February 1979

This document describes the VAX-11 Record Management Services (RMS). It
provides detailed information on the use of VAX-11 RMS facilities with the

VAX-VMS operating system,
e VAX-1 .
+. ..Record Management Services
. Reference Manual. -
© * . +-’Order No, AA-DO31B-TE .

.ox .
2 . ¥ "

o . R [N

SUPERSESSION/UPDATE INFORMATION: This document supersedes the
document of the same name,
Order No. AA-DO31A-TE,
published August 1978.

OPERATING SYSTEM AND VERSION: VAX/VMS V01.5

SOFTWARE VERSION: VAX/VMS V01.5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, February 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1979 by Digital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-~
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0Ss/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX vMS SBT
DECnet IAS PDT
DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

N

. L)

.] LI L)
WRNNNODNNONNNDNOMNNOMNDNODNNNODNNNNNODNNDNODNMNNDNNNDE
s o & & & e 8 & e o e s e e s 6 s s s s e s

NNONNNRPHREREEEREFEFERFEREOONO UG WD

dWNhNHFOWVWONONUIEWNEFO

N O R R S N N N N N R >

(8]

CONTENTS

WHAT IS VAX-11 RMS?

VAX-11] RMS FUNCTIONS

"Allocating and Initializing Control Blocks

Accessing Fields in Control Blocks
Requesting File and Record Operations
WHO USES VAX-11l RMS
DEFINITION OF TERMS

STATEMENT CONVENTIONS
THE PROGRAM INTERFACE WITH VAX-11 RMS

USER CONTROL BLOCKS
VAX-11 RMS RUN-TIME OPERATIONS

THE FILE ACCESS BLOCK

THE PURPOSE OF THE FILE ACCESS BLOCK
FAB ALLOCATION

Label

Allocation Quantity

Bucket Size

Block Size

User Context

Default File Extension Quantity

Default File Specification String Address

Default File Specification String Size

Default File Specification

File Access

File Specification String Address

File Specification String Size

File Specification

File Process Options

Fixed Control Area Size

Maximum Record Number

Maximum Record Size

Name Block Address

File Organization

Record Attributes

.Record Format

Retrieval Window Size

File Sharing

Extended Attribute Block Pointer
NONINITIALIZABLE FAB FIELDS

THE RECORD ACCESS BLOCK

THE PURPOSE OF THE RECORD ACCESS BLOCK
RAB ALLOCATION

Label

Bucket Code

Context

iii

Page

e
1 by

il
NN =

w W (¥%) N
[I |
N = e

>
I

|
~N=WOWOWOJUTS_WH [nd

=~

L
o

%?bhh&hhhbh#b#
1

=

oW

4-14
4-15
4-18
4-19
4-19
4-20

4-23
4-24

CHAPTER

CONTENTS

« 2 .

Key of Reference
Key Size
Relative Files
Indexed Files

o o o
wWN

Multiblock Count
Multibuffer Count

e« o ¢ o e e s

Record Address

Record Size
Time-Out Period

e e e e e e e e e e e e e e,
HORERERRERERREOO0NN NN OO

LCONAAUIIBWNRFO

Ui,

e e s o e &

WWNNNDNDNNNDNNNONNDNNNMNDMNOMNMNDNNNDNDN

6 THE EXTENDED ATTRIBUTE BLOCKS

6. THE PURPOSE OF EXTENDED ATTRIBUTE BLOCKS
6. CHAINING EXTENDED ATTRIBUTE BLOCKS

6. DATE AND TIME XAB

6.3.1 Label

6.3.2 Expiration Date and Time

6.3.3 Next XAB Address

6.3.4 Creation/Revision Date and Time, and

Revision Number

.
w

FILE PROTECTION XAB
Label
File Protection

Next XAB Address

. . . . 3
Ul W N+

Label

Allocation Option
Bucket Size

Location

® o e & ¢ 0 e o o

HEOOoONOAUTD WK

o

Next XAB Address

ADNANNAAANAANANAANAANAANANTAAAAANANANS N
VUL UTLTUTLTCTUT S B D DS W WwwwwN

® 8 ¢ s e s e e e e s o

. e

Length
KEY DEFINITION XAB
Label

Key Data Type
. Key Options Flag

iv

File Access Block Address
Key Buffer Address

Relative and Indexed Files

Prompt Buffer Address
Prompt Buffer Size

Record Access Mode

Record Header Buffer
Record-Processing Options

User Record Area Address

User Record Area Size
NONINITIALIZABLE RAB FIELDS

The Record's File Address

Date/Time Type Code and Block Length

Group and Member Number

File Protection Type Code and Block Length
ALLOCATION CONTROL XAB

Area Identification Number
Alignment Boundary Type
Allocation Quantity
Default Extension Quantity

Relative Volume Number

Allocation Control Type Code and Block

.1

.2 Data Buckets Area Number
.3 Data Buckets Fill Size
.4
5

g
[
Q
]

U'IU'IU'IU'ILI)'IU1U'IU'IU'IU1
=10 00 00 0 0Ny

5-11

CHAPTER

CHAPTER

CHAPTER

CHAPTER

.
.

« e
* .

..
H W00 o
WN O

HEHFHEHEFEFOOLVOVOVINIAOTOOOO O

[N NNl

o o
*

. . . . [
.
w N =

[«) W) e e We) Wo AW e W e We We o) o) We) e)W e) W) W) W) W)Y
. . .

s o o o
& W

.

~

« e e o 4 e
WNNDNNODDNDNDDNDDND -
. .

.
.« . . e
AU WN =

(<] NNNNNNNNIN

€0 00 CO 00 00 0 @ ©
.«
WD
. . .
w N

* e o

O

10.1
10.1.1
10.1.2

CONTENTS

Index Buckets Area Number
Index Buckets Fill Size
Key Name Address
Lowest Level of Index Area Number
Null Key Value
Key Position
Key of Reference
Key Size
NONINITIALIZABLE KEY FIELDS
SUMMARY XAB
FILE HEADER CHARACTERISTICS XAB
Label
Next XAB Address
File Header Type Code and Block Length
REVISION DATE AND TIME XAB
Label
Next XAB Address
Revision Date and Time

Revision Date and Time Type Code and Block

Length
THE NAME BLOCK

THE PURPOSE OF THE NAME BLOCK
NAM BLOCK ALLOCATION
Label
Expanded String Area Address
Expanded String Area Size
Related File NAM Block Address
Resultant String Area Address
Resultant String Area Size
NONINITIALIZABLE NAM BLOCK FIELDS

RUN-TIME PROCESSING INTERFACE

THE VAX-11 RMS CALLING SEQUENCE

THE PATH TO A FILE
Interpretation of the File Specification
File Specification Default Application
Opening and Creating a File by Name Block

CONTROL BLOCK USAGE

COMPLETION STATUS CODES

PROCESS PERMANENT FILES

FILE-PROCESSING MACRO INSTRUCTIONS

TERMINATING FILE PROCESSING
CREATING A FILE

OBTAINING ATTRIBUTES OF A FILE
DELETING A FILE

EXTENDING A FILE'S ALLOCATED SPACE
OPENING AN EXISTING FILE

RECORD OPERATION PERFORMANCE
RECORD ACCESS

Specifying the Record Access Mode
Specifying the Record Transfer Mode

6-38
6-38
6-38
6-39
6-39
6-39

[=)}
|
S
o

NNNNNNNNY ~
! [| |
= AT dWWN - =

[ee]
|

o 00 €O 00 00 OO0 O 00
| 1 1

|
HHEWON - = NSNNaoaocniwwe

\D\O\IO\O\O\D
BN

=

o
]

=

10-1
10-1
10-2

CONTENTS

Page
10.2 CURRENT RECORD CONTEXT 10-3
10.2.1 Current Record 10-3
10.2.2 Next Record 10-4
10.3 RECORD STREAMS 10-7
10.4 SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS 10-7
10.4.1 Synchronous Operations 10-7
10.4.2 Asynchronous Operations 10-8
10.5 RECORD LOCKING 10-8
10.5.1 Automatic Record Locking 10-9
10.5.2 Manual Record Locking 10-10
10.5.3 Controlling Record Locking 10-10
CHAPTER 11 RECORD-PROCESSING MACRO INSTRUCTIONS 11-1
11.1 ESTABLISHING A RECORD STREAM 11-2
11.2 DELETING A RECORD 11-3
11.3 TERMINATING A RECORD STREAM 11-5
11.4 LOCATING A RECORD 11-6
11.5 WRITING OUT MODIFIED I/O BUFFERS . 11-9
11.6 UNLOCKING ALL RECORDS 11-11
11.7 RETRIEVING A RECORD 11-12
11.8 CONTINUE PROCESSING ON NEXT VOLUME 11-15
11.9 WRITING A RECORD TO A FILE 11-17
11.10 UNLOCKING A RECORD 11-20
11.11 POSITIONING TO THE FIRST RECORD 11-22
11.12 TRUNCATING A SEQUENTIAL FILE 11-23
11.13 UPDATING AN EXISTING RECORD 11-25
11.14 STALL FOR I/0 COMPLETION 11-28
CHAPTER 12 PERFORMING BLOCK I/O 12-1
12.1 TRANSFER TO MEMORY 12-3
12.2 POSITIONING TO A BLOCK 12-5
12.3 WRITE TO A FILE 12-7
12.4 NONFILE-STRUCTURED OPERATIONS 12-9
CHAPTER 13 FILE SPECIFICATION PROCESSING MACRO
INSTRUCTIONS 13-1
13.1 ENTER A FILE NAME 13-1
13.2 PARSE A FILE SPECIFICATION STRING 13-4
13.3 REMOVE A FILE NAME 13-6
13.4 RENAME A FILE 13-8
13.5 SEARCH FOR FILE NAME 13-12
CHAPTER 14 RUN-TIME CONTROL BLOCK INITIALIZATION 14-1
14.1 THE STORE MACRO INSTRUCTIONS 14-1
CHAPTER 15 CONTROL ROUTINES 15-1
15.1 HALT I/0 AND CLOSE FILES 15-1
15.2 SET DEFAULT DIRECTORY 15-2
15.3 SET DEFAULT FILE PROTECTION 15-3
APPENDIX A COMPLETION STATUS CODES A-1

vi

CONTENTS

Page
APPENDIX B FILE/RECORD CONCEPTS AND FORMATS B-1
B.1l FILE ORGANIZATIONS B-1
B.2 RECORD ACCESS MODES B-2
B.3 RECORD FORMATS B-4
B.4 FILES-11 DISK STRUCTURE B-5
B.4.1 Files-11 Directories B-9
B.5 MAGNETIC TAPE HANDLING B~-10
B.5.1 Volume Label B-11
B.5.2 File Header Label B-14
B.5.3 End of File and End of Volume Labels B-18
B.5.4 Arrangement of Labels and Data B-19
APPENDIX C FILE SPECIFICATION PARSING Cc-1
INDEX Index-1
FIGURES
FIGURE 8-1 Argument List Format 8-2
B-1 Logical and Virtual Block Numbers B-6
B-2 Volume Label Format B-11
B-3 HDR1l Label Format B-14
B-4 HDR2 Label Format B-16
B-5 Single File, Single Volume B-19
B-6 Single File, Multivolume B-19
B-7 Multifile, Single Volume B-20
B-8 Multifile, Multivolume B-20
TABLES
TABLE 3-1 User Control Blocks 3-2
3-2 Run-Time Processing Macro Instructions 3-3
4-1 File Access Block Fields 4-2
4-2 Device Characteristics 4-28
5-1 Record Access Block Fields 5-2
6-1 XAB Types Processed by Service 6-2
6-2 Date and Time Extended Attribute Block Fields 6-4
6-3 File Protection Extended Attribute Block
Fields 6-7
6-4 Allocation Control Extended Attribute Block
Fields 6-12
6-5 Key Definition Extended Attribute Block Fields 6-20
6-6 Key Field Data Types, Data Type Codes and
Global Symbols €-22
6-7 Packed Decimal Digits and Signs Representation 6-24
6-8 Key Options Flag Combinations 6-26
6-9 Summary Extended Attribute Block Fields 6-36
6-10 File Header Characteristics Extended Attribute
Block Fields 6-37
6-11 Revision Date and Time Extended Attribute
Block Fields 6-39
7-1 Name Block Fields 7-2
7-2 File Name Status Bits 7-8
9-1 Close FAB Fields 9-3
9-2 Create FAB Fields 9-5

vii

CONTENTS

Page
TABLES (Cont.)

TABLE 9~3 Create NAM Block Fields 9-6
9-4 Display FAB Fields 9-8
9-5 Erase FAB Fields 9-10
9-6 Erase NAM Block Fields 9-11
9-7 Extend FAB Fields 9-~13
9-8 Open FAB Fields 9-15
9-9 Open NAM Block Fields 9-16
10-1 Record Access Stream Context 10-6
11-1 Connect RAB Fields 11-3
11-2 Delete RAB Fields 11-4
11-3 Disconnect RAB Fields 11-6
11-4 Find RAB Fields 11-8
11-5 Flush RAB Fields 11-10
11-6 Free RAB Fields : 11-12
11-7 Get RAB Fijields 11-14
11-8 Next Volume RAB Fields 11-17
11-9 Put RAB Fields 11-19
11-10 Release RAB Fields 11-21
11-11 Rewind RAB Fields 11-23
11-12 Truncate RAB Fields 11-24
11-13 Update RAB Fields 11-27
11-14 Wait RAB Fields 11-28
12-1 Read RAB Fields 12-4
12-2 Space RAB Fields 12-6
12-3 Write RAB Fields 12-8
13-1 Enter Fields 13-3
13-2 Parse Fields 13-5
13-3 Remove Fields 13-7
13-4 Rename Fields 13-11
13-5 Search Fields 13-13
B-1 File Organization Relationships with Record

Access Modes and Record Formats B-5
B-2 Search Delta Geometry) B-7
B-3 Volume Label Contents B-12
B-4 HDR1 Label Contents B-14
B-5 HDR2 Label Contents B-17

viii

PREFACE

MANUAL OBJECTIVES

The intent of this manual is to enable VAX-11 MACRO programmers to use
the VAX-11] Record Management Services (RMS) facilities with the
VAX/VMS operating system.

Many data operations are the same (or similar), with slight
alterations depending on the application. Using VAX-11] RMS and
associated control routines, you can perform these operations by
simply «calling a VAX-11 RMS routine, with the appropriate parameters,
rather than writing your own routines.

INTENDED AUDIENCE

VAX/VMS provides record management services for all the supported
languages. Except for VAX-11] MACRO, each particular language manual
provides the necessary information about performing record management.
However, for the VAX-11 MACRO programmers, and for those higher-level
language programmers who wish to call VAX-11 RMS directly, this manual
contains the user interface to record management.

STRUCTURE OF THIS DOCUMENT

This manual consists of three parts, as follows:
Part I: Introduction to VAX-1ll RMS
This part discusses VAX-1l RMS in terms of who uses it and why.
Part II: VAX-11] RMS Program Interface
In this part, Chapters 3 through 7 describe the fields for VAX-11
RMS structures, - such as file declaration, and the macro
instructions used to initialize these fields. In addition,

Chapters 8 through 15 describe the interfaces to VAX-11] RMS file
and record operations and control routines.

The appendixes summarize the concepts of files and records,
provide formulas for determining file and record size, and list
completion status codes.

ix=~

ASSOCIATED DOCUMENTS
The following manuals are allied to this document:

e VAX-11l MACRO User's Guide

e VAX-11 MACRO Language Reference Manual

e VAX/VMS System Services Reference Manual

® VAX~-11 FORTRAN IV-PLUS User's Guide

e VAX-11 FORTRAN IV-PLUS Language Reference Manual

For FORTRAN I1V-PLUS programmers, the VAX-11 FORTRAN IV-PLUS manuals
provide the necessary information for performing record management.
For MACRO programmers, and for higher-level programmers who want to
call VAX-11 RMS directly, this manual contains the user interface to
record management,

The Introduction to VAX-11 Record Management Services manual contains
introductory information about file services and structures in
general, and about VAX-11 RMS in particular. The VAX-11 RMS User's
Guide contains detailed information on using the capabilities of
VAX-11 RMS efficiently; it also.contains programming examples.

For a complete 1list of all VAX-11 documents, including brief
descriptions of each, see the VAX-1l1l Information Directory.

SUMMARY OF CHANGES

This manual has been revised to reflect VAX/VMS support for indexed
sequential file organization.

.

CHAPTER 1

WHAT IS VAX-1ll RMS?

The VAX-1l Record Management Services (VAX-11 RMS) are generalized
routines that assist the user programs in processing and managing
files and their contents. VAX-11 RMS also includes a set of macro
instructions that you can use to initialize control blocks and call
VAX-11] RMS service routines.

1.1 VAX-11] RMS FUNCTIONS

VAX~-11 RMS provides a variety of file organizations and record access
modes that let you choose the processing techniques best suited to
your application. VAX~-11 RMS organizes files sequentially,
relatively, or 1in indexed form. You can access the records in these
files in a number of ways:

e Sequentially
e Randomly by key
e Randomly by the record's file address (RFA)

e Dynamically, which is an intermingling of sequential and
random access

You transmit file and record operation requests to VAX-11l RMS through
control blocks. Through these same control blocks, such as the File
Access Block or Record Access Block, VAX-11 RMS returns to you the
data contents of files, attribute information about the files, and
status codes.

To use VAX-1ll RMS, you must:
e Allocate and initialize control blocks
e Access fields in these control blocks at run time

® Request a particular file or record operation through the wuse
of macro insiiuciions

1.1.1 Allocating and Initializing Control Blocks

You communicate with VAX-11 RMS through control blocks. You must
allocate space in your program for the control blocks; usually, this
is done at assembly time. In addition, you can establish initial
values for the fields in these blocks through assembly-time
initialization macros.

WHAT IS VAX-11 RMS?

1.1.2 Accessing Fields in Control Blocks

At run time, you can store values in the control block data fields
through the use of macro instructions. You can access data in the
control block fields directly by using the defined offsets for the
fields.

1.1.3 Requesting File and Record Operations

Control blocks combined with a set of VAX-11 RMS file and record
operation macro instructions form the complete run-time program
interface with VAX-11 RMS. Each macro instruction represents a
request for a particular VAX-1l1 RMS file or record service. The
fields of the control blocks further describe the request. Using
VAX-11 RMS macro instructions, you can:

® Create new files
e Process existing files
e Extend or delete files

e Read, write, update, or delete records within files

1.2 WHO USES VAX-11 RMS

VAX~-11l MACRO programmers make direct use of the VAX-1l RMS routines.
Programmers writing in a higher-level language, such as VAX-11 FORTRAN
IV-PLUS, can write their programs to interface with VAX-1l1 RMS
facilities either 1) directly through the use of a call facility in
the language, or 2) indirectly through the input/output (1/0)
instructions of the language. The latter interface is much more
commonly used. Programs that interface directly with VAX-11 RMS can
use all its capabilities, whereas programs that use an I/0 statement
of a higher-level language are restricted to the subset of VAX-11 RMS
capabilities wused by that language. This manual, describing the full
VAX-11 RMS interface, is therefore directed primarily to the Vax-11
MACRO user. Higher-level language users should see the VAX-1l1l manuals
specific to their language.

1.3 DEFINITION OF TERMS

The following glossary defines terms that appear throughout this
manual.

alternate key
An optional key within the data records in an indexed file; used
by VAX-1l1l RMS to build an alternate index. See key (indexed
files) and primary key.

area
VAX-11l RMS-maintained regions of an indexed file which are used
for allocating buckets. An area consists of any number of
.buckets, ‘and' there may be from 1 to 255 areas in a file.

WHAT IS VAX-1l RMS?

block
A unit of I/0 transfer. A block on a Files-11 disk structure is
fixed at 512 bytes and contains one or more complete or partial
records. A block on tape contains one or more complete records;
its size is user-determined.

block 1/0
An 1I/0 technique using a set of VAX-11l RMS procedures that allow
direct access to the blocks in a file, regardless of the file
organization or record format.

bucket
A structure used to store and transfer blocks of data for a

relative or indexed file, A bucket consists of from 1 to 32
blocks.

buffer
An area in memory used to store data temporarily during input or
output operations.

cluster
The basic unit of space allocation on a Files-11 disk. A cluster
consists of one or more blocks, as defined by the initializer of
the disk.

directory name
The field in a file specification that identifies the directory
in which the file is listed. It begins with a left bracket ([
or <) and ends with a right bracket (] or >). The brackets
enclose either a group number and a user number separated by a
comma, or an alphanumeric directory list.

dynamic access
The process of switching from one record access mode to another
while processing a file.

extent
One or more adjacent clusters allocated to a file or a portion of
a file.

file

A collection of data; generally used to refer to data stored on
a magnetic¢ medium, such as a disk.

file header
A block in the index file that describes a file on a Files-11
disk. Every file residing on the disk has at least one file
header, which provides the location of the file's extents.

file organization
The physical arrangement of data in a file. VAX-11 RMS uses
three file organizations -- sequential, relative, and indexed.

file specification
The alphanumeric character string that a user assigns to identify
a file.

Files~-11
The standard VAX-11] RMS physical disk structure.

WHAT IS VAX-1l RMS?

fixed control area
An area, prefixed to a variable-length record, containing
additional information about the record that may have no bearing
on the other contents of the record. For example, the fixed

control area may contain 1line numbering or carriage control
information,

fixed~length record format
The property of a file specifying that all records must be the
same length. This format allows for simplicity in determining
the exact location of a record in the file and eliminates the
need to prefix a record size field to each record.

home block
A block in the volume's index file that «contains information
pertaining to the volume as a whole, such as volume label and
protection,

index
The structure which allows retrieval by key value of records in
an indexed file. See key (indexed files).

index file
The file on a Files-1l1 volume that provides the means for
identification and initial access to the volume. The index file
contains the access data for all files on the volume (including
itself).

indexed file organization
A file organization which allows random retrieval of records by
key value and sequential retrieval of records in sorted order by
key value. See key (indexed files).

key
indexed files: A character string, a packed decimal number, a 2-
or 4-byte unsigned binary number, or a 2- or 4-byte signed
integer within each data record in an indexed file; it is
user-defined as to length and location within the records;
VAX-11 RMS uses the key to build an index. See primary key,
alternate key, and random access by key {(indexed files only).

key
relative files: The relative record number of each data record
in a data file; VAX-1ll RMS uses the relative record numbers to
identify and access data records in a relative file in random
access mode. See relative record number,

locate mode
Record transfer technique in which records stay in place while
operations are performed. The records are not copied from the
I/0 buffer to a user buffer; the address of the record |is
returned to the user.

logical block number
The number assigned to a block on a disk volume, sequentially
beginning with 0 to the number of blocks that will fit on the
volume. See virtual block number.

move mode

Record transfer technique in which a record is copied between an
I/0 buffer and a user buffer.

WHAT IS VAX-11 RMS?

primary key
The mandatory key within the data records of an indexed file;
used by VAX-11 RMS to build a primary index; see key (indexed
files) and alternate key.

process permanent file
A file opened or created through VAX-11 RMS in supervisor or
executive mode, The internal data structures of a process
permanent file are allocated such that the file may be open
across image activations; a restricted subset of allowable
operations is available to "indirect" accessors.

random access by key
indexed files only: Retrieval of a data record in an indexed
file by the primary (or optionally, alternate) key within the
data record. See key (indexed files).

relative files only: Retrieval of a data record in a relative
file by the relative record number of the record. See key
(relative files),.

random access by record's file address
The retrieval of a record by the record's unique address that
VAX-11l] RMS returns to the user. This record access mode is the
only means of randomly accessing a sequential file containing
variable-length records.

random access by relative record number
The retrieval of a record by specifying the record's number
relative to the beginning of the file., For relative files,
random access by relative record number is synonymous with random
access by key. See random access by key (relative files only).

record
A collection of related data within a file treated as a unit of
information.

record access mode
The manner in which VAX-11] RMS selects the next record to be
accessed, that is, sequentially or randomly.

record cell
A fixed-length area in a relative file that 1is capable of
containing a record. The concept of a fixed-length record cell
lets VAX-11 RMS make a direct calculation of the record's actual
position in the file.

record's file address
The unique address of a record in a file, This address allows
records to be accessed randomly regardless of file organization.

record format
The way a reccrd physi

11

el {
the storage medium. The
determining record length.

- s oo -~
18y DAL LU e v

he method for

record locking
A facility that prevents concurrent access to a record by more
than one record stream or process until the initiating record
stream or process releases the record.

WHAT IS VAX-11 RMS?

record length
The size of a record, expressed as a number of bytes.

relative file organization
The arrangement of records in a file where each record occupies a
cell of equal length within a bucket, Each'cell is assigned a
successive number, which represents its position relative to the
beginning of the file.

relative record number
An identification number that specifies the position of a record
cell relative to the beginning of the file; used as the key
during random access by key mode to relative files.

RFA
See Record's File Address

sequential file organization
The arrangement of records in a file in a sequential fashion.
Records appear in the order in which they were written.

sequential record access mode
The retrieval or storage of records starting at a designated
point in the file and continuing to access additional records in
the order in which they logically appear.

spooling

The technique of using a high-speed mass storage device (such as
a disk) to buffer data passing between high~speed main memory and
low-speed I/0 devices (such as line printers). The high-speed
mass storage device (the intermediate device) temporarily stores
the data passing to and from the low-speed device (the spooled
device). The data is queued on the intermediate device to await
transmission to the printer for printing (output spooling) or to
the processor for processing (input spooling).

storage allocation
The assignment of space to a file on the recording medium.

user identification code
The number assigned to a user identifying the user and,
cohsequently, determining the files to which the user has access.
It consists of a group number and a user number, separated by a
comma, and enclosed in brackets.

variable-length record format
The property of a file specifying that records need not be the
same length,

variable with fixed~length control record format
The property of a file specifying that records of variable-length
contain an additional fixed control area capable of storing data
that may have no bearing on the other contents of the record.
Variable with fixed-length control record format is not
applicable to indexed files.

VAX-11l Record Management Services (VAX-11l RMS)
The file and record access system for the VAX/VMS operating
system. VAX-11 RMS allows programs to issue requests at the
record and block level.

WHAT IS VAX-11 RMS?

virtual block number

The number assigned to a block of a file. This number refers to
the position of the block relative to other blocks in the same
file, instead of to its position relative to other blocks on the
volume. Virtual block numbers are assigned to the blocks of a
file beginning with 1. The file header provides relocation
information for mapping the file's virtual block numbers to the
volume's logical block numbers, See logical block number.

CHAPTER 2

STATEMENT CONVENTIONS

Throughout this manual, certain conventions apply to the syntax of the
VAX-11] RMS macro instructions and control routines.

In examples, parameters other than the parameter under discussion are
shown. The purpose of showing these additional parameters is to
illustrate and reconfirm, throughout the manual, some of the
conventions that apply in coding macro instructions, such as statement
continuation and parameter separation. The parameter under discussion
will be shown in red print,

For example:
$SFAB FNA=FLNAM ALQ=132 BKS=4

In coding VAX-11 RMS macro instructions, you follow the same coding
rules used by the VAX-11l MACRO assembler. These rules are repeated
below for ease of reference,

e Comments must be separated from the rest of the code line by a
semicolon (;). For example:

$SFAB BKS=4 ;bucket size v

e All the parameters necessary for a macro instruction must be
coded on a single macro instruction. If the parameters needed
do not all fit on one line (or if you do not want them on one
line), you can type the continuation character -- hyphen (-)
-- as the last character on the line, and then continue typing
parameters on the next line, Comments can follow the hyphen,
separated by the comment-delimiter semicolon -- they are not
interpreted as code. For example:

SFAB FNA=FLNAM - ; filename address
ALQ=132 - ; allocation quantity
BKS=4 ; bucket size

e Parameters and sub-parameters can be separated from each other
Ly

a. a single comma, with or without spaces or tabs; the
preferred usage is the comma without a space or tab. That
is how coding examples appear in this manual.

FNA=FLNAM,ALQ=132

b. a blank space

FNA=FLNAM ALQ=132

2-1

STATEMENT CONVENTIONS

c. multiple blank spaces or tabs
FNA=FLNAM ALQ=132

Lowercase letters and words represent information that you
must supply. Such lowercase information may contain hyphens
for readability. The accompanying text defines the
information to be supplied. For example:

window-size
address

Uppercase letters and words, equal signs (=), angle brackets
(<>), and dollar signs (%), must be coded as shown. For
example:

RAT=<BLK,CR>
SOPEN

Information enclosed within braces indicates that you may
choose any one of the enclosed values. For example:

FIX
VAR
VFC
UDF

Each option has its own symbolic bit offset and mask value.
The bit offset is formed by prefixing FABSV_ to the option
value. For example:

FABSV_PUT

The mask value is formed by prefixing FABSM_ to the option
value. PFor example:

FAB$M_PUT

CHAPTER 3

THE PROGRAM INTERFACE WITH VAX-1l1l RMS

You gain access to the VAX-11l RMS facilities at run time by calling
record management services, Your program and VAX-11 RMS exchange
information by means of user control blocks defined within your
program. This chapter provides an introduction to these services and
user control blocks, and the macro instructions that facilitate their
use,

With each request for a VAX-11l RMS service, you must place the
information detailing this request 1in a user control block. For
example, a request to open a file must be accompanied by the name of
the file, information on sharing the file, and details on accessing
the file. o0Or, as another example, a program request to read a record
from a file must specify a record access mode, or perhaps a buffer
size.

Once a request for a service is satisfied, VAX-11 RMS wuses the same
user control block to return information to your program. For
example, when the file is successfully opened, VAX-1ll RMS returns
attribute information, such as file organization and record format.
Or, when a record is retrieved from a file, VAX-11l RMS provides your
program with the record's length and location in memory.

The amount of information exchanged between VAX-11 RMS and your
program varies with the nature of the request and the file attributes.

The following sections provide a broad overview of the interface that
a program uses when requesting VAX-11l RMS services. The remaining
chapters of Part 1II present detailed information on using the VAX-11
RMS declarative and imperative macro instructions. The declarative
macro instructions allocate and initialize file access blocks (FABs),
record access blocks (RABs), name blocks (NAMs), and extended
attribute blocks (XABs). The imperative macro instructions invoke
VAX-11 RMS operations to manipulate files and records.

3.1 USER CONTROL BLOCKS

User control blocks are formatted areas in your program, which you
must allocate. Your program and VAX-11 RMS use the data fields in
these blocks to exchange information.

Usually, you allocate space for user control blocks at assembly time.
Optionally, you can also set values for the fields in these blocks
either initially or at run time. The VAX-11 RMS declarative macro
instructions perform the functions that support assembly-time
allocation and initialization. For efficiency, align the control
blocks on a 1longword boundary; if you do not, you will receive a
warning message from the assembler,

THE PROGRAM INTERFACE WITH VAX-1ll RMS

Table 3-1 lists the user control blocks that are part of your program
interface with VAX-11] RMS. The Macro Name column shows the VAX-11 RMS
macro instruction you use to allocate space for the control block.
Chapters 4 through 7 describe these macro instructions.

Table 3-1
User Control Blocks

Macro
Block Name Function Name
| —
File Access FAB Describes a file and contains $FAB
Block file-related information
Record Access RAB Describes a record and contains $RAB
Block record-related information
Extended Contains file attribute information $XABxxx!
Attribute XAB beyond that in the File Access
Blocks Block
Contains file specification SNAM
Name Block NAM information beyond that in the
File Access Block

1xxx is a 3-character XAB type specification.

3.2 VAX-1l RMS RUN-TIME OPERATIONS

To create and process VAX-11] RM5 files, your program must contain
calls to appropriate VAX-11l RMS routines. Generally, you make these
calls by using the VAX-11 RMS imperative macro instructions for
run-time processing. The expanded code of these macro instructions,
when encountered at run time, causes calls to be made to the
corresponding VAX-11 RMS routine, Each macro instruction, and the
resultant call, represents a program request for either a file or
record related service, or block I/0 transfer operation.

Table 3-2 summarizes the run~time processing macro instructions.
Chapters 8 through 15 describe these macro instructions.

THE PROGRAM INTERFACE WITH VAX-11 RMS

Table 3-2
Run-Time Processing Macro Instructions

Category Macro Name Service
F
File SCREATE Creates and opens a new file of any organization
Processing
$OPEN Opens an existing file and initiates file processing
$DISPLAY Returns the attributes of a file to user program
$EXTEND Extends the allocated space of a file
$CLOSE Terminates file processing and closes the file
SERASE Deletes a file and removes its directory entry
Record $GET Retrieves a record from a file
Processing
$PUT Writes a new record to a file
$UPDATE Rewrites an existing record in a file
$DELETE Deletes a record from a relative file
$FIND Locates and positions to a record and returns its RFA
$CONNECT Associates and connects a RAB to a file
$DISCONNECT Disconnects a RAB from a file
SRELEASE Unlocks a record pointed to by the contents of the RFA
field of the RAB
SFREE Unlocks all previously locked records
SWAIT Determines the completion of an asynchronous record
operation
SREWIND Positions to the first record of a file
$TRUNCATE Truncates a sequential file
$FLUSH Write modified /O buffers and file attributes
SNXTVOL Causes processing of a magnetic tape file to continue to
the next volume of a volume set
Block I/O $READ Retrieves a specified number of bytes from a file
$WRITE Writes a specified number of bytes to a file
$SPACE Spaces forward or backward in a file
File SENTER Enters a file name into a directory
Naming
$PARSE Parses a file specification
$REMOVE Removes a file name from a directory
$RENAME Assigns a new name to a file
$SEARCH Searches a directory for a file name

CHAPTER 4

THE FILE ACCESS BLOCK

This chapter describes the File Access Block (FAB), the fields in the
FAB, and the parameters of the $FAB macro instruction.

4.1 THE PURPOSE OF THE FILE ACCESS BLOCK

The FAB is a user control block that describes a particular file. The
fields of the FAB contain file-related information, such as:

e The name of the file

e The file organization

e The record format

e Disk storage space allocation information

You allocate a FAB with a $FAB macro instruction, and initialize the
fields of the FAB either at assembly time (through keyword parameters)
or by direct manipulation at run time. You initialize the FAB at run
time through either keyword parameters with the $FAB_STORE macro
instruction (see Chapter 14) or the defined symbolic offsets.

Each field in the FAB has a 3-character mnemonic name. All access to
these fields 1is through this name (by keyword or offset). However,
some of the fields are static or output-only; therefore, you need not
initialize them. Table 4-1 summarizes the fields of the FAB,
including the static and output-only fields,

THE FILE ACCESS BLOCK

Table 4-1

File Access Block Fields

Field &
Keyword Field Size
Name (units of 1) Description Offset
— — —

ALQ longword Allocation quantity FABSL ALQ
BiD? byte Block identifier FABS$B BID
BKS byte Bucket size FABS$B BKS
BLN! byte Block length FABSB BLN
BLS word Block size FABS$W _BLS
CTX longword Context FABSL CTX
DEQ word Default file extension quantity FAB$W DEQ
DEV? longword Device characteristics FABSL DEV
DNA longword Default file specification string address FABSL DNA
DNS byte Default file specification string size FABS$B DNS
FAC byte File access FAB$B FAC
FNA longword File specification string address FABSL FNA
FNS byte File specification string size FABS$B FNS
FOP longword File-processing options FABSL FOP
FSZ byte Fixed control area size FABS$B FSZ
IF1? word Internal file identifier FABSW IFI
MRN longword Maximum record number FABSL MRN
MRS word Maximum record size FAB$W MRS
NAM longword Name block address FABSL NAM
ORG byte File organization FAB$B ORG
RAT byte Record attributes FAB$B RAT
RFM byte Record format FABS$B RFM
RTV byte Retrieval window size FAB$B RTV
sSpc? longword Spooling device characteristics FABSL SDC
SHR byte File sharing FAB$B SHR
STS? longword Completion status code FABSL STS
STV? longword Status values FABSL STV
XAB longword Extended attribute block address FABSL XAB

!Indicates statically initialized field (by $FAB macro instruction) to identify this control block as a FAB.
%Indicates nonuser-initialized field.

THE FILE ACCESS BLOCK

$FAB

4.2 FAB ALLOCATION

The format of the $FAB macro instruction 1is shown below. Every
parameter is optional, depending on the function to be performed with
the FAB and the combination of parameters in the macro instruction as
a whole.

Format:
OPERATION PARAMETERS
label: $FAB ALQ=allocation-qty

BKS=bucket-size
BLS=block-size
CTX=value
DEQ=extension-qty
DNA=address
DNM=<filespec>
DNS=value
FAC=<PUT GET DEL UPD TRN BIO BRO>
FNA=address
FNM=<filespec>
FNS=value

FOP=<CBT CIF CTG DFW DLT ESC INP KFO MXV NAM NEF NFS OFP
POS PPF RCK RWC RWO SCF SPL SQO SUP TEF TMD TMP UFM UFO WCK>

FSZ=header-size
MRN=max-rec-number
MRS=max-rec-size
NAM=nam-address

REL
ORG=<SEQ
IDX

)
DAT— DT UV D'T'\\' \
FAVS W e

PRN
o

UDF
RTV=window-size
SHR=<PUT GET DEL UPD NIL MSE UPI>

XAB=xab-address

THE FILE ACCESS BLOCK

The $FAB macro instruction allocates and initializes storage for a

FAB. You cannot wuse this macro instruction within a sequence of
executable instructions.

You need one FAB for each open file in your program. After you close
the file, the space used by the FAB can be reused for some other
purpose (perhaps a FAB from another program).

Since VAX-11l RMS returns information in the fields of the FAB, you
therefore cannot allocate a FAB in read-only sections.

label: SFAB

4.2.1 Label

You can use the label field of the $FAB macro instruction to name a
FAB and thereby to refer to a particular FAB within your program. The
label field is optional, but when used, must precede the symbol S$FAB
and be separated from $FAB by a colon (:). For example:

INFAB: $FAB
$FAB ALQ

4.2.2 Allocation Quantity

You can use the ALQ parameter to initialize the allocation quantity
field at assembly time. With this field you can specify the amount of
space, in blocks, to be initially allocated to a disk file when it is
created, or to be added to the file when it is explicitly extended
(through a S$EXTEND macro instruction).

FORMAT
ALQ=allocation-~quantity

allocation-quantity
A numeric value representing a number of blocks, in the range of
0 through 4,294,967,295. A value of 0 indicates no allocation.

For example, to set an allocation quantity of 132 blocks, the <coding
is:

SFAB ALQ=132

The symbolic offset for this field is:
FABSL_ALQ

USER CONSIDERATIONS

l. When you create a new file with a $CREATE macro instruction,
VAX-11 RMS interprets the value in the allocation quantity
field as the number of blocks for the initial extent of the
file. If the wvalue is 0, the minimum number of blocks for
the specific file organization 1is the allocation quantity
used for the initial extent. For example, in indexed files,
the number of blocks necessary to contain key and area
definitions is wused as the 1initial extent quantity when
ALQ=0.

THE FILE ACCESS BLOCK

2. When an existing file 1is opened with a SOPEN macro
instruction, VAX-11 RMS sets the allocation quantity field to
indicate the highest virtual block number currently allocated
to the file.

3. Before extending a file with a $EXTEND macro instruction, you
must set the allocation quantity field equal to the number of
blocks to be added to the file, You cannot use an extension
size of 0.

4. When you use the $CREATE and $EXTEND macro instructions, the
allocation quantity wvalue is rounded up to the next cluster
boundary; the number of blocks actually allocated is
returned in the allocation quantity field. '

NOTE

The function of the allocation quantity
field with the S$CREATE and $EXTEND macro
instructions 1is different from the
preceding description if allocation XABs
are present during the operation.
Chapter 6 describes allocation XABs and
their effect on the allocation quantity
field during file creation or extension,

$FAB BKS

4.2.3 Bucket Size

The BKS parameter initializes the bucket size field at assembly time.
This field is used only for relative or indexed files. When you open
an existing relative or indexed file, VAX-11 RMS sets the bucket size
field to the defined size of the buckets in the file. However, when
you create a new relative or indexed file, you must set the bucket
size field before you issue the $CREATE macro instruction.

NOTE

If allocation control XABs are
specified, the value specified in the
XAB BKZ field will supersede the value
specified in the FAB BKS field. Refer
to Section 6.5.6 for a description of
the XAB BKZ parameters.

FORMAT
BKS=bucket-size

bucket-size
A numeric value, in the range of 0 to 32, representing the number
of blocks in each bucket of the file., 1If you omit this parameter
or use a value of 0, you receive a default size equal to the
minimum number of blocks required to contain a single record.

THE FILE ACCESS BLOCK

For example, to set the bucket size to 4, the syntax is:

SFAB BKS=4,ALQ=132
The symbolic offset for this field is:

FAB$B_BKS
USER CONSIDERATIONS
In specifying a bucket size, you must be aware of the relationship
between bucket size and record size. Since VAX-11 RMS does not allow
records to cross bucket boundaries, you must ensure that the number of
blocks per bucket conforms to one of the following formulas:

® Relative files with fixed-length records:

Bsiz = ((Rlen+l)*Rnum)/512

where
Bsiz is the number of blocks per bucket rounded up
to the next higher integer. The result must
be in the range from 1 to 32.
Rlen is the fixed record length.
Rnum is the number of records that you want in

each bucket.
e Relative files with variable-length records:

Bsiz = ((Rmax+3)*Rnum)/512

where
Bsiz is the same as described above.
Rmax is the maximum size of any record in the
file.
Rnum is the number of records that you want in
each Dbucket. Variable-length records in a
relative file bucket always occupy Rmax+3
bytes.
e Relative files with wvariable with fixed-length control
records:
Bsiz = ((Rmax+Fsiz+3)*Rnum)/512
where
Bsiz is the same as described above.
Rmax is the maximum size of the data portion of
any record in the file.
Fsiz is the size of the fixed control area portion
of the records.
Rnum is the number of records that you want in

each bucket. Variable with fixed-length
control records in a relative file bucket
always occupy Rmax+Fsiz+3 bytes.

4-6

THE FILE ACCESS BLOCK

e Indexed files with fixed-length records:

Bsiz = ((Rlent+7)*Rnum)+15/512

where
Bsiz is the number of blocks per bucket rounded up
to the next higher integer. The result must
be in the range of from 1 to 32.
Rlen is the fixed record length.
Rnum is the number of records that you want in

each bucket. Fixed-length records in an
indexed file bucket always occupy Rlen plus
seven bytes of record overhead. Fifteen
bytes are required for bucket overhead.

® Indexed files with variable-length records:

Bsiz = ((Rmax+9)*Rnum)+15/512

where
Bsiz is the same as described above.
Rmax is the maximum size of any record in the
file.
Rnum is the number of records that you want in

each bucket. Variable~length records in an
indexed file bucket always occupy Rmax plus
nine bytes of record overhead. Fifteen bytes
are required for bucket overhead.

NOTE

Another consideration in choosing a
bucket size for 1indexed file 1is the
default cluster size of the disk. Since
all extents are rounded up to the next
cluster boundary, the cluster size
should be an even multiple of the bucket
size. This prevents the waste of blocks
in an extent because there will be
enough blocks to completely fill a
bucket.

$FAB BLS

4.2.4 Block Size

The BLS parameter is used as input only for magnetic tape files. In
all other cases, VAX-1ll RMS ignores it. When you open an existing
file with a $OPEN macro instruction, VAX-11 RMS returns the block size
if the file 1is organized sequentially. However, when you create a
magnetic tape file, you can set the block size field before you issue
the $CREATE macro instruction.

THE FILE ACCESS BLOCK

FORMAT
BLS=block-size

block-size
The size, in bytes, of the blocks on the tape, in the range of 18
to 65535. 1If this parameter is 0, the default selected when the
volume was mounted is used.

For example, to set the block length to 4096, the syntax is:
$FAB BLS=4096 ,MRS=132
The symbolic offset for this field is:

FABSW_BLS

NOTE

To create a magnetic tape for
interchange with other DIGITAL operating
systems (non-VAX/VMS) , you should
consult the documentation for the target
system regarding possible limitations on
block size. To ensure compatibility
with non-DIGITAL systems, the block size
should be 1less than or equal to 2048
bytes.

$FAB CTX

4,2.5 User Context
The CTX parameter conveys user information to a completion routine in
your program. The user context field set by this parameter is
intended solely for your use; VAX-1l RMS never uses it for record
management activities,
FORMAT

CTX=value

value
represents any user-specified value, up to four bytes long.

For example, to pass along the symbolic value T1DONE, the syntax is:
SFAB CTX=T1DONE ,BKS=4
The offset for this field is:

FAB$L_CTX

THE FILE ACCESS BLOCK

$FAB DEQ

4.2.6 Default File Extension Quantity

The DEQ parameter sets the default file extension quantity field,
which specifies the number of blocks to add when a disk file is
extended automatically. This automatic extension occurs whenever your
program performs an operation with a $PUT or S$WRITE macro instruction
and the currently allocated space is exhausted.

FORMAT
DEQ = extension-quantity

extension-quantity
The number of blocks to be added when automatic extension is
required. This number must be in the range of 0 to 65,535 and is
rounded up to the next cluster boundary. If you specify 0, the
file will be extended using a VAX-1ll RMS determined default
extension value.

For example, to specify a default extension quantity of 80 blocks, the
syntax is:

$FAB DEQ=80

The offset for this field is:
FABSW_DEQ

USER CONSIDERATIONS

1. When creating a new file, you can specify the extension
quantity for the file by setting the desired value in the
default extension quantity field before issuing a $CREATE
macro instruction. This value becomes a permanent attribute
for the file.

2. When processing an existing file, you can temporarily
override the default extension quantity specified when the
file was created. To do this, set the desired value before
issuing the $OPEN macro instruction. Once the file is
closed, the default extension quantity reverts to the value
set when the file was created.

$FAB DNA

4.2.7 Default File Specification String Address

You can use the DNA parameter to set program defaults in the default
file specification string address field for the missing components (if
any) of the file specification string pointed to by the file
specification string address field.

THE FILE ACCESS BLOCK

The default file specification string is used primarily when accepting
file specifications interactively; file specifications known to a
user program are normally completely specified in the file
specification string address and size fields (the FNA and FNS
parameters). You can specify defaults for one or more of the
following file specification components:

e Node e File name

e Device e File type

e Directory e File version number
FORMAT

DNA = address

address
The symbolic address of an ASCII string containing one or more
components of a file specification., The components in the string
must be in the order in which they would occur in a complete file
specification.

For example, assume an ASCII string is stored at a memory location
whose symbolic address is DFNAM:. To store the address of this string
in the default file specification string address field, so that DFNAM
will be used during execution of a $OPEN or $CREATE macro instruction,
the syntax is:

$FAB DNA=DFNAM,DNS=4
This default file specification string address is only effective |if
the components are missing from the string whose address is stored in
the file specification address field.
The offset to this field is:

FABSL_DNA

Section 4.2.9 describes another technique -- using the DNA parameter
~— for setting the default file specification string address.

$FAB DNS

4,2.8 Default File Specification String Size

The DNS parameter sets a value 1in the default file specification
string size field. This value indicates the size, in bytes, of the
string whose address is contained in the default file specification
string address field.

FORMAT
DNS=value
value
A symbolic or numeric value representing the size of the default

file specification string. The numeric value is in the range of
1 to 255.

THE FILE ACCESS BLOCK

For example, assume that your program contains the directive:
DFNAM: .ASCII /.DAT/

The following DNS parameter would set the default file specification
string size field:

$FAB DNS=4,DNA=DFNAM
The offset for this field is:
FAB$B_DNS

Section 4.2.9 describes another technique -- using the DNM parameter
-- for setting the default file specification string size.

$FAB DNM

4.2.9 Default File Specification

The DNM parameter sets two fields in the FAB: the default file
pec1f1catlon string address (DNA) and the default file spec1f1cat10n
string size (DNS). The specified default file spe01f1cat10n string is
stored in the special program section $RMSNAM.

FORMAT
DNM=<filespec>

<filespec>
The ASCII default file specification string. The angle brackets
(<>) are required syntax.

For example:

SFAB DNM=< ,DAT>

$FAB FAC

4,2.10 File Access

The FAC parameter initializes the file access field at assembly time.
You must indicate to VAX-11 RMS what types of operations you intend to
perform on the file. After you open a file, VAX-1l1 RMS rejects any
operation your program attempts if that operation was not specified in
the file access field when you issued a $OPEN or S$CREATE macro
instruction for the file.

If your program will issue any of the following macro instructions,
you must specify them by setting the file access field for the
appropriate operation:

e SDELETE
e SFIND
e SGET

4-11

THE FILE ACCESS BLOCK

e SPUT
e SREAD
e S$SPACE

e STRUNCATE

e SUPDATE
e SWRITE
FORMAT

FAC=<BIO,BRO,DEL,GET,PUT,TRN,UPD>

BIO
Used for block I/O operations involving a $READ or S$WRITE macro
instruction, with Get and Put access, respectively, and also with
a $SPACE macro instruction. Furthermore, specifying block I/0
prohibits the wuse of any record I/0 operations (GET, PUT, DEL,
UPD, TRN).

BRO
Similar to BIO, except that record I/0 operations are also
allowed.

DEL
Allows operations with a $DELETE macro instruction.

GET
Allows operations with a $GET or $FIND macro instruction. This
is the default when you are opening this file and either the FAC
parameter is not specified or the DEL, UPD, or TRN operations are
specified on the FAC parameter. If you specify GET with either
BIO or BRO, you can perform operations with a $READ nmacro
instruction.

PUT
Allows operations with a $PUT macro instruction. This will be
the default if you are creating this file. If you specify PUT
with either BIO or BRO, you can perform operations with a S$WRITE
macro instruction.

TRN
Allows operations with a S$TRUNCATE macro instruction. Also
allows wuse of the truncate put (TPT) record option on a $PUT and
SWRITE macro instruction (see Section 5.2.14).

UPD

Allows operations with a $UPDATE macro instruction.

You may specify more than one operation with the FAC parameter.
However, 1if you do, the group of operations must be enclosed in angle
brackets; when only one operation is specified, no angle brackets are
needed. Multiple operations can be specified in any order. For
example, <GET,PUT,UPD> or <UPD GET PUT>.

The following example indicates that operations with a $PUT macro
instruction are going to be performed.

SFAB FAC=PUT,ALQ=132,DEQ=16

THE FILE ACCESS BLOCK

A request for operations with $GET, $PUT, and SUPDATE macro
instructions would be specified as follows:

SFAB FAC=<GET,UPD,PUT>
Each operation has its own symbolic bit offset and mask value. The
bit offset for each is formed by prefixing FAB$V_ to the operation
value. For example:

PUT -- FABSV_PUT

The mask value is formed by prefixing FABSM_ to the operation value.
For example:

PUT -- FAB$M_PUT
The offset for the file access field is:

FAB$B_FAC

$FAB FNA

4.2.11 File Specification String Address

The FNA parameter initializes the file specification string address
field. This parameter works with the FNS parameter, which initializes
the file specification string size field (see Section 4.2.12). The
file specification string address contains the address of an ASCII
string that specifies the path to a file to be processed. If this
string does not contain all the components of a full file
specification, VAX-11 RMS will use the defaults supplied in the
default file specification string address and size fields (see
Sections 4.2.7, 4.2.8, and 4.2.9). If no default string is present,
or if the file specification is still incomplete, VAX-11] RMS provides
further defaulting (see Section 8.2).

FORMAT
FNA=address
address
The symbolic address of an ASCII string containing the file
specification.
For example, assume that the following directive is in your program:
FLNAM: .ASCII /MASTER.OLD/ .
The syntax for the FNA parameter is:
$SFAB FNA=FLNAM ,FNS=10
The offset for this field is:
FAB$SL_FNA

See 4.2.13 for an alternate method of setting the file specification
string address field.

THE FILE ACCESS BLOCK

$FAB FNS

4.2.12 File Specification String Size
The FNS parameter initializes the file specification string size
field. This field describes the length, in bytes, of the ASCII string
pointed to by the file specification string address field (FNA) .
FORMAT
FNS=value
value
A numeric or symbolic value representing the size, in bytes, of
the file specification string, in the range of 0 to 255.
For example, assume that the following directive is in your program:
FLNAM: «ASCII /INPUTFILE:/
The syntax for the FNS parameter is:
SFAB FNS=10,FNA=FLNAM
The offset for this field is:
FAB$B_FNS

Section 4.2.13 describes another technique -- using the FNM parameter
—-— for setting the file specification string size field.

$FAB FNM

4.2.13 File Specification
The FNM parameter sets two fields in the FAB: the file specification
string address and the file specification string size. It causes the
specified string to be stored in the special program section named
$RMSNAM.,
FORMAT
FNM = <filespec>
<filespec>
The ASCII file specification string; the angle brackets (<>) are
required syntax.
For example:

SFAB FNM=<DISK: [DATA]FILE.DAT>,ALQ=132

4-14

THE FILE ACCESS BLOCK

$SFAB FOP

4.2.14 File Process Options

The FOP parameter sets indicators in the file-processing options field

that

represent requests for optional file-handling operations.

FORMAT

With
this

Each

CBT

CIF

CTG

DFW

DLT

ESC

INP

KFO

FOP=<CBT,CIF,CTG,DFW,DLT,ESC,INP,KFO,MXV,NAM,NEF,NFS,OFP,POS,
PPF,RCK,RWC,RWO,SCF,SPL,SQO,SUP,TEF,TMD,TMP,UFM,UFO,WCK)

the exception of the CBT, CTG, RCK, and WCK bits, the contents of
field are not modified by VAX-11 RMS operations.

option is interpreted as follows:

Contiguous best try; indicates that the file is to be allocated
contiguously on a "best effort" basis. It is input to the create
service, and is output from the open service to indicate the file
status. Note that the file will take on the contiguous best try
attribute only if a space allocation is actually performed. The
CBT option takes precedence over the CTG option (below).

Create if; causes the file to be created if it does not exist;
otherwise the create service acts as an open service. That is,
it performs all processing as described for an open operation.
The CIF option takes precedence over the SUP option.

Contiguous; indicates that the space for the file 1is to be
allocated contiguously. If this cannot be done, the operation
fails. It is input to the create service, and is output by the
open service to indicate the status of the file. The CBT option
(above) takes precedence over the CTG option.

Deferred write; indicates that writing back to the file of
modified I/0 buffers is to be deferred until the buffer must be
used for other purposes. This applies to relative files and
indexed files.

Delete; indicates that the file is to be deleted when it is
closed; this option may be specified on a close, create, or open
service. You can specify the DLT option with the BSCF or SPL
option. When using this option, you should normally use a NAM
block so that the file's directory entry is also removed.

Escape; indicates nonstandard VAX-11 RMS processing; for
DIGITAL-supplied component usage.

Input; indicates that this process permanent file is the system
command file named SYSSINPUT; for DIGITAL-supplied component
usage.

Known file open; indicates a search of the known file 1list for
DIGITAL-supplied component usage.

4-15

MXV

NAM

NEF

NFS

OFP

POS

PPF

RCK

RWC

RWO

THE FILE ACCESS BLOCK

Maximize version; indicates that the version number of the file
should be the maximum of the explicit version number given in the
file specification and should be one greater than the highest
version number for an existing file in the same directory with
the same file name and file type.

NAM block inputs; indicates that the NAM block specified in the
name block address field is to be used to provide:

e The device identification, file identification, and/or
the directory identification when the file is being
opened, closed, or deleted

e The device identification and the directory
identification when the file is being created

Not end of file; inhibits the positioning to the end of file
when a tape file is opened and the file access field of this FAB
indicates a PUT operation.

Nonfile structured; indicates on open or create that the volume
is to be processed in a nonfile-structured manner. This allows
the use of volumes created on non-DIGITAL systems.

Output file parse; specifies that the related file resultant
file specification string, if used, is to provide file name and
file type defaults only (see Section 8.2).

Current position; indicates that the magnetic tape volume set
should be positioned immediately after the most recently closed
file when the next file is created. However, if the RWO option
of this field is also set, it overrides the POS option and
positions to the beginning of the volume set.

Process-permanent file; specifies that the file's internal
VAX-11 RMS structures are to be allocated in the process 1/0
segment. The file can then be left open across images. This
option applies only to DIGITAL-supplied component usage.

Read-check; specifies that transfers from disk volumes are to be
checked by a follow-up read-compare operation. This is an input
to the create service, and is filled in by the open service to
indicate the default for the file. If RCK is set when you open
the file, checking is performed for the duration of the open,
regardless of the default.

Rewind on close; specifies that the magnetic tape volume is to
be rewound when the file is closed. This option can be specified
for the close, create, or open services.

Rewind on open; specifies that the magnetic tape volume is to be
rewound before the file is opened or created. The RWO option
takes precedence over the POS option (above).

SCF

SPL

5Q0

Sup

TEF

TMD

T™P

UFM

UFO

WCK

THE FILE ACCESS BLOCK

Submit command file; indicates that the file is to be submitted
as a batch-command file to the process-default batch queue when
the file is closed. This option can be specified for the close,
create, or open services.

Spoo}; indicates that the file is to be spooled to the process
default print queue when the file is closed. When using this
option, you should normally use a NAM block and specify the NAM
option (of this file-processing options field) so that the
resultant file specification string is available. This option
can be specified for the close, create, or open services for
sequential files only.

Sequential only; indicates that this file can be processed

sequentially only, thus allowing certain processing
optimizations. Any attempt to perform random access will result
in an error. This option is 1input to the create and open

services and applies to the find, get, and put services for
sequential files, and to all network operations.

Supersede; allows an existing file to be superseded on a create
service by a new file of the same name, type, and version. The
CIF option (above) takes precedence over the SUP option.

Truncate at end of file; indicates that unused space allocated
to a file is to be deallocated on a close service.

Temporary marked for delete; indicates that a temporary file 1is
to be created, and then deleted when the file is closed. The TMD
option takes precedence over the TMP option (below).

Temporary; indicates that a temporary file is to be created and
retained, but that no directory entry will be made for this file.
The TMD option (above) takes precedence over the TMP option.

User file mode; indicates that the channel for the file is to be
assigned in user mode. This applies only if the ESC and either
the NFS or UFO options are also set. This option is provided for
DIGITAL-supplied component usage.

User file open; indicates that VAX-11l RMS will open or create
the file only. No further VAX-1ll RMS operations can be done with
this file. To perform any further processing on the file, you
must use the QIO system service with the channel number Lhat is
returned in the status value field (STV). For the create
service, the end of file mark will be set to the end of the block
specified in the allocation options field on input (see Section
4.2.2). For either the open or create services, the IFI field is
set to 0 on return to indicate that VAX-11 RMS cannot perform any
more operations on the file.

Write-check; 1indicates that transfers to disk are to be checked
by a follow-up read-compare, Similar to the RCK option.

THE FILE ACCESS BLOCK

You can specify more than one option with the FOP parameter. However,
if you do, you must enclose the group of options in angle brackets.
When you specify only one option, no angle brackets are needed. The
options can be specified in any order.

For example, to rewind a tape file as part of the close operation, the
syntax is:

$FAB BLS=4096, FOP=RWC

Each option has its own symbolic bit offset and mask value. The bit
offset for each is formed by prefixing FABSV_ to the option value,
For example:

CIF -- FAB$V CIF

The mask value is formed by prefixing FABSM_ to the option value. For
example:

CIF -- FABSM CIF
The offset for the file-processing options field is:

FAB$L_FOP
$FAB FSzZ

4.2.15 Fixed Control Area Size

The FSZ parameter initializes the fixed control area size field, which
is used when dealing with variable with fixed control records. When
you create a file with this type of record, you must set the value for
the fixed control area before you issue the $CREATE macro instruction.
When you open an existing file that contains variable with fixed
control records, VAX-1l RMS sets this field equal to the value
specified when the file was created. The FSZ parameter is not
applicable to indexed files.

FORMAT
FSZ=header-size

header-size
The numeric value, in bytes, of the size of the fixed control
area, in the range of 1 to 255. The default size is 2 bytes. If
you specify 0, then the default size is used.

For example, if each variable with fixed control record is to have an
8-byte fixed control area, the syntax is:

$FAB FOP=WCK, FSZ=8
The offset for this field is:

FAB$B_FSZ

THE FILE ACCESS BLOCK
$FAB MRN

4.2.16 Maximum Record Number

The MRN parameter sets the maximum record number field, which
indicates the highest record number that can be written into this
file. You can use this parameter only for relative files. If you
attempt to put or get a record with a higher relative record. number
than the specified limit, an error will occur and VAX-11 RMS will
return a message indicating an illegal maximum record number. If,
however, you specify 0, checking is suppressed.

FORMAT
MRN=max-rec-number

max-rec-number
Numeric value of the highest numbered record allowed in the file,
in the range of 0 to 2,147,483,647. The default for this
parameter is 0.

For example, to set the highest relative record number at 10000, the
syntax is:

$FAB MRN=10000, FOP=WCK
The offset for this field is:

FABSL_MRN

NOTE

VAX-11] RMS does not maintain the
relative record number of the highest
existing record in the file. If you
require this information, you must
maintain the relative record number
yourself.

$FAB MRS

4.2.17 Maximum Record Size

The MRS parameter sets the maximum record size field, which indicates,
in bytes, the size of the records in the file,

For fixed-length records, the value represents the actual size of each
record in the file. You must specify a size when you create a file.

For variable-length records, the value represents the size of the
largest record that can be written into the file. If the file is not
a relative file, a value of 0 is used to suppress record size
checking, thus indicating that there is no user limit on record size.
However, the record size must conform to physical limitations, such as
that, in indexed and relative files, records may not cross bucket
boundaries,

THE FILE ACCESS BLOCK

For variable with fixed control records, the value includes only the
data portion; it does not include the size of the fixed control area.

For all relative files, the size is used to determine the size of the
‘record cell, and is wused in conjunction with the bucket size field
(see Section 4.2.3).

You specify a value when you issue a $CREATE (or $MODIFY) macro
instruction. VAX-11 RMS returns the maximum record size when you
issue a $OPEN macro instruction,

FORMAT
MRS=max~rec-size

max-rec-size
The record size, in bytes, in the range of 0 to 32,767 (16,383
for relative files) less any fixed control area (variable to 255
bytes) and control overhead information (variable to 4 bytes).

For example, to set a maximum record size of 512 bytes, the syntax is:
$FAB MRS=512 ,MRN=10000
The offset for this field is:

FABSW_MRS

NOTE

The length of the largest record
actually existing in a sequential file
with variable or VFC record format is
also maintained by VAX-11 RMS and is
available through the file header
characteristics XAB (LRL field of
$XABFHC) (see Section 6.9).

$FAB NAM

4.2.18 Name Block Address

The NAM parameter lets you set a symbolic address in the name block
address field of the FAB. This address points to the NAM block you
want to use when performing an operation, such as an open or create,
on a file. The NAM block, which is described in Chapter 7, is
required only in conjunction with the file specification processing
macro instructions (see Chapter 13).

FORMAT
NAM=nam-address

nam-address
The symbolic address of the NAM block.

For example, if a $NAM macro instruction for a NAM block has a label
of NMBLK, the syntax is:

SFAB MRS=512,MRN=1000,NAM=NMBLK

THE FILE ACCESS BLOCK

The offset for this field is:

FABSL_NAM

$FAB ORG

4.2.19 File Organization

The ORG parameter sets the file organization field, indicating the
arrangement of the data in the file. You must set this field before
you issue a $CREATE macro instruction. VAX-11 RMS returns the
contents of this field when you issue a $OPEN macro instruction.

FORMAT
REL
ORG= { INDX
SEQ
REL
Relative file organization,
IDX
Indexed file organization,
SEQ

Sequential file organization. This is the default.

For example, to set the file organization field to relative, the
syntax is:

$FAB MRN=1000, ORG=REL,MRS=512
Each organization has its own symbolic value.
e REL -- FAB$C_REL
e IDX -- FAB$C_IDX
e SEQ -- FABSC_SEQ
The offset for this field is:

FAB$B_ORG

$FAB RAT

4,2.20 Record Attributes

The RAT parameter initializes the record attributes field with special
control information pertaining to the records in the file. If you
need this information, set this field before you issue a $CREATE macro
instruction. VAX-11 RMS sets the field when you issue a $OPEN macro
instruction.

FORMA

BLK

CR

FTN

Byt
val
(he
20

30

31

2B

24
All
val

PRN

Bit 7

THE FILE ACCESS BLOCK

T
CR
RAT=<BLK {FTN,; >
PRN

Indicates that records do not cross block boundaries. This
information applies to sequential files only.

Indicates that each record is to be preceded by a line feed and
followed by a carriage return when the record is written to a
carriage control device such as a line printer or terminal.

Indicates that the first byte of each record contains a FORTRAN
(ASA) carriage control character, defined as follows:

e 0
ue ASCII
xadecimal) Character Meaning

(space) Single-space carriage control. (Sequence:
LINE FEED, print buffer contents, RETURN.)

0 Double-space carriage control. (Sequence:
LINE FEED, LINE FEED, print Dbuffer
contents, RETURN.,)

1 Page eject carriage control. (Sequence:
FORM FEED, print buffer contents, RETURN.)

+ Overprint carriage control. (Sequence:
print buffer contents, RETURN.) Allows
double printing for emphasis.

$ Prompt carriage control. (Sequence: LINE
feed, print buffer contents.)
other Same as ASCII space character: single-space
ues carriage control.

Indicates the print file format for variable with fixed control
records, where the fixed control area contains the print file
information, including carriage control. The first byte of the
fixed control area constitutes a "prefix" area, and the second
byte constitutes a "postfix" area, specifying carriage control to
be performed before and after printing the record respectively.
The encoding scheme of both bytes is as follows (even though they
are interpreted separately):

Bits 0-6 Meaning

0 No carriage control 1is specified,
that is, NULL.

1-7F Bits 0 through 6 are a count of
line feeds.

4-22

THE FILE ACCESS BLOCK

Bit 7 Bit 6 Bit 5 Bits 0-4 Meaning
1 0 0 0-1F Output the single ASCII control
character specified by the

configuration of bits 0 through 4
(7-bit character set CO0).

1 1 0 0-1F Qutput the single ASCII control
character specified by the
configuration of bits 0 through 4
which are translated as ASCII
characters 128 through 159 (8-bit
character set Cl).

1 1 1 0-1F Reserved
Only the BLK attribute can be paired with another attribute. You
cannot use CR, FTN, and PRN together in any combination. When BLK is
used with another attribute, you can specify them in any order; the
angle brackets are part of the required syntax when BLK is used with
another attribute.

The following example indicates that records do not cross block
boundaries,

FABS ORG=SEQ,RAT=BLK
Each option has its own symbolic bit offset and mask value. The bit
offset for each is formed by prefixing FAB$V_ to the attribute value.
For example:

BLK -- FAB$V_BLK

The mask value is formed by prefixing FABSM_to the attribute value.
For example:

BLK -- FABS$M_BLK
The offset for this field is:

FAB$B_RAT

$FAB RFM

4.2.21 Record Format

The RFM parameter initializes the record format field to indicate the
type of records in the file. When you create the file, you must set
this field before you issue the $CREATE macro instruction. VAX-11 RMS
returns the record format when you issue a $0OPEN macro instruction.

FORMAT
FIX
VAR
RFM=
VFC
UDF

FIX

VFC

VAR

UDF

For

THE FILE ACCESS BLOCK

Indicates fixed-length record format.

Indicates variable-length with fixed control record format. This
format is not valid for indexed files.

Indicates variable-length record format. This 1is also the
default value if the FAB 1is initialized through a $FAB macro
instruction (assembly time default).

Indicates undefined record format. The undefined record format
is valid for sequential file organization only, and can be
processed only through the use of block I/0. This is the default
value if the FAB is not initialized with a $FAB macro
instruction.

example, to indicate that records are fixed-length, the syntax is:

SFAB RFM=FIX,FAC=GET

Each record format has its own symbolic value.

e FIX -- FAB$C_FIX
e VAR -- FABSC_VAR
e VFC -- FABSC_VFC
e UDF -- FAB$C_UDF

The offset for this field is:

FAB$B_RFM

$FAB RTV

4.2.22 Retrieval Window Size

The RTV parameter initializes the retrieval window size field. This

field

identifies the number of retrieval pointers you want VAX-1l RMS

to maintain in memory for the file.

FORMAT

RTV=window-size

window-size

The number of retrieval pointers, in the range of 0 to 127, or
255. A value of 0 indicates that VAX-11 RMS is to use the system
default number of retrieval pointers. A value of 255 means to
map the entire file, if possible. Values between 128 and 254
inclusive are reserved for future use.

For example, to reserve ten retrieval pointers, the syntax is:

SFAB FAC=GET,RTV=10,RFM=FIX

4-24

THE FILE ACCESS BLOCK

The offset for this field is:

FABSB_RTV

$FAB SHR

4.2.23 File Sharing

The SHR parameter sets a value in the file-sharing field, indicating
the operations other users can perform when they are sharing access to
the file with you. File sharing pertains only to relative and indexed
file operations, unless the UPI bit is set.

FORMAT

SHR=<PUT,GET,DEL ,UPD,NIL,UPI,MSE>

PUT
Allows other users to write records to the file,

GET
Allows other users to read the file.

DEL
Allows other users to delete records from the file.

UPD
Allows other users to update records that currently exist in the
file.

NIL
Prohibits any type of file sharing by other users. (If specified
along with other operations, NIL takes precedence.)

UPI
Allows one or more writers for a sequential file or a shared file
which is open for block I/0. The user assumes the responsibility
for any required interlocking. This operation 1is set in
combination with PUT, GET, UPD, and/or DEL.

MSE

Allows multistream access. You must specify MSE whenever you are
going to issue $CONNECT macro instructions for multiple RABs for
this FAB.

You can specify one or more file-sharing operations in any order.

For example, to allow read, write, and delete operations by other

users, the syntay is:

SFAB RTV=10,RFM=FIX,SHR=<DEL,PUT,GET>
Each file-sharing operation has its own symbolic bit offset and mask
value. The bit offset is formed by prefixing FABSV_ to the operation.
For example:

PUT -- FABSV_PUT

THE FILE ACCESS BLOCK
The mask value is formed by prefixing FAB$M_ to the operation. For
example:
PUT -- FAB$M_PUT
The offset for the file-sharing field is:

FAB$B_SHR

NOTE

If you do not specify the SHR, VAX-11
RMS enters a value of 0 in the
file-sharing field. Defaults apply as
follows:

e If the file access field (FAC
parameter) is set or defaulted to
GET, the file-sharing field is
interpreted as if set to GET.

e If the file access field 1is set or
defaulted to either PUT, DEL, UPD, or

TRN, the file-sharing field is
defaulted to NIL.

$FAB XAB

4.2.24 Extended Attribute Block Pointer
For some operations, you must associate Extended Attribute Blocks
(XABs) with a FAB to convey additional attributes about a file (see
Chapter 6 for a description of an XAB). The XAB parameter sets the
extended attribute block pointer field with the address of the first
associated block (of a potential chained list of such blocks) for the
file.
FORMAT
XAB=xab-address
xab-address ‘
The symbolic address of the first XAB. A value of 0 (the
default) indicates no XABs for the file.

For example, if the $XAB macro instruction has a label of HDRXAB, the
syntax is:

SFAB XAB=HDRXAB
The offset for this field is:

FABSL_XAB

THE FILE ACCESS BLOCK

NOTES

1. If you specify an XAB for either a
SOPEN or $DISPLAY macro instruction,
VAX-11 RMS returns the attributes for
the file to the XAB.

2. If you specify an XAB for a $CLOSE,
SCREATE, or SEXTEND macro
instruction, VAX-11] RMS uses the XAB
as input to those functions,

4.3 NONINITIALIZABLE FAB FIELDS

The following list describes the FAB fields that you cannot initialize
at assembly time. Either they are static, or VAX-1ll RMS sets them for
you.

BID
Block identifier field; 1identifies the block as a FAB to VAX-1ll
RMS. This field 1is set by the $FAB macro instruction to the
symbolic value FAB$C_BID, and must not be altered.

BLN
Block length field; defines the length of the FAB to VAX-1l1l RMS.
This field 1is set by the $FAB macro instruction to the symbolic
value FABSC_BLN, and must not be altered.

DEV

The device characteristics field is set by VAX-11 RMS when you
issue a $SOPEN or $CREATE macro instruction., This field allows
VAX-11 RMS to communicate to your program the generic
characteristics of the device containing the file. Although you
cannot initialize this field at assembly time, you can
interrogate the <contents of the fields through the symbolic
offsets. Table 4-2 lists the bits in the device characteristics
field. Each bit described in this table has its own symbolic bit
offset and mask value. These definitions can be made available
to your program by issuing the $DEVDEF macro instruction. The
bit offset is formed by prefixing the characteristic name with
DEV$V_. For example: ‘

REC -- DEV$V_REC

The mask value is formed by prefixing the characteristic name
with DEVSM . For example:

REC -~ DEVS$SM_REC
The offset to this field is FABSL_DEV.

IFI
Internal file 1identifier field; associates the FAB with a
corresponding internal control structure. It is set by VAX-1l1
RMS following a successful $OPEN or $CREATE macro instruction.
(When the UFO option is specified in the FOP parameter, this
field is set to 0 following $OPEN or $CREATE.) A S$SCLOSE macro
instruction clears this field. This field should not be altered.

The offset to this field is FABSW_IFI.

SDC

STS

STV

THE FILE ACCESS BLOCK

Spooling device characteristics field; equivalent to the device
characteristics field (DEV), except that spooling device
characteristics refer to the intermediate device used for
spooling. The spooling characteristic fields are the same as the
device characteristics fields.

The offset to this field is FABSL_SDC.

Completion status code field; VAX-1l1 RMS sets this field with
success or failure codes before control 1is returned to your
program. Appendix A lists the symbolic completion codes that
your program can use to test the contents of this field.

The offset to this field is FABSL_STS.

Status value fielq; communicates additional completion
information to your program, based on the type of operation
performed and the contents of the completion status code field.
See Appendix A for the instances when VAX-11] RMS uses the status
value field.

The offset to this field is FABSL_STV.

Table 4-2
Device Characteristics

Bit Name Description
ALL Device is allocated
AVL Device is available for use
CCL Carriage control device
DIR Directory structured device
DMT Device is marked for dismount
ELG Device is error log enabled
FOD File-oriented device (disk and magnetic tape)
IDV Device can provide input
MBX Device is mail box
MNT Device is currently mounted
oDV Device can accept output
REC Record-oriented device (terminal, line printer, etc.). If field is 0, device is assumed

to be block-oriented (disk, magnetic tape). All record-oriented devices are
considered sequential in nature.

RND Device is random access in nature

RTM Device is realtime in nature; not suitable for VAX-11 RMS usage
SDI Single directory device (master file directory only)

SHR Shareable device

SPL Device is being spooled

SQD Sequential block-oriented device (magnetic tape)

SWL Device is currently software writeJocked

TRM Terminal device

CHAPTER 5

THE RECORD ACCESS BLOCK

This chapter describes the Record Access Block (RAB), the fields in
the RAB, and the parameters of the $RAB macro instruction.

5.1 THE PURPOSE OF THE RECORD ACCESS BLOCK

The RAB is the second type of user control block that you allocate
either at assembly time or run time to communicate with VAX-11l RMS.
During program execution, you associate a RAB with a File Access Block
(FAB) to establish a record stream using a $SCONNECT macro instruction.
Once you have established a record stream, you use the fields of the
RAB to define to VAX-11 RMS the next record you want to access in the
file,

Each RAB is linked to a FAB, and represents a record request stream on
the file associated with the FAB. Once you establish this link, you
can use the fields of the RAB to define for VAX-11 RMS the next
logical record you want to access and various characteristics about
that record.

You allocate a RAB with a SRAB macro instruction, and 1initialize the
fields either at assembly time (through keyword parameters) or by
direct manipulation at run time. You initialize the RAB at run time
through either keyword parameters with the $RAB_STORE macro
instruction (see Chapter 14) or the defined symbolic offsets.

Each field in the RAB has a 3-character mnemonic name. All access to
these fields 1is through this name (by keyword or offset). However,
some of the fields, as 1in the FAB, are static or output only;
therefore, you need not 1initialize them. Table 5-1 summarizes the
fields of the RAB, including the static and output-only fields.

Record Access Block Fields

THE RECORD ACCESS BLOCK

Table 5-1

Field &

Keyword
Name Field Size Description Offset
BID? byte Block identifier RABS$B_BID
BKT longword Bucket code RABSL_BKT
BLN? byte Block length RAB$B_BLN
CTX longword Context RABSL_CTX
FAB longword File access block address RABSL_FAB
st word Internal stream identifier RABSW_ISI
KBF longword Key buffer address RABSL_KBF
KRF byte Key of reference RABSB_KRF
KSZ byte Key size RABS$B_KSZ
MBC byte Multiblock count RAB$B_MBC
MBF byte Multibuffer count RAB$B_MBF
PBF longword Prompt buffer address RABS$L_PBF
PSZ byte Prompt buffer size RAB$B_PSZ
RAC byte Record access mode RABS$B_RAC
RBF longword Record address RABSL_RBF
RFA! 3 words Record’s file address RABSW_RFA
RHB longword Record header buffer RABSL_RHB
ROP longword Record-processing options RABSL_ROP
RSZ word Record size RABSW_RSZ
STS! longword Completion status code RABSL_STS
STV! longword Status value RABSL_STV
T™O byte Timeout period RABS$B_TMO
UBF longword User record area address RABSL_UBF
USZ word User record area size RAB$W_USZ

Indicates nonuser-initialized field.
2 Indicates statically initialized field (by the SRAB macro instruction) to identify this control block as a RAB.

THE RECORD ACCESS BLOCK
$RAB

5.2 RAB ALLOCATION

The format of the S$RAB macro instruction is shown below. Every
parameter is optional, depending on the function to be performed and
the combination of parameters in the macro instruction as a whole.

Format:
OPERATION PARAMETERS
Jabel: SRAB BKT=number

CTX=value
FAB=fab-address
KBF=buffer-address
KRF=key-number
KSZ=size
MBC=blocks
MBF=buffers
PBF=prompt-address
PSZ=prompt-size
5t
RAC={KEY
RFA
RBF=buffer-address
RHB=header-address

ROP=<ASY BIO CCO CVT EOF KGE KGT LIM LOA LOC NLK NXR PMT PTA
RAH RLK RNE RNF TMO TPT UIF ULK WBH>

RSZ=record-size
TMO=seconds
UBF=buffer-address

UBZ=buffer-size

THE RECORD ACCESS BLOCK

The $RAB macro instruction allocates and initializes storage for a
RAB. You <cannot wuse this macro instruction within a sequence of
executable instructions. Keyword parameters initialize the RAB fields
at assembly time. 1In some cases, specific default values are assigned
automatically when you omit a parameter, These specific defaults are
noted in the text that explains each parameter. If there is no
specific default, VAX-11] RMS uses a default value of 0.

Because VAX-11 RMS returns information in the fields of the RAB, you
cannot allocate a RAB in a read-only program section.

label: SRAB

5.2.1 Label

The label for the SRAB macro instruction lets you name a RAB, and
thereby provides symbolic access to a particular RAB within your
program. The label is optional but, when wused, must precede the
symbol $RAB and be separated from $RAB by a colon (:). For example:

INPUT: $RAB
$RAB BKT

5.2.2 Bucket Code

The BKT parameter initializes the bucket code field of the RAB at
assembly time. This field is used as follows:

1. With records in a relative file
2. When performing block I/0

For relative files, the relative record number of the record acted
upon (or which produced an error) is returned to the bucket code field
only after the completion of a sequential operation. That is, VAX-1l
RMS returns the relative record number when you set the record access
mode for sequential access (RAC=SEQ) on the execution of a $GET, $PUT,
or SFIND macro instruction.

When performing block I/0 on disk devices, you must store (in the
bucket code field) the virtual block number (VBN) of the first block
you want to read or write. For all other devices, this field 1is not
used. If you specify a VBN of 0, VAX-11 RMS will begin the block
transfer at the block pointed to by the Next Block Pointer (NBP). The
NBP is an internal pointer maintained by VAX-11 RMS, and is described
in Chapter 12.

FORMAT
BKT=number
number

A relative record number or a numeric value representing the
virtual block number to be accessed.

THE RECORD ACCESS BLOCK
For example, to indicate access to the tenth block of the file when
the program performs its first block I/0 operation, the syntax is:
$RAB BKT=10,CTX=RECOK
The offset for this field is:

RAB$L_BKT

$RAB CTX

5.2.3 Context
The CTX parameter initializes the context field, which is a field
devoted exclusively to your wuse. VAX-11 RMS makes no use of the
contents of this field; therefore, you can set any value you want in
this field. For example, you could use this field to communicate a
completion routine to your program.
FORMAT

CTX=value

value
Any user-selected value, up to one longword in length.

For example, to initialize the context field to the value of the-
symbol RECOK, the syntax is:

SRAB CTX=RECOK,BKT=10
The offset for this field is:

RABSL_CTX

$RAB FAB

5.2.4 File Access Block Address
The FAB parameter initializes the file access block address field of
the RAB, When you issue a $CONNECT macro instruction, you must set
this field to indicate the address of the FAB associated with the open
file.
FORMAT

FAB=fab-address

fab-address
The symbolic address of the FAB for the file in question.

For example, if you define the label of the FAB for the file as
MASTER, the syntax is:

$SRAB FAB=MASTER, CTX=RECOK

THE RECORD ACCESS BLOCK

The offset for this field is:

RABSL_FAB

$RAB KBF

5.2.5 Key Buffer Address

The KBF parameter initializes the key buffer address field. You use
this field when the record access mode (RAC) field specifies random
access by key value (see Section 5.2.12), and you set it to the
address of the buffer that contains the key of the desired record.
For a relative file (or for a sequential disk file with fixed-length
records), the key is the relative record number. For an indexed file,
the key is the key value within the record for the key of reference
(KRF) (see Section 5.2.6).

FORMAT
KBF=buffer-address

buffer—address
The symbolic address of the buffer containing the key.

For example, if the label of the buffer that provides the relative
record number is RELKEY, you initialize the KBF parameter as follows:

SRAB KBF=RELKEY ,CTX=RECOK
The offset for this field is:

RABSL_KBF

NOTE

Before issuing a S$GET or S$FIND macro
instruction in random mode to an indexed
file, you place in KBF the address of a
location <ontaining a key value. The
size of this key value must be specified
in the KSZ field. During execution of
the $GET or S$SFIND operation, VAX-11l RMS
uses the key value described by the KBF
and KSZ fields to search an index (which
you specify through the contents of the
KRF field of the RAB) and 1locate the
desired record in the file. The type of
match (that is, exact, generic,
approximate, or approximate and generic)
that VAX-11 RMS attempts between the key
value you specify and key values in
records of the file is determined by the
KSZ field and the ROP field.

THE RECORD ACCESS BLOCK

NOTE

The key buffer address field uses the
same location in the RAB as the prompt
buffer address field. There 1is no
conflict between these two fields,
however, because the prompt buffer
address field is used only for
terminals, while the key buffer address
field is used only for randomly accessed
disk files.

$RAB KRF

5.2.6 Key of Reference

The KRF parameter initializes the key of reference field, which
specifies the key or index (primary, first alternate, and so on) to
which the operation applies. The KRF field is applicable to indexed
files only.

When your program issues a $GET or S$FIND macro instruction in random
access mode, the key of reference specifies the index to search for a
match on the key value which is described by the key buffer address
(KBF) and key size (KSz) field. When your program issues a $CONNECT
or SREWIND macro instruction, the key of reference identifies the
index in the file of the next record in the stream. The next record
is important in sequential retrieval of records; the Next Record Iis
described in Section 10.2.2.

The format of this parameter is:
KRF=key-number
where
key-number
is the numeric value representing a key in the records of a file,
The value 0 indicates the primary key. The values 1 through 254
indicate alternate keys. The assembly-time default value 1is 0
(primary key).
As an example, if the first alternate key is the index to search for a
match (approximate, generic, or generic-approximate) on the key value
described by the KBF and KSZ fields, the KRF parameter would be
initialized as follows:
$RAB KRF=1 ,KBF=KEYBUF,KSX=KEYSIZE
The offset for this field is:

RAB$B_KRF

THE RECORD ACCESS BLOCK
$RAB KSE

5.2.7 Key Size

The KSZ parameter initializes the key size field, which contains the
size, in bytes, of the key pointed to by the key buffer address field.

5.2.7.1 Relative Files - The size of the relative record number of a
record in a relative file 1is a longwodrd, positive, integer value;
therefore, the key size is 4. \

5.2.7.2 Indexed Files., - The size of key values in bytes of an indexed
file can be from 1 to 255 bytes,

When you access an indexed file in random mode, the contents of the
KSZ and the contents of the ROP field determine the type of match to
make on the key value specified in the key buffer address. For string
key data type, the «contents of the KSZ field can be less than the
defined key size. For the other (numeric) key types, the contents of
KSZ must be the defined length or 0, which defaults to the defined
length, The following chart shows the relationships of the KSZ/ROP
field contents and the type of match. Since KSZ for numeric key types
must be the defined length, only exact and approximate matches are
made on these types.

KGE or KGT Specified KSZ/Defined Key Size Type of Match
Specified in ROP Relationship
NO EQUAL EXACT
NO LESS THAN GENERIC
YES EQUAL APPROXIMATE
YES LESS THAN GENERIC-APPROXIMATE

5.2.7.3 Relative and Indexed Files
FORMAT
KSZ=size

size

The numeric value of the size of the record key. For relative
record numbers, the default value of 0 causes a key size of 4 to
be used. For string keys a value from 1 to the size of the key
field and for the numeric key data types a value of 0 cause the
defined size to be assumed; a nonzero value is checked against
the defined size and an error (RMSS_RSZ) is returned if they are
not equal.

For example, for relative files the KSZ parameter must be coded as:
SRAB KSZ=4,KBF=RELKEY

The offset for this field is:
RAB$B_KSZ

5-8

THE RECORD ACCESS BLOCK

NOTE

The key size field uses the same
location in the RAB as the prompt buffer
size field. There 1is no conflict
between these fields, however, because
one field (PBF) 1is used only for
terminal I/0, while the other field
(KSZ) is used only for randomly accessed
disk files.

$RAB MBC

5.2.8 Multiblock Count

The MBC parameter initializes the multiblock count field, and applies
only when the RAB accesses a sequential disk file,

VAX-11 RMS examines the multiblock count field during the execution of
a S$CONNECT macro instruction. The value in this field is used as the
number of blocks to be transferred as a single entity during an 1I/0
operation for the record stream represented by this RAB. A buffer is
allocated that can contain the specified number of blocks. In
addition, more than one buffer (of this size) can be allocated for the
record stream, as determined by the value of the multibuffer count
field (see Section 5.2.9).

The use of the multiblock count field optimizes data throughput
especially for sequential operations and in no way affects the
structure of the file. It reduces the number of disk accesses vyou
would normally require for your record operations and can thereby
greatly increase execution speed. Oon the other hand, the extra
buffering increases memory requirements.

FORMAT
MBC=blocks

blocks

The number of blocks, in the range of 1 to 127, to be allocated
to each 1I/0 buffer. If you omit this parameter, the multiblock
count field is initialized to 0 at assembly time, which specifies
that the process default for the multiblock count is to be used.
If the process default is also 0, VAX-11 RMS uses the system
default. If the system default is also 0, then the default size
for each I/0 buffer is one block.

For example, to allocate 16 blocks to each I/0 buffer, the syntax is:
SRAB MBC=16 ,CTX=RECOK
The offset for this field is:

RAB$B_MBC

NOTE

The MBC parameter is not used with block I/0.

THE RECORD ACCESS BLOCK
$RAB MBF

5.2.9 Multibuffer Count

The MBF parameter sets the multibuffer count field to indicate the
number of I/0 buffers you want VAX-1l1 RMS to allocate when you issue a
$CONNECT macro instruction for this RAB.

VAX-11 RMS requires that at least one buffer be allocated for each
file, unless the file 1is to be processed with block I/0 operations
only. Multiple buffers can be used efficiently to overlap I/O time
with program compute time, particularly in read-ahead or write-behind
processing (see Section 5.2.15).

FORMAT
MBF=buffers

buffers
A numeric value, in the range of -128 to +127, which represents
the number of buffers to be allocated. If the number is
positive, the buffers are locked in the working set of the
process. If negative, the absolute value gives the number of
buffers to allocate, but they are not locked in the working set
of the process.

If the MBF parameter is omitted, the field is initialized to 0 at
assembly time, A 0 value 1indicates the use of the process
default for the particular file organization and device type.

If the process default is also 0, the system default for the
particular file organization and device type applies.

If the system default is likewise 0, one buffer is allocated,
unless read-ahead or write-behind is specified, in which case two
buffers are allocated; in either case, the buffer or buffers are
not locked in the working set of the process.

If either the process or system default is nonzero, the allocated
buffers are either locked or not locked in the process' working
set based on whether the default value is positive or negative,
as described above.

For example, to allocate four buffers, the syntax is:
$RAB MBF=4,CTX=RECOK
The offset for this field is:

RAB$B_MBF

NOTE

The MBF parameter is not used with block
I/0. No buffers are allocated either if
block I/0 access is specified in the
file access (FAC) field of the FAB on
open or create, or if mixed block 1I/0
and record I/0 is specified in the file
access field, but the block 1I/0 record
option 1is set in the record processing
options (ROP) field for the connect
service,

5-10

THE RECORD ACCESS BLOCK

$RAB PBF

5.2.10 Prompt Buffer Address

The PBF parameter initializes the prompt buffer address field. This
field points to a character string to be used as a prompt for terminal
input. 1If you select the PMT option of the ROP parameter (see Section
5.2.14) when you issue a S$GET macro instruction, this character string
is output to the terminal before the read operation is performed.

To perform any carriage control on the terminal, you must insert the
appropriate carriage control characters into this character string.

FORMAT
PBF=prompt-address
prompt-address
The symbolic address of the buffer containing the prompt

character string.

For example, if the buffer containing the prompt character string has
a symbolic label of PROMPT, the PBF parameter is:

SRAB PBF=PROMPT ,ROP=PMT,PSZ=2
The offset for this field is:

RABSL_PBF

NOTE

The prompt buffer address field uses the
same location in the RAB as the key
buffer address field. There is no
conflict between these two fields,
however, because the prompt buffer
address field is used only for
terminals, while the key buffer address
field is used only for randomly accessed
disk files.

$RAB PSZ

5.2.11 Prompt Buffer Size

The DPSZ parameter initializes the prompt buffer size field. This
field contains the size, 1in bytes, of the character string for
terminal I1/0 prompting.

FORMAT
PSZ=prompt~-size
prompt-size

The size, in bytes, of the prompt character string, in the range
of 0 to 255.

THE RECORD ACCESS BLOCK
If, for example, the character string is only two bytes 1long,
syntax is:
$RAB PBF=PROMPT, PSZ=2,ROP=PMT
The offset for this field is:

RAB$B_PSZ

NOTE

The prompt buffer size field uses the
same location in the RAB as the key size
field. There 1is no conflict between
these fields, however, because the
prompt buffer size (PSZ) field 1is wused
only for terminal 1I/0, while the key
size (KSZ) is wused only for ramdomly
accessed disk files.

$RAB RAC

5.2.12 Record Access Mode

the

The RAC parameter initializes the record access mode field to indicate

the method of retrieving or storing records in the file.

FORMAT
SEQ
RAC= KEY
RFA
SEQ
Indicates sequential record access mode (the default); can

specified with any type of file organization.

KEY
Indicates random access by key; used with relative files

be

(and

with sequential files on disk with fixed-length records) to
indicate access by relative record number; used with indexed

files to indicate access by key value.

RFA
Indicates random access by record's file address; used for
files only.

For example, to set the record access mode field to indicate
sequential record access mode, the syntax is:

$RAB RAC=SEQ, CTX=RECOK
The offset for this field is:

RAB$B_RAC

disk

the

THE RECORD ACCESS BLOCK
Each record access mode has a symbolic constant that can be wused to
set the record access mode field at run time, as follows:
e SEQ - RAB$C_SEQ
e KEY - RABSC_KEY

e RFA - RAB$C_RFA

NOTES

1. You can specify the record access
mode on a per-operation basis.

2, For block I/0, you do not use the
record access mode field.

$RAB RBF

5.2.13 Record Address

The RBF parameter initializes the record address field. When you
issue a $PUT or $WRITE macro instruction, this field must specify the
address of the record to be written to the file.

When you issue a S$GET or S$READ macro instruction, VAX-11l RMS sets this
field to the address of the record just read from the file; you need
not initialize this field.

FORMAT
RBF=buffer-address
buffer-address
The symbolic address of the buffer in your program that contains

the record to be written.

For example, to initialize the record address field with the address
of a buffer having the label of RECBUF, the syntax is:

SRAB RBF=RECBUF ,CTX=RECOK
The offset for this parameter is:

RABSL_RBF
| $RAB RHB

5.2.14 Record Header Buffer

The RHB parameter initializes the fixed-length record header field.
This buffer 1is wused only when processing records of variable with
fixed-length control. For a $GET macro instruction, VAX-11 RMS strips
the fixed control area portion of the record and places it in the
buffer whose address is specified in this field. For the §$PUT or
$UPDATE macro instructions, VAX-11 RMS writes the contents of the
specified buffer to the file as the fixed control area portion of the
record.

THE RECORD ACCESS BLOCK

The size of this fixed control area is defined in the FAB, through the
FSZ parameter. You must ensure that the size of the buffer described
in the record header buffer field is equal to the value specified by
the FSZ parameter.

FORMAT
RHB=header-address

header-address
The symbolic address of the record header buffer. If omitted, an
address of 0 is assumed, which indicates the absence of a buffer;
the fixed control area is discarded for a S$GET macro instruction,
zeroed for a S$PUT macro instruction, and left unchanged for a
SUPDATE macro instruction.

For example, if the buffer is defined with a 1label of FCABUF, the
syntax is:

SRAB RHB=FCABUF,CTX=RECOK
The offset for this field is:

RABSL_RHB

$RAB ROP

5.2.15 Record-Processing Options

The ROP parameter sets indicators in the record-processing options
field that let you request optional functions during execution of a
record operation. VAX-11 RMS operations never modify the contents of
this field.

FORMAT

ROP= <ASY,BI10,CCO,CVT,EOF,LOC,KGE,KGT,LOA,LIM,NLK,NXR,PMT,PTA,
RAH,RLK,RNE,RNF,TMO,TPT,UIF,ULK,WBH>

ASY
Asynchronous; indicates that any required I/0 operation is to be
performed asynchronously. When you specify ASY, VAX-11 RMS will
return control to your program as soon as an I/0 operation is
initiated, even though that operation may not yet be completed.

BIO
Block I/0; specifies that only block I/0 operations will be
performed. Used as a flag to the $CONNECT macro instruction to
indicate that no VAX-11] RMS 1/0 buffers are to be allocated, even
though the file access field of the FAB (Section 4.2.10) for the
SOPEN or $CREATE macro instruction specifies mixed block and
record operations (BRO).

CcCco
Cancel control 0; guarantees that terminal output will not be
discarded if the operator enters CTRL/O.

CVT.

Convert; changes characters to uppercase on a read from a
terminal.

EOF

LoC

KGE

KGT

LOA

LIM

NLK

NXR

THE RECORD ACCESS BLOCK

End-of-file; indicates that VAX-11l RMS is to position to the end
of the file when a $CONNECT macro instruction executes. This
applies only to sequential disk files.

Locate mode; indicates that record operations involving the S$GET

‘macro instruction will use locate mode (see Section 10.1.2).

Key is greater than or equal to; requests VAX-11] RMS to access
the first record in an indexed file, which contains a value for
the specified key of reference (KRF) (see Section 5.2.6) that is
greater than or equal to the value described by the key buffer
address (KBF) and key size. (KSZ) fields (see Sections 5.2.5 and
5.2.7.2, respectively). This applies to indexed and relative
files only. If neither KGE nor KGT is specified, a key equal
match is made.

Key is greater than; requests VAX-11] RMS to access the first
record in an indexed file, which <contains a value for the
specified key of reference (KRF) (see Section 5.2.) that is
greater than the value described by the key buffer address (KBF)
and key size (Ksz) fields (see Sections 5.2.5 and 5.2.7.2,
respectively). This applies to indexed and relative files only.
If neither KGE nor KGT is specified, a key equal match is made.

Load; specifies that VAX-11] RMS is to load buckets according to
the fill size established at file creation time. The bucket fill
size is established at file creation time by the data bucket fill
size (DFL) and index bucket fill size (IFL) fields of the key
extended attribute blocks (XABs). The XABs are described in
Chapter 6. Assembly-time default (LOA not specified) causes
VAX-11 RMS to ignore the established bucket fill size (that is,
buckets will be completely filled). This applies to indexed
files only.

Limit; key value described by the key buffer address (KBF) and
key size (KSZ) fields (see Sections 5.2.5 and 5.2.7.2,
respectively) is to be compared to the wvalue in the record
accessed in sequential mode. If the record's key value is
greater than the limit key value, an RMS$_OK~LIM status code |is
returned.

No lock; specifies that the record accessed through a $GET or
$FIND macro instruction is not to be locked. This does not apply
to sequential files. The NLK option takes precedence over the
ULK option (below).

Nonexistent record processing; specifies that if the record
randomly accessed through a $GET or S$FIND macro instruction does
not exist (was never inserted into the file or was deleted), the
service is to be performed anyway, locking the record cell if
required. For the $GET macro instruction, the previous contents
of a deleted record are returned; O0s are returned if the record
never existed. The processing of a deleted record returns a
completion status code of RMS$_OK_DEL, and the processing of a
record that never existed returns RMS$_OK_RNF. This option
applies only to relative files.

5-15

PMT

PTA

RAH

RLK

RNE

RNF

TMO

TPT

UIF

ULK

WBH

THE RECORD ACCESS BLOCK

Prompt; indicates that the contents of the prompt buffer are to

be wused as a prompt on a read from a terminal (see Section
5.2.10).

Purge type-ahead; eliminates any information that may be in the
type-ahead buffer on a read from a terminal.

