
August 1978

This document describes the VAX-11 Symbolic Debugger, a program used in

locating errors in executable user images. The information in this document is

particularly pertinent to programmers using the VAX-11 MACRO assembly

language.

VAX-11

Symbolic Debugger

Reference Manual

Order No. AA-DO26A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMS VO1

SOFTWARE VERSION: VAX/VMS V01

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM~-20 TMS-11
ASSIST-11 RTS-8 ITPS-10

VAX VMS SBI
DECnet IAS

CONTENTS

Page

PREFACE vii

CHAPTER INTRODUCTION TO DEBUGGING -
i

[

VAX-11 SYMBOLIC DEBUGGER FACILITIES

USING THE VAX-1l DEBUGGER

Breakpoints

Tracepoints and Opcode Tracing

Watchpoints

Examining and Modifying Locations

Evaluating Expressions

Program Control

Starting and Ending Debugging Sessions

Debugger Commands

SYMBOLIC REFERENCES

Debugger Symbol Table

Scope

Pathnames

Local Symbol Definition

B
R
I

c
o
~
N
o
O
Y
T
U
T
d
W
N
H

|

S
w
w
w
d
h
h
d
h
h
N
b
D
D
D
D
O-

W
W
w
w
w
w
d
d
h
h
N
h
D
N
D
N
D
D
N
D
D
N
D
H
E

L]

*
*

*

W

l

T

O
t

U
t

N

O
H
H
E
F
E
H
R
R
E
R
E
R
E
R
R
E
E
R
R
E

P

N

L

CHAPTER BEGINNING AND ENDING A DEBUGGING SESSION

INITIATING THE DEBUGGER

STARTUP CONDITIONS

Startup Messages

Language Setting

Scope Setting

Setting Symbols

Entry and Display Modes

TERMINATING A DEBUGGING SESSIONN
N

e

o

e

o

&

o

o

o

|

d
W
W
w
w
w
h
N

Ll

w
h
h
v
d
b
N
p
d
D
D
D
D-

L]

°
L]

L]

[
V
b
W

N
N
N
I
}
)
N
N
N
N

CHAPTER CONTROLLING PROGRAM EXECUTION w

i
-

|
w
w
h
n
=

INITIATING AND CONTINUING EXECUTION WITH GO

STEPPING THROUGH YOUR PROGRAM

.1l Step Types

.2 Setting Step Types

.3 Showing Step Types

INTERRUPTING EXECUTION

B

W
W
w
w
w
w

CHAPTER 4 SPECIAL CHARACTERS

|

S

w
W
w
W
w
w
w
h
h
N

-

=

w

EVALUATING ARITHMETIC EXPRESSIONS

Plus Sign (+)

Minus Sign (-)

Multiplication Operator (*)

Division Operator (/)

Shift Operator (@)

Precedence Operators (<...>)

Radix OperatorsP

N

N
N
Y

-
L]

L
®

L]

L]

L]

*

e

e
l

s

[]

L]

*

Ld

L[
]

L
*

N
o
O
U
L
e

W
N

?
h
h
?
h
#
b
h

iii

CONTENTS (Cont.)

SPECIAL CHARACTERS IN ADDRESS EXPRESSIONS
Current Location Symbol (.)

Previous Location Symbol (")
Last Value Displayed Symbol (\)

Contents Operator (@)

Range Operator (:)

SPECIAL DELIMITING CHARACTERS

Mode Keyword Delimiter (/)

DEPOSIT and DEFINE Command Delimiter (=)
Symbolic Pathname Element Separator (\)

DO Command Sequence Delimiters

CALL Command Argument Delimiters ((...))

Command Separator (;)

Argument Separator (,)

Input String Delimiters

Bit Field Delimiters

Line Continuation Operator (-)¢

&

o

o

o

o

o

o

6

o

e

e

e

e

e

e

@

W
W
W
W
W
W
w
W
w
w
w
w
w
i
h
d
h
d
N
N
D
N
D
N

e

o

o

o

o

s

¢

o

o

o

*

o

¢

o

o

H
W
O
O
I
A
U
I

W
D

U
G
d
w
W
w
N
H

o

CHAPTER ENTRY AND DISPLAY MODES

KEYWORD SUMMARY FOR ENTRY AND DISPLAY MODES

INITIALIZED MODES

CONTROL OF DEBUGGING MODES

Changing Modes

Reporting Current Modes

Restoring the Debugger's Initial Modes
Overriding Current Modes at Command Level

CONTEXT MODES

Effects of Context Modes

SYMBOLIC/NOSYMBQLIC Modes

INSTRUCTION/NOINSTRUCTION Modes

Evaluating VAX-1l MACRO Literals

ASCII/NOASCII Modes

RADIX MODES

DECIMAL Mode

HEXADECIMAL Mode

OCTAL Mode

LENGTH MODES

PATHNAME SEARCH MODES

GLOBAL/NOGLOBAL Modes

SCOPE/NOSCOPE Modes

w
h
E
=

V
b
W

W

N

N
S
N
S
t

U
T
e

B
B

R
B
B
R
B
W
L
W
W
W
W
W
N
D

N

-

CHAPTER 6 SYMBOLS AND PATHNAMES

PATHNAMES

SYMBOL TYPES

1 Permanent Symbols

2 Defining Symbols During a Debugging Session

3 Local Symbols

4 Global Symbols

THE DEBUGGER'S SYMBOL TABLE

1 Symbol Table Input (SET MODULE)

2 Symbol Table Status Report (SHOW MODULE)

3 Symbol Table Purging (CANCEL MODULE)
TRANSLATING SYMBOLS INTO VALUES

TRANSLATING VALUES INTO PATHNAMES(&
)
W
A
 W

W
N
e
)
W
e
r

e

)
W
e
 W
e
r

e

 W
e
r

e

*
L]

.
[]

[]

L]

[
[]

[]

L]

[
L]

U
G
W
W
W
W
w
N
D
N
D
N
N
D
D
N
M
D
Ne

iv

A o Q 0]

{
J

D
I

I
N

I
T

TN

N
N

N
N

I
I

N
(
)
W

W
e
)
 W
S
,
 N
S
,
 I
S
,

 B
N

B

S
I

S
T

T
Y

i
T

S
S
t
 S
t
 S
t

 S

S

S
N

 -
S

i

O
O

H
H
H
O
U
O
O
O
A
O
A
O
U
I
D
B
D
W
W
N
D
N
D
N
D

M

[t

H
H
E
F
E
F
O
U
W
V
U
W
V
W
W
O
O
O
J

c
u
o
t
u
t
o
o
o
t
v
i
t
o
n
t
o
T
t
o
n
o
t
o
t
o
t
g
t
o
T
o
T
t
T
L
T

1
o
t

o
P
= H
O
O
O
O
O

0
T

T
O

I
I

N
T

I
B

|

O
I
S
O
V

A
U
T
U
T
N
N
D
 N

=

[
e
)
W
e
 A
W
 e

W
e

M
o
y
 W
a
r
W
e
r
W
e

W
 e

W
e
r
 W
e
)
W
e
,

CHAPTER

CHAPTER

CHAPTER

CHAPTER

*

®

N

=

00
 0

0
00
 0

0
00

O

©0

C0
 0

0
00
 0

0
00

0
®

L[
]

[]

[
]

.

L[]

G
O

 W
N
D
N
N
N
N

[]

*
[

[]

['
]

[
]

L]

w
N
H
-

W

N

(
S
O

S,

S
,
y

V)

N
N

W
O
W
O
W
W
O
W
W
O
W
V
W
Y
W
O
W
Y
W
W
O
W
W
Y
W
W
O
W
Y

O

[]

L]

o
[]

L]

w
N

A
U
V

W

10

10.1

10.1.1

10.1.2

10.1.3

10.2

10.2.1

10.2.2

10.2.3

CONTENTS (Cont.)

BREAKPOINTS

USE OF BREAKPOINTS

Breakpoint Reporting at Program Stop

Continuing From a Breakpoint

SETTING BREAKPOINTS

General Breakpoint Specification

DO Command Sequence at Breakpoint

Breakpoint "After" Option

Temporary Breakpoints

SHOWING BREAKPOINTS

CANCELING BREAKPOINTS

BREAKPOINT EXAMPLES

Examples of Setting Breakpoints

Examples of Showing Breakpoints

Examples of Canceling Breakpoints

TRACEPOINTS AND OPCODE TRACING

USING THE TRACE FACILITY

SETTING TRACEPOINTS

Individual Tracepoints

Tracing All Call-Type Instructions

Tracing All Branch-Type Instructions

Tracing All Call-Type and Branch-Type

Instructions

SHOWING TRACING MODES

CANCELING TRACING

TRACING EXAMPLES

Examples of Setting Tracepoints

Examples of Showing Tracepoints

Examples of Canceling Tracepoints

WATCHPOINTS

USE OF WATCHPOINTS

Watchpoint Reporting

Continuing From a Watchpoint

SETTING WATCHPOINTS

SHOWING WATCHPOINTS

CANCELING WATCHPOINTS

WATCHPOINT EXAMPLES

Examples of Setting Watchpoints

Examples of Showing Watchpoints

Examples of Canceling Watchpoints

WATCHPOINT RESTRICTIONS

EXAMINE AND DEPOSIT COMMANDS

EXAMINING MEMORY LOCATIONS AND REGISTERS

Examining Numeric Data

Examining Instructions

Displaying Locations As ASCII Characters

MODIFYING MEMORY LOCATIONS AND REGISTERS

Depositing Numeric Data

Depositing Instructions

Depositing ASCII Data

)

i
o Q o

1
I

T
W
D

=

S
T

W
D

e
t

N
N
N
N
N
N
N
I

 N
N

N
N

~

|
o
o |

0
0

0
0

0
0

0
0

0
0

1
1

U

I
1
1

1
1
B

W

W

W

|
T

T
T

I
|

R

W
W
W
W
N
O
N
N
N
E

-
\D

\D
\D

\D
\D

\D
\D

\O
\D

\f
@

O

0
 0

0
00
 0
0
0
O

CO
= O

1
=

10-1

10-2

10-5

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX

INDEX

FIGURE

TABLE

11

11.1

11.2

11.3

11.4

12

12.1

12.2

13

13.1

13.2

14

14.1

14.2

15

15.1

15.2

15.3

15.4

A

6-1

CONTENTS (Cont.)

Page

USING THE EVALUATE COMMAND 11-1

USING EVALUATE 11-1

EXPRESSION EVALUATION 11-1

EVALUATING BIT FIELDS 11-1

EVALUATING VAX-1l MACRO LITERALS 11-2

EXCEPTION CONDITIONS 12-1

PROCESSING EXCEPTION CONDITIONS 12-1

BREAK ON EXTERNAL EXCEPTION CONDITION 12-2

CALLING ROUTINES AND SHOWING CALLS 13-1

CALLING ROUTINES 13-1

SHOWING ACTIVE CALLS) 13-1

PROCESSOR STATUS LONGWORD" (PSL) 14-1

DISPLAYING THE PROGCESSOR STATUS. LONGWORD 14-1

ALTERING THE. PROCESSOR STATUS LONGWORD 14-1

DEBUGGER: MESSAGES’ 15-1

INFORMATIONAL MESSAGES (PREFIX:%DEBUG-I-) 15-2

WARNING' MESSAGES (PREFIX:%DEBUG-W-) 15-3

ERROR’ MESSAGES (PREFIX:%DEBUG-E-~) 15-8
FATAL ERRQR. MESSAGES (PREFIX:%DEBUG-F-) 15-8

COMMAND SUMMARY A-1

Index-1

FIGURES

Debugger Symbol-to-Value Search Algorithm 6-8

TABLES

Summary of VAX-11 Symbolic Debugger Commands 1-4

Debugger Initiation Qualifiers 2-2

Arithmetic Special Characters 4-1
Address Representation Characters 4-4

Delimiting Characters 4-7
Keyword Summary for Entry and Display Modes 5-1

PSL Alteration Values: 14-

vi

PREFACE

MANUAL OBJECTIVES

This manual describes the facilities supplied with the VAX-11l Symbolic

Debugger. It is primarily an aid in debugging programs written in

VAX-11 MACRO assembly language. For information on debugging programs
written in other languages, such as VAX-11 FORTRAN IV-PLUS, refer to

the appropriate language user's guide.

INTENDED AUDIENCE

This manual is intended for programmers using VAX-1ll MACRO. To get

the most out of this manual, you should have a working knowledge of
VAX~-11 architecture and be familiar with the VAX/VMS operating system.

However, while not a tutorial, the manual can be used by relatively

inexperienced programmers.

STRUCTURE OF THIS DOCUMENT

This manual comprises 15 characters and 1 appendix. Chapter 1

provides a functional overview of the VAX-1l1l Symbolic Debugger's
concepts and facilities, while each subsequent chapter discusses each

concept and facility individually. Finally, there is a summary of
debugging commands in Appendix A.

ASSOCIATED DOCUMENTS

To obtain supplemental information you may need, the following
documents are recommended:

e VAX-11/780 Architecture Handbook

e VAX/VMS Primer

® VAX~11 Linker Reference Manual

For a complete list of VAX-11l documents, see the VAX-1l1 TInformation

Directory.

vii

CONVENTIONS USED IN THIS DOCUMENT

The following syntactic

Uppercase words

that you should

Lowercase words

that you are to

conventions are used in this manual:

and letters used in command examples indicate
type the word or letter as shown

and letters used in format examples indicate
substitute a word or value of your choice

Brackets ([]) indicate optional elements

Braces ({}) are
is to be chosen

used to enclose lists from which one element

Ellipses (...) indicate that the preceding item(s) can be
repeated one or more times

viii

CHAPTER 1

INTRODUCTION TO DEBUGGING

One of the most difficult stages in the program development process

involves 1locating and correcting errors, commonly called "debugging."

This stage is reached after you've written the source program and

compiled or assembled it successfully, but have received erroneous

output when you tried to run the executable program. This means

you've followed all the rules of the source language and have not

violated any constraints of the compiler or assembler, but you've

probably made at 1least one programming error that 1is producing

incorrect results.

To help you find such errors, VAX-1ll provides a special program: the

Symbolic Debugger (or, simply, the debugger). The debugger lets you

control the execution of your program so you can monitor specific

locations; change the contents of locations; check the sequence of

program control; and otherwise locate and correct errors as they

occur. After you've tracked down the mistakes, you can edit your

source program, recompile or re-assemble, relink, and execute the

corrected version.

1.1 VAX-11] SYMBOLIC DEBUGGER FACILITIES

The VAX-11 debugger includes many facilities to help you.

@ It is interactive - You control your program and converse with

the debugger from your terminal.

@ It is symbolic - You can refer to locations by using the

symbols you created in your source program. The debugger also

displays locations as symbolic expressions.

e It supports different 1languages -~ The debugger 1lets you

converse in the language of your source program (for example,

FORTRAN). You can change from one language to another in the

course of a debugging session by means of a command (see Table

1-1 for a summary of commands).

e It permits a variety of data forms - You can control the mode

in which the debugger accepts and displays addresses and data.

An address can be represented symbolically or as a virtual

address, 1in decimal, octal, or hexadecimal. Data can be

represented by symbols, symbolic expressions (X+3), VAX-1ll

MACRO instructions, ASCII character strings, or numeric

strings in decimal, octal, or hexadecimal.

INTRODUCTION TO DEBUGGING

1.2 USING THE VAX-11 DEBUGGER

This section comprises brief descriptions of the functions of the

debugger, and how to use them. The remaining chapters of the manual

provide more detailed information on how these functions can be

utilized.

1.2.1 Breakpoints

A breakpoint is a place in your program where execution 1is suspended

so the debugger can get control and request a command. Program

execution is suspended before the instruction at this breakpoint

address 1is executed. Thus, by setting breakpoints, you are able to

examine the status of your program at key moments of its execution.

See Chapter 7.

1.2.2 Tracepoints and Opcode Tracing

Tracepoints help you follow the sequence of program execution. When

you set a tracepoint in your program, the debugger will momentarily

suspend execution at that point, display a message indicating that the

tracepoint was reached, and continue execution from that point. Thus,

you can determine whether the program is being executed in the proper

sequence.

You can also trace the execution of branch and/or call-type

instructions, by specifying which set of instruction opcodes you want

traced. See Chapter 8.

1.2.3 Watchpoints

A watchpoint refers to a specific location, and causes the program to

stop whenever the 1location 1is modified. Thus, you can monitor

addresses to ensure that they are not being modified inadvertently, or

in an unspecified manner. See Chapter 9.

1.2.4 Examining and Modifying Locations

When execution of your program is suspended, you can look at the

contents of 1locations and modify them as you wish. For example, you

might examine a location to verify that it contains the expected

value. You might then change the value to determine the effect on

subsequent execution. See Chapter 10.

1.2.5 Evaluating Expressions

You can use the debugger as a calculator, to compute the wvalue of

expressions, perform radix conversions, compute an address value, etc.

See Chapter 11.

INTRODUCTION TO DEBUGGING

1.2.6 Program Control

You can initiate and suspend program execution in a number of ways.

For example, you can set breakpoints (see Section 1.2.1), and specify

the GO command to start or continue execution. You can also execute

the program on a one by one basis by means of the STEP command. This

is slower than the GO-~breakpoint method, but allows a closer

examination of the program, particularly in those areas that are

especially complex and prone to obscure errors.

1.2.,7 Starting and Ending Debugging Sessions

There are several methods of passing control to the VAX-11 debugger.

Generally, you specify a qualifier when you compile or assemble the

source program, to ensure that the symbols defined in the program are

included in the debugger's symbol table (see Section 6.3). Then, when

you link the object program, you 1include a qualifier to make the

debugger available to the program. For example:

$ LINK/DEBUG file~-spec

When you enter the RUN command to begin executing your program, the

debugger gets control, displays its identifying message, and prompts

for a command. The prompt has the form:

DBG>

You respond to the prompt with one of the commands recognized by the

debugger (see Section 1.2.8). To terminate the debugging session, use

the EXIT command.

1.2.8 Debugger Commands

You use a set of commands to tell the debugger what to do. The

general form of a debugger command is:

cmd([/qualifier] [keyword [param ...]][DO command [;command...]]

cmd

command name (SET, CANCEL, SHOW, etc.) indicating the general

function to be performed.

/qualifier

modifies the effect of the command.

keyword

indicates the specific function to be performed by the command

(MODULE, SCOPE, LANGUAGE, etc.).

param

qualifies the function in some way, such as specifying a range of

locations to be monitored.

DO command(s)

list of debugger commands to be performed. (Used only with SET

BREAK commands.) If more than one command is specified, you must

put a semicolon between them.

Table 1-1 summarizes the debugger commands.

INTRODUCTION TO DEBUGGING

Table 1-~1

Summary of VAX-11l Symbolic Debugger Commandsl

Command Keyword Parameter Function

" CALL routine name argument list Call a subroutine.

SET BREAK address expression Initialize (SET), display

SHOW EXCEPTION BREAK name list (SHOW), or delete (CANCEL)

CANCEL LANGUAGE /ALL the specified elements.

MODE step type(s) Not all combinations

MODULE opcode class(es) can be used. For

SCOPE example, SET ALL is

STEP not a valid command.

TRACE See individual command

WATCHPOINT descriptions.

ALL

DEFINE symbol=value Equate a symbol and
i

a value.

DEPOSIT [/mode] address=data Put data in a location.

"EVALUATE [/mode] expression Compute the value of

expressions.

EXAMINE [/mode] address|[:address] Display contents of an address,

or range of addresses.

EXIT Terminate debugger.

GO [address] Start or continue program

execution.

STEP SYSTEM/NOSYSTEM [decimal integer] Execute a portion of

INTO/OVER the program, then

LINE/INSTRUCTION stop.

Appendix A covers the debugger commands in greater detail.

1 Underlines indicate the abbreviated form of a command or keyword.

1.3 SYMBOLIC REFERENCES

The debugger lets you refer to 1locations symbolically. Thus, 1if

you've defined a symbol in your source program as MINIM, you can tell

the debugger to examine or modify the contents of MINIM, without

worrying about MINIM's location in the executable image. The debugger

resolves symbolic references by using a symbol table and scope.

1.3.1 Debugger Symbol Table

The debugger maintains a table that describes the symbols that may be

referenced during a debugging session. The debugger can resolve

symbolic references only to symbols described in this table. When you

initiate a debugging session (assuming you've met the conditions

INTRODUCTION TO DEBUGGING

needed to supply symbol information), this table describes permanent

symbols (for example, general register definitions); global symbols;

and local symbols in the first module input to the linker. Use the

SHOW MODULE command to determine which modules' symbols are currently

in the symbol table. You can add or delete symbols by means of the

SET MODULE and CANCEL MODULE commands; or by using the DEFINE

command. See Chapter 6 for more information on the symbol table and

the commands used to control its contents.

1.3.2 Scope

If a symbol is unique, there can be no ambiguity when you refer to it.

However, if there are two or more symbols with the same name,

appearing in different modules, and these symbols are in the

debugger's symbol table, you must indicate which of them you mean when

you use the symbol's name in a debugger command. To do so, you

specify the scope of the symbol, either by prefixing a module name, or

by means of a SET SCOPE command (if the current scope or the default

scope is not appropriate). The default scope is initialized to the

first module input to the linker. See Chapter 6 for a discussion of

scope and related commands.

1.3.3 Pathnames

A pathname comprises the complete, unambiguous identity of a location

in your executable program. For unique symbols, the symbol name alone

is a pathname. For symbols that are not unique, a pathname comprises

the scope and the symbol name, in the form:

scope\symbol

1.3.4 Local Symbol Definition

To ensure that symbols local to your source program appear in the

debugger's symbol table, you must indicate to the assembler or

compiler that you want local symbol information to be available to the

debugger. You do this by specifying the appropriate qualifier in the

command line when you assemble or compile the program. For VAX-11

MACRO, the qualifier is /ENABLE=DBG. The qualifiers used for other

languages are described in the user's guides for those languages.

CHAPTER 2

BEGINNING AND ENDING A DEBUGGING SESSION

This chapter tells you how to initiate and terminate the debugger.
»

2.1 INITIATING THE DEBUGGER

The usual method of initiating the debugger is by specifying:

$ RUN[/DEBUG] file-spec

You need to express the qualifier, /DEBUG, only if you did not specify
/DEBUG at link time; "file-spec" is the file identification assigned
to your program at link time. You cannot initiate the debugger by
this method if you specified NOTRACE at link time (LINK/NOTRACE ...).

You can inhibit or defer the debugger by specifying:

$ RUN/NODEBUG file~-spec

You need not express the qualifier, /NODEBUG, unless you specified the

/DEBUG qualifier when you 1linked your program. If you specify
$ RUN/NODEBUG, but later decide you want the debugger, interrupt your
program by typing CTRL/Y (echoed as "Y) and respond to the command
interpreter's prompt with the command DEBUG. For example:

A

Y

$ DEBUG

The debugger indicates its readiness to accept commands by displaying
its prompt, DBG>. To determine the location at which you interrupted

your program, enter the command

DBG>EXAMINE/INSTRUCTION @PC

The debugger reports the current contents of the program counter (PC),
plus the instruction to be executed if your program continues at the
indicated location, as shown below.

location: 1instruction

Note that typing CTRL/C has the same result, and echoes the same as
CTRL/Y 1if your program does not include an exception handler for this
condition.

Table 2-1 summarizes the command qualifiers that affect debugger

initiation.

BEGINNING AND ENDING A DEBUGGING SESSION

Table 2-1

Debugger Initiation Qualifiers

Command Sequence Effect

LINK/NOTRACE Inhibits both debugging and traceback
RUN

LINK Inhibits debugging, allows traceback
RUN ,

LINK Allows debugging, but full symbolic
RUN/DEBUG debugging will not be possible

LINK/DEBUG Allows full symbolic debugging
RUN »

LINK/DEBUG Inhibits debugging but allows traceback
RUN/NODEBUG

If you receive the RMS "file not found" message in response to a RUN
command, instead of the debugger's identification message, it may mean
that you mistyped the program's name, or that the corresponding
logical name for the Symbolic Debugger is not assigned to the system
directory that contains the debugger. 1In the latter case, you should
log out and then log in again.

2.2 STARTUP CONDITIONS

The following sections describe how to modify the conditions that
exist when the debugger is initialized.

2.2.1 Startup Messages

When the debugger first gets control, it displays messages in the
following form:

VAX/VMS DEBUG version number release date

tDEBUG-I~INITIAL, language is xxx, scope and module set to yYvy

DBG>

The first message identifies the installed version of the debugger and
the release date. The second message indicates that the debugger
automatically has:

® Set its language to the source language of the first module in
your program.

® Set the name of the first module as the scope (area prefix for
symbolic pathnames; see Chapter 6).

® Read symbol information from the first module into its symbol

table for use in creating symbolic pathnames.

BEGINNING AND ENDING A DEBUGGING SESSION

If this message does not appear, the debugger has not performed these
initialization procedures. You must use the SET LANGUAGE, SET SCOPE,

and SET MODULE commands to initialize the appropriate settings.

The debugger's prompt, DBG>, indicates that it is now ready to process

your commands.

2.2.2 Language Setting

The debugger can interpret input or display output in the syntax of

supported native-mode languages. The language is initially set to the

source language of the first module 1linked 1in your program.

Thereafter, you can change to any supported language by the command

DBG>SET LANGUAGE language-name

where "language-name" is MACRO (for VAX-1l1l MACRO) or FORTRAN (for

VAX~11] FORTRAN IV-PLUS).

2.2.3 Scope Setting

When the debugger is invoked, the scope is set to the first module in

your program. To refer to symbols 1in this module, you need only

specify the symbol names. To refer to duplicate symbol names in other

modules, specifying only the symbol name, you must either give the
whole pathname, or change the scope. You must also ensure that the
symbol information is in the symbol table (see Section 2.2.4). To

change the scope, use the SET SCOPE command. For example:

DBG>SET SCOPE AJAX

Whatever previous scope existed is superseded by AJAX. See Section

6.4 for more information on SCOPE commands.

2.2.4 Setting Symbols

The debugger 1initially reads into 1its symbol table the symbol

information associated with the first module in your program. If you
intend to make use of other modules' symbols in pathnames, you must

use the SET MODULE command to read in the symbol information from

specified modules. The commands, SET MODULE, SHOW MODULE, and CANCEL

MODULE 1let you read information into the table, display its status,
and purge its contents, respectively. See Section 6.3 for more

information.

2.2.5 Entry and Display Modes

The debugger's entry/display modes determine how it interprets your
command entries and displays output. The initial condition of these

modes is: SYMBOLIC, NOINSTRUCTION, NOASCII, NOGLOBAL, HEXADECIMAL,

LONG, and SCOPE.

Chapter 5 describes these modes, and use of the commands, SET MODE,

SHOW MODE, and CANCEL MODE.

BEGINNING AND ENDING A DEBUGGING SESSION

2.3 TERMINATING A DEBUGGING SESSION

You indicate that you are through by responding to the DBG> prompt
with the command:

EXIT

You can also terminate the debugger by typing CTRL/Z.

The VAX/VMS command interpreter gains control, and displays its prompt
character ($). After exiting from the debugger, you can not use the
DEBUG command to reinvoke the debugger.

CHAPTER 3

CONTROLLING PROGRAM EXECUTION

This chapter describes how you start your program with GO and continue
your program with STEP or GO. The chapter also describes how to
interrupt your program, for example, to return control to the debugger
when your program is looping.

3.1 INITIATING AND CONTINUING EXECUTION WITH GO

The GO command tells the debugger to let your program run, beginning
either at the transfer address, at a starting address you specify, or

from a location at which the debugger stopped it. Program execution
continues wuntil an exception condition (such as a breakpoint) causes
the debugger to stop execution, or the program runs to completion

(refer to Chapter 12 for information about exception conditions).

The command format is:

DBG>GO [address-expression]

The first GO command without an address starts the program at 1its
transfer address. Note that the debugger responds with the message

[routine] start PC is mod\rtn.

If "routine" is included in the message, "mod\rtn" is 2 less than the

actual PC value. The PC was at the beginning of routine "rtn" in

module "mod".

If you enter a GO command subsequent to program suspension (such as

following a breakpoint) and do not specify an address, execution
resumes from the point at which it was suspended (for example, at the
instruction at the breakpoint's address).

If you specify an address with GO, that address replaces the current

contents of the program counter (PC) and execution starts at or
continues from the new 1location. Your program's behavior <can be
unpredictable if you initiate execution at any address other than its
transfer address, or if you attempt to restart your program at its
transfer address or any other address.

CONTROLLING PROGRAM EXECUTION

3.2 STEPPING THROUGH YOUR PROGRAM

The STEP command lets you specify the number of instructions (VvAaX-11
MACRO) or statements (FORTRAN) that your program can execute before
the debugger regains control. The basic command format is:

DBG>STEP [decimal~integer]

If you do not include a decimal integer (2 through 32767), or you
specify a value of 1, the debugger executes the next instruction (or
statement) and stops the program. (A step value of zero will be
accepted, but no step will be performed.) Although you can specify
large step counts, the recommended practice is to set a breakpoint
(see Chapter 7) at the desired 1location and use GO to run to the
specified location.

If an exception condition stops your program before the specified
number of instructions or statements are executed, the debugger resets
the step counter to zero, as though the specified number of steps had
been completed.

STEP also has modes that determine how the debugger interprets the
step increment. The following sections describe the functions of
these modes and how you can express them at command level or set them
as default conditions for stepping.

3.2.1 Step Types

The STEP types are:

LINE or INSTRUCTION

INTO or OVER

SYSTEM or NOSYSTEM

You can express these types at command level as follows:

DBG>STEP [/typel[...]] [decimal-integer]

where a slash (/) must precede each step type. A step type expressed
at command level overrides its counterpart at the default level (see
SET STEP, below).

The STEP types exert the following control over program stepping.

INSTRUCTION Step in increments of instructions (the only valid
increment for VAX-11 MACRO).

LINE Step in 1increments of 1lines for line-oriented
(statement) languages, such as FORTRAN (ignored
for VAX-11l MACRO).

INTO Step into a routine called by a call-type
instruction (CALLS, CALLG, JSB, BSBB, BSBW).

OVER Step over the next routine called by a call~type
instruction; that is, the 1instruction, all
routine instructions (or lines), and the
corresponding RET instruction are treated as one
step.

CONTROLLING PROGRAM EXECUTION

NOSYSTEM Decrement the step count only for steps executed

in °~ nonsystem space; the debugger 1ignores

instruction/line steps executed in system space.

SYSTEM Decrement the step count for instructions (or

lines) that are executed in system space as well

as process space. (For a definition of system

space, see the VAX-1l1l Software Handbook.)

For VAX-11 MACRO, the initial STEP modes are:

INSTRUCTION, OVER, and NOSYSTEM.

3.2.2 Setting Step Types

You can change the default types for STEP at any time with the SET

STEP command.

DBG>SET STEP typel,type...]

Multiple type entries must be separated by commas.

3.2.3 Showing Step Types

The SHOW STEP command reports the current STEP types. For example:

DBG>SHOW STEP

step type: nosystem, by line, over routine calls

3.3 INTERRUPTING EXECUTION

You can interrupt execution of your program or the debugger by typing

CTRL/Y (echoed at the terminal as "Y). VAX/VMS stops your program and

displays the command interpreter prompt. To return control to the

debugger, you must type the command DEBUG.

$ DEBUG

The debugger in turn displays its prompt, DBG>. You can also continue

execution of your program (or the debugger) from the location at which

you interrupted it by responding with the command CONTINUE rather than

DEBUG.

$ CONTINUE

Typing any VAX/VMS command other than DEBUG or CONTINUE will generally

cause your program to exit immediately.

3-3

CHAPTER 4

SPECIAL CHARACTERS

This chapter describes how the debugger interprets special characters

in arithmetic expressions, in address expressions, and as delimiters

with VAX~-11 MACRO as the current language. Tables 4-1, 4-2, and 4-3

summarize the arithmetic, address, and delimiting functions,

respectively. Some characters (such as @) appear in more than one

table because of multiple uses, based on context.

4.1 EVALUATING ARITHMETIC EXPRESSIONS

The debugger performs integer arithmetic. All operations are

performed according to the length mode currently in effect (that is,

BYTE, WORD, or LONG) with arguments and results 1limited to the

corresponding value ranges. The debugger truncates values that exceed

the current 1length mode by discarding the most significant bit
positions. Note, however, that truncation does not occur on data that

is "typed," for example, FORTRAN double precision values.

Table 4-1 lists special characters used in arithmetic expressions.

Table 4-1

Arithmetic Special Characters

Character Interpretation

+ Arithmetic addition (binary) operator, or unary plus

sign.

- Arithmetic subtraction (binary) operator, or unary

minus sign.

* Arithmetic multiplication operator.

/ Arithmetic division operator.

@ Arithmetic shift operator.

Cewse? Precedence operators; do <enclosed> first.

"D Decimal radix operator.

"0 Octal radix operator.

"X Hexadecimal radix operator.

SPECIAL CHARACTERS

An arithmetic expression is evaluated in the context of the current

language. For VAX-11l MACRO, the debugger evaluates an expression from

left to right under the following rules of precedence:

l. Terms or expressions enclosed by angle brackets, <...>, are

evaluated first. You can nest expressions to many levels. For

example:

<BEGIN+<INDEX*100>>

The debugger evaluates nested expressions 1in the order of

innermost to outermost.

2. Unary operators and radix operators have priority over

arithmetic (binary) operators; thus values are evaluated

according to their signs and radices, and indirect "contents

of" operations (see Section 4.2.4) are performed before the

remaining arguments and terms are evaluated. For example, in

the expression

A+-@B

the value addressed by the contents of B is first negated and

then added to the value represented by A. Thus, A+-@B is

equivalent to A+<~<@B>>.

3. The arithmetic operations (add, subtract, multiply, divide,

and shift) have equal precedence.

Thus, the following expression

"D1000 + "D1000 / 2 * "D10O

results in the decimal value 10000

However,

"D1000 + << “D1000 / 2 > * "D10 >

results in the decimal value 6000

4.1.1 Plus Sign (+)

A plus sign, as a binary operator, adds the following argument to the

preceding argument (or interim result). As a unary operator, a plus
sign means take the following argument as having an unchanged value.
The debugger interprets an unsigned argument as having a positive

value by default.

Examples:

DBG>SET BREAK BEGIN + “X10

DBG>EVALUATE "D2000 = "“X1000 + ~0777

4.1.2 Minus Sign (=)

A minus sign, as a binary operator, subtracts the following argument

from the preceding argument. As a unary operator, a minus sign means

negate the following argument.

SPECIAL CHARACTERS

Examples:

DBG>CANCEL WATCH NAME ~ OFFSET

DBG>EXAMINE INQUEUE - 1000 - INDEX

4.1.3 Multiplication Operator (*)

An asterisk multiplies the preceding argument by the following
argument.

Examples:

DBG>EVALUATE "X50 * "D512
DBG>DEFINE PAGE = PAGE -~ 256 * 4

4.1.4 Division Operator (/)

A slash divides the preceding argument by the following argument. Any
remainder is discarded. The debugger rejects an attempt to divide by
zero.

Examples:

DBG>DEFINE MODULO = < INDEX + POINTER >/ QUEUE_SIZE
DBG>SET WATCH < PAGE / 2 > * GO_TO_ZEBRA

4.1.5 Shift Operator (@)

The shift operator is a unary "at" sign. It means shift the preceding
argument (or interim result) the number of bit positions specified by
the following argument. A positive value means shift left; a
negative value means shift right. The shift is arithmetic; that is,
no wraparound occurs as in a logical shift. Shifts to the left cause
loss of the contents of the sign bit. Shifts to the right cause the
contents of the sign bit to fill the vacated bit positions.

Examples:

DBG>EVALUATE OFO0OQFFF0 @ 4

000FFFO00

DBG>EVALUATE “XFOOOFF00 @ - 4
OFFOOOFFOQ

4.1.6 Precedence Operators (<...>)

The debugger first evaluates terms or expressions enclosed by angle
brackets. An expression can contain up to 20 levels of nesting, with
the debugger evaluating them in the order of innermost to outermost.
The left and right angle brackets must match.

SPECIAL CHARACTERS

4.1.7 Radix Operators

The debugger interprets numeric arguments in the current radix mode
(see Entry and Display Modes, Chapter 5), unless you precede each
argument with an explicit radix operator. A radix operator affects

only the entry that it accompanies; it has no control over the radix
in which the debugger displays a value.

The radix operators for VAX-11 MACRO are:

"D -~ Decimal radix.

"X ~ Hexadecimal radix.

"0 ~ Octal radix.

No spaces or tabs are permitted between the radix operator and its

operand.

Examples:

DBG>EV "D10+°D10

00000014 (assumes hexadecimal display mode)

DBG>EV "077+"XFF

0000013E

DBG>EV 77+ XFF

00000176

4,2 SPECIAL CHARACTERS IN ADDRESS EXPRESSIONS

This section describes the significance of special characters that can
be used to represent 1locations 1in address expressions. Table 4-2
lists the address representation characters.

Table 4-2

Address Representation Characters

Character Interpretation

. Represents the location last addressed by an EXAMINE,

DEPOSIT, SET BREAK, SET TRACE, or SET WATCH command.
This is called the "current" location.

Represents the location previous to the last location
addressed (as represented by .); (equal to last

location less the current length mode; that is, .-1,
-2, or ~-4).

\ Represents the value last displayed by EXAMINE or

EVALUATE in NOINSTRUCTION mode; in INSTRUCTION mode

for branch instructions only, this character
represents the effective destination address of the
branch. (The backslash is also used 1in forming
pathnames. See Section 6.1.)

@ "Contents" operator.

Range operator (low address:high address) for the

EXAMINE command; bit field operator for EVALUATE

command (DBG>EVALUATE value<high bit:low bit)>).

4-4

SPECIAL CHARACTERS

4.2.1 Current Location Symbol (.)

A dot represents the location last addressed by an EXAMINE, DEPOSIT,
SET BREAK, SET TRACE, or SET WATCH command. This value remains
unchanged until you use one of these commands to refer to a different
location.

Example:

DBG>EXAMINE /ASCII MSG1

ERR_MESSAGE\MSG 1: NEZT

DBG>DEPOSIT/ASCII/BYTE . + 2 = 'X!'

DBG>EXAMINE/ASCII ERR_MESSAGE\MSG 1
ERR_MESSAGE\MSG_1: NEXT

The EXAMINE command assigns a dot to the value of the examined
address. You can then wuse this symbol in the DEPOSIT command's
address expression to represent that location.

4.2.2 Previous Location Symbol (")

A circumflex represents the last location addressed (by EXAMINE,
DEPOSIT, SET BREAK, SET TRACE, or SET WATCH) less the current length
mode; that is .-1, -2, or -4. The use of this character 1in
INSTRUCTION mode is not recommended, because VAX-11 MACRO instructions
vary in length.

