
PAL-D

DISK ASSEMBLER

PROGRAMMER’S REFERENCE MANUAL

For additional copies of this document, order No. DEC-D8-ASAB-D From Program Library,

Digital Equipment Corporation, Maynard, Mass. 01754 Price: $1.50

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD, MASSACHUSETTS

lst Printing April I968

2nd Printing June I968

3rd Printing March I969

4th Printing (Rev) September I969

Your attention is invited to the last two pages of this

manual. The Reader's Comments page, when filled in

and returned, is beneficial to both you and DEC. All

comments received are considered when documenting

subsequent manuals, and when assistance is required,
a knowledgeable DEC representative will contact you .

The Software Information page offers you a means of

keeping up-to-date with DEC '3 software .

Copyright © I968, I969 by Digital Equipment Corporation

Documents Referenced (available from DEC's Program Library):

Introduction to Programming, C-l8

Disk Monitor System, Programmer's Reference Manual, DEC-D8—SDAB—D

Time—Sharing System User's Guide, DEC—T8—MRFB-D

TSS/8 System Manager's Guide, DEC-T8—MBZA-D

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

'

PREFACE

PAL-D, one oF the PDP-8 Family assembly programs, is designed For use on any P’DP-8 Family computer

with disk or DECtape secondary storage. It is loaded/optionally stored on disk as a permanently resident

utility program and reproduced in core image as required, under control oF the PDP-8/I Disk Monitor, or

the TSS/8 Time-Sharing Monitor.

PAL-D produces a binary coded obiect program after two passes of the symbolic coded source program .

An optional third pass produces a listing oF the source program and the assembler-generated binary code

expressed as Four-digit octal values.

Along with the standard assembly functions PAL-D offers double precision integers, floating point con-

stants, arithmetic and Boolean operators, literals, text Facilities and automatic oFF-page linkage genera-

tion as standard Features.

It is assumed that the reader is Familiar with assembly language programming. For an elementary

approach to this type oF programming, we recommend DEC's publication, No. C-l8, "Introduction to

Programming" available From the Program Library, Digital Equipment Corporation, Maynard ,.

Massachusetts .

CHAPTER 1

LLLLbbbbwabbL CON—I

szw—t

{nip-l:- 014:-

1.5.1

1.5.2

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.7

1.7.1

1.7.2

C HAPTER 2

2.1

2.2

2.3

CONTENTS

INTRODUCTION

PAL-D Language

Syntax

Legal Characters

Illegal Characters

Format Effectors

Statements

Labels

Operators

Operands

Comments

Symbols

Symbol Distinction

Symbolic Addresses

Symbolic Operators

Symbolic Operands

Symbol Tables

Numbers

Arithmetic and Logical Operators

Evaluating Expressions

Address Assignments

Current Address Indicator

Indirect Addressing

Autoindexing

Literals

Instructions

Memory Reference Instructions

Augmented Instructions

PSEUDO-OPERATORS

Current Location Counter

Extended Memory

Radix Control

Page

2-1

2-1

2-2

2.4

2.5

2.6

2.7

2.8

2.8.I

CHAPTER 3

3.]

3.2

3.2.1

3.2.2

3.2.3

C HAPTER 4

4.]

4.1.]

4.1.2

4.1.3

4.2

CHAPTER 5

CONTENTS (Cont)

Listing Control

Text Facility

End of Program

End of File

Altering the Symbol Table

Internal Representation

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

Program Tape

Assembly

Pass I

Pass 2

Pass 3

LOADING AND ASSEMBLING PROCEDURES

Disk Monitor System

Loading

Saving

Assembling

TSS/8 Monitor System

ERROR DIAGNOSTICS

APPENDIX A USA SCII CHARACTER SET

APPENDIX B SYMBOL LIST

Page

2-2

2-2

2-3

2-3

2-3

2-4

3-I

3-2

3-2

3-2

4—1

4-1

4-2

4-2

4-5

CHAPTER I

INTRODUCTION

PAL-D, the acronym forfirogram Assembly _|_._anguage for the _D_isk, is the symbolic assembly

program designed primarily for the 4K PDP-8 family of computers with disk or DECtape secondary storage

operated in either stand-alone or time-shared mode.

The PAL-D Assembler makes machine language programming easier, faster, and more efficient.

Basically, the Assembler processes the programmer's source program statements by translating mnemonic

operation codes to the binary codes needed in machine instructions, relating symbols to numeric values,

assigning absolute core addresses for program instructions and data, and preparing an output listing of the

program, which includes notification of any errors detected during the assembly process.

The PAL-D Assembly language is the same under both the Disk Monitor System and the TSS/8

Monitor (time-sharing) System. The assembly system includes the disk version of the Symbolic Tape

Editor for altering or editing the source language tape, the Disk Debugging technique for debugging the

obiect program by communicating with it in the source language, and various other utility programs.

PAL-D requires the minimum configuration for disk or DECtape systems (see Disk Monitor

System, DEC-D8-SDAB-D) or time sharing systems (see Time-Sharing System User's Guide,

DEC-T8-MRFB-D), and additionally can utilize the high-speed reader/punch and up to three additional

D532 disk units.

I .I PAL-D LANGUAGE

The PAL-D Assembler is compatible with the PAL III Assembler. However, PAL-D has the

fol lowing additional features .

Operators Symbols and integers may be combined by
using the operators
+Addition 8. Boolean AND

—Subtraction l Boolean Inclusive OR

Literals Symbolic or integer literals (constants)
are automatically assigned .

Text Facility Text facilities exist for single characters

and blocks of text.

Indirect Linkage Indirect links are automatically generated for

Generation off-page referencing.

I .2 SYNTAX

Programs processed under PAL-D are written using USA SCII characters. Appendix A contains

a complete list of these characters with their octal code equivalents.

I-I

1 .2.1 Legal Characters

The following characters are acceptable to PAL-D.

a. The alphabetic characters

ABCD. . .XYZ

b. The numeric characters

0123456789

c . The special characters

1_ Space

+ Plus

— Minus

'/
&

Exclamation Mark

Carriage Return

Tabulation

Comma

Equal Sign
Semicolon

Dollar Sign
Asterisk

Point (Period)
Slash

Ampersand
Quote

() Parentheses

I I Brackets

d . Ignored characters

Form-Feed

Blank Tape
Code 200

Rubout

Line—Feed

Separates symbols and numbers

(see Section 1.5.1)
Combines symbols or numbers

(add)
Combines symbols or numbers

(subtract)
Combines symbols or numbers

(inclusive OR)
Terminates a line

Formats Symbols or numbers or source

tape output

Assigns Symbolic address

Direct assignment of symbol values

Terminates coding line

(will not terminate comments)
Indicates end of pass

Sets current location counter,- redefines origin
Has value equal to current location counter

Indicates start of comment

Combines symbols or numbers (AND)
Generates USA SCll constant

Defines literal on current page

Defines page 0 literal

Indicates the end of a logical page of

source program

Used for leader/trailer
Used for leader/trailer
Follows tabulation characters for

timing purposes

Follows carriage return and causes tele-

printer paper to roll upward one line

Since certain characters are invisible (i.e., nonprinting), the following symbols are used

throughout this manual to represent their presence.

L—J

—4

J

Space
Tabulation

Carriage Return

1-2

1.2.2 Illegal Characters

All characters other than those listed above are illegal when not in a comment or TEXT field

and, being illegal, their occurrence causes the error message IC (Illegal Character) to be printed by

PAL—D .

l .2 .3 Format Effectors

Tabulations are usually Used in the body of a source program to provide a neat page; they can

separate fields from one another, as between a statement and a comment. For example, a line written

GO, TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form

GO, -*l TAD TOTAL—ii /MAIN LOOP

Either the ”;" (semicolon) or "J
”

(carriage return—line feed) character may be used as a

statement terminator. The semicolon is considered identical to carriage return-line feed except that it

will not terminate a comment. Example:

TAD A /THIS IS A COMMENT; TAD B J

The entire expression between the "/” (slash) and J (carriage return) is considered a comment.

The semicolon also allows the programmer to place several lines of coding on a single line.

If, for example, he wishes to write a sequence of instructions to rotate the contents of the accumulator

and link six places to the right, it might look like

RTR a!

RTR J

RTR)

The programmer may place all three RTRs on a single line by separating them with the special character

";" and terminating the line with a carriage return. The above sequence of instructions can then be

written

RTR; RTR; RTRJ

This format is particularly useful when setting aside a section of data storage for a list. For example, a

l2-word list coUld be reserved by specifying the following format.

LIST, 0; 0; O; O; O; O J

O; O; 0; 0; 0; O J
_

A neat printout (or program listing) makes subsequent editing, debugging, and interpretation

much easier than when the coding is laid OUl' in a haphazard fashion.

i .3 STATEMENTS

PAL—D source programs are usually prepared on a Teletype, with the aid of the Editor, as a

sequence of statements. Each statement is written on a single line and is terminated by a carriage

return-line feed sequence. PAL-D statements are virtually format free; that is, elements of a statement

are not placed in numbered columns with rigidly controlled spacing between elements, as in punched-card

oriented assemblers.

There are four types of elements in a PAL-D statement which are identified by the order of

appearance in the statement, and by the separating, or delimiting, character which follows or precedes

the element.

Statements are written in the general form

label, operator operand/comment

The Assembler interprets and processes these statements, generating one or more binary instructions or

data words, or performing an assembly process. A statement must contain at least one of these elements

and may contain all four types.