Read-ahead; used with multibuffers (see Section 5.2.8) to
indicate read-ahead operations. When a buffer is filled, the
next record will be read into the next buffer. This permits an
overlapping of input and computing. Read-ahead is ignored for
unit record device 1/0.

Read of locked record allowed; specifies that a user who locks a
record is allowing the 1locked record to be read by other
accessors. This option does not apply to sequential files,

Read no echo; indicates that input data is not echoed
(displayed) on the terminal as it is entered on the keyboard.

Read no filter; indicates that CTRL/U, CTRL/R, and DELETE are
not to be considered control commands on terminal input, but are
to be passed to the user program.

Time-out; indicates that the content of the time-out period
field of the RAB is to be used to determine the number of seconds
that a VAX-11] RMS operation has to complete its operation. If
the time-out period expires, VAX-11] RMS returns an error status
(see Section 5.2.17).

Truncate put; specifies that a put service with a record access
mode of sequential can occur at any point in the file, truncating
the file at that point. On a write service, this causes the end
of file mark to immediately follow the last byte written. This
applies only to sequential files,

Update if; indicates that if a $PUT macro instruction is issued
for a record that already exists in the file, the operation is
converted to an update. This option applies to random access by
relative record number to sequential, relative, and indexed
files.

Manual unlocking; specifies that VAX-11l RMS cannot automatically
unlock records. Instead, once locked (through a $GET, $FIND, or
$PUT macro instruction), a record must be specifically wunlocked
by a $FREE or SRELEASE macro instruction. This option does not
apply to sequential files,. The NLK option (above) takes
precedence over the ULK option.

Write-behind; wused with multibuffers (see Section 5.2.8). When
a buffer is filled, the next record written will be placed in the
next buffer while the previous buffer is output. This allows for
an overlapping of computing and output. Write-behind is ignored
for unit record devices,

5-16

THE RECORD ACCESS BLOCK

You can use one or more options with the ROP parameter. For example,
to indicate that a terminal read should convert from lower- to
uppercase, and use locate mode, the prompt buffer, and the specified
time-out period, the ROP parameter would be:

SRAB ROP=<CVT,LOC,PMT,TMO> ,PBF=PROMPT,PSZ=PROMPT_SIZE,TMO=30
Each option has its own symbolic bit offset and mask value. The bit
offset for each 1is formed by prefixing RABSV_ to the option value.
For example:

ASY -- RAB$V_ASY

The mask value is formed by prefixing RABS$SM_ to the option value. For
example:

WBH -- RABS$M_WBH
The offset for the ROP field is:

RAB$L_ROP

$RAB RSZ

Ed

5.2.16 Record Size

The RSZ parameter sets the record size field. This field controls the
size of a record or the number of bytes that, respectively, a $PUT or
SWRITE (block I/0O) macro instruction can write.

On input from a file, VAX-11l RMS sets this field to indicate the
length, in bytes, of the record that a $GET macro instruction
transfers or that a $READ macro instruction reads.
FORMAT

RSZ=record-size

record-size

The size, in bytes, of the record. For operations with a S$PUT
macro instruction, the size must be in the range of 0 to 32767.
For operations with a SWRITE macro instruction, the range is 1 to
65535,

For example, to indicate a record size of 150 bytes, the syntax is:
S$SRAB RBF=RECBUF ,RSZ=150
The offset for this field is:

RABSW_RSZ

NOTES

l. After a get operation, VAX-11 RMS
places the size of the record
retrieved into the record size
field. On a read operation, VAX-1l1
RMS sets the record size field to
the number of bytes actually
transferred.

5-17

THE RECORD ACCESS BLOCK

2. For variable with fixed control records, VAX-11 RMS
does not include the size of the fixed control area
in the record size field.

$RAB TMO

5.2.17 Time-Out Period

The TMO parameter initializes the time-out period field, which
indicates the maximum number of seconds that VAX-11] RMS can use to
complete an operation., If the time-out period expires before the
operation completes, VAX-11 RMS returns an error status code.

To use this field, you must also specify the TMO option when you set
the record-processing option field (ROP parameter).

FORMAT
TMO=seconds

seconds
The maximum number of seconds, in the range of 0 to 255, that a
VAX-11 RMS operation can use, If you specify 0, VAX-1l RMS must

complete the operation in less than one second.

For example, to indicate that the operation for this RAB must complete
in 20 seconds or less, the syntax is:

$RAB TMO=20,ROP=TMO
Note that the TMO option is specified on the ROP parameter.
The offset for this parameter is:

RABSB_TMO

NOTE

The time-out period currently applies
only when you use a $GET or $READ macro
instruction to input from a terminal or
a mailbox.

$RAB UBF

5.2.18 User Record Area Address

The UBF paraméter initializes the user record area address field,
which indicates the location of a record or block buffer.

THE RECORD ACCESS BLOCK

When you issue a $GET macro instruction, this field must contain the
buffer address regardless of the record transfer mode (locate or
move). This also applies when you issue a $READ macro instruction for
block I/0. However, operations with a $PUT macro instruction never
need a user buffer.
FORMAT
UBF=buffer-address
buffer-address
The symbolic address of a work area (buffer) within your program.
(The size of this buffer must be defined in the user record area
size field; the USZ parameter.)
For example, if the buffer area has a label of USRBUF, the syntax is:
SRAB UBF=USRBUF ,USZ=2048
The offset for this field is:

RABSL_UBF

$RAB USZ

5.2.19 User Record Area Size

The USZ parameter initializes the user record area size field, which
indicates the 1length, 1in bytes, of the user record or block buffer.
This buffer area should be large enough to contain the largest record
in the file. 1If the buffer is not large enough on an operation with a
SGET macro instruction, VAX-11 RMS will move as much of the record as
possible into the buffer, and return a warning status code.

The value in this field specifies the transfer length, in bytes, for
block I/0 operations with a $READ macro instruction.

FORMAT
UsZ=buffer-size
buffer-size

A numeric value representing the size, in bytes, of the buffer.
This value must be in the range of 1 to 65535.

For example, for a user buffer area with a label of USRBUF and a size
of 2048 bytes, the syntax is:

$RAB UBF=USRBUF,USZ=2048
The offset for this field is:

RABSW_USZ

THE RECORD ACCESS BLOCK

5.3 NONINITIALIZABLE RAB FIELDS

The following list describes the RAB fields that you cannot initialize

at assembly time. Either they are static, or VAX-1l RMS sets them for
you.

BID
Block identifier field; identifies the block as a RAB. The S$RAB
macro instruction sets this field to the symbolic value
RABSC_BID; this field must not be altered.

BLN
Block length field; defines the length, in bytes, of the RAB. to
VAX-11 RMS. The $RAB macro instruction sets this field to the
symbolic value RAB$C_BLN; this field must not be altered.

ISI
Internal stream identifier field; associates the RAB with a
corresponding FAB. VAX-11] RMS sets this field after the
execution of a SCONNECT macro instruction. A $DISCONNECT macro
instruction clears this field. This field should not be altered.

The offset of this field is RABSW_ISI.

STS

Completion status code field; VAX-11] RMS sets this field with
the success or failure status codes for a record operation before
returning control to your program. (In the case of an
asynchronous operation that has been initiated but not yet
completed, this field 1is 0.) Appendix A 1lists the symbolic
completion status codes that your program can use to test the
contents of this field.

The offset to this field is RABSL_STS.

STV
Status value field; communicates additional completion
information to your program, based on the type of operation and
the contents of the completion status code field. See Appendix A
for the instances when VAX-~1l RMS uses the status value field.

The offset for this field is RABSL_STV.

5.3.1 The Record's File Address

After the successful execution of a S$GET, $PUT, or SFIND macro
instruction, VAX-11l RMS sets the record's file address (RFA) field to
the address of the record acted on by the operation. This address is
meaningful only for disk files; it provides an unambiguous means of
randomly locating this same record at some later time.

You can store the contents of the record's file address field for
future wuse. When you want to retrieve the record again, merely
restore the saved contents of the field, set the record access mode to
random by RFA, and issue a $GET or S$FIND macro instruction.

The offset for this field is:

RAB$W_RFA

THE RECORD ACCESS BLOCK

NOTES
This field is six bytes long.

RFA values remain valid for a record
in a sequential file as long as the
record is within the space defined
by the logical file, that is, until
the file is truncated to a point
before the record.

RFA values remain valid for a record
in a relative or indexed file for
the life of the file, that is, until
the file is deleted.

CHAPTER 6

THE EXTENDED ATTRIBUTE BLOCKS

This chapter describes the various Extended Attribute Blocks (XABs),
their fields, and the macro instructions and parameters you use to
initialize the fields at assembly time.

6.1 THE PURPOSE OF EXTENDED ATTRIBUTE BLOCKS

The XABs are optional additional control blocks, which you can use to
communicate to VAX-11 RMS any file attributes beyond those expressed
in the FAB. You use these control blocks only when you want to
specify exactly, or retrieve information on, the attributes handled by
a particular XAB.

You can use XABs to set file attributes by specifying them as inputs
to the SCREATE, $CLOSE, or S$EXTEND macro instructions. Retrieve the
attributes by specifying the XAB as input to the $OPEN or $DISPLAY
macro instructions. If the CIF bit is set in the file processing
options field of the FAB on a create service, VAX-1l RMS uses the XAB
fields as input or output depending on whether the file is opened or
created, respectively.

When you need more than one XAB, you can chain them together. Each
XAB has a next XAB address field, which can be set at assembly time
through the NXT parameter, or at run time. You can set this field at
run time by storing the appropriate address into the next XAB address
field. The extended attribute block pointer field of the FAB (see
Section 4.2.24) points to the first block in the chain. Section 6.2
below describes chaining in detail.

Currently, VAX-1l1l RMS supports seven types of XABs, each with its own
macro instructions for allocation and initialization. These blocks
and their macro instructions are as follows:

e Date and time -- $XABDAT

e File protection —-- $XABPRO

e Allocation control —-- S$XABALL

e Key definition -- S$XABKEY

e Summary -- $XABSUM

e File header characteristics —-- S$XABFHC
e Revision date and time -- $XABRDT

THE EXTENDED ATTRIBUTE BLOCKS

The last three characters of each macro instruction (DAT, PRO, ALL,
KEY, ©SUM, FHC, and RDT) define the specific type of the XAB to VAX-1l
RMS, and cause the value for this specific type to be stored in the
type code field of each block. The symbolic offset for this field is:

XAB$B_COD

In addition, a length value is stored in the block length field of
each block. The symbolic offset for this field is:

XAB$B_BLN

Because each block has its own initialization macro instruction, each
is discussed separately in Sections 6.3 through 6.9 below.

Table 6-1 indicates which XAB types are processed by which service.

Table 6-1
XAB Types Processed by Service

Service
Close Create Display Extend Open
Type

Allocation Input Output Input Output
Control Output Output

Key Input Output Output
Definition Output

Summary Output Output
Date and Input Output Output
Time Output®

File Header Input Output Output
Characteristics Output!

File Input? Input Output Output
Protection Output!

Revision Input? Input Output Output
Date and Time Output?

Fields of the XAB are output only if the create if (CIF) bit is set and the file is opened,
not created.
2Processed only if file is write-accessed.

At assembly time, you can initialize the fields of the particular XAB
through keyword parameters. At run time, you can use the keyword
parameters with the appropriate $XABxxx STORE macro (see Chapter 14)
or the defined symbolic offsets. -

THE EXTENDED ATTRIBUTE BLOCKS

6.2 CHAINING EXTENDED ATTRIBUTE BLOCKS

Every XAB has a next XAB address field, regardless of the type of
information that the block contains, such as date/time or file
protection information. When you need one or more XAB for a
particular operation, place the symbolic address of the first XAB of
the chain into the extended attribute block pointer field of the FAB.
Then, place the address of the second XAB in the chain, if any, in the
next XAB address field of the first XAB (NXT parameter). You continue
this process wuntil you have chained all the XABs you need. You must
set the next XAB address field of the last XAB to 0 to indicate the
end of the chain. You can either set this field explicitly, or allow
the system to default to this 0 value.

Within the XAB chain, the different types of XABs need not be in any
specific order. For example, at assembly time, you could allocate a
date and time XAB, a file protection XAB, and an allocation «control
XAB. You can chain these different types of XABs in any order, by
appropriately setting the contents of the next XAB address field in
each block. For indexed files, however, VAX-1l1 RMS permits multiple
instances of the same type of XAB in an allocation control or key
definition XAB chain. For SCREATE macro instructions, these must
appear in a specific order and allocation control XABs must be 1linked
together 1in ascending order. based on the contents of the area
identification number (AID) field (see Section 6.5.2). Also, for the
SCREATE macro instruction, key definition XABs must be linked together
in ascending order based on the contents of the key of reference (REF)
field (see Section 6.6.12). In these cases, there cannot be any
intervening XABs of another type in the sub-chain of XABs of one type.
Further, the operation for which the allocation control or key
definition XABs is present determines whether the ascending order must
be dense. For <create operations, allocation control and key
definition XABs, if present, must appear in densely ascending order by
area identification (AID) number or Kkey of reference (REF) value,
respectively. For extend operations, allocation control and key
definition XABs, 1if present, must be in ascending order but need not
be dense. For open and display operation, RMS-32 verifies that the
number of XABs specified does not exceed the number specified for the
file. 1If the number of XABs specified does exceed the number defined
for the file, a RMS$ AID error is returned for allocation XABs and a
RMS$_REF error is returned for key definition XABs.

The NXT parameter appears in the format of each of the XAB macro
instructions. This parameter is explained below, rather than repeated
throughout Sections 6.3 through 6.10.
FORMAT
NXT=address
address
The symbolic address of the next XAB in the chain. A value of O
(the default) indicates the last (or only) XAB in the chain.
The offset for this field is:

XAB$L_NXT

THE EXTENDED ATTRIBUTE BLOCKS
$XABDAT

6.3 DATE AND TIME XAB

The $XABDAT macro instruction allocates and initializes an XAB for
date and time. This block allows for extended control of the date and
time of the file's creation, revision (update), and expiration. Table
6-2 summarizes the fields comprising the date and time XAB.

Table 6-2
Date and Time Extended Attribute Block Fields

Field
Name Field Size Description Offset
_

BLN? byte Block length XABS$B BLN
CDT! quadword Creation date and time XAB$Q CDT
cop? byte Type code XAB$B COD
EDT quadword Expiration date and time XAB$Q EDT
NXT longword Next XAB address XABSL NXT
RDT! quadword Revision date and time XAB$Q RDT
RVN! word Revision number XABSW RVN

!Indicates no assembly time initialization.
2Indicates that this field is set automatically by the type of macro instruction.

FORMAT
OPERATION PARAMETERS
label: $XABDAT EDT=date-time

NXT=address

Both parameters and the label are optional, depending on how you use
the particular macro instruction.

6-4

THE EXTENDED ATTRIBUTE BLOCKS

label: $XABDAT

6.3.1 Label

The optional label for the $XABDAT macro instruction lets you assign a
name to a date and time XAB, thereby allowing symbolic access to the
XAB.,

For example, suppose a SXABDAT macro instruction represents the first
or only XAB in the chain, and has the following label:

HDRXAB : SXABDAT

Then, your $FAB macro instruction would have an XAB parameter as
follows:

$FAB XAB=HDRXAB

Note that the label must be separated from the $XABDAT macro name by a
colon (:).

$XABDAT EDT

6.3.2 Expiration Date and Time

The EDT parameter sets the expiration date and time field. This field
indicates the date and time after which a magnetic tape file can be
deleted.

FORMAT
EDT=date-time
date-time
A 64-bit binary value in either absolute (positive) or delta

(negative) format. (See the VAX/VMS System Services Reference
Manual.)

The offset for this field is:

XAB$Q_EDT

$XABDAT NXT

6.3.3 Next XAB Address

The NXT parameter sets the next XAB address field. See Section 6.2
for a complete description of this parameter.

THE EXTENDED ATTRIBUTE BLOCKS

6.3.4 Creation/Revision Date and Time, and Revision Number

VAX-11l RMS sets certain values for date and time, and returns them 1in
date and time XAB fields for your inspection. You can override these
system-supplied values through the use of a date and time XAB as input
to a SCREATE macro instruction. However, the $XABDAT macro
instruction does not contain parameters for the assembly-time

initialization of these fields. As outlined in Table 6-2, these
fields are:

® Creation date and time (CDT) -~ this is a 64-bit binary wvalue
expressing the date and time at which the file was created.
The symbolic offset for this field is:
XABS$Q_CDT
e Revision date and time (RDT) -- this is a 64-bit binary wvalue
expressing the date and time at which the file was last
updated. The symbolic offset for this field is:
XAB$Q_RDT
® Revision Number (RVN) -- this field provides the number of
times this file was opened for write operations. The symbolic
offset for this field is:

XABSW_RVN

6.3.5 Date/Time Type Code and Block Length
The S$XABDAT macro instruction sets the values for both the type code
and block 1length fields. VAX-11 RMS .interprets the last three
characters (DAT) of the macro instruction to determine the value. For
the date and time XAB, the following symbolic values are stored:

¢ Type code field -- XABSC_DAT

e Block length field -- XAB$C_DATLEN
$XABPRO

6.4 FILE PROTECTION XAB

The $XABPRO macro instruction allocates and initializes an XAB that
you can use to explicitly specify file ownership and file protection.
Table 6-3 summarizes the fields comprising the file protection XAB.

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-3
File Protection Extended Attribute Block Fields

Field
Name Field Size Description Offset J
BLN? byte Block length XAB$B BLN
cop! byte Type code XABS$B COD
GRP word Group number of file owner XAB$W GRP
MBM word Member number of file owner XAB$W MBM
NXT longword Next XAB address XABSL NXT
PRO word File protection; contains four XAB$W PRO

separate fields denoting the

protection for system, owner,

group, and world

Indicates that this field is set automatically by the type of macro instruction.

FORMAT
OPERATION PARAMETERS
label: $XABPRO PRO=<system,owner,group,world>

UIC=<group,member>

NXT=address

label: $XABPRO

6.4.1 Label

VAX-11 RMS uses the label for the S$SXABPRO macro instruction in the
same way that it wuses the label for the $XABDAT macro instruction;
see Section 6.3.1.

THE EXTENDED ATTRIBUTE BLOCKS

$XABPRO PRO

6.4.2 File Protection

The PRO parameter initializes the four subfields of the
protection field and it specifies the file access privileges
four classes of users. The subfields for the four classes are:

1. 'System -~ this subfield specifies access rights for

file
of the

users

executing wunder a system UIC, that is, having an octal group

number less than 10.

2. Owner -- this subfield specifies access rights for the

owner

of the file. A user is considered the owner of the file only

if both the group and member number fields (see
6.4.3) of the accessing process match the group and

Section

member

number fields of the file owner's UIC stored with the file.

3. Group -- this subfield specifies the access rights for users
whose group number matches the group number field of the file
owner,

4. World —- this subfield specifies the access rights for any
user. It is normally allowed for wusers not within the

system, owner, or group classifications (items 1, 2,
above) .

and 3,

A user is granted the maximum number of types of access rights for

each of the classes to which he belongs.

The entire file protection field is one word, and each «classification
subfield occupies four bits of this word. The field is organized as

shown in Figure 6-1.

15 1211 8 7 4 3 0

world group owner system

Figure 6-1 File Protection Field

FORMAT
PRO=<system,owner,group,world>

{system,owner,group,world>

The access code for the four classifications of users. An access
code consists of four bits, each of which represents the type of
access granted to a user in the class. These access rights and

the characters that signify them are:

- read access

- write access

- execute access
- delete access

OomE®

THE EXTENDED ATTRIBUTE BLOCKS

You can specify any number of access characters, in any order, for
each classification. For example, you could specify RWD, RWED, DREW,
or any combination, up to four characters per classification. The
access rights for one classification are not separated by a comma.
However, the classifications must be separated from each other by a
comma or other valid separator to delimit the end of one
classification and the start of the next. For example, the access
rights for one classification may have a syntax of:

RWD
However, the syntax for three separate classifications might be:
RWD,DWRE ,R

Note that when you use less than all four access rights characters,
you need not supply a delimiter or code to indicate the omission. .

The four different classifications of user, however, must be coded 1in
the following order:

<system,owner,group,world>
The angle brackets are required. syntax, and each classification must
be separated from the others by a comma. In addition, when you omit a
classification, the comma must be retained to indicate the omission,
unless no other classifications follows. For example, to specify all
access rights for system, owner, and world, you would write:

$XABPRO PRO=<RWED,RWED, ,RWED>

However, to specify all access rights to only system and owner, you
would write:

$XABPRO PRO=<RWED ,RWED>

The absence of a code specifies that the access associated with the
code is denied to the user.

The offset for the PRO field is:
XABSW_PRO
Each 4-bit subfield also has its own symbolic offset, as follows:

e System -- XAB$V_SYS

e Owner -- XABS$V_OWN
e Group ~-- XABSV_GRP
e World -- XABSV_WLD

Additionally, each separate access specification has the following
mask values:

e No read access —-- XABSM_NOREAD

e No write access —-- XABSM_NOWRITE
e No execute access -- XABSM_NOEXE
e No delete access -- XABSM NODEL

THE EXTENDED ATTRIBUTE BLOCKS

USER CONSIDERATION

The bit values in the protection word are set to 1 to deny access.
Thus, specifying a particular access right code clears the bit to 0.

NOTE

If you do not provide a file protection
XAB for a SCREATE macro instruction, or
if the PRO parameter is not specified or
is specified as no access to all classes
(all 1 bits), the default file
protection for the process will be used
for the newly created file.

$XABPRO UIC

6.4.3 Group and Member Number
The UIC parameter initializes both the group and member number fields,
thus supplying both portions of the user identification code (UIC) of
the file's owner.
FORMAT

UIC=<group,member>

<group,member>
The group number and member number, respectively, of the owner of
the file. Both numbers are octal numbers in the range of 0
through 177777. The group number and member number must be
enclosed within angle brackets, placed in the order shown in the
format, and separated by a comma.

For example, if your group number is 126 and your member number is 1,
the syntax is:

$XABPRO UIC=<126,1>

The symbolic offsets for these fields are:
e Group number -- XAB$W_GRP
e Member number -- XABSW_MBM

The total user identification field, comprised of both the group and
member number fields, has a symbolic offset of:

XABSL_UIC

NOTE

If no file protection XAB is provided,
or the user identification field is null
for a SCREATE macro instruction, the UIC
of the process will be used as the
owner's UIC for the newly created file.

THE EXTENDED ATTRIBUTE BLOCKS
$XABPRO NXT

6.4.4 Next XAB Address

The NXT parameter sets the next XAB address field. See Section 6.2
for a complete description of this parameter.

6.4.5 File Protection Type Code and Block Length

The $XABPRO macro instruction sets the values for both the type code
and block 1length fields. VAX-11 RMS interprets the last three
characters (PRO) of the macro instruction name to determine the value.
For the file protection XAB, the following values are stored:

e Type code field -- XABSC_PRO

e Block length field -- XABSC_PROLEN
$XABALL

6.5 ALLOCATION CONTROL XAB

The S$XABALL macro instruction allocates and initializes an XAB that
allows extended control of file disk space allocation, both for
initial allocation and later extension. When you use an allocation
control XAB as input to a create or extend service, certain fields
override corresponding fields of the FAB, in particular, the
allocation quantity (ALQ), bucket size (BKZ, which is the BKS in the
FAB), default extension quantity (DEQ), and the CBT and CTG bits of
the allocation options (AOP, which are the CBT and CTG bits of the FOP
field in the FAB) fields. On an open or display service, VAX-1ll RMS
fills in these fields with the values that pertain to the file. Table
6-4 summarizes the fields comprising the allocation control XAB.

6-11

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-4

Allocation Control Extended Attribute Block Fields
Field
Name Field Size Description Offset
AID byte Area identification number XABS$B_AID
ALN byte Alignment boundary type XABS$B_ALN
ALQ longword Allocation quantity XABSL_ALQ
AOP byte Allocation options XAB$B_AOP
BKZ byte Bucket size XAB$B_BKZ
BLN! byte Block length XAB$B_BLN
cop! byte Type code XAB$B_COD
DEQ word Default extension quantity XAB$W_DEQ
LOoC longword Location XABSL_LOC
NXT longword Next XAB address XABSL_NXT
VOL word Relative volume number XABSW_VOL

!Indicates that this field is set automatically by the type of macro instruction.

FORMAT

OPERATION

PARAMETERS

label: $XABALL

AlD=area-number

CYL
ALN={LBN

VBN

ALQ=allocation-qty

AOP=allocation-option

BKZ=bucket-size

DEQ=extension-qty

LOC=number

NXT=address

VOL=volume-number

THE EXTENDED ATTRIBUTE BLOCKS

label: $XABALL

6.5.1 Label

VAX-11] RMS uses the label for the $XABALL macro instruction 1in the
same way that it uses the label for the $XABDAT macro instruction;
see Section 6.3.1.

$XABALL AID

6.5.2 Area Identification Number

The AID parameter initializes the area identification number field,
which identifies the area of the file described by the current XAB.
You are always responsible for the contents of this field; it is
never set by VAX-1l RMS. Rather, VAX-11] RMS uses the contents of this
field for the following:

e Checks the sequencing of allocation control XABs in an XAB
chain. The allocation XABs in an XAB chain must appear in
ascending order, based on the contents of the AID field in
SCREATE and SEXTEND macro instructions; the order is
irrelevant in the $OPEN an $DISPLAY macro instructions.

e Identifies the target area for a specific operation (for
example, create, extend, and so on).

FORMAT
AID=area-number

area-number
Is a numeric value indicating which area, in a range of 0 through
254, of the file is described by the current XAB. If the file is
a sequential or relative file, only a single allocation XAB can
be used for any operation and its AID field must contain 0. The
assembly-time default for this field is 0.

For example, to establish an allocation XAB for area 3 of an indexed
file, you would write:

$XABALL AID=3
The offset for this field is:

XAB$B_AID

THE EXTENDED ATTRIBUTE BLOCKS

$XABALL ALN

6.5.3 Alignment Boundary Type

The ALN parameter initializes the boundary type field, which specifies
the type of alignment for the area to be allocated. This gives you
control over the placement of your file. 1If you need this placement
control on either a create or extend operation, you use the alignment
boundary type field to specify whether the 1location field (LOC
parameter) contains a starting cylinder number, logical block number,
or virtual block number.

FORMAT
CYL
ALN= {LBN
VBN
CYL
Indicates that the alignment starts at the cylinder number
specified in the location field.
LBN
Indicates that the alignment starts at the 1logical block
number specified in the location field.
VBN

Indicates that the alignment starts as near as possible to the
virtual block number specified in the location field.

For example, if you want the file you are going to create or extend to
be aligned at the tenth cylinder on the volume, you would write:

$XABALL ALN=CYL,LOC=10
Each alignment type has its own symbolic value.
e CYL - XAB$K_CYL
e LBN - XAB$K_LBN
e VBN - XABSK_VBN
The offset for this field is:

XAB$B_ALN

NOTE

If you do not set a value in this field,
VAX~-11 RMS assumes that you do not want
to exercise control over the placement
of your file.

THE EXTENDED ATTRIBUTE BLOCKS

$XABALL ALQ

6.5.4 Allocation Quantity

The ALQ parameter sets the allocation quantity field. This field
indicates the number of blocks (or area via AID parameters for indexed
files) for the initial file allocation (SCREATE macro instruction), or
the number of blocks to add (or area via AID parameters for indexed
files) when the file is extended (SEXTEND macro instruction).

In either case (create or extend operation), the value in this field
overrides the contents of the allocation quantity field of the FAB
(see Section 4.2.2).

The open, create, and display services fill in this field with the
actual allocation size of the file or area for indexed files. The
extend service fills in the field with the actual size of the extended
space.

FORMAT

ALQ=allocation-quantity

allocation-quantity
A numeric value in the range of 0 to 4,294,967,295. A value of 0
(the default) indicates that no allocation is to be performed.

For example, to indicate that the allocation amount is 30 blocks, the
syntax is:

$XABALL ALQ=30
The offset for this field is:

XABSL_ALQ

$XABALL AOP

N~
6.5.5 Allocation Option

The AOP parameter sets the allocation option field, which lets vyou
specify a particular type of allocation.

FORMAT

AQP=<CBT,CTG,HRD,ONC>

,,,,,,,,,

applicable only when CYL or LBN is specified for the ALN parameter of
the allocation XAB. When only one option is chosen, angle brackets (<
and >) are not required; otherwise, they are required syntax. The
allocation options may be specified in any order.

The ROP parameter can indicate anvy number of obptions; however, HRD ic

THE EXTENDED ATTRIBUTE BLOCKS

CBT
Contiguous best try; 1indicates that VAX-11 RMS is to perform the
initial allocation (or a later extension) using contiguous
blocks, on a "best effort" basis. This overrides the CBT bit in
the file processing options (FOP) field of the FAB.
CTG
Contiguous; indicates that the initial allocation (or later
extension) must use contiguous blocks only; the allocation fails
if the requested number of contiguous blocks 1is not available.
If this is the initial allocation, the file is marked contiguous.
Overrides the CTG bit in the file-processing options field of the
FAB.
HRD
Hard; 1indicates that if the requested alignment cannot be
performed, an error will be returned. The default is that
allocation is to be performed as near as possible to the
requested alignment.
NOTE
The HRD option is applicable only to CYL
and LBN alignment boundary types,
specified by the ALN parameter of the
allocation XAB.
ONC

On cylinder boundary; indicates that VAX-11] RMS is to start the
allocation on any available cylinder boundary.

For example, suppose you want 30 blocks allocated contiguously
starting at logical block number 1024 with an error returned if not
possible. You would write:

$XABALL ALQ=30, -; allocation amt
ALN=LBN -; start at logical blk. no.
LOC=1024 -; 1024
AOP=<CTG,HRD> ; contig. or rtn. error

Each allocation request option has its own symbolic bit offset and
mask value, formed by prefixing the option value with XABSV_ and
XAB$M_, respectively. For example:

XABS$V_CBT and XABSM_CBT
The offset for this field is:

XAB$B_AOP
$XABALL BKZ

6.5.6 Bucket Size

The BKZ parameter initializes the bucket size field, which is used
only with the relative and indexed file organizations. When you
create a relative or indexed file, you specify the bucket size field
before issuing the $CREATE macro instruction. For a relative file,
the BKZ parameter specifies the bucket size for the file, since a

THE EXTENDED ATTRIBUTE BLOCKS

relative file may have only one area. However, for an indexed file,
the BKZ parameter specifies the bucket size for the area described by
this allocation XAB; this allows you to vary the size of buckets
among the multiple areas of your indexed file. When vyou open an
existing file, VAX-11] RMS sets this field to the defined size of the
buckets in the file for a relative file or the defined size of the
buckets in this area (defined by the AID parameter) for an indexed
file.

The value in this field overrides the <contents of the bucket size
field (BKS) of the FAB on a create service (see Section 4.2.3).

FORMAT
BKZ=bucket-size

bucket-size
A numeric value, in the range of 0 to 32, representing the number
of blocks in a bucket. If this parameter is omitted or if a
value of 0 is used, then a default size will be used equal to the
minimum number of blocks required to contain a single record.

For example, to specify a bucket size of two blocks, you would write:
$XABALL BKzZ=2

The offset for this field is:

XAB$B_BKZ
$XABALL DEQ

6.5.7 Default Extension Quantity

-~

The DEQ parameter initializes the default extension quantity field,
which specifies the number of blocks to add to the file whenever it is
extended automatically.

The value in this field overrides the contents of the default
extension quantity field (DEQ) of the FAB (see Section 4.2.6).

FORMAT
DEQ=extension—-quantity

extension-quantity
The number of blocks to be added when automatic extension is
required. This number must be in the range of 0 to 65,535. 1If
you specify 0, the file will be extended using a VAX-11

RMS~determined defanlt extension value.

For example, to specify a default extension quantity of 50 blocks, you
would write:

$SXABALL DEQ=50
Thé offset for this field is:

XAB$W_DEQ

6-17

THE EXTENDED ATTRIBUTE BLOCKS
$XABALL LOC

6.5.8 Location

The LOC parameter initializes the location field, indicating the
starting point for file allocation. The exact interpretation of this
field depends on the contents of the alignment boundary type field
(ALN) (see Section 6.5.3). VAX-1]1l RMS uses the contents of the
location field on a SCREATE or SEXTEND macro instruction, but only if
the alignment boundary type field (ALN) is also initialized.

FORMAT
LOC=number

number
The starting point for the allocation 1is determined from the
contents of the alignment boundary type field as follows:

e If CYL is specified for the ALN parameter, the LOC number
specified is the starting cylinder number where the
allocation is to start, in the range of 0 to the maximum
cylinder number on the volume,

e If LBN is specified for the ALN parameter, the LOC number
specified is the logical block number where the
allocation is to start, in the range of 0 to the maximum
number of blocks on the volume.

e If VBN is specified for the ALN parameter, the LOC number
specified is the virtual block number where the
allocation is to start, in a range from 1 to the maximum
number of blocks in the £file. This is used only in
conjunction with a $EXTEND macro instruction. If the
number 0 is specified, or if the number is omitted during
an extend operation, VAX-11 RMS extends as near as
possible to the end of the file.

For example, to indicate that you want to allocate 30 blocks
contiguously starting at or near logical block 1024, you would write:

$XABALL ALQ=30 -; allocate 30 blocks

H
ALN=LBN ~-; start at logical block
LOC=1024 -; humber 1024
AOP=CTG ; contiguously

The offset for this field is:

XABSL_LOC

THE EXTENDED ATTRIBUTE BLOCKS
$XABALL VOL

6.5.9 Relative Volume Number
‘The VOL parameter initializes the relative volume number field. It
indicates the specific member of a volume set upon which the file is
to be allocated.
FORMAT

VOL=volume-~number
volume-number

An integer in the range 0 to 65535. Assembly-time default is 0,

specifying the "current" member of the volume set.

For example, to indicate that the file is to reside on relative volume
number 3 of the volume set, you would write:

SXABALL VOL=3 ,ALQ=30,ALN=CYL,LOC=1
The offset for this field is:

XABALLSW_VOL

$XAVALL NXT

6.5.10 Next XAB Address

The NXT parameter sets the next XAB address field. See Section 6.2
for a complete description of this parameter.

6.5.11 Allocation Control Type Code and Block Length

The S$XABALL macro instruction sets the values for both the type code
and block length fields. VAX-11 RMS interprets the 1last three
characters (ALL) of the macro instruction name to determine the value.
For the allocation control XAB, the following values are stored:

e Type code field -- XAB$C_ALL
e Block length field -- XAB$C_ALLLEN
£.,5 KBY DERFINITION XAB

The $XABKEY macro instruction allocates and initializes an XAB that
defines the key fields of an indexed file at file creation; it also
allows retrieval of the key definition at file open and display. Each
key definition XAB describes one key of an indexed file.

THE EXTENDED ATTRIBUTE BLOCKS

When you create an indexed file, you must set

fields of

want the

this

file

definition XAB.

When you open an existing indexed file or issue a
for such

specified when the file was created.

Table 6-5 summarizes the fields that comprise the key definition XAB.

each key
Since every indexed file must have at least
one key, the primary key, you will always require

SDISPLAY

XAB before you issue the $CREATE macro instruction.
Further, you must provide one key definition for
to have.

contents of
that
least one

key definitions

Table 6-5
Key Definition Extended Attribute Block Fields
Field Field
Name Size Description Offset
DAN byte Data bucket area number XAB$B_DAN
DBS! byte Data bucket size XAB$B_DBS
DFL word Data bucket fill size XABSW_DFL
DTP byte Data type of the key XAB$B_DTP
DVB! longword First data bucket start virtual XABSL_DVB
block number
FLG byte Key options flag XAB$B_FLG
IAN byte Index buckets area number XAB$B_IAN
IBS! byte Index bucket size XAB$B_IBS
IFL word Index bucket file size XABSW_IFL
KNM longword Key name buffer address XABSL_KNM
LAN byte Lowest level of index area XAB$B_LAN
number
LVL! byte Level of root buckets XAB$SB_LVL
MRL! word Minimum record length XABSW_MRL
NSG! byte Number of key segments XAB$B_NSG
NUL byte Null key value XAB$B_NUL
POS word Key position XABSW_POSO
through
XABSW_POS7

operation
a file, you use key definition XABs only if you want VAX-11
RMS to provide your program with one or more of

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-5 (Cont.)

Key Definition Extended Attribute Block Fields

Field Field

Name Size Description Offset

REF byte Key of reference XABS$B_REF

RVB! longword Root bucket start virtual block XABSL_RVB

number

SIZ byte Key size XABS$B_SIZO
through
XABSB_SIZ7

TKS! byte Total key field size XAB$B_TKS

Indicates nonuser-initialized field

FORMAT

OPERATION

PARAMETERS

label: $XABKEY

6.6.1 Label

VAX-11 RMS uses the label for the $XABKEY

same way that it
see Section 6.3.1.

IFL-bytes

DAN=area-number
DFL=bytes
DTP=data-type-code
FLG=<option,option, . . .>

IAN=area-number

KNM=address
LAN=area-number
NUL=value
POS=<position, .. .>
REF=value

SIZ=<size....>

macro

label: $XABKEY

instruction in the

uses the label for the $XABDAT macro instruction;

THE EXTENDED ATTRIBUTE BLOCKS

$XABKEY DAN

6.6.2 Data Buckets Area Number

The DAN parameter initializes the data buckets area number field of
the key definition XAB. You use this parameter to specify the area of
the file that the data buckets are to reside in only when both of the
following are true:

e You are creating a new indexed file

e You are using allocation XABs (described in Section 6.5) to
control placement

When the key definition XAB describes the primary key, the data level
of the index consists of buckets that contain the actual data records
of the file. However, when the key definition describes an alternate
key, the data level of the index consists of buckets in which VAX-1l1
RMS maintains pointers to the actual data records.

FORMAT
DAN=area-number

area-number
A numeric value in the range 0 through 254, representing an
jdentification number contained in the AID field of an allocation
XAB present in the same chain (see Section 6.5.2). The
assembly-time default is 0, that is, area 0.

For example, to indicate that these data buckets are to reside in area
3 of an indexed file, you would write:

$XABKEY DAN=3
The offset for this field is:

XAB$B_DAN

$XABKEY DFL

6.6.3 Data Buckets Fill size

The DFL parameter initializes the data buckets fill size field of the.
key definition XAB. When you create an indexed file, you use this
parameter to specify the number of bytes (of data) you want in each
data level bucket. If you specify less than the total possible bucket
size, you thereby indicate that the data buckets are to contain some
amount of free space. At run time, VAX-11l RMS follows the £fill size
specified at $CREATE time only if the RAB$V_LOA bit is set in the
record processing options (ROP) field of the RAB. The ROP field is
described in Section 5.

When the key definition XAB describes the primary key, the DFL field
describes the space in the buckets containing actual user data
records. When the key definition XAB describes an alternate key, the
DFL field describes the space in the buckets containing pointers to
the user data records. ‘

THE EXTENDED ATTRIBUTE BLOCKS

It is advantageous to use the DFL field in the following situation:

If you expect to perform numerous $PUT and SUPDATE operations on the
file after it has been initially populated, you can minimize the
resultant movement of records (known as bucket splitting) by
specifying less than the maximum bucket fill size at $CREATE time. To
utilize the free space thereby reserved in the buckets, programs that
perform SPUT or $UPDATE operations on the file should not place the
value RABSLOA in the ROP field of the RAB.

FORMAT
DFL=bytes

bytes
A numeric value representing the maximum number of bytes (of
data) in a data bucket. Thé assembly-time default value is 0,
which is interpreted by VAX-11 RMS as meaning the maximum
available space (i.e., no unused space).

For example, to specify that each bucket at the data level is to be
filled to a maximum of 400 bytes, you would write:

$XABKEY DFL=400
The offset for this field is:

XAB$W_DFL

$XABKEY DTP

6.6.4 Key Data Type

The DTP parameter initializes the data type of the key field of the
XAB. When you create an indexed file, you use this parameter to
specify the type of data in the record key field.

Key field data types and the data type codes are summarized and the
associated global symbols are listed in Table 6-6.

Table 6-6
Key Field Data Types, Data Type Codes and Global Symbols

Key Field Data Type Data Type Code Global Symbol
String STG XABSK_STG
Signed 2-byte integer IN2 XABSK_IN2
Signed 4-byte integer IN4 XABSK_IN4
Unsigned 2-byte binary BN2 XABSK_BN2
Unsigned 4-byte binary BN4 XABSK_BN4
Packed decimal PAC XABSK_PAC

THE EXTENDED ATTRIBUTE BLOCKS

String data type (STG) is defined as a left-justified string of
unsigned 8-bit bytes.

The string key field can comprise from one to eight disjoined key
field segments (see Sections 6.6.1 and 6.6.13).

Integer, binary, and packed decimal key fields must be a contiguous
set of bytes.

The null value (that is, NUL option in FLG parameter 1is set) for
integer, binary, and packed decimal 1is zero and the NUL parameter
(field) is ignored (see Sections 6.6.5 and 6.6.10).

A packed decimal is a contiguous sequence of bytes and is specified by
two attributes: the address, A, of the first byte of the string and a
length, L, that is the number of digits in the packed decimal. The
bytes of a packed decimal are divided into two 4-bit fields (nibbles)
that must contain decimal digits, except for the low nibble (bits 3:0)
of the last (highest addressed) byte, which must contain a sign. The
representation for the digits and signs is shown in Table 6-7.

Table 6-7
Packed Decimal Digits and Signs Representation
Digit or Sign Decimal Hex

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

S 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10, 12,14 or 15 A,C,EorF
- 11or13 BorD

The preferred sign representation is 12 for plus (+) and 13 for minus
(-). The length L is the number of digits in the packed decimal (not
counting the sign) and must be in the range 0 through 31. When the
number of digits is even, it is required that an extra 0 digit appear
in the high nibble (bits 7:4) of the first byte. Again the length in
bytes of the packed decimal is L/2 + 1. The wvalue of a O
length-packed decimal is identically 0; it contains only the sign
byte, which also includes the extra 0 digit.

The address, A, of the packed decimal specifies the byte containing
the most significant digit in its high nibble. Digits of decreasing
significance are assigned to increasing byte addresses and from high
nibble to low nibble within a byte. Thus +123 has length 3 and is
represented as follows:

7 4 3 0

3 12 A+l

THE EXTENDED ATTRIBUTE BLOCKS

and -12 has length 2 and is represented as follows:

2 13 A+l

Integer and binary key field data have the following formats:

IN2: LSB at A

MSB and sign at A+l
IN4: LSB at A

MSB and sign at A+3
BN2: LSB at A

MSB at A+l
BN4: LSB at A

MSB at A+3

FORMAT
DTP=data~-type-code

data-type-code
One of the following, as appropriate:

STG, string (left-justified, unsigned 8-bit bytes)
IN2, signed 2-byte integer key data

IN4, signed 4-byte integer key data

BN2, unsigned 2-byte binary key data

BN4, unsigned 4-byte binary key data

PAC, packed decimal key data

For example, to specify that the key data type 1is a signed . 4-byte
integer, you would write:

SXABKEY DTP=IN4
The offset for this field is:

XAB$B_DTP

$XABKEY FLG

6.6.5 Key Options Flag

The FLG parameter initializes the key options flag field of the key

definition XAB. when you create an 1lndexed tile, you specity the

following optional characteristics of the key represented by this XAB:
® Key values can change

e Duplicate key values are permitted

e Null key value

THE EXTENDED ATTRIBUTE BLOCKS

The allowed combinations of the changeable key wvalues and duplicate
key wvalues options depend on the type of key (that is, primary or

alternate) represented by this XAB; table 6-8 summarizes these
combinations.
Table 6-8
Key Options Flag Combinations
Combinations
Key Type
CHG + DUP CHG + NO DUP NO CHG + DUP NO CHG + NO DUP
Primary Error Error Allowed Default
Alternate Default Allowed Allowed Allowed

You should note that the entire FLG field is affected when an option
is specified, setting those bits specified and clearing those not
specified. When a bit is set, it means the corresponding option is
specified for the key. Conversely, when a bit is cleared (to 0), it
means that the corresponding option is not specified for the key.
Therefore, when defining the <characteristics of a key, you should
specify exactly what you want the field to <contain, expressing bit
settings as symbolic values. Any symbolic values you omit will result
in a 0 in the corresponding bit position.

FORMAT
" FLG=<option,option,...>

option
one of the following:

bt
-

CHG
The key value within the record in the file can be changed
by a program during a $UPDATE operation. This option can be
specified only for alternate keys. %

DUP :
The key value within the record in tﬁe file may have the
same key value as another record (pr other records) within
the file. (Refer to the chart ‘above for allowable
combinations of CHG and DUP options gelative to key type.)
NUL ’
The NUL field of the XAB contains a .null key value 1if the
key data type is string. If the key data type is other than
string (i.e., is integer, binary, or, packed decimal), then
the null key value is 0. This option can be specified only
for alternate keys. Refer to Section 6.6.10 for a
description of the XAB NUL field.

The assembly-time defaults for the FLG field depend on the
type of key defined by the XAB.

The defaults for a primary key are as follows:
e Duplicate key values are not allowed

e Key values cannot change

THE EXTENDED ATTRIBUTE BLOCKS

The defaults for an alternate key are as follows:
e Duplicate key values are allowed
e Key values can change
e No null key values

When you specify more than one option with the FLG parameter, you must
enclose the options in angle brackets. The options can be specified
in any order. When you specify only one option, no angle brackets are
required.

For example, to specify that duplicate key values are allowed, that a
null key value is allowed, and that key values cannot change (through
absence of CHG), you would write the following:

$XABKEY FLG=<DUP,NUL>

Each key option flag operation has its own symbolic bit offset and
mask value. The bit offset 1is formed by prefixing XABSV_ to the
operation. For example:

XABSV_DUP

The mask value is formed by prefixing XAB$M_to the operation. For
example:

XAB$M_DUP
The offset for the key option flag field is:

XAB$B_FLG

$XABKEY IAN

6.6.6 Index Buckets Area Number

The IAN parameter initializes the index buckets area number field of
the key definition XAB. When you create an indexed file, you use this
parameter to specify the area of the file that the index buckets are
to reside in only when both of the following are true:

® You are creating a new indexed file.

e You are using allocation XABs (described in Section 6.5) to
control placement and structure of the file.

When the key definition XAB describes the primary key, the index level
of the index consists of all levels of the tree- (pyramid-)structured
primary index down to and including the level containing pointers to
the wuser data records themselves. However, when the key definition
describes an alternate key, the index level of the index comprises all
levels of the pyramid-structured alternate index down to, but not
including, the level containing buckets in which VAX-11 RMS maintain
pointer arrays describing the user data records. Refer to the LAN
parameter for a description of how to place the lowest 1level of the
index in a location separate from the higher levels.

FORMAT

IAN=area-number

THE EXTENDED ATTRIBUTE BLOCKS

area-number
A numeric value in the range 0 through 254, representing an
identification number contained in the AID field of an allocation
XAB present in the same chain (see Section 6.5.2). The
assembly-time default is 0, that is, area 0.

For example, to indicate that these index buckets are to reside in
area 3 of an indexed file, you would write:

SXABKEY IAN=3
The offset for this field is:

XAB$B_IAN

$XABKEY IFL

6.6.7 Index Buckets Fill Size

The IFL parameter initializes the index buckets fill size field of the
key definition XAB. When you create an indexed file, you use this
parameter to specify the number of bytes you want in each index
bucket. If you specify less than the total possible bucket size, you
indicate that the index buckets are to contain some amount of free
space. At run time, VAX-11 RMS adheres to the fill size specified at
SCREATE time only if the RAB$V LOA bit is set in the record-processing
options (ROP) field of the RAB. The ROP field is described in Section
5.

When the key definition XAB describes the primary key, the IFL field
describes the space in the buckets in all levels of the primary index
down to and including the level containing pointers to the user data
records. When the key definition XAB describes an alternate key, the
IFL field describes the space in the buckets in all 1levels of the
alternate index down to, but not including, the level containing
buckets in which VAX-11 RMS maintains pointer arrays describing the
user data records.

It is advantageous to use the IFL field in the following situation:

If you expect to perform numerous $PUT and SUPDATE operations on
the file after it has been initially populated, you can minimize
the resultant movement of records (known as bucket splitting) by
specifying 1less than the maximum bucket fill size at $CREATE
time. To utilize the free space thereby reserved in the buckets,
programs that perform S$PUT or SUPDATE operations on the file
should not place the value RABSLOA in the ROP field of the RAB.

FORMAT
IFL=bytes

bytes
A numeric value representing the maximum number of bytes in an
index Dbucket, The assembly-time default value is 0, which is
interpreted by VAX-11 RMS as meaning the maximum available space
(that is, no unused space).

THE EXTENDED ATTRIBUTE BLOCKS

For example, to specify that each index bucket is to be filled to a
maximum of 256 bytes, you would write:

$XABKEY IFL=256
The offset for this field is:

XAB$W_IFL

$XABKEY KNM

6.6.8 Key Name Address

The KNM parameter initializes the key name buffer address field of the
key definition XAB. When you define a key during creation of an
indexed file, you can associate any 32-character string you choose
with the key field represented by the XAB. VAX-11l RMS never examines
this character string, but it retains it in the file as part of the
key definition information.

FORMAT
KNM=address

address
The symbolic address of a buffer, which must always be at 1least
32 bytes in length. A value of 0 in this field indicates that no
key name is defined during a $CREATE operation or 1is to be
displayed during a SOPEN or S$SDISPLAY operation.

For example, if the key buffer area has a label of KEYBUF, you would
write:

$XABKEY KNM=KEYBUF
The offset for this field is:

XABSL_KNM

$XABKEY LAN

6.6.9 Lowest Level of Index Area Number

The LAN parameter initializes the lowest level of index area number
field of the key definition XAB. It permits you to separate the
lowest level (level 1) of the index from all higher levels (levels 2
+) of the index 1in an indexed file; that is, you can use the LAN
parameter to specify an area of the index wherein the lowest level of

+ha inAaov wrd 11 vyAaciAA wh i~k e anavadsAa vam
v <

o AavAa
—aa ~aara T Py SRRl Veisa oxa A DT UL G- Qe

A I Av ~vAacs)
rem the arca {cr arcas)
specified by the IAN parameter (wherein higher 1levels of the index
will reside). The IAN parameter is described in Section 6.6.6.

You can utilize the LAN parameter only when both of the following are
true:

e You are creating a new indexed file.

® You are using allocation XABs (described in Section 6.5) to
control placement and structure of the file.

THE EXTENDED ATTRIBUTE BLOCKS

NOTE

The bucket size of the area specified by
the LAN parameter must be the same as
the bucket size specified by the IAN
parameter.

FORMAT
LAN=area-number

area-number
A numeric value in the range 0 through 254, representing an
identification number contained in the AID field of an allocation
XAB present in the same chain (see Section 6.5.2). The
assembly-time default 1is 0; that is, the lowest level of the
index will occupy the same area of the file as the remainder of
the index.

For example, to indicate that the lowest level of the index is to
reside in area 3 of an indexed file, you would write:

$SXABALL AID=3 ;area identification
S$XABKEY IAN=5 ~;index area number
LAN=3 ilowest level of index area number

The offset for this field is:

XAB$B_LAN

$XABKEY NUL

6.6.10 Null Key Value

The NUL parameter initializes the null field of the key definition
XAB. Normally, VAX-11 RMS updates all indexes to reflect the values
in the corresponding key fields of the records written to an indexed
file. The NUL parameter, however, allows you to instruct VAX-11l RMS
not to make an entry in an alternate index if a record being entered
in an indexed file contains the specific (null) alternate key value.
The following prerequisites must be satisfied for you to use the NUL
parameter:

e The file must be an indexed file.

e The XAB must define an alternate key.

e The NUL option of the FLG parameter must have been set at file
creation (refer to Section 6.6.5 for a description of the FLG
parameters).

FORMAT

NUL=value

value
Any user-selected character value

THE EXTENDED ATTRIBUTE BLOCKS

For example, to indicate that a record with an alternate key value of
127 (ASCII delete) is not to have an entry made for it in the
associated alternate index (in this case the second alternate index),
you would write:

$XABKEY FLG=NUL =-;set null flag
NUL=127 -;null key value
REF=2 ;second alternate key

The offset for this field is:

XAB$B_NUL

$XABKEY POS

6.6.11 Key Position

The POS parameter initializes the key position field of the key
definition XAB. The key position field defines the location of the
key within each record of an indexed file, and 1is eight words in
length. Two types of keys can be defined: simple keys and segmented
keys.

A simple key is a single string of contiguous bytes in the records.
The first word of the position field specifies the starting position
of the string and the remaining words contain 0s. You can use simple
keys with any data type (string, integer,) binary, or packed decimal
(see Section 6.6.4).

Segmented keys can be used only with key fields that contain string
data. A segmented key consists of two to eight strings of bytes in
the record. Each individual string (segment) is a set of contiguous
bytes, but the strings do not need to be contiguous; additionally,
the strings can be in any order and may overlap. Each successive word
of the position field specifies a starting position of one of the
segments. When processing records that contain segmented keys, VAX-11
RMS regards the key field as a single, logically contiguous string
beginning with the first segment and ending with the last.

You should note that the key position and the key size field (see
Section 6.6.13) must define an equal quantity of key position values
and key size values,

FORMAT
POS=position

or
POS=<position0,positionl,...,position7>

position
Is a numeric value representing the starting (byte) position of
the key within each record. The first byte of a record is
represented by the value 0, the second by the value 1, etc. A

simple key has only one starting position, while a segmented key
may have up to eight starting positions.

THE EXTENDED ATTRIBUTE BLOCKS

For example, to indicate that a record contains a simple key which
starts in the first byte of each record, you would write:

$XABKEY POS=0, -; key starts in first byte
S1z=8 ; key length 8 bytes

To indicate that a record contains a segmented key consisting of 4
segments with the 1st segment starting in the 20th byte, the 2nd
segment starting in the 14th byte, the 3rd segment starting in the 1st
byte, and the 4th segment starting in the 29th byte, you would write:

$XABKEY P0S=<19,13,0,28>, -; segmented key
S1Z=<8,2,5,32> ; length in bytes

You must include the angle brackets for multiple argument key
positions.

The offset for this field is:

XAB$W_POSO,...,XAB$W_POS7 o

$XABKEY REF

6.6.12 Key of Reference

The REF parameter initializes the key of reference field in the key
definition XAB. The key of reference field identifies which key (that
is, primary, first alternate, second alternate, and so on) 1in an
indexed file is defined by the XAB.

NOTE

VAX-11 RMS can process an indexed file
with 255 defined keys; however, you
should be aware that each key field
defined has associated with it a cost in
processing and 1I/0 tinme. The time to
build and maintain the index for the key
field and the disk storage required to
contain the index for each key field
should be considered when you make the
design decision as to whether the field
should be an alternate key field. A
file with six to eight defined keys (the
primary and five to seven alternate
keys) should be considered as a maximum;
a file with two or three defined keys
should be considered normal.

FORMAT
REF=value

value
Is a numeric value in the range 0 through 254 indicating which
key is represented by the XAB. A value of 0 indicates the
primary key, 1 indicates the first alternate key, 2 indicates the
second atlternate key, and so on. For the $CREATE and $EXTEND
macro instructions, the key references must be listed
consecutively, in ascending order. The order is irrelevant for
“e $OPEN and $DISPLAY macro instructions.

THE EXTENDED ATTRIBUTE BLOCKS

For example, to indicate the primary key, you would write:
$XABKEY REF=0
The offset for this field is:

XAB$B_REF

$XABKEY SIzZ

6.6.13 Key Size

The SIZ parameter initializes the key size field of the key definition
XAB. The key size field defines the length (in bytes) of the key
(whose starting position is defined in the key position field of the
same XAB) within each record of an indexed file. Two types of keys
can be defined: simple keys and segmented keys (see Section 6.6.11).
The key size field defining a simple key will contain only one key
size value. The key size field defining a segmented key must contain
a key size value for each segment of the key. You should note that
the key size field and the key position field (see Section 6.6.11)
must contain an equal quantity of key size values and key position
values. VAX-11l RMS associates the first key position value specified
with the first key size value specified which together define the
location and length of the first segment of a segmented key, and so
forth.

FORMAT
SIZ=size0
or
SIZ=<size0,sizel,...,size7>

size
Is a numeric value representing the length, in bytes, of the key
within the record. Up to eight values can be assigned.

When the data type of the key (see Section 6.6.4) is string, the
total size (sum of <size,size,...>) of the key must be less than
256 bytes.

When the data type of the key (see Section 6.6.4) 1is 2-byte
integer or 2-byte binary, size0 must equal 2 and sizel through
size7 must be 0s. If size0 is 0, it is defaulted to 2.

When the data type of the key (see Section 6.6.4) is 4-byte
integer or 4-byte binary, size0 must equal 4 and sizel through
size7 must be 0s. If size0 is 0, it is defaulted to 4.

When the data type of the key (see Section 6.6.4) is packed
decimal, the size specified by size 0 must be from 1 through 16
and size 1 through 7 must be 0s.

For example, to indicate that a record contains a simple key eight
bytes in length, you would write:

$XABKEY POS=0, -; key starts in first byte
SI1Z=8 ; key length 8 bytes

THE EXTENDED ATTRIBUTE BLOCKS

To indicate that a record contains a segmented key consisting of
4 segments with the 1lst segment 8 bytes in length, the 2nd
segment 2 bytes in length, the 3rd segment 5 bytes in length, and
the 4th segment 32 bytes in length, you would write:

SXABKEY PO0S=<19,13,0,28>, -; key segment start locations
S1Z=<18,2,5,32> ; key length in bytes

The offset for this field is:

6.7

XAB$B_SIzZ0,...,XABSB_SIz7

NONINITIALIZABLE KEY FIELDS

The following list describes the KEY fields that you cannot initialize
at assembly time; VAX-11 RMS sets them for you.

DBS

DVB

IBS

LVL

MRL

Data bucket size field. When a key definition XAB 1is present
during an open or display operation, VAX-11] RMS sets this field
to the size of the data 1level (level 0) buckets, 1in wvirtual
blocks, for the key described by the XAB.

The offset to this field is XAB$B_DBS.

First data bucket start wvirtual block number, When a key
definition XAB is present during an open or display operation,
VAX~-11l RMS sets this field to the start virtual block number for
the first data level bucket for the key described by the XAB.

The offset to this field is XABSL_DVB.

Index bucket size. When a key definition XAB is present during
an open or display operation, VAX-11 RMS sets this field to the
size of the index level (level 1 to n) buckets, in virtual
blocks, for the key described by the XAB.

The offset to this field is XABS$B_IBS.

Level of root bucket. When a key definition XAB 1is present
during an open or display operation, VAX-11] RMS sets this field
to the level of the root bucket for the key described by the XAB.

The offset to this field is XAB$B_LVL.

Minimum record length. When a key definition XAB 1is present
during an open or display operation, VAX-11l RMS sets this field
to the minimum record length in bytes, which will totally contain
the key field for the key described by the XAB.

If the key described by the XAB is the primary key (REF=0), then
a record must be equal te or greater than the minimum record
length returned in MRL to be inserted/updated in the file.

If the key described by the XAB is an alternate key (REF=1 to n),
then a record must be equal to or greater than the minimum record
length returned in MRL to be recorded in the associated index for
that alternate key. The offset to this field is XAB$W_MRL.

6-34

THE EXTENDED ATTRIBUTE BLOCKS

NSG ,
Number of key segments. When a key definition XAB 1is present
during an open or display operation, VAX-11 RMS sets this field
to the number of key segments which make up the key field for the
key described by the XAB (see Section 6.6.11). This field must
not be altered.

The offset to this field is XABS$B_NSG.

RVB
Root index bucket start wvirtual block number. When a key
definition XAB 1is present during an open or display operation,
VAX-11l RMS sets this field to the start virtual block number for
the root bucket of the index for the key described by the XAB.

The offset to this field is XABSL_RVB.

TKS
Total key size. When a key definition XAB is present during an
open or display operation, VAX-1l RMS sets this field to the
total key size, in bytes (the sum of SIZO through SIZ7), for the
key described by the XAB (see Section 6.6.13).

The offset to this field is XABSB_ TKS.

$XABSUM

6.8 SUMMARY XAB

The $XABSUM macro instruction allows you to determine the number of
keys and/or the number of allocation areas defined and the prologue
version number for an existing file.

The summary XAB is ignored with a S$CREATE macro call. However, one
summary XAB can be associated with a FAB at the time a SOPEN or
$DISPLAY macro call is issued. The presence of this XAB during these
calls allows VAX-11] RMS to return to your program the total number of
keys and allocation areas defined and the prologue version number when
the file was created.

There are no assembly-time initialization key words for this macro.

Table 6-9 summarizes the fields that comprise the summary XAB.

6-35

THE EXTENDED ATTRIBUTE BLOCKS

NOTE

The summary XAB is used only with indexed files.

Table 6-9
Summary Extended Attribute Block Fields
Field Field
Name Size Description Offset
= =
NOA byte Number of allocation areas XABS$B_NOA
defined for the file
NOK byte Numbers of keys defined XAB$B_NOK
for the file
PVN word Prologue version number XABSW_PVN

$XABFHC

6.9 FILE HEADER CHARACTERISTICS XAB

The $XABFHC macro instruction allocates and initializes a file header
characteristics XAB. You can use this block to display information
about the file as stored in the file header.

The only field in this XAB that you initialize at assembly time is the
next XAB address field (if this XAB points to a succeeding XAB in the
chain). VAX-11] RMS copies the file characteristics (including the
starting logical block number if the file is contiguous) into this XAB
whenever an operation is performed with a $OPEN or $DISPLAY macro
instruction. The field 1is then available for you to examine during
processing. Note that for shared sequential files, the values in the
end-of-file block, first free byte in the end-of-file block, and
longest record length fields correspond to the values at the time of
the last close or flush service.

On a create service, only the longest record length field of this XAB
is used as an input attribute, and then only if the record format is
not fixed-length.

Table 6-10 summarizes the fields comprising the file header
characteristics XAB. Note that many of these fields are also
available in the FAB.

FORMAT
OPERATION PARAMETERS
label: $XABFHC NXT=address

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-10
File Header Characteristics
Extended attribute Block Fields

Field
Name Field Size Description Offset
ATR byte Record attributes; equivalent to XABS$B ATR
the RAT field of the FAB
BKZ byte Bucket size; equivalent to the XABSB BKZ
BKS field of the FAB
BLN? byte Block length XABS$B BLN
CoD? byte Type code XAB$B COD
DXQ word Default file extension quantity; XAB$W DXQ
equivalent to the DEQ field of
the FAB
EBK longword End-of-file block XABSL EBK
FFB word First free byte in the end-of- XABSW FFB
file block
HBK longword Highest virtual block in the XABSL HBK
file; the execution of a $OPEN
macro instruction sets the
allocation quantity field of
the FAB to this value
HSZ byte Fixed length control header XAB$B HSZ
size; equivalent to the FSZ
field of the FAB
LRL word Longest record length XAB$W LRL
MRZ word Maximum record size; equiva- XAB$W MRZ
lent to the MRS field of the
FAB
NXT! longword Next XAB address XABSL NXT
RFO byte File organization and record XABSB RFO
format; combines the RFM and
ORG fields of the FAB
SBN longword Starting logical block number XABSL SBN
for the file if it is contiguous,
otherwise this field is 0

! This field can be initialized at assembly time.
%Indicates that this field is set automatically by the type of macro instruction.

THE EXTENDED ATTRIBUTE BLOCKS

6.9.1 Label

VAX-11 RMS uses the label for the $XABFHC macro instruction in the

same way that it wuses the label for the $XABDAT macro instruction;
see Section 6.3.1l.

$XABFHC NXT

6.9.2 Next XAB Address

The NXT parameter sets the next XAB address field. See Section 6.2
for a complete description of this parameter.

6.9.3 File Header Type Code and Block Length

The $XABFHC macro instruction sets the values for the type code and
block 1length fields. VAX-11] RMS interprets the last three characters
(FHC) of the macro instruction name to determine the wvalue, as
follows:

e Type code field -- XAB$SC_FHC

e Block length field -- XABSC_FHCLEN
$XABRDT

6.10 REVISION DATE AND TIME XAB

The S$XABRDT macro instruction allocates and initializes an XAB for
revision date and time. This XAB operates much like the date and time
XAB (see Section 6.3) when input to the $OPEN, $DISPLAY, or SCREATE
macro instructions. However, when you gain access to a file for
writing, issuing a SCLOSE macro instruction for that file causes the
revision date and time to be set from the current date and time and
the revision number to be incremented. Thus, any revision date and
time you specify through the XAB on a $CREATE macro instruction is
lost.

For this reason, you can input the revision date and time XAB to the
$CLOSE macro instruction, and cause the file's revision date and time
and revision number to take on the specified values.

Table 6-11 summarizes the fields comprising the revision date and time
XAB.

THE EXTENDED ATTRIBUTE BLOCKS

Table 6-11

Revision Date and Time Extended Attribute Block Fields
Field
Name Field Size Description Offset
BLN? byte Block length XAB$B_BLN
CcoD? byte Type code XABS$B_COD
NXT longword Next XAB address XABSL_NXT
RDT! quadword Revision date and time XAB$SQ_RDT
RVN! word Revision number XABSW_RVN

! Indicates no assembly time initialization.
2Indicates that this field is set automatically by the type of macro instruction.

FORMAT
OPERATION PARAMETERS
label: $XABRDT NXT=address

label: $XABRDT

6.10.1 Label
VAX-11 RMS uses the label for the $XABRDT macro instruction in the

same way it uses the label for the $XABDAT macro instruction; see
Section 6.3.1.

$XABRDT NXT

6.10.2 Next XAR Address

The NXT parameter sets the next XAB address field. See Section 6.2
for a complete description of this parameter.

6.10.3 Revision Date and Time

VAX-11] RMS sets certain values for the revision date and time, and
returns them in the revision date and time XAB fields for your
inspection. You can override these system-supplied values through the

THE EXTENDED ATTRIBUTE BLOCKS

use of a revision date and time XAB as input to a $CLOSE or S$CREATE
macro instruction. However, the $XABRDT macro instruction does not
contain parameters for the assembly time 1initialization of these
fields. As outlined in Table 6-8, these fields are:

e Revision date and time (RDT) -- this is a 64-bit binary field,
indicating the date and time at which the file was last
updated. The symbolic offset for this field is:

XAB$Q_RDT

e Revision Number (RVN) =-- this field provides the number of
times this file was opened for write operations. The symbolic
offset for this field is:

XAB$W_RVN

6.10.4 Revision Date and Time Type Code and Block Length

The $XABRDT macro instruction sets the values for both the type code
and block 1length fields. VAX~-1l RMS interprets the 1last three
characters (RDT) of the macro instruction to determine the value. For
the revision date and time XAB, the following symbolic values are
stored:

e Type code field -- XABSC_RDT

e Block length field -- XAB$C_RDTLEN

CHAPTER 7

THE NAME BLOCK

This chapter describes the Name (NAM) Block, its fields, and the macro
instruction and parameters that initialize the fields at assembly
time.

7.1 THE PURPOSE OF THE NAME BLOCK
The NAM block contains supplementary information for use with the file
specification, and is useful as a means to optimize file opening. The
fields of the NAM block include the following information:

e Device identification

e Directory identification

e File identification

e Expanded and resultant file name strings

® Address of a related file's NAM block

e Wildcard context

To use a NAM block, you must specify its symbolic address as the value
in the name block address field (NAM parameter) of the associated FAB.

The $NAM macro instruction allocates a NAM block. At assembly time,
you can initialize the fields in the NAM block through keyword
parameters. For run-time access to these fields, you can wuse the
keyword parameters with the $NAM_STORE macro instruction (see Chapter
14), or the symbolic offsets.

Table 7-1 summarizes the fields comprising the NAM block. Some of
these fields, however, are set by VAX-11] RMS' or are static;
therefore, you cannot initialize them at assembly time by keyword
parameters.

THE NAME BLOCK

Table 7-1
Name Block Fields

Field

Name Field Size Description Offset

BID! byte Block identifier NAMSB BID
BLN! byte Block length NAMS$B BLN
DID! 3 words Directory identification NAMS$W DID
DVI! 16 bytes Device identification NAMST DVI
ESA longword Expanded string area address NAMSL ESA
ESL! byte Expanded string length NAMS$B ESL
ESS byte Expanded string area size NAMS$B ESS
FID! 3 words File identification NAMS$W FID
FNB! longword File name status bits NAMSL FNB
RLF longword Related file NAM block address NAMSL RLF
RSA tongword Resultant string area address NAMSL RSA
RSL! byte Resultant string length NAM$B RSL
RSS byte Resultant string area size NAMSB RSS
wcct longword Wildcard context NAMSL WCC

Indicates nonuser-initialized field

SNAM

7.2 NAM BLOCK ALLOCATION

The $NAM macro instruction allocates and initializes storage for a NAM
block. You cannot use this macro instruction within a sequence of
executable instructions.

THE NAME BLOCK

FORMAT
OPERATION PARAMETERS
label: $NAM ESA=address

ESS=size

RLF=nam-address

RSA=address

RSS=size

label: SNAM

7.2.1 Label

The label for the $NAM macro instruction assigns a name for a
particular NAM block, and thus provides a symbolic address to be
stored in the name block address field of the FAB.

For example, if a label of NMBLK is used for a NAM block, the syntax
is:

$FAB MRS=512,MRN=1000,NAM=NMBLK,ORG=REL

A label must be separated from the $NAM macro name by a colon (:).

$NAM ESA

7.2.2 Expanded String Area Address

The ESA parameter initializes the expanded string area address field
of the NAM block, which contains the symbolic address of a
user—-allocated buffer. This buffer receives the file specification
string resulting from the translation of 1logical names and the
application of default file specification information to the original
file string (file specification string of the FAB). The default file
specification information consists of the default file specification
string of the FAB, the related file resultant specification string,
and the process defaults,

You must specify this field for wildcard processing.
FORMAT

ESA=address

THE NAME BLOCK

address
The symbolic address of a buffer in your program to receive the
expanded file specification string.

For example, if the buffer in your program has a symbolic address of
NAMBUF, the syntax is:

SNAM ESA=NAMBUF,ESS=32
The symbolic offset for this field is:

NAMS$L_ESA

$NAM ESS

7.2.3 Expanded String Area Size
The ESS parameter initializes the expanded string area size field.
This field contains the size of the user-allocated buffer whose
address is stored in the expanded string area address field (see
Section 7.2.2).
FORMAT

ESS=size

size
A numeric value representing the size, in bytes, of the user
buffer that contains the file specification string, in the range
of 0 to 255,

For example, if the user buffer is 32 bytes long, the syntax is:
$NAM ESS=32,ESA=NAMBUF

The offset for this field is:
NAMS$SB_ESS

The symbolic value NAM$C_MAXRSS defines the maximum possible length of
an expanded file specification string.

$NAM RLF

7.2.4 Related File NAM Block Address

The RLF parameter sets the related file NAM block address field to
indicate the address of the NAM block for the related file. This
field supports the secondary file concept of the command language
(pCcL), giving an extra default level in processing file
specifications. See Chapter 8 for a description of file specification
string parsing.

THE NAME BLOCK

FORMAT
RLF=nam-address

nam-address
The symbolic address of the NAM block for the related file.

For example, if the $NAM macro instruction for the related file NAM
block has the label INNAM, the syntax is:

SNAM RLF=INNAM
The offset for this field is:

NAM$L_RLF

$NAM RSA

7.2.5 Resultant String Area Address

The RSA parameter sets the resultant string area address field. This
field contains the address of a user-allocated buffer that will
receive a copy of the resultant file specification string. This
string results from the resolution of all system defaults, including
version numbers and wildcard substitutions. You must specify this
field for wildcard processing or when you select the SPL (spool) or
SCF (submit) options in the FAB.

FORMAT
RSA=address
address
The symbolic address of a buffer in your program that will

receive the resultant file specification string.

For example, if the buffer has a label of STRING defining its starting
address, the syntax is:

SNAM RSA=STRING,RSS=48
The offset for this field is:

NAMS$L_RSA

$NAM RSS

a

- - . AL ea N2
’ LLilly NnLTa OL4T

.2.0 Resultant 8
The RSS parameter sets the resultant string area size field. This
field defines the length of the user-allocated buffer whose address is
contained in the resultant string area address field (see Section
7.2.5).
FORMAT

RSS=size

THE NAME BLOCK

size

A numeric value representing the size, in bytes, of the buffer
that will receive the copy of the file specification string, in

the range of 0 to 255.

For example, if the label STRING defines the starting address of

buffer 48 bytes long, the syntax is:
SNAM RSA=STRING,RSS=48
The offset for this field is:

NAM$B_RSS

NOTE
The symbolic value NAMSC MAXRSS defines

the maximum possible length of a
resultant file specification string.

7.3 NONINITIALIZABLE NAM BLOCK FIELDS

a

The following list describes the NAM block fields that vyou cannot

initialize at assembly time. Either they are static or VAX-1ll1
sets them for you.

BID

Block identifier field; identifies the block as a NAM block
VAX-11 RMS. The $NAM macro instruction sets this field to
symbolic value NAMSC BID; you cannot alter this field.

BLN
Block length field; defines the length of the NAM block,
bytes. The $NAM macro instruction sets this field to
symbolic value NAM$C_BLN; you cannot alter this field.

DID

RMS

to
the

in
the

Directory identification field; identifies the directory for the
file. VAX-11 RMS outputs this field as part of the $OPEN,

$CREATE, and $PARSE macro instructions. 1If, once you open

the

file, you want to refer to this directory again, you can do so
more quickly by specifying that the NAM block has a valid

directory identifier (see Chapter 8).
The offset to this 3-word field is NAMSW_DID.

DvVI

Device identification field; defines the device for the file.

VAX-11 RMS outputs this field as part of the $OPEN, SCREATE,
SPARSE macro instructions. You can use this field with the

and

file

identification field to reopen the file by referring to the NAM

block (see Chapter 8).

The offset to this field 1is NAMST_DVI. The symbolic value

NAMSC_DVI gives the length of this field, in bytes.

ESL

Expanded string length field; VAX-1l1l RMS sets this field as part
of the $OPEN, $SCREATE, and SPARSE macro instructions. This field
is set to the length, in bytes, of the file specification string
returned in the buffer whose address is in the expanded string

area address field (see Section 7.2.2).

7-6

FID

FNB

RSL

WwCC

THE NAME BLOCK
The offset to this field is NAMSB_ESL.

File identification field; provides the identifier of the file.
VAX-11 RMS sets this field on a normal open or create operation.
You can also set this field before opening the file if vyou are
going to open by file identifier (see Chapter 8).

The offset to this 3-word field is NAMSW_FID.

File name status bits field; 1is set by VAX-1ll1] RMS to indicate
status information about the file as determined by the file
specification parsing routine. Each bit within this field
denotes a specific status relative to the various components of
the file specification. The bits, and the conditions they
express, are described in Table 7-2.

Each status bit has its own offset and mask wvalue. The bit
offset for each is formed by prefixing the bit name with NAMSV_.
The mask value is formed by prefixing the bit name with NAM$M_.

The offset to this field is NAMSL_FNB.

Resultant string length field; VAX-11 RMS sets this field as
part of the $OPEN, $SEARCH, and $CREATE macro instructions. This
field is set to the length, in bytes, of the file specification
string returned in the buffer whose address is in the resultant
string area address field (see Section 7.2.5).

The offset to this field is NAMSB_RSL.

Wildcard context field; contains information required for wusing
wildcards 1in place of the various file specification components.
In particular, this field restarts a directory search to find the
next matching file name, type, and/or version number.

The offset to this field is NAMSL_WCC.

THE NAME BLOCK

Table 7-2
File Name Status Bits

Bit Names Description

DIR_LVLS Number of sub-directory levels (value is O if there is a user file directory only);
3-bit field
EXP_DEV Device type was explicit
EXP_DIR Directory specification was explicit
EXP_NAME File name was explicit
EXP_TYPE File type was explicit
EXP_VER Version number was explicit
GRP_MBR Directory specification is of the group/member number format
HIGHVER A higher-numbered version (or versions) of the file exists (output from create and enter)
LOWVER A lower-numbered version (or versions) of the file exists (output from create and enter)
NODE File specification includes a node name
PPF File is indirectly accessed process permanent file
QUOTED File specification includes a quoted string
WILDCARD File specification string included a wildcard; (this value is returned whenever any of
the other wildcard bits are set)

WILD_DIR Directory specification includes a wildcard
WILD_GRP Group number contains a wildcard
WILD_MBR Member number contains a wildcard
WILD NAME File name contained a wildcard
WILD_SFD1 Sub-file directory 1 through 7 specification includes a wildcard

through
WILD_SFD7
WILD_TYPE File type contained a wildcard
WILD_UFD User file directory specification includes a wildcard
WILD_VER Version number contained a wildcard

CHAPTER 8

RUN-TIME PROCESSING INTERFACE

This chapter describes the interface that VAX-11 RMS uses to access
and manipulate files and records within files,

As outlined in Chapter 3, the run-~time macro instructions work with
the wvarious control blocks to form the record management environment.
The file-processing macro instructions deal with the file access block
(FAB), and the record-processing macro instructions deal with the
record access block (RAB).

The sections that follow discuss the run-time processing interface:

® VAX-11l RMS calling sequence and macro instruction general
format

e The path to a file
e Control block usage

e Completion status codes

8.1 THE VAX-11l RMS CALLING SEQUENCE

VAX-11 RMS uses the standard VAX-11/780 <calling sequence and
conventions, and preserves all general registers across a call, with
the exception of RO and Rl. When the routine completes execution, it
returns control to the calling program, passing a return status code
in RO. You should analyze the return code to determine the success or
failure of the routine, and to alter the flow of execution, if
necessary.

When you call a VAX-11] RMS routine, you must provide an argument 1list
to define the associated control block (FAB or RAB) and, optionally,
any completion routines. The argument 1list 1is from two to four
longwords in 1length, as shown in Figure 8-1. (The rename service,
however, uses a 5-longword argument list; see Section 13.4.)

RUN-TIME PROCESSING INTERFACE

argument count

control block address

1
| error completion routine address
1

I T T T T T T T T T T T T T T T T s s e e e e e e — - — - optional
|]
| success completion routine address |
b o o e e e J
Figure 8-1 Argument List Format
VAX-11 RMS interprets the fields in the argument list as follows:
® Argument count -- contains a binary value, from 1 to 3,

representing the number of arguments in the argument list

e Control block address -- contains the address of either the
FAB (for file operations) or the RAB (for record operations)

® Error completion routine address -~ contains the address of a
user-written completion routine to be called if the requested
operation fails

® Success completion routine address -- contains the address of
a user-writen completion routine to be called if the requested
operation completes successfully

The run-time macro instructions use two generalized formats, as
follows:

1 label: macro-name

FAB=fab-address
2 label: macro-name ERR=entry SUC=entry
RAB=rab-address

Chapters 9 through 13, which deal with the specific macro
instructions, provide the exact format for each individual run-time
processing macro instruction, with a capsule explanation of the
parameters.

The remainder of this section provides an overview of the parameters,
and lists the conventions that are followed during calls on success or
error completion routines.

The first format above takes no parameters. You supply the argument
list within your program, and the argument pointer register (AP) is
assumed to contain the address of the argument list.

In the second format, you supply parameters that automatically
generate an argument 1list on the stack according to the values you
supplied. You specify these parameters through keywords, which can be
in any order. You must separate each keyword by a comma, a blank
space, or tabs. The only parameter required when wusing the second
format is the control block address (FAB=fab-address or

RUN-TIME PROCESSING INTERFACE

RAB=rab-address). This parameter must be either a general register
(RO through R1ll) containing the control block address, or a suitable
address for a PUSHAL instruction. If you omit this parameter, no
other parameters are allowed; that is, you must use the first format.

The ERR=entry and SUC=entry parameters are optional and, 1if used,
provide the addresses of completion routine entry points. VAX-11 RMS
places the values you supply into the argument 1list on the stack
during execution of the expanded macro instruction. These values must
be addresses that can be used by a PUSHAL instruction.

When the argument list contains a completion routine argument, the
following conventions are used:

® An asynchronous system trap (AST) is queued for the routine
when the specified condition (error or success) occurs.

® General registers RO through R1ll are undefined. The argument
pointer register (AP) contains the address of the AST argument
list (see the VAX/VMS System Services Reference Manual); the
AST parameter value in the AST argument list specifies the
address of the associated control block (FAB or RAB). The
status must be retrieved from the completion status code field
of the associated control block.

e You can modify any general registers saved by an entry mask,
in addition to RO and R1.

e You can issue additional macro instructions for VAX-11 RMS
routines within the completion routines.

e To exit from a completion routine, you must perform any
necessary clean—-up operations and execute a RET instruction.

8.2 THE PATH TO A FILE

Before you can perform operations on a file, you must provide input to
the $OPEN, S$CREATE, $PARSE, and $ERASE macro instructions to establish
a path to the file., You do this by setting the file specification
string address and size fields (and possibly the default file
specification string address and size fields) of the FAB to describe
an ASCII string within the program. In this ASCII string, you can
have a concatenation of the network node name; a logical or device
name; the directory name; and the file name, type, and version
number. The following sections describe the processes that resolve
all logical names to provide the required file specification
components,

8.2.1 1Interpretation of the File

pecification

To establish a path to a file, VAX-11] RMS first calls an internal file
specification parse routine. The parse routine forms a fully
qualified file specification. If the NAM block specifies an expanded
string buffer (see Section 7.2.2), this specification is returned to
the user program as the expanded file specification string.

RUN-TIME PROCESSING INTERFACE

In forming a fully qualified file specification, VAX-11 RMS goes
through the following steps:

1.

If you specify an open by NAM block (see Section 8.2.3),
VAX-11] RMS checks the NAM block fields for a fully qualified
file specification.

If you do not specify an open by NAM block, or if the open
fails to provide all the components of a fully qualified file
specification, VAX 11 RMS processes the string specified by
the file specification string address and string size fields
(FNA and FNS) of the FAB. This string may have one of three
different forms, which are treated as follows:

a. If the file specification string has the form
node-spec::"quoted-string"

VAX-11 RMS copies the file specification string without
modification to the expanded file specification string,
and starts network processing to locate the file.

b. If the file specification contains only a file name,
VAX-11 RMS attempts to translate the string as a logical
name, If this attempt succeeds, the equivalence string
replaces the original file specification string, and the
parse routine restarts. If the attempt fails, the file
specification string is taken as the file name and
default processing begins (see Section 8.2.2).

If the file name string is neither of the two forms (a and b)
discussed above, processing proceeds as follows:

VAX-11 RMS 1isolates the various components of the file
specification, checks them for correct syntax, and copies
them to the expanded file specification string. If the file
specification does not include a device name component,
default processing begins. If there 1is a device name
component, the VAX-11 RMS parse routine attempts to translate
it as a logical name. If a node name has been seen, only
user-entered logical names are considered for translation.
If the translation attempt fails, the component is treated as
a device name.

However, if the translation attempt succeeds, the equivalence
string is checked to determine whether it refers to a process
permanent file (see the VAX/VMS Command Language User's

Guide). If the equivalence string does not refer to a
process permanent file, the parse routine restarts, using the
equivalence string as its input. If, however, the

equivalence string indicates that this 1is an indirect
reference to a process permanent file, the indicated file is
therefore the target file resulting from the parse routine,
and the logical name 1is copied to the expanded file
specification string.

RUN-TIME PROCESSING INTERFACE

8.2.2 File sSpecification Default Application

If the file specification contains any missing components after VAX-1l
RMS completely parses the primary file specification string (specified
by the file specification string address and string size fields of the
FAB), defaults are applied until either:

1. No more components are missing in the specification, or
2. No more defaults can be applied.

When VAX-11 RMS applies defaults, program defaults are applied first,
in the following order:

1. The default file specification string specified by the
contents of the default file specification string address and
string size fields (DNA and DNS) of the FAB can supply any of
the components necessary to form a full file specification.
VAX-11 RMS parses and copies the default file specification
string components in the same manner that it does for the
primary file specification string (see Section 8.2.1).
However, a duplicate field will not cause an error, because
VAX-11 RMS ignores any attempt to fill a field that is
already occupied.

2. If a NAM block is specified in the FAB, and if a related file
NAM block has been specified in the related file field of the
NAM block, defaulting can occur as follows. If the related
file NAM block has a resultant file specification string,
components of the related resultant file specification can be
used depending on the state of the OFP bit in the file
options field of the FAB. If the OFP bit is set, VAX-1ll RMS
parses the output file specification, and only the file name
and file type components can be defaulted from the related
file (also the file version if the output file version is an
explicit wildcard). If the OFP bit is clear (indicating an
input file parse), all file specification components, except
the file version, are defaulted from the related resultant
file specification string.

After program defaults, unless a node specification has been seen,
system defaults apply in the following order:

1. If the device name component of the expanded file
specification is missing, VAX-11l RMS translates the logical
name SYS$DISK and parses the equivalence string; any

expanding components are merged into the expanded file
specification string. 1If the translation yields duplicate
components, an error occurs. If the equivalence string
includes a logical name, recursion may occur. This step must
generate a device name; otherwise, an error occurs.

2. If the directory specification is missing from the expanded
file specification, VAX-11 RMS wuses the current detault
directory string from the process I/0 control page.

After VAX-11 RMS applies the program and system defaults, the expanded
name string is complete.

Chapter 13 describes the VAX-11 RMS file specification processing
macro instructions, Among the services provided by these macro
instructions, the parse service lets you call to parse a file
specification string independent of the services of the $OPEN,
SCREATE, or S$ERASE macro instructions.

RUN-TIME PROCESSING INTERFACE

8.2.3 Opening and Creating a File by Name Block

When VAX-11 RMS successfully opens a file, the device identification,
file 1identification, and directory identification fields of the NAM
block (if present) are filled with the values pertaining to that file.

If you want to reopen the file after it is closed, you can specify the
filled-in NAM block by setting the name block address field of the FAB
to indicate the address of the NAM block, and setting the NAM option
of the file-processing options field (FOP) of the FAB.

If the device identification and file identification fields are
nonzero, the file is a fully qualified file specification. However,
if the device identification field 1is nonzero, but the file
identification field is 0, VAX-11 RMS wuses the normal file
specification string parsing routine to supply any missing portions of
the full file specification. In this case, the directory
specification may come from a nonzero directory identification field
of the NAM block. If either the file identification or directory
identification field is used, the directory and/or file name, type,
and version number of the expanded and resultant file specification
strings may be null.

You can create a file the same way that you open a file (above),
except that VAX-11 RMS does not use the file identification field as
input.

8.3 CONTROL BLOCK USAGE

The control block fields accessed by any run-time macro instruction
provide VAX-11 RMS with the means to define or qualify the file and
record operations., Depending on the operation, VAX-11 RMS uses one or
more of these control blocks with one or more fields being used as
input or output to or from the operation. In the chapters that
follow, a list of each field being used is provided in the explanation
of each macro instruction. Although not individually 1listed, the
block identification (BID) and block 1length (BLN) fields of every
control block used are always inputs to every VAX-11 RMS service.

Before your program calls for the execution of the macro instruction,
you must ensure that all the appropriate control block fields used as
input contain the necessary values. There are three methods of
setting the values in the control block fields:

1. Explicit assembly time initialization
2. Implicit assembly time initialization
3. Run-time initialization

At assembly time, you explicitly initialize the fields by the use of
parameters in the macro instruction for the particular control block
(Chapters 4 through 7). You can initialize a field implicitly if
VAX-11 RMS has defined a default value for the field. 1In this case,
no action is required on your part. You simply allow the assembly
time expansion of the control block allocation macro instruction to
set the default value in the field.

At run time, you can initialize or alter the contents of a control
block through the use of the various control block $xxx_STORE macro
instructions or directly through instructions that use the defined
symbolic offsets associated with the fields (these methods do not

RUN-TIME PROCESSING INTERFACE

provide defaults at run time). If you do not appropriately set a
field that is defined as an input field to a particular operation, the
operation may fail. VAX-11 RMS assumes that every value found 1in an
input field was placed “here for use by the current operation.

8.4 COMPLETION STATUS CODES

Before returning to your program from a file or record operation,
VAX-11 RMS indicates the success or failure of the operation by
setting a value in the completion status code field (STS) of the
associated control block (FAB or RAB).

When first returning to your program after a call to an operation,
VAX-11 RMS also sets general register 0 to the value in the status
code field. 1In the case of asynchronous operations, register 0 may
simply indicate that the operation is under way.

In the chapters that follow, the discussion of each run-time macro
instruction includes a 1list of the possible nonsevere error and
success status codes that you can receive. See Appendix A for a
complete list of all VAX-11 RMS status codes.

In general, you may receive one of many error or success codes from an
operation. You should thus test for success by checking only the
low-order bit of the status code for a true condition (bit 1is set).
The low-order three bits returned in the status code, when taken
together, indicate the severity of the code. The severity codes are:

001 (1) =-- Success (low-order bit set)

000 (0) Warning; indicates a nonstandard condition. The
operation may have performed some, but not all, of

the requested function.

010 (2) -- Error; you must recognize that a problem exists and
provide a contingency plan in your program for such a
condition.

100 (4) -- Severe error; normally caused by program logic or

other unrecoverable condition.

Certain error status codes result in a value being set in the status
value field (STV) of the control block. The description of the codes
in Appendix A indicate the instances when the status value field
contains such information.

Note that VAX-11 RMS services are considered system services for the
purpose of generating system service exceptions on errors (see the
VAX/VMS System Services Reference Manual). If you test for error

conditions in your program, you should be sure to disable any unwanted
eyetem service eyxception generation.

8.5 PROCESS PERMANENT FILES

A process permanent file is one that is opened (or «created) through
VAX-11 RMS by supervisor or executive mode code having the PPF bit set
in the file processing options (FOP) field of the FAB. This causes
the VAX-11 RMS-maintained internal data structures to be allocated in
an area of memory in the process control region that remains allocated
for the life of the process. Thus, process permanent files can remain

RUN-TIME PROCESSING INTERFACE

open across image activations. You cannot directly access process
permanent files by user mode code; you can, however, indirectly
access them. VAX-11 RMS provides a subset of the total available
operations to the indirect accessor.

Indirect accessors gain access to process permarent files through the
logical name mechanism, as follows:

1. The LOGIN command image, or at a later point the command
interpreter, opens or creates a file corresponding to the
process' input, output, and error message streams. A logical
name is created in the process 1logical name table for
SYSSINPUT, SYS$OUTPUT, and SYSSERROR, respectively. The
equivalence string for the logical name has a special format
that indicates the correspondence between the logical name
and the related process permanent file. For example, for an
interactive user, a single process permanent file is opened
for the terminal and all three logical names refer to the one
file.

2. When an indirect accessor opens or creates a file specifying
a logical name that has one of these special equivalence
strings, VAX~-1l RMS recognizes this and therefore does not
open or create a new file; instead, the returned value for
the internal file identifier (and later the value for the
internal stream identifier from a connect service) is set to
indicate that access to the associated process permanent file
is with the indirect subset of allowable functions.

Some of the implications for the indirect accessor are:

® A create service for a process permanent file becomes an open
service; the fields of the FAB are output according to the
description of the open, not the create,.

e The open or create service requires no I/0 operations.
® Any number of indirect opens and creates are allowed.

® There is only one position context for the file; that is each
sequence of the open/create service accesses the same record
stream, not an independent stream.

e If the process permanent file was initially opened with the
SQ0 bit set in the file-processing options field, neither
random access nor the rewind service is permitted. This is
the case for SYSSINPUT, SYSSOUTPUT, and SYSSERROR.

e Certain options to wvarious services produce errors. For
example, you cannot set the NFS, PPF, and UFO bits of the file
processing options field for the open and create services.
Other options are ignored, such as the SPL, SCF, and DLT bits
of the file processing options field for the close service,
the ASY bit of the record-processing options field, and both
the multiblock count and multibuffer count fields.

e If a NAM block is used and either an expanded or resultant
file specification string is returned, it consists solely of
the process 1logical name followed by a colon, such as
SYSSINPUT:

RUN-TIME PROCESSING INTERFACE

The file access field is ignored on an open service; instead,
operations are checked against the file access field specified
for the original open or create service.

Information from the record attributes field is saved on each
open service (and subsequent connect service) in the wvalue
returned in the internal file identifier (and internal stream
identifier) field. If the output file 1is a print file
(variable with fixed control record format and the PRN bit is
set in the record attributes field), mapping is performed for
each put service from the user-specified carriage control to
the print file carriage control format. Thus, different
carriage control types from different indirect open services
all work correctly.

You cannot use the erase service.
Checking is performed for $DECK, $EOD, and other dollar sign

($) records on the SYS$INPUT stream (see the VAX/VMS Command
Language User's Guide).

At image exit time the VAX-11 RMS Rundown control routine
insures that the indirect I/0 on process permanent files
terminates; the process permanent files are not closed.

You can use only sequential files in this manner.

CHAPTER 9

FILE~PROCESSING MACRO INSTRUCTIONS

VAX-11 RMS provides file-processing macro instructions that you can
insert 1into your ©programs. At run time, the expanded code of these
macro instructions causes calls to be made to corresponding VAX-11 RMS
services.

The file-processing macro instructions cause VAX-11 RMS to perform
some operation related to the file as a whole. These macro
instructions, therefore, deal with fields in the file access block
(FAB). See Chapter 4 for a description of the effect of these fields.

In most cases, you use a file-processing macro instruction with
parameters to indicate the symbolic address of the FAB and the address
of any optional error or success completion routine you may have
provided. You can also use the macro instruction without parameters,
but you must then create an argument list in your program to define
the values for these addresses (see Section 8.1).

Table 3-2 summarizes all the run-time processing macro instructions.
This chapter deals only with the following macro instructions, which
pertain to file processing:

e SCREATE

e SOPEN

e S$DISPLAY

e SEXTEND
e SCLOSE
e S$ERASE

To facilitate your reference, the macro instructions are presented in
alphabetical order.

Nl AOE
L'AV] SV L] =)

9.1 TERMINATING FILE PROCESSING

The $CLOSE macro instruction invokes the close service, which
terminates file processing and closes the file.

FILE-PROCESSING MACRO INSTRUCTIONS

You can issue a $CLOSE macro instruction only when no operation is
under way for the file, that is, when all record access blocks (RABs)
associated with the file are inactive. Otherwise, the file will not
be <closed nor will the internal file-identifier field be set to O.
When the close service operates normally, VAX-11 RMS disconnects all
RABs for you, performs the various clean-up procedures (including file
option and XAB processing), and closes the file. The only types of
XABs that the <close service processes are the file protection and
revision date and time, and then only if the file is write-accessed.

FORMAT
OPERATION PARAMETERS
label: $CLOSE FAB=fab-address
ERR=entry
SUC=entry
label
An optional, user-defined symbolic address for the $CLOSE macro
instruction.

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry .
The symbolic address of a wuser-written success completion
routine; optional.

Table 9-1 lists the FAB fields that VAX-11] RMS uses as input and
output for the close service.

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-1
Close FAB Fields

Field
Usage Name Description
Input FOP File-processing options
(DLT, NAM, RWC, SCF, SPL, and TEF only)
IFI Internal file identifier
NAM Name block address
(used only if NAM is set in file-processing options)
XAB Extended attribute block address
Output IFI Intemal file identifier (zeroed)
STS Completion status code
(also returned in Register 0)
STV Status value

The VAX-11l RMS completion status codes categorized as severe errors
are contained in Appendix A (along with the nonsevere). However, to
help you foresee and possibly circumvent any nonsevere conditions that
can arise, any error or warhing completion status codes that can cause
a failure for the close service are 1listed below. Note that even
though a failure may be indicated by the completion status code value,
if the internal file-identifier value was zeroed by VAX-1ll1 RMS, the
file was indeed closed nonetheless.

Success:
RMS$_NORMAL Operation successful

RMSS_OK_NOP Key XAB not filled in when file opened for flock I/0.

Failure:
RMS$_ACT File activity precludes operation
RMS$_DAC File deaccess error
RMS$_DNR Device not ready
RMS$_EXP Expiration date not yet reached
RMS$_MKD Files-11 ACP could not mark file for deletion
RMS$_PRV Privilege violation; access denied
RMS$_WLK Device write-locked

FILE-PROCESSING MACRO INSTRUCTIONS

$CREATE

9.2 CREATING A FILE

The $CREATE macro instruction invokes the Create service, which
constructs a new file according to the attributes you specify in the
FAB. 1If any extended attribute blocks (XABs) are chained to the FAB,
then the qualities described in the XABs are applied to the file. 1If
an allocation control XAB is present, its allocation quantity (ALQ),
allocation options (AQP -- only for the CTG and CBT bits), bucket size
(BKZ), and default extension quantity (DEQ) fields are used instead of
the corresponding fields of the FAB. When either key definition or
allocation XABs are present, they must be grouped in ascending order
(by REF or AID, respectively) but they need not be dense. No other
types of XABs may intervene. If a name block (NAM) is also connected
to the FAB, VAX-11 RMS fills in its fields with information about the
created file.

The SCREATE macro instruction leaves the file opened. Therefore, vyou
must close the file when processing is completed, even if no record
operations were performed.

The create service implies PUT access; that is, you need not specify
PUT in the file access field of the FAB.

FORMAT
OPERATION PARAMETERS
label: $CREATE FAB=fab-address
ERR=entry
SUC=entry
label
A user-defined symbolic address for the $CREATE macro
instruction.
FAB=fab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-2 lists the FAB fields that VAX-11 RMS uses as input and
output for the «create service. See Chapter 4 for information
regarding the contents of the various input and output fields.

Table 9-2
Create FAB Fields

Field
Usage Name Description
Input ALQ Allocation quantity. This field is ignored if an allocation XAB
is present.
BKS Bucket size. This field is ignored if an allocation XAB is present.
BLS Block size (sequential organization only)
DEQ Default file extension quantity. This field is ignored if an allo-
cat‘ion XAB is present.
DNA Default file specification string address
DNS Default file specification string size
FAC File access
FNA File specification string address
FNS File specification string size
FOP File-processing options
FSZ Fixed control area size
IFI Internal file identifier (must be 0)
MRN Maximum record number (relative organization only)
MRS Maximum record size
NAM Name block address
ORG File organization
RAT Record attributes
RFM Record format
RTV Retrieval window size
SHR File sharing
XAB Extended attribute block address
Output ALQ Allocation quantity (contains actual number of blocks allocated)
BLS Block size (sequential organization only)
DEV Device characteristics
IFI Internal file identifier
SDC Spooling device characteristics o
STS Completion status code (also returned in Register 0)
STV Status value (contains the I/O channel number if the operation
is successful)

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-3 lists the NAM block fields that VAX-1ll RMS uses as input
and output for the create service if the name block address field is
specified in the FAB. See Chapter 7 for information regarding the
contents of the various input and output fields of the NAM block.

Table 9-3
Create NAM Block Fields

Field
Usage Name Description
input DID Directory identification (input only if NAM bit is set in the file
processing options (FOP) field of FAB)
DVI Device identification (input only if NAM bit is set in the FOP
field of the FAB)
ESA Expanded string area address
ESS Expanded string area size
RLF Related file NAM block address (if nonzero, RSA and RSL are
input from related file NAM block)
RSA Resultant string area address
RSS Resultant string area size
Output DID Directory identification
DVI Device identification
ESL Expanded string length (if, on input, both the ESA and ESS are
nonzero, and if the NAM bit of the FOP field of the FAB is
clear or DID is 0, the expanded file specification string is
copied to the buffer specified by the input ESA field)
FID File identification
FNB File name status bits (FNB is output only if NAM bit in FOP field
of FAB is clear, or if DID field was O on input)
RSL Resultant string length (if RSA and RSS are both nonzero on
input, the resultant file specification is copied to the buffer
specified by RSA)

The VAX-1l RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
create service are listed below. 1If a failure is indicated, the file
may indeed have been created, but will not be opened for processing,
depending on the nature of the failure.

FILE-PROCESSING MACRO INSTRUCTIONS

Success:
RMS$_CREATED File was created, not opened. This status is
returned when the CIF option is used and the file

must be <created. If the file is opened,
RMS$_NORMAL is returned.

RMSS_NORMAL Operation successful

RMS$_SUPERSEDE Created file supersedes an existing file

Failure:
RMSS_ACT File activity precludes operation
RMS$_CRE File create error
RMS$_DNF Directory not found
RMS$_DNR Device not ready
RMS$_EXP Expiration date not yet reached
RMS$_FEX File already exists
RMS$_FLK File locked; not available
RMSS_PRV Privilege violation; access denied
RMS$_WLK Device write-locked

$DISPLAY

9.3 OBTAINING ATTRIBUTES OF A FILE

The $DISPLAY macro instruction invokes the display service, which
retrieves file attribute information about a file and places this
information in fields in the XABs chained to the FAB. VAX-11 RMS
determines the type of file attribute information needed by the type
of XABs present.

FORMAT
OPERATION PARAMETERS
label: $DISPLAY FAB=fab-address
ERK=entry
SUC=entry
label

A user-defined symbolic address for the SDISPLAY macro
instruction; optional.

FILE-PROCESSING MACRO INSTRUCTIONS

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success completion
routine; optional.

Table 9-4 lists the FAB fields that VAX-11 RMS uses as input and
output for the display service.

Table 9-4
Display FAB Fields

Field
Usage Name Description
Input IFI Internal file identifier
XAB Extended attribute block address
Output STS Completion status code (also returned in Register 0)
STV Status value; contains the address of the XAB that caused error.

VAX-11 RMS places the attribute values in the corresponding fields of
the appropriate XAaB.

Note that the open service performs an implicit display service (see
Section 9.6).

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
display service are listed below.

Success:
RMSS_NORMAL Operation successful
RMSS_OK_NOP Key XAB not filled in when file opened for block
1/0.
Failure:
RMSS_ACT File activity precludes operation
RMSS_DNR Device not ready
RMS$_P§V Privilege violation; access denied

FILE-PROCESSING MACRO INSTRUCTIONS

SERASE

9.4 DELETING A FILE

The S$ERASE macro instruction invokes the erase service, which deletes
a VAX-1l1l RMS disk file and removes the file's directory entry as
specified in the path to the file (see Section 8.2). You must use the
SREMOVE macro instruction to delete additional directory entries, if
any (see Chapter 13).

Deleting a file releases the file's allocated space for use by another
file; the deletion does not physically remove the data (as does
overwriting or zeroing). Only files that are closed can be deleted;
an open file cannot be deleted with the erase service, but may be
deleted by the $CLOSE macro instruction by setting the DLT bit in the
file processing options field of the FAB. Furthermore, you cannot
delete files from magnetic tape volumes.

FORMAT
OPERATION PARAMETERS
label: SERASE FAB=fab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $ERASE macro instruction;
optional.

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

CIN=ant+
e e

Lah 34

-
The symbolic address of a wuser-written success completion
routine; optional.

Table 9-5 lists the FAB fields that VAX-11] RMS wuses as input and
output for the erase service,

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-5

Erase FAB Fields

Field

Usage Name Description

Input DNA Default file specification string address
DNS Default file specification string size
FNA File specification string address
FNS File specification string size
FOP File-processing options (NAM bit only)
IFI Internal file identifier (must be 0)
NAM Name block address

Output STS Completion status code (also returned in Register 0)
STV Status value

Table 9-6 lists the NAM block fields that VAX-11l RMS uses

as

input

and output for the erase service if the name block address field is

specified in the FAB.

9-10

FILE~-PROCESSING MACRO INSTRUCTIONS

Table 9-6
Erase NAM Block Fields

Field
Usage Name Description
Input DID Directory identification (input only if NAM bit is set in the file
processing options (FOP) field of FAB)
DVI Device identification (input only if NAM bit is set in the FOP
field of the FAB)
ESA Expanded string area address
ESS Expanded string area size
FID File identification (input only if NAM bit is set in the FOP
field of the FAB)
RLF Related file NAM block address (if nonzero, RSA and RSL are
from related file NAM block)
RSA Resultant string area address
RSS Resultant string area size
Output DID Directory identification
DVI Device identification
ESL Expanded string length (if, on input, both the ESA and ESS are
nonzero, and if the NAM bit of the FOP field of the FAB is
clear or DID is 0, the expanded file specification string is
copied to the buffer specified by the input ESA field)
FNB File name status bits
RSL Resultant string length (if RSA and RSS are both nonzero on
input, the resultant file specification is copied to the buffer
specified by RSA)

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the

_ F R pa—— 2 -~ - o~ ~
erase service are listed belcow.

Success:

RMSS$_NORMAL Operation successful

FILE-PROCESSING MACRO INSTRUCTIONS

Failure:
RMS$_DNF Directory not found
RMS$_DNR Device not ready
RMS$_MKD Files-11 ACP could not mark file for deletion
RMS$_PRV Privilege violation; access denied
RMS$_WLK Device write-locked

$SEXTEND

9.5 EXTENDING A FILE'S ALLOCATED SPACE

The $EXTEND macro instruction invokes the extend service, which
increases the amount of space allocated to a VAX-11l RMS disk file.
You can only extend open files; otherwise, an error occurs.

The allocation quantity field of the FAB (or the allocation XAB, if
used) must contain the number of blocks that VAX-1l RMS is to add to
the file. Furthermore, you can indicate other attributes regarding
the manner and location for allocation. For example, you can indicate
that the additional blocks must be allocated contiguously. If you do,
however, and not enough contiguous space is available, the operation
will fail. (This extension does not have to occur contiguous to the
initial file space.)

If an allocation control XAB is present, its allocation quantity (ALQ)
and allocation options (AOP -- the CBT and CTG bits only) fields are
used instead of the corresponding fields in the FAB. The allocation
quantity field of the XAB is set to the actual extension size.

FORMAT
OPERATION PARAMETERS
label: SEXTEND FAB=fab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SEXTEND macro
instruction; optional.

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1).

FILE-PROCESSING MACRO INSTRUCTIONS

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry)
The symbolic address of a wuser-written success completion

routine; optional.

Table 9-7 lists the FAB fields that VAX-11 RMS uses as input and
output for the extend service,

Table 9-7
Extend FAB Fields

Field
Usage Name Description
Input ALQ Allocation quantity. This field is ignored if an allocation XAB
is present.

FOP File-processing options. Checked to see if the CTG or CBT bit
is set to indicate contiguous allocation; ignored if allocation XAB
is present.

IF1 Internal file identifier

XAB Extended attribute block address. Only the allocation type of
XAB will be processed.

Output ALQ Allocation quantity (contains the actual extension allocation
value if no allocation XAB is present)

STS Completion status code (also returned in Register 0)

STV Status value (contains the total of blocks allocated, totaled
across all allocation XABs)

The VAX~-11 RMS completion status codes categorized as severe errors
are contained 1in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
extend service are listed below.

Success:
RMSS_NORMAL Operation successful
Failure:
RMS$_ACT File activity precludes operation
RMSS_DNR Device not ready
RMS$_EXT File extend error
RMSS$S_WLK Device write-locked

FILE-PROCESSING MACRO INSTRUCTIONS

$SOPEN

9.6 OPENING AN EXISTING FILE

The $OPEN macro instruction invokes the open service, which makes an
existing file available for processing by your program. This macro
instruction implements the type of access desired, and sets the degree
to which the file can be shared. You must open a file before you
perform any record operations. If any XABs are chained to the FaB,
VAX-11 RMS places the attribute values in the fields of the
appropriate XAB. If you specify a NAM block in the FAB, the contents
of the device, directory, and file identification fields can be used
to perform an open by NAM block (see Section 8.2.3). 1In addition, the
various fields of this NAM block are filled in with auxiliary file
specification information.

FORMAT
OPERATION PARAMETERS
label: $OPEN FAB=fab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SOPEN macro instruction;
optional.

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a wuser-written success completion
routine; optional.

Table 9-8 lists the FAB fields used as input and output for the open

service. See Chapter 4 for information regarding the contents of the
various input and output fields.

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-8
Open FAB Fields

Field
Usage Name Description
Input DEQ Default file extension quantity. If a nonzero value is present in
this field, it applies to this open of the file only.
DNA Default file specification string address
DNS Default file specification string size
FAC File access
FNA File specification string address
FNS File specification string size
FOP File-processing options
FSZ Fixed control area size; unit record devices only.
IF1 Internal file identifier (must be 0)
NAM Name block address
RAT Record attributes; unit record devices only
RFM Record format; unit record devices only
RTV Retrieval window size
SHR File sharing
XAB Extended attribute block address
Output ALQ Allocation quantity; contains the highest numbered block
allocated to the file.
BKS Bucket size; not used for sequential files
BLS Block size; for sequential files only
DEQ Default file extension quantity
DEV Device characteristics
FOP File-processing options; the bits CTG, CBT, RCK, and WCK are
set or cleared individually according to the file attributes
FSZ Fixed control area size; only applies to variable with fixed length
control records
IFI Internal file identifier
MRN Maximum record number; for relative files only
MRS Maximum record size
ORG File organization
RAT Recard attribntes
RFM Record format
SDC Spooling device characteristics
STS Completion status code (also returned in Register 0)
STV Status value (contains the 1/O channel number if the operation

is successful)

FILE-PROCESSING MACRO INSTRUCTIONS

Table 9-9 lists the NAM block fields that VAX-11 RMS uses as input and
output for the open service if the name block address field is
specified in the FAB, See Chapter 7 for information regarding the
contents of the fields used as input and output.

Table 9-9
Open NAM Block Fields

Field
Usage Name Description
Input DID Directory identification (input only if NAM bit is set in the file
processing options (FOP) field of FAB)
DVI Device identification (input only if NAM bit is set in the FOP
field of the FAB)
ESA Expanded string area address
ESS Expanded string area size
FID File identification (input only if NAM bit set in FOP field of
FAB)
RLF Related file NAM block address (if non-zero, RSA and RSL are
from related file NAM block)
RSA Resultant string area address
RSS Resultant string area size
Output DID Directory identification
DVI Device identification
ESL Expanded string length (if, on input, both the ESA and ESS are
nonzero, and if NAM bit of the FOP field of the FAB is
clear or DID and FID are 0, the expanded file specification
string is copied to the buffer specified by RSA)
FID File identification
FNB File name status bits
RSL Resultant string length (if RSA and RSS are both nonzero
and if NAM bit is clear or FID is 0, the resultant file speci-
fication is copied to the buffer specified by RSA)

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
open service are listed below.

Success:

RMS$_NORMAL Operation successful

9-16

Failure:
RMS$_ACC
RMSS$_ACT

RMSS$_DEV

RMS$_DNF
RMS$_DNR
RMS$_FLK
RMS$_FNF
RMS$_PRV
RMS$_WLK

RMS$_OK_NOP

FILE-PROCESSING MACRO INSTRUCTIONS

File access error
File activity precludes operation

Bad device or 1in appropriate device type
operation

Directory not found

Device not ready

File is locked and therefore unavailable
No such file exists

Privilege violation

Device is write-locked

Key XAB not filled in when file opened for
I/0

for

block

CHAPTER 10

RECORD OPERATION PERFORMANCE

Some of the key concepts that you must understand in relation to
record operations are:

e Record access

e Current record context

e Record streams

e Synchronous and asynchronous operations
e Record locking

Sections 10.1 through 10.5 discuss these concepts; then, Chapter 11
describes each record-processing macro instruction in detail.

10.1 RECORD ACCESS

To process a record, you must identify the record and specify the

record access mode you are going to use. Once the record is
identified, you have two different record transfer modes available to
manipulate it. The following sections describe how you specify the

record access mode and the transfer mode.

10.1.1 sSpecifying the Record Access Mode

The value that you set in the record access mode field of the RAB
tells VAX-11 RMS what type of record access to use for the particular
record operation. During program execution, you can switch the record
access mode by changing the contents of this field. This is known as
dynamic access.

VAX-11 RMS lets you set any one of the following three values:

1. SEQ -- this value indicates the sequential record access
mode. When you use this record access mode, the access will
be a function of the Next Record (see Section 10.2), and no
additional record specification is necessary. This record
access mode is valid for any file organization.

2. KEY -- this value indicates random access by key. This
record access mode is wused with relative files (and
sequential files on disk with fixed-length records) to denote
random access by relative record number and with indexed
files to denote random access by key value. The key value

10-1

RECORD OPERATION PERFORMANCE

for the record to be found or retrieved is placed in the key
buffer, which is described by the values set in the key
buffer address and key size fields of the RAB. When
accessing an indexed file, the particular key of reference
(index to search on) must be specified in the KRF field of
the RAB.

3. RFA -- this value indicates that access 1is random by the
record's file address (RFA). This record access mode is
limited to retrieval operations for disk files.

To use this access mode, you must save the RFA that VAX-11
RMS returned from a previous operation. Then, before you
initiate a new operation, you specify access by RFA mode in
the record access mode field of the RAB, and restore the RFA.
The RFA does not change when you close a file and 1later
reopen it.

The format of the RFA is known internally to VAX-11 RMS.

VAX-11 RMS examines the contents of the record access mode field of
the RAB during the execution of a GET, SFIND, or $PUT macro
instruction. You need not specify a record access mode for operations
with a $UPDATE, S$SDELETE, or $TRUNCATE macro instruction. However, you
cannot request these operations until you have first accessed the
target record with a $GET or S$FIND macro instruction.

10.1.2 sSpecifying the Record Transfer Mode

The record-processing option field of the RAB lets vyou specify the
record transfer mode. There are two record transfer modes -—- locate
and move -- which tell VAX-11 RMS how to access the target record for
the get service ($GET macro instruction) once the record is in memory.
You can switch the record transfer mode while your program is
executing by changing the contents of the record-processing option
field.

In the record-processing option field you indicate locate mode by
setting the LOC bit. 1If you do not set this bit, VAX-11 RMS uses move
mode, by default.

In locate mode, your program accesses records directly in an 1I/0
buffer. Therefore, VAX-11l RMS normally does not need to move records
between I/0 buffers and a user program buffer. Also, VAX-11 RMS does
not support locate mode for operations involving the $PUT or $SUPDATE
macro instructions. However, the $GET macro instruction supports
locate mode operations on files of all organizations. Note that
locate mode, even if specified, may not actually be used due to the
occurrence of any of the following:

1. Records crossing block boundaries

2. The file access field of the FAB being set to UPD

3. Multiple record streams
In move mode, VAX-11] RMS transfers individual records between I/0
buffers and your program buffer, For the $GET macro instruction,
VAX-11 RMS reads a block (for sequential files) or a bucket (for
relative and indexed files) into an 1I/0 buffer. VAX-11l RMS then

selects the desired record from the buffer and moves it to a
program-specified location.

10-2

RECORD OPERATION PERFORMANCE

When writing records to the file ($PUT and $UPDATE), your program
first builds a record in any desired program location, stores its
address and size in the RAB, and calls the appropriate VAX-11 RMS
routine as specified by the particular macro instruction. VAX-11 RMS
moves the record from its specified 1location into an I/0 buffer.
Depending wupon the file organization and options, the buffer may be
written immediately or only when it is filled.

10.2 CURRENT RECORD CONTEXT

For each RAB connected to a file access block (FAB), VAX-11l RMS
maintains current context information, identifying where each RAB is
positioned at any point in time. VAX-11 RMS modifies the current
context as your program performs record operations.

At any point in time, the current context is represented by, at most,
two records:

l. The Current Record
2. The Next Record

The context of these two records is internal to VAX-11l RMS; you have
no direct contact with them. However, an explanation of their purpose
and importance can aid in your understanding of how VAX-11l RMS works.

10.2.1 Current Record

The Current Record represents the target record for an $UPDATE,
$DELETE, and $TRUNCATE macro instructions. The Current Record also
facilitates sequential processing on disk devices for a stream.
VAX-11 RMS rejects any request to update, delete, or truncate that
does not have a Current Record. 1In addition, an operation with a $GET
macro instruction using sequential record access mode and immediately
preceded by a SFIND macro instruction operates on the record specified
by the Current Record. If the find service did not lock the record
(for relative and indexed file organizations) and the «current record
has been deleted, the get service will access the next existing
record.

When a RAB is first connected to a FAB, the Current Record is
undefined. Furthermore, any unsuccessful record operation, or
successful execution of a macro instruction other than $GET or S$FIND,
causes the Current Record to be undefined.

The Current Record is set to the RFA of the record upon which an
operation is performed with a $GET or SFIND macro instruction. VAX-11
RMS also places this address in the record's file address field of the
RAB. This means that:

1. After initialization, the Current Record always contains the
record's file address of the most recent successful operation
with a S$GET or $FIND macro instruction (unless failure occurs
or a macro instruction other than $GET or $FIND executes).

2. The record's file address field of the RAB, unless you modify

it, always contains the address of the target record (if the
operation fails, the record's file address is undefined).

10-3

RECORD OPERATION PERFORMANCE

Table 10-1 summarizes the effect that each successful record operation
has on the context of the Current Record.

10.2.2 Next Record

VAX-11 RMS uses the Next Record for operations involving sequential
record access mode. When the record access mode field of the RAB
indicates sequential processing, the Next Record represents the target
record for the next operation involving:

e The SFIND macro instruction
e The S$PUT macro instruction

e The $GET macro instruction (if the immediately preceding
operation was not a S$FIND macro instruction); if the next
record cell in a relative file organization does not contain a
record, the target record is the next existing record.

This "look-ahead" ability significantly decreases access time for
sequential processing. VAX-11 RMS uses its internal knowledge of file
organization and structures to determine the Next Record as follows:

e Operations with the $CONNECT macro instruction initialize the
Next Record to:

- The first record or cell in a file of sequential or
relative organization, respectively

- The first record in the collating sequence of the
specified key of reference in an indexed file.

- The end of a sequential file on disk if the record
processing options field of the RAB has the EOF option
bit set. :

- The end of a write-accessed magnetic tape file unless the
file processing options field of the FAB has the NEF bit
set.

e Operations with the $GET macro instruction 1in any record
access mode and the S$FIND macro instruction in sequential
record access mode cause the Next Record to indicate the next
record or cell in the file.

e Operations with a $TRUNCATE macro instruction cause the Next
Record to indicate the end of file. Therefore, you need only
use S$PUT macro instructions after truncation to extend the
file. You can truncate only sequential files.

e Operations with the $FIND or S$PUT macro instructions in random
access mode have no effect on the Next Record.

e Operations with the $PUT macro instruction in sequential
access mode initialize the Next Record to:

- The end of file in a sequential file.
- The next record or cell in a relative file.
e Operations with the S$PUT macro instruction in sequential

access mode in an indexed file cause the Next Record to be
undefined.

10-4

RECORD OPERATION PERFORMANCE

e Operations with the $DELETE, S$UPDATE, S$FREE, or S$SRELEASE macro
instructions in any record access mode have no effect on the
Next Record.

e Operations with the $SREWIND macro instruction in any record
access mode cause the Next Record to indicate the first record
or cell in the file.

e Any unsuccessful record operation has no effect on the Next
Record.

Table 10-1 summarizes the effect that each successful record operation
has on the Next Record.

10-5

RECORD OPERATION PERFORMANCE

Table 10-1
Record Access Stream Context
Record Access Current Next
Record Operation Mode Record Record
Connect does not apply none first record
Connect does not apply none end of file
with EOF bit
set in record-
processing options
field
Get sequential new new Current
last operation Record+1
not a find
Get sequential unchanged Current Record+1
last operation
was a find
Get random new new Current
Record+1
Put sequential none 1. sequential file—
end of file
2. relative file—
next record
position
3. indexed file—
undefined
Put random none unchanged
Find sequential new new Current
Record+1
Find random new unchanged
Update does not apply none unchanged
Delete does not apply none unchanged
Truncate does not apply none end of file
Rewind does not apply none first record
Free does not apply none unchanged
Release does not apply none unchanged
NOTES:

1. Except for the truncate operation, VAX-11 RMS establishes the Current Record before
establishing the identity of the Next Record.

2. The notation “+1” indicates the next sequential record as determined by the file organization.
For indexed files, the current key of reference is part of this determination.

3. The correct operation on an indexed file establishes the Next Record to be the first record in
the index represented by the RAB key of reference (KRF) field.

4. The connect operation leaves the Next Record as the end of file for a magnetic tape file
opened for put operations (unless the NEF bit is set).

10-6

RECORD OPERATION PERFORMANCE

10.3 RECORD STREAMS

Before you can process the records in a file, you must first establish
a record stream to that file, A record stream 1is the logical
association of a RAB with a FAB. Once you have established this
association, you can issue requests for operations on the records in
the file that the FAB represents,

For all but the sequential file organization, there can be any number
of RABs associated with a single FAB, and each RAB represents an
independent record stream. If you establish a single record stream,
your program uses the stream to issue a sequence of record operations,
which are executed serially. Therefore, you can process only one
record at a time. However, when you establish multiple record streams
for a file, you can process a record from each stream in parallel.
Therefore, multiple record streams provide concurrently active
sequences of record operations to the same file.

After you open a file by issuing a $OPEN (or S$SCREATE) macro
instruction, you establish the record stream by placing the address of
the FAB in the file access block field of the appropriate RAB or RABSs.
Then, you issue a $CONNECT macro instruction. Once you have completed
the desired sequence of operations, you terminate the association by
issuing a $DISCONNECT macro instruction.

Chapter 11 describes the $CONNECT and $DISCONNECT macro instructions.

10.4 SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

Within each record stream, VAX-11 RMS 1lets you perform operations
either synchronously or asynchronously. In synchronous operations,
VAX-11] RMS returns control to your program only after the record
operation request is satisfied.

In asynchronous operations, VAX-11 RMS may return control to your
program before the operation is satisfied. In this way, your program
can use the time required to transfer data between the file and memory
to perform other computations. Note that in asynchronous operations,
the operation may complete before control is returned to your program.
This is due to several factors. For example, the required record may
already reside in an I/0 buffer, or the operating system may schedule
another program, thus possibly allowing a necessary operation to
complete before the original program is rescheduled.

The following sections describe how you declare synchronous and
asynchronous operations.

10.4.1 Synchronous Operations

To declare a synchronous operation, you must clear the ASY bit in the
record-processing options field of the RAB. Since by default this bit
is off at assembly time, you normally do not have to set it off unless
you had set it on previously.

Normally, you would not wuse success and error routines with
synchronous operations. Instead, you would test the completion status
code for an error and change the program's flow accordingly. However,
if you use these routines, they will be executed as asynchronous
system traps (ASTs) before the in-line return to your program (unless
ASTs are disabled). -

RECORD OPERATION PERFORMANCE

10.4.2 Asynchronous Operations

To declare an asynchronous record operation, you must set the ASY bit
in the record-processing options field of the RAB. You can switch
between synchronous and asynchronous operations during processing of a
record stream by setting or clearing the ASY bit on a per-operation
basis.

You can specify completion routines to be executed as ASTs if success
or error conditions occur. Within such routines, vyou can issue
additional operations, but they too should be asynchronous.
Otherwise, all other currently active asynchronous requests in your
program cannot have their completion routines executed until the
synchronous operation completes.

If an asynchronous operation is not yet complete at the time of return
from a call to a VAX-11 RMS service, the completion status field of
the RAB will be 0, and a success status code of RMS$_PENDING will be
returned in Register 0. This status code indicates that the operation
was initiated but is not yet complete, You must never modify the
contents of a RAB when an operation is in progress.

If you issue a second record operation request for the same stream
before a prior request is complete, you will receive an error status
code of RMS$_RSA, indicating that the record stream is still active.
This can also occur when an AST level routine attempts to use an
active record stream; the original I/O request may be synchronous or
asynchronous, In either case it is the caller's responsibility to
recognize the possibility and prevent the problem by issuing a $WAIT
macro instruction (see Chapter 11). If you are going to reuse the RAB
of the original operation, the S$WAIT macro instruction must occur
before you attempt the new operation. If you use a different RAB,
however, it is possible to simply issue the new operation and handle
the error by waiting and retrying.

Upon completion of the operation, your program receives control at the
point following the S$WAIT macro instruction.

10.5 RECORD LOCKING

VAX-11 RMS provides a record 1locking capability for relative and
indexed files. This capability affords control over operations when
more than one stream or process is simultaneously accessing the file.
Record locking makes certain that when a program is adding, deleting,
or modifying a record on a given stream, another stream or process
cannot access the same record.

VAX-11l RMS does not support record locking for sequential files.
These files can be write-shared, however, as long as the user provides
the necessary logic to handle the simultaneous reading and writing.
This 1is specified by the setting of the UPI bit in combination with
the other shared access bits in the file sharing field (SHR) of the
FAB. The UPI bit, when set, indicates that one or more writers can
access the file, but the wuser assumes the responsibility for any
required interlocking.

Record locking occurs on a file accessed for some form of writing (FAC

is set to either PUT, UPD, or DEL) only if the file sharing field
(SHR) of the FAB is set to some form of writing or the MSE fit is set.

10-8

RECORD OPERATION PERFORMANCE

There are two types of record locking: automatic and manual. VAX-11
RMS handles automatic record locking transparently. You use it when
you are dealing with a lock on a single record at a time. Manual
record locking requires additional effort on your part. You use it
when dealing with locks on multiple records at a time.

A record can be in any of three states: unlocked, automatically
locked, or manually locked. When a record is initially locked, it is
in either the manually or automatically locked state. It will remain
in that state until the lock is released; that is, it cannot move
directly from the automatically to manually locked state, or vice
versa. Therefore, you make an initial decision based on your needs to
use automatic or manual locking for a given record, and continue to
deal with that record using the same type of locking until the lock is
released.

The following sections describe the two types of record locking.

10.5.1 Automatic Record Locking

For automatic record locking, the lock occurs on every execution of a
SFIND or S$GET macro instruction (unless the NLK bit is set in the
record-processing options field). The lock is released on the next
operation on the stream; that is, the lock is released when the Next
Record is accessed, the Current Record 1is updated or deleted, the
record stream is disconnected, the file is closed, or an operation
causing an error occurs. Therefore, the record is freed when you
issue any of the following macro instructions:

e SFIND

e SGET

e SPUT

e SUPDATE
e SDELETE
e SREWIND

e S$DISCONNECT
e SCLOSE

® SFREE

e SRELEASE

The $FREE and $RELEASE macro instructions let you explicitly unlock
the record.

If you place a record in an empty cell in a relative file with a S$PUT
macro instructioén, the cell is, in effect, locked by the put service.
It is unlocked when the service completes.

One exception to the automatic unlocking exists: On a sequential get

service following a find service that caused the record to be locked,
the record remains automatically locked.

10-9

RECORD OPERATION PERFORMANCE

10.5.2 Manual Record Locking

For manual record locking, you have explicit control -- and therefore
deadlock prevention responsibility —-- over the unlocking of records.

Thus, manual record locking lets you control operations that must be
done together.

Manual record locking occurs when the ULK bit is set 1in the
record-processing options field on the execution of a $GET, SFIND, or
$PUT macro instruction. (These three macro instructions will also
unlock any record that was locked with automatic record locking.) Once
the record is manually locked, it will remain in that state until
explicitly wunlocked by either the free or release service, or until
the stream terminates (by a disconnect or <close service). Other
operations on the record or stream, including operations that result
in errors, do not cause the record to be unlocked. For example, vyou
can only issue the $UPDATE and S$DELETE macro instructions if the
record is already locked. When the service completes, the record (or
record cell in a relative file in the case of the delete service)
remains locked. 1If the target record cell is already manually locked
when you 1issue a $PUT macro instruction (by using the NXR bit in the
record-processing options field), the put service is performed and the
record remains locked.

10.5.3 Controlling Record Locking

Three of the bits in the record-processing options field (ROP) of the
RAB control manual record locking and unlocking:

1. ULK
2. NLK
3. RLK

The ULK bit selects manual (as opposed to automatic) 1locking and
unlocking. This bit 1s input to a GET, SFIND, or S$SPUT macro
instruction, and specifies that the record locked as a result of that
operation cannot be unlocked automatically by VAX-11l RMS. Once a
record is locked, you must explicitly unlock it with a S$FREE or
SRELEASE macro instruction.

The NLK bit specifies that the record accessed with either a S$GET or
SFIND macro instruction is not to be 1locked. This bit takes
precedence over the ULK bit.

The RLK bit specifies that other readers can access a record locked
with a $GET or S$FIND macro instruction, but the record is to remain
locked. This bit is used primarily when the user who locks the record
does not mind other users reading the record, but does not want any
other user to modify the record.

If a get, find, or put service fails because a record 1is already
locked by another stream, a status code of RMS$_RLK returns. If the
get or find service succeeds, but the record is already locked by this
stream, a success status code of RMSS“OK_ALK returns. In this case,
the locked state (either manual or automatic) is not changed by the
current operation. If a get or find service with the NLK bit set
accesses a record locked with the RLK bit set, a success status code
of RMS$_OK_RLK returns.

10-10

CHAPTER 11

RECORD-PROCESSING MACRO INSTRUCTIONS

After you open a file for processing with a S$SOPEN or $CREATE macro
instruction, you can perform operations on the records in the file.

The record-processing macro instructions cause VAX-1ll RMS to perform
some operation related to records in the file, rather than on the file
itself. The macro instructions, therefore, deal with fields in the
record access block (RAB). See Chapter 5 for a description of the
effect these fields have on the record operation,

In most cases, you use a record-processing macro instruction with
parameters indicating the symbolic address of the associated RAB and
the address of any optional error or success completion routine you
may have provided. You can also use the macro instruction without
parameters, but you must then create an argument list in your program
to define the values for these addresses (see Section 8.1).

Table 3-2 summarizes all the run-time processing macro instructions.
This chapter deals only with the following macro instructions for
record processing:

® Record access and current record context

- SGET - SDELETE
- SPUT - SFIND
- SUPDATE

® Record streams
- $SCONNECT - $DISCONNECT

e Synchronization with asynchronous operations
- SWAIT

e Miscellaneous operations

- S$FLUSH - SRELEASE
- SFREE - SREWIND
- SNXTVOL - STRUNCATE

Chapter 10 discussed some of the general concepts involved in
performing record operations. This chapter presents the details of
the particular macro instructions that perform record operations, in
alphabetical order.

11-1

RECORD-PROCESSING MACRO INSTRUCTIONS
$CONNECT

1l1.1 ESTABLISHING A RECORD STREAM

The S$CONNECT macro instruction invokes the connect service, which
establishes a record stream by associating and connecting a RAB with a
FAB. PFor sequential files, only one RAB can be connected to a FAB.
For relative or indexed files, any number of RABs can be connected to
a FAB, if the MSE bit was set in the file-sharing field (SHR) of the
FAB when the file was opened or created. Each RAB represents an
independent record stream.

When you issue a SCONNECT macro instruction, VAX-1ll RMS allocates an
internal counterpart for the RAB. This counterpart consists of the
necessary internal controls needed to support the stream, such as
record pointers and request status information. All required I/0
buffers are also allocated at this time, and can be 1locked in the
working set (see Section 5.2.8). S$SCONNECT also initializes the next
record pointer to the first record. 1In 1indexed files, the key of
reference establishes the index of the next record pointer.

You can issue a $CONNECT macro instruction only to files that are
already open.)

FORMAT
OPERATION PARAMETERS
label: SCONNECT RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SCONNECT macro
instruction; optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a wuser-written success completion
routine; optional. '

Table 11-1 lists the RAB fields that the connect service uses for
input and output, '

11-2

RECORD~PROCESSING MACRO INSTRUCTIONS

Table 11-1
Connect RAB Fields

Field
Usage Name Description
Input FAB File access block address (used to access only the internal file

identifier field of the FAB)

KRF Key of reference (used only with indexed files)

MBC Multiblock count (sequential disk files only)

MBF Multibuffer count

ROP Record-procc;ssing options (ASY, BIO, EOF, RAH, and WBH only)
Output ISI Internal stream identifier

STS Completion status code (also returned in Register 0)

STV Status value

The VAX-11 RMS completion status codes categorized as -severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
connect service are listed below.

Success:

RMS$_NORMAL Operation successful

RMSS_PENDING Asynchronous operation not yet complete
Failure:

RMS$_ACT File activity precludes operation

$DELETE

11.2 DELETING A RECORD

The $DELETE macro instruction invokes the delete service, which
removes an existing record trom a relative or indexed file (you cannot
use this macro instruction with sequential files). A record delete
operation always applies to the current record. Therefore,
immediately before you issue the S$DELETE macro instruction, you must
lock the record by issuing a $FIND or $GET macro instruction.

11-3

RECORD-PROCESSING MACRO INSTRUCTIONS

FORMAT
OPERATION PARAMETERS
label: SDELETE RAB-=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SDELETE macro
instruction; optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success completion
routine; optional.

Table 11-2 lists the RAB fields that the delete service uses for input
and output.

Table 11-2
Delete RAB Fields

Field
Usage Name Description
Input ISI Internal stream identifier

ROP Record-processing options (ASY bit only)
Output STS Completion status code (also returned in Register 0)

STV Status value

The VAX~-1l RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
$DELETE macro instruction are listed below.

11-4

RECORD-PROCESSING MACRO INSTRUCTIONS

Success:
RMS$ NORMAL Operation successful
RMS$_PENDING Asynchronous operation not yet complete
Failure:
RMS$_ACT File activity precludes operation
RMS$_DNR Device not ready
RMSS_EXP Expiration date not yet reached
RMSS$_RNL Warning; record not locked
RMS$_RSA Record stream still active (asynchronous
operations)
RMSS_WLK Device write-locked

$DISCONNECT

11.3 TERMINATING A RECORD STREAM

The $DISCONNECT macro instruction invokes the disconnect service,
which breaks the connection between a RAB and a FAB, thereby
terminating a record stream. All system resources, such as 1I/0
buffers and data structure space, are deallocated.

The close service (see Section 9.1) performs an implied disconnect for
all record streams connected to the FAB,

FORMAT
OPERATION PARAMETERS
label: $DISCONNECT RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the S$DISCONNECT macro
instruction; optional.

RAB=rab-address
Required if vou use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

11-5

RECORD-PROCESSING MACRO INSTRUCTIONS

SUC=entry

The symbolic address of a user-written success completion
routine; optional. ’

Table 11-3 lists the RAB fields that the disconnect service uses
for input and output.

Table 11-3
Disconnect RAB Fields

Field
Usage Name Description
Input ISI Internal stream identifier
ROP Record-processing options (ASY bit only)
Output ISI Internal stream identifier (zeroed)
STS Completion status code (élso returned in Register 0)
STV Status value

The VAX-11 RMS completion status codes categorized as severe
errors are contained in Appendix A. However, to help you foresee
and possibly circumvent any nonsevere conditions that can arise,
any error or warning completion status codes that can cause a
failure for the disconnect service are listed below.

Success:

RMS$_ NORMAL Operation successful

RMS$_PENDING Asynchronous operation not yet complete
Failure:

RMS$_ACT File activity precludes operation

RMS$_DNR Device not ready

RMS$_RSA Record stream still active

RMS$_WLK Device write-locked

$FIND

11.4 LOCATING A RECORD
The $FIND macro instruction invokes the find service, which locates a

specified record in a file and returns its record's file address in
the RFA field of the RAB. This applies to all file organizations.

11-6

RECORD~PROCESSING MACRO INSTRUCTIONS

The main uses of the find service are:

e Skipping records when you are using the sequential record
access mode (by issuing successive requests for find
operations)

e Locking, but not retrieving, a record, thereby establishing a
current record for an operation with a $UPDATE, $DELETE, or
$TRUNCATE macro instruction

e Establishing a random accessed starting point in a file for
subsequent sequential access

FORMAT
OPERATION PARAMETERS
label: SFIND RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $FIND macro instruction;
optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 11-4 lists the RAB fields that the find service uses for input
and output.

11-7

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-4
Find RAB Fields

Field
Usage Name Description
Input ISI Internal stream identifier
KBF Key buffer address (used only if RAC=KEY or if RAC=SEQ and
the LIM option is selected in the ROP)
KRF Key of reference (used only with indexed files)
KSzZ Key size (used only if RAC=KEY or if RAC=SEQ and the LIM
option is selected in the ROP)
RAC Record access
RFA Record’s file address (used only if RAC=RFA)
ROP Record-processing options
Output BKT Bucket code; set to the relative record number for relative files
accessed sequentially
RFA Record’s file address
STS Completion status code (also returned in Register 0)
STV Status value

The record address (RBF) and record size (RSZ) fields are undefined
after a find service.

The VAX-1l RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help vyou foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
find service are listed below.

Success:
RMS$_ CONTROLC Operation completed under Control C
RMSS_CONTROLY Operation completed under Control Y
RMS$_OK_ALK Record already locked
RMS$_OK_DEL Deleted record accessed correctly
RMSS NORMAL. Operation successful
RMS$_OK_RLK Record locked but read anyway
RMS$ PENDING Asynchronous operation not yet complete
RMS$_OK_LIM Retrieved record exceeds specified key value

11-8

RECORD-PROCESSING MACRO INSTRUCTIONS

Failure:

RMS$_ACT File activity precludes operation

RMSS$ DEL Record accessed by the RFA record access mode
has been deleted

RMSS_DNR Device not ready

RMS$_EOF File is at end of file

RMS$ RLK Record locked by another task

RMS$_RSA Record stream still active

RMS$_ RTB Warning; record too large for user buffer

RMSS_TMO Warning; time-out period expired

RMS$_WLK Device write-locked

$FLUSH

11.5 WRITING OUT MODIFIED I/0 BUFFERS

The $FLUSH macro instruction invokes the flush service, which writes
out all modified I/0 buffers and file attributes associated with the
file. This ensures that all record activity up to the point at which
this macro instruction executes is actually reflected in the file.

The flush service is not required at any time. In addition, you
should not wuse it before issuing a $CLOSE macro instruction because
the close service implicitly performs the flush functions,

During asynchronous operations, you must wait for the completion of
any I/0 activity before issuing a $FLUSH macro instruction. This wait
can be accomplished by issuing a $WAIT macro instruction. You may
also issue a $FLUSH macro instruction after having received
notification of completion through an asynchronous system trap (AST).

11-9

RECORD-PROCESSING MACRO INSTRUCTIONS

FORMAT
OPERATION PARAMETERS
label: SFLUSH RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $FLUSH macro instruction;
opticnal.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file,
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SuC=entry

The symbolic address of a user-written success completion
routine; optional.

Table 11-5 lists the RAB fields that the flush service uses for input
and output.

Table 11-5
Flush RAB Fields

Field

Usage Name Description

Input ISI Internal stream identifier
ROP Record-processing options (ASY bit only)

Output STS Completion status code (also returned in Register 0)
STV Status value

The VAX-1l RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
flush service are listed below.

Success:
RMS$_NORMAL Operation successful
RMSS_PENDING Asynchronous operation not yet completed

11-10

RECORD-PROCESSING MACRO INSTRUCTIONS

Failure:
RMS$_ACT File active; operation not performed
RMS$_DNR Device not ready
RMS$_ RSA Record stream still active

$SFREE

11.6 UNLOCKING ALL RECORDS

The S$FREE macro instruction invokes the free service, which unlocks
all records that were previously locked for the record stream (see
also the $RELEASE macro instruction, Section 11.10). If no records
are 1locked for the record stream, VAX-1l1 RMS returns a status code of
RMS$_RNL.

Section 10.5 describes the record-locking action.

FORMAT
OPERATION PARAMETERS
label: $FREE RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $FREE macro instruction;
optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within vyour program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 11-6 lists the RAB fields that the free service uses for input
and output.

11-11

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-6
Free RAB Fields

Field

Usage Name Description

Input ISI Internal stream identifier

Output STS Completion status code (also returned in Register 0)
STV Status value

The VAX-11 RMS completion status codes categorized as severe errors
are contained 1in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
free service are listed below.

Success:
RMS$_ NORMAL Operation successful
RMSS_PENDING Asynchronous operation not yet complete
Failure:
RMS$_ACT File activity procedures operation
RMSS_RNL Record not locked by the record stream
RMS$_RSA Record stream still active (asynchronous

operations)

$GET

11.7 RETRIEVING A RECORD

The $GET macro instruction invokes the get service, which causes a
record to be retrieved from a file. For a file of sequential
organization, you can use either sequential or random by record's file
address (RFA) record access mode., RFA record access mode, however,
applies to disk files only. For relative or indexed file organization
(and sequential files on disk with fixed-length records), you can use
any of the record access modes: sequenital, random by key (relative
record number for relative and sequential files and key value for
indexed files), or random by RFA.

You can have the record placed in your own buffer through move mode,
or have the record pointed to in a system I/0 buffer area through
locate mode. However, note that locate mode is only partial 1locate;
in some <cases, the record may have to be moved to your buffer. This
partial locate can occur, for example, when records cross block
boundaries in sequential files, or whenever the file is accessed for
update. To handle all such cases, you must always supply a user
record buffer for record retrieval operations. In addition, during

11-12

RECORD-PROCESSING MACRO INSTRUCTIONS

asynchronous operations, you must include either a completion routine
or a $WAIT macro instruction to guarantee operation completion.
FORMAT

OPERATION PARAMETERS
label: $GET RAB-=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $GET macro instruction;
optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 11-7 lists the RAB fields that the get service wuses for input
and output.

11-13

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-7
Get RAB lields

Field
Usage Name Description
Input ISI Internal stream identifier
KBF Key buffer address (used only if RAC=KEY or if RAC=SEQ and
the LIM option is selected in the ROP)
KRF Key of reference (used only with indexed files)
KSZ Key buffer size (used only if RAC=KEY or if RAC=SEQ and
the LIM option is selected in the ROP)
PBF Prompt buffer address; applies to terminals only
PSZ Prompt bu-ffer size; applies to terminals only
RAC Record access mode
RFA Record’s address (used only if RAC=RFA)
RHB Record header buffer; used for variable with fixed control records
ROP Record-processing options
T™MO Time-out period
UBF User record area address
usz User record area size
Output BKT Bucket code; set to the relative record number for relative files
when the record access mode is sequential
RBF Record address
RFA Record’s file address
RSZ Record size
STS Completion status code (also returned in Register 0)
STV Status value (contains a terminator character for terminal input or
the record length if the requested record is too large for the user
buffer area)

11-14

RECORD~-PROCESSING MACRO INSTRUCTIONS

The VAX-11 RMS completion status codes categorized as severe errors
are contained 1in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
get service are listed below.

Success:
RMS$S_CONTROLC Operation completed under Control C
RMS$_CONTROLY Operation completed under Control Y
RMS$_NORMAL Operation successful
RMS$_OK_RNF Nonexistent record accessed correctly
RMS$_PENDING Asynchronous operation not yet complete
RMS$_OK_RLK Record locked but read anyway
RMSS_OK_LIM Retrieved record exceeds specified key value
Failure:
RMS$_ACT File activity precludes operation
RMS$_DEL Record accessed by the RFA record access mode
has been deleted
RMS$_DNR Device not ready
RMSS$_EOF End of file
RMSS$_RLK Record locked by another task
RMSS$_RSA Record stream still active (asynchronous
operations)
RMS$_RTB Warning; illegal record size
RMS$_TMO Warning; time-out period expired
RMS$_WLK Device write-locked

SNXTVOL

11.8 CONTINUE PROCESSING ON NEXT VOLUME

The $NXTVOL macro instruction invokes the next volume service. This
service applies only to files on magnetic tapc volumes. Usc this

macro instruction when you want to proceed to the next volume in the
set before the end of the current volume (EOV label) is reached on
input, or before the end of tape (EOT mark) 1is reached on output.
VAX-11] RMS will then position to the first file section on the next
volume. File sections occur when a file is written on more than one
volume, the portion of the file on each of the volumes constituting a
file section.

For input files, the following occurs:
° If the current volume is the last volume of the set, VAX 11

RMS reports end of file.

11-15

RECORD-PROCESSING MACRO INSTRUCTIONS

° If another file section exists, the next volume is mounted.
When necessary, the current volume is rewound and a request
to mount the next volume is issued to the operator.

° The header label (HDR1) of the file section on the newly

mounted volume is read. If it is not the volume being
sought, the operator is requested to mount the correct
volunme,

For output files, the following occurs:

° The file section on the current volume is «closed with the
appropriate end-of-volume labels, and the volume is rewound.

° The next volume is mounted.

. A file with the same file name and the next higher file
section number is opened for output, and processing
continues,

If operating asynchronously, you must wait for the completion of any
I/0 activity on this wvolume before 1issuing a $NXTVOL macro
instruction.

The next volume service performs a flush operation for write-accessed
volumes (see Section 11.5), thus writing the I/0 buffers on the
current volume before creating the next file section. If this is an
input-only file, all records currently contained in the I/0 buffers
are lost, and the next get call will return the first record on the
next volume.

FORMAT
OPERATION PARAMETERS
label: SNXTVOL RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $NXTVOL instruction;
optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must sSupply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 11-8 lists the RAB fields that the next volume service uses for
input and output,.

11-16

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-8
Next Volume RAB Fields

Field
Usage Name Description
Input ISI Internal stream identifier

ROP Record-processing options (ASY bit only)
Output STS Completion status code (also returned in Register 0)

STV Status value

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
next volume service are listed below.

Success:

RMSS$_ NORMAL Operation successful

RMS$_PENDING Asynchronous operation not yet complete
Failure:

RMSS$ ACT File active, operation not performed

RMSS_DNR Device not ready

RMS$_DPE Device positioning error

RMS$_RSA Record stream still active (asynchronous

operations)
SPUT

11.9 WRITING A RECORD TO A FILE

The $PUT macro instruction invokes the put service, which inserts a
record into a file. Note that only new records can be placed in the
file; exjgti_n_g recorde can nrﬂy he updated if their contents are to
be modified. The new records can be placed either at the end of the
file (sequential and relative file organizations) or in empty record
cells in place of deleted records (relative file organization).
Location of new records in an indexed file 1is controlled by VAX-11
RMS, which examines the contents of the primary key field of the
record to determine where to write the record into the file,

11-17

RECORD-PROCESSING MACRO INSTRUCTIONS

The put service moves the record to be put from the user buffer to the
VAX-11 RMS I/0 buffer; VAX-11 RMS does not support locate mode
because the I/0 buffers are in memory that is protected against
writing at the user level. In addition, you cannot issue a $PUT macro
instruction when using random by RFA record access mode. The put
service works only in combination with sequential or random by key
record access mode.

When using sequential files, you can only write records at the end of
the file, and only with the sequential record access mode. These
records cannot have a length greater than the maximum you specified
when you created the file. You can use random by key record access
mode to write fixed-length records in a sequentially organized disk
file.

In a relative file, you can use either sequential or random by key
record access mode. However, records cannot be larger than the size
set when the file was created, the target record cell cannot already
contain a record, and the record's relative record number must not
exceed the maximum record number established for the file.

In an indexed file, you can use either sequential or random by key
record access mode, When sequential access is used to put (insert)
records, the primary key value of the record to be put must be equal
to or greater than the primary Key value of the preceding record. The
records cannot be larger than the size established (if a maximum
length was specified) when the file was created. Each record written
must contain a complete primary key, but the records do not have to
contain all alternate keys. If alternate keys are partially or
completely missing because of record length, VAX-11 RMS will not make
an entry for that new record in the associated alternate index(es).
Put operations to an indexed file do not require a key value or key of
reference. VAX-11 RMS determines where to write the record by
examining the contents of the primary key in the record. When
inserting the records in the file, VAX-1l1 RMS compares the key values
(primary and alternate) in the record with the key values of records
already existing in the file, This comparison determines if the
writing of the record would result in the presence of duplicate key
values among records of the file. If duplicates would occur, VAX-1l1l
RMS verifies that duplicates are allowed. If duplicates are not
allowed for a particular key, VAX-1l RMS rejects the operation with an
RMS$ DUP error code. However, if duplicates are allowed, VAX-11 RMS
performs the operation. Subsequent sequential operations on a given
index will always retrieve records with identical key wvalues in the
order in which the records were written.

FORMAT
OPERATION PARAMETERS
label: $PUT RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $PUT macro instruction;
optional.

11-18

RECORD-PROCESSING MACRO INSTRUCTIONS

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 11-9 lists the RAB fields that the put service uses for input
and output.

Table 11-9
Put RAB Fields
Field
Usage Name Description
Input ISI Internal stream identifier
KBF Key buffer address (used only if RAC=KEY and the file is a
relative file)
KSZ Key size (used only if RAC=KEY and the file is a relative file)
RAC Record access mode
RBF Record address
RHB Record header buffer; only applies to variable with fixed control
records
RSZ Record size
ROP Record-processing options (ASY, CCO, RLK, TPT, UIF, ULK and
WBH only)
Output BKT Bucket code; set to the relative record number for sequential
access to relative files
RFA Record’s file address
STS Completion status code (also returned in Register 0)
STV Status value

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
put service are listed below.

11-19

RECORD-PROCESSING MACRO INSTRUCTIONS

Success:

RMSS_CONTROLC Operation completed under Control C

RMS$_CONTROLO Operation completed under Control O

KMS$ CONTROLY Operation completed under Control Y

RMS$_NORMAL Operation successful

RMS$_OK_ALK Record already locked

RMSS$S PENDING Asynchronous operation not yet complete

RMS$ OK_IDX Record was inserted, but error occurred on

index update which could cause slow access

Failure:
RMSS$_ACT File activity precludes operation
RMSS$_DNR Device not ready
RMS$_EXT File extend error
RMS$_PRV Privilege violation; access denied
RMS$ REX Record already exists in target record cell
RMSS$_RLK Record locked by another task
RMS$ RSA Record stream still active (asynchronous
operations)
RMS$_RVU Error updating RRvVs
RMSS_WLK Device write-locked
SRELEASE
11.10 UNLOCKING A RECORD
The $RELEASE macro instruction 1invokes the release service, which

unlocks the record pointed to by the contents of the record's file
address RFA field of the RAB (see also the $FREE macro instruction,
Section 11.6). 1If the named record is not locked, VAX-1ll RMS returns
a status code of RMSS$S_RNL.

Section 10.5 describes record locking.

11-20

RECORD-PROCESSING MACRO INSTRUCTIONS

FORMAT
OPERATION PARAMETERS
label: SRELEASE RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SRELEASE macro
instruction; optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry)
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a wuser-written success completion
routine; optional.
Table 11-10 lists the RAB fields that the release service uses for
input and output,

Table 11-10
Release RAB Fields

Field

Usage Name Description

Input ISI Internal stream identifier
RFA Record’s file address

Output STS Completion status code (also returned in Register 0)
STV Status value

The VAX-11 RMS completion status codes cateqgorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
release service are listed below.

11-21

RECORD-PROCESSING MACRO INSTRUCTIONS

Success:
RMS$_NORMAL Operation successful

RMSS$S_PENDING Asynchronous operation not yet complete

Failure:
RMS$_ACT File activity precludes operation
RMSS$_RNL Warning; record not locked
RMSS$_RSA Record stream still active (asynchronous

operations)

$SREWIND

11.11 POSITIONING TO THE FIRST RECORD

The $REWIND macro instruction invokes the rewind service, which sets
the current context of a stream to the first record in the file.
VAX-11 RMS alters the context of the Next Record to indicate the first
record as being the next record. The rewind service implicitly
performs the flush and free services, writing out all I/O buffers and
releasing all locked records. The service 1is valid for all file
organizations on disk volumes and for sequential files on tape
volumes. For indexed files, the KRF field establishes the index to be
used. You cannot, however, rewind a unit record device (card reader
or printer) or a terminal.

FORMAT
OPERATION PARAMETERS
label: SREWIND =rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SREWIND macro
instruction; optional. .

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry

The symbolic address of a user-written success completion
routine; optional.

11-22

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-11 lists the RAB fields that the rewind service wuses for
input and output. %

Table 11-11
Rewind RAB Fields

Field

Usage Name Description

Input ISI Internal stream identifier
KRF Key of reference (used only with indexed files)
ROP Record-processing options (ASY bit only)

Output STS Completion status code (also returned in Register 0)
STV Status value

The VAX-11 RMS completion status codes categorized as severe errors
are cohtained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure are listed
below.

Success:
RMSS$S_ NORMAL Operation successful
RMSS$_PENDING Asynchronous operation not yet complete
Failure:
RMS$_ACT File activity precludes operation
RMSS_BOF Warning; file is already at beginning of
file
RMSS_DNR Device not ready
RMSS_DPE Device-positioning error
RMS$_EOF End of file
RMS$_RSA Record stream still active (asynchronous
operations)
RMS$ WLK Device write-locked

$TRUNCATE

11.12 TRUNCATING A SEQUENTIAL FILE

The S$TRUNCATE macro instruction invokes the truncate service, which
truncates records from the end of a sequential file. Note that you
can only truncate a sequential file (you cannot use this service for a
relative or indexed file) and the file must be open for exclusive

11-23

RECORD-PROCESSING MACRO INSTRUCTIONS

access (file-sharing field of the FAB set or defaulted to NIL).

The truncate service deletes the record indicated as the Current
Record, and all following records. You can only use this service
immediately after successfdl execution of a SGET, SFIND, or SUPDATE
macro instruction (thereby setting the context of the Current Record).

VAX-11 RMS declares an end of file at the starting record position for
the truncation, and then causes the context of the Next Record to be
set to this end of file. Therefore, you can now add records to the
file by issuing successive $PUT macro instructions.

FORMAT
OPERATION PARAMETERS
label: STRUNCATE RAB-=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the STRUNCATE macro
instruction; optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 11-12 lists the RAB fields that the truncate service uses for
input and output.

Table 11-12
Truncate RAB Fields

Field

Usage Name Description

Input ISI Internal stream identifier
ROP Record-processing options (ASY only)

Output STS Completion status code (also returned in Register 0)
STV Status value

11-24

RECORD-PROCESSING MACRO INSTRUCTIONS

The VAX-11 RMS completion status codes categorized as severe errors
are contained 1in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
truncate service are listed below.

Success:

RMS$ NORMAL Operation successful

RMS$ PENDING Asynchronous operation not yet complete
Failure:

RMS$_ACT File activity precludes operation

RMSS_DNR Device not ready '

RMS$ DPE Device-positioning error

RMS$_RSA Record stream still active (asynchronous

operations)
RMS$_WLK Device write-locked

SUPDATE

11.13 UPDATING AN EXISTING RECORD

The SUPDATE macro instruction invokes the update service, which
modifies (updates) the contents of an existing record in a disk file
only. The record to be updated must first be locked by this strean,
either by a $FIND or $GET macro instruction. You cannot use locate
mode; Yyou must supply a buffer.

For sequential files, the record length cannot change. For relative
files with variable-length or variable with fixed control records, the
length of the replacement record can differ from the length of the
original record, but cannot be larger than the maximum size you set
when you created the file.

For indexed files, the length of the replacement (updated) record
written by the S$UPDATE macro instruction may be different from the
original record; restrictions, however, apply to the replacement
record in an indexed file:

e The length of the replacement record cannot exceed the maximum
size defined at file creation.

e Each replacement record must be larde enough to contain a
complete primary key, but the replacement record does not have
to contain all alternate keys. If an alternate key is
partially or completely missing in the replacement record, the
key must have the characteristic that the values can change;
this 1is true also if the replacement record contains a key
that was not present in the original record.

11-25

RECORD-PROCESSING MACRO INSTRUCTIONS

Update operations to an indexed file do not require a key value or key
of reference. Before writing the record, VAX-1l RMS compares the key
values (primary and alternate) in the replacement record with the key
values of original record already existing in the file. This
comparison takes into account the defined characteristics of each key.
For example, if a particular key is not allowed to change, VAX-11 RMS
rejects the operation with an RMS$ CHG error code if the replacement
record contains an altered value in the associated key. Similarly,
this comparison determines if the replacement record would result in
the presence of duplicate key values among records of the file. 1If
duplicates would occur, VAX-11 RMS verifies the defined
characteristics for the keys being duplicated. 1If duplicates are not
allowed for a particular key, VAX-11 RMS rejects the operation with an
RMS$ DUP error code. However, if duplicates are allowed, VAX-1ll RMS
performs the operation.

Subsequent sequential operations on a given index will always retrieve
records with identical key values in the order in which the records
were written.

FORMAT
OPERATION PARAMETERS
label: SUPDATE RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SUPDATE macro
instruction; optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 11-13 lists the RAB fields that the update service uses for
input and output.

11-26

RECORD-PROCESSING MACRO INSTRUCTIONS

Table 11-13
Update RAB t'ields

Field
Usage Name Description
Input ISI Internal stream identifier
RBF Record address
RHB Record header buffer; applies only to variable with fixed control
records
ROP Record-processing options (ASY and WBH only)
RSZ Record size
Output RFA Record’s file address
STS Completion status code (also returned in Register 0)
STV Status value

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
update service are listed below.

Success:
RMS$ NORMAL Operation successful
RMS$_ PENDING Asynchronous operation not yet complete
RMS$_ OK_IDX Record was inserted, but error occurred on
index update which could cause slow access
Failure:
RMSS$ _ACT File activity precludes operation
RMSS_DNR Device not ready
RMS$_RNL Warning; record not locked
RMSS$_RSA Record. stream still active (asynchronous
operdciiLons)
.~ RMS$_RRV Error updating RRVs
RMS$_WLK Device write-locked

11-27

RECORD-PROCESSING MACRO INSTRUCTIONS
SWAIT

11.14 STALL FOR I/0 COMPLETION

The S$WAIT macro instruction invokes the wait service, which determines
when an asynchronous record operation completes. Upon completion of
the operation, VAX~11l RMS returns control to your program at the point
following the S$WAIT macro instruction. Any completion routines
specified on the operation being awaited are also executed before
VAX-11 RMS returns control (unless ASTs are disabled).

The S$WAIT macro instruction takes no parameters to define entry points
for user-written completion routines; the completion routines are
specified by the operation being awaited.

FORMAT
OPERATION | PARAMETERS
label: SWAIT | RAB-=rab-address
label

A user-defined symbolic address for the $WAIT macro instruction;
optional.

RAB=rab-address
The only parameter allowed if parameters are used; rab-address
defines the symbolic address of either the record access block
having an I/0 request in progress, or some other record access
block.

Table 11-14 lists the RAB fields that the wait service uses for input
and output.

Table 11-14
Wait RAB Fields

Field
Usage Name Description
Input ISI Internal stream identifier
STS Completion status code
Output STS Completion status code (also returned in Register 0)

The VAX-11] RMS completion status codes for the wait service are
determined by the operation being awaited, unless the address of the
RAB specified for the wait is not the same as that specified for the
awaited operation. 1In this case, RMS$_NORMAL is returned.

11-28

CHAPTER 12

PERFORMING BLOCK I/O

Besides the record access provided by the sequential, random by key,
and random by record's file address record access modes, VAX-11l RMS
also provides another means to access data in a file: block I/0.

Block I/0 operations let you directly read or write the blocks of a
file. These operations are provided for users who must keep system
overhead to a minimum and need no interpretation of file data as
logical records, yet still want to take advantage of the easy file
access of VAX-11 RMS. Block I/0 is an intermediate step between the
VAX-11 RMS record operations and direct use of VAX/VMS input/output
system services,

You specify block I/O for a record stream by setting the BIO bit in
the file access field of the file access block (FAB; see Section
4.2.10) as input to the $OPEN or S$CREATE macro instructions. If you
intend to write to the file, you must set the PUT bit in the file
access field. If you want to read from the file, you must set the GET
bit in the file access field.

You cannot perform block I/0 operations on files on which record
operations are already being performed. Conversely, you cannot
perform record operations on files on which block I/0 operations are
being performed. However, VAX-11 RMS allows you to set the BRO bit in
the file access field of the FAB, indicating that operations can
switch from block I/0 to record operation and vice versa when an
operation is completed (but not using both at the same time). Only
the sequential file organization allows this switching. For other
file organizations, setting of the BRO bit of the file access field
lnerely allows the decision about performing block or record operations
to be delayed until the first RAB is connected. If the BIO bit is set
in the record options field of the RAB, only block I/O operations will
be permitted; if the BIO bit is clear, only record operations will be
permitted. All connected record streams must be sconnected in the same
nanner; that is, there can be no mixing of bloeck -and record I/O.

If you do mix modes of operation for sequential files, you must
exercise caution, as the context of the Current Record, Next Record,

and the next block pointer (see NOWES below) are all undefined whan
you switch operations on disk devices. Therefore, the operation that
initiates the switch must not use sequential record access mode. For

magnetic tape devices, the context of the Next Record or next block
indicates the start of the following block on the tape for the
operation initiating the switch.

12-1

PERFORMING BLOCK I/O

NOTES

1l. If you set the BRO bit in the file
access field of the FAB for the

sequential file organization, you
indicate that you want to mix block I/O
and record operations. If, once the

file 1is open, you want only to perform
block I/0, you can set the BIO bit in
the record-processing options field of
the RAB. This overrides the setting of
the BRO bit for this record stream, and
acts as a flag to the $CONNECT macro
instruction, indicating that no VAX-11
RMS I1/0 buffers need be allocated (but
you must still allocate buffers in the
user program for block I/O operations).

2. If you set the BRO bit when creating an
indexed file, the key definition XABs
for that file must be present. For a
create service to the relative or
indexed file organization, specifying
the BIO bit in the file access field of
the FAB causes VAX-1l1l RMS to omit
prologue processing and initial space
pre-zeroing in relative files.
Allocated space pre-zeroing 1is also
omitted for the extend service when
connected for block I/O.

3. For files of wunknown organization or
undefined record format, block I/O is
the only form of processing allowed.
Processing proceeds identically to that
for block I/0O to the relative file
organization.

Three macro instructions are provided for performing block I/O.
e SREAD -- transfers a specified number of bytes into memory

® S$SPACE -- positions a file forward or backward a specified
number of blocks

e SWRITE -- writes a specified number of bytes to a file

In addition, yvou can use the following macro instructions on a record
stream connected for block I/0 operations:

° SDISCONNECT ° SNXTVOL
° SFLUSH) SREWIND
'hese instructions, which are described in Chapter 11, perform

miscellaneous operations or disconnect the record stream, and do not
work on the contents of the records themselves.

PERFORMING BLOCK I/0

For sequential block 1I/0 operations to disk files, VAX-11 RMS
maintains an internal next block pointer (NBP) that:

® Points to the beginning of the file after execution of a
SCONNECT macro instruction if the EOF bit is cleared in the
record-processing options field of the record access block
(RAB), or 1if the EOF bit 1is set, NBP points to the block
following the end of file. For indexed files, setting EOF is
an illegal procedure

e Points to the block following the highest numbered block
transferred by a read or write service ($SREAD or $WRITE macro
instructions)

e Points to the next block after an operation with the $SPACE
macro instruction

The block I/0 macro instructions deal with fields in the RAB; Chapter
5 describes the efflect of these fields on the operations.

You indicate the symbolic address of the associated RAB through a
parameter on each block I/0 macro instruction you are using, and the
address of any optional error or success completion routine you may
have provided. However, you can also wuse the macro instruction
without parameters, but you must then create an argument list in your
program to define the values for these addresses (see Section 8.1).

$READ

12.1 TRANSFER TO MEMORY

The $READ macro instruction invokes the read service, which retrieves
a specified number of bytes from a file (on a block boundary) and
transfers them to memory. A read operation using block I/0 can be
performed on any file organization.

To use this macro instruction, you must:

1. Supply a buffer area into which VAX-11 RMS 1is to transfer
data (user record area address field).

2. 1Indicate the number of bytes to be transferred (user record
area size field).

3. Indicate the first wvirtual block number (VBN) for the
transfer (bucket number field). If the value for the VBN is
zero, the transfer will start with the block indicated by the
NBP.

For the read service to operate, vou must first declare the file open

for block 1I/0 operations by setting the BIO (or BRO) bit in the file
access field of the FAB.,

12-3

PERFORMING BLOCK I/O

FORMAT
OPERATION PARAMETERS
label: SREAD RAB~=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $READ macro instruction;
optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a wuser-written success completion
routine; optional.

Table 12-1 lists the RAB fields that the read service uses for block
I/0.

Table 12-1
Read RAB Fields
Field
Usage Name Description
Input BKT Bucket number; must contain the virtual block number of the first
block to be read
ISI Internal stream identifier
ROP Record-processing options; checked to see if ASY is set for
asynchronous operations
UBF User record area address
USZ User record area size; indicates the length of transfer, in bytes
Output RBF Record address
RFA Record’s file address; contains the virtual block number of the first
block transferred
RSZ Record size; indicates the actual number of bytes transferred
STS Completion status code (also returned in Register 0)
STV Status value (contains terminator character
for terminal input)

12-4

PERFORMING BLOCK I/O

The VAX-11 RMS completion status codes categorized as severe errors
are contained 1in Appendix A. However, to help vyou foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
SREAD macro instruction are listed below.

Success:

RMS$_CONTROLC Operation completed under Control C

RMS$_CONTROLO Operation completed under Control O

KMSS_CONTROLY Operation completed under Control Y

RMSS_NORMAL Operation successful

RMSS_PENDING Asynchronous operation not yet complete

Failure:

RMSS$_ACT File activity precludes operation

RMS$_DNR Device not ready

RMS$_EOF End of file; checking for the logical end of
file 1is performed for the sequential file
organization only. If an end-of-file error
occurs, it implies that the first virtual
block number specified was at or past the end
of the file. If the end-of-file pointer
occurs during a transfer, the record size
field is set to the number of bytes before
the logical end of file, For the relative
file organization, this status code indicates
an attempt to read past the end of the
currently allocated space,

RMS$_RSA Record stream still active (asynchronous
operations)

RMS$_TMO Warning; time-out period expired

RMS$_WLK Device write-locked

$SPACE

12.2 POSITIONING TO A BLOCK

The $SPACE macro instruction invokes the space service, which lets you
_—Amd T A =Y £31 A Fmvrrrm A ~ I mdeeam v A - ~rnA~T €3 AA mrrvala A e AL T A~
yvus -\ ~ Bt AL WL\ Vo MUV WU L - «“ ol s LR 113 VA — Vo L AV A L Y

This macro instruction is intended primarily for wuse with magnetic
tape files; the tape is spaced the number of blocks specified in the
bucket number field. If the value in this field is positive, the tape
spaces forward; if the value is negative, the tape spaces backward.
For disk files, the NBP is updated to reflect the new sequential
operation position.

To use the $SPACE macro instruction, you must first declare the file
open for block I/O operations by setting the BIO (or BRO) bit in the
file access field of the FAB.

12-5

PERFORMING BLOCK I/0

FORMAT
OPERATION PARAMETERS
label: $SPACE RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $SPACE macro instruction;
optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1). ’

ERR=entry

The symbolic address of a user-written success completion
routine; optional.

SUC=entry

The symbolic address of a user-written success completion
routine; optional.

Table 12-2 lists the RAB fields that the space service uses as input
and output.

Table 12-2
Space RAB lFields

Field
Usage Name Description
Input BKT Bucket number; indicates the number of blocks to space forward
(positive value) or backward (negative value)
ISI Internal stream identifier
ROP Record-processing options; checked to see if ASY bit is set to
indicate an asynchronous operation
Qutput STS Completion status code (also returned in Register 0)
STV Status value (set to number of blocks actually spaced; positive
value always)

12-6

PERFORMING BLOCK 1/0

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
space service are listed below.

Success:
RMS$ NORMAL . Operation successful
RMS$_PENDING Asynchronous operation not yet complete
Failure:
RMS$_ACT File activity precludes operation
RMSS_ BOF File 1is at beginning of file (backspace
operations)
RMS$_DNR Device not ready
RMS$_DPE Device-positioning error
RMS$_EOF File 1is at end-of-file position (forward
space operations)
RMS$_RSA Record stream still active (asynchronous
operations)
RMS$ WLK Device write-locked

$SWRITE

12.3 WRITE TO A FILE

The $WRITE macro instruction invokes the write service, which
transfers a user-specified number of bytes, beginning on a block
boundary, to a VAX-11 RMS file of any file organization.

You indicate the number of bytes to be written in the record size
field of the RAB, and indicate the address of the buffer for the
transfer in the record address field. In the bucket number field, you
indicate the wvirtual block number of the first block to be written;
if this number is 0, the transfer starts with the block indicated by
the NBP.

For sequential files, the file is automatically extended if you write
a block past the end of the currently allocated space. For the
relative file organization, you must use the SEXTEND macro
instruction.

VAX-11 RMS maintains a logical end of file to correspond to the 1last
block and highest byte written within the block.

To use the S$WRITE macro instruction, you must first declare the file
open for block I/0O operations by setting the BIO (or BRO) bit in the
file access field of the FAB.

PERFORMING BLOCK I/0

FORMAT
OPERATION PARAMETERS
label: SWRITE RAB=rab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SWRITE macro instruction;
optional.

RAB=rab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the RAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SuC=entry
The symbolic address of a wuser-written success completion
routine; optional.

Table 12-3 lists the RAB fields that the write service uses as input
and output.

Table 12-3
Write RAB Fields
Field
Usage Name Description
Input BKT Bucket number; must contain the virtual block number of the first
block to be written
ISI Internal stream identifier
RBF Record address
ROP Record-processing options (ASY and TPT bits only)
RSZ Record size; indicates the transfer length, in bytes.
Output RFA Record’s file address; contains the virtual block number of the first
block transferred.
STS Completion status code (also returned in Register 0)
STV Status value; contains the actual number of bytes transferred if an
end-of-file error occurs.

12-8

PERFORMING BLOCK I/0

The VAX-11 RMS completion status codes categorized as severe errors
are contained in Appendix A. However, to help you foresee and
possibly circumvent any nonsevere conditions that can arise, any error
or warning completion status codes that can cause a failure for the
write service are listed below.

Success:
RMS$_CONTROLC Operation completed under Control C
RMSS_CONTROLO Operation completed under Control O
RMSS_CONTROLY Operation completed under Control Y
RMS$_NORMAL Operation successful
RMS$_PENDING Asynchronous operation not yet complete.
Failure:
RMS$_ACT File activity precludes operation
RMS$_DNR Device not ready
RMS$_EOF End of file; for the sequential file
organization, this error implies that the
file could not be extended
RMS$_EXT File extend error
RMS$_PRV Privilege violation; access denied
RMS$_RSA Record stream still active (asynchronous
operations)
RMS$_WLK Device write-locked

12.4 NONFILE-STRUCTURED OPERATIONS

VAX-11 RMS lets you perform nonfile-structured operations, that |is,
operations that deal with magnetic tape or disk volumes directly
rather than through the Files-11 structure.

Nonfile-structured operations also are known as logical I/0
operations. Logical I/0 is the reading and writing of data in blocks.
For magnetic tape, each block of the tape is read or written with no
interpretation of labels. For disk, the starting block for a transfer
is identified by a 1logical block number (LBN). Since LBNs are
volume-relative (see Appendix B), no file-relative translation is
required to determine the blocks to transfer.

You can perform nonfile-structured operations under the following
conditions.

1. For file devices that have been mounted as Files-1ll volumes,
you must set the NFS bit in the file-processing options field
(FOP) of the FAB as input to the create or open service.

2. For file devices mounted as foreign (i.e.

nonfile-structured), VAX-11] RMS performs nonfile-structured
operations regardless of the state of the NFS bit.

12-9

7.

PERFORMING BLOCK I/O

For nonfile devices, nonfile-structured operations occur
always.

If the NFS bit is set, the I/0 channel 1is assigned 1in the
mode of the caller, thus allowing I/0 calls to be performed
directly, if desired.

You must have the appropriate privileges to perform
nonfile-structured operations (logical I/0 privilege).

Either block I/0 or the get and put services are allowed.
For magnetic tape, blocking information must be specified on
the MOUNT command (see the VAX/VMS Command Language User's
Guide), using the /RECORD qualifier; this allows the
blocking and unblocking of fixed-length records, with records
not crossing block boundaries. For disk, each block is read
as a fixed-length record of 512 bytes.

The file specification only needs the device and unit number.

If the above conditions have been met, VAX-11 RMS will <change its
operations to include the following:

1.

2,

3.

The block I/0 services including space are permitted, even if
not in block I/0 mode.

The rewind service rewinds the entire magnetic tape.

If the <close service 1is performed to a write-accessed
magnetic tape, two tape marks are output, followed by a
backspace. This allows the creation of multiple files. On
input, end-of-file errors cause the tape mark to be skipped.

For disk, the normal input of the bucket code field (BKT) of
the RAB for read and write services specifies the logical
block number (LBN) rather than the wvirtual block number
(VBN) . Since 1logical block numbers start at 0 and virtual
block numbers start at 1, a problem may arise when you want
to access LBN 0 (a 0 in the bucket code field indicating
sequential operations). However, you can access LBN 0 by
setting the bucket code field to 0 immediately after a
connect or rewind service (or by issuing an appropriate space
service to backspace to the beginning of the volume).

For the get and put service, random access by key (RAC=KEY),

set the key buffer pointed to by the key buffer address field
to the starting LBN.

12-10

CHAPTER 13

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

VAX~-11 RMS provides macro instructions that perform actions related to
the file specification. These macro instructions are used only for
relatively complex operations, such as wildcard processing, as their
functions are normally performed by the open and create services.

These macro instructions, therefore, deal with fields in the file
access block (FAB), and the name (NAM) block. Chapters 4 and 7
describe the effects of these fields for the FAB and NAM block,

respectively. The file specification processing macro instructions
are:

e SENTER

e SPARSE

e SREMOVE

e SRENAME
® S$SSEARCH

You indicate the symbolic address of the associated FAB through a
parameter on the file specification processing macro instructions.
You do not indicate the NAM block on the macro instructions; rather,
you associate this NAM block with the FAB through the name block
address field of the FAB.

On the file specification processing macro instkuctions, you can ‘also
use a parameter to indicate the address of any optional error or
success completion routine you may have provided. .You can use the
macro instruction without parameters, but you must then create an
argument list in your program to define the values for these addresses
(see Section 8.1).

SENTER

13.1 ENTER A FILE NAME

The enter service, which you invoke with the $ENTER macro instruction,
inserts a file name into a directory. This is performed automatically
by the create service (unless either the TMP or TMD bit is set in the
file-processing options field of the FAB). The enter service,
however, allows you to perform this step separately.

When you enter a file name into a directory, no file can already be
open with the FAB, and no wildcard specifications are allowed.

13-1

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

The enter service requires many NAM block fields as input. You
normally precede the enter service with an open, create, or parse
service (see Section 13.2), and a search service (see Section 13.5),
specifying the same FAB and NAM block for each service.

FORMAT
OPERATION PARAMETERS
label: SENTER FAB=fab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $ENTER macro instruction;
optional.

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;

you must sSupply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 13-1 lists the fields in both the FAB and NAM block that the
enter service uses as input and output.

13-2

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Table 13-1
Enter Fields
Control Field
Usage Block Name Description
Input FAB IFI Internal file identifier (must be zero)
NAM Name block address
NAM DID Directory identification; file name and
identifier are entered into this directory
DVI1 Device identification of the device containing
directory where file name is to be entered
ESA Expanded string area address; contains file
name, type, and version to be entered
ESL Expanded string length
FID File identification of file to be entered
into directory
RSA Resultant string area address
RSS Resultant string size
Output FAB STS Completion status code (also returned in
Register 0)
STV Status value
NAM RSL Resultant string length

the optional resultant string is moved to the buffer described by the
resultant string area address (RSA) and size (RSS) fields of the NAM
block (only if both these fields are nonzero).

If the file version number of the name string described by the
expanded string length and area address fields of the NAM block is
either not present or 0, the enter service scans the entire directory.
It assigns a version number one higher than the highest found (or 1 if
none is found).

The completion status codes categorized as severe errors are contained
in Appendix A. However, to help you foresee and possibly circumvent
any nonsevere conditions that «can arise, any eérror or warning
completion status codes that can cause a failure for the enter service
are listed below.

Success:

RMS$_NORMAL Operation successful

13-3

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Failure:
RMS$_ DNF Directory not found
RMSS$S_DNR Device not ready
RMS$_ENT Files-11 ACP enter function failed
RMS$_FNF File not found
RMS$_PRV Privilege violation
RMS$_WLK Device write-locked

$PARSE

13.2 PARSE A FILE SPECIFICATION STRING

The $PARSE macro instruction invokes the parse service, which analyzes
the file specification string (as described in Section 8.2) and fills
in various NAM block fields. The functions of the parse service are

performed automatically as part of the open, create, and erase
services,

When you parse a file name string, there must be no file already open
in conjunction with the FAB.

FORMAT
OPERATION PARAMETERS
label: SPARSE FAB=fab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $PARSE macro instruction;
optional.

FAB=fab-address

Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

Table 13-2 lists the fields in both the EAB and NAM block that the
parse service uses as input and output,

13-4

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Table 13-2
Parse Fields
Control Field
Usage Block Name Description
Input FAB DNA Default file specification string address
DNS Default file specification string size
FNA File specification string address
FNS File specification string size
FOP File-processing options (OFP bit only)
1FI Internal file identifier (must be zero)
NAM Name block address
NAM ESA Expanded string area address
ESS Expanded string area size
RLF Related file NAM block address
Related file RSA Resultant string area address
NAM block
(if any) RSL Resultant string length
Output FAB STS Completion status code (also returned in
Register 0)
STV Status value
NAM DID Directory identification
DVI Device identification
ESL Expanded string length
FID File identification (zeroed)
FNB File name status bits; contains information
about the parse results
wCC Wildcard context (zeroed to initialize the
wildcard context for subsequent directory
searches)

The expanded file specification string is moved to the buffer
described Dby the expanded string area address (kbA) and slze (LkSS5)
fields of the NAM block (only if both fields are nonzero). The ESA
and ESS NAM block parameters must be specified (nonzero) for wildcard
processing (see Sections 7.2.2 and 7.2.3).

13-5

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

The completion status codes categorized as severe errors are contained
in Appendix A. However, to help you foresee and possibly circumvent
any nonsevere conditions that can arise, any error or warning
completion status codes that can cause a failure for the parse service
are listed below:

Success:
RMS$ NORMAL Operation successful
Failure:
RMSS$_DNF Directory not found
RMS$_DNR Device not ready

$REMOVE

13.3 REMOVE A FILE NAME

The $REMOVE macro instruction invokes the remove service, which
deletes a file name from a directory. (This service does not delete
the file itself. This is done with the erase service; see Section
9.4). The functions of the remove service are performed automatically
as part of an erase service that specifies a directory.

When you remove a file name from a directory, no file can already be
open for the FAB. 1In addition, you normally call the parse service to
set the NAM block contents before you call the remove service.

Each removal deletes the next directory entry whose file name, type,
and version number matches those specified in the expanded string
length and expanded string area address fields of the NAM block.

FORMAT
OPERATION PARAMETERS
label: $REMOVE FAB=fab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the SREMOVE macro
instruction; optional.

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;

you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry

The symbolic address of a user-written error completion routine;
optional,

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

SUC=entry

The symbolic address

routine;

optional.

of a

Table 13-3 lists the fields in both the FAB and NAM blocks that

remove Service uses as input and output,

user-written success completion

the

Table 13-3
Remove Fields
Control Field
Usage Block Name Description
Input FAB FOP File-processing options (NAM bit only)
IFI Internat file identifier (must be zero)
NAM Name block address
NAM DID Directory identification of directory
cataloging file to be removed
DVI Device identification of device containing
directory from which file is to be removed
ESA Expanded string area address specifying
the name, type, and version of file to
be removed
ESL Expanded string length
FID File identification; if nonzero and NAM
bit is set in file-processing options field of
input FAB, the first file in the directory
with this file identification is removed
FNB File name status bits (wildcard bits only)
RSA Resultant string area address specifying the
name, type, and version number of
last file reinoved (required for wildcard
processing)
RSL Resultant string length
RSS Resultant string area size
wCC " Wildcard contexf
. . . s
‘Output FAB STS Completion status code (also returned in
Register 0)
. STV Status value
NAM RSL Resultant string length
wCC Wildcard context

13-7

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

The resultant string is moved to the buffer described by the resultant
string area address (RSA) and size (RSS) fields of the NAM block (only
if both fields are nonzero).

The completion status codes categorized as severe errors are contained
in Appendix A. However, to help you foresee and possibly circumvent
any nonsevere conditions that can arise, any error or warning
completion status codes that can cause a failure for the remove
service are listed below.

Success:
RMS$ NORMAL Operation successful
Failure:
RMS$ DNF Directory not found
RMSS$_DNR Device not ready
RMS$_FNF File ﬂot found
RMS$ PRV Privilege violation
RMSS_WLK Device write-locked

$SRENAME

13.4 RENAME A FILE

The SRENAME macro instruction invokes the rename service, which
changes the name of a file in a directory. This service performs the
equivalent of two parse services (old and new name), a search service
for the old directory, an enter service to insert the new file name
into the new directory, and a remove service to delete the old file
name from the old directory.

This service affects directory entries only. It does not alter the
file name stored in the file header block.

When you change the name of the file in a directory, no file can
already be open for the FAB, and no wild card specifications are
allowed. You can rename a file from one directory to another, but
both directories must be on the same disk device.

If the rename service 1is successful, the new directory entry is
created and the old entry is deleted. 1If the service fails, the old
entry remains, and the new entry, depending on when the error occurs,
may or may not be created.

FORMAT
OPERATION PARAMETERS
label: SRENAME OLDFAB=fab-address
ERR=entry
SUC=entry

NEWFAB=new-fab-address

13-8

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

label

A user-defined symbolic address for the SRENAME macro
instruction; optional.

OLDFAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB that specifies
the old file name. If you omit this parameter, no other
parameters are permitted; you must supply the argument list
within your program (see Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a user-written success completion
routine; optional.

NEWFAB=new-fab-address
Required if you use prameters in the macro instruction. This
parameter defiines the symbolic address of the FAB that specifies
the new file name. If you omit this parameter, no other
parameters are permitted; you must supply the argument list
within your program (see Secion 8.1).

NOTE

If you 1issue this macro instruction
without parameters, you must construct
an additional field within your argument
list to contain the address of the FAB
that specifies the new file name. This
additional field is placed 1in the
argument list following the field for

the success completion routine (see
Section 8.1), and the argument count is
set to 4.

Table 13-4 lists the fields in two FABs and two NAM blocks that the
rename Service uses as input and output. In the table these blocks
are called FAB#1 and NAM#l for the old entry, and FAB#2 and NAM#2 for
the new entry. For output, FAB#2 is not used, although it must be in
writable memory.

The resultant file specification string for each of the names (old and
new) 1is placed 1in the buffer described by the resultant string area
address (RSA) and size (RSS) fields of the separate NAM blocks (only
if both fields are nonzero).

The completion status codes categorized as severe errors are contained
in Appendix A. However, to help you foresee and possibly circumvent
any nonsevere conditions that can arise, any error or warning
completion status codes that can cause a failure for the rename
service are listed below.

13-9

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Success:
RMS$_NORMAL Operation successful
Failure:
RMS$_DNF Directory not found
RMS$_DNR Device not ready
RMSS$_FNF File not found
RMS$_PRV Privilege violation

13-10

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Table 13-4
Rename Fields

Control Field
Usage Block Name Description
Input FAB#1 DNA Default file specification string address
and
FAB#2 DNS Default file specification string size
FNA File specification string address
FNS File specification string size
IFI Internal file identifier (must be zero)
NAM Name block address
NAM#1 ESA Expanded string area address (must be
and nonzero)
NAM#2
ESS Expanded string area size (must be non-
Zero)
RLF Related file NAM block address
RSA Resultant string area address
RSS Resultant string area size
Related RSA Resultant string area address
file NAM
blocks RSL Resultant string length
Output FAB#1 STS Completion status code (also returned in
Register 0)
STV Status value
NAM#l DID Directory identification
and
NAM#2 DVI Device identification
ESL Expanded string length
FID File identification
FNB File name status bits
RSL Reanltant otring lpngth
WCC Wildcard context

13-11

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS
$SEARCH

13.5 SEARCH FOR FILE NAME

The $SEARCH macro instruction invokes the search service, which scans
a directory file and fills in various NAM block fields. Normally, you
precede the search service with the parse service to initialize the
NAM block appropriately. The basic functions of the search service
are performed automatically as part of the open, create, and erase
service.

When you scan a directory file, no file can already be open for the
FAB.

When called, the search service scans the directory file specified by
the directory identification field of the NAM block. It looks for an
entry that matches the file name, type, and version number specified
by the expanded string area address and expanded string length fields.
Upon finding a match, VAX-11l RMS returns the file name, type, and
version number in the buffer described by the resultant string area
address and size fields, and the file identification field is filled
in, thereby allowing a subsequent open by NAM block (see Section
8.2.3).

FORMAT
OPERATION PARAMETERS
label: $SEARCH FAB=fab-address
ERR=entry
SUC=entry
label

A user-defined symbolic address for the $SEARCH macro
instruction; optional.

FAB=fab-address
Required if you use parameters in the macro instruction. This
parameter defines the symbolic address of the FAB for the file.
If you omit this parameter, no other parameters are permitted;
you must supply the argument 1list within your program (see
Section 8.1).

ERR=entry
The symbolic address of a user-written error completion routine;
optional.

SUC=entry
The symbolic address of a wuser-written success completion
routine; optional.

Table 13-5 lists the fields in both the FAB and NAM block that the
search service uses as input and output.

13-12

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Table 13-5
Search Fields

Control Field
Usage Block Name Description
Input FAB IFI Internal file identifier (must be zero)
NAM Name block address
NAM DID Directory identification of directory to
be searched
DVI Device identification of device containing
directory to be searched
ESA Expanded string area address, specifying
file name, type, and version of file
ESL Expanded string length
FNB File name status bits (wildcard bits only)
RSA Resultant string area address, specifying
name, type and version of last file
found (required for wildcard processing)
RSL Resultant string length
RSS Resultant string area size
wCC Wildcard context
Output FAB STS Completion status code (also returned in
Register 0)
STV Status value
NAM FID File identification
RSL Resultant string length
WCC Wildcard context

The resultant file specification string 1is placed 1in the buffer
described by the resultant string area address (RSA) and size (RSS)
fields of the NAM block (only if both fields are nonzero). The RSA
and RSS NAM block parameters must be specified (nonzero) for wildcard
processing (see Sections 7.2.4 and 7.2.5).

The completion status codes categorized as severe errors are contained
in Appendix A. However, to help you foresee and possibly circumvent
any nonsevere conditions that can arise, any error or warning
completion status codes that c¢an cause a failure for the search
service are listed below.

13-13

FILE SPECIFICATION PROCESSING MACRO INSTRUCTIONS

Success:
RMS$_ NORMAL

Failure:
RMS$_ACT
RMS$_DNF
RMS$_DNR
RMS$_FND
RMS$_FNF
RMS$_NMF

RMSS$_PRV

Operation successful

File activity precludes operation
Directory not found

Device not ready

Files-11 ACP find function failed
File not found

No more files to be searched

Privilege violation

13-14

CHAPTER 14

RUN-TIME CONTROL BLOCK INITIALIZATION

VAX-11 RMS provides run-time equivalents of the assembly-time macro
instructions that allocate and 1initialize control blocks. These
run-time instructions are the "store" macro instructions.

The store macro instructions copy either the contents of a location or
a value into data fields in the designated control block. Regardless

of field size, you can access a data field with these macro
instructions.

14.1 THE STORE MACRO INSTRUCTIONS

You form the name for each store macro instruction by adding _STORE to
the name of each assembly-time macro instruction.

tor example, the run-time equivalent of the $FAB macro instruction is:
$FAB_STORE

A run-time equivalent exists for each of the following macro
instructions:

e SFAB
e SRAB
e SNAM
e SXABDAT
e SXABALL
e S$SXABKEY
e S$XABPRO

e SXABFHC

® $XABRDT

14-1

RUN-TIME CONTROL BLOCK INITIALIZATION

FORMAT
OPERATION PARAMETERS
label: macro-name FAB
RAB .
NAM =pointer
XAB
keyword-1=value-1, . . . , keyword-n=value-n
label

A user specified symbolic address referring to the store macro
instruction; optional.

macro-name
The name of the control block (FAB, RAB, NAM, XABDAT, XABALL,
XABKEY, XABPRO, XABFHC, or XABRDT). The control block name is
vrefixed with a dollar sign ($) and followed by _STORE.

An optional pointer to the control block; the keyword to the
left of the equal sign indicates the type of control block you
are using. A keyword of XAB is used for all the different XABs.
If the value of "pointer" is a register, the register must
contain the address of the control block. If the value of
"pointer" is not a register, the address that "pointer"
represents is moved to Register 0; Register 0 is then used as
the pointer to the control block.

If you omit this parameter, VAX-1l RMS assumes that you have
already stored the address of the control block in Register 0.

keyword-l=value-1l,..., keyword-n=value-n
A variable number of keywords that correspond to the data fields
of the control block, and the values to be placed in these data
fields. These values can be either keywords for options, as 1in
the assembly-time macro instructions; or can be run-time
addressing expressions. If the value is an addressing
expression, the following restrictions apply.

1. For any address field -- such as the extended attribute block
field (XaB) of the FAB, the file access block field (FAB) of
the RAB, or the expanded string area address (ESA) and
resultant string area address (RSA) fields of the NAM block
-- a MOVAL instruction 1is generated rather than a MOVL
instruction.

2, For a quadword field, whose source is a register, two
successive registers are accessed. Therefore, the source
register should not be greater than Register 11.

3. VFor a field that is any one of the following, and whose
source is a register, two successive registers are accessed:

® Directory identification (DID)
e File identification (FID)

e Record's file address (RFA)

14-2

RUN-TIME CONTROL BLOCK INITIALIZATION

Therefore, the source register should not be greater than
Register 11. In addition, you cannot use the byte, word, or
longword displacements for an offset, or any indexed or deferred
addressing.

4. 1I1f you specify the device identification field (DVI), the
source cannot be a register, since four registers would have
to be accessed. In addition, you cannot use the byte, word,
or longword displacements for an offset, or any indexed or
deferred addressing.

5. The file protection (PRO) and group/member number (UIC)
fields can be expressed in either of two ways:

a. Individually —- in a manner similar to the assembly-time
macro instructions. For the file protection field (PRO),
the values must still be the keywords R, W, E, D. For
the group/member number (UIC) fields, the values must be
either run-time values or constants. The radix for
constants is octal.

b. Together —- filled in as one entity, by specifying one
run-time address.

An example of a store macro instruction follows:
$FAB_STORE FAB=R1,0RG=SEQ,RFM=VFC,MRS=10(R2),FSZ=#30,FOP=#O,NAM=NBLK

In this example, Register 1 contains the address of the FAB; the file
organization is sequential; the record format is variable with fixed
control; and the maximum record size is to be taken from the contents
of the 1location specified by 10(R2). In addition, the fixed size of
the record is 30 bytes, the file-processing options field is to Dbe
cleared, and the address of NBLK is to be moved into the NAM block
address field of the FAB.

14-3

CHAPTER 15

CONTROL ROUTINES

VAX-11 RMS provides three control routines, as follows:
° Rundown control routine
. Default Directory control routine
° Default File Protection control routine

These control routines all operate synchronously; therefore, no $SWAIT
macro instruction is needed.

You do not call a control routine with a macro instruction. Rather,
you provide an argument list and call VAX-11 RMS at the entry point
for the routine.

15.1 HALT I/O AND CLOSE FILES

The Rundown control routine closes all files opened by VAX-11 RMS for
the image or process, and halts I/0 activity. This is not the same as
closing the files with a close service, which guarantees that all 1I/0
will be completed (see Section 9.1). Each call made to a Rundown
control routine closes at least one file. Therefore, you should
continue to call Rundown control routines until you receive the
success completion status code of RMS$_NORMAL.

The entry point for this control routine is:
SYSSRMSRUNDWN

There are two arguments for this control routine. The first is the
address of a 22-byte buffer to receive the device identification (16
bytes) and file identification (6 bytes) of an improperly closed
output file.

The second argument is a single byte code specify
~ Lo £ -
“ v

—-trm A A v Fa hA mAvEawm~A Ml 3~ s ~
& MLANAN VYL -\ L y\-;LJ.VI.l|lCUO EX TR N \—Itlc v

ng the type of
lowing values and
meanings:

0 - rundown of image and indirect I/O for process permanent files

1 - rundown of image and process permanent files; the caller's
mode must be other than user

2 - abort VAX-11 RMS 1/0; the caller's mode must be either
executive or kernel

15-1

CONTROL ROUTINES

The Rundown control routine does not reference fields in the user
control blocks.

The completion status codes are listed below.

Success:
RMS$_NORMAL All files closed
Failure:

RMSS$_CCF An output file could not be closed
successfully; user buffer identifies the
file

RMSS_IAL An output file could not be closed
successfully, and the user buffer cannot be
written

15.2 SET DEFAULT DIRECTORY

The Default Directory control routine informs you of and/or changes
the default directory for the process, The entry point for this
control routine is:

SYSSSETDDIR

‘'he argument list consists of three parameters, all optional. The
first 1is the address of the descriptor for the new default directory,
or 0 if it is not to be changed. The second parameter is the address
of a word to receive the length of the current default directory (or 0
if not wanted). The third is the address of the descriptor of a
buffer to receive the current default directory string (or 0 if it is
not wanted).

The new directory name string is checked for correct syntax.

You should restore the old default directory string to its original
status unless you want the changed default directory string to last
beyond the exit of your image.

The Default Directory control routine does not refer to fields in the
user control blocks.

The completion status codes are listed below.

Success:
RMS$ NORMAL Operation successful
Failure:
RMS$_DIR Directory string invalid
RMSS$_IAL Invalid argument list

15-2

CONTROL ROUTINES

15.3 SET DEFAULT FILE PROTECTION

The Default File Protection control routine informs you of and/or
changes the default file protection for the process. The entry point
for this control routine is:

SYS$SETDFPROT

The argument list consists of two parameters, both optional. The
first is the address of a word giving the new default file protection
specification (Section 6.4 describes the file protection
specification), or 0 if it is not to be changed. The second parameter
is the address of a word to receive the current default file
protection specification, or 0 if it is not wanted.

You should restore the old default file protection specification
unless you want the changed default to last beyond the exit of your
image.

The Default File Protection control routine does not refer to fields
in the user control blocks.

The completion status codes are described below.

Success:

RMS$_NORMAL Operation successful
Failure:

RMSS_IAL Invalid argument list

15-3

APPENDIX A

COMPLETION STATUS CODES

This appendix lists, in alphabetical order, the completion status
codes that VAX-1l RMS can return, cross-referenced to any applicable
service in which they can occur. The error codes are listed in the

first part of this appendix and the success codes are listed at the
end.

NOTES:

1. The errors that apply to the close service do not include
errors that can arise due to setting of the SCF and SPL bits
in the file-processing options field of the FAB.

2. The wait service has its own unique errors. This service can
also return any status code of the awaited operation.

3. For completion status codes marked with an asterisk (*), the
error can be the result of the buffer being written because
it is needed now, even though the buffer needs to be written
because of a previous put, update, or delete service.

COMPLETION STATUS CODES

10149 319A8G

. ° avX vL¥8L000
uo11B20|je Ul UOI1dO UONEDO|[e PjeAU| dOV $SIWY

10419 819A8S

° ° lewltos g ISNV J0v8L000
10U aJe 8ji} adel oneubew e Ul Sp10day INV~ $SIWY

901135 PUAIXd 31 JO) 043z O} |enbs

S1 10 ‘PaMo|[e Wnwixew ayl Spasoxa 10143 313A38
L ° Jayiia anjea ayl Igy’x uoiedo)e 0181000
ug Aynuenb uoied0|e 199.4400U| OV~ $SH

10419 a1anss

[° gvX uonesojje J4€81L000
ul adAl Azepunog 1uawubtje pijeAu| NIV~ $SWY

10419 813A95

° ° . [gvX uoledojje ui v4€81000

PI8l} Jaquinu uoKedilIusp) eale peg aiv~ $Sw

long

° oo e . elele o|o (oo o0]e o|lojo oo |e VvG28L000
uonesado sapnjoaid AllAlloe 3|14 19V $SWH

0.3

° 8p0D J04Id dJV Ue SulRIUO0D (ALS) 20091000

PIal4 aN|eA SNILIS 3U) 10419 SS300. 3)l4 20V $SWH

10143 319A9S

° J3€81L000
pawuioge uoliesadQ 0gv™ $SIY

2 P/
%ﬂz@wa.oom%% ooaﬂ%swo,%« S %ﬂ%@ 47 @%@%Moo%%%%ow%oo ©
y % > ene Aypsenag
uonduoasaqg anjeA |ewioapexsy
apo) snmeig

82108 SINY LL-XVA @|qedtjddy

COMPLETION STATUS CODES

[] ° [° ° o|eo o0 |e 151|e109dS a1eMU0S
© 1983U00 — UOIIEBOIA j020304d dv [

10113 213788

_ vbP8LO00
dva~ona” $swy

10419 3IBABS

oo 151{e199dg 2IBMBOS B 1083U0D YEY8L000

— pa12a1ap JoL3 SINH LL-XVA [BUIal] onNa $SWY

Sutuiepy

L4 (uoliesado adeds>oeq) 3|y 86181000
ay1 4o Bujuuibaq 1e Apeasje si 9)i4 409" $SH

plaly yibuaj %20|q Ul an[en pijeAu]

10119 219A3S

2Z¥8L000
N8 $SWH

° gV X uolledojje ayy ui
(zg ueyy Ja1ealb) azis 1939Nnq pifenu|

10413 2I9ARS

¥Z¥8L000
Z)8” $SWY

10119 319798

L] JLv81000
gy 4 ul 8zis 1840nq pijeru] SHIE $sY
10119 219A98
oo e ole . o|o|(e|e]|e ° ° . P03 10413 dOV U SUIRIUOD Pdl4 an eA $a091000
SNJEIS 8yl Japeay 3|} UO 10443 331 I ® MLV $SNY
9p02 1019 10149 819A9G
oo (oo oo je e ° ojojo o (0|0 e ° (] dJV ue suleluod (A LS) pidly an ea 02001000
SN3eISs Y] ‘1apeay a|i) U0 1049 pedy ® Hiv~ $SWH
B oo,«o%.fa o..% vo)we 5 Moo%az%o%%soooo %o/o
< v/)
2 |19A87 Ajlianeg
uonduasaq anje/ [ewiospexay
8po) smels

201188 SIWH LL-XVA 2Iqedljddy

COMPLETION STATUS CODES

801M8S SWY LL-XVA 3lqedijddy

10113 319A9S
. o le o le 9pO09 10143 Ue suleluod (A LS) P8l anjea 23001600
snjels ayl ‘ain|ie} uswubisse jpuueyd NHO ™ $SY
'1839nq 40 N GA SUlelUO0D 10413 919A3G
. . . ALS 'Pa1dniiod usaq sey 1axong ayL Yvv8L000
yorewsiw a1Aq — 393y 1339Nnq 8ji4 Xapu| MHO $SWY
Be)) uoindo Aey gyx uoniuyap 10118 219A8G
A3 ay3 Aq 18s 10U 81nqUIE Jey) J6¥8L000
uaym anjea Asy e abueyo o1 1dwany DHI™ $SNY
10143 819A38
oj/ojojo/o|eo |0 (e 0|0 0o |ofe]|e 9p00 10113 sUlRIL0D (A LS) PI8l 3031000
anjea snjels ayl ! | SV JaAljap jouue) vas $SWH
(811} paxaput 40y 195 30U IS 10113 219A3S
10 53|14 |enuanbas 1oy pawad wealls 6181000
pJ1023l 3U0 AjUo) gy 193UU0d J0UULR) H99 $SNY
10143 319A3S
8p09 10143 Ue SuieIu0d (A1S) 20091000
PI81} anjeA snyeis ayl !ajly 8s0jd Jouue) 4007 ¢SNY
10449 d19A98
ojojojeo|ojeo|oje|eo|eo|e]|e|e]e J8¥8L000
151| 1uawnbae $sad0e J0UURY) VYVO $SWY
1si|e10adg a1em oS e 10e1U00 — 3|qissod 10449 318A3S
° ofe Asanodal ou L1018 SWY | L-XVA JEY8L000
jeusaluy "A1010a11p 1|neyap plieAu| 1aa”ong” $swy
S SE
€ < 1937 Ajiieneg
uonduoseqg anjeA |ewidopexapy
apo) smeig

COMPLETION STATUS CODES

10119 d19NA98
L] gyX uoniuysp Aa uj paiy1oads azls 09/81L000
1939nq ueyl Jabie| 8zs |1 19>9nq EleQ 14a” $SWH
10119 2193
. o|e ole ole . uoneJadc Joy Ov8L000
adA} aotaap aretidosddeu) 10 80IABp peg A3Q $SNY
Jou3
L palajap uaaq sey apow 29281000
$S3008 PA023J Y4 Y AQ passadoe pioday 13a” $SWH
10419 349A3G
. gvX uohuysp 0av81000
A@3 ul Jaquinu eaJe elep pij2Au| NVYa $SWwH
9poJ 10143 Jou3
L dOV Ue sulejuod pialy anjea sniexs sy ¢L021000
!901A43s 350)0 B BulINp 10418 $S32083P 3|14 ova $SWH
90 MBS 10113 219A8g
° puly 10 136 |nyssaoans e Aq papadaid /i|ae ¥9¥81L000
-Ipaluw] 30U UOI1e43do {PI0OJBI IUBLIND ON 4No $SWY
10413
. L] 9p09 10413 dJV UB SUBIUOD (A 1S) V0001000
PIa14 anjea sniels ay) {10413 81eald 3)i4 JHO $SWH
10119 3J9A9S
° . [(] . Jv¥8L000
gvX ul apod adA} pijeau| aoo” $SiNH
S
S > |18A97 Aylianag
uonduoseq anje,\ |ewndepexsy
apo) smeig

801MBS SIWYH LL-XVA lqedijddy

COMPLETION STATUS CODES

301198 SWH LL-XVA 21qedljddy

sanjeA Aay ajedljdnp 10113 a13heg
] Mmolj(e 01 13s Jou Beyy uoindo AsY gyx 2381000
uonjuyep Asy ‘paoelap A9y alealjdng dna $swy
10113 319A38
i ¥318L000
v X uoniuyap Aay ul adAl elep pijeau) d1a” $SIH
3p02 10113 dQV UB SUIBIU0D (ALS) 1013
° P pIal} anjen sniels ayi : (adel onaubew o3 VE091L000
Ajuo sajjdde) Jousa Buluonisod so1n8Qg 34 $SWH
iou3
o|lojeo]|e o|loe|e|je|o]e o|lo|o|joe|e|oe|e]|e]e ° ¢L281L000
Apeau Jou 8d1n8Qg NG $SWH
9po02 Jod13 10413
° ofe o0 oo L] dOV ue suieluod (A1S) piay anjea Vv031000
sn3eIs ayl :punoy 10u AJoyoailq dNaT$SWH
10119 219A8G
. oo . . ssalppe oavsio00
Bulis uoiiesly1oads ajly 3 neyap pieau} VNG $SWH
SINYH LL-XYA 03 s1a4nq O/} 40} uoibal
welboid ay1 4o asn syl pamojjesip sey

Jasn 8yl 1o aj14 Juauewad ssadold ssaooe }
b R R bl Bl Bl R R B elei® I ®(®|®|®|®[®]|®|100mpeiayuasi oy oy pue |ny si uoibal 10113 310A38
1011u02 3y} Ul Juswbas O/} palejal 8yl 4i av8L000
Ajuo 1220 !paisneyxa Alowaw djweuAq NG $SWH
10143 219808
° ole . . J3¥8L000
aweu A1039a41p U} J04I] Hia $SwH

® ea?%o& oo&o%#oomo«o @1099%”00&.%&0%%@0000 oo.%
< 4zooo 2 {9Aa7 Alianeg
uonduosaqg anjeA |ewidspexaH
apo) sneig

COMPLETION STATUS CODES

Joug

.) 23281000

payoeas 19A 10U alep uoleJldxs 3|14 dX3$SWY

10449 919A3S

[} o|e L) . 0581000

Hoys 00} eale Bulls papuedxgy SS3 $SY

10149 849A3S

. ° ° 30lq v1.8L000
VN ul yibuaj buliis papuedxa pljeau| 1S3 $sSwH

10113 219A8S

° ole ole oo ° H0Iq NN J418L000
ul ssaippe ease Bulis papuedxa pijuau| vs3~ $SnNY

l0443

. [} ° (] [} o Vv£2Z8L000
3| Jo du3z 403 $SWY

‘uole4ausb WalsAs e pa1d9|as 10U Sem 10119 819A8S

° ° Alijioey Jo uoneziueblo 9|14 8yl 1odldns 2281000

01 AJessadau apod ay} 11049 JUBWIUOIIAUY ANI$SINY

3pod 101D dDV/ ue 1oug

o L] SulelUO0O (ALS) P1al} anjeA snlels ay V1021000
!AJ030311p U} Bweu 3j1} BuBIud 10447 LN3IT$SNY

10119 a18A3g

° eole o ole [30|19 4¥8L000
VN Ul UoiIed1311UapI 3DIASP P 2AU| IAQ™ $SNY
%oow%%@%«@ /S %«o%@»%a 49,.%%» Moo%%%%%o%oo S
Ny < 4690 £ jone) Alsansg
uonduosaq anjeA |ewidapexay
apo) smeig

201AIeS SINH LL-XVA @lqediiddy

COMPLETION STATUS CODES

apod Jou3 1013

° dOV ue suieluod (A LS) pialy anjea V2021000
snie1s ays !pajiey UOROUNY puly | |-s3j14 anNd T $SWY

h 10149 219738

° oo .] gv4 ul v2s81L000
ssa1ppe bulls uoieoy19ads a1y piieau) VN4 $SWH

ioug

°) a|qe|iere . \78Z8L000

10U 8404319y} pue paxdoj st)iy 147 $SNY

Aay Arewud 104 NN

10119 313A0G

8IMI9S SINY LL-X VA 2|qedljddy

° 40 DHO :sjdwexa ‘pjply D14 GYX o1581L000
A3 uj sanjea jo uoleUIGUIOD pieAu} 9747 $SWH
1013
L 2828L000
s181Xa Apeale 314 X337 $SWY
10119 919A8G
ole ° ole . gV 4 8y3 4O pjaly 53008 3|1y 8Y1 Ui 1581000
188 anjeA ayl AQ pamojje 10u uolnesadQ ov4d$SWY
10149 919A9S
° o|e ole eloejo|e oo |e 303.100ui J058L000
PIal 421411UBpl %00]q {9V 4 PijeAu] avd $SWY
10113
) . 9p0D 10148 IV Ue suleluod (ALS) 22021000
PI31} @NjeA SNIBIS BY1 {10143 PUSIXS 3)i4 IX3 $SWH
S S S
) Y 2 < j9na Ajrianeg
uonduosag anje, jewidapexapH
apoY smeig

COMPLETION STATUS CODES

10119 219888
] ° ° ° [NEA 12:onq ¥9£8L000

SUIBIUOD A LS ‘Jewsio} 33xjong [eBaj| 4917 $SWY

10149 919A9S

° gvXx uonliuyap 6581000
A93 Ul Jaquinu eate Xapul pijeAu| NYI~$SNY

10149 8l9AeS
o|o|0o |0 |0 | 0|0 0o|0o|0o|e 0ejc| e 0o 0o|e e|0o/e|0 0|00 (e eie J¥468L000
1s1] 1uswnb.e pijeau| VI $SWH

10419 219A3g

. . . . ¥58L000
31} PUBIX3 JO 81RO J0ULED ![|N} 8D AB(Q TIn4d~$SWY

10149 949A3S
o (sajly 3uld 104 | 01 je 1ba) ¥£581000
V4 Ul 9218 BaJE [0UOD PaXI Pij2AU} ZS4~ $SINY

10119 219A98

° ° J€468L000
suolldo buissasoid ajiy pij2Au| dOod4~ $SIWH

10118 81aneg
. 92581000
3WeU 8|1} U} J01I3 XBIUAS WN4 ™ $SWY

iou3

o ole . ole 26281000
punoy 10u 3|14 ANd $SWY

19A8 Alionsg
uonduasaq anjeA JewidapexeH

opog smeig
8910188 SINY LL-XVA 8iqedtddy

COMPLETION STATUS CODES

sajl) aAIle[al
10} JaquInu pJodal sANe[al 3y} 10°sajly
paxapul pue jeijuanbas 10} Jaqunu »20{q
b o |ENIA 3Y] SUIRIUOD (A LS) PI8Y 8njeA 10419 919A98
sN1e1s ayl ‘plal 91AQ |043U0D 1O TUNOD 9/S8L000
pijeAul {a]1j Ul paiajunodus piodas [ebajj| o4l $SWH
uopjeziuebio
aji} 40 adAl 8o1A9p alelidosddeul 'y
3|14 Juauewad sseo04d Jo puimal "¢
i bl R b $53208 (/| 390jq UBYM Q/| PJ098l °Z 10119 a19A8G
53008 (/| 390} 30U UBYM /] 3d0Iq | ¥.L581000
:paydwalie uonesado [ebay|y dOI~ $SWY
10119 319A88
[3|1} ay1 Joj Juasald s gyX asuap-uou J9468L000
10 adA1 awes ayl 40 gy X U0 ueyl aIop XWI~ $SWH
avXx 10119 319A3S
uonjulyap Asy ui paly1oads azis 393onq 9481000
uey sabae(azis |11 39%9NQq X3puj 41 $SWYH
10119 219A3S
. oo eole 19481000
qVv4 Ul aynuspl 3jij |eusalul pieau| 1417 $SWH
UOI1BWIOUI [RUOIIIPPE 10} (ALS) PIal} 10113 219A98
° anjeA snie1s ayl 5o93yo !pa1dniiod ¥2Lo1000
1apeay ajy ‘seanqgLiie ajy |ebaj| vl $SWH
VX uoniuysp As ul (pjay
NV) 48quinu eate xapul paiy10ads 4o 10119 3J9A3S
1eY1 01 [Bnba J0u (NV) Jaqunu ease 2./81000
Xapui JO |9A3] 1S9MO) JO 8zIS 13%9ng Mgl™$SWY
[CLCR WSTIET
uonduosaqg anjeA [ewioapexa
apo) smelg

801088 SINY LL-XVA 3lqedtiddy

A-10

COMPLETION STATUS CODES

10413 2J9A8S

gy X uoniuyap Asy ul 1squnu ov§sL000

eale 1359Ng-|aAS|-1S3MO| XBpul pijenu] NV1 $SWH

10413 219A88

. (al1y paxapul) afiej 001 azis A 10 ¥va8L000
(3114 anneyal) ¢ 01 [enba 10u azis A3y ZSH $SWY

Xapul 10} 3ouaiajed JO 10449 919A38

. Aay sl anjea A LS ‘18%0nq xspu ul ¥8.8L000

sAa> om) waad 01 abue| 001 azis Asy 1S $swy

10449 alansg

° 6581000
PIaY 44> Ui a0ualajal JO AdY plje | 4~ $SWH

JISIERIETES

. gy X uoniuiap vL.8L000

A9 Ul ssauppe 4a3}nNq aweu A3y pljeiu] N~ $SWH

10449 919A8S

° 8|1} pexapul 10 anlle|al E 0] 6581000
uojesado wopued 10} A3 pa0d3al plieau| ADIT $SNY

10119 219A8

° SHwi| 084681000
$S300B U] 10U 'SSa1ppe 4a34nq A plleau| 490 $SWY

10149 819A3S

. eole|e . 8481000
gVvH Ul J91111Usp] Wealls [eulaiul pljeAu| ISI”$SWH

QV
S

30IM19S SINY LL-X VA dlqedtddy

uonduossag

[ELER WASTRETE S
anjeA jewidsepexaH
apo) smeig

A-11

COMPLETION STATUS CODES

3215 PJ0O%84 WnwWixew Joy anjen [ebaj||

10113 2I8ADS
vass8Lo00
SHN™ $SINY

Jaquinu plo2al Wnwixew

10119 318A3S

8d1A19S SIWY LL-XVA @|qedljddy

° uey Ja1ealb Aay aanejas 1o (anizebau) 29681000
13gWINU P1023J WNWiXew 1o} anjea |ebaj| NYW ™ $SWY
8apov 1043 OV o3
Ue SUIBIUOD (A LS) P[B! anjeA sniels sy 2€001000
-U0NIB|aAP JO§ 2]} HJBW 10U PIN0D | |-3)14 IN~ $SNY
10113 319A38
LZ1 uey sarealb ¥€481000
ag 10U 1SNW {1UNO0D }20|g-i1[nhW pljeAu] 29N~ $SINY
pal}108ds os|e st
(Ng1) Jaquinu »20]q |eaiboj 1o (TAD)
1apui|Ad uoiido juawubiie gyx joa
-u09d uo1ed0||B Uaym Ajuo ajgedijdde 10113 210A9S
S| 3P0 SN1LIS JOUIB SIY) ‘g X |041U02 ¥2681L000
UO[1820||B Ul UOIIBI0| UO[1BO0]||E Pl|BAU| 2071 $SNH
buins aduale 10119 313038
o ol e -Atnba a)14 1uauewad ssaooud pljeAul 1o 24681000
UOISINDaJ Ul Pal|Nnsal [i0.14d aweu [ed16o7 INT $SWY
FISIEEIETE
1U91X83 pasnun ue 08/81000
Buluiezu09 eale pualxa 01 10wy X371 $SNY
10110 919n08
. 44581000
pajeqe| ISNY 1ou s ade | 1971 $SWH
[ELER WATIETEN
uonduasaq snjeA jewisapexaH
8po) smeig

A-12

COMPLETION STATUS CODES

uteys-cns
gV X SWes ay3 ul pases|ialul e

° sgyX 30 sadAl Juaiayyip 40 ‘pasintial 10419 819A8G

uaym (|erruanbas) asuap 10U ‘I3[IO 0981000

(Buipuadse) 12981409 Ul J0U SgYX Paule) ayo” $siy

10119 819A8S

° a1} paxapui ue buizeald uaym gy/x 34681000

uoniulyap Asy ul pauyap Aey Asewnid oN MdN™$SWH

10119 319A38

. ole ° ° 4581000
10419 Bweu apoN AON™ $SINY

a0a13

. R uonesado 3281000
aAOWal JO YoJeas e 10} S3|ij 8Jow ON JWN~$SNY

9|1y paxapul ue

uado 01 Buildwasile ajiym jood adeds 10413 318A8S

b i i o ul WooJ JUBIdIENSU| suollduotap 2358L000

X8pU} |BUIBIUE 8JED0|[8 J0UURD aIN~ $SINY

10119 219A98

ole L) ° ° ° oo (oo 8p0J ¢V SUIBIUOD pj3l4 an e J1L8L000
sn1e3is ayi (pajiey uoiesado YI0MIIN LIN~ $SWH

3|14 40 pus 0} 10149 819A9G

° pauoisod Jou uaym 3|1 |elrusnhas 3581000

e 01 991A8s 1nd ay) asn 01 1dwally 43N~ $SNY

10113 319A9S

L] ole ole ole [0as8L000
%9019 NVN Pljenu] WVN $SWH

> » /42 2 O/ /L
%y %.o& oo,.o 6%.+ A ﬁzof%%o %w%%%o«oeooo %0/
6@0 ~ [CIT WATPLTE
uonduossag anje, |ewitoapexaly
9po) smeig

8210188 SWY LL-XVA 8igedliddy

A-13

COMPLETION STATUS CODES

Bulals pajonb ui Jousg

10118 019438

$£981000
ono $swy

paiuap $sad0e ‘uoi1e|olA aba|IALg

iou3g

V6281000
AHd™$SINY

VX WOI4 Panaiilas plaly a1ep ajiy PHeAu|

10419 918A3S

2981000
WHd $Swy

L] gvX uoniuijap Asy ul
(SHIA ueyl 4a1ea16) uolnsod Aad pijeau)

410419 319A88

2981000
SOd™ $SWY

payioddnsun uoision anbojolg

10119 819A8G

0281000
Ald $SWH

pa1dniioo si a1y ‘anbojoad a1} ul Joulg

10119 819A0g

21981000
914~ $sSWH

ssappe J4a44nq 1dwoud pijeau|

10119 919A3S

1981000
49d” $SWY

uoileziuebio 3|1y |ebajj|

10119 219ABS

20981000
DHO™ $SWY

YL YA SYAIYSYLS
o.oo 41+ 1%. 2/ £y S
9 Q

uonduasaq

813G SIYH LL-XVA 2lqedtjddy

[ELER WATPETY S
anje |ewidspexaH
apog snieig

A-14

COMPLETION STATUS CODES

801M3S SWH LL-XVA 8|qediddy

10113 319A3S
° av4 06981000
Ul paulelUOd SSAIPPE 31} §,P40934 PIjeAU| v4H $SIWH
{199 p409ad 1864e1 83} Ul PUNOY SEM PIODDI 10413
° e 9|1} 9Al1E[3J B 0} UOIIRI9d0 SpOowW $53008 2vZ81000
pJ028. WOPUEL B U] 'SISIX8 Apealje pioday X34 $SNY
10112 919A88
ele oo o 9p09 1013 OV Ue SUIBIUO0d (AL 4001000
plol} dnjeA snieis ay3 110143 peas 3| 4 434~ $SKY
GGz N 10449 319A88
° ° ° ° {enba ‘3|1 ul Jaquinu uey Jojea b 06281000
‘gyX Ul 80ua1a)a1 JO Ad) pljRAul 434 $SINH
10143 9J9A9G
. [} ° 5981000
ssaippe p109ad pieau| 494 $SWH
10113 319A8S
.] o1981000
gV 4 Ul p!jeAul s81nqiile piodaYy Lvyd ™ $SWH
10113 219A9S
[} [} avy 4o 981000
pJol} apow $s3008 P109al Ui anjea |ebai|| ovd $SY
10118 319788
K RERERE] [ejole Qo ej|o|eo o|e . 1984100U1 9£981000
plat} 481413Udp! 390]q IgVH Pl|EeA BION avy” $SWYH
N 2 3 £ O/ L/
LAY, %ﬂoa# 2 %b%oooo. %/so %e,\o%oo ©
)woo ~ 19Aa7 Aliaasg
uondiosaq anjeA jewioapexay
apo) smeig

A-15

COMPLETION STATUS CODES

uondo piodai pijeau|

10119 319A08
0/98L000
dOH ™ $SIWY

Pa)30| 10U psooaY

Bujuiep
0vL8L000
INY ™ $SIH

punoy J0u p10d3Y

ou3

29281000
ANY$SWH

8p09 104iB 4OV
ue SLIRIUOD {A1S) P|3Y} anjeA sniels
a1 ‘pajie; uonAUNY 3AOWSI | |-S3)14

10113 219A3G

34001000
AWH$SWYH

3Se1 Jdygoue AqQ padoo| pioday

10443
VVZ8L000
THT$SWYH

91 parefel pijeAu|

1018 d19Meg
981000
374 $SWH

1ajyNnq Japeay pi0dai pijeAu|

10149 219A38
29981000
gHY $SWH

1eW.I04 p1odal |eba)y)

40119 dIBA3G
9981000
W44 $SWy

P
“ 2

]
S

7S

80iMiag SWY LL-X VA 9|qealiddy

uonndusasaq

joaa Ayusenag
anjeA |ewoepexap
8po) smerg

A-16

COMPLETION STATUS CODES

Bfuiuiepy
. 8VvL8L000
12j4nq Jasn Joy abiej 00} pio3ay 9147 $SWY
. 10419 219A8S
o ¥v98L000
0218 p1093J JEB Y| ZsH™ $SWH
20419 319ADG
. ole [oo (] 39019 W'7N 06981000
Ul ssaippe eaJe Bullls Juerisal pljenu| 1S4 $SNY
10119 219N0S
° ole . o e . 6981000
J|lewS 001 S azis eaje Bulils Jueln:ay SSH™ $SINY
10113 319A3S
. ole ° PiieAul %o0iq 0€L8L000
VN 40 p|al} yabua| buinis Juelniay ISH $SWH

Buipuiels

-1n0 1sonbas e sey eyl weans picoiai
° [RERE) eojo|oeje|e e|e e 0] 1USWUOUIAUS SNOUOIYIHIASE U Ul ion3y
1sanbal uoe4ado pJodai e anss| 01 A B vazsLooo
sem 1dLIBLIE UB [3AI10R WEasls pIoiaYy vsH ™ $SWH
10113 313AAS
[° . . paidnuiod aq Aew 8|1} ‘a|y paxepul 8981000
Ul PalalunNodud PIoJas AHY PIEAU| AHY $SWH
10149 219ASS
° . ° o|e ° oo e 8pO0D 10418 DY UE SUIBILOD IS4 8IeA 0121000
sniels ayl ‘enbojoud Buipeas ajiym icig 144~ $SWY

® ss«x%o/«. 0@«%490%& @.00@/%%0 %%@%o%aﬁa%oo %OAv
< ﬂo% < [9A31 Aiionsg
uondussag anjeA jewijapexsy
apo) smelg

801098 S LL-XVA 3lqedtjddy

aA-17

COMPLETION STATUS CODES

10143 81319G
(] o |0 papaadxa vv.8L000
1unoo abed aseq eiep bupeys a|i4 3dS” $SNY
10119 319A38
° . 26481000
pajqeus 10u Bulieys ajl4 3INS™ $SWYH
|ew0ap padoed Jo buLis 104 O 01 |enbs
10 “adA} erep Aay| |ewidap padjoed 1o}
g1 ueyl aaeaub ‘sadAl elep Asy sabaul
° pue Aseuiq uo yibus| pauljap o1 |enba
10U ‘azZIS PI1099I WNWIXBW SPIIIX3 BZIS 10119 319ABS
paijioads ““a°} ‘pjaly Z|S gV X uohluljap 08981000
Ao up payytoads azis Asy| pljeau) ZIS” $SWH
FLIERIETETS
. L] av4d +¥998L000
40 pjay Butieys ajiy Y1 Ul an|eA pijeAu| HHS™ $SYH
[D3S 01185 pjaly DY pue piodal snolaaid 10418 319A88
° 10 A9y} ueyy Jerealb Jo 01 |enba jou 2v98L000
SI U3111um 3q 01 pIodad 40 Aax Aewlid 03S™ $SWH
10119 3i9A0S
L] Bulns ueyy 6.81000
Jay1o adAy exep Aad| 1o} Asy pajuswbag 93S $SH
10149 319A3S
. R 150| aq Aew elep 01 08981000
syled awos ‘SAHY Buizepdn sjiym soa3 NAY™ $SWY
3 $» \Y » /> D/ D/ NYAVAYEAT LY LY EYVAYLYEYLIVES
.%%,%M@ooaooov ooe&%s%@%%%«% %so@% o@o« 48 %oo@.ro P/ ooa# 7y @.o@%ro%.%@ %o«oooo S
o~ S/ N J..uoo ¥ |9A97 Allianeg
uonduasaQ anjes, |ewidsapexsH
9po) smeyg

801M38 SIIH LL-XVA 2(qedijddy

A-18

COMPLETION STATUS CODES

10119 819A3S

. oo . . 3981000
adAy ajy} uj Joug dAL $SWH

10119 219A3G

A-19

° . ° . ° 20981000
pa1dn4ioo sl 8jl} 140113 3813 X30U| IYHL $SWH

Buiuiep

° . ° : 04181000

paJidxa pouad 1no-awul { OWL $SIWY

apod sness OI7) 10 10419 219A9S

° o|o|oje e e }e oo oje|e ejeole ° oo e ° AAI03JIP 8Y1 SUIeIUO0d (ALS) PIal} 8NjeA 20191000
SN1e1S Ayl ‘aA110811p QD WalsAs Ul Jcui] SAS $SWY

10119 31988

o ole ° L) Qa981L000

uo11BO1109dS 3)1} Ul JOIID XB} JAS NAS™ $SWH

ioug

. e lo|e|/e|o|o|eo|ojo|o|e|e|o|e|eo|eo|eo|o|e o oo fo]jeje o 8p02 4y SUIeIUOod pialy 2az8Lo00
anjea snieys ! palioddns jou uonesxdo dNS™$SNY

10419 319A3G

® 4 L4 2981000
|eizuanbas j0u uoilesddQ 00S $SWH
1013
L4 pajie} 8o1A18s 85010 € 001000
01 uoido ajly PUBLIWOD J1Wgns Jo |codg 148~ $SWH
J% ee?%o& o%., o%.+e %@@
S |eAa] Adidanag
uondiaseq anje/ |ewiospexsyH
apo) smeis

301M8S SIWH LL-X VA aiqedljddy

COMPLETION STATUS CODES

8dInleg SNY L L-XVA dlqediddy

10113 d13A38
. oo ° v£81000
uonesado pieopjim pijeau) aIm” $swy
8p092 10413 10143 319A88
. ® |] . dJV ue suleluod (ALS) piay vL1OL000
anjeA snlels ayl 10442 a11M 3)14 ® HaIMm ™~ $SIWY
apoo Jo1sd 10143 219788
. e o)] dOV ue suleluod (A1S) pjay anjea J2LIL000
sniels ayy ‘pulyaq Gujrum soag IgM $SWY
10110 313ABS
gvX |osuo0d v0.8L000
UO3e00||E U] JagUINU BWIN|OA PijeAU| T0A™ $SWH
10419 a13A9g
. o e 04981000
Jagquinu UoISIaA Ul Joug HIAT$SWH
10149 319A98
. . 4981000
3zIs BaIR PIOJAI JaSN pljeAU| ZSN~ $SINY
10413 a19A3g
. 044 = d04 10 018 = dOd yum JVvL8L000
BuLieys ajyy uaym 18s 10U 4N UG HHS 1dN~ $SWY
10143 a1anag
. . 03981000
$S3JPPE BaJe PJODaJ JasSN pleAu| 49N $SNH
S/ %w
> 19A9] Ayisneg
uonduosaq anjeA [ewioapexsy
8po) smeig

A-20

COMPLETION STATUS CODES

A-21

$5399Ng
uondo 49 ay1 yum uonouniuod 61901000
ul pasn {pauado 10U ‘paleald sem ¢ |14 a3aLvadd $SWH
$5399Ng
paledunt] udsq aney Aew /| jeulu el 11901000
A 1041u09 Jspun pals|dwod uonessdg |ATOHLINOD ™ $SIWH
$s200Ng
palesunul uaaq aney Aew 1ndino [eujw Jay 60901000
‘0 1051u0Q Japun palejduiod uonesadO |OTOHLNOD $SINY
$5390Ng
L] ol L] ° paleounu} usaq aney Aeus Q/f |BUIL 48} 15901000
!9 [o21u0Q J8pun pals|dwod uonessd) | DTOHLNOD ™ $SWH
10119 918A8S
° L] L] L] ° pbua| 10 3po9d pileAul ‘ajqel um 30481000
Jo ajqepeas Jou ‘gy’x pljeA e JoN avX $SWY
10119 919A8S
° oLL8L000
11} 388 BUBLOM 4SM™ $SIH
9pod 10119 919A0G
. ° . ° Jo1ia OV Ue SUIBlU0D (ALS) PIal} ar |eA JLLOL000
snmeis ayl ‘anbojoad Buizm ajiym 103 1dM $SWH
loug
[] [BEEK] [} [oo [] [AR RE NE) eje e [v4aes8L000
paxo0|-a1am si 32173 HIM™$SWY
VYOV ELEYLYLYLYLETLILS SYATETLIA]
%eo %%ao o/%s %osoqo%%e% &S Oooxo,v.,.o S/ &S oo/o %v... 7
|2A87] Allsaneg
uonduosaq anjeA |ewidsapexaH
apo) smeig
201098 SWY LL-XVA d1qedljddy

COMPLETION STATUS CODES

$5390ng

paxo0| Apealje pJooay

. 0/1>01q Jo} pauado _ 65081000

8|1 asnesaq ul pajjy 1ou gy X Ae) dON MO $SWH

$5300Ng

anjea 15081000

Aa>| palyioads spasdxa pJodaJ panslilay WIT IO $SWY

$58008 $5300NSg

° MOJs 3sned p|nNod ydiym alepdn xapul 6108L000
Uo PaJinad0 10448 INQ ‘PalIasul pioday Xal M0~ $sny

$s800ng

° 8jij uo 1108L000
ApeaJje ajedijdnp sey paliasul pJooay dNAa MO $swy

$5890Ng

(P13l dOY Ul 188 HG YXN) 1081000

Al|Nyssa0ons passadoe plodas parsjaq 73a° M0 $SWH

$5809Ng

. 6€081L000

NIV 0™ $SWH

(ONS™ $swnd
104 WAUOUAS) |nyssadons uonesad

$5300Ng
10001000
IVINHON $SWY

punoy ajiy umouy

$5300Nng
LE08L000
4417 $SWH

301M38 SINY LL-XVA 2jqedijddy

uonduasaq .

{oAa7 Ayianeg
anjeA [ewospexay
apo) smeig

A-22

COMPLETION STATUS CODES

8|MBg SINH LL-XVA 2lqedddy

$$929Ng
o UolsJan LE901000
Bupsixa ue papasiadns 8|1} paleald |3AISHIINS™ $SINH
$5309Ng
oo | 0o|ojo/0o|0oj0o|0o (0oj0o|0o|/e|j0o|je|0o (o (0o eo|je]|e|e (IVIWHON™ $SIH 1L000L000
104 WAUOUAS) jnysseaons uonelsdQ 2NS~ $SY
$5390Ng
° oo ole oo oo ° paiad 60081000
-Wwo09 18A 10U UOI1RIAdO SNOUOIYDU ASyY DNIAN3d $SWYH
$5300Ng
. ° (P18l OY Ui 39S Uq H(N) 6¥08L000
A|IN4s5300NS Passadoe P102a4 1UBISIXS-LION 4NY IO $SINY
$5300Ng
] ° PId3i} dOY Ul 119 XY 388 12081000
195490 AemAue peal 1nq pa 20| pi0)ray MNTH N0 $SWH
/DS RS2SRRSR RS S S SR
S S @o@%ooo% N %Muo% 5
% 1oAe7 Ayuuanag
uonduasaq anjeA |ewidspexaH
8apoY snieig

A-23

APPENDIX B

FILE/RECORD CONCEPTS AND FORMATS

VAX-11l RMS supports a variety of file organizations, record access
modes, and record formats. The specific use of the file determines
which one is best. The sections that follow outline the capabilities
of each of the above 1items. Moreover, the Introduction to VAX-1l1
Record Management Services manual provides a complete description of
these concepts.

B.1l FILE ORGANIZATIONS

File organization is the physical arrangement of the data in the file.
You sSelect the type of file organization you want when you create the
file. Once a particular file organization is chosen, it remains fixed
for the 1life of the file; you cannot change it. However, you can
copy the file to another area, and in the process convert it to a
different file organization (using the CONVERT utility).

VAX-11 RMS currently supports three file organizations:
e Sequential

In the sequential file organization, records are 1in physical
sequence. Each record, except the first, has another record
preceding it, and each record, except the 1last, has another
record following it. The physical order in which records
appear is identical to the order in which they are written. A
file of sequential organization can contain records of either
fixed or variable length.

e Relative

In the relative file organization, fixed~length positions, or
cells, are created in the file beginning at the first record
position and continue to the end of the file. There 1is no
requirement, however, that every cell contain a record. Empty
cells can be interspersed among cells that contain records.
The relative file organization supports records that are

either fixed or variable length.
e Indexed

In the indexed file organization, the location of records is
transparent to your program; VAX-11 RMS completely controls
the placement of records in an indexed file. Presence of keys
in each of the records governs this placement. Records may be
fixed-length or variable-length; if the records are
variable-length, the maximum record length may be specified
and no record can exceed the maximum length when the record is

FILE/RECORD CONCEPTS AND FORMATS

put in the file or updated. However, if a maximum length is
not specified, records may be any length, but a record cannot
cross bucket boundaries.

B.2 RECORD ACCESS MODES

The record access mode is the method of retrieving and storing records
in a file. 1In contrast to file organization, which you cannot change
once a file is created, you can use a different record access mode
each time you process a record.

VAX-1l RMS provides three record access modes:

Sequential

VAX-11 RMS supports sequential record access mode for all
device types and file organizations.

When using the sequential record access mode, your program
issues a series of requests for the next record. VAX-1l1l RMS
interprets these requests in the context of the file
organization. Thus, the organization of the file governs the
order in which records are read or written; and the read or
write <continues, in a serial fashion, until processing of the
file is completed. For sequential organization, VAX-11 RMS
knows that every record after the first record is followed by
another record until the end of the file (last record). For
relative organization, VAX-11 RMS recognizes that empty cells
can be interspersed among filled record cells and acts
accordingly. On a read request, VAX-11] RMS ignores empty
cells. For the indexed file, the presence of one or more
indexes permits VAX-11l RMS to determine the order in which to
process records in sequential access mode. Initially, your
program must specify a key of reference (e.g., primary key,
first alternate key, second alternate key, etc.) to VAX-1l1
RMS. Thereafter, VAX-1l1 RMS uses the index associated with
that specified key to access records in the sequence
represented by the entries 1in the index. Each successive
record that VAX-11 RMS returns in response to a program read
request contains a wvalue in the specified key field that is
equal to (when duplicate key values are allowed) or greater
than that of the previous record returned.

Record's File Address (RFA)

You can use the RFA record access mode with any file
organization, but only for disk files and only for read
operations.

The term "record's file address" means that every record 1in
the file has a unique address. The type of file organization
assigned to the file determines the format of this address.

The most important feature of RFA record access mode 1is that
the RFA of any record remains constant while the record
remains in the file., VAX-11] RMS returns the RFA to you in the
RAB when the record is read or written. (The record must be
written using some record access mode other than RFA, since
RFA access 1is available for read operations only. The RFA,
however, is returned in the RAB as an output from a write
operation.) Your program can then save this RFA for use later
during the current execution of the program, or for use at any
subsequent time.

FILE/RECORD CONCEPTS AND FORMATS

e Random by Key

VAX-11 RMS always supports random access by key for relative
and indexed files. VAX-1l RMS also permits random access by
relative record number for sequential disk files, but only if
the records in the file are of fixed-length,

In random access by key, your program, not the file
organization, determines the order in which record access
occurs. Each program request for a record must include the
key wvalue (relative record number for relative files and key
of reference for indexed files) of the particular record to be

accessed. This program randomly identifies, wvia the key
value, any record in the file and VAX-11] RMS accesses that
record. Your program can make successive requests for

accessing records anywhere within the file,

Each of your program read requests in random access mode to an
indexed file must specify a key value and the index (e.g.,
primary index, first alternate key index, second alternate key
index, etc.) that VAX-1ll RMS must search. When the VAX-11 RMS
finds the key value in the specified index, it reads the
record that the index entry points to and passes the record to
your program. Random access can be accomplished on any key by
any of the following methods:

1. Exact match of key values.

2. Approximate match of key values (e.g., record Kkey
value greater than the program-supplied key value, or
record key value greater than or equal to the
program-supplied key value).

3. Generic match of key values. Generic match 1is
applicable to string data type keys only. A generic
match is defined as a match on some number of leading
characters in the key field. You determine the
number specifying a search key which is smaller than
the entire field.

4. Combination of approximate and generic match.

In contrast to read requests, which require a
program-specified key value, program requests to write records
randomly in an indexed file do not require the separate
specification of a key value. All keys (primary and, if any,
alternate key values) are 1in the record itself, When an
indexed file is opened, VAX-11 RMS retrieves all key
definitions stored in the file, Thus, VAX-1l1l RMS knows the
location and 1length of each key field in a record. Before
writing a record into the file, VAX-11 RMS examines the key
values 1in the records, places the record in the file, and
creates new entries in the alternate indexes. In this way,
VAX~-11 RMS ensures that the record can be retrieved by any of
its key values.

Besides the above record access modes, a dynamic access facility is
also available. This facility 1lets you switch the type of access
while the file is being processed.

FILE/RECORD CONCEPTS AND FORMATS

B.3 RECORD FORMATS

The record format is the way a record physically appears on the
recording surface of the storage medium. VAX-1l1 RMS provides three
different record formats.

e Fixed-length

The term fixed-length record format refers to £file records

that are all -equal 1in size; each record occupies an equal
amount of space.

e Variable-length

The term variable-length record format refers to file records
that are not all the same size. VAX-1l1 RMS prefixes a count
field to each record when it is written; this indicates to
VAX-11] RMS how many bytes are in each individual record, and
therefore the actual size of the record.

VAX-11l RMS uses two types of variable-length records:
- Disk files - V format

Contain a 2-byte binary count field prefixed to each record
- Tape files - D format

Contain a 4-byte decimal ASCII count field prefixed to each
record

e Variable with Fixed-Length Control (not supported for indexed
files)

This type of record format 1is similar to V or D fornmat
variable-length records, except that a variable with
fixed-length control record also contains a fixed control area
in addition to the variable-length data portion. A fixed
control area lets you construct variable-length records that
contain an additional fixed-length ©piece of data that will
always be present and will have a "loose" association with the
other contents of the record. The VAX-1ll Text Editor (see the
VAX-11 Text Editor Reference Manual) uses this type of record,
in which a line sequence number is associated with each line
of text. This is a "loose" association in that while stored
together, they are separate for the purpose of processing.

Table B-1 summarizes the relationship between the VAX-11 RMS file

organizations and their permitted record access modes and record
formats.

FILE/RECORD CONCEPTS AND FORMATS

Table B-1
File Organization Relationships
with Record Access Modes and Record Formats

Record Access Mode " Record Format
Permitted Permitted
File . .
Organization Random by Variable with
Random by Record’s File Fixed-Length
Sequential | Key Address ‘ Fixed Variable Control
Sequential Yes No! Yes? Yes Yes Yes
Relative Yes Yes* Yes Yes Yes? Yes?
Indexed Yes Yes Yes Yes Yes® No

! Random access by key (relative record number) for the sequential file organization is permitted only for the fixed-
length record format on disk devices.

2 Random access by RFA is permitted only on disk devices.

3 Variable-length records in the relative file organization are stored in fixed-length cells; the size of each cell is the
size needed to store the largest record permitted in the file.

*The key in relative file records is the relative record number.
5 A record in an indexed file may not cross bucket boundaries.

B.4 FILES-11 DISK STRUCTURE

Files-11 is the term applied to the logical structure imposed on disk
volumes. This structure provides the file access and allocation
control mechanism for the volume. A disk volume 1is defined as an
ordered set of blocks, with each block being an array of 512 eight-bit
bytes.

In terms of the volume as a whole, the blocks are numbered
consecutively 1in the range of 0 to n-1, where n is the highest number
of blocks available on the volume (this depends on the type of disk
volume in use). The number assigned to each volume-relative block is
the logical block number (LBN). 1In terms of the individual file on
the wvolume, the blocks are numbered consecutively from 1 to the total
number of blocks assigned to the file. The number assigned to each
file-relative block is the virtual block number (VBN).

'igure B-1 shows the difference between the scheme of blocks
considered at the LBN and VBN levels. Two files, A and B, occupy ten

blocks. File A, in relation to the volume, occupies LBNs 10 through
19; buot, in relation to a file thie file occupies VRNg 1 through 10

Assume that when file B was created, it was allocated in two different
areas, or clusters, with each <cluster five blocks in length. The
first cluster occupies LBNs 300 through 304, and the second cluster is
at LBNs 29 through 33. But when viewed as an individual file, file B
occupies consecutive VBNs 1 through 10, just as does file A. Further
assume that file B was allocated in two separate extents (this can be
done either explicitly at the request of the user, or implicitly by
VAX-11 RMS due to the 1lack of enough contiguous disk space or a
default by extent size). Even though files A and B both have the same
VBNs, the corresponding blocks are different since the VBNs relate to
the block's placement within the individual file, not to the volume as
a whole.

FILE/RECORD CONCEPTS AND FORMATS

Logical Block Virtual Block
Number Level Number Level
(Volume Relative) (File Relative)
LBN 10 \ (VBN 1
LBN 11 VBN 2
LBN 12 VBN 3
L.BN 13 VBN 4
LBN 14 VBN 5 File
- .

LBN 15 VBN 6 A
LBN 16 VBN 7
LBN 17 VBN 8
LBN 18 VBN 9
LBN 19) K VBN 10

LBN 29 VBN 1

LBN 30 VBN 2
Second First

Cluster LBN 31 VEN 3 Extent
LBN 32 VBN 4
LBN 33 VBN 5
,/ \\
,/ AN .
/ joined as Flle
\ one file
\
\\ //
LLBN 300 VBN 6
LBN 301 VBN 7
First Second

Sea

Cluster LBN 302 VBN 8 Extent
LBN 303 VBN 9

LBN 304 VBN 10

Figure B-1 Logical and Virtual Block Numbers

FILE/RECORD CONCEPTS AND FORMATS

Every Files-11 volume has an index file, which 1is created when the
volume 1is initialized. This index file provides the means of
identifying, to VAX/VMS, that the volume is a Files-11 structure, and
contains the access data for all files on the volume. The index file
is listed in the master file directory (MFD) as INDEXF.SYS;l and
contains the following information:

e Bootstrap block

The volume's bootstrap block is VBN 1 of the index file.

Volume relative, it is LBN 0. If the volume is a system
device, this block contains a program that loads the operating
system into memory. If the volume is not a system device,

this block contains a program that displays a message that the
volume 1is not the system device, but rather a device that
contains only user files,

e Home block

The home block identifies the volume as a Files-11 volume,
establishes the specific identity of the volume, and serves as
the entry point into the volume's file structure. When the
volume 1is part of a volume set, the home block also contains
the volume set name and the relative column number. The home
block 1is VBN 2 of the index file. The LBN for the home block
is the first good block (physically readable and writeable) on
the volume found 1in the home block search sequence. The
search sequence is as follows:

l+n * delta
n is in the range of 0,1,2,....

The delta is computed from the geometry of the volume such
that if the volume is viewed as a three-dimensional space, the
search sequence will travel down the body diagonal of the
space. The dimensions included 1in the search delta are
sectors (s), tracks (t), and cylinders (c¢), according to the
rules in Table B-2, to handle the cases in which either one or
two dimensions of the volume have a size of 1.

Table B-2
Search Delta Geometry

Geometry

Delta
s t c

— 1 1 1
1 - 1 1
1 1 - 1

- 1 s+l
- 1 — s+1
1 - — t+1

- - - (t+1)*s+1

In most cases, LBN 1 will be a good block, and therefore LBN 1
will be the home block.

e Backup home block

FILE/RECORD CONCEPTS AND FORMATS

The backup home block is a second copy of the home block. It
permits the volume to be used even if the primary home block
is destroyed.

The cluster that contains the backup home block maps into the
index file at VBN x*2+1 through x*3, where x is the volume
cluster factor.

e Index file bit map

The index file bit map controls (with the information
contained 1in the home block) the allocation of file headers,
and thus the number of files on the volume. The bit map
contains a bit for each file header that is allowed on the
volume. If the value of a bit for a given file header 1is 0,
then a file can be created with this file header. If the
value is 1, then the file header is already in use. The index
file bit map starts at VBN x*4+1 of the index file and
continues through VBN x*4+m, where m is the number of blocks
that are necessary to contain the bit map, and x is the
storage map cluster factor. The starting LBN for the index
file bit map is recorded in the home block.

e File headers

The major portion of the index file 1is made up of file
headers. A file header exists for each file on the volume and
describes the properties of the file, such as file ownership,
creation date and time, and file protection. The file header
contains all the information necessary for access to the file,
including the location of the file's extents.

Besides the index file, Files-11 maintains nine other files to control
the volume structure. Just as with the index file, these files are
created when a new volume is initialized.

The storage bit map file controls the available space on a volume, and
is 1listed in the MFD as BITMAP.SYS;l. It contains a storage control
block, which consists of summary information intended to optimize
Files-11 allocation, and the bit map itself, which 1lists the
availability of individual blocks.

The bad block file is listed in the MFD and BADBLK.SYS;l, and is
simply a file containing a list of all the bad blocks on the volume.

The master file directory itself (the MFD) is listed in the MFD as
000000.DIR;1. The MFD is the root of the volume's directory
structure, and lists the ten files that control the volume structure
(these ten files are called the known files) plus any user files on
the volume.

.The core image file is listed in the MFD as CORIMG.SYS;1l, and its use
is operating system dependent. In general, it provides a list of the
files for the operating system to use, for example, as swap areas or
overlay areas.

The free space file is listed in the MFD as FREFIL.SYS;1. This file
allows individual Files-11 implementations to wuse an alternative
scheme of space allocation that is more complex than using the storage
bit map file alone.

FILE/RECORD CONCEPTS AND FORMATS

The set list file is listed in the MFD as VOLSET.SYS;1l. It is used
only on relative volume 1 of a tightly coupled volume set. This file
contains a list of the volume labels of the volumes in the volume set.

The backup log file is listed in the MFD as BACKUP.SYS;l. It contains
a history 1log of volume and incremental backups performed on this
volume.

The continuation file is listed in the MFD as CONTIN.SYS;l1. It is
used as the extension for the file identifier when a file crosses from
one volume of a loosely coupled volume set to another volume. It
allows a multivolume file to be written sequentially with only one
volume mounted at a time.

The pending bad block file is listed in the MFD as BADLOG.SYS;l. This
file contains a 1list identifying suspected bad blocks on the volume
that are not currently contained in the bad block file (BADBLK.SYS;1l).

Each file on the volume, including the ten known files, 1is wuniquely
named by a file identifier, which is a 48-bit binary value (three
words). The first word provides the file number, which locates the
file on the volume. The file number is in the range of 1 through
27274-1. oOnce a file is deleted, its number can be reused for another
file. The file number identifies the file header within the index
file associated with the file. The second word is the file sequence
number, which identifies the current use of a file number. This
prevents any attempt to use a file identifier for a file that has
already been deleted and replaced by a file with the same file number.
The third word is the relative volume number. It identifies which
volume of a multivolume file contains the portion of the file that is
of interest.

B.4.1 Files-11 Directories

Files-11 provides directory files to allow for accurate access to
files on disk devices. A directory 1is a file that 1lists the
identification and location of files owned by a particular user. Each
user allowed access to a VAX/VMS system has an entry in the system
authorization file defining the user identification code (UIC) and
default user file directory (UFD).

Directory names can take any of three formats. Each format requires
that the directory name be enclosed in either square brackets
([and]) or angle brackets (< and >). The closing bracket must match
the opening bracket. The formats are as follows:

l. UIC-similar format

A UFD can be referred to in a format similar -to that for a
CIC: for cxample, [a0C,Xyz), wheie abLe .is.a ygroup number and
xyz is the member number. This refers to a UFD of the name
abcxyz.DIR;1 in the MFD. If you specify less than three
characters for either abc or xyz, they are left zero-filled.
Therefore, if a UFD is specified-in a UIC fashion as [26,1],
the directory that is searched is 026001.DIR;1 (DIR 1is the
file type for the directory).

A UFD of this format is wusually owned by a user with a
corresponding UIC. This, however, is not required, since UIC
and UFD ownerships are independent. .

FILE/RECORD CONCEPTS AND FORMATS

2. Alphanumeric character string

A UFD can also be a 1- to 9-alphanumeric character string.
This character string can be the same as your user name or
account name, or any valid character string that you request
or the system manager assigns you. For example, 1if a
directory is specified as [010PAY], the directory
010PAY.DIR;1 is searched.

3. Subdirectories in addition to the character string UFD

When UFDs are referred to using the character string format,
further hierarchical 1levels of directories can be expressed
as subdirectories, A subdirectory 1level 1is expressed by
adding a period (.) to the character string for the UFD,
followed by the specification for the subdirectory. For
example, [0l10PAY.DED] is the specification for the UFD named
0l10PAY.DIR;1 and a subdirectory of DED.DIR;1.

The maximum number of directory levels is eight: one UFD and
seven subdirectories. (Combined with the master file
directory, this is in effect a 9-level hierarchy.) 1In the
directory specification [0l0PAY.DED.YTD], O0l0PAY is the UFD,
DED is the first level subdirectory, and YTD 1is the second
level subdirectory.

No maximum is placed on the number of different hierarchies
of directories you can create or access.

The master file directory is <created when the volume is
initialized. Subdirectories and UFDs are created with the
CREATE command using the DIRECTORY qualifier (see the VAX/VMS
Command Language User's Guide).

The maximum number of entries that a single directory can hold ranges
from 15000 to approximately 40000, depending on the length of the file
specifications. 1In general, using several subdirectories to 1list a
large number of files results in more efficient access than listing
all files in one large directory.

The directory file itself is structured as a contiguous £file with

sequential organization. The records are variable-length, do not
cross block boundaries, and contain no carriage control attributes.

B.5 MAGNETIC TAPE HANDLING

VAX~-11 RMS supports the magnetic tape structure defined by American
National Standards Institute standard ANSI X3.27-1977, entitled
Magnetic Tape Labels and File Structure for Information Interchange.
This section describes the processing of magnetic tape files and
magnetic tape labeling and file structuring format.

Magnetic tapes containing ANSI labels are coded in ASCII format, and
on 9-track tape drives only.

ANSI standard X3.27-1977 allows any of the following combinations:
1. Single file on a single volume
2. 5ingle file on more than one volume
3. Multiple files on a single volume
4. Multiple files on more than one volume

B-10

FILE/RECORD CONCEPTS AND FORMATS

Items 2 and 4 above constitute a volume set.

Magnetic tape affords sequential access only. Therefore, only one
user can have access to a given volume set at any one time, and only
one file in the volume set can be open for processing at a time.
Access protection is performed on a volume-set basis. For volumes
produced by DIGITAL systems, the owner identifier field of the volume
label determines access rights (see Section B.5.1).

B.5.1 Volume Label

The volume label is always the first label on every tape volume, and
serves to uniquely identify the wvolume and its owner. Figure B-2
presents the form of the volume 1label, and Table B-3 defines the
contents of the fields in this label.

character

position
1 5 1112 38 5162 80
volume owner
VOL1 ident. reserved identifier 1 reserved 3

access

Figure B-2 Volume Label Format

FILE/RECORD CONCEPTS AND FORMATS

Table B-3

Volume Label Contents

Character
Position

Field Name

Length
(in bytes)

Contents

13

Label identifier

3

Alphabetic characters VOL

4

Label number

1

Numeric character 1

5-10

Volume identifier

Volume label; can be any
alphanumeric or special
character. This field must
not be all spaces.

11

Accessibility

Volume protection; for the
purpose of compatibility

with the standards of some
non-DIGITAL systems. A space
(as used by DIGITAL systems)
indicates no restrictions.

To achieve other than read-
only access to those volumes
that contain a non-space
character in this field, the
override switch must be used
at mount time.

12-37

Reserved

26

Spaces

38-50

Owner identifier

13

Volume ownership; the contents
of this field are system
dependent and are used for
volume protection. See details
following table for further
amplification.

51

DIGITAL standard
version

Numeric character 1

52-719

Reserved

28

Spaces

80

Label standard
version

Numeric character 3

Owner identifier field

All magnetic tape volumes produced on

following in

the

first

owner identifier field:

Dgm

In the above,

D% are both constant,

interpreted as follows:

RO Wy o

- PDP-8

- PDP-10

- PDP-11

- VAX-11/780
- PDP-15
DECSYSTEM-20

DIGITAL
three character positions (CP 38-40) of the

and m represents a

systems

contain

machine

the

code,

FILE/RECORD CONCEPTS AND FORMATS

If the machine code in character position (CP) 40 is the character ¢,
the meaning of the remainder of the owner identifier field translates
as follows:
1. oOwner has read and write privileges:
CP 41-45 group number (ASCII characters)
CP 46-50 member number (ASCII characters)

2. Owner has read and write privileges; group has read
privileges:

CP 41-45 group number (ASCII characters)

CP 46 member number high-order digit, =zone encoded;
therefore, a 0 1in the high-order position is the
character A, while a 9 is the character J

CP 47-50 remaining four characters of member number (ASCII)

3. oOwner has read and write privileges, world and group have
read privileges:

CP 41 group number high-order digit, zone encoded

CP 42-45 remaining four characters of group number

CP 46 member number high-order digit, zone encoded

CP 47-50 remaining four characters of member number
4. Owner and group have read and write privileges:

CP 41-45 group number (ASCII characters)

CP 46-50 blank

5. Owner and group have read and write privileges, system and
world have read privileges:

CP 41 group number high-order digit, zone encoded;
therefore, a 0 1in the high-order position is the
character A, while a 9 is the character J

CP 42-45 remaining four characters of group number (ASCII)

CP 46-50 blank

6. All categories have full privileges
CP 41-50 blank
If the machine code is other than the character C, full privileges are

granted wunless CPll is nonblank, in which case you must use the MOUNT
command with a qualifier of /OVERRIDE=ACCESSIBILITY.

FILE/RECORD CONCEPTS AND FORMATS

B.5.2 File Header Label

A file header label precedes every individual file on the tape, and
serves to uniquely identify the file and describe its contents.
Actually, two different file header labels precede each file; a HDR1
label, for identification, and a HDR2 1label, which acts as an
extension to the HDR1 label and describes the characteristics of the
records in the file: Figure B-3 and Table B-4 present the format and
define the contents of the HDR1l label, and Figure B-4 and Table B-5
present the format and define the contents of the HDR2 label.

character

position

22

28

32 36 4042 48

5456 61

74 80

file
identifier

file-set
ident.

file
sect

#

file
seq

create
date

expire

date | 000000

#14 1%

DECXXXXXXXXXX

reserved

Figure B-3

\

generation generation
number version

Table B-4

I

access

HDR1 Label Format

HDR1 Label Contents

Character
Position

Field Name

Length
(in bytes)

Contents

Label identifier 3

Alphabetic characters HDR
to indicate a file header

Label number

Numeric character 1

521

File identifier

Any alphanumeric or
special characters; see
details following table
for further amplification

2227

File-set
identifier

Same as the volume identi-
fier of the VOLI1 label of
the first volume of a multi-
volume set

28-31

File section
number

Numeric characters; starts
at 0001 and increments by 1
for each additional volume
used by the file. This field
indicates the positional
order of this volume with
respect to the first volume
on which the file begins.

3235

File sequence
number

File number within the
volume set for this file;
consists of numeric characters,
and starts at 0001. This field
indicates the position of this
file with respect to the first
file of the set.

36-39

Generation number 4

Numeric characters; indicate
the unique edition of a file.
See discussion following table.

4041

Generation version 2

Numeric characters; indicate
the version number of a par-
ticular version of a file. See
discussion following table.

FILE/RECORD CONCEPTS AND FORMATS

Table B-4 (Cont.)
HDR1 Label Contents

Character Length
Position Field Name (in bytes) Contents

42-47 Creation date 6 Julian date, in the form

of yyddd (right-justified
with leading space). The
creation date is set to

the date on which the file
is created. If a creation
date does not apply to this
file, 00000 is used (right-
justified with a leading
space).

48-53 Expiration date 6 Julian date, in the form

of yyddd (right-justified
with a leading space). If
no expiration date is speci-
fied, the value is set to

the value of the creation
date; therefore, the file
immediately is expired.

54 Accessibility 1 File security; for the

purpose of compatibility

with the standards of some
non-DIGITAL systems. A space
(as used by DIGITAL systems)
indicates no restrictions.

A non-space character in this
field indicates that the over-
ride switch must be used at
mount time in order for the
user to gain access to the

file.

55-60 Block count 6 Always 000000 for the HDR1
label

61-73 System code 13 Identification code of the

system that produced the

file. The 3-character constant

DEC appears m positions o1

through 63, followed by the

name of the system. For example,
DECFILE112 indicates VAX/VMS,
and DECFILE11 indicates a PDP-11.
The name is padded with spaces.

74-80 Reserved 7 Spaces

File identifier field

The file identifier field consists of the alphabetic characters A
through Z, and the numeric characters 0 through 9. ANSI standard
X3.27-1977 allows special characters in this field; however, VAX/RMS
translates these characters to Z.

The character preceding a period (.), or a maximum of nine characters
if no period 1is present, constitutes the file name. The three

B-15

FILE/RECORD CONCEPTS AND FORMATS

characters following immediately after the period (or characters 10
through 12 1if no period 1is present) constitute the file type. On
output, the file name and file type are automatically separated by a
period, and written to the file identifier field left-justified. The
version number 1is generated through the generation number and
generation version fields.

Generation number and generation version fields

These two fields are mapped to create the file version number,
according to the following formula:

version number=(generation number -1) * 100 + generation version +1

For example, suppose the generation number is 11 and the generation
version is 9:

(11 -1) * 100 + 9 + 1
The formula produces a version number of 1010.
At output, the reverse is true. The present version number creates
the generation number and generation version, according to the

following formula and a remainder produced during the calculation.

version number -1

generation number= + 1
100

In the calculation, any remainder in version number -1 is ignored for
the generation number. For example, suppose the version number is
100:

100 - 1

—_—+ 1

100

The formula produces a generation number of 1. The remainder of 99 is
ignored in the calculation of this generation number, but becomes the
generation version,

character
position
1 56 1" 16 3738 5153 80
system dependent system
information dependent reserved
y AR) \ information [§
HDR2 record block record form buffer
format length length control offset

Figure B-4 HDR2 Label Format

B-16

FILE/RECORD CONCEPTS AND FORMATS

HDR2 Label Contents

Table B-5

Character
Position

Field Name

Length
(in bytes)

Contents

1-3

Label identifier

3

Alphabetic characters HDR
to indicate a file header

Label number

Numeric character 2

Record format

Character Definition

F fixed-length

D variable-length
U undefined

S segmented

Undefined record format
cannot be used on tapes
created for interchange

with non-DIGITAL systems.

The S for segmented record
formats returns as a U (un-
defined record format).

6-10

Block length

Five numeric characters
that specify the maximum
number of characters per
block.

11-15

Record length

Numeric characters indicating
the record length for fixed-
length records.

16-36

System dependent
information

21

If this file was created on a
VAX/VMS system, then CP 16
through 35 contain 20 bytes
of Files-11 attributes that
override information in other
fields of the HDR?2 label; CP
36 contains a space.

37

Form control

Defines the carriage control

applied to the records in this

Givy as tunuws.

Character Definition

A First byte of

record contains
FORTRAN control
characters

B.5.3

FILE/RECORD CONCEPTS AND FORMATS

Table B-5 (Cont.)
HDR2 Label Contents

Character Length
Position Field Name (in bytes) Contents
Character Definition
M The record
contains all
form control
information.
space line feed/
carriage return
is to be inserted
between records.
38-50 System dependent 13 If this file was created on a
information VAX/VMS system, then CP 38
through 49 contain 12 bytes
of Files-11 attributes that
override information in other
fields of the HDR?2 label; CP
50 contains a space
51-52 Buffer offset 2 Numeric characters
53-80 Reserved 28 Spaces

End of File and End of Volume Labels

Magnetic tape volumes contain trailer labels, which can be either of

two

pairs of labels, depending on whether the tape has an

end-of-volume or end-of-file condition.

End of volume

The end-of-volume label pair consists of an EOV1 label and an
EOV2 1label. These labels occur only when a file is continued
onto another volume. This applies to both of the following
categories of magnetic tape volumes:

- single file, multivolume
- multifile, multivolume

The formats of the EOV1 and EOV2 labels are identical to their
respective HDR1 and HDR2 1labels, except that the label
identifier field (CP 1-3) contains EOV and the block count
field (CP 55-60) contains the number of data blocks since the
last tape mark (a delimiter between 1labels and file data).
This file data recorded since the last tape mark is known as a
file section and may, in fact, be only a portion of the entire
file (this occurs on a multivolume file). A file section
cannot have sections of other files interspersed.

End of file

The end-of-file label pair occurs at the end of every file
recorded on a magnetic tape volume. The formats of the

FILE/RECORD CONCEPTS AND FORMATS

end-of-file labels (EOFl and EOF2) are identical to the
formats of the EOV1 and EOV2 labels, except that the label
identifier field contains EOF.

B.5.4 Arrangement of Labels and Data
Figures B-5 through B-8 describe the organization of the different
volume sets and indicate where the different labels appear. In these
figures, the following legends apply:

bot = beginning of tape

= tape mark

* * *

<~
~

bot voL1 HDR1 | HDR2 g x| EOF1 EOF2 |*|*
0 labe! label jabel ata *| label label | x| %

Figure B-5 Single File, Single Volume

) —
X VOL1 | HDR1 | HDR2 |% y x| EOV1 | EOV2 * first volume
ot label label label | % ata ¥| r1abel label o of file
s
) -
bot | VOLT | HDR1 | HDR2 |*| continued x| EOF1 | EOF2 [*|* last and/or any
label label label | x data x| label label | % | % intermediate
volumes of file
Q2
N— v’

If this is not the last
volume, EOF1 and
EOF2are EQOV1 and
EQOV2

Fianre R-f Sinale File. Multivolume

FILE/RECORD CONCEPTS AND FORMATS

SUNTOATITOW ‘STTITITNW 8§-€ 2Inb1g

*a4nb1y siyl 104 8ot0yd Asearique ue si Z a|1y

e1e@ "BWN|OA Jejnoilled ayl UO 3}l 1se] 8yl ag 01 suaddey
YOIym aj14 Aue ui sIndoo 11 iZ aj1} BIBP Ul JNDD0 Ajjenioe
10U ABW SBWIN|OA U2BMISQ 3 B1EP B JO UOHBNUIIUOD Y|

‘310N
ZA03
pue LAO3 212 2403
pue | 403 ‘ewn|on
15B] Y3} 10U 51 SI1Y) }|
\’\/‘/
- 1 ¢ 1
sewnjon * | * age age * u :m:ohsu * age aqge * aqge age * panunuoed * age aqe aqe
sreipounaruy S & | X 1eqel lBael x| ooy (%] e joger | % | jeqe| Ll - R . B 19qe| LA
huesoyse G *|*| €403 | 1403 fxl G0 x| ZHOH | LHQH | x| 2403 | 1403 x| 0 |x| ZHOH | L¥aH | 170A
1 — ¢
— ¢ ¢
BWN(oA- Fd X | X | 19q8| 1sge] | * z ol *| 1eael /oger | % | jeqe| feqe) | * L3y * 1 |oge) 1aqe} 1aqe) g E
* * * X
1y *|*| CTAO3 LAOT |« elep * | zHaH LHAH | % | 2403 1403 |« eiep * | zHaH LHaH 1T0A
2 2 2 @ 7
sun{oA oT1burs ‘STIFTIINW (-9 2anb1g
2 2 —
* | * * CSmDO_r_u * * =1 * 11 * e 3
IE[rece logey | ¥ Z ol x| I1eaE loqe; | X | joqe) laqe] % L e 1 reae 13qe) 13qey 104
|| zd03 1403 | = e1ep *| ZHaH L4aH | x| 2403 1403 | = elep * | ZHAH L4aH LT0A
) J L

¢ € —(

B-20

APPENDIX C

FILE SPECIFICATION PARSING

To obtain a fully qualified file specification, VAX-11 RMS parses the
primary file name string and optionally parses the default file name
and related file string (if these are provided as input) as described
in Section 8.2. Each of these three file name strings must have one
of the following syntaxes:

FILE SPECIFICATION PARSING

The following sections describe each of these file
syntaxes in detail.

LOGICAL-NAME-OR-FILE~-NAME SYNTAX

logical-name-or-file-name
quoted-string-specification

full-file-specification

specification

logical-name~or-file-name logical-name
logical-name-or-file-name

file-name

NOTE: The logical-name takes precedence.

alpha-char

digit
logical-name =

dollar—~sign

underscore

NOTES: 1. The logical-name is 1 to 63 alphanumeric characters,
including the special characters dollar sign ($) and
underscore (_).

2. For this to be a 1logical name, there must be a
corresponding entry in the process, group, or system
logical name table.

3. If the first character of a potential logical name is
an underscore, it will simply be removed by the
translation process that replaces a logical name with
its equivalence string. The input string, minus the
leading underscore, is thus guaranteed not to be a
logical name.

file-name = (digit

{alpha—char}
nothing

NOTE: The file-name is 0 to 9 alphanumeric characters. Lowercase
alphabetic characters are converted to their uppercase
equivalents.

FILE SPECIFICATION PARSING

QUOTED-STRING-SPECIFICATION SYNTAX

trquoted-string—specification = node-specification quoted-string

logical-name-or

ode-s ification =
node-specificati node-name

{access—control—string

nothing

} node-delimiter

logical-name~or-node-name = {loglcal—name}

node-name

NOTE: The logical name takes precedence.

logical-name same as description in Section C.1
plus the following additional notes.
NOTES: 1. The logical name must translate to an equivalence
string that is a node-specification. That is, the
equivalence string must terminate with two colons
(:2) (the node-delimiter) and the access-control-
string is optional.

2. If an access-control-string has been found and the
logical name translation yields an equivalence
string that contains another access~control-string,
the new access=-control-string is discarded but the
new logical-name-or-node-name component of the
string is retained. That is, the first access-
control-string found during the parse takes prece-
dence over any others that may be produced during
logical name translation.

node-name - {upper-case—alpha}

digit

NOTE: The node-name is 1 to 6 alphanumeric characters.

NOTE: The maximum length of the access~control-string is 44
characters. See the Network User Guide for format.

access-control-string = string-delimiter ASCII-char string-delimiter

node-delimiter = :: (double colon)

quoted-string = string-delimiter ASCII-char string-delimiter

NOTE: The maximum length of the quoted-string is 127 characters.
See the Network User Guide for format.

string-delimiter = " (quotation mark)

ASCII-char = any character from the ASCII
character set except a quotation
mark.

FILE SPECIFICATION PARSING

FULL~FILE-SPECIFICATION SYNTAX

full-file-specification

node-specification
nothing

logical-name-or-device-name
nothing

nothing
nothing

file—name—specification}

file-type-specification
nothing

{directory—specification}

file—version—specification}

nothing
node~-specification = see previous explanation
logical-name-or-device-name = {logical—name} device-delimiter
device-name
NOTE: The logical-name takes precedence.

logical-name = see previous explanation

device-name

device-mnemonic
nothing

NOTE: For this to be a valid device name, there must be a
corresponding entry in the system device data base.

controller—name} {unit-number

nothing

!

device-mnemonic = uppercase-alpha uppercase-alpha

NOTE: The device~mnemonic is currently 1limited to two
characters.

controller-name = uppercase-alpha

NOTE: If you omit the controller-name, the default is the character "A".

digit
unit-number = digit e
nothing

NOTES: 1. The unit-number is 1 to 5 digits, in the range of
0 to 65535.

2. 1If you omit the unit-number, the default is 0.

INDEX

$CLOSE macro instruction, 9-1

SCONNECT macro instruction, 11-2

$CREATE macro instruction, 9-4

SDELETE macro instruction, 4-12,
11-4

$DISCONNECT macro instruction,
11-6

$DISPLAY macro instruction, 9-7

S$ENTER macro instruction, 13-2

$ERASE macro instruction, 9-9

$EXTEND macro instruction, 9-12

SFAB macro instruction, 4-1

$FAB STORE macro instruction, 4-1

$FIND macro instruction, 4-11,
11-8

$FLUSH macro instruction, 11-9

$FREE macro instruction, 11-11

$GET macro instruction, 4-11,
11-12

$NAM macro instruetion, 7-2

SNXTVOL macro instruction, 11-15

$OPEN macro instruction, 9-14

$PARSE macro instruction, 13-4

$PUT macro instruction, 4-12,
11-20

$RAB macro instruction, 5-1

$RAB_STORE macro instruction,
5-1

$READ macro instruction, 4-12,
12-3

SRELEASE macro instruction, 11-20

$REMOVE macro instruction, 13-6

$RENAME macro instruction, 13-8

SREWIND macro instruction, 11-22

$SEARCH macro instruction, 13-12

$SPACE macro instruction, 4-12,
12-7

STRUNCATE macro instruction,
4-12, 11-23

S$UPDATE macro instruction, 4-12,
L1-25

SWAIT macro instruction, 10-8,
11-13, 11-28

$WRITE macro instruction, 4-12,
12-7

$XABALL macro instruction, 6-11

SYARDAT marmvyn "nsi-rnr"l-"r\v\ £-2

________________ ~ meem et e ea UL,

$XABFHC macro instruction, 6-36

$XABKEY macro instruction, 6-19

$XABPRO macro instruction, 6-6

$XABRDT macro instruction, 6-38

$XABSUM macro instruction, 6-35

$XABxxx STORE macro instruction,
6-2

Access rights,
delete, 6-8
execute, 6-8
read, 6-8
write, 6-8

Access to process permanent files,

8-7

AID parameter,

area identification number
field, 6-13

Alignment boundary type field,
ALN parameter, 6-14

Allocation control XAB, 9-12
$XABALL macro instruction, 6-11

Allocation option field,

AOP parameter, 6-15

Allocation quantity field,
ALQ parameter, 4-4, 6-15

ALN parameter,
alignment boundary type field,

6-14

Angle brackets, 4-11

AQP parameter,
allocation option field, 6-15

Area identification number field,
AID parameter, 6-13

Argument list format,
count, 8-2
control block address, 8-2
error completion routine, 8-2
success completion routine,

8-2

Arrangement of magnetic tape
labels, B-19

ASY record-processing option bit,
5-14

Asynchronous operations, 8-7,
10-1, 10-7, 10-8, 11-9,
11-13, 11-16, 11-28

Asvnchronous record-orocessina
option, 5-14

Automatic disk file extension,
4-7

Automatic record locking, 10-9

Backup home block, B-7
Backup log file, B-9
Bad block file, B-8
BIO,
file access option bit, 4-12
record-processing option bit,
5-14

Index-1

INDEX

BKS parameter,
bucket size field, 4-5
BKT parameter,
bucket code field, 5-4
BKZ parameter,
bucket size field, 6-16
BLK bit, 4-22
Block, B-5
Block boundaries, 11-12 .
Block I1/0, 4-23, 5-4, 5-8, 12-1
Block I/0O record-processing
option, 5-14
Block identifier field, 4-27,
5-20
Block length field, 4-27, 5-20
Block size field,
BLS parameter, 4-7
BLS parameter,
block size field, 4-7
Bootstrap block, B-7
BRO file access option bit, 4-12
Bucket code field,
BKT parameter, 5-4
Bucket size field,
BKS parameter, 4-5
BKZ parameter, 6-16
Bucket size formulas, 4-6

Cancel control O record-processing
option, 5-14
CBT,
allocation option bit, 6-16
file-processing option bit,
4-15
CCO record-processing option bit,
5-14
Chained XABs,
NXT parameter, 6-5
order, 6-3
CIF file-processing option bit,
4~-15
Close service,
$CLOSE macro instruction, 9-1
Close all files, 15-1
Cluster, B-5
Completion routine conventions,
8-3
Completion status code field,
4-28, 5-20, 8-7
Completion status codes, 8-1,
8-7, A-1
Connect service,
SCONNECT macro instruction,
11-2
Contiguous file-processing
option, 4-14
Contiguous best try file-
processing option, 4-14

Continuation file, B-9
Control block,
access, 1-2
alignment, 3-1
allocation, 1-1
initialization, 1-1
use, 8-1, 8-6
Control routines, 15-1
Convert record-processing option,
5-14
Core image file, B-8
CR bit, 4-22
Create by NAM block, 8-6
Create if file-processing option,
4-15
Create service,
$CREATE macro instruction, 9-4
Creation data and time, 6-6
CTG,
allocation option bit, 6-16
file-processing option bit,
4-15
CTX parameter,
user context field, 4-8, 5-5
Current context of a stream,
11-22
Current position file-processing
option, 4-16
Current Record,
contents, 10-3
context, 10-1, 10-3
CVT record-processing option bit,
5-14

D format variable-length records,
B-4
DAN parameter,
data buckets area number field,
6-22
Data buckets area number field,
DAN parameter, 6-22
Data buckets fill size field,
DFL parameter, 6-22
Date and time extended attribute
block fields, 6-4
Date and time XAB,
$XABDAT macro instruction, 6-4
Declaring manual record locking,
10-8, 10-10
Default directory control routine,
15-1
Default extension quantity field,
DEQ parameter, 4-9, 6-17
Default file protection control
routine, 15-1, 15-3
Default file specification
string address field,
DNA parameter, 4-10

Index=-2

INDEX

Default file specification
string size field,
DNS parameter, 4-10
Deferred write file-processing
option, 4-15
Definition of terms, 1-2
DEL,
file access option bit, 4-12
file-sharing bit, 4-25
Delete access rights, 6-9
Delete file-processing option,
4-15
Delete service,
SDELETE macro instruction, 11-3
Deleting a file name, 13-6
DEQ parameter,
default extension gquantity
field, 4-9, 6-17
Device characteristics field,
4-26
Device identification, 8-6
DFL parameter,
data buckets fill size field,
6-22
DFW file-processing option bit,
4-15
Directory,
entry removal, 9-9
file scan, 13-12
identification, 8-6
specification, 8-5, 8-6
Disconnect service,
$DISCONNECT macro instruction,
11-5, 11-6
Disk volume, B-5
Display service,
$DISPLAY macro instruction, 9-7
DLT file-processing option bit,
4-15
DNA parameter,
default file specification
string address field, 4-10
DNM parameter, 4-11

—~ .
B L e N Y]

default file specification
string size field, 4-10
DTP parameter,
key data type field, 6-23
Dynamic access, 10-1

EDT parameter,
expiration date and time field,

6-5

End of file, 11-15

End of file labels, B-18

End-of-file record-processing
option, 5-15

End of volume labels, B-18

Enter service,
$ENTER macro instruction, 13-1
EOF record-processing option
bit, 5-15
EOF1l label, B-18
EOF2 label, B-18
EOV1 label, B-18
EOV2 label, B-18
Erase Service,
S$ERASE macro instruction, 9-9
Error status codes, 8-7
ESA parameter,
expanded string area address
field, 7-3
ESC file-processing option bit,
4-15
ESS parameter,
expanded string area size

field, 7-4
Establishing a record stream,
11-2

Execute access rights, 6-8
Expanded string area address
field,
ESA parameter, 7-3
Expanded string area size field,
ESS parameter, 7-4
Expiration date and time field,
EDT parameter, 6-5
Explicit assembly time
initialization, 8-6
Extend service,
SEXTEND macro instruction, 9-14
Extended attribute block chain,
6~-1
Extended attribute block pointer
field,
XAB parameter, 4-26
Extended Attribute Blocks, 4-25

TAR

allocation, 4-1, 4-3

fields, 4-1
FAB parameter,

file access block field, 5-5
FAB parameters,

ALQ, 4-4
BK5, 4-5
BLS, 4-7
CTX, 4-8
DEQ, 4-9
DNA, 4-9
DNM, 4-11
DNS, 4-10
FAC, 4-11
FNA, 4-13
FNM, 4-14
FNS, 4-14

Index=3

FAB parameters, (Cont.)

FOP, 4-15

FSZ, 4-18

MRN, 4-19

MRS, 4-19

NAM, 4-20

ORG, 4-21

RAT, 4-21

RFM, 4-23

RTV, 4-24

SHR, 4-25

XAB, 4-26
FAC parameter,

file access field,
File access bit offset,
File access block field,

FAB parameter, 5-5
File access block,

FAB, 4-1, 9-1
File access field,

FAC parameter, 4-11
File access mask value,
File
File
File
File
File

$XABFHC macro instruction,
6-36
header labels,
headers, B-8
identification,
File identifier, B-9
File name,

change,

deletion, 13-6

insertion, 13-1

rename service, 13-8
File name status bits,
File number, B-9
File organization, 1-1, B-1
File organization field,

ORG parameter, 4-21
File positioning, 12-5
File-processing macro

instructions, 9-1
File-processing option bits,

CBT, 4-15

CIF, 4-15

CTG, 4-15

DFW, 4-15

DLT, 4-15

ESC, 4-15

INP, 4-15

KFO, 4-15

MXV, 4-16

NAM, 4-16

NEF, 4-16

NFS, 4-16

OFP, 4-16

4-11
4-13

4-13

access privileges, 6-8
attribute information,
extension, 9-12

File B-14
File

File 8-7

13-8

7-8

access option bits, 4-12

9-7

header characteristics XAB,

INDEX

File-processing option bits (Cont.)
POS, 4-16
PPF, 4-16
RCK, 4-16
RWC, 4-16
RWO, 4-16
SCF, 4-17
SPL, 4-17
SQO0, 4-17
sup, 4-17
TEF, 4-17
TMD, 4-17
T™™P, 4-17
UFM, 4-17
UFO, 4-17
WCK, 4-17
File-processing options field,
FOP parameter, 4-15
File protection field,
PRO parameter, 6-8
File protection XAB,
$XABPRO macro instruction,
6-6
File sequence number, B-9
File-sharing field,
SHR parameter, 4-25,
File specification,
components, 4-=10
default application, 8-4
parsing, 7-4, 13-4, C-1
File specification processing
macro instructions, 13-1
File specification string address
field,
FNA parameter, 4-13
File specification string size
field,
FNS parameter, 4-14
Files-1l1 directories, B-9
Find service,
SFIND macro
Fixed control
Fixed control area size, 5-14
Fixed control area size field,
FSZ parameter, 4-18

6-1,

11-2

instruction, 11-6

area, B-4

Fixed-length record format, 4-24,
B-4
FLG parameter,
key options flag field, 6-25

Flush service,
$FLUSH macro instruction, 11-9
FNA parameter,
file specification string
address field, 4-13
FNM parameter, 4-14
FNS parameter,
file specification string size
field, 4-14
FOP parameter,
file-processing options field,
4-15

Index-4

INDEX

FORTRAN carriage control, 4-22
Free service,
$FREE macro instruction, 11-11
Free space file, B-8
FSZ parameter,
fixed control area size field,
4-18
FTN bit, 4-22
Fully qualified file specification,
8-6

GET,
file access option bit, 4-12
file-sharing bit, 4-25
Get service,
$GET macro instruction, 11-12
Group and member number field,
UIC parameter, 6-10
Group user class, 6-8

HDR1 label, B-14
HDR2 label, B-14
Home block, B-7

IAN parameter,
index buckets area number
field, 6-27
IFL parameter,
index buckets fill size field,
6-29
Implicit assembly time
initialization, 8-6
Independent record stream, 10-7
Index buckets area number field,
IAN parameter, 6-27
Index buckets fill size field,

Al s MALAIC LTL 6_29

Index file, B-7

Index file bit map, B-8

Indexed file, 6-17, 6-20

INP file-processing option bit,

4-15

Internal stream identifier field,
I8I, 5-20

Internal file identifier field,
IFI, 4-27

KBF parameter,
key buffer address field, 5-6
KFO file-processing option bit,
4-15
Key buffer address field,
KBF parameter, 5-6

Key data type field,
DTP parameter, 6-23
Key definition XAB,
$XABKEY macro instruction,
6-20
Key definition XAB parameters,
DAN, 6-22
DFL, 6-22
DTP, 6-23
FLG, 6-26
IAN, 6-27
KNM, 6-29
LAN, 6-29
NUL, 6-30
POS, 6-31
REF, 6-32
SIZ, 6-33

Key name address field,
KNM parameter, 6-29
Key position field,
PO$ parameter, 6-31
KRey of reference field,
KRF parameter, 5-7
Key options flag field,
FLG parameter, 6-26
KEY record access mode bit, 5-12
Key size field,
KSZ parameter, 5-8
SIZ pardmeter, 6-33
Keys,
alternate, 6-22, 6-27
primary, 6-22, 6-26
segmented, 6-31
simple, 6-31
size, 6-33
Known file open file-processing
option, 4-15
KNM parameter,
key name address field, 6-29
KRF parameter,

Trmss AF e minmnn =~ £ 70 ~
ey~ e e ea Ciic e Laaway o

KSZ parameter,
key size field, 5-6

LAN parameter.
lowest level of index area
number field, 6-29
LBN,
logical block number, B-5
LOC parameter,
location field, 6-18
LOC record-processing option
bit, 5-15
Locate mode, 5-15, 10-2, 11-12,
11-18, 11-25
Locate mode record-processing
option, 5-15

Index-5

INDEX

Location field,

LOC parameter, 6-18
Logical block numbers, B-5
Logical names, 7-3, 8-8
Lowest level of index area

number field,

LAN parameter, 6-29

Macro instructions,
general format, 8-1
Magnetic tape, B-10
Magnetic tape interchange, 4-8
Magnetic tape labels, B-19
Manual unlock record-processing
option, 5-16
Manual record locking, 10-9
declaration of, 10-10
Master file directory,
MFD, B-8
Maximize version file-processing
option, 4-16
Maximum record number field,
MRN parameter, 4-19
Maximum record size field,
MRS parameter, 4-19
Maximum record sizes,
fixed-length records, 4-19
variable-length records, 4-19
variable with fixed control
records, 4-20
MBC parameter,
multiblock count field, 5-9
MBF parameter,
multibuffer count field, 5-10
MFD,
master file directory, B-7
Modifying record contents,
11-25
Move mode, 10-2, 11-15
MRN parameter,
maximum record number field,
4-19
MRS parameter,
maximum record size field, 4-19
MSE file-sharing bit, 4-25
Multiblock count field,
MBF parameter, 5-10
Multiple record streams, 10-6
Multistream access, 4-25
MXV file-processing option bit,
4-16

NAM block,
allocation, 7-2
create by, 8-6
fields, 7-2
open by, 8-4, 8-6

NAM block input file-processing
option, 4-16
NAM block parameters,
ESA, 7-
ESS, 7-
RLF, 7-
RSA, 7-
RSS, 7-5
NAM file-processing option
bit, 4-16
Name block,
NAM block, 7-1
Name block address field,
NAM parameter, 4-20
NEF file-processing option bit,
4-16
Next block pointer, 12-3
Next Record, 10-3
contents, 10-4
Next volume service,
$NXTVOL macro instruction,
11-15
Next XAB address field,
NXT parameter, 6-3, 6-5
NFS file-processing option bit,
4-16
NIL file-sharing bit, 4-25
NLK record-processing option
bit, 5-15
No lock record-processing option,
5-15
Nonexistent record-processing
option, 5-15
Noninitializable FAB fields, 4-27
Noninitializable key fields, 6-34
Noninitializable NAM block
fields, 7-6
Noninitializable RAB fields, 5-20
Nonfile-structured file-
processing option, 4-16
Nonfile-structured operations,
12-11
Not end of file-processing
option, 4-16
NXR record-processing option bit,
5-15
NXT parameter,
next XAB address field, 6-3,
6-5
Null key value field,
NUL parameter, 6-30
NUL parameter field,
null key value, 6-30

U1 W

OFP file-processing option bit,
4-16

Open by NAM block, 8-4, 8-6,
9-14

Index—-6

INDEX

Open service,

SOPEN macro instruction, 9-14
Order of chained XABs, 6-3
ORG parameter,

file organization field, 4-21
Output file parse file-processing

option, 4-15

Owner user class, 6-8

Parameter delimiters, 8-2
Parse service, 13-6, 13-12
$PARSE macro instruction, 13-4
Parsing a file specification,
13-5, C-1
Path to a file, 4-13, 8-3
PBF parameter,
prompt buffer address field,
5-11
PMT record-processing option
bit, 5-16
POS file-processing option bit,
4-16
POS parameter,
key position field, 6-31
Positioning a file, 12-5
PPE file-processing option bit,
4-16
Primary,
index, 6-27
~ key, 6-22
PRN bit, 4-22
PRO parameter,
file protection field, 6-8
Process permanent file-processing
option, 4-16
Process permanent files, 8-7
Program section $RMSNAM, 4-11
Prompt buffer address field,
PBF parameter, 5-11
Prompt buffer size field,
PSZ parameter, 5-11
Prompt record-processing
option, 5-16
PSZ parameter,
prompt buffer
PTA record-processing option
bit, 5-16
Purge type-ahead record-processing
option, 5-16
PUT,
file access option bit, 4-12
file-sharing bit, 4-25
Put service,
$PUT macro instruction, 11-17

RAB,
allocation, 5-3
fields, 5-1
RAB parameters,
BKT, 5-4
CTX,
FAB,
KBF,
KRF,
KSzZ,
MBC,
MBF,
PBF,
PSSz,
RAC, 5-12
RBF, 5-13
RHB, 5-13
ROP, 5-14
RSZ, 5-17
TMO, 5-18
UBF, 5-18
usz, 5-19
RAC parameter,
record access mode field, 5-12
RAH record-processing option bit,
5-16,
Random access by key value, 5-6,
5-12, 10-1
Random access by record's file
address, 5-12, 10-2, 11-20
Random access by RFA record
access mode, 11-18
Random starting point, 11-7
RAT parameter,
record attributes field, 4-21
RBF parameter,
record address field, 5-13
RCK file-processing option bits,
4-15
Read access rights, 6-8
Read no echo record-processing
option, 5-16
Read nn fil+or ‘r‘nﬂnrﬂ—:\vnﬂnec"hc—
option, 5-16
Read of locked records allowed,
5-16
Read service,
SREAD macro instruction, 12-3
Read-ahead record-processing
option, 5-16
Read-check file-processing
option, 4-16
Record access, 10-1
Record access block,
RAB, 5-1, 11-1
Record access mode,
random by key (relative record
number), 5-6, 5-12, 10-1,
B-2

[l M LR W W, S, |

cuuouuouoon
I

Index-7

INDEX

Record access mode (Cont.)
random by record's file
address, 5-12, 10-2, 11-20,
B-2
sequential, 5-12, 10-1, B-2
Record access mode bits, 5-12
Record access mode field,
RAC parameter, 5-12
specification, 10-1
Record address field,
RBF parameter, 5-13
Record attributes field,
RAT parameter, 4-21
Record cell, B-1
Record contents, 11-25
Record control information,
4-21
Record format,
fixed-length, B-4
variable with fixed-length
control, B-4
variable-length, B-4
Record format field,
RFM parameter, 4-23
Record header field,
RHB parameter, 5-13
Record-processing macro
instructions, 11-1
Record-processing options bits,
ASY, 5-14
BIO, 5-14
CCo, 5-14
CVvT, 5-14
EOF, 5-15
KGE, 5-15
KGT, 5-15
LIM, 5-15
LOA, 5-15
L.0C, 5-15
NLK, 5-15
NXR, 5-15
PMT, 5-16
PTA, 5-16
RAH, 5-16
RLK, 5-16
RNE, 5-16
RNF, 5-16
TMO, 5-16
TPT, 5-16
UIF, 5-16
ULK, 5-16
WBH, 5-16
Record-processing options field,
10-2, 10-10
ROP parameter, 5-14
use with record locking, 10-10
Record,
locking, 10-1, 10-8, 10-9, 11-7
removal, 11-3
retrieval, 11-12

Record (Cont.)

skipping, 11-7

stream, 5-1, 11-2

transfer mode, 5-17

types of, 10-9

unlocking, 11-11, 11-20
Record size field,

RSZ parameter, 5-17
Record streams, 10-1, 10-7
Record's file address, 5-20
Related file NAM block address

field,

RLF parameter, 7-4
Relative file organization, B-1
Relative record number, 4-19
Relative volume number, B-9
Relative volume number field,

VOL parameter, 6-19

Release service,
SRELEASE macro instruction,
11-20
Remove service,
SREMOVE macro instruction,
13-6
Removing records, 11-3
Rename service,
SRENAME macro instruction,
13-8
Resultant file specification,
string, 7-5
Resultant string area address
field,
RSA parameter, 7-5
Resultant string area size field,
RSS parameter, 7-5
Retrieval window size field,
RTV parameter, 4-24
Revision date and time field,
6-5
Revision date and time XAB,
S$XABRDT macro instruction, 6-17
Revision number, 6-5, 6-19
Rewind on close file-processing
option, 4-16
Rewind on open file-processing
option, 4-16
Rewind service,
$SREWIND macro instruction,
11-22
RFA record access mode bit, 5-12
RFM parameter,
record format field, 4-23
RHB parameter,
record header field, 5-13
RLF parameter,
related file NAM block address
field, 7-4
RLK record-processing option bit,
5-16

Index-8

INDEX

RNE record-processing option bit,
5-16
RNF record-processing option
bit, 5-16
ROP parameter,
record-processing options
field, 5-14
RSA parameter,
Resultant string area address
field, 7-5
RSS parameter,
Resultant string area size
field, 7-5
RSZ parameter,
record size field, 5-17
RTV parameter,
retrieval window size field,
4-24
Run-time,
control block initialization,
14-1
initialization, 8-6
processing interface, 8-1
Rundown control routine, 15-1
RWC file-processing option bit,
4-16
RWO file-processing option bit,
4-16

SCF file-processing option bit,
4-17
Search service,
$SEARCH macro instruction,
13-12
Segmented keys, 6-31
SEQ record access mode bit, 5-12
Sequential file organization,
B-2
Sequential only file-processing
ovtion. 4-17
Sequential record access mode,
5-12, 10-~1
Set list file, B-9
Shared sequential files, 4-25,
6-15
SHR parameter,
file-sharing fieid, 4-25
Simple keys, 6-31
Single record stream, 10-7
SIZ parameter,
key size field, 6-33
Skipping records, 11-7
Space service,
$SPACE macro instruction, 12-5
SPL file-processing option bit,
4-15
Spool file-processing option,
4-17

Spool device characteristics
field, 4-28
SQ0 file-processing option bit,
4-17
Statement conventions, 2-1
Status value field, 4-28, 5-18,
A-1
Store macro instructions,
addressing expression
restrictions, 14-2
formation, 14-1
Storage bit map file, B-8
Subdirectory, B-10
Submit command file-processing
option, 14-17
Summary XAB parameter,

NXT, 6-35
SUP file-processing option bit,
4-15
Supersede file-processing option,
4-17
Synchronous operations, 10-1,
10-7

SYSSERROR, 8-8

SYSSINPUT, 8-8

SYSSOUTPUT, 8-8

SYSSRMSRUNDWN, 15-1
SYS$SETDDIR, 15-2
SYS$SETDFPROT, 15-3

System service exceptions, 8-7
System user class, 6-8

TEF file-processing option bit,
4-17

Temporary file-processing option,
4-17

Temporary marked for delete file
processing option, 4-17

Terminating a record stream, 11-5

MaimAa—mirdk vmmamd ~AA £2 .12

R IR OO S O

TMO parameter, 5-18
Time-out record-processing option,
5-14
TMD file-processing option bit,
4-17
TMO parameter,
time-out period field, 5-18
TMO record-processing option
bit, 5-16
TMP file-processing option bit,
4-17
TPT record-processing option bit,
5-16
Translation of logical names,
7-3, 8-8
TRN file access option bit, 4-12
Truncate at end of file-
processing option, 4-17

Index-9

INDEX

Truncate put record-processing
option, 5-16
Truncate service,
S$TRUNCATE macro instruction,
11-27
Types of record locking, 10-9

UBF parameter,
user record area address field,
5-18
UFD,
user file directory, B-9
UFM file-processing option bit,
4-17
UFO file-processing option bit,
4-17
ulic,
user identification code, B-9
UIC parameter,
group and member number fields.
6-10
UIF record-processing option,
bit, 5-16
ULK record-processing option
bit, 5-16
Undefined record format, 4-24
Unlocking records, 11-11, 11-20
UPD,
file access option bit, 4-12
file-sharing bit, 4-25
Update service,
SUPDATE macro instruction,
11-25
UPI file-sharing bit, 4-25
User classes,
group, 6-8
owner, 6-8
system, 6-8
world, 6-8
User context field,
CTX parameter, 4-8, 5-5
User control blocks,
FAB, 4-1
general, 3-1
NAM, 7-1
RAB, 5-1
XAB, 6-1
User file directory,
UFD, B-9
User file mode, 4-17
User file open, 4-17
User identification code,
UIlc, B-9
User record area address field,
UBF parameter, 5-18
User record area size field,
USZ parameter, 5-19

USZ parameter,
user record area size field,
5-19

V format variable-length records,
B-4
Variable-length records, 4-19
Variable with fixed-control
records, 4-20
VAX-11 RMS,
control routines, 15-1
facilities, 3-1
functions, 1-1
routines, 3-2
VBN,
virtual block number, B-5
Virtual block numbers, 5-4, B-5
VOL parameter,
relative volume number field,
6-19
VOL1 label, B-1l1

Wait service,
SWAIT macro instruction, 11-28
WBH record-processing option bit,
5-14
WCK file-processing option bit,
4-15
Wildcard,
processing, 13-1
substitution, 7-5
World user class, 6-8
Write access rights, 6-8
Write service,
SWRITE macro instruction, 12-7
Write-behind record-processing
option, 5-16
Write-check file-processing
option, 4-17

XAB block length field, 6-2
XAB chain, 6-3
XAB parameter,

extended attribute block

pointer field, 4-26

XAB type code field, 6-2
XAB types, 6-3
XABALIL parameters,

AID, 6-13

ALN, 6-14

ALQ, 6-15

AOP, 6-15

BKZ, 6-16

Index-10

INDEX

XABALL parameters (Cont.) XABKEY parameters (Cont.)
DEQ, 6-17 IFL, 6-29
LOC, 6-18 KNM, 6-29
NXT, 6-3, 6-19 LAN, 6-29
VOL, 6-19 NUL, 6-30
XABDAT parameter, POS, 6-31
EDT, 6-5 REF, 6-32
XABKEY parameters, SIz, 6-33
DAN, 6-22 XABPRO parameters,
DFL, 6-22 PRO, 6-8
DTP, 6-23 UIC, 6-10
FLG, 6-26 XAB,
IAN, 6-27 extended attribute block, 6-1

Index-11

VAX-11l Record Management
Services Reference Manual
AA-DO31B-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicata +ho +oma of wn-ao- anos Iou st ucariy LepLESElT.

[] Assembly language programmer

[] Higher-level language programmer

E] Occasional programmer (experienced)

Ej User with little programming awparience
[] Student programmer

E] Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or
Country

— — — DoNot Tear- Fold Here and Tapg¢ — — — — — — — — —

dlifgliltiall

—_ — Do Not Tear - Fold Here

No Postage
Necessary

if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

1IN

