dlifgliltlall

|
il
VAX-11 COBOL-74
Language
Reference Manual
Order No. AA-C985A-TE
iikl
il
0

January 1979

This document is intended primarily for reference use. It describes the VAX-11
COBOL-74 language.

VAX-11 COBOL-74
Language
Reference Manual
Order No. AA-C985A-TE

OPERATING SYSTEM AND VERSION: VAX/VMS V01.5
SOFTWARE VERSION: VAX-11 COBOL-74 V04

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license, and
may only be used or copied it in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 Digital Equipment Corporation

The postage-paid READER’S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC FOCAL
DECnet IAS
DECsystem-10 MASSBUS
DECSYSTEM-20 PDP
DECtape RSX
DECUS UNIBUS
DIBOL VAX

DIGITAL VMS

5/79-14

Contents

Page
Preface ix
Acknowledgments Ix
Chapter 1 Overview of the COBOL Language
1.1 COBOL Language Elements 1-1
1.1.1 COBOL Character Set 1-2
1.1.2 COBOL Words v 1-2
1.1.2.1 User-Defined Words. 1-2
1.1.2.2 Reserved Words. 1-2
1.1.3 Literalso 1-4
1.1.3.1 Numeric Literals 1-4
1.1.3.2 Alphanumeric Literals. 1-5
1.14 Separators. U 1-5
1.1.4.1 Space 1-5
1.1.4.2 Comma and Semicolon 1-5
1.1.4.3 Left and Right Parentheses 1-6
1.1.44 Quotation Marks 1-6
1.1.4.5 Horizontal Tab 1-6
1.1.5 Format Punctuation 1-6
1.2 Meta-Language Elements T 1-6
1.21 Underline 1-6
1.2.2 Bracketsand Braces 1-6
1.23 TheEllipsis 1-7
1.3 Source Reference Format. 1-7
1.3.1 Conventional Reference Format. 1-7
1.3.1.1 Reference Format Areas 1-7
1.3.1.2 Continuationof Lines 1-8
1.3.1.3 Blank Lines. 1-9
1.3.1.4 Comment Lines. 1-9
1.3.1.5 Short Lines and Tab Characters 1-9
1.3.2 Terminal Reference Format. 1-10
1.4 Language Organization. 1-10
1.4.1 Division Header 1-10
1.4.2 SectionHeader “1-11
1.4.3 Paragraph, Paragraph Header, Paragraph-Name. 1-11
1.4.4 Data Division Entries 1-12
1.4.5 Declarativeso 1-12
1.5 Sample Format Entry Page. 1-13
Chapter 2 Identification Division
2.1 PROGRAM-ID Paragraph 2-2
2.2 DATE-COMPILED Paragraph 2-3

i

Chapter 3 Environment Division

Chapter 4

3.1

3.2

CONFIGURATION SECTION 3-2
3.1.1 SOURCE-COMPUTER Paragraph 3-2
3.1.2 OBJECT-COMPUTER Paragraph 3-3
3.1.3 SPECIAL-NAMES Paragraph IR 3-4
INPUT-OUTPUT SECTION 3-6
3.2.1 FILE-CONTROL Paragraph 3-8
3.2.2 I-O-CONTROL Paragraph. 3-14

Data Division

4.1

4.2

4.3

File Description - Complete Entry Skeleton 4-4

4.1.1 BLOCK CONTAINS Clause 4-5

412 CODE-SET Clause 4-7

4.1.3 DATA RECORDS Clause 4-8

414 LABEL RECORDS Clause 4-9

415 LINAGEClause 4-10
416 RECORD CONTAINS Clause 4-13
417 VALUEOFID Clause 4-14
Data Description Concepts 4-15
4.2.1 Physical Aspectsofa File 4-15
422 Record Concepts. 4-15
4.2.3 Record Description. 4-15
424 Classesof Data 4-17
4.2.5 Selection of Numeric Character Representation 4-17
42.6 Algebraic Signs 4-17
4.2.7 Standard Alignment Rules 4-18
4.2.8 Item Alignment for Increased Object-Code Efficiency 4-18
Data Description - Complete Entry Skeleton 4-19
431 BLANK WHEN ZERO Clause 4-22
4.3.2 Data-Name or FILLER Clause 4-23
433 JUSTIFIED Clause 4-24
434 Level-Number. 4-25
435 OCCURS Clause. v v v .. 4-26
436 PICTUREClause 4-29
437 REDEFINES Clause. 4-38
438 RENAMES Clause. 4-40
439 SIGN Clause 4-42
4.3.10 SYNCHRONIZED Clause 4-44
43.11 USAGEClause 4-46
4312 VALUE Clause 4-49

Chapter 5 Procedure Division

iy

5.1

5.2
5.3

General Description 5-1
5.1.1 Declarativeso 5-1
5.1.2 Procedures. 5-1
Procedure Division Header 5-2
Procedure Division Body 5-3

5.4 Statements and Sentences oo 0o e 5-3

5.4.1 Conditional Statement 5-4
5.4.2 Conditional Sentence.o 5-4
5.4.3 Compiler-Directing Statement 5-4
5.4.4 Compiler-Directing Sentence 5-4
5.4.5 Imperative Statement 5-5
5.4.6 Imperative Sentence 5-5
5.4.7 Statement Categories 5-5
5.4.8 Uniqueness of Reference 5-6
5.4.8.1 Qualificationo 5-7
5.4.8.2 Subscriptingo 5-8
54.83 Indexingo 5-9
5.4.8.4 Internal Formats of Subscripts, Index-Names and
Index-Data-Items. « .« . o o 5-9
5.4.8.5 Identifier.o 5-10
5.4.8.6 Condition-Name 5-10
5.4.9 Explicit and Implicit Specifications. 5-11
5.4.9.1 Explicit and Implicit Procedure Division References. . 5-11
5.4.9.2 Explicit and Implicit Transfers of Control 5-11
5.4.9.3 Explicit and Implicit Attributes 5-12
5.5 Arithmetic Expressions. oo 5-12
5.5.1 Arithmetic Operators. 5-13
5.5.2 Formation and Evaluation Rules 5-13
5.6 Conditional Expressionso 5-14
5.6.1 Simple Conditions 5-15
5.6.2 Relation Condition.o 5-15
5.6.3 Comparison of Numeric Operands 5-16
5.6.4 Comparison of Alphanumeric Operands 5-16
5.6.5 Comparisons Involving Index-Names and/or Index Data Items . 5-17
5.6.6 Class Condition o 5-18
56.7 Condition-Name Condition (Conditional Variable) 5-18
5.6.8 Switch-Status Conditiono 5-19
5.6.9 Sign Condition. 5-19
5.6.10 Complex Conditions 5-19
5.6.11 Negated Simple Conditions. 5-20
5.6.12 Combined and Negated Combined Conditions. 5-20
5.6.13 Abbreviated Combined Condition Relations 5-21
5.6.14 Condition Evaluation Rules. 5-22
57 Common Phrases and General Rules for Statement Formats 5-23
57.1 ROUNDED Phrase.« o v v v v v oo 5-23
572 SIZE ERROR Phrase 5-24
5.7.3 CORRESPONDING Phrase 5-24
5.7.4 Arithmetic Statements 5-25
5.7.5 Multiple Results in Arithmetic Statements 5-25
5.7.6 Overlapping Operands 5-26
5.7.7 Incompatible Data. 5-26
58 ACCEPT Statement « « v v« v v v v v e e 5-27
5.9 ADD Statement« o o oo e e e e e e 5-29
5.10 ALTER Statement. « « o« o o« o o o oo e e 5-31

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44

CALL Statement 5-32

CLOSE Statement (Sequential) 5-34
CLOSE Statement (Indexed & Relative) 5-39
COMPUTE Statement. 5-40
DELETE Statement (Indexed & Relative) 5-41
DISPLAY Statement. 5-43
DIVIDE Statement 5-44
EXIT Statement. o 5-47
GO TO Statement. e 5-48
IF Statemento 5-49
INSPECT Statement 5-51
MOVE Statement 5-58
MULTIPLY Statement. 5-62
OPEN Statement (Sequential) 5-64
OPEN Statement (Indexed & Relative) 5-68
PERFORM Statement 5-71
READ Statement (Sequential) 5-80
READ Statement (Relative) 5-83
READ Statement (Indexed) 5-87
REWRITE Statement (Sequential) 5-91
REWRITE Statement (Relative) 5-93
REWRITE Statement (Indexed) 5-95
SEARCH Statement. 5-98
SET Statement e 5-103
START Statement (Relative). 5-105
START Statement (Indexed) 5-107
STOP Statement 5-109
STRING Statement 5-110
SUBTRACT Statement 5-113
UNSTRING Statement 5-115
USE Statemento 5-119
WRITE Statement (Sequential) 5-121
WRITE Statement (Relative). 5-125
WRITE Statement (Indexed) 5-128

Chapter 6 The Library Module

Appendix A Reserved Words

Appendix B Character Sets

Appendix C File Status Key Values

Glossary

Index

Figures

vl

VARYING Phrase for PERFORM with One Condition. 5-75
VARYING Phrase for PERFORM with Two Conditions 5-76
VARYING Phrase for PERFORM with Three Conditions. 5-77
Format 1 SEARCH with Two WHEN Phrases. 5-102

Tables

3-1 Access Modes and File Organization 3-7
3-9 Possible Combinations of Status Keys 1land 2. 3-11
4-1 Classes and Categories of Elementary and Group Data Items. 4-17
4-2 Types of Editing by Data Category 4-33
4-3 Editing with Sign-Control Symbols 4-34
4-4 PICTURE Character Precedence Table 4-37
5-1 Symbol Combinations in Arithmetic Expressions 5-14
5-2 Combinations of Conditions, Logical Operators, and Parentheses5-21
5-3 Relationship of CLOSE Statement Formats to File Categories 5-35
5-4 Permissible MOVE Statements. 5-61
5-5 Permissible Input-Output Statements for Sequential Files 5-65
5-6 Permissible Input-Output Statements for Indexed and Relative Files . .5-69
5-7 Permissible Operand Combinations in the SET Statement 5-104
B-1 Character Sets. « v v v v e e e e e e e e e e e B-2
C-1 Sequential I/O File Status Key Values C-1
C-2 Relative and Indexed I/O File Status Key Values C-2

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 System.

955ALL

Vit

Preface

This reference manual describes the COBOL language as implemented in
VAX-11 COBOL-74 for the VAX-11 system. It adheres to the 1974 ANSI
standard. Furthermore, the text of this manual is based on American
National Standard Programming Language COBOL, ANSI Document
X3.23-1974. '

You should have a working knowledge of the COBOL language before using
this book, which is a reference document; it is not a tutorial guide for begin-
ning COBOL programmers.

Chapter 1 contains an overview of the COBOL language. Chapters 2 through 5
detail the four COBOL divisions. A discussion of the Library module appears
in Chapter 6. Appendixes A, B, and C contain the COBOL reserved word list,
character set tables, and FILE STATUS codes.

Frequent references to the VAX-11 COBOL-74 User’s Guide (User’s Guide)
appear in the text. The User's Guide and the VAX-11 SORT User’s Guide
contain additional information about the compiler, the runtime system, error
messages, and utility programs.

Acknowledgments

COBOL is an industry language. It is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by
any contributor or by the committee in connection therewith.

The authors and copyright holders of the copyrighted material used herein
are: FLOW-MATIC (trademark of Sperry Rand Corporation), programming
for the Univac (R) I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell. :

They have specifically authorized the use of this material, in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

X

Chapter 1
Overview of the COBOL Language

This chapter contains general information about the language and structure
of COBOL source programs. It describes the elements of COBOL and its
meta-language, reference formats, and language organization. A sample for-
mat entry concludes the chapter and introduces the source language state-
ments discussed in later chapters.

1.1 COBOL Language Elements
The COBOL language consists of the following components:
¢ Divisions
e Sections
e Paragraphs
e Sentences
e Clauses
e Statements
¢ Entries
e Words

e Characters

There are four divisions in COBOL programs: the Identification Division,
the Environment Division, the Data Division, and the Procedure Division.
Each division can contain sections, which in turn can contain paragraphs.
Each paragraph can contain one or more sentences, clauses, statements, or
entries.

The basic building blocks of these COBOL components include the COBOL
character set, character-strings, COBOL words, separators/punctuation and
literals.

1-1

1-2

1.1.1 COBOL Character Set

The basic and indivisible unit of the COBOL language is the character. Indi-
vidual characters combine to form character-strings of one or more contiguous
characters, and separators, which are punctuation character-strings. The
character set for character-strings and separators includes the letters
A through Z, digits, and special characters. The complete COBOL character
set appears in Appendix B.

For nonnumeric literals, comment entries, and comment lines, the character
set is expanded to include the entire computer character set except for some
special characters (such as the carriage return) that control I/0 devices. The
computer character set and its subsets appear in Appendix B.

NOTE:

If special characters, other than commas and semicolons, ap-
pear in general formats, you must use them in your source
program as well.

1.1.2 COBOL Words

A COBOL word is a character-string of not more than 30 ASCII characters.
There are two classes of words: user-defined words and reserved words. A
COBOL word can belong to one and only one of these classes.

1.1.2.1 User-Defined Words — COBOL words that you must supply to satisfy
the format of a clause or statement. User-defined words consist of characters
selected from the set A through Z, the digits 0 through 9, and the hyphen (-).
A hyphen can neither begin nor end a user-defined word.

There are 12 types of user-defined words:

condition-name paragraph-name
data-name program-name
file-name record-name
index-name section-name
level-number segment-number
mnemonic-name text-name

Each of these types is defined in the glossary.

1.1.2.2 Reserved Words — A specific list of COBOL words that you can use
only as specified in the general formats. Do not use a reserved word as a user-
defined word. (See Appendix A for a complete list of COBOL reserved words.)

There are six types of reserved words:

1. Key words - Words that you must use in a particular format. Key words
are upper case and underlined in general formats. Consider the following
example,.

COMPUTE identifier-1 [ROUNDED] [, identifier-2 [ROUNDED]] ...
= arithmetic-expression [; ON SIZE ERROR imperative-statement]

In this case, COMPUTE, ROUNDED, SIZE, and ERROR are key words.

Overview of the COBOL Language

2. Optional Words - Words you can use or omit without altering the seman-
tics of the COBOL program. Optional words are upper case, but not under-
lined, in general formats. In the previous example, the word ON is an
optional word.

3. Connectives - There are three types of connectives:

a. Qualifier connectives - associate a data-name, a condition-name,
or a text-name with its qualifiers: OF, IN. (See Section 5.4.8.1,
Qualification.)

b. Series connectives - link two or more consecutive operands: separa-
tor comma or separator semicolon.

c. Logical connectives - express the following four conditions: AND,
OR, AND NOT, OR NOT.

4. Special Registers - Compiler-generated storage areas, such as LINAGE-
COUNTER, that are named and referred to by reserved words. (See Sec-
tion 4.1.5, LINAGE Clause.)

5. Figurative Constants - Words that name and refer to specific constant
values generated by the compiler. The singular and plural forms of figura-
tive constants are equivalent, and you can use them interchangeably. Do
not put quotation marks around figurative constants.

Reserved words and their figurative constant values follow:

ZERO Represents the value '0’, or one or more of the character
ZEROS ‘0’, depending on context.

ZEROES

SPACE Represents one or more of the character space from the computer char-
SPACES acter set.

HIGH-VALUE Represents one or more of the character that has the highest ordinal
HIGH-VALUES position in the computer character set (hex 7F).

LOW-VALUE Represents one or more of the character that has the lowest ordinal
LOW-VALUES position in the computer character set (hex 00).

QUOTE Represents one or more of the character ‘.
QUOTES
ALL literal Represents one or more repetitions of the string of characters comprising

the literal. The literal must be either an alphanumeric literal or a figura-
tive constant other than ALL literal. When a figurative constant is used,
the word ALL is redundant and serves only to enhance readability.

When a figurative constant represents a string of one or more characters,
the compiler determines the string’s length from context according to the
following rules:

a. When a figurative constant is associated with another data item (for
example, when the figurative constant is moved to or compared with
another data item), the string of characters that the figurative con-
stant represents is repeated character by character to the right (or
truncated on the right in the case of ALL literal) until the size of the
resultant string equals the size of the associated data item. This is
done prior to and independent of the application of any JUSTIFIED
clause specified for the data item. (See Section 4.3.3, JUSTIFIED
Clause.)

Overview of the COBOL Language 1-3

1-4

b. When a figurative constant is not associated with another data item
(for example, when the figurative constant appears in a DISPLAY,
STRING, UNSTRING or STOP statement), the length of the string is

one character.

You can use a figurative constant wherever a literal appears in a format.
Whenever the literal is restricted to numeric characters, however, use only
the ZERO (ZEROS, ZEROES) figurative constant.

6. Special-Character Words - The arithmetic operators + (addition),

- (subtraction), * (multiplication), / (division), ** (exponentiation), and
relation characters < (less than), > (greater than), and = (equal to). You
must use these words where they appear in general formats even though
they are not underlined.

1.1.3 Literals

A literal is a character-string whose value is determined by the ordered set of
characters of which it is composed. There are two types of literals: numeric
and alphanumeric (alphanumeric is sometimes referred to as "nonnumeric").

NOTE:
A figurative constant can also serve as a literal.

1.1.3.1 Numeric Literal — A character-string of 1 to 20 characters selected
from the digits 0 through 9, the plus sign, the minus sign, and the decimal
point.

The value of a numeric literal is the algebraic quantity represented by the
characters in the literal. The size of the literal equals the number of digits
specified, including leading zeros, if any. Every numeric literal is category
numeric. (See Section 4.3.6, PICTURE Clause.)

The rules for forming numeric literals are:

1. A numeric literal must contain at least one digit and not more than 18
digits.

2. A numeric literal must not contain more than one sign character. If a sign
is used, it must appear as the leftmost character of the literal. If the literal
has no sign, its value is positive.

3. A numeric literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point and can appear
anywhere within the literal except as the rightmost character. If the literal
contains no decimal point, it is an integer. (The word "integer" appearing
in a general format represents a non-zero, positive numeric literal with no
decimal point.)

4. The compiler treats a numeric literal enclosed in quotation marks as an
alphanumeric literal.

Overview of the COBOL Languagé

1.1.3.2 Alphanumeric Literal — A character-string of 1 to 127 allowable char-
acters from the computer character set. It is delimited on both ends by quota-
tion marks.

The value of an alphanumeric literal in the object program is the value of the
character-string itself, except that: (1) the delimiting quotation marks are
excluded, and (2) each embedded pair of contiguous quotation marks repre-
sents a single quotation mark character; all other punctuation characters are
part of the value of the alphanumeric literal and are not separators. Alpha-
numeric literals are category alphanumeric. (See Section 4.3.6, PICTURE
Clause.)

The rules for forming alphanumeric literals are:

1. An alphanumeric literal must contain a space or left parenthesis immedi-
ately before the opening quotation mark.

2. An alphanumeric literal must contain a separator (space, comma, semicol-
on, or right parenthesis) or terminator (period) immediately after the clos-
ing quotation mark.

3. To represent a single quotation mark character within an alphanumeric
literal, use two contiguous quotation marks.

1.1.4 Separators

A separator is a string of one or more of the punctuation characters described
in this section. The rules for forming separators follow:

1.1.4.1 Space

1. Where a space is used as a separator, more than one space can be used.

2. A space can immediately precede any separator except the closing quota-
tion mark. Before a closing quotation mark, the space is considered part of
an alphanumeric literal rather than a separator.

NOTE:

Section 1.3, Source Reference Formats, describes the only
exception to the first two rules.

3. A space can immediately follow any separator except the opening quota-
tion mark. After an opening quotation mark, the space is considered part
of an alphanumeric literal rather than a separator.

1.1.4.2 Comma and Semicolon — The comma and semicolon function as
separators only when they are immediately followed by a space. Insert these
separators only where explicitly permitted by the general formats, by format
punctuation rules, by statement and sentence structure definitions, or by
reference format rules.

Overview of the COBOL Language 1-5

1.1.4.3 Left and Right Parentheses — Left and right parentheses are separa-
tors only when used in balanced pairs.

1.1.4.4 Quotation Marks — Quotation marks used in balanced pairs delimit
alphanumeric literals. (See Section 1.1.3.2, Alphanumeric Literals.)

1.1.4.5 Horizontal Tab — The horizontal tab character vertically aligns state-
ments or clauses on successive lines of the source program listing. It adheres to
the same rules that govern the space character. The compiler, upon en-
countering a tab character, generates one or more space characters consistent
with the tab character position in the source line. (See Sections 1.3, Source
Reference Formats.)

1.1.5 Format Punctuation

The comma, semicolon, and period appear in some formats. The comma and
semicolon are optional and interchangeable. The period, however, is manda-
tory: Supply a period wherever one is shown in a general format. You must
also specify a period to terminate a paragraph.

1.2 Meta-Language Elements

1-6

Meta-language elements describe the allowable use of language elements.
They appear in formats but are not coded into source language statements.

1.2.1 Underline

Underlined, upper-case words denote reserved key words. The absence of an
underline in an upper case word denotes an optional word.

1.2.2 Brackets and Braces

Brackets, [], enclose an optional portion of a general format. When they
enclose vertically stacked entries, brackets indicate that you can, at your
option, select one of the enclosed entries. Braces, { }, surrounding vertically
stacked entries indicate that you must choose one of the enclosed entries.

In the following example, brackets indicate that the entire clause is optional.
If you use the clause, you must select either SYNCHRONIZED or SYNC. You
can select either LEFT or RIGHT (or neither).

{SYNCHRONIZED} [LEFT ‘
SYNC RIGHT

NOTE:

In the general format for a clause, choices that are vertically
stacked between brackets indicate that you have the option of
overriding a default condition. The default condition is always
described in the general rules for the clause.

Overview of the COBOL Language

1.2.3 The Ellipsis

The ellipsis (...) indicates that you can repeat the item preceding it. This item
is usually enclosed in brackets or braces. Consider the following example.

[SAME [RECORD] AREA FOR file-name-1 {file-name-2} ...]...

The ellipsis following the outside brackets indicates that you can repeat the
entire clause. The other ellipsis allows you to repeat the item in braces.

1.3 Source Reference Format

The compiler provides two formats for coding your source programs: conven-
tional and terminal. The former is based on the traditional, 80-column
punched card format. The latter is a DEC-specified format that shortens a
source line by using horizontal tabs and carriage returns; the terminal format
works well when you use a text editor from an on-line terminal.

NOTE:

The compiler assumes terminal format as a default, but you
can use either format. (The User’s Guide discusses format
selection.)

Use the reformatting program (REFORMAT) to change a terminal format
program to conventional format for ease in transporting the source program
to other COBOL compilers. (The User’s Guide discusses the REFORMAT
utility.)

NOTE:

The rules for spacing presented in this discussion of reference
. formats take precedence over all other spacing rules.

1.3.1 Conventional Reference Format

The conventional reference format provides rules for coding your source pro-
gram on 80-column punched cards. These rules are described in the following
sections. :

1.3.1.1 Reference Format Areas

1. Sequence Number Area - Character positions 1 through 6. Reserved for
source line sequence numbers that enable you to locate and edit source
lines in your program. The compiler ignores the contents of this field.

2. Continuation/Comment Indicator Area - Character position 7. Contains a
character that directs the compiler to process the source line in one of the
following ways:

Overview of the COBOL Language 1-7

001010
Q01020
001030-
Q01040
Q01050
001060~
001070
001080
001090
001100
Q01110
001120
001130

01

01

Character Source line processed as

blank () Default - The compiler processes the line as normal
COBOL text.

hyphen (-) Continuation line - The compiler processes the line as a continuation of
the previous source line. (See Section 1.3.1.2, Continuation of Lines.)

asterisk (:*) Comment line - The compiler transfers the contents of this line, as is, to
the source listing and does not check syntax. (See Section 1.3.1.4, Comment
Lines.)

slash (/) Comment line - The compiler treats the line as if it were a comment line,
except that it advances the source listing to the top of the next page before
printing the line.

Area A - Character positions 8 through 11. Contains division headers,
section headers, paragraph headers, paragraph-names, level-indicators,
and certain level numbers.

Area B - Character positions 12 through 72. Contains all other COBOL
text.

Identification Field - Character positions 73 through 80. Contains source
program documentation that has no effect on compilation.

1.3.1.2 Continuation of Lines

1.

Divide a multi-line sentence or entry by continuing in Area B of the next
line.

Break a word or numeric literal from one line to the next by placing a
hyphen (-) in character position 7 of the continuation line; the first non-
blank character that you enter in Area B will become the next character of
the continued word or numeric literal.

Break an alphanumeric literal from one line to the next by placing a
hyphen in character position 7 of the continuation line. Put a quotation
mark before the first character of the continuation literal. The literal can
begin anywhere in Area B of the continuation line.

Consider the following example:

CONTINUATION-NUMERIC.

02 NUMERIC-LITERAL PIC 9(18) VALUE IS 12345678912345
6789,

CONTINUATION-ALPHANUMERIC.

02 ALPHANUMERIC-LITERAL PIC X(26) VALUE IS "ABCDEFGHIJKLM

"NOPQRSTUWVMWXYZ"

PROCEDURE DIVISION,

CONTINUATION-SENTENCE.
IF NUMERIC-LITERAL NOT EQUAL TO ALPHANUMERIC-LITERAL

GO TO END-PROGRAM
ELSE GO TO CONTINUATION-SENTENCE.

END-PROGRAM,

STOP RUN,

1-8 Overview of the COBOL Language

Source lines 001010 through 001030 show how to continue a numeric literal;
lines 001040 through 001060 show line continuation for an alphanumeric
literal. Finally, source lines 001090 through 001110 contain a sentence that
continues for three lines.

1.3.1.3 Blank Lines — Include blank lines (character positions 7 through 72
blank) anywhere in a source program except immediately before a continua-
tion line.

1.3.1.4 Comment Lines — Include comment lines (an asterisk in character
position 7) anywhere in a source program except before the Identification
Division. Successive comment lines must also contain asterisks in character
position 7.

