AOHEMBINGR

A LABORATORY COMPUTER FACILITY
A UNIVERSITY OF WISCONSIN

LAP6W

Conrad C. Bjerke
Jo Ann Coram

Peter A. Gutterman
Richard A. LeFaivre
Marilyn Lenahan
Alan C. Roochvarg

LCF Program UP-070-03

Laboratory Computer Facility
83 Medical Sciences Building
University of Wisconsin
Madison, Wisconsin 53706

This work was supported by the Biotechnology Resources Branch, Division of Research
Resources, National Institutes of Health, under Grant RR-00249. It is based on work

supported under Grant FR-218 at the Computer Research Laboratory, Washington University,

St. Louis, Missouri.

FORWARD

In 1967 LAP6 was published by Mary Allen Wilkes of the Computer
Research Laboratory, Washington University, St. Louis, who also had
cc.iceived and developed the original LINC assembly program. The greatly
enhanced interactive assembling, editing, and filing capabilities of
LAP6 represented an innovation of fundamental importance to the users of
small computers. This volume contains a description of LAP6W, which
incorporates modifications of LAP6 by the staff of the Laboratory Computer
Facility at the University of Wisconsin Medical School. Large portions
of the text of the LAP6W document have been copied verbatim from the
LAP6 Manual.

This latest version of LAP6W, originally released in July of 1870,
includes several additions and improvements: an 8K option which allows the
system to utilize 8K of memory; a feature which permits a user to expand the
meta-command capabilities of the system; and rewritten LINC and PDP-8 assemblers
(along with the reference table maker) which provide considerably faster
assembly and reference table compilation for long programs. It is our hope
that these changes will make the system more useful to LINC, p-LINC, LINC-8,

and PDP-12 users.

Staff of the Laboratory Computer Facility

July, 1972

i

[— T T e T e -

LAP6W Handbook
Table of Contents

e

FOrWard . o+ o o o o o o s s s s = & s s o s s & s 8 s s s s s s s o s 4 o o o
ADSTIACE . v 4 « o <« s s & 8 e 8 = w e w. % w8 e e s 8 s 8 s ow w e e s a s e .
Preface . v o« o o o s o o o 5 s o s« & s 8 % s 3 s+ 6 = s s s & e e 8 8 s = s
Introduction . . . e T T -
I. Loading Procedure for Unit 0 Systems T T T T
A, Classic LINC, u-LINC 100 . . &+ - « & « « =« & « « & o a4 o s o« 2 o o o =
B, u=LINC 300 . + v 4 « o« o & o & o s = = s s s = » s s s s s s s s » o =
C. LINC=8B . . &+ 4 « o s o s s a s s s s s s 8 s & s 3 « # s s s + = & s =
De PDP-=12 . v v o« = o o s 2 s = s & &« s s« s s 3 s s s« s o & a i @ @ i
I1i. Display FOrmat . . « « « = s = s o s o & s o o o o o o o o o & o - = .
III. Keyboard Input . . « « « &+ o o s & = o & = o & « o &+ o o« o « o e
A. Character Set . . « + « =« « ¢ o & s s s s 2 s & s s = .
B, Meta-CommandS . . « « s s o s ©« s o o s = & o & & » & = s 8 = & s % &«
C. Manuscript . « « o« o « o o o o & o o o o o o o o o o o o 0 0 o e
D. Locate Requests . . « « « ¢ & o o o o 2 s & o o o ¢ o 2 o o o = o o o
E. EAiting. . . ¢ ¢ o o o o o o o o o s o « s s s o o o o o s o o o ¢ o »
IV, FileS. v o o o o o s a 2 = s s 3 o s & s s s s s s s s s » s s & o« s o s =
A, TFile INACK « ¢« v « o s s & o & & & % 2 a 8 o o & @ % & o % & & & » #
B. File Bounds . . . T EEE L EEEREEL I PR EE .S
C. File Entry Placement T T
N Meta-Commands . . PE R e w6 e e e A e e W e e e w e & e e e @ ke 8
Utility Meta—Ccmmands
ADD MANUSCRIPT. &+ v o « o « o o o o o« « « « AM . 4 o o o ¢ ¢ o o o« » 13
COPY. o + s « « ¢ s w win s« o s www v 2 ¢ o008 vssos s v ¢ 18
EXIT. v v o o = o o« o o o 3 o v 0 99 v»9e «BX o950 0c¢eeoeosses 1o
SHITCH UNIT o v « o o 2 o « o« s o o 00 2 s U o o 5 4 ¢« o s 5% s s & 1D
LOAD BINARY . « « o« o o o o o o s s o o s+ « LB & ¢ o o ¢ ¢ o o o« & & = 16
PDP<8 LOAD BINARY .. o o o s & s o @ & % « ¢ 8B % s % % ¢ ww e a« « » 10
PRINT MANUSCRIPT . . « « &« s o s o« s o o« « PM 0 & o & o o o o o « o & 20
CTRING SEABCH : o v & % % & & s @ a » % # 88 www » swmwn x s o 28
CONTINUE SEARCH v o o 5 & & s« w ww % s « 08 o wws o e momnss s 23
LOAD META-PROGRAM e e s e s s e HMP . . s e s e e e s e . 2
File Maintenance Meta—Commands
COPY FILE + v v o o o o o o o s o o o 0 2 oCF & ¢ o o o oo o000 26
COPY MANUSCRIPT + v o « o o o o o o« o o« + «CM o v o v v o o oo oo 27
COPY BINARY » v v o o o o s s 6.6 5. 8% % s CB @awe s s e wns ¢« 2T
COPYPROCBAM. . o« v w3 6.5 & s@wwn 3 +CF www o woewmeww « w 28
DISPLAY INDEX o o o v s o 5 & & @ % o 9 « s DX w o o 5 v 5w ma « « 29
FILEDMEY THEEY . o o 5 w5 ¢ i s % #§ FTK o owiwie = oo mw » » OF
RAME IHNDEY < 5 o s oo 5% & sw o s « NE o wom o » womwowow oz 5 O
SAVE BINARY & ¢ s s w s % % & ¢ @ w w5 5 # 5B wowoa » o ow oowo s s a o9
SAVE MANUSCRIPT . 4 o« « o o = s = s s s « « SM & o o o o & o o 2 o = = 3u
SAVE PROGRAM. e s s s s o s v e« 8P 4 4 s s e s s & s s s s 35
Assembly System Meta—Commands
BSSEMBIR: + 4 « o w wwmi s 2 s s wwm s « B s @@ ¢ v 9w ws ¢ OO
PDP-8 ASSEMBLE. « « o o o o o o o« o o o » s BA < o ¢ ¢ s ¢« o ¢« s o o o 3
o o, T I S TR | A
PIPa8 LIST. . . « s s v w5 v 6§ ¢ wwws o Bh moww e o o @ mwes 30
REFERENCE TABLE . + o o o a s s s s o o s «RT & 6 o o s o s s o s o o 5Hbt
PDP-8 REFERENCE TABLE . « « &« « « o o o s ¢« BR ¢ o ¢ o ¢ o ¢ o o s o » Ul

e
<

-
L]
-
8.
HFOWVWWOWWOWYUFEFFOHFRFRRRRRJ

=

-ii-

VI.

Appendix:

Chart
Chart
Chart
Chart
Chart
Chart
Chart

Ass

I

II
IT
IV
v

VI
VI

Table of

embly Language Conventions. . .
A. Introduction. . .« « « « - &
B, Elements. « « « =« =
Numbers . . « « « s +
Symbols . « « & « & =
Text: « « o « = + & + =
Character Constants . .
Comments. . « « « o« « =
Expressions
tatementq. . e e om s s
Equality Statements . .
Origin Statements
Labels. . . + &« « o« « &
Expression Statements .

¥
.

Control Statements. . .
Text Statements
Null Statements

ONOUNERNHDROFWN

Notes., « « + - © o e w e
Lfficient Use of LAPGW. W oo e
Exiting . . +« + « « « o« o o«
Re-entering LAP6W Under Program
Working Area Length
LAP6W Manuscript Structure. . .
Copying LAPEW Tapes . . . + + =
Index Structure « + -

Standard LAP6W Tape
LAP6W Character Set --
I LAP6W Character Set --
LAP6W Character Set --
Reasons for NO Display . . .
LINC Instruction Set
I PDP-8 Instruction Set. . . .

Input

References « « o« &+ « o o &« =
Bibliography. G o W . .

System Summary Sheet: Cla551c LINC, u- LINC 100 u= LINC 300 . e e e
System Summary Sheet:

Allocation

Control

Display .
Printed

-

LINC-8, PDP-12. ..

. ®
. .
.
. .
L
. ®
.
. ®
s @
. =
. .
. =
. e
. .

Memory Reference Statements .

. ®
- -
- ®
. =

. -

Qutput.

Contents (Continued)

. 8 - « & & & »] s & s = ® .
. = . . . & ® @ . ¥ & @ - . @
r e = - *+ = = & & & & 8 & @» .
- “« = » - . = ® 8 @ . » . = w
- " & = = . s = = = » - LI
. ® = = e . & & & @ ® s LI
- & a & & @& = - .
- w a . " = # - s * = = . &
. o+ = = ® & @ » & & = . - .
- . - . - " e @ . = *= 8 = = @&
s » . . % . = = . - & & & =
- - - - @ & w = @ . . . W
- . = = w - . = & & = @ . LI
- . . e = » . = - » @ - - -
. - - a & = = . *» & = - .
L - - « & = @ ® . r = = @ .
. = = - - = * 2w @ - & @ . . ®
= & w - . . ® « & & % . . e @
- & & = - - s s & e = - . . =
- . & T | - . = & & = » - s -
- - - L s s = @ & ® . . -
- - - - T - LI] s ® . -
- - - . = e « = & & @& # . »
- = e - TR @ = & 2w 8 » . = =
s« = » - . . * & = = . ® - -]
- - e . - ® ® ® = 8 - - .
- - . s . & = » . - - -
- & s 8 = = . = s & @ - - -
. . . - . & » . - - & - -
P - L3 "« & & @® . - . . = %
& & @® - . a & = @ L] . - -

. = ¢ = = . e e e & @& & - . .
. = - « & = ® & = & @ @ . = @
1 . - =% = @ - T e w . @ s

- ¢ = = » . = =

46
Lo
46
46
47
47
ug
Lug
ug
50
51
51
52
53
53
54
55
55

57
57
57
57
58
58
59
59

61
62
63
6U4
65
66
68
70
71

.Inside Back Cover
Outside Back Cover

Abstract

The LAP6W system is an on-line program for the LINC, u-LINC 100,
u-LINC 300, LINC-8, and PDP-12 which uses the LINC or Teletype keyboard
and scope for communication with the user and the magnetic tapes for
storage and working area. It may be used for preparation and editing
of any character string (manuscript) or especially for LINC or PDP-8
program preparation. The input-output character set is closely
aligned with the standard ASCII character set.

The LAP6W editor handles the manuscript display so that any
portion of the manuscript can be displayed at any time and edited
directly by simply adding or deleting characters. Changes are
shown integrated with the manuscript display as the user types.

Meta-commands provide automatic filing of manuscripts and
programs on LINC tapes and handle the assembly and memory loading
of LINC or PDP-8 binary programs. Debugging aids include displays
and/or printed copies of symbol tables and errors, and repeatable
access to the manuscript display for editing and reassembly.

~jv-

Preface

The major features that distinguish the LAP6W system from LAP6 are:

1.

2.

10.

11.

12,

13.

Character Editing

Context Searching

Partial Save Manuscript

Extended Copy Manuscript

and Copy Binary

Two Tape Unit Numbers

Implicit Meta-Command
Parameters

Copy File

Index Label and
File Bounds

LINC Assembly

PDP-8 Assembly

PDP-8 Loader

LINC and PDP-8
Loaders

Assembly

Characters may be deleted or inserted anywhere in a
manuscript line.

A LAP6W meta-command can search for a specified string
of characters.

This meta-command does not use any intermediate tape
storage.

The location of the manuscript or binary to be copied
may be supplied by the user or cbtained from the file
Index.

A manuscript or binary may be copied from any tape unit
to any tape unit; both the "from" and "to" units are
specified in the meta-command. A single meta-command
can be used to save up to two copies of a mamuscript and/
or binary if a second tape unit is specified.

An omitted wnit number implies the current system unit;
an omitted file location of a binary program implies the
binary working area, etc.

The location of the Index to the file being copied may
be specified by the user.

A LAP6W Index includes an alphanumeric Index label and
a set of file bounds. Simply altering the file bounds
respecifies the range of the LAP6W file.

A LINC assembly package is provided which allows for the
use of six [four] character symbols, maintains both
execution and storage location counters, and assembles
into a full 4K of core.

A PDP-8 assembly package is optionally provided for
LINC-8 and PDP-12 users.

On the LINC-8 and PDP-12, PDP-8 binary programs may be
stored in and loaded from a LAP6W file.

The tape location of the LINC or PDP-8 binary may be
supplied by the user or obtained from the file Index.
The binary is loaded into as many banks of core as
possible.

LINC or PDP-8 program manuscripts need not be added to
the manuscript working area for assembly, but can be
assembled directly from the file.

Preface (Continued)

The following features have been incorporated in the second release of the LAP6W
system:

14, 8K Option An option is available to LINC-8, PDP-12 and u-LINC 300
users which allows the system to utilize 8K of memory.

15. Meta-programs A "meta-program" feature has been added which permits
the user to expand the meta-command capabilities of
LAP6W to fit his particular needs.

16. "Kill" Working Area An additional editing capability has been added which
permits the user to clear the manuscript working area
from the keyboard.

17. Tape Copying Meta-commands which perform tape copies now utilize all
of available memory as a copy buffer, considerably
improving copying time on 4K and 8K machines.

18. Assembly, Reference The LINC and PDP-8 assemblers and the reference table
Table maker have been re-written to be considerably faster
for long programs.

19. Manuscript Listing Manuscript line numbers may optionally be included on
output produced by LIST, PDP-8 LIST and PRINT MANUSCRIPT.

The following modifications have been made to PROGOFOP and TRAP, and thus affect only
the LINC-8 and PDP-12 versions of LAP6W, For details, consult the documentation for
PROGOFOP [2] and TRAP [3].

20, 20008-Bloc]< Tapes An option is provided to allow programs to reference
the upper half of 2000g-block tapes on units 0 and 1
as units 4 and 5.

21. Typing LINC Code LINC code may be typed directly from the accumulator,
eliminating the conversion to ASCII code.
22. PDP-12 Interrupt LINC mode and PDP-8 mode interrupt handling procedures
Routines are now available in TRAP.
23. LINC-8 START 400 PROGOFOP now interprets the START 400 switch as an
actual start 400. The CLEAR switch is used to restart
LAPGW.

vi

Introduction

This manual describes LAP6W as it is available on the several versioms of
the LINC. By using one of the programs, GASTCL or GASTMB (LCF Program UP-039-03),
a user may generate a LAP6W system suited to his computer that will operate on
LINC tape wnit 0, 1, 4, or 5. Other than the start-up procedure (Section I),
the primary difference in LAP6W usage arises from different keyboard input
devices. The classic LINC, p-LINC 100 and p-LINC 300, which have LINC keyboards,
use CASE character combinations for manuscript display control; the LINC-8 and
PDP-12, which have Teletype keyboards, use CONTROL shift characters for manuscript
display control. In this manual, the CASE characters for the former are indicated
in bpackets ([]) after the corresponding CONTROL character combinations. Other
differences in usage between different models of the LINC are noted where they

occur.

Tt is also important to note the differences in structure of the various
versions of LAP6W. The classic LINC and u-LINC 100 systems are "2-bank" systems,
in that they occupy two 2000g-word banks of memory (the 'lower" and "upper"
banks). The LINC-8, PDP-12 and p-LINC 300 systems are "multi-bank" systems, in
that they occupy three or more banks of memory. The u-LINC 300 system operates
in, and loads user programs into, banks 0 ff. The LINC-8 and PDP-12 systems
require that PROGOFOP or TRAP be resident in bank 0 for proper operation, and
thus operate in and load user (LINC) programs into banks 1 ff. Programs may be
loaded into bank 0 through use of the PDP-8 LOAD BINARY meta-command. It is
recommended that LINC-8 and PDP-12 users thoroughly familiarize themselves with
the documentation for PROGOFOP [2] and TRAP [3].

