See Sec-

tion 4.1.5, LINAGE Clause.)

5. Figurative Constants - Words that name and refer to specific constant

values generated by the compiler. The singular and plural forms of figura-

tive constants are equivalent, and you can use them interchangeably. Do

not put quotation marks around figurative constants.

Reserved words and their figurative constant values follow:

ZERO Represents the wvalue ‘0', or one or more of the character

ZEROS ‘0’, depending on context.

ZEROES

SPACE Represents one or more of the character space from the computer char-

SPACES acter set.

HIGH-VALUE Represents one or more of the character that has the highest ordinal

HIGH-VALUES position in the computer character set (hex 7F).

LOW-VALUE Represents one or more of the character that has the leest‘ ordinal
LOW-VALUES position in the computer character set (hex 00).

QUOTE Represents one or more of the character ‘",

QUOTES

ALL literal Represents one or more repetitions of the string of characters comprising

the literal. The literal must be either an alphanumeric literal or a figura-

tive constant other than ALL literal. When a figurative constant is used,

the word ALL is redundant and serves only to enhance readability.

When a figurative constant represents a string of one or more characters,

the compiler determines the string’s length from context according to the

following rules:

a. When a figurative constant is associated with another data item (for

example, when the figurative constant is moved to or compared with

another data item), the string of characters that the figurative con-

stant represents is repeated character by character to the right (or

truncated on the right in the case of ALL literal) until the size of the

resultant string equals the size of the associated data item. This 1s

done prior to and independent of the application of any JUSTIFIED

clause specified for the data item. (See Section 4.3.3, JUSTIFIED

Clause.)

Overview of the COBOL Language 1-3

1-4

b. When a figurative constant is not associated with another data item

(for example, when the figurative constant appears in a DISPLAY,

STRING, UNSTRING or STOP statement), the length of the string is

one character.

You can use a figurative constant wherever a literal appears in a format.

Whenever the literal is restricted to numeric characters, however, use only

the ZERO (ZEROS, ZEROES) figurative constant.

6. Special-Character Words — The arithmetic operators + (addition),

- (subtraction), * (multiplication), / (division), ** (exponentiation), and

relation characters < (less than), > (greater than), and = (equal to). You

must use these words where they appear in general formats even though

they are not underlined.

1.1.3 Literals

A literal is a character-string whose value is determined by the ordered set of

characters of which it is composed. There are two types of literals: numeric

and alphanumeric (alphanumeric is sometimes referred to as "nonnumeric").

NOTE:

A figurative constant can also serve as a literal.

1.1.3.1 Numeric Literal — A character-string of 1 to 20 characters selected

from the digits O through 9, the plus sign, the minus sign, and the decimal

point.

The value of a numeric literal is the algebraic quantity represented by the

characters in the literal. The size of the literal equals the number of digits

specified, including leading zeros, if any. Every numeric literal is category

numeric. (See Section 4.3.6, PICTURE Clause.)

The rules for forming numeric literals are:

1. A numeric literal must contain at least one digit and not more than 18

digits.

2. A numeric literal must not contain more than one sign character. If a sign

is used, it must appear as the leftmost character of the literal. If the literal

has no sign, its value is positive.

3. A numeric literal must not contain more than one decimal point. The

decimal point is treated as an assumed decimal point and can appear

anywhere within the literal except as the rightmost character. If the literal

contains no decimal point, it is an integer. (The word "integer" appearing

in a general format represents a non-zero, positive numeric literal with no

decimal point.)

4. The compiler treats a numeric literal enclosed in quotation marks as an

alphanumeric literal.

Overview of the COBOL Languagé

1.1.3.2 Alphanumeric Literal — A character-string of 1 to 127 allowable char-

acters from the computer character set. It is delimited on both ends by quota-

tion marks.

The value of an alphanumeric literal in the object program is the value of the

character-string itself, except that: (1) the delimiting quotation marks are

excluded, and (2) each embedded pair of contiguous quotation marks repre-

sents a single quotation mark character; all other punctuation characters are

part of the value of the alphanumeric literal and are not separators. Alpha-

numeric literals are category alphanumeric. (See Section 4.3.6, PICTURE

Clause.)

The rules for forming alphanumeric literals are:

1. An alphanumeric literal must contain a space or left parenthesis immedi-

ately before the opening quotation mark.

2. An alphanumeric literal must contain a separator (space, comma, semicol-

on, or right parenthesis) or terminator (period) immediately after the clos-

ing quotation mark.

3. To represent a single quotation mark character within an alphanumeric

literal, use two contiguous quotation marks.

1.1.4 Separators

A separator is a string of one or more of the punctuation characters described

in this section. The rules for forming separators follow:

1.1.4.1 Space

1. Where a space is used as a separator, more than one space can be used.

2. A space can immediately precede any separator except the closing quota-

tion mark. Before a closing quotation mark, the space is considered part of

an alphanumeric literal rather than a separator.

NOTE:

Section 1.3, Source Reference Formats, describes the only

exception to the first two rules.

3. A space can immediately follow any separator except the opening quota-

tion mark. After an opening quotation mark, the space is considered part

of an alphanumeric literal rather than a separator.

1.1.4.2 Comma and Semicolon — The comma and semicolon function as

separators only when they are immediately followed by a space. Insert these

separators only where explicitly permitted by the general formats, by format

punctuation rules, by statement and sentence structure definitions, or by

reference format rules.

Overview of the COBOL Language 1-5

1.1.4.3 Left and Right Parentheses — Left and right parentheses are separa-

tors only when used in balanced pairs.

1.1.4.4 Quotation Marks — Quotation marks used in balanced pairs delimit

alphanumeric literals. (See Section 1.1.3.2, Alphanumeric Literals.)

1.1.4.5 Horizontal Tab — The horizontal tab character vertically aligns state-

ments or clauses on successive lines of the source program listing. It adheres to

the same rules that govern the space character. The compiler, upon en-

countering a tab character, generates one or more space characters consistent

with the tab character position in the source line. (See Sections 1.3, Source

Reference Formats.)

1.1.5 Format Punctuation

The comma, semicolon, and period appear in some formats. The comma and

semicolon are optional and interchangeable. The period, however, is manda-

tory: Supply a period wherever one is shown in a general format. You must

also specify a period to terminate a paragraph.

1.2 Meta-Language Elements

1-6

Meta-language elements describe the allowable use of language elements.

They appear in formats but are not coded into source language statements.

1.2.1 Underline

Underlined, upper-case words denote reserved key words. The absence of an

underline in an upper case word denotes an optional word.

1.2.2 Brackets and Braces

Brackets, [], enclose an optional portion of a general format. When they

enclose vertically stacked entries, brackets indicate that you can, at your

option, select one of the enclosed entries. Braces, { }, surrounding vertically

stacked entries indicate that you must choose one of the enclosed entries.

In the following example, brackets indicate that the entire clause is optional.

If you use the clause, you must select either SYNCHRONIZED or SYNC. You

can select either LEFT or RIGHT (or neither).

{SYNCHRONIZED} [LEFT]

SYNC RIGHT

NOTE:

In the general format for a clause, choices that are vertically

stacked between brackets indicate that you have the option of

overriding a default condition. The default condition is always

described in the general rules for the clause.

Overview of the COBOL Language

1.2.3 The Ellipsis

The ellipsis (...) indicates that you can repeat the item preceding it. This item

is usually enclosed in brackets or braces. Consider the following example.

[SAME (RECORD] AREA FOR file-name-1 {file-name-2} ...]...

The ellipsis following the outside brackets indicates that you can repeat the

entire clause. The other ellipsis allows you to repeat the item in braces.

1.3 Source Reference Format

The compiler provides two formats for coding your source programs: conven-

tional and terminal. The former is based on the traditional, 80-column

punched card format. The latter is a DEC-specified format that shortens a

source line by using horizontal tabs and carriage returns; the terminal format

works well when you use a text editor from an on-line terminal.

NOTE:

The compiler assumes terminal format as a default, but you

can use either format. (The User’s Guide discusses format

selection.)

Use the reformatting program (REFORMAT) to change a terminal format

program to conventional format for ease in transporting the source program

to other COBOL compilers. (The User’s Guide discusses the REFORMAT

utility.)

NOTE:

The rules for spacing presented in this discussion of reference

y formats take precedence over all other spacing rules.

1.3.1 Conventional Reference Format

The conventional reference format provides rules for coding your source pro-

gram on 80-column punched cards. These rules are described in the following

sections. '

1.3.1.1 Reference Format Areas

1. Sequence Number Area - Character positions 1 through 6. Reserved for

source line sequence numbers that enable you to locate and edit source

lines in your program. The compiler ignores the contents of this field.

2. Continuation/Comment Indicator Area - Character position 7. Contains a

character that directs the compiler to process the source line in one of the

following ways:

Overview of the COBOL Language 1-7

Character Source line processed as

blank () Default - The compiler processes the line as normal

COBOL text. |

hyphen (-) Continuation line - The compiler processes the line as a continuation of

the previous source line. (See Section 1.3.1.2, Continuation of Lines.)

asterisk (*) Comment line - The compiler transfers the contents of this line, as is, to

the source listing and does not check syntax. (See Section 1.3.1.4, Comment

Lines.)

slash (/) Comment line - The compiler treats the line as if it were a comment line,

except that it advances the source listing to the top of the next page before

printing the line. -

3. Area A - Character positions 8 through 11. Contains division headers,

section headers, paragraph headers, paragraph-names, level-indicators,

and certain level numbers.

4. Area B - Character positions 12 through 72. Contains all other COBOL

text.

5. Identification Field - Character positions 73 through 80. Contains source

program documentation that has no effect on compilation.

1.3.'1.2 Continuation of Lines

1. Divide a multi-line sentence or entry by continuing in Area B of the next

line.

2. Break a word or numeric literal from one line to the next by placing a

hyphen (-) in character position 7 of the continuation line; the first non-

blank character that you enter in Area B will become the next character of

the continued word or numeric literal.

3. Break an alphanumeric literal from one line to the next by placing a

hyphen in character position 7 of the continuation line. Put a quotation

mark before the first character of the continuation literal. The literal can

begin anywhere in Area B of the continuation line.

Consider the following example:

01 CONTINUATION-NUMERIC.,

02 NUMERIC-LITERAL PIC 9(18) UVALUE IS 1234567891:2345

001030- 6789,

01 CONTINUATION-ALPHANUMERIC,.

02 ALPHANUMERIC-LITERAL PIC X(26) VALUE IS "ABCDEFGHIJKLM

001060~ "NOPOQRSTUWVKWXYI".,

PROCEDURE DIVISION,

CONTINUATION-SENTENCE.

IF NUMERIC-LITERAL NOT EQUAL TO ALPHANUMERIC-LITERAL

GO TO END-PROGRAM

ELSE GO TO CONTINUATION-SENTENCE.

END-PROGRAM.,

STOP RUN,.

Overview of the COBOL Language

Source lines 001010 through 001030 show how to continue a numeric literal;

lines 001040 through 001060 show line continuation for an alphanumeric

literal. Finally, source lines 001090 through 001110 contain a sentence that

continues for three lines.

1.3.1.3 Blank Lines — Include blank lines (character positions 7 through 72

blank) anywhere in a source program except immediately before a continua-

tion line.

1.3.1.4 Comment Lines — Include comment lines (an asterisk in character

position 7) anywhere in a source program except before the Identification

Division. Successive comment lines must also contain asterisks in character

position 7.

You can use any character from the computer character set to write a com-

ment line. Begin your comments in Area A or Area B. The compiler repro-

duces comment lines on the source listing for documentation purposes.

NOTE:

The slash character (/) and asterisk (*) produce the same

results, except that the slash directs the compiler to advance

the source listing to the top of the next page before printing the

comment entry.

1.3.1.5 Short Lines and Tab Characters — If you use a medium other than

punched cards, you can shorten conventional format source lines: Either ter-

minate the line with a carriage return, insert tab characters within the line to

replace space characters, or use a combination of the two.

The compiler treats a carriage return character as a redefinition of character

position 72. When you use a tab character, the compiler generates the re-

quired number of space characters consistent with the tab character position

on the line. Tab stops are set in the compiler at character positions 7, 8, 12,

20, 28, 36, 44, 52, 60, 68, and 73.

Consider the following example, in which stands for the carriage return

character and stands for the tab character.

Shortened conventional source line

000130 01 1A FILE-A, RET

000140 TAB Oz DATA-FIELD-A. RET

OOO150 A8 03 DESCRIPTION-A (TAB PIC XK(Z20)., RET

Q00160 03 DESCRIPTION-B TAB PIC X(20). (e

O00170 TAB TAB 03 DESCRIPTION-C TAB PIC X(20)., RET

Overview of the COBOL Language 1-9

Source line as interpreted by the compiler

000130 01 FILE-A.

000140 02 DATA-FIELD-A,.

QO0O130 03 DESCRIPTION-A PIC X(20),

Q00160 03 DESCRIPTION-B PIC X(20),

Q00170 03 DESCRIPTION-C PIC X(20),

1.3.2 Terminal Reference Format

Terminal reference format is the compiler’s default format. It is easy to use

with a computer terminal and is less time and space consuming than its

conventional counterpart. This format eliminates the sequence number and

identification fields and combines the indicator field with Area A.

The terminal reference format for a source line follows:

Character Position Contents

1 through 4 Area A

5 through 65 Area B

NOTE:

Place continuation line (-), comment line (*), and skip-to-top-

of-page (/) indicator characters in character position 1.

In terminal format, Area A and Area B contain the same kinds of source

entries as their conventional format counterparts. (See Section 1.3.1.1) Simi-

larly, tab characters cause the compiler to generate a number of spaces con-

sistent with the tab character position on the line. Tab stops are set to charac-

ter positions 5, 13, 21, 29, 37, 45, 53, 61, and 66.

1.4 Language Organization

1-10

Each division, section, and paragraph in a COBOL program contains headers

followed by source text. The following sections describe both the organization

of these headers and their reference format positions.

1.4.1 Division Header

A division header indicates the beginning of a division. It is a specific combi-

nation of words followed by a period. Division headers, in their order of

appearance, are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

Overview of the COBOL Language

A division header must start in Area A. No non-comment text can appear

between it and the following section header, paragraph header, or paragraph-

name, except for the key word DECLARATIVES (followed by a period and a

space), which can appear after the Procedure Division header.

1.4.2 Section Header

A section header indicates the beginning of a section in the Environment,

Data, and Procedure Divisions. In the Environment and Data Divisions, a

section header contains reserved words followed by the word SECTION (fol-

lowed by a period and a space). In the Procedure Division, a section header

contains a user-defined word followed by the word SECTION (and an op-

tional segment-number) followed by a period and a space. The permissible

section headers are:

In the Environment Division

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the Data Division

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

In the Procedure Division

user-name SECTION [segment-number].

The section header must start in Area A. No text can appear between it and

the following paragraph header or paragraph-name except for the USE sen-

tence in the Procedure Division.

1.4.3 Paragraph, Paragraph Header, Paragraph-Name

Paragraphs begin with paragraph headers (reserved words) or paragraph-

names (user-defined words), depending on the division. In the Identification

and Environment Divisions, a paragraph consists of a paragraph header (fol-

lowed by a period) and zero, one, or more entries. In the Procedure Division, a

paragraph consists of a paragraph-name (followed by a period) and zero, one,

or more entries. Data Division entries follow a different format. (See Section

1.4.4, Data Division Entries.)

The permissible paragraph headers are:

In the Identification Division

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

Overview of the COBOL Language 1-11

1-12

In the Environment Division

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

[-O-CONTROL.

A paragraph header or paragraph-name starts in Area A. The first sentence of

a paragraph begins either on the same line or in Area B of the next non-blank

line that is not a comment line. Successive sentences or entries begin either on

the same line as the previous one or in Area B of the next non-blank line that

is not a comment line. (See Section 1.3.1.2, Continuation of Lines.)

1.4.4 Data Division Entries

There are two types of Data Division entries: those that begin with a level-

number (called "data-description-entries") and those that begin with a level

indicator. The only level indicator is FD (File Description).

Following every level indicator or level-number are (in order): a space, its

associated name, and a sequence of independent descriptive clauses. Each

clause except the last ends with a separator semicolon or a separator space;

the last clause ends with a period followed by a space.

Choose level-numbers from the set of values 1 through 49, 66, 77, and 88.

Write the level-numbers 1 through 9 either as a single digit or as a zero

followed by a significant digit. For level-numbers 01, 66, or 77, the entry

begins in Area A with the level-number followed by a space; the entry ends in

Area B with its associated record-name and descriptive information.

The FD level indicator entry begins in Area A with the level indicator followed

by at least one space; the entry continues in Area B with a file-name and

descriptive information.

You can maintain the same format for successive data-description-entries, or

you can indent according to level-number. When you indent, begin each new

level-number anywhere in Area A or Area B, and end anywhere within Area B.

Indentation does not affect the magnitude of the level-number. Note that your

output listing will be indented only if the input is indented.

1.4.5 Declaratives

The key words DECLARATIVES and END DECLARATIVES precede and

follow, respectively, the declaratives portion of the Procedure Division.

Each must appear on a line by itself, starting in Area A and ending with a

terminator period.

Overview of the COBOL Language

1.5 Sample Format Entry Page

The following page is a model of the entries that comprise the bulk of this

manual. Each COBOL division begins a new chapter, and each entry begins

on a new page.

Entry-Name

n.n.n Entry-Name

Function

Describes the function or effect of the entry.

General Format

A general format shows the specific arrangement of elements in

the entry. Formats are numbered if you can use more than one

specific arrangement. You must write all clauses (mandatory

~ and optional) in the sequence shown in these general formats.

Only in certain cases can clauses appear in sequences other

than those shown: these exceptions are stated explicitly in the

rules that follow the general format.

Syntax Rules

Syntax rules tell you how to order words or elements to form larger elements,

such as sentences, clauses, or statements. They also impose restrictions on

individual words or elements.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an

element or a set of elements. They define the semantics of the entry and the

entry’s effect on program execution or compilation.

Examples

(If required)

Division Name

Overview of the COBOL Language 1-13

Chapter 2

Identification Division

Function

The Identification Division marks the beginning of a COBOL program. It also

identifies a program and its source listing.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

* [AUTHOR. [comment-entry] ...]

* INSTALLATION. [comment-entry] ...]

* [DATE-WRITTEN. [comment-entry] ...]

(IDATE-COMPILED. [comment-entry] ...]

* (SECURITY. [comment-entry] ...]

* These paragraphs are not described in individual entries; they follow the same format as the

DATE-COMPILED paragraph and are for documentation only.

Syntax Rules

1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the reserved words

IDENTIFICATION DIVISION followed by a period and a space.

3. The PROGRAMS-ID paragraph must immediately follow the Identification

Division header.

General Rules

1. The comment-entry can consist of any combination of characters from the

computer character set. |

2. Comment-entries can span several lines. However, do not continue a

comment-entry by using a hyphen in the continuation indicator area.

PROGRAM-ID

2.1 PROGRAM-ID Paragraph

Function

The PROGRAM-ID paragraph identifies the program.

- 2-2

General Format

PROGRAM-II). program-name.

Syntax Rule

The program-name must contain 1 to 15 characters from the set A through 7

and 0 through 9. Do not use the hyphen.

General Rules

1. The PROGRAM-ID paragraph must be present in every program and

must contain a program-name.

Program-name is a user-defined word that identifies a COBOL program.

The program-name identifies the object program entry point.

Program-names cannot exceed 15 characters in length.

The first eleven characters of the program-name must not duplicate the

first eleven characters of the program-name in any other program in the

linked 1image.

Identification Division

DATE-COMPILED

2.2 DATE-COMPILED Paragraph

Function

The DATE-COMPILED paragraph causes the compiler to display the compi-

lation date on the source program listing in the Identification Division.

General Format

DATE-COMPILED. [comment-entry] ...

Syntax Rules

1. The comment-entry can consist of any combination of characters from the

computer character set.

Comment-entries can span several lines. However, do not continue a

comment-entry by using a hyphen in the continuation indicator area.

General Rules

1. During program compilation, the paragraph-name DATE-COMPILED

causes the current date to be inserted on a subsequent line of the program

listing. If a DATE-COMPILED paragraphis present, it is replaced durlng |

compilation with a paragraph of the form:

DATE-COMPILED. comment-entry.

current-date

. All listings produced during compilation contain the compilation date in

the header line of each page regardless of the presence or absenceof the

DATE-COMPILED paragraph.

Identification Division 2-3

Chapter 3

Environment Division

Function

The Environment Division provides a standard method for describing the

program’s hardware environment. It enables you to specify both (1) the com-

piling and object computers, and (2) information about input-output control.

General Format

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. source-computer-entry]

[OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. special—names—entry]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entryj ...

[-O-CONTROL. input—output—control—entry]]

Syntax Rules

1. The Environment Division must follow the Identification Division in every

COBOL program.

2. The Environment Division must begin with the reserved words

ENVIRONMENT DIVISION followed by a period and a space.

3-1

SOURCE-COMPUTER

3.1 CONFIGURATION SECTION

3-2

The Configuration Section can consist of three paragraphs: SOURCE-

COMPUTER, OBJECT-COMPUTER, AND SPECIAL-NAMES.

3.1.1 SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph spemfles the computer on which the

source program is to be compiled.

General Format

SOURCE-COMPUTER. VAX-11.

General Rules

This paragraph is for documentation purposes only.

Environment Division

OBJECT-COMPUTER

3.1.2 OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph specifies the computer on which the

object program is to be executed.

General Format

WORDS

OBJECT-COMPUTER. VAX-11 |, MEMORY SIZE integer {CHARACTERS

L MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number].

General Rule

This paragraph is for documentation purposes only.

Environment Division 3-3

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph associates compiler features with user-

specified mnemonic-names; it also associates alphabet-names (specified in

the OBJECT-COMPUTER paragraph) with character sets and/or collating

sequences.

General Format

[SPECIAL—NAMES.

[SWITCH integer-1

— [([CARD-READER n

‘ PAPER-TAPE-READER
{CONSOLE IS mnemonic-name

‘ LINE-PRINTER

|\ \PAPER-TAPE-PUNCH i

NATIVE

alphabet-name IS }

OFF STATUS IS condition-name-2 [,ON STATUS IS condition-name-1]

)

{QN STATUS IS condition-name-1 [LOFF STATUS IS condition-name—2]}

STANDARD-1

[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA].]

3-4

Syntax Rules

1. You must use the SPECIAL-NAMES paragraph if your program in-

cludes mnemonic-names, condition-names, alphabet-names, the

DECIMAL-POINT clause, or the CURRENCY SIGN clause.

2. Integer-1 represents any integer from 1 to 16.

General Rules

1. The names CARD-READER, PAPER-TAPE-READER, and CONSOLE

refer to input devices. To transfer data from these devices, you can use the

mnemonic-names assigned to them with the ACCEPT statement in the

Procedure Division.

9. The names CONSOLE, LINE-PRINTER, and PAPER-TAPE-PUNCH

refer to output devices. To transfer data to these devices, you can use the

mnemonic-names assigned to them with the DISPLAY statement in the

Procedure Division.

Environment Division

SPECIAL-NAMES

Continued

. The name SWITCH refers to a logical switch to which the operator can

assign a value at run-time. Chapter 2 of the User’s Guide discusses the

procedure for setting program switches.

. The condition-name assigned to the ON or OFF STATUS of a switch can

be used in a conditional expression. (See Section 5.6.8, Switch-Status

Condition.)

. The alphabet-name clause relates a name to a collating sequence and/or

a character code set. An alphabet-name referenced in the PROGRAM

COLLATING SEQUENCE clause specifies a collating sequence. An

alphabet-name referenced in a CODE-SET clause in a file-description-

entry specifies a character code set. (See Section 4.1.2, CODE-SET

Clause.)

a. If the STANDARD-1 phrase is specified, the character code set or

collating sequence identified is that defined in the American National

Standard Code for Information Interchange, X3.4-1968.

b. Since the native character code set of your system is equivalent to the

ASCII code, specification of the NATIVE phrase is equivalent to speci-

fication of the STANDARD-1 phrase.

. The literal that appears in the CURRENCY SIGN IS literal clause is used

in the PICTURE clause to represent the currency symbol. Use a single

character for the literal. Do not use any of the following characters:

a. Digits 0 through 9

b. Alphabetic characters A,B,C,D,L,P,R,S,V,X,Z or the space

c. Special characters *, +, -, , (comma), . (period), ; (semicolon), (,), ", /,

or =

If this clause is not present, you can only use the currency sign ($) in the

PICTURE clause.

. The DECIMAL-POINT IS COMMA clause exchanges the function of

the comma and period in the PICTURE character-string and in numeric

literals. |

Environment Division 3-5

3.2

3—-6

INPUT-OUTPUT SECTION

The Input-Output Section consists of two paragraphs that describe the infor-

mation needed to control the transmission and handling of data between

external media and the program. This section allows COBOL programs to

access records stored in various file organizations.

The file organizations supported by the compiler, and the access methods

available for processing them, are introduced below. Refer to the User’s Guide

for a more complete discussion of these topics.

File Organizations

The compiler supports three file organizations:

¢ Sequential

e Relative

¢ Indexed

Sequential files consist of records positioned one after the other in the order in

which they were originally written. Each record (except the last) has another

record following it. The location of a record is fixed in relation to the records

that precede and succeed it. Sequential files can be processed only in a serial

fashion. That is, to access a record in the middle of the file, the program must

access all the records preceding it.

Relative files, restricted to disk storage devices, consist of successively

numbered records. Each record is assigned a number relative to its position in

the file. Thus, the first record in a file occupies the first position and receives a

relative record number of 1, the second record occupies the second position
and receives a relative record number of 2, and so on. An individual record in

a relative file can be accessed directly (by specifying its relative record num-

ber) or serially, like sequential files.

Indexed files, like relative files, are restricted to disk storage devices. They

consist of records and a primary key index (and optionally one or more alter-

nate key indexes) used to process the records sequentially by key or randomly

by key. A key is a data item in each record of the file.

Access Modes

File organization determines the access modes that can be used to retrieve

and store records in the file. Though file organization is fixed when the file is

created (and cannot be changed later), the access mode is not fixed (except for

sequential files) until a program opens the file. Therefore, different programs

can use different access methods for the same file.

The compiler supports three access modes:

¢ Sequential

e Random

e Dynamic

Environment Division

In the sequential access mode, the program accesses records serially. The

first record must be accessed before the second, the second before the third,

and so on. |

In the random access mode, the program accesses records individually by a

random record number or a data key.

Dynamic access allows you to choose at will between sequential or random

access.

Table 3-1 lists the allowable combinations of file organizations and access

modes.

Table 3-1: Access Modes and File Organizations

Access Mode

File Organization Seqnont.ial Random Dynamic

Sequential Yes No No

Relqtive Yes Yes Yes

Indexed Yes Yes Yes

The User's Guide further discusses the access modes and file organizations.

Environment Division 3-7

FILE-CONTROL

3.2.1 FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and specifies other file-

related information.

General Format

FILE-CONTROL. {file-control-entry}

Format 1 - Sequential File-Control-Entry

SELECT [OPTIONAL] file-name

ASSIGN TO literal-1

AREA J(
, RESERVE integer-1 [

AREAS
-

[, QRGANIZATION IS SEQUENTIAL]

[, ACCESS MODE IS SEQUENTIAL]

[, FILE STATUS IS data-name-4] .

Format 2 - Relative File-Control-Entry

SELECT file-name

ASSIGN TO literal-1
-

-

AREA

; RESERVE integer-1

AREAS

; ORGANIZATION IS RELATIVE

] SEQUENTIAL [, RELATIVE KEY IS data-name-1]

: ACCESS MODE IS RANDOM

RELATIVE KEY IS data-name-1

DYNAMIC

[; FILE STATUS IS data-name-4| .

(continued on next page)

3-8 Environment Division

FILE-CONTROL

Continued

Format 3 - Indexed File-Control-Entry

SELECT file-name

ASSIGN TO literal-1

.

- ORGANIZATION IS INDEXED

- RESERVE integer-1 [
AREA j|-1

AREAS

[; ACCESS MODE IS {RANDOM

- RECORD KEY IS data-name-2

SEQUENTIAL} :l

DYNAMIC

[; ALTERNATE RECORD KEY IS data-name-3[WITH DUPLICATES]]

[; FILE STATUS IS data-name-4] .

Syntax Rules

All Formats

1. Specify the SELECT clause first in the file control entry. Clauses following

the SELECT clause can appear in any order.

You must name each file described in a Data Division file-description-

entry once and only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control paragraph must have a corresponding

file-description-entry in the Data Division.

. Literal-1 must be an alphanumeric literal.

If you do not specify the ACCESS MODE IS clause, the compiler éssumes
sequential access as a default.

You can qualify data-name-1, data-name-2, data-name-3, and data-

name-4.

Data-name-4 must-be defined in the Working-Storage Section of the Data

Division as a 2-character alphanumeric data item.

Format 1

7.

8.

Specify the OPTIONAL phrase only for input files that need not be pres-

ent whenever the object program is executed.

If you do not specify the ORGANIZATION IS SEQUENTIAL clause, the

compiler assumes sequential organization as a default.

Environment Division 3-9

FILE-CONTROL

Continued

3-10

Format 2

9. Specify the RELATIVE KEY phrase for a file if it will be referenced in a

START statement.

10. Data-name-1 must not be defined in a record-description-entry associated

with file-name.

11. The data item referenced by data-name-1 must be defined as an unsigned

integer.

Format 3

12. The data items referenced by data-name-2 and data-name-3 must each be

defined as alphanumeric data items in a record-description-entry associ-

ated with that file-name.

13. Neither data-name-2 nor data-name-3 can describe a variable-sized item.

14. Data-name-3 cannot reference an item whose leftmost character position

corresponds to the leftmost character position of an item referenced by

data-name-2 or by any other data-name-3 associated with this file.

General Rules

All Formats

1. The ASSIGN clause specifies the default file specification of the file refer-

enced by file-name. Literal-1 must be a file specification in command-

string format. (See Section 4.1.7, VALUE OF ID Clause).

2. The ORGANIZATION clause specifies the logical organization of data in a
file. The file organization is established at the time afile is created. Once

established, the file organization cannot be changed.

3. If you specify the FILE STATUS clause, a value is placed into the

2-character data item (data-name-4) during the execution of a

CLOSE, DELETE, OPEN, READ, REWRITE, START, or WRITE state-
ment and before the execution of any applicable USE procedure. This

value indicates the result of any input-output operation.

The leftmost character position of the FILE STATUS data item is known

as Status Key 1. It is set to one of the following values upon completion of

an input-output operation:

0 = Successful Completion

1 = At End

2 = Invalid Key

3 = Permanent Error

9 = DEC-Defined

Environment Division

FILE-CONTROL

Continued

The rightmost character position is known as Status Key 2. It further

describes the results of the input-output operation. This character will

contain one of the following values:

No Further Information

Sequence Error

Duplicate Key

No Record Found

Boundary Violation

— Allocation Failure

Buffer Failure

No File Found

Close Error

9 = Close Reel Error

i

0
0

I
O

U
k

W
K

=

O

I

Possible combinations of Status Keys 1 and 2 are shown in Table 3-2.

Appendix C contains a complete listing of the File Status Keys and a

description of each.

Table 3-2: Possible Combinations of Status Keys 1 and 2

Status Key 2

CL.OSE

Status No Further | Sequence| Duplicate | No Record | Boundary | Allocation | Bufter | NoFile | CLOSE REKL

Key 1 Info. Error Key Found Violation Failure Failure | Found Error Error

(0) (1) (2) (3) (4) (d) (6) (7) (8) (9

Successful

Completion X X(***)

(()

At

End X

(1)

Invalid

(2)

Permanent

Error X X(*)

(3)

DEC- :

Defined X(") X(') X X X X X X

(9)

SN
* Valid for sequentially organized files only.

** Valid for indexed and relative files only.

*** Valid for indexed files only.

! File locked by another process.

'" Record locked by another process.

111 No sequential READ previous to a REWRITE or DELETE operation.

Environment Division 3-11

FILE-CONTROL
Continued

3-12

Format 1

4. The RESERVE clause specifies the number of input-output areas allo-

cated for sequential files. This number equals the value of integer-1,

which cannot be greater than 127. If the RESERVE clause is not specified,

the number of input-output areas is determined by the Record Manage-

ment Services (RMS) default.

5. Sequential files are accessed by predecessor/successor record relationships

established by the execution of WRITE statements when the file is created

or extended.

Format 2

6. The RESERVE clause specifies the number of input-output areas allo-

cated for relative files. This number equals the value of integer-1, which

cannot be greater than 127. If the RESERVE clause is not specified, the

number of input-output areas is determined by the Record Management

Services (RMS) default.

7. When the access mode is sequential, records in the file are accessed in the

sequence dictated by the file organization. This sequence follows the order

of ascending relative record numbers of existing records in the file.

8. If the access mode is random, the value of the RELATIVE KEY data item

indicates the record to be accessed.

9. When the access mode is dynamic, records in the file can be accessed

sequentially and/or randomly.

10. Relative record numbers uniquely identify all records stored in a relative

file. The relative record number of a given record specifies the logical

ordinal position of the record in the file. The first logical record has a

relative record number of one (1), and subsequent logical records have

relative record numbers of 2, 3, 4,

11. The data item specified by data-name-1 is used to communicate a relative

record number between the program and Record Management Services.

Format 3 -

12 The RESERVE clause specifies the number of input-output areas allo-

cated for indexed files. This number equals the value of integer-1, which

must be greater than 1 and not greater than 127. If the RESERVE clause

is omitted, the number of input-output areas is determined by the Record

Management Services (RMS) default.

13. When the access mode is sequential, records in the file are accessed in the

sequence dictated by the file organization. This sequence follows the order

of ascending record key values in a given key of reference.

14. If the access mode is random, the value of the record key data item

specifies the record to be accessed.

Environment Division

FILE-CONTROL

Continued

15. When the access mode is dynamic, records in the file can be accessed

sequentially and/or randomly.

16. The RECORD KEY clause specifies the prime record key for the file and

provides an access path to records in an indexed file. The values of the

prime record key must be unique among file records.

17.An ALTERNATE RECORD KEY clause specifies an alternate record key

for the file. It provides an alternate access path to records in an indexed

file. ‘

18. Retain the same data descriptions of data-name-2 and data-name-3, and

their same relative locations in a record, as those used when the file was

created. Retain the same alternate key specifications as well.

19. The DUPLICATES phrase specifies that the value of the associated alter-

nate record key can be duplicated in any of the file records. If you do not

specify the DUPLICATES phrase, the value of the associated alternate

record key must not be duplicated in any of the records in the file.

Environment Division 3-13

I-O-CONTROL

3-14

3.2.2 1-O-CONTROL Paragraph

Function

The I-O-CONTROL paragraph specifies the memory area to be shared by

different files and the location of sequential files on a multiple-file tape.

General Format

[-O-CONTROL.

[SAME (RECORD] AREA FOR file-name-1 {, file-name-2} .7 ..

L’
MULTIPLE FILE TAPE CONTAINS file-name-3 [POSITION integer—l]

l:, file-name-4 [POSITION integer—Z]]]

[, APPLY PRINT-CONTROL ON file-name-5 | file-name-6...]... .

Syntax Rules

. You can include more than one SAME clause in a program.

. A file-name must not appear in more than one SAME AREA clause or in

more than one SAME RECORD AREA clause.

. If one or more file-names in a SAME AREA clause appear in a SAME

RECORD AREA clause, all of the file-names in that SAME AREA clause

must appear in the SAME RECORD AREA clause. However, additional

file-names can also appear in that SAME RECORD AREA clause (even if

they do not appear in the SAME AREA clause).

. The files referenced in a SAME AREA clause or a SAME RECORD AREA

clause (or both) need not have the same organization or access mode.

General Rules

The SAME AREA clause specifies that two or more files are to use the

same memory area during processing. Therefore, it is not valid to have

more than one of the files open at the same time.

2. The SAME RECORD AREA clause specifies that two or more files aré to
use the same memory area for processing the current logical record. More

than one (or all) of the files can be open at the same time. A logical record

in the shared area is considered as a logical record (1) of each opened,

output file whose file-name appears in this SAME RECORD AREA

clause, and (2) of the most recently read input file whose file-name appears

in this SAME RECORD AREA clause. This is equivalent to an implicit

redefinition of the area, i.e., records are aligned on the leftmost character

position.

Environment Division

I-O-CONTROL

Continued

3. The one-file-open rule for the SAME AREA clause takes precedence over

the multiple-files-open rule for the SAME RECORD AREA clause.

4. The MULTIPLE FILE clause is for documentation purposes only. It is

used when more than one file shares the same physical reel of tape. Re-

gardless of the number of files on a single reel, only those files that are used

in the object program need be specified. If all file-names have been listed

in consecutive order, the POSITION clause need not be given. If any file in

the sequence is not listed, the position relative to the beginning of the tape

must be given. Not more than one file on the same tape reel can be open at

one time.

5. The compiler uses default techniques when the APPLY clause is not pres-

ent; hence, the clause is always optional, as the following explanation

makes clear.

If the FD entry does not specify a LINAGE clause, you can specify the

APPLY PRINT-CONTROL clause for a printable file. The APPLY

PRINT-CONTROL clause supplies a default LINAGE clause.

If you specify neither APPLY PRINT-CONTROL nor LINAGE for a

sequential file, a WRITE statement with the ADVANCING option will

include formatting information in the record.

Environment Division 3-15

Chapter 4

Data Division

Function

The Data Division describes the data that the object program receives as

input, manipulates, creates, and produces as output.

General Format

DATA DIVISION.

[FILE SECTION.

[file-description-entry {record-description-entry}...] ..]

WORKING-STORAGE SECTION.

[77 —level-description-entry]]

record-description-entry

LINKAGE SECTION.

[77-level-description-entry] }

record-description-entry

Syntax Rules

1. The Data Division must follow the Environment Division in every COBOL

program.

2. The Data Division must begin with the reserved words Data Division fol-

lowed by a period and a space.

4-1

4-2

General Rules

File Section

The File Section describes the program’s files. It begins with a section header

followed by file-description-entries and record-description-entries.

1. File-Description-Entry

The file-description-entry consists of a level indicator (FD), a file-name,

and a series of independent clauses. These clauses describe the size of

physical and logical records, the presence or absence of label records, and

the names of the data records that are described for the file. The entry

itself is terminated by a period.

2. Record-Description-Entry

A record-description-entry is a set of data-description-entries that describe

the characteristics of a particular record. Each data-description-entry con-

sists of a level-number followed, as required, by a data-name and a series

of independent clauses.

A record description has a hierarchical structure; therefore, the clauses

used in an entry can vary considerably, depending upon whether or not the

entry i1s followed by subordinate entries.

/ Working-Storage Section

The Working-Storage Section begins with the section header followed by en-

tries that describe records and noncontiguous data items. Each Working-

Storage Section record name (and each data-name for noncontiguous data

items) must be unique.

1. Noncontiguous Working-Storage

Noncontiguous elementary items are data items in Working-Storage that

bear no hierarchical relationship to one another and are not grouped into

records. Kach of these items is defined in a separate data-description-

entry.

2. Working-Storage Records

Working-Storage records are data elements and constants in Working-

Storage that bear a definite hierarchical relationship to one another

and are grouped into records according to the rules for forming record

descriptions.

Data Division

3. Initial Values

Specify the initial value of any item in the Working-Storage Section,
except an index'data item, by using the VALUE clause in the data-
description-entry (see Section 4.3.12, VALUE Clause). The initial
value of any index data item is unpredictable.

Linkage Section

The Linkage Section in a program is meaningful only if: (1) the object pro-

gram is to function under the control of a CALL statement (see Section 5.11),

and (2) the USING phrase in the Procedure Division header is not empty (see

Section 5.2).

The Linkage Section begins with the section header followed by record-

description-entries. These entries describe data available through the calling

program but to be referred to in both the calling and the called program. No

space is allocated in the programfor data items defined in the Linkage

Section. Procedure Division references to these data items are resolved at

object time by equating the reference in the called program to the location

used in the calling program. In the case of index-names, no such correspond-

ence is established; index-names in the calling and called programs always

refer to separate indexes.

Data items defined in the Linkage Section of the called program can be

referenced in the Procedure Division of that program if and only if they are:

1. Operands of the USING phrase of the Procedure Division header.

2. Subordinate to operands of the USING phrase of the Procedure Division

header.

3. Defined with a REDEFINES or RENAMES clause, the object of which is

an operand of the USING phrase of the Procedure Division header.

4. ITtems subordinate to any of the items defined in number 3 above.

5. Condition-names and index-names associated with data items that meet

any of the above conditions.

Data Division 4-3

4.1 File Description - Complete Entry Skeleton

Function

The file description gives information about the physical structure, identifica-

tion, and record names of a file.

General Format

FD file-name

p—

- RECORDS

. BLOCK CONTAINS [integer-1 TO] integer-2

CHARACTERS

: RECORD CONTAINS [_integer—B IQ] integer-4 CHARACTERS]

RECORD IS STANDARD

; LABEL

RECORDS ARE) (OMITTED

i data-name-1

; VALUE OF ID IS

literal-1

- RECORD IS l | |

: DATA date-name-3 E data-name—{'

RECORDS ARE’

: data-name-5 data-name-6)]

- LINAGE IS LINES |, WITH FOOTING AT }
.integer—6integer-5

data-name-7 data-name-8 W
., LINES AT TOP ., LINES AT BOTTOM -

integer-7 integer—8

[; CODE-SET IS alphabet-name].

Syntax Rules

1. The level indicator FD identifies the beglnnmg of a flle description and

must appear before the file-name.

2. Clauses that follow the file-name are frequently optional, and their order of

appearance is immaterial.

3. One or more record-description-entries must follow the file-description-

entry.

4-4 Data Division

BLOCK CONTAINS

4.1.1 BLOCK CONTAINS Clause

Function

The BLOCK CONTAINS clause specifies the mapping of a logical record into

physical blocks recorded on the storage medium.

General Format

RECORDS }

BLOCK CONTAINS [integer-1 TQ] integer-2 {
CHARACTERS

Syntax Rulles

The reserved word RECORD does not appear in this clause; therefore, if

integer-2 has the value 1, write the clause as BLOCK CONTAINS 1

RECORDS. |

General Rules

1. Integer-1, if present, is ignored.

2. Block size can be stated in terms of RECORDS.

a. For a file of fixed-length records that is assigned to magnetic tape, each

block except the last will contain integer-2 records. Integer-1, if pres-

ent, is ignored. (See Section 4.1.6, RECORD CONTAINS Clause.)

b. For a file of variable-length records that is assigned to magnetic tape,

the compiler calculates the buffer size by multiplying the largest record

size, plus four bytes, by the value of integer-2. (See Section 4.1.6,

RECORD CONTAINS Clause.)

c. For a sequential file assigned to a disk device, there are no unused

bytesin any block and the records can span block boundaries.

d. For files with relative or indexed organization assigned to a directory

device, the compiler uses the value of integer-2 to calculate the size of

the block. Because of overhead bytes, this size may or may not be equal

to the record size times integer-2. (The User’s Guide fully describes the

compiler’s algorithms for computing block size.)