You can use any character from the computer character set to write a com-
ment line. Begin your comments in Area A or Area B. The compiler repro-
duces comment lines on the source listing for documentation purposes.

NOTE:

The slash character (/) and asterisk (*) produce the same
results, except that the slash directs the compiler to advance
the source listing to the top of the next page before printing the
comment entry.

1.3.1.5 Short Lines and Tab Characters — If you use a medium other than
punched cards, you can shorten conventional format source lines: Either ter-
minate the line with a carriage return, insert tab characters within the line to
replace space characters, or use a combination of the two.

The compiler treats a carriage return character as a redefinition of character
position 72. When you use a tab character, the compiler generates the re-
quired number of space characters consistent with the tab character position
on the line. Tab stops are set in the compiler at character positions 7, 8, 12,
20, 28, 36, 44, 52, 60, 68, and 73.

Consider the following example, in which stands for the carriage return
character and stands for the tab character.

Shortened conventional source line

Q00130 01 TAB FILE-A. RET)

000140 (@8 02 DATA-FIELD-A. RET)

000150 03 DESCRIPTION-A (@8 PIC X(20)., @D
000160 03 DESCRIPTION-B (@8 PIC X(20)., @D
000170 (A8 7B O3 DESCRIPTION-C @B PIC X(20), RET

Overview of the COBOL Language 1-9

Source line as interpreted by the compiler

000130 01 FILE-A.

000140 02 DATA-FIELD-A.

000150 03 DESCRIPTION-A PIC X(20),
000160 03 DESCRIPTION-B PIC X(20),
000170 03 DESCRIPTION-C PIC X(20),

1.3.2 Terminal Reference Format

Terminal reference format is the compiler’s default format. It is easy to use
with a computer terminal and is less time and space consuming than its
conventional counterpart. This format eliminates the sequence number and
identification fields and combines the indicator field with Area A.

The terminal reference format for a source line follows:

Character Position Contents
1 through 4 Area A
5 through 65 Area B
NOTE:

Place continuation line (-), comment line (*), and skip-to-top-
of-page (/) indicator characters in character position 1.

In terminal format, Area A and Area B contain the same kinds of source
entries as their conventional format counterparts. (See Section 1.3.1.1) Simi-
larly, tab characters cause the compiler to generate a number of spaces con-
sistent with the tab character position on the line. Tab stops are set to charac-
ter positions 5, 13, 21, 29, 37, 45, 53, 61, and 66.

1.4 Language Organization

1-10

Each division, section, and paragraph in a COBOL program contains headers
followed by source text. The following sections describe both the organization
of these headers and their reference format positions.

1.4.1 Division Header

A division header indicates the beginning of a division. It is a specific combi-
nation of words followed by a period. Division headers, in their order of
appearance, are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

Overview of the COBOL Language

A division header must start in Area A. No non-comment text can appear
between it and the following section header, paragraph header, or paragraph-
name, except for the key word DECLARATIVES (followed by a period and a
space), which can appear after the Procedure Division header.

1.4.2 Section Header

A section header indicates the beginning of a section in the Environment,
Data, and Procedure Divisions. In the Environment and Data Divisions, a
section header contains reserved words followed by the word SECTION (fol-
lowed by a period and a space). In the Procedure Division, a section header
contains a user-defined word followed by the word SECTION (and an op-
tional segment-number) followed by a period and a space. The permissible
section headers are:

In the Environment Division

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division
user-name SECTION [segment-number].

The section header must start in Area A. No text can appear between it and
the following paragraph header or paragraph-name except for the USE sen-
tence in the Procedure Division.

1.4.3 Paragraph, Paragraph Header, Paragraph-Name

Paragraphs begin with paragraph headers (reserved words) or paragraph-
names (user-defined words), depending on the division. In the Identification
and Environment Divisions, a paragraph consists of a paragraph header (fol-
lowed by a period) and zero, one, or more entries. In the Procedure Division, a
paragraph consists of a paragraph-name (followed by a period) and zero, one,
or more entries. Data Division entries follow a different format. (See Section
1.4.4, Data Division Entries.) :

The permissible paragraph headers are:
In the Identification Division

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

Overview of the COBOL Language 1-11

1-12

In the Environment Division

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
[-0-CONTROL.

A paragraph header or paragraph-name starts in Area A. The first sentence of
a paragraph begins either on the same line or in Area B of the next non-blank
line that is not a comment line. Successive sentences or entries begin either on
the same line as the previous one or in Area B of the next non-blank line that
is not a comment line. (See Section 1.3.1.2, Continuation of Lines.)

1.4.4 Data Division Entries

There are two types of Data Division entries: those that begin with a level-
number (called "data-description-entries") and those that begin with a level
indicator. The only level indicator is FD (File Description).

Following every level indicator or level-number are (in order): a space, its
associated name, and a sequence of independent descriptive clauses. Each
clause except the last ends with a separator semicolon or a separator space;
the last clause ends with a period followed by a space.

Choose level-numbers from the set of values 1 through 49, 66, 77, and 88.
Write the level-numbers 1 through 9 either as a single digit or as a zero
followed by a significant digit. For level-numbers 01, 66, or 77, the entry
begins in Area A with the level-number followed by a space; the entry ends in
Area B with its associated record-name and descriptive information.

The FD level indicator entry begins in Area A with the level indicator followed
by at least one space; the entry continues in Area B with a file-name and
descriptive information.

You can maintain the same format for successive data-description-entries, or
you can indent according to level-number. When you indent, begin each new
level-number anywhere in Area A or Area B, and end anywhere within Area B.
Indentation does not affect the magnitude of the level-number. Note that your
output listing will be indented only if the input is indented.

1.4.5 Declaratives

The key words DECLARATIVES and END DECLARATIVES precede and
follow, respectively, the declaratives portion of the Procedure Division.
Each must appear on a line by itself, starting in Area A and ending with a
terminator period.

Overview of the COBOL Language

1.5 Sample Format Entry Page

The following page is a model of the entries that comprise the bulk of this
manual. Each COBOL division begins a new chapter, and each entry begins
on a new page.

Entry-Name
n.n.n Entry-Name

Function

Describes the function or effect of the entry.

General Format

A general format shows the specific arrangement of elements in
the entry. Formats are numbered if you can use more than one
specific arrangement. You must write all clauses (mandatory

" and optional) in the sequence shown in these general formats.
Only in certain cases can clauses appear in sequences other
than those shown; these exceptions are stated explicitly in the
rules that follow the general format.

Syntax Rules

Syntax rules tell you how to order words or elements to form larger elements,
such as sentences, clauses, or statements. They also impose restrictions on
individual words or elements.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an
element or a set of elements. They define the semantics of the entry and the
entry’s effect on program execution or compilation.

Examples

(If required)

Division Name

Overview of the COBOL Language 1-13

Chapter 2
Identification Division

Function

The Identification Division marks the beginning of a COBOL program. It also
identifies a program and its source listing.

General Format

IDENTIFICATION DIVISION.

PROGRAM.ID. program-name.

*

[AUTHOR. [comment-entry] ...]
* [INSTALLATION. [comment-entry] ...]

* [IDATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

* [SECURITY. [comment-entry] ...]

* These paragraphs are not described in individual entries; they follow the same format as the
DATE-COMPILED paragraph and are for documentation only.

Syntax Rules

1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

3. The PROGRAM-ID paragraph must immediately follow the Identification
Division header.

General Rules

1. The comment-entry can consist of any combination of characters from the
computer character set.

2. Comment-entries can span several lines. However, do not continue a
comment-entry by using a hyphen in the continuation indicator area.

PROGRAM-ID

2.1 PROGRAM-ID Paragraph

Function

The PROGRAM-ID paragraph identifies the program.

2-2

General Format

PROGRAM-ID. program-name.

Syntax Rule

The program-name must contain 1 to 15 characters from the set A through 7
and 0 through 9. Do not use the hyphen.

General Rules

1.

AR

The PROGRAM-ID paragraph must be present in every program and
must contain a program-name.

Program-name is a user-defined word that identities a COBOL program.
The program-name identifies the object program entry point.
Program-names cannot exceed 15 characters in length.

The first eleven characters of the program-name must not duplicate the
first eleven characters of the program-name in any other program in the
linked image.

Identification Division

DATE-COMPILED

2.2 DATE-COMPILED Paragraph

Function

The DATE-COMPILED paragraph causes the compiler to display the compi-
lation date on the source program listing in the Identification Division.

General Format

DATE-COMPILED. [comment-entry] ...

Syntax Rules

1. The comment-entry can consist of any combination of characters from the
computer character set.

2. Comment-entries can span several lines. However, do not continue a
comment-entry by using a hyphen in the continuation indicator area.

General Rules

1. During program compilation, the paragraph-name DATE-COMPILED
causes the current date to be inserted on a subsequent line of the program
listing. If a DATE-COMPILED paragraph is present, it is replaced durlng '
compilation with a paragraph of the form:

DATE-COMPILED. comment-entry.
current-date

2. All listings produced during compilation contain the compilation date in
the header line of each page regardless of the presence or absence of the
DATE-COMPILED paragraph.

Identification Division 2-3

Chapter 3
Environment Division

Function

The Environment Division provides a standard method for describing the
program’s hardware environment. It enables you to specify both (1) the com-
piling and object computers, and (2) information about input-output control.

General Format

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. source-computer-entry]

[OBJECT-COMPUTER. object-computer-entry]

[SPECIAL-NAMES. special-names-entryl]

[INPUT—OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} ...

I-O-CONTROL. input—output—control—entry]]

Syntax Rules

1. The Environment Division must follow the Identification Division in every
COBOL program.

2. The Environment Division must begin with the reserved words
ENVIRONMENT DIVISION followed by a period and a space.

3-1

SOURCE-COMPUTER

3.1 CONFIGURATION SECTION

The Configuration Section can consist of three paragraphs: SOURCE-
COMPUTER, OBJECT-COMPUTER, AND SPECIAL-NAMES.

3.1.1 SOURCE-COMPUTER Paragraph
Function

The SOURCE-COMPUTER paragraph specifies the computer on which the
source program is to be compiled.

General Format

SOURCE-COMPUTER. VAX-11.

General Rules

This paragraph is for documentation purposes only.

3-2 Environment Division

OBJECT-COMPUTER

3.1.2 OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph specifies the computer on which the
object program is to be executed.

General Format

WORDS
OBJECT-COMPUTER. VAX-11 |, MEMORY SIZE integer { CHARACTERS
MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number].

General Rule

This paragraph is for documentation purposes only.

Environment Division 3-3

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph associates compiler features with user-
specified mnemonic-names; it also associates alphabet-names (specified in
the OBJECT-COMPUTER paragraph) with character sets and/or collating
sequences.

General Format

[SPECIAL—NAMES .

CARD-READER
PAPER-TAPE-READER
{cONSOLE
ILINE-PRINTER
PAPER-TAPE-PUNCH

IS mnemonic-name

[SWITCH integer-1

{(L\I STATUS IS condition-name-1 [,QFF STATUS IS condition-name—2]}

OFF STATUS IS condition-name-2 [,ON STATUS IS condition-name-1]

NATIVE
alphabet-name IS }

STANDARD-1

[CURRENCY SIGN IS literal |

[DECIMAL-POINT IS COMMA].]

Syntax Rules

1. You must use the SPECIAL-NAMES paragraph if your program in-
cludes mnemonic-names, condition-names, alphabet-names, the
DECIMAL-POINT clause, or the CURRENCY SIGN clause.

2. Integer-1 represents any integer from 1 to 16.

General Rules

1. The names CARD-READER, PAPER-TAPE-READER, and CONSOLE
refer to input devices. To transfer data from these devices, you can use the
mnemonic-names assigned to them with the ACCEPT statement in the
Procedure Division.

2. The names CONSOLE, LINE-PRINTER, and PAPER-TAPE-PUNCH
refer to output devices. To transfer data to these devices, you can use the
mnemonic-names assigned to them with the DISPLAY statement in the
Procedure Division.

3-4 Environment Division

SPECIAL-NAMES

Continued

. The name SWITCH refers to a logical switch to which the operator can
assign a value at run-time. Chapter 2 of the User’s Guide discusses the
procedure for setting program switches.

. The condition-name assigned to the ON or OFF STATUS of a switch can
be used in a conditional expression. (See Section 5.6.8, Switch-Status
Condition.)

. The alphabet-name clause relates a name to a collating sequence and/or
a character code set. An alphabet-name referenced in the PROGRAM
COLLATING SEQUENCE clause specifies a collating sequence. An
alphabet-name referenced in a CODE-SET clause in a file-description-
entry specifies a character code set. (See Section 4.1.2, CODE-SET
Clause.)

a. If the STANDARD-1 phrase is specified, the character code set or
collating sequence identified is that defined in the American National
Standard Code for Information Interchange, X3.4-1968.

b. Since the native character code set of your system is equivalent to the
ASCII code, specification of the NATIVE phrase is equivalent to speci-
fication of the STANDARD-1 phrase.

. The literal that appears in the CURRENCY SIGN IS literal clause is used
in the PICTURE clause to represent the currency symbol. Use a single
character for the literal. Do not use any of the following characters:

a. Digits 0 through 9
b. Alphabetic characters A,B,C,D,L,P,R,S,V,X,Z or the space

c. Special characters *, +, -, , (comma), . (period), ; (semicolon), (,), ", /,
or =

If this clause is not present, you can only use the currency sign ($) in the
PICTURE clause.

. The DECIMAL-POINT IS COMMA clause exchanges the function of
the comma and period in the PICTURE character-string and in numeric
literals.

Environment Division 3-5

3.2

3-6

INPUT-OUTPUT SECTION

The Input-Output Section consists of two paragraphs that describe the infor-
mation needed to control the transmission and handling of data between
external media and the program. This section allows COBOL programs to
access records stored in various file organizations.

The file organizations supported by the compiler, and the access methods
available for processing them, are introduced below. Refer to the User’s Guide
for a more complete discussion of these topics.

File Organizations
The compiler supports three file organizations:

¢ Sequential
e Relative
¢ Indexed

Sequential files consist of records positioned one after the other in the order in
which they were originally written. Each record (except the last) has another
record following it. The location of a record is fixed in relation to the records
that precede and succeed it. Sequential files can be processed only in a serial
fashion. That is, to access a record in the middle of the file, the program must
access all the records preceding it.

Relative files, restricted to disk storage devices, consist of successively
numbered records. Each record is assigned a number relative to its position in
the file. Thus, the first record in a file occupies the first position and receives a
relative record number of 1, the second record occupies the second position
and receives a relative record number of 2, and so on. An individual record in
a relative file can be accessed directly (by specifying its relative record num-
ber) or serially, like sequential files.

Indexed files, like relative files, are restricted to disk storage devices. They
consist of records and a primary key index (and optionally one or more alter-
nate key indexes) used to process the records sequentially by key or randomly
by key. A key is a data item in each record of the file.

Access Modes

File organization determines the access modes that can be used to retrieve
and store records in the file. Though file organization is fixed when the file is
created (and cannot be changed later), the access mode is not fixed (except for
sequential files) until a program opens the file. Therefore, different programs
can use different access methods for the same file.

The compiler supports three access modes:

¢ Sequential
e Random
¢ Dynamic

Environment Division

In the sequential access mode, the program accesses records serially. The
first record must be accessed before the second, the second before the third,
and so on. ‘

In the random access mode, the program accesses records individually by a
random record number or a data key.

Dynamic access allows you to choose at will between sequential or random
access.

Table 3-1 lists the allowable combinations of file organizations and access
modes.

Table 3-1: Access Modes and File Organizations

Access Mode
File Organization Sequential Random Dynamic
Sequential Yes No No
Relgtive Yes Yes Yes
Indexed Yes Yes Yes

The User's Guide further discusses the access modes and file organizations.

Environment Division 3-7

FILE-CONTROL

3.2.1 FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and specifies other file-
related information.

General Format

FILE-CONTROL. {ﬁle-control-entry}

Format 1 - Sequential File-Control-Entry
SELECT [OPTIONAL] file-name
ASSIGN TO literal-1

AREA
, RESERVE integer-1
AREAS

[, ORGANIZATION IS SEQUENTIAL]

[, ACCESS MODE IS SEQUENTIAL]
[, FILE STATUS IS data-name-4] .

Format 2 - Relative File-Control-Entry
SELECT file-name
ASSIGN TO literal-1

AREA
; RESERVE integer-1
AREAS

; ORGANIZATION IS RELATIVE

i SEQUENTIAL [, RELATIVE KEY IS data-name-1]

; ACCESS MODE IS RANDOM
RELATIVE KEY IS data-name-1
DYNAMIC

[; FILE STATUS IS data-name-4] .

(continued on next page)

3-8 Environment Division

FILE-CONTROL

Continued

Format 3 - Indexed File-Control-Entry

SELECT file-name

ASSIGN TO literal-1

AREA
; RESERVE integer-1

AREAS

; ORGANIZATION IS INDEXED

SEQUENTIAL
; ACCESS MODE IS RANDOM
DYNAMIC

: RECORD KEY IS data-name-2

| ; ALTERNATE RECORD KEY IS data-name-3[WITH DUPLICATES]]

[; FILE STATUS IS data-name-4] .

Syntax Rules

All Formats

1. Specify the SELECT clause first in the file control entry. Clauses following
the SELECT clause can appear in any order.

9. You must name each file described in a Data Division file-description-
entry once and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control paragraph must have a corresponding
file-description-entry in the Data Division.

3. Literal-1 must be an alphanumeric literal.

4. If you do not specify the ACCESS MODE IS clause, the compiler éssumes
sequential access as a default.

5. You can qualify data-name-1, data-name-2, data-name-3, and data-
name-4.

6. Data-name-4 must-be defined in the Working-Storage Section of the Data
Division as a 2-character alphanumeric data item.

Format 1
7. Specify the OPTIONAL phrase only for input files that need not be pres-
ent whenever the object program is executed.

8. If you do not specify the ORGANIZATION IS SEQUENTIAL clause, the
compiler assumes sequential organization as a default.

Environment Division 3-9

FILE-CONTROL

Continued

3-10

Format 2
9. Specify the RELATIVE KEY phrase for a file if it will be referenced in a
START statement.

10.Data-name-1 must not be defined in a record-description-entry associated
with file-name.

11. The data item referenced by data-name-1 must be defined as an unsigned
integer.

Format 3

12. The data items referenced by data-name-2 and data-name-3 must each be
defined as alphanumeric data items in a record-description-entry associ-
ated with that file-name.

13. Neither data-name-2 nor data-name-3 can describe a variable-sized item.

14. Data-name-3 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced by
data-name-2 or by any other data-name-3 associated with this file.

General Rules

All Formats

1. The ASSIGN clause specifies the default file specification of the file refer-
enced by file-name. Literal-1 must be a file specification in command-
string format. (See Section 4.1.7, VALUE OF ID Clause).

2. The ORGANIZATION clause specifies the logical organization of data in a
file. The file organization is established at the time a file is created. Once
established, the file organization cannot be changed.

3. If you specify the FILE STATUS clause, a value is placed into the
2-character data item (data-name-4) during the execution of a
CLOSE, DELETE, OPEN, READ, REWRITE, START, or WRITE state-
ment and before the execution of any applicable USE procedure. This
value indicates the result of any input-output operation.

The leftmost character position of the FILE STATUS data item is known
as Status Key 1. It is set to one of the following values upon completion of
an input-output operation:

0 = Successful Completion
1 = At End

2 = Invalid Key

3 = Permanent Error

9 = DEC-Defined

Environment Division

FILE-CONTROL

Continued

The rightmost character position is known as Status Key 2. It further
describes the results of the input-output operation. This character will
contain one of the following values:

No Further Information
Sequence Error
Duplicate Key

= No Record Found

= Boundary Violation

= Allocation Failure

= Buffer Failure

No File Found

Close Error

9 = Close Reel Error

I

QO -3 U W~ O

Possible combinations of Status Keys 1 and 2 are shown in Table 3-2.
Appendix C contains a complete listing of the File Status Keys and a
description of each.

Table 3-2: Possible Combinations of Status Keys 1 and 2

Status Key 2

CLOSE
Status No Further | Sequence| Duplicate | No Record | Boundary | Allocation | Buffer | NoFile | CLOSE REEL
Key 1 Info. Error Key Found Violation Failure Failure | Found Error Error
0 (1) (2) (3) (4) (3) (6) (7) (8) (9)
Successful
Completion X X(***)
(0)
At
End X
(1)
Invalid
Key x(***) X(**) X(**) x(**)
(2)
Permanent
Error X X(*)
(3)
DEC- .
Defined X" X' X1 X X X X X
(9)

* Valid for sequentially organized files only.

** Valid for indexed and relative files only.

*** Valid for indexed files only.

! File locked by another process.

11 Record locked by another process.

11! No sequential READ previous to a REWRITE or DELETE operation.

Environment Division 3-11

FILE-CONTROL

Continued

3-12

Format 1

4. The RESERVE clause specifies the number of input-output areas allo-
cated for sequential files. This number equals the value of integer-1,
which cannot be greater than 127. If the RESERVE clause is not specified,
the number of input-output areas is determined by the Record Manage-
ment Services (RMS) default.

5. Sequential files are accessed by predecessor/successor record relationships
established by the execution of WRITE statements when the file is created
or extended.

Format 2

6. The RESERVE clause specifies the number of input-output areas allo-
cated for relative files. This number equals the value of integer-1, which
cannot be greater than 127. If the RESERVE clause is not specified, the
number of input-output areas is determined by the Record Management
Services (RMS) default.

7. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence follows the order
of ascending relative record numbers of existing records in the file.

8. If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

9. When the access mode is dynamic, records in the file can be accessed
sequentially and/or randomly.

10. Relative record numbers uniquely identify all records stored in a relative
file. The relative record number of a given record specifies the logical
ordinal position of the record in the file. The first logical record has a
relative record number of one (1), and subsequent logical records have
relative record numbers of 2, 3, 4,

11. The data item specified by data-name-1 is used to communicate a relative
record number between the program and Record Management Services.

Format 3

12 The RESERVE clause specifies the number of input-output areas allo-
cated for indexed files. This number equals the value of integer-1, which
must be greater than 1 and not greater than 127. If the RESERVE clause
is omitted, the number of input-output areas is determined by the Record
Management Services (RMS) default.

13. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence follows the order
of ascending record key values in a given key of reference.

14. If the access mode is random, the value of the record key data item
specifies the record to be accessed.

Environment Division

FILE-CONTROL

Continued

15. When the access mode is dynamic, records in the file can be accessed
sequentially and/or randomly.

16.The RECORD KEY clause specifies the prime record key for the file and
provides an access path to records in an indexed file. The values of the
prime record key must be unique among file records.

17.An ALTERNATE RECORD KEY clause specifies an alternate record key
for the file. It provides an alternate access path to records in an indexed
file. ‘

18. Retain the same data descriptions of data-name-2 and data-name-3,and
their same relative locations in a record, as those used when the file was
created. Retain the same alternate key specifications as well.

19. The DUPLICATES phrase specifies that the value of the associated alter-
nate record key can be duplicated in any of the file records. If you do not
specify the DUPLICATES phrase, the value of the associated alternate
record key must not be duplicated in any of the records in the file.

Environment Division 3-13

1-O-CONTROL

3-14

3.2.2 I-O-CONTROL Paragraph

Function

The I-O-CONTROL paragraph specifies the memory area to be shared by
different files and the location of sequential files on a multiple-file tape.

General Format

I-O-CONTROL.

[,SAME (RECORD] AREA FOR file-name-1 {, file-name—Z} :]

, MULTIPLE FILE TAPE CONTAINS file-name-3 [POSITION integer—l]

[, file-name-4 IPOSITION integer—2]]]

[, APPLY PRINT-CONTROL ON file-name-5 [,file-name—6]..]... .

Syntax Rules

1. You can include more than one SAME clause in a program.

2. A file-name must not appear in more than one SAME AREA clause or in
more than one SAME RECORD AREA clause.

3. If one or more file-names in a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names can also appear in that SAME RECORD AREA clause (even if
they do not appear in the SAME AREA clause).

4. The files referenced in a SAME AREA clause or a SAME RECORD AREA
clause (or both) need not have the same organization or access mode.

General Rules

1. The SAME AREA clause specifies that two or more files are to use the
same memory area during processing. Therefore, it is not valid to have
more than one of the files open at the same time.

2. The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for processing the current logical record. More
than one (or all) of the files can be open at the same time. A logical record
in the shared area is considered as a logical record (1) of each opened,
output file whose file-name appears in this SAME RECORD AREA
clause, and (2) of the most recently read input file whose file-name appears
in this SAME RECORD AREA clause. This is equivalent to an implicit
redefinition of the area, i.e., records are aligned on the leftmost character
position.

Environment Division

1-O-CONTROL

Continued

3. The one-file-open rule for the SAME AREA clause takes precedence over
the multiple-files-open rule for the SAME RECORD AREA clause.

4. The MULTIPLE FILE clause is for documentation purposes only. It is
used when more than one file shares the same physical reel of tape. Re-
gardless of the number of files on a single reel, only those files that are used
in the object program need be specified. If all file-names have been listed
in consecutive order, the POSITION clause need not be given. If any file in
the sequence is not listed, the position relative to the beginning of the tape
must be given. Not more than one file on the same tape reel can be open at
one time.

5. The compiler uses default techniques when the APPLY clause is not pres-
ent; hence, the clause is always optional, as the following explanation
makes clear.

If the FD entry does not specify a LINAGE clause, you can specify the
APPLY PRINT-CONTROL clause for a printable file. The APPLY
PRINT-CONTROL clause supplies a default LINAGE clause.

If you specify neither APPLY PRINT-CONTROL nor LINAGE for a
sequential file, a WRITE statement with the ADVANCING option will
include formatting information in the record.

Environment Division 3-15

Chapter 4
Data Division

Function

The Data Division describes the data that the object program receives as
input, manipulates, creates, and produces as output.