1.3.1 Labels

A label is the symbolic name created by the source programmer to identify the position of the

statement in the program. If present, the label is written first in a statement and terminated by a comma.

l .3 .2. Operators

An operator may be one of the mnemonic machine instruction codes (see Appendix B), or

a pseudo-operation (pseudo-op) code which directs assembly processing. The assembly pseudo-op

codes are described in Chapter 2. Operators are terminated with a space if an operand follows or with

a semicolon, slash, or carriage return.

i .3 .3 Operands

Operands are usually the symbolic address of the data to be accessed when an instruction is

executed, or the input data or arguments of a pseudo-op. In each case, interpretation of operands in

a statement depends on the statement operator. Operands are terminated by a semicolon, a slash if a

comment follows, or a carriage return-line feed.

1 .3.4‘ Comments

The programmer may add notes to a statement following a slash mark. Such comments do not

affect assembly processing or program execution, but are useful in the program listing for later analysis

or debugging .

l -4

1.4 Symbols

The programmer may create symbols to use as statement labels, as operators, and as operands.

A symbol is a string of one or more alphanumeric characters delimited by a punctuation character. A

symbol contains from one to six characters from the set of 26 alphabetic characters and ten digits 0 through

9; however, the first character must be alphabetic.

1.4.1 Symbol Distinction

The PAL-D Assembler makes a distinction between the types of symbols it is processing. These

types are

0. Permanent symbols

JMS a symbol whose value of 4000 (octal) is taken from PAL—D's permanent

operation code symbol table.

b. User—defined symbols

HERE a user-defined symbol; when used as a symbolic address tag, its value is

the address of the statement it tags (this value is assigned by PAL-D).

l .4.l .1 Permanent Symbols - PAL-D has in its permanent symbol table definitions of its operation codes,

operate commands, and many input—output transfer (IOT) microinstructions (see Appendix B). PAL-D's

permanent symbols may be used without prior definition by the user.

1.4.1.2 User-Defined Symbols - User-defined symbols are composed according to the following rules.

a. The characters must be alphabetic (A-Z) or numeric (0-9).

b. The first character first be alphabetic.

c . Only the first six characters of any symbol are meaningful to PAL—D; the remainder,

ifany, are ignored.

Note that because of the third rule above, a symbol such as INTEGER would be interpreted as INTEGE

since the seventh character is ignored. Remember, if symbols of more than six characters are used, the

programmer must avoid defining two apparently different symbols whose first characters are identical.

For example, the two symbols GEORGE] and GEORGE2 differ only in the seventh character, thus the

Assembler treats them as being the same symbol, GEORGE.

When the symbol following the space is a user-defined symbol, the space acts as an address

field delimiter. Example:

"2117-l

A, CLAJ

JMP,__,A J

l -5

where A is user—defined symbol with the value 2117. The expression JMP A is evaluated as follows.

JMP 101 000 000 000 (binary representation of permanent symbol JMP)
Address A 000 Oil 001 iii (binary representation of address A)

The operation codes (op codes) are inclusively ORed to form

JMPA 101 Oil 001 ill

or written more concisely in octal as 5317.

l .4.2 Symbolic Addresses

A symbol used as a label to specify a symbolic address must appear first in the statement and

must be immediately followed by a comma. When used in this way, a symbol is said to be defined. A

defined symbol can reference an instruction or data word at any point in the program. A symbol can be

defined as a label only once. If a programmer attempts to define the same symbol as a label again, the

second or successive attempt is ignored and an error is indicated. The Assembler recognizes only the first

definition. These are legal symbolic addresses:

ADDR,

TOTAL,

SUM,

The following symbolic addresses are illegal:

7ABC, (first character must be alphabetic)
LAB-—, (comma must immediately follow label)

T .4.3 Symbolic Operators

Symbols used as operators must be predefined by the Assembler or by the programmer. If a

statement has no ,label, the operator may appear first in the statement, and must be terminated by a

space, tab, semicolon, or carriage return. The following are examples of legal operators:

TAD (a mnemonic machine instruction operator)
PAGE (an Assembler pseudo-op)
ZIP (legal only ifdefined by the user)

1.4.4 Symbolic Operands

Symbols used as operands must have a value defined by the user. These may be symbolic

references to previously defined labels where the arguments to be used by this instruction are to be found,

or the values of symbolic operands may be constants or character strings.

TOTAL, TAD AC1 + TAG

The first operand, ACT
, specifies an accumulator register, determined by the value given to the symbol

ACT by the user. The second operand references a memory location whose name or symbolic address is TAG.

1—6

1.4.5 Symbol Tables

.The Assembler processes symbols in Source program statements by referencing its symbol tables

which contain all defined symbols along with the binary value assigned to each symbol.

Initially, the Assembler's permanent symbol tablescontains the mnemonic op codes of the machine

instructions and the Assembler pseudo—op codes, as listed in Appendix B. As the source program is processed ,

symbols defined in the source program are added to the user's symbol table.

\

1.4.5.1 Direct Assignment Statements — The programmer inserts new symbols with their assigned values

directly into the symbol table by using a direct assignment statement of the form

symbol: value

where the value may be a number or expression. For example,

ALPHA:

BE TA=1 7

A direct assignment statement may also be used to give a new symbol the same value as a

previously defined symbol.

BETA=17

GAMMA=BETA

The new symbol, GAMMA, is entered into the user's Symbol table with the value 17.

The value assigned to a symbol may be changed.

ALPHA=7

changes the value assigned to the first example from 5 to 7.

The user may also define symbols by use of the comma. When the first symbol of a statement is

terminated by a comma, it is assigned a value equal to the current location counter (CLC). For example,

*100 /set CLC (origin) to 100:)

TAG, CLAJ

JMP A.)

B, On)

A, DCA B)

The symbol TAG is assigned a value of 0100, the symbol B a value of 0102, and the symbol A a value of

0103.

Direct assignment statements do not generate instructions or data in the obiect program. These

statements are used to assign values so that symbols can be conveniently used in other statements.

1.5 NUMBERS

Any sequence of numbers delimited by a punctuation character is interpreted numerically by

PAL—D.

i

12

4372

The radix control pseudo—operators (pseudo-tops) indicate to the Assembler the radix to be

used in number interpretation (see Chapter 2). The pseudo—op DECIMAL indicates that all numbers

are to be interpreted as decimal until the next occurrence of the pseudo-op OCTAL. The pseudo-op

OCTAL indicates that all numbers are to be interpreted as octal until the next occurrence of the pseudo—op

DECIMAL.

The radix is initially set to octal and remains octal unless otherwise specified.

1 .5.l Arithmetic and Logical Operators

The arithmetic and logical operators are:

+ Plus 25 complement addition

(modulo 4096)

- Minus 2s complement subtraction

(modulo 4096)

! Exclamation Mark Boolean inclusive OR

(union)

& Ampersand Boolean AND (intersection)

2. Space Interpreted as inclusive OR when used

to separate two symbolic operators. Example:

TAG, CLA HCLL J

l .5.2 Evaluating Expressions

Symbols and numbers (exclusive of pseudo-op symbols) may be combined by using the arithmetic

and logical operators to form expressions. Expressions are evaluated from left to right. Example:

A B A+B A—B A! B A&B

Value 0002 0003 0005 7777 0003 0002

Value 0007 0005 0014 0002 0007 0005

Value 0700 0007 0707 0671 0707 0000

1.6 ADDRESS ASSIGNMENTS

The PAL-D Assembler sets the origin, or starting address, of the source program to absolute

location (address) 0200 unless the origin is specified by the programmer. As source statements are processed,

PAL—D assigns consecutive memory addresses to the instructions and data words of the object program. This

is done by incrementing the location counter each time a memory location is assigned. A statement which

l-8

generates a single object program storage word increments the location counter by one. Another statement

may generate six storage words, thus incrementing the location counter by six.

Direct assignment statements and some Assembler pseudo-ops do not generate storage words

and therefore do not affect the location counter.

1 .6.1 Current Address Indicator

The special character . (point or period) always has a value equal to the value of the

current location counter. It may be used as any integer or symbol (except to the left of an equal sign).

Example:

*200J

JMP .
+ 2.)

is equivalent to JMP 0202. Also,

*3001

. +2400!

will produce in location 0300 the quantity 2700. Consider

*2200l

CALL=JMS | .J
00271

The second line, CALL = JMS I ., does not increment the current location counter, therefore, 0027 is

placed in location 2200 and CALL is placed in the user's symbol table with an associated value of 4600

(the octal equivalent of JMS 1.).

1 .6.2 Indirect Addressing

When the character 1 appears in a statement between a memory reference instruction and an oper-

and, the operand becomes the address containing the address of the statement to be executed. Consider

TAD 40

which is a direct address statement, where 40 is interpreted as'the address containing the quantity to be

added to the accumulator. Thus, if address 40 contains 0432, then 0432 is added to the accumulator.

Now consider

TAD I 40

which is an indirect address statement, where 40 is interpreted as the address of the address containing

the quantity to be added to the accumulator. Thus, if address 40 contains 432, and address 432 contains

456, then 456 is added to the accumulator.

When a reference is made to an address not on the same page as the reference, PAL-D sets

the indirect bit (bit 3)Iof the machine instruction, generating an indirect address linkage to the off—page

reference (see Paging and Off—Page Referencing, Sections 1 .7.1 .1 and 1.7.1 .2).

1-9

In the case of several off-page references to the same address, the indirect address linkage

will be generated only once.