This manual is for the standard configuration of LAP6W, namely, a unit 0
system with the tape configuration shown in Chart I, page 61.

-vii-

The LAP6W System

I. Loading Procedure for Unit 0 Systems

Classic LINC and p-LINC 100 (2-Bank System)
1. Mount a LAP6W classic LINC system tape on umit O.
2. Read blocks 400 through 407 into quarters 0 through 7:

Set the left switches to 0701, the right switches to 7400 (RCG, 7/u400).
Raise the DO toggle.

3. When the tape stops, press START 20. LAP6W is now ready to accept
keyboard input.

u-LINC 300 (Multi-Bank System)
1. Mount a LAP6W p-LINC 300 system tape on unit 0.
2. Read blocks 400 through 403 into quarters 0 through 3 of bank 0:

Set LSW = 0600 (LMB 0)
Raise the DO toggle

Set LSW = 0701, RSW = 3400
Raise the DO toggle

3. When the tape stops, press START 20. LAP6W is now ready to accept
keyboard input.

LINC-8 (Multi-Bank System)

1. Mount a LAP6W LINC-8 system tape on unit O.

2. Read in PROGOFOP [LCF Program UP-072-02] by raising the LOAD toggle.
When PROGOFOP is loaded, it will proceed to load and start LAP6W. When
the tape stops, LAP6W is ready to accept keyboard input.

3. After running a LINC program, LAP6W may be reloaded by pressing CLEAR.

PDP-12 (Multi-Bank System)

1. Mount a LAP6W PDP-12 system tape on unit 0. Place the tape drive in
REMOTE with WRITE ENABLED.

2. Read TRAP [LCF Program UP-086-02] into quarters 0 and 1 of any bank:

Set the MODE switech to LINC
Press 1/0 PRESET

Set LSW = 0701, RSW = 1000
Press DO

3. When the tape stops, start TRAP by pressing START 400. TRAP will re-
locate itself to bank 0 and proceed to load and start LAP6W. When the
tape stops, LAP6W is ready to accept keyboard input.

4. After running a LINC program, LAP6W may be restarted as follows
(assuming TRAP is still resident in quarters 0 and 1 of bank 0):

Set the MODE switch to LINC
Press I/0 PRESET

Set LSW = 0 0u00

Press START LS

5. After running a PDP-8 program which was loaded by LAP6W, LAP6W may be re-
started as follows (assuming locations 7600-7777 of field 0 have not

been changed):

Set LSW = 0 7600
Press START LS

II. Display Format

After loading LAP6W, the system is ready to accept keyboard input. All
manuscript lines and meta-command statements are displayed as they are typed.

All characters shown in Chart II on page 62 are displayed except EOL, DELETE,
CASE, and EOMS.

A. Manuscript lines are vertically centered around the middle of the scope

automatically.

1.

A cursor (.) appears in the current line. It marks the position at
which LAP6W will insert the next character typed. Manuscript lines
which are too long to fit on one scope line (more than 25 characters,
51 on the PDP-12) are automatically carried over to the next scope
line. Breaking words between scope lines can be avoided by spacing
until the cursor moves to the next line.

The line number (assigned automatically by LAP6W) of the current line
appears below the current line in the form <LN%

The number of manuscript lines displayed may be varied by rotating
knob 3.

Lines are positioned on the scope as follows:
a. Sense switch 5 down: Lines beginning with (#), ([), or ($) are
positioned at the left edge of the scope; other lines are indented

8 spaces (6 on the classic LINC).

b. Sense switch 5 up: All lines are positioned at the left edge of
the scope.

All the characters to the right of the cursor on the current line are
not always displayed.

A

ITII. Keyboard Input

CHARACTER SET

The character set used in LAP6W appears in Chart II, page 62. On the left are
the characters' names and internal representation; on the right are the corres-
ponding Soroban, u-LINC 300 and Teletype keyboard characters. In this manual,
the characters will be referred to by their names. For example, the LAP6W
characters EOL, DELETE and META may be produced by striking the Teletype keys
marked RETURN, RUBOUT and LINE FEED.

META-COMMANDS

A meta-command is one of 27 special directives to LAPE6W. It is executed by
LAP6W at the time it is stated and deleted from the display at that time.

The character META, when typed as the first character of a manuscript line,
produces an arrow (the META arrow: +) at the bottom of the scope. To state

a meta-command, type the META arrow and the meta-command, followed by any
arguments the meta-command may require. Terminate the statement by typing an
"End of Line" (EOL).

1. The meta-command is executed when the terminating EOL is struck.
2. Illegal meta-command statements are deleted automatically.

3. A meta-command must be stated on a line by itself, i.e., a line beginning
with the META arrow. It cannot be stated while entering a manuscript line.

4. A line starting with the META arrow will be interpreted as a meta-command
only if it is terminated by striking EOL. If terminated in any other
fashion, it will be treated as an ordinary line.

MANUSCRIPT

1. A manuscript is a string of characters formed into manuscript lines and
retained by LAP6W as a permanent record of keyboard input. A manuscript
can be edited, saved in a file, copied from file to file, or otherwise
manipulated.

a. One quarter of the LINC memory is used to collect manuscript. As the
quarter is filled, it is saved on the LAP6W tape in the manuscript
working area beginning in block 470. 512 keyboard characters fill one
block.

b. LAP6W will accept up to 721 blocks of manuscript. Additional manu-
script is ignored until the size of the manuscript is reduced.

¢. The manuscript in the manuscript working area, accessible to the scope
and keyboard, is called the current manuscript.

2. A manuscript line is any combination of characters, excluding DELETE and EOMS,

which is terminated with an EOL. An EOL by itself does not constitute a
manuscript line and will be ignored.

a. LAP6W assigns a line number to every line entered. The numbers are
sequential, beginning with 1, and octal.

b. LAP6W will accept no more than 7775g manuscript lines. Additional
lines are ignored until the size of the manuscript is reduced.

The line number on the scope (e.g., 63 below) is called the current line
number.

a. The current line number identifies the manuscript line currently being,
or about to be, added to the manuscript. At no time during the manuscript
display does the manuscript not have a current line number.

ADD SYIMBOL
#LFEAZ STC #+7
JP TEST-2
LDA;
MTB
STA.
<b3>

Figure 1. Manuscript Display

b. The number 1 appears as the current line number if there is no current
manuscript. Subsequently, the new current line number appears every
time a manuscript line is entered.

In Figure 1, when the current line, 63, is terminated with
EOL, all the lines will move up one space, the top line, which
is line 56, will disappear and 64 will appear as the new
current line number.

LOCATE REQUESTS

1.

2,

The manuscript is said to be "located" at the position marked by the cursor
in the current line. For reading or editing, it may be relocated at any time.

The manuscript may be relocated to display any given line by typing the
META arrow, the line number of the line to be displayed, and EOL.
For example, to locate between lines 104 and 105, type

+.'LOME oL

which will cause LAP6W to display lines through 104 and to display 105 as
the current line number (Figure 2).

- ———

EOL

EOL

- —————

EOL

EOL

<105>

Figure 2. Locating at Line 105

Ee

3. The manuscript may also be relocated by usiﬁg the following undisplayed
key combinations:

a. CONTROL Q [CASE 0] Forward one page (begin display with next line).
CONTROL A [CASE Q] Backward one page (make the line number of the top
line on the scope the current line number).

b. CONTROL W [CASE 1] Forward one line.
CONTROL S [CASE W] Backward one line.

These key combinations locate the manuscript in the appropriate direction
so that a new manuscript line can be entered.

For example, if the user strikes CONTROL S [CASE W] while the
manuscript is located as in Figure 1, the display would consist
of lines 56-62 (as currently shown); the current line number would
be number 63.

If the user strikes CONTROL S [CASE W] while the manuscript is
located as in Figure 2, the current line number would become
number 104 and lines 100-103 would also be displayed.

c. CONTROL E [CASE 2] Forward one character.
CONTROL D [CASE R] Backward one character. (CASE E on u-LINC 300)

These key combinations locate the manuscript one character in the
appropriate direction.

For example, if the user strikes CONTROL E [CASE 2] while the
manuscript is located as in Figure 1, the manuscript would be
relocated as in Figure 3. Note that the result would be the
same if the user were to strike EOL and then strike CONTROL E
[CASE 2] or if he were to strike CONTROL W [CASE 1] and then
CONTROL E [CASE 21].

#LF2AZ STC *#+7
J'P TEST-2
LDA;
MTB
STA

“EXIT
<h4>

Figure 3. Manuscript Display after Relocation

Note that the magnitude and direction of the manuscript relocation is
directly related to the physical keyboard position of the above control
keys, and that the keys are grouped together for easy typing while
watching the scope:

(Teletype Keyboard)

Page Line Character
Forward Q W E
Backward A S D

(LINC Keyboard)

Page Line Character
Forward 0 1 2
Backward Q W R (E on u-LINC 300)

d. EOL: End-of-Line

Striking EOL locates the manuscript after the last character on the
current line. If the first character of the line is the META arrow,
the current line is interpreted as a meta-command (see pages 4 and 11).
If the current line is not empty, an EOL is placed at the end of the
current line and the current line number increases by one. LAP6W will
then be located on an empty current line.

e. Before the current line number is changed due to a key combination as
described in (b) and (c) above, an EOL is placed at the end of the
line if it is not empty.

4, The STRING SEARCH meta-command (see page 22) may be used to find given
sequences of characters in the current manuscript.

5. Since the user will seldom know the exact line number of the line(s) he
would like to see, >IN can be used to locate the general area, and the
above key combinations c¢an be used to "zero in".

6. To locate at the end of the manuscript, request any line number (octal)
larger than the last line number. To locate at the beginning of the
manuscript, type *OpoL’ (+?777E0L is equivalent to *OEOL')

E. EDITING

1. Characters or manuscript lines may be added or deleted wherever the manu-
script is located. An entire manuscript may be deleted or deletions may
be done a frame at a time, a line at a time, or a character at a time.

a. To add characters to the manuscript, locate the manuscript at the
position in which you desire to add characters (see section III.D,
p. 5) and then type the desired characters. Remember that when EOL
is struck while characters are to the right of the cursor on the
current line, LAP6W locates the manuscript after the last character
of the current line before placing the EOL on the line.

b. Striking CONTROL SHIFT K [CASE K] will delete ("kill") the entire
manuscript. This key combination can only be given on an otherwise
empty manuscript line. (Note: executing a START 20 from the console
will also delete the entire manuscript.)

c. Striking CONTROL P [CASE P] will delete all the lines on the page
currently displayed on the scope. This key combination can only be
given on an otherwise empty manuscript line.

For example, if the user strikes CONTROL P [CASE P] while the manuscrip
is located as in Figure 2, lines 101-104 would be deleted from the
manuscript, the display would show lines 75-100, and line 101 woul

be the current line.

2,

d. Striking CONTROL L [CASE L] will delete the information on the current
line. If no information has been entered on the current line, the
previous line will be deleted. In either case, the line number of the
deleted line is retained as the current line number.

For example, in Figure 1, striking CONTROL L [CASE L] will delete
"STA" on line 63, leaving 63 as the current line number. Striking
CONTROL L [CASE L] again will delete "MTB" on line 62; all the lines
will move down one space, line 55 will appear as the first line
displayed, and 62 will be the new current line number.

e. Striking DELETE will delete the character at the left of the cursor.
If no characters of the current line are to the left of the cursor,
the EOL of the previous line will be deleted, the current line number
will be decremented by one, and the current line will become the
concatenation of the former previous line and the former current line.

For example, if the user strikes DELETE while the manuscript is
located as in Figure 3, the EOL of line 63 would be deleted and
the manuscript would be located as in Figure 4.

ADD SYMBOL
#LF2AZ STC #+7
JP TEST-C
LDA;
MB
STAEXIT
<k3>

Figure 4.

Striking CONTROL X [CASE S] will split the current line at the cursor.
If there are any characters to the left of the cursor, they will become
the previous line and the current line number will be incremented by one.
For example, if the user strikes CONTROL X [CASE S] while the manuscrlpt
is located as in Figure 4, the manuscript would be relocated as in

Figure 3.

Manuscript lines following the point at which changes are made are
automatically renumbered by LAP6W if necessary.

The LAP6W system tape will move frequently, but briefly, while locating
or editing. It will, however, move at unpredictable times, perhaps even
when a manuscript line or meta-command is being entered. This is indica-
tive of normal operation and requires no user actionm.

—n —_— — e e e e e e e o

IV. Files

Any tape on any unit may be used as a LAP6W file. The meta-commands described
in Section V use the tapes in this way.

A tape need not have a system on it to be a file tape. In this case the entire
tape may be used for filing. (See Section B below)

An entry in a LAP6W file may be designated as either a manuscript or a binary
program. A file may contain only binary programs, only manuscripts, or both.

A. FILE INDEX

1. Location

When a tape is used as a file, blocks 376-377 are automatically reserved
for an Index in which information about the file entries is recorded.

2. Label and Bounds

The Index of every file contains the bounds of the file and an eight-
character internal label provided by the user. The label has the same
format as an entry name (see below).

3. Entry Names

a. A file entry must be given a name at the time it is filed. Imn the
Index one name describes one manuscript or one binary program, or
both. A full Index, 63 names, therefore, describes a maximum of 126
entries. A binary program given the same name as a manuscript need
not be the same program.

b. An entry name can be any combination of displayable characters
(except comma) on the keyboard, as long as the first character is
not (%)(57g) and the name includes at least one non-octal character
other than '"space'.

c. Names can be no more than eight characters long. Spaces in the
middle or at the end are significant. Names may not have leading
spaces.

B. FILE BOUNDS

1. The bounds of the reserved area within which entries will be filed, as
contained in the Index (see Section IV.A.2 above), may be specified by
the user via the FILE-ONLY INDEX meta-command (see page 31) or through use
of the program GASTMB [GASTCL] (LCF Program UP-039-03). If the Index is
a system Index (i.e., the Index was created by GASTMB [GASTCLI) the
lower file is as follows:

Blocks Blocks

System (without PDP-8 metas) (with PDP-8 metas)
Classic LINC, u-LINC 100 0-374 not available
p-LINC 300 0-374 not available
LINC-8 5-37u4 5-356

PDP-12 2-374 2-356

and the upper file is in 600-777 (inclusive).

In this case, the area between the files except blocks 376 and 377 may
be used for a copy of LAP6W or in any way the user sees fit. If the
FILE-ONLY bounds are selected (i.e., the Index was created via the FILE-
ONLY INDEX meta-command), the lower file consists of blocks 0-375
inclusive and the upper file consists of blocks 400-777 inclusive.

FILE ENTRY PLACEMENT

1. Within the reserved area, a file entry is automatically saved as close
as possible to the Index at block 376.

2. A file entry is always saved in contiguous blocks. Block 777 is mot
contiguous to block 0.

-10-

V. Meta-Commands

The following meta-commands all use the tape(s) or scope, or both, for their
execution. Most return automatically to the manuscript display when the
operation is finished. However, they do not always return with the manuscript
located at the line which was current when the meta-command was given.

A.

B.

The meta-commands, with the exception of ADD MANUSCRIPT, do not change the
current manuscript in any way. (Except perhaps to relocate it.)

Meta-commands may be given at the beginning of any manuscript display line.
They may be given in any order.

If a legally stated meta-command or phase thereof cannot be executed, NO will
appear on the scope. Strike EOL to continue. The current manuscript and all
files are still intact. (See Chart V, p. 65 to explain the NO.)

Meta-commands must be two letters, followed by the necessary arguments in
the order LNA, LNB, NAME, UNITA, UNITB.

1. LNA and LNB usually denote manuscript line numbers. NAME usually means
the name of a file entry. UNITA or UNITB means the tape unit, either O,
l, 4, or 5,

2. When there are two or more arguments, they must be separated by commas.
NAME must not begin with (%), must be no more than eight characters,
must contain a non-octal character other than "space", and must always
be terminated with a comma.

3. Spaces are permitted almost anywhere. ILeading spaces in NAME are not
significant; embedded and trailing spaces are.

4. Parentheses in the following meta-command formats enclose optional
parameter fields (i.e., the parameter and its delimiting comma). These
fields need not be typed when entering a meta-command. Do not type
parentheses in the actual meta-commands.

5. When specifying an optional parameter, fields enclosed together with the
desired parameter field must also be typed (e.g., in the meta-command
+PM (LNA,(LNB,))(NAME ,)UNITA the field "LNA," must be present whenever
"INB," is desired).

6. The numeric parameters (INA, LNB, UNITA, and UNITB) need not be specified
even though the corresponding field is specified.

If UNITA or UNITB is left out, the current system wnit (i.e., the wnit
that LAP6W is running on) is inferred (e.g., »SM NAME, . or +SH NME’,].,EOL)

If the line number INA is left out, line number 1 is inferred.
If the line number LNB is left out, the last manuscript line number is
inferred (e.g., -a-PH,,NAME,l.BOL is equivalent to +PM NM,].EOL).

7. If the field ",UNITB" is required but left out, the current system unit is

inferred for UNITB (e.g., »CM NAME 4 0 is equivalent to -+CM NAME',#,EOL).

=11~

If a tape on which a manuscript or binary is to be filed appears to have
no Index, the display

NO INDEX ON UNIT n

will appear, where u indicates the tape in question. Strike any key to
go to the next phase or return to the manuscript display. Use the meta-
command FILE-ONLY INDEX (see page 31) or the program GASTMB [GASTCL] to
create an Index.

The REPLACE display appears when.an entry in the file is about to be
replaced. It is of the form

REPLACE xxx NAME ,u <#>

where:
Tz is the type of entry about to be replaced:
MS for manuscript, BI for binary,
NAME is the name of the entry, and
u is the file umit.

Strike (#) to replace the entry; strike EOL to go on to the next phase or
return to the manuscript display.

-12-

META-COMMAND REPERTOIRE

1.

AM

ADD MANUSCRIPT +AM (BH,)UNIIAEOL

or: +AM (NAW,)LWITAEOL

Any manuscript may be added to the current manuscript.

a.

The manuscript to be added is identified by its first block number
BN, on any tape, UNITA, or by NAME in the file on UNITA. If NAME
or BNV is not specified, the manuscript to be added is in the working
area on UNITA.

The incoming manuscript is added to the current manuscript at the
current line. Thus, the location of the current manuscript is
relevant to the execution of the meta-command.

After the meta-command, the new current line will be at the end of
the added manuscript (just as though the incoming manuscript had
been added at the keyboard one character at a time). Manuscript
lines which follow the added manuscript are automatically renumbered.

If there is no current manuscript, the added manuscript will become
the current manuscript.

Do not attempt to add the current manuscript to itself.

If the manuscript in the working area was deleted (e.g., as a result of
striking CONTROL SHIFT K [CASE K] inadvertently), -AM., may be used to
recover the manuscript. In this case, any editing Whlcll'll was done
immediately before killing the working area may have been lost. The
user should examine the section of the manuscript in question before
proceeding.

-13-

co

COPY -+CO.

EOL

This meta-command copies the contents of any number of consecutive tape
blocks on any unit to any set of consecutive tape blocks on any unit.
It should not be confused with putting entries in a file and has no
effect on a file Index.

When the meta-command is given, the following appears on the scope:

CoOPY 27?7 BLOCKS + Number of blocks to be copied
FROM BLOCK ?2?7? LNIT ? + Present location
TO BLOQK 277 UNIT ? + Requested location

Fill in the question fields as indicated. Terminate each field by
striking EOL. The meta-command will be executed when the terminating
EOL is struck for the last question field.

If the user-supplied information is illegal, the question marks will re-
appear when the terminating EOL is struck for the question field.
Examples of illegal responses are a non-octal number, number of blocks
to be copied greater than 1000, illegal or non-existent tape umit,

set of blocks which extends beyond block 777.

Striking DELETE will delete the answer(s) and restore the question
mark(s), one question field at a time. Fill in the question field(s)
again. Do any DELETEs before striking the terminating EOL for the
last question field.

Strike CASE or (4) at any time to interrupt the above display and
return to the manuscript display.

To copy an entire tape, copy 1000 blocks from block 0 to block 0.

The blocks which are copied from are not affected.

CAUTION: It is never safe to copy overlapping block numbers on the
same unit, regardless of the number of blocks copied. This

limitation results from writing all the blocks before
checking them.

=]lge

EX

SU

EXIT *EXEOL

SWITCH UNIT +SU UNITAEOL

These meta-commands make it possible to leave LAP6W or leave the
computer without losing the current manuscript. The next time this
copy of LAP6W is used, the manuscript will still be accessible to
the scope and keyboard.

a. The EXIT meta-command rewinds the tape containing the LAP6W
system and then halts. Raise RESUME (push CONT on the PDP-12)
to re-enter LAP6W.

b. The SWITCH UNIT meta-command causes the LAP6W system on UNITA

to be loaded and started. If UNITA is not specified, the current

system is re-entered.

c. LAP6W may be re-entered by executing the regular start procedure
manually at the console (see page 1), or under program control

as described on page 57. In either case, EXIT is good for one re-

entry only. (Subsequent pushes of START 20 simply erase the
current manuscript.)

d. There is never any reason not to EXIT from LAP6W when leaving
the computer.

-15-

LB

LOAD BINARY +LB (NAME,)URITAEDL

or: ~LB (QBBB,N,)UNITAL

This meta-command loads the binary specified into LINC memory.

a. If no parameters are specified, the "binary most recently assembled"
with the AS or 8A meta-command is loaded. If only UNITA is
specified, the "binary most recently assembled" on UNITA is loaded.

b. If NAME is specified, the binary filed as NAMF in the file on UNITA
is loaded.

c¢. If N does not equal zero, the N block binary to be loaded is assumed
to start at block BBB on UNITA. The first block is loaded into
quarter @. If @ is non-zero, BBB must include leading zeros.

d. WARNING: No check is made for the type of binary, i.e., LINC or
PDP-8. Use the PDP-8 LOAD BINARY meta-command (see page 18) to
load a PDP-8 binary program.

e. All available LINC memory is loaded, starting with bank 0 (bank 1 in
the LINC-8 and PDP-12). Succeeding groups of 4 blocks go into

succeeding banks, i.e., blocks 0-3 into bank 0(1), 4-7 into bank 1 (2),

10-13 into bank 2 (3), etc.

f. In the multi-bank system, the lower memory bank is left set to bank 0
(bank 1 in the LINC-8 and PDP-12) and the upper memory bank to bank
1(2).

g. Memory registers not occupied by the binary program are cleared (set
to +0). Exception: if the binary program itself does not occupy
any registers in quarters 3 thru 7, registers 1770-1777 will not be
cleared,

h. LB uses register 0 after the binary program is read into the memory.
Therefore, if the program requires an initial value in register 0,
it must be reset.

i. LB starts the program in location 1 of bank 0 (bank 1 in the LINC-8 and
PDP-12). The user can ignore this feature by simply assigning nothing
to register 1, in which case the computer will halt at 1. The program

must then be started from the console. The following hints may help:

i. If the first instruction, or a JMP to the first instruction, is
put in register 1 (i.e., in the program manuscript following an
$1 statement), the program will start automatically as soon as
it is read in.

-16-

LB

ii. 1If nothing is put in register 1 and the first imstruction

is put in register 2, the computer will halt at register 1,
but the program can be started by raising the RESUME lever.
This is a helpful procedure when there are switches to be set
or tapes to change before the program can be run.

LB leaves the first block number of the program's tape location

in the left 9 bits of the Z register. It leaves the corresponding
wnit number in the right 3 bits of Z (to make it easier to
overlay programs which have no fixed tape location).

LB EXITs from LAP6W before reading the binary program. The current
manuscript may be recovered by executing the regular console start
procedure or by re-entering the system under program control as

described on page 57.

-17-

8B

PDP-8 LOAD BINARY +8B (NAME,)UWITAEOL

(LINC-8 & PDP-12 Only) or: +8B (QBBB,N,)UNITA,

This meta-command loads the specified binary into PDP-8 memory.

C.

If no parameters are specified, the "binary most recently assembled"
with the AS or 8A meta-command by this copy of LAP6W is loaded. If
only UNITA is specified, the "binary most recently assembled" on
UNITA is loaded.

If NAME is specified, the binary filed as NAME in the file on UNITA
is loaded.

If NAME is not specified and NV is specified to be non-zero, the N-
block binary starting at BBB on UNITA is loaded. Block BBB will be
loaded into quarter Q. If @ is non-zero, BBB must include leading
zeros,

WARNING: No check is made for the type of binary, i.e., LINC or
PDP-8. Use the LOAD BINARY meta-command (see page 16)
to load a LINC binary program.

All available PDP-8 memory will be loaded, if possible. Loading
starts at the quarter specified by @ (quarter 0 is locations 0-377
of field 0, quarter 1 is locations 400-777, etc.), and continues
to the end of available memory or to the end of the binary program
on tape, whichever occurs first. However, locations 7600 thru 7777
of field 0 are never loaded, because the loading routine is there.

One of the following displays will appear:

STARTING ADDRESS 77?7 STARTING ADDRESS ?27?
ta) IN FIELD ?
(b)

(Display (b) appears if the computer in use has more than one 4096
word field of memory and the program is more than 208 blocks long;
otherwise display (a) appears.)

Enter the starting address and strike EOL, then if display (b), enter
the field and strike EOL. If other than octal digits are entered or
the field entered is not available, the erroneous questions will re-
appear immediately. If nothing is entered for the starting address,
it is assumed to be 200. If nothing is entered for the field, it is
assumed to be 0. Strike (4) at any time to return to the manuscript
display.

~18-

e

8B

The PDP-8 program will be started by a JMP to the specified address
with the instruction and data field registers set to the specified
field (0 for display (a)).

Location 7777 in field 0 contains a PDP-8 HLT instruction. It may be
used as a starting address.

Memory registers not occupied by the program are not changed. The PDP-8
loading routine occupies locations 7600-7777 in field 0.

On entry to the PDP-8 program, the LINC subsystem has been de-selected
and the PDP-8 accumulator and LINK-bit cleared.

PDP-8 LOAD BINARY EXITs before loading the PDP-8 program. The manuscript
display may be re-entered by reloading LAP6W or under PDP-8 program
control by jumping to 7600 in field 0 (which causes PROGOFOP (TRAP in

the PDP-12) to be reloaded).

In the PDP-12, this meta-command may be used to load LINC programs which
need to run in bank 0. In this case, it is necessary to have a LINC
instruction (6141) at the starting address to switch the computer to
LINC mode.

The PDP-8 loader in locations 7600-7777 of field 0 may be used to load
overlays into field 0 by setting up the following locations and jumping
to 7616:

7766 First block number

7776 Starting address (i.e., return address)

7770 First word address

7757 0 for tape units 0 and 1; 1 for tape units 4 and 5.

7760 2+(u4000g)-(tape unit bit); i.e., 4002 for wnits 1 and 5,
0002 for units 0 and 4.

7774 Two's complement of number of words to load.

7754 6202g + 10g + (Field of starting address).

Caution: Do not read overlays into page 37 on the LINC-8. Do not
read overlays into pages 36-37 (quarter 17) on the PDP-12.

Initially, locations 7766, 7757 and 7760 are left set (as explained above)

to the values for the PDP-8 program just loaded. These values may be
used to set up overlays for programs which have no fixed tape location.

[-

PM

PRINT MANUSCRIPT +PM (MA,(MB,))(NM,)LWITAEOL

PRINT MANUSCRIPT meta-command is used to list manuscripts on the Teletype.

1f NAME and UNITA are not specified, the current manuscript is printed. If
only UNITA is specified, the manuscript in the manuscript working area on
UNITA is printed. If NAME is specified, the manuscript filed as NAME in the
file on UNITA is printed.

If no line numbers are given, the entire manuscript is printed. When line
numbers are specified, that portion of the manuscript from LNA thru LNB is
printed. When only LNVA is specified, LNB is assumed to be the last line
number of the manuscript. When only LNB is specified, LNA is assumed to be
1.

The NAME, if any, and the page number in decimal are typed in the title at
the top of each page. The line number of the first manuscript line which
appears on that page is typed in the second line of the title. The title
has the form

PM OF NAME PAGE nn
IN=1111

The following sense switches may be used to control the format of the printed
manuscript:

i. Sense switch 5
down: Lines beginning with (#), ([) or ($) are printed starting at

the left margin; other lines are indented 8 spaces (6 on the
classiec LINC)

up: All lines are printed starting at the left margin.
ii. Sense switch 4

down: Manuscript lines are single spaced.

up: Manuscript lines are double spaced.
iii. Sense switch 3

down: The manuscript line number of each line is printed to the left
of the line.

up: No manuscript line numbers are printed.

Manuscript lines which are too long to fit on one Teletype line are auto-
matically carried over to the next Teletype line without splitting words.

The correspondence between the characters and their displayed and typed
notation is shown in Chart IV on page 6u.

Strike EOL to interrupt printing and return to the manuscript display.

Printing time is approximately one minute per page for program manus cripts.

-20~-

PM

M QF TEST MS PAGE (1

LN=Aamn]

fA9n1 (SAMPLE WISAL PROGRAMS: GENERATES LINC NBJECT CODE
AzA2 f2AM:SAM+S5 [SAM IS AN OP CODE
A3 #3E61 LDas

anna UVARITL ~ [PROGRAM SYM30L
L ADA

AAAs 44

ANNT 4X6 JMP X6=10

A%l JYP BEG1

A1 1 VARIBL=ADD [EQUALITY [=)

A712 #FILE [NULL STATEMENT (FILE=DATA)
AM13 #DATA -40A% [OCTAL NUMBER

A1 4 192. [DECIMAL NUMBER

015 3300

A1 6 LDA3

a1 7 "' [FEMPTY CHARACTER CONSTANT
An2n STC FILE+1 '

AN21 4TEXT SAE3

An22 *A' [ZERO FILL

7023 JYP BRG]

AN 4 JMP X6=10

AA2S %2000
an2s [LA3ELS

A7 #R3 "GRAPH #72" [EXAMPLES OF TEXT STATEMENTS
MA3Q #¥4 "DATA:?

an31 N 2

an32 LDAs

AA33 o i C7T7T FILL

"A34 anas;

AA3S BEG1-X6

AA3A §R3=10AMA

AA3T #F2 APD 3

AR AT JUP F2+9 [VOTE FIRST VALUE FOR F2 IS USED
mAal F2=4n7 CF2 3ECOMES DOUJBLY=-DEFINED HERE
amne ADD F3 CF3 IS TINDEFINEDS ZERXRD VALUE ISED
43 S3TT7

anH 4 FR3=KA+k=AM+3IDC CMEANINGLESS, BIJT PERMISSARBLE
A4S LDH

A4 6 4/33+3

aaa7 STC FILE

Aa50 TESTER=VALUE (/INDEFIVED ERROR

AA51 #TABLE] Ds1s1s0@s1

NS e 'A3C' [SYNTAX ERROR [EVD SAMPLE M™MS

Figure 5. Print Manuscript Output

(Sense switches 3, 4 and 5 down)

21—

SS

STRING SEARCH +8S (LNA,(L&B,))STRHHAEOL

This meta-command locates the manuscript immediately after the specified
character string STRING.

a. STRING is a string of no more than eight characters. Leading,
trailing and embedded blanks are significant. All characters but
EOL and (,) are permissible.

b. The search for STRING begins at manuscript line LNA. If LNA is not
specified, then the current line number is used for LNA.

c. The search for STRING will not extend beyond manuscript line LN¥B. If
LNB is not specified, or LNVB<LNA, or LNB is greater than the last
manuscript line number, then the last ranuscript line number is used
for LNB.

d. When the manuscript display reappears, the manuscript will be located
immediately after the first occurrence of STRING encountered during
the search. If STRING is not found, the manuscript will be located
on an empty line after line LNB.

e. While searching, strike a key to terminate the search. The manuscript
will be located between two manuscript lines and the key will be
analyzed as keyboard input.

f. For example, if the manuscript is located as in Figure 3 and the usei

types
+88 56,STA,-
or

+5S 56,,5TA,n o

The manuscript would be relocated as in Figure 1 (see page 5).
After using STRING SEARCH, the manuscript may be located immediately

following the next occurrence of the character string STRING by using
the CONTINUE SEARCH meta-command.

=22=

| = |

CONTINUE SEARCH +CS LNAEOL

This meta-command locates the manuscript immediately after the character
string specified as STRING in the last STRING SEARCH. Use CONTINUE
SEARCH only if the previous meta-command was STRING SEARCH or CONTINUE
SEARCH.

a. The search for STRING begins at manuscript line LNA. If LNA is not
specified, then the current line number is used for LNA.

b. The search will not extend beyond the line number specified as LNB
in the last STRING SEARCH. If LNB was not specified, or LNB<LVA,
or LNVB is greater than the last manuscript line number, then the
last manuscript line number is used for LNB.

¢. When the manuscript display reappears, the manuscript will be
located immediately after the first occurrence of STRING encountered
during the search. If STRING is not found, the manuscript will be
located on an empty line after line LNB.

d. If CONTINUE SEARCH is used after a meta-command other than STRING
SEARCH or CONTINUE SEARCH, the specified parameters NAME and LNB
will be used in place of the STRING SEARCH parameters STRING and

LNB.
e. While searching, strike a key to terminate the search. The

manuscript will be located between two manuscript lines and the
key will be analyzed as keyboard input.

-23-

+MP

10.

LOAD META-PROGRAM ++MP ((N1,(N2,))STRING ,UNITA(,UNITB))

The use of meta-programs allows the user to expand the meta-command capa-
bilities of LAP6W to fit his particular needs. A meta-program is a LINC
binary program which, instead of being loaded via the LB meta-command, is
loaded using a '"meta-program command". This allows the user to pass up
to five parameters to the meta-program: two octal numbers (NI and ¥2),

a string of up to eight LINC characters (STRING), and two unit numbers
(UNITA and UNITB).

a. The meta-program to be loaded must be a LINC binary program assembled
starting in quarter 0. It must be filed on the system unit from which
it is to be loaded.

b. The meta-program's name must be of the form "+MP----- ", where M and
P are any displayable LINC characters, followed by zero or more
characters. That is, the name must begin with (+) and must be at
least three characters long. The remaining five characters are
arbitrary, and may be used to further identify the meta-program.

¢. There must be no other file entry name with the same first three
characters in the Index.

d. A meta-program is loaded by typing the meta arrow, followed by the
first three characters of the name, followed by the parameters.

e. LAP6W loads a meta-program by reading its first block into quarter 0
of bank 0 [bank 1 on the LINC-8 and PDP-12] and jumping to location
20. The accumulator will contain the first block number of the meta-
program in the left 9 bits and the system unit number in the right 3
bits. If the meta-program is over one block long, it must read in the
remainder of the routine itself.

f. The following parameters are left in core:

2367: System type (see below)
2370: N1 (-0 if not entered)

2371: N2 (-0 if not entered)

2372
s STRING (77 f£fill; -0 if not entered)
2375
2376: UNITA (ROL'ed 3; system unit if not entered)
2377: UNITB (ROL'ed 3; -0 if not entered)

The system type gives the type of LAP6W system which loaded the meta-
program:

~3: Classic LINC and u=-LINC 100
-2: u=LINC 100 only

-1: Classic LINC only

1: LINC-8 with PDP-8 metas

2: LINC-B without PDP-8 metas

2l

+MP

PDP-12 with PDP-8 metas
PDP-12 without PDP-8 metas
p-LINC 300

Expanded Memory Classic LINC

v FE W

Also left in core are LAP6W's character display grid at location 2000,
the Index on the system unit in quarters 6 and 7, and a routine to
display '"NO" on the scope and return to the system at location 400.

The meta-program loader EXITs from LAP6W before reading the binary
program. The current manuscript may be recovered by executing the
regular console start procedure or by re-entering the system under
. program control as described on page 57.

-25-~

CF

11.

COPY FILE +CF UNITA(,UHITB)EOL

+CF BN,UNITA ,LWIE'BEOL

The COPY FILE meta-command files a copy of all the entries in the file
on UNITA into the file on UNITB. It does not, however, disturb or
replace any entries which are already in the file on UNITB. Thus, a
file may be reorganized by combinations of the commands CM, CB, or CP,
to move specific entries, and CF to move all the remaining entries.

d.

Entries are filed as close as possible to the Index in the file on
UNITB. Any gaps created by former deletions are used; this '"packs"
the file. The file on UNITA is not changed.

If BN is not specified, the Index of the file on UNITA is considered

to be in the standard location (blocks 376-377). If BN is specified,
the Index of the file on UNITA is considered to be in blocks BN and
BN+1. 1If BN is not between 0 and 776 inclusive, "NO" will be displayed.
In all cases, the Index of the file on UNITB is considered to be in the
standard location (blocks 376-377).

If COPY FILE is used to merge two files, "NO" will be displayed if the
entries which are to be copied from the file on UNITA do not all fit into
the file or Index on UNITB. As many entries as possible have been copied.
Inspection of the two Indexes will show which entries were not copied.

If UNITA and UNITB have the same value, ‘the Index and the file remain
unchanged.

Strike EOL to interrupt the meta-command and return to the manuscript
display. This has no effect once the Index has been updated.

-26-

12.

13.

CM

CB
Fraon Te
COPY MANUSCRIPT +CM (BBB,H,}NAME,UNITA(,M“ITB)EOL
COPY BINARY ~CB (QBBB N, WAME ,UNITA(,UNITB)

These meta-commands move an entry in one file into another file or
from somewhere on tape into a file. The meta-commands are identical
except for the type of file entry copied.

a.

If N equals zero or is not specified, a copy of the manuscript
(binary) filed as NAME in the file on UNITA is filed as NAME in
the file on UNITB.

If N does not equal zero, the manuscript (binary) is considered to
occupy N blocks starting at block BBB on UNITA. If it is a binary,
its first block loads into quarter @. If @ is non-zero, BBB must
include leading zeros. A copy of the manuscript (binary) is filed
as NVAME in the file on UNITB.

Strike EOL to interrupt these meta-commands and return to the
manuscript display. This has no effect once the Index has
been updated.

Appropriate caution should be exercised when assigning the same
value to UNITA and UNITB since the gap selected in the file may
overlap the current location of the manuscript (binary) in the
file.

=27

4.

COPY PROGRAM +CP NAME ,UNITA(,LWITB)E oL

The COPY PROGRAM meta-command has two phases:

L A copy of the manuscript filed as NAME in the file
on UNITA is filed as NAME in the file on UNITB.

ii. A copy of the binary filed as NAME in the file on
UNITA is filed as NAME in the file on UNITB.

Strike EOL to interrupt the meta-command. This has no
effect on a phase once the Index has been updated.

Appropriate caution should be exercised when assigning the same
value to UNITA and UNITB since the gap selected in the file may
overlap the current location of the manuscript (binary) in the
file.

-2 8-~

15.

DX

DISPLAY INDEX +DX (NAME,)WITAEDL

This meta-command displays the contents of the Index of the file on UNITA.
Copies of the Index may be printed on the Teletype and unwanted entries
may be deleted. An example of the display is:

NAME t label
NAME BN #B
MSDIS M 27 10
B 40 20
CFCo M &0 44
B 44 §
12348678 M 471 LS
GASTX M 230 4
B 2223 §
PRGFP X& B c£14 ?¢
UNITONE B S5t 50
SEQ+LILR M 115 77

Figure 6. Index Display

where: NAME is an external label specified as NAME at this call to DX.

t is the type of file bounds (see page 9). F = File-Only,
S = System, O = Other bounds supplied by the user.

label 1is the internal label supplied by the user through use of
the FX or NX meta-commands (see page 31).

In this example, the manuscript (M) named MSDIS starts at block number (BN)
276 and is 100 (octal) blocks long (#B). The binary program (B) named
MSDIS is in blocks 400-417, etec.

a.

b

Ten (25 in the PDP-12) entries are displayed per frame.

A manuscript (M) and a binary program (B) with the same name (e.g., MSDIS,
CFCO, GASTX) always appear together, manuscript first, in the Index display.
Thus, this file contains no manuscript named PRGFP X8 or UNITONE and no
binary program named 12345678. No statement can be made about a binary
program named SEQ+LILR without displaying at least one more entry.

If the first block of a binary is to be loaded into a quarter other than

quarter zero, the quarter number will immediately precede the block number
(e.g., the binary of GASTX would be loaded in quarters 2 through 6).

-29-

DX

d.

e.

While displaying, the keys are interpreted as follows:

CONTROL Q [CASE 0]:
CONTROL W [CASE 1]:
CONTROL A [CASE QJ:
CONTROL S [CASE W]:

DELETE :

EOL:

Lok pishe V2 neetls
CASE

P:

Other:

Forward one frame

Forward one entry

Backward one frame

Backward one entry

Delete the last entry displayed. (e.g., the
manuscript named SEQ+LILR in Figure 6). What-
ever is deleted from the Index display will be
deleted from the file if (#) (see below) is
struck. The file space is then available for
later use.

Return to the manuscript display, ignoring any
deletions.

Restore the Index display, i.e., ignore all
deletions.

Make the deletions permanent and return to the
manuscript display.

Print a copy of the Index in its currently
edited form on the Teletype.

Ignore.

While printing, the keys are interpreted as follows:

EOL:

P:

Other:

An example of a printed

INDEX OF

Return to the manuscript display, ignoring
any deletions.

Print a copy of the Index in its currently
edited form on the Teletype.

Return to the Index display.

Index is:

NAME F LABEL

MANUSCRIPT BINARY

NAME

MSDIS
CFCO
12345678
GASTX
PRGFP X8
UNITONE
SEQ+LILR
ASDIS+PM

BN #B BN B

276 109 ugg 2¢
420 44 44 5

471 65

23§ 46 2223 5
214 7
556 5¢

115 77 626 5
633 43 195 ¢

Figure 7.

~30-

16.

17.

FX

NX

FILE-ONLY INDEX >FX (NAME,)UNITAp,.

NAME INDEX

WNX NAME ,UNITAL o

These two meta-commands allow the user to create a file-only Index and/or
specify an internal label for an Index (see page 9).

a. If there is an Index on UNITA, then the following display will appear:

where:

oidf:ype-

oldlabel

newtype

NAME

REPLACE

oldtype INDEX: oldlabel
WITH

newtype INDEX: NAME
ON UNIT u ? <H=YES>

is SYSTEM if the file currently has system bounds,
i.e., it was created via GASTMB [GASTCL]
(see page 9). :
FILE if the file currently has file-only bounds.
OTHER if the file currently has any other bounds.

is the current internal label.
is FILE if the file is about to be given file-only bounds(FX).
oldtype if only the file label is being changed (NX).

is the NAME supplied to the meta-command (it will be the new
internal label).

is UNITA, the wit of the tape whose Index label is to be
changed.

Strike (#) to replace the oldtype bounds with the mewiype bounds and the old
internal label oldlabel with NAME in the Index on u.

Strike EOL to leave the Index unchanged. In either case, control then
returns to the manuscript display.

-3]~

FX

NX

b. If there is no Index on UNITA, the following display will appear:

REPLACE

NO INDEX
WwiTH

FILE INDEX: NAME
ON UNIT u ? <#=YES>

where the variable fields are described above.

Strike (#) to create a file-only Index on UNITA. This Index will
contain no entries, and will have an internal label of NAME.
Strike EOL to leave the tape on UNITA unchanged. In either case,
control then returns to the manuscript display.

-32=

SB

18, SAVE BINARY +SB NAME ,UNITA(,UNITB)EOL

de

The SAVE BINARY meta-command has two phases:

i.

The "binary most recently assembled" with either the AS or the B8A
meta-command by this copy of LAP6W is saved as NAME in the file on
UNITA. If the assembly was interrupted after the production of
binary code started or a symbol table full condition occurred (see
page 87) there will be no "binary most recently assembled" to be
saved.

If UNITB is specified, a copy of the binary filed as NAME in the
file on UNITA is filed as NAME in the file on UNITB. If UNITB

is specified, the copy will be performed even if the "binary most
recently assembled" was not saved in phase (i) due to the user's
reply to the REPLACE display (see page 12) or there was no "binary
most recently assembled" to be saved. :

Only relevant, but inclusive, quarters are saved. However, if the first
relevant quarter is quarter 10 or greater, all quarters from quarter 7
thru the last relevant quarter are saved. For example, if the program
was written to occupy quarters 1 and 4, quarters 1 thru 4 will be filed
in four successive tape blocks. (The second and third blocks will
contain all zeros.) However, if the program occupies quarters 11 and 1k,
quarters 7 thru 14 will be filed in six successive tape blocks.

Strike EOL to interrupt the meta-command. This has no effect on a
phase once the Index has been updated.

-33-

SM

19. SAVE MANUSCRIPT +SM (LNA,(MB,))NAME’,UNITA(,UNITB)EOL

a. The SAVE MANUSCRIPT meta-command has two phases:

i.

ii.

If no line numbers are specified, the current manuscript
is saved as NAME in the file on UNITA.

If LNA is specified as being non-zero, part of the current
manuscript is saved as a separate, new manuscript called

NAME in the file on UNITA. The line numbers, inclusive, indi-
cate the part to be saved. When only one line number is
given, LNB is assumed to be the last line number of the

current manuscript.

NOTE: Unlike LAP6, LAP6W does not use the working area on
the opposite unit of the tape transport when saving
part of the current manuscript.

If UNITB is specified, a copy of the manuscript filed as
NAME in the file on UNITA is filed as NAME in the file on
UNITB. 1f UNITB is specified, the copy will be performed
even if the current manuscript was not saved during phase (i)
due to the user's reply to the REPLACE display (see page 12).

b. Strike EOL to interrupt the meta-command. This has no effect on
a phase once the Index has been updated.

-3

20. SAVE PROGRAM +SP (LNA,(LNB,))NAME ,UNITA(,UNITB)

d.

SP

EOL

The SAVE PROGRAM meta-command has four phases:

1.

ii.

iii.

iv.

The current manuscript is saved as NAME in the file on UNITA.
The line numbers are interpreted as in SAVE MANUSCRIPT.

The "binary most recently assembled" is saved as NAME in the
file on UNITA.

If UNITB is specified, a copy of the manuscript filed as NAME
in the file on UNITA is filed as NAME in the file on UNITB.
If UNITB is specified, the copy will be performed even if the
current manuscript was not saved during phase (i) due to the
user's reply to the REPLACE display (see page 12).

If UNITB is specified, a copy of the binary filed as NAME in
the file on UNITA is filed as NAME in the file on UNITB. If
UNITB is specified, the copy will be performed even if the
"binary most recently assembled" was not saved in phase (ii)
due to the user's reply to the REPLACE display (see page 12)
or there was no "binary most recently assembled" to be
saved.

Strike EOL to interrupt the meta-command. This has no effect on
a phase once the Index has been updated.

-35-

AS

8A

21.

22,

ASSEMBLE +AS (LHA,(LNB,)J(NAME,)UWITAEOL

PDP-8 ASSEMBLE +8A (LNA,(LNB,))(NAME,)UHITAEOL

The specified manuscript is assembled into LINC (+AS) or PDP-8 (-+8A)
binary object code. Information about the program is displayed.
Conventions used in assembling program manuscripts are specified in
section VI. The symbolic operation codes and their octal equivalents are
given in Charts VI and VII.

a. If NAME and UNITA are not specified, the current manuscript is
assembled. If only UNITA is specified, the manuscript in the
manuscript working area on UNITA is assembled. If NAME is
specified, the manuscript filed as NAME in the file on UNITA
is assembled.

b. The line numbers, LNVA and LVB, are ignored if they are specified.
The entire manuscript is always assembled. If a listing or reference
table is requested by striking L or R during a display (see below),
the line numbers will be interpreted as arguments to the corresponding
meta-command.

c. The assembled binary program is placed in the binary working area
(blocks 450-467) of the LAP6W tape. The binary is positioned according
to the storage locations specified by the user (see page 50). The
block numbers correspond to memory quarters 0-17 respectively. A
program written to be stored in memory registers in quarters 0 and 2
will be found in tape blocks 450 and 452. Locations not occupied by
the binary are cleared (i.e., set to +0).

d. Strike EOL at any time to prevent the further production of binary code.
The assembler will continue to the end of the manuscript and the displays
(see below) will be as if EOL had not been struck. If EOL is struck
after the production of binary has started, there will be no "binary
most recently assembled" (see page 16) and no valid binary is left in
blocks 450-467. If EOL is struck before the production of binary begins,
the binary, if any, in the binary working area remains unchanged and is
still the "binary most recently assembled'.

e. Strike EOL again to terminate the assembly and return control directly
to the manuscript display.

~36-

f.

AS

BA

Assembler Displays

Symbol Table Full

The assembler keeps one entry in its symbol table for each error, origin
statement, and user-defined symbol. The maximum number of entries in
the symbol table for various system configurations is given in the
following table:

System Entries (=AS) Entries (+8A)
Classic LINC, pu-LINC 100 (2K) 199 Not available
u=LINC 300 (uK) 321 Not available
LINC-8, PDP-12 (uK) 321 288

pu=-LINC 300 (8K) 13u5 Not available
LINC-8, PDP-12 (8K) 13u45 1312

If more entries are needed to complete the assembly, the following

display will appear:

where:

In this

i.

ii.

iii.

iv.

Errors

ii.

SYMBOL TABLE
FULL AT LINE
1111

1111 is the number of the manuscript line at which the assembler
tried to make an entry in the full symbol table.

case:

There is not a valid binary in the binary working area and
there is no "binary most recently assembled" (see page 16).

If the errors, which will be displayed subsequently, are
corrected, then it may be possible to assemble the manuscript
without filling the symbol table.

Since some errors are entered in the symbol table during the
second pass of assembly, the line number, 1111, may be surprisingly
low.

If there are no errors and the symbol table still fills, either
reduce the number of symbols and/or origin statements or split
the source program into two separate manuscripts.

A Doubly-defined Symbol is indicated by the letter D and appears
with the manuscript line number of the double definition.

A Syntax Error is indicated by the letter S and appears with
the manuscript line number on which the error occurs.

-37-

AS

8A

jii. An Undefined Symbol is indicated by the letter U and appears with
the manuscript line number on which the symbol is referenced.

iv. For example, the assembly of the manuscript in Figure 8, page 42,
would yield:

ERRORS

41 D Fe

&£ U F3
S0 U VALLE
5 S

F2 is defined previous to line 4l and on line 4l.
F3 is undefined and is referenced on line 42.
VALUE is undefined and is referenced on line 50.
A Syntax Error exists on line 52.

Memory Allocation

This display shows the storage locations, inclusive, required for the
binary program. Remember that the storage location and the execution
location are not necessarily the same (see page 51).

For example, the assembly of the manuscript in Figure 8 would yield:

MEMORY ALLOCATION
LINE FROM=TO
2 105~ 114
15 300- 36
25 20002015
3 1000-1002
43 Jvve-40i0

This binary program is stored in memory locations 105-1lh4, 300-306, etc.

The corresponding origin statements appeared on manuscript lines 2, 15, ete.
Reading this display is the simplest way to tell whether a program exceeds
a certain number of memory quarters, or whether certain portions overlap in
the binary working area. This is especially crucial with "»8A" where the
allocation of literal storage areas is not explicitly specified by the
programmer. By perusal of this display, the programmer can detect any
incursion of his object code into literal storage areas. [In classic LINC
LAP6W, the "LINE" column does not appear.]

-38-

AS

8A

Szmbols

All symbols defined via labels or equalities and all undefined symbols
appear in this display in alphabetical order.

i. Each defined symbol is displayed along with its value.

ii. The first value of a multiply-defined symbol is used during assembly
and is displayed.

iii. The letter U is displayed as the value of an undefined symbol
(zero is used as its value during assembly).

iv. For example, the assembly of the manuscript in Figure 8 would yield:

SYMBOL VALLE
BEGL 0200
DATA 0206
F2 1000
£3 u
FILE 0206
R3 000
TABLEl 4003
TESTER 0000
TEXT 0303
VALLE U

g. While displaying, the keys are interpreted as follows:

CONTROL Q [CASE 0]: Forward to the next display, if any.
CONTROL W [CASE 1]: Forward one frame of the current display.
CONTROL A [CASE Q]: Back to the first display. (The errors cannot
be redisplayed once the symbols have been displayed.)
CONTROL S [CASE W]: Back to the first frame of the current display.
EOL: Return to the manuscript display.
P: Print a copy of the entire current display on
the Teletype.
L: List this manuscript.
R: Print a reference table of this manuscript.
OTHER: Ignore.

h. While printing, striking a key causes a return to the display, then the
key is interpreted as in (g) above. '

-39-

LI

8L

23, LIST +LI (LNA,(MB,)}(NM,)UNITAEOL

24, PDP-8 LIST +8L (LNA,(MB,))(NM,)UNITAEOL

Any manuscript which can be assembled will be listed on the Teletype. When
listing is finished, a reference table is printed using the same arguments.
Examples of the two types of listings appear in Figures 8 and 9.

a. If NAME and UNITA are not specified, the current manuscript is listed.
If only UNITA is specified, the manuscript in the manuscript working area
on UNITA is listed. If NAME is specified, the manuscript filed as NAME in
the file on UNITA is listed.

b. If no line numbers are given, the entire manuscript is listed. When line
numbers are specified, that portion of the manuscript from LNA thru LNB
is listed. When only LNA is specified, LNB is assumed to be the last line
number of the manuscript. When only LNB is specified, LNA is assumed to be

L

c. The NAME, if any, and the page number in decimal are typed in the title at
the top of each page. The line number of the first manuscript line which
appears on that page is typed in the second line of the title. The title
has the form:

LI OF NAME PAGE nn
LN=1111 '

d. Three four-digit octal numbers are printed to the left of manuscript lines
that generate object code: the manuscript line number, the execution
location and the corresponding object code. If the execution location
differs from the storage location (see page 51), an (¥) will precede the
printed execution location. When listing PDP-8 code (»8L) a fourth octal
field, printed to the right of the above three, contains the address
referenced by, or literal value appearing in, a memory reference statement.

e. If a manuscript line generates no object code, only the manuscript line
number is printed with the line. The printing of the manuscript line number
colunn may be disabled by putting sense switch 3 up.

f. If a manuscript line begins with a (#) or ($), it is printed immediately
after the octal number fields; otherwise, it is indented eight [six] spaces.
When possible, comments are made to start in the same column by inserting

preceding blanks.

g. A single line of text may generate many words of object code. When this
happens, the text line is printed adjacent to the first word of cbject code
and succeeding words of object code are printed on succeeding lines.

-40-

P-

LI

8L

When commas are used to terminate several statements appearing on the

same manuscript line, the entire line is printed together with the execution
location and object code of the first statement. Succeeding print lines
contain object word locations and contents arising from the remainder of the
manuscript line.

Before the listing starts, strike EOL to return to the manuscript display.
After listing starts, strike R to stop listing and begin the reference table,
or strike EOL to return to the manuscript display.

The symbol table used by the LIST meta-commands is obtained by running the
corresponding assembler (without changing the contents of the binary working
area). If the symbol table fills up during this assembly, the following
message is printed at the beginning of the first page:

ST FULL AT LINE IIL1

Symbols which are defined after line Zl117 will be considered as unde fined
(value = +0) when calculating the contents of a location.

WARNING: In fhis case, the binary listed does not necessarily correspond
to the contents of the binary working area after assembly (see page 37).

The format of the listing can be controlled to some degree by including
special statements in the manuscript. There are three options available:

No List (%N), List (%L), and Top of Form (%T). The No list option suppresses
listing until the List option is encountered. Listing continues at the
beginning of a new page when the Top of Form option is encountered.

Manuscript lines which are too long to fit on one Teletype line are auto-
matically carried over to the next Teletype line.

The correspondence between the characters and their displayed and typed
notation is shown in Chart IV on page 64.

Listing time is approximately two minutes per page.

A Teletype page is exactly eleven inches long if cut at the marker which
appears between pages. There are 5510 lines of print on each page.

WARNING: If the manuscript contains overlaps, the binary listed may not

correspond to the binary as assembled because the LIST meta-commands
assemble the manuscript and print it simultaneously.

-41-

LN=07281
@1
tale [b2)
A3 *2200
AAAL G201
ANBs *0202
236 *0203
AAT *P204
ARLE *A20A5
ARl
na12
AB13 *A206
A1a *02707
AA15
aAl6 #3060
17 A3A1
AN2B A3602
an21 A3M3
pa22 A304
ar23 A305
ancs A306
anas
ANz 6
an27 2000
2001
2002
2003
AR3@A 20@AA
2005
2AA6
A3 1 2007
2010
2011
AR3ILe 2412
AA33 2613
An34 2614
AA35 2015
AM36
an37 1060
aaaAa 1061
nAAl
AAL2 13@2
AM43
adaa 3777
A4S 4600
AAh 6 ARG
aN47 4002
AAS A
AA51 AAG3
4004
4005
4076
4607
ans2 410

1020
2000
1120
pe2oT
6174
6200

3777
fn3an

1A26
naOe
4207
1460
nA24
6200
ALT4

3245
2443
3314
2260
2724
4724
7660
1245
5041
1460
1220
5477
1120
7113

202923
7802

2000

3333
1306
AAM3
4206

aAa9
AnAl
npA1
AAAA
AaAl
2425

LI OF TEST MS PAGE @1

[SAMPLE WISAL PROGRAM; GENERATES LI

OBJECT CODE
$2MA@ s SAM+5 [SAM IS aN OP CODE
#8EG1 LDAj
VARIBL CPROGRAM SYMBOL

ADA
*+2
#X6 JMP X6-10
JMP BEG1
VARIBL=ADD (EQUALITY [=)
#FILE (NULL STATEMENT (FILE=DATA)
4DATA =-4000 [OCTAL NUMBER
192, [DEC IMAL NUMBER
$300
LDA;
e [(EMPTY CHARACTER CONSTANT
STC FILE+1

*¥TEXT SAES
At (ZERO FILL

JMP BEG1
JMP X6-10
52000
C(LABELS
#R13 “"GRAPH #7'" (EXAMPLES OF TEXT STATEMENTS
#XN "DATAz?
RIIN 2"
LDAS
oy 77 FILL
ADAS
BEG1=X6
3R3-1000
#F2 ADD 3
JMP F2+2 [NOTE FIRST VALUE FOR F2 IS USED
F2=40 (F2 BECOMES DOUBLY=-DEFINED HERE
ADD F3 [F3 IS UNDEFINED; ZERO VALUE USED
53777
3+3=X6+%=LAM+RDC [MEANINGLESS, BUT PERMISSABLE
LDH
4/R3+3
STC FILE
TESTER=VALUE (UNDEFINED ERROR

#TABLE]1 05151501

*ABC® (SYNTAX ERROR [END SAMPLE MS
Figure 8. Listing Printed by LI
-4§2-

BL OF TEST MS8 PAGE @1

LN=0031
A1 [SAMPLE WISAL=-8 PRNOGRAM; GENERA
TES PDP=-8 0ORBJECT CNODE
ANA2 $20@:SAM+5 [SAM UNDEFINED = @ VALUE [JSED
ANA3 *A20A 7300 #BEG1 CLA CLL
ANAL G201 1177 7300 TAD (VARIBL CLITERAL
APAS *A202 1206 0206 TAD *+4
ANA6 *M203 5173 A173 #X6 JMP X6=10
ANAT *xA204 5200 0200 JMP BEGI1
ANl e VARIBL=CLA CLL [(EQUALITY STATEMENT
AA1 1 #FILE (NTJLL STATEMENT (FILE=DATA)
AA12 *A2A5 40AA #DATA -4000 [OCTAL VNIUMBER
Af13 *A2N6 A300 192, CDECIMAL NUMBER
A% 4 $3080
AN15 A3 1176 00AAA TaD (*" [EMPTY CHARACTER CONSTe. (ZERN L
ITERAL VALUE)
ANl16 A301 3206 (206 DCA FILE+1
AM1T B3R2 S200 A260A JMP RBEGI
AA2A @A3M3 5173 A173 JMP X6-10
AA21 A304 G024 #TEXT A" [(CHARACTER CNNST.» ZERN FILL
AR22 20030
nA03 LLABELS
AA2a 20A0 3245 #3173 "GRAPH #72" [EXAMPLES OF TEXT STATEMENTS
20M1 2443
2AA2 3314
2AMA3 2260
ANDS5 2@A04 2724 B4 "DATA:?
2ARS AT24
2006 7660
AA2A 2647 1245 RN 2
20160 5041
2011 1460
AA27 2012 5477 i 77 FILL
N33 2613 1175 7775 TAD (BEG1-X6A
AA31 AR3I=-100A
AR32 1AGA 10N ARM3 #F2 TAD 3
AA33 1AL 5202 102 JMP F2+2 (NOTE FIRST VALUE FOR F2 IS 1ISK
D
34 Fa=40 [F2 RECOMES DOUBLY=-DEFIVED HERE
A%35 1002 1600 AAAA Tan F13 (F3 1S NDEFINVED SN ZERN IS ‘ISE
D as ITS VAL'E
AN36 %3777
AA37 1777 7774 3+5=X6+%=JIMS+CLA (MEAVINGLESSs, BIT PERMIS
SA3LE
oN4@ 4060 4574 20673 JMS R3I+3 [NOT PAGE @ OR CURRENT PAGE: AD
PDRESS TREATED AS LITERAL
Af41 4001 3573 ARG5S DCA FILE [LIKEWISE: ADDRESS TREATED AS L
I TERAL
N4 2 TESTER=VALIJE [UNDEFIVED ERROR
AA43 4002 AAnN #TAQLE]l (51515951
47723 AAMA
Qe0L NaE 1
4405 OAQO
4006 00A1
ARLY 4ART 2425 "43C " [SYITAX ERRO] (END SAMPLE

Figure 9. Listing Printed by -+8L

-43-

RT

8R

25,

26.

REFERENCE TABLE +RT (LNA,(INB,))(NM,)LWITAEOL

PDP-8 REFERENCE TABLE +8R (MA,(MB,))(NAME,)DWITAEOL

These meta-commands generate a table on the Teletype of symbols (except
instruction mnemonics) referenced and defined in a LINC (PDP-8) program
manuscript.

=

If NAME and UNITA are not specified, the current manuscript is used. If
only UNITA is specified, the manuscript in the manuscript working area on
UNITA is used. If NAME is specified, the manuscript filed as NAME in the
file on UNITA is used.

If no line numbers are given, the entire manuscript is used. When line
numbers are specified, that portion of the manuscript from LVA thru INB
is used. When only LNA is specified, LNB is assumed to be the last line
number of the manuscript. When only LNB is specified, LNA is assumed to
be 1.

The symbols used in the manuscript are printed in alphabetical order, each
preceded by its value and followed by the sequence of line numbers at which
the symbol is defined. This sequence is followed by two blanks and the
sequence of line numbers at which the symbol is referenced. Four blanks
will be printed in place of the definition line numbers if the symbol is un-
defined.

If line numbers are specified, only those symbols occurring within the
specified line numbers are printed. Similarly, the definitions and
references are printed only if they also occur within the specified line
numbers.

The NWAME, if any, and the page number in decimal are typed in the title at
the top of each page in the form:

RT OF NAME PAGE nn
Strike EOL at any time to return to the manuscript display.

Line number sequences which are too long to be printed on one line are
automatically carried over to the next line.

Symbols appearing in text, comments, or character constants are not
included in the reference table.

S TIT.

: i

RT

8R

The symbol table used by these meta-commands is obtained by running the
corresponding assembler (without changing the contents of the binary
working area). If the symbol table fills up during this assembly, the
following message is printed at the beginning of the first page:

ST FULL AT LINE 1771

The reference table will include only those symbols defined before
the line 1111.

56 lines of references are printed per page. A Teletype page is
exactly eleven inches long if cut at the marker which appears between

pages.

RT OF TEST MS PAGE a1
A2AGAA BEG] naA3 aAln Aafe3 AA35
A0 A DATA AM13 .
1AA8 F2 na37 aA4l 2AA407
MMAD F3 aAMnLD
A2Mae FILE an1e AA20 Anat
20071]R3 aAG27 0OA36 2046

433 TABLEL 0651
AAAA TESTER G759
A37A3 TEXT AN 1

ARG VALUE ANS o
2070 UARI3L A1l AAAA4

2008 X 030

AL K6 nAAT AAAT AARA4 AGRS AALA4

Figure 10. Reference Table of the Manuscript in Figure 8

-45-

VI. Assembly Language Conventions

INTRODUCTION

To facilitate program writing, characters and symbols are used instead of their
binary (or octal) equivalents. For example, "LDA" rather than 001 000 000 0003
(or 1000g) is written in a program, but when the program is put into memory,
001 000 000 000, must be substituted for the "LDA". A program which performs
this substitution is called an assembler.

The LAP6W system provides two assemblers: the WISAL (WISconsin Assembly Language)
assembler for LINC programs, and the WISAL-8 assembler for PDP-8 programs. The

AS and 8A meta-commands initiate WISAL and WISAL-8 assembly, respectively. The
source code is read from LINC tape, the LINC or PDP-8 object code is written

onto LINC tape, and assembly errors, memory allocation and the symbol table are
displayed on the CRT. Other meta-commands allow the programmer to list a WISAL
or WISAL-8 source program and print its reference ‘table on the Teletype.

In order to communicate effectively with the WISAL and WISAL-B assemblers, the
user must be aware of certain syntactic conventions which govern the writing
of programs. The remainder of this section describes in detail the wvarious
statement elements available to the WISAL and WISAL-8 user and the conventions
for combining these elements into meaningful programs.

Figures 8 and 9, pages 42 and 43, are nonsense WISAL and WISAL-8 programs whlch
contain examples of some of the features of these assemblers.

ELEMENTS

l. Numbers

a) An octal number may be represented by a string of octal digits (0 through
7). This representation in base 8 positional notation is assigned its
corresponding octal value. Octal numbers may have any value between 0
and 7777g. Preceding zeros are ignored.

Examples of Octal Numbers:

Legal Illegal
46 48
152 10000
0000143

b) A decimal number may be represented by a string of decimal digits (0
through 9) terminated by a decimal point (.). This representation in
base 10 positional notation is assigned its corresponding octal value.
Decimal numbers may have any value between 0 and 4095;p. Preceding

zeros are ignored.

Examples of Decimal Numbers:

Legal Illegal
38. 38
4006 . 4106.
0000099,

7 o)

Symbols

A symbol is a single letter (A through Z) or a letter followed by a string of
letters and digits (0 through 9). In symbols of more than six [four] charac =,
all but the first six [four] characters are ignored.

To each program symbol (i.e., a symbol appearing in the user's source code)

that is properly used, WISAL assigns an octal value. The symbols tabulated in
Chart VI (the standard LINC instruction mnemonics) and Chart VII (the standard
PDP-8 instruction mnemonics) are inherently assigned the corresponding octal
values in WISAL and WISAL-8, respectively. To assign values to all other program
symbols, the programmer should use the "label" and "equality" features yet to

be discussed.

Examples of Single Symbols:

Legal Illegal
A 2A

NBC ABCYS
JMP A3C9QRS
A3C9Q AB#CD
A3C9QR A B
A3C9QRY

Note: To WISAL and WISAL-8, A3C9QR4 and A3CSQR [and A3C9Q] are the same symbol.

Text (")

Text is a string of characters enclosed in a pair of double quotes ("). The
string may be of any length. All characters, including EOL, but excluding
(") are permitted in the string.

Unlike numbers, symbols, and character constants, the value assigned to a text
string may occupy more than one 12-bit word. Values are assigned as follows:

a) if the string contains 2N (N>0) characters, N 12-bit words are assigned,
each containing the internal representation of two characters.

b) if the string contains 2N-1 (N>1) characters, N 12-bit words are assigned,
each but the last containing the internal representation of two characters,
and the last containing the left justified representation of the last
character with 77 fill.

Examples of Text:

Legal Value Illegal
F'IABII 2“258 'IIA'"B"
IIAII 24?78 rreen
"3AB" 0324g

25778
"n 14778
nn none

ali

Character Constants (')

A character constant is one or two characters enclosed in a pair of single
quotes ('). All characters, including EOL, but excluding ('), are permitted
in the string.

The character constant is assigned a value as follows:

a) if the (')'s enclose a single character, the value is the intermal
representation of that character right justified with zero fill;

b) if the (')'s enclose two characters, the value is the intermal
representation of those characters in the order they appear.

In the unusual cases where:

c) the (')'s enclose no characters, the value 0000, is assigned;

d) the (')'s enclose more than two characters, the value is the internal
representation of the first two characters as in b, and, this "syntax"
error is called to the user's attention in the post-assembly error display.

As will be seen, character constants may be used in places where text may
not be used.

Examples of character constants:

lLegal Value Illegal
TA? 0024g 'ABCXYZ'

vAT 1424g LAY
"AB' 2425¢ !

A 24144

Comments ([)

A comment is a string of characters preceded by a left bracket ([). The
string may be of any length and may include any characters, including
([), but excluding EOL.

A comment is not assigned a value. Comments have no effect on the object
code; they allow the programmer to describe adjacent source code without
destroying it.

Examples of Comments:

Legal Illegal
[ALPHA=27,396 A[COMMENT
[61970 ABC

[[A)+B[

Expressions

An expression is a string of symbols, numbers, and character constants
separated by blanks and/or the special characters (+), (=) (/)5 (1),
(3), and (¥).

-48-

Legal Examples

27
ALPHA

Illegal Examples

27_!_'"&3"
A+S

"AB!

ALPHA BETA
QN/BN+27
WRC; 140

35// 'Z'-"uA"
A/-B

The special characters (!), (3), and (*) serve not only as separators, but
also have values assigned to them as follows:

(1) = 00105 in WISAL (the LINC "unit-bit")
0000g in WISAL-8

(;) = 0020g in WISAL (the LINC "i-bit")

(%)

0400g in WISAL-8 (the PDP-8 "indirect-bit")
the present execution locationg in WISAL (the LINC "p") and WISAL-8.

The last character (*) will be discussed later (p. 51).

An expression is evaluated from left to right by forming a sequence of sub-
totals. The operators (+) and (-) determine whether the value assigned to
the following symbol, number or character constant is added to or subtracted
from the previous subtotal to form the new subtotal. Arithmetic is 12- bit
one's complement in WISAL and 12-bit two's complement in WISAL-8.

A (/) operates on the subtotal arising from the evaluation of the expression

to the left of the (/); it causes this 12-bit subtotal to be rotated circule 'y
three bits to the right (e.g., 2001g rotated circularly three bits to the

right yields 1200g).

The following rules pertain to the evaluation of peculiar cases:

a) Blanks adjacent to special characters are ignored.

b) If blanks are used as a separator, a (+) is inferred in WISAL, but a
12-bit inclusive 'or' (designated by "v'" below) is performed in WISAL-8.

¢) In a string of (+)'s, (-)'s and blanks, all but the rightmost (+) or
(-) are ignored.

d) If a string of (+)'s, (=)'s and blanks precede a (/), they are all ignored.

e) For completeness, the special characters (?), (<), (3), (1), ()), and
(\) have the value 0000g and may be used as separators.

Examples of Expressions (parentheses are used to indicate the order of operations

Expression WISAL Equivalent WISAL-8 Equivalent
-0 7777 0000
-1 7776 77177
JMP 3 6000420 50004400
7/1 7001 7001
'AB'// : TBAY TBA?
A- B A-B A-B
A-B C (A-B)+C (A-B)vC
STC*C (STC+#)+C (STCv#*)vC
A--B A-B A-B
A-+B A+B A+B

-4g9-

STATEMENTS

An element, or combination of elements, followed by a "terminator'" may form a
statement. A statement, or string of statements, in turn forms a WISAL or
WISAL-8 source code manuscript.

There are seven kinds of statements:

Equality Statements - for assigning values to symbols.

Origin Statements - for specifying execution and storage positions, and
for assigning values to (*) and symbols appearing in
labels,

Expression Statements - for putting 12-bit binary numbers into storage

locations.

for putting PDP-8 memory reference instructions into
storage locations.

Memory Reference Statements

Text Statements - for putting internal character codes into
storage locations.

Null Statements - for isolating comments and labels from other
statements.

Control Statements - to control printing when listing WISAL source code

using the LI meta-command, or to control literal
assignment in WISAL-8. (Control statements are
not to be confused with meta-commands.)

As in expressions, blanks adjacent to special characters in statements are ignored.

A statement must always be terminated by a terminator:

i. a (,), except for control statements (allows the placement of several
statements on one manuscript line);

ii., an EOL; or

iii. a comment followed by an EOL.

Recall that the purpose of an assembler is to generate binary object code that

may be conveniently loaded into core memory (e.g., by the LAP6W LB meta-command).
The string of 12-bit numbers generated by WISAL or WISAL-8 goes into the binary
working area (LINC tape blocks 450g through 467g), and not directly into core
storage locations. The user may control where in this 20g-block area, and thus
ultimately where in core memory, object code is to be placed by inserting origin
statements (see page 51) at appropriate points in the source code manuscript.

The relationship between the ''storage Jocation counter', the location in the binary
working area, and the corresponding location in core storage is as follows:

Storage Tape LB (Classic LB (p-LINC 300) LB (PDP-12)
Location Blocks LINC, u-LINC 100) 8B (LINC-8, PDP-12) (LINC-8)
0000-1777 450-453 lower bank bank 0 bank 1
2000-3777 454457 upper bank bank 1 bank 2
uo00-5777 4e0-u63 bank 2 bank 3
6000-7777 u6L-467 bank 3 (bank 4)

=50-

Thus, the whole assembly procedure amounts to generating the right numbers and
putting them in the right spots. Roughly speaking, expression, text, and memory
reference statements, with the help of equalities and labels (to be discussed below),
generate the right numbers, and origin statements take care of positioning.

Before examining the different statements, let us review the assignment of values
to, or synonomously the '"definition" of, a program symbol.

i. After WISAL or WISAL-8 assigns a value to a symbol, the symbol is said
to be defined.

ii. Instruction mnemonics are inherently defined.

iii. A program symbol not inherently defined is "undefined" until it is
defined in an equality statement or by a label.

iv. If labeling or an equality statement is used to assign a value to a
previously defined symbol, that symbol is said to be "doubly defined".
A doubly defined symbol has only one value, the first value assigned
o it.

Misused symbols are '"marked"' undefined or doubly defined, as appropriate. Un-
recognizable statements are marked as ''syntax errors'. WISAL uses these marks
to form the post-assembly error display discussed on page 37.

1. Equality Statements: symbol = expression

An equality statement is a symbol followed by an (=) followed by an expression
and a terminator.

Equality statements serve to define a symbol to the assembler; they do not of
themselves generate a location in the binary. If the symbol is previously ur
defined, it will be assigned the value of the expression; if it is defined (or
doubly defined), it will be marked doubly defined and no other action taken.
All symbols in the expression must have been previously defined.

Examples of Equality Statements: Sample Program Segment
(Assign the value of X, 0010, to A):
Legal Illegal legal Illegal
ALPHA=10, A+B=C X=10 A=X or X=10
A= B/'Q' 10 = ALPHA A=X X=10 A=0
C = ALPHA =6 A=¥
STOPCH=","' A=B=C
STOPCH=”."

2. Origin Statements: S$expression or Sexpression:expression

The single origin is a ($) followed by an expression and a terminator. The
double origin is a ($) followed by an expression followed by a (:) followed
by another expression and a terminator.

WISAL and WISAL-8 maintain two counters, the execution location counter and the
storage location counter. This use of two counters facilitates the preparation
of program overldys by allowing several overlays to be assembled together, so
that common locations may be referenced. These counters, initially 20g in

WISAL and 200g in WISAL-8, are incremented by 1 after each expression or

memory reference statement and by N after a text statement with 2N or 2N-1
characters in the text string (the arithmetic is 12-bit two's complement).

The present value of the execution location counter is assigned to (%) which may

-5]1-

appear in any expression. The present value of the storage location counter
may not be accessed like the execution location counter, but serves only to
determine the location in the binary working area where the next 12-bit

binary word generated by an expression or text statement will be stored. Note
that in WISAL the execution location counter should be less than 2000g for
executable code and less than 4000g for data. In WISAL-8, the execution
location counter may be set to any value from 0000 to 7777g.

The origin statement allows the programmer to peset these two counters. If
only one expression appears (e.g., SA+B), then both counters are set to the
value of that expression. If both expressions appear (e.g., S400+A:2000+A),
the execution location counter is set to the value of the first expression
and then the storage location counter is set to the value of the second
expression. All symbols appearing in origin statements must have been
previously defined.

Note: In WISAL-8, if literals (see page 54) are being assigned locations
in the current page, they are written out on tape whenever the
storage location counter is changed to a new page, either by an
origin statement or the normal sequential assignment of locations.
Thus, it is unwise to leave a page and then return to it, because
the literals assigned earlier will be lost. Furthermore, since
literals are stored on the current storage page, the storage and
execution locations should differ only by multiples of 200g (the page
size). This restriction does not apply to LINC (i.e., WISAL) programs.

A legal segment of source code:

Origin Execution Location Counter Storage Location Counter
$100 100 100
$%+50 150 150
$%:400 150 400
$%: %4100 150 250
A= 150 250
$%+10:A 160 150
$%*+10: % 170 170

An illegal segment of source code (for A not previously defined):

$30 30 30
S$%4+10: A+30 40 30 (A undefined)

Labels: #symbol

A label is a (#) followed by a symbol. Any type of statement may be labeled,
but no statement need be labeled. A label must precede the statement and be
separated from it by another label, labels, a blank, or blanks.

The symbol, if not previously defined, is assigned the current value in the
execution location counter. A label thus serves to define a particular
Jocation for other program references. If the symbol was previocusly defined
it will be marked as doubly defined and its previous value will be unchanged.
A label by itself on a manusecript line does not generate a word of binary.

-52=

Examples of Labels:

#Ku 4/0
#SAVZREG ZTA [SAVE THE Z REGISTER SUBROUTINE
e 8
ADD Ku
ROL 1
STC ZREG
JMP 0 [RETURN TO CALLING ROUTINE
#ZREG ?

Expression Statements: expression

An expression statement is an expression followed by a terminator; in
WISAL-8, the first element appearing in the expression must not be a PDP-8
memory reference instruction (i.e., DCA, TAD, AND, ISZ, JMP, JMS) lest the
statement be interpreted as a memory reference statement.

The value of the expression is stored in the memory location specified by
the storage location counter. Symbols appearing in the expression may be
defined anywhere in the program, but must be defined somewhere.

Legal WISAL Program: Storage Location Value
XR=3
SXR,4/3777 [INITIALIZE XR 0003 1797
$20

#KBDIN #WAIT XST, JMP WAIT, KBD [GET CHARACTER 0020 0415
0021 6020

. 0022 0515

AZE; [TEST FOR 0 0023 o470

JMP %43 0024 6027

STH; XR 0025 1363

JMP KBDIN 0026 6020

#DONE HLT 0027 0000

Memory Reference Statements: mri ; address expression

Memory reference statements exist in WISAL-8, but not in WISAL. A memory
reference statement is a PDP-8 memory reference instruction (mri: i.e., DCA,
TAD, AND, ISZ, JMP, JMS) followed by the optional (;) denoting indirect
addressing, followed by the "address expression'" and the terminator. As
usual, blanks and/or special characters are used to separate elements.

The address expression may be an expression or a "literal". If it is an
expression, the value of the address expression is related to the value of
the expression as follows:

Value of Expression (e) Value of Address Expression (a)
e<200g (page zero address) a=e
€>200g and in current execution page a=200g + e mod 200g

(the lower seven bits of e with
the current-page bit set.)

=53

Value of Expression (e) Value of Address Expression (a)

e>200g and not in current If the indirect bit is set, a=0 and a syntax
execution page error is marked; otherwise, the indirect bit
is set and the address expression is treated

as a "literal expression".

A literal (in WISAL-8 only) is an expression or memory reference statement
preceded by a left parenthesis ((). In normal operation, WISAL-8 assigns a
page zero address (an octal number) to the literal, and the value of the
"literal expression" (the expression or memory reference statement following
the left parenthesis) is stored in that address. The addresses are assigned
backwards starting at the bottom (location 177) of page zero. The value of
the memory reference instruction, the (;), if present, and the value of the
address expression are combined by a 12-bit inclusive 'or' and stored in the
memory location specified by the current storage location counter.

To conserve memory, all equal literal expressions stored in a page are stored
in the same location. Different literal expression values stored in the same
page are of course stored in different locations.

Control statements (see below) can be used to switch literal assignment between
page zero and the current page.

Legal WISAL-8 Program (literals assigned to page zero)

[ZEROS INTO PAGES 2 THRU 37

$200, INDEX=377
CLA

#ZERO TAD (INDEX [TAD 177
TAD (ONE [TAD 176
SNA, HLT [HLT IF ACC=0
DCA (377 [DCA 177
DCA;(INDEX [DCA3;177
JMP ;%41 [NEXT
ZERO
ONE=1

Control Statements: %econtrol eharacter

A control statement is a (%) followed by a control character and a terminator
other than (,). Characters between the control character and the EOL are
ignored. As usual, blanks between the (%) and the control character (i.e.,
blanks adjacent to a special character) are ignored.

a. WISAL control statements only affect the listing of manuscripts (the "-LI"
meta-command); they are completely ignored during assembly; they generate
no object code. Control characters have the following functions:

Character Action (WISAL only)

o,

N Listing will be suppressed beginning with the next line .
L Listing will be resumed at the next line.
T The next line will be listed at the top of a page.

%
A manuscript line is a string of characters not ineluding EOL, but preceded

by EOL and followed by EOL.

;T

Legal WISAL Program Segment

% TOP OF FORM
[MAIN PROGRAM
#B SET;X
1777
JMP A
%NO LISTING
ADD X+42
% LIST
#A JMP B

b. WISAL-8 control statements affect the assignment of literals:

Character Action (WISAL-8 only)

2 Assign page zero addresses to subsequent literals until
(%C) is encountered. This is the initial mode of
assembly.

C Assign current page addresses to subsequent literals

wmntil (%2) is encountered.

Note: Whenever a WISAL-8 control statement is executed, previously
assigned literals are forced out onto tape and forgotten. Thus,
it is unwise to switch from page zero to current page literals,
and back again, because the earlier page zero literals will be
overwritten with any new ones.

Text Statements: text

A text statement is text followed by a terminator.

The 12-bit words of internal character code generated by the text are stored
consecutively starting at the location specified in the storage location
counter.

Legal WISAL Program Segment Storage Location Value
$400
QANDA=1000
JMP QANDA 0400 7000
01 ool o403
HLT 0402 0000
#01 "HELLO" ouo3 3330
ouoL 3737
ou05 4277

Null Statements: (blanks)
A null statement is a possibly empty string of blanks followed by a terminator.
A null statement generates no object code and has no effect on the

execution location counter or the storage location counter. It is primarily
used to place a label or a comment on a line by itself.

-55=

Legal Program Segment Storage Location Value

$400 [SUBROUTINE ENTRY Note that the previously
ENTRY [LABEL FOR ENTRY undefined symbols
#WAIT - ENTRY and WAIT are

KST 0400 0415 assigned the value 400,.

5=

— [L — e e s

il e it W ——————— e —— e L

Appendix: Notes

Efficient Use of LAP6W

Although editing may be done in any order, it is occasionally more efficient (less
tape shuffling) if low numbered lines are edited before high numbered lines. Reading
the manuscript (i.e., not changing it) may be done in any order without affecting
tape efficiency.

The abilities to SAVE part of a manuscript and to ADD one manuscript in the middle
of another manuscript can be used to reconfigure large manuscripts and to substitute
for a REMOVE command.

Adding or assembling a long manuscript from the file is much faster if the manuscript
is not on the LAP6W system tape. Move it with CM to another tape before executing

an AM, AS or 8A command.

Assembly is faster if origin statements which refer to storage addresses in one
memory quarter are not interspersed with origin statements which refer to storage
addresses in different quarters. This technique will save some tape shuffling
during assembly.

Exiting
1f either EX, SU, LB, 8B, or +MP is executed when 1 is the current line number,
upon re-entry the manuscript display will suggest that there is no current manuscript,

which may or may not be the case. Therefore, if LAP6W, when restarted, displays
only the line number 1, do not assume that there is no current manuscript without

trying to locate forward.

Re-entering LAP6W Under Program Control

After executing EX, SU, LB or +MP, LAPEW can be re-entered under user program
control (assuming PROGOFOP or TRAP is still resident if on the LINC-8 or PDP-12).

The program should put

RCG el .
3/400 [7/400 in classic LINC]

in registers 15 and 16 respectively, then execute a JMP 15. LAP6W and the current
manuscript will be as they were before the meta-command was executed. The program
causing the re-entry must insure that the lower and upper memory banks are different.
Do not change the instruction, and do not move it to some other register.

On the PDP-12, LAP6W may also be re-entered by executing the following instructions:

LMB O
JMP 400

=57=

Working Area Length

LAP6W checks for various boundary crossings. It will not, for example, permit
a manuscript to go beyond the working area as it is entered.

If the manuscript working area boundary is encountered, LAP6W ignores additional
manuscript input. It will, however, continue to honor all the meta-commands. Thus,
one can SAVE the MANUSCRIPT, switch to a configuration of LAP6W which has a larger
working area, and continue. To continue editing, save some part of the manuscript
and then delete this part from the current manuscript. After deleting this part,

it is necessary to perform a meta-command such as EX so that the system can

realize that there is now room for more manuscript input.

LAP6W Manuscript Structure

Coding Rules:

A manuscript is a single string of 6-bit character codes. On a LINC tape the
codes are stored in sequential half-words in sequential, contiguous blocks in the
order in which they appear on the scope.

1. The first word of the first block contains the number 2065. The second
word contains 5712. The last half-word of the manuscript contains 77.
There is no other control information associated with a manuscript.

2. The characters are coded as in Chart II. The codes for DELETE (13) and
EOMS (77) (except last) do not appear in a LAP6W manuscript. One EOL
(12) does not appear next to another EOL.

Generating Manuscript

A manuscript may be generated other than with LAP6W and still be used with LAP6W.
However, it must:

1. Conform to the above coding rules.

2. Be put in contiguous blocks on a LINC tape.

3. Be added to the LAP6W manuscript working area with ADD MANUSCRIPT,
+AM {BN,)UNITHEOL

If the above procedure is followed, the generated manuscript may then be treated
as any other manuscript.

Manipulating Manuscript:

LAP6W may be used to generate a manuscript (a program segment, a bibliography,
etc.) which is to be the data source for some other program. It may be assumed
that the current manuscript on the LAP6W tape (blocks 470 ff.) conforms to the

above coding rules and is therefore accessible following the commands EX, AS, B8A,
LB, 8B, SM, SP, or +MP. One may read the manuscript directly from the working area.

If a program changes the contents of the manuscript working area on a LAP6W tape,
it is advisable that this program cause LAP6W to think that there is no current

=58=

manuscript. This is because the pointers and information in LAP6W pertaining
to the current manuscript may no longer be valid. This can be accomplished with
the following code:

RDC wnit
Q/sYS
LDA
base address of @ + 21
STA
base address of @ + 20
WRC wnit
Q/SYS
SYS = 400 [first block of LAP6W

The program should then return to LAP6W in the usual manner. There will be no
current manuscript and the current line number will be 1. The manuscript may
be recovered by +AMEOL'

Copying LAP6W Tapes

To copy an entire tape, use CO. To copy a LAP&W file use CF. To copy individual
file entries use CM, CB or CP. To copy the current manuscript use AM (see
"Manipulating Manuscript"). To generate a new LAP6W system use the program GASTMB
[GASTCL].

Index Structure

Before attempting to make up a file Index as a manuscript, or to write programs
which scan an Index for specific entries, the Index structure must be well
understood.

A LAP6W Index is always two blocks long and is always in tape blocks whose block
numbers end in 6 and 7 (regardless of configuration). The two blocks are divided
into 100g segments of 10g words each. The first segment is the Index identifier;
the other 77g segments are for Index entries.

Identifier Segment: If the two blocks are an Index, the first word of this segment
contains 5757g. The next three words contain the file bounds: first block of
lower file (with bit 0 set if a system index), last block +1 of lower file, and
first block of upper file (the upper file always ends at block 777g). The last
four words of this segment contain the Index label. Thus, for a LINC-8 system

Index labeled TEST1, the first segment would appear as follows:

Index Identifier { 5757

=

4005 System Index Indicator

File Bounds) 0357

0600

1 f

L4730

Label 4647

0177

e | 7777

Entry Segments: An entry segment always contains the entry name in the first

four words. If the segment contains a name, it must describe either a manuscript
in the fifth and sixth words, or a binary program in the seventh and eighth words,
or both. A name does not appear without at least one of these entries. A
manuscript and a binary program of the same name must be described in the same
entry segment.

Name: The entry name is stored in eight half-words beginning in the left
half of the first word of the segment. Unused half-words in the name
contain 77. The name conforms to the rules for entry names described in
Section IV.A.3 and does not begin with a space or percent sign (%). The
characters are coded as in Chart II.

Manuserlpt Entry: The first block number of the manuscript's location in
the file is stored in the fifth word. The length of the manuscript (number
of blocks) is in the sixth word. If there is no manuscript entry, these two
words contain 5757.

Blnary Entry: The first block number of the binary program's location in the
file is stored in the seventh word, with the number of the first quarter into
which it is to be loaded in the left three bits. The length of the binary
program (number of blocks) is in the eighth word. If there is no binary
entry, these two words contain 5757.

Example:
-
3245
243 |
Name W e
3377 |
—
7777
0100
Manuscript Entry
0033 TAPELZ3 S TESTL
4230 NAME BN #B
Binary Entry
0016 GRAPH M 100 33
B £31 1k
Coded Entry Segment Corresponding Index Display

Used segments are not necessarily 'packed" in the Index. They may be interspersed
with unused segments.

If a segment is not used, it will contain 5757 in the first word of the name. If
it is used, and describes a manuscript, the left three bits of the fifth and sixth
words will contain 0. If the segment does not describe a manuscript, these bits
will contain a 5. If the segment describes a binary entry, the left three bits

of the eighth word will contain 0; otherwise, 5. (The seventh word, which conta” s
the quarter number, should not be used to test whether a binary entry is present.,

-60-

CHART I,

PROGOFOP if LINC-8 0
TRAP if PDP-12

LINC-8: 5

PDP-12: 2

Other: 0
FILE

(357)

Optional PDP-8 portion
of LAP6W (see p. 10)

Meta-Program Loader 375

INDEX 376
LAPG6W Loo
Binary Working Area U450
Manuscript 470
Working
Area

600

FILE
777

System Tape

Standard LAPEW Tape Allocation

-61-

0
FILE
INDEX 376
Loo
FILE
777

File-Only Tape

—_— e e e e e

3draosnuep-3o-pud

LL % SWOT T 1 1 LE T
: : 9 dSV0 9L : M A bl 9€ b
(Z LITIHS - d gsvo SL (r [y r GE [y
) A LIIHS 3 dsSvVd hi) I I I he I
< < a dsvo EL < H H H € H
> > 0 dsvo ZL > 9 9 9 ze 9
: © A LITIHS g dsvo 1L . d d d 1€ d
" i ¥ d3SvVD oL u I d | 0t a
(W LIIHS)[I LJIHS 3SVD dSVd L9 [a a a LT a
(1 Ld1HS)] 1] _] 99] 4] o) ") 9z ")
$ =] B G9 $ g g d sZ q
. . ¥ f19 - 'l v v He v
¢ $ * €9 * 0N LIV*+ oTqeTTeaeun aTqeTeaeun €z +
i n yl Z9 i oTgeTreaeUN JSV0 3SY0 €2 dSvo
= = = T9 = # # # ze #
¢ é 0VdS ISVo 09 & / _ _ 12 /
% T3P 3SVD TeP a3SVD LS g + + + 0Z +
(T LAIHS)\ VIIH V1dW 9s N\ : - a = LT -
@33y anNIT VIIW V13W 9s (+) VIIW ¥ d d 9T %
Z A z SS z ¢ T T ST ¢
X i -k S 4 2o0eds soeds soeds HT soeds
X X X €8 X -+ 1nogny op TP €T 313730
M M M Zs M NI 104 104 AN 103
A A A TS A 6 6 6 TT 6
n n n 0§ n 8 8 8 0T 8
I 1 3 Lt L L L L LO L
S S S gh S 9 9 9 90 9
q d d Sh d S S g S0 g
0 0 0 hh 0 h h h ho h
d d d £h d £ € € €0 €
0 0 0 Zh 0 z z 5 Zo z
N N N Th N T T T 10 T
W W W oh 7} 0 0 0 00 0
ast agy o0oe aa 3poy sueN agx agy ooe aa 3pod e N
ALL ONIT-1 ONIT TPuUxSIUT *IBYD ALL ONIT-1 ONIT Teuxslug *IRY)

ndur - 39g J93oeJdRY) MOVT “II LMVHO

-62-

i e —_— — ARy — S — AT = e

Char.

CHART

Display

III.

Char. Grid

W o ~N O ! FE ow N

1
o
e

DELETE

space

H X &4 H I @ m Moo 0 W > 3k N+

4136
2101
4523
4122
2414
5172
1506
B4Yu3
5126
5122
5126
1604
0000
0100
1024
oLOY
oLOY
0300
36 14
7720
4u77
5177
4136
4177
4577
4477
4136
1077
7741
4142
1077
0177

g
(]
E R 44 H D O My 0w o > N+ W e E‘ 4 @ W @ = O U F w KN = O

36U1
0177
2151
2651
0477
0651
4225
6050
2651
3651
0625
0LOY
0000
0022
0024
04Oy
0437
6014
1436
0020
7744
2651
2241
3641
4145
3O Ll
26145
7710
0041
14076
4324
0301

LAP6W Character Set - Display

-63-

Char.

Display
Grid

Char.

W ® /N K X E < C AN X O YO =

EOMS

M

W ® S N = X T < CH OO "o =

3077
3077
w177
4477
4276
uuy77
5121
Lo40
0177
0176
0677
1463
0770
4543
1460
6LU62
4020
1212
7500
0500
0100
2735
7700
4100
0070
7000
0400
1221
3600
4100
2200
0000

7730
7706
7741
3044
0376
31u6
4651
4077
7701
7402
7701
6314
7007
6151
0003
2313
2055
1212
0000
0006
0000
6735
ookl
0077
0070
0000
2112
oooL
ooul
0036
0000
0000

— T i T

CHART IV. LAP6W Character Set - Printed Output

Teletype Teletype

Char. Char. Code Char. Char. Code
0 ¢ 260 M M 315
1l 1 261 N N 316
2 2 262 0 0] 317
3 3 263 P P 320
L L 264 Q Q 321
5 5 265 R R 322
6 6 266 5 S 323
7 7 267 T T 324y
8 8 270 U U 325
9 9 271 v v 326

EOL CR,LF 215, 212 W W 327

DELETE « 337 X X 330

space space 240 Y Y 331
3 s 273 Z Z 332
* % 252 \ \ 334
- - 255 % % 245
+ + 253 ? ? 277
/ / 257 = = 275
243 ! ! 241
4 4 336 g 5 254
A A 301 . . 256
B B 302 $ $ 2uy
C o 303 L L 333
D D 304]] 335
E E 305 B 1 242
F F 306 ! ! 247
G G 307 £ < 274
H H 310 > > 276
I I 311 ((250
J J 312)) 251
K K 313 : : 272
L L 314 EOMS @ 300

-6l

= e e i R o —_— s,

‘ueafoad-eisu aenotiard syl AgQ PAUTWIS3I3P sasyizQ °Q J23denb JoJ perqussse

JoU SBM , =====gp+, WeaBoad AIeulq 8yl JI °"STTJ UT PUNOF ST ,-----gi+, Wweafoad . T i)
ATRPUTQ BUO URY) SIOW JT *BTTJ UT PUNOJ ST ,-----gi4, weaSoad Areurq ou y7 | C(HEINN")VIINN®ONTHLIL(“GH) IN)) di+
PO) L S0
CONTHLS((“aNT) VNT) sS
e *TINF ST 4LINA 4O VIINA Temg 3
Uo STTJ J0 X3puJ IT ‘*oder MmgdyT uo Areurq ou JT -3dTJAOSNUBH JUSIIND OU JT (8LINA")VLINN" FAYN((" 4i1)" YT) ds J
*TINF ST gIIN0 IO VIINA UO STTF Jo Xspul JI -3jdTaosnuew jusaand ou 3T (GLINN° YVIINA IWYNC(GNT) VNT) WS
*TINJ ST gIINA I© VIINA Uo STTIJ J0 Xspul JI ‘*adel M9y UO AJeurq ou I1 (4LINA® YVIINN® BNV a3
-8000T<n+ggg 31 ‘paT3TO°ds se punoy sT Afeurq ou FI VIINA(® N 4840) I© VIINA(C BVN) 88°81
Jaasy Emab” RV N X ..,M
VIINACC AnVN) Xd
Akl VIINN ns
auoy X3
‘VLINA UCO pUnoj ST X9pul ou JI VLINA(C S IV Xa
*Te39TTT ST Ng FI “TINF ST gIINA UO STTF IO XPUI FI “VIINQ UO XSpUul ou FI |gIINA‘VIINA“NG I© (4LINA®)VIINN o
3 & e
“XopuI ou sey grIun 31 °“TIN ST gIINN UO STTF 40 XSpur JI Mmﬁ%.wgﬁawﬁa ot e =
-pa1yToads B pUNOF ST AI2uS OU IT dIINN* VEINA® TV (“1° 998
(4ZINA° YVIINN YN N 7940) a0
asAsN BUON 02
28 ¢ 1d
‘peTyToads se punojy ST jdradsnueu ou JI VIINN(GAVN) ((aRT) VNT) qm,ﬂ
va ‘ sy
"PoTITOods se punoj ST 3dTJdsSnuURW OU FI LLLO<NE F1 VEINA(CNg) 20 YLIKN{ FVN) WY
adoog uo saeeddy on siusuniday

Aetdstq O a03 suosesy ‘A LIAVHD

P URLILOY

-65-

CHART VI. LINC Instruction Set

0000 MSC Miscellaneous

0000 HLT Halt

0001 AXO* Accumulator to Extended Operations Buffer
0002 PDP#* Transfer to PDP-8 Mode

0003 TAC* Tape Accumulator to Accumulator
oooy ESF*® Accumulator to Special Function Register
0005 ZTA 7 Register (MQ Register on PDP-12) to Accumulator
0006 DJR#* Disable Jump Return

0010 ENI#*#* Enable Interrupt

0011 CLR Clear the Accumulator and the Link Bit
001y ATR Accumulator to Relay

0015 RTA Relay to Accumulator

0016 NOP No Operation

0017 COM Complement

ooLo SET Set

0100 SAM Sample

0140 DIS Display

0200 XSK Index and Skip

0240 ROL Rotate Left

0300 ROR Rotate Right

0340 SCR Scale Right

0400 SXL Skip on Extermal Level Negative
o015 KST Key Struck

ouu0 SNS Sense Switch

oLu46 PIN#* Skip on Interrupt from Pause
oL50 AZE Accumulator Zero

0451 APO Accumulator Positiwve

0452 LZE Link Zero

ous3 IBZ Interblock Zone

ousyL OVF Skip on Overflow

0u55 Z7Z Skip on Zg = 0

ou67 USK Unconditional Skip

0500 OPR Operate

0514 TYP### Type Character

0515 KBD Read Keyboard

0516 RSW Right Switches

0517 LSW Left Switches

0600 LMB#s% Lower Memory Bank

0640 UMB st Upper Memory Bank

0700 RDC Read and Check

0701 RCG Read and Check Group

0702 RDE Read Tape

* Available for assembly in Multi-Bank versions of WISAL, but executable

only on PDP-12.
%% Available for assembly only in 2-Bank versions of WISAL.
%#%% Available for assembly only in Multi-Bank versions of WISAL.

—

-66=-

SR — e T

0703
0704
0705
0706
0707
1000
1040
1100
1140
1200
1240
1300
13u0
1400
1440
1500
1540
1600
1640
1740
2000
4000
6000

Note
0021

0023
0024

MTB
WRC
WCG
WRI
CHK
LDA
STA
ADA
ADM
LAM
MUL
LDH
STH
SHD
SAE
SRO
BCL
BSE
BCO
DSC
ADD
STC
JMP

CHART VI (continued)
LINC Instruction Set

Move Toward Block
Write and Check
Write and Check Group
Write Tape

Check Tape

Load Accumulator
Store Accumulator
Add to Accumulator
Add to Memory

Link Add to Memory
Multiply

Load Half

Store Half

Skip if Half Differs
Skip if Accumulator Equals
Skip and Rotate

Bit Clear

Bit Set

Bit Complement
Display Character
Add

Store and Clear

Jump

the use of the following PDP-12 special register instructionms:

AXO0;
TAC:
ESF;

Extended Operations Buffer to Accumulator
Accumulator to Tape Accumulator
Special Function Register to Accumulator

L%

CHART VII. PDP-8 Instruction Set

0000 AND Logical And

1000 TAD Two's Complement Add

2000 ISZ Increment and Skip on Zero
3000 DCA Deposit and Clear Accumulator
4000 JMS Jump to Subroutine

5000 JMP Jump

6000 I0T I/0 Transfer

6001 ION Interrupt On

6002 IOF Interrupt Off

6031 KSF Skip on Keyboard Flag

6032 KCC Clear Accumulator and Keyboard Flag
6034 KRS "Op" Keyboard to Accumulator
6036 KRB Read Keyboard and Clear Flag
6041 TSF Skip on Teleprinter Flag

6042 TEE Clear Teleprinter Flag

6044 TPC Type Character

6046 TLS Clear Teleprinter Flag and Type Character
6141l LINC* PDP-12 Change to LINC Mode
6141 ICON#% LINC Control

6143 IBAC#* Read LINC B Register

6145 ILES#% Read Left Switches

6147 INTS#* Read LINC Interrupt Status
6151 ICS1%®#* Read Control Switches I

6153 ICS2%* Read Control Switches II

6155 IMBS#% Read LINC Memory Banks

6157 ITACY* Read LINC Tape Window

6161 IACB#*#* Set LINC B Register

6163 IACS** Set LINC S Register

6165 ISSP** Set LINC P Register

6167 IACA¥%%* Set LINC Accumulator

6171 IAACH=* Read LINC Accumulator

6173 IZSA%% Transfer LINC Z to LINC Accumulator
6175 IACF#%* Set LINC Flip-Flops

6201 CDF Change Data Field

6202 CIF Change Instruction Field

6214 RDF Read Data Field

6224 RIF Read Instruction Field

6234 RIB Read Interrupt Buffer

6244 RMF Restore Memory Fields

7000 OPR Operate

7000 NOP No Operation

7001 IAC Increment Accumulator

7004 RAL Rotate Accumulator and Link Left

%Available for assembly on LINC-8 and PDP-12 versions of WISAL-8, but
executable only on the PDP-12.
#%Available for assembly on LINC-8 and PDP-12 versions of WISAL-8 but

executable only on the LINC-8.

-B8-

———— —_—— ————— —_— — —_— —_— —_— ——— — — —_— S—
SESNE — e’ S—— (RN | — i T Tt R ——r —— it

7006
7010
7012
7020
7040
704l
7100
7120
7200
7204
7240
7402
7404
7410
7420
7430
7440
7450
7500
7510
7604

RTL
RAR
RTR
CML
CMA
CIA
CLL
STL
CLA
GLK
STA
HLT
OSR
SKP
SNL
SZL
SZA
SNA
SMA
SPA
LAS

CHART VII (Continued)
PDP-8 Instruction Set

Rotate Accumulator and Link Two Left
Rotate Accumulator and Link Right
Rotate Accumulator and Link Two Right
Complement Link Bit

Complement Accumulator

Complement and Increment Accumulator
Clear Link Bit

Set Link Bit

Clear Accumulator

Get Link Bit

Set Accumulator

Halt

"Or'" Right Switches to Accumulator
Unconditional Skip

Skip on non-zero Link Bit

Skip on Zero Link Bit

Skip on Zero Accumulator

Skip on Non-zero Accumulator

Skip on Minus Accumulator

Skip on Plus Accumulator

Read Right Switches

-69=

References

1. GASTMB/GASTCL, LCF Program UP-039-03
2. PROGOFOP, LCF Program UP-072-02

3. TRAP, LCF Program UP-086-02

-70-

Bibliography

Clark, W.A.,, and C.E. Molnar, "A Description of the LINC," Computers in
Biomedical Research, Vol. 2, 1965, Academic Press, Inc., New York,
pp. 35-66.

Convocation on the Mississippi, Proc. of the Final LINC Evaluation Program
Meeting, March 18-19, 1965, Washington University, St. Louis, Missouri.

Marlowe, L., LINC Command System, Nov. 3, 1965, Brown University (informal report).

McDonald, M.D., S.R. Davisson, and J.R. Cox, Jr., A LINC Utility System,
Technical Report No. 1, March 19, 1965, Biomedical Computer Laboratory,
Washington University, St. Louis, Missouri.

Moore, R.K., An Operating System for the LINC Computer, Technical Report
No. IRL-1038, Nov. 1, 1965, Stanford University School of Medicine,
Department of Genetics, Palo Alto, California.

Wilkes, M.A., LAP3 User Manual, Aug. 1963, Center Development Office, decd.,
Massachusetts Institute of Technology (informal report).

Wilkes, M.A., "LAP5: LINC Assembly Program," Proc. of the DECUS Spring
Symposium, May 1966, Boston, Mass., pp. 43-50,

Wilkes, M.A., LAP6 Handbook, Technical Report No. 2, May 1, 1967, Computer
Research Laboratory, Washington University, St. Louis, Missouri.

Wilkes, M.A., LAP6 Use of the Stucki-Ornstein Text Editing Algorithm,
Technical Report No. 18, February, 1970, Computer Systems Laboratory,
Washington University, St. Louis, Missouri.

Wilkes, M.A., An Algorithm for Fast Tape File Copying, LINC Document No. 76,
February, 1970, Computer Systems Laboratory, Washington University,

St. Louis, Missouri.

Wilkes, M.A., "Conversational Access to a 2048-Word Machine," Communications
of the ACM, Vol. 13, pp. 407-414, July, 1970.

Wilkes, M.A., "Scroll Editing: An On-Line Algorithm for Manipulating Long
Character Strings," IEEE Transactions on Computers, Vol. C-13,
pp. 1009-1015, November, 1970.

Wilkes, M.A., and W.A. Clark, "Programming the LINC," LINC Vol. 16,
Programming and Use-I, Section 2, June, 1865, Computer Research Laboratory,
Washington University, St. Louis, Missouri.

=

SYSTEM SUMMARY SHEET
LINC-8, PDP-12

Manuscript Displays Assenbler Displays Display Index

Key Meaning Key Meaning Key Meaning

CTRL Q FWD page CTRL Q Next display CTRL Q FWD frame
CTRL W FWD line CTRL W FWD frame CTRL W FWD entry
CTRL E FWD character CTRL A To first display CTRL A BWD frame
CTRL A BWD page CTRL S Begin display CTRL S BWD entry
CTRL S BWD line RETURN Return RUBOUT Delete entry
CTRL D BWD character P Print display RETURN Return

CTRL X Split line L List MS R Reread Index
RETURN End line R Reference Table # Write Index
CTRL SHFT K Delete MS Other Ignore P Print Index
CTRL P Delete page Other Ignore

CTRL L. Delete line
RUBOUT Delete character

Meta~-Commands

>IN
+AM
+AM
+AS
+CB
+CF
+CF
-+CM
-+C0
-CP
-+CS
+DX
+EX
+FX
+LB
+LB
+LI
X
+PM
+RT
+SB
+5M
+SP
+58
+5U
+8A
+8B
+8B

(BN ,)UNITA

(NAME ,)UNITA
(LNA,(LNB,))(NAME ,)UNITA
(@BBB,N ,)NAME ,UNITA(,UNITB)
BN ,UNITA,UNITB

UNITA(,UNITB)

(BBB,N ,)NAME ,UNITA(,UNITB)

NAME ,UNITA(,UNITB)
LA
(NAME ,)UNITA

(NAME ,)UNITA

(NAME ,)UNITA

(@BBB ,N,)UNITA
(LNA,(LNB,))(NAME ,)UNITA

NAME ,UNITA

(LNA,(LNB,))(NAME ,)UNITA
(LNA,(LNB,))(NAME ,)UNITA

NAME ,UNITA(,UNITB)

(LNA,(LNB,))NAME ,UNITA(,UNITB)
(LNA,(LNB,))NAME ,UNITA(,UNITB)
(LNA,(INB,))STRING s

UNITA

(LNA,(LNB,))(NAME ,)UNITA
(NAME ,)UNITA

(QBBB,N,)UNITA

+8L (LNA,(LNB,))(NAME ,)UNITA

+8R (LNA,(LNB,))(NAME ,)UNITA
~+MP((N2 ,(W2,))STRING ,UNITA(,UNITB))

Locate at line, page 5

Add manuscript by block number, 13
Add manuscript by name, 13
Assemble, 36

Copy binary, 27

Copy file, 26

Copy file, 26

Copy manuscript, 27

Copy, 14

Copy program, 28

Continue search, 23

Display Index, 29

Exit, 15

File-only Index, 31

Load binary by name, 16

Load binary by block number, 16
List, 40

Name Index, 31

Print manuscript, 20
Reference Table, uu

Save binary, 33

Save manuscript, 34

Save program, 35

String search, 22

Switch wnit, 15

PDP-8 Assemble, 36

PDP-8 load binary by name, 18
PDP-8 load binarv by block number, 18
PDP-8 1list, 40

PDP-8 Reference Table, 44
Load meta-program, 2u

Other Displays

NO

NO INDEX ON UNIT u
REPLACE label

REPLACE xx NéME,u <H#>

COpy - PDP-8 Load Binary

Response Key
RETURN = Return to Manuscript Display
RETURN = Return to Manuscript Display
= Yes; RETURN = No
= Yes; RETURN = No
{ALT MODE = Return to Manuscript Display

RUBOUT = Delete last answer

RETURN = On to next question

SYSTEM SUMMARY SHEET
Classic LINC, u-LINC 100, u-LINC 300

Manuscript Displays

Assembler Displays

Display Index

Key Meaping Key
CASE O FWD page CASE 0O
CASE 1 FWD line CASE 1
CASE 2 FIWD char. CASE Q
CASE Q BWD page CASE W
CASE W BWD 1line EOL
CASE R BWD char. P

CASE E BWD char. (u-LINC 300) L

CASE S Split line R

EOL End line Other
CASE K Delete Manuscript

CASE P Delete page

CASE L Delete line

DEL Delete char.

Meaning Key Meaning

Next display CASE 0 FWD frame
FWD frame CASE 1 FWD entry
To first display CASE Q BWD frame
Begin display CASE W BWD entry
Return DEL Delete entry
Print display EOL Return

List MS R Reread Index
Reference Table # Write Index
Ignore P Print Index

Other Ignore

Meta-Commands

+IN

+AM (BN,)UNITA

+AM (NAME ,)UNITA

+AS (LNA,(INB,))(NAME,)UNITA

+CB (QBBB,N,)NAME ,UNITA(,UNITB)
+CF UNITA(,UNITB)

-+CF BN ,UNITA ,UNITB

+CM (BBB,N,)NAME ,UNITA(,UNITB)

+C0

+CP NAME ,UNITA(,UNITB)

+CS LNA

+DX (NAME,)UNITA

+EX

+FX (NAME,)UNITA

LB (NAME ,)UNITA

-+LB (QBBB,N,)UNITA

+LI (LNVA,(LNB,))(NAME,)UNITA

*NX NAME ,UNITA

+PM (LNA,(LNB,))(NAME,)UNITA

*RT (LNA,(LNB,))(NAME ,)UNITA

+SB NAME ,UNITA(,UNITB)

+SM (LNA,(LNB,))NAME ,UNITA(,UNITB)
+SP (LNA,(LNB,))NAME ,UNITA(,UNITB)
+3S (LNA,(LNB,))STRING,

+SU UNITA

~MP ((N1,(N2,))STRING ,UNITA(,UNITB))

Locate at line, page 5

Add manuscript by block number, 13
Add manuscript by name, 13
Assemble, 36

Copy binary, 27

Copy file, 26

Copy file, 26

Copy manuscript, 27

Copy, 14

Copy program, 28

Continue search, 23
Display Index, 29

Exit, 15

File-only Index, 31

Load binary by name, 16
Load binary by block number, 16
List, 40

Name Index, 31

Print manuseript, 20
Reference Table, 44

Save binary, 33

Save manuscript, 34

Save program, 35

String search, 22

Switeh unit, 15

Load meta-program, 24

Other Displays

NO

NO INDEX ON UNIT u
REPLACE label
REPLACE xx NAME ,u <#>

COpy

{

ResEonse Key

EOL = Return to Manuscript Display
EOL = Return to Manuscript Display
= Yes, EOL = No

= Yes, EOL = No

CASE = Return to Manuscript Display
DELETE = Delete last answer

EOL = On to next question

= nn