General Format

DATA DIVISION.
[FILE SECTION.
[file-description-entry {record-description-entry}...]]
WORKING-STORAGE SECTION.
- 77-level-description-entry
F [record-description-entry] J
LINKAGE SECTION.

[77-level-description-entry]]

record-description-entry

Syntax Rules

1. The Data Division must follow the Environment Division in every COBOL
program.

2. The Data Division must begin with the reserved words Data Division fol-
lowed by a period and a space.

4-2

General Rules

File Section

The File Section describes the program’s files. It begins with a section header
followed by file-description-entries and record-description-entries.

1. File-Description-Entry

The file-description-entry consists of a level indicator (FD), a file-name,
and a series of independent clauses. These clauses describe the size of
physical and logical records, the presence or absence of label records, and
the names of the data records that are described for the file. The entry
itself is terminated by a period.

2. Record-Description-Entry

A record-description-entry is a set of data-description-entries that describe
the characteristics of a particular record. Each data-description-entry con-
sists of a level-number followed, as required, by a data-name and a series
of independent clauses.

A record description has a hierarchical structure; therefore, the clauses
used in an entry can vary considerably, depending upon whether or not the
entry is followed by subordinate entries.

y Working-Storage Section

The Working-Storage Section begins with the section header followed by en-
tries that describe records and noncontiguous data items. Each Working-
Storage Section record name (and each data-name for noncontiguous data
items) must be unique.

1. Noncontiguous Working-Storage

Noncontiguous elementary items are data items in Working-Storage that
bear no hierarchical relationship to one another and are not grouped into
records. Each of these items is defined in a separate data-description-
entry.

2. Working-Storage Records

Working-Storage records are data elements and constants in Working-
Storage that bear a definite hierarchical relationship to one another
and are grouped into records according to the rules for forming record
descriptions.

Data Division

3. Initial Values

Specify the initial value of any item in the Working-Storage Section,
except an index'data item, by using the VALUE clause in the data-
description-entry (see Section 4.3.12, VALUE Clause). The initial
value of any index data item is unpredictable.

Linkage Section

The Linkage Section in a program is meaningful only if: (1) the object pro-
gram is to function under the control of a CALL statement (see Section 5.11),
and (2) the USING phrase in the Procedure Division header is not empty (see
Section 5.2).

The Linkage Section begins with the section header followed by record-
description-entries. These entries describe data available through the calling
program but to be referred to in both the calling and the called program. No
space is allocated in the program for data items defined in the Linkage
Section. Procedure Division references to these data items are resolved at
object time by equating the reference in the called program to the location
used in the calling program. In the case of index-names, no such correspond-
ence is established; index-names in the calling and called programs always
refer to separate indexes.

Data items defined in the Linkage Section of the called program can be
referenced in the Procedure Division of that program if and only if they are:

1. Operands of the USING phrase of the Procedure Division header.

2. Subordinate to operands of the USING phrase of the Procedure Division
header.

3. Defined with a REDEFINES or RENAMES clause, the object of which is
an operand of the USING phrase of the Procedure Division header.

4. Items subordinate to any of the items defined in number 3 above.

5. Condition-names and index-names associated with data items that meet
any of the above conditions.

Data Division 4-3

4.1 File Description — Complete Entry Skeleton

Function

The file description gives information about the physical structure, identifica-
tion, and record names of a file.

General Format

FD file-name

RECORDS
: BLOCK CONTAINS [integer-1 TO] integer-2
CHARACTERS

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

RECORD IS } {STANDARD}

; LABEL {
RECORDS ARE

data-name-1
; VALUE OF ID IS

literal-1

OMITTED

[RECORD IS l

; DATA date-name-3 E data-name—4:| :|
RECORDS ARE’
data-name-5 data-name-6)7]
; LINAGE IS LINES |, WITH FOOTING AT
integer-5 integer-6 |

-
data-name-7 data-name-8
, LINES AT TOP , LINES AT BOTTOM -
integer-7 integer-8

[; CODE-SET IS alphabet-name].

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and
must appear before the file-name. '

2. Clauses that follow the file-name are frequently optional, and their order of
appearance is immaterial.

3. One or more record-description-entries must follow the file-description-
entry.

4-4 Data Division

BLOCK CONTAINS

4.1.1 BLOCK CONTAINS Clause

Function

The BLOCK CONTAINS clause specifies the mapping of a logical record into
physical blocks recorded on the storage medium.

General Format

BLOCK CONTAINS [integer-1 TQ] integer-2 {

CHARACTERS

Syntax Rules

The reserved word RECORD does not appear in this clause; therefore, if
integer-2 has the value 1, write the clause as BLOCK CONTAINS 1
RECORDS. ,

General Rules

1. Integer-1, if present, is ignored.
2. Block size can be stated in terms of RECORDS.

a. For a file of fixed-length records that is assigned to magnetic tape, each
block except the last will contain integer-2 records. Integer-1, if pres-
ent, is ignored. (See Section 4.1.6, RECORD CONTAINS Clause.)

b. For a file of variable-length records that is assigned to magnetic tape,
the compiler calculates the buffer size by multiplying the largest record
size, plus four bytes, by the value of integer-2. (See Section 4.1.6,
RECORD CONTAINS Clause.)

c. For a sequential file assigned to a disk device, there are no unused
bytes in any block and the records can span block boundaries.

d. For files with relative or indexed organization assigned to a directory
device, the compiler uses the value of integer-2 to calculate the size of
the block. Because of overhead bytes, this size may or may not be equal
to the record size times integer-2. (The User’s Guide fully describes the
compiler’s algorithms for computing block size.)

3. Block size can be stated in terms of CHARACTERS.

a. For files assigned to magnetic tape, the size of the block is the maxi-
mum of either:

(1) Integer-2 bytes, or i
(2) The size of the largest record (add four overhead hytes for variable-
length records).

Data Division 4-5

BLOCK CONTAINS

4-6

Continued

b. For files with sequential organization assigned to a disk device, records

are packed together in each physical block. There are no unused bytes
in any block, and the records can span block boundaries.

. For files with relative or indexed organization, the block size is inte-

ger-2 bytes. Integer-2 must be at least as large as the largest record,
plus any overhead bytes, and should be a multiple of 512 bytes. (The
User’s Guide further discusses block size computation.)

4. When you do not specify a BLOCK CONTAINS clause, block size is

calculated as follows:

a. For files assigned to magnetic tape, the block size is the size of the

largest record plus any overhead bytes.

. For files with sequential organization assigned to a disk device, the

records are packed together in each physical block. There are no unused
bytes in any block, and the records can span block boundaries.

. For files with relative or indexed organization, the block size is the

smallest number of physical blocks that can contain one record, plus
any overhead bytes.

Data Division

CODE-SET

4.1.2 CODE-SET Clause

Function

The CODE-SET clause specifies the character code set used to represent data
on an external medium.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1. When you specify the CODE-SET clause for a file, all data in that file
must be described as USAGE IS DISPLAY; any signed numeric data must
be described with the SIGN IS SEPARATE clause.

2. You can specify the CODE-SET clause only for files with sequential
organization.

General Rules

1. Alphabet-name specifies the character code convention used to represent
data on the external medium. It also specifies the algorithm for converting
character codes on the external medium from/to native character codes.
This conversion occurs during the execution of an input or output opera-
tion. (See Section 3.1.3, SPECIAL-NAMES Paragraph.)

2. If you do not specify the CODE-SET clause, the compiler assumes the
native character code set as the default.

Data Division 4-7

DATA RECORDS

4.1.3 DATA RECORDS Clause

Function

The DATA RECORDS clause serves only as documentation for the names of a
file’s data records.

General Format

RECORD IS
DATA data-name-1 [, data-name—2]

RECORDS ARE

Syntax Rule

Data-name-1 and data-name-2 are the names of data records associated with
the file.

General Rules

1. This optional clause is for documentation purposes only. The compiler
does not check the names of the records against the names appearing in
the 01 record descriptions that follow the file description.

2. Conceptually, all data records of a file share the same area, even if there
are multiple data record descriptions.

4-8 Data Division

LABEL RECORDS

4.1.4 LABEL RECORDS Clause

Function

The LABEL RECORDS clause specifies the presence or absence of labels.

General Format

RECORD IS STANDARD
LABEL }

RECORDS ARE) (OMITTED

Syntax Rule

This clause is required in every file-description-entry.

General Rules

1.

STANDARD specifies that labels meeting file system label specifications
exist for the file or for the device to which the file is assigned.

OMITTED specifies that no explicit labels exist for the file or for the
device to which the file is assigned.

Specify STANDARD for all files assigned to directory devices.
Specify OMITTED only for files assigned to non-directory devices.

Data Division 4-9

LINAGE

4.1.5 LINAGE Clause

Function

The LINAGE clause specifies the number of lines on a logical page for sequen-
tial output files. It also specifies the size of the top and bottom margins on the
logical page, and the logical line number at which the footing area begins.

General Format

data-name-1 B data-name-2)7]
LINAGE IS LINES |, WITH FOOTING AT J

integer-1 integer-2

data-name-3 data-name-4)]
, LINES AT TOP , LINES AT BOTTOM
integer-3 L

integer-4

Syntax Rules

1.

Data-name-1, data-name-2, data-name-3, and data-name-4 must refer-
ence elementary, unsigned, numeric, integer data items.

The value of integer-1 must be greater than zero.
The value of integer-2 must not be greater than that of integer-1.

The value of integer-3 and integer-4 can be zero.

General Rules
1.

The LINAGE clause pertains to sequential output files only.

2. The LINAGE clause specifies the number of lines on a logical page. The

logical page size is the sum of the values referenced by each phrase except
the FOOTING phrase. If you do not specify the LINES AT TOP or LINES
AT BOTTOM phrases, the values for these functions are zero. If you do
not specify the FOOTING phrase, the assumed value equals either
integer-1 or the contents of the data item referenced by data-name-1,
whichever is specified.

There is no necessary relationship between the size of a logical page and
the size of a physical page.

The value of integer-1, or the data item referenced by data-name-1, speci-
fies the number of lines that can be written and/or spaced in the page
body. This value must be greater than zero.

The value of integer-3, or the data item referenced by data-name-3, speci-
fies the number of lines in the top margin of a logical page. This value can
be zero.

4-10 Dafa Division

LINAGE

Continued

5. The value of integer-4, or the data item referenced by data-name-4, speci-
fies the number of lines in the bottom margin of a logical page. This value
can be zero.

6. The value of integer-2, or the data item referenced by data-name-2, speci-
fies the line number in the page body at which the footing area begins.
This value must be greater than zero and less than or equal to the value of
integer-1 or the data item referenced by data-name-1.

The footing area is that area of the logical page between the line repre-
sented by the value integer-2 (or the data item referenced by data-
name-2) and the line represented by the value integer-1 (or the data item
referenced by data-name-1), inclusive.

7. During the execution of an OPEN statement with the OUTPUT phrase
specified, the values of integer-1, integer-3, and integer-4 are used to
specify the number of lines in the sections of a logical page. The value of
integer-2 is used at that time to define the footing area. These values are
used for all logical pages written during a given execution of the program.

.8. The values of the data items referenced by data-name-1, data-name-3,
and data-name-4 are used as follows:

a. When an OPEN statement with the OUTPUT phrase is executed for
the file, the data item values are used to specify the number of lines to
be in each indicated section of the first logical page.

b. When a WRITE statement with the ADVANCING PAGE phrase is
executed or page overflow condition occurs, the data item values are
used to specify the number of lines to be in each indicated section of the
next logical page. (See Section 5.42, WRITE Statement.)

9. When an OPEN statement with the OUTPUT phrase is executed for the
file, the data item value referenced by data-name-2 is used to define the
footing area for the first logical page. When a WRITE statement with the
ADVANCING PAGE phrase is executed or a page overflow condition
occurs, the value will be used to define the footing area for the next logical

page.

10. The presence of a LINAGE clause generates a LINAGE-COUNTER. At
any given time, the LINAGE-COUNTER value represents the current line
position in the page body. The rules governing the LINAGE-COUNTER
are as follows:

a. The compiler supplies a separate LINAGE-COUNTER for each file
whose file-description-entry contains a LINAGE clause.

Data Division 4-11

LINAGE

Continued

. Procedure Division statements can reference (but not modify)

LINAGE-COUNTER. Because more than one LINAGE-COUNTER
can exist in a program, you must qualify LINAGE-COUNTER by file-
name when necessary. LINAGE-COUNTER is implicitly defined as a
one-word COMPUTATIONAL item.

. During the execution of a WRITE statement to a file, LINAGE-

COUNTER is automatically modified according to the following
rules:

(1) When you specity the ADVANCING PAGE phrase of the WRITE
statement, the LINAGE-COUNTER is automatically reset to one.

(2) When you specify the ADVANCING identifier-2 or integer phrase
of the WRITE statement, the LINAGE-COUNTER is incremented
by the integer or by the value of the data item referenced by
identifier-2.

(3) When you do not specify the ADVANCING phrase of the WRITE
statement, the LINAGE-COUNTER is incremented by the value
one. (See Section 5.42, WRITE Statement.)

(4) The value of LINAGE-COUNTER is automatically reset to one
when each successive logical page begins. (See Section 5.42,
WRITE Statement.)

. The value of LINAGE-COUNTER is automatically set to one when an

OPEN statement is executed for the associated file.

11. Each logical page immediately follows the one before with no additional
spacing.

4-12 Data Division

RECORD CONTAINS

4.1.6 RECORD CONTAINS Clause

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer—l ’I_‘_(_)] integer-2 CHARACTERS

General Rules

1.

The record-description-entry completely defines the size of each data
record; therefore, the RECORD CONTAINS clause cannot change the
memory storage allocated to the records.

For a relative file, record size on the storage medium is fixed and equal to a
value that is large enough to hold the largest record described in the file.
This rule is not affected by the RECORD CONTAINS clause.

For a sequential or indexed file, record size on the storage medium can be
fixed or variable. If the record descriptions for a file yield variable record
sizes, the record storage areas allocated on the storage medium will vary in
size and will be preceded by a byte count word supplied automatically by
Record Management Services.

If the record descriptions for a file all yield record sizes that are the same
size, the record storage areas allocated on the storage medium will be fixed
in size and will not be preceded by a byte count word. However, you can
force a variable size record format, with a byte count word prefix on each
record, by using a RECORD CONTAINS clause with the "integer-1 TO"
phrase.

Do not use integer-2 by itself unless all data records in the file have the
same size; in this case, integer-2 represents the exact number of characters
in the data record. If integer-1 and integer-2 both appear, they refer to the
number of characters in the smallest size data record and the number in
the largest size data record, respectively.

Record size is specified in terms of the number of character positions
needed to store the logical record, regardless of the character types used to
represent the items in the logical record. It is determined by summing the
number of characters in all elementary items, plus any characters required
by implicit or explicit synchronization.

Except for forcing a variable record storage size on the medium, the
RECORD CONTAINS clause is for documentation only.

Data Division 4-13

VALUE OF ID

4-14

4.1.7 VALUE OF ID Clause

Function

The VALUE OF ID clause particularizes the description of an item in the
label records associated with a file.

General Format

data-name
VALUE OF ID IS

literal

Syntax Rules

1.

3.
4.
5.

Do not use the VALUE OF ID clause when you specify LABEL RECORDS
ARE OMITTED.

Data-name cannot be subscripted or indexed, nor can it be described with
the USAGE IS INDEX clause.

Data-name must be in the Working-Storage Section.
Data-name must be an alphanumeric elementary item.

Literal must be a alphanumeric literal.

General Rules

1.

For an existing file, the VALUE OF ID literal or data-name supplies infor-
mation that enables Record Management Services to locate and identify
the desired file.

For an output file, the VALUE OF ID literal or data-name supplies infor-
mation that enables Record Management Services to create the desired
file.

The VALUE OF ID literal or data-name is interpreted as a file specifica-
tion in command string format. File specifications are discussed in the
User’s Guide.

Data Division

4.2 Data Description Concepts

This section presents basic data description concepts. Actual COBOL clauses
used to describe data appear in Section 4.3.

COBOL makes data as computer-independent as possible. Therefore,
data used in COBOL programs is described using a standard rather than
equipment-oriented format. This standard data format uses the decimal sys-
tem to represent numbers and characters from the computer character set to
describe alphanumeric data items.

4.2.1 Physical Aspects of a File

The physical aspects of a file describe data as it appears on the input or
output medium. Physical aspects include such features as:

1. The mapping of logical records into the physical structure of the file
medium, and

2. The ways of identifying a file.

4.2.2 Record Concepts

It is important to distinguish between a logical record and a physical record. A
COBOL logical record is a uniquely identifiable group of related information
that is treated as a unit. A physical record is a physical unit of information; its
size and recording mode are hardware dependent and bear no direct relation-
ship to the size of the file contained on a device.

One or more logical records can be contained in a single physical unit; or, in
the case of formatted storage media, a logical record can require more than
one physical unit to contain it. Source language methods describe the rela-
tionships of logical records to physical units. Using these predefined relation-
ships, COBOL input-output statements then allow access to logical records
through the facilities of the hardware-software system.

NOTE:

In this manual, the term "record" refers to a logical record,
unless the term "physical record" is specifically used.

The concept of a logical record is not restricted to file data, but is carried over
into the definition of Working Storage. Thus, Working Storage can be grouped
into logical records and defined by a series of record-description-entries.

4.2.3 Record Description

A record description consists of a set of data-description-entries that describe
the characteristics of a record. Each entry consists of a level-number followed
by a data-name, if required, and a series of independent clauses, as required.

Data Division 4-15

4-16

Levels

Logical records are described as hierarchical structures. The level concept
arises from the need to specify subdivisions of a record, and to even further
subdivide records to permit progressively more detailed data definition.

The basic and indivisible subdivision of a record is the elementary item.
A record either consists of a sequence of elementary items or is itself an
elementary item.

A group item is a set of elementary items. Each group item consists of a
named sequence of one or more elementary items. Group items, in turn, can
combine to form group items containing one or more group items, etc. Thus,
an elementary item can belong to more than one group item.

Level-Numbers

A system of level-numbers shows the hierarchical organization of elementary
items and group items. Since records are the most inclusive data items, level-
numbers for records start at 01. Less inclusive data items are assigned higher
(though not necessarily successive) level-numbers not greater in value than
49; special level-numbers —- 66, 77, and 88 —- are exceptions to this rule.
Separate entries are written in the source program for each level-number
used.

A group includes all group and elementary items following it until a level-
number less than or equal to the level-number of that group is encountered.
All items that are immediately subordinate to a given group item must be
described using identical level-numbers; these level-numbers must be greater
than the level-number used to describe that group.item.

Three types of entries exist for which there is no true concept of level. These
are:

1. Entries that identify RENAMES items,
2. Entries that specify noncontiguous Working Storage data items, and

3. Entries that specify condition-names.

Entries that specify RENAMES items have been assigned the special level-
number 66. They can be used only as described in Format 2 of the Data
Description Entry Skeleton. (See Section 4.3.)

Entries that specify noncontiguous data items have been assigned the special
level-number 77. They are not subdivisions of other items and cannot them-
selves be subdivided.

Entries that specify condition-names to be associated with particular values
of a conditional variable have been assigned the special level-number 88.

Data Division

4.2.4 Classes of Data

The five categories of data items (alphabetic, numeric, alphanumeric, al-
phanumeric edited, and numeric edited) are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the
classes and categories are synonymous. The alphanumeric class includes the
categories of alphanumeric edited, numeric edited and alphanumeric.

Every elementary item except an index data item belongs to one of the classes
and, further, to one of the categories. The class of a group item is treated as
alphanumeric regardless of the class of elementary items subordinate to it.
Table 4-1 shows the relationship of the classes and categories of data items.

Table 4-1: Classes and Categories of Elementary and Group Data Items

Level of Item Class Category
Alphabetic Alphabetic
Numeric Numeric
Elementary Numeric Edited
Alphanumeric Alphanumeric Edited
Alphanumeric
Alphabetic
Numeric
Non-Elementary Alphanumeric Numeric Edited
(Group) Alphanumeric Edited
Alphanumeric

4.2.5 Selection of Numeric Character Representation

The value of a numeric item can be represented in binary, decimal, or packed-
decimal form. The form can be selected by using the USAGE clause of the
data-description-entry. ,

4.2.6 Algebraic Signs

Algebraic signs fall into two categories: operational signs and editing signs.
The former are associated with signed numeric data items to indicate their
algebraic properties; the latter appear in edited items to identify their sign.

The SIGN clause permits you to explicitly state the location of the operational
sign. The clause is optional; if it is not used, operational signs are represented
by a default.

Editing signs are inserted into a data item by using the sign control symbols of
the PICTURE clause.

Data Division 4-17

4-18

4.2.7 Standard Alignment Rules

The standard rules for positioning data within an elementary item when mov-
ing data depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero fill or truncation on either end, as
required.

b. When an assumed decimal point is not explicitly specified, the data
item is treated as if it had an assumed decimal point immediately
following its rightmost character and is aligned as in paragraph 1.a
above.

2. If the receiving data item is a numeric edited data item, the data moved to
the edited data item is aligned by decimal point with zero fill or truncation
at either end, as required, within the receiving character positions of the
data item, except where editing requirements cause replacement of the
leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited
data item), alphanumeric edited or alphabetic, the sending data is moved
to the receiving character positions and aligned at the leftmost character
position in the data item with space fill or truncation to the right, as
required.

If the JUSTIFIED clause is specified for the receiving item, these standard
rules are modified as described in the JUSTIFIED Clause. (See Section 4.3.3,
JUSTIFIED Clause.)

4.2.8 Item Alignment for Increased Object-Code Efficiency

All binary items are automatically aligned and SYNCHRONIZED RIGHT.
(See Section 4.3.11, USAGE Clause.) The SYNCHRONIZED clause can be
used to control word alignment of DISPLAY or packed-decimal data.

All index data items are automatically SYNCHRONIZED RIGHT and
occupy two bytes.

Data Division

4.3 Data Description — Complete Entry Skeleton

Function

A data-description-entry specifies the characteristics of a particular item of
data.

General Format

Format 1

data-name-1
level-number ’

FILLER

[; REDEFINES data-name-2]

" (PICTURE

; IS character-string

L (PIC
COMPUTATIONAL
COMP
COMPUTATIONAL-3
COMP-3

; [USAGE IS] DISPLAY
DISPLAY-6
DISPLAY-7
INDEX

i LEADING

; [SIGN IS) [SEPARATE CHARACTER]

| TRAILING

[{SYNCHRONIZED} LEFT

SYNC I:RIGHT:I
[(JUSTIFIED 7
; RIGHT
JUST J
[; BLANK WHEN ZERO]
[[VALUE IS literal]

(continued on next page)

Data Division 4-19

4-20

integer-1 TO integer-2 TIMES DEPENDING ON data-name-3
OCCURS }

integer-2 TIMES

ASCENDING
_}KEY IS data-name-4 [data-name—z')] :|

DESCENDING

[INDEXED BY index-name-1 lindex-name-2]] .
Format 2

66 data-name-1; RENAMES data-name-2

THROUGH
data-name-3| .
THRU
Format 3

VALUE IS [(THROUGH
88 condition-name; literal-1 } literal—Q]

VALUES ARE THRU

THROUGH 7
, literal-3 literal-4 {]...

THR

Syntax Rules

_ The level-number in Format 1 can be any number from 01-49 or 77.

. You can write the clauses in any order, with two exceptions: the data-

name-1 or FILLER clause must immediately follow the level-number; the
REDEFINES clause, when used, must immediately follow the data-
name-1 clause. ‘

_ The PICTURE clause must be specified for all elementary items except

index data items; for these items, the PICTURE clause is not permitted.

_ The words THRU and THROUGH are equivalent.

Data Division

General Rules

1. A data-name is a user-defined word that names a data item. When used in
the general formats, data-name represents a word that can neither be
subscripted nor indexed unless specifically permitted by the rules of that
format. A data-name must contain at least one alphabetic character; how-
ever, it need not begin with an alphabetic character; the alphabetic char-
acters can be positioned anywhere in the data-name. Qualification is
sometimes permitted; therefore, data-names need not always be unique.

2. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO clauses can be specified only for an elementary data item.

3. Format 3 is used for each condition-name. Each condition-name requires a
separate entry with level-number 88. The entry contains the name of the
condition and the value(s) or range of values associated with the condition-
name. Condition-name entries for a conditional variable must follow the
defining entry for the associated item. A condition-name can be associated
with any data-description-entry containing a level-number, except the
following:

. Another condition-name,

oY)

o

. A group containing items with descriptions, including JUSTIFIED,
SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY),

. An index data item, and

o

o,

. A level 66 item.

Data Division 4-21

BLANK WHEN ZERO

4.3.1 BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause causes an item to be filled entirely with
spaces when its value is zero.

General Format

BLANK WHEN ZERO

Syntax Rule

The BLANK WHEN ZERO clause can be used only for an elementary item
whose PICTURE is specified as numeric edited or numeric. (See Section 4.3.6,
PICTURE Clause.)

General Rules

1. When the BLANK WHEN ZERO clause applies to an item that is used as
a receiving field for a numeric value, the item will contain nothing but
spaces if the value being stored is 0.

2. When the BLANK WHEN ZERO clause is used for an item whose
PICTURE is numeric, the category of the item is considered to be
numeric edited.

4-22 Data Division

Data-Name or FILLER

4.3.2 Data-Name or FILLER Clause

Function

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary item of the logical record that is not to be
referenced explicitly.

General Format

data-name
FILLER

Syntax Rule

In the File, Working-Storage and Linkage Sections, a data-name or the key
word FILLER must be the first word following the level-number in each data-
description-entry.

General Rule

The key word FILLER can be used to name an elementary item in a record.
Under no circumstances can you refer explicitly to a FILLER item. However,
you can use the key word FILLER as a conditional variable; such use does not
require explicit reference to the FILLER item.

Data Division 4-23

JUSTIFIED

4.3.3 JUSTIFIED Clause

Function

The JUSTIFIED clause specifies non-standard positioning of data within a
receiving data item.