Examples:

DBG>EXAMINE/ASCII TEXT1:TEXT1+4

TEXT1l: AH T

TEXT1+4: WEET

DBG>DEPOSIT /ASCII/BYTE "~ = "g"

DBG>EXAMINE/ASCII TEXT1:TEXT1+4

TEXT1l: AH S

TEXT1+4: WEET

4.2.3 Last Value Displayed Symbol (\)

A backslash can be used to represent the value last displayed in
NOINSTRUCTION mode. In INSTRUCTION mode, a backslash represents the
effective operand of the last branch instruction displayed. The value
in either mode remains unchanged until the debugger displays a new
value or a new branch instruction.

Example:

DBG>EV/ADDR PI

1028

DBG>EXAMINE\

CIRCLE\PI: 3.141593

The EVALUATE command produces an address value for the 1location
symbolized by PI. The EXAMINE\ command produces the contents of that
location.

SPECIAL CHARACTERS

4,2.4 Contents Operator (@)

The unary "contents" operator (@) requests that the debugger evaluate

the expression following it and then extract the contents of the
location addressed by the expression value rather than use the

expression value itself.

Examples:

DBG>EXAMINE PC

PC: 00000448

DBG>EXAMINE/INSTRUCTION @QPC

00000448: MOVB #OFF,W 0400 (R7)

The first EXAMINE reports the PC's current contents; the second

EXAMINE reports the current contents (in INSTRUCTION mode) of the

location (00000448) addressed by the PC's contents.

The command

DBG>DEPOSIT MASK = @MASK @ 4

shifts the current contents of the location MASK four bit positions to

the left. (Note that this example shows how the @ character is used

as both a shift and a "contents of" operator.)

The command

DBG>EXAMINE @R7 : @R7 +20

displays the current contents of the 21 bytes beginning with the

location addressed by the current contents of general register R7.

4.2.5 Range Operator (:)

A colon is used in specifying an address range for an EXAMINE command.

The colon is also used as a range operator in bit field specifications

for an EVALUATE command (see Chapter 11).

Examples:

DBG>EXAMINE INBUFFER:INBUFFER + 6

DBG>EXAMINE .:. + X200

DBG>EXAMINE/INSTRUCTION @PC : @PC+10

4.3 SPECIAL DELIMITING CHARACTERS

This section describes the significance of special characters that can

be used to delimit various debugger expressions. Table 4-3 lists the

delimiting characters.

SPECIAL CHARACTERS

Table 4-3

Delimiting Characters

Character Interpretation

-
e

, (comma)

Apostrophes

or

Quote marks

< >

Precedes mode keywords after commands that can

be used to override current modes.

Separates an address expression from data

entries in a DEPOSIT command; separates a

symbol name from its definition in a DEFINE

command.

Separates elements of a symbolic pathname.

Enclose DO command specifications in a SET BREAK

command, or argument list in a CALL command.

Note that the debugger does not use parentheses

to control the order of evaluation of arithmetic

expressions (see Table 4-1).

Separates individual commands in a multiple

command line, or 1in a DO command sequence

associated with a SET BREAK command.

Separates multiple arguments for input.

Enclose ASCII: string 1input or VAX-11] MACRO

instruction input.

Enclose bit field specification for EVALUATE

command.

Hyphen as 1last printing character on line

signifies line continuation. The debugger

prompts with an underline as the first character

of each continued 1line, and defers command

execution until you enter a line that does not

end with a hyphen.

4.3.1 Mode Keyword Delimiter (/)

A slash must precede each mode keyword entered after a command.

Example:

DBG>EXAMINE/ASCII/BYTE INBUF:INBUF+8

This command specifies that the contents of 9 bytes, beginning

INBUF, are to be displayed as ASCII characters.

at

SPECIAL CHARACTERS

4.3.2 DEPOSIT and DEFINE Command Delimiter (=)

In a DEPOSIT command, an equal sign separates the address expression

from the data entries. 1In a DEFINE command, an equal sign separates a

symbol name from the definition.

Examples:

DBG>DEPOSIT X RAY=0F15,0FFFF5C

This command causes the values OF15 and OFFFF5C to be deposited in

successive longwords, starting at location X_RAY.

DBG>DEFINE OFFSET="X200

This command specifies that the symbol OFFSET is to be defined as the

hexadecimal value 200.

4,3.3 Symbolic Pathname Element Separator (\)

A backslash separates individual elements of a symbolic pathname.

Examples:

DBG>SET BREAK MAIN_CODE\BEGIN

In module MAIN CODE, set a breakpoint at the 1location identified by

the local symbol BEGIN.

break at pc = CODE2\LOOP3+10

The debugger reports the occurrence of a breakpoint in module CODE2,

at the location 10 bytes after the location identified by local symbol

LOOP3.

A pathname identifies the program elements needed to completely and

unambiguously identify a 1location. In VAX-11 MACRO, a pathname can

be:

° A symbol (a global symbol, or one that you created with the

DEFINE command, or any symbol that is unique in the symbol

table).

) A symbol in the module to which scope is currently set.

) A local symbol that is unique among the modules current set

(see SET MODULE, Section 6.3.1).

® A local symbol preceded by 1its module name (module

name\symbol) . Program section names in VAX-11l MACRO are

classified as local symbols.

A pathname can be used in any expression; 1its value 1is the address

value for the location it represents. This feature is useful when the

available symbolic information is not sufficient to identify a

required location.

SPECIAL CHARACTERS

4.3.4 DO Command Sequence Delimiters

A SET BREAK command can include a 1list of commands, separated by
semicolons, that the debugger executes whenever your program stops
at the breakpoint or watchpoint. This command 1list, known as a DO
command sequence, must be enclosed by parentheses.

Example:

DBG>SET BREAK ALPHA DO (EXAMINE COUNT_l:COUNT_?;GO)

After the debugger stops the program at location ALPHA, it displays
the current contents of the locations, COUNT_1 through COUNT7, and
then resumes execution of the program.

4.3.5 CALL Command Argument Delimiters ((eoe))

A CALL command can include a list of arguments, separated by commas.
Parentheses must enclose any supplied argument or arguments.

Examples:

DBG>CALL COMP (A)

DBG>CALL SORT (BASE,ITEMS)

DBG>CALL CALC

4.3.6 Command Separator (;)

A semicolon separates individual commands in a multiple command 1line,
or individual commands in a DO command sequence.

Examples:

DBG>SET WATCH RAIN BOW;SET BREAK LOOP3;GO
DBG>SET BREAK CLOSEUP DO (EXAMINE WHERE;GO)

If GO, STEP, or CALL is used in a DO command sequence, it must be the
last command specified. If not, the debugger prints a message, and
the GO, STEP, or CALL and any subsequent commands in the DO sequence
are ignored.

4.3.7 Argument Separator (r)

A comma separates individual arguments in an argument list.

Examples:

DBG>SET MODULE X_RAY,CLOSE_UP,BAKE
DBG>DEFINE INDEX = "X200,0PEN="D512

SPECIAL CHARACTERS

4.3.8 Input String Delimiters

The debugger requires that input strings in ASCII or INSTRUCTION modes

be enclosed by matching apostrophes or quotation marks. If you wish

to enter a literal apostrophe or quotation mark in a string, wuse the

other type to delimit the string. Otherwise, use either type. Refer

to ASCII mode and INSTRUCTION mode (Chapter 5) for mode use and input

restrictions.

Examples:

DBG>DEPOSIT/ASCII 2500="IT'S"

DBG>DEPOSIT/INSTRUCTION SHUT='MOVL #30,R0O’

4.3.9 Bit Field Delimiters

A colon within angle brackets signifies a bit field specification that

the EVALUATE command is to report on. The syntax is:

DBG>EVALUATE value<high bit:low bit>

The bit positions are numbered 0 (lowest bit) through 7 (for a byte),

0 through 15 (for a word), and 0 through 31 (for a longword).

The following procedure is recommended when you want to evaluate a bit

field when you know the corresponding longword value:

DBG>EV 2468A<9:7>

00000005

The following command sequence 1is recommended when you want to

evaluate a bit field for which you know only the address.

DBG>EXAMINE address~expression

address: contents

DBG>EVALUATE \<high bit:low bit>

bit-field value

The EXAMINE command establishes the location's contents as the value

represented by the backslash, the "last value displayed" symbol. This

sequence is useful when you want to extract a bit field from the

contents of a location.

Examples:

DBG>EXAMINE LOOP3

WATCH\LOOP3: OFFFF8FDO

DBG>EVALUATE \<6:4>

00000005

Use the EXAMINE command to display the contents of the location, then

use the backslash ("last value displayed" symbol) with the EVALUATE

command, indicating the bit positions to be evaluated.

To display other bit patterns of the same location, you can specify

the following:

DBG>EXAMINE .

WATCH\LOOP3: OFFFF8FDO

DBG>EVALUATE \ <8:6>

00000007

SPECIAL CHARACTERS

4.3.10 Line Continuation Operator (-)

A hyphen as the last printing character on a line requests
continuation of the command line. The debugger echoes an underline as
the prompt instead of DBG> for each continued line. You may continue
a command line up to approximately 500 characters, exclusive of space
and horizontal tab characters.

Example:

DBG>EXAMINE/ASCII/BYTE -

_BUFFER:BUFFER+20

CHAPTER 5

ENTRY AND DISPLAY MODES

The entry and display modes determine how the debugger interprets your

entries and displays solicited or unsolicited output. This chapter

describes the four classes of modes: context, length, radix, and

pathname search. It tells you how to use the SET MODE and SHOW MODE

commands to establish and report current modes, and how to use the

CANCEL MODE command (or the CANCEL ALL command) to restore the

debugger's initial modes. The chapter also describes how you can

override current modes at the command level for the EXAMINE, DEPOSIT,

and EVALUATE commands. The EXAMINE and DEPOSIT commands are described

in Chapter 10; the EVALUATE command is described in Chapter 11.

5.1 KEYWORD SUMMARY FOR ENTRY AND DISPLAY MODES

Table 5-1 summarizes the mode keywords. 1In the table, the following

letters are used to indicate mode class:

C - Context

L - Length

R - Radix

P - Pathname search

Table 5-1

Keyword Summary for Entry and Display Modes

Mode

Class Keyword Function

C ASCII Interpret/display data as ASCII characters.

L BYTE Interpret/display data in byte lengths.

R DECIMAL Interpret/display data in decimal radix.

P GLOBAL Use symbolic entry as first pathname in

search.

R HEXADECIMAL Interpret/display data in hexadecimal

radix.

C INSTRUCTION Interpret/display data as VAX-1l1 MACRO

instructions.

(continued on next page)

ENTRY AND DISPLAY MODES

Table 5-1 (Cont.)

Keyword Summary for Entry and Display Modes

Mode

Class Keyword Function

L LONG Interpret/display data in longword lengths.

C NOASCII Inhibit entry/display of ASCII characters.

P NOGLOBAL Use symbolic entry as last pathname in
search.

C NOINSTRUCTION Inhibit entry/display of VAX-11 MACRO
instructions.

P NOSCOPE Inhibit SCOPE's contribution to pathname.

C NOSYMBOLIC Inhibit display of symbolic addresses.

R OCTAL Interpret/display data in octal radix.

P SCOPE Prefix entry with SCOPE's contents to form

pathname.

C SYMBOLIC Display symbolic addresses.

L WORD Interpret/display data in word lengths.

5.2 INITIALIZED MODES

For VAX~-1l MACRO, the modes are initialized as follows:

NOINSTRUCTION, NOASCII, NOGLOBAL, HEXADECIMAL, LONG, and SCOPE.

NOTE: In high-level languages, such as FORTRAN, these

are overridden by the data typing of variables.

5.3 CONTROL OF DEBUGGING MODES

The SET MODE,

modes, report the

SHOW MODE,

current modes, or

and CANCEL MODE commands 1let you

restore the

SYMBOLIC,

defaults

change

initial modes,

respectively.

5.3.1 Changing Modes

You can change one or more modes with the SET MODE command.

DBG>SET MODE mode~keyword[,mode-keyword, ...]

ENTRY AND DISPLAY MODES

The following mode choices are available:

Context modes:

SYMBOLIC or NOSYMBOLIC

INSTRUCTION or NOINSTRUCTION

ASCII or NOASCII

NOTE: If both INSTRUCTION and ASCII modes are active at the same

time (or if you enter them both at command level), the

debugger defaults to INSTRUCTION mode.

Radix modes:

DECIMAL

HEXADECIMAL

OCTAL

Length modes:

LONG

WORD

BYTE

Pathname search modes:

GLOBAL or NOGLOBAL

SCOPE or NOSCOPE

5.3.2 Reporting Current Modes

You can determine the state of the entry and display modes by using

the SHOW MODE command.

DBG>SHOW MODE

The debugger reports the mode states by keyword (symbolic, ascii,

etc.). For example:

symbolic, instruction, noascii, scope, noglobal, decimal, long

Debugger messages are usually in lower case.

5.3.3 Restoring the Debugger's Initial Modes

To restore the debugger's initial entry and display modes, type

DBG>CANCEL MODE

Whatever mode changes you have made are canceled and the debugger

re~initializes the mode state to:

symbolic, noinstruction, noascii, noglobal, hexadecimal, long, scope

You can also restore the debugger's initial modes by typing

DBG>CANCEL ALL

This command also cancels all breakpoints, tracepoints, and

watchpoints.

5-3

ENTRY AND DISPLAY MODES

5.3.4 Overriding Current Modes at Command Level

The EXAMINE, DEPOSIT, and EVALUATE commands let you temporarily

override <current modes by specifying mode keywords after the command

verb. For example, the command

DBG>EXAMINE/BYTE/ASCII BUFFER:BUFFER+D10

causes the debugger to report the current contents of eleven bytes

beginning with BUFFER as ASCII characters regardless of the modes

currently active.

This mode override feature lets you specify an EXAMINE, EVALUATE, or

DEPOSIT command without having to remember (or check) what modes are

current, Each mode keyword entered after the command verb must be

preceded by a slash.

With the exception of the INSTRUCTION and ASCII modes, mode keywords

entered at the command level simply override their counterpart modes.

The following summarizes the relationships between command level modes

and current modes.

@ ASCII/INSTRUCTION modes: these modes are mutually exclusive.

The debugger defaults to INSTRUCTION mode if it finds both

ASCII and INSTRUCTION active or requested. You can avoid

getting unexpected results by leaving both modes in their

initialized NO ... states and requesting the particular mode

only at command level.

® Radix mode: a radix mode specified at command level controls

the debugger's interpretation and display of all numeric

information for the command.

e Length mode: a length mode specified at command 1level

overrides the current length mode.

e Symbolic mode: you can set (SYMBOLIC) or inhibit (NOSYMBOLIC)

the symbolic mode as you require.

e Pathname search modes: as with symbolic mode, you can set or

inhibit the GLOBAL and SCOPE mode conditions at command level

as you require.

5.4 CONTEXT MODES

The context modes allow the entry and display of addresses and data in

various forms. An address can be represented symbolically or as a

virtual address. Data can be represented by symbols, VAX-11 MACRO

instructions, or ASCII character strings. The context mode keywords

are:

SYMBOLIC and NOSYMBOLIC

INSTRUCTION and NOINSTRUCTION

ASCII and NOASCII

The above keyword pairs function as on-off switches to allow or

inhibit a condition.

The debugger initializes the context modes as: SYMBOLIC,

NOINSTRUCTION, and NOASCII.

ENTRY AND DISPLAY MODES

5.4.1 Effects of Context Modes

The following summarizes the effect of the context modes on the entry

and display of addresses and data.

Address Entry:

The debugger is insensitive to the [NO]SYMBOLIC mode for address

entries. You can express an address either as a symbolic

pathname or as a virtual address.

Address Display:

In SYMBOLIC mode, the debugger displays all 1locations by

pathnames when possible. Offsets are expressed in the current

radix mode. When the pertinent symbolic information is

unavailable, SYMBOLIC mode is ignored.

In NOSYMBOLIC mode, the debugger displays 1locations as virtual

addresses in the current radix mode.

Data Entry:

In INSTRUCTION mode, the debugger interprets a quoted string

entry as a VAX-11l MACRO instruction, interprets numeric values in

the current radix mode, and ignores the current length mode. The

debugger rejects ‘instructions not enclosed in quotes.

In ASCII mode,.the ‘debugger interprets a quoted string entry as

ASCII characters. The string is deposited as entered (that is,

the current length mode is overridden if necessary).

Data Display:

In INSTRUCTION mode, the debugger displays the current contents

of specified 1locations as VAX-1l1 MACRO instructions. Most

numeric values are displayed in the current radix. The current

length mode 1is ignored and the debugger increments sequential

instruction 1locations on the basis of each instruction's

allocated storage. The debugger tries to display instruction

operands in symbolic form if the addressing mode 1is PC-relative

or absolute.

In ASCII mode, the debugger displays the current contents of

specified 1locations as ASCII characters. The character count

associated with each requested location is limited by the current

length mode, to four characters (LONG), two characters (WORD), or

one character (BYTE). The current radix mode is ignored.

When both NOASCII and NOINSTRUCTION.are in :weffect the debugger

displays the current contents of ‘the specified locations in the

current radix mode. The debugger inctrements -sequential locations

on the basis of the current length mode, if no data typing

information is available (such as in FORTRAN programs)..

ENTRY AND DISPLAY MODES

5.4.2 SYMBOLIC/NOSYMBOLIC Modes

The SYMBOLIC/NOSYMBOLIC modes allow or inhibit the reporting of

locations symbolically, that 1is, by pathname. In VAX-11l MACRO, a

pathname can be:

e A symbol (a global symbol, or one that you defined with the

DEFINE command - see Section 6.2.2).

¢ A local symbol preceded by its module name (module

name\symbol).

In SYMBOLIC mode, the debugger reports all locations by pathnames. 1In

NOSYMBOLIC mode, the debugger reports all locations as wvirtual

addresses in the current radix mode.

You can enter locations symbolically regardless of which mode is set.

Refer to Chapter 6 for more information on how the debugger builds

pathnames, and translates pathnames to values and values to symbolic

expressions.

5.4.3 INSTRUCTION/NOINSTRUCTION Modes

The INSTRUCTION/NOINSTRUCTION modes allow or inhibit the entry and

display of data as VAX-11] MACRO instructions. In INSTRUCTION mode,

the debugger interprets quoted data entries and displays current data

only as VAX-11l MACRO instructions. If the debugger cannot interpret

your entry as an instruction, it reports that it cannot encode the

instruction. If it cannot translate the current contents of a

location as an instruction, the debugger reports that it cannot decode

the instruction.

NOINSTRUCTION inhibits the entry or display of data as instructions.

The storage requirements of VAX-1l1l MACRO instructions vary according

to the instruction type and number of operands. The debugger ignores

the current length mode when it enters or displays instructions; the

debugger instead increments the <current address according to the

number of bytes required or occupied by an instruction.

An instruction string entry must be delimited by apostrophes or

quotation marks.

DBG>DEPOSIT /INSTRUCTION PLUNK = 'ADDL3 #5,R3,R4'

When entering an instruction, you must verify that the length of the

data string can be accommodated by the number of bytes you intend to

overwrite. The debugger neither guards against spillover into

subsequent bytes, nor pads memory left vacant when you replace an

instruction with another instruction that requires 1less storage.

While you cannot deposit more than can be accommodated, you can use

the NOP instruction to fill bytes that are unoccupied after you

complete the deposit of an instruction or instructions.

You should examine the location to be changed and those following 1it,

before and after the deposit to verify that the contents are correct

ENTRY AND DISPLAY MODES

before you attempt to execute the new instruction. The following
example illustrates the change of the instruction 1in location
SORT\BEGIN+12 from an ADDL3 #10,R2,R4 to an ADDL2 #10,R2, which
occupies one less byte.

DBG>EXAMINE /INSTRUCTION BEGIN+12

SORT\BEGIN+12: ADDL3 #10,R2,R4
DBG>EXAMINE /INSTRUCTION

SORT\TEST_ SEQ: CMPB (RO) [R2]1,(RO) [R4]

In INSTRUCTION mode, the debugger interprets an EXAMINE command with a
null address expression (carriage return typed directly after the verb
and mode keywords, if any) to mean display the instruction that
follows the location last displayed.

Make the change as follows.

DBG>DEPOSIT/INSTRUCTION BEGIN+12='ADDL2 #10,R2"
DBG>EXAMINE/INSTRUCTION

SORT\BEGIN+14: EMODF @(R1)+, (RO) [R2],(RO) [R4] ,#0400C7FF,@W D157 (R6)

The debugger typically translates a leftover byte and subsequent bytes
as parts of some meaningless instruction. If you continue examining
locations as instructions, the debugger eventually reports that it
cannot decode the instruction, because it determines that the data in
the given bytes does not translate into a VAX~-11/780 instruction. To
suppress the effect of the leftover byte or bytes, you must enter one
NOP instruction per byte.

DBG>EXAMINE/INSTRUCTION BEGIN+12

SORT\BEGIN+12: ADDL2 #10, R2
DBG>EXAMINE/INSTRUCTION

SORT\BEGIN+14: EMODF @(R1)+, (RO) [R2], (RO) [R4],#0400C7FF,@WD157 (R6)
DBG>DEPOSIT/INSTRUCTION .='NOP'

Examination of the locations reveals that the desired instruction
sequence is intact:

DBG>EXAMINE/INSTRUCTION BEGIN+12:TEST SEQ
SORT\BEGIN+12: ADDL2 #10,R2

SORT\BEGIN+14: NOP

SORT\TEST_SEQ: CMPB (R0) [R2],(RO) [R4]

The DEPOSIT command can accept an instruction sequence for entry, but,
as for any other command, you usually must reenter the entire command
1f you make an error. The following command sequence is a suggested
me thod that allows you to enter a series of instructions by
independent DEPOSITs without having to compute the actual address in
each case.

DBG>SET MODE INSTRUCTION

DBG>DEPOSIT address—expression='instruction n'

DBG>EXAMINE

DBG>DEPOSIT . = 'instruction n+1'

DBG>EXAMINE

DBG>DEPOSIT . = 'instruction n+2'

ENTRY AND DISPLAY MODES

Each EXAMINE command increments the previous address by the number of

bytes required for the entered instruction and thus sets up the

current address symbol (.) with the correct address for the next

DEPOSIT command. The deposit of the NOP instruction in the previous

example illustrates this method.

5.4.4 Evaluating VAX~-11l MACRO Literals

When the debugger displays data in symbolic mode, it does not

translate 1literal values into their symbolic equivalents. Thus, a

displayed instruction may not appear exactly as you entered it in the

source code. For example, the instruction

ADDL3 #literal-value, RO, Rl

is displayed as

ADDL3 #3F4, RO, R1

if literal-value was previously assigned the value 3F4.

The EVALUATE command can help you gquickly verify that the instructions

are the same. If you type

DBG>EVALUATE/LITERAL expression

The debugger displays all pathnames it finds that have the value of

the expression as their 1literal assignment. It is then a simple

matter to scan the pathname list for the literal symbol name you wish

to verify.

5.4.5 ASCII/NOASCII Modes

The ASCII/NOASCII modes allow or inhibit the entry and display of data

as ASCII characters. ASCII means interpret or display the data as

ASCII characters. NOASCII means do not interpret the input as ASCII

or do not display the current data as ASCII. The debugger is

initialized in NOASCII mode.

ASCII character input is usually by quoted string. You must enclose

each string with either apostrophes or quotation marks. This

provision lets you include literal apostrophes or quotation marks

within a string. For example,

DBG>DEPOSIT /ASCII WINK = 'ZZZZ'

DBG>DEPOSIT /ASCII THINK = "IT'S"

DBG>DEPOSIT /ASCII PLINK = '"1"'

The delimiter at the string's end must match the beginning delimiter,

and must not appear within the string.

The current length mode (LONG, WORD, or BYTE) 1is overridden by the

length of the string.

Nonprinting ASCII characters (carriage return, line feed, horizontal

tab, etc.) must be entered as numeric equivalents. For example, you

can enter a carriage-return, line-feed combination between strings as

follows.

DBG>DEPOSIT/ASCII/HEXADECIMAL/WORD TEXT="IT'S",0D0OA, "NEXT LINE"

ENTRY AND DISPLAY MODES

The debugger enters the value ODOA into memory following the string,

IT'S. By specifying /WORD, you ensure that the value ODOA is not

deposited as a longword value.

You can verify the presence of the nonprinting characters by

displaying the contents of the specific locations. Note that the

debugger displays numeric data in the order that it resides in memory

(that 1is, the contents of lower addresses appear 1in the least

significant digits) whereas it displays ASCII characters 1in a

left-to-right reversal of the actual character storage.

5.5 RADIX MODES

The radix mode keywords are:

DECIMAL

HEXADECIMAL

OCTAL

The base used in performing arithmetic operations depends on the radix

mode specified. The radix mode also determines how numeric values are

entered and displayed. You can use the SET MODE command to specify

the radix mode. For example:

DBG>SET MODE DECIMAL

Numeric values specified in subsequent commands will be interpreted as

decimal values, and numeric displays will also be in decimal, unless

you override the current radix mode by including a radix mode keyword

with the command. For example:

DBG>EVALUATE/HEX 15+15

000600022

You can also specify that data be entered in a specific radix, by

using a radix operator. For example:

DBG>EV "X15 + “X15

42

Note that the resulting value is displayed in the current radix mode

(in this example, decimal). See Section 4.1.7 for information on

radix operators.

5.5.1 DECIMAL Mode

In DECIMAL mode, the debugger interprets entries and displays

information in the decimal radix. A decimal entry can include the
characters 0 through 9. With the debugger set for VAX-1l MACRO, you

can use the radix operator "D to identify individual entry arguments

as decimal when the current radix mode is set to another radix.

ENTRY AND DISPLAY MODES

5.5.2 HEXADECIMAL Mode

In HEXADECIMAL mode, the debugger interprets entries and displays

information in the hexadecimal radix. A hexadecimal entry can include

the characters 0 through 9 and A through F. You can use the radix

operator‘"X to identify individual entry arguments as hexadecimal when
the current radix mode is set to another radix.

If an entry has an alphabetic as the 1leftmost character, you must

include a 1leading 2zero or use the hexadecimal radix operator to

differentiate hexadecimal constants from symbols.

5.5.3 OCTAL Mode

In OCTAL mode, the debugger interprets entries and displays

information in the octal radix. An octal entry can include the

characters 0 through 7. With the debugger set for VAX-11 MACRO, you

can use the radix operator "0 to identify individual entry arguments

as octal when the current radix mode is set to another radix.

5.6 LENGTH MODES

The length mode keywords are:

LONG (for longword)

WORD

BYTE

The current length mode specifies the value (4, 2, or 1) by which the

debugger increments memory addresses for the entry or display of data

forms other than VAX-11 MACRO instructions. In INSTRUCTION mode, the

debugger ignores the current length mode and increments memory as a

function of each instruction's storage requirements.

In NOINSTRUCTION mode, the results of all arithmetic operations are

limited to value ranges corresponding to the current length mode. The

debugger truncates values that exceed the current 1length mode by

discarding most significant bit positions.

5.7 PATHNAME SEARCH MODES

The pathname search mode keywords are:

GLOBAL and NOGLOBAL

SCOPE and NOSCOPE

The following sections summarize the use of these mode keywords. For

a complete description of their use and how such use relates to the

debugger's search rules for translating pathnames to values, refer to

Chapter 6.

5.7.1 GLOBAL/NOGLOBAL Modes

In GLOBAL mode, the debugger searches its symbol table for a symbolic

match to the pathname as you entered it (that is, it does not prefix a

scope to the entry). In NOGLOBAL mode, the debugger prefixes the

ENTRY AND DISPLAY MODES

entry with the contents of scope, or a PC-implied scope, and searches
the symbol table. If it does not find a match, it then attempts to
find a match for the entry exactly as you entered it.

5.7.2 SCOPE/NOSCOPE Modes

In SCOPE mode, the debugger prefixes a pathname entry with the current
contents of SCOPE and searches the symbol table for a match. 1If the
SCOPE prefix fails or is not applied (NOSCOPE), the debugger prefixes
a pathname entry with the name of the module that the program counter
(PC) currently points to and searches for a match.

The debugger initializes SCOPE with the name of the first module read
into the symbol table. You can then use the SET SCOPE, SHOW SCOPE,
and CANCEL SCOPE commands to set, display, or delete the contents of
SCOPE.

See Figure 6-1 for a diagram of the algorithm followed by the debugger
in resolving references to symbols.

CHAPTER 6

SYMBOLS AND PATHNAMES

Pathnames symbolically represent address values that refer to
locations in your program. This chapter describes how symbol
information is entered in the debugger's symbol table for your use in
specifying pathnames. The chapter also describes how you control both
the contents of the symbol table and the manner in which the debugger
translates a pathname into a value or a value into a symbolic

expression.

6.1 PATHNAMES

The debugger uses pathnames to symbolically 1identify locations to
avoid the possibility of ambiguous 1local symbols in a multimodule
program. A pathname has two components: scope and symbol. The form

of a pathname is:

scope\symbol

Scope identifies the module 1in which the symbol is unique (the
backslash separates scope and symbol in a pathname).

If a symbol reference is unambiguous, you can ignore the scope of a
pathname and simply specify the symbol in the debugger command. The

search rules that govern the debugger's translation of a symbol into a
value guarantee that the specified location or data element will be

accessed. If, however, you specify ambiguous symbols, the debugger
must know (or default) the scope of a symbol so that it can access the
correct location or data.

The debugger's symbol-to-value algorithm defines how and when scope is
expressed explicitly or implicitly. See Section 6.4.

In VAX-11 MACRO, the module name performs the scope function for local

symbols. Global symbols, symbols that you define at debugger run
time, and the debugger's permanent symbols do not require a regional
identity since they are, by definition, known throughout the program
(and to the debugger). They have a global scope and their pathnames
are simply their symbol names.

Since a pathname is equivalent to the address for the 1location it
represents, you can specify a pathname in any expression. For

example, appending a numeric offset to a pathname creates an address

expression that identifies an unlabeled location.

SYMBOLS AND PATHNAMES

6.2 SYMBOL TYPES

The symbol types you can use are:

® Permanent symbols

e Symbols you create with the DEFINE command

® Your program's local symbols

e Your program's global symbols

A symbol is usually regarded as a way to specify a value. For

example, symbolic labels point to locations in your program. However,

most data symbols represent a sequence of bytes, that is, a range of

values. A PSECT name, for example, refers to an entire program

section within a given module.

While the concept of a symbol representing an address pair 1is not

always pertinent (after all, you can't deposit a single value into an

entire program section with one command), it is a useful concept for

many cases, particularly when dealing with a language such as FORTRAN:

Both EXAMINE and DEPOSIT work with a range of bytes for all standard

FORTRAN data types. 1In VAX-11l MACRO, SET WATCH and translation from a

value to a symbol also depend on this view of symbols,

6.2.1 Permanent Symbols

The debugger has the following VAX-1ll abbreviations as permanent

symbols. They cannot be redefined.

e¢ RO - RI11 General registers 0 - 11

e AP Argument pointer

e FP Frame pointer

e SP Stack pointer

e PC Program counter

e PSL Processor Status Longword

Refer to Chapter 14 for information on the Processor Status Longword.

6.2.2 Defining Symbols During a Debugging Session

The DEFINE command lets you define global-type symbols at any time

during a debugging session to supplement or override existing symbols

in your program. The command format is:

DBG>DEFINE symbol=expression[,symbol=expression ...]

Symbol is a name, and expression is any valid expression. Symbols

appearing 1in an expression must be resident in the debugger's symbol

table. You must separate multiple symbol-expression pairs with

commas.

You can, for example, create explicit symbols for unlabeled 1locations

and/or assign various data values to symbols for ease of reference

6-2

SYMBOLS AND PATHNAMES

during the session. The debugger always searches these symbol

definitions first when it translates a symbolic entry into a value or

when it translates an address location into a symbolic equivalent in

SYMBOLIC mode. Because the debugger treats these defined symbols as

first priority global symbols, your defined symbols have precedence

over all other symbols in your program having identical names and/or

definitions. This priority lets you create a symbolic shorthand.

For example, rather than request a breakpoint as

DBG>SET BREAK LOOP3\SILO3

you could define the location to be BP7 with the command

DBG>DEFINE BP7=LOOP3\SILO_3

BP7 assumes the value of LOOP3\SILO_3. You can now request the

breakpoint as follows:

DBG>SET BREAK BP7

When your program stops at the breakpoint, the debugger reports the

location by:

break at pc = BP7

You can disable the shorthand notation, or determine the symbolic

value of BP7, by redefining it, and then causing the breakpoint to be

displayed. For example:

DBG>SET B BP7 DO (DEF BP7=BP7-BP7)

DBG>GO

start pc is BP7

break at pc = BP7

DBG>GO

start pc is LOOP3\SILO_3

The debugger requires that the definition of a user~-defined symbol

exactly match the address value 1if the debugger is to report that

symbol as the symbolic equivalent rather than a global or 1local

symbol. The section on translating output values into pathnames

describes the complete rules on translation priority. See Section

6.5.

Symbolic names follow the VAX/VMS conventions:

@ No more than 15 characters.

® Include only characters from the character set: A -2, 0 - 9,

dot (.), wunderline (_), and dollar sign ($). The debugger

interprets 1lowercase alphabetics to be uppercase. Thus,

"LOOP" and "loop" are the same to the debugger.

® Begin with an alphabetic character, underline, or dollar sign.

The debugger truncates a symbol that exceeds 15 characters to the 15

leftmost characters and issues a message.

SYMBOLS AND PATHNAMES

The values that you assign to symbols must observe the following

limits.

An unsigned value must be within the following ranges:

® Decimal: 0 - 4294967295

® Hexadecimal: 0 -~ FFFFFFFF

e Octal: 0 - 37777777777

A signed value must be within the following ranges:

® Decimal: - 2147483648 <= value <= 2147483647

® Hexadecimal: -80000000 <= value <= 7FFFFFFF

e Octal: ~-20000000000 <= value <= 17777777777

Additional restrictions for values are:

® Precede a hexadecimal value with either 0 or the radix

operator "X if the first character 1is alphabetic, A - F

(otherwise, the debugger tries to interpret the character

string as a symbol).

® Do not include commas within the value (2024; not 2,024).

A symbol cannot be canceled once you have defined 1it, but you can

redefine it by specifying a different value with the DEFINE command.

For example, the previous definition of BP7 to represent the 1location

LOOP3\SILO3 could be changed as follows.

DBG>DEFINE BP7=SORT\TEST_END

You can also redefine a symbol created by a DEFINE command, 1in terms

of its current definition. For example, you can redefine the symbol

LOOP to represent a value of 1000 plus its current definition.

DBG>DEFINE loop=loop+1000

NOTE

The DEFINE command can not, under any

circumstances, be used to redefine or

create a multi-element pathname.

With the EVALUATE command, you can determine the current definition of

any symbol and express it in any radix. For example:

DBG>EVALUATE [/radix~-mode-keyword] symbol

You cannot, however, translate a numeric value to learn its symbolic

equivalent(s).

Refer to the description of the EVALUATE command (Chapter 11) for more
information on 1its wuse. Refer also to Chapter 4 for information on

the use of the debugger's special characters in expressions to create

values for your defined symbols.

SYMBOLS AND PATHNAMES

6.2.3 Local Symbols

Local symbol information includes:

® Module names assigned by the VAX-11 MACRO directive, .TITLE

(they can be used only as the scope of pathnames, because they

have no values)

® Program section names assigned by the VAX-11] MACRO directive,

.PSECT (program section names assigned by default are not

normally accessible)

e All symbols and associated definitions not identified as being
global, but not "n$" type symbols

For the debugger to have access to local symbol information, you must:

® Request that the assembler produce debugging records when it

assembles each module (/ENABLE=DEBUG)

® Use the /DEBUG qualifier at link time

e At run time, use SET MODULE to ensure that symbol information

for a particular module is present in the symbol table when

you intend to specify any local symbols from that module 1in

pathnames or you want the debugger to represent any of its
locations by local symbol pathnames

If you prefer to enter or have the debugger display locations as

program section names plus offsets (some programmers find this

convenient when referring to assembly listings), you can request that
the 1image «contain only traceback records. This request limits the

debugger's access to only module and program section names.

6.2.4 Global Symbols

Global symbols include:

® Those symbols identified as labeling external definitions in a
module by the VAX-11l MACRO directive, .GLOBL

e Those symbols delimited by the double colon (::) operator

e Those symbols that 1label global 1literals (that 1is, those

delimited by the double equal (==) operator) .

The debugger references global 1literals only when translating a

pathname 1into a value. It ignores them in the translation of a value

into a pathname. You can, however, determine the correspondence of a

value to a global 1literal name by use of the EVALUATE command (see

Chapter 11).

You can access your program's global symbols only if you specified

/DEBUG when vyou 1linked your program. Refer to the VAX~-1ll Linker

Reference Manual and the VAX~1l MACRO User's Guide for information on

how to make global symbols available to the debugger.

SYMBOLS AND PATHNAMES

6.3 THE DEBUGGER'S SYMBOL TABLE

The debugger translates pathnames into values and values into symbolic
expressions on the basis of information in its symbol table. The
debugger has no knowledge of symbol information not present 1in this
table. After the debugger is initialized, this information consists
of permanent symbols, any symbols created by DEFINE commands, all
global symbols, and local symbol information for the first module in
your image, if you specified the appropriate qualifier when vyou
compiled or assembled the source program. For example, for a VAX-11
MACRO program, /ENABLE=DBG.

When you initiate the debugger, it establishes a data base for the
modules 1in your program and reads symbol information from the first
module into the symbol table.

The following sections describe how you control the symbol table
contents with the SET MODULE, SHOW MODULE, and CANCEL MODULE commands.

6.3.1 Symbol Table Input (SET MODULE)

The command

DBG>SET MODULE module-name|[,module-name,...]

tells the debugger to add local symbol information for the specified
module(s) to the symbol table. Rather than specify individual
modules, you can request that all symbol information for all modules
be entered in the symbol table by specifying:

DBG>SET MODULE/ALL

If the debugger is not able to include some of the modules, it prints
a message indicating those modules that were not included.

6.3.2 Symbol Table Status Report (SHOW MODULE)

The command

DBG>SHOW MODULE

produces a status report on the symbol table. The report lists all
modules 1in the program and indicates by yes or no whether their
associated local symbol information is currently present in the symbol
table. The report also includes the following information:

e the approximate number of bytes (in decimal) required to
accommodate the entry of symbol information from the
respective modules into the table

e the total number of modules in your program

e the amount of free bytes (in decimal) available in the table

® the name of the language in which the modules were written.
If the same language was used for all modules, the language

name appears only in the line that indicates the total number

of modules.

SYMBOLS AND PATHNAMES

6.3.3 Symbol Table Purging (CANCEL MODULE)

The command

DBG>CANCEL MODULE module-name{,module-name, ...]

purges symbol information associated with the specified module(s) from

the symbol table. Typically, it is used to make space available for
symbol information associated with other modules. The CANCEL MODULE

command does not affect global symbols or symbols that you defined
during this debugging session.