3. Block size can be stated in terms of CHARACTERS.

a. For files assigned to magnetic tape, the size of the block is the maxi-

mum of either:

(1) Integer-2 bytes, or

(2) The size of the largest record (add four overhead bytes for variable-

length records).

Data Division 4-5

BLOCK CONTAINS

4-6

Continued

b. For files with sequential organization assigned to a disk device, records

are packed together in each physical block. There are no unused bytes

in any block, and the records can span block boundaries.

For files with relative or indexed organization, the block size is inte-

ger-2 bytes. Integer-2 must be at least as large as the largest record,

plus any overhead bytes, and should be a multiple of 512 bytes. (The

User’s Guide further discusses block size computation.)

4. When you do not specify a BLOCK CONTAINS clause, block size is

calculated as follows:

a. For files assigned to magnetic tape, the block size is the size of the

largest record plus any overhead bytes.

. For files with sequential organization assigned to a disk device, the

records are packed together in each physical block. There are no unused

bytes in any block, and the records can span block boundaries.

For files with relative or indexed organization, the block size is the

smallest number of physical blocks that can contain one record, plus

any overhead bytes.

Data Division

CODE-SET

4.1.2 CODE-SET Clause

Function

The CODE-SET clause specifies the character code set used to represent data

on an external medium.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1. When you specify the CODE-SET clause for a file, all data in that file

must be described as USAGE IS DISPLAY; any signed numeric data must

be described with the SIGN IS SEPARATE clause.

2. You can specify the CODE-SET clause only for files with sequential

organization.

General Rules

1. Alphabet-name specifies the character code convention used to represent

data on the external medium. It also specifies the algorithm for converting

character codes on the external medium from/to native character codes.

This conversion occurs during the execution of an input or output opera-

tion. (See Section 3.1.3, SPECIAL-NAMES Paragraph.)

2. If you do not specify the CODE-SET clause, the compiler assumes the

native character code set as the default.

Data Division 4-7

DATA RECORDS

4.1.3 DATA RECORDS Clause

Function

The DATA RECORDS clause serves only as documentation for the names of a

file’s data records.

General Format

RECORD IS

DATA { }data-name—l [, data-name—.?]
RECORDS ARE

Syntax Rule

Data-name-1 and data-name-2 are the names of data records associated with

the file.

General Rules

1. This optional clause i1s for documentation purposes only. The compiler

does not check the names of the records against the names appearing in

the 01 record descriptions that follow the file description.

2. Conceptually, all data records of a file share the same area, even if there

are multiple data record descriptions.

4-8 Data Division

LABEL RECORDS

4.1.4 LABEL RECORDS Clause

Function

The LABEL RECORDS clause specifies the presence or absence of labels.

General Format

RECORDS ARE

RECORD IS STANDARD

LABEL }
OMITTED

Syntax Rule

This clause is required in every file-description-entry.

General Rules

1. STANDARD specifies that labels meeting file system label specifications

exist for the file or for the device to which the file is assigned.

9. OMITTED specifies that no explicit labels exist for the file or for the

device to which the file is assigned.

3. Specify STANDARD for all files assigned to directory devices.

4. Specify OMITTED only for files assigned to non-directory devices.

Data Division 4-9

LINAGE

4.1.5 LINAGE Clause

Function

The LINAGE clause specifies the number of lines on a logical page for sequen-

tial output files. It also specifies the size of the top and bottom margins on the

logical page, and the logical line number at which the footing area begins.

General Format

data-name-1 B data-name-2)]

LINAGE IS { } LINES |, WITH FOOTING AT { }
integer-1 L integer-2 J

data-name-3 i data-name-4)"

|:, LINES AT TOP { }] , LINES AT BOTTOM{ }
integer-3 _ integer-4

Syntax Rules

1. Data-name-1, data-name-2, data-name-3, and data-name-4 must refer-

ence elementary, unsigned, numeric, integer data items.

The value of integer-1 must be greater than zero.

The value of integer-2 must not be greater than that of integer-1.

The value of integer-3 and integer-4 can be zero.

General Rules

1. The LINAGE clause pertains to sequential output files only.

2. The LINAGE clause specifies the number of lines on a logical page. The

logical page size is the sum of the values referenced by each phrase except

the FOOTING phrase. If you do not specify the LINES AT TOP or LINES

AT BOTTOM phrases, the values for these functions are zero. If you do

not specify the FOOTING phrase, the assumed value equals either

integer-1 or the contents of the data item referenced by data-name-1,

whichever is specified.

There is no necessary relationship between the size of a logical page and

the size of a physical page.

The value of integer-1, or the data item referenced by data-name-1, speci-

fies the number of lines that can be written and/or spaced in the page

body. This value must be greater than zero.

. The value of integer-3, or the data item referenced by data-name-3, speci-

fies the number of lines in the top margin of a logical page. This value can

be zero.

4-10 Data Division

LINAGE

Continued

5. The value of integer-4, or the data item referenced by data-name-4, speci-

fies the number of lines in the bottom margin of a logical page. This value

can be zero.

6. The value of integer-2, or the data item referenced by data-name-2, speci-

fies the line number in the page body at which the footing area begins.

This value must be greater than zero and less than or equal to the value of

integer-1 or the data item referenced by data-name-1.

The footing area is that area of the logical page between the line repre-
sented by the value integer-2 (or the data item referenced by data-

name-2) and the line represented by the value integer-1 (or the data item

referenced by data-name-1), inclusive.

7. During the execution of an OPEN statement with the OUTPUT phrase

specified, the values of integer-1, integer-3, and integer-4 are used to

specify the number of lines in the sections of a logical page. The value of

integer-2 is used at that time to define the footing area. These values are

used for all logical pages written during a given execution of the program.

8. The values of the data items referenced by data-name-1, data-name-3,

and data-name-4 are used as follows:

a. When an OPEN statement with the OUTPUT phrase is executed for

the file, the data item values are used to specify the number of lines to

be in each indicated section of the first logical page.

b. When a WRITE statement with the ADVANCING PAGE phrase 1s

executed or page overflow condition occurs, the data item values are

used to specify the number of lines to be in each indicated section of the

next logical page. (See Section 5.42, WRITE Statement.)

9. When an OPEN statement with the OUTPUT phrase is executed for the

file, the data item value referenced by data-name-2 is used to define the

footing area for the first logical page. When a WRITE statement with the

ADVANCING PAGE phrase is executed or a page overflow condition

occurs, the value will be used to define the footing area for the next logical

page.

10. The presence of a LINAGE clause generates a LINAGE-COUNTER. At

any given time, the LINAGE-COUNTER value represents the current line

position in the page body. The rules governing the LINAGE-COUNTER
are as follows:

a. The compiler supplies a separate LINAGE-COUNTER for each file

whose file-description-entry contains a LINAGE clause.

Data Division 4-11

LINAGE

b. Procedure Division statements can reference (but not modify)

LINAGE-COUNTER. Because more than one LINAGE-COUNTER

can exist in a program, you must qualify LINAGE-COUNTER by file-

name when necessary. LINAGE-COUNTER is implicitly defined as a

one-word COMPUTATIONAL item.

c. During the execution of a WRITE statement to a file, LINAGE-

COUNTER is automatically modified according to the following

When you specity the ADVANCING PAGE phrase of the WRITE

statement, the LINAGE-COUNTER is automatically reset to one.

When vou specify the ADVANCING identifier-2 or integer phrase

of the WRITE statement, the LINAGE-COUNTER is incremented

bv the integer or bv the value of the data item referenced by

identifier-2.

When you do not specify the ADVANCING phrase of the WRITE

statement, the LINAGE-COUNTER is incremented by the value

one. (See Section 5.42, WRITE Statement.)

The value of LINAGE-COUNTER is automatically reset to one

when each successive logical page begins. (See Section 5.42,

WRITE Statement.)

d. The value of LINAGE-COUNTER is automatically set to one when an

OPEN statement is executed for the associated file.

11. Each logical page immediately follows the one before with no additional

Continued

rules:

(1)

(2)

(3)

(4)

spacing.

4-12 Data Division

RECORD CONTAINS

4.1.6 RECORD CONTAINS Clause

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

General Rules

1. The record-description-entry completely defines the size of each data

record; therefore, the RECORD CONTAINS clause cannot change the

memory storage allocated to the records.

For a relative file, record size on the storage medium is fixed and equal to a

value that is large enough to hold the largest record described in the file.

This rule is not affected by the RECORD CONTAINS clause.

For a sequential or indexed file, record size on the storage medium can be

fixed or variable. If the record descriptions for a file yield variable record

sizes, the record storage areas allocated on the storage medium will vary in

size and will be preceded by a byte count word supplied automatically by

Record Management Services.

If the record descriptions for a file all yield record sizes that are the same

size, the record storage areas allocated on the storage medium will be fixed

in size and will not be preceded by a byte count word. However, you can

force a variable size record format, with a byte count word prefix on each

record, by using a RECORD CONTAINS clause with the "integer-1 TO"

phrase.

Do not use integer-2 by itself unless all data records in the file have the

same size; in this case, integer-2 represents the exact number of characters

in the data record. If integer-1 and integer-2 both appear, they refer to the

number of characters in the smallest size data record and the number in

the largest size data record, respectively.

Record size is specified in terms of the number of character positions

needed to store the logical record, regardless of the character types used to

represent the items in the logical record. It is determined by summing the

number of characters in all elementary items, plus any characters required

by implicit or explicit synchronization.

Except for forcing a variable record storage size on the medium, the

RECORD CONTAINS clause is for documentation only.

Data Division 4-13

VALUE OF ID

4-14

4.1.7 VALUE OF ID Clause

Function

The VALUE OF ID clause particularizes the description of an item in the

label records associated with a file.

General Format

data-name

VALUE OF ID IS

literal

Syntax Rules

1.

3.

4.

D.

Do not use the VALUE OF ID clause when you specify LABEL RECORDS

ARE OMITTED.

Data-name cannot be subscripted or indexed, nor can it be described with

the USAGE IS INDEX clause.

Data-name must be in the Working-Storage Section.

Data-name must be an alphanumeric elementary item.

Literal must be a alphanumeric literal.

General Rules

1. For an existing file, the VALUE OF ID literal or data-name supplies infor-

mation that enables Record Management Services to locate and identify

the desired file.

For an output file, the VALUE OF ID literal or data-name supplies infor-

mation that enables Record Management Services to create the desired

file.

The VALUE OF ID literal or data-name is interpreted as a file specifica-

tion in command string format. File specifications are discussed in the

User’s Guide.

Data Division

4.2 Data Description Concepts

This section presents basic data description concepts. Actual COBOL clauses

used to describe data appear in Section 4.3.

COBOL makes data as computer-independent as possible. Therefore,

data used in COBOL programs is described using a standard rather than

equipment-oriented format. This standard data format uses the decimal sys-

tem to represent numbers and characters from the computer character set to

describe alphanumeric data items.

4.2.1 Physical Aspects of a File

The physical aspects of a file describe data as it appears on the input or
output medium. Physical aspects include such features as:

1. The mapping of logical records into the physical structure of the file

medium, and

2. The ways of identifying a file.

4.2.2 Record Concepts

It is important to distinguish between a logical record and a physical record. A

COBOL logical record is a uniquely identifiable group of related information

that is treated as a unit. A physical record is a physical unit of information; its

size and recording mode are hardware dependent and bear no direct relation-

ship to the size of the file contained on a device.

One or more logical records can be contained in a single physical unit; or, in

the case of formatted storage media, a logical record can require more than

one physical unit to contain it. Source language methods describe the rela-

tionships of logical records to physical units. Using these predefined relation-

ships, COBOL input-output statements then allow access to logical records

through the facilities of the hardware-software system.

NOTE:

In this manual, the term "record" refers to a logical record,

unless the term "physical record" is specifically used.

The concept of a logical record is not restricted to file data, but is carried over

into the definition of Working Storage. Thus, Working Storage can be grouped

into logical records and defined by a series of record-description-entries.

4.2.3 Record Description

A record description consists of a set of data-description-entries that describe

the characteristics of a record. Each entry consists of a level-number followed

by a data-name, if required, and a series of independent clauses, as required.

Data Division 4-15

4-16

Levels

Logical records are described as hierarchical structures. The level concept

arises from the need to specify subdivisions of a record, and to even further

subdivide records to permit progressively more detailed data definition.

The basic and indivisible subdivision of a record is the elementary item.

A record either consists of a sequence of elementary items or is itself an

elementary item.

A group item is a set of elementary items. Each group item consists of a

named sequence of one or more elementary items. Group items, in turn, can

combine to form group items containing one or more group items, etc. Thus,

an elementary item can belong to more than one group item.

Level-Numbers

A system of level-numbers shows the hierarchical organization of elementary

items and group items. Since records are the most inclusive data items, level-

numbers for records start at 01. Less inclusive data items are assigned higher

(though not necessarily successive) level-numbers not greater in value than

49; special level-numbers —— 66, 77, and 88 —— are exceptions to this rule.

Separate entries are written in the source program for each level-number

used.

A group includes all group and elementary items following it until a level-

number less than or equal to the level-number of that group is encountered.

All items that are immediately subordinate to a given group item must be

described using identical level-numbers; these level-numbers must be greater

than the level-number used to describe that group.item.

Three types of entries exist for which there is no true concept of level. These

are:

1. Entries that identify RENAMES items,

2. Entries that specify noncontiguous Working Storage data items, and

3. Entries that specify condition-names.

Entries that specify RENAMES items have been assigned the special level-

number 66. They can be used only as described in Format 2 of the Data

Description Entry Skeleton. (See Section 4.3.)

Entries that specify noncontiguous data items have been assigned the special

level-number 77. They are not subdivisions of other items and cannot them-

selves be subdivided.

Entries that specify condition-names to be associated with particular values

of a conditional variable have been assigned the special level-number 88.

Data Division

4.2.4 Classes of Data

The five categories of data items (alphabetic, numeric, alphanumeric, al-

phanumeric edited, and numeric edited) are grouped into three classes:

alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the

classes and categories are synonymous. The alphanumeric class includes the

categories of alphanumeric edited, numeric edited and alphanumeric.

Every elementary item except an index data item belongs to one of the classes

and, further, to one of the categories. The class of a group item is treated as

alphanumeric regardless of the class of elementary items subordinate to it.

Table 4-1 shows the relationship of the classes and categories of data items.

Table 4-1: Classes and Categories of Elementary and Group Data Items

Level of Item Class Category

Alphabetic Alphabetic

) Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

| Alphanumeric

Alphabetic

Numeric

Non-Elementary Alphanumeric Numeric Edited

(Group) Alphanumeric Edited

Alphanumeric

4.2.5 Selection of Numeric Character Representation

The value of a numeric item can be represented in binary, decimal, or packed-
decimal form. The form can be selected by using the USAGE clause of the

data-description-entry. .

4.2.6 Algebraic Signs

Algebraic signs fall into two categories: operational signs and editing signs.

The former are associated with signed numeric data items to indicate their

algebraic properties; the latter appear in edited items to identify their sign.

The SIGN clause permits you to explicitly state the location of the operational

sign. The clause is optional; if it is not used, operational signs are represented

by a default.

Editing signs are inserted into a data item by using the sign control symbols of

the PICTURE clause.

Data Division 4-17

4-18

4.2.7 Standard Alignment Rules

The standard rules for positioning data within an elementary item when mov-

ing data depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving

character positions with zero fill or truncation on either end, as

required.

b. When an assumed decimal point is not explicitly specified, the data

item is treated as if it had an assumed decimal point immediately

following its rightmost character and is aligned as in paragraph 1l.a

above.

2. If the receiving data item is a numeric edited data item, the data moved to

the edited data item is aligned by decimal point with zero fill or truncation

at either end, as required, within the receiving character positions of the

data item, except where editing requirements cause replacement of the

leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited

data item), alphanumeric edited or alphabetic, the sending data is moved

to the receiving character positions and aligned at the leftmost character

position in the data item with space fill or truncation to the right, as

required.

If the JUSTIFIED clause is specified for the receiving item, these standard

rules are modified as described in the JUSTIFIED Clause. (See Section 4.3.3,

JUSTIFIED Clause.)

4.2.8 Item Alignment for Increased Object-Code Efficiency

All binary items are automatically aligned and SYNCHRONIZED RIGHT.

(See Section 4.3.11, USAGE Clause.) The SYNCHRONIZED clause can be

used to control word alignment of DISPLAY or packed-decimal data.

All index data items are automatically SYNCHRONIZED RIGHT and

occupy two bytes.

Data Division

4.3 Data Description — Complete Entry Skeleton

Function

A data-description-entry specifies the characteristics of a particular item of

data. |

General Format

Format 1

data-name-1

level-number ’

FILLER

[; REDEFINES data-name-2|

i { PICTURE

} IS character-string]
PIC

B n

COMPUTATIONAL

cOMP
COMPUTATIONAL-3

COMP-3

; [USAGE IS] DISPLAY
DISPLAY-6

DISPLAY-7

INDEX

— -

LEADING

-

e [SIGN IS] { } [SEPARATE CHARACTER]:,
TRAILING

{ SYNCHRONIZED} LEFT

SYNC { RIGHT:I
e -

JUSTIFIED

; } RIGHT
JUST

. BLANK WHEN ZERO]

—

—

.
=

~

VALUE IS literal]

(continued on next page)

Data Division 4-19

o

OCCURS {
integer-1 TO integer-2 TIMES DEPENDING ON data-namei%}

.
integer-2 TIMES

ASCENDING

}KEY IS data-name-4 [data-name—f)] :|
DESCENDING 7

[INDEXED BY index-name-1 [index-name-2...]|.

Format 2 o

66 data-name-1; RENAMES data-name-2

THROUGH

data-name-3| .

THRU

Format 3

- { VALUE IS THROUGH

88 condition-name; literal-1 literal-2

VALUES ARE THRU

THROUGH W
, literal-3 literal-4|}...

THR
o

L

Syntax Rules

1. The level-number in Format 1 can be any number from 01-49 or 77.

9. You can write the clauses in any order, with two exceptions: the data-

name-1 or FILLER clause must immediately follow the level-number; the

REDEFINES clause, when used, must immediately follow the data-

name-1 clause. '

3. The PICTURE clause must be specified for all elementary items except

index data items; for these items, the PICTURE clause is not permitted.

4 The words THRU and THROUGH are equivalent.

4-20 Data Division

General Rules

1. A data-name is a user-defined word that names a data item. When used in

the general formats, data-name represents a word that can neither be

subscripted nor indexed unless specifically permitted by the rules of that

format. A data-name must contain at least one alphabetic character; how-

ever, it need not begin with an alphabetic character; the alphabetic char-

acters can be positioned anywhere in the data-name. Qualification 1is

sometimes permitted; therefore, data-names need not always be unique.

2. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN

ZERO clauses can be specified only for an elementary data item.

3. Format 3 is used for each condition-name. Each condition-name requires a

separate entry with level-number 88. The entry contains the name of the

condition and the value(s) or range of values associated with the condition-

name. Condition-name entries for a conditional variable must follow the

defining entry for the associated item. A condition-name can be associated

with any data-description-entry containing a level-number, except the

following:

a. Another condition-name,

o . A group containing items with descriptions, including JUSTIFIED,

SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY),

c. An index data item, and

d. A level 66 item.

Data Division 4-21

BLANK WHEN ZERO

4.3.1 BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause causes an item to be filled entirely with

spaces when its value is zero.

General Format

BLANK WHEN ZERO

Syntax Rule

The BLANK WHEN ZERO clause can be used only for an elementary item

whose PICTURE is specified as numeric edited or numeric. (See Section 4.3.6,

PICTURE Clause.)

General Rules

1. When the BLANK WHEN ZERO clause applies to an item that is used as

a receiving field for a numeric value, the item will contain nothing but

spaces if the value being stored is O.

2. When the BLANK WHEN ZERO clause is used for an item whose

PICTURE is numeric, the category of the item is considered to be

numeric edited.

4-22 Data Division

Data-Name or FILLER

4.3.2 Data-Name or FILLER Clause

Function

A data-name specifies the name of the data being described. The word

FILLER specifies an elementary item of the logical record that is not to be

referenced explicitly.

General Format

data-name

FILLER

Syntax Rule

In the File, Working-Storage and Linkage Sections, a data-name or the key

word FILLER must be the first word following the level-number in each data-

description-entry.

General Rule

The key word FILLER can be used to name an elementary item in a record.

Under no circumstances can you refer explicitly to a FILLER item. However,

you can use the key word FILLER as a conditional variable; such use does not

require explicit reference to the FILLER item.

Data Division 4-23

JUSTIFIED

4.3.3 JUSTIFIED Clause

Function

The JUSTIFIED clause specifies non-standard positioning of data within a

receiving data item.

General Format

JUSTIFIED

RIGHT

JUST

Syntax Rules

1. The JUSTIFIED ciause can be specified only at the elementary item level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as

numeric or for which editing is specified.

General Rules

1. The leftmost characters of a receiving item are truncated when: (a) the

receiving data item is described with the JUSTIFIED clause, and (b) the

sending data item is larger than the receiving item. Data is aligned at the

rightmost character position in the item with space fill for the leftmost

character positions when: (a) the receiving data item is described with the

JUSTIFIED clause, and (b) the receiving item is larger than the sending

data item.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning

data within an elementary item apply. (See Section 4.2.7, Standard Align-

ment Rules.)

4-24 Data Division

Level-Number

4.3.4 Level-Number

Function

The level-number defines the hierarchy of data within a logical record. It also

identifies entries for non-contiguous working storage items, condition-names,

and the RENAMES clause.

General Format

level-number

Syntax Rules

1. A level-number must be the first element in each data-description-entry.

2. Data-description-entries subordinate to an FD entry must have level-

numbers with the values 01-49, 66, or 88.

3. Data-description-entries in the Working-Storage Section and Linkage Sec-

tion must have level-numbers with the values 01-49, 66, 77, or 88.

General Rules

1. The level-number 01 identifies the first entry in each record description.

2. Special level-numbers have been assigned to certain entries where no real

concept of level applies:

a. Level-number 77 identifies noncontiguous working storage data items.

It can be used only as described by Format 1 of the data description

skeleton. (See Section 4.3.)

b. Level-number 66 applies to entries that define RENAMES items. It

can be used only as described in Format 2 of the data description

skeleton. (See Section 4.3.)

c. Level-number 88 applies to entries that define condition-names associ-

ated with a conditional variable. It can be used only as described in

Format 3 of the data description skeleton. (See Section 4.3.)

3. Multiple level 01 entries subordinate to an FD level indicator are implicit

redefinitions of the same area.

Data Division 4-25

OCCURS

4-26

4.3.5 OCCURS Clause

Function

The OCCURS clause eliminates the need for separate entries for repeated

data items and supplies information required for the application of subscripts

or indexes.

General Format

Format 1

OCCURS integer-2 TIMES

ASCENDING

KEY IS data-name-2 [,data-name-3]...]...

DESCENDING

(INDEXED BY index-name-1 [, index-name-2] ...]

Format 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

ASCENDING

KEY IS data-name-2 [,data-name-3]...|...

DESCENDING

(INDEXED BY index-name-1 [,index-name-2]...]

Syntax Rules

1. Where both integer-1 and integer-2 are used, the value of integer-1 must

be less than the value of integer-2. Integer-1 must be greater than or equal

to 1.

The data description of data-name-1 must describe a positive integer.

Data-name-1, data-name-2, data-name-3, ... can be qualified.

Data-name-2 must be either the name of the entry containing the

OCCURS clause or the name of an entry subordinate to the entry contain-

ing the OCCURS clause.

Data-name-3, etc., must be the name of an entry subordinate to the group

item that is the subject of this entry.

An INDEXED BY phrase is required if the subject of this entry (or an

entry subordinate to this entry) is to be referred to by indexing. The index-

name identified by this clause cannot be defined elsewhere, because its

storage allocation and format are hardware-dependent and are not associ-

ated with any data hierarchy.

Data Division

OCCURS

Continued

7. A data-description-entry that contains Format 2 of the OCCURS clause

can be followed in its record description only by subordinate data-descrip-

tion-entries.

8. The OCCURS clause cannot be specified in a data-description-entry that:

a. Has a 01, 77, or an 88 level-number, or

b. Describes an item whose size is variable. The size of an item 1s variable

if the data description of any subordinate item contains Format 2 of

the OCCURS clause.

9. In Format 2, the data item defined by data—-name-1 must not occupy a

character position with in the range of: (a) the first character position

defined by the data-description-entry containing the OCCURS clause, and

(b) the last character position defined by the record-description-entry

containing that OCCURS clause. |

10.If data—name-2 is not the subject of this entry, then:

a. All the items identified by the data-names in the KEY IS phrase must

be in the group item that is the subject of this entry.

b. Items identified by the data-name in the KEY IS phrase must not

contain an OCCURS clause.

c. No entry containing an OCCURS clause can appear between the items

identified by the data-names in the KEY IS phrase and the subject of

this entry.

11.Index-name-1, index-name-2, ... must be unique words in the program.

General Rules

1. The OCCURS clause is used to define tables and other homogeneous sets

of repeated data items. Whenever the OCCURS clause is used, the data-

name that is the subject of this entry must either be subscripted or indexed

whenever it appears in a Procedure Division statement other than

SEARCH. Further, if the subject of this entry is the name of a group item,

then all data-names subordinate to the group entry must be subscripted or

indexed whenever they are used as operands, except as the object of a

REDEFINES clause. ~

2. Except for the OCCURS clause itself, all data description clauses associ-

ated with an item whose description includes an OCCURS clause apply to

each occurrence of the item described.

Data Division 4-27

OCCURS
Continued

3. The number of occurrences of the subject entry is defined as follows:

a.

b.

In Format 1, the value of integer-2 specifies the number of occurrences.

In Format 2, the current value of the data item referenced by

data-name-1 represents the number of occurrences.

Format 2 specifies that the subject of this entry has a variable number

of occurrences. The value of integer-2 represents the maximum num-

ber of occurrences, while the value of integer-1 represents the mini-

mum. This does not imply that the length of the subject of the entry 1s

variable, but that the number of occurrences is variable.

The value of the data item referenced by data-name-1 must fall within

the range integer-1 through integer-2. Reducing the value of the data

item referenced by data-name-1 means that the contents of data items

whose occurrence numbers now exceed the value of the data item refer-

enced by data-name-1 cannot be referenced.

4. When you reference a group item having subordinate to it an entry specify-

ing Format 2 of the OCCURS clause, only that part of the table area

specified by the value of data-name-1 is used in the operation.

5. The KEY IS phrase indicates that repeated data is arranged in ascending

or descending order according to the values contained in data-name-2,

data-name-3, etc. The specific order is determined according to the rules

for comparison of operands. (See Section 5.6.3, Comparison of Numeric

Operands, and Section 5.6.4, Comparison of Alphanumeric Operands.)

The data-names are listed in their descending order of significance.

4-28 Data Division

PICTURE

4.3.6 PICTURE Clause

Function

The PICTURE clause describes the general characteristics and editing

requirements of an elementary item.

General Format

PICTURE

IS character-string

PIC

Syntax Rules

1.

2.

A PICTURE clause can be specified only at the elementary item level.

The PICTURE clause must be specified for all elementary items except

index data items; for these items, the clause is not allowed.

A character-string consists of symbols that are allowable combinations of

characters in the COBOL character set. The allowable combinations deter-

mine the category of the elementary item.

The maximum number of characters allowed in the character-string is 30.

PIC is an abbreviation for PICTURE.

When the asterisk is used as the zero suppression symbol, it cannot appear

in the same entry as the BLANK WHEN ZERO clause.

General Rules

1. Five categories of data can be described with a PICTURE clause: alpha-

betic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

To define an item as alphabetic:

a. Its PICTURE character-string can contain only the symbols A and B,

and

b. Its contents, when represented in standard data format, can be any

combination of the 26 letters of the alphabet (A-Z) and the space.

To define an item as numeric:

a. Its PICTURE character-string can contain only the symbols 9, P, S,

and V. The number of digit positions that can be described by the

PICTURE character-string must range from 1 to 18 inclusive, regard-

less of sign. -

Data Division 4-29

PICTURE

Continued

b. If unsigned, its contents, when represented in standard data format,

must be a combination of the numerals 0 through 9; if signed, the item

can also contain a +, —, or other representation of an operational sign.

(See Section 4.3.9, SIGN Clause.)

4. To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations of

the symbols A, X, 9, and the item is treated as if the character-string

contained all Xs. A PICTURE character-string that contains all As or

all 9s does not define an alphanumeric item.

b. Its contents, when represented in standard data format, are allowable

characters in the computer character set.

5. To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations of

the following symbols: A, X, 9, B, 0, and /. The character-string must

contain at least one of the following combinations:

1. Band X

2. 0and X

3. /and X

4., 0 and A

5. /and A

b. When represented in standard data format, the contents are allowable

characters in the computer character set.

7/

6. To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations of

the following symbols: B, /, P, V, Z, 0, 9, ,(comma), .(period), *, +, -,

CR, DB, and the currency symbol. The allowable combinations are

determined from the order of precedence of symbols and from the

editing rules.

1. The number of digit positions that can be represented in the

PICTURE character-string must range from 1 to 18, inclusive.

2. The character-string must contain at least one 0, B, /, Z, *, +,

,(comma), .(period), -, CR, DB, or currency symbol.

b. The contents of the character positions of those symbols that are al-

lowed to represent a digit in standard data format must be numerals

(0-9).

4-30 Data Division

PICTURE

Continued

7. The number of character positions occupied by an elementary item in

standard data format (its size) is determined by the number of allowable

symbols that represent character positions. An integer enclosed in

parentheses following the symbols A, ,(comma), X, 9, P, Z, *, B, /, 0, +, -,

or the currency symbol indicates the number of consecutive occurrences of

the symbol. Note that the following symbols can appear only once in a

given PICTURE: S, V, .(period), CR, and DB.

8. The functions of the symbols used to describe an elementary item are as

follows:

A Each A in the character-string represents a character position that

can contain only a letter of the alphabet or a space.

B Each B represents a character position into which a space charac-

ter will be inserted.

P Each P indicates an assumed decimal scaling position. It specifies

the location of an assumed decimal point when the point is not in

the number that appears in the data item.

The scaling position character P is not counted in determining the

size of the data item. Scaling position characters are counted,

however, in determining the maximum number of digit positions

(18) in numeric edited items or numeric items.

P can appear only as the leftmost or rightmost part of a PICTURE

description as a continuous string of Ps; because P implies an

assumed decimal point (to the left of Ps if Ps are leftmost

PICTURE characters and to the right if Ps are rightmost

PICTURE characters), the assumed decimal point symbol V is

redundant as either the leftmost or rightmost character within

such a PICTURE description. Furthermore, the character P and

the insertion character . (decimal point) cannot both occur in the

same PICTURE character-string.

In any operation involving conversion of data from one form of

internal representation to another, if the data item being converted

is described with the PICTURE character P, each digit position

described by a P is considered to contain the value 0, and the size

of the data item is considered to include the digit positions so

described.

S The S indicates the presence, but neither the representation nor,

necessarily, the position of an operational sign; it must be written

as the leftmost character in the PICTURE. The S is not counted in

determining the size of the elementary item unless the entry is

subject to a SIGN clause that specifies the optional SEPARATE

CHARACTER phrase. (See Section 4.3.9, SIGN Clause.)

Data Division 4-31

PICTURE

Continued

\Y% The V indicates the location of an assumed decimal point. It can

appear only once in a character-string. The V does not represent a

character position and, therefore, is not counted in determining the

size of the elementary item. When the assumed decimal point is to

the right of the rightmost symbol in the string, the V is redundant.

X Each X in the character-string represents a character position that

contains any allowable character from the computer character set.

Z Each Z can be used only to represent the leftmost leading numeric

character positions that will be replaced by a space character when

the content of that character position is 0. Each Z is counted in

determining the size of the item.

9 Each 9 represents a character position that contains a numeral; it

is counted in determining the size of the item.

0 Each 0 (zero) represents a character position into which the num-

eral 0 will be inserted. The 0 is counted in determining the size of

the item.

/ Each / (stroke) represents a character position into which the
stroke character will be inserted. The / is counted in determining

the size of the item.

, Each , (comma) represents a character position into which the

comma character will be inserted. This character position is

counted in determining the size of the item. The insertion charac-

ter , (comma) must not be the last character in the PICTURE

character-string.

For a given program, the functions of the period and comma are

exchanged if the DECIMAL-POINT IS COMMA clause appears in

the SPECIAL-NAMES paragraph: the rules for the period will

apply to the comma (and vice versa) whenever these symbols ap-

pear in a PICTURE clause. |

The . (period) is an editing symbol that represents the decimal

point for alignment purposes. It also represents a character position

into which the character .(period) will be inserted. The insertion

character .(period) must not be the last character in the PICTURE

character-string. It is counted in determining the size of the item.

+, These editing sign-control symbols represent the character position

—, into which these symbols will be placed. The symbols are mutually

CR, exclusive in any one character-string, and each character used in

DB the symbol is counted in determining the size of the data item.

4-32 Data Division

PICTURE

Continued

* Each * (asterisk) represents a leading numeric character position

into which an * will be placed when the content of that position is

0. Each * is counted in determining the size of the item.

CcS The currency symbol represents a character position into which a

currency symbol is to be placed. It is represented either by the

default currency sign ($) or by the single character specified in the

CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.

The currency symbol is counted in determining the size of the item.

Editing Rules

1. Editing in the PICTURE clause can be performed either by insertion or by

suppression and replacement. There are four types of insertion editing

available. They are:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

2. The type of editing that can be performed depends on the data-item

category. The following table specifies the allowable types of editing by’

category:

Table 4-2: Types of Editing by Data Category

Alphanumeric Edi(ed

Numeric Edited

Category Type of Editing

Alphabetic Simple insertion B only

Numeric None

Alphanumeric None

Simple insertion 0, B and /

All, subject to Editing Rule 3

3. Floating insertion editing and editing by zero suppression and replacement

are mutually exclusive in a PICTURE clause. Only one type of replace-

ment can be used with zero suppression.

Data Division 4-33

PICTURE
Continued

. Simple Insertion Editing. The , (comma), B (space), 0 (zero), and

/ (stroke) are used as the insertion characters. They are counted in deter-

mining the size of the item and represent the position in the item into

which the character will be inserted.

. Special Insertion Editing. The . (period) is used as the insertion character.

In addition, it also represents the decimal point for alignment purposes.

The insertion character (used for the actual decimal point) is counted in

determining the size of the item. The use of the assumed decimal point,

(V') and the actual decimal point (represented by the insertion charac-

ter) in the same PICTURE character-string is not allowed. The result of

special insertion editing is the appearance of the insertion character in the

item in the same position as shown in the character-string.

. Fixed Insertion Editing. The currency symbol and the editing sign control

symbols +, -, CR, and DB are the insertion characters. Only one currency

symbol and one of the editing sign-control symbols can be used in a given

PICTURE character-string.

When the symbols CR or DB are used, they represent two character posi-

tions in determining the size of the item; they must represent the right-

most character positions that are counted in determining the size of the

item. The symbols + or - must be either the leftmost or rightmost charac-

ter position to be counted in determining the size of the item. The currency

symbol must be the leftmost character position to be counted in the size of

the item except that it can be preceded by either a + or a - symbol. Fixed

insertion editing results in the insertion character occupying the same

character position in the edited item as it did in the PICTURE character-

string.

Editing sign-control symbols produce the following results, depending

upon the value of the data item:

Table 4-3: Editing with Sign-Control Symbols

Result

Editing Symbol In Data Item Data Item

Picture Character-String Positive or Zero Negative

+ + -

= space -

CR 2 spaées CR

DB 2 spaces DB

4-34 Data Divisi.on

PICTURE
Continued

7. Floating Insertion Editing. The currency symbol and editing sign-control

symbols + or - are the floating insertion characters. They are mutually

exclusive in a given PICTURE character-string.

Floating insertion editing is indicated by using a string of at least two of

the floating insertion characters. This string can contain any of the fixed

insertion symbols or have fixed insertion characters immediately to its

right. The simple insertion characters are part of the floating string.

The leftmost (rightmost) character of the floating insertion string repre-

sents the leftmost (rightmost) limit of the floating symbol in the data item.

The second floating character from the left represents the leftmost limit of

the numeric data that can be stored in the data item. Non-zero, numeric

data can replace all characters at or to the right of this limit.

There are only two ways of representing floating insertion editing: (1) the

insertion character can represent any or all of the leading numeric charac-

ter positions on the left of the decimal point, or (2) the insertion character

can represent all of the numeric character positions in the PICTURE

character-string.

a. If the insertion characters are only to the left of the decimal point, a

single floating insertion character will be placed into the character

position immediately preceding either the decimal point or the first

non-zero digit in the data represented by the insertion symbol string,

whichever is farther to the left in the PICTURE character-string. The

character positions to the left of the insertion character are replaced

with spaces.

b. If the insertion character represents all of the numeric character posi-

tions, the result depends upon the value of the data. If the value is 0,

the entire data item will contain spaces. If the value is not 0, the result

is the same as in (a).

To avoid truncation, the minimum size of the PICTURE character-string

for the receiving data item must be the number of characters in the send-

ing data item, plus the number of non-floating insertion characters being

edited into the receiving data item, plus one for the floating insertion

character.

8. Zero Suppression Editing. The suppression of leading Os in numeric char-

acter positions is indicated by the use of the Z or the * (asterisk) as

suppression symbols. These symbols are mutually exclusive in a given

PICTURE character-string. Each suppression symbol is counted in deter-

mining the size of the item. If Z is used, the replacement character will be

the space, and if the asterisk is used, the replacement character will be *.

Data Division 4-35

PICTURE
Continued

Zero suppression and replacement is indicated in a PICTURE character-

string by using a string of one or more of the allowable symbols to represent

leading numeric character positions that are to be replaced when the asso-

ciated character position in the data contains a zero. Any of the simple

insertion characters embedded in the string of symbols or to the immediate

right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing

zero suppression: (1) suppression symbols can represent any or all of the

leading numeric character positions to the left of the decimal point, or (2)

suppression symbols can represent all of the numeric character positions in

the PICTURE character-string.

a. If the suppression symbols appear only to the left of the decimal point,

any leading 0 in the data that corresponds to a symbol in the string is

replaced by the replacement character. Suppression terminates at the

first non-zero digit in the data represented by the suppression symbol

string or at the decimal point, whichever is encountered first.

b. If the suppression symbols represent all numeric character positions

and the value of the data is not 0, the result is the same as if the

suppression characters were not specified. If the value is 0, the entire

data item will be spaces if the suppression symbol is Z or all asterisks

(except for the actual decimal point) if the suppression symbol is *.

9. The symbols +, -, *, Z, and the currency symbol, when used as floating

replacement characters, are mutually exclusive within a given character-

string. |

Precedence Rules

The following table shows the order of precedence when using characters as

symbols in a character-string. An X at an intersection indicates that the

symbol(s) at the top of the column can precede the symbol(s) at the left of the

row. Arguments appearing in braces indicate that the symbols are mutually

exclusive. The currency symbol is indicated by the symbol "cs".

At least one of the symbols A, X, Z, 9 or *, or at least two of the symbols +, -,

or cs, must be present in a PICTURE string.

The non-floating insertion symbols + and -, the floating insertion symbols Z,

* 4+ - and cs, and other symbol P appear twice in the following table. The

leftmost column and uppermost row for each symbol represent its use to the

left of the decimal point position. The second appearance of the symbol repre-

sents its use to the right of the decimal point position.

4-36 Data Division

Table 4-4: PICTURE Character Precedence Table

PICTURE
Continued

First Non-Floating Floating Other Svmbols

Symbol Insertion Symbols Insertion Symbols

+ +\|/CRY Nra <+ + A

second\ | B 0 /1l COICORGR) slDTN D es|es| o | s|v]| | e
Symbo

B|l x| x| x| x| x| x X | x| x| x| x| x| x| x| x X X

Ol x| x| x| x| x| x X | x| x| x| x| x| x| x| x X X

fl /| x| x| x| x| x| x X | x| x| x| x| x| x| x| x X X
0

o)
o:S'g, , X | x| x| x| x| x X | x| x| x| x| x| x| x X X
0

e

O ¢
) . X | x| x| x X X | x X X X
By

é o
&

S | ()Z -

o :

H <t> X | x| x| x| x X | x| x X | x| x X | x| x

CR
X | x X | x| X<DB x| x| x| x| x X | x| x X

cSs X

yA
<*> X| x| x| x X X | X

e z>
o X X x| x| x| x X | x| x X X

os <t> x| x| x| x X X
oo

S

SOl 4Q.4 <j> x| x| x| x| x X x | x X X
e i

)
2 cs | x| x| x| x X X

-t

cs | x| x| x| x| x| x X | x X X

9 X X | x X X X X X X X X X X X X

A

“w < > X| x| X X | X
— X
0

E s
0

3 Vv X X X X X X X X X X X X

e
4J

(@) P X X X X X X X X X X X X

P X X X X X

Data Division 4-37

REDEFINES

4.3.7 REDEFINES Clause

Function

The REDEFINES clause allows different data-description-entries to describe

the same computer storage area.

General Format

level-number data-name-1; REDEFINES data-name-2

NOTE:

Level-number, data-name-1, and the semicolon are shown in

the above format to improve clarity. They are not part of the

REDEFINES clause.

Syntax Rules

1. The REDEFINES clause must immediately follow data-name-1.

The level-numbers of data-name-1 and data-name-2 must be identical;

they must not be 66 or 88. (Level 77 items can be redefined.)

This clause must not be used in level 01 entries in the File Section.

The data-description-entry for data-name-2 cannot contain a

REDEFINES clause; however, data-name-2 can be subordinate to an

item whose data-description-entry contains a REDEFINES clause. The

data-description-entry for data-name-2 cannot contain an OCCURS

clause. However, data-name-2 can be subordinate to an item whose data-

description-entry contains an OCCURS clause. In this case, the reference

to data-name-2 in the REDEFINES clause cannot be subscripted or

indexed. Neither the original definition nor the redefinition can include

an item whose size is variable as defined in the OCCURS Clause. (See

Section 4.3.5, OCCURS Clause.)

No entry having a level-number numerically lower than the level-number

of data-name-2 and data-name-1 can occur between the data-description-

entries of data-name-2 and data-name-1.

General Rules

1. Redefinition starts at the area allocated to data-name-2 and ends when a

level-number less than or equal to that of data-name-2 is encountered.

4-38 Data Diviéion

REDEFINES

Continued

. When the level-number of data-name-1 is other than 01, it must specify

the same number of character positions contained in the data item refer-

enced by data-name-2. Note that the REDEFINES clause specifies the

redefinition of a storage area, not of the data items occupying the area.

. Multiple redefinitions of the same character positions are permitted. The

entries giving the new descriptions of the character positions must follow

the entries defining the area being redefined, without intervening entries

that define new character positions. Multiple redefinitions of the same

character positions must all use the data-name of the entry that originally

defined the area.

. The entries giving the new description of the character positions must not

contain any VALUE clauses, except in condition-name entries.

. Multiple level 01 entries subordinate to an FD level indicator represent

implicit redefinitions of the same area.

Data Division 4-39

RENAMES

4-40

4.3.8 RENAMES Clause

Function

The RENAMES clause permits alternative, possibly overlapping, groupings

of elementary items.

General Format

THROUGH

66 data-name-1; RENAMES data-name-2 data-name-3|.

THRU

NOTE:

Level-number 66, data-name-1 and the semicolon are shown in

the above format to improve clarity. They are not part of the

RENAMES clause.

Syntax Rules

1. All RENAMES entries referring to data items within a given logical record

must immediately follow the last data-description-entry of the associated

record-description-entry.

Data-name-2 and data-name-3 must be names of elementary items or

groups of elementary items in the same logical record and cannot be the

same data-name. A 66 level entry cannot rename another 66 level entry,

nor can it rename a 77, 88, or 01 level entry.

Data-name-1 cannot be used as a qualifier and can only be qualified by

the names of the associated level 01 or FD entries. Neither data-name-2

nor data-name-3 can have an OCCURS clause in its data-description-

entry; nor can either be subordinate to an item that has an OCCURS

clause in its data-description-entry.

The beginning of the area described by data-name-3 must not be to the

left of the beginning of the area described by data-name-2. The end of the

area described by data-name-3 must be to the right of the end of the area

described by data-name-2. Data-name-3, therefore, cannot be subordinate

to data-name-2.

Data-name-2 and data-name-3 can be qualified.

The words THRU and THROUGH are equivalent.

No item within the range including data-name-2 and data-name-3 can

have a variable size as defined in the OCCURS clause. (See Section 4.3.5,

OCCURS Clause.)

Data Division

RENAMES
Continued

General Rules

1. One or more RENAMES entries can be written for a logical record.

9 When data-name-3 is specified, data-name-1 is a group item that includes

all elementary items: (1) starting with data-name-2 (if data-name-2 1s an

elementary item) or the first elementary item in data-name-2 (if data-

name-2 is a group item) and (2) concluding with data-name-3 (if data-

name-3 is an elementary item) or the last elementary item in data-name-3

(if data-name-3 is a group item).

3. When data-name-3 is not specified, data-name-2 can be either a group or

an elementary item; when data-name-2 is a group (elementary) item,

data-name-1 is treated as a group (elementary) item.

Data Division 4-41

SIGN

4-42

4.3.9 SIGN Clause

Function

The SIGN clause specifies the position and the mode of representation of the

operational sign when it is necessary to explicitly describe these properties.

General Format

LEADING

TRAILING

[SIGN IS] { } [SEPARATE CHARACTER]

Syntax Rules

1. The SIGN clause can be specified only for a numeric data-description-

entry whose PICTURE contains the character S, or a group item contain-

Ing at least one such numeric data-description-entry.

2. The numeric data-description-entries to which the SIGN clause applies

must be described as USAGE IS DISPLAY.

3. At most one SIGN clause can apply to any given numeric data-

description-entry.

General Rules

1. The SIGN clause specifies the position and the mode of representation of

the operational sign for the numeric data-description-entry to which it
applies, or for each numeric data-description-entry subordinate to the

group to which it applies. The SIGN clause applies only to numeric data-

description-entries whose PICTURE contains the character S: the S indi-

cates the presence of the operational sign (though not its representation or,

necessarily, its position).

2. A numeric data-description-entry whose PICTURE contains the S, but to
which no SIGN clause applies, has an operational sign. In this default

case, the sign is a part of the right-most, or trailing, digit in the item

(much like an overpunch).

3. If the SEPARATE CHARACTER phrase is not present, then:

a. The operational sign is associated with the leading (or trailing) digit

position of the elementary numeric data item.

b. The letter S in the PICTURE character-string is not counted in deter-
mining the size of the item (in terms of standard data format charac-

ters).

Data Division

SIGN
Continued

c. The digit position containing the operational sign holds a character

whose value represents both a numeric digit and the algebraic sign of

the item. The allowable characters for all combinations of the numeric

digits, and the positive and negative sign values, are:

DIGIT VALUES

1 2 3 4 5 6 7 8 9 0

POSITIVE A B C D E F G H I {

SIGN

NEGATIVE J K L M N O P Q R |

4. If the SEPARATE CHARACTER phrase is present, then:

a. The operational sign is the leading (or trailing) character position of the

elementary numeric data item; this character position is not a digit

position.

b. The letter S in a PICTURE character-string is counted in determining

the size of the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard data

format characters + and -, respectively.

5. Every numeric data-description-entry whose PICTURE contains the char-

acter S is a signed numeric data-description-entry. If a SIGN clause

applies to such an entry, and conversion is necessary for computation or

comparison purposes, conversion takes place automatically.

Data Division 4—43-

SYNCHRONIZED

4-44

4.3.10 SYNCHRONIZED Clause

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item

on a word boundary in computer memory. (See Section 4.2.8, Item Alignment

for Increased Object-Code Efficiency.)

General Format

{SYNCHRONIZED LEFT

SYNC RIGHT

Syntax Rules

1. This clause can appear only with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules

1.

P

Use of this clause aligns the subject data item on memory word boundaries

such that no other data item occupies any of the words delimiting the data

item. A memory word contains two character positions. If the number of

character positions required to store the data item is odd, the unused

character is not used for any other data item. These unused character

positions, however, are included in:

a. The size of any group item(s) to which the elementary item belongs.

b. The character positions redefined when this data item is the object of a
REDEFINES clause.

SYNCHRONIZED not followed by either RIGHT or LEFT specifies that

the elementary item is to be synchronized left.

SYNCHRONIZED LEFT specifies that the elementary item is to begin at

the even byte address of the memory word.

SYNCHRONIZED RIGHT specifies that the elementary item is to termi-

nate on the odd byte address of the memory word.

Whenever a SYNCHRONIZED item is referenced in the source program,

the original size of the item, as shown in the PICTURE clause, is used to

determine any action that depends on size, such as justification, trunca-

tion or overflow. |

If the data description of an item contains the SYNCHRONIZED clause

and an operational sign, the sign of the item appears in the normal opera-

tional sign position, regardless of whether the item is SYNCHRONIZED

LEFT or SYNCHRONIZED RIGHT.

Data Division

SYNCHRONIZED

Continued

7. All Dbinary items and all INDEX items are automatically

SYNCHRONIZED and occupy an integral number of words. (See Section

4.3.11, USAGE Clause.)

8. When the SYNCHRONIZED clause is specified for an item in the scope of

an OCCURS clause, each occurrence is SYNCHRONIZED.

9. A fill byte is added to the end of each occurrence of a group item if all of

~ the following conditions are met:

a. One or more items within the group item are SYNCHRONIZED

(implicitly or explicitly).

b. The data description of the group item contains an OCCURS clause.

c. The size of the group is odd after synchronization of the items within it.

The group size then becomes even, causing each occurrence of an item

within the group to align on memory boundaries in the same manner as the

first occurrence of the item.

10. All record descriptions in both the File Section and Working-Storage Sec-

tion, and all noncontiguous data items in the Working-Storage Section,

are automatically SYNCHRONIZED.

Data Division 4-45

USAGE

4.3.11 USAGE Clause

Function

The USAGE clause specifies the format of a data item in the computer’s

storage.

General Format

COMPUTATIONAL

COMP

COMPUTATIONAL-3 |

COMP-3 }

DISPLAY

DISPLAY-6

DISPLAY-7

L INDEX

[USAGE IS])

Syntax Rules

COMP is an abbreviation for COMPUTATIONAL.

COMP-3 is an abbreviation for COMPUTATIONAL-3.

The PICTURE character-string of a COMP or COMP-3 item can contain

only 9s, the operational sign character S, the implied decimal point char-

acter V, and one or more Ps. (See Section 4.3.6, PICTURE Clause.)

DISPLAY, DISPLAY-6, and DISPLAY-7 are equivalent.

An index data item can be referenced explicitly only in a SEARCH or

SET statement, a relation condition, the USING phrase of a Procedure

Division header, or the USING phrase of a CALL statement.

The SYNCHRONIZED, JUSTIFIED, PICTURE, SIGN, VALUE, and

BLANK WHEN ZERO clauses cannot be used to describe group or ele-

mentary items described with the USAGE IS INDEX clause.

General Rules

1. The USAGE clause can be written at any level. If it is written at a group

level, it applies to each elementary item in the group. The USAGE clause

of an elementary item cannot contradict the USAGE clause of a group to

which the item belongs.

This clause specifies the manner in which a data item is represented in the

computer’s storage. It does not affect the use of the data item, although

the specifications for some statements in the Procedure Division can re-

strict the USAGE clause of the referenced operands.

4-46 Data Division

USAGE
Continued

A COMP or COMP-3 item can represent a value to be used in computa-

tions and must be numeric. If a group item is described as COMP or

COMP-3, the specification applies to the elementary items in the group,

but not to the group itself; the group item cannot be used in computation.

An elementary item described with the USAGE IS INDEX clause is called

an index data item and contains a value that must correspond to an

occurrence number of a table element. The elementary item cannot be

a conditional variable. If a group item is described with a USAGE IS

INDEX clause, the elementary items in the group are all index data

items. However, the group item itself is not an index data item and cannot

be used in the SEARCH or SET statement or in a relation condition.

An index data item can be part of a group that is referred to in a MOVE or

input-output statement, in which case conversion does not occur.

If the USAGE clause is not specified for an elementary item or for any

group to which the item belongs, the USAGE is implicitly DISPLAY.

A COMP item is a binary value with an assumed decimal point that is

automatically SYNCHRONIZED and stored in memory (in one, two, or

four words) as follows:

PICTURE Range Storage

S9 TO S9(4) 1 word (2 bytes)
S9(5) TO S9(9) 1 longword (4 bytes)

S9(10) TO S9(18) 1 quadword (8 bytes)

The representation of the binary value is independent of the presence of V

or one or more Ps in its PICTURE character-string. The binary value of a

COMP item represents the exact decimal quantity whose description is

given by the PICTURE character-string as if it contained no V or P char-

acters. However, the decimal point indicated by these characters is re-

membered and used to adjust the binary value before using it in arithme-

tic operations. Thus, the binary value represents the decimal value as

though it were an integer, and decimal accuracy is achieved, although

representation is binary. The internal representation of COMP items is

discussed in the User’s Guide.

A COMP-3 item is a signed packed decimal value with an assumed deci-

mal point that is stored internally as two decimal digits per byte (byte-

aligned). The maximum size of a COMP-3 item is 18 decimal digits. Its

PICTURE character-string must contain an S. The item can begin in the

even address byte or the odd address byte subject to the implicit or ex-

plicit synchronization. (See Section 4.3.10, SYNCHRONIZED Clause.)

The internal format of COMP-3 items is fully discussed in the User’s

Guide.

Data Division 4-47

USAGE

Continued

10. A DISPLAY item is a string of bytes stored in memory as two bytes per

word. The item can begin in the even address byte or the odd address byte

subject to the implicit or explicit synchronization. (See Section 4.3.10,

SYNCHRONIZED Clause.)

11. Index data items are stored as one-word COMP items with PIC 9(4).

Their value is always positive.

Index data items are implicitly SYNCHRONIZED. Thus, when they are

described in record descriptions, they may cause automatic fill bytes to be

supplied.

4-48 Data Division

VALUE

4.3.12 VALUE Clause

Function

The VALUE clause defines the initial value of Working-Storage items and the

values associated with a condition-name.

General Format

Format 1

VALUE IS literal

Format 2

VALUE IS THROUGH

literal-1 literal-2

VALUES ARE THRU

THROUGH T
, literal-3 { literal-4

L | THRU
-l

Syntax Rules

1. The words THRU and THROUGH are equivalent.

2. A signed numeric literal must have an associated signed numeric

PICTURE character-string.

3. All numeric literals in a VALUE clause of an item must have a value in the

range indicated by the PICTURE clause and must not have a value that

would require truncation of non-zero digits. Alphanumeric literals in a

VALUE clause of an item must not exceed the size indicated by the

PICTURE clause. | |

General Rules

1. The VALUE clause must not conflict with other clauses in the data de-

scription of the item or in the data description in the hierarchy of the item.

The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE clause

must be numeric. If the literal defines the value of a Working-Storage

item, it is aligned in the data item according to the standard alignment

rules. (See Section 4.2.7, Standard Alignment Rules.) |

Data Division 4-49

VALUE

Continued

b. If the category of the item is alphabetic, alphanumeric, alphanumeric

edited or numeric edited, all literals in the VALUE clause must be

alphanumeric literals. The literal is aligned in the data item as if the

data item had been described as alphanumeric. (See Section 4.2.7,

Standard Alignment Rules.) Editing characters in the PICTURE clause

are included in determining the size of the data item, but they have no

effect on its initialization.

Initialization takes place independent of any BLANK WHEN ZERO or

JUSTIFIED clause that is specified.

2. A figurative constant can be substituted in Format 1 and Format 2

wherever a literal is specified.

Condition-Name Rules

1. In a condition-name entry, the VALUE clause is required. The VALUE

clause and the condition-name itself are the only two clauses permitted in

the entry. The characteristics of a condition-name are implicitly those of

its conditional variable.

Format 2 can be used only in connection with condition-names. (See Sec-

tion 1.1.2.1, User-Defined Words.) Wherever the THRU phrase is used,

literal-1 must be less than literal-2, literal-3 less than literal-4, etc.

Data-Description-Entries Other Than Condition-Names

1. Rules governing the use of the VALUE clause differ with the respective

sections of the Data Division:

a. In the File Section and the Linkage Section, the VALUE clause can be

used only in condition-name entries.

In the Working-Storage Section, the VALUE clause must be used in

condition-name entries. The VALUE clause can also be used to specify

the initial value of any other data item except an index data item, in

which case the clause causes the item to assume the specified value at

the start of the object program. If the VALUE clause is not used in an

item description, the initial value is undefined.

2. The VALUE clause must not be stated in a data-description-entry that

either contains an OCCURS clause or is subordinate to one that contains

an OCCURS clause. This rule does not apply to condition-name entries.

(See Section 4.3.5, OCCURS Clause.)

4-50 Data Division

VALUE
Continued

3. The VALUE clause must not be stated in a data-description-entry that

either contains a REDEFINES clause or is subordinate to one that con-

tains a REDEFINES clause. This rule does not apply to condition-name

entries.

4. If the VALUE clause is used in an entry at the group level, the literal must

be a figurative constant or a alphanumeric literal, and the group area is

initialized without consideration for the individual elementary or group

items contained in this group. The VALUE clause cannot be stated at the

subordinate levels in this group.

5. The VALUE clause must not be written for a group containing items with

descriptions that include JUSTIFIED, SYNCHRONIZED, or USAGE -

(other than USAGE IS DISPLAY). |

Data Division 4-51

Chapter 5

Procedure Division

5.1 General Description

The Procedure Division must be included in every COBOL source program. It

specifies the processing to be performed on the files and file data described in

the Environment and Data Divisions. This division contains declaratives and

procedures.

5.1.1 Declaratives

Declarative sections must be grouped at the beginning of the Procedure

Division. They are preceded by the key word DECLARATIVES and followed

by the key words END DECLARATIVES. Declarative sections detail the

procedures to be followed whenever an I-O error occurs on a particular file.

(See Section 5.41, USE statement.)

5.1.2 Procedures

A procedure consists of a paragraph, a group of successive paragraphs, a

section, or a group of successive sections. If one paragraph is in a section, then

. all paragraphs must be in sections. A procedure-name is a word used to refer

to a paragraph or section in the source program. It consists of a paragraph-

name or a section-name.

The end of the Procedure Division and the physical end of the program is that

physical position in a COBOL source program after which no further text

appears.

A section consists of a section header followed by zero or more successive

paragraphs. A section ends immediately before the next section or at the end

of the Procedure Division. In the declaratives portion of the Procedure

Division, the section ends at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space

and by zero or more successive sentences. A paragraph ends immediately

before the next paragraph-name or section name or at the end of the Procedure

Division. In the declaratives portion of the Procedure Division, a paragraph

ends at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period

followed by a space.

A statement is a syntactically valid combination of words and symbols begin-

ning with a COBOL verb.

An identifier is the word or words necessary to make unique reference to a

data item. (See Section 5.4.8, Uniqueness of Reference.)

Execution begins with the first statement of the Procedure Division, excluding

declaratives. Statements are then executed in the order in which they are

presented for compilation, except where the rules indicate some other order.

5.2 Procedure Division Header

5-2

The Procedure Division is identified by and must begin with the following

header:

PROCEDURE DIVISION (USING [data-name-1] [,data-name-2] ...] .

The USING phrase is present if, and only if, the object program is to function

under the control of a CALL statement. A COBOL program which is to

function under the control of a CALL statement, but which has no arguments

passed to it, is specified by a USING phrase that contains no data-names (an

empty USING phrase).

Each of the operands in the USING phrase of the Procedure Division header

must be defined as a data item in the Linkage Section of the program in which

this header occurs, and it must have a 01 or 77 level-number.

Within a called program, Linkage Section data items are processed according

to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if data-

name-1 of the Procedure Division header in the called program and data-

name-1 in the USING phrase of the CALL statement in the calling program

refer to a single set of data that is equally available to both the called and

calling programs. Except that they must define an equal number of character

positions, their descriptions need not be the same. In like manner, there is an

equivalent relationship between data-name-2, ..., in the USING phrase of the

called program and data-name-2, ..., in the USING phrase of the CALL

statement in the calling program. A data-name must not appear more than

once in the USING phrase in the Procedure Division header of the called

Procedure Division

program; however, a given data-name can appear more than once in the

USING phrase of a CALL statement.

Data items defined in the Linkage Section of the called program can be

referenced within the Procedure Division of the called program if and only if

they are:

1. Operands of the USING phrase of the Procedure Division header.

2. Subordinate to operands of the USING phrase of the Procedure Division

header.

3. Defined with a REDEFINES or RENAMES clause, the object of which is

an operand of the USING phrase of the Procedure Division header.

4. Items subordinate to any of the items defined in number 3 above.

5. Condition-names and index-names associated with data items that meet

any of the above conditions.

5.3 Procedure Division Body

The body of the Procedure Division must conform to one of the following

formats:

Format 1

[DECLARATIVES.

{section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] ...] }

END DECLARATIVES.]

{section-name SECTION [segment-number].

[paragraph-name. [sentence] ...] }

Format 2

{paragraph-name. [sentence] }

5.4 Statements and Sentences

There are three types of statements: conditional, compiler-directing, and

imperative.

There are three types of sentences: conditional, compiler-directing, and

imperative.

Procedure Division 5-3

5-4

5.4.1 Conditional Statement

A conditional statement specifies that the truth value of a condition is to be

determined and that the subsequent action of the object program is depend-

ent on this truth value.

A conditional statement is one of the following:

a. An IF statement or a SEARCH statement.

b. A READ statement that specifies the AT END or INVALID KEY phrase.

c. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE

phrase.

d. A REWRITE or DELETE statement that specifies the INVALID KEY

phrase.

e. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,

SUBTRACT) that specifies the SIZE ERROR phrase.

f. A STRING or UNSTRING statement that specifies the ON OVERFLOW

phrase.

g. A GO TO ... DEPENDING ... statement.

5.4.2 Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an

imperative statement, terminated by a period, and followed by a space.

5.4.3 Compiler-Directing Statement

A compiler-directing statement causes the compiler to take a specific action

during compilation. It consists of a compiler-directing verb (USE or COPY)

and its operands.

5.4.4 Compiler-Directing Sentence

A compiler-directing sentence is a single compiler-directing statement

terminated by a period followed by a space.

Procedure Division

5.4.5 Imperative Statement

An imperative statement indicates a specific, unconditional action to be

taken by the object program. An imperative statement is any statement that

is neither a conditional statement nor a compiler-directing statement. An

imperative statement can consist of a sequence of imperative statements,

each possibly separated from the next by a separator. The imperative verbs

are:

ACCEPT

ADD(1) GO(5) SET

ALTER

INSPECT START(2)

STOP

CLOSE MOVE STRING(4)

COMPUTE(Q)

MULTIPLY (1) SUBTRACT (1)

DELETE (2) OPEN

PERFORM

DISPLAY READ (3) UNSTRING(4)

DIVIDE (1) WRITE (2)

EXIT REWRITE (2)

(1) Without the optional SIZE ERROR phrase.

(2) Without the optional INVALID KEY phrase.

(3) Without the optional AT END phrase or INVALID KEY phrase.

(4) Without the optional ON OVERFLOW phrase.

(5) Without the optional DEPENDING phrase.

When imperative-statement appears in the general format of statements, it

refers to that sequence of consecutive imperative statements that must be

ended by a period, an ELSE phrase associated with a previous IF statement,

or a WHEN phrase associated with the previous SEARCH statement.

5.4.6 Imperative Sentence

An imperative sentence is an imperative statement terminated by a period,

and followed by a space.

5.4.7 Statement Categories

COBOL statements are categorized by verb type and format:

Category Verbs

(ADD
COMPUTE

Arithmetic DIVIDE

YINSPECT (TALLYING)
MULTIPLY

SUBTRACT
\

Procedure Division 5-5

5-6

Compiler-Directing

Conditional

Data Movement

Ending

Input-Output 4

Procedure Branching -

’

COPY

USE

ADD (SIZE ERROR)

COMPUTE (SIZE ERROR)

DELETE (INVALID KEY)

DIVIDE (SIZE ERROR)

GO (DEPENDING)

IF

MULTIPLY (SIZE ERROR)

READ (END or INVALID KEY)

REWRITE (INVALID KEY)

SEARCH

START (INVALID KEY)

STRING (OVERFLOW)

SUBTRACT (SIZE ERROR)

UNSTRING (OVERFLOW)

WRITE (INVALID KEY or END-OF-PAGE)

ACCEPT (DATE, DAY, or TIME)

'INSPECT (REPLACING)

MOVE

STRING

UNSTRING

STOP

(ACCEPT
CLOSE

DELETE

DISPILAY

OPEN

READ

REWRITE

START

STOP (literal)

\ WRITE

ALTER

CALL

EXIT

GO TO

Table-handling

. PERFORM

SEARCH

SET

IF is used as a verb in the COBOL language although it is not a verb in the

English language.

5.4.8 Uniqueness of Reference

Uniqueness of reference in a COBOL program is accomplished by using quali-

fiers, subscripts, indexes, u

Procedure Division

nique identifiers, and condition-names.

5.4.8.1 Qualification — Every user-specified name that defines an element in

a COBOL source program must be unique, either because no other name has

the identical spelling and hyphenation or because the name exists within a

hierarchy of names such that references to the name can be made unique by

mentioning one or more of the higher levels of the hierarchy. The higher levels

are called qualifiers, and the process that specifies uniqueness is called quali-

fication. Enough qualification must be mentioned to make the name unique;

however, it may not be necessary to mention all levels of the hierarchy.

Within the Data Division, all data-names used for qualification must be asso-

ciated with a level indicator or a level-number. Therefore, two identical data-

names must not appear as entries subordinate to a group item unless they are

capable of being made unique through qualification. In the Procedure

Division two identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are

the most significant, followed, in order, by names associated with level-num-

ber 01 and names associated with level-numbers 02 through 49. A section-

name is the highest (and the only) qualifier available for a paragraph-name.

Thus, the most significant name in the hierarchy must be unique and cannot

be qualified. Subscripted or indexed data-names and conditional variables, as

well as procedure-names and data-names, can be made unique by qualifica-

tion. The name of a conditional variable can be used as a qualifier for any of

its condition-names. Regardless of the available qualification, a name cannot

be both a data-name and a procedure-name.

Qualification is performed by following a data-name, a condition-name, a

paragraph-name, or a text-name by one or more phrases composed of a quali-

fier preceded by IN or OF. IN and OF are logically equivalent.

The general formats for qualification are:

Format 1

data-name-1 }R _E} data-name-2 :|

{condition-name IN file-name
Format 2

F

paragraph-name section-name :|
IN

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same

hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

Procedure Division 5-7

5-8

3. If a data-name or a condition-name is assigned to more than one data item

In a source program, the data-name or condition-name must be qualified

each time it is referred to in the Procedure, Environment, and Data Divi-

sions (except in the REDEFINES clause, in which qualification must not

be used).

4. A paragraph-name must not be duplicated within a section. When a para-

graph-name is qualified by a section-name, the word SECTION must not

appear. A paragraph-name need not be qualified when it is referenced from

within the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if

there is more than one combination of qualifiers that ensures uniqueness,

then any such set can be used. The complete set of qualifiers for a data-

name must not be the same as any partial set of qualifiers for another

data-name. Qualified data-names can have up to 48 qualifiers.

5.4.8.2 Subscripting — Subscripts can be used only when reference is made to

an individual element within a list or table of like elements that have not been

assigned individual data-names. (See Section 4.3.5, OCCURS Clause.)

The subscript can be represented either by a numeric literal that is an integer

or by a data-name. The data-name must be a numeric elementary item that

represents an integer. When the subscript is represented by a data-name, the

data-name can be qualified but not subscripted.

The subscript can be signed and, if signed, it must be positive. The lowest

possible subscript value is 1. This value points to the first element of the

table. The next sequential elements of the table are pointed to by subscripts

whose values are 2, 3, The highest permissible subscript value, in any

particular case, is the maximum number of occurrences of the item as speci-

fied in the OCCURS clause.

The subscript or set of subscripts that identify the table element are delimited

by a balanced pair of separators, the left and right parentheses, following the

table element data-name. The table element data-name appended with a

subscript is called a subscripted data-name or an identifier. When more than

one subscript is required, they are written in the order of successively less-

inclusive dimensions of the data organization.

The format 1s:

condition-name

data-name |

(subscript-1 [, subscript-2 [, subscript-3]])

Procedure Division

5.4.8.3 Indexing — Indexing allows references to be made to individual ele-

ments within a table of like elements. An index is assigned to a level of the

table by using the INDEXED BY phrase in the table’s definition. A name

given in the INDEXED BY phrase is known as an index-name and is used to

refer to the assigned index. The value of an index corresponds to the occur-

rence number of an element in the associated table. An index-name must be

initialized before it is used as a table reference. An index-name can be given

an initial value by a SET, SEARCH ALL, or Format 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of a subscript.

Relative indexing is specified when the index-name is followed, in order, by:

(1) the operator + or -, and (2) an unsigned integer numeric literal, all three

delimited by a balanced pair of separators, the left and right parentheses,

following the table element data-name. The occurrence number resulting

from relative indexing is determined by incrementing (where the operator + is

used) or decrementing (where the operator - is used) by the value of the

literal, the occurrence number represented by the value of the index. When

more than one index-name is required, they are written in the order of succes-

sively less-inclusive dimensions of the data organization.

At the time of execution of a statement that refers to an indexed table ele-

ment, the value contained in the index-name associated with the table ele-

ment must neither correspond to a value less than one (1) nor to a value

sreater than the highest permissible occurrence number of an element of the

associated table. This restriction also applies to the value resultant from
relative indexing. |

The general format for indexing 1is:

{data-name } {index-name—l [{i—}literal—QJ }

condition-name literal-1

literal-3 literal-5

B {index-name—Q [{i}literalél]} [{ index-name-3 [{ i} literal-6]}:P

|

5.4.8.4 Internal Formats of Subscripts, Index—-Names and Index Data Items

1. Subscripts are stored as either binary or DISPLAY numeric integers with a

size that can vary from 1 to 18 digits. They can contain an operational

sign, although at the time of their use as a subscript the value must be

positive.

2. Index-names are stored as two-part items consisting of a binary occurrence

number and a binary index value. Both values are always positive.

Procedure Division 5-9

5-10

3. Index data items are stored as 1 word COMP items consisting of a binary

occurrence number with an implicit PIC 9(4) description. Their value is

always positive.

Index data items are implicitly SYNCHRONIZED; thus, when they are

described within record descriptions they can cause automatic fill bytes to

be supplied.

5.4.8.5 Identifier — An identifier is a term used to indicate that a data-name,

if not unique in a program, must be followed by a syntactically correct combi-

nation of qualifiers, subscripts, or indexes necessary to ensure uniqueness.

The general formats for identifiers follow:

Format 1

OF

data-name-1 data-name-2| ... (subscript-1 [, subscript-2
IN

[, subscript-3]]):I

Format 2 T

OF | index-name-1 [«tj;}literal—Q]
data-name-1 { data-name-2 (

IN literal-1 -

{index-name—Q [{_‘t} literal—4] } |: {index-name—fi% [{i}literalG]}:fl
,)

i
literal-3 literal-5 J

The following are restrictions on qualification, subscripting and indexing:

1. A data-name must not itself be subscripted or indexed when it is being

used as an index, subscript or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

An index name can be modified only by the SET, SEARCH, and

PERFORM statements. Data items described by the USAGE IS INDEX

clause permit storage of the values associated with index-names as data in

a form called index data items.

o

4. Literal-1, literal-3, literal-5 in the above format must be positive numeric

integers. Literal-2, literal-4, and literal-6 must be unsigned numeric

integers.

5.4.8.6 Condition-Name — Each condition-name must be unique or be made

unique through qualification and/or indexing or subscripting.

Procedure Division

If qualification is used to make a condition-name unique, the associated con-

ditional variable can be used as the first qualifier. If qualification is used, the

hierarchy of names associated with the conditional variable or the conditional

variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then

references to any of its condition-names also require the same combination of

indexing or subscripting.

The format and restrictions on the combined use of qualification, sub-

scripting, and indexing of condition-names are exactly those pertaining to

"identifier", except that data-name-1 is replaced by condition-name-1.

In the general formats, "condition-name" refers to a condition-name qualified,

indexed or subscripted, as necessary.

5.4.9 Explicit and Implicit Specifications

There are three types of explicit and implicit specifications that occur in

COBOL source programs:

1. Explicit and Implicit Procedure Division References

2. Explicit and Implicit Transfers of Control

3. Explicit and Implicit Attributes

5.4.9.1 Explicit and Implicit Procedure Division References — A COBOL

source program can reference data items either explicitly or implicitly in

Procedure Division statements. An explicit reference occurs when the name of

the referenced item is written in a Procedure Division statement or when the

name of the referenced item is copied into the Procedure Division by the

processing of a COPY statement. An implicit reference occurs when the item

is referenced by a Procedure Division statement without the name of the

referenced item being written in the source statement. Such an implicit refer-

ence occurs if, and only if, the data item contributes to the execution of the

statement.

5.4.9.2 Explicit and Implicit Transfers of Control —In a COBOL program, each

statement i1s executed in the sequence in which it was written in the source

program unless an explicit transfer of control overrides this sequence. The

transfer of control from statement to statement occurs without writing an

explicit Procedure Division statement and, therefore, is an implicit transfer of

control.

COBOL provides both explicit and implicit means of altering the implicit

control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements,

implicit transfer of control also occurs when the normal flow is altered without

Procedure Division 5-11

the execution of a procedure branching statement. COBOL provides the fol-

lowing types of implicit control flow alterations that override the statement-

to-statement transfers of control:

1. If a paragraph is being executed under control of another COBOL state-

ment (for example, PERFORM, USE) and the paragraph is the last para-

graph in the range of the controlling statement, then an implied transfer of

control occurs following the last statement in the paragraph to the control

mechanism of the last executed controlling statement.

2. When any COBOL statement is executed that results in the execution of a

declarative section, an implicit transfer of control to the declarative sec-

tion occurs. Note that another implicit transfer of control occurs after

execution of the declarative section, as described in number 1 above.

An explicit transfer of control consists of an alteration of the implicit control

transfer mechanism by the execution of a procedure branching or conditional

statement. (See Section 5.4, Statements and Sentences.) An explicit transfer

of control can be caused only by the execution of a procedure branching or

conditional statement. The execution of the procedure branching statement

ALTER does not in itself constitute an explicit transfer of control, but affects

the explicit transfer of control that occurs when the associated GO TO state-

ment 1s executed.

In this document, the term "next executable statement" is used to refer to the

next COBOL statement to which control is transferred according to the rules

above and the rules associated with each language element in the Procedure

Division.

5.4.9.3 Explicit and Implicit Attributes — Attributes can be implicitly or expli-

citly specified. An attribute that has been explicitly specified is called an

explicit attribute. If an attribute has not been specified explicitly, then the

attribute takes on the default and is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case

data item usage is DISPLAY.

5.5 Arithmetic Expressions

5-12

An arithmetic expression can be an identifier of a numeric elementary item, a

numeric literal, such identifiers and literals separated by arithmetic opera-

tors, two arithmetic expressions separated by an arithmetic operator, or an

arithmetic expression enclosed in parentheses. Any arithmetic expression may

be preceded by a unary operator. The permissible combinations of variables,

numeric literals, arithmetic operator and parentheses are given in Table 5-1,

Combination of Symbols in Arithmetic Expressions, Section 5.5.2.

Procedure Division

Those identifiers and literals appearing in an arithmetic expression must

represent either numeric elementary items or numeric literals on which arith-

metic can be performed.

NOTE:

Arithmetic expressions must not contain non-integer

exponents.

5.5.1 Arithmetic Operators

An arithmetic operator is a single character or a fixed 2-character

combination.

There are five binary arithmetic operators and two unary arithmetic operators

that can be used in arithmetic expressions. They are represented by specific

characters that must be preceded by and followed by a space.

Binary Arithmetic

Operators Meaning

+ ‘ Addition

- Subtraction

Multiplication

/ Division

x Exponentiation

Unary Arithmetic

Operators Meaning

+ The effect of multiplication by numeric literal +1.

- The effect of multiplication by numeric literal -1.

5.5.2 Formation And Evaluation Rules

1. Parentheses can be used in arithmetic expressions to specify the order in

which elements are to be evaluated. Expressions within parentheses are

evaluated first; and within nested parentheses, evaluation proceeds from

the least inclusive set to the most inclusive set. When parentheses are not

used or parenthesized expressions are at the same level of inclusiveness,

the following hierarchical order of execution is implied:

Ist - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division

4th - Addition and subtraction

Procedure Division 5-13

2. Parentheses are also used either (a) to eliminate ambiguities in logic where

consecutive operations of the same hierarchical level appear, or (b) to

modify the normal hierarchical sequence of execution in expressions where

it is necessary to deviate from the normal precedence. When the sequence

of execution is not specified by parentheses, the order of execution of

consecutive operations of the same hierarchical level is from left to right.

3. The ways in which operators, variables, and parentheses can be combined

in an arithmetic expression are summarized in Table 5-1, where:

a. The letter P indicates a permissible pair of symbols.

b. The character - indicates an invalid pair of symbols.

c. The term variable indicates an identifier or literal.

Table 5-1: Symbol Combinations in Arithmetic Expressions

First Second Symbol

Symbol Variable * [KK oy Unary + or - L)

Variable - P _ - P

R4 - P _ P P _

Unary + or - P _ _ P _

(P - P P -

) - P _ _ P

4. An arithmetic expression can begin only with an open parenthesis, a plus

sign, a minus sign, or a variable and can end only with a close parenthesis

or a variable. There must be a one-to-one correspondence between left and

right parentheses of an arithmetic expression; each left parenthesis 1s to

the left of its corresponding right parenthesis.

5. Arithmetic expressions allow you to combine arithmetic operations with-

out restrictions on composite of operands and/or receiving data items.

5.6 Conditional Expressions

5-14

Conditional expressions identify conditions that are tested to enable the

object program to select between alternate paths of control depending upon

the truth value of the condition. Conditional expressions are specified In

the IF, SEARCH, and PERFORM statements. There are two categories of

conditions associated with conditional expressions: simple conditions and

complex conditions. |

Procedure Division

5.6.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status,

and sign conditions. A simple condition has a truth value of true or false.

5.6.2 Relation Condition

A relation condition causes a comparison of two operands, each of which can

be the data item referenced by an identifier or a literal or the value resulting

from an arithmetic expression. A relation condition has a truth value of true if

the relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the formats

specified in their respective USAGE clauses. However, for all other compari-

sons the operands must have the same usage. If either of the operands is a

group item, the non-numeric comparison rules apply.

The general format of a relation condition is as follows:

IS (INOT) GREATER THAN

IS (INOT] LESS THAN
i.dentifier—l IS (NOT] EQUAL TO ifientifier—Q

literal-1 literal-2
arithmeti ession1 IS INOT] > arithmet; o
rithm -expression- m - sion-etic-exp IS (NOT] < etic-expression

IS INOT)] =

NOTE:

The required relational characters >, <, and = are not under-

lined to avoid confusion with other symbols such as greater-

than-or-equal-to.

The first operand (identifier-1, literal-1, or arithmetic-expression-1) is called

the subject of the condition; the second operand (identifier-2, literal-2, or

arithmetic-expression-2) is called the object of the condition. The subject and

the object cannot both be literals.

The relational operator specifies the type of comparison to be made in a

relation condition. A space must precede and follow each reserved word

comprising the relational operator. When used, NOT and the next key word or

relation character are one relational operator that defines the comparison to

Procedure Division 5-15

5-16

be executed for truth value: e.g., NOT EQUAL is a truth test for an unequal

comparison; NOT GREATER is a truth test for an equal or less comparison.

The meaning of the relational operators is as follows:

Relational Operator Meaning

IS INOT] GREATER THAN Greater than or not greater than

IS INOT) >

IS (INOT) LESS THAN Less than or not less than

IS INOT] <

IS (NOT) EQUAL TO Equal to or not equal to

IS INOT] =

NOTE:

The required relational characters >, <, and = are not under-

lined to avoid confusion with other symbols such as greater-

than-or-equal-to.

5.6.3 Comparison of Numeric Operands

For operands whose class is numeric (see Section 4.2.4, Classes of Data), a

comparison is made with respect to the algebraic value of the operands. The

length of the literal or arithmetic-expression operands, in terms of number of

digits, is not significant. Zero is considered a unique value regardless of the

sign.

Comparison of these operands is permitted regardless of the manner in which

their usage is described. Unsigned numeric operands are considered positive

for purposes of comparison.

5.6.4 Comparison of Alphanumeric Operands

For nonnumeric operands, or numeric and nonnumeric operand combinations,

a comparison is made with respect to a specified collating sequence of charac-

ters (See Section 3.1.2, OBJECT-COMPUTER paragraph). If one of the

operands is specified as numeric, it must be an integer data item (USAGE

DISPLAY) or an integer literal:

1. If the nonnumeric operand is an elementary data item or a nonnumeric

literal, the numeric operand is treated as though it were moved to an

elementary alphanumeric data item of the same size as the numeric data

item (in terms of standard data format characters), and the contents of

this alphanumeric data item were then compared to the nonnumeric oper-

and. (See Section 5.22, MOVE Statement and Section 4.3.6, PICTURE

Clause.)

Procedure Division

9. If the nonnumeric operand is a group item, the numeric operand is treated

as though it were moved to a group item of the same size as the numeric

data item (in terms of standard data format characters), and the contents

of this group item were then compared to the nonnumeric operand. (See

Section 5.22, MOVE Statement and Section 4.3.6, PICTURE Clause.)

3. A non-integer numeric operand cannot be compared to a nonnumeric

operand.

The size of an operand is the total number of standard data format characters

it contains. Numeric and nonnumeric operands can be compared only when

their usage is the same. ‘

Comparisons can be made between operands of equal size and operands of

unequal size.

1. Operands of equal size.

Comparison effectively proceeds by comparing characters in corresponding

character positions starting from the high order end and continuing until

either a pair of unequal characters is encountered or the low order end of

the operand is reached, whichever comes first. The operands are deter-

mined to be equal if all pairs of characters compare equally through the

last pair, when the low order end is reached.

The first encountered pair of unequal characters is compared to determine

their relative position in the collating sequence. The operand containing

the character that is positioned higher in the collating sequence is consid-

ered to be the greater operand.

2. Operands of unequal size.

Comparison proceeds as though the shorter operand were extended on the

right by sufficient space characters to make the operands of equal size.

5.6.5 Comparisons Involving Index-Names and/or Index Data

Items

Relation tests can be made between:

1. Two index-names. The result is the same as if the corresponding occur-

rence numbers were compared.

2. An index-name and a data item (including an index data item) or literal.

The occurrence number that corresponds to the value of the index-name is

compared to the data item or literal.

3. An index data item and an index data item. The actual values are

compared.

Procedure Division 5-17

5-18

Index data items cannot be compared with literals or other data items that

are not index data items.

5.6.6 Class Condition

The class condition determines whether the operand is numeric or alphabetic.

Numeric consists entirely of the characters 0 through 9, with or without the

operational sign. Alphabetic consists entirely of the characters A through Z

and space. The general format for the class condition is as follows:

NUMERIC

identifier IS (INOT) }
ALPHABETIC

The usage of the operand being tested must be described as DISPLAY.

When used, NOT and the next key word specify one class condition that

defines the class test to be executed for truth value, that is, NOT NUMERIC

is a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description

describes the item as alphabetic or as a group item composed of elementary

items whose data description indicates the presence of operational sign(s). If

the data description of the item being tested does not indicate the presence of

an operational sign, the item being tested is determined to be numeric only if

the contents are numeric and an operational sign is not present. If the data

description of the item does indicate the presence of an operational sign, the

item being tested is determined to be numeric only if the contents are numeric

and a valid operational sign is present. Valid operational signs for data 1tems

described with the SIGN IS SEPARATE clause are the standard data format

characters, + and -. (See Section 4.3.9, SIGN Clause, for the format of valid

operational signs when the SIGN IS SEPARATE clause is not present.)

The ALPHABETIC test cannot be used with an item whose data description

describes the item as numeric. The item being tested is determined to be

alphabetic only if the contents consist of any combination of the alphabetic

characters A through Z and the space.

5.6.7 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine

whether or not its value is equal to one of the values associated with a

condition-name. The general format for the condition-name condition is as

follows:

condition-name

If the condition-name is associated with a range or ranges of values, then the

conditional variable is tested to determine whether or not its value falls 1n this

range, including the end values.

Procedure Division

The rules for comparing a conditional variable with a condition-name value

are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the

condition-name equals the value of its associated conditional variable.

5.6.8 Switch-Status Condition

A switch-status condition determines the ON or OFF status of a numbered

switch. The switch number and the ON or OFF value associated with the

condition must be named in the SPECIAL-NAMES paragraph of the

Environment Division. The general format for the switch-status condition is

as follows:

condition-name

The result of the test is true if the switch is set to the specified position

corresponding to the condition-name.

5.6.9 Sign Condition

The sign condition determines whether or not the algebraic value of a data

item is less than, greater than, or equal to 0. The general format for a sign

condition is as follows:

POSITIVE

arithmetic-expression IS [NOT) NEGATIVE

ZERO

When used, NOT and the next key word specify one sign condition that

defines the algebraic test to be executed for truth value; for example, NOT

ZERO is a truth test for a nonzero (positive or negative) value.

An operand is positive if its value is greater than 0, negative if its value is less

than 0, and O if its value is equal to 0.

5.6.10 Complex Conditions

A complex condition is formed by combining simple conditions, combined

conditions and/or complex conditions with logical connectors (logical opera-

tors AND and OR) or negating these conditions with logical negation (the

logical operator NOT). The truth value of a complex condition, whether

parenthesized or not, is that truth value which results from the interaction of

all stated logical operators on the individual truth values of simple conditions,

or the intermediate truth values of conditions logically connected or logically

negated.

Procedure Division 5-19

5-20

The logical operators and their meanings are:

Logical Operator | ‘ Meaning

AND Logical conjunction; the truth value is true if both of the

conjoined conditions are true; false if one or both of the

conjoined conditions are false.

OR Logical inclusive OR; the truth value is true if one or both

of the included conditions is true; false if both included

conditions are false.

NOT Logical negation or reversal of truth value; the truth value

is true if the condition is false; false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

5.6.11 Negated Simple Conditions

A simple condition is negated through the use of the logical operator NOT.

The truth value for the negated simple condition is the opposite of that for the

simple condition. Thus, the truth value of a negated simple condition is true

if, and only if, the truth value of the simple condition is false; the truth value

of a negated simple condition is false if, and only if, the truth value of the

simple condition is true. The inclusion in parentheses of a negated simple

condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

5.6.12 Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the

logical operators AND or OR.

The general format of a combined condition is:

AND

condition condition

OR

where condition can be one of the following:

1. A simple condition.

2. A negated simple condition.

3. A combined condition.

Procedure Division

4. A negated combined condition, that is, the NOT log'ical operator followed
by a combined condition enclosed within parentheses.

5. Combinations of the above, specified according to the rules summarized in

Table 5-2, Combinations of Conditions, Logical Operators, and

Parentheses.

Although parentheses need not be used when either AND or OR (but not

both) is used exclusively in a combined condition, they can be used to eftect a

final truth value when a mixture of AND, OR and NOT is used.

Table 5-2 indicates the ways in which conditions and logical operators can be

combined and parenthesized. There must be a one-to-one correspondence

between left and right parentheses, and each left parenthesis must be to the

left of its corresponding right parenthesis.

Table 5-2: Combinations of Conditions, Logical Operators, and

Parentheses

In a left-to-right sequence of elements:

Location in

conditional

expression |Element, when not first, |Element when not last,

Given the following can be immediately |can be immediately
element First | Last {preceded only by: followed only by:

simple-condition Yes Yes | OR, NOT, AND, (OR, AND, _)

OR or AND NO NO | simple-condition,) simple-condition, NOT, (

NOT Yes NO | OR, AND, (simple-condition, (

(Yes NO | OR, NOT, AND, (simple-condition, NOT, (

) NO Yes | simple-eondition,) OR, AND,)

Thus, the element pair OR NOT is permissible, while the pair NOT OR is not

permissible; NOT (is permissible, while NOT NO' 1is not permissible.

5.6.13 Abbreviated Combined Condition Relations

When simple or negated simple relation conditions are combined with logical

connectives in a consecutive sequence such that a succeeding relation condi-

tion contains a subject or subject and relational operator that are common

with the preceding relation condition, and no parentheses are used within

such a consecutive sequence, any relation condition except the first can be

abbreviated by the omission of one of the following:

1. The subject of the relation condition, or

2. The subject and relational operator of the relation condition.

Procedure Division 5-21

The format for an abbreviated combined relation condition is:

AND

relation-condition INOT] [relational-operator] object

OR

Within a sequence of relation conditions both of the above forms of abbrevia-

tion can be used. The effect of using such abbreviations is as if the last

preceding stated subject were inserted in place of the omitted subject, and the

last stated relational operator were inserted in place of the omitted relational

operator. The result of such implied insertion must comply with the rules of

Table 5-2, Combinations of Conditions, Logical Operators, and Parentheses.

This insertion of an omitted subject and/or relational operator terminates

once a complete simple condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated

combined relation condition is as follows:

1. If the word immediately following NOT is GREATER or >, LESS or <, or

EQUAL or =, then the NOT participates as part of the relational operator;

otherwise,

2. The NOT is interpreted as a logical operator and, therefore, the implied

insertion of subject or relational operator results in a negated relation

condition.

Some examples of abbreviated combined and negated combined relation

conditions and expanded equivalents follow.

Condition Expanded Equivalent

a>bAND NOT <cORd ((a > b) AND (a NOT < ¢)) OR (a NOT < d)

a NOT EQUAL b OR ¢ (a NOT EQUAL b) OR (a NOT EQUAL ¢)

NOT a=bORc ‘ (NOT (a=Db)) OR (a = ¢)

NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < ¢))

NOT (a NOT > b AND ¢ AND NOT d) NOT ((((a NOT > b) AND

(a NOT > ¢)) AND

(NOT (a NOT > d))))

5.6.14 Condition Evaluation Rules

Parentheses can be used to specify the order in which individual conditions of

complex conditions are to be evaluated when it is necessary to depart from the

implied evaluation precedence. Conditions within parentheses are evaluated

5-22 Procedure Division

first, and, within nested parentheses, evaluation proceeds from the least in-

clusive condition to the most inclusive condition. When parentheses are not

used or parenthesized conditions are at the same level of inclusiveness, the

following hierarchical order of logical evaluation is implied until the final

truth value is determined:

1. Values are established for arithmetic expressions. (See Formation and

Evaluation Rules, Section 5.5.2.)

2. Truth values for simple conditions are established in the following order:

a. Relation condition (following the expansion of any abbreviated relation

condition)

b. Class condition

c. Condition-name condition

d. Switch-status condition

e. Sign condition

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established (AND logical opera-

tors, followed by OR logical operators).

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by

parentheses, the order of evaluation of consecutive operations of the same

hierarchical level is from left to right.

5.7 Common Phrases and General Rules for Statement Formats

In the statement descriptions that follow, several phrases appear

frequently: the ROUNDED phrase, the SIZE ERROR phrase, and the

CORRESPONDING phrase.

In the discussion below, a resultant-identifier is that identifier associated with

a result of an arithmetic operation.

5.7.1 ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of the

result of an arithmetic operation is greater than the number of places pro-

vided for the fraction of the resultant-identifier, truncation is relative to the

size provided for the resultant-identifier. When rounding is requested, the

absolute value of the resultant-identifier is increased by 1 whenever the most

significant digit of the excess is greater than or equal to 5.

Procedure Division 5-23

5-24

When the low-order integer positions in a resultant-identifier are represented

by the character P in the PICTURE clause for that resultant-identifier,

rounding or truncation occurs relative to the rightmost integer position for

which storage is allocated.

5.7.2 SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result exceeds the

largest value that can be contained in the associated resultant-identifier, a

size error condition exists. Division by 0 always causes a size error condition.

The size error condition applies only to the final results of an arith-

metic operation and does not apply to intermediate results, except in the

MULTIPLY and DIVIDE statements. Then the size error condition applies

to the intermediate results as well. If the ROUNDED phrase is specified,

rounding takes place before checking for size error. When such a size error

condition occurs, the subsequent action depends on whether or not the

SIZE ERROR phrase is specified.

1. If the SIZE ERROR phrase is not specified and a size error condition

occurs, the value of those resultant-identifier(s) affected is undefined. Val-

ues of resultant-identifier(s) for which no size error condition occurs are

unaffected by size errors that occur for other resultant-identifier(s) during

execution of this operation.

2. If the SIZE ERROR phrase is specified and a size error condition occurs,

then the value of the resultant-identifier(s) affected by the size errors is

not altered. Values of resultant-identifier(s) for which no size error condi-

tion occurs are unaffected by size errors that occur for other resultant-

identifier(s) during execution of this operation. After completion of the

execution of this operation, the imperative statement in the SIZE ERROR

phrase is executed.

For the ADD statement with the CORRESPONDING phrase and the

SUBTRACT statement with the CORRESPONDING phrase, if any of the

individual operations produces a size error condition, the imperative state-

ment in the SIZE ERROR phrase is not executed until all of the individual

additions or subtractions are completed.

5.7.3 CORRESPONDING Phrase

If group-1 and group-2 are identifiers that refer to group items, a pair of data

items, one from group-1 and one from group-2, correspond if the following

conditions exist:

1. A data item in group-1 and a data item in group-2 are not designated by

the key word FILLER and have the same data-name and the same quali-

fiers up to, but not including, group-1 and group-2.

Procedure Division

2. In the case of a MOVE statement with the CORRESPONDING phrase, at

least one of the data items is an elementary data item; in the case of the

ADD statement with the CORRESPONDING phrase or the SUBTRACT

statement with the CORRESPONDING phrase, both of the data items are

elementary numeric data items.

3. The description of group-1 and group-2 must not contain level-number 66,

77, or 88 or the USAGE IS INDEX clause.

4. A data item that is subordinate to group-1 or group-2 and contains a

REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause is

ignored, as are those data items subordinate to the data item that contains

the REDEFINES, OCCURS, or USAGE IS INDEX clause. However,

group-1 and group-2 can have REDEFINES or OCCURS clauses or be

subordinate to data items with REDEFINES or OCCURS clauses. (See

Section 4.3.5, OCCURS Clause.)

5.7.4 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY,

-~ and SUBTRACT statements. They have several common features.

1. The data descriptions of the operands need not be the same; any necessary

conversion and decimal point alignment is supplied throughout the

calculation.

9 The maximum size of each operand is 18 decimal digits. The composite of

operands, which is a hypothetical data item resulting from the super-

imposition of specified operands in a statement aligned on their decimal

points, must not contain more than 18 decimal digits.

5.7.5 Multiple Results In Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements

can have multiple results. Such statements behave as though they had been

written in the following way:

1. A statement that performs all arithmetic necessary to arrive at the result

to be stored in the receiving items, and stores that result in a temporary

storage location.

2. A sequence of statements transferring or combining the value of this tem-

porary location with a single result. These statements are considered to be

written in the same left-to-right sequence in which the multiple results are

listed.

Procedure Division 5-25

The result of the statement

ADD A, B, CTO C, D (C), E

is equivalent to

ADD A, B, C GIVING temp

ADD temp TO C

ADD temp TO D (C)

ADD temp TO E

where temp is an intermediate result item defined as follows:

The number of integer places in temp is the maximum of the integer

places of all operands in the statement. The number of decimal places is

the maximum of all the operands in the statement. If the sum of the

number of integer places and decimal places is greater than 18, then the

number of integer places will be reduced until the sum equals 18. There-

fore, high-order truncation could occur in some receiving operands,

depending on the resulting value of the arithmetic statement.

5.7.6 Overlapping Operands

When a sending and a receiving item in an arithmetic statement or

INSPECT, MOVE, SET, STRING, or UNSTRING statement share a part of

their storage areas, the result of the execution of such a statement is unde-

fined. The compiler does not detect overlapping or potentially overlapping

operands.

5.7.7 Incompatible Data

Except for the class condition (see Section 5.6.6, Class Condition), when the

contents of a data item are referenced in the Procedure Division and the

contents of that data item are not compatible with the class specified for that

data item by its PICTURE clause, then the result of such a reference is

undefined.

5-26 ' Procedure Division

ACCEPT

5.8 ACCEPT Statement

Function

The ACCEPT statement makes low-volume data available to the specified

data item.

General Format

Format 1

ACCEPT identifier [FROM mnemonic-name]

Format 2

DATE

ACCEPT identifier FROM DAY

TIME

Syntax Rule

The mnemonic-name in Format 1 must be specified in the

SPECIAL-NAMES paragraph of the Environment Division and must be

associated with a hardware device.

General Rules

Format 1

1. The ACCEPT statement causes the transfer of data from the hardware

device. This data replaces the contents of the data item named by the

identifier.

2. The ACCEPT statement causes a stream of bytes to be transferred with no

editing or conversion to the data item specified by the identifier. The data

item is treated as alphanumeric regardless of its class. The data is aligned

at the leftmost character position of the data item with space fill or trunca-

tion to the right.

3. If the FROM mnemonic-name phrase is not specified, the hardware device

is the default system input device.

Fofmat 2

4. The ACCEPT statement causes the information requested to be trans-

ferred to the data item specified by the identifier according to the rules of

the MOVE statement. DATE, DAY, and TIME are conceptual data items

and, therefore, are not descrlbedin the COBOL program. Their usage is

DISPLAY.

Procedure Division 5-27

ACCEPT

Continued

. DATE is composed of the data elements year of century, month of year,

and day of month. The sequence of the data element codes is from high

order to low order (left to right), that is, year of century, month of year,

and day of month. Thus, July 4, 1976 is expressed as 760704. DATE, when

accessed by a COBOL program, behaves as if it had been described in the

COBOL program as an unsigned elementary numeric integer data item six

digits long.

. DAY is composed of the data elements year of century and day of year.

The sequence of the data element codes is from high order to low order (left

to right). That is, year of century, day of year. Thus, July 4, 1976 is

expressed as 76186. DAY, when accessed by a COBOL program, behaves

as if it had been described in a COBOL program as an unsigned, elementa-

ry, numeric integer data item five digits long.

. TIME consists of the data elements hours, minutes, seconds and hun-

dredths of a second. TIME is based on elapsed time after midnight on a

24-hour clock basis; thus, 2:41 p.m. would be expressed as 14410000,

TIME, when accessed by a COBOL program, behaves as if it had been

described in a COBOL program as an unsigned, elementary, numeric in-

teger data item eight digits long. The minimum value of TIME is

00000000; the maximum- value 1s 23595999.

5-28 Procedure Division

ADD

5.9 ADD Statement

Function

The ADD statement adds two or more numeric operands together and stores

the result.

General Format

Format 1

1dentifier-1 , 1dentifier-2

ADD { ' ... TO identifier-3 [ROUNDED]
literal-1 , literal-2

[, identifier-4 (ROUNDEDI]] ...

[;ON SIZE ERROR imperative-statement]

Format 2

1dentifier-1 identifier-2 ., 1dentifier-3

ADD ,

literal-1 literal-2 , literal-3

GIVING identifier-4 (ROUNDED][, identifier-5 (ROUNDED]] ...

; ON SIZE ERROR imperative-statement]

Format 3

ADD

CORRESPONDING

identifier-1 TO identifier-2 [ROUNDED]

CORR -

[; ON SIZE ERROR imperative-statement]

Syntax Rules

1. In Formats 1 and 2, each identifier must refer to an elementary numeric

item, except that, in Format 2, identifier-4, following the word GIVING,

must refer to either an elementary numeric item or an elementary numeric

edited item. In Format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits (see
Section 5.7.4, Arithmetic Statements).

a. In Format 1, the composite of operands is determined by using all of the

operands in a given statement.

Procedure Division 5-29

ADD

Continued

b. In Format 2, the composite of operands is determined by using all of the

operands in a given statement excluding the data items that follow the

word GIVING.

c. In Format 3, the composite of operands is determined separately for

each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. If Format 1 is used, the values of the operands preceding the word TO are

added together, then the sum is added to the current value of identifier-3,

and the result is stored into identifier-3. This process is repeated for each

operand following identifier-3.

2. If Format 2 is used, the values of the operands preceding the word GIVING

are added together, then the sum is stored as the new value of each

identifier-4, ,identifier-5, ...,.

3. If Format 3 is used, data items in identifier-1 are added to and stored in

corresponding data items in identifier-2.

4. The compiler ensures that enough places are carried (unless an intermedi-

ate result exceeds the 18-digit limitation) to avoid losing significant digits

during execution.

5-30 Procedure Division

ALTER

5.10 ALTER Statement

Function

The ALTER statement modifies the destination of a GO TO statement.

General Format

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4j ...

Syntax Rules

1. Each procedure-name-1, procedure-name-3,..., is the name of a paragraph

that contains a single sentence consisting of a GO TO statement without

the DEPENDING phrase.

2. Each procedure-name-2, procedure-name-4, ..., is the name of a para-

graph or section in the Procedure Division. |

General Rule

Execution of the ALTER statement modifies the GO TO statement in the

paragraph named with procedure-name-1 and procedure-name-3 so that

subsequent executions of the modified GO TO statements cause transfers of

control to procedure-name-2, procedure-name-4, ..., respectively.

Procedure Division 5-31

CALL

5.11 CALL Statement

5-32

Function

The CALL statement transfers control from one program to another within

the executable image.

General Format

CALL literal

[BY REFERENCE]

USING BY VALUE identifier-1 [identifier-2] ...

BY DESCRIPTOR

BY REFERENCE 1
BY VALUE identifier-3 [identifier—4]

L BY DESCRIPTOR

[GIVING identifier—5]

Syntax Rules

1. Literal must be a nonnumeric literal, one to 15 characters long, consisting

of the characters 0-9, A-Z, $ (dollar sign), and __ (underscore). Literal is

the entry point in the called subprogram, For COBOL subprograms, lit-

eral is the called program’s PROGRAM-ID.

2. The same identifier can be referenced more than once in the USING

phrase.

3. If an initial mechanism (REFERENCE, VALUE, or DESCRIPTOR) is

not specified, BY REFERENCE is the default.

4. A mechanism applies to all identifiers following it until a new mechanism

(if any) is specified. ‘

General Rules

1. The program whose name is specified by the value of literalis the called

program; the program in which the CALL statement appears is ‘the calling
program.

2. The execution of a CALL statement transfers control to the called pro-

gram.

3. The CALL statement can appear anywhere in the Procedure Division of a

program, regardless of its segmentation structure.

Procedure Division

CALL

Continued

4. A called program is in its initial state the first time it is called within an

10.

-
~

image.

On all later entries into the called program, the state of the program
remains unchanged from its state when last exited. This includes all data
fields, the status and positioning of all files, and all alterable switch set-
tings.

Called programs can contain CALL statements. However, a called pro-
gram must not contain a CALL statement that directly or indirectly calls

the calling program. |

The USING phrase is included in the CALL statement only if there is a
nonempty USING phrase in the Procedure Division header of the called
COBOL program or a nonempty argument list in the header of the called
non-COBOL program. The number of operands in corresponding USING
phrases (or argument lists) must be identical.

The method by which the CALL statement makes data available to the
called program is known as the mechanism. The mechanisms are:

a. REFERENCE - The address of (pointer to) the data item is passed to
the called program. This is the default mechanism; that is, arguments
are passed by REFERENCE if a mechanism is not specified.

b. VALUE - The value contained in the data item is passed to the called

program. The data item must be a longword COMPUTATIONAL item

with no scaling or implied decimal point; that is, the picture of the

data item must be in the range S9(5) TO S9(9).

c. DESCRIPTOR - The address of (pointer to) the descriptor of the data

item is passed to the called program. The usage of the data item

cannot be COMPUTATIONAL.

Only the REFERENCE mechanism can be used to call COBOL subpro-

grams. Identifiers in the PROCEDURE DIVISION USING phrase of a

called COBOL program are interpreted to be BY REFERENCE.

The order of appearance of identifiers in the USING phrase is critical.

Corresponding identifiers refer to a single set of data that is available to

the calling and called program. The correspondence is positional, not by

name. For index-names, no such correspondence is established; therefore,

index-names in the called and calling program always refer to separate

indexes.

For non-COBOL called programs, the mechanism for each identifier in the

using phrase must be identical to the mechanism for each argument in the

called program’s argument list.

Identifier-5 must be defined as a COMPUTATIONAL integer with a pic-

ture in the range S9(5) to S9(9). If the called program returns a single

longword (4-byte) function result, identifier-5 contains the value on re-

turn from the called program.

COBOL programs cannot return a function result.

Procedure Division 5-33

CLOSE (Sequential)

5.12 CLOSE Statement (Sequential)

Function

The CLOSE statement terminates the processing of reels/units and files with

optional rewind and/or lock or removal, where applicable.

General Format

REEL) {WITH NO REWIND

{UNIT FOR REMOVAL
CLOSE file-name-1

NO REWIND)

LOCK
-WITH {

b

REEL [WITH NO REWIND] |

UNIT{ [FOR REMOVAL

, file-name-2

WITH {N_ REWIND)

o OCK |
—

d

c

Syntax Rules

1. The REEL/UNIT phrase must be used only for sequential files.

2. The files referenced in the CLOSE statement need not all have the same

organization or access. |

General Rules !

‘Except where otherwise stated in the general rules below, the terms REEL

and UNIT are synonymous and completely interchahgeable in the CLOSE

statement. Treatment of sequential mass storage files is logically equivalent

to the treatment of a file on tape or an analogous sequential medium.

1. A CLOSE statement can be executed for a file only when the file is open.

2. For the purpose of showing the effect of various types of CLOSE state-

ments as applied to various storage media, all files are divided into the

following categories:

a. Non-reel/unit. A file whose input or output medium is such that the

concept of rewind and reels/units has no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely contained

on one reel/unit. |

c. Sequential multi-reel/unit. A sequential file that is contained on more

than one reel/unit.

5-34 Procedure Division

CLOSE (Sequential)

Continued

3. The results of executing each type of CLOSE for each category of file are

summarized in Table 5-3. ‘

Table 5-3: Relationship of CLOSE Statement Formats to File
CategoriesTM

File Category

CLOSE Sequential Sequential

Statement Single- Multi-

Format Non-Reel/Unit Reel/Unit Reel/Unit

CLOSE C C,G C,G,A

CLOSE WITH LOCK C,E C,G,E C,G,E,A

CLOSE WITH NO REWIND X C,B C,B,A

CLOSE REEL/UNIT X X F,G

CLOSE REEL/UNIT X X F.D,G

FOR REMOVAL |

CLOSE REEL/UNIT X X F B

WITH NO REWIND

*The definitions of the symbols in the table are given below. Where the definition depends on

whether the file is an input, output, or input-output file, alternate definitions are given;

otherwise, a definition applies to input, output, and input-output files.

A Previous Reels/Units Unaffected

Input Files and Input-Output Files:

All reels/units in the file prior to the current reel/unit are processed

according to the standard reel/unit swap procedure, except those

reels/units controlled by a prior CLOSE REEL/UNIT statement. If the

current reel/unit is not the last in the file, the reels/units in the file

following the current one are not processed.

Output Files:

All reels/units in the file prior to the current reel/unit are processed

according to the standard reel/unit swap procedure, except those

reels/units controlled by a prior CLOSE REEL/UNIT statement.

B No Rewind of Current Reel

The current reel/unit is left in its current position.

Procedure Division 5-35

CLOSE (Sequential)

5-36

Continued

C Close File

Input Files and Input-Output Files:

If the file is positioned at its end and label records are specified for the

file, the labels are processed according to the Record Management

Services. Closing operations specified by the Record Management Ser-

vices are executed. If the file is positioned at its end and label records

are not specified for the file, label processing does not take place, but

other closing operations specified by the Record Management Services

are executed. If the file is positioned other than at its end, the closing

operations specified by the Record Management Services are execut-

ed, but there is no ending label processing.

Output Files:

If label records are specified for the file, the labels are processed ac-

cording to the standard label convention. Closing operations specified

by the Record Management Services are executed. If label records are

not specified for the file, label processing does not take place, but other

closing operations specified by the Record Management Services are

executed.

Reel/Unit Removal

A Record Management Services defined technique is supplied to en-

sure that the current reel or unit is rewound when applicable, and that

the operating system is notified that the reel or unit is logically re-

moved from this run unit; however, the reel or unit can be accessed

again, in its proper order of reels or units within the file, if a CLOSE

statement without the REEL or UNIT phrase is subsequently exe-

cuted for this file followed by the execution of an OPEN statement for

the file.

File Lock

The file cannot be opened again during this execution of the run unit.

Close Reel/Unit

Input Files:

The following operations take place:

(1) A reel/unit swap. |

(2) The standard beginning reel/unit label procedure is executed.

The next executed READ statement for that file makes available the

next data record on the new reel/unit.

Procedure Division

CLOSE (Sequential)

Continued

Output Files and Input-Output Files:

The following operations take place:

(1) (For output files only) The standard ending reel/unit label

procedure is executed.

(2) A reel/unit swap.

(3) The standard beginning reel/unit label procedure is executed.

For input-output files, the next executed READ statement that refer-

ences that file makes the next logical data record on the next mass

storage unit available. For output files, the next executed WRITE

statement that references that file directs the next logical data record

to the next reel/unit of the file.

G Rewind

The current reel or analogous device is positioned at its physical

beginning.

X Hlegal

This is an illegal combination of a CLOSE option and a file category.

The object program execution is terminated.

. If the file is open when a STOP RUN statement is executed or when
program execution terminates prematurely on an error condition, the file is

closed automatically. |

. If the OPTIONAL phrase has been specified for the file in the

FILE- CONTROL paragraph of the Environment Division and the file is not

present, the standard end-of-file processing is not performed for that file.

. If a CLOSE statement without the REEL or UNIT phrase has been exe-

cuted for a file, no other statement can be executed that references that

file, either explicitly or implicitly, unless an intervening OPEN statement

for that file is executed.

. The WITH NO REWIND and FOR REMOVAL phrases will have no effect

at object time if they do not apply to the storage medium on which the file

resides.

. Following the successful execution of a CLOSE statement without the

REEL or UNIT phrase, the record area associated with a file-name is no

longer available.

Procedure Division 5-37

CLOSE (Sequential)

Continued

9. If an error occurs during the execution of a CLOSE statement issued

without the UNIT or REEL phrase specified, the CLOSE will not occur.

The value 98 is placed in the FILE STATUS data item (if one was speci-

fied) associated with the file.

10.If an error occurs during the execution of a CLOSE statement issued with

the UNIT or REEL phrase specified, the CLOSE will not occur. The value

99 is placed in the FILE STATUS data item (if one was specified) associ-

ated with the file.

5-38 Procedure Division

CLOSE (Indexed &Relative)

5.13 CLOSE Statement (Indexed and Relative)

Function

The CLOSE statement terminates the processing of files with optional lock.

General Format

CLOSE file-name-1 [WITH LOCK] , file-name-2 [WITH LOCKT
. -

Syntax Rule

The files referenced in the CLOSE statement need not all have the same

organization or access.

General Rules

1.

2.

A CLOSE statement can only be executed for a file in an open mode.

After the CLOSE ... WITH LOCK statement is executed, the file cannot

be opened again during the current execution.

If a file is open when a STOP RUN statement is executed or when program

execution terminates prematurely on an error condition, the file is closed

automatically.

If a CLOSE statement has been executed for a file, no other statement can

be executed that references that file, either explicitly or implicitly, unless

an intervening OPEN statement for that file is executed.

Following the successful execution of a CLOSE statement, the record area

associated with file-name is no longer available.

If an error occurs during the execution of a CLOSE statement, the CLOSE

will not occur. The value 98 is placed in the FILE STATUS data item (if

one was specified) associated with the file.

Procedure Division 5-39

COMPUTE

5.14 COMPUTE Statement

Function

The COMPUTE statement assigns the value of an arithmetic expression to

one or more data items .

General Format

COMPUTE identifier-1 ~(ROUNDED] [, identifier-2 [ROUNDED]] ...

= arithmetic-expression [; ON SIZE ERROR imperative-statement)]

Syntax Rule

Identifiers that appear only to the left of = must refer to either an elementary

numeric item or an elementary numeric edited item.

General Rules

1. An arithmetic expression, consisting of a single identifier or literal, pro-

vides a method of setting the values of identifier-1, identifier-2, etc., equal

to the value of the single identifier or literal. (See Section 5.5, Arithmetic

Expressions.) |

2. If more than one identifier is specified for the result of the operation that is

preceding = (equal sign), the value of the arithmetic expression is

computed, and then this value is stored as the new value of each of

identifier-1, identifier-2, etc., in turn.

3. The COMPUTE statement allows you to combine arithmetic operations

without the restrictions on composite of operands and/or receiving data

items imposed by the arithmetic statements ADD, SUBTRACT,

MULTIPLY, and DIVIDE.

4. Arithmetic expressions must not contain non-integer exponents.

5-40 Procedure Division

DELETE (Indexed &Relative)

5.15 DELETE Statement (Indexed and Relative)

Function

The DELETE statement logically removes a record from a file on a directory

device.

General Format

DELETE file-name RECORD [; INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE state-

ment that references a file in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement

that references a file that is not in sequential access mode and for which an

applicable USE procedure is not specified.

General Rules

1. The associated file must be open in the I-O mode when the DELETE

statement is executed.

2. For files in the sequential access mode, the last input-output statement

executed for file-name prior to the execution of the DELETE statement

must have been a successfully executed READ statement. The record that

was accessed by that READ statement is logically removed from the file. If

the last input-output statement executed for the associated file was not a

successfully executed READ statement, the DELETE statement is not

attempted, and the value of 93 is placed in the File Status data item,

if any, associated with the file to indicate an unsuccessful DELETE

operation.

3. When the INVALID KEY condition is recognized, actions are taken in the

following order:

a. A value is placed into the FILE STATUS data item, if specified for
this file, to indicate an INVALID KEY condition.

b. If the INVALID KEY phrase is specified in the statement causing the

condition, control is transferred to the INVALID KEY imperative

statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE procedure is

specified, either explicitly or implicitly, for this file, that procedure 1s

executed.

When the INVALID KEY condition occurs, execution of the input-output

statement that recognized the condition is unsuccessful and the file is not

affected.

Procedure Division 5-41

DELETE (Indexed & Relative)

Continued

5-42

10.

For a relative file in random or dynamic access mode, that record identi-

fied by the contents of the RELATIVE KEY data item associated with file-

name 1s logically removed from the file. An INVALID KEY condition can

arise; the action taken is as follows:

a. If the record specified by the contents of the RELATIVE KEY data

item does not exist, the value 23 is placed in the FILE STATUS data

item, if any, associated with the file to indicate an unsuccessful

DELETE operation.

b. If the contents of the RELATIVE KEY data item does not lie within

the range of the key values corresponding to the allocated space for this

file, a boundary violation exists. The value 24 is placed in the FILE

STATUS data item, if any, associated with the file to indicate an

unsuccessful DELETE operation.

For an indexed file accessed in random or dynamic mode, the record iden-

tified by the contents of the prime record key data item is logically re-

moved from the file. If the specified record does not exist, a value of 23

(Invalid Key Condition) is placed in the FILE STATUS data item associ-

ated with file-name.

After the successful execution of a DELETE statement, the identified

record has been logically removed from the file and can no longer be

accessed.

. The execution of a DELETE statement does not affect the contents of the

record area associated with file-name.

The current record pointer is not affected by the execution of a DELETE

statement.

A DELETE statement will fail if it is executed for a record that is being

simultaneously accessed by another process. The value 92 is placed in the

FILE STATUS data item, if one was specified for the file.

If an unexplained error occurs during the execution of a DELETE state-

ment, the execution will fail. A value of 30 is placed in the FILE STATUS

data item, if one was specified for the file.

Procedure Division

DISPLAY

5.16 DISPLAY Statement

Function

The DISPLAY statement transfers low-volume data to an appropriate

hardware device.

General Format

identifier-1 ,1dentifier-2

DISPLAY

literal-1 Jiteral-2

[UPON mnemonic-name][WITH NO ADVANCING]

Syntax Rules

1.

2.

3.

The mnemonic-name is associated with a hardware device in the

SPECIAL-NAMES paragraph in the Environment Division.

Each literal except ALL can be any figurative constant.

If the literal is numeric, it must be an unsigned integer.

General Rules

1. The DISPLAY statement causes the contents of each operand to be

transferred to the hardware device in the order listed, with no editing or

conversion.

If a figurative constant is specified as one of the operands, only a single

occurrence of the figurative constant is displayed.

When a DISPLAY statement contains more than one operand, the size of

the sending item is the sum of the sizes associated with the operands, and

the values of the operands are transferred in the sequence in which the

operands are encountered.

When the WITH NO ADVANCING phrase is not specified, a line feed

character is prefixed and a carriage return character is appended to the

sending item. If the sending item exceeds the size of a line on the hardware

device, the excess characters may appear on following line(s) or may be

lost, depending on the device driver routine. Vertical and horizontal for-

matting characters may be placed in the sending item.

When the WITH NO ADVANCING phrase is specified, the carriage re-

turn character is not appended to the sending item. Depending on the

device handler, the device will remain positioned on the same line and on

the character position following the last character displayed. This is espe-

cially useful when typing prompting messages on the terminal.

If the UPON phrase is not used, the data is written on the user’s standard

display device.

Procedure Division 5-43

DIVIDE

5.17 DIVIDE Statement

Function

The DIVIDE statement divides one numeric data item into another and sets

the value of data items to the quotient and remainder.

General Format

Format 1

identifier-1

DIVIDE INTO identifier-2 [ROUNDED)]

literal-1

[, identifier-3 (ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

Format 2

identifier-1 identifier-2

DIVIDE INTO GIVING identifier-3 [ROUNDED)]

literal-1 literal-2

[, identifier-4 [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

Format 3

identifier-1 identifier-2

DIVIDE BY GIVING identifier-3 [ROUNDED)]

literal-1 literal-2

[, identifier-4 [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement|

Format 4

identifier-1 (1dentifier-2

DIVIDE INTO { GIVING identifier-3 [ROUNDED)]
literal-1 literal-2

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement:]

(continued on next page)

5-44 Procedure Division

DIVIDE
Continued

Format 5

identifier-1 identifier-2

DIVIDE BY GIVING identifier-3 [ROUNDED)]

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

literal-1 literal-2

Syntax Rules

1. Each identifier must refer to an elementary numeric item, except that any

identifier associated with the GIVING or REMAINDER phrase must refer

to either an elementary numeric item or an elementary numeric edited

item.

. Each literal must be a numeric literal

. The composite of operands, which is the hypothetical data item re-

sulting from the superimposition of all receiving data items (except the

REMAINDER data item) of a given statement aligned on their decimal

points, must not contain more than 18 digits.

General Rules

1. When Format 1 is used, the value of identifier-1 or literal-1 is divided into

the value of identifier-2. The value of the dividend (identifier-2) is re-

placed by this quotient; the same applies for identifier-1 or literal-1 and

identifier-3, etc.

. When Format 2 is used, the value of identifier-1 or literal-1 is divided into

identifier-2 or literal-2, and the result is stored in identifier-3, identi-

fier-4, etc.

. When Format 3kis used, the value of identifier-1 or literal-1 is divided by
the value of identifier-2 or literal-2, and the result is stored in identifier-3,

identifier-4, etc.

. Formats 4 and 5 are used when a remainder from the division operation is

desired, normally identifier-4. The remainder in COBOL is defined as the

result of subtracting the product of the quotient (identifier-3) and the

divisor from the dividend. If identifier-3 is defined as a numeric edited

item, the quotient used to calculate the remainder is an intermediate field

that contains the unedited quotient. If ROUNDED is used, the quotient

used to calculate the remainder is an intermediate field that contains the

quotient of the DIVIDE statement, truncated rather than rounded.

Procedure Division 5-45

DIVIDE
Continued

5. In Formats 4 and 5, the accuracy of the REMAINDER data item

(identifier-4) is defined by the calculation described above. Appropriate

decimal alignment and truncation (not rounding) will be performed for

the content of the data item referenced by identifier-4, as needed.

6. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the follow-

ing rules apply:

a. If the size error occurs on the quotient, no remainder calculation is

meaningful. Therefore, the contents of the data items referenced by

both identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents of the data item

referenced by identifier-4 remain unchanged. However, as with other

instances of multiple results of arithmetic statements, you will have to

do your own analysis to recognize which situation has occurred.

5-46 Procedure Division

EXIT

5.18 EXIT Statement

Function

The EXIT statement provides a common end point for a series of procedures,

or marks the logical end of a called program.

General Format

EXIT [PROGRAM]

Syntax Rules

L. The EXIT statement without the PROGRAM phrase must appear only in

a sentence by itself and comprise the only sentence in the paragraph.

If an EXIT PROGRAM statement appears in a consecutive sequence of

imperative statements within a sentence, it must appear as the last state-

ment in that sequence.

General Rules

1. An EXIT statement without the optional word PROGRAM serves only to

enable you to assign a procedure-name to a given point in a program. Such

an EXIT statement has no other effect on the compilation or execution of

the program.

Execution of an EXIT PROGRAM statement in a called program causes

control to be passed to the calling program. If the EXIT PROGRAM

statement is executed in a program that is not under the control of a

calling program, the EXIT PROGRAM statement causes execution of the

program to continue with the next executable statement.

Procedure Division 5-47

GO TO

5.19 GO TO Statement

Function

The GO TO statement transfers control from one part of the Procedure

Division to another.

General Format

Format 1

Format 2

GO TO [procedure—name—l]

GQ TO procedure-name-1 [, procedure—name—Z]..., procedure-name-n

DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described without any

positions to the right of the assumed decimal point.

When a paragraph is referenced by an ALTER statement, that paragraph
can consist only of a paragraph header followed by a Format 1 GO TO

statement.

A Format 1 GO TO statement without procedure-name-1 can only appear

in a single statement paragraph.

If a GO TO statement represented by Format 1 appears in a consecutive

sequence of imperative statements within a sentence, it must appear as the

last statement in that sequence. |

General Rules

1. When a GO TO statement represented by Format 1 is exeé\uted, control is
transferred to procedure-name-1 or to another procedure-name if the GO

TO statement has been modified by an ALTER statement.

If procedure-name-1 is not specified in Format 1, an ALTER statement

referring to this GO TO statement must be executed prior to the execution

of this GO TO statement.

When a GO TO statement represented by Format 2 is executed, control is

transferred to procedure-name-1, procedure-name-2, etc., depending on

whether the value of the identifieris 1, 2, ..., n. If the value of the identifier

is anything other than the positive or unsigned integers 1, 2, ..., n, then no

transfer occurs and control passes to the next statement in the normal

sequence for execution.

5-48 Procedure Division

IF

5.20 IF Statement

Function

The IF statement causes a condition to be evaluated. The subsequent flow of

control of the object program depends on whether the value of the condition is

true or false.

General Format

statement-1 : ELSE statement-2

IF condition; |:
NEXT SENTENCE ; ELSE NEXT SENTENCE

Syntax Rules

1. Statement-1 and statement-2 represent either an imperative statement

or a conditional statement, and either can be followed by a conditional

statement.

9 The ELSE NEXT SENTENCE phrase can be omitted if it immediately

precedes the terminal period of the sentence.

General Rules

1. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-1 is executed if specified. If

statement-1 contains a procedure branching or conditional state-

ment, control is explicitly transferred in accordance with the rules

of that statement. If statement-1 does not contain a procedure

branching or conditional statement, the ELSE phrase, if specified, is

ignored and control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified

instead of statement-1, the ELSE phrase, if specified, is ignored and

control passes to the next executable sentence.

c. If the condition is false, statement-1 or its surrogate NEXT

SENTENCE is ignored, and statement-2, if specified, is executed. If

statement-2 contains a procedure branching statement or conditional

statement, control is explicitly transferred in accordance with the

rules of that statement. If statement-2 does not contain a procedure

branching or conditional statement, control passes to the next

executable sentence. If the ELSE statement-2 phrase is not specified,

statement-1 is ignored and control passes to the next executable

sentence.

Procedure Division 5-49

IF

Continued

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is

specified, statement-1 is ignored, if specified, and control passes to the

next executable sentence.

2. Statement-1 and/or statement-2 can contain an IF statement. In this case

the IF statement is said to be nested.

[F statements within IF statements can be considered as paired IF and

ELSE combinations, proceeding from left to right. Thus, any ELSE en-

countered is considered to apply to the immediately preceding IF that has

not been already paired with an ELSE.

5-50 Procedure Division

INSPECT

5.21 INSPECT Statement

Function

- The INSPECT statement is used to count (Format 1), replace (Format 2), or

count and replace (Format 3) occurrences of single characters in a data item.

General Format

Format 1

INSPECT identifier-1 TALLYING

ALL identifier-3

BEFORE identifier-4

, 1dentifier-2 FOR {, EADING literal-1 INITIAL

AFTER literal-2

CHARACTERS

Format 2

INSPECT identifier-1 REPLACING

identifier-6 BEFORE identifier-7

§ CHARACTERSBY INITIAL

literal-4 - AFTER literal-5

ALL |

identifier-5 identifier-6 BEFORE identifier-7

ALEADING , BY INITIAL < >1)..}...

literal-3 literal-4 AFTER literal-5

FIRST

Format 3

INSPECT identifier-1 TALLYING

ALL identifier-3

} BEFORE identifier-4
. 1dentifier-2 FO SCLEADING. literal-1 INITIAL § SI}y...)...

AFTER literal-2

CHARACTERS

REPLACING

1dent1f1er 6 BEFORE) identifier-7

CHARACTERS BY INITIAL {1teral—4 AFTER literal-5
s 1dent1fler 5) identifier-6 BEFORE identifier-7

LEADING BY INITIAL ¢]}...})...llteral 3 literal-4 AFTER literal-5
FIRST

Procedure Division 5-51

INSPECT
Continued

Syntax Rules

All Formats

1. Identifier-1 must reference either a group item or any category of

elementary item described (either implicitly or explicitly) as USAGE

IS DISPLAY.

Identifier-3...identifier-n must reference either an elementary alphabetic,

alphanumeric, or numeric item described (either implicitly or explicitly)

as USAGE IS DISPLAY.

Each literal must be nonnumeric and can be any figurative constant

except ALL.

Literal-1, literal-2, literal-3, literal-4, and literal-5, and the data items

referenced by identifier-3, identifier-4, identifier-5, identifier-6, and

identifier-7, can be any length except as specifically restricted by syntax

and general rules.

Formats 1 and 3 only

5. Identifier-2 must reference an elementary numeric data item.

6. If either literal-1 or literal-2 is a figurative constant, the figurative con-

stant refers to an implicit 1-character data item.

Formats 2 and 3 only

7. The size of the data referenced by literal—‘4 or identifier-6 must be
equal to the size of the data referenced by literal-3 or identifier-5. When a

figurative constant is used as literal-4, the size of the figurative constant

is equal to the size of literal-3 or the size of the data item referenced by

identifier-5.

When the CHARACTERS phrase is used, literal-4, literal-5, or the size of

the data item referenced by identifier-6, identifier-7, must be one charac-

ter in length. |

When a figurative constant is used as literal-3, the data referenced by

literal-4 or identifier-6 must be one character in length.