General Format

JUSTIFIED
RIGHT
JUST

Syntax Rules

1. The JUSTIFIED clause can be specified only at the elementary item level.
2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as
numeric or for which editing is specified.

General Rules

1. The leftmost characters of a receiving item are truncated when: (a) the-
receiving data item is described with the JUSTIFIED clause, and (b) the
sending data item is larger than the receiving item. Data is aligned at the
rightmost character position in the item with space fill for the leftmost
character positions when: (a) the receiving data item is described with the
JUSTIFIED clause, and (b) the receiving item is larger than the sending
data item.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning
data within an elementary item apply. (See Section 4.2.7, Standard Align-
ment Rules.)

4-24 Data Division

Level-Number

4.3.4 Level-Number

Function

The level-number defines the hierarchy of data within a logical record. It also
identifies entries for non-contiguous working storage items, condition-names,
and the RENAMES clause.

General Format

level-number

Syntax Rules

1. A level-number must be the first element in each data-description-entry.

2. Data-description-entries subordinate to an FD entry must have level-
numbers with the values 01-49, 66, or 88.

3. Data-description-entries in the Working-Storage Section and Linkage Sec-
tion must have level-numbers with the values 01-49, 66, 77, or 88.

General Rules

1. The level-number 01 identifies the first entry in each record description.

2. Special level-numbers have been assigned to certain entries where no real
concept of level applies:

a. Level-number 77 identifies noncontiguous working storage data items.
It can be used only as described by Format 1 of the data description
skeleton. (See Section 4.3.)

b. Level-number 66 applies to entries that define RENAMES items. It
can be used only as described in Format 2 of the data description
skeleton. (See Section 4.3.)

c. Level-number 88 applies to entries that define condition-names associ-
ated with a conditional variable. It can be used only as described in
Format 3 of the data description skeleton. (See Section 4.3.)

3. Multiple level 01 entries subordinate to an FD level indicator are implicit
redefinitions of the same area.

Data Division 4-25

OCCURS

4-26

4.3.5 OCCURS Clause

Function

The OCCURS clause eliminates the need for separate entries for repeated
data items and supplies information required for the application of subscripts
or indexes.

General Format

Format 1
OCCURS integer-2 TIMES

ASCENDING
[{ KEY IS data-name-2 [,data-name-3]...|...

DESCENDING

(INDEXED BY index-name-1 [, index-name-2] ...]

Format 2
OCCURS integer-1 TQ integer-2 TIMES DEPENDING ON data-name-1

ASCENDING
KEY IS data-name-2 [,data-name-3]...|...
DESCENDING

(INDEXED BY index-name-1 [,index-name-2]...]

Syntax Rules

1.

Where both integer-1 and integer-2 are used, the value of integer-1 must
be less than the value of integer-2. Integer-1 must be greater than or equal
to 1.

The data description of data-name-1 must describe a positive integer.
Data-name-1, data-name-2, data—name-3, ... can be qualified.

Data-name-2 must be either the name of the entry containing the
OCCURS clause or the name of an entry subordinate to the entry contain-
ing the OCCURS clause.

Data-name-3, etc., must be the name of an entry subordinate to the group
item that is the subject of this entry.

An INDEXED BY phrase is required if the subject of this entry (or an
entry subordinate to this entry) is to be referred to by indexing. The index-
name identified by this clause cannot be defined elsewhere, because its
storage allocation and format are hardware-dependent and are not associ-
ated with any data hierarchy.

Data Division

OCCURS

Continued

7. A data-description-entry that contains Format 2 of the OCCURS clause
can be followed in its record description only by subordinate data-descrip-
tion-entries.

8. The OCCURS clause cannot be specified in a data-description-entry that:
a. Has a 01, 77, or an 88 level-number, or

b. Describes an item whose size is variable. The size of an item is variable
if the data description of any subordinate item contains Format 2 of
the OCCURS clause.

9. In Format 2, the data item defined by data-name-1 must not occupy a
character position with in the range of: (a) the first character position
defined by the data-description-entry containing the OCCURS clause, and
(b) the last character position defined by the record-description-entry
containing that OCCURS clause.

10.If data-name-2 is not the subject of this entry, then:

a. All the items identified by the data-names in the KEY IS phrase must
be in the group item that is the subject of this entry.

b. Items identified by the data-name in the KEY IS phrase must not
contain an OCCURS clause.

c. No entry containing an OCCURS clause can appear between the items
identified by the data-names in the KEY IS phrase and the subject of
this entry.

11.Index-name-1, index-name-2, ... must be unique words in the program.

General Rules

1. The OCCURS clause is used to define tables and other homogeneous sets
of repeated data items. Whenever the OCCURS clause is used, the data-
name that is the subject of this entry must either be subscripted or indexed
whenever it appears in a Procedure Division statement other than
SEARCH. Further, if the subject of this entry is the name of a group item,
then all data-names subordinate to the group entry must be subscripted or

indexed whenever they are used as operands, except as the object of a
REDEFINES clause.

2. Except for the OCCURS clause itself, all data description clauses associ-
ated with an item whose description includes an OCCURS clause apply to
each occurrence of the item described.

Data Division 4-27

OCCURS

Continued

3. The number of occurrences of the subject entry is defined as follows:

a.

b.

In Format 1, the value of integer-2 specifies the number of occurrences.

In Format 2, the current value of the data item referenced by
data-name-1 represents the number of occurrences.

Format 2 specifies that the subject of this entry has a variable number
of occurrences. The value of integer-2 represents the maximum num-
ber of occurrences, while the value of integer-1 represents the mini-
mum. This does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

The value of the data item referenced by data-name-1 must fall within
the range integer-1 through integer-2. Reducing the value of the data
item referenced by data-name-1 means that the contents of data items
whose occurrence numbers now exceed the value of the data item refer-
enced by data—name-1 cannot be referenced.

4. When you reference a group item having subordinate to it an entry specify-
ing Format 2 of the OCCURS clause, only that part of the table area
specified by the value of data-name-1 is used in the operation.

5. The KEY IS phrase indicates that repeated data is arranged in ascending
or descending order according to the values contained in data-name-2,
data-name-3, etc. The specific order is determined according to the rules
for comparison of operands. (See Section 5.6.3, Comparison of Numeric
Operands, and Section 5.6.4, Comparison of Alphanumeric Operands.)
The data-names are listed in their descending order of significance.

4-28 Data Division

PICTURE

4.3.6 PICTURE Clause

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

PICTURE
IS character-string
PIC

Syntax Rules

1.
2.

A PICTURE clause can be specified only at the elementary item level.

The PICTURE clause must be specified for all elementary items except
index data items; for these items, the clause is not allowed.

A character-string consists of symbols that are allowable combinations of
characters in the COBOL character set. The allowable combinations deter-
mine the category of the elementary item.

The maximum number of characters allowed in the character-string is 30.
PIC is an abbreviation for PICTURE.

When the asterisk is used as the zero suppression symbol, it cannot appear
in the same entry as the BLANK WHEN ZERO clause.

General Rules

1.

Five categories of data can be described with a PICTURE clause: alpha-
betic, numeric, alphanumeric, alphanumeric edited, and numeric edited.

To define an item as alphabetic:

a. Its PICTURE character-string can contain only the symbols A and B,
and

b. Its contents, when represented in standard data format, can be any
combination of the 26 letters of the alphabet (A-Z) and the space.

To define an item as numeric:

a. Its PICTURE character-string can contain only the symbols 9, P, S,
and V. The number of digit positions that can be described by the
PICTURE character-string must range from 1 to 18 inclusive, regard-
less of sign.

Data Division 4-29

PICTURE

Continued

b. If unsigned, its contents, when represented in standard data format,
must be a combination of the numerals 0 through 9; if signed, the item
can also contain a +, —, or other representation of an operational sign.
(See Section 4.3.9, SIGN Clause.)

4. To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations of
the symbols A, X, 9, and the item is treated as if the character-string
contained all Xs. A PICTURE character-string that contains all As or
all 9s does not define an alphanumeric item.

b. Its contents, when represented in standard data format, are allowable
characters in the computer character set.

5. To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations of
the following symbols: A, X, 9, B, 0, and /. The character-string must
contain at least one of the following combinations:

1. Band X
2. 0and X
3. /and X
4. O0and A
5. /and A

b. When represented in standard data format, the contents are allowable
characters in the computer character set.

7/

6. To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations of
the following symbols: B, /, P, V, Z, 0, 9, ,(comma), .(period), *, +, -,
CR, DB, and the currency symbol. The allowable combinations are
determined from the order of precedence of symbols and from the
editing rules.

1. The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18, inclusive.

2. The character-string must contain at least one 0, B, /, Z, *, +,
,(comma), .(period), -, CR, DB, or currency symbol.

b. The contents of the character positions of those symbols that are al-
lowed to represent a digit in standard data format must be numerals
(0-9).

4-30 Data Division

PICTURE

Continued

7. The number of character positions occupied by an elementary item in
standard data format (its size) is determined by the number of allowable
symbols that represent character positions. An integer enclosed in
parentheses following the symbols A, ,(comma), X, 9, P, Z, *, B, /, 0, +, -,
or the currency symbol indicates the number of consecutive occurrences of
the symbol. Note that the following symbols can appear only once in a
given PICTURE: S, V, .(period), CR, and DB.

8. The functions of the symbols used to describe an elementary item are as
follows:

A Each A in the character-string represents a character position that
can contain only a letter of the alphabet or a space.

B Each B represents a character position into which a space charac-
ter will be inserted.

P Each P indicates an assumed decimal scaling position. It specifies
the location of an assumed decimal point when the point is not in
the number that appears in the data item.

The scaling position character P is not counted in determining the
size of the data item. Scaling position characters are counted,
however, in determining the maximum number of digit positions
(18) in numeric edited items or numeric items.

P can appear only as the leftmost or rightmost part of a PICTURE
description as a continuous string of Ps; because P implies an
assumed decimal point (to the left of Ps if Ps are leftmost
PICTURE characters and to the right if Ps are rightmost
PICTURE characters), the assumed decimal point symbol V is
redundant as either the leftmost or rightmost character within
such a PICTURE description. Furthermore, the character P and
the insertion character . (decimal point) cannot both occur in the
same PICTURE character-string.

In any operation involving conversion of data from one form of
internal representation to another, if the data item being converted
is described with the PICTURE character P, each digit position
described by a P is considered to contain the value 0, and the size
of the data item is considered to include the digit positions so
described.

S The S indicates the presence, but neither the representation nor,
necessarily, the position of an operational sign; it must be written
as the leftmost character in the PICTURE. The S is not counted in
determining the size of the elementary item unless the entry is
subject to a SIGN clause that specifies the optional SEPARATE
CHARACTER phrase. (See Section 4.3.9, SIGN Clause.)

Data Division 4-31

PICTURE

Continued

\Y The V indicates the location of an assumed decimal point. It can
appear only once in a character-string. The V does not represent a
character position and, therefore, is not counted in determining the
size of the elementary item. When the assumed decimal point is to
the right of the rightmost symbol in the string, the V is redundant.

X Each X in the character-string represents a character position that
contains any allowable character from the computer character set.

Z Each Z can be used only to represent the leftmost leading numeric
character positions that will be replaced by a space character when
the content of that character position is 0. Each Z is counted in
determining the size of the item.

9 Each 9 represents a character position that contains a numeral; it
is counted in determining the size of the item.

0 Each 0 (zero) represents a character position into which the num-
eral 0 will be inserted. The 0 is counted in determining the size of
the item.

/ Each / (stroke) represents a character position into which the

stroke character will be inserted. The / is counted in determining
the size of the item.

, Each , (comma) represents a character position into which the
comma character will be inserted. This character position is
counted in determining the size of the item. The insertion charac-
ter , (comma) must not be the last character in the PICTURE
character-string.

For a given program, the functions of the period and comma are
exchanged if the DECIMAL-POINT IS COMMA clause appears in
the SPECIAL-NAMES paragraph: the rules for the period will
apply to the comma (and vice versa) whenever these symbols ap-
pear in a PICTURE clause. ‘

The . (period) is an editing symbol that represents the decimal
point for alignment purposes. It also represents a character position
into which the character .(period) will be inserted. The insertion
character .(period) must not be the last character in the PICTURE
character-string. It is counted in determining the size of the item.

+, These editing sign-control symbols represent the character position
-, into which these symbols will be placed. The symbols are mutually
CR, exclusive in any one character-string, and each character used in
DB the symbol is counted in determining the size of the data item.

4-32 Data Division

PICTURE

Continued

* Each * (asterisk) represents a leading numeric character position
into which an * will be placed when the content of that position is
0. Each * is counted in determining the size of the item.

cs The currency symbol represents a character position into which a
currency symbol is to be placed. It is represented either by the
default currency sign ($) or by the single character specified in the

CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.
The currency symbol is counted in determining the size of the item.

Editing Rules

1. Editing in the PICTURE clause can be performed either by insertion or by
suppression and replacement. There are four types of insertion editing
available. They are:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:
a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks

2. The type of editing that can be performed depends on the data-item
category. The following table specifies the allowable types of editing by’
category:

Table 4-2: Types of Editing by Data Category

Category Type of Editing
Alphabetic Simple insertion B only
Numeric None
Alphanumeric None
Alphanumeric Edited Simple insertion 0, B and /
Numeric Edited All, subject to Editing Rule 3

3. Floating insertion editing and editing by zero suppression and replacement
are mutually exclusive in a PICTURE clause. Only one type of replace-
ment can be used with zero suppression.

Data Division 4-33

PICTURE

Continued

. Simple Insertion Editing. The , (comma), B (space), 0 (zero), and

/ (stroke) are used as the insertion characters. They are counted in deter-
mining the size of the item and represent the position in the item into
which the character will be inserted.

. Special Insertion Editing. The . (period) is used as the insertion character.

In addition, it also represents the decimal point for alignment purposes.
The insertion character (used for the actual decimal point) is counted in
determining the size of the item. The use of the assumed decimal point,
("V’) and the actual decimal point (represented by the insertion charac-
ter) in the same PICTURE character-string is not allowed. The result of
special insertion editing is the appearance of the insertion character in the
item in the same position as shown in the character-string.

. Fixed Insertion Editing. The currency symbol and the editing sign control

symbols +, -, CR, and DB are the insertion characters. Only one currency
symbol and one of the editing sign-control symbols can be used in a given
PICTURE character-string.

When the symbols CR or DB are used, they represent two character posi-
tions in determining the size of the item; they must represent the right-
most character positions that are counted in determining the size of the
item. The symbols + or - must be either the leftmost or rightmost charac-
ter position to be counted in determining the size of the item. The currency
symbol must be the leftmost character position to be counted in the size of
the item except that it can be preceded by either a + or a - symbol. Fixed
insertion editing results in the insertion character occupying the same
character position in the edited item as it did in the PICTURE character-
string.

Editing sign-control symbols produce the following results, depending
upon the value of the data item:

Table 4-3: Editing with Sign-Control Symbols

Result
Editing Symbol In Data Item Data Item
Picture Character-String Positive or Zero Negative
+ + -
- space -
CR 2 spaées CR
DB 2 spaces DB

4-34 Data Division

PICTURE

Continued

7. Floating Insertion Editing. The currency symbol and editing sign-control
symbols + or - are the floating insertion characters. They are mutually
exclusive in a given PICTURE character-string.

Floating insertion editing is indicated by using a string of at least two of
the floating insertion characters. This string can contain any of the fixed
insertion symbols or have fixed insertion characters immediately to its
right. The simple insertion characters are part of the floating string.

The leftmost (rightmost) character of the floating insertion string repre-
sents the leftmost (rightmost) limit of the floating symbol in the data item.

The second floating character from the left represents the leftmost limit of
the numeric data that can be stored in the data item. Non-zero, numeric
data can replace all characters at or to the right of this limit.

There are only two ways of representing floating insertion editing: (1) the
insertion character can represent any or all of the leading numeric charac-
ter positions on the left of the decimal point, or (2) the insertion character
can represent all of the numeric character positions in the PICTURE
character-string.

a. If the insertion characters are only to the left of the decimal point, a
single floating insertion character will be placed into the character
position immediately preceding either the decimal point or the first
non-zero digit in the data represented by the insertion symbol string,
whichever is farther to the left in the PICTURE character-string. The
character positions to the left of the insertion character are replaced
with spaces.

b. If the insertion character represents all of the numeric character posi-
tions, the result depends upon the value of the data. If the value is 0,
the entire data item will contain spaces. If the value is not 0, the result
is the same as in (a).

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the send-
ing data item, plus the number of non-floating insertion characters being
edited into the receiving data item, plus one for the floating insertion
character.

8. Zero Suppression Editing. The suppression of leading Os in numeric char-
acter positions is indicated by the use of the Z or the * (asterisk) as
suppression symbols. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in deter-
mining the size of the item. If Z is used, the replacement character will be
the space, and if the asterisk is used, the replacement character will be *.

Data Division 4-35

PICTURE

Continued

Zero suppression and replacement is indicated in a PICTURE character-
string by using a string of one or more of the allowable symbols to represent
leading numeric character positions that are to be replaced when the asso-
ciated character position in the data contains a zero. Any of the simple
insertion characters embedded in the string of symbols or to the immediate
right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing
zero suppression: (1) suppression symbols can represent any or all of the
leading numeric character positions to the left of the decimal point, or (2)
suppression symbols can represent all of the numeric character positions in
the PICTURE character-string.

a. If the suppression symbols appear only to the left of the decimal point,
any leading 0 in the data that corresponds to a symbol in the string is
replaced by the replacement character. Suppression terminates at the
first non-zero digit in the data represented by the suppression symbol
string or at the decimal point, whichever is encountered first.

b. If the suppression symbols represent all numeric character positions
and the value of the data is not 0, the result is the same as if the
suppression characters were not specified. If the value is 0, the entire
data item will be spaces if the suppression symbol is Z or all asterisks
(except for the actual decimal point) if the suppression symbol is *.

9. The symbols +, -, *, Z, and the currency symbol, when used as floating
replacement characters, are mutually exclusive within a given character-
string.

Precedence Rules

The following table shows the order of precedence when using characters as
symbols in a character-string. An X at an intersection indicates that the
symbol(s) at the top of the column can precede the symbol(s) at the left of the
row. Arguments appearing in braces indicate that the symbols are mutually
exclusive. The currency symbol is indicated by the symbol "cs".

At least one of the symbols A, X, Z, 9 or *, or at least two of the symbols +, -,
or cs, must be present in a PICTURE string.

The non-floating insertion symbols + and -, the floating insertion symbols Z,
* 4+, -, and cs, and other symbol P appear twice in the following table. The
leftmost column and uppermost row for each symbol represent its use to the
left of the decimal point position. The second appearance of the symbol repre-
sents its use to the right of the decimal point position.

4-36 Data Division

Table 4-4: PICTURE Character Precedence Table

PICTU

RE

Continued

First Non-Floating Floating
. . . Other Symbols
Symbol Insertion Symbols Insertion Symbols
+\| /\|CRY Z Z> | /+ A
Second Bl O| /| ,]| - <_><_> DBA cs<*><* <_><_> cs| cs 9<x> S|V|P|P
Symbol
B|lx| x| x| x| x| x x| x| x| x| x| x| x| x| x X x
Ol x| x| x| x| x| x x| x| x| x| x| x| x| x| x X x
20 /x| x| x| x| x| x x| x| x| x| x| x| x| x| x X X
o Q
I}
~H-g,,xxxxxx x| x| x| x| x| x| x| x X X
B o
O g
~ 3§ Dl x| x| x| x X X | x X X b'e
o
fs)
sy
0o +
z 9 <->
o -
H(-i)xxxxx X [x | x x| x| x X | x| x
<CR X X | x| x X | x| x
DB X| x| x| x x| x| x
cs X
Z
<*>x X | x| x X X | x
0}
Z
'3 <*>x x| x| x| x| x x| x| x X bd
o
£a <4_->x x| x| x x x
T § -
Q. <+> x| x| x| x| x X x| x X X
(ol B
2l cs | x| x| x| x X X
5
cs | x| x| x| x| x| x x| x b4 X
9| x| x| x| x| x| x X | x X X x| x| x| x X
A
) <>x x| x X | X
'3 X
E s
0
3 Vi x| x| x| x X X X X X X X X
8 P x| x| x| x X X | x X X X X X
4 X bd X | X X
Data Division 4-37

REDEFINES

4.3.7 REDEFINES Clause

Function

The REDEFINES clause allows different data-description-entries to describe
the same computer storage area.

General Format

level-number data-name-1; REDEFINES data-name-2

NOTE:

Level-number, data-name-1, and the semicolon are shown in
the above format to improve clarity. They are not part of the
REDEFINES clause.

Syntax Rules

1.

The REDEFINES clause must immediately follow data-name-1.

The level-numbers of data-name-1 and data-name-2 must be identical;
they must not be 66 or 88. (Level 77 items can be redefined.)

This clause must not be used in level 01 entries in the File Section.

The data-description-entry for data-name-2 cannot contain a
REDEFINES clause; however, data-name-2 can be subordinate to an
item whose data-description-entry contains a REDEFINES clause. The
data-description-entry for data-name-2 cannot contain an OCCURS
clause. However, data-name-2 can be subordinate to an item whose data-
description-entry contains an OCCURS clause. In this case, the reference
to data-name-2 in the REDEFINES clause cannot be subscripted or
indexed. Neither the original definition nor the redefinition can include
an item whose size is variable as defined in the OCCURS Clause. (See
Section 4.3.5, OCCURS Clause.)

No entry having a level-number numerically lower than the level-number
of data-name-2 and data-name-1 can occur between the data-description-
entries of data-name-2 and data-name-1.

General Rules

1.

Redefinition starts at the area allocated to data-name-2 and ends when a
level-number less than or equal to that of data-name-2 is encountered.

4-38 Data Division

REDEFINES

Continued

. When the level-number of data-name-1 is other than 01, it must specify
the same number of character positions contained in the data item refer-
enced by data-name-2. Note that the REDEFINES clause specifies the
redefinition of a storage area, not of the data items occupying the area.

. Multiple redefinitions of the same character positions are permitted. The
entries giving the new descriptions of the character positions must follow
the entries defining the area being redefined, without intervening entries
that define new character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry that originally
defined the area.

. The entries giving the new description of the character positions must not
contain any VALUE clauses, except in condition-name entries.

. Multiple level 01 entries subordinate to an FD level indicator represent
implicit redefinitions of the same area.

Data Division 4-39

RENAMES

4-40

4.3.8 RENAMES Clause

Function

The RENAMES clause permits alternative, possibly overlapping, groupings
of elementary items.

General Format

THROUGH
66 data-name-1; RENAMES data-name-2 data-name-3|.

THRU

NOTE:

Level-number 66, data-name-1 and the semicolon are shown in
the above format to improve clarity. They are not part of the
RENAMES clause.

Syntax Rules

1.

All RENAMES entries referring to data items within a given logical record
must immediately follow the last data-description-entry of the associated
record-description-entry.

Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record and cannot be the
same data-name. A 66 level entry cannot rename another 66 level entry,
nor can it rename a 77, 88, or 01 level entry.

. Data-name-1 cannot be used as a qualifier and can only be qualified by

the names of the associated level 01 or FD entries. Neither data-name-2
nor data-name-3 can have an OCCURS clause in its data-description-
entry; nor can either be subordinate to an item that has an OCCURS
clause in its data-description-entry.

The beginning of the area described by data-name-3 must not be to the
left of the beginning of the area described by data-name-2. The end of the
area described by data-name-3 must be to the right of the end of the area
described by data-name-2. Data-name-3, therefore, cannot be subordinate
to data-name-2.

Data-name-2 and data-name-3 can be qualified.

The words THRU and THROUGH are equivalent.

No item within the range including data-name-2 and data-name-3 can
have a variable size as defined in the OCCURS clause. (See Section 4.3.5,
OCCURS Clause.)

Data Division

RENAMES

Conﬁnued

General Rules

1. One or more RENAMES entries can be written for a logical record.

2. When data-name-3 is specified, data-name-1 is a group item that includes
all elementary items: (1) starting with data-name-2 (if data-name-2 is an
elementary item) or the first elementary item in data-name-2 (if data-
name-2 is a group item) and (2) concluding with data-name-3 (if data-
name-3 is an elementary item) or the last elementary item in data-name-3
(if data-name-3 is a group item).

3. When data-name-3 is not specified, data-name-2 can be either a group or
an elementary item; when data-name-2 is a group (elementary) item,
data-name-1 is treated as a group (elementary) item.

Data Division 4-41

SIGN

4-42

4.3.9 SIGN Clause

Function

The SIGN clause specifies the position and the mode of representation of the
operational sign when it is necessary to explicitly describe these properties.

General Format

LEADING

SIGN IS] { } [SEPARATE CHARACTER]

TRAILING

Syntax Rules

1. The SIGN clause can be specified only for a numeric data-description-
entry whose PICTURE contains the character S, or a group item contain-
ing at least one such numeric data-description-entry.

2. The numeric data-description-entries to which the SIGN clause applies
must be described as USAGE IS DISPLAY.

3. At most one SIGN clause can apply to any given numeric data-
description-entry.

General Rules

1. The SIGN clause specifies the position and the mode of representation of
the operational sign for the numeric data-description-entry to which it
applies, or for each numeric data-description-entry subordinate to the
group to which it applies. The SIGN clause applies only to numeric data-
description-entries whose PICTURE contains the character S; the S indi-
cates the presence of the operational sign (though not its representation or,
necessarily, its position).

2. A numeric data-description-entry whose PICTURE contains the S, but to
which no SIGN clause applies, has an operational sign. In this default
case, the sign is a part of the right-most, or trailing, digit in the item
(much like an overpunch).

3. If the SEPARATE CHARACTER phrase is not present, then:

a. The operational sign is associated with the leading (or trailing) digit
position of the elementary numeric data item.

b. The letter S in the PICTURE character-string is not counted in deter-
mining the size of the item (in terms of standard data format charac-
ters).

Data Division

SIGN

Continued

c. The digit position containing the operational sign holds a character
whose value represents both a numeric digit and the algebraic sign of
the item. The allowable characters for all combinations of the numeric
digits, and the positive and negative sign values, are:

DIGIT VALUES
1 2 3 4 5 6 7 8 9 0
POSITIVE A B C D E F G H 1 {

SIGN

NEGATIVE J K L M N O P Q R |

4. If the SEPARATE CHARACTER phrase is present, then:

a. The operational sign is the leading (or trailing) character position of the
elementary numeric data item; this character position is not a digit
position.

b. The letter S in a PICTURE character-string is counted in determining
the size of the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard data
format characters + and -, respectively.

5. Every numeric data-description-entry whose PICTURE contains the char-
acter S is a signed numeric data-description-entry. If a SIGN clause
applies to such an entry, and conversion is necessary for computation or
comparison purposes, conversion takes place automatically.

Data Division 4—43

SYNCHRONIZED

4-44

4.3.10 SYNCHRONIZED Clause

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item
on a word boundary in computer memory. (See Section 4.2.8, Item Alignment
for Increased Object-Code Efficiency.)

General Format

SYNCHRONIZED LEFT
SYNC RIGHT

Syntax Rules

1. This clause can appear only with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules

1.

Use of this clause aligns the subject data item on memory word boundaries
such that no other data item occupies any of the words delimiting the data
item. A memory word contains two character positions. If the number of
character positions required to store the data item is odd, the unused
character is not used for any other data item. These unused character
positions, however, are included in:

a. The size of any group item(s) to which the elementary item belongs.

b. The character positions redefined when this data item is the object of a
REDEFINES clause.

SYNCHRONIZED not followed by either RIGHT or LEFT specifies that
the elementary item is to be synchronized left.

SYNCHRONIZED LEFT specifies that the elementary item is to begin at
the even byte address of the memory word.

SYNCHRONIZED RIGHT specifies that the elementary item is to termi-
nate on the odd byte address of the memory word.

Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item, as shown in the PICTURE clause, is used to
determine any action that depends on size, such as justification, trunca-
tion or overflow.

If the data description of an item contains the SYNCHRONIZED clause
and an operational sign, the sign of the item appears in the normal opera-
tional sign position, regardless of whether the item is SYNCHRONIZED
LEFT or SYNCHRONIZED RIGHT.

Data Division

SYNCHRONIZED

Continued

7. All binary items and all INDEX items are automatically
SYNCHRONIZED and occupy an integral number of words. (See Section
4.3.11, USAGE Clause.)

8. When the SYNCHRONIZED clause is specified for an item in the scope of
an OCCURS clause, each occurrence is SYNCHRONIZED.

9. A fill byte is added to the end of each occurrence of a group item if all of
~ the following conditions are met:

a. One or more items within the group item are SYNCHRONIZED
(implicitly or explicitly).

b. The data description of the group item contains an OCCURS clause.
c. The size of the group is odd after synchronization of the items within it.

The group size then becomes even, causing each occurrence of an item
within the group to align on memory boundaries in the same manner as the
first occurrence of the item.

10. All record descriptions in both the File Section and Working-Storage Sec-
tion, and all noncontiguous data items in the Working-Storage Section,
are automatically SYNCHRONIZED.

Data Division 4-45

USAGE

4-46

4.311 USAGE Clause

Function

The USAGE clause specifies the format of a data item in the computer’s
storage.

General Format

COMPUTATIONAL
COMP
COMPUTATIONAL-3
) COMP-3 }
DISPLAY
DISPLAY-6
DISPLAY-7
INDEX

[USAGE IS}

Syntax Rules

COMP is an abbreviation for COMPUTATIONAL.
COMP-3 is an abbreviation for COMPUTATIONAL-3.

The PICTURE character-string of a COMP or COMP-3 item can contain
only 9s, the operational sign character S, the implied decimal point char-
acter V, and one or more Ps. (See Section 4.3.6, PICTURE Clause.)

DISPLAY, DISPLAY-6, and DISPLAY-7 are equivalent.

An index data item can be referenced explicitly only in a SEARCH or
SET statement, a relation condition, the USING phrase of a Procedure
Division header, or the USING phrase of a CALL statement.

The SYNCHRONIZED, JUSTIFIED, PICTURE, SIGN, VALUE, and
BLANK WHEN ZERO clauses cannot be used to describe group or ele-
mentary items described with the USAGE IS INDEX clause.

General Rules

1.

The USAGE clause can be written at any level. If it is written at a group
level, it applies to each elementary item in the group. The USAGE clause
of an elementary item cannot contradict the USAGE clause of a group to
which the item belongs.

This clause specifies the manner in which a data item is represented in the
computer’s storage. It does not affect the use of the data item, although
the specifications for some statements in the Procedure Division can re-
strict the USAGE clause of the referenced operands.

Data Division

USAGE

Continued

A COMP or COMP-3 item can represent a value to be used in computa-
tions and must be numeric. If a group item is described as COMP or
COMP-3, the specification applies to the elementary items in the group,
but not to the group itself; the group item cannot be used in computation.

An elementary item described with the USAGE IS INDEX clause is called
an index data item and contains a value that must correspond to an
occurrence number of a table element. The elementary item cannot be
a conditional variable. If a group item is described with a USAGE IS
INDEX clause, the elementary items in the group are all index data
items. However, the group item itself is not an index data item and cannot
be used in the SEARCH or SET statement or in a relation condition.

An index data item can be part of a group that is referred to in a MOVE or
input-output statement, in which case conversion does not occur.

If the USAGE clause is not specified for an elementary item or for any
group to which the item belongs, the USAGE is implicitly DISPLAY.

A COMP item is a binary value with an assumed decimal point that is
automatically SYNCHRONIZED and stored in memory (in one, two, or
four words) as follows:

PICTURE Range Storage

S9 TO S9(4) 1 word (2 bytes)
S9(5) TO S9(9) 1 longword (4 bytes)
S9(10) TO S9(18) 1 quadword (8 bytes)

The representation of the binary value is independent of the presence of V
or one or more Ps in its PICTURE character-string. The binary value of a
COMP item represents the exact decimal quantity whose description is
given by the PICTURE character-string as if it contained no V or P char-
acters. However, the decimal point indicated by these characters is re-
membered and used to adjust the binary value before using it in arithme-
tic operations. Thus, the binary value represents the decimal value as
though it were an integer, and decimal accuracy is achieved, although
representation is binary. The internal representation of COMP items is
discussed in the User’s Guide.

A COMP-3 item is a signed packed decimal value with an assumed deci-
mal point that is stored internally as two decimal digits per byte (byte-
aligned). The maximum size of a COMP-3 item is 18 decimal digits. Its
PICTURE character-string must contain an S. The item can begin in the
even address byte or the odd address byte subject to the implicit or ex-
plicit synchronization. (See Section 4.3.10, SYNCHRONIZED Clause.)
The internal format of COMP-3 items is fully discussed in the User’s
Guide.

Data Division 4-47

USAGE

Continued

10. A DISPLAY item is a string of bytes stored in memory as two bytes per
word. The item can begin in the even address byte or the odd address byte
subject to the implicit or explicit synchronization. (See Section 4.3.10,
SYNCHRONIZED Clause.)

11. Index data items are stored as one-word COMP items with PIC 9(4).
Their value is always positive.

Index data items are implicitly SYNCHRONIZED. Thus, when they are
described in record descriptions, they may cause automatic fill bytes to be
supplied.

4-48 Data Division

VALUE

4.3.12 VALUE Clause

Function

The VALUE clause defines the initial value of Working-Storage items and the
values associated with a condition-name.

General Format

Format 1

VALUE IS literal

Format 2

VALUE IS THROUGH
literal-1 literal-2
VALUES ARE THRU N

THROUGH
, literal-3 literal-4
THRU

Syntax Rules

1. The words THRU and THROUGH are equivalent.

2. A signed numeric literal must have an associated signed numeric
PICTURE character-string.

3. All numeric literals in a VALUE clause of an item must have a value in the
range indicated by the PICTURE clause and must not have a value that
would require truncation of non-zero digits. Alphanumeric literals in a
VALUE clause of an item must not exceed the size indicated by the
PICTURE clause.

General Rules

1. The VALUE clause must not conflict with other clauses in the data de-
scription of the item or in the data description in the hierarchy of the item.
The following rules apply:

a. If the category of the item is numeric, all literals in the VALUE clause
must be numeric. If the literal defines the value of a Working-Storage
item, it is aligned in the data item according to the standard alignment
rules. (See Section 4.2.7, Standard Alignment Rules.) '

Data Division 4-49

VALUE

Continued

b.

If the category of the item is alphabetic, alphanumeric, alphanumeric
edited or numeric edited, all literals in the VALUE clause must be
alphanumeric literals. The literal is aligned in the data item as if the
data item had been described as alphanumeric. (See Section 4.2.7,
Standard Alignment Rules.) Editing characters in the PICTURE clause
are included in determining the size of the data item, but they have no
effect on its initialization.

Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that is specified.

2. A figurative constant can be substituted in Format 1 and Format 2
wherever a literal is specified.

Condition-Name Rules

1. In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses permitted in
the entry. The characteristics of a condition-name are implicitly those of
its conditional variable.

Format 2 can be used only in connection with condition-names. (See Sec-
tion 1.1.2.1, User-Defined Words.) Wherever the THRU phrase is used,
literal-1 must be less than literal-2, literal-3 less than literal-4, etc.

Data-Description-Entries Other Than Condition-Names

1. Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

2.

a.

In the File Section and the Linkage Section, the VALUE clause can be
used only in condition-name entries.

In the Working-Storage Section, the VALUE clause must be used in
condition-name entries. The VALUE clause can also be used to specify
the initial value of any other data item except an index data item, in
which case the clause causes the item to assume the specified value at
the start of the object program. If the VALUE clause is not used in an
item description, the initial value is undefined.

The VALUE clause must not be stated in a data-description-entry that
either contains an OCCURS clause or is subordinate to one that contains

an OCCURS clause. This rule does not apply to condition-name entries.
(See Section 4.3.5, OCCURS Clause.)

4-50 Data Division

VALUE

Continued

3. The VALUE clause must not be stated in a data-description-entry that
either contains a REDEFINES clause or is subordinate to one that con-
tains a REDEFINES clause. This rule does not apply to condition-name
entries.

4. If the VALUE clause is used in an entry at the group level, the literal must
be a figurative constant or a alphanumeric literal, and the group area is
initialized without consideration for the individual elementary or group
items contained in this group. The VALUE clause cannot be stated at the
subordinate levels in this group.

5. The VALUE clause must not be written for a group containing items with
descriptions that include JUSTIFIED, SYNCHRONIZED, or USAGE -
(other than USAGE IS DISPLAY).

Data Division 4-51

Chapter 5
Procedure Division

5.1 General Description

The Procedure Division must be included in every COBOL source program. It
specifies the processing to be performed on the files and file data described in
the Environment and Data Divisions. This division contains declaratives and
procedures.

5.1.1 Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division. They are preceded by the key word DECLARATIVES and followed
by the key words END DECLARATIVES. Declarative sections detail the
procedures to be followed whenever an I-O error occurs on a particular file.
(See Section 5.41, USE statement.)

5.1.2 Procedures

A procedure consists of a paragraph, a group of successive paragraphs, a
section, or a group of successive sections. If one paragraph is in a section, then

. all paragraphs must be in sections. A procedure-name is a word used to refer
to a paragraph or section in the source program. It consists of a paragraph-
name or a section-name.

The end of the Procedure Division and the physical end of the program is that
physical position in a COBOL source program after which no further text
appears.

A section consists of a section header followed by zero or more successive
paragraphs. A section ends immediately before the next section or at the end
of the Procedure Division. In the declaratives portion of the Procedure
Division, the section ends at the key words END DECLARATIVES.

5-1

A paragraph consists of a paragraph-name followed by a period and a space
and by zero or more successive sentences. A paragraph ends immediately
before the next paragraph-name or section name or at the end of the Procedure
Division. In the declaratives portion of the Procedure Division, a paragraph
ends at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period
followed by a space.

A statement is a syntactically valid combination of words and symbols begin-
ning with a COBOL verb.

An identifier is the word or words necessary to make unique reference to a
data item. (See Section 5.4.8, Uniqueness of Reference.)

Execution begins with the first statement of the Procedure Division, excluding
declaratives. Statements are then executed in the order in which they are
presented for compilation, except where the rules indicate some other order.

5.2 Procedure Division Header

5-2

The Procedure Division is identified by and must begin with the following
header:

PROCEDURE DIVISION [USING [data-name-1] [,data-name-2] ...] .

The USING phrase is present if, and only if, the object program is to function
under the control of a CALL statement. A COBOL program which is to
function under the control of a CALL statement, but which has no arguments
passed to it, is specified by a USING phrase that contains no data-names (an
empty USING phrase).

Each of the operands in the USING phrase of the Procedure Division header
must be defined as a data item in the Linkage Section of the program in which
this header occurs, and it must have a 01 or 77 level-number.

Within a called program, Linkage Section data items are processed according
to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if data-
name-1 of the Procedure Division header in the called program and data-
name-1 in the USING phrase of the CALL statement in the calling program
refer to a single set of data that is equally available to both the called and
calling programs. Except that they must define an equal number of character
positions, their descriptions need not be the same. In like manner, there is an
equivalent relationship between data-name-2, ..., in the USING phrase of the
called program and data-name-2, ..., in the USING phrase of the CALL
statement in the calling program. A data-name must not appear more than
once in the USING phrase in the Procedure Division header of the called

Procedure Division

program; however, a given data-name can appear more than once in the
USING phrase of a CALL statement.

Data items defined in the Linkage Section of the called program can be
referenced within the Procedure Division of the called program if and only if
they are:

1. Operands of the USING phrase of the Procedure Division header.

2. Subordinate to operands of the USING phrase of the Procedure Division
header.

3. Defined with a REDEFINES or RENAMES clause, the object of which is
an operand of the USING phrase of the Procedure Division header.

4. Ttems subordinate to any of the items defined in number 3 above.

5. Condition-names and index-names associated with data items that meet
any of the above conditions.

5.3 Procedure Division Body

The body of the Procedure Division must conform to one of the following

formats:
Format 1
[DECLARATIVES.
{section-name SECTION [segment-number]. declarative-sentence
[paragraph-name. [sentence] ...] }

END DECLARATIVES]

{section-name SECTION [segment-number].

[paragraph-name. [sentence] ...] }

Format 2

{paragraph-name. [sentence] }

5.4 Statements and Sentences

There are three types of statements: conditional, compiler-directing, and
imperative.

There are three types of sentences: conditional, compiler-directing, and
imperative.

Procedure Division 5-3

5-4

5.4.1 Conditional Statement

A conditional statement specifies that the truth value of a condition is to be
determined and that the subsequent action of the object program is depend-
ent on this truth value.

A conditional statement is one of the following:
a. An IF statement or a SEARCH statement.
b. A READ statement that specifies the AT END or INVALID KEY phrase.

c. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE
phrase.

d. A REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

e. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) that specifies the SIZE ERROR phrase.

f. A STRING or UNSTRING statement that specifies the ON OVERFLOW
phrase.

g. A GO TO ... DEPENDING ... statement.

5.4.2 Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, terminated by a period, and followed by a space.

5.4.3 Compiler-Directing Statement

A compiler-directing statement causes the compiler to take a specific action
during compilation. It consists of a compiler-directing verb (USE or COPY)
and its operands.

5.4.4 Compiler-Directing Sentence

A compiler-directing sentence is a single compiler-directing statement
terminated by a period followed by a space.

Procedure Division

5.4.5 Imperative Statement

An imperative statement indicates a specific, unconditional action to be
taken by the object program. An imperative statement is any statement that
is neither a conditional statement nor a compiler-directing statement. An
imperative statement can consist of a sequence of imperative statements,
each possibly separated from the next by a separator. The imperative verbs
are:

ACCEPT
ADD(1) GO(5) SET
ALTER

INSPECT START(2)

STOP

CLOSE MOVE STRING(4)
COMPUTE(Q)

MULTIPLY (1) SUBTRACT (1)
DELETE (2) OPEN

PERFORM
DISPLAY READ (3) UNSTRING(4)
DIVIDE (1) WRITE (2)
EXIT REWRITE (2)

(1) Without the optional SIZE ERROR phrase.

(2) Without the optional INVALID KEY phrase.

(3) Without the optional AT END phrase or INVALID KEY phrase.
(4) Without the optional ON OVERFLOW phrase.

(5) Without the optional DEPENDING phrase.

When imperative-statement appears in the general format of statements, it
refers to that sequence of consecutive imperative statements that must be
ended by a period, an ELSE phrase associated with a previous IF statement,
or a WHEN phrase associated with the previous SEARCH statement.

5.4.6 Imperative Sentence

An imperative sentence is an imperative statement terminated by a period,
and followed by a space.

5.4.7 Statement Categories

COBOL statements are categorized by verb type and format:
Category Verbs

ADD
COMPUTE

Arithmetic DIVIDE
INSPECT (TALLYING)
MULTIPLY
SUBTRACT

Procedure Division 5-5

Compiler-Directing COPY

USE

ADD (SIZE ERROR)

COMPUTE (SIZE ERROR)

DELETE (INVALID KEY)

DIVIDE (SIZE ERROR)

GO (DEPENDING)

IF

MULTIPLY (SIZE ERROR)

Conditional READ (END or INVALID KEY)
REWRITE (INVALID KEY)
SEARCH
START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)
WRITE (INVALID KEY or END-OF-PAGE)

ACCEPT (DATE, DAY, or TIME)
"INSPECT (REPLACING)
Data Movement MOVE
STRING
UNSTRING

Ending STOP

(ACCEPT
CLOSE
DELETE
DISPLAY
Input-Output 4 OPEN

READ
REWRITE
START
STOP (literal)
\ WRITE

ALTER

CALL
Procedure Branching EXIT

GO TO

PERFORM

SEARCH
Table-handling ;ET

IF is used as a verb in the COBOL language although it is not a verb in the
English language.

5.4.8 Uniqueness of Reference

Uniqueness of reference in a COBOL program is accomplished by using quali-
fiers, subscripts, indexes, unique identifiers, and condition-names.

5-6 Procedure Division

5.4.8.1 Qualification — Every user-specified name that defines an element in
a COBOL source program must be unique, either because no other name has
the identical spelling and hyphenation or because the name exists within a
hierarchy of names such that references to the name can be made unique by
mentioning one or more of the higher levels of the hierarchy. The higher levels
are called qualifiers, and the process that specifies uniqueness is called quali-
fication. Enough qualification must be mentioned to make the name unique;
however, it may not be necessary to mention all levels of the hierarchy.
Within the Data Division, all data-names used for qualification must be asso-
ciated with a level indicator or a level-number. Therefore, two identical data-
names must not appear as entries subordinate to a group item unless they are
capable of being made unique through qualification. In the Procedure
Division two identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are
the most significant, followed, in order, by names associated with level-num-
ber 01 and names associated with level-numbers 02 through 49. A section-
name is the highest (and the only) qualifier available for a paragraph-name.
Thus, the most significant name in the hierarchy must be unique and cannot
be qualified. Subscripted or indexed data-names and conditional variables, as
well as procedure-names and data-names, can be made unique by qualifica-
tion. The name of a conditional variable can be used as a qualifier for any of
its condition-names. Regardless of the available qualification, a name cannot
be both a data-name and a procedure-name.

Qualification is performed by following a data-name, a condition-name, a
paragraph-name, or a text-name by one or more phrases composed of a quali-
fier preceded by IN or OF. IN and OF are logically equivalent.

The general formats for qualification are:

Format 1
data-name-1 }[{ QE} data-name-2 :l
{condition-name IN file-name
Format 2

2

paragraph-name section-name :|
IN

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same
hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

Procedure Division 5-7

5-8

3. If a data-name or a condition-name is assigned to more than one data item
in a source program, the data-name or condition-name must be qualified
each time it is referred to in the Procedure, Environment, and Data Divi-
sions (except in the REDEFINES clause, in which qualification must not
be used).

4. A paragraph-name must not be duplicated within a section. When a para-
graph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when it is referenced from
within the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications; if
there is more than one combination of qualifiers that ensures uniqueness,
then any such set can be used. The complete set of qualifiers for a data-
name must not be the same as any partial set of qualifiers for another
data-name. Qualified data-names can have up to 48 qualifiers.

5.4.8.2 Subscripting — Subscripts can be used only when reference is made to
an individual element within a list or table of like elements that have not been
assigned individual data-names. (See Section 4.3.5, OCCURS Clause.)

The subscript can be represented either by a numeric literal that is an integer
or by a data-name. The data-name must be a numeric elementary item that
represents an integer. When the subscript is represented by a data-name, the
data-name can be qualified but not subscripted.

The subscript can be signed and, if signed, it must be positive. The lowest
possible subscript value is 1. This value points to the first element of the
table. The next sequential elements of the table are pointed to by subscripts
whose values are 2, 3, The highest permissible subscript value, in any
particular case, is the maximum number of occurrences of the item as speci-
fied in the OCCURS clause.

The subscript or set of subscripts that identify the table element are delimited
by a balanced pair of separators, the left and right parentheses, following the
table element data-name. The table element data-name appended with a
subscript is called a subscripted data-name or an identifier. When more than
one subscript is required, they are written in the order of successively less-
inclusive dimensions of the data organization.

The format is:

condition-name

data-name »
(subscript-1 [, subscript-2 [, subscript-3]])

Procedure Division

5.4.8.3 Indexing — Indexing allows references to be made to individual ele-
ments within a table of like elements. An index is assigned to a level of the
table by using the INDEXED BY phrase in the table’s definition. A name
given in the INDEXED BY phrase is known as an index-name and is used to -
refer to the assigned index. The value of an index corresponds to the occur-
rence number of an element in the associated table. An index-name must be
initialized before it is used as a table reference. An index-name can be given
an initial value by a SET, SEARCH ALL, or Format 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of a subscript.
Relative indexing is specified when the index-name is followed, in order, by:
(1) the operator + or -, and (2) an unsigned integer numeric literal, all three
delimited by a balanced pair of separators, the left and right parentheses,
following the table element data-name. The occurrence number resulting
from relative indexing is determined by incrementing (where the operator + is
used) or decrementing (where the operator - is used) by the value of the
literal, the occurrence number represented by the value of the index. When
more than one index-name is required, they are written in the order of succes-
sively less-inclusive dimensions of the data organization.

At the time of execution of a statement that refers to an indexed table ele-
ment, the value contained in the index-name associated with the table ele-
ment must neither correspond to a value less than one (1) nor to a value
greater than the highest permissible occurrence number of an element of the
associated table. This restriction also applies to the value resultant from
relative indexing. ’

The general format for indexing is:

{data-name } {index-name—l [{i}literal-ﬂ }

condition-name literal-1

{index-name—Q [{i}literal—ﬂ} |: { index-name-3 [{i} literal—6]}]
y)

literal-3 literal-5

5.4.8.4 Internal Formats of Subscripts, Index-Names and Index Data Items

1. Subscripts are stored as either binary or DISPLAY numeric integers with a
size that can vary from 1 to 18 digits. They can contain an operational
sign, although at the time of their use as a subscript the value must be
positive.

2. Index-names are stored as two-part items consisting of a binary occurrence
number and a binary index value. Both values are always positive.

Procedure Division 5-9

5-10

3. Index data items are stored as 1 word COMP items consisting of a binary

occurrence number with an implicit PIC 9(4) description. Their value is
always positive.

Index data items are implicitly SYNCHRONIZED; thus, when they are
described within record descriptions they can cause automatic fill bytes to
be supplied.

5.4.8.5 ldentifier — An identifier is a term used to indicate that a data-name,
if not unique in a program, must be followed by a syntactically correct combi-
nation of qualifiers, subscripts, or indexes necessary to ensure uniqueness.

The general formats for identifiers follow:

Format 1

OF
data-name-1 l:{ } data-name—2:| [(subscript—l [, subscript-2

IN

[, subscript-3]]) :|

Format 2

OF ‘ index-name-1 [{j—_}literal—ﬂ
data-name-1 l:{ data-name-2 (

IN literal-1

{index-name—2 [{_‘t} liLeral—4] } |: { index-name-3 [{i}literal—G]}:I
,)

literal-3 literal-5

The following are restrictions on qualification, subscripting and indexing:

1.

®w

A data-name must not itself be subscripted or indexed when it is being
used as an index, subscript or qualifier.

Indexing is not permitted where subscripting is not permitted.

An index name can be modified only by the SET, SEARCH, and
PERFORM statements. Data items described by the USAGE IS INDEX
clause permit storage of the values associated with index-names as data in
a form called index data items.

Literal-1, literal-3, literal-5 in the above format must be positive numeric
integers. Literal-2, literal-4, and literal-6 must be unsigned numeric
integers.

5.4.8.6 Condition-Name — Each condition-name must be unique or be made
unique through qualification and/or indexing or subscripting.

Procedure Division

If qualification is used to make a condition-name unique, the associated con-
ditional variable can be used as the first qualifier. If qualification is used, the
hierarchy of names associated with the conditional variable or the conditional
variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then
references to any of its condition-names also require the same combination of
indexing or subscripting.

The format and restrictions on the combined use of qualification, sub-
scripting, and indexing of condition-names are exactly those pertaining to
"identifier", except that data-name-1 is replaced by condition-name-1.

In the general formats, "condition-name" refers to a condition-name qualified,
indexed or subscripted, as necessary.

5.4.9 Explicit and Implicit Specifications

There are three types of explicit and implicit specifications that occur in
COBOL source programs:

1. Explicit and Implicit Procedure Division References
2. Explicit and Implicit Transfers of Control
3. Explicit and Implicit Attributes

5.4.9.1 Explicit and Implicit Procedure Division References — A COBOL
source program can reference data items either explicitly or implicitly in
Procedure Division statements. An explicit reference occurs when the name of
the referenced item is written in a Procedure Division statement or when the
name of the referenced item is copied into the Procedure Division by the
processing of a COPY statement. An implicit reference occurs when the item
is referenced by a Procedure Division statement without the name of the
referenced item being written in the source statement. Such an implicit refer-
ence occurs if, and only if, the data item contributes to the execution of the

statement.

5.4.9.2 Explicit and Implicit Transfers of Control —In a COBOL program, each
statement is executed in the sequence in which it was written in the source
program unless an explicit transfer of control overrides this sequence. The
transfer of control from statement to statement occurs without writing an
explicit Procedure Division statement and, therefore, is an implicit transfer of
control.

COBOL provides both explicit and implicit means of altering the implicit
control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without

Procedure Division 5-11

the execution of a procedure branching statement. COBOL provides the fol-
lowing types of implicit control flow alterations that override the statement-
to-statement transfers of control:

‘1. If a paragraph is being executed under control of another COBOL state-

ment (for example, PERFORM, USE) and the paragraph is the last para-
graph in the range of the controlling statement, then an implied transfer of
control occurs following the last statement in the paragraph to the control
mechanism of the last executed controlling statement.

2. When any COBOL statement is executed that results in the execution of a
declarative section, an implicit transfer of control to the declarative sec-
tion occurs. Note that another implicit transfer of control occurs after
execution of the declarative section, as described in number 1 above.

An explicit transfer of control consists of an alteration of the implicit control
transfer mechanism by the execution of a procedure branching or conditional
statement. (See Section 5.4, Statements and Sentences.) An explicit transfer.
of control can be caused only by the execution of a procedure branching or
conditional statement. The execution of the procedure branching statement
ALTER does not in itself constitute an explicit transfer of control, but affects
the explicit transfer of control that occurs when the associated GO TO state-
ment is executed.

In this document, the term "next executable statement" is used to refer to the
next COBOL statement to which control is transferred according to the rules
above and the rules associated with each language element in the Procedure
Division.

5.4.9.3 Explicit and Implicit Attributes — Attributes can be implicitly or expli-
citly specified. An attribute that has been explicitly specified is called an
explicit attribute. If an attribute has not been specified explicitly, then the
attribute takes on the default and is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case
data item usage is DISPLAY.

5.5 Arithmetic Expressions

5-12

An arithmetic expression can be an identifier of a numeric elementary item, a
numeric literal, such identifiers and literals separated by arithmetic opera-
tors, two arithmetic expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses. Any arithmetic expression may
be preceded by a unary operator. The permissible combinations of variables,
numeric literals, arithmetic operator and parentheses are given in Table 5-1,
Combination of Symbols in Arithmetic Expressions, Section 5.5.2.

Procedure Division

Those identifiers and literals appearing in an arithmetic expression must
represent either numeric elementary items or numeric literals on which arith-
metic can be performed.

NOTE:

Arithmetic expressions must not contain non-integer
exponents.

5.5.1 Arithmetic Operators

An arithmetic operator is a single character or a fixed 2-character
combination.

There are five binary arithmetic operators and two unary arithmetic operators
that can be used in arithmetic expressions. They are represented by specific
characters that must be preceded by and followed by a space. -

Binary Arithmetic

Operators Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
£

Exponentiation

Unary Arithmetic
Operators Meaning

The effect of multiplication by numeric literal +1.
The effect of multiplication by numeric literal -1.

5.5.2 Formation And Evaluation Rules

1. Parentheses can be used in arithmetic expressions to specify the order in
which elements are to be evaluated. Expressions within parentheses are
evaluated first; and within nested parentheses, evaluation proceeds from
the least inclusive set to the most inclusive set. When parentheses are not
used or parenthesized expressions are at the same level of inclusiveness,
the following hierarchical order of execution is implied:

1st - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division
4th - Addition and subtraction

Procedure Division 5-13

2. Parentheses are also used either (a) to eliminate ambiguities in logic where
consecutive operations of the same hierarchical level appear, or (b) to
modify the normal hierarchical sequence of execution in expressions where
it is necessary to deviate from the normal precedence. When the sequence
of execution is not specified by parentheses, the order of execution of
consecutive operations of the same hierarchical level is from left to right.

3. The ways in which operators, variables, and parentheses can be combined
in an arithmetic expression are summarized in Table 5-1, where:

a. The letter P indicates a permissible pair of symbols.
b. The character - indicates an invalid pair of symbols.

¢. The term variable indicates an identifier or literal.

Table 5-1: Symbol Combinations in Arithmetic Expressions

First Second Symbol
Symbol Variable Ll A Unary + or - ()
Variable - P - - P
T p ~ p p B
Unary + or - P . - P _
(P - P P -
) - P _ _ P

4. An arithmetic expression can begin only with an open parenthesis, a plus
sign, a minus sign, or a variable and can end only with a close parenthesis
or a variable. There must be a one-to-one correspondence between left and
right parentheses of an arithmetic expression; each left parenthesis is to
the left of its corresponding right parenthesis.

5. Arithmetic expressions allow you to combine arithmetic operations with-
out restrictions on composite of operands and/or receiving data items.

5.6 Conditional Expressions

5-14

Conditional expressions identify conditions that are tested to enable the
object program to select between alternate paths of control depending upon
the truth value of the condition. Conditional expressions are specified in
the IF, SEARCH, and PERFORM statements. There are two categories of
conditions associated with conditional expressions: simple conditions and
complex conditions. :

Procedure Division

5.6.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status,
and sign conditions. A simple condition has a truth value of true or false.

5.6.2 Relation Condition

A relation condition causes a comparison of two operands, each of which can
be the data item referenced by an identifier or a literal or the value resulting
from an arithmetic expression. A relation condition has a truth value of true if
the relation exists between the operands.

Comparison of two numeric operands is permitted regardless of the formats
specified in their respective USAGE clauses. However, for all other compari-
sons the operands must have the same usage. If either of the operands is a
group item, the non-numeric comparison rules apply.

The general format of a relation condition is as follows:

IS INOT) GREATER THAN
IS (NOT) LESS THAN

identifier—1 identifier—
1. entifier IS (NOT] EQUAL TO 1. entifier-2
literal-1 IS [NOT) >9— literal-2
ithmetic. ion-1 NOT . . L
arithmetic-expression IS (NOT) < arithmetic-expression-2
IS INOT] =
NOTE:

The required relational characters >, <, and = are not under-
lined to avoid confusion with other symbols such as greater-
than-or-equal-to.

The first operand (identifier-1, literal-1, or arithmetic-expression-1) is called
the subject of the condition; the second operand (identifier-2, literal-2, or
arithmetic-expression-2) is called the object of the condition. The subject and
the object cannot both be literals.

The relational operator specifies the type of comparison to be made in a
relation condition. A space must precede and follow each reserved word
comprising the relational operator. When used, NOT and the next key word or
relation character are one relational operator that defines the comparison to

Procedure Division 5-15

5-16

be executed for truth value: e.g., NOT EQUAL is a truth test for an unequal
comparison; NOT GREATER is a truth test for an equal or less comparison.
The meaning of the relational operators is as follows:

Relational Operator Meaning
IS INOT) GREATER THAN Greater than or not greater than
IS INOT] >
IS INOT] LESS THAN Less than or not less than
IS INOT] <
IS [NOT) EQUAL TO Equal to or not equal to
IS INOT) =
NOTE:

The required relational characters >, <, and = are not under-
lined to avoid confusion with other symbols such as greater-
than-or-equal-to.

5.6.3 Comparison of Numeric Operands

For operands whose class is numeric (see Section 4.2.4, Classes of Data), a
comparison is made with respect to the algebraic value of the operands. The
length of the literal or arithmetic-expression operands, in terms of number of
digits, is not significant. Zero is considered a unique value regardless of the
sign.

Comparison of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

5.6.4 Comparison of Alphanumeric Operands

For nonnumeric operands, or numeric and nonnumeric operand combinations,
a comparison is made with respect to a specified collating sequence of charac-
ters (See Section 3.1.2, OBJECT-COMPUTER paragraph). If one of the
operands is specified as numeric, it must be an integer data item (USAGE
DISPLAY) or an integer literal:

1. If the nonnumeric operand is an elementary data item or a nonnumeric
literal, the numeric operand is treated as though it were moved to an
elementary alphanumeric data item of the same size as the numeric data
item (in terms of standard data format characters), and the contents of
this alphanumeric data item were then compared to the nonnumeric oper-
and. (See Section 5.22, MOVE Statement and Section 4.3.6, PICTURE
Clause.)

Procedure Division

2. If the nonnumeric operand is a group item, the numeric operand is treated
as though it were moved to a group item of the same size as the numeric
data item (in terms of standard data format characters), and the contents
of this group item were then compared to the nonnumeric operand. (See
Section 5.22, MOVE Statement and Section 4.3.6, PICTURE Clause.)

3. A non-integer numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of standard data format characters
it contains. Numeric and nonnumeric operands can be compared only when
their usage is the same. '

Comparisons can be made between operands of equal size and operands of
unequal size.

1. Operands of equal size.

Comparison effectively proceeds by comparing characters in corresponding
character positions starting from the high order end and continuing until
either a pair of unequal characters is encountered or the low order end of
the operand is reached, whichever comes first. The operands are deter-
mined to be equal if all pairs of characters compare equally through the
last pair, when the low order end is reached.

The first encountered pair of unequal characters is compared to determine
their relative position in the collating sequence. The operand containing
the character that is positioned higher in the collating sequence is consid-
ered to be the greater operand.

2. Operands of unequal size.

Comparison proceeds as though the shorter operand were extended on the
right by sufficient space characters to make the operands of equal size.

5.6.5 Comparisons Involving Index-Names and/or Index Data
Items

Relation tests can be made between:

1. Two index-names. The result is the same as if the corresponding occur-
rence numbers were compared.

2. An index-name and a data item (including an index data item) or literal.
The occurrence number that corresponds to the value of the index-name is
compared to the data item or literal.

3. An index data item and an index data item. The actual values are
compared.

Procedure Division 5-17

5-18

Index data items cannot be compared with literals or other data items that
are not index data items.

5.6.6 Class Condition

The class condition determines whether the operand is numeric or alphabetic.
Numeric consists entirely of the characters 0 through 9, with or without the
operational sign. Alphabetic consists entirely of the characters A through Z
and space. The general format for the class condition is as follows:

NUMERIC
identifier IS (NOT) }

ALPHABETIC

The usage of the operand being tested must be described as DISPLAY.

When used, NOT and the next key word specify one class condition that
defines the class test to be executed for truth value, that is, NOT NUMERIC
is a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of elementary
items whose data description indicates the presence of operational sign(s). If
the data description of the item being tested does not indicate the presence of
an operational sign, the item being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present. If the data
description of the item does indicate the presence of an operational sign, the
item being tested is determined to be numeric only if the contents are numeric
and a valid operational sign is present. Valid operational signs for data items
described with the SIGN IS SEPARATE clause are the standard data format
characters, + and -. (See Section 4.3.9, SIGN Clause, for the format of valid
operational signs when the SIGN IS SEPARATE clause is not present.)

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be
alphabetic only if the contents consist of any combination of the alphabetic
characters A through Z and the space.

5.6.7 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine
whether or not its value is equal to one of the values associated with a
condition-name. The general format for the condition-name condition is as
follows:

condition-name
If the condition-name is associated with a range or ranges of values, then the

conditional variable is tested to determine whether or not its value falls in this
range, including the end values.

Procedure Division

The rules for comparing a conditional variable with a condition-name value
are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the
condition-name equals the value of its associated conditional variable.

5.6.8 Switch-Status Condition

A switch-status condition determines the ON or OFF status of a numbered
switch. The switch number and the'ON or OFF value associated with the
condition must be named in the SPECIAL-NAMES paragraph of the
Environment Division. The general format for the switch-status condition is
as follows:

condition-name

The result of the test is true if the switch is set to the specified position
corresponding to the condition-name.

5.6.9 Sign Condition

The sign condition determines whether or not the algebraic value of a data
item is less than, greater than, or equal to 0. The general format for a sign
condition is as follows:

POSITIVE
arithmetic-expression IS [NOT] <(NEGATIVE
ZERO

When used, NOT and the next key word specify one sign condition that
defines the algebraic test to be executed for truth value; for example, NOT
ZERO is a truth test for a nonzero (positive or negative) value.

An operand is positive if its value is greater than 0, negative if its value is less
than 0, and 0 if its value is equal to 0.

5.6.10 Complex Conditions

A complex condition is formed by combining simple conditions, combined
conditions and/or complex conditions with logical connectors (logical opera-
tors AND and OR) or negating these conditions with logical negation (the
logical operator NOT). The truth value of a complex condition, whether
parenthesized or not, is that truth value which results from the interaction of
all stated logical operators on the individual truth values of simple conditions,
or the intermediate truth values of conditions logically connected or logically
negated.

Procedure Division 5-19

The logical operators and their meanings are:

Logical Operator ' ‘ Meaning

AND Logical conjunction; the truth value is true if both of the
conjoined conditions are true; false if one or both of the
conjoined conditions are false.

OR Logical inclusive OR; the truth value is true if one or both
of the included conditions is true; false if both included
conditions are false.

NOT Logical negation or reversal of truth value; the truth value
is true if the condition is false; false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

5.6.11 Negated Simple Conditions

A simple condition is negated through the use of the logical operator NOT.
The truth value for the negated simple condition is the opposite of that for the
simple condition. Thus, the truth value of a negated simple condition is true
if, and only if, the truth value of the simple condition is false; the truth value
of a negated simple condition is false if, and only if, the truth value of the
simple condition is true. The inclusion in parentheses of a negated simple
condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

5.6.12 Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the
logical operators AND or OR.

The general format of a combined condition is:

AND
condition condition

OR

where condition can be one of the following:

1. A simple condition.
2. A negated simple condition.

3. A combined condition.

5-20 Procedure Division

4. A negated combined condition, that is, the NOT log'ical operator followed
by a combined condition enclosed within parentheses.

5. Combinations of the above, specified according to the rules summarized in
Table 5-2, Combinations of Conditions, Logical Operators, and
Parentheses.

Although parentheses need not be used when either AND or OR (but not
both) is used exclusively in a combined condition, they can be used to effect a
final truth value when a mixture of AND, OR and NOT is used.

Table 5-2 indicates the ways in which conditions and logical operators can be
combined and parenthesized. There must be a one-to-one correspondence
between left and right parentheses, and each left parenthesis must be to the
left of its corresponding right parenthesis.

Table 5-2: Combinations of Conditions, Logical Operators, and
Parentheses
In a left-to-right sequence of elements:

Location in

conditional

expression |Element, when not first, | Element when not last,
Given the following can be immediately [can be immediately
element First | Last |preceded only by: followed only by:
simple-condition Yes Yes | OR, NOT, AND, (OR, AND, _)
OR or AND NO NO | simple-condition,) simple-condition, NOT, (
NOT Yes NO | OR, AND, (simple-condition, (
(Yes NO | OR, NOT, AND, (simple-condition, NOT, (
) NO Yes | simple-eondition,) OR, AND,)

Thus, the element pair OR NOT is permissible, while the pair NOT OR is not
permissible; NOT (is permissible, while NOT NOT is not permissible.

5.6.13 Abbreviated Combined Condition Relations

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condi-
tion contains a subject or subject and relational operator that are common
with the preceding relation condition, and no parentheses are used within
such a consecutive sequence, any relation condition except the first can be
abbreviated by the omission of one of the following:

1. The subject of the relation condition, or

2. The subject and relational operator of the relation condition.

Procedure Division 5-21

5-22

The format for an abbreviated combined relation condition is:

AND
relation-condition INOT] [relational-operator] object

OR

Within a sequence of relation conditions both of the above forms of abbrevia-
tion can be used. The effect of using such abbreviations is as if the last
preceding stated subject were inserted in place of the omitted subject, and the
last stated relational operator were inserted in place of the omitted relational
operator. The result of such implied insertion must comply with the rules of
Table 5-2, Combinations of Conditions, Logical Operators, and Parentheses.
This insertion of an omitted subject and/or relational operator terminates
once a complete simple condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated
combined relation condition is as follows:

1. If the word immediately following NOT is GREATER or >, LESS or <, or
EQUAL or =, then the NOT participates as part of the relational operator;
otherwise,

2. The NOT is interpreted as a logical operator and, therefore, the implied
insertion of subject or relational operator results in a negated relation
condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Condition Expanded Equivalent
a>bAND NOT < cORd ((a > b) AND (a NOT < ¢)) OR (a NOT < d)
a NOT EQUAL b OR ¢ (a NOT EQUAL b) OR (a NOT EQUAL ¢)
NOTa=bORc i (NOT (a =b)) OR (a = ¢)
NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < ¢))

NOT (a NOT > b AND ¢ AND NOT d) NOT ((((a NOT > b) AND
(a NOT > ¢)) AND
(NOT (a NOT > d))))

5.6.14 Condition Evaluation Rules

Parentheses can be used to specify the order in which individual conditions of
complex conditions are to be evaluated when it is necessary to depart from the
implied evaluation precedence. Conditions within parentheses are evaluated

Procedure Division

first, and, within nested parentheses, evaluation proceeds from the least in-
clusive condition to the most inclusive condition. When parentheses are not
used or parenthesized conditions are at the same level of inclusiveness, the
following hierarchical order of logical evaluation is implied until the final
truth value is determined:

1. Values are established for arithmetic expressions. (See Formation and
Evaluation Rules, Section 5.5.2.)

2. Truth values for simple conditions are established in the following order:

a. Relation condition (following the expansion of any abbreviated relation
condition)

b. Class condition
¢. Condition-name condition
d. Switch-status condition

e. Sign condition

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established (AND logical opera-
tors, followed by OR logical operators).

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by
parentheses, the order of evaluation of consecutive operations of the same
hierarchical level is from left to right.

5.7 Common Phrases and General Rules for Statement Formats

In the statement descriptions that follow, several phrases appear
frequently: the ROUNDED phrase, the SIZE ERROR phrase, and the
CORRESPONDING phrase.

In the discussion below, a resultant-identifier is that identifier associated with
a result of an arithmetic operation.

5.7.1 ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of the
result of an arithmetic operation is greater than the number of places pro-
vided for the fraction of the resultant-identifier, truncation is relative to the
size provided for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by 1 whenever the most
significant digit of the excess is greater than or equal to 5.

Procedure Division 5-23

5-24

When the low-order integer positions in a resultant-identifier are represented
by the character P in the PICTURE clause for that resultant-identifier,
rounding or truncation occurs relative to the rightmost integer position for
which storage is allocated.

5.7.2 SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result exceeds the
largest value that can be contained in the associated resultant-identifier, a
size error condition exists. Division by 0 always causes a size error condition.
The size error condition applies only to the final results of an arith-
metic operation and does not apply to intermediate results, except in the
MULTIPLY and DIVIDE statements. Then the size error condition applies
to the intermediate results as well. If the ROUNDED phrase is specified,
rounding takes place before checking for size error. When such a size error
condition occurs, the subsequent action depends on whether or not the
SIZE ERROR phrase is specified.

1. If the SIZE ERROR phrase is not specified and a size error condition
occurs, the value of those resultant-identifier(s) affected is undefined. Val-
ues of resultant-identifier(s) for which no size error condition occurs are
unaffected by size errors that occur for other resultant-identifier(s) during
execution of this operation.

2. If the SIZE ERROR phrase is specified and a size error condition occurs,
then the value of the resultant-identifier(s) affected by the size errors is
not altered. Values of resultant-identifier(s) for which no size error condi-
tion occurs are unaffected by size errors that occur for other resultant-
identifier(s) during execution of this operation. After completion of the
execution of this operation, the imperative statement in the SIZE ERROR
phrase is executed.

For the ADD statement with the CORRESPONDING phrase and the
SUBTRACT statement with the CORRESPONDING phrase, if any of the
individual operations produces a size error condition, the imperative state-
ment in the SIZE ERROR phrase is not executed until all of the individual
additions or subtractions are completed.

5.7.3 CORRESPONDING Phrase

If group-1 and group-2 are identifiers that refer to group items, a pair of data
items, one from group-1 and one from group-2, correspond if the following
conditions exist:

1. A data item in group-1 and a data item in group-2 are not designated by
the key word FILLER and have the same data-name and the same quali-
fiers up to, but not including, group-1 and group-2.

Procedure Division

2. In the case of a MOVE statement with the CORRESPONDING phrase, at

least one of the data items is an elementary data item; in the case of the
ADD statement with the CORRESPONDING phrase or the SUBTRACT
statement with the CORRESPONDING phrase, both of the data items are
elementary numeric data items.

The description of group-1 and group-2 must not contain level-number 66,
77, or 88 or the USAGE IS INDEX clause.

A data item that is subordinate to group-1 or group-2 and contains a
REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause is
ignored, as are those data items subordinate to the data item that contains
the REDEFINES, OCCURS, or USAGE IS INDEX clause. However,
group-1 and group-2 can have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses. (See
Section 4.3.5, OCCURS Clause.)

5.7.4 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY,
~ and SUBTRACT statements. They have several common features.

1.

The data descriptions of the operands need not be the same; any necessary
conversion and decimal point alignment is supplied throughout the
calculation.

The maximum size of each operand is 18 decimal digits. The composite of
operands, which is a hypothetical data item resulting from the super-
imposition of specified operands in a statement aligned on their decimal
points, must not contain more than 18 decimal digits.

5.7.5 Multiple Results In Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements
can have multiple results. Such statements behave as though they had been
written in the following way:

1. A statement that performs all arithmetic necessary to arrive at the result

to be stored in the receiving items, and stores that result in a temporary
storage location.

. A sequence of statements transferring or combining the value of this tem-

porary location with a single result. These statements are considered to be
written in the same left-to-right sequence in which the multiple results are
listed.

Procedure Division 5-25

The result of the statement

ADD A, B,CTOC,D (C), E

is equivalent to

ADD A, B, C GIVING temp
ADD temp TO C

ADD temp TO D (C)

ADD temp TO E

where temp is an intermediate result item defined as follows:

The number of integer places in temp is the maximum of the integer
places of all operands in the statement. The number of decimal places is
the maximum of all the operands in the statement. If the sum of the
number of integer places and decimal places is greater than 18, then the
number of integer places will be reduced until the sum equals 18. There-
fore, high-order truncation could occur in some receiving operands,
depending on the resulting value of the arithmetic statement.

5.7.6 Overlapping Operands

When a sending and a receiving item in an arithmetic statement or
INSPECT, MOVE, SET, STRING, or UNSTRING statement share a part of
their storage areas, the result of the execution of such a statement is unde-
fined. The compiler does not detect overlapping or potentially overlapping
operands.

5.7.7 Incompatible Data

Except for the class condition (see Section 5.6.6, Class Condition), when the
contents of a data item are referenced in the Procedure Division and the
contents of that data item are not compatible with the class specified for that
data item by its PICTURE clause, then the result of such a reference is
undefined. .

5-26 ' Procedure Division

ACCEPT

5.8 ACCEPT Statement

Function

The ACCEPT statement makes low-volume data available to the specified
data item.

General Format

Format 1

ACCEPT identifier [FROM mnemonic-name)

Format 2

DATE
ACCEPT identifier FROM DAY
TIME

Syntax Rule

The mnemonic-name in Format 1 must be specified in the
SPECIAL-NAMES paragraph of the Environment Division and must be
associated with a hardware device.

General Rules
Format 1

1. The ACCEPT statement causes the transfer of data from the hardware
device. This data replaces the contents of the data item named by the
identifier.

2. The ACCEPT statement causes a stream of bytes to be transferred with no
editing or conversion to the data item specified by the identifier. The data
item is treated as alphanumeric regardless of its class. The data is aligned
at the leftmost character position of the data item with space fill or trunca-
tion to the right.

3. If the FROM mnemonic-name phrase is not specified, the hardware device
is the default system input device.

Format 2

4. The ACCEPT statement causes the information requested to be trans-
ferred to the data item specified by the identifier according to the rules of
the MOVE statement. DATE, DAY, ahd TIME are conceptual data items
and, therefore, are not described in the COBOL program. Their usage is
DISPLAY.

Procedure Division 5-27

ACCEPT

Continued

. DATE is composed of the data elements year of century, month of year,

and day of month. The sequence of the data element codes is from high
order to low order (left to right), that is, year of century, month of year,
and day of month. Thus, July 4, 1976 is expressed as 760704. DATE, when
accessed by a COBOL program, behaves as if it had been described in the
COBOL program as an unsigned elementary numeric integer data item six
digits long.

. DAY is composed of the data elements year of century and day of year.

The sequence of the data element codes is from high order to low order (left
to right). That is, year of century, day of year. Thus, July 4, 1976 is
expressed as 76186. DAY, when accessed by a COBOL program, behaves
as if it had been described in a COBOL program as an unsigned, elementa-
ry, numeric integer data item five digits long.

. TIME consists of the data elements hours, minutes, seconds and hun-

dredths of a second. TIME is based on elapsed time after midnight on a
24-hour clock basis; thus, 2:41 p.m. would be expressed as 14410000.
TIME, when accessed by a COBOL program, behaves as if it had been
described in a COBOL program as an unsigned, elementary, numeric in-
teger data item eight digits long. The minimum value of TIME is
00000000; the maximum value is 23595999.

5-28 Procedure Division

ADD

5.9 ADD Statement

Function

The ADD statement adds two or more numeric operands together and stores
the result.

General Format

Format 1
identifier-1 , identifier-2
ADD { - ... TO identifier-3 [ROUNDED)
literal-1 , literal-2
[, identifier-4 [ROUNDED]] ...
[[ON SIZE ERROR imperative-statement]
Format 2

identifier-1 identifier-2 , identifier-3
ADD ,
literal-1 literal-2 , literal-3
GIVING identifier-4 (ROUNDED] [, identifier-5 (ROUNDED]]....

[; ON SIZE ERROR imperative-statement]

Format 3

ADD

CORRESPONDING
identifier-1 TO identifier-2 [ROUNDED)]
CORR

(; ON SIZE ERROR imperative-statement]

Syntax Rules

1. In Formats 1 and 2, each identifier must refer to an elementary numeric
item, except that, in Format 2, identifier-4, following the word GIVING,
must refer to either an elementary numeric item or an elementary numeric
edited item. In Format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits (see
Section 5.7.4, Arithmetic Statements).

a. In Format 1, the composite of operands is determined by using all of the
operands in a given statement.

Procedure Division 5-29

ADD

Continued

b. In Format 2, the composite of operands is determined by using all of the
operands in a given statement excluding the data items that follow the
word GIVING.

c. In Format 3, the composite of operands is determined separately for
each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. If Format 1 is used, the values of the operands preceding the word TO are
added together, then the sum is added to the current value of identifier-3,
and the result is stored into identifier-3. This process is repeated for each
operand following identifier-3.

2. If Format 2 is used, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of each
identifier-4, ,identifier-5, ...,.

3. If Format 3 is used, data items in identifier-1 are added to and stored in
corresponding data items in identifier-2.

4. The compiler ensures that enough places are carried (unless an intermedi-
ate result exceeds the 18-digit limitation) to avoid losing significant digits
during execution.

5-30 Procedure Division

ALTER

5.10 ALTER Statement

Function

The ALTER statement modifies the destination of a GO TO statement.

General Format

ALTER procedure-name-1 TQ [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4j ...

Syntax Rules

1. Each procedure-name-1, procedure-name-3,..., is the name of a paragraph
that contains a single sentence consisting of a GO TO statement without
the DEPENDING phrase.

2. Each procedure-name-2, procedure-name-4, ..., is the name of a para-
graph or section in the Procedure Division.

General Rule

Execution of the ALTER statement modifies the GO TO statement in the
paragraph named with procedure-name-1 and procedure-name-3 so that
subsequent executions of the modified GO TO statements cause transfers of
control to procedure-name-2, procedure-name-4, ..., respectively.

Procedure Division 5-31

CALL

5.11 CALL Statement

5-32

Function

The CALL statement transfers control from one program to another within
the executable image.

General Format

CALL literal

[BY REFERENCE]
BY VALUE
BY DESCRIPTOR

USING identifier-1 [identifier-2] ...

BY REFERENCE
BY VALUE
BY DESCRIPTOR

identifier-3 [identiﬁer—4] ..

[GIVING identifier-5]

Syntax Rules

1. Literal must be a nonnumeric literal, one to 15 characters long, consisting
of the characters 0-9, A-Z, $ (dollar sign), and _ (underscore). Literal is
the entry point in the called subprogram, For COBOL subprograms, lit-
eral is the called program’s PROGRAM-ID.

2. The same identifier can be referenced more than once in the USING
phrase.

3. If an initial mechanism (REFERENCE, VALUE, or DESCRIPTOR) is
not specified, BY REFERENCE is the default.

4. A mechanism applies to all 1dent1ﬁers following it until a new mechanism
(if any) is specified.

General Rules

1. The program whose name is specified by the value of literal is the called
program; the program in which the CALL statement appears is ‘the calling
program.

2. The execution of a CALL statement transfers control to the called pro-
gram.

3. The CALL statement can appear anywhere in the Procedure Division of a
program, regardless of its segmentation structure.

Procedure Division

4.

10.

CALL

Continued

A called program is in its initial state the first time it is called within an
1mage. '

On all later entries into the called program, the state of the program
remains unchanged from its state when last exited. This includes all data
fields, the status and positioning of all files, and all alterable switch set-
tings.

Called programs can contain CALL statements. However, a called pro-
gram must not contain a CALL statement that directly or indirectly calls
the calling program. ‘

The USING phrase is included in the CALL statement only if there is a
nonempty USING phrase in the Procedure Division header of the called
COBOL program or a nonempty argument list in the header of the called
non-COBOL program. The number of operands in corresponding USING
phrases (or argument lists) must be identical.

The method by which the CALL statement makes data available to the
called program is known as the mechanism. The mechanisms are:

a. REFERENCE - The address of (pointer to) the data item is passed to
the called program. This is the default mechanism; that is, arguments
are passed by REFERENCE if a mechanism is not specified.

b. VALUE - The value contained in the data item is passed to the called
program. The data item must be a longword COMPUTATIONAL item
with no scaling or implied decimal point; that is, the picture of the
data item must be in the range S9(5) TO S9(9).

c. DESCRIPTOR - The address of (pointer to) the descriptor of the data
item is passed to the called program. The usage of the data item
cannot be COMPUTATIONAL.

Only the REFERENCE mechanism can be used to call COBOL subpro-
grams. Identifiers in the PROCEDURE DIVISION USING phrase of a
called COBOL program are interpreted to be BY REFERENCE.

The order of appearance of identifiers in the USING phrase is critical.
Corresponding identifiers refer to a single set of data that is available to
the calling and called program. The correspondence is positional, not by
name. For index-names, no such correspondence is established; therefore,
index-names in the called and calling program always refer to separate
indexes.

For non-COBOL called programs, the mechanism for each identifier in the
using phrase must be identical to the mechanism for each argument in the
called program’s argument list.

Identifier-5 must be defined as a COMPUTATIONAL integer with a pic-
ture in the range S9(5) to S9(9). If the called program returns a single
longword (4-byte) function result, identifier-5 contains the value on re-
turn from the called program.

COBOL programs cannot return a function result.

Procedure Division 5-33

CLOSE (Sequential)

5.12 CLOSE Statement (Sequential)

5-34

Function

The CLOSE statement terminates the processing of reels/units and files with
optional rewind and/or lock or removal, where applicable.

General Format

REEL [WITH NO REWIND
{M FOR REMOVAL
CLOSE file-name-1
WITH {Iﬂ REWIND}

LOCK

REEL [WITH NO REWIND
UNITY [FOR REMOVAL

, file-name-2
WITH {w REWIND}

LOCK

Syntax Rules

1. The REEL/UNIT phrase must be used only for sequential files.

2. The files referenced in the CLOSE statement need not all have the same
organization or access.

[

General Rules

‘Except where otherwise stated in the general rules below, the terms REEL

and UNIT are synonymous and completely interchahgeable in the CLOSE
statement. Treatment of sequential mass storage files is logically equivalent
to the treatment of a file on tape or an analogous sequential medium.

1. A CLOSE statement can be executed for a file only when the file is open.

2. For the purpose of showing the effect of various types of CLOSE state-
ments as applied to various storage media, all files are divided into the
following categories:

a. Non-reel/unit. A file whose input or output medium is such that the
concept of rewind and reels/units has no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely contained
on one reel/unit.

c. Sequential multi-reel/unit. A sequential file that is contained on more
than one reel/unit.

Procedure Division

CLOSE (Sequential)

Continued

3. The results of executing each type of CLOSE for each category of file are

summarized in Table 5-3.

Table 5-3: Relationship of CLOSE Statement Formats to File

Categories*
File Category
CLOSE Sequential Sequential
Statement Single- Multi-
Format Non-Reel/Unit Reel/Unit Reel/Unit
CLOSE C,G C,G,A
CLOSE WITH LOCK C,E C,G,E C,G,E,A
CLOSE WITH NO REWIND X C,B C,BA
CLOSE REEL/UNIT X X F.G
CLOSE REEL/UNIT X X F,D,G
FOR REMOVAL
CLOSE REEL/UNIT X X F,B
WITH NO REWIND

*The definitions of the symbols in the table are given below. Where the definition depends on
whether the file is an input, output, or input-output file, alternate definitions are given;
otherwise, a definition applies to input, output, and input-output files.

A Previous Reels/Units Unaffected

Input Files and Input-Output Files:

All reels/units in the file prior to the current reel/unit are processed
according to the standard reel/unit swap procedure, except those
reels/units controlled by a prior CLOSE REEL/UNIT statement. If the
current reel/unit is not the last in the file, the reels/units in the file
following the current one are not processed.

Output Files:

All reels/units in the file prior to the current reel/unit are processed
according to the standard reel/unit swap procedure, except those
reels/units controlled by a prior CLOSE REEL/UNIT statement.

No Rewind of Current Reel

The current reel/unit is left in its current position.

Procedure Division 5-35

CLOSE (Sequential)

5-36

Continued

C Close File

Input Files and Input-Output Files:

If the file is positioned at its end and label records are specified for the
file, the labels are processed according to the Record Management
Services. Closing operations specified by the Record Management Ser-
vices are executed. If the file is positioned at its end and label records
are not specified for the file, label processing does not take place, but
other closing operations specified by the Record Management Services
are executed. If the file is positioned other than at its end, the closing
operations specified by the Record Management Services are execut-
ed, but there is no ending label processing.

Output Files:

If label records are specified for the file, the labels are processed ac-
cording to the standard label convention. Closing operations specified
by the Record Management Services are executed. If label records are
not specified for the file, label processing does not take place, but other
closing operations specified by the Record Management Services are
executed.

Reel/Unit Removal

A Record Management Services defined technique is supplied to en-
sure that the current reel or unit is rewound when applicable, and that
the operating system is notified that the reel or unit is logically re-
moved from this run unit; however, the reel or unit can be accessed
again, in its proper order of reels or units within the file, if a CLOSE
statement without the REEL or UNIT phrase is subsequently exe-
cuted for this file followed by the execution of an OPEN statement for
the file.

File Lock

The file cannot be opened again during this execution of the run unit.

Close Reel/Unit

Input Files:

The following operations take place:

(1) A reel/unit swap.

(2) The standard beginning reel/unit label procedure is ex;acuted.

The next executed READ statement for that file makes available the
next data record on the new reel/unit.

Procedure Division

CLOSE (Sequential)

Continued

Output Files and Input-Output Files:
The following operations take place:

(1) (For output files only) The standard ending reel/unit label
procedure is executed.

(2) A reel/unit swap. /
(3) The standard beginning reel/unit label procedure is executed.

For input-output files, the next executed READ statement that refer-
ences that file makes the next logical data record on the next mass
storage unit available. For output files, the next executed WRITE
statement that references that file directs the next logical data record
to the next reel/unit of the file.

G Rewind
The current reel or analogous device is positioned at its physical
beginning.

X lllegal

This is an illegal combination of a CLOSE option and a file category.
The object program execution is terminated.

. If the file is open when a STOP RUN statement is executed or when
program execution terminates prematurely on an error condition, the file is
closed automatically. '

. If the OPTIONAL phrase has been specified for the file in the
FILE- CONTROL paragraph of the Environment Division and the file is not
present, the standard end-of-file processing is not performed for that file.

. If a CLOSE statement without the REEL or UNIT phrase has been exe-
cuted for a file, no other statement can be executed that references that
file, either explicitly or implicitly, unless an intervening OPEN statement
for that file is executed.

. The WITH NO REWIND and FOR REMOVAL phrases will have no effect
at object time if they do not apply to the storage medium on which the file
resides.

. Following the successful execution of a CLOSE statement without the
REEL or UNIT phrase, the record area associated with a file-name is no
longer available.

Procedure Division 5-37

CLOSE (Sequential)

Continued

9. If an error occurs during the execution of a CLOSE statement issued
without the UNIT or REEL phrase specified, the CLOSE will not occur.
The value 98 is placed in the FILE STATUS data item (if one was speci-
fied) associated with the file.

10.If an error occurs during the execution of a CLOSE statement issued with
the UNIT or REEL phrase specified, the CLOSE will not occur. The value
99 is placed in the FILE STATUS data item (if one was specified) associ-
ated with the file.

5-38 Procedure Division

CLOSE (Indexed &Relative)

5.13 CLOSE Statement (Indexed and Relative)

Function

The CLOSE statement terminates the processing of files with optional lock.

General Format

CLOSE file-name-1 [WITH LOCK] |, file-name-2 [WITH Lock] ..

Syntax Rule

The files referenced in the CLOSE statement need not all have the same
organization or access.

General Rules

1.
2.

A CLOSE statement can only be executed for a file in an open mode.

After the CLOSE ... WITH LOCK statement is executed, the file cannot
be opened again during the current execution.

If a file is open when a STOP RUN statement is executed or when program
execution terminates prematurely on an error condition, the file is closed
automatically.

If a CLOSE statement has been executed for a file, no other statement can
be executed that references that file, either explicitly or implicitly, unless
an intervening OPEN statement for that file is executed.

Following the successful execution of a CLOSE statement, the record area
associated with file-name is no longer available.

If an error occurs during the execution of a CLOSE statement, the CLOSE
will not occur. The value 98 is placed in the FILE STATUS data item (if

one was specified) associated with the file.

Procedure Division 5-39

COMPUTE

5.14 COMPUTE Statement

Function

The COMPUTE statement assigns the value of an arithmetic expression to
one or more data items .

General Format

COMPUTE identifier-1 ~ [ROUNDED] [, identifier-2 (ROUNDED]] ...

= arithmetic-expression [; ON SIZE ERROR imperative-statement)

Syntax Rule

Identifiers that appear only to the left of = must refer to either an elementary
numeric item or an elementary numeric edited item.

General Rules

1. An arithmetic expression, consisting of a single identifier or literal, pro-

vides a method of setting the values of identifier-1, identifier-2, etc., equal
to the value of the single identifier or literal. (See Section 5.5, Arithmetic
Expressions.)

. If more than one identifier is specified for the result of the operation that is

preceding = (equal sign), the value of the arithmetic expression is
computed, and then this value is stored as the new value of each of
identifier-1, identifier-2, etc., in turn.

. The COMPUTE statement allows you to combine arithmetic operations

without the restrictions on composite of operands and/or receiving data
items imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, and DIVIDE.

4. Arithmetic expressions must not contain non-integer exponents.

5-40 Procedure Division

DELETE (Indexed &Relative)

5.15 DELETE Statement (Indexed and Relative)

Function

The DELETE statement logically removes a record from a file on a directory
device.

General Format

DELETE file-name RECORD [; INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE state-
ment that references a file in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement
that references a file that is not in sequential access mode and for which an
applicable USE procedure is not specified.

General Rules

1. The associated file must be open in the I-O mode when the DELETE
statement is executed. _

2. For files in the sequential access mode, the last input-output statement
executed for file-name prior to the execution of the DELETE statement
must have been a successfully executed READ statement. The record that
was accessed by that READ statement is logically removed from the file. If
the last input-output statement executed for the associated file was not a
successfully executed READ statement, the DELETE statement is not
attempted, and the value of 93 is placed in the File Status data item,
if any, associated with the file to indicate an unsuccessful DELETE
operation.

3. When the INVALID KEY condition is recognized, actions are taken in the
following order:

a. A value is placed into the FILE STATUS data item, if specified for
this file, to indicate an INVALID KEY condition.

b. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative
statement. Any USE procedure specified for this file is not executed.

c. If the INVALID KEY phrase is not specified, but a USE procedure is
specified, either explicitly or implicitly, for this file, that procedure is
executed.

When the INVALID KEY condition occurs, execution of the input-output

statement that recognized the condition is unsuccessful and the file is not

affected.

Procedure Division 5-41

DELETE (Indexed & Relative)

Continued

5-42

10.

For a relative file in random or dynamic access mode, that record identi-
fied by the contents of the RELATIVE KEY data item associated with file-
name is logically removed from the file. An INVALID KEY condition can
arise; the action taken is as follows:

a. If the record specified by the contents of the RELATIVE KEY data
item does not exist, the value 23 is placed in the FILE STATUS data
item, if any, associated with the file to indicate an unsuccessful
DELETE operation.

b. If the contents of the RELATIVE KEY data item does not lie within
the range of the key values corresponding to the allocated space for this
file, a boundary violation exists. The value 24 is placed in the FILE
STATUS data item, if any, associated with the file to indicate an
unsuccessful DELETE operation.

For an indexed file accessed in random or dynamic mode, the record iden-
tified by the contents of the prime record key data item is logically re-
moved from the file. If the specified record does not exist, a value of 23
(Invalid Key Condition) is placed in the FILE STATUS data item associ-

ated with file-name.

After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be
accessed.

. The execution of a DELETE statement does not affect the contents of the

record area associated with file-name.

The current record pointer is not affected by the execution of a DELETE
statement.

A DELETE statement will fail if it is executed for a record that is being
simultaneously accessed by another process. The value 92 is placed in the
FILE STATUS data item, if one was specified for the file.

If an unexplained error occurs during the execution of a DELETE state-
ment, the execution will fail. A value of 30 is placed in the FILE STATUS
data item, if one was specified for the file.

Procedure Division

DISPLAY

5.16 DISPLAY Statement

Function

The DISPLAY statement transfers low-volume data to an appropriate
hardware device.

General Format

identifier-1 ,identifier-2
DISPLAY
literal-1 Jiteral-2

[UPON mnemonic-name][WITH NO ADVANCING]

Syntax Rules

1.

2.
3.

The mnemonic-name is associated with a hardware device in the
SPECIAL-NAMES paragraph in the Environment Division.

Each literal except ALL can be any figurative constant.

If the literal is numeric, it must be an unsigned integer.

General Rules

1.

The DISPLAY statement causes the contents of each operand to be
transferred to the hardware device in the order listed, with no editing or
conversion.

If a figurative constant is specified as one of the operands, only a single
occurrence of the figurative constant is displayed.

When a DISPLAY statement contains more than one operand, the size of
the sending item is the sum of the sizes associated with the operands, and
the values of the operands are transferred in the sequence in which the
operands are encountered.

When the WITH NO ADVANCING phrase is not specified, a line feed
character is prefixed and a carriage return character is appended to the
sending item. If the sending item exceeds the size of a line on the hardware
device, the excess characters may appear on following line(s) or may be
lost, depending on the device driver routine. Vertical and horizontal for- -
matting characters may be placed in the sending item.

When the WITH NO ADVANCING phrase is specified, the carriage re-
turn character is not appended to the sending item. Depending on the
device handler, the device will remain positioned on the same line and on
the character position following the last character displayed. This is espe-
cially useful when typing prompting messages on the terminal.

If the UPON phrase is not used, the data is written on the user’s standard
display device.

Procedure Division 5-43

DIVIDE

5.17 DIVIDE Statement

Function

The DIVIDE statement divides one numeric data item into another and sets
the value of data items to the quotient and remainder.

General Format

Format 1
identifier-1
DIVIDE INTO identifier-2 [ROUNDED]
literal-1
[. identifier-3 (ROUNDEDI] ...
[; ON SIZE ERROR imperative-statement]
Format 2
identifier-1 identifier-2
DIVIDE INTO GIVING identifier-3 [ROUNDED]
literal-1 literal-2
[, identifier-4 (ROUNDED] ...
[; ON SIZE ERROR imperative-statement]
Format 3
identifier-1 identifier-2
DIVIDE BY GIVING identifier-3 [ROUNDED]
literal-1 literal-2
[, identifier-4 (ROUNDED)] ...
[; ON SIZE ERROR imperative-statement]
Format 4
identifier-1 (identifier-2
DIVIDE INTO { GIVING identifier-3 [ROUNDED)]
literal-1 literal-2
REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

(continued on next page)

5-44 Procedure Division

DIVIDE

Continued

Format 5

identifier-1 identifier-2
DIVIDE BY GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

literal-1 literal-2

Syntax Rules

1. Each identifier must refer to an elementary numeric item, except that any

identifier associated with the GIVING or REMAINDER phrase must refer
to either an elementary numeric item or an elementary numeric edited
item.

. Each literal must be a numeric literal

. The composite of operands, which is the hypothetical data item re-

sulting from the superimposition of all receiving data items (except the
REMAINDER data item) of a given statement aligned on their decimal
points, must not contain more than 18 digits.

General Rules

1. When Format 1 is used, the value of identifier-1 or literal-1 is divided into

the value of identifier-2. The value of the dividend (identifier-2) is re-
placed by this quotient; the same applies for identifier-1 or literal-1 and
identifier-3, etc.

. When Format 2 is used, the value of identifier-1 or literal-1 is divided into

identifier-2 or literal-2, and the result is stored in identifier-3, identi-
fier-4, etc.

. When Format 3kis used, the value of identifier-1 or literal-1 is divided by

the value of identifier-2 or literal-2, and the result is stored in identifier-3,
identifier-4, etc.

. Formats 4 and 5 are used when a remainder from the division operation is

desired, normally identifier-4. The remainder in COBOL is defined as the
result of subtracting the product of the quotient (identifier-3) and the
divisor from the dividend. If identifier-3 is defined as a numeric edited
item, the quotient used to calculate the remainder is an intermediate field
that contains the unedited quotient. If ROUNDED is used, the quotient
used to calculate the remainder is an intermediate field that contains the
quotient of the DIVIDE statement, truncated rather than rounded.

Procedure Division 5-45

DIVIDE

Continued

5. In Formats 4 and 5, the accuracy of the REMAINDER data item
(identifier-4) is defined by the calculation described above. Appropriate
decimal alignment and truncation (not rounding) will be performed for
the content of the data item referenced by identifier-4, as needed.

6. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the follow-
ing rules apply:

a. If the size error occurs on the quotient, no remainder calculation is
meaningful. Therefore, the contents of the data items referenced by
both identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents of the data item
referenced by identifier-4 remain unchanged. However, as with other
instances of multiple results of arithmetic statements, you will have to
do your own analysis to recognize which situation has occurred.

5-46 Procedure Division

EXIT

5.18 EXIT Statement

Function

The EXIT statement provides a common end point for a series of procedures,
or marks the logical end of a called program.

General Format

EXIT [PROGRAM]

Syntax Rules

1.

The EXIT statement without the PROGRAM phrase must appear only in
a sentence by itself and comprise the only sentence in the paragraph.

If an EXIT PROGRAM statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the last state-
ment in that sequence.

General Rules

1.

An EXIT statement without the optional word PROGRAM serves only to
enable you to assign a procedure-name to a given point in a program. Such
an EXIT statement has no other effect on the compilation or execution of
the program.

Execution of an EXIT PROGRAM statement in a called program causes
control to be passed to the calling program. If the EXIT PROGRAM
statement is executed in a program that is not under the control of a
calling program, the EXIT PROGRAM statement causes execution of the
program to continue with the next executable statement.

Procedure Division 5-47

GO TO

5.19 GO TO Statement

Function

The GO TO statement transfers control from one part of the Procedure
Division to another.

General Format

Format 1

Format 2

GO TO [procedure—name—l]

GO TO procedure-name-1 [, procedure—name—Z]..., procedure-name-n

DEPENDING ON identifier

Syntax Rules

1.

Identifier is the name of a numeric elementary item described without any
positions to the right of the assumed decimal point.

When a paragraph is referenced by an ALTER statement, that paragraph
can consist only of a paragraph header followed by a Format 1 GO TO
statement.

A Format 1 GO TO statement without procedure-name-1 can only appear
in a single statement paragraph.

If a GO TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the
last statement in that sequence. ‘

General Rules-

1.

When a GO TO statement represented by Format 1 is exeé‘uted, control is
transferred to procedure-name-1 or to another procedure-name if the GO
TO statement has been modified by an ALTER statement.

If procedure-name-1 is not specified in Format 1, an ALTER statement
referring to this GO TO statement must be executed prior to the execution
of this GO TO statement.

When a GO TO statement represented by Format 2 is executed, control is
transferred to procedure-name-1, procedure-name-2, etc., depending on
whether the value of the identifier is 1, 2, ..., n. If the value of the identifier
is anything other than the positive or unsigned integers 1, 2, ..., n, then no
transfer occurs and control passes to the next statement in the normal
sequence for execution.

5-48 Procedure Division

5.20

IF

IF Statement

Function

The IF statement causes a condition to be evaluated. The subsequent flow of
control of the object program depends on whether the value of the condition is
true or false.

General Format

NEXT SENTENCE

statement-1 ; ELSE statement-2
IF condition;
; ELSE NEXT SENTENCE

Syntax Rules

1.

Statement-1 and statement-2 represent either an imperative statement
or a conditional statement, and either can be followed by a conditional

statement.

The ELSE NEXT SENTENCE phrase can be omitted if it immediately
precedes the terminal period of the sentence.

General Rules

1. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-1 is executed if specified. If

statement-1 contains a procedure branching or conditional state-
ment, control is explicitly transferred in accordance with the rules
of that statement. If statement-1 does not contain a procedure
branching or conditional statement, the ELSE phrase, if specified, is
ignored and control passes to the next executable sentence.

. If the condition is true and the NEXT SENTENCE phrase is specified

instead of statement-1, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

. If the condition is false, statement-1 or its surrogate NEXT

SENTENCE is ignored, and statement-2, if specified, is executed. If
statement-2 contains a procedure branching statement or conditional
statement, control is explicitly transferred in accordance with the
rules of that statement. If statement-2 does not contain a procedure
branching or conditional statement, control passes to the next
executable sentence. If the ELSE statement-2 phrase is not specified,
statement-1 is ignored and control passes to the next executable
sentence.

Procedure Division 5-49

IF

Continued

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is
specified, statement-1 is ignored, if specified, and control passes to the
next executable sentence.

2. Statement-1 and/or statement-2 can contain an IF statement. In this case
the IF statement is said to be nested.

IF statements within IF statements can be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE en-
countered is considered to apply to the immediately preceding IF that has
not been already paired with an ELSE.

5-50 Procedure Division

INSPECT

5.21 INSPECT Statement

Function

The INSPECT statement is used to count (Format 1), replace (Format 2), or
count and replace (Format 3) occurrences of single characters in a data item.

General Format

Format 1

INSPECT identifier-1 TALLYING

ALL identifier-3
BEFORE identifier-4
, identifier-2 FOR {, EADING literal-1 INITIAL

AFTER literal-2

CHARACTERS

Format 2

INSPECT identifier-1 REPLACING

1dent1f1er 6 BEFORE identifier-7
CHARACTERS BY INITIAL

hteral 4- AFTER literal-5
ALL
1dent1f1er a identifier-6 BEFORE identifier-7
J{LEADING &(INITIAL ¢ 213..)...
llteral 3 literal-4 AFTER literal-5
FIRST
Format 3

INSPECT identifier-1 TALLYING

identifier-3
BEFORE identifier-4
, identifier-2 FOR LFADI’\IG literal-1 INITIAL § 5 [)...)...

AFTER literal-2
CHARACTERS
REPLACING
1dent1f1er 6 BEFORE identifier-7
CHARACTERS BY INITIAL {
1teral 4 AFTER literal-5
ALL
1dent1f1er o identifier-6 BEFORE 1dent1her 7
,{LEADING BY INITIAL < 3[}..}...
llteral 3 literal-4 AFTER llteral 5
FIRST

Procedure Division 5-51

INSPECT

Continued

Syntax Rules

All Formats

1.

Identifier-1 must reference either a group item or any category of
elementary item described (either implicitly or explicitly) as USAGE
IS DISPLAY.

Identifier-3...identifier-n must reference either an elementary alphabetic,
alphanumeric, or numeric item described (either implicitly or explicitly)
as USAGE IS DISPLAY.

Each literal must be nonnumeric and can be any figurative constant
except ALL.

Literal-1, literal-2, literal-3, literal-4, and literal-5, and the data items
referenced by identifier-3, identifier-4, identifier-5, identifier-6, and
identifier-7, can be any length except as specifically restricted by syntax
and general rules.

Formats 1 and 3 only

5. Identifier-2 must reference an elementary numeric data item.

6. If either literal-1 or literal-2 is a figurative constant, the figurative con-

stant refers to an implicit 1-character data item.

Formats 2 and 3 only

7. The size of the data referenced by literal;4 or identifier-6 must be

equal to the size of the data referenced by literal-3 or identifier-5. When a
figurative constant is used as literal-4, the size of the figurative constant
is equal to the size of literal-3 or the size of the data item referenced by
identifier-5.

When the CHARACTERS phrase is used, literal-4, literal-5, or the size of
the data item referenced by identifier-6, identifier-7, must be one charac-
ter in length.

When a figurative constant is used as literal-3, the data referenced by
literal-4 or identifier-6 must be one character in length.

5-52 Procedure Division

INSPECT

Continued

General Rules

All Formats

1.

Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for
tallying and/or replacing) begins at the leftmost character position of the
data item referenced by identifier-1, regardless of its class, and proceeds
from left to right to the rightmost character position, as described in
General Rules 4 through 6.

For use in the INSPECT statement, the contents of the data item refer-
enced by identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or
identifier-7 are treated as follows:

a. If any of the identifiers is described as alphanumeric, the INSPECT
statement treats the contents of each identifier as a character-string.

b. If any of the identifiers is described as unsigned numeric, the data
item is inspected as though it had been redefined as alphanumeric (see
General Rule 2a) and the INSPECT statement had been written to
reference the redefined data item.

c. If any of the identifiers is described as signed numeric, the data item is
inspected as though it had been moved to an unsigned numeric data
item of the same length and then the rules in General Rule 2b had been
applied. (See Section 5.22, MOVE Statement).

In General Rules 4 through 11, all references to literal-1, literal-2,
literal-3, literal-4, and literal-5 apply equally to the contents of the
data item referenced by identifier-3, identifier-4, identifier-5,
identifier-6, and identifier-7, respectively.

During inspection of the contents of the data item referenced by
identifier-1, each properly matched occurrence of literal-1 is tallied
(Formats 1 and 3) and/or each properly matched occurrence of literal-3 is
replaced by literal-4 (Formats 2 and 3).

The comparison operation to determine the occurrences of literal-1 to be
tallied and/or occurrences of literal-3 to be replaced occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are consid-
ered in the order they are specified in the INSPECT statement from
left to right. The first literal-1, literal-3 is compared to an equal num-
ber of contiguous characters, starting with the leftmost character posi-
tion in the data item referenced by identifier-1. Literal-1, literal-3 and
that portion of the contents of the data item referenced by identifier-1
match if, and only if, they are equal, character for character.

Procedure Division 5-53

INSPECT

Continued

. If no match occurs in the comparison of the first literal-1, literal-3, the

comparison is repeated with each successive literal-1, literal-3, if any,
until either a match is found or there is no next successive literal-1,
literal-3. When there is no next successive literal-1, literal-3, the char-
acter position in the data item referenced by identifier-1 immediately
to the right of the leftmost character position considered in the last
comparison cycle is considered as the leftmost character position, and
the comparison cycle begins again with the first literal-1, literal-3.

. Whenever a match occurs, tallying and/or replacing takes place as de-
“scribed in General Rules 8 through 10. The character position in the

data item referenced by identifier-1 immediately to the right of the
rightmost character position that participated in the match is now
considered to be the leftmost character position of the data item refer-
enced by identifier-1, and the comparison cycle starts again with the
first literal-1, literal-3.

. The comparison operation continues until the rightmost character posi-

tion of the data item referenced by identifier-1 has participated in a
match or has been considered as the leftmost character position. When
this occurs, inspection is terminated.

. If the CHARACTERS phrase is specified, an implied 1-character oper-

and participates in the cycle described in paragraphs 5a through 5d
above, except that no comparison to the contents of the data item
referenced by identifier-1 takes place. This implied character is consid-
ered always to match the leftmost character of the contents of the data
item referenced by identifier-1 participating in the current comparison
cycle.

. The comparison operation defined in General Rule 5 is affected by the
BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified, literal-1, literal-3, or

the implied operand of the CHARACTERS phrase participates in the
comparison operation as described in General Rule 5.

. If the BEFORE phrase is specified, the associated literal-1, literal-3 or

the implied operand of the CHARACTERS phrase participates only in
those comparison cycles that involve that portion of the contents of the
data item referenced by identifier-1 from its leftmost character position
up to, but not including, the first occurrence of literal-2, literal-5
within the contents of the data item referenced by identifier-1. The
position of this first occurrence is determined before the first cycle of
the comparison operation described in General Rule 5 is begun.

If, on any comparison cycle, literal-1, literal-3 or the implied operand
of the CHARACTERS phrase is not eligible to participate, it is

5-54 Procedure Division

INSPECT

Continued

considered not to match the contents of the data item referenced by
identifier-1. If there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-1, its associated
literal-1, literal-3, or the implied operand of the CHARACTERS
phrase participates in the comparison operatlon as though the
BEFORE phrase had not been specified.

c. If the AFTER phrase is specified, the associated literal-1, literal-3 or
the implied operand of the CHARACTERS phrase can participate only
in those comparison cycles which involve that portion of the contents of
the data item referenced by identifier-1. The comparison begins from
the character position immediately to the right of the rightmost charac-
ter position of the first occurrence of literal-2, literal-5 within the con-
tents of the data item referenced by identifier-1 and the rightmost
character position of the data item referenced by identifier-1. The posi-
tion of this first occurrence is determined before the first cycle of the
comparison operation described in General Rule 5 is begun.

If, on any comparison cycle, literal-1, literal-3 or the implied operand
of the CHARACTERS phrase is not eligible to participate, it is
considered not to match the contents of the data item referenced by
identifier-1. If there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-1, its associated
literal-1, literal-3, or the implied operand of the CHARACTERS
phrase is never eligible to participate in the comparison operation.

Format 1

7. The contents of the data item referenced by identifier-2 are not initialized
by the execution of the INSPECT statement.

8. The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item refer-
enced by identifier-2 is incremented by one for each occurrence of
literal-1 matched within the contents of the data item referenced by
identifier-1.

b. If the LEADING phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each contiguous
occurrence of literal-1 matched within the contents of the data item
referenced by identifier-1, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison cycle in
which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each character
matched, in the sense of General Rule 5e, within the contents of the
data item referenced by identifier-1.

Procedure Division 5-55

INSPECT

Continued

Format 2

9. The required words ALL, LEADING, and FIRST are adjectives that apply
to each succeeding BY phrase until the next adjective appears.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched,

in the sense of General Rule 5e, in the contents of the data item refer-
enced by identifier-1 is replaced by literal-4.

. When the adjective ALL is specified, each occurrence

of literal-3 matched in the contents of the data item referenced by
identifier-1 is replaced by literal-4.

. When the adjective LEADING is specified, each contiguous occurrence

of literal-3 matched in the contents of the data item referenced by
identifier-1 is replaced by literal-4, provided that the leftmost occur-

~rence is at the point where comparison began in the first comparison

cycle in which literal-1 was eligible to participate.

. When the adjective FIRST is specified, the leftmost occurrence of

literal-3 matched within the contents of the data item referenced by
identifier-1 is replaced by literal-4.

Format 3

11.A Format 3 INSPECT statement is interpreted and executed as though
two successive INSPECT statements specifying the same identifier-1 had
been written, with one statement being a Format 1 statement with
TALLYING phrases identical to those specified in the Format 3 state-
ment, and the other statement being a Format 2 statement with
REPLACING phrases identical to those specified in the Format 3 state-
ment. The general rules given for matching and counting apply to the
Format 1 statement, and the general rules given for matching and replac-
ing apply to the Format 2 statement.

5-56 Procedure Division

INSPECT

Continued

Examples
Following are six examples of the INSPECT statement:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A"
count-1 FOR LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-1 = 0.
Where word = ANALYST, count = 0, count-1 = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY
"E" AFTER INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUJIMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

WORD BEFORE: 1 2XZABCD
WORD AFTER: BBBB BABCD

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "2", "W" BY 'Q",
AFTER INITIAL "R".

Where word = RXXBQWY, word = RYYZQQY.
Where word = YZACDWBR, word = YZACDWBR.
Where word = RAWRXEB, word = RAQRYEZ.

Procedure Division 5-57

MOVE

5.22 MOVE Statement

5-58

Function

The MOVE statement transfers data, in accordance with the rules of editing,
to one or more ‘data areas.

General Format

Format 1
identifier-1
MOVE TO identifier-2 [,identifier-3]...
literal
Format 2

CORRESPONDING
MOVE identifier-1 TQ identifier-2

CORR

Syntax Rules

1. Identifier-1 and literal represent the sending area; identifier-2, identi-
fier-3, ..., represent the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, both identifiers must be
group items.

4. An index data item cannot appear as an operand of a MOVE statement.

General Rules

1. If the CORRESPONDING phrase is used, selected items within identi-
fier-1 are moved to selected items within identifier-2, according to the
rules given in Section 5.7.3, CORRESPONDING Phrase. The results are
the same as if you had referred to each pair of corresponding identifiers in
separate MOVE statements.

2. The data designated by the literal or identifier-1 is moved first to identi-
fier-2, then to identifier-3, The rules referring to identifier-2 also
apply to the other receiving areas. Any subscripting or indexing associated
with identifier-2, ..., is evaluated immediately before the data is moved to
the respective data item.

Procedure Division

MOVE

Continued

Any subscripting or indexing associated with identifier-1 is evaluated only
once, immediately before data is moved to the first of the receiving
operands. Consider the following statement.

MOVE A (B) TO B, C (B)
The result of this statement is equivalent to:

MOVE A (B) TO temp
MOVE temp TO B
MOVE temp TO C (B)

where temp is an intermediate result item provided by the compiler.

. Any MOVE in which the sending and receiving items are both elementary
items is an elementary move. Every elementary item belongs to one of the
following categories: numeric, alphabetic, alphanumeric, numeric edited,
alphanumeric edited. These categories are described in the PICTURE
clause. Numeric literals belong to the numeric category, and nonnumeric
literals belong to the alphanumeric category, while the figurative constant
ZERO belongs to the numeric category. The figurative constant SPACE
belongs to the alphabetic category. All other figurative constants belong to
the alphanumeric category.

The following rules apply to an elementary move between these categories:

a. The figurative constant SPACE, a numeric edited, alphanumeric edit-
ed, or alphabetic data item must not be moved to a numeric or numeric
edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item
or a numeric edited data item must not be moved to an alphabetic data
item.

c. A non-integer numeric literal or a non-integer numeric data item must
not be moved to an alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are performed according to
the rules given in General Rule 4.

. Any necessary conversion of data from one form of internal representation
to another takes place during legal elementary moves, as does as any
"editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling take place as defined
under Standard Alignment Rules, Section 4.2.7. If the size of the send-
ing item is greater than the size of the receiving item, the excess charac-
ters are truncated on the right after the receiving item is filled. If the
sending item is described as being signed numeric, the operational sign

Procedure Division 5-59

MOVE

Continued

will not be moved; if the operational sign occupied a separate character
position, that character will not be moved, and the size of the sending
item is considered to be one less than its actual size (in terms of stan-
dard data format characters).

. When a numeric or numeric edited item is the receiving item, align-

ment by decimal point and any necessary zero-filling take place as
defined under the Standard Alignment Rules, Section 4.2.7, except
where zeros are replaced because of editing requirements.

1. When a signed numeric item is the receiving item, the sign of the
sending item is placed in the receiving item. (See Section 4.3.9,
SIGN Clause.) Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a positive sign is
generated for the receiving item.

2. When an unsigned numeric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is gener-
ated for the receiving item.

3. When a data item described as alphanumeric is the sending item,
data is moved as if the sending item were described as an unsigned
numeric integer.

. When a receiving field is described as alphabetic, justification and any

necessary space-filling take place-as defined under the Standard Align-
ment Rules, Section 4.2.7. If the size of the sending item is greater than
the size of the receiving item, the excess characters are truncated on the
right after the receiving item is filled.

5. Any non-elementary move is treated exactly as if it were an alphanumeric
to alphanumeric elementary move, except that there is no conversion of
data from one form of internal representation to another. In such a move,
the receiving area is filled without consideration for the individual elemen-
tary or group items contained within either the sending or receiving area.

. The following table summarizes the permissible types of MOVE state-
ments. References after slash marks (for example, /4c) refer to the applica-
ble general rule for MOVE.

5-60 Procedure Division

Table 5-4: Permissible MOVE Statements

MOVE

Continued

Category of

Category of Receiving Data Item

Numeric Integer

Sending Alphanumeric Edited | Numeric Non-Integer
Data Item Alphabetic Alphanumeric Numeric Edited
Alphabetic Yes/4c Yes/4a No/3a
Alphanumeric Yes/4c Yes/4a Yes/4b
Alphanumeric Edited Yes/4c Yes/4a No/3a
Numeric Integer No/3b Yes/4a Yes/4b
Numeric Non-Integer No/3b No/3c Yes/4b
Numeric Edited No/3b Yes/4a No/3a

Procedure Division 5-61

MULTIPLY

5.23 MULTIPLY Statement

Function

The MULTIPLY statement multiplies numeric data items and sets the values
of data items equal to the results.

General Format

Format 1

identifier-1
MULTIPLY BY identifier-2 [ROUNDED]

literal-1
[. identifier-3 [ROUNDEDI] ...

[; ON SIZE ERROR imperative-statement |

Format 2

identifier-1 identifier-2
MULTIPLY BY GIVING identifier-3 [ROUNDED]

literal-1 literal-1
[identifier-4 (ROUNDED)]] ..

[; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except that in

Format 2 the identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric edited item.

. Each literal must be a numeric literal.

. The composite of operands, which is that hypothetical data item resulting

from the superimposition of all receiving data items of a given statement
aligned on their decimal points, must not contain more than eighteen (18)
digits.

5-62 Procedure Division

MULTIPLY

Continued

General Rules

1. When Format 1 is used, the value of identifier-1 or literal-1 is multiplied
by the value of identifier-2. The value of the multiplier (identifier-2) is
replaced by this product; the same result occurs for identifier-1 or literal-1
and identifier-3, etc.

2. When Format 2 is used, the value of identifier-1 or literal-1 is multiplied
by the value of identifier-2 or literal-2 and the result is stored in identi-
fier-3, identifier-4, etc.

Procedure Division 5-63

OPEN (Sequential)

5.24 OPEN Statement (Sequential)

Function

The OPEN statement initiates the processing of files. It also performs check-
ing and/or label writing and other input-output operations.

General Format

OPEN

INPUT file-name-1 [WITH NO REWINDI, file-name-2 [WITH NO REWINDI

OUTPUT file-name-3 [WITH NO REWINDl[file-name-4 WITH NO REWIND]]...

I-O file-name-5 [, file—name—6]

EXTEND file-name-7 [, file—name—8]

5-64

Syntax Rules

SANEE R e

The NO REWIND phrase cah be used only for sequential files.

The I-O phrase can be used only for files on directory devices.

The EXTEND phrase can be used only for sequential files.

The EXTEND phrase must not be specified for files on multiple file reels.

The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1.

The successful execution of an OPEN statement determines the availabil-
ity of the file and results in the file’s being in an open mode.

The successful execution of an OPEN statement makes the associated
record area available to the program.

Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that explicitly or implicitly refers to that file.

An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. In Table 5-5, an X
indicates that the specified statement, used in the sequential access mode,
can be used with the sequential file organization and open mode given at
the top of the column.

Procedure Division

OPEN (Sequential)

Continued

Table 5-5: Permissible Input-Output Statements for Sequential

Files
Open Mode
Statement Input Output Input-Output Extend
READ X X
WRITE X X
REWRITE X

. A file can be opened with the INPUT, OUTPUT, EXTEND and I-O
phrases in the same program. Following the initial execution of an OPEN
statement for a file, each subsequent OPEN statement execution for that
same file must be preceded by the execution of a CLOSE statement,

without the REEL, UNIT, or LOCK phrase, for that file.

. Execution of the OPEN statement does not obtain or release the first data

record.

. If label records are specified for the file, the beginning labels are processed
as follows:

a. When the INPUT phrase is specified, execution of the OPEN statement
causes the labels to be checked in accordance with the Record Manage-
ment Services conventions for input label checking.

b. When the OUTPUT phrase is specified, execution of the OPEN state-
ment causes the labels to be written in accordance with the Record
Management Services conventions for output label writing.

The behavior of the OPEN statement when label records are specified
but not present, or when label records are not specified but are present,
is undefined.

. The file-description-entry for file-name-1, file-name-2, file-name-5,
file-name-6, file-name-7, or file-name-8 must be equivalent to that used
when the file was created.

. If an input file is designated with the OPTIONAL clause in its SELECT
statement, the object program causes an interrogation for the presence or
absence of this file when the OPEN statement is executed. If the file is not
present, the first READ statement for this file causes the AT END condi-
tion to occur.

10. The NO REWIND phrase can be used only with sequential single reel/unit

files.

11.The WITH NO REWIND phrase is ignored if it does not apply to the

storage medium on which the file resides.

Procedure Division 5-65

OPEN (Sequential)

Continued

12.

13.

14.

16.

17.

If the storage medium for the file permits rewinding, the following rules
apply:

a. When neither the EXTEND nor the NO REWIND phrase is specified,
execution of the OPEN statement causes the file to be positioned at its
beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN
statement does not cause the file to be repositioned; the file must be
already positioned at its beginning prior to execution of the OPEN
statement.

For files being opened with the INPUT or I-O phrase, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. If no records exist in the file, the current record pointer is set so
that the next executed READ statement for the file will result in an AT
END condition.

When the EXTEND phrase is specified, the OPEN statement positions
the file immediately following the last logical record of that file. Subse-
quent WRITE statements referencing that file will add records to the file
as though the file had been opened with the OUTPUT phrase.

.When the EXTEND phrase is specified and the LABEL RECORDS clause

indicates label records are present, the execution of the OPEN statement
includes the following steps:

a. Beginning file labels are processed only in the case of a single reel/unit
file.

b. Beginning reel/unit labels on the last existing reel/unit are processed as
though the file was being opened with the INPUT phrase.

c. Existing ending file labels are processed as though the file is being
opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

The I-O phrase permits the opening of a directory file for both input and
output operations. Because this phrase implies the existence of the file, it
cannot be used if the directory file is being created.

When the I-O phrase is specified and the LABEL RECORDS clause indi-
cates label records are present, the execution of the OPEN statement
includes the following steps:

a. Labels are checked in accordance with the specified conventions for
input-output label checking.

5-66 Procedure Division

OPEN (Sequential)

Continued

b. New labels are written in accordance with the standard conventions for
input-output label writing.

18.Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated file contains

no data records.

19.1f the execution of an OPEN statement fails and a USE procedure is
specified for the file (either explicitly or implicitly), the USE procedure is
executed. Execution of an OPEN statement fails for any of the following

reasons:
NOTE:

The value in parentheses after each of the following state-
ments is the value that is placed in the FILE STATUS data

item, if one was specified for the file.

a. An OPEN statement executed for a file that is already opened for
exclusive access by another task. (91)

b. An OPEN statement executed for a device that has no available file
space. (95)

c. An OPEN statement executed for a file that shares buffer space with an
already opened file. (96)

d. An OPEN statement executed for a file that cannot be found on its
associated I/O device. (97)

Procedure Division 5-67

OPEN (Indexed & Relative)

5.25 OPEN Statement (Indexed & Relative)

Function

5-68

The OPEN statement initiates the processing of files.

General Format

INPUT file-name-1 [, file—name—2]
OPEN { QUTPUT file-name-3 [, file-name-4] ...
LI-O file-name-5 [, file—name—6] .

Syntax Rule

The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1.

The successful execution of an OPEN statement determines the availabil-
ity of the file and results in the file’s being in an open mode.

The successful execution of the OPEN statement makes the associated
record area available to the program.

Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that explicitly or implicitly references that file.

. An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In Table 5-6, an X
indicates that the specified statement used in the access mode given for
that row can be used with indexed or relative file organizations and the
open mode given at the top of the column.

Procedure Division

OPEN (Indexed & Relative)

Continued

Table 5-6: Permissible Input-Output Statements for
Indexed and Relative Files

Open Mode

File Access
Mode Statement Input Output Input-Output

Sequential READ X
WRITE X
REWRITE
START X
DELETE

Random READ X
WRITE X
REWRITE '
START
DELETE

Dynamic READ X
READ NEXT X
WRITE X
REWRITE
START X
DELETE

o

e Ralol Rela ks

IR I Tl ot

. A file can be opened with the INPUT, OUTPUT, and I-O phrases in the
same program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must
be preceded by the execution of a CLOSE statement, without the LOCK
phrase, for that file.

. Execution of the OPEN statement does not obtain or release the first data
record.

. The file-description-entry for file-name-1, file-name-2, file-name-5, or
file-name—6 must be equivalent to that used when this file was created.

. For files being opened with the INPUT or I-O phrase, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. For indexed files, the prime record key is established as the key of
reference and is used to determine the first record to be accessed. If no
records exist in the file, the next executed sequentially accessed READ
statement for the file results in an AT END condition.

. Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated file contains
no data records.

Procedure Division 5-69

OPEN (Indexed & Relative)

Continued

10.If the execution of an OPEN statement fails and a USE procedure is
specified for the file (either explicitly or implicitly), the USE procedure is
executed. The execution of an OPEN statement will fail for any of the
following reasons:

NOTE:

The value in parentheses after each of the following state-
ments is the value that is placed in the FILE STATUS data
item, if one was specified for the file.

a. An OPEN statement executed for a file that is already opened for
exclusive access by another task. (91)

b. An OPEN statement executed for a device that has no available file
space. (95)

c. An OPEN statement executed for a file that shares buffer space with an
already opened file. (96)

d. An OPEN statement executed for a file that cannot be found on its
associated I/0 device. (97)

5-70 Procedure Division

PERFORM

5.26 PERFORM Statement

Function

The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly whenever execution of the speci-

fied procedure is complete.

General Format

Format 1
THROUGH

PERFORM procedure—name—l[{ } procedure—name—2:|

THRU

Format 2

THROUGH
procedure-name-2

PERFORM procedure-name-1
THRU

identifier-1
TIMES
integer

Format 3
THROUGH

PERFORM procedure—name—l[{ } procedure—name—Q]UNTIL condition-1

THRU

(continued on next page)

Procedure Division 5-71

PERFORM

Continued
Format 4
THROUGH
PERFORM procedure-name-1 procedure-name-2

THRU

identifier-2 identifier-3

VARYING FROM <{index-name-2
literal-1 index-name-1
BY

identifier-4
UNTIL condition-1
literal-2

index-name- literal-3

I_ identifier-5 identifier-6
l AFTER FROM index-name-4
3

Y

identifier-7
{ literal-4

} UNTIL condition-2

identifier-8 identifier-9
AFTER { FROM index—name—G}

index-name-5, literal-5

BY

{identiﬁer—lo

literal-6

} UNTIL condition—3:|

Syntax Rules

1. Each identifier represents a numeric elementary item described in the
Data Division. In Format 2, identifier-1 must be described as a numeric
integer.

2. Each literal represents a numeric literal.
3. The words THRU and THROUGH are equivalent.
4. If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must be an
integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a non-zero integer.

5-72 Procedure Division

PERFORM

Continued

If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be
an integer data item.

b. The identifier in the associated BY phrase must be an integer data
item.

c. The literal in the associated BY phrase must be an integer.

Literal in the BY phrase must not be 0.

Condition-1, condition-2, condition-3 can be any conditional expression
as described in Section 5.6, Conditional Expressions.

Where procedure-name-1 and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of the program,
then both must be procedure-names in the same declarative section.

General Rules

1.

The data items referenced by identifier-4, identifier-7, and identifier-10
must not have a zero value.

If an index-name is specified in the VARYING or AFTER phrase, and an
identifier is specified in the associated FROM phrase, then the data item
referenced by the identifier must have a positive value.

When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-1 (except as indi-
cated in General Rules 6b, 6¢c, and 6d). This transfer of control occurs only
once for each execution of a PERFORM statement. Where a transfer of
control to the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM state-
ment is established as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of
procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last para-
graph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, then the
return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then the
return is after the last statement of the last paragraph in the section.

Procedure Division 5-73

PERFORM

Continued

. There is no necessary relationship between procedure-name-1 and

procedure-name-2 except that a consecutive sequence of operations is to .
be executed beginning at the procedure named procedure-name-1 and
ending with the execution of the procedure named procedure-name-2. In
particular, GO TO and PERFORM statements can occur between
procedure-name-1 and the end of procedure-name-2. If there are two or
more logical paths to the return point, then procedure-name-2 can be the
name of a paragraph consisting of the EXIT statement to where all of these
paths must lead.

. If control passes to these procedures other than by a PERFORM state-

ment, control passes through the last statement of the procedure to the
next executable statement as if no PERFORM statement mentioned these
proc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>