£y i &« i
I G [& 4 i =
4 / cp £ 4 £ o = [T e
9994 Worolly, 5e Sasthy T e SRS i TR SO e -
990 0%, 0y ¢ & 4 2 e =3 Sl il S 8 o PR T R - S
39 g c L p = =sg— o i Ty)
Iy PN c Ps # 2 e = o e SIS N o~ - ~
m.m,m.h_.,.. e %%.a..ubu.\\\ hv\ m}m.. \\ @ﬂ.\v g MHH M,[._ - = n.M.?%JI n-”./.__ i ..”r by A.Moﬂ. oo
T3§¢¢ 09 5w, s %%N €ra % % B eE— o2 I SRS T3 <
h.__v“__v.vv hmm%hm‘m %%%_a.a.@\\\ o\u\.w. o\.%m._\. » @ﬂ\.\\. ﬂ.u. o2 — M,H n._.,N -.“. ﬂ”na..m.f.. ..n(/. ?..“q ..“.a.. r....u.u AMO
Y ¥ Opeglly. <2 '~ 2% S e G ol e ERCRAE IR I ,
c e oL e G o =, L ©
:._:.‘: B —) 05%%:01 €0, 0 e TSN SFe = < dﬂy
fep Py dpte CF b 2. e a & o~ S R
s o Pby, m%%\n.%&\\x NN% ; % S SIS SR> & #ﬂﬂ,.o.s@,
€8227,,, —~ tlerg Gty 2 e e oY st e O e St
:h.._.: e -~ i :,h.:.m. %%M&...\\\ NNN %%stsn\ S ™ ﬂm....w...w S > 0_0..,/..906//
g = £ &l T Emiet s § O &~ g T SN
Q_m;::;nh__h_: 02204, & b2 e == ® Ssr s a0 W) 3
3:5&? iy €l2tz;, 29,007 2, - - o SES S @w%/// Sl
0(, " Cdumgd L] ¢iz; - Sl Sl SRR
“vuygg 6282 4o :: Ey SES AN s 0&%@ O ad ~
ma_..qm:um.az 11y — Sl AN a A
m..:w _e.__m%n; mmamu = s),V. 0& ;rhm. 3. J..sc 5 A
o BN % LS
iﬁiﬁm_mﬁﬁ iwzf 1, = ,.,m.. o~ .a@w,ﬁx// .«ee.« ,vaw rfr
‘o B f
m..w.mu,. m_h.._u..._.__..%m ff .G.r././ _Hbr Ju./ B <
5 0 SN \ N N\ S
mmmmmmmmu: L Al ﬁ&ywe,m./// ;..e.(.r JJJJ frr_r ffff ,
By 2 N \ N N 5 .
getd i st A ol
; mmﬂmi N_.Z.Zw oA \ o 7
| AR RAAN (@) S
ZZT:;: :t;:_.:_w_“:::_:;:wﬁi C > L
#__.F.a__-.» p.u.ﬁﬁ.ﬁm___a: @ﬁﬁﬂ_ﬁﬁ e _.. ' b 9
__.H._-ﬂ.ﬁﬂ—-—M__......_”JM_.mn..wp...wﬂsﬂHWmmmmcGnﬁﬂ—ﬂ@ﬂﬁ@ﬁﬂ _ ﬂﬂgﬂﬂﬂﬁ.‘%
g o8 YRR |
vy .;.m.q.ﬁ:.}..“.__ﬁ._ap.eﬁaﬁ n e ,aéam,ﬁ;s# \\
aaaﬁa@a aaga_.. asusii;
n f0808 5% WY ,
: P ﬁﬁﬂﬂﬁ _-a..u._.e.-.a L J..-.J..HH
% E S — agay s,.,ﬂt ﬁ_j— .:.:.
e ///aa,olﬁ g “ p m.iﬂ:ﬂiii : 1t .3.5_
Jﬁ- qrncnr(.. HH&H ///Ma:ﬁ“ﬂﬁf.' .u o/ff/## .H.H.P.H.Hﬂ.wﬂﬁr ,w.www.ww_.... Pr,
s W L W etat e g b j kAo
ff.ff AJJAA acncncac .chH.r.r ////W@./M,&ﬂ& b — E ;.w.ww.w.w A r’rrrr m.mw_
Ll Ot u . . 5999°
ﬁ(a.ﬁ n(ncﬂ. ..r.ﬂ. /// ._.‘v.n.cf &.ﬂ.ﬂ.. 0% ,
Gt b
R R W\ et Hoog
(BTl W\ st < 00099,
o W\ et ad SR 11mlineg 0009
..Fu /./. & .ﬁﬁ e ./.1,..,. h-m _.w:;ﬁw Qha
Ry ol LT rmn s 000000
NN S - 12525
//./;G,.‘eﬂﬁﬂ -)..).v //aﬂfﬂv s . uNmMM m_ﬁh_ﬁm..__.—mw_ﬂ.}uquqm::wa%maaha
RO S oSS = - - 222224,,, :__:..L_wwaafr._w.,
o e SR - co W 2, & 7 . 2 I
.‘:«a@ e L i S =S 9 £ 20, 2335, SNSSS SRR
\ D e I e e 77,0,00 333335 22229
A A O e == el % 777,20, ‘4 iy
= — —- L 3
sl d SES =:sS —e2 \.\\xss@.% i \\\wfﬂ»@ :i:::: 433333,
St e ey Siois e e . Qmwemw@m 55gs Hid1444yq
SRR AR > ZEs —=2 R e, 25, 11,7250 55555
L G R T Ml e £ DTy 2 2 7 %5 L mmmm._._.
- Sy Sy - S Ao NS > Ry e s 5 Pt 7 N.h Lt LE
Dy &S ‘ o S —_— = & Vi e v
¥ = n”af ﬁ,n/ !!f ;).z. ;../f%.&mgﬁ SR ...m...M. =g 7 \\\n.@m. m%%..u m.\.u,u \\\W&M%%%% :m:mm:mm
S Rl g el ~ Tz 2, P T2y NPN0e
Dbt B Bt i S o e 7z, Z Ly w00 oy
o A e e e Ly T = s === op e) s Vs e 17
s et - L AT S b s T et ? = \\1.% y 7 2 \.\.&&.%% wwww
3 < - <, Mty S T F = =, & ¢ o P Vi)
s LT P e ey o 70,2 P 7 2 Ly
S . S dhgsin A g s = Zhe e A N A .
Sl e e P T e, Sl e 2, Tt TR W T ey
fam el Rt Bl L) e LT e 2T, ti N :
i e P sl LS o LY e Al w T iy, Uy Y, 2,
- = = ...“..uv \\ T Av ot ﬁ\é. %%
el & %u- N\g: \\..@@?% L

decsustemic
BEGINNER’S GUIDE TO
MULTIPROGRAM BATCH

DEC-10-OMPBA-C-D

digital equipment corporation - maynard. massachusetts

Ist Edition, May 1972
2nd Edition, April 1974
3rd Edition, December 1974

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Cor-
poration assumes no responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for
use on a single computer system and can be copied (with inclusion of DIGITAL’s copy-
right notice) only for use in such system, except as may otherwise be provided in writing
by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by DIGITAL.

Copyright © 1972, 1973, 1974, by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

CDP INDAC
COMPUTER LAB KA10
COMSYST LAB-8
COMTEX LAB-8/¢
DDT LAB-K

DEC OMNIBUS
DECCOMM 0s/8
DECTAPE PDP

DIBOL PHA
DIGITAL PS/8

DNC QUICKPOINT
EDGRIN RAD-8
EDUSYSTEM RSTS

FLIP CHIP RSX
FOCAL RTM

GLC-8 RT-11
IDAC SABR
IDACS TYPESET 8

ii

UNIBUS

Beginner’s Batch

PREFACE

The Beginner’s Guide to Multiprogram Batch has been written for the user who knows a
programming language and requires only a rudimentary knowledge of Batch operations.

HOW TO USE THIS MANUAL

For those users whose mode of input is cards, the following chapters or sections of chapters
should be read.

Chapter 1 Introduction
Chapter 2 Entering a Job to Batch from Cards
Chapter 4 Interpreting Your Printed Output

Chapter 5,
Section 5.2 Using Cards to Enter Jobs

According to the language in which his/her program is written, the user should pay particu-
lar attention to the following sections.

FORTRAN — Section 2.2.3 Card Deck to Run FORTRAN Programs

ALGOL — Section 2.2.1 Card Deck to Run ALGOL Programs
COBOL — Section 2.2.2 Card Deck to Run COBOL Programs
MACRO — Section 2.2.4 Card Deck to Run MACRO Programs
BASIC — Section 2.3.1 Card Decks for Programs that Do Not Have Special

Control Cards

For users who input their jobs through interactive terminals, the following chapters or
sections of chapters are recommended.

Chapter 1 Introduction
Chapter 3 Entering a Job to Batch from a Terminal
Chapter 4 Interpreting Your Printed Output

Chapter 5,
Section 5.1 Using the Terminal to Enter Jobs

iii

REFERENCES

Not all of the commands and cards for Batch are described in this manual. Those users
who wish to know more about Multiprogram Batch can refer to Chapter 3 in the
DECsystem-10 Operating System Commands manual. Also in that manual, the SUBMIT
command is described in Chapter 2.

An elementary description of the basic monitor commands can be found in the document
Getting Started with Timesharing. The DECsystem-10 Operating System Commands manual
contains the description of all the monitor commands available to the user.

Error messages from the system programs supplied by DEC that are invoked by the user’s
job are explained in the applicable manuals. For example, if a user’s FORTRAN program
fails to compile successfully, the error messages he receives from the FORTRAN compiler
can be found in Chapter 11 of the FORTRAN IV Programmer’s Reference Manual, in the
DECsystem-10 Mathematical Languages Handbook, and in Appendix G of the DECsystem-
10 FORTRAN-10 Language Manual (DEC-10-LFORA-B-D).

CONVENTIONS USED IN THIS MANUAL

The following is a list of symbols and conventions used in this manual.

dd-mmm-yy hh:mm

filename.ext

hh:mm:ss

jobname

[proj,prog]

[rws-fmsl\

A set of numbers, or numbers and a word that indi-
cates the date and time; e.g., 15-5-72 14:15 or
15-MAY-72 14:15. Time is represented using a

24 hour clock, 14:15 means 2:15 P.M.

The name and extension that can be associated with
a file. The name can be 1 to 6 characters in length
and the extension can be | to 4 characters in length.
The first character of the extension must always be
a period. The extension is optional. Refer to the
glossary for definitions of filename and filename ex-
tension.

A set of numbers representing time in the form
hours:minutes:seconds. Leading zeros can be omit-
ted, but colons must be present between two numbers.
For example, 5:35:20 means five hours, 35 minutes,
and 20 seconds.

The name that is assigned to a job. It can contain up
to six characters. Refer to the glossary for the defi-
nition of a job.

The user number assigned to each user, commonly called
called a project-programmer number. The two num-
bers that make up the project-programmer number

must be separated by a comma or a slash. Refer to

the glossary for the definition of a project-programmer
number.

A number that specifies either a required number or
an amount of things such as cards or line printer
pages. This number can contain as many digits as
are necessary to specify the amount required; e.g.,
5,25, 125, ete.

A number representing an amount of time, usually in
minutes. This number can contain as many digits as

are necessary to specify the amount of time required;
e.g.; 5, 25, 125, ete.

GLOSSARY

Term Definition

ALGOL ALGOrithmic Language. A scientific oriented
language that contains a complete syntax for de-
scribing computational algorithms.

Alphanumeric Any of the letters of the alphabet (A through Z)
and the numerals (O through 9).

ASCII Code American Standard Code for Information Inter-
change. A 7-bit code in which information is
recorded.

Assemble To prepare a machine-language program from a

symbolic-language program by substituting absolute
operation codes for symbolic operation codes and
absolute or relocatable addresses for symbolic
addresses.

Assembler A program which accepts symbolic code and trans-
lates it into machine instructions, item by item.
The assembler on the DECsystem-10 is called the
MACRO assembler.

Assembly Language The machine-oriented symbolic programming
language belonging to an assembly system. The
assembly language for the DECsystem-10 is
MACRO.

Assembly Listing A printed list which is the byproduct of an assembly
run. It lists in logical-instruction sequence all details
of a routine showing the coded and symbolic nota-
tion next to the actual assigned notations established
by the assembly procedure.

BASIC Beginner’s All-purpose Symbolic Instruction Code.
A timesharing computer programming language that
is used for direct communication between terminal
units and remotely located computer centers. The
language is similar to FORTRAN II and was developed
by Dartmouth College.

vi

GLOSSARY (cont)

Term Definition

Batch Processing The technique of executing a set of computer pro-
grams in an unattended mode.

Card A punch card with 80 vertical columns representing
80 characters. Each column is divided into two sec-
tions, one with character positions labeled zero
through nine, and the other labeled eleven (11) and
twelve (12). The 11 and 12 positions are also re-
ferred to as the X and Y zone punches, respectively.

Card Column One of the vertical lines of punching positions on a
punched card.

Card Field A fixed number of consecutive card columns assigned
to a unit of information.

Card Row One of the horizontal lines of punching positions on
a punched card.

Central Processing Unit (CPU) The portion of the computer that contains the arith-
metic, logical, control circuits, and 1/O interface of
the basic system.

Central Site The location of the central computer. Used in con-
junction with remote communication to mean the
location of the DECsystem-10 central processor.

Character One symbol of a set of elementary symbols such as
those corresponding to the keys on a typewriter.
The symbols usually include the decimal digits O
through 9, the letters A through Z, punctuation
marks, a space, operation symbols, and any other
special symbols which a computer may read, store,
or write.

COBOL COmmon Business Oriented Language. An auto-
matic programming language used in programming
data processing applications.

Command An instruction that causes the computer to execute
a specified operation.

Compile To produce a machine or intermediate language

routine from a routine written in a high level source
language.

vii

GLOSSARY (cont)

Term Definition

Compiler A programming system which translates a high level
source language into a language suitable for a par-
ticular machine. A compiler converts a source
language program into intermediate or machine
language. Some compilers used on the DECsystem-
10 are: ALGOL, BASIC, COBOL, FORTRAN.

Computer A device with self-contained memory capable of
accepting information, processing the information,
and outputting results.

Computer Operator A person who manipulates the controls of a com-
puter and performs all operational functions that
are required in a computing system, such as:
loading a tape transport, placing cards in the input
hopper, removing printouts from the printer rack,
and so forth.

Continuation Card A punched card which contains information that
was started on a previous punched card.

Control File The file made by the user that directs Batch in
the processing of your job.

Core Storage A storage device normally used for main memory
in a computer.

CPU See central processing unit.

Cross Reference Listing A printed listing that identifies all references of an
assembled program to a specific label. This listing
is provided immediately after a source program
has been assembled.

Data A general term used to denote any or all facts,
numbers, letters, and symbols, or facts that refer
to or describe an object, idea, condition, situation,
or other factors. It represents basic elements of
information which can be processed or produced
by a computer.

Debug To locate and correct any mistakes in a computer
program.

viii

GLOSSARY (cont)

Term Definition

Disk A form of mass storage device in which information
is stored in named files.

Dump A listing of all variables and their values, or a listing
of the values of all locations in core.

Execute To interpret an instruction and perform the indicated
operation(s).

Extension See filename extension.

File An ordered collection of 36-bit words comprising

computer instructions and/or data. A file can be
of any length, limited only by the available space
on the storage device and the user’s maximum space
allotment on that device.

Filename A name of one to six alphanumeric characters
chosen by the user to identify a file.

Filename Extension One to four alphanumeric characters usually chosen
to describe the class of information in a file. The
first character of the extension must always be a
period.

FORTRAN FORmula TRANslator. A procedure oriented pro-
gramming language that was designed for solving
scientific type problems. The language is widely
used in many areas of engineering, mathematics,
physics, chemistry, biology, psychology, industry,
military, and business.

Job The entire sequence of steps, from beginning to end,
that you initiate from your interactive terminal or
card deck or that the operator initiates from the
operator’s console.

Jobstep A serial or parallel sequence of processes invoked by
a user to perform an operation.

K A symbol used to represent a thousand; for example,
32K is equivalent to 32,000.

Label A symbolic name used to identify a statement in the
control file.

X

GLOSSARY (cont)

Term Definition

Log File A file into which Batch writes a record of a user’s
entire job. This file is printed as the final step in
Batch’s processing of a job.

Monitor The collection of programs which schedules and
controls the operation of user and system programs.

Monitor Command An instruction to the monitor to perform an oper-
ation.

Mounting a Device A request to assign an 1/O device via the operator.

Multiprogramming A technique that allows scheduling in such a way

that more than one job is in an executable state
at any one time,

Object Program The program which is the output of compilation or
assembly. Often the object program is a machine
language program ready for execution.

Password The secret word assigned to a user that, along with
that user’s number (project-programmer number),
identifies him uniquely to the system.

Peripheral Device Any unit of equipment, distinct from the central
processing unit, which can provide the system with
outside communication.

Project-Programmer Number Two numbers separated by a comma which, when
considered as a unit, identify the user and that
user’s file storage area.

Program The complete plan for the solution of a problem,
more specifically the complete sequence of machine
instructions and routines necessary to solve a
problem.

Programming The science of translating a problem from its physical
environment to a language that a computer can under-
stand and obey. The process of planning the pro-
cedure for solving a problem. This may involve,
among other things, the analysis of the problem,
preparation of a flowchart, coding of the problem,
establishing input-output formats, establishing testing
and checkout procedures, allocation of storage, prep-
aration of documentation, and supervision of the
running of the program on a computer.

GLOSSARY (cont)

Term Definition

Queue A list of jobs to be scheduled or run according to
system, operator, or user-assigned priorities. For
example, the Batch input queue.

Software The totality of programs and routines used to expand
the capabilities of computers, such as compilers,
assemblers, operational programs, service routines,
utility routines, and subroutines.

Source Deck A card deck comprising a computer program, in
symbolic language.

Source Language The original form in which a program is prepared
prior to processing by the computer.

Source Program A computer program written in a language designed
for ease of expression of a class of problems or
procedures, by humans. A translator (assembler,
compiler, or interpreter) is used to perform the
mechanics of translating the source program into
a machine language program that can be run on a
computer.

Terminal A keyboard unit that is often used to enter infor-
mation into a computer and to accept output from
a computer. It is often used as a timesharing
terminal on a remotely located computer center.

xi

CHAPTER

CHAPTER

24.1
24.2
243
244
245
2.4.6
2479
248
249
24.10
24.11
24.12
2.4.13
2.4.14
2.9

CONTENTS

INTRODUCTION . .

WHAT IS MULTIPROGRAM BATCH
HOW TO USE BATCH ;
Setting Up Your Job .

Running Your Job .

Receiving Your Qutput

Recovering From Errors .
SUMMARY .

ENTERING A JOB TO BATCH FROM CARDS
FORMAT OF THE CARDS IN YOUR DECK
SETTING UP YOUR CARD DECK

Card Deck to Run ALGOL Programs

Card Deck to Run COBOL Programs

Card Deck to Run FORTRAN Programs

Card Deck to Run MACRO Programs . .
PUTTING COMMANDS INTO THE CONTROL FlLE
FROM CARDS :
Card Decks for Programs that do not have Speudl
Control Cards .

CONTROL CARDS FOR BATCH (IN ALPHABETICAL

ORDER) . . . :

The SALGOL Card

The $SCOBOL Card . .

The $§DATA Card

The $DECK Card.

The $EOJ Card .

The SERROR Card .

The SEXECUTE Card . . . :
The $SFORTRAN Card and $F4O Card ;
The $JOB Card

The SMACRO Card . .

The SNOERROR Card .

The SPASSWORD Card .

The $SEQUENCE Card .

The $TOPS10 Card . . .

SPECIFYING ERROR RECOVERY [N THE
CONTROL FILE . e e

xii

Page

D RN

b et ot bkt ek
i 1
(ONT o]

CHAPTER

CHAPTER

CHAPTER

—

™o~

o b b e e 0 B0 B0 B0 0 =
Shon B b —

L0 LD L LI LD LD L L) L W W W W W W

4.1
4.2
4.3
4.4
4.4.1
4.4

to —

ENTERING A JOB TO BATCH FROM A TERMINAL.
CREATING THE CONTROL FILE ; :
Format of Lines in the Control File .

SUBMITTING THE JOB TO BATCH.

Queue Operation Switches .

General Switches .

File-Control Switches .)

Examples of Submitting Jobs
BATCH COMMANDS (IN ALPHABETICAL ORDER) .
The .BACKTO Command 2 i S
The .ERROR Command .

The .GOTO Command

The .IF Command . .

The NOERROR Command

The PLEASE Command . .

SPECIFYING ERROR RECOV]:RY TN TH}: CONTROL
FILE ; : w

INTERPRETING YOUR PRINTED OUTPUT
OUTPUT FROM YOUR JOB

BATCH OUTPUT . .

OTHER PRINTED OUTPUT

SAMPLE BATCH OUTPUT .

Sample Output From A Job On Cdrds

Sample Output From A Job From A Termmal

PERFORMING COMMON TASKS WITH BATCH .

USING THE TERMINAL TO ENTER JOBS .
USING CARDS TO ENTER JOBS .

Xiii

Page

3-1
32
33
3-3
34
o
3-7
39
3-10
3-10
3-11
312
= M
3-14
3-15

U"l(.l)“lU‘!
D ket

CHAPTER 1

INTRODUCTION

1.1 WHAT IS MULTIPROGRAM BATCH

Multiprogram Batch is a group of programs that allows you to submit a job to the
DECsystem-10 on a leave-it basis. That is, you give the job to an operator (if on cards)
or submit it directly to the computer (if from a timesharing terminal) so that you can do
something else while your job is running. A job is any combination of programs, their
associated data, and commands necessary to control the programs.

Some of the jobs that are commonly processed under Batch are those that:
1. Are frequently run for production,
2. Are large and long running,
3. Require large amounts of data, or

4. Need no actions by you when they are running.

1.2 HOW TO USE BATCH

Batch allows you to submit your job to the computer through either an operator or a
timesharing terminal, and receive your output from the operator when the job has
finished. Output is never returned at a timesharing terminal even if your job is entered
from one; instead, it is sent to a peripheral device (normally the line printer) at the com-
puter site and returned to you in the manner designated by the installation manager.

1.2.1 Setting Up Your Job

You must make up a control file to use Batch. A control file is a list of commands for
the monitor, system programs, or Batch itself that tells Batch what steps to follow to
process your job and the order in which to process them. When you enter your job on
cards, you can take advantage of the special control cards that cause Batch to insert
commands into the control file for you. When you enter your job from a timesharing
terminal, you must put all the commands for your job into the control file yourself.

The steps that you must take to create a control file from cards are described in Chapter 2.
Creating a control file from a timesharing terminal is described in Chapter 3.

1-1

CHAPTER 2

ENTERING A JOB TO BATCH FROM CARDS

Batch runs your job by reading a control file that contains commands to the monitor,
system programs, or Batch itself. You have to make up the control file, but Batch pro-
vides you with special control cards to help you make up control files for simple jobs.
These control cards make it easy for you to submit your programs to the computer and
to create your control file to run these programs. Most of these control cards cause
Batch to insert commands into the control file and/or copy programs and data into disk
files. Some are used to show the beginning of your job and to identify it; and one is
used to indicate the end of it. Batch control cards are also available to help you recover
from errors that may occur while your job is running.

The leftmost column of the following table shows the section (if any) of this chapter
where an introductory explanation of the control card is given. You can find a more
technical explanation of these cards in the DECsystem-10 Operating System Commands
manual Section 3.4.

Section 2.4.1 $SALGOL
$BLISS
Section 2.4.2 $COBOL
$SCREATE
Section 2.4.3 SDATA
Section 2.4.4 $DECK
SDUMP
SEOD
Section 2.4.5 SEOIJ
Section 2.4.6 S$ERROR
Section 2.4.7 SEXECUTE
Section 2.4.8 $FORTRAN and $F40
$INCLUDE
Section 2.4.9 $JOB
Section 2.4.10 SMACRO
SMESSAGE
$MODE
Section 2.4.11 $NOERROR
Section 2.4.12 $PASSWORD
$SRELOCATABLE
Section 2.4.13 $SEQUENCE
$SNOBOL
Section 2.4.14 $TOPS10

2.1 FORMAT OF THE CARDS IN YOUR DECK

The card decks that you input to Batch can contain any combination of Batch control
cards; commands to the monitor, system programs, and Batch itself; programs and data
that will be copied into separate disk files, and data that will be copied into the control
file for your program to read.

The Batch control cards must contain a dollar sign (8) in column 1 and a command that
starts in column 2. The command must be followed by at least one space, which can
then be followed by the other information on the card. Refer to the individual descrip-
tion of each card for any special format requirements.

If you include a card with a monitor command, you must place a period in column 1

and follow it immediately with the command. Any information that follows the command
is in the format that is shown for the command in the DECsystem-10 Operating System
Commands manual. You must place a $TOPS10 card immediately before the monitor
command in the card deck (see Section 2.4.14).

To include a command to a system program on a card, you must punch an asterisk (¥)
in column 1 and punch the command string immediately following the asterisk. Refer to
the manual for the system program that you wish to use.

Batch commands are punched like monitor commands; that is, a period is punched in
column | and the command immediately follows the period. You must also place a
$TOPSI10 card before Batch commands in the card deck (see Section 2.4.14).

The card format for your program depends on the language in which you have written
the program; refer to the reference manual for the programming language that you are
using for the format of each line of your program. The same is true for your data. The
format that is required for the data by the programming language that you are using is
described in the language reference manual.

If you want to include data for your program in the control file, you punch it as you
would data that is read from a separate file. This applies to data on cards only. If you
are submitting your data directly to Batch via a timesharing terminal, you will not need
the extra dollar sign ($).

If you put any special characters other than those described above in the first column of

a card, you may get unexpected results because Batch interprets other special characters in
special ways. If you want to know about other special characters, refer to the DECsystem-
10 Operating System Commands manual, Chapter 3.

If you have more information than will fit on one card, you can continue on the next
card by placing a hyphen (-) as the last nonspace character on the card to be continued
and the rest of the information on the next card.

Comments can also. be included either as separate cards or on cards containing other infor-
mation. To include a comment on a separate card, you must punch a dollar sign ($) in
column 1, the comment character, an exclamation point (!), in column 2 and then the
comment. To add a comment to a card, you must precede the comment with an exclama-
tion point (!) after all the information that you need has been put on the card. Formerly,

2
2

the semicolon (;) was the only character used to indicate the beginning of a comment.
Both the exclamation point (!) and the semicolon (;) are used now for this purpose. How-
ever, you should use the exclamation point (!) for any new jobs submitted to Batch.

2.2 SETTING UP YOUR CARD DECK

Since the most common tasks performed in a job are compilation and execution of one

or more programs, simple control cards are available that will cause Batch to insert
commands into the control file for these tasks. However, a Batch job can do anything a
timesharing job can do and if you wish to perform more complicated tasks, you will have
to include monitor commands in your deck to direct Batch to execute your tasks. Section
2.3 describes the way in which you include monitor commands and commands to other
system programs.

The control cards that you can use to compile and execute programs written in ALGOL,
COBOL, FORTRAN, and MACRO are shown in Sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4.
Certain control cards are always required in a Batch job. The $JOB card and the SEOJ
card are always required. The $SEQUENCE and $PASSWORD cards may be required,
depending on the installation.

If the $SSEQUENCE card is required, it must be the first card in the deck. The $JOB

card must always be either the second card in the deck if the SSEQUENCE card is re-
quired, or the first card in the deck if the SSEQUENCE card is not required. If it is re-
quired, the SPASSWORD card must immediately follow the $JOB card. It will be assumed
in this manual that the SSEQUENCE and the $PASSWORD cards are required. The $EOJ
card must be the last card in the deck to indicate to Batch that it has read the end of your
job. This $EOJ card is only used to end your entire job, not to end individual files in your

job.

The cards that come between the first and last cards constitute your job. Setting up
decks for specific languages is shown in the sections that follow.

2.2.1 Card Deck to Run ALGOL Programs

To run ALGOL programs, you use the SALGOL and $SDATA cards. You put a SALGOL
card in front of your ALGOL program to make Batch copy your program into a disk file
and insert a COMPILE command into your control file. The SALGOL card is described
in detail in Section 2.4.1.

You put a $DATA card in front of the data that goes with the program to make Batch
copy your data into another disk file and insert an EXECUTE command into your control
file. The $DATA card is described in Section 2.4.3.

2-3

Thus, to compile and execute an ALGOL program, your card deck would appear as shown
in Figure 2-1.

$EOJ

T.h FOR PROGRAM

SDATA

ALGOL SCURCE PROGRAM

SALGOL

SPASSWORD

$JOB

S$SEQUENCE

Figure 2-1

Refer to the description of each card for the information that goes on it. The way that
you tell your program how to find its data is described in Section 2.4.3.1.

2.2.2 Card Deck to Run COBOL Programs

To run COBOL programs, you can use the SCOBOL card and the $DATA card. You put
a $COBOL card in front of your COBOL program to make Batch copy your program into
a disk file and insert a COMPILE command into your control file. The SCOBOL card is

described in detail in Section 2.4.2.

You put a $DATA card in front of the data that goes with your program to make Batch
copy vour data into another disk file and insert an EXECUTE command into your control
file. The $DATA card is described in Section 2.4.3.

2-4

Thus, to compile and execute one COBOL program, your card deck would appear as shown
in Figure 2-2.

$EOJ

ATA FOR PROGRAM

y

SDATA

COBOL SOURCE PROGRAM

$COBOL

SPASSWORD

$SJOB

$SEQUENCE

Figure 2-2

Refer to the description of each card for the information that goes on it. The way that
you tell your program how to find its data is described in Section 2.4.3.1.

2.2.3 Card Deck to Run FORTRAN Programs

To run FORTRAN programs, you can use the SFORTRAN or $F40 and $DATA cards.
You put a SFORTRAN card in front of your FORTRAN program to make Batch copy
your program into a disk file and insert a COMPILE command into your control file.
The $SFORTRAN and $F40 cards are described in detail in Section 2.4.8.

You put a SDATA card in front of the data that goes with your program to make Batch
copy your data into another disk file and insert an EXECUTE command into your control
file. The $SDATA card is described in Section 2.4.3.

2-5

Thus, to compile and execute one FORTRAN program, your card deck would appear as
shown in Figure 2-3.

SFORTRAN

$PASSWORD

$JOB

$SEQUENCE

Figure 2-3

Refer to the description of each card for the information that goes on it. The way
that you tell your program how to find its data is described in Section 2.4.3.1.

2.2.4 Card Deck to Run MACRO Programs

To run MACRO programs, you can use the SMACRO and $DATA cards. You put a
SMACRO card in front of your MACRO program to make Batch copy your program into
a disk file and insert a COMPILE command into your control file. The SMACRO card is
described in detail in Section 2.4.10.

You put a $DATA card in front of the data that goes with your program to make Batch
copy your data into another disk file and insert an EXECUTE command into your control
file. The SDATA card is described in Section 2.4.3.

Thus, to assemble and execute one MACRO program, your card deck would appear as
shown in Figure 2-4.

DATA FOR PROGRAM

SMACRO

SPASSWORD

$JOB

SSEQUENCE

Figure 2-4

Refer to the description of each card for the information that goes on it.

2.3 PUTTING COMMANDS INTO THE CONTROL FILE FROM CARDS

Batch puts commands into the control file for you when you use certain control cards.
However, only a small number of commands can be put in the control file in this way.

If you wish to perform operations in addition to compilation and execution, you must in-
clude commands in your card deck so that Batch will copy them into your control file.
Where you put these commands in your card deck determines their position in the con-
trol file. Batch reads your card deck in sequential order, copying commands into the con-
trol file as they, or the special control cards, are read. However, Batch, when it reads a
control card that tells it to copy a program or data into a disk file, copies every card

that follows such a control card until it meets another control card. If you want to fol-
low your program or data with Batch commands or monitor commands, you must insert
a $TOPS10 card immediately before these commands in your card deck. The $TOPSI10
card directs Batch to copy all cards following it into the control file. Therefore, a single
monitor or Batch command or a group of consecutive monitor and/or Batch commands
must be preceded by a $TOPS10 card. The copying of these commands is terminated by
the next control card in the deck. The $TOPS10 card is described in Section 2.4.14.

2-7

For example, in order to compare two card decks and produce a list of the differences,
you could include the cards shown in Figure 2-5 in your deck.

SEQT

*LPT :=FILE .ONE,FILE.TWO

R FILCOM

STOPS1@/switches

-

————
conn CARD DECK

SDECK FILE.TWO

FIRST CARD DECK

$DECK FILE,ONE

$PASSWORD

$SEQUENCE

Figure 2-5

The only commands that you cannot use in a Batch job are CSTART, CCONT, ATTACH,
DETACH, and SEND. Batch will ignore these commands when it reads them in the control
file. Also, you cannot use the LOGIN command in your Batch job because you will get an
error that will terminate your job. Batch logs your job in accordance with your $JOB and
SPASSWORD cards.

2.3.1 Card Decks for Programs That Do Not Have Special Control Cards

By combining monitor commands with the $SDECK control card, you can process any pro-
gram that does not have special control cards. You put a $DECK card in front of a pro-
gram, data, or any other group of cards to make Batch copy the cards that follow the
$DECK card into a disk file and, if the user requests, to place the file into a specific output

$TOPS10 card in front of monitor and Batch commands to cause Batch to copy these

queue (or queues). The $DECK card is described in detail in Section 2.4.4. You put a
commands into the control file. The $TOPS10 card is described in detail in Section 2.4.14.

For example, a BASIC program does not have a specific control card. To run a BASIC pro-
gram under Batch from cards, you can combine the SDECK card and the $TOPS10 card with
monitor commands. You also use a $DECK card to copy the data for a BASIC program be-
cause the $DATA card puts an EXECUTE command into the control file, and BASIC does
not use the EXECUTE command to run. The $TOPS10 card causes Batch to copy the
monitor commands into the control file.

Figure 2-6 shows a card deck that enters a BASIC program for running under Batch.

SEOT

*MONITOR

*RUN

*0OLD

R BASIC —

STOPS1P/switches] I

DATA FOR FROGRAM ==

SDECK (FOR DATA) _

BASIC SOURCE PROGRAM

$DECK (FOR PROGRAM)

$PASSWORD

$J0OB

$SEQUENCE

Figure 2-6

The BASIC program contains statements that read data from a disk file. You answer
OLD to the BASIC question

NEW OR OLD -
because the file is on disk and can be retrieved by BASIC.
If your BASIC program reads data that is to be input by you during the running of the

program, you enter the data in the control file so that it will be passed to your program by
Batch. This is shown in Figure 2-7.

SEQJ

*MONITOR

3,5,-9,1,8

5:1,3,4,-7

1,2,4,2,-7

*RUN

*OLD

<RUN BASIC

STOPS1@/switches

BASIC SOURCE PROGRAM

$DECK (FOR PROGRAM)

SPASSWORD

$JOB

SSEQUENCE

Figure 2-7

2-10

You can use the same technique to enter programs written in any language that does not
have a specific control card, provided that your installation supports the language. Also,
you can run system programs under Batch using the same technique.

2.4 CONTROL CARDS FOR BATCH (In Alphabetical Order)

The special control cards for Batch are described below in detail. Only the control cards

that are pertinent to this manual are discussed. Refer to DECsystem-10 Operating System
Commands (DEC-10-MRDD-D) for the remaining cards. The same is true for some of the
switches that can be included on each card. If a switch is not described in this manual,

it can be found in the DECsystem-10 Operating System Commands manual.

2.4.1 The $ALGOL Card

You put a SALGOL card in front of your ALGOL program to make Batch copy your
ALGOL program into a disk file, create a unique filename of the form LN???? with the
extension .ALG, and insert a COMPILE command into your control file. Thus, when
Batch runs your job, your ALGOL program will be compiled. You can put some
optional information on the $ALGOL card to tell Batch more about your program or
the cards that your program is punched on.

The $SALGOL card has the form:

/SALGOL (switches) /switches

(switches) are switches that Batch passes to the ALGOL compiler when it
puts the COMPILE command in the control file. These switches
must be enclosed in parentheses, must not be preceded by slashes,
and may or may not be separated by commas. The switches for
the ALGOL compiler are described in Section 18.1 in Chapter 18
of the DECsystem-10 ALGOL Programmer’s Reference Manual
(DEC-10-LALMA-A-D).

[switches are switches to Batch to tell it how to read your program and
whether or not to request a compilation listing when the program
is compiled. The switches can be put on the card in any order
and are described below.

J/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the ALGOL program. You can
make Batch stop reading at a specific column by means of the /WIDTH switch, in which
you indicate the number of a column at which to stop. Thus, if you have no useful infor-
mation in the last ten columns of each card of your program, you can tell Batch to read
only up to column 70 by specifying

/WIDTH:70

on the SALGOL card.

/NOLIST Switch

Normally, the SALGOL card tells Batch to ask the compiler to generate a compilation
listing of your ALGOL program. The listing is then printed as part of your job’s output.
If you don’t want this listing, you can include the /NOLIST switch on the ALGOL card
to stop generation of the listing.

/SUPPRESS Switch

When Batch reads the cards of your ALGOL program, it normally copies everything on
the card up to column 80 or any column you may specify in the /WIDTH switch. How-
ever, if you do not want trailing spaces copied (to save space on the disk, for example),
you can tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces
into the disk file.

Examples
The simplest form of the SALGOL card is shown in the following example.
SALGOL

This card causes Batch to copy your program into a file to which Batch gives a unique
name of the form LN???? and the extension .ALG. The cards in the program are read up
to column 80 and trailing spaces are not suppressed. A listing file is produced when the
program is compiled. This listing is written as part of the job’s output. No compiler
switches are passed to ALGOL.

The following is an example of a SALGOL card with switches.

SALGOL (1000D,N,Q)/NOLIST/SUPPRESS/WIDTH:72
With this card, Batch copies your program onto disk, assigns your program a unique file-
name of the form LN????7.ALG, and inserts a COMPILE command into the control file.
The compiler reads and acts upon the switches 1000D, N, and Q given to it by Batch.

When the program is compiled, no listing is produced. The cards in the program are read
up to column 72 and trailing spaces up to column 72 are not copied into the file.

2-12

24.2 The SCOBOL Card

You place the SCOBOL card in front of your COBOL program to make Batch copy your
COBOL program into a disk file, create a unique filename of the form LN???? with the
extension .CBL, and insert a COMPILE command into your control file. Thus, when
Batch runs your job, your COBOL program will be compiled. You can put some optional
information on the $COBOL card to tell Batch more about your program or the cards that
your program is punched on.

The $SCOBOL card has the form:

/ $COBOL (switches) /switches

(switches)

[switches

are switches that Batch passes to the COBOL compiler when it
puts the COMPILE command in the control file. These switches
must be enclosed in parentheses, must not be preceded by slashes,
and may or may not be separated by commas. The switches for
the COBOL compiler are described in Table D-3 in Appendix D
of the DECsystem-10 COBOL Programmer’s Reference Manual
(DEC-10-LCPRA-A-D).

are switches to Batch to tell it how to read your program, and
whether or not to request a compilation listing when the program
is compiled. The switches can be put on the card in any order
and are described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of the COBOL program. You can
make Batch stop reading at a specific column by means of the /WIDTH switch, in which
you indicate the number of a column at which to stop. Thus, if you have no useful infor-
mation in the last ten columns of each card of your program, you can tell Batch to read
only up to column 70 by specifying

/WIDTH:70

on the $COBOL card.

2-13

/SUPPRESS Switch

When Batch reads the cards of your COBOL program, it normally copies everything on the
card up to column 80 or any column you may specify on the /WIDTH switch. However,
if you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk file.

Examples
The simplest form of the $COBOL card is:
$COBOL

This card tells Batch to copy your program into a file and assign a unique name of the
form LN???? and the extension .CBL. All 80 columns of the cards are read and trailing
spaces are copied. No switches are passed to the compiler, and a listing file is produced
when the job is run. The listing is printed as part of the job’s output.

The following is an example of a SCOBOL card with switches.
$COBOL (N,P)/SUPPRESS/WIDTH:72

With this card, Batch copies your program onto disk, assigns your program a unique file-
name of the form LN????7.CBL, and inserts a COMPILE command into the control file.
Batch passes the N and P switches to the compiler. The cards are read only up to column
72 and trailing spaces up to column 72 are not copied into your file. A listing file is
produced when the program is compiled. This listing is printed as part of the job’s output.

24.3 The SDATA Card

You put a 8DATA card in front of the data for your program to make Batch copy it into
a disk file and to insert an EXECUTE command into your control file. When your job is
run, any programs that were entered with SALGOL, $COBOL, $FORTRAN, or SMACRO
cards that came before the $SDATA card, are executed. Every time that Batch reads one
of the $-language cards, it adds it to a list that it keeps. When it then reads a $DATA
card, each program in Batch’s list is put into the EXECUTE command string that the
SDATA card puts into the control file. When Batch reads another $-language card after
the SDATA card, Batch clears its list so that it can start a new list for programs entered
later. If you have more than one set of data for a program or programs, you can precede
each set with a $DATA card to put two EXECUTE commands into the control file to
run your program or programs twice. An EXECUTE command following another EXE-
CUTE command in the control file without intervening $-language cards causes the pro-
grams executed by the first EXECUTE command to be loaded and executed again.

If your data is included in the program so that you do not have cards with data on them,
you can use the SEXECUTE card (Paragraph 2.4.7) to insert an EXECUTE command into
the control file.

The form of the $DATA card is:

SDATA filename.ext/switches

filename.ext specifies the optional filename and extension that you can tell Batch
to put on the file that it creates for your data. If you omit the file-
name and extension, Batch will create a unique name for your file
and add the extension .CDR to it.

[switches are switches to Batch to tell it how to read your data cards. The
switches are described below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data. You can make Batch
stop reading at a specific column by means of the /WIDTH switch, in. which you indicate
the number of a column at which to stop. Thus, if you have no useful information in the
last ten columns of each card of your data, you can tell Batch to read only up to column
70 by specifying

/WIDTH:70

on the $DATA card.

/SUPPRESS Switch

When Batch reads the cards of your data, it normally copies everything on the card up to
column 80 or up to any column you may specify on the /WIDTH switch. However, if
you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk file.

/MAP
If you want a loader map to be generated and printed for you when your program is run,
you can specify the /MAP switch on the $DATA card to tell Batch to request one for you
within the EXECUTE command it places in your control file.
Examples
The simplest form of the $DATA card is:
$SDATA

This card causes Batch to copy your data into a file and to assign a unique name and the
extension .CDR to it. All 80 columns of the cards are read and trailing spaces are copied
into the file.

The following example shows a $SDATA card with switches.
SDATA MYDAT.DAT/WIDTH:72

The data that follows this card is copied into a file named MYDAT.DAT and an EXE-
CUTE command is inserted into the control file. When Batch reads the cards of the data,
it reads only up to column 72 and copies trailing spaces into the data file.

2.4.3.1 Naming Data Files on the SDATA Card — If you want to name your data file on
the SDATA card rather than letting Batch name it for you, you must, in your program,
assign that file to disk as shown in the following examples.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO DSK.

DATA DIVISION.
FILE SECTION.
FD SALES, VALUE OF IDENTIFICATION IS “SALES CDS”.

2-16

The $DATA card would then appear as follows.

SDATA SALES.CDS

FORTRAN Examples
You can assign your data to disk in several ways when you use FORTRAN. You can read

from unit 1, which is the disk, in your program and use the name FORO1.DAT as the
filename on your $DATA card, as shown in the following statements.

READ (1,f), list

SDATA FOR01.DAT
You can also tell FORTRAN to read from logical unit 2, which is normally the card

reader, and assign unit 2 or the card reader (CDR) to disk (DSK). You can use the name
FORO02.DAT on the $DATA card in this case.

READ (2.0), list

'ASSIGN DSK CDR (in the control file)
SDATA FOR02.DAT

You can also use a specific disk device such as DSKO as the unit from which you will read.
In the control file, you would then assign DSKO to DSK. The unit number of DSKO is
20 and thus the name on the $DATA card would be FOR20.DAT.

READ (20,f), list

ASSIGN DSK DSKO (in the control file)
SDATA FOR20.DAT

2-17

ALGOL Example

To read your data from the disk in an ALGOL program, you would use the following
statements. You can assign your data to any channel (signified by c¢) and you can give
your data file any name as long as the name that you use in your program is the same
as that put on the $DATA card.

INPUT (c, “]jSK”)
SELECT INPUT (c)
OPENFILE (c, “MYDAT.DAT")

SDATA MYDAT.DAT

This is to ensure that your program finds your data in the disk file under the name that
you have assigned to it.

If you let Batch assign a name to your data file, you will not know the name that your
data file will have and should therefore assign your data file, without a name, to the card
reader. Batch will tell the monitor in this case to look for your data in a disk file when
your program wants to read it. The following examples illustrate how to do this.

COBOL Example

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
SELECT SALES, ASSIGN TO CDR.

DATA DIVISION.
FILE SECTION.
FD SALES, LABEL RECORDS ARE OMITTED.

FORTRAN Example

To read your data from the card reader, you use the unit number 2 or no unit number, as
shown below.

READ (2.f), list

END
SDATA

READ f, list

END
SDATA

ALGOL Example

In an ALGOL program, you would assign the desired channel (signified by c) to the card
reader, select the desired channel, but you would not explicitly open the named file on
the channel because the file does not have a name that is known to you.

INPUT (¢, “CDR”)
SELECT INPUT (c)

$DATA

The $DATA card cannot be used for data for programs written in languages other than
ALGOL, BLISS, COBOL, FORTRAN, and MACRO. It can, however, be used for pro-
grams that are in relocatable binary form. Thus, data for BASIC programs cannot be
copied by means of the $SDATA card; you should instead use the $DECK card, described
below.

2-19

2.4.4 The SDECK Card

You can put the $DECK card in front of any program, data, or other set of information
to make Batch copy the program, data, or information into a disk file. Batch (by means
of the appropriate switch or switches) will also insert commands into the control file to
have your program, data, or information printed, plotted and/or punched on cards and/or
paper tape.

The form of the SDECK card is:

$SDECK filename,ext/switches

filename.ext specifies the optional filename and extension that you can tell
Batch to put on the file that it creates for your program or data.
If you omit the filename and extension, Batch will create a unique
name for your file.

/switches are switches to Batch to tell it how to read and write the cards in
your deck. The switches are described below.
/WIDTH:n Switch
Normally, Batch reads up to 80 columns on every card in your deck. You can make Batch
stop reading at a specific column by means of the /WIDTH switch, in which you indicate
the number of a column at which to stop. Thus, if you have no information in the last
10 columns of each card in your deck, yvou can tell Batch to read only up to column 70
by specifying
/WIDTH:70

on the $DECK card.

2-20

J/SUPPRESS Switch
When Batch reads the cards in your deck, it normally copies everything on the card up to
column 80 (or up to any column you may specify on the /WIDTH switch). However, if
you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk file.
J/CPUNCH

Batch will place the file it has just created on disk into the card-punch output queue.

/PLOT

Batch will place the file it has just created on disk into the plotter output queue.

/PRINT

Batch will place the file it has just created on disk into the line-printer output queue.

/TPUNCH

Batch will place the file it has just created on disk into the paper-tape punch output queue.

Examples

The simplest form of the $DECK card is:

SDECK
This card causes Batch to copy your deck into a disk file and to assign a unique name to
it. All 80 columns of the cards are read and trailing spaces are copied into the file. The
file is not placed into any output queue.
The following shows an example of a $DECK card.

$DECK MYDECK.CDS/WIDTH:50/PRINT
The deck that follows this card is copied into a disk file named MYDECK.CDS. When
Batch reads the cards in the deck, it reads up to column 50 and copies trailing spaces into

the file. The disk file created from your cards will be placed in the line-printer output
queue.

2-21

2.4.5 The SEOQJ Card

You must put the $EQJ card at the end of the deck containing your complete job to tell
Batch that it has reached the end of your job. If you omit the $EOJ card, an error mes-
sage will be issued unless it is the practice of your installation to have the operator put the
card on any deck that does not have one. However, your job will still be scheduled. The
form of the $EOJ card is shown below.

$ECJ

2.4.6 The SERROR Card

You can use the SERROR card and the SNOERROR card (described later in this Chapter)
to specify error recovery in the control file. When Batch reads the $ERROR card, it inserts
a special Batch command into the control file, the .IF (ERROR) command. This command
will later tell Batch what to do when an error occurs when your job is being processed.
How to perform error recovery is described in Section 2.5.

The SERROR card has the form:

$ERROR statement

2-22

statement is a command to the monitor, to a system program or a special
Batch command such as .GOTO or .BACKTO.

Batch enters an .IF (ERROR) command into the control file when it reads the SERROR
card, and includes the statement from the SERROR card in the .IF (ERROR) command
in the form:

IF (ERROR) statement
The Batch commands .GOTO and .BACKTO have the forms:

.GOTO statement label
BACKTO statement label

statement label is the label of a line in the control file. The label can contain from
one to six alphabetic characters and must be followed by a double
colon (::) when it is labelling a line.

The .GOTO command tells Batch to search forward in the control file on disk until it finds
the line containing the label. The .BACKTO command tells Batch to search back in the
control file on disk to fine the line containing the label. .BACKTO initiates the search at
the beginning of the control file. You must supply the labelled line and any related lines
for which Batch will search. Include these lines in your card deck where you want them
to be copied into the control file. If Batch cannot find a labelled line that it is searching
for as a result of a .GOTO or a .BACKTO statement, it terminates your job.

2.4.7 The SEXECUTE Card

The $EXECUTE card is used to place an EXECUTE monitor command into your control
file. It is similar in function to a $DATA (Paragraph 2.4.3) only the SEXECUTE card
does not have a data deck following it. This card is used when there is no data or when
your data already exists on disk. The files to be placed in the EXECUTE command string
generated by the SEXECUTE card are determined in the same way that they are for a
$DATA card. The form of the SEXECUTE card is shown below.

SEXECUTE/switch

2-23

[switch is a switch to Batch to tell it what to include in the command
it inserts in the control file.

/MAP

If you want a loader map to be generated and printed for you when your program is run
you can specify the /MAP switch on the SEXECUTE card to tell Batch to request one
for you within the EXECUTE command it places in your control file.

2.4.8 The SFORTRAN and $F40 Cards

You place the SFORTRAN or $F40 card in front of your FORTRAN program to make
Batch copy your program into a disk file, create a unique filename of the form LN?7???
with the extension .FOR (or .F4), and insert a COMPILE command into your control file.
The SFORTRAN card is used when you want a FORTRAN-10 program compiled, and the
$F40 card is used when you want an F40 program compiled. You can put some optional
information on the $FORTRAN or $F40 card to tell Batch more about your program or
the cards that your program is punched on.

The SFORTRAN card has the form:

/sFORTRAN (switches) /switches

The $F40 card has the same format. The only difference is that you punch $F40 rather
than SFORTRAN.,

(switches) are switches that Batch passes to the FORTRAN compiler when it
puts the COMPILE command in the control file. These switches
must be enclosed in parentheses, must not be preceded by slashes,
and may or may not be separated by commas. The switches for
the FORTRAN compilers are described in Table C-1 in Appendix
C of the DECsystem-10 FORTRAN-10 Language Manual (DEC-10-
LFORA-B-D) and in Table 12-1 in Chapter 12 of the DECsystem-10
FORTRAN IV Programmer’s Reference Manual (DEC-10-LFLMA-
B-D).

2-24

/WIDTH:n Switch
Normally, Batch reads up to 80 columns on every card of the FORTRAN program. You
can make Batch stop reading at a specific column by means of the JWIDTH switch, in
which you include the number of the column at which to stop. The FORTRAN compiler

only reads FORTRAN statements up to column 72, even if you tell Batch to read up to
column 80. But, if you wish to read only up to column 60, you can specify

JWIDTH:60

on the $SFORTRAN or $F40 card.

/SUPPRESS Switch
When Batch reads the cards of your FORTRAN program, it normally copies everything on
the card up to column 80 (or up to any column you may specify in the /WIDTH switch).
However, if you do not want trailing spaces copied (to save space on the disk, for example),
you can tell Batch, by means of the /[SUPPRESS switch, not to copy any trailing spaces
into the disk file.

JCREF Switch

If you want a cross-reference listing of your FORTRAN program, you can include the
JCREF switch on the SFORTRAN or $F40 card to tell Batch to ask the FORTRAN com-
piler to produce a cross-reference listing when it compiles your program. This listing is
printed as part of your job’s output.

/NOLIST Switch
Normally, the SFORTRAN or $F40 card tells Batch to ask the compiler to generate a
compilation listing of your FORTRAN program. The listing is then printed as part of

your job’s output. If you do not want this listing, you can include the /NOLIST switch
on the SFORTRAN or $F40 card to stop generation of the listing.

Examples
The simplest form of the SFORTRAN card is:
$FORTRAN
The simplest form of the $F40 card is:

SF40

2-25

The SFORTRAN or $F40 card tells Batch to copy your program into a disk file and
assign a unique name and the extension. The extension will be .FOR when you use the
SFORTRAN card, and it will be .F4 when you use the $F40 card. All 80 columns of
the cards are read, trailing spaces are copied, and a listing file is produced when the job
is run. No switches are passed to the compiler. The listing is printed as part of the job’s
output.,

The following is an example of a SFORTRAN and $F40 card with switches.

SFORTRAN (I,M)/CREF/WIDTH:72
or
$F40 (I,M)/CREF/WIDTH:72

With this card, Batch copies your program onto disk, assigns your program a unique file-

trol file. Batch passes the I and M switches to the compiler. The cards are read only up
to column 72 and trailing spaces up to column 72 are copied into your file. A cross-
reference listing of your program will be generated.

2.49 The $JOB Card

You must include the $JOB card as the first card in your deck or as the second card fol-
lowing the SSEQUENCE card, which is described later in this chapter.

The $JOB card tells Batch whose job it is processing and, optionally, the name of the job,
and any constraints that you want to place on the job. When Batch reads the $JOB card
and the SPASSWORD card, if it is required, it creates the control file and begins the log
file for your job. Batch then places into the control file the commands that are taken
from the cards that follow the $JOB card.

The $JOB card has the form:

$J0Bname [proj,prog] /switches

2-26

name is the optional name that you can give to the job. If you omit the
name, Batch will create a unique name for your job. The name of
the job is that which Batch gives to your control file and log file.
To the job name, Batch adds the extension .CTL for the control
file. It adds the extension .LOG to the name for the log file.

[proj,prog] is your project-programmer number; i.e., the number that you were
assigned by the installation to allow you fo gain access to the
DECsystem-10. Normally, the project-programmer number is two
numbers separated by a comma and enclosed in square brackets.

[switches are switches to Batch to tell it the constraints that you have placed
on your job. They are described below.

/AFTER:dd-mmm-yy hh:mm Switch

If you do not want Batch to run your job until after a certain time on a certain day, you
can include the /AFTER switch on your $JOB card. The date and time are specified in
the form dd-mmm-yy hh:mm (e.g., 20-MAY-72 02:15). If this switch is not included,
Batch runs your job at the time that it would normally schedule such a job, based on its
size, the amounts of core and time required, and other parameters.

JAFTER :+hh:mm Switch

If you do not want Batch to run your job until after a certain amount of time has elapsed
since the job was entered, include this form of the /AFTER switch on the $JOB card.
The amount of time that the job must wait after it has been entered is specified in the
form +hh:mm (e.g., +1:30). If this switch is not included, Batch will schedule the job as
it normally does.

NOTE

If any of the programs in your job have output

to slow-speed devices such as the card punch, the
paper-tape punch, the line printer, and the plotter,
do not include an ASSIGN command in your job.
Batch will take care of this output for you as long
as you specify the switches for these devices, which
are described below.

/CARDS:n Switch
If any program in your job has punched card output, you must include the /CARDS switch

on the $JOB card to specify the approximate number of cards that your job will punch.
Up to a maximum of 10,000 cards can be specified in the form n (where n represents a

2-27

decimal number from 1 to 10,000). If you do not specify the [CARDS switch, no cards
will be punched, even if you want them. If you do not specify enough cards, the re-
maining output over the number of cards specified will be lost without notification to you.

/CORE:nK Switch

You can specify the amount of core in which the programs in your job will run by means
of the /CORE switch. You specify the amount of core in the form n or nK (e.g., 25 or
25K). You should try to estimate as closely as possible the amount of core that your job
will need. If you do not specify enough, your job cannot run. If you do not specify the
amount of core that your job will need, Batch will assume 25K or an amount set by the
installation,

JCORE:nP Switch

You can also specify the amount of core your job will need in pages, up to the maximum
allowed by the installation. You specify the amount of core in the form nP (e.g., 60P).

If you do not specify the amount your job will need, Batch will assume 50P or an amount
set by the installation.

/DEADLINE:dd-mm-yy hh:mm

If you want your job to be completed by a specified date and time, you can include the
/DEADLINE switch on your $JOB card. The date and time are specified in the form
dd-mm-yy hh:mm. Hours are specified using a 24 hour clock. The resulting DEADLINE
time must be greater than the AFTER time. If this switch is not included, Batch com-
pletes your job in the time it normally would, based on the job size and other parameters.

/DEADLINE:+hh:mm

If you want Batch to start your job by a specified time, you can include this form of the
/DEADLINE switch on your $JOB card. You enter the time in the form +hh:mm (e.g.,
+10:15 which means, start this job after ten hours and fifteen minutes have passed). If
this switch is not included, Batch will schedule the job as it normally does.

J/FEET:n Switch

If any program in your job has punched paper-tape output, you must include the /FEET
switch on the $JOB card to specify the approximate number of feet of paper tape that
your job will punch. You specify the number of feet in the form n (e.g., 50). If yvou do
not specify the /FEET switch, no paper tape will be punched, even if you want it. If you
do not specify enough paper tape, the output that remains over the number of feet that
you specify will be lost and the message 7TO0UTPUT FORMS LIMIT EXCEEDED will be

punched in block letters on the tape.

2-28

/NAME:name Switch

You can include your name by inserting this switch on your $JOB card. Your name can
be up to 12 characters, and it can also be a quoted string. This switch is optional unless
your installation requires it. If it is required, then the name you insert must match the
name in the accounting files of your installation.

/PAGES:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in this number are
the log file and any compilation listings that you may request. If you need more than
200 pages for your job, you must include the /PAGES switch on the $JOB card to indi-
cate the approximate number of pages that your job will print. If your output exceeds
either the maximum that Batch allows or the number that you specified in the /PAGES
switch, the excess output will not be printed and the message 7OUTPUT FORMS LIMIT
EXCEEDED will be written in the log file. However, even if you exceed the maximum,
the first ten pages of the log file will be printed.

JTIME:hh:mm:ss Switch

Normally, Batch allows your job to use up to five minutes of central processor time.
Central processor (CPU) time is the amount of time that your job runs in core, not the
amount of time that it takes Batch to process your job. If you need more than five
minutes of CPU time, you must include the /TIME switch on the $JOB card to indicate
the approximate amount of time that you will need. If you do not specify enough time,
Batch will terminate your job when the time is up. However, if you specify a large
amount of time, Batch may hold your job in the queue until it can schedule a large
amount of time for it.

The value in the /TIME switch is given in the form hh:mm:ss (hours:minutes:seconds).
However, if you specify only one number, Batch assumes that you mean seconds. Two
numbers separated by a colon (:) are assumed to mean minutes and seconds. Only when
you specify all three numbers, separated by colons, does Batch assume that you mean
hours, minutes, and seconds.

J/TIME:25 means 25 seconds
[TIME:1:25 means 1 minute and 25 seconds
J/TIME:1:25:00 means 1 hour and 25 minutes

/TPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include the
JTPLOT switch on the $JOB card so that your output will be plotted. If the /TPLOT
switch is not included, no output will be plotted. If enough minutes (specified in the
form t) are not specified, any plotter output left after the time has expired will be lost
without notification to you.

2-29

The following rules apply to all switches in the above list that require a time and/or date
to be specified:

When you specify the time of day (hh:mm:ss)
1. You must not omit the colon (:) or colons.
When you specify a date (dd-mm-yy)
1. You must not omit the hyphens.
2. You must specify both the day and the month as a minimum requirement.

3. You can abbreviate the month to 3 letters or use the numeric representation of
the month (e.g., JUL and 7 both indicate July).

4. If you omit the year, the date (and its associated time, if present) will be inter-
preted to mean the next occurrence of that date (and time).

5. If you omit the time from a date specification, the time is assumed to be mid-
night on the specified date. In the example below the current date of 5-DEC-74
will be assumed.

JAFTER:20-DEC-74 means midnight on December 20, 1974.
/DEADLINE:19-Jan 20:00 means 8 P.M. on January 19, 1975.
/DEADLINE:19-1 20:00 means 8 P.M. on January 19, 1975.

2.4.10 The SMACRO Card

You place a SMACRO card in front of your MACRO program to make Batch copy your
program into a disk file, create a unique filename in the form of LN???? with the exten-
sion MAC, and insert a COMPILE command into your control file. Thus, when Batch
runs your job, your MACRO program will be assembled. You can put some optional
information on the SMACRO card to tell Batch more about your program or the cards
that your program is punched on.

The SMACRO card has the form:

/ SMACRO (switches) /switches

2-30

(switches) are switches that Batch passes to the MACRO assembler when it puts
the COMPILE command in the control file. The switches must be
enclosed in parentheses, must not be preceded by slashes, and may
or may not be preceded by commas. The switches for the MACRO
assembler are described in Table 4-1 in Chapter 4 of the DECsystem-
10 MACRO-10 Assembler Programmer’s Reference Manual (DEC-10-
LMCOA-A-D).

/switches are switches to Batch to tell it how to read your program and whether
or not to request a compilation listing when the program is compiled.
The switches can be put on the card in any order and are described
below.

/WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your MACRO program. You
can make Batch stop reading at a specific column by means of the /WIDTH switch, in
which you include the number of the column at which to stop. Thus, if you wish to have
Batch read only up to column 70, you can specify

/WIDTH:70

on the SMACRO card.

/SUPPRESS Switch

When Batch reads the cards of your MACRO program, it normally copies everything on the
card up to column 80 (or up to any column you may specify on the /WIDTH switch).
However, if you do not want trailing spaces copied (to save space on the disk, for example),
you can tell Batch, by means of the /[SUPPRESS switch, not to copy any trailing spaces
into the disk file.

JCREF Switch

If you want a cross-reference listing of your MACRO program, you can include the /CREF
switch on the SMACRO card to tell Batch to ask the MACRO assembler to produce a
cross-reference listing when it assembles your program. This listing is printed as part of
your job’s output.

/NOLIST Switch

Normally, the SMACRO card tells Batch to ask the assembler to generate an assembly
listing of your MACRO program. This listing is then printed as part of your job’s output.
If you do not want this listing, you can include the /NOLIST switch on the SMACRO
card to stop generation of the listing.

2-31

Examples

The simplest form of the SMACRO card is:

SMACRO
This card tells Batch to copy your program into a disk file and assign a unique name and
the extension .MAC to it. All 80 columns of the cards are read, trailing spaces are copied,
and a listing file is produced when the job is run. The listing is printed as part of the
job’s output. No switches are passed to the assembler.
The following is an example of a SMACRO card with switches.

SMACRO (P,Q,X)/WIDTH:72
With this card, Batch copies your program onto disk, assigns your program a unique file-
Batch passes the P, Q, and X switches to the assembler. The cards are read only up to
column 72 and trailing spaces are copied into your file. An assembly listing is generated.

2.4.11 The SNOERROR Card

You can use the SNOERROR card and the SERROR card (described in Section 2.4.6) to
specify error recovery in the control file.

When Batch reads the SNOERROR card, it inserts a special Batch command into the con-
trol file, the .IF (NOERROR) command. This command tells Batch what to do when an
error occurs when your job is being processed. How to perform error recovery is described
in Section 2.5.

The SNOERROR card has the form:

SNOERROR statement

statement is a command to the monitor or a special Batch command such as
.GOTO or .BACKTO.

2-32

Batch enters an .IF (NOERROR) command into the control file when it reads the
$NOERROR card, and includes the statement from the SNOERROR card in the .IF
(NOERROR) command in the form:

JF (NOERROR) statement
The Batch commands .GOTO and .BACKTO have the forms:

.GOTO statement label
BACKTO statement label

statement label is the label of a line in the control file. The label can contain from
one to six alphabetic characters and must be followed by a double
colon (::) when it is labelling a line.

The .GOTO command tells Batch to search forward in the control file until it finds the line
containing the label. The .BACKTO command tells Batch to search back in the control
file to find the line containing the label. .BACKTO initiates the search at the beginning of
the control file. You must supply the labelled line and any related lines for which Batch
will search. Include these lines in your card deck where you want them to be copied into
the control file. If Batch cannot find a labelled line that it is searching for as a result of

a .GOTO or a .BACKTO statement, it terminates your job.

2.4.12 The SPASSWORD Card

You put the password that has been assigned to you on the SPASSWORD card to tell
Batch that you are an authorized user of the system.

In conjunction with the $JOB card, the SPASSWORD card identifies you to Batch and
tells Batch to create the control file and log file for your job. If you put a password on
the SPASSWORD card that does not match the password stored in the system for you,
Batch will not create any files and will terminate your job. Some installations may not
require the SPASSWORD card; if it is required at your installation, you must put it
immediately after the $JOB card.

The $PASSWORD card has the form:

/ $PASSWORD password

2-33

password is a one to six character password that is stored in the system to
identify you. There must be exactly one space between the end of
the card name ($PASSWORD) and the first character of your pass-
word.

2.4.13 The $SEQUENCE Card

You can use the $SEQUENCE card to specify a unique sequence number for your job.
This card may or may not be required by the installation or may be supplied by the
personnel at the installation. If the card is required, you must include it as the first card
in the deck containing your job.

The form of the $SEQUENCE card is:

$SEQUENCE n

n is the unique sequence number assigned to your job.

2.4.14 The STOPS10 Card

You can include monitor commands and Batch commands in your card deck by inserting
a $TOPS10 card immediately before these commands. The $TOPS10 card directs Batch
to copy all cards following it into the Batch control file. Therefore, a single monitor or
Batch command or a group of consecutive monitor and/or Batch commands must be pre-
ceded by a $TOPS10 card. The copying process is terminated by the next control card
in the deck.

2-34

The form of the $TOPS10 card is:

STOPS1@/switches

[switches are switches to Batch to tell it how to read and interpret your
input.

[WIDTH:n Switch

Normally, Batch reads up to 80 columns on every card of your data. You can make Batch
stop reading at a specific column by using the /WIDTH switch, in which you indicate the
column number at which Batch is to stop reading. Thus, if you have no useful information
in the last ten columns of each card of your data, you can tell Batch to read only up to
column 70 by specifying

/WIDTH:70

on the $TOPS10 card.

/SUPPRESS Switch

When Batch reads the cards of your data, it normally copies everything on the card up to
column 80 or up to any column you may specify on the /WIDTH switch. However, if
you do not want trailing spaces copied (to save space on the disk, for example), you can
tell Batch, by means of the /SUPPRESS switch, not to copy any trailing spaces into the
disk file.

2.5 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

Normally, when an error occurs in your job, Batch terminates the job and, if the error
occurred when one of your programs was running, causes a dump of your core area. The
dump is printed with your output and log file. You can specify recovery from errors

in the control file by means of the SERROR and $SNOERROR cards, described in Sec-
tions 2.4.6 and 2.4.11. You must include one of these cards at the point in the control

2-35

file that an error may occur. When an error occurs, Batch examines the next monitor-level
line (i.e., not a line that contains data or a command string to a system program) to find
an IF (ERROR) statement to tell it what to do about the error. If an error does not
occur and an .IF (ERROR) statement is present, the .IF (ERROR) statement is not exe-

cuted.

Thus, if you have a program that you are not sure is error-free, you can include a $ERROR
or $NOERROR card to tell Batch what to do if an error occurs, as shown in Figure 2-8.

$FORTRAN

SPRASSWORD

$JOB

SSEQUENCE

Figure 2-8
The above cards would cause Batch to make the following entries in the control file.

LCOMPILE . ..
JF (ERROR) statement

On either the $SERROR or $SNOERROR card, you must include a statement that tells
Batch what to do. You can use any monitor command, a command to a program, or
one of the special Batch commands. The .GOTO and .BACKTO commands are two
Batch commands for this purpose. Refer to Section 2.4.6 for descriptions of these

2-36

commands. Be sure, if you use .GOTO or .BACKTO on your $SERROR or SNOERROR
card, that you supply a line for the control file that has the label that you specified in
the .GOTO or .BACKTO commands.

Two sample jobs are shown below, The first shows using SERROR and the .GOTO com-
mand to specify error recovery. The second example shows the use of the SNOERROR
card and the .GOTO command.

If you have a program that you are not sure will compile without errors, you can include
another version of the same program in your job (that hopefully will compile) and tell
Batch to compile the second program if the first has an error. The cards to enter this
job are shown in Figure 2-9.

These cards set up the following control file for you.

JF (ERROR) .GOTO A

EXECUTE LN????.REL /MAP:MAP.LST
.GOTO B

A:: ICONTINUE

EXECUTE LN?222.FOR
B:: ICONTINUE

The $SFORTRAN card told Batch to copy the program into a disk file, to create a unique
filename for the program in the form LN?7??.FOR, and to insert a COMPILE command
into the control file. The SERROR card told Batch to insert .IF (ERROR) .GOTO A
into the control file. The data was copied into a disk file and an EXECUTE command
was put into the control file because of the $DATA card. The $TOPS10 card told Batch
to start copying cards into the control file, so Batch put the next two lines into the con-
trol file. The second $SFORTRAN card told Batch to copy the program into a disk file,
create a unique filename for the program in the form LN????.FOR, and put a COMPILE
command into the control file. A $SEXECUTE card was used instead of a $DATA card
because the data was already in a file on disk. The next line was put into the control
file.

When the job is started, Batch reads the control file and passes commands to the monitor.
If an error occurs in the compilation of the first program, Batch finds the .IF statement
and executes the .GOTO command contained in it. The command tells Batch to look for
the line labelled A, which contains a comment, so Batch goes on to the next line. The
second program is compiled and then executed with the data. The next line is a comment,
so Batch continues to the end of the control file. If an error does not occur in the first
program, Batch skips the .IF statement, executes the program with the data, skips the
unnecessary error procedures, and continues to the end of the control file.

A variation of the above procedure is shown in Figure 2-10 using the SNOERROR card

and the .GOTO command. The difference is that Batch skips the .IF statement if an
error occurs, and performs it if an error does not occur.

2-37

SEQJ

B:: !CONTINUE

SEXECUTE

FORTRAN SQURCE PROGRAM

SFORTRAN

A

: |CONTINUE

STOPS1@

$FORTRAN

SPASSWORD ABCD

$JOB[4,77743]

$SEQUENCE 181

Figure 2-9

2-38

SEOJ

B:: | CONTINUE

.EXECUTE

A:: ICONTINUE

LGOTO B

EXECUTE

STOPS1@/switches

SF44

SNOERROR .GOTO A

RTRAN SOURCE PROGRAM

SF4Q

SPASSWORD RBCD

5J0B[27,77743]

SSEQUENCE 141

Figure 2-10

2-39

Batch reads the cards and puts the following commands into the control file.

.COMPILE /COMPILE LN????.FOR /LIST
IF (NOERROR) .GOTO A

EXECUTE LN????.FOR
.GOTO B

A:: ICONTINUE
.EXECUTE LN?7??.FOR
B:: ICONTINUE

The SFORTRAN card tells Batch to copy the FORTRAN program into a file, to create
a unique filename of the form LN????.FOR, and to insert a COMPILE command into
the control file. The SNOERROR card tells Batch to insert an .IF command into the
control file.

The second SFORTRAN card tells Batch to copy the second program into a disk file, to
create a unique filename of the form LN???2.FOR and to insert another COMPILE com-
mand into the control file. Instead of a SDATA card, a SDECK card is used to tell Batch
to copy the data into a disk file named FORO1.DAT. The $DATA card is not used here.
because it would have the names of both programs in its list for the EXECUTE command
generation, which would cause an error when the job is run. To tell Batch to start copy-
ing cards into the control file, the $TOPS10 card comes next. Thus, Batch copies the
next five lines into the control file.

When the job is run, Batch passes the COMPILE command to the monitor to compile the
first program. If an error does not occur, the .IF command is read and the .GOTO com-
mand is executed. Batch skips to the line labelled A, which is a comment, and continues

end of the job is reached. If an error occurs, Batch skips the .IF statement and continues
reading the control file. The second program is compiled and then executed with the data.
Batch is then told to go to the line labelled B, which is a comment line. The end of the
job follows. The EXECUTE monitor command was used in this job rather than the
SEXECUTE card. The SEXECUTE card would have caused the names of both programs
to be included in the EXECUTE command which would have resulted in an error when
the job was run,

The examples shown above illustrate only two ways that you can specify error recovery
in the control file. You can use the .BACKTO command or any monitor command that
you choose to help you recover from errors in your job.

You do not have to attempt to recover from errors while your job is running. You can
correct your errors according to the error messages in the log file when your job is re-
turned to you, and then run your job again. You can find a complete list of error mes-
sages in Chapter 4 of the DECsystem-10 Operating System Commands manual. Batch
will also print a dump of your core area if an error occurs while your job is running and
you have not specified error recovery. If you can read dumps, this can also aid you to
correct your errors. The log file and dumps are described in Chapter 4.

2-40

CHAPTER 3

ENTERING A JOB TO BATCH FROM A TERMINAL

When you enter a job to Batch from a timesharing terminal, you must create a control
file that Batch can use to run your job. The control file contains all the commands that
you would use to run your job if you were running under timesharing. For example, if
you wanted to compile and execute a program called MYPROG.CBL, the typeout would
appear as follows:

.COMPILE MYPROG.CBL (Your request)
COBOL: MAIN[MYPROG]

EXIT The system’s reply
.EXECUTE MYPROG.CBL (Your request)
LOADING

LOADER 1K CORE

EXECUTION The system’s reply
EXIT

The control file to tell Batch to run the same job appears as the following:

.COMPILE MYPROG.CBL
.EXECUTE MYPROG.CBL

When the job is run, the commands are passed to the monitor to be executed. The com-
mands and their replies from the monitor are written in the log file so that the entire

dialog shown above appears in the log file.

To create a control file and submit it to Batch from a terminal, you must perform the
following steps:

1. LOGIN to the system as a timesharing user.

2. Write a control file using an editor such as TECO or LINED.

3. When you finish the control file, close and save it on disk.

4. Submit the job to Batch using the monitor command SUBMIT or QUEUE INP:

You can then wait for your output to be returned at the designated place.

3-1

3.1 CREATING THE CONTROL FILE

After you have logged into the system as you normally would to start a timesharing job,
you must run an editor so that you can create your control file.

The control file can contain monitor commands, system program commands, data that
would normally be entered from a terminal, and special Batch commands. The Batch
commands are described in Section 3.3. What you write in the control file depends on
what you wish your job to accomplish. An example of a job that you can enter to Batch
from a terminal is as follows:

1. Compile a program that is on disk.

2. Load and execute the program with data from another disk file.
3. Print the output on the line printer.

4. Write the output into a disk file also.

5. Compile a second program.

6. Load and execute the second program with the data output from the first
program.

7. Print the output from the second program.
The control file that you would write for the above job is as follows:

.COMPILE MYPROG.F4/COMPILE
.EXECUTE MYPROG.F4
.COMPILE PROG2.F4/COMPILE
EXECUTE PROG2.F4

You include statements in your programs to read the data from the disk files and write
the output to the printer and the disk. The output to the line printer is written with
your log file as part of the total output of your job.

If an error occurs in your job, Batch will not continue, but will terminate the job and, if
the error occurs while one of your programs is running, cause a dump to be taken of your
core area. The dump is then printed with your job’s output. To avoid having your job
terminated because an error occurs, you can specify error recovery in the control file using
the special Batch commands. Error recovery is described in Section 3.4.

Any monitor command that you can use in a timesharing job can be used in a Batch job
with the following exceptions. The ATTACH, DETACH, CCONT, CSTART, and SEND
commands have no meaning in a Batch job. If you include one of these commands in
your job, Batch will write the command and an error message into your log file, will not
process the command, and will then continue the job from that point. Do not include a
LOGIN command in your control file because Batch logs the job for you. If you put in a
LOGIN command, your job will be terminated.

3.1.1 Format of Lines in the Control File

Since you can put monitor, system program, and Batch commands, as well as data into
the control file, you have to tell Batch what kind of line it is reading. The format of each
of these lines is described below. Each line normally begins in column 1, but Batch al-
ways starts reading at the first nontab or nonblank character, regardless of the column in
which it appears.

To include a monitor or Batch command, you must put a period (.) in the first column
and follow it immediately with the command. Any information that follows a monitor
command is in the format shown for the command in Chapter 2 of the DECsystem-10
Operating System Commands manual.

If you include a command string to a system program, you must place an asterisk (*) in
column 1 and follow it immediately with the command string. For the format of com-
mand strings, refer to the manual for the specific system program that you wish to use.

If you want to include a command to a system program that does not accept carriage re-
turn as the end of the line (e.g., TECO and DDT), you must substitute an equal sign (=)
for the asterisk so that Batch will suppress the carriage return at the end of the line.

To include data for your program in the control file, write it as you would data that is
read from a separate file. The only restriction on data in the control file is that alphabetic
data that is preceded by a dollar sign ($) must be preceded by an additional dollar sign

so that Batch will not mistake it for its own control command.

If you put any special characters other than those described above in the first column of
the line, you may get unexpected results because Batch interprets other special characters
in special ways. If you want to know about other special characters, refer to Chapter 3
of the DECsystem-10 Operating System Commands manual.

If you have more information than will fit on one line, you can continue on the next line
by placing a hyphen (-) as the last nonspace character on the line to be continued and the
rest of the information on the next line.

Comments can also be included either as separate lines in the control file or on lines con-
taining other information. To include a comment on a separate line, you must put an
exclamation point (!) in column 1 and follow it with the comment. To add a comment to

a line after your data, you must precede the comment with an exclamation point (!). For-
merly, the semicolon (;) was the only character used to indicate the beginning of a comment.
Both the exclamation point (!) and the semicolon (;) are used now for this purpose. How-
ever, you should use the exclamation point (!) for any new jobs submitted to Batch.

3.2 SUBMITTING THE JOB TO BATCH

After you have created the control file and saved it on disk, you must enter it into the
Batch queue so that it can be run. All programs and data that are to be processed when
the job is run must be made up in advance or be generated during the running of the job.
You can have them on any medium but, if they are on devices other than disk, you must
include commands in your control file to have the operator mount the devices on which
your program and data reside.

33

It is reccommended that your programs and as much of your data as is possible reside
on disk. An example of including MOUNT commands in the control file to mount tapes
is shown in Chapter 5.

You enter your job in Batch’s queue by means of the SUBMIT or QUEUE INP: monitor
command. These commands have the forms;

SUBMIT jobname=control filename.ext, log filename.ext/switches
QUEUE INP:jobname=control filename.ext, log filename.ext/switches

jobname is the name that you give to your job. If this name
is omitted, Batch uses the name of the control file.

control filename.ext is the name that you have given to the control file that you
created. You can add an extension, but if you do not, Batch
will assume an extension of .CTL.

log filename.ext is the name that Batch will give the log file when it is created.
You can add an extension, but if you do not, Batch will
assume an extension of .LOG.

You must specify the name of the control file. If the name of the log file is omitted,
its name will be taken from the name of the control file.

[switches are switches to Batch to tell it how to process your job and
what your output will look like. Most switches can appear
anywhere in the command string; however, a few must be
placed after the files to which they pertain. The various kinds
of switches are described below.

Three kinds of switches are available to you to use in the SUBMIT and QUEUE INP:
commands. The switches are: queue operation, general, and file control. Each category
of switch and the switches in each category are described in the following sections.

3.2.1 Queue Operation Switches

Queue operation switches describe the actions that you want Batch to perform with vour
job. Only one of this type of switch can be placed in the command string, and it can
appear anywhere in the command string.

/CREATE Switch

With the /CREATE switch, you tell Batch that you are entering a job into its queue. The
job will then wait in the queue until Batch is ready to process it. If you omit a queue
operation switch from the SUBMIT command string, Batch will assume the /CREATE switch,
i.e., it will assume that you are entering a job. An example of this switch follows.

3-4

SUBMIT MYJOB = MYFILE.CTL, MYLOG.LOG /CREATE

[KILL Switch

You put the /KILL switch in a SUBMIT command to tell Batch that you want to delete

a job that you previously entered into its queue. For example, if you submit a job and
discover that you left a command out of the control file, you could delete the queue entry
by issuing another SUBMIT command for that job with a /KILL switch in it. After you
have corrected the control file, you could resubmit the job to Batch. However, if Batch
has already started to run your job, it will ignore your request to delete the job and issue
the message %QUEUE REQUEST INP:jobname[proj,prog] INTERLOCKED IN QUEUE
MANAGER. When you use the /KILL switch, you must specify the job name in the
SUBMIT command or you will kill all the jobs that you may have in the Batch input
queue,

/MODIFY Switch

If you want to change any switch value that you have previously entered in a /SUBMIT
command, you can include the /MODIFY in a new SUBMIT command to tell Batch which
switch value that you want to change. You can change any switch value that can be en-
tered in a SUBMIT command. The switch value that you want changed is written immedi-
ately after the /MODIFY switch. For example, to change the number of pages in a [PAGE
switch (described below), you could issue the following command.

SUBMIT MYJOB = /MODIFY/PAGE:500

The value specified in the /PAGE switch that follows the /MODIFY switch replaces the
previous value. If Batch has already started the job in which you wish to change a switch,
the /MODIFY switch will be ignored, and Batch will issue the message ZQUEUE REQUEST
INP:jobname[proj.prog] INTERLOCKED IN QUEUE MANAGER.

3.2.2 General Switches

You use the general switches to define limits for your job. Such limits as core, pages of
output, and the time that your job will run can be specified as general switches. Each
general switch can be specified only once in a SUBMIT command, although each can be
modified in subsequent SUBMIT commands by means of the /MODIFY switch. You can
put a general switch anywhere in the command string because it affects the entire job, not
just one file in the job.

JAFTER:hh:mm Switch

If you do not want Batch to run your job until after a certain time or until after a certain
number of minutes have elapsed since the job was entered, you can include the /AFTER
switch in the SUBMIT command string. The time is specified in the form hh:mm (e.g.,
12:15) and the amount of time that the job must wait is specified in the form +hh:mm
(e.g., +1:15). If you omit the switch, or the colon and the value in the switch, Batch will
schedule your job as it normally would.

3-5

NOTE

If any of the programs in your job have output

to slow-speed devices such as the card punch, the
paper-tape punch, the line printer, and the plotter,
do not include an ASSIGN command to your job.
Batch will take care of this output for you as long
as you specify the switches for these devices, which
are described below.

J/CARDS:n Switch

If any program in your job has punched card output, you must include the /CARDS
switch in the SUBMIT command to specify the approximate number of cards that your
job will punch. The number of cards is specified in the form n (e.g.; 1000). If you do
not specify the /CARDS switch, no cards will be punched, even if you want them. If you
specify the switch without the colon and a value, up to 2000 cards can be punched by
your job. If you do not specify enough cards, the output that remains after the limit is
reached will be lost without notification to you.

JCORE:n Switch

You can specify the maximum amount of core in which the program in your job will run
by means of the /CORE switch. You specify the amount of core in the form n (e.g., 25)
which indicates decimal thousands. You should try to estimate as closely as possible the
amount of core that your job will need. If you do not specify enough, your job cannot
run to completion. If you omit the switch, Batch will assume 25K of core or an amount
set by the installation. If you specify the switch without the colon and a value, Batch
will assume 40K of core or an amount set by the installation.

J/FEET:n Switch

If any program in your job has punched paper-tape output, you must include the /FEET
switch in the SUBMIT command to specify the approximate number of feet of paper tape
that your job will punch. You specify the number of feet in the form n (e.g., 50). If

you do not specify the /[FEET switch, no paper tape will be punched, even if you want it.

If you specify the /FEET switch without the colon and a value, Batch will assume the

number of feet equal to 10 times the number of disk blocks that your paper tape output
would occupy plus 20. If you do not specify enough paper tape, the output that remains
after the limit is exceeded will be lost and the message 70UTPUT FORMS LIMIT EXCEEDED
will be punched into the tape in block letters.

/PAGE:n Switch

Normally, Batch allows your job to print up to 200 pages. Included in this number are the
log file and any listings that you may request. If you need more than 200 pages for your

3-6

job, you must include the /PAGES switch in the SUBMIT command to indicate the
approximate number of pages that your job will print. If you include the switch without
the colon and a valu i will print up to 2000 pages. If

your output exceeds either the maximum that Batch allows or the number that you speci-
fied in the /PAGE switch, the excess output will be lost and the message 7OUTPUT FORMS
LIMIT EXCEEDED will be printed. However, even if you exceed the maximum, the first
ten pages of the log file will be printed.

J/TIME:hh:mm:ss Switch

Normally, Batch allows vour job to use up to five minutes of central processor time.

Central processor (CPU) time is the amount of time that your job runs in core, not the
amount of time that it takes Batch to process your job. If you need more than five minutes
of CPU time, you must include the /TIME switch in the SUBMIT command to indicate

the approximate amount of time that you will need. If you specify the switch without

the colon and a value, Batch will assume that you need one hour of CPU time. If you

do not specify enough time, Batch will terminate your job when the time is up.

The value in the /TIME switch is given in the form hh:mm:ss (hours:minutes:seconds).
However, if you specify only one number, Batch assumes that you mean seconds. Two
numbers separated by a colon are assumed to mean minutes and seconds. Only when you
specify all three numbers, separated by colons, does Batch assume that you mean hours,
minutes, and seconds. For example:

[TIME:25 means 25 seconds
[TIME:1:25 means 1 minute and 25 seconds
[TIME:1:25:00 means 1 hour and 25 minutes

JTPLOT:t Switch

If you have any programs in your job that do output to the plotter, you must include

the /TPLOT switch in the SUBMIT command so that your output will be plotted. If the

J/TPLOT switch is not included, no output will be plotted. If you specify the switch with-
out the number of minutes (specified in the form t), Batch will allow output equal to ten

minutes of plotter time. If enough time is not specified, any plotter output left after the

time has expired, will be lost without notification to you.

3.2.3 File-Control Switches

File-control switches allow you to specify parameters for individual files in the SUBMIT
command. The control file can receive a special parameter, while the log file does not,
and vice versa. If you place a file-control switch before the two filenames in the SUBMIT
command, the switch applies to both files in the request. If you place the switch after
one of the files in the command, it refers only to that file.

3-7

/DISPOSE Switch
The /DISPOSE switch can have one of three values:

/DISPOSE:DELETE
/DISPOSE :PRESERVE
/DISPOSE:RENAME

/DISPOSE:DELETE allows you to specify that either the control file or the log file (or
both) should be deleted after the job is run. The log file is deleted from your disk area
only after it has been printed.

/DISPOSE:PRESERVE allows you to specify that one or both of your files should be left
in your disk area after the job is finished and all output printed.

/DISPOSE:RENAME tells Batch that you want the specified file to be taken from your
disk area immediately and put in Batch’s disk area. In the case of the log file,
/DISPOSE:RENAME only works for a log file that already exists on your disk area. Do
not use /DISPOSE:RENAME for a log file that does not yet exist. After the job has been
run and the output has been printed, the file that was renamed is deleted from Batch’s
disk area.

If you omit the /DISPOSE switch, Batch assumes /[DISPOSE:PRESERVE. That is, both
the control file and the log file are saved in your disk area. If you plan to use the con-
trol file again, then it is best to omit the /DISPOSE switch for the control file. If you

do not want to keep the control file because you do not have enough room in your disk
area, specify either /DISPOSE:DELETE or /DISPOSE:RENAME. /DISPOSE:DELETE will
cause the control file to stay in your disk area until after the job is finished and then be
deleted. /DISPOSE:RENAME will cause Batch to immediately move your control file to
its own disk area where it will stay until the job is finished, at which time it will be de-
leted. You should use /DISPOSE:RENAME when you will be over your logged-out quota
if the control file remains in your disk area when you log off the system,

Unless you have some use for the copy of the log file that will remain in your disk area
even after it has been printed, use the /[DISPOSE:DELETE switch to have the log file
deleted after it is printed. If you do not delete the log file and you run the job again
using the same log filename, your new log file will be appended to the old log file and
they will both be printed as part of the new job.

The switches, and the assumptions made if they or their values are omitted, are all sub-
ject to change by each installation. Check with the installation where you run your jobs
to find out what differences exist between the values described here and those at the
installation. Additional switches are available for use with the SUBMIT command. For
information about these switches, refer to the SUBMIT command in Chapter 2 of the
DECsystem-10 Operating System Commands manual (DEC-10-MRDD-D). You can obtain
further information about Batch in Chapter 3 of the aforementioned manual.

3-8

3.2.4 Examples of Submitting Jobs

The following are sample jobs that are entered to Batch by means of the SUBMIT com-
mand. The jobs are shown in the following order.

1. Creating the control file.
2. Submitting the job to Batch using the SUBMIT command.
The control file consists of a command to compile the F40 program and execute it.

.COMPILE MYPROG.F4 /LIST/COMPILE
EXECUTE MYPROG.F4

After the control file to compile and execute the FORTRAN program has been written
and saved, you must submit the job to Batch.

SUBMIT MYFILE
When Batch reads this SUBMIT command, it assumes the following:
1. The control filename and extension are MYFILE.CTL.
2. The name of the job is MYFILE.
3. The log file will be named MYFILE.LOG.

4. Both the control file and the log file will be saved in your disk area
(/DISPOSE:PRESERVE).

5. An entry is being created in Batch’s queue (/CREATE).

6. No cards will be punched by the job (/CARDS:0).

7. The maximum amount of core to be used to run the job is 25K (/CORE:25).
8. No paper tape will be punched (/FEET:0).

9. 200 is the maximum number of pages to be printed (/PAGE:200).
10. The maximum amount of CPU time is 5 minutes (/TIME:5:00).
11. No plotter time will be used (/TPLOT:0).

The next example shows the control file that was created at the beginning of this chapter
being submitted to Batch.

.COMPILE MYPROG.F4/COMPILE
EXECUTE MYFILE.F4

.COMPILE PROG?2.F4/COMPILE
EXECUTE PROG2.F4

3+

After you have saved the control file, you must submit the job to Batch.

SUBMIT MYSELF = MYFILE.CTL MYFILE.LOG/DISPOSE:DELETE/TIME: 20: 00/CARDS:500

When Batch reads this request, it assumes the following:

1. The name of the job is MYFILE.

2. The name of the control file is MYFILE.CTL.

3. The log file will be named MYFILE.LOG.

4. An entry is being created in Batch’s queue (/CREATE).

5. The log file will be deleted after it is printed (/DISPOSE:DELETE).

6. The control file will be saved in your disk area (/DISPOSE:PRESERVE).
7. A maximum of 500 cards can be punched by the job (/CARDS:500).

8. The maximum amount of core that can be used is 25K (CORE:25).

9. No paper tape will be punched by the job (/FEET:0).
10. 200 is the maximum number of pages that can be printed (/PAGE:200).

11. The maximum amount of CPU time that the job can use is 20 minutes
(/TIME:20:00).

12. No plotter time will be used (/TPLOT:0).
If you made an error in the SUBMIT command when you submitted either of these jobs,
Batch will type an error message on your terminal to explain your error so that you can
correct it.
3.3 BATCH COMMANDS (In Alphabetical Order)
You can write certain special Batch commands in the control file to tell Batch how to
process your control file. Each of these commands must be preceded by a period so that
Batch will recognize it. The commands are described in detail in the following sections.

3.3.1 The BACKTO Command

You can use the .BACKTO command to direct Batch to search back in the control file
for a line with a specified label. The .BACKTO command has the form:

.BACKTO label

where

label is a 1- to 6-character alphanumeric label for a statement. It must be
followed by a double colon (::).

Normally, Batch reads the control file line-by-line and passes the commands and data to
the monitor and your program. When you put a .BACKTO command into the control
file, you tell Batch to interrupt the normal reading sequence and to search back in the
control file to find a line containing the label specified in the .BACKTO command. The
.BACKTO command searches for the label you specified starting from the beginning of

the file and ending at the place the command was given. When the labelled line is reached,
Batch executes the line and continues from that point (unless the line contains another
.BACKTO command or a .GOTO command, described below).

If Batch cannot find the labelled line, it terminates your job. An example of the .BACK-
TO command is as follows.

ABC:: .DIRECT

BACKTO ABC

3.3.2 The .ERROR Command

With the .ERROR command, you can specify to Batch the character that you wish to be
recognized as the beginning of an error message. Normally, when Batch reads a message
that begins with a question mark (?), it assumes a fatal error has occurred and terminates
the job, unless you have specified error recovery (refer to Section 3.4). If you wish Batch
to recognize another character as the beginning of a fatal error message, you must specify

colon will be interpreted as the comment character and will not function as the error
signal character. This command has the form:

.ERROR character
where
character is a single ASCII character that is recognized in the DECsystem-10.

If you do not specify a character in the .ERROR command, Batch uses the standard error
character, the question mark. When a line that begins with the character that you specify
in the .ERROR command is passed to Batch from the monitor, a system program, or is
issued by Batch itself, Batch treats the line as a fatal error and terminates the job, exactly
as it would if the line were preceded by a question mark. Any messages preceded by other
characters will not be recognized by Batch as errors.

3-11

If you do not include the .ERROR command in your control file, Batch will recognize the
question mark as the beginning character of a fatal error message, unless you include the
NOERROR command in your control file to cause Batch to ignore fatal errors (refer to
Section 3.3.5).

An example of the .ERROR command follows.

ERROR %

ERROR

In this example, you specify in the middle of the control file that you want Batch to
recognize the question mark (?) and the percent sign (%) as the beginning character of

a fatal error from that point in the control file. Further on in the control file, you tell
Batch to go back to recognizing the question mark as the beginning of a fatal error mes-
sage.

3.3.3 The .GOTO Command

You can include the .GOTO command in your control file to direct Batch to skip over
lines in the control file to find a specific line. The .GOTO command has the form:

.GOTO label

where

label is a 1- to 6-character alphanumeric label for a statement. It must
be followed by a double colon (::).

When Batch encounters a .GOTO command in the control file, it searches forward in the
control file to find the label specified in the .GOTO command. Batch then resumes proc-
essing of the control file at the line with the specified label. If the label is not found,
Batch will issue the message

BTNCNF COULD NOT FIND LABEL xxxxxx
and the job will be terminated.
If you do not include a .GOTO command in the control file, Batch reads the control file

sequentially from the first statement to the last, unless you include a .BACKTO statement
(refer to Section 3.3.1).

3-12

An example of the .GOTO command follows.

.GOTC-) ABC

ABC:: .DIRECT

You can use the .GOTO command as the statement in an .IF command (refer to Section
3.3.4) to aid you in error processing. For example:

IF (ERROR) .GOTO ABC , <)

A% el
L/ rb r
ef,?eﬂ' or®

. ?o"
ABC:: .TYPE MYPROG

3.3.4 The .IF Command

You can include the .IF command in your control file to specify an error recovery pro-
cedure to Batch or to specify normal processing if an error does not occur. The .IF
statement has the forms:

JF (ERROR) statement (The parentheses must be included.)
IF (NOERROR) statement (The parentheses must be included.)
where
statement is a command to the monitor, to a program, or to Batch.

The .IF command can be used in two ways as shown in its two forms. You can include
the .IF (ERROR) command in your control file at the place where you may have an
error. The .IF (ERROR) command must be the next monitor-level line (as opposed to

a line in your program or a line of data) in your control file after an error occurs so that
Batch will not terminate your job. In the .IF (ERROR) command, you direct Batch

to either go back or forward in your control file to find a line that will perform some
task for you, or direct Batch to perform a task for you at that point in your control file,
or to direct the monitor or any other program to perform some task for you.

You can use the .IF (NOERROR) command also to direct Batch or the monitor to per-
form tasks for you when an error does not occur at the point in your control file where
you place the .IF (NOERROR) command. Thus, if you expect that an error will occur

in your program, you can include an .JF (NOERROR) command to direct Batch in case
the error does not occur, and then put the error processing lines immediately following
the command. Refer to Section 3.4 for an example of using .IF (NOERROR) and .IF
(ERROR).

If an error occurs and Batch does not find an .IF command as the next monitor-level line
in the control file, Batch writes an error message in the log file and terminates the job.

If one of your programs is running when an error occurs and there is no .IF command,
Batch causes a dump to be taken and terminates your job.

3.3.5 The .NOERROR Command
You can use the NOERROR command to tell Batch to ignore all error messages issued by
the monitor, system programs, and Batch itself. The only exception is the message ?TIME
LIMIT EXCEEDED. Batch will always recognize this as an error message and terminate
your job, The .NOERROR command has the form:

.NOERROR

When Batch reads the NOERROR command, it ignores any error messages that would
normally cause it to terminate your job.

You can use NOERROR commands in conjunction with .ERROR commands in the con-
trol file to control error reporting. For example, if you wish to ignore errors at the begin-
ning and end but not in the middle of the control file, place .ERROR and .NOERROR

commands at the appropriate places in the control file. In addition, you can also specify
which messages must be treated as fatal errors.

NOERROR

ERROR %

ERROR

NOERROR
The first command tells Batch to ignore all errors in your job. The second command tells

Batch to recognize as errors any message that starts with a question mark (?) and a percent
sign (%). You change the error reporting with the next command to tell Batch to go back

3-14

to recognize messages that begin with a question mark as fatal. The second .NOERROR
command tells Batch to ignore all error messages again. If the 7TIME LIMIT EXCEEDED
message is issued at any time, Batch will print the message and terminate the job.

3.3.6 The .PLEASE Command

You can direct Batch to type a specified message to the system operator by including the
PLEASE command in your control file. The .PLEASE command has the form:

PLEASE message ESCape#
message is the message to be typed to the system operator.

ESCape is the ESCape character. If this character is present, processing con-
tinues normally after the message has been output to the operator.
If the character is omitted, the job will wait for a response from the
operator before resuming its normal processing. Fhe-BSSape-cirar-

[the carriage-return/line-feed is required.

3.4 SPECIFYING ERROR RECOVERY IN THE CONTROL FILE

If you do not specify error recovery when an error occurs in your job, Batch terminates
the job and, if the error occurs when one of your programs is running, causes a dump of
your core area. You can specify error recovery in the control file by means of the Batch
commands, especially the .IF command. You must include the JF command at the point
between programs in the control file that an error may occur. When an error occurs,
Batch examines the next monitor-level line (i.e., not a line that contains data or a com-
mand string to a system program) to find an .IF command to tell it what to do with the
error. If an error does not occur and an .IF (ERROR) command is present, the .IF
(ERROR) command is not executed. Similarly, if an error does not occur and you have
included an .IF (NOERROR) command, the .IF command is processed. Batch does not
search past the next executable monitor line in the control file for the .IF command.
Therefore, if this command is used, it must be the next monitor level or Batch command
in the control file. Thus, if you have a program that you are not sure is error-free, you
can include an .IF command to tell Batch what to do if an error occurs, as shown in the
following example.

.COMPILE MYPROG.F4
IF (ERROR) STATEMENT

In either the .IF (ERROR) or the .IF (NOERROR) command, you should include a state-
ment that tells Batch what to do. You can use any monitor command or one of the
Batch commands. The .GOTO and .BACKTO commands are commonly used for this

purpose. Refer to Sections 3.3.1 and 3.3.3 for descriptions of these commands. Be sure,
if you use .GOTO or .BACKTO in the .IF command, that you supply a line in the control
file that has the label that you specified in the .GOTO or .BACKTO command.

Two sample jobs are shown below. The first shows the .IF (ERROR) command and the
.GOTO command to specify error recovery. The second example shows the use of the
JF (NOERROR) and .GOTO commands.

If you have a program that you are not sure will compile without errors, you can include
another version of the same program in your job (that hopefully will compile) and tell
Batch to compile the second program if the first has an error. You write the control file
as follows.

COMPILE /COMPILE MYPROG.F4 /LIST
IF (ERROR) .GOTO A

.EXECUTE MYPROG.F4

.GOTO B

A:: ICONTINUE

.COMPILE /COMPILE PROG2.F4 /LIST
.EXECUTE PROG2.F4

B:: ICONTINUE

When the job is run, Batch reads the control file and passes commands to the monitor. If
an error occurs in the compilation of the first program, Batch finds the .IF (ERROR) com-
mand and executes the .GOTO command contained in it. The command tells Batch to
look for the line labelled A, which contains a comment, so Batch continues to the end of
the control file. If an error does not occur in the first program, Batch skips the .IF
(ERROR) command, executes the program with its data, skips the unnecessary error
procedures, and continues to the end of the control file. A variation of the above pro-
cedure is shown below using the .IF (NOERROR) command and the .GOTQO command.
The difference is that Batch skips the .IF (NOERROR) command if an error occurs, and
performs it if an error does not occur. The following is the control file that you would
create,

.COMPILE /COMPILE MYPROG.F4 /LIST
JF (NOERROR) .GOTO A

.COMPILE /COMPILE PROG2.F4 /LIST
EXECUTE PROG2.F4

.GOTO B

A:: ICONTINUE

.EXECUTE MYPROG.F4

B:: ICONTINUE

When the job is run, Batch passes the COMPILE command to the monitor to compile the
first program. If an error does not occur, the .IF (NOERROR) command and the .GOTO
command are executed, Batch skips to the line labelled A, which is a comment, and con-
tinues reading the control file. The program MYPROG.F4 is executed with its data and
the end of the job is reached. If an error occurs, Batch skips the .IF (NOERROR) com-
mand and continues reading the control file. PROG2.F4 is compiled and then executed
with the same data that the first program would have used. Batch is then told to go to
the line labelled B, which is a comment line. The end of the job follows.

The examples shown above illustrate only two ways that you can specify error recovery
in the control file. You can also use the other Batch commands, or any monitor command
that you choose to help you recover from errors in your job.

You do not have to attempt to recover from errors while your job is running. You can
correct your errors according to the error messages in the log file when your job is re-
turned to you, and then run your job again. Batch will also print a dump of your core
area if an error occurs while your job is running and you have not specified error recovery.
If you can read dumps, this can also aid you to correct your errors. The log file and
dumps are described in Chapter 4.

CHAPTER 4

INTERPRETING YOUR PRINTED OUTPUT

You can receive three kinds of printed output from your Batch jobs:
1. Output that you request; i.e., the results of your job.
2. Output from Batch; i.e., the log file.

3. Output that is the result of actions by your job or by Batch, the monitor, or
system programs. Examples of this output are compilation listings, cross-
reference listings, error messages, and core dumps requested by Batch.

4.1 OUTPUT FROM YOUR JOB

Although this chapter deals mainly with printed output, you can have output to any de-
vice that the installation supports, as long as the installation allows you to use these de-
vices. If your output is directed to the line printer, it will be printed separate from the
log file. The printed output from each program will be preceded by two pages containing
your name and project-programmer number and other pertinent information. Following
these pages are two header pages containing the name of your output file in block letters.
The output follows these header pages. A trailer page follows your output. This page
contains the same information that is on the first two pages. The header and trailer pages
also include three rows of numbers (read vertically from 001 to 132).

If your output is that which would normally be sent to the terminal, it will be printed in
the log file. In the sample output shown in Section 4.4, the output from the program is
included in the log file because it is directed to the terminal rather than the line printer.

4.2 BATCH OUTPUT

The output from Batch consists of a log file that contains all the statements in the control
file, commands sent to the monitor from Batch for you, and the replies to the commands
from the monitor and system programs like the compilers. Any error message sent from
the monitor or system program, or from Batch itself, is also written in the log file. Re-
fer to the DECsystem-10 Operating System Commands manual (DEC-10-MRDD-D) for a
list of the error messages from the monitor. The messages from each system program are
listed in the applicable manuals.

You can ignore most of the information in the log file because it is system information
and need not concern you. If you wish, you can keep it for reference by system pro-
grammers if unexpected results occur in your job.

4.3 OTHER PRINTED OUTPUT

Other output that you can get as a result of your job includes compiler and cross-reference
listings, loader maps for programs that were successfully loaded, and dumps that you can
request or that Batch gives to you when an error occurs in your program.

The compiler and cross-reference listings are those listings generated by the compiler if you
request them. When you enter your job from cards, Batch requests compilation listings
for you unless you specify otherwise. Cross-reference listings are generated for you only

if you specifically ask Batch for them. When you enter your job from a terminal, you
must request the listings in the COMPILE command. Also, if you request a cross-reference
listing, you must run the CREF program (by means of the CREF command) to get your
listing printed.

If you enter your job from cards and include a SDATA or SEXECUTE card to request
execution of a program, you may ask Batch to request a loader map for you. This map
shows the locations in memory into which your program was placed. If you enter your
job from a terminal, you must request a loader map in the EXECUTE command if you
wish to have one. If you wish to know the locations into which your program was loaded,
the loader map can be of use to you. Otherwise, you can ignore it. A loader map is
shown in the sample output in Section 4.4; however, it is not interpreted in this manual.

If a fatal error occurs in a program in your job and you have not included an error recovery
command to Batch, Batch will not try to recover from the error for you. Instead, it will
write the error message in the control file, request a dump of your memory area, and ter-
minate your job. The dump is then printed with your output. If you can read dumps,

the dump that Batch requests for you may be helpful in finding your errors. Otherwise,
you can ignore the dump and use the error messages to locate the errors in your program.

44 SAMPLE BATCH OUTPUT

Two sample jobs and their output are shown in the following sections. The first shows a
job entered from cards, the second shows a job entered from a terminal. The log file is
somewhat different for the two types of jobs.

4.4.1 Sample Output from a Job on Cards

This example shows a job in which a small COBOL program is compiled and executed.
The card deck is shown in Figure 4-1.

SEQJ

SEXECUTE/MAP

COBOL SOURCE PROGRAM

$COBOL

SPASSWORD ABCD

SJOB MYJOB[4,77743]

$SEQUENCE 18

Figure 4-1
The COBOL program is as follows.

IDENTIFICATION DIVISION.

PROGRAM-ID. MYPROG.

ENVIRONMENT DIVISION.

DATA DIVISION,

PROCEDURE DIVISION.

START.

DISPLAY “THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.”.
DISPLAY “THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.”.
STOP RUN.

When the job is run, the program is compiled and a compilation listing is produced. The

listing is shown below. Note that the compiler puts sequence numbers on the program
even though they were not in the original program.

4-3

PROGRAM MYPRDOSG coroL Aclg?)y 12=-N0OV=-84 14113 PAGE 1

LNZROZ,CaL AR=NOV=73 14111
a9l IDENTIFICATION DIVISION,

il P PROGRAM=10. MYPRODG,

gac3 FNVIRONMENT DIVISION,

g4 NATA OIVISION,

ag. 5 PROCEQURE DIVISION,

gpie START,

a7 DISPLAY "THIS IS TO SHOW SAMTLT JUTPUT Flp” MPg,"

0@, 8 JISPLAY "THESE TWo LINES ARE o 'TPUT FROM THE PROGRAM,"
6. 9 STOP RUN,

NOo ERRORS NDETECTED

After the program is compiled, it is loaded and executed. Since the /MAP switch was
specified on the SEXECUTE card, Batch requests a loader map when it puts the EXE-
CUTE command in the control file, the loader map is the next thing printed from your
job. It is shown on the following page. Note that each of these printouts is preceded
by headers, which are not shown in these examples.

Following loading, the program is executed, The program in this example does not have
output to the line printer. Instead its output is written to a terminal. Because this is a
Batch job, the terminal output is written in the log file. The log file is printed next
because the end of the job is reached. The log file contains all the dialog between your
job and the monitor and system programs and some commands that Batch sent to the
monitor for you. An annotated log file is shown on the following pages. Note that
each line in the log file is preceded by the time of day when the line was written. Fol-
lowing the time is a word that describes what kind of information is on each line. You
do not need to know what each of these words means because much of the information
is system information.

44

®|qe3ed0|8y AJjul
elgeiesoley Adaul
8|Qe3®I0|0y Adaul

{I1Bw|20R)

(1ew|28k)

{|Bw|28P)

[d¥ 40 QBu FI=MNIT 40 pul]

sReRaRBRNRE By

Geel ' 404l alueieg0 @y Ayquy GEET ‘adyl
2891 '30vYH) slceies018y egolg LEET ‘994Llq
9geT *10gEn a|dB3800,8, AJjugy 6eeT ‘ovulg
S fl1%328) L Jabu®e| gopt 1e sPu?d 2ot 1B 534B3s JuByuBes moq
g0:26i¢T 1%® po=00,-92 Uo pejeRJo [P T 1IN 10817:SAS wedy 03gvH)
nacfapnpboang
a|gB3e30 8, Adjug 2921 90ydAK
‘s t(1®320) 2¢1 W3bue| Tgel 18 sPu® 2u271 3% S34B15 JuBubBas moq
2018£T1#T 3% pEuAon=21 Yo B0 Ag sejeudo Cebsse*w) 130 @00enTiNST wedy 904dAW
naRdtponateng
- yibue| Upuwwojy 6T "WW0D!
‘vbg '(1®3%¢) PyaT 43Bu®| f/11 1% sPu® gyt 38 s34B3c juBbeEs moq
v3d¥=2llylS=T0eln

LER AT X R R 2 T

8| nPow Yjpud| pdByz

STI0EWAS* VI LINI=LlYOu0r

EEEE ST R R R 2R T

904 dAhy w®BIBUIg u| PE3E20| f2pzl S| SSBUpPE 3} JE}Q

TS 8| @Z|s yseld 'uw|u edciodayg fpePeo| s|oquwAs |BQO|g &y

1udWEeSs mO u| @8J} gPdOM (B2

AT = TpeTl 43Bue| @poi e sPus ¢ 18 S34u3s jueybes mo4

LptsTipY e p.2a0n=2T Uo (by2)V7 uo|sdBa JTeyN[1 Aq PBONpody
T ebud aV¥ 40 dew loqufs gr=-unIT

4-5

uorRWIOful Wa)sAs SI0W ST SHLL

“UGHEBULIoIUL
uraysAs uraid ‘ando[eIp [NOOOT 243 5t snyf,

‘papus sey weid
-o1d oA Jo uolnIaxa JEY) SaIEIIPUl I0UOR

“werdord mod woiy indino stosnyy
"PUBLIWIOD FLNJAXH 241 01 asuodsar 1ojuopy

‘nok 10} ysieg Aq pailjua SpuBlUlLO))

‘101UoW
a1} WoIj puewiwod afidurod ay) o1 Tamsue o],

‘no& 10] PaIajua yojeg 1B} SPUBLILIOD BIE 953,

“asuodsal W2)sAs AU} SI 11 SMO[[O] 1Y) UOIEW
-10jur A, WaIsAs ai) ojul qol moA sSo] yoieg

e s e T ¥ AR e T e

‘mo& uIdUOD Jou pasu |
<

*SI9)Ua UIJeg 1By} WONBULIOJUI WaISAS ST SIYL

‘nod UIdDued Jou padu e}
UONEBIIIOJUT UIDISAS $1 J821 Y], “PRiajud nok <
SpIea oyl moys (UDLS,, Aq paxijeid sour af]

sual [¢bele'vldVmiTEYSA

Pejdels [Cpids'w) d64 [CWLLL'PIMYWITENSD O 14 BOMAW qOp
8u0Q [Sb// 4P I0000NT:TENSH

PR34B3s [oplyL'p] d0d Cebeldtw] o OZENTITANSO O 14 g0OMAW QOP
@Ld7 we BulwUnl (ppE)g Vo|sSdap 145147

285 9T'g Bw|3ufy

(Sx90(q @L) s8||4 ||® PBARg

pe=A0N=2T 6TpT 2cTALL 440 pBcBOT [Episs'b] d8sn ¢ qop
isonbead pgidl w| SBI|4 £ ul s%39)g ¢ 4O |e30)

Q1A @2 IN/A31SA/8T aA/ b1 2787072901 g0 AR TBNSO HOMY:

Feadj swo0lB8 2n

T34 AARENT

Fead; sx29|9 2p

T8 @UBENT

tpe38|ap 9|l 4

3¢’ c0uenTtMs0 T8 BaogeNTIENSO 313730
siNT 4%

1I%3

"Hyu9odd 3HL 0pd LOdLNg 3dy S3NIT oml 3S3H)
"84 WOHA LN-L00 39dW¥s mOHS 01 SI SIHY
[uo|3naex3 JoudAl L3XKT

U peOn MR

TIH uBENTE NS aVRE LAV ayvn/ 138/ 1N23X3°

L1X3

[I85'¢0eeNTY 90MdAw :T080)
Lel /8220, £ TEMs0) Boa/dWDd/ IdWOD" -

w8 pa="on-271 2Tyt
2GiALL 2/2p# SAS QiTigH L BOP
wls3 uiIWYN/TEILe2C1/028 3410/ 1¥ E00dsy Bedddse NIDOT:

S3Al3deys9: Szateno|up c@rse@@iow])

SJej3Bueded Yor

[EpLed'p39.7'80MAWETENSE 03 3Nd3ng

[€pLedtp 110" BOrAWEDENSO Wody 3Nhaup

G WeeJ3S u| T e3JuBnwES OrAs “UjUuNL (Tp2T)aT Uo|Sdan NOILYH

~B1¥843 3Senb@y 3Ngu] YI3ER

PEBY SPUED G

Pelejunodul Qop 30 pujy

roas

d¥W/ ILN03x3g

uB33|dn B¥20 |8 2 - PBey sPuB) 4 = p81%a4] g2t pu@enNTtusd BI04

10802¢

[gpLiL'y] Holfaw HOMg

2% 3IN3IND3SY

gu00 W0 Bujuuhy (gegTyz uo|SJBp Liluds 2/2:% SAS asTsel pR=-AON=Z2T

9Skd1
wmr.nn_
981d1
9Skd1
95 ndT
1npsn
1ng91
1ngs
ane=y
HinOW
HinOH
35N
38N
35N
8380
E38N
HLlOKW
Oy 74
H1nOW
HLhOW
HlnOK
HinOW
838N
835N
E3sn
ERE]
HAHLOW
HinOW
YinCW
HimOW
adsn
Hin0W
HinOw
83sh
835N
HikOW
HlnOW

WhGWH
1 4vE
11 4v8
BOrve

W LS
HASLS
HM5LS
OsalLs
Qegls
2541S
Gals
Quals
gszls
lvois

2elgziby
azigziet
aT102tbT
gllpzibt
aateziet
Aptettet
BrteTibT
BrleTibT
LTIETIRT
TStaTiey
TalgTsbT
BEIETILT
AslgTIeT
p218TIET
b2IBTIPT
2ieTiRT
2218TivY
2obgTIRT
2TIBTibY
2oiaTivT
ZriaTIvY
2218TibT
95tLTibt
QGILTIPT
SLTIbT
FARFASE &
221LTIbT
2UILTIbY
2NLTIRT
2THLTIRT
TEIETIPT
SbI2TikT
ORIZTIPT
FriZTIbT
PTECTIRT
FUI2TiIbT
£Ti2TibT

ZHETibT
2 IETIbTY
AR FASH A
PR EFASE &

9p1TTIPRT
9piTTILT
9riTTiRT
9niTTIbY
QriiITieT
PeiTTIET
QEITTIbT
6yipTiey
6YIUTIPT
6riBTILT

4-6

442 Sample Output from a Job from a Terminal

This example shows the same job described above as it would be entered from a terminal.
You would first create the program as a file on disk.

IDENTIFICATION DIVISION.

PROGRAM-ID. MYPROG.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

START.

DISPLAY “THIS IS TO SHOW SAMPLE OUTPUT FROM MPB.”.
DISPLAY “THESE TWO LINES ARE OUTPUT FROM THE PROGRAM.”.
STOP RUN.

Then you would make up a control file to compile and execute the COBOL program.

.COMPILE MYPROG.CBL
EXECUTE MYPROG.CBL

You must then submit the job to Batch using the SUBMIT command.
SUBMIT MYJOB

When the job is run, the program is compiled and a listing is produced, even though you
did not request it. This is because the COBOL compiler always produces a listing. Note
that the compiler adds sequence numbers to the listing, even though you did not include
these numbers on the program.

P+ 0GRAMYY MYPRDOG, CO3pL PAI127) 9«-FEB=74 22107
MYPROG.C3L PO-FEBR=74 21156

2.1 IDENTIFICATION DIVISIQON.

dg 2 PROGRAM=ID, MYPROG,

2.3 ENVIRONYMENT DIVISION,

B¢ ' 4 DATA DIVISION.

fp.5 PROCEDURE DIVISION,

Ap. 6 START,

Pp.'7 DISFLAY "THIS IS TO SHOW SAMPLE DyTRUT FRQM MPE, ™.

fg.'A DISPLAY "THESE TWo LINES ARE QUTRYUT FRM THE PFQGRAM,",
g9 STOP RUN

Ng ERRCRS DETECTED

4-7

CHAPTER 5

PERFORMING COMMON TASKS WITH BATCH

This chapter shows some sample jobs that are run from a terminal and from cards. Section
5.1 illustrates entering jobs from a terminal. Section 5.2 shows entering jobs from cards.
The examples are the same in both cases, the difference is only in the way that they are
entered.

5.1 USING THE TERMINAL TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes output to the terminal. Since the
job is being entered through Batch, the output is written in the log file instead of on the
terminal.

BEGIN
REAL X;INTEGER I;
X =1
FOR I := 1 UNTIL 1000 DO X := X+I;
PRINT (X);
END

The control file for the program is as follows:

COMPILE MYPROG.ALG/LIST
EXECUTE MYPROG.ALG

SUBMIT MYFILE
When Batch starts the job, the statements in the control file call the ALGOL compiler to

compile the program. Batch then calls the loader to load the program for execution. A
listing of the program will be printed with the log file, as shown below.

5-1

NDECSYSTEM 10 ALGOL=60, VERSION 3A(300) 14=0CT=84 15813813

000003 By 00100 BEGIN

START OF BLOCK 1

000004 00200 REAL X3 INTEGER Iy

000004 00300 X 1=13

000014 00400 FOR 1 :=1 UNTIL 1000 DU X = X+I)
000021 00800 PRINT(X)?

000024 E1 00600 END

END BLOCK 1, CONT 0

0 ERRORS

e T e e e P T = S R e S e S e S S S, e e e e e e e T G P e e e e]

ANOQ [EPLLLYPINOODTYITENSA

QALHYLS [EHLLL*'P] ¥HOJ (EBLLL'PITIODTIVETENSA 3113 FMT4XKW Q0D
ZLdT NO ONINNNY (pPE€)9 NOISHIA 11d81d1

23S 2ZS'% IWIINOM

(83201749 00T) sATIA T1I¥ dIAVS

b8=LJ0=%T ET1ST PZZALL 440 439907 (evLLL’v] d3SND ‘€ gor
ISINDAY ISL4T NI SANIA Z NI SMDO014 € 40 1V10L
d3AA/0T8dA/00ZEIA/69E2SA/0TENA/P2/9/M/=00T1" FTIJANETENSa dorN"”

1

*$DdS 80°0 I3WIL QAsdY1d

*sD0dS ¥0°0 $AWIL NOIINDAXH

3d00 AT = NOILNOAXH 40 ANIF

S 300%0S00°*S
(NOIZND3XE T0OTY IIXMNTI]
HONIgy01 EXNIT
5IY*10D1VY FINDIXIA**

LIX3

T091Y 1091y
ISI1/971V*1097TY FTIdW0D*"*

nNAS PB=«L00=%T £EIST
PZZALL 99S/PT1S# SAS VAVLXY £ €0p
wISALa tANYN/TIIIVO0T/00€E3ANTIL/TIVEIA004S/ EVLLL/Y NIDOT®

ONSLHVISIY SIXIIANOINA 003S030033WIL
SHALANYHYd €00
[EPLLLPID0T ITIAANSTENSA 0L LNdIno

(EPLLLY)®ATTIAXNITENST WOHdd INdNI

¢ WYAYMIS NI 69E FONINOIAS FTTAXW ONINNAE (TYOT)ZT NOISHMEA NODIVE

OSKH41T
DSWdAN
OSHA
Inod1
IN091
Lnoos1
AN0=)
dINOW
dLNOW
ddsn
dasn
dasn
dasn

d3sn
d43sn
ddsn
ddsn
d3sn
HINOW
HLNOKW
dLNOW
dLNOW
dasn
dLNORW
HLNOW
d3sn
4dsn
dLNOW
HLNOKW

Wnsve
T1dYd
TIdvd
g00vd

PRIETLG]T
ovteregl
LELETEGT
PESETEGT
FPERETIST
PEIETEGT
OEigTtgy
zZigtTial
zTeETiGE
AA R LR
ZZIETIGT
zZZigvist
zZigtigt

zZicTIgT
TeIETEGT
ZZigTigt
0ZIETIGT
LTEeETEIGT
PrIETEGT
PIsETIET
PTIIETEGT
PTLETLGT
pItETIGT
0T:ETtgl
013ET24T
80IETHGT
BOIETEGT
POIETLIGT
POSETIGCT

voietTiGl
boleTigl
POIETLIGT
votevigh

5-3

BASIC Example

The next sample shows how to enter a BASIC program to Batch. You must make up the
file and save it on disk. Then make up a control file that simulates the dialog with the
BASIC system. The program is shown below.

3 INPUT D

10 IF D=2 THEN 110

20 PRINT “X VALUE” “SINE”,“RESOLUTION”
30 FOR X=0 TO 3 STEP D
40 IF SIN(X)<=M THEN 80
50 LET X0=X

60 LET M=SIN(X)

80 NEXT X

90 PRINT X0, M,D

100 GO TO 5

110 END

The program requests data from the user when it is running. You include the data in the
control file. The final data item must be 2 to conclude the program. The control file

follows.

.R BASIC

*OLD
*DSK:MYBAS.BAS
*RUN

1

01
001

2

*MONITOR

The output from the terminal will be printed in the control file because it would normally
be printed on the terminal. The command to submit the job to Batch is as follows.

SUBMIT = BAS.CTL

54

11334:06
11334:06
11334308
11334:086

11334:086
11334107
11:34:13
11334113
11334226
113343128
11334:26
11:34:27
11334349
11:34:4%
11334149
113134149
11334158
11334158
11334:58
113343589
11:34:59
11:34:53
11334:59
11;34:59
11534:5¢%
11335:00
1133500
1133500
11335:00
11335:00
11135:00
11335:n2
113353102
11:35:n2
11:35:02
11:238:02
113:35:02
11:35:02
11335:02
11:35:02
11335:02
11:35:02
11335:24
11335134
11335:35
113;35:3%
11:35:49

BAJOB
BAFIL
BAFIL
BASUM

MONTR
MONTR
USER
USER
USER
MONTR
MOMNTR
USER
USER
USER
USER
USFR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USFR
USER
USER
USErR
USER
USER
USER
USER
USER
USER
MOHTR
MONTR
K=GUE
LGOUT
LGOUT
LGOUT
LF~ 3G

BATCOM version 12(1041) running BAS seguence 25 in stream 2
Input from DSKBOyRAS,CTL(4,77743]

Qutput to DSKBUOIBAS,LOG[4,77743]

Jobk parameters

Timei U3 05100 UniguelYES Restart:no

LLOGIN 6/77743 /SPOOLIALL/TIMES30U/LOCATEZ1/NAMES"TEST"

JOR 30 RA7ATa SYS ®514/546 TTY223
[LGNJSP Other jobs same PPN)

1134 21=0Ct=84 Sun

«s R BASIC

READY, FOR HELP TYPE HELP,
#0LD ‘
OLD FILE MAME==#DSKIMYBAS,RA4S

READY

#R1UMN

HYBAS 11134 21=0UC =nd
.1

A VALUE SIME RESOLUTIC:
1.6 U,999574 0.1
7.01

X VALUE Slee RESULUTIONK
1,57 1; 0,01
7.001

X VAaLUk SLMF RESULUTLICO™
1,571 1 0,001
?2

TIME: 0,59 SECS,

READY
*#0MNITUR

LKJOB DSKBUIBAS,LNGS/h/B/224/VRI1U/VE325/VL3200/VP210/VDIP
Total of 3 plocks in 1 tile in LETS! reauest

Joeb 30, User (4,77743] Logoed off TTY223 1135 21=0ct=84
saved a1l files (30 blocks)

Runtire 4,10 Sec

LPTSPL version b(344) Runnino on LPTIO

FORTRAN Example

The third example shows a FORTRAN-10 program that prints output on the line printer.

In the control file, you want to tell Batch to delete your relocatable binary file if an error
occurs when your program is executed. Otherwise, you want Batch to save your relocatable
binary file as it normally would. The program is shown below.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 10 I =11,50,2
J=1
4 J=J+2
A=]
A=I/A
L=1/]
B=A-1.
IF (B) 5,10,5
5 IF (J.LT.SQRT(FLOAT(I))) GO TO 4
PRINT 105.1
10 CONTINUE
105 FORMAT (14, ‘IS PRIME.")
END

The control file to compile and execute this program, deleting the relocatable binary file
if there is an execution error, is as follows.

.COMPILE MYPROG.FOR
.EXECUTE MYPROG.REL
IF (NOERROR) .GOTO END
.DELETE MYPROG.REL
END:: !END OF JOB

The command to submit this job is as follows.

SUBMIT MYFOR.CTL MYFOR.LOG/DISPOSE:DELETE

The output and log file are shown on the following page. The log file will be deleted
after it has been printed.

11 IS PRIME,
13 IS5 PRIME,
17 IS PRIME,
19 IS PRIME,
23 I8 PRIVME,
29 IS PRIME,
31 IS PRIME,
37 IS PRIME,
41 IS PRIME,
43 IS5 PRIME,
47 IS PRIME,

5-6

e T e

AN0A (€PLLLYP1I41H0330dYSA 9DSWAT Zezigvivld

QALYYLS [EPLLLYY] H0d [EVLLL'PILATH0UA0EMNSA F1Td HOJEW €00 OSWAT 01i8¥iwd

ZI4dT NO ONINNOHY (PPE)Y NUTSHAA NMdSIAT HSHWAT boisVivl

2dS €E°L AWIINNY INOODT 9GsLVEiRT

[EPLLLYP] HAANN NT Q9207 ITILS d00 H3HIONY LNODT 9GiLvipT

¥8=100=ST Lb¥®]T TE€EZXLL 340 Q399071 [EvLLL'P) w3aSn ‘0Z €Op INOODT SSiLbipd

ndd FWYS Sgop ddHIo dU0Y €68 V32T

IsdAnNodd TSL47T1 NI S3AAIA Z NI SMDO0T9 £ 40 7IYIOL AN0=X £l el

Q2QA/OT2dA/00ZMA/PTHIGAZ/O0T A/ PE32/a/M/=90M" dNAXASTENSA EODPX" HLINOW 81:Lbipd
ao0r 30 andft

biaNd 1gvrid BTiLvivT

ANA 0OL09* HOLvg 8lsLviw]

(yodydAON) 4T° ANEL 8TeLViLT

¢ YLNOW BTILPIPT

HLNOW BT:LVEDT

IIXd dLNOW 8I1SLUSET

EH®T JAWTL A3S4¥T1d €1°0 t3AWTL ndD ddsn sTiLpipd
NOTLNDHXA 40 ana dds0 LTsibiwd

d4ASN LTeLPiEd

(NOTLNI4X3 Id04 LIXMNT) ddgn eTiLbipt
aNIayon IMNTTT ddsn zZviov vl
HO4°1dnd aLnJaxa** dINOW 6EL9ViIRT
HINOW 6EtQViIRI

LHOAd tNYHIH0A ddsSn 0Zighipld

d03°1H04 FT14W0DD** MINOW 00iGyiwT
dLNOW 008SVivT

NOW PB=100=GT A AR ddsn ooisvivd
[Ndd dHY¥S 800 dAHLO 4S0NDT) 43sn SSivviv?
VEZXRLL 9VS/%TS# SXS OJAVLXH oZ dor 4380 SStHPivd

uISHALW PAWYN/TIATIYI0T/00€8ANTIL/TIVEI00dS/ ERLLL/Y NIODOT® HLINOW TSiHv el
HINOW TSipiipd

ON:LYYLSHA SHXIANDINI 00:S0°0013NWIL
SHYALANVHVd 800 WNSYE 0Giv¥ivd
(EPLLL*YP)ID0T HOAXWS TENSO 01 Inding 1TIdve 0S:%¥ivl
(EPLLLPITLIO®HOAXWITENSA WOHA INANI 1TI4Vd 0G:vvibl
L WYAMIS NI %1% AONANDAS HOJXW ONINNNY (T20T1)27 NOISMAA NOODIVA dO0YE 0Giviiwd

5-7

COBOL Example

The fourth program shows a COBOL program that reads a magnetic tape and writes out-
put on another magnetic tape. To have your magnetic tapes mounted on drives and
assigned to you, you must request that the operator mount them. Since you do not
know which drives will be assigned to your job, you must assign them in your job with
logical device names. The MOUNT command assigns the drive to your job and associates
the logical name that you specify in it with the physical drive assigned. You should in-
clude a PLEASE command to the operator to tell him that you want two magnetic tape
drives. If he cannot let you have the drives because they are in use, you can ask him to
enter your job again. Your magnetic tapes, one with the input data, the other blank so
that you can write on it, should be given to the operator or kept at the central site, so
that the operator can find your tapes. The program is as follows.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INFIL, ASSIGN MAGI.
SELECT OUTFIL, ASSIGN MAG?2.

DATA DIVISION.

FILE SECTION.

FD INFIL, LABEL RECORDS ARE STANDARD
VALUE OF IDENTIFICATION IS “INFIL DAT”,
BLOCK CONTAINS 20 RECORDS.

01 INREC, PIC X(80).

FD OUTFIL, LABEL RECORDS ARE STANDARD.
VALUE OF IDENTIFICATION IS “OUTFILDAT”,
BLOCK CONTAINS 12 RECORDS.

01 OUTREC, PIC X(80).

PROCEDURE DIVISION.

START.
OPEN INPUT INFIL, OUTPUT OUTFIL.
LOOP.
READ INFIL AT END GO TO FIN.
WRITE OUTREC FROM INREC.
GO TO LOOP.
FIN.
CLOSE OUTFIL, INFIL.
STOP RUN.

5-8

The control file and the SUBMIT command to enter this program to Batch are as follows.

PLEASE NEED TWO MAGTAPES, IF I CAN'T HAVE THEM, REQUEUE.
MOUNT MTA:MAG]1/VID:INFIL /RONLY/REELID:9TRACK

MOUNT MTA:MAG2/VID:OUTFIL/WENABLE/REELID:9TRACK
.COMPILE MYPROG.CBL

.EXECUTE MYPROG.CBL

.DISMOUNT MAG1:

.DISMOUNT MAG2:

.DELETE MYPROG.*

SUBMIT MYJOB=MYJOB.CTL

The log file is shown on the following page.

39

10:28:02 BAJNB PBATCON VERSIAN 17(1041) RUNMNING MYCOR SEQUENCE 1226 IN STREAM 1
10128102 BAFIL INPUT FROM DSKR1tMYCNRB,CTLl4,77743)
10:28:02 BAFIL OUTPUT TN NSKB1:MYCOR.LNG[4,77743)
10228102 BASUM JOB PARAMETERS
TIMEI0N105100 NMNIQUEIYES RESTRRT YES

10:28:102 MONTR
10:2/:02 MONTR LLOGIN 4/77743 /SPOOL:ALL/TIME:300/LOCATE:1/NAME::"TEST"

10:28:09 USFR JOB 3 RS7ATA SYS #40/2 TTY145
10:28109 USFR [LGHJISP NTHHR JORS SAME PPWM]
10228109 USFR 1028 24=0cT=R4 WED

10128311 MONTR

10:28111 MANTR

10+28:11 BATCH +FPLEARE NEED TW() MAGTAPES, IF I Caw'T HAVE THEM, REQUEUE.
10:28:53 MONTR LMOUNT MTRASMAGL/VIDGINFIL/RONLY/REFLID19TRACK
10:28:55 USER REQUEST QUEUED

10:2R:56 USEFR WRAITING, .,

10:29:43 USFR MAGY MOUMTED, MTmRo USED

10:29:43 MONTR

10:29:43 MONTR ., MOUNT MTAIMAGZ/VID:QUTFTL/WENARLE/REFLIDt9TRACK
10:29145 USEFR FFQUEST QUFUFD

10:29146 USFR WAITING,as

10¢+30:26 USFR MAaG2 MOUNTED, MTR1 USED

10+32:26 MONTR

10:30:26 MONTR «« COMPILE 0OR,CRT,

170:30:128 MONTR

10+30:2R MAMTR , . EXECUTE COR,CAT.

19130129 USFR LINK} LOADTING

10:30:31 USFR [LNKXCT CnB FXECUTION)

19:30:33 MONTR

19:303:33 MONTR EXIT

19:39:33 MOMTR

10+30¢33 MNNTR ,,DISMAOUNT HaGi:

10:30:35% USER

10:¢30:135 USER [MTRO/ READN rW/H/SY¥= 340/0/0 WRITE (W/H/8)= 32&6/0/N0)
10:30:35 1SFER REQUFST QUFURD

10:30:36 USER WAITING, ..,

10:31:104 USER MTRO DISMOUNTED

1031104 MONTR

10:31:04 MOMTR , ,DISMOUNT MAG2:

10:31:0e USER

10:31:06 USFR [MTRY/9TRACK WRITE (W/H/8)= 326/0/N)

10:31:06 USFER REQUEST QUFUFD

10131:07 USER WATTING, o4

10:31:29 USER MTB1 DISMUUNTED

10:31:29 MANTR

10:31:29 MONTR + « DELETE COB,#

10134131 USFR FILES DELFTER:

10:31132 USFER cnBe,CHL

10:31:33 USTR COB,,RET

10:31:34 USFR 05 BLDOCKS FREED

10:31335 MONTR

10:31:35 MONTR LKJOR DSKB11MYCOR,LOG=/W/B/Z:4/VR110/V531226/V0L1200/VP210/VD P
10131238 K=QUE TNTAL OF 3 Br,0CKS IN 1| FILF IM LPTS1 REQUEST
10:31:40 KJINR ATHER JOBS SaME pPil

10t31:42 LGAUT JOB 3, USER [4,777431 LOGGED OFF TTY145 1031 24-NCT=B4
{0t3I1442 LGAUT ANOTHER JOR STILL LOGGED IN UNDER [4,77743)
10:31:42 LGAUT RUNTIME 4,90 SEC

10:31145 LP¥SG LPTSPL VERSINN A(344) RUNNING ON LPT1

5-10

5.2 USING CARDS TO ENTER JOBS

ALGOL Example

The first job is a simple ALGOL program that writes its output into the log file because
it has statements that would cause it normally to write to the terminal. The program is
as follows,

BEGIN
REAL X; INTEGER I;
X :=1;
FOR I :=1 UNTIL 1000 DO X :=X+I;
PRINT (X);
END

The cards to enter this program are shown in Figure 5-1.

$EOJ

SEXECUTE

ALGOL SCURCE PROGRAM

SALGOL/NOLIST

SPASSWORD RBCD

SJOB ALGJOB[4,77743]

S$SEQUENCE 18

Figure 5-1

The output, including the log file, is shown on the following page.

28106425
@BiD612Y
BeiR612s
ABIR62Y
BEid6129
BEID6130
AgiR61 3L
28126130
BeId613R
Beig6131

ABL26LLB
ARIY6L B
28126148
Bgin61 38

ABIPs 38
TR R
Agid61 39
LERE TR K
ABi614S
28126145
BaiIN6L48
Bgiée149
Bgid2ey a9
BRI 4Y
BRIR64Y
CERETRESE
LER TR
BBiRG]CH
88:26,;58
Agideyse
AgiR6y%8
Aa1R6 58
2126158
RBIZ6SB
Ag16y58
2giv6158
PBIE&) 58
Agid6158
dgieri0
BaiR7y2
Bgiotyi
i@
paie712
Ap1B7102
BBIOT |22
BBIB7 106
2g1@71v9
agte7TI09
BaiR7129
Bgi27111

STUAT
S5TCRD
STCRD
STCRD
STHSG
STCRD
STCRD
STSUM
STSUM
STSUM

Badng
gafF 1L
BAFIL
BASUM

MOTR
MOMNTR
USER
USER
MOMTR
MOITR
USER
MOMTR
MONTR
MONTR
MOMTR
USER
UsSeR
USER
USER
UsEn
USER
UsEr
U3ER
USER
MONTR
MONTR
BLABL
MONTR
USER
USE®R
USER
USER
USER
MONTR
MOMTR
K=GUE
LGOUT
LGOyYT
LGouUT
LPMSG

13=-nNoV=-84 RE7ATa SYS #48/2 SPFINT Verslien 2(1235) Running on CORQ

$SEQUENCE 18

5J0B ALGJOB [4,77743)

BALGOL/NOLIST

File DSK:LM4piD,ALG Created = & Cards Read = 1 Blotks Wrltten
SEXECUTE

LE0Y

End of Job Encountersd

12 Cards Read

Batgn Inout Pgouest Creatg:

BATCON verglan 12(1241) ru“nlﬂé ALDJOB sequence 19 In gtream 2
Input from OSKS@:IALGJOB,CTLLA,77743]

Dytput to DSK3I1IALGJOB,LON[4,77743]

Job paramgters

Timg:d2i35: 2z UnlaguelYES PestartiyEs

(LOGIN 4/77743 /SPOOL:ALL/TIME!37@/LCCATEL/NAMEINTESTY
JoB 17 RS74Ta S5YS #4727 TTvi47
¥E06 13-No,=84 1,8

+ COMPIL /COMP/ALG DSKILYW471C,4LG
ALGOL: LN4O1D

EXIT

+ EXECUT /REL DSK:LN401D,RFL

LINK: Lgading

LLNKXCT LN4OL1D Execution)
1,#p1eengsd 3

EnD gF EXECUTION = 1K CgRE
EXECUTION TIMEY ¥,P4 SECS,

ELAPSED TIME: 4,88 SECS,

AFING S

«DELETE DSK{LN401D,ALG,DSK:LM474D,FEL
Files deleted:

LN4p1D,ALG

"1 Blocks freed

LMN401D,REL

Y1 Blocks fregd

«KJOB DSKB1IALGJOB,LOGE/uyfi/Z2 4/VRILE /VSEL/VL1208/V0:D
Total of 3 bloeks In 1 flja In LPTS1 regyest

Job 17, User [4:.77743] Longed off TTYi47 2887 13=Nov=B84
saved all flles (902 blogks)

Ryntime 3,43 Sec

LPTSPL Vers|lon 6(344) Running an LPTQ

a-12

BASIC Example

The next example shows how to enter a BASIC program. You must include the program
after a $DECK card so that it will be copied into a file on disk. No $DATA card can be
used because BASIC does not use the EXECUTE command and because the data is entered
in the control file. The program requests data when it is running; it finds the data in the
control file. The final data item must be 2 so that the program can be concluded. The
program is shown below.

5 INPUT D

10 IFD=2THENI110

20 PRINT “X VALUE”, “SINE”, “RESOLUTION”
30 FOR X=0TO 3 STEP D
40 IF SIN(X)=M THEN 80
50 LETX0=X

60 LETM = SIN(X)

80 NEXT X

90 PRINT X0, M, D

100 GO TO 5

110 END

5-13

The cards to enter the program and run it are shown in Figure 5-2.

SEOJ

*MONITOR

*RUN

*DSK:MYBAS ,BAS

.R BASIC

$TOPS1@/switches

BASIC SOURCE PROGRAM

$DECK MYBAS ,BAS

SPASSWORD ABCD

SJOB BASJCB([4,77743)

$SEQUENCE 18

Figure 5-2

The output from the program will be printed in the log file because it would normally be
printed on the terminal. The log file is shown on the following page.

5-14

28126154
BEIEEI54
BRICESY
NBIRGELSS
2810615

PaiR6; 27
ARG 5T
DE106157
PEEMGELS

PuiB614H8

BEIOTILS
BB:B711S
26:07;13
BB:A711S

AHIATILS
d8iB7313
2gra7ils
gaipriL7
BEi271L7
28187317
Agip7i22
Agi@73ec2
dgiee
AgiPTrz2
Bpi@713
Agig7125
Bgi1a7ek
Agi187:25
ApiB715
BtE7ed
A7
Ap1B87::27
dgie7iz7
Agid7127
2812718
ABiBT7128
dB:P7128
dgip7129
gpie7cy
AgiR7eY
AgiB7131
dgie7si2
Aptaviie
Agid7ile
dgid7158
agi1@7136
Agid7136
Aaid746
Pet7i3e
PEiR7336
BdgiB71d6
2813740
AgiR7 ;45
AR1@7145
Agi1y7L4ds
ABIPT ;48

STOAT
STCRD
STCRD
STCRD
STHSG
STCRD
STCaD
ST3UM
STSUM
S5TSUM

BAJNB
BAFIL
BAFIL
BASUM

MONTR
MOMTR
USER
UsER
MONTR
MONTR
WSER
USER
USER
USER
USER
LSER
USER
JSER
USER
USER
J3SER
USER
JSER
USER
U3ER
USER
USER
USER
USER
UsER
USER
USER
USER
USER
Uskw
USER
USER
USER
Uskr
MONTR
MONTR
KeJUE
LGOyT
L30uT
LGOUT
LPAMSG

13=noV=84 R5/ATa SYS #40/2 SPAIMT Verslen 2(1835) Runnlng on CORB

+SEQUENCE 19

FJOB BASJOB [4,777431]

SDECK MYBAS,BAS

File DSKiMYBAS.3AS Creatod = 11 Cards Read - 2 BlpCks Wpltten
$TOPS1D

tEQJ

End of Job Encountered

26 Cards Read

HYateh Imput HReauest Create

HATCAN version 12(1241) ry~nlns BASJOB SeQuenmce 13 |n stream 2
Input from DOSKRZIBASJOB,CTLLA,77742]

Cutput to DSKB1IBASJOB,LOS[4,7774%]

Job paramaters

Tlmg:2@i25:0¢ Unlqueiyrs tgstartiYEs

JLOGIN 4777743 /SPOOLIALL/TIME:32@/LNCATE L/NAMEINTEST

JoB 17 R57ATa SYS #4.,2 TTvi4a7?
807 13-Noy=B4 Tu®
+ R RASIC

KEADy, FOR HELP TyPE HELF,

“0LD
OLN FILE NAME==#0SKiMYBAS, @AS
HEADY
#RUN
MYaas A81G7 13=N0y=ds
7.1
X VaLJE SINg REZQLUTION
3. #y14112 2,1
.81
X VALUE SINE RESQLUTICN
3. ?.14112 2,01
7.081
X VaLUE SINE RESOLUTICN
2,99999 £,14113 0,071
77

TIME: 1,61 SECS,

READY
#MON[TOH

«KJOR DSKBLIBASJOB,LOG=/ p0/2i4/VRILT/VSIIA/VL1280/YD1D
Total of 5 blgoeks In 1 fila In LPT31 request

Job 17, User [4,77743)] Longed off TTYI47 2B@7 13~Nov=84
Saved all flles (122 blocks)

Hunt|me 4,88 Sec

LPTSPL Verslon 6(344) Rupning on LPTQ

5-15

FORTRAN Example

The third example shows a FORTRAN-10 program that prints output on the line printer.
In the control file, you want to tell Batch to punch your relocatable binary program if it
executes correctly. Otherwise, you want to end your job so that you can find your error
from the message in the log file. The program is shown below.

C THIS PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50.
DO 10 I=11,50,2
J=1
B J=J+2
A=]
A=I/A
L=I/]
B=A-L
IF (B) 5,10, 5
5 IF (J.LT.SQRT(FLOAT()))GO TO 4
PRINT 105,1
10 CONTINUE
105 FORMAT (14, IS PRIME.")
END

The cards used to enter this program are shown in Figure 5-3.

SEOJ

END: ; ! END OF JOB

SERROR .GOTQ END

SEXECUTE

FORTRAN SOURCE PROGRRM

SPASSWORD ABCD

$JOB TEST[4,77743]1/CARDS:50

$SEQUENCE

Figure 5-3

5-16

Batch puts the following commands into the control file as a result of the cards you en-
tered.

.COMPILE LN????.FOR/COMPILE/LIST
JEXECUTE LN????.REL

IF (ERROR) .GOTO END

R PIP

END:: 'END OF JOB

The printed output from the job, including the log file, is shown on the following page.

SU3PROGRAMS CALLED

SQuT,
FLAT FLOAT. SQRT

SCALARS AND ARRAYS
8 1 J 2 A 3 ,Setp 4 £ 5 1

TE 'PGR-‘[RIE?
G0 13

AdGUMENT BLOCKS!

11 IS PRINE,
13 18 PRINME,
17 18 PRIME,
1+ 18 PRIML,
2% 1S PRJuE,
29 18 PRIME,
31 1S PRIME,
37 1S PRIYE,
41 15 PHIML,
43 Is PRIvE,
47 15 PRIME,

5-17

INDEX

Adding comments, 2-2, 3-3
JAFTER switch
$JOB card, 2-26
SUBMIT command, 3-5
ALGOL
compiler switches, 2-11
definition, vi
deck, setting up, 2-3
job, examples, 5-1, 5-11
program, compilation and execution, 2-4
$ALGOL card, 2-3, 2-11
examples, 2-12
switches, 2-11
Alphanumeric, definition, vi
ASCII code, definition, vi
Assemble, definition, vi
Assembler, definition, vi
Assembly and execution of a MACRO
program, 2-30
Assembly language, definition, vi
Assembly listing, definition, vi
Assignment of input devices in
programs,
ALGOL
disk, 2-18
card reader, 2-19
COBOL
disk, 2-16
card reader, 2-18
FORTRAN
disk, 2-17
card reader, 2-19

.BACKTO command, 2-23, 2-33, 3-10
example, 3-10
BASIC
deck, setup, 2-9
definition, vi
job, examples, 54, 5-13
program, running, 2-7

INDEX-1

Batch

commands, 3-10
format, 3-3

control cards, 2-1
format, 2-2

output, 4-1

processing, definition, vii

queue, job entry, 3-4

Card, definition, vii

column, definition, vii

field, definition, vii

format, 2-2

output, specification of limits, 2-27, 3-6

row, definition, vii
JCARDS switch

SJOB card, 2-27

SUBMIT command, 3-5
Cards to specify error recovery, 2-22, 2-32
Central processing unit, definition, vii
Central site, definition, vii
Changing a switch in a queue entry, 3-5
Character, definition, vii
COBOL

compiler switches, 2-13

deck, set-up, 2-5

definition, vii

program

compilation and execution, 2-5

format, 2-13
$COBOL card, 2-5, 2-13

examples, 2-14

switches, 2-13
Command, definition, vii
Commands not available in Batch, 2-8, 3-2
Commands to specify error recovery, 3-12
Comments, 2-2, 3-3
Compilation and execution of a pro-

gram

Compile, definition, vii

Compiler, definition, viii

ALGOL, 24

COBOL, 2-5

FORTRAN, 2-6
Computer, definition, viii
Computer operator, definition, viii
Contents of card decks, 2-2
Continuation card, definition, viii
Continuation of lines in control file, 3-3
Continuation of information on a card,

2-2

Control cards, 2-1
Control file, 1-1, 2-1, 3-2

creation, 2-1, 3-2

definition, viii

examples, 3-2, 4-7

format of lines, 3-2

insertion of commands, 2-7
Control of error reporting, 3-13
Control of the number of card columns

read,

SALGOL card, 2-12

SCOBOL card, 2-13

$DATA card, 2-15

$DECK card, 2-19

$FORTRAN card, 2-24

SMACRO card, 2-31
Copying data into disk files, 2-16
Copying programs into disk files

ALGOL, 2-11

COBOL, 2-13

FORTRAN, 2-24

MACRO card, 2-30
Copying trailing spaces into files

$ALGOL card, 2-12

$COBOL card, 2-14

SDATA card, 2-15

SDECK card, 2-19

SFORTRAN card, 2-25

SMACRO card, 2-31
Core

definition, viii

specifying amount, 2-28, 3-6
/CORE switch

$JOB card, 2-28

SUBMIT command, 3-6
CPU, definition, viii
CPU time, specifying amount, 2-29, 3-7

/CREATE switch (SUBMIT command), 3-4

INDEX-2

Creation of a control file, 2-1, 3-2
Creation of an entry in the Batch queue,
3-4
/CREF switch
SFORTRAN card, 2-25
SMACRO card, 2-31
Cross reference listing, definition, viii
SFORTRAN card, 2-25
SMACRO card, 2-29

SDATA card, 2-3, 2-4, 2-5, 2-15
examples, 2-16
naming data files, 2-16
switches, 2-15
Data, definition, viii
Data line in control file, format, 3-3
/DEADLINE switch
$JOB card, 2-28
Debug definition, viii
SDECK card, 2-8, 2-19
examples, 2-20
switches, 2-19
Defining limits for a job, 3-5
Deleting
control file, 3-7
job from the queue, 3-5
log file, 3-7, 3-8
Describing actions to be performed by
Batch, 3-4
Devices,
mounting, definition, x
peripheral, definition, x
Disk, definition, ix
/DISPOSE switch, 3-7
/DISPOSE:DELETE, 3-7
/DISPOSE: PRESERVE, 3-8
/DISPOSE: RENAME, 3-8
Dump, 4-2
definition, ix

Entry of job, 3-1
into Batch’s queue, 3-3
$EQJ] card, 2-3, 2-22
$ERROR card, 2-22
.ERROR command, 3-11
example, 3-11
Error messages, 4-1
Error recovery, 2-32, 3-15
examples, 2-33, 3-15, 3-16

Examples
$ALGOL card, 2-11
ALGOL job, 5-1, 5-11
.BACKTO command, 3-10
BASIC job, 2-9, 2-10, 5-4, 5-13
$COBOL card, 2-13
COBOL job, 4-3, 5-8, 5-19
Control file, 3-2, 4-7
$DATA card, 2-15
$DECK card, 2-20
.ERROR command, 3-11
error recovery, 2-33, 3-15, 3-16
SFORTRAN card, 2-24
FORTRAN job, 5-6, 5-16
.GOTO command, 3-12
job, 3-2, 5-1, 5-11
loader map, 4-4
log file, 4-4, 4-8
SMACRO card, 2-30
MOUNT command, 5-8, 5-19
mounting tapes, 5-8, 5-19
.NOERROR command, 3-14
output, 4-2, 4-7
submitting jobs, 3-8
Exclamation point, 2-2
$EXECUTE card, 2-23
Execute, definition, ix
Extension, definition, ix

Fatal error, character recognized as, 3-11
/FEET switch

$JOB card, 2-28

SUBMIT command, 3-6
File, definition, ix

File-control switches, 3-7

Filename, definition, ix

Filename extension, definition, ix

Format
$ALGOL card, 2-11
.BACKTO command, 2-23, 3-10
Batch command, 3-2
Batch command card, 2-2
Card, 2-1
$COBOL card, 2-13
control cards, 2-1
$SDATA card, 2-15
data cards, 2-2
data line, 3-3
SDECK card, 2-20

INDEX-3

Format (cont)
$EOJ card, 2-22
SERROR card, 2-22
.ERROR command, 3-11
$EXECUTE card, 2-23
$FORTRAN card, 2-24
.GOTO command, 2-23, 3-12
JF (ERROR) Command, 2-23, 3-13
JF (NOERROR) Command, 2-33, 3-13
$JOB card, 2-26
lines in control file, 3-2
SMACRO card, 2-30
monitor command
card, 2-2
line, 3-2
SNOERROR card, 2-32
NOERROR command, 3-14
SPASSWORD card, 2-33
program cards, 2-2
QUEUE INP: monitor command, 3-4
$SEQUENCE card, 2-34
SUBMIT monitor command, 3-4
system program command
card, 2-2
line, 3-3
FORTRAN
compiler switches, 2-24
deck, set-up, 2-6
definition, ix
job, examples, 5-6, 5-16
program, compilation and execution,
2-6
SFORTRAN card, 2-6, 2-24
examples, 2-25, 5-15
switches, 2-24
Functions of control cards, 2-1

General switches, 3-5
.GOTO command, 2-23, 2-33, 3-12
example, 3-12

Holding a job until a specified time,
2-27, 3-5
How Batch reads
card decks, 2-7
control files, 3-10
How to use Batch, 1-1

Identifying the job, 2-26
Identifying the user, 2-33

JF command

IF (ERROR), 2-23, 3-13

JF (NOERROR), 2-33, 3-13
lgnoring fatal error messages, 3-14
Interpretation of printed output, 4-1

Job, 1-1
definition, ix
entry to Batch, 3-1
examples, 3-2, 5-1, 5-11
submitting, 3-3
examples, 3-8
$JOB card, 2-3, 2-26
switches, 2-26
Jobname, definition, v
Jobstep, definition, ix

K, definition, ix
[KILL switch, 3-5
Kinds of printed output, 4-1

Label, definition, ix
Line continuation, 3-3
Line printer output, specification
of limits, 2-27, 3-6
Listings, 4-2
Log file, 1-2, 4-1
definition, x
examples, 4-4, 4-8
Loader map, 4-2
example, 4-4

MACRO
assembler switches, 2-31
deck, set-up, 2-6
program, assembly and execution, 2-6
SMACRO card, 2-6, 2-30
examples, 2-32
switches, 2-31
/MAP switch
$DATA card, 2-16
SEXECUTE card, 2-24
/MODIFY switch, 3-5
Monitor, definition, x
Monitor,command
card format, 2-2
definition, x
line format, 3-3
MOUNT command, 1-2
example, 5-8, 5-19

INDEX-4

Mounting a device, definition, x
Mounting tapes, 1-2

examples, 5-8, 5-19
Moving a file to Batch’s disk area, 3-8
Multiprogram Batch, 1-1
Multiprogramming, definition, x

/NAME switch, 2-29
Naming control files, 3-4
Naming data files on the $DATA card,
2-16
Naming jobs, 2-26, 34
Naming log files, 3-4
SNOERROR card, 2-32
NOERROR command, 3-14
example, 3-14
JNOLIST switch
SALGOL card, 2-12
SFORTRAN card, 2-25
SMACRO card, 2-31

Object program, definition, x
Obtaining a cross reference listing
SFORTRAN card, 2-25
SMACRO card, 2-31
Operator, computer, definition, viii
Output
card, 1-2
line printer, 1-2
paper tape, 1-2
plotter, 1-2
tape, 1-2
Output, specification of limits
card, 2-27, 3-6
line printer pages, 2-29, 3-6
paper tape, 2-28, 3-6
plotter time, 2-29, 3-7

/PAGE switch (SUBMIT command), 3-6

Pages, specifying number to print, 2-29

/PAGES switch ($JOB card), 2-29

Paper-tape output, specification of
limits, 2-28, 3-6

$PASSWORD card, 2-8, 2-33

Password, definition, x

Peripheral devices, definition, x

PLEASE command, 3-15

Plotter time, specification of limits,
2-29, 3-7

Preserving
control file, 3-8
log file, 3-8
Printed output, 4-2
kinds, 4-2
Program
definition, x
object, definition, x
source, definition, xi
Programming, definition, x
Project-programmer number, 2-27
definition, x
[proj,prog], 2-27
definition, v
Putting commands in the control file, 2-7

Queue, definition, xi

entering a job into, 3-3
QUEUE INP :monitor command, 3-4
Queue operation switches, 3-4

Reading a card deck, 2-7
Receiving output, 1-2
Recovery from errors, 1-2, 2-32, 3-15
Required control cards, 2-3
Running jobs, 1-1, 2-1, 3-1
ALGOL, 2-3
BASIC, 2-9
COBOL, 24
FORTRAN, 2-5
MACRO, 2-6

Searching back in the control file,
2-23, 2-33, 3-10
Searching forward in the control file,
2-23, 2-33, 3-12
$SSEQUENCE card, 2-3, 2-34
Set-up of a card deck, 2-2
ALGOL, 2-3
BASIC, 29
COBOL, 2-5
FORTRAN, 2-6
MACRO, 2-6
Set-up of a job, 1-1
Software, definition, xi
Source,
deck, definition, xi
language, definition, xi
program, definition, xi
Specification of limits
cards to be punched, 2-27, 3-6
core, 2-28, 3-6

INDEX-5

Specification of limits (cont)
CPU time, 2-29, 3-7
pages to be printed, 2-29, 3-6
paper tape to be punched, 2-28, 3-6
plotter time, 2-29, 3-7
Specifying character to be recognized as
a fatal error, 3-11
Specifying disposal of a file, 3-8
Specifying error recovery, 2-32, 3-15
Specifying a number for a job, 2-34
Specifying parameters for a file, 3-7
Steps to enter a job to Batch, 1-2
SUBMIT monitor command, 3-4
switches, 3-4
Submitting a job, 1-1, 3-1, 3-3
examples, 3-9
Suppression of listings
ALGOL, 2-12
FORTRAN, 2-25
MACRO, 2-31
/{SUPPRESS switch
$ALGOL card, 2-12
$COBOL card, 2-14
$DATA card, 2-15
$DECK card, 2-21
SFORTRAN card, 2-25
SMACRO card, 2-31
Switches in SUBMIT command, 3-4
System program command
card format, 2-2
line format, 3-3

Terminal, definition, xi
Terminating copying of cards into files,
2-22
JTIME switch
$JOB card, 2-29
SUBMIT command, 3-7
$TOPS10 card, 2-2, 2-7, 2-34
example, 2-35
switches, 2-35
J/TPLOT switch
$JOB card, 2-29
SUBMIT command, 3-7

/WIDTH switch
$ALGOL card, 2-12
$COBOL card, 2-13
$DATA card, 2-13
$DECK card, 2-21
$FORTRAN card, 2-24
$MACRO card, 2-31