You can delete all local symbol information currently in the symbol

table by the command

DBG>CANCEL MODULE/ALL

6.4 TRANSLATING SYMBOLS INTO VALUES

The debugger's translation of symbolic entries into values is governed
by the GLOBAL/NOGLOBAL and SCOPE/NOSCOPE modes, which give you control

of the debugger's search rules. Figure 6-1 1illustrates the search

algorithm.

The debugger evaluates an expression in which a symbolic entry appears

only if a definition was located for the entry under the search rules.

If it fails to locate a match for a pathname, the debugger reports the

search failure and the symbol name. The expression becomes undefined.

If you specify GLOBAL, the debugger first assumes the symbolic entry

represents the entire pathname, and tries to find a match for that

pathname. 1If the search is unsuccessful, or if NOGLOBAL is in effect,

the debugger then tries all the other search possibilities.

If you specify NOGLOBAL, the debugger assumes that the symbolic entry

represents the -entire pathname only after first trying all other
search possibilities.

You might set the mode to GLOBAL if your program contained a global

symbol and a local symbol with the same names, and you wanted to set a

breakpoint (or execute any debugger command) at the global symbol

location.

Another use would be when you are working in one of your program's

modules and want to execute the debugger command in another module

without having to change the current contents of SCOPE. In this case,

you would enter the complete pathname, module name and local symbol,

in the command.

For example, this sequence

DBG>EVALUATE/GLOBAL SORT\SEQ CHECK

00003AF2

DBG>SET BREAK \

makes the debugger determine the value of the given pathname and

display 1it. The display in turn assigns the value to the last value

displayed symbol (see Section 4.2.1) for use as the operand in the SET

BREAK command.

A DEFINED OR YES

SYMBOLS AND PATHNAMES

o SUCCESS D
PERMANENT

SYMBOL?

IS

MODE GLOBAL

YES

- A

SEARCH SYMBOL TABLE

FOR PATHNAME TOi

?

YES

MATCH THE ENTRY

IS

MODE SCOPE
YES FORM NEW PATHNAME

BY PREFIXING SCOPE,

i

?

NO

MATCH

SEARCH SYMBOL TABLE FOUND?

FORM NEW PATHNAME BY

PREFIXING SCOPE BASED |

ON CURRENT PC CONTENTS.

SEARCH SYMBOL TABLE

YES1S MODE
USE ENTRY AS COMPLETE

»! PATHNAME. SEARCH
NOGLOBAL?

NO

SYMBOL TABLE

YES
MATCH

FOUND?

PRINT ERROR

MESSAGE AND

Figure 6-1

PROMPT

Debugger Symbol-to-Value Search Algorithm

SYMBOLS AND PATHNAMES

NOSCOPE tells the debugger that you do not want the current contents
of SCOPE to be prefixed to a pathname entry. The debugger then uses
the name of the module that the program counter (PC) 1is currently
pointing to as the scope, and searches the symbol table for a local
symbol from that module that matches your entry.

The sequence

DBG>EVALUATE/NOSCOPE SEQ_ CHECK

00003AF2

DBG>SET BREAK \

directs the debugger to construct a pathname by prefixing the name of
the currently executing module to SEQ CHECK, determine the value of
this pathname, and display it. The display, as before, assigns the
value to the last value displayed symbol for use as the address in the
SET BREAK command.

The command

DBG>SET SCOPE module~name

establishes the specified module name as the explicit scope to be used

under the search rules for the translation of local symbol and program

section name pathnames. The debugger also reads symbol information

associated with the specified module 1into the symbol table if the
necessary number of bytes are free in the table. 1If the table lacks
the number of bytes required to accommodate the module's symbol
information, the debugger aborts the SET SCOPE command and prints a
message.

The command

DBG>SHOW SCOPE

requests that the debugger report the current contents of SCOPE. A

<null> report 1indicates that the SCOPE rule has no effect in looking
up symbols.

The command

DBG>CANCEL SCOPE

enters a null string in SCOPE. If you subsequently specify SET MODE
SCOPE, the previous contents of SCOPE are restored.

6.5 TRANSLATING VALUES INTO PATHNAMES

In SYMBOLIC mode, the debugger translates an address value 1into a
pathname as follows.

1. The debugger first compares the wvalue with 1its permanent

symbol definitions, then with the symbol definitions, if any,

that you created with the DEFINE command. If it locates an
exact match (no offset permitted), the debugger reports the
found symbol as the pathname.

2. If step 1 fails, the debugger compares the value with the

global and local symbol definitions. A global symbol

definition is sought only if no local definition 1is found.
If an exact match is found, the debugger reports the symbol

as the pathname.

6-9

SYMBOLS AND PATHNAMES

If no exact match can be found, the debugger searches all
symbol definitions for the one that is nearest to, yet less
in value than, the value to be translated, and expresses the
initial value as that pathname plus the necessary offset.
The debugger rejects a global symbol definition as being the
nearest to the value unless the difference between the symbol

and the value is less than 100 (hexadecimal).

If the debugger does not find a suitable definition by means

of steps 1, 2, and 3, it reports the address value as a
virtual address in the current radix mode. The probable

cause of the virtual address display rather than a pathname

is that the respective module's symbol information 1is not
present in the debugger's symbol table.

CHAPTER 7

BREAKPOINTS

Breakpoints stop your program at selected locations to let you observe
and change the context of your program while it is suspended. This
chapter describes breakpoints, their options (command sequences to be
executed at the breakpoint, deferred breakpoints, and temporary
breakpoints), and how you use the commands, SET BREAK, SHOW BREAK, and
CANCEL BREAK, to establish, report the status of, and delete

breakpoints.

7.1 USE OF BREAKPOINTS

Without breakpoints, your program might run to completion, exit
prematurely, or enter an infinite 1loop, depending on the type of
errors it contains. Your observations during testing would be limited

to an analysis of data produced, if any, and possibly a general

register dump if your program exited prematurely because it violated
system restrictions.

A breakpoint can be specified with several options. They include:

® The option to specify a sequence of commands that the debugger

executes automatically each time your program stops at the
associated breakpoint.

e The option to ignore a breakpoint until it has been
encountered a specified number of times.

e The option to specify a temporary (or one-time) breakpoint.
The debugger automatically cancels the breakpoint after your

program stops at the breakpoint location.

7.1.1 Breakpoint Reporting at Program Stop

When your program is suspended at a breakpoint, the debugger usually
reports the location by

break at pc = LOCATION

where the location is given symbolically (SYMBOLIC mode) or as a
virtual address 1in the current radix mode (NOSYMBOLIC mode). For
example, a breakpoint occurrence could be reported as

break at pc = SORT\INSEQ

where SORT\INSEQ is the pathname that uniquely identifies the location

BREAKPOINTS

labeled by 1local symbol 1INSEQ in the object module named SORT. 1In

NOSYMBOLIC mode, the location would be reported by

break at pc = 00000846

The debugger sometimes displays the report as

routine break at pc = LOCATION

Note that in this case the value shown is 2 less than the actual PC

contents. This is the case whenever symbolic information is available

indicating that a 1location or symbol 1is an entry point or the

beginning of a routine.

7.1.2 Continuing From a Breakpoint

To continue your program from a breakpoint, you can enter a GO command

or a STEP command. After GO, program execution continues until either

a breakpoint or another condition causes the program to stop. After

STEP, program eXxecution continues either through the number of steps

you specified (the default is one) or until some condition causes the

program to stop.

The debugger usually reports the resumption of program execution by

start pc is location

where "location" is again given as a pathname, or as a virtual

address. If the report 1is displayed as "routine start pc 1is

location”, the value of "location" is actually 2 1less than the

contents of the PC, and "location" is an entry point.

7.2 SETTING BREAKPOINTS

Breakpoints are set at and identified by address. Once set, a

breakpoint remains active until you cancel it or terminate the

debugging session. No breakpoints are set when you begin the session.

The debugger's breakpoint table stores the information relating to

each breakpoint. This table can accommodate many breakpoints. If the

debugger reports a full table, simply cancel one or more breakpoints

to clear sufficient table space for the new entry.

The debugger does not protect current breakpoints against overwriting

by a new request. The debugger simply replaces the previous

specification with the new command entry without warning. This

condition works to your advantage when you want to modify a breakpoint

specification. 1Instead of having to cancel a breakpoint and then

specify the new conditions for the breakpoint, you can just enter the

new specification for the same location.

7.2.1 General Breakpoint Specification

You set a breakpoint at the address of the first byte of an

instruction (your program stops at the breakpoint before executing the

instruction). The debugger accepts the address specification without

verifying that it represents the first byte of the instruction's

storage.

BREAKPOINTS

Warning: Run-time errors usually result if a breakpoint is set in the

middle of an instruction.

The general command format for specifying a breakpoint is:

DBG>SET BREAK address-expression [DO (command-list)]

To verify the breakpoint, you can use the "current 1location" symbol

(see Section 4.2.1) as follows:

DBG>EXAMINE/INSTRUCTION

The debugger displays the instruction on which the breakpoint is set.

7.2.2 DO Command Sequence at Breakpoint

When specifying a breakpoint, you can include a sequence of commands

that the debugger executes whenever your program stops at the

breakpoint. The command format is

DBG>SET BREAK address—expression DO (command|[;command...])

The command list can include any complete debugger command. If a GO,

STEP, or CALL command is included, it must be the last command in the

sequence. The parentheses are required regardless of the number of

commands specified. The semicolon is not necessary if you include one

command. For DO sequences that comprise more than one command, you

may want to wuse 1line continuation (a hyphen as the last character

before carriage return) and/or abbreviated keywords.

The debugger does not evaluate a DO command sequence for proper syntax

or context until your program stops at the breakpoint.

Note that a symbol that appears in a DO command sequence needn't be

defined at the time you enter the SET BREAK command, because the

debugger defers binding symbols and values until the breakpoint is

encountered. You can define the symbol at any point prior to that

time.

You can nest SET BREAK commands within DO command segquences. For

example:

DBG>SET B LOOP DO (E/BYTE BUF:BUF+ X10;SET B LOOP2 -~

_DO (E/WORD BUFX+4))

The sequence above shows one level of SET BREAK DO nesting. You can

extend this nesting to any 1level, as long as you ensure that the

initiating and terminating parentheses match.

All command sequences are executed in the context in effect when the

breakpoint occurs.

To cancel or alter the DO command sequence, enter a new SET BREAK

command with the desired content. 1If you cancel a breakpoint, any

associated DO command sequence is also canceled.

7-3

BREAKPOINTS

7.2.3 Breakpoint "After" Option

If your program is to stop only after the nth pass through a

breakpoint location, as in an iteration or conditional program loop,

specify the breakpoint as follows:

DBG>SET BREAK/AFTER:n address-expression

where n is a decimal integer in the range 1 through 32767.

Once an "after" breakpoint has stopped your program, it will continue

to stop your program each time it is encountered until you cancel it

(that is, the breakpoint functions as if the count is 1). You can

include the "after" option in any breakpoint specification.

The SHOW BREAK command (see below) displays an "after" count for a

breakpoint only if it is other than 1l; that is, the debugger must see

the location n more times before the breakpoint takes effect.

7.2.4 Temporary Breakpoints

A temporary (or one time) breakpoint stops your program once and then

is canceled automatically. You specify such a breakpoint by

DBG>SET BREAK/AFTER:0 address~expression [DO (command)]

The breakpoint status report produced by SHOW BREAK (see below) 1lists

a temporary breakpoint (by displaying /AFTER:0) until the debugger

executes 1it,.

7.3 SHOWING BREAKPOINTS

You can determine where current breakpoints are set, along with a

description of any breakpoint actions that were specified, by typing:

DBG>SHOW BREAK

The debugger responds with:

breakpoint/after:n at location etc.

breakpoint at location do-command-sequence, etc.

[[*

The debugger identifies the breakpoint 1locations by pathnames

(SYMBOLIC mode) or by virtual address (NOSYMBOLIC mode) in the current

radix mode (decimal, hexadecimal, or octal).

If the debugger does not find any breakpoints, it displays the

appropriate message.

7.4 CANCELING BREAKPOINTS

' You cancel a breakpoint when you no 1longer want it to stop your
program. All breakpoints are automatically canceled when you end the

current debugging session.

BREAKPOINTS

To cancel a specific breakpoint, type:

DBG>CANCEL BREAK address-expression

When canceling a breakpoint, you can not identify DO command sequences
or options that were previously established for the breakpoint. An
address expression of the correct value is sufficient information.

If the debugger cannot find a specified breakpoint, it prints a
message.

To cancel all breakpoints, type

DBG>CANCEL BREAK/ALL

7.5 BREAKPOINT EXAMPLES

The following examples illustrate use of the SET, SHOW, and CANCEL
BREAK commands. ’

7.5.1 Examples of Setting Breakpoints

DBG>SET BREAK TERMINAL IO\BEGIN+30

Sets a breakpoint at the location 30 bytes after the 1location
identified by the pathname TERMINAL IO\BEGIN (the debugger
interprets the value 30 in the current radix mode).

DBG>SET BREAK/AFTER:6 SORT\SEQCHK

Sets a breakpoint at the location identified by the pathname
SORT\SEQCHK. The debugger does not stop your program until the
sixth pass through this location.

DBG>SET BREAK SORT\INSEQ DO (EXAMINE/ASCII/BYTE @R7:@R7+°D10)

Sets a breakpoint at the 1location identified by the pathname
SORT\INSEQ. The debugger executes the DO command sequence after
the program stops at this breakpoint. The sequence tells the
debugger to report as ASCII characters the contents of the eleven
bytes beginning with the location that is indirectly addressed by
the contents of general register R7.

DBG>SET BREAK "X7249

Sets a breakpoint at virtual address 7249 (hexadecimal).

7.5.2 Examples of Showing Breakpoints

1. In SYMBOLIC mode (the initialized condition):

DBG>SHOW BREAK

routine breakpoint at SORT\INSEQ do(set scope inseq)
breakpoint at SORT\SEQCHK do (examine BUF:BUF+6,R8,COUNT)

The debugger reports the current breakpoint locations and
associated DO sequences.

7.5.3

BREAKPOINTS

In NOSYMBOLIC mode:

DBG>SHOW BREAK

breakpoint at 0000846

breakpoint at 000082A do (examine BUF:BUF+6,R8,COUNT)

The debugger reports the breakpoint 1locations as virtual

addresses in the current radix mode (in this case

hexadecimal).

Examples of Canceling Breakpoints

DBG>CANCEL BREAK TERMINAL IO\BEGIN

DBG>CANCEL BREAK SORT\SEQCHK

DBG>CANCEL BREAK "X7249

The debugger cancels the specified breakpoints.

DBG>CANCEL BREAK/ALL

The debugger cancels all breakpoints.

CHAPTER 8

TRACEPOINTS AND OPCODE TRACING

Tracing is the process of observing the sequence in which a program is

executed. By using the SET TRACE command, you can monitor the order

in which your program executes its instructions or statements. The

debugger can let you know whether unanticipated control transfers are

occurring as your program is running. There are two basic forms of

tracing: tracepoints, and tracing on opcodes.

A tracepoint is similar to a breakpoint. When your program reaches a

tracepoint, it momentarily suspends execution and reports the

tracepoint. It then automatically resumes execution. Thus you can

see 1if your program 1is reaching specified locations in the correct

sequence.

Tracing on opcodes means requesting that the debugger report the

occurrence of each instruction of a specified type, such as call-type

instructions and branch-type instructions.

8.1 USING THE TRACE FACILITY

You can specify tracing as follows:

e At the first byte of specified instruction locations (that is,

set tracepoints).

e At all call-type instructions in your program (includes all

CALLG, CALLS, RET, JSB, BSBW, BSBB, and RSB instructions).

e At all branch-type instructions in your program (includes all

branches and JMP; excludes subroutine-type instructions).

e At both call-type instructions and branch~type instructions.

Tracing degrades the performance of your program. If this concerns

you, enter breakpoints with DO command sequences that include GO as

the last (or only) command instead of using tracing (see SET BREAK

examples, Chapter 7).

At a tracepoint, the debugger reports the 1location and then allows

your program to proceed automatically. The report has the form:

trace at pc = location : instruction

where location is given symbolically or as a virtual address, and

TRACEPOINTS AND OPCODE TRACING

instruction 1is the instruction at the location shown. For example, a
tracepoint occurrence could be reported as:

trace at pc = SORT\INSEQ : CMPB (R0O)[R2],(RO) [R4]

where SORT\INSEQ 1is the pathname that represents the location

addressed by the program counter and CMPB (RO) [R2],(RO) [R4] is the

instruction at that location. 1In NOSYMBOLIC mode, the location would

be reported by

trace at pc = 00000846 : CMPB (RO)[R2],(RO) [R4]

If the message is displayed as

routine trace at pc = location : instruction

the value of location is actually 2 less than the current PC, and

location is an entry point or the beginning of a routine.

8.2 SETTING TRACEPOINTS

Once set, a tracepoint remains until you either cancel it or terminate
the debugging session. No tracepoints are set when you begin the
debugging session.

The debugger's tracepoint table stores the information relating to
each tracepoint. This table can accommodate a 1large number of
tracepoints. If the debugger reports a full table, simply cancel one
or more tracepoints to clear sufficient table space for the new entry.

8.2.1 1Individual Tracepoints

You set a tracepoint by specifying a command in the form:

DBG>SET TRACE address—-expression

You must be sure that address-expression is the first byte of an
instruction. (The debugger does not verify the wvalidity of
address-expression.)

To verify a tracepoint you can use the "current location" symbol, as
follows:

DBG>EXAMINE /INSTRUCTION

The debugger displays the instruction on which the tracepoint is set.

8.2.2 Tracing All Call-Type Instructions

To trace all call-type instructions, specify:

DBG>SET TRACE/CALL

TRACEPOINTS AND OPCODE TRACING

8.2.3 Tracing All Branch-Type Instructions

To trace all branch-type instructions, specify:

DBG>SET TRACE/BRANCH

8.2.4 Tracing All Call-Type and Branch-Type Instructions

To trace both forms of control transfer instructions, simply enter
both forms of SET TRACE commands in either order. For example:

SET TRACE/BRANCH

SET TRACE/CALL

8.3 SHOWING TRACING MODES

You can determine where tracepoints are set, and the form of tracing
in effect by using the command

DBG>SHOW TRACE

The debugger responds with:

tracepoint at location

tracepoint at location

tracing /CALL instructions: list-of-opcodes
tracing /BRANCH instructions: list-of-opcodes

The debugger identifies the tracepoint locations by pathnames or by
numeric virtual address in the current radix mode (decimal,
hexadecimal, or octal).

If the debugger does not find tracepoints set, and no opcode tracing
is in effect, it prints a message.

8.4 CANCELING TRACING

You can cancel a tracepoint when you no 1longer want to monitor a
program location. You can also disable one or both forms of opcode
tracing. All tracing is automaticglly canceled when you end the
current debugging session.

To cancel a specific tracepoint, type:

DBG>CANCEL TRACE address-expression

To cancel call-type instruction tracing, type:

DBG>CANCEL TRACE/CALL

To cancel branch-type instruction tracing, type:

DBG>CANCEL TRACE/BRANCH

To cancel all tracepoints and opcode tracing, type:

CANCEL TRACE/ALL

TRACEPOINTS AND OPCODE TRACING

8.5 TRACING EXAMPLES

The following examples illustrate the SET, SHOW, and CANCEL TRACE
commands.

8.5.1 Examples of Setting Tracepoints

DBG>SET TRACE TERMINAL_IO\BEGIN+30

Sets a tracepoint at the location 30 bytes after the 1location
identified by the pathname TERMINAL_ IO\BEGIN (the debugger

interprets the value 30 in the current radix mode).

DBG>SET TRACE "X7249

Sets a tracepoint at virtual address 7249 (hexadecimal).

8.5.2 Examples of Showing Tracepoints

1. 1In SYMBOLIC mode (the initialized condition) the debugger
reports the current tracepoint locations. For example:

DBG>SHOW TRACE

tracepoint at SORT\INSEQ

tracepoint at SORT\SEQCHK

2. In NOSYMBOLIC mode the debugger reports the tracepoint
locations as virtual addresses in the current radix mode (in

this case hexadecimal). For example:

DBG>SHOW TRACE

tracepoint at 0000846

tracepoint at 000082A

8.5.3 Examples of Canceling Tracepoints

DBG>CANCEL TRACE TERMINAL_IO\BEGIN

DBG>CANCEL TRACE SORT\SEQCHK

DBG>CANCEL TRACE "X7249

The debugger cancels the specified tracepoints.

DBG>CANCEL TRACE/ALL

The debugger cancels all tracepoints and opcode tracing.

CHAPTER 9

WATCHPOINTS

Watchpoints are selected program locations you monitor to identify

instructions that modify these 1locations. This chapter describes

watchpoints and the use of the commands, SET WATCH, SHOW WATCH, and

CANCEL WATCH, to establish, report the status of, and delete

watchpoints.

9.1 USE OF WATCHPOINTS

If an instruction modifies a watchpoint location, the debugger stops

your program after the instruction completes execution. The debugger

then reports the watchpoint location, the location of the instruction,

and both the previous and the current contents of the location being

monitored.

The number of bytes monitored at a watchpoint depends on whether the

location has a data type. For example, if the location is a double

precision FORTRAN variable, eight bytes are monitored. However, if no

data type 1is associated with the location (as in VAX-11l MACRO), four

bytes are monitored. The current LENGTH mode 1s ignored.

9.1.1 Watchpoint Reporting

When your program writes into a watchpoint 1location, the debugger

stops the program and reports the following:

write to location at pc = location

old value = value

new value = value

The "write to location" indicates the location that was medified. The

"at pc = location" indicates the location of the instructiion that did

the writing.

The debugger reports the locations either symbolically or as virtual

addresses; it reports the old (previous) value and the new {current)

value in hexadecimal.

For example, a watchpoint modification could be reported as

write to TERMINAL_IO\OUTLENGTH at pc = TERMINAL_IO\MAIH_CODE*Si

old value 000008A2

new value 00000000

where TERMINAL_IO\OUTLENGTH 1is the pathname that identifies the

location labeled OUTLENGTH in ‘module TERMINAL IO, and

WATCHPOINTS

TERMINAL_IO\MAIN_CODE+51 is the pathname plus offset that identifies
the location of the trapped instruction.

In NOSYMBOLIC mode, the locations are displayed as virtual addresses.
For example:

write to 00000432 at pc = 000006A2
old value = 000008A2

new value = 00000000

Note that values are displayed in hexadecimal.

9.1.2 Continuing From a Watchpoint

To continue your program from a watchpoint, enter a GO command or a
STEP command. After GO, program execution continues until a
watchpoint or another condition causes the program to stop. After
STEP, program execution continues either through the number of
instructions you specified (the default is one instruction) or until
some condition causes the program to stop.

The debugger reports the resumption of program execution by

start pc is location

where location is given either as a pathname or as a virtual address.

9.2 SETTING WATCHPOINTS

You specify a watchpoint requést by,

DBG>SET WATCH address~expression

Once set, a watchpoint remains active until you either cancel it or
terminate the debugging session. No watchpoints are set when you
initialize the debugging session.

The debugger's watchpoint table stores the information relating to
each watchpoint. The space allocation can accommodate a large number
of watchpoints.

9.3 SHOWING WATCHPOINTS

You can determine where current watchpoints are set by typing

DBG>SHOW WATCH

The debugger responds with:

watchpoint at location for nnn bytes

watchpoint at location for nnn bytes

The debugger identifies the watchpoint 1locations by pathnames
(SYMBOLIC mode on) or by numeric virtual address (NOSYMBOLIC mode on)
in the current radix mode (decimal, hexadecimal, or octal). The value
nnn, 1in decimal, indicates how many bytes are monitored by the
associated watchpoint.

WATCHPOINTS

9.4 CANCELING WATCHPOINTS

You can cancel a watchpoint when you no longer want to monitor the
specified 1location(s). All watchpoints are automatically canceled
when you end the current debugging session.

To cancel a specific watchpoint, type:

DBG>CANCEL WATCH address—expression

If you specify CANCEL WATCH/ALL, all watchpoints are canceled.

If the debugger cannot find the specified watchpoint, it displays a
message.

9.5 WATCHPOINT EXAMPLES

The following examples illustrate the SET, SHOW, and CANCEL WATCH
commands.

9.5.1 Examples of Setting Watchpoints

DBG>SET WATCH TERMINAL IO\BEGIN

The debugger watches the location identified by the pathname,
TERMINAL IO\BEGIN.

DBG>SET WATCH "X7249

The debugger watches virtual address 7249 (hexadecimal).

9.5.2 Examples of Showing Watchpoints

1. With SYMBOLIC MODE on (the initialized condition):

DBG>SHOW WATCH

watchpoint at SORT\INSEQ for 4. bytes
watchpoint at SORT\SEQCHK for 2. bytes

The debugger reports the current watchpoint locations by
pathnames.

2. With NOSYMBOLIC mode on:

DBG>SHOW WATCH

watchpoint at 0000846 for 4. bytes

watchpoint at 000082A for 2. bytes

The debugger reports the watchpoint 1locations as numeric
virtual addresses. The addresses are displayed according to
the current radix mode.

WATCHPOINTS

9.5.3 Examples of Canceling Watchpoints

DBG>CANCEL WATCH TERMINAL IO\BEGIN

DBG>CANCEL WATCH SORT\SEQCHK

DBG>CANCEL WATCH "X7249

The debugger cancels the specified watchpoints.

9.6 WATCHPOINT RESTRICTIONS

When you set a watchpoint, the entire page containing the watchpoint
location is protected. When an instruction attempts to write to any
location on that page, at user mode level, the modification 1is made
and execution continues unless the modification was to the watchpoint
location. In this case, the debugger suspends execution and reports
the o0ld and new contents, and the location of the instruction that
caused the change.

If a system service needs to write to a location on a protected page,

it will return failure status. Therefore, you should not set

watchpoints on pages that contain locations that may be modified by
system software; for example, I/O status blocks subject to
modification by Record Management Services.

CHAPTER 10

EXAMINE AND DEPOSIT COMMANDS

This chapter describes how to use the EXAMINE and DEPOSIT commands to
display and change the contents of selected memory locations.

10.1 EXAMINING MEMORY LOCATIONS AND REGISTERS

The EXAMINE command displays the contents of selected memory locations

and registers.

The command format is:

DBG>EXAMINE [/mode] address|:address][,address[:address]]

You can specify a value for /mode, to override the current modes, as

described in Section 5.3.4.

You can use EXAMINE to display any combination of the following:

e A single location

@ Multiple locations

e A range of contiguous locations

@ Multiple ranges of locations

If you specify more than one address, and separate them with commas,
the contents of the locations specified are displayed. However, if
you use a colon to separate a pair of addresses, then all addresses

within that range are displayed. For example

DBG>EXAMINE/WORD 1028,1040

00001028: 046b

00001040: OEF40

DBG>EXAMINE/WORD 1028:1040

00001028: 046B

0000102A: 0000

0000102C: 08C2

0000102E: OD7EF

00001032: OFFF3

00001034: OAEFF

00001036: 0DOO4

00001038: 04AE

0000103A: 9850

0000103C: 22A0

0000103E: 0D450

00001040: OEF40

10-1

EXAMINE AND DEPOSIT COMMANDS

To specify multiple ranges, use a command such as:

DBG>EXAMINE/WORD 1028:102E,103A:1040

The results are:

00001028: 046B

0000102A: 0000

0000102C: 08C2

0000102E: ODOSE

0000103Aa: 9850

0000103C: 22A0

, 0000103E: 0D450

00001040: OEF40

When you specify a range, you must specify the low address first.
When you specify more than one individual location, you can use any
order.

If you wish to display the next location, you needn't specify an
address. Thus, after you've examined a location by specifying an
address, you don't have to specify the next contiguous location. For
example:

DBG>SET MODE WORD

DBG>EXAMINE 1028

1028: 046B

DBG>EXAMINE

102a: 0000

10.1.1 Examining Numeric Data

The following examples illustrate the use of EXAMINE to display the
contents of a range of locations as hexadecimal data in the length
modes, LONG, WORD, and BYTE, respectively.

DBG>SET MODE

DBG>EXAMINE

HEXADECIMAL

4000:4004

» LONG , NOINSTRUCTION , NOSYMBOLIC

00004000:

00004004:

0DO500ADO

01D05000

DBG>EXAMINE/WORD 4000:4006

00004000: 0ADO

00004002: 0DO50

00004004: 5000

00004006: 01DO

DBG>EXAMINE/BYTE 4000:4007

00004000:

00004001:

00004002:

00004003:

00004004:

00004005:

00004006

00004007:

0DO0

(17:

50

0Do

00

50

0DO

01

10 i
[\

S}

EXAMINE AND DEPOSIT COMMANDS

The current contents of these locations could be displayed as

instructions by

DBG>EXAMINE/INSTRUCTION 4000:4004

4000: MOVL #0A, RO

4003: MOVL #00, RO

The example above illustrates that the current length mode does not

affect how the debugger increments memory to display the instructions.

10.1.2 Examining Instructions

The following example illustrates how EXAMINE displays the contents of

several locations as VAX-11] MACRO instructions. For complete

information on examining data as instructions, refer to Section 5.4.3.

DBG>EXAMINE/INSTRUCTION SORT\BEGIN+12 : TEST SEQ

SORT\BEGIN+12: ADDL3 #10,R2,R4

SORT\TEST_SEQ: CMPB (RO) [R2],(RO) [R4]

In INSTRUCTION mode, the debugger ignores the current length mode and

displays whatever storage the instruction occupies. With the

exception of PC relative displacements, literals and displacements 1in

instructions are displayed 1in the current radix mode. PC relative

displacements are evaluated and displayed symbolically (SYMBOLIC mode)

or as virtual addresses (NOSYMBOLIC mode).

10.1.3 Displaying Locations As ASCII Characters

The following example illustrates how EXAMINE displays the contents of

a range of locations as ASCII characters. For complete information on

examining data as ASCII characters, refer to Section 5.4.5.

DBG>EXAMINE/ASCII/LONG CHARS:CHARS+7"X13

CHARS: 1IT'S

CHARS+4: A "

CHARS+8: SMAL

CHARS+0C: L" W

CHARS+10: ORLD

10.2 MODIFYING MEMORY LOCATIONS AND REGISTERS

The DEPOSIT command lets you alter the contents of memory 1locations

and registers. The command format is:

DBG>DEPOSIT[/mode,...] address-expression=datal,data,...]

With DEPOSIT, you can enter data 1in one location or in several

sequential locations beginning with a specified location.

10-3

EXAMINE AND DEPOSIT COMMANDS

10.2.1 Depositing Numeric Data

The following examples illustrate the entry of a hexadecimal value in

a byte, a word, and a longword, respectively.

The suggested method is to first display the current contents of the

location. For example:

DBG>EXAMINE 4000

00004000: ODO500ADO

The byte of data is deposited and verified by,

DBG>DEPOSIT/BYTE 4000 = “XFF

DBG>EXAMINE .

00004000: ODOS5S500AFF

The word of data is deposited and verified by,

DBG>DEPOSIT/WORD 4000 = “XFFFF

DBG>EXAMINE .

00004000 ODOSOFFFF

The longword of data is deposited and verified by,

DBG>DEPOSIT 4000 = “XFFFFFFFF

DBG>EXAMINE .

00004000: OFFFFFFFF

The following example illustrates the entry and verification of data

in an intermediate byte of a longword that initially contains

777777717,

DBG>SET MODE LONG , HEXADECIMAL

DBG>EXAMINE 4000

00004000: 77777777

DBG>DEPOSIT/BYTE 4002 = OFF

DBG>EXAMINE 4000

00004000: 77FF7777

Note that a 0 must be used to prefix a hexadecimal number that starts

with an alphabetic character.

10.2.2 Depositing Instructions

This section describes how to use DEPOSIT to enter data as

instructions. For complete information on depositing instructions,

refer to Section 5.4.3.

The storage requirements of VAX~1l MACRO instructions vary according

to the instruction type, and number and complexity (addressing mode)

of operands. The debugger ignores the current 1length mode when it

enters instructions; instead the <current address 1is incremented

according to the number of bytes required by the instruction.

An instruction string entry must be enclosed with quotation marks or

apostrophes.

DBG>DEPOSIT/INSTRUCTION INCRS = 'ADDL3 #5,R3,R4'

The debugger interprets numeric values in the current radix mode.

10-4

EXAMINE AND DEPOSIT COMMANDS

When entering an instruction, you must verify that the length of the

data string can be accommodated by the number of bytes you intend to

overwrite. While you cannot deposit more than there is space for, you

can use the NOP instruction to fill bytes that are unoccupied after

you complete the deposit of an instruction or instructions.

You must also enter a B", W', or L” when you specify a value offset
from a register. For example:

B4 (R5)

Leading zeros must be specified for hexadecimal constants that begin

with alphabetic characters, to differentiate them from symbols. For

example:

B OF (R5)

Symbols can be included in instructions being deposited. However,

symbolic expressions must not contain the backslash character.

10.2.3 Depositing ASCII Data

ASCII character input is by quoted string. You must enclose each

string with quotation marks or apostrophes. This provision lets you

include literal quotation marks within a string. For example,

DBG>DEPOSIT/ASCII WINK = '72ZZ'

DBG>DEPOSIT/ASCII THINK = "IT'S"

DBG>DEPOSIT/ASCII PLINK = '"1"TM!

The ending delimiter must match the beginning delimiter.

The current length mode has no effect on the string being deposited.

The string is deposited as specified, with no truncation or padding.

10-5

CHAPTER 11

USING THE EVALUATE COMMAND

The EVALUATE command lets you use the debugger as a calculator,

expression analyzer, radix converter, bit field examiner, and literal

verifier.

11.1 USING EVALUATE

EVALUATE interprets an input expression in terms of the current modes,

reduces the expression to a value, and displays the value in the

current modes. The command format is:

DBG>EVALUATE [/mode] [...] expression[,...]

The evaluations of multiple input expressions are displayed in a list,

which is ordered to match the input order.

11.2 EXPRESSION EVALUATION

EVALUATE performs integer arithmetic with all operations performed

according to the current length mode (that is, BYTE, WORD, or LONG)

with arguments and results limited to the corresponding value ranges.

The debugger truncates values that exceed the current length mode by

discarding most-significant~bit positions, and prints a message.

EVALUATE analyzes an expression in the context of the current

language. The rules of precedence applicable to VAX-1ll MACRO are

described in Section 4.1.
TM

11.3 EVALUATING BIT FIELDS

You can use EVALUATE to display the current contents of specified bits

in a location. The syntax is:

DBG>EVALUATE value <high bit:low bit>

You specify the bounds of a bit field by decimal integers, regardless
of the <current radix mode. Bit positions are from 0 (least
significant) through 31 (most significant). The debugger extracts the
contents of the bit positions, right justifies them in a longword, and

reports the contents in the current radix mode. The current length

mode is ignored.

11-1

USING THE EVALUATE COMMAND

The following method is recommended for evaluating bit fields of a

location.

DBG>EXAMINE address—expression

address: contents

DBG>EVALUATE \ <high bit:low bit>

bit-field value

The EXAMINE command establishes the location's contents as the value

represented by the backslash (\), which is the "last value displayed"

symbol. This sequence is necessary because EVALUATE simply reduces an

input expression to a value, but EXAMINE reduces an expression to an

address and displays the contents of that address.

Examples:

DBG>EXAMINE LOOP3

WATCH\LOOP3: OFFFF8FDO

DBG>EVALUATE \ <6:4>

00000005

To display other bit patterns of the same location, you can make use

of the fact that the "current location" symbol retains the address

that you last examined. For example:

DBG>EXAMINE .

WATCH\LOOP3: OFFFF8FDO

DBG>EVALUATE \ <8:6>

00000007

11.4 EVALUATING VAX-11l MACRO LITERALS

When SYMBOLIC mode is in effect, the debugger does not translate

literal values 1into their symbolic equivalents for purposes of

displaying these values. Thus, a displayed instruction may not appear

exactly as you entered it 1in the source code. For example, the

instruction

MOVL #6,0FFSET (FP)

would be displayed as

MOVL 46 ,W OFFDC(FP)

| 3

where OFFSET represents the literal -24.

The EVALUATE command can help you verify that instructions are the

same. If you type

DBG>EVALUATE/LITERAL expression

The debugger displays every literal pathname that has the value of the

expression as 1its literal assignment. It is then a simple matter to

scan the pathname list for the literal symbol name you wish to verify.

11-2

CHAPTER 12

EXCEPTION CONDITIONS

Exception conditions are conditions that interrupt execution of your

program. In the context of the debugger, an exception condition is

either forced by the debugger, or external to the debugger. Forced

exception conditions include: the occurrence of a breakpoint,

tracepoint, or watchpoint; or the completion of a requested program

step or debugger command.

This chapter describes the debugger's response to both forced
exception conditions and external exceptions. It does not describe

the cause and effect of external exception conditions, nor does it
describe how to write handler routines for them. Refer to the VAX/VMS

System Services Reference Manual, the VAX~1ll MACRO User's Guide, and

the VAX-11/780 Architecture Handbook for appropriate information.

12.1 PROCESSING EXCEPTION CONDITIONS

Exception conditions are processed in the following manner. An

exception condition interrupts your program and causes VAX/VMS to pass

control to the debugger. The debugger must first determine if the

exception was forced. 1If it was, the debugger reports the condition

by printing the appropriate message. For example:

Breakpoint exception: [routine] break at pc LOCATION

Tracepoint exception: [routine] trace at pc LOCATION: INSTRUCTION

WATCHPOINT EXCEPTION: WRITE TO LOCATION at pc = LOCATION

old value = value

new value = value

Step exception: [routine] stepped to pc = LOCATION

If the debugger determines that the exception condition 1is external,

it returns control to VAX/VMS unless you previously specified SET
EXCEPTION BREAK (described in Section 12.2). This causes the debugger

to react as if you had- specified a breakpoint at the exception

location. Generally, you will have to exit from the debugger. when an
exception break occurs. 1

If you did not specify this option, VAX/VMS gets control. What
happens next depends on whether you provided a condition handler for
the exception condition. If VAX/VMS finds such a handler, it allows
the handler to decide the future of your program. If a handler is not

found, or if all handlers resignaled the condition, the debugger again

acquires control, reports the type of exception condition, and waits

for your command.

12-1

EXCEPTION CONDITIONS

12.2 BREAK ON EXTERNAL EXCEPTION CONDITION

Rather than have the debugger return control to VAX/VMS for an

external exception condition, you can request that the debugger treat

all such exceptions as breakpoints. The command is

DBG>SET EXCEPTION BREAK

The debugger reports the occurrence of exception conditions by

printing the error message for the exception, and then printing the

following:

exception break at pc = LOCATION

Where LOCATION indicates where the error occurred 1in your program.

The debugger then prints its prompt message.

To cancel this option, enter the command

DBG>CANCEL EXCEPTION BREAK

12-2

CHAPTER 13

CALLING ROUTINES AND SHOWING CALLS

The debugger's CALL command lets you call procedures or subroutines in

your program directly from command level. This chapter tells you how
to use the CALL command, and how to use the SHOW CALLS command to

report all currently active call frames for your program.

13.1 CALLING ROUTINES

The debugger's CALL command executes a call directly to any routine in

your program's address space, whether or not your program actually

includes a call to that routine.

The command format is:

DBG>CALL name [(argument-list)]

where name is the routine's symbolic name or its virtual address.

Arguments in the optional argument list must be separated by commas;

these arguments are actual arguments to be passed to the called

routine. The debugger assumes that the called routine conforms to the

VAX-11 procedure calling standard (refer to the VAX-11/780

Architecture Handbook for details).

You can thus easily access any routine in your program for debugging

purposes. You can also debug unrelated routines by linking them with

a dummy main module. The dummy module need only provide a transfer

address for the image. You need not be concerned with coding call

statements and argument lists. You can express them with the CALL

command.

The debugger creates a complete set of pseudo-register 1locations for
interim wuse by the <called routine. When control returns from the
called routine to the point at which it was called, the debugger

discards the 1interim registers, restores the previous register
context, and displays the value returned by the called routine.

13.2 SHOWING ACTIVE CALLS

The SHOW CALLS command reports various information concerning the

current level of nested procedure calls. The command format is:

DBG>SHOW CALLS [decimal-integer]

where you have the option of requesting that all call levels be
reported (the default) or requesting that the debugger report on a

specified number of call levels. The call count can be any decimal

13-1

CALLING ROUTINES AND SHOWING CALLS

integer in the range 0 through 32767. 1If the call count exceeds the

number of calls currently active, it is ignored. If you specify O,

the command is accepted, but no output results.

Normally, the debugger responds with the following report:

MODULE NAME ROUTINE NAME LINE ABSOLUTE PC RELATIVE PC

The first line in the report refers to the current call 1level. The

remaining lines report all (or the requested number) of call levels in

the order of most recent call through first call. For VAX-1ll MACRO,

the report presents the following information.

MODULE NAME Reports the module in which the call occurred. If the

debugger's symbol table does not include symbol

information for the module in which the call occurred,

the module name remains blank and the debugger reports

the routine name by the appropriate global symbol.

ROUTINE NAME Reports the routine or program section name 1in which

the call occurred.

LINE Left blank for VAX-1]1 MACRO (that is, it has no

meaning). Used only for 1line-oriented (statement)

languages (such as FORTRAN) to identify the line number

of the call.

RELATIVE PC Reports the address of the call relative to the symbol

expressed under ROUTINE NAME. The debugger-displays

the relative address in hexadecimal, regardless of the

current radix mode.

ABSOLUTE PC Reports the virtual address.of the call in hexadecimal,

regardless of the current radix mode.

If there are no active call frames, the debugger responds to SHOW

CALLS with an error message. This indicates that the stack has been

corrupted, or that the user program has terminated.

13-2

CHAPTER 14

PROCESSOR STATUS LONGWORD (PSL)

This chapter describes how to display the current contents of the
Processor Status Longword (PSL), and how to alter its contents to

support your program debugging. For a detailed description of' the

PSL, see the VAX-11/780 Architecture Handbook.

14.1 DISPLAYINGTHE PROCESSOR STATUS LONGWORD

To display the current contents of the Processor Status Longword
(PSL), type:

DBG>EXAMINE/SYMBOLIC PSL

The debugger responds with:

PSL: CMP TP FPD IS CURMOD PREMOD IPL DV FU IV T N Z V C

n n n n mode mode 1v n n nnnnnhn

where "n" is 0 or 1. The interrupt priority level, 1lv, 1is displayed
as a hexadecimal value, 0 through 1F. Mode is expressed as: KERN,
EXEC, SUPR, or USER.

You can display the current contents of the PSL as a hexadecimal value
by specifying:

DBG>EXAMINE/NOSYMBOLIC/HEXADECIMAL PSL

14.2 ALTERING THE PROCESSOR STATUS LONGWORD

You can alter the PSL's low-order word, which is the processor status
word (PSW), regardless of the privileges allocated to your account.
However, you cannot alter the following conditions, regardless of the
privileges allocated to your account.

CMP ~ compatibility mode

IS - interrupt stack

CURMOD =~ current mode

PREMOD - previous mode

You can compute the value to be entered :in the PSL by

DBG>EVALUATE /HEXADECIMAL expression

where "expréssion" is the sum of key numbers selected from Table 14-1
according to the conditions that must be maintained (that is,
reentered as they were displayed) and the wconditions that you wish to
change.

14-1

PROCESSOR STATUS LONGWORD (PSL)

To replace the current PSL contents, type:

DBG>DEPOSIT/HEXADECIMAL PSL = value

Table 14-1

PSL Alteration Values

Bit Key Key Number Description

(Hex)

31 CMP 80000000 Compatibility mode

30 TP 40000000 Trace Pending

29

MBZ 0 (Must Be Zero)

28

27 FPD First Part Done

26 IS Interrupt Stack

25 CUR- 2000000 Current mode: 3000000=user,

24 MOD 1000000 2000000=supr, 1000000=exec, O=kern

23 PRE- 800000 Previous mode: 0C00000=user

22 MOD 400000 800000=supr, 400000=exec, O=kern

21 MBZ 0 (Must Be Zero)

20 IPL 100000 Interrupt priority level: 0 - 1F.

Enter the displayed or desired

19 80000 priority level in hexadecimal

and append 0000 to the value.

18 40000 Remember to precede the leftmost

character, if an alphabetic,

17 20000 with a zero.

16 10000-+ EXAMPLE: 0C0000 for level 12,

15 0 (must be zero)

14 0 (must be zero)

13 0 (must be zero)

12 0 (must be zero)

11 0 (must be zero)

10 0 (must be zero)

9 0 (must be zero)

8 0 (must be zero)

7 80 Decimal overflow trap enable

(continued on next page)

14-2

PROCESSOR STATUS LONGWORD (PSL)

Table 14~1 (Cont.)

PSL Alteration Values

Bit Key Key Number Description
(Hex)

6 40 Floating underflow trap enable

5 20 Integer overflow trap enable

4 10 Trace trap enable

3 8 Negative condition code

2 4 Zero condition code

1 2 Overflow condition code

0 1 Carry condition code

14-3

CHAPTER 15

DEBUGGER MESSAGES

The debugger provides four classes of messages:

e Informational - informational messages are provided to let you

know the status of the debugger or your program. While not,

strictly speaking, error messages, they may indicate erroneous

command input. For example, the message

3DEBUG-I-NOSUCHBPT, no such breakpoint

means you have specified a breakpoint incorrectly.
Informational messages are prefixed:

3¥DEBUG-I-

e Warning - warning messages are displayed for the least severe

level of errors detected. Your debugging session continues

unaffected after a warning message, providing you a chance to

respecify the erroneous command or operand. Warning messages

are prefixed:

3sDEBUG~-W-

® Error - error messages indicate that the debugger has detected
a condition that prevents it from continuing the session. You

should submit a Software Performance Report (SPR) if vyou

receive a severe error message from the debugger. Severe
errors are prefixed:

$DEBUG~E-

® Fatal - fatal errors are errors that directly affect the
debugger. Following a fatal error, the debugger prints the
appropriate message and returns control to the VAX/VMS Command
Interpreter.

You should submit an SPR if you receive a fatal error message
from the debugger. Fatal error messages are prefixed:

$DEBUG~F-~

Each message is listed in the following subsections, alphabetically
within subsection.

15-1

DEBUGGER MESSAGES

15.1 INFORMATIONAL MESSAGES (PREFIX:$DEBUG-I-)

DBGBUG, DEBUG coding error, please report no. ‘'number'

If you receive this message, please submit an SPR stating the
conditions that existed when the message appeared, including the
number specified in the message.

EXITSTATUS, is 'xxx'

This message is displayed to indicate that the user image has
exited, with the status specified by xxx. The string xxx is
produced by the system's error message facility.

INITIAL, language is ‘'aaa', scope and module set to 'name'

You usually receive this message when you initiate the debugger,
to inform you of the debugger's settings for language, scope, and

initial symbol table contents (for local symbols).

LONDST, too many modules - some ignored

This message indicates that when the debugger was initialized, it
found more modules 1in the image than it could accommodate; to

determine which modules were included, use the SHOW MODULE
command. If crucial modules were omitted, relink the image,
specifying those modules before modules not needed for debugging

purposes.

MODNOTADD, no space to add module 'name'

A SET MODULE command has failed because of insufficient symbol
table space. To make room, use CANCEL MODULE to remove modules

with symbols that are no longer needed, then retry the SET MODULE

command. You can use SHOW MODULE to see how much space is needed

and available.

NOBREAKS, no breakpoints are set

This is the response to SHOW BREAK when no breakpoints are set.

NOGLOBALS, some or all global symbols not accessible

This message indicates an error or overflow in the global symbol

table of the image. Reduce the number of global symbols.

NOLOCALS, image does not contain local symbols

This message indicates that when the debugger was initiated there
were no local symbols to be put into its symbol table. Recompile

or reassemble, specifying DEBUG or TRACEBACK, and then relink the

image.

NOSUCHBPT, no such breakpoint

This is the response to CANCEL BREAK address-expression when no

breakpoint is set at the specified address.

NOSUCHTPT, no such tracepoint

This is the response to CANCEL TRACE address-expression when no

tracepoint is set at the specified address.

15 1

N

DEBUGGER MESSAGES

NOSUCHWPT, no such watchpoint

This is the response to CANCEL WATCH address—-expression when no
watchpoint is set at the specified address.

NOTALLSYM, cannot initialize symbols for default modules

The debugger could not put symbol information 1into the symbol
table for the first module in the image (the default module).
Use SET MODULE to initialize the symbol table.

NOTRACES, no tracepoints are set, no opcode tracing

This is the response to SHOW TRACE when no tracepoints are set,
and no opcode tracing is in effect.

NOWATCHES, no watchpoints are set

This is the response to SHOW WATCH when no watchpoints are set.

NUMTRUNC, number truncated

The debugger truncated a numeric entry that exceeded the current
length mode, or could not be accommodated in the specified
context.

STEPINTO, cannot step over PC = 'xxx'

The debugger was forced to ignore the OVER mode when it reached
the location indicated. An INTO step will be performed.

STGTRUNC, string truncated

The debugger truncated an ASCII string entry that exceeded the
current length mode, or was otherwise inappropriate for the
context in which it was specified.

15.2 WARNING MESSAGES (PREFIX:3%DEBUG-W-)

BADOPCODE, opcode 'xxx' is unknown

You specified an unrecognized opcode to the debugger.

BADSCP, scope must end with module or routine

You have specified the SET SCOPE command, but the symbol type of the
pathname 1is not module or routine. A SCOPE entry must end with a
module name (VAX-11 MACRO) or routine name (VAX-11 FORTRAN IV-PLUS).

BADSTARTPC, cannot access start PC = 'xxx'

The PC indicated is not a readable address, therefore it can not be
executed. Specify a valid start PC location.

BADSTEP, cannot decode instruction at address 'xxx'

A STEP command reached an instruction that is not recognized by the
debugger. Check to be sure that your image has not been overwritten.

15-3

DEBUGGER MESSAGES

BADWATCH, cannot watch protected address 'xxx'

You have requested a watchpoint for a protected location.

BITRANGE, bit range out of limits

You have specified a bit range in an EVALUATE command that exceeds the

range of bits that can be evaluated. The valid range is <31:0>,

decimal. Only numeric characters are valid in a bit range.

BRTOOFAR, destination 'xxx' is too far for branch operand

You deposited a branch instruction that contained an unreachable

target location.

DIVBYZERO, attempted to divide by zero

An expression can not be evaluated because it contains an attempt to

use a divisor equal to zero.

ENDWITHGO, cannot imbed GO, STEP, or CALL in command sequence

A command sequence contained a GO, STEP, or CALL that was not the last

command in the sequence. Commands up to, but not including, the GO,

STEP, or CALL are executed. The rest of the sequence is ignored.

EXARANGE, invalid range of addresses

You specified the address range in the wrong order. The correct order

is: low bound:high bound.

EXPSTKOVR, expression exceeds maximum nesting level

An expression containing more than 20 nesting levels was encountered.

INTEGER, this operation only valid on integers

You attempted to perform a computation that accepts only integer

values.

INVARRDSC, invalid array descriptor

The debugger detected an invalid array descriptor. If this message

occurs for any reason other than an incorrect specification in a

command you entered to the debugger, please submit an SPR.

INVCHAR, invalid character

A character you entered in a command is not acceptable in the current

context.

INVDIM, subscript error, was declared DIMENSION 'xx'

A subscript was specified 1incorrectly, according to the DIMENSION

statement in the FORTRAN program.

INVNUMBER, invalid numeric string 'nn'

The number specified as 'nn' is invalid in the current context.

INVOPR, unrecognized operator in expression

An expression contained a character that the debugger did not

recognize, in place of a valid operator.

15-4

DEBUGGER MESSAGES

INVPATH, improperly terminated pathname beginning with 'xxx'

An improperly-formatted pathname has been encountered: "symbol"
followed by \ must begin a pathname. The characters following \ do
not constitute a valid symbol.

LASTCHANCE, stack exception handlers lost, re-~initializing stack

A user-program error has caused the VAX/VMS condition handling
mechanism to fail. The probable cause is an overwritten stack.

MAXDIMSN, maximum number of subscripts is 'nn'

This is a FORTRAN-only message produced when an array reference 1is
used in a debugger expression. The array was declared to have the
indicated number of dimensions (nn), but the reference was made with
either too few or too many subscripts.

MULTOPR, multiple successive operators in expression

You entered an expression that contains two or more operator
characters in succession.

NEEDMORE, unexpected end of command line

The command 1line was terminated before it contained a complete
command. It was valid to the point of termination.

NOACCESSR, no read access to virtual address 'loc'

The debugger does not have read access privileges to the address
specified as 'loc'. The value of 'loc' is always hexadecimal.

NOACCESSW, no write access to virtual address 'loc'

The debugger does not have write access privileges to the address
specified as 'loc'.

NOANGLE, unmatched angle brackets in expression

An expression you entered contains a left angle bracket that has no
matching right angle bracket.

NOBRANCH, instruction requires branch-type operand

A branch-type instruction was given which did not contain a valid
operand for the destination field. For example, you cannot
DEPosit/Instruction addr='BNEQ RO'.

NOCALLS, no active call frames

Response to a SHOW CALLS command when the debugger locates no active
call frames. Your image may have exited, or the stack may have been
corrupted.

NODECODE, cannot decode instruction

This message is produced when you specify an EXAMINE command in
instruction mode, and the indicated byte sequence is not a valid
VAX-11 instruction.

15-5

DEBUGGER MESSAGES

NODELIMTR, missing or invalid instruction operand delimiter

An instruction has been given that contains a syntax error at the

point where one operand has been terminated and another is supposed to

begin. For example, MOVL RO Rl (you forgot the ',' as in RO,R1l).

NOEND, string beginning with 'xxx' is missing end delimiter x

An ASCII or INSTRUCTION string must begin and end with either

apostrophes or quotes. If the ending delimiter is not encountered

before the string ends, this message is produced. The message dgives

the ending delimiter the debugger expected to find (shown as x,

above), and the first 10 characters of the string you entered.

NOINSTRAN, cannot translate opcode at location 'loc'

The contents of the location indicated as 'loc' are not a recognizable

opcode. The value of 'loc' is always hexadecimal.

NOLABEL, routine 'name' has no %label 'label'

You attempted to refer to a label that does not exist in the indicated

routine.

NOLINE, routine 'name' has no %$line 'line'

The indicated line number does not exist in the subroutine specified

as 'name'. Consult the compiler 1listing. This message is also

produced when the indicated 1line number exists, but does not

correspond to executable code. An example of this is the line number

of a FORMAT statement.

NOLITERAL, no literal translation exists for '=xxx'

The value indicated as 'xxx' has not been assigned to a symbolic

equivalent of type literal (absolute). :

NOOPRND, missing operand in expression

One or more operands have been omitted from an expression.

NOSUCHLAB, no scope exists to look up %label 'label’

You referenced the indicated label without an implicit or explicit

associated pathname. 1If you specifically indicated that the scope was

to be ignored, or scope was <null>, and a PC-implied scope cannot be

derived, this message is produced.

NOSUCHLAN, language 'name' is unknown

The debugger does not recognize the language specified.

NOSUCHLIN, no scope exists to look up %line 'line'

You referenced the indicated line without an associated pathname. If

you specifically indicated that the scope was to be ignored, or scope

was <null>, and a PC-implied scope cannot be derived, this message is

produced.

NOSUCHMODU, module 'name' does not exist

The specified module is not part of the image.

15-6

DEBUGGER MESSAGES

NOSYMBOL, symbol 'name' does not exist

The specified symbol cannot be located in the debugger's symbol table.

NOTDONE, 'xxx' not yet a supported feature

You attempted to use a debugger feature that is not yet implemented.

The message indicates which feature was requested.

NOTIMPLAN, 'xxx' is not implemented at command level

You tried to SET the indicated LANGUAGE, which the debugger knows

about, but does not yet implement as a fully-supported language.

OPSYNTAX, instruction operand syntax error

You have specified invalid syntax in an operand within an instruction.

For example, MOVL (RO],Rl.

PARSEERR, internal parsing error

If you receive this message, please submit an SPR.

PARSTKOVR, parse stack overflow, simplify expression

The expression you entered contains too many levels of angle brackets

Cenode Reenter the expression, reducing the number of angle bracket

levels. If this message recurs frequently, submit an SPR.

PATHTLONG, too many qualifiers on name

You entered a pathname that comprised more than 15 elements.

REDEFREG, register name already defined

You attempted to use a register name as a symbol to be defined in the

DEFINE command.

RESOPCODE, opcode 'xxx' is reserved

The operand you specified is reserved for DIGITAL's use only.

SUBSTRING, invalid substring (a:b), was declared CHARACTER* NN

You specified a substring that is not entirely within a character

string declared in a FORTRAN CHARACTER declaration.

SYNTAX, command syntax error at or near 'xxx'

Your command contains incorrect syntax at a point 1in the 1line

indicated by 'xxx'.

15-7

DEBUGGER MESSAGES

15.3 ERROR MESSAGES (PREFIX:$%DEBUG-E-)

The following error messages indicate that the debugger is unable to
continue execution of your program. The image exits, and control
returns to the VAX/VMS Command Interpreter.

If you receive any of these messages, please submit an SPR.

DBGERR, internal DEBUG coding error

DEBUGBUG, internal DEBUG coding error; please report no. 'number'

FRERANGE, storage package range error

FRESIZE, storage package size error

INVDSTREC, invalid DST record

NOFREE, no free storage available

NORSTBLD, cannot build symbol table

RSTERR, error in symbol table

15.4 FATAL ERROR MESSAGES (PREFIX:$DEBUG-F-)

The following messages indicate errors fatal to execution of the
debugger. Control returns to the VAX/VMS Command Interpreter. If you

receive any of these messages, please submit an SPR.

NOWBPT, cannot insert breakpoint

NOWOPCO, cannot replace breakpoint with opcode

NOWPROT, cannot set protection

15-8

APPENDIX A

COMMAND SUMMARY

This appendix summarizes the commands that can be wused 1in debugging
VAX~-11 MACRO programs. Refer to the appropriate language user's guide
for information regarding the use of the debugger for programs written
in other languages.

The summary presents the commands in alphabetical order.

Brackets ([...]), where shown, enclose optional command elements;
they are not part of the syntax.

See SET MODE for entry/display mode keywords.

With the exception of ASCII character input, the debugger
automatically converts lowercase input to uppercase (that is, the

debugger is not sensitive to the case of an input character).

"Address-expression" in the command syntax representations can be the

pathname (see SET SCOPE) of a local or global symbol in your program,

a numeric value, a symbol that you defined during this debugging

session, a debugger special character, or an expression that combines

any of these elements.

The term "program" means an executable image (refer to the VAX-11

Linker Reference Manual for additional information).

In VAX-11 MACRO, the radix indicators for numeric address or data
entries are: "X (for hexadecimal), "D (for decimal), and "0 (for

octal).

The debugger supports command line continuation. A command 1line can
contain up to approximately 500 characters, including nonprinting
characters. You indicate continuation with the hyphen (-) as the last
character prior to the carriage return. The debugger indicates a
continued line by displaying an underline character as the first
character on the line rather than the DBG> prompt.

CTRL/"x" refers to the simultaneous typing of the CTRL key and the
respective character key, that is, C, Y, or Z (refer to the VAX/VMS
Command Language User's Guide for information on the complete list of

CTRL functions). CTRL/"x" echoes at the terminal as “x.

With the exception of the CTRL functions, you must end all command

lines with a carriage return.

>CALL name [(argument,...)]

Call routine by its symbolic name or by 1its virtual address

(address expression 1is not valid) with optional argument list.

An argument list must be enclosed by parentheses.

A-1

COMMAND SUMMARY

>CANCEL ALL

Cancel all breakpoints, tracepoints, watchpoints, and user-set
entry/display modes. Restore initial entry/display modes. This
command does not change the current contents of the
symbol table (that 1is, those symbols acquired
modules at debugger initialization or through use

debugger's

from program

of the SET
MODULE command, or any symbols that you defined during this
debugging session). The current language is not changed.

>CANCEL BREAK address-expression

>CANCEL BREAK/ALL

Cancel breakpoint set at specified address, or
breakpoints.

>CANCEL EXCEPTION BREAK

Cancel the request that your program stop, as at a
for any exception condition.

>CANCEL MODE

Restore initial entry/display modes. Command does
SCOPE or current language.

>CANCEL MODULE module-name-~list

>CANCEL MODULE/ALL

cancel all

breakpoint,

not change

Purge symbolic information associated with the named modules from
the debugger's symbol table, or purge all module related
information from the symbol table. The typical use is to make
space available for local symbols associated with another module
or modules (see SET MODULE). Global symbols and any symbols
defined during this debugging session are not affected.

>CANCEL SCOPE

Enter null contents in SCOPE (that is, delete the previously set
scope).

>CANCEL TRACE address-~expression

>CANCEL TRACE/CALL

>CANCEL TRACE/BRANCH

>CANCEL TRACE/ALL

Cancel tracepoint set at specified address, cancel all opcode
tracing at call-type instructions, cancel all opcode tracing at
branch-type instructions, or cancel all tracepoints
tracing.

>CANCEL WATCH address—~expression

>CANCEL WATCH/ALL

Cancel watchpoint set at specified address, or
watchpoints.

and opcode

cancel all

COMMAND SUMMARY

CTRL/C

Has same effect, and echoes at terminal, as CTRL/Y (see below) if

your program does not include an exception condition handler for

CTRL/C.

CTRL/Y

Interrupt the debugger or executing program and transfer control

to the VAX/VMS command interpreter (signaled by the system prompt

$). Type

DEBUG

after the system prompt to return control to the debugger. Type

CONTINUE

after the system prompt to return control to the interrupted

program. Typing any VAX/VMS command other than DEBUG or CONTINUE

will probably force the premature exit of your program. You can

use CTRL/Y to 1interrupt a 1looping program. To determine the

point at which you interrupted your program, type

DBG>EXAMINE/INSTRUCTION @PC

CTRL/Z

Same result as EXIT; that is, terminate the debugging session

and transfer control to the VAX/VMS command interpreter.

>DEFINE symbol-name=valuel[,symbol-name=value...]

Equate name(s) of name=value list with associated value(s) for

use during this debugging session. The debugger searches these

symbols first whenever it requires a definition for a symbolic

entry, and whenever it requires a symbolic name to report a

location.

>DEPOSIT[/mode[...]] address-—expression=datal,data,...]

Enter data specified in data 1list 1in sequence of 1locations

beginning with the specified address.

>EVALUATE [/mode[...]] expression|,...]

transform input (which can be arithmetic expression, ASCII

string, VAX-1l1l MACRO instruction, symbol, or numeric value) to

associated value(s) and display result(s). Can be used as desk

calculator, radix converter, symbol verifier, etc. The debugger

displays result(s) in the order in which you specified the input.

>EXAMINE[/mode[...]] address [:address][,address|[:address]...]

Display current contents of specified address(es). The colon

signifies range; that is, display contents of addresses from low

address through high address.

>EXIT

Terminate debugging session and transfer control to the VAX/VMS

command interpreter.

COMMAND SUMMARY

>GO[address-expression]

>SET

>SET

>SET

Start or continue program execution. First GO command without an
address starts the program at its transfer address. GO commands
thereafter continue execution from a stopped point (as at a
breakpoint or watchpoint, or because of an exception condition).

An address entry replaces the current program counter (PC)

contents; execution starts or continues from the new location.

Once you have started a program, you should not to attempt a
restart at the transfer address or any other address. Program

behavior is unpredictable when restarted.

BREAK address-expression [DO (command list)]

Establish breakpoint at specified address (the breakpoint stops
your program before the instruction beginning with

"address-expression” is executed).

The debugger executes commands in DO sequence command format

whenever your program stops because of the specified breakpoint.
Parentheses are required as command 1list delimiters. Multiple

commands must be separated by semicolons. Any complete debugger

command can be used in this context, including GO, STEP, or CALL.
If GO, STEP, or CALL is specified, it must be the last command in
the sequence.

You can specify the "after" option to defer a breakpoint.

SET BREAK/AFTER:decimal-integer address-expression

Your program does not stop because of the breakpoint (that 1is,

the breakpoint 1is ignored) until the "n"th pass through the

specified location, as in an interation, where "n" is within the
range 1 through 32767. Thereafter, the breakpoint takes effect

each time the debugger encounters it.

You can specify a temporary (or one time) breakpoint by:

SET BREAK/AFTER:0 address-expression

The debugger automatically cancels the breakpoint after it stops

your program the first time the breakpoint is encountered.

EXCEPTION BREAK

Stop the program and report the current program counter contents
if an exception condition occurs that was not initiated by a
debugger command.

LANGUAGE language-name

Let the debugger interpret input and display output in the syntax

of the specified 1language. The debugger rejects commands that
are not valid in the specified syntax. The debugger initially

recognizes the language of the first module in your program that

contains symbol information.

COMMAND SUMMARY

>SET MODE mode-keyword[,mode~keyword...]

>SET

Allow or inhibit the entry

formats.

The following list describes the function of each keyword

SET SCOPE for additional information regarding the use of theto

and display of data in specified

(refer

symbol search control keywords, [NO]JGLOBAL and [NO]SCOPE):

ASCII Interpret/display data as ASCII characters.

BYTE Interpret/display data in byte lengths.

DECIMAL Interpret/display data in decimal radix.

GLOBAL Use symbolic entry as first pathname in search.

HEXADECIMAL Interpret/display data in hexadecimal radix.

INSTRUCTION Interpret/display VAX-11 MACRO instructions.

LONG Interpret/display data in longword lengths.

NOASCII Inhibit entry/display of ASCII characters.

NOGLOBAL Use symbolic entry as last pathname in search.

NOINSTRUCTION Inhibit entry/display of VAX-~-11 MACRO
instructions.

NOSCOPE Inhibit SCOPE's contribution to pathname.

NOSYMBOLIC Inhibit display of symbolic addresses.

OCTAL Interpret/display data in octal radix.

SCOPE Add SCOPE's contents to entry to form pathname.

SYMBOLIC Display symbolic addresses.

WORD Interpret/display data in word lengths.

The debugger's initial modes are: SYMBOLIC, NOINSTRUCTION,

NOASCII, NOGLOBAL, HEXADECIMAL, and LONG. SCOPE is initialized

to contain the name of the first module in your program.

You can also enter the mode keywords with the

and EXAMINEEVALUATE,

(radix, data length,

commands DEPOSIT,

override the current associated mode

search, or type). A slash must
to

symbol

precede each mode keyword entered after these command verbs.

command-verb/keyword/keyword ... °

MODULE module-name-~list

>SET MODULE/ALL

Enter local symbols and program section names associated with the

program~module list 1in the debugger's symbol table, or enter

information from all modules in the symbol table. The debugger

cannot interpret 1local symbols unless their associated module

names appear in the status report produced by the SHOW MODULE

command with a "yes" indication.

>SET

>SET

>SET

>SET

>SET

>SET

COMMAND SUMMARY

SCOPE module-name

Retain module~name entry as SCOPE's contribution to creation of a
pathname under control of the debugger's symbol search rules. A
pathname completely and unambiguously identifies a symbol and
points to that symbol's definition (that is, its translation
value) . For VAX-11 MACRO, a pathname is symbol-name or
module~name\symbol-name.

The debugger evaluates an expression in which a symbolic entry
appears only if a definition was located for the entry. If it
fails to locate a match for a pathname, the debugger reports the
search failure and the symbol name.

STEP keyword [,keyword ...]

Establish default conditions for the STEP command. valid
keywords are:

INSTRUCTION ~ step increment in VAX-11l MACRO instruction.

LINE - step increment is line (for line-oriented languages).

INTO ~ allow stepping through called routine.

OVER - step over called routine (make call transparent).

SYSTEM - allow stepping into system space.

NOSYSTEM ~ inhibit stepping into system space.

The initialization conditions for VAX-11 MACRO are: INSTRUCTION,
NOSYSTEM, and OVER.

TRACE address—expression

TRACE/CALL

TRACE/BRANCH

Set tracepoint at specified address, or specify tracing of all
call-type instructions, or all branch-type instructions. At a
tracepoint, the debugger reports the current program counter
contents and then continues program execution automatically.

WATCH address—expression

Report if the contents of the specified location(s) are modified.

The locations watched can be individual addresses (including the
number of bytes specified by the length mode in effect when the
watchpoint was set), or an entire program section (specified by
name).

The debugger stops the program (as at a breakpoint) and reports
both the previous contents and the current contents of the
location.

COMMAND SUMMARY

>SHOW BREAK

Report the locations of current breakpoints and any relevant

information associated with them, such as DO command sequences

and "after" options.

>SHOW CALLS [n]

Report current call level and the hierarchy of call 1levels that

preceded it (that is, trace your program's call history). If "n"

(a decimal integer) is expressed, the debugger reports "n" call

levels back from the current level ("n" has the range 0 through

32767). If "n" is omitted, all preceding call 1levels are

reported.

>SHOW MODE

Report the current entry/display modes (see SET MODE).

>SHOW MODULE

List program modules by name, indicate whether or not their

associated 1local symbol data exists in the debugger's symbol

table (by yes or no), and indicate the approximate space required

for the entry of each module's symbol data. List also the amount

of space currently unused. The debugger has no knowledge of any

program module not reported in this status report.

>SHOW SCOPE

Report the current contents of SCOPE. A null string (<null>)

indicates that SCOPE makes no effective contribution to the

creation of a pathname.

>SHOW STEP

Report current default conditions for STEP (see SET STEP).

>SHOW TRACE

Report the locations of current tracepoints, or that opcode

tracing is in effect.

>SHOW WATCH

Report the locations of current watchpoints and the number of

bytes monitored by each watchpoint.

>STEP[/keyword] [decimal~integer]

Stop the program after executing the next instruction only (the

default condition if you do not specify an instruction count), or

after executing the next "n" instructions, where "n" is a decimal

integer from 2 through 32767.

The following keywords can either be used after the STEP command

verb (STEP/keyword) or be set with the SET STEP command to

establish the default conditionsfor STEP. The SHOW STEP command

displays the current defaults.

COMMAND SUMMARY

The keywords have the following relationships:

SYSTEM/NOSYSTEM ~ allow or inhibit steps into system space.

INTO/OVER - step into or over a called routine.

LINE/INSTRUCTION ~ step by lines or by instructions.

The initialized defaults for VAX-11l MACRO are:

INSTRUCTION, NOSYSTEM, OVER.

A

Address expressions, 4-4

AFTER:n option, 7-4

Angle brackets, 4-3

Apostrophes, 4-10

Arithmetic expressions,

Arithmetic operator

ASCII' 10-3’ 10-5

s, 4

4-1

-1

ASCII mOde, 5_4, 5-5, 5—

Asterisk, 4-3

At sign, 4-3, 4-6

Backslash, 4-5, 4-8

Bit fields, 4-10

Bit fields, evaluating, 11-1

Break on exception, 12-2

Breakpoints, 7-1

CANCEL, 7-4

SET, 7-3

SHOW, 7-4

temporary, 7-4

C

CALL command, 4-9,

Calling routines, 1

13-1

3~-1

Calls, showing, 13-1

Changing memory, 10

Changing modes, 5-2

Characters,

delimiting, 4-6

special, 4-1

Circumflex, 4-5

Colon, 4-6, 4-10

Comma, 4-9

Commands, 1-3, A-1l

CALL, 13-1

CANCEL, A-2

CTRL/C, A-3

CTRL/Y, A-3

CTRL/Z, A-3

DEFINE, 4-8, 6-2,

-1

A-3

DEPOSIT’ 4—8' 10—1' A-3

EVALUATE, 4-10, 11-1, A-3

EXAMINE, 4_10, 10-1' A-3

EXIT' 2-4, A-3

GO, 3-1’ 7-2' 9—2' A-4

SET' A—4

SHOW, A-7

STEP, 3-2, 7-2, 9-2, A-7

Contents operator, 4-4, 4-6

INDEX

Context modes, 5-4

Continuation, line, 4-11

Controlling execution, 3-1

Control of program execution, 1-3

Current location, 4-4, 4-5

D

Data display, 5-1

Data entry, 5-1

DECIMAL mode, 5-9

DEFINE command, 4-8, 6-2

Defining symbols, 6-2

Delimiting characters, 4-6

DEPOSIT command, 4-8, 10-1

Depositing,

ASCII data, 10-5

instructions, 10-4

numeric data, 10-4

Display, data, 5-1

Displaying memory, 10-1

as ASCII, 10-3

Display modes, 2-3

Division operator, 4-3

DO command sequence, 4-9, 7-3

DOt, 4-5

Ending a debugging session, 1-3,

2-1, 2-4

Entry, data, 5-1

Entry modes, 2-3

Equal sign, 4-8

EVALUATE command, 4-10, 11-1

Evaluating arithmetic expressions,

4-1

Evaluating,

bit fields, 1l1-1

expressions, 1-3, 1l1l-1

literals, 5-8, 11-2

EXAMINE command, 4-10, 10-1

Examining,

instructions, 10-3

locations, 1-2, 10-1

numeric data, 10-2

registers, 10-1

Exception conditions, 12-1

break on, 12-2

Execution, controlling, 3-1

Expressions,

address, 4-4

arithmetic, 4-1

evaluating, 1-2, 1ll-1

Index-1

INDEX (Cont.)

(5 Modes (Cont.),
DECIMAL, 5-9

GLOBAL mode, 5-10 display, 2-3

GO command, 3-1, 7-2, 9-2 entry, 2-3

GLOBAL, 5-10

HEXADECIMAL, 5-=10

H INSTRUCTION, 5-4, 5-6
keywords, 4-7, 5-1

HEXADECIMAL mode, 5-10 length, 4-1, 5-10

Hyphen, 4-11 OCTAL, 5-10
radix, 5-9

reporting, 5-3

| restoring, 5-3
SCOPE, 5-11

Initiating the debugger, 2-1 SYMBOLIC, 5-4, 5-6

Input strings, 4-10 Modifying locations, 1-2, 10-3

INSTRUCTION mode, 5-4, 5-6 MODULE commands,

Instructions, CANCEL, 6-7

depositing, 10-4 SET, 6-6

examining, 10-3 SHOW, 6-6
Multiplication operator, 4-3

K

Keywords, mode, 5-1

Numeric data,

depositing, 10-4

L examining, 10-2

Language setting, 2-3

Last value displayed, 4-5 ()
Length mode, 4-1

LENGTH mode, 5-10 OCTAL mode, 5-10

Line continuation, 4-11 Opcode tracing, 1-2, 8-1

Literals, evaluating, 5-8, 11-2 Operators,

Local symbols, 1-5, 6-5 arithmetic, 4-1

Location, contents, 4-4, 4-6

current, 4-4 division, 4-3

last addressed, 4-4 precedence, 4-3

last displayed, 4-4 radix, 4-4

previous, 4-5 range, 4-6

shift, 4-3 ’

M P
fiACRO literals, evaluating, 5-8 Pathname, 1-5, 4-8, 5-10, 6=1, 6-9

essages, 15-1 p
error, 15-8 ermangnt symbols, 6-2

fatal, 15-8 Plus sign, 4-2

Precedence operators, 4-3

Previous location, 4-5

Processor Status Longword, 14-1

Program control, 1-3

informational, 15-2

warning, 15-3

Minus sign, 4-2

MODE commands,
_ PSL, 14-1

ggg?Egizs 3 Purging the symbol table, 6=7
SHOW, 5-3

Modes, 5-1 ()
ASCII, 5-4, 5-8

changing, 5-=2 Qualifiers, 2-2

context, 5-4 Quotation marks, 4-10

Index-2

INDEX (Cont.)

R Symbol (Cont.),
into values, 6-7

Radix modes, 5-9 local, 6-5
Radix operators, 4-4 permanent, 6=2
Range, 10-2 purging, 6-7
Range operator, 4-6 setting, 2-3
References, symbolic, 1-4 table, 1-4, 6-6
Restrictions, watchpoint, 9-4 SYMBOLIC mode, 5-4, 5-6

Symbolic references, 1-4

S
T

Scope, 1-5

SCOPE commands, Table, symbol, 1-4, 6-6
CANCEL, 6-9 Temporary breakpoints, 7-4
SET, 6-9 Terminating a debugging session,
SHOW, 6-9 2-4

SCOPE mode, 5-11 Tracepoints, 1-2, 8-1
Scope setting, 2~3, 6-9 CANCEL, 8-3
Search modes, pathname, 5-10 SET, 8-2
Search rules, 6-7 SHOW, 8-3
Semicolon, 4-9 Tracing opcodes, 8-1
Shift operator, 4-3 branch-type, 8-3
Sign, call-type, 8-2

equal, 4-8 Typed data, 4-1
minus, 4-2

plus, 4-2

Slash, 4-3, 4-7 \V/
Special characters, 4-1

Starting a debugging session, 1-3,

2-1

Startup, 2-2

STEP command, 3-2, 7-2, 9-2

Stepping, 3-2

Value displayed, last, 4-5

Values into pathnames, 6-9

Step types, 3-2 w
setting, 3-3

showing, 3-3 Watchpoints, 1-2, 9-1
Strings, input, 4-10 CANCEL, 9-3
Symbol, 6-1 restrictions, 9-4
defined, 6-2 SET, 9-2
global, 6-5 SHOW, 9-2

Index-3

VAX~-11

Symbolic Debugger

Reference Manual

AA-D026A-~TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
- Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

O
o
o
o
d
a
a
g
d

Other (please specify)

Name Date

Organization

Street

City. State Zip Code

or

Country

— — — Do Not Tear- Fold HereandTape — — — — — — — — —_—— — e — — = — —_— - - -

No Postage

Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- — Do Not Tear- FoldHee' @~ @~ — — — — — — — — — — — — — — — — _ - = -