Example: *2ll7u)

A, CLA J

*2600 I

TAD _.A

DC.A__.A

The space preceding the user-defined symbol A acts as an address field delimiter. PAL-D will recognize

that the address tag A is not on the current page (in this case 2600-2777) and will generate a link to it

in the following manner. ln location 2600, PAL-D will place the word

1777 (octal equivalent of TAD l 2777)

and in location 2777 (the last location on the current page) the word 2ll7 (the actual address of A) will

be placed. When it sees the second reference to A it will use the previous link word rather than creating

a new one.

PAL—D will recognize and generate an indirect address linkage only when the address referenced

is to a location on another page, not the current page. The programmer must use the character I to

indicate an explicit indirect address when indirectly addressing to a location on the current page.

PAL-D cannot generate a link for an instruction that is already specified as being an indirect

address. In this case, PAL—D will type the error message |l (Illegal Indirect),- the error message is ignored

and assembly is continued.

l .6.3 Autoindexing

lnterpage references are often necessary for obtaining operands when processing large amounts

of data. The PDP—8 computers have facilities to ease the addressing of this data. When absolute locations

10 to 17 (octal) are indirectly addressed, the content of the location is incremented before it is used as

an address and the incremented number is left in the location. This allows the programmer to address

consecutive memory locations using a minimum of statements.

It must be remembered that initially these locations (10 to 17) must be set to one less than the

first desired address. Because of their characteristics, these locations are called autoindex registers.

No incrementation takes place when locations 10 to l7 are addressed directly.

Example:

Statement is in location 500

Data is on the page starting at 5000

Autoindexing register 10 is used for addressing

0476 1377 TAD (5000-l) / set up auto

0477 30l0 DCA 10 / index with 4777

0500 l4lO TAD l 10 / C(l 0) is incremented to 5000 before

use as address

0577 4777 / literal generated by PAL—D

When the statement in location 500 is executed, the content of location 10 will be incremented to 5000

and the content of location 5000 will be added to the content of the accumulator. If the instruction

TAD l 10 is re-executed, the content of location 5001 is added to the content of the accumulator, and so on.

1.6.4 Literals

Symbolic and integer literals (constants) may be defined as shown below.

CLA J Operator and operand must always

TAD (2) J be separated with a space.

DCA INDEX J

The left parenthesis is a signal to the Assembler that the integer following is to be assigned a location

in the table at the top of the' current page. This is the same table in which the indirect address linkages

are stored. In the above example, the quantity 2 is stored in the first free location in a list beginning at

the top of the current page (relative address 177), and the statement in which it appears is encoded with

an address referring to that location.

A literal is assigned to storage the first time it is encountered; subsequent references will be

to the same location.

If the programmer wishes to assign literals to page 0 rather than the current page, he must use

square brackets, [l, in place of parentheses. Whether using parentheses or square brackets, the right

or closing member is optional and may always be replaced with a carriage return.

TAD (777 1

1.6.4.l Nesting - Literals may be nested as shown below.

*200 J

TAD (TAD (30 J

will generate

0200 l276

0376 1377 (literals assigned to locations

0377 0030 0377 and 0376; top of current page)

This type of nesting may be carried to many levels.

Literals are stored on each page starting at relative address 177 (only l27IO or I778 literals

may be placed on page 0) . If literals are being generated for some nonzero page and then the origin

is set to another page, the current page literal buffer is punched out during pass 2. If the origin is reset

to the previously used page, the same literal will be generated if used again.

If a single character is preceded by a quote (") ,
the 8-bit value of the USA SCII code for that

character is inserted instead of taking the letter as a symbol.

Example: CLAJ

TAD ("A I

will place the constant 0301 in the accumulator.

l.7 INSTRUCTIONS

There are two basic groups of instructions: memory reference and augmented. Memory

reference instructions require an operand; augmented instructions do not require an operand.

l .7.l Memory Reference instructions

In PDP—8 computers, some instructions require a reference to memory. They are appropriately

designated memory reference instructions, and take the following format.

OPERATION MEMORY

CODES 0‘5 PAGE

,——_._.ag_.___‘ r—H

O i 2 3 4 5 6 7 3 9 10 ii

b-~.r--—’
‘

v

4“

INDIRECT ADDRESS

ADDRESSING

Memory Reference Instruction Bit Assignments

Bits 0 through 2 contain the operation code of the instruction to be performed (AND, TAD, DCA, JMS, or

or JMP) . Bit 3 tells the computer if the instruction is indirect, that is, if the address of the instruction

specifies the location of the operand, or if it specifies the location of the address of the operand. Bit 4

tells the computer if the instruction is referencing the current page or page zero. This leaves bits 5

through ll (7 bits) to specify an address. In these 7 bits, 200 octal or l28 decimal locations may be

specified; the page bit increases accessible locations to 400 octal or 256 decimal.

The address field of a memory reference instruction may be any valid expression.

Example: =270 J

*200 J

TAD A-20 J

l-l2

produces, in location 200, the word

-

1250

which in binary is 001 010 101 000

which is also TAD 250.

l .7.l .l P_ag_i_n_g_
— To ease the programmer's addressing problems, a convention has been defined that

divides memory into sectors called pages. Each page contain 200 octal locations (1 28 decimal) numbered

0 to l77 (octal) on that page. There are 40 octal or 32 decimal pages numbered 0 to 37 (octal) . Some

examples of page numbers and the absolute and relative locations (addresses):are shown below. It must

be borne in mind, however, that there is no physical separation of pages in memory.

Absolute Relative

Page Address Address

0 0 - 177 0 - 177

i 200 - 377 O — 177

2 400 - 577 O - 177

36 7400 - 7577 0 — 177

37 7600 - 7777 0 - 177

The following table offers a comparison of specific absolute and relative addresses on the

same page .

Absolute Relative

Page Address Address

0 10 10

3 617 l 7

l 2 2577 l 77

31 6255 55

37 7777 l 77

Since only seven bits are necessary to address 200 octal locations, bits 5 to ii are reserved

for this function .

l .7.l .2 Off-Page Referencing - The page on which an absolute address is contained can be determined

from bit 4 of the instruction. If bit 4 is a 0, the address refers to a location on page 0,- if bit 4 is a i,

the address refers to a location on the current (same) page, that is, the some memory page as the instruction.

l .7.2 Augmented Instructions

Augmented instructions are divided into two groups: operate and input—output transfer

microinstructions .

1 .7.2.1 Operate Microinstructions - Within the operate group there are l'WO groups of microinstructions.

Group 1 microinstructions are principally for clear, complement, rotate, and increment operations and

are designated by the presence of a O in bit 3 of the machine instruction word. (See Appendix B.)

ROTATE t

ROTATE POSITION IF A O,
OPERATION AC ANDL 2POS|TIONS

CODE? CLA CMA RIGHT IFA I

PW.“ ,_A_fi A ’__»...3 ,__.&__‘

O 1 2 3 4 5 6 7 8 9 10 11

_y__..1 b-v—‘J _V—.J EH _.,_.I

CONTAINS CLL CML ROTATE IAC

A 0 TO AC AND L

SPECIFY LEFT

GROUPI

Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions are used principally in checking the content of the accumulator and

link and, based on the check, continuing to or skipping the next statement. Group 2 microinstructions are

identified by the presence of a l in bit 3 and a 0 in bit ll of the machine instruction word (See Appendix B).

REVERSE

SKIP

OPERAYION SENSING OF

CODE 7 CLA SZA BITS 5,6,7 HLT

r———-&-———-\ r—*—\ r—H PM F‘fi

O 1 2 3 4 5 6 7 8 9 IO 11

CONTAINS AI SMA SNL OSR CONTAINSAO

TO SPECIFY TO SPEC‘CY

GROUP 2 GROUPZ

Group 2 Operate Microinstruction Bit Assignments

Group 1 and group 2 microinstructions can not be combined because bit 3 determines only one

or the other.

Within Group 2, there are two groups of skip instructions. They may be referred to as the

OR group and the AND group.

OR Group AND Group

SMA
'

SPA

SZA SNA

SNL SZL

The OR group is designated by a 0 in bit 8, the AND group by a i in bit 8. OR and AND group

instructions cannot be combined because bit 8 determines only one or the other.

If the programmer does combine legal skip instructions, it is important to note the conditions

under which a skip may occur.

a. CR Group - If these skips are combined in a statement, the inclusive OR of the conditions

determines the skip.

SZA SNL

The next statement is skipped if

the accumulator contains 0000, or

the link is a l, or

both conditions exist.

b. AND Group — If the skips are combined in a statement, the logical AND of the conditions

determines the skip.

SNA SZL

The next statement is skipped only if the accumulator differs from 0000 and the link is 0.

1 .7.2.2 Input-Output Transfer Microinstructions - These microinstructions initiate operation of

peripheral equipment and effect information transfer between the central processor and the input-output

device (5). This is the principal function of the input-output transfer (IOT) microinstructions. Appendix

B lists all valid IOT microinstructions, and each is discussed in detail in the User's Handbook.

CHAPTER 2

PSEUDO-OPERATORS

The programmer may use pseudo-operators (pseudo—ops) to direct the Assembler to perform

certain tasks or to interpret subsequent coding in a certain manner. Some pseudo-ops generate storage

words in the obiect program, other pseudo-ops direct the Assembler on how to proceed with the assembly.

Pseudo-ops are maintained in the Assembler's permanent symbol table.

The function of each PAL-D pseudo-op is described below.

2.] CURRENT LOCATION COUNTER

The programmer may use the PAGE pseudo-op to reset the current location counter (CLC) to

the first location on a specified page.

PAGE without an argument, the CLC is reset to the first location on the

next succeeding page. Thus, if a program is being assembled into

page i and the programmer wishes to begin the next segment of his

program on page 2, he need only insert PAGE, as follows.

JMP .-7J (Last location used on page 1)

PAGE I

CLAJ (First location on page 2)

PAGE n resets the CLC to the first location of page n, where n is an integer,

a previously defined symbol, or a symbolic expression. Example:

PAGE 2 (sets the CLC to location 400)
PAGE 6 (sets the CLC to location 1400)

2.2 EXTENDED MEMORY

When using more than one memory bank, the pseudo-op FIELD instructs the Assembler to output

a field setting.

FIELD n where n is an integer, a previously

defined symbol, or a symbolic

expression within the range 0 S n 57.

This pseudo—op causes a field setting (binary word) of the form

11 XXX 000 where 000 §XXX S I II

to be output on the binary tape during pass 2. This word is interpreted by the Loader, which then begins

loading information from the Loader into the new field.

2-1

2.3 RADIX CONTROL

Integers used in a source program are usually taken as octal numbers. If, however, the

programmer wishes to have certain numbers treated as decimal, he may use the pseudo-op DECIMAL.

DECIMAL all integers in subsequent coding are taken as decimal until

the occurrence of the pseudo-op OCTAL.

OCTAL resets the radix to its original octal base.

2.4 LISTING CONTROL

During pass 3, a listing of the source program is printed (punched). The programmer may,

however, control the output of his pass 3 listing by use of the pseudo-op XLIST.

XLIST Those portions of the source program enclosed by XLIST will

not appear in the pass 3 listing.

2. 5 TEXT FACILITY

The pseudo-op TEXT enables the user to represent a character or string of characters in USA SCII

code trimmed to six bits and packed two characters to a word. The numerical values generated by TEXT.

are left—justified in the storage words they occupy, with the unused bits of the last word filled with 05.

A string of text may be entered by giving the pseudo—op TEXT Followed by a space, a delimiting

character, a string of text, and the same delimiting character.

Example:

TEXT ATEXT STRINGA

The first printing character following TEXT is taken as the delimiting character, and the text string is

the characters which follow until the delimiting character is again encountered.

If the example above were at location 0200, the pass 3 listing would be as follows.

200 2405 TE

20l 3024 XT

202 4023 as (.__. denotes a space)
203 2422 TR

204 l I I6 IN

205 0700 G

NOTE

With TEXT, any printing character

may be used as a delimiting character;
the delimiting character cannot be

used in the text string.

2-2

2 .6 END OF PROGRAM

The special symbol $ (dollar sign) indicates the end oF a program. When the Assembler en-

counters the $, it terminates the pass.

2.7 END OF FILE

The pseudo-op PAUSE signals the Assembler to stop processing the current input File. The

current pass is not terminated, and processing continues when the user types CTRL/P.

When processing a segmented program, the programmer must use the PAUSE pseudo-op as the

last statement oF each segment (tape or File) to halt processing, giving him time to call (or insert, iF

paper tape is being used) the succeeding segment oF his program.

The PAUSE pseudo-op should be used only at the physical end oF a tape or File.

2.8 ALTERING THE SYMBOL TABLE

PAL-D has a permanent symbol table which contains all instructions (symbols and their octal

values) required by the Disk Monitor System . They are referred to as PAL-D's basic instructions or

symbols, and are listed in Appendix B.

When the symbolic program to be assembled requires instructions not already in the table

(e.g., card reader IOT's), the table must be altered to include those instructions. PAL-D has two

pseudo-ops that are used to alter the permanent symbol table:

EXPUNGE deletes the entire permanent symbol table, except pseudo-ops.

FIXTAB appends symbols to the table For duration oF the assembly. All symbols de-

Fined before the occurrence oF FIXTAB are temporarily made part oF the per-

manent symbol table.

These pseudo-ops can be used to eliminate unneeded symbols From the table, thus providing more storage

For user symbols .

To append the Following card reader IOT's to the symbol table, the programmer generates an

ASCII tape oF:

RCSF=663I

RCSP=667I

RCRD=6674

FIXTAB

PAUSE

The ASCII tape is then read into core ahead oF the symbolic program tape during pass I . The PAUSE

pseudo-op stops assembly, and the Loader waits For the programmer to put the symbolic program tape

into the tape reader and press CONTinue .

AFter each assembly, PAL-D's permanent symbol table is restored to contain only the basic

symbols .

2-3

2 .8 . 1 Internal Representation

Each permanent and user-defined symbol occupies four words (locations) in the symbol table

storage area, as shown below.

O l 2

Word I C1 x 458
+

C2 first 2 characters

Word 2 C3 x 458
+ C

4
second 2 characters

Word 3 C
5

x 458
+ C

6
l'l'lll'd 2 characters

Word 4 octal code or address

where C] , C2, . . . , C
6 represent the first character, second character, . , sixth character respective-

ly. (Symbols may consist of from one to six characters.) Bits 0 and l of word 1 and bit 0 of word 2 are

system flags. With a permanent symbol, word 4 contains the octal code of the symbol; with a user-

defined symbol, word 4 contains the address of the symbol. For example: the permanent symbol TAD is

represented as fol lows .

Wordl =

248x458+0l
=

l3458 or TA

Word2 = 04 x45 +00 = 224 +4000 = 4224 D
8 8 8

.

flag blt

Word 3 = 0000

Word 4 = 1000 (octal code for TAD)

Note that the first digit of the USASCII octal code for each character is always trimmed by the assem-

bler so that the character is represented using six bits of a word . For example, USASCII code for T is

324, it was trimmed to 24; A is 30l , it was trimmed to 0]; etc.

CHAPTER 3

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The source language tape (symbolic tape) is prepared using the Editor or an off-line ASR-33

Teletype .

3.I PROGRAM TAPE

Since the Assembler ignores certain characters, these may be used freely to produce a more

readable symbolic source tape. These useful characters are tab and form—feed.

The Assembler will also ignore extraneous spaces, carriage return-line feed combinations,

rubouts, and blank tape.

The program body consists of statements and pseudo-ops. The program is terminated by the

dollar sign ($). If the program is large, it may be segmented by use of the pseudo-op PAUSE. This often

facilitates editing the source program since each section is physically smaller.

The Assembler initially sets the origin (current location counter) of the source program to 0200.

The programmer may reset the current location counter by use of the asterisk.

The following two programs are identical except that format effectors were used in the second

printout.

*200

/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, O/START OF PROGRAM

KCC

KSF/WAIT FOR FLAG

JMP .—I/FLAG NOT SET YET

KRB/READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE/IS IT A SPACE?

SNA CLA

HLT/YES
JMP BEGIN + 2/NO: INPUT AGAIN

CHAR, O/TEMPORARY STORAGE

MSPACE, -240/-ASCII EQUIVALENT

/END OF EXAMPLE

$

*200

/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, 0 /START OF PROGRAM

KCC

KSF /WAIT FOR FLAG

JMP .-1 /FLAG NOT SET YET

3-I

KRB /READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE /IS IT A SPACE?

SNA CLA

HLT /YES
JMP BEGIN+ 2 /NO: INPUT AGAIN

CHAR, 0 /TEMPORARY STORAGE

MSPACE, -24O /-ASCII EQUIVALENT

/END OF EXAMPLE

$

Both of these programs will produce the same binary code. The second, however, is easier to read.

3 .2 ASSEMBLY

PAL-D is a two-pass assembler with an optional third pass which produces a side-by-side

assembly listing of the symbolic source statements, their octal equivalents, and assigned absolute

addresses. When used with the TSS/8 time-sharing monitor the passes are invisible to the user. However,

the user determines whether or not the third pass will be made by his response to PAL-D's OPTION:

every (see Section 4.3.2).

3.2.] Pass 1

During pass i, PAL-D processes the source tape (or file) and places in its user's symbol table

the definitions of all symbols used. The user's symbol table is printed (or punched) at the end of pass 2.

If any symbols remain undefined at the end of pass I, the US (Undefined Symbol) diagnostic is printed

during pass 2 when the undefined symbol is encountered (see Error Diagnostics). The symbol table is

printed (or punched) in alphabetical order on either the teleprinter or high—speed punch. The punched

symbol table may be used to expand DDT-8s symbol table for use in program debugging. If the program

listed above were assembled, PAL—D would output the following symbol table.

BEGIN 0200

C HAR 021 3

MSPACE 0214

3.2.2 Pass 2

During pass 2, PAL—D processes the source tape (or file) and generates binary output using the

symbol table equivalences defined during pass I . The binary output may be loaded in core by the Disk

Monitor System Binary Loader.

The binary coded tape (or file) consists of leader code, an origin setting, and data words.

Every occmrence in the source program of an asterisk causes a new origin setting in the binary output.

At the end of the binary coded tape, a binary checksum is produced and trailer code is generated.

3—2

When using the low speed paper tape punch, diagnostic messages are both typed and punched

and will be preceded and followed by rubouts. The Binary Loader will ignore everything enclosed within

rubouts .

3.2.3 Pass 3

During pass 3, PAL-D processes the source tape (or tile) and prints out a side-by-side listing

of the generated octal code and the original source language. If the program shown above were assembled,

the pass 3 listing would be

*200

/EXAMPLE OF FORMAT

/GENERATOR
0200 0000 BEGIN, 0 /START OF PROGRAM

0201 6032 KCC

0202 6031 KSF /WAIT FOR FLAG

0203 5202 JMP .-1 /FLAG NOT SET YET

0204 6036 KRB /READ IN CHARACTER

0205 3213 DCA CHAR

0206 1213 TAD CHAR

0207 1214 TAD MSPACE /IS IT A SPACE?

0210 7650 SNA CLA

0211 7402 HLT /YES
0212 5202 JMP BEGIN+2 /NO: INPUT AGAIN

0213 0000 CHAR, O /TEMPORARY STORAGE

0214 7540 MSPACE, -240 /-ASCII EQUIVALENT

/END OF EXAMPLE

3-3

CHAPTER 4

LOADING AND ASSEMBLING PROCEDURES

The PAL-D Assembler is furnished on punched paper tape and is loaded and stored on the disk

during system build time. Loading PAL-D in a TSS/8 system, is performed by the system manager and is

described in detail in the TSS/8 System Manager's Guide, DEC-T8-MBZA-D. However, the user can at

any time build a new system in a Disk Monitor system; therefore, complete loading procedures are detail-

ed below.

4.l DISK MONITOR SYSTEM

If the Disk Monitor is not present on your disk or DECtape, build it according to instructions

in the Disk Monitor System manual, DEC-D8-SDAB-D.

4. l .l Loading

The assembler is incorporated in the system by loading the paper tape into core using the disk

Loader. Then the assembler may be saved on the disk or DECtape .

PAL-D is loaded into core in two passes as explained below. Disk system responses are under-

lined; non-underlined characters represent user-supplied data.

_._LOAD 1 call Loader from disk (J indicates carriage return)

*IN-R: J input to be from high speed reader; T: would indicate input from

Teletype reader

3 Loader found device R: valid

*OPT-2 J two-pass load is specified

i: J control is to be returned to the Monitor after loading tape into

care; 7600 J would also transfer control to the Monitor after

loading the tape

Loader is waiting for user to put paper tape in reader and type lP.
I

After reading tape into core, Loader waits for user to remove tape
and type lP. If checksum error occurs, Monitor types ? in place
of 1.

Loader is waiting for user to put paper tape in reader for second

pass and type lP.

|—--—---— After reading tape on second pass, Loader is waiting for user to

l< W >_1 < 1P >_l_< lP >_i<lP > remove tape and type TP. Again, checksum error will cause ? to

be typed in place of 1.

NOTE

lP indicates CTRL-P, and < > indicates

that the enclosed portion is not echoed

(printed when the user types).

4-1

4.1.2 Saving

PAL-D may be saved on the system device as a system program. This is done by typing the

following:

LSAVE PALD!0-7577;6200

Program Multipll Entry
Name Page Save Point

! System Program
: User Program

The PAL-D Assembler is now saved as a system program on the system device. The programmer may now

type PALD J which brings the Assembler into core for use with symbolic source programs.

The user's core resident symbol table can hold 16010 user-defined symbols under the Disk

Monitor System; 24510 under the TSS/8 Monitor System. This may be expanded by saving on the system

device a user file named .SYM which can be used by PAL-D to store extra symbols. Each user-defined

symbol occupies four words. The symbol table can be expanded by 12810 or 2008 locations (one core

page) by saving a file with the Following statement.

_._SAVE .SYM:0-l77;0 .J (T92 user symbols)

If a larger symbol table area is needed, simply specify additional pages, where each page saved provides

storage for 32 additional symbols. For example:

LSAVE .SYM:0-377;0 J (224 user symbols)

will save two core pages, and

LSAVE .SYM:O-i777;0 .2 (416 user symbols)

will save eight core pages for symbol storage .

The preceding procedures are illustrated in Figure l .

4.] .3 Assembling

PAL-D is transferred from the system device into core using the Monitor. One of the following

methods is used depending upon the monitor type.

3.3.1 Disk Monitor System
- The user begins by typing

.LPALD J

PAL-D requests on output file by typing

fQLlL‘

The user selects the output device by typing

T: J for the Teletype (low speed reader/punch), or

R: J For the high speed reader/punch, or

Szname J for output to the system device as file name

HIGH-SPEED READER

RESPOND TO DISK
MONITOR AS SHOWN

BELOW
'

. LOAD)

——

)
iIN-R: "-

R== HIGH-SPEED READER

Ti= LOW- SPEED READER

LOW SPEED READER

PLACE PAL-D TAPE

IN READER"

TYPE CTRL /P

TAPE READS IN AND

STOPS AT TRAILER CODE

LOADER TYPES f

WAS THIS

THE SECOND PASS

?

NO

*
PLACE LEADER CODE

OVER READER HEAD.

Figure I

WHICH READER

P

LOADER TYPES f

I TYPE CTRL/P I

SET TAPE READER

TO FREE

I
PLACE PAL-D TAPE

IN READER"

TYPE CTRL /P

SET TAPE READER TO

START

I
TAPE READS IN,STOPS
AT TRAILER CODE,AND
COMPUTER HALTS

I
SET TAPE READER

TO FREE

PRESS CONTINUE

LOADER TYPES I

NO WAS THIS

TYPE CTRL / P

MONITOR TYPES _'-

TYPE

LSAVE PALD !O-7577;6200)

TYPE

LSAVE.SYM=O-1777;O)

PAL-D IS LOADED

AND READY FOR USE

4-3

THE SECOND PASS

THIS SAVES PAL-D AS

A SYSTEM PROGRAM

THIS CREATES THE SYMBOL

TABLE FILE ON THE DISK

Loading and Saving PAL-D Using the Disk Moni’ror Sys’rem

PAL-D now types

*_IL~I__-

and waits for the user to select the input files. Up to five input files may be specified (e.g., R:, R:,

S:name, R:, R: .2), but in this example the user selected

R: 1 input from the high speed reader/punch

NOTE

PAL-D checks the validity of each selected file (i .e.,

valid only if the file was declared when building Moni—

tor), and types
* for each valid file and ? for an in-

valid file. When PAL-D finds an invalid file it returns

control to the Monitor, in which case, the user must

start again by calling PALDJ .

When PAL-D is satisfied that the input file(s) is valid, it will request third pass listing Option by typing

*OPT-

The user may type

T a) meaning listing and symbols are to be produced
on the Teletype, or

R J meaning listing and symbols are desired on high
speed punch, or

J meaning symbols only (any other character means

no third pass)

When the high speed punch is selected as a listing device, the alphabetic symbol table produced at the

end of pass 2 is also produced on the high speed punch.

PAL-D will now proceed with the assembly, pausing only when user intervention is required

(i .e., placing a new paper tape in the reader, turning on the punch, etc.). On these occasions,

PAL-D will type an up-arrow (i) on the Teletype to indicate user intervention is required . When the

user has performed the necessary function and is ready to continue with the assembly, he types CTRL-P

(which does not echo).

At the end of pass 2, PAL-D outputs the user's symbol table in alphabetical order (in addition

to the assembled binary output). This symbol table listing may be terminated at any time by typing

CTRL-P, and PAL-D will proceed to initiate pass 3, if requested.

Assembly may be terminated and control returned to the Monitor at any time by typing

CTRL-C . When the assembly is complete, control will automatically be returned to the Monitor.

*With the low-speed reader: set reader to FREE, place tape in reader, type CTRL/P, and then set reader

to START.

With the high-speed reader: place tape in reader and then type CTRL/P.

4-4

4.2 TSS/8 MONITOR SYSTEM

Assembling with PAL-D in TSS/8 requires no operator intervention between passes. The sym-

bol table is typed out at the end of pass two and the listing at the end of pass three. The assembly may

be terminated at any point by typing CTRL/C . Control will revert from PAL-D to the Monitor program

which will type out a dot

and wait for the next instruction from the teletype. In the illustrations which follow, underlined

characters are those typed out by the system; non-underlined characters represent user-supplied data.

Time sharing assemblies are requested as follows.

In response to the monitor's dot

the user types the RUN (or simply R) command, a space and the name of the system program .

_. R PALD J

PAL-D is brought into core and signals its readiness by requesting an input file name .

MM: BIN2 J

The user reply in this case was BIN2, a user symbol for a source program to be assembled.

PAL-D next requests the name of an output file.

O_Lljf_l.fl': TYPE2 l

The user response was TYPE2, the name under which the assembled program will be stored.

Optionally, the user may type the RETURN key to specify no output file.

OUTPUT: J

This is useful in debugging. A program may be corrected and reassembled any number of times with

production of an output file postponed until a satisfactory version is achieved .

PAL-D's final query is whether the user wants a program listing.

OPTION:

There are two effective responses only: N signifying No and I (RETURN key) signifying Yes. When it

receives the final response, PAL-D reads in the user source program from disk (source programs are stored

prior to assembly) and proceeds with the assembly . After assembly, PAL-D returns control to the Monitor

which types

and waits for the user to supply the next command.

NOTE

When running under the Disk Monitor system PAL-D

requires a dollar sign ($) as the last entry in a source

program. Under the TSS/8 Monitor PAL-D does not

require one but if it does not find one it types a message
to warn the user that his program may not be assembled

properly by an assembly program other than time-sharing
PAL-D.

4-5

The following listing was reproduced from a time sharing run. It illustrates the initial dialogue,

the symbol table produced at the end of pass 2 (any error messages would also appear at this point) and

the listing, in octal notation, produced at the end of pass 3.

2R PALD

"QHTAL
INPUT:BIN2

DIALOGUE OUTPUT:TYR2

_OPT ION:

kOUNT O415

CRLF O417
SYMBOL

LOOP O4O6

TABLE OUT O425

REG O416

@TART O4OO

/RROGRAM To TYPE OUT "123456789"

*w4wfl

O4OO 72OO START: CLA

O4O1 4217 JMS CRLF

O4O2 1377 TAD (-12

O4O3 3215 DOA COUNT

O4O4 1376 TAD <26O /ASGII FOR ZERO

O4O5 3216 DCA REG

O4O6 1216 LOOP: TAD REG

O4O7 4225 JMS OUT

O41O 2216 ISZ REG

O411 2215 152 COUNT

O412 52O6 JMP LOOP

O413 4217 JMS CRLE

O414 74O2 HLT
PROGRAM

O415 OOOO COUNT, O

USTHQG O416 OOOO REG, O

O417 OOOO GRLE, O

O42O 1375 TAD (215 /ASCII FOR CARRIAGE RETURN

O421 4225 JMS OUT

O422 1374 TAD (212 /A5011 FOR LINE FEED

O423 4225 JMS OUT

O424 5617 JMP I CRLF

O425 OOOO OUT, O

O426 6O46 TLS

O427 6O41 TSF .

O43O 5227 JMP .-1

O431 72OO CLA

_O432 5625 JMP 1 OUT

'O574 O212

O575 O215
LITERALS @576 026i?)

O577 7766

385

4-6

CHAPTER 5

ERROR DIAGNOSTICS

PAL—D makes many error checks as it processes source language statements. When an error is

detected, the Assembler prints an error message. The format of the error messages is

ERROR CODE ADDRESS

where ERROR CODE is a two-letter code which specifies the type of error, and ADDRESS is either the

absolute octal address where the error occurred or the address of the error relative to the last symbolic

tag (it there was one) on the current page.

The programmer should examine each error indication to determine whether correction is

required.

PAL-D's error messages are listed and explained below.

Error

Code
Explanation

BE Two PAL—D'internal tables have overlapped — This situation

can usually be corrected by decreasing the level of literal

nesting or number of current page literals used prior to this

point on the page.

DE
7

Systems device. error
- An error was detected when trying to

read or write the system device; after three failures, control is re—

turned to the Monitor.
V

.

DF Systems device full - The capacity of the systems device has been

exceeded; assembly is terminated and control is returned to the Monitor.

IC Illegal character — An illegal character was encountered in other than

.a comment or TEXT field; the character is ignored and the assembly

continued .

ID Illegal redefinition of a symbol — An attempt was made to give a

previously defined symbol a new value by other means than the

equal sign; the symbol was not redefined.

IE Illegal equals — An equal sign was used in the wrong context.

Examples:

TAD A +=B (the expression to the left of the equal sign is not

a single symbol or, the expression to the right of

A +B=C the equal sign was not previously defined)

II Illegal indirect — An off—page reference was made; a link could

not be generated because the indirect bit was already set.

5—l

Error

Code

ND

PE

PH

SE

US

ZE

Explanation

Example:

*200

TAD I A 1!

PAGE :1

A, 7240 :1

The program terminator, $, is missing (with TSS/8 only).

Current nonzero page exceeded - An attempt was made to

a. override a literal with an instruction, or

b. override an instruction with a literal; this can be

corrected by

(l) decreasing the number of literals on the page or

(2) decreasing the number of instructions on the page.

Phase error
- PAL-D has received input Files in an incorrect order;

Assembly is terminated and control is returned to the Monitor.

Symbol table exceeded - Assembly is terminated and control is

returned to the Monitor; the symbol table may be expanded to

contain up to ”84 user symbols by saving a File named .SYM

on the system device.

Undefined symbol
- A symbol has been processed during pass 2

that was not defined before the end of pass I .

Page 0 exceeded - Same as PE except with reference to page 0.

APPENDIX A

USA SCII CHARACTER SET

Character Code Character Code Character Code

A 301 0 260 1 241

B 302 1 261
"

242

c 303 2 262 # 243

D 304 3 263 $ 244

E 305 4 264 % 245

F 306 5 265 & 246

G 307 6 266
'

247

H 310 7 267 (250

I 31 1 8 270) 251

J 312 9 271 * 252

K 31 3 ' + 253

L 314 , 254

M 315 - 255

N 316
'

. 256

O 31 7 / 257

P 320
.

: 272

Q 321 ; 273

R 322 = 275

S 323 ? 277

T 324 [333

U 325] 335

V 326 BELL 207

W 327 TAB 21 1

X 330 LINE FEED 212

Y 331 CARRIAGE-RETURN 215

Z 332 SPACE 240

RUBOUT 377

Mnemonic

AND

TAD

ISZ

DCA

JMS

JMP

NOP

IAC

RAL

RTL

RAR

RTR

CML

CMA

CLL

CLA

HLT

OSR

SKP

SNL

SZL

SZA

SNA

SMA

SPA

CIA

STL

GLK

STA

LAS

DECIMAL

EXPUNGE

FIELD
FIXTAB

I

OCTAL

PAGE

Code

APPENDIX B

SYMBOL LIST

Operation

MEMORY REFERENCE IN STRUCTION S

0000

1 000

2000

3000

4000

5000

logical AND

25 complement add

increment & skip it zero

deposit & clear AC

jump to subroutine

iUmP

GROUP 1 OPERATE MICROINSTRUCTIONS

7000

7001

7004

7006

7010

7012

7020

7040

7100

7200

no operation
increment AC

rotate AC & link left one

rotate AC & link left two

rotate AC & link right one

rotate AC & link right two

complement link

complement AC

clear link

clear AC

GROUP 2 OPERATE MICROINSTRUCTIONS

7402

7404

7410

7420

7430

7440

7450

7500

7510

halts the computer
inclusive OR switch register with AC

skip unconditionally
skip on nonzero link

skip on zero link

skip on zero AC

skip on nonzero AC

skip on minus AC

skip on plus AC (zero is positive)

COMBINED OPERATE MICROINSTRUCTIONS

7041

71 20

7204

7240

7604

complement & increment AC

set link to 1

get link (put link in AC, bit 11)
set AC = -1

load AC with switch register

PSEUDO-OPERATORS

Event Time

—L-—L——t—-l_l

PSEUDO-OPERATORS

PAUSE

TEXT

XLIST

Z

Mnemonic Code Operation Event Time

IOT MICROINSTRUCTIONS FOR DISK MONITOR

Program Interrupt
ION 6001 turn interrupt on

[OF 6002 turn interrupt off

Keyboard/Reader

KSF 6031 skip if keyboard/reader flag = 1

KCC 6032 clear AC & keyboard/reader flag
. KRS 6034 read keyboard/reader buffer

KRB 6036 clear AC & read keyboard buffer, & clear

keyboard f lag

Teleprinter/Punch
TSF 6041 skip if teleprinter/punch flag = 1

TCF 6042 clear teleprinter/punch flag
TPC 6044 load teleprinter/punch buffer,

select & print
TLS 6046 load teleprinter/punch buffer,

select & print, and clear teleprinter/punch
flag

High-Speed Reader (Type PC02)
RSF 6011 skip if reader flag -"= 1

RRB 6012 read reader buffer & clear flag
RFC 6014 clear flag & buffer & fetch character

High-Speed Punch (Type PC03)
PSF 6021 skip if punch flag == 1

PCF 6022 clear flag & buffer

PPC 6024 load buffer & punch character

PLS 6026 clear flag & buffer, load & punch

Disk File and Control (type DF32)
DCMA 6601 clear disk memory request & interrupt flags
DMAR 6603 load disk from AC, clear AC, read into care,

clear interrupt flag
DMAW 6605 load disk from AC, write onto disk from core,

clear interrupt flag
DC EA 6611 clear disk extended address & memory address

extension register
DSAC 6612 skip if address confirmed flag = 1

DEAL 6615 clear disk extended address & memory address

extension register & load same from AC

DEAC 6616 clear AC, load AC from disk extended address

register, skip if address confirmed flag = 1

DFSE 6621 skip if parity error, data request late, or

write lock switch flag = 0 (no error)

B-2

Mnemonic

DF SC

DMAC

Code

6622

6626

Operation Event Time

skip if completion flag = I (date
transfer completed)
clear AC, load AC from disk memory

address register

DECtape Transport (Type TU55) and Control (Type TCOI)
DTRA 676i

DTCA 6762

DTXA 6764

DTSF 6771

DTRB 6772

DTLB 6774

Memory Extension Control (Type 183)
CDF 62nI

CIF 62n2

RDF 6214

RIF 6224

RMF 6244

RIB 6234

Program Interrupt

read status register A

clear status register A

load status register A

skip on flags
read status register B

load status register B (ON—ICON"
change to data field n

change to instruction field n

read data field into AC 6-8

read instruction field into AC 6-8

restore memory field

read interrupt buffer

IOT MICROINSTRUCTIONS FOR TSS/8 MONITOR

IOT 6000

Keyboard/Reader

KSF 603i

KCC 6032

KRS 6034

KRB 6036

K58 6400

SBC 640]

KSR 6030

Teleprinter/Punch

TSF 6041

TCF 6042

TPC 6044

TLS 6046

SAS 6040

High-Speed Reader (Type PC02)
RSF 601 I

RRB 6012

RFC 6014

RRS 6010

(See Time-Sharing System User's Guide ,

DEC-TB-MRFB-D .)

skip if keyboard/reader flag = I

clear AC & keyboard/reader flag
read keyboard/reader buffer

clear AC & read keyboard buffer, & clear

keyboard flag
set keyboard break

set buffer control flags
read keyboard string

skip if teleprinter/punch flag = I

clear teleprinter/punch flag
load teleprinter/punch buffer,
select & print
load teleprinter/punch buffer,
select & print, and clear teleprinter/punch
flag
send a string

skip if reader flag = I

read reader buffer & clear flag
clear flag & buffer & fetch character

read reader string

Mnemonic Code

High-Speed Punch (Type PC03)
PSF 6021

PCF 6022

PPC 6024

PLS 6026

PST 6020

DECtape Transport (Type TU55) and Control

DTXA 6764

DTSF 6771

DTRB 6772

Program Control

URT 6411

TOD 6412

RCR 6413

DATE 6414

SYN 6415

STM 6416

T55 6420

USE 6421

SSW 6430

CKS 6200

ASD 6440

REL 6442

DUP 6402

CON 6422

File Control

REN 6600

OPEN 6601

CLOS 6602

RFILE 6603

P‘ROT 6604

WFILE 6605

CRF 6610

EXT 6611

RED 6612

FINF 6613

SIZE 6614

SEGS 6406

ACT 6617

WHO 6616

. skip on Flags

Operation Event Time

skip if punch flag = 1

clear flag & buffer

load buffer & punch character
clear flag & buffer, load & punch
punch string

(Type TCOl)
load status register A

N—IOJread status register B

user run time

time of day
return clock rate

Date

quantum synchronization
set timer

skip on TSS/8
user

set switch register
check status

assign device

release device

duplex
console

Rename File

Open File

Close File

Read File

Protect File

Write File

Create File

Extend File

Reduce File

File Information

Segment Size

Segment Count

Account Number

Who

PAL-D INDEX

Absolute location IO to I7, I-IO

Absolute and relative addresses, I-I3

Accumulator, I—I5

Accumulator Register, I-6

Additional features, I-I

Addition/Subtraction, 2's complement, see 25

complement, addition/subtraction

Address Assignments, I-8

Autoindexing, I-IO

Current Address Indicator, I-9

Indirect Addressing, 1-9

Literals, 1-“

Location counter, 1-8

Origin, I-8

Starting address, I-8

Address Field, I-IZ

Address Indicator, Current, see Current Address

Indicator

Alphabetic Characters , 1-2

Altering Symbol Table, 2-3

ASCII, 2-3

Basic instructions, 2-3

CONT, 2-3

Disk Monitor System, 2-3

EXPUNGE, 2-3

FIXTAB, 2-3

IOT's symbol table, 2-3

Pass I, 2-3

Permanent symbol table, 2-3

Symbolic program, 2-3

Ampersand, I—8

AND group, 1-14, 1—15

Arithmetic and Logical Operators, I-8

Ampersand, I-8

Boolean AND, I-8

Boolean inclusive OR, I-8

Exclamation Mark, I-8

Minus, I-8

Modulo 4096, 1-8

Plus, I-8

Space, 1-8

25 complement addition/subtraction, I-8

ASCII, 2-3

Assembler, I-I, 1-4, 3—2

Assembly, 3-3, 4—2

Listing, 4-2

Pass I, 4-2

Pass 2, 4—2

Pass 3, 4-3

Third pass, 4-2

Asterisk, 4-I
,

4-2

Augmented Instructions, I-I4

Input-Output Transfer Microinstructions, I—I4,
I-I5

Operate Microinstructions, I-I4

Autoindexing, I-IO

Absolute location IO to I7, I-IO

Autoindex registers, I-IO

Incrementation, I—II

Interpage references ,
I - I O

Autoindex registers, I-IO

Basic instructions, 2—3

BE, 5-I

PAL-D INDEX (Cont)

Binary coded tape, 4-2

Binary Loader, 4-3

Binary representation, l-6

Binary word, 2-l

Boolean AND, 1-8

Boolean inclusive OR, l—8

Build Monitor, 3-l

Carriage Return (J), l-3

Carriage return-line feed (as terminator), l-3

Central processor, l-l5

Characters, Alphabetic, see Alphabetic
Chraacters

, ignored, see ignored characters

, Legal, see Legal Characters

, Numeric, see Numeric characters

, Special, see Special Characters

, Symbols for nonprinting, see Symbols
For nonprinting characters

Checksum, 4-2

Checksum error, 3—1

CLC, 2-l

Clear, l-l4

Combined Operate Microinstructions, B-l

Combining symbols and numbers, l-8

Comma, l-6

COMMENT, l-3

Comments, l-4

Notes, 1-4

Complement, l—l4

Condition, skip, l-l5

CONT, 2-3

CTRL/C (iC), 3-3

CTRL/P (1P), 3—3

Current Address indicator, l-9

Incrementation ,
1—9

Point or period, l-9

Current Location counter, 2-l, 4-l

CLC, 2-l

Integer, 2-l

n, 2-l

PAGE n, 2-l

PAGE, 2-l

Current page, l-l2

Current page literal, 5-l

Current page literal buffer, l-l2

Data words, 4-2

DDT-8, 4-2

DE, 5-l

Debugging, 4-2

DECIMAL, 2—2

DECtape, 3-l, 4-]

Defined symbol, 1-6

Delimitor, 2-2

Device error, 5-l

Device full, 5-l

DF, 5-l

DF32 Disk, 1—]

D532 Disk, l-l

Direct Assignment, l-7

Symbols, l-7

Symbol Table, l-7

Disk Debugging Tape, l-l

Disk Monitor System, 2-3, 3-l

Dollar Sign (33), 2-3, 4-], 5-2

Editor, 1-4, 4-l

Elements of statement, l-4

End of File, 2-3

PAUSE, 2-3

PAUSE pseudo-op, 2-3

Segmented program, 2-3

End of Program, 2-3

Dollar Sign ($), 2-3

Error checks, 5-I

Error code, 5-l

Error Diagnostics, 4-2, 5-I

BE, 5-l

Current page literals, 5-l

DE, 5-I

Device error, 5-l

Device full, 5-l

DF, 5-l

Dollar Sign ($), 5-2

Error checks, 5-l

Error code, 5-I

Error message, 5-I

Error message format, 5-l

IC, 5-I

ID, 5-I

IE, 5-l

II, 5-l

Illegal character, 5-l

Illegal equals, 5-I

Illegal indirect, 5-l

Illegal redefinition, 5-I

Literal nesting, 5-l

Nonzero page, 5-2

Page 0 exceeded, 5-2

PE, 5—2

PH, 5-2

Phase error, 5-2

PAL-D INDEX (Cont)

Program terminator, 5-2

SE, 5-2

Source language, 5-I

.SYM, 5-2

Symbol table exceeded, 5-2

Undefined symbol, 5-2

US, 5-2

ZE, 5-2

Error message, 5-l, 5-2

Error messages format, see Format of error messages

Evaluating Expressions, l-8

Arithmetic operator, l-8

Combining symbols and numbers, I-8

Expression evaluating, l-8

Logical operator, l-8

Evaluation, l-6

Exclamation mark, l-8

EXPUNGE, 2-3

Extended Memory, 2-]

Binary word, 2-l

FIELD, 2-]

FIELD n, 2-]

Field setting, 2-]

Loader, 2-]

Pass 2, 2-]

FIELD, 2-l

FIELD n, 2-]

Fields, I-3

File, End of, see End of File

FIXTAB, 2-3

Format Effectors, 1-3, 4-]

Carriage Return (J), l-3

Carriage return-line feed (as terminator), I-3

COMMENT, I-3

Fields, I-3

List, I-3

Semicolon (as terminator), I—3

Slash (/), 1-3

Statement terminator, I-3

Tabulations, I-3

Format of error messages, 5-l

Format memory reference instruction, I-IZ

General Form of statement, l-4

Group I microinstructions, l—l4

Group 2 microinstructions, l-I4

Group I operate microinstructions, 3-]

Group 2 operate microinstructions, 8-]

I, 1-9, 1-10

IC, 5-I

ID, 5-I

IE, 5-l

Ignored characters, I-2, 4-]

II, I-IO, 5-I

Illegal characters, l-3, 5-I

Comment field, I-3

Error message, I-3

IC, I-3

TEXT field, 1-3

Illegal equals, 5-I

Illegal indirect, 5-I

Illegal redefinition, 5-I

Inclusive OR, l-I5

Increment, I-I4

Incrementation, 1—9, I—II

PAL-D INDEX (Cont)

Indirect Addressing, 1-9

I, I-9, I—IO

II, I-IO

Illegal indirect, I-IO

Indirect address linkage, l-9, l-IO

Indirect bit, I-9

Off-page reference, I-9, l-IO

Indirect address linkage, I-9, l-IO

Indirect bit, I-9

Input file, 3-3

Input-output device, l-l5

Input-Output Transfer microinstructions, I-I5

Central processor, I-I5

Input-output device, I-I5

IOT, l—I5

Operation of peripheral equipment, 1-15

Instructions, I—I2

Augmented instructions, l-I4

Memory reference instructions, I—I2

Integer, 2-I

Interpage references, I-IO

IOT, 1-5, 1-15

IOT microinstructions, B-2

IOT's symbol table, 2-3

Labels, I-4, also see Symbols I-5

Language, 1-]

Leader code, 4-2

Left parenthesis, 1-”

Legal characters, I-2

Alphabetic characters, I-2

Ignored characters, I-2

Nonprinting characters, I-2

PAL—D INDEX (Cont)