5-52 Procedure Division

INSPECT

Continued

General Rules

All Formats

1. Inspection (which includes the comparison cycle, the establishment of

boundaries for the BEFORE or AFTER phrase, and the mechanism for

tallying and/or replacing) begins at the leftmost character position of the

data item referenced by identifier-1, regardless of its class, and proceeds

from left to right to the rightmost character position, as described in

General Rules 4 through 6.

For use in the INSPECT statement, the contents of the data item refer-

enced by identifier-1, identifier-3, identifier-4, identifier-5, identifier—6 or

identifier-7 are treated as follows:

a. If any of the identifiers is described as alphanumeric, the INSPECT

statement treats the contents of each identifier as a character-string.

b. If any of the identifiers is described as unsigned numeric, the data

item is inspected as though it had been redefined as alphanumeric (see

General Rule 2a) and the INSPECT statement had been written to

reference the redefined data item.

c. If any of the identifiers is described as signed numeric, the data item 1s

inspected as though it had been moved to an unsigned numeric data

item of the same length and then the rules in General Rule 2b had been

applied. (See Section 5.22, MOVE Statement).

In General Rules 4 through 11, all references to literal-1, literal-2,

literal-3, literal-4, and literal-5 apply equally to the contents of the

data item referenced by identifier-3, identifier-4, identifier-5,

identifier-6, and identifier-7, respectively.

During inspection of the contents of the data item referenced by

identifier-1, each properly matched occurrence of literal-1 is tallied

(Formats 1 and 3) and/or each properly matched occurrence of literal-3 is

replaced by literal-4 (Formats 2 and 3).

The comparison operation to determine the occurrences of literal-1 to be

tallied and/or occurrences of literal-3 to be replaced occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are consid-

ered in the order they are specified in the INSPECT statement from

left to right. The first literal-1, literal-3 is compared to an equal num-

ber of contiguous characters, starting with the leftmost character posi-

tion in the data item referenced by identifier-1. Literal-1, literal-3 and

that portion of the contents of the data item referenced by identifier-1

match if, and only if, they are equal, character for character.

Procedure Division 5-53

INSPECT
Continued

. If no match occurs in the comparison of the first literal-1, literal-3, the

comparison is repeated with each successive literal-1, literal-3, if any,

until either a match is found or there is no next successive literal-1,

literal-3. When there is no next successive literal-1, literal-3, the char-

acter position in the data item referenced by identifier-1 immediately

to the right of the leftmost character position considered in the last

comparison cycle is considered as the leftmost character position, and

the comparison cycle begins again with the first literal-1, literal-3.

. Whenever a match occurs, tallying and/or replacing takes place as de-

“scribed in General Rules 8 through 10. The character position in the

data item referenced by identifier-1 immediately to the right of the

rightmost character position that participated in the match is now

considered to be the leftmost character position of the data item refer-

enced by identifier-1, and the comparison cycle starts again with the

first literal-1, literal-3.

. The comparison operation continues until the rightmost character posi-

tion of the data item referenced by identifier-1 has participated in a

match or has been considered as the leftmost character position. When

this occurs, inspection is terminated.

. 1f the CHARACTERS phrase is specified, an implied 1-character oper-

and participates in the cycle described in paragraphs 5a through 5d

above, except that no comparison to the contents of the data item

referenced by identifier-1 takes place. This implied character is consid-

ered always to match the leftmost character of the contents of the data

item referenced by identifier-1 participating in the current comparison

cycle.

. The comparison operation defined in General Rule 5 is affected by the

BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified, literal-1, literal-3, or

the implied operand of the CHARACTERS phrase participates in the

comparison operation as described in General Rule 5.

. If the BEFORE phrase is specified, the associated literal-1, literal-3 or
the implied operand of the CHARACTERS phrase participates only in

those comparison cycles that involve that portion of the contents of the

data item referenced by identifier-1 from its leftmost character position

up to, but not including, the first occurrence of literal-2, literal-5

within the contents of the data item referenced by identifier-1. The

position of this first occurrence is determined before the first cycle of

the comparison operation described in General Rule 5 is begun.

If, on any comparison cycle, literal-1, literal-3 or the implied operand

of the CHARACTERS phrase is not eligible to participate, it is

5-54 Procedure Division

INSPECT
Continued

considered not to match the contents of the data item referenced by

identifier-1. If there is no occurrence of literal-2, literal-5 within the

contents of the data item referenced by identifier-1, its associated

literal-1, literal-3, or the implied operand of the CHARACTERS

phrase participates in the comparison operatlon as though the

BEFORE phrase had not been specified.

c. If the AFTER phrase is specified, the associated literal-1, literal-3 or

the implied operand of the CHARACTERS phrase can participate only

in those comparison cycles which involve that portion of the contents of

the data item referenced by identifier-1. The comparison begins from

the character position immediately to the right of the rightmost charac-

ter position of the first occurrence of literal-2, literal-5 within the con-

tents of the data item referenced by identifier-1 and the rightmost

character position of the data item referenced by identifier-1. The posi-

tion of this first occurrence is determined before the first cycle of the

comparison operation described in General Rule 5 is begun.

If, on any comparison cycle, literal-1, literal-3 or the implied operand

of the CHARACTERS phrase is not eligible to participate, it is

considered not to match the contents of the data item referenced by

identifier-1. If there is no occurrence of literal-2, literal-5 within the

contents of the data item referenced by identifier-1, its associated

literal-1, literal-3, or the implied operand of the CHARACTERS

phrase is never eligible to participate in the comparison operation.

Format 1

7. The contents of the data item referenced by identifier-2 are not initialized

by the execution of the INSPECT statement.

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item refer-

enced by identifier-2 is incremented by one for each occurrence of

literal-1 matched within the contents of the data item referenced by

identifier-1.

b. If the LEADING phrase is specified, the contents of the data item

referenced by identifier-2 is incremented by one for each contiguous

occurrence of literal-1 matched within the contents of the data item

referenced by identifier-1, provided that the leftmost such occurrence is

at the point where comparison began in the first comparison cycle in

which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data item

referenced by identifier-2 is incremented by one for each character

matched, in the sense of General Rule 5e, within the contents of the

data item referenced by identifier-1.

Procedure Division 5-55

INSPECT
Continued

Format 2

9. The required words ALL, LEADING, and FIRST are adjectives that apply

to each succeeding BY phrase until the next adjective appears.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched,

in the sense of General Rule 5e, in the contents of the data item refer-

enced by identifier-1 is replaced by literal-4.

. When the adjective ALL is specified, each occurrence

of literal-3 matched in the contents of the data item referenced by

identifier-1 is replaced by literal-4.

. When the adjective LEADING is specified, each contiguous occurrence

of literal-3 matched in the contents of the data item referenced by

identifier-1 is replaced by literal-4, provided that the leftmost occur-

rence is at the point where comparison began in the first comparison

cycle in which literal-1 was eligible to participate.

. When the adjective FIRST is specified,. the leftmost occurrence of

literal-3 matched within the contents of the data item referenced by

identifier-1 is replaced by literal-4.

Format 3

11.A Format 3 INSPECT statement is interpreted and executed as though

two successive INSPECT statements specifying the same identifier-1 had

been written, with one statement being a Format 1 statement with

TALLYING phrases identical to those specified in the Format 3 state-

ment, and the other statement being a Format 2 statement with

REPLACING phrases identical to those specified in the Format 3 state-

ment. The general rules given for matching and counting apply to the

Format 1 statement, and the general rules given for matching and replac-

ing apply to the Format 2 statement.

5-56 Procedure Division

INSPECT

Continued

Examples

Following are six examples of the INSPECT statement:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A"

count-1 FOR LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-1 = O.

Where word = ANALYST, count = 0, count-1 = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY

"E" AFTER INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.

Where word = SALAMI, count = 1, word = SALEMI.

Where word = LATTER, count = 1, word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.

Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"

REPLACING ALL "A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.

Where word = JACK, count = 3, word = JBCK.

Where word = JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

WORD BEFORE: 1 2X ZABCD

WORD AFTER: BBBB BABCD

INSPECT word REPLACING ALL "X" BY "Y', "B" BY "Z", "W" BY "Q",

AFTER INITIAL "R".

Where word = RXXBQWY, word = RYYZQQY.

Where word = YZACDWBR, word = YZACDWBR.

Where word = RAWRXEB, word = RAQRYEZ.

Procedure Division 5-57

MOVE

5.22 MOVE Statement

5-58

Function

The MOVE statement transfers data, in accordance with the rules of editing,

to one or more 'data areas.

General Format

Format 1

identifier-1

MOVE TO identifier-2 [,identifier-3]...

literal

Format 2

CORRESPONDING

MOVE identifier-1 TO identifier-2
CORR

Syntax Rules

1. Identifier-1 and literal represent the sending area; identifier-2, identi-

fier-3, ..., represent the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, both identifiers must be

group items.

4. An index data item cannot appear as an operand of a MOVE statement.

General Rules

1. If the CORRESPONDING phrase is used, selected items within identi-

fier-1 are moved to selected items within identifier-2, according to the

rules given in Section 5.7.3, CORRESPONDING Phrase. The results are

the same as if you had referred to each pair of corresponding identifiers in

separate MOVE statements.

2. The data designated by the literal or identifier-1 is moved first to identi-

fier-2, then to identifier-3, The rules referring to identifier-2 also

apply to the other receiving areas. Any subscripting or indexing associated

with identifier-2, ..., is evaluated immediately before the data is moved to

the respective data item.

Procedure Division

MOVE
Continued

Any subscripting or indexing associated with identifier-1 is evaluated only

once, immediately before data is moved to the first of the receiving

operands. Consider the following statement.

MOVE A (B) TO B, C (B)

The result of this statement is equivalent to:

MOVE A (B) TO temp

MOVE temp TO B

MOVE temp TO C (B)

where temp is an intermediate result item provided by the compiler.

3. Any MOVE in which the sending and receiving items are both elementary

items is an elementary move. Every elementary item belongs to one of the

following categories: numeric, alphabetic, alphanumeric, numeric edited,

alphanumeric edited. These categories are described in the PICTURE

clause. Numeric literals belong to the numeric category, and nonnumeric

literals belong to the alphanumeric category, while the figurative constant

ZERO belongs to the numeric category. The figurative constant SPACE

belongs to the alphabetic category. All other figurative constants belong to

the alphanumeric category.

The following rules apply to an elementary move between these categories:

a. The figurative constant SPACE, a numeric edited, alphanumeric edit-

ed, or alphabetic data item must not be moved to a numeric or numeric

edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item

or a numeric edited data item must not be moved to an alphabetic data

item.

c. A non-integer numeric literal or a non-integer numeric data item must

not be moved to an alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are performed according to

the rules given in General Rule 4.

4. Any necessary conversion of data from one form of internal representation

to another takes place during legal elementary moves, as does as any

‘editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving

item, alignment and any necessary space filling take place as defined

under Standard Alignment Rules, Section 4.2.7. If the size of the send-

ing item is greater than the size of the receiving item, the excess charac-

ters are truncated on the right after the receiving item is filled. If the

sending item is described as being signed numeric, the operational sign

Procedure Division 5-59

MOVE
Continued

will not be moved; if the operational sign occupied a separate character

position, that character will not be moved, and the size of the sending

item is considered to be one less than its actual size (in terms of stan-

dard data format characters).

. When a numeric or numeric edited item is the receiving item, align-

ment by decimal point and any necessary zero-filling take place as

defined under the Standard Alignment Rules, Section 4.2.7, except

where zeros are replaced because of editing requirements.

1. When a signed numeric item is the receiving item, the sign of the

sending item is placed in the receiving item. (See Section 4.3.9,

SIGN Clause.) Conversion of the representation of the sign takes

place as necessary. If the sending item is unsigned, a positive sign is

generated for the receiving item.

2. When an unsigned numeric item is the receiving item, the absolute

value of the sending item is moved and no operational sign is gener-

ated for the receiving item.

3. When a data item described as alphanumeric is the sending item,

data is moved as if the sending item were described as an unsigned

numeric integer.

. When a receiving field is described as alphabetic, justification and any

necessary space-filling take place:as defined under the Standard Align-

ment Rules, Section 4.2.7. If the size of the sending item is greater than

the size of the receiving item, the excess characters are truncated on the

right after the receiving item is filled.

5. Any non-elementary move is treated exactly as if it were an alphanumeric

to alphanumeric elementary move, except that there is no conversion of

data from one form of internal representation to another. In such a move,

the receiving area is filled without consideration for the individual elemen-

tary or group items contained within either the sending or receiving area.

. The following table summarizes the permissible types of MOVE state-

ments. References after slash marks (for example, /4c) refer to the applica-

ble general rule for MOVE.

5-60 Procedure Division

Table 5-4: Permissible MOVE Statements

MOVE
Continued

Category of

Category of Receiving Data Item

Numeric Integer

Sending Alphanumeric Edited | Numeric Non-Integer

Data Item Alphabetic Alphanumeric Numeric Edited

Alphabetic Yes/4c Yes/4a No/3a

Alphanumeric Yes/4c Yes/4a Yes/4b

Alphanumeric Edited Yes/4dc Yes/4a No/3a

Numeric Integer No/3b Yes/4a Yes/4b

Numeric Non-Integer No/3b No/3¢ Yes/4b

Numeric Edited No/3b Yes/4a No/3a

Procedure Division 5-61

MULTIPLY

5.23 MULTIPLY Statement

Function

The MULTIPLY statement multiplies numeric data items and sets the values

of data items equal to the results.

General Format

Format 1

identifier-1

MULTIPLY BY identifier-2 [ROUNDED]

literal-1

[, identifier-3 (ROUNDED]] ...

[; ON SIZE ERROR imperative—statement]

Format 2

identifier-1 identifier-2

MULTIPLY BY GIVING identifier-3 [ROUNDED]

literal-1 literal-1

[,identifier-4 [ROUNDED)] ...

[; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that in

Format 2 the identifier following the word GIVING must refer to either an

elementary numeric item or an elementary numeric edited item.

. Each literal must be a numeric literal.

. The composite of operands, which is that hypothetical data item resulting

from the superimposition of all receiving data items of a given statement

aligned on their decimal points, must not contain more than eighteen (18)

digits.

5-62 Procedure Division

MULTIPLY
Continued

General Rules

1. When Format 1 is used, the value of identifier-1 or literal-1 is multiplied

by the value of identifier-2. The value of the multiplier (identifier-2) is

replaced by this product; the same result occurs for identifier-1 or literal-1

and 1dentifier-3, etc.

2. When Format 2 is used, the value of identifier-1 or literal-1 is multiplied

by the value of identifier-2 or literal-2 and the result is stored in identi-

fier-3, identifier-4, etc.

Procedure Division 5-63

OPEN (Sequential)

5.24 OPEN Statement (Sequential)

Function

The OPEN statement initiates the processing of files. It also performs check-

ing and/or label writing and other input-output operations.

General Format
-

INPUT file-name-1[WITH NO REWIND]|, file-name-2[WITH NO REWIND]|...

OUTPUT file-name-3 [WITH NO REWIND|[file-name-4 [WITH NO REWIND-]:I...

OPEN

[-O file-name-5 [, file—name—6]

EXTEND file-name-7 [, file-name-8] ...

Syntax Rules

1. The NO REWIND phrase cafi be used only for sequential files.

The I-O phrase can be used only for files on directory devices.

The EXTEND phrase can be used only for sequential files.

The EXTEND phrase must not be specified for files on multiple file reels.

The files referenced in the OPEN statement need not all have the same

organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availabil-

ity of the file and results in the file’s being in an open mode.

2. The successful execution of an OPEN statement makes the associated

record area available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no

statement can be executed that explicitly or implicitly refers to that file.

4. An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In Table 5-5, an X

indicates that the specified statement, used in the sequential access mode,

can be used with the sequential file organization and open mode given at

the top of the column.

5-64 Procedure Division

OPEN (Sequential)

Continued

Table 5-5: Permissible Input-Output Statements for Sequential

Files

Open Mode

Statement Input Output Input-Output Extend

READ X X

WRITE X X

REWRITE X

. A file can be opened with the INPUT, OUTPUT, EXTEND and I-O

phrases in the same program. Following the initial execution of an OPEN

statement for a file, each subsequent OPEN statement execution for that

same file must be preceded by the execution of a CLOSE statement,

without the REEL, UNIT, or LOCK phrase, for that file.

. Execution of the OPEN statement does not obtain or release the first data

record.

. If label records are specified for the file, the beginning labels are processed

as follows:

a. When the INPUT phrase is specified, execution of the OPEN statement

causes the labels to be checked in accordance with the Record Manage-

ment Services conventions for input label checking.

b. When the OUTPUT phrase is specified, execution of the OPEN state-

ment causes the labels to be written in accordance with the Record

Management Services conventions for output label writing.

The behavior of the OPEN statement when label records are specified

but not present, or when label records are not specified but are present,

is undefined.

. The file-description-entry for file-name-1, file-name-2, file-name-5,

file-name-6, file—-name-7, or file-name-8 must be equivalent to that used

when the file was created.

. If an input file is designated with the OPTIONAL clause in its SELECT

statement, the object program causes an interrogation for the presence or

absence of this file when the OPEN statement is executed. If the file is not

present, the first READ statement for this file causes the AT END condi-

tion to occur.

10. The NO REWIND phrase can be used only with sequential single reel/unit

files.

11.The WITH NO REWIND phrase is ignored if it does not apply to the

storage medium on which the file resides.

Procedure Division 5-65

OPEN (Sequential)

Continued

5-66

12.

13.

14.

16.

17.

If the storage medium for the file permits rewinding, the following rules

apply:

a. When neither the EXTEND nor the NO REWIND phrase is specified,

execution of the OPEN statement causes the file to be positioned at its

beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN

statement does not cause the file to be repositioned; the file must be

already positioned at its beginning prior to execution of the OPEN

statement.

For files being opened with the INPUT or I-O phrase, the OPEN statement

sets the current record pointer to the first record currently existing within

the file. If no records exist in the file, the current record pointer is set so

that the next executed READ statement for the file will result in an AT

END condition.

When the EXTEND phrase is specified, the OPEN statement positions

the file immediately following the last logical record of that file. Subse-

quent WRITE statements referencing that file will add records to the file

as though the file had been opened with the OUTPUT phrase.

.When the EXTEND phrase is specified and the LABEL RECORDS clause

indicates lahel records are present, the execution of the OPEN statement

includes the following steps:

a. Beginning file labels are processed only in the case of a single reel/unit

file. |

b. Beginning reel/unit labels on the last existing reel/unit are processed as

though the file was being opened with the INPUT phrase.

c. Existing ending file labels are processed as though the file is being

opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the

OUTPUT phrase.

The I-O phrase permits the opening of a directory file for both input and

output operations. Because this phrase implies the existence of the file, 1t

cannot be used if the directory file is being created.

When the I-O phrase is specified and the LABEL RECORDS clause indi-

cates label records are present, the execution of the OPEN statement

includes the following steps:

a. Labels are checked in accordance with the specified conventions for

input-output label checking.

Procedure Division

OPEN (Sequential)

Continued

b. New labels are written in accordance with the standard conventions for

input-output label writing.

18. Upon successful execution of an OPEN statement with the OUTPUT

phrase specified, a file is created. At that time the associated file contains

no data records.

19.1f the execution of an OPEN statement fails and a USE procedure is

specified for the file (either explicitly or implicitly), the USE procedure is

executed. Execution of an OPEN statement fails for any of the following

reasons.

NOTE:

The value in parentheses after each of the following state-

ments is the value that is placed in the FILE STATUS data

item, if one was specified for the file.

a. An OPEN statement executed for a file that is already opened for

exclusive access by another task. (91)

b. An OPEN statement executed for a device that has no available file

space. (95)

c. An OPEN statement executed for a file that shares buffer space with an

already opened file. (96)

d. An OPEN statement executed for a file that cannot be found on its

associated I/O device. (97)

Procedure Division 5-67

OPEN (Indexed & Relative)

5.25 OPEN Statement (Indexed & Relative)

Function

5-68

The OPEN statement initiates the processing of files.

General Format

INPUT file-name-1 [, file—name—?]

OPEN { OUTPUT file-name-3 [, file-name-4] ...

1-O file-name-5 , file—name—6]

Syntax Rule

The files referenced in the OPEN statement need not all have the same

organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availabil-

ity of the file and results in the file’s being in an open mode.

The successful execution of the OPEN statement makes the associated

record area available to the program.

Prior to the successful execution of an OPEN statement for a given file, no

statement can be executed that explicitly or implicitly references that file.

An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In Table 5-6, an X

indicates that the specified statement used in the access mode given for

that row can be used with indexed or relative file organizations and the

open mode given at the top of the column.

Procedure Division

OPEN (Indexed & Relative)

Continued

Table 5-6: Permissible Input-Output Statements for

Indexed and Relative Files

Open Mode

File Access

Mode Statement Input Output Input-Output

Sequential READ X

WRITE X

REWRITE

START X

DELETE

Random READ X

WRITE X

REWRITE '

START

DELETE

Dynamic READ X

READ NEXT X

WRITE X

REWRITE

START X

DELETE

>
S
R
R

R
l

e

T

e
e

e
i

Sl

oS

. A file can be opened with the INPUT, OUTPUT, and I-O phrases in the

same program. Following the initial execution of an OPEN statement for a

file, each subsequent OPEN statement execution for that same file must

be preceded by the execution of a CLOSE statement, without the LOCK

phrase, for that file.

_ Execution of the OPEN statement does not obtain or release the first data

record.

. The file-description-entry for file-name-1, file-name-2, file-name-5, or

file-name—6 must be equivalent to that used when this file was created.

. For files being opened with the INPUT or I-O phrase, the OPEN statement

sets the current record pointer to the first record currently existing within

the file. For indexed files, the prime record key is established as the key ot

reference and is used to determine the first record to be accessed. If no

records exist in the file, the next executed sequentially accessed READ

statement for the file results in an AT END condition.

. Upon successful execution of an OPEN statement with the OUTPUT

phrase specified, a file is created. At that time the associated file contains

no data records.

Procedure Division 5-69

OPEN (Indexed & Relative)
Continued

10.If the execution of an OPEN statement fails and a USE procedure is

specified for the file (either explicitly or implicitly), the USE procedure is

executed. The execution of an OPEN statement will fail for any of the

following reasons:

NOTE:

The value in parentheses after each of the following state-

ments is the value that is placed in the FILE STATUS data

item, if one was specified for the file.

a. An OPEN statement executed for a file that is already opened for

exclusive access by another task. (91)

b. An OPEN statement executed for a device that has no available file

space. (95)

c. An OPEN statement executed for a file that shares buffer space with an

already opened file. (96)

d. An OPEN statement executed for a file that cannot be found on its

associated I/O device. (97)

5-70 Procedure Division

PERFORM

5.26 PERFORM Statement

Function

The PERFORM statement is used to transfer control explicitly to one or more

procedures and to return control implicitly whenever execution of the speci-

fied procedure is complete.

General Format

Format 1

THROUGH

PERFORM procedure-name-1 procedure-name-2

THRU

Format 2

THROUGH

PERFORM procedurenamel[{

|

PERFORM procedure-name-1 I:{

identifier-1

TIMES

integer

Format 3

THRU

} procedure—name—Q]

THROUGH

procedure-name-2 |UNTIL condition-1

THRU

(continued on next page)

Procedure Division 5-71

PERFORM

Continued

Format 4

THROUGH

PERFORM procedure-name-1 procedure-name-2

THRU

identifier-2 identifier-3

VARYING FROM index-name-2

literal-1 index-name-1

BY

identifier-4

UNTIL condition-1

literal-2

identifier-5 identifier-6

AF’_I‘ER FROM index-name-4

3index-name- literal-3
L

identifier-7

BY { UNTIL condition-2
literal-4

| identifier-8 identifier-9

AFTER { FROM index-name-6
index-name-5 literal-5

1
BY

1dentifier-10

UNTIL condition-3

literal-6

Syntax Rules

1. Each identifier represents a numeric elementary item described in the

Data Division. In Format 2, identifier-1 must be described as a numeric

integer.

2. Each literal represents a numeric literal.

3. The words THRU and THROUGH are equivalent.

4. If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must be an

integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a non-zero integer.

5-72 Procedure Division

PERFORM
Continued

5. If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be

an integer data item.

b. The identifier in the associated BY phrase must be an integer data

item.

c. The literal in the associated BY phrase must be an integer.

6. Literal in the BY phrase must not be 0.

7. Condition-1, condition-2, condition-3 can be any conditional expression

as described in Section 5.6, Conditional Expressions.

8. Where procedure-name-1 and procedure-name-2 are both specified and

either is the name of a procedure in the declarative section of the program,

then both must be procedure-names in the same declarative section.

General Rules

1. The data items referenced by identifier-4, identifier-7, and identifier-10

must not have a zero value.

2. If an index-name is specified in the VARYING or AFTER phrase, and an

identifier is specified in the associated FROM phrase, then the data item

referenced by the identifier must have a positive value.

3. When the PERFORM statement is executed, control is transferred to the

first statement of the procedure named procedure-name-1 (except as indi-

cated in General Rules 6b, 6¢, and 6d). This transfer of control occurs only

once for each execution of a PERFORM statement. Where a transfer of

control to the named procedure does take place, an implicit transfer of

control to the next executable statement following the PERFORM state-

ment is established as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is

not specified, then the return is after the last statement of

procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not

specified, then the return is after the last statement of the last para-

graph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, then the

return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then the
return is after the last statement of the last paragraph in the section.

Procedure Division 5-73

PERFORM
Continued

. There is no necessary relationship between procedure-name-1 and

procedure-name-2 except that a consecutive sequence of operations is to .

be executed beginning at the procedure named procedure-name-1 and

ending with the execution of the procedure named procedure-name-2. In

particular, GO TO and PERFORM statements can occur between

procedure-name-1 and the end of procedure-name-2. If there are two or

more logical paths to the return point, then procedure-name-2 can be the

name of a paragraph consisting of the EXIT statement to where all of these

paths must lead.

. If control passes to these procedures other than by a PERFORM state-

ment, control passes through the last statement of the procedure to the

next executable statement as if no PERFORM statement mentioned these

procedures.

. The PERFORM statements operate as follows, with Rule 5 above applying

to all formats:

a. Format 1 is the basic PERFORM statement. A procedure referenced by

this type of PERFORM statement is executed once and control then

passes to the next executable statement following the PERFORM

statement.

h. Format 2 is the PERFORM... TIMES. The procedures are performed

the number of times specified by integer-1 or by the initial value of the

data item referenced by identifier-1 for that execution. If, at the time of

execution of a PERFORM statement, the value of the data item refer-

enced by identifier-1 is equal to 0 or.is negative, control passes to the

next executable statement following the PERFORM statement. Follow-

ing the execution of the procedures the specified number of times,

control is transferred to the next executable statement following the

PERFORM statement.

. During execution of the PERFORM statement, references to

identifier-1 cannot alter the number of times the procedures are to be

executed from that which was indicated by the initial value of

identifier-1.

c. Format 3 is the PERFORM...UNTIL. The specified procedures are

performed until the condition specified by the UNTIL phrase is true.

When the condition is true, control is transferred to the next executable

statement after the PERFORM statement. If the condition is true when

the PERFORM statement is entered, no transfer to procedure-name-1

takes place, and control is passed to the next executable statement

following the PERFORM statement.

5-74 Procedure Division

PERFORM

Continued

d. Format 4 is the PERFORM...VARYING. This variation of the

PERFORM statement is used to augment the values referenced by one

or more identifiers or index-names in an orderly fashion during the

execution of a PERFORM statement. In the following discussion, every

reference to identifier as the object of the VARYING, AFTER and

FROM (current value) phrases also refers to index-names. When index-

name appears in a VARYING and/or AFTER phrase, it is initialized

and subsequently augmented (as described below) according to the
rules of the SET statement. When index-name appears in the FROM,

VARYING or AFTER phrase, it is initialized according to the rules of

the SET statement; subsequent augmentation is described below.

In Format 4, when one identifier is varied, identifier-2 is set to the

value of literal-1 or the current value of identifier-3 at the point of

initial execution of the PERFORM statement; then, if the condition of

the UNTIL phrase is false, the sequence of procedures,

procedure-name-1 through procedure-name-2, is executed once. The

value of identifier-2 is augmented by the specified increment or decre-

ment value (the value of identifier-4 or literal-2) and condition-1 is

evaluated again. The cycle continues until this condition is true, at

which point, control is transferred to the next executable statement

following the PERFORM statement. If condition-1 is true at the begin-

ning of execution of the PERFORM statement, control is transferred to

the next executable statement following the PERFORM statement.

The following flowchart shows the VARYING phrase of a PERFORM

statement having one condition:

Figure 5-1: VARYING Phrase of PERFORM with One Condition

ENTRANCE

Set identifier-2 equal to

current FROM value

{ConditionJ) True & Exit

False

i

Execute procedure-name-1

THRU procedure-name-2

Y
Augment identifier-2 with

current BY value

Procedure Division 5-75

PERFORM

Continued

In Format 4, when two identifiers are varied, identifier-2 and identi-

fier-5 are set to the current value of identifier-3 and identifier-6,

respectively. After the identifiers have been set, condition-1 is evaluat-

ed; if true, control is transferred to the next executable statement; if

false, condition-2 is evaluated. If condition-2 is false,

procedure-name-1 through procedure-name-2 are executed once, then

identifier-5 is augmented by identifier-7 or literal-4 and condition-2 1s

evaluated again. This cycle of evaluation and augmentation continues

until this condition is true. When condition-2 is true, identifier-5 is set

to the value of literal-3 or the current value of identifier-6, identifier-2

is augmented by identifier-4 and condition-1 is reevaluated. The

PERFORM statement is completed if condition-1 is true; if not, the

cycles continue until condition-1 is true.

During the execution of the procedures associated with the PERFORM

statement, any change to the VARYING variable (identifier-2 and

index-name-1), the BY variable (identifier-4), the AFTER variable

(identifier-5 and index-name-3), or the FROM variable (identifier-3

and index-name-2) will be taken into consideration and will affect the

operation of the PERFORM statement.

The following flowchart shows the VARYING phrase of a PERFORM

statement having two conditions:

Figure 5-2: VARYING Phrase of PERFORM with Two
Conditions

ENTRANCE

Set identifier-2 and identifier-5

to current FROM values

Y
True

‘ False

————’CCondition-Z /l True

‘ Falsg ’

Execute procedure-name-1 Set identifier-b to its

THRU procedure-name-2 current FROM value

Augment identifier-5 with Augment identifier-2 with

current BY value current BY value

5-76 Procedure Division

PERFORM
Continued

At the termination of the PERFORM statement, identifier-5 contains

the current value of identifier-6. Identifier-2 has a value that exceeds

the last used setting by an increment or decrement value, unless condi-

tion-1 was true when the PERFORM statement was entered. Then,

identifier-2 contains the current value of identifier-3.

When two identifiers are varied, identifier-5 goes through a complete

cycle (FROM, BY, UNTIL) each time identifier-2 1s varied.

For three identifiers, the mechanism is the same as for two identifiers

except that identifier-8 goes through a complete cycle each time that

identifier-5 is augmented by identifier-7 or literal-4, which in turn goes

through a complete cycle each time identifier-2 is varied.

The following flowchart shows the VARYING phrase of a PERFORM

statement having three conditions:

Figure 5-3: VARYING Phrase of PERFORM with Three

Conditions

ENTRANCE

Set identifier-2,

identifier-5, identifier-8

to current FROM values

\

——Qonditiona) True ,

» Exit{ Condition-1j True

False

4

False

r—{ Condition-3) True

False

\

Execute Set identifier-8 Set identifier-5

procedure-name-1 to its current to its current

THRU procedure-name-2 FROM value FROM value

i \ \

Augment identifier-8 Augment identifier-5 Augment identifier-2

with current BY value with current BY value with current BY value

Procedure Division 5-77

PERFORM
Continued

After the completion of a Format 4 PERFORM statement, identifier-5

and identifier-8 contain the current value of identifier-6 and identi-

fier-9, respectively. Identifier-2 has a value that exceeds its last used

setting by one increment or decrement value, unless condition-1 1s true

when the PERFORM statement is entered, in which case identifier-2

contains the current value of identifier-3.

7. If a sequence of statements referred to by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with

the included PERFORM must itself either be totally included in, or totally

excluded from, the logical sequence referred to by the first PERFORM.

Thus, an active PERFORM statement, whose execution point begins

within the range of another active PERFORM statement, must not allow

control to pass to the exit of the other active PERFORM statement; fur-

thermore, two or more such active PERFORM statements cannot have a

common exit. See the illustrations below.

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRUj d PERFORM f THRUj

f h

j m

m f

]

x PERFORM a THRU m

a

f

m

)

d PERFORM f THRU j

. A PERFORM statement that appears in a section that is not in an inde-

pendent segment can have within its range, in addition to any declarative

sections whose execution is caused within that range, only one of the fol-

lowing:

a. Sections and/or paragraphs wholly contained in one or more non-inde-

pendent segments. |

b. Sections and/or paragraphs wholly contained in a single independent

segment. | |

5-78 Procedure Division

PERFORM
Continued

9. A PERFORM statement that appears in an independent segment can have

within its range, in addition to any declarative sections whose execution is

caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-inde-

pendent segments.

b. Sections and/or paragraphs wholly contained in the same independent

segment as that PERFORM statement.

Procedure Division 5-79

READ (Sequential)

5.27 Read Statement (Sequential)

5-80

Function

The READ statement makes available the next logical record from a file.

General Format

READ file-name RECORD [INTO identitier] [; AT END imperative-statement

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical

records of various sizes as indicated by their record descriptions. The stor-

age area associated with identifier and the record area associated with file-

name must not be allocated to the same storage area.

2. The AT END phrase must be specified if no applicable USE procedure 1s

specified for file-name.

General Rules

1. The associated file must be open in the INPUT or I-O mode at the time

this statement is executed.

2. The record to be made available by the READ statement is determined as

follows:

a. If the current record pointer was positioned by the execution of the

OPEN statement, the record pointed to by the current record pointer is

made available.

b. If the current record pointer was positioned by the execution of a previ-

ous READ statement, the current record pointer is updated to point to

the next existing record in the file and then that record is made

available.

3. The execution of the READ statement causes the value of the FILE

STATUS data item, if any, associated with file-name to be updated.

4. Regardless of the method used to ovei’lap access time with processing time,
the concept of the READ statement is unchanged because a record is

available to the object program prior to the execution of any statement

following the READ statement.

5. When the logical records of a file are described with more than one record

description, these records automatically share the same storage area; this

is equivalent to an implicit redefinition of the area. The contents of any

data items that lie beyond the range of the current data record are unde-

fined at the completion of the execution of the READ statement.

Procedure Division

READ (Sequential)

Continued

6. If the INTO phrase is specified, the record being read is moved from the

record area to the area specified by identifier according to the rules speci-

fied for the MOVE statement without the CORRESPONDING phrase.

The implied MOVE does not occur if the execution of the READ statement

was unsuccessful. Any subscripting or indexing associated with identifier is

evaluated after the record has been read and immediately before it is

- moved to the data item.

7. When the INTO phrase is used, the record being read is available in both

the input record area and the data area associated with identifier.

8. If, at the time of execution of a READ statement, the position of the

current record pointer for that file is undefined, the execution of that

READ statement is unsuccessful. The FILE STATUS data item, if any,

associated with the file is set to one of the values detailed in General Rules

11 and 14.

9. If the end of a reel or unit is recognized during execution of a READ

statement and the logical end of the file has not been reached, the follow-

ing operations are executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

10.If a file described with the OPTIONAL clause is not present at the time

the file is opened, then, at the time of execution of the first READ state-

ment for the file, the AT END condition occurs and the execution of the

READ statement is unsuccessful. The standard end-of-file procedures are

not performed. Execution of the program then proceeds as specified in

General Rule 11 a, b, and c.

11.1If, at the time of the execution of a READ statement, no next logical record

exists in the file, the AT END condition occurs and the execution of the

READ statementis considered unsuccessful.

When the AT END condition is recognized, the following actions are taken

in the specified order:

a. The value 10 is placed into the FILE STATUS data item, if any, associ-

ated with this file to indicate an AT END condition.

b. If the AT END phrase is specified in the statement causing the condi-

tion, control is transferred to the AT END imperative-statement. Any

USE procedure specified for this file is not executed.

Procedure Division 5-81

READ (Sequential)

Continued

c. If the AT END phrase is not specified, then a USE procedure must be

specified, either explicitly or implicitly, for this file. That USE proce-

dure is executed.

12. Following the unsuccessful execution of any READ statement, the con-

tents of the associated record area and the position of the current record

pointer are undefined.

13. When the AT END condition has been recognized, a READ statement for
that file must not be executed without first executing a successful CLOSE

statement followed by the execution of a successful OPEN statement for

that file.

14.A Format 1 or Format 2 READ statement that fails for an undetermined

reason will cause the value 30 to be placed in the FILE STATUS data

item, 1f one was specified for the file.

5-82 Procedure Division

READ (Relative)

5.28 READ Statement (Relative)

Function

For sequential access, the READ statement makes available the next logical

record from a file on a directory device. For random access, the READ state-

ment makes available a specified record from a file on a directory device. For

dynamic access, two forms of the READ statement are available, allowing the

next logical record or a specified logical record to be made available.

General Format

Format 1

Format 2

READ file-name [NEXT]RECORD[INTO identifier][; AT END imperative-statement]

READ file-name RECORD[INTO identifier|[; INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical

records of various sizes as indicated by their record descriptions. The stor-

age area associated with identifier and the record area associated with file-

name must not be allocated to the same storage area.

Format 1 must be used for all files in sequential access mode.

Format 1 with the NEXT phrase specified must be used for files in dy-

namic access mode when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for files in dynamic

access mode when records are to be retrieved randomly.

The INVALID KEY phrase or the AT END phrase must be specified if no

applicable USE procedure is specified for file-name.

General Rules

1. The associated files must be open in the INPUT or I-O mode at the time

this statement is executed.

The record to be made available by a Format 1 READ statement is deter-

mined by updating the current record pointer to point to the next existing

record in the file.

Regardless of the method used to overlap access time with processing time,

the concept of the READ statement is unchanged because a record is

available to the object program prior to the execution of any statement

following the READ statement.

Procedure Division 5-83

READ (Relative)

5-84

Continued

When the logical records of a file are described with more than one record

description, these records automatically share the same storage area; this

is equivalent to an implicit redefinition of the area. The contents of any

data items that lie beyond the range of the current data record are unde-

fined at the completion of the execution of the READ statement.

If the INTO phrase is specified, the record being read is moved from the

record area to the area specified by identifier according to the rules speci-

fied for the MOVE statement without the CORRESPONDING phrase.

The implied MOVE does not occur if the execution of the READ statement

was unsuccessful. Any subscripting or indexing associated with identifier is

evaluated after the record has been read and immediately before it is

moved to the data item.

When the INTO phrase is used, the record being read is available in both

the input record area and the data area associated with identifier.

If, at the time of execution of a Format 1 READ statement, the position of

the current record pointer for that file is undefined, the execution of that

READ statement is unsuccessful. The FILE STATUS data item, if any,

associated with the file is set to one of the values described in General

Rules 13, 14, and 15.

If, at the time of the execution of a Format 1 READ statement, no next

logical record exists in the file, the AT END condition occurs and the

execution of the READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are taken

in the specified order:

a. The value 10 is placed into the FILE STATUS data item, if specified

for this file,to indicate an AT END condition.

b. If the AT END phrase is sbecified in the statement causing the condi-
tion, control is transferred to the AT END imperative-statement. Any

USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be

specified, either explicitly or implicitly, for this file. That USE proce-

dure is executed.

Following the unsuccessful execution of any READ statement, the con-

tents of the associated record area and the position of the current record

pointer are undefined.

Procedure Division

READ (Relative)

Cpnfinued

10. When the AT END condition has been recognized, a Format 1 READ

11.

12.

. 13.

statement for that file must not be executed without first executing one of

the following:

a. A successful CLOSE statement followed by the execution of a success-

ful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

For a file for which dynamic access mode is specified, a Format 1 READ

statement with the NEXT phrase specified causes the next logical record

to be retrieved from the file (as described in General Rule 2).

If the RELATIVE KEY clause is specified, the execution of a Format 1

READ statement updates the contents of the RELATIVE KEY data item

such that it contains the relative record number of the record made avail-

able.

The execution of a Format 2 READ statement sets the current record

pointer to, and makes available, the record whose relative record number

is contained in the data item named in the RELATIVE KEY clause for the

file. An INVALID KEY condition can arise; the READ is considered un-

successful and the following actions are taken:

a. If the record specified by the contents of the RELATIVE KEY data

item does not exist, the value 23 is placed in the FILE STATUS data

item, if any, associated with this file to indicate an unsuccessful READ

operation.

b. If the contents of the RELATIVE KEY data item do not lie within the

range of the key values corresponding to the allocated space for this

file, a boundary violation exists. The value 24 is placed in the FILE

STATUS data item, if any, associated with the file to indicate an

unsuccessful READ operation.

c. If the INVALID KEY phrase is specified in the statement causing the

condition, control is transferred to the INVALID KEY imperative-

statement. Any USE procedure specified for this file is not executed.

d. If the INVALID KEY phrase is not specified, but a USE procedure 1s

specified, either explicitly or implicitly, for this file, that procedure 1s

executed.

When the INVALID KEY condition occurs, execution of the input-

output statement that recognized the condition is unsuccessful and the

file is not affected.

Procedure Division 5-85

READ (Relative)
Continued

14.A Format 1 or Format 2 READ statement issued to a file that is being

simultaneously accessed by another task can fail. The value 92 is placed

into the FILE STATUS data item, if one was specified for the file.

15.A Format 1 or Format 2 READ statement that fails for an undetermined

reason will cause the value 30 to be placed in the FILE STATUS data

item, if one was specified for the file.

5-86 Procedure Division

READ (Indexed)

5.29 READ Statement (Indexed)

Function

For sequential access, the READ statement makes available the next logical

record from a file. For random access, the READ statement makes available a

specified record from a mass storage file. For dynamic access, both sequential

and random access can be used to obtain the next logical record in a file.

General Format

Format 1

READ file-name [NEXT|RECORD[INTO identifier]

[; AT END imperative-statement]

Format 1

READ file-name RECORD [INTO identifier |

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical

records of various sizes, which are indicated by their record descriptions.

The storage area associated with identifier and the storage area that 1s the

record area associated with file-name must not be the same.

9 Data-name must be the name of a data item specified as a record key

associated with file-name.

3. Data-name can be qualified.

4. Use Format 1 for all files in sequential access mode.

5 Use Format 1 with the NEXT phrase specified for files in dynamic access

mode when records are to be retrieved sequentially.

6. Use Format 2 for files in random access mode or for files in dynamic access

mode when records are to be retrieved randomly.

7. The INVALID KEY phrase or the AT END phrase must be specified if no

applicable USE procedure is specified for file-name.

Procedure Division 5-87

READ (Indexed)

Continued

5-88

General Rules

1. The associated file must be open in the INPUT or I-O mode at the time

this statement is executed.

The record to be made available by a Format 1 READ statement is deter-

mined as follows:

a. The record pointed to by the current record pointer is made available,

provided that the current record pointer has been positioned by the

START or OPEN statement and the record is still accessible through

the path indicated by the current record pointer; if the record is no

longer accessible, which may have been caused by the deletion of the

record or a change in an alternate record key, the current record pointer

is updated to point to the next existing record within the established

key of reference. Then, that record is then made available.

b. If the current record pointer has been positioned by the execution of a

previous READ statement, the current record pointer is updated to

point to the next existing record in the file within the established key of

reference. Then, that record is made available.

Regardless of the method used to overlap access time with processing time,

the concept of the READ statement is unchanged in that a record is avail-

able to the object program prior to the execution of any statement follow-

ing the READ statement.

When the logical records of a file are described with more than one record

description, these records automatically share the same storage area; this

is equivalent to an implicit redefinition of the area. The contents of any

data items that lie beyond the range of the current data record are unde-

fined at the completion of the execution of the READ statement.

If the INTO phrase is specified, the record being read is moved from the

record area to the area specified by identifier according to the rules speci-

fied for the MOVE statement without the CORRESPONDING phrase.

The implied MOVE does not occur if the execution of the READ statement

was unsuccessful. Any subscripting or indexing associated with identifier 1s

‘evaluated after the record has been read and immediately before it is

moved to the data item.

When the INTO phrase is used, the record being read is available in both

the input record area and the data area associated with identifier.

If, at the time of execution of a Format 1 READ statement, the position of

current record pointer for that file is undefined, the execution of that

READ statement is unsuccessful. The FILE STATUS data item, if any,

associated with the file is set to one of the values described in General

Rules 15, 16, or 17.

Procedure Division

READ (Indexed)

Continued

8. If, at the time of the execution of a Format 1 READ statement, no next

logical record exists in the file, the AT END condition occurs, and the

execution of the READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are taken

in the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this

file, to indicate an AT END condition.

b. If the AT END phrase is specified in the statement causing the condi-

tion, control is transferred to the AT END imperative statement. Any

USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be

specified, either explicitly or implicitly, for this file, and that procedure

is executed. |

Following the unsuccessful execution of any READ statement, the con-

tents of the associated record area and the position of the current record

pointer are undefined. For indexed files the key or reference is also unde-

fined.

10.When the AT END condition has been recognized, a Format 1 READ

11.

12.

statement for that file must not be executed without first executing one of

the following:

a. A successful CLOSE statement followed by the execution of a success-

ful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

For a file for which dynamic access mode is specified, a Format 1 READ

statement with the NEXT phrase specified causes the next logical record

to be retrieved from that file as described in General Rule 2.

For an indexed file being sequentially accessed, records having the same
duplicate value in an alternate record key that is the key of reference are

made available in the same order in which they are released by execution

of WRITE statements or by execution of REWRITE statements that cre-

ate such duplicate values.

Procedure Division 5-89

READ (Indexed)

5-90

Continued

13.1If the KEY phrase is specified in a Format 2 READ statement for an

indexed file, data-name is established as the key of reference for this

retrieval. If the dynamic access mode is specified, this key of reference is

also used for retrievals by any subsequent executions of Format 1 READ

statements for the file until a different key of reference is established for it.

14.1f the KEY phrase is not specified in a Format 2 READ statement, the

15.

16.

17.

prime record key is established as the key of reference for this retrieval. If

the dynamic access mode is specified, this key of reference is also used for

retrievals by any subsequent executions of Format 1 READ statements for

the file until a different key is established for the file.

Execution of a Format 2 READ statement causes the value of the key of

reference to be compared with the value contained in the corresponding

data item of the stored records in the file. When the first record having an

equal value is found, the current record pointer is positioned to this record,

making it available for processing. If no record containing the key value is

found, an INVALID KEY condition exists.

When the INVALID KEY condition is recognized, actions are taken in the

following order:

a. The value 23 is placed into the FILE STATUS data item (if specified

for this file) to indicate an INVALID KEY condition.

b. If the INVALID KEY phrase is specified in the statement causing the

condition, control is transferred to the INVALID KEY imperative-

statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE procedure is

specified for this file, either explicitly or implicitly, that procedure is

executed.

When the INVALID KEY condition occurs, execution of the input-

output statement that recognized the condition is unsuccessful, and the

file is not affected.

A Format 1 or Format 2 READ statement issued to a record that is being

simultaneously accessed by another task can fail. The value 92 is placed

into the FILE STATUS data item, if one was specified for the file.

A Format 1 or Format 2 READ statement that fails for an undetermined

reason will cause a value of 30 to be placed in the FILE STATUS data

item, if one was specified for the file.

Procedure Division

REWRITE (Sequential)

5.30 REWRITE Statement (Sequential)

Function

The REWRITE statement logically replaces a record existing in a file on a

directory device.

General Format

REWRITE record-name [FROM identifier]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the

same storage area; record-name can be qualified.

Record-name is the name of a logical record in the File Section of the Data

Division.

General Rules

1. The file associated with record-name must be a file on a directory device

and must be open in the I-O mode at the time of execution of this state-

ment.

The last input-output statement executed for the associated file prior to

the execution of the REWRITE statement must have been a successfully

executed READ statement. The record that was accessed by the READ

statement is logically replaced. If the last input-output statement exe-

cuted for the associated file was not a successfully executed READ state-

ment, the REWRITE statement is not attempted, and the value 93 1is

placed in the FILE STATUS data item, if any, associated with the file to

indicate an unsuccessful REWRITE operation. The data in the record area

is unaffected.

The number of character positions in the record referenced by record-name

must be equal to the number of character positions in the record being

replaced.

The logical record released by a successful execution of the REWRITE

statement is no longer available in the record area unless the associated

file is named in a SAME RECORD AREA clause, in which case the logical

record is available to the program as a record of other files appearing in the

same SAME RECORD AREA clause as the associated I-O file as well as to

the file associated with record-name.

Procedure Division 5-91

REWRITE (Sequential)

Continued

5. The execution of a REWRITE statement with the FROM phrase is equiva-

lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the

FROM phrase. The contents of the record area prior to the execution of the

implicit MOVE statement have no effect on the execution of the

REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE

- statement.

7. A REWRITE statement that is unsuccessful for any reason will cause a 30

to be stored in the FILE STATUS data item, if one was specified for the

file.

5-92 Procedure Division

REWRITE (Relative)

5.31 REWRITE Statement (Relative)

Function

The REWRITE statement logically replaces a record existing in a file on a

directory device.

General Format

REWRITE record-name[FROM identifieflE INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the

same storage area.

Record-name is the name of a logical record in the File Section of the Data

Division; record-name can be qualified.

The INVALID KEY phrase must not be specified for a REWRITE state-

ment that references a file in sequential access mode.

The INVALID KEY phrase must be specified in the REWRITE statement

for files in the random or dynamic access mode for which an applicable

USE procedure is not specified.

General Rules

1. The file associated with record-name must be open in the I-O mode at the

time of execution of this statement.

For files in the sequential access mode, the last input-output statement

executed for the associated file prior to the execution of the REWRITE

statement must have been a successfully executed READ statement. The

record that was accessed by the READ statement is logically replaced. If

the last input-output statement executed for the associated file was not a

successfully executed READ statement, the REWRITE statement is not

attempted and the value 93 is placed in the FILE STATUS data item, if

any, associated with the file to indicate an unsuccessful REWRITE state-

ment. The data in the current record area is unaffected.

The number of character positions in the record referenced by record-name

must be equal to the number of character positions in the record being

replaced. |

4. The logical record released by a successful execution of the REWRITE

statement is no longer available in the record area unless the associated

file is named in a SAME RECORD AREA clause. In that case, the logical

record is available to the program as a record of other files appearing in the

same SAME RECORD AREA clause as the associated I-O file, as well as

to the file associated with record-name.

Procedure Division 5-93

REWRITE (Relative)

5-94

Continued

5. The execution of a REWRITE statement with the FROM phrase is equiva-

lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the

FROM phrase. The contents of the record area prior to the execution of the

implicit MOVE statement have no effect on the execution of the

REWRITE statement.

. The current record pointer is not affected by the execution of a REWRITE

statement.

. For a file accessed in either random or dynamic access mode, the record

specified by the contents of the RELATIVE KEY data item associated

with the file is logically replaced. An INVALID KEY condition can arise;

the REWRITE is considered unsuccessful, the data in the current record

area is unaffected, and the following action is taken:

a. If the record specified by the contents of the RELATIVE KEY data

item does not exist, the value 23 is placed in the FILE STATUS data

item, if any, associated with this file to indicate an unsuccessful

REWRITE operation.

h. If the INVALID KEY phrase is specified in the statement causing the

condition, control is transferred to the INVALID KEY imperative

statement. Any USE procedure specified for this file is not executed.

¢. If the INVALID KEY phrase is not specified, but a USE procedure 1s

specified, either explicitly or implicitly, for this file, that procedure 1s

executed,

. A REWRITE statement attempting to replace a record that is being

simultaneously accessed by another task will be unsuccessful. The FILE

STATUS data item, if one was specified for the file, is set to 92.

A REWRITE statement that is unsuccessful for an undetermined reason

causes a 30 to be stored in the FILE STATUS data item, if one was

specified for the file.

Procedure Division

REWRITE (Indexed)

5.32 REWRITE Statement (Indexed)

Function

The REWRITE statement logically replaces a record existing in a mass

storage file.

General Format

REWRITE record-name[FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the

same storage area.

Record-name is the name of a logical record in the File Section of the Data

Division and can be qualified.

The INVALID KEY phrase must be specified in the REWRITE statement

for files for which an applicable USE procedure is not specified.

General Rules

I.

3.

4.

The file associated with record-name must be open in the I-O mode at the

time of execution of this statement.

For files in the sequential access mode, the last input-output statement

executed for the associated file prior to the execution of the REWRITE

statement must have been a successfully executed READ statement. The

record that was accessed by the READ statement is logically replaced. If

the last input-output statement executed for the associated file was not a

successfully executed READ statement, the REWRITE statement 1s not

attempted and the value 93 is placed in the FILE STATUS data item, if

any, associated with the file to indicate an unsuccessful REWRITE state-

ment. The data in the current record area is unaffected.

The number of character positions in the record referenced by record-name

must be equal to the number of character positions in the record being

replaced.

The logical record released by a successful execution of the REWRITE

statement is no longer available in the record area unless the associated

file is named in a SAME RECORD AREA clause. In that case, the logical

record is available to the program as a record of other files appearing in the

same SAME RECORD AREA clause as the associated I-0O file. It is also

available to the file associated with record-name.

Procedure Division 5-95

REWRITE (Indexed)

5-96

Continued

5. The execution of a REWRITE statement with the FROM phrase is equiva-

lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the

FROM phrase. The contents of the record area prior to the execution ot the

implicit MOVE statement have no effect on the execution of the

REWRITE statement.

.- The current record pointer is not affected by the execution of a REWRITE

statement.

. For a file in the sequential access mode, the record to be replaced is

specified by the value contained in the prime record key. When the

REWRITE statement is executed, the value contained in the prime record

key data item of the record to be replaced must be equal to the value of the

prime record key of the last record read from this file. If this relationship

does not occur, then an INVALID KEY condition exists.

When the INVALID KEY condition is recognized, actions are taken in the

following order:

a. The value 21 is placed into the FILE STATUS data item, if specified

for this file to indicate an INVALID KEY condition.

b. If the INVALID KEY phrase is specified in the statement causing the

condition, control is transferred to the INVALID KEY imperative-

statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified but a USE procedure 1s

specified, either explicitly or implicitly, for this file, that procedure 1s

executed.

When the INVALID KEY condition occurs, execution of the input-

output statement that recognized the condition is unsuccessful and the

file is not affected.

. For a file in either random or dynamic access mode, the record specified

by the contents of the prime record key data item associated with the file

is logically replaced. If the value contained in the prime record key does

not equal that of any record stored in the file, an INVALID KEY condition

exists. The value 23 is placed in the FILE STATUS data item, if one was

specified for the file. See General Rules 7b and c.

. The contents of alternate record key data items of the record being rewrit-

ten can differ from those in the record being replaced. The Record Man-

agement Services utilize the contents of the record key data items during

the execution of the REWRITE statement to allow subsequent access of

Procedure Division

10.

11.

REWRITE (Indexed)
Continued

the record based upon any of the specified record keys. If the value con-

tained in an alternate record key for which a DUPLICATE clause has not

been specified is equal to that of a record already stored in the file, the

INVALID KEY condition exists. The value 02 is placed in the FILE

STATUS data item if one was specified for the file. See General Rules

7b and c.

A REWRITE statement attempting to replace a record that is being simul-

taneously accessed by another task will fail. The value 92 is placed into the

FILE STATUS data item if one was specified for the file.

A REWRITE statement that fails for an undetermined reason will cause

the value 30 to be placed in the FILE STATUS data item if one was

specified for the file.

Procedure Division 5-97

SEARCH

5.33 SEARCH Statement

Function

The SEARCH statement is used to search a table for a table element that

satisfies the specified condition and to adjust the associated index-name to

indicate that table element.

General Format

Format 1

‘1dentifier-2

Format 2

SEARCH identifier-1| VARYING {
index-name-1

[; AT END imperative-statement—l]

| o imperative-statement-2

; WHEN condition-1 : -

NEXT SENTENCE

imperative-statement-3

, WHEN condition-2 {
NEXT SENTENCE

SEARCH ALL identifier-1 [; AT END imperative-statement—l]

identifier-3

{IS EQUAL TO} 4 literal-1

data-name-1 IS = arithmetic-expression-1

: WHEN

condition-name-1

—

identifier-4 -}
| {IS EQUAL TO} literal-2

data-name-2 IS = arithmetic-expression-2

AND | |

_ condition-name-2 -

imperative:statement—Q

{ NEXT SENTENCE }
NOTE:

The required relational character = (equal sign) is not underlined to avoid

confusion with other symbols. | |

5-98 Procedure Division

SEARCH
Continued

Syntax Rules

1.

4.

In both Formats 1 and 2, identifier-1 must not be subscripted or indexed,

but its description must contain an OCCURS clause and an INDEXED

BY clause. The description of identifier-1 in Format 2 must also contain

the KEY IS phrase in its OCCURS clause.

Identifier-2, when specified, must be described as USAGE IS INDEX or as

a numeric elementary item without any positions to the right of the

assumed decimal point.

In Format 1, condition-1, condition-2, etc., can be any condition as

described in Section 5.6, Conditional Expressions.

In Format 2, all referenced condition-names must be defined as having

only a single value. The data-name associated with a condition-name must

appear in the KEY clause of idéntifier-1. Each data-name-1, data-name-2

may be qualified. Each data-name-1, data-name-2 must be indexed by

the first index-name associated with identifier-1 along with other indexes
or litérals as required, and must be referenced in the KEY clause of

identifier-1. Identifier-3, identifier-4, or identifiers specified in

arithmetic-expression-1, arithmetic-expression-2 must not be referenced

in the KEY clause of identifier-1 or be indexed by the first index-name
associated with identifier-1. o

In Format 2, when a data-name in the KEY clause of identifier-1 is refer-

enced, or when a condition-name associated with a data-name in the KEY

clause of identifier-1 is referenced, all preceding data-names in the KEY

clause of identifier-1 or their associated condition-names must also be

referenced.

General Rules

1. If Format 1 of the SEARCH is used, a serial search operation takes place,
starting with the current index setting.

a. If, at the start of executionof the SEARCH statement, the index-name

associated with identifier-1 contains a value that corresponds to an

occurrence number that is greater than the highest permissible occur- -

rence number for identifier-1, the SEARCH is terminated immediate-

ly. The number of occurrences of identifier-1, the last of which is the

highest permissible, is discussed in the OCCURS clause. (See Section

4.3.5, OCCURS Clause.) Then, if the AT END phrase is specified,

imperative-statement-1 is executed; if the AT END phrase is not speci-

fied, control passes to the next executable sentence.

Procedure Division 5-99

SEARCH
Continued

b. If, at the start of execution of the SEARCH statement, the index-name

associated with identifier-1 contains a value that corresponds to an

occurrence number that is not greater than the highest permissible

occurrence number for identifier-1 (the number of occurrences of

identifier-1, the last of which is the highest permissible is discussed in

the OCCURS clause; see Section 4.3.5, OCCURS Clause), the

SEARCH statement operates by evaluating the conditions in the order

that they are written, making use of the index settings, wherever speci-
fied, to determine the occurrence of those items to be tested.

If none of the conditions is satisfied, the index-name for identifier-1 is

incremented to obtain reference to the next occurrence. The process is

then repeated using the new index-name settings unless the new value

of the index-name settings for identifier-1 corresponds to a table ele-

ment outside the permissible range of occurrence values. In that case,

the search terminates, as indicated in 1la.

If one of the conditions is satisfied upon evaluation, the search termi-

nates immediately and the imperative-statement associated with that

condition is executed; the index-name remains set at the occurrence

that caused the condition to be satisfied.

2. In a Format 2 SEARCH, the results of the SEARCH ALL operation are

predictable only when the following conditions are met:

a. The data in the table is ordered in the same manner as described in the

ASCENDING/DESCENDING KEY clause associated with the

description of identifier-1.

b. The contents of the key(s) referenced in the WHEN clause are

sufficient to identify a unique table element.

3. If Format 2 of the SEARCH is used, a nonserial search may take place; the

initial setting of the index-name for identifier-1 is ignored, and its setting

is varied during the search operation, with the restriction that at no time is

- it set to a value that exceeds the value which corresponds to the last

element of the table or that is less than the value that corresponds to the

first element of the table. (The User’s Guide contains further information

on the SEARCH statement.) The length of the table is discussed in the

OCCURS clause. (See Section 4.3.5, OCCURS Clause.)

If any of the conditions specified in the WHEN clause cannot be satisfied

for any setting of the index within the permitted range, control is passed to

imperative-statement-1 of the AT END phrase, when specified, or to the

next executable sentence when this phrase is not specified; in either case

the final setting of the index is not predictable.

If all the conditions can be satisfied, the index indicates an occurrence that

allows the conditions to be satisfied, and control passes to imperative-

statement-2.

5-100 Procedure Division

SEARCH
Continued

_ After execution of imperative-statement-1, imperative-statement-2, or

imperative-statement-3 that does not terminate with a GO TO statement,

control passes to the next executable sentence.

. In Format 2, the index-name that is used for the search operation is the

first (or only) index-name that appears in the INDEXED BY phrase of

identifier-1. Any other index-names for identifier-1 remain unchanged.

. In Format 1, if the VARYING phrase is not used, the index-name that is

used for the search operation is the first (or only) index-name that appears

in the INDEXED BY phrase of identifier-1. Any other index-names for

identifier-1 remain unchanged.

. In Format 1, if the VARYING index-name-1 phrase is specified, and

if index-name-1 appears in the INDEXED BY phrase of identifier-1,

that index-name is used for this search. If this is not the case, or if the

VARYING identifier-2 phrase is specified, the first (or only) index-name

given in the INDEXED BY phrase of identifier-1 is used for the search.

In addition, the following operations will occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1

appears in the INDEXED BY phrase of another table entry, the occur-

rence number represented by index-name-1 is incremented by the same

amount as and at the same time as the occurrence number represented

by the index-name associated with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an

index data item, then the data item referenced by identifier-2 is incre-

"mented by the same amount as and at the same time as the index

associated with identifier-1 is incremented. If identifier-2 is not an

index data item, the data item referenced by identifier-2 is incre-

mented by the value one (1) at the same time as the index referenced

by the index-name associated with identifier-1 1s incremented.

If identifier-1 is a data item subordinate to a data item that contains an

OCCURS clause (providing for a 2 or 3 dimensional table), an index-name

must be associated with each dimension of the table through the

INDEXED BY phrase of the OCCURS clause. Only the setting of the

index-name associated with identifier-1 (and the data item identifier-2 or

index-name-1, if present) is modified by the execution of the SEARCH

statement. To search an entire 2 or 3 dimensional table, it 1s necessary to

execute a SEARCH statement several times. Prior to each execution of a

SEARCH statement, SET statements must be executed whenever

index-names must be adjusted to appropriate settings.

" A flowchart of the Format 1 SEARCH operation containing two WHEN

phrases follows:

Procedure Division 5-101

SEARCH
Continued

Figure 5-4: Format 1 SEARCH With Two WHEN Phrases

START

>
INDEXSETHNG?\\\ AT END* IMPERATIVE-)

HIGHEST PERMISSIBLE STATEMENT-1 ’
OCCURRENCE NUMBER

: |
coNDITIONT) TRUE IMPERATIVE- > .

/) STATEMENT-2

FALSE

L) *TRUE IMPERATIVE-
- S(COND'T'ON 2/ STATEMENT-3 J

FALSE

INCREMENT INDEX-NAME

FOR IDENTIFIER-1

(INDEX-NAME-1

IF APPLICABLE)

INCREMENT

INDEX-NAME-1

(FOR A DIFFERENT

TABLE) OR

IDENTIFIER-2

* These operations are options included only when specified in the SEARCH statement.
** Each of these control transfers is to the next executable sentence unless the imperative-

statement ends with a GO TO statement.

5-102 Procedure Division

SET

5.34 SET Statement

Function

The SET statement establishes a value in an index-name or index data-item.

General Format

Format 1

identifier-1 [, identifier-2] ... identifier-3

SET | TO (index-name-3

index-name-1 [, index-name-2] ... integer-1

Format 2

UP BY identifier-4

SET index-name-4 [, index-name-5] ...

DOWN BY integer-2

Syntax Rules

1. All references to index-name-1, identifier-1, and index-name-4 apply

equally to index-name-2, identifier-2, and index-name-5, respectively.

Identifier-1 and identifier-3 must name either an index data item or an

elementary item described as a numeric integer.

Identifier-4 must be described as an elementary numeric integer.

Integer-1 and integer-2 can be signed. Integer-1 must be positive.

General Rules

1. Index-names are considered related to a given table and are defined by

being specified in the INDEXED BY clause.

2. If index-name-3 is specified, the value of the index before the execution of

the SET statement must correspond to an occurrence number of an ele-

ment in the associated table. This is guaranteed by the fact that the

compiler automatically initializes all index-names with a value corre-

sponding to an occurrence number of one. .

If index-name-4, index-name-5 is specified, the value of the index both

before and after the execution of the SET statement must correspond to an

occurrence number of an element in the associated table. If index-name-1,

index-name-2 is specified, the value of the index after the execution of the

SET statement must correspond to an occurrence number of an element in

the associated table.

Procedure Division 5-103

SET

Continued

3. In Format 1, the following steps occur:

a. Index-name-1 is set to a value causing it to refer to the table element

that corresponds in occurrence number to the table element referenced

by index-name-3, identifier-3, or integer-1.

. If identifier-1 is an index data item, it can be set equal to the contents

of either the occurrence number portion of index-name-3 or to

identifier-3 where identifier-3 is also an index data item.

. If identifier-1 is not an index data item, it can be set only to an occur-

rence number that corresponds to the value of index-name-3. Neither

identifier-3 nor integer-1 can be used in this case.

. The process is repeated for index-name-2, identifier-2, etc., if specified.

Each time, the value of index-name-3 or identifier-3 is used as it was at

the beginning of the execution of the statement. Any subscripting or

indexing associated with identifier-1, etc., is evaluated immediately

before the value of the respective data item is changed.

4. In Format 2, the contents of index-name-4 are incremented (UP BY) or

decremented (DOWN BY) by a value that corresponds to the number of

occurrences represented by the value of literal-2 or identifier-4; thereafter,

the process is repeated for index-name-5, etc. Each time, the value of

identifier-4 is used as it was at the beginning of the execution of the

statement.

. Data in the following table represents the validity of various operand com-

binations in the SET statement. References after a slash mark (for exam-

ple, /3b) refer to the applicable general rule for the SET statement.

Table 5-7: Permissible Operand Combinations in the

SET Statement

Receiving Item

Sending Item Integer Data Item Index-Name Index Data Item

Integer Literal No/3¢ | Valid/3a No/3b

Integer Data Item No/3c Valid/3a No/3b

Index-Name Valid/3c Valid/3a Valid/3b

Index Data Item No/3c Valid/3a Valid/3b

5-104 Procedure Division

START (Relative)

5.35 START Statement (Relative)

Function

The START statement logically positions a relative file for subsequent

sequential retrieval of records.

General Format

- IS EQUAL TO T

IS =

IS GREATER THAN

START file-name |KEY } IS > data-name

IS NOT LESS THAN

L IS NOT < -

[. INVALID KEY imperative-statement]

NOTE:

The required relational characters > (greater than), < (less than), and =

(equal to) are not underlined to avoid confusion with other symbols such as

greater than or equal to.

Syntax Rules

1. File-name must be the name of a file with sequential or dynamic access.

9 The INVALID KEY phrase must be specified if no applicable USE

procedure is specified for file-name.

3. Data-name, if specified, must be the data item specified in the

RELATIVE KEY phrase of the associated file control entry.

General Rules

1. File-name must be open in the INPUT or I-O mode at the time of execu-

tion of the START statement.

9. If the KEY phrase is not specified, the relational operator IS EQUAL TO

is implied.

3. The type of comparison specified by the relational operator in the KEY

phrase occurs between a key associated with a record in the file referenced

by file-name and the data item referenced by the RELATIVE KEY clause

associated with file-name.

Procedure Division 5-105

START (Relative)

Continued

a. The current record pointer is positioned to the first logical record cur-

rently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an INVALID

KEY condition exists, the execution of the START statement is unsuc-

cessful, and the position of the current record pointer is undefined. The

following action is taken:

(1) If the contents of the RELATIVE KEY data item are within the

range of the key values corresponding to the allocated space for this

file, the value 23 is placed in the FILE STATUS data item, if any,

associated with the file.

(2) If the INVALID KEY phrase is specified in the statement causing

the condition, control is transferred to the INVALID KEY impera-

tive-statement. Any USE procedure specified for this file is not

executed.

(3) If the INVALID KEY phrase is not specified, but a USE procedure

1s specified, either explicitly or implicitly, for this file, that proce-

dure is executed.

When the INVALID KEY condition occurs, execution of the input-output

statement that recognized the condition is unsuccessful and the file is not

affected.

4. A START statement that repositions the current record pointer to a record

that is being simultaneously accessed by another task can fail. The FILE

STATUS data item, if one was specified for the file, is set to 92.

5. A START statement that is unsuccessful for an undetermined reason will

cause a 30 to be stored in the FILE STATUS data item, if one was speci-

fied for the file.

5-106 Procedure Division

START (Indexed)

5.36 START Statement (Indexed)

Function

The START statement provides a basis for logical positioning within an in-

dexed file, for subsequent sequential retrieval of records.

General Format

B IS EQUAL TO 7

IS =

START file-name EY)IS GREATER THAN data-name

IS > |

IS NOT LESS THAN

- IS NOT < -

[; INVALID KEY imperative-statement]

NOTE:

The required relational characters >, <, and = are not underlined to avoid

confusion with other symbols such as greater than or equal to.

Syntax Rules

1. File-name must be the name of a file with sequential or dynamic access.

2. The INVALID KEY phrase must be specified if no applicable USE proce-

dure is specified for file-name.

3. If file-name is the name of an indexed file, and if the KEY phrase is

specified, data-name can reference a data item specified as a record key

associated with file-name, or it can reference any data item of category

alphanumeric subordinate to the data-name of a data item specified as a

record key associated with file-name whose leftmost character position

corresponds to the leftmost character position of that record key data item.

General Rules

1. File-name must be open in the INPUT or I-O mode at the time that the

START statement is executed.

2. If the KEY phrase is not specified, the relational operator IS EQUAL TO

is implied. |

3. The type of comparison specified by the relational operator in the KEY

phrase occurs between a key associated with a record in the file referenced

by file-name and a data item as specified in General Rule 6. If file-name

Procedure Division 5-107

START (Indexed)

Continued

references an indexed file and the operands are of unequal size, comparison

proceeds as though the longer one were truncated on the right such that its

length is equal to that of the shorter. All other nonnumeric comparison

rules apply.

a. The current record pointer is positioned to the first logical record cur-

rently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an INVALID

KEY condition exists. The execution of the START statement is unsuc-

cessful, and the position of the current record pointer is undefined. The

FILE STATUS data item, if one was specified for the file, is set to 23.

If the KEY phrase is specified, the comparison described in General Rule 3

uses the data item referenced by data-name.

If the KEY phrase is not specified, the comparison described in General

Rule 3 uses the data item referenced in the RECORD KEY clause associ-

ated with file-name.

Upon completion of the successful execution of the START statement, a

key of reference is established and used in subsequent Format 1 READ

statements as follows:

a. If the KEY phrase is not specified, the prime record key specified for

file-name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is specified as a record

key for file-name, that record key becomes the key of reference.

c. If the KEY phrase is specified, and data-name is not specified as a

record key for file-name, the record key whose leftmost character posi-

tion corresponds to the leftmost character position of the data item

specified by data-name becomes the key of reference.

If the execution of the START statement is not successful, the key of

reference is undefined.

A START statement that repositions the current record pointer to a record

that is being simultaneously accessed by another task can fail. The FILE

STATUS data item, if one was specified for the file, is set to 92.

. A START statement that is unsuccessful for an undetermined reason

causes a 30 to be stored in the FILE STATUS data item, if one was

specified for the file.

5-108 Procedure Division

STOP

5.37 STOP Statement

Function

The STOP statement causes a permanent or temporary suspension of the

execution of the object program.

General Format

RUN

STOP

literal

Syntax Rules

1. The literal can be numeric or nonnumeric, or any figurative constant ex-

cept ALL. -

2. If the literal is numeric, then it must be an unsigned integer.

3. If a STOP RUN statement appears in a consecutive sequence of impera-

tive-statements within a sentence, it must appear as the last statement in

that sequence.

General Rules

1. If the RUN phrase is used, the standard ending procedure is executed, and

object program execution is terminated.

2. If STOP literal is specified, the literal is displayed on the user’s standard

display device. Control returns to the command language level without

terminating the image. Entering a VMS CONTINUE command causes

the image to resume at the next executable statement in sequence.

Interrupting program execution is discussed in the VAX/VMS Command

Language User’s Guide.

Procedure Division 5-109

STRING

5.38 STRING Statement

Function

The STRING statement provides concatenation of the partial or complete

contents of two or more data items into a single data item.

General Format

identifier-1)[, identifier-2 identifier-3

STRING ... DELIMITED BY {literal—B }
literal-1 |, literal-2 SIZE

identifier-4)\[, identifier-5 identifier-6Y ... |

, .. DELIMITED BY { literal-6

L literal-4 |, literal-5 SIZE

INTO identifier—’?[WITH POINTER identifier—8]

[; ON OVERFLOW imperative-statement]

Syntax Rules

. Each literal can be any figurative constant without the optional word ALL.

. All literals must be described as nonnumeric literals, and all identifiers,

except identifier-8, must be described implicitly or explicitly as USAGE

IS DISPLAY. “

3. Identifier-7 must represent an elementary alphanumeric data item with-

out editing symbols or the JUSTIFIED clause.

. Identifier-8 must represent an elementary numeric integer data item of

sufficient size to contain a value equal to the size, plus 1, of the area

referenced by identifier-7. The symbol P cannot be used in the PICTURE

character-string of identifier-8.

. Where identifier-1, identifier-2, ..., or identifier-6 is an elementary num-

eric data item, it must be described as an integer without the symbol P in

its PICTURE character-string.

General Rules

1. All references to identifier-1, identifier-2, identifier-3, literal-1, literal-2,

literal-3 apply equally to identifier-4, identifier-5, identifier-6, literal-4,

literal-5 and literal-6, respectively, and all recursions thereof.

5-110 Procedure Division

STRING
Continued

. Identifier-1, literal-1, identifier-2, literal-2 represent the sending items.

Identifier-7 represents the receiving item.

. Literal-3, identifier-3, indicate the character(s) delimiting the move. If

the SIZE phrase is used, the complete data item defined by identifier-1,

literal-1, identifier-2, literal-2 is moved. When a figurative constant is

used as the delimiter, it stands for a single-character, nonnumeric literal.

. When a figurative constant is specified as literal-1, literal-2, literal-3, it

refers to an implicit 1-character data item whose USAGE IS DISPLAY.

. When the STRING statement is executed, the transfer of data is governed

by the following rules:

a. Those characters from literal-1, literal-2, or from the contents of the

data item referenced by identifier-1, identifier-2 are transferred to the

contents of identifier-7 in accordance with the rules for alphanumeric

to alphanumeric moves, except that no space-filling will be provided.

(See Section 5.22, MOVE Statement).

b. If the DELIMITED phrase is specified without the SIZE phrase, the

contents of the data item referenced by identifier-1, identifier-2, or the

value of literal-1, literal-2, are transferred to the receiving data item in

the sequence specified in the STRING statement beginning with the

leftmost character and continuing from left to right until the end of the

data item is reached or until the character(s) specified by literal-3 or by

the contents of identifier-3 are encountered. The character(s) specified

by literal-3 or by the data item referenced by identifier-3 are not trans-

ferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire

contents of literal-1, literal-2, or the contents of the data item refer-

enced by identifier-1, identifier-2, are transferred, in the sequence

specified in the STRING statement, to the data item referenced by

identifier-7 until all data has been transferred or the end of the data

item referenced by identifier-7 has been reached.

. If the POINTER phrase is specified, identifier-8 is explicitly available to

you, and you are responsible for setting its initial value. The initial value

must not be less than one.

. If the POINTER phrase is not specified, General Rules 8 through 11 apply

as if the user had specified identifier-8 with an initial value of 1.

. When characters are transferred to the data item referenced by identi-

fier-7, the moves behave as though the characters were moved one at a

time from the source into the character position of the data item refer-

enced by identifier-7 designated by the value associated with identifier-8,

Procedure Division 5-111

STRING
Continued

and then identifier-8 was increased by one prior to the move of the next

character. The value associated with identifier-8 is changed during execu-

tion of the STRING statement only by the behavior specified above.

At the end of execution of the STRING statement, only the portion of the

data item referenced by identifier-7 that was referenced during the execu-

tion of the STRING statement is changed. All other portions of the data

item referenced by identifier-7 will contain data that was present before

this execution of the STRING statement. '

10.If at any point at or after initialization of the STRING statement, but

before execution of the statement is completed, the value associated with

identifier-8 is either less than one or exceeds the number of character

positions in the data item referenced by identifier-7, no (further) data is

transferred to the data item referenced by identifier-7, and the imperative

statement in the ON OVERFLOW phrase is executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions de-

scribed in General Rule 10 are encountered, control passes to the next

executable statement.

5-112 Procedure Division

SUBTRACT

5.39 SUBTRACT Statement

Function

The SUBTRACT statement is used to subtract one, or the sum of two or

more, numeric data items from an item and to set the value of an item equal

to the results.

General Format

Format 1

identifier-1) [,identifier-2

SUBTRACT ... FROM identifier-m [ROUNDED]

literal-1 Jiteral-2

[identifier—n [ROUNDED]]

[; ON SIZE ERROR imperative-statement|

Format 2

identifier-1) [,identifier-2 identifier-m

SUBTRACT ... FROM

literal-1 Jiteral-2 literal-m

GIVING identifier-n [ROUNDED], [identifier-o [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

Format 3

CORRESPONDING

SUBTRACT { } identifier-1 FROM identifier-2 [ROUNDED)]
CORR

[: ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that:

a. In Format 2, each identifier following the word GIVING must refer to
either an elementary numeric item or an elementary numeric edited

item.

b. In Format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

Procedure Division = 5-113

SUBTRACT
Continued

3. The composite of operands must not contain more than 18 digits. (See

Section 5.7.4, Arithmetic Statements.)

a. In Format 1, the composite of operands is determined by using all of the

operands in a given statement.

b. In Format 2, the composite of operands is determined by using all of the

operands in a given statement excluding the data item that follows the

word GIVING. |

c. In Format 3, the composite of operands is determined separately for

each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. In Format 1, all literals or identifiers preceding the word FROM are added

together, and this total is subtracted from the current value of

identifier-m, storing the result immediately into identifier-m, and

repeating this process respectively for each operand following identifier-m.

2. In Format 2, all literalsor identifiers preceding the word FROM are added

together, the sum is subtracted from literal-m or identifier-m, and the

result of the subtraction is stored as the new value of identifier-n,

identifier-o, etc.

3. If Format 3 is used, data items in identifier-1 are subtracted from and

stored into corresponding data items in identifier-2.

4, The compiler insures that enough places are carried (unless an

intermediate result exceeds the 18-digit limitation) to avoid losing

significant digits during execution. h

5-114 Procedure Division

UNSTRING

5.40 UNSTRING Statement
Function

The UNSTRING statement causes coritiguous data in a sending field to be
separated and pllaced into multiple receiving fields.

General Format

UNSTRING identifier-1

~ -

b identifier-2 identifier-3

DELIMITED BY [ALL] OR [ALL) }]
literal-1 literal-2

L L

INTO identifier—4f[DELIMITER IN identifier—5] [, COUNT IN identifier—G]

[, identifier-7 [,DELIMITER IN identifier-8] [, COUNT IN identifier-gj]

[WITH POINTER identifier-10] ~ [TALLYING IN identifier-11]

[: ON OVERFLOW imperative-statement]

Syntax Rules

1. Each literal must be a nonnumeric literal. In addition, each literal may be

any figurative constant without the optional word ALL.

2. Identifier-1, identifier-2, identifier-3, identifier-5, and identifier-8 must

be described, implicitly or explicitly, as an alphanumeric data item.

3. Identifier-4 and identifier-7 can be described as either alphabetic (except

that the symbol B cannot be used in the PICTURE character-string),

alphanumeric, or numeric (except that the symbol P cannot be used in the

PICTURE character-string), and must be described as USAGE IS

DISPLAY. ~

4. Identifier-6, identifier-9, identifier-10, and identifier-11 must be

described as elementary numeric integer data items (except that the

symbol P cannot be used in the PICTURE character-string).

5. No identifier can name a level 88 entry.

6. The DELIMITER IN phrase and the COUNT IN -phrase can be specified
only if the DELIMITED BY phrase is specified.

General Rules

1. All references to identifier-2, literal-1, identifier-4, identifier-5 and

identifier-6 apply equally to identifier-3, literal-2, identifier-7,

identifier-8, and identifier-9, respectively, and all recursions thereof.

Procedure Division 5-115

UNSTRING
Continued

2. Identifier-1 represents the sending area.

3. Identifier-4 represents the data recelvmg area. Identifier-5 represents the

receiving area for delimiters.

4. Literal-1 or the data item referenced by identifier-2 specifies a delimiter.

5. Identifier-6 represents the count of the number of characters within the

data item referenced by identifier-1 that were isolated by the delimiters

for the move to identifier-4. This value does not include a count of the

delimiter character(s).

6. The data item referenced by identifier-10 contains a value that indicates a

relative character position within the area defined by identifier-1.

7. The data item referenced by identifier-11 is a counter that records the
number of data items acted upon during the execution of an UNSTRING

statement.

8. When a figurative constant is used as the delimiter, it stands for a

1-character nonnumeric literal.

When the ALL phrase is specified, one occurrence, or two or more

contiguous occurrences of literal-1 (figurative constant or not) or the

contents of the data item referenced by identifier-2 are treated as if it were

only one occurrence, and this occurrence is moved to the receiving data

item according to the rules in General Rule 13d.

9. When any examination encounters two contiguous delimiters, the current

‘recelving area is either space or zero filled according to the description of

the receiving area.

10. Literal-1 or the contents of the data item referenced by identifier-2 can

contain any character in the computer character set.

11. Each literal-1 or each data item referenced by identifier-2 represents one

delimiter. When a delimiter contains two or more characters, all of the

characters must be present in contiguous positions of the sending item and

in the order given to be recognized as a delimiter.

12. When two or more delimiters are specified in the DELIMITED BY phrase,

an OR condition exists between them. Each delimiter is compared to the

sending field. If a match occurs, the character(s) in the sending field is

considered to be a single delimiter. No character(s)in the sendlng field can

be considered a part of more than one delimiter.

Each delimiter is applied to the sending field in the sequence specified in

the UNSTRING statement. :

13. When the UNSTRING statement is initiated, the current receiving area is

the data item referenced by identifier-4. Data is transferred from the data

5-116 Procedure Division

UNSTRING
Continued

item referenced by identifier-1 to the data item referenced by identifier-4

according to the following rules:

a. If the POINTER phrase is specified, the string of characters referenced

by identifier-1 is examined, beginning with the relative character

position indicated by the content of the data item referenced by

identifier-10. If the POINTER phrase is not specified, the string of

characters is examined, beginning with the leftmost character position.

If the DELIMITED BY phrase is specified, the examination proceeds

left to right until either a delimiter specified by the value of literal-1 or

the data item referenced by identifier-2 is encountered. (See General

Rule 11.) If the DELIMITED BY phrase is not specified, the number of

characters examined is equal to the size of the current receiving area.

However, if the sign of the receiving item 1s defined as occupying a

separate character position, the number of characters examined is one

less than the size of the current receiving area.

If the end of the data item referenced by identifier-1 1s encountered

before the delimiting condition is met, the examination terminates with

the last character examined.

The characters thus examined (excluding the delimiting character(s), if

any) are treated as an elementary alphanumeric data item and are

moved into the current receiving area according to the rules for the

MOVE statement. (See Section 5.22, MOVE Statement.)

. If the DELIMITER IN phrase is specified, the delimiting character(s)

are treated as an elementary alphanumeric data item and are moved

into the data item referenced by identifier-5 according to the rules for

the MOVE statement. (See Section 5.22, MOVE Statement.) If the

delimiting condition is the end of the data item referenced by

identifier-1, then the data item referenced by identifier-5 1s space

filled.

. If the COUNT IN phrase 1s specified, a value equal to the number of

characters thus examined (excluding the delimiter character(s), if any)

is moved into the area referenced by identifier-6, according to the rules

for an elementary move.

. If the DELIMITED BY phrase is specified, the string of characters 1s

further examined, beginning with the first character to the right of the

delimiter. If the DELIMITED BY phrase is not specified, the string of

characters is further examined, beginning with the character to the

right of the last character transferred.

After data is transferred to the data item referenced by identifier-4, the

current receiving area is the data item referenced by identifier-7. The

behavior described in paragraph 13b through 13f is repeated until either

all the characters are exhausted in the data item referenced by

identifier-1 or until there are no more receiving areas.

Procedure Division 5-117

UNSTRING
Continued

14.It is your responsibility to initialize the contents of the data items
associated with the POINTER phrase or the TALLYING phrase.

15.The contents of the data item referenced by identifier-10 will be

incremented by one for each character examined in the data item
referenced by identifier-1. When the execution of an UNSTRING

statement with a POINTER phrase is completed, the contents of the data

item referenced by identifier-10 will contain a value equal to the initial

value plus the number of characters examined in the data item referenced
by identifier-1.

16. When the execution of an UNSTRING statement with a TALLYING

phrase is completed, the contents of the data item referenced by
identifier-11 contain a value equal to its initial value, plus the number of
data-receiving items acted upon.

17. Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced

by identifier-10 is less than 1 or greater than the size of the data item
referenced by identifier-1.

b. If, during execution of an UNSTRING statement, all receiving areas
have been acted upon, and the data item referenced by identifier-1

contains characters that have not been examined.

18. When an overflow condition exists, the UNSTRING operation is

terminated. If an ON OVERFLOW phrase has been specified, the

imperative-statement included in the ON OVERFLOW phrase is

executed. If the ON OVERFLOW phrase is not specified, control is

transferred to the next executable statement.

19. The evaluation of subscripting and indexing for the identifiers is as
follows:

a. Any subscripting or indexing associated with identifier-1, identifier-10,
identifier-11 is evaluated only once, immediately before any data is

transferred as the result of the execution of the UNSTRING statement.

b. Any subscripting or indexing associated with identifier-2, identifier-3,
identifier-4, identifier-5, identifier-6 is evaluated immediately before

the transfer of data into the respective data item.

5-118 Procedure Division

USE

5.41 USE Statement

Function

The USE statement specifies procedures for input-output error handling that

supplement the standard procedures provided by the file system.

General Format

/ file-name-1 [file-name—Q]

EXCEPTION INPUT

USE AFTER STANDARD { } PROCEDURE ON (OUTPUT
ERROR 1.0

EXTEND

Syntax Rules

1. A USE statement, when present, must immediately follow a section

header in the declaratives section and must be followed by a period

followed by a space. The remainder of the section must consist of zero, one,

or more procedural paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely defines the

conditions calling for the execution of the USE procedures.

3. Appearance of a file-name in a USE statement must not cause the

simultaneous request for execution of more than one USE procedure.

4. The words ERROR and EXCEPTION are synonymous and can be used

interchangeably.

5. The files implicitly or explicitly referenced in a USE statement need not

all have the same organization or access.

General Rules

1. The designated procedures are executed by the input-output system after

completing the standard input-output error routine or upon recognition of

the INVALID KEY or AT END condition when the INVALID KEY phrase

or AT END phrase has not been specified in the input-output statement.

2. After execution of a USE procedure, control is returned to the invoking
routine.

Procedure Division 5-119

USE
Continued

3. Within a USE procedure, there must not be any reference to any non-

declarative procedures. Conversely, in the nondeclarative portion there

must be no reference to procedure-names that appear in the declarative

portion, except that PERFORM statements can refer to a USE statement

or to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement

that would cause the execution of a USE procedure that had previously

been invoked and had not yet returned control to the invoking routine.

5-120 Procedure Division

WRITE (Sequential)

5.42 WRITE Statement (Sequential)

Function

The WRITE statement releases a logical record for an output file. It can also

be used for vertical positioning of lines within a logical page.

General Format

WRITE record-name [FROM identifier— 1]

BEFORE {identifier—Q} [LINE] ']
{ } ADVANCING \linteger LINES
AFTER

- [PAGE]

~ END-OF-PAGE

L - AT imperative-statement

EQP

-

Syntax Rules

1. Record-name and identifier-1 must not refer to data that is allocated to

the same storage area. |

Record-name is the name of a logical record in the File Section of the Data

Division; record-name can be qualified.

When identifier-2 is used in the ADVANCING phrase, it must be the

name of an elementary integer data item.

Integer, or the value of the data item referenced by identifier-2, can be

Zero.

If the END-OF-PAGE phrase is specified, the LINAGE clause must be

specified in the file-description-entry for the associated file.

The words END-OF-PAGE and EOP are equivalent.

General Rules

1. The associated file must be open in the OUTPUT or EXTEND mode at

the time of the execution of this statement.

. The logical record released by the successful execution of the WRITE

statement is no longer available in the record area unless the associated

file is named in a SAME RECORD AREA clause. The logical record is also

available to the program as a record of other files referenced in the same

SAME RECORD AREA clause as the associated output file, as well as to

the file associated with record-name.

Procedure Division 5-121

WRITE (Sequential)

5-122

Continued

. The results of the execution of the WRITE statement with the FROM

phrase is equivalent to the execution of:

a. The statement:

MOVE identifier-1 T'O record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE state-

ment. |

After execution of the WRITE statement is complete, the information in

the area referenced by identifier-1 is available, even though the informa-

tion in the area referenced by record-name may not be.

. The current record pointer is unaffected by the execution of a WRITE

statement. '

. The maximum record size for a file is established at the tirme the file is

created and must not subsequently be changed.

. The number of character positions on a mass storage device required to

store a logical record in a file can or cannot be equal to the number of

character positions defined by the logical description of that record in the

program.

. The execution of the WRITE statement releases a logical record to the file

systems.

. Both the ADVANCING phrase and the END-OF-PAGE phrase allow con-

trol of the vertical positioning of each line on a representation of a printed

page. If the ADVANCING phrase is not used, automatic advancing will be

provided to act as if the user had specified AFTER ADVANCING 1 LINE.

If the ADVANCING phrase is used, advancing is provided as follows:

a. If identifier-2 is specified, the representation of the printed page is

advanced the number of lines equal to the current value associated with

identifier-2.

b. If integer is specified, the representation of the printed page is ad-

vanced the number of lines equal to the value of integer.

c. If the BEFORE phrase is used, the line is presented before the repre-

sentation of the printed page is advanced according to Rules a and b

above.

Procedure Division

WRITE (Sequential)

Continued

d. If the AFTER phrase is used, the line is presented after the representa-

tion of the printed page is advanced according to Rules a and b above.

e. If PAGE is specified, the record is presented on the logical page before

or after (depending on the phrase used) the device is repositioned to the

next logical page. If the record to be written is associated with a file

whose file-description-entry contains a LINAGE clause, the reposition-

ing is to the first line that can be written on the next logical page as

specified in the LINAGE clause. If the record to be written is associated

with a file whose file-description-entry does not contain a LINAGE

clause, the repositioning to the next logical page is accomplished in

accordance with the normal file system techniques. If page has no

meaning in conjunction with a specific device, then advancing will be

provided to act as if the user had specified BEFORE or AFTER (de-

pending on the phrase used) ADVANCING 1 LINE.

9. If the logical end of the representation of the printed page is reached

during the execution of a WRITE statement with the END-OF-PAGE

phrase, the imperative-statement specified in the END-OF-PAGE phrase

is executed. The logical end is specified in the LINAGE clause associated

with record-name.

10. An end-of-page condition is reached whenever the execution of a given

WRITE statement with the END-OF-PAGE phrase causes printing or

spacing within the footing area of a page body. This occurs when the

execution of such a WRITE statement causes the LINAGE-COUNTER to

equal or exceed the value specified by integer-2 or the data item referenced

by data-name-2 of the LINAGE clause, if specified. In this case, the

WRITE statement is executed and then the imperative-statement in the

END-OF-PAGE phrase is executed.

An automatic page overflow condition is reached whenever the execution

of a given WRITE statement (with or without an END-OF-PAGE phrase)

cannot be fully accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the

LINAGE-COUNTER to exceed the value specified by integer-1 or the

data item referenced by data-name-1 of the LINAGE clause. In this case,

the record is presented on the logical page before or after (depending on the

phrase used) the device is repositioned to the first line that can be written

on the next logical page as specified in the LINAGE clause. The impera-

tive-statement in the END-OF-PAGE clause, if specified, is executed af-

ter the record is written and the device has been repositioned.

If integer-2 or data-name-2 of the LINAGE clause is not specified, no end-

of-page condition distinct from the page overflow condition is detected. In
this case, the end-of-page condition and page overflow condition occur

simultaneously.

Procedure Division 5-123

WRITE (Sequential)
Continued

5-124

11.

12.

13.

If integer-2 or data-name-2 of the LINAGE clause is specified, but the

execution of a given WRITE statement would cause LINAGE-COUNTER

to simultaneously exceed the value of both integer-2 (or the data item

referenced by data-name-2) and integer-1 (or the data item referenced by

data-name-1), then the operation proceeds as if integer-2 (or data-name-2)

had not been specified.

When an attempt is made to write beyond the externally defined bounda-

ries of a sequential file, the Record Management Services will attempt to

extend the space allocated to the file on the medium. If that attempt is

successful, the WRITE will be executed normally. If it is unsuccessful, an

exception condition exists and the contents of the record area are unaffect-

ed. The following action takes place:

a. The value of the FILE STATUS data item, if any, of the associated file

is set to a value of 34 indicating a boundary violation.

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly

or implicitly specified for the file, that declarative procedure will then

be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not expli-

citly or implicitly specified for the file, the execution of the object

program is terminated.

After the recognition of an end-of-reel or an end-of-unit of an output file

that is contained on more than one physical reel/unit, the WRITE state-

ment performs the following operations:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

A WRITE statement that is unsuccessful for an undetermined reason will

cause a 30 to be stored in the FILE STATUS data item, if one was speci-

fied for the file.

Procedure Division

WRITE (Relative)

5.43 WRITE Statement (Relative)

Function

The WRITE statement releases a logical record for an output or input-output

file.

General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the

same storage area. |

Record-name is the name of a logical record in the File Section of the Data

Division; record-name can be qualified.

. The INVALID KEY phrase must be specified if an applicable USE proce-

dure is not specified for the associated file.

General Rules

1. The associated file must be open in the OUTPUT or I-O mode at the time

of the execution of this statement.

The logical record released by the successful execution of the WRITE

statement is no longer available in the record area unless the associated

file is named in a SAME RECORD AREA clause. The logical record is also

available to the program as a record of other files referenced in the same

SAME RECORD AREA clause as the associated output file, as well as to

the file associated with record-name.

. The results of the execution of the WRITE statement with_the FROM

phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit

MOVE statement have no effect on the execution of this WRITE state-

ment.

After execution of the WRITE statement is complete, the information in

the area referenced by identifier is available, even though the information

in the area referenced by record-name may not be.

Procedure Division 5-125

WRITE (Relative)

5-126

Continued

4.

10.

The current record pointer is unaffected by the execution of a WRITE

statement.

The maximum record size for a file is established at the time the file is

created and must not subsequently be changed.

The number of character positions on a storage medium required to store a

logical record in a file will be greater than the number of character posi-

tions defined by the logical description of that record in the program.

The execution of the WRITE statement releases a logical record to Record

Management Services. -

When a file is opened in the output mode, records can be placed into the

file by one of the following:

a. If the access mode is sequential, the WRITE statement will cause a

record to be released to the file control system. The first record will

have a relative record number of one, and subsequent records released

will have relative record numbers of 2, 3, 4, If the RELATIVE KEY

data item has been specified in the file control entry for the associated

file, the relative record number of the record just released will be placed

into the RELATIVE KEY data item during execution of the WRITE

statement.

h. If the access mode is random or dynamic, prior to the execution of the

WRITE statement, the value of the RELATIVE KEY data item must

be initialized in the program with the relative record number to be

associated with the record in the record area. That record is then re-

leased to Record Management Services by execution of the WRITE

statement.

When a file is opened in the I-O mode and the access mode is random or

dynamic, the WRITE statement allows records to be inserted in the associ-

ated file. The value of the RELATIVE KEY data item must be initialized

by the program with the relative record number to be associated with the

record in the record area. Execution of a WRITE statement then causes

the contents of the record area to be released to the Record Management

Services.

An INVALID KEY condition can arise; the WRITE statement is unsuc-

cessful, the contents of the record area are unaffected, and the following

actions take place.)

a. If the access mode is sequential, a boundary violation can occur if the

WRITE statement attempted to write beyond the allocated space for

the file and the Record Management Services was unsuccessful in ob-

taining additional space for the file. The value 24 is placed in the FILE

STATUS data item, if any, associated with the file.

Procedure Division

WRITE (Relative)

Continued

b. If the access mode is random or dynamic and the contents of the

RELATIVE KEY data item specifies a record which already exists in

the file, the value 22 is placed in the FILE STATUS data item, if any,

associated with the file.

c. If the access mode is random or dynamic and the contents of the

RELATIVE KEY data item do not lie in the range of key values

associated with the file, a boundary violation can occur if the Record

Management Services is unsuccessful in obtaining additional space for

the file. The value 24 is placed in the FILE STATUS data item, if any,

associated with the file.

11. A WRITE statement issued to a file that is being simultaneously accessed

by another task will be unsuccessful. The FILE STATUS data item, if one

was specified for the file, is set to 92.

12. A WRITE statement that is unsuccessful for an undetermined reason will

cause a 30 to be stored in the FILE STATUS data item, if one was

specified for the file.

Procedure Division 5-127

WRITE (Indexed)

5.44 WRITE Statement (Indexed)

Function

The WRITE statement releases a logical record for an output or input-output

file.

General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to data that is allocated to the

same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division.

3. The INVALID KEY phrase must be specified if an applicable USE

procedure is not specified for the associated file. |

General Rules

1. The associated file must be open in the OUTPUT or I-O mode at the time

of the execution of this statement.

2. The logical record released by the execution of the WRITE statement is no

longer available in the record area unless the associated file is named in a

SAME RECORD AREA clause or the execution of the WRITE statement

is unsuccessful. The logical record is also available to the program as a

record of other files referenced in the same SAME RECORD AREA clause

as the associated output file, as well as to the file associated with record-

name.

3. The results of the execution of the WRITE statement with the FROM

phrase is equivalent to the execution of:

a. The statement;

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

5-128 Procedure Division

WRITE (Indexed)

Continued

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit

MOVE statement have no effect on the execution of this WRITKE state-

ment.

After execution of the WRITE statement is complete, the information in

the area referenced by identifier is available, even though the information

in the area referenced by record-name may not be. (See General Rule 2).

The current record pointer is unaffected by the execution of a WRITE

statement.

The maximum record size for a file is established at the time the file is

created and must not subsequently be changed.

The number of character positions on a mass storage device required to

store a logical record in a file may or may not be equal to the number of

character positions defined by the logical description of that record in the

program.

The execution of the WRITE statement releases a logical record to the

Record Management Services.

Execution of the WRITE statement causes the contents of the record area

to be released. The Record Management Services utilizes the content of

the record keys in such a way that subsequent access of the record may be

made based upon any of those specified record keys.

The value of the prime record key must be unique within the records in the

file.

10. The data item specified as the prime record key must be set by the

11.

12.

13.

program to the desired value prior to the execution of the WRITE

statement.

If sequential access mode is specified for the file, records must be released

to the Record Management Services in ascending order of prime record key

values.

If random or dynamic access mode is specified, records may be released to

the Record Management Services in any program-specified order.

When the ALTERNATE RECORD KEY clause is specified in the file

control entry for an indexed file, the value of the alternate record key may

be non-unique only if the DUPLICATES phrase is specified for that data

item. In this case the Record Management Services provides storage of

records such that, when records are accessed sequentially, the order of

retrieval of those records is the order in which they were released to the

Record Management Services.

Procedure Division 5-129

WRITE (Indexed)

5-130

Continued

14. The INVALID KEY condition exists under the following circumstances:

NOTE:

The value in parentheses immediately following each

statement is the value that is placed in the FILE STATUS

data item, if one was specified for the file.

When sequential access mode is specified for a file opened in the output

mode and the value of the prime record key is not greater than the

value of the prime record key of the previous record, (21)

When the file is opened in the output or I-O mode and the value of the
prime record key is equal to the value of a prime record key of a record

already existing in the file, (22)

When the file is opened in the output or I-O mode and the value of an

alternate record key for which duplicates are not allowed equals the

corresponding data item of a record already existing in the file, (22)

. When the device to which the file is assigned has no more space to

contain the new record, (24)

. When an attempt is made to write a record that is being simultaneously

accessed by another task, (92)

When an unidentifiable error occurs. (30)

Procedure Division

- Chapter 6

The Library Module

Function

The library module provides a capability for specifying text that is to be

copied from a library file. The COPY statement incorporates this text into a

COBOL source program.

General Format

text—-name

COPY
literal-3

literal-1 literal-2]
REPLACING {, BY

word-1 word-2
_ i

Syntax Rules

1. Each text-name must be unique within the file directories available to the

compiler. (See Section 1.1.2.1, User-Defined Words.)

The COPY statement must be preceded by a space and terminated by the

separator period.

Word-1 or word-2 may be any single COBOL word.

COPY statement may occur in the source program anywhere a character-

string or a separator may occur except that a COPY statement must not

occur within a COPY statement.

Literal-3 is a non-numeric literal containing a file specification. The use of

text-name is equivalent to specifying "SYS$DISK:textname.LIB".

General Rules

1. When a COPY statement is specified, the library text associated with text-

name is copied into the source program. The entire COPY statement is

logically replaced, beginning with the reserved word COPY and ending

with the punctuation character period, inclusive.

6-1

6-2

2. If the REPLACING phrase is not specified, the library text is copied

unchanged.

If the REPLACING phrase is specified, the library text is copied and each

properly matched occurrence of word-1 and literal-1 in the library text is

replaced by the corresponding word-2, or literal-2.

. The comparison operation to determine text replacement occurs as follows:

Any separator comma, semicolon and/or space(s) preceding the leftmost

library text-word is copied into the source program. Starting with the

leftmost library text-word and the first word-1, or literal-1, that was speci-

fied in the REPLACING phrase, the entire REPLACING phrase operand

that precedes the reserved word BY is compared to a library text-word.

Word-1, or literal-1, matches the library text if, and only if, the text-word
that forms word-1, or literal-1 is equal, character for character, to the

library text-word.

If no match occurs, the comparison is repeated with each next successive

word-1, or literal-1, if any, in the REPLACING phrase until either a

match is found or there is no next successive REPLACING operand.

When all the REPLACING operands have been compared and no match

has occurred, the leftmost library text-word is copied into the source pro-

gram. The next successive library text-word is then considered as the

leftmost library text-word, and the comparison cycle starts again with the

first word-1, or literal-1, specified in the REPLACING phrase.

Whenever a match occurs between word-1, or literal-1, and the library

text, the corresponding word-2, or literal-2, is placed into the source pro-

gram. The library text-word immediately following the rightmost text-

word that participated in the match is then considered as the leftmost

library text-word. The comparison cycle starts again with the first word-1,

or literal-1 specified in the REPLACING phrase.

The comparison operation continues until the rightmost text-word in the

library text has either participated in a match or been considered as a

leftmost library text-word and participated in a complete comparison

cycle. ~

. Comment lines appearing in library text are copied unchanged into the

source program.

. The text produced as a result of the complete processing of a COPY state-

ment must not contain a COPY statement.

. Library text must conform to the rules for COBOL reference format. A

program written in conventional reference format must COPY only library

files also written in conventional reference format. COPY statements ap-

pearing in a file that was created using terminal format, can only refer to

library files that were created using the same format.

The Library Module

Appendix A

Reserved Words

The following is a list of reserved words taken from American National Stan-

dard COBOL, with some additional words that represent this compiler’s ex-

tensions to the COBOL language. Words that are not reserved by the standard

are indicated by an asterisk. All of the following words are reserved by the

compiler and must not be used as user-defined words.

*
*

ACCEPT

ACCESS

ACTUAL

ADD

ADDRESS

ADVANCING

AFTER

ALL

ALPHABETIC

ALSO

ALTER

ALTERNATE

AND

APPLY

ARE

AREA

AREAS

ASCENDING

ASCII

ASSIGN

AT

AUTHOR

BEFORE
* BEGINNING

* BINARY

BLANK

BLOCK

BOTTOM

BY

CALL

CANCEL

* CARD-PUNCH

* CARD-READER

CD

CF

CH

* CHANNEL

CHARACTER

CHARACTERS

CLOCK-UNITS

CLOSE

COBOL

CODE

CODE-SET

COLLATING

COLUMN

COMMA

COMMUNICATION

COMP

* COMP-1

* COMP-3

* COMP-6

COMPUTATIONAL

* COMPUTATIONAL-1

* COMPUTATIONAL-3

* COMPUTATIONAL-6

COMPUTE

CONFIGURATION

* CONSOLE

-
*

CONTAINS

CONTROL

CONTROLS

COPY

CORR

CORRESPONDING

COUNT

CURRENCY

DATA

DATE

DATE-COMPILED

DATE-WRITTEN

DAY

DE

DEBUG-CONTENTS

DEBUG-ITEM

DEBUG-LINE

DEBUG-NAME

DEBUG-SUB-1

DEBUG-SUB-2

DEBUG-SUB-3

DEBUGGING

DECIMAL-POINT

DECLARATIVES

DECSYSTEM-10

DEFERRED

DELETE

DELIMITED

DELIMITER

* DENSITY

DEPENDING

DEPTH

DESCENDING

DESCRIPTOR

DESTINATION

DETAIL

DISABLE

DISPLAY

* DISPLAY-6

DISPLAY-7

DIVIDE

DIVISION

DOWN

DUPLICATES

DYNAMIC

*
*

* EBCDIC

EGI

ELSE

EMI

ENABLE

END

ENDING

END-OF-PAGE

ENTER

ENTRY

ENVIRONMENT

EOP

EQUAL

EQUALS

ERROR

ESI

* EVEN

EVERY

* EXAMINE

EXCEPTION

EXIT

EXTEND

*
*

*

FD

FILE

FILE-CONTROL

FILE-LIMIT

FILE-LIMITS

FILLER

FINAL

FIRST

FOOTING

FOR

FORTRAN

FORTRAN-IV

FROM

*
¥
*

*
¥
*

GENERATE

GIVING

GO

* GO BACK

GREATER

Reserved Words

*

X

X

X

X

¥

GROUP

HEADING

HIGH-VALUE

HIGH-VALUES

I-0

[-O-CONTROL

ID

IDENTIFICATION

IF

IN

INDEX

INDEXED

INDICATE

INITIAL

INITIATE

INPUT

INPUT-OUTPUT

INSPECT

INSTALLATION

INTO

INVALID

IS

JUST

JUSTIFIED

KEY

KEYS

LABEL

LAST

LEADING

LEFT

LENGTH

LESS

LIMIT

LIMITS

LINAGE

LINAGE-COUNTER

LINE

LINE-COUNTER

LINE-PRINTER

LINES

LINKAGE

LOCK

LOW-VALUE

LOW-VALUES

MACRO

MAP4

MAP5

MAP6

MAP7

MAPS

MEMORY

MERGE

MESSAGE

*
*

¥

X

¥
*

*

MODE

MODULES

MOVE

MULTIPLE

MULTIPLY

NATIVE

NEGATIVE

NEXT

NO

NOT

NOTE

NUMBER

NUMERIC

OBJECT-COMPUTER

OCCURS

ODD

OF

OFF

OMITTED

ON

OPEN

OPTIONAL

OR

ORGANIZATION

OUTPUT

OVERFLOW

PAGE

PAGE-COUNTER

PAPER-TAPE-PUNCH

PAPER-TAPE-READER

PARITY

PDP-10

PERFORM

PF

PH

PIC

PICTURE

PLUS

POINTER

POSITION

POSITIVE

PRINT-CONTROL

PRINTING

PROCEDURE

PROCEDURES

PROCEED

PROCESSING

PROGRAM

PROGRAM-ID

QUEUE

QUOTE

QUOTES

RANDOM

RD

READ

* READ-AHEAD

RECEIVE

RECORD

* RECORDING

RECORDS

REDEFINES

REEL

* REFERENCE

REFERENCES

RELATIVE

RELEASE

REMAINDER

* REMARKS

REMOVAL

RENAMES

REPLACING

REPORT

REPORTING

REPORTS

RERUN

RESERVE

RESET

RETURN

REVERSED

REWIND

REWRITE

RF

RH

RIGHT

ROUNDED

RUN

SAME

SD

SEARCH

SECTION

SECURITY

SEEK

SEGMENT

SEGMENT-LIMIT

- SELECT

*

SEND

SENTENCE

SEPARATE

SEQUENCE

SEQUENTIAL

SET

SIGN

SIZE

SORT

SORT-MERGE

SOURCE

SOURCE-COMPUTER

SPACE

SPACES

SPECIAL-NAMES

STANDARD

STANDARD-1

START

STATUS

STOP

STRING

SUB-QUEUE-1

SUB-QUEUE-2

SUB-QUEUE-3

SUBTRACT

SUM

SUPPRESS

SWITCH

SYMBOLIC

SYNC

SYNCHRONIZED

TABLE

TALLY

TALLYING

TAPE

TERMINAL

TERMINATE

TEXT

THAN

THROUGH

THRU

*
¥
*

*

Reserved Words

TIME

TIMES

TO

TODAY

TOP

TRACE

TRAILING

TYPE

UNIT

UNLOCK

UNSTRING

UNTIL

UP

UPON

USAGE

USE

USER-NUMBER

USING

VALUE

VALUES

VARYING

WHEN

WITH

WORDS

WORKING-STORAGE

WRITE

WRITE-BEHIND

ZERO

ZEROES

ZEROS
¥

S
~

*x

|
*

+
A
V

A-3

Appendix B

Charact_er Sets

The following table shows the characters of the computer character set

(ASCII) with each character’s decimal and hexadecimal equivalent.

Characters belonging to set "C" constitute the COBOL character set. Set "L"

contains those characters that can appear in nonnumeric literals. The charac-

ters in set "X" delimit lines of the source text.

Table B-1: Character Sets

Decimal Hex Character Set Decimal Hex Character Set

000 00 NUL L 032 20 space C L

001 01 SOH L 033 21 ! L

002 02 STX L 034 22 " C L

003 03 ETX L 035 23 # L

004 04 EOT L 036 24 $ C L

005 05 ENQ L 037 25 Ce L

006 06 -~ ACK L 038 26 & L

007 07 BEL L 039 27 ’ L

008 08 BS L 040 28 (C L

009 09 HT C 041 29) C L

010 0A LF X 042 2A * C L

011 0B VT X 043 2B + C L

012 0C FF X 044 2C , C L

013 0D CR X 045 2D - C L

014 OE SO L 046 2E . C L

015 OF SI L 047 2F / C L

016 10 DLE L 048 30 0 C L

017 11 DC1 L 049 31 1 C L

018 12 DC2 L 050 32 2 C L

019 13 DC3 L 051 33 3 C L

020 14 DC4 L 052 34 4 C L

021 15 NAK L 053 35 5 C L

022 16 SYN L 054 36 6 C L

023 17 ETB L 055 37 7 C L

024 18 CAN L 056 38 8 C L

025 19 EM L 057 39 9 C L

026 1A SUB L 058 3A : L

027 1B ESC L 059 3B : C L

028 1C FS L 060 3C < C L

029 1D GS L 061 3D = C L

030 1E RS L 062 3E > C L

031 1F US L 063 3F ? L

Characters belonging to set "C" constitute the COBOL character set. Set "L" contains those

characters that can appear in nonnumeric literals. The characters in set "X" delimit lines of the

source text.

B-2 Character Sets

Table B-1: Character Sets (continued)

Decimal Hex Character Set Decimal Hex Character Set

064 40 @ L 096 60 L

065 4l A C L 097 61 a L

066 42 B C L 098 62 b L

067 43 C C L 099 063 C L

068 44 D C L 100 04 d L

069 45 E C L 101 65 e L

070 46 F C L 102 66 f L

071 47 G C L 103 67 g L

072 48 H C L 104 68 h L

073 49 I C L 105 69 1 L

074 4A J C L 106 6A j L

075 4B K C L 107 6B k L

076 4C L C L 108 6C] L

077 4D M C L 109 6D m L

078 4K N C L 110 ok n L

079 4F O C L 111 oF 0 L

080 50 P C L 112 70 D L

081 51 Q C L 113 71 q L

082 52 R C L 114 72 r L

083 53 S C L 115 73 S L

084 54 T C L 116 74 t L

085 59 U C L 117 75 u L

086 56 vV C L 118 76 \Y L

087 o7 %Y C L 119 77 W L

088 58 X C L 120 78 X L

089 59 Y C L 121 79 y L

090 5A Z C L 122 TA v/ L

091 HB [L 123 7B { L

092 5C \ L 124 7C | L

093 5D | L 125 D | L

094 S5E ’ L 126 TE - L

095 S5F _ L 127 7F DEL L

Character Sets B-3

Appendix C

File Status Key Values

Table C-1: Sequential I/0 File Status Key Values

Status Key

Code Meaning

00

10

30

34

91

93

94

95

96

97

98

No further information (successful).

End-of-file indicator detected.

Permanent error.

Permanent error (boundary error on WRITE statement).

File locked by another task.

REWRITE attempted without prior READ.

Improper operation attempted.

Allocation failure on OPENh (no file space on device).

No buffer space. Program tried to open a file that is sharing buffer space

(SAME AREA) with another file.

No such file;. The file named in an OPEN statement was not found.

Close error. Error discovered while in the process of closing the file.

C-2

Table C-2: Relative and Indexed I/0 File Status Key Values

Status Key

Code Meaning

00 No further information (successful).

02 A record written into an indexed file by a WRITE or REWRITE statement

contains at least one key value that was already present in another record.

10 End-of-file indicator detected.

21 Sequence error on primary key during the execution of a WRITE or REWRITE
statement.

22 Duplicate key error.

23 No such record.

24 Boundary error on WRITE statement.

30 Permanent error.

91 File locked by another task.

92 Record locked by another task.

93 REWRITE or DELETE attempted without prior READ.

94 Improper operation attempted.

95 Allocation failure (no file space on device).

96 No buffer space. Program tried to open a file that is sharing buffer space

(SAME AREA) with another file.

97 No such file. The file named in an OPEN statement was not found.

98 Close error. Error discovered while in the process of closing a file.

File Status Key Values

Glossary

Abbreviated Combined Relation Condition

The combined condition that results from the explicit omission of a common subject

or a common subject and common relational operator in a consecutive sequence of

relation conditions.

Abnormal Termination

The premature end of execution of a program due to the detection by the operating

system of a situation that prevents further successful operation of that program.

Access Mode

How records are to be operated upon in a file. The COBOL access modes are

SEQUENTIAL, RANDOM, and DYNAMIC.

Actual Decimal Point

The physical representation, using a period (.) or comma (,), of the decimal point

position in a data item. (See also Assumed Decimal Point.)

Alphabet-Name

A user-defined word that assigns a name to a specific character set and/or collating

sequence in the SPECIAL-NAMES paragraph of the Environment Division.

Alphabetic Character

A character from the following set of characters A-Z and the space. (See also Al-

phanumeric Character, Numeric Character.)

Alphanumeric Character

Any character in the computer character set. (See also Alphabetic Character and

Numeric Character.)

Alphanumeric Literal

(See Nonnumeric Literal.)

Glossary-1

Alternate Record Key

A key, other than the prime record key, whose contents identify a record in an

indexed file.

Arithmetic Expression

An identifier of a numeric elementary item, a numeric literal, such identifiers and

literals separated by arithmetic operators, two arithmetic expressions separated by

an arithmetic operator, or an arithmetic expression enclosed in parentheses. |

Arithmetic Operation

The process started by the execution of an arithmetic statement or the evaluation of

an arithmetic expression that results in a mathematically correct solution to that

expression, using the arguments presented.

Arithmetic Operator

A single character or a fixed 2-character combination of the character(s) that belong

to the following set:

Character = Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

*x Exponentiation

Ascending Key

A key upon whose values data is ordered, starting with the lowest key value and going

to the highest key value in accordance with the rules for comparing data items.

Assumed Decimal Point

A decimal point position that is not an actual character in the data item. The

assumed decimal point has logical meaning but no physical representation. (See also

Actual Decimal Point.)

AT END Condition

A condition that results during:

1. The execution of a READ statement for a séquentially accessed file when no next
logical record exists for the file or when an optional file is not present.

2. The execution of a SEARCH statement when the search operation terminates

without satisfying the condition specified in any of the associated WHEN phrases.

Bit

The smallest unit in a computer storage structure capable of expressing two distinct

alternatives.

Glossary-2

Block

A physical unit of data normally composed of one or more logical records. For mass

storage files, a block can contain a portion of a logical record. Block size has no direct

relationship to the file size within which the block is contained or to the size of the

logical record(s) that are either contained within the block or that overlap the block.

The term is synonymous with Physical Record.

Bottom Margin

An empty area that follows the page body.

Byte

Synonymous with Character Position.

Called Program

A program that is the object of a CALL statement. It 1s combined with the calling

program to produce a run unit.

Calling program

A program that executes a CALL to another program.

Character

The basic, indivisible unit of the COBOL language.

Character Data Item

A data item consisting entirely of Standard Data Format characters.

Character Position

The amount of physical storage required to store a single Standard Data Format

character whose usage is DISPLAY. —

Character-String

A character, or a sequence of contiguous characters, forming a COBOL word, a
literal, a PICTURE character-string, or a comment-entry.

Class Condition

The proposition, for which a truth value can be determined, that the content of an

item is wholly alphabetic or wholly numeric.

Clause

An ordered set of consecutive COBOL character-strings whose purpose 1s to specify

an entry attribute.

Glossary-3

COBOL Character Set

The set of characters that combine to form COBOL character-strings and separators.

The COBOL character set is listed in Appendix B. (See also Computer Character

Set.)

COBOL Word

(See Word.)

Collating Sequence

The sequence in which the characters acceptable to a computer are ordered for

purposes of sorting, merging, and comparing.

Column

A character position in a print line. The columns are numbered from 1, by 1, starting

at the leftmost character position of the print line and extending to the rightmost

position of the print line.

Combined Condition

A condition resulting from the connection of two or more conditions with the AND or

OR logical operator.

Comment-Entry

An entry in the Identification Division that can be any combination of characters

from the computer character set.

Comment Line

A source program line with an asterisk in the indicator area of the line. Areas A and B

can contain any characters from the computer character set. The comment line

serves only for program documentation. A special form of comment line causes page

ejection prior to printing the comment; it is identified by a stroke (/) in the indicator

area of the line.

Compile Time

The time at which a COBOL source program is translated by a COBOL compiler into

a COBOL object program.

Compiler

A program that translates a source program into an object program.

Compiler-Directing Statement

A statement beginning with a compiler-directing verb that causes the compiler to

take a specific action during compilation.

Glossary-4

Complex Condition

A condition in which one or more logical operators act upon one or more conditions.

(See Negated Simple Condition; Combined Condition; Negated Combined Condi-

tion.)

Computer Character Set

The set of all characters that can be represented or stored in the computer. As used in

this manual, the set sometimes excludes the source program line delimiters. The

computer character set is listed in Appendix B. (See also COBOL Character Set.)

Computer-Name

A system-name that identifies the computer on which the program is to be compiled

or run.

Concurrent Run Unit

A run unit, other than the current run unit, that has been initiated but not termi-

nated during the time in which the current run unit has been initiated but not

terminated.

Condition

A program status at execution time for which a truth value can be determined. Where

the term "condition" (condition-1, condition-2, ...) appears in these language specifi-

cations in or in reference to a general format, it is a conditional expression for which a

truth value can be determined. It consists of either: (1) a simple condition optionally

parenthesized, or (2) a combined condition consisting of simple conditions, logical

operators, and parentheses.

Condition-Name

Either a user-defined word that assigns a name to a subset of values that a condi-

tional variable can assume or a user-defined word assigned to a status of a switch or

device. When "condition-name" is used in the general formats, it represents a unique

data item reference consisting of a syntactically correct combination of a condition-

name and qualifiers, subscripts, and indexes, as required for uniqueness of reference.

Condition-Name Condition

The proposition, for which a truth value can be determined, that the value of a

conditional variable is a member of the value set attributed to a condition-name

associated with the conditional variable.

Conditional Expression

A simple condition or a complex condition specified in an IF, PERFORM, or

SEARCH statement. (See Simple Condition and Complex Condition.)

Glossary-5

Conditional Statement

A statement specifying that the truth value of a condition is to be determined and

that the subsequent action of the object program depends upon the truth value.

Conditional Variable

A data item whose value(s) has a condition-name assigned to it.

CONFIGURATION SECTION

A section of the Environment Division that describes overall specifications for source

and object computers.

Connective

A reserved word that:

1. Associates a data-name, paragraph-name, condition-name or text-name with its

qualifier.

2. Links two or more operands written in a series.

3. Forms conditions (logical connectives). (See Logical Operator.)

Counter

A data item used to store numbers or number representations in a way that permits

them to be increased or decreased by the value of another number, or to be changed

or reset to zero or to an arbitrary positive or negative value.

Currency Sign

The $ character in the COBOL character set.

Currency Symbol

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES

paragraph. If no CURRENCY SIGN clause is present in a COBOL source program,

the currency symbol is identical to the currency sign.

Current Record

The record available in the record area associated with the file.

Data Clause |

A clause in a data-description-entry in the Data Division of a COBOL program.

Data-Description-Entry

An entry in the Data Division of a COBOL program that is composed of a level-

number followed by a data-name, if required, and by a set of data clauses, as

required. |

Glossary-6

Data Item

A unit of data (excluding literals) defined by the COBOL program.

Data-Name

A user-defined word that names a data item described in a data-description-entry.

When used in the general formats, data-name represents a word that must not be

reference-modified, subscripted, indexed, or qualified unless specifically permitted

by the rules of the format.

Declarative-Sentence

A compiler-directing sentence consisting of a single USE statement terminated by

the separator period.

Declaratives

A set of one or more special-purpose sections written at the beginning of the Proce-

dure Division, the first of which is preceded by the key word DECLARATIVES and

the last of which is followed by the key words END DECLARATIVES. A declarative

is composed of a section header followed by a USE compiler-directing sentence,

followed by a set of zero, one, or more associated paragraphs.

De-edit

The logical removal of all editing characters from a numeric edited data item to

determine its unedited numeric value.

Delimiter

A character, or a sequence of contiguous characters, that identifies the end of a string

of characters and separates that string from the following string of characters. A

delimiter is not part of the string of characters that it delimits.

Descending Key

A key upon whose values data are ordered, in accordance with the rules for comparing

data items, starting with the highest value of the key down to the lowest value of the

key.

Digit Position |

The amount of physical storage required to store a single digit. The amount can vary,

depending on the usage specified in the data-description-entry that defines the data

item. If the data-description-entry specifies that usage is DISPLAY, then a digit

position is synonymous with a character position.

Glossary-7

Division

A collection of zero, one, or more sections or paragraphs, called the division body,

that are formed and combined in accordance with a specific set of rules. Each divi-

sion consists of the division header and the related division body. There are four

divisions in a COBOL program:

IDENTIFICATION

ENVIRONMENT

DATA

PROCEDURE

Division Header

A combination of words, followed by a separator period, that indicates the beginning

of a division. The division headers in a COBOL program are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [USING [data-name-1] ...] .

Dynamic Access

An access mode in which specific logical records can be obtained from or placed into a

mass storage file in a non-sequential manner and obtained from a file in a sequential

manner during the scope of the same OPEN statement. (See Random Access:

Sequential Access.)

Editing Character

A single character or a fixed 2-character combination belonging to the following set:

B space Z zero suppress

0 zero * check protect

+ plus $ currency sign

- minus , comma (decimal point)

CR credit . period (decimal point)

DB debit / stroke (virgule, slash)

Elementary Item

A data item that is described as not being further logically subdivided.

Empty Set

A set containing no member records.

End of Procedure Division

The physical position of a COBOL source program after which no further procedures

appear.

Glossary-8

Entry

Any descriptive set of consecutive clauses terminated by a separator period and

written in the Identification Division, Environment Division, or Data Division of a

COBOL program. |

Environment Clause

A clause that appears as part of an Environment Division entry.

Execution Time

(See Object Time.)

Extend Mode

The state of a file after execution of an OPEN statement, with the EXTEND phrase

specified for that file, and before the execution of a CLOSE statement without the

REEL or UNIT phrase for that file.

External Switch

A hardware or software device used to indicate that one of two alternate states exist.

Figurative Constant

A compiler-generated value referenced by using certain reserved words.

File

A collection of records.

File Clause

A clause that appears as part of a File Description (FD) entry in the Data Division of

a COBOL program.

FILE-CONTROL

The name of an Environment Division paragraph where the data files for a given

source program are declared.

File-Description-Entry

An entry in the File Section of the Data Division composed of the level indicator FD,

followed by a file-name, and then followed by a set of file clauses as required.

File-Name

A user-defined word that names a file described in a file-description-entry within the

File Section of the Data Division.

File Organization

The permanent logical file structure established when a file is created.

Glossary-9

FILE SECTION

The section of the Data Division that contains file-description-entries and their asso-

ciated record descriptions.

Fixed-Length Record

A record associated with a file whose file-description-entry requires that all records

contain the same number of character positions.

Footing Area

The position of the page body next to the bottom margin.

Format

A specific arrangement of a set of data.

Group Item

A data item that is composed of subordinate data items.

High-Order End

The leftmost character of a string of characters.

I-O-CONTROL

The name of an Environment Division paragraph in which object program require-

ments for specific input-output techniques, rerun points, sharing of same areas by

several data files, and multiple file storage on a single input-output device are speci-

fied.

-0 Mode

The state of a file after execution of an OPEN statement, with the I-O phrase

specified for that file, and before the execution of a CLOSE statement without the

REEL or UNIT phrase for that file.

Identifier

A syntactically correct combination of a data-name, reference modifier and quali-

fiers, subscripts and indexes, as required for uniqueness of reference, that names a

data item. The rules for "identifier" associated with the general formats may, howev-

er, specifically prohibit reference modification, qualification, subscripting, or index-

ing.

Imperative-Statement

A statement that begins with an imperative verb and specifies an unconditional
action to be taken. An imperative-statement can consist of a sequence of imperative-

statements.

Glossary-10

Index

A computer storage area or register, whose contents represent the identification of a

particular element in a table.

Index Data Item

A data item in which the values associated with an index-name can be stored.

Index-Name

A user-defined word that names an index associated with a specific table.

Indexed Data-Name

An identifier that is composed of a data-name, followed by one or more index-names

enclosed in parentheses.

Indexed File

A file with indexed organization.

Indexed Organization

The permanent logical file structure in which each record is identified by the value of

one or more keys within that record. |

Input File

A file that is opened in the input mode.

Input Mode

The state of a file after execution of an OPEN statement with the INPUT phrase

specified for that file and before the execution of a CLOSE statement without the file

REEL or UNIT phrase.

Input-Output File

A file that is opened in the I-O mode.

INPUT-OUTPUT SECTION

The section of the Environment Division that names the files and the external media

required by an object program and which provides information required for transmis-

sion and handling of data during execution of the object program.

Integer

A numeric literal or a numeric data item that does not include any character posi-

tions to the right of the assumed decimal point. Where the term appears in general

formats, it must not be a numeric data item, must not be signed, and must not be

zero unless explicitly allowed by the rules of the format.

Glossary-11

Intermediate Data Item

A signed numeric data item that contains the results developed during an arithmetic

operation before the final result is moved to the resultant-identifier, if any.

INVALID KEY Condition

At object time, a condition caused when the specific value of the key associated with

an indexed or relative file is determined to be invalid.

Key

A data item which identifies the location of a record, or a set of data items which
serve to identify the ordering of data.

Key of Reference

The prime or alternate key currently used to access records in an indexed file.

Key Word

A reserved word needed when the format in which the word appears is used in a

source program.

Level Indicator

Two alphabetic characters that identify a specific type of file or a position in a

hierarchy.

Level-Number

A user-defined word, expressed as a 1 or 2 digit number, which indicates the

hierarchical position of a data item or the special properties of a data-description-

entry. Level-numbers in the range 1 through 49 indicate the position of a data item in

the hierarchical structure of a logical record. Level-numbers in the range 1 through 9

may be written either as a single digit or as a zero followed by a significant digit.

Level-numbers 66, 77 and 88 identify special properties of a data-description-entry.

Library |

A file containing library text that can be included in a COBOL source program by the

COPY verb.

Library-Name

A user-defined word naming a COBOL library for compiler use in a given source

program compilation.

- Library Text

A sequence of character-strings and/or separators in a COBOL library.

Glossary-12

LINAGE-COUNTER

A special register whose value points to the current position in the page body.

Line

A division of a page representing one row of horizontal character positions.

LINKAGE SECTION

The section in the Data Division of the called program that describes data items

available from the calling program. These items may be referred to by the calling and

the called program.

Literal

A character-string whose value is implied by the ordered set of characters comprising

the string.

Logical Operator

One of the reserved words AND, OR, or NOT. In the formation of a condition, AND

or OR (or both) can be used as logical connectives. NOT can be used for logical

negation.

Logical Page

A conceptual entity consisting of the top margin, the page body, and the bottom

margin. |

Logical Record

The most inclusive data item. The level-number for a record is 01. A record may be

either an elementary item or a group item.

Low-Order End

The rightmost character of a string of characters.

Mass Storage

A storage medium where data can be organized and maintained in a sequential and

nonsequential manner.

Mass Storage File

A collection of records assigned to a mass storage medium.

Mnemonic-Name

A user-defined word associated in the Environment Division with a specific

implementor-name. |

Glossary-13

Native Character Set

The character set associated with the computer specified in the OBJECT-

COMPUTER paragraph.

Native Collating Sequence

The collating sequence associated with the computer specified in the OBJECT-

COMPUTER paragraph.

Negated Combined Condition

The NOT logical operator immediately followed by a parenthetical combined

condition.

Negated Simple Condition

The NOT logical operator immediately followed by a simple condition.

Next Executable Sentence

The next sentence to which control will be transferred after execution of the current

statement is complete.

Next Executable Statement

The next statement to which control will be transferred after execution of the current

statement is complete.

Next Record

The record which logically follows the current file record.

Next Record Pointer

A conceptual entity that either points to the next logical record, indicates the AT END

condition, or is set to indicate that no valid next record has been established.

Nonnumeric Item

A data item whose description permits its contents to be composed of any

combination of characters taken from the computer character set. Certain categories

of nonnumeric items may be formed from more restricted character sets.

Nonnumeric Literal

A literal bounded by quotation marks. The string of characters can include any

character in the computer character set (except certain source program line

delimiters), some or all of which may be represented by a symbolic-character-string.

Numeric Character

A character that belongs to the set of digits 0 through 9.

Glossary-14

Numeric Item

A data item whose description restricts its contents to a value represented by

characters chosen from the digits 0 through 9; if signed, the item can also contain a +,

-, or some other representation of an operational sign.

Numeric Literal

A literal composed of one or more numeric characters that may contain a decimal

point, an algebraic sign, or both. The decimal point must not be the rightmost

character. The algebraic sign, if present, must be the leftmost character.

OBJECT-COMPUTER

The name of an Environment Division paragraph that describes the computer

environment in which the object program is executed.

Object Program -

A set or group of executable machine language instructions and other material

designed to interact with data to provide problem solutions. In this context, an object

program is generally the machine language result of the operation of a COBOL

compiler on a source program. Where there is no danger of ambiguity, the word

"program" alone may be used in place of the phrase "object program".

- Object Time

When an object program is executed.

Open Mode

The condition of a file between the time an OPEN statement 1s 1ssued and the time a
CLOSE statement is executed.

Operand

The general definition of operand is a component which is operated upon. In this

manual, however, any lower-case word(s) that appears in a statement or entry format

may be considered an operand and, as such, is an implied reference to the data

indicated by the operand.

Operational Sign

An algebraic sign associated with a numeric data item or a numeric literal to indicate

whether its value is positive or negative.

Optional Word

A reserved word included in a specific format solely to improve the readability of the

language. Its presence is optional to the user when the format in which the word

appears 1s used in a source program.

Output File

A file that is opened in the output mode or extend mode.

Glossary-15

Output Mode

The state of a file after an OPEN statement is executed with the OUTPUT or

EXTEND phrase specified for that file and before the execution of a CLOSE

statement without the REEL or UNIT phrase for that file.

Padding Character

An alphanumeric character that fills the unused character positions in a physical

record.

Page

A vertical division of a report representing a physical separation of report data, the

separation being based on internal reporting requirements and/or external

characteristics of the reporting medium.

Page Body

That part of the logical page where lines can be written and/or spaced.

Page Footing

The logical end of a report page.

Page Heading

The logical beginning of a report page.

Paragraph

In the Procedure Division, a paragraph-name followed by a separator period and by

zero, one, or more entries. In the Identification and Environment Divisions, a

paragraph header followed by zero, one, or more entries.

Paragraph Header

A reserved word followed by the separator period that indicates the beginning of a

paragraph in the Identification and Environment Divisions. The permissible

paragraph headers are:

In the Identification Division:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

In the Environment Division:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

Glossary-16

Paragraph-Name

A user-defined word that identifies and begins a paragraph in the Procedure Division.

Phrase

An ordered set of one or more consecutive COBOL character-strings that forms a

portion of a COBOL procedural statement or of a COBOL clause.

Physical Record

(See Block.)

Prime Record Key

A key whose contents uniquely identify a record in an indexed file.

Procedure

A paragraph or group of logically successive paragraphs, or a section or group of

logically successive sections, in the Procedure Division.

Procedure-Name

A user-defined word used to name a paragraph or section in the Procedure Division.

It consists of a paragraph-name (which can be qualified) or a section-name.

Program-Name

A user-defined word that identifies a COBOL source program.

Pseudo-File-Name

A user-defined word that names a file residing on a multiple file tape for which no

file-description-entry is specified.

Punctuation Character

A character that belongs to the following set:

Character = Meaning

: comma

; semicolon

colon

. period (full stop)

" quotation mark

(left parenthesis

) right parenthesis

space

= equal sign

Glossary-17

Qualified Data-Name

An identifier composed of a data-name followed by one or more sets of the

connectives OF and IN followed by a data-name qualifier.

'Qualifier

1. A data-name which is used in a reference with another data-name at a lower level

in the same hierarchy.

2. A section-name which is used in a reference with a paragraph-name specified in

that section.

3. A library-name which is used in a reference with a text-name associated with that

library.

Random Access

An access mode in which the program-specified value of a key data item identifies the

logical record that is obtained from, deleted from or placed into a relative or indexed

file.

Record

(See Logical Record.)

Record Area

A storage area allocated to process the record described in a record-description-entry

in the File Section of the Data Division.

Record Description

(See Record-Description-Entry.)

Record-Description-Entry

The total set of data-description-entries associated with a particular record.

Record Key

A key, either the prime record key or an alternate record key, whose contents identitfy

a record within an indexed file.

Record-Name

A user-defined word that names a record described in a record-description-entry in

the Data Division of a COBOL program.

Record Type

The collection of records described by a record-description-entry.

Glossary-18

Reference Format

A format that provides a standard method for describing COBOL source programs.

Relation

(See Relational Operator.)

Relation Character

A character that belongs to the following set:

Character Meaning

greater than

less than

equal toI
A

V
v

Relation Condition

The proposition, for which a truth value can be determined, that the value of an

arithmetic expression or data item has a specific relationship to the value of another

arithmetic expression or data item. (See Relational Operator.)

Relational Operator

A reserved word, a relation character, a group of consecutive reserved words, or a

group of consecutive reserved words and relation characters used in the construction

of a relation condition. The permissible operators and their meanings are:

Relational Operator Meaning

IS INOT] GREATER THAN Greater than or not greater than

IS INOT] >

IS (NOT] LESS THAN Less than or not less than

IS [INOT] <

IS INOT] EQUAL TO Equal to or not equal to

IS INOT] =

Relative File

A file with relative organization.

Relative Key

A key whose contents identify a logical record in a relative file.

Relative Organization

The permanent logical file structure in which each record is uniquely identified by an

integer value greater than zero, which specifies the logical ordinal position of the

record in the file.

Glossary-19

Repeating Group

A group data item whose description contains an OCCURS clause or a group data

item subordinate to a data item whose description contains an OCCURS clause.

Reserved Word

A COBOL word that has special meaning to the compiler; a reserved word must not

appear in a program as a user-defined word or system-name.

Resultant-Identifier

A user-defined data item that is to contain the result of an arithmetic operation.

Section

A set of zero, one, or more paragraphs or entries, called a section body, the first of

which is preceded by a section header. Each section consists of the section header and

the related section body.

Section Header |

A combination of words followed by a separator period. It indicates the beginning of a

section in the Environment, Data, and Procedure Divisions.

In the Environment and Data Divisions, a section header is composed of reserved

words followed by a separator period. The permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

In the Procedure Division, a section header is composed of a section-name, followed

by the reserved word SECTION, followed by a segment-number (optional), followed

by a separator period.

Section-Name

A user-defined word that names a section in the Procedure Division.

Segment-Number

A user-defined word that classifies sections in the Procedure Division for purposes of

segmentation. Segment-numbers can contain only the characters "0", "1", ..., "9". A

segment-number can be expressed either as a 1 or 2 digit number.

Sentence

A sequence of one or more statements, the last of which is terminated by a separator

period.

Glossary-20

Separator

A character or two contiguous characters used to delimit character strings.

Sequential Access

An access mode in which logical records are obtained from or placed into a file in a

consecutive predecessor-to-successor logical record sequence determined by the order

of records in the file.

SequentialFile

A file with sequential organization.

-

Sequential Organization

The permanent logical file structure in which a record is identified by a predecessor-

successor relationship established when the record is placed into the file.

Sign Condition

The proposition, for which a truth value can be determined, that the algebraic value
of a data item or an arithmetic expression is either less than, greater than, or equal to

Zero.

Simple Condition

Any single condition chosen from the set:

relation condition

class condition

condition-name condition

switch-status condition

sign condition

(simple-condition)

SOURCE-COMPUTER

The name of an Environment Division paragraph that describes the computer

environment in which the program is to be compiled.

Source Program

Although it is recognized that a source program may be represented by other forms

and symbols, in this manual it always refers to a syntactically correct set of COBOL

statements. A COBOL source program begins with an Identification Division and

terminates with the end of the Procedure Division. In contexts where there is no

danger of ambiguity, the word "program" by itself may be used in place of the phrase

"source program". |

Glossary-21

Special Character

A character that belongs to the following set:

Character = Meaning

plus sign

minus sign

asterisk

stroke (virgule, slash)

equal sign

currency sign

: comma (decimal point)

: semicolon |

period (decimal point)

" quotation mark

(left parenthesis

) right parenthesis

> greater than symbol

< less than symbol

! exclamation point -

number sign

%

&

4
e
~

*

|

percent

ampersand

apostrophe

colon

? question mark

@ commercial at

Special-Character Word

A reserved word that is an arithmetic operator or a relation character.

SPECIAL-NAMES

The name of an Environment Division paragraph in which hardware devices are

related to user-specified mnemonic-names.

Special Registers

Certain compiler-generated storage areas whose primary use is to store information

produced in conjunction with the use of specific COBOL features.

Standard Data Format

The concept used in describing data in a COBOL Data Division under which the

characteristics or properties of the data are expressed in a form oriented to the

appearance of the data on a printed page rather than a form oriented to the manner

in which the data is stored internally in the computer or on a particular external

medium.

Glossary-22

Statement

A syntactically valid combination of words and symbols, beginning with a verb,

written in the Procedure Division.

Subprogram

(See Called Program.)

Subscript

An integer whose value identifies a particular element in a table.

Subscripted Data-Name

An identifier that is composed of a data-name followed by one or more subscripts

enclosed in parentheses.

Switch-Status Condition

The proposition, for which a truth value can be determined, that a specified switch,

capable of being set to an ON or OFF status, has been set to a specific status.

Symbolic-Character

A group of from one (1) to thirty (30) characters combined from the letters A through Z

and the numbers 1 through 9, used in a nonnumeric literal to represent a specific

character in a particular character set.

Symbolic-Character-String

A symbolic-character or a group of symbolic-characters that appears within a

nonnumeric literal enclosed in quotation marks and separated from each other by

either the separator comma or space. Each symbolic-character represents a character

within a given character set.

System-Name

A COBOL word used to communicate with the operating environment.

Table

A set of logically consecutive items of data defined in the Data Division of a COBOL

program by means of the OCCURS clause.

Table Element

A data item that belongs to the set of repeated items comprising a table.

Text-Name

A user-defined word that identifies library text.

Glossary-23

Text-Word

Any character-string or separator, except space, in a COBOL library.

- Top Margin

An empty area that precedes the page body.

Truth Value

The representation of the result of the evaluation of a condition in terms of one of two

values: True or False.

Unary Operator

A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an

arithmetic expression and that has the effect of multiplying the expression by +1 or

-1, respectively. |

Unsuccessful Execution

The attempted execution of a statement that does not result in the execution of all

the operations specified by that statement. The unsuccessful execution of a

statement does not affect any data referenced by that statement, but may affect

status indicators.

User-Defined Word

A COBOL word that must be supplied by the user to satisfy the format of a clause or

statement.

Variable

A data item whose value may be changed by execution of the object program. A

variable used in an arithmetic expression must be a numeric elementary item.

Variable-Length Record

A record associated with a file whose file-description-entry permits records to contain

a varying number of character positions.

Variable-Occurrence Data Item

A variable-occurrence data item is a table element that is repeated a variable number

of times. Such an item must contain a Format 2 OCCURS clause in its data-

description-entry or be subordinate to such an item.

Verb

A word that expresses an action to be taken by a COBOL compiler or object program.

Glossary-24

Word

A syntactically correct character-string of not more than 30 characters. A user-

defined word, system-name, or reserved word.

WORKING-STORAGE SECTION

The section of the Data Division that describes working-storage data items and

constants composed either of noncontiguous items or working-storage records or both.

Glossary-25

Index
Boldface page numbers indicate primary entries.

Abbreviated combined condition, 5-21

ACCEPT, 5-5, 5-6, 5-27, 5-28, 5-109

ACCESS MODE, 3-8, 3-9

Access mode, 3-6

dynamic, 3-7

random, 3-7

sequential, 3-7

ADD, 5-5, 5-6, 5-25, 5-29, 5-30

Addition, 5-13

ADVANCING, 3-15, 5-121, 5-122, 5-123

AFTER, 5-73, 5-75

Algebraic sign, 4-17

Alignment, 4-44

standard rules, 4-18

ALL, 1-3

Alphabet-name, 3-4, 3-5, 4-7

ALPHABETIC, 5-18

Alphabetic PICTURE, 4-29

Alphanumeric

category, 1-5

comparison, 5-16

edited PICTURE, 4-30

literal, 1-5, B-1

PICTURE, 4-30

ALTER, 5-5, 5-6, 5-31, 5-48

ALTERNATE RECORD KEY, 3-9, 3-13,

5-129

AND, 1-3, 5-19, 5-20, 5-22

AND NOT, 1-3

APPLY, 3-14, 3-15

Area

Area A, 1-8, 1-10

Area B, 1-8, 1-10

comment indicator, 1-7, 1-8

continuation indicator, 1-7, 1-8

footing, 4-11

identification field, 1-8

sequence number, 1-7

Arithmetic

expression, 5-12

operator, 1-4, 5-13

statement, 5-5, 5-25

ASCENDING KEY, 5-100

ASCII character set, B-1

ASSIGN, 3-8, 3-9, 3-10

Assumed decimal point, 4-18

AT END, 5-81, 5-82, 5-83, 5-84, 5-87,

5-89, 5-119

Attribute

explicit, 5-12

implicit, 5-12

AUTHOR, 1-11, 2-1

Binary item, 4-18, 4-47

Blank lines, 1-9

BLANK WHEN ZERO, 4-19, 4-21, 4-22,

4-29

BLOCK CONTAINS, 4-4, 4-5, 4-6

Block size, 4-5, 4-6

Body, page, 4-11

Brace, 1-6

Bracket, 1-6

BY DESCRIPTOR, 5-32

BY REFERENCE, 5-32

BY VALUE, 5-32

Byte, fill, 4-45

CALL, 5-2, 5-3, 5-6, 5-32, 5-33

Called program, 4-3, 5-32, 5-47

Calling program, 5-32, 5-47

CARD-READER, 3-4

Category, 4-17, 4-29, 4-33

alphanumeric, 1-5

Character, 1-1, 1-2

representation, numeric, 4-17

sign, 1-4

special, 1-2

Character set, B-1

ASCII, B-1

COBOL, 1-1, 1-2, B-1

computer, 1-2, B-1

Character-string, 1-1, 1-2

Class, 4-17

condition, 5-18

Clause, 1-1

CLOSE, 5-5, 5-6

(indexed and relative), 5-39

(sequential), 5-34, 5-35, 5-36, 5-37, .

5-38

COBOL

character set, 1-1, 1-2, B-1

language elements, 1-1

word, 1-1, 1-2

CODE-SET, 3-5, 4-4, 4-7

Combined condition, 5-20

Comma, 1-3, 1-5, 1-6

Index-1

Comment

indicator area, 1-7, 1-8

lines, 1-9

Comment-entry, 2-1

Common phrases, 5-23

Comparison

alphanumeric, 5-16

index data item, 5-17

index-name, 5-17

numeric, 5-16

Compilation date, 2-3

Compiler-directing

sentence, 5-4

statement, 5-4, 5-6

Complex condition, 5-19

COMPUTATIONAL, 4-46, 4-47, 4-48

COMPUTATIONAL-3, 4-46, 4-47, 4-48

COMPUTE, 5-5, 5-6, 5-25, 5-40

Computer character set, 1-2, B-1

Condition

-abbreviated combined, 5-21

class, 5-18

combined, 5-20

complex, 5-19

condition-name, 5-18

evaluation rules, 5-22

negated combined, 5-20

negated simple, 5-20

relation, 5-15, 5-21

sign, 5-19

simple, 5-15

switch-status, 5-19

Condition-name, 1-2, 4-20, 4-25

condition, 5-18

qualification, 5-10

rules, 4-50

Conditional

expression, 5-14

sentence, 5-4

statement, 5-4, 5-6

variable, 5-18

CONFIGURATION SECTION, 1-11, 3-1, 3-2

Connective, 1-3

logical, 1-3

qualifier, 1-3

series, 1-3

CONSOLE, 3-4

Constant, figurative, 1-3, 1-4. See also Literal

Continuation

indicator area, 1-7, 1-8

of lines, 1-8

COPY, 5-6, 6-1, 6-2 '

CORRESPONDING, 5-24, 5-30, 5-58,

5-114

Index-2

COUNT IN, 5-115, 5-117

CURRENCY SIGN, 3-4, 3-5

Data

classes of, 4-17

incompatible, 5-26

movement statement, 5-6

Data description, 4-19

concepts, 4-15

entry, 1-12

Data-description-entry, 4-2

DATA DIVISION, 1-10, 4-1

Data Division, 4-1

entry, 1-12

Data-name, 1-2, 4-23

DATA RECORDS, 4-4, 4-8

DATE, 5-27, 5-28

DATE-COMPILED, 1-11, 2-1, 2-3

DATE-WRITTEN, 1-11, 2-1

Date, compilation, 2-3

DAY, 5-27, 5-28

Decimal point, 1-4

assumed, 4-18

DECIMAL-POINT, 3-4, 3-5

DECLARATIVES, 1-11, 1-12, 5-1, 5-3

Declaratives, 1-12, 5-1, 5-119, 5-120

DELETE, 5-5, 5-6, 5-41, 5-42, 5-69

DELIMITED BY, 5-111, 5-115, 5-116, 5-117

DELIMITER IN, 5-115, 5-117

Delimiter, source line, B-1

DESCENDING KEY, 5-100

DESCRIPTOR, 5-32

Direct indexing, 5-9

DISPLAY, 4-46, 4-48, 5-5, 5-6, 5-43

DISPLAY-6, 4-46

DISPLAY-7, 4-46

DIVIDE, 5-5, 5-6, 5-25, 5-44, 5-45,

5-46

Division, 1-1, 5-13

Data, 4-1

Environment, 3-1

header, 1-10, 1-11

Identification, 2-1

Procedure, 5-1

DOWN BY, 5-104

DUPLICATES, 3-9, 3-13, 5-97, 5-129

Dynamic access mode, 3-7

Editing, 4-33. See also PICTURE

fixed insertion, 4-33, 4-34

floating insertion, 4-33, 4-35

sign, 4-17

simple insertion, 4-33, 4-34

special insertion, 4-33, 4-34

zero suppression, 4-29, 4-33, 4-35, 4-36

Elementary item, 4-16

Ellipsis, 1-7

ELSE, 5-49

END DECLARATIVES, 1-12, 5-1, 5-3

END-OF-PAGE, 5-121, 5-123

End, Procedure Division, 5-1

Ending statement, 5-6

Entry, 1-1

data description, 1-12

Data Division, 1-12

point, 2-2

ENVIRONMENT DIVISION, 1-10, 3-1

Environment Division, 3-1

EOP, 5-121

EQUAL, 5-15, 5-22

ERROR, 5-119

EXCEPTION, 5-119

Execution, order of, 5-2

EXIT, 5-5, 5-6, 5-47, 5-74

EXIT PROGRAM, 5-47

Explicit

attribute, 5-12

reference, 5-11

synchronization, 4-44

Exponent, non-integer, 5-13, 5-40

Exponentiation, 5-13, 5-40

Expression

arithmetic, 5-12

conditional, 5-14

EXTEND, 5-64, 5-66

FD, 1-12, 4-2, 4-4, 4-25, 4-39

Figurative constant, 1-3, 1-4. See also Literal

numeric, 1-4

File

description, 4-4

indexed, 3-6, 3-12, 5-39, 5-41, 5-68,

5-87, 5-95, 5-107, 5-128, C-2

organization, 3-6, 3-7

physical aspects, 4-15

relative, 3-6, 3-12, 5-39, 5-41, 5-68,

5-83, 5-93, 5-105, 5-125, C-2

sequential, 3-6, 3-12, 5-34, 5-64, 5-80,

5-91, 5-121, C-1

specification, 4-14

File areas, sharing, 3-14

FILE-CONTROL, 1-12, 3-1, 3-8, 3-9,

3-10, 3-11, 3-12, 3-13

File-description-entry, 4-1, 4-2

File-name, 1-2

FILE SECTION, 1-11, 4-1, 4-2

FILE STATUS, 3-8, 3-9, 3-

5-38, 5-39, 5-41, 5-42, 5

5-80, 5-81, 5-82, 5-84, 5

10, 3-11,

67, 5-70,

86, 5-88
’ ’

FILE STATUS, (cont.)

5-89, 5-90, 5-91, 5-92, 5-93, 5-95,

5-96, 5-97, 5-106, 5-108, 5-124, 5-126,

5-127, 5-130, C-1

Fill byte, 4-45

FILLER, 4-19, 4-20, 4-23

Fixed insertion editing, 4-33, 4-34

Floating insertion editing, 4-33, 4-35

Footing area, 4-11

Format

general, 1-13

punctuation, 1-6

Function, 1-13

Function result, 5-32

General

format, 1-13

rules, 1-13

GIVING, 5-29, 5-30, 5-32, 5-45, 5-62,

5-113, 5-114

GO TO, 5-5, 5-6, 5-48

GREATER, 5-15, 5-22

Group item, 4-16

Header

division, 1-10, 1-11

paragraph, 1-11, 1-12

Procedure Division, 5-2

section, 1-11, 5-1

HIGH-VALUE, HIGH-VALUES, 1-3

Horizontal tab, 1-6, 1-9

I-0O, 5-64, 5-66, 5-68, 5-69

I-O-CONTROL, 1-12, 3-1, 3-14, 3-15

Identification

Division, 2-1

field, 1-8

IDENTIFICATION DIVISION, 1-10, 2-1

Identifier, 5-2, 5-10

IF, 5-6, 5-14, 5-49, 5-50

Imperative statement, 5-5

Implicit

attribute, 5-12

redefinition, 4-25, 4-39

reference, 5-11

synchronization, 4-44, 4-45

IN, 1-3, 5-7, 5-10

Incompatible data, 5-26

INDEX, 4-46, 5-99

Index, 4-3, 4-26, 5-9, 5-103

data item, 4-47, 4-48, 5-9

data item comparison, 5-17

Index-name, 1-2, 5-9, 5-73, 5-75

comparison, 5-17

INDEXED BY, 4-26, 5-99, 5-101, 5-103

Index-3

Indexed file, 3-6, 3-12, 5-39, 5-41, 5-68,

o-87, 5-95, 5-107, 5-128, C-2

Indexing, 5-9, 5-10

direct, 5-9

relative, 5-9

Indicator, level, 1-12, 4-2, 5-7

Initial values, 4-3, 4-49

INPUT, 5-64, 5-65, 5-66, 5-68, 5-69

INPUT-OUTPUT SECTION, 1-11, 3-1, 3-6

Input-output statement, 5-6

INSPECT, 5-5, 5-6, 5-51, 5-52, 5-53,

5-54, 5-55, 5-56, 5-57

INSTALLATION, 1-11, 2-1

INVALID KEY, 5-41, 5-83, 5-85, 5-87, 5-90,

5-93, 5-95, 5-96, 5-105, 5-106, 5-107,

5-119, 5-125, 5-126, 5-128, 5-130

Item

binary, 4-18, 4-47

elementary, 4-16

group, 4-16

JUSTIFIED, 4-19, 4-21, 4-24

KEY, 5-90, 5-99, 5-100, 5-105, 5-107,

5-108

KEY IS, 5-87

Key word, 1-2

Label checking, 5266

LABEL RECORDS, 4-4, 4-9

Language

elements, COBOL, 1-1

organization, 1-10

LESS, 5-15, 5-22

Level indicator, 1-12, 4-2, 5-7

Level-number, 1-2, 1-12, 4-16, 4-19,

4-25, 5-7

Level-number 01, 4-25

Level-number 66, 4-25, 4-40

Level-number 77, 4-25

Level-number 88, 4-25

Levels, 4-16

Library module, 6-1

LINAGE, 3-15, 4-4, 4-10, 4-11, 4-12,

5-121, 5-123

LINAGE-COUNTER, 1-3, 4-11, 4-12, 5-123

LINE-PRINTER, 3-4

Lines

blank, 1-9

comment, 1-9

continuation, 1-8

short, 1-9

LINKAGE SECTION, 1-11, 4-1, 4-3

Index-4

Literal, 1-4. See also Figurative constant

alphanumeric, 1-5 |

nonnumeric. See Literal, alphanumeric

numeric, 1-4

LOCK, 5-36, 5-39

Logical

connective, 1-3

operator, 5-20

page, 4-10

record, 4-15

LOW-VALUE, LOW-VALUES, 1-3

Memory word, 4-44

Meta-language elements, 1-6, 1-7

Mnemonic-name, 1-2, 3-4, 5-27, 5-43

MOVE, 5-5, 5-6, 5-58, 5-59, 5-60,

5-61

MULTIPLE FILE, 3-14, 3-15

Multiple results, 5-25

Multiplication, 5-13

MULTIPLY, 5-5, 5-6, 5-25, 5-62, 5-63

Negated

combined condition, 5-20

simple condition, 5-20

NEGATIVE, 5-19

NEXT SENTENCE, 5-49

NO ADVANCING, 5-43

NO REWIND, 5-37, 5-65, 5-66

Non-integer exponent, 5-13

Noncontiguous working-storage, 4-2, 4-25

Nonnumeric literal. See Alphanumeric literal

NOT, 5-15, 5-18, 5-19, 5-20, 5-22

NUMERIC, 5-18

Numeric

character representation, 4-17

comparison, 5-16

edited PICTURE, 4-30

literal, 1-4

PICTURE, 4-29

OBJECT-COMPUTER, 1-12, 3-1, 3-3

OCCURS, 4-19, 4-26, 4-27, 4-28, 5-99,

5-100, 5-101

OF, 1-3, 5-7, 5-10

OFF STATUS, 3-4, 3-5

ON OVERFLOW, 5-112, 5-118

ON STATUS, 3-4, 3-5

OPEN, 5-5, 5-6

(indexed and relative), 5-68, 5-69,

5-70

(sequential), 5-64, 5-65, 5-66, 5-67

Operands, overlapping, 5-26

Operational sign, 4-17

Operator

arithmetic, 1-4, 5-13

logical, 5-20

relational, 5-15, 5-16

OPTIONAL, 3-8, 3-9, 5-37, 5-65, 5-81

Optional word, 1-3

OR, 1-3, 5-19, 5-20, 5-22

OR NOT, 1-3

ORGANIZATION, 3-8, 3-9, 3-10

Organization

file, 3-6, 3-7

language, 1-10

OUTPUT, 5-64, 5-65, 5-66, 5-68, 5-69

OVERFLOW, 5-112, 5-118

Overlapping operands, 5-26

Page

body, 4-11

logical, 4-10

PAPER-TAPE-PUNCH, 3-4

PAPER-TAPE-READER, 3-4

Paragraph, 1-1, 1-11, 5-2

header, 1-11, 1-12

Paragraph-name, 1-2, 1-11, 1-12, 5-1, 5-2

Parenthesis, 1-5, 1-6, 5-13, 5-14

PERFORM, 5-5, 5-6, 5-14, 5-71, 5-72,

o-713, 5-74, 5-75, 5-76, 5-77, 5-78,

5-79, 5-120

Period, 1-6

Phrases, common, 5-23

Physical aspects of a file, 4-15

Physical record, 4-15

PICTURE, 4-19, 4-20, 4-21, 4-29, 4-30,

4-31, 4-32, 4-33, 4-34, 4-35, 4-36,

4-37, 4-46. See also Editing

alphabetic, 4-29

alphanumeric, 4-30

alphanumeric edited, 4-30

numeric, 4-29

numeric edited, 4-30

precedence rules, 4-36, 4-37

symbol, 4-31

POINTER, 5-111, 5-117, 5-118

POSITION, 3-15

POSITIVE, 5-19

Precedence rules, PICTURE, 4-36, 4-37

PRINT-CONTROL, 3-14, 3-15

Procedure, 5-1

Procedure branching statement, 5-6

PROCEDURE DIVISION, 1-10, 5-1

Procedure Division, 5-1

body, 5-3

end of, 5-1

header, 5-2

Procedure-name, 5-1

Program

called, 4-3, 5-32, 5-47

calling, 5-32, 5-47

PROGRAM COLLATING SEQUENCE, 3-5
PROGRAM-ID, 1-11, 2-1, 2-2, 5-32

Program-name, 1-2, 2-2

Punctuation, format, 1-6

Qualification, 5-7, 5-8, 5-10

condition-name, 5-10

Qualifier, 5-7, 5-8

connective, 1-3

Quotation mark, 1-4, 1-5, 1-6

QUOTE, QUOTES, 1-3

Random access mode, 3-7

READ, 5-5, 5-6, 5-69

(indexed), 5-87, 5-88, 5-89, 5-90

(relative), 5-83, 5-84, 5-85, 5-86

(sequential), 5-80, 5-81, 5-82

READ NEXT, 5-69, 5

Record, 4-15

areas, sharing, 3-14

concepts, 4-15

description, 4-15

logical, 4-15

physical, 4-15

size, 4-13

working-storage, 4-2

RECORD CONTAINS, 4-4, 4-13

Record-description-entry, 4-1, 4-2

RECORD KEY, 3-9, 3-13, 5-108

Record-name, 1-2

REDEFINES, 4-19, 4-20, 4-38, 4-39

Redefinition, 4-38, 4-39

implicit, 4-25, 4-39

REEL, 5-34, 5-37, 5-65

REFERENCE, 5-32

Reference

explicit, 5-11

implicit, 5-11

uniqueness of, 5-6

REFORMAT utility, 1-7

Register, special, 1-3

Relation condition, 5-15, 5-21

Relational operator, 5-15, 5-16

Relative

file, 3-6, 3-12, 5-39, 5-41, 5-68, 5-83,

5-93, 5-105, 5-125, C-2

indexing, 5-9

RELATIVE KEY, 3-8, 3-10, 3-12, 5-42,

5-85, 5-126, 5-127

REMAINDER, 5-45, 5-46

REMOVAL, 5-37

-85
b

Index-5

RENAMES, 4-20, 4-25, 4-40, 4-41

REPLACING, 5-53, 5-54, 5-565, 5-56, 5-57

RESERVE, 3-8, 3-9, 3-12

Reserved word, 1-2, A-1

Result, function, 5-32

REWRITE, 5-5, 5-6, 5-69

(indexed), 5-95, 5-96, 5-97

(relative), 5-93, 5-94

(sequential), 5-91, 5-92

ROUNDED, 5-23, 5-40, 5-45, 5-62,

5-114

Rules

condition evaluation, 5-22

condition-name, 4-50

general, 1-13

PICTURE precedence, 4-36, 4-37

standard alignment, 4-18

syntax, 1-13

SAME, 3-14, 5-91, 5-93, 5-95, 5-121

SAME AREA, 3-14

SAME RECORD AREA, 3-14, 5-91, 5-93,

5-95, 5-121

SEARCH, 5-6, 5-14, 5-98, 5-99, 5-100,

5-101, 5-102

.Search, serial, 5-99

Section, 1-1, 5-1

header, 1-11, 5-1

Section-name, 1-2, 5-1

SECURITY, 1-11, 2-1

Segment-number, 1-2, 1-11

SELECT, 3-8, 3-9, 3-10, 3-11, 3-12,

3-13

Semicolon, 1-3, 1-5, 1-6

Sentence, 1-1, 5-2, 5-3, 5-4

compiler-directing, 5-4

conditional, 5-4

SEPARATE CHARACTER, 4-42, 4-43

Separator, 1-2, 1-5

comma, 1-5

horizontal tab, 1-6

parenthesis, 1-6

quotation mark, 1-6

semicolon, 1-5

space, 1-5

SEQUENCE, 3-5

Sequence number area, 1-7

Sequential

access mode, 3-7

file, 3-6, 3-12, 5-34, 5-64, 5-80, 5-91,

5-121, C-1

Serial search, 5-99

Series connective, 1-3

SET, 5-5, 5-6, 5-101, 5-103, 5-104

Index-6

Sharing

file areas, 3-14

record areas, 3-14

Short lines, 1-9

SIGN, 4-17, 4-19, 4-42, 4-43

Sign

algebraic, 4-17

character, 1-4

condition, 5-19

editing, 4-17

operational, 4-17

Sign-control symbol, 4-34

Simple

condition, 5-15 ‘

insertion editing, 4-33, 4-34

SIZE, 5-111

Size

block, 4-5, 4-6

record, 4-13

SIZE ERROR, 5-24, 5-40, 5-45, 5-46,

5-62

SOURCE-COMPUTER, 1-12, 3-1, 3-2

Source line delimiter, B-1

Source reference format, 1-7

SPACE, SPACES, 1-3

Special

character, 1-2

insertion editing, 4-33, 4-34

register, 1-3

Special-character word, 1-4

SPECIAL-NAMES, 1-12, 3-1, 3-4, 3-5,

5-19, 5-27

Specification, file, 4-14

Standard alignment rules, 4-18

START, 5-5, 5-6, 5-69

(indexed), 5-107, 5-108

(relative), 5-105, 5-106

Statement, 1-1, 5-2, 5-3, 5-4

arithmetic, 5-5, 5-25

categories, 5-5, 5-6

compiler-directing, 5-4, 5-6

conditional, 5-4, 5-6

data movement, 5-6

ending, 5-6

imperative, 5-5

input-output, 5-6

procedure branching, 5-6

table-handling, 5-6

Status

key 1, 3-10, 3-11

key 2, 3-11

STOP, 5-5, 5-6, 5-109

STOP literal, 5-109

STOP RUN, 5-37, 5-109

STRING, 5-5, 5-6, 5-110, 5-111, 5-112

Subscript, 4-27, 5-8, 5-9, 5-10

SUBTRACT, 5-5, 5-6, 5-113, 5-114

Subtraction, 5-13

SWITCH, 3-4, 3-5

Switch-status condition, 5-19

Symbol

PICTURE, 4-31

sign-control, 4-34

Synchronization

explicit, 4-44

implicit, 4-44, 4-45

SYNCHRONIZED, 4-19, 4-21, 4-44, 4-45

Syntax rules, 1-13

Tab, 1-6, 1-9

Table-handling statement, 5-6

Tables, defining, 4-27

TALLYING, 5-53, 5-54, 5-55, 5-56, 5-57

Terminal reference format, 1-10

Text-name, 1-2, 6-1

TIME, 5-27, 5-28

Truth value, 5-22

Underline, 1-6

Uniqueness of reference, 5-6

UNIT, 5-34, 5-37, 5-65

UNSTRING, 5-5, 5-6, 5-115, 5-116,

5-117, 5-118

UNTIL, 5-74

UP BY, 5-104

UPON, 5-43 '

USAGE, 4-19, 4-46, 4-47, 4-48

USE, 5-6, 5-41, 5-119, 5-120, 5-124

User-defined word, 1-2

USING, 4-3, 5-2, 5-3, 5-32

VALUE, 4-3, 4-19, 4-39, 4-49, 4-50,

4-51, 5-32

VALUE OF ID, 3-10, 4-4, 4-14

Value, truth, 5-22

Values, initial, 4-3, 4-49

VARYING, 5-72, 5-73, 5-75, 5-76, 5-71,

5-101

WHEN, 5-100,°5-101, 5-102

Word, 1-1

COBOL, 1-1, 1-2

key, 1-2

memory, 4-44

optional, 1-3

reserved, 1-2, A-1

special-character, 1-4

user-defined, 1-2

Working-storage

noncontiguous, 4-2, 4-25

records, 4-2

WORKING-STORAGE SECTION, 1-11, 4-1,

4-2, 4-3

WRITE, 5-5, 5-6, 5-69

(indexed), 5-128, 5-129, 5-130

(relative), 5-125, 5-126, 5-127

(sequential), 5-121, 5-122, 5-123,

5-124

ZERO, 5-19

Zero suppression editing, 4-29, 4-33,

4-35, 4-36

ZERO, ZEROS, ZEROES, 1-3

Index-7

VAX-11 COBOL-74 Language

Reference Manual

AA-C985A-TE

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

v O Assembly language programmer

O Higher-level language programmer

O Occasional programmer (experienced)

O User with little programming experience

0O Student programmer

O Other (please specify)

Name Date

Organization

Street

City State Zip Code

or

Country

- — — =—Do Not Tear - Fold Here and Tape — — — — — — — — —— . _ _ _ _ __ . . . — __ _ _

dlilgliltiall

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

— Do Not Tear - Fold Here and Tape — — — — — — —— _ . ——

No Postage

Necessary

if Mailed in the

United States

R
S
N
,

e
—
—
—
—

0

o
S
t

e
S
S
t

C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
i
n
e

e

e

e

e

]

dlilgliltlall

PRINTED IN USA

	A001
	A002
	A003
	A004
	A005
	A006
	A007
	A008
	A009
	A010
	A011
	A012
	A013
	A014
	A015
	A016
	A017
	A018
	A019
	A020
	A021
	A022
	A023
	A024
	A025
	A026
	A027
	A028
	A029
	A030
	A031
	A032
	A033
	A034
	A035
	A036
	A037
	A038
	A039
	A040
	A041
	A042
	A043
	A044
	A045
	A046
	A047
	A048
	A049
	A050
	A051
	A052
	A053
	A054
	A055
	A056
	A057
	A058
	A059
	A060
	A061
	A062
	A063
	A064
	A065
	A066
	A067
	A068
	A069
	A070
	A071
	A072
	A073
	A074
	A075
	A076
	A077
	A078
	A079
	A080
	A081
	A082
	A083
	A084
	A085
	A086
	A087
	A088
	A089
	A090
	A091
	A092
	A093
	A094
	A095
	A096
	A097
	A098
	A099
	A100
	A101
	A102
	A103
	A104
	A105
	A106
	A107
	A108
	A109
	A110
	A111
	A112
	A113
	A114
	A115
	A116
	A117
	A118
	A119
	A120
	A121
	A122
	A123
	A124
	A125
	A126
	A127
	A128
	A129
	A130
	A131
	A132
	A133
	A134
	A135
	A136
	A137
	A138
	A139
	A140
	A141
	A142
	A143
	A144
	A145
	A146
	A147
	A148
	A149
	A150
	A151
	A152
	A153
	A154
	A155
	A156
	A157
	A158
	A159
	A160
	A161
	A162
	A163
	A164
	A165
	A166
	A167
	A168
	A169
	A170
	A171
	A172
	A173
	A174
	A175
	A176
	A177
	A178
	A179
	A180
	A181
	A182
	A183
	A184
	A185
	A186
	A187
	A188
	A189
	A190
	A191
	A192
	A193
	A194
	A195
	A196
	A197
	A198
	A199
	A200
	A201
	A202
	A203
	A204
	A205
	A206
	A207
	A208
	A209
	A210
	A211
	A212
	A213
	A214
	A215
	A216
	A217
	A218
	A219
	A220
	A221
	A222
	A223
	A224
	A225
	A226
	A227
	A228
	A229
	A230
	A231
	A232
	A233
	A234
	A235
	A236
	A237
	A238
	A239
	A240
	A241
	A242
	A243
	A244
	A245
	A246
	A247
	A248
	A249
	A250
	A251
	A252
	A253
	A254
	A255
	A256
	A257
	A258
	A259
	A260
	A261
	A262
	A263
	A264
	A265
	A266
	A267
	A268
	A269
	A270
	A271
	A272
	A273
	A274
	A275
	A276
	A277
	A278