Numeric characters, l-2

Special characters, l-2

Link, l-l5

List, l-3

Listing, 2-2, 4-2, 4-3

Listing control, 2-2

Pass 3, 2-2

XLIST, 2-2

Literal buffer, current page, see Current Page
literal buffer

Literal nesting, 5-l

Literals, l-ll, l-l2

Left parenthesis, l-ll

Nesting literals, l-ll

Square brackets, l-ll

Loader , 2—l, 3~l

Loading PAL-D, 3-l

Checksum error, 3-]

CTRL/P (1P), 3-]

Loader, 3-]

Question Mark (?), 3-1

Two-pass load, 3-]

Location counter, l-8, 1-9

Logical AND, l—l5

Logical Operator, 1-8

Low speed paper tape punch, 4-3

Machine instruction, l-l4

Memory, Extended, see Extended Memory

Memory page, 1—13

Memory Reference instructions, 1-12, 3-]

Address Field, l-12

Current page, l-l2

Format memory reference instruction, 1-12

Off-page referencing, 1—13

Page zero, l-lZ

Paging, l-l3

Minus, l-8

Monitor, 3-l, 3-2

n, page, 2-l

Names file, 4-l

ND, 4-6, 5-2

Nesting literals, 1-“

Current page literal buffer, l-lZ

Literals, 1-12

Nonzero page, l-l2

Pass 2, l-l2

Quote, 1—12

Relative address 177, 1—12

Nonprinting characters, 1-2

Nonzero page, 1-12, 5-2

Notes, l—4

Numbers, l-7

Arithmetic and logical operators, 1—8

Evaluating expressions, l-8

Pseudo-operators, l-8

Radix, l-8

Radix control, l-8

Numeric characters, l-2

OCTAL, 2-2

Octal code, 4-3

Off-page referencing, l-9, l-lO, l-l3

Current page, 1—13

Memory page, l-l3

Operands, 1-4

Operate microinstructions, l-l4

Accumulator, l-l5

AND group, l-l4, l-l5

Clear, l-l4

Complement, l-I4

Condition skip, l-l5

Group I microinstructions, l-l4

Group 2 microinstructions

Inclusive OR, l-l5

Increment, l-l4

Link, l-l5

Logical AND, l-l5

Machine instruction, l-l4

OR group, l-l4, l-l5

Rotate, i-l4

Skipping, l-l4

Operation of peripheral equipment, l-l5

Operators, l-4

Operators, Arithmetic and Logical, see

Arithmetic and Logical Operators

OR group, l-l4, l-l5

ORed operation codes, l-7

Origin, 1-8, 4-]

Origin setting, 4-2

Output device, 3-2

Output file, 3-2

PAGE, 2-]

PAGE n, 2-]

Page zero, 1-12

Page 0 exceeded, 5-2

Paging, l-l3

Absolute and relative addresses, l-l3

PAL-D Assembler, 3-2

PAL-D IND EX (Cont)

PAL-D, definition, 1-]

PAL III Assembler, l-l

Paper tape, 3-]

Paper tape punch, low speed, see Low speed paper

tape punch

Pass I, 2-3, 4-2

Debugging, 4-2

DDT-8, 4-2

Error Diagnostics, 4-2

Source tape, 4-2

US (Undefined Symbol), 4-2

User's symbol table, 4-2

Pass 2, 1-12, 2-l, 4-2

Asterisk, 4—2

Binary coded tape, 4-2

Binary loader, 4-3

Checksum, 4-2

Data words, 4-2

Diagnostic messages, 4-3

Leader code, 4-2

Low speed paper tape punch, 4-3

Origin setting, 4-2

Rubouts, 4-3

Trailer code, 4-2

Pass 3, 2-1, 2-2, 4-3

Listing, 4-3

Octal code, 4-3

Source language, 4-3

Source tape, 4-3

PAUSE, 2-3, 4-l

PAUSE pseudo-op, 2-3

PE, 5-2

Period or point, l-9

Permanent symbol table, l-5, l-7, 2-l, 2-3

PAL-D INDEX (Cont)

PH, 5-2

Phase error, 5—2

Plus, l-8

Point or period, 1-9

Program, End of , see End of Program

Program tape, 4-l

Asterisk, 4-]

Current location counter, 4-]

Dollar sign ($), 4-]

Format effectors, 4-1

Ignored characters, 4-]

Origin, 4-]

PAUSE, 4-]

Program terminator, 5-2

Pseudo-op codes, l-7

Pseudo-operators, 1-8, 2-l, 3-1

Pseudo-ops ,
2-l , 2-2

Question Mark ('2), 3-]

Quote, 1-12

Radix, 1-8, 2-2

RADIX Control, 1-3, 2-2

DECIMAL, 2-2

OCTAL, 2-2

Pseudo-op, 2-2

Radix, 2-2

Relative address l77, 1-12

Relative addresses, Absolute and, see Absolute

and relative addresses

Requirements, 1-]

Rotate, l-l4

Rubouts, 4-3

Saving PAL-D, 3-2

PAL-D Assembler, 3-2

Expanding user's symbol table, 3-2

SE, 5-2

Segmented program, 2-3

Semicolon (as terminator), 1-3

Skipping, l-l4

Slash(/), 1-3

Source language, 4-3, 5-]

Source language tape, 4-]

Source programs, 1-4

Source tape, 4-2, 4-3

Space, 1-8

Special characters, 1-2

Square brackets, l-ll

Statements, 1-4

Assembler, l-4

Comments, 1-4

Editor, 1-4

Elements, l-4

General Form, 1-4

Labels, l-4

Operands, l-4

Operators, 1-4

Source programs, l-4

Teletype, 1-4

Statement terminator, 1-3

Starting address, 1-8

String, l-5

String of text, 2-2

.SYM, 3-2, 5-2

Symbol Distinction, l-5

Permanent symbols , l-5

PAL-D INDEX (Cont)

User-defined symbols, l-5

Symbol list, 3-]

Combined operate microinstructions, 3-]

Group 1 operate microinstructions, B-l

Group 2 operate microinstructions, B-l

IOT microinstructions, B-2

Memory reference instructions, 3-]

Pseudo-operators, 3-]

Symbol table, Altering, see Altering symbol table

Symbol table exceeded, 5—2

Symbol Tables, 1-7

Direct assignment statements, l-7

Mnemonic op codes, l-7

Permanent symbol table, l-7

Pseudo-op codes, l-7

User's symbol table, l-7

Value assigned, 1-7

Symbol table, User's, see User's symbol table

Symbol used as a label, 1-6

Symbolic addresses, l-6

Comma, 1-6

Defined symbol, 1-6

Symbol used as a label, 1-6

Symbolic Operands, l-6

Accumulator register, 1-6

Values of symbolic operands, 1-6

Symbolic operands, Values of, see Values of

symbolic operands

Symbolic operators, 1-6

Terminator, 1-6

Symbolic program, 2-3

Symbolic tape, 4-]

Symbolic Tape Editor, 1-]

Symbols, l-5, l—7

String, l-5

Symbol Distinction, l-5

Symbolic Addresses, 1-6

Sy'mbolic Operands, 1-6

Symbolic operators, 1-6

Symbol tables, 1-7

Symbols for nonprinting characters, 1—2

Symbols, User-defined, see User-defined symbols

Syntax, l-l

Illegal characters, 1-3

Format effectors, l-3

Legal characters , l-2

Tables, Symbol, see Symbol tables

Tabulations, l-3

TCOl DECtape, l-l

Teletype, 1-4

Terminator, l-6

TEXT, 2-2

Text Facility, 2-2

Delimitor, 2-2

String of text, 2-2

TEXT, 2-2

USASCII, 2-2

Third pass, 4-2

Trailer code, 4-2

Transferring PAL-D, 3-2

25 complement addition/subtraction, l-8

Undefined symbol, 5-2

US (Undefined symbol), 4-2, 5-2

USASCII, 2-2,4-l

USASCII Character Set, A-l

User-defined symbols, l-5

User infervenfion, 3-3

User's symbol fable, 1-7, 3-2, 4-2

Using PAL-D, 3-2

Assembly, 3-3

CTRL/C (TC), 3-3

CTRL/P (1P), 3-3

Input File, 3-3

Monitor, 3-2

OUl'pUl' device, 3-2

Output file, 3-2

Transferring PAL-D, 3-2

User inferven’rion, 3-3

Value assigned, l-7

Values of symbolic operands, l-6

XLIST, 2-2

ZE, 5-2

PAL-D INDEX (Cont)

PAL-D ASSEMBLER

DEC-D8—ASAB—D

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its

publications. To do this effectively we need user feedback —

your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?

How can this manual be improved?

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period-

ically distributed publications are available upon request. Please check the appropriate boxes for a current issue of the

publication(s) desired.

D Software Manual Update, a quarterly collection of revisions to current software manuals.

D User‘s Bookshelf, a bibliography of current software manuals.

0 Program Library Price List, a list of currently available software programs and manuals.

Please describe your position.

Name Organization

Street Department

City State Zip or Country

————————————————— — FoldI-lere —-—-—-——-———-—-———- —-é

—————————————— DoNotTear-FoldHereandStaple— —— — — -- -— —-——- —————-—{

FIRST CLASS i

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

EIflEflIEII
Digital Equipment Corporation
Software Information Services

146 Main Street, Bldg. 3-5

Maynard, Massachusetts 01754

Postage will be paid by:

